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PREFACE.
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subject, and ultimately the appearance of its first volume under

the editorship of Prof. K. Pearson, have led me to abandon that

design, though very unwillingly. Such references as have been

inserted are intended chiefly as guides to further reading.

A portion of the projected scheme has however been retained

as Appendix III. (pages 162-168), on the history of Hooke's Law,

and this perhaps suffers from its isolation. It must be under-

stood that all the statements and remarks contained in it

refer exclusively to its subject, and not at all to the general

question of Green's Theory and the minimum number of Elastic

Coefficients, on which I hold the orthodox opinion, though I

cannot regard the matter as finally closed to discussion.

I have adopted the notation of Thomson & Tait's " Natural

Philosophy " for Strain and Stress, in spite of its obvious theo-

retical deficiencies, partly because it is the one most familiar to

English readers, and partly because it is so eminently readable

and speakable. I am inclined personally to prefer the double-

suffix notation on all other accounts, and I would suggest the

following system as the most generally useful (the symbols in

parentheses being those employed in the present work, and the

suffixes referring to the generalised coordinate notation of

Chapter V.) :—Strains, e^(e), em(f), e^(g), s^a), s^(b), s^(c), e^),

e
2
(e

2),
e
B (e3) ; Rotations, 6,(9,), ^(92), ^(03) ; Stresses N^(P),

NJ®> ^W*V' T^nT^{U), N^W N
2
(h\), N

Z
(N

Z).

I fail to see any adequate reason for modifying the established

nomenclature of the subject, except it be to amplify it. It must

be owned that it is largely Latin in origin, but that very fact has

its historical interest, recalling as it does the magnificent series of

memoirs produced in succession by the great French mathema-

ticians who were practically the creators of the theory.

It is with great pleasure that I record my obligations to

Professors Sir W. Thomson, P. G. Tait, and J. J. Thomson for the
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kindness with which th- A me in the most difficult

portion of my task—-the revision of Chapter I.

—

as well as for

their expressions of sympathy and enoonragemeni for my under-

taking as a whole. I am also much indebted to Professors Alex.

B. W. Kennedy and A inhill fox permission to make Eree

use of their original papers: to my friend, Mr. EL l£ Elder, B.A.,

ant Master a4 WVllii. .and formerly Scholar

of Trinity, fox his skill and can- in photographing Pigores .S7, 39,

in revising some of the proofs; and to

kindly Lending me the bloc

It
i ible that, in i work of this kind, many

main DO 1 shall It

:'il fur ii tli.tt n i may di

well • us as to ement, and other

\v. .1. [BBETSON.

IBIDOI, I 9th, 1887.
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3.] Intermolecular Forces. These molecules .exert upon

one another mutual forces, to which the cohesiveness of matter is

due. Of their nature little or nothing is known with certainty,

except that their intensity in the natural arrangement of the

molecules varies within very wide limits for different kinds of

matter, while, if the molecules be artificially separated by

appreciable distances, it is impossible to detect their existence

by the most delicate instruments * It appears, therefore, that

we are justified in assuming their sphere of action to be exceed-

ingly limited.

4.] Impressed Forces. The molecules are also liable to be

influenced by external "impressed" or "applied" forces, such as

Gravitation and other natural forces of attraction and repulsion.

5.] Natural State. When matter is entirely free from the

action of such external forces, it is said to be in its " natural

state." This term does not imply that matter is ever found, or

can even be conceived to be in this state under natural con-

ditions ; but that in this state, and in this only, it may be

supposed isolated from all co-existing matter, so that all the

phenomena it presents depend only on its individual nature.

6.] Solid Matter. In the kind of matter called solid each

molecule performs small vibrations about a mean position, which,

so long as the body is in its natural state and maintained at

constant temperature, may be regarded as fixed. Under the

same conditions the vibrations of each molecule may be assumed
strictly periodic, and the mean value of the amplitudes of the

vibrations of any considerable number of molecules may be

supposed constant.

7.] Homogeneity and uniform density. If, when the

matter is in its natural state, and at any uniform temperature,
the mean positions of the molecules are uniformly distributed,

and if their masses and the periods and mean amplitudes of their

vibrations are the same throughout, the matter is said to be
" naturally homogeneous."

It follows that a closed surface of given volume, but of any
form, whose least dimension is very large in comparison with
the greatest mean distance of two adjacent molecules, will, if

drawn anywhere within the substance of homogeneous matter,
always include the same number of molecules,—and therefore the
same total mass. The mass thus enclosed by a surface of unit
volume is called the Density of the matter, in any given system
of units.

* See, however, Note at end of volume.
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Or, in other words, it always requires the application of
external force to produce strain.

(Hi.) Given the type of the external forces applied, the

greater they are the greater will be the strain produced; and,

conversely, the greater the strain to be produced, the greater the

external forces which must be applied.

(iv.) If the applied forces and the consequent strain be con-

fined within certain limiU, the body offers continuous resistance

to the strain, so that it requires the continued exertion of external

force to maintain the body in a given state of strain; and when
this force is removed the body tends to return to its natural state

at its ultimate temperature.

1 2.] Limits of Elasticity. All these elastic properties are

exhibited in very different degrees, and subject to many limita-

tions, by different classes of natural solids.

Short of the strain required to produce absolute rupture

(called the proof-strain of the material) there is always a limit to

the elasticity of every natural substance. So long as the applied

forces are such as to produce a strain well within this limit the

resistance increases steadily with the strain, while it always
requires sensibly the same force to maintain the same strain at

the same temperature ; and on the removal of this force the body
returns to a state sensibly identical with its natural state.

When, however, the strain exceeds the elastic limits of the

material the properties of the body undergo a marked change,

and it passes into what is known as the ductile state. In this

condition the resistance still increases with the strain, but much
less rapidly than before the limit was passed, and the tendency
to return towards the natural state is much diminished, so that,

when the external force is removed, the body is found to have
acquired a "set" or permanent strain.

13.] Ductility and Brittleness. Those materials whose
elastic limit is separated by a considerable interval from the point

of rupture, and whose state of ductility therefore has a distinct

range, are called ductile, malleable, or plastic. To this class

belong most of the natural metals, as well as steel gradually
cooled.

Thus under the enormous pressures applied in the Mint, the

density of gold is permanently altered from 19 -258 to 19*367, and
that of copper from 8535 to 891 6.

At the bottom of this class are various soft solids (of which
putty or tallow may be taken as a familiar example) whose
elasticity is almost imperceptible, and which are for all practical

purposes wholly ductile.
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< m the other hand, crystalline bodies, glass < when cold), jellies,
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rapidity of the change. The law by which the increase of resist-

ance in the case of solids depends on the increase of the rate of

straining is certainly not so simple, but the analogy justifies the

application of the term solid viscosity to this property.

Secondly, it was found that wires which had been frequently

and recently strained, well within their elastic limits, exhibited

less marked tendency to elastic recovery, and much greater-

viscosity than when they had been left at rest in the natural

state for some days before the experiment.

This result shows that the elastic properties of a natural solid

may suffer diminution or Fatigue by frequent exercise, and that

these properties may be more or less fully restored by repose.

17.] All these limitations and imperfections in the Elasticity

of natural solids present insurmountable difficulties in the way of

an analytical theory ; and for the purposes of a first approxima-
tion they must be eliminated.

If we class the more or less "imperfectly elastic" substances,

which we find in nature, according to the range of their elasticity

and the degree of perfection in which they exhibit its character-

istic properties within these limits, they are seen to form an
ascending scale suggesting an ideal summit which is never actually

reached in nature, but only more or less closely approximated to

under favourable circumstances.

This ideal, which we shall adopt as the subject of our investi-

gations, we define as a Perfectly Elastic Solid.

Real Matter with ideally perfect Elasticity.

18.] A Perfectly Elastic Solid is characterized by the
following properties up to the point of breakage :

—

(i.) In its natural state at any temperature the molecular
configuration, together with the form and volume of the bounding
surface, are perfectly definite, and characteristic of that tempera-
ture.

(ii.) If the temperature (supposed always uniform through-
out the body) be changed, the solid passes continuously to the
natural state for the new temperature, through all the inter-

mediate states natural to the intermediate temperatures.
(Hi.) It requires the application of external force to produce

a strain at any temperature ; and it requires the continued
application of the same force (or system of forces) to maintain
the strain.

(iv.) It always requires the same force (or system of forces)

to maintain the same strain at the same temperature, through
whatever intermediate states of temperature and strain it may
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been brought to the given state, and at whatever rate these
- may have 1 led through.
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at each temperature is one of stable equilibrium for straining

disturbances without 'change of temperature. And since, by
the last Article, the kinetic energy of the molecules is the

same in every state at the same temperature, it follows by
a well-known theorem in Statics, that the natural configura-

tion at each temperature is such that the potential energy

has its least possible value for that temperature under the

given law of intermolecular force.

Hence it follows that if the body be strained in any manner,

while the temperature is kept constant, the potential energy will

be increased. And since in this case the kinetic energy remains

constant, the increase of potential energy is necessarily equal to

the work done on the body by the external forces in producing
the strain,

If now, the temperature still being maintained constant, the

body be allowed to work against the external forces, it will, in

returning to its natural state, lose all the additional potential

energy which it acquired by the strain. This then must be the

exact measure of the work done by it against the external forces,

which is thus equal and opposite to the work done upon it by
them in producing the strain.

This result may obviously be extended to a body starting

from equilibrium in any given state of strain, and passing, at

constant temperature, through any cycles of strain back again to

its initial state, the total sum of work done on or by the body
being identically zero.

Thus a perfectly elastic body maintained at constant tempera-
ture forms with any system of external straining forces a
perfectly conservative system, the excess of the body's potential

energy over that natural to the temperature being a function
only of the strain and of the temperature, and vanishing with
the strain.

22.] Temperature free to vary. In general, when the
temperature of the body is left free to vary, energy communi-
cated to the body, either in the form of heat or of mechanical
work done by external forces, will be distributed in both forms.

Thus, the primary effect of the addition of heat is to raise

the temperature of the body, and thus to increase the molecular
kinetic energy. But, since no external forces are applied, we
know by § 18 (ii.) that the configuration of the molecules must
change to that natural to the new temperature.

Hence, if the law of intermolecular force be such that the
potential energy of the natural configuration increases with the
rise of temperature, some of the heat will be expended in produc-
ing this increase, so that the resultant rise of temperature will be
that due to an increase of kinetic energy less than the full
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uivalent of tlit- added heat. On the other hand, if

stand potential energy diminishes with the vise of tempera-
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(ii.) That the straining is so gradually performed, that heat

may be constantly communicated to or taken from the different

parts of the body, by suitable means, in such a manner as to

maintain every portion uniformly at the initial temperature.

25.] The two cases are perhaps of equal practical importance,

and the former is certainly the more interesting theoretically, but

the relations between temperature, kinetic energy, and inter-

molecular force are at present so hopelessly obscure that but
little can be done towards its development.*

It may be observed that, even if conditions (i.) were exactly

fulfilled, a natural solid would still be found to dissipate energy
irrecoverably by reason of its viscosity

;
(see the second condition

of § 19).

26.] Theory Adopted. To simplify our theory, and elim-

inate as many unknown physical relations as possible, we shall

assume that the conditions of § 24 (ii.) are always satisfied. We
may observe that all the conditions of § 19 will be satisfied at

the same time, if the strain be small ; so that results obtained

for small strains on this assumption will be very approximately
true for many natural solids.

The body is then to be supposed always maintained at one
constant temperature, uniform throughout, and thus the results

of § 21 may be accepted as rigorously true.

The kinetic energy of the molecules will be constant, and so

also will the natural potential energy, or that possessed by the

body when free from strain.

27.] Energy of the Strain. Since we are only concerned
with the Strain and its effects, we leave these constant terms in

the energy of the strained body altogether out of account ; and
it is the excess of the potential energy of the strained body over
its potential energy in the natural state which we shall in future
refer to indifferently as the Potential Energy of or due to the
Strain or of the strained body, or, more briefly, as the Energy of

the Strain.

By § 21, the Energy of the Strain is in all cases equal to

the mechanical work done on the body by the external forces in
producing the strain.

Now, by § 18 (iv.), the same system of external forces,

applied to the body in its natural state, invariably produces
the same strain. Hence, if the strain be given, the forces to

be applied, and also the displacements of their points of applica-
tion are fully specified.

Thus the Energy of a given Strain, being equal to the work
done in producing it, is completely determined when the strain

* See Sir W. Thomson's Reprinted Papers, Volume I., pages 293-313.
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relaxation of the applied forces tend to restore the body to

its natural state, diminishing continuously as the potential

energy of the strain is expended in the process, and finally

vanishing together with the strain.

81.] Work done by Stress. Since the stress on each

molecule is always equal and opposite to the applied force, while

the displacement of their common point of application is neces-

sarily the same, it follows that all work done by the applied

forces may be reckoned as work done against the stresses, and
vice versa.

Thus, in passing from a state of strain in which the potential

energy (§ 27) is W, to a second state in which it is increased to

W+8W, the work done on the body by the applied forces in

opposition to the stresses is SW ; while, if the stresses be allowed

to restore the body to its original state, they will do work SW
against the applied forces.

32.] Strain-Coordinates. Let us suppose that any changes

in the relative configuration of the molecules may be represented

by variations of a certain number of independent coordinates 0,

<p, x> Vv • •, the word being used in its generalised Lagrangian sense.

Then, since the Potential Energy of the strain depends only

on these changes, it must be capable of being expressed as a

function of the strain-coordinates.

Similarly, if V be the mutual potential energy of any two
molecules, due to the stresses they exert upon one another, V
must be a function of the differences between the actual values

of 0, <£,..., denning their relative positions, and their initial

values in the natural state.

If then SV be the small increase of V due to a small increase

of strain, which changes 0, 0,. . ., to 6 -f SO, <p + o\£, , we must
have *

•r-g :«*U-*+tr* +

Now, if W be the total potential energy of the whole body, it

is obvious that W= |22(F), the summation being taken twice

through all the molecules.

Hence
BW-$22(BV)

-**{£ 4"+U :* +
}•

But if 0, $, X, ^,... be the stresses respectively resisting

increase of the relative coordinates 6, 0, x> V'v-- °f any one Pair

* The symbol d is used throughout this work to denote partial differenti-

ation ; d being reserved exclusively for total differentiation. The usual nux-
notation is also frequently employed for partial differentiation as to time.
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(Hi.) The potential energy and the stresses are functions

solely of the actually existing state of strain, and absolutely

independent of all intermediate states through which the body
may have been brought.

(iv.) As the external forces are relaxed, the stresses experience

less and less opposition, so that they diminish continually as

they restore the body to its natural state, expending on that

process precisely the amount W of work which was done against

them in straining the body, and finally vanishing with the

strain.

(v.) It is obvious that when the molecules are in motion
under external forces the effective force to which the motion
of the mean position of any molecule in the direction opposed

to the stress is due, together with the resultant stress on that

molecule, is equal to the applied force.

Ideal Continuous Matter with Perfect Elasticity.

35.] Difficulty of further developing the Theory. We
have thus deduced, from what we believe to be the true proper-

ties of matter, the laws of equilibrium and motion of -the mole-

cules of a perfectly elastic solid. In order to develop our Theory
analytically, we must be able to follow the movements of each

molecule throughout the strain, and to discover all the mechanical
conditions to which it individually is subjected.

For this purpose we require to know the absolute mass and
i dimensions of the molecules of the body under consideration ; the

llaw of distribution of their mean positions in the natural state

;

'the law of intermolecular force—the manner in which it depends
upon, and varies with, both the configuration and the tempera-
ture ; the limits of its sphere of action ; and, lastly, the connection

between mean configuration, period and amplitude of vibration

and the temperature.

36.] Unfortunately, on almost all these points, our ignorance
is at present absolute ; and where we have any means of forming
an opinion, the conclusions arrived at are so vague as to be value-

less for our purpose.

For instance, as to the dimensions of the molecules the latest

conclusions of science are summarised as follows by Sir William
Thomson * :

—

" The four lines of argument which I have now indicated lead

all to substantially the same estimate of the dimensions of mole-
cular structure. Jointly they establish, with what we cannot but
regard as a very high degree of probability, the conclusion that,

in any ordinary liquid, transparent solid, or seemingly opaque

* Lecture on the Size of Atoms, Royal Institution, February 3, 1883.
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to the deductions we have drawn from experiments on real

matter.

Our theory will then take its place as the last in the series

formed by the various branches of Dynamics, which must be
regarded as successive steps, each approaching nearer than the

preceding to the true state of things, but none of them actually

realised in nature.

40.] Dynamics of a Particle. The smallest " element of

volume " which the refinement of analysis can reach must still,

for the purposes of that very analysis, be held to have three linear

dimensions, so that if it be occupied by an "element of mass'"

subject to forces which vary from point to point throughout space,

this mass must in general be acted upon both by a force and by
a couple ; both of them elementary, of course, but yet measurable
by analysis.

Hence we have recourse, for our first and simplest conception

of dynamics, to the purely abstract idea of a "Material
Particle," which we define as a very minute but still finite

mass, so condensed that its linear dimensions are inappreciable

to our analysis, and therefore infinitely small, even when c<>m-

pared with our smallest "element of volume."

Such a particle cannot, of course, be subjected to couples, and
therefore Dynamics is reduced to its simplest form.

41.] Dynamics of a Rigid Body. We next advance to

the conception of a " Rigid Body," which we regard as an aggre-

gation of such particles, so connected as to be entirely incapable

of relative motion.

The particles are supposed to be uniformly distributed, and,

in the case of a homogeneous body, to be all of equal mass.

S

Since the particles of the body remain in an invariable state

)f relative equilibrium, the mutual forces exerted by them upon
me another, must under all circumstances of equilibrium or

notion of the body as a whole, form by themselves an equili-

>rating system (D'Alembert's Principle).

They consequently cannot possibly do any work, and there-

fore do not enter into the equations of energy. In fact, we only

owe to them the Kinematical or Geometrical equations which
express in various analytical forms the fundamental fact that the

body always moves as a whole, without relative motion of its

particles.

Moreover the external action on each particle takes the form
of a single force, and these various forces can always be com-
pounded into a single Resultant Force and a single Resultant
Couple, which may be regarded as acting upon the body as a

whole.

Thus for all mechanical purposes the supposed structure of
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also constant, and may be left out of consideration together with
the constant part of the potential energy proper to the natural

state (see § 27).

Thus every point in the body is to be supposed at rest, except

in so far as its motion is due to change of strain.

46.] Course of our Analysis. Strain will now consist in

relative displacements of points in the body, and consequent

distortions of lines and surfaces, and changes in the form and
volume of portions of the body enclosed by the latter.

Our analysis of Strains will therefore have for its aim to dis-

cover a simple system of independent strain coordinates, the

variation of any one of which will constitute a Simple Strain

;

and to learn how to express any change of form or volume in

terms of these as standard types.

We shall next investigate the corresponding Simple Stresses,

(which will be of the nature of resistances offered by the body to

the respective Simple Strains), and the relations which must"exist

between them and the applied forces, in order that the body may
be held in equilibrium in any given state of strain by these two
opposed systems.

To complete our general theory we shall then only require to

know how to express stress in terms of the strain to which it is

due. We shall then be able to calculate the potential energy due
to any given strain, and the external forces required to produce
it; or, conversely, the strain produced by any given system of

applied forces; so that the solution of any problem will be
reduced to a mere matter of analysis.

We shall, for the next five chapters, confine ourselves to the

consideration of bodies whose dimensions are at least finite in all

directions.
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49.] Now, let us take an unstrained body, and refer the

positions of all points in it to a system of rectangular axes, fixed

in space, whose origin coincides with any point M in the body.

If the body be now strained in any manner the point M will

in general suffer a displacement from its initial position at 0, the

amount and direction of which will depend upon its situation in

the body. But it follows from the last Article that, without
modifying in any manner the effects of the Strain, we may
impress upon all points of the body displacements equal, parallel,

and opposite to that of M ; the effect of which will of course be

to move the body back, parallel to itself, until M once more
coincides with 0.

50.] Thus we may, whenever it will simplify our analysis,*

suppose that point of the body which coincides with our

arbitrarily chosen origin to be absolutely fixed in space, without
in the slightest degree restricting the perfectly general character

of the strain.

Although, however, the origin may be regarded as fixed both
in space and in the body, the axes are only fixed in space. That
is to say, the straight lines in the unstrained body which coincide

with the axes will no longer do so after the strain ; and, in fact,

they will in general be no longer straight lines, but continuous
curves intersecting more or less obliquely in the origin.

Assuming then that the point of the body chosen as origin is

fixed, the absolute displacement of any point in the body (and
therefore also its component displacements parallel to the fixed

axes) must be a continuous function of the absolute coordinates
of the point ; and these absolute displacements now constitute the
strain.

Theory of Small Strains.

51.] Equations of Displacement. Let P be any point
in the unstrained body, whose coordinates referred to the fixed
axes are (x, y, z). Let the body be subjected to a very small
strain, and let P in consequence be displaced to P' (x+u, y+ v,

z-\-w).

Then u, v, w are the component displacements of P, parallel

to the fixed axes, and we must have

ic = cf>(x, y, z)'

w = 4,(x, y,z)

where u, v, w are supposed very small, and 0, x> "& are arbitrary

* See Appendix I., at the end of this Chapter, on the advantage of regarding
a point in the body as fixed.
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But, if e be the elongation produced by the strain in the

elementary straight line PQ, e=8p/p.

h 8h k BJc I 81 /n\
€=-. — + + - • - \

Z
)

P P P P P P

Now if X, ft, v be the initial direction-cosines of PQ,

h/\ = klfi = l/v = P (3)

Hence, substituting from (1) and (3) in (2) we find

u du, du\

dx dy dz

'

/^jj ,
3u

,
'dv

dx dy dz /

( /dw dw
,
dw\ //t x

'dx dy

or, re-arranging terms,

^o'du „dv „dw (dw dv\

^(S^W| + |) (»)

54.] From the form (5) we see, by writing successively

(\=1, M=0, v=0), (\=0, /u=l, i/= 0), (X= 0, /a= 0, i/=l), that

du/dx, dv/dy, dw/dz are the elongations of elementary straight

lines drawn from (x, y, z) parallel to Ox, Oy, Oz, respectively.

Again from the form (4) it is easily seen that e may be

written in the form

if we assume X, ju, v constant as to x, y, z; that is, if we suppose

the elementary straight line to be drawn in the given direction

(X, p., v) from different points of the body.
Now if p be regarded as a current coordinate^ giving the

initial distances from (x, y, z) of points situated in the given
direction (X, /m, v), and if U be the displacement of (x, y, z),

resolved along this line in the positive direction of p, we have

U= Xu + fxv + vw

d =A- +
d +v d

dp dx dy dz

Thus
e = dU/dp (6)

which gives the elongation of an elementary straight line drawn
in any direction from any given point of the body.
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]
Change of Direction. Again, if (Y, M ', v ) be the

direction-cosines of P/

Q\

h Sh h 8P= + -
P P P P
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But equations (B), regarded as simultaneous, may be taken
as representing either the curve of intersection of the surfaces

which they separately represent, or the curve which before the

strain was represented by the simultaneous equations (A).

Thus the curve of intersection of any two strained surfaces in

the body is the strained form of the curve of intersection of the

same surfaces before the strain; and by a precisely similar

method we can show that the point of intersection of any two
strained lines is the strained position of the point of intersection

of the same lines before the strain.

57. General Effect of Strain. We see from equations (5)

and (7) that the magnitude and direction of every elementary
straight line in the body are in general altered by the strain, and
that these changes are in general different for different elements.

Hence the general effect of the strain is both to shift and to

distort all lines and surfaces in the body. We shall reserve the

exceptional cases for future discussion^

58.] Limitations of Small Strain. From equation (5) it

appears that the elongation of an elementary straight line, drawn
in any direction from a given point, is of the same order of

magnitude as the first derivatives of the component displacements

of that point with regard to its initial coordinates. In future,

unless the contrary is explicitly stated, we shall confine ourselves

entirely to the consideration of " small strains," implying thereby
that all these first derivatives, like the displacements themselves,

are small quantities of the first order, or else zero.

Homogeneous Strain.

59. Definition. We shall now suppose the character of the

strain restricted in such a manner that all the first derivatives,

dujdx, dw/dz, are independent of x, y* z.

This assumption involves a relation between the displacements

and initial coordinates of the form

u = ex + pxy + yx
z \

v = ajc+fy + y.zz L (8)

w = a.jc + p.3y + y^z)
^

where the coefficients are all absolute constants, which for a finite

strain are finite or zero, and for a small strain are all small quan-
tities of the first order or else zero.

A strain of the character defined by this assumption is said to

be a Homogeneous Strain. We shall now proceed to investi-

gate its principal properties.
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60.] The results which we have already obtained for any
11 strain take the following forma in the case of small homo-

gen* in.

The component displacements of the point Q(x+h, y+k,z+l)
. the point 1 are, by

8h = eli + px
k + yil\

8k = aji+fk + y2l[ (9)

The elongation of (he line PQ in-00Binefl \, /x, y) is

€ = €A2 +//
z2 +

fl
r^+08s +ya

)/xi' + (y1 + a>A + (a
2
+

i
8

1
)A

/
x (10)

be elongations of elementary

ight lines parallel to I ly.

Lastly, the new directkm-cosines of I by (7),

(l-f+eJX+ft/n-yjr)

^««t*+(i-c+/^+ ytr[ (u)

|

Parallel Straight Lines. It is ohvions from captions
10) ai 1 entirely on \. u. »

;
wl

null homogl Tain, all parallel

traight lines in the boay, of elemental; main parallel

nd are elongat

aight line, finite or infinite, in tin 1

b elemen sight
all of whj and an • ttive

beee will ined into elemen-
bo one another, and 1 \ h of

will meet the consecutive eli

11 ttiakt

light line,

In
• any

divided into elements, all of which are necessarily

thi booty

be a
all then will !>»• elongated in the

d j a

lo ; and, in i I straight

tllel straight lines, though
are all altered

82.] Parallel Planes. Again, sinoe >:<' 56, 61) fotersecting

rht lines remain inteneci a flams must
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remain a plane; and since any two parallel planes intercept

equal lengths on any system of parallel straight lines which meet
them both, and since these intercepts are strained into equal and
parallel (§61) straight lines, terminated (§ 56) by the strained

planes, it follows that all parallel planes are strained into

parallel planes, though in general their direction and distance

apart are altered by the strain.

63.] Similar and similarly situated Geometrical
Figures. From the two last articles it follows directly that

every parallelogram is strained into a parallelogram, and every

parallelepiped into a parallelepiped, though both are in general
distorted.

Since similar and similarly situated plane figures (in the same
or parallel planes) have their homologous sides parallel, it follows

that all similar and similarly situated plane figures are strained
into plane figures similar and similarly situated to one another,

though not necessarily to the former.

In fact, since all parallel chords are elongated in the same
ratio, it is obvious that the strained form of any plane figure is

an enlarged or diminished orthographic projection of its un-
strained form upon some plane.

Hence, in particular, an ellipse {including the circle) is always
strained into an ellipse or circle ; and when a circle is strained
into an ellipse every pair of orthogonal radii of the circle is

strained into a pair of conjugate radii of the ellipse.

Again, since in similar and similarly situated solid figures all

similarly situated sections are similar, it follows that all similar
and similarly situated solid figures are strained into solid

figures similar and similarly situated to one another, though
not in general to their unstrained forms.

64] Strain Ellipsoid. Since all the sections of an ellipsoid

are ellipses (or circles), and since no other surface possesses this

property, it follows from the last article that every ellipsoid (or

sphere) is strained into an ellipsoid (or sphere) ; and when a
sphere is strained into an ellipsoid, every set of three orthogonal
radii of the sphere becomes a set of three conjugate radii of the
ellipsoid.

The ellipsoid into which a sphere of unit radius, described
about any point P of the unstrained body as centre, is altered by
the strain is called the Strain Ellipsoid at the point P. Of
course, in a homogeneous strain, the strain ellipsoids at all points
of the body will be equal, similar and similarly situated.

65.] Principal Axes of the Strain. Every set of or-

thogonal radii of the unit sphere becomes, by § 64, a set of con-
jugate radii of the Strain Ellipsoid ; and the ellipsoid has one

—
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and only one—set of orthogonal conjugate radii, namely, its

principal axes.

Hence, in every homogeneous strain there is one—and only
one—set of three orthogonal straight lines passing through each
point of the body, which remain orthogonal after the strain,

although tlu-ir dil generally altered.

606 principal diameters of the Strain Ellipsoid are called

the P -s of the 6 fcP.

] Pure Strain. When the -train ia such that the Prin-

cipal .' tin their initial d it i- >ai<l to be a Pure or

in.

It Kfl -ulriciently obvioOfl that the most general small homo-
geneous strain will consist of a small pure homogeneous strain,

together with a
>le, about a suitable axis.

laffirient to bring the Principal Axes at each point into their

hem i>"-itions.

At

|

We shall now proceed to prove these propertii

•geneous vtieally.

:ice, by e ; w are linear functions
i

• • second and all higher or. len will

(9) will be absolutely true.

ndep. the niaf;i so that equations (10)
11) will hold foi straight lines of any length. From this

fcerjr.

] Initial and Final Coordinates. Th raati

/' in terms of

nations (8),

** ~x + ti = (1 + e)« + /}# +

«'-s + w»ajc + ptf + (1 +y)z

, to the tirst order of small qui

y--« -y.4
-vf-Aa'+l

to the same appi n,

u = «' + /?#'

.(12)

(13)

(14)
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Thus, in the equations of displacement for a small strain, the

final coordinates (a?/ y', z') may be substituted for the initial

coordinates (x, y, z) without introducing any error perceptible

to the order of approximation adopted. This is a very useful

principle in practice, and it is obviously not confined to homo-
geneous strain, since it depends solely on the smallness of the

coefficients involved.

69.] Linear Transformation of Equations. It is a very
important consequence of the last Article that the equations of

surfaces in the unstrained body are only altered by a linear

transformation of the coordinates, and, consequently, every such

surface remains of the same order as before the strain.

For example, the surface in the unstrained body given by the

equation cj>(x, y, z) = 0, becomes after the strain the surface given

by

441(1 - e)x' - fty - Yfy [(1 - f)y - y,z' - off],

[(l-9)z'-a3x'-&y']}=Q,

which equation, the coefficients being constants, is clearly of the

same order as the former.

Thus, planes are strained into -planes, and quadrics into

quadrics; and since a small (or even a finite) strain cannot
possibly convert a finite line into one of infinite length, it is

clear that a closed surface must remain a closed surface. Thus,

an ellipsoid or a sphere is always strained into an ellipsoid or

sphere.

The straight line being formed by the intersection of two
planes ; and the ellipse or circle, being formed by the intersec-

tion of a plane with an ellipsoid or sphere, must obviously retain

their original characters.

Also, since equal and parallel straight lines are strained into

equal and parallel straight lines, it follows that a plane bisecting

a system of parallel straight lines is strained into a plane
bisecting a system of parallel straight lines, so that any system
of parallel chords of an ellipsoid, with their diametral plane,

become a system of parallel chords and corresponding diametral
plane of the strained ellipsoid.

Hence it follows at once that every set of three conjugate
diameters becomes a set of three conjugate diameters.

70.] Strain Ellipsoid. The ellipsoid

5i + it + z* -

1

A'2 B2 C2
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becomes the ellipsoid

-

and, in particular, the ttptk

y- + ^=i
becon

(\-'2e)x"-+C '2(pi+ yi)!/
'z'-2(y

l
+ aA

)

-^, + AVy 1 (15)

which is the Strain Ellipsoid at the ori red to the

I axes.

71.] Change of Notation. It will be observed in equa-
i

1*> t' :its /S, and y... y. au-i

in pain. Tl j i - \\i. \tlv happen in future

equations, and ire ihall oonaidstablj rimphryour analysis, and
it lmich ee . by changing our notation as

)llo\

2*>-A-
(16)

20,-7,-0,
20,- a,-

/ being r» 4

] The e of dSsplao nail homogeneous

n take the fa

(*,+ *,)* ~e,)z\. ..(17)

he elongation becomes

\2 +//i« + ^K2 +2*
1
/xv+2^vA+2«

3
A/x (18)

n-1 the tlnal 1 cosines 1

A (1-c + e)A + (i»
s -*,)/*+(•,+ 2

)v)

(.S + ^,)A + (1 -c+/)M + (^-^^ (19)

*' = (*,-*,)A + («i + *> + <! -« + ?)" J

ile the eq< aiii Ellipsoid, referred to the fixed

2/*)y 2 + :V-4^y = l (20)
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73.] The direction-cosines of the principal axes, of this

ellipsoid are given by the equations

(l-2e)\'-2s.^'-2s2v' = -2s3A' + (l- 2f)fj.'-2s1v

X! fjt!

_ -2s2\
, -2s1fi

f + (l-2g)v'

v

which may also be written in the form

eX + s3/x + s2v _ s3A' +ffi + sy _ saA' + s^' + gv ,~ ,

»

A' f/ v

These equations therefore give us the directions, after the

strain, of the Principal Axes of the Strain.

Graphic Properties of the Strain.

74.] The Elongation and Compression Quadrics. If

we describe about the origin a quadric surface of the form

ex2 +fy
2 + gz2 + 2s

1
yz+2s2zx + 2s3xy = B2

(22)

(which we shall regard as fixed in space, like the axes of

reference), and if r be the radius vector intercepted by the

surface on a straight line in the body drawn from the origin in

the direction (X, /ul, v) we shall have

r2(eX2 +//x2 + gv2 + 2si{mv + 2s2vX + 2s3\fx) = B2
.

Thus, by equation (18), if e be the elongation of this radius

vector, or of any straight line in the body parallel to it

e = B2/r2
%(28)

This surface is called the Elongation Quadric of the strain.

75.] It follows from equation (23), the right-hand side of

which is essentially positive, that every radius which meets this

surface suffers a positive elongation, and conversely that every
radius drawn in a direction of positive elongation will meet the

surface.

If therefore the strain be such that all lines in the body are

elongated, the Elongation Quadric must be an Ellipsoid.

If however the strain consists of elongations in some direc-

tions and contractions in others, e will be negative for some radii,

which therefore cannot meet (22).

In fact, in this case the Elongation Quadric is an hyperboloid
whose radii are the lines which suffer elongation, while those

lines which suffer contraction are the radii of the conjugate
hyperboloid represented by

ex2 +fy
2 + gz2 + 2s$jz + 2s2zx + 2s3xy = - B2 24)

which is called the Compression Quadric.
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76.] In the case in which all lines in the body undergo con-
traction, all radii from the origin must meet the Compression
Quadric (24), which is therefore an ellipsoid; and in this case
there is no Elongation Quadric.

]
Cone of no Elongation. In the case of § 75, the

hyperboloids of elongation and contraction are separated by their

asymptotic cone, whose equation ii

ea?+fy- + 'j 2*3*2/ = (25)

It appears i 23) that for all the generators of this cone,

and of 000X86 for all parallel lines in the body, e=0. It is there-

fore called i
i of no Eloicjiit't'

78.] Cones of Constant Elongation. Lastly, the direc-

tion-cosines of all lines in the body suffi elongation e

must satisfy (18), which may be
wri*

i*+/^+ff>+2< _iA + 2«
s
A/x = €(X2 + ^+ i

All such lines i. efore be parallel to one or other of the

gei erators of the ooa

(«- c)^ + (/-cy + (?-«);*+ 2*^ + 2«,«+ 2W = (26)

I\V.
rl his obtain a eeri nes of i

79.] It is to be obs. L the quadrios described in the

If 0£, Otj, ' ations when
re erred to them will res]

•ir + v' + ^sf
1--^

fj ar.- the r«>nts (in descending order ol magnitude, let

-</>,** H -0U (28)

with reference to the original

A

(27)

= </>. .(29)

ling as X,/x, v are
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80.] Principal Axes of the Strain. Since the elongation e

of anyradius of the elongation quadric varies inverselyas the square

of the radius, and since the squares of the least and greatest radii

of the quadric are B 2
/e

1
and B 2

/e
s , it is obvious that e always lies

between e
x
and e

3 , and that the directions of maximum and mini-

mum elongation (or
v
of minimum and maximum contraction) are

those of the least and greatest axes of the quadric.

But if we consider the deformation of the unit sphere into

the Strain Ellipsoid, it is clear that those radii of the sphere

which are drawn in the directions of maximum and minimum
elongation must become the greatest and least axes of the

Ellipsoid.

Thus the lines in the body which, before the strain, coincided

with the principal axes of the elongation quadrics, become the

principal axes of the Strain Ellipsoid.

Equations (29) therefore give the initial directions of the

Principal Axes of the Strain.

Pure Strain.

81.] Conditions for Pure Strain. The strain is said to

be pure (§ 66) when the Principal Axes retain their initial direc-

tions.

Now, comparing equations (29), which give the directions of

the Principal Axes before the strain, with equations (21) which
give the directions of the same lines after the strain, we see

that they appear to be identical. We must not, however, infer

from this that the Principal Axes necessarily retain their initial

directions. From equations (19) it appears that the differences

between the initial and final values of the direction-cosines of any
line are of the same small order as the strain coefficients ; now in

equations (21) and (29) the direction-cosines all appear multiplied

by these same coefficients ; so that it is quite impossible, to the
order of approximation adopted, that any distinction should be
made in such formulso between X and X', /x and jul', v and v.

For instance,

eX' + §3// +

"A
7-

+ s
2
(v'-v)}-±- {l

eX -v S3/A + s
2
v + e(X' - A) + s3(fx

f - fx)

X'-X)
A /

and substituting from equations (19), this expression is identical,

to the first order of small quantities, with

eX + s3fx + s2v
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Non-rotated Straight Lines. The three straight

lines through the origin which (together with all lines in the

body parallel to them) really retain their initial directions in
•

i be found by potting Y = \, m' = m> v=v in (19).

Thus we

A

lA + fo + flJ/i+gv

¥

fori ion-rotated straight lines.

Theconditi e simply the con-

ditions that the equati and (30) may be identical;

an'l these obrfousry

#, = 0, S
= O, 0, = O.

Equations of Displacement. Principal Elonga-
tions. The equati ent (17) thus become, in the

will be obsei

c efficients.

It* n. w r. r. W be the displacements of any point Pin the

paraUel as 0£, I (X,, p
axes referred

/. i) and

linatee i I to the I bems ; we

£ - A,* +w
V

t-A

I'

W •

'

Thu •

I

ly theref find

...(31)

Independent strain

.(32)
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The point initially at (f, r\, f) is therefore displaced to

(1 + ^,(1 + ^,(1+^
and obviously the effect of any Pure Strain is simply an elonga-

tion (or contraction) of the whole body parallel to each of the

Principal Axes.

The three Principal Elongations ev e
2, e

3
are the roots of the

discriminating cubic (28) of the Elongation Quadrics.

By comparing equations (31) and (32) it is evident that

equation (18), giving the elongation e of any line in the body
may be written in the form

c =-- e^2 + e2??i
2 + e3n2 (18a)

where I, m, n are the direction-cosines of the line referred to

Of, n, Of.

By comparing equations (31) and (22), or (32) and (27), we
see that, in a pure strain, the resultant displacement of any point

P in the body is along the normal to the elongation quadric

which passes through P, and that its amount is Bjp, where P is k

the perpendicular from the centre (the origin) on the tangent

plane at P.

84.] Position-Ellipsoid. Describe about the origin the

fixed quadric

(1 + e)x* + (l+/)2/2 + (\+g)z2 + 2slVz + 2s.zx + 2s3xy = C2
(33)

This is obviously coaxial with the elongation quadrics, and when
referred to the Principal Axes takes the form

(l + ei)^ + (l + e,) r/
2
+(1+€3)f

2 =C,
>

Since ev e
3 , e

3
are small, it is necessarily an ellipsoid.

Let r be the radius vector drawn in the direction (A, /ul, v) and
let (I, m, ri), as in the last Article, denote the direction-cosines of

v referred to Of, Orj, Of. Let p be the perpendicular from the
centre on the tangent plane at the extremity of r, and let {V, m', n')

be the direction-cosines of p referred to Of, Otj, Of. Finally, let e

be the elongation suffered by r.

By the ordinary formulae of Solid Geometry,

f=jprl(l + ^)/(?
;

m' =prm(l + c
2
)/C- k

n' =prn(l + c
3
)/C2

,

Hence, squaring and adding,

jrr{\ + 2(e
l
l'< + ejn2 + c.rf)} = C4

;

j>V(l + 2c) = C4
;

r(l+€) = C2
/p.

Thus the strained length of the line in the body initially coinciding
with r varies inversely as p.
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tin, since equations (19) lvn-r to any arbitrary set of a&es,

.iv suppose then cer to 0£ 0>/, Of; henoe the n< w
I, of the liiu' iii the body

initially coinciding with f will be

(1 -c + e,)*, (l-e + e.,)m, (1-c-:

But, by what we liave just ahdwh,

1 + k- C
- taking sals,

1-,

an.l therei

r-(i-«+€,

(l-C + c,.
I

or the line in the body which initially coincided with the radius

vt3tor /• tinally c«»im-i«[.-> with the ]»tj and Ltfl final

le igth varies inversely as p
id Is oa) Ellipsoid, bom the fact

tl it it gives us a grapl nr the position and length,

ai er
j

line in tic- !....I\ iti.m and

gth known*

,

85.] B axes, Id the

the sinali Pure Strain iv|,iv>.-ntc«l \>\

| a >nu:!' '/" boay

tads (X, m» through the fixed

/'.initially at will

1

1 the point after th<
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the square and higher powers of the small quantity Q being

neglected.

To the same approximation we shall have for u, v, w, the

resultant displacements,

u = ex + (s
3
- vQ)y + (s

2 + fxQ)z

v = (s
3
+ v£l)x +fy + (s

x
- \tt)z

w = (s
2
- fxtyx + (s

x
+ A12)?/ + gssj

86.] Comparing these equations with (17) we deduce that the

general Homogeneous Strain represented by (17) consists of the

Pure Strain represented by (31), together %vith a small rotation

of the body as a whole, the components of which about the fixed

axes are V 2 , S ; so that the amount Q of this rotation, and
the direction-cosines of its axis, are given by

ejx - ejfi - ejv«a- je*+e* + e*.

This is the result that was anticipated in § 66.

Principle of Superposition .

87.] Writing equations (17) in the form

u = [ex + s3y + s.vs] + [$& - 63y]

v = [s3x + fy + Btz\ + [0& - 0,z]

w = [s.jc + s
xy + gz] + [0-^y - 2

x]

it is evident that the displacements due to a small rotational

strain are simply the algebraic sums of the displacements due
severally to the pure strain and the accompanying rotation ; and
it is further evident, from § 85, that this result depends entirely

on the supposition that all the coefficients involved in the suc-

cessive displacements are small quantities whose squares and
higher powers may be neglected.

Consequently the same principle ought to apply to all small

strains and rotations, whether they be homogeneous or not ; and
it is easy to show that this is the case.

Suppose the body first subjected to a small strain whose
displacement coefficients are [e, f g, sv s

2
, s

8 , 6V 2 , 6J.
The coordinates of any point P in the body, after this strain,

will be
gf m (1 + e)x + (s3 - 3)y + (s, + d2)zt

etc., etc.

Now let the body be subjected to a second small strain

[e\ f, g', s\, s'v s'
3 , 6\,

0'
2, &3\ The final coordinates of P will be

given by
x=(i + e'y

+

(*', - 0'
3y + (•, + 0'.

2y,
etc., etc.
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Thus the resultant displacements of 1\ due to the two sac-

rains, will be

«»(l + 0{(l4«)» + (*J-^)y + (i

+ (-'.-*.){<•. + %)* + (! +/)*+

. ate.,

and, to the firs* order of small qnantitj

»-[(*+< --] + [(#,: ',+ ^t)H

This result may be extended to any number of smotf strains,

so that finally vre nave lor the resultant displacements

,< = P(S) . ,- Sfc) . y !>,.) . ,] + [I(^
f . •- S| ><) . y] \

*).»+s(/). f i]+pr#).«-:

J.] Tlm> the resnltani of any numb II Btrains is a
small strain in which the coefl train and rotation

algebraic tvspomlin

ntfi in the compom nt

it i aril v ivsolvr.1

into ill compom-ir only t<> the

condition that the algebi i of the several coefficients must

be equal : ^responding coernVi.-nts in the original -train.

This result i> called the Prineij position <>i* small

strains, and is a particular case of a theorem of 1 ral

Lication in Mathematical 1'

IenUt of 1

We ai i poaitiol

represent the most gen By the lasi

Article it may i»«- rag e resultant of the six oomponeni
rely by

I

1

its only -train coefficient

.

m rains 0017113

• the coefficients may 1m- altered without

^ t
; these sii
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90.] Simple Elongations. Let us consider first the strain

represented by (i.), assuming e to be positive. The discriminating

cubic (28) becomes

Thus €j = e, 6.,= 0, e
3
= ; and (with the notation of § 83) equations

(29)giveX
1
-l,M

l
«0,v

1
«0.

The Elongation Quadric degenerates into the pair of parallel

planes ex2 = B2
, the Principal Axis Og coinciding with Ox, while

Orj, 0^ are indeterminate.

The cone of no elongation degenerates into the plane of yz,

and the cones of given elongation e are the cones of revolution

(e - c)x2 = e(y2 + z2).

The strain evidently consists of a uniform elongation, of

amount e, of all lines in the body parallel to Ox, all lines in

perpendicular directions remaining unchanged in length, while
the elongation of any other line depends only on its inclin-

ation to the axis of the strain, being given by e= eX2
. In fact,

the Position Ellipsoid (§ 84) becomes the prolate spheroid

(l + e)? + rf + C = C>.

It is obvious that this strain increases the volume of the
body, or of any portion of it, in the ratio (1 + e).

These results can easily be adapted, mutatis mutandis, to the
case where e is negative (uniform contraction).

91.] Similarly (ii.) and (iii.) represent simple elongations of
amounts / and g, respectively parallel to Oy and Oz. The elon-
gations produced by them in the line (X, /*, v) are f/j

2 and gv2
,

and they increase the volume of all portions of the body in the
ratios (1 +/) and (1 +g) respectively.

92.] Simple Shears. In the case represented by (iv.) the
discriminating cubic is

-0.-& o,

o, -4>,

o, h,

which reduces to

<£(4>
2
-,V) = 0.

Thus €
x
= sv e

2
= 0, e.

i
=—s

1, if s
x
be assumed positive. Substi-

tuting in equations (29) they give

K- o, lh =
1 i

J2
K ==1, f*2

=:0, V2 = 0,

A
3
== 0, N =

1 1
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Thus (hi coincides with Ox, while Q( and 0{ lie in the plane of
• internally and externally the angle between the

directions ; and the, strain Qonsists of a

rm elongation, pf amount *, , parallel to 0£, together with a

Dniform C parallel to ut, all lines in

body parallel to <hj or I ining their initial lengths

unaltered
Tin- volume J'uf any portion of I \y thus 1

ri+ai-^);
that is to say. it remains Qnchanged, and the -train produoes

gation and Gompi cylinders,

are parallel to Q\ and whose transverse

gular hyperbolas, their equations

*.(f
I Elongation d pair of

Rptotk
plan

\y line lyii planes my and w
melinat: n.l so of

. line in the bod] 1 1 to either of I

danes. [I wn directly by suhstitution in cqua-
ioas(l* •>.]

leseribed in any plane parallel

: in and dimea ititered

j
Pot this ret* o sets of parallel pi.

ailed .

sin llel plan parallel

1 their li n maintain their identity, the

train can onli I of a relative shifting of th
r the manner of jointed wicker-work,

o as liminish the right angle
•\ hieh include between them the

t don increase the supplei Angle by

A strain of this nature is call two
. ox limply a shear of the

II the i in the plai

in all parallel plai Simple Shear
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in the plane of yz (in which case the positions of the axes 0£, Orj

must be specified) ; and this or any parallel plane may be termed

the Plane of the Shear.

The Amount of the Shear is measured by the change in

the right angles between the planes of no distortion, as described

in the last Article.

Let Fig. 1 represent the section by the plane of yz of a

prismatic portion of the body, bounded by planes of no distortion

which cut the plane of the section in the square ABCD. Then

\. z I
'-'

"'/~ 1

'

B

R

Q b' --*"""

T\
i /

i/__...--
;""""

R
\ _

"" /

— iK

t> y

D

Jc r
"-

" s\ s

\
Fig. I .

the axis of elongation Og will coincide with the diagonal AOC,
and the axis of contraction Of with the diagonal BOD.

The sole effect of the shear will be to change the square base
of the prism into the rhombus A'B'C'D', where A'C = (1 +s,)AC;
B'D' = (l- Sl)BD.

If the sides of the square meet the axes of reference in

P, Q, R, S, and if PR, QS are strained into P'R', Q'S\ the amount
of the shear will be the sum of the angles QOQ' and POP', and
since these angles are equal the amount is twice the angle POP'.
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[uationa 19 , we have for the Btrained position

of the line in the body 1'IL initially coinciding with Oy,

II and to the first order of approximation

and 2a is the amount of the ^hear.

Shearing Motion. Th slightly different,

iew from u bich

• .1 B( <L reatmi I
i

l»y tin-

f tli.- sainr a as in Fig. i : and l«-t

the mi ttn of th<

eeping 6

kralleJ plane in the body motion parallel to the fixed
\

1 proportional I rpendicmar diet in it, I

;
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planes lying on the positive side of xy being shifted in the positive

direction of Oy, and those on the negative side in the negative

direction.

Since each point in OQ for (instance) moves perpendicularly

to OQ through a space proportional to its distance from the fixed

end 0, it is obvious that OQ is strained into a straight line OQ';

and the displacements of points in QS at equal distances on
opposite sides of being equal and opposite, Q'O and OS' will

remain in one and the same straight line.

It follows that all planes in the body parallel to zx are simply

turned through a constant angle of QOQ' about the lines in which
they meet the plane of xy, while by hypothesis every plane in

the body parallel to the latter undergoes a bodily translation

in its own plane.

If the strain be of very small amount the lengths of the lines

QS, etc., will not be appreciably altered, so that the result will be

to strain the square ABGD into the rhombus A'BCD' without
altering the lengths of its sides.

Thus it is obvious that the planes in the body parallel to xy
and zx respectively form two systems of Planes of no Distortion.

96.] A strain of this kind is called a Shearing Motion of the

planes parallel to xy in the positive direction of Oy.

Its amount is measured by the constant ratio between the

distance traversed by any one plane and its perpendicular distance

from the fixed plane : that is, by the tangent of the angle QOQ.
The amount of a small shearing motion is therefore measured

by the diminution or increase of the supplementary right angles

between the planes of no distortion.

The change of direction AOA' of the diagonal plane AC is

f
JQA\ tt JQA'-QA \

tan Wj-r- tan {qa^qb)

\? . OQ)
tan'

= i)QOQ' very nearly.

Similarly, the change of direction BOB of the other diagonal

plane is also approximately ^QOQ'.

97.] Comparing these results with §§ 93, 94, it is obvious that

a small shearing motion of amount 2s
x
of planes perpendicular to

Oz in the positive direction of Oy, is equivalent to a small Shear
of amount 2s

1
of planes perpendicular to Oy and Oz, together

with a small rotation of the body as a whole through the angle
s
x
about Ox in the negative direction (i.e., from Oz towards Oy).
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In like liianntT the stink-nt may satisfy himself, by drawing
a suitable \htd a small shearing motion of amount 2a, ox

ndieoiai to Oy in the positive direction of 0% is

equivalent to her with a rotation of

mt 8, of the body as a whole about Ox in the poi

kion

aring motion is therefore a rain, the

shear or
/

i whichever set of planes

bon, while the accompanying rotations

ions in tli.' two cases.

fa- in Fiir. •") a
|

mal shear of an: int :>*.. l.y n nngmoti
imnltaneously to the

In Ki_r 3, tl place parallel t->

• be mombdfl ^l />' 7 "/'

fcion £0£. I n'l equal

and opp



44 ANALYSIS OF STKAINS. [<JS.

rotation £$£', thus bringing the principal axes back to their

initial positions, and at the same time shearing the rhombus
A'B'C'D' into the rhombus A"B"C"D", which will be seen to be
identical with the A'B'C'D' of Fig.' 1.

99.] All these results can, of course, be shown analytically.

The equations of displacement for the shearing motion represented
in Fig. 2 are manifestly

u = I

which may be written

=
J

w=0
v --=

(*, + 8yi
w = (s

l
-s

1)yj

Comparing these with equations (17), we see that they
represent a shear of amount 2ff, accompanied by a rotation - s

i

about Ox.

Similarly a shearing motion of amount 2a
a

parallel to Oz is

represented by
u = \

v = (s
l
-s

1
)z L

w = (
s
i + si)y)

and is therefore equivalent to the same shear, together with a
rotation +8

l
about Ox.

Finally, the case of the last article is to be represented by
superposing the two shearing motions

u = *\ u = \

r-V L v = I

w = Q
) w=*

1yl
the resultant of which is obviously the simple irrotational shear

u =

t t°V>
N°tation for Shears. Similarly, equations (v.) and

(vi.) of § 89 represent small simple shears of amounts 2s and
2s

3,
of planes perpendicular to Oz and Ox, and of planes perpen-

dicular to Ox and Oy respectively.
We shall generally find it more convenient to use new

symbols a, b e for the amounts of these small shears, reserving
sv s s

3
tor their component elongations and contractions

Thus we shall have

a = 2*j, b = 2s.2, c = 2as .
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101.] Finite Shear. The properties of small sheai which
seed in the preceding Articles arc only the

named by the properties of Shear in general,

when its amount is indefinitely diminished. Consequently,

although they may be accepted as rigorously true lor the

purposes of our ana [ysi ill strain* 5 it is impossible to

draw figures which shall answer with pea curacy to the

xiptions given.

The student will find in Appendix II., at the end of this

Chapter, a short account of the corresponding properties of

which however have for oa only a Kinematic
»*st

8.] Cubical Dilatation mponent strains

1
|
iii. iner- if tlie

108 (1 +«), (1+/). 'I +.7)
•ively. while iv.), (v. and \ it of purr difltorl

without chanj me.

It' the VOIOme Pof any D01 the body he increased by

7 . the ratio {V - V) V is called tli.- Oubioal DUa-
the body. 'I r negative : in

he latter case, the positive rat: V V ? called

We shall always use the symlx>l A to denote cubical dilatation,

in the 1 at

r/r-(i + «)(i +/)(i

volume, thi m holds

lually I Eomogei
It IS obvious that the expression for the dilatation should be

independent of the din

fd
we see by

n.

£-«, + €, + «, ...(36)

1 1 Uniform Dilatation Dilatation is gen
pani'-d

nothing to dilal

axes, a sphere in the I Uipsoid,

and bo on.

fcion without die-
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tortion; for suppose the strain such that the three principal

elongations are all equal, so that

e
1
= €.2

= e3 =^A.

Any cubical portion of the body with its edges parallel to

the principal axes will then have each edge elongated in the

ratio (1 + JA), and will remain a cube, the effect of the strain

being simply to increase its volume in the ratio (1+A).

105.] In this case it is obvious from equations (27) that the

Elongation Quadric becomes a sphere, and in order that (22) may
reduce to the proper form, we must have

8
1
= S2 = S3 = J

whatever be the axes of reference.

This strain is called a Uniform Cubical Dilatation of amount
A, and, as we have seen, is equivalent to three equal elongations,

each of amount JA, in any three orthogonal directions.

The equations of displacement are

u = JAa
^

v = i&y I (vii.)

iy = JAs
J

Thus Uniform Dilatation, being expressed by a single co-

efficient, is to be (§ 89) regarded as a Simple Strain.

Types of Reference.

106.] Summary of Results. We have now shown that

the simplest of strains—the Uniform Elongation—is the basis of

all the more complex strains : that, in fact, the most general Pure
Strain is the resultant of three orthogonal elongations parallel to

its principal axes.

Further, we have shown that equal elongations (of like or

unlike sign) may be so combined as to produce two more kinds

of simple strain: namely, a distortion without dilatation or a
dilatation without distortion.

107.] Again, it has been proved that the most general

equations (31) of Pure Strain may be regarded as expressing

it as the resultant of the following six independent simple pure
strains :

—

(T.) An elongation of amount e parallel to Ox.

(II.) An elongation of amount / parallel to Oy.





PLATE I.

Distribution of the

Standard Component Strains.

{Page 47.)
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(III.) An elongation of amount g parallel to

H ar of amount o, of planee perpendicular to Oy
and

r of amount f>, of pianos perpendicular to Oz
and '

VI. > A shear* of amount c, of planes perpendicular lo

and '

The completeness with winch t tponenta tMLUrdSu the

most general] in will I 1 when it ta remembered
: parallel dy must remain a

set of parallel planes, the -train will be Completely -pecitied when
we can expr y possible r»- l;it i\ • moti \\\ Bet of

He! plan

. arbitrary, and from
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—

The Symbol ular

us of

""

X
X

X
It

y
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tbination of I ntities.

L08.] ] \w really
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t} •"»: narneli Mopgatians parallel to three arbitrary ortho-

08j and •
- 1,.- planes

Y rpendicular I angles

i »ns of Rotational Si
i

r it

tc th«

!. repi incipal axes of the
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component strains ; Ox, Oy, Oz being the axes of elongation, 0£
and 0£ the axes of the shear a, and so on.

109.] Referring to §§ 32 and 46, we see that these six

standard strains satisfy all the requirements of the system of

"strain-coordinates" which we set out to seek; they may be

chosen arbitrarily, they are perfectly independent, and any small

strain can be expressed in terms of them, while they possess the

great advantage—in point of simplicity—of vanishing in the

natural state of the body.

We therefore adopt them as our standard types of simple

strain, and, in order to completely specify any given small strain,

we have only to enumerate its six orthogonal components in

terms of the corresponding standard units.

110.] Type of Strain. When the six standard components
of any two strains are to one another, each to each, in the same
ratio, the strains are said to be of the same type, or of exactly

opposite types, according as this ratio is positive or negative.

(See § 33.)

The ratio of their components is called the Ratio of the

Strains, and when this ratio is ±1, the Strains are said to be
equal.

Strains of the same and of opposite types are also called " con-

current " and * contrary."

Any number of small strains belonging to two opposite types
compound into a strain belonging to one of these types.

Two equal and contrary strains exactly annul one another.

Specification of Strains.

111.] By equation (34) any number of Pure or Rotational
small homogeneous strains can be compounded into one, if we
are able to enumerate the standard components of each.

Now, every pure strain consists of a uniform cubical dilata-

tion, a uniform elongation in some given direction, a simple shear
with given axes ; or is compounded of any or all of these (§ 89).

We shall therefore be able to form the equations of motion for
the most complex combination of pure strains, when we know
how to specify each of these simple strains in terms of its

standard components.
The more general combination of homogeneous rotational

strains may then be deduced by compounding the rotations
separately, as in equations (34).

We shall now therefore proceed to show how the specifica-

tions of the various simple strains may be separately obtained.
The simplest method is by consideration of the Invariants of
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Option Quadric, which are the coefficients of the dis-

criminating cubic (28), Expanding that equation it becomes
^s _^ +/+ g) + ^{fg _ 8 2 + ge _ 8 2 + ef_ ,j2)

***** = ° (37)

*» f>*x

</>
3 -^2

(«i + «j + «>) + ^(M3 + ^i + M')-M^ = (38)

Denoting these ooefBcieata by D, /, A' respectively, we have

/> = ^ +/4 ? = *, + «, + <,

<>r

«/=/</

A' = (39)

„ !Ar|

«» /, *i

«**i> 9 J

LIS.] Uniform Cubical Dilatation of amount a. This

totted in idric is a sphere, and
roots of the cubic (37) ai The requisite

renditions are

*,««, = «, = <)]

nl the •illations of displacement are

Conversely. r combination of strains whose e

cubical dilatation of

mount A.

118.1 Simple Elongation of amount c in direction
l,m,n. In this case the ro are respectively

, 0, 0. lb nee it must reduce to 0*(0-«)-O.
Thus,

D
./ Q

/r«o

The two la a combination i own
reometry, § 91) to be equivalent to either of the

ree

yb - *i* — oi »,-«*=<)'

«/-V-0j g*t-*i*t-0

D
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while the first gives us

e+f+9^-* (44)

or I2+ I2+
1

2
= _L (45)

$1 S2 S3 ^l^S&S

by virtue of (43).

Again, I, m, n are the direction-cosines of the only determinate

axis (§ 90) of the strain.

Hence, by equations (29),

= « (46)
I m n

el + s3ra + s2n _ s.J +fni + Sjti _ s2l + s^m + gn

I m n

Eliminating e, f, g from these equations by means of (43) we
get

c \s
x So sj

Thus,

sl = ann

s2 = enl ]- (47)

S3 - elm

whence, by (43),

e = eP

f=em^,
g = en2

and the equations of displacement are

u = ePx + elmy + enlz

v =s elmx + enry + emnz \ (49)

w — enlx + emny + en2z

Conversely, if the components of a given strain satisfy (43)
it amounts to a simple elongation.

Its amount is then given by (44) or (45), and its direction by

ls
x
= ms2

= ns3
= (e +/+ g)lmn (50)

114.] A Simple Shear of amount 2a- whose axes of
elongation and contraction are in the directions (lv mv n

r)

(k> m2>V
In this case (§ 92) we have ^ = 0-, e

2
= 0, e

3
= -or, and the cubic

reduces to <j>((j>
2 — a-

9
) = 0.
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Z) =
i

A' = j

and
J= -cr-

. aquations -

d^ + ^r/t, + gtni */, + /otj + 8^ 8^ + 8
l
m

l
+ gn

|

A *»i ft,

<
z
l
t +fmt + 8fi . >n

t
+ gn

t _

.(51)

.(52)

'-

whence we tind

'".»,
Vi-*i(g - <r)

2<r*

L'.r-'

n,

m»ni
=

Oa1

>. V|-«t(/-K^)

2<r*

.(55)

Pwe
easily deduce

e-er(V-V);
/=o»(m

1
*-0;

^-<r(n
1
*-n

|
«);

juations of displacement are

v- <r(/
l

»/*
l
- l

t
m

t
)x + ^m,1 - m/)y + ^(m^i, -«

Equations [64) and [55) might of course have been deduced by
08 (48) m

Con its of a g t'y (51) it

fco ii simple shear whose amount -t is given bj

bile the d m of its axes are given by (531 In these

[nations <t must be taken as the positive root of (51).

115.] Resultant of any number of simple strains. We
n now form, with the greate- tions of displace-

. ut for the most complex da of small ither

Retaining the notation of the last three

Qg (§§ 85,

iat ai about an /m, v)

I into CO --h about the

tpounded

the principle of sup * the
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standard components of strain and rotation in the single equiva-

lent strain

= 2(JA) + 2(€F) +2K2 - o-Z
2
2
) v

/= S(1A) + 2(<=m2) + 2(0-7^ - o-m
2

2
)

flr
= 2(JA) + 2(m2

) + 2(o-V - cm2
2
)

s
x
s= 2(cmn) + ^((rm^ — (rm

2
n

2)

s
2
= ^(enl) + ^(crn^ — crnj,

2)

s
3
= 2(e/m) + '2{<jl

1
m

l
- (rl

2
m2)

2
= 2((2/*)

3
= 2(12v)

116.] Resolution into arbitrarily chosen simple com-
ponents. We stated in § 88, as the converse of the Principle of

Superposition, that a pure strain might be arbitrarily resolved

into any number of pure strains, subject only to the condition that

the algebraic sums of their components must be severally equal

to the corresponding components of the original strain.

It is an interesting problem to investigate the different ways,
beside the standard way, in which a pure strain may be resolved

into simple strains without in any way limiting its generality :

—

that is, without imposing any restrictions upon its standard com-
ponents.

117.] Since the number of these standard components is six,

the number of independent elements involved in any such equiva-
lent system of simple strains must also be exactly six, in order
that the solution may be at once perfectly general and completely
determinate. These six independent elements will then be given
by equations (56), in which e, f, g, sv flu sv must be taken to

represent the standard components of the pure strain to be
resolved.

If the number m of independent elements involved in any
proposed system be greater than six, we must introduce m-6
relations between them, which may be quite arbitrarily chosen
(with a few obvious restrictions to be presently pointed out).

If m be less than six we assume 6-m identical relations

between the standard components, and thereby limit the general
character of the strain ; or, geometrically speaking, determine to

a greater or less extent the type of the Elongation Quadric by
introducing relations between its invariants.

118.] Now a uniform cubical dilatation involves only one
element, its amount A.

A uniform elongation involves four elements (e, I, m, n),

of which however only three are independent, in virtue of the
relation

Z
2 + m2 + w2 =l.
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A simple shear involvea nwen elements (<r, L wi^, n» lv m 2
, /?.,)

of which only /oar are independent, in virtue 01 the relations

^4 + fhVh + *V*» = J

119.] If then we wish to represent the most general pure
-train M the resultant of a dilatation, an elongation and a shear,

we may subject these to an arbitrary conditions, and the

problem is then completely determinate.

example, we may assign arbitrarily i tih&f—
(i.) The direction ol the elongation.

The plane of the shear.

'.) The inclination- of the axis of elongation to the axes

Hie Bheai ire may take the elongation perpendicular to

the plane of ar.

i ratios of the amounts of the three simple strains.

120.1 As examples of assumptions which restrict the type of

the strain, we may fee following:

—

(i.) If we aasume the -train to be compounded of any
number ol shears a! assume the volu portion

of the body to remain unaltered. Thii involves the relation

+/+ g - 0, or D = 0,

and the Elongation and Compression Quadrics are either con-

jugate hyperboloid> ml. -re whose transverse sections are

conjugate rectangular hyperbolas.

(it, nemmti the strain to consist of i dilatation and
a shear without independent elongaJ ident from c

nd< > ..t" tl will coincide

with the ] md the Elongation

Quadrie red to these axes, will take the form

) (

i ircular -

£±{=0.

We tl: ligation I e to have ortho-

gonal circular Bed
The identical relation inv. tweon the invariants is

easily found, for

JA + cr, «, = JA, c, = $A-(7,

Z> = A
7=£Aa -<r

:K

) Mr )
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(Hi.) If we assume the strain to consist of a uniform dilata-

tion and an elongation only, the Quadric becomes

(§*•> +^2
+ £

2
) = h

which is a surface of revolution.

The relations assumed in this case between the standard

components (Frost. Solid Geometry, § 373) are known to be

Vs=/-* = *-
s*s„

or, since the cubic has two equal roots (Todhunter. Theory of
Equations, § 173)

J2(2)2 _ 4j) _ DK(4:D2 -18J)- 27K 2 = 0.

Change of Axes of Reference.

121.] It is often convenient to change the directions of our
axes of reference, and it then becomes
necessary to obtain the specification of the

strain referred to the new axes in terms of

its original specification.

Let Ox', Oy', Oz' be the new system of

axes, their direction-cosines referred to the

old system being given by the annexed
schedule, and let the two sets of equa-

tions

u = ex+(s
3
-e

3)y + (s
2
+ 6

2
)z

v = (s
3
+6

3)x+fy + (s
1
~6

1
)z

I (17)

w = (s
2
- 6

2
)x + (», + OJy + gz

X y z

x' K H Vl

V *2 H v2

«' A
3 H-3 *i

u' =. e'x' + {
s; - e;)y + (*,' + e

ay

)

w ' =W - 6*)x
'

+
(
s
i + ei)y' + ft J

represent the same strains referred to the two systems. We have

X = AjO,*' + X
2
y' + X

3
z

y a ftps' + fi2
y' + fx3

z'

z = v
x
x + v

2
y' + vjt

u' = X^U + faV + K,t?]

v' = A2U + fX
2
V + V.2W -

w' = \
z
u + fx3

v + V.M)

.(57)

(0.)

(D.)
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In equations (D.) substitute for heir values in terms
from (17); then substitute fal B, ./. : their values in

terms of from (C). Wis thus obtain a\ v', c:' in terms of

/ , a* and comparing these results with [57) we easily find

</' - A
3

2
C + /l*f+ V,V + W/» + 2*,V, + 2ArfVj

(58)

ET*6 / jeneous ^

From | 59 op to this point « always assumed
iin under di i to be II ad its

s to be ©
dvantages of oor concep-

if the constitution

>f a body be infinitely fine in i ion with the refinement of

qui analytical possible to conceive of a

lity from the

who* rat so mi t any i

shall be sensibly

constant thi it.

Thus it appears from §§ 51-58 that all the pr< : irhichwe
( thr body, to a small homo-

geneous strain will also hold go! <mall
rmei the (sensibly homogeneous] strain of that

to a small Heterogeneous Strain.tflem*

I: 8.1 Strain-Components. The standard eumpunents of

. will, of course, \ to point of the body.

d lot them, and by comparing
1 must make
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du dv dw \

dx
/-

dy> y ~ dz

a == 2s
1

dw
~dy

'

dv

b == 2s
2

du dw
~dz dx

c-= 2s
s

dv
=
dx*

du

'dy

29
1

dw dv \

'dz t

du dw
**i

= 3*" dx

dv du
20

3 ~dx 'dy

du dv dw
A "

dx dy dz J

(59)

and, by § 103,

If we give these components their proper values at any point

P (x, y, z), the strain of an element of the body described about

P will possess all the properties discussed in §§ 59-121, the

various surfaces involved being, of course, referred to axes drawn
through P parallel to the fixed axes of reference Ox, Oy, Oz.

The directions of the principal axes (§ 65) and the form and
dimensions of the Strain Ellipsoid will of course vary from point

to point of the body. The Strain Ellipsoid must now be defined

as the ellipsoid into which a sphere of unit radius and centre P
would be strained, if the strain-components had throughout the

sphere their actual values at P.

Irrotational Strain.

124] The conditions that the strain may be irrotational,

i.e., that every element may suffer pure strain without rotation

of its principal axes, are, as before, ^=0, #
2
=0,

3
=O, at every

point of the body.

Thus, by equations (59),

dw dv ^

dy ~ dz

du dw
%z~dx
dv du
dx ~ dy

(60)
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These are the well-known conditions that

may be a perfect differentia] of some function of .<•, y, z.

Denoting this function by we have

udx + vdy + wdz = rf</>,

and therefore

d* d* 3*

(61)

where,

The function may l>e called by analogy the 1> tent-

Irrotational Strain. It may be any continuous
single-valued function of the OOdrdlSJ epl tl'iat (since the

origin u supposed fixed) it must not contain any terms of the
first degr

lations (50) may n-»w be written

3ty _ 3«# Sty .

^"aya* ^"55bp *»"a^y

the symbol y* denotes the operator

condition that tin- dilatation may everywhere vanish, or

that tl v consist of distortions (shears) only, without

lume of any

I

; be point P The
«lir.-cti«»u-c..-in.-> of I ae.m.nt are u/U, v/U, W/U.

Bat it" ibe in toe body 1 rfaces wl.

oquath: : rated bj equating to different constants, and
wl, called Equipotm rfaces, the dircc-

equipotentiaJ surface passing

through r are also u/U, vjU, w I '.

Hence each poii fiued along Hie nornv

I -"'I Resultant Displacement. Ii'wewri

the eq> 1 ce passing throwgh 1

1

Again, if through P we draw an elementary straight line dv



58 ANALYSIS OF STEAINS. [125.

normal to the equipotential surface through P, and if the coordi-

nates of its extremity be x+dx, y+ dy, z+ dz, we have

7
U

7
V

7
W

7dv=jj- dx+ jr . ay + yj • dz;

Udv = udx + vdy + wdz

= d</>.

the amount of the resultant displacement at P is

uJ-i :
dv (63)

126.] If
<f>

is a homogeneous quadratic function of (x, y, z) it

is obvious from equations (61) that the strain is homogeneous
throughout the body.

The equipotential surfaces for Homogeneous Strain are there-

fore concentric Quadrics.

By Euler's theorem on homogeneous functions we have in this

case

32
<A 9

32
<£ fi

2
4> n 32

<£ n ^ n 32
<£H - *§£ + V

2

^2 + rfgj + 2yzWz + 2**^ +2*^
= ex*

2
+/2/

2 + #s2 + 2s
x
yz + 2s

2
zx + 2s

3
xy.

Thus (§ 22) in pure homogeneous strain the equipotential

surfaces and elongation quadrics are identical.

It has already been pointed out (§ 84) that in this case the

resultant displacement is normal to the elongation quadric, and
this agrees with the result of the last Article.

127.] Lines of Displacement. Since in every irrotational

strain the displacement of each point is normal to the equi-

potential surface through the point, it follows that, if we draw a

system of equipotential surfaces throughout the body, the dis-

placements of all points in the body will take place along a
system of curves which cut these surfaces everywhere orthogon-
ally. These curves are called the Lines of Displacement.

If ds be the element of arc (drawn in the positive direction of

the axes) of the displacement-curve through P, we evidently

have
1 dx 1 dy 1 dz

u ds~ v ' ds~ w ' ds'

or
dx __ dy __ dz

?)<fi "9<£ c)<£

"dx 'dy 'dz

The function must therefore always be such that it is

possible to draw a system of continuous curves cutting orthogon-
ally the system of continuous surfaces denned by = constant





PLATE II.

Equipotential Cylinders and Curves of Displacement in

Simple Shear.

[Page 59.)
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128.1 Ai simple example, take tlie case of a shear in the

plane of yz. This IS a strain in two dimensions, and the equi-

potential surfaces arc the rectangular-hyperbolic cylinders

yc = constant.

Thus the differentia] equation of the line of displacement

through 1
J

ii

They are therefore the orthogonal rectangular hyperbolas
gi veil by

x = constant I

y* ~ z2 = constant
J

'

See Plat e II.. in which tl. an1 the can
dpotentia]

cylu plane of th«

The directions in which diaj takes place along the

i the four quadrants are shown by

. ;il be useful to co rms assumed by
>ts of the

of the principal elongations
whir' .lsuppo*. •$) will then vanish, and the dis-

be homo-
it he

I will be parallel to the plane containing t, and i ..

.

e said to be wholly in two
limei

\\ .• shall, as before, use the notati : of Somogeni rain.

the planr lin, the

« of dis] : in

*-(. + *)*-.
,l '>

. it' tli

.
• elongat the plan.- of .///, and

i taking an an by

< « cosa^ +/sin-^ + 2* sin f cos
\f

.
( 1

8')
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and the angle \fs , into which \/s is altered by the strain, by

cos f = (1 - c + e) cos ip + (s— 0) sin $ \ n q,v

sin^' = (s + 0)cos^ + (l -c+/)sin ^ )

"" "* '

The circle x2+y2=l becomes the Strain Ellipse

(l-2e)x'2 + (l-2f)y'2 -4:8x'y' = l (20')

e, and e
2
are the (greater and less) roots of the discriminating

quadratic

•;*A f- •••«

and the angles made with Ox by the corresponding Principal

Axes are given by

tan ^x
= J

—

tan ^2

€ -e s

(29')

8 H-f)

yfrv \{s
2
being the roots of the equation

tan2f = -fi (64)e-/

The graphic properties of the strain depend upon the Elonga-
tion and Compression Conies and the Position Ellipse, which are
the normal sections by the plane of the strain of the cylinders
into which the respective quadrics degenerate.

If e
x
and e

2
be both positive, we have the elongation ellipse

ex2 +fy
2 + 2sxy = B2

\

or *if
2
+ V?

2 = ^2
i

(
'

If both negative, the compression ellipse

ex2 +fy
2 + 2sxy=-JB2

\

or ai^ +V^-W ( '

If of opposite signs, the conjugate elongation and compression
hyperbolas

ex2 +fy
2 + 2sxy = ±B2

\

or e
1£

2 + e
2
7
1

2=±B2 j'

In the latter case, we have two planes of no elongation
through Oz, cutting the plane of xy in the lines

ex2 +fy2 + 2sxy = |
or *JP +q+~0f (25')

which are the asymptotes of the above hyperbolas.
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The Po.Mtion-Ellipse is

(1 + e>r2 + (1 +f)y* + 2sry = &
\ (33')

or P + *JP+<l-n

If then r be any radius vector of an Elongation or Com-
pression Conic, and p the perpendicular from the centre on the

tangent at the extremity 1
i
of r, the elongation e of OP is given by

€ = Bi r2 (23')

and the resultant displacement of P will be along the normal at

P, and its amount will be B/p.

On the other hand, if P be on the positi<»n-t llij>M . and /and p
have similar mnaningB, OP will be steamed into the position of p,
and it- I

th will l>e C*/p.

In oihec words, tin* displacement o! the extremity »>t' any
radius of the elongation conic a perpendicular and proportional
to the conjugate radius; while any radius of the position-ellipse

is, after the strain, perpendicular and proportional to the

jugate radius.

no elongat: rtHeJ to Oz, Ihe oobiea]

dilatation of the body is equal to the " artel d ol any
plane area parallel to the plane ol in. Thus,

&-#+/ (35')

The conditions that tl
i may be an areal dilatation

anifonn b :. are

• 7
i - IX,1=o} <4 °'>

kkm that it niav be a simple elongation ai

aonditiOM that it may be a simple shear are

If the strain be heterogeneous

7
?y

3v 3u

""ST*.
If the strain be everywh. ore b rotational

udx + vdy = d<f>,

El the <li-]>lac<-iiM-nt-])Mt«-ntial.
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The equipotential curves are given by <f>= constant, and the

curves of displacement are the orthogonal system.

If there be no dilatation anywhere, <j> satisfies

V+V*
o ran

EXAMPLES.

N.B.

—

The factor a is introduced to denote a small quantity

ivhose square and higher powers may be neglected. The expres-

sion

{e,f,ff, sv 99 s
3 }

is used to denote the specification of a strain (§§ 111 et seqq.)

1. Refer to its principal axes the Elongation Quadric of the

strain
{3a, - a, - a, 0, 0, 2a},

and hence show that it consists of a simple shear of amount 6a,

together with a uniform elongation of amount a perpendicular to

the plane of the shear.

2. Show that the strain {0, 0, 0, a, a, a} consists of a uniform
cubical compression and a uniform linear elongation, each of

amount 3a.

3. Show that the strain {a, a, 0, a, a, a} consists of a shear

of amount 2a\/S, a linear contraction of amount a perpendicular

to its plane, and a uniform cubical dilatation of amount 3a.

4. Show that the strain {a, 0, 0, a, a, a} is equivalent to a
uniform cubical dilatation of amount a, together with three shears

in orthogonal planes of amounts 2a*j2, + Qa,
— ~a; the shears

having 0£ and Otj, Orj and Of, Of and 0£ for their respective axes.

5. Prove that the strain {o-cos20, — o-cos20, 0, 0, o-sin2#} is a
simple shear in the plane of xy, the axis of elongation making an
angle with Ox.

6. Hence show that the strain {e, f g, sv s
2
, s

3} may be
resolved into the following components:— a uniform cubical

dilatation of amount {e+f+g)\ a simple shear of amount

\Z8i

2+Kf—9)2 m tne plane of yz, the axis of elongation
making an angle tan" 1

[SsJ(f- g)] with Oy ; a shear of amount

\/82
2 +i(g - e) 2 in the plane of zx, the axis of elongation making
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an angle tan
-1

[3-s\, (g — e)] with Oz ; and a shear of amount

n + Ke -fY in tne plane of xy> tne axis of elongation making
an angle tan

-1^/^-/,] with Ox.

7. Defining the term " areal dilatation " in analogy with
linear elongation and cubical dilatation, show that in a homo-
geneous -train a system of qtiadries can be described with the

origin as centre such that the areal dilatation of any section

ly as the square of the perpendicular radius vector.

8. Prove that all planes in tin- body suffering a riven areal

dilatation S have for their normals the generators of the cone

•hat in the case of § 119 (//>"., tin- elongation being
perpendicular to the plane <>f the shear, and all three principal

rations being supposed positii i D of the elongation
li th«? greatest axis of the strain Ellipsoid if

that in this case

A-!M«») ]

•-i(*i-v-s>J

low tha le elongation e parallel to Ox may be
r- placed by ac each
o amount §e, having ' Oy, Ox and Oz resj v for

t <-;i

11. What i the strain represent I by the

ib of displaeen*

u~- utyz ; v »<u£X ; to = ?

1% Find thai otaand products of inertia

after on
resented by

u - ax + ax*

vmfly + pyz

I j w-yz + y'z*

13. Prove by combining eqaai ; ">'l ,;I ihatifone

the principal axes at eacb pomi J to the equipotential

through tl:

<t>
m F(ax + px + yz + 6)

|

*-' r
.<, ft, y, and 6 are its, and F is any

ion whid Jsh al the origin.

N.'hat strains do i represent



64 ANALYSIS OF STRAINS.

[The equations may be written

1 W2 _l W2
_ 1 W2

= X(s
2u' ^x 2v' "by 2w' $»

Thus £7. dtf"=\. d0.

Assume -4 . dU=\ . cfo.

Then U . dio = Ad<p, where .4 is a constant

•'•

vda/ ^2// ^a' VW
.'. when * = we also have

^ =^=^ = 0. Thus *-*(«).
^x ty tz

?W <^0 3<£ ai.„Now %- . ~- = sri etc.
'ete dw ?«

Squaring and adding

@)
,

{®)
,+ ,+

(t)
,

}- D "

The only real solutions of this are

w = ax + fiy + yz + d\

u} = ar + d J

whence, etc.].

14. Prove that in any strain which consists of a combina-

tion of any number of shears (homogeneous or not) in the plane

of xy the displacement curves are given by
z = constant

\

X = constant )

where
<f>
and x are conjugate functions of x and y (§ 245).

15. Prove by equating the values of a', //, v given by equa-

tions (19) to X, ft, v that, in any homogeneous strain, there is

always one and may be three straight lines through every point

of the body which retain their initial directions.

Show that the elongations in these directions are the roots of

the cubic
0.e "* S3~ 3,

s
2
+ e

2

h +
3 , f- *, h--*i

H -o» *1 + *n 9~-*

Hence show that, when all the roots of this cubic are real,

these three directions are orthogonal, and
1
=

2
=

3
= 0.

16. Show that the integral

f(udx + vdy + wdz)

taken round any closed curve in the body is zero if the strain be
irrotational, and is otherwise equal to

2ff(xe1
+

f
,e

2 + ve
3
)ds

i
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s
is an element of any surface drawn within the body

and having for its edge the given closed curve ; A, jul, p being the
lies of toe norma] to the element.

17. Show from equations (59) of § 123 that the integral

taken over any ofottfd surface drawn within the body, is

identically zero.

APPENDIX 1.

On the Geometry of Strains.

All physical quantities may It broadly classified into two
categories call-- 1 Scalar an. I Vector. A scalar

quantity involves no conception hut that of magnitude, but the

cnara< of all Vectors i> that they involve the idea

:t of magnitude.

Khis broad distinction inc the head of Vectors

al classes of quantities which differ from one another in their

degree of d.-tinition, as we shall presently explain. Tiny may all

iimed to two divisions :

—

linear an r vectors

hie! ! Iiscuss separat

lAmamt Vinton.

[Jacement, Velocity, Elongation, Force, <L<

TL bfined
'

tor, which d ailed

Kotor, involves the specification elements.

magnitude, which it hi anon with scalar

•h -sed by a scalar or numerical factor multiplying its

purerj or directed factor, and denoting it- ratio to an
arbita ctoi with which it is in all its other
oro}> caL This factor is call* •! its Tensor.

direction, or that of a family of parallel straight

ines in B] DC of which it may 1 < <1 to act.

its way i along these lines, which is analytically
expre ion as to it- cdgebraioal *i<ji>,

ting in ive, a
r acting in the directly opposite • osidereo negative,

the two \ ntical.
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(iv.) Its position in space, or the particular line of the family

along which it may be supposed to act.

(v.) Its origin, or the particular point in this line from which

it is to be reckoned, or at which it is to be applied.

The following are good examples of motors :

—

(1) A given displacement of a given point in a given direc-

tion.

(2) A force of given magnitude and in a given direction acting

at a given point of a body.

The component displacements, parallel to arbitrary rectangular

axes, of each point of a strained body are of course vector quanti-

ties, but if the body be left free in space they are highly imperfect

vectors ; the reason being that such a strain does not specify the

absolute displacements of points in the body, but only their

relative displacements in given directions.

Consequently we are only given (ii.), (iv.), and (v.), while (i.)

and (Hi.) are quite indeterminate.

Vectors of this nature, which can be taken in either way so

as to satisfy the specified conditions, are called Dipolar.

If, however, we determine in any abritrary way the absolute

displacements of any one point in the body, it is obvious that we
thereby raise the component displacements of all points in the

body to the rank of perfect motors. The simplest condition to

impose is of course that one point in the body shall remain fixed,

and since this assumption cannot affect the strain, while the

analytical advantages of increased simplicity and definition are

so obvious, we shall always avail ourselves of it.

As an analytical example let us take the simple case of a

uniform elongation of all lines in the body in the direction Ox.

If e be the amount of the elongation, and xv x2
, xr . ., #/, xa\ a?8

'...

the initial and final abscissae of any number of points in the body,
the only condition to be satisfied is that the projections (x

2
— x

l ),

(x
3
-x

2
)... upon Ox of the distances between these points are to

be increased in the constant ratio (l + e).

We thus obtain a group of equations of the form

X
2 - X

l
=

( * + e)(X2 ~ X\)

or u
2
- u

Y
= e(x

2
— x

x ).

The solution of this group is of course

u-ex = constant,

or u-ex—G,
where the constant C may be of either sign and of any magnitude
whatever.

Let x', x" be the abscissae of those points of the body which
are nearest to and farthest from the plane of yz.

(i.) If we take C< ex', ft, will be positive for every point in

the body.
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It' we take i ' <C < <./•
", u will be negative for all points

of the body between the planes ./• = .»' and ./•"= C <*, and positive
for all points beta planes ./• = c t and ./ = .#".

) If we take C>€j'\ u will be negative for every point
in the body,

All these solutions obviously satisfy the conditions of the
in.

It ia eleai that (tiL) amounts: to regarding a plane in the hody
ad in spaa— nam.-ly, that for which flj-0/a If we take
far the plane of yz, C=0, and the equation of displacement

and " ifl now a perfectly defined motor.

The simplicity oi this solution points to the advantage (much
greatr' me in more eomp line one point
in the bo< bsolutefy fixed, and taking that pouri as the

v axes of ice.

Angular Vectors.

Angular Velocity, Couple, &m
c).

v defined alaai ol angular
whi 1 a Kotor. we shall oonirider a simple

rotation about a
g

:»n includes

its magnitude.
direction ol its axis, ox U tion Donna] to the

dm in which the displacements take place

.-.
. d by an

arli: as to algebraical sign (see below).

position OI toe particular line in the

defined by (ii.) which remai

It> origin initial position of any plane in the

body through the azi n, from which we m.a>ure the

An ordinary Couple is a goo-i pk ol an imperfect

. be moved about in any manner in its

wn oi any parallel plan.- v. En fact

we can only its magnitudej the direction ol* its aariu

its v.

I as to the ton; ogular rectors

I
:

—

rdinaie axes always in their cyclical order

—

in the direction
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from that axis which comes next towards that which comes last

in the cyclical order is reckoned positive, a rotation in the reverse

direction being reckoned negative. A positive couple is one

which tends to produce a positive rotation, and so on.

In all branches of Physics but one the directions in which we
suppose the axes drawn, with reference to their cyclical order, is

quite indifferent ; but, in

order to secure uniformity of

notation, it is desirable to

adopt in all cases that already

employed in Electromagnet-

ism, in which the positive

direction of rotation about

either axis bears the same
relation to the positive direc-

tion of translation along it as

does the rotation to the trans-

lation in the case of an
ordinary " right - handed

"

screw (Fig. 4). This is also

sometimes called a " counter-

clockwise " rotation, from the

fact that if one of the co-

ordinate axes be drawn out-

wards from the centre of the clock-face, the positive direction

of rotation is contrary to that of the hands.
Now if a body left free in space is subjected to a strain

accompanied by a rotation of given small amount & and with its

axis in a given direction (A, ju, v) it follows from the purely
relative character of the displacements specified in the strain that
those portions of them due to the rotation will be given (like

those previously discussed) by a group of equations of the form

u
2
- u

x
= iiti(z

2
- 8j) - 1*4%, - yY )

v
2
- v

x
= vti(x

2
- ajj) - XQ(z

2
—z

1 )

w
2
- w

Y
= \ti(y

2
- Vl )

- fxn(x
2
- xj.

the general solution of which is

u = /xQ,z — vSly + A
v = vflcc — \Q,z + B
w = \£ly - /jlQx + C

where A, B,G are purely arbitrary constants.
In other words, a small rotation of the body as a whole about

any axis may be reduced to a small rotation about any parallel
axis, by the superposition of a suitable linear displacement of the
body as a whole.
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Such displacement does not affect the strain, and therefore,

BO fa: conditions of the strain go, the position (iv.) of the
tati<»n is completely unspecified, and with it the
component displacements.

Hence, as before, in order to transform the strain-rotation

into a complete Rotor, ime the point of the body coincid-

rigin to remain at rest ; an assumption
which clearly amounts to determining thai all axes about which

body can rotate must pass through the origin.

I

APPENDIX II.

On Finite SJtears.

imple finite baof a uniform elongation of all

in the body parallel to a mpanied by a

[prOGtj] rati-, of all Lines in a perpendicular

lines parallel to Of retaining their initial lengths

unalt.

Thus lines of unit length parallel to 0£, 0>j t Of respectively

become lines of 1- I 1 .<. when « is a finite quantity

great* r than unity w hid 1 the Ratio of the Shear.
nts paralhl to the principa] axes are given by

if the point (t\ t, be displaced to (£*, */, f)

f/«f-V/»-</f-l.
Thu> the equation of the Strain Ellipsoid is

it- - -mi-axes are a Rg« 5 represents the principa]

i. and of the unit sphere

from which it unit

to the plane of the paper.

m i-l the in, -an semi-axis of the

ellipsoid ere both of unit length, the common sections of the two

the Circular Sections of the ellipsoid

two planes through fty, who-- lines of inter-

with the plane of the paper are the common radii A'OC\
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Since these sections remain great circles of the sphere—and

therefore retain their original form and dimensions—it follows

from the properties of Homogeneous Strain that the two systems

Fig. 5.

of planes in the body parallel to the circular sections of the Strain

Ellipsoid are Planes of no Distortion.

The equations of these planes in their strained positions are

given by

or by f'±af' = 0.

Consequently their positions in the unstrained body are

given by
a£±£=0.

Let these cut the plane of the section in AOC, BOD. Then

AO£=DO£; =tan- 1a,

4'0{=iy0£*=tan-i(l/4

The effect of a simple finite shear is therefore to change that

angle between the two systems of undistorted planes which is

bisected by the plane of & from 2tan
_1

a to 2tan
_1
(l/a).
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The angle AOA' through which any one of these planes is

Uimed is obviously
tan-^a-a" 1

).

It is clear that any rhoiuboidal prism, such as PQRS, bounded
by undistorted planes, ia strained into an equal and reciprocally

—

similar rhomboidal prism PQ'R'S', by a simple interchange of
- and diagonals of its transverse section,

To represent the effect oi Unite shear by a Finite Shearing
Motion we most thai

take any such .

rhomboida] prism, and x.

—holding ti of ^yO \p' A X a' P/

it- mesial nlaimn BOD
—cause all the oncDS-

torted planes ol the

j stem t<j

parallel to it, each

ro-

portional to its perpen-
dicular distance from

fixed plane, until

Tll-

bufl bae been changed
into the -uppl.-mentary

be Ihe initial and final forma of

.10(7, A'OC be the initial and final positions

me ; ON being perpendicular to J

We I

angle iiOif- 2 tanker 1

),

AON-A'ON=\aa'*\(*->

Now if A be the Amount <>f the shearing motion (ox the

ratio lianlacemenf of any sheared plane to its perpen-
dicular di tixed plane),

A = AA
Thus -i a

Again

-.taIl-
,(a)-tan- ,(a- ,

)

-tan"lJ{a-a->).

Thus, finally, are we thai simple brrotational shear of ratio

\ be replaced by a shearing motioo of amount A u — <t \

• •r with ard rotation of the body as a whole through
an an.

tan-»(l^) = tai a-»).
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To apply these results to the limiting case of an infinitely

small shear (§§ 95-98) we have only to write a = l + s,

so that a
-1 = (1 + s)"

1 = 1 - s.

Thus, A = 2s, and the rest follows.

The Analytical Equations of a finite shear in the plane of

xy whose axis of elongation Og makes an angle with Ox may
be found as follows.

All lines parallel to 0£ are lengthened in the ratio a : 1, and
all lines parallel to Of are contracted in the ratio 1 : a. Hence
the initial and final coordinates of any point are connected by
the relations

or y sin + x' cos = a(y sin + x cos 9) )

y' cos - x' sin = a~ J
(y cos - x sin 0)

or, if 2s =

a + a x
)

x' = x . (cr + s cos 29) + y . s sin 29 )

y' = x . s sin 29 + y . (or - s cos 29) )

If we put s= s
3 , <r=l, = £'7r, these reduce to equations (vi.)

of § 89.

Composition of Finite Shears. It is a curious fact that
although a single shear of any magnitude does not cause any
rotation of the body as a whole, and although (§ 88) any number
of infinitely small irrotational shears produce as their resultant
an irrotational strain, yet if two or more shears offinite amount,
each of them irrotational, be applied in succession, their resultant
effect will in general be a rotational strain.

To prove this we will consider two finite shears in the same
plane, whose axes do not coincide.

Retaining the notation just explained, let their elements be

(a, s, a-, 9), (ft *', cr', 69').

^
The coordinates (x\ y') after the first shear of the point

initially at (x, y) will be given by the above equations, and its
"

V") by

= x'(a-' + s cos 29') + y's' sin 29' )

y" = x's sin 26?' + y'(o-' - s' cos 29') )

Hence, finally,

x" = x[o-o-' + ft' cos 2(0' -9) + (a-s' cos 29' + o-'s cos 20)

J

- y[ss sin 2(0' - 0) - (as' sin 20' + o-'s sin 20)]

y" = x[ss' sin 2(0' - 0) + (as' sin 20' + a-'s sin 20)]

+ y[a-a-' + ss' COS 2(0' - 0) - (as' COS 20' + a-'s COS 20)]^

final coordinates x''

x 1
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To interpret these equations let us suppose the point brought
back to (x, y), and displaced to >'", //'") by an irrotational shear

(S, 2, 0), and then if brought to |
./•", y") by a simple

rotation of the body through an angle 6 in the positive direction

about (

We shall then hi

x'" = x(l 2<j>) + yS sin 2<f> (

y" = atf sin 20 + fQL - S cos 20) I

'

h
x" = x"'cosS- //' "sin 8

y' = a:"'8inS + y'"co8S

And, finally,

aT = x[2 cos 8 + S cos (2^ + 5)] -

y" = x{2sin6 + 6*8in(20 + S)] + y[2:cos5-^co8(2</. + 8)]

>>in(20 + 8)])

In ardet thai ti o values for (af,y") may be icli ntiocd

or all values of sand

o88«atr' + «'cO82(0'-0)

>8-«t'am 2(0'-0)

It (20 + 8) -er»'cos 20* + <r*cos 20

S sin (20 + 8) = <r»' sin 2^ + <r's si |

ring and adding t of these equations

2*- <rV* + A'* + W«' cos 2^ - 0).

quaring and adding the la

S* - <rV« + (rV + fcnrWcorifP - 0).

Thus
1.

*->/-•-*'-)

11 ! give compatible values Pox

follows
• n in the same plane, whose

ixes do not coincide, are together equivalent to a finite shear in

ime plan.- and I finite rotation about an ax Is perpendicular

He same property can easily be shown geometrically in the

shears have one system of nn distorted
planee in e

i and let AB be
held fixed. I the elongation-axes of the two

perpendicular to .1 1>.

The fii will bring P, to /'/ whew i\!\' = 28.0N,
and ;
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The second shear will bring P
2
to P

2
' and P

t
* to P/', where

2s' . ON, and angle P
2
OP

2

' = tan"V.

The resultant of the two irrotational shears will therefore be

equivalent to a shearing motion of amount 2(s-fs') towards the

P P ' = P'P

cH Pj Ar
P* P, P'H' P,D

"X V /' /' y y
\ jS

\
*s.

A O

Fig. 7.

right hand, together with a counter-clockwise rotation through
an angle tan~ 1

s+ tan~V.

tan
1 — 88

Now if 0P
3
be the elongation-axis of a single shear which

will restore P" to Pv the same shear will bring P
3 to P

3
' where

P^Ps - PjP/= 2(«+ s')
. 02f; and angle P

3
OP

3
' = tan" 1^+ s'). To

make this an irrotational shear we must therefore give the body
a clockwise rotation through an angle tan-1

(s-f s').

Hence we see finally that the resultant of the two irrotational
shears of amounts 2s and 2s' is compounded of a single irrota-

tional shear of amount 2(s+s') together with a counter-clockwise
rotation through an angle

P,OP^PfiPJ-P,OP'
= tan

_1
s + tan"V - tan_1(s + s')

8-fam-f-
ss'(s + s'> A

LI +SS +S2 + S 2J
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intensity of the stress at any point P is measured by the tension

which would be exerted across a unit area described about P in

the surface, if the stress had at every point of that area the same
value as at P. In other words, it is in all cases measured by the

ratio which the tension across any small area described in the

surface about P bears to that area, in the limit when the latter

is indefinitely diminished.

In accordance with the usage of Hydrostatics, we shall

reserve the term Stress for intensity of stress (force per unit

area), and employ Total Stress to denote the algebraical sum of

the tensions across all portions of a given area.

A positive stress (tension per unit area) is called a Traction :

a negative stress (thrust per unit area) is called a Pressure.

132.] Normal and Tangential Components. The stress

across a surface may at each point be normal, tangential, or

oblique ; and since in the latter case the stress (being merely
a force per unit area) can always be resolved into a normal and
two orthogonal tangential components, we need only consider

the former two.

A positive normal stress across a surface is then a normal
traction between the portions of matter separated by it. The
function of such a stress is obviously to resist normal separation
of these portions, or, in other words, to resist elongation of the
neighbouring portion of the body in the direction of the normal.

Similarly, a negative normal stress or pressure tends to resist

contraction, or negative elongation, in its own direction.

These are also sometimes called longitudinal stresses.

A tangential stress, or the component in the tangent plane
of the stress across a surface at any point, clearly resists any
tendency of the matter on one side of the surface at that point to
slide relatively to the matter on the other side, in the direction of
the tangent plane. The function of the tangential stress is there-
fore to resist shearing motion, and for this reason it is very
often called Shearing Stress.

133.] Total Stress. Stress being a purely mutual reaction
between two portions of matter (compare §§ 28-30), it follows that
the stress exerted by any portion A of the body on a contiguous
portion B, across the surface which separates them, is precisely
equal and opposite to that exerted by B on A.

The sum of the two is therefore always identically zero, and
similarly, if we suppose the given portion A divided by any
number of surfaces drawn within it into smaller portions, the
mutual stresses between these must have an identically null
action upon A taken as a whole.

The Total Stress exerted on or by any given portion of the
body is therefore simply the total action exerted across its
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i its outer layer and the matter immedi-
. in contact with it.

Th. -ult of 0OUI86 holds for the entire l>ody, SO that

n the ho<ly ia simply the total action exerted

3 it> bounding surface by matter in contact with that surface,

whether horn lb with the body or not.

esses applied by external agents at the bounding surface

are called Surface Tractions; they are measured, like

all ot applied per unit area, and maybe
podti : and either normal,

al, or oblique at each point.

ii a solid body immersed in B

in fluid at aniform hydrostatic preeBure i>
is a uni-

form normal Surface Tri —p) per unit area: and the

the body is (—pS) where S is the area of its

]
The two Aspects of Stress. We have hitherto

1,1 Stress simply as offering resistance to Strain: it is

however, from its reciprocal character, that it may also

I from I point of view—namely, as producing
" maintaining strain.

is simply amounts to stating that the m n I by the

fcion A Ot B body OO thfl e-ini_uous portion Ji may he con-

ned with i to its effect on A or to its effect on B. In

• •r aspect it resi I A, and ta

to it- natural state: while in the latter it tei

rain ol /> and to pTt burning to its

nal and opposite stress exerted

incn-a of A, and diminish that

mule

:

rm bar longitudinally stivte l.'IO.

entary thick-

call them A,B, C. I

tionaeroafl th- plane ii faces separating B bom A and Lb a

i utual tension, while the -train consists of an in in the

Iitural
thickn ach layer, due to the uniform LOO "1'

</ to

th can only be done by diminishing
-
v thickness o; re tends t«» diminish tin-

rain I I Other hand, th.- i on

•so oppo> 1 t<» iip

-train <»t* />'.

136.] Interpretation of this Distinction. Th
met; rrespond t.> the two i"*: lew i'r<>m

v hich we may approach th.- rabj
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If our object be, as in Chapter I, to investigate theoretically

the physical effects of Strain, especially with reference to the

increase of energy of the strained body, our most obvious method
is to imagine a given state of strain produced, to calculate the

stresses called into play to resist it, and hence the work required

to be done by external force in order to overcome these resistances

to any required extent. Our attention is fixed upon the fact that

stresses are only aroused by departure from the natural state, and
hence Strain and Stress always appear to us in the relation of

cause and effect. This is the physical point of view.

In practice, however, when we deal with actual bodies, our

only method of producing Strain is by the application of external

forces, and principally of Surface Tractions or Pressures, which

(§ 133) are simply boundary Stresses. Engineers in particular,

who are chiefly concerned with the capacity of materials for sup-

porting shocks or continuous burdens without permanent set or

rupture, necessarily obtain all their working data by this experi-

mental method, the weight of the load being continually increased

until the limit of resistance is reached.

The object of our theory being to afford a guide for practical

work, we naturally adopt the same point of view : we therefore

regard the applied forces and Surface Tractions (which are under
our control) as the subjects of^observation, and we require to be
able to calculate the system of stresses which must exist through-
out the body to balance these opposing forces, and hence to

deduce the strain produced by them.
This may be described as looking at all the phenomena of

Strain from an outside point of view. Each body, or portion of
a body, is regarded, not as an agent opposing strain of its own
substance by the exertion of stress, but as passively yielding to
the stresses exerted on it from without. This is the mechanical
point of view.

We shall therefore make a distinction between the Stress
on the portion A, being the action exerted on it by the
surrounding matter which together with the applied forces on
A produces and maintains the state of strain, and the equal and
opposite Resistance to Stress offered by A, which balances
the stress so long as equilibrium is maintained.

136.] Applied Forces. Besides Surface Tractions or Pres-
sures bodies may (§ 4) be strained by forces—such as gravity—
which act directly on every portion of the matter of which it is
composed.

These are variously known as Impressed Forces, Applied
Forces, or Bodily Forces, to distinguish them from Surface
Tractions. Their intensity at any point of the body is measured
by the force per unit mass on an indefinitely small portion of



i3e.] 79

the body havi' riven point for centre; and, when not con-

stant or zero throughout the body, they are assumed, as in

nature, to vary i / from point to point, and to be

137.] Continuity of Stress. In a body under continuous

and finite (or zero
J
applied forces, the components of the stress

3 a small pi ' drawn in a given direction through

various points of the body musi also vary continuously from
point to poiii they ne constant).

small plate of matter in the interior of a
ilibrium under applied forces of finite intensity,

led by parallel plane faces separated by an indefinitely

small distance S, the oomponenti of the applied raree on the plate

will be ultimately of the same dimensions as S, and bo therefore

tic - differences between the equilihral unponents

a opposite faces.

D infinitely small cliange of position, therefore, of B

sim. 11 plane area drawn in a given <1: the Component! of

the stress across it m \ by infinitely Bmall quantities of

the same dim-
J

mu-t be continuous functions of

the- position of 1*0 foUo the stresses ai

twi oppo ejj of an element of the body must both

be tr. th pressures, unless the stress is zero across a

pa illel plane within the elem

General Equations of Equilibriwm.

138] Equilibrium of an elementary rectangular
pa *allelepiped. I.- 1 P be * in the substance of the

bo y, whose coordinates i ttangnlar axes

ar< (x, y, z). Throu- allel to fchese

ax 8.

Descril allelapii lIJKLM,htmng
/'. and its edges, of lengt! peetivery,

pa allel i

Let !»e faces of the parallele-

pij ed in the rectanglefl AH r I> . AfiJ3J)v Afifi^ respect i\ el
y

rice the \.»lunie
i

•

| as oi its

fa< by and the intensity of the applied

foi » upon it (if any- may be supposed to have throughout its

vo un lal value-, al nd the components
of heap] be supposed to act ai P: similarly the

intmsityofti across each f .• be supposed uniform
all over it. and th I ress across each face may be replaced

by a single I I re.
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139.] Let us consider first the stress across the small plane

area AjBfi'fiv drawn through P perpendicular to the axis of x.

Let us assume that it is a traction—which we must in general

suppose oblique—of intensity Mv sensibly constant over the area.

The total stress exerted across the area between the two por-

tions into which it divides the parallelepiped may then be taken
to be -R

x
. dy dz which may be regarded as a single force acting

at its centre P, and of the nature of a tension, so that the force

due to stress on that portion lying on the 'positive side of the

area acts in the negative direction of the axis, and vice versa.

Fig. 8.

Let the components of P
3
along Px, Py\ Pz' be Xv Yv Zx

respectively, and let us assume that they are all of the same sign

as RY Then the component forces due to stress exerted by the
matter on the positive side of the area on that on the negative
side will be X

x
. dydz, Y

1
. dydz, Z

x
. dydz all acting in the

positive directions of the axes ; while the matter on the negative
side exerts upon that on the positive side exactly equal com-
ponent forces in the negative directions of the axes.

Now, by § 137, these stress-components X,, Yv Zx
vary con-

tinuously (if not constant) for different small plane areas drawn
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in the body parallel to A
l
B

l
C\D

l
—that is, they are continuous

function*

Hence, since the perpendicular distance of A
1
B

l
C\D

1
from

either of the parallel faces

—

EFGH ami JKLM—of the element
, it follows that the total stress exerted on the element

- the face EFirlf by the matter on the positive ride of it

may be represented by a force acting at the middle point of the

nts are

(\\ rUr.
)

all acting in the ixxitive directiona of the i

similarly the components of the Eorce which may be supposed
to act un the element at the c I the face JKLMt aue to

stress exerted by matter on tl ide, are

in the >na of the a-
1 87). The

i rrowheada m I'ii: 8 denote the dta oomponenl
\ >rc« I each face.

lorce-componeiit- on opposite faces perpen-
t«» / nnt to component forces

zz
x

ment in I the axes, and com-
*nt couples

n about /'//'. and

)',

n about Pi

t
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140.] Similarly, if the components of the stress across the

small plane area A
2
B

2
C

2
D

2 , drawn through P perpendicular to

the axis of y, be X
2 , Y2 , Z2, the total stresses across the pair of

opposite faces EHJK and FGML together amount to com-
ponent forces

7P* . dxdydz

-^— . dxdydz

-~—
. dxdydz

in the positive directions of the axes, and component couples

X
2

. dxdydz

in the negative direction about Pz', and

Z
2

. dxdydz

in the positive direction about Px'.

Lastly, if the components of the stress across the small plane
area A

Z
B

Z
G
Z
D

Z , drawn through P perpendicular to Oz or Px', be
X

s , Yg, Z
z, the total stresses across the pair of opposite faces

EKLF and HJMG together amount to the component forces

7\ IT
-~-^

. dxdydz
"

dY
q 3

. dxdydz

-^j— . dxdydz

in the positive directions of the axes and the component
couples

Y
3

. dxdydz

in the negative direction about Px, and

X
s . dxdydz

in the positive direction about Py'.

141.] Conditions for Equilibrium of the Element. It
is sufficiently obvious that when the body is in equilibrium in
any given state of strain, any portion of it may be supposed to
become rigid in that state [compare § 30 (i.)] without affecting
its own equilibrium, or that of any other portion of the body.

Thus the conditions for equilibrium of the element under
consideration must be precisely the same as if it were a rigid
body at rest under the actual stresses and applied forces.
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w it' p be the density of the body at P, fend A', F, £ the
intensities at P of the component applied forces per unit mass, it

follows from | 198 that the components of the applied force
on the element may be taken to be

ftX . daodydzi

pY

.

pS.

and that they may bi J to act at itfl centre P.

Collect; tlnee Articles we Bee that the

element u ' to component f< :

rdX. 3X
2 dX

s
_t. .

, y

vz\lxdydz

1 to tl inate axes, and to component couples

-ZJdW.,

», respect ivt lv.

The conditions or equilibrium of the element arc therefore

greased by the >ix equationi

dx.zx.dj, _ A .

dx
+

dy

az, asr* azr.

>>0l

(1)

(2)

1 t2.] Simplification of Notation. Equations (2) will be
isfied, and our analysis much simplified, ii' we adopt the uew

C-d
by writing
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The general equations (1) of equilibrium then become

ox oy oz

dx *S dz

'dx 'by 'dz

.(3)

+ PZ =
j

where X, Y, Z are the components of the applied force per unit

mass at (x, y,z),p is the density at the same point, and the other

symbols are best explained by the following schedule :

—

The Symbol

denotes the
Stress-Component
Parallel to Axis

of

across a small
Plane Area drawn
through (x, y, z)

Perpendicular to

Axis of

P
Q
R

S

T

U

X

y
z

i:

X

y
z

1

1}

X )

143.] Equations of Motion. If the body, instead of being
in equilibrium in a given state of strain, be in 'process of strain-
ing—i.e., if any relative motion of its parts is taking place, the
component forces of § 141, instead of vanishing, must be equal to

the components of the " effective " force on the element, which,
if x, y, z be the component accelerations of P, are

px . dxdydzy

py . dxdydz

pz . dxdydz

Since the effective couples involve the Moments of Inertia in
place of the mass of the element, they are always indefinitely
small in comparison with the effective forces.
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Benee equationa c2) are still very approximately true, and
the equations of motion are

(»)

In these egqationa, uno re the variable portions of

the coftrdinatee of any point* we may obviously write ", &, to

i n - 1
• at the fanner wfl] be preferable.

+4.] Resolution and Composition of Stresses. The
- quantities, P, Q /.' >'. 7' ire the normal and tangential

& in}' sees across the three small orthogonal plane
a eas drawn through any point / | of the body perpen-
(1 oolar I The fact that theft

([ iam Lved in the equation
(• lutibrium and of motion may be able to adopt
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them as our standard system of stress-components, and to express

in terms of them the stress across a small plane area drawn
through P in any direction whatever.

From P draw, as in § 138, Px, Py , Pz' parallel to Ox, Oy, Oz,

and cut off from the body an elementary right-angled tetrahedron

PABC, having for its base any oblique plane which will cut

Px', Py', Pz' in points A, B, C, such that the edges PA, PB, PC
are all positive in direction.

Let A, ix, v be the direction-cosines of the normal to the base, -A

directed outwards, or away from P ; then X, /ul, v are all positive

quantities.

Let A be the area of the base ABC, and p its perpendicular

distance from P. Then %pA is the volume of the tetrahedron,

and AA, /aA, vA are the areas of the faces PBC, PCA, PAB.
Let F, G, H be the components of the stress across the base,

in the positive directions of the axes. Since the other three faces

are all turned towards the negative directions of the axes, the

components of the stress across them must also be taken in the

negative directions (§ 139) ; these components are respectively :

—

on the face PBC, P, U,T; on the face PCA, U,Q,S: on the

face PAB, T, S, R.

If X, Y, Z, p denote the same quantities as in § 140, the com-
ponent forces on the tetrahedron will be

F.A + pX.i2jA-P.\A-U.(jlA-T. v^
G.A + pY.^pA-U.XA-Q.fiA-S.vA
H.A + pZ.-lpA-T. XA-S.fxA-R. vA

and the conditions of equilibrium

F+ \p . PX = PX +Ufx + Tv)

G + ^p. PY=U\+QfjL + Sv

H+ip.pZ=T\ + SfjL + fiv^

Similarly, if the body be in process of straining (§ 143) the equa-
tions of motion are

F+ ipP(X- x) = PA + Up. + Tv

G + lpp(Y-y) = UX+Qf
i + Sv

H+ \pp{Z-z) = TX + Sfx + Mv

These equations must hold, however much the size of the
element may be reduced, by causing the plane ABC to move up
parallel to itself towards P. Since then they hold up to the limit,
we may assume that they are also true at the limit, when p
vanishes, and the plane ABC passes through P.
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We have then, whether the~point P be at rot or in motion,
three relation*

F=PX-r

0-0X+9/H fir*
' (:>)

en the components F, G, H of the traction exerted across a

small plane area <lra\vn through './-.
//, :» in the direction (A, ^u, v),

and il components r, Q, R, S, T> 1T%

l i6.] Boundary Conditions. Similarly, if \, p, » be taken

to denote the dired ones of the outward drawn normal at
any poini of the b<>un«lin_: ol the body, we may

be an elementary tetrahedron whose inner faces are parallel

coordinate planes, while its outer face ABO is formed by a
jnlar element of the bounding surface about the point

/, z).

If F. Qt
11 be now taken to be the components of the Suffice

bion at the point, the conditions of equilibrium <>f the tetra-

hedron must be the lame is those jnal investigated,and (pro

ing to the limit in which the vertex of the tetrahedron moves up
to the > equations (5) will represent the relations which
mi st • oents of d and the

or hogona] Stress compon the surfi

Tni blem in I tical Thsoiyof Elasticity

(*< : § (4), for the
will also satisfy

e(| lal \ poroi of the bounding Burf*
The solution will n.

•

til we know the relations

b< ween Strain iml the alteration of

fcj in and volun smeni of the body, These relations

w 1 be investigated in tl

l 16.1 Equilibrium of the body as a whole. It may be

the solui b to

tl it just proposed—namely, given the distribution of Sti

the body, I the distribution of Applied Force

in it- i^ always obtain-

al ; when P ra known as function

ppropriate values of

X F
Now w 29 thai

tl applied nd Surface i together in

t I., under the
'

the only

fi roes which can be considered si anon the body i

v. bole, and it follows from tl L41 that, when
tl e body is in squilibriuni in i two

the ordinary
c nditio] lilibrium of rigid b
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We ought then to be able to show that the values of these

forces given by (3) and (5) satisfy the analytical conditions

fffpXdxdydz +ffFdS -

fffpYdxdydz +//GdS=0

fffpZdxdydz +ffHdS -

fffpiyZ - zY) dxdydz +ffyH - zG)dS =

fffpizX - xZ )dxdydz +ff(zF - xH)dS-

fffp{xY- yX)dxdydz +ffxG - yF )dS= OJ

obtained by equating to zero the component forces and couples

acting on the body as a whole ; the triple integrals being taken
throughout the volume of the strained body, and the double

integrals over the whole of its bounding surface.

Now we have by equations (3)

dx dy dz

a****- JIf% +f+!)*"^
or, integrating by parts,

= -ff[P]dydz-ff[U]dzdx-ff[T]dxdy,

where the square brackets
[ ] denote that the enclosed term is to

be taken within proper limits.

Hence if X, /ul, v be the direction-cosines of the outward
normal to the element dS

fffpXdxdydz = -ff{F\ +Ufx + Tv)dS,

and therefore by equations (5),

fffpXdxdydz +f/FdS= 0.

In the same manner it may be shown that the second and
third of equations (G) are satisfied.

Again, by (3),

fffp{yZ - zY)dxdydz

.
=#"KI*1M)-K3?*I*S)}'*-
=ff[zU- yTjdydz +ff[zQ - yS]dzdx +ff[zS - yK\dxdy

=Jf{HzU- yT) + p,(zQ - yS) + v(zS-yR)}dS

=ff{<W+pQ + vS) - y(\T+fiS+ vR)}dS.
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Benee, by equations 1 5),

- milady we can prove the remaining two of equations (7).

Thus the values of the components ol Applied Force and
Surface Traeti<»n given by equations ( :> i and ( 5

I
satisfy identically

tla- condition dlibrinm of the body as a whole.

This result verifies the statement of j 180 that force is passed

on through the ho.lv from Layer to layer by appropriate stresses,

so that tin- external f< ultimately brought into opposition

with on.- another as if the body wen rigid

147.] If the ho.lv, instead in equilibrium through-

out, !»«• in prooef inin_r. then taking the values of the

given by (4) and (6) it i- easy t<> show by a similar

1 that tin- i left-hand side ox equations
.I <7 1. instead ox vanishing, arc equal to tin- effective forces

and couples,

I

Mr

|

fjI

JJJpzdxdyd*}

f/J

lh] The Three Normal Stress Components. Reason-
ii ; as in 182 with the m m introduced in !:;:>. w<

tl at

i DormaJ traction 1'. acre mall plane area

d awn perpendicular to to produce an elongation in

tie direction of Ox of t
; Hon <»t* th.- body.

T lus f tin- Simp , produce
a I maintain the Simple Si

i The normal I } ss the small plan.- area

• I awn perjM-ndiculai1 to Off, tends to pro* hie.- an elongation in

tl e direction Thus the fun th.- Simple Sti

is to
j

sndmainl Simple Strain/
Similarly th.- fm 1 the Simple Sta /.'

) oduce an<l maintain the Simple Strain g.

These statements must only !»•• taken as pointing out the
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analogies between the components of Strain and Stress, and the

primary and most obvious functions of the latter. We are not

at present concerned with the exact relations of Stress to Strain,

and we must not take it for granted that any one stress-com-

ponent can produce the analogous component strain alone with-

out producing a simultaneous change in the other components.

149.] The Tangential Stress Components. The tan-

gential traction S, in the positive direction of Oy across the small

plane area drawn perpendicular to Oz, clearly tends to drag in

that direction the layer of matter immediately in contact with

the negative side of the area relatively to the layer in contact

with this one on its negative side. And if we consider that

this action takes place across every small plane area drawn
perpendicular to Oz in the neighbourhood of the point P it is

evident that the tendency of this tangential traction is to

produce and maintain the Shearing Motion described in § 95 and
represented in Fig. 2—that is, a positive shearing motion parallel

to Oy of planes perpendicular to Oz.

This will be perhaps
z'\ more obvious on consult-

ing Figure 10, which re-

presents the action in

the plane of y'z on the
elementary cube having
P for centre. For the
sake of distinctness only
the traction - couples
about Px' are inserted,

the normal components
and those portions of

the tangential tractions

which combine to form a
force on the element (§§

139, 140) being omitted.

The couple due to the
traction we have just

considered is marked Sv
Similarly, the equal tangential traction S in the positive

direction of Oz across small plane areas perpendicular to Oy, gives
rise to the equal and opposite traction-couple marked S„; the
tendency of which is to produce a positive shearing motion
parallel to Oz of planes perpendicular to Oy.

Now (§ 98) these shearing motions are rotational strains,

compounded of identical shears and opposite rotations. The
tendenc}' of the two traction-couples in combination is to produce
these two shearing motions simultaneously, and therefore (see
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§ 98 and E > produce a simple irrotational shear of planes
odicular bo /';/ and ft , of to Oy and

i The two tangential stieus componenta 8 at the point P
Fore, when considered in combination, called a Shearing

Stress of amount S in the plane

(v.) In likf manner, the tw tial tractions '/' combine
rm a Shearing Otrcoo of amount T in the plane of :'.'': and

.) The two tangential tractions U combine to form a

iring Stress of amount U in tin* plane

The primary function of these three component stresses is

then t>» produce and maintain the ' mponent Bhears 0*0*0
(See r>

>.] Resolution of Shearing Stress. Just as we proved
-and therefore any strain whatever

—

pie

:id conta

jhow that '-very

> may be regai

resultant of normal or

longitudinal tractions or
•

This will foil

eding Artie]

for a single ihearing

•i BQppO
v held in a given state

train, such that all the

dard itreas oompoi
at • ie poini

the sh in the

1 . • • '."))

th» i l -tress-coi ross a small
\

dra vn through /' in any direction Y m

F=0 \

II Sp)

Now if the stress across an tea be wholly normal we
mu t h&yeF/X-d u 11!v.

mi! g, we see that t«-o planes can be drawn through P,

su< i

•

arose them ii wholly normal, their dhvction-

co m

(0, ; N s itasKO, -i J% l J\
for

I ones

//

pn
pr<

of

sta
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Thus the shearing stress of amount S in the plane of y'z
1

equivalent to a normal traction of amount S across the plan

bisecting the positive angle between those of x'y' and z'x, togethe

with a numerically equal normal pressure across the plan
bisecting the negative angle between the same planes.

151.] The same result may be obtained by considering thi

equilibrium of the prism ABD (Fig. 11) one of the halves into

which the cube of Figure 10 is divided by the diagonal plane
BD. It is obvious that we may regard this prism as isolated if

we suppose the existing stresses still to act across its faces.

Now, if a be the elementary length of either edge of the cube,

the areas of the faces AB and AD are each a2
, while that of the

face BD is a2
x/2. Also the forces on the prism due to the tan-

gential tractions on the former faces are each S . a2 in the positive

directions of Py' and Pz'.

The force across the face BD must therefore

ponents in the negative directions of the axes,

must be a normal traction of intensity

S.*K x/2/a2 J2

have equal corn-

That is to say,

or S. Similarly by dividing the cube along the plane A C we
show that the stress across this plane is a normal pressure of

intensity S (Fig. 12).

152.] Discrepancy
in the measurement
of Shear and Shearing
Stress. Although the
methods of resolution of

shear and shearing stress

are thus completely analo-
gous,there is a discrepancy
between the measurement
of shear in terms of its

component elongation and
contraction, and that of
shearing stress in terms
of its component normal
traction and pressure
which should be carefully

Fig. 12. noted.

Thus the amount of a shearing stress compounded of a normal
traction and pressure S is taken to be S, while the amount of a
shear compounded of an elongation and contraction s

2
is taken to

be 2sj or a (see § 100).

The discrepancy exists solely in the nomenclature adopted
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rid, though on some accounts to be regretted, is not a serious

The results of Sj 148, 149 are collected in the subjoined
medule for comparison with that of § 10G.

tends to produce of Planes
The Component Relative Motion Perpendicular to

Parallel to Axis of A\is of

P X X
u X y
T X
r

11 X

y
y

T X
z y

1

R I

1 53.] Small Stresses. All the properties of stress hitherto

ed are equally tru.-, whatever be tne magnitude of the itr

Kir analysis Lb however to be applied to the theory of bodies

ing infinitely small -trains, and we shall therefore from this

poii i restrict it to such ^tresses as are required to produce and
mai itain these strains.

fow we cannot Mippose anything short of an absolutely rigid

bod - to otl'rr infinite resistance to a finite strain; and since it is

kni \i\ rimental obaea raining <»t" the
in": > perl • inuously with
the -tress applied, within the limits of tl may
saf« y sesame that, if we adopt finite unit of force per unit

the numerical measures oi ess-components will al

'•be < f t I dim.m of the eomponenta of

l which thej Mnre to maintain.

?or the purposes of our theory we may therefore al

assi me the componenti of -tress to be small qnaatitiee of the

firs ordei rhose squares and higher powers, together with
the • product- with each other or with the strain-cornpornmts, may
he: ejected in comparison with tl

Mow, strictly speaking, equations (8) of | L42, (4)of| 148, and

(5) >f | 144 expn Utw»cn the the

fac« sof an element of the body wldch, fa ike </'"> n state ofstraw,
is e ther a rectangular parallelepiped with it- >-i\^-> parallel to

the t rdinate axes, or a tetrnhedroo with three edges
par dlel to the same axes. But, from what has just been
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it follows that if the strain be a " small strain," and consequently

the stress a " small stress," these relations will, to our order of

approximation, take precisely the same form if we suppose the

stress-components holding in equilibrium, in a given state of

strain, elements of the body which have these shapes in their

natural state.

154.] For instance the element of the body which, in the

natural state, is the rectangular parallelepiped of § 138, becomes
when strained an oblique parallelepiped, the areas of whose faces

are

(1 +/+ g)dydz, (1 + g + e)dzdx, (1 + e +f)dxdy,

while its volume is (l+ A)dxdydz, and its density is (1 — A)p.

Hence it is easily shown that the first of equations (3) § 142
would in this case become

1J(1 +/+ ?) + 1^(1 + 9 + a) + 1;(1 + e +/) + PX =

and by the last article this reduces to

dP dU ZT _ „

as before.

Again, the element of the body which in the natural state is the

tetrahedron of § 144 becomes when strained an oblique-angled

tetrahedron, the areas of whose faces are

A(l+e+f+g-e))
\A(l +f+g)
fMA(l+g + e)

vA(l + e+f)

where A here denotes the unstrained area of the face ABC, and e

is the elongation in the initial direction (A, jul, v) of the normal to

this face, given by equation 18 of § 72.

The first of equations (5) § 144 ought therefore, on this

assumption, strictly to be

F{\ +e+f+g-e) = PX(l +f+g) + Ufx(l + g + e) + Tv(\ + e +f),

which, to our order of approximation, is identical with

F=PX+Ufi+Tv.

We may therefore, in all cases, take the system of standard
stress-components which we have adopted as acting normally and
tangentially across small plane areas through the point (x, y, z)

which, in the natural state of the body, are perpendicular to the
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fixed rectangular t ftnttrdinfctfW ; and though they are

S taken parallel to the fixed t. the strain they are

capable of producing ifl BO -mall that they may be considered to

he norma] or tangential throughout the pn

155.] Principle of Superposition. Since the stress-com-

ponent- are simply the compos Ived in fixed directions, of

force per unit area, it ifl at 0008 obvious that any number of

stresses, appl ie« I timuU mat have fox then resultant a

mponenta are the algebraic Bums of the

tiding components of the constituent stresses.

Moreover, it fofiowa from the laai Article thai the application

i will have the same effect, whether the body is

in ita natural state or I itrained by another rnnaU
-

This principle may be extended to any finite nun mall

stresses the -train produced being still small (J 87), and finallywe
resultant of any numhef of small stream, applied

simultaneously <>r SUCCCSsi I single small stress whose
aomponenti are the algebraic mil ic coTCBpon.iing com-
po ient&

Ami conversely | ompare § 88) any small rtr< >- may 1m-

arl itrarily resolved into any nun -mall illOflflOiJ, Bttbjed

on y to the al Btioneal meir components,
This r.-suit is call.-. i the Principle of Superposition of Small

15G.] Type of Stress. When of any
tw > stresses ar. t * on ch to each, in the same i

th' stresses are said to be of tie- same
ty es, according i kio is

]
[Compart

§ 1 0).

l'h is called the Ilatio of th<-

Sti jflflee, and when this ratio is ±i the stresses are said to be

eqi al.

Stresses of the same an i of opposite typ< sailed

"c« nc

Any number of small stresses belonging to twoopposit. type
con pound into a stress belonging to one of

Two equal ss.-s annul on.- an. .t)

7.] Homogeneous Stress. When the component
treai have th.- same values at all p the body, it ifl

sai< to be homogeii id to to homogeneously

t i annoi be in

equ libriom ander homogi if there are any Applied
For. ea
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Homogeneous stress must therefore be produced by Surface

Tractions only, the components of which must satisfy a certain

condition at every point of the body.

For if we write

P, U, T

S = U,Q,S (8)

T, S, E

and denote by p, q, r, 0, t, n, the minors of the determinant $
corresponding to P, Q, R, S, T, U, we get from equations (5) the

relations

tL = (nF+nG + *H)fol (9)

v = (tF+*G + xH)/
t

g\

to be satisfied by the direction-cosines of the normal at each point

of the surface. Squaring and adding, we eliminate X, /x, v, and

obtain

(pF+uG + tHy + (nF+qG + sHy+(tF+BG + xHy =W (10)

Since in the case of homogeneous stress all the coefficients are

absolute constants, equation (10) represents a definite relation

existing between the components F, G, H of the Surface Traction

at each point of the bounding surface.

158.] Stress to be treated as Homogeneous. In the

following investigation into the graphic and other properties of

Stress, we shall for the sake of simplicity treat it as if it were
homogeneous ; because then, its character being identical through-

out the body, we can confine ourselves to the consideration of its

properties at the origin.

Of course it will be understood that, as in the case of Strain

(§ 122), the results obtained will be equally true for an elementary

portion of a body under heterogeneous stress, described about any
point P, if that point be taken as the origin of relative coordinates,

and the stress-components be given their proper values at P.

These applications will be pointed out as occasion requires.

Graphic Properties of Stress.

159.] Change of Axes of Reference. Let P, Q, R, S, T, U
be the components at the origin of a given stress, referred to the

arbitrary system of rectangular axes Ox, Oy, Oz: required, in

terms of these, the corresponding components P', Q', R\ &", T, V
of the same stress referred to any other arbitrary system of rect-

angular axes Ox, Oy', Oz'.



x' i z'

X \ K K
.'/ H H p»

l

'i "i

159 analyse OF BTRE&

Let the direction-cosines of the mw axes

riven by the schedule:

—

Then P , C, i the components
parallel to Ooi% Otft Oaf of the stress a<

-mall plane area drawn through the

licular to On But by equa-

tions (5) the components parallel t

i this ikna are

PA, + 6>, + 7Y,

[7^ + C/h + iSVj (11)

+ 5^ + /?»•,

Thus

/• A (/'A, + 0J*, + IVJ -f ^17*, + <

|
7\V, + ,s>, + *,.,)

ThtU we finally obtain, by rearrangement of terms

/
y -/>X

l
« + Qth* + ^,' + 2S/V'i + 27' A lMl

-PV + tyi'+Ai

V + «/*,* + *V +**Vl + a

PA A, • On „, . ft

Adding together the firsJ three oi

Q I /' g ,.(1S)

in I si- 1' axes are completely arbitrary, this

pr ves the perfectly g«n. ml theorem that

wn ill orthogonal plant areas d ofthe
}„ >/ • << / tin /Jo,

tu *e<l al case of /><> thi*

>

100.] Resultant Stress. Let J /'>. denote the resultant

k Meet across th<« small plan.- areas drawn through the origin

toe pendiculai I ad A .
/>,< the resultant

those perpendicular I

The eomponentfl of A
t
B psialle] to e oi
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course P,U,T; U, Q, S ; T, 8, R, respectively; while the com-

ponents of A' parallel to the same axes are given by equations

(11), and those of B' and C by similar formulae.

Squaring and adding, we get

A 2 = P2 +U2 + T2\

B2=U2 + Q 2 + S2 i (14)

C2 = T2 + S2 + M2

)

A^^iX.P + ^U+v^+i^U+^QA-v^+iX.T + ^S+v.En
B' 2 = (X

2
P + n2

U+ v
2
T)2 + (X

2
U + fi2Q + v

2
S)2 + (X

2
T +HS + v

2
R) 2 1.(15)

C' 2 = (A
3
P + f.3

U+ v,T) 2 + (X
3
U+ ftQ + v

3
S)2 + (X

3
T + l

x,S + v,Rf)

Expanding (15) and adding them together, we get

A'2
-f B'2 + C"2 = P2 + Q2 + B2 + 2(S2 + T2 + V2

).

Hence, by (14),

A" + B'2 + C'
2 = A 2 + Bi + C2

(16)

from which we deduce that

The sum of the squares of the resultant stresses across any
three orthogonal plane areas drawn through a given point of the

body is constant, however they be turned about the point ; and
when the stress is homogeneous, this constant has the same value

at every point of the body.

161.] Reciprocal relation between Stress-components.
Since (\v juLlf p,) are the direction-cosines of Ox' referred to

Ox, Oy, Oz, and since P, U, T are the components of A parallel

to these axes, it follows that the component of A parallel to Ox' is

PX
1
+ frft + Tvv

But we have already seen (11) that this is the component of A!

parallel to Ox. Hence, since the directions of Ox, Ox' are quite

arbitrary, we deduce that

If any two small plane areas be draivn through any given

point of the body, the component perpendicular to the first area

of the stress across the second is always equal to the component
perpendicular to the second of the stress across the first.

162.] First Stress Quadric. We now proceed to give

these theorems geometrical significance. Describe the quadric

Px2 + Qy2 + Pz2 + 2Syz + 2Tzx+2Uxy = l (17)

Let r be the length of the radius vector in the direction

(X, jm, v) and let p be the perpendicular from the centre on the
tangent plane at the extremity of r, (I, m, n) being the direction

cosines of p.



\n 99

Thou, it /' i>. II be the component.-, parallel to the axes of
- across tin* central section perpendicular to

Q
}
U will be given by equations (5). But we have

I>\ \ + Qn + Sv T\ + S/jl + Rv 1

~T~
" = ^T ~ n =pr <

18
>

Thus (19)

The resultant stress acr antral i ction perpendicular

in the direction of Dj itfl amount ifl 1 prj and

the amount of its normal component is 1 r

163.] Principal Axes of the Stress. It fa obrioufl from
i the eefttfoo oofndUtf with anyone of the

principal actions of tie- <|uadr: ess across it will be wholly

normal.

It is that always possible to fa gll each point oi the

body three orthogonal plane areas across which tin- -tress is

whDlly normal These are called the Priruyival Planes of the

strjssat t are called ttn /

A. es.

The norma] principal planea are called the

P in< resses. We shall denote th.m .
.V

.

Let' \xes of t k the

or :in ; t: l axes ol the qnadrk (17).

lprocals of it-

pi uripal mini iliaiiMilwea ire A,, X ., I

H. :
principal

a^ i i-

#£+*# (20)

ill' curse N„ Nv N, ft lllg Wttol oJ

il.ic

/'

U, Q-

tbedi -cosines <<i rogrvai

g - /-v

A
A i'

1,8, B.

Th< Hate beetJ deduced

r
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164.] Invariants of the Stress. Expanding the cubic (21),

and employing the notation of § 157, it becomes

<jfi _ £2(i>.+ Q + B) + <}>(? + xt + r) -1 = (23)

If we write this

«^-*2 .g + *.J-» = (24)

then g, Jf, 1 are the Invariants of the quadric, and are given by

]B = P+Q + B =W
l
+ AT

2
+ tf

3 (25)

3= V + q + x=QR-S* + BP-T* + PQ- Z72

-A^s + tfA +i^ (26)

$= V, ft 8 =N
X
N

2
N

S (27)

p, u, T
V, Q, S

T, 8, R

[Compare these with equations (39) o/§ 111.]

It is now obvious that the theorem of § 159 simply states

that IP is an invariant.

Again, we see that

S 2 -2. $ = P> + Q* + B2 + 2(& + T2 + U*) = A* + B* + C2
(28)

Thus the theorem of § 160 simply states that §2 - 2 . Jf is an

invariant.

165.] Traction and Pressure. We saw in § 162 that the

normal component of the stress across the plane perpendicular to

the radius vector r was 1/r2 . Hence if the stress be such as to

produce a traction across every small plane area drawn through

the origin, the quadric (17) is an ellipsoid, and N
lt

JV
2 , iV3

are all

positive, and so therefore is Jt.

If the stress across every plane be a pressure, the quadric

represented by equations (17) and (20) will be imaginary

;

Nv Nv JUL $ will all be negative, and the pressures will be given

by the ellipsoid

Pz?+Qif + Bz2 + 2Syz + 2Tzx + 2Uxy= -1 (29)

or N
x¥ + N

2rf +N£ = -1 (30)

166.] Normal Cone of Shearing Stress. If the stress at

the origin be a traction or a pressure according to the direction

of the plane across which it is measured, equations (17) and (29),

or (20) and (30), will represent two real conjugate hyperboloids,

radii which meet the first being normals to planes across which
there is a traction, while radii which meet the second are normals
to planes across which there is pressure.



116.] AN F STRESSES. 101

Th< hyperboloids arc separated by their asymptotic

+<y +A / = (31)

or JV-0 (32)

Since any radius vector lying in this cone is of infinite length,

til-- normal component of t: ion Sfl the plane perpendicular

to it vanishes ;
whence we see that all plants whose normals are

LTeiierators of this cone sutler only tangential stress. It is there-

call. •! the Normal Cone of Shear

1'7] Second Stress Quadric ("Director Quadric").
Let na now ouuslrud the reciprocal quadric, whose equation

rred to the principal axes in

£+& + £ (
33

>

ar, iv
f

a,

It' /• be the ndinfl vectot drawn from the centre to the point

(£ »7» f) on the Mit| i y the perpendicular from the centre

oi th< n-c.»ines of p referred

to the principal axes are v

N )\v sqosi components parallel to <J£, <hh Of
o: the stress across a p n-cosines of whose normals

r< ferred to the same axes are (X . mu » ^o)

6r,-.\.. -(34)

II it -tresses across the plane pwpendknlu
U p (thir igate to r) are giv. n

t stress across the section perpendicular

to p(or oonjngate amount La

p, ; and the amount Of itl m-mial cmpoiu-nt I

.68.] Tangent Cone of Shearing Stress. By oonaJdering
th • sign of the oonna] component ! ^at if the

st ess at I y direction (33) is an

•id ; it' a pressure in • •vi-rv direction W€ have tin- alternative

oid

-1... (35)
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while if it is a traction across some planes and a pressure across

others, we have the pair of real conjugate hyperboloids (33) and
(35).

These are separated by their asymptotic cone

frfct? 9 (36)

and it is easy to see that this cone envelopes all those planes

through the origin which suffer only tangential stress. It is

therefore called the Tangent Cone of Shearing Stress.

169.] Third Stress Quadric ("Stress Ellipsoid"). It

is obvious that equation (10) may be regarded as an equation to

be satisfied by the components, parallel to the arbitrary axes,

of the stress across any plane through the origin. Hence if we
construct the quadric

(px + xty + tz)* + (nx + qy + sz)2 + (tx + sy + xz) 2 = 'g 2
. (37)

the radius vector v drawn to the point (x, y, z) on the surface will

represent in magnitude and direction the stress across the central

section whose normal is in the direction given by writing x, y, z

for F, G, H in equations (9).

Transforming to the Principal Axes, we find that the radius

vector r of the quadric

P n
1 n

N^N^N,
represents in magnitude and direction the resultant stress across

the central section whose direction-cosines referred to 0g}
Otj, Of

are given by

*-l/JM (39)

where (£ rj, f) is the extremity of r. This quadric is of course

always an ellipsoid.

If Cfji Vv bi)» (€v V.&X (£$> % Q be tne coordinates of the
extremities of three radii rv r

2, r3, representing in magnitude and
direction the resultant stresses across any three orthogonal central

sections of this quadric, it follows from (39) that they must satisfy

the relations

fe^3 , W3 , && *>

£i£2 , W2 . fifa a

(40)
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which are the well-known conditions that
. may be con-

uni-diameters of the quadric.

11 i:c we deduce that any three conjugate radii represent in

dtude and direction the resultant stress. <•- aqrqes three ortho-

gonal central sections. This also follows directly from equation
. -trieal interpretation of winch is that /• represents

tress across the section wheat normal is the radius of the

iliary -nhere" corresponding t<> r.

170.] Relation between the Second and Third Quad-
rics. If any radius vector from man centre meet the

Third Quadric in (£,, >/,, L) and lb in i^., >/.,. fj and if /*,

be the length infc n it l»y the Third, we see hy (.*)!)) that

r. represents in magnitude and direction the stress across the

plane

i is the same as

(41)

WA~ '

tl at i itnil section of the Second Quadric conjugate to r,.

Ih
, r

t
be the length- intercepted by the Third

Q ladrio < is»ate radii of the Second, each

r< presents in magi in — ths plane

C< ntaininir the other SWO, Thus the Thifd Quadric may he

giving a graphical con magnitudes
ainl the Sre.»n.i for th the planes m

w iich they iet Wt shall therefore distinguish them as the

i 1 the Director Qua*'

171] In the cases where tl >ses are of 1

1

;

t signs, and IheM i- eona Cone of

Of thk n-ents

i/noident conjugn plane conjugate to

_' that generator,

iw it gtfc int. he Thffd Qoadru en

DfleniOoB tees, then r n

magnitude and d ig stress across the plane

ouches tl

172.] Fourth Stress Quadric. Finally, 1. 1 \u dsseribe

tl at reciprocal «»f the Third Quadrio whose u is

(rx+Uy + TzY + ^r P-\ (it)

r + ^sV + ^T-i (43)

likewise always an ellip-
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It is obvious, by squaring and adding equations (5) or (34),

that if r be the radius vector of this quadric perpendicular to

any given central section, the amount of the resultant stress across

that section is 1/r, and its components parallel to the principal

axes are

Njfc N2V/r, N3C/r (44)

£ tj, t being the coordinates of the extremity of r.

Hence if (£, ^ £), (&, rj
2, Q (£„ r,„ fJ be the extremities of

three radii, perpendicular to three central sections the resultant

stresses across which act in three orthogonal directions, we have

from (44) the relations

W££i + *r*\ii + WUi-o\ (45)

which are the conditions that the three radii may be conjugate.

Hence the resultant stresses across any three central sections

whose normals are conjugate radii act along three orthogonal

radii.

173.] Relation between the First and Fourth Quadrics.
We see from (44) that if (£v rlV £) be the extremity of the radius

vector r
x
of the Fourth Quadric, then the resultant stress across

the central section perpendicular to r, acts along the normal
to the plane

#i&i +tfMi+*r&i=0 (46)

which is the section of the First Quadric conjugate to rv
Hence if rv r

2, r3
be the intercepts by the Fourth Quadric on

any three conjugate radii of the First, the resultant stress across

the central section perpendicular to either acts in the direction

perpendicular to the plane containing the other two ; while the

amounts of these resultant stresses are 1/r,, l/r
a, 1/r, respectively.

Special Forms of Stress.

174.] Hydrostatic Pressure. All the preceding theorems
apply to the most general form of the Stress, when Nv i\

r
2
, N

3

are all unequal and of any sign, but none of them vanish.

The cases in which two of the principal stresses are equal are

not worth working out in detail, as the results already obtained
may be easily modified to suit them, if we remember that all the
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Stress Quadrics become surfaces ol revolution. The necessary

an- 1 sufficient conditions are

T Q T
K

i
•

\ (47)

or 3W-*3)-m(*W- 18J)- 27$--' = 0)

The case where all three of the principal stresses arc equal IS

BVei lvmarkaUt.-.

If S y y = —11, tin.- discriminating cube (21) or (24)

must reduce to

(^ + n) :i = o.

Hem iuet have

.11,«J = 3n« ..

The - ladria become ipheies, the Third in particular
tx coming

a id the Second f
f +i^ + {

, -II J'

i with the perpendicular

I m the centre on the tangent plane at fa extremity, it follows

t at the stress across every central sect rmal, and that it

li us the same va lu.- frrr nacti Thue if II ifl positive the stress at

t e origin consists of a normal pressure ft across plan.

a ea which can be drawn through it. Tbil ll the I the

s ress which exists at it of a fluid at n^t under any
f rce.s, and it ifl t'

If ll ifl Degi Imply to replace the pressure by
a traction.

In ofdet that ; i Quad] ire must
o >viously ha

II s-r-er-o v '

Thm it m evident hon equ L57 that a bomo-

g neons hydrostatic pressure can only be maintained by :i

rmal pressure ol like amount applied over the wnole
b xmding surface.

\v. may hen notice another discrepancy in the numerical
r« ckoning of Strain and Stress (see § 1 - Three equal

thogonal contractions e compound (§ 104) into a uniform 00m-

p easion of amount 8c, while tl. ial orthogonal normal

1
• 'ip if com pound into a hydrostatic pressure ofamouni IF.
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Stress in Two Dimensions.

175.] Plane of the Stress, The remaining important
types of stress are characterised by the vanishing of the third

invariant Ji, and therefore also of one at least of the Principal

Normal Stresses.

For the present we shall confine ourselves to the case in which
only one of them, say JV

8 , vanishes. There is then no stress

whatever across the small plane area drawn through to

coincide with the plane of fa.
The Stress Quadrics become cylinders with their generators

parallel to Of; and since in the third of equations (39) v cannot
be greater than unity, it follows that at the extremity of every
radius vector which represents the resultant stress across a real

plane through the origin we must have £=0.
Hence the directions of the resultant stresses across all plane

areas drawn through lie in the normal section by the plane of

fy which contains JTj and Nr The stress is therefore said to be
entirely in two dimensions, and the plane of £q is called the Plane
of the Stress at 0.

176.] The Stress Conies. It is obvious that all the graphic

properties of the stress will depend upon curves in the plane of

the stress, and especially on the normal sections of the Stress

Cylinders by that plane. These curves we shall call the Stress

Conies.

177.] Case iD which #j and N
2
have the same sign.

In this case Jf is positive, while 5 nas the same sign as N
1
and iV

2
.

Assuming this sign to be positive, the Second and Third Stress

Conies become the ellipses

i*i*i\ <
50

>

a? + a? =1
J

(51)

The first of these is the Director Conic, replacing the Director

Quadric of §§ 167, 170.

If (£ rj) be the extremity of the' radius vector representing in

magnitude and direction the stress across the plane whose direction

cosines referred to the principal axes are (X, /a, v) we have from
equations (39)

2
(52)

£
2

y
2

and therefore W* +W2= 1 ~ v
*

(
53

)
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Thus the resultant »ta - all planes through whoso
normaK lie on a circular cone with axis Q£ ami semi-vertical

rf represented in magnitude and direction l»y the radii

of the ellipse

r . ,

xr 2
= 8in-u (54)

"} ""2

each sach cone I pne of I Uipeee, the whole
axial with the ellipse (51), which

of all. In Che limit whan a :0, the ellipse (54]
into the origin, ^<> that, as we already know, the stress

i inripa] Plan.-
j

i, v,, does the
r the ellipse, an-1 therefore the magnitude of the stress, until

iched in which «='-, when theelHpsi acides

with (51). The radii oi ipresenl toe stresses across

aoniials lie in the plan.- of across

drawn through Ot This system of fi

17".

17s.] Agaii ice of agiren plane on the plane of the

stress (or the [ins in which the two plan.- intorsod I u gran by

\£ +M = 0,

an. tin- pi- al on the plane of the stress by

Hi ice if (£,,»/ ins vector representing
we ^

rct from equations (52)

—

n the
'

fa j. Th n /«v

an for the pro* ial

Th ae ical const

in

;

rection and inagnitm

Fust Method It (£,$,) h.? the point <>n the stress-ell
i

p>" i">h

wli )se radiu- i if (£, ,, | be the

on the auxiliary ellipse correspond!.'

\(v >,), then (assuming that iV, >

this i y be writ

Th is th" projection ej (q the plam
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the auxiliary circle which corresponds to the radius of the ellipse

representing the stress.

Conversely, if the plane be given, we can construct the stress-

ellipse (54) and its auxiliary circle

f
2 + tf wm AT

f sin
2 a; (57)

if we then project the normal to the given plane, and find the

point on the ellipse corresponding to the extremity of that

radius of the circle which coincides with the projection, the

radius vector of this point represents in magnitude and direc-

tion the stress across the given plane.

We have seen in § 165 that when N
x
and N

2
are both positive

this stress is always a traction.
It is well known that

if 0PV 0P2
be two con-

jugate radii of an ellipse,

the corresponding radii

OQv 0Q2
of its auxiliary

circle (Fig 13)are at right

angles ; and conversely.

Thus 0P
1
represents

the stress across a plane
whose trace is 0Q2

, and
the projection of its

normal OQ
1 ; while 0P

2

represents the stress
across a plane, making
the same angle with Of,
whose trace is 0QV and
the projection of its nor-

mal 0Q2
.

two perpendicular radii

Fig. 13.

Thus, conversely, if through any
OQv 0Q2

planes be drawn so that their normals may make the

same angle a with Of, the resultant stresses across them will be
represented by conjugate radii of the ellipse (54) ; and, in

particular, the stresses across any two orthogonal planes through

Of are represented by conjugate radii of the ellipse (51).

Second Method. If (£, ^) be as before the point on the

ellipse (54) whose radius vector represents the stress across the

given plane (X, /ul, v), and if this radius (produced if necessary)

meet the director-ellipse (50) in the point (£,, rj
2),
we have

£i
: & :

: Vi ' %
Hence equation (55) giving the trace of the plane may be written

& + »' = <),

which represents the radius of (50) conjugate to the first.
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Conversely, if the radius <»t* the director-ellipse (50) conjugate
trace of any given plane be drawn, the intercept on this

stress-ellipse (54) represents in magnitude and direction

the resultant stress across the given plane.

Sin- onjugate radii «»t' an ellipse never lie in the same
quadrant, no plane through the origin is subject to simple

: i 1 1 u; Stress.

179.] If J is positive and and .V, are both
negative. All the theorem! proved in the last two Articles will

be equally true, the only cha- ••ssary being to substitute

50) the equation

w
i stress across every plane through the origin will be of the
nature of a pressure.

180.] Case in which F
t
m X If » = 0, and <3 = JD-. then

K m

K

9
» if (say); S having the H. The results

of t ie pi be modified to suit this cast

writing everywhei Ie for "ellipse," and "orthogonal ' for
" co tjugate."

'% ress across any plane whose normal b inclined at

an «• ngle a to Of is represented in magnitude and direction by
the .~adius of th«

wh h is the trace of the

n other words the -tress across every inch plans Ki Zfsino,

an< acts along the pi of its norm*] on the plane of the

str« *s.

v plane throogb the

I'h' • nd the d

of ' £and i > t] are mdetermmi

181.] Case in which j&7j and X, have opposite signs.

If
'.

; = 0. and J| is neg. of the principal normal stresses

wil b tion and the other a presi n:n of the greater

of 1 ie two !*•'• ame as i v*- shall suppose JBT
t
to

be ositiv- and Ar

, negati

tead of the elapse <">0) we now have the pah oi coo.jugate

dir» ctor hyperbolas

I
...(60)

.V,
+

.V,
-. (01)
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separated by their asymptotes

t +
-*>

.(62)

The system of stress-ellipses (54) will of course remain unaltered.

To modify the results obtained by the first method of § 178,

we must remember that, since N
2
is now negative, the coordinates

of the point on the auxiliary circle corresponding to the point

(£, P7j) ort the ellipse (54) are now

N

if jV be numerically greater than N
2 ;

or 62
-

""
JV""

• * 1 '
^2 ~ ^

if K
x
be numerically less than N

2
. The analogous construction

for the present case is then as follows :

—

To find the resultant stress across a plane whose normal makes
an angle a with Of,
project this normal on to

the plane of the stress

:

let OQ be the radius of

the auxiliary circle of

the ellipse (54) with
which this projection

coincides. Find P, the
point on the ellipse cor-

responding to Q, and
draw the radius OP' of

the ellipse, equally in-

clined to the major axis

on the opposite side.

Then OP' will represent

in magnitude and direc-

tion the stress across the
given plane—whichmay
therefore be normal,
tangential, or oblique.

Again, modifying the results obtained by the second method
of § 178, we see that the intercept made by the ellipse (54) on any
radius which meets (60) represents in magnitude and direction

the resultant traction across the plane drawn through the con-
jugate radius of (61) so that its normal makes an angle a with Of.

Similarly the intercept made by (54) on any radius which
meets (61) represents the resultant pressure across a plane

Fig. 14.
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drawn at the same inclination to 0{ through the conjugate radius

tnptote of the hyperbolas ropreeonta i pair of

coincident conjugate radii ; hence a plane drawn at any inclination

a 'through either of the asympi i shearing stress
d in magnitude and direction by tlie intercept cut oft' on

that asymptote by the ellipse (54).

182.] Casein which y.
}
--Xv The last impurtai

in two dimensions 0091m when 5=0, S— 0; J being
bive. We 1. q y

%
— — X lt Assuming that 0. is

ud denoting it by iV the >ystem of stress-elli

ystem of cirel

^ + V = iV
r, 8in,o ..(59)

ta in
I L80. Abo the director hyperbolas (60) and (61) become

las

irl ..(64)

1' OP be the radius of the circle (50) which coincides with
the pi inal to any one of I tiding

1 of planes, and if OP be the radius making the same angle

as tP with

opi 1 t OP ^
MOtl in magnitude

an< dinet ion the result-

ant stress across the

],!: • T
thi stres-

± . sin a, and it may be

ip

obi an

To determine itssign

we me
ev< ryradius which meets

(& r> hi a trac-

tio 1, and -\« -ry radim
wh ch meets (c.

pr( ssure. I

•

'/.

Fig. 15.

be] erpendiculartotb*

By the pro]

preen the prlftdpaj axet
an< . OQ are equally Incline tnptote which \\>

tlii m qually and 1

in. h

i
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Now OP is the direction of the traction across any plane

drawn through OQ, and therefore having the projection of ii

normal along OZ; and, similarly, OQ is the direction of the

pressure across any plane drawn through OP, and therefore

having the projection of its normal along OY.
In this case, therefore, the trace of a plane and the direction

of the stress across it make equal angles with an asymptote
while the angle between the stress and the projection of the

normal is bisected by Of (the axis of principal normal traction),

or by Orj (the axis of principal normal pressure), according as

the stress is a traction or a pressure.

Fig. 16.

183.] Let us now follow the changes in the stress across a
plane through 0, as it moves round in such a manner that its

normal describes a cone of semi-vertical angle a about Of
The numerical magnitude of the stress will of course always

be the same—namely, N . sin a. Let OQ (Fig. 16) represent the
trace of the plane in any position, OZ the projection of the
normal, and OP the direction of the stress. Then the angle
P0£ is always equal to either of the angles QOrj and Z0£.
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- OQ coincide first of all with n ; then OZ and OP both
coincide with 0(. The norma] component of the stress is a

id the tangential component iTsin a cos a acts

along the line in which the plane is cut by that of £(.

Ajb OQ moves away from ''//towards the asymptote, the stress

more and more oblique, the angle POZ constantly
until, when the plane actually passes through the

asymptote, the normal traction has vanished altogether, and
we have only a shearing firsts of amount N sin a acting along
the asympto

As OQ
\

it asymptote the normal component reappears

as a OP having also passed the asymptote in the

tion. This normal component continually inn
until, when OQ coincides with 0(t

and OP and OZ with 0% the

- acts along Orj, and of a normal pr*
a tangential along

ae of intersection of '

a plan.- with that of iyf. This
>f changes is then repeated in tl. ordei until the

trace of the plane onc« ides with

184.] Position of the Plane of the Stress Sines this

lie is per] lartotheaxi stress, it- direction-

is nes
i be

)t lined by writing N = in

We thus ur «'t the eqi

Up y two of which an 'it. in virtu condition

$ .0.

Taking this into account we find are

either of the pairs of equations

»A - tp - u v
1

e Plane of -- in the ease whan
ken in

.is

y
(<9)
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Stress in One Dimension.

185.] We now come finally to the case in which two roots of

the discriminating cubic (21) vanish. If N denote the remaining
root we must have

S=oj
(70)

and g=iV (71)

Supposing iV^ and N
2

to be the vanishing Principal Stresses,

equations (39) show that at the extremity of every radius which
represents the stress across a real plane we must have

Thus the resultant stress across every plane that can be drawn
through acts along Of. The stress is therefore said to be in

one dimension, and Of is called the Principal Axis of the Stress

at 0, the other two being indeterminate.

The third of equations (39) shows that the resultant stress

across any plane (X, /m, v) is represented in magnitude and direc-

tion by the length

(=vN (72)

measured along Of.

If then we describe a circular cone about Of with semi-

vertical angle a, the resultant stress across every plane whose
normal lies in this cone is given by

£=iVcostt (73)

Thus the stress is zero across every plane passing through Of;
and it follows that in this case no plane through can suffer

pure shearing stress.

If we describe about a sphere of radius N, the projection on

Of of the radius of the sphere coinciding with the normal to any
plane represents in magnitude and direction the resultant stress

across that plane.

N is obviously the maximum stress, and the stress across every
plane through is of the same sign as N or J).

186.] Direction of the Axis. The direction-cosines of Of,

referred to the arbitrary axes Ox, Oy, Oz, are given by equations

(22).

Now it is well known that the conditions (70), when satisfied

simultaneously, are equivalent to either of the sets of three

P = 4 = r = 0) (74)

or = t = W = Oi (75)
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that is, by

QB - ff --. RP - T* - PQ - I
"

" = 0,

or by the equivalent

TV- PS - 03 - Q t S T - RU= 0.

Thus equations 22) may be written In either of the forms

Sk = Tn=Ui (76)

7? >
(77 '

and the eqnaii

mU*\.... (78)

187.] Heterogeneous Stress ral the standard
components of the street trill n( to point of the

bo< y, all of then oa ol the

CO« rdinat* which th«-y act. The Principal

N< mal Stresses, an«l I the Principal

at each point will then-fore also be eoniinnotis functions of itc

CO' rdinates.

All - at the

or (in will be equally troc
I

158 » at any pofni P,

if ^e refer the Qu ln< ipal axes at P, Of bo

sy temof axes thmu^h 7' j.aralh-1 to tl.. ry axes

i:\A.\iru.

iss the propei he folk»\

«, «, «};

a};

.
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Show that the principal normal stresses are respectively :

—

(i) 3a, 3a, - a
;

(«.) 2a, — a, — a
;

(Hi.) (>/3+l)a, -(v/3-l)a, 0;

(iv.) (n/2 + 1)«, -(v/2-l)a, 0;

(v.) 14a, 14a, ;

ivi.) J7a, - Jfa, 0.

2. Prove that if through any point of a strained body a

system of planes be drawn, such that the normal component of

the stress across each has a given value N, the normals to these

planes will generate a quadric cone.

3. If the stress be in two dimensions at the origin, and the

plane of xy be made to coincide with the plane of the stress, show
that

(i.) The principal normal stresses Nv N2
are the roois of the

quadratic

(ii) The angles \]sv \[r
2
which 0£ and Otf make with Ox are

the roots of

tan 2^J£-
Q

.

(Hi.) If PQ > U2
, four planes can be drawn through at a

given inclination a to the plane of the stress, so that the stress

across each shall have a given normal component N (provided of

course that N is taken within proper limits) ; and the projections

on the plane of the shear of the normals to these four planes lie

in the lines

(P - N cosecV)^ + (Q - N cosec2a)y2 + 2 Uxy = 0.

Hence deduce the limits of N for a given value of a.

(iv.) What is the corresponding theorem when PQ < U2
?

(v.) Show that four planes can always be drawn at a given
inclination a to the plane of the stress, such that the stress

across each may have a given tangential component T (taken
within proper limits).

Show that the projections on the plane of the stress of the
normals to these planes are the lines

sin4a(iV + Wxy + Qtf) + T2^ + y
2

)
2

sin2a(^ + if)[(Px + Uyf + (Ux+ Qyf].

Hence deduce the limits of T for a given value of a.
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Show that, for a given value of a, N is a maximum
when the projection of the norma] coincides with Og, and a

minimum when it coincides with Or).

(i*ii.) Show that, for a given value of a, T is a minimum
when the projection of the normal coincides with Og or Or), and
a maximum when it bisects either of the angles between these

show that the two planes through suffering

ntial stress are those whieh bisect the angles

\ een the principal planes £z and >

4. Prove that, when two of the principal normal otioouoti are

eqnal, the normals to those planes which Baffin maximum tan-

1 stress are all inclined at an angle of 45° to the direction

of the third principal stress.

show that, in general, the normals to planes through the

origin, the -tress across which has a given tangential component
T,ue on t whose eolation, referred to the principal aj

Show tl.. y radins vector of the rad

¥+W-JsH¥-li
an< T the tangential componci at the origin across

tli- section drawn through it perpendicular to r, then

l.

Sh w rinripaJ plan
ooi jugate rectangular hyperbolas, having the prmcipaJ as
th< r asymptotes. Hence, or otherwisi the majdununi

tax $ei 1 by the two planes I n

an that this maxiimim is -V-V, — -Yr i
" v ^t* &t

being in dssoona-
in. order of magniti;



CHAPTEK IV.

POTENTIAL ENERGY OF STRAIN.

188.] Introductory. We saw in Chapter I. (§§ 21, 26, 27)

that the Potential Energy of a perfectly elastic body, due to

Strain produced at constant temperature, must always be equal

to the work expended by external forces (including Applied

Forces and Surface Tractions) in producing the strain ; that this

work (§ 31) is done against the Resistance (§ 135) offered by the

body to stress, and is therefore equal to the work done by the

Stresses (§ 135) during the Strain; and finally (§§ 27, 29, 34) that

the Potential Energy and the Stress in any given state of the

body are functions only of the actually existing Strain.

It is obvious that, since our new definition of Stress (§§ 131,

135) retains its essential characteristic (§ 29) of a purely mutual
action between the component parts of the body, these theorems
are as true for the perfectly elastic continuous mass with which
we are now dealing as for the perfectly elastic molecular structure

which we considered in Section ii. of Chapter I.

The course now to be taken by our investigation will there-

fore be as follows:—Regarding the six component stresses as

functions only of the six analogous components of the strain

which they suffice to maintain, under the given system of external

forces, we shall first find an expression for the work done by them
during an elementary increase in each of these components. This
expression will involve the stresses and the increments of the

strains, and we shall show that, in virtue of equations (3)

and (5) of Chapter III., it is identically equal to the work that

must be done by the Applied Forces ancl Surface Tractions, to

produce the small increments in the displacements of their points

of application which constitute the increment of Strain. We shall

next employ the principle of superposition of small strains (§ 87)
and stresses (§ 155) to express the six standard components of a
small stress in terms of the six components of the corresponding
small strain; and then, by eliminating the stresses from the
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jproressionjust found, wo shall obtain the dtffi rent 'ad of the Poten-
tial Energy of strain, expressed as the differential of a function
of the six component straina Finally, integrating this from the
natural state of the b to the given state of
-train •-./. g, 'all obtain the Potential Energy in the

r state as a function of e. \ c.

Work don* by S mall >

-

189.] Work done in increasing a simple elongation.
Let us first suppose the body to be in equilibriom in the state of

the components
U] of the stress required t.> maintain this condition

are fir only of the stnin-eomponents, it follows that the

Lb homogen
Let Ofl investigate the work done by stress in producing a

sim 11 arbitrary i; lie component c, all the other

strc in iig as before.

Coi finite rectangular parall ol the body, the

coc rdinates of whose oat state of strain are

(«, tf,*),and whose edg< - <>t" Leo .fare respectively parallel

to he fixed arbitrary ax« 'I'he stresses throughout
its int- d do n«» wori it a- a whole, BO tl

th< work <l<.n.- by stress is due to that which acts .

bo nd face.

Ag. v point iped is displaced

e amount of the displacement b
h 38 and (L)].

H« ice ee corn-

do w<»rk which act

ire take a

th ikncss, bounded by
parallel plan*

an x
I in it- perin

rs the -;iiu-- «lis-

nitut : an-l. tin-

eadi this

I as anted in Ki; the forces
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acting parallel to Ox on the four edges of the slice are

respectively

T . kdx'

U.ldx'

-T .kdx

-U.ldx'

It is therefore obvious that these forces together can do no work
in such a displacement : and, this being true for every such slice,

it follows that the only forces which can do any work on the

parallelepiped, in increasing the elongation e, are the normal
components of the tensions acting across the ends perpendicular

to Ox.

Since P is a function of the strain-components, it will be

altered to

P+ 8e
oe

by the small increase of e.

Hence the work done by the tension acting across the positive

end lies between

P. Ml

and (p + ^.8eWa; + ^& I

Similarly, the work done against the tension which acts across

the negative end lies between

'•*(-}) Be

and {P*^.8e\kl(x-?\8e

Hence, on the whole, the work done by stress lies between

P8e . hkl

and IP+H.feWjU!l('¥*)
Thus, neglecting the square of Se, the whole work clone by

Stress in producing the small increment Se of the single com-
ponent e is

PSe.hkl.

190.] Strain and Stress Heterogeneous. In precisely

the same manner we may show that, if the strain be not homo-
geneous, the work done by stress on the elementary rectangular
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parallelepiped dasdydi having ite centre at (.r, ?/, c), in producing

a small increment 6e of the elongation of this element parallel to

iplv

PSe.dxdyilz (1)

when' P, et

<' utinuous functions of

The work done on the whole body by Btreflfl in producing

any continuously distributed (but otherwise perfectly arbitrary]

.small variation ft in the elongation ( throughout it is therefore

fffPc*>.<Lu\,j,i, (2)

and we see that, in varying simple elongation, only the corre-

nding longitudinal traction fl 148) can do any work.
Senee /'. Q, ft are the Simple Si 3 coirespondii

the simp].- Strain

19L] Work done in increasing a Simple Shear. Lei

mponenl shear a to sutier a small incre-

ment fat
the other component retaining their initial values.

it* f)<j and 0{ be t ,al and external bisectors of the

argle it a or 2s, in the plane

ol ys h equivalent t ligation i, in the direction ox Of,
b gether with i r an elongation

|
- >•,), in the

d rection of Of. The smell taerement 8a of she shear may there-

f. re be resolved into the noall increment Si of the elongation

j, rali '£, together with the mall increment &•-, of the

e ntr llel to Of
Ag; D the plane

i

b ly parallel plane) may be resolved (|$ 150-152) into I iongi-

t dinal traetioa S ith a longitudinal

p esse, bractioo
|

->'< parallel to

Sence, by Buperpoeil deduce from the lasi Article that

t e NV (,rk ram on the element a centre

b the poi
:

io body, in
|

g the Bmall incre*

ii ent fta of t lenient in the plane of //:. ia

- &s
x
)dxi/y

t at

II SZa.dxdydz.

v here re continuooi roncti being

net arliitr;:

The wurk done on the whole body by Stress in producing

s ich a change throughout it M therefore

ffj ..(1;

b id it foDowa that, in a simple illy the correspond-
n do any work.ii
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Hence S, T, U are the Simple Stresses (§ 33) corresponding to

the Simple Strains a, b, c.

192.] Work done by Stress in any small arbitrary
variation of the Strain. Superposing (2) and (4), and the

analogous formulae for /, g, b, c, we see finally that the work
done by Stress in producing small arbitrary and independent

variations of all the strain-components throughout the body, such

that the strain at any point (x, y, z) is altered from

{e,f,g, a, b, c]

to {e + 8e,/+ 8f, g + 8g, a + 8a, b + 8b, c + 8c}

is given by

8W=fff[P8e + Q8f+R8g + S8a + T8b + U8c]dxdydz (5)

where {P, Q, R, S, T, U} is the specification of the stress required

to maintain the body in equilibrium in its original state of strain,

under the given external forces.

Work done by the Applied Forces and Surface Tractions in
producing a small variation of the Strain.

193.] Expression for this Work. As in the last Chapter,

let X, Y, Z represent the components of the Applied Force per

unit mass at the point (x, y, z) in the interior of the body, p the

density at the same point, and F, G, H the components of the

Surface Traction per unit area applied to the element dS of the

bounding surface : these systems of forces and tractions consti-

tuting the system of " external forces " which, with the

distribution of stress {P, Q, R, S, T, U}, holds the body in

equilibrium in the original state of strain {e,f g, a, b, c}.

Let the effect of the small arbitrary variation of the strain,

considered in the last Article, be to change the component dis-

placements u, v, w of any point (x, y, z), in the interior of the

body or on its surface, to u+Su, v+ Sv, iv+Sw.
Then, by the principle of virtual velocities, the work that must

be done by the external forces to produce this change is

fffP(X8u + Y8v + Z8w)dxdydz +/f(F8u+ G&V + H8w)dS (6)

where the triple integral is taken throughout the volume of the
body, and the double integral over the whole of its bounding
surface.

By reasoning as in §§ 153, 154, we may show that it is

indifferent, to the degree of approximation which we adopt for
small strains, whether the integrals in expressions (5) and (6) be
taken throughout the volume and over the surface of the body in
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tural or in its strained state; indeed the triple integral in

(6) being integrated as to the element of man, is absolutely

identical in the two cases (j
1">4).

Wt >hall always BUppote, foe tin- Bftkc ol simplicity, that in

end similar oases try frated throughout
1 1 do ublr I fa ce of the \M8tr\

194] Identity of the two expressions for Work done
in varying Strain. Babetttoting rot '. b, c in (5) from
equations (59) of § 123, we get

-
(

and thus (•">) 1

3,

)

:#: &B

+ tf.|^ + <h|fc + ^J*»

+ r 8r + /^

Integrate

(T)
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Rearranging the order of the terms,

8 W=ff{{PX +Ufi + Tv)8u + (*7A + Qix + Sv)8v

+ (TX + Sfx + Bv)8w}dS

rrr
s

/dP du dT\ /du dQ dx\

+('M4>}^^ <8 >

Hence, in virtue of equations (3) and (5) of Chapter III., we
have finally

8W-=ff(F8u + G8v + H8w)dS +fffP{X8u + Y&v + Z8w)dxdydz. ... (9)

Thus the work done by Stress during an infinitely small

change of Strain is always equal to the work done on the body
by external forces in producing the change ; and either is of

course equal to the corresponding infinitely small increase of the

Potential Energy of the Strain.

195.] Case in which motion is taking place. If relative

motion of parts of the body is taking place, so that the initial

and final states of strain are only states through which the body
passes ; as, for instance, when the body is vibrating about a stable

state of strained equilibrium, maintained by suitable forces ; we
may show by employing equations (4) of Chapter III., that the

expression (6) for the work done on the body by the external

forces is equal to the increase SW oi the potential energy, together

with the accompanying increase of the kinetic energy %.
This latter is of course

83g = 8fff\P(x
2 + y

2 + z*)dxdydz,

or, since u, v, iv are the variable portions of the coordinates of

any point,

= V/yi/°(^
2 + »* + w2)dxdydz

=JJJp(uu + vv + ww)8t . dxdydz,

where St is the small interval of time occupied by the change.
This again is equal to

Jjfp{ja8u + v8v + ib8v))dxdydz (10)

Thus the expression (6) for the work done by the external
forces—which must now of course be equal to the total change
of energy, both potential and kinetic—diminished by the expres-
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sion (10) for the corresponding increase of kinetic energy alone,

becoi:

jy/p[(X-u)8u + (V- v)8v + (Z- w)Uo]dxdych

+jy(FSu + (,'cc + Hb*)d8 (11)

By equations (4) and (5) of Chapter III., (11) is identical with
and therefore with (6V

Potent f& in.

] Energy per Unit Volume. Let W be tlie total

potential energy of the body when bold in eonilibrium in the

state of strain {> by tlie distnbntion of stress

[P.Q
Also l'-t r denote thfl measure ol this potential energy per

unit vol--. retrained body, so tliat

"" Iff

Wt bare shewn thai the mfinhesima] increment of P",dne to

arbitrary and Independent infinitesimal increments of the strain-

c mponents, is pi

ir-PSe + QSf+liSff + SSa+m+USc (13)

•a- tin- potentia] energy and the eomponents of the stress in

a y gj only of the components >>\'

t at strain Hence when the incrementsof the strain-components

ii (13) ar. ntly reduced, each side must become the perfect

d fferential of some ranction ViA the dj independenl variables

' f, .'/

Thus i •

Pde + Q .(II)

a td a

,D
?\' ar.. ar r r r

3^+-^/+-: (1.)

wed.-«lu<

p
-o7« «"^ ^"^

(1G)
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197.] Stress in terms of Strain. "Hooke's Law."
Since stress is a function only of the strain ultimately produced
by it, it follows that if a single small stress {P, Q, M, S, T, U]
produce the small strain {e, £ g, a, b, c}, then two small stresses,

each equal to {P, Q, etc.}, applied successively to the body, will pro-
duce two successive small strains, each equal to {e, f etc.}. But,
by the principle of superposition, the two successive small stresses

are equivalent to a single small stress {2P, 2Q, 2P, 2S, 2T, 2U},
and the two successive small strains to a single small strain

{2e, 2/, 2g, 2a, 26, 2c}.

Thus the single stress {2P, 2Q, etc.} will produce and main-
tain the strain {2e, 2f, etc.}.

This result may obviously be extended so long as the strain

and stress remainjsmall, so that ultimately we see that, if n be
any finite multiplier, the stress,

{nP, nQ, nfi, nS, nT, nil}

will suffice to maintain the strain

{ne, nf%
ng, na, nb, nc}.

Hence we deduce, solely from the principle of superposition

of small strains and stresses, that if a perfectly elastic solid be in

equilibrium in a given state of small strain, under a given small

stress, and if the strain be increased in any finite ratio, the stress

required to maintain it will be increased in the same ratio.

In other words, the six components of stress are linear func-
tions of the six components of the corresponding strain.

This law was discovered experimentally by Robert Hooke,
and first made public by him in 1678. (For the various ways in

which it has been arrived at theoretically, see Appendix III.,

below.)

198.] Coefficients of Elasticity. From equations (16)

we see that the partial derivatives of V as to each of the strain-

components must in general be linear functions of all the six

components.
And, finally, it appears that the potential energy per unit

volume of a perfectly elastic solid under small strain is a

homogeneous quadratic function of the six component strains.

We may then assume

2 7= Kne2 + K
22f2 + K

33g
2 + k^ + K

5b
b2 + Kmc

+ 2*23^ + 2k
8106 + 2K

l2ef

+ 2k
566c + 2k

64
c« + 2K

45
ab

+ 2i<uea + 2K
lb
eb + 2k

16
<?c

+ 2k-
24/» + 2ac

25/6 + 2k
26
/c

+ 2*
34
#a + 2K

3b
gb + 2k

36
#c

.(17)



m
|

POTENTIAL 3TBAIN. 127

where the 21 " Elastic Coefficients" are. for a homogeneous body,
Absolute constants, depending only on the elastic properties of

the constant temperature at which it is maintained,
and the directions of the arbitrarily chosen axes of reference.

If the body be not homogeneous, the coefficients will be func-

tions also of the position of the point in the neighbourhood of

winch V is given by (17). We shall, however, always suppose
that we are dealing with naturally hom< bodies (j

4.'),

In general, the i its must be supposed all independent
of one anotht-r ; and in fact we cannot with certainty attribute

to them any { that they are finite, and
that for e rible form of small .strain they must make V

!

DitT and .substituting in (16), we get

Q = Kne + Kjj/+ Ktfl + *
24
a + K^b + kmc

R m K
iX
€ + «„/+ Krf + K^a + K^b + KjflC

^™ "41* + "4j/+ "430 + "44a + "4.'.^ + "40^

T- #c
51

<! + k64/+ Kjrf + *cMa + #cM6 + Krf

Urn, Ksie + K
ft|
/+ K^ + KwO + #CW6 + *^

v here doable i being employed solely for

t e sak- of symn*

] Average Stress during change of Strain. II

v e find, b; 3)with(lj b might have deduced
<l rect omogencnu.s functions,

F- i(P* + Q/+ Rg + »S*« + Tb + Uc).

v hei

W
in ( 1 4M . >n,

r
jl I / '

J ,'. 0. 0. 0. «.
J.

I <mic<j tli. int ion of (19) is average value of tin-

s' • «, while the body Ki being
t e fit

t at is, one half stress requin it in the
h; •eciticd state of

• also have been d lirectly bom the principle
O ' SU]

tie st. isting
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strain) must be such as would keep the body in equilibrium in

that state ; but, by the principle of superposition, if we have any
number of states of strain, and the corresponding stresses given,

the average of all these stresses will suffice to maintain equilib-

rium in the state of strain which is the average of all the given

states. Now, the path by which a perfectly elastic solid is

brought to a given state of strain being without effect on the

stress required to maintain it in its final state, the average value

of the strain may be taken to be simply {%e, J/, \g, \a, J6, Jc},

and the stress corresponding to this is, by § 197,

This latter expression therefore represents the average value of

the stress during the change.

200.] Strain in terms of Stress. By elimination between
equations (18) we can obtain the six component strains as linear

functions of the six component stresses

e -KUP + K12Q + K13R + K14S + K^T + Kl6U
^

etc., etc.

a = KnP+K4aQ + K4aR + KMS + KnT+K4aU
|

^21)

etc., etc. J

where K12 = Ka , etc.

Substituting in (19) we obtain Fas a homogeneous quadratic
function of the stress-components.

2 V = KnP* + K^Q* + K^R* + KJ3* + K„T* + KJJ*
+ 2K2ZQR + 2KZ1RP + 2KV1PQ
+ 2KmTU+ 2KMUS + 2Ki5ST
+ 2K14PS + 2K15PT + 2K16PU
+ 2K24QS+ 2EXQT+ 2K26QU
+ 2KURS + 2K35RT + 2K3,RU. (22)

whence, by differentiation and comparison with (21),

_dv dv dv
e ~dP^~dQ,(J ^dR

(23)

201.] Asymmetrical Elasticity. We have defined a
homogeneous body (§ 43), in the most general terms, as being such
that any two equal and similar portions, similarly situated in the

body, possess identical elastic properties. In the most general

case of homogeneity we may therefore suppose the elastic proper-

ties of the body to vary in different directions ; that is to say,

the specification of the stress required to maintain a given strain
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will depend not only on the specification of the strain but also on
the directions of tin* axes of reference. The equations of the last

applicable to this most genera] case of Asym-
the -1 elastic coefficients, and also the

I ciprocal coefficients K ...Kcy (which are functions of the

I taken to be all independent of one another and of

on of the origin, but varying with the direotiona of the

V'/.

'

] Planes and Axes of Rectangular Symmetry.
natural solids are found to possess different degrees of

in their elastic proportits. Such solids are in general

call--« 1 mmetry is found to be in

invariable relation to certain lines and nlanon connected with
form of crystal We now proceed

to investigate the an ees of

elastic syimii' -

to the cases in which the

lin a and planes of symmetry arc

203.] One Plane of Symmetry. L.-t as suppose the
eUnti< bebodysymj about the plane <

or my paralh-l plai r example, the Bpecin-

ca ion BM required to maintain a

gi en uniform elongation in the -li
1

ill be the same
a- thi </, of tin-

to maintain an aqua] elongation in tin- direction

hX fit —w). Thii trhen <> raed;
an I si: .n of the <longa-
t i« i dependi! only on c mdition that

i in:

altered tl — in terms of the specifi-

in.

Consequently the expn the potential energy In

o remain unchanged when

Now tl. change the d and
w h i tS the Btan the other
co *p< as befor. Tim a plan- of sym
nu y all those terms in t V which contain odd

ipt their pro rush.

«« *« =

= 0, "l» =

*»•.0, *» =

-o,

i
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And, finally,

2 7= Kne
2 + k22/

2 + k^2 + Kua? + Kmb
2 + xm<?

+ 2(Kzifg + Kn96 + Ki2ef) + 2k45«6

+ 2( Kl6ec + k26/c + K
3(
gc) (24)

Thus the number of elastic coefficients is reduced to 13.

204.] Three Planes of Symmetry. By three successive

applications of the results of the last Article, we may show that,

if all three of the coordinate planes are planes of elastic symmetry,

all the terms in V involving odd powers of a, b, or c must dis-

appear. In addition therefore to the above conditions we must
now have

*45=0 1-

K16
= K26

~ K36 — )

Thus we may write

2 7= Kne
2 + k^/ 2 + K^g2 + kuo? + k556

2 + xmc
2

+ 2(k23/# + K
3lge + K12e/) (25)

and the number of the elastic coefficients is reduced to 9.

This may be called complete rectangular symmetry; it belongs

to the " tessaral " class of crystals whose form of crystallisation is

a rectangular parallelepiped, the planes of elastic symmetry being

parallel to the pairs of opposite faces.

Equations (18) become

p= Kne + K\%f+ K\&

Q =- K2]6 + K%2j + K2$

R =- K3le + kS2j + K2S9

S= Kua

T = K55&

u Kwc

(26)

by which we see that the relations between the elongations and
normal tractions perpendicular to the "principal planes" (or

planes of symmetry) of the crystal, and between the shear in each
of these planes and the corresponding shearing stress form four

independent systems.

205.] One Axis of Symmetry. Let us next suppose that

there is one direction in the crystal about which its elastic

properties have a certain degree of symmetry. Any line Oz
drawn in this direction may be called the Axis of the crystal, and
its elastic properties will be arranged with more or less symmetry
in the plane of xy, or any other plane perpendicular to the axis.

There are two principal degrees of such symmetry, which we will

consider separately.
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(i.) N uiet)')/. In this case, which is

gammon t«> [celand Spar, and <>th< or crystals, called in Optics
•'uniaxial." there are hro orthogonal planes through the crystal-

liiii* axis, snch that the elastic properties of the body are not only
symmetrica] atari r about any planes parallel to either),

but they al> y the same relations to one as to the
Thus i hich we --hall take for the planes

interchanged without affecting the form of

the Potential alationa of Stress and strain.

It i bvioufl thai Fmuat mvolve sand /symmetrically,
and also a and b. Thus we may write

2 F- *„(« +/') + K^f + K„(a* + 6s) + K*? + 2Kn(fg + ge) + lays/.

Thus the Dumber o! elastic coefficients is reduced to 6, and
equations 18) bed

R = *iA* +f) + **&

T-kJ>

m 1» crystals may be said to have squaw symmetry about theil

a> a,

(ii.) Complete Circular Symmetry about an 4at* In this

CB e, which does not occur in any n. \Mai, hut which is

ar ificiallv brought about in wires drawn from masses of metal

n. 1 1 rally possessing the highest degree of symmetry {see § 207,

be 9U > <>t the body are absolutely syiniutt-

[tii il to the ai at. if this

bt 0s as befor liflbnol in what directions we
ta :e Ga and I

It i si in this case the expression (87) foi P must
re ain the I through any

ai. ;le m in tl. oe. Lei K) small that it>

s«j iar«- and higher pon y be neglected i the effect of rotat-

in ; thi D be to change x, y, u, v into x + wy, y-wx,
u yv, v—wu, i and is remaining ed The effect on the

will be to change ( b, into e + wc,

f- tr Erf resper

11 D (27) for 2V
is transformed into

2K+ 2^, -2k„ -*,...,

STfce term involving m must vanish tor all values of <»>, and there-
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fore, since the strain-components must be assumed independent,

we must have

Thus
2 V= Kn(e

2 +/2
) + K

33
g* + Ku(ar + V) + k^c2 + 2k23(/# + ge)

+ 2(Kn -2Km)ef. (28)

and the number of the elastic coefficients is reduced to 5.

206.] Three interchangeable Planes of Symmetry.
Let us now start afresh from the case of § 204, and suppose that

the elastic properties of the body are not only symmetrical about
the three coordinate planes, but that they also bear precisely the

same relations to each of these planes. It is then evident that the

coordinate axes may be interchanged in any manner without
affecting the form of V—that is to say, the expression (25) must
be so modified that it may involve e,f, g symmetrically, and also

a, b, c. Thus we must have

K.>o = /C01 = K-i

And, finally,

2V=Kn(e*+f + f) + Ku(a* + b* + c*) + 2K23(f9 + 9e + ef) (29)

Thus the number of elastic coefficients is reduced to 3.

This may be called complete cubical symmetry. It occurs in

Rock Salt. It is obvious that if any cubical portion of the body
could be removed and replaced with any pair of its faces occupy-
ing the positions originally belonging to any other pair, and then
made once more continuous with the rest of the body, the elastic

properties of the whole would be absolutely unaffected.

Equations (18) become in this case

P=Kn e + K 23(f+g)]

R = Kng + /c23(e +/)

S= Kua

T=Kub

Isotropy.

207.] Definition. Let us finally suppose that the body not
only satisfies the conditions of homogeneity (§ 43), but is such
that any two equal and similar portions, however they be situated
in the body, possess identical elastic properties.
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These properties are then quite independent »»t" direction, and
the body may be said to

j
complete sph rmmetry;

so that, if any spherical portion were rotated through any angle

about any axis, and again made continuous with the rest, the

would remain elasticalry unchan-v.l.

All smeb bodies are said I
/"'<•.

All other bodies, whether crystalline or asymmetrical, are

called in contradistinction

lies, indiarubber, glass slowly cooled, and metals in fcheir

ordinary state may be considered aa homogeneous isotropic

-. The great traction which is applied in manufacturing
metal wires, by pulling them through small holes in a perforated

a a permanent a nrhieh, when the wires arc

i and Freed from t- m suits in the crystalline state

ribed in

A somewhat similar efied is produced, in leas marked
. hy th»- vari.ni n-1 hammuring to

which ban and plates of wrought iron and steel are subi
in th iiianufac Appendix IV., Section B,

"Ductih M

>] Energy and Stress. Ir ; obvious thai, Ear an
is »tropic solid, all axes are axes of complutu circular symmetry,
at »l all pi B planes of symmetry. Tims
b 3 condition be satisfied simul-

U leously, and hy cmpair -.••• that

I

dt

a.-

co

1, finally for an isotropk Solid,

IF v -'+/» + /) + «„(<!» + 6' + fl + 2K- -

number of I reduced I

become

/>«*„« + (*,

ri i \ .
. 1 at the most perfect conceivable

i
\ LdenJ thai we are not justified in

tuning i relatiofl between the two remaining

must tl: ipposed independent.

.(31)
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The insurmountable objection to all the old molecular theories,

founded on Boscovitch's assumption (§ 37), is that they give an
invariable ratio ku : ku = 3 between these coefficients for all

isotropic solids—thus leaving in effect only one independent
constant.

It was first pointed out by Stokes, in 1845, that natural solids

afford a series of values for this ratio, varying within wide
extremes, and not even showing a tendency to approximate to

an ideal limit. (See Chapter XII.)

209.] The Potential Energy as an Invariant of the
Strain. Since in an isotropic body the directions of the axes of

reference cannot affect the form of the Potential Energy, which
now depends solely on the specification of the Strain, it follows

that V must be an Invariant of the Strain, and therefore a func-

tion of the invariants D, J, K (§ 111) of the various Strain

Quadrics.

Now, by § 198, V must be a homogeneous quadratic function

of the strain-components, and the forms of the invariants, which
are homogeneous functions of the first, second, and third degrees

respectively, show us at once that the only relation that can be

assumed between them and V is

2F=aD2 + fij

where a and /3 are absolute constants. Substituting for D and J
the values given by equations (39) of § 111, we get

2 V= a(e +/+ gf + f3(fg - S]
2 + ge - s2

2 + ef- s3
2

)

= a(e2 +/2 + ^
2)-|(a2 + 6

2 + c
2

)

+ 2

(
a+

f)(/̂
+^ + e/)

'

which becomes identical with (30) on assuming

:n ,
p= -4ku .

The Elastic Moduli of an Isotropic Solid.

210.] Modulus of Rigidity. We see at once from equa-
tions (31) that a shear in either of the coordinate planes requires

only the corresponding shearing stress (§ 149) to produce and
maintain it, and that this stress bears to the shear the constant
ratio ku : 1.

Since the directions of the axes of reference are perfectly

indifferent, it follows that k44 represents the shearing stress that
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post be applied in any plane I ice and maintain the unit

of shear in that plane ; analogically speaking, that is to say. A
liheari] - which would produce such an enormous distortion

of the body as the unit shear (see Appendix II.) would certainly

not obey the proportional law, except perhaps in one or two sub-

stanc< aonally perfect elasticity. The units of strain

(an«l all finite strains) really lie altogether outside our //<

and it is only by direct I that we can determine the

ee of approximation to which it represents their laws. Such
lents as the above must always be understood to be made

under this S Appendix I v

This auantrj tally called the ."
ndity, or

simply tl of the body; it is also known as its

\v. shall in future denote it by the symbol n.

211.] Modulus of Compression. Let as now suppose

that i zhont the body ifl a homogeneous ruhicifl

compression, uniform in all directions of amount A. Theiu.i LIS

W'J shall 1

«=6=c=0

-11

/' Q fi (i A}

r-cr-o )'

B r § 174 we see that the stress at every point o! the body will be

a homogeneous hydrostatic pressure, of amount

a id to maintain thlfl >tran ply a uniform

ii -rmal pressure II ovct Kb bounding surface of the body.

Si-^O represents the uniform normal

p essim- which m l over t
;

ee to produce the

u lit of cuhieal compi ?hout the body.

This <|uant:- the Mod
t e J> of Vowa

We shall in denote ii

Of course a over the bounding surface,

o amount fcA, will in lik«- mann.-r pioduce a uniform cubical

d'latatiofi A throughout the b

aodnhu ten call d the Compressibilif/

o the body, & as it does the cubical compression produced
bra uniform surface oi anit inagnitn
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212.] The New Notation. Writing then

in equations (30) and (31), they become

P = (*+ |n)« + (*-!*)(/+ g))

B = (k + \n)g + (k - %n)(e +/)

S = na

T=nb
U=nc

and
2V~ (k + iw)(«* +f2 + g*) + 2(k- \n)(fg + ge + ef)

+ w(a2 + 62 + ca
) (33)

The latter may also be written

2F=(k-%n)A2 + 2n(eZ+f2 + g2) + n(a2 + b* + c2
) (34)

where A denotes, as it invariably will in future, the cubical

dilatation (not necessarily uniform in all directions) at the point

(x, y, z) ; so that (§§ 102, 103)

A=e+f+g (35)

Many formulae are simplified by the use of the symbol m, where

m=k + %n (36)

the fraction ^n being thus eliminated. For instance, the first

three of equations (32) become

P= (m + n)e + (in - n)(f+ g)\

Q= (m+ n)f+(m-n)(g + e)\ (37)

R = (m + n)g + (m - n)(e +/)J

213.] Young's Modulus. This is the theoretical value;

(§210) of the longitudinal traction in any direction which will!

by itself produce unit elongation in the same direction.

Its value in terms of h and n can be deduced from equations

(32) by putting

e = l, Q = £ = S=:T=U=0;

the value of P obtained by eliminating / and g from the remain-
ing equations being the required modulus.

It will however be more instructive to determine it by the
following analytical method :

—
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Consider a unit cube of the body, with it- edges parallel to

the axes, subjected to a homogeneous longitudinal traction P
tend] Each oft! perpendicular to Ox will suffer

a normal traction P per unit area, while the other faces will

feoffor no stress at all. Divide the traction P on each of the

0-faoea into three equal tor

aach |P, and apply to each of the

lour remaining norma] W
I' per unit area, and an equal

normal pi I'.y the principle

of superposition this system of

•s will be equivalent to the

and we are at liberty to

compound them in any way
kike, ientfl all the

•

•

>n the : I

First collect the n
r all tl

by § 211 these will N a
cubic" ; 1 1 in all

di ecti and
thus by L05 may into

a aniiori] of amonnt
parallel to each <>f tl

Next combine til.' second of

tr ) tl

p laces with the equal normal prem Eases. By i"> (i

to a 8hf>> ' ress of amount ',/' hi the

pi me bioh by 1 210 most produce aal^r of amount P/8n,

jbdoftb . ing its axes of elongatioD and
c< ltraction parall- 100 (see al L52)thifl

m y i d into an - and a

allel to I

similarly the 1 norma] ! \P on the

aces, coinpined with I ual pressures \P on un
11 pr parallel to Ox ami o contraction

rall.-l to

On dinal fraction of amouni P
rallrl to Ox prodno longations—

/*(„ )
:,ltoO*

)
parallel to Oy
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Denoting these by e, f, g, we have

dkn

3k -h n
'

3k -2n
2(3k + n)'

Thus if q denotes Young's Modulus

9kn 3kn
y ~ 3k + n~ an'

.(38)

In all known solids k>%n, so that there is always a lateral

contraction in the directions perpendicular to that of the applied

tension.

If we employ the symbol or to denote the ratio (—f/e) of

lateral contraction to longitudinal elongation in this case, we

3k — 2n m — n
(r =

2(3k + n)
=:
~2^r <

39
)

shall have

214.] Strain in terms of Stress. If we solve equations

(32) for the strain-components, we find

3k + n _ 3&-2w ^

etc., etc.,

or, substituting from (38) and (39),

1
e = -

<1

P--\(Q + R)

'-\ Q-
-J*-*>

1

R--\(F+Q)

1
a= -.

n
S

n
T

1
c = - •

n
U

(40)

Thus, by (19),

1

2r=--(P+e + Jffi)
2 + ^J

(P2 + C2 + /22) + ^(5
2 + T2+^)

(
41

)
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215.1 Principal Axes of Strain and Stress. If the

principal axes of the Strain at any point of the body are parallel

to th( i reference, we haw at that point, by equations (32)

of § 83,

•-«b/-» *p #"Sj « = 6 = c = 0.

Thus, at tlif same point,

P = (;;j + j,)€ , 4 ( M - n)(% + €,)

()= (m + w)«, + (m - n)(cj + Cj)

,R = (m + N -*X*i + %)

5=0
r=o

Thus the ^tresses across small plane areas drawn through the

rpendieolar to the axes of reference, an- wholly normal.

and 1 the axes of refer*; also parallel to the

principal 8X66 of the St r, s.< ,-.• Ht.

Convr.lv. it may l^e shown axes of reference are

tal.-ii to the principal 1X68 ol H at any point of

the b must necessarily be parallel to the principal axes

of t ame point.

Benec m at, at every point of an isotropic body, the

P mcipal Axes of the Strain ana of the Stress a

ai 1 that the nrincipal elongations elt e., f, and the principal norm*]

et 96868 Nv Nr Nt
are connected by tne equation*

^(m + n^ + fm-nXc,**;

r 1 r I

I

(

1

2a I

T e corresponding formulae for V

or 2^= -V, + t̂ ivy + ~w + A?

+

W).

.(43)

(43a)

These i might of course ha\ deduced directly

fr .in ipl.-d with the eoneepoo i that V must

al be an invariant of the 1

1
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They evidently apply also to the crystalline forms of §§ 204-
206 (since in them also the shearing stress and the shear vanish
together independently of the elongations and normal stresses),

but not to any lower degree of symmetry.

216.] Lines and Tubes of Stress. Tie Lines and
Strut Lines. Principal Surfaces of the Strain. The com-
ponents of strain and stress being supposed continuous functions

of the coordinates throughout the body, so also will be the

direction-cosines of the Principal Axes at each point, given by
equations (29) of § 79, or by equations (22) of § 163. Hence if

we draw the principal axis P£ at any point P, corresponding to

the continuous elongation e
x
and the continuous normal stress JS\,

and if an elementary length PP' be taken along Pg, and the

corresponding principal axis P'£' be drawn at P', the change in

direction from Pg to P'f will be a small quantity of the same
order of dimensions as the elementary length PP'. If this process

be continued we get a broken line ppp'P'"
t
composed

of elements PP', P'P'' , each of which coincides with the

principal axis for e
x
and JS\ at one of its extremities.

Proceeding to the limit, in which the lengths of these elements
are indefinitely reduced, we have a curve such that the tangent
to it at any point P is the principal axis Pg for e

x
and N

1
at that

point. It is thus possible to draw a system of continuous curves

in the body enveloping the principal axis P£ at every point
through which they pass.

The differential equations of this system are

edx + s
3
dy + s

2
dz s

s
dx +fdy + s

x
dz s

2
dx + sxdy + gdz \

dx dy dz ~ l

or I (4<

Pdx + Udy + Tdz Udx+Qdy -f Sdz Tdx + Sdy + lidz

dx dy dz ~ l

where of course for e
x
and N

x
are to be substituted the proper

functions of x, y, z.

Since e
x
is a root of equation (28) § 79, and iV

2
of equation (21)

§ 163, only two equations of each set are independent.
We get a second system of curves enveloping all the principal

axes Prj, corresponding to e
2
and N

2 , at the points through which
they pass, and a third system everywhere enveloping Pf.

It is obvious that these three systems of curves cut everywhere
orthogonally ; and that the strain at each point consists of an
elongation of each of the three curves which pass through it (with
or without rotation), while the stress consists of a normal traction
across each of the three elementary plane areas which can be drawn
through the point to touch two of the curves.

These curves are called Lines of Stress.
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Fig. 19.

tangle

ipon

Lei m take two consecutive (-lines, and also two consecutive

y-lines which intersect the former ; these four curves will enclose

mentary 6gure which is ultimately a plane rectangle. If

now we draw the
j

through every point of the perimeter

of th:- we -hall form i

lied a Tube of
Stre

The normal section <>f the tube at

any point Lb an approximately plane
bounded by eonsecnti

ml <; system-,

inposeil of approxill

bounded by the edges

tabe and by itive

corvee of th< m or <•!' t-

in.

ss acros i >n of

tin elementary ffm of the ;

bound, -i wholly in

th- directioi]

str 388 across any elem
(tl 3 tube of stress) i> wholly norma]

'it.

It ta thus "h\ ioofl that the body
m; y be supposed divided in ti

di en 1 into syst* i ;rvi-

111 i&r fibres, which trail-mil

igh the body in the din

th ir length, while khe action

ad scent E wholly

n< inal t mmon -urface.

\YY shall adopt tin used to denote tin- function

tna in engineering structures, and call th.-.- tihres ZYaj when
y transmit a b when they transmit a

oat in the din ngth.

The Stress tinea which form the walls of the tubes will

ordingly be called 1 tee.

Thnfl equal dons of a
according u h e or

Ee t ti

If #,-0 we have a system of lit

U i ral adjac nt Tubea of Btreee (of the l system,

let us say) as in Figure *J<>. it is obi at any set of conter-

miious norma tubes will form adjacent elemente
of a continuous Burface, Bach meh but! ill contain a

Qoi ipl iii of the >;•< ystem of
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the f-curves, and will everywhere be cut normally by the

^-curves.

Thus we can construct three orthogonal systems of surfaces

throughout the body, such that

(i.) The curves of intersection of the three surfaces which

pass through any point P are the Lines of Stress at P, and there-

fore have for their tangents the principal axes of the strain

PI Prj, Pt
(ii.) The tangent planes to the three surfaces at P are the

principal planes of the strain.

(Hi.) Each of the elements of volume (ultimately rectangular

parallelepipeds) into which the body is divided by consecutive

Fig. 20.

surfaces of the three systems, is subjected only to elongations in

the directions of its edges (with or without rotation) and suffers

no shear whatever (consequently remaining rectangular).

These surfaces may be called the Principal Surfaces of the

Strain or of the Stress. We shall return to them in the next
Chapter.

If one of the principal stresses vanishes, each of the

system of principal surfaces which is cut orthogonally by
the lines of zero stress envelopes the Plane of the Stress (§

175) at every point through which it passes. The differential
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equation of this system is therefore, by equations (66) and

184,

Jp . dx + Jq.dy + Jx . dz = Cf

dx dy dz V (45)
or — 0'

s t u

and those of the lines of zero stress ii

n p mi x r

zdx= t

When ft the principal iteesses vanish
(§J 186, 186) only

principal axis at each point Kfl determinate. Thus we have

,»n!\ terminate system of nations
' and (77. i L86 namely,

dy _
s/' * (46)

I &U=Tdy = I'dzj

an. 00 ; terminate system of principal nirfaeeB, given by

J~Pdx + s/Qdy+ s/7idz-Q\

dz J (46fl)
or

In this oast terns whatevei of sorfaees which cut

th< *e an.l each other orthogonally may be takm -h, r two
sy terns of principal surfaces, ami then curves of int. i-rctimi

wi li t! initiate system will
[

lines of

Zei -

•

'

I;. Unei i l are

sti light lines, an 1 t orthogonal

of mrallel planes.

E17.] In terms of the Component Strains. Bahstituting
for the com po- ss.-s in equations •'!> of I 14- then values

(85 ) in is, we get for the equations

(uilibriumOf

Ze

( ) ( i

'

jdg de\ /da dc\ _
( ) ( • sj+^-o
/ \

}db da\ _da

(47)
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The equations of motion (4) of § 143 similarly become

[217.

x^ / J^e df\ (db da\ Im(m + n)^ + (m - »)^ +^j + ufe + ^j + rf* -w) =

...(48)

Lastly, the boundary conditions (5) of § 144 take the form

X[(m + n)e + (m - n)(jf+ </)] + \mc + vnb = F\

Xnc + /j.[(m + n)f+ (m - n)(g + e)] + una = G> (49)

Xnb + \xna + v[(m + n)g + (m - n)(e +/)] = II)

where F, G, H are the components of surface traction, and (A, jul, v)

the direction-cosines of the outward normal.

218.] In terms of the Displacements. Substituting for

the component strains in these equations their values from
equations (59) of § 123, we get for the equations of equilibrium

.. .d2u / d2v d2w\ d /dv du\

d /du dw
+ n~-( — + \ + PX = 0,

dz\dz dx

etc., etc.

Rearranging the order of the terms, these equations become

d (du dv dw\

d (du dv dw\ _ „ *

9/ch* dv dw\ a _ A

(50)

or, since
Bit dv dw
d^ + dy

+
dz'

.(35)

m— + nV2» + Pr=0V. (51)

3A
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may at once deduce fche equations of motion

A
A - i<) =

) =0

A
Z - >r) =

.(52)

It is equal by a slightly different transformation, to

equations into Lames form

mponenl It' we substitute

for tl
1 23, this form is

•

- be Identical wii

T ie boundary condii

_n,
C )] ( )

I ) [ ( )]

)

( ) \ )

+ ,{ ( )] ",

n £fo

21! I W*l!
| \ ined eqi ttion in the

Bpati' n^ <
-_f i \ • 1 1 in < "lisij it. r III. Tli.^ nlatimis liow-

jfcr li iv. iLssimird in tli« ].)• .lit ( liapter,

in ;-;' 1!M mall total

mall amouni of work

k
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We now propose to show, by an application of the principle

of Virtual Velocities which is strictly the converse of that of

§§ 194, 195, that, assuming the expression (34) for the Potential

Energy per unit volume, the equations of motion and equilibrium

(47, 48, 49) can be immediately deduced.

Introducing the symbol m into (34) we have

2 V=(m - ?i)A2 + 2?i(e2 +f2 + cf) + n(a2 + b2 + c2 ).

Thus if W be the total Potential Energy of the Strain

2 W=fff{(m - n)A2 + 2n(e2 +f2 + g
2
) + n(a2 + b2 + &)}dxdydz. . .(54)

by equation (12), § 196.

We shall consider the most general case, in which motion is

taking place, for the case of statical equilibrium can always bd
deduced from it by making all the velocities and accelerations

zero.

The kinetic energy of the motion is then

^ =jyy^p^2

+

^ + vpwxtyd*-

Let us now suppose that the Applied Forces and Surface

Tractions are allowed to do work on the body by producing a

very small variation of the strain.

Let Su, Sv, Sw be the consequent small increments of the dis-

placements of any point (x, y, z), in the body or on its surface,

from its natural position. These may be supposed quite arbitrary

and independent (but each must be a continuous function of t"

coordinates).

Let Se, Sf, Sg}
Sa, Sb, Sc, SW and S^ be the correspondiil

small increments in the strain-components, and in the potential

and kinetic energies. From the principle of Conservation of

Energy we know that the work done on the body must be eq

to the increment SW + S^L of its total energy.

Now 81& -/y/pO l ^u + v&v + w8w)dxdydz (

as in § 195.

And the work clone by external forces is, as before,

fffP(X8u + Y8v + Z8w)dxdydz -h/f(F8u + G8v + HSw)dS. . . . .(5(

Since this is equal to S^L+ SW, we get from (55) and (56)

8W=fffp{(X - u)8u + (V- v)8v + (Z-w)8w}dxdydz

+ff{F8u+G8v + I18w)dS (57

But, from (54),

8W =
Jf//{(m

- n)A8A + 2n(e8e +/8f+ g8g)

+ n(a8a + b8b + c8c)}dxdydz,

7

:
ial

of

:
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in equations 7 of § 104,

. etc.

6a-
J

Tlr

' IJJ (
)

I ) I

( ) I

dxdyd*

IJJ \

" ,A -

I

.a
+ ncgjht + [(in ,! - 9

dxdydz

Intc prating bj 194,

-

IJJ
j

c
(fl&).8»

|
£fartVrf2

//

///
'

na) . Sic . dxdydz

is

111
'

• ,>
^

,/.,y/V ,/;.

Rc.i ran

8 If* // .
'As

+Jj
dS

Jff\ '

'''W'"^

//T
1

A , >/|
J

>.</."//,,/:... (58)
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Equating this to (57) we get

y//{A[(m - ?j)A + 2ne] + \mc + vnb - F}8u . dS

+j/f{\nc + fi[(m - w)A + 2nf] + vna - G}8v . dS

+Jj{\nb + fina + v[(m - ?i)A + 2m/] - H)§io . d$

- 11I I ^"".[(Wi - n)A + 2we] + ~ (nc) + ^z(ub) + p(X - u) ! Sm . dxdydz

JJJ | 9^nc )
+
9v/K'

/l- ™)A + 2™/] +^M + P(^- ») }
^ • <&%<&

-/// \ ~r(nb) + ^r(ft«) + ^[(OT ~~ n)^ + 2w^] + /)(if - it?) rSw . dxdydz

= 0.

This then is the condition to be satisfied in any small arbitrary

variation of the strain. Since 8u, Sv, Siv are independent as well

as arbitrary, each of the double and triple integrals must vanish
separately for all values that they may assume. We must there-

fore have identically

A[(m - n)A + 2ne\ + fine + vnb - F= if\

Xnc + fi[(m - w)A + 2nf] + vna - G = -

Xnb + fina + v[(m - n)A + 2ny] - H= OJ

at all points of the surface, and

^[(m - w)A + 2ne] + ~r<nc) + ^(nb) + p(X - u)-

^Lnc) + gdX™ - ™)A + 2n/] +^M + p(F- v) =

o

"~\ <~\ <-\

throughout the interior of the body.

For the case of equilibrium we have only to put n = ft =w= 0,

whence

(59)

.(BO)

dx
[(m - u)A + 2ne] + ^-(nc) + ^(ub) + PX=

7S 7\
-~\

dx^ + 3^TO " ? ')A + 2^ + ^(wa
)
+ *Y=°

*~\ -~i -pi

§£(»*) + §»,(««) + 3-[('» - «)A + 2»</] + ?Z=

(01)

If m and n be treated as constants, equations (59) (GO) (61)

are obviously identical with (49) (48) (47) above ; and by substi-

tution from (32) or (40) they are easily reduced to (5) (4) (3) of

the last Chapter.
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•

]
Heterogeneous Isotropy. The extremely general

method by which the equations <>f the last Article were obtained,

by the assumption only thai the Potential Energy per unit
volume of an isotropic solid was of the form (3-4) with only two

endent coefficients, enables us, however, to interpret them in

a more general light. It i- easy to imagine a heterogeneous solid,

such that every elementary portion <»!' it is strictly isotropic—and
[uently possesses only two independent elastic moduli

—

while the values of these moduli-—(say the Rigidity and the
Bulk-modulus; vary continuously tV. >ne element to another

The quantities /< an. I /..with their derivatives m,£,<r, will
l-.- functions of ition in the body of the element
lered, though uoi of the -train t<> which it is soojected.

Eqi will thm represent the conditions of

motion- ox equilibrium, not only for a homogeneously isotropic

fae .
i.ut also Ior any heterogeneously

-
. m whicl ontinuous function- of

(*>y

221.] Absolute Moduli, Weight Moduli, Length Moduli.
Tie moduli /.\ n, 7, L.-in like all other

8t eases, measun 1 l-\ applied per unit area. The
ir merical measure of a modulus and it- physical dimensions

tr srefore depend both on the unit of length and the unit of force

w iich w •

({.) I force is the one most com-

di ,n ]\
;

,i> Bystem modulus represents the uh ight

tl it must be applied produce unit -train of the

C< Tesponding type, Thus tl..- moduli ma; en in pounds

oj ton-
]

rably in grammes per square

c» itimel

(i,\, Sh , J] the weight of a gramme is simply

tl , f, rth on a given moss known as a

gi limn.-, the gravitation d roe, and therefore al

ti • moduli. \ in point to point of the earth's surface,

w iich t},, l.ndy t nr-c docs not, hi

bi lex • t<» make these - silable in all coun-

tr Qg 1
be reduced to abaolwU measure, which

ice thQ absulut.- an died in tli.- British system the

: , n ,l i n tl,.- u tl,.- dyne, is that force whicl,

>, niu< init acceleration in the unit mass) i- done by

dtiplyin ti..n measure by the numerical value of

•celeration produced by gravity at the spot where the

Bach modulus will then represent the number of absolute

„ its . applied to the unit of area :— ay tin- number
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of poimdals per square inch, or of dynes per square centimetre.

It should be mentioned, however, that the discrepancies in our
experimental data—due to variation of material, etc.—far more
than cover the small variations of gravity. Rules for reducing
stresses and moduli from one system to another will be given
with the tables at the end of Appendix IV., beloiv.

(Hi.) A very convenient method of measuring the moduli is

to express them in terms of the length of a bar of the material, of

unit section, whose weight is equal to the force per unit area that

is to be applied. This, like (i.), is a local measure.
When the moduli are expressed in this system they are called

Length-moduli, and their numerical measures are called the

lengths of the moduli.

Thus if k, k denote the weight-modulus and length-modulus
of a given material, expressed in the C.G.S. system of units, a
force equal to the weight of h grammes, or to the weight of a bar
of the material one square centimetre in section and k centimetres
long, distributed uniformly over each square centimetre of the

surface of any body of the same substance, will produce in it the

unit of cubical compression. And similarly for the other moduli.

Thus k = pk, etc., where p is the density of the body in

grammes per cubic centimetre.

222.] Resilience. Strength. Tenacity. Modulus of
Rupture. When a given elastic body is brought to a given state

of strain, and then set free, the work which it is able to do in

virtue of its elasticity, in returning to its natural state, is called

the Resilience of the given body for the given strain.

This we know (§ 31) to be equal to the work done on the
body in straining it, or to its potential energy in the given state

of strain.

When we speak simply of the Resilience of a material for a
given type of strain, we mean its potential energy per unit
volume when strained to its elastic limit (§§ 12-14) for that

particular type.

For a brittle substance (§ 13) with comparatively narrow limits

of elasticity, within which the proportional law of § 197 may be
taken as very approximately true (see Appendix IV., below), the
resilience will be given at once by substituting in any of the
expressions obtained for V in this Chapter the limiting values of

the strain-components, any increase of which would produce
rupture or marked permanent set.

For example if E, A represents the limits of elongation and
shear for a brittle isotropic solid, its resilience for elongation is

|(w + n)E\

and its resilience for shear is
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The limits of safety for linear elongation and contraction, as
w. •!

I
as for cubical dilatation and compression are generally

different

Thus the ai| shear being a purely geometrical conven-
tion, devoid of meaning) a natural is. .tropic solid has five

principal resUien

The n I as energy per unit
una This might be expressed in terms of an absolute unit

centimetre, or foot-poundals per cubic foot\
but in pra ion measure of energy
adopted, the unit of which is equal to the work done in raising

the unit of mass through the unii -.it v.

Thus the resilience is usually expressed m gramme-centimetres
per cubic centimetre or u tinds ox root-tons per cubic

There is also I length ilience, defined as the

ight through which i of the body must be raised to do
work i ilience per unit

volume.

Thus if V be the i iven material for a given
t\ f strain iibic-centimetre, and
"0

. 7. it, h, q be the
•

i Lull and length moduli on the <
'.<

; \m :

(62)

w iu grammes pez cubic centi-

I ni
* we should have, if tl e

pi >p law li»-ld up rapture,

f<

The Strength Serial I sn type of strain is

ired by the vbich will produce tne limiting or

type, Thus we nave an Elastic Strength,

• limit oi nd an Ultimate

point of rupture, for each type of

mil

The Tenacity is the nltii ngth for elongation -that

\n which produces the extreme
• :r_'ati..u E. It* tlir prnpurtional law held up to thi> point,

ould be •//•.'. iu grams eenti-

The Length-modulus of rupture is the tenacity e

[
a-- a length, On f position this would be qE centi-

Apprudix l\ I

11
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Possible Discontinuity of Strain and Stress.

223.] Limitations. We have hitherto confined ourselves to

the consideration of those cases of strain in which not only the

displacements but also the strain-components themselves (§ 52)

are perfectly continuous functions of position throughout the

whole body. And in accordance with this limitation the Applied

Forces and Surface Tractions (§ 136) and consequently also the

Stress (§ 137) have also invariably been taken as continuous,

and therefore (§ 197) suitable to maintain such a strain.

Discontinuity in the Applied Forces never occurs in actual

structures to any important extent, but the consideration of

discontinuous Surface Tractions and Pressures is of the utmost
practical importance, since, for obvious reasons, the component
parts of a complicated structure must necessarily bear upon one

another by definite and circumscribed portions of their bounding
surfaces.

Let us now therefore consider how far our theory, as at

present developed, can take account of such discontinuity. We
must first investigate the nature and extent of the discontinuity

(if any) permissible in the displacements and the components of

strain and stress, and hence deduce the characteristics of the

discontinuous systems of external forces with which we are able

to deal.

224.] The component displacements. To begin with,

we may observe that, even though in passing from one region of

the body to another the displacements may become discontinuous

in form, they cannot in any case present discontinuity of magni-
tude. For if it were otherwise, two points immediately in

contact with the separating surface (and practically coincident

with one another in the natural state) would suffer displacements

differing by quantities of a higher order of magnitude than their

initial distance, and rupture of the body would take place over

portions or the whole of the surface of discontinuity.

If then with the notation of § 51 we suppose the component
displacements in any one region of the body given by

v
i
= Xi(*> y, z) I,

and in any contiguous region by

u
2
= cj)

2
(oc, y, z)}

w, = $2
{x, y, z)j
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we must ha\ wry point <>i" the Burface of discontinuity,

le. The distribution ol displacement

i—° J -o J

is not permissible, unless the boundary between the two regions

the plane < =fi.

J
The component strains. Let P be any point

:> in tli.- -ii! discontinuity, and let l\ and /' be
in the norma] throu d either side ol the Burxace,

an 1 let - be the indefJnH 11 distance of either from /'.

Then it' (A, u. »> be the direction-cosines of the normal,

ra&oned positive in tl PPP the projections upon the

a> ranee <»t* th< j distance P ,/' in the natural

-At}

aponent displacement of P

I(**»

) i )

-1 those of P
t
are—Mf.,t».t) ;i ).

eta,

Ii is of (j>v
tj>, and their derivatives

n i ose which tl that tf>, = </»,.,
r,r -

h'. trained L I these projections be denoted

{f ) -GMBH***)]
[ ( I ]

similar expri
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Comparing these with §§ 52-54, we see that the elongation of

any elementary straight line which crosses the surface of discon-

tinuity is simply to be taken as the sum of the elongations of the

two portions into which it is divided by the surface ; and if the

component displacements satisfy the conditions of § 52, each in its

own region and up to its bounding surface,—that is to say : if

(f)v Xj, V'j, and all their derivatives be finite, infinitely small, or

zero for all points whose displacements they represent, and also

0a» Xa» V^—the strain- components at every point of the body,
including those which lie on the surfaces of discontinuity, will,

as before, depend entirely on the first derivatives of these

functions, and the form of our theory of small strains will not be
altered.

It must be particularly observed that the conditions of § 52

are only imposed on each strain-component-function within and
up to the boundaries of its own region, and (so far as the con-

ditions of strain are concerned) no relations need be assumed
between the values which any two distinct forms take at the

dividing surface.

In other words : while the displacements may be discontinuous

in form from one region of the body to another, but must be
continuous in value throughout the whole body; the strain-

components admit of discontinuity both of form and value from
one region to another, provided always that the discontinuities of

value only occur coincidently with the discontinuities of form.

226.] The Stress-Components. Since the stress across

any element of a surface of strain-discontinuity must, like that

across any other surface in the body, be a purely mutual action

between the two portions of matter immediately in contact with
it on either side, it is obvious that even if the stress becomes
discontinuous as to its form in crossing the surface, it must be to

a certain extent continuous in value. For if we take an element
dS of the surface (practically coinciding with an element of the

tangent plane at its centre) and form two discs of elementary
thickness, bounded by two elementary plane areas parallel to dS
on either side, the theorem of § 137 must apply rigorously to each

of these discs, so that the components of the stresses across their

further faces can only differ by quantities of the same order of

magnitude as the thickness of the two discs combined.
That is, if we draw a small plane area very close to a surface

of discontinuity, and parallel to the tangent plane at its nearest

point, the components of the stress across this area will preserve

continuity of value while the area moves parallel to itself across

the surface of discontinuity.

The analytical conditions can easily be deduced from § 144.

Let ABC in Figure 9 represent an element of the surface of dis-
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continuity separating region [.) from region (1L). Let be any
poini in the first region. Complete the rectangular
parallelepiped of which ABC m a diagonal piano, and let 0'

opposite angle in region (II.)

I will have fox its components I\,QV RV SV TV Uv
eontmnouB fonctions of (./-,. v.. :,) throughout region (I.) ; and
similarly the components 1'

. V ft . N. T .
I' of the stress at 0'

will be iuncti onturaous thronghont region (II.)

[f the signs of (X be taken as in § 144 they will

the dii - of the norma] drawn towards
in that Article, by diminishing

indefinitely the distant bat the components, in the positive

i 1 BC by the

Iron OA />>r must

I

1

\i a similarly, the components, in the directions of the

ax a, <>t' r
; across ABC by the tetrahedron OABC

on the tetrahedron (/A B( ' mn

Si ice the

I

S

• these itnases must U- identically imjiiiiI and Opposite, the

to be satisfied at i

o

°J

It* i Id throaghout, and ii* the

lv I where homogeneoufl and isotropic, the relations

rich mnsi b rarface of

(63)

a[(*

tinuity

HI

e, with the i

!/, = «» r, = r» ir, = u\. (65)

n the component displae are the conditions to be

in the body at which the

and in form.
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227.] The External Forces. Our next object is to discover

the systems of discontinuous Applied Forces and Surface Trac-

tions which are capable of producing strains which satisfy these

conditions. For this purpose we shall employ the method of

§219.
We shall suppose for simplicity that there is only one surface

of discontinuity in the body, and to make this assumption as

general as possible we shall suppose that it cuts the bounding
surface of the body.

Let us call the two portions into which the volume of the

body may thus be supposed divided regions (I.) and (II.), and
let the suffixes 1 and 2 be used to distinguish all quantities

belonging to them.

Let 2j, 2., be the portions of the external surface of the body
belonging to the two regions, and Su the surface of discon-

tinuity. We shall write the direction-cosines of the normal to

the latter at any point (X
12 , /jl

12 , v
l2)

when drawn towards (II.)

and (\2] , jjl.,v v
2l )

when drawn towards (I.), so that we have
identically

A12 + A21
= /x12 + /% = vX2 + k>i = (66)

If the body be isotropic and homogeneous, its total potential

energy is W, where

2 W=fff{(m - ?i)V + 2*(*i
2 Vi2 + 9i

2
) + n{af + bf + c^)}dx

x
dVld^

+fff{{™
~ n)^ + 2n(e./ +f* + ff2

2
) + rc« + b£ + c

2
2)}dx

2
d?hdz.2

and its kinetic energy (if in motion) is % where

2% =fjyp(uf +V + w^dx^dy^

+ ffff4fii + i>
2
2 + w2

2)dx.
2
dt/

2
dz.

2
.

Let us now suppose, as in § 219, that small arbitrary

variations Su, Sv, Sw of the displacements are produced through-
out the body. Then the work done by the external forces will

be

JJfp{Xx8u x + Yx8vx +Zl8w1)dxldyl
dz

x

+JjJp(X28u2 + Y28v2 + Z28w2)dx2dy2dz,

+ff(F1
8u

l + GM +H18w1)cT21

+ff(F28u2 + G28v2 + H28w2)dX2 .

[It is hardly necessary to remark that no work can be done
on the body as a whole by stress across 2]lV ]



STIAL ENEUGY OF STRAIN. 157

The Increment in the kinetic energy Lb

S /// th^dy^Zy

+ fff*

Thus the increment of the potential energy must be

+ //fi> 3 '

'j + (^ -
'V '// j- J -

1

tffijr/kki
•

But w.- also have, on substituting the values of the strain-

componei

rrr i .,£&*, , 3$u>,

" Ml \

JJJ (" -*•--.]
,.;

<•": ft*

Let ti- first int. -rat.- by parts tin- first line of each of these

IW'v

tllll

Ill I

I

/'/'
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Treating each line in the same way, the integral to be taken
over 2

]2
is found to be

+ {^2\[(m " ?l)^2 + 2^e
2] + /%nc

2 + v
21
nc

2
}fof

2

+ { A.
12
nc

2
+ f48[(m - w)A

x
+ 2w/*j] + v^na^St^

+ {

\

2l
nc

2 + fi2l
[(m - n)A

2
+ 2n/!J + p

21
wa

2
}8t>

2

+ {
\
12

rib
1 + f42wai + KuKm " n)^i + 2rj^J J

StOj

+ (
A2i™62 + Pa^+ 'aK*1 - W)

A
2 + 2n92]} 8w2]d^12 ;

and in virtue of equations (64), (65), (06) this vanishes identically.

We have then, finally,

8 1 ^ =ff\ {
A
i[(
w " ™)Ai + 2nej] + /*1

nc
1
+ v

1
n6

1
}8?<

1

+ { AjW&j + /HjWffj + i'j[(m - n)\ + 2ng^\}8w
1
It/Sj

+ //"
{ ^iK** ~ n

)
A2 f" 2rie

2] + /^no, + v
2
nb

2 ) 8»2

+ { A2
nc

2
+ /x

2
[(m - n)A

2
+ 2ri/*

2]
+ v

2
na

2
}8v

2

+ { A2
726

2
+ fi2

na
2
+ v

2
[(ra - n)\ + 2rc#

2]} 8t02Jd22

j^[ IA[(m ' wA

+

2weJ +4 (7u<i)

+

4 {nbi)
1
H

+ U-W + ^(™i) + ~-[(

(n&3) + __(na2) + ^- [(m - ra)A
2
+ 2/v#

2] [
ow

2 ylxfy2dz2
> ^^2 2 ^ J3xv

Equating this to (67), we get, since Su, Sv, &W are arbitrary

and independent, throughout region (I.),

•~s *~\ -p,

§^(»&i) + 9~(««i) + ^[(*« - ?*A + 2^/J + p(Z
l
- ib

y )
=-



227.] ENT1 ENERGY OF STRAIN. L59

similar sel of equations; over the por-
tion 01 the externa] surface belonging to region (I.)

V^ + ^no, + *,[(«! - a)Aj + 2«srJ - #J
(69)

and a similar f that portion of the external
surface which belong II.)

It i from tli«- two groups «»t* equations (08) that the
Applied Forces must be continuous in form and value throughout

i and stress, but that they are not
a here they become

itinuous in form.

Similar upe of equations (G9) it appears

such portion

1 surfao n of the boundary of a n

. are at liberty to become discon-

tinuous in val Form on
\

a curve in which
the externa] surfs interna] surface of

discontinuity.

228.] Summa: olid mav be

sup*' listributi the /orw
of which as n i binuous throughout
dc init >mes discontinuous at the

8ii faces separating these regi<»n^. thi e of the force

bt mz and either continuous

provided that

tli forms nf th<- elationa to

th foi lut&ons of

e<| lati [iving u continuous

fu icti«>n- i. an. I s;ii isfj

in • equations of Form-

<li oontmui
The distrifa as musi elated to

th diMii

nu y ; bounding
su face, when dnee thi Surface Traction cannol be

an rwhere the cur.

; in v hick I ' i

;

tn suri I

be either continuous or

fir itel; in value

The body I tern of Surface Trac-

ti( a t> in form over definit- of the

bciin«l- and eitl finitely discontinuous

in val provided thai solution - of th •
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equations deduced by making X= Y=Z=0 in equations (51) or

(52) can be obtained which will give u, v, iv as continuous func-

tions of the coordinates, within regions separated by surfaces

which meet the bounding surface of the body in the curves of
traction-discontinuity, and will satisfy equations (65) and (64)
at every point of each such surface, and equations (53) at all

points of the bounding surface of the body.

Theoretically the latter problem always admits of solution.

229.] Example of given discontinuous strain. These results

will be made much more intelligible by a simple illustration of

the converse problem :—given a distribution of strain, discon-

tinuous in form but satisfying the conditions (65) and (64) at

every point of the surfaces of discontinuity, to find the distribu-

tion of discontinuous Force and Surface Traction which will

maintain the strain. This problem is always determinate (§ 146).

Let us then consider the equilibrium of a beam of isotropic

material, subjected to the strain proposed in the example at the

end of § 224.

We will suppose the beam of rectangular form, and of length

2/3, the origin being taken at the centre of one of its ends, and
the axis of x in the direction of its length.

Region (I.) will extend from the plane of yz (the nearer end)

to the plane x = /3 (in the middle of the beam); region (II.) com-
prising the further half.

The component displacements in the two regions are

u
2
=

v d
.^(i+J)!

which satisfy equations (65) at all points of the surface of dis-

continuity of form, x = /3.

The component strains are

ei=fi=yi = a
i = h

i
= Q

c
i
= c

X
C
2 = C

p
which satisfy equations (64).

The body being in equilibrium, the distribution of Applied
Force in the two regions is, from equations (47).
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The force is therefore discontinuous in value as well as in
v. ivwhere in region (I.) and constant in magni-

and direction everywhere in region (II.).

If the I / and : be taken perpendicular to the sides of

the beam, we have from equations (49):

—

On the side> perpendicular to Oy (0, ±1, 0)

f
x

= + nc, <,\ = U, //j = )

on the sidea perpendicular to Oz (0,0, ±1)

* fli-0)

a the ends (±1,0

0, 6r

2
= 2tu?,

hat on those sides (perpendicular to Oy) on
whish thi liscontinu form, this discon-

tini it;. .»nlv at s in which the sides are cut by the

pia le of strain =»/?.

In
• continuous fa value over the

wh »le of each Bide.

It may be well t<> p tliat tl Traction neces-

• le of the beam

to another. Tin nsequenee of the discontinuity of the

di ection- and must occui wherever there
is discontinuity in the eurvcUun uj >!• wrfiiee, even when

—

oi rather, especially when the -train is perfectly continuous

throughout

Figure 21 represents on a gi aggerated scale the
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straining of the beam, which is everywhere in two dimensions, in

planes parallel to xy.

The system of planes in the body initially parallel to zx are

strained into cylindrical surfaces with generators parallel to Oz
each consisting of two portions

—

(i.) A plane in region (I.) meeting the nearer end of the beam
(plane of yz) in the same straight line as before the strain.

(ii.) A parabolic cylinder in region (II.), touching (i.) along
the generator in which it is cut by the plane of discontinuity #=/
and having the plane of yz for its axial plane.

The dotted lines represent the state of things before th

strain.

APPENDIX III.

Hooke s Law.

In 1676 Robert Hooke* published his Description of
Helioscopes, Sc, on page 31 of which appeared the following
paragraph :

—

"3. The true Theory of Elasticity or Springiness, and a

particular Explication thereof in several Subjects in which it

is to be found: And the ivay of computing the velocity of
Bodies moved by them,, ceiiinosssttuu."

In a second treatise, published in 1 678, (Lectures de Potentia
Restitutiva, or of Sparing, p. [1]), the anagram was explained as

follows :

—

" About two years since I printed this Theory in an Anagram
at the end of my Book of the Descriptions of Helioscopes, viz.,

ceiiinosssttuu, id est, Ut tensio sic vis; That is, The Power of

any Spring is in the same proportion with the tension thereof

:

That is, if one power stretch or bend it one space, two will bend
it two, and three will bend it three, and so forward. Now as

the Theory is very short, so the way of trying it is very easie."

His proof of his theory is purely experimental, and is based
upon the following examples :—a spiral spring drawn out, a

watch spring made to coil or uncoil, a long wire suspended verti-

cally and stretched, and a wooden beam fixed (at one end) in a

horizontal position, and loaded.

It is obvious that by Tensio Hooke meant extension or

distortion (i.e. Strain) and by Vis the external force or couple

producing the strain.

* For these quotations from Hooke I am indebted to Professor Tait's

Properties of Matter, Ch. XL, Art. 221.
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It wa> not till nearly a century ami a half after Hooke's time
came to be clearly defined in

in which we now employ it, although in 1807 Young
ral Phil foreshadowed the modern and

• •nil interpretation of Hooke's results by a series of

investigations on the value of the modulus known by his name
i which he defined, for a given material, as the ratio of

employed t»> elongate or compress a rod of unit section

gation or ition produced by it.

[n all tl adduced by Hooke, however, (as we shall

pter VUL , the Si -imply proportional* (for small

strain^ to the external fon r couple, and consequently his

anagram may justly be bri is the first enunciation of the

grandly simple law I I

Stress is proportional to Strain,

which has always been associated with hia name.

A ! Including Y<»unu\ Coulomb, Wert-
I rchhoff, Hodgkinson, Kupffer, etc., have repeated

an- varied Hooke rimenta during two centuries, with the

res ilt thai the law has been firmly established as an experi-

ments rious moduli ascertained for a great

mi ul , Apprmlix IV., I>< low).

It wai do( till 1821 tl Detracted, <>n the basis of

R icovitcha I the first mathematical theory of

el- itic afining I W called (at the

(tropic solids. Navier, followed by

P< isson. and obtained expressiona for the

in ennoleciilai which, as a i yeonsecraence

of Boseovitch >
I mall -trains t«> linear

fv icti lerivatives of the relative displacements of

tl • molecules.

Daring tl,. ichy »ve a definition of Stress

d ^89i ible to the hypothesis of

c. itinuov l the equations of equili-

b ium, and of resolution and composition of stress (ffl
141-144)

• bat hypol
In 188? Oauchy finally rejected the Inconsistent analysis of

> ivier and l in this and the following years he

d v. - molecular theory to ita farthest limit.

Thi tor the mm of I uupended wire
/' the longitudinal stress, e the

e ] ^ng;,, .1 lectionaJ inu of the wire

;

tl en, v 13 neglecting ai insignificant the weight of

tl e wii
If .17'; /'

M' qji I
•_'-. <j.\ . ft, ultiniat.lv.
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In the next year he showed how the stress per unit area

(§ 131) across any surface in the body might be deduced from the

intermolecular stresses (§ 28) between the two systems of mole-

cules separated by it. Applying this method to the results of

his molecular theory he obtained for P, Q, R, S, T, U—in the

case of a homogeneous crystal with three orthogonal planes of

symmetry—formulae identical in form with those of § 204, but

without any necessary relation between the pairs of coefficients

k
12
and kn , etc.

Substituting these values in the equations of equilibrium of

(§ 142), he showed that they became identical in form with those

deduced directly from the molecular theory.

Hooke's law was thus established, for crystalline and isotropic

solids, as a necessary consequence of the molecular hypothesis,

and it only remained to discover an independent proof that

would be applicable to a purely mathematical method of treating

the subject, independently of all hypotheses as to the inter-

molecular reactions.

Cauchy himself, followed by Lame and (for many years)

Barre de St. Venant, being convinced that every mathematical

theory of elasticity must ultimately rest upon his development
of Boscovitch's hypothesis, made no attempt at such independent

proof, but felt himself justified (with the support of the experi-

mental law) in assuming, for the most general case possible,

equations of the form of (18) § 198 (leaving however the pairs

of coefficients k
12 , k21 , etc., independent).

In 1837 George Green applied his grand conception of the

potential to the theory of elasticity, which he treated from a

purely mathematical point of view. He showed that the poten-

tial energy of the strain, as well as the stress components, must
be functions simply of the components of the actually existing

strain.

He then assumed that V (§ 196) could be developed in a

complete series of homogeneous functions of the strain com-
ponents, viz.,

v=v0+ v1+ v2+ r3+
It was then easy to show that V and V

x
must be zero

(energy and stress being measured from the natural state), and
that in consequence, when strain was indefinitely reduced,

whence the linearity of the stress components follows at once.

It must be observed that Green advanced no theoretical

grounds for assuming the presence of the term Va in the ex-

pansion of V.

In 1845 however Stokes wrote as follows :

—

" The capability which solids possess of being put into a state
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chronous vibration" [e.<j., the fact that a tuning fork main-
tain- its pitcli unaltered daring the whole time that its note is

•ndible] "shews that the pressures" [stresses] "called into action
all displacement* relative displacements of the parts

of bodies, or strains] "depend on homogeneous functions of those
: one dimension.

•

1 shall suppose in according to the general principle
of the superposition of small quantities, that the pressures due
to different cusplacementfl arc superunposed,and consequently that

art' linear functions 01 the displacements. Since
aquares of a, ji and y" [our w] "are neglected, these

I to a unit of Burface in the natural
tnent indifferently, and a pressure which is

normal to an. aent may be regarded as
normal to tion OX tliat BUrfi

The first paragraph is an extension of the experimental proof
of Booke'fl !.'. sses, to which it had been hitherto

which exist at each instant in a body which
is passing through continuously varyii of small strain.

The second paragraph sums op toe principle of superposition

in coii leveloped m §§ 87,

Hb and 1" od appl 197. This is the first indica-

ti n of a purely i - law, capable of

ui iversaJ . of any hypothesis as to the

D in

It M-r till twnity-tv later that the import-

pee of this demon appreciated Most British

a d I ni.it 1 1
.

• i

s

KirchliMil', Clerk Maxwell and
I. mk: w

. Thomson L856" and L866), Kirchhoff

( 358), Neumann ch L862),etc- continued to relv

Oi the experimental • and Stokes, and on Greens
t cit assumption that I the strain components
v ere i. resent in tie tential energy

,

a id then I in those of the stress components. Kankine

1 >wever inclined strongly toward- a moleculai theory of his own,
> Inch he regarded m and Poisson's hypo-
t iesis. Ifeanwhile in L852 still followed Navier,
1 it in l 350 ad de Si tenant, a
- annch follower of ( nts himself in his celebrated

j emoir on the torsion of prisi ith the following:

—

I'ex] ori est proportUmnel
i ijlx i t non k des

que la premiere
;
ce k quoi il n'y

urait pourtant aucune impossibilite' mi que. uest meme
be le fameux principe ui tenOo sic vis, avance*

employe
4

par Hariotte, il y a bientot deux siecles.

. idmettons doi tout le monde que l< ions [stresses]
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sont fonctions lineaires des dilatations [elongations] et des

glissements [shears] tant qu'ils sont tres-petits, . . .
"

:

supported by a summary of Cauchy's proof.

In 1867, however, appeared the first edition of Thomson and
Tait's Natural Philosophy, in which Green's energy method and
Stokes' application of the principle of superposition were em-
ployed in combination exactly as we have adopted them in the

present treatise (§§ 196-198).

This method of demonstration is now universally recognised

by British and German mathematicians.

Barre de St. Yenant however, among whose great services to

the theory of elasticity his unceasing protest* against the assump-
tion of Green and his followers will certainly not be reckoned

the least, has never recognised it, and still declines to admit that

Hooke's law can be based upon any purely mathematical proof,

independently of a theory of intermolecular reactions.

It appears to me that the fact—on which St. Venant so

strongly insists, in showing that any theory based upon the

assumption of intermolecular forces which are functions only of

the distance must necessarily lead to Hooke's law—of the

essentially differential nature of strains and stresses affords us

a proof quite independent of any such theory.

We have chosen, with the object of simplifying our analysis

(§ 109), as our system of Strain Coordinates (§ 32) the six

orthogonal components of small strain, which by definition

vanish in one particular state of the body. This system,

admirably adapted as it is for expressing small deviations

from the natural state of the body, should be looked upon
as exhibiting the process by which the change of state is pro-

duced, rather than as defining absolutely any particular state.

For our present purpose it will be advantageous to refer the

configuration of the body to a more general system of Strain

Coordinates. Let us take the following :

* = --«, b

These do not vanish for any strain within the limits of our

theory, but are always positive ; and in the natural state

^fo^So

t = b = r I
* See his annotated edition of Navier's Legons sur M$ca?iique Appliquee,

App. V. (1864) ; his history of Hooke's law in Moigno's Legons de Mecanique

Analytique, Lecon XXII. (1868); and his annotated edition of Clebsch's

Thiorie de V*Elasticity des Corps Solides, note on § 11 (1883).
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while the components of Strain are given by the differences

* - *v 9 = 9 - D

a = a -a, 6 = b -b, c = c

Similarly with the components of Stress. P, Q, #, S, 2\ U,
the tractions due t«> -train, must be regarded as the

S between the tract: iting in the strained state

of tin- body and those present in the natural state. Acconlino-
at' authorities, the latter an- identically zero throughout
>dy, but it i t<> make the most general assumption,

ami "Mr i will not be affected

t then }J,
". £1 represent the components of the

total 3 at any point of the body in the strained state

e, f, a, a. b, c. and let il , <S , \T , l\ v be their values in
ate ; so that

Wi Is we adopt as to the nature and origin of

the mutual reactions I biguous portions of the body, it

iscbviou.s thai tnperatore being constant ami uniform) we
m: -t assume that tin \ I solely on the configuration of the

bo< y. i B definite and perfectly continuous

mil in< 1 contin I state, within the

all we know to the

co tra i nay be capable of assum-
h; either ugn, it ifl possible that they may pass through the

va lie the Mrain-e.>.".r.linatrs. But it

is iot under the assumed conditions of continuity, that

th ra ny tract inn componeni with any strain

bo rdinate which it u caneharj or vanish, for any
Va ue if any traction com-

p< lent |J Quously mereased, within the units of perfect

el stici _:«• «>i the process any strain coordinate

a e found rease «ril cannot suppose that in any
ot ier stage—however limited sine of * can decrea

e\ ;n remain stationary.

11 ponent P, we may assume a rela-

ti o nil

$ = <Mt, f. a. a. b, c),

w lere is soi la function of the independeni strain

cc 3rdii • derivative of }J as 1" any one

oi the anishea for any value of the coordinate, it

mist vanish I \—that is to say, $ must be altogether

ependent of tliat cobrdinal
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In the natural state

$o = <£(^ fo» $o> *o> b , jCo),

and by Taylor's theorem,

(b-b„)[j

...}+

Thus, substituting for the differences,

h{^>....,..|
By what has just been said, if the coefficient of the first

power of any difference vanishes, that difference does not occur

at all in the expansion of $. Hence it follows that if the co-

efficient of the first power of any strain component vanishes,

that strain component does not appear at all in the expansion

of P.

In other words, the expansion of any stress component
contains the first powers of all those strain components of which
it is a function.

Ultimately therefore, when the strain is very small, each

stress component must be a linear function of all those strain

components upon which it depends.

Thus Hooke's law is demonstrated, independently of any
hypothesis as to the origin of stress.

APPENDIX IV.

Elastic Properties of Natural Materials.

We have already indicated (§§ 12 and 13) a rough subdivision

of solid materials into the brittle, whose range of elasticity is

practically coextensive with their power of resisting rupture, and
the malleable, plastic, or ductile, capable of enduring stress which
very greatly exceeds their elastic limits, and distinguished by
their ability to acquire a permanent set under such stresses.

We now proceed to a more detailed account of the behaviour
of natural materials under stresses varying from zero to the point
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of rupture, and we shall find it convenient to subdivide the
3 into two classes, namely

—

A 1":
. which acquires a set whenever subjected to

ing a certain definite limit, characteristic of the
mat. rial ; hut whose mechanical qualities are in no way modified

by. This class, which includes the so-called "soft solids"
(such as clay and wax) as well as lead amongst the metals, has
for us an almost purely theoretical interest. We shall find that

nbly into the class of Fluids, and we shall

naturally be led t<> give under this head a fuller account of that
which, although it is manifested to a small

Hi) by all solids under small elastic strains, is in its

fuller development confined to thuds and to malleable solids

rod the limits «•!' their elasticity.

B. T) 0, the limits "i* whose <4a>ticity are extended
which produces a set. and whose hardness or

nsequence upon the greatest

* to which th« been subjected, as well as

upon the intrinsic qualities of the mat. rial. This class is by far

the mos< im and important from a practical point of

view, including as it arly all those metals that arc most

fre jiK'ntl;. . ed in struct!

\&y _ "ii which tin- following
I Mechania. Chapter XVIII.,

>** to the original memoii 11 be found. Figures
•js art* tak»-ii from the same souhr. The aceounfl <>f the behaviour

id . be . lit 1 .

.
1 1

-
1 \ elongated t<> the ]

»< »int of

ni tare, ii in - 1 2 i. - 1 -\, 25 A,

in 2\ . published in Suture,

vifo %\ I
v..l. xw I have also drawn freely from the

v. v . Moon "i I 'a the Adoption of

Bare and r ported in the Proceed-

hew • of neers, vol. IxxvL pp 70-158, Figures 24

an 2<i . from th.it report^ and ate

di i

ic Pres.se 174) whether positive or

m cubical dilatations or compressions

u . 211). This 1 »u Ik -elasticity is

li nited in I lilatation only by the tenacity (§222)
i on the side of compression is theoretically

•limit lie

fa elasticity of form < 14) u perfect for all distortions

a dub Fluids.

perl much an ahstraction

rly rigid " solid—is defined

follow i

i

:

—

1? ticitv <»f hulk (§ 14) under
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within a certain perfectly defined and usually very narrow limit,

which is characteristic of the material.

Plasticity. The utmost resistance S which a perfectly plastic

material can offer to distorting stress coincides with the limit

of its elasticity of form, and it follows from § 1 35 that it is im-

possible to maintain in the interior of such a body a shearing

stress exceeding S by however little. The excess is, in fact,

entirely unbalanced by any resistance on the part of the body,

which in consequence relieves itself by continuous change of

shape without change of volume, until— if the circumstances

permit—the maximum shearing stress is reduced to the limit S.

A perfectly plastic solid may therefore be distorted to any
extent, however great, by the continuous application of a shearing

stress exceeding S by any amount however small.

Moreover, since S is the limit of elastic resistance to distortion,

the resilience (§ 222) of the body is precisely the same as if it

were only strained to its elastic limits, and consequently the

large distortion produced by the excess of shearing stress is not

recoverable, but remains as a permanent set (§ 12) when the

stress is removed.
Flow. This continuous and permanent change of shape,

without change in the volume or density of any part, is called

Flow ; and the tendency to flow, without modification of any
mechanical property, under continuously applied and constant

distorting stress, however little in excess of a definite elastic

limit S, is called Plasticity.

Fluidity. Those substances for which S is absolutely zero,

but which nevertheless possess perfect elasticity of volume, are

called Perfect Fluids. A perfect fluid is therefore totally devoid
of rigidity (§ 210), and offers no resistance whatever to shearing

stress : and a purely hydrostatic pressure is the only form of

stress that can be maintained within it, even for an instant.

The characteristic property of perfect fluids is therefore their

tendency to flow freely under any distorting stress however
small : and this property is called Fluidity.

Solidity. Since the quantity S—which we may call the

measure of solidity—may be indefinitely small, it is obvious
that no strict line of demarcation can be drawn between fluids

and plastic solids, but that a series of the latter arranged in

descending order of solidity may be supposed to pass insensibly

into the former group. Even if the fluids and plastic solids

with which we have to deal in nature were free from viscosity

(see below), as we have hitherto supposed, the universal and
unavoidable presence of the shearing stress due to gravity would
render it difficult practically to distinguish a perfectly plastic

solid of quite conceivably small solidity from a perfect fluid of

the same density and compressibility.
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It should b -I that tlic solidity S is a Umit, and not a
Thus it is quite possible for a plastic body of very

small solidity to possess very large moduli of compression and
ty. In such the Limiting shear S/tj which the body

can sutler without flow, is of course very small

The nature of Flow will be better understood by
[forking out a simple example.

perfectly plastic material, the

solidity of which is S. be placed with its base upon a perfectly

th and rigid horizontal plate, and let another smooth and
plate be laid on the top of the cylinder and loaded until the

total weight applied is W. Let h be the initial height of the

lylinder, and A
Q the initial area of its

'<

We will assume l"<>r simplicity that it^ ends can slip freely

the plates, and that the action of gravity

;ted.

ad W will then be oniformly distributed over the

upper surl tr.-NS throughout the cylinder will be a
longitudinal pressure W A . There will be no

tudinal stress in any horizontal direction, and therefore

the principal norma] stresses will be at every point

-WJ„. .v,-.\>a

dene- it follow B on Chapter III. that at

. point I ng stress of amount "W/2A
,

t and increase the diameteT of the

DO* y.

[f W _ M will be within the

ela tie limit of th< train (wholly elastic) will

•he, with the notai

If now W ased to the value -MS. the cylinder will

to the limit of its elasticity of form, and we
sh; 11 fa

ffh ; resilience per unit volume is then by equation (48) of s 215,

/• \{(m- 8

•wl *v luction

M y -s v

i iti-.n of the cylii presented by the axial section

Ai\Cl> in It> dim are

l 88/9) I

AmA In h'S 7 )
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Now let W be increased. Since the limit of solidity has
already been reached there will be at each point a shearing stres

of amount
W/2A-S

in excess of the resistance offered, and to relieve itself from this

stress the body will begin to flow.

A

hi U.[j I i
j ] j 1

j
\ i \\\'\ \\

B'

"/--/.

^y€ti~'-\---\
A

:C
fy<-

c c Fig.22 D D'

From the symmetry of the conditions the centre of the base

will remain at rest, and if e/, e
2
', e

3
' be at any moment the additiona

elongations due to flow, we must have

TllUS e2' = €'3= -2 e
l'>

and by § 126 the equipotential surfaces will be the hyperboloid

of revolution

2£2 ==7?2 + f2 ± £2
)

0£ being vertical.

The lines of displacement (§ 127)—which in this case preserve

their form during the whole time that flow is taking place, and
are called Lines of Flow—are therefore the system of curves
satisfying the differential equations

d£ _drj _ d£

The solution is to be symmetrical as to rj and £ and therefore

the equations of the Lines of Flow are

f (rj* + C
2
) = constant \

77/f
as constant j
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Every point of the body will describe that line of flow which
3 through its initial position (see Figure 22), and this process

will continue until the maximum shearing stress at each point has
been again reduced to the limiting value S by the expansion of

•r which the constant load W is applied.

If h\ A' be the final height and sectional area, we have

SflT-SEU' I

lt=Ah I

and therefore

A' =W
2S

KM « /, 2S\
w V S)

jrlinder Lb now in the condition represented by

Since the principal stresses are on

-28, .v,-^>o,

the r< lation 43a) of j 21 5

i :) »s-

v the same as before flow began.

If t load be d the elastic recovery of the

cyl nder will be exactly that which corresponds to this elastic

Str ss. 'I will be at ion 28/g and a

coi tr.- S 7 in every horiionta] direction. Thus if (h , A")

be he form in which the body is left on removal of the load

II
-?§^i *4*B

A"-A\\ - -US q)

g(l-4«B/*>

i
/-..
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so that the cubical compression is entirely recovered, as of courg

it ought to be. The body is simply permanently deformec
without alteration of its volume, density, or solidity.

For an example of the continued flow of a plastic body undei
shearing stress exceeding S we have only to suppose the figure

reversed, and the load applied so as to transmit a tension alon^

the cylinder. IfW = 2yi S the elastic yielding of the materia

under the longitudinal traction 2S will diminish the area ove
which the load is applied to ^4 (1 — 4faS/q), and simultaneous!;

increase the maximum shearing stress to S(l + 4o-S/2).

Flow will therefore begin in the reverse direction to tha
followed under the former circumstances, and every point in the

body will retrace approximately its former course. The effect o

this flow will of course be to diminish continually the area ovei

which the load is applied, and therefore to increase continually

the shearing stress. If W be continually diminished the

Fig. 23

shearing stress may be kept as little as we please in excess

of S, and the cylinder may be indefinitely attenuated and
elongated.

This of course assumes that the tenacity (§ 222) of the

material is more than twice as great as its solidity. If this is

not the case the cylinder would be ruptured instead of flowing
under the assumed circumstances.

But it follows from Example 6 on Chapter III. that flow

may be produced without risk of rupture by introducing a
lateral pressure in addition to the longitudinal traction. If II

be this pressure, the conditions to be satisfied are

iV
1
< tenacity

^

J(^ + II) >solidity /

'

Figure 23 represents an experiment of Tresca's on the flow

of lead. A series of flat circular plates of lead were placed in a
rigid cylinder, having a small orifice in the centre of its base, and
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impressed. The Lead issues as a jet from the orifice,

and the linefl of flow indicated by the distorted boundaries of the

striking resemblance to the corresponding lines in

ling from an orifice in a horizontal plate.

: .mid Lead to be very fairly plastic, and ascertained its

about

S = 200.000 grammei per square centimetre

muds per square inch.

The quality of manufactured Lead is however more variable

than that of any other metal
Viscosity. The properties which we have ascribed to

Iperfectly plastic" Bonds and "perfect fluids" are modified in

actual materials by the universe] pn C move or lees viscosity

ling to the theory of fluid viscosity advanced by
id robcequentry extended and verified by him-

• •. I ». K. Meyer, Helmholtz and
Pioirowski, and others, this property oonsistfl in a kind of sliding

trie Jon between 1 molecules, only called into play when
relctiv.- motion of the - taking place in a direction ten-

ia! t<» their common
Viscosity and 8 muei therefore be

rep irdfd parable: and, since flow is merely continuous

r, it foil- pposed by viscosity.

i mi the «»tlp i uniform cubical dilatation or compression

(§§ i<» Ml' i whether homogeneous or not is specially

ch; ra< nd this form of strain

Mtly possesses the unique property of being absolutely

un t

(ii.j The amount of viscous i of I given solid or

tflu a, at s uniform temperature, depends only upon, and

in v; riniMu.sly with tin % dhea/r toKesplace, and

fin ariabh ee with thu rate: or, in other words, infinitely

sii ill ity to infinitely slow flowing.

The il does not therefore

atl ct n onder stress, bui only resists

an i ii r than simple dilatation or compres-

f an< l) by which from OHM -train to another;

luced between the magnitude of the stress

Fpr ,
',, e changi nd the nm occupied by the

sutbougb a fluid may. in virtue of it- viscosity, offer immense
ipid distortions, yet any shearing stress,

hove. U, will suffici dace any required amount of

flo Vt hon thai H l"' applied continuously for

ne.
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The same statement applies to viscous plastic solids, under
continuously applied shearing stress exceeding by however little

their limit of solidity S.

This introduction of the element of time or velocity into the

relations between shear and shearing stress is usually described,

in the case of fluids, as constituting an imperfection in their

fluidity ; and it is obvious that a viscous plastic solid is imper-

fectly plastic in precisely the same sense that a viscous fluid is

imperfectly fluid.

Apparently all fluids possess absolutely perfect elasticity of

volume, and it is probable that plastic solids approach very nearly

to this condition, at any rate up to a very high degree of pressure.

We may say then that, while a perfect fluid or a perfectly plastic

solid does not exist in nature, yet when in equilibrium or while

undergoing changes of volume without distortion all fluids and
plastic solids behave as if their fluidity or plasticity were perfect.

(Hi.) The resistance offered to shear by viscosity is not of

an elastic nature. The work done in overcoming it is not stored

up as potential energy, but is entirely dissipated in the form of

molecular kinetic energy or heat (§§ 2, 20).

Thus a viscous fluid has no resilience under distortion any
more than a perfect fluid ; and a viscous plastic solid has only so

much distortional resilience as corresponds to the limit S of its

solidity.

To make this distinction plain let us compare the behaviour

of a perfectly elastic solid and of a viscous fluid under a simple

distortion. The resistance of the solid is quite independent of

the rate at which distortion takes place, and is simply a function

of the amount of the distortion, continually increasing with that

amount. None of the work done in overcoming this resistance

is lost (the temperature being maintained constant and uniform),

but it is all stored up as potential energy, ready at any instant

to supply just as much work as will suffice to restore the body to

its natural state from any condition of distortion in which it

may be left. The fluid, on the other hand, offers a resistance

which is quite independent of the amount of distortion existing

at any moment, and depends only on the rate at which it is being

produced. The work done in overcoming this resistance is trans-

formed into heat, and if the fluid be maintained at a constant

and uniform temperature this heat must be continually with-

drawn [§§ 24, (ii.), 26], and the work is consequently lost both to

the fluid and to the agent producing the strain. When the

straining forces are removed, there is no tendency or power on
the part of the fluid to reverse the strain, because no energy
has been retained to be reconverted into mechanical work.

(iv.) It is sufficiently obvious that the principle of super-

position of small strains (§§ 87, 88) must be equally applicable to
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/, which are simply the differential
ill strains as to the time.

Ala stances to finite rates of shearing
art* finite, the shearing stresses called into play by viscosity to

small r Ing must be small stresses (§ 153), and
subject to the law of superposition (§ 155), equally with

Thus I L97) is applicable to the viscous
; by all bodies to distortion, when the rates of

small quantities in the sense of § 58—that is to

ly i proportional to

The coefficient oi for a given isotropic

mat« rial at a given uniform temperature, is defined (see § 210) as

to produce the unit of shear per
unit in any plana For instance, if v be given in the

\\<\ any two parallel planes be taken in

i' the body one centimetre apart, it will require a
•itial str-

: square centimetre on each of

the?e planes, in is, to produce a small relative

velccil centimeti cond, m any direction parallel

•to t he I

Sir William Thom imentfl ill 18C5 on the

observing the rate of diminution
I vibrai und wires m . 16). The theory

of nil \

:

will be considered in Chapter X. The formulas

omplieated, and it would require a con-

sid rable series riments to evaluate the modulus of

The law by which cous resistance of solids depends

np< i the rate of dial when thai n nsiderable, is

wn. as also ii the law with strain for

values of tl

Cn the case of fluids however as was fiisl demonstrated on
son id th< grounds bj : and subsequently

• 1 in variom rimental authorities named
ab< -e— tl. rtional law holds tor all i distortion (the

xesi -i« the How of thuds, which,

ho\ c\ all their mechanical properties

mi; ;

'lie value neatly for different fluids, and also

Mu ids may be arranged in

fou rating to the magnitudes of their

mo< in lity and and the law of variation

of t ie latter with the temperature.
1.) : highly compressible fluids of small

ed by a tendency to indefinite expansion

M
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and rarefaction which can only be restrained by the continued

exercise of external pressure, or of impressed forces such as

gravity : the hydrostatic pressure at every point in the interior

of a gas or vapour is therefore essentially positive.

Another distinguishing property is that the viscosity increases

as the temperature rises.

According to Clerk Maxwell the modulus of viscosity for

atmospheric air at t° Cent, is

m« -0001878(1+ -00366 1)

in dynes per square centimetre.*

The value of v for oxygen is rather greater, and for carbonic

acid gas rather less, while for hydrogen it is less than half that

of air.

All the remaining groups of fluids have a compressibility

comparable with that of solids (see Table B below) and are

characterised by the possession of a definite density and volume
per unit mass at each temperature, when free from external

pressure.

Their viscosity invariably diminishes as the temperature rises.

(2.) The Mobile Liquids (ether, alcohol, water, turpentine,

mercury, etc.) : viscosity much greater than that of gases but

still very moderate. These liquids are therefore capable of

flowing freely and rapidly under small shearing stresses, such

as that of gravity ; while a falling stream readily breaks up
into separate drops.

Poiseuille found for water

At 0° Cent., i/ = -018 dynes per sq. cent.

„ 10° „ 013

„ 20° „ -010

Helmholtz and Piotrowski found by another method that
24°5 Cent.

v— '014061 dynes per sq. cent.,

while O. E. Meyer's results were about one sixth greater th

Poiseuille's.

(3.) The Viscid Liquids (treacle, glycerine, Canada balsam,

tar, etc.): largely increased viscosity at low and moderate
temperatures, the flow under gravity being sluggish and very

characteristic. A falling stream becomes excessively reduced
in area before breaking up into drops. The viscosity diminishes

with great rapidity as the temperature rises.

Schottner found for glycerine

At 3° Cent., v = 42 dynes per sq. cent.

» *V » o >> »

* See reduction tables at end of this Appendix.

I

-
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This snoffmotis reduction of the viscidity* of glycerine may
be easily demonstrated on a cold day. A bottle of pure glycerine
which has been • to the air may be turned completely
over before the liquid begins to run; but after being warmed
for ten minutes before a fire the glycerine will become almost as

Lie as turpentine.

TUra-Viaoous Fluids (pitch, resin, cobbler's wax,
sealing wax, etc.) : possess enormous viscosity at ordinary temper-
atures, which however diminishefl with quite startling rapidity
as the temperature rises to the " melting point" after which they
are merely move <>r leai riseid

Flow under gravity is in some cases imperceptible even in the
Bourse «»i ale, etc., in the Egyptian tombs
are however often found t<> have flowed down to such an extent
as to be reduced t<> mere shapeless masses.

A ^tiek of sealing wax Bupporied on two pegs near its

ill bend till it dropfl between them, in two or three

days unless the weal] ry cold
Sir W. n fixed a cak oada pitch in the middle

of a large vessel of water, to avoid rapid variations of tempera-
ture, and placed some bullets above it and some corks below.

At the end of sooths all were found to have forced their

waf thrf: lv by i of gravity, although it would
ha e requned enormoua uiossmo t«> drive them through at a
vi- i

Tb v of these tluidi at 1<>\v tenroeraturee is in general

so jreat that they are extremely brittle, and easily broken by very
in l«>rate forces suddenly applied

The student will find that with very cautious

ha id; an bend Of twi-t a stick of good sealing wax to

all iost an lb will observe that the more it is man-
ipi lated t tteiy the easier manipulation becomes. The
ex Sanation of this is that the appreciable amount of heat

ge erat< d by viscosity » radiate, ami the wax in

eo nwimiiMici bocoinai warmer and leas viscous. A good deal of

w; rath i bed by the hands. It' the stick be laid

a- I.- f«.r a short time it will be found to bswe recovered its

oii ;inal VISCOUS pJ

It will also v.rv probably he noticed that the stick when
possesses a small amount of resilienee, and straightens

its i

c Blightly when released This is due to the fact that the

D at Mich small rates of bending as

cai h<- imposed without danger of breaking the stick, is greater

tin n t tanee to C ion.

» Vit Baed M (ftS visible resistance of viscosity to

ition.
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Consequently in bending the stick the portion on the inner

side of the curve is compressed longitudinally and the portion on
the outer side elongated. If the stick were forced to remain in

its bent form it would relieve itself gradually from this state of

strain by lateral expansion of the concave side and lateral com-
pression of the convex side, thus reducing the resultant strain to

a mere distortion, and restoring the density at every point to its

initial value.

As it is, when the stick is released immediately after having
been bent, the resilience of volume of the wax expends itself in

the only way which is unopposed by viscosity, namely in uniform
cubical dilatation or compression of the parts that have been
contracted or elongated. It is easy to see that the effect of this

partial reversal of the strain is to reduce the curvature by an
amount bearing a finite ratio to the whole.

The Plastic Solids (clay, wax, tallow, lead, etc.) display con-

siderable viscosity, which increases much more rapidly with the

rate of flow than does that of fluids, but which is probably less

at very small velocities than that of any of the ultra-viscous

fluids.

Thus, when a plastic body whose solidity is small compared
with its rigidity is executing vibrations within the limits of its

elasticity, the amplitude of the distortion is necessarily so minute
that, even if the period be a very small fraction of a second, the

rate of distortion is still very small, and the effects of viscosity

are only observable by means of the gradual diminution of

amplitude. But when the body is forced to flow at a finite rate

the viscous resistance is enormously increased, and its heating

effect may become very conspicuous.

The materials mentioned above possess very different degrees

of solidity, from that of lead which, as we have already men-
tioned, was found by Tresca to be about 200,000 grammes or 19 \

millions of dynes per square centimetre, to that of clay the

existence of which only rests upon a delicate experiment of

Coulomb's.

A tallow candle laid on two pegs will not go on bending
indefinitely until released from the stress caused by gravity, like

a bar of sealing wax under the same circumstances, but will

gradually (owing to its viscosity) assume a certain definite curve
(see Chapter VII.) in which the elastic stresses called into play by
flexure will maintain it in equilibrium. Under a distorting stress

exceeding the limit of its solidity it can however be made in time

to flow indefinitely.
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B. D VCTI I. E M E TA Li>.

This large and important class includes wrought iron, the
: qualities of steel, zinc, tin, copper, brass, gun metal, gold

and silver, and in fact almost all those metals—cast iron and
hard tug the only important exceptions—which are most

,u. -t for purposes of construction, whether on a large or

Ductility. A "perfectly ductile" material possesses perfect

elasticity of bulk under all compressions and under all dilatations

short of the Hunt of tenacity. It also possesses perfect elasticity

rm under distorting stresses short of a certain limit S,
beyond which flow begins, a^ with plastic bodies, The conditions

•til'- flow differ however from those of plastic flow in the

two foil iportani particulars :

—

I B of the body to Mow is not an absolutely

quantity depending only on the nature of the material, but
dually increases with the amount of flow. Thus to produce

COntir 880,1*1/ Continuous/// fa

tin , id it" the maximum distorting

stnss applied to the I ban S bat well within the

str< n^th of the material, the system will reach a state of

eqi ilihrium after the amount of flow which is required
to quali >f the body with the applied stress S'.

if the I- ased from Btress, the elastic

poi aon i hiding all cubical dilatation or com-
pr* ision) will be 1 I, and the body will resume its original

fol une and t of the flow remaining as a per-
•

-

If tit** lually reapplied, it is

thin th- units, the strain produced follows

law as befoiv. This proves that the elastic moduli, as

unaffected by the

net. [This point will be further considered presently, under
he; 1

Th- v is however found to have been
ext nded no long* at the original limit S, but is

I until the distortin-. •

•> the value S'

—

i.e.,

th- - /< / "'I,',, -A tin /„,</// has

If the Btress be carried

irther flow will tak«- place, and on release of the

and ^application of t! the limit of elasticity of

for a will 1m- found to have been still further extended This

turned until we reach the limits of the

$tr< iwth of the mat. rial.

Hardness I*
i obvious thai the elastic limit of a ductile

body : only on the intrinsic- qualities of

I



L32 NATURAL MATERIALS :—

the material, but also on its previous elastic history—is distinct

from the solidity of a plastic solid which, as we have seen, is

unaltered by any straining process.

We shall therefore distinguish the resistance to flow of ductile

solids by the usual term Hardness. The characteristic property
of such solids is then that their hardness is increased by every
process which produces a permanent set:—their volume and
density when free from stress, as well as their elastic moduli,

renraining unchanged.
The remark already made with reference to solidity may here

be repeated with regard to hardness and strength. All these

terms denote limiting stresses, and have no connection whatever
with rigidity and compressibility, which are modular quantities

—the fist a stress, and the second the reciprocal of a stress.

The minimum value of the hardness of a given piece of ductile

metal is that which it possesses when delivered by the manufac-
turer; the maximum value is equal to the ultimate strength

(§ 222) of the material under shearing stress. When it has been
hardened to this point, the material has lost all malleability and
has become perfectly brittle, since its elastic limit now coincides

with the point of rupture. It has, in fact, acquired the highest

possible degree of temper (§ 15), solely through excessive strain-

ing.

(tii) Every form of set affects the elastic symmetry of a
ductile (though not of a plastic) material. For instance, as has

already been remarked in § 207, an isotropic body drawn out

or caused to flow by longitudinal stress in one given direction,

with or without lateral stress symmetrical as to that direction,

assumes to a greater or less extent the aeolotropic condition of

§ 205 (i<L).

Metallic bodies also fall short of perfect ductility in the

respect that set produces a condition of imperfect elasticity

or constraint, which is apparently due to a residual interaction

between the parts of the body, caused by the permanent
deformation of the mean molecular configuration (§ 8). It is

manifested within the new elastic limits in two ways

—

First, by the incomplete recovery of the strain when the stress

is removed

:

Secondly, by the inexact reversal of the strain when the stress

is reversed.

We shall see, however, when we come to consider the behaviour

of ductile metals under tension that this state of constraint is

only temporary, and is easily removed by a few successive rever-

sals of the stress.

Viscosity. This pro]>erty is displayed in very different degrees

by ductile metals. In most of them it has very little effect (for
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plained •) on small vibrations within the elastic

limit, but it' i bar or iron be hammered, rolled or drawn
m visibly its temperature rim very rapidly.

.c and mil- CM two other m.'tals arc however exceptional in

mount of theil vjeouailj, which producee marked results even
within t! limits.

In the onriooi state known i ''//"<' {§ 16), the

viscosity of nmtals ia increased while their elastic properties

are eir

W. now proceed to exemplify the properties of ductile metals

by a brief account of t ur. up to the point of crushing

or ru;

(1) Cubical roiimnwHion

(2) Longitu tension.

(3) Longitudinal Compressi

(1.)— ' Compression.

All ds possess perfect el ol bulk up to a

hi rfc degn f proasun The range of this elasticity seems to be

at*ociated with hardn.ss, though there is no necessary reason

w \y Id be so.

Thm it i> improbable that any practicable amount of pressure

v. >uld
• apennannt increase of density in iron or steel.

On the other nand the more malleable metals such a* gold,

and copper an- known to ondergo such permanent altera-

ti .n under kill easily attainable pressures

till wanting of

tl • Limits of - in these cases, and of th.- point to which

ans at our disposal.

e experimental at of simple cUlataki&n is en-

red by such great practical diffiooltiet that our direct

almost

In pra.-tic.-. it si found to be easiest to determine Young's

tension, and the rigidity by twistingt

to deduce the modnl !| by formula

l'I:;

k-nq/(9n-3q).

Since 1 r (as we shall - • in Chapter VII.) the bending

* See page 180.

tTl k of metal bsn beyond the limits of their

\ . to follow Chapter VII.

I
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as well as the stretching of beams depends upon Young's
modulus, the researches of experimental engineers have been
chiefly directed to an accurate determination of q. Experiments
on rigidity have been comparatively neglected, and consequently
n and k are only known for a few materials.

It may however be taken for granted that h is sufficiently

great in all solids to ensure that Hooke's law holds for com-
pressions and dilatations within the elastic limit.

Experimental results show that when a ductile body is

strained to any extent, in any manner which freely admits of

change of form—as for instance in the cases of longitudinal

elongation and compression to be presently considered—the

cubical dilatation or compression of every portion may be
assumed to be very small, and also to be almost entirely elastic

or recoverable. Thus, in an experiment of Sir W. Thomson's,

a permanent elongation of extreme amount "1067, produced in a

copper wire by gradual increase of tension, was accompanied by
a permanent cubical dilatation of amount '0085, or less than 8

per ceht.

(2.)

—

Longitudinal Extension.

We now proceed to describe the phenomena exhibited by a

bar of ductile metal, when very cautiously drawn out to the

point of rupture : taking as examples the latest published

experiments of Prof. A. B. W. Kennedy on bars of wrought iron

and steel.

To begin with, the bar as obtained from the manufacturer

has acquired considerable permanent set (§ 207) in the course of

the different processes of rolling, hammering, drawing, etc., to

which it has been submitted. It is in fact in the state of
constraint described above under head (Hi.), and consequently

does not behave at first like a perfectly elastic body.

On the first application of any load W within the elastic

limit (to be defined presently) a total elongation is produced

which is indeed proportional to W*; but on the removal of the

load the bar does not return to its original length, but retains

in the form of set a portion of the total elongation also pro-

portional to W. Thus the elastic elongation, or that portion

of the whole which is immediately recoverable, is likewise pro-

portional to the load*.

If however the same loadW be applied and removed several

times in succession, it is found that the small residual set

* See note at foot of page 163.
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gradually disappears, and ultimately the bar arrives at a condition
which has been well termed by Prof. K. Pearson its state of
ease Cor this particular load. In this state the bar behaves as a

V loads which do not exceed W;
Ionization being precisely proportional to the load, and the

bar always returning to precisely the same length when released.

By repeating this procooo with gradually increasing loads, the
of ease may be extended up to a certain point, beyond

which it cannot be produced In this ultimate or limiting
state of ease the bar really satisfies the definition of a perfectly

id, so Ear at least as Btrainfl of this type are concerned.
She whole ol the initial constraint due to the processes of manu-
facture may be considered to have been removed, and the state
to which the bar invariably returns on removal of the load may

ie natural state (§ >>.

The longitudinal stress produced by the maximum load con-
' with this state of east- is the mathematical limit of

perfect elasticity, or what we have called in J £22 the elastic
strength of the mat longitudinal extension.

The maximum shearing stress -which is half the above—is

w ia1 ve called the natural hardness of the material.

i'+ is ilightly diagrammatic representation of the

st -aining of a bar of am. steel of the softest quality,

tl e natural di which were

Lengtli . = 10 inches.

l = 1*508 „

lekll.'- = 0-376 „

tional area . . • = 05G7 of a square inch.

Tie vertical scale represents elongat ad the horizontal

8< ile the i-<n-r*^\\n\\<\\\\gload8 per unit of in'ttnil s< ,i'n>,t (pounds

p r square mefcu which, op to this point at least, represent very

a proximately the actual longitudinal stresses.

The ultimate state of ease i anted by the portion a of

tl is curve, the point -l representing the natural state of the bar,

a, d the point />' Its condition trained to the limit of its

fh.

11 nd to hold throughout the whole of this

st ige, so that Mi line.

Th I the >tr < i,500 pounds,

oi M inch. Eence we deduce the following

di oa:

—

{oa&
|
= 18*616 tons per sq. inch.

una! extension |

iral hardnet = 6W S
> „ „

Young's modulus . = 13,<> I „ „



186 NATURAL MATERIALS
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Fig. 24.
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If the stress be increased beyond the limit B, more or less

rlow is produced, and a state of ease is no longer attainable. In
(Us second stags (marked b in Figure 24) the major portion of

the strain is still an i mgathom proportional to the stress,

and following the same modulus as before; but the set, beino-

dm to flow, no longer shows any tendency to disappear. It is

still small, tat its rate of increase (and therefore also that of the
total elongation) increases with the stress applied. The stress-

:i curve is therefore no longer a straight line.

Prof. Canned? observes that " occasionally this stage does not
occur at all, and both Ufl higher and lower limits seem—more
than any other point- in of the material—to be suscep-
tible of change depending on manipulation. Accidental shock
will shorten the stage considerably, very gradual loading extends

•

Prof. Kennedy therefore proposes that tnis should
be called the stage of unstable elastic equilibrium.

v7e are now in fact approaching a very critical point. If the

load be increased with - caution until a certain limit

(represented by C in Kigure 84) is reached, the resistance of the

ba\' appears all at once to town, and the elongation may
be suddenly increased by times its amount without any
n responding increase «»f load. I ndc.d, when once the "break-

Is ; down point" has l>een pass.-d. the bar may be held in

aq lilibrium und.r rably greater elongations by loads less

tli in tliat I to bring it to the critical point. This fact is

in licat. 1 by the slight backward curvature of the portion CC
1
of

th ) Curve in Figure 24, which however IS much more marked in

F jur« 24a, reproduced with no alteration hut that of scale from

a urve traced automatically daring an actual experiment This

tk int being rabmined to further investigation by Prof

.

K nnedy.

"C is the point called by engineer* the limit of elasticity,

b< aw the on markedly visible without special

a
I Pa :

In the case reproatintofl in Blgure 24 the elongation at C is

•0 8, and the stre nds, oi L5*4IS tons per square inch,

or practical limit of elastic

At
i
the el ngation is increased to '025 without any corre-

8[ >ndingincrease in the load, or (for practical purposes) in the

St ?

V

f marked case. Prof. Kennedy

m nti D which the elongation suddenly increases

fr .in 008 at Oi cy
It : D actual metals, the hardness is notquite

sush a definite qi as we eonaider it to be theoretically.

]) tring t hie stage b the distorting stress and the hard-

ness struggling together, and the small amount
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of flow which takes place is, as it were, tentative. At G the

stress gains a conclusive advantage, and a sudden and rapid flow

takes place, the body yielding.during this short stage CG
1
as if it

were plastic. I have therefore proposed (Nature, vol. xxxii.,

p. 76) to call the point C the elastic crisis. It is remarkable
that during this stage the extension of the bar appears to be

occurring at different parts of its length successively, and not

simultaneously, as during the stages a and c.

STRESS IN TONS PER SQUARE INCH OF INITIAL SECTION

•25

20
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z
o
g.15

o
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3
MX

•10-

•05--

-|—.—i
1—|—i—i—i—[—i—i—i—|—-—i—

i |
i i ' |—

4 8 12 16 20 24

Fig. 24 a.

MILD STEEL BAR.
INITIAL LENGTH = '0 IN.

^

I
/ ' '

I
I • » \

I =T 1 1 1 1 1 1—
4 8 (2 16 20

After once more attaining stable equilibrium at Gv the bar

passes into the stage c of regular ductile flow. Further increase

of the stress produces increased elongation, a small portion of

which is elastic, or recoverable on release : this elastic portion

apparently still follows very closely the law of Young's modulus.
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The strain however DOW consists almost entirely of a laro-e and
.tinuallv increasing flow, which remains as permanent set. In
: the bar now lengthens visibly and "thins down" uniformly

throughout its Length. This condition of the bar, from C to D,
ailed the stage of uniform flow. The regular increase of

hardness wn by the continuous curvature of the line CD,
which for a perfectly plastic solid would be straight.

_ are Aa exhibits very clearly the practical constancy of

s modulus. In this case the load was gradually removed
$ of the unit'.. rni flow, and then gradually reapplied.

It is evident that the curves described by the bar in recovering

the small elastic portion <>f the strain are practically straight

lines parallel with that originally described in the stage a of

perfect elasticity. These lines continually increase in length, the

abscissas of their extremities denoting at each stage twice the

otinuously ii hardness of the bar, while the ordinates

of the points where they meet I longation (or of zero

ess] denote the u g permanent elongations, due to flow,

at
•

ral stages. 'I t protuberances of the curve at

th<; extremities of the lines which represent the re-loading of

tli og example of elastic fatigue (§ 16).

Alter I
lYuni stress the elastic

pr
»]

_htl\ increased) and lor a time it is

• to bear a gi- bd without increase of elongation.

At 1> * the point of maximum load, which is also

limit of uniform flow. It* this load be continued, the bar

lidly thins down loca I some point of its length,

til the cross seer -.. reduced that the across it

i n iches the limit of tenacity, and the bar breaks .-it that point.

In the ease represented in 1 ; the elongation at D was
•2 «» and the strei I pounds per square inch. Thus the

ic elongation was about

07,600 57,600 _^m

iq
30,500,000

i 1 the reniainder, or more than "228, was permanent set These

i« ures are not nuite seem cause the area has now been

u tsibly reduced by Sow, and the load per unit of initial area no

D tger actual stiv». We -hall return to this

n int presently.
It is found possible, ondex Eavourable euenmstances, to prolong

1. stage of local Bow somewhat, by beginning to diminish the

lo d immediately the first signs of its approach are observed.

1 tioo then continues to incroaao- almost entirely by
1,, al thim lex diminishing loads, until at last the bar

I maximum extension | E in Figure 24),

in iler a terminal load considerably less than the maximum,
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Owing however to the rapid reduction of area at the weakest
point of the bar, the actual stress experienced by the constricted

portion increases more rapidly during the stage d of local flow

than during any other, and the point E of terminal load is also

the point of maximum strength.
In the case of Figure 24 the ultimate extension at E was

'255, and the terminal load per square inch of initial area 49,000

pounds. Since, however, the reduction of area, the constricted

portion was *548, this gives an actual terminal stress of

, ftnAn 1 ( 108,290 pounds ) . ,

49,000 x = J in
' r

y per square inch.
1--548 \ 48 "34tons J

By gradual removal and re-application of the load, as in

Figure 24a, Professor Kennedy has shown that

even in this final stage the elastic part of the

elongation follows the original value of Young's
modulus (Nature, vol. xxxii., p. 270, Fig. 3).

Figure 25 represents the final stage of an
actual experiment by Mr. Kirkcaldy on a bar

of iron 1 inch in diameter. The ultimate

elongation was '300, and the ultimate con-

striction of sectional area was *610. The
terminal load was about 45,553 pounds,amount-
ing to only 58,000 pounds per square inch of

original section, but to as much as 146,000

pounds per square inch of the reduced section.

The dotted lines in the Figure represent

the initial state of the bar, and the student

will observe

(1.) The general reduction of diameter,due

to uniform flow.

(2.) The excessive constriction of a limited

portion, due to local flow.

(3.) The varying elongation, as shown by
marks on the bar, originally at uniform dis-

tances apart, corresponding to this varying

reduction of transverse dimensions.

Figure 25a consists of three curves obtained

by consecutive measurements (not automati-

cally), and exhibiting

I. The load per unit of original sectional

area.

II. The load per unit of area of the non-

constricted portion of the bar.

III. The load per unit of area of the section

where the constriction is a maximum, and
where fracture ultimately occurs.Fig. 25
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All time curves coincide till the stage of uniform flow is

tiered, when 1. which is the curve represented in Figures 24
an- 1 i dually from the others. When the point
of maximum load is passed, and local tlow begins, curve III.

turns off move abruptly.

It is evident that while the termination of III. gives us the
pproacfa to the ultimate strength or tenacity of the

ial. we cannot acc.pt it as giving us any reliable informa-
tion as to tli.- relatione between the strain and either the load or

: thin this limit.

For all practice] purposes, I. may be taken as the load-strain

curve, and II. a> the stress-strain curve.

It i> a curi bars of the same material and the
same section, the form and dimensions of the conical constriction

are almost invariable at the point of rupture. Consequently the

apparent ultimate elongation, obtained by comparing the whole

Fig. 26a

LANDORE STEEL BAR.
LINQTM • tO INCHES.

1 1 I 1 —1—1 1 ? i i 1 1 1 1 1 1 1 1

-

\V^TT -—

—

•

J/
•

S/
•»• n**> uo J

LM. PCM SQUAMI INCH.

Ogth 1 bar (including the constricted portion)

iu.il hi lengtl y much on the latter, and is

j.tive test of the .piality of the bar. This is shown
in which the ordhmtee represent the

tiiiiat.- .ns of bars of three different

ale, tin- lengtha of which are given by the horizontal

Jo. 'I'll' LA I i C mmon wrought iron plate (tenacity

to 21 tons pet Inch); BB for superior wrought iron

nacitv 21 to 25 tons) ; OC foi wry soft h I, the history

one sainpl.* of which is given in Figure -4 (tenacity between
and E7

'I'be intlu.nc ol the length of the bar on the apparent

himate elongation in the last case is quite startling, as it

minishes from 47 on a 2-inch to 25 on a 10-inch bar. Two
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methods have been suggested for obtaining a uniform experi-

mental standard of ultimate extension : first, that all materials

should be tested by means of bars of standard dimensions

:

secondly, that the length of the constricted portion should be
subtracted from the total length in estimating the ultimate
extension.

The stage from I) to E, like that from B to G, requires special

apparatus and excessive delicacy of manipulation to render its

properties accurately measurable, and in consequence practical

8 7 6 5 4

Length of ha r in Inches

Fig.26

men generally accept the elongation at E as the ultimate elonga-

tion, and the load at D (or maximum load) as the terminal or

breaking load. There is no practical danger in this, so long as

the error is avoided of taking the load at D divided by the con-

stricted area at E as the breaking stress. This gives an entirely

fallacious result, as will be seen by referring to the case of Figure
24 in which it would give

57,600 x

= 127,296 pounds

= 56-82 tons

1

:548

per square inch.

or 1*18 of its true value.

Taking into account that, as determined under any but the

most favourable conditions, the limit of elasticity may be assigned
to any point between B and C, or even Cv and the maximum and
breaking loads and stresses to any point between D and E: and



DUCTILI MKTALS. 193

the enormous differences in the quality of various specimens
of the Bame metal (strictly speaking, totally different materials),

due to the presence of impurities and the different processes of
manufacture : the student will not be surprised to learn that the

urinations of elastic constants published by different ex-
perin \hil>it the most glaring discrepancies. The values
given in the tables below can therefore only be considered as

approximate avert

Qn the other Band, the values of the moduli, at any rate

when the materia] can be definitely specified, are probably very
aecur

/session.

It i> impossible to perform experiments on the compression of

Dgitudinal thrust with the same minute accuracy
as those on its el under tension, as the following con-

siderations sufficiently pi

In >e, we suppose that the load is always
distributed uniformly over the end of the bar, whether as

pre isure or as traction, and that at the same time the ends are as

tre< to contract or as any other portion of the

bar Thelongitu-i I lateral -train- are then homogeneous
or iniform throughout the length, and t: across every

tra averse sec; uniformly distributed over it. and has the

Mow, in pi be load must either be fastened to one or

mo e points of the termii ion— in which case the latter is

fre» t<> ah been is not uniformly distributed;

or igidly attached t* i by soldering)—when
t! tress will be uniform, but tl».- area of the face will be

Jpre ented from bee variation; or, lastly, attached by clamps to

t nd of the bar—rendering it impossible fOTeither supposed
con lition to 1»- fulfilled.

nexperimei i unploy bars of consider-

abh length, and so brin t of these terminal irregularities

on t i !io bar as a whole within the limit of small

i iiilibrium of a bar under con-

it udinal lyressure is in the highest degree unstable,

and if the length of the bar l"- even few multiples of its

r the slightest accidenta] Bhock will cause it to bend
illy.

•lit bar must be enclosed in a trough to prevent

-which renders minute accuracy of observation impossible:

or t ie experiment rmed on very short blocks of

mat rial. In bom the difficulty
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of attaching the load. If it be applied to portions only of the
ends, the stress has (as it were) no room to equalise itself approxi-
mately over the intermediate sections; while if the block be
placed on a rigid surface, and a rigid weight applied to its upper
face, friction prevents its ends from expanding freely, and in

consequence it bulges out considerably in the middle (Figure 27).

We must therefore look for considerable discrepancies in the

results of experiments on longitudinal compression, even when
made by the same observer on different blocks of the same
material, and none of them can be accepted as more than approxi-

mate.

So far as we can judge, the value of Young's modulus and the

limit of perfect elasticity seem to be about the same—in ductile

materials—for compression as for extension. This is obviously

what our theory would lead us to expect.

We may therefore suppose the straight line BA in Figure 24
produced for an equal distance AB' to represent the state of

perfect elasticity under longitudinal compression (ultimate state

of ease being, of course, presupposed).

The critical stage corresponding to b has not been observed,

but at a point indistinguishable from the

elastic limit ductile flow begins, with increas-

ing hardness. From this point outwards,ft—...\Ms^ttfri marked permanent set is visible in the

| 1'IJBi A form of longitudinal comparison and lateral

J\ 'ffjffGV bulging: fracture ultimately taking place
i\V niy/MMr by means of longitudinal cracks, due obvi-

Fig.27 ously to lateral extension.

Figure 27 represents the mode of fracture of a short block of

steel, and the amount of its ultimate compression. The dotted

lines show its initial dimensions.
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The following fcabk givefl the results of an experiment by Sir
ill .aim on a block of soft Bessemer steel, length -997 of an

7- 1

1 E an inch.

•

Load iu tons.

OO

fldgnl of Mock.
Approximate hard-
ness in tons per
square inch.

11-0

*€ 11-0*

16-7 18-9

a 1 :>

230
:.;i l»3-7

•613 24*7

35-8

•505 L'.-.-l

dm l

22

Limit of kSBSJ BaWI

Ultimate contraction «= '59.

toni pec iq. in.

>»

»> >>

acti

vab
thi>

'I

ela>

har<

a v;

ami
beh

[rat column _ actual Load applied, in tons: the

ii' !• r these loads, in inches:

urn an approximaiion to the hardness or resistance

m and height divided by the

,-il height at any moment gives the tneam section. Dividing

load by tibia mean sei u
r,

t approximately the mean
e of the longitudinal stress throughout the block, and half of

'<• load marked with I ponds to the limit of
:

?ty, the point from which flow begins and the

able that after the loan has reached

the hardhead Is practically stationary,

to the moment of rupture the material

ves nearly I ere plastic

at about 10 tons per

and rapture at ahum 20 tons pex square inch.
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C—Brittle Soltds.

This class may be divided into two groups, with reference to

the relative magnitude of the rigidity and the strength under

shearing stress {i.e., of the modulus and the limit).

Group I., having a rigidity which is very large in comparison

with its strength, includes cast iron and the harder varieties of

steel and glass (the other qualities of which are ductile), as well

as natural crystals of all kinds.

Group II., having a rigidity which is very small in compari-

son with its strength, includes the homogeneous jellies and india-

rubber, etc.

A " perfectly brittle " solid is defined as being perfectly elastic

up to the full limits of its ultimate strength, and consequently

incapable of acquiring a set of any kind. The " elastic strength
"

and " ultimate strength " of such a solid are therefore identical

under strain of any type.

It is probable that this definition is realised in perfection by
crystals and jellies, and very approximately by those metals (such

as soft steel) which are originally most malleable, after being

tempered to the utmost degree of hardness by straining beyond
their original elastic limits.

Cast iron and indiarubber are capable of a certain amount of

set, which is however a small fraction of the total strain.

Under extension the behaviour of the two groups differs only

in the amount of deformation which can be produced before the

limit of tenacity is reached.

In Group I. this is very small, and Hooke's law applies for all

practical purposes up to the point of rupture.

In Group II. however a very considerable amount of elastic

strain may be produced without rupturing the material—in the

case of indiarubber an enormous amount, which the roughest

experiments will show to be prolonged far beyond the limits of

Hooke's law.

Cast iron is a very variable and irregular material, the elas-

ticity of which is never perfect. It is impossible to bring it to a

state of ease, so that a trifling set (very likely due to internal

constraint) is visible from the very beginning of the straining.

From .this point the percentage of set in the total elongation

increases up to the point of rupture, but the maximum total

elongation is itself so small (about the same as the maximum
perfectly elastic elongation of soft steel—at B in Figure 24) that

the set is not perceptible unless a very long bar be tested with
delicate apparatus.
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The following tall ilts of an experiment of
II Vinson's on the .stretching of a cast iron bar, length COO

s, diameter 11 v.) inches, which broke under a stress of

16,000 pounds to the square inch :

—

Ca> !• \k mnni Tkrbiov.

Si reaa in lbs. per

melt.
* il elongation. inent set.

Percentage
of m

0000400 perceptible,

•000' •000« 3

L,0 0001225 •0000033 3-7

•J. i

!

•0001 •0000075 i-.;

185 000: •000O17.. 71

0003333 •0000258 77

5,308 •000

1

•0000367 8-6

000 •000' 90
•ooo< 9 9

•0007 lor,

9,5
" 0008400 <»933 Ill

•OOO; 0001117 11-7

•0010800 •0001 12 '•

12/ •001- •0001 ISO

13600 •0001858 13-7

>63 •0015200 000 9 li:,

O01-

"00 lUJ-t

Und i compr* • two groapt behave in

y difl ays.

Materials included in Group II., having little rigidity, expand
-»ly in a lateral din ader mxlerate pressures, ana are

lately ruptured, lis under the same circum-«og the limit of tenacity

id, are too rigid to

>an<l much laterally I the limit of tenacity is never

>roached; bui hardness prevents them from flowing,

and they
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are ultimately ruptured by tangential fracture or cleavage in

one of the planes in which the shearing stress is a maximum

:

that is {see Example 4, page 117) in some plane inclined at

an angle of 45°, or thereabouts, to the direction

of pressure. This method of fracture is well

shown in Figure 28, which represents the crush-

ing of a cast iron bar.

The strength of these rigid materials under
pressure therefore depends on their power of

resisting shearing-cleavage, while their strength

under tension depends, like that of all other

materials, on their tenacity. These two strengths

are thus quite independent, and it is character-

istic of all this rigid group that the strength

under compression is many times greater than
that under tension :—in cast iron it is six

times as great for ultimate strength, and three

times for elastic strength. Bee Tables (C bis) and (D) below.

Fig.28

D.

—

Timber.

All kinds of wood are markedly heterogeneous and seolotropic

in structure. But on the principle (§§ 1 and 43) of regarding only

the relative magnitude of a body and its distinguishable com-
ponents, we may look upon a long plank or bar, or a block of fair

size, as being as a whole fairly homogeneous. We may also con-

sider it to have three planes of aeolotropic symmetry, depending
upon the average direction of the " grain."

Many woods have very considerable tenacity in the direction

corresponding to the length of the tree trunk—but most have
very little indeed in the two perpendicular directions. Beams
intended to resist compression, extension, and bending, or to dis-

play elasticity under such strains, are therefore always cut " with
the grain," and the values of Young's modulus and the tenacities

in the following tables must be taken to apply to that direction

only.
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NUMERICAL TABLES OF ELASTIC CONSTANTS, &c.

TABLE (A),

Factors.

md8 to grammes, - - 453593
grammes to poun 1 0-00204A

pounds t<> jxninda .... W-J
la to pouni 01)3100

. Bl'4

dynes to grammes. 0401019

-

• -

square inches to square centimetres, - 8-4516

square centimetres to square inches. 0155

jxwnds per sq. in. to grammes per sq. cent . :

grammes per sq. cent. /<< poandi p« iq. in.. 0-014223

kflogm 157*494

kflegma (MM
poundals per M}. in. 1 2 1 1

dynes per square cent. lals per sq. in., 0-0004CC7
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TABLE (B).

Compressibility of Liquids.

Liquid.
Temp.
Cent.

k in millions of

dynes per square
centimetre.

k in tons per
square inch.

Ether, - 0° 9,300 60-177

5)
14° 7,920 51-248

Alcohol, - 0° 12,100 78-295

5>
15° 11,100 71824

Carbon bisulphide, . 14° 16,000 103-531

Water, - o°.o 20,200 130-707

?)
r.5 19,700 127-473

5)
4°.l 20,300

>>
10°.8 21,100

)> 13°.4 21,300 137-826

33
18°.0 22,000

33
25°.0 22,200

5)
34°.5 22,400

33
43°. 22,900

3}
53°.0 23,000 148-825

Mercury, - 15°.0 542,000 3507-092

Authority for water—-Jamin, Cours de Physique, 2nd e d., t. i., pp. 168,

169: for the other liq aids—Amaury and Descamps, (lomptes Jiendus,

t. lxviii., p. 1564.
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TABLE (C).

urn of Solids.

P yxio-« ««io-« E FxlO- 4
i T\Q~*

Flint glass, -

>> >» 580 210

1 bare, 7 £49 2120 834 1878 1310 809

1, cast, drawn, 7-717 l'.t.V. 838

Steel wire, drawn, •
.

7-718 1881 0050 82780 no
2049 0115 135995 2802

caii, 7-235 938 •00116 879 147

. wrought, 7 790 2040 784 1484 00224 5120 407

, - lS'il •0034 iooa 638

;
•cT, cast, - 134

rrnwn, 8893 456 •0033 410

C >pper, annealed, • *m ion *ooo 1740 310

C >pper wire, - 84QQ 1185 1171 •0006 7480 v:-i

B raw, cast, |tf 00196 1206 127

£ rase, drawn, 1006 1063

] ran wire, • 1001 410 .v.»7 •00344 6000

( an in. t;il, 896 40868 iia 252
< )ld, drawn, • 813 281 mm MM 271

£ hrer, drawn. 10*101 870 BOO •0041 6069

nuiu, fine wire, 1210 0089 1808 350

«t, . 7 400 •ooi 207 41

't no, drawn, • 7100 BOO 001 ^ Ills

1 »1, 11 -ji:. 177 •0012 •_'•_•

us •010G 120H ^H • 160 00021 106

< *k, 0750 103 0102 sin 105

1 ed pn..

.

o:,m 118 •00771 «.H

.* >race, -

1 1 trch.

111 •0077

40861

3347 87

68

In th«- above table. tes the density in grammeo per

the modnlJ in vreigm
1

per

tare centimetre; E the
N practical " limit <»i* elastic elonga-

> (point Chi Figm • reeflienee ( 222) for kmgi-
nial 'ii in -rami : [metre

;

1 T 1

1

n grammes per squaiv eentimi
Th: noted from Sir William

I'm Britamm
imental aathoritiee are Wertbeira, Rankine, Everett,

1 Sir William Thomson.
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—

Example.—For drawn copper :

Density

Young's modulus -

Rigidity

Mod. of compression

= 8'893 grammes per cubic cent.

- 1,245,000,000 gr. per sq. cent.

= 456,000,000

= 1,717,000,000

Elongation at " breaking-down point " . = '0033

Resilience under tension = 66,130,000 gramme-centi-

metres per cubic cent.

Tenacity - = 4,100,000 grammes per square cent.

The absolute measures of the moduli, etc., can be deduced by
reducing grammes to dynes, or multiplying the above values by
981-4.

The length-moduli and resilience in centimetres can also be
deduced by dividing by 8*893, the density. (See §§ 221, 222.)

TABLE (C bis).

Practical Table in English Measure.

Material.

Elastic Strength.
Young's

modulus and
risndity in tons

per square
inch.

Resilience under
Tension.

Stress in tons
per square

inch.
Strain.

as

In
T. C. s. T. c. S. a n

Iron, cast, 3 9 000375 •001125 8000 185 0-38

Iron, wrought, - 9 9 7 •0007 •0007 0014 13000 5000 1060 2 2

Steel, soft, 15 15 12 •0012 •0012 •0024 13000 5200 2900 6

Steel, hard, 25 25 20 •002 •002 •004 13000 5200 8000 165

Steel wire, strongest, 150 •0115 13000 276000 577

Fir, - ii •0021 700 35 2150 58

Oak, 2 •0028 700 35 4300 86

The above table is quoted from Prof. Cotterill's Applied
Mechanics. The first six columns of figures give the " practical

"

elastic limits of stress and strain for tension (T.), compression
(C), and shear (S.).
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T ABLE (D).

I'll i >f}th

In

In

Material.

I'ltimate Strength. Working Strength.

Tons per square im h. Ulti-

mate
Kl< Muni-

tion.

Tons per nnue
inch.

1. s. T.

n plates, 19

18

16

•20

•10 I«
St el, soft, 30 •J 2.1 7 7

St • <lium, U
St el, hard, 45

Ir n, cast, 19 i:» K>

L id, -

C< )per, sheet, ... ...

c . makf -

«i
c< | !!•. ! ...

St 11 . .

<> H 1 <>i:,

! H 0-3

This table also is tal CotteriU's Applied
ngth" of .-t materia] ia the

ma: imum statical stress t<» vrhiefa it ifl subjected in practice;

the rati«» which tli«- full all iigth bears t<» this oonstitutee

; factor d allowed t<» provide againei on-

for* en con* ies.
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TABLE (E).

Effect on Young's modulus of change of temperature.

Material.

Density in

grammes pet-

cubic centim.

Young's modulus in millions
of grammes per square

centimetre, at

15° 100° 200°

Lead,

Gold,-

Silver,

Copper,

Platinum, -

Steel, drawn, English,

Steel, cast, -

Iron, Berry,

11-232

18-035

10-304

8-936

21-083

7622
7-919

7-757

173
558
715

1052
1552
1728
1956
2079

163
531

727
938
1418
2129
1901
2188

548
637
786

1296
1928
1792
1770

Wertheim, Annates de Chimie et de Physique, torn. xii. (1844).

TABLE (F).

Effect on rigidity of change of temperature.

According to Kohlrausch

n — n (l -at- fit
2
)

where t is temperature Cent.

Material. a 18

Iron, -

Copper,

Brass, - - - -

0-000447

0-000520

0-000428

0-00000052

C-00000028

0-00000136



CHAPTER V.

< TKYIUNF.AK OOOBDINATEa

I.] Definitions and Notation. Lit any three orthog-

ufae.-s in tin- IkhIv he defined Ity giving

does t«> the parameters
f,

>/. J in the

>ns

(0
. ..(2)

fl (3)

II
ere Xi» Xr Xs ,l! brooms functions of the rectangular

•

The position of in which these surfaces

in ill then be fulrj rined by the values of the

an iirvilinear Cobrdin-
sni

'

ai 38 of P, We shall also spea rfaoes

d< ined by th< in ling coordinate surfaces.

Let \,. nr yt), be the din

rt- err« the tin linate

8ii faces whirl p n in the du in which tin-

tj ues of £ i/, f increase. Then

,< i r.) (')

the prop nted fox y, tdiex

We -hall consequently always wri

a V m
1 so for 9 an 1 also assume that x

t y and : have

hem dim bom them by means of (1), (2) and (8), so that

' £> 'i f
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If now we write

(4)

we shall have

L
l

=

/^ da;' fV
1 3£

=
/h df

v^
1 3f

l

2
~~

1 Br,

/V
1 Br;

=
h
2
dy'

v*'
A
2
^

l

3
:

A
3

(fa;'
/V

1 ^
(5)

taking for hv h
2

, h.
d
the positive roots of (4). The conditions for

orthogonalism are by (5)

dx dx dy dy dz dz
~

dx dx
"*"

dy dy dz dz

dx dx dy dy dz dz

.(6)

If these conditions be satisfied (as we shall always suppose

the case), equations (5) will also give the direction-cosines of the

tangents at P to the three curves of intersection of the pairs of

coordinate surfaces defined by r\ and £ f and £, £ and r\.

We know by Dupin's theorem (Frost's Solid Geometry, § 603)

that the curve of intersection of any such pair of surfaces is a

Line of Curvature on each.

Let dsv ds
2 , ds

3
be the elements of these curves, measured

from P in the directions of increase of (, rj, £ Then in proceed-

ing from P along s
1
we remain always on the same surface of

system (2), and also on the same surface of system (3), describing

a line of curvature on each ; that is to say, g alone varies along

sv Similarly r\ alone varies along e¥ and £ alone varies along 8r
The elementary (ultimately straight) lines dsv ds

2, ds3
are in

fact the three edges meeting in P of the element of volume
(ultimately a rectangular parallelepiped) bounded by the surfaces

whose parameters are
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The Cartesian coordinates of the further extremity of d& are

whence, by Taylor's Theorem,

Thus we timl

a

(7)

three edges of tl lemeni of volume
which in. -.-t in /'<;-. i,

Ultimately, ben tli i-- element epproximatee in form
to a rectangular parallelepiped, ha volume la

aii-l the treafl <>f khe three faces whieh meet in /' n

(•>>

n I w course really

dravn lot finite di of {, >;, c in Older to exhibit thecurva-
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tures of the edges. The small figure at the corner
((f,

rj, f) repre-

sents more approximately the rectangular parallelepiped into

which it degenerates, when d£, drj, dg are truly elementary.

231.] Formulae of Differentiation. Since ds
x
is an elemen-

tary line drawn in the direction (\, /mv j/J,
we have of course

3$ 3<£ 3$ 3<£

where <1> is any function of or, y, z, and therefore also of £, y, f

Similarly

Now by (7)

Thus

3<£ d& d& 3$
dx

m X^h
+ A

297
2
+ ^3^ etc -

3$ , 3<f>

3<l> 3$33> 34> 3$ 3<£>

3$ 3<£ 3<J> 3<£
h
*dr)

=
23^ +

^fy + v2^
3* 35 3* 35

3* , x
3*

7 , 3* , , 3$
= h

1
Aj^* + /*„Ao ^ + AoA

33>

•8^

3$

(10)

3#~"i' vi3£

3$ 3*
sy -Vi 3^

+ y^dq +v*^
3^> 3$ 3<£ 3<l?

Writing a?, y, z successively for <3? in the first three of these

equations we find

dx 3y dz)

3aJ 3.// 3z

3a: 3y
h^_

(ii)

Thus the conditions (G) for orthogonalism may also be written

cXe dx dy dy dz dz

^?3?+ 3^ 3f
+
3^3£

:

3a; dx dy dy dz dz

3^3j
+
3C9?

+
3C9j

=

dx 3a; 3y 3y dz 3a

3£3^
+

"3f 3>/
+
3f 3^

=

(6a)
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also deduce from (11)

1 /?*\2 /?v\-
(12)

It frequently happens that, while equations (1), (2), (3)

express :-" functions of x, y, z,

admit of very simple solutions tor the latter cottrdinafc

explicit functions of £ % f.
In such cases the formula? (11),

I may be used in preference to 5), (6), and (4). Bqua-
the further advantage that they

admit elimination of from the expressions for

1L and tl

l. ii 5) and 1 1 1 we hi

(13.)

The trai r/^, where $ ia any continuous func-

ti n o from Cartesians to curvilinears, is moat easily

et scted by an applicat i oich we know
tl 4

#-'-//
the triple integral is taken throughout any volume V, and

whole ' " being the

tnal

Let r the element of volume (8). The left-hand

inn thru \\>\y

V' 1
'

djdrjdj

j right-hand lids will be the ram of supplied by
. due t'» the

eawhii iementa of the raxfao pectively
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or, by (7)

h
2
h
3

.dr)d£

Of)

—- . clgdr)

Consequently the terms due to the opposite faces, which are
elements of the surfaces £+dg, rj+ drj, £+dg, must be

3*

a,

3J>

3f

Y]<W6

Thus the right-hand side of Green's equation becomes

{i(&f)
+l(4?) +l(i?)}^^

Equating the two expressions thus found, we have finally

*•-**
{
!(&-?-) *£(& I) *lte I) }

<"»

Hence, in particular,

t], f are solutions of Laplace's

(14)

whence it follows that, if g,

equation

hjh
2
h
s
must be independent of £ hjh^ independent of */, and

h^/hji^ independent of
f.

232.] Principal Curvatures of the Coordinate Surfaces.

It has been remarked in § 230 that, by Dupin's theorem, each

curve of the s
x
system is a line of curvature on each of the

j

surfaces (belonging respectively to the rj and f systems) which
intersect along it ; and so for the other systems.

The lines of curvature, at any point P, on the £ surface pass-
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hvj; through it are therefore the curves of tlif £j and :-v systems

which intersect in P. We shall adopt the notation

forth*- curvatures of tlo* normal sections ^l' the £ surface at P
through the tangents to the $j and $ curves, with a symmetrical

u<>n for the other Burfao
Tl

will denote the six principal curvatures of tta coordinate surfaces

at P.

I\ s'oJid Geometry we have

fo'V take the last of e<piati..n> (6 . and dr partial! v as

to . : tl

dgB^
+^ a*

+ 2j_2£_. -fl^ + 21 ** + 2£ *N 1
das 3a? 3jy drdy 'dz dzdx \m Zx 5? By dxcty dz dzdxJ"

Ne :t differentiate the same equation as to </
: thus

3a; 3fcdy
+
3y ?y*

+
3* -dydz~ \ft* 3*By

+<W +
d? 3y3«J*

Fii ally, differentiating as to zt

Mi Itiply the Bret of these resulta hy'fy/d.r, the -•<•, >n.l

air tin- third by /; :. and add.

Thu

2IR??!? ?5 j*l ^M
~3yLj J
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By (5) this may be written

f d2£ d2£ d2£ d2
£ d2

$ d2£ )

_
2\dx dx *dydy +

dz dz) \ \dx) +
\d</)

+
\dz) J

=
\
h
i^Wx

+^y +
^gfr'

by (4) and (5) '

= iv|v>by(lO).

Thus by (15)

V*i.^-V^

According to the ordinary convention as to sign, we consider

the curvature positive when the centre of curvature is situated

in what we agree to reckon the positive direction of the normal.

This we have taken (§ 230) to be the direction in which £ in-

creases ; so that the curvatures must be reckoned positive when
the surface turns its concavity in the direction in which £
increases.

The easiest way to get rid of the ambiguity of sign in the

above formula for the curvature, is by the following geometrical

investigation, due to Lame. It affords an independent proof of

the formula, and has the advantage of absolutely determining

the sign.

Let PSV P#2 , PS3
in Figure 30 be the curves of intersection

of the three coordinate surfaces at P, drawn—as usual—in the

directions in which £ >/, f increase ; and let PQV PQ2
be the

elementary arcs dsv ds
2

. Let PC and Q2
C be consecutive normals

to the £ surface : then the plane CPQ
2

is that of the principal

section of the £ surface through the tangent at P to the curve
PS

2
. Thus C is the centre of curvature of this principal section,

and we have

CP CQ
2

"I *

the upper or lower sign being taken according as the curvature

is positive or negative, or according as C lies in the positive [A]

or negative [B] direction of PSV Also PC is the tangent at P
to the curve PSV and the elementary arc PQ

1
or ds

1
coincides

in direction with PC or with CP produced.
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With centre and radius CQ
l
doociibe an elementary circular

] F, cuttii produced if not' at right angles in

T ; and from V draw PU parallel to GT to meet this arc in U.

Then Q,r is the element of the s„ curve drawn through Qv

Fig 30

ad', wii thioogn Qa
.

the Bam m PQ„
a d only duTets bom it in that tin- point bom which it Lb drawn
h s for ( »- rdinates ((+d£, tj, f) instead of (£ >/, s

>, arc must have

=
(
1+</

4)

^,(l + ,/f

»iuce i] i> ii nt of £
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Also, since PQ
2
TU is approximately a rectangle, we must have

UT=PQ
2
= ds

2
.

Now in the case [A] in which the £ surface is concave in the

direction in which g increases, Q1
lies on the same side of P as C.

Thus Qj lies between U and T, and

But in the case [B] in which the £ surface is convex in the

direction in which £ increases, U lies between Qi and T, and

UQ^QJ-UT
h} 'dh,_t . ds, ds„tTJf—l-F

or

By construction, the triangles PUQV CQ2
P are similar, so that

CP : P$ : : PQ
2 ; <^

CP cfej . C?5
2

In the case [A] this gives us

and in the case [B]

We have then definitely

and similarly

« * h
2
d%

57 -A?**

the curvatures being considered positive when the £ surface is

concave in the direction of increase of £.
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Writing down by symmetry the formulae for the other two
have for the six principal curvatures at

(£.

(16)

Finally ii D ~„ gt
s
be the absolute curvatures of the three

- of intersection in their osculating planes at P, we
have Ki ")Sl i

I

-
-,*«

.,

«v =<*,'
~

«v = {Ex
f
«

.(16a)

8 ] Surfaces in General. Let any snrfiace whatever be
represented by the equati

Tli a function :. and if we
w ite

»-®-*®' >(%)- (17)

tl di . wines of the normal to tin surface at any point,

n erred t will be

s/» %h th-
Thus, it* v u, vh - which this normal

element ts dsv dsv <fo8, drawn from the

B

*-^+«Z+^
A

h 3?

/*

"h 9f

(18)
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from which we deduce that

It
2

(19)

If dS be the element of the surface about the point (£ t],
f),

its

projections upon the coordinate surfaces through the point are

easily seen to be

fxdS _
d£d£;

h.Jix
,(20)

234.] Strain Components. Now let us suppose the body
to suffer a small strain, and let its effect on any point P in the

body be to change its curvilinear coordinates from (£ rj
} f) to

(£+a> rj+ f3, f+y); a, ft, y being small quantities of the first

order.

Let e, f, g denote the small elongations of the elementary
lines dsv ds

2 , ds3 , and a, b, c the small shears (§ 94) of the right

angles between ds
2
and ds

3 , ds3
and dsv ds

1
and ds

2 , respectively.

In general hv h
2 , h3

are functions of all three of the coordinates,

and by Taylor's theorem we see that the effect upon them of a
small strain will be represented, (to our order of approximation),

by changing them into h
x+ Shv h

2+ Sh
2 , h3 -f ShB , where

now by (7)

and therefore

SI <^9 pdfh
,
^9

6/,
2
= a_- + ^_- + r^

ds- d^

(21)

(l+e)ds - djL±^- d£ +
da - dhh(l+e)dSl-^TW

1
-h

1

+
h'

1 V6*
1

Ba Shi
e =

and so for / and g.

H V
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Thus finally

-*-£• ]

217

(22)

Substituting from (10) these equations may be put in the

ft"

.(23)

nail shew imply the cosine of the

altered Unctions of dsa and ds%. Thus

•- (A»+ ^X*a + 6X,) + (m* +W(MS +

'

* ^X'a + 8
"s)

= VA3 +^ + v
t
Sv

3 + V\j + /x
3
S/i, +v^

Now, bj

?,;>*1

aids. others. Tli and (6)

a id final I v. I

A, 3£ A, 3^

(24)
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Lastly, if A be the cubical dilatation at (£, rj, f) we of coarse

have A = e+f-\-g; and by (22) this is easily put into the form

A =W^S(wb) +I(Ws) +
4(ws) f

(25)

235.] The Component Displacements. Let u, v, w be
the components of the displacement of any point P (£, rj, f),

resolved along the elementary lines dsv ds
2 , ds

3
:—or, more

exactly, along the normals to the three coordinate surfaces which
meet in the point.

We proceed to find expressions for the six small component
strains in terms of u, v, w. These expressions will not be so

simple as in the case of Cartesian coordinates, because now,
instead of resolving the displacement of each point in three

fixed orthogonal directions, we resolve it along the tangents to

three orthogonal curves whose directions vary continuously from
point to point. We must therefore expect any expressions which
involve the variations of the component displacements along

these curves to involve also the curvatures of the coordinate

surfaces ; and this we shall find to be the case.

In Figure 31, PQ represents the edge ds
1
of the element of

volume (8), represented complete in Figure 29 ; its size being

supposed so reduced that its edges are practically straight lines.

QR is the consecutive element of the s
x
curve.

PC and PC' are drawn in the directions of the elements ds
2

and ds
3
, and QC and QC in the directions of the corresponding

elements at Q. Thus PQ, PC, PC' are mutually perpendicular,

and so are QR, QC, QC
Since PQ and QR are consecutive elements of a line of

curvature on both the rj and f surfaces through P, C will be the

centre of curvature of the principal section of the rj surface

through that curve, and C will be the corresponding centre for

the f surface. [The changes of direction of the elementary lines,

in passing from P to Q, are of course enormously exaggerated,

in order to bring C and C within the compass of the Figure.]

Again, if PQ be produced onwards towards T, the plane

TQR is the osculating plane of the s
1
curve at P ; and if we

denote the absolute curvature of that curve by xsv and adopt the

notation of § 232 for the principal curvatures of the coordinate

surfaces, we shall have

angle RQT =m
1

. PQ

m£ePCQ=mv PQ

angle PC'Q = ^^.PQ
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Fig.3.
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If u\ v', w' be the component displacements of Q, on the
system above described, the component of its displacement in the

direction QT will obviously be

u' . cos RQT-v' . cos PQG - w' . cos PQC
= v! . cos RQT-v' . sin PCQ - w' . sin PC'Q

j

and, to the first power of the element PQ or ds
1
this is

u' - (V . 73y + w' . J3>)d8v

Now

u =u + ds
l
ds-L

v = v + as,—-

w =w + ds,--

Hence, to the first power of dsv the displacement of Q resolved

along QT is

rdu

IK
tt + ^l ;

^-V.^-W.^
}

The displacement of P in the same direction is simply u ; so

that the increase of length gained by d^ is

**[]£ -«•/'«-•<A]
This gain of length is of course equal to e . ds . Equating these

two values, and applying the same process to ds
2
and ds

z , we have
finally

/-
dv
^— — w . 33 — u.33
os

2 r v k v

g = -— —u .
33

'

- v . T3h

.(26)

Substituting from (7) and (16), we can easily show that

A=w3[|(4) +
|(A-J-i)

+|te)] (27)
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i in the displacement of Q parallel to PC is very approxi-
mate

h w sin <2C7',

or
( + «.j5T

{)

The displacement of P in the Mine direction being simply i*;, it

is clear that the relatiw displacement of P and Q parallel to

PC will diminish the right angle QPC by the small amount

( -)'-,

which, to our order of approximation, i-

Siinilarlv,it' R be the tether extremity of the are c&l the relative

dis)la. P and /•' parallel to rQ will diminish the Bame
rig it angle by the small amount

Th j sum of these two, or the total at of the original right

an: le n da. and • />_ 1
.• i

-

t Article equal to the small

coi tpom :

The raluei nay be calculated with equal ease or

de< uced by symmetry, and finally we 1

dw 'dv

c = ; + + u . CL + V . J3_

(28)

5;* Si"'*"* ' "f*
Substif • hese may be put in the form

a. a
(29)
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If we compare equations (26) with (23), (29) with (24), and

(27) with (25) we see at once that

a = uh, \

vh
2

who

(30)

which we might have inferred from (7), all the six quantities

u, y, w, a, /5, y being very small.

Lastly, we have seen that the edge PR rotates about dte
2

towards PQ through the angle

and that PQ rotates about ds
2
towards PR through the angle

_ + „. fWf

Exactly as in equations (59) of § 123, half the difference of these

quantities measures the rotation (as distinguished from strain) of

the element of volume as a whole about ds
2

.

If then Qv G2 , 93
be taken to represent the three component

rotations of the element about the normals to the three coordinate

surfaces through its centre, we have

a 3m
, _, div

™' re-

writing down the symmetrical formulae for 6
3
and Qv and

eliminating the curvatures by (16), we have finally

<-*KO-l©]

(31)

These equations may also be deduced directly by trans-

forming the corresponding Cartesian equations of § 123. Thus,
with the notation of the present Chapter

etc., etc.,

2e
i
=
~rSvi

u + V
2
V + V

3
W

) ~ cr(/*i
w + Hv + Nw)ydy

etc., etc.
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L] Irrotational Strain. If the strain be pure or

tana] (§§ L24-127) there will of course be a displacement
potential <p. In this ease (j 124) the component displacements
parallel to Oj \ are

3<£ o^ft B<£

9bc* 9y* dz'

Thus, with our present notation,

0<b\

ox

o<i>

oy

od>
1 V

*
W

"i*

aii'l e ntlv

H • •

;
\ ; r ii infl i 1 ».

» //
j

••/.

3*

3*
"• »

-i

(32)

(30)

(33)

\\ afcuting bom (88) in (25), or 82) in (27), and corn-

It with
i

i iee that

(34)
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The conditions that a given strain may be irrotational are

seen from (32) to be

\hj-dc\hj
d

:W ssvv

which indeed, by (31), are simply equivalent to O
1
= 9

2
= 9

3
= 0.

d

(35)

237.] Stress and Applied Force. We shall employ the

same notation for stress as hitherto, writing now

P, U, T
V9 Q,S
T, S, R

for the components parallel to dsv ds
2 , ds

3
of the stresses across

the elementary areas described about (£ 17, f) in each of the

three coordinate surfaces through that point.

The components, in the same directions, of the Applied Force

per unit mass on the elementary mass of which P is the centre

will be denoted by H, H, Z ; and the density by p as before.

Just as in §§ 138-143, we obtain the equations of equilibrium

and of motion by considering an element surrounding the point

(£> 1> anc^ bounded by the six coordinate surfaces

£±i<%,y±l4ri, t±$dt

This element is cut up by the surfaces £ >;, f into eight such

elements as that of Figure 29, having P for a common corner

;

the lengths of the edges which meet in P being

ldsv ^ds
2 , Jc/53,

respectively.

Figure 32 represents this divided element (the curvatures

being much exaggerated, as before), and corresponds to Figure 8

in every respect ; the three faces turned towards the eye being

the concave or positive faces (§ 232).

The areas of the sections A^BfiJ)^ A
2
B

2
G

2
D

2 , A 3
B

3
C

A
D

3
are

ultimately given by (9), and the volume of the element by (8).

Let us now resolve the total stress across each face parallel to

the tangent at P to the 8
1
curve. This component of the total

stress, together with the applied force

V'A
'
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must be equal to the effective force

(37)
AS*,

in the Bame diieetiofL

Take first the ( races, the oottrdinatee of whose centres arc

F'g.32

(g± I The compoi to the s

r of ti ! across A
i
B

i

C
l
D

l
are ultimately

feii it-s of the t" r the ])(»siti\T

£fa e KFGH V to /'.V. .\\1 . .yj . are

[ i )>«

[' (')]

[ - < )]

parallel to tli«- tangent ;it P to the *, curve,

exae ! ofved the displacements in 286, we have for
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the required component of the total stress across the positive

£ face,

The corresponding component of the total stress across the

negative ( face JKLM, reckoned in the positive direction, is of

course

+K-^l(i)] Sin(i -^-^

+K-^l(Ai)] sintt-^-^!^
Substituting from (7), and neglecting squares of small quanti-

ties, these two faces together give a component total stress

Uw W>3 ]
d£dr)d£. (31

Again, the component due to the positive r\ face EHJK h

approximately

and that due to the negative >; face FGML is

These two faces therefore contribute

K© +^>« <39

to the required component.
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Finally, the positive and negative { faces, EFLK, GHJM
c««ntril'ii

{K +^i)] 8in(i ^"-»

; +
{[ ()><*

n r.-< lucti< «n.

[( i ]
"•• «

KM uatii v..,, and (40) to (37), we
i' the three equations of motion

• V

R irrangi! wliicli involve 7'an.l F, ami writing down
th i Q e^nnti- finally

(

I ^Sw

I, >. )
+

IhJ,)- ( )

Z-*)]-0

(41)

(42)
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By means of (16) we can put equations (41) into Lames
form

os
1

os
2

os
3

E v

.(43)

in which their analogy with equations (4) of § 143 is sufficiently

obvious.

238.] Stress and Surface Traction. Precisely as in §§

144, 145, we may show that the components of the traction

across the element dS of any surface (§ 233) passing through the

point (£ rj, f) must be

PX+Up+fft
UX+Qfx+Svl
TX+Sfx + Pv)

where X, /x, v are given by (18) and (19).

Hence if the bounding surface of the body be represented by

*(£> % Q- constant (44)

and if |Bf, IF, Z' be the components of the surface traction at the

point (£ rj, f) of the surface, we must have at every such point

the relations

Uh
d<S>

+ SK ^ = hH'
1

di
+Qh2

'dv

where k is given by

It is often advisable to choose the system of coordinates so

that the surface of the body shall be a coordinate surface

—

belonging, we will suppose, to the £ system. In this case (44)
can be put in the form g= constant, and we may take 3>= £

.(19)
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Thus by (19) \\ = h v and by (18) \ = 1, M = >, = (); as of course
it should be.

The boundary conditions (45) then reduce to

F-H'l (45a)

T=Z'
J

corresponding conditions, when the surface belongs to either
of the other systems, may be written down by inspection.

\ Strain and Stress. Equations of Motion in
terms of Strain. If the bodty be isotropic, the relations

n Strain and Stress will <>t* comae be, as in the last

Ch&]
/' = (m + n)* + (m-H)(/+</y

Q - (m + n)/+ (m - n){g + e)

R =
(
m + n)(j + (m - w)(« +/)

S-na
T rib

U-nc

(46)

The potential energy V, per unit ol unstrained volume, is

ak ) given by formulas (33) oo I Chapter IV.; and the

tot il potential energy W of t

w-MP w
To obt. atkXM of motion in terms of u, v, w, or of

Bs* /» y» by direct substitution from (22), (24), (25), or from (26),

16), and thence in (41) or (48), ia in the general

ca- of curvilinears an ex( t< dious operation, and it is

not easy to pot them into • symmetrical form.

Lamd has shown, by -i Filiation of the Cartesian

eqi itions, that they may l>e written

c -[()<©><=-H
<—£ [ (") CO]*--*-

»I-C^,(";)-'" ;(";)]
+ P(Z - ib) =

(48)

win e A is given 1 Ov Ov 9?
by (31).

to this form they prosenl a snflong analogy to equations

of 21 i which they were derived by Lame', as

stat< d ab
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Special Application of Curvilinears.

240.] Equipotential Surfaces. If the strain is pure

(§ 236), the resultant displacement is at each point normal to one
of a system of continuous equipotential surfaces, denned by-

giving constant values to the displacement potential, and the

Lines of Displacement (§ 127) are a system of continuous curves,

cutting these surfaces everywhere orthogonally.

There is obviously no reason why we should not take the £
surfaces for the equipotentials, when we can thus simplify our

formula. In this case the s
1
curves will be the Lines of Dis-

placement ; <j> will be a function of ( only, and we shall have at

every point

v = w = i

Also, by (31) and (32),

a = h
Y
u = h

x

(49)

(50)

Equations (23), (24), (25) now become

=/h M)3
L.JES .*+

1
t n

</f

= -A,

/^hji.

b = 2h
I

dA

-*$
Ft

EL
v £

(51)

from which we can substitute in (46) and thence in (41) or (43)
and (42).

Since the conditions (35) are in this case necessarily fulfilled,

equations (48) reduce to

d
(in + n)!^

(m +

3*Mft®H"-^)-«
..(52)
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The Beoond and third of these equations are reduced from
ormfl symmetrical with the tirst, by the consideration that

<f>
is

independent of >/ and f

!.] Principal Surfaces of the Strain. Let us next
Buppoee thai equations 1

1), (2 . (3) represent the three systems of

Principal Surf: The curves of intersection, sv s,, 8^
will then be the Lines of Bta

In tlii- maybe called the Principal Coordinates
me* applied to the coordinate surfaces under

these condition!] the term h
If €v €„, e

3
denote the principal elongations, and Nv X„, i\

r

3
the

principal n« -i iikiI >tiv»es, W6 muri have

P-NV Q-N9 J < = T=U=0.
The conditions that £ »/. { may be the principal coordinates

ai'e tli'

AjfiUa.^P-O

ed *r« have by .'-•

(53)

P*- U 'Pl

v y

(54)

JVt (m + n)« g + (w - n)(«,

Equation! (41) reduce to

.(55)

w

W»K$) .

{
st,+p(z-»)=o

(56)
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while (43) give us Lame's standard form

[241.

Ms + P(H - S) - (N.
2
- A,) . ,o

f
+ (N

2
- N,) . ra,

« + P(Z - w) = (AT3 - NJ .

f
GT

{
* (

A'
3 - JTJ . jjjr^

(57)

a,,

Finally, the boundary conditions (45) become simply

Ay*j
B4>

3*"-h#'

#A
3*

= hH'

*A 3*

'3T
= hZ'

(58)

If the surface of the body be one of the Principal Surfaces

—

belonging, let us say, to the £ system—these conditions reduce

further, by (45a) to

,(58«)
H' = Z' = f

the Surface Traction being in this case necessarily normal.

242,] Case in which all the Principal Surfaces remain
such. There is one interesting case of the last article in which
the strain is such that each of the principal surfaces is altered

into another—very slightly different—member of the same
family.

The requisite conditions obviously are :—a independent of

y\ and £ /3 independent of f and £ and y independent of £ and r\.

It should be noted that, although these conditions always
satisfy (53), they do not in general satisfy (35), so that a strain

of this character is a rotational strain—except for certain

particular systems of coordinates. In fact, by eliminating

a, fi, y between (34), we obtain the condition

dh
2

dh3 "dh
x _ 'd/t 3 dh

x
dh

2

or, by (16),

which is not satisfied by all coordinate systems.

-n $ $ *i k t) r * w I £ #

(59)
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ous Systems ofOwrviHru

2331-M

We HOW proceed to express our general formulae in terms of
•me of the most important systems of orthogonal curvilinears.

preliminary exercise, the student will do well to convince
himself that, on making

£ = •'•, e-y, C-«i

they reduce immediately to the Cartesian formulae obtained in

the last three Chant

24:>.] Spherical Polars. In Una system we write

C = w = tan-'fy/a:]

«wrsin0OQS»]

y=rain#8in (01)

urfaces f<»r whid nstani arc spheres with for

ntn- and riot radios; the f) wrfaeai ace right circular cones

ith \ I ieal angle ; and the w
anef through 0§ making angle a) with

ibstiUittng bom (61 in
1

1

lad

oseqaeal

/, . /t =—

_

1 ^ r
.(62)

cfoj m dr
t
ds

t
= r</0, ds3 = r sin &/u>

;

\ bile the element! of rolnme (8) become

r2 li

'I'l: u, i/ of i lade by the normal to the

s' rfae. # (r, ft H OtmatflMll with the normals to the coordinate

hi rfaces are by
I

I

A = i
IS*

i

1 3*

1 d*
h/-Mii m

(03)



234 CURVILINEAR COORDINATES. [243.

where, by (19),

h2=
yd?)

+ \rW) +
\^kTdd^)

(64)

Formula (13) becomes

Substituting from (62) in (16)

while by (30)

w

73 =
r w

T3 =
w r

r°«

33 = -

1

r

cotfl

r

(66)

(67)

It is evident from (Q6) that the s
}
curves on this system become

straight lines, and from (67) that a is linear and identical with

a. We shall therefore retain the latter symbol only.

Equations (22), (24), (25), (26), (27), (28) give us

du

._ 1 dv u _ d/3 u
J ~ro7

d
+
r~o7d r

r sin u ou> r r oo> r

r2 ^(wr2
) +_^X (v sin 6>) +—

|r sin a^ov o(o_J

r2 dr sin c0 oo>

sin e z/
r c)0\sin

1

w \

m~6J
= sm(9 i + -T-— -^

rsmfl ca> c0 sine/ ca>

x C>W
,

3 #101

r sin 9o> 3r(̂-)

'dv

'dot

1
r sin $%2

r sin 6/ oca or

or\r) rdO or r oB

.(68)
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while by (31) 26, - -1-Shvsin 6) - *f\
>

O(0_Jsin V\ dO

1 P"- sin ehwr)l
- /-.sin #[__

li} Vr J
--4-

fl
r?"-sin^(^)"l

r sin #L9<u dr J
26s

= l

The equatia kiou (41 become

V ~d6J

4

1 d2\

-\< "» *)

S^(esin('
) +

Bond

•(«9)

.(70)
rsin0 3u>

„|-P<«-H) = p(r/i-H)
/•Hill "

;
r «n*0 S9l

' r sin 6 3co

/' Q B -\ r, tfaitgiwn by *6)and (08).

! >n (48) we have

« + «SA 2np /a * D6,") ... -

If «{•
1 funding urfaco of the bo^fj the boundary

ndil •• fann

•(71)

9* = h^,\
r

or r 00 r sin cto>

or r 30 r sin oo>

.(72)

I .

'
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The conditions (35) that the strain may be pure follow at

once from (69), on making

e^o, e2
=o, e3 =o ;

and in this case, by (32) and (33), if <p be the displacement

potential,

o<j>

1 cty

rod

w = ry sin 6 =
1 _3tf>

r sin 6 dm

.(73)

If r, 6, co be the principal coordinates of the strain, we must
have, by (53),

sin 2

ou
+ r2sin

dr\r) 90

(74)

or the equivalent conditions

sin•2^Vd/W
dd d(o

0(o or
.(75,

If these conditions be fulfilled, e, /, g, as given by (68), are the

principal elongations ev e
2 , e

3 ; and the principal normal stresses

Nv iV
2 , N3

are then given by (55).

Lame's equations (57) then take the form

-1 *JW* e) - ^2°!i ~p(i- H)
rsin 6 ov rsm 6

—=—^ -^-^ = P(W- Z)

(76)
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while the surface conditions (58) become

Ns
- = hr sin 0Z'

(77)

244] Cylindrical Polars. In this system

>/ = ^ = tan- 1

( /

whence

7
ar= rcos0, y = rsin#.

.(78)

The /• right circular cylinders with Oz for axis, and
• for radium

; fche surfaces arc planes through Oz.

ii /'.= 1,/',= \A,-1 .(70)

i id e utlv by (7)

d$i «= dr, cU, = rrf0, rfa,

t ie element of vohime s iug

n/rrf&fe.

(X, fA, v) of the angles made by the norma] to any
s rface <I>(r, 0, z) = t'misf,i ,,t with the normals to the three

c ordinate surfaces at the same point are, by l
s

»

= 12?

= ! 2*
h 5

w ier.

.(80)

'otmnla | IS) now take* the form

(81)

(82)
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Substituting from (79) in (16), we get for the curvatures of

the coordinate surfaces

£7 =0, (P=0r z ' z

(83)

and by (30)

(84)

Obviously on this system the s
1
and s

s
curves become straight

lines, and a and y are linear, and identical with u and w. We
shall therefore retain the latter symbols only.

By equations (22), (24), (25), (26), (27), (28) we have

while by (31)

du

, 1 dv u _ d/3 u
J ~rdO r~d0 r

dw

* 1 3/ v d/3 dw

1 dw dv 1 dw d(3

r otf oz r ou oz

, _du dw
dz dr

dr\r) r W dr r dO

20J

20o =

r dO dz

du dw
dz dr

1

r or r du

.(85)

(86)
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The equations of motion (41) reduce to

r W 'dz

(87)

where 1\ Q, It, 8, T. iven by (40) and (85).

Lame?8 transformation (48) becomes

.(88)

(89)

If $ be the bounding P'.irface of tlie body, we have for the

boundary ooodHi

being given by 'Hi).

re condition-* tliat lha strain may be pure are of eonfBe
h, o. o,=o, e

3
=o;

id in thk ra ;f pMt.ntial,

fl
1 3*

a*

(90)

e conditions thai 13 be the principal eodrdinai

train an-, by

1 *dw /dv

r 30 <k
=

=9u 9w

3/t>\ 1 d»/

(91)
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If these be satisfied, e, f, g, as given by (85) are the principal

elongations ev e
2

, e
3 ; and the principal normal stresses Nv N9 iV

3

are then given by (55).

Lamp's equations (57) reduce to

1 3

1 ZNa

artf
y.

dd

anr
8

dz

r

-p{S-H)

while the boundary conditions (58) become

or

iV
2£)#

(92)

.(93)

245.] Conjugate Oylindrics. In this system

f +»? = #(»;+ ty)
)

(94)

where t denotes x/ — 1 ; F being any function whatever. This

relation constitutes £ and y\ conjugate functions of x and y. Some
of the most important properties of these functions will be found
collected in the examples at the end of this chapter. The student

will find no difficulty in proving them for himself.

Differentiating the first of equations (94), we find

S'-'S-fMl
31.\-& = lF'(x + lv)\
a» dy V

Hence, eliminating F' («+#),

51.
dy -g-@--a>

and, on equating real and imaginary parts.

?! = ?? ^
dx dy

By 'dx)

.(95)
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Similarly, by differentiating (04) as to £ and i/, we find

dr,

3y

*S

.(95*)

5) we deduce by differentiation

oj
(96)

and in fact Chnungate Functions arc sometimes defined as solu-

whicl'i also satisf

It farther follows from (95) that the coordinate surfaces satisfy

- (6) of orthogonalism. The £ and >/ surfaces are in

fact r <>gonal systems of cylinders with their generators

parallel t-

Again.

ence

>

-*,

1 th» \ i >lume be©

(97)

ices to

wl le equations 1m and L9 give us

I , h tt\

h S

+
3?'

«i'\
•'

„ .[Clench)

.(98)

.(99)

(100)
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Substituting from (97) in (16), we find for the curvatures

and by (30)

© =0, JS .f*2 1? ' H 9f

^z
= 0, W =0

i7 z

(101)

(102)

On this system the s
3
curves become straight lines (parallel to

Oz), and y is linear, and identical with w.

The strain components are now given by

idu dh v
e = h—- - v—

d£ dy

/. 7 dv dh

dw9=
dz

\

/

7 3w 3v
« = fi y—

dr\ dz

, du vdw

•-&*> +|H '

(103)

and the component rotations by

20j = h

26 =

dw dv

drj dz

du ,dw

"-IKD-I,©]

(104)
!
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a [nations of motion (41) become

243

.(105)

where P m;> and do:; .

By Lame"s transformation (48

n)A— - *Jn //— - —* I

li<- on

-rf*-H)
[ '*] (106)

face of the body, the boundary conditions (45)
Hue

3* „ *"
lT 1 + 7^=hr

J :

(107)

wl >re h i

Tin- eondhJOPi that the strain maybe pure follow at -

fro ii (I'M i on dm]

ail' in '

pot ntial,

6,-0, e,-o, e8-o ;

the displacement

(108)
i

-8
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If g, r\, z be the principal coordinates of the strain, we have
by (103)

(109)

Or) oz

OU jOW A

The e, /, g of equations (1 03) will then be equal respectively

to it, e
2 , e

3 ; and JS\, iV
r
2
, JV

3
will be given by (55).

Lamp's equations (57) will take the form

& d/2i

G)*»i^
= /**-H)

dK
z = P(w-Z)

and the boundary conditions (58) reduce to

dr,

OZ

(111)

246.] As an example of conjugate cylinders, let £ and rj be
given by the equation

x + iy -C cosb(f + L7)).

Then it is easily shown that

x — C cosh f . cos rj

y=C sinh £ . sin

os^j

in 77 j

Thus

«
+

y-

C2cosh 2
f G'

2smh2
£

x2 v2

C2cos2 r? C2sin2>7

= 1

= 1
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The £ cylinders have for their txansi tions a system of

confocal ellipses, and the q cylinders a system of confocal hyper-
bolas : the common foci of the two systems being situated on the

at etjual distances on either side of the origin. These
confocal conies are represented in I 38, j '230.

From (12) WS deduce

A-
C Jcu8h?t - cob4*; C y/ainh^ + sin-/,

and from (101

X3,
Mil '/ . C081}

sinh £ . cosh£

geometrical interpreter as follows. If

A
f
B; A, verse and e.»n jugate seini-a\e> of the

ellipse and bjperbols intersecting at any poini P, (£ q or I

ellipse and hyperbola respectively are

t"V
i/; 40

(4«-

J7f

(i*-^

847.] Surfaces of Revolution. All the more important

<• iind through ":. and many of
t em have two such pi ntuallv perpendicular h ia clear

t at if tip be a plane of symmetry fox the £ and ,/

c Ibid s ill 1"- in ' sections
1. the pUl , whieh w.- may call

I
i ,, CUTVes (strictly

tl e :

Itf then we euppose I te about 0m, the

t\ upon it will describe two
Ox fox their

Adding t<i these tl D of planes thxOUgb
tl • axi luti.-n. ire hi onal

linate surfaces,

I

&-

I
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be the original cylindrical system. Then the transformed

system will obviously be

f = Xi(«> sly***1
)

J
? = x2(

a;
> *Jy2 + ^)r

Z=t-tm-\z/y) J

Now the only quantities involved in the equations of this

Chapter which depend in the least on x, y, z are hv h
2, \ : and

these are supposed to be expressed, before insertion in the

equations, as explicit functions of £ q, f (§ 230).

But the symmetrical form of (4) or (12) shows that x, y, z

may be interchanged in any way without in the least affecting

the forms of hv h
2, hv when expressed as functions of £ rj, f

We may therefore take the axis of revolution for the axis of

z in our new system, and take for Ox and Oy any axes whatever,

perpendicular to Oz and to one another.

This amounts to transforming the cylindrical system

d = Xi(*i, yj

into the system

f = Xi(*> Jx2 + y
2
Y

->i
= x2(

z
> Jx2 + y

2
)

(113)

0x
x
being the axis of symmetry of the old system, and Oz the

axis of revolution of the new system.
Similarly, if 0yx

be an axis of symmetry, we may construct a
second system of surfaces of revolution, denned by the functions

£ = Xi(>Jx° + y\z)\

*/ = X2(n/^?>*)
(1U)

t=t*n-\ylx) J

Suppose that equations (112) can be solved so as to give xv yx

explicitly in terms of £, ^ : let the solution be

"i - Fi(£v Vi))

yi = ^vVi)\ (H2a)

*«6 J



Then the solution o! (113) will obviously be

y-nnf.JVte v) (113a)

and tii- solution of (114) will be

y-«nf./'1(£ ,,,
(
114«)

I

r.\ formula (12) ire have, for tl I system lli*
.

/.;"V(^) (

i

.(115)

(116)

i 3

; ,i
i

.'. s(';) (',)

;

the second transfer I 1 4

1

i •» i )

Tl us neither transformation I
A, and

ions of ( and 17. But, on the other hand, tiny both make
h^ I pendent on £an«l >/. Considi mmetry alone are

thai all three must L«- i mlt pendent oi

248.] As a simple example of tin
i

iticle, let

us transform from the cylindrical polau I 244 to the spherical

pol ir- of

,(117)
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The original system is

*h = tan-Xyi/^i) p
Cl = *l J

whence

3/l
= ^! • Sin ^i ,

•l-fi J

and therefore

!
-i

x -^ l «i

This system is perfectly symmetrical about any axis perpen-

dicular to 0zv and consequently the two transformed systems

are identical. They are given by

£ = Jx1 + y'1 + s2

7/ = tan- 1

[ x/a;2 + 7/
2
/^]

whence
&*>£. sin 7; . cos £\

2/-£.sin?/. sin fl,

Z mt£ . COS T)

and

Comparing these results with the general formulae, it will be seen

that they correspond in every respect.

249.] Conjugate Surfaces of Revolution. Let the original

system of cylindrical surfaces be given, as in § 245, by

fi+*,h=^(ai + *yi) (
y-0

Then the transformed systems of surfaces of revolution will be
given by

( + l7
1
= F(z + lJx* + ^) (118)

and

g + flf-lfV^ + y
1 ***) (119)

respectively, according as the axis of revolution Oz coincides with
Ox

x
or 0yx

.
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If the solutions of these equations be given as before by
>. 1 1 13a), < 1 14a), we have by substitution in (95a)

/'.

i I

when 1(1*7),

i-i, ^( ) (
) s(') ( )

Thafl if we write

I

we have in either of the tram I

l

h
I

\'

..(120)

(121)

oth h aud It being fin at ( ami >,. but i 1 1. 1.
j

• iidenl of £.

Writing tor £ m that has the same meaning as in | 244, «re

io8, instead of the values i

'i hus If, m in absolute curvature of th.

ret*, we bare by [16

, <
#»« u

l*v '**

fe-'B
i,

i»
CT
*
a _

ft,

CU1\,

".-.".-,».;[(;) , ,]

(111)

da u metrieafly; fortheee curve roles in planet!

rallel to ./•// ami having thrir centres in O;. tl. t' revolu-
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The elementary arcs are

s
h

_ dr
l ds _ de

as
1
—-, at>

2
—j-, ab

3
— —

,

and the element of volume is

The formula (13) becomes

and equations (18) and (19) reduce to

d$2
.(123)

(124)

and

also, by (30),

h
*='-[(D**(i)']*"i*)'

"=si

(126)

The strain components are

e = n— - v—

-

9£ drj

/
, ?)v dh

drj 3f
, &w h oh

9 = h -u^.
h_ dh/

K 3£
V
h' dv

*l§teM£)>*
,dto

yW f
,(127)

6-A'
,3w A 9
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and the component rotations

86
[ i ) ]

'

251

U)]m— I

.(128)

(129)

Lame'.s equations (48) become

r-"
M
* [*,(*

)-'']

[ |
,

]-rt*-z)J

nlitiun> tliat the -train ina\ DC ]-ui, .

e
t
-^e

f
=o,e,=o;

; i-l i DeiptJ o">nlinates
'

tli. in

tt-O, b

latter case, equat duee to

.(131)

e student will find no difficulty in adaptu
I
and

•): aiul. in the case of pore itrain, (82) and 81
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It should be carefully borne in mind that £and ^ are conjugate

functions of r and e, where r=+Jx2+ y
2

, as in § 244, and that

they only satisfy the equation corresponding in form to the

equation

"da;
2 'by2

of § 245. That is, they satisfy

and consequently by (82)

,, 1 3£

r or

They are not therefore solutions of Laplace's equation, v2<£ = 0,

as are the conjugate cylindrics of § 245.

250.] As an example of Conjugate Surfaces of revolution, let

us transform the cylindrical system of § 246 by the method of

§ 247. We see from Figure 33 that this system is symmetrical

about both 0x
l
and Oyv We therefore have the two transformed

systems

Z + t Jx2 + y
2=C COsh (£ + if])

and Jx2 + y
2 + iz=C cosh (£ + 117).

(i.) The first system gives us

x2 + y
2 z2

1

GT2 sinh2
f
+
^cosh2 £~

z2 x2 + y
l _

1

C2 cos- yj C 2 sin2 t]

the £ surfaces being confocal prolate spheroids, and the t] surfaces

confocal hyperboloids of revolution of two sheets. These surfaces

will be described by the rotation of Figure 33 about the trans-

verse axis.

We have
x1 + y

1 - C2sinh2
£ . sin 2

ry,

and thus by (121)

/*' =
C sinh £ sin tj

1

Jwah*£ + sinV
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I
The second system gives us

C,2cosh-£ C-'sinnr 1

)

= 1

Here the g surfaces are I oblate spheroids, and the //

surfaces confoeal hyperboloidfl of revolution of one sbeet These

Fig.33.

su faces will be rlpNcrdn-d it" Y is made to rotate about its

co ijugat

we have in thii case
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whence by (121)

h =-

C cosh £ cos r)

1

C \/sinh2
£ + sm2

r)

251.] Spheroidals. The system of the last Article might
be employed in dealing with bodies whose bounding surface is a

spheroid of revolution : but, as a matter of fact, the formula?

may be much simplified by a further transformation.

Let the bounding surface of the body be

HP -4- 1m 2J

^P +55 = 1
(
l32>

then any confocal quadric must be of the form

££*£? <
i33

>

Let £ and y\ be the lesser and greater roots of (133), considered

as a quadratic in p.

(i.) When the bounding surface (132) is a prolate spheroid,

B2>rj>A 2>£> -oo.

The £ surfaces are the prolate spheroids

confocal with the bounding surface (132), which is represented by

£ = (135)

For positive values of £ these spheroids lie within (135), and for

negative values of £ without it.

The tj surfaces are the hyperboloids of two sheets

x* + »/
s

B2 — rj rj — A "*-'

which are also confocal with (132) or (135).

Taking, as before,

it is easily shewn that

o . on (A 2 -£)(v -A 2
)

B2 -A 2

1 (136)

.(137)
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mV 1
-

/*,=
/;-- .!-•

.(138)

Distmgoiahing tli«- prolate Bystam <>f the last Article by the

suffix l. we have evidently

C%mh%
PeoaVg^JP-l
( '._,eos-7

1

/;-' - >/

Can2
!/, =rf-A*

ooeh*£, - JFni

i; = /l
aooe2T/

1
+ /

When the I Bunding surface is obli

A*>yi>B*>£> -oo.

The £ surfaces are the en 'date spheroi and the

ar«* the OOnfdcal hyp'-rholoids of OM

(139)

(140)

. / ^«-*«

...(141)
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If we distinguish the oblate system of § 250 by the suffix 2,

we find for the relations connecting it with our present system,

C 2cosW£
2
= A 2 -£

C 2smh2
g2
= B2 -$

C 2COS2r)
2
=A 2 -r)

C 2smhf
2
= 77 - 7?2

A 2 -B2 = C2

j

?7 = £2cos2772 +^ 2sin2772 J

In both the systems of the present Article, the bounding sur-

face is given by £=0 ; hence h=h lf \=1, /x= 0, v=Q, at every

point of the surface ; and the boundary conditions reduce to

U=w[ (142)

T--=Z'\

when £=0.

252.] Ellipsoidals. Similarly, in dealing with a body
whose bounding surface is an ellipsoid

x 2 y2 z 2
,

it is convenient to take £ rj, f as the roots of the cubic in p

7T- + JiT--+-?- =1
(
144

)A 1 -p B2 -p Vj*—p

Assuming that A t
B, C, and also £, rj, £ are in descending

order of magnitude, we may shew that

A 2>(>B2 > V >C2>£>-*.

The £ surfaces are the confocal ellipsoids

/Y>2 nl% p2

Jt=i*rf=l*1F=F
l

> (145)

the r\ surfaces the confocal hyperboloids of one sheet

/y.2 /j/2 9-2

-1, (146)
A'2 -rj B2 -7

1 V -C 2

and the f surfaces the confocal hyperboloids of two sheets

/y.2 ,.2 9-2

^8-f £..£2 f_£2
I
1 *'*
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-ilv deduce that

.(148)

1 V~ h-ixc-ir

-v-

i the las! mditions are

cr-H'l.

r z I

w len £=0.

(149)

(ir,o)

-A.

po

' ^ £j» */i 5 £ ' an
.

v number of ]'.

ana y, £ ami ;; will also be conjugate
:tions, u

I

:
A - 20 (0-'

I ll'l I l< ' M J I V" MM

njugate I \a of £an<l ;/.

'>. si • £ and i pie I,

pair

lnded of them, lik«- £ and »/.

,:-

:

and i of the follow

pair- i and y : and find
r

(

/• and ft denote the cylindrical

polais of ... 244.]

ar«

Com



258 CURVILINEAR COORDINATES. [252.

f»j> log (*/£),
(i) {^Pl°8

r v /f^rf + Car-'Jcosjpfl,W 1 7? = (C^p - C2
r-?) sinpQ

J

.. /^(C^ + Cae-^cos^,

j" a = (C
1
cos pr] + C2

sinjor/) cosh^£,

( y = ((7X
sin p?7 - C2

cos 7?^) sinh/?£
;

(*)

h i Jy2 + (x±A) 2

J (# + i4 coth£) 2 + 2/
2 = .4 2 cosech2

£,

'

( x2 + (y - A cot rj) 2 = A 2 cosec2
1).

5. Transform the cylindrical surfaces of the last Example
into surfaces of revolution by the method of § 249, and trace

them geometrically.

7. If P be on one of the common generators of the conjugate

cylinders £ and tj, and if PSV PS2
be normals drawn in the direc-

tions in which £ and rj increase, show that their relative position

is always such that to make PS
1
coincide with PS

2
we should

have to turn it through a right angle in the positive direction of

rotation about Oz.

7. If any system of orthogonal surfaces be inverted as to

any centre of inversion, show that the new system thus obtained

is also orthogonal.

8. Show that the pure strain defined by

$ =F
x
{r) + rF

2(0) + r sin 0F
s
(a)

has the spherical polars r, 0, & for its principal coordinates.

9. Show that the pure strain defined by

<t>
= F

1
(r) + rF

2(6) + F
3
(z)

has the cylindrical polars r, 0, z for its principal coordinates.

10. Show that the pure strain defined by

t-Ffoil +FM
* Here e denotes—as elsewhere in this work—the base of the Napierian

logarithms.
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will have the conjugate cylindricfl £ rh z i'.»r its principal coordin-

tne differentia] equation

ad ^>) -<A W)
11. Show that in the corresponding case for the conjugate

surfaces of revolution

* = ^(£ >>) + £• ^W,

the sau nation as in the last

iple.

L2. show that in the corresponding case for the spheroidals

251

or <f>
- J{A*-()(V-A*) . ^(0),

accord in:: M flw : urfaces are oblate or prolate: F, being any
root of the differential equation

3. Prove that | are satisfied by the
foil wins forma of irrotationa] strain—

k) I erica] po

*=/

I j'olars

(i . >lnt ion

when /' /' in the last example.
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14. If the £ and rj surfaces are conjugate surfaces of revolu-

tion, as in § 249, show that

15. Show from equations (16) that the rj surfaces of § 251

(ii.) and of § 252, are of anticlastic curvature.

16. In the case of § 251 (i.), what locus is represented by

17. In the case of § 251 (ii.), what locus is represented by

18. In the case of § 252, what loci are represented by

and 1 = £=B\
respectively ?

19. Deduce from equations (57) the conditions that a Line

of Stress may transmit a constant traction or pressure in the

direction of its length, under no Applied Forces.

'

20. Deduce from equations (56) the conditions that a Tube
of Stress may transmit a constant tension or thrust in the

direction of its length, under no Applied Forces.

21. Show from equations (57) that an isotropic medium may
be held in equilibrium, under no Applied Forces, by the system

of stresses

where if is a constant, and ¥ a function of £ only, satisfying

Laplace's equation

y
2¥ = 0.

[According to the theory of Faraday and Clerk Maxwell, this represents

the condition of a dielectric medium in the neighbourhood of charged con-

ductors. K is the specific inductive capacity of the medium, and ^ is the
electrostatic potential, so that the £ surfaces are the equipotentials.]

22. Assuming equations (47), (46), (22), (24), (25), (42),

deduce (41) and (45) by the method of § 219.

23. Lame' obtains, in his Coordonnees Curvilignes, many
groups of equations involving hv h.

z , hs
and the curvatures of the

coordinate surfaces. The following examples may all be deduced
from the formulse of §§ 230-232 ; each is, of course, the type of a

group of similar equations which can easily be deduced from it

by the principle of symmetry.
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1 1
©-

^V.)+/s^A)+^A)-a



CHAPTER VI.

GENERAL SOLUTIONS AND EXAMPLES.

The General Problem:—Preliminary Theorems.

253.] Recapitulation of the General Problem. Let a

homogeneous body of natural density p be subjected to a small

strain ; and let u, v
}
%v be the component displacements, parallel

to rectangular axes fixed in space, of that point of the body
which in the natural state occupies the position (x, y, z). Then,

if e, f, g be the component elongations of the element described

about that point, a, b, c the component shears, A the cubical

dilatation, and 6V 6
2, 3

the component rotations, we have
by §123

dw
dz

dw dv
a = —- + --

,

oy oz

du j. dv

ox oy

j _ du dw __ dv du
dz dx dx dy

\_du dv dw
dx dy dz

(i)

a _\fdw dv\ n _\(^>U dw\ n _ \fiv du\
X ~\dy~dz} ^-*\dz~dx) '

s
~

2 \dx dy)'

Also, if P, Q, R; S, T, U be the normal and tangential com-
ponents of the stress at the point, we have by §212 for an
isotropic body

P =
(
m + n)e + (m - n)(f + (/)"

Q = (m + n]f+ (m - n)(g + e)

B=(m + n)g + (in - n)(e +/)

S= na

T=nb
U=nc

(2)
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and by *214

•-£/«

c= !

uioofl constant^ employed—of which two are independent

—

_13) by the relations

T 1 .-.r-"-

*

+ *" W
Til- v r per unit of onstrmined volume (J 212)

by
- n)\- + 2m(^- -*/- a 2 + b- +

mid khifl in be thrown into various other forms by
1 3), and

li' X. V. '/. be the <•
tfl of the Applied Force pex unit

i lass ted about the point
, the

i (oationfl of motion me I

le of be h rit t tii in

i th< L8,

% +Dz'*

g-rf*Ox oy cz

OX

3y

OS

I

S ( j **-*>

(7)

(8)
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The equations of equilibrium are at once derived from these

by making
u = v = w = ;

while; if the body be free from Applied Force, we have only

to make
X= Y = 2 = 0.

If F, G, H be the components of the Surface Traction per unit

area on the element of the bounding surface of the body described

about the point (x, y, z), and if X, yu, v be the direction-cosines of

the outward normal to the surface at that point, the conditions

to be satisfied at every point of the surface are by §§ 144, 145,

\P + txU + vT = F \

XU+fxQ + vS = G I (9)

XT + fxS +vR =H )

which can be expressed in terms of the strain components or of

the displacements, for an isotropic body, by means of (1) and (2).

If the component displacements of any point (x, y, z) on the

bounding surface be u , v , w , then u, v, w must be such functions

of (x, y, z) as will satisfy the equations

v = "o [ (10)

at every point of the surface.

The General Problem for an isotropic body is to determine
values of u, v, w as functions of x, y, z which will satisfy (6), (7),

and (8)—or the corresponding equations for the case of equili-

brium—under a given system of applied forces, at every point in

the interior of the body, and which will at the same time satisfy

the boundary conditions (9) or (10)—according as the Surface
Tractions or surface displacements are given—at every point of

the bounding surface.

Of this problem no universal solution can be obtained—that

is to say, no solution for u, v, w as functions of X, Y, Z, F, G, H,
without reference to the forms of these quantities themselves as

functions of x, y, z—but several very general solutions have been
worked out, each applicable to a large class of cases.

Before proceeding to the consideration of these solutions, we
shall state and prove five general theorems concerning small
strains which will very much simplify our task. The only
general principle which these theorems involve is that of the
superposition of small strains and stresses, which has already
been sufficiently established (§§87, 88, 153-155), and which finds
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its mathematical expression in the perfectly linear form of all

ial differential equations of our theory. For the

sake of the greater simplicity ox the formulae involved, they are

proved for an i>« -tropic body, but the method of proof is perfectly

al, and they are equally true of all perfectly elastic 8olia8\
' of tht appli-

; ] THEOREM I. X ,,/ what-

r of -1/

.«*, or of

-

will be observed thai this T katement

I om tic Solids

on which we have based apter

owing
i

• merely return to nrai

irinciples, and is so n ,<^es, a test of the accuracy of our

leductions.

[f it be possible, let the bo<l\ be maintained in the ^tato of

'V Of 0») iu Vb* absence of any Applied
<\>rc

By ie total
i

body la

qua) in of Appli.

which i In, in brij Erom
And since the work done

narily be aero, it follows

hat in the supposed stat< d we must have

//' «».

if V be the potent rgy per unit volume,

\
w Iff

; nd the I
l' ' . an ess.-ntial positive

the integral W ia the mum of a numb
« ^ntially positive quantities, and this sum cannot possibly

finish unless each of it- termfl v\ fcely. Thus for

< very we musi ha

r=o.

I at i mm of a number of essentially positive
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quantities, and if V is zero we must have, everywhere throughout
the body,

e -f= g = a = b-—c-Q:

that is to say, the component elongations and shears vanish at

every point, and the supposed strain, if it exists at all, must
consist simply of varying rotations (§ 48).

Now, by (1) we have

d\L ^ni< r\ii\_ dv _ dw _ q
dx dy dz

dw dv _ du dw __ dv du _ ~

dy dz dz dx dx dy

(ii)

and therefore
d2u d2u

dx2

d2v

dxdy

&w
dzdx

dxdy

?Pv

dy2 "

d2w

dzdx

d2v

dydz

d2w
dydz dz2

= 0'

=

=

dy2

d2^
dz 2

d2w
d%2

d2v _ * dhc

dxdy

djw_

dydz

d2u

d2w
dzdx

=

o,
dth

dx2

dzdx dy2

dxdy

d2v

dydz
=

Thus all the second derivatives of u, v, w vanish, except

d2u d2v d2w
dydz dzdx dx'dy

and u, v, w must be of the form

u = A
1
+ B

Yy + Cx
z + D

Y
yz~\

v = A
2
+ B

2
z + C

2
x + D

2
zx V (12)

w = A
3
+ B

3
x + C

3y + D^xy)

where the coefficients are absolute constants.

Substituting from (12) in (11) we get the three relations

B
2 + C3 + (D

2
+ D

s
)x = 6\

J?i +(71 +.(2>i + 2>
1)f«Ok

B
1
+ C

2
+ (D

1
+ D

2
)z = 0)

which, since B, C, D are constants, are really equivalent to the six

B3+ C1
= B

l
+ C

2
= B

2
+ I)

3

D
3
+ D

1
=D

1
+ D

2
= 0.

B
2
+ C

s
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Thus

and u = A
x
-C0 +

.(13)

The only distribution of displacement which can he maintained
without Applied i or Surface Tractions is therefore com-
pounded oi the bodily translation

and the bodily rotation

which fa simply such as can be suffered by any perfectly rigid

tHote a strain at ail.

S ]
THEOREM II I through-

;
. /• a/n/y

f'ttl
;l

placement
under the sah >\r,;j,ti,>ii

'

l by
,,

i

X . V & components ol the gun m of

Applii at, and i j item ox Surface
and if i ibution of strain

with the gi • must satisfy the eqi

+4 ( ) ( )
*-•

( )(. )
r-o

loot the body, and

n)e + (m - n)(/+ y)] +
/

= F*\

M m G
Xnb + fina + i{(m + n)y + (m - n)(e +/) II

I

(14)

,(14
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at the bounding surface. Similarly, if {e',f\ g', a, b', c'} by any
other distribution of strain consistent with the given conditions,

we must have

and A[(ra + n)e + (ra - w)(/' + g')~\ + fine' + vn6' = #
A?^c' + /x[(ra + ri\f' + (ra - n)(g' + e')] + vna' = G

Xnb' + pa' + v[(ra + w)gr' + (ra - n)(e' +/')] = H
Let e'=e+e", f'=f+f", g'=9+g", a'= a+ a", b'= b+ b",

c=c+ c". Then by subtraction of the two systems of linear

equations we find that

(ra + n)^ + (ra-n)(_ +^ +n(_ +^ =

throughout the body, and that

A[(ra + n)e" + (ra - n)(f" + g"j\ + fine" + vnb" = 0"!

Awe" + //{(ra + n)f" + (m - n)(g" + e")] +- w*a" = I

Xnb" + fxna" + v[(ra + n)g" + (ra - w)(e" +/")] = 0]

at the boundary surface.

Comparing (16) and (17) with the standard forms of the

equations [(47) and (49) of § 217], we see at once that {e",f", g",

a", b" , c"} is the specification of a strain such as could be main-
tained unaltered without Applied Forces or Surface Tractions.

Thus, by Theorem I,

e" = f" = y" = a" = b" = c" = 0;

and consequently

e' = e,f =f, g'=g, a' = a, V = b, c' = c.

Thus only one distribution of Strain can satisfy the given
conditions, and the solution is completely determinate as to the

strain.

Consequently, the distribution of displacement is also deter-

minate, in so far as it constitutes a strain : that is to say, with

(17).
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the sole exception of an arbitrary translation and rotation of the

body as a whole. Of . as we expressly excluded such
displa From consideration cannot expect

eqaatJons to any information on the Bubject.

It should be 1 that when the surface displacements (10)
listribationofdisplacement laabaohtfdydeterminate*

] THEOREM III. 1 Idribution of
//, free from Apj>! led

4#t8 of a

karmon / the body about tin vr

lont ; t.
\ of (!<> ;

iations of motion (7) become, when the Applied Foi

"dv . "dw\ -u

.(18)

consequent 1\

iluti nd f, may be oon-

idered as bnfli op by
liich will simultaneously sat function

' may be 1 in a series of terms, each of which is of

< ae i following forms :

—

i

bo a function . z).

N<v lotion whid a in the

f rin (

/'

t Ml ol as a wL If A ition which
\, V,V'\\\ i

s luti

|..-
: of tli.- bod] whole

Both these solutions have boei ly excluded, and we
lution i

of tl

U = M,T, + U .,-

v r.r.
I

.(19)
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where u
i}
v

i}
w

t
are functions of x, y, z only, and tu r/, t," of t

only; and

w = w-

are simultaneous simple solutions of equations (18).

Substituting in these equations, we get

m
\

l

dx2 %

dxdy
l

dzdx )

d2r

and two similar equations.

Now it is obviously impossible, in general, that these equa-

tions can be satisfied by values of u<, v
t,
wt

which are independent

of t, unless all functions of t can be cleared from the left-hand

side. The necessary and sufficient conditions for this are

for all values of *.

Making this assumption, the equations may now be written

u
t

dx \ dx dy dz I u
t

l

t
{

d
f
^U

i ,
^V

i ,

^W
i \

m
v

t

' dy \ dx

Wi dz

dz

fix dy dz

fiy
+ V v

i

J w
t

dw

d2Tj

dt*

dhj

dt*

Here we have three expressions which are known to be inde-

pendent of t equated to an expression which is known to be
independent of x, y, z. In order that this may be possible, each
of the four expressions must be equal to an absolute constant.

Let this constant be denoted by i ; then we shall have

d*T
t

dt*
+ tT,.= 0. (20)

and

m d { du
t

dv
t "duo* ) o

^ d ( dui
dv

{
dw

t ) „

dy

d du4 . dvt dw4

dz \ dx dy dz
y + wykot + piw; =

(21)
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and the general solution will be of the form

U - S(M.TiU

w=^- - I

The solution of (20) depends upon the form of i. If i be

real and posit

t, = A sin J% . t + B cos J\ . t \

if i be real and negat:

• of Naj ,;irithins: and lastly,

it* i be partly red and partly in LatkXD is of a
1 form.

W w that every possible value of x

J i uidary condi-

tions

ff-0,

'

tfl <>t the strain corresponding to the partial

)hlti

:

>luti<

id le

iqr,J

1 > the component! <>f the corresponding si

aid

M )

S
t
= na

(
.

...)'
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Thus (21) may be written

dP, dUi dT
{

. n

ox oy oz

osc oy oz

ZT
t
dSt ?>Ri ft

qb oy 02;

(24)

while the conditions to be satisfied at the bounding surface are

XUt + pQi + vS^Ql (25)

XFt + pSt + vB^O)

Let any other particular solution of equations (18) be

*j'j

w = W4Tt

(26)

and let a similar notation be adopted with regard to j and the

functions depending upon it.

Consider the integral

Itj -///[ut
th + v

i
vj + WiWj]dxdydz,

taken throughout the entire volume of the body. Substituting

for w„ Vp wt
from (24)

-*:#{«OMM]

+ wt

Integrating by parts, as in §§ 146, 194, 219, we have

-iplj^fflulXPi + pUi + vTi]

+ VjlXUt + iiQi + vSt]
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r»v (25 the BQiCioe integral vanishes, and thus

w, looking back to the original form of I,, it is obvious
that it is symmetrical with regard to i and/ That ia

I(/ = V>

and, interchanging i and ./' and i and j in the formula just

obtained,

fff Xj + bft-

But the -.>mponents are linear functions of the strain

components, and by direct Bubstitotion in these two integrals we
obtain

-0,

i nd if i and
j

- which admit of

oluti with the boundary conditions

the integral

I ^ ///

lust vanish idea (

te only concerned with real displacements, and

dad with real va'. . <\ |0, Thus.

1 y a well-known
|

d the aeries (22) there occurs any
i naginarv value

i
nn

t iere nm
I irm

aamiiim

i
i

- -
ft sr i

I

'

s that tl ponding displao re of the forma

i 01 ut

3u v/"^n

v, w, ii '. v', w are all

Uj=\\— ftw' J - 1

Vj*=V- ft\' -J - 1

\
; - 1.
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Thus

li5
=fff{^ + v2 + w2 + /3

2(u'* + v'2 + w'*)}dxdydz,

which is the sum of six essentially positive quantities ; and since

hj is identically zero, each of these six quantities must vanish

separately. Thus at every point of the body

u=v=w=0

]

/?u' = £v' = /3w' = j
'

and the solution is therefore null.

Thus it is conclusively shown that any value of i which admits

of solutions of (21) or (24), consistent with the boundary condi-

tions (25), must be real.

Again, consider the second integral

I. =fff(u? + v? + w?)dxdydz.

Since i is necessarily real, I, is necessarily positive : but by (24)

-"Hi

\ dx dy dz /

ixdydz.

sgrating by parts, as before,

xpli

= ifffV.dxdydz

+ ««$ + iPt + c.JJ;
}dxdydz

= 2 if.

by (19) and (20) of § 199 ; V{n being the potential energy per

unit volume, and Wfrt
the total potential energy of the body,

due to the partial solution (23) above. Or, which amounts to

the same thing, W
t
is the potential energy due to the strain

K/i 9t> <*» h CJ-

Thus it is essentially positive, as well as I,; and consequently

i is also essentially positive.

Finally then we see that every value of i ivhich admits of a
solution of (21) consistent with the boundary conditions (25) is

essentially real and positive.

Thus we may obviously write

; = ii •
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and we shall then have, fox the most general equations <>t* strain-

ing motion, under no Applied I
r Surface Tractions.

N

v = -( <•

(27)

where lets of values of ". v
t
w

whicl

^K + * +
*)

, "' ,," as0

thruiiL,rhout the body, aii-1 t r tin- bounding
sun'

The moat _ Tin <>t* small og motion, under no
^pi»li«-«l Forces 3uri re to be obtained
1 <v superposing all such possible systems of small simple harmonic

I

ate in t! about their natural positions

Eqi resent to u^ the analytical
. ateiii-iit of

•

In rtial BOlutioi

)• each \ in. the boundary
nditi itric-

!l enabl eled
propriate soluti

!.")7.] THEOREM IV. /

nt only on tin

For : ime / <>i"

i ,>oint which in the natural state occupies tin- position

ha\

( )
'
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throughout the body, and

>l"", ,du , Jdv dw\~\ fdv ,
du\

,
/du

,
dw\ v

A[("i+'C + (
m
-")fe

+
^)J

+/Iw
fc

+w t w '

etc.,

at every point of its surface.

But if u\ v\ w' be the displacements which the same point

would experience, if the body were in equilibrium under the

same system of Applied Forces and Surface Tractions, then

etc.,

throughout the body, and

etc.,

over the surface.

Thus, if we assume

u = u' + u'\ v = v' + v", w = w' + w"j

the displacements w", v", w" satisfy

d/du" dv" dw"\ o „ -vM

Bi/y 3# Si/ dz /

throughout the body, and

etc.,

over the bounding surface.

The distribution of motion represented by u", v", w" is there-

fore such as might take place if the body were in motion under
no Applied Forces or Surface Tractions, and by the last Theorem
we know that this consists of a series of small superposed har-

monic vibrations about the positions given by

m
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and t: n of vil (rations is of course absolutely independent
of the external for

The assumption in the enunciation of this Theorem that the

Applied Forces and Surfa ions are such as are capable of
a state, of eouilv Epressly excludes all such

latter afYect the mode of

vibration, but not the mean configuration: the most important

base Lb thai in which all the external forces are harmonic funo-
•

•

of the sa throughout The problem

becomei that of Forced Vibrations, to be comridereo in the

next Theorem.

258.] THEOREM V. A system of Applied Forces and
!

of th» lives rise

tit same period as themselves , about the v< onfiguru'
<>">/ (}>> most general form oj pomibU
s ich a system consists of ti U ) modi
i bra< y) modes offree vibr*

8 perposed oi

For if the Applied Forces ai I ions be given by

A Xsint*] /'-Fm:
)' Y

// = H
e<mat motioo will be

Z_ j Zu ^ Zv ^'dw [

Zx
01

1 the boundary itions

Zu
. /

( :)
f

etc.,

[
fn

'ia =)J
,/,,#

(a»
+
3y)



278 GENERAL SOLUTIONS AND EXAMPLES. [258.

In the first place it is obvious that if (u, v, w) represent any
distribution whatever of displacement, satisfying the general

equations (18) of free vibration, and the corresponding boundary
conditions, viz., F=G = H=Q, the distribution of displacement

(u+ u, v+ v, w+ w) formed by superposing this system on the

particular solution of (29) and (30) which depend upon X, Y, Z,

F, G, B, will also satisfy (29) and (30). That is to say, the most
general solution of (29) and (30) consists of the particular solu-

tion, with any arbitrary modes of free vibration superposed

upon it.

From the form of (29) and (*50) it is obvious that the parti-

cular solution must be of the form

u = u sin it\

v= van it\ (31

)

w -W sin it)

where u, v, w are determined by the general equations

4 1 25 +£+1? 1 +V* + P(i?u + X) - ol
dx ( dx oy oz )

,(29a)m% .[ f + 1? + *" } + „v*v + ,+i* + Y) =
oy ( ae ot/ as j

oz [ox oy oz )
J

and the boundary conditions

-(?+£)-».
I

etc., ^

It therefore consists of a system of simple harmonic vibrations

about the natural configuration, having the same period as the

external forces, while the mode of vibration—or distribution of

amplitudes as functions of x, y, z—depends on the form of these

forces.

259.] Subdivision of the General Problem. Availing
ourselves of these Theorems, we may now greatly simplify the
General Problem by subdividing it into the live following :

—

(i.) The problem of Free Vibrations, under no Applied
Forces or Surface Tractions.

(ii.) The problem of Forced Vibrations under any given
periodic system of Surface Tractions only.

(Hi.) 'The problem of Forced Vibrations under any given
'periodic system of Applied Forces and Surface Tractions.
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The problem of Equilibrium under do Applied Forces,

with; distribution <>i' equili Surface Tractions, or

ats.

The problem of Equilibrium under any given equili-

Lpplied Forces and Surface Tractions.

The Problem of Fume Vibratiq

l] General Statement of the Problem. The general

equations Bed throughout the body are

Vfht -p_
dx ' Ji-

KU =0
A7' = oJ

form

it + xi[ cos it)
J

w « ~(w, sili 1/ + w't co

rain being given by

0O8 it)

I

ai -1 the Btiosi ! by

/'

etc.
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(38)

P
t
= (m + »)«, + (m - w^/, + &)'

etc.,

Si = na
t

etc.

Similarly, if the motion be irrotational, the displacement

potential <j> must be of the form

<j> = ^(^ sin it + (f>- cos it) (39)

where

Vi =

Wi

fix

oy

Ui=-^
ox

> 30/
oy

V)
oz

.(40)

Selecting the partial solution of order i from (34) and sub-
stituting in (32) and (33), we see that each of the systems of

displacement (wj, i\, wt) and (u'u v'h iv\) satisfies the general
equations

m _-' + mn2
Ui + pi2u

{
=

ox

m—-i-t-WT7'2v
i + pi2vi

=0
oy

m~ + nv72Wi + pi2Wi -
oz

(41)

.(42)

and the boundary conditions

XPl + txUi + vT^V
^i + fxQi + vSi =

\Ti + ixSi + v£i=0

261.] How does i enter into the solutions for ui} i\, wt ?

Writing in (41) and (42)

ix = x
i,
iy = yii

iz = Zi1

they become

1
[<-«»S;*'»-")(l

t
t)] +

'-(B-M')"'(l'
,

-S')-
etc.
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and it ia obvious that these equations retain precisely the same
form when an}- other suffix is substituted for /.

Thus we must hi

r

where the I the functions 1 I I art- independent of i.

j] Distribution of Kinetic and Potential Energy
among the partial components. ] 1 energy due
to any distribution of -train may [J I >)] be put into the

form

ibstitutL 1 1) for e, ... <\ and in its,

II' A ff\ u(\x i»(A[/+^ + vS) + tc(kT -

( :
')]

Eree vibration [putting A' = Y=Z=() in

/' G li in (9
I

v.

/// i-uwjdav/ (43)

rgy,

<&-£///[& + & + u>r\i<*i
: ..(44)

Thus, if R and I be ti fciaJ and kinetio energies due

t > tl

+ oo#%tfff

1 ml it CO* itJYf[v + w
i
w'

i
]ds- (45)

'« - -^ l
008' {iff/V'r + ^ + aV

; I
• //-,»/,"}lxdydz} (46)



282 GENERAL SOLUTIONS AND EXAMPLES. [262.

and the whole of the energy due .to the partial component is

given by

<g, - If. +% = %ff/YuC + v? + w? + u[ 2 + v{ 2 + w'^dxdydz. ... (47)

which is independent of the time, as of course it ought to be—
no work being done on the body.

Now, substituting from (34) in (43), we obtain for the resul-

tant potential energy

W= ^JYfi^K lh ,sin to + lh cos to) . ^(uj sinjt + u'$ cosjt)

+ 2i2
( Vf sin it + v- cos it) . 2( i^. sinjt + »/ cosjt)

+ 2t2(i^ sin i£ + «?i cos it) . 2(«0, sinji + Wj cosjt))dxdydz ;

where both i and j are to receive in succession all the values

included in the series (34).

This again may be written

W=^i2 sin2 itfff[u
2
i c,- ±w?]dxdydz

+ 2i2 cos2 toJjJ\uP + c-
2 + iv

t

' 2]dxdydz

+ 2^i2 sin it cos it/YY'[u
i
u{ + v

t
v- + v^w-]dxdydz

+ 2^i2 sin it sin jt /YT[u i
nj + Vflj + w^dxdydz

+ SSt2 cos i£ cosjtJjf\u[u'} + r-Vj + w{wj]dxdydz

+ 22i2 sin ^ cosjt//Y'[u
iuJ + vtvj + w-Wj'\dxdydz}

;

where the single summations are to be taken for all the values of

i included in the series (34), and the double summations for all

different values of i and j.

But it is obvious that each term included in either of the

double summations is of the same form as the integral I of § 256,

and is therefore identically zero.

Thus we finally have

W= ^2i2 {sin2
itfff[u;

2 + nf + wf\dxdydz

+ cos2itfff\u!2 + v-'2 + w- 2]dxdydz

+ 2 sin it cos tofff\ufiil + v{v- + iv{w-]dxdydz}

,

and, comparing this with (45), we see that

JF=2(JF
t.) (48)

In a precisely similar manner we may show that

^ = 2(%) (49)
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263.] Future investigation may be confined to one
partial solution. It is sufficiently obvious from the last three

Articles that, when the properties of the partial solution of order

i are completely known, those of the most general solution can
be at once deduced by simple summation as to i.

We shall therefore confine ourselves to the discussion of

Equations (41) and (42). In the former, we may conveniently

drop the suffix, of which the presence of i2 will be a sufficient

reminder, and write

m -— + n\/2u + pi2u =
ox

ffh^- + nv/z v + pizv = .(53)

or

m—- + nr/2w + pi2w =
oz

(m + n)—- - 2n[ -—J - _J 1 + pi 2u =

(m + n)
3A

9y (54)

(
m + n)— - 2n(_i -_i ) + m 2w =

The boundary conditions, however, it will be better to retain

in the form (42).

The Problem of Forced Vibrations, under Periodic
Surface Tractions only.

264.] General Equations. Let the body be free from all

Applied Forces, as before, but subject to any distribution of

Surface Tractions that is strictly periodic as to the time. The
traction components will then be of the general form

F= ^(Fp sinpt + FJ cos pt)\

G = *2(GP sin.pt + Gp cos pt) L (55)

H= i:(Hpsmpt + Hp cos pt))

Equations (32) will still represent the conditions to be satisfied

throughout the body, and these may be decomposed, as before

into systems of the form (41) for all values of i.

The boundary conditions (9) may be written

2[(AP4 + fiUt
+ vTt) sin it] + 2[(AP/ + p&{ + vT!) cos it] •= ?[FP sin pt]

- + 2[FP' coa pt]

and so on.
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Th wry value of i in the Ben which coincides

with a value of p occurring in t correspond* a

solution oJ (defying the boundary conditions

while the solution- to all values of i which are
• from i

l satisfy the boundary conditions (42),

as before.

In other words, the genera] bs of a system of

forced vibrations of the same periods as, and depending upon the

form <»f the Surface T- with any arbitrarily chosen system
of free vibrations, satisfying (41) and (42), superposed upon it.

It
i nient to con- two problems together,

taking (53) or (54) for the genera] equations of vibration, and

/,* //, I

ft r the general boundary eondil // being each aero,

cept wl resents oa values of /» in the »

//// Two Problems Combined,

maon'a Method of Solvt

1 Resolution of the Strain. By the principle of

s\ per] any system ox small dis-

p icen produced by it. may
ex resolv.-d in an arbitran i any numb kerns,

st >je< lie algebra ie soma of the

c- nponents of the latt.-r shall he identically equal to the

riding components of the original syst.

Sii icnts at each point of the

b< ly most bo genera] be supposed independent functions of

d in any
re olir n the tnosi genera]

ea

Now tl general I -train
i I dilatation,

.did it i of vibrations

nn ler no applied fore rainmusi in\ W dilata-

tk a << at [This is at once obvious from

e<j lati
I below.] Tin- -train then may be resolved into

tw>, of which the first may !>•• supposed to give H abical
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dilatation, but to be irrotational, and therefore to involve only
one independent function of position—its displacement potential.

Thus, if we suppose the second (rotational) strain to be indepen-
dent of the first, its component displacements must be connected
with one another by some one arbitrary relation:—such, for

instance, as that they shall contribute nothing to the cubical

dilatation at any point of the body.

We shall then have resolved the most general form of small

strain into two independent small strains, one of which con-

tributes dilatation and distortion without rotation, and the other

distortion and rotation without dilatation.

2GG. Decomposition of the General Equations. If we
write in equations (54)

8* = (m + n)/p: n'2 = n/p (57)

they become

1-3)+*
\3r/ ?)z

fi'2^_ 2fi
,?/^,_^_3\ +

.%==0
oy \oz ox J

oz \dx oy )

(58)

(i.) Let us suppose the mode of vibration to be irrotational,

with a displacement potential <p. We have then

or by (59) of § 123

ox

oy

oz

,(59)

.(GO)

Also, by differentiating (59) as to x, y, z respectively, and adding
the results

£22y
2
/\-f-;

2A = 0. .(61)
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(62)
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or

i2'Vv+*2v=o[ (65)

Equations (65) and (64) are therefore the general equations
to be satisfied by u, v, w in this case. In virtue of (64-) only two
of these quantities are independent.

(Hi.) If we write in equations (58)

d<f>
,

OX

v = —L + v

d<f>

OX

(66)

ox"

they become

|(W + ^) + «Vv +^ +^|g +| + ^) = o..

|^+*>*in^*a^+g+£)-o
These equations are obviously satisfied identically, if we take

in (66), for (p any solution of (63), and for u, v, w any solutions

of (65) which satisfy (64). Thus, so far as the general equations

go, u, v, w may be supposed perfectly independent of 0, and the

system of displacements represented by (63), (64), (65) and (66)
will fulfil the conditions of § 265, and at the same time satisfy

the general equations (58).

The boundary conditions (56) will of course impose restric-

tions upon the generality of this solution, which can easily be
deduced by substituting from (66), and supplying the suffix [see

(67) and (86) below].

The irrotational or $ solution.

267.] General Equations. If the mode of vibration be

wholly irrotational, the potential
(f>

satisfies the equation

12V* + *2* = (63)

throughout the body ; and by substituting the formulas (61) of
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§ 124 in equations 56) above, we find for the boundary conditions

«—*" -[ ]
*

(a»-»)m
[ 3*OB c/,

x] Plane Waves of Sound. Let us first suppose the
vibrations to I . wh.-iv parallel to Ox. Then

«ty a

Thus i^ a function

D

j solution of which is of the form

fc-J, COB*?.

["he oo aohition tor
I

la

( ) (

rhieh in the farm

)

l

trary eon

plane n

mod - length i'-i> i, out of arbitrary ampli-
:

i

ii- 1 pha t .rat.-. I u itfa the locitj U in the

Bhe v'- re planes perpendicular

The Dorma] to the

\ ave surfaces and parallel to th< d of propagation, and
lence known

: normal or n.

When theii they are capable

d it'i ransmitted to the

es, and waves of longitudinal \ ibrai Ion are thei

o ten distinguish* •• I as *.»/» ml

Th( propagation Q is independent of &, and there-
• the period of vibration : or, in other words, the Velocity
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of Sound in an isotropic elastic solid is the same for notes of

every pitch, and depends solely on the elastic constitution of the
material, being given by

ft = *J(m + n)/p = J(k + %n)jp (67)

In calculating the values of Q, numerically, by means of Table
(C), page 201, we must remember that the moduli enter into the

equations of motion as absolute accelerating forces per unit area,

and must consequently be expressed in absolute—not in gravi-

tational—units.

Thus if k, n be the gravitational measures of the moduli in

grammes weight per square centimetre, and p the density in

grammes per cubic centimetre, as given in Table (C), equation

(57) may be written

12= V(k+Jn)g/o,

where g denotes the acceleration due to gravity, in centimetres

per second per second
;
giving Q, in centimetres per second.

Now by §§ 221, 222

k ^ pk, n = /on,

where k and it are the lengths in centimetres of the moduli of

compression and rigidity. Hence

fl= v/g(k + fit), (70)

which is equal to the velocity that would be acquired by the

body in falling under gravity through a height (Jk + fit).

Taking the value of g at 981*4, we obtain the following

values of Q, :

Velocity of Sound in Metres per Second.

Steel, - - - -

Wrought Iron, - -

Flint Glass,

Cast Iron, - - - -

Copper, - - -

191,550

176,790

157,840

148,750

138,170

Water at 8° C, - 1,435

Air at 10° C, - - 337

i

The velocities in water at 8° C, and in air at 10° C, determined by experi-

ment, are added for the sake of comparison. We have seen in Appendix TV.,

Section A, that a "perfect liquid " may be regarded as analogous to a perfectly
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i!\ devoid of rigidity. Thus by analogy the velocity of sound
t liquid should be given by

s

where I H the moduloi <>f LOIHIU 1111011 in '('//<• I per BQUare •iiitiui.tve.

Table I the values of /• fox water are
20,300 at 11 Cent, and 21,100 at 10*"8 G. j fche oorresponding values of

i ul 999668. Tuna the velocity of HNind in water, on the
Knppoeition that it i> a perfect Said, should be

and at 10 "8,

m.-tres per aet'oinl.

..

p .lati-.n al.-.ut i •••..ml at 10 (Vnt. Thus
! and the .-suite ajrr> we have

any 1 _ taken into account.

1

]
Hamming Mi haw for tin- general equation

of the propagation <>f
\

md waves, In a medium of

indefinite extent

i includes waves <»f ail periods an«l m bha
In the ease of * finite l find by substituting in 87

:hat the mainl bhis state of ribri [aires the con-

ijBtem of periodic one

9 '^[

j

:.::^D'--;;
* >

+9C A')l

-\

impossible for i\ of free

body \\ lii<-li la bounded on all Bid

1

] Transmission of free sound vibrations through
; ,n infinite plate of any thickness. If however we suppose

indefinii tided in all directions perpendiculai

perpendicular to thai
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we shall only have to deal with the surface conditions over these

two faces, the direction-cosines at every point of which are

A = ±1, /x =
;
v = 0.

Thus if the faces are given by

x = d, x— -d\

the only boundary conditions to be satisfied are

Si^Csini^ -SU - ft) + C/sin^d +Qt- ft')] = 0\

^[CpinUd' + £lt + ft) + C/sinI(<r - £lt + ft')] - oj

for all values of t ; thus the coefficients of sin it and cos it in these

series must vanish for all values of i. These conditions, however,

are much more easily interpreted if we retain the original form

(68) for (p. We then have

A . id D id p.^.sm- + JB,cos
s

=0.

. , . id „, id
A . sin— + B, cos

.i, . id' rt
^4! sin— -^cos id'

.(73)

. , . id' D , ic?' ~^ . sin _ - if . cos_ =

This system of equations admits of three solutions,

(i.) Let l = d + d' he the thickness of the plate. Then equa-

tions (73) are satisfied by
. i7r!2

A
t

A
i

tan
\ird

where i is any integer. This gives for the general solution

4> = y^ 20 sm —^— £ sin —3

—

y (74)

where the summation includes all positive integral values of i,

and %i and on are arbitrary constants.

(ii.) Again, if the ratio d : 6! be reduced to its lowest terms,

and then take the form r : s, so that r and s are integers of which
one at least must be odd, a second solution of (73) is

. 'nrir + s)Q
l = i~
b. -b; = o f
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Tliia . ral solution
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to be summed for all positive integral values of i. as before.
I

•
\ third solution of 73 1 is given by

.1 I

A A |
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V 8 '
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•'
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Mil sill
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|
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Writing tirst of ai
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we get, for the first part of the potential energy,
i

m g4iVOV^a gin2
2i7r(^-ft)

Treating the second series in the same way, we find for the

total potential energy of the prism

W m
47r4fiL>

yj45Bt

2 sin2
2i7r(^^ ~ Pi)

I
3

l

I

Ttt

And similarly we may deduce from (46) for the kinetic

energy of the prism

Thus the total energy of the prism will be

(£ =
77^ 1

;

£|(2i)m2 + (2i+l)Wj (78)

and in order that this series may be convergent, it is necessary that

33

i

2 should vary inversely as some power of i higher* than the

5th ; and similarly for @<
2

. Let us take, for example,

(2i)d12 (2i+l)3S2

where B, G, U are constants independent of i. Then

M ttV^U2
f
By i i i i \ „j \ i l , l \

i

The two infinite series within the brackets are convergent, and
their sumsf are known to be 7r

2/6* and 7r
2/S respectively. Thus

and if B and be so related that

3 fl*'

* Todhunter's Algebra, Art. 562.

t Todhunter's P&me Trigonometry, Ch. xxiii., Ex. 1, 3.
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•tal eu< •: by the prism and consequently also

that of the whole plate—wiD be precisely the same it' it were
ing /„,<///,/ with a velocity of translation U.
- instituting in 77 we gel for the potential due to this sgui-

< Chapter IX., below)

t-WM^<? -in --'sin
--'--" -W

* ay** Z i i
i=0'

h 5 oy -J—oo. *)
(
79)

Q 2y
(

(2i+l)» / /
[ '

It* we wish to imp Further restriction that the origin

[and with it the whole median plan.' of the plate) shall remain at

ke

This reqi it C=4/x, and w<> then hi

rem
72.] Solution in terms of Spherical Harmonics. The

eral eq when transformed t<> spherical polar- by
nean> of formula -comes

rt ii- sasume I

H ^
1 1 Function of r

nlv. for all vain- ttd >. sad
ince H, lv

H,) = 0,

;

r !'• <

This equation may also be written in the form

|

;.].., o,

od the solution which gives tin it • /V.tt

be origin

*»-A
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where J,+i denotes Bessel's function of the first kind, and of order

Thus finally we have a solution of the form

^^*.^[h..j,+1(S)]

^cos rt . 2.[H;.j.+!
(|)]}

+ Ar ,(82)

where H„ H* represent two surface harmonics of order s.

This solution is adapted to a solid of spherical form, having
the origin at its centre. Stokes' solution, suitable for infinite

space outside the sphere, will be found in Lord Rayleigh's Theory

of Sound, § 323.

The choice of harmonics is not unrestricted, because the pre-

servation of the continuity of the body demands that

d0
0, when sin 6 = ;

(see § 287, below). Hence all the harmonics included in the

solution must satisfy the condition

3H. = 0, when sin 6 = 0.

At the surface of the sphere we have, by (72) of § 243,

&' = P, H'=U, Z'=T;

and on substitution from (73) in (68) of that Article, and thence

in (46) of § 239, we find, after availing ourselves of (63) above,

r = 2/2^ - (
m - n)^

2

dr W
H' = 2n

Z' =

dr\r d$)

C- ¥)\r do)/sin 6 ?)r

Thus, if r be the radius of the surface, the conditions that (82)
may represent a form of free vibration are

|_dr2

4h3HA, £W ' dv

d&s d f T (iv\

.(83)
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forallvali od« Thus very value of i which
can occur in connection with a given value <>f 8 must l»c of the

form

r

where i m any root common t<> the bwo simultaneous equations

( )D
Ji

"]"i

;,.;[, -j..,,] of

The fiiei (, t* these equations may be written

Hut. by Bessel's fundamental equation

j i |j [, '-';/
Jj

i 0:

ami, on eliminate two the above equations of

c indition may be written in the simpler form

'I'll.- admifl

J i) ^ jj

J I

Imiasibl
• ion

" 1

'

I am tin- roots of this equation have ever been

ii vestigatd bo1 > r
i hserved that it. has at leasi otu

m
at <1 thai the vain ponding to this value of b is aero.

T. ius no m enter into a form

Ot fr«
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273.] Spherical Sound Waves. In one particular case

—

namely, that in which the only harmonics present in the solution

are of order zero—the two latter of the conditions (83) are

satisfied identically, H being a constant, and the admissible

values of i are given by
. m

r

where i is a root of Jj'(i) = \ ^ - -™-
2

J*(i)

or the equivalent* equation

icoti=1 -S^ (84>

The solution (82) now takes the form

* = 2S£- Ji
(7)

sin
T (

'- 7i) '

or, as it may also be written,*

4> = J -2<7iT
- sin - sin —(t- y,).

y ir \r r r

The corresponding value for the radial displacement u may
be written in either* of the forms

\ rr *\ r/ r

or u = A / -2/— cos - - — sin _ - sin — It- y4 ).

\ ir r |_ r ir rJ r

This solution evidently represents a series of free spherical

waves of radial vibration, propagated inwards and outwards

with the same radial velocity Q.

274.] Sound Waves in general. Possible Forms. In order

that the family of surfaces represented by the general equation

Xfa V> *) = 6
where g is a variable parameter, may represent a possible form

of sound waves, sustainable without the aid of Applied Forces,

the parameter g must satisfy two conditions. For let be the

potential, which is a function of £ and let rj and f be the para-

meters of the two families-)- of surfaces orthogonal to the above

and to one another.

* Todhunter's Functions of Laplace, Lame and Bessel, end of Article 378.

t Two such families must always exist ; for, from the character of the

motion, a continuous series of curves can be drawn to cut all the £ surfaces

orthogonally. The two systems of these curves, drawn through the two

lines of curvature which intersect at any point of a £ surface, will define a

surface of the y system, and one of the t system, respectively.
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Takinu: 5, »/. { foi orthogonal curvilinear ooordinates, we have,
substitution from (18 of g 23] in (63) above

I |
,-o

;

r. l.y(U; of

ffttt

alio

Thus, <j> being a function «>t" fpnly, it follows, that

(

must U.th l>e capaU<- Functions of fonlyvoras

275.] General Equations. I- ain be rotational, I "it

in aoconuMuiied by dieplace-

iii m

>y 3«

:

fdi being excluded i

rial

The bou: \ irtur oj 64 . bf tlm.wn

I2A
a. ( )

( ) ( )

( ) ! .)
»»



300 GENERAL SOLUTIONS AND EXAMPLES. [276.

276.] Plane Waves of Transverse, Tangential, or Dis-

tortional Vibrations. Let us suppose that v is a function of

x only, while u and w are both zero : (64) is then satisfied identi-

cally, while (65) gives

d2v
,

i2 n+ v = 0.
dx 2 iV 2

Thus Vt = A t
sin ^ + Bt

cos ~

and the full solution is of the form

v = 2C, sin ~(x - n't - ft) + 2(7/ sin hx + &t - ft').

This represents a series of plane waves, of vibrations which
are transverse to the direction of propagation, or in the wave
fronts, propagated with the same velocity IT independent of

their periods, in the positive and negative directions of Ox.

These vibrations are of the same character as those by which
light is propagated through the luminiferous ether. Thus if the

ether were composed of homogeneous and isotropic "continuous"
matter, the velocity of light would be the same whatever its

colour. Moreover, it is easy to shew that the same result would
hold for light of all colours, propagated in any given direction,

if the ether were crystalline, but still " continuous." Now the

dispersion of white light into its coloured constituents, by
ordinary refraction at the bounding surface of any two trans-

parent media of different densities, is proved to be due to the

different velocities with which light of various colours is propa-

gated in either medium. This familiar phenomenon is con-

sequently sufficient in itself to prove that the luminiferous ether

—at least, as it exists in the interior of solid and liquid bodies

—

cannot possess the properties of " continuous " matter.

The fascinating problem of the structure and properties of the ether is

too wide and too difficult to be more than alluded to in this place. The
student who wishes to follow up the subject should consult Sir William
Thomson's Lectures on Molecular Dynamics, delivered at the John Hopkins
University, Baltimore, U.S.A., in 1884. These lectures contain a most
interesting summary of the various hypotheses which have been framed to

account for the phenomena of dispersion, polarisation, double refraction,

etc., with the grounds on which each has failed, together with a fuller

development of Sir William Thomson's own remarkable conception.

277.] The General Solution. The problem, as stated in

§ 275, appears rather complicated, but it is easy to present it in

a form which is of the utmost admissible generality, and yet

satisfies all the conditions identically.
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\ all tin- conditions imposed, while, since it involves

tin. v solutions i .lii.-li i> ..1' ill.- -;iin<- form as

of tli.- utmost pos>il' lit v.

problem i duced t" the solution "i" the funds

mei tal equati which i^ Mini, and doefl noi

i further illustration.
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Poissons Integrals.

278.] Having given any one partial solution of (63) or
(88), to express the complete solution as the sum of two
definite integrals. Equation (63), which should properly be
written

n\*4>
t
+ && = <), (89)

is only the equation satisfied by the partial component of <p of

order i, and results [compare the general equations (32) and (41)
of § 260] from the decomposition of the perfectly general
equation

Q\*4>-4> = (90)

satisfied by the resultant potential, as a whole.

Writing this latter in the form

(!,-°v)*=°.

and remembering that the operator v, being independent of t,

behaves as a constant in combination with functions of t or the

operator "d/dt, we obtain the symbolical solution

» = coB(»0<y)^ +
Bill (*12^

>

i$2y

where i = %/ — 1, and <p, <p' are perfectly arbitrary functions of

x, y, z.

Expanding the operators,

thus, when £ = 0,

4> = &, <f>
= $.

Now, with the notation of (39), § 260,

(fi-lL^ sin it + </>/ cos it)
\

<f>
= 2i(<£ cos it — </>/ sin it) j

and consequently, when t = 0,

</> = 2(</>/), <A = 2(^,).

Thus, we must make

**2(*&), $' =?(</>;),

and the symbolical solution becomes

^ = cos( 1fi«v)2(^) +
sii1-^gv)2(iW (n])
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tin. by the symbolical expression of Maclaurin's Theorem!
ntinu«»us function of

x(x + £, y + rj
y t + {) = e^x 1* * . \( .»•, //. s).

.if we d< Nj.here,

with radius r, and centre at tean value of ^ taken

foe t* the sphere will be

sine are independent of position on the surface, the func-

tion x may ^ tak.n from undet the sign of integration, and the

integral considered altogether as an operator upon it. It thus

J
\Jf&*^***8*

Th« axes of £ iy, fare at present pantile] I :. hut the

ope rators d/dx, dfoy, dj'( tits within the integral,

an* tl ce being synnn. tri.nl as to £ >, £ we may transform

to ew axes of £ oh that

4* i/.a^ 3^>3\

thus lxM'omes

=
,-!T(

erv - c

bus, writ '• '. '• the symbolical ex]
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represents the mean value of the function ^, taken over a sphere
of radius Qt with its centre at (x, y, z). Consequently we may
write

sin(<I2£y)(

X(^ ft *) -Jij'-f^
+ nt sin °

t!2y

y + Qt sin 9 sin w, z + Qt cos #)sin 6d6do>,

where 6. w are the spherical angles of § 243. Differentiating both
sides as to t,

cos(il2£y)x(#, y, z) = *-t I /x(x + &t sin # cos w
>

y + Qt sin 9 sin w, » + Qt cos 0)sin Odddw.

Substituting these integrals in (91) we have for the full

solution of (90)

cf> = 2~2
I

** I f^fo + ^ sm ^ cos w
> 2/ + ^ sin sm w

)

z + Qt cos 0)sin ddddu)

+ J / /<f>i(x + Qt sin # cos w, y + ft£ sin 9 sin w,

o o

z + Qt cos 0)sin &7<9dw 1 (92)

Thus having obtained from (63) any partial solution, of the

form

4>i(x, y, z) . sin it + 4>i'(oc, y, z) . cos it,

we can at once deduce the complete solution, as the sum of two
definite integrals.

These integrals may also be regarded as giving the value of

<p at any time t in terms of the values of 0[ = 2(0/)] and

0[ = 2(^)] wnen *= °-

As a simple example, the potential for plane sound waves
(§ 26S), travelling parallel to Ox, may be written

i (
/"""" /- 27r

•

</> = -- V w4 ,J / /sin - (a; + ft£ sin 9 cos oj - a.)sin Sdddto
+tt'l-j \ J J Q Vs.

>

+ Bj±t I /sin
^(
x + Qt sin cos <o - ft)sin 9d9do> i

,
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when t = 0,

305

^ =^ i
sin-

t
-(x--tt

j ) |

The solution for \// is of precisely the same form, the

sole distinction being the substitution of Q' for Q.

The Problem < Vibrations under Periodic
amb Periodic Applied Forces drriv-

from a Potential,

'.] General Equations. The only Applied Forces with
which we ha\ al under natural OOnditlODfl are forces of

:i'»n and repolflioilj whos< cninpnuriits aiv always deriv-

able by differentiation from i -ial.

We shall tl: pi when the contrary
«lv stated, that a function y \' ach thaiis express!

ox s
(93)

! y point of the body. 1 atQy be verified that the

omponentfl ol the sax 1 to any system of curvi-

near coordinates, are, with the notation of Chapter V.,

It' the Applied Forces l>< iodic, their potential musi

M'^^sind + ^/cosrf) (95)

i id oi ofl of motiorj (29) and
( !9a) see that the partial displi b-amplitnaes of
< der i i

dm
:
+l+

?:) ( ;)
° .(90)

w »er» to be mpposed aero, unless the value of i coincides
v th any 0HB of tin- \ the SSI i<

The boundary conditions will still be expressed by equations

(5 )) « :

U
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280.] The forced vibrations constitute a pure strain.

Omitting the suffix from equations (96), and writing them in the

form

-WA + ¥1 - 20'2P^i - ^s"l + i2 v =
i/

L J Las oc_J

_m2A + ¥1 - 2ft
/2p^2 _ f^il +

^

=

we may eliminate their first terms by cross-differentiation, and
we thus obtain

OV^ + Wt-Oj

Now these are precisely the same equations that would be
obtained by cross-differentiation of (Go) in § 266 (ii.). Hence we
conclude that the rotational part of the vibrations is of the same
form as if there were no Applied Forces.

Or, in other words, the forced vibrations due to a system of

Applied Forces having a potential are such as to produce dilatation

and shear, and any distribution of rotations which may exist is

due to superposed free vibrations independent of $".

281.] Dilatation and Shear. Expressing the strain com-
ponents in terms of the displacement potential cp, equations (96)

become

_3

d

d

dz

whence we deduce*

^ +^ + ^1 =

(97)

* Since we have to deal only with the derivatives of our potentials (dis-

placements, forces, etc.), they are always indeterminate to the extent of an
additive constant.
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Thus, \,y llU.

fy -

max

oxoy

If * ntfefi

which is equivalent to

= 0,.

oc dy Oz

= 0.

vibrations are pra

(if) It' M' -

whi h are equivalent to

x v )' Y / /
oz I •- dy

the il independent of the form ad the

vibi t purely dilaiational

: $2.] Example. Radial Force If ever)

the direction of the radius bom the origin to the

. we dedui -''I the notation of . S i*> 1' i-

sfri ction and

'1
1

1

pn, and the forced vibra

tion> will idial, so that
<f>

also will ).. independent of

0, CO.

T ills (07 i may bfl U I itt.-n

i m )

-«.
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We need only concern ourselves with the Particular Integral,

as the Complementary Function gives free, vibrations. Thus

w
the symbolical solution of which gives

O
( 7,7* i 77* %)* M 7.7*

<&. = _. { cos— Ir sin—*¥.dr - sin^ ir cos—^V dr \ .

Hence corresponding to the force potential

¥ = 2(^s
sin st + ¥,' cos s£)

we have the displacement potential of forced vibrations

, v ft f sr

w

sin

//• snw("»P, sin s^ + *P
t
' cos ^)<fr

*?7* *^ *?7* 1— /r cos .
- (^ sin s£ + ¥/ cos s£)dr >

.

283.] General Solution. Equation (97), satisfied by the

partial component i5 results from the decomposition of the more
general equation

12V<£ - £ + ^ = (100),

which represents the relation existing at each point of the body
between the resultant displacement potential and the resultant

force potential at the point. The most general solution of this

equation, consistent with the assumed form (95) of M*, may be
found as follows :

—

The function Mr is finite and continuous in value (§§ 223-228)

throughout the body, though not necessarily continuous in form.

Let (x\ y', z') represent the coordinates of any point within the

body, and let

X(x-X, y'-y,z'-Z, t)

represent any continuous function which never becomes infinite,

except when

x' - x = y — y = z - z = 0.

Then if we assume

+ =///*&> V'> *') • X- dx'dy'dz',
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the integral being takm tiirooghoat the volume of the body, we
OSSinesq'fl Theorem (see § 310, below) to the differ-

entiate »n of <j>, ami write

///' <*£"-

+ x
\ J /

; x ,
_ v k- - >/-, »; cos w, 7; sin w, t)

tli-- doable integral ia ultimately to receive the limiting
hie which it aasamea irben v = 0.

Now assume that \ is of the form

x =

r- V(x - *)»+ (y' - y)»+ (*' - a)*.

mble integral then beeomi

It *

/ / 1 . tym

///'
I'

1

'

]

JJJ [
'

'

']''"'"'•

Applying t! 1 to the second differentiation of

to k

/J \
—. ''[* "]

Th louble uitegral ia in this case
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Thus, if we also differentiate
<f>

twice as to y, and as to z, and
add the symmetrical results, we have ultimately

V** =//T*(x'> ?/ ' *')V
2

|3
F(r, t^dx'dy'dz'

+ 47rW(x, y, z)Yk^¥(k, t)-¥(K , t)l.

Now let

so that

Then, by formula (65) of § 243,

= ——sc- . - sin UI-- 1.

4tt124 r V 12/

Also

FM)-^ .in «(*-£),

and

Thus, proceeding to the limit in which k= 0, we have finally

But

and therefore

ft
2

y2
<£ - </>+ *-(»,

?/, 2)sin ft = 0.

Similarly, if we assume

we find

122y2
(/> - + ^'(^> Vy z) cos •* = °-



(102)

OKNlBAI BOLUTION8 and EXAMPLES, :)\ 1

The complete solution of (100), corresponding to the force
rial

i> therefore

'

*;«, ,^-£) }**&£. (1 oi)

an.l the partial components of 0, of order i are hence easily

shown to

^:
The triple u y case to be taken within the

1 mitfl of the body,

284.] Return to the Preceding Problem. When the

lies altogether outride toe limits of integration:

i aniah, ana conse-

becomc infiniti- houssinesij's formula
educes to

-Iff

Hene we eerily deduce thai if the triple integrals in

» 1 1 1
1 * 1 1 .

• (101) ai n throughout any regions of
v
l'

x
l' before, finite

. ad continuous functions of position, these formulae will repre-

I solution of the of irrotational

•oj"

The itudeni will find no difficulty in proving) by <lirect

i UTerentiation, that the int.--r.-iU (101) ana (108 do satisfy

t ^es^> eqn
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The Problem of Equilibrium under Surface
Tractions only.

285.] General Equations. When the body is in equi-

librium in a state of strain maintained by surface tractions only,

equations (6), (7), (8) take the simple forms

bx 'by bz

??-3 +^=
bix b>y biz

37T

+
as

+
aff=0

bx by "dz

m—- + nvizu =
ox

m—- + wnlv =
dy

m—- + n^lw =

(m + nW" 2n
fe ^)

=

, X
3A /309

30A n

(103)

(104)

(105)

The conditions to be satisfied over the bounding surface will

take the form
u — u \

(106)

or the form
\P + fjLlf+vT = F

\T+fiS + vR =H
(107)

according as the values of the surface displacements or of the

surface tractions are given.

286.] The Solution Determinate. We know from §255
that the problem of finding a solution of (103), (104), or (105),

which will satisfy (107) over the whole surface, is quite deter-

minate as regards the strain, and therefore also as regards the
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-
: while the solution in terms of the displacements is only

Lndetennilllfa to the extent of an arbitrary translation and
rotation of the body as a whole.

The solution of (108), (104), or (105), which satisfies (106) at

all points of r 1 1
«

- surface

—

<>r, indeed, which assigns given dis-

nents to any three points in the body, or on its surface,

which are not in the same straight line—is consequently abso-

lutely unique.

Thus, in seeking the solution of any u'iven problem, we may
avail our with perfect confidence of considerations of

symmetry, and all other devices which may simplify the forms

of the equations knowing that from any solution which satisfies

all the conditions of the problem all other possible solutions can
be deduced—even in the most general and unrestricted case—by-

super; of an arbitrary displacement of the body as a
whole.

7] Preservation of Continuity. Finally, we may
observe that the nece serving the continuity of the

be body imposes eartain restriction^ npon our choice

even when continuous4 in form—by which it may
£&in in <l«tiniteness.

lial displace in. nt U oish

* itfa /•. if the orighi be e I
within the substance of the

1 ody. while the msplifim h with sind,*f

i id the dieplaj >t of §24}- w ith /•, if any portion of 0t lies

\ ithin the -ubstance of the body.
It i- - hat these precautions are necessary to guard

i ^inst spftericul, conical, an I
, respectively.

/

]
Circular Cylindrical Tube under uniform in-

t rnal and external normal pressures. A shell bounded
I

- Infinitely long coaxial circular cylinders, of radii A nut. rnal

a id H (external), is subjected to a uniform norma] pressure II

o erthc whole of it> b and a uniform normal pn
J

' over the whole of its on ice. Required the distribution

o strain.

'I'll.- symmetry of the cond sads as I I that the

d 'be : nt in the shell will he wholly radial :

tl it is. in tli.- din line drawn bom the point

p« rpendicular to the aa I also that the magnitude and

* Sm M tts-Stt f"i the rwtrictioni imposed upon diioontinaotui solutions.

tS* example.
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of this displacement will be the same for all points situated on
any circular cylindrical surface coaxial with the bounding surfaces

of the tube.

Taking the axis of the tube for the axis of z. and choosing

arbitrarily the origin and axes of x and y, we will then assume,

with the notation of §244, that v~. vj— 0, and that u is inde-

pendent of and z.

On this assumption we have

e1= e2
=e

3
=o)

and, on substitution in equations (88) of § 244,

^["--(^fLo
dr\_r dr _J

Integrating this equation twice,

r

where C, C are arbitrary constants. In this case both terms are

admissible (§ 287), because Oz is not within the substance of the

body.

At the inner surface we have

A G?<P -. w> T-r
r = A, — = -1, & =U;

dr

and at the outer surface

T, dQ , few T-r.

dr

Hence by equations (89) of § 244,

P= - II, when r = A
}

P= -W
J
whenr = B j

But

du „ C'
e = — = C —

dr r2

r r1

and therefore

P^(m + fi)(0-~\ + (m

SW.^
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Thus the boundary conditions become

A-
2mC = U \

and i ently

..I

1 II -&W

wn ii

)

Bobetikliing f6l an finally

/;ll>
t
^- "

(108)
!

i
2a(£>-J

U

If 11 — 11' and J Il-/>* II be of opposite eigne : that is, If

; ii ir>i:

•i will be aero when

All .III
WJ)

>

DJafa at any pomtfl "''ithiii Hit

impose the furtl ction that

i alne of r -hall be I -l and B. Hie i y and
sufficient conditions aie

I

( in + n)B*
.

+ n)A* TV mB* + n i

m«l if these be fulfilled, the cylindrical surface described in the

a i 1 1 1 the above radius will retain it- form and dimensions

tnaltered; the ini outer shells into vrhiefa it divides the

ube I ised upon it from either side.

If

I I M

ii

he inner surl the tube » itural dimensions,

I if

ii

ii i
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289.] Principal Stresses. Lines of Stress. It is obvious

that equations (91) of § 244 are satisfied identically ; so that

r, 0, z are the principal coordinates of the strain. The principal

stresses are by (55) of § 241

Bmijf - A*) + Am(B°- - r2
)

(B2 -A 2)r*
*i-

JV. _ (£2ir -Amy - a*b*(il - w)
(W-A 2)r*

n = _ {™-n)(Bm'-Am)
3 m(W-A 2

)

(110)

The corresponding Lines of Stress (§ 216) are respectively

—

(1) those portions of the radii drawn perpendicular to the

axis which are intercepted within the substance of the tube

;

(2) circles in planes perpendicular to the axis, and having
their centres in the axis

;

(3) straight lines parallel to the axis.

These three systems we shall refer to as the radial, circular,

and longitudinal systems respectively.

Since B>r>A, it is evident that JS
T
1

is always negative, and
consequently all the radial stress lines are Struts (§ 216)
throughout their length. The pressure transmitted by these

lines increases or decreases continuously from the limit II at

the inner surface to the limit 11' at the outer surface.

The stress N
z , transmitted along the longitudinal stress lines,

is constant, and its sign depends only on that of J3
2IT— ^ 2

II.

Thus these lines are Struts or Ties according as

IT >A*

In the limiting case, in which

IT JEP
ff'"^ 2

'

these are lines of zero stress, and the stress, as well as the strain,

is in two dimensions.

Since dNJdr is negative, the third principal stress regarded
as a pressure increases continuously with r. Thus, if N

2
is a

pressure at the inner surface, it will be a pressure everywhere

;

while, if it is a traction at the outer surface, it will be a traction

everywhere.
Hence we deduce that, if

II 2£2

IT ^ 2 + ^2
'
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(a throughout, transmitting a
ire which increases with their radius. But, if

II A-

{boot the body, transmitting a traction

which diminiflkefl as their radios in

Finally, it' the
|

ratio falls within these limits: that

is, if

II

transmitted long the circular lines of stress will bea
traction at the inner surface, and a pressure at the outer surface.

vanishing and changing sign when

A II .1-11 "
{

'J
fO that a!. lius will be

It may be observed that the limits Cor the existence of

IS, fall within the limit- i I OS), for

nee of & cylinder of z>>> radial dfopl . the two
grlinders do not horn as will appear on comparing

ill) and 1 109).

).] Strength of the Tube. It would be interests

rariooswayi in which the period elasticity' of the
ul-.- may 1 ndaag approach of one or other of the

•riiu-i where it is great* m. to the elastic

_th of the material m Ion or compression. We must
r to a single ftTfunpfa.

II 11 B^jA1. Then tl. its maxi-
iium value II Wu bafl it- maximum
aloe

. DP

&-A*

'hen r= A, ami the I nal tract im* has the uniform value

I

•: 8 inw
Tlie second of these is the greatest, so thai if the elastic

e materia] beaboxd the same for tension and com-
12], the first yielding of the tube

\ ill tak.- the form of transvi or increase of its

(iiam- nd it> power of ery.
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If T be the elastic strength of the material under tension, the

condition for elastic safety is

(A* + B*)IL-2B*IT T
B*-A*

<
'

so that we have, as guides for the proper dimensions of the tube,

when the pressures to which it is to be subjected are known,

n >^!> n + T
IT A* 2IT-n + T

291.] Application to cylindrical boilers. The case which
we have just considered—when the ratio IT/IT is considerable,

especially in comparison with WjA^—may be taken fairly to

represent the strain suffered by a long cylindrical boiler (except

in the neighbourhood of its ends). Thus, if T represents the

working strength of the material [Table (D), p. 203] which allows

for a large " factor of safety," the proper thickness t for a boiler

of internal radius A, to be worked at steam pressure II under
atmospheric pressure II' will, with due regard to economy of

material, be given by

(t + Af = n + T
a 2 ' 2ir + T-ir

Example. It is required to determine the proper thickness

for a cylindrical wrought iron boiler, 4 feet in diameter, to be
worked at a maximum pressure of 120 pounds to the square
inch in the open air.

The working strength of wrought iron is given in Table (D)

at 45 tons to the square inch, and the atmospheric pressure may
be taken at about 15 pounds per square inch. Thus, reducing
lengths to inches, and stresses to pounds per square inch, Ave

have
.1 = 24

n = 120

IT= 15

T =10080,

and consequently the thickness in inches is given by

(e+ 24)* = (24)3,
120 + 10080

V ; K J 30+10080-120

or

-«W5H--"
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The employment of " half-inch plate " for the construction of

Bueh a boiler will th< allow an ample factor of safety, to

guard againai the danger of accidental rise of pressure. In fact,

w constructed would not begin tognw until the steam

had risen t-» over 500 pounds per square inch: always
Bupposing that the portions near (he ends were able to sustain as

great a stress a- the mi<l<lle portion.

fi //.

] Circular Cylindrical Shear. A body, bounded by
:,il circular cylin infinite length, has its inner

(radii ttached t<> an immoveable cylinder

of tin- same radius; while it- externa] surface (radius B) i^

Bubjected to a onifon rywhere per-

pendiculax t<> the i ler. Required the nature el'

m produo
In tlii- example, as in the tditiona preaeni oom-

lymmeti is, and complete uniformity in the

(I rect: tural t<» assume that

tlie n h point u in tin- plane, per-

il n.licular t<» the :nt. ami that the

a oouni oi isplaeemenJ dependfl only on tin- distanc

t .• point from tl

Thus, witli shall assume thai

t> =(), and thai u and r and I so ft) are independent

6 aii-1 : W hen

x
l

I on substitution in l' 1

1

egrating, we get

« = C, I

, D

'Hi' boundary conditions are partly of tin- one type
an 1

]
tl,.- othi l<>7 |: foi when rm A, we

ar« to ha I /;. /' 0, f
T = F.
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The first two conditions give

CA+91 = 0,DA+^- = 0;
A A

and on substitution from (85) of § 244 in (46) of § 239, the latter

conditions become

2mCB - 2nC _ Q
B

_2nD'
' B'2

Thus C = C =

B2F/2n (
'AW = -D' =

and, finally, u-= and

v =
B2r/l

~~

2n\A 2

'->
Each cylindrical surface in the body coaxial with the

bounding surfaces is therefore simply rotated about the axis

through an angle

/J= £(i-J)p>

where r is its radius, without any change in its form or dimen-
sions. The amount of rotation increases from within outwards,

and the strain amounts to a circular shearing motion (in planes

perpendicular to the axis) of cylindrical layers of the body,

without any changes of density.

Each line in the body parallel to the axis is shifted as a

whole, parallel to itself, while each radial line is distorted into a
hyperbolic form. For instance, the radius of the shell which
initially coincides with the axis of x assumes the curve

which is a hyperbola, having for its asymptotes the lines

a.' = 0, y = B2Fx/2n.

Since the strain is supposed small, F will be very small com-
pared with n, and the hyperbolas will be nearly rectangular, as

well as of very small curvature in the portion intercepted by the

shell.

In Figure 34, the dotted lines represent the above hyperbola
and its asymptotes, the portion distinguished by an unbroken
line being the strained form of the radius of the shell initially

coinciding with Ox. This figure is drawn for an exaggerated
case, in which F = '00523 n.
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298.] Lines of Stress. Since

P=Q = R = S=T = 0,

ami r tip /;-F

all lines in the body parallel to the axis aiv Lines of zero stress,

ami the two principal stresses in any plane perpendicular to the

the remaining roots of th<- discriminating cubic (21)
3, which here reduce* to

Tim.

» 0.

A F .

Fiff.34

In the system of coordinate* which i »w employing, the

dii et: li point of the

i e of the elein.ntarv lines dr, ! '& be

an Inn. i ;m«l A, /u, v the cosines of the angles

wh ch it makea with I ure have
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and the differential equations of the Line of Stress corresponding
to the principal stress N (see note on § 241, at end of the volume)
are

UrdO _Udr_ N . dz = Q
dr rdd

The differential equation of the Tie Lines, transmitting the trac-

tion U, is therefore

dr = rdd,

and that of the Strut Lines transmitting the pressure U is

dr= -rdO.

Thus the Ties are the equiangular spirals

r = Ce8,

and the Struts the similar spirals

r = Ce
~ e

,

each system cutting all radii at the constant angle 7r/4, while the

traction or pressure transmitted along each diminishes, as the

inverse square of the distance from the pole, from B2F/A 2 at the

inner surface to F at the outer surface of the shell.

In Figure 35, the whole lines represent the Ties, and the

dotted lines the Struts ; if these are studied in connection with
the direction of the Surface Tractions (indicated by the arrows),

the simultaneous dragging and squeezing effects of the latter will

readily be understood.

The traction exerted on the inner surface by the fixed cylin-

drical core is equal to the value of U when r= A; it is therefore

F'A.
A 2

This is otherwise obvious ; for, in order that equilibrium may
be possible, the external couples on the body must balance one
another, precisely as if it were rigid (§ 146). Thus, considering a
unit length of the shell, we must have

F' .A.2ttA=F.B. 2ttB,

or F'.A* = F.B'2
.

Example III.

294.] Spherical Shell under internal and external
normal pressures whose intensities vary directly as the



294.]

distance of the point of application from a given dia-
metral plane. A spherical suel] Buffers a normal pressure

- a over its inner surface radios .1 ». and a normal pressure

30 over it^ outer surface (radius B); being the angle
which the radius vector of any point makes with the given
diameter 0*,and II. II being constants. Required the conditions

[uilibrium, and the nature of the strain produced.

Adopting the notation of 9 248, it is evident that the condi-

are symmetrica] about Oz,ao thai the displacement of every
p^iut will take place in the plan.' which contains (): and the

point, and the strain will be altogether independent of w.

.lie conditions of equilibrium 140) are the same as for a

the Bhell due to the two
balance one another, From

8}- nm< ce due to tli«- pressure on each surface

of the shell is parallel to (At, and by resolving in that direction

Figr.36
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the force on each element of surface we find the condition of

equilibrium to be

J* cos 6 . cos 6 . 27ivl 2sinin 6J$= /ifcos 6 . cos $ . 27r^2sin 6d6

or UA 2 = WB2
(112)

Assuming that this necessary condition is satisfied, we have
by (68) and (69) of § 243

H* rsinVoO

e1= e2
=o

29.=. I J(*r)-I IS3 rdrK
' rdd

while the general equations of equilibrium (71) become

,3A 2m 3
(m + n)

dr sin 30
4,(e

3
sm0) = O

(»+•)» *|<V>-«

(113)

(114)

The boundary conditions (72) reduce to

P= -Ilcosfl, V = 0, when r = A,

P= -U'cosO, 27 = 0, whenr = j5;

and on substitution from (68) these become

(m - n)A + 2w^r + II cos (9 =
or

when r = A

ou

and

m - w)A + 2*i^_ + n' cos « ]

or \

when r = B

3 /v\ I'du _
or\r) r 0~d

when r — A or B

Finally, by § 287, we must have

v = 0, when sin 6 = 0.

(115)

(116)

.(117)

(118)
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Now equations (114) may be written

(fl»+«yMn4 L(6 ,/mh^) =

^6a
r bin 0) = O

and on elimination of O
i
we have

BTo. ^AH Of. AH
ft

or

3/ 2
A\ 1 3/. ^A\ A

Comparing this equation with [65 S we see that

V»A-0* (119)

It also appears from the boundary oonditiona (115) and (116)
trat at either surface A must be equal to costf, multiplied by a
ccastant factor. But cos0 is a surface harmonic of order 1, and
tl us the solution of (119) must bo the sum of two solid har-
n mioa of - l and — -•

Let us assume

A ('
'') .(120)

en, on substitution hi (114) we have

d

i these equations is obviously

( )
.(181)

A
(
ain, ~ni.Mit.itin- born ISO mi 1 181) m(l]

rdrK
\ I

*Thwe<i >j a in all qini in which there arc no applied

ea, as may be deduct fclj from equation! l<»i above. Bee Article
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and the form of these equations, in connection with the boundary
conditions (115), (116), (117) suggests that we should assume for

the form of u and V

u = \i cos 6, v — v sin $,

where u and v are functions of r only. The general equations to

be satisfied by u and v then become

1 d 2v
_(ur2)+— = Cr

1)

1 d , v u m-\

r dr r n \ 2 r2
)

These are easily put into the form

d

dr

2vr = Cr* + D- (ur2
) \

dr

n \ r / J

and on elimination of 2vr\ we have

dr2 n n r

,(122)

the complete integral of which is

2n - mn 9 in + n D ni D'
u = —^— Cr2 + C -,

lOn

where C and D' are arbitrary constants. The first of equations

(122) then gives at once

2m + n
Cr2 +

m + 2n D C D'

\0n 2n r 2r3
'

Thus, finally, the radial and transverse displacements are

^-5 r,
Cr 1 - + C - — cos 6

l(m n r r6
_J

___

—

Cr2 +— C -—- sin
lOn 2n r 2r3J

(123)

The four arbitrary constants are to be evaluated by means of

the four boundary conditions (115), (116), (117); it being obvious
that (118) is satisfied identically.
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Taking first <li< we have, when /- = ^-l, and when 7* = 5,

Therefore

lOw I* r*

I D-ZD') = Q \

< -\On(B-D-3D') = o]

Next bom ( 1 1
">

I

.;•/) + 30w/>'h :».l
4 II

Mid Similarly from |
1

/> • ::...,// ;,/;Ml' = o,

where by (118)

Tins

.1 11 All .

io i
ii

....

</; -.1 -.!•/- ii

9(m + n)u

(124)

It will I bserred does not appear in the boundary
e< oationSj and indetenninaie. The roancm is that

tl e <li>i'
' whose comp<>n«'nu mv

w=C coad, v~ -Csin

a lounts merely to a bodi I the shell through a

d <tan the p< This tern con.se-

q ently contributes nothing to the -train, and we may put f7' = o.

Swi-titutin. we have anally

.III •/; II -i

J

(125)
[
r ^(g-^fllr* (m + lM.HI I -am "I .

L + n)(#-J») * /I)/' 18(f» + fi J™*
To investigate the deformation suffered by the body: we

ha re

wl ere u, v are feu C r, of the order II », so that u1 and vs
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are negligible in comparison with x2
, etc. If (x\ y', z') be the

strained position of the point initially at (x, y, z)

Jx* + y'~ = sft& + y'2 + u sin 6 + v cos 6

= Jx* + y
2 + (u + v) sin 6 cos

z' = z + u cos 6— v sin 9

= z + u cos2 6— v sin2 6

= z + \\ - (u + v) sin2 6.

Now to a first approximation (see § 68) we may regard the

coefficients of u and v as functions of the initial or final coordinates,

indifferently. Thus we may write

. .

;

Z" six'1 + V/ 2

Jafi + y
2 = Jx't + y'* - (u + v) ~^-

z = z' - u + (u + v).

and any spherical surface

in the unstrained body, concentric with the bounding surfaces, is

strained into the surface

or (approximately) into the sphere

x'-
2 + y'2 + (z-uy=rl

Every such sphere is therefore shifted, without change ofform,
through a distance u in the positive direction of Oz. This dis-

tance depends upon the radius of the sphere, being given by

\_9k(m + n)(£?>-A?>) 3nr 9(-»i + n)(B^ - A b)r*J

It is easily shewn that u will or will not vanish for some value

of r between A and B, according as the equation,

9(m2 + mm - n2)xb + 5n2
o;
3 - 3&(3ra + in) =

has or has not a real root between A/B and B/A. If there be an
odd number of such roots, the bounding surfaces will be displaced

in the same direction ; if an even number in opposite directions.

Although, however, these spherical surfaces retain their form
unaltered, yet their surfaces suffer areal dilatation or contraction

(page 61), which varies from point to point so that the cones

= constant in the unstrained body become surfaces of revolution

of the sixth degree.
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B of8pkerical Harmonics*

".] The Cubical Dilatation. The general equations are

ox

m_- + )ir-c =

m—- + nr~-M? =
oz

(101)

Differentiating these as to./-, y, i respectivelyand adding,we obtain

v^ 0; (126)

nation which is aatisfied in all cases of equilibrium under
Surface T Thus A is in this case always capable of

cpanded in a 1 Spherical Harmonies.

]
Application to Spherical Shell. Let as suppose

the vaiQM of A t<» be riven at amy point of the concentric

surfaces of a spherica] shell, of which the interna] and external

n <lii are -I and 1>. These valu.-> mu>t then he capable of expansion
ii seri nics, so I ihall have, in general

:

when r 1. A V (H,);

. r Ii \

|

(127)

1 are H, and H/ denote any surface harmonics <>i* order i; and.

A being always supposed small. th«->«- two series are necessarily

c Qvergent
;it within the substance of tlie shell, at a distance

r Tom the centre, the value of a will be given by

^ B I H B ;

: ^
F »r tl

I

l 26 throughout the shell, and

al o sal '•- It i also convergent for

al values of r between A and />', for it may be written in the form

H
(
A \ /H

((
A
\

.1 h r h;

'i '-(
j

.r )
-i -or

Tli.- method 1km

is hat Uotopkjft .\rti--l.-> 7.
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and since A < r < B, the terms of these series corresponding to

very great values of i are ultimately of the same order as

g¥.*-$".»
Thus, the series (127) being convergent, the series in question

are more rapidly convergent than the geometric series

+2
+

respectively.

By a well-known extension of Green's Theorem [Thomson and
Tait, Natural Philosophy, Appendix A. (e)] the solution of (126)
throughout any given space, which satisfies given arbitrary con-

ditions all over the bounding surface or surfaces, is absolutely

unique ; and consequently the value (128) for A is perfectly deter-

minate.

297.] The Component Displacements. Supposing, for

the present, that the value of A is known for every point of the

body, we obtain by substituting from (128) in (104)

VU ~ ~n dx % B"»-A»» —..(1*1

with symmetrical formulae for v and w.

Now, if we write

U< and \J_i_x are solid harmonics of orders i and — (i + 1) respec-

tively ; and the functions

involved in the above expression for y%, are solid harmonics of

the orders (i-1) and — (i-f2).

But, if U, be any solid harmonic of order s, we deduce from
formula (65) of § 243 that
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Thus

\I. SOU \l» EXAMPLES. 33L

aJJ = [(j -l(j 1 )1U.=- 2{2s + 3)U„

and consequently

U .• 2<tf+ l)U< \

U_,_,> U
The Bolntion of (129), and ti mending equations for v

an«l [oentlj

u - u - *! 3y^"H
'
H H H

8n <£ A

N B H AH
-

ftf H .i H ,.!/; iH AH
>_.!--')

(130)

wh.-r.- the complementary functions u, v. w, art* solutions of the

equations

rhieh must beso a<ljt pressions (19
n.ay identically the equati

3* 3y ds
(131)

i0O Of 9

( i (fKHJH ( i

and nnce in ••urease we have to deal with
F t fo homog»n ti> function^ n<l -( /+ 1 ), l»«>th of

\ hich satisfy ^aO, we easily deduce bom | L80) t

:

/'_du dv

dx Zy

— n-lX-fl-*1^
Substituting lueol A from (128) in (131), we
in

dtt , dv Zw =

H. -^wHiV"[rii(t + l)-m(2 i- i i
/>')'-%4'H,-lH,> '

; + i)(flt,+, -ji*w )
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and consequently, if we expand u, v, w in series of solid harmonics

00

:

we must have

(B^Hj-A^Hiy = n(2i + 1) fdu i+1 dv^ 9wi+1\

B*+i _ ^2i+i mi + n
(
2^ + 1)\ 9ic oy dz )

(ABY+^A'Hi - PELty-*-1

= n(2t+l) /3u
/

,<
9v\_« Sw_A

^H-J.^a+i m(*+l) + w(2i+l)\ dx dy dz)

Substituting in (130), we finally obtain, for the general har-

monic solution of (104)

( f
du
J +

d
Xi + d^ 9a -j-T +

3v -i-i +
3w'_

<_ri

)

«

)

_ rar2 9 I dx dy dz dx dy dz >

o = Z<J
Ui+{X - 1- 1 ~T dx\m(i-l) + n(2i-l) m{i + 2) + n(2i + 3) J )

( f dfr+foi+ P** 9u -<-i +
3v -j-i +

9w/

_<
n 1

v " } , mr2 9 I 9a: 9// 9;s 9a? 9
ty dz >

u = 2/(
v

'
+ V -^1_ ^~ ^L«i(i-l)+w(2i-l) m(* + 2) + w(2*+ 3) J!

( f QUi +^+^I* 9tt-«-i + 9^-i-i +
3w/

_<_1

'

|

|

^ ^ , rar2 9 I 9.« 9?/ dz dx dy dz I >

U==
^i(

W< + W " i_1 ~ ~^~ S [»i(t-l) + w(2t^T) ~ m(i + 2y^n(2f+ 3) J )

where u, w'^.j may be any solid spherical harmonics of their

respective orders which satisfy the conditions of § 287, viz.:

—

ux +vy
- . == — 0, when x — y — ;

vy + wz

Jy2 + z2

wz + iu;

^«a + as
2

= 0, when 2/ = z — ;

= 0, when z = x = 0.

This complete solution is of course only adapted to a solid of

finite extent which does not include the origin—such as the

spherical shell with which we started.

For a solid sphere with its centre at the origin we must retain

only the harmonics of positive orders, and for an infinitely ex-

tended body with such a sphere hollowed out in its substance

only the harmonics of negative orders.
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Finally, we may add to the solution (132) for ". p, w oomple-
ry terms of the form

•ly, where </> i» any solution whatever of the equation

that the oooditioiM ol | 287 ;
for obviously any Bueh

function will disappear on substitution in equations [10

The most general an. I complete forma of the solution, for a

spherical shell with either the surfac nrfaoe

m over both it^ surfaces, will be found in Thomson
and 'l '/ Philot We -hall confine

here t<> the simpler ease of the aolid sphere.

-J Complete Solution for a Solid Sphere with
surface displacements given. Lei ^l be the radius <-t' the

sphere, and lei the component diaplaeeme] h point «>t' it»

surface be given by

Et< = KH II H, ).

decting bom I harmonic
t'uiterm . and adding the arbrl have

-SK-

M -*•
]

n
2[ro(»-l) + ti(2i-l)]

and < satisfies ^*<f>
= 0.

I assume

III
**' ,h

ami \ e shall then hav.- at the rariaee of the sphere r = A)

1 S i

)

IC

fa-

il)

h
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Thus all the conditions of the problem are satisfied by making

and consequently

and on substituting these values in the general formulae we finally

obtain the complete solution

«i
i6)»«

An

m(A 2 - r2)—
ox

m(A 2 — r2)—
h; + \

'o

ox

m(i

"_3

dx

i-1) + n{2i-\)\A i

)

HJ +|(^V*(^]

H/ +

m(;l 2 -r2
)
da

;«i(i-l) + w(2i-l)]il'

»i(i-l) + w(2i-l)]J
)

(135)

299.] Complete solution for a Solid Sphere with surface
tractions given. The components F, G, H, parallel to the

coordinate axes, of the stress across any concentric spherical

surface of radius r are by (107)

F=*P + ¥U+*T, etc.

Thus

where

t?
\~/ \a o duTX . /du

,
dv\

,
/du div\Fr = *[jm - «)A + 2n _j +«^_ + _) +„^ + _

j

= (m - w)rm + n\ I x~ + y— + «_ -11?^ + ~-(;m + yv + zio)

l__\ ox ' oy oz J ox J
= (m - wWA + n I r— - 1W + _a I

LA ^ / a*J

£ = xu + yv f 2io.
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Thus, if /'. 0, 11 be expanded in Bolid harmonies, we BbaU

GCB

. (m - n)>j\_, + w(i - 1) r, + w^fe+1

(m - ft) z\_
x
+ v(i - l)w

t+r2^

(136)

fH-i=*M«+yr «

(137)

i! », mnittii. in]. 1. -in. -ntarv function ,;, from the genera]

88),

^ s i L A /
l

I \ )A
= [1 -2(»-

w'lere M
A
and >//, , axe giv

Again

Tie

"

to harmonies as foU<

L< :
<f> t

be any solid lia run-: I S. 1 1 1
•

- ading
su face harmonic, 'I

an I the twin solid

*_,_,- r-'-'S,

Tl IN

!*• B >•
S '

ox ./•
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and consequently

a^-LXr^-r^^fl (140)

Applying this result to (139), and bearing in mind (134),

!,+, = ^{[1 -<i- 1 )(M + IWPAi - 4>(+1},
J* + 1

where

^' +1
\ dx\i***) dy\rii+1

) dz\r2i^) j

K }

Differentiating, and again making use of (140),

3ai 2i-l L dx 2i + l dxXr-'-'/J

3(^
(142)

2i + 1 3#

Substituting from (138) and (142) in 136, and once more
availing ourselves of (140) we obtain

rJT« - »{* - l)pi,-
*>*^"J

(
W - W)[i-2(^i)jfoH _ jh. B/]y\n

2»-l \__ dx aBy*-yj
i-(»-i)(2i + i)y

<]
r^

<_ 1
_2^+^ |/ui

2* - 1 L cte 2* + 1 aaV"" 1

/

J

+ 3

w <ty*+i

.

2i+l ac '

and finally

rJT„—
{ <« - IK- 2(» -W%* - *^S(SS) " 2TH

3&+i (

3z J

(143;

where

y/ _ m(t + 2)-w(2t-l) n4 v

1
(2*+l)[wi(*-l) + w(2t-l)] V }

Now let the radius of the sphere be A, and let the components
of the surface traction be given at every point of the surface by

^=2(H<), 0-2CB.'). #=2(H/') (145)
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The expressions in (143) consist of solid harmonics depending on
surface harmonics of the orders /and i-2 respectively. Thus,

picking oat the terms which involve surface harmonica of order %

only, we must have

rtc, when r = A.

Thus

/ \__i_^-^ H
;/.l

.. (14C

I)i» * as to i respectively, and adding

H H (147)

^ lso Bubstttol ii \ v, iii 141 their valued <•!>> given
hr (14

- IK-'' + 1)1 i

-.:, [.(.") (")

T ms we obtain ^r from (147), and then <..• nn ' 1

1; >tly u, •. idy to substitute the

v lue 1 in the genera] solul

[ ]|

[ r]

(149)
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the final form of the solution is

U-K l
f r

*H+ 1 ^
n(t- i)^"1

1 2i(2* + 1) 3a;

(
i-l)m(^ 2 -r2

)
BX,

+
2[(2i2 +l)m-(2i-l)n] 3

[(t + 2)m-(2i-l)n>*" 3 /X^A
j

(2* + 1J[(2i
3 + l)w - (« - l)w] dxXr*-1

) j
l 7

'"J

U3

with symmetrical expressions for i> and w.

300.] Conditions of Equilibrium. The components (145)

of the surface traction must of course satisfy the conditions for

equilibrium of the body as a whole [§ 146, equations (6) and (7)].

Thus we must have

ffH.i
dS = 0,ffH.'idS=0,ffH"i

dS = 0; (151)

and

ff(yH."

-

*H,')^= 0, ffizR, - xU t
yS=0,

//'(xB.
i'-yU i

)dS = (152)

identically, for all values of i.

Equations (151) are satisfied identically by all surface har-

monics of orders other than zero ; so that we have only to make

H =-Ho =H " = (151a)

Also, since x/A, y/A, z/A are surface harmonics of the first

order, equations (152) are satisfied identically by all surface har-

monics of orders other than 1. Thus the only further conditions

required for equilibrium are

J/(?jB.{
/

-zB.
1
')dS = 0^

yy(zu
1
-xB.

1
")ds=o

But ASjf AH^, AH" are linear functions of x,y,z; so that, if

we assume

ATi
1
= Lx + My + Nz

AB.^-L'x + M'y + N'z

AU
1
" = L"x + M"y + JV"z

and remember that, since yz, zx, xy are harmonics,

ffyzdS =ffzxdS ^ffxydS= 0,
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we shall i

K
ffff*dS-L"ff#d& .

Vfj

n n * 1 . S]

//*' " iS fj ' '

K //:
/s "*

ill be completely satisfied if only

X h\ UmM\
that i-> if

w 1 ?U. „ . 1 U ., tt 1 U

.

r ox ' r oy

where U, is any solid harmoi

339

(152a)

.] Application of Sir William Thomson's Method
t > express the component displacements in the form of
r Dtentials. \\ that, in all ea*
t e present problem, t' 1 dilatation satisfies the rquation

^ jain, by successive differei

il duce

bi t it 'iat

flint \V have

• (126a)
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If now we resolve the strain, after the method of §§ 265, 266,

275, 277, into its dilatational and rotational elements, writing

ox oy oz

dy dz dx

oz ox oy

and assuming that \]sv \fs2 , \/r
3
satisfy the condition

we have, on differentiation,

2$„

(154)

^1 +^ +^ = 0, (155)
ox oy oz

(156)

(157)

Hence it follows from (126) and (126 a) that

v4*=vV1 =v4^ = v4,/'3
=o

Equations (156) are satisfied by the assumptions

4> = - j- III — dx'dy'ds'

where the notation is similar to that of § 266 ; and since by
equation (216) of § 311, below

(158)

^1 + ^2 +^
2x dy ?)z 2

it follows from (153) that (155) is also satisfied.

Thus if A, $v e# 6
3
are any solutions of (126) and (126 a)

which satisfy (105) and (153), equations (154) and (158) will

represent a general solution of the problem of equilibrium under
.surface tractions only.
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2 .] Sir G. B. Airy's solution for the components of
Strain and Stress. It will be Been at once on substitution
that the general equai:

ox oy oz

(103)
"dx oy oz

%+s :
°

ox Oy oz

ntisfied identically by the assumptions

V
3z* ox*

ox** oy*

oyoz

T- -^
ck% >

•lis Xp Xy Xs ma.
v °* f'Htinii iitiiniuiis

i i form, but I •
•- hum l v the

i ndftkm (63 oi

Thi ifl particularly useful in cases of stress

• j. Ian.- thing b fchen made t<> depend
\ pon a single* he plane of xyso
( >incid«- with the plan.- of !uti<»n is in this case

8 8 r

p ?!*
~oy*

3*XV

r

..(ICO)

illustrations will be found in low. The method
•riginallv doe to Bb ( \. B. Airy,* who arrived at it in a much

way, by an application of the Calculus of Variai

Report of the British As90x . 1862 : p. 82.
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The Problem of Equilibrium under a Conservative
System of Applied Forces, with or without Surface
Tractions.

303.] General Equations. For reasons stated in § 279,

we shall confine ourselves to the consideration of bodies influ-

enced by such systems of Applied Forces as are derivable by
differentiation from a Potential.

Let ¥ denote the Force Potential, as in § 279, so that the

component forces per unit mass on any element of the body are

given as before by equations (93) and (94).

The equations (6), (7), (8) of equilibrium then take the forms

d[P +PV] ^dU
+
dT_^

dx dy dz

dll
+
d[Q + rW . dS

dx t<j *s-°
dV

+
dS

+
-d[R + PV]_ ft

dx dy dz

a
dx 1

d_

dy 1

d_

(161)

d

dx*

d

dy

d

dz

[mA + p^P] + nrfu = 0'

[mA + p"¥] + ny2w =
J

[Cm + n)A + pV] - 2n(
d^ - dM =. (T
\dy dz)

-Urn + w)A + i&] - 2n(—i - ™*\
v/

LV
' r J \dz dx)

[(77i + n)A + p¥] - 2n(~z -—A =
\ dx dy)

(162)

(163)

and from the latter set we easily deduce

y2[(m + n)A + pV] - (164)

Similarly, the general equations (48) of § 239 become

d

9|[
(m. +M)A +^]- 2«[;4l|

3
(|)- /(3|

i

(|)]=o .(165)
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The boundary conditions will be given, is before, by (10G) or

107); and the conmderaii 1, 287 apply equally to this

problem.
The simplest method ofproc to solve this problem is,

oeral, t<> obtain the particular integrals of the above equa-
tions, depending upon the form of ¥", and then to add comple-
mentary functions satisfying the conditions of the last problem,
and bo chosen that the complete solutions may satisfy the

nditions (10b> 01 | 107).

It Ich ^ oa n be expressed in a series of Solid 8\ h

k] Solution of the General Equations. Let the
•ial be expanded in the series of solid harmonies

then v2^ = 0, and we at once deduce from (KJ4) that v2^ = 0.

Thus A mutt also be capable of expansion in a series of solid

1 arn let this series be represent

' hese series may be supposed in g. foehuk all values of

i positive and n

batituting m 162 . tiny become

-

a id, on Id (119) of . 297, \\

in

U mm U -

1

f* v 1

I dx

d

*4*

- 1 3y

r1 * 1

to « W - -
-1 dz

~(«Ai+i
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where u, v, w are solutions of

y% =
5 y2v = 0, v2»'-0.

In order that (131) may be satisfied we must have

ox dy oz n 2i +

1

and on picking out all the terms corresponding to the harmonics

of order i in the solution (169)

V, m{i- l) + n(2i- 1)

Substituting in (109) and adopting the abridged notation of

(134) § 298, we have finally

, = sTw, - M<r* 1(^_
;

+ £^-.)1

(170)

The complementary functions in (170) are of course the

complete solutions (133)* of the problem of § 297. The par-

ticular integrals given by this method of solution are

fir*.

mn \ ox J

m \ dy )

* , V a* /

pr

.(171)

We may however adopt another mode of solution,-f and obtain

particular integrals of a different form, as follow :

—

Assuming that

'dx

0<t>i Wi
** dz

'

* The arbitrary complements of (133) appear a3 the complementary
solutions of the equations obtained below for

<f>,
by the second method.

t See Thomson and Tait's Natural Philosophy, Articles 733, 834.
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and Substituting in t' ral equations e obtain

d
[("* + ' P*Vj-01

and the particular integral of these equations ia obviously

giving fot articular intf ] (168)

; / i— \
<

• +

1

)

p V j

—
'

I
» + l/

Thus it is cleaz thai both of th cular integrals, (171)

partial ; an.l in

i itegrals to b« cm

etc, etc.

a id subatitul tain th-

.171)

I im I these a is altogether

b hitt long as we are concerned only with the gnu-nil

'l'li»- formSf solution
I
171

| ntiaft l»y making

ai.<l the

C
t -pMJm, C,' = 0;

lution .17 1 7 1 * by mas

; i *).



346 GENERAL SOLUTIONS AND EXAMPLES. [305

305.] Complete Solution for a Solid Sphere with
surface displacements given. The complete harmonic solu-

tion in its most general form is

2[> 2te OS
'-(^

i_ 1 + C,*(_ 1)-C,'^(^
3;

•2

*«)J

.(175)

where the constants G, C (one of which is arbitrary) are con-

nected by the relation (174), and M, yp- are given by (134)

:

u, v, w, (j> being any solid harmonics which allow u, v, w to satisfy

the conditions of § 287 (see § 297, page 332). This form of the

solution corresponds to (133) of § 298. In applying it to the

case of a solid sphere we must of course assume that the series

(175) include only positive values of i.

Let A be the radius of the sphere, and let the components of

the surface displacements be given by

™ = 2(H;), *o = 2(H/), n = 2(H/').

Then we must have, when r = A,

U; + 2-Wtfw, + <W-i) - £—(^-1) = H. etc.r* s~\ \ IT l— x — » »— 1/ t -~i \

ox ox ox

or, differentiating the term involving (7, and making use of (140)

above,

U; +
(2*-l)(7

t + (2t+l)C7/ oB^,!
9,* _ 1 3a;35* -1

2*-l 94^-7 W
The solution is obviously (compare that of § 298) determined by

U
'-\l)

a
' 2^1 Zx\r^)

(176)

In order to simplify the reduction of this result we will first

of all eliminate Ci from (176) by means of (174). We have

n _ PMt 2(2* + 1 ){m + n)M
tC!
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at

('2i-l)C
t
+ (2i+ \ (:>» + 1MC/

.

-1 2i-l

substituting in the first of equation

But r a u

ri-' j l

aning as in I quently

j)eiidenl of I

it ing these values of
<f>
and >/r in od perform

the diflfei da indicated in the last terms of those

ally

3/X,
A'

,,177,

W" "W\ )]|

i[(^><—
i )]

«:,)H-
I

)]l

Thai the arbitrary constant C" disappears bom the oomj
> ut: indifferent

w letl t our c<

e< lati combination
«.i these which satisfiY Thia lellent

il istrati« made in that the

s< ution is absolut rminatewhen the surface displacements
ai • gi.

90&] Complete Solution for a Solid Sphere with
si rface tractions given. I radius of the sphere,

an I 1< action parallel to the

co rdinate axes I given by

r I II B // 2(H

Let os .liir to the particular b

(1', 3). We know from §§ 255, 286 that any two distribution* of

which bi e general eqi luilibrium

thiou«rh«>iit the body, a n< 1 conditions all over its
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surface, can only differ by terms amounting to a displacement of

the body as a whole. Thus, if the arbitrary element of (173)
appears at all in the solution of the present problem, it must be in

such a way as to contribute nothing to the strain, and it will

therefore be unessential.

Eliminating it then, and taking the simpler form (171), we
have for the particular integrals

u
t
= - E—• r2 -^-I

m ox

vt
=

wt

m 'dy

m o~z

.(178)

Let F\ G'
t
H' denote the components of the stress, due to

these displacements, across a concentric spherical surface of

radius v. Then, by (136) and (137) of § 299

rF'i^ = (i - 1 )nu
t + (m _ \ J^Ui ,

^V
i i ^A

\dx dy dz /

etc., etc.

Substituting from (178), and making use of (140) when necessary,

we deduce

tF ,_, = - -)——Pr— - m + (2i - 1 )n \r2— -- - mr-l+1— I -J-4 I r •

Thus, on picking out the terms which involve surface har-

monics of order i, we find that the system of displacements

m \ ox

etc., etc.

gives rise to the surface tractions

(179)

ml 2u3 [ J r%

w 3*t ^

B.-c

_ (^-l)mifi 4i_v+1
3

2i— 1 oa

etc., etc.

Again, the solution corresponding to the complementary

functions

(180)

^U-M^^-Aetc.
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of (170) has been worked out in j 299. It appears that, if

S„ S.', S.'' be surface hariimni . and if

(181)
=^+^r I

LM I ' ' A /J)

the system of displacements

b J Ui J 3*
-l)^'- 1

I
' SJK + 1) dx

A*-r*) X [(» + 2)m-(2»-l)n]r*" 3/X \,

1 j#/« -(2t-l)n] cte (2t + 1)[(2%* + 1 )ro - (2i - 1 )n] 3i\ ' I I

etc, etc.,

which I particular form of the solution (160), gives

to the distribution of surface traction

F S,').

Thus the system of displacements compounded of (179) and
(1S2) will satisfy the general equations (as particular integrals

ai d complementary functions, respectively), and will give to the

a mponents of the surface traction the form

[ ]'
'

-

i]

m that to complete our solution we have only to make

wi h symmetrica] ea and S.

,

sui-.titutiu. in .181),

(182)

-1

wl.jre^

>-*•«- L
m +(a»+ 5^

(184)

*re 4> ami X are given by (149
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Compounding (179) and (182), and substituting from (183)
and (184), we have finally for the complete solution*

Lv \ J r*H . +
1 **!±?

nAii-^A^X l

2i(2i+\) dx

(i-l)m(A 2 -r2
)

3X
iz}

[(i + 2)m- (2i- l)n]r-i+l d
+

2[(2i2 +l)>n-(2i-l)n] 3a? (2i + l)[(2i2 + l)m - (2i - l)n] "dx

\2i2 + l)m-(2i-l)n\ 2(i - 2)

i(2i+l)m< ^
2(2i- \)[(i-l)m + (2i-l)n] dx

ox

2i~^\ dxW*'*)}

d

Atry's Method.

307.] Airy's Solution for the components of Strain
and Stress. It has been shown in § 302 that the general

equations (103) admit of a very simple and general solution (159)

for the stress components. On comparing (161) with (103) it is

at once evident that the same form of solution is applicable, the

only changes required being the substitution of P + pty, Q + p^P,

R+ p^iorP, Q, R.

Thus, corresponding to the solution (159) we have the more
general form

s= _fXi
oydz

T =
'dzdx

U= _32
Xs

.(186)

dxdy i

The principal application of this method is, as already stated in

§ 302, to cases of Plane, Stress. For example, take the case of

a body in the form of a rectangular parallelepiped of any pro-

portions, placed with its three pairs of opposite faces parallel

* For the conditions of equilibrium in this problem, see Example 20, at

the end of this Chapter.
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respectively t<> the three coordinate planea Let this body be
in surface tractions ovei the pair of faces perpendicular to

and let it I upon by im] roes and by surface

•r til.- remaining two pairs of fac ywhere per-

pendicular t«» 0z
t
and in magnitode independent of a Then the

<s -components R, >. T will be independent oi :, and zero

of the body: and consequently they must be
tl broughout The force-potential XY will also be independent

of r. and •>" therefore will 1 1
1«

* regaining stress components

Tjnus t
1 the body is wholly in the

plai ndicular t<> | and the solution (186

imple form

'-£->*

V '11

Q

r

/',
(J,

Uthi r the boundi
Two of the examples c 1 by Sir <i. & Airy in his

ori< inal paper* will be investigate 1 in the following articles:

the remainoer will be I iples at the end of

thi Chap

108.] Case of a heavy rectangular beam, with one
en< clamped to a vertical wall and the other end free

;

the faces of the beam being horizontal and vertical.
Let L !>•• the length of the beam «'

!». B it- breadth
(ho izontah, an-l /> its dej cal Take toe origin at tlie

cen re of the ti\.--l end, Ox in
*

of the Length (a

the )»• ally downwards, Then M'-gv. and

abridge, 1862
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If we make

[308.

t = x-hgpy
3

('
'«)

these equations take the more manageable form

4v

'dxoy

U±

9)

&

r V
Fig.36.

Since the end x= is the only portion of the surface in

contact with solid matter, the surface tractions must vanish over

all the other faces. Thus

P = 0, U= 0, when x = L

;

and Q = 0, £7=0, wheny = ±|Z).

Also, since the whole weight of the beam is supported by the

integral tangential stress over the fixed end,

BJ Udy = gpBDL, when x = 0.

Substituting for P, Q and U their values in terms of \js, the

surface conditions become

1(t.-i3-*3*-i]-4.
a*

for all values of ?/

(i
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(191)3& *i*]-±te>4 -±w-<0
ill raloee

' - + |/>J=»>2>Z (ltt)

L90] it tli:u both dr and difr/dx vanish when
j=L, and from (191) thai a independent of as and

m. ± j D.

H- infer that \// only involves ./• in the form of the
'hat it contains only odd powers of //, and thai

is a factor oi From these data we deduce
without difficulty that \' ily of the form

*
' [_ \.\ ~1T5 J

where Cv I be determined by the

remaini] I the first condition

; . l it will be found on substitution that both l^ 1, rise

to the Bame equation: oamely—

determinate, we
\ ill a«loj»t the sii I assume

cf-cft
-...-o.

We -hall th.

* ("..
)

*-«*[ I ) ]

substitution in (189)

«-*(?-o
'

fl93)

(

)

(194)

ai <1 it will h.- found "ii trial that these valui fyall the

in po rlitions.

v.
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Figure 37 is reproduced from Airy's sketch of the Lines of

Stress. Their equations are not integrable in finite terms, but
this approximation was arrived at by determining the directions

[by means of § 129 (64)] of the lines of stress passing through
each of a great number of points, and joining up the elementary

Fig.37.

arcs so obtained. The obliquity of many of the intersections

proves that the Lines of Stress are not very accurately represented,
but a good idea is doubtless given of their general tendency.

The same remarks apply to Figures 39, 40 and 41, which
illustrate examples 29, 30 and 31 at the end of the Chapter.

In all cases the whole curves represent the Ties and the

dotted curves the Struts.

309.] A rectangular beam (placed as in the last ex-
ample) is supported at both ends, but not clamped—so
that no couple acts upon it at either end : while a given
load is uniformly distributed over a certain portion of
its length. Take the axes of reference as in the last example

;

let the total load be W, and let it be distributed uniformly over

the upper face of the beam from x = A to x = C.

It is obvious that the normal component Q of surface traction

over the upper face of the beam will be a discontinuous function

of x, and that the discontinuities of value will occur at the lines

x=Atmdx = C. [Q = fromx = 0tox = A: Q=-W/B(C-A)



60

c
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= A to .# = (.'; Q = from 05—0 to j: = L]. The principles

i.n-.^ lead Ofl to assume that \fs will be a discontinuous
function of ./•, the discontinuities of form and value occurring at

the planes .r = A and Z*» C9 subject to tin- conditions of stress

continuity <<>:; of 5 226.

Lei ofl then assume tliat

y',. hom ar = to x = A ;

$ = $%, from x = A to ar = (

^ = ^„, from x = C to x = L.

If P., (Jv i\ . P
s , Q3, U3 be the Btreefl components in

into which ire thus di\ ids the beam, is deduced
from \y by means of equation- I Ml , the

eondil iitimiitv require that

7>
3
=^- r

s
= 0, when « C. /

nditionfl that there may l»e no couples on the end- of the
beam

j\

r
J

-\T>

|

/

Sin e there \a no tangeu y portion of tin* beam's

sur; ice except it- i mis,

• there ia i ! rinei on the rides of the beam within

the irsf and third regioi

^a^.O, wheny= ±A/' ;

dmilarly for the lo* Pace of the loaded region

'he integral oorma] p rface of the loaded

e«jual to the weigh! of the load, and since thifl

iformly distributed

> -A)Qt= -W.
Finn ly, tl utial Btressc ned upward

i ends supp fchem the total freight of the beam
and i the load

;
so tl

/ // BDL+W.
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Substituting for the stress components their values in terms

of \jfv \js
2 , i/r

3 , these various conditions become

(195)

.(196)

|>2-W=^2-W =
)
whenx^

•5^-«=5
/

^-«=°> w,,en ^ c

*/) |
£*[* = 0, y = W] + Mi[x= 0, y * - \D] \ - +£*- 0, y = ±D]

+ t1
[x = 0,y=-±D] = (197)

X
2
D^[X= L,y=lD] + ^[x = L,y--=

-*2>]J
-+Jp = L, y = $D]

+ i,s
[x = L,y=-},D] = (198)

^i = 3_!i^|
2

&=0, when2/=±li) (199)
cWdy dasBy oro//

S1 =^=±^Awhen2/==±li> (200)

3x2
= JgpA wheny = f0

d.r

^[x-0,y=-|i)]-e>/>X +5.

(201)

.(202)

.(203)

From (199) it appears that dyfrjdy, dy^^dy, and d\[r
3
/dy must

all contain the factor (\D2 — y
2
), and from (200) that \js

1
and i/r

3

cannot involve even powers of y. From (200), (201) and (202)

we deduce that d2\p-Jdx
2

, d
2
\frjdx

2
, o

2
\p-Jdx

2 must all be independent
of x.

We shall satisfy (qualitatively) all these conditions, and at the

same time (197) and (198), if we assume

*-**<?-$
3g&̂ +^4y}Tx +M(^-oj;.

*,=^(*-£)MflMO
where a, /3, y, 5, A, /* are constants, to be determined from the

remaining conditions.
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It' we write- far brevity

6=W gpBDiC-A), (204)

we must, in order to satisfy (201 | and 202j quantitatively, make

P-1-12A &•- ISA I> . 20 + 1.

Bence we find

A= -0Z* 13, p« l

ami consequently

* ^,^/^ + r)[(. +^^)-^] (206)

SnbstitatioD in as

$-a = Z + :>0(C- . (206)

While (195) and 1 196) be©

. ^(^a) _ 2.4+a _ (G'-Z)(C' + 5) _2(7-Z + S

~,l' + Jj8 + y 27TJ5" C* + CP + y
' W+fi " K }

Tl £roup ifl solved without difficulty, and givi

a= -L-6(C-A)(2L-C-A '

/*= -[Z,*+0(2CZ,-t 1 + 0)/,

y-64»/(l + 0)

id it will be found OO trial that these values satisfy

i< entical

All the fttTfwtantn an determined, and the complete solution

i
. ••.] r. seed byH >SX-L- <>(C-A)(iL-C-A)-Umy

^^taja^Bj
(<; )

•;<:]

•'[ "V ]('V )

w ien- la defined bj

The student should nalrmlatf the values of the com
p< aent> in the ti us ol equationa I89)t and
c< *nnce himself that all the boun ditiona are satisfied—

lition of continuity of P and ^throughout the

be ly

*T1: • — - tin- fa. t th.it tin- bean jesses on the
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307 bis.] Important Addition and Correction. The solutions of

the problems suggested in the last two Articles were given—as has already been
stated—on the authority of a paper by the late Astronomer Royal, published
in a Report of the British Association. I now observe, however—when the

printing of the Articles and engraving of the Figures is already completed—
that they cannot be accepted as true solutions, inasmuch as they do not
satisfy the general equation (164) of § 303. It is perhaps as well that they
should be preserved as a warning to the student against the insidious and
comparatively rare error of choosing a solution which satisfies completely all

the boundary conditions, without satisfying the fundamental conditions of

strain, and which is therefore of course not a solution at all. The indeter-

minateness of the C constants in Article 308 should have served as a timely
warning, by its inconsistency with the general Theorem of Article 255. As for

the diagrams of the Lines of Stress, they are only given as approximations,
and a little consideration will convince the student- —especially when he has
mastered Chapter VII.—that they do represent the general character of the
distribution of Tension and Thrust.

The remainder of this Article is to be considered as a continuation of

§307.

The functions Xv x2 , X3> ni terms of which we have expressed

the six components of strain, are not wholly arbitrary, nor in

general wholly independent. The six strain components being
obtained by differentiation from three independent displacements,

certain relations must exist between their derivatives in order to

ensure the possibility of re-integration. From equations (1) of

§ 253, combined with (153) of § 301, we easily deduce

2
dd

-\ =^
* dx dy 3?

^dd
l

da _^df 2^*1 = 2-^— ??•
dy dy dz dz dy dz

} ' (A)

with similar formulae for the derivatives of
2
and 6,

be verified by substitution, and are identities.

these may
On eliminating

V 62, 63
by cross differentiation, in all possible ways, between

these nine differential equations of the first order, we obtain the
following six of the second order

dy2 dz2 dydz

d 2e ?Pg - d2b

dz2 dx2 dzdx

d2f +
d2e_ d2c

dx2 dy2 dxdy
fda

fiydz dx2) dx\dx dy dz

\dzdx dy2

\dxdy dz2

db

dy

) dy\dx ' dy

da db

d Ida db dc

/ dz\dx dy dz)

(B)
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tfl must be satisfied identically by every system
of values that can legitimately be assumed fox the six component
strains, and every Bystem of functions vchich satisfies these and

1) will , rfy (164) and all other equations

rible from 1<>1) by differentiation

Substituting from (11 ;

. we have for the six fundamental
relations :

g[*-(l + <r)V-\
l ]
+ ^>-(l + „

£[*-<! J-0

<J-o
1

• T v. + X1 +Xj-(^, <-^?+\.
;

\)-(l

In all cases of Plan rravity, such as the

& H)y Rumples U nd deriv)

«.t ¥ are all aero and x* or X *s in«l«-p«-n'l«nt .

•

ktions (C)

aSVac* ay*/ a^va* / v» v/

S + ?^- 2 '

Wl n< -ntly

wb •!• ntary fun ution of

.(K)
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Boussinesq's Potential Solutions

310.] Boussinesq's Theorem on the Differentiation of
Potential Functions. The ordinary "gravitation potential"

of any distribution M of matter, at a given point P (x, y, z) is

\IM/-

where r is the distance from P of the element dM of the

Potentiating Matter.* The same nomenclature may be con-

veniently extended to the purely analytical function

MP
where r = JJg£ - x) 2 + {y' - yf + (z' - zf

and the integration is extended throughout any (continuous or

discontinuous) regions of space ; the function \jr being finite for

all values of x', y', z' within these regions. For this integral can
always be converted into a true potential, simply by multiplying
it by a constant factor of appropriate physical dimensions, and
the regions of space throughout which it is integrated then
correspond to those occupied by the potentiating masses.

We shall include the above function, and three others inti-

mately connected with it, under the general title of Potential

Functions, with the notation

I =111 -#^i y'i z')dx'dydz'

D =fff>'^(x\ y', z')dxdydz'

L,! =//flog(z ~ * + *•)#»', y', z')<lx'dy'dz

L2 =fff\kz ~ zy°g(z ~ *' + r)-r]xp(x, y, z')dxdy'dz

distinguishing them (with Boussinesq) as the Inverse, Direct, and
First and Second Logarithmic Potential Functions. For analyti-

cal purposes we shall assume that the function \js is, for all values
of x', y', z, either finite or zero ; and that, in approaching the
surface which divides any region within which \js is finite from
any region within which it is zero, the value of \Js decreases

continuously (however rapidly) till it vanishes at the actual

surface. We thus make \[r continuous in value throughout

* Beltrami's masse potenzianti, Boussinesq's masses potentiantes. It would
save many tedious periphrases if this most convenient term were universally
adopted.

..(209)
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lihout in any way limiting its discontinuity ofform, ami
oonaeaueniiry the first partial derivatives of \fs may be strictly

I a> finite throughout spa
We shall regard all b] divided into /-V-

I by potentiating r where \/x

differs from sera It is obvious thai all the integrals (209) may
garded as extending throughout all space, or

throughout those regions only which are occupied by matter.

The evaluation of these integrals and their derivatives pre-

Hents no difficulty when P is situated in free space [<'.<.. when
D]j but when P is within the potentiating matter

. when \' ro], it is possible for .'•' — ./•,

ish, and in this case the functions to be
nrated may include infinite ten

problexi the Potential Functions can

be mad.- available for analytical Durposes, is therefore t<» obtain

formula of differentiation as to a*, v, : <<\' the function

*-fffi¥%%*i - (210)

uteerated throughout -pace, for all \
—

(i.) in tinuoufl \ < :m only
x?comr i 1 1 1 i 1 1 i t - at one point in space, namely, whi

.'/' » y, Z m

I

in the case wl ntinnoua function \ becomefl

ofinite l"«>r all those points w
|

rhatever be the value od

First Case (applicable to I, D ami their derivath as) B
.< nesq'fl investigation rests oi. lowing principle:

—

>l€8 of tl<
. will be

<n<i • suppose the limits of hi mdudt aU
• ,,!>< at /',

elementary radius k; the value of k being reduced to zero

o %tr evaluation.

principle and remembec that

imply the um hie <»f #, produced by the

ifi'.n of the point P througb an elementary distance (/.>• in

tl e positive directum of Ox, it is clear that (P being supposed
al *rays to carry witli it its little enveloping sphere this increase

w 11 consist of niet portions:

—
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First, the gain due to the displacement of the sphere, which
has left behind it, on the negative side of P, a small volume now
to be included within the limits of integration, and has taken

from these limits an equal volume on the positive side of P.

(See Fig. 42.)

Secondly, the increase, due to the displacement of P, in the

value of that portion of the integral which is taken throughout

all space not included 'within the spltere in either of its positions.

I \
*

/ \

_d<r_\

t + /!

P P !

Fig.42.

Figure 42 represents the translation of the sphere, and shows
clearly the loss and gain of equal volumes by outside space. To
find the net gain of the integral <i>, let a cylinder of elementary
section dcr be drawn with its sides parallel to Ox, and cutting all

four hemispheres. This cylinder will cut off an element of volume
dxda- from the space gained and from the space lost. If we take
(x, y', z') for the -coordinates of the centre of da- the element of

~-dx
ox

due to this cylinder will be very nearly

{#*- n/**- (y'

-

yf - (?=¥, y', <l • x[ - J**- (y' - yf - (*' - *)
2
, y - y>*

-

*]

- x/y[x + s/K2-(y'-yy-(z'-z) 2
, y\ z'] . X [ + Jx 2-(y'-y)2-(z'-z)2

,
y'-y, z'-z]}d<rdi

The whole gain due to the shifting of the sphere is found by
integrating this expression as to o-, over the whole area of the
circle in which the two spherical surfaces intersect. If we write

then

y —y + 7
1 cos a> 1

z m z + yj sin w j
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I the net gain due t<» shifting of the sphere la

]
> I /{4{x- > U + '/ 0M * ~ + V *m w

] • ,\[ - */** - '/"-',

V ^<->s (o, >/ sin w]

- ?i U * 7 ** '«] • x[ + >/*'" - ?t 7 c ,s r
i 9 WO w]

;
//(/»/(/(•» :

and since r>*;>0, and k ia ultimately to be made sero, this may
written

—
. v at*) nun Mjjm/tKM.'i

•

Ul

the gain in thai portion of the integral which is taken
tughout all space excluded by the sphere in both positions ia

///

tl '• limit iding both splu-iv>.

Aiding tog«'tli. r th< I proceeding to the limit,

a • have H

///

J / . x HlOiJ

« •

|

Mil «.i
|

\ir /,
i</<>

w ere the triple integral is tak all space, and the

<l ible integral ia to i. the limiting value it aasomes when
K 0.

If P ia in tree space nd+

1 1 2/// rJ1;:)

The formolsB fordifl as toy an- 1 i mag be ded

i may be observed, as a useful general rale, thai if \ is a
(double) integral

la < f the dimensions *r***, and ia thi iltimat<h ible if

-2.

•
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Second Case (applicable to L15 L2 , and their derivatives).

When the function x becomes infinite if x =x, y' = y, for all

values of z\ we must replace the sphere by a circular cylinder of

infinite length and radius k (ultimately zero, as before), with the

line x =x, y
'— y for axis

Taking y' - y = y
j

x' - x - Jk2 - rf j

and remembering that a shifting of the cylinder parallel to Oz
does not affect the limits of integration, we find as before

dx~ ^

-X[+ Jk2 -^2
, V , z -z]}dydrj, (214)

with a symmetrical formula for d$/dy ; while

3<p

dz

fo jJJ

^

x>i y'' z
'}'Wx

dx'dydz' ytte y
>
z2/{x[ " ^Ik

~ ~
*?> v,

— oo — K

-l\ 1, z -z]}di)<h\

formula for d^/dy ; while

=JTfW> tf>
z^dx'dy'dz', (215)

whatever be the position of P.

If \ls{x', y', z) is zero for all values of z', when x'= x, y = y,

the formula (214) becomes symmetrical with (215), as the residual

integral then vanishes identically.

311.] Alternative Formulae. If we shift the origin a

distance dx in the negative direction of Ox, we change x, x' into

x-\-dx, x'-{-dx, without altering y, y', z, z', or the infinite limits of

integration.

Thus, since (x'+dx)— (x-\-dx) = x
/— x,

$(x + dx, y, z) =fffoix + dx, y', z')x(x - x, y' - y, z -z)dx'dy'dz',

and therefore *

?*=jS/
r^- X - dxWJZ

] (216)

etc., etc.

This formula is independent of the position of P and of the form
of the function x-

312.] Application of the formulae of differentiation

to the Potential Functions. It is left as an exercise for the

student to show, by successive applications of the formulas (212),

(214) and (215) to the Potential Functions (209), that

3L2 = L) Vl+JdU
dz v dz2 dz

* Quoted in Articles 266 (i) and 301

L, SS B «S.Ij (217)
dz v dz2 dz '

{
'
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r/Li-sW ffc y, z'yiz :

and eotisequentry that

D) v(
L

) v(
L

)
(219)

:.!:>.] Boussinesqs Applications of the Potential
Functions to the solution of problems in Elasticity. < foe

of tin- most remarkable applications oj these functions is t«> the

bionof the -train produced in an isotropic solid l'< »mii Led

by one plane face, but otherwise unlimited in extent—by an
arbitrary distribution <>t* surface traction over the whole or

cert;: :ril»e«l portions of the plane face.

w e dial] b i t<> the ease in which no
ess act upon tbe body, and in which the surface

taction ia wholly normal, of finite magnitude, and applied only
t » finite areas of the -m face.

• face of a i 1 1 1 the

a cis rface eonditiona are

=

ft 11

being an function of X ami

y baying finite and couth. tarn circumscribed
a ess of the

|

y, snd I ero.

Since the integral

fj

is <en owr tli plane Cms is finite, the total 131)

a< foes any li'-mi-pli.-riral
j ading upon its

pi me surface as base) mum also be finite. Tim- for great values

^ stress com] must be— at the
gi atest—of dimensions r -. and consequently the displacements

of dimensions r
l

.

Finally, the general equi 104 must be satisfied at every

p< nt
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314.] First general type of solution. If </> be any
function whatever that satisfies Laplace's equation y/

2 = O,

we have

vVA- 2
3*

.(221)

identically, and consequently

ox\ oz]

If therefore we assume

V2| (*</>), etc.

U = - (z<$>), V~ -5- (#)"

?/> (z</>) + w

we shall have
OZ

A4(vv
as

2««,

and on substitution in (104), we find, as the necessary and
sufficient condition that the general equations of equilibrium

may be satisfied,

w = — Up.
m

Let us then assume for our general solution

u= -z
ox

w = — z^f + (/>

oz m

.(222)

where is some root of Laplace's equation which at a great

distance r from the origin is of dimensions r~\ at the most.

From (222) we obtain without difficulty, by the help of (221),

A = 2n^ n
2(

} (223)m dz m

dc[_jn f]

oy[_m oz_\
,(224)
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315.] Second general type of solution. If again we
assume

?</>' a*V ?<//

ox oy oz

<f*'
beiiiL: any root of Laplace's equation which lor great values of

r is of zero or negative dimensions in r, the general equations

and the conditions required at infinite distances will both be
satisfi

We deduce froi:

A "...

r a*

.(227)
y ':

31G.1 Special forms of the Potential functions, when
reduced to Surface Integrals. The imaginary distribution
ol pot' which the functions • 310 may
b supposed due, i fined to a surface laj i

*> rfa- unit area, « whole or portions of
in khi* ease kl integrals reduce to

ijj

D /

L //.

ai 1, since in this case ^> throughout thi the body,
w deduce from t

:

:;i 2

L
i. rD a, ,-a .(230)

AN i
)

•_: finii all points of the surface, I is

of V dii [uired in Sle\ and L, of those required

in

1
Tli«- -tn. I. -lit w ili iU tO

ethod mggi rattan ol the Problem oi Fnt
Vil rat i
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317. Special form of the first type of solution. Putting

= 1 in equations (222), (223), (224), they become

W = - 2-

?)X

d

%
dz

rC xf/dxdy

JJ ~
rr xj/dx'dy'

JJ >
rr-^dxdy wh 'In rr-tydxdy

JJ r m JJ r

(231)

A = r^l /TW*W (239)

T=2n
AjmJJ r ^*JJ r J

...(233)

Performing the differentiations as to z, by means of formula

(213) of § 310, we obtain

A =

#z\pdx'dy m + In f^^dx'dy

i rrzxpdxdy

JJ ~^~
T=2n—Y- ffWK'dy + r rrzxPdx

'dy~^

s

=

2«— V- rr^dx'dv + z rfz±i* dy~]
" ty\j»M r JJ r» J

R= -2nVn rr^dxdi/
^
^/Tf^dxdy'-l

The integral

rr^dx'dy'

and its derivatives as to x and y are certainly finite for all values

of z, and. in order to determine fully the surface conditions, it

only remains to evaluate the integrals

rrz-^dxdy rrz^-tydx dtf

JJ r> JJ ~^-
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To do this, transform the independent variables by the substi-

tutions

y - y -

SO that . ijdqdt

p{ over certain finite areas of the surface, we
may extend tin- limit> of integration so as to include the entire

plane thus the limitfl of fare <> and ^, and those of h are <>

and :

The transformed ini ire

IT .*» ~r

' J J (1,
rr / /

JJ J J
i

I tot oi Mt> tti 0, and oonaeqnentiy yV

nei independent of >/ and » and may be written '

i i tl Toe

leee vain and putting
: -0, we obtain for the surface varaee of a, *, " -

. A, '/', n /:

7,1 -f 3 rr

a,-

rr
JJ r

G-'2 "' If
ijj

//-

JJ

1A
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318.] Special Form of the second type of solution.

Writing L
x
for </>' in the equations of § 31 5, they give us

u =—- //x/y log(« + r)dx'dy'

v = — //i> log(z + r)dxdy

rr-tydx'dy'w

A =

(236)

(237)

T=2n

S=2n

R = 2n

rrxj/dx'dy'

JJ r

rr^dxdy'

JJ r

/y^xpdx'dy

,(238)

and we deduce, with the assistance of formulae (234) of § 317, that

at the surface of the body

vo = ^- //flogrdx'dy' .(239)

A -0, (240)

F=2n

G = 2n^L

d_ rr^dx'dy'

dxJJ r

rr-tydxdy'

tyJJ r
.(241)

H= - 4irn\p(x, y)

319.] Solution compounded of the two simple types,
and adapted to the case in which the arbitrarily dis-

tributed Surface Traction is wholly normal. Multiplying

the values of § 317 by -1/4x71, and those of § 318 by + l/47rm,

and compounding (231) with 236, (232) with (237), (233) with

(238), and (235) with (239—241), we have the system of displace-

ments
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10 =
4-/* :

PCC dx'dy' _m + n rr
JJ r IvmnJJ r

371

(242)

A 1 3
'2- n> ":ff^,

./,/

.(248)

ami

2v dzdxj/ r

/ JJ r

throughout the body : while at ice

JJ r

^ m
/• // ,',,-

(244)

^
r

e have therefore obtained a complete and perfectly general
- luti <• problem proposed it

».] Regarding the earth as an infinite isotropic
s >lid, with one plane face, to determine the strain
p oduced by a very small but heavy mass lying on the
S irface. Toe -urface of contact being very -mall, tin- in?

v. ' each reduce to i tingle element, which ire will suppose to !>«•

at th We shall (hen have .'•'
0, ad

- -W,
w lere W it the incumbent v. Substituting in aquations

, and performing the indicated differentiations on r~ x

f:,, ire obtainai. 1 Log(r4»j
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= x W|~ z 1

"J
r ' in \_jir2 m(r + z)_J

= y wr z _ 1 "1

r 47r \_nr2 ra(r + z)J|

wr z m

N

A =

iw [_nr2 mm _J

*wn
J

T= -

R =

27rmr3

x 3z2W
r ' 27rr4

y 3z2W
r ' '2wr*

z Sz2W
r

'

27rr4

throughout the body ; and

x W
uQ
= — - .

r 47rmr

y W
r 47rmr

_ (ra + n)W

W)
|

over the surface.

W must of course be supposed

very small in comparison with the

weight moduli of the ground ; it

must also be remembered that,

while W/r represents fairly at dis-

tant points the potential of the last

Article, yet these formula? cannot

be considered to hold right up to

the origin. The above values of

u , v , w represent the strained sur-

face as formed by the revolution

about Oz of the hyperbola

Ati +
m+nA = (

m + nYw ;

\ n ) \ n J iirm

but the central depression will in fact be rounded instead of

conical (see Figure 43), in accordance with the statement of § 55

that discontinuous curvature cannot be produced by small

strain.
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881.] A right circular cylinder, formed of homo-
geneous and perfectly rigid material, stands on end
upon the ground; required the deformation produced
by its weight. Lei W be the weight of the cylinder, and
A the radius of its base: lei the centre of its base be placed at

the origin. Since the cylinder m rigid, its base will remain plane,

and eonaeqaeiitihf we must have "•„ constant all over the area of

contact Also the conditions will be symmetrical about the axis

of z, and then uiav writ.- >//(»/) for y/r(x\ //'» and

/ I «l»i; ///'/<> f( I //'I'"'

whei
i »/ cos w, y' = r; Bill u>.

Thus the problem re be following :—Required
a i'un< ieh that

1

r /,y,/W -W, ..//
while

77 - ?; sin w)-
(249)

-tant lot all tallies ,,f ./ and </ tl .C* + y
2<<4*.

v \w know from tl y of electricity* that a free

jharge K will distribute if ; '<*ir conducting disc of

adius A in inch a maimer that the surface density on <

E i-.i s .1 ', while the potentiaJ due to the

liatribntion m wB/IA at all points within the disc, and at all

U .i

£ is the greater root

ted are easily d< on those of the ellip

. .-ii. |

/; I, '==<».
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from rj = () to rj = A, (248) will be satisfied identically, while the

value of the integral (249) will be — 7rW/2A all over the area of

contact, and for all the rest of space

f"-pj ^)l¥» _^tan-A, (252)

J J *J(x - rj cos w)2 + (y - rj sin o>) 2 + z2 A Jg

£ being given by (250).

Finally we may note that

=- I I log[z + J(x- 7] cos (o) 2 + (y-rjsimo) 2 + z^xj/^rjd-rjda)

/ 27r

f^ ^(rj)rjdr)du}

J J(x - rj cos w) 2 + (y — t] sin w) 2 + 32
'

o o

and since the latter function vanishes when z = oc , we may write

y~27T pA
/ / log[2 + ij(x - rj cos w) 2 + (y - rj sin w)2 + zjx/y^rjdrjdu)

o o

r°° r 2ir r^ xfy(71
)r)d7]do)dz

J J J s](x - rj cos to)2 + (y-rj sin o>) 2 + z2

z

-x/ tan~^ (
253

)

Substituting in the equations of § 319, we have at the surface

of the body

W r^ rA (x - rj cos (j))7]dr]d(o ^

Sir2mAj J [(x— 7]COSQ))2 + (y-r)siii<j))2]s/A 2— r)
2

^T r-'lir rA (y — V sm (t))r)drjd(o
Vr\ — — /~ 2yd

87r2raJ.J J Ux— 7] cos o))
2 + (y — rj sin w)2

] \A42— rf
I

(m + w,)"W •/. o , o ^ i 9

- <«+»)wr1 _
a
tan

-^+^n M x2 + y
, >A?

SmnA L * ^ J
and throughout its substance

m« -- — —tan 1—^-/ tan 1—-cte

z
b

w ?>rmz, -a r*. _ x a , n
v = -- — —tan 1—--/ tan l—-dz

±vmA'dy\_n j£ J Jg J
_ W V~mz d_ _ in + n~l _

x A
kirmA [_n dz n _J ^/f

..(253)

.(254)
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We deduct' without dilliculty that over the area of contact

Was

I

while over the free >urface

W.

L \ ^ Jl

.

Wjf
4**»(**-r

Thus Um horizontal component of the surface displacement is

ids the a ml it- magnitude ifl

W

\-m ^+pC1~V1-"^}
ccording as the displaced point is on the free surface or within

he area of contact

The studenl l to Boussinesq's original memoiz
"/• / des PotentieU d Vetude de Viouilibre ct du

>r more extended applications of this theory, together with MMae
iteresting examj.

EXAMPLES.
[Unless the contrary is expressly stated, it is to be assumed

iider consideration is free from Applied Forces.]

Vibrations,

1. Tli. following forms of all satisfy equation (G3), and
c >naequrntly represent possible forms of free in tatiunal

v bration

:

::;:[' L ] -[>£}
(iVote. exp[0] i8 • t«e°).
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2. The following is the general solution for symmetrical

waves of longitudinal displacement, radiating from or converging

to a single centre :

H-)i
dch dd> od> I"

U - -T, 9 - ^T, 10 = -T
da? o^/ as ^

Special cases are considered in § 273, and in the following Example.

3. A spherical shell whose internal and external radii are A
and B, vibrates radially, the motion being symmetrical about the

centre. Prove that the admissible values of i are given by
i = iQ, where

iJTiA - ton-'/ nf\A2 VI = fJTiB - tan-Y **** V]

On making il=0, i?= r, this reduces to the formula (84)

of § 273. (NJB.—The i of the present Example corresponds to

i/r in the former case.)

4. A circular cylinder of radius A and infinite length, per-

forms symmetrical radial vibrations. Prove that (with the

notation of § 244)

-s^j^Wa+o,),

the admissible values of i being given by i = iQ/A, where i is any
root of

ij/(i) + (i-5)j
t
(i)=o.

5. The following is the general solution for waves of trans-

verse vibrations (§§ 275-277) in a given plane radiating sym-
metrically from a single centre

:

\p =-2A ssin ilt - ~ - a\

„= -f, v =
ff,

w = 0.
oy ox

Investigate the form assumed by this solution when r is very
great in comparison with the wave length (27rQ'/i).

6. A solution for waves of transverse vibrations may be
constructed by making

11 " Q*
+^ V - §*%'

W ~ fad*
5
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\U having the nn as in the last Example, or being any
solution <>f equation (88] of \ '277.

In\ the form of the motion when r i^ very great in

comparison with the wave Length.

7. r. • thai the equations of free periodic vibrations, per-

formed symmetrically in planes through Or. may bo written, with

the notation in the form

cty,_ i ; i i

where e\ and >/'. ;uv independent functions of r and satisfying
the equations

r>
1 '

( )

V
'

BquatioTifl 58) of | 268 may be put into the form

id*

ipya?i

. ( ^

i finite solid, which the stu ill have no difficulty in con-

s ructing for hfa—Jf. Taking i o fox the pi Eaee

a suming that A,, u ine of i A./' 4-
i

b '1 determining the complementSjiyfunctions so as to satisfy i I

a -. then adjusting the arbitrary constants so that /.', 8, and T
ii ay vanish when : <» • n finally reduces to the form

df 34 34

I.mipI Math. >"« ., \ "1. xvii ., D, 4.

easy t<> show I

Q* 3A 3A Q* A

lar integral •• equations; the complementary
i mcti course solutioas t< Lord

')\* has obtained a solution specially adapted to the

bkms propagated parallel to the plan- of an
"iirh the st
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where

<£ = ® 2

^qi cos i[pr cos(0 -a^ + t- ft] {exp( - iz Jp2 - 1/12*)

- (1 - 1/2AV) • exP( ~ iz x/p2 -l/^'2
)},

w =TQV-l ^T cos** cos(^ - a
^ + ( - ft^ •

exP< - *^ - l l®*> :

2? being a root of the bicubic

16i2'6(fl2 - iT>6 - 8il'4(302 - 2iT>4 + 8Q2i2
,2

p
2 - ft 2 = 0,

and A, a, ft being arbitrary constants. The corresponding cubical

dilatation is

A = -24, cos *[pr cos(0 - a,) + £ -- ft] . exp( - iz Jp*-l/£l 2
).

The symbols r, here denote the cylindrical polars of § 244

;

the student will find it a good exercise to prove by actual substi-

tution that the displacements

or r ou oz

satisfy equations (88) and (89) of that Article, when

# = H = Z = £7' = H' = Z' = 0, and 3> = z.

9. Plane sound waves travelling through an isotropic elastic

medium (mv nv pv Qx)
impinge obliquely on the plane surface

separating this from a second medium (m
2, n2 , p2, Q2).

Prove

that the disturbance is partly " reflected " into the first medium,
and partly * refracted " into the second ; and that if the directions

of displacement in the incident, reflected and refracted waves
make angles ^, i//, \/s", respectively with the normal to the

dividing surface, then

f «ar - fj f= sin- 1
[(fi

2
sin $/flJ.

Investigate also the distribution of energy between the reflected

and refracted waves.

The surface conditions in this problem reduce to those necessary for per-

manent contact between the two media ; and these are that the normal com-
ponents of displacement and of stress in the two media be equal at every

point of the surface.

Take the dividing surface for plane of xy, Oz being directed into the

second medium, and assume

<pi
- A sin-^-(xcos \p + ysin \p + Ofi) +B sm^-(x cos \p' + y sin ty' + QJ),

ill 42

1

<p.2=C sin-^- (x cos
yf/

r+ y sin \j/"+ ti.2t).

The potential X will then represent the propagation of the incident and
reflected waves through the first medium, and 2 that of the refracted waves
through the second.
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Equilibrium.

10. Lame observes, in discussing the results of £ 290, that if

n>2rr + T,

it will be impossible, I rioZ, to make
the tube strong enough to resi-t <s produced. Expose
the inconsistency of 1

1

li. Assuming that ttu I seams of a boilei lie its

weakest parts, compare the strengths of two cylindrical boilers

'l
| which are alike in all reaped I that in one

the seams are parallel and perpendicular to the axis, while in

the other they are e\ it at angles of I

12. A solid sphere i -ted to a norma] pressure 0c
;t> whole surfao in proauced A very

lution has been ol is problem, but it is unfor-

tunately disqualified by an inherent impossibility What is this I

l.'i A | i to a normal surface traction

Cco80 ov Bmisphere from 6 = to 0— Jir,and to a normal
triction — Ccoad over the other hemisphere Prove that equi-

li »rium will be maint. lined form of

tl e sphere (*.) when is posit when C is negative

1 II A spherical shell (i: and external radii A and B)

\t subj \ unit'on ssures II. 1 1 over its surfaces

:

si ow • radial displ D by

(^»n-jg«n>^ ^'jg«(n~ ii >

Adopt the notation of Article 143, and m train to

b< symmetrical about the

L(| h' II case of Bzample, determine the

vj lue of II' at which the limit of stable all ill be

re .ched.

16. Asph. preesible
M
material (fa, an imaginary

su stance for which the ratio ft n i- infinitely mal |
is subjected

to a i taction whose components are the oarmonics F=Hh

G -H/, // = H,"; prove that the radial displace in- nt is

1
f
(i- l)A*Xt_ t

(t-l )(2t + 3)r*X , ,

t _ *,+, \

nA^l 2(2i*+l) \)(2i*+l) 2t
,

(2t+l)j'

wi .r. .1 is the radius of the sphere, and X, 4> are solid harmoiucs,

(-H,+yH at
-y= r
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17. An isotropic cylinder of elliptic section is slightly

deformed in such a way that the section of its bounding surface

(which remains cylindrical) becomes a confocal ellipse. Deter-
mine the displacement throughout the solid.

Use the elliptic cylindrics of Article 246, or a system analogous to the
spheroidals of Article 251. The surface condition is that a shall be inde-

pendent of t) all over the surface.

18. A solid sphere is subjected to tangential surface traction,

everywhere parallel to the plane of xy and of magnitude
SCfPi/ sin 0, where has the same meaning as in § 243, and P* is

Legendre's coefficient of order i. Show that the system is in

equilibrium, and that the point (r, 0) will be displaced parallel to

the plane of xy through an arc

n sin V'£
~i

% \AJ

where A is the radius of the sphere, and

If the surface traction be C(P
2
—P

4
)/sin 0, discuss its distri-

bution over the surface, and draw the curve into which any
superficial meridian is deformed.

[P2
= 1(3 cos2

6» - 1,) P4
= J(35 cos4 (9 - 30 cos2

*? + 3)].

19. Investigate the system of forces and tractions required

to produce in a solid sphere the distribution of displacement

u = ex + yy - /3z +. A(as2 - y
2 - z2) + 2/Jixy + 2vzx\

v = ey + az-yx + 2Xxy + fi(y
2 - z2 - x2

) + 2vyz k

w = ez + fix - ay + 2\zx f 2fiyz + v(z2 - x2 - y
2
) )

where all the coefficients are constants.

20. If any body bounded only by a sphere, or by two con-

centric spheres, be submitted to any conservative system of

impressed forces, the action on the body as a whole reduces to a

single resultant force.

21. In the case of § 306, the conditions of equilibrium are

^-A^Ho + ^/Ho' + .IV]

xt 1 3U2 tx , 1 3U2 w » 1 3US
•til = ~- , ±li = - -^— , «"-i

= 5Tr ox r oy r oz

U 2
being any solid harmonic of degree 2.
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A vertical cylindrical hole of circular section is cut in a
body, and an elastic cylinder of density p, which, if freed

the action of gravity, would tit the hole, La placed

in it and stands upon the bottom. Prove that the sides of the

suffer the aame hydrostatic pleasure as if it were tilled with

a liquid of density p(m— u) (m+ // >.

A glacier tills a valley which is perfectly symmetrical

about a vertical plan.-, and which narrows as it descends.

Assuming that ice at temperature below the rreeainc point, and
under moderate stresses behaves as an isotropic elastic solid,

i_rate the general character of the strain produced in the

racial lamina of i the weight of the glacier tending
down the valley, Hi.) the lateral compression as the valley

I
toe friction against the sides. Show that then-

will be a tendency to form ading

j the glacier, Bymmetrka] about the middle line and witA

their concavities tu/rned [W. Hopkins.]

in produced in a solid sphere by the

mcrtual gravitation of its parts. Show that it' k represent the

in itual attract i-: unit masses concentrate*} at points

sc aerated by the unit distance, a uniform normal surface traction

4-iHffj the voUtrrn ol the sphere

u altered : the cubical dil. surface being in tbi

4- x/W^lSfm+n), and the cubical compression el the centre

2 */r. rfl).

.ml thence in (1),

ai ImakinuMi
ol plane stre -h as tho> SOS and ft

Hcj .* that tl b displacements are given by

qu -.(\-<r j (1 ,,r [V,
g£]

+ "«

qw y]
J
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26. Verify from the above values of u, v, w that

P=ax+(/3-gp)y +y-^

Q = ax+((3-gP)y + y-,
32

£

ty
JJ— - /Sx - ay —

dxdy

and hence deduce that there is a system of lines of zero stress

parallel to Oz, and that the principal normal stresses in any plane

perpendicular to Oz are

ax + (/?-g^ + y±V(3)
2

+ (^ +ay+5)
2

-

The differential equations of the Lines of Stress along which
these act are

27. Apply the above solution to the example considered in

§ 308 (Figures 36, 37).

28. Solve the case considered in § 309 (Figure 38).

29. A beam without load is supported by vertical forces,

without couples, at its ends (Figure 39, Plate III.).

30. A beam without load is supported by vertical forces,

together with couples of given magnitude, at its ends (Figure 40,

Plate III).

31. A beam without load is supported by vertical forces at

its ends, and a couple of known magnitude is applied at one end
only (Figure 41, Plate III).

32. Integrating twice the first three of equations (C), § 307

bis, we obtain

J{/t*-(l +**•&]* + *l(y)[

+ 1 {/[* - (i + "fcftd* + M*) \
= o

5 {/[*"- (» +*Wwl*«•)'}

+ !;{/[* - * »W&1* + *M \
- °

£{/!•- <*'+«)v*d*+*fo}

+ J {/[* - (i + ')v
sxi>fa + U*) } - o

where <p and i/r denote arbitrary functions.
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Hence show, by substituting in (A) the values of the strain

components, and integrating, that

g$1 + (i + „>' =_!{/[*_ (i + ,)V«
xj&

+

*&)

>

»** + (i

+

*)?!fex,)

s {/[* ( i

+

*>*W' + '-•

- (1 + o-r =-| {/[* - (1 + o-)v-x,]./y + -M*)J

Be from the last example, by -ul.-titntion in the
identical initiations

that the general solution for strain in three dimensions obtained
by Airy's method la

v < =/[<*> - (1 + vtfxiV* ~ (1 +<^(xs + X., - Xi) + «y) + *,(*)]

?*-/[* " (1 *^^ - <* + *>
J<*>

+ xi - *) + *W + +*<*>

In applying these gel nnulflB to the case of Plane Stress,

w rked out independently in Rumple 25, put Xl""Xfv^> XtMXa

^ j must also write

3fc* By* ^

il at once appear on t the equations analogous to (C)
of | 8( 1 <;> end »/' functions are quite determinate, the
ar itrary terms which appear on integrati< anting bodily
tr; islations and rotat i

34 i a solution analogous to that of § 307, when a
pi; ae stress is caused by the Applied Forces

:
¥ ieing any function of j- and // which satisfies <-^\'

0, and
th< am ustions being aneh as to admit of R
an determin ry limita-

tio - to the form of the Function in terms of which the

35. A free charge K of el distributes itself over R

pla ie disc bounded by the ellipse

i
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with surface density

E

on either side of the disc : the potential produced being

E r* dXi r
J2y s/\(a*-+\)(]p+\)

at points within the disc, and

E rx dX

JX(A 2 + X)(JP + X)
it.

at points without it
; g being the greatest root of the cubic

J^ +S.L
A* + $ £* + £ f

Hence deduce, as in § 321, that a rigid right cylinder of weightW whose normal section is of the same form as the disc will, if

placed upright upon the ground, descend vertically through a
distance

(m + n)W TTi/ i \w - __ L— . F(e, Jtt),

where e is the eccentricity of the elliptic section, and F denotes

the elliptic integral of the first kind; and determine the distribu-

tion of displacement throughout the earth.

[Take if = - W/2ttAB Jl - x^/A* - y*jB*\.

36.] A cylindrical vessel is filled with liquid to a height D,

in vacuo. The vessel and its contents are then weighed under
an atmospheric pressure II, and at the same temperature as

before. The mean density of the liquid in the vessel being thus

found to be p,show that its true natural density maybe deduced
by the formula

where k is its compressibility for the given temperature.



CHAPTER VII.

beams and wires.

Imtboductort.

1] Definitions. The terms Beam, Wire, and Hoop, in

nded sens*- in which they will be employed in the
I banter, denote bodies which have the following charac-

U ril

'

in <•"iiiiiM.ii :

—

Each is so related to a < raightor continuously carve 1

b'ie, call. -.1 it> Central Axis,

8>ction by a plane perpend i "J >, (<> the tk rUral Asbu hesin

Centra] I may be sit wholly or partly
v tthii thoni the substance of the lx>

The Centra] Axis of a Beam is a §i and unless

t e c- I'ssly stated—the beam Lb to be rani
<• tindriea] or pri form, the m i

* rface being parallel to no the plow mds of the
l am being perpi r to it ami

i usions eomparable
v th its

'I'll.- ( Si ntinuous
c rvat

|
tin- form denned ; 1 its

< ntr v those of U We shall only
.1 ilwitli tdar hoo]>s,'m which t ircle/while

al 8ecti.»ns in planes perpendicular I equal and Bimilar

fii ur«- lied with regard to its polar line (/'.'.. the

n throng Ddicnlar to its plane.)

A beam, or hoop of any form, the dimensions of whose trans-

it e sections are a ! ! very wmatt in comparison with the 1-

r finite] will be called a Wire.
rpoees

t B,\ rded as coincident
v.

:

Wt Bhall confine ourselves to the consideration of wire

aurally 'iisverse section, hut do restriction will be
• ral form of tl

2 B
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323.] The class of Strains to be investigated. Ex-
clusion of Lateral Surface Tractions. The main object of

this Chapter is to obtain reliable data for the employment of

beams in structures and mechanism, where their function is to

transmit from one body to another forces or couples, the straining

effect of which upon themselves is in general very great in com-
parison with that of their weight.

The distinctive character of all the strains discussed will

therefore be the absence of all stress across the lateral surfaces of
the beams, ivires, or hoops.

The straining of beams will be considered as due to forces

and couples applied by means of surface tractions acting over

their ends alone. These may be supplemented, in the case of

terminated wires, by impressed forces.

Since closed hoops have no ends, they will be regarded as

under the influence of impressed forces only.

St. Venant's Problem: Straining of a naturally
Cylindrical Beam, free from Impressed Forces, by
Surface Tractions applied to its ends alone.

324.] Anticipation of the General Character of the
Strain. Geometrical conditions imposed. It is sufficiently

obvious, from a superficial view of the conditions of equilibrium

of the beam as a whole (§ 146), that the most general form of

small strain which external action of the supposed kind will tend

to produce must be compounded of the three comparatively
simple types

—

(i.) Longitudinal Extension of the beam, accompanied by
lateral contraction : due to equilibrating forces parallel to the Axis.

(ii.) Torsion, or twisting of the beam about some straight

line parallel to its Central Axis, with or without warping of the

transverse sections and distortion of the lateral surfaces ; due to

equilibrating couples in planes perpendicular to the Axis.

(Hi.) Flexion of the beam, of such a kind that the Central

Axis assumes the form of a plane curve: due to equilibrating

couples in planes parallel to the Axis.

We shall find, on analysing the general equations of strain

obtained in § 327 below, that this anticipation is fully borne out.

To simplify the geometrical conditions of the problem, we
shall suppose the centre of gravity of the area of one end of

the beam (henceforth referred to as the Base) to be an absolutely

fixed point, which we shall take for origin. The Central Axis of

the beam will be our axis of z, and the principal Axes of Inertia

of the area of the base our axes of x and y.
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Thus we shall hi

ffxdxdy=j

j

/dxdy = (1)

identically, wl >le area of
any normal section of the beam. Also, if J rea of

, Jfp JU its moments of inertia abon:
principal axes through tre of gravity parallel to 0xy 0y y

and Si it" I of inertia about of the beam,

ffy*dxdy = $ x

ff*dxdy-$t

J/i* + rtdxd*-3i + 9*-3t I

These qnantitiee are of course constai I only on
then. in and i ns of the beam, an. 1 noi at all on

rial

shall i\: bftM inn

at sly - »ngin always retains its initial plane
tl at an elem- in that plane—for simplicity, sn\

ii itial element of I
• geo-

di itrical conditions to be satisfied at ^in are therefore

!."
1 Conditions of Equilibrium. Besides the g.

e< uati ilibrium (103) or (104) of § 2 V

p' nents must sat

i

posed apon
1 the

J- stances

tl 3 beam are fre« Follows I

h anded by normal m y the

t< al stresses across it

c« i plea across those ends must be equal ana it Coll

e< iat:

// Wy, //

,s

nsverse m l»e absolutely independent
»l :.

• It will appear la* f the

be e I* i very Una in tl

•
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326.] Statement of St. Venant's Problem. Since the

lateral surfaces, over which the stress components are everywhere

zero, are parallel to the Axis, the boundary conditions reduce to

The first two of these will be satisfied identically if we
assume * that

P=Q== U=0 (5)

throughout the body ; and in this case the only condition to be

satisfied by the special values of the stress components at the

lateral bounding surface is

kT + fiS=0 (6)

To obtain a solution of the general equations which will

satisfy (4) and (5) throughout the body (6) all over the lateral

surface, and (3) at the origin, is the problem justly named by
Clebsch " St. Venant's Problem."

The peculiarity of the solution is that c = 0, and e =/= — org

throughout the body, so that each longitudinal "fibre," or ele-

mentary prism parallel to the Axis is extended longitudinally and
contracted laterally just as if it were solitary (§ 213), while its

transverse sections do not suffer shear.

327.] Solution of the Problem. Substituting from (5) in

equations (40) of § 214, we have

'dw R >

dz q
<

du __ 'dv _ dw
?)x dy dz

*dv du _ ~

"dx dy

and the general equations (104) of § 285 reduce to

d2u . d2w

(7)

(8)

(9)

dz2 dzdx

d2v
+
d2w _

cte2 dybz

?)2w lb
2w d2 iv A—— + \- & = u

d>x2 dy2 *dz2

.(10)

(ii)

.(12)

* This will probably appear to the student a very sweeping assumption
to make at such an early stage of the investigation. The solution of the

general problem is, however, of a "semi-inverse" character, the conditions of

each of the simpler component strains of Article 324 having been fully

analysed by St. Venant in his two splendid memoirs—" Sur la Torsion des

Prismes," Mem. des Sav. Etr.: t. xiv. (1855), "Sur la Flexion des Prismes,"
Liouville: 2° ser. t. i. (1856). It must be remembered that any solution

which satisfies all the conditions is the solution.
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while the boundary condition (6) may be written

»gM) (
-)-° w

Differentiating (10), (11), (12) a.s to >r, y, z respectively, and
subtracting the first two results from the third,

dz*\ Vz~dx -by)
'

and therefore by (8)

S= o <">

-•g'gH

Again, differentiating (10) as to y and (11) as to a;, and adding
the results,

'bxdybz \

\.\v\ therefore by (9)

*" -0

Lastly, differentiating (12) as to z, and taking account of (14),

55 %%
ut it we differentiate (10) as to y, and (11) as to #, and subtract

he results,

3s" _ &«> -Q

I a*\%^ §^\ai/ aefy\3*/ ck*VaaJ

appears that du//c)s cannot contain any power of x, y or

z abo\ nor the pi and it follows at once from

t * and from (8)<

I 2£ = €-BVB-OTIy + «(/J + &* + /;
)^

(15)

g =g = -^-©^-©^-cr^ +^ + ftyjJ

w here all the coefficients are absolute constants.

finally
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Equations (10) and (11) may now be written

£ a B
(,6)

and from (15) and (16) we easily deduce that

(i.) u contains no higher power of x than x2
, and no higher

power of z than z3
;

(ii.) v contains no higher power of y than y
2

, and no higher

power of z than z3
;

(iii.) io contains no higher power of z than z2 .

Integrating (15) and (16), and supplying arbitrary functions

with due regard to these limitations, to equation (9), and to the

conditions (3) which are to hold at the origin, we have finally

u = - cr[ex - l&2
(x2 - y

2
) - VS^xy] - (rz[/3x + i/32(x

2 - y
2
) + faxy]

v = - v\iy - VS^ey - fW^2 - a2
)] - <rz[/Sy+ B<py + fft^2 - z2

)]

w = z[c - Z3
2
x - X3

xy\
4- \z2

[P + fax + fay] + x/s

- Oft* + y
2
) t/W + P^y\ -

[«(g)o

+
2/(|^)o]

where the new coefficients introduced are also arbitrary constants,

i/r is any function of x and y satisfying

^ + ?^ = , (18)
dx2 dy2 V '

and vanishing at the origin, and

(?) - (?)\dx/o \oy/o

denote the values of its derivatives at the origin.

The stress components are

fi = q[e- T3
2
x - tt^J] + qz\_fi + fi2x + fay]

8= vTtx - (1 + <r)j8y - (2 + a)/3
2
xy - ft*

2 + Jo-ft^
2 - y2

) + |T|

T= J" _ Ty _ (1 + „.)£,. _ (2 + o-)PlXy - B&* + lo-ft^ - x
2
) + |il

..(17)
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ami the boundary condition (13) becomes

- r(Ay - px) - (1 + <r)/3(Ax + py)

- /?,{(2 + *)w + A(y« - Jo-(^ - s*)]} = 0. .(20)

Thus the mi >ns only involve \js in connection
with the four constants t, ft ft, ft ; but tl re per-

fore independent, and the terms multi-

by them may be taken I -trains of

simpler forms. In order thai each of these forma of strain may
v the conditions of the problem, i r that \

fs moat be
mi of four functions of X and //. multiplie lively by

t, ft ft, ft, and such nations (18), (20), and the further

equal to be deduced below from (4), are sat

each coefficient.

uning therefore that

^TW + ^w' + ^Wj + ^W,,

il»>tituting in (18) and (20), we have the general equations

1 oundary conditions

x'dw , dw
/«

A
i&

+
''sr

(l * '

)(** +H,)
3y
\V

Kr)Aay + f*[a»-Jer(*»-y*)]

(2 + <r)W + A[y* - }<r(y2 _ «")]_

e may show at once that w' cannot possibly satisfy both

t ie general equation and the boundary condition, for if we take

t e integral

o 'er any normal section, and integrate it by parte, it becomes

A C.r
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where ds is an elementary arc of the periphery of the section.

Now, we have by (2)

&=ffdxdy
= hj{\x + w)ds,

so that the boundary condition satisfied by w' requires that

which is obviously inconsistent with

Hence it follows that fi must be zero.

It will be found, on substituting from (19) in (4) and taking
account of (1), that the first, second, third and sixth conditions of

equilibrium are satisfied identically. In order that the fourth

and fifth may be satisfied we must have

Jf^friy= J^[(2 - <r)J 2
- (4 + &r)JJ I

J/'^^V = 1^(2 - <r)J, - (4 + &r)

J

2]J

'

Finally then, collecting terms according to the six arbitrary

coefficients, the displacements are

+^[M*2 - V
s
) + i*

2
] -tofw* - y

2
) + i*2 -

+ ojB-fcf* -«*>+ **2
] -A*[W - rf)+ i*2 -

(^)

J

H>-^).r*®)J

r = — coy + r.

-m
1
yz-p

1
x^y - Jyz2 - wx

+ x

•ry2 --|aa;*-w,+
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and the stress components are

(22)

,, w, are naof a and y, vanishing at the origin,

in.' Bm aquation

I

"as**
-

(23)

- he body, and the boundary conditions

(25)

.(26)

its lateral surface : and also the conditions of equilibrium

vhere the douU..- integrals are taken all over any transverse

action.

It should be observed that the stress components S and T are
ndent of z, and therefore constant along each longitudinal

til,!

828.] Determinatenee8 of the Solution. We already

mow from general principles (§ 255) that the solution is peri

linate * of stress over the ends of the

earn is giv.-n. We may however show that the solution

abject to the boundary conditions (24-26), is perfectly deter-5 abject to t
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minate in itself, so that the distribution of stress over the ends,

as deduced by means of (22), is not at all arbitrary, but is

governed by fixed laws depending only on the form and dimen-

sions of the beam. To prove this, it will be sufficient to show,

by a method equally applicable to all,* that any one of the w
functions is completely determined by (23) and the appropriate

boundary condition (24), (25) or (26).

If possible let these conditions be both satisfied by two
different values of w (for example): let f be the difference of

these two values. Then f must satisfy

2X+ 33f-0

throughout the body, and

all over the lateral surface. Now if we integrate the expression

#[(2Hf)>*
by parts it becomes

and each of these terms is identically zero. But (compare §§ 254,

256) the original integral is the sum of a number of essentially

positive quantities, each of which must therefore vanish separ-

ately. Consequently

throughout the body, and since w is supposed to vanish at the

origin, and thus cannot involve a constant term, f must be zero

throughout. Hence the two values of w are identical, and it is

obvious that the same may be proved, in precisely the same
words, of w

1
and w

2
.

First Component.—Simple Extension.

329.] Complete Solution. Making all the arbitrary con-

stants zero, with the exception of e, we have the simple strain

U = — (T6X, V = — <T€1/, W = €Z 'A

giving > (30)

R = qe, S=T=0.
)

* This is, in effect, a special proof of Green's general theorem, adapted to

the case in which the solution of Laplace's equation is independent of z, while
the surfaces bounding the region within which that equation is satisfied are

either parallel or perpendicular to Oz.



3-29.] BEAMS AND WIRES. 395

This is the case already fully discussed in § 213. A longi-

tudinal tension E is applied to the beam by means of a uniform
n E JV over each end, and produces a uniform extension

e = E JV7 throughout the beam, accompanied by a uniform con-

traction ere in every transverse direction The ratio c = Qq of the

the consequent elongation is called the Coefficient of
of the beam, and sometimes Hockds

: but it must be remembered that it depends upon the

osions of the body, as well as on the properties of the

;al, so that it is not a true specific modulus, in the sense in

which we ha\ me term. For a beam of given
material it is proportional to the sectional area, and for a beam

Jus of the material.

It L be the be beam, equation (41) of £ 214 gives

for the total potential energy due to exten

r-JP££ -, /.E (31)

If t' be the coefficient of extension of a second beam of the

sime material, of the same length L but of section Jt', then

t = &'q, and

e':c::3L':3L;

masses of the beams are also in the ratio1 ut the :

1 ad tl

j ropa

M':M::&':£,

t M' c .)/.

we deduce that the resistance to tension or thrust,

<l beam of given length is precisely

t e'same whatever its transverse 01 [Coinpai suite

586 and &

Second Component.—Torsion.

330.] Equations of Strain. Annulling all the arbitrary

ants but r, W6 have

HSU
'[•(::)]

.

--[" -("'), -'(-3J.

(32)
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and
E =

-I v a.

.(33)

where w may be any function of x and y which vanishes at the

origin, and satisfies

s+^-° H
throughout the body,

»©-')*'®'*-)- (35)

over the lateral surface, and the conditions of equilibrium

#^=#|^=° <36>

331.J Geometrical character of the Strain. The sim-

plest way of ascertaining this is to investigate (i.) the curve

assumed by any longitudinal fibre of the beam, and (ii) the

surface into which any (initially plane) normal section is warped.

Let the point initially at (x, y, z) be displaced by the strain

to (x'
t
y', z'), so that x'= x+ u, y'= y+ v, z'= z+ w.

(i.) Along any longitudinal fibre of the beam the initial

coordinates x, y are constants. Thus (see § 68) the form assumed
by any such fibre is represented by the equations

y = y + r*

or

_ x-x _ y -y m^
»-(s).

8+d)
Thus, when the strain is very small, each fibre remains a

straight line, and the foot of each fibre (the point in which it cuts

the plane of xy) retains its initial position. In general each fibre

is inclined to the Axis of the beam at a small angle
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but the particular fibre for which

is altogether unaffected by the strain. This fibre is called the

Axis of Torsion, and the strain is said to be a Torsion about
thi> axis. Again, each strained fibre lies in a plane

which is perpendicular to the straight line joining its foot to that

of tl. »n. Thus the generators of any circular

cvlin-l.-r

[ o] [ e)j=<*
bed about the Axis of Torsion in the unstrained beam,
me one set of generators of the one-sheet hyperboloid of

revolution

This surface Is represented, on an exaggerated scale of torsion,

-rained fibres may however, to the same degree of

pproximation, be regarded as helices of pitch

. bout

vFmH'-a:)]
bed on circular

ut - of Torsi«>n, and
rifl Kfl the form they actually

ike and r torsion of finite

; mount.
1

I any naturally

normal . of the

1 earn, the ini(

( instant, and it appear

. »] »lying § 68 to tbe third of

• liiations (32) th. such

s ction la warped into the (g<

a ') curved surface

-*+ fCHS (

\- hrn notes the

f ' motion of x and

o ' x and FIG.44.
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Torsion about the Central Axis of the Beam. St. Venant's
Solution for a certain class of Beams.

382.] Equations of the Strain. When the Axis of

Torsion coincides with the Central Axis of the beam, we have

©.-(*).-<""° <"»

In this case, equations (32) reduce to

u= -ryz, v = txz, w = tw; (38)

the other equations of § 330 being unaffected.

The strain now obviously consists of the bodily rotation of

each normal section through an angle tz about the axis, together
with a general warping of these sections by longitudinal dis-

placement. The quantity t is called the Twist per unit length

of beam, or the Amount of Torsion.

333.] St. Venant's Solution. The problem can now be
readily solved for a large and important class of beams, as

follows. Let us suppose that the equation of the cylindrical

surface (or of the closed curve bounding the base) can be put into

the form

<t> + h(x
2 + V

2
) = C, (39)

where $ is any solution of

^ +^ = 0, (40)

and C is a constant.

Then

A : p : : _ r + x :
_* + y,

ox oy

and the boundary condition (35) becomes

3w r

d(f> 3w d<j) /d\v 3<A /dw ®^\ a .

~ox dx oy dy \dx ?)y) \dy ?>x)

thus (34) and (35) will in all such cases be satisfied if we suppose

3w_|£
= 3w 34> = Q

oy ox ox oy

that is if we choose w so that <p and w may be Conjugate Func-
tions * of x and y. This is St. Venant's celebrated solution which
is developed so skilfully and with such beautiful results in his

Memoir on the Torsion of Prisms, already referred to.

* See Article 245, and Examples 1-4 on Chapter V.
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The conditions of equilibrium (30) will also be satisfied identi-

cally upon th'\> assumption, for they may now be written

or ftfxix =j4»hj - 0,

als being taken round the perimeter of the
>n. But by (1)

ffi-'lx'hj =ff>jJxdy = 0,

an 1 therefore
<f>
must l>e such that

, -ince (39) must be supposed to reprt re,

f / °-

d fjy=fdx = 0.

Bin 'x*+y*)=zC all round the periphery, these last

/[* + «*•+sW*-/[*+ i(*! + y
s
)Ky - o,

ai d cons<

fax-fa*,
i< *n1

In order that (37) may be satMi'-d w mo attain a

li ear function .,t* ./• and y <;,. Bui this con-
d ion is necessarily sir lid invol neh terms,

ti • integrals Ive terme of the form

/ iy and Jyd^ which are proportional to the area <2t of the

tr nsvers* lently cannot vanish.

Qenee .'ill I
pi 'IKm are satisfied by any

vl ue the boundary (39) of

tli : base a cl<* s, provided thai the included area has the

or gin for 're of gra\i?y and Ox and Oy fox its principal

334.] The Torsion-Couple, Coefficient of Torsion and
Pc tential Energy of the Strain. It follows from (I) and (86)

th; t the distribution i c any transverse Bection of

th< beam which is the same fox all such reduces to a

coi pi*- in the plane of the section,
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If T be the magnitude of the couple applied to either end of

the beam

H^ffixS-yFjdxdy

- nr
ff\f

+y2+(%~ ySJ*^

by (2) and (41). Thus if

*-[*+^
r

(4S+>®f*] <
42

>

the torsion-couple required to produce an amount of torsion t is

given by
T = tr, (43)

and t may be called the Coefficient of Torsion* of the beam.
For a beam of given material it depends only on the form and
dimensions of the transverse section, and for a beam of given
dimensions it is proportional to the rigidity n of the material.

Again, if L be the length of the beam, the total potential

energy of the strain is by (41) of § 214.

F=A /7{S 2 + T*)docdy

3

*(-^M(-l)>*"dx*

-^{^[i("D^(-?)>'4
Now

-yd'"!*)'
by <s9) ""' <4o)

'

= 0, because the periphery is a closed curve.

* Also known as the Torsional Rigidity.
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Thus finally

ir=Htr^ = ZT^t: (44)

this formula should be compared with (31) of § 329.

".] Circular Cylinder. If the base of the brain be a
circle its centre must bo at In, and we must therefore put
= in (39) end take \A- for the constant term. A will then

be the radius of the base.

It is evident that \v vanishes with <p, and tli<

ti= -ryz> v (45)

so that each norm.". d is simply rotated bodily fa Us mvn
about the Centra] Axis, through an Angle proportional to

diatano ted base, without
.

wai distortion of
any kind. The Coefficient of Torsion for a beam of circular

ction is by (4:

It
= nJ3

= nJlV2T-|m4*
The formula

T ( .(4T)

i of a circular cylinder, was first obtained by
Coulomb in his researches into \y of tlie Torsion Bal

n 1 is usually alluded to as Coulomb's Formvl

it, since by equations (33) the tangential
will vanish identically, and the

be sat'
'

m beam
ooodttioni will in <>niMK|uence be satisfied, lor all form of w, if

be t Pa vucou* liquid instead of ai HI material.
|.lv to such a beam, whatever be tli» form <>f

s section, as may easily be shown
'

ry gradually ami evenly a
i juare stick of fine scaling wax. Boundaries of transverse sections, scratched

wax beforehand, will be ton truly j.Iai <\»m-

1 ire 6 low.

] Hollow Circular Cylinder. Let the beam
ing solM a coaxial cylindrical cavity of radii,

hen
<f>

is zero for bot' oee,and w i broughout the

1 >dy, as before. The coefficient of torsion will be in this case

t n$,'-iirnvl«(l-K<);

1 it* w> lie coefficient of I
I circular

1» «q, as given by (4<>), we find

\m t : t : : 1 - k» : 1.

15 it the masses of the two beam i, if their lengths are equal, are

in the ratio

M'lMli 1
-*'-':

1,
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so that
t'/M':t/M::l + K*:l;

whence we deduce that the resistance to torsion, 'proportionally

to its mass, of a circular cylindrical beam of given length and
external radius is increased by making it hollow.

This principle is of great importance in the economy of struc-

tural materials, and will be referred to again later.

337.] Elliptic Cylinder. If in equation (39) we make

<f> = Ja(2/
2 - x2)>

it becomes
(l-a).r2 + (l+a)2/2 = 2C, (48)

and if G is positive, and a is positive and less than unity, this

represents an ellipse having its major and minor axes along Ox
and Oy.

Fig.45.

If A and B be the semi-axes of this ellipse

a C 1

and we have

thus

A*-B* A 2B* A 2 + B*

A*-B*w = — axy — — — xy
;

A* + B*

ryz, v = rxz, w A*-B2

A 2 + B2

A x

rxy.
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Also

*-*»!+ «»i-Jl)]
= •]- ^a(A-- W)]

AB(A* +

a j^+i?8 '

transverse ><ctions are in this case

warped into hyperbolic paraboloids, any one of

which is cut by planes perpendicular to the

\ing
ii asymptotes coincident with the principal

axes of the onstnined ellipti q. It is

i the form and sign of w that these

ices are concave towar
•f Ot in the ( f ft, + >/)and( — .r, —^quad-

rants, and con vex in the remaining quadrants.
Figure 4") represents the "contour 1

l) in which the warped
section is cut by a series of planes

t.icular to the axis. The principal axes AA',
jiR of tl 1 by
the st Lbodih
i q angle tz about the axis of torsion

;

j ret
1

contour tines for the

/ vel of the m dotted hyperbola
i le <| tfl AB, A'R are below tne original

1 vel (as looked at fi 1 of the
1 sunland thoas in

I ining quadrants
8 * aiiov' _rure 46 shows very clearly

a arj

i practice on a greatly exaggerated scale,

1 r twisting an ineaarubbsr band of elliptic

•m

FIG.46.

]
Hollow Beam, bounded by cylindrical surfaces

o ' similar Elliptic sections. If in ii hollow and
b nnded intei elliptic cylinder

</> • "of the same form for both surfaces, and w and w have fcbe

before.

If I am

i,)]

_™ AB(A~~2~
A

''
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Thus the resistance to torsion of an elliptic cylindrical beam of

given material and given length, per unit mass of the beam, is

increased in the ratio 1 + k2 : 1 by hollowing it. [Compare the

corresponding result for beams of circular section in § 336.]

It is easy to show from equation (42) that this result applies

to beams of any section, provided that the internal surface is

similar to and similarly situated with the external surface.

339.] Beam of Equilateral Triangular Section. If in

equation (39) we write for the constant term C/18, and put

<f>
= (3xy2 -x*)IC J3,

C2

it becomes
xs - 3xy2 x2 + 2/

2

C*jf 2 18
0,

or 6 J3(x3 - 3z2/2) - 9C(x2 + y
2
) + <73 = 0.

The expression on the left hand side splits into three linear factors

(2x Jl + C)(xj3 + 3y - C)(x Jl-3y- C\

and it is easily verified that the boundary represented by the

above equation is an equilateral triangle, having its centre of

gravity at the origin and one vertex on Ox, the length of each

side being G.

Fig.47.

Thus if we write

vr = (y*-3x2y)lCj3

we obtain at once the solution for an equilateral triangular beam
the contour lines, given by

y
3— 3x2y = constant,

are represented in Figure 47.
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I] Beam of Square Section. Let the transverse

d of the beam be a equate, with its sides (of length 0)
parallel to Qxand 0% The problem of determining the appro-
priate form of

<f>
in this case will be much simplified by writing

it is easily seen that \/r also must satisfy (40), while the equation

(39) of the bounding curve may now (by writing JC 2 instead of C)
be put in the form

*H
Our function yV must consequently h< i sucb a solution of (40) that

sally when n - ± JO for all values of a between
and —

'

r
. and is equal to

\
( '-- j'1 when j: = ±\G for all

values of y 1 — hC.

ants and even powers of y maybe expanded by
Four; rein in series of cosines of multiples of //.and on

/
1 \\ \

•

'\

\ \ \\\ if

/
Fig.48.

r ferring to Example 4
| Hi. k page ! at once apparent that

t le appropriate form of solution La

^ =S (^e^ + ^e-^cos/"/.
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The first of the required conditions will be satisfied identically if

we suppose all the values of p included in this series to be of the

form (2^+ 1)71-/0, where i is any integer, or zero : and the solution

will then be fully determined by the remaining conditions

-i C2 - y
2 = 2°°n4*e(2i+1,7r/2 + ^e- (2i+1,7r/2"lcos(2z + l)iry/C

=2T^e-(2
'+1,7r/2 + ^e (2 '+1)7r/2"]cos(2^ + l)iry/C,

from which it is at once evident that A
t
=B

t
.

By Fourier's Theorem *

i/>2 2
4 4^ ( 2*+ 1 )'ry/Tir»2 2\

(2i-Hl)7T2/
;

\G -y =q2j cos-—(j/ &G -y)00*—
ci

dy
>

~

and consequently

J<-A«
(7cosh^t

1)7r/ri^-^s^^^

(-ly^c2

(2^+l)37r3C0Sh(
2i + 1

)
7r

Thus finally

^ + l) 3cosh- —'—

a

andf

,r (
l)sinli

(2t+l)*yw = - xy + > , sin* -^-2,

' ** '=°(2» + l)<eo,h <
M + X >* C

c

The contour lines are represented as before in Figure 48, and
Figure 49 gives a view of the warped sections for comparison
with those of the Elliptic Beam.

341 .] Character of the Stress. By equations (5) and (33)
the only existing stress components are R and S ; thus equations
(21) and (22) of § 163 reduce to

tf(jy2 -s2 -T2)=o \

Tv__Sv_ T\ + Sn _N { (51)

A jJL V )

* Todhunter's Integral Calculus, Article 326, formula 5.

t Example 4 (iv.), page 258.
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f the principal stresses therefore vanishes at every point,

and since the directions of the linos of aero Btress are given by

r-0, rA + ty-0,

lane curves in planes perpendicular

to the Central Axis and cutting the lateral

face at right angl<

Tin- remaining principal

equal in magnitude and of op]

that the stress at every
|

imple
shear is, of magnitude

in a plan.- parallel to (h the direction cosines

of which are given by

.,
system of Principal Surfaces enveloping

ihese planes has fur it- differential equation

Sdx-Tdy-Q
t

ntegral of which is, by (33) an* I (43 >

4> + i(** + y
2
) conata i

system therefore include.** the lateral

urface of the beam
It may also be from (51) I

and
ressureat ant ire inclined at an
f 45° to the Central A

e magnitude of the resultant

FIG.49.

s
VK)'*(>*g)'

> that the surfaces $ = constant are tliose Principal Surfaces

i -xxss which there is no strc», but which envelope the plan

£ oaring stress; then

s -mr-m <«

Mnce w, dw/dx
f dwfby all vanish at the origin, so also do <p,

I' t>/dx, d<f>/ ;/. and 3>, d$/dx and d$/dy. 3> therefore increases
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continuously in numerical value from (along the Central Axis)

to G (over the lateral surface). Similarly, S is zero along the

Central Axis, and for corresponding points * on the different 3?

surfaces S increases continuously with the numerical value of 3?

until we reach the surface. To determine therefore the points of

maximum stress (" points dangereux ") we have only to determine

those points on the lateral surface of the body at which the

expression (52) for S becomes a maximum.
It follows at once from (52) that S is zero at any projecting

angle (such as the edges of the square and triangular beams) and
infinite at any reentrant angle. Angular grooves •(* are therefore

fatal to beams intended to sustain torsion, and the slightest crack

in the surface will tend to spread indefinitely until the beam is

destroyed. On the other hand, angular ridges add nothing to

the torsional strength of the beam.
St. Venant has, however, proved a more general, and perhaps

more striking property of torsion-shear. This is that the stress

at the surface is always a maximum at those points nearest to

the axis, and a minimum at those points farthest from it.

We can prove this property without difficulty for the cases

which we have solved.

(i.) Circular Beam:
Here $ = ±(x2 + y

2
),

S = nr Jx2 + y
2 = nrA.

Thus S is constant all over the surface.

(ii.) Elliptic Beam

:

Here * = (A 2
y
2 + B2x2)/(A 2 + B2

),

and

S - 2nr JAY + B^x2/(A2 +B2
) = 2nrB[A* - (A 2 - B2)x2]*/(A 2 + B2

).

Thus S has its maximum value 2nrA 2B/(A 2 + B2
) when x= 0,

i.e., at the extremities of the minor axis, and its minimum

* Corresponding points on any family of curves, involving one variable
parameter, are those points in which the family are cut by any one of the
orthogonal system. With the notation of Chapter V., any function taken
along the curve v\= const., f= const., can only vary with £.

t It seems possible that the curious twisting of old poplar trees, growing
in situations where they are exposed to prevalent winds in a fairly definite

direction, may be due in part to the presence of deep and sharply cut longi-

tudinal grooves in the trunk. The unsymmetrical growth of the boughs
affords a leverage to the wind, which thus exerts a powerful torsion couple.

This tendency is of course greatly increased when the trees form an avenue,
for they are then much more exposed on one side than on any other.

The Cambridge student will find excellent examples of the action here
referred to in the old poplar avenue at Newnham Croft, near the University
Swimming Club's sheds.
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= ±A
y

i.e., at the extremities of the
asequently two lines ol minimuiu stress

A'A' in Figure 46), and two lines of maximum stress (BB,
bole length ol the beam.

(tu

an. 1 S - »r V[( </
2 - «*j n/3 + Or]-' 4- y*(fe v/3 4- C') 2/C.

The sides <>f the beam are ated by

JS+C- 3»/-6' = 0, Xv/3-8y-C-Q.

Thus over the first side

S«wrV3(i<

and Una exj.r when y« the edges

which bound the ^i-l«- , and has its maximum value hi-rCvS
raighl Line drawn parallel to the

. the other two aides,

ft Beam.

Here

COS

the c< esses can easily be deduced by differentiation,

dated nv y, and tl

ant gives tal nlta(Jft vrlaTor
des Priames,

\
which show conclusively thai S

lnaxiiiiuiu \vl. =±JC, an«l wlim fl?» ± ". the

fan < tiding values being equal, and that S vanish

Tli. . be proved directly; for

a*/ac-o,

(Todhui i. wiii ., Ex. 8.)

Inns it appeaa thai very lii ained by making
. intended b d only, with projecting longitudinal

ridges, or flanges. \\V shall however presently Bee that such
• value in i un, if

jrly disposeproperly ui
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342.] Erroneous Extension of Coulomb's Formula.
It was assumed by engineers,* before St. Venant had obtained

the complete solution of the problem, that all beams—of what-
ever section—behaved under torsion like circular cylinders : i.e.,

that their normal sections rotated without distortion in their own
planes. Thus the formula T = ^Jf3r was supposed to be univer-

sally applicable, whereas we know from formula (42) that it is a
unique property of the circular cylinder.

The true value of t as calculated from (42) for a beam of any
other form, is found always to be less than that given by the

application of Coulomb's formula, and also (as we might have
expected from the last Article) less than that of a circular

cylinder of the same sectional area. Figure 50 shows the results

of St. Tenant's comparison : the first line of numbers giving the

ratios of the values of t for beams of the sections represented to

(A) (B) (C) (D) (E)

•8435
•8833

8186 •7783

•8276

Fig.50.

•5374
•6745

•6000
•7255

those deduced from the fallacious theory just referred to, and
the second line their ratios to the value of t for a circular cylinder

of the same sectional area. The waste of material in forming
projecting ridges is very conspicuous in case (D).

Third Component.—Flexion.

343.] Equations of Strain. Retaining only the terms in

the second lines of equations (21)

—

i.e., annulling all the arbitrary

constants but vs
x
and fit—the displacements take the form

u = X3
1
<rxy-p

1
z\ axy - U*A \

v, = - m#* - ft[^ - 1^ - w, +.(^ +
y(^)J J

*This statement is made by St. Venant, and quoted by Thomson and
Tait. Neither authority gives any references, and I have not been able to

verify it personally.



.(54)

243.] BEAMH and wii 411

while tl. components ai

R m - Bffl + fa

*-*{*
]

The function w, musl conditions

throughout the h

the lateral surface, ami finally

Jf^dxd,, ujjf . j[<« _ „)!, - (4 + vmij - o

for the preservation of equilibrium.

Geometrical Character of the Strain. Any Longi-

tudinal fib i of the beam is ore

^ = y^i^<%8 --)-^r'[Mys -*s

)-(^)J
-

fhe plan« drained lihre is parallel toOy, and the curve

(58)

i»uni.',i by it i^ a jNirabola of the third degree, which howei
1—does not diil-i much from a parabola

second degree, nor i of large radius.

set oi fibres which before the strain farmed the

I of a rectangular by] cylinder

ig the planes of yz and iptotic plane

Into eurvefl lying in i

ad, in particular, the generators of the cylinder

in planes parallel to yz.
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The Central Axis itself lies when strained in the plane

through Oy

•'=»"©).'

its curvature at a distance z from the fixed base being

The elongation of the longitudinal fibres of the beam is given by

9= ~ 2/(^i - &*)>

so that all fibres initially in the plane of zx—and in particular

the Central Axis—retain their natural lengths unaltered. We
have thus a Plane of Zero Extension dividing the beam longi-

tudinally into two portions. If ^V/^ be numerically greater

than the length L of the beam, all fibres on one side of this plane

will be elongated, and all fibres on the other side of it contracted,

throughout their whole length. If however ft-J^ be numerically

less than L, the elongation of every fibre not in the plane of zero

extension changes sign at a point initially distant ^//^ from its

foot. The curvature of the Central Axis, and indeed of every
fibre, changes sign at the same distance from the base, so that in

this case each strained fibre has a point of inflexion.

The plane transverse sections are deformed into the surfaces

^-MSi"^"^**®)^^ (59)

where, as in § 331, wx
' bears the same relation to x', y' as w

x
to x, y.

The tangent plane to any such surface at the point where it

is cut by the Central Axis is found on expanding w/ by
MacLaurin's Theorem to be

z' = z-y\zs
lz-lPl

zi')-
i

it is therefore parallel to Ox.

345.] The Second Flexion Component. The terms in-

volving w
2, /32 and w2

in equations (21), (22), (23), (26), (29) may
be deduced from those discussed in the last two Articles by inter-

changing the suffixes 1 and 2, and the coordinates x and y. The
strain represented by them is therefore a flexion of precisely the
same character, only in converse relation to the principal planes
of the beam.

Plane Circular Flexion in a Principal Plane.

346.] Reduction of the Strain. If we now annul )3V and
with it all the terms involving w

x
(see § 327), and retain only

those which have X3
X
for coefficient, the character of the strain is

greatly simplified.
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The displacements become

W= - V

and the stress compon-

R-- -Otfy, P=Q = S=T=r

.(60)

.(61)

347.] Geometrical Character of the Strain. The easiest

eta ol this strain ifl to resolve the displace-

ments (60) into t simple component systems

M = \

w= - B

n--

t>= -JCTjirx8 « = J^i<^
2

to = tt> =

(•••) Fir-t, w r have

if' -II -JO^i s'-«= -"

thus -yX*-*8]y)-B]

and to our ocder of approximation

(y
/

-y)(2-CT
1
y-CI

l
y') = cy

1
^,

~,
;-' ,,-

( .)'"'-a, i

11«-1 to the Oentt rained into an
ircot* tying in oe drawn through its original direc-

trail. 1 t<> fcheplai ,and having its centre in a straight

in.- drawn pajraUel to from the

, in the I
All fibres initially in the plant'

in their natural length unaltered

Second,;.

follows that

L«

-0,

CT,y' ;
i.

v line in DO initially parallel to Op ifl strained

ntoa line parallel to the pi i,and meeting the line
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of centres of the circular fibres. In fact, each such straight line

becomes a radius of all those circular fibres which lie in the same
plane parallel to yz.

Thirdly, every straight line in the beam parallel to Ox
remains a straight line, and is shifted bodily parallel to itself.

See Figure 51.

Fig.6l

(ii.) This component is obviously similar to the first, x, z,u,

w, — <tT3
x
being substituted for z} x, w, u, wv

Every longitudinal fibre remains straight, and is shifted

bodily parallel to itself.

Every line in the body parallel to Ox becomes a circular arc

in the plane drawn through its initial direction parallel to xy,

and having its centre in a straight line drawn parallel to Oz to

cut Oy at a distance Xj&GS1 from the origin in the negative

direction.

Every line in the body parallel to Oy remains a straight line

in the same plane parallel to xy, and becomes a radius of all the

circular arcs in that plane. See Figure 52.

(Hi.) represents a displacement of every point in the body
perpendicular to the plane of xz, and in the positive direction of

Oy (i.e., that towards which the beam is bent), the amount of which
depends only on the initial distance of the point from this plane.

Thus every straight line of the three principal systems remains
straight, and parallel to its initial direction.

Superposing these results we see that
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longitudinal fibre of the beam is strained into a
circular arc of radius 1 g^— y in a plane making a small angle

wit!

(ii.) Every straight line parallel to Ox is strained into a
circular arc of radius / in a plane making an angle ©"iS

with

i traighl line parall.-l t<> Oy reman tight
<>ns of wfaid

n 1 which is a rn arcs of either system
vhicli ct it.

1

Fig.53

leave all planes parallel

xy and Conn of planes,and to warpallplanee parallel

faces of i bic curvature. The -trained form
f tl.- bewn in Figure 58.
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Since e =/= trf3$, g = - 73$,

this plane is a Plane of Zero Strain, that is to say, it is warped
in such a manner that any figures drawn in it preserve (to the

first order of small quantities) the dimensions and proportions of

their elementary parts unaltered, although they cease to be plane
figures. This plane is known as the Neutral Plane.

All fibres on the side of this plane towards which flexion takes

place are uniformly shortened and dilated, and all fibres on the

other side of it are uniformly lengthened and compressed, the loss

or gain in length being proportional to the distance of the fibre

from the Neutral Plane. This proportionality ensures that all

transverse sections—and in particular the ends of the beam

—

remain plane.

All fibres initially in the plane of yz become circular arcs in

that plane, and a strain of the kind that we have been investi-

gating is called a Circular Flexion in the principal plane of yz,

or about the principal axis Ox. The amount of flexion is

measured by the curvature xs
1
of the Central Axis. The plane in

which the Central Axis is flexed is called the Plane of Flexion.

348.] Character of the Stress. All the stress components
vanish except the longitudinal traction, and by (61)

R = - qV5$.

The tension across any transverse section of the rod is

JJRdxdy sa - qTZ^JJydxdy =

by (I). The action across every transverse section consequently
reduces to a couple ; and since the component couple in the plane
of zx is

JJxRdxdy = - qtt^/Yxydxdy =

by (1), this couple is wholly in the plane of flexion.

349.] The Flexion Couple, Coefficient of Flexion, and
Potential Energy. The couple in the plane of flexion, applied

to either end of the rod, is the same as that acting across each

transverse section throughout its length, its amount being

P
T
= -f/Rydxdy^qp^ffyHxdy^qTX^ (62)

This is called the Flexion Couple, and its ratio to the amount
of flexion produced, namely

Pi = PiM = ?Jp (63)

is called the Coefficient of Flexion in the principal plane yz.
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It" L be the length of the beam, the total potential energy of
strain ia

W= \LffRydxJy = \#2?ffo I

= Up,-r AP,^p, (64)

moipai Component oj Cirouiar FUocion,

I ] Displacements, Stress, Coefficient of Flexion, etc.
In exactly the same way we may show that, if in equations (21)

anal all terms but those which have ^
2
for coefficient, they

will represent circular flexion of amount OFj iii the principal

j.lan.- :./•. the pU being now the plane -train.

The diaplacementfl i

find the longitudinal traction ifl

-

The flexion conple i-

P. 7
~

I •

he coefficient of flexionIPthe potential '-m-rgy

.'

i ] Equations of Displacement. Let the beam he

exeil in Mich a f the torn <>i* a

< rcular ai b inclined at an angle a to

t te principal

Thru, by a simple appli I Heuniei a Theorem the eom-

I
>nent curvaJ in the two principal planes are

rncosa, ct., E3 (fi9)

A i.Kjn lubstitutionfl in eon 21 and (22), we have

r the <lisplacem< i

u - B .'} sin a
|

|

B /\rysina + \[<n

w- - u7{i/ccoBa + a#8in '

2D



418 BEAMS AND WIRES. '
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and for the longitudinal traction

R= - qZ3(x sin a + y cos a), (71)

the other stress components vanishing, as before.

352.] Flexion Couple, etc. The total action across any
transverse section still reduces to a couple, but this couple is no
longer in the Plane of Flexion. The component couple in this

plane, which may still be called the Flexion Couple proper, is

P = — cos affyRdxdy - sin a/YxRdxdy

= ^(Jicos2a +J 2
smH (

72
)

so that the Coefficient of Flexion

P = 2(3iCOS2a + $ 2
sm2a) (73)

is still, as in the simpler cases [(63) and (67)] of flexion in a

principal plane, equal to the product of Youngs Modulus into

the moment of inertia of the transverse section about an axis

in its own plane, through its centre of gravity, perpendicular to

the plane offlexion.

It will be observed that

p = p^cos2
** + p2

sin2a, (74)

where p^ and p2
are the principal coefficients of flexion.

The component couple perpendicular to the plane of flexion is

qTX(jf j
-
Jf 2) sin a cos a = (^ - p2)

sin a cos a, (75)

the sign being taken so that it tends to bend the Axis towards
the plane of yz, in which the coefficient of flexion is pr In other

words, this couple is necessary to prevent the beam from acquiring

the given amount of flexion in the easiest possible way, i.e., in

that principal plane in which the coefficient of flexion is least.

If the plane of the resultant couple make an angle \fr with zx,

the component couple perpendicular to this plane vanishes, so that

sin ^/JjRydxdy - cos xpJYRxdxdy = 0,

or tan \p = %? tan a = zl tan a (76)

Hence, when the form of the transverse section of the beam is

given, and either the plane in which the couple is to be applied,

or the plane in which flexion is to be produced, the second plane
can be found by the following geometrical constructions :

—

(i.) Describe any momental ellipse *

Mix2 + ^2V2 = constant

of the transverse section, and a central radius of this ellipse to

* Routh's Rigid Dynamics: Volume i., Article 19 (4th edition).
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sent the tract' on the plane of the section of the plane of
!i. The perpendicular from the centre on the tangent to the

ellipse at the extremity of this radius will be the trace of the
plane of the resultant couple.

tribe the ellipee qf m *

| 9, i jv

of the trmneyi :..n, ami a central radiUfl representing the
trace of the plane of the resultant couple. The perpendicular
from the Centre on the tangent to the ellipse at the extremity of

radius will be the trace of the plane of flexion

;] Beams of Equal Flexibility in all directions.

bom th' tractions, ox directly from (7~>) and
•hat th.- plane of the resultant couple <1<"> aoi in general

coincide with th.- plane of unless th.- latter is a principal

In all cam in which the area of the transverse

illy §yn d about it^ centre of gravity,
and p b p . The Beam is

f ion8, and flexion takes

accurately in th.- plane of th.- applied couple

I |
The Potential Energy of Flexion. By equation

W
m

|
/ COR a + .# / V

jl,co62tt + Jj8inJo)

. .(77)

|
The Stress. Economy of Material in Beams

iesigned to resist Flexion only. The I beam. It follows

m (71) thai w hatever be the form of the b

•eti..n, tl • idinal tract i- boui the Neutral

drawn ntral Axis perpendicular to the

aximmn positive

,,,1 n< lone those
g

the beam which

in the Neutral Plan ide.

Sin like t!. a, depend

^on the moi BeSfclon, a precisely

rial, or b of Btrength per unit

I by hollowing dni 1

1

on of the beairj which

!

* Ibid, Aiti. ]•
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Flange subje'ct to Thrust

When the plane of the straining couple is determinate—in

actual structures this is usually the vertical plane through the

Central Axis—a still greater economy of material is possible,

because our only object is then to make the coefficient of flexion

in one given plane as great as possible, while that in the perpen-

dicular plane may theoretically be reduced to any extent. We
shall therefore gain by concentrating the substance of the beam
as near as possible to the plane of flexion, and as far as possible

from the neutral plane. In practice we have to take into account

possible small flexions in other planes, as well as accidental

torsions, so that the reduction of material in the central portion

of the beam must not be carried too far. The best practical

compromise is found in the

"I beam," in which the section

consists of two flanges con-

nected by a web, the whole
being symmetrical about the

plane of flexion.

In the case of wrought
iron, and the other more
perfectly elastic materials in

which the working strengths

under tension and compres-
sion are approximately equal

[see Table (D), page 203],

the Neutral Plane should be

equidistant from the two
extremes of the section. In
cast iron, however, the work-
ing strength under compres-
sion is nearly three times that

under tension, so that the

greatest economy of strength

will be gained by making
the distances of the Neutral

Plane from the extreme sur-

faces of the flanges in thesame
ratio. Since the centre of

gravity of the entire section

, this consideration of course

Neutral

Flange subje\

Plane

ct to Tt

Fig.54.

must always lie in the neutral plane.

requires that the sectional area of the stretched flange should be
considerably greater than that of the compressed flange.

The Coefficient of Flexion for an I beam of given dimensions
is easily calculated.* Let "depth" denote dimensions parallel

* In practice the inward angles are rounded off, to guard against acciden-
tal torsion, and other shearing actioDS (Art. 341).
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to the plane of flexion {,>/: .and "breadth" dimensions perpen-
dicular to this plane. Let J3L }\ be the breadth and depth of the

flange «>n the Bid Is which flexion takes place, and which
is therefore subject to longitudinal t.

; and let />.„ F
%

the dimensions of the flange subject to Let J?
3
bethe

Ith of the web, and Yv V, the rtintanonn from the neutral

plan the extreme surfaces of the contracted and extended

iges. Then

neutral plane contains the centre of gravity of

the section

Yx-Fx+
}' /•

the extreme atroaucn, and therefore also by (61)
ordinafc to be in the ratio of tin- working

under thrust <C; t.. that onder tension (T),

C:T.. (70)

1 ' '

+ *,<>,-/> ) / >-,-/•- }-,,/>•].. .(80)I. may easily be found in term
i he dimensions of tl total depth ( }\+ V.,) of

ie i >iis adopted in practice are such that the

in is about - that of i simple rect-

ilh.

t thf Centred 4aria,and Plane Oiroulafr

] The Displacements and Stress Components.
i e obtain for

ultant d

- ryz + GT
{
trxy coe a

v = - crey f rxz + V

w
+ H<Kj «••]

C2 + T\n

i? = '/[< «08a)]

/

(

.(82)
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357.] The External Forces and Couples to which this
Strain is due. Independence of their effects. Over either

end of the beam T=F, S=G, R = H, and on substituting from
formulae (82) in the surface integrals (6) and (7) of § 146, and
integrating over the area of the transverse section, we find for

the system of external forces and couples which must be applied

to the ends of the beam to produce the strain represented by (81)

(i.) A force, parallel to the Axis, of amount

B= ?JU«*€, (83)

(ii.) A couple, in the principal plane of yz, of amount *

-Pj= -g
(
J 1
crcosa= -j^GTcosa (84)

(Hi.) A couple, in the principal plane of zx, of amount

P2 — q^ 2^ sm a = ¥-2® sm a (^)

(iv.) A couple, in the plane of xy perpendicular to the Central

Axis, of amount

T = {^M^r^)dxdy]r tT (86)

Thus each of the component distortions e, gt^ = st cos a),

gt
2(
= £T sin a), r, is related to the corresponding external action as if

it existed alone. Consequently, if the external action on the ends
of the beam is distributed according to the laws of equation (82),

the effects of the longitudinal force and the component couples
will be entirely independent.

Let E be the longitudinal tension, and the resultant couple
applied in the plane having A, yu, v for its direction cosines : then
by equations (83-86)

€ = E/e

.(87)
a = tan- 1(-

/
u^

1
/Ap-

2 )

It should also be observed that, even in the most general form
of strain, the force and couple across any transverse section of the
beam are transmitted, unaltered in magnitude, from one end to

the other.

358.] The Total Potential Energy. By equation (20)
of § 199, we have

W = \Lff{Rg + Sa + Tb)dxdy,

* The couples are here taken in the standard directions of Appendix I.

If the plane of flexion lies between the positive directions of Ox and Oy, the
effective couple in the plane of yz must be negative.
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On the other hand, by considering the longitudinal extension

of an infinitely fine wire, we may easily show that the relative

displacements of all points in such a body, parallel to a finite

dimension, must be infinitely small, if the strain and stress are

to be infinitely small.

Thus, if an infinitely fine wire have one point fixed, the

necessary and sufficient conditions that the strain and stress may
be infinitely small throughout are that the longitudinal displace-

ments of all points be infinitely small, and that the transverse

displacements of points at finite distances from the fixed point

be either finite or infinitely small. And, in such a case, the dis-

tribution of small strain and stress throughout the wire may be
assumed to be of the same form as in a beam of finite section

under the same mechanical conditions.

Secondly, it is evident that the impressed forces (if any) on
an elementary length of the wire are always negligible in com-
parison with the tensions or couples acting across its ends : the

factors expressing the impressed force per unit mass and the

stress per unit area being supposed finite (compare the method
of § 144). The form in which stress is transmitted along the

wire may therefore be assumed to be independent of the exist-

ence of impressed forces, the only effect of the latter being to

cause the magnitude of the stress to vary from element to

element. The same reasoning is of course applicable to the

effective forces, if the wire be in motion. It should be observed
that a transverse force, impressed or effective, of finite

magnitude per unit mass, acting on a finite length of wire, will

in general require the application of equilibrating transverse

forces to its ends, in the form of tangential stress of finite mag-
nitude per unit area. These will give rise to tangential or
shearing stresses between consecutive elements of the wire,
which may be taken into account by simple superposition.*

Thirdly, although the forces and couples found in § 357 to be
transmitted along a beam of finite section depend upon a certain

definite distribution of surface traction over the ends of the
beam, yet, as the section is indefinitely diminished, we may take
it for granted that the exact distribution of stress over it

becomes of less and less importance, until finally we may assume
that any equilibrating forces and couples, of the general type
described in that article, applied to the ends of an infinitely fine

wire, must distribute themselves over those ends in such a way
as to transmit throughout the length of the wire forces and

* An elementary length of wire is a body all of whose dimensions are of
the same order of magnitude. All the relative displacements of points
included in such an element must be infinitely small, and the principle of
superposition may therefore be safely employed.
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couples of the form we have found necessary for equilibrium in

se of a beam of finite section.

Finally, the curvature of the infinitely small transverse sec-

due to the strain, may be ignore. 1, and they may be
led as plane elements, everywhere cut perpendicularly in

their centres of gravity by the Central Axis.

».] Approximate application of the foregoing con-
siderations to Wires whose transverse dimensions,
though finite, are very small in comparison with their
length. Dsiderattons of the last article are rigorously

only of wires of infinitely small section, hut they also apply
in a lesser degree to the Wires denned i and the close

approximate- ieal formula? deduced from them
wit!

i

». ri intiit amply justify the application.

We DOW propose to uilihrium and vibrations
iwhieh we shall in general assume, for simplicity,

to be of e<|iial flexibility in all dired under forces and
couples applied to its sods, together with any system of im-

pressed forces throughout its mass. We shall assume

(/.) that the -ections are approximately small

r lane surfaces, cut perpendicularly in theii centres of gravity by
t ie Central A

'.) that • ponent of the tension ox thrust

e toss any section is equal to r< the elongation

i

' the <

«

its the section, and c

t ie coefficient of i point

bed 1 >y
I iv tran n is in a plan.' perpendicular to the prin-

c pal normal to the I Axis at the corresponding point

» thai
•

I this couple En the plane of the

b ctio: tangent to t

v her. the wire about the Axis, and t the

ion at thfl point.

oomponeni of this couple in the osculating

p me the plaixe of flexion at the point),

o: about its binomial, i-

v

vhere Q is the curva-

ti re of the Central Axis and p ti of tl.xion at the

])• int

If t be of anifoa ghout, the eoefficientfl

c . p an uts.

Let the origin be I point of the I lentral Axis, and
lenote the lei of the strained Axis, reaching

fr .in to the point ' . // .
-') initially at (x, y, z). Then, if Jt

1.. the -mall actional area of the wire ai the point (a •', y\ z), the

el mei lume may be taken ai dJUfa
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To express the impressed and effective forces and couples as

functions of s, we may proceed as follows :

—

Let x'=x'-\-g', y'=y'+ r{, z'=;s'+f' be the coordinates of any
point in the section JV terminating the length s of the wire, so

that £', vj, f are the coordinates of any point of the section, in its

strained position, referred to axes through its centre of gravity,

parallel to Ox, Oy, Oz.

If X, Y, Z be the components of the impressed force per unit

mass at (x, y, z), and if

f/Xd&=%$> etc -> (
89

)

then /o^tJB, /ojll!, pQZ are the components of the impressed force

per unit length of wire.

The components of the impressed couple per unit length about
the axes of reference are

ffpiy'Z-z'Yyi^etc,

or ffpW + i)Z ~ (*' + O Y]d&, etc.,

or P&[y'Z - z'l] + pfftfZ - £'Y)d£, etc.,

whicWe shall write p&tyE- z'%} + $), pQ{z,£-xZ + JjB),

pQ(®'l& — }f& + $>)> where obviously

ff(LX-%z)d& =MK\ («jo)

jrfa'Y- V'X)d^=^gi

The components of the effective force per unit length are

ffpi!d&, etc. =ffp(x + £)dQ, etc.,

and these obviously reduce to p&x, p&y', pQz'.

Lastly, the effective couple about Ox,

ffp{f% - z'y')djt

or ffP[{y' + i)$ + 1) - & + 0& + ?)¥&

reduces to p&tyz' - z'y') + p//ivt - t'v'WQ ',

so that the component effective couples may be written
p&(y'2'-z'y'+i), p&{z'x' - xz +vx), p%{x'y'-y'x+\\), where

j(Atf-?'tm = m\
(
9l)
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Now Lei Dfl consider the equations of motion of the lengths of
in (0, 0, 0) i !-« t A . />, C denote

vnponentB, parallel to the arbitrarily directed axes of refer-

the further end, and let the suffix

distinguish tl. sumed by functions of a when n = 0.

mild to Ox, I
> ": we have

.1 -

i

Of -I .!

K- 8
i

C +
l

nee of the tangent to the Centra] Axis
(which is the irsioaa couple are dtf/ds/i

the coin] ople abool th< i reference arc

•

O* Of OS

s mil. I the binormaJ t<> the I Sentral

A us (which fa uple) b<

/

tl t oomp i this eon

p( . )

Thw in. .in. ii- ire have

's a?) L
l

J, L
p

( >
?" s ,01

[ K?S-S'")], <">

Ho*, if we muhip I of equatioi . and the

thi d I

• rem the other, we obtain
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and on substituting* this result in (93) it becomes

[360.

+ pf'Mdh - y )(2. - K> -W - *'X»i - yx')]*i
o

r. dx /%' a%[_3tf 2V\"1

L "s *\> ^ ^ ^vJo'
(94;

3s
V\ds 3s2 ds 3s2

,

and two similar equations may be obtained by taking moments
in the remaining coordinate planes.

For practical purposes equations (92) and (94) are more

readily available after being differentiated as to s ; so that finally

we write

OS

dC
+ PJ,(B-*') =

3s 3s2 3s ds2
(M--B™

OS OS

and [on elimination of A 0i B , C by means of (92) after differen-

tiation of (94)]

3H atf . „/3j VY]

3,L
tT^ + *\& W '

"5 3?JJ
+ ^ 3i

~ ° 3s >.

+ ^(Jtt-m) =

C
x

3*' /

(96)

[*?H 9s 3s2 3s 3s2
f^l-il3//

7J ds ds

+ pM3-n) = o'

We also have, as the analytical expression of assumption (ii.)

above,
^v.' 7\..' 7>i9>!

(97)
,3«' jpt/ -Jbd

3s 3s ds

The geometrical equations, expressing r, 1> tit? n as functions of

x\ y, z', s, are troublesome to obtain in the general case of finite

curvature and twist ; and as we shall only apply the dynamical

equations involving them to cases in which the transverse dis-

placements are small, we shall investigate later on the simple

forms they assume under those circumstances.

*This transformation of course only amounts to shifting the point about
which moments are taken from the origin to the farther end of the arc s.
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Hie tormina] conditions, to be satisfied at each end of the wire,
- follows :

—

(i.) A, B, C must be equal to the components of the applied
on.

It must be equal to the applied couple in the plane of

terminal section.

p- most 1"' equal to the applied couple in the plane
'perpeii'ln-nL, ,- to the terminal section.

i the terminal valu*

i/y 3V_a*' 3y\

must equal (he direction cosines of the plane in which the couple
l is applied.

i ce must equal the normal component of the applied

ion.

It ie evident that, it and if the flexion be
in one plane I 'it. the equations of motion and terminal

c >nditi..ns will 1 juallv le to a wire of any form, BUCh

the principal aXCfl l
ns lie throughout in two

s, one of win Idea with the plane of flexion. En such
a case, we shall merely have to write p, or p, for p

i ] The "Linea Elastica" of James Bernoulli. If

a e suppose a wire of uniform lection to be held in equilibrium
i v equal opposing applied to its ends, either directly, ox

1 v mean- uned axis and
t ie linea in which I there will be

l ) fa lid that • n will 1m« wholly in that plane.

line of •'• ions as a and the

I
ane of flexion a^ plan. i' eijuilihrium

i d uce to

^ th the terminal c B 0,.O the tension »', applied

her end, and

p« vy
)

= the couj.le ( if any > applied to either end \>y means of the rigid
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Thus A =B= 0, and C= G , throughout the length of the wire,

and the remaining equation of equilibrium is

as

If a be the length of either arm, we have par = C a when x'= a, so

the constant of integration is zero, and

or the curvature at every point is numerically proportional to

the distance from the line of tension. Transforming the inde-

pendent variable from s to z\ this equation may be written

dvr\ AfcY!-* ' C*F

and, on multiplying by Zdx'jdz and integrating,

HST*!^^

where D is an arbitrary parameter. This is then the equation of

the curve into which the wire is strained; it is known as the

Linea Elastica.

When <la?/<y=0f
x = ±s/D2

±2pJO0) so that if C be taken
to represent the numerical magnitude* of the tension, the

maximum distance of the curve from the line of tension is

\JUl+ 2p/C , and the minimum distance (if any true minimum
exists) is VD2— 2p/C . In the cases of Figures 55-58 D2 must
be therefore taken less than 2$/'C , and in the case of Figure 60
greater. Figure 59 represents the intermediate case, in which
D2 = 2p-/C ,where the equation of the curve reduces to the integrable

from

" J U' v/4p

-

cjr* jip - <vd jo;

or, G being necessarily positive in this case,

Figures 55-60 are taken from Thomson and Tait's Natural
Philosophy : they are copied from the actual forms assumed by
flat springs of such small breadth that no appreciable tortuosity

(and consequent torsion) was introduced by the crossing of the
different branches.

* This is positive if the ends are pulled apart as in Figures 58, 59, 60, and
negative if they are pulled towards one another as in Figures 55, 56, 57.
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362.] The Helix of Equilibrium of a Uniform Wire
under no Impressed Force or Couple. Writing in the

general equations of equilibrium ts for the resultant curvature,

(A, fx, v) for the direction cosines of the tangent, and (A', //, v) for

those of the binormal to the curve assumed by the Central Axis,

under no impressed force or couple, they become

dA _dB = dC
ds ds c/s

~=0

[irk + »C7A'] + C/jl-Bv =

[tr/x -4- $T3fi'] + Av - CX =

[\rv + pGlf] + BX- Afx =

XA + /J.B + vC = t€

Thus A=A , B=B , C=C throughout the wire, or the tension

is constant in magnitude and direction. Let E be its magnitude,

and let us choose the arbitrary axes of reference so that Oz may
be parallel to its direction. Then (7=E, A=B = 0, and the

equations of equilibrium will be satisfied by the assumptions that

e, t, gt are also constant, and that

v = ec/E
>

tT^ + jro^' + Ef*
ds ds

as ds

(98)

aW
ds

Thus v, v are constant and \/ul'— X'iul = Q, or the tangent and
binormal are inclined at constant angles to Oz, and the principal

normal is everywhere perpendicular to Oz. The curvature being

constant, it is obvious that the Central Axis of the wire assumes
the form of a regular Helix, described upon a right circular

cylinder having Oz for a generator. If r be the radius of this

cylinder, and a the pitch of the helix, r = cos2a/^, e= E sin alt.

If we now transform the origin to a point in the axis of the

cylinder, and choose Ox so that it shall pass through the end z =
of the wire, and if

<f>
denote the angle through which the arc s of

the wire turns about Oz, we shall have

x' = r cos <£, y' = r sin <£, z - r<f> tan a, s = r<£ sec a,

and the second and third of equations (98) both reduce to

ptTT sin a - frr cos a + rE = (99)
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When tli«- magnitude of the couple applied to either end and
nclination of its a en, ~ and r ran be deter-

''.») will then Berve to determine a; whence finally

r and e can be found.

;] Equilibrium under Terminal Couples only.
Writing E = o. we have * = (), and if P. T be the flexion and

11 couples (99) reduces to Psina—Tcosa=0, while

r = pcns-a P. Lei the magnitude of the couple be C, and In its

Bible position of equilibrium make an angle \'/ with
d the same ride of it as the tangent to the curve. Then

P C .»,T = Csini,i + i/,>. an.l l>y 99)sin>/r=0. Conse-
quently 1

1

I the helix is perpendicular to the planes of the

Thus it' equal oppoai lee in parallel plane- be applied
a fine n I tak.- the form of a uniform helix

upon a cylinder with :

perpendicular to the

plane fch 1 and radius r of the cylinder.

the pii the heh*x°(or angle al which it cuts tin- planes of

the couple-) and | which it turns about the

aj.is, bean [nations

r poos a C. 1 t>- AC p dOO)

mly the magnitude C of the i be riven, there are an

b inite numb esible positions of equilibrium, bui if in

a diti I the » I quantil be known, the

s< ution i
ruiinate. The curvature of the wire

w 11 be Co«»sa p and I ' < p throughout

304] Simplified form of the equations, when the
rr iximum curvature of the Central Axis is very small.
Ii this case I all points of the

A js are small. and YtOt 1"' tal >incide N\ith its unstrained

! small quantities,
: S> Well as ;'-

; f mum 1

1

|tit es, is equi and the

ten

!

:

"I

101)

,0

The elongation of the win pom! will now of course

(102
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and the approximate values of t, 1, tit, n may be found as

follows. The curvature being very small, the displacement of

any point in the transverse section JV, relative to its centre of

gravity, will be very approximately perpendicular to Oz, and due
entirely to twist about the Central Axis. If 6 be the angular

rotation of this section about the Central Axis due to torsion

(§ 332), which we must in general suppose to vary from one
section to another (§ 359) under the influence of impressed

couple, and which is not necessarily very small, the amount of

torsion, or rate of twist per unit length of wire, is evidently

r-2? (103)
OZ

Let (£ r], z) be the initial coordinates of that point of the section

31 whose strained coordinates we have denoted in § 360 by
(ptf+£*, y -\-t] , z'-\-£') ; then we shall have very approximately

Substituting these values in (91), and remembering that every
diameter of the section through its centre of gravity (§ 353) is a
principal axis of inertia, we find (on the assumption that the

angular velocity 6 of rotation of transverse sections about the
Central Axis is small)

l==tn«0; &tt =3s (104)

Equations (96) and (97) now reduce to

dz\

and

dz\_

du
,
Jdv

. ^/-. . div\ dw

(105)

\.
"
+4l +K1+S)

= ^- (106)

In applying the terminal conditions it is to be observed that
the components of the flexion couple in the coordinate planes are

-*8 +
4S' ° •

<
io7

>

Of course, if the wire be of uniform section, t, jr, c, Jt and $ 3
are absolute constants.
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S Hon
i

.] Free Longitudinal Vibrations. Annulling all the

ud] - and couples, and all the displacements but to*, we
li;t

ii +%)-°> "(i+*H Ku T& m9
These equal iously satisfied (to the first ordei of small

quantities by A = # = 0, and

c ^u.
oz c

Tl. : vibration t<> be satisfied throughout

the . ideni U iditions that

th • motion may be entii

sa isf\

~ = 0, a and when ~ = A.
OS

riting for t/' tip we tin<l
I

ip! u

= 0,

7

ng the terminaJ conditio genera] solution of this

ii we have finally

«'-«,)

wl ei

Tip l along a wire u then

N ,. Th is result should paved with the velocity

+/ m+7i) r . obtained in 2 n through an

ini nit« medium We shall « * 7 p.

896.] Lateral Vibrations in a Fixed Plane. The wire

be ng equally flexible in all di plane
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through the Central Axis, e.g. the plane of zx, as plane of vibra-

tion. Annulling therefore v, w, and 0, we have

B--= 0, ^ =
dz oz

dA % _

=

.0

3 :%
V
dz* OZ

=

Eliminating between the third and fifth of these equations, and

neglecting the square of du/dz, we obtain

and, on differentiating as to z and eliminating A, the equation of

motion reduces to

The tension is, to our order of approximation, entirely transverse

(i.e. due to shearing stress only), and its value is

3*s^--S. (
108

)

the flexion couple being

V^=+l>|5 (109)

The equation satisfied by the amplitude ut (§ 260) is

or, if we write

then

4*-*wk-<*

• _ i
2

/ V

S'4a w
The general solution of this equation is

\<Qk "\iy ia< |^»

u
t
= 1/^ sin— + Ml cos +N

t
sinh — + Nj cosl) — (HI)

Jj 1j 1j JL

where the four coefficients are arbitrary constants, to be deter-

mined by means of the terminal conditions at the two ends.

These are as follows :

—
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•tan end that is absolutely bee, there can be neither

nor tiexion couple, so that at such an end

^- -0. . (112)

(ii.) at an and that i- fixed in position, but SO that the ter-

minal portion of the v. bfl direction

. tli.- displacement i- aero, and so is the flexion couple, and
at such an end

113)

:t an and thl rhat the terminal portion

nt to tli.' AjcLb at its

termination m with its initial direction : at such an

end t

u-0, ?£ = 0. ,111)

(iv.) a* _ a rigid mass M. but otherwise I

th< couple vani must obviously be
• ,

i M. Thus at such an end

-M,

For th ad the different

foi as of i mi to which • adeni
is -eferred to Lord Rayi m1 Chapter
V I I I \

367.] General Equation of Equilibrium. Lei a thin

I r irire real upon any number supports in one

ho izontal straight lh. ruired t<> determine the -mall

del ecr the supports,

cat *e«l lev it> own wei

Tak«- any point in the line of support! in. and that

lin- fe and lei Ox be i bically downwards.
the deflection will be entirely in the vertical

thatcJ-g.S^B-O,
ft. jU fi 0. Tli [uih'brium reduce to

£ +**-°l
,ln

.1 oj
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and, on elimination of xl,

Integrating this equation four times, we see that the curve

assumed by each portion of the rod terminated by consecutive

supports, or by a free end and a support, is represented by an
equation of the form

u = #c + kxz + k
2
z2 + Ktf? + pgJUY^p, (116)

where k , kv k2 , k3 are constants, different in general for each such

portion.

To show that the solution is completely determinate, we will

take the general case in which there are p supports at given

distances apart, and the ends are either free or clamped. The
rod will be divided into p+ 1 curves, each represented by an
equation of the form (116), and there will consequently be 4^+4
constants to be determined. Now,

(i.) the line of supports being the axis of z, the values of u,

as deduced from the equation of any portion of the rod, must
vanish at each of the supports which bound that portion (2p
equations),

(ii.) the curvature of the rod being necessarily continuous,

the values of du/dz and d2u/dz2 at each support, as deduced from
the equations of the curves on either side of it, are necessarily

equal (2p equations).

(iii) at either end, whether free or clamped (§ 366) two
conditions must be satisfied (4 equations).

Thus, on the whole, we have exactly 4p+4 equations of con-

dition to determine the 4p+4 constants involved.

The thrust on any support is equal to the difference in the

values of A, immediately on either side of it.

368.] Rod supported by one end only, that end being
clamped in a horizontal position. In this case, u and
du/dz must vanish at the clamped end (z = 0), while d2u/dz2 and
d?vbldzz vanish at the free end (z = L) (§ 366). Thus

k . Kl = 2ic
s + Qk

s
L + pg3U&*/2fr - 6k

3
+ pg&L/p = 0,

and the curve assumed by the Axis of the rod is

u = p3^(z2 - iLz + 6Z2
), (117)

24p. v /

giving an extreme depression at the free end of pg^L^/Sp.
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'.] Rod freely supported at its middle point. This
[educed from the last, for it is obvious from

symmetry that the tangent t«> the Axis <»t' the rod at its middle
point will be horizonti LetricaJ conditions are

if that point Taking the middle
point in. and writing \L ton L in (117 . we have for the

•mii of that half of the rod for which ; is positive

u-. (118)

She «\n of either free end is therefor*
pg^L 12

'

]
Rod supported (but not clamped) at its two ends.

Ta kin anish when i =«0 and
wh( bat

...<11»)

an 1 bl the middle point i-

ipported lint sufler t!

of the depression experienced by the middle point
1 mi]

371.]

"lih/.

Method of Investigation. In the tin., following

os under which the

ural ;i circus becomes
In each cast1 it i that this instability will be

tsed bv
| ,il ijiiantitv involved

igtfa of • Q, and in' 378 the

enhill's method con-

a in supposing the limit to h mall deflection of

Cen 'in<- to hi and
let* i the l" 1

-'
ttical quantity for which

i del I This, being the limiting value
1 ich di\ i 8t value

distent with stability in the original t

] The maximum height of a vertical pole, con-
si tent with stability under gravity.* Let a pole of 1

A in the form rotation about a vertical

f M. I ftmb. Phil Society,
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with its base rigidly fixed in a vertical direction, be supposed

slightly deflected from its naturally straight form. Taking the

hio-hest point of the axis for origin, we have X= Y= 0,Z=g, and
consequently <£ = S = 0, E = g, W =M = &> = °- If the plane of

xz coincide with the plane of flexion, equations (101) and (105)

reduce to

and, when C has been eliminated, the equation of equilibrium

becomes

d / d2u\ du J**.* , n

dz

If r denote the radius of the section Jl at distance z from the

summit, Jl=xr8
, and ^ = \ir^A (§§ 349, 353), so that

-fU^\ +
4-PK *» fZ

^dz^Q (120)
dz\ dz2

) q dzj
o

When r varies as any given power of zt the solution may be

obtained in terms of Bessel's functions, for on putting r= zp/Dp~ 1

our equation reduces to

~ dz\dz) J
~dz\ dz) (22J + 1 )qzlp

~z dz
'

the solution of which—satisfying the terminal condition that the

curvature d2u/dz2 vanishes at the free end z = —is

k*»-»j r ADP~ l

I
ps 1du

fc "SL(2;-3)j

where k is an arbitrary constant.

Since the base of the pole is rigidly fixed, we must have
du/dz— 0, when z = L, and consequently

J f 4tDP
~ 1

I ^g~"1-n

Thus, if i be the least positive root of the equation

J4zzi(i) = 0, (121)

and if

"L^+1)(2^-3)V2J '

{ }



3;-2.] BHJJfS AND wii; 441

/,„ it ia unpoaaible for tin* pole to maintain a slightly

I form a> a stable form of equilibrium, and consequently
_ht form ifl stable. £ , ifl therefore the critical

I f the pole be cylindrical, /> = (), and 1> is the radius

of the base. In t' the critical height is given by

where i ia the 1'

J j(i) = 0.

'.] A cylindrical shaft, of equal flexibility in all

directions, rotates without torsion between fixed bear-
ings (clamps) ; required the greatest angular velocity
of rotation consistent with the stability of the natural
staight form* Let

'

iat . when th< i angular velocity

ith the axia slightly curved,

Then u —«A*, r ~- — tfvi and the equ I motion become

"i

id B between the laai three

uati obtain

a?"

fionaf

the bearings, this con-

Thus the component a the plane per-

I

tndiculax to m assumed by the

rail. log then r

t ie radial di at, Wt liave

r-0,

!

\m r = Mco>
L L A L

vh.i
| p.

•M;o i Tripot, 1878.
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Since r and dr/dz vanish at both bearings (s = and z = L),

the coefficients must satisfy the relations

M + N= M' + N' =M cosh i + M' sinh i + iVcos i + IS
7 ' sin i

= M sinh i + M' cosh i -N sin i + N' cos i = 0,

and consequently on elimination of M, M\ JS
r
, N',

cosi . coshi= 1 (123)

If therefore i be the least positive root of (123), the critical

angular velocity is given by

i
2

/ V . (124)

for if ft)<a> steady motion is impossible with the Central Axis

curved, and the straight form is consequently stable.

374.] A cylindrical shaft, of equal flexibility in all

directions, rotates between bearings under twisting
couple and longitudinal thrust; required the greatest
length of the shaft consistent with stable motion with
the Central Axis straight.* Let T be the twisting couple,

— E the longitudinal thrust, and o> the angular velocity of

rotation about the line of bearings. Assuming the Central Axis
to be slightly deflected from its naturally straight form, the

equations of motion are when the motion is steady

dA
,

o, 9 dB «. 9 dG n

dz\__ dz dz dz2
_\ dz \ dz)

dr~.d6 dv d2vT\ ./, ,dw\
dz\__ dz dz dz2

_\ \ dz)

?L dz\ dz)J dz

d_

dz\

dz

dz

t du 7,dv
A-J- + B +C(
dz dz

dv;

dz'

while at either end

dz

These equations are satisfied by assuming that

d$ = T
dz t' dz

(125)

* Mathematical Tripos, 1881, and Proceedings of the Institution of
Mechanical Engineers, April, 1883.
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throughout the shaft, if

A possible solution ifl

u = k,cv k-
3
co8 az cosh /3a + K

4
sin u; sinh /ic ]

where <*.,/' an the red routs, and a±ifl are the imaginary roots
Ie equation

pA<-TA i EA--/.JVui- (127)

5.] The neral ease is complicated to work out, l.ut

ample cases may be solved If we suppose that the ends of

iiaft are absolutely fixed in position, but able to change their

tin- only terminal
amdition m< t (, =v = at each end.
^imil ada be clamped rigidly in their initial direction,

ble to j' their initial line the
ily !>>• rminal < at

t ich end
In either of these cases, i only retain the completely

lie terms in 1 1 26 . the soluti in the oral ease of the
t »rin

U = k(cOHU -

i i«l in the >.-«-.. n.l -iiii

H >
i

( )'

ie condition in each ease that

(i~J

being any poail i

: fore given by

37(>.j In the case whei velocity of rotation is

oderaie,and the thniat sad couple very great, so tha<

ie efl inertia iigible in comparison! the <jiiartic

( 27) reduces to the quad]

-TA + E ".

I



444 BEAMS AND WIRES. [376.

the roots of which, E being essentially negative, are real. Thus

and the critical length L is given by

*!.2!-.? (129)

This solution is very approximately applicable to the screw

shafts of large steamers, and accurately true in the case of equi-

librium under thrust and twisting couple.

Naturally Curved Wires. Circular Hoops.

377.] Equations of Motion and Terminal Conditions.
If a wire of infinitely small section have for its Central Axis

a curve of any form, but everywhere of finite curvature, an
elementary length of the wire can always be measured from any
transverse section, such that its length is of at least the same
order of dimensions as its greatest diameter, and yet so small

that the portion is practically straight. The conditions of strain

and stress in such an element may be taken to be the same as in

a naturally straight beam, and by superposing one such element
upon another until the curvature of their aggregate becomes
sensible, it will appear that the conditions of strain in a wire

of naturally finite curvature may be deduced from those of a

naturally straight wire simply by substituting for "curvature
due to strain " " change of curvature due to strain," and for
" direction of the unstrained Central Axis " " direction of the

tangent to the unstrained Central Axis at any point."

With these changes the considerations (i— v) on page 425 are

applicable to naturally curved wires of equal flexibility in all

directions, as are the terminal conditions on page 429, with the

exception of (iv), cr denoting the change of curvature due to

strain. Equations (95) and (97) also retain the same form, but
equations (96) and the terminal condition (iv) become more com-
plicated, owing to the form of the flexion couples. If

dy <Pz_dz d*y ,__3,/ SV M ay

then the natural curvature at the point (x, y, z) is approximately

s/\2+ jul
2+ v

2
, and the altered curvature at the corresponding

point (x, y\ z') is strictly J\2+ M
/2+ V

F2
: thus the resultant

flexion couple is p(^/y2
-\-juL

,2+ v
2- Va2+ /x

2+ y
2
), and the direc-

tion cosines of the osculating plane of the strained Axis, in which
this couple acts, are as before A'/x/A'2+ //

2+ v'
2

. The components
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of the flexion couples, parallel to the arbitrary coordinate planes,

>w theref

, 'X'i + p'S + v'*- J\* + p* + v*)

i + V
'2

, etc.,

instead of simply p.\

B.] The Energy Method. Owing to this complication
of the ordiiiaiy equations of motion and eqoilibrium, problems

and hoops are generally attacked by means of

gy Method.

natural form of a uniform wire of unequal flexibilities

ich that the curvature at any point of the Central Axis is 5,
the osculating plane at tli.it point making an angle a with

principal plane of inertia m which the coefficient of flexion

and lei Che curvatures in the principal planes

a. Then, ix the effect

of th< -.at- -. -
.

-
. ,.,, and to

I
roduce at th the potential

at the point in question will he,

* here

-H* (130)

- GJ 008
<f>,

ETj = nr hiu */>.

pies will be with our
ion

E-rc-

T tr

(131)

Pi ^"W
the win* l I equal flexibility in all directions, the poten-

\ per unit length is

| c«- i
p<- 5)« i tr») (132)

the uple in the final osculating plane at

P : (133)

lefining the con-
'

}
\iTi\- on, the resistance per

'i lit l l.v an elementary portion of the wire to the
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increase of £ is of course dWi/dg. In other words, there is a force

dWi/dg if g is linear, or a couple dM./dg if £ is angular, per unit

length, on each element of wire, tending to diminish £ From
(130) and (131) we easily deduce that this action may be ex-

pressed in the form

. ^El + Tl +P^ +P^ (134)

379.] Rotation of a wire of equal flexibility about
its Central Axis. The formula (133) shows that the energy
of such a wire, whatever its natural form, depends only upon
extension, torsion, and change of resultant curvature. If there-

fore the wire be set in motion in such a way that each point

describes a circle about the centre of gravity of the normal
transverse section in which it lies, no resistance will be offered to

the motion except that due to inertia. We have thus an ideal

means of transferring rotatory motion without loss of energy
from one rigid axis to another in any other direction, by con-

necting them to the terminals of a perfectly elastic wire of

uniform flexibility, so placed that in its natural form the tan-

gents to the Central Axis at either end coincide exactly with the

axes of rotation.

This result does not apply to curved wires of unequal flexi-

bilities, because, even if the resultant curvature be maintained
constant, the component curvatures in the principal planes of

inertia at each point must change "periodically during each

rotation. (See § 382.)

Applications of the Energy Method.

380.] Stretching of a uniform circular hoop of equal
flexibilities in all directions. If the Central Axis of a uniform
wire be in its natural state a circle of radius r, and if the wire be
stretched, without change of the circular form and without
torsion, until this radius is increased to r, the length of the wire
will be increased from 27rr to Zirr, and its curvature diminished
from 1/r to IV. Thus we shall have e— (r— r)/r, and

-*{<-)•>«}
(r - r) 2(zr2 + p)

2r^2
'

The tension will be e(r— r)/r, and the flexion couple in the
plane of the wire exerted across each transverse section will be
p(r— r)/rr.
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sine,' the strain is expressed entirely in terms of the linear

codrdin&te r, the resultant action on eacn element of the wire is

antra, of magnitude
pi)

dr

pei unit length,

l] Small radial vibrations in the plane of the
hoop. Let as now suppose thai the wire performs small vibra-

abouf i
r uration, the displacement of each

being wholly radial, and the form of the Axis always
circular. The ve\ each point will be r, and the kinetic

v per unit length will \»- \p&iA. The principle of censer-

a m
c ''"'

t£>
] . oowtant

Differential and writing r-r+t*, where u is a

small quantity of the I with r, the equation of

66 to

-o,

o that the p< Dfl ifl

2 ] Wire hoop of unequal flexibihties. A lioop baa

I neatest

thai in which t flexion is least) at

aeh point making e a with the plane of the circle. It is

beld m that the plane of

Qexibilitj ogle »/> with the plane

II. re, if Pi be the and I coefficient of flexion,

re have with the m
CJ, » cos o/r, do

. ml i (r—

I

Tl.

««. . ( /coeA cos /
a\i

)

1 at of the of

(i

r) ft/cos a |
/-i..a_sin</A

(1;;
.

\ r I A r '• /

the hoop to its natural radius.
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(ii.) a couple

ftsin <f>
/cos a_ cos <f>\ _ ftcos <fr/sin a _ sin <A , .

r \ r r ) r \ v r )'"

per unit length, in the normal plane of the wire at each point,

tending to turn it about its Central Axis, and restore to the

angle its initial value a. This couple vanishes when

r
r (ff2 -yi)sin24>

(
2 '

ftcos </> sin a - ftsin $ cos a

so that, for every value of less than tan
-1
(fttan a/ft), it is

possible to stretch the hoop so that its elements may experience

only radial force. For every assigned value of r it is possible to

determine </> so that the turning couple may vanish. If the

external action be confined to keeping the hoop stretched, it will

assume a form in which <£ has one of the four values given by

(137) when the value of r is assigned. The four positions of

equilibrium thus determined are alternately stable and unstable.

If in the natural form of the hoop the plane of greatest flexi-

bility at every point coincides with the plane of the hoop, and if

the latter retain its natural radius, a = and r = v. Thus the

turning couple is

and the four positions of equilibrium are given by

<f>
= 0, </> = tt, and </> -Trtcos^fft/^ -

ft)],

the latter two of which are only possible when ft > 2ft. The first

value of (j> represents the natural state, and the second the condi-

tion of the wire after each section has been turned through two
right angles about the Central Axis—or till the plane of greatest

flexibility once more coincides with the plane of the hoop.

383.] Hoop having one very great coefficient of

flexion. If ft be enormously great in comparison with ft, as in

the case of an ordinary barrel hoop, the first term in (136) may
be neglected in comparison with the second, and the position of

equilibrium when stretched is given by
<f>
= sin

-1
(r sin a/r) ; or, in

other words, the change of the component curvature in the plane

of small flexibility is negligible in comparison with that of the

other component. The flexion couple in the plane of greatest

flexibility will be
(cos a cos <h\

-r-'-r}
etry the resulta

,
this latter will

ft /cosa^cos<A

cos <f\ r r )

and, since from symmetry the resultant flexion couple must be in

the plane of the hoop, this latter will be
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EXAMPLES.

[In thefolL intra is

vtiurally straight,

from the acti
Impress d pi cU tfu or u points of

-

1. Op| tuples of 10* centimetre-grammes are applied
two ends of a round bar of iron [Young's modulus aoont

•nilli<»n grammes weight per square centimetre] of _.'. centi-

Find the curvature produced. Also the
curvature le within the elastic limits of the

ial, and the couple required t«> produce it. manming three
million grammes weight per square centimetre t<> l>-> the tenacity

e iron.

that, if a wire be subjected t-» tension ami flexion

eoupli ignitude that the produ sensible, the

ccetii will be p( 1 -he).

nniform bar, both "t" whose fixed, be bo dis-

p ace«l longitudinally I half ia uniformly extended
a -1 ti half uniforn thai the <li->pla<v-

ii -nt at time / will i Uy

1

« -%' L L

w ier. : sound
30."> along the bar.

\. Ti d to springs of equal

«t en

1» an amplitude I itudinal vibrations, then i I of

1

1

w er-' fcio
«>*' the

te ision applied to I

'

;
- produ(

cylinder of small ellipl n, and L centi-

m* tres in length, is clamp i.encL The note when
vi >m- in one pnncipa] plane of flexion, and the

. hen vibrating in the other principal

pi; ne, both hi d. Show that the
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semiaxes of the section are about 000179L2 and 0000286/,2

numerically, having given that

—

(£.) Steel is 7*85 times as dense as water.

(ii.) Young's modulus = 2*14 x 1012 C.G.S. units (absolute).

(Hi.) The two smallest roots of the equation of frequency

are 1*875 and 4*694.

6. A wire infinitely extended in one direction has its nearer

end firmly clamped. If a series of simple harmonic transverse

waves travelling along the wire be reflected at the clamped end,

show that the reflected waves have the same amplitude as the

incident waves, but that their phase is accelerated by one quarter

of a wave length. What will be the result if the end be free

instead of clamped ?

7. A straight vertical wire of length L is attached at its

lowest point to a cylindrical weight, the moment of inertia of

which about the Axis of the wire is /. If the upper end of the

wire be made to execute forced angular oscillations given by
6 = asmii, show that the oscillations of the weight will be

represented by
„ a cos [tan" 1

^// \//>JM)] sm ^
"

cos [ttm-\il/ V^Jgt) + iL Jpgji]'

the elongation of the wire being supposed negligible.

Prove that the frequency / of natural oscillations of the

system is expressed by

W^fs/ttan 2tt/L Jjgjt = /)J 3//.

[The equation of motion is by (105) td20/dz2— pJf36'
= 0, and

the terminal conditions are (taking the origin at the lowest

point) = a sin it when z= L, and tdO/dz— 10 = when z = 0. In

the case of free vibrations, i must be such that the total energy
of the system remains constant, so that

is independent of t. Evaluate this expression and equate co-

efficients of cos2^ and sin%]

8. A wire is held bent by suitable forces between two points
A and B so that, the area between the wire and AB being given,

the work expended in bending the wire may be the least possible.

Show that the curvature at any point varies as r2 —D2
, where

AB= 2D, and r is the distance of the point from the middle
point of AB. Show also that, if the wire be bent completely
round to satisfy the same conditions, the curve assumed will be
of the form r3 = C3cos SO,
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A - [uare ABOD is formed of four rods, each of Length X,

rners, the rod ilfi being elastic, and
the <»t

! rigid It' the system revolve about CJ) with
uniform angular velocity o», men that ,\A i^ a small quantity
where X is given by \4= /^JU^/ft the displacement of any point

i B at a distai litre will be

nh iAL(cos A« - cos JA.Z) + sin |AL(cosh Xz - cosh JAZ,)

sink }, X L cos ^XL + sin hXL cosh \XL

|o. it*, in th«' i 7. the rod be clamped at any cue

support in a position other than that which it would naturally
nil.' when freely supported, an impossible identity will

ly I- introduced Explain thia

11. Calculate the
]

on each rapport of a heavy bar

which rests upon four equidi of which are

oda

12. A, heavy beam .t in half, and one of the

halves is again divided i ma, which are placed

aprighl her. H' the

rem linii if P .. /', he the thru

on t! that

,/. :Mc/. is p .

3. A heavy uniform wire i I points

in i e -am- horizonl in.-. If P, I couple

od /' fcl een the

mpporfi

A weightless w i ends, and a1

mid le po W in it

at i poini dovi iiv m<'nt

any poii n by

v /.- 'W
I).

ppcr or wit y
Ben lii 7 or on 1 1 m

Te.

1 . \ rod 0A1 through three fixed

4nt A,Ii, (
' ii th;it the deflection of the

)A. do ttly, is the same as If

I had 1 through two points A and

A" on v, wliei

... ttflAB \BC
A.\

p

01
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16. If the rod be constrained to pass through an infinite

number of points, at intervals each equal to AB, the constraint

—

as regards the part OA—will be the same as if the rod had been

constrained to pass through A and Fonly, where A Y= |vd . AB.

17. The maximum height for stability under gravity of a

conical pole of semi-vertical angle a is

T _ 3qi2 tan 2a

where i is the least positive root of the equation J
3
(i) = 0.

18. The maximum height for a paraboloid of revolution, of

latus rectum D, planted with its vertex upwards, is

where i is the least positive root of the equation J*(i) = 0.

19. If a rod revolve about its Central Axis under a given

tension, prove that the straight form will be unstable when the

number of revolutions per second exceeds the number of lateral

vibrations executed in a second by the same rod under the same
tension.

20. A rod of given length, securely clamped at one end and
with the other end free, rotates about its Central Axis. Show
that the greatest angular velocity consistent with the stability

of the straight form is given by the least positive root of

cos i . cosh i = — 1, where i has the same value as in § 373.

21. If the clamp in the last example be replaced by a

universal joint, and the angular velocity be such that i is a root

(other than the least) of the equation tani^tanhi, the Central

Axis of the wire will describe the surface of revolution

= Ml sin i si
,12 • i . . \Z

y

h — + sinh l sin -

Li Li,

22. If the hoop of § 380 be cut, and the ends twisted through

p complete turns and then joined again, and if the hoop be con-

lined between two perfectly smooth parallel planes, so that the

Central Axis must remain always a plane curve, the radius of the

hoop in equilibrium will be a root of the quartic

VA_ crr3 + jj1T _ (p +^2f) r2 _. o.

If this radius be denoted by r
x , the time of a small vibration

about the position of equilibrium will be

2~
v

pjuv
tr

1

i + pr(3v-2r
}
) + 3pHf<
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A wire is twisted, and Brained into the form of a helix,

ainl it- endfl are then joined, bo that it forms an endless spiral

surve round a tabular core. Bind the direction and magnitude
the resultant toss any tran lection,

i!4. £and i QJugate fund and //. the £ curves
If a wire have for its Central Axis a curve of the

:ily. and if it execute small vibrations in its own plane, bo

ach point moves along the principal normal to the Central

and this latter remains always a curve of the same family,

the time il oscillation will U-

"-/ V
\ »+»/Ya*W

e the integrals ai n all round the curve, and :
;

is

given it- initial value after differentiation

25. Apply thi> result to obtain in I elliptic integrals

truth tion of an elliptic win- which always retains the

|p in of i eonfocal elli]

2G. A perl tural state the form

of aciicu, i length L and c a A ring is formed
b} joi 1 1 i 1

1

_

1 i-- laid upon Bmooth bori-

zi ital table, with it- ircular hole in the
ta »le, A perl vertical

ai 1 of weight -77 A7. i ntiy on the ring, with it

v< -tie.- i down* Prove
tl. t if t! _.'•- of thr hole, if it-

in rti; led alwa;

r«* iain dreufi -mall oscillation about i position

of jquilibriom

v

ve <li-j its and vela -tl by u </>(z), it —
tli. displacement . hstMpmnt time t n ted by

wli ?re o>
f -p//

I
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28. Obtain directly St. Venant's solution for the torsion of

beams (§ 333) by adopting the conjugate cylindrical coordinates

£ rj, z of Example 4 (i.), page 258, (making p unity), and assum-
ing a = 0, /3 = zT.

[It will be found that the general equations of equilibrium are

satisfied by making dw/dz = Q and d2w/dg2+ c
2w/drj2 = 0, while the

boundary conditions reduce to

ijfJ + ^+Ot^Yf*--*
of of \ Oq J Or)

The differential equation of the bounding surface must there-

fore be

(g +^-J^0;
or, if and w be any conjugate functions of £ and t], and therefore

also of x and y (Example 2, page 257),

(| +^ +t^o.
This is satisfied by all surfaces of the form

<f>
+ JC'Ve

2^ = constant,

or </> + Jt(£
2 + y

2
) = constant.

[See also Boussinesq's Application des Poientiels a Vetude de

Vequilibre et du mouvement des Solides Elastiques, pp. 435-4G3.]

APPENDIX V.

Strength of Materials under Torsion and Flexion.

Strain- Reversal (Nachwirkung).

Strength under Torsion. A cylindrical bar, subjected

only to torsion couple applied to its ends, experiences only

shearing stress (§ 330). The elastic strain produced depends
therefore entirely on the rigidity of the material, and the only

elastic limit involved is its hardness (page 181). To exhibit

clearly the form of yielding to torsion stresses exceeding the

elastic limit we will consider the simple case of a right circular

cylinder (§§ 335, 341), following the account of Prof. James
Thomson.*

* Cambridge and Dublin Mathematical Journal, Nov. 1848, sections 10-20;
reproduced in Sir W. Thomson's article on Elasticity in Encyclopaedia
Britannica, section 9.
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The shearii - under torsion - is
[J :H1 (/.)] S =

from tlic Central Axis: tie torsion

eoup] within ihe elastic limits is T> |tw-4V, where A is

the cylinder.

ippose the material to be perfectly plastic

p. I7 (i
' and of solidity S. It* tin- torsion couple be gradually

until t— 8 nA and T= A-/1 :5S, the limit of elasticity

will 1 1 for the extreme bounding portion of the cylinder,

which will then begin to flow. When still greater torsion has

produced, so that /• S ,

- than 4, all that portion

inder between the surfaces r and ^l will be in a state

of flow with a uniform stress S throughout, while the portion

comprised within the surface /• will >till be in a state of elastic

strain The torsion couple will then obviously be

radius r of the sui

fruiting the flow diminishes, until ch a limit at which all

but th inder in the immediate neighbourhood
ol th. bis limit the maximum
V Lue T=57r^l S which is £ of

ft i value at the fcfl the

to torsioii cylinder of radius A.
It'

i i ed, there will be

a el;: j of the wire, which will

.1 oinish I inl by an amount proportional to

it distant . from ppose that, when the

( iple is 'Uti: am at diirtanftn r from th(

fe S- Or

I

in |8— 1&/A. Thut maneni stre ihearing

s i .; All that portion of bained within

tl ) surface r«}j* is permanently I in the direction in

w licli took place, whik all the portion without that

si :-fac- l in the opposite direction. The

lfr ;,.

The jmtiiij .vhnv within the elastic

lit lits, it foil ' ion thai the

it ess produced by the application ion couple, in

either ill be ox the bar were in a

8t< te of ease (see page l Thui if T
x

h<-
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the couple sufficient to produce flow, when applied in the original

direction, we shall have

r
A

[6V + S(1 - tr/A)]r. 2irrdr =Tv

where G
X
A — |S = S ; and consequently T

1
= §7r^l 3S.

Similarly, if T
2
be the Couple required to produce flow in the

opposite direction,

•A

[C
2
r-S(l-ir/A)]r.27rrdr = T2 ,f

where G
2
A + J S = S ; and therefore T

2
= Jtt4 3S.

Thus the strength of the bar under torsion is twice as great in
the direction in which it was originally twisted, as in the other.

These results are only true numerically of bars of perfectly

plastic material, but the principle is obviously applicable also to

ductile materials, the hardness of which increases during flow.

Thus it is evident that the apparent strength of a bar under
torsion may depend very largely upon its previous elastic history.

Strength under Flexion. In this case the strain is a
longitudinal traction or pressure, proportional to the distance

from the neutral plane. Taking the case of a rectangular bar of

plastic material, of depth 2D and breadth B (see page 420), and of

equal strength under tension and thrust, it is easy to show that

(i.) The elastic limit is reached when the flexion couple

amounts to |Z)2J50.

(ii.) The maximum strength to resist flexion is D2BC.

(Hi.) On removal of the couple the tension of fibres distant

y from the original neutral plane is B = — C(l — 3y/2D), the axis

of y being taken as in §§ 343-349. Thus the stress vanishes at

distances ± §D from the original neutral plane.

(iv.) If the beam be bent again in the same direction, its

strength is given by (ii.).

(v.) If it be bent in the opposite direction, its strength will

be \D2BO, or one third of the former.

We see therefore that in the case of flexion, as in that of

torsion, the apparent strength of a bar, even of the most regular
kind of material that we can imagine, depends chiefly upon the
relation of the method of testing to the processes to which the
bar may have been previously subjected.

Strain-Reversal (Nachwirkung). This phenomenon is

described in this place because it appears most prominently, and
was first observed, in connection with torsional strains. It is,
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in all probability an invariable accompaniment of all

.strains which approach or surpass the elastic limits of the body.

The following account is extracted from ProlTait's " Properties
•-".. The phenomenon is of purely physical

it, and no satisfactory explanation »>f it has yet been
advan All this part of onr Bubject is still wry imperfectly

• 1 <.iit. . . . There is no doubt that all elastic recovery in

solids is gradual, so that, for instance, in . . . torsion vibra-

. . . . even when there is no Bensible viscous resistance,

nt <>i" tl. not coincide with the original

untwisted position <»t* tin- wire. It is always shifted towards the

lide to which torsion was applied, and to a greater extent tin*

wire baa been kepi twisted before being allowed to

vibrate. With every vibration, however, it creeps slowly back

towards the original undisturbed position, but usually cornea to

phenomena are seen in a

form \\ I use w tth oscillation. Tin

suppose the wire t«» be kept twisted through DO" to the

right tor six noun, then for lialt* an 1 to the leftj and be

jo gradually is no oscillation. When it is

gradually undoing
I the m then stops, and twists

s ill n rds the left, thus undoing thequasi-

I
innanent effect of the earlier I rhus the behaviour of Buch

a wire, strictly speaking one,depending
b it were upon it- whole previous though of course the

t ace left I aeni is less marked as tin- date

that stage is moi I bis subj attractedkthe nam.- KlartfacJie

t Dumei arches by

leden etc"

A sketch od this peculiar action is

ten it "tk.



458 PLATES AND SHELLS. [384.

CHAPTER VIII.

PLATES AND SHELLS.

Introductory.

384.] Definitions. The term Plate will be used in this

Chapter to denote a body cut from a right cylinder or right prism

of any form by two (necessarily parallel) normal sections. These

sections form the Faces of the Plate, while the intercepted

portion of the original bounding surface of the prism forms the

Edge or Edges of the Plate.

The Thickness of the Plate is the normal distance between

its faces. A Thin Plate is one whose thickness is a small

quantity of the first order compared with its least transverse

dimension.

A plane drawn parallel to either face, and equidistant from
both, will be called the Median Plane, and the section of the

plate by this plane its Median Surface. The centre of gravity

of this section is the Centre of the Plate. The section of the

plate by any plane perpendicular to its faces is called a Normal
Surface. The straight line drawn through the Centre, perpen-

dicular to the faces, is the Normal Axis."

The form of the plate is determined by that of the prism from
which it is cut :—thus a Circular Plate is derived from a right

circular cylinder, a Square Plate from a right prism of square

section, and so on.

A Closed Shell is a body contained by two surfaces belong-

ing to one of a set of three orthogonal families; the surfaces

being each of one sheet, and one of them entirely enclosing the

other : e.g.—a Closed Spherical Shell is contained between two
complete spherical surfaces, one of which entirely encloses the

other, but which may or may not be concentric.

An Open Shell has for its faces two surfaces of one family,

while its edges are formed by surfaces of one or both of the

remaining families of an orthogonal system.
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In a Thin Shell the thickness—here measured by the length
of arc of the orthogonal curve intercepted between the faces of

i small quantity of the first order compared with
it^ least superficial dimension

5.1 The Class of Strains to be investigated. Exclu-
sion of

^
Surface Tractions on the Faces of the Plate or

Shell. Throughout the present Chapter, plates and shells will

be mi; to tli«' action ox Surface Tractions on their
'</, with or without the accompaniment <>t* Impr

I will in any I to act air.

: r
-

] \r plate or shelL
..1 shells will h.- considered a- performing vibrato ds

uiol sed forces only.

i Plats qf Finite
Thicknes8

1
i : y Surfacm

Tr MTUEh To ITS IX hi I:

EVERYWHERE PARA

| Statement of the Problem. Taking the origin at

t )«• and the Norma] s, the boundary con-
< ir T must be

with th- lition xr+i*5"»0 over the whole
< f the edgf re parallel to < ':. the
i it component I involved in the actual

i! entirely

• assumption * that

5 a r a

rougl it the Bubstance of th-

I then be satisfied identically

I

j ls<» will th.- third of the general » luilibrium [i 103)

and it onTj ine bhe aeral

that will satisfy th.- tii-t and second of

t ies. .1 a9 (1) above, throughout th.- plai

leqo
7] Solution of the Problem. Substituting bom (1)

'dy "dz dz 'dx

•4«e +5H (3)

It in .") of Aiti.l.- W>, page 388.
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to be satisfied concurrently with the first two of the general

equations, viz. :

—

'd /'du By ?)w\
, ,-, » \_« r,\

4^ +^ +w +(1 -v)v
^°l

(4)

Differentiating (.3) and (4) as to z, and eliminating u and v by
means of (2), we obtain

9^
--try2M> ==

3 r^w
_-(1- o-)y2w ==

dy[_dz2
'-(1- <r)\/2w ==

(5)

Again, differentiating the first of equations (4) as to x and the

second as to y, and eliminating du/dx+ dv/dy from the sum of the

equations thus formed by means of (3), there results

(dx2 dy2) dz
(6)

(7)

From (5) and (6) we deduce

dx\dz2
) 3v/\cteV dz\dz2

) '

whence -.-., = C
ozz

or ^ =0« + «, (8)

where C is a constant, and o> a function of x and y, which by (6)

must satisfy

^ +^ = (9)
dx2 dy2 W

Integrating (8) again, we may write

w = \Cz2 + z(o + x + JO^as3 + trr
22/

2 + 2&
3
xy),

where ^ is a second function of x and y, and ©rv gj
2 , gt

3
are con-

stants. The last term is introduced on purpose to simplify the

equation of condition satisfied by x ' on substituting in the first

of equations (5), we see that, if we make (7=o-(ct
1
+ ct

2)/(1
— cr),

we shall have simply

2>x2 'dy2
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~,V^p+\ (11)

prbile equatioi

<»r on integration

•'- ,-

(12)

n. I v only, Substitution from
(li) and

(l-«r)-+^ )

.(14)

-1 the equati ndition to bv satisfied by <;> and v// are

en found from 4) to be

"-<Mv +
"-<(^*)-°l

(S*3H->KMH
It will be found, on diff og the fl [nations

I
I I

a to ./. aii«l t
;

I adding the results, that the
\ In. identically. Thus we
n iy eliminate m bom <ii and (12) by means of (Id), and the

c< mplete and most gei ition of tli.- proposed problem will

li all\ i by

I )fand y which satisfy ( 10)

l [
i

ally.

Al from equations (3) of : 259 thai

P-tfs + tf/ 3(1 +<r).

,.(!«
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P =

Consequently the component stresses will be

1 +o-L )]'dxdy ' *\d% 'dyj 2(1 - o-) SscSyycte '

3?/;

Bearing in mind that the limiting values of z at the two
faces are equal and of opposite algebraical signs, it is evident

that the terms in the expressions (15) for the displacements
depending upon &v sx

2 ,
&

B , x are due solely to couples applied to

the edges in planes parallel to the Normal Axis, while the terms
depending upon and i/r are due to tensions and thrusts in direc-

tions parallel to the faces, or to couples in planes perpendicular to

the Normal Axis.

Flexion by Couples only.

388.] Case of Uniform Flexion of the Median Surface.
If in equations (15) we annul all the terms but those involving
the constant coefficients &v £?

2 ,
ct

3 , they reduce to

u~— VS^yz - V5
Y
zx \

v=-TX
2
yz-T3

z
zx I

2(1--)

« = 0, b

tt
2
z, g

0, c = 2& z I

and consequently

P- q(G>
1
+ <rT3

2
)z

l-u-2

Q- 0(^ + 0-^)3

I-0-2

u=
l + o-

08)

.(19)

389.] Form of the Median Surface. The origin being at

the centre of the plate, and z being zero throughout the Median
Surface, the form into which this surface is strained is represented

f(JV2 + W
22
/2 + 2cr

s*y), (20)
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bo that it always I the plant- of xy at the origin. With
eertain limitations as t^ the magnitude of the strain, this is a

LTOUghout, /.''., a surface such
that the curvatures of all parallel normal sections* are equal
For 1 be any point in a normal section making an

+£ //'+ >/< : +p be an adjacent point

in the same section. Then

= ((TV,x' + T3.
d
y') + >)(&<?' ^ CT

2
y')

£ = rcos0, »/ = rsi

iat { = r[(CTjx' + Cf
3
y')cos + (CT^' + G7

2
y')sin 0]

eo68 + C7 ,s 0)

+ J2?r* (say).

Then, by the "r.linary formula, the cv of the Bection at

(x' y ntly, it* Qifl -train be BO

limited tl; re infinitely small through-
ou (he limit curvature will be

©j 'os
20-r tfcosfl; and aly with ft

Aasumii to hold, the curvature of any
n< mal se<'ti<<: which the Median Surf*
th p] be put ii nil

- GTj)coe 20 + O

Tl 3 1- into

(i.) a cylii in all aorma] parallel

~._. in all aorma]
M- parallel t

(ii) ^i + ^j) of all aorma] sections

in any direction, together with a cylindrical curvature .'<",— ~,)

of normal sections paralli and an equal and oppo
cy indrical cm i all normal sections parallel

an 12. T ! t<» form

an
The term invoh cylindrical curvatan

of all normal - ctions parallel to tl E the positive

nth ipeakinp, thii

. in an infinitely

I Median Surface arc infinitely

mIIv idrlitic.il.

Tli' nrhen tin- radios <>f

direotion "f the
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angle between zx and yz, and an equal and opposite cylindrical

curvature —&
s
of all normal sections parallel to the other bisector.

This term therefore also represents an anticlastic system of

amount £T
3

.

The most general mode of uniform curvature may therefore

be analysed into a spherical or synclastic system and two anti-

clastic systems.

390.] Transformation to the Principal Axes of the
Strain. If the tangents to the lines of curvature of the strained

Median Surface at its centre be taken for axes of x and y, the

Indicatrix* of the curvature will be referred to its principal

axes, and the surface will take the form

z' =±(^ + 11^) (21)

With these axes of reference, equations (17), (18), (19) reduce to

u= - U-^zx, v = - H.-yyz \

v+*y>+*&£R (22)w = j(n,
1(1-0-)

J

e--Uz f<m-T£m <y
--

(r
(
n

i
+ n

a)
g

a=b=c=0
J

P- _9(n i + °-n
2)* Q - _ 7(n2

+ °-ni)^ u=0; (24)
1 — <T- 1 - (7

2

so that the shear disappears, and the new axes of x and y are

the principal axes of the strain.

It is obvious that the Median Surface is a Neutral Plane

(§ 347), i.e., it simply suffers warping without strain of any kind.

The analysis of § 31-7 will sufficiently explain the nature of

the strain.

391.] The Flexion Oouples.f Returning to the arbitrarily

directed axes Ox, Oy of § 388, the components of the stress, at

any point (x, y, z), across a Normal Surface of the plate the

perpendicular on which from the Centre makes an angle with

Ox, are

™ _ qz\ {&
1
+ o-£T

2
)cos 6 + (1 - <r)CT

3
sin 6~]\

l ~ a
'
2

~l
(2 5)

r - - ?
Z
[(
Z3

2 + °"CT
i)
sin + - o-)gt

3
cos 0] 1

1-0-2"" J

* Frost's Solid Geometry, Article 382.

t The formulae of this Article are proved synthetically in a paper by Mr.
R. K. Webb, Messenger of Mathematics, vol. XI.
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grating F, h from ~= + ^ — Jr (where T is

lickrteefl of the plate), we see that the total stress action
a any Length of a Normal Surface of the plate reduces to a

couple, the componenta of which—per unit length of the Surface,

trod parallel to the Faces—boat axes parallel to Ox and
Uy, in the standard directions are

qr\(rs.
2 + o-cr^sin 6 + (1 - o-)GT

3
cos 6] *^W "I

- f(CT
1

-I- crCT
g
)oo8 6 4 (1 - <r)CT

3
sin 6} I

* '

"li'(l -<r*) ^

I give a Flexion Couple proper, in a plane perpendicular to

Normal Surface and parallel to 0z
t
of amount

1 + <r)(Or
1
+ G7

2 ) + (1 - <r)[{Z3
x
- G7

3
)c08 2d + 2CJ

3
8U1 20]} ....(27)

per unit length, and a OOUpk in the plan.' of the Normal Surface,

mount

[(or
1
-O

I
)sin20 + 2ST,co«2fl] (28)

pe unit length (compare § 352). The former couple consists of

h > parts, doe res] y to synclastie and antielastio flexion:

th latt.r i alone. The directions of

th se Normal Surfaces across which the tlexion couple is a max-
in mi or a minimum are groan

tan 20 = 25i_, (29)

an I for Surfaces in these din d eonple vanishes.

pTl «e are of o the principal axes of the

at i
'.in. y u- deduced directly fro 389,890 i-ythepro-

- of th.- [ndicatri

I' rite

« s ^ ,g, ^ ... (30)Ul -<r)' 12(1 + <r/
V

'

tht expre- flexion eonple proper may be written

0. J(cr
l
+ CJ

2 ) + a.[i(cy1
-CT

2
)co8 2d + CJ

38in2^J (31)

the curvature of "fibres" of the

•
. lynclastk flexion of the plate, and the

eoe Be i is the curvature of fibres of th.- Median Surface

per >endicular to T mal Surface across which the tlexion

con .1 the plane of the couple) due to anti-

2a
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clastic flexion of the plate. Thus, with a notation analogous to

that of § 349, and a may be termed Coefficients of Synclastic
and Anticlastic Flexion respectively.* If we write

the components (26) of the couple per unit length across any
Normal Surface perpendicular to Ox will be P

3
and —P

l5
while

those of the couple per unit length across Normal Surfaces
perpendicular to Oy will be P

2
and —P

3
: all being reckoned in

the standard directions. The flexion couple proper (31), across

any Normal Surface, is

i(P1 + P2 ) + J(P1 -P2
)cos2^ + Ps

8iii2^ (33)

per unit length. Equation (29) may be written in the equivalent
form

tan 26=
2Jj (34)rl" r2

392.] The Potential Energy. By equation (20) of § 199
we have

JT= \fff{Fe + Qf+ Uc)dxdydz

=dftp*1 +^ + 2<T^'2
+ 2(1 "vWi

\

^ gl ' I (35)
=
2i(f^)

[(CTl +^ ~ 2(1 " <r)("J^2 "^)]
J

where Jt is the area of the unstrained Median Surface. The
latter form exhibits W in terms of the Invariants of the Indi-

catrix, and we may deduce from this, or directly from § 390, that

w=
2i<ri)[(ni + u*>'

2 ' 2(1 "^^A
"S^^W^*1™ J

^
where I^ and IT2 are the principal curvatures.

If SW be the increase of energy due to a small increment of

each of the curvatures,

STT= ?£J^ [(©! + o&jtoSi + (w
2
+ 0-^)8^ + 2(1 -o-)BT

88cTs]

= P1
8c7

1
+ P2

8BT
2 + 2P8

&ar
3 ...(37)

* These coefficients, since they occur in expressions for couples per unit

length of surface, are one linear dimension below those of Article 349.
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If therefore tl juration of the strained Median Section be
expressed in terms of any number of independent coordinates, of
wbicl . the resists!] ed to an increase of £ will be

ir_p :•-, p -
.,p -

mpar

13.] Case of Non-uniform Anticlastic Flexion. The
pending upon \ are

«= -~:A *<'= -*~x , w \ (39)
Ox

Mm. it* we analyse this strain by the method

be both

infinitely small within the limits of the plate, the curvature of

any normal section of I Median Surface of the plate

is given by

*©-30— +^'
wh ch systems of anticlastic cnrvatnre Neither
of hese can \ for any position of the axes of x an<l /, onless

jv i. a qua motion of these coordinates, in which case the

fle> ion is uni; 1 the strain is im-hnled in the type just

<on Couj

It] The Remaining Terms. The terms depending upon

I*

-a id vV in the general eg rain which is

< solely to tensions and thrusts ;ij»|ilifi r«»un<l tli«-
I Fthe

i j in I the baces, and couples in planes

r endicu] e Normal
t leaves the Median Surface absolutely unchanged, and pro-

osai ore in all parallel surfaces, proportional to
'. difltanr ;'ace.

Vc shall noi fui n ourselves with this strain.
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Equilibrium of a Thin Plate under Impressed Forces
throughout its mass, and surface tractions applied to

its edges, such that the component forces parallel to

the faces on any portion of the plate bounded by
Normal Surfaces are either evanescent or reducible to

couples.

395.] Preliminary. The results obtained in §§ 388-392 for

the case of uniform flexion of a plate of any thickness by surface

tractions applied to its edges in directions parallel to its faces, and
everywhere reducible to couples or evanescent, are extended to

the case of a thin plate subject to impressed forces and surface

tractions the components of which parallel to the faces satisfy this

condition, by a procedure very much like that of § 360. We
assume in fact that the stress due to the applied couples will be

everywhere of the form of that just discussed, only that the

curvatures will vary from point to point of the Median Surface,

and that the applied forces (necessarily perpendicular to the faces)

on any portion of the plate bounded by normal surfaces will intro-

duce shearing stresses in the same direction across those surfaces.

The plate may be considered geometrically as coincident with its

Median Surface.

396.] Equations of Equilibrium.* If X, Y, Z be the

components of the impressed force per unit mass at (x, y, z),

the restriction imposed upon the form of the resultant force

acting on any part of the plate bounded by Normal Surfaces

requires that

Xdz = I Ydz = Q, (40)

Let I Zdz = rZ, (41)

-It

and let the components of the impressed couple on a rectangular

element rdxdy of the plate, about axes through its centre(#, y, 0)

parallel to Ox and Oy, be pr^dxdy, prfficlxdy. The sole im-
pressed force on the element is of course prZdxdy. acting through
its centre parallel to Oz.

Let A, B he the shearing forces per unit length at (x, y. 0)

across Normal Surfaces drawn through that point perpendic-

ular to Ox, Oy respectively. The components of the flexion

* This and the two following articles are taken, with merely a change of

notation, from Thomson and Tait's Natural Philosophy, Articles 644-648.
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pie at >. ys 0) acroafl these surfaces, per unit length, are by
P, ami -Pr P., ami -P.. respectively. Hence the equations

quiiibrium are easily Been to be

>
,T ! * + (p3 +V^jh - (p, - i^-3

V.v

(p
)

)/.-(r-^)^=o

'.'/ - (Pi + H'~W + (P, - Ur V\/,,

(p«+^)*+(Prl«|^o
or, on siiiiplit

S'* ctf a n

(42)

P
" '-^ = °

It may be shown, aa in § 389, that if x&w/dx*+ydhi'ft^B l a&w/dxdy+ydhv/dy* are intinit.lv small within tin' limits of
th. pi

1
dr*' ' 3**' s dxdy

Sul ;2),

i ,( ) ^v + ^)' P3=vv'" t,

wh in ( 1 +or)a = (l — <rK\ <<jtiati may be written

.(45)

3,1 3/i
+ ^2 -

dx 3y

3/3*10 3*mA . „,.*»-
1 + <r 3j:\3bc* 3}f I

.(45)
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On elimination of A and B between these three equations,

we obtain

(S^H-^^-f) *
a linear partial differential equation of the fourth order, to be
satisfied by w in all cases of equilibrium under strain of the

kind supposed.

397.] The Boundary Conditions. Poisson's three bound-
ary conditions are easily obtained by considering the equilibrium

of a triangular element of the plate, bounded by planes of length

dx, dy parallel to zx, yz and an element of the edge of length ds.

Let the outward normal to ds make an angle 6 with Ox ; let H
be the surface traction on the edge parallel to Oz, and let

/Hdz = rh

so that r\\ds is the shearing force on the element rds of edge.

Let "Pds and qcfe be the couples on the element in the plane

perpendicular to it and in its own plane. Then, on the assump-
tion that the force and couples acting across the edge must be of
the same form as on any Normal Surface within the substance of
the plate, we have first

rhds = Ady + Bdx

or t\\ = A cos 6+ Z> sin 9
; (47)

and further by (33), (28) and (32)

P=KPi + P2) + J(Pi-P2) cos2 ^ + P3 sm2(9
\ (

48
)

q = i(P2 -P1
)am26-i-P

3
cos2e } (49)

These are Poisson's three conditions. Kirchhoff, however, has

shown that the assumption involved in them (expressed in italics

above) is not necessarily fulfilled, so that they express too much.
The proof of this statement depends upon the fact (to be proved
in the next Article) that if we apply, all round the edge of the

plate, a shearing force parallel to Oz of amount t(8) - It), per unit

length and couple round axes everywhere parallel to the Median
Surface and perpendicular to the edge, of amount (Q - q) per unit

length, such that

T&}-h)-|(Q-q) (50)
as

no modification of the strain whatever will be produced, except at

points infinitely near the edge.
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Thus we may suppose t«I) to be the shearing force per unit
lengUl and Q the couple per unit length in the tangent plane to

the ed at each point* where S) and Q may be
n (50), h and q being given

by (47) and 49).

KHminating h and q by means of (47) and (49), and A and B
fay means of (42) from (60), we obtain

$ sin - Jtt cos $)] -
rfQ + 5 , p p

t

) S i n -_m + P cos 20]

r p
SW8*»- -

Equations (48) and (51) are KirchhofFs hop boundary conditions.

If th< kermining the values ol 10 at the edge,
P, Q and 3) may be treated M entirely arbitrary couples and
force applied to toe edge.

I

Proof of KirchhoflTs Boundary Theorem. "The
prop<' last Article *ia equivalent to this:

—

tl at a cei iril.uti' rmal* shearing force on the

b unding edgi plate may be determined which shall

]• odnce the same q distribution of couples round
Lcular to the Norma] Surface supposed

t- cm the •••!_ t in

-pOsi ide "1" the middle

li ie"f- and parallel to it. eonstituting the Bupposed distribution of

c aple, l inderstood that the forces are actually die-

t buted along their lines of 1 ad not^ai in the abstract

tl -nan lied indifferently al any points

the ill. though
e cud in the neighboui lines, must differ from

p int to point along I ostitute any other than a

u liform distribution may suppose the

f rce> in the opposite directions to benoi oonfined to two lines,

1 shown in the diagram, but to be diffused over the two halves

, tl. f it> middle line ;
<*>n<l further, the

at ioui ,ual infinitely nuall breadths at different

.1 ,tan< . the middle line mu |.ortional to these dis-

ta ices" [see funnula- «

:

"if the riven distribution of

•'Let now the whole edge be divided Into infinitely small

re :tangles, Mich as ABCD in by lines drawn per-

*/.<., |»;u.ill»-l to tl:-- \"ini.il AXM of tli<- p]

tTh»- In it i<\ tli.- Median Surface of the plate.
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pendicularly across it.* In one of these rectangles apply a
balancing system of couples consisting of a diffused couple equal,

and opposite to the part of the given distribution of couple
belonging to the area of the rectangle, and a couple of single

forces in the lines AD, GB, of equal and opposite moment. This
balancing system obviously cannot cause any sensible disturb-

ance (stress or strain) in the plate, except within a distance

comparable with the sides of the rectangle ; and, therefore, when
the same thing is done in all the rectangles into which the edge
is divided, the plate is only disturbed to an infinitely small

distance from the edge inwards all round. But the given dis-

tribution of couple is thus removed (being directly balanced by
a system of diffused force equal and opposite everywhere to that

constituting it), and there remains only the set of forces applied
in the cross lines. Of these there are two in each cross line,

derived from the operations performed in the two rectangles of

which it is a common side, and their difference alone remains

Pig.61

effective. Thus we see that if the given distribution of couple
be uniform along the edge, it may be removed without disturbing
the condition of the 'plate except infinitely near the edge."

Otherwise, "a distribution of couple on the edge of a plate,

round axes everywhere in the plane of the plate (i.e., in the plane
of the unstrained Median Surface), of any given amount per
unit of length of the edge, may be removed, and, instead, a dis-

tribution offorce perpendicular to the plate, equal in amount
per unit length of the edge, to the rate of variation per unit
length of the amount of the couple, without altering the flexion

of the plate as a whole, or producing any disturbance in its

* To the unstrained Median Surface.



PLATES AND SHELLS, 47o

the edge." For, in Figure
(Jl. U-t AB = 'I.<. the arc a being measured from A towards B.
Then, q-Q being the Amount of the given couple per unit

length, the Amount of it on the rectangle ABCD is (q — Q)ds.
the Eotreea introduced along AD, CB to form the balancing
D must be of Amount q-Q. Similarly, the amount of the

- introduced along BO and the next transverse line is

q-Q-f '/>•
, (q-Q\ and finally we are left with a force of

Amount ds—-. along BO, and a similar force in the negative

kion of the Norma] Axi- along every other such transverse
And obviously we may substitute for forces <>t" amount

—
3 ds at intinit.-Minal int. rvals ds a continuous distribution

of force of amount - /. Per unit length round the whole

Without causing disturbance in the plate except at infinitely

small dist.- !_:-•. Hence, finally, we nave the result

stited in equation I BO) i I

wm .\\h Xormal Vibrations of Tsut Vlatms
Si BJi i:\t.\l. TMPMM8SBD FOAOM,

B T I >M /.»//'/.*/>> At Tin

T. RATH l> BY /// )• Million.

399.] The Total Energy. The second of kh< dons
3 .) for the potential energy of a plAte of area Jl subjected to

i iform flexion, may l>e written by meant and ( I-'! iii

\\ • form

»'-':'v'(3*$)"-[Sv-(S;;)]:
'1 • flexion of an element may be considered uniform

so that we deduce for the entire

u .tti.-il energy of a
|

to [ton-uniform flexion

t2 = &/** + &/&•
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If the plate be executing normal vibrations, the entire kinetic
energy will be

%, = \prffwHxdy, (54)

and the total energy of the plate will of course be W+ %.

400.] The Variational Equation of Motion, and the
Boundary Conditions. Let us suppose the plate to be either

in equilibrium, or executing normal vibrations freely or under
normal forces only, and that its edges are either free or " sup-
ported " or " clamped " (§ 366) all round. In the most general

case, the small amount of work done in producing the incre-

ment Sw of normal displacement will be, with the notation of

§§ 396-397,

/TprZSwdxdy + f r/rl) -^W + P^"|«fo,

where rds is the element of edge, and dv the element of outward
drawn normal to it. [The work done by the couple Q, as couple,

that is in producing flexion about axes perpendicular to the

edge, is — / Q-^— ds, which, since s is necessarily a closed curve,

vanishes identically. This is the analytical justification of Kirch-
horT's principle.] Thus the variational equation of motion is

-/[^-fh+p^>=° «
Taking the first term separately, and making use of the

general theorem

Jf{4>
V^-^H)dzdy=J'( r̂ 4^ds, (56)

where the double integral is taken over the entire area of the

plate, and the single integral round the whole of its boundary
edge, we have

Jj^{^
2 ui)2dxdy = 2/jy2w8^2wdxdy

Again, the second term of (55), on being integrated twice by
parts, gives
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J
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#{£S-(S)]
JJ L u- a? ^ v 3^ d^/J >'

7 (\ "dxdypdx

(d&tJD a d2to \Sdw ) j

+(-"B-^X-"^w: -'):'

\,1 -am.- meaning aa in 597. Integrating the first

t3rm again by parte, and 1 rated portion (a

I »-iug nece> to be integrated

1 ecessarily singi* valu- \.

/I .[
;i-«-®:-S) +<—--^>

I inallj esulta ol ;

58), multiplying them
} f the r coefficient* in (55 , and adding the remaining
t rii iplete variational equation is

<~ ]

I J 1 -J/''.'

Tl .us the general equation 1 Hon, to be satisfied at .-very

p< int of the plat

(0 0, (GO)
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while the two boundary conditions are

<^-^|£]+^-§).}*-0 (61)

and

i (0 + a)y2^ - 2arsin2^ + cos2^̂
2

-2sin0cos0^1-2pt^ = O (62)
oxoy_\ ) ov v '

If the edge is clamped all round we have Siv = 0, Sdw/dr =
everywhere, and (61) and (62) are necessarily satisfied.

If the edge is only supported Siv= Q, and we must have

(0 + a)V2 «> - 2arsin2^ + cos2^ - 2 sin cos j^-1 = 2P,

or

(0 - 3)v
2
*/; + 2afcos2^ + sin2^ + 2 sin 6 cos ^J^-l = 2P . . . (63)

If the edge is free, we must have, in addition to (63),

= 2(§- T«) <
64

>

It is easy to show that, on making |C, Jtt, zero, and writing

B- w for B, equations (46), (48), and (51) reduce to (60), (63) and

(64) respectively.

401.] Transformation to Conjugate Cylindrical Coor-
dinates. Let £ and rj be conjugate functions of x and y, and let

the form of the edge be such that it can be represented by the

equation £= constant It is obvious that the equations of the

last Article will be much more readily applicable if they can be

transformed from x and y to { and rj. It is an excellent example
of the methods of Chapter V. to effect this transformation ah

initio.

The principal curvatures Tip LT2 of any surface <fr(x
f y, z) =

are the roots of the quadratic *

h4n2 ± hll[^ 2a + B2b + C2c + 2BCa + WAV + 2ABc' - hV*]
+ A 2(bc - a'2) + B2(ca - b'

2
) + C2(ab - c'

2
)

+ '2BC(b'c' - aa') + 2GA(c'a' - bb') + 2AB(a'b' - cc') = (65)

* Frost's Solid Geometry, Article 60S.
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where 4-84 -
, *'-&$flyfa , and

Putting $ <-*+Wi and transforming (65) from
>,. :» by fehe formula SO, 231, 245, we obtain

»,»,-„, + „ t(- ;;)

I

^\3»to

d i < Hi ) i )]
etitating in 35) ire obtain an expression for W analogous

&1 the elfin. -nt of being <

j
and the arbitrary

! of this must be equated to

Onini ran^in^ terms, we have finally

t ie general •••nation OK vibration*

(e + a)vV*° + V(«'-B) = (67)

\ hei

t gethrr with the boundary eondtti

[ * +i®i?-ss)]--;p <«•>

l»e satistii 1 round a supported edge, and
b th round free edge.

iinjiles OQ Normal Yil-rat the Btudeni is

r< terred to Lord Rayl- und,*' < 'haptrr X., and

f( f exam] nm t<> Thomson and Taitfl "Natural

P ilosoph; all here confine our-

sc i \s >le of the latter ela hii.it the

c< ivenience of curvilin.-ar coordinates in I symmetrical

* There i« aj»| loal doubli from the »eoond term of

M bol with V*logA frbich for all conjugate
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Circular Plate Symmetrically loaded and supported.

402.] The General Expression for the Displacement.
A circular plate of radius G is placed so that its unstrained plane

is horizontal, and loaded and supported in a perfectly symmetri-
cal manner about its centre : required the general expression for

the vertical downward displacement of any point.

If Oz be directed vertically downwards through the centre it

is evident that the load, and the boundary forces and couples

(if any) must be functions of r only (§ 244). Thus taking the

conjugate coordinates of Example 4 (i), page 258,

f = log(r/tf), V = 6, (70)

all the quantities involved will be independent of r\. The general

equation (67) of equilibrium thus reduces to

,
2
d2

j crfPw _ 2pr%

d£2 ' d? .* + *'

or, since h = l/r and d/dg= r . d/dr
y

1 £r£ 1 d
r
dw_ 2PT% ,

r dr dr r dr dr + a

Integrating four times we have

te f± frdr /"* f'rZdr
9/

W =
Q

+ \C'r\\ogr-l) + \C"rZ + C'"\ogr+C"", (72)

where G\ C", G"\ G"" are arbitrary constants. Since however it

is clear from symmetry that the tangent plane to the strained

plate at the centre will be horizontal, we must put

C"" = (73)

403.] The Boundary Conditions. Equations (70) and

(71) reduce in this case to

p-[/V;*-<^/V?/"^]oo ooo
+ iC'(0log(7+Ja) + isC" (74)

i-^y^-fcjge (75)

404.] Plate under Gravity, supported by its Centre
only. In this case % = g, and w = when r = ; also, since the

edge is free, P=0, 1 = 0. Thus C"" = 0, (7= - g/orC2/(s+ a),

C ,, = g/
oTO2[loga-iH-4a/0]/(0+ a), and finally

*(«~t- c*H-*^)\ (76)
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SORMAl Vurnat; I'hix Shells cxher Xurma l Forces.

405.] Formation of the Variational Equation of
Motion. We now advance from the consideration of thin plates

to that of thin shells, subject only to normal impressed forces

hells] to surface tractions applied to the edges only,

and inch that the component tensions in she tangent plane to the
1 at each point of its edg to couples.

A; iheJl, as defin 884, may be taken of such
small superficial dimensions that in its natural state it is practi-

cally plane, while the change of cu produced in it by the

>tr.iiu is practically uniform. Tims, || the principal curvatures

nt of the shell be Increased bom II,, II.,. to I1 P II... we
the assumptions (/.) that the couples per

unit length across the principal normal surfaces at any point of a
thin sheD

,
<
77

>

P- = l2(fr., ->'.)]J

ierc thickness of 11 eU &u /><>/,,/. ami (ii. that

tl 3 potential energy, per unit of onatrainea superficial area of

Since the thickness t is, fan general, a function of the position

the point on the plate, H ange our notation

With th< i of ( Jhaptet V.,

the surfao plate I ented by t~
-= ( '. £=V+k>

ere * is a si

i

itrty of the ti parison with
range of value of tj and fover the surfaces of the plate (§ 8

Pthe thickness t at the point (C, «, f) will be (J 230)

» *fl (™)

laving of course the t assumes when £=C, ami being

sonsequci action of >i and f Thus if we write

a id a will be absolute coi i have, by equations

iO of § 232,

• " " (81)
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where we again are to make £= after differentiation, and (78)
may now be written

-ZJPi-PnXBi-Fd (82)

The vibrations being supposed normal, r\ and f will remain
constant for each point, and the only effect of the strain will be

to change the value of £ from G to (7+ a, where a is a small

quantity of the first order, and in general a function of r\ and £
The normal velocity at time t will be (§ 237) a/hv and the kinetic

energy per unit of unstrained superficial area will be pKG?l%h^.

Thus, the element of surface (§ 230) being dr]dg/h
2
h
3 , if we write

for the normal impressed force per unit area

TJ *%-"$/** <
83

)

o

the variational equation of motion will be

Jf{W

+

am + n 2
- jut, -psf - a8(ii, - pjp* - F?>

where kW/K is the shearing force per unit length applied to the

edge in a direction perpendicular to the faces, P is the couple

per unit length in the plane parallel to this force and perpen-

dicular to the edge (flexion couple), and Q is the couple per unit

length in the tangent plane to the edge. In an edge formed by
a portion of an y\ surface ds = d£/h

3 , dv = drj/h
2 , and in an edge

formed by a portion of a f surface ds= drj/h
2, dv = dg/h

s .

In default of general formulae, analogous to (66), giving the

sum and product of the increments of the principal curvatures in

terms of a and its derivatives as to r\ and £ the equation of motion
and boundary conditions cannot be obtained in general terms,

but each case must be solved separately from this point.

406.] Case in which the surfaces of the shell remain
always members of the family to which they initially

belong.* If we suppose the vibration to be of this kind, a will

* Examples:— (*.) a shell bounded by concentric spheres performing nor-

mal vibrations symmetrical about the centre, (u.) an ellipsoidal shell with
confocal surfaces, vibrating normally so that the surfaces remain confocal

with their initial forms, etc.
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arse be independent of >/ and f (8 24-21 and we shall have
aim]

",-.- •

at equation (84) reduces to

(85)

+

-<#;v

The boundary condition to be satisfied, in all casea in which
the aaanmed node of vibration does not require the edge to

remain fixed, ifl

«s g -p5=° <
s,'">

'I'll.- p&riodi ible iibrai this kind are independent
(»• the fmpreeead tbroea (unleaa these are periodic), and can be

a sertaineo when the t the shell arc given.

107.] A spherical shell of radius and small uniform

j
tl ickness t, performs free radial vibrations symmetrical
a »out a diameter, the amplitude of the displacement
b ing proportional to a zonal harmonic. Required the

p riodic time of the vibration.* be the axis of

s\ hum try. radial displacement, Thru, with the

independent of a* and equation (84) of

I § • Or. reduo

[/'{tta +aWn^M 1,-1 r }i \\,-} C)

f>-

But if /' be the pou on the strained shell, and PG
ith* »onnal at /'. i Mini making an an^lc >// with

I 01 . we have OP

".-;££> " ,',.

2 I!
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and

j-r _ 1/, mV 1 d2u
1 ~C\ a) C*W?

Thus, if we write

cot du
dO'

a du ,

cos 6 = p, p— -u = (p,

dp

we shall have

jj 1 1 /A \ 1 rn 2
,d-u du^^

1 /d2u d<f>H pdP 7
tt 1 1 / ± adu , \ 1 / du \ <£n*- jr -Acot0

d0
+urc{pdp-

urc\
and consequently

so that equation (87) may be written

a r * \ ( dn \d2u .d(h

+ pr I ii&udp = 0.

- <\? \ dp

Since 1 — r

p
2 = at both limits, the first line reduces, after

integration by parts, to

while the second line is equal to
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[uati'»n of motion ifl

- 2a
{i[

(I -'<]--'}" +2C^-°-

[f ire now assume that (he displacement ifl ol the form

?<- P,(CO8 0)

P lmotes a Legei have ii = — ru and

(J£o ] i}.--(/-i)a+«H

[iiai;
1 will 1» II

required periodic time 2i

i:\ a m I'll

most gea Problem, consistent

wit the absence of shear, ifl of the form

M !

- • .' -/•').

:. Find the vertical depression under gravity of the centre

>f a uniform circniax plate, wl, fa supported all round by
ni^i<l h< le
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3. If a thin circular plate be supported by its centre so that

the tangent plane there is horizontal, the ratio of the vertical

depression of the edge when the weight is uniformly distributed

over the plate to that when the weight is concentrated uniformly

round the edge is 7+ 3o- : 12 + 4(7.

4. A uniform rectangular board, of length 2L, breadth 2C
and weight W, is hinged all along its four edges to a fixed rigid

horizontal frame. Show that a possible form of equilibrium is

given by

32sLCw « (1 + o-)PtW(L2 - x2)(C2 - y
2
)

the origin being at the centre of the frame, and Ox, Oy being

parallel to the edges.

Find the distribution of couple which must be applied to the

edges to maintain this configuration.

5. A uniform plate of infinite length, of breadth C and
thickness r, is fixed along the middle line of one of its edges,

and is acted on along the opposite edge by a tangential force

perpendicular to the plane of the plate, the resultant magnitude
of which per unit length is rW- Verify that, if the fixed line

be taken for the axis of y, the conditions of equilibrium are

satisfied by the displacements

v =

r^)f{l -cT)(2Cx-x2)z (2 - <r)z* . rVl=

"^L 2 +—6— + Tj

f[^^V(i-^)(¥-1)]
)

6. A spherical shell of radius A, and uniform thickness t,

performs small radial vibrations symmetrical about its centre.

Show that the periodic time is irA^s/'lpT^.

7. A thin shell is contained by two confocal spheroids

of revolution, whose major and minor semi-axes are A, B

;

s/a 2 — k, \/B2— k respectively. If the shell performs small

normal vibrations in such a manner that its surfaces remain

always confocal with their initial forms show that the periodic

time is

SttA 5 JPk\*(3 + 4A2 + 8A4)/30(s + &)C
l

or SttA 3 JPk\*(8 + 4A* + 3A4)/30(s + a)C
2 ,
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ling as the shell i
v. whore \ = B/A and

>-*r)*+(l-2«r)X»+|X'

-(l+5cr)A^:>(l+:.V)^],

t+(l 2or)X»-(y-3tr)X«+(iJ+2cr)A«

1+ */TTXi
log

-[•_>( I i &r)A< - (1 + &r)A« + V As
]

[Employ ttu tioo of j
4<n'>, with the notation of g 251.

Ihe unstrained boi U will be given by 4-=0, £=*.
Cai Philosophical Society, Vol. V.,

pp. (is and 81!



CHAPTER IX.

IMPACT.

408.] Definitions and Fundamental Principles. Under
the general term Impact we include all cases of sudden change
of strain, of sudden application of stress to a body hitherto in its

natural state (such as may be caused by the shock of contact

with another body), and of sudden release from strain of a body
hitherto in equilibrium under stress.

It is of course impossible for any but infinitely great forces

to produce finite strain instantaneously, or in an infinitely short

time, and hence it follows that a finite stress requires a finite

time for its application or removal. We may however suppose
that strains and stresses of such magnitude as we have dealt with
in this work may be applied or removed, by continuous increase

from or decrease to zero, in periods of time quite insignificant in

comparison with the finite times of their subsequent application,

or during which their effects last: and all such cases may be
treated analytically as if stress were applied instantaneously, or

as if it were within the order of magnitudes which we are dis-

cussing from the very moment that its effects begin.

These effects take the form of small straining vibrations, into

the kinetic energy of which is transformed a portion of the

initial energy possessed by the body before the impact—whether
potential energy of strain (as in the case of a body suddenly
released), or kinetic energy of bodily translation (as in the case

of a body suffering collision).

Such rapid applications or removals of stress as we here

suppose will in reality (§§ 21-26) generate local variations of

temperature, and consequently cause dissipation of energy by
conduction of heat, etc. For reasons, however, which have
already been fully discussed in Chapter I., we leave out of

account all disturbances due to changes of temperature, and
we are therefore reduced to the artificial assumption that The
total energy of any system of perfectly elastic (or rigid) bodies

betiveen which impacts take place—reckoned by summing up
for all the bodies of the system (i.) the kinetic energy of each
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-.•I iishitum or rotation ofHie body as
- naU str* ibrations propagated

I (ii.) ti rgy of each due
absolutely constant quantity,

bodies exclusively

to the system. Tnis is the fundamental Principle of

tion of Energ
Of i bb in which improoDod forces act upon all

bf any of the bodies in the system, the work done by or against

them mnsl be taken into account in applying this principle.

.\_ of the impact, in t collision, is the
it of M * impulsively communicated to one of the

colliding bodies and taken from the other during the period of

We shall confine ourselves exclusively to cases <>f direct

collision; in which the colliding bodies move as a whole in

bions, the tact being normal to the

bion of m«-tion. In all Mich CSSeS the impact IS entirely in

tic direction of initial m ad consequently th<> resultant

moment n,,* o)

be zer rther, since the momentum
in the direction of impact lost by one body is gained by the other

(iuvpa irely mutual other results of

>t •••») fi,. tin direction

oj initial mot i fcwo state-

11 mt« express the fundamental Principle of the Conservation of

V omentum
In all eases id ami fixed obeta

oi of release from rigid fixed Bupports, the elastic body retains

ftl s equivalent In Buch cases its

ite of motion maybe called tl of K«|ui\alenl

.\ »ti«»n. or—ii be no translation of the b i whole

oi eqnivaleni vibi In these •

v can only ul princi] rvation of momentum
lirections perpendicular Iii (I

409.] A uniform rod of length L is stretched to a
ui iform extension < and held thus in equilibrium; required

tl > effect of suddenly letting one end go, the other

retaining fixed ously there will be do tendency to

and the displacement of any point in the central

a* s of the rod will therefore be purely longitudinal Taking Q&

The momentum dj muM be token as thealge-

tun <>f tli.- ti lements.
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coincident with this axis, being at the permanently fixed end,

and expressing by w the excess of the distance from of any
point in the axis, at time t from release, over its distance in the

natural state of the bar, w will evidently satisfy the equations
of § 365, so that

p^_9^,

Since t is reckoned from the instant at which motion begins, we
must obtain a solution of (I) which will make w = ez

}
w = 0, when

t = 0, for all values of z from to L ; and we are also to have
w= when = 0, and dw/dz = when z= L, for all values of t.

The form of the solution is clearly

for this satisfies (1) and three of the limiting conditions identically,

and we have now only to determine A-
t
so that

SC* . (2i+l)7rz
. Amu± —-1— = ez,

i=0
2L

for all values of z from to L. Hence we find, by Fourier's

theory, that

A - SLe ("^
1

tt
2 {2i + iys

and consequently

-Sfeg^*fi^Krf^* ,3,

[It may be observed that, when £ = and z = L, this expression
reduces to

?/;

as of course it should.]

The equation expressing the principle of conservation of
energy is

/'{i(l;W}*^».
o

where Jt is the transverse section : or

fm^mv-™' <«>
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This i- easily reduced, <»n substitution from (3), to

-- (2i+l)-y 1 2£ :/.

V I = z^a

which is an identity.

Whenever the time from release is an odd multiple of L Qv
or the time required lor a sound vibration to travel the length of

Dior all valu. ad the rod passes through its

natw Whenever the time ia an even multiple of 2L/QV
v=e:, and the rod passes through it- initial state of strain.

When an odd multiple of -/.[!,. was - ( ; and the
initial Btl tlln Ifl D

The traction on the fixed end of the bar bb

dw _4y^T(-iy_(X4 l)r!.y

'I us b equal to t/e from / = t<> t - A l>.. w hen it suddenly changes
sijn od n equal to -

/ Q, to t = 2W. \, this

c ele being repeated indefinitely in equal periods of time.

lion ?/•/'/; / Rigid Ob&tade.

410.] A Rod of length L moving with velocity U in

t\ e direction of its length, comes into direct collision

v> ith a fixed rigid wall. Required the subsequent motion.
1 iring the whole time thai the rod is in contact with the wall

tl i end U ill be absolutely fixed. Tims If we take

tl it and for origin! and I the rod for Oz, we have
ptsOwbe] to : = /,, and /'=0, W—Q when o =
di ring whole tii; utact. Aiso, since the further end is

fr i«. - all time.

The form of the displacement daring contact with the wall is

ev dent I v

(ft i)n m • iywO.i
1 —2ir

Mn
~2i

foi this BatJsnea all the t 'regoing conditions. The constant
(•«.• fficientfl may be determined by the consideration that at the

in ant of impact
|

point in the body is moving with a

velocity U towards the wail, and consequently, for an onappreci-

ablj interval following that instant every point in the body has
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a velocity U relative to the end 0. Thus we must have w= —U
when £ = for all values of z between and L, including the

limit z = L but excluding the limit z = (where w= 0).

Now the series

= —U from z = to z = 2L, exclusive of both limits, and vanishes

when z = 0. Thus we shall satisfy this condition by making

8ZU 1

or A t =
TT^flj (2i + l) 2

'

and consequently

" =-
=̂0 (2iT[?

Sm4^ Sml
"2L-

1- (0)

The equation of conservation of energy is

\psf
L

{
fl

i

2

(^)

2

+ *»2

}
* - &$xp*

which reduces to the identity

772 -^(2i+l)2

At the instant when t = SX/Qj 10 = throughout, and

. 4U V 1 • ('2i+l)7rzw = Xsr.—^ 8in x—~~^—
7T <&2i + 1 21

ss U throughout.

At that moment therefore the rod is instantaneously in its

natural state, and is moving bodily from the wall with velocity

U. Contact consequently ceases after a period 2L/Q
1
from the

first impact.

Confining ourselves for the present to the period of contact,

we deduce from (5)

'dw 4Uv 1 (2i+l)7rz . ^i+lWfl,*

5T -^2i^l"in^2r~ &in
2L '

_ 4U| V 1 . (2i + 1)^ +^ 1)

X> 1 . (2i+l)7r(z-il,t)
| /fiV
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My, the first of these series = \ir from : + Q^ = to
0+0^= 2Z, and =-\- from »+ft«=-2Z to a + 0^ = 0; also

- {>/ = to z - QJ = 2L, and = - Jtt
from :-<V= -2Z to :-Q/ = 0. Thus, within the limits and

and and 2X/Q, for J, we Bee that:

K t<L/Q
l
thefirsi = Jtt from c=0 to z = L, while

- from : = () to : = L>f and =W from
L.

> U t> I Q I by patting f = L o + f and c = A-:

-
1 22

—
i ax r

:'--= <>/-/, and
/. while the Becond aeries = }x

A. Thus the from : = <) to

-/ Q 1 and - -iL-a A. while the
nd to ;= A

mming up results, it foil

j% TT

. from -gj from :- <> to :=<>/. and

i.) from t- 2 bom I to

from . _/.
I

«£.

wall Buffers uniform com-
III st in in :

ai I tl the two portions adl I

£r m I 1 end with onixonn velocity R, along the rod, is

re ectvd at the free end, and returns with the name velocity,

re; ching tin* wall agai 22 Q when contact

The end in contad with the wall is cU Q
iluration act.

when the rod lea all it ia unstrained,

a; every point ia moving with the initial velocity U rev«

Sir ce no I I on the rod, ita centre of gravity will continue

to now with •

: the kinetic energy due to

t)i. motion oi itre of alone will be equal to its

the impact Hence the kim-tic energy of
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motion of the parts of the rod relatively to its centre of gravity
is zero, and consequently no such motion can take place. The
rod therefore retreats in its initial unstrained condition and with
its initial speed U.

EXAMPLES.

1. Two uniform heavy beams AB, CD, equal in every respect,

are connected by a weightless inelastic string BC ; the beam AB
lies unstrained on a smooth rigid horizontal table, while CD is

suspended at rest under the action of gravity by the string which,

being held at B, passes over a small smooth pulley at the edge of

the table, and in one line with AB produced. Investigate the

motion of the string when set free
;
prove that its tension, after

being instantaneously diminished by one half, remains constant,

and that its velocity receives equal increments at equal intervals.

2. Example 3 on Chapter VII. (page 449) may be treated as

a case of sudden release by the method of § 409.

3. Prove that if we make yi = in equation (80) of § 271 it

will represent the vibrations excited in an infinite plate of thick-

ness I, moving with velocity U, on its median plane being instan-

taneously brought to rest.

4. A uniform elastic bar is suspended vertically by one end,

and to the other is attached a weight W, which is supported so

that the bar is unstrained (the effect of gravity upon it being
neglected). If the weight be suddenly set free, investigate the

motion of the system.

5. Prove that if an elastic bar, of length L, impinges directly

with velocity U on a longer bar, of length pL and the same cross

section, the first bar will be reduced to rest by the impact, while

the second bar will appear to move forward by successive

advances of the ends with velocity U for intervals of time 2L/QV
alternating with intervals of rest of duration 2(p — l)L/Qy

6. If the revolution of the square described in Example 9 on
Chapter VII. (page 451) be suddenly stopped by its sides striking

simultaneously a smooth fixed rigid plane, prove that the dis-

placement at any subsequent time t from the impact will be

given by

A ^j i(o>*-iiy~ \ ^s^XZ/2oJ) cos(U/V2oT) j

C°S l
'
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munition extending to all values of i given by the equa-
tion

IXL , ikL a
t.ui r 4- tanh . =0.

7. A uniform circular disc Lb rotating about an axis through

aire, perpendicular to its plane. It Lb suddenly stopped by
all the part within a concentric circle being rigidly Clamped
Show that the strain at any point ifl a pure shear, and that the

.ill have a tendency to split from the inner circle outwards,

coinmencing at an angle ol 45 with the radius,

- reral practical samples on Impact will be found at the

end of Chapter XVI of Prof CottenlTs "Applied Mechanics;'

which the student is strongly recommended to consult.



CHAPTER X

VISCOSITY.

41 1.] Analytical Expression of the effects of Viscosity.

We have seen in Appendix IV. (pages 175-177) that the effect of

viscosity, in an elastic body undergoing changing shear, is to

introduce a shearing stress depending only upon the rate at

which the shear increases, and, when this rate is small, directly

proportional to it. We have also seen that a mere cubical dilata-

tion or compression does not call any viscous resistance into

play.

Since the elastic shearing stress is simply proportional to the

absolute amount of shear, it is evident that the effect of viscosity

will be taken into account if we replace the elastic shearing

stress 2 by 2H— «j, where v is the modulus of viscosity (page

177). We have seen in §§ 210-213 that the most general small

strain can be resolved into dilatation and shears, and that, in the

expressions for the stresses in an isotropic solid, the modulus of

compression h appears only as a coefficient of dilatations, and the

modulus of rigidity n only as a coefficient of shears. If then we
express every coefficient in our linear equations of motion in

terms of k and n, and then replace the coefficient n by the

operator ( n+ v^A, we shall have taken viscosity fully into account.

It follows that the coefficient m must be replaced by the operator

{
m+

l I)-

412.] Equations of Motion and Boundary Conditions
for a Viscous Solid in Motion. Taking equations (48) of

§ 239 as the most general form, and modifying them as just

described, we have
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+ p(H-i-) =

(

:

r--< M.m (":)]

+ P(Z-ib) =

and, similarly, the boundary conditions (45) of g 238 become

+ (vr

+ («* + v4)A,^=hS'

^•J
+

[
(m- - LV

< w:
+ (n« + m)A

3^ = hH'

)A»^

' *-hz-

(1)

...(2)

whf •€ O
s are giv.'ii in terms of ,/, /•, w by

equ; tionc d h by equation (19

< 13J Torsional Vibrations of a viscous cylindrical

rod of circular section. With the M»,lei the

surf ce of the rod be given by /• 0, the origin being a4 one end
of tl > central axis, ana ti the rod being /..

] roin tli.- ana! led to assume that the

torsi nal motion n lily twisting of each tran

secti- n about the axis in it- own plane
;
or, analytically, that in

pure I

" where </> is B function only of

z mi' /.

I

e-0,/» 0, 0-O, A-0,

e,. e,-#J
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and the equations of motion (1) reduce to the single equation

/ ,

3\32
<£ d2

<f> /oV

the conditions (2) for freedom of the lateral surface being satis-

fied identically.

414.] Free Oscillations. We can now solve completely
the case in which the end z = is fixed and the end z= L, after

having been held twisted through an angle tL till the rod
assumes the configuration of equilibrium = rz (§ 335), is set free.

We have

(i.) when£ = 0, <f>
= rz,

<f>
= 0.

(ii.) when z = 0, <fi = 0.

(Hi.) when z = L, d<f>/dz = 0.

Thus the appropriate solution of (3) will evidently be of the form

<j> = 2A
t
sin pz e~Jt cos it,

substitution giving us the relations

j =p2v/2p, i2 =j2 + (n -jv)p2
/P j

or, if tt^sfnTp as in § 206

4> = ^A p sin pz . e "
v^'Hl2n cospW J I -pWnt/in* A (4)

To satisfy the remaining boundary conditions we must have

j) = (2i-\-l)7r/2L, where i is any integer, and

v , . (2t+l)ire
TZ = ZApsm±—

_

-L-,

a szt (-\y

Thus finally

*
szr^r (-iy

3in
(2*+i)irS r (2Hi)vwn

X cos

L 2/i V 16n*Z2
" J'

The effect of viscosity, in increasing the periodic times and
steadily diminishing the amplitudes of the vibrations, is obvious.
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KXTK.YS/nX TO VlSOOUS LIQUIDS.

415.] Equations of Motion. It' we regard a liquid as a
limiting form of the solid state in which the elastic rigidity is

al»- can deduce the equations <>t* motion of a
viscous li.jui.l from (M of S 287 by simply making n=0, and
l

, = ij = R= — II. where IL is the hydrostatic pressure, /.» .. the

sss that can exist in such a body (sec Appendix
IV.; pages Ll

have then in general

[( ) (4)]}

displacementfl in Liquid may however be in-

Definitely great consistently with infinitely small Btrain [except

when tip . ich as to produce cubical dilatation <>r com-
|pre» i' I

it is in general impossible to identify their

mag iitudes or di All th.it concerned with

prae i< the relative ! of different

part ad this must of coarse be small in order

that t tances may be small. If we change our

notii ion, making tt, v, w represent the velocities of displacement

paw li '.At!' rea&

fcftleloi, and cubical dilatation, the

ion will be, v. \ ery small,

v

[( ) ( >]:•;.(- :M

m [ ( i ( )] (" ;)-?=

I
[

i
i 01 <-!

z-'MJ
I

. ,,. /-. o will -till be given in terms of

t,v, v by the Lin* od (29 of! -•-



498 VISCOSITY. [410.

416.] Liquids treated as "Incompressible." In all

mobile liquids the numerical value of h is so very great in

comparison with that of v, that it is usual to neglect j/A in

comparison with II. In fact, if the hydrostatic pressure be

supposed of the same order of small quantities as the shearing

stresses due to viscosity, the rate of cubical compression will be

very small in comparison with the rate of shearing. This treat-

ment of liquids as " incompressible " is of course only an approxi-

mation, intended solely to reduce the great analytical difficulties

introduced into hydrodynamics by taking viscosity into account.

On this assumption the equations of motion may be written

in the form

^A
{
2;4(A) +2^w)- ;

^(w)

Si(A)
+2
^fc)-'4(w)

2^~
- A4fe)l-(H

-S)- A

***
\
2/4fe) + 2/4(A) - A

4(i)

with the further condition

e+f+g=0

(«)

(7)

When referred to Cartesians these equations take the simple

forms
3n

V^AW m
dz

=

o

(8)

with
?)u 'dv dw _—

• + —• +— = :

dx Vy ?>z
(9)

so that, in the case of conservative impressed forces, derived from
a potential ^ we obtain by elimination

v2(n-^) = o

[Compare this with equation (164) of § 30o.]

(10)
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417] Boundary Conditions. In practice, the bounding
surfaces of a liquid most be either (i) free, (//.) subject to the

uniform normal pressure of a gas, oi (*&) in contact with a solid

or another liquid; and in all but the lirst of these cases the
contact must be maintained throughout the motion.

Thus in ca- we have the purely kinematic
tion thai the velocity of every point in the surface

of a liquid is equal to that of the }»<>int in the surface of the other

body (of whatever nature) in contact with it.

The dynamical condition is when relative motion takes place

• n the two bodies, tangentially to the dividing surface, the
1 on either is proportional to the relative

and in a direction tending directly to retard it. 'rims.

be the velocity of any point in the surface of the Liquid

resolved in the tangent
|

the surface, and u,' the surface

of the body in contact with it: then m natinfioo the

equal

-u') = (U)

when ment of normal to the surfacej measured out-

wads from the Liquid. and " i s a new constant the -modulus
of < ontact \i

In the more mobile liqui '. etc
I
the value of /j.

is ." > great that practically no I takes place at the

« es of contact, so face vel the liquid, in

same as those of th.- 1 »ody limit in

(n c re to be found by writing

ti= 0, A •. z II Z «». /' Q /.' -11 in equation

Tli s they become with our new notai

..««

ixamplei of tha d Eaqnidi will be found in

«or J Motion of 1'lui- i\



500 VISCOSITY.

APPENDIX VI.

Economy of Material in Nature.

A few simple examples of economy of material

—

i.e., the

principle of producing the greatest possible elastic strength under
specified types of strain, with the least expenditure of a given

material—have already been discussed in Chapter VII. Numer-
ous beautiful applications of this principle are to be found among
organic structures, and in fact they may be looked for with con-

fidence wherever great strength in proportion to the material

available, or great lightness in proportion to strength is an
advantage.

Good examples in the vegetable kingdom are to be found in

the stems of the grasses and the order Umbellifer8e. These plants

grow thickly together, or force their way among other thickly

growing plants, and often on very poor soils. They are all

enormously reproductive, and bear their seeds in heavy masses.

It is therefore of the utmost importance to them to use the least

possible material in building up their stems, and at the same
time to make them strong enough to resist considerable vertical

thrust and flexion couple. They all have largely hollowed cylin-

drical stems.

Very young trees, which have to struggle for food with the

surrounding grasses, etc., have most of their mass concentrated in

an external cylindrical layer of the stem, the axial portion being

occupied by a soft and light pith. As growth proceeds, however,
and their leaves in the one direction, and their roots in the other,

emerge from the sphere of close competition, they accumulate
material beyond the strict needs of economy, and it is largely

devoted to hardening of the axial portion of the stem. Conse-

quently in old trees the " heart-wood " is the more durable and
valuable portion of the trunk.

The stem of the common rush, on the other hand, composed
of a thin but very tough outer rind, requiring some exertion of

strength to break it, and a pith of large relative volume but very
small mass, is a good instance of the attainment of extreme light-

ness without too great a sacrifice of strength.

It is, however, in the complex structure of the bones of the

higher animals that we find the most consistent and remarkable
application of the principle of economy. It is of course advisable,

in order that the muscular power may be fully utilised, that the

bones, which from a mechanical point of view are simply an inert

system of levers, should be as light as possible, and at the same
time the exertion of that very power exposes them habitually to
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In order to explain how these varied
rements are met* we will describe the structure of the

human thigh-bone as a typical example. This is a long bone,
the principal office <>f which is to transmit half the weight of the
trunk ana head t<> th.- knee-joint, and thence to the ground.
Th»- principal sti bich it is subject is therefore one of

longitudinal thrust. It is however also subjected, especially in

walking or runni] considerable flexion couple and slight

torsion couple. The bone consists of two terminal articular

s, whir 1

tip' complicated stresses from the joints

and 1 ad a eonnectins shaft, almost the only function of

whicl transmit »m One articular matt to the other.

Tie- shaft, which for our purposes may be regarded as approxi-

lindrical, thus receives almost its entire Btress across its

end - ml. in accordance with the principles of >> 329,

naively hollowed out throughout its Length, the
hard, rigid and heavy bone-substance I mpactly arranged,
mainly in the form of longitudinal fibres, a- a cylindrical casmg,
and the interior -par.- being filled with light and Bemi-fluid

marrow, which for practical purposes may be said t>» offer resiftt-

ance only to cubical compression. The structure of the articular

ms sses. which are suW loverti
po tion of tlc-ir rally much more complicated
Br iadly speak in ur . it maybe said that the rigid bone-substance
of the shi divides on entering the terminal mass into

a hin oul ries of tlun laminae which in the

mi in tak.- th- prineipa] ro I the most severe

fo n . to which the mass i b, the small orthogonal

sp. ces enclosed i*\
I minsB being tilled with marrow, under

tfl Specified -train the lamin.e ;nv in tin- proper DOsitiOD to

tn isinit directly the prineipa] normal il ana are only

sti )ect to cubical compression, and the int to chan
vo im ats offei imparable

wi h that id. On the other hand, the composite structure

ad dts readili as under accidental shocks in

un ccnetomea directions; Tb thin arrangement

ov< r a solid b either of the Bame strength or <>f the

sai. e weight, are obvi
Figure 62 exhil ^hUy diagrammatic view of the lines

f *! fion of the upper portion of the thigh-bone, cut

m right
• ad looked at from the front. It

wil be ie id J/; has a considerable inclination

inv ards, like the lead of i The direct thrust, due to the

weight of tin- body, fills exclusively upon the surface A, the

ten ions on t! D /.. a tad -I being due to liga-
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ments and muscles exerting the couple necessary to maintain the

upright posture. The muscles arising from F and assist in

keeping the knee-joint rigid. It is evident that the main thrust

will be transmitted by strut lines down the inner side of the

shaft, while the orthogonal tensions required to support the

"head" will act along tie lines arising from the outer side. The
details of the arrangement are shown in the figure.

On comparing this with Figure 63, which is from a photo-

graph of an actual section of the same bone, the reader cannot
fail to be struck by the extraordinary closeness with which the

sections of the bony laminae correspond to the theoretical lines

of stress.

The small bones of the body, such as those of the spine, the

Wrist, and the ankle and heel, are practically in the position of



PLATE IV.

Fig. 63.

Fig. 65 SO.MY OF NAT1 I: I [Pagt ',<>.'.)
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articular masses without shafts, and are constructed on the same
princ: <;4 represents the theoretical lines of stress in

Fig. 64.

the h ting &t ^nr ankle-join^ a n«l Figure <i"> b from a

pi oiogiapb of a section of fche heel bone.*

hI a .hariiiii) I it Led " H«>\v I BODfl ifl

ilt,' laid llacaliHter, in I azine" for

km flulll

t paper, by tli" kind permia^on '-f the Publi I be photograph! we
. and the d I ran i drawing



ADDITIONAL NOTES.

I.—§ % page 2.

Spliere of Action of the Tntermolecular Forces.

Some very interesting cases are known of the appreciable

action between the molecules of bodies whose surfaces can be
brought into really intimate contact. Professor Tait supplies

the following instances ("Properties of Matter") :

—

(i.) Finely powdered graphite is re-solidified in the manu-
facture of lead pencils by the application of powerful pressure.

(ii.) Two freshly cut lead surfaces, pressed firmly together with
a screwing motion, will adhere very strongly to one another.

(Hi.) Sir Joseph Whitworth's steel planes are so true that, when
pressed together, they offer a resistance to separation markedly
greater than can be accounted for by the pressure of the atmos-
phere, (iv.) The surfaces of marble blocks may be so truly

worked that, on being pressed together, either can be lifted

suspended from the other, even in vacuo (if its weight be not
too great in comparison with the area of contact), (v.) All the

processes of gilding, silver-plating, etc., as well as the properties

of gum and glue, depend upon the cohesive forces between mole-

cules brought within insensible distances of one another.

II.—§ 123, page 56.

Expressions for the Component Strains and Rotations, to

the second power of small quantities.

Let the coordinates of the points P, Q, R in the natural
state be (x, y, z)

%
(x-\-dx, y, z), (x, y+ dy, z), and let P', Q', R' be

the strained positions of these points. Then, if the component
displacements of P be u, v, w, the coordinates of Q' relative to

P' will be

1 + \dx, —dx, —-dx.
oxJ ox ox



ADDITIONAL NOTES.

But P'Q'=(l+e)PQ = {l Mid therefore

505

"^-(•£)-(S)'*(S)'
thus to the second order of approximation

[cxo]

in the projection* of P*R upon the axes are

<£*' (
1+J f*

md /'A' (1 h/>fc so that

vie- i <) = co8<//' /.''

(\ \

' l\ \

"'

\ I x\ / dx dy

"Fl [(^ )]:{'*^»L(g)-*(l)']T
a id ultimately

I I
\

J

9»\ 3«/ 3fc\ Cj) dz dx

"dr\ / \ I

Finally, if /'7. P It make with the plan.- of :./.

N w

sin S
= J[Vl -«»(</> + ^)- </l+co8(<£ + ^)].

--g/KW (
,+
l)/

»

ai l tli'-i

oosW>+^)-. -
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Thus ultimately

^4:(i+ s)-s(i+ i)

III.—§ 2.35, page 222.

Transformation of the Component Rotations.

With the notation of Chapter V.,

Jd£ 3_/w\_3f ^(u\
+ ^l jV_^\_^ 3/v\

dz dy\h
l) dy 'dzyij dz 'dy\hj dy dz\h

2/

+
dz dy\hj oy dz\h.J

M^ +^ +
^i) "*HVl4 + v

*k
+ V3

i)]©
+M*4 +

^k
+^) "^k + vi + v

i)l(d
+bH^k +

»k
+^

"^^ +% + ^)]£)

and so for #
2
and 5

But
X
=X^+ Mi#2+ J/A j

an(i therefore

-''AK@-^(I)]'
and so on.
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IV— 5 239, page 229.

/ a of the General Equations.

Multiplying equations (52a) of S 218 by \, fiv i/, respectively

tnd adding, we obtain

--
[ (t-S)^-5)-(S-l)]

+ p[\ l
{X-n) + H.

l
(Y-v) + v

l
(Z-w)] = 0,

mi-, with tli.' notation of Chapt.r \
'..

I HX3 "M 9
,( I],.,...+ ^i

s id B i.

the result last Note,

S-S-K-vj©

1

b id the b
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V,—§ 241, page 231.

Differential Equations of the Lines of Stress, referred to any
Curvilinear system.

It follows at once from § 163 that the principal stresses NvNv Nz%
at any point are the roots of the cubic in </>

P-<f> U T
U Q-<f> S
T S B-<f>

=

and that the directions of the principal axes are given by

PX+U
l
x+Tv _ UX + Q^ + Sv_TX + Sf

M + Ev_ A7

//. v

where X, /x, v are the cosines of the angles made by the principal

axis corresponding to N with the elements dsv ds
2 , ds3 , and the

notation is throughout that of Chapter V.

Now dsJX = dsj/u. = dsjv = ds, where ds is the element of the

principal axis, so that these latter equations may be written

PdS) + Uds
2
+ Tds

3 _ Uds
l
+ Qds

2
+ Sds

3 _ Tds
l
+ Sds

2
+ Rds.

6 _ ,r

(Is '/*.;

These then are the differential equations of the Lines of Stress.

See § 293 for an example.

VI—§ 401, page 477.

A Theorem in Conjugate Functions.

If £ tj be conjugate functions of x and y, and if

it is required to show that \7
2 log h= 0.

Whatever function h may be of x and y,

2"viogA=/^-(3
|)

2

-(|y
identically. But
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and then

Z,j 2u*3y ae aa%* va^y/ ?j¥ VV7 I

\3tc Stc2 c>y TOxdy) \ be dxdy dy 'by-)

LA I V / JL • a£ *y *v J
-•'17 \ I 11/ - t\ +M?i -i l«,M

= identically 7 f=0.
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Absolute moduli, 221.

^Eolotropy, 201-206.

AIRY, Sir G. B., general solution under
surface traction only, 302 ; under applied
forces also, 307-309, 307 bis.

Anticlastic flexion of plates, 389 ; coefficient

of, 391 ; do., for thin shells, 405.

Applied forces, 4; form an equilibrating

system, 29 ; work done by, against stress,

21, 27, 31; measure of, 13G; continuous
and finite, 136; work done by, during
change of strain, 193-195; vibrations

under periodic, 279-283 ; equilibrium
under conservative, 303-321.

Areal dilatation, 129.

Asymmetrical elasticity, 201.

Axes of reference, choice of, 50, and App. I.

;

change of, 121, 159.

Axes, principal, see Principal axes.

Axis of stress in one dimension, 186.

Axis, central of a beam, hoop, or wire, 322.

Axis of torsion, 331.

Beams, defined, 322.

BERNOULLI, James, the Linea Elastica,

361.

Boilers, strength of cylindrical, 291.

Bone, structure of, App. VI.
BOSCOVITCH, theory of intermolecular

force, 37, 208.

BOTTOMLEY, J. T., on effects of set, 15.

Boundary conditions, in Cartesians, 145,

217, 218; in curvilinears, 238; for wires,

360, 364; for thin plates, 397, 398, 400,

401 ; for viscous solids, 412 ; for viscous
liquids, 417.

BOUSSINESQ, J., solution of the problem
of vibrations, 283, 284 ; of equilibrium
under conservative forces, 310-321.

Breaking stress, App. IV. (B.)

Brittle materials, 13, and App. IV. (C).

CAUCHY, Aug., on the sphere of action
of intermolecular forces, 38 ; the first to
introduce the modern idea of stress,

App. 111.

Central axis of a beam, hoop, or wire, 322.

Centre of a plate, 384.

Change of direction of straight lines in

homogeneous strain, 55 ; of axes of refer-

ence, 121, 159.

CLEBSCH, problem on flexion of plates,

386, 387.

CLERK MAXWELL, J., on viscosity of
air, App. IV. (A.); on Nachwivkung,
App. V. ; and Faraday's theory of dielectric
tension, Ex. 21, page 260.

Coefficients of elasticity, 198-212 ; of longi-
tudinal extension, 329 ; of torsion, 334

;

of flexion in beams, 349, 352 ; of synclastic
and anticlastic flexion in plates, 391 ;

do. in shells, 405.

Coefficient of viscosity, App. IV. (A.)
Collisions, 408.

Components of displacement, 51, 235; of
rotation, 86, 123, 235, and Notes II. and
III.; of strain, 89, 107, 108, 123, 234,
335 ; of stress, 142, 148-152, 237-239.

Compressibility, 211.

Compression, cubical, see Cubical compres-
sion.

Compression quadric, 74.

Concurrent strains, 110 ; stresses, 156.
Cone of no elongation, 77 ; of constant do.,

78 ; normal, of shearing stress, 166

;

tangent, of do. do. , 168.

Conjugate cylindrics, 245, 246.

Conservation of energy, and of momentum
in impacts, 408.

Conservative system, conditions for, 24.

Constraint, state of, App. IV. (B.)

Continuity of displacement, 47, 287; of stress,
137.

Continuous elastic matter, 42.

Contour lines, 337.

Contraction, 53.

Contrary strains, 110 ; stresses, 156.

Conventional theory of elasticity adopted,
39.

Coordinate surfaces in general, 230; their
principal curvatures, 232.

Coordinate systems ; spherical polars, 243
;

cylindrical polars, 244 ; conjugate cylin-

drics, 245, 246; surfaces of revolution, 247,
248; conjugate do., 249, 250; spheroidals,
251;ellipsoidals, 252.

COTTERILL, J. H., "Applied Mechanics '

quoted passim.
COULOMB, torsion coefficient of right

circular cylinder, 335; erroneous exten-
sion of do. to prisms in general, 34 2.

Coupes topographiques, 337,
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Cruria,elastic.in ductile metals,App. rV.(B.)
L02,103;

nof,U2;
cubical and longitudinal do., behaviour
of ductile metals under, App. IV. (B.)

res, principal, of coordinate sur-

fac
1

:iical polar-.

. conjugate, 2

- principle, 41.

Deflection of uuif oi iomthehori-
fesj under gravity.

inateness of the solution under

d>icd, M i

ur.l. for rotors, A

Discontimi -

229.

I t.% of shear and
shearing Htresa, 152; <>f cubical compres-

etstic pre*-

Dsphu
poteni
rtrmin. 126; do., in

a strain,

23.

App. II.

materials, 13, and Ai
I» ictilr

I J -natnicN, of a particle, 40; of a rigid

E se, state
I

inder flexion. 35o; in nature. A]
1 •

V
i -i

». IV; limit* of
V.; fatigue, 16; co.

ml bulk, II; perfect,

«•'»; isotropi.

f volutin , 21 1.

E ii*oid, strain, t : stress, 169;

Kl p*«

El ngation, 53, 81 ones of
instant, 7

13 ;

itural state, 20

;

'

t 'tal, of free vibrations, 262 ; oonserva-

I

rved wires and bo
t an plat«>

Equations of motion and equilibrium in
Cartesians; in terms of stress, 138-143:
in terms of strain, 217 ; in terms of dis-

placement, 218 ; Lame's form, 218

;

deduced from principle of virtual work,
219; in curvilinear*, 237; Lame's form,
239, and Note IV. ; of naturally straight
wires, .300 ; do., when curvature small,
364 ; of thin plates, 396, 397, 400, 401

;

of thin shells, 40-"), 40G ; of viscous solids,

4TJ ; of viscous liquids, 415; do., treated
as incompressible, 416, 417.

Equilibrium, of the body as a whole, 146 ;

general problem i .03; unstable
elastic, stage of, App. IV. (1..

• ntial surfaces of displacement, 12.*)

;

for homogeneous strain, 1 86 ; in curvi-
linears, 2l«.».

iximumof ductile metal bars.

App. IV. (H.): ultimate of do., ibid',

longitudinal, behaviour of ductile metals
under, ibid ; of beama, 329; coefficient of
longitudinal.

PABADAY, M Clerk Maxwell.

r, App. II.

:
1
4aiie circular in a prin-

cipal plane. 346-350; in any plane, 851-

Bfluienti of,

onomy of material und< i

tb under, Ai>i>. V; of plates ; uni-

uclastic and anticlastic,
''

; coefficients of, 891 '•

• thin sheila

f plastic S0]ld> and tluiils, App. IV.

j
stages of uniform and Local in

.is under tension, App.

Fluidity, Fluids, App. IV. (A.)

lar, 3; applied or im-

1, .»/ Applied fi

of vib ratioi;

ililiriuin under surface
7 ; do. under con-

«
. I: \ V. A. and T., on effects of set. L5.

< SHEEN foundation of m
m the principle of energy,App.

S HILL, A i ... problems on stability

1 1 and plates,

quoted in App. 1

Qardaeei of ductile solids, App. I v. (B.)
H.iniM.: aerieal bar

;brations due to, 2, 8 ; do. L
tional theory of elasticity,

if equilibrium of a naturally straight

it strain, 122; stress, 187;

•n stretching of cast-iron

p. IV. (C.)
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Homogeneity of molecular structure, 7 ; of

continuous matter, 43.

Homogeneous strain, 59-121 ; stress, 157.

HOOKE'S law, 197, App. III., App. IV.

Hoops, 322; motion and equilibrium of,

377-383.

HOPKINS, W., on form of crevasses in

glaciers, Ex. 23, page 381.

Hydrostatic pressure, 174.

I-Beams, 355.

Impact, defined, 408.

Impressed forces, see Applied forces.

Intensity of stress, 131.

Intermolecular forces, 3 ;
probable sphere

of action of, 38 ; Boscovitch's theory of,

37; stresses, 28-33.

Invariants of the strain, 111; of the stress,

164 ;
potential energy expressed in terms

of, 209.

Irrotational strain, 66; conditions for, 81,

82; components of, 89, 107; displace-

ment potential in, 124 ; free vibrations,

267-274.

Isotropy, 207 ; heterogeneous, 220.

KENNEDY, Alex. B. W., experiments on
ductile metals, App. IV. (B.)

KIRCHHOFF, G., boundary conditions for

thin plates, 397, 398, 400, 401.

KOHLRAUSCH, F., effect on rigidity of

change of temperature, Table (F.), page
204.

LAME'S theory of elasticity, App. III.;

form of the equations of motion in Car-
tesians, 218 ; do. in curvilinears, 239, and
Note IV.; analytical theorems in curvi-

linears, Ex. 23, page 260.

Length moduli, 221 ; of rupture, 222.

Limits of elasticity, 12-15; mathematical
of perfect elasticity, practical in ductile

metals, of uniform flow, and of tenacity,

App. IV. (B.)

Linea elastica, 361.

Lines of flow, App. IV. (A.)

Lines of stress, 216, etc.

Lines in body, 44 ;
preserve continuity of

structure, and of curvature, 55 ; and per-

manence of intersections, 56.

Loads, maximum and terminal, of metal
bars under tension, App. IV. (B.)

Local flow, stage of, App. IV. (B.)

Longitudinal stress, 132, 148; extension,

coefficient of, 329.

MACALISTER, Donald, on economy of

material in nature, App. VI.
Malleable substances, 13, and App. IV.
Mathematical limit of perfect elasticity in

ductile solids, App. IV. (B.) and Table
(C), page 201.

Matter, structure of, 1, 2, 3; solid do., 6;
elastic properties of, 11-16.

Maximum load, extension and strength of

ductile metal bars under tension, App.
IV. (B.)

Median surface of plate, 384.

Moduli, elastic, of isotropic solids, 210
(rigidity); 211 (compression); 213 (Young's
modulus); various systems of measure-
ment, 221.

Modulus of rupture, 222.
Modulus of viscosity, App. IV. (A.

)

Molecular structure of matter, 1, 2.

Molecules, 2
;
probable size of, 36.

Momentum, how affected by collisions,

408.

Motors, App. I.

Nachwirkung, App. V.
Natural state, 5 ; intrinsic energy in, 20

;

stability of, 21 ; of a ductile solid after
manufacturing processes, App. IV. (B.)

NAVIER'S theory of elasticity, App. III.

Neutral plane in flexed beam, 347; do.,
surface in flexed plate, 390.

NIVEN, C, normal vibrations of a thin
spherical shell, amplitude varying as a
zonal harmonic, 407.

Non-rotated straight lines in homogeneous
strain, 82.

Normal axis of plate, 384.
Normal stress, 132, 148

; principal do., 163;
cone of shearing stress, 166.

Notation, for strain, 59, 71, 72, 73, 100,
103, 123, and Note II.; for stress, 142;
for potential energy, 196, 198; for isotropic
solids, 212.

Origin of axes of reference, choice of, 50,
and App. I.

Parallelism of straight lines and planes,
unaffected by homogeneous strain, 61,
62.

Particle, dynamics of, 40.

Perfect elasticity, 18 ; approximation of
natural solids to, 19 ; mathematical limit
of, in ductile solids, App. IV. (B.)

Plane of stress in two dimensions, 184.
Planes of no distortion, 93, 94, and App. II.

Plastic substances, 13, and App. IV. (A.)
Plates, 384; uniform flexion of, 388-392;

thin, see Thin plates.

Points in body, 44.

POISSON'S integrals of the equations of
free vibration, 278.

Polars, spherical, 243 ; cylindrical, 244.
Position ellipsoid, 84.

Potential, displacement, 124 ; for homo-
geneous strain, 126; for vibrations, 267-

Potential energy of strain, 21, 27, 34; equal
to work done by applied forces, 21, 34,

188; per unit volume, 196; relation to
stresses, 32, 196 ; do. to strains, 200 ; as
an invariant of the strain, 209; of iso-

tropic solids, in terms of strain, 212 ; in

terms of stress, 214.

Potential energy, of beam, 358 ; of wire or
hoop, 378; of plate, 392, 399, 401; of thin
shell, 405.

Practical elastic limits in ductile materials,
App. IV. (B.), and Table (C bis), page
202.

Pressure, 131 ; surface, 133 ; hydrostat'c,

174.
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Principal axes of -train, 65, 79, 80, 81, 82

;

of strain and stress in

I plate,

Principal elongations, 83 ; normal stresses,

ins of principal elonga-
tions, 215; surfaces of strain, 216, -41.

Principal curvatures of coordinate surfaces,

. B& 156, v.'T.

;»nal strain.

Quadric% elongation and con
strain ellipsoid, 64, 7

ellipsoid, 84; stress ellipsoid, 169; direc-

tor quadric of stress, 1 ,,lrie of
tress, 102 ; fourth do. do., 172 ; cone of

'. of const;.

ss, 166 ;

tangent do. of do. do..

MM fac»- ol

to arbitrarily
« bos< i :

r,,
i li.-pjo; of stresses,

44; of extension into dilatati' p

•

l :»

;

ion, surface* of, .

: change

M.

K< atioi uvntu of
... !<

ur\ilm< ,: . HI.

II.

iti<'ii f-.i

Him and

mount
Mil, and

f. HI; work
l I'.'l.

!<.., App. II.

t! c

sf *
D such

2

Simple strain and stress, 33; elongation,
901 9L 113; shear, 92-100, 114; dilatation,
102-105, 111'.

Small strain, 51-58
; stress, 153-155.

Solid matter, 6 ; body, homogeneous, 8.

Solidity. App. IV. (A.)
Sound, plane waves of, 268-271 ; spherical
harmonic do., 272; simple spherical do.,
273 ; possible forms of do., 274; velocity
of, in infinite medium, 208 ; in wires,

Specification, in terms of standard com-
ponents, 111 ; of cubical dilatation, 112

;

of simple elongation, 113 ; of simple
shear, 114 ; of most general small strain,

LIS.

Spherical harmonics, solution in terms of,

for free vibrations, 272> 278 for equi-
librium of sphere under surface tractions
only, 295-300; do. under applied forces
whose potential can be expanded in a

- of harmonics, 304-306 ; normal
vibrations of thin spherical shell, am-
plitude varying as a zonal harmonic,

Spherical POlen. 2 IS.

Spheroidal oooroinatee, 25L
Stability of natural stati-, 2QL

(feel elasticity according to
\\, of unstable elastic equi-

librium, of uniform flow, and of local

. in ductile mettle, App. IV. (B.).

rd oomponenm, of strain, 106-110;

: rotors, App. I.

States of con-tiaim ami of ease of ductile

sottds, App, IV
' Natural state.

BT( 'K
I

mii BoiOOl itch's hypo-
on experimental proof

i okea law, App. ill.; on Tieootfty

App. IV. (A.)

lotnre, 10 ; coordi-

16, 109; simple, 33; type of,

I
tinuous matter, 47-50;

at mu>. 50*121 : pore
mt LrrotationaJ. 66; concurrent and con-

. 1 In .
s|„. -it'ii -:ition of, 111-115;

L22, L23, and Note II.

;

in tv. !_".•; geometry of,

App. I. ; invariants of, 111; work done
Dg any small, 192;

in t. -. -i" 1

, 21 1 : ri lation to

aergj per unit volume, 200;
Hint- in curvilinear*, 284 ; principal

JO, M, 82, 215j principal

241, 242.

Stiain ellipsoid, 64, 70, 12&
stniii. irkuna), App. V.

222 ; of ductile metals
ion, and cubical and longi-

tudinal compression, App. IV. (1J.) ; do.

tmder torsion and flexion, App. V.

mtei molecular, 28; an equilibrating

.
'_'*.» ; resists increase of, and
\ith, strain, 30; type of, 33,

L56: simple, 33; work done by or

: relation to potential energy
in, 32; in continuous matter, 130,
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131 ; sign of, 131 ; intensity of, 131

;

total, 131; normal or longitudinal, 132,

148 ; tangential, 132, 149 ; shearing, 132,
150-152 ; two aspects of, 134, 135 ; re-

sistance to, 135 ; continuity of, 137

;

components of, 148-152 ; small, 158-155
;

homogeneous, 157 ; graphic properties of,

159-186
; general theorems on, 159-161

;

resultant, 160; quadrics of, 162, 167,

169, 172; principal axes of, 163, 215;
invariants of, 164 ; special forms of. 174

;

in two dimensions, 175-184
;
plane of do.,

184 ; in one dimension, 185, 186 ; axis of

do., 186; heterogeneous, 187; work done
by in, small arbitrary increase of strain,

189-192 ; relation to potential energy per
unit volume, 196 ; expressed in terms of

strain, 197, 212 ; principal normal, 163

;

do. in terms of principal elongations,

215 ; lines and tubes of, 216 ; breaking,
maximum and terminal, of ductile metal
bars under tension, App. IV. (B.

)

Strut lines, 216.

Summary of the general problem, 253.

Superposition, of small strains, 87, 88 ; of

small stresses, 155 ; of strain and stress,

applied to proof of Hooke's law, 197;
of partial solutions of the general equa-
tions, 254-259.

Surfaces in body, 44 ;
preserve continuity

of structure, and of curvature, 55; and
permanence of intersections, 56 ; of re-

volution, 247, 248; conjugate do., 249,

250 ; principal, of strain, see Principal
surfaces.

Symmetrical elasticity, crystalline or seolo-

tropic, 202-206 ; isotropic, 207 et seq.

Synclastic flexion of plates, 389 ; coefficient

of do. , 391 ; do. in shells, 405.

Tables ; Factors for reduction from one
system of units to another, (A.), page
199; Compressibility of liquids, (B.), page
200; Weight moduli of solids, in O.G.S.
units, (C), page 201; Practical moduli,
in English measure, (C bis), page 202;
Ultimate and working strengths, (D.),

page 203 ; Effect on Young's modulus of

change of temperature, (E.), page 204;
Effect on rigidity of do., (F.), page 204;
Velocities of plane sound waves in infinite

media, page 290.

TAIT, P. G., examples of sensible inter-

molecular force, Note I. ; account of

Nachwirkung, App. V.
Tangent cone of shearing stress, 168.

Tangential stress components, 132, 149.

Temper, 15.

Temperature, 20 ; constant, 21 ; free to

vary, 22.

Tenacity, 222, and App. IV.
Tension, 131.

Terminal load of ductile metal bars under
tension, App. IV. (B.)

Theorems, general, on the partial solutions

of the linear equations of elasticity,

254-259.

Thin plates, 384 ; equations of motion and
equilibrium under normal forces, 396,

397; Kirchhoff's boundary conditions,
397, 398; treatment by energy method,
399-401.

Thin shells, 384; motion and equilibrium
under normal forces, 405, 406.

THOMSON, Sir Wm., on viscosity and
fatigue, 16, and App. IV. (A.); on
thermoelasticity, 25 (footnote) ; on size
of molecules, 36 ; on Navier and Poisson's
deductions from Boscovitch's hypothesis,
37 (footnote) ; on permanent change of
density, due to longitudinal extension,
App. IV. (B.) ; solution for free vibra-
tions, 265-267, 275; on theories of the
luminiferous ether, 276; application of
his method to obtain a general solution for
equilibrium under surface tractions only
in the form of potentials, 301.

THOMSON and TAIT'S "Natural Philo-
sophy," first combines the principles of
Green and Stokes as a mathematical
basis for the linear -elations between
strain and stress, Apy. III.; spherical
harmonic solutions, 295-300, 304-306 ; on
equilibrium of thin plates, 396-398; also
quoted passim.

Thrust, 131.

Tie lines, 216.

Timber, App. IV. (D.)
Torsion of beams, 330-342; axis of, 331;

couple, 334; coefficient of, 334; economy
of material under, 336, 338 ; false exten-
sion of Coulomb's formula for, 342;
strength under, App. V.

Total stress, 131, 133.

Traction, 131; surface do., 133; resolved
into dilatation and shear, 213.

TRESCA, on flow of plastic solids, App.
IV. (A.)

Tubes of stress, 216.

Twist, 332.

Type of strain, 33, 110; of stress, 33,

156.

Types of reference, for strain, 89-109; for

stress, 148-152.

Ultimate state of ease of a ductile solid,

App. IV. (B.); do., strength of materials,

Table (D.) page 203.

Uniform flexion of plates, 388-392.

Uniform flow, stage of, App. IV. (B.)

Vectors, App. I.

Velocity of sound, in infinite media, 268; in

wires, 365.

Vibrations, free or under periodic surface

tractions only, 260-278, 284; under
periodic applied forces, 279-283; Bous-
sinesq's solution for, 283, 284; of wires,

365, 366.
Viscosity, 16, 19, 25, and App. IV. (A,B.)

Viscous liquids, App. IV. (A. ) ; torsion of,

335 ; equations of motion of, 415, 416 ;

boundary conditions for, 417.

Viscous solids, App. IV. (A, B.); equations

of motion of, and boundary conditions

for, 411, 412.

Weight moduli, 221.
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^t on Young's modulus
nperature. Table (E.),

eouilibriam ami motion of

naturally straight 980: do. do.,

when flexion small, d&i; small vibrations,

naturally curved win

ma] forces during
a small

arbitrary increase of strain, 18'.>-li)2; by
applied forces in do. do. , 193, 195 ; iden-
tical equality of tbese, 104, 195,

"Working strengtb of materials, Table D.).

page 203.

I

YOUNG,onHooke'slaw,App.IIL; Young's
modulus, 213; change of do. with tem-
perature. Table (E.), page 204.
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