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PREFACE

The following pages are the result of a course in Differential

Equations which the author has given for some years to classes

comprising students intending to pursue the study of Engineering

or some other Physical Science, as well as those expecting to con-

tinue the study of Pure Mathematics or Mathematical Physics.

The primary object of this book is ,to make the student familiar

with the principles and devices that will enable him to integrate

most of the equations he is apt to come across. As much of the

theory is given as is likely to be comprehensible to the student who
has had a year's course in the Differential and Integral Calculus,

and yet is sufficient to form a harmonizing setting for the numerous

and otherwise apparently miscellaneous classes of equations, and

the disconnected methods for solving them. It is intended to have

the work sufficiently broad to make it a handy book of reference ,

without affecting its utility as a text-book. A number of footnotes

and remarks have been put in, which, without breaking the continu-

ity of the practical side of the subject, must prove of interest and

value. Numerous historical and bibliographical references are

also made.

A course that is limited in point of time and aims only at acquir-

ing skill in integrating most of the equations that are apt to arise

could dispense with §§ 12, 15, 17, 22, 28 (part in small type), ^;^,

34, 38-40, 46-48, 66-69 (except examples), 70, 71, 73, 75, 78, 80,

81. Many of these sections should properly come in a well-bal-

anced course. The needs of the class, and the time at its disposal,

must decide which of them, if any, should be omitted.

The author has had in mind continually the necessity of sys-

tematizing the various classes of equations that can be solved by

elementary means, and of minimizing the number of methods by

which they can be solved. To enable the student to get a better
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general view of the subject, the summaries at the ends of the

various chapters and the final general summary must prove of

great value.

Numerous applications to problems in Geometr)' and the Phys-

ical Sciences have been introduced, both in the body of the text

and in the form of exercises for the student.

Although a large number of the problems have been published

before, many are new, and all huve been chosen to bring out the

various methods of the differential equations, and of the integral

calculus as well. Many of the examples worked out in the text

were chosen to recall some of the more important methods of the

latter ; for while the use of tables of integrals is recommended,

the student should not feel absolutely dependent upon them.

Most of the solutions have a simple form or an interesting inter-

pretation. Great care has been taken to avoid typographical

errors. The author shall be very glad to learn of any that still

exist.

The method of undetermined coefficients for finding the particu-

lar integral in the case of linear equations with constant coefficients

is believed to be presented here for the first time in its complete

form.

The subject of Partial Differential Equations is so vast that it was

decided to present only a few topics, which, in all probability, will

suffice for the needs of the students for whom this book is intended.

It was only after considerable thought that the author refrained

from adding a chapter on the Lie Theory. It is hoped to present

that important branch of the subject in a separate volume.

In conclusion the author takes great pleasure in expressing his

appreciation of the valuable suggestions made by Professor F. S.

Woods of the Massachusetts Institute of Technology, as well as

of those by Professor L. G. Weld of the University of Iowa and
Professor E. J. Townsend of the University of Illinois.

ABRAHAM COHEN.

Johns Hopkins University, Baltimore, Maryland,
October, I9b6.
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DIFFERENTIAL EQUATIONS

CHAPTER I

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

1. Differential Equation. Ordinary and Partial. Order, Degree.

— A differential equation is an equation involving differentials or

derivatives. Thus,

(I)

(2) (^-r-j')'='^"'+/'

dx

dx

/ \ dy
,

dx
(3) ^-"i + ^^ = °'

d^
dx- r-— k=o,(4)

[
dz . Bz

\dxj _

(5) ^^+^'^-'^ = °'
ox ay

(6) y ^^^^ ^^ ^-7 ~ -^ ^ ^y^'
djr oxdy ay

(7) 3(?fdx-^o^fdy = o,

are examples of differential equations.

Equations in which there is a single independent variable (and

which, therefore, involve ordinary derivatives) are known as ordinary

differential equations. Equations (i), (2), (3), (4), (?) are such.

If an equation involves more than one independent variable, so

that partial derivatives enter, it is known as a partial differential

equation. Examples of §qch are equations (5), (6).

I



2 DIFFERENTIAL EQUATIONS §2

By the order of an equation we mean the order of the highest

derivative involved. Thus, equations (2), (3), (5), (7), are of the

first order; (i), (4), (6), are of the second order.

By the degree of an equation, we mean the degree of the highest

ordered derivative entering, when the equation is rationalized and

cleared of fractions with regard to all the derivatives. Thus (i), (5),

(6), (7), are of the first degree; (2), (3), (4), are of the second

degree.

2. Solution of an Equation. — By a solution of a differential equa-

tion we mean a relation connecting the dependent and independent

variables which satisfies the equation. Thus y = sin ax is a solu-

tion of (i), ^^ +/= - is a solution of (4), 3 = A-4- v is a solution
k-

of (5), x^f= I is a solution of (7). [The student, as an exercise,

should verify these facts.]

Attention should be called to the fact that a differential equation

has an indefinite number of solutions. It can be seen readily that

jV = 2 sin ax, y =. 6 cos ax, y = A cos ax + B sip ax (where A and B
are any constants whatever) all satisfy equation (i). The student is

in the habit of adding a constant of integration when integrating a

function. He says the integral of cos.r is sin:ir -\-c. Now the prob-

lem of integration studied in the Calculus is only a special case of

the general problem of solving a differential equation. To integrate

I
cos x dx is to find a function, sin .vr + c, whose derivative is cos x.

In the language of the Differential Equations, we should say that the

solution of ^ = cos x is 1= sin x \- c, where c is an arbitrary constant.*
dx

A constant in a solution will be said to be arbitrary if any value whatever

may be assigned to it. Thus j =: sifi ;r + ^ is a solution of -^ = cos x, no matter
dx

* It may be noted that in the special case occurring in the Integral Calculus the

arbitrary constant always occurs as an additive one, while in the general cas^ it may
enter in an endless number of ways.



§3 DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS $

what value c has. S\mi\3ir\y y = A cos ax + B sin ax is a solution of (i) for

any values of A and B. They are arbitrary constants. On the other hand, a is

not arbitrary. While any value one pleases may be assigned to it in (i), once

chosen, its value is fixed, and that value alone can enter into the expression for

the solution.

Restricting ourselves to ordinary differential equations* we see that

a solution may involve one or more arbitrary constants. The ques-

tion naturally arises, what is the maximum number of such constants

a solution may contain ?

3. Derivation of a Differential Equation from its Primitive.— Just

as the problem of integration is the inverse of that of differentiation,

so the problem of finding the solution of a differential equation is the

inverse of that of finding the differential equation which is satisfied

by a relation among a set of variables, which relation may or may

not involve one or more arbitrary constants. In order to make this

problem precise, we shall say that we wish to find the differential

equation of lowest order satisfied by this relation, and not involving

any arbitrary constants. Thus 7 = A cos jc, where A is an arbitrary

constant, satisfies —+y tan x = o, ^ +}' = o, —4' —J tan x = o,
dx dx^ dx^

etc. But we shall say that ^- +7 tan .a: = o is the differential equation
dx

to which it gives rise.

Again, y = A cos .;^; + ^ sin x, where A and B are arbitrary con-

(i V d V dv
slants, satisfies —-^, + ji- = o, also —^ + --i- = o, etc. Here, as before,

dx- dxr dx

'J i'^y — ^ '^ ^^^^ differential equation we are interested in.

Perfectly generally, if we have a relation which involves n arbitrary

constants,! we differentiate this expression n times, thus having in

* The study of partial differential equations will be taken up in Chapter XIL
t It is implied, of course, that the n constants are essential ; that is, that they cannot

be replaced by a smaller number. For example, >< = ;tr + a + 3 really involves only

one essential constant, since a + (J is no more than a single constant. Again ae^+^ is

no more general than ae'.
\



DIFFERENTIAL EQUATIONS §3

uvK tr. pliminate the n constants. So that

::r:;:— appea...esn..a^

>-WesdeH™Uvesofas>.^ano^„

rS":;^^ Wrrgo4 in.o a rigorous proof of .He

tn a differential equation of the nth order.

^otstrate, find .he differential equations correspond.ng to the

following primitives :

—

Ex. 1. y = c,^' + ^•/•••- ""•= ^' '^^ '• ''' *' '"'"""' '°"'''°"'

Then^ = «i^i^" + '^'''^'

^ = a,\e'^' + a^c.^e'^-

d^

From these three equations we must eliminate c, and c,. Con-« them as thL homogeneous equations .n the quantU.es x,

Cxe^<', c^"^-"^, we have

-7-, «i> "^ =o,org-(«. + ^.)£+ «i'^>' = °-

doc

Ex.2. (^-.)^+/ = ^-^ Here, is the arbitrary constant. Then

^_,+;,^ = o. From these two equations we must

dx
eliminate c.

Now x-c = -y'^^' Substituting this in the original equation,

we have

dx

f(^£^^f^r^



§4 DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

Ex. 3. y — cx-i-Vi—c^.

Ex.4. (x-c,y- + (y-c,y = r\

J Ex. 5. y = c^xr + c^.

"' Ex. 6. jr + CyX = o.

J Ex. 7. xr=2cy + r.

4. General, Particular Solution. — If now we start with a differ-

ential equation, its solution involving the maximum number of arbi-

trary constants is nothing but the primitive which gives rise to the

differential equation. That solution cannot contain more than n

arbitrary constants, by the theorem in § 3. Besides, it must contain

as many as n ; otherwise it would be the primitive of a lower ordered

equation.

The solution involving the maximum number of arbitrary con-

stants is called the general (or complete^ solution.* By means of the

general existence theorem (§ 70), we can prove the following

theorem :— The general solution of an orditiaiy differential equation

of tiie nth order is one that itivolves n arbitrary cojistants.

Attention should he called to the fact that although the general solution may

assume a variety of forms, all of these give the same relation among the variables,

so that there is actually only one general sol-ution ; thus it is readily seen that

j,3y3 ^ c '\% ^ solution of (7); so also is logjr -\- log^ = C, or logjy =: C.

These, obviously, are all equivalent to saying that xy is constant. The unique-

ness of the general solution is part of the existence theorem.

A solution which is derivable from the general solution by assign-

ing fixed values to the arbitrary constants is called a particular

solution. Thus, y = cos x and y = cos ;c — sin x are particular solu-

tions of

—

^-\-y — o.
dx^ ^

* We shall see later that there may be solutions which are distinct from the general

solution. In the general theory of Differential Equations the existence of a solution

for every differential equation (under certain restrictions) is proved. The solution

there obtained is the general solution referred to in the text.



5 DIFFERENTIAL EQUATIONS §4

As mentioned in § 2, the problem of the Differential Equations includes that

of the Integral Calculus as a special case. Thus, in the latter the general

problem is to solve

ax

This is only a special case of the problem of finding the solution of the differ-

ential equation of the first order involving two variables,

ax

where /(;r, ;)/) niay be a function of both the variables. We speak of integrating

or solving the equation, in the general case, and at times refer to the simpler

problem of the Integral Calculus as performing a quadrature.

A function of the independent variable will be said to be an

integral oi the equation if, on equating it to the dependent variable,

we have a solution. We have a general ox particular integral accord-

ing as the resulting solution is general or particular.

While the problem of findiiig the differential equation correspond-

ing to a given primitive is a direct one, and can be carried out

according to a general plan, involving simply differentiation and

elimination, that of finding the primitive or general solution of a

given differential equation, like most inverse problems, cannot be

solved by any general method.

In the following chapters we shall bring out, in as systematic a

manner as possible, some of the classes of equations whose solutions

can be found.

We shall understand that the problem of the Differential Equations

is solved when we have reduced it to one of quadratures, that is,

to a mere process of the Integral Calculus. While in the general

theory of the Calculus it is proved that every function ha^ an

integral, it may not be possible to express it. In such Cases we shall

content ourselves by simply indicating this final process.
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CHAPTER II

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND
THE FIRST DEGREE

; 5. Exact Differential Equation. Integrating Factor. The general

type of an equation of the first order and degree is

(i) Af dx + JV (fy
= o,

where M and TV are functions of x a.ndy.

Making use of the theorem that every differential equation has a

general solution (§ 70), this equation has a solution containing one

arbitrary constant. Solving for the constant, the solution has the form

(2) //(x,j)= C.

The differential equation having this primitive is obviously

du J ,
du r— ax -\ ay = o. ,

dx dy

'

Since this must be the same equation as (i), we must have the

corresponding coefficients proportional, i.e.

bx _by H^.

'

m~n' '^ r
If we call this common ratio jx, (which is, at most, a function of :X

andy), we have

So that

dx dy

f.h{Mdx + Ndy) = du.



8 DIFFERENTIAL EQUATIONS §5

We shall speak of an expression which is the differential of a

function of one or more variables as an exact differential. Thus,

Ik{M dx + Ndy) is such, since it is the differential of ti. We shall

further speak of a differential equation as an exact differential equa-

tion, if, when all the terms in it are brought to one side, that member

is an exact differential. The above result can now be stated as

follows : Assuming the existence of the general solution of the differ-

ential equatio7i {\), a factor ^{x, }) exists 7vhich, when introduced,

will make the equation exact.

This factor is known as an integrating factor, because, as we shall

see (§8), when our equation is exact, its integration can be effected

readily.

A differential equation of the first order and degree has an indefinite number

of integrating factors.

Suppose /u, to be an integrating factor. Then

AC {Mdx + Ndy) = du {x, y)

where the sign of identity = means that /xJ/= -— and fiJV=— -

Now, if <p{u) is any continuous function of u, we have

fi4>(u)Afdjc + yi4>{u)Ndy = <p(u) ^ dx + <p(u) ^ dy^d^pCu) - d^Cx, y),
dx dy

d4^(u)
where m^ = ^(„), or i(u) = (<p(u)du.

du J

Hence ii(f>(u) is also an integrating factor. Since <p(tt) may be chosen in

an indefinite number of ways, we see that the number of integrating factors is

infinite. [For another proof, see Ex., § 7; also § 80.] Thus, it is obvious by

inspection that xdy —ydx= o has — for an integrating factor. We have, actu-

ally, --^t=ZJ^^,, fy\ Here ^ = 1,, u =>^. Then JL^f v\
^j,, ^^^' \xj X- X x^ \xj

tegrating factor. In particular, i- £ or -L is an integrating factor
x'-y xy

-f -— which is d(\ogi-] • Similarly, ^^ or L gives df - -\

•

/ ^ \ X / X- y^ j^ \ y I
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6. General Plan of Solution.— Since every differential equation of

the first order and degree whicli can be solved by elementary means

has integrating factors, it would seem natural to try to find such a

factor when the problem of solving an equation of this type arises.

Practically, this is not always possible or desirable.. In the following

paragraphs of this chapter will be found the more important and the

more frequently occurring classes of equations of the first order and

degree which can be solved by elementary means ; and it will be

noticed that they will be solved, in general, either by finding inte-

grating factors for them or by transforming them into other forms

for which integrating factors are known.

7. Condition that Equation be Exact.— If the equation is exact

to begin with, of course, no integrating factor need be sought. We
must, then, find the necessary and sufficient condition for exactness

of an equation. If

(i) Mdx-\-Ndy = o

is exact, that is, if Mdx -fN dy is the differential of some function ii,

then -— =M and — = ^, and
ox d V

(2)

'

QM^dN
dy dx

''

(2) is, then, a necessary condition for exactness
dx dy dy dx

of the equation.

We shall now prove that it is also sufficient. Even more, we shall

show that if (2) holds, we can actually find a function // such that its

differential is Mdx + Ndy, or, what is the same thing, such that

(3)
^' = J/,and^ = .V.

ox oy

* Assuming the continuity of Af and A^, and the existence and continuity of ^-—

and5^\
^'

dx

vjA^- ^^



ti = CMdx + Y{}) *

10 DIFFERENTIAL EQUATIONS §7

In order that the first of these relations (3) should hold, we must

have

(4)

where Fis a function of ^ only, and plays the role of a constant

of inteo-ration, since y is considered a constant in the process of

integration involved in (4). The value of // given by (4) will

satisfy the first of (3), no matter what function oi y Y may be. In

order that u satisfy the second of (3) we must have

5« 5 ^^^^ ,
<fy

dyj dydy dyJ dy

that is, Y must satisfy the equation

(c) ^=JV-A. Cj/dx.^^'
dy dyJ

Since the left-hand member of (5) is a function of v only, the

same must be true of the right-hand member ; that is, the latter

must be free of .r, or in other words it must be a constant as far as

X is concerned, and its derivative with respect to .r must be zero.

As a matter of fact, that derivative is — ,1 which is zero
dx ay

^because of (2). We can, then, find Kto satisfy (5), viz.

^=/[^-i/'''^^-'^
-fy.

and the resulting value of // in (4) will satisfy both equations (3).

Ex. Using the fact that (2) is the necessary and sufficient con-

dition for exactness, prove that if fx is an integrating factor, such

that ik{Mdx -\-Ndy)^ du
,

/x '^{u) is also an integrating factor.

* By I M dx we mean the result of integrating Mdx considering ^ as a constant.

t Obviously — \ Mdx = M, since, in both of the processes involved, y is con-

sidered constant.
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8. Exact Differential Equations.— This suggests a method of solv-

ing an exact equation. For, in this case, Mdx + Ndy — du where

u^ rMdx+ r [jV-1- Cudx dy.

So that the general solution is

(6) /V-..+/[A'-lp/^.v]^,.= ..

Expressed in words, the operations involved in (6) are : Integrate

Mdx, consideringy as a constant, thus obtaining \ "^Mdx. Subtract-

ing the derivative of this, with respect to y, fro?n N, a function ofy

only is left. The integral of this function plus | '^Mdx is the left-

hand member of {G).

Remark. — Frequently N I AIdx is nothing but those terms
QyJ

of TV free of jc. This suggests the simple rule : Integrate Mdx, con-

sidering y as a constant ; then integrate those terms in N dy free of x.

The sum of these equated to an arbitrary constatit is the general solu-

tion. This rule may fail because yMdx is not unique as far as

terms involving y only are concerned. Thus \ '^{x ->ry)dx may be

either \x^ + xy or \{x + y)'- See also Ex. 3. But the rule is found

to work so often that it seems worth mentioning, with the understand-

ing, however, that when it is employed, the result be redifferentiated

to see whether the original equation is obtained.

As an exercise let the student show that the general solution may

also be obtained in the form

1^ _ 2 XV + I , . v — x JEx. 1. —=

—

— dx +-—;7- dy = o.

dx

s

y y
— (
—^

)

= =—P-—^—
)

; hence equation is exact.
dy\ y J y- dx\ y- J

dx =x--\ - is the only term in TV free oi x.

y y y
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C-dy = log y.
J y

.-. ^2 ^ ^ + log ji;
= <; is the general solution.

y

Ex. 2. ^-- dx + -f —(iy = o-

xf — o(?""'^
' y — a:7

Let the student prove that this ij exact by showing that

by dx

J xf^-x^ J x(j^--x^) J X J y — x-

logx+Uogiy'-x-).
2

At first sight it might seem that no term of N is free of x. But

writing it in the form
-^'" "^9"

"f"^ = « "^
, + -» we see that there

y(y-x'-) y--x- y

is such a term, viz. -•

y
.-. the solution is log ^ + |^ log (y — a') + log _y = c,

or jf-j'-( J'-
— jr ) = r.

Ex.3. -J^—A-i'-- ', ^
V/v = o.

Let the student prove that this is exact.

— = log ix -}- y,y2 -|-y-'), the form given in integral

tables.

tV contains the term - which is free of x. Hence if the rule is

y
followed blindly, the solution would seem to be

log {x + -JX' +j)'^ + log y = c.
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As a matter of fact, the solution is log (x + V.r^ +/') = ^•

= log (x + v'.r''' 4- a^) — log (Z.

Naturally in tables of integrals the term — logrt: is omitted, as that

may be incorporated in the constant of integration. In the case of

the problem under discussion it makes a big difference whether this

term is used or not. If it is used, the rule gives the correct result.

But if the form of the integral as given in the tables is used, then

the rule is at fault. Hence the caution given in the remark above

/ should be heeded.

Ex. 4. (y + x) dx + X dy = o.

J Ex. 5. (6x — 2_v + I ) dx + (2J'
— 2x — 3) <'/)' = o.

9. Variables Separated or Separable. In caseM is a function of x

only, and JV one of v only, the relation — -— is obviously satisfied.
dy ox

In this case we shall say the variables are separated. The integral

is, of course,

i^Mdx + \Ndy = c.

Very frequently, the variables are separable by inspection.

Ex. 1. sec X cos"^ dx — cos .r sin y dy = o.

TT sec X J sin V , *Hence dx ^ dv — o*
cos .V COS"

J

or sec-jc dx — tan v sec y dy = o.

The general solution is tana- — sec v —c.

*Here is an integrating factor, found by inspection.
cos X cos2_y
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^ Ex. 2. (i + x)fdx — .r^ dy = o.

Ex. 3. 2{\-f')xydx^{\+x-){\^-y-)dy=o.

^ Ex. 4, sin X COS-,)' d'x + cos* x dy = o.

10. Homogeneous Equations. A widely occurring class of equations

where the variables can be separated, not by inspection, but by a

simple transformation of variable!^, is that in which M and N are

homogeneous functions of jc and y, and of the same degree. Then

— is a homogeneous function of degree zero, and is therefore a func-

r V*
tion of -^

.

X
Our equation can now be written

dx N \x

Let :? be a new variable, say v.
X

Then y = vx, _2 = ?; -|- x -— = F{v),
dx dx

dv dx

F {v) — V x

and our variables are separated.

Integrating this, and then replacing v by its value in terms of x
and r, we have the general solution.

*A convenient definition of a homogeneous function oi x and y of degree r is, that if

in the function we replace .r and y by (x and ty respectively, where i is anything we
please, the result will be the original function multiplied by /^ (This definition can be
extended at once to a function of any number of variables. It is obviously consistent

with the old definition of homogeneity of polynominals.) This definition can be form-

ulated thus
: If/(^,^)is ahomogeneous function of degrees, then/(/^,0')= '*'/(*. /)•

Ifweput/ = ^. we h&ve f (i.l\=^/ {x,y), or /{x,y) =x>-/ ( I, y\. When

r = o, we hAve/{x,y)=/(i,l\ = f( ^Y
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Ex.1. (xe^-\-yy^x — xdy = o.

Put y = Z'x, dy = v dx + x dv. Then

x{f ArV^dx — XV dx — X- dv= o,

dx dv ^ . ,

or = 0. Integrating, we have
X e

log X + <?" = c, or log X -\- e ' = <r.

Ex. 2. 2 x-_>' + 3 Jt''''
— (•^'' + 2 ;c_)'-) -j- = o.

ax

Put y = vx, -^ = v-{- X -^ • I hen

1 + 2 ?'-
, ^x

TT- dv = 0,
V + zr .r

rt'z^ z^^z' dx _ ^. ,

or 1 5 = 0. Integrating, we have
V \ -^v^ X

log v-\-\ log (i + V-) — log X = k,

or log z^- + log ( I + ?'-) — log x-=2k,

or ——; = (?-*= r ; whence

"^ Ex. 3. (j-- — J17) ^/.v + .r- dy = o.

Ex. 4. 2 .r-v + J' — x'^ = o.^ dx

I Ex. 5. fdx + .x-\/)' = o.

' Ex. 6. ( X +7 cos -
J

dx — X cos - dy=o.
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11. Equations in which M and N are Linear but not Homogeneous.

If J/ and N are both of the first degree but are not homogeneous,

we can, by a very simple transformation, make them homogeneous.

Suppose our equation to be of the form

{a,x + hy + A) dx + («,x + b,y + c^ dy = o.

Put X = x' + «, y =y' + 13. The equation becomes

(^ix'+ V'+^i^+'^i/S + ^i)
^^'^'+^-''^'^'+^~^''+''^"'^'^^^'^'^^'^'^' "°*

Now we may choose « and (3 such that

a^a + />i(3 + ^1 = 0,

and ^2« + ^-^P + ^-2 = o;

i.e. if we put a = -^ -^
,
and ^ = — —r

,

our equation takes the form

{a^x' + bo'') dx' + (a,a-' + b,y') dy' = o,

where the coefficients are homogeneous.

Ex. 1. (4 ^ + 3 J' + I ) dx + (a- +.V + I )./)' = o.

Putting a: = a-' + 2, J'
=y' - 3, this becomes

(4 x' + 3
;-') ./a' + (a-' + j') ^6'' = o.

Now, if;'' = vx', we get

1+^' ^^ + ^^=0,
4 + 4 Z' + 2'- a:'

rt'z; //z* , dx'
or 1 ^^ '^^

2 + 2/ (2 + Z')- X'

.'. log (2 + 7') H 5^ h log x' = <r,

2 -{- V

or log A-' (2 + z/) = r ^, whence,
2 + 7'

a:'
l0g(2A'+y) = r-—pj-y,.
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Passing back to x and v, this becomes

\og{2x-\-y- i) =c ^^^?
2 jt: -\-y— I

"Ex. 2. (4 X —y -{ 2) ^/.v + (.r + J' + 3) ^i' = o.

Remark.—This method breaks down in case ai b-i — aib\ — 0. But in this

case we can find a transformation which will separate the variables at once. For

we have -^ — — — k, 2^ constant, and the equation takes the form
ax h

{aix + biy + ci)dx + \_k{(jix + biy) + C2'\dy = o.

If now, we put ayx + l>i y = /, so that y — !-
, our equation takes the form

or ax -\ — at — o,
{b\ — '^1-^) t + bici — a\c-i

where the variables are separated.

Ex. 3. {2x -\- y^dx — (4.V + 2V — i) dy = o.

-yt. 12. Equations of the Form yf\{xy) dx + xUixy) dy = o. Another

class of equations in which the variables can be separated by a sim-

ple transformation may be mentioned. The general type of such an

equation is

}!fx{xy) dx + xf.,{xy) dy =0,

where hy/{xy) we mean a function of the product xy.

If we put XV = 7>, or y = '^
, then x dv = dv dx, and our equa-

.V
' X

tion becomes - /i(z') dx \-f-2{v)dv fi{v)dx = o,

/, dv . dx

where the variables are separated
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Ex. 1. (y + 2xy- - xj^ dx + 2x"y dy = o.

Putting j; = - , dy = ^i?^Lll-^", our equation becomes
X X

-(i 4- 2V — v)dx^ 2XV -. = 0,
X x^

2 dv , dx
nr :

-' =0.
I — ?>- X

2 1,1
Integrating, we get, since ——^ = •

—

h
1 + Z' 1 — V

log i^' + log X = k,

or

\ — v

I— V

Replacing v by its value, we get

X + x-y——- = c.

\ — xy

•J Ex. 2. ( 2 V + 3 xf) dx + (x -\- 2 x-y) dy= o.

V Ex. 3, (j' + ^ji'^//jc + {x — Jtr-j') rt^i' = o.

13. Linear Equations of the First Order. A linear differential equa-

tion (of any order) is a special kind of equation of the first degree.

It is not only of the first degree in the highest derivative, but it is

of the first degree in the dependent variable and all its derivatives.

Thus, the general type of a linear differential equation of the first

order is

dx

where P and Q are any functions of x only.
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An integrating factor for this equation is readily seen* to be

J^-*', since ^ (_yJ™') = J^-'Y^ +^Y Introducing this factor,
ax \dx )

we have the solution by means of a single quadrature, thus

yglPd.^ ^Q e^^"' dx + c.\

Ex.1. --^ +^ cot X = sec ^.
dx

Here e^^''"" — ^J^txdx _ ^logsinx _ gjj^ ^ jg ^^ integrating factor.

Using this we have

^sin;t:= | sin^sec:<:^;c= | tan jc ^;c= — logcos:c + ^.

Hence the solution is y%\vix= — log cos x -\-c,

or _)» sin jc = log sec jc + ^•

Ex.2. .r^ + (i +Ar)j = ^.
dx

* We shall see later (§ 80) that this form of integrating factor arises by a perfectly

general method. Excepting for pedagogic reasons, that method could be given at this

point, without assuming anything to prevent our using it in this connection.

t While the above method of solving a linear differential equation of the first order

is undoubtedly the simplest in both theory and practice, and besides has the advantage

of being readily retained in mind, it may be well to call attention to a second method,

which is part of a general method applicable to linear equations of any order (see

hh 53. 59)-

dy dv , dy-t
, ,

civ .

Let y=y,v. Then -^=y\ -r-'r~-^-v, and the equation becomes y-i -r~'r^ dx dx dx dx

(-p' + Py\ \v= Q. If we choose y\ so that ~ + Py\ = o, we get /i = e-lP^^- and

the equation in v becomes —= Q e!P<i^, whence v= \ Q eSP<ix dx + c; and we have
dx J

finally >- = eSPd-' C Q elp<^ dx + ce'^P^^.
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Putting this in the proper form (where the coefficient of
-J-

is

unity), we get

CF(ix= C(-dx + dx\ = \ogx+ X,

an integrating factor is e ''•"'+^ or .v e\

Using this, we get yxe^ = \ r"" dx = - e'^'' + c.

. Ex.3. ^_-A>L = (^+i)3.
dx X -{ \

Ex. 4. {x + y?) - - + 4 x-y= 2

.

- Ex. 5. Jt:-^ + (i — 2 x^y = :xr.

"^ 14. Equations Reducible to Linear Equations.— At times an obvi-

ous transformation will change an equation into a linear one. Such

a one, of frequent occurrence, is

f^ + /'v= Qf*
dx

where, as before, P and Q are functions of x only, and n is any

number.

Dividing by jv" we get

dx

Let7""+^ = z', thenj'~"^ = —^- ^, and our equation becomes
dx \ — 71 dx

^ + (i-n)Pv = (i-?i)Q,

which is linear.

* This is known as Bernoulli's Equation, after James Bernoulli (1654-1705).
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Ex.1, {i -x')^- 2(1 +x)y=y\
dx

y-\dy
^
1+^ _|^ I

dx I — x-^ \—oi?

T ^ '4 ^u 3 -5 dy dv
LetJ 2 _

2;^ then — -y ^ -^ =—
^x dx

dv ,
\ -\- X -x I

h 3 —r v = — ^ —
dx I — x'' 2 \ — 3^

^i— jr J \ — X c/i-|

-\- 2 X
dx

= — 2log(i -a-) +log(i +.T + x2-^.

.*. an integratmg factor is <?
'"^

(i_^)2 , or —^!^

—

——
,

(i —xy

and we have y' + "" + f=-^ C—^ . l±^^±^]dx
(i — x)^ 2J 1 — x^ (i ~ ^)'

=-f/(7f-^^—^-^•+-xy 4(1-^)

,
_ 3 1 + X + X- 3 I

Whence y ^ —} rr = 7 zh + <^>
•^ (i —a')- 4 (i —xy

or y-t = _3 ^
c(i-j^

4i + x+;c- \ -{- X -{ X'

As examples of other cases where an obvious substitution wil]

transform the equation into a Hnear one, consider the following :

^ Ex.2, y^^xy-^x. [Put/=z'.]
dx

' Ex.3. sin_)'-^ + sin.r cos j'=:sin jc. [Put cos j = z;.]

dx

J Ex.4, ^x^
dx

dy

dx x -{-

4 x-f + 37 + e^'xy = o.
dx

X + 1 -^ '
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15. Equations of the Form jr'/' {my dx -{- nxdy) + x^y" {jj.y dx +
vx dy) — o.

Since ^/ (jv"/) = ^"~y"^Oy ^x + z^^v 40 >
i* is easily seen that if

we start with any expression x"'/ {tny dx + nx dy), we can make it

exact by multiplying it by xy^, provided

cm = « + r + I , and cn = ^ -\-s + i,

where c is any number. As a matier of fact

c

If (T = o, this term must be replaced by d log x^y^.

The object of introducing the undetermined quantity c is to enable

us to find an integrating factor for an equation of the form

Just as the factor j;<;'n-'-ij<-»-«-i
will render the first set of terms

exact, so ^ym-p-Ij.v—<^-i
will render the second set of terms exact.

In order to find an integrating factor for the equation, we must so

determine c and y that these two factors are one and the same, i.e.

we must have

Cm — r—\ = yyu,— p — I,

en — s — I = yV — o- — I

.

These two equations are sufficient, in general, to determine c and y.*

Ex. 1. x^y (3 y dx -[- 2 x dy) + x- (4 jc dx + 3 jc dy) = o.

Here, ^ = 3, n = 2, r= 4, s=i, /u, = 4, v = 3, p = 2, a = o.

3^-5=47-3. 2r-2 = 3y-l.

From these we have, c = 2, y=i. Hence the integrating factor

is xy-. Introducing this, we get the solution

1 xy + xY = ^1, or xy + 2 xy = k.

* If viv = w/i, the equation reduces to the simple form mydx\- nx dy = o.
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^ Ex. 2. y (3 7 </a: — 6 X dy) — x (_)' dx — 2 x dy) = o.

Ex.3. (2 .a;^_y—y) </x — (2 jc^ + o^) ^ = 0.

16. Integrating Factors by Inspection. — Integrating factors can

frequently be found by inspection on closely examining the terms

entering in the equation.* Of course no general rule for this can

be given. A commonly occurring group of terms is ;c ^ —y dx.

This suggests
^^y-y^\

or ^^ll^, or ^ - ^, or
^^y-}'^^

r y X ^2/1 ±4'-
\^ X'

the factors being respectively — , — ,
—, —^ ;• So that — is an

X' y- xy X- ± y- x^

integrating factor for an expression of the form xdy — y dx +f{x) dx,

while — may be used for one of the form xdy—v dx +/{y') dy, and

— for X^ —y dx -\-f{x}Mx dv -\- y dx), and ; iox xdy —y dx
xy

"
X- ±f

-Vfix^^y^ixdx-^ydy). Other combinations will occur to one in

actual practice.

Ex. 1. (/ — xy) dx + x^ dy = o. (Ex. 3, § 10.)

Writing this f dx — x (^y dx — x dy) = o,

we see that —- is an integrating factor. Using this, we get
xy

dx ydx — xdy

X y

whence log .r = ^.

y

T7 „ xdy—ydx ,.
Ex. 2. —-^ -^ =xdy.

^/x^ — ^r

* An illustration of this we had in \ 9, where by the introduction of a factor the

variables were separated and the equation thus rendered exact.
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Y" //y y /7JC I

Writing this — " = x dy, we see at once that — is an

^. . , . xdy —y dx , ,

integrating factor. Using this, we get —
,

= dy ; whence

' Ex. 3. {x + _)') dx — {x —}) dy = o.

Writing this x dx + y dy-\-ydx — x dy = 0, we see at once that

is an integrating factor.
x-+y

Ex. 4. {xr +x) dx — 2 xy dy = o.

. Ex. 5. (.r —y') dx + 2 .rv dy = o.

Ex. 6. X dy —y dx — (xr + J'') dx.

17. Other Forms for which Integrating Factors can be Found.— In

applying the test for exactness (§7), we find tlie value of
dy dx

If this turns out to be zero, the equation is exact. If not, it may

contain either J/ or TV as a factor. By the general method of § 80

(already referred to in a footnote, § 13), it will be seen that if

dM dN

jg
is a function of x only, say /^{x), then JA<*>''^ is an inte-

dN_dM
grating factor, and if

-^

is a function of y only, say f, {y)

,

then eih^v)dy jg an integrating factor.
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It may be interesting to call attention to the fact that this method of § 80 also

informs us that is an integrating factor in case ^1/ and A' are homoge-

neous and of the same degree, and that ——^ is an integrating factor if

M=yf,^xy), Ar= x/,(xy)*
xM ~yN

These,two classes of equations were considered in §§ 10 and 12, where we

found transformations that separated the variables. Leibnitz (1646-1716) and

his school endeavored to solve all equations of the first order and degree by in-

troducing new variables which become separable in the transformed equation.

Euler (1 707-1 783) and his school tried to solve all equations of the first order

and degree by finding integrating factors. As a matter of fact, these are fre-

quently spoken of as Euler factors or multipliers. But the idea of an integrat-

ing factor seems to be due to a contemporary of his, Clairaut (1713-1765).

Now it is interesting to note that just as every differential equation of the first

order and degree has a,n integrating factor, in general, so it can be proved \

that by a proper change of variables every such equation can be transformed into

one in which the variables are separable. But in actual practice it would be

awkward and difficult to carry out this method in all cases, just as it would be

inadvisable to insist upon finding an integrating factor in every instance.

These two classes of equations are of particular interest as affording examples

of cases where both the general methods of solution can be readily applied.

Ex. 1. (3 X- + 6 A7 + 3/) '^^"^ + (2 X- + 3 xy) dy = O.

bM_bN
-2. — — -• .-. ^^ = .r is an integrating factor.N X

Ex. 2. 2 xdx + (.V" -f_>'- + 2 y) dy = o.

dJV dM
dx dv = I. ^,Jrfy __ ^y jg ^|-^ integrating factor.

* These methods cease to apply if xA/+}'N=o in the first case, and if xM—}'A^=o
in the second. But in either of these eases, the solution of the equation is effected

dy M y
directly with ease. For if xAf-\-yN = o, the equation takes the form -7- =—7^^ "

and its solution \s ^ = c; on the other hand, when xM—yN=^ o, the equation take?

dy M 2
dx~ N~ x'

t See Lie, Differentialgleichiingen, Chapter 6, ^^ 5 ; also the author's Lie Theory, \ 20.

the form _^ = —— = — — , and the solution is xy
dx N
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' Ex. 3. 0^+2 y) dx + {xy^ + 2 _)''- 4 x) dy = o.

• Ex. 4. {xy —/) ^jc + (/-^ — x^) dy = o.

. Ex. 5. Solve examples of §§ 10 and 12 by the method of this

paragraph. . ,^
. Ex, 6. (;- — jc^ + 2 mxy)dx + (mj^ — ;//x^ — 2 a^v) ^' = o.^ ^>

| (^

18. Transformation of Variables. — In case the equation to be

integrated does not come under any of the heads treated in this

chapter, it is possible, at times, to reduce it to one of them by a

transformation. No general rule for doing this can be formulated.

The form of the equation ^must suggest the transformation to be

tried. The following examples will illustrate.

Ex. 1. X dy—y dx + 2 xy dx — x^ dx — o.

Here xdy—ydx suggests the transformation — = v. Making this

transformation, our equation reduces to

~r -\- 2 xv=:x, which is linear.
dx

An integrating factor is ei^'"^'' or e''^.

.•. ve^^ = j xe'^ dx = - e'* -\- c.

Hence the general solution is

x 2

Ex. 2, {x +y) dy — dx = o.

Here x+y suggests the transformation x+y= v. Making this,

our equation reduces to

vdv—(v-\-i)dx = o,

in which the variables are separable at once, so that we have

dx = ^!^ = dv-^^.
V+ 1 V-i- I
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Integrating, we have x = v — log {v+ i) + ^^j

i.e. x = x+y — \og{x-'t-y+i)+c,

or \og{x-{-y-\-i)=y + c.

This can also be integrated as follows

:

Writing it in the form
dx

dy

we see it is linear, considering y as the independent variable.

An integrating factor is e~i'^y — e^v-

Hence xe-y= Kye-vdy = -ye-" - e-v + <r,

or JT + y + I = ce"-

Ex.3. xdx+ydy+ytfx — x(/y = o. (Ex. 3, § 16.)

y
Here xdx+y dy suggests x--\-y'-, while y dx — x dy suggests -, This

combination suggests the transformation .v- + r = v, ^ = tan d ; or,

X

what is the same thing, x — r cos 6, y = r sin Q. Then

X dx -^y dy = rdr,

ydx — X dy= — r dd,

dx = cos ddr—r sin 6 dd,

dy=s\x\6 dr+ r cos 6 dO.

Our equation then becomes

dr
dd = o,

and the solution is

, y
]ogr—d = c, or log Vx^ +/ — tan - = <^.
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Ex. 4. x^— ay + bf- = ex-". * This special fotm is characterized

dx

bv the fact that, when the first term is .rl^, the coefficient of j' is the
-' dx

negative of half the exponent of .v in the right-hand member.

Putting J'
= :v"z/, the equation becomes

dx

dv _ dx

c — bir j;'~"'

in which the variables are separated.

19. Summary. — In actual practice, when the equation M dx -\-

JVdy = o is to be integrated, we proceed as follows :

By inspection we can tell when

1° the variables are separated or readily separable (§ 9),

2° J/ and jVare homogeneous and of the same degree (§§ 10, 17),

3° the equation is linear or directly reducible to one that is (§§ 13, 14),

4° yJ/ and iV are linear but not homogeneous (§ 11),

5° M=)f, (xy), N=^xf, (xy) (§§ 12, 17),

6° the equation is of the form x'y (my dx + fix dy) -{-x^y'^ {fxy dx -f-

vxdy) = o (§ 15).

If, on inspection (and with a little practice this inspection can be

made very rapidly), the equation does not come under any of tliese

heads, apply the test for an exact differential equation.! It may

happen that

* This is a special form of Riccati's equation (see § 73).

t It may be possible to recognize by inspection that an equation is exact. In such

case proceed at once to integrate. Or an integrating factor may be obvious by inspec-

tion (see 10° below). The general plan is to recognize, as promptly as possible, the

general head under which any particular equation comes. In this summary and those

of succeeding chapters the various possible methods are arranged in the order of the

ease of application of the test as to whether any particular method applies.
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oy ax

8" |L^-^=Ar.W (§,7),
d}' ox

,. |^_^^=J//,0.)(S.7).

If none of these cases arise, it may be possible to

10° find an integrating factor by inspection (§16), or to

1 1° find some transformation that will bring the equation under one

of the above heads (§ 18).

12° As a final resort the methods of §§ 80, 25, and 72 may be tried.

'7 Ex. 1. a: V I —f Ux -\- y^i — X- dy — o>

'7 Ex. 2. Vi —f dx + V I —OCT dy = 0.

- Ex.' 3. '^.-x'y = x'. f ^m^
dx

Ex. 4. {y-x)-^=i. \V\xl y - X =^ v'].
*

Ex. 5. X '^ +y + x^vU' = o. •
dx

"'\

Ex. 6. (i — x) ydx + (i —J') .V dy = o.-"^^
*^

Ex. 7. {y — x) dy -\-y dx = o.

.V dy — 1' dx = y/x^ -\-y^

(^ + «)-r,-3J'-2 {x + dj'^J' __,_w.^.v •»

' Ex. 10. X dy —y dx = V^" —y^ dx.

(V v\ V
.T-sin^

—

y cos"-^ ) dx + x cos "-dy = o.

>(5ex. 12. (.V - 2 J' + 5) ./.V + {2X - J'+ 4) ^ = o. •
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Ex. 14. (I - X-)^ -xy = axy\
ax

-—^x. 15. xy'^(3ydx+xdy)-{2ydx-xdy)=o. •

Ex.16. {i+x-)^+y = tan-'x.
ax

^ Ex. 17. (s^y-3 f) d^ + (3^' - 7 xf) dy = o-

Ex. 18. -^ + y cos X = -sin 2 x.
dx 2

^Ex. 19. {xf 4-j) dx — X dy = o.

Ex. 20. (i — j;:);' Vx — (i + y)x dy = o. •

^ Ex. 21. 3 jc-j rt'x 4- {y? + ^-!v-) ^' = o.

Ex. 22. (.r- +/) {xdx + y ^/v) = (x- +/ + x) (x dy - ;' dx). •

\-'Ex. 23. (2jc + 3_v- i)^/x+(2^- + 3;'-5)'^' = o- •

——Ex. 24. (/ — 2 *x-y) dx + (2 ;c/ — x^dy= o.

Ex. 25. (2 r'r — _y) </x 4- (2 x-f — .x)^' = o.

Ex. 26. (jc- +/) (^ dx +y d^') + (i + ^ +}^hy dx - x dy) = o. ^
? "^Z x\ ,

'^

Ex. 27. ( I 4- ^») rt'jc + ^y I </V' = O.

V yj

Ex. 28. X dy 4- ( r —y log x) dx = o. •

Ex. 29. (xY 4- ^-/ M^ ^/ 4-^) dx + (jcy - xY - xy -\- x) dy = o. •

Ex. 30. (2V^7 — .x) /^ 4- ^' rt'A- = 0. ^ - «• w"

•

j^ A^*-^^'^'



CHAPTER III

APPLICATIONS

20. Differential Equation of a Family of Curves.— Differential equa-

tions arise in certain problems in Geometry and the physical sciences.

For example, if we let x and y be the rectangular coordinates of a

point in the plane, any relation among these, say (^{x, y) = o, repre-

sents some curve, and the value of -^ at any point of this curve is

dx
the slope of the tangent at that point.

Starting with a relation that involves an arbitrary constant rationally

(i) 4>{x,y, c) = o,

we have a family of curves, one curve corresponding to each value

of ^. The differential equation corresponding to (i)*, say

is of the first order. Since we can obtain from it the value of —
ax

corresponding to any pair of values of x and y, we see that (2) defines

the slope of the tangent of that curve of the family (i) which passes

through any chosen point {x, y). In case (i) is of the second degree

'in c, we have, excluding exceptional cases, two curves of the family

passing through any point, for to each pair of values of x and y
correspond two values of c which are distinct, in general. If, now,

we turn our attention to the differential equation (2), it must give us

two values of -1- for each pair of values oi x and ji', in general, since

* The curves defined by (i) are spoken of as the integral curves of (2).

31
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two distinct curves pass through this point, and, excepting in the

points where the curves are in contact, their tangents will be distinct.

If, on the other hand, we start with the differential equation and

/v

suppose that it is of the second degree in y , it is clear that since at

each point of general position,* we have two values for the slope, i.e.

two tangents to the integral curves, we must have, in general, two

nitegral curves passing through each point. Hence it follows that

the general integral involves the constant of integration to die second

degree. (See footnote to Ex. 3, § 24.)

Perfectly generally, we can prove, by entirely analogous reasoning,

that the integral of a differential equation of the first order and

nth degree involves the constant of integration to the nth degree.

Ex. 1. Find the differential equation of all circles through the

origin with their centres on the axis of .v.

The equation of this family of circles is evidently x- -\-y — 2 ax = o.

Here a enters to the first degree.

Differentiating, we have .v + v ^-= a= o.
' dx

Eliminating a, we get

dv
2 xy

-J-
\- X- —f- = o, which is of the first degree.

dx

[As an exercise, the student should integrate this.]

Ex. 2. Find the differential equation of all circles of fixed radius

;- and with their centers on the axis of x.

The equation of this family of circles is {x — a)-+y- = r. Here

a enters to the second degree.

Differentiating, we have, {x — a) -|-j'-^'' = o.
dx

* By point ofgetieral position, we mean a point at which there is nothing peculiar
about the family of curves (such as having two curves tangent to each other there), or
about any of the curves of the family Csuch as a double point).
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Eliminating a, we get

y
[
y-

]
+ji''' = ;-, which is of the second degree.

' Ex. 3. Find the differential equation of the system of confocal

conies whose axes coincide with the axes of coordinates.
,2 2

Hint.— Since the distance of the focus of the conic '^±-^^= i

a- b'

from the center is V«' T b' it is quite clear that all the conies

'—I

—

^— = I have the same foci, no matter what c may be. Hence
c c — X
this is the ecjuation of a system of confocal conies whose foci are

at the points (±VX, o). Here c is the arbitrary constant to be

eliminated.

Ex. 4. Find the differential equation of the system of parabolas

whose foci are at the origin of coordinates and whose axes coincide

with the axis of .v.

Ex. 5; Find the differential equation of the family of straight lines

tangent to the circle ^-2 1 .2 _ ^_

Ex. 6. Find the differential equation of the family of straight lines

the sum of whose intercepts on the axes is a constant.

Ex. 7. Find the differential equation of the family of nodal cubics

{j'-a)-= 2x{x— if,

each curve of the family being tangent to the axis of y, and having

its node at the point (i, a).

Ex. 8. Find the differential equation of the family of nodal cubics

y- ^ 2 X {x — a)'-,

each curve of the family being tangent to the axis of r at the origin,

and having its node at the point {a, o).

Remark.— If the equation of the family of curves involves more than one

avbitrary constant, the corresponding differential equation will, of course, be of

higher order than the first (§ 3).
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Ex. 9. Find the differential equation of all circles tangent to the

axis of _>'.

Ex. 10. Find the differential equation of all central conies whose

axes coincide with the axes of coordinates.

Ex. 11. Find the differential equation of all parabolas whose axes

are parallel (a) to the axis of .r, (d) to the axis of v.

Ex. 12. Find the differential equation of all circles of the same

radius r.

21. Geometrical Problems involving the Solution of Differential

Equations.— Differential equations of the first order arise and must

be solved in geometrical problems where the curve is given by proper-

ties whose analytic expression involves the derivative of one of the

coordinates of a point on the curve with respect to the other. An

example or two will illustrate :

Ex. 1. Find the most general kind of curve such that the tangent

at any point of it and the line joining that point with the origin

(which we shall call the radius vector to that point) make an isos-

celes triangle with the axis of x, the latter forming the base.

The tangent of the angle between the tangent line and the axis

of .^ is -^, while that of the angle between the radius vector and the

y
axis of a: is

-*
X

Hence we must have

Integrating, we have

^=--, ox xdy^ydx = o.

xy = constant,

which is evidently an equilateral hyperbola.
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Ex. 2. Find the most general kind of curve such that the normal

at any point of it coincides, in direction, with the radius vector to that

point.

Since the slope of the normal is ~ , we have

dx y J , J- = -, or X ax + y dy = o.
ay X

Integrating, we have

X- +y- = c, a. constant

;

this is evidently a circle.

Since the differential equation is of the first degree, a single value

of the constant corresponds to a pair of values of x and y. Geo-

metrically, this means that through each point passes one curve of

the family. Thus, if.r=i, v=2, then ^^=5. That is, through

the point (i, 2) passes the circle x-+y- = ^, and this is the only

circle of the family which does.

From the above simple examples the general method of procedure

may be seen. It consists, first, in expressing analytically the given

property of the curve (this gives rise to a differential equation)
;

secondly, we must solve this equation ; and finally, we must interpret

geometrically the result obtained.*

In the Differential Calculus those properties of curves involving

i differential expressions are usually studied, and their knowledge will

I be presupposed here. For purpose of convenient reference, the

*i following list will be given :

*—~i° Rectangular coordinates

. {a) -i is the slope of the tangent of the curve at the point (x,y)
;

dx

* The general solution of the differential equation, involving an arbitrary constant,

represents an infinity of curves. If we know a point through which the curve must

pass, or if in any other way the conditions of the problem determine the constant ot

integration, either uniquelj or ambiguously, one or several curves of the family alone

fulfill the requirements.
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(h\ _ rf is the slope of the normal at (x, j>') ;

dy

U) Y—y = ^{X—x) is the equation of the tangent at the point
dx

{x,y), Xand K being the coordinates of any point on the line;

(d) Y— r = —^ {^— -^) is the equation of the normal at (.v, y) ;

'

dy

(^) x—y'^ andy — x'-^ are the intercepts of the tangent on the
dy dx

axes

;

(/) '^+J'— and v + ^— are the intercepts of the normal on the g
dx " dy m

axes

;

«

(^) >'
V ^ +

(
^

j
^""^ -^ \ ^ "f"

(
^

)
^^^ ^^^ lengths of the tangent

from the point of contact to the .v and y axes respectively
;

(h) J' \/ ^ + ( -^ ) ^^""^1 -^x^ +l—] are the lengths of the normal

from the point on the curve to the .v and y axes respectively

;

dv
(/) y^- is the length of the subtangent

:

dy

U) y^ is the length of the subnormal

:

dx

{k) ds = Vdx^ + df = dxyji + ('^Y = dy ^i +r—Yis the ele-

ment of length of arc
;

(/) y dx or .v dy is the element of area,

iv 2° Polar coordinates

dB
(m) tan \p = p— ^ where \p is the angle between the radius vector

dp

and the part of the tangent to the curve drawn towards the initial

line;

(ft) T = O-i-ij/, where t is the angle which the tangent makes with

the initial line
;
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{o) p tan \p = p^— is the length of the polar subtangent

;

dp

(/) p cot i/^ = -^ is the length of the polar subnormal

;

du

{g) ds = V.V + pyO'=dpyji + P'(fj ='^^yl(^^J
+ P' 5s the

element of length of arc
;

(r) ^ p^ ^10 is the element of area
;

(^s) p = p sin i}/ = p' — is the length of the perpendicular from
ds

the pole'to the tangent.

Ex. 3. Determine the curves such that the normal (from the

point on the curve to the axis of x) varies as the square of the

ordinate. In particular find that curve which cuts the axis of y at

right angles.

Using (h), we have the differential equation of the curve

Integrating, we get

^logU^ + V/^'/ - iJ
= x-\-r,

or yz=—( ce^"^ + - e^-^\ a family of catenaries.
2k\ c J

To find the curve of the family which cuts the axis of y at right

angles, we must find that value of c for which ^ = o for x = o.
"^

' dx

Now [
^

)
= -

(
^ — i

). This equals zero for ^ = ± i. Hence the
\dxjx=d) 2\ c

)

equation of the required curve is ± v= — (^*'' + e'^"") =- cosh kx.
2k k
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Ex. 4. Determine the curve such that the area included between

an arc of it, a fixed ordinate, a variable ordinate, and the axis of x is

proportional to the corresponding arc.

Using (k) and (/) , we have

This is the same differential equation that arose in Ex. 3. Hence

the catenary has also this property.

Ex. 5. Find the curves such that the polar subtangent is propor-

tional to the radius vector.

Using (o), we have p^~ = kp, or —^ = dd.
dp p

Integrating, we have p^ = ce^, a family of spirals.

Ex. 6. Determine the curves whose subnormals are constant.

Ex. 7. Determine the curves whose subtangent at each point

equals the square of the abscissa at that point.

Ex. 8. Determine the curves such that the perpendicular from the

origin upon the tangent is equal to the abscissa of the point of

contact.

Ex. 9. Determine the curves such that the angle between the

radius vector and the tangent is one-half the vectorial angle.

Ex. 10. Determine the curves whose polar subtangent is four

times the polar subnormal.

22. Orthogonal Trajectories. — A curve, which cuts every member
of a family of curves according to some law, is called a trajectory

of the family. Thus, it may jcut every curve at a constant angle ; if,

in particular, that angle is a right angle, the trajectory is said to be

orthogonal. It is at times possible to find a second family such that
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each curve of the one family is cut at right angles by every curve

of the other. If such a pair of families of curves exists, each is

said to be a set of orthogonal trajectories of the other.

Starting with the first family whose equation is

(i) <^ (a-, _)', r) = o,

we find the corresponding differential equation

which, as we have noted before, defines -j-, the slope of the tangent

at {x, y) to the curve of the family through that point. Obviously

(3) /(-^,x,;A= o

will have for integral curves a family such that the slope of the tan-

gent to the curve through the point {x, y) at this point will be the

negative reciprocal of that in the case of the corresponding curve of

(i) ; i.e. wherever a curve of the one family cuts one of the other

their tangents are at right angles, and therefore the curves are said to

be at right angles themselves.

The integral of (3) will then be the equation of the desired family.

Ex. 1. Find the orthogonal trajectories of a family of concentric

circles.

Taking the common center as the origin, the equation of the circles

dv _
is ^2+y = r, and their differential equation is x -\-y~T — °-

Hence the differential equation of their orthogonal trajectories is

dx dx dv ^
X —y— = o, or ——-- = o.

dy X y

Integrating, we have _y — cx,

a family of straight lines through the center of the circles.
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Ex. 2. Find the orthogonal trajectories of the family of circles

through the origin, with their centers on the axis of x.

The equation of this family of circles is x- -\-y'' — ^x = o. We

have seen (Ex. i, § 20) that the corresponding differential equa-

tion is 2 xy -^ + x- — y' = o. Therefore, the differential equation of

the orthogonal trajectories is 2 xr—— x- + v' = o.

As this equation is obviously derivable from the other by inter-

changing X and r, its integral must be x--\-y-— cy^o, the family of

circles through the origin with their centers on the axis of v.

[Let the student verify this result by actually integrating the

equation.]

Ex. 3. Show that a family of confocal central conies is self-

orthogonal.

The equation of such a family of conies with their axes taken

for axes of coordinates is (Ex. 3, § 20)^—I

—

- = i, antl its differ-

c c — \

ential equation is xy('-^\ -{- (x^ — y- — \) --- — xr = o.
yfxj dv

Since this is left unaltered, when we replace '^ by — — we set,

(fx dy

that the family of curves is self-orthogonal. As a matter of fac{

it is well known that a system of confocal central conies is made U;>

of ellipses and hyperbolas, such that through any point there pasa

one ellipse and one hyperbola, and these cut each other at right

angles. (See Ex. 17.)

Ex. 4. Prove that the family of parabolas having a common fo^us

and a common axis is self-orthogonal.
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^-^ Ex. 5. Prove that the differential equation of the family of trajec-

tories which cut the integral curves of/ 1 -=^', x, }') = o at an angle « is

I

-^ — tan a
/•I t/x
f

\

j^^,y
ay

I -f- tan a —r
1

dx

In particular show that the trajectories which cut the lines y = ex

at a constant angle « are the logarithmic spirals

- log {x- -\-f) + /^ = — tan~^ -

,

or r = ce"^.

-44- Ex. 6. Find the trajectories which cut at a constant angle « the

'/ circles through the origin with their centers on the axis of :r.

Ex. 7. Find the trajectories which cut at a constant angle «

(other than a right angle) a system of concentric circles.

Ex. 8. Find the orthogonal trajectories of the parabolas

f=^,cx.

Ex. 9. Find the orthogonal trajectories of the hyperbolas x-—f=c.

Ex. 10. Find the orthogonal trajectories of the similar central

' conies ax- -f bf = c, where a and b are fixed constants and c the

arbitrary constaiit;

In polar coordinates the equation of a family of curves will be

(i') <^{p,B,c)^o;

and the corresponding differential equation will be

dQ
which defines — at each point (p, 6).

dp

* In practice it will be simpler to replace tan a by a single letter, say m.
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We have noted, § 21 {m), that, if i/' is the angle between the radius

vector to the point {p, 6) and the tangent at that point drawn in a

definite direction, tan ip = p —• If now, if/' is the angle for the curve
ap

cutting this one at right angles at the point (p, 6), we have

if/'
— il/= ±-, or if/' = ip ±-' Hence

2 2

tan i//' = — cot ij/ = •

Using primed letters for the second curve, we have then

,d6' \ (ip , //6> - 1 dp'

p
— = -P, whence = — ^ -^^ •

dp p dB dp pp dff

At the point of intersection of the two curves p = p, 6' = 0.

Hence

(3') Kf'^'"'')^"

is the differential equation of the orthogonal trajectories of (i'),

since the value of p— given by it equals that of ^ given by (2').
dp p dd

Note.— Frequently 6 is taken as the independent variable. In

this case (2') will be in the form / [—
, p, 0] = o, and (3') will

then be

y ,dO

\ dp

Ex. 11. Find the orthogonal trajectories of the family of lemnis-

cates p- = c cos 2 6.

Differentiating and eliminating c, we find the differential equation

of the family to be i
.^ = — tan 2 6. Hence the differential equa-

p dd

tion of the orthogonal trajectories is
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— p— = — tan 2d,
dp

or ^=coi 2 ed9.
P

Integrating, we find p- = k sin 2 6, a. second family of lemniscates

whose axis makes an angle of 45° with that of the first family.

Ex. 12. Find the orthogonal trajectories of the family of cardi-

oids p = c(i — cos 6).

Ex. 13. Find the orthogonal trajectories of the family of logarith-

mic spirals p = e"^.

Ex. 14. Find the orthogonal trajectories of the family of curves

p™ sin mO = c"".

Ex. 15. Find the orthogonal trajectories of the family of curves

- = sin^ e + c.

P

Ex. 16. Find the orthogonal trajectories of the family of confocal

2 c
and coaxial parabolas p =

I — cos

Ex. 17. Find the orthogonal trajectories of the family of confocal

/i \ 2

conies p =—— , <r being the parameter, A a fixed constant.
c — X. cos 6

23. Physical Problems giving Rise to Differential Equations. —
Problems frequendy arise in Mechanics, Electricity, and other

branches of Physics whose solution involves the solution of differen-

tial equations. As a knowledge of these subjects is necessary to

understand properly the problems that arise in them, we shall restrict

ourselves, as far as possible, to problems involving only very element-

ary principles. As in the case of geometrical problems, the mode

of procedure is, first the analytic expression of the given data of the
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problem, (this gives rise to the differential equation) ; then comes

the problem of solving this equation, with an interpretation of the

result. Frequently there is the additional step of fixing the value of

the constant of integration so as to satisfy the requirements of the

problem.

The following examples will illustrate :

Ex. 1. A body falls vertically, acted upon by gravity only. If it

has an initial velocity z'o, what will be its velocity at any given instant,

and what will be the distance covered in any given period of time?

The motion being rectilinear, a single coordinate, x, will be suf-

ficient to determine the position of the body. Suppose the position

of the body at the time /= o to be Xo (this is called its initial

position).

The velocity, which we shall represent by 7', is — , and the accelera-

tion, represented by/, is ~ • In case gravity acts alone, the accelera-

tion is constant, and this constant is usually designated by g. We

have now — =^.

Integrating this equation we get

v=gt^c.

When /= o, we have given v — v^. .-. c= Vq, and the answer to our

first question is given by

V=gt + 7',,.

To find the position of the body at any instant we must integrate

dx .

,

The general solution of this is

X = \gt- + VQt+C.
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Since x = Xo when /=o, we must have c= Xo. Hence at any

instant /, x = i gt'- + z;o/+ a:„,

and the distance covered in the period / is

X — XQ = ^gf- + Z'o^.

Ex. 2. A particle descends a smooth plane making an angle a with

the horizontal plane. The only force acting is gravity. If the par-

ticle starts from rest, find the velocity at any moment /, and the dis-

tance traveled in the time /. S^Hint. — Here the acceleration is

^sin a, the component of .i,-- in the direction of the motion.] Prove

that if a particle starts at rest from the highest point of a vertical

circle, it will reach any other point of the circle when moving along

the chord to that point in the same time it would take to drop to the

lowest point of the circle.

—

Tait and Steele, Dynamics of a Particle.

Ex. 3, A particle falls through a resisting medium (such as air) in

which the resistance is proportional to the square of the velocity

;

what is its motion?

The equation of motion is then

— — sr — kif.
dt

Here the variables are separable, and we have

dv

g-ki
Putting ^/(' = ;~, this becomes

-^ — dt, or

,

= dt.

Integrating
) (

1 |~ ^
I

'^^j we have*

* A knowledge of hyperbolic functions enables one to effect the integration much

more expeditiously, especially if fg = o.

^^'' =Itanh-i^. .-. t.=^ = -^tanhrA
;^ g^ — r'^v'^ r g dt rf

Integrating again, we have x — J^o = , '^S cosh rt.
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- [log (g ^rv) - log (^+ ;7'o)
- log {g - ri!) + log (^ - rv^'\ = 2 /,

r \g-\-nJ^ g-rvj

r

or

" g—rv g — rvf,

Temporarily put the constant '

'^—^ = c. Then
g-n>^

g ce^'-'-i

r ce^'' + I

Since v=— , the position at any time is given by
dt

I dx = X — Xq =*
I

dt, where c must finally be replaced
Jx^ rJ^ ce-'' + I

by its value in terms of 7',,. If the body falls from rest, ?'„ =0, .-. c—\.

[As an exercise, the student may carry out the integration indi-

cated above.]

Ex. 4. The acceleration of a particle moving in a straight line is

proportional to the cube of the velocity and in the opposite direction

from the latter. Find the distance passed over in the time /, the

initial velocity being ?'„, and the distance being measured from the

initial position of the particle, i.e. x^ = o.

— = — kv\ or = k dt.
dt

' - 7''

.11,, 7'o dx— 2 A' t, or 7'= —
V" 7V

'

-^2kvit^\ (if

and X =

\
_ V2 h\;t+ I — I

Ex. 5. Find the distance passed over in the time t, if the accelera-

tion is proportional to the velocity.
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Ex. 6. One of the important equations in the theory of electricity

is

at

where / is the current, L the coefficient of self-induction (a constant),

R the resistance (a constant), and E the electromotive force, which

may be a constant (including zero) or a function of the time. This

equation is linear (§13). Find / if {a) ^ = o, (^) ^ = constant,

{/) E = Eq sin w/, (^0 ^iid w being constants), {d^ E = any function

of the time, say E{t).

Case (f) plays such an important role in the Theory of Electricity

that its solution is given here in detail. This equation arises in the

case of alternating currents, where the electromotive force is a peri-

odic function of the time, the period being _T, and the maximum
U)

value of the electromotive force is E^^.

di R . Eq .

dt L L

R

An integrating factor is ei-'

.

Rt E r -t
.-. ieL = —y

I
(?i sin (jit dt -\- c.-'-iP

Smce
I

<?"' sm tat dt= ^——;;
^

,

a sin o)/ — (ocoso)/

JO— sin o)/— wcos (at
R Ji T Rt

ieV = ^ ± .l' + c

T^ f R sxruot — (o Z COS (ot\ ^t
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Ec, R sin o>/ — wZ cos w/ -t
,

.
sin (oj/ — ^) + r,

where sin ^ = — —
, cos <^ =

Vi?' + w - Z=^ Vi?' + o)' Z'

E _/j
"

sin (w/ —
<f>) + cc L.

VR' + i^'D

The term ce l usually becomes negligible after a very short inter-

val of time. The current then becomes periodic with the same fre-

quency as the electromotive force. But the two are not in the same

phase^ the current lagging behind by the angle <^.
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CHAPTER IV

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND
HIGHER DEGREE THAN THE FIRST

24. Equations Solvable for p.— For the sake of simplicity we shall

adopt the generally accepted notation of replacing -^ by/. Our
dx

equation may then be written

(i) f{p,x,y) = o.

If this equation is of the ;/th degree, we may look upon it as an

algebraic equation of the «th degree in /. Let its roots hGf\(x,y),

/•2{x,}'), ••',fn{^, }% then the equation may also be written

(2) [/ -A{x, j)] [/ -Mx, jO] •••[/> -U^, ;-)] = o.

Consider now the differential equations arising on equating each of

these factors separately to zero. If we can integrate each of these

by some method of Chapter II, we can readily get the general solu-

tion of (i). Let the solutions of the separate equations arising from

(2) be <^i (x, y, c) = o, <^o {x, y, c)^o,-'-, </>„ {x, y, c) = o. It is quite

clear that

(3) <Ai (^' y> 'f>2 (•^» jy ^) ^3 (x, y, ^) • • • <^» (^% y, ^) = o*

is the solution of (i). For, the vanishing of the left-hand member of

(3) means the vanishing of one of its factors. This will cause one of

the factors of (2) to vanish, when substituted in it, and consequently,

the original equation will be satisfied. Besides, a constant of inte-

* If one of the 0*s is not rational, there will be found certain other irrational ones

which, with it, form a set of conjugate irrational functions whose product is rational

(see Ex. 2 below). The result of rationalizing any of the set is the same as this

rational product. In practice it is frequently desirable to make use of this fact. The
student should verify this fact in the case of Ex. 2.

49
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gration is involved.* We see that the constant enters to the same

degree in (3) that / does in (i). (Theorem, § 20.)

Ex. 1. / + (jc + ;) / + XV = o,

or (/> + x){p+y) = o.

Integrating -^ + x = o, we get 2 v -{-x- = c

;

dx

and integrating -^ -{- y = 0^ we get log y -{ x = k, or v = ce'''.
dx

Hence the general solution is (2jj' + x^ — c) ( v — <r(? ') = o.

Ex. 2. jc/- — 2yp — X — o.

Solving this for /, we get / = '^^
• We have, then, to

consider the two equations x/> —y = -y/x^ -{ y^

and xp —
J'
= — V-r^ +^.

• d\ — y dx"^'-y'^ = dx may be written
- 'fy-y±_ ^ ^_ ,,^^^^^, g^,,^

-yjx^ -\-f

on integrating

log ^ + ^'+©J = ^°g-^ + ^'°''i--^V' + (^J-^^
= o-

* Since (3) is a solution by having each of its factors separately satfSfying the differ-

ential equation (i), it may be asked why we use the same constant c in all the factors.

If we look upon equation (i) as equivalent to the n separate equations arising on
equating each of the factors of (2) to zero (which, in fact, it is), then we really have
n equations to solve, and the various factors of (3), involving distinct constants, are the

solutions of these. But if we require the general solution of (i) to be given as a single

expression, first, there is no room for more than one constant of integration (^ 4), and
then, there is no loss in using the single constant throughout, from the very fact that (3)
is a solution by virtue of each factor separately satisfying the equation.
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Integrating xp—y^ — Vx^ +/, we get in a like manner

-iogr^+\/n-fiTi=iog

SI

= log
V-(|J

= log X + ^,or|-Vi +(0-^^=<

Hence the solution is

[J-^ + I0'-"- K-V.+$y--]=o.

or ^^2 2 rv — I = o.

Ex. 3. /+/= I.

Here/= ± Vi —y. Solution of

or J = sin (.v + c) ; while that of —

dy

\' I —y
dy

= = </jc is sin'^jj' z= jj; 4- ^,

: = dx IS y=- cos (x + c).

— Vi — r
Since c is perfectly arbitrary, either one of these is sufficient as the

general solution of the equation ;
* for sin

[
^ + r + -

j
= cos {x + c).

i

* Since c enters in a transcendental way, and not to the second degree in the solu-

tion 7 = sin (jr+^), or^ = cos (x + <^), we seem to have an exception to the rule of

§ 20. It is really not such. That rule presupposes that the constant of integration

enters algebraically. We can make our solution conform to the rule by writing it in

the form {sin-'^}> — x — c) (cos-^y— x — c) =0. As a matter of fact the rule was

based on the fact that through each point of general position pass two integral curves

of a differential equation of the second degree. So here, of the infinite number of

values of c that satisfy y = sin {x + c) for a given pair of values of x andy, only two

will determine distinct curves. A more elegant form than the one above, in which c

enters algebraically and to the second degree, may be gotten thus: Since c is any
T A2 2/^1 1. •

number, we may write sin c = ; then cos c = ; whence, remembenng

that sin {x-\-c) = cos c sin .v + sin £ cos x, the solution takes the form

V — cos X — zi sin x + i'^{y + cos x) = o.
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Ex.4. {2xp-}f = 2,x'.
*

Ex.5. {i+x-)f=i. '

Ex. 6. / - (2 .r+/)/ + (^' -;" + 2 xf)p - (^2 -J'')/ = o. .

25. Equations Solvable for /. — If the equation can be solved for

y, the following method will frequently be found useful. Solving for

y, we have

(4)
y = 4>{^^,P)-

Differentiating this we get

^^^ ^~bx Qpdx'

a differential equation which is really of the second order, but since

y is no longer present, it may be looked upon as an equation of the

first order in the variables x and /. It may happen that we can inte-

grate this equation. Suppose its solution to be

(6) o) {x, p) = c.

Eliminating/ from (4) and (6) we have

(7) <i> Cv, ;-, c) = o,

which is a solution of (4) ; and, since it involves an arbitrary con-

stant, it is the general solution.

We know that (7) is the solution of (4) from the following consid-

erations : Since (5) is the derivative of (4), every solution of (4) is

a solution of (5), considered as an equation of the second order in .v

and y. Since (6) is a solution of (5), every solution of (6) looked

upon as a differential equation in x and j is a solution of (5). (4)

and (6) are known as first integrals of (5). Since (4) contains y and

(6) does not, these two first integrals are evidently independent.

Equation (4) has an infinite number of integral curves,* and so has

* We use this geometrical mods of expression, not because it is essential to the

argument, but because it is simpler.
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(6) for each value of c. To find the curve or curves common to the

two famines of integral curves we shall have to find the equation of

the locus of those points for which (4) and (6) determine the same

value of/.* But this locus is evidently gotten by eliminating/ from

(4) and (6). For each value of c we get thus one integral curve of

(4). Hence, when c is an arbitrary constant, we have the general \

solution.!
j

Note.— This method applies equally well to equations of the first degree. See

Ex. 4.

Remark. — At times it is easy to integrate (6). Doing this, a relation
|

(8) $ (-^jjc, ^, <^') = o,

involving two constants, results. This is the general solution of (5) and must

therefore contain that of (4) for some relation between c and c' . This relation

can be found by substituting (8) in (4) and noting what condition is imposed,

so that the equation be satisfied. In actual practice, however, this method will

generally not be as desirable as the one given above.

Ex.1. 2/x — 7 4- log/ = o ; or

(i) ;'=2/x + log/.

Differentiating, we get

or p dx -\- 2 X dp + - dp.= o.

P
An integrating factor is seen, by inspection, to be /. Using this,

we have , 1

/' dx + 2/jc dp + dp^ o. __--1

Integrating we have

(2)
p-x-\-p = c.

Eliminating/ between (i) and (2), we have the required result.

* As already mentioned {^ 20), a differential equation of the first order may be

looked upon as defining/, the slope of the integral curve, at each point {x,y).

t Since the process of eliminating p from (4) and (6) may introduce extraneou^

factors, and errors may enter in other ways, it is desirable to test the result (7), by find-

ing out whether it actually satisfies the equation (4).
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Remark.— In this case, while it is perfectly possible to perform this elimina

tion [since (2) can be readily solved for /, and the latter value can be put ir

(i)], the result will not be very attractive in form. It is simpler to say thai

(i) and (2) taken together constitute the solution, in that, from them, we can

express x and y in terms of /, which may be looked upon as a parameter. Thus

from (2) we have

f
and.-. y = ^ \'^~P)

-I- log p,
P

Such parametric representation is frequently resorted to; thus, for example,

the parametric equations of the ellipse

x-=. a cos 6,

y = b sin 0,

where 6 is the eccentric angle, and also the usually adopted equations of the

cycloid

X = a (d — sin 6),
'

y = a {i — cos 0).

Ex. 2. 4 xp' + 2 xp —y = o
;

or
, J'

= 2 x/ + 4 x/>'.

Differentiating, we have on collecting terms,

(4/+i)(2x^+/)=o.
ax

Neglecting the factor 4/ + 1, whose significance we shall see later

(§32, note), we have, integrating the other factor, xp^ — kK

Hence the solution is ^ = 2k^x + \}r, or putting 2k = c,

y = cVx + tr.

Rationalizing this, we have

{y — c-y = rx, or putting 0^= C,

{y - cy = Cx.
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/i^-Ex. 3. .v/i- — 2 yp — X = o. (Ex. 2, § 24.)

w Ex. 4. / + 2 a;)' = jc- +_>'^.

.^' Ex. 5. V = — „r/ + x'^p".

Ex. 6. p- -\- 2 xp — y = o.

26. Equations Solvable for x.—A method, entirely analogous to

that of the previous paragraph, can be deduced in case the equation

can be solved for x. Suppose the equation in the form

(9) ^ = 0{y,p).

Differentiating with respect to y we get

. . dx I dd
,
dO dp

(10) — =- = £-•
^ ^ dy p dy dp dy

Here x no longer appears, and we may look upon this equation as

one of the first order in y and /. If we can integrate this, we obtain

a relation involving an arbitrary constant,

(11) x(j'A^)=o;

and on eliminating / between (9) and. (11) we have the general

solution.

Ex.1. j;+/7 (2/+3) = o.

Ex. 2. ayp"^ — 2 xp-{- y = o.

Ex. 3. xp"^ — 2yp — x = o. (Ex. 3, § 25.)

Ex. 4. /^ — 4 xyp + 8 y- = o.

Ex. 5. Find the family of curves for which the length of the nor-

mal (from the curve to the axis of x) is equal to the square root of

the length of its intercept on the axis of x.
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27. Clairaut's Equation.*— If the equation is of the form

(i) 7 =A^- +/(/)'

where /(/) is any function of/, the sohition is gotten so readily that

especial attention should be given to this form of the equation, in

order that it may be recognized at once.f

Using the method of § 25, we have

or f[^v +/'(/)] = «•

ax

Neglecting the factor .^ +/'(/), which involves no differential ex-

pressions (see § 32, note), we have

-^ — o, whence p = c.

ifx

Putting this value in (i) we have

(2) y = cx+/{c),

which is the general solution of (i).

Ex. 1. {px-)f=p-+ I.

Solving for y, y =px± V/- + i •

This being in Clairaut's form, its solution is known at once to be

y— ex ± V^-+ I,

or {ex —yf = r \- i

.

* This form of equation is named after Alexis Claude Clairaut (1713-1765). He
was the first to apply the process of differentiation {^\ 25, 26) to the solution of equa-

tions. His application of this method to the equation that bears his name was pub-

lished, Histoire de rAcademic des Sciences de Paris, 1734.

t The student should be able to recognize this equation, not only when it is solved

for J/, as it is in (i). Obviously, what characterizes this form of the equation is tha(

X and y occur only in the combination y—px. Hence any function oi y —px and

/ equated to zero, say/(v

—

px, p) = o is a Clairaut equation, and its solution is

/O — ex, c) = o. (See Ex. i.)
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Ex. 2. 4 e-^f + 2 a-/" — I = o.

Put e-^ = /, then / = -- = -—--, and the equation becomes
ax 2 t ax

dx \dxj ,

its solution is /= ex + r, or c-" = ex + <:'.

Re/nark.— At times, as in tlie case above, a transformation can be

found to simplify very materially an equation which will not yield

directly to any of the previous methods. Unfortunately these trans-

formations are not always obvious. Experience, and frequently that

alone, will help one in making a proper choice.

Ex, 3. 4 e-ojy^ + 2 e'-^p — /-' = o.

Put e' = ti, <?-* = V, then / = , and the equation becomes
2 7' du

— ^^' 4- A^^Y
du \du)

'

whence its solution is e"-" = ce' + r.

Note.— One's first impulse would be to try e-^ = u and e^v = v. Our equa-

tion then becomes z'=2?<— + 4«(— ] • This is not in Clairaut's form; but it

can be integrated (see Ex. 2, § 25), so that this transformation is also effective.

^. Ex. 4. e-of' + {e^ + c")p — e'^ = o.

* Ex. 5. xy-p- — y^p + x = o. (Let x- = u, y^ = v.^

* Ex. 6. ix' +/)(i +/)'- 2(x +J')(i +/)(^ +.i^) + (-^ +yff= o- •

(Let X -\-y = u, x' -\-
f = v?)

^^ Ex. 7. y = 2px +y-p^. (Let/ = v.)

"'*
Ex. 8. aypr— 2 .x/^ + r = o. (Ex. 2, § 26.) (Let 2 a: = //;, j" = z'.)

Ex 9. (xp —y)- = x-{2 xy — x'-p). "
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28. Summary. — Given a differential equation of the first order

and higher degree than the first, there are three methods * which

suggest themselves, to be tried in actual practice in the following

order :

1° Solve for /, and then solve the resulting equations of the first

degree (§ 24).

2° Solve for y, differentiate with respect to x, integrate, and

eliminate / between this solution and original equation (§ 25).

3° Solve for x, differentiate with respect to v, integrate, and

eliminate / between this solution and original equation (§ 26).

Clairaut's form (§ 27) has been given special prominence in this

chapter because of the ease of finding its solution. It is, of course,

solved by method 2°.

If none of the above methods work, a substitution must be sought

to bring the equation into manageable shape.

There are certain cases when we can tell in advance that some or all of these

methods work. Here the difficulties are those of Algebra or the Integral Cal-

culus, and not of the Differential Equations. For example, consider the follow-

ing cases

:

(a) If the equation in / is algebraic and all the coefficients are homogeneous

and of the same degree in x and j, then, on dividing by the leading coefficient,

all the coefficients are homogeneous and of zero degree. Hence, if we can solve

for/ (which is an algebraic process), we shall find / as homogeneous functions

of X and y of degree zero, and the resulting equations, when subjected to the

transformation J = vx, will have their variables separated (§ 10) and are solvable

by quadratures.

Again, since after dividing by one of the coefficients of the equation the

equation is a function of / and -, say/( /, -
j = o, if we solve for j, [or —

),

we gety = x\l/(p). Differentiating, we have,

/=f (;.) + .V''(/)|. or ^tl^ = '^^

where the variables are separated.
rV/'J

* It is almost needless to remark that these methods are not mutually exclusive
Two, or all three, methods may be applicable to some equations.
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Hence, in this case methods 1° and 2^ both work, provided we can solve for

p and for_j'.

{J}) If X is absent, so that the equation is of the ioxxnf{p, y)= o, solving for /,

we get ;) =^ = "/'(>')> or = '^'-y-

Again, solving for ^, we get j' = '/'(/), and differentiating, we have #= ^'(/) ^,
dx

or T-yPJ—P— Jx, where the variables are separated.

/
Here again methods i° and 2" both work.

(f) If J is absent, equation isy(/, ;r)=o. Let the student show, as an

exercise, that in this case methods i" and 3° both work, provided we can solve

for / and for x.

(d) If the equation is of the first degree in x and }', thus, x/i (/) +y/i (p)

+/s (p) = o *, it is readily seen that method 2° works. For, solving for y, we

have
y = xii(p) +V2(/).

Differentiating, we get

/ = ^1 (/) + [^\^i' (/) + ^-' (/)]f
•

ax

Considering/ as the independent variable, this may be written,

^ + -, i^i'(P) ^ ^".' (/) ,

dp V'i(/)-/ p-ii(p)'

which is linear and can be solved by quadratures (§ 13).

^Ex. 1. /(i +p-) = a-.
^

Ex. 2. yp={x — b)p^^a. ^

Ex. 3. A-^/- + x"-yp +1=0. ^

Ex. 4. 3 p"x — 6 yp + X -}- 2 }' = o.

Ex. 5. y =p-(x + i).

Ex. 6. (px —y) (py + x)= a-p. (Let x- = u, y- = z'.)

Ex. 7. p- -^ 2 py co\.x=f .

* Clairaut's equation is a special case of this.
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Ex. 8. (i + 3ir)p'^ — 2 xyp -\-f —1=0. ^-=^

Ex. 9. x^p'^ — 2{xy + 2/)/ +/ = o.

Ex. 10. y = xp +-^ • (Let o^ = u,f = z:)

Ex. 11. x^p^ — 2 xyp +y = .r^ji'^ + .r*.

Ex. 12.
y ~^P =fi-^x' +f). (Let .V = p cos d,y = p sin ^.)

Vi+/-

Ex. 13. Find the equation of the curves for which the distance of

the tangent from the origin varies as the distance of the point of

contact from the origin.
^

Ex. 14. Find the equation of the curves such that the square of

the length of arc measured from a fixed point is a constant times

the ordinate of the point. (Let the constant factor be 4^'.)

Ex. 15. Find the equation of the curves down each of whose tan-

gents a particle, starting from rest, will slide to the horizontal axis

in the same time, [As i« Ex. 2, § 23, we have that the distance

I , . P
covered in the time /equals -j^-Z-'sin «. Here sin « = , and

2 Vi+z''

the distance covered is ^-

—

^ ^
, § 21, (^). ]

P



CHAPTER V

SINGULAR SOLUTIONS

29. Envelopes. — We have noticed before that (f>(x,y,c) = o,

where r is an arbitrary constant, represents a family of curves, to

each value of ^ corresponding some definite curve (provided c enters

rationally, which we shall suppose to be the case throughout this

chapter). So that if we pick out some curve corresponding to a

definite value of c, we can suppose our attention directed to the

different curves corresponding to c as it varies continuously.*

We shall be interested in the locus of the ultimate points of in-

tersection of each curve with its consecutive one. By the ultimate

points of intersectioji of a ci/i7>e with its consecutive one we mean the

limiting positions of the points of intersection of a curve with a

neighboring one as the latter approaches coincidence with the former.

(Thus in the case of the family of circles referred to in the footnote,

the ultimate points of intersection of two consecutive curves are the

extremities of the diameter perpendicular to the axis of x^ To

find the equation of this locus, we proceed as follows : If

(i) <^(x,_r, r)=o

is the equation of a curve corresponding to some chosen value of ^,

(2) <^ (.r, r, <r + Ar) = o

Thus, for example, consider the family of circles of fixed radius r whose centers

all lie on the axis of .r; their equation is {x — c)'^ -^
y'^ = r^ . When c = o we have

the circle whose center is at the origin, and as c increases we get circle after circle

whose center is (c, o).

61
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will be the equation of a neighboring curve, A^ being a finite con-

stant quantity, different from zero. To find the points of intersection

of these two curves we have to solve (i) and (2) for jc and_>', or we

may replace (2) by a constant times their difference, i.e. by

(3)

i^{x, y, c + Ai:) — <^(.v, y, r)

A^

To obtain the ultimate points of intersection of the curve with its

consecutive one we combine (i) with what (3) becomes when we let

A^ approach the limit o, i.e. with

(4)

5^(x. ji', c)

Tc

If we were to solve (i) and (4), we should actually obtain the inter-

sections of the curve with the consecutive one. But what we want

is the locus of these points, for all values of c. This is evidently

gotten by eliminating c between (i) and (4). This locus is known

as the envelope of the family (i). A property of the envelope which

we shall have occasion to use is : At each point of the envelope there

is one cun>e of the family ta?igent to it. Tills is immediately obvious

from the figure. Suppose (I), (II), (III) are three curves of the

family which ultimately become coincident, a becomes an ultimate

point of intersection of (I) and (II), and l> of (II) and (III). Hence
they are both points on the envelope, and the line joining them be-

comes ultimately a tangent to the envelope. But they are also both

on the curve (II), so that the line joining them also becomes a
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tangent to (II). That is to say, (II) is tangent to the envelope at

the limiting position of a and b*

Ex. Find the envelope of the family of circles referred to in the

footnote, page 61. '•?' ^ .

'

^ 30. Singular Solutions.— Suppose now that

(i) <^{x,y,c)=o

is the solution of / ( /, x, y) = o. We have already noted that,

looked at geometrically, this means that the slope of the tangent at a

point {x,}') of the curve of the family defined by (i) passing through

that point is exactly the value of/ given by/(/, x,}') = o for that

pair of values of .v and j. But we have just seen that the tangent

at any point of the envelope of the family of integral curves coin-

cides with that of the integral curve through that point. It follows,

then, that -the equation of the envelope will satisfy the differential

equation, and is consequently a solution. Moreover, since the en-

velope is usually not a curve of this family, /.<?. its equation cannot

be gotten from (i) by assigning a definite value to the parameter,

the equation of this envelope is a solution, distinct from the general

solution. It contains no arbitrary constant, and is not a particular

solution. It is known as the singular solution.

Ex. 1. y=. px -\

This being Clairaut's equation, its solution is

y—CX-^-,
C

or rx — cy -f i = o.

»This theorem ceases to hold in case the limiting position of a is a singular point

on (II), such as a double point or cusp. See Fig. 2, ^33. While, as we shall see (^^33),

if each curve of the family has a singular point, the locus of these satisfies the geomet-

rical as well as analytic requirements for an envelope, it is usually customary to apply

the term envelope to that part of the locus of ultimate points of intersection of the

curves of the family which has a curve of the family tangent to it at each point.
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Differentiating with respect to c, we have

2 ex —y = o.

Eliminating c, we get / = 4 ^, which is the singular solution.

Ex. 2. xp"^ — iyp — x= o.

This is the equation of Ex. 2, § 24. We saw there that its solu-

tion is / rV-20'-i=o.

Differentiating with respect to c, we have

ex- — _}' = o.

Eliminating c, we have the singular solution

x"^ +_)'- = o.

31. Discriminant.— li f(z) is a polynomial of the ni\i degree,

we have by Taylor's theorem

/{a + h) =/(«) +/' {a) h+^^h' + -^-^^ h'-\-- +/^/^",
2 ! 3 ! n\

where /' («) = (^l^^ = «^„a»-^ + (« - i) ^, a"-- + • • •

/" (a) =fi^^/(^^ = «(« - i) ^oa"-^ + (« - !)(;/ - 2)r,
^"-'^

H h 2^„_2
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Putting h = z— a, we have

/{z)=f{a)+f{a){z-a)+f^{z-ay + ---+-^-^{z-a)\

From this it is obvious that if «; is a root oi f{z), i.e. if/(a)= o.

/(z) contains z — a as a. factor; and conversely, in order that /{z)

shouldcontain the factor z — a we must have /(a) = o. Similarly, if

a is a double root, (2 — a)" is a factor of/(z), so that we must have

/(a) — o and /'(a) = o ; conversely, \if{a) = o and /'(^) = o,/(z)

will contain (s — a)- as a flictor, and a will be a double root.* The

necessary and sufficient condition, then, that /{z) have a repeated

root is that /(z) and /'(s) have a root, say a, or the corresponding

factor z — a, in common. This condition obviously depends upon the

coefficients of/(z). That rational, entire function of the coefficients

whose vanishing expresses the necessary and sufficient condition that

/(z) shall have a repeated root is called the discriminant oifiz). It

can readily be shown to be the product of the squares of the differ-

ences of the various roots of the equation (multiplied by a power of

<ro to avoid fractions). It may be calculated in various ways : The

process of finding the greatest common divisor will show when f{z)

and/'(2) have a common factor z — a. But this process is apt to

introduce extraneous factors. A better way is to eliminate z from

fiz) and f{z), (or better still, from nf{z) — zf'{z) and /'(z) which

are both of degree ;/— i). The result of this elimination is a relation

among the coefficients of /(s), which expresses the condition that

f{z) =0 and /'(z) =0 can be satisfied simultaneously. If all the

terms of this relation are brought over to one side of the equation,

and the expression is cleared of fractions and radicals, we have evi-

dently the discriminant equated to zero. We shall call this the

discriminant triation. Various methods for eliminating the variable

* In an entirely analogous manner it can be seen very readily that /(a) = o,

f'{a) = o, /" {a) = o, •••,/(»-l)(a) = o, is the necessary and sufficient condition that

« be an r-fold root.
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from two polynoininals involving it are given in the Theory of Equa-

tions. It will be sufficient to recall here that the discriminant of the

quadratic az~ -\- l>z -{ c is .^^ b'—^ac,

while that of the cubic az^ + bz' -\- cz + d is

Pr -f 1 8 abed— ^ac" — 4 b^d — 2 7 a^d"^.

In the case of ^ {x, y, c) = o, looked upon as an equation in c, the

coefficients are functions of x andj'. It rSay be possible to find

values of x and y, such that this equation shall have equal roots.

Geometrically, this amounts to saying that there may be points

through which there pass a smaller number of integral curves than

usual ; for to each value of c there corresponds a distinct integral

curve. The discriminant relation, in this case, is the locus of such

points.

32. Singular Solution Obtained directly from the Differential

Equation.— Since the problem of finding the equation of the envelope

of
<f)

(x, y, c) =0 is identical with that of finding the discriminant

relation, we see that through each point of the envelope there pass

a smaller number of integral curves than through points of general

position in the plane; that is, at least two of the integral curves

through each point of the envelope coincide. (Thus, in the case of

the family of circles already referred to, through any point of the

envelope, it is readily seen, only one circle passes, instead of two.)

Since there is at least one less curve passing through a point of

the envelope, there will be at least one less tangent to the curves

through such a point. Hence for points along the envelope, the

differential equation/(/, x, v) = o, which defines the slopes of the tan-

gents to the integral curves through the point (x, y), will have at least

two of its roots equal, i.e. for points along the envelope, /(/, x,y) = o

and —^^' ' ' = o are simultaneously satisfied. A-s a coiasequence.
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the result of eliminating/ between these two equations will give us

the equation of the envelope and, therefore, the singular solution,

whenever there is one. See § Xi'h'

Note.— In the previous chapter we came across certain factors, in the course

of solving equations, which, while they would have led to solutions, did not con-

tain arbitrary constants, and were therefore neglected at that time. It will now

be understood that these factors usually lead to singular solutions. Thus, in

the case of an equation in Clairaut's form (§ 27), (i) y = px +/"(/), the neg-

lected factor is (2) j: +/"'(/)= o. But this is exactly the derivative of (i)

with respect to/. So that if we eliminate / between (i) and (2), we get the

singular solution. Aga?n, in Ex. 2 (§ 25), we neglected the factor 4/+ i = o.

Eliminating p between this and the original equation, we have x + 4j = o,

which is a singular solution of the equation, but not the whole singular solu-

tion. Both the/- and ^-discriminant relations are x(^x \- \y) — o. This illus-

trates the fact that the appearance of such a factor in the course of the work im-

plies a singular solution, but it need not always appear when a singular solution

exists. In other words, this is not the way to look for singular solutions,

although, in actual practice, it is advisable to examine these factors and see to

what they lead.

Remark. — From the fact that two roots of an equation can be

equal only in case there are as many as two roots , no singular solu-

tion can exist in the case of equations of the first order and degree.

But it may, and not infrequently does, happen, that equations of a

higher degree than the first have no singular solutions.

Let the student, as an exercise, prove that a differential equation of the first

order and higher degree than the first, which is decomposable into factors linear

in / and rational in x and y, cannot have singular solutions.

It may be further remarked that at times the singular solution

gives rise to a result that is much more interesting than that arising

from the general solution.
'

For example, let us ask for that curve which has the property of

having the length of its tangent intercepted by the coordinate axes a

constant /.
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From formulae (e), § 21, we have

/(^) - 2

^y(fj^)
+ ^' (/ + = A

Since this is in Clairaut's form (§ 27), the general solution, when

solved for J, is seen at once to be
^

Vr-'+ I

This represents a family of Hnes whose length intercepted by the

axes is /. The curve that we are actually interested in is obtained

when we look for the singular solution. This is gotten by finding

either the /- or the <:-discriminant relation (the two being identical

in the case of an equation in Clairaut's form). It is

222
which is a hypocycloid of four cusps.

Ex. 1. Find the curve for which the product of the perpendicular?

drawn from two fixed points to any tangent is constant.

Ex. 2. Find the curve whose tangents are all equidistahit from the

origin.

Ex. 3. Find the curve for which the area enclosed between the

tangent and the coordinate axes is cr.

Ex. 4. Find the curve such that the sum of the intercepts of the

tangent on the coordinate axes is a constant.
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Ex. 5. Integrate the following equations and examine for singular

solutions :

x-/>^ — 2 (xy — 2)/+_)- = o,

(y-x/y- = /,''+ ay-,

x^ — y = o.

33. Extraneous Loci.— We have noticed that the r-discriminam

relation is the equation of the locus of points through which a

smaller number of curves pass than ordinarily. Now, if an integral

curve has a double point, at that point there will be two branches of

the curve. Since there are only n values of p (if the differential

equation is of the «th degree) there is only room for n — 2 other curves

through this point. Hence this point must be on the locus of the

^-discriminant relation. And if there are an infinity of integral

curves having double points, or nodes as they are sometimes called,

the locus of these points (known as the nodal locus) will be given by

Fig. 2 Fig. 3

the ^-discriminant relation. Excepting in the unusual case where

this locus is also an envelope, its equation will not satisfy the differ-

ential equation. The usual case is illustrated by Fig. 2, the excep-

tional case by Fig. 3.

An inspection of Fig. 2 will show why the eqaation of the nodal locus (which,

in general, is not an envelope) should be obtained when looking for the equa-

tion of the envelope. In this figure we have three neighboring curves, which-
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coincide in the limit. The nodal locus is indicated by the broken line. Any

point on it, such as c, is the limiting position of the. point of intersection of the

middle curve with either of the neighboring ones, i.e. it is the limiting position of

a or b. But while in the case of the envelope, Fig. i, § 29, a and b approach

coincidence as consecutive points on the middle curve, in the case of Fig. 2, a

and b approach coincidence in an entirely different way. Consecutive points

are points which approach coincidence by moving along the same branch of a

curve. In order to conclude from the theorem of § 29 that the equation of the

envelope is a singular solution (§ 30), we must use the term tangent in the narrow

sense of a line through two consecutive points. If we use it in the broader sense

of a line through any two coincident points, the nodal locus may be said to be

tangent to some curve of the family at each of its points.

A special case of a double point is a cusp, which may be looked

upon as the limiting case of a double point, where the loop has

shrunk up to the point and the two branches of the curve have be-

come tangent. The equation of the locus of the cusps of the

integral curves, 'known as the cuspidal locus, found when the equa-

tion of the envelope is sought, will be a solution only in case this

locus is also an envelope (as in case of Fig. 4). Otherwise, it is

not a solution (as in Fig. 5).

In the case of a cusp, not only is the

number of integral curves through that point

at least one less than the usual number, that

is, not only does the ^-discriminant vanish at

this point, but two values of / are equal there,

since the tangents to

the two branches of

the curve coincide,

that is, at such a

point the /-discrim-

inant also vanishes.

Hence the equation of the cuspidal locus must also appear in the

^-discriminant relation.

Fig.
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So far, these extraneous loci, which may or may not be solutions,

have arisen as results of peculiarities of the integral curves. Thus,

if the integral curves are known to have no double points or cusps,

it is clear there can be no nodal or cuspidal loci. But an extraneous

locus may arise, irrespective of the character of the integral curves.

Wherever two distinct integral curves are tangent to each other,

while the number of curves through that point is unaffected, the

number of distinct values of/ is diminished. Hence the /-discrimi-

nant vanishes at that point, and the locus of such points, if it exists,

will be given by the /-discriminant relation. This locus is known as

the tac-Iocus, and its equation may or may not satisfy the differential

equation. Thus in the case of the family of circles referred to in

the footnote, page 61, the /-discriminant relation is found to be

f(yf' — r-)=o ; here v = ± r is the envelope, while i' = o is the tac-

locus. By actual trial, it is found that y — o does not satisfy the

differential equation.

Remark.— At times, as the parameter approaches a certain value,

the curves of the family approach a limiting one, usually different in

shape from all the others. Frequently this special curve of the family

has the property of being tangent to all the others at one point. Ex-

cepting at this point (through which there is an infinite number of

curves), a smaller number of curves than usual pass through every

point of the special curve. Hence the equation of the latter is given

by both the /- and ^-discriminant relations. Moreover, it is found

that the factor corresponding to this special solution appears once in

the ^-discriminant and three times in the /-discriminant.

Thus, in the case of Ex. 4, § 24, the integral curves are a family of cubicii

tangent to the axis of j' at the origin (see Ex. 8, § 20). Their equation is y- =

2x {x — <r)2. For c = 00 , we have the curve x — o, which is tangent to every

other one at the origin. The c- and /-discriminants are respectively xy'^ and x^.

The additional factor x- appears because x = o is also a tac-locus, it being a par-

ticular solution corresponding to the two distinct values c — ±.^

.
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Besides, in 1888, Mr. J. M. Hill* proved that the factors in the

r-discriminant corresponding to the envelope, nodal, and cuspidal

locus occur once, twice, and three times respectively, while those

corresponding to the envelope, tac-locus and cuspidal locus in the

/-discriminant occur once, twice, and once respectively. All this can

be put in tabular form, as follows :

t-discriminant
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In certain cases there can be no doubt. Thus, if the degree of

the equation is two or three, the use of the formulae mentioned in

§ 31 will give all the factors occurring the correct number of times.

Again, in case the integral curves are straight lines (as is always the

case when the equation is in Clairaut's form), there is no need of

looking for any of the extraneous loci.

Again, if the integral curves are conies, there can be no nodal or

cuspidal loci.

Examine the following equations for singular solutions and extra-

neou? loci

:

Ex. 1. xf' —{x— i)- = o.

The general solution is readily seen to be

which is the equation of a family of nodal cubics, each of which

is tangent to the axis of)' and has its node at the point (3, r).

The /-discriminant relation is jc(^— i)" = o, while the r-discrimi-

nant relation is x(^x — 3)- = o.

Here ;i; = o is common to the two. It also satisfies the equation.

[For the line :r = o, / = 00 at every point.] Hence it is the singular

solution.

X — \=o occurs in the /-discriminant only. It is the tac-locus.

[Notice that this factor occurs twice.]

;c — 3 = o occurs in the ^-discriminant only. It is the nodal locus.

[Notice that this factor occurs twice.]

Ex. 2. 8 (i \-ff =2i{x +j') (i -p)\

The general solution is

i^x- y -^ cj = (x ^yf.
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As it is rather awkward to substitute the coefficients in the formula

for the discriminant given in § 31, make the substitution

The equation then becomes

a7 <(!)'= 8,

and the solution becomes (rj + c^ = ^.

Now the /-discriminant relation is $- = o, and the <r-discriminant

relation is ^^ = o.

^ = o is common to both, and satisfies the equation. Hence ^ = 0,

or ,r + r = o, is a singular solution.

It is also a cuspidal locus, as may be seen by constructing some

of the semicubical parabolas {r) + i-'f = $-. (See Fig. 4.) Note the

number of times that these factors occur.

Ex. 3. 4/>' = 9 X.

The general solution is

^•+c)- = x

Here the /-discriminant relation is .v = o, and the r-discriminant J

relation is x'^ = 0. •

It is obvious that x — o does not satisfy the equation. It is a cuspi-

dal locus.

Ex. 4. Examine the following equations for singular solutions and

extraneous loci : ,

;'(3-4J')'/ = 4(i-v).^

§ 24, Ex. 3, 4,^ § 25, Ex. 5, 6. § 26, Ex. 2, 4. § 27, Ex. 2, 6.

§ 28, Ex:T,'~2, 3, 5, it.
^-^

^ ^

Ex. 5. The family of circles determined by Ex. 5, § 26, envelops

a curve whose equation is a singular solution of the differential equa-

tion. Find it.
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34. Summary. — We have seen that the equation of the singular

solution (or of the envelope) is given by both the c- and />-discrimi-

nant relations (§§ 30, 32). Moreover, the ^-discriminant relation

gives rise to the nodal and cuspidal loci, while the /-discriminant

relation gives rise to the cuspidal and tac-loci, while both of them,

at times, give rise to a particular solution § t^^. For the number of

times the corresponding factors occur in each discriminant, see re-

mark, § II*

Remark. — It should be noted that, in general, a differential equation has no

*) f
singular solution. Fory (/, jr,j') =oand^-r — o can be solved for y and/-,

giving

In order that this value of^ be a solution we must have

ax

which is not true, in general. Darboux proved that, in general, the result of

eliminating/ from the above two equations is the equation of the cuspidal locus.

' '^Bulletiti des Sciences Malhcmatiques, 1873, p. 158.) Picard also gives a proof

of this in his Traite d'Analyse, Vol. HI, p. 45. See also Fine's article in the

American Journal of Mathematics,NiA.W\ ; Chrystal, A7?/«;-^, 1896; Liebmann,

Differentialgleichungen, p. 95. This may seem at first sight contrary to what is

to be expected from the way in which the idea of a singular solution was intro-

duced. (It was Lagrange (i 736-1813) who first noted that the equation of the

envelope of the family of integral curves is a solution.) But it has already been

noted that in the process of finding the equation of the envtlupe, extraneous loci

may arise, and it turns out that these usually do arise to the exclusion of an

envelope (see Picard; Vol. Ill, p. 51). Moreover, all this was based on the

assumption that the general solution of the equation has the form (i), where c

enters rationally. While this is true in a very large class of equations, it is never-

theless only a special case.

* The theory as given here was first developed by Arthur Cayley (1821-95), Messen-

ger of Mathematics, Vol. II (1872), p. 6, Vol. VI, p. 23. For illustrative examples see

J. W. L. Glaisher, Messenger ofMathematics, Vol. XII, p. i.



CHAPTER VI

TOTAL DIFFERENTIAL EQUATIONS*

\y 35. Total Differential Equations. A differential equation, involv-

ing three or more variables, of the form

(i) P{x, y, z) dx + Q {x, y, z) dy -\- R {x, y, s) dz = o

is called a total differential cquatian. We shall consider the case

when its solution can be put in the form

u (x, y, z) = c.

The differential equation arising from this is

(2) —dx + — dy + —dz = o.
ax oy az

This is either the same as (i), or differs from it by a factor

fi(x, y, z) ; i. e. if (i) is integrable, there must be an integrating

factor for it. Then a function fx{x, y, z) exists, such that

du „ du ^ du n

Hence ^ = ^ ¥' "^ ^^ ti^^f

a^+n^= M+^^ since -^ = -^
dz dz dy dy' dy dz dz dy'

* For certain reasons it seems desirable to consider this class of equations before

going to the study of differential equations of higher order than the first. If desired,

this chapter may be taken up after Chapter IX.

76
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oz dz
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77

oy^ oy ox ox

d-u d~u

dx dy dy dx

ti must satisfy these three equations, which of course cannot be

expected of it, unless P, Q, R satisfy a certain condition or con-

ditions.

If we multiply these equations by P, Q, R respectively and add,

all of the derivatives of /a disappear, and we have left

after dropping the common factor yu,, which is not zero, for the in-

troduction of zero as an integrating factor gives us no information.

This is a necessary condition among the coefficients P, Q, R.

Moreover, we shall prove that it is the only condition requisite for

the existence of an integral of (i), in other words, we shall prove

that this condition is also sufficient.

Consider any one of the variables, say z, as a constant temporarily.

Then equation (i) takes the form a-z. - p

(4) Pdx -f Qdy = o.

Assuming the continuity of imP, fiQ, ij.R, and the existence and continuity of theit

derivatives.

t This may be written in the following symbolic determinant form

:

p
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Still considering z as constant, (4) can be integrated, but now the

constant of integration may involve z. Let the solution be

(5) u {x,y, 2) = <^(s).

We shall show that if the condition (3) is satisfied, we can choose

^{z) so that (5) will be the solution of (1). For, differentiating

(5) with respect to all the variables, we have

(6)
bit J ,

Bu , . dii , ,

,

— ax + ^- dv + —az = a<t>.

dx dj> " 02

Since (5) is a solution of (4) considering z as constant, we have

(7) — =fx.{x, y, z)F, — = tx{x, y, z) Q,
ax ay

where /x, is, in fact, an integrating factor of (4). (See § 5.)

Comparing (6) with (i) multiplied by yu,, we have

(S)
(l'-'*^>=''*'

du
This equation can be solved for </> provided ^lR reduces to a

Bz

function of z and <^, when use is made of (5), or, what is the same

thing, provided fxR' is a function of z and //. Looking upon
az

ail
iiR and 11 as functions of x and r only, z being treated as a

constant or parameter, the only requirement for this is the vanishing

of their Jacobian :

*

du d-u ^^ _ o^M
dx dx dz dx dx

\

r

du d-u dR jyda
fJL
— — /i -'—

By dydy dy d

* See Note I in the Appendix.

«tWJ%/' te-«
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Making use of (7), this may be written

oz uz ax ox

oz OS ay ay

Assuming tliat (3) is satisfied, this becomes

V ox dv J dx dv

IxR
dx dy

Since fi is an integrating factor of (4), this vanishes. Hence equa-

tion (8) can be solved for c^
;
putting this in (5), we have the solution

of our equation (i), and our theorem is proved.*

* The necessity and sufficiency of the condition (3) can be proved much more
briefly as follows (but this method does not suggest a general way of solving a total

differential equation when the condition is satisfied) :

The equation Pdx + Qdy + R dz = o

is equivalent to the two partial differential equations,

dz^_P ds^_Q^
dx' r' dy R

In order that these may hold simultaneously, it is necessary and sufficient that

aiC

by d.r

Remembering that P, Q, R are functions of x,y, 2, this equation becomes

dQdz
dx

^:dR,dRdz
^ ' dx d

j?(dP,rlPdz\_(dR,dRdz\^^(dQ,dQ
\dy dzdyj Kdy^dzdy) \dx dz

Since —- =
.
-^=— i this reduces at once to the form (i) above.

dx R dy R

Ox)
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36. Method of Solution. — The above proof not only establishes

the sufficiency of the condition, it also suggests the following method

for solving a total differential equation in three variables which satis-

fies this condition :

Integrate the equation considering one of the variables * as a con-

stant. Insteadof a constant of integration, introduce an undetermined

function of this variab/e. Redifferentiate, this time with respect to

all the variables. Comparing this with the original differential equa-

tion, a neiv differential equation will arise, involving only the undeter-

mined function and that variable of which it is a function. From

this the function can be determined, involving an arbitrary constant.

And thus the complete solution isfound.

Remark. — Since an equation which is integrable differs only by a

factor from an exact differential equation, if we can obtain such a

factor by inspection or otherwise, we can integrate at once.

Apply test for integrability and integrate the following:

Ex.1, ^r dx -\-zdy—y dz = o.

' s -;

^ ^^ =/(-i-i)+<o-o)-Xo-2;')=-2/-t-2/=o.
d

dx
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Comparing this with the differential equation, we have

or cfxfy —J i/<}).

Hence the general solution is yx — z + cy — o.

/
By inspection, it is readily noticeable that — is an integrating

factor. This puts the equation in the form -^

zdy — ydz
dx + ^ / = o.

/

Its solution is of course x 1- ^ = o.

y

Ex. 2. zy dx — zx dy — j" dz = o.

' Ex. 3. X dx -\- y dy — Va" — x' — y' dz = o.

Ex. 4. {pr —jr — z^)dx -\- 2xy dy-\- 2 xz dz= o.

37. Homogeneous Equations.— If J^, Q, and R are homogeneous

and of the same degree, the variables may be separated just as in the

corresponding case for two variables (§ 10). Here we transform any

two of the variables, say x and y,hy x = uz. y = vz. Then dx = z dii

-\-u dz, dy = z dv + v dz, and the differential equation becomes

z{P^ dii + <2i dv) + (///i + ^' <2i + ^1)^2 = o,* or

U\
F^du+0,d7' dz^^

^ ^
uF^ + vQ, + R, z

where P^ = P{ic, v, i), <2i= Q{"^ ^'j i)> R\ = R{u, v, i).

* If wPi -\-vQ-, -\- Ry = o, this equation reduces at once to one in the two variables

u and V,
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Now, if the original equation satisfies the condition for integra-

biUty, this equation will also. Moreover, it is exact* and can be

integrated as it stands (by method of § 8).

Ex. 1. (/ ^yz)dx + {xz + z-)dy + (/ - xy)dz = o.

(Let the student apply the test for integrability.)

Putting X = HZ, y = vz, dx = udz-\-z du, dy — vdz + z dv, and the

equation becomes

(h (y- -i-7>)du+ (u-\- i) dv __

z tiv^ + uv -\-v \-ir

Since iiv^ ^ uv -\- v -\-
v"- = {ir -{- ii){u ^ \), the equation may be

written

dz
,

du
,

dv- +—— + -r^— = Oi
z u-\- \ v--\-v

, z(u 4- i)?*
whence — = c,

V -\- \

y{x + 2)
or •^———'- = c.

y + z

Ex. 2. ()'- +ji'2 + z-)dx + (z- -\-zx -\- x')dy + (x- + xy +y^dz = o.

Ex. 3. (xy — v'' —yh)dx + (.ri'-' — x'Z — x'^dy + {xy^ + x'''y)dz = o.

* Putting P = ^
,
Q= 2l

. -^ = -,
uPx^vQx^-Ri uF],-\-vQx-\-R\ z

equation (i) takes the form Pdu + Qdv -\- R dz = o.

Since P and Q are free of z, and R is free of 11 and f , the condition for integrability

reduces to

'^\bu dv)

^is -, hence we must have -^^i^ —— = 0, which means that Pdu -{-Qdv is an
^ du dv

exact differential (^ 7), and therefore (i) is also.
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38. Equations involving more than Three Variables. — Consider

the equation

(i) Ft/x \-Qdy^-Rdz + Sdt= o.

If this is integrable, it will remain so when we let any of the varia-

bles be a constant. Letting x, y, z, t be constants successively, the

conditions are

/as_a^\ /3e_as\ /M_e2\
^\ ^\dz at) \ai dyj \dy dzj '

^^'
\dt dxj ySx SzJ Vfe 0/j '

^^' \ex Sy) \Sy atl ^\dt dxJ '

\dj oz J \dz ox J \ ox oy J

But these conditions are not all independent. If we multiply (2),

(3), (4) by F, Q, R respectively and add, we get (5) multipHed

by S] which shows that only the first three are independent.

f

* Perfectly generally, if the equation contains n variables, we obtain as many con-

ditions as the number of ways in whicti we can pick out three variables from «; that

is, the number of conditions is
"^^ ^ )s!^ ~ ^'

,

3!

t In general, the number of independent conditions in the case of n varialjles is

^^ '-^ — , which is the number of times two objects can be chosen out of // — i.
2

For only those conditions will be independent which involve derivatives with respect

to some one chosen variable, since any condition not involving such can be obtained

by combining linearly those that do, as was done in the case above. Now each of the

conditions involves derivatives with respect to three variables. Hence the derivatives

with respect to any one variable may appear in a condition along with those with

respect to any two of the remaining « — i variables.
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These conditions can also be shown to be sufficient. When they

hold, the integral is found as in the case of three variables, by in-

tegrating, considering all but two of the variables constant. Then

the constant of integration is written as a function cf) of those vari-

ables temporarily considered constant. Redifferentiating with respect

to all the variables, and comparing with the given equation, the two

variables originally treated differently from the rest will disappear,

and the function will enter in a new differential equation which is

integrable and involves the remaining n — 2 variables and ^, that is

n— 1 variables in all. Either this can be integrated at once, or the

process may be repeated as often as necessary. The following ex-

ample will illustrate.

Ex. z{y + z)dx + z(J — x)dy +y{x — t)dz +y{y + z)dt— o.

Let y and z be constants temporarily. Integrating, we have

xz-\-yt=i^{y,z).

Differentiating and comparing with the original equation, we have

{ty + zx){dy + dz) = {y + z)d<f>.

or <^ {dy + dz) = (j' + z) d<f>.

We now have an equation in the three variables y, z,
<f>.

This can

be solved by the general method (§ 36). But an obvious integrating

factor is 7 ,

ry Introducing this, we have
u + 2) 9 t"

'

<f>
= c{y+z).

Hence the general solution is

xz +yf = c(y-\-z).

39. Equations which do not satisfy the Condition for Integrability.

If Pdx + Q dy + /^dz =0 does not satisfy the condition for integra-

biUty, it is impossible to find its general solution in the form

<l>(x,y, z) = c.
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But as the equation is one in three variables, we should expect to

find an indefinite number of solutions. As a matter of fact, if we

assume any relation we please, say il/(x, y, z) =0, this will deter-

mine any one of the variables, say z, in terms of the other two.

Substituting for this variable in the original equation, we obtain a

new differential equation in two variables, which can usually be

solved. We see then that the general solution of a so-called non-

integrable total differential equation consists of an arbitrarily chosen

relation among the variables and a second relation involving an

arbitrary constant. The latter depends upon the choice of the

former, and cannot be determined until the choice has been made.

Re)/iark. — Since the solution of the integrable equation is a single

relation among the three variables, we may assume any second one

consistent with it. So that in this case also we may say that the

solution consists of an arbitrarily chosen relation and a second one

involving an arbitrary constant. But here the latter is fixed by the

differential equation, and is entirely independent of the choice of the

former.

Ex. y dx -\-x dy — {x -\-y+ z) dz — o.

This, it is readily seen, does not satisfy the condition for integra-

bility. If we assume x-\- y +z =0, our equation becomes

ydx -\- xdy = o, whose solution is xy = c.

Hence a solution is X

y
xy=c.

If we assume x Ary= o, our equation becomes y dx -\r x dy —z dz = o,

whose solution \s 2xy — z- = c. Hence another solution is

r ^-fj=o,

\2 xy — 2^= c.
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40. Geometrical Interpretation.— To say that the equation

Fdx+ Qdy+Rdz^o

satisfies the condition for integrabihty is to say that a family ofsurfaces

exists such that at each point (.Vo,.i'o, So) in space there passes one*

of these surfaces

and the tangent plane at any point {x,y, z) of this surface is

P{x,y, z) {X- X) + Q(x,y, z){ Y-y) + R {x,y, z) (Z- z)=o

In other words, the differential equation defines the plane

P(X— x)+ Q{ V—y) + R (Z—z) = o at each point in space. The

problem of integration amounts to determining a family of surfacesf

such that the surface which passes through any point is tangent to

the plane corresponding to that point. An interesting consequence

of this is brought out in § 66.

When the equation is not integrable, the assumption of a second re-

dxjj dif/ dij/

lation, (/'(.v, r, 2) = o, which carries with it ^-dx + -Q-^//y'+-^dz = o,

determines, with the original equation, a line at each point on the

assumed surface ij/(x, y, z) = o, viz.

{p{X-x) +QO'-y) -^ R{Z-z) = o;

W{X-x) + ^-^^-iY-y) + ^-^-{Z-z) = o.
I ux oy oz

TJie problem of integration then amounts to determining a family

of curves such that that curve which passes through any point is tan-

gent to the line corresponding to that point. Since one of the two

* It is presupposed here that is a rational function of x,y, z. Otherwise the state-

ment in the text must be restricted to regions in which <t> is single-valued. (See § 70.)

t These will be referred to as integral surfaces.
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equations of this family of curves is the assumed relation il/(x,j, z) = o,

the problem really amounts to finding that family of curves on any

arbitrarily chosen surface whose tangent at atiy point of the surface

lies in the plane determined by the differential equation at that point.

Thus, in the case of Ex., § 39, we have on the plane ^-|- v-|-0 = o

the curves cut out upon it by the family of cylinders xv = c

;

while on the plane .r+i =0 we have the curves cut out by the

hyperbolic paraboloids 2 xy — s- = c*

41. Summary.— If the total differential equation

Fdx + Q dy Ar Rdz = Q>

satisfies the condition for integrability (§ 35), an integrating factor

exists. If that can be found by inspection, introduce it, and inte-

grate at once.

If the integrating factor cannot be found by inspection, the gen-

eral method of § 36 may be employed.

If P, Q, R are homogeneous and of the same degree, the method

of § 37 will sometimes prove simpler than the general method.

If the condition for integrability is not satisfied, solutions may be

found by the method of § 39.

Total differential equations involving more than three variables

may be treated by the method of § -^Z, unless an integrating factor is

obvious by inspection. In this case introduce the factor and inte-

grate at once.

Apply the test for integrabihty, and solve the following

:

Ex. 1. (jv + z)dx + (s + 3c)dy + {x -\-y^dz = o.

Ex. 2. {z-\- \){x dx \-y dy) — (.r^ -\-y'^)dz = o.

Ex. 3. (x +/'' + sr + i)dx -\- 2y dy -\- 2 z dz = o.

Ex. 4. (y -\- ay dx + z dy — ( v + a)dz = o.

* All this applies to integrable equations, except that in case the arbitrarily chosen

Siirface is an integral surface, every curve on it is an integral curve.
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Ex. 5. (y + z)(/x -{- dy + t/z — o.

Ex. 6. 2 X dx + dy-\-{2 x'z -\- 2 yz + 2 z- -\- i)dz= o.

Ex. 7. (2 x+y-+ 2 xz)dx +2 xy dy -\- 0^ dz — dt= o.

Ex. 8. zxdy—yzdx^x^dz=^o.

Ex. 9. x{y — i)(2 — \)dx +;'(2 — i) (^ — i)^

-\-z{x—\){j— \)dz = o.

Ex. 10. 0' — z)dx + 2 {x + T, y — z)dy — 2 (x + 2 ))dz = o.

Ex. 11. f{y + z)dx -^t{y-\-z+ \)dy -\-tdz— {y + z)dt= o.

Ex. 12. z(y + z)dx + z (/— x)dy -{-y(x — t)dz \-y {^y + z)dt= o.

-' <V'^+

.y

; .



CHAPTER VII

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

42. General Linear Differential Equation.— A linear differential

equation is one which is of the first degree in the dependent variable

and all of its derivatives. Its general type is

() ^.r^ + x,r^ + x,^+... + x..,^ + Ar.j. = ^,
ax ax ^ ax"-

- ax

where Xq, Xi, Xo, •••, X,„ X are functions of x or constants. If we

write -^ = Dy, —^ = D'^y, •••,—- = -^"j'5 we can write (i) in the fol-
dx dx~ dx"^Ix dx'

lowing convenient form,

{X, Z>" + X, D-' + X, D"-'- + ... + X„_i B + X„)y = X,

or F{D)y^X,

where F(D) is the polynomial XoB" + X^D"''^ -{ + X„ which

represents symbolically the differential operator

^0/^ + ^^1 fS + - + ^'^-^7- + ^-
dx" dx" '^ dx

Two properties of linear differential equations which are of service

in their solution deserve especial mention here :

1° Suppose X=o^ In this case the equation is said to be a homo-

geneousYiuesiX differential equation, since all of its terms are of the

first degree in y and its derivatives. (When not homogeneous, the

89
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equation is said to be a complete linear differential equation.) If

y =y^ satisfies the equation, so will y = r^^'i, where ^j is a constant.

For, since D\c^y^ = c.E^y^, F{D){co\) = c^F{D)yy But, by

hypothesis, F{D) y^ = o, hence F{D) {c^y^) = o.

Moreover, if j'=j)'2 is also a solution, y= c^y^ + ^2^2 will be a

solution. For, since the derivative of the sum is the sum of the

derivatives, i.e. Z>*(_Vi +3-2) = D\\\ + J^yo, we have

F{D){co\ + ^2;2) = F{D){c,y,) + F{D){ay,)

=^c,F{D)y, + c,F{D)y., = o.

Similarly, if we know r particular integrals, y^, y^, •••, y,.,

y = ^1 Vl + ^2j'2 + ••• + ^rjr

will be a solution. Since the general solution of a differential equa-

tion of the «th order is a solution which involves n independent arbi-

trary constants, we have the property :

A. Ify\, y-i,
•••, v« (it'<^ n linearly independent* particular integrals

of a homogeneous linear differential equation of the nth order, the

function c^yx + c-.y., + ••• + r„j»'„ is its general integi'al.

If the particular integrals are not linearly independent, the solution found

above will not be the general solution. Thus, suppose there exists the relation

(i\y\ + a-iy-i -f ... + a„;)'H= o, where all the «'s are not zero. If an is different

from zero, yn = y\ -y-2 — ••• '^—^ y„ - 1. and the integral becomes

where only n — I independent constants are involved.

* n functions y^^, y-i, ••-,>'« of a variable are said to be linearly independent if it is impos-
sible to find n constants a-^,a.i, —, a,i such that a^yi^ a.,y.2 + ••• +««;'« shall vanish for

all values of the variables. Thus yi = zx — x^,y.2 = x + x^,yg = x are evidently not

linearly independent, since ^1 +>2—3^'3 = o; i.e. it equals zero for all values of x, or,

as it is usually expressed, /^ ^y.^ — ^y^ vanishes identically.
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Ref?iark.— Attention should be called to the fact that it makes no

difference how these particular integrals are gotten. We shall see

that in a most commonly occurring class of equations, these will be

found by purely algebraic means ; in other cases, some of them can

be gotten by inspection.

For convenience of language, the integral of (i), when the right-x

hand member is made zero temporarily , is spoken of as the comple-

mentary function.

2° If F= rji'i + r^,j'2 + ••• + <^'h.i'« is the complementary function

of (i), and if we know (no matter by what means) a particular in-

tegral, U, then Y -\- U \% the general integral of (i). For, since the

equation is linear,

AD){Y^ U) =f{D) Y+f{D) U^o + X= X.

Hence the property :

B. The general iiitegral of a complete linear differential equation

is the sum of its complementary function and any particular integral.

43. Linear Differential Equations with Constant Coefficients.*

Complementary Function. — Given the equation

^^> '«;^+''^^^^+'^'.^:^'+-+''-^>'"-^'=^'

or {k,D- + hD^'-^ + k.,D''-' + . • • + k„_,D + /'„);' = ^,

or . f{D)y^X,

where k^^ k^, •••, k^ are constants.

First, suppose X = o. Then

(2) f{D)y = o.

* The method given here is due to Leonhard Euler (1707-1783). For a presenta-

tion of Cauchy's method see T. Craig, A Treatise on Linear Differential Equations,

Vol. I,Ch. II; or C. Hermite, "Equations Differentielles Lineaires," in Bulletin dcs

Sciences Math'ematiques, 1879.
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Putting;' = ^™", we have, Dy = w^™", •••, D'y = m'e'^

;

hence, /{I?)(e"'^) = e'-y(m).

For ^""' to be an integral of (2), m must satisfy the equation

(3) /(''') = O'

I.e. 4w" + ^i;«"^^ + /^2'«""" + • • • + ^„-iW + ^'„ = o.

Each value of m satisfying (3) gives an integral of (2). If these

are all distinct (say Wi, w., "h, "-, /«„), <?"'>^^'"2^ •••, ^""n^ will be linearly

independent, and making use of A, § 42, ^i^™!^ + ^2<?'"2' H + ^.•/'""'

will be the general integral of (2), and the complementary function

of(i).

Remark. — Equation (3), which is so readily obtained from equa-

tion (2), is usually referred to as the auxiliary equation.^

^ _ d-y dy .

Ex.1. ^ — 3-^ + 27 = 0.

dx dx

The auxiliary equation is ;«- — 3^ + 2 = 0. Its roots are i, 2.

Hence the general solution is

Ex. 2. -^, — 6--^- + 25 J = o.
dx- dx

Here ;;r — 6 /;/ + 25 = o, whence w = 3 ± 4 /, where /= V— i.

.-. y = ^j^(3+4,)x _^ ^2^(3-4,)x^ or ;' = ^^ (^1^*'^ -f r.-?-*")-

Ex.3. ^-^ = 0.
dx^ dx

Ex. 4. (Z>^ _ 2 Z)- - Z) + 2) V = o.

* Cauchy calls tliis the characteristic equation.
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44. Roots of Auxiliary Equation Repeated. — If any roots of the

auxiliary equation are repeated, the method of § 43 does not give

us n linearly independent integrals, and consequently it does not

give us the general solution. In this case we make the more general

substitution v = ^""'^(a'), where ^{x) is a function oi x entirely at

our disposal. Then

n-y = e""' [//rcf> + 2 wZ><^ + -D'cji],

D^y = e"'^ [,n'cl> + 3 j/rBcf, + 3 mB^ +B^

jyny_ ^mx

whence

2 !

f{D)y = e-
2 !

where/'(;;0 = -f /(m), . • -,
/^'^ (;«) = -f-J{m).am am

If ««i is an r-fold root of/(w) =0, we have § (31),

/{m,) = o,/'(m{)=o, -, f('-'\m) = o.

In this case /{!)) y will vanish if y = e""'<f> (x) provided Z>''<j> = o,

whence all the higher derivatives of <^ are also zero ; i.e. pro-

vided
(f>
— Ci x'"^ + CoX'"- + ." + e,.__iX + c,., where ^1, Co, •, c^ are

any constants whatever. Hence, we see that if m-^ corresponds to an
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r-fold root of the auxiliary equation, not only is e'^^'' an integral of the

equation, but so also are xe"'^'', a'V'i^, •••, jc''*V'"i-', i.e. corresponding to

an r-fold root we have r linearly independent integrals. So that

whether the roots of the auxiliary equation are repeated or not, the

n linearly independent integrals necessary for obtaining the com-

plementary function {A, § 42) are always supplied by the auxiliary

equation.

Ex.1. (4Z>^-3/)+i)j = o.

The roots of 4 tn' — T,m+ \ =0 are \, \, — i. Hence the gen-

eral solution is y = e-"" {e^ -}- c^x) + e^e''.

Ex.2. (iy-D''-D+i)y^o.

Ex.3. {D*+2 iy^-2 n-i)y = o.

\/ Ex.4. (iy-6n- + gD)y = o.

45. Roots of the Auxiliary Equation Complex. If the coefficients

of the differential equation are real, while some or all of the roots of

auxiliary equation are not, we can, by a proper arrangement of the

terms in the complementary function, have the latter involve only

real terms. Thus, if the auxiliary equation has a root a + i(3, it will

also have a — i/3 as a root, since its coefficients are real. Two terms

of the complementary function will then be

or e"'^ (^1 .?'^^ -f ^2 e-'P'^ )

,

Now e'^'' = cos /3x + / sin (3x, and- e''^"" = cos fix — /sin (3x.

Hence our pair of terms may be written

^"[(^1 + <^2) cos fix -j- / (^1 — ^Tm) sin fix'j.
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Putting ^1 = , c.> = ——— , this becomes
2 2

e'^^'i^A cos px + B sin fix),

where A and B are the two arbitrary constants.

Another form in which this may be written is ae"^ smifix + b)*

or ae""" CO?, {jix -\- b) , where a and b are the arbitrary constants.

For interpreting the solutions in physical problems, the latter forms

are sometimes preferable.

It is obvious, that in case a pair of such roots is repeated, the

corresponding part of the complementary function is

e" (Ai cos I3x + B^ sin l^x) + xe'^^'iA.j cos ^x + B^ sin ^x)

or ^"^ [(^1 + ^2 x) cos ^x + (^1 + ^. .r) sin /3.v].

And perfectly generally, in case such a pair occur as r-fold roots, the

corresponding part of the complementary function is

^-"^[(.^i+^o^H f-^X'0cos)8;c+ (^i+^2^-| +^,-^''"^)sin^^].

Ex. 1. In the case of Ex. 2, § 43,

« = 3, y8 = 4, so that the solution may also be written

y = e^{A cos i\x + B sin 4 x)

or y= a e^ cos (4 x + I?) .

" Ex.2. {D^-\-2 D-+\)y=o.

'• Ex. 3. {ly-V^ D)y = o.

I / A
*For, A cos ^x -\- B sin ^x may be written '\A^-\-B^ I / ..2 . po '^^^ /3*+
B \ A B

v."^^T^
'^" ^"^7 •

^^"'^'^ ^'''^ """ °^ *^^ '"i""^" ""^ v;^^T^ ^"'^ v^2 + 52

equals unity, these may be taken as the sine and cosine of some angle, say b.

Putting V.-/2 -|- i?'^ = a, our expression becomes a (sin b cos ^.r + cos b sin ^x') or

asm.(^x -\rb\.
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Remark. — For the purpose of interpreting the solution of certain problems in

Physics it is desirable at times to introduce hyperbolic functions in place of the

exponentials in case a pair of the roots of the auxiliary equation are real and

equal to within the sign. Proceeding as before, we make use of the formulae

e^ = cosh jf + sinh x, e'^ — cosh x — sinh x.

If + m and — m are a pair of roots of the auxiliary equation, the correspond-

ing terms of the complementary function are

= (^1 + ^'i) cosh mx + (ci —02) sinh mx

= A cosh fnx + j5 sinh mx.

Using the addition theorem for the hyperbolic functions, this may also be written

y — a cosh (;//x + l>)i

or y — a sinh {jnx + <J),

where a and b are arbitrary constants.

46. Properties of the Symbolic Operator (D — a).—
1° (D — it)y means ^—— a\. Similarly {D — ^) v means -^ — /3y.

t/x
' '

dx

Hence [(Z) — «) + (D — )8)] j' means 2 ^-— (« + (3)y, which may
(/x

be written symbolically [2 D — (a + /3)^y. That is, the result of

operating on y with (D — a) and (D — /3) separately and then taking

the sum, is the same as operating on y with [2 Z> — (« + ^)]. Hence

we see that t/ie operation resuiti?igfrom taking the sum of the results

of two operations of the type here considered can be gotten symbolically

by taking the sum of their symbolic representatives. Thus we can write

[(ZP -«) + (i) -/?)] = [2 Z> -(« + ;8)].

Evidently this rule applies to the sum of any number of such oper-

ators, and also to the difference between any two of them.

2° (Z>-^)(Z)-«)r means f^-fi\f^-aX which is

d'y dv \ - / \ /

-^ — (« + /?) -f^ + «i8i'. That is, the result of operating on y with
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{D—a) first, and then with (B — ft) on the result, is the same as

operating on y with [D- — (a + ft)B + «y8]. Hence we see that t/ie

operation resjilthig fro7n the successive performance of tzvo operations

of the type here considered, can be gotten symbolically by taking the

product of their symbolic representatives. Thus we can write

\{^D-^){^D-a)-\=lD'-{a^ft)D^aft\

Moreover, owing to the symmetry of « and ft in the right-hand

member, we see that the order of the operators on the left is not

essential, or, as it is usually put, two operations of the type here con-

sidered are conimutative.

Obviously all this applies to any number of operations of the type

here considered.

All the results of this paragraph can be incorporated in the follow-

ing

:

The symbolic representatives of opej'ations of the type here consid-

ered behave like algebraic quantities for the processes of addition, sub-

traction, and tnultiplication.

Remark.— Since any polynomial in D with constant coefficients is a

product of linear factors, this theorem applies also to operators

whose symbolic representatives are polynomials in D with constant

coefficients.

Evidently if the roots of the auxiliary equation of (i) are m^, m.,,

• •-, m„ (whether these are all distinct or not), we may write (i) in

the form

ko(n - m,) (B - m.^ . .
. (Z> - ;;/„);' = ^•

47. Particular Integral.— A perfectly general method for obtain-

ing the particular integral of a complete linear differential equation

with constant coefficients (and, for that matter, another method for

obtaining the complementary function, as well) results from the fol-

lowing considerations

:
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In the toUowing discussion we shall suppose the equation divided

through by k^, and to simplify matters and yet bring out the method,

we shall use an equation of the third order. Let us start, then, with

the equation

f{n)y ={D- m,) {D - ;;/,) {D - m,)y = X.

To find the integral of this eq.'ation is to find y, a function of x,

such that when operated on hy /(D) it will give X.

Let {-D— 'fi'i){D — m^)y= u, where u h a new function. Then

(Z> — mi)u = X, or m^u = X.

This is a linear equation of the first order, and ^""'i'^ is an integrat-

ing factor (§ 13). Hence

^-"i^^ =
I
e-"'i''X^x 4- <r, or u = e"'i'' ( e' "'I'^Xdx + ce'"v'

;

i.e. {D — m^{D — m^y = e"^'' fe-'">''Xdx + ce"'i'.

Now let (Z> — m.^)y = v.

Then (D — m^v = e^^^
|
c'^x^X dx + ce^^"^.

This is also linear and of the first order, hence an integrating

factor is e-"^-^. Introducing this, we have

e '^x^X dx ix H
^-

^(-"i
-mj,)x _^ ^f

;«, — 7n.,

or
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Hence {D — ni^y = e'"^' I ^("tV^ | <

where c" = —

e-'^i'^Xdx dx + c'^e^-i-" + ^'^'"2^

This is again Hnear, and an integrating factor is ^"'"3^. Using this

we have

j^^-m5T__
I

^('"a'^s'^ J j
^C'"!-™,)-! ie~"'i''Xdx dx \ dx

-\ ^(""l-^a'^ + —± eim-m\i + ^3,

or j>; = ^^3=^ rf('»2-'»3^ i
O'-'i-'-o)^ \e-"'v'Xdx dx i dx

This law in the case of the ;/th order is obvious now.* It is

+ ^l^"'i' + r^;(?"'2=' -f ... -|- C,/^ri',

Remark.— In the second Hne we have the complementary func-

tion, with which we are already familiar (§ 43). (Let the student

show that in the case of repeated roots of the auxiliary equation this

method leads to the same result as § 44.) In the first line we have

the particular integral, whether the roots of the auxiliary equation are

all distinct or not.

* To prove this, we simply need assume it for the wth order, and show that it holds

for the (« + i)st order. This can be done at once, and will be left as an exercise

to the student.
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Ex.1, f^'^ -^ - 2 ^- = ^-'.

dy? dx' dx

The auxiliary equation is

m^ — m- — 2 w = o. .•. w = o, — I, 2.

The complementary function is V= Cx + c^e-'' + c^^.

The particular integral is

U= e-'
p-i^-)^ po+i). Ce-{dxY

=e^' r<?-3^ r^(- e-^){iixf = - /'
P"''^

^dx \dx

=. — e^ \ e'^" X dx = - xe'"' -\- - e~'.

J 3 9

Since e^"" is already part of the complementary function, it will be

sufficient to use - xe ^, thus giving the general solution,

y = Cx-\- c.^e ^ + c/-' + - xe-

3

Ex. 2. (Z>- + 3 Z> + 2);; = e\

Ex. 3. {D^ ^ I D^ ^ z D ^ \)y = 2 e-^ — xre'^.

Ex. 4. {D- — D — 2)y = sin x.

Ex.5. {D-^ry = -^^.
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48. Another Method of finding the Particular Integral.* — The

general method of finding the particular integral given in § 47 is

frequently long. At times, the first integration is readily obtained,

but the successive ones are long and tedious. In such cases the

following method applies :

Starting with {D — m^){D — m.^ • • {D—m^y = X,

we can write symbolically

•^ ~
(/? - ;;/i) (Z> - Wo) . .

. (Z> - ;//„)
^'

where ; is the symbol of the operation
{D-m,){D-nu^-{D-m,:) ' ^

inverse to (Z> — m-^{D—ni.^ ••• {D — ;//„). Just as sin~^ x means such

a function of x that when we operate on it with the operator sin we

get X, so if we operate on
I

{B - fih){D - ;;/,) • • • (Z> - ;/2„)
^

with {D—ffi'^{D—m^^ ••- {D—fu,^, we get X. Now we have seen

that the operator (Z>— ni^{D — m.^ ••• (Z> — ;//„) is equivalent to the

successive performance of the operators {D — m^, (^D — m^, •'•,

{D — 7n,) ; and besides, the order of the latter is not essential.

Looked upon algebraically the fraction

I

is equal to the sum of the partial fractions

-\- -zz 1-
••• -r-D — tn^ D — m.2 D — m,^

if the roots of the auxiliary equation are distinct.

* This was first published by Lobatto, Theorie des Caracteristiqucs, Amsterdam,

^837. Independently it was given by Boole, Cambridge Math. Journal, ist series,

Vol. II, p. 114.
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Looked upon as operators, this equality still holds ; for to verify

the equality we operate on both with (Z> — m^{D — m.^ ••• {D — w„).

Since the order in which we operate with these factors is immaterial,

the result will be that all the operators resulting are polynomials,

which can be treated as algebraic expressions. Hence the algebraic

equality of the symbohc representatives of the two operators means

the equality of the operators, and the original operators, in fractional

form, are also equivalent; i.e.

y= 1 x=—^^—X-{-—^^—X+ •••

^ (Z> - Wi) (Z> - m.2) '{£>- w„) D - m, D - m.,

+ ^»
X.

If we put u = '— X, then {D — m\u = aX.D — in

Integrating this linear equation, we have //^~""' = « | e~"'^Xdx, or

u = ^^"^
I
e~'^^Xdx. Hence the particular integral may be put in the

form

II. ai^"!^ r<?-'"x^Xrt'jc + ^2'?"'^'' \e-"'-^X(lx^- '' +a„e'"n'' \e-'^n'Xdx.

Remark i.— This method leads to a real particular integral, even in case a pair

of the roots of the auxiliary equation are conjugate complex quantities, a + i^

and a — i^. In breaking up into a sum of partial fractions, we know

that the sum '^ — + ^ ^- is equal to
^^ + I

which i and / are real. Hence ai and ao are also conjugate complex quantities,

say \ -f i/ji. and X — i/x.

Now ^ + '^
.
X= (\+ 2»tf(a+ii3)x ( e-(<^+ip)=^X dx

= (\+ ifj.)e'"(cos fix +i sin ^x) \ £-<"X(cos fix - is'mfix)dx.
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Since —_—X may be gotten from the above by changing the sign of

i wherever it occurs, the two have the same real parts, while their imaginary

parts are equal but of opposite signs. Hence their sum is equal to twice the

real part of either; i.e.

—^ "'"'^ X + ^^plt x= 2 f«== (\ cos px-,1 sin I3x) (e''^^ X cos 3x dx

+ 2 ^"^ (\ sin px+ fj.
cos /3jr) \ e'^^ X sin ^x dx.

Remark 2.— In case a root is repeated the following obvious modification

is necessary :

To fix the ideas we shall suppose one of the roots, wi, is a triple root. The

corresponding partial fractions will be ^ u — 1 — .andD - mi {D- miY {D - mi^
the corresponding terms of the particular integral w^ill be (I, § 47)

ai<f™i^ r e~"h' X dx + aof'",-' f \ e-"'f' X {dx)'^ + ase"*!'" \ f (e-'^i^X {dxy.

"^ Ex. 1. {D'^-^D+2)y = (f.

Ex. 2. {D^ -2,D'-D-ir 2>)y =x^'

Ex. 3. (Z>- + i)j)' = sec X.

Ex. 4. (/>^ - 4 Z>- + 5Z> - 2)y = X.

49. Variation of Parameters.*— Another general method of ob-

taining the particular integral, known as the method of variation of

parameters, at times applies very readily, especially if the order of the

equation is not high. The method consists in considering the con-

stants in the complementary function no longer as constants, but as

undetermined functions of x such that when substituted in f{D)y
we get X, and not zero, as is the case when they are constants.

* This method is due to Joseph Louis Lagrange (1736-1813).
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Since we have n functions at our disposal, and only one condition

to impose upon them, it is clear that, theoretically at least, we can

satisfy this requirement in an indefinite number of ways, by imposing

any other n — i conditions we please. In actual practice we shall

impose these conditions in such a way as to simplify our work as

much as possible.

The method will be carried out in the case of an equation of the

third order. (The argument will readily be seen to apply to any

order.)

Let the equation be

(i) {k,n- ^ k, D"- + k,D ^ h)y = X,

and let the complementary function be

( 2

)

y = ^i^"-!^ + c^e"^-^^ + ^3^™o^ *

We shall try to find c^, c,, c^, such that (2) shall be a solution of

(i). This still allows us to impose two conditions upon i\, r,, c^.

Differentiating (2), we get

(ix dx ax

We shall now use one of the two conditions at our disposal by

letting

(1) ^""i^ _J -^ ^'»2-'

—

- j^ e^^^—^=0:
dx dx dx

so that we have

(4) Dy = m^c^e'^x^ + m^c.je'"'^'' + nt-^c^e"'^''.

* If any of the roots of the auxiliary equation are repeated or imaginary, the re-

sulting change in the form of the complementary function causes r^q differencci \n the

process.
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Differentiating, we get

dx ' dx

dx
Here again we put

(5) ;«i.'«i^ ^1 + >n^^ '^ + ;;/,.™3^ '-^ = o,
dx dx dx

thus using the second condition still at our disposal, so that

(6) Z>-y = //i{-6\e"'i'' + m.fc.ye"^-^ -\- m.^-c./"-^^.

Differentiating again, we get

(7) D'y = /«i'Vi^"V + mh./"^ + mic^e-^z^ + WiV'i'^ + in.fe'"^^^

+ Wg-V^a"' ?_

Substituting (2), (4), (6), (7), in (i), and remembering that with

Ci, Co, c-i constant, (2) is the complementary function, we have

(8) k^mi-e''^^
—

' + k^mie^2'-—- + k^mie'"^^ —' = X.
dx dx dx

Equations (3), (5), (8) are three linear equations sufficient to de-

termine —ij —^> —-, and by quadratures Ci, Co, c^ will be found such
dx dx dx

that (2) will be a solution of (i), the constants of integration giving

us again the complementary function.

The method of variation of parameters applies to all linear equations, whether

the coefficients are constants or not. (Thus, see Ex. 4, § 53.) As an illustra-

tion, we shall solve the general linear differential equation of the first order

(§ 13) by this method.
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The general equation is

(I)
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Substituting in the differential equation, we have

dc-^
,

da— sin :v:
—- -{ cos X —= = sec x.
dx dx

Besides, we chose cos x —i + sin x—^= o.
dx dx

. dc^ sin .r
, ,

_,
. . —r = — Sin X sec x= , c^ = log cos x + C,.

dx cos X

dci_ _ I /^-— — I

,

C'i — X -\- L^2-

dx

And the complete solution is

y— Cj cos X+ Q sin ^ + cos x log cos ^ + x sin x.

Ex. 2. —^-^y = tan X.
dx-

50. Method of Undetermined Coefficients.— We shall conclude the

discussion of the problem of finding the particular integral with an

account of a method, which, while not applicable in all cases, is

relatively simple whenever it can be used. It n^p pli^s tn all rasfs \r\

which the right-hand member contains nn]y terms which bayp -a,

finite number of distinct d pri'vafiupc; ^\^r\\ terms are .r*, i'^, sin mx,

cos nx, and products of these, where h is any positive integer, nnd

/, m, n are any constants.

By this method we find the particular integral U by inspection, or

by trial, as it were.

If we take, as a first trial, the terms of the right-hand member X,

each prefixed by an undetermined multiplier, we shall find that, as

a rule, on substituting this in the left-hand member, f{D)y, other
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terms arise as a result of differentiation. Consequently, we shall

use for U the sum of all the terms of X, together with all those

arising from them by differentiation (by hypothesis there are only

a finite number of these), each prefixed by an undetermined mul-

tipHer. We then equate identically to X the result of this substitu-

tion (/.(?. we equate the coefficients of corresponding terms). This

will give as many equations of condition among the undetermined

multipliers as there are distinct terms in/(Z>) U. This number is

either equal to or less than the number of undetermined multipliers

(for all the terms obtainable from U by differentiation need not

occur), and these multipliers can then be calculated.

Ex. 1. -^, + 4 _>' = X- -f cos .V.

The roots of the auxiliary equation are ± 2 /.

.*. y= Acos 2 X + Bs'\n2 X.

For a particular integral we take,

[/= ax- -j- kv + r +/cos x + ^sin x.

Then, IPU^ 2 a—fco%x — g€vnx.

.•.f{D) U= 4 ax- -\- 4bx-\-2a-\-4C-\- 3/cos.r + 3^'-sinjc.

Equating coefficients of this to those of X we have,

I
.-. « = -,

4

/5 = o,

Ic— — -,

3
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Hence the general solution is

y—A cos 2 s -{- jB sm2x -^-x^ 1- - cos x.

4 83
Ex. 2. (Z)- — 2 D -\- \)y — 2 xe^"^ — sin- x.

The complementary function is readily seen to be

To find the particular integral it will be simpler to replace — sin- j;

by - cos 2 X . Doing this, we put
2 2

U= axr'' + br"^ + c cos 2 x \- /sin 2 .r 4-^.

.•. DU= 2 axe^ 4- (^ 4- 2 b)e-'' 4- 2/cos 2 .r — 2 r sin 2 .r.

I)-U= 4 axr" + ^{a -\- b) r"" — 4 r cos 2 .v — 4/sin 2 :r.

/(Z>)^= ^Ar-^ 4- (2 a: + ^) ^-" - (3 ^ 4- 4/) cos 2 ^

— {zf—AC)%m2X^-g.
Hence we must have
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Ex.3. (Z)^+i)y = 2e' -hx^ — x.

Ex.4. {Z>--\-2 I?+i)y = 5e^^ — cosx.

Ex.5. (J^- i)y = ^.

This method will be in default in either of the following two cases :

1° If a term in the right-hana member is also a term in the com-

plementary function, it is clear that the substitution of such a term

or any of its derivatives for jv in/(Z>)y will not give rise to that term.

As a matter of fact we get zero.

We shall first suppose that the root of the auxiliary equation, to

which the term in question corresponds, is a simple one; if u

is the term, this amounts to having

wherefm is
^^.*

Now since/(Z^) is a polynomial in Z>, and since D^{xu)= xiyu -\-

kiy-^u it is clear x!^2Xf{D){xu) = xf{D)u-\-f\D')u.

^\r\cef'{D)u, by hypothesis, is different from zero, it follows that

if for y in f{D)y we substitute xu + terms derived from this by

differentiation, we shall have resulting the term u -\- terms arising

from it by differentiation, and none other.

Perfectly generally, if the term // is also a term in the complemen-

tary function which corresponds to an r-fold root of the auxiliary

equation, then

/{D)u = o,f{B)u = o, -;/^'-'\D)u = o, hnt/('\n)u ^ o.

* letting m be the root corresponding to u, we have (§ 31) tha.t/'{m) ^o U m is a

simple root of/(w) = o. Hence u is not an integral of the equation /'{D)y = o.
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1

Since

2

,.. j^
^^^^- ")•'• ^1"- '^ ^^ r{r- Y) {>- s ^ x)x-^D'-^u^

and since /(Z)) is a polynomial in D with constant coefficients, it

follows that

/{D){x^u)= x'f{D)2( + nV-y (7?)// + ^(^'~ ^^
x^-''f"{D)u + ...

2

(r— i) !

All of the terms on the right are zero, except/''''(Z>)?/, which is

definitely not zero. Hence if for r in f{D)y we substitute x'u -f

terms arising from this by differentiation, we shall obtain the term

t( + terms arising from it by differentiation, and none other.

2° The second case where the original metliod will be at fault is

where terms of the type x^i/ occur, // being a term in the comple-

mentary function. A similar modification of the method applies

here. Suppose that // corresponds to an r-fold root of the auxiliary

equation. * As before, we have

/ (Z>) (;c'+'-?/)= a^ +y (Z^) //+ (/+ r)x'+'-Y (Z>) u

+ '^'-^ ^^^'+ ''^
^x^-^-'TWu + ...

r

!

* Of course *•«, x-u, •••, .r'-i« are also terms in the complementary function. In

this discussion, u is supposed to be that term which does not contain a: as a factor,

otherwise the exponent / would be indeterminate.
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All of these terms on the right are zero, except /^''\D)u, which is

definitely not zero. Hence, if for y in /{D^y we substitute x^^'^u +
terms arising from it by differentiation, we shall obtain x^u + terms

arising from it by differentiation, and none other.

We are now in a position to formulate our rule :

When the right-hand inonber of the differential equation contains

only terms 7vhich have a finite number of distinct derivatives, take for

particular integral the sum of all the terms together with all those ob-

tainedfrom these by differentiation, prefixing to each of them- an tin-

determined coefficient. These coefi[icie7its a7-e deter>?iined by substituting

the trialparticular integral in the differential equation and equating

coefiicients. In case a term in the right-hand member is a term in the

cotnplementaryfunction or a term in it multiplied by an integralpower

of X, which term corresponds to an r-fold root of the auxiliary equa-

tion, replace that term in the right-hand member by .v"" times it in

making up the trialparticular integral.

Remark.— It may not always be necessary to insert all the terms

suggested by the general rule. These can frequently be detected by

inspection. Thus in Ex. i, since the coefficient of ;- in the differ-
- dx

ential equation is zero, the terms .v and sin x in the trial particular

integral are unnecessary, for these will obviously not appear as a re-

sult of substituting ax^ +_/ cos .r in the equation. If any unnecessary

terms are put in the trial particular integral, that fact will show itself

by having their coefficients turn out to be zero. So that, excepting

the unnecessary labor, the introduction of extraneous terms in the

trial integral is not serious. It is also obviously useless to put in any

terms which appear in the complementary function. (If such a

term is included in the trial particular integral its coefficient will, of

course, not appear in the resulting equations among the coefficients.

This means that this coefficient may be chosen arbitrarily ; which is

exactly as it should be.) As a consequence, when any term in the
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right-hand member is replaced by .v' times it in either of the two

exceptional cases referred to in the rule, only those terms obtained

from this by differentiation which are not in the complementary

function need be added.

Ex. 6. {D^ — 2 D' — 2, D)y = 3 .r- + sin x.

Hint.— Since o is a simple root of the auxiliary equation, and i is

therefore a term in the complementary function, we shall have to try

ax^ -\- bx^ -\- ex to get xr. Moreover, sin x is not a part of the com-

plementary function. Hence the trial integral is U—ax^-\-hx'-A-

:x -\-f sin x -{-g cos x.

Ex.7. (ZP^-2 Z>- +!)_>' = ^^-f 4.

Ex. 8. {D- — 2 D)y = r'^\.

Ex. 9. {ly' +2 I)-+ i) V = cos .V.

51. Cauchy's Linear Equation. — The linear differential equation

(i) ^0 ^" v!: + V"-' ^' + - + K-i ^ ^' + Ky = X*
dx'' dx"-~^ dx

where the coefficient of -- is a constant times .v"", is at once reduc-
dx''

ible by the transformation x = e' to an equation with constant co-

efficients. For

dy _ dy dz _\ dy

dx dz dx X dz'
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dx^ xAdz^ ^dz" dz

dz" 2 dz"-'^

or if we let -^ = ^y, we have
dz

xDy = ^y,

xWy=M^-i)(^-2)y,

x-D^y = ^ (^ - i)U - 2) -U - « + i)j j

and (i) becomes

(2) [/&o^U-i)-(^-« + + ^i<^U-0-U-« + 2)

where Z is what X becomes as a result of the transformation.*

(2) is obviously a Hnear equation with constant coefficients.

More generally, the equation

dx dx''~^ dx

is readily seen to be reducible to a linear equation with constant co-

efficients by the substitution a + bx = e\

* For another general method of solving a Cauchy linear equation see footnote, { 74.

tThis form of the linear equation is referred to as Legendre's linear equation, after

Adrien Marie Legendre (1752-1833).
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Ex.l. -'g + -|-^=-'og-.

Putting x=^e', this becomes

UU-l)U-2)+^-l]>' = ^5,

or U'-3^'+3^-i)j' = 2^.

The roots of the auxiliary equation are i, i, i.

Hence the complementary function is Y= (rj + c<,z + c.^^')e

.

In this case method I (§ 47) gives .be particular integral at once.

We have U=e'( C Ce-'ze'idzf^ e' —

.

J J J 24

.'.The solution is y — (^j + CoZ + c^^^e^ -\ ,

24

or y = [c, + c, logx + c, (log .r)"] x + ^(l2g^*.
24

Ex. 2. {x^iy^ +2x'£>'+2)y=iofx+ -\

Ex.3. (x'iy' + sxD+i)y= ,
' „

(i — o:)^

Ex.4. (x+i)2^-4(.r+ 1)^ + 6 j = ^.

52. Summary.— The problem of solving a linear differential equa-

tion consists of two parts, the finding of the complementary function,

and the finding of a particular integral (§ 42).

The finding of the complementary function in the case of an equa-

tion with constant coefficients /(D)y—X is simply an algebraic

problem, viz. the solution of the equation/(w) = o. According as
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the roots are distinct and real, repeated or complex, the complemen-

tary function takes one of the forms indicated in §§ 43, 44, 45. The

problem of finding the particular integral may be attacked by any of

the four methods given in §§ 47, 48, 49, 50.

An estimate of the relative merits of these methods may be summa-

rized as follows: The methods of §§ 47 and 48 (which will be referred

to as I and II respectively) and that of variation of parameters (§49)

have the advantage of absolute generality. But as is usually true in

such cases, the actual carrying out of these methods is frequently

very long and laborious. Excepting in certain cases, soon learned

by experience, method II is simpler than I, in that it requires several

integrations of the same kind instead of several successive integra-

tions. The method of variation of parameters has the great advantage

of being readily retained in mind, but is frequently long and labori-

ous, especially if the equation is of higher order than the second.

The method of undetermined coefficients (§ 50), although not abso-

lutely general, applies to a very large number of cases that actually

occur. In such cases where it does apply it has the advantage of

involving only the operations of differentiation and the solution of

simultaneous linear algebraic equations. Integration is not involved.

Besides, it is very readily retained in mind. The actual work of

carrying out this method is straightforward and not difficult. It

may at times be long, but usually it is no longer than the other

methods, if as long.

As a rule, then, whenever the method of undetermined coefficients

applies, it is probably the most desirable one to use. An instance

of an exception to this is illustrated by Ex. i, §51. [Generally we

may say that the method I is preferable in case the right-hand

member contains a term e^'' or ^f{x), where /(j?) can be integrated

readily any number of times, and when the auxiliary equation is

(m — iy — o.'\ If it is obvious on inspection that different methods

apply most readily to the various terms in the right-hand member.
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employ the method that is simplest for each term and take the

sum of the results. This is true, for instance, in Ex. 1 1 below.

The equation

dx"
k,{a + bxy'^^^ + k,{a-\-bxY-^'^^+-+K_^{a+bx)^^ +Ky=X

(including as a special case the Cauchy equation where a = o, /^ = i)

is reducible to one with constant coefficients by the substitution

a -{- bx= e' (§ 51).

Z>'- — 5 D + 6)y = cos X — r"".

D* — i)y = e'' cos x.

I)-+ 2 D-^ i)}'= 2X^ — xe^.

D-\- 'i.Yy = xe~'.

D^ — Of D)y = .r- — 3 e^'.

[D^ — 2 D- + i)y = cos x.

[x^D^ + 6 x^iy^ + 9 x^D' + 3 .rZ> + 1)7= (i + log xf.

[D^ +2D- + D)y = xr-x.

[ly^ + 4)7 = sin^ X.

{D'-\- i)y = stc- X.

[D — i^y = x— x^e^.

[I>- D^-2y D-+ S D - 2)j= ^.

[IT' -\- \)y^x cos X.

(x'ly + 2xW - xD + \)y = -•

[IT —i)y = xe^ + cos- x.

[D — ify = cos X ^e' + x^e^.

Ex. 17. Study the motion of a simple pendulum of length / and

mass m swinging in a vacuum.

Ex.
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The only force acting is gravity ; it acts vertically downward, and

its intensity is — mg. If s represents the length of arc measured from

the lowest point of the pendulum, then at any moment when the

pendulum makes an angle Q with the vertical, s = 16, and the accelera-

tion is / ^-^' The component of the force of gravity along the tan-

gent to the path is — mg sin 9. Hence the equation of motion is

jd-6 . aml—
^,
= — ms; sm '6/.

If 6 remains very small throughout the motion, we may replace sin

by ^ as a first approximation. Our equation then takes the form

[This is the differential equation of simple harmonic motion.]

Solving this, we have Q = A cos f * /- 1-\- B\

where A and B are constants depending on the initial value of 6 and

dt

A determines the amplitude, while B determines the phase.

U
.

The period is 277-1/", i.e. the State of motion will be identically the

same for two values of t whose difference is an integral multiple of this

quantity.

Ex. 18, Consider the case of a simple pendulum moving in a

resisting medium where the resisting force is proportional to the

velocity, say — 2 kin—
dt
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Putting^ — ^"f the differential equation to be solved is

dt^ dt

[The same equation arises in the case of damped vibrations of the

needle of a galvanometer.]

Ex. 19. In the case of forced vibrations, such as when a magnet

is brought up periodically to a vibrating tuning fork, the equation of

motion, in case there is no resisting force, is

(a\ -77. + n"Q = C cos ;;//,
^ ^ df

(the cases when vi 4^ n and tn = n must be distinguished).

If the resisting force is proportional to the velocity, the equation

of motion is

(h\
—- +2/1' h n-Q = 6 cos ;;//.

^^> df- dt

Ex. 20. A particle is projected with velocity v^ away from the

center of an attractive force. If the acceleration of the particle due

to the force is proportional to the distance, find the motion.

Ex. 21. If in Ex. 20, the force is a repellent one, and the particle

is projected toward the center of force with the velocity v^, find the

motion.

Ex. 22. Find the motion of a heavy particle moving without fric-

tion along a massless straight line which rotates about one of its

points in a vertical plane with constant angular velocity. The only

force acting is gravity.
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If r is the distance of the moving point from the point about

which the Une rotates, and if w is the angular velocity of the line,

Lagrange's equation (generalized coordinates) is

df
^

Ex. 23. If a condenser of capacity S, charged with a quantity of

electricity Q, is introduced into an electric circuit, it will discharge

by sending a current through the circuit. If q is the quantity of

electricity in the condenser at any instant during the discharge, it

will be determined by

dfi L dt LS '

where L is the self-inductance and R the resistance of the circuit.

Here the auxiliary equation is

mr •{— m-\ = o.
L LS

R R- I

1° If R'>^,

To determine A and B we make use of the fact that when /= o,

q= Q, and
f
~ t = 0, where i is the current ; i.e.

dt

A -{- B =: Q, and m^A + Wj^ = o.
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Whence A = '^hQ^,B= "'^^
, and

}n^ — ;//2 Wj — Wo

= ^— (;;/i^"'2'
- w,^"-!'),

Noting the values of ;;/[ and th.,, we see that g and / diminish con-

tinually, but do not become zero for a finite value of /, although they

are practically negligible very soon when — is a large quantity,

which it usually is.

2° If R- = ^,
S '

q = e~-rL\A-\-Bt).

To determine A and B we have,

. A = Q, ^A-B^o, oxB =^,
2 L 2 L

whence q = —^ {2 L-\- Rt)e 2/;

,

dq QR-t -J^t

dt A,D

Here again q and i diminish rapidly, without vanishing for a finite

value of /, although they are soon negligible as a rule.

a fc T>'> ^ A L R , . I R'

A 2 Z ^ LS 4 L^

.-. ^ = ^<^<(.4cos/3/ + ^sin;8/), and

/= -^ = -e'''[(aA-\-ftB) cos j3t-\-{aB — pA) sin /?/].
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To determine A and B we have,

whence
r R

q= Qe ^l'

'Z6- 4Z2

Wz
^< . / 1 ^2

<? 2i Sin /i

Z^ 4Z2
r Q /A -tt Z>0 4 Zv

Both 4^ and / are periodic functions of period T=—
, so

J 7^'

^'z^ 4 z-

that sometimes they are positive and sometimes negative. The

ampUtude in either case is a constant times e 21', which usually

diminishes very rapidly with /. But in specially constructed circuits

in which R is small relative to Z, an oscillatory discharge may

be reaHzed.— I. C. and J. P. Jackson, Alternating Currents and

Alternating Current Machinery.



CHAPTER VIII

LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER*

53. Change of Dependent Variable. — While the problem of solv-

ing linear differential equations of the first order can always be carried

out (that is to say, we can reduce it to one of quadratures, § 13),

that of solving equations of the second order can be carried out in

only a comparatively small number of cases.

The general type of a linear equation of the second order is

where P, Q, X axe functions of;r only.

Let us try the following change of dependent variable,

(2) y=z}\v.

Then ^=r.^4-$i., 4^=^'^^^+ ^$^^ +^>^
dx ' dx dx dx- dx- dx dx dx-

and equation (i) becomes

* In this chapter we shall consider methods which apply more especially to linear

differential equations of the second order. Of course, the general methods of the next

chapter apply to linear equations of the second order as well. But owing to the gen-

eral plan of solution of equations of higher order than the first (§ 56), it is desirable to

have available the methods given in this chapter.

123
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Where F, = ^'^ + P, Q. = '-^ ^
, ^. = ^-

Two uses may be made of this.

1° By inspection* or other means a particular integral of the

equation when we put X = o may be known. If we let this be ji,

we have Qi = o, so that (3) becomes

dx' dx

If now we let —=p, we have a linear equation of the first order
dx

dx

which can be solved for/ (§ 13). A quadrature will then give y.

c , d-v o dy .

Ex.1. —--^— x- -^-{-xy^ X.
dx- dx

Here :r is a particular integral (since P=— Qx). Putting

y =xv, we have

d'^v . , -y. dv ^^. dv

l+(i-^'i/=..

* Thus, for example, if /»=— Qx, x is evidently such a particular integral. Again,
if i + /^+ C^ = o, e^ is such, or, if i — /»+ Q=o, e-^ is one; or more generally, it may
be possible to note, by inspection, a number m, such that w2 -^ /3,„ -)_ ^ = o ; in this

case e^^ is such an integral.
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An integrating factor is <f
^ or x-e ^ •

i^ x» a^ i'

.\ px^e~^ = i x^e~^dx = —e~3' ^Ci,

dv I „ ^
or p =— = -, + ^j^-V3

,

I r -
and 2/ = - + <ri I x~-e ^ dx-{- c^',

X J

r -
whence y = 1 -{ CiX l x ^e^ dx + c^x.

Ex.2. x^^-{2x+i)'^+{x+i)y = o^-x-i,
d^r dx

Ex, 3. (i + .r^ —^ -{- 2x ^ — 2y = 0.

doc dx

Ex.4. (i-x)^!+ x^'->'=(i-x)^
dx- dx

Here jc and e^ are particular integrals, when the right-hand mem-

ber is replaced by zero. Hence, by property A, § 42, the comple-

mentary function is c^x + c>^. To find the particular integral which

must be added to the complementary function, the method of varia-

tion of parameters (§ 49) may be employed. *̂

* Besides the method of variation of parameters one can sometimes use with facility

a general form for the particular integral given by Lie in his Differentialgleichungen,

p. 429. This form also appears in the author's Lie Theory ofOne-Parameter Groups, p. 174.
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2° If we put /i = o, z>. -^ + /'=o,
ji ax

we have log }\ = — -
j
Fdx, or

(4) y, = e-'^S^^.

Using this value forj'i, we have

(2i = (2 - - '^- - F\ X, = Xe^l'''^.

2 dx 4

Now it may turn out that Q /'-is a constant, in which
2 dx 4

case (3) is an equation with constant coefficients ; or it may be a con-

stant divided by x^, in which case we have a Cauchy equation, and

the further substitution x = e' will reduce it to one with constant

coefficients (§ 51).

Ex. 5. sin X —^^ + 2 cos x -^ -\- ^ %\x\ x • y = ef,

dxr dx

d-y . . dv
, ^

or -^+ 2 cot jc-^ + 3j' = <?^csc Jtr.

dx- dx

Here Q /"- = 3 -f-csc'jc — cot-.r = 4.
2 dx 4

Hence j = 2'^~^-^™' = e^csc jc transforms the equation to

dxr

Integrating, v = Ci cos 2 .r -f <:., sin 2 ;c + -<?*,

5

and y = ^1 (cos jc cot x — sin ;c) + c, cos x-\--e* esc :r.

5

* This result can be written at once without actually carrying out the transformation.
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Ex.6. g_2tan^^-(a^+i);, = o.
do(? dx

Ex.7. 4^g+ 4^|+(^+.)'^ = o.

Ex.8. x^+2^-^y = 2^.
doc dx

54. Change of Independent Variable.— If we introduce a new inde-

pendent variable z, we have

^_^ dz^ d^y _ d^yfdz V dy dh
dx dz dx* dx'' dz^\dxj dzdx^'

and the equation (i) becomes

d'z
,
pdz

/'

N d'-y, d^ dx dy Q _ _£_.
^5) ^2 + fdz\ dz

"^ (dz\ y f±y
dx) \dxj \dxj

It may happen that if we put —^—,= ± i,t.e. — =V± ^ (where
Vzx" dx

^dxj

we choose that sign which will make the square root real), the co-

efficient of -^ reduces to a constant. If such is the case, our equa-
dz

tion (5) is linear with constant coefficients, and can be solved by the

methods of Chapter VII.
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Remark.— If the result of putting = ± i is to transform the equation

into —- + A' ^ ±J = o, the transformation ——— = ± a, where a is any con-

\dx)

stant, will give us '-^ + Va K -^ ± ay = o. In either case we have a linear
dz^ dz

equation with constant coefficients. But if K involves a square root factor, a

may be so chosen that yJaK is rational, and the actual work is thus simplified.

For example, see Ex. 5 below.

Ex.1. ^+(2^'-l)^ + ^2xj, = ^''^

dx' dx

d'z
, / _x \dz—

-, + {T.e'— i)—
dz , dx- dx

dx
f —

Y

\dx)

Hence, introducing 2 = <?^ as the new independent variable, the equa-

tion becomes ^2., ^ #

—i + 2 -^ -\-y — z-

.

dz- dz

Its solution is y = {cx + c.£) e'^ -\- z- — 4Z -\- 6.

Replacing z by its value in terms of .v, we have finally

y = (^1 + c.>e')e-'^ + ^^ — 4^ + 6.

T? n f o\d'y dy
,Ex.2. {\—x-)^^^ — x^--\-ify — o.

dx- dx

Ex.3. —
^^ + tan A- --- + cos* x • _>' = o.

dx- dx

Ex.4. ^ef^, + 3^4'+, = l,.

dx- dx X-

Ex. 5. x^-{2x''-^^\^~Zx?y = A3^e-^\
dx- dx

* This result can be written at once without carrying out the transformation.
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55. Summary.— There is no general method for solving the linear

differential equation of the second order, —-7, -{- P^ -\- Qy = X. In

actual practice we proceed as follows :

1°. If by inspection, or otherwise, we know a particular integral

yx when the right-hand member is made zero, then y = y-^v will

reduce the equation to a linear one of the first order when JL is con-
dx

sidered a new variable (§ 53, 1°).

2° If such a particular integral is not known, the next thing to do

is to find the value of Q P'-. If this is a constant, or a
2 dx 4

constant divided by x', the equation is reducible to one with con-

stant coefficients, or to a Cauchy equation, by substituting y =yiV,

and then it is time to calculate 71 =e ^J^'*''
(§ 53, 2°).*

^2
3° If the previous method does not apply, put — = \/± <2 (using

that sign which will make the square root real) ; then substitute in

d'^z
,
pdz

dx^ dx
j„\2— • If this turns out to be a constant, the method applies,

^dxj
(iz

and then it is time to find z from — = V±~~^ (§ 54).*

Ex. 1. x^^— {x-\-i)-^^-iy = o.
dx' dx

Ex.2. (a:-3)^- (4^-9) ^ + (3-^-6)^ = 0.
dxr dx

Ex.3. ^^ + 4^^+(2-^)>' = o.
dx^ dx

* Emphasis should be laid on the fact that in the application of the test as to

whether this method applies no integration is required. It is only after one is assured

the method works that a new variable need be sought.
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Ex. 4. (•^ + 0§-2-^£+2i' = o-

Ex. 5. x'^-{2X-i)'^+{x-i)y = o.

dx^ dx

Ex. 6. ^^^_4x^+(6 + ^-')j=o.
dxr dx

Ex. 7. (2;c3-i)^-6x-'^ + 6;t7 = o.

dx- dx

Ex. 8. ^2^-2x(l+^)$^ + 2(l+^)j' = ^.
dx^ dx

Ex. 9. ;c2^-2«x';^ + («- + ;/ + «V);' = o.

dx- dx

Ex. 10. .^*^ + 2 ^^ + «:v = o.
dxr dx



\
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CHAPTER IX

MISCELLANEOUS METHODS FOR SOLVING EQUATIONS OF
HIGHER ORDER THAN THE FIRST

56, General Plan of Solution.— There is no general direct method

for solving a differential equation of higher order than the first, ex-

cepting in the case of linear equations with constant coefficients and

those reducible to such (Chapter VII). The general plan in all

other cases is to try to transfer the problem to that of solving an

equation of lower order. We shall consider some classes of equations

for which this can be done.

57. Dependent Variable Absent. — If y is absent, the equation is

of the form

/

If we put -^ =p, then

(Py _dp dy__ d^'-^p

'do?~dx'
'"'

dj^~~ dx''-^*

and the equation to be solved is

•^\dx"-" dx'^--" 'dx'^' J

which is of order n — i. If this can be solved for /, we have

/= </>(x, Ci, C2, •••, ^„_i), and_y can be obtained by the quadrature

y=\ <K^, ^U ^2, ••', Cn-l)dx -\- C^.

i3r
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More generally, if >' and all of its derivatives up to the (r— i)st

are absent, so that the equation is of the form

(dy _ d^^y dy \

by letting -^ = v, the equation becomes

.fd^-^v dv ,

which is of order n — r. If this can be solved for v, we have

v=-^{x, Ci, C2, •••, c„_,), and y can be obtained by r successive

quadratures, i.e. y=
| |

•••
| ^(.r, c^, Co, •••, c,\^^dx^ + c„_^+ix''~'^

+ ^„_,+2^-^ H + c^_ix + r„.

If y and all of its derivatives except the highest are absent, the

equation may be put in the form

and the solution is obtained directly by ?i successive quadratures.

For
,t-i
= I /(^)</jf + ^1, whence -j-^^^= |

\ / {x)dx- + a^x -{- a.,,

and so on, until we get

y=jj • • • J/ (^)^^" + ^1^-^ + c^-^ ^ 1- c,,_^x + f„.

Ex..(.+^)g+.+(|)' = o.
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Putting -5- =/, we have

.-. tan~^/ = r— tan~^ x, or/= ^-^— , where ^i = tan c.

I + c^x

Integrating, we have c^-y — {c^ + i) log (i + c^x) — c^x + c^.

Ex.2. ^;.^_^'Y=f^:Y+i.
\^ dx" dor) \dx')

d'V
Putting -j^ = V and solving for this, we have

dv
,

Ifdv^
,

This is Clairaut's form (§27) and has for solution

dor

Integrating, we get -~ = -o<r ±x -y/c^+ i + ^.

Integrating again, y = -o<?±''—Vr + i + ^'^ + ^".
2

^^ ^ (Py dy
Ex. 3. -4, + ;»;-/= a:.

^A~ dx

Ex. 4. -7^ = xe'.
dx^
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58. Independent Variable Absent.— If x is absent, by taking y as

the independent variable and letting ^,=/, be the dependent one,

we have

dy _ dp

d^^^J/

T^-^ -^^\dy)'

dx^ df dy dy- \dy)

dx? ^ dy'^ '^ dy df ^ ^ \dy) df ^^^ \df) ^\dyj
'

and the equation becomes one of order « — i. If this can be solved

for/, we have/= </>(>', Ci, c.,, ••-, r„_i), and 7 can be obtained by the

quadrature j
— ^ = x + ^„-

Remark. — The equation —^ = f(^y), which belongs to the class of equations
'^.'''

. dv
here considered, has the obvious integrating factor 2 -^ dx. Using it, we have

dx

2f^-^^dx=2fiy-)dy.
dx dx''

Integrating, we get
(^ ]"^ ^ y^^'^ dy + cy,

C dv .

whence J ,

^ + '^2.

^\2y{y)dy -\rci.

It should be noted that the general method of this paragraph leads to exactly

this method of solution.
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Ex. 1. y -^ — \^^] — y -^ = o.
dx^ \dxj dx

Putting -^ =/, -A=P^^^^^ g^^
dx dxr dy

The factor/ = o gives _)'=r, a particular solution.

y— —p—y =o has the obvious integrating factor — . Using this
dy j'-

we have -^ =y-\- ^- Remembering that / = -^, we have
y dx

dy

y{y +
= dx,

whence log -^— = ex + c^

;

y + c

or ^ — ke".

y + c

Ex. 2.
dy

, M'V ,

Ex.3. 2^ = ^^.

Ex.4. _y^;+2^:_f^Y=o

59. Linear Equations with Particular Integral Known. -If the

equation is Hnear and of any order, and a particular integral is

known when the right-hand member is made zero, the method i°,

§ 53, applies.* Thus, let the equation be

* The hint there given as to how a particular integral may at times be found, applies

equally well here.
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Putting _y=^'ie^, we have Dy = D)\ • v + •••,*

Making the substitution, we have

- + {P.D'^ + P,D'^-'+ '+Pn)yi 'V = X.

By hypothesis, the coefficient of v is zero. Hence, on letting — =/,
the equation reduces to one of order n — \.

^

Ex. 1. \{pr— 2 X + 2)D^ — x-D'- -f 2 xD — 2]y = o.

^ = ^ is a particular solution. Putting y = xv, we have

(jT^ — 2 ;c- + 2 x) LPv —{x^ — 2,x^-\-(>x—6) D'v = o.

Letting D'v = q, this becomes

q X^ — 2X-+2X X X'-— 2 X -\- 2

logg = x — 2\ogx-\-\og(xr— 2 x+ 2) + ^.

dh> _^ X-— 2 x+ 2
• • q=—, = ^i<?^ — •

Integrating, ^=^^^^ + ^2,

and V = Cye'- + c^x + c^.

x

Therefore y = c^(r -\-c^^ c^.

* ... stands for terms free of v, and involving its derivatives to an order as high as

the exponent of Z) on the left,



§6o HIGHER ORDER THAN THE FIRST I3;

Ex.2. {xD'-D'-xD^\)y=\-^.

By inspection, it is seen that ^, ^~*, x are particular integrals,

hence we know at once that the complementary function is

K= Cyf" + c-^e^" + c^x.

The student should verify that, by the method of variation of

parameters (§ 49), this becomes the general solution when

Cx — (x + 2 — X~^^ + k-^,

2

^2 = - {X~^ + 2 — JC) 4- '^2>

2

c^ = X -\r- -\- k^.
X

Hence the solution is

y = k^e + k^e-^ 4- k^x+ ^-^ + 3.

In order to get practice in the general method of this paragraph,

let the student solve this example by that method.

60. Exact Equation. Integrating Factor.— In case the equation

is the derivative of another one, the order may be reduced by direct

integration. No simple formula can be given as a test for exactness

(except in the case of linear equations). But the method is simple

and direct, and can probably be brought out best by the following

examples :

Consider first the linear equation,

(X) /'og + /\^!'+/'.^ + /'37-X
axr ax- ax
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/|,^' will arise on differentiating Pi^^—,. But differentiating this,

dx' dx-

we get /'o
'-^ ^P\ ~,, (indicating differentiation by a prime). Now,
dx'^ dx-

if (i) is exact, so is

iP^-P^)'^ will arise on differentiating {P^-P\)^. But differ-

dx- dx

entiating this, we get (/\ -/"«) $! + {P\ - P"o) $ •

dx- dx

Hence if (2) is exact, so also is

(3) (P-P\+P'\;)'^ + P,y.
ax

{P-P\-\-P\)^ will arise on differentiating {R- P\-\-P"o)y.
dx

But differentiating this, we get

{p, - p\ + /";,) ^' + (/", -/"', + /"".0,v,

hence, if (3) is exact, we must have Py, — P., + /"'i — /""„ = o.*

Moreover, this condition is also obviously sufficient, and we have

that a first integral of (i) is

^'% "^ ^^' "^'"^% + (^' -^'1 + P\)y=^xdx + c.

* This suggests the condition for exactness of a linear equation of the «th order,

(4) Pn-P'n--l + P",,-2 }-(-iyPir)„^r-\ h (- l)"/^»>0= O.
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This method applies also to equations that are not Hnear, but in

such cases there is no simple test for exactness ; one must actually

carry out the work of finding the first integral to find out whether it

is exact. Thus consider the equation

aJr ax ax- ax- \
'^Y = o
dxj

The derivative of (/ + ^)^, is (/ + .r) ^'+ 2 j'^ '^, + ^.
dx- dx^ dx dx' dx?

Subtracting this, we have 4 _y -^ -^ + 2 (
^ ^

dx dxr \ dx

This is the derivative of 2 _>( ^ ) . Hence, a first integral is
\dxj

(/+.)f;:+.j.(^y=.,.dx- \dxj

Let the student show that this is also exact.

Remark.— Since an exact differential results from iifferentiating an expression

of one lower order, it is obviously necessary that in it the highest ordered derivative

appear to the first degree only. In other words, we can never expect an expres-

sion, in which the highest derivative entering appears to a higher degree than the

first, to be exact. Moreover, this must be true of all the expressions [such as (2)

and (3) above] which arise in the course of the process. If any one of these

turns out to be of higher degree than the first, there is no need to proceed farther.

This is linear and satisfies the condition (4) for exactness.

The derivative of (;c+2)-^' is(.r + 2)-^'+ 2 (;c+ 2) ^.
dx- dx? dxr

Subtracting, we get — (x + 2) --^, + -^ •

dx- dx
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The derivative of — {x + 2) -^ is — (x + 2) —^ ^ • Subtract-
ax axr ax

ing, we get 2--^, whose integral is 2 y. Hence, a first integral is

dx

(a: + 2)2—J
- (^ + 2) --^ 4- 2 ^= ^ + ^.

Since 2 + 1 + 2^0, this equation is not exact.

But putting j;+ 2 = ^ (§ 51), we have

a linear equation with constant coefficients.

The roots of the auxiliary equation are i ± /.

Hence Y= e^ {A cos 2 + -5 sin z) is the complementary function.

For the particular integral try U=ar + 1>. Substituting in the

c'

equation, we must have ae~ -\- 2 b ^ t" -{- c' . Hence a = i, ^ = — •

c'
^

And the solution is y — e" (A cos z -\- B sin z) -{-e^ + -,oi

y=(x+ 2) \_A cos log {x-\- 2) + B sin log (;c + 2) ] +x+ C.

Remark. — It may be noted that since y is absent in the original differential

equation, the method of § 57 applies. The student should solve the problem

from this point of view.

Ex.2. ^2^+3^^'+V = ;t:.

dx- dx

Ex.3. (^-i)2^'+4(^_i)^-f 2_,; = cos:v.
dxr dx
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Ex.4. (^-^)^+(8x^-3)^+i4.r^' + 4;' = o.
dx^ dx^ dx

Ex.5. 2.;c!y^, + 6.;t:3<>: ^ + i8x!>'^: + i8.r^f
dxr dx dcr dxr \

dyy
dx J

+ 36 Av — + 6y =0.
dx

It is at times possible to find an integratingfactor. But no general

treatment of this part of the subject can be given here.* In the

cases to be considered here, special methods, or inspection, will be

employed. One important type of equation, arising in physical

problems, has already been mentioned (Remark, § 58).

Ex. 6. x^ -^ + (2 X* — x)^ — (2 x^ — i)y = 0.
dx- dx

This equation is not exact, since — 2x^-{-i — 8x'^-\-I-\-20x^^Q•

Bnt x™' will be an integrating factor provided we can find a valu

for m such that

— 2 0;'"+^ + a:™ — 2 {m + 4) x"^-^^ + (in + i) x"^

+ {"^ + S){"^ + 4)
•^'"'^^ = o>

or {ni^ + 7 w + 10) x^'^^ + {ni + 2) .r"" = o
;

i.e. m' -\-
'J
m + 10 = 0, and w + 2 = o.

Both of these will be satisfied if ni = — 2.

* For integrating factors in the case of linear equations, see Schlesinger, Differen-

tialgleichungen, p. 147, and references given there.
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Hence x~^ is an integrating factor. Using it, we have

^^ 4- (2 ^2 _ ^-l)i^'_
(2 X - x-')j> = o.

dx

.d"^}'
,

, dy
•^ —T + 3 -^ J

dx- dx

- (x" + x-')^-{2 x-x-'^y
dx

or

^(x^ + x-'')y\ -(x' + x-^)^-{2x-x~^)y

Hence a first integral is ^r'^:— (^ + x~'^)y = c, or
dx

dx ^
^^

This is linear. An integrating factor is

.-. jJtr-VJ'"' = c r^-V.^-"''+ c^=—ce^'-*-\- c',

y j^ ex = c'xe~y'~^.

Ex. 7. ^(i — x^) D-y — x^ Dy — 2 y = o.

Ex. 8. x^ITy - 5 .T D-y + (4 jc* + 5) Dy - 8 x> = o.

* This type of equation was first treated by Joseph Liouville (1809-1882) . Let the

student show that it is the differential equation corresponding to a primitive of the form

F (y) = a/b{x) + b, where Fand * are any functions of their respective variables, and a

and b are the arbitrary constants to be eliminated.
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By inspection (
--

)
is seen to be an integrating factor.

\dxj

Introducing this, we have

whence ^°S
[^ ) + j / {^) ^^-^ + J <A0')^^' = O

or J-^f^)''^^'= ce-U^^^'^^dx
;

and Cei'i>(yy''dy = c (e-l^^'^''dx + ^'.

Ex.10. ^+2Cotx^'+2tanj^^Y = o.
V dx- dx \dxj

]^^^\. Transformation of Variables.— In case the equation to be

integrated does not come under any of the heads already treated, it

is possible, at times, to reduce it to one of them by a transformation.

No general rule for this can be formulated. The form of the equa-

tion will frequently suggest the transformation to be tried.

The set of terms (x^— y] suggests the transformation _>' = z'^.

V ^"^ /

Making this transformation, the equation becomes (after dropping the

factor x^)

d^v
, di>

,

fdv\
dx- dx \dx)
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This is exact, and has for first integral

* dx 2

This is also exact, giving xv^ = c^x + c^^

or / = ^1-^ + '^2^-

[A less obvious transformation is / = v. Let the student solve

the problem by making this transformation.]

Ex. 2. X^ ^, — f
X -f -y\=o.

dx^ \ dx

Ex.3. y'^^-(^^=f\ogy-xy. [Let logj = Z', 1.6.;'=.".]

dx' \dxj

Ex.4, sin^x--^— 2jj'= o. [Let cot ;t: = 0.]
dx'

If the more obvious transformation sin x = 2 is made, the resulting

equation can be made exact by multiplying by a proper power of 2,

and can then be integrated.

62. Summary.— The number of classes of differential equations

of higher order than the first for which a general method of solution

is known is very small. We can tell by inspection

1° when the dependent variable is absent ; let the lowest ordered

derivative* that appears be a new variable (§ 57)

;

2° when the independent variable is absent ; let the first deriva-

tive of the dependent variable be a new variable, and consider the

* Provided this is not also the highest ordered derivative that appears. If such is

the case, let the next lower ordered derivative be a new variable.
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dependent variable as the independent one (§ 58) ; in particular, if

the equation has the form ^=/(^), this method leads to the ob-

vious integrating factor -^ dx (§ 58, Remark).
ax

3° If the equation is linear, and a particular integral }\ can be

found when the right-hand member is made zero, let y = y\v, and

in the transformed equation put — =/ (§ 59).
dx

4° If the equation is linear and of the second order, the methods

of Chapter VIII may. apply (§ 55).

If none of the above cases occur, test the equation for exactness

(§ 60). Should this not prove to be the case, some special device

must be resorted to, such as finding an integrating factor (§ 60), or

finding some suitable transformation (§ 61).

As a final resort, the method of integrating in series may be tried

(§ 74).

do(? \ dx)

dxr dx

Ex. 4. (1+^)^+9^^$^+ i8.r ^' + 6^ = 0. 7
dxr dxr dx

Ex.5. (x'-x)^+{Ax^-2)^+2y = o.

Ex. 6. ^'(i - log^)g + (I + logjO (fJ=
o.
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Ex. 7. -~ + - ^ = 0.
dx' X ax

Ex. 8. x{x-\-2 J') -r? + 2 X r-y] +^{x-^y)~^-\-2y-\- x'^=o.
dx' \ dxj dx

dx^ \dxj

T-> ,^ / 'y\(^V f- dv
,

o
Ex.10, {x—x-)—^^ --+;t:-=o.

dx' X dx

Ex. 11. 4 a;- -^ + 8 .v—^+ ^i- = o.

Ex. 12. sin .r —=7, — cos jc -=^ + 2 sin jc • r = o.
dx'- dx

Ex. 13. Determine the curves in which the radius of curvature is

equal to the normal, (a) when the two have the same direction,

{b) when they have opposite directions.

±
The radius of curvature = — V - / J _

rpj^g
normal being

djy_

dx-

supposed drawn toward the axis of x, when it and the radius of

curvature are drawn in the same direction, v and -^ ha,ve opposite
dxr

signs ; and when drawn in opposite directions, y and -^ have the

same sign.



§62 HIGHER ORDER THAN THE FIRST I47

Ex. 14. Determine the curves in which the radius of curvature is

twice the normal, {a) when the two have the same direction, (^)

when they have opposite directions.

Ex. 15. Find the curves whose radius of curvature is k times the

cube of the normal.

Ex. 16. A particle which sets off from a point of the axis of x, at

a distance a from the origin, moves uniformly in a direction parallel

to the axis of y. It is pursued by a particle which sets off at the

same time from the origin, and travels with a velocity which is n times

that of the former. Required the path of the latter, ,

[This path is usually referred to as the cu?-ve of pursuit. Its

differential equation may be obtained from the following considera-

tions : Let (x, y) be the coordinates of the pursuing point, (^, rj) those

of the point pursued. The path of the latter being known, we have

given (i)/(|, yj) = 0. Since the point pursued is always in the tan-

dv
gent to the curve of pursuit, we have (2) -q —y =-j-(^ — x). (i) and

(2) determine $ and rj in terms of x,y,~. If the velocities of the

point pursued and pursuing point are as i : «, we have

or taking x as the independent variable,

Substituting in this the values of $ and -q from (i) and (2), we obtain

the differential equation of the curve of pursuit.]

Ex. 17. Find the velocity of the weighted end of a simple pen-

dulum of length /, swinging in a vacuum, if at the time f—o, v= o

md 6= a, where a is not so small that sin a may be replaced by

« as a first approximation. (See Ex. 17, § 52.)
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Ex. 18. A particle moves in a straight line attracted by a force

varying inversely as the square of the distance. [Equation of motion

. d-x ^
is r = 5.

dt- X'
If it starts with zero velocity at a distance a from

the center of the force,

{a) find its velocity at any point in its path,

{b) find the time required to reach that point,

(<r) how far will it have to move in order to acquire the same

velocity with which it would arrive at the point a if it had started

to move from infinity with zero initial velocity.

{d) Since gravity acts according to the above law, find the velocity

with which a body (a meteorite, for example) will strike the surface

of the earth if it falls from a distance h above the surface.

[Acceleration due to gravity at the earth's surface is usually des-

ignated by^. Hence k- = gR-, if i? is the radius of the earth.]



CHAPTER X

SYSTEMS OF SIMULTANEOUS EQi:rATIONS

63. General Method of Solution.— It is proved in the general

theory of ordinary differential equations that a system of n equa-

tions involving n dependent variables can, in general, be solved

(§ 70).

We shall consider here the case of ;/ = 2, the method admitting of

being extended to any number. Let the equations be

(2) /2[G^)m+p, (;').^ ^] = 0>

where the highest ordered derivatives of x appearing in (i) and (2)

are respectively m and m +/, those of y are r and s, and t is the

independent variable. Of course / may be zero.

Differentiating (i) / times, we get successively

(3) flkx)r.+\, (j')r+l, ^] = o,

(4) /4[(-^)m+2, (j')'+2, ^] = O,

(/ + 2) /,+2 [Cl^)m+;„ (;').+P» ^] = O-

We now havep -\- 2 equations from which to eliminate .r and all of

its ;// -\-p derivatives. In general (unless m = o) this will not be

sufficient, for we must have one more equation at our disposal than

the number of quantities to be eliminated. We proceed now to

149
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differentiate both (2) and {p+2). Since this introduces two new

equations and only one new derivative of x, we see that, by repeating

the process the proper number of times, the number of equations will

exceed that of the quantities to be eliminated by unity. Performing

the elimination, we have a single equation in y. Integrating this

and substituting the value of ^' in (i), we have an equation in .v

only, which must ihen be solved.

Remark. — It is ahiiost needless to add that we may first eliminate ^' and its

derivatives, and then solve for x.

Or, we may solve for x and for y separately. In this case the constants of

integration arising are not all independent. The relations among them can be

found by substituting in one of the equations (i) and (2).

64. Systems of Linear Equations with Constant Coefficients.—This

method can be carried out very readily in case the equations are

hnear and the coefficients constants. Thus consider the example

r dx d\
,

.+ .V = cos t.
' dt -dt

d-x d\ . oj

[ dt- dt ^ ^

These may be written

(i) (Z> + i) X - Z))' = cos /,

(2) (Z»2 + 3).v-(Z?+i)j =A
Differentiating (i), we have

(3) (Z?- + D) X -D'-y^- sin /.

We must eliminate x, Dx, D"x ; this requires four equations.

Hence we must differentiate (2) and (3). This gives rise to

(4) {D^^ZD)x-{II--^D)y=2e'\

(5) ip' + D-) X -I>'y=- cos /.
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We have now five equations from which we can eliminate the four

quantities x, Dx, U^x, L^x. By taking — 3 x (i), i x (2), i x (4),

— I X (5), and adding, we get

(6) (/>^-Z'2 + /?-i);' = 3^-'-2Cos/,

which is a hnear equation in y only, and can be solved readily.

Before doing so, however, we shall see how (6) can be gotten

directly from (i) and (2). Since, when looked upon algebraically,

(3) and (5) are respectively D and Z>- times (i), and (4) is D times

(2) (temporarily supposing their right-hand members to be zero),

the above method of elimination amounted to subtracting (Z^- + 3)

times (i) from {D +1) times (2). But this is precisely the method

we would have pursued in eliminating x from (i) and (2) had D and

its powers been algebraic quantities instead of operators. Now, so

long_as_lhe equations are linear with constant coefficients, this process

is always allowable, since it involves only the operations of addition,

subtraction, and multiplication with the operator D. Hence we need

only write our equations in the form of (i) and (2), solve them as

algebraic equations, remembering, however, that D is an operator in

case there are any terms in the right-hand members. In practice it

is frequently convenient to use determinants. Thus solving (i) and

(2) io\ y, we have

Z» +1 - Z»

/?2 + 3 -(/?+i)
Z> -f I cos t

D- + 3 e"'

or

(6) (Z>3-Z^ + Z>- i)j' = 3r'-2 cos /.

The complementary function is Y— c-/ -f Co sin t -\- c^ cos /.

For the particular integral, try U^ ae^ -\- bt^\v\.t-\- ct cos /.

Substituting this for y in (6), we find that a=^^, b—-, c = -522
(7) .-. _)/= c-/ -\- r9sin t-\- rgcos /-f-^<?-' -f - /sin / + -/cos t.52 2
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To find X we may substitute this value in either (i) or (2), and

solve the resulting equation in x*

Or we can treat x exactly as we did y, that is, solve (i) and (2)

directly for x. Doing this we have

Z> +1 - D
D' + 2, -{D+i)

cos t — D
e^ -{D+i)

D cos /

Z> + I e-"

or

(8) {D" - Z>- + Z> - i) a- = 2 r^' + sin / - cos t.\

Solving this, we have

(0) x = c{ e^ -{ c^ sin t-\-c-^ cos/+ -/' + -/cos /.'52
But these constants are not independent of those in (7). They

may be found by substituting (7) and (9) in either of the original

equations and equating coefficients. Doing this, we find c^ = - ^1,

2

^2' = -(^2 -^3)+-, ^3' =-(^2 + ^3)
+-•

2 42 4

* In general, in solving for the variable first eliminated, it is necessary to solve a

differential equation. For example, if we put the value of y given by (7) in (i), we
have an equation of the first order to solve; if we put it in (2), we have an equation of

the second order to solve. The new constants of integration that arise now are not

arbitrary, but must be determined so that the other equation is also satisfied. This is

done by substituting in the other equation, and equating coefficients. In this particu-

lar example it would have been simpler to have solved for x first. The value of ^' could

then be gotten immediately from the equation resulting from subtracting (i) from (2).

Let the student do this.

tWe see by this method of solution that the differential equations in x and in y,

each resulting from the elimination of the other variable, have the same left-hand

members, and that the complementary functions are therefore of the same form in the

case of the two variables. This is obviously true in the case of « dependent variables

defined by n linear equations with constant coefficients.
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Hence the general solution of our system of equations is

4 :v = 2 ^i^ + (2 ^2 — 2 rg + 3) sin / + (2 <r2 + 2 ^3 + i) cos /

153

H

—

r' + 2 /cos /,

5

y=Cie' + ^2 sin /+ ^3 cos / + ^e-' -\-- t (sin /+ cos t).

5 2

\ Ex. 1.

(ix
3 "3: + 3 -'*-' + 2 J = ^',

at

Ex. 2.

2 —•; 4 r = 2 /,

4 + 2-^— 3;c = o.^/ dt ^

Ex. 3.

r — 3X— 4V = 0,

65. Systems of Equations of the First Order. — If the equations

are of the first order, we can suppose them solved for the first deriva-

tives of each of the dependent variables. [We shall consider the

case of two dependent variables. But the methods here brought out

obviously apply to the case of n such variables.] Let the system be

(.0

' dx _ P {x, y, f)

'dt~ R{x,y, /)*

^^ Q(^^ y,

dt R{x,y,t)'
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The general method of § 63 appHes. But in certain cases the

solution can be brought about very much more readily. It is some

of these cases that we shall consider now. (i) can be written in the

more symmetrical form
dx _dy _dt

U^One of these equations may involve only two of the variables,

or it may be possible, by a proper choice of a pair of members of

(2), to strike out a common factor so as to obtain an equation

involving only two of the variables. Thus, to fix the ideas, suppose

that / does not appear in — = -^' , or can be removed from it. We
have, on solving this,

(3) <^('V, J') = ^1-

If this can be done a second time, so that a second relation of the

form

(4) ^{y, n = '-^

can be found, then the complete solution consists of the two rela-

tions (3) and (4).

T^ , dx dy dt
Ex. 1. — = ^z=.-—

yt tx xy

From the first two members we have .r^ — jv' = ^j. 1

From the last two members we have y — f- = c^. J

(Using the first and last members we get /-' — x^ = c. But this is

obviously not distinct from the other two.)

^2°/ If we can find only one integral expression of the above type,

say (3), we can, by means of it, express one of the variables in terms

of rj, and the other ; thus, to fix the ideas, we can solve (3) for .v in

terms of c^ and y. Substituting this value of at in — = — , we have an
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equation involving jc, /, and the constant Ci. Solving this, we have a

second relation

(5) Hi, ^> ^1) = ^2-

(3) and (5) together constitute the general solution.

At times it is desirable to replace Ci in (5) by its value in terms of

X and J. The solution is then

T^ „ dx dv dt
Ex. 2. — = ^ = —

.

xt yt xy

TT 1 dx dy , X
Here we have — = ^^, whence — = c^.

X y y

,'
. X = c^y ; and we have

-^ = , or Ciy dy — t dty
yt c^y-

whence ^ij'' — ^" = <^2>

or xy — t- = c^.

.'
. The solution is

^
^", ~ '

[ xy — f- = Co..

^3°/It sometimes happens that we can find multipliers X(x, y, /),

ix(x,y, t), V {x, y, t) such that, making use of the fact that

dx _ dy _dt_ \dx-^ fxdy + vdf

"^ (a) this last member when combined with one of the others gives

rise to an equation which can be solved ; or
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^ {b) XP + IxQ + vR may equal zero, at the same time that

\ dx + iJ. dy -\- V dt = o satisfies the condition for integrability

(§ 35) ;
or

2^ {c) by a choice of two sets of multipliers,

Xj dx + /Ai ^v + 1^1 '^'^ _ A2 dx -^ ixjdy + v^ dt

XiP+ IJ^xQ + nR A,/' + i^-iQ + v.zR

may be solvable.

If we can find two independent relatî ]3^-by.any of these method s,

each involving an arbitrary constant, we have the general solution.

dx dy , OS.— = -^ we have x- —f = <:,.

y X

Ex. 3.
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Letting Xi = i, /aj = i, y^ = o, and A, = i, /ao = — i, va = o, we have

dx -\- dy dx — dv , i i
7—^- = 7 ^2' whence —— = ^„{x+y)- {x-yf x+y x-y

K

or
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each point of it, it is tangent to the line at that point determined by

P, Q, R. The general solution, we have seen, consists of two rela-

tions, -,' /'"'". ^
\ , involving two arbitrary constants. That is,

the general solution represents a doubly infinite system of curves,

which are the intersections of two singly infinite systems of surfaces.*

Thus in the case of Ex. 3, § 65, the integral curves are the intersec-

tions of the fimily of cylinders x- —f = c^ with the family of planes

x + y — c.,z — o. In § 40 we saw that a solution of the total

differential equation P dx + Qdy + R dz= o represents a surface

such that, at each point {x, y, z) of it, it is tangent to the plane

P{X—x)-\- Q{Y— y) + R{Z— z)=o, the direction cosines of whose

normal are proportional to P, Q, R. Hence we see that the inte-

gral curves of — = -^ = — cut orthogonally any integral surface of

Pdx -{- Qdy + Rdz = o. Since we can find a family of integral sur-

faces of Pdx + Qdy -\- R dz= o only when P, Q, R satisfy the con-

dition for integrability [§35, (3)], we see that only in this case will

there exist a family of surfaces of which the family of integral curves

{ijc dv dz
of — = ^'^ = — are orthogonal trajectories. Thus, since yz dx -f- zx dy

-{-xydz=o has xyz = c as its general solution, we see from Ex. i,

§ 65, that the curves of intersection of the cylinders x'—y-= c^ and

y- — z"^ = a are cut orthogonally by the family of surfaces xyz = c.

On the other hand, since xz dx -\-yz dy -\- xy dz = o does not satisfy

* Supposing P, Q, R single-valued functions of x, y, z, there passes through any

point (-Tn.Vo, So) the single curve ) "^ '. ;
' L since the differential

'equations determine a single direction at each point in space. If P, Q, R are not all

single-valued functions, that is, if the differential equations are not both of the first

degree, then more than one line (or direction) will correspond to a set of values of

{x,y, 2), and there will be more than one integral curve passing through a point In

this case, u and v will not be single-valued, that is, when the solutions are cleared of

fractions and rationalized, the constants of integration do not enter to the first degree.

This is analogous to what we found in the case of a single equation of the first order in

two variables (§ 20).
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the condition for integrability, there is no family of surfaces which i'j

cut orthogonally by the curves whose equations are ] ,
~

t xy —z- — c^

(Ex. 2, § 65). The converse problem of finding the orthogonal tra-

jectories of a family of surfaces whose equation is f{x,y, z)= c is

always possible, at least theoretically. For this necessitates solving

the system

dx _ dy __ dz

dx dy dz

Ex. Find the orthogonal trajectories of the family of surfaces

xy = cz.

67. Systems of Total Differential Equations. — If we have two

total differential equations in three variables,*

Pi dx + Qidy + Ridz = o,

(0
' Fo dx + Qo dy + R., dz = o,

it can be proved (but the limits of this book will not permit our doing

so here), that the general solution consists of two relations among the

variables, involving two arbitrary constants. In actual practice we

proceed as follows :

If each of equations (i) separately satisfies the condition for inte-

grability [§ 35, (3)], we solve each one, and thus obtain the solution

of our system.

If only one of the equations satisfies the condition for integrability,

we integrate that one, obtaining a relation <^(.v, y, z) = c^^. Solving

this for one of the variables, we replace this and its derivative in the

other equation by their values, thus giving rise to an equation in two

variables only. Its solution, together with <^(a% y, z)=Ci, already

found, constitutes the solution of the system of equations.

* The substance of this paragraph is at once applicable to the case of « equations in

« 4- 1 variables. v
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If neither of the equations is separately integrable, it is sometimes

desirable to put (i) in the form

(2)
dx _ dy _ dz

where F= Q,F, - Q.^R,
, Q = R^P. - R,P^, R^P^ Q. - P.Q,-

The methods of § 65 may now be tried. If they do not work,

then taking one of the variables as the independent one, say z, the

equations may be written

i dx^P
dz
~ R'

dy^Q^
dz r'

(3)

The general method of § 63 applies here.

68. Differential Equations of Higher Order than the First reducible to

Systems of Equations of the First Order.— Given a single equation with one

dependent variable. We may suppose it solved for the highest ordered derivative;

thus, suppose we have the equation

(I)

If we put

J dy d-iv\

d^y dy\

dx'^ dx

(i) may be replaced by the system of three equations of the first order

(2)

dy _
dx

dy\

dx

dyi _

Jl'2

As an illustration,

dx

d^
dx^

J\x,y,yx,yi).
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is equivalent to the system

i6i

dy.

dx

dyi

dx

M or — = ^ = ^.
I 7i -y

Using the last two terms, we have /- + ji^ = c^,

— = rtjr, or sm~^<- z=x -\- C2,

y = ci sin (;ir + iTo).whence

In an entirely analogous manner, a system of n equations of any order in «
dependent variables may be replaced by a system of equations of the first order

by letting each of the derivatives of the dependent variables up to the next to

the highest ordered, in the case of each variable, be a new variable. Thus, by
dx

letting — = xi, the system of equations of § 64 may be written

Xi + X — cos t,

2x -\- y + e-^ — cos t,

dx\ _ dt
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equations, we have a new system of « — i equations in n— i depend-

ent variables. Repeating this, we find the value of a second variable

and reduce the number of equations again, and so on. Or we can

treat all of the dependent variables symmetrically by solving for each

one separately, and then finding the relations among the constants

of integration by substituting in some one of the original equations

(§ 63).

While this method is frequently not practicable, it can be carried

out very readily in case the equations are linear with constant

coefficients (§ 64).

If the equations are of the first order, special methods can at

times be resorted to (§ 65).

A system of n total differential equations in « + i variables can be

written as a system of ordinary differential equations to which the

methods of § 63 and § 65 apply (§ 67).

A single differential equation in one dependent variable of higher

order than the first, also a system of n such in n dependent variables

may be replaced by a corresponding system of differential equations

of the first order, to which at times the special methods of § 65

apply (§ 68).

It is almost needless to add that if each of a system of equations

involves a single dependent variable, each is to be integrated

independently of the others. Thus, see examples i, 2, 3, 4 below.

Ex. 1. Find the path traced out by a particle moving in a vacuum

and acted upon by gravity only, if it is given an initial velocity ziq in

a direction making an angle « with the horizontal plane.

Ex. 2. If the particle in Ex. i moves in a medium which exerts a

resisting force proportional to the velocity, find its path.

Ex. 3. A particle moves about a center of attraction varying

directly as the distance ; determine its motion, if it starts to move
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from a point on the axis of .v at a distance a from the center, and

with an initial velocity 7'o making an angle a with the axis of x.

[If the attracting force is P, and r is the distance of the particle

from the the center of the force, the equations of motion are

d'-x _ p X
df-

~
r'

In this case P=k''/:']

'fy ^ _ py
df- r

Ex. 4. If the force is a repulsive one, study the motion of the

particle in Ex. 3.

Ex. 5. A solid of revolution with one point of its axis of symmetry

fixed, is acted upon by gravity only. Find its angular velocity and

the position of the instantaneous axis of rotation in the body.

[If A, B, C are the moments of inertia of the body with respect

to the principal axes of the momental ellipsoid about the fixed point,

and /, q, r are the components of the angular velocity on those axes

at any instant, Euler's equations are,

dt

A'k. {C-A)rp = o,
dt



CHAPTER XI

INTEGRATION IN SERIES

70. The Existence Theorem.— The number of classes of differen-

tial equations that can be integrated by quadratures or other purely

elementary means is very small, compared with the number of pos-

sible classes of equations. In the General Theory of Differential

Equations it is proved that every ordinary differential equation with

one dependent variable (and every system of n equations with n de-

pendent variables) has a solution, in general, involving a definite

number of arbitrary constants. A proper understanding of the proof

of this theorem implies a knowledge of the Theory of Functions,

which is not assumed here. A demonstration of the theorem will be

found in almost any book dealing with the subject, presupposing a

knowledge of at least the elements of the Theory of Functions.*

1° For an equation of the first order—^ = ^ (x,_j'),t the theorem
dx

of existence of an integral is :

* Cauchy (1789-1857) was the first to prove this theorem. In fact he gave two

proofs of it, which have become classic. For a demonstration of this theorem a stu-

dent familiar with the elements of the Theory of Functions may consult among other

books, M\irva.y, Differential Equations, \i. 190; Schlesinger, Differentialgleichiingen,

Chapter I; Picard, Traite d'Analyse, Vol. II, Chapter XI. More recently Picard

(1856- )
gave another proof, which may be found in his Traite d'Analyse, Vol. II,

p. 301, and Vol. Ill, p. 88, and also in the Bulletin of the New York Mathematical

Society, Vol. I, pp. 12-16.

t A differential equation of the first order/I x,y, -j-] = o may be supposed solved for

-r-, so that it takes the form -~= F(x,y).
dx dx ^

\
•^'

dxl

164
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If F{x,y) is finite, continuous, and single-valued, * and has a finite

partial derivative with respect to y (see Picard, Vol. II, p. 292), as

long as X andy are rest7'icted to certaifi regions, then if Xq and y^ air

a pair of values lying in these regions, we cati find one integraly, and

only one, which will take the value y^ when x takes the value x^.

In the proof of the theorem, ji' is found in the form of an infinite series

j'o + c^{x - x^ + c.,{x - x^f H Vc,Xx- a;,)" + • • •,

which series satisfies the equation when substituted in it forji', and

besides is convergent for values of .r sufficiently near to .v By the

change of variable x= x — Xq, the diff'erential equation takes the

form 'dSc^^'^^^y^'

and the solution takes the form

y =J»'o ^ c^x ^ c.x- { f- r„ Jv" -! .

Sincere "^^.y be chosen arbitrarily (within certain limits, however),

we see that in the case of a differential equation of the first order,

one arbitrary constant enters.

Remark.— The existence theorem gives a sufficient condition for an integral,

and moreover, it gives a form in which the integral may be put. But this condi-

tion is not always necessary. Equations for which the conditions of the theorem

are not fulfilled may have integrals. In general, but not necessarily always, such

integrals will then not be developable by Taylor's theorem, or they will not be

unique. A few simple examples will illustrate this :

dy y y
—r = —, where - becomes indeterminate for x = o, y = o, has the solution y = ex.
ax X X ' y ' y

* Single-valued is used in the broad sense here. Although F{x,y) may have

several values for a single pair of values of*' and^, it will be said to be single-valued

when X andy are restricted to certain regions if, having selected some one of its possible

values for a pair of values of x and y in their respective regions, it will take a definite

value for every pair of values oi x and 7 in their regions.

Thus, while F=l± V*+j has two values for every pair of values of x and y, if we

select the value + V2 \ox x = \,y ~ i, .Fwill have a definite value so long as x and^*

are restricted to regions where both are positive.
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Here y takes the value o for jr = o. It is expressed as a (finite) Taylor series,

but it will be noted that c is undetermined when we put jj' = o for jt = o ; that is,

unlike the cases coming under the existence theorem, there is an indefinite num-

ber of solutions satisfying the initial condition. Moreover, it should be noted

that it is impossible to find a finite value for c that will enable us to assign a

value to y other than o for jt = o.

dy _ x +y X + y
Again, "T ^ >where becomes indeterminate for x = o,y = o, has the

solution y = X log x + ex. Here y t?kes the value o for x — o. But it is not pos-

sible to express the integral in the form of a Taylor series in powers of jr. In

this case also we have an indefinite number of integrals for the one initial value

O, and no integrals for any other initial value of/.

dy I + 2 X , \ + 2x ,

2-7- = has for solution v = y/c + x-\- x^. =^
>
when x = o,

dx y ' y
y =0. In order that y = {or x — o, we must have c = o. We have then the

single solution y — Vx + x-. This is not developable by Taylor's theorem

in powers of x however, although it may be developed in powers of Vx.

2° If we have a system of // equations of the first order involving

n dependent variables, we may suppose them solved for the deriva-

tives of each of these variables :

dw r r N

dx

The general existence theorem says, in this case, that iff\,f-2, "•fn

are all regular,*^ as long as x, y, z, •••, tv remain in certain regions,

then if x^, jCq, % •••, w^^ are in these regions, a single set 0/functions

y, z, •••,w can be found to satisfy the system of equations and to take

the values y^, Zq, •••, u/q respectively when x takes the value JCy.

* For definition of regular see the second footnote, p. 203.
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In the proof of the theorem these are found in the form of the

infinite series

y=}'o + «!i(-^ — -^'o) + ^.'(-^ — -^"o)- -\ h (r„(x — XoY -\ ,

s = So + ^'^^' - -v-o) + h{^ - XoY -\ h /^,( A^ - ^To)" + . .
.,

w = 7£'o + /&i(.r - ^0) + h{x - XoY-] h k,^{x - .To)" + •",

which series are convergent so long as x is sufficiently close to Xq.

As before, we can make the transformation x = x — Xq, which will

then give our series as power series in x. Here y,), So) •••>
7£'n may

be chosen arbitrarily (within certain limitsj. Hence we see that a

system of n equations of the first order with n dependent variables,

has its general solution involving ;/ arbitrary constants. We saw

(§ 68) that an equation, with one dependent variable, of the nth

order may be replaced by a system of ;/ equations of the first order,

hence it follows at once that ^/le genera/ solution of a differential

equation of the nth order involves n arbitrary constants. In the way

in which the equivalent system of equations of the first order is

found, we see that we may choose for these arbitrary constants the

values which the dependent variable and each of its derivatives up

to the («-i)st take for a given value of the independent variable.

Hence these values are, in general, at our disposal in any given

problem.

Geometrically, this means :

Of the single infinity of integral curves of a differential equation of

the first order and degree, a single curve passes through a given point.

Of the double infinity of integral curves of a differential equation

of the second order and first degree, a single curve passes through a

given point, in a given direction.

Of the triple infinity of integral curves of a differential equation of

the third order and first degree, a single curve passes through a given

point, in a given direction, and having a given curvature at that point.
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71. Singular Solutions.— In the existence theorem of the previous

section stress should be laid upon the fact that the existence of an

integral of -7^ = i^(x,_y) is assured only as long as7^(.r, v) is finite,

continuous, and single-valued in the region of (^o> J'o)« If, now, our

equation is given in the form

/ (^, y, y') = o> wh ere J'' = ^'

we know that, in general, y' is expressible as a finite, continuous, and

single-valued function of .r and y in the region of (atq, j'o), and takes

a perfectly definite finite value y\ for .v = Xq, y =^'0. It can be

shown* that this will be true as long as

¥{x,y,y) .^
dy' ^

But if 5/

then the expression for
J^''

in terms of x and y ceases to be single-

valued in the region of (x^, y^. So that in the region of such values

for X and y the existence theorem does not assert the existence of a

solution. As a matter of fact, a solution does not exist there in

general. For from

we can solve for y and y\ thus

y = <i>(x),y' = <i>ix);

and only in exceptional cases will

d^{x)
c{>,(x)

dx

* A proof of this theorem will be found in many works on, j^nalysis ; for example see

Liebmann, Lehrbucli der Differentialgleichungen, p. 8.
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If it should happen that 4>i{x) =—7-7^, then y = 4^x) is a solution

of the equation ; and since it is usually distinct from the general

solution, it is a singular solution. Moreover, it is identical with the

singular solution we encountered in Chapter V.

Similarly in the case of differential equations of higher order than

the first, singular solutions may occur. Thus if there is a solution of

df
/(x,y,y', •••,y"^) = o for which -7-j-^ also vanishes, this solution is, in

general, a singular one.*

More generally, a system of equations of the first order

/iU,J,^,
ax ax

r ( dv dw\
/,(^.v,,.,.,...z.,-j,...,-j = o,

(to which any system of in equations in ;;/ dependent variables is

always reducible, § 68) may have singular solutions under certain

conditions. See Picard, Vol. Ill, p. 52.

72. Integration, in Series, of an Equation of the First Order. —
If the equation

(I) ^ = ^^^'-^>

cannot be integrated by any of the known elementary methods, the

existence theorem tells us that if F{x,y,) is finite, continuous, and

single-valued in the regions containing x = 0, y = Cq (there is no loss

in assuming x = o ; since this amounts to presupposing the substitu-

tion X = .V — .^0 to have been made, in case x^^^o), one and only one

solution exists which takes the value of Cq for x = o. But this solu-

* Liebmann, loc. cit. p. 113 ; Boole, Differential Equations, p. 229.
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tion is given by the existence theorem in the form of an infinite

series. In actual practice we assume

(2) J = 1 ^^X" = (To + «^i^v + c^v- -\ h c^x" -\ ,

and substitute this in the differential equation (i). Then equating

coefficients, we may calculate as many of the ^'s in (2) as we please.

The existence theorem vouches for the convergence of the series (2).

Three cases may arise :

1° No general hw of the coefficients in (2) shows itself; in this

case we can only approximate the solution in actual practice.*

2° A general law of the coefficients in (2) appears ; then we can

write down the general term of the series, which is equivalent to say-

ing that the whole series is known.

3° All the terms after a certain one may turn out to be zero ; in

this case we have the solution in finite form.

Remark. — Cases 2'' and 3^ seldom occur except when the equation can be

solved directly. So that this method of integrating equations of the first order is

not of great practical importance for the mere purpose of integrating. But for

theoretical purposes it is of the greatest importance. It may be noted that while

every linear equation of the first order can be solved by quadratures, it is not

always possible to perform these in terms of simple functions. In such cases this

method, or that of § 74, will apply at times.

Ex.1. iL = x-^y\
']

dx
\

Here x+y- is finite, continuous, and single-valued for all values of i

X and y.

Put y = Co + CiX + c^x- -]
f- r„ X" -\ .

* While the general existence theorem tells us that the series so obtained is con- J

vergent, as long as we restrict ourselves to proper values of the variables, the conver- M
gence may be slow for certain values so that the degree of approximation, even after '

having calculated a fairly large number of coefficients, may not be great. This will

usually be true for values of the variables near any for which F{x,y) ceases to be
finite, continuous, or single-valued.
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Substituting, we must have

Equating coefificients, we have

2 • 2
(\ — ^o" •'• ^1 — '^O >

2 k Cok = 2 A:,^2A-i + 2 ^i^.i._2

H

h 2 ^^-.i-r^. '

(2 y^ + l)r,i.+i = 2 ^0^.^. + 2 ri^2A_l H h 2 <r4_i r,^i + ^/.

Here each coefficient can be calculated in terms of the preceding

ones, and consequently in terms of the single one rp. We can cal-

culate as many as we please, but no general law shows itself. Our

solution

extended as far as we care to calculate the coefficients, is only an

approximation of the solution.

dy 2 V
Ex. 2. -f=—-—o-

ax I — X-

2 y
Here —^—i is finite, continuous, and single-valued in the region

of (o, ^q), where c^ is any value of ^y.
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Put y = Co-\- CiX + c^x^ ^ \- c^x" + • • • , and substitute in the

equation, after having cleared of fractions. We must have

(i - x') (^1 + 2 CoX + 3 Csx" -\ h«^„ A-""' + •••) =

2{c^t-{-CiX-[-C2x- h^„J(;"H— ).

Equating coefficients,

^1=2 C().

3 (Tg— <ri = 2 r^ = 4 ^0, .*. ^3=2 Cq.

The general law seems to be r„ = 2 r,,. We shall prove this to be

the case by showing that if it holds for r„ it holds for r„+i. For,

{n + i)^„+i — (n - i)^„-i = 2 <r„.

Now ^„_i = r„ = 2 <ro-

.-. (fl + l)^„+i = 2(« - 1)^0 + 4 ^0 = 2(« + 1)^0,

or <r„+i = 2 ^0-

Hence the solution, in the form of an infinite series, is

y= Cg(i -{- 2 X -\- 2 X- + 2 x^-\- ••- -\- 2 x" + -•).

[This equation can be integrated by the methods of Chapter 11.

Let the student do tnis, and compare the result with the one here

obtained.]

When the equation ~ = -P' (x, y) is such that the various deriva-

tives of J^ can be readily calculated numerically for special values of

X and y, the following method is sometimes found practicable :

We have seen that the solution given by the general existence

theorem has the form

y = CQ-\-Ci{x — xo) + (^oi^ - ^0)^ H h <^„ (x — XoY H »
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Using the general form of the Taylor development of a function,

we see that when

\axJo n ! \^Zv'7o

we obtain that solution which takes the value Vo for x = .ro-

From the differential equation, we have

\axJo

Differentiating the differential equation we have

dx^ dx dy dx

whence r =— {'^ =—f^ 4- -^ c [—]''
2\ \dx'), 2 ! ^ dx), 2\\ By J;

Differentiating again, we find c^ in terms of ^j and C2. And so on.

The student will find on applying this method to the examples

above that it works very readily in the case of Ex. i.

f\
73. Riccati's Equation. — The equation studied by Count Riccati

(1676-1754), and to which his name has been given, is of the form

where d, c, m are constants.* The equation in Ex. i, § 72 is of this

type. For certain special values of b, c, m this equation can be inte-

* Frequently the equation x ~ — a.y \- py^ = yx^' is taken as the type of a Riccati

equation. This is obviously reducible to the other by the transformation z = x'^, y = uz.
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grated in finite terms. (See Ex. 4, § 18 ; also Forsyth, p. 170; Boole,

Chapter VI
;
Johnson, Chapter IX.) But in general, the only way

to get the solution is to integrate in series.

Riccati equations frequently arise, and it is often desirable to make

use of the properties of their solutions without actually knowing the

latter. On the other hand, it is sometimes possible to find the gen-

eral solution by quadratures or by merely algebraic processes, when

certain information is at hand. The following properties will at

times prove of value :

We shall consider a more general form, which is now usually con-

sidered as the type of a Riccati equation,

ax

where Xq, X^, X.i are functions of .v or constants.

1° If a particular integral I'l is known, the substitution _y
=—f-Ji

z

dz
transforms the equation to 1- (^"1 -f 2y\ X^z= — X^, which is linear,

dx

and can therefore be solved by two quadratures (§ 13). Hence

we have, if a particular integral }\ is known, the transformation

y=- -\-\\ gives rise to a linear equation in z which cafi be solved by
z

two quadratures.

2° Since the form of the solution of a linear equation of the first

order is s= y{x) + Ch{x), that isj the constant of integration enters

linearly, we have that

z '^{x) + Lh\x)

^ a(x) + CI3(x)

yix) + aix)
'
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Hence, the constant of i7itegf'ation enters bilinearly in the general

solution of the Riccati equation.

3° The equation y — — ^ may be looked upon as a bilinear

y + oC
transformation of C into r, which latter is a particular solution as soon

as a value of C is fixed. Corresponding to any four values of C,

say Ci, C2, C3, C4, we have yi, y.^, Vy, r4. Since double ratios are left

unaltered by bilinear transformations, we have

\ji, y-, y-i, J'45 = 1 Ci, a, Q, C^I = a constant.

Hence, ify\, y-2, y.',, y^ (ire anyfourparticular integrals, thefunction

\j\—HlKIi—^ is equal to a constantfor all values of x.

(J'4-J'l)(72-J3)

4° As a direct consequence of 3° it follows that if we know three

particular integrals y^, y.,, y^^, the general solution is given at once by

y-y-i ^ ^ y-i -yz

.

y-yy y2-yi'

whence y = ^^^' ^—-^ '^- -—^-^^ , i.e. y is given bv purely alge-

, Vo-Vi — r(_V.- J'3)
braic means.

y ~~ y
5° If I'l and r., are two known particular integrals, put z = ^

y-y-2

and take the derivative of the logarithm of both sides. This gives

\ dz _ I ( dy dy\ i ( dy dy

z dx y—y\dx dx J y—y2\dx dx

dy ^ . V .. ^ V .,2Since -^ = X^ + X^ v + X.,y'%
dx

'tl^x. + Xoh + X.y,',
dx

^Jl^X,^X,y, + X,yi,
dx
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we have -— =X ( J»'i
—

J'2)

;

zdx

whence 2 = CJ-^Vvx-^'^)''-,

I.e.

from which y can be gotten at on<"e. Hence, if two particular inte-

grals y, and v., a?'e known, the transformation z = --

—

^ leads to an
-^ -^

J-J'2

equation in which the variables are separated, so that it can be solved

by a single quadrature.

Properties 1°, 4°, 5° call attention to the close analogy of the Ric-

cati equation to linear differential equations ; for the knowledge of

each additional particular integral brings us nearer to the general

solution. Tlius, the knowledge of a single particular integral enables

us to reduce the problem of solving a Riccati equation to one of solv-

ing a linear equation of the first order, that is to one involving two

quadratures ; the knowledge of t^uo particular integrals enables us to

find the general solution by performing a single quadrature; while a

knowledge of th?-ee particular integrals gives us the general solution by

a very simple algebraic process.

6° As a matter of fact, the substitution

_ I dz

X^z dx

transforms the Riccati equation into the homogeneous linear equation

of the second order

X,^ - {X^X, + ^'2)£ + X,X\ z = o,

where X 2
= -"•

dx
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[Let the student show that, conversely, the substitution j* = ^•f"'^''

transforms a homogeneous linear equation of the second order into a

Riccati equation.]

74. Integration, in Series, of Equations of Higher Order than the

First. — If the equation when solved for the highest ordered deriva-

tive*

d^" \
' ' dx dxrj

is such that the successive derivatives of F can be readily calculated

numerically for special values of

dy d^y

^'^'''dx'd^'

a method analogous to that given at the end of § 72 may be em-

ployed.

The solution given by the general existence theorem being in the

form

y^CQ + Ci{x — x^ + c:.,(x — Xq)" -^ \- r,.(^ - x^y -\ ,

we know from the general form of the Taylor development of a func-

tion that -f^^J - ^M^ (^- ^,H'{^.) ^ (^Zll:^tniA ^
ijdy^

"^

/

Now the general solution involves three arbitrary constants, and

we saw (§ 70, at the end) that a particular solution will be determined

as soon as we fix the values of y,
-J-,

—^ for x = Xq ; let us call them

J>'o, JCo', JVo".

*To fix the ideas we shall illustrate with an equation of the third order, although

this method, when practicable, applies to equations of any order.
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From the differential equation we have at once

Differentiating the equation we can calculate ( Vi) in terms of

(dy\ (tPv\ (dS\

so that we can find ^4 in terms of c^^, c-^, Cn, c^. And so on.

When this method does not work readily, we may employ the first

method of § 72 as there given. But again, only in comparatively few

cases will this turn out to be practicable. The following modification

of this method has been found of special service in the case of hnear

differential equations in which the coefficients are polynomials in x,

and such that when we substitute x"' for y in the left-hand member,

there results only a small number of distinct powers of x (preferably,

not more than two). In the case of a Cauchy equation (§ 51) there

results a single power of x, and the equation can be solved by purely

algebraic means.*

If we take the equation

d'^y

dor

the result of putting j = x"* in the left-hand member is

m (m — i) jt:""' — x"''^^.

* Thus, putting^ = j:"> in the left hand member of (i), § 51, we get

[,^0 *" ('« — 1) ••• (m — tt -\- 1) -\- ki rn {m — 1)— {m — n -\- 2) + ••• + An-1 fn + ^n] *'"'•

Equating the coefficient of jtr™ to zero and solving for tn, we get in general « distinct

particular solutions and therefore the complementary function. It is readily seen to be

the same as that found in § 51. The cases of equal and complex values of m can be

treated entirely analogously to those for linear equations with constant coefficients.

In some respects, the Cauchy equation is simpler than the corresponding linear

equation with constant coefficients. But for actually obtaining its solution, especially

when there is a righc-hand member, it is usually simpler to transform it to a linear

equation with constant coefficients, as was done in J 51.
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Here there are two distinct powers of x which differ by 3, and

?n —2 is the smaller exponent. Hence, if we let

y = CoX'" + CiX"'+^ +C2X"'+^ H + r^-^+^r _j_ ...

we shall have a solution if

1° m is so chosen that m {jn — i) = o, i.e. in~oox 1,

2° the c's are so chosen that the rest of the terms cancel each

other in pairs, i.e. we must have

(;// + 3) {"t + 2)<ri — ^n =0,

{m + 6) (m + 5)^.-^1 = o,

{m+ T, r) {in + 3 r - i) r, - c,^^ = o,

« •

.*. c =
(m +3 r)(m + 3 r— i)

For m = o, we have Ci = ^o = — <ro>

3-2 3!

_ I _ I -4
Co C-i Cn*

6.5 6 !

_ I _. I • 4 • 7

9-8 9

I _ i •4-7 • 10 .
" ^3 — ~

"-Oj

• II 12 !

^ i .4-7-->[i +3(^-1)]
^

(3 ^) ! .

'
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\ 3! 6! 9!

(3^-)! y

is an integral. Let us call it ^j'l, where A, like ^o, is an arbitrary

constant.

For m = I we have Ci = ^o = — ^o>
4-3 4!

I 2-5
fc% =—-A =—^<ro,

7-6 7 !

_ I _2 -5 -8
^8

'—
^1' — ;— ^o>

10 • 9 10 !

^^ ^ 2. 5. 8-..[2+3(^-1)1
,.

(1+3^)!

V 4! 7! (r+3'')! /

is also an integral. Let us call it By.2, where B is an arbitrary con-

stant, ji and y., are obviously linearly independent. Moreover,

they are convergent by the general existence theorem. Hence,

y= Aji + Bvi is the general solution, since it contains two arbitrary

constants.

If the right-hand member of the equation had not been zero, we

would have proceeded to find the particular integral by a similar

method. Thus, suppose the equation had been

^^y -3—-„ — xy = 2 X \
dx" ^
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Since the result of putting j = Cf^x"" in the left-hand member is

CqX"^ + CiX"'+^ H + <:,;c"'+^'" -| will be a particular integral, pro-

vided c^mini — \)x^~'^ = 2 x~^, and the other terms that arise destroy

each other in pairs.

The first of these will be true if

m — 2 = —
3, .•. ;;/ = — ij

and c^mim — i) = 2, .-. ^o = i.

The other terms will destroy each other in pairs if

_ I I
C-i
— Cq .'. Ci — —

-

2-1 2 !

5-4 5 !

_ I . _ 3 • 6

8-7 8!

c,.= ^r-1 . . C^ — —
(3^-1) (3 ^-2) (3r-i)!

Hence a particular integral is

x-^^r- ^ + -^^-^^ + ••• + 3-6-9"-3(^-i) ^r-i ^ ...

2! 5! (3r-i)!

— The above example suggests a general method,* in case the result

of substituting J*
^jc"* in the left-hand member of the equation gives

* As mentioned in the Remark, ^ 72, this method applies to linear equations of the

first order as well as to those of higher orders.
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rise to only two * distinct powers of x, say /(/;/) ^* + <^ {m) x^+\^.

where / is a positive integer. I

By the manner in which f{fn) and ^ (w) arise, it is obvious that

one of them at least must be of degree n in tn.

I. To find the complementary function we proceed as follows : >

{a) Suppose/(w) is of degree ;/ in in, so that/(;«) = o has « roots, /

Wi, m^, W3, "-nin, all distinct, Oj^some_re£eat^d. ___-—-^
Letting y = c^"^ + c^x'"-^'-

'+'' + cX'^'' -\ > we have, on substi-

tuting in the left-hand member of the differential equation, J

Caf{m) 0^ + c^^ {i?i)x''+'^

+ cj{m -I- /) ;c*+^ + c,<i> {m + /) x^+^i

+ C2/{tn + 2 /) jd'^-^ + c/t>{m + 2l) .r*+3i

+

+ c,-J{m + [;- - i] />v"+('-^>' + c,_^4>{m-\- [r- 1]/)^+'^

+

This will be zero provided

1° /{m) = o, i.e. m — m^, m^, •••, m„
;

2° cJ(m + rl)+c,_Mm+\r-iy) = o, for \

'"'^ ^' ^' ^' *"' °°

<i(;«+[r— il/)

^/_ ^y 4>{>n + [r- il /) c}>{m -f [r-2l/) •. <^(;/? -f /)</>(;;/)
^

^ /(^, + r/)/(;;/ 4- [r-i]/).-/(^«-f 2 /)/(;« + /)
°'

* An analogous method can be deduced in the case of a larger number, but this will

not be done here.
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To each value of m correiponds, then, in general, a particular

integral.* If any c vanishes, all that follow do so, and that integral

appears in finite form.

If two values of m are equal, of course, the same particular integral

will correspond to these. Moreover, if two of the w's differ by an

integral multiple of /, say »u= m^-{- g/, then corresponding to the

smaller value ;;/i, the coefificient c^ will be infinite [since /(wo)

—f{)n^+g/)=o], unless the numerator is also zero. Hence the

method here given gives us only as many particular solutions in

general, as there are distinct roots of /(m) = o, whose differences

are not multiples of /. The remaining solutions must then be sought

by a modification of our process.

f

If /(;«) is of lower degree than n, while the above method may

lead to infinite series which will satisfy the equation, the general

theory gives us no assurance that they are convergent. So that,

unless the solutions come out in finite form, it is best to make use

of the fact that if /(;«) is not of the degree n, <i>{m) is.

{b) If <j>(m) is of degree n in ;//, </>(w) = will be satisfied by n

values of w, say m\, m\, ••• w'„.

Letting y = ^ToJc" + c_yx""'' + c_2x'^~^^ H -f <r_^'"~'' + •••, we have

on substituting in the left-hand member of the equation,

+ r_i <l>(m- /).r* + c_i f{tn - /yv' '

+^_2 <^('« — 2/)x^-^ + c_^f{in — 2l)x^--^

+
* It should be noted that corresponding to any m which is not a positive integer, we

have a solution which is not a power series, but x"^ multiplied by a power series.

Although the general existence theorem no longer applies here, because the coeffi-

cients in the equation, when the leading coefficient is made unity, cease to be finite

for JT = o, the general theory of linear equations assures us of the convergence of

the series for certain values of x. (Schlesinger, Differentialgleichungen, \ 24.)

t In this case the particular solutions, which the general method fails to give,

usually involve logarithmic terms. Thus see Ex. 2.
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+ r_.^i cj.{m - [r- i] /)x>^-^'-'-^' + c_,^rAm - [r - i]/)^-^-')^

This will be zero if

1° ^(;«) =0, i.e. m= m\, ni\_, , m'„,

(f>{m — rl) \ in = ni\, m\, •••, w'„
J

_/ .. /(^/^-k-i1/)/(^-k-2l/)>-/(/^/-/)/M ^_
^ ^

<l>{m — r/)<j>{m -\_r-i']/) • • • (f>(m — 2 /)(f>{m - /)
''

To each value of ;// corresponds, in general, a particular integral

of the form x"'{ca + c_i x~^ + c_2 x^'^ H + ^-r
•^'"'''

H )•

Here x"' is multiplied by a power series going according to nega-

tive ascending powers of x. The latter reduces at once to an

ordinary power series in / if we put /= - • Of course, if any of the
X

roots of <f)(m) = o are repeated, or differ by a multiple of /, the num-

ber of integrals obtained by this method will be less than n.

It should be noted that the integrals found by methods (a) and

(d) in case both /(w) and <f>(fn) are of the «th degree, are not

distinct. In general (but not necessarily), they are different in

form, but only ;/ of the fundtions defined by them can be linearly

independent.*

*An infinite series defines a function for those values of the variable only for

which the series is convergent. The series found by methods (a) and (6), being

developments in the region of the origin and of 00 respectively, may not, and fre-

quently do not, converge for the same values of x. Hence if the series are infinite, it

is usually impossible to compare them. But if the functions represented by each set

can be "continued" into the region of the other, then a linear relation will be found

to exist among any « 4- i of them.
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II. To find the particular integral in case the right hand member

is a power of jc, say Ax% we proceed as follows :

If /(;«) is of degree u, we must have, using the results found in

connection with method {a) above :

1° h = s. Since // is a linear function of m, this will determine a

single value of m, say ni^.

2° cJ{m:) = A.

3° The remaining coefficients are determined as in {a) except

that now w^ is used for 7n.

This method will be in default when /{m^ = o.

Or using the results found in connection with method (d) *, we get

the solution by putting :

1° /i + /=s. This will determine a value mj of m.

2° Cocl>(mJ) = A.

3° The remaining coefiicients ars determined as in (b) except

that now mj is used for ;//.

If <f>(fnj) = o at the same time that /(m^) = o, the particular inte-

gral will not be of the form here sought. Other means will have to

be used to find it.

For a perfectly general method for finding the particular integral

see Schlesinger, §54.

Ex. 1. (jc — X-) —^^ —
2> ^' 2 y = x-{- ^x*.

dx- dx

Substituting x^ for j in the left-hand member, we have

7n{7n — 4)a-'"~^ — [;//(;;; — i) — 2\x^.

* Whether <#i(»?) is of degree n or not. The objection to using method (a) or {V)

in case f{m) or </>(/«) is not of degrees is, that if the solution comes out in the form

of an infinite series, the latter need not be convergent. If the solution appears in

finite form, the method applies perfectly well ; if not, the convergence of the series

must be looked into. In the case of the example worked out above, if the right-hand

member had been x, method {a) would have given the particular integral in the form

of an infinite series, which turns out to be y^ — i. On the other hand, method (i)

gives — I for the particular integral at once.
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/(fn)= m{m-^),

<f>(m) = — (;« + i)(w — 2).

Since/ (w) is of degree 2, we shall use method (a).

Then z« = o or 4,

and ., = - »(^; + r';-'1) ,,_. = ^±r^.„,.
/{m+r) fn+r—4

For ;« = o we have _ i — 3 _ 2

1-4 3

_ 2 — 3 _ I
^2 — ^1 — ~ ^o>2-4 3

^3 = ^ ^ ^0 = O,

3 -4
'

^4 = =0,

.'. cj I + -x-\- -X- ), or ^4(3 + 2X + ^-) is an integral. Let us call

\ 3 3 J
it Ay,.

For m = 4 we have _ i + i _
^1 — ~ ^0 — 2 ^0,

I

_ 2+ I _
^2 — ^1 — 3 ^o>

_ 3+ I _
^3 — ^2 — 4 ^o>

3

_ 4+1 _
^4 — '^s — 5 ^o>

4
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.". ^^{x*+2^ + 3Jk:^+-"+ ;;.v"^'^ + "•) is an integral. Let us

call it Bjn.

Therefore Avi + -By^ is the complementary function.

Since <f>{ffi) is of the second degree, we can also use method (^).

Then m = 2 or — i,

and ^ _ /(w -[;•-!]) _ w - r - 3anU t-r— — ; C_r+i— '-r+I-
cpi^m — r) in — ;- — 2

For ;;/ = 2 we have

— I — I _
— I

_ — 2 — I _
^—2 — ^-1 — 3 ''o>— 2

_ — 3 — I _
3

.-. ro(-^+2.v+3 + 4A-^ + 5A-=^H h/'A-"-"H )is an integral.

Let us call it A'y^.

For fn= — X we have

t^ -1 — ^ (1 — - t Oj-1-3 4

— 2 — 4 6

-2-3 4

t - -3-4 . _7.
t _3 — t _2 — Ml

-2>-2, 4

.'. ^(4 ^-' + 5 A-= 4- 6 a-^ 4 4- {n 4-3) ^^~'' 4 ) is an integral.

4

Let us call it B'y.^.

Hence A'\\' 4- B'y.^ is the complementary function.

Here it turns out that I'l'— j'o' =ji'i.
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To find a particular integral, we consider each term of the right- \

hand member separately.

For the term x we have, putting

^n m (m — 4) x"^~^ = X,

m = 2 and ^'o
=

•

4

T- r— I

For m = 2 Cr = ^,_i.
r — 2

.'. Ci = o, and all that follow are zero.

Hence — - ^^ is a particular integral corresponding to x.

4

Corresponding to 3 x*, we have, putting

CqIH^JH — 4)^"*"^ = 3 x^,

;« = e and Cn = -•

5

For w = 5 r^ = f_±_2

r+ I

^^-2"^"-
10 3'

^ -4. - 3 .

^•4= - ^3 =— • 6,

Hence — [2 x'' + 3 .x'^ + 4 a-' H !-(«+ i):v"+*H ]
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is a particular integral corresponding to 3 x^. Comparing this with

y.2 above, we see that it is equal to — (j'2 — x*).

Hence a particular integral is — -^x**

The complete solution is then

y = Ay^ + By., -^x'--^ x*.

4 10

_ d'v dv
Ex. 2. X —^., + -;- + y = o.

ax- ax

The result of putting j — x^ in the left-hand member is

/(;;/) = 7>r, cf){m) = I.

Hence method (a) applies, m = o, o,

I _ I

/(fn + r) f^

since m = o is the only choice for m

_ I

I"*

_ I _ I

2' 2-

''-'T'-'ik'"

is an integral. Let us call it cy-^.

* This form could have been obtained at once by equating Cifi>{jn)xm to 3*-*.
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To find a second integral, let y = jiV -\- w, where 7> and w are two

functions still to be determined. Since the single requirement of

having this value of j' satisfy the equation is imposed upon these two

functions, a second relation between them may be assumed. We
shall do this so as to simplify our work as much as possible.

Substituting this value of y in the equation, and remembering that

ji is an integral, we get

dha
,
div

, , ( d-v d7'\
,

d\\ dv

dx^ dx V dxr dxj dx dx

Assume now that x—^ -\ =0
dx- dx

(this is the second relation at our disposal). Then

v = A + B log X.

And our equation to determine w is

d'w
,
dw

, jy dy-,X—- H \-w = — 2 B -=^

dx^ dx dx

2! 213! 3 U!
^

fi\{?i+i)\

Letting w = Cq-\- c^x + c^pc^ + ••• + c„x'^ + -••,

whence -^ = c^ + 2 CjX + t, c^xr -\ \- {n + i)c„+-^x^ + •••,

dx

d^w
^^7Y= 2 c.^ -\- 6 c^x^ -] \-ft{n-\- iy„+iX''-\ ,
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we have on equating coefficients

2B
^1 + 4 ^2 = -

2 !

2B
213!

Cn + {n+ i)V„+i=(- i)"
2^

;i !(;/ + !)
!'

Since we are looking for as simple a particular integral as possible,

there will be no loss in assuming ^^ = o ; then

Ci= 2 B,

Hence the general solution is

j = (^ + ^log^)

+ 2B

I — -^^. +
(i!)^ ' (2!)^ (3!)^"^'"*"^^ '^"(«!)^'^

X XT- ,i\, ^/ ,I,I\,
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Ex.3, (x -x-)--^^ + 4-^-h2j = o.

ax' ax

Ex.4. 2;c2^-;c-f + (i -^> = ^'

dx" ax

Ex. 5, ix — jc-)^ + 3-^ + 27 = 0.
dx' dx

75. Gauss's Equation. Hypergeometric Series. —The integration

of the equation

{A^-^Bz-\-C)'^^^{Dz-\-E)'^-\-Fy = o,
dz- dz

where A, B, C, D, E, Fart constants and B'- — 4 AC^o, leads to

a remarkable series exhaustively studied by Karl Friedrich Gauss

(

1

777-1855). This series and its differential equation were dis-

covered by Euler (i 707-1783). Putting z = ax -{- b, we have

lAa^x"' + (2 Aah + Ba)x + A/^' + Bl?+ C]— + (D'x + E')^
dx- dx

+ F'y = o,

where D', E' , F' are constants.

Choosing a and b so that

Ah"- -{-Bl? + C=o

and 2 Al) + B = — Aa ^ o,

and dividing by the coefficient of {x- — x) —^, we have

{x'-x)^,+(Fx+Q)f+Fy = o,
dx- dx

where F, Q, R are constants.



§ 75 INTEGRATION IN SERIES 1 93

Substituting x"' for i- in the left-hand member, we have

— m{m — I - Q)x''-^ + l»r - (i - P)/n + R^x"^.

Putting <2 = - y, i-F=-{a + fi),R= a/3,

our equation takes the form

(x'-x)'^, + [(a + l3+i)x-y^^ + aPy = o*
ax- ax

and the result of substituting j = .r™ in the left-hand member is

f{7n)x""'^ + </)(;//).r"',

where/(/-'/)= — ;;/ (;;/ — i + y), ^('«) — {»i + (t){fn + fi).

Using the method {a) of § 74, we have

;;/ = O or I — y.

^.
_ (f>(fn-\-r— i)

^ _ (;;/ + r-t-«— i)(m + r-\-l3— 1)
^

f{in + r) '

~
{in + r) (w + r + y— i)

For ;;/ = o, we have

_ _«•/?
C-\ — — Cn^

C^
(«+i)(i8+i) .^^ «(«+i)W+0 .

2(y+l)
' l-2.y(y+l)

I . 2 • 3-"« •y(y+i)---(y+ /z-i)

* This J5 usually referred to as Gauss's equation.
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Putting ^0= i> we have the particular integral

I.y 1.2.7(7+1)

I • 2 -3 ••• // . 7(7+ i) ..• (7 + «— I)

This is the hypergeotnetric series, and is usually represented by

^ For m = I — 7, the student should show that the integral is r,, V2,

where j'o = x^~yF{u — 7 + i, /? — 7 + i , 2 — 7, x).

If « or /3 is a negative integer, while 7 is not, j'j reduces to a

polynomial.

If 7 is a negative integer (including zero), say 7= — ^^o, while

neither a nor (3 is one of the integers from—^ to o, the coefficients

in }\ beginning with the ^th become infinite. So that this form for

)'i cannot be used. (Another form involving log x can be found,

which together with r^ will give the general solution.)

If 7 = —^<o, where g is an integer, and « or ^8 is one of the

integers from— ^ to o, ji reduces to a polynomial (excepting in the

case when « or /3 = 7 ; in this case a factor in the numerator and

one in the denominator of every coefficient beginning with the ^h
term vanish ; here these zero factors neutralize each other, and the

result obtained by striking out these zero factors gives us an available

form for ji'j.*) In this case, although the two roots o{/(m) = o

differ by an integer, no logarithmic term enters in the general

solution.

If 7 is a positive number, say 7 =^> o, and neither a nor /? is

one of the integers from i to ,^, the coefficients inj'o become infinite

In this case a new form for j'2 involving log x can be found.

* See Schlesinger, Differentialgleichungen, \ 34.
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If, however, y = ^^ > o where g is an integer, and a or y8 is one of

the integers from i to g, y., reduces to a polynomial (with the excep-

tional case of « or /3 = y, which is handled in the same manner as the

exceptional case for y a negative integer or zero). So that in this case

also no logarithmic term enters in the general solution.

Using the method {l>) of § 74, let the student show that

y^ = ~F(a, I + a - y, i + « _ yQ,
i

),
x°- \ xj

;'/=XA.+/J-r,.+^-«,i)

are a pair of linearly independent integrals.

If ^^i andja are infinite series with finite coefficients, they will be

convergent for all values of x less than i in absolute value, and diver-

gent for all values of ^greater than i in absolute value; while
_>'i'

and y^ are convergent as long as x is greater than i in absolute value,

and divergent as long as x is less than i in absolute value.

The hypergeometric series may at times represent well-known

functions. Thus let the student show that

A
^ Ex. 1. F{- fi, /3, ft,-x) = {i-\- x)" for /3 any constant.

Ex. 2. xF{i, I, 2, — ;c) = log (i + x).

Ex.3. Limit^^^f I,/?,I,^]=^^

Iv— Ex. 4. Limit „ 3^ .r7^[ «,^,^, ^)=sinjr.
\ 2 4«^y

Ex. 5. Express as hypergeometric series the following functions :

—^— ,
(i + a-)" -f (i — xy, (i + ;c)" — ( I — xy\ cos x,e' -\- e"".

J — X

For further examples see Gauss, Collected Works, Vol. Ill, p. 127



CHAPTER XII

PARTIAL DIFFERENTIAL EQUATIONS

76. Primitives involving Arbitrary Constants. — Partial differen-

tial equations may be obtained from primitives involving either arbi-

trary constants or arbitrary functions. Thus, consider the family of

spheres of fixed radius /?, with their centers lying in the plane of

0=0. The equation of this family is obviously

(i) {:x-ay+(y-^y + z' = J?\

where a and d are arbitrary constants.

We shall consider x and j as independent variables, and shall put

dz _ dz _ 5-2 _ d-z _ 5'3 _ .

OX oy ox- axdy oy

Differentiating (i) with respect to x and j respectively, we get

(2) x — a-{-z/> = o,

(3) y-^+z^=o.

Eliminating a and d from (i), (2), (3) we get

(4) 2'(/ + ^' + i) = i?-,

which is known as the differejitial equation corresponding to the primi-

tive (i)
J on the other hand (i) is said to be a solution of (4).

196
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Perfectly generally, if we start with any relation involving two

arbitrary constants and three variables, of which two are independent,

(i) <f>(x,y,z,a,d)^o,

where z is taken as the dependent variable, we get on differentiating

with respect to x, and then to j'

We now have three equations from which to eliminate a and <5.

Doing this, there results

(4) Ax,y,z,p,q)=o,

a differential equation of the first order which has (i) for its primitive.

If the primitive involves more than two arbitrary constants, more

than three equations will be necessary to eliminate these, so that if

only two independent variables are involved, the resulting differential

equation will be of higher order than the first. Thus consider

(5) ay? + by^ + c£- = i.

Differentiating with respect to x and y respectively, we have

(6) ax + czp = o,

(7) ^y + CM = o.

We have now only three equations from which to ehminate a, b, c.

Hence we must differentiate again. Differentiating (6) with respect

to X we have

(8) tz + ^(zr+/) =0.
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Eliminating a, b,c from (5), (6), (7), (8), we have

§76

^
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Form the differential equations having the following equations for

primitives, a, l>, c being the arbitrary constants to be eliminated :

Ex. 1. {x — of + {y - of + s= = ^-.

Ex. 2. a{x- + r) + bz" = i.

Ex. 3. z = ajc -{- by + Va- + b"^.

Ex. 4. 2 = (:v + a) (J + b).

Ex. 5. {x — of + (j- - ^)- + (z - ^)- = I.

Ex. &. z = ax + ^ji' + /^xy.

Ex. 7. rt-.r 4-
<^J' + ^'s = I •

77. Primitives involving Arbitrary Functions.— Let u and z^ be

two known functions of x, y, z, and suppose we have the arbitrary

relation

(i) <^{u, V) = o.

Differentiating with respect to .r and y respectively, we have

^ ^ du [dx dz^J dv \dx dz^^J

( \ d^fdti du \ , d^fdv dv \_^
du \dy dz J dv '^dy dz J

In order that (2) and (3) may hold simultaneously, we must have

du du

dx dz

dv . dv

dx dz

du du

dy dz
"

dv . dv

dv dz

(4) Fj>+Q^j = /?,
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where
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du
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functions 4>"\ii) and i/'"'(?')- That is, we have now ten equations,

from which the eight functions can be eliminated, in general, in two

distinct ways. Hence we are led in the general case to two differen-

tial equations of the third order.

In the case of special forms of the function/, we can eliminate the

six functions 4>{t{), ({>'(»), 4>"{^0' ^('^')> "A'C^)? ^"(^) from the first six

equations arising in the above process. Thus, for example, suppose

/= w — \^(f>{u) + ip(v)'] = o, where 70 is a known function of x, y, z.

Then

dw dw . _
dx dz

dw . dw
dy dz

,,. -.fdu . du \
,

,,/ ^fdv ,
dv \

These last two equations involve only 4>'{u) and f'(z>), and not

(f)(?/) and ij/iv). Hence, since the three equations gotten by differen-

tiating these involve only ({>'(u), </>"(//), i{/'(v), ^"{v), these four func-

tions can be eHminated from the five equations in which they enter

and a single differential equation of the second order arises which

has w = <^{u) -\- \p{v) for its primitive for any form of the functions

^ and \p.*

Find the differential equations arising from the following primi-

tives :

Ex. 1. ^{x +y + z, x^ +y -f z') = o.

Letting x+y + z=u, x^ + y- -\- z- = v, we have 4>{7(, v) = o.

* The five equations are linear in <!>'(«), 4>"{u), ^'(v), 'i'" {v) . Hence the elimina-

tion can be effected readily. Moreover r, s, t enter linearly also, and in such a way

that the resulting differential equation is also linear in them, that is, it has the form

Rr+ SS+ Tt= V, where R, S, T, V, are functions of x,y, 2, p, q.
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Differentiating, we get

^(l+/)+^(2.:+2S/)=0,
au ov

au ov

'•. (i + /)(J + s^y) - (i + '/)Cv + zp) = o,

or (y — z)/> + (z — x)(/ =x —y.

Ex. 2. cf)( z- — XV, ^
)
= o.

Ex. 3. <ji(x- + y^, 2 — xy) = o.

Ex. 4. s = </)(ji^ +;) + '/'(^^ —y).

Ex.5. 2=<^(x+jo+'/'(-^.>')- ^y- T^^^-^z

78. Solution of a Partial Differential Equation.— Since a primitive

which gives rise to a differential equation is obviously a solution of

that equation, we see that arbitrary functions as well as arbitrary con-

stants may enter into the solutions of partial differential equations. By

the general existence theorem* for partial differential equations, it is

seen that every partial differential equation, or system of such equa-

tions, has a solution containing a definite number of arbitrary func-

tions. As an arbitrary function may contain an indefinite number of

arbitrary constants, a solution involving an arbitrary function is much

* This theorem is due to Cauchy, as is that for ordinary differential equations.

Proofs of the theorem have also been given by Darboiix and Mme. Sophie de Kowa-

lewski, among others. The proof of the latter is the most readily followed and is the

one usually given. See Goursat-Bourlet, Equations aux Deriv'ees Partielles du Premier

Ordre, Chapter I ; also Picard, Traite' d'Analyse, Vol. II, p. 318.
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more general than one that contains any fixed number of arbitrary

constants. We shall speak of the solution given by the existence theo-

rem (which is a solution involving one or more arbitrary functions)

as the general solution.

The mere statement of the existence theorem for a system of partial differential

equations of any order is quite complicated. We shall give here simply a state-

ment in the cases of a single equation of the first and second orders in three

variables

:

1° Consider the equation f(^x, y, z, p, q) = o. We shall suppose that p
actually appears.* Solve for it, so that the equation may be supposed to have

the form

/= F{x,y,z, ,[).

The existence theorem tells us that if F (^x, y, z,q) is regular^ in the regions

ofx = xq, y =yo, z = zq, q = q^, and if 0(_J') is any arbitrarily chosen func-

tion of y, regular in the region of yo, and such that 4>(j'o) = 2o> <P'(yo) = qoi

there exists one and only one solution z = \}/{x, y), luhich is regular in the regions

ofX — xo, y = yo, and which reduces to z = <p{ y) for x = xq-

Geometrically this means \.\\z.\. given any curve z = 0(_;') in the plane x = xq

there exists one and only one surface (^in any region for which there are no sin-

gular points X of the differential equation^ passing through that curve.

This can be generalized. By a proper choice of coordinates it can be shown

that one integral surface, and only one, can be found passing through any arbi-

trarily chosen curve, whether plane or twisted (as long as we avoid singular

points of the equation). See Goursat-Bourlet, p. 21.

2° Consider the equation /(x,j, z, p, q, r, s, t) = o. If this contains neither

r nor /, a linear transformation will introduce one or both of these. We shall

* lip is absent, then q must appear, and the argument here employed can be car-

ried out by interchanging in it/ and q, and x and 7.

t The function F{x,y,z,g) is said to be regular in the regions of x = Xo,y=yQ,

z = za,q= qo, if it can be developed by Taylor's theorem in a convergent power series

in x'— xa,y—ya, z — z„,q — q„.

]: By a singular point of the equation we mean one whose coordinates together

with the corresponding value of q determine a set of values in the regions of which F
ceases to be regular.
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suppose then that one of them appears ; and there will be no loss in supposing

that it is r. Solving for this, the equation takes the form

The existence theorem tells us that if F is regular in the regions ofx = xa,

y = yo, z =zo,/> — pQ,q — qo, s = sq, i = to, and if <t>{y) and f{y) are any

arbitrarily chosenfunctions ofy, regular in the region ofyo, and such that 0(_)'o)

— ZQ, (p'iyo) = ^0, 0"(jJ'o) = lo, '/'(^'o) =/>o, ^'(yo) = So, there exists one and

only one function, z, ofx andy which is regular in the regions ofx = xo,y =yo>

and such that z = (f>(y) andp = \l/(y) for x = Xq.

Looked at geometrically, this means that given any curve z=<p(y) in the

plane x — xo, there exists an indefinite number of integral surfaces passing

through it. But if at each point of this curve we fix a tangent plane, there exists

one and only one integral surface through the curve and tangent to these planes.

For, the direction cosines of the normal to the tangent plane are proportional

to/, q, — I. As soon as the curve is given we know0(^). The q at each point

of this curve is (p'(y), hence it is also known. So that to give the tangent plane

at each point is to give p, which is our '/'(.r). Once ^(v) and ^(j) are given,

the existence theorem says the integral surface is determined uniquely.

As in the previous case, this may be extended to apply to any curve whether

plane or twisted.

Here again, no singular points of the differential equation are supposed to

appear in the regions in which we are interested.



CHAPTER XIII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

/ 79. Linear Partial Differential Equations of the First Order.

Method of Lagrange. — Lagrange deduced the following very neat

method of solving linear partial differential equations of the first

order. The general type of such an equation for one dependent and

two independent variables is

(l) Pp-^Qq=^R,

where P, Q, R are functions of x, y, z.

Consider the linear equation with three independent variables x,y, z,

which is homogeneous {i.e. there is no right-hand member), and the

coefficients are functions of the independent variables only.

1( u = c satisfies (i), u will be a solution of (2) ; for, differentiating,

dti du

,
dx dy

we have /> = -e^' ^^'d^
dz dz

Substituting these in (i) we get (2).

205
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Conversely, if // is a solution of (2), u = c will satisfy (i). For,

from (2) we have, on solving for R^

bti du

ou ou

dz dz

du du

^^' ~dir^' -a7.=^'
dx dy

dz dz

when u = c. Hence (i) follows. From this we see that the problem

of solving (i) is equivalent to that of solving (2).

Consider now the system of ordinary differential equations,

, . dx__dy _dz
Kl) ~P~Q~r'

If u is a solution of (2), u = c satisfies (3) ; for, if we multiply

numerator and denominator of these fractions by — ,—,-:- respec-
dx dy dz

tively, we have, by composition, that each of the fractions of (3) is

equal to
du J ,

du J ,
du J-— ax-\ ay -\—- dz

dx dy dz

dx dy dz

Since the denominator is zero by hypothesis, the numerator (which

is du^ must be. Hence « = <: is a solution of (3) [§ 65, 3°, (/5)].

Conversely, \{ u = c \% z. solution of (3), u will satisfy (2). For, by

differentiation we have

! .\ du J ,
du , . du ,

\A) -^ax+^ dy + -- dz^ o.
ox dy dz
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To say that u = c satisfies (3) is to say that for it

dx:dy:dz = F: Q : R.

Hence, replacing in (4) the former by the latter, we have

ox oy oz

which shows that (2) is satisfied.

Hence the problem of solving (2) is reduced to that of solving (3).

Therefore, finally, the problem of solving (i) is reduced to that of

solving (3), since every solution of the latter is also a solution of the

former, and conversely.

Moreover, if ?/ = ^1, ?' = r^ are any two independent solutions of

(3), any function of // and z', say <f>(u, z'), will satisfy (2). For,

substituting this in the left-hand member of (2), we get

^/^^^4-,2 — +^—^ +— r^— + (?—+ ^—
du\ dx dy dz J dz>\ dx dy d

This vanishes, since // and z' each satisfy (2). Hence <^(//, z') is

also a solution of (2) irrespective of the choice of the function </>.

Therefore, <^(//, z>) = o* is the general solution of (i), since it con-

tains an arbitrary function, § 78. Since </> is an arbitrary function,

there is no loss in putting zero for the right-hand member instead

of an arbitrary constant.

Word for word, the above proof may be extended to a linear equa-

tion with fi independent variables. So that we can formulate the rule :

Tofind the general solution of

ox^ dxo ox,^

J
dxx _ dx.2 _ _ dxn _ dz

* The solution may obviously also be written in the form u =f{v), or v = "//(w)
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If the general solution of this system is

^1 ^^ ^b ^^'1 ^^ ^:.') "') ^'rt
^^^ ^n>

then <^{iii\, Uo, •••, n„) =o, where (ft is an arbitrary function of

U\, U2, •••, Un, will be the general solution of {i^.

Ex.1, xzp {- yzq = xy.

dx _dy _ dz
^

xz yz xy

Multiplying numerator and denominator of the three members by

y, Xf — 2Z respectively, we have, by composition, since the denomi-

nator vanishes,

y dx -\- xdy — 2zdz = o. (Method 3°, (b), § 65 .)

.•. xy — z' =ei.

T, .J dx dy dx dy . v
Besides, — = ^^ , or — = -^ gives -— = ^2-

xz yz X y x

.-.
<f}

( xy — Z-, -W o is the general solution.

17 o du
,

du
,

. ,
^du

Ex.2. -y—+x— + (i+^—=o.
ox ay dz

dx _dy _ dz _ du

— y X I + s' o

We have at once xdx -\-ydy = o,

or jr -(-_)/- = ^j.

Also, u = Co.
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Multiplying numerator and denominator of the first two members

by — _y and x respectively, we have by composition,

^tT-'f=-^ (M^'hod 3", (a), § 65.)
x' +y I +3-

.'. tan~^ -^ — tan~^ z = c,

X

y — xz
or ^—— = ^3-

x+yz

.-. c{>( u, x^ +y, •
^~'^^

)
= o, or u =/(x- +y, ^——] is the gen-

V x+jzj \ x+jzj

eral solution.

Ex.3, yp — xq = oc^ —f.

Ex. 4. (_y — z)p + (3 — a:) ^ = .r — _;V-

y/^ 80. Integrating Factors of the Ordinary Differential Equation

M dx -\- N dy = 0.— We are now in a position to treat satisfactorily

the problem of finding an integrating factor for an ordinary differ-

ential equation of the first order and degree. We have seen (§ 7)

that the necessary and sufficient condition that [x be an integrating

factor oi Mdx + Ndy = o is

dx dy

or
JdJ^_dM\^^dj._^dj.^^^ whence
\dx dy J dx dy

JV dfx. M dix.
,, *

^^^
dM_dJVd^ "^ dN^dMdy ^ '^

dy dx dx dy

* Since the number of solutions of this linear partial differential equation is infinite,

we see again that an ordinary differential equation of the first order has an infinite

number of integrating factors
( J s)

.
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To find fx satisfying (i) we consider the system of ordinary

equations,

dM_dN dN dM

Remark.— In actual practice, when trying to integrate Mdx + Ndy = o, we

are not desirous of finding the most general form for /a ; as a matter of fact, as

a rule, the simpler the form the better. Hence any one solution of (2) will be

sufficient. It should be noted that this is not usually a practical method. But,

for special forms of M and N, a solution of (2) can be found. Thus the follow-

ing general classes of equations for which we can find a solution of (2) may be

noted here.*

bM_bN_
1° If _^i is a function of x only, say /^(x), we have, from

(2), that fx = ^J"-^'^^'''^ is an integrating factor (§ 17).

dJV bM
2° If i_ is a function ofy only, say/2(_)'), thenfi=ei-'^i^''^''" is

obviously an integrating factor (§ 17).

3° If the equation is linear, then M= Py — Q, N= 1, and (2)

becomes Pdx = dy =— • Hence fx.
= e^^'^'' is an integrating

factor (§13).
^-^ ^

4° If J/ and N are homogeneous and of the same degree n, we

get, by composition, after we have multiplied numerator and denomi-

nator of the first two members of (2) by v and x respectively,

(3) ^ ^y ^^^ V ^"^ ^y

'

._
xM-\-yN fi

* These were enumerated in Chapter II, in the list of equations for which integrat-

ing factors can be found.
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By Euler's theorem for homogeneous functions, we have

dM
,
dM ,

,

dM ,^ dM
X \-

y

=-nM, .•J'-r

—

=nM — x—

,

dx by ay dx

x-~+y—- =nN, .'.x—- = nN—y~-,
ax ay ax ay

whence (3) may be written

xl—-~dx +— dy\ -^yl -~ dx + ~-dy\—n {Mdx +Ndy)

xM+yN
dfji

But Mdx + Ndy = o. Hence we may add {ji + i){Mdx +Ndy)

to the numerator on the left without altering its value. Doing so, we

have
d{xM+yN) __dfx.^

xM+yJV
fj.

Integrating, we have _ i
/§ 7\

'^~xM-{-yN^ ^'^'

5° If M=y/i(xy), N=x/2{xy'), then on multiplying numerator' and

denominator of the first and second members of (2) by y and — x

respectively, we have by composition, after obvious reductions,

d(xM— yN) _diJi

xM—yN fx

On integrating, we have _ i
rs ^

^~xM-yAr ^
^^^'

81. Non-linear Partial Differential Equations of First Order.

Complete, General, Singular Solutions. — We have seen (§ 76) that

a primitive

(i) cl>(x,y,z,a,l>) = o
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which involves two arbitrary constants gives rise to a unique partial

differential equation of the first order

(2) f{x,y, z,p, q)=o.

This differential equation is gotten by eliminating a and b from (i)

and its derivatives with respect to x and y respectively ; viz.,

(3)

dx oz

deb
,

dd>

dy oz

(i) is spoken of as a solution of (2). Here, of course, a and b are

constants. Letting them be parameters, we have, on differentiating

(i), and taking account of (3),

(4)
da dx db dx

d(b da , d(b db

da dy db dy

These two equations can be consistent only in case either

(5)
da

or

da



§8i PARTIAL, OF THE FIRST ORDER 213

If this determinant vanishes, b is some function of a, sayi/'(a), (Note

I in the Appendix). Then (4) may be replaced by

Since (5) and (6) were gotten on the assumption that (3) hold, it

follows that if we eliminate a and b from (i) and (5), or from (i)

and (6), we shall get relations between x, y, z which will satisfy (2).

Hence these relations are also solutions.

We see then that the primitive of a partial differential equation of

the first order is not the only solution. But since the others can be

gotten from it, Lagrange called it the complete solution.

We have already noted (§ 78) that, in the general theory of partial

differential equations, it is proved that an arbitrary function appears

in the general solution of an equation of the first order. Since in (6)

the function \\i{a) is any function of a we j)lease, Lagrange called the

solution gotten by eliminating a and b from (i) and (6) the general

solution.

A particular solution is gotten by assigning definite values to a

and b in the complete solution, or by using a definite function ^id)

and eUminating a and b from (1) and (6).

On the other hand, the solution gotten by eliminating a and b

from (i) and (5) contains nothing arbitrary, and is known as the

singular solution. It is the exact analogue of the singular solution

of ordinary differential equations. Looked upon geometrically, it is

the equation of the envelope of the doubly infinite number of surfaces

whose equation is given by (i), just as the general solution is the

envelope of an arbitrarily chosen single infinity of those surfaces.

It can also be shown * that the singular solution can be gotten from

the differential equation by eliminating / and q from

fix, y, z,p,q) =0,-^ = 0,-^ = o,

* See Goursat-Bourlet, p. 24, also p. 1Q9 and foil.

f^o^sy the. L'
'

'-/ ^ /-/o j^; -^
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in exact analogy to the case of ordinary differential equations of the

first order. But the limits- of this book prohibit a further discussion

of the subject. We shall conclude it with the following obvious

remarks

:

1° There need be no singular solution. This will happen in case

the equations (i) and (5) are inconsistent; or, geometrically, in

case the surfaces (i) have no envelope.

2° The general solution cannot be written down. </'(«) is entirely

at our disposal ; but until it is given, there is no way of eliminating

a and b from (i) and (6), and when it is given, we have, of course, a

particular solution.

3° There is no unique complete solution. Any solution involving

two arbitrary cojistants jnay be taken as one. It is easy to see that

there is an indefinite number of them. For, if we choose any form

for \^{a) which involves two arbitrary constants h and k, on eliminat-

ing a and b from (i) and ^(6) we get a solution involving these two

arbitrary constants, which fulfills all the requirements for a com-

plete solution.

We saw in (§ 76) that a complete solution of s-(/- -\- q^ + i) = A'- is

(jT - ay + (> - by + 32 = A'2,

which represents a family of spheres of radius R and centers in the plane 3=0.
The envelope of these is the pair of planes z- = J^, which is obviously the result

of eliminating a and i> from

(x - ay + iy- l>y + 22 =1^, x-a=o,y-l> = o,

or of eliminating/ and ^ from

g2 _ ^2 is then a singular solution.

The choice of any relation b~\p{a) results in selecting those spheres whose

centers lie along the curve jj' = f{x) in the plane s = O. The envelope of these

is obviously the tubular surface traced out by the motion of a sphere of radius R
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moving with its center on the curve y = ^(^x) and along its entire length. In

particular, if i/'(jr) is a linear function o{ x, the envelope is a cylinder.

As an example, suppose b — ha ]- k.

To find the corresponding solution, we have to eliminate a from

{x - «)- + (7 - ha - ky + 2-2 = R\

{x — a') + h(^y — ha — i) = o.

From the second of these we have

_ X -\- hy — hk

I +A^

Putting this in the other equation, we have

^2 (/ijc-y + hy + (hx -y + k)^ = T^S _ „2

ii+h^y

or (hx -y + hy = (i + h"') (J^' - =2),

which is obviously the equation of a circular cylinder whose axis is the line

y =z hx + h, z — o.

Since this solution contains two arbitrary constants, it is a complete solution.

(See Ex. 6, § 83.)

As an exercise, the student should start with

(hx -y+hy = (l+ /^2)(^ _ s2)

as a primitive and show that, considering h and h as the arbitrary constants, the

resulting partial differential equation is again s'(/2 -|- ^2 _j. j^ — ^2_

82. Method of Lagrange and Charpit. — Since the knowledge of a

complete solution is sufficient to enable us to find all other solutions,

it is usually desirable, whenever possible, to find it first. Lagrange

suggested the following method :

Given the equation

(i) /{•x,y, z,p,^) =0,
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try to find a second relation

(2) <i>{x,y,z,p,q,a)=o,

which involves either p or q or both, and also an arbitrary constant,

and such that when we solve (i) and (2) for/ and q and put these

in the total differential equation

(3) dz=pdx+qdy

the latter can be solved ; the solution of (3) is a complete solution

of (i), since, from what precedes, it determines s as such a function

of X and y, that the values of / and q obtained from it, together with

z satisfy (i) ; besides it involves two arbitrary constants. To do this

we may proceed as follows :

Differentiating (i) and (2) with respect to x, we have

(4)
^/+^^+^'^ + ^^/ = o,*
dx dz dp dx dq dx

(5) ^+^^ + ^i^ + ^i^ = o.
dx dz dp dx dq dx

Similarly, differentiating with respect to y,

(6)
^f+q^f+^I^+ M<k = o,
dy dz dp dy dq dy

(7) ^ + ^^ +^# +^^ = 0.
dy dz dp dy dq dy

Now the condition that (3) shall be integrable is obviously

(8)
dP-^ = o.
dy dx

* Throughout this section, A = A^pd_, A.^A.^g3^.
dx ' dx dz dy dy dz
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From equations (4), (5), (6), (7), (8) we can eliminate the four

quantities -^,—,-~,—- We get rid of -* by multiplying (4)
ax ay ax ay dx ° ^ /

and (5) by -^ and -^ respectively, and subtracting. The result is

op dp

(a) /^ +^^W-^^ +^^W+^^^-^^^^ = o^^^ \dx "^dzjdp \dx -^ dz J dp \dq dp dq dpjdx

Multiplying (6) and (7) by ~ and J- respectively, and subtract-
dq dq

ing, we get rid of ^ and have
dy

\^y dzjdq \dy dz j dq \dp dq dp dq) dy

Making use of (8), we have, on adding and arranging according to

derivatives of <^,

(„) m^pfn^{j^,^^f.lf.ff\dx dz J dp \oy dz j dq dp dx dq dy

\(dp^Uq)dz

This is a linear equation. Hence, to solve for ^, we consider the

system of ordinary equations

( 1 2) dp dq _ dx dv dz _ d<l>

dx dz dy dz dp dq \ dp dq)
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Our aim is to find, not the most general form of <^,* but any form

of it that contains / or q, and an arbitrary constant. Hence, in actual

practice, we look for the simplest one.

Remark. — It is desirable that (ii) or (12) be committed to memory.

If we put — =^+/— ,and — =— + ^—

,

we have the skew symmetrical form

dx dp dy Bq

['

as for the next term f , this is really a result of the equality of

ax _ 'y
^ as maybe seen by composition after multiplying numerator and

dp Bq

denominator of the first by/ and of the second by q, and taking account of (3).

Or using the same notation as before, and writing

dx Bp BP dx

dy Bq Bq dy

(11) may be put in the compact form

* Lagrange thought originally that by using the general form of (which would in-

volve an arbitrary function) he could get the general solution by this method. But this

is, in fact, not practicable. Charpit, in a memoir presented to the Academic des

Sciences, in June, 1784, suggested the use of any form for involving p ox q and an

arbitrary constant, obtaining by its use the complete instead of the general solution.
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Ex. 1 z—pq= o.

To find ^ we must find a solution of

dp _dq _dx dy _
p q q p

Using the first two members, we have

<^ =/ — aq = o.

Combining this with the original equation, we have

Then (3) becomes dz = a \\- dx + \1 dy,

y/a dz
ox

—— = a dx -\- dv.

Integrating, we have 2 's/az = ax \- y -\- b,

or 4 dfz = (ax 4-JI' + ^Y,

which is a complete solution.

If we had used the second and third members, we would have had

^ = ^ — .r — « = o. Whence

q = X -\- a, and / = .

X + a

Then (3) becomes dz = —-— dx -\- (x + a) dy,
X -\- a

J (x + a')dz — z dx
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Integrating, we have y + b = —^-—

,

or z = {x + a){y + b),

which is also a complete solution.

The general and singular solutions can be gotten from either of

these. Thus, using the second one, we get the general solution by

eliminating a from

z= {x + a)\_y + ^iP')']

and y + \p{a) + ^'{a){x + a) = o,

where ^{a) is any function of a.

In particular let the student show that if we put

>/'(«) = k ~ ha

where /i and -^ are any constants, the corresponding solution is 4 /is = {kx 4-j»' + ^)^(

which we recognize as the first form obtained.

The singular solution, resulting from eliminating a and b from

z={x + a){y + l>),

y-{- b = o,

X •{ a = 0,

is 2 = o.

Let the student show that this can also be gotten from the other form of

solution.

Ex.2. p = {z+yq)\

Ex. 3. V/ + V^ = 2 X.
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83. Special Methods.— Special methods for certain forms of the

differential equation at times prove simpler than the general method

of § 82 (although most of them are suggested by the latter). Some

of these are the following :

1° Suppose all the variables absent. The equation takes the form

(i) /(A q) = o,

and the equations for determining <^ become

(2) ±^±^...,
o o

From the first member we see that p = a.

Then q is gotten by substituting in (i). Evidently q = l>, where

^ is determined byy(^, b) — o.

We have then dz — adx + bdy,

or z^ ax -{ by + c, where/ (a;, b) = o.

Hence the rule :

The complete solution of f{p, q) = o is

z= ax -\- by -\- c, where f {a, b)= 0.*

By means of simple transformations, certain forms of equations can be brougm

into this type

:

Putting log z = Z, or 2 = <f
Z, we have / = — = ^Z 2_ — z -—- ; so that

dx dx o-^

z d-x

Similarly £ = M.
2 dy

* The complete solution represents a doubly infinite set of planes. Any particular

solution represents the envelope of a chosen single infinity of these. This is a develop-

able surface. There is no singular solution. Why ?
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Hence, if the equation is/f^, 2
j
= o, log 3 = Z will transform it into

^ \dx dyl

Again, if we let log x = X, ox x = e^,

dx dXdx xdx' ' dX

*\

Similarly, putting log j' = Y, we get yq=— •

dY

Hence

f{xp, q) =o\s transformed into / [
— ,

—
]
= o by log x = X',

\dX dy 1

fipyyi) — o\% transformed into/[ -^, —
)
= o by log^ = F;

\dx dY I

f{xp, vq) = O is transformed into/(— , -
]
= o by logj: = X, logj = F;

\bx By)

f{^, i^\ --== o is transformed into/f^,^^ = o by log ;f = A', \ogz= Z;
\ z zj \dX dy I

and so on.

Ex. 1. pq = 1.

The complete solution is z = ax + h' + c, where alf = i,

I
or z= ax -{-- V -{- c.

a
'

Ex. 2. g =z-\- px.

Writing this in the form ^=i+-2^, we see that the substitu-
z z

tion Jr= log X, Z— log z, will transform this equation into
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The complete solution is Z= aX+ (i + a)y + c. Passing back to

the original variables, we have log z = a log x + {i + d)y + c,

Ex. 3. px-\- qy = i.

Ex. 4. x^p'+yY-=^.

Ex. 5. yq=p.

2° If X and y are absent, the equation takes the form

(i) /(2.A^)=o,

and we have for determining <^

^ bz ^ dz

.•. -^= -^, whence ^ = «A

Substituting in (i), we have /(z, p, ap) = o, whence / = \p(z, a),

dz
and dz =p dx -{ q dy becomes '^— = dx + a dy,

ip{z, a)

where the variables are separated.

To put this rule in shape easily to be carried in mind, we note that,

to say q = ap is to say that s is a function of x + ay, by the general

method of § 79. If we put x -\- ay = t, we have

^_ bz __dz _ 3z _ dz

dx dt" dy dt^

anc^ iie equation (i) becomes the ordinary differential equation

,/ dz dz\
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in which the independent variable is absent. Hence the variables

can be separated immediately after solving for -^. We have, then,

the rule :

If (he equation is of theformf {z, p, q) = o, put x + ay = t, which

will replace p by — , and q by a— . Put these values in the equation
dt dt

and solve for —•
dt

If the equation has one of the forms

f{z, xp, q) = O, f{z, p, yq) = O,/ (z, xp, yq) - O,

one, or both of the substitutions log x = A", log/ = Y will reduce it to the

above form.

Ex.6. s-(/ + r+0 = ^'-

(i^ (iz
Putting x-\-ay = t, p = —,q = a— , and the equation becomes

dt dt

^[(|J(:+''=)+.]
= ^'

or = dt.

.*. — V I + «" Vi^" —z- = t-\-b=^x-{-ay-\- bj

or (i + a-){R- -r) = {x + ay + bf.

Ex. 7. xp{\ + q) — qz.

Ex. Q. z = pq.

3° If the dependent variable is absent, and the equation is such

that it can be put in the form

(0 A{x,p)=fly,q)
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(a sort of separation of the variables), the equations to determine <ji

become
/ . dp dx
(2) ^^ = • = = ••• .

dx dp

.'. — dx -\- -^ dp = o, or dfi = o. Hence we have
dx dj> ^ ' -^

f\ = a.

.'./,= a.

Solving these, we have/ = i/',(a-, a), q= \p.>(j, a),

and dz —p dx -\- q dy becomes

dz = il/i{x, a)dx + i/'20'> <^)^'>

in which the variables are separated. Hence the rule :

J/ the dependent variable is absent, and the other variables are

separable, such that the equation takes the form fi{x, p) =^f{y, q),

equate each of these members to a constant, solve the resulting equa-

tions forp and q, andput these values in dz =p dx -{- q dy.

If the equation can be put in the {oxvafAx, *-\—fi[y, -
), the transforma-

tion logz = Z will reduce it to the form above.

Ex. 9. q= 2yp-.

Ex.10. 2{zx — zy) —p -\- q = o.

4° The equation z =px + qy -\-f{p, q), which is usually referred to

as the extended Clairaut equation (§ 27), will obviously be solved if

we put/= a, q=^b. We have then the complete solution

z = ax + by +f{a, b).
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While the general method of § 82 applies here, it does not give this simple

form of solution. By that method we may use either/ = a or q — b, but not both

simultaneously. As a matter of fact it is an accident if the result of substituting

in. the differential equation the values of/ and q obtained from two solutions of

equations (12), § 82 is a complete solution. It does happen, at times, as in the

case in question. But there is no certainty that it will, nor is there even a likeli-

hood of it.

Ex. 11. Solve z=px-\-qy+ ^f-\-(f-\-\, and examine for singu-

lar solution.

5° If the equation is of the fortTi/(A-+j(', /, q) = o, let q=p-\-a.

Then/(^ -\-y, p,p + a)=o gives / — (f>(x -{-y, a), whence

q=ct>(x+y, a)-\-a,

and the equation dz = pdx -\- q dy becomes

dz = <^(.r 4-_)', d){dx + dy) + a dy.

Let the student show that this form of solution is given by the general method

of § 82.

If the equation is of the formy
(
x +j',", -*-

]
= o, the transformation log 2= Z

will reduce it to the form above.

Ex.12. p(x+y) — q = o.

Ex. 13. zp(x -\-y) +p{q —p)= z^

6° If either p or q \s absent, the method of solution is obvious

by inspection. In the former case integrate considering a: as a con-

stant, when the constant of integration will be an arbitrary function

of X. In the other case integrate considering jc as a constant, when

the constant of integration will be an arbitrary function of _>'. These

solutions, involving arbitrary functions, are general solutions.*

* When these equations are of the first degree in the derivative, they are linear

equations. The method here given is exactly that of Lagrange for such equations

(§ 79)-
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Ex. 14. (x —y)q — {x \- z) = Q.

Considering .a? as a constant, we can write ^ = — •

dy

dz dy __

x-\-z x—y

Integrating and taking exponentials of both sides, we have

{x-k-z){x-y) = i^{x),

where ^ix^ is an arbitrary function of ;v.

Ex. 15. xp"- — 2 zp -\- xy = o.

Ex.16. p-\-y{z—x) = o.

Ex. 17. /(/-i)=a"/.

84. Summary.— Partial differential equations of the first order are

divided into two general classes : those which are linear in the

derivatives of the dependent variable, and those which are not.

1° For the solution of linear differential equations of the first

order the method of Lagrange applies, giving the general solution

(§ 79)-

2° For the solution of non-linear equations of the first order, the

general method of Lagrange and Charpit applies (§82), giving a

complete solution. From this the other solutions can be gotten

(§80.
At times the special methods of § 83 are shorter than the general

method of § 82.

Sometimes a transformation of variables will help in the solution

of an equation.
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Ex. 1. 3Cp^fq = ^.

Ex. 2. ^=/+i,

^ bii du , 5?/
Ex. 3. x—+y—+zr' = xyz.

dx ov 02

Ex. 4. z =px + gy -\- (J> + qf.

Ex. 5. xy/>g = 2^.

Ex. 6. y-3j>-\-x'zq=y^x.

Ex. 7. ^ = jc/ +/'•

Ex. 8. (/ + ?)(/x + ^j)= I.

Ex. 9. (x+y){p + gf + {x-y)(j>-qy=i. [Letx+y = t/-,

X—y= ir.]

Ex.10. ijr-\-q'^x—pz = o.

Ex. 11. (.x^ +/) (/ + ^-) = I. [Let .r = p cos 6,y = p sin ^.]

Ex. 12, (_>'- + 2^ — .r-)/ — 2 :»y7 + 2 xz= o.

Ex.13. r = z- (/> — (/).

Ex. 14. (j' — :r) (^j)'
— /.t) = (/ — ^)". [Let .a;^' = //, jc + j'= v.']

Ex. 15. z — xp—yq = 2 Vat 4-y- + 2^.

Ex. 16. />q =/>x + qy.

Ex. 17. (_); + 2 4- z^) -- + (s + 2/ + ^) + (Z^ + ^ + ;;)—
oj; ay oz

= x-\-y + z.
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Ex. 18. Determine a system of surfaces such that the normal at

.each pomt makes a constant angle with the plane of xy.

Ex. 19. Determine a system of surfaces such that the coordinates

of the point where the normal meets the plane ofjcv are proportional

to the corresponding coordinates of the point on the surface.

Ex. 20. Determine a system of surfaces for which the product of

the distances of the tangent plane from two fixed points is a constant.



CHAPTER XIV

PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER
THAN THE FIRST

85. Partial Differential Equations of the Second Order, Linear in

the Second Derivatives. Monge's Method. — The general type of a

partial differential equation of the second order linear in the second

derivatives is

(i) Rr+Ss+Tt^V,

where R, S, T, V are functions of x, y, z, p, q. Gaspard Monge

( 1 746-181 8) suggested a method, which is known by his name, by

which a first or intermediary integral is found in the form of a partial

differential equation of the first order involving an arbitrary function.

The solution of this equation by any of the methods of Chapter

XIII, or otherwise, will then give the general solution. While this

method applies only in case R, S, T, F satisfy certain conditions, it

works sufificiently frequently to justify our giving here at least the

rule by which solutions are gotten by this method.* Besides

(2) dz =p dx -f- g dy,

we have
/ N {dp = rdx-\-sdy,

\dq^=-s dx-\- 1 dy.

Eliminating r and / from (i) and (3) we have

(4) s{R dy--Sdxdy+ Tdx-) -{Rdydp+ Tdx dq - Vdx dy) = o.

* For a detailed account of this subject see Forsyth, p. 358 and foil., or Boole,

Chapter XV.

230
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Vfhenever it is possible to satisfy simultaneously,

(5) Rdy'^-S dx dy + T dx"- = o,

(6) ^ dv dp+ Tdx dq - Vdx dy = o,*

(4) will be satisfied and, therefore, so will (i). (5) is equivalent to

two equations of the first order,

( 7) dy - W^ {x, y, z, p, q) dx = 0, dy— W^{x, y, z, p, q) dx = o,

which become identical in case

(8) 4J?T= S\

Equations (2) and (6), together with either one of (7), constitute

a system of three total differential equations in the five variables x, y,

z, p, q. Such a system can be solved only in case certain conditions

are fulfilled, and it is for this reason that Monge's method does not

always work. It will work if we can find two independent solutions

of this system

U\{x, y, z, p, q) = ^1, u^ix, y, z, p, q) = c^.

In this case it turns out that

(9) ^h = <^(?^2),

where <^ is an arbitrary function, is an intermediary (or intermediate)

integral. Looked upon as a partial differential equation of the first

order, (9) must be integrated again. Its general solution will be the

solution of (i).

In case it happens that not only one of (7), but each one, together

with (2) and (6), determines a system that can be solved, we have

* Equations (5) and (6) are usually referred to as Monge's equations.
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two intermediary integrals (9). Solving these for / and q, we put

the values of the latter in dz =p dx -\- q dy. The integral of this is

the general solution of (i).

Ex. 1. q^r— 2 pqs + p't= o.

Monge's equations are

^ dy^ -{- 2 pq dx dy -\-p- dxr = o,

q- dy dp +/" dx dq = o.

The first of these is a perfect square,

{q dy +p dx)- = o.

Substituting this in the second one, it becomes

q dp—p dq= o,

whence ^ = c,.

The first one, combined with dz =p dx -\- q dy, gives

^2 = o,

whence z = c^.

Hence an intermediary integral is

p = q<\>{z).

In this case we have only one intermediary integral, hence we

must integrate this. Since it is linear, it can be solved by the method

of Lagrange (§ 79). Its general solution is

•=^*^(2) +:>' = </' (2).
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Ex. 2. r— art = o*

Monge's equations are

dy- — a^ dx- = o, ox dy — a dx = o and dy + adx = o,

dy dp — a~ dx dq = o.

Using dy — a dx = o, we have y — ax = Ci.

Combining this with the second of Monge's equations, we get

dp — a dq — o; whence p — aq = C2,.

Hence an intermediary integral is

p — aq = {l/(y
— ax) .

Using the other equation, dy + a dx — o, we get a second interme-

diary integral
, / s

•^ ^ p + aq = cji(y + ax).

Solving these for / and q, we have

* A much simpler method of solution for this equation will be given in $ 88. This

equation plays an important r61e in Mathematical Physics. It was first integrated by

Jean-le-Rond D'Alembert (1717-1783) in a memoir entitled Richerdies sur lesvibratio?is

des cordes sonores, presented in 1747 to the Berlin Academy. In studying the vibra-

5'^v ^y
tions of a stretched elastic string, he considered the equation in the form --tt^

— ^^t^^ °>

•where / is the time, and x and/ are the rectangular coordinates of a point of the string,

X the coordinate measured along the line Joining the extremities of the string, and y the

displacement of the point from the position of equilibrium. His proof is given in

Marie, Histoire des Sciences Mathematiques et Physiques, t. VIII. p. 217.
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We have now to solve

dz = -[«^(j' + ax) + i/^O' - ax)\dx + — [<^(;' + ax) - x\i(^y - ax)^}'

= -({>(}' + ax)(dv + adx) + -ip(y — ax){dy—a dx), which is exact.
2

'
2 "

Since ^ and yp are symbols of arbitrary functions, we shall retain

them in writing the solution

2 = <^( V + ax) + (/'(_>'
— ax).

There is no loss in failing to add an arbitrary constant, since either

of the arbitrary functions may be supposed to incorporate that.

Ex.3. r-t=- AP
x-\-y

Monge's equations are

dy- — dx- = o, or dy — dx = o and dy -{• dx='0,

dy dp — dx dq + "^-^ dx dy = o.
x+y

Using dy — dx = o, we have y — x = c^.

Combining this with the second of Monge's equations, we have

2 X dp -\- ^pdx — 2 X dq ->r Cy{dp — dq) = o.

Also dz =p dx -f- q dy becomes

dz-=-p dx -\- q dx.

Subtracting twice this from the above equation, we get

2{x dp -\-p dx) — 2{xdq + q dx) + c^^dp — dq)-\-2dz = o.
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This is exact, and has for solution

or {x+y){p— q) + 2Z = C2.

Hence an intermediary integral is

{x +y){p -q) + 2z = 4){y - x).

Using the equation tfy + cfx = o, we get a system of total differen-

tial equations which are not integrable. Hence we must integrate

the intermediary integral. This is linear, so Lagrange's method

applies,
dx — dv dz

X Ar y x-\-y cf)(y — x) — 2z

From the equation of the first two members we have

x-\-y = a.

Replacing
J)'
by its value a — x, we have

dx dz

or , .

dx a

a (f>(a ~ 2 x) — 2 z'

dz . 2 J ,, s

-\- z = — 4>{a — 2 X).

This is a hnear ordinary equation of the first order. An integra-

ting factor (§ 13) is e('^"' = ea, and the solution is

azea = 1 e" <f>{a — 2 x) dx + 1>.

Replacing a by its value x -\-y, we have the general solution

2x /^ 2x

(x -{-y)zex+ii —
I
ea <^{a — 2 x)dx = ^{x + y).
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Here, as in the case of the non-hnear partial differential equa-

tions of the first order (§ 81), the general solution cannot be written

down. For until the form of cfy is known the above integral cannot

be calculated. In any example in which the initial conditions de-

termine <^, the a which appears in the integral must be replaced by

X -f V, after the integration has been effected.

Ex. 4. ^(i+(^)r-(/>-\-^+2 p(])s -|-/(r -f-/)/= o.

Ex. 5. ps — qr= o.

Ex. 6. (/; + cqfr -2{b-\- cq) (a + r/) j + (a -f rpff= o.

86. Special Method. — At times, by considering one or the other

of the independent variables as a constant temporarily, the equation

may be looked upon as an ordinary differential equation. Of course,

an arbitrary function of the variable supposed constant must take

the place of the arbitrary constant in the solution. The following

examples will illustrate :

Ex. 1. xr= p.

Letting J* be a constant temporarily, this may be written

dp . dp dxx-^=p, or -ti = —-•

dx p X

Integrating, we have p = xf{}), where /(j) is an arbitrary function.

Again letting y be constant, we have

whence 2 = ^(j)+ <^0'), where ^(r) is another arbitrary function.

Here the factor -, arising on the right, is incorporated in/(^).
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Ex.2, r -{- s -\-p = o.

Integrating this, considering y as a constant, we have

This is linear and of the first order. Hence Lagrange's method

applies.
dx dy dz

I I /OO - 2

From the first two members we get

X — V = a.

From the last two members we have the linear ordinary differential

equation

dy

An integrating factor is ^ (§ 13), and the solution is

Hence the general solution is

or z = <^( v) + e~^i{/{x —y),

where the factor e"" is incorporated in <t>{y)-

Ex. 3. yf—^ = xy^.

Ex. 4. J = xy.

Ex. 5. r +/ = -^J.
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87. General Linear Partial Differential Equations.—We shall con-

sider now partial differential equations which are linear in the de-

pendent variable and all of its derivatives. The general type of such

equations is

/T^ P ^"^^P
^"g

I p ^"^
\ \ P ^"^

+ -^n-1, ^ „_, + • • • + -^ s, r - , ^ r
+ • • • + ^1, T—

where tne coefficients are functions of x and v, including the case

where some or all of them are constants.

If we put D=. — , 3 = —
,
(i) may be written

bx by

+ •.. + /'., ,.^'^'- + - + ^1,0^ + Al^ + Ao)2 =/(-^, .)'),

or more briefly

(i) F{D,^)z=f{x,y^

where F{D, J}) is a symbolic operator, which, looked upon algebra-

ically, is a polynomial of degree ft in D and ^. There are many
points of similarity between this equation and the linear ordinary

differential equation of the «th order (§ 42).

Obviously, F{D, ^){u + 7I) = F{D, ^) u -f F{D, ^) v.
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Hence the problem of solving (i) can be divided into two, viz. that

of finding the general integral of

(2) F{n,^)z=^o,

which we shall call the complementaij function of (i), and that of

finding any particular integral. The sum of these will give the gen-

eral integral of (i).

88. Homogeneous Linear Equations with Constant Coefficients.—
Following a generally adopted convention, we shall use the term

homogeneous to apply to an equation in which all the derivatives are

of the same order. In this case the symbolic operator is homoge-

neous in D and ^. Suppose, besides, that the coefficients are con-

stants, and the right-hand member zero.
.
Our equation will be of

the form

(i) {k^ + ^iZ>»-'^ H- . .
. + K_^Dh--^ -f K^-) z = o,

or F{p,^)z = o.

Since for <^ any function whatever

B''^'<f>(j + mx)= m'-^^'+'\y + mx),

where d)(*"+'Yy + ?nx) means -— ^^-^ ^ / the result of substitut-'

ld{y + mx)Y^'

ing z= <l){y -\- mx) in (i) will be

^'"'0' + mx)F{m, i)= o.

Hence z = cf)(y + mx) will be a solution, provided F(m, i)= o; i.e.

(2) 4w" + ^'iW""' + h /^'„-,w .+ k„ = o.



240 DIFFERENTIAL EQUATIONS §89

If the roots of (2), which we shall speak of as the auxiliary equa-

tion, are distinct, say Wi, m.2, •••, w„,

z = cf>i(y + m,x) + <}>.,(y + m.^) -\, \- <^„(j(' + w„^)

will be a solution. Since it contains ;/ arbitrary functions, it will be

the general solution.*

Thus let us consider the equation in Ex. 2, § 85,

d'-z _ 2 d'-z _

The auxiliary equation in this case is

m'- — a'- = o. .•. m = ± a.

Hence the general solution is

z = <^(_)' 4- ax) + \j/(y — ax).

T-, _ d'-z d'-z , d-z
Ex. 1. —^ — 3 -—— + 2 -—

-,
= o.

oxr ox ay oy-

Ex. 2. —- — 7
—

f- 1 o ^ = o.
dxr dx" By dx dy-

89. Roots of Auxiliary Equation Repeated. — If any of the roots

of the auxihary equation are repeated, the method of § 88 fails to

^ive us the general solution. In this case we proceed by a method

entirely analogous to that in §47.

* If F(D, ^) contains ^ as a factor, F{m, i) is only of degree w — i. The lost

root in this case is 00, and the corresponding integral is ^{x). This is also obvious

from the form of the differential equation in this case. For to say that ^ is a factor of

^{^. ^) is to say that every derivative of z is taken at least once with respect to y.

Hence z = 4,{x) will give o. Similarly, if F(D,^) contains ^'as a factor, (/>! (a),

>'*2(^)> •••, y''~^<l>i{x) are readily seen to be integrals.
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The symbolic operator F{D, ^) may be written as the product of

its factors

{D - m,A){D - mo.-b) --(I)- m,,^).

Moreover, it is readily seen (§ 46) that the order of these factors is

immaterial. Suppose f/ii a repeated root. We wish to find a solu-

tion of

(£> - miJ>) {D ~ m^h)z = o.

Putting (Z> — mi^)z = v, our equation is

(Z> — ?n^,b)v = 0.

Hence, by the method of § 88 v = <f)(v + niix).

We now have to solve (D — m^^^z = (f){y + m^x).

This is linear and of the first order,

/ — m^g = ({>(}' + m^x).

Hence the method of Lagrange (§ 79) applies,

i^x _ dy _ dz

I ;«i ^(^y + ni]pc)

From the first two members we have

y + m]X= a.

Putting this in the last member, we have
, dzdx= -7—

•

.'. xcf>(a) — z^b.

Hence the general solution is

.r<^(jV + m-^x) —z= \p{y + niix'),

or 2 = \l/{y + m-ix) + X(l>{y -f m^x).
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In other words, if ni^ is a double root of the auxihary equation, not

only is <^{y -\- m^x) an integral, but so also is x\\i{y -\- m^x). In an

entirely analogous manner it can be shown that if Wjis an r-fold root,

<^,(_); + ;//iJc), x^.i^y^m^x), x-(f>.^(y + m^x), •-, x'-'^<f>Xy + m^x)

are all integrals.

Ex. 1. 2 + ;
= O.

dx'^ dx dy dy-

;, ^ dh d'z dh dh ^
Ex. 2.

I

y~ -^ = o.

dx^ dx:-dy dxdy- uy^

d^_ d*z d'z^
' dx* "^dx'dy' 8/

°'

90. Roots of Auxiliary Equation Complex. — If the coefficients in

the differential equation are real, the complex roots of the auxiliary

equation occur in pairs of conjugates. Hence if a-\-i(3 is a root,

a — //3 will also be one. The corresponding terms in the comple-

mentary function will be

<j){y + ax 4- i/Sx) + ij/(y -i- ax — t'fix).

<j>i and i/'i being any two arbitrarily chosen functions, there is no loss

in putting

^ = ^1 + /"Ai. "A = ^1 — I'h-

Our expression above becomes then

<}>i{y + ax + ifix) + ^i( r + ax — t/3x)

+ ^T'/'i(J + (ix + t'fix) — i{/i(y + ax — t/3x)'].

For <^i and
\{/i

any real functions, this is real.
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T^ dh d'-z ,
d-z

Ex. —,— 2-—— + 2—-=0.
oxr ox ay ay^

The auxiliary equation is

fn'^ — 2 m -{ 2 = o. .'. m = I ±.i.

The general solution is

z = <^{y + X -\- ix) -{-
\l/{y + X— ix).

It will assume a real form

z= !^^{y -\- X -\- ix) + ^^{y -{- X — ix)

+ i[_ipi(y + x + ix)- \l/^{y + X— tx)"],

for <^i and i/'j any real functions.

For example, if, in particular, we choose <^i(//) to be cos u, and

^liti) to be <?", we have

cos {y +x-\- ix) = cos {x + j) cos ix — sin {x + jc) sin ix

= cos {x +_>') cosh X — i sin (:t: +7) sinh x,

cos (_y + j*r — /;c) = cos {x + j) cos ?> + sin {x + _>') sin ix

= cos (^ + _)') cosh ;f + / sin {x +_>') sinh x

^+x+tx _ ^y+x~ix _ ^y+x ^^.i _ ^-ix^ _ 2
/^y+x sin X.

.•.2 = 2 cos (.r +_)') cosh .r — 2 ^"^^ sin x.

91. Particular Integral. — General methods for finding the par-

ticular integral which must be added to the complementary function

to get the general integral, in case the right-hand member of the

equation is different from zero, may be deduced along lines entirely
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analogous to those for linear ordinary differential equations with con-

stant coefficients (§§ 47, 48).* In a large number of cases, these

can be found more simply by trial, by methods similar to that of un-

determined coefficients (§ 50). The following examples will illustrate :

Ex. 1. —
-, + r-^; 2 •—i = sm (;f + 2y) — 2 sm {x +;') + a- + xy.

ox- ax oy ay-

The complementary function is ^{y + .r) + \^{y — 2 x).

To get sin(jc+2^'), since all the derivatives are of the second

order, we ivy z = a sin {x -f 2y).

rr.1 d'z
,

d'-z 5-2 • / 1 \Then t—,-\--—r 2 —^,= 5asm(.r + 2j).
ax- ox oy oy-

l{a = l, this becomes sin (a-+ 2ji'). Hence the required particu-

lar integral is 4 sin (x + 2y).

Since sin (x -{-}') is part of the complementary function, there is

no use in trying z=::ds\n{x+y). Trying 2 = /^jf sin (^-+j^') we get

^d cos(x -{-y). Hence we must try z = l>xcos(x +y). Doing this,

we have as a result of substituting in the equation — ^dsin(x+y).

This will be — 2 sin (a^ +j»') if (5 = |. Hence ^xcos(x-\-y) is the

required particular integral. [It is obvious that we might have also

used z = /y cos (x + r)-] To get x, we try z = ex?. Substituting this,

we get 6 ex. This equals .r if 6^ — 1; hence the corresponding

particular integral is — . To get .rr, we try z=fx?y. Using this we
6

get 6/A7 + 3/V-. So we try z=fx^y -^ gx'^. Using this, we get

6/v)' + (3/+ 1 2 ^).x~. This equals xy if/= i, ^=—^1-^.. Hence
the required particular integral is \ x^y — J^ x^. And the general

solution is

2 = <^(j>' + ^) + i/'(j - 2 a:) + 1 sin {x + 2y) -^\x cos {x + j) -\-\x^-^

\y?y— 2V •^^•

* Thus, for example, see Forsyth,
J 250, Johnson, \ 320 and foil., Murray, \ 130. •:
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3 r 2—
dj(^ dx dy dy^

Ex.2. ^-3^ + 3^^= ^-^^ + ^-^.

The complementary function is <f>(y + x) + yp(y-\- 2 x).

To get e''^^" we try z = ae''^'^". Using this, we get 3 ae"'^^".

Hence \ <f^+-* is the particular integral desired.

Since e^'^" is a part of the complementary function, let us try z =
xe^'^". Using this, we get — ^e''^". Hence — xe^~^^ is the particular

itegral desired. [Of course, we might have used z = l>y^'^'' instead.]

i.nd the general solution is

z= ({i(y+ x) -\- il;{y + 2 x) + 1 e'+^v - xe'-^'.

Ex. 3. —^ 2
-, H = — •

OX' By dx dy dy^ x'

The auxiliary equation is m"^ — 2 m -{- i = o. .-. m= i, i.

[We have here an example of the case cited in the footnote of

88.]

The complementary function is cf>(x) -\-\li(y + x) +xx(y-}-x),

d'^" I
Since there is no term in —-, in order to get — , we have to take

dx^ XT
J

times a function of x which on being differentiated twice gives -g >

at is, we shall try z = ay log x. Doing this, we find that i( a= — i

Hence the general solution is

z — <f){x) + ij/{y + x) +xx{y + x) —y \ogx.

bH dh dh
Ex.4. 2—-—-— 3-—: = sin(^+ v) + ^.:i;:^y.

dx^ dxdy ^ df ^ -rJ'J-r^ J

r, _ h'Z 3^z bH
Lx. 5. 2 — =-x —y.

bo^ dx By Bj^
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92. Non-Homogeneous Linear Equations with Constant Coefficients.

— li F (yD, ^) of § 87 is not homogeneous in D and 2>i but the co-

efficients are constants, it is only under certain circumstances that we

can obtain solutions involving arbitrary functions, although we can

always find solutions with an indefinite number of arbitrary constants.

Since jy-e"^^^" = a''e''^+^\ ^v^^^* = ^V°'+^*', the result of substitut-

ing z= c^-^^y in the left-hand member of

(i) F{D,^)z = o

is ce'^^'^^y F{a, b). l{ a and b satisfy the relation

(2) F{a,b)=o,

which we shall call the auxiliary equation, z = ce'^^''^^^ will be a solu-

tion of (i) where c is any constant. Corresponding to any value of

b there will be a definite number of values of a satisfying (2). Hence

we can find as many particular solutions as we please by giving

various values to b. Now, the sum of any number of integrals of

(i) is also an integral. Hence

(3) z = % ^^+»y

is a solution where the ^r's and ^'s are arbitrary constants, indefinite

in number, and each a is so chosen that with the corresponding b i

satisfies (2).

If corresponding to any value of b we have the k values of a satis

fying (2) in the iQx\x\ f^{b),f4J)), '••,fk{b), we can write (3) in th»

'form

(4) z = 2r^A(»)^+*^ + ^c^-P'^+^y
-I

1- ^cef^w^^^

where the c's and the <^'s are perfectly arbitrary.

In general, F{p, Jy) has no rational factors. If there is

linear factor D — X^ —fj., the equation (2) will contain the facto
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a — \b — IX., whence rtr = A(^ + /a. Hence one of the /'s, say /i(<5),

becomes \b + /a, and the corresponding set of terms in (4) may be

written

Since the ^'s and the //s are arbitrary, 2(r/(^^+'') is an arbitrary func-

tion oi\x-\-y, say <^(A.v +_>'). So that (5) may be written

(6) z = e>'^<^(^x+yf).

Hence we see that corresponding to every distinct linear factor of

(2) we have a solution of the form (6).*

If there is a linear factor of F(^D, ^) which is free of D, the cor-

responding factor in (2) will be free of a ; let it be b — /x. The

corresponding set of terms in (4) may be written

(5
')

z = 2^^'"^+'^^ = e'^'^'^ce'^.

Since the ^'s and ^'s are arbitrary, ^ce"'' is an arbitrary function of

X, and (5') may be written

(6') z = ei'''cp(x).

If the right-hand member of the differential equation is not zero, a

particular integral may frequently be gotten by trial as in § 91.

T-^ - d-z
,

d-z , dz . / , .

Ex. 1. •
— -| H — z = s\n {x -{- 2y).
dx dx dy dy

The auxiliary equation (2) is

a^ + ad -\- b — I = o,

or (a -{- i)(a + 1> — i) = o.

* In the case of the homogeneous equations (^ 88) all the factors are linear. Be-

sides, in that case, i^ = o, and the result there obtained coincides with what we have

found here.
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Using «+ I =0, we have X = o, /x = — i, and from (6) we see

that z = e'^'i^i^y) is a solution.

Using a-\-b—\=o, we have A. = — i,/i,= i. Hence 2 =
(f*i/^(^ — X) is a solution. The complementary function is, therefore,

For a particular integral try .-^ = « sin (:v + 2_)') + )8 cos {x + 2_)').

Substituting this in the left-hand member, we get

(— 4 « — 2 ;8) sin {x + 2 J') + (—4 /3 + 2 «) cos (;»: + 2 y).

This will equal sin {x -\- 2y^ xict— , /3 = — — . Hence a particu-

lar mtegral is

sin {x -\- 2y^ cos (.v + 27),
5 10

and the general solution is

z = e-''<i>{y) + e''^{y — x) ^ [2 sin (:v + 2 ^) + cos (at -{- 2 j)].

-2 6-2
, dz

,

HiX. 2. -— 3+2 1- s = <?

ojc 5).'- dx

The auxiliary equation (2) is

a^— ir + 2a-\-i=^0

or (a + ^ + i)(a — <^ + i) = 0.

Hence the complementary function is
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Since ^~* is part of the complementary function, we would naturally

try z= axe~'. But this is also part of the complementary function,

as may be seen by putting
<i>
— —

, ^ = -^

2 2

We must then try z = ax^e'"". Substituting this in the left-hand

member, we get 2 ae~''. Hence « = - , and the particular integral
2

desired is ~x-e~'. The general solution is

<i>{y
— x)+ \p{y + x)+ -x^ .

Ex.3, i^ ^_2il^+2|^+2i? = .^^-*-«^+sin(2.r-f A
dx^ dx dy dy- ox dy

P . d'z d'z , dz / , N , „Ex. 4. — — -\ 2 = cos {x + 2y) + <?''.

ax^ dx dy dy

93. Equations Reducible to Linear Equations with Constant Co-

efficients. — If the coefficient of D''^' in J^ (Z>, ^) of § 87 is a con-

stant times x^y, the equation can be reduced to one with constant

coefficients by the transformation log x = X, logy = Y. (Compare

with Cauchy's equation, § 51.) Thus

dx X dX dX

~a _ 5^z _ J_ d'^z i_ dz_ . 9 jyi^ _ d'^z _ dz_

^~d^~^dX'' x'dX' "^ ^~dX'~'dX'

^ dz I dz . ^ dz

dy y dV dV

'^^~d/~fdy'^ fdY' "^^^~'dY^ dV'

rt^ dh 1 dh . n ^
^'2

dxdy xydXdV ^ dXdV
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9j*r dx oy oy-

Making the substitution log x = X, log y = F, the equation becomes

i!^ + 2
^'^ + i!?. _ ii _ ^ = ^2x _^ ^2r ,yhjch has constant co-

dX^ dXdY BY'- dX dV
efficients. The auxiliary equation, (2), § 92, is

a- -\- 2 a^ + d^ — a — d = o, or (a -\- /?)(a + ^ — i) = o.

Hence the complementary function is (f>(V—X) + ^^{{/(V—X).

For the particular integral try z = ae'^^ + ^r^. Doing this, we find

that a = ^ = -. Hence the general solution is

2

z = cf>{V-X) +e^i{^(V-X) +i(^^+^^).
2

Passing back now to x and v, and remembering that V— X= log -,^ X
the general solution takes the form

^=<f)+^<f)+-^^+^)-

[This equation, being linear in ;-, s, t, comes under the head of the

case treated in § 85. The student should solve this example by

Monge's method, as an exercise.]

Ex.2. XT —5 — y

—

,+x—-—y — = 0.
dxr dy- dx dy

Ex.3, x"—-^- 4xy~—-{-4y~—^-{-6y~= xy.
OX' ox ay dy dy
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1

Other equations may be reducible to linear equations with constant

coefficients. (But the transformation is not always so obvious as in

the case cited above.) Thus let the student apply the transformation

X-=—3^, Y=—y^ to the following example.
2 2

T- ^ I 5^2 \ dz I d'Z I dz

X- dx^ x^ dx y- by- f" by

94. Summary.— The number of classes of partial differential

equations of higher order than the first which can be integrated by

elementary means is very small. In this chapter we have dealt

almost entirely with differential equations either linear in the depend-

ent variable and all of its derivatives, or linear in the highest deriva-

tives only, these being of order two. This latter class frequently

yields to Monge's method, § 85.

If the equation is linear in the dependent variable and all of its

derivatives, and has constant coefficients, the general method of

§ 92 applies.

If the linear equation with constant coefficients is " homogeneous,"

that is, if the dependent variable is absent, and all the derivatives

that appear are of the same order, the method of § 88 applies.

If the equation is linear, but the coefficients are not constants, a

transformation can sometimes be found to reduce the equation to

one with constant coefficients (§ 93).

At times the special method of § 86 can be applied directly to an

equation.

Ex. 1. ys^x-\ry-

Ex. 2. r— s—(it=^xy,

Ex. 3. zr -\-
p' =^ 2)

^y""

•

Ex. 4. „-i.+y)s+yt^^-±y-(t-i)- ^i^fOV
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Ex. 5. xr—p = xy.

Ex. 6. r-t-2>p + 2,q = ^^''-

Ex. 7. x'r-y-t={x+i)y.

Ex. 8. x^r+2xys^y-t-\-xf>^-yq-z= o.

Ex. 9. xr+p=^gxy.

Ex.10. s-t=-..
f
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NOTE I

Condition that a Relation exist between Two Functions ot Two Vari-

ables.— If u and V are two functions of jr and j, the necessary and sufficient

condition that a relation exist between them is that their functional determi-

nant (also called i\\Q\t Jacobiati) vanishes, that is,

du
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If = o, these equations can hold simultaneously only provided

Differentiating, and remembering that x and y are independent variables, we

have

dx dx dv dx

dy dv dy

dx Qx

dy dy

^ = o. But this means that is free of x. Hence, when the Jacobian

dx

vanishes n = (p(v),

which proves the sufficiency of the condition.

/?emari.— This theorem can be extended to n functions of n independent

variables.

NOTE II

General Summary.— The following is an index to the various methods,

given in this book, for solving differential equations

:

In the case of a single ordinary differential equation,

if it is of first order and first degree, see § 19;

if it is of first order and higher degree than the first, see § 28 for the general

solution, and § 34 for the singular solution;

if it is of higher order than the first and linear with constant coefficients, see

§ 52 (note what is said there of a very general class of linear equations which

can be transformed to linear equations with constant coefficients)

;

if it is of the second order and linear, see §§ 55, 62, and 74;

if it is of higher order than the first and does not come under any of the above

heads, see § 62.

If there is a system of ordinary differential equations, see § 69.

As a final resort, whether there is a single ordinary differential equation or a

system of them, the general methods of Chapter XI may be tried.

If there is a single total differential equation in more than two variables,

see § 41.

If there is a single partial differential equation of the first order, see § 84.

If there is a single partial differential equation of higher order than the first,

see § 94.

The above may be put in the following tabular form

:
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a*

s

03

1—.£

r^

«3^





ANSWERS

Section 3

dx

_j. d-v dy _^
dx^ dx

-7.

dx

^y

Section 8

x"^
4. jry H = c.

2

Section 9

2. jj/ + 2 xy — 2 JT^ = rjT^^.

•3. >'(! +;«r2) = f(l ->'2).

4. secjT + tan,)/ = f.

Section 10

3. log ;<r - - = ^.

y
-4. j2= fA-2(;r2+/2).

6. a:2 + ;>'2 = fA-2j'2.

6. log x — sin ^ = f

.

Section 11

-2. tan-if-=^^:^^Ulog[4(^ + i)2

\2X + 2/
+ (>'+2)2]=.

-3. 5:r-iojj' + log(io^ + 5>'-2)

257

Section 12

x-y + ;ir^_>'2
—

<:.

log =c.
y xy

Section 13

2y = {x+iy-^c{x+ 1)2.

j(l + x2)2 = Ar2 + log jr2 + c.

y=x'^{l + ce^).

Section 14

(j2_ i)e'- = c.

(cos_y — l)e'=°'^'=^c.

x\\'*{e^ + c)= I.

Vy + I = X + I + cy/x + I.

Section 15

_y2 — ^j;.

jr3 + _)/ = ^;9/2_

Section 16

log y/x'^ + y'^ — tan"i ^=-c.
X

X^ — y"^ =. ex.

log JT + -^ = f

.

X

tan-1-^ =;r + c.

Section 17

,
^x*-\-?>x^y^-(>x'^y'^ = c.

(Ar2 + J2) ^y = r.



258 ANSWERS
r

4. y '= ex.

6. J:^ + y^ = c {my — x).

'"-<

Section 18

ke <^ — I

ke a. +1

if /5 and c have the same sign;

U_!ljrntan k ,

^ b \ «

if b and c have opposite signs.

Section 19

.y-

*"2. jtVi — y- + y Vi — jf2 — ^_

^3. y -^ x^ + 2,= ce^ .

. y — X + I o„

y — X — I

5. x«y^3e^ + c) = i.

6. xy — ce^+y.

7. \ogy + - = <r.

8. tr'^jr- — 2 cy — I = o.

9. J = (;r + «)^ + c (.r + «)8.

10. sin~i-2^ = log.r + c.

X

11. jr sin^ = c.

X
12. (.r+;'- iY=c{x-y+7,).

13. y^—£_ +,, ^^l-'^

V I — .;f
2

14. i=<rvr^r^-a.

16. ^ = tan-^ X - 1 + <:f-tan"^z.

,^ 5 _3 » 3 7

^17. .r-jf/^ — jT^j^ = c.

18. 7 = sin.;*: — I + ffsins.

19. - + - = c.

2 >/

20. - = ce'^^y.

y 2

21. log x"^ + logJ -f
•<-- = ^.

2

22. .y2_|.^2_^v^;^.2^y2^ i+ -(j>'-^).

23. jr+7-4log(2jr + 3>'+7) =<:.

24. a-y- (/2 — .;f'^) = c.

25. X- + y2 + — = <:.

26. Vl + x^+y- + tan-i f = «.

27. X + J<?J' = <:.

28. i = logA- + I + ex,

y
29. jr-y- — 2xy\ogey = I.

30. y = ^^-^^

Section 20

Vat

v-Hiy

^yY
</xJ

dy
'5. y = x-f + r

ax

•'-''-^>--"SS['+(l)]
r/-y^ 2

,^7

=[-(l)T

'»-^g-K*)
t/'V

>• [-(:fe)T='1S)
•



ANSWERS 259

Section 21

The parabolas /^ = 2\x + c.

1

)/ — ce -f.

The circles x- + y- — ex.

The cardioids p = f(i — cos 6).

The spirals p- = i:<? •

Section 22

. The circles x- +y' = c (vy — x),

(see Ex. 6, § 17), through the ori-

gin with their centers on the line

jj/ =: — t/ix, where m = tan «.

, The logarithmic spirals pe'"^ = c

(compare Ex. 5). ^

1. The ellipses 2 x- -\- y^ = c.

I. The equilateral hyperbolas xy = c,

». j" = cx'^.

J. p = (r(i + cos Q).

3. p= f

1. p™ cos w^ =

5. tan d = c^'P

2 c
6. p = -, the family of parab-

I + cos

olas, confocal and coaxial with the

original family (compare Ex. 4).

P7. p = , the same family of
Xcos^

conies (compare Ex. 3).

Section 23

2. V — gt sin a; x — Xy^ = - gt"^ sin «.
2

3. X -Xq = ^ log
H ^ + I

^(/'-i). If/&>o, the5. X — xq

velocity and the distance covered in-

crease indefinitely ; if /^ < o, the

velocity diminishes continually, but

never vanishes at a finite time, while

the distance covered increases con-

tinually, but never attains the value

2 at a finite time.
k

--> E -^t
(a) I — ce ^ ,{])) i = — \- ce ^

,A

-I,(d) i = ce i
-f-
—

- J E (/) eL dt.

Section 24

4. y^ = 2 X (x — cy^.

5. 2.x = cey ^—•

cev

•6. {i + xy - cy) {x + y + 1 - cef)

{x — y — I — ce-^) = o.

^. y = X +

Section 25

T-5.

6.

xy = C'^x -\- c.

4(-*^'' + yy = (2 JT^ -I- 3 jr>/ -I- f)^-

^-•1. 7 =

Section 26

i
^ ^ ^ -^;»(2/>2 + 3)

(1+^-2)1' (H-/2)i

y- — 2 ex + d'C- = o.

^ = f (j: — f)2.

The family of circles,

(x - cy +y^ = c.

Section 27

e« - c{e^ + I ) + ^.

y- — cx' -\

6. x'^+y'^ =c{x +y) --
4

7. y^ = cx + - c^.

o

9. y = cx'^ + c^x.



26o ANSWERS

^:

Section 28

{x - 0- + f = a\

cy = i:-{x - d) + a.

X + cxy + f2 — o.

x'^-^c{x-zy)+c^ = o.

{x-y+iY ^-2 c{x+ y-\-i)-\-c^=o.

y^ = cx' •

y(l ± cos x) = c.

(_y
_ ^;r)2 = I

_ f2.

9. (jK — fjr)2 = 4 c'^.

jr + 2 ty^ = c^xe^.

the ellipse or the hyperbola, havii

the fixed points for foci, and y/~^

for semi-conjugate axis.

2. The circle x^ + y'^ = k^, where k

the constant distance.

•3. The equilateral hyperbola 2xy = a

4. The parabola (jT —^)2 — 2 «(jr -f J

+ a2 = o.

P5. {y — ex)- + 4 <: = o, g. s.*

"*" jy — I = o, s. s.

"^^ — <:jr)2 = iJ2 ^ ^2^2^ g_s_^

" y2
-I- ¥ C C

= 1pVp^_[/(p)]2

•13.

14.

16

V = —^— ; or putting p = tan -

,

;r= - (61 + sin ^) +<:,j= -( I -cos e),

2 2

a family of cycloids generated by a

circle of radius -• We see, then,
2

that a characteristic property of a

cycloid generated by a circle of

radius a is that 5- = 8 ay, where s

is the length of arc measured from

the nearest cusp.

The same family of cycloids as in

-Ex.14. Here/& = i^,
2

y^ = r^

Section 29

Section 32

the fixed— h — =1, when
e'^ + k k

points are (c, o), (— c, o), and i is

the constant product. According

as ^ is positive or negative, we have

+ ^
^^(y + x-c)^= 4xy, g. s.,

"-^xy — o, s. s.

Section 33

4. (.r— <r)2 =^'^—^'*, g. s., y = I, s. s.

y = o, c. 1., 7 = 1, 1. 1.

§ 24, Ex. 3, j2 - I = o, s. s.

Ex. 4, there is no s. s., jr = o,

t.l. andp.s. for r=oo,7=o, n.l.

Ex. 5, .r2 + I = o, s. s.

§ 25, Ex. 5, 4 x'^y + i = o, s. s.,

A^ = o, 1. 1.

Ex. 6, there is no s. s.

x^ + y = o, c. 1.

§ 26, Ex. 2, X' - ay- = o, s. s.

Ex. 4, 4 jr-' — 277 = o, s. s.,

y = o, s.s. and t.l.

§ 27, Ex. 2, X^ + 4 ^2y =: q, s. S.

Ex. 6, xy = o, s. s.,

y — x-=o,t.].

§ 28, Ex. 2,;>'2-4a(.r-(J)=o, s.s.

Ex. 3, xy^ —4 = 0, s.s.,

jr = o, p. s. for c = 0.

* In these answers the following abbre-

viations are used : g. s. for general solu-

tion, s.s. for singular solution, p. s. for

particular solution, 1. 1. for tac-locus, n. 1.

for nodal locus, c. 1. for cuspidal locus.
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Section 44

%. y-^{cx-\- c^x') + f3^-*.

3. jj/ = tf-^(a + coJT + <r3jr"') + f4i?*.

4. >' = Tl + ^^^(fo + c^x^-

Section 45

:(t-i + ^ox) cos.r+((r3+ f4x)sin.r.

f^^)-

y = ci + £""
f
fo cos - Vj

V 2

+ Oi sin

Section 47

y = cid?--' + £-.2^ -^ + e-''^^e^^-

20jr^— x^\

c\e~^ + fo^-^ +
cos Jr — 3 sin x

ID

(ci + c-ix') e^ — e^ log (i — x).

Section 48

cxe' + fof^x _ x^.

9 .r- + 6 X + 20

27

: c\ COS jr + Co sin jr + .r sin x

+ cos .r log cos X.

{,ci + <rox) ^ + cs^-'^ - -^ - 5 ,

+

2. y =

7 =

Section 49

ci cos X + f2 sin JT

cos X log (sec j: + tan x')

.

Section 50

f1 cos X + ("j sin X + e^

+ x-^ - y X.

I „ I .

(ci + f-ix)f"' 4- -f-* sin.r.
^

3 2

= cif* + ^-i^ (
Co cos - V3

+ C3sin-V3)- jr2.

+

c\ + ^2^"* + cz e^^ x^
3

-.r'^ X -\ sinx +
3 9 10 5
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7. y = (ci + C2x) tf* + (<r3 + t^ix) e-^

8. y=iCx-\- cie^'' + - (<?2^ - i).

9, y — (ci + cox) cos X

+ (^3 + c^x') %\v\.x x~ cos X.
o

Section 51

2. ^ = (iTiCOslogjr + <r2 sinlog^) j:

c-i 2 Ice jr

+ :f+5-^ +—^•

3. y = ^ + - log-^ X X ^ \-x
4. 7=a (^ + I)- + ^2 (Jr + 1)3

,
3-^ + 2

Section 52
cos jr — sin x

1. y = cxe^^ + C2^*' +

+ ^^^.

%. yz=. c\e^ + iTif + Cz sin jt + f4 cos ^
I

e^ cos jr.

5

3. y= (ci + ^2^) e''' + 2 x^ — \2x-

+ 36J- — 48 ^

32

4- ;' = ('1 + fiX -r C3X-) e-^ ^ .

24

5. 7 = ^1 + ^2^-^ + cze-"^ -~-%
^

128

6. y - {c\ + <:2X) f== + (rs + <:4x)f

+ - cos X.

4
7. 7 = (fi + ci log x) sin lug ji- +

(fa + ^4 log^) cos log X + (log;r)-

+ 2 log JT - 3.

8. y = ci+ (c2 + C3x) e-^ ^ ^—
3 2

+ 8x.

9. 7 = ^1 sin 2 j: + c^ cos 2 j:

,
I — .rsin ix

8
10. _)' = rt cos (jf + ^) 4-

sin jr log (tan x + sec jr) — 1.

11. _}' = (^1 + oix + fsjr"-) ,f=^ — jr — 3

_£^
120

12. J = (ci + coj: + czx'-') e^ + i-4(?-2*

40

13. y — c\ cos x -\- cn sin jr

jr- sin jr + jr cos jr

4

14. ^ = ^(.i + .2log.r) + | +feX 4 *^

15. _)' = ci^ + I? ^2 cos - \/3

rasin-
V3J

cos 2 JT + 8 sin 2 JT

+ t(-^-
2>

130

16. y — (^1 + ^2-'^) ^

+ ^

18. 1°. k>n. e = ^'"(Ae''' + Be-t^']

where /i- = i- — «^. $ tliminishe

continually but vanishes only fc

/ = 00 , theoretically. Practical!

the swing of the pendulum is soo

clamped sufficiently, so that the a

sumed law ceases to hold, ahd d b«

comes zero in a finite time. Bi

the solution tells us that the pei

dulum comes to rest without vibra

ing.

2°. /&<«, e=/le-^' cos (fjJ+B

where /x'^ = «2 — ^2_ Th^ pendi

lum vibrates with constant perio

27r
, =, which is longer tha
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in the case of motion in a vacuum

(Ex.17). The amplitude is Ae~'^',

which diminishes continually.

3°. k = ti. e={A + Bt)e-'^.

If A and B have the same sign,

6 diminishes continually, as in case

1°. If A and B have opposite

signs, d passes through zero,

changes sign, attains a maximum

in absolute value and then dimin-

ishes continually in absolute value,

as before,

(a) l". m^n. = A cos {nt-\- B)
C

H cos 7nt.
«2 _ nfi

2°. vt — n. 6=A cos (ni+ B)

Ct .

\ sin nt.

(J>) The same complementary func-

tion as in Ex. 18*

. C [ ( w^ — nfi) cos mt + 2^ sin nit\

(«2 _ ;«2-)2^.4^2

This last term may also be written

— - cos {mt— a),

V(«2 — fffiy- + 4 k^

1 2k
where tan a The part

^^ — 711^

of the motion indicated by this

term is called the forced vibration.

Its period is It is not in
m

phase with the periodic force [ex-

cept in<case {a) i°], lagging be-

hind by the angle a. When

w > w, o < « < - ; when
2

n<im, —<CCi<.'n- ; when n = tn,
2

a = ~. In this case the forced

vibration is given by 6^^ = — sin ni
2 k

Ct
for case {b), and by £/=— sin nt

2n

20. X

for case («). If k is small, the

amplitude is large in case (i^), while

in case {a) the amplitude increases

with the time. This explains reso-

nance in Acoustics, the effect of

the measured step of soldiers on a

bridge, and the like.

Vq
jTocos kt-\—- sin kt. The period

k

21.

is independent of xq and vq.

2X={- '
"'xo + 'pe^' + Xo

k

22. r= cie'^' + C2e~'^'+ -^— sin ut, where
2 0}'^

''I + <^2 = ro, w(<ri — 02) + _.£-- Vo.

If cx =f-- o, the first term soon predomi-

nates, and the motion is spiral.

If ci = o, the second term soon

becoming negligible, simple harmonic

motion results.

When ro = o and vq = -^,
2 0}

r = -^— sin w/ ; i.e. we have simple
2 ui-

harmonic motion from the beginning.

Section 53

2. y = fi^ 4- c-ix-e'^ -f- x.

Z. y = cix + C2(i + X tan-1 jr).

4. _j' = cix + Ci^ -k- x"^ \- \.

6. y = sec jr(fiif'«^ -|- fo^-"*).

7. J = ;r> 4 (tTj -f fo log x').

8. xj' = ^1^^ -f- <rof--^ + jr^^.

Section 54

2. _j' = ci^trVi — X' -\- C2{\ — 2 x"").

Z. y — c\ sin (sin x) -\- C2 cos (sin x').

I
4. ;'= Cx cos -f ^2 sm

;
+

5. jj' = ^11?-^''
-f- c-^e~^- x'^e'

3

* Rpnlppp h hv >fH/ thr it thp nii<;wpr
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Section 55

l.y = ci^ + C2(x^ + 3^' + 6jr + 6).

+ I50jr-i83).

4. J = fi(^"- - 1) + ^iJf-

6. ;' = y-(fi cos X + C2 sin Jr).

7. -y = dX + C-2ix^ + !)•

8. 2J = ^(<ri^-=' + ^2-.^)-

9. jj/ = iTx^c" COS (aJT + C2).

10. V = n COS - + C2 sin - •

"^
jr ^

Section 57

3. ;j/ = ;>r+<:i j ^'2rt''^ + f2.

i. y = (x — 2)e=' 4- ^.^ 4- ^2-

5. ;>/ = ici^- 4- -^^l + '^i^ +^2-
2

Section 58

2. (;r-a)2 4-/ = '^-

3 ^^ _ 4 a^"^^

(I - a£'^^)2

4. ay 4- ^i?"" 4-2 = 0.

Section 60
>.2

2. ;cy = — 4- <^i log jr 4- <^2.

4

3. {x - iyy = ci + cix - COS x.

4. xy\/x^ — I = fiV-r- — i

4- ci log(jr 4- ^'x"^ -\)-\r cz.

5. Ar3j2 _ c-^x'^ ^ dx 4- cz.

7. A7 = <riJr - cx sin-^jr Vi - ^^

4- ciy/\ - x\

i. y = c\ COS x"^ 4- f2 sin x'^ + czx^.

10. tan_j' = acotx 4- ^2-

Section 61

C\X
2. y = ;r log^

I 4- ^2-^

3. logJ = c\f- 4- cifi-' 4- jr* 4- 2.

4. _y = t:iCot.y 4-<^2(i - JTcotjr).

Section 62

1, ^ = fi — log cos {x 4- ^2)- \

2. y = (sin-i .:ir)'2 4- ^i sin-^ jt 4- ^2-

^ a +y _ ^(1+6),

a-y
4. ( I 4- x'^) y = cix'^ 4- ^2-^ 4- ^8-

5. (x- i)6j = fif Jr<-6jr2 4-2jr-^

- 4;ir3 1ogxJ 4-^2.^«

6. logj=i 4-
;

C1X + C2

7. y = a log j: 4- ^2-

8. x-y + xf = c\x 4- <^2 -—

•

9. J = log cos (^1 — •*) 4- C2.

x'^ rr, ,

10. y = — + ciVx- - I 4- ^2.

2

n. y = ci + (c^ + cs log .t) Vx.

12. y = ci sin2 jr 4- ^2 cos jt

— tTosin- jrlogtan- •

2

13. (rt)The circles (j: 4- '^i)'^ 4-/ =<^2.

(d) The catenaries

14. (a) The cycloids

;r 4- a = f2 vers"'-^ - ^ic^y-y^,

(b) the parabolas

(x + ci)- = 2 c^y - C2^.

15. The central conies

^j^2 _ £1: (;r+ ^2)2= I ; hyperbolas

when >6>o, ellipses when i<o.
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16 « = i fllfl-^

Iog(<z — jr) + fo,

24^1

if « = I.

.de
17. v=l—= y/zgl (cos e - cos «;.

18. (a) »2 = 2/62fi_i),
\x a I

w^=^^l=l^«•^-^'

vers
2

.J
2 jf <77r\

« 2 /

w!.

if A = 00 , 1/ = y/2g R, which is 7

miles per second, approximately.

Section 64

V = — 2 tries' — f2<?~3« + - rf'+ 9 ^+9.
'^

2

2. ;ir = (6 ^2 — 2 '^i
- 2 c^£)et

I _3, I

3 3
^ J

3. JT = (tri + <^20^* + ('^s + <^40'^~'.

2^ = (Cj — ^1 — <ro^)£'

-(<^3 + <^4 + <^40'?"*-

Section 65

8. ;r2 __j,2 = ^j^ 2 (X +>') -^ = ^2-

9. ^ = cii, x^ +f + f- - cit.

10. jf—^ = <ri(jr— Oi

11. ;f —^ — / = ^1, ^2 ^y2 _ ^2^ = o.

12. :r^/^ = ^1,
y
^ + '^ = <^2.

Section 66

x'^ + z'^- cu y^ + Z^ = Ci.

Section 69

1. The path is a parabola lying in the

vertical plane determined by the

direction of the initial velocity. Tak-

ing the initial position for origin,

the horizontal line of the plane

through it for the x axis, and the ver-

tical line through it for the y axis,

the equations of the path are

X = ?'(,/ cos (t.,y = V(^t%\n a gfl.
2

Or, eliminating /, we have

gx^-
y — X tan a—

2 z'o" cos2 a

2. ;r = ^^«^^i^ (I -.-**).
k

•^
k^

^ ^ k

k
Vu sin it . r

.

V = -2 sin ^A

Or, eliminating /, we have

(at sin a-y cos a)^-\ f- =a'^sm'^a,

an ellipse with its center at the ori-

gin. Since x and y are periodic

2 7r ,

functions of period -7-, we see that

the motion is periodic, the period

being independent of the dimen-

sions of the ellipse.
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4. 2kx = {ka + Wq <^os a) e^"*

+ {ka — z'q cos «) ^"*'*,

2 ^j .— Vq sin « (^*'« — <?-^ )

.

Or, eliminating /, we have

(x sin « — y cos a)^ ^r-

a hyperbola with its center at the

origin.

5. / = «sin (k/ + b),

q = a cos {kt + ^),

A

where a — V/qM- ?o^»

<5 = tan-i^o,<r=r(„ /^ :

Angular velocity

= u = V/o^ + ^0^ + ^0^) a constant.

Direction cosines of the instanta-

neous axis of rotation are ^ , ", —•www
The paths are the curves of inter-

section of the hyperbolic cylinders

x"^ _z^ _ y^ _
"

The time' is given by

Ci.

ab Jz,

dz

For the curve through the origin

c\ = ci — o. Hence the path is one

of the lines

a b c

The time in covering a part of it is

ab \so z]

ca
\j>'o yl be \x^ X

I

Section 74

Z. y = Aii --xJr—xA + B (j-3

- 5 jr~2 -f 10 Jf-i— lO -1- 5 jr - x"^),

or y= A{x'—Zi x+ lo— lo j-"! + 5 x-'-

-x-^)-]-Bix-^--x-^+ — .r-3 V
V 2 10 y

i. y = A(x +— + —^
2.5 2.4.5.9

+

—

f^
— +•')

2.4.6.5.9.13 J

+ Bx^i +'-{•

x^

2.3 2.4.3.7

2.4.6.3 .7.11 )

1-3 I-3-3.7

+ +
1.3.5.3.7. II

5. y = A(6 — 4X + x^)

+ B(x-^- 4x-^),

Section 75

5. F(i, I, i,x),

2

2 ttx

f{-^\-'^,'-,xA,
\ 2 22/

v. 2 22/'

2'4«/3y
Limit

Section 76

1. jr -;'-f-2(/-^)=o.
2. jr^ — j/ = o.

3. z=/>x + qy -f V/-' + ^2,

4. 2 = /^.

5. (l+/2)2(^2 + ^2+i)=^2,
(I -f ,/^)-2(/i-f ^2+1)=^,
PY~{p- + f + = ^'-

6. 2 = jr/ -f JY — ^y^t r =0, i = 0.

7. r = o, 5 = o, / = o.

Section 77

2. jrs/ + _j'2^ — xy.
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3. yp — xq—y^- — x^.

4. r — / = o.

6. xr-{x^y)s^yt='^^{p-q).

Section 79

3. {xy + z, X- + j2) = o.

4. <^(Ar2 +72 + ^2^ x4->' + 2) = o-

Section 82

2. j = (^-jf)(a+jj'2) *

3, i) z — {7. X — ay -^^ b d^y ^- b.

Section 83

3. e' — cx'^y^'". Since the equation is

linear its general solution is

e^^xf[

4. z = cx'^y'''^'-\

5. z — ax \- a log jj/ + <r. Since the

equation is linear, its general solu-

tion is z —fix + log;')-

7. rts — I = cxe'^1.

8. 4rt'3= (^+(7J'+^)2.

9. 3 = flx + rtV^ _|. ^.

10. logs = (x + rt)2 4- O' + ay- 4- /^

11. c = rt'x + (^j + V«2 4. <52 ^ I, Sin-

gular solution is x2 +^2 _|. 22 = i.

\% - =\og{x ^y—\')-\- y-\- b. Since

the equation is linear, its general

solution is

log (x+;'-i)+j'=/(2).

13. z = c{x^y\a)e''y.

15. 23 = .r-K;') + ^-
* Attention should be called to the fact

that no unique answer can be given for

the complete solution. Other forms just

as good as the ones here given may be

found by selecting various forms for the

auxiliary function (^.

16.

17.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

z = x---\-e-^y<i>{y').

z =:j[/sin"i- + 4>{y)-

Section 84

I I I i\
, =0.

X y y zl

z — ax 4-(<Z"-|- i^yArb.

xyz-2>u = <p{^^ ..,

z — ax+ by + {a + by.

1

2= fx"j".

x2 — 3- = <}){x^ —y^)-

loo r

z — axey + - a-e~y + b.

2

Vi + a s = 2 y/X + ay + b.

z= a Vx+y + Vi - «2 y/x—y + b.

Z' — a-X' = (ay + by.

z=^ - a log (;r2 -f y"^)

2

+ Vi — «2 tan-i^- + c.

X- + y- + s2 = "-^ ' -'

{a - l)z{x + ay + b) - a'^ = 0.

z = axy + «2 (^x -[- y) + I'.

xz + X y/x^ + y2 4. 32 = 0r-

y

2 (73 = (.* -t- ^7)2 + (5.

(o- — ?<)^(-^ -V y + z + u)

Vs— « z — ul

The family of planes

z — ax + V-42 _ 1 _ a;2^ -f (5
;

for <^, a fixed constant, the corre-

sponding planes envelop the cir-

cular cone

(^2_i)(;,2+^2) ^ (2-3)2,

whose vertex is at the point (o, o, b).
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This equation is a particular solu-

tion for all values of b.

19. The surfaces of revolution

A-2 +/ = </. (2).

20. The family of planes

where the fixed points are (c, o, o)

and (— <r, o, o), and the constani

product is k'^. These envelop the

ellipsoid of revolution

/&2;<r2+ (/&2+ f2) (^ylj^z-)^k\k^^fi).

Section 85

4. jr = 0(0) + ^{x + J + 2).

5. x = 0(s) -f^C/).

6. ;c = x4>(^ax + 3j' + (-2)

\^^/{ax^-by\cz).

Section 86

3. =^+jVW +V'W
3

4

2

Section 88

1. 2=0(7 + Jr) + V(>' + 2x).

2. 2=0i(;') + <^2(;'+ 5'^) + M;'+2^).

Section 89

1. 2 = <Piy \x~)^r x^{y\ x).

2. 2 = 01 (;' + ^) + 02 (>' - x')

+ jr03(/ -•^)-

3. 2 = </>! (j: + j) + x<^« {x + >')

+ 03 (-^
- y) + -^04 (^ - >')•

Section 91

+ isin (x + :>')+ i^7 + ^^-

5. 2 = 0O'+2;tr) + f(>'-x)

+ — (2Ar3+y).
12

Section 92

3. 3 = 0(j>/ - jr) + ^-2x^^,(2 JT + 7)

L^2x+3y_icos(/+2jr).
ID 6

4. 2 = r'^Cj) + ^-^V(jr + 7)

+ - sin (x + 2y') — xe^.
2

Section 93

2. 2

3. 2

4. 2

0(^;')+^Q.

0(jrV) +'^('*''

0(^-+/)+'/'(.^2-/).

0(jrV) +;n/'(jr2jK)+-^.

Section 94

1. 2= -log7 + jry+ 0(jr) +'/'0').
2

2. 2 = 0(j + 3 ^) + '/'(^' - 2 ^)

3. 22

4. 2

5. 2

6. 2

7. 2:

8. 2

9. 2

10. 2

6 24

= ary + .r0(j) +V'(>')-

= 0(.rjO+^(jr+j).

= -x^-yXog X + Jr2^(>')+ '/'(;')•

2

= 0(.r+ ;') + ^^^f (/-•*) -J-^"^-*

= a:3>'2+ 0(7)log.y+'/'O')-

= (;«:)+-/' (j; +>')+ (^ +>') log ;
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Additive constant, 2.

D'Alembert, 233.

Applications, 31-48, 55, 60, 67, 68, 74, 117-

122, 146-148, 162, 163, 214, 229.

Arbitrary constant, 2.

Auxiliary equation, 92, 240, 246.

Bernoulli, 20.

Bernoulli's equation, 20.

Cauchy, 91, 92, 113, 164, 202.

Cauchy's linear equation, 113, 178.

Cayley, 75.

Characteristic equation, 92.

Charpit, 218.

method of Lagrange and, 215.

Clairaut, 25, 56.

Clairaut's equation, 56, 59.

extended, 225.

Commutative operations, 97.

Complementary function, 91, 239.

Complete 1. d. e., 90.

Complete solution of o. d. e., 5.

of p. d. e. of first order, 213.

Condition for exactness of o. d. e. of first

order, 9.

for exactness of 1. o. d. e., 138.

for integrability of t. d. e., 77.

for relation between fimctions, 253.
for repeated roots of an algebraic equa-

tion, 65.

Consecutive points, 70.

Curve of pursuit, 147.

Cuspidal locus, 70.

Darboux, 75, 202.

Degree of d. e., 2.

Derivation of o. d. e., 3.

of p. d. e., 196-201.

Differential equation, i.

of a family of curves, 31.

of simple harmonic motion, 118.

Discriminant, 65.

relation, 65.

Envelope, 62, 63.

Essential arbitrary constants, 3.

Euler, 25, 91, 192.

factor or multiplier, 25.

Exact differential, 8.

d. e., 8, II, 137.

Existence theorem for o. d. e., 164.

for p. d. e., 203.

First integral, 52, 230.

Functional determinant, 253.

Gauss, 192.

Gauss's equation, 193.

General integral, 6.

General plan of solution of o. d. e. of first

order, 9.

of higher order, 131.

General solution of o. d. e., 5, 167.

of p. d. e., 203.

of p. d. e. of first order, 213.

General summary, 254.

Geometrical significance, 31, 61-63, 66, 69-

71, 86, 157, 167, 203, 204, 213.

26Q
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Homogeneous, function, 14.

1. o. d. e., 89.

1. p. d. e. of first order, 205.

1. p. d. e. with c. c, 239-245.

o. d. e. of first order, 14.

t. d. e.,8i.

Hypergeometric series, 194.

Integrable t. d. e., 76-84, 86.

form of solution, 76, 85.

method of solution, 80.

Integral, 6.

curve, 31.

surface, 86.

Integrating factor, 8, 25, 141, 209.

by inspection, 23.

of o. d. e. of first order, indefinite in

number, 8.

Integration in series, 164-195.

of o. d. e. of first order, i6g.

of o. d. e. of higher order, 177.

Intermediary integral, 231.

Jacobian, 253.

Kowalewski, 202.

Lagrange, 75, 103, 205, 213, 215, 218.

method of, 205.

Lagrange and Charpit, method of, 215.

Legendre, 114.

Legendre's linear equation, 114.

Leibnitz, 25.

Linear o. d. e., 89.

Cauchy's, 113, 178.

complete, 90.

general, 89.

homogeneous, 89.

Legendre's, 114.

of first order, 18.

of second order, 123-130.

reducible to equations with c. c, 113,

114, 126, 127.

simultaneous, with c. c, 150.

with c. c, 91-122.

Linear p. d. e., general, 238.
" homogeneous," with c. c, 239-245.

non-homogeneous, with c. c, 246. •

of first order, 200, 205.

Linear p. d. e. , of second order, 230.

reducible to equations with c. c, 249.

Linearly independent functions, 90,

Liouville, 142.

Monge, 230.

Monge's equations, 231.

method, 230.

Nodal locus, 69. ^
Non-homogeneous 1. p. d. e. with c. ^

246.

Non-integrable t. d. e., 85, 86.

Non-linear p. d. e. of first order, 211-226.

Order of d. e., 2.

Ordinary d. e., I.

of first order and first degree, 7-30.

of first order and higher degree, 49-75.

of higher order, 89-148.

reducible to 1. d. e. of first order, 20.

system of, 149-163.

Orthogonal trajectories, 38, 158.

Partial d. e., i.

of first order, 205-229.

of higher order, 230-252.

Particular integral of o. d. e., 6.

of 1. o. d. e. in general, 103-105, 125.

of 1. o. d. e. with c. c, 97-113.

of 1. p. d. e. with c. c, 243, 247.

Particular solution of o. d. e., 5.

of p. d. e. of first order, 213.

Picard, 75, 164.

Point of general position, 32.

Primitive of o. d. e., 4.

of p. d. p., 196, 199.

Quadrature, 6.

Reduction of d. e. to equivalent system,

160.

Regular function, 203.

Riccati, 173.

Riccati's equation, 28, 173,

analogy to 1. d. e., 176.

Roots of auxiliary equation repeated, 03,

240.

complex, 94, 242.
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Separation of variables, 13, 25.

Series, integration in, 164-195.

Single-valued function, 165.

Singular point of an equation, 203.

Singular solution of o. d. e., 63,

168.

of p. d. e. of first order, 213.

Solution of d. e., 2, 164, 202.

Summary, general, 254.

apibol D, 89, 238.

3. "4. 238.

Symbolic operator {D — a), 96.

System of d. e., 149-163.

general method of solution, 149.

of 1. o. d. e. with c. c, 150.

66-75i

System of o. d. e. of first order, 153.

of t. d. e., 159.

Tac-locus, 71.

Tangent, 70.

Total d. e., 76-88.

method of solution, 80-85.

more than three variables involved, 83.

simultaneous, 159.

Trajectory, 38.

Ultimate points of intersection, 61.

Undetermined coefficients, method of, 107.

Variation of parameters, 103.
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