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ADVERTISEMENT.

The first principles, as well as the more difSoult parts of

Mathematics, have, it is thought, been more fullj and clearly ex-

plained by the French elementary writers, than by the En2;lish

;

and among these, Lacroix has held a very distinguished place.

His treatises have been considered as the most complete, and the

best suited to those who are destined for a public education. They

have received the sanction of the government, and have been adopt-

ed in the principal schools, of France. The following translation is

from the thirteenth Paris edition. The original being written with

reference to the new system of weights and measures, in which

the differsnt denominations proceed in a decimal ratio, it was

found necessary to make considerable alterations and additions, to

adapt it to the measures in use in the United States. The several

articles relating to the redaction, addition, subtraction, multiplica-

tion, and division of compound numbers, have been written anew ;

a change has been made in many of the examples and questions,

and new ones have been introduced aftermost of the rules, as an

exercise for the learner.

JOHN FARRAR,
Professor of Mathematics and Natural Philoio-

phy in the University at Camorid^e.

Cambridgef Mg, 1818.
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Explanation of the Roman Xiunerals.

Oue I

Two II*

Three IH

Four IVt

Five V

Six vu
Seven VII

Eight VIII

Nine IX

Ten X
Twenty XX
Thirty XXX
Forty XL
Fifty >' L
Sixty , LX
Seventy LXX
Eighty LXXX
Ninety XC
Hundred C
Two hundred CC r

Three hundred ^ CCC

Four hundred CCCC

• A3 often is any character is repeated, so many times its value ii re-

peated.

f A less character before a srreater diminishes its value.

i A less character after a greater increases its value.
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Five hundred

Six hundred

Seven hundred

Eight hundred

Nine hundred

Thousand

Eleven hundred

Twelve hundred

Thirteen hundred

Fourteen hundred

P'ifteen hundred

Two thousand

Five thousand

Six thousand

Ten thousand

Fifty thousand

Sixty thousand

Hundred thousand

Million

Two millions

D or ID*

DC
DCC
DCCC
DCCCC
M or CI3t

MC
MCC
MCCC
MCCCC
MD
MM
100 : or Vt

Vl

X or CCIOO

1300

LX
C or CCCIOOO
M or CCCCIOOOO
MM

• For every O affixed this becomes ten times as many.

j- For every C and O put one at each end, it is increased ten times.

i A line over any number increases it 1000 fold.



ELEMENTARY TREATISE

ARITHMETIC.

NUMERATION.

1. A coMPARisoNof the different objects, that come within the

pearii ol our senses, soon leads us to perceive, that, in ail these

objects, there is an attribute, or quality, bv whirli they can be

su|)posed susreptible of increase or diioinution ; this attribute is

magnitude. It generally appears in two different forms. Some-

times as a collection of several similar things, or separate parts,

and is theji designated by the word number.

Sometimes it presents itself as a whole, without distinction of

parts ; it is tlms, that we consider the distance between two

points, or the length of a line extending from one to the other,

as also the outlines and surfaces of bodies, which determine

their figure and extent, and finally this extent itself.

The proper characteristic of this last kind of magnitude is

the connexion or union of the parts, or their continuity ; whilst

in number we consider how many parts there are; aciicum-

stance to wliich the word quantity at first had relation, though

afterwards it was applied to magnitude in general, magnitude con-

sidered as a whole being called continued quantify, to distinguish

it from number, which is called discrete^ or discontinued quantify.

2. All that relates to magnitude is the object of mathematics ;

numbers, in parti( ular, are the object of arithmetic.

Continued magnitude belongs to geometry, w hicli treats of the

properties presented by the forms of bodies, considered with

regard to their extent.

3. Number, being a collection of many similar things, or many
.9nth. 1
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distinct parts, supposes the existence of one of these things, or

parts, taken as a term of comparison, and this is called unity.

The most natural mode of forming numhers is, to begin with

joining one unity to another, then, to this sum another j and

continuing in this manner, we obtain collections of units, which

are expressed by particular names ; the whole of these names,

which varies in different languages, composes the spoken numera-

tion,

4. As there are no limits to the extention of numbers, since

however great a number may be, it is always possible to add an

unit to it, we may easily conceive that there is an infinity of

different numbers, and, consequently, that it would be impossible

to express them in any language whatever, by names, that should

be independent of each other.

Hence have arisen nomenclatures, in which the object has

been, by the combinations of a small number of words, subject

to regular forms, and therefore easily remembered, to give a

great number of distinct expressions.

Those, which are in use in the [English language,] with few

exceptions, arc derived from the names assigned to the nine first

numbers and those afterwards given to the collections of ten, a

hundred^ and a thousand units.

The units arc expressed by

one, twOi three, fmiVf JivCf six, seven, eight, nine.

The collections of ten units, or tens, by

ten, twenty, thirty, forty, fijty, sixty, seventy, eighty, ninety.

The collections of ten tens, or hundreds, are expressed by

names borrowed from the units ; thus we say,

hundred, two hmdred, three hundred, .... niiie hundred.

The collections of ten hundreds, or thousands, receive their

denominations from the nine first numbers and from the collec>

tioDS of tens and hutidreds ; thus we say

thousand, two thousand nine thousand,

ten thousand, twenty thousand, ^'C.

hundred thousand, two hundred thousand, ^c.

The collections of ten hundred thousands, or of thousands

of thousands, take the name of viillions, and are distinguished,

like the collections of thousands.
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The collections of ten liuntlreds of millions, or of fhousajids of

millions, are called bUlionSf and are distinguished, like the collec-

tions of millions.!

t The idea of number is the latest and most ditlicult to form. Be-

fore the mind can arrive at such an abstract conception, it must be

familiar with that process of classification, by which we successively

remount from individuals to species, from species to genera, and from

genera to orders. The savage is lost in his attempts at nuraeration,

and significantly expresses his inability to proceed by holdi' g up his

expanded fingers, or pointing to tlie hairs of his head.

Nature has furnished the great and universal standard for compu-

tation in the fingers of the hand. All nations have accordingly

reckoned by fives : and pome barbarous tribes have scarcely advanc-

ed any further. After the fingers of one hand had been counted once

it was a second and perhaps a distant step to proceed to those of the

other. The primitive words, expressing numbers, did not probably

exceed five. To denote sijc, seven, eight, and nine, the North Amer-

ican Indians repeat the five with the successive addition of one, two,

three, and four ; could we safely trace the descent and affinity of the

abbreviated terms denoting the numbers from five to ten, it seems

highly probable, that we should discover a similar process to have

taken place in the formation of the most refined languages.

The ten digits of both hands being reckoned up, it then became

necessary to repeat the operation. Such is the foundation of our deci-

mal scale of arithmetic. Language still betrays by its structure the

original mode of proceeding. To express the numbers beyond ten,

the Laplanders combine an ordinal with a cardinal digit. Thus,

eleven, twelve, &c. they denominate second ten and one, second ten

and two, &c. and in like manner they call twenty one, twenty two,

&c. third ten and one, third ten and two, &c. Our term eleven is

supposed to be derived from ein or one, and liben, to remain, and

to signify one, leave or set aside ten. Twelve is of the like de-

rivation, and means two, laying aside the ten. The same idea is sug-

gested by our termination ty in the words twenty, thirty, Sec. This

syllable, altogether distinct from ten, is derived from ziehen, to draw,

and the meaning of twenty is, strickly speaking, two drawings, that

is, the hands have been twice closed and the fingers counted over.

After ten was firml)r established, as the standard of numeration, it

seemed the most easy and consistent to proceed by the same repeated
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Earh of the names just mentioned is considered as forming a

unit of an order more elevated according as it is removed Irom

simple unit. The names ten and hundred are continually re-

peated, ajid we have no occasion for new names, such as thmisand,

million, billiorif except at every fourth order. The same law be-

ing observed, to billions succeed trillions, quadrilUons, quintillions,

&c. eaci), like billions, having its tens and hundreds.

Numbers expressed in this manner, when more than one word

enters into tlie eimnciation of them, are separated into their

respective oideis of unils, mentioned above ; for instance, the

number expressed by Jive hundred thousand three hnndred and /wo,

is separated into three parts, v'lz.Jive hundreds of thousands, three

hundreds of simple units, and two of these units,

5. The lengrh ol the expression, written in words, when the

numbers were large, occasioned the invention of characters, ex-

clusively adapted to a shorter repiesentation, and hence origi-

nated the art of expressing numbeis in writing by these charac-

ters, called^.g-ures, ov written numeration.

The laws of the written numeration, now used, are very anal-

ogous to those of the spoken numeration. In it the nine first

numbci's are each represented by a particular character, viz.

.12 34 56 7 89
one, two, three, four, five, six, seven, eight, nine.

When a number consists of tens and units, the characters repre-

senting the fiumber of each are written in order from left to

right, begiiming with the tens. The tmmber forty-seven, for

instance, is written 47 ; the first figure oi: the left, 4, denotes the

four tens, and consequently a value ten tiiiics greater than it

would have standing alone ; while the figure 7, plat ed (m the

right, expressing seven units, possesses only its original value.

coinpositien. Both hands being closed ten times would carry the

reckoninc up to a hundred. Tliis word, originally hund, is of uncer-

tain derivation ; but the term thousand, which occurs at the next stage

of the progress, or thp hundred addfd ten times, is clearly trace<l out,

being only a contraction of duis hund, or tuice iiundred, that is, the

repeiition, or coUectiun of hundreds. See Edinburgh Review, vol.

XVIII. art. VII.



In the number thirty-three, which is written 33, we see the

figure 3 repeated, but each time wiih a different \a!uei the value

of the 3 on the left is teu times greater than the %alue of that on

the right.

This is the fundamental law of our written numeration, that

a removal^ of one place, towards the left increases the value of a

figure ten times.

If it were i-equired to express fifty, or five tens, as there are

no units in this number, there would be nothing to write but the

figure 5, and consequently it would be necessary to show, by

some particular mark, that in the expression of this number, the

figure «)Ught to occupy the fii-st place on the left. To do tliis we

place on the right the character 0, cipher or nought^ which of

itself has no value, and serves only to till the place of the units,

whiih are wanting in the enunciation of the proposed num-

ber.

6. Thus with ten characters, by means of tlie rule before laid

dov\n conceining the value which figures assume, according to

the places they occupy, we can express all possible numbers.

"With two figures only, we can write all, as far as to nine tens

and nine units, making 99, or ninety nine. After this comes the

hundi-ed, which is expressed by the figure 1. put one place far-

ther towards the left, than it would be, if used to express tens

only ; and to denote this place, two ciphcre are placed on the

right, making 100.

The units and tens, afterwards added to form numbere greater

than 100. take their proper places j thus a hundi'ed and one will

be written in figures 101 ; a hundred and ele\en. 111. Here the

same fgure is three times repeated, and with a different value

each time ; in the first place on the right it expresses an unit,

in the second, a ten, in the third, a buntfred. It is the same

with the number £22, 333, 444, &c. Thus, in consequence of

the rule laid down before when speaking of units and tens, the

samefigure e.vpresses units ten times greater* in proportion as it is

removedfrom right to lejt, and by a simple change of place, acquires

the pokier of repyesen'ing. snccessivrly, all the different collections of

units, 7chich can enter into the ejrpresswn of a number.
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7. A number dictated, or enunciated, is written then, by plac-

ing one after tlie otlier, beginning at the left, the figures which

express the number of units of each collection j but it is neces-

sary to keep in mind the order in which the collections succeed

each other, that no one may be omitted, and to put ciphers in the

room of those, which are wanting in the enunciation of the num-

ber to be written. If, for example, the number were three huri'

dred and twenty four ihousaiidf nine hundred and fonrt we should

put 3 for the hundreds of thousands, 2 for the twenty thousand,

or the two tens of thousat:ds, 4 for the thousands, 9 for the hun-

dreds ', and as the tens come immediately after the hundreds,

and are wanting in the given number, we should put a cipher in

the room of them, and then write the figure 4 for the units ; we
should thus have 324904.

In the same way, writing ciphers in the place of tens of thou-

sands, thousands and tens, whirh are wanting in the number five

hundred thousand three hundred and two, we should have 500302,

8. When a number is written in figures, in enunciating it, or

expressing it in language, it is necessary to substitute for each

of the figures the word which it represents, and then to mention

the collection of units, to which it belongs according to the place

it occupies. The following example will illustrate this ;

6,2 4, 8 9 7, 3 2 1, 5 8 0, 3 4

H H w H cd a H^ g a H H a H
o 73 a M s o M s » w s 1^

S3 M 5 3 s 5 3 H 3 s o 3 3
QB H CU 33 H C^ CO H Cu CO f- CC

a l-i •-: O
1
V)

? c M T ^^ en "T
S, H a >•*> » -S o n •^

b

«

H
o W g 03 H

-t

i

VI o

W

o'
3
OQ

5'

3
CO

o

o'
3

o'
3
X

o

o
s
p
3

o
3
us

3

w

The figures of this number arc divided by commas, into portions

of three figures each, beginning at the right j but the last divis-

ion on the left, which in the present instance has but two figures,

may sometimes have but one. Each of these divisions corres-

ponds to the collections designated by the words MJiif, thousand,
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million, billiorif trillion, and their figures express successively

the units, tens, and hundreds of each. Consequently, the expression

of tlie whole number given is made in words, by reading each rftris-

ion offigures as if it stood alone, and adding, after its units, the

name of their place.

The above example is read, twentyfour trillions, eight hundred

and ninety seven billions, three hundred and twenty one millions,

five hundred and eighty thousand, three hundred and forty six units.

9. Numbers admit of being considered in two ways; one is,

when no particular denomination is mentioned, to which their

units belong, and they are then called abstract numbers ; the

other when the denomination of their units is specified, as when

we say, two men, five years, three hours, &c. these are called

concrete numbers.

It is evident, that the formation of numbers, by the successive

union of units, is independent of the nature of these units, and

that this must also be the case with the properties resulting from

this formation ; by which properties \\e are enabled to compound

and decompound numbers, which is called calculation. We shall

now explain the principal rules for the calculation of numbers,

without regard to the nature of their units.

ADDITION.

10. This operation, which has for its object the uniting of

several numbers in one, is only an abbreviation of the formation

of numbers by the successive union of units. If, for instance, it

were required to add five to seven, it would be necessary, in the

series of the names of numbers, one, two, three, four, five, six,

seven, &c. to ascend five places above seven, and we should then

come to the word twelve, which is consequently the amount of

seven units added to five. It is upon this process that the ad-

dition of all small numbers depends, the results of which are

committed to memory ; its immediate application to larger num-
bers would be impossible, but in this case, we suppose these

numbers divided into the different collections of units contained

in them, and we may add together those of the same name. For
instance, to add 27 to 53, we add the 7 units of the first number
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to the 2 of the second, making 9 ; then the 2 tens of the first with

the 3 of the second, making 5 tens. The two resui s, laken to-

gether, form a total of 5 tens and 9 units, or 59, which is the sum
of the numbers proposid.

Wliat is here said aj;p!ies to all numbers, however large, that

are to be add> d to ether ; but it is necessary t«> observe, that the

partial sums, resulting from the addition of two numbers, each

expressed by a single figure, often ( ontain tens, or units ot the

next higher collection, and these ought consequently to be joined

to their proper collection.

In the addition of the numbers 49 and 7'8,thesum of the units 9

and 8 is 17, of which weshould lesirve 10, or ten, to be added to

the sum of the tens in the given numbers ; next we say tliat 4

and 7 make 1 1, and joining to this the ten we reserved, we have

12 for the number of tens contained in tlic sum of the given

numbers ', which sum, therefore, contains 1 hundred, 2 tens and

7 units, that is, 1 -27.

11. By proceeding on these principles, a method has been de-

vised of placing numbers, that are to be added, which facilitates

the uniting of their collections of units, and a rule has been form-

ed, which the following example will illustrate.

Let the numbers be 527, 2519, 9812, 73 and 8; in order to

add them together, we begin by writing tiiem under each other,

placing the units of the same order in the same column ; then

we draw a line to separate them from the result, which is to be

written underneath it.

527
2M9
9812

73
8

Sum 12939

"We at first find the sum of the numbers contained in the column

of units to be 29, we write down only the nine units, and reserve

the 2 tens, to be joined to those which are contained in the next col-

umn, which, thus increased, contains 13 units of its own order;

we write down here only the t!ree units, and carry the ten to

the next column. Proceeding with this column as with ihc
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others, we find its sum to be 19 ; we write down the 9 units and

carry the ten to the next column, the sura of which we then find

to be X2 5 we write down the 2 units under this column and

place the ten on the left of it^ that is, we write down the sum of

this coluni;!, as it is found.

By this means we obtain 12930 for the sum of the given num-

bers.

12. The rule for performing this operation may be given thus.

Write the numbers to be added under each other, so that all the

units of the same kind may stand in the same cdumn, and draw a

line under them.

Beginning at the right, add up successively the mimbers in each

column ; if the sum does not exceed 9, tvriie it beneath its columUf

as it isfound ; if it contains one or more tens, carry them to the

next column ; lastly, under the last column write the whde of its

sumj.

Examples for practice.

Add together 8635, 2194, 7421, 5063, 2196 and 1225.

Ms. 26734.

Add together 84371, 6250, 10, 3842 and 631. .ins. 95104.

Add together 3004, 523, 8710, 6345 and 784. Ms. 19366.

Add together 7861, 345, 8023. .^ns. 16229.

Add together 66947, 46742 and 132684. Ans. 246373.

SUBTRACTION.

IS. After having learned to compose a number by the addi-

tion of several others, the first question, that presents itself, is,

how to take one number from another that is greater, or which

amounts to the same thing, to separate this last into two parts, one

of which shall be the given number. If, for instance, we have the

t The best method of proving addition is by means of subtraction.

The learner may, however, in general, satisfy himself of the correct-

ness of his work by beginning at the top of each column and adding

down, or by separating the upper line of figures and adding up the

rest and then adding this sum to the upper line.

Arith, 2
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number 9, and we wish to take 4 fro»n it, we should, by doing

this, separate it into two parts, wliich by addition would be the

same again.

To take one number from another, when they are not large,

it is necessary to pursue a course oj.posite to that prescribed in

the beginning of article 10, for iindiug theic. sura; that is, in

the series of the names of numbers, we ought to begin from the

gioatest of the numbers in question, and descend as many places

as there are units in t!je smailest, and we shall come to the name
given to the difference required. Thus, in descending four

places below the number nine we come to Jive, which expresses

the number that must be added to 4 to make 9, or which shows

how much 9 is greater than 4.

In this last point of view, 5 is the excess of 9 above 4. If wo

only wished to show the inequality' of the numbers 9 and 4, \Nith-

out fixing our attention on the order of their values, we should

say that their difference was 5. Lastly, if we were to go through

the operation of taking 4 from 9, we should say tliat the re-

mainder is 5. Thus we see that, although the words, excess,

remainder, and differtnce, are synonymous, each answers to a

particular manner of considering the separation of the number 9

into the parts 4 and 5, which operation is always designated by

the name subtraction.

14. When the numbers are large, the subtraction is perform-

ed, part at a time, by taking successively from the units of each

order in the greatest number, the corresponding units in the

least. That this may be done conveniently, the numbers are

placed as 9587 and 345 in the following example;

9587

345

Remainder 9242

and under each column is placed the excess of the upper number,

in that column, over the lower, thus

;

5, taken from 7, leaves 2,

4, taken from 8, leaves 4,

3, taken Irom 5, leaves 2,

and writing afterwards the figure 9, from which there is noth-
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ing to be taken ; the remainder, 9242, shows how much 9587 is

greater ihrtn 345.

That the piMcess here pui*sued gives a true result is indispu-

table, because in taking from the greatest of the two numbers

all the parts of the least, we evidently take from it the whole of

the least.

15. The application of this process requires particular atten-

tion, when son)e of the orders of units in the upper number are

greater than the corresponding orders in the lower.

If, for instance, 397 is to be taken from 524.

524

397

Remainder 127

In performing this question we cannot at first take the units

in the lower number from those in the upper ; but the number

524, here represented by 4 units, 2 tens and 5 hundreds, can be

expressed in a different manner by decomposing some of its col-

lections of units, and uniting a part with the units of a lower

order. Instead of the 2 tens and 4 units which terminate it, we
can substitute in our minds 1 ten and 14 units, then taking from

these units the 7 of tlie lower number, we get ihe remainder 7.

By this decomposition, the upper number now has but one ten,

from which we cannot take the 9 of the lower number, but from

the 5 hundred of the upper number we can take 1, to join with

the ten that is left, and we shall then have 4 hundreds and 1

1

tens, taking from these tens the tens of the lowTr number, 2 w ill

remain. Lastly, taking from the 4 hundreds, that are left iu

the upper number, the three hundreds of the lower, we obtain the

remainder 1, and thus get 127 as the result of the operation.

This manner of working consists, as we see, in borrowing,

from the next higher order, an unit, and joining it according to

its value to those of the order, on which we are employed, ob-

serving to count the uppoj* figure of the order from which it was
borrowed one unit less, when we shall have come to it.

16. When any orders of units are wanting in the upper num-
ber, that is, when there are ciphers between its figures, it is
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necessary to go to the first figure on the left, to borrow the 10 that

is wanted. See an example

7002

3495

Remainder 3507.

As we cannot take the 5 units of the lower number from the 2

of the upper, we borrow 10 units from the 7000, denoted by the

figure 7, which leaves 6990 ; joining the 10 we borrowed to the

figure 2, the upper number is now decompounded into 6990 and

12 ; taking from 12 the 5 units of the lower number, we obtain

7 for the units of the remainder.

This first operation has left in the upper number 6990 units

or 699 tens instead of the 700, expressed by the three last figures

on the left ; thus the places of the two ciphers are occupied by

9s, and the significant figure on the left is diminished by unity.

Continuing the subtraction in the other columns in the same

manner, no difficulty occurs, and we find the remainder, as put

down in the example.

17, Recapitulating the remarks made in the two preceding

articles, the rule to be observed in performing subtraction may
be given thus. Place the less number under the greater, so that

their units of the same order may be in the same columUf and draw

a line under them ; beginning at the right, take successively each

jigure of the lower number from the one in the same column of the

upper; if this cannot be done, increase the upperfigure by ten units,

counting the next significant figure, in the upper number, less by

unity, andifaphers come between, regard them as 9s.

18. For greater convenience, when it is necessary to decrease

the upper figure by unity, we can suffer it to retain its value,

and add this unit to the corresponding lower figure, which, thus

increased, gives, as is wanted, a result one less than would arise

from the written figures. In the first of the following examples,

after having taken 6 units from 14, we count the next figure of

the lower number 8, as 9, and so in the others.
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Examples,

16844 10378 103034 49812002

9786 2437 69845 18924983

7058 3S189

173425 8037t42 2123724 39742107

57632 5067310 112^467 25378421

13

Method of prorving Addition and Siihtraction.

19. In performing an operation, according to a process, the

correctness of which is established upon fixed principles, we may
nevertheless sometimes commit errors in the partial additions

and subtractions, the results of which we seek in the memory.

To prevent any mistake of this kind, we have recourse to a me-

thod, the reverse of the fii-st operation, by which we ascertain

whether the results are right ; this is called proving the operation.

The prftof of addition consists in subtracting successively from

the sum of the numbers added, all the parts of these numbers,

and if the work has been correctly performed, there will be no

remainder. We will now show by the example given in article

11, how to perform all these subtractions at once.

527

2519

9812
73

8

Sum 12939
llsiO

We first add the numbers in the left hand column, which
here contains thousands, and subtract the sum 11 from 12,

which begins the pre<eding result, and write underneath tlie

diffei'ence I, produced b) what was reserved from the column
of hundreds, in performing the addition. Th^ sum of the

column of hundreds, taken b> itself, amouisfs to bur i 8 ; if we 'ake

this from the 9 of the first result, increased by burrowing the one
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thousand, considered as ten hundred, that remains froift the

column preceding it on the left, the remainder 1 , written beneath,

will show what was reserved from tiic column of tens. The sum
of the last 11, taken from 13, leaves for its remjiinder 2 tens,

the number reserved from the column of units. Joining these

£ tens with the 9 units of the answer, we form th • number a9,

which ought to be exactly the sum of the column of units, as this

column is not affected by any of the others ; adding again tbe

numbers in this column, we ougiit to come to tlie same result, and

consequently to have no remainder. This is actually the case,

as is denoted by the written under the column. The process,

just explained, may be given thus ; to prove addition, beginning

on the left, add again each oj the several columns, subtract the sums

respectivelyfrom the sums written above them and write down the

remainders, which must be joined, each as so many tens to the sum

of the next cohimn on the right ; if the work be correct there wiU

be no remainder under the last column,

20. The proof of subtraction is, that the remainder, added to

the least mimber, exactly gives the greatest. Thus to ascertain

the exactness of the following subtraction,

5-24

297

227

524

we add the remainder to the smallest number, and find the sutn,

in reality, equal to the greatest.

MULTIPLICATION.

21. When the numbers to be added are equal to each other,

addition takes the name of multiplication, because in this case the

sum is composed of one of the numbers repeated as many times

as there are numbers to be added. Reciprocally, if we wish to

repeat a number several times, we may do it, by adding the num-

ber to itself as trany times, wanting one, as it is to be repeated.

For instance, by the following addiiion.
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16

16

16

16

64

the number 16 is repeated four timesj and added to itself three

times.

To repeat a number twice is to double it ; 3 times, to triple it ;

4 times, to quadruple it, and so on.

22. Multiplication implies three numbers, namely, that, which

is to be repeated, and which is called tlie miUtipliamd ; the nuni-

bei- which shows how many times it is to be lept-aied, whi* i» is

called the multiplier; and lastly the result of the operation,

which is called the pnyduct. The nudtiplicand and mtdtiplier,

considered as concurring to form the product, are called factors

of the product. In the example given above, 1 6 is the multipli-

cand. 4 the multiplier, and 64 the product ; and we see that 4 and

16 are the factors of 64.

23. When the multiplicand and multiplier are large numbers,

the formation of the product, by the repeated addition of the

multiplicand, would be very tedious. In consequence of this,

means have been sought of abridging it, by separating it into a

certain number of partial operations, easily performed by mem-

ory. For instance, the number 16 would be repeated 4 times,

by taking separately, the same number of times, the six units and

the ten, that compose it. It is sufficient then to know the pro-

ducts arising from the multiplication of the units of each order

in the multiplicand by the multiplier, when the multiplier con-

sists of a single figure, and this amounts, for all cases that can

occur, to finding the products of each one of the 9 first numbers

by every other of these n«imbei"s.

24. These products are contained in the following table, attri-

buted to Pythagoras.
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TABIE or PYTHAGORAS.

1 2 3 4 5 6 7 8

16

24

9

2 4 6 8 10 12 14 18

3 6 9 12 15 18 21 27

364 8 12 16 20 24 28 3;i

5 10 15 20 25 30 35

42

49

40

48

56

45

6 12 18 24 30 36 54

7 14 21 28 35 42 63

8 16 24 32 40 48

54

56 64

72

72

9 18 27 56 45 63 81

25. To form this table, the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9,

are written first on the same line. Each one of these numbers

is then added to itself and the sum written in the second line,

which thus contains each number of the first doubled, or the

product of each number by 2. Each number of the second line

is then added to the number over it in the first, and their sums

are written in the third line, which thus contains the triple of

each number in the first, or their products by 3. By adding the

numbers of the third line to those of the first, a fourth is formed,

containing the quadruple of each number of the first, or their

products by 4 ; and so on, to the ninth line, which contains the

products of each number of the first line by 9.

It may not be amiss to remark, that the different products of

any number whatever by the numbers 2, 3, 4, 5, &c. are called

multiples of that number ; thus 6, 9, 12, 15, &c. are multiples of 3.

26. When the formation of this table is well understood, the

mode of using it may be easily conceived. If, for instance, the

product of 7 by 5 were required ; looking to the fifth line, which

contains the different products of the 9 first numbers by 5, we

should take the one directly under the 7j which is 35 j the same
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method should be pursued in every other instance, and the pro-

duct will always he found in the line of the multiplier and under

the multiplicand.

27. If we seek in the table of Pythagoras the product of 5 by

7, we shall find, as before, 35, althougb in this case 5 is the mul-

tiplicand, and 7 the mulf iplier. This remai k is applicable to each

product in the table, and it is possible, in any multiplication, to

reverse the order of the factors ; that is, to make the multiplicand

the multiplier, and the multiplier the multiplicand.

As the table of Pythagoras contains but a limited number of

products, it would not be sufficient to verify the above conclu-

sion by this table; for a doubt might arise respecting it in the

case of greater products, the number of which is unlimited

;

there is hut one method independent of the particular value of

the multiplicand and multiplier of showing that there is no ex-

ception to this remark. This is one well calculated for the pur-

pose, as it gives a good illustration of the manner, in which the

product of two numbers is formed. To make it more easily un-

derstood, we will apply it first to the factors 5 and 3.

If wo write the figure 1, 5 times on one line, and place two

similar lines underneath tlie fii*st, in this manner,

1, 1, 1, 1, 1,

1, 1, 1, 1, 1,

1, h 1, 1, 1,

the whole number of Is will consist of as many times 5 as there are

lines, that is, 3 times 5 ; but, by the disposition of these lines, the

figures are ranged in columns, containing 3 each. Counting them
in this manner, we find as many times 3 units as there are col-

amns, or 5 times 3 units, and as the product does not depend on
the manner of counting, it follows that 3 times 5 and 5 times 3

give the same product. It is easy to extend this reasoning to

any numbers, if we conceive each line to contain as many units

as there arc in the multiplicand, and the number of lines, plac-

ed otie under the other, to be equal to the multiplier. In count-

ing tlie product by lines, it arises from the multiplicand repeated

as many times as there are units in the multiplier ; but the as-

semblage of figures written presents as many columns as there

Arith, 3
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are units in a line, and each column contains as many units as
' there are lines ; if, then, we choose to count hy columns, tha

number of lines, or the multiplier, will be repeated as many
times as there are units in a line, that is, in the multiplicand. We
may therefore, in finding the product of any two numbers, take

either of them at pleasure, for the multiplier.

28. The reasoning, just given to prove the truth of the pre-

ceding proposition, is the demonstration of it, and it may be

remarked, that the essential distinction of pure mathematics is^

that no proposition, or process, is admitted, which is not the

necessary consequence of the primary notions, on which it is

founded, or the truth of which is not generally established by

reasoning independent of particular examples, winch can never

constitute a proof, but serve only to facilitate the readei-'s under-

standing the reasoning, or the practice of the rules.

29. Knowing all the products given by the nine first numbers,

combined with each other, we can, according to the remark in

article 23, multiply any number by a number consisting of a

single figure, by forming successively the product of each order

of units in the multiplicand, by the multiplier ; the work is as

follows J

526

7

3682

The product of the units of the multiplicand, 6, by the multi-

plier, 7, being 42, we write down only the 2 units, reserving the

4 tens to be joined with those, that will be found in the next

higher place.

The product of the tens of the multiplicand, 2, by the multi-

plier, 7, is 14, and adding the 4 tens wc reserved, we make it

18, of which number we write only the units, and reserve the

ten for the next operation.

The product of the hundreds of the multiplicand, 5, by the

multiplier, 7, is 35 ; when increased by the 1 w<>, reserved, it be-

comes S6, the whole of which is written, because there are no

more figures in the mdltiplicand.

SO. This process may be given thus ; To muUiphj a number



Multiplication, \^

of several figures hij a single Jigure, place the rmiHiplier wider the

units of the multiplicand^ and draw a line beneath, to separate them

from tlie product. Beginning at the right, multiply successivelyf by

tlie multiplierf tlie units of each order in the multiplicand, and

write the whole product of each, when it does not exceed 9 ; but, if

it contains tens, reserve them to be added to the next product. Con-

tinue thus to the last figure of the multiplicandf on the left, the

whole residt of which must be written down.

Examples. 243 by 6. Ans. 1458. 8943 by 9. Ms. 80487.

It is evident that, when the multiplicand is terminated by 0,

the operation can commence only with its first significant figure

;

but to give the product its proper value, it is necessary to put,

on the right of it, as many Os as there are in the multiplicand.

As for the Os, which may occur between the figures of the mul-

tiplicand, they give no product, and a must be written down
when no number has been reserved from the preceding product,

as is shown by the following examples :

956 8200 7012 80970

6 9 5 4

5736 73800 35060 323880

Multiply

730 by 3. Ms. 2190. 8104 by 4. .9ns. 32416.

20508 by 5. Mis. 102540. 360 )00 by 6. Ans. 216S000.

297000 by 7. Ans. 2079000. 9097030 by 9. Ans. 81873270.

31, The most simple number, expressed by several figures,

being 10, 100, 1000, &c. it seems necessary to inquire how we
can multiply any number by one of these. Now if we recollect

the principle mentioned in article 6, by which the same figure is

increased in value 10 times, by every remove towaids the left,

we shall soon perceive, that to multiply any number by 10, we
must make each of its orders of units ten times greater ; that

is, we must change its units into tens, its tens into hundreds, and
so on, and that this is effected by placing a on the right of tlie

number proposed, because then all its significant figures will be
advanced one place towards the left.

For the same reason, to multiply any number by 100, we
should place two ciphers on the right j for, since it becomes ten
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times greater by the first cipher, the second will make it ten

times greater still, and consequently it will be 10 times 10, or

100 times, greater than it was at first.

Continuing this reasoning, it will be perceived that, accord-

ing to our system of numeration, a number is multiplied by 10,

100, 1000, kc. by writing on the right of the multiplicand as

majiy ciphers as there are on the right of the unit in the multi-

plier.

32, When the significant figure of the multiplier differs from

unify, as, for instance, when it is required to multiply by SO, or

300, or 3000, which are only 10 times 3, or 100 times 3, or 1000

times 3, &( ". the operation is made to consist of two parts, we at

first multiply by tie significant figure, 3, according to the rule

in article 30, and then multiply the product by 10, 100, or :000,

&c. (as was stated in the preceding article) by writing one, two,

three, &c. ciphers on the right of this product.

Let it be required, for instance, to multiply 764 by 300.

764

300

229200

The four significant figures of this product result from the

multiplication of 764 by 3, and are placed two places towards

the left to admit the two ciphers, which terminate the muliiplicr.

In general, when the multiplier is termiwited by a number of

ciphers, first multiphj the multiplicand hj the sipiificant Jigure of

the mnltiplierf and place, after the product, as many ciphers as there

are in the multiplier.

Examples.

Multiply

S5012 by 100. Ms. 5501200. 635427 by 500. Jns. 319213500.

2107900 by 70. Ms, 147553000. 9120400 by 90. Ms. 820836000.

33. The preceding rules apply to the case, in which the multi-

plier is any number whatever, by considering separately each

of the collections of units of which it is composed. To multiply,

for instance, 793 by 345, or, which is the same thing, to repeat

793, 345 times, is to take 793, 5 times, added to 40 times, added to
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300 times, and the operation to be perfoinned is resolved into S

others, in eacli of which the muUipliei-s, 5, 40, and 300, have but

one significant figure.

To add the result of these three operations easily, the calcula-

tion is disposed thus j

793

345

3965

31720

237900

273585

The multiplicand is multiplied successively by the units, tens,

hundreds, &c. of the multiplier, ohsening to place a cipher on

the right of the partial product, given by the tens in the multi-

plier, and two on the right of the product given by hundreds,

which advances the first of these products one place towards the

left, an«. the second, two. The three partial products are then

added together, to obtain the total product of the given nuuibers.

As the ciphers, placed at the end of these partial products, are

of no value in the addition, we may dispense with writing them,

provided we take care to put in its proper place the first figure

of the product given by each significant figuie of the multiplier;

that is, to put in the place of tens the first figure of the product

given by the tens in the multiplier ; in the place of hundreds the

first figure of the product given by the hundreds in the multiplier,

and so on.

34. According to what has been said, the rule is as follows.

To nutltiply any hco vumbers^ one by the others form successively

(according to the rule in article SO,J the products of the mnltipli-

cand, by the different orders of units in the multiplier : observing to

place the frst fgure of each partial product under the units of the

same order with thefgure of the multiplier^ by which the product is

given ; and then add together all the partial products.

35. When the multiplicand is terminated by ciphers, they may
at first be neglected, and all the partial multiplications begin

with the first significant figure of the multiplicand j but after-
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wards, to put in their proper rank the figures of the total pro-

duct, as many ciphers, as there are in the multiplicantl, must be

written on the right of this product.

If the multiplier is terminated by ciphers, we may, according

to the remark in article 31, neglect these also, provided we write

an equal number on the right of the product.

Hence it results that, ruhen both multiplicand and imdtiplier are

terminated bij ciphers, these ciphers may atjirst be ncgkciedf and

after the otherJig^ires of the product are obtained, the same number

may be written on the right of the product.

"When there are ciphers between the significant figures of the

multiplier, as they give no product, they may be passed over,

observing to put in its proper place the unit of the product, giv-

en by the figure on the left of these ciphers.

Examples.

SOO 526 Multiply 0648 by 5137, Ms, 49561776.

40 307 7854 by 350. Ans. 2748'jOO.

17204774 by 125. Jns. 2150596750.

12000 3682 62500 by 520. Ms. 52500000.

157800 • 25980762 by 40. Ms. 1039P30480'

161482

DIVISION.

36. TiTE product of two numbers being formed by repeating one

of these numbers as many times as there are units in the other,

we can, from the product, find one of the factors, by ascertaining

how many times it contains the other ; subtraction alone is neces-

sary for this. Thus, if it be required to ascertain the number

of times 64 contains 16, we need only subtract 16 from 64 as

many times as it can be done ; and since, after 4 subtractions,

nothing is left, we conclude, that 16 is contained 4 times in 64,

This manner of decomposing one number by another, in order

to know how many tinM?s the last is contained in the first, is

called division^ because it serves to divide, or portion out, a

given number into equal parts, of which the number or value is

given.
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If, for instance, it were required to divide 64 into 4 equal

parts ; to find the value of these parts, it would be necessary to

ascertain the number, that is contained 4 times in 64, and conse-

quently to regard 64 as a product, having for its factors 4 and

one of the required parts, which is hei-e 16.

If it were asked how many parts, of 16 each, 64 is composed of,

it would be necessary, in order to ascertain the number of these

parts, to find how many times 64 contains 16, and consequently*

64 must be regarded as a product, of which one of the factors is

16, and the other tlie number sought, 'which is 4.

"Whatever then may be the object in view, division consists in

finding one of the factors of a given product, when the other is

known.

57. The number to be divided is called the dividend, the fac-

tor, that is known, and by which we must divide, is called the

divisor^ the factor found by the division is called the quotient,

and always shows how many times the divisor is contained in the

dividend.

It follows then, from what has been said, that the divisor mul-

tiplied by the quotient ought to reproduce the dividend.

38. When the dividend can contain the divisor a great many
times, it would be inconvenient in practice to make use of repeated

subtraction for finding the quotient; it then becomes necessary

to have recourse to an abbreviation analogous to that which is

given for multiplication. If the di\ idei)d is not ten times larger

than the divisor, which may be easily perceived by the inspec-

tion of the numbers, and if the divisor consists of only one figure,

the quotient may be found by the table of Pythagoras, since that

contains all the products of factors that consist of only one

figure each. If it were asked, for instance, how many times 8 is

contained in 56, it would be necessary to go doN\n the 8th column,

to the line in which 56 is found j the figure 7, at the beginning

of this line, shows the second factor of the number 56, or how
many times 8 is contained in this number.

We see by the same table, that there are numbers, which can-

not lie exactly divided by others. For instance, as tlie seventh

line, which contains ail the multiples of 7, has not 40 in it, it
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follows that 40 is not ilivisible by 7 ; but as it comes between

35 and 42, we see tliat the ^j^reatest multiple of 7, it can contain,

is 35^ the factors of which are 5 and 7. By means of this ele-

mentary information, and the considerations, which will now be

offered, any division whatever may be performed.

39. Let it be required, for example, to divide 1656 by 3 ; this

question may be changed into another form, namely ; Tojind such

a Jiumberf that multiplying its units, tens, hundreds, Sfc. ;;,• 3, the

"product of these units, tens* hundreds, ^c. may he the dividend, 1656.

It is plain, that this number will not have units of a higher

order than thousands, for, if it had tens of thousands, there

would be tens of thousands in the product, which is not the case.

Neither can it have units of as high an order as thousands, for if

it had but one of this order, the product would contain at least 3,

which is not the case. It appears then, that the thousand in the

dividend is a number reserved, when the hundreds of the quo-

tient were multiplied by 3, the divisor.

This premised, the figure occupying the place of hundreds, in

the required quotient, ought to be such, that, when multiplied by

5, its product may be 16, or the greatest multiple of 3 less than

16. This restriction is necessary, on account of the reserved

numbers, which the other figures of the quotient may furnish,

when multiplied by the divisor, and which should be united to

the product of the hundreds.

The number, which fulfils this condition, is 5 ; but 5 hundreds,

multiplied by 3, gives 15 hundreds, and the dividend, 1656, con-

tains 16 hundreds; the difference, 1 hundred, must have come then

from the reserved number, arising from the multiplication of the

other figures of the quotient by the divisor. If we now subtract

the partial product, 15 liundreds, or 1500, from the total product,

1656, the remainder, 156, will contain the product of the units

and tens of the quotient by the divisor, and the question will be

reduced to finding a number, which, multiplied by 3, gives 156,

a question similar to that, which presented itself above. Thus

when the first figure of the quotient shall have been found in

this last question, as it was in the first, let it be multiplied by the

divisor, then subtracting this partial product from the whole
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product, the result will be a new dividend, which may be treated

in the same manner as the preceding, and so on, until the origi-

nal dividend is exhausted.

40, The operation just described is disposed of thus ;

dividend i656

15

divisor

552 quotient

15

15

06

6

The dividend and divisor are separated by a line, and another

line is drawn under the divisor, to mark the place of the quotient.

This being done, we take on the left of the dividend the part 16,

' capable of containing the divisor, 5, and dividing it by this num-

ber, we get 5 for the first figure of the quotient on the left ; tlien

taking the product of the divisor by the number just found, and

subtracting it from 16, the partial dividend, we write, under-

neath, the remainder, l,by the side of which we bringdown the

5 tens of the dividend. Considering the number, as it now
stands, a second partial dividend, we divide it also by the divi-

sor, 3, and obtain 5 for the second figure of the quotient ; we
then take the product of this number by the divisor, and subtract-

ing it from the partial dividend, get for the remainder. We
then bring down the last figure of the dividend, 6, aiid divide,

this third partial dividend by the divisor, 3, and get 2 for the

last figure of the quotient.

41. It is manifest that, if we find a partial dividend, which can-

not contain the divisor, it must be because the quotient has no

unife of the order of that dividend, and that those which it con-

tains arise from the products of the divisor by the units of the

lower orders in the quotient ; it is necessary, therefore, when-

ever this is the case, to put a in the quotient, to occupy the

place of the order of units that is wanting.

Arith. 4
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For instance, let 15S5 be divided by 5.

515S5
15 307

035

35

00

Tbe division of the 15 hundreds of the dividend, by the divisor,

leavifii^ no remainder, the 3 tens, which form the second partial

dividend, do not contain the divisor. Hence it appears, that the

quo ient ought to have no tens ; consequently this place must be

filled v\ith a cipher, in order to give to the first figure of the

quotient the value, it ought to have, compared with the othere ;

then bringing down the last figure of the dividend, we form a
third partial dividend, w hich, divided by 5, gives 7 for the units

of the quotient, the whole of which is now 307.

42. Tiie considerations, presented in article 40, apply equally

to the case, in which the divisor consists of any number of

figures.

If. for instance, it were required to divide 57981 by 251, it

would easily be seen, that the quotient can have no figures of a

higher order than hundreds, because, if it had thousands, the divi-

dend would contain hundreds of thousands, which is not the case;

further, the number of hundreds should be such, that, multiplied

by 251, the product would be 579, or the multiple of 251 next

les'' than 579 ; this restriction is necessary on account of the

reserved nunjbers which may have been furnished by the multi-

plication of the other figures of the quotient by the divisor. The
number, which answers to this condition, is 2 ; but 2 hundreds,

multiplied by 251, give 502 hundreds, and the divisor contains

579 ; the difference, 77 hundreds, arises from the reserved

numbers resulting from the multiplication of the units and tens

of the quotient, by the divisor.

If we now subtract the partial product, 502 hundi-eds, or 50200,

from the total product, 57981, the remainder, 7781, will contain

the products of the units and tens of the quotient by the divisor.
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and the operation will be reduced to finding a number, which,

multiplied by 251, will give for a product 7781.

Thus, when the fii-st figure of the quotient shall have been de-

termined, it must be multiplied by the divisor, the product being

subtracted from the whole dividend, a new dividend will be the

result, which must be operated upon like the preceding ; and so

on, till the whole dividend is exhausted.

It is always necessary, for obtaining the first figure of the

quotient, to separate, on the left of the dividend, so many figures,

as, considered as simple units, will contain the divisor, and ad-

mit of this partial di\ ision.

43. Disposing of the operation as before, the calculation, just

explained, is performed in the following order ;

57981

502

251

231

778

75S

251

251

000

The 3 first figures, on the left of the dividend, are taken to

form the partial dividend ; they are divided by the divisor, and

the number 2, thenre resulting, is written in the quotient ; the

di\ isor is then multiplied by this number, and the product, 502,

is written under the partial dividend, 579. Subtraction being

performed, the 8 tens of the dividend are brought down to the

side of tlie remaiud<^r, 77 ; this new partial dividend is then

divided by the divisor, and 3 is obtained for the second figure of

the quotient ; the divisor is multiplied by this, the product sub-

tratted from the corre-sponding partial dividend, and to the

remainder, 25, is broujcht dov\ n the last figure of the dividend, 1 j

this last partial «li\idetid, 251, being equal to the divisor, gives 1

for the units of the quotient.

44. When tlie divis'>r rt n^ains many figures, ^o-ne difficulty

may be found in ascertaining how many times it is contained in
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the partial dividends. The following example is designed to

show how it may be known.

423405 485

3880 873

3540

3395

1455

1455

0000

It is necessary at first to take four figures on the left of the

dividend, to form a number which will contain the divisor; and

then it cannot be immediately perceived how many times 485 is

contained in 4234. To aid us in this inquiry, we shall observe,

that tills divisor is between 400 and 500 ; and if it were exactly

one or the other of these numbers, the question would be reduced

to finding how many times 4 hundred or 5 hundred is contained

in the 42 hundreds of the number 4234, or, which amounts to the

same thing, how many times 4 or 5 is contained in 42. For the

first of these numbers we get 10, and for the second 8 ; the quo-

tient must now be sought between these two. We see at first

that we cannot employ 10, because this would imply, that the

order of units in tlie dividend above hundreds contained the

divisor, which is not the case. It only remains then, to try

which of the two numbers 9 or 8, used as the multiplier of 485,

gives a product that can be subtracted from 4234, and 8 is found

to be the one. Subtracting from the partial dividend the pro-

duct of the divisor multiplied by 8, we get, for the remainder,

354 ; bringing down then the tens in the dividend, we form a

second partial dividend, on which we operate as on the pre-

ceding ; and so with the others.

45. The recapitulation of the preceding articles gives us this

"rule. To dvcide one number by another^ place the divisor on the

right of the dividend, separate ihem by a line, and draw another

line under the divisor, to make the placefor the quotient. Take, on

Hie left of the dividend, as vianyfgures as are necessary to contain

the divisor ; fnd how many times the number expressed by thefirst
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^gure of the dixdsor, is contained in that, represented by thefirst, or

two first, figures of the partial dividend ;• multiply this qiwtient,

which is only an approximation, by the divisor, and, if the product

is greater than the partial dividend, take units from the quotient

continually, till it wilt give a product that can be subtracted from

the partial dividend ; subtract this product, and if the remainder

be greater than tlie dividend, it will be a proof that the quotient has

been too much diminished; and, consequently, it must be increased.

By the side of the remainder bring down the next figure of the

dividend, andfind, as before, how many times this partial dividend

contains the divisor ; continue thus, until all thefigures of the given

dividend are brought down. When a partial^ividend occurs, which

does not contain the divisor, it is necessary, before bringing doxvn

anotherfigure of the dividend, to put a cipher in the quotient.

46. The operations ret^uired in division may be made to oc-

cupy a less space, by performing mentally the subtraction of the

products given by the divisor and each figure of the quotient, as

is exhibited in the following example

;

1755
I

39

195
I

45

000

After having found that the first partial dividend contains 4

times the divisor, 39, we multiply at first the 9 units by 4, which

gives 36 ; and, in order to subtract this product from the partial

dividend, we add to the 5 units in the dividend 4 tens, making
their sum 45, from which taking 36, 9 remains. We then re-

serve 4 tens to join them, in the mind, to 12, the product of the

quotient by the tens in the divisor, making the sum 16 ; in taking

this sum from IT, we take away the 4 tens, with which we had

augmented the units of the dividend, in order to perform the

preceding subtraction. We then operate in the same manner on
the second partial dividend, 195, saying; 9 times 5 make 45,

taken from 45, nought remains, then 5 times 3 make 15, and 4
tens, iTserved, make 19, taken from 19, nought remains.

\> e see sufficiently by this in what manner we arc to perform
any other example, however complicated.

47, Division is also abbreviated when the dividend and divi-
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sor are terminated by ciphers, because we can strike out, from

the end of each, as many ciphers as are contained in the one that

has the least number.

If, for instance, 84000 were to be divided by 400, these num-
bers may be reduced to 840 and 4, and the quotient would not be

altered ; for we should only have to change the name of the

uiiits, since, instead of 84000, or 840 hundreds, and 400, or 4

hundreds, we should have 840 units and 4 units, and the quoti( nt

of tlie numbers 840 and 4 is always the same, whatever may be

the denomination of their units.

It may also be remarked that, in striking out two ciphers at

the end of the given numbers, they have been, at the same time,

both of them divided by 100 ; for it follows from arti'le 31, that

in striking out 1, 2, or 3 ciphers on the right of any number, the

number is divided by 10, or 100, or 1000, &c.

Examples in Division,

144
24
00

3

"48

16512
2752
0000

344

48

5049164
53956
37644
00000

69.74

486

Divide 49561776 by 5137.

27489000 by 350.

2150596750 by 125.

32500000 by 520.

1039230480 by i 0.

j3ws. 9648.

Ans. 7854.

Ans. 17204774.

Ans. 62500.

Ans. 25980762.

48. Division and multiplication mutually prove each other,

like subtraction and addition, for according to the definition of

division, (36), we ought, by dividing the product by one of the

factors, to find the other ; and multiplying the divisor by the

quotient, we ought to reproduce the dividend (37).

FRACTIONS.

49. Division cannot always be exactly performed, because

any number whatever of units taken a certain number of times,

does not always compose any other number whatever. Exam-
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pies of this have already been seen in the table of Pytlia^^ras,

which contains only the product of the 9 first numbei*s multiplied

two and two, but does not contain all the numbers between 1

and 81, the first and last numbers in it. The method hitherto

gi\en shows then, only how to find the greatest multiple of the

divisor, that can be contained in the dividend.

If we divide 239 by 8, according to the rule in article 46,

239 8

7

we have, for the last partial dividend, the number 79, which does

not contain 8 exactly, but which, falling between the two numbers,

72 and 80, one of which contains the divisor, 8, nine times, and

the other ten, shows us that the last part of the quotient is greater

than 9, and less than 10, and consequently, that the whole quo-

tient is between 29 and 30. If we multiply the unit figure of

the quotient, 9, by the divisor, 8, and subtract the product from

the last partial dividend, 79, the remainder, 7, will evidently be

the excess of the dividend, 239, above the product of the factors,

29 and 8. Indeed, having, by the different parts of the operati<m,

subtracted successively from the dividend, 239, the product of

each figure of the quotient by the divisor, we have evidently sub-

tracted the product of the whole quotient by the divisor, or 232 ;

and the remainder, 7, less than the divisor, proves, that 232 is

the greatest multiple of 8, that can be contained in 239.

50. It must be perceived, after what has been said, that to

reproduce any dividend, we must add to the product of the divi-

sor by the quotient, the sum which remains when the division

cannot be performed exactly.

51. If we wished to divide into eight equal parts a sum of

whatever nature, consisting of 239 units, we could not do it with-

out using parts of units or fractions. Thus, when we have taken
from the number 239 the 8 times 29 units contained in it, there

will remain 7 units, to be divided into 8 parts ; to do this, we
may divide each of these units, one after the other, into 8 parts,

and then take one part out of each unit, which will give 7 parts

to be joined to the 29 whole units, to form the eighth part of

239, or the exact quotient of this number, by 8.
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The same reasoning may be applied to every other example

of division in which there is a remainder, and in this case the

quotient is composed of two parts ; one, consisting of whole

units, while the other cannot be obtained until the concrete or

material units of the remainder have been actually divided into

the number of parts denoted by the divisor ; without this it can

only be indicated by supposing, a unit of the dividend to be divid-

ed into as many parts as there are units in the divisor, and so many

of these parts, as there are units in the remainder, taken to complete

the quotient required.

5'i. In general, w'hen we have occasion to consider quantities

less than unity, vve suppose unity divided into a certain number

of parts, suflSciently small to be contained a certain number of

times in these quantities, or to measure them. In the idea thus

formed of their magnitude there are two elements, namely, the

number of times the measuring part is contained in unity, and

the number of these parts found in the quantities.

A nomenclature has been made for fractions, which answers

to this manner of conceiving and representing them.

That which results from the division of unity

into 2 parts is called a moiety or half,

into 3 parts a third,

into 4 parts a quarter or fourth,

into 5 parts o,fifth,

into 6 parts a sixth,

and so on, adding after the two first, the termination th to the num-

ber, which denotes how many parts are supposed to be in unity.

Every fraction then is expressed by two numbers ; the first,

which shows how many parts it is composed of, is called the

numerator, and the other, which shows how many of these parts

are necessary to form an unit, is called the detiominator, because

the denomination of the fraction is deduced from it. Five sixths

of an unit is a fraction, the numerator of which is five, and the

denominator six.

The numerator and the denominator together are called the two

term.s of the fraction.

Figures are used to shorten the expression of fractions, the



Fractions. 33

denominator being written under the numerator, and separated

from it by a line,

one third is written |,

Jive sixths f . .

53, According to the meaning attached to the words, numera-

tor and denominataTf it is plain, that a fraction is increased, by

increasing its numeratorj without changing its dejtominator ; for

this last, as it shows into how many parts unity is divided, deter-

mines the magnitude of these parts, whicli continues the same,

while the denominator remains unchanged; and by augmenting

the numerator, the number of these parts is augmented, and con-

sequently the fraction increased. It is thus, for instance, that 4
exceeds |, and that \^ exceeds W.

It follows evidently from this, that tyy repeating the numeratar

2, 3, or any number of times, without altering the denominator,

we repeat, a like number of times, the quantity expressed by the

fraction, or in other words multiply it by this number; for we
make 2, 3, or any number of times, as many parts, as il had

before, and these parts have remained each of the same value.

The fraction |, then, is the triple f»f i and i^ the double of /j-.

^ fraction is diminished by diminishing its numerator, without

changing its denominator, since it is made to consist of a less

number of parts than it contained before, and those parts retain

the same value. Whence, if the numerator be divided by 2, 3, or

any number, without the denominator being altered, the fractim is

made a like number of times smaller, or is divided by that number,

for it is made to contain 2, 3, or any number of times less parts

tlian it contained before, and these parts remain of the same
value. Thus 4 is a third of 4 and -* is half of 4^.

54. On the contrary, a fiaction is diminished, when its de-

nominator is increased without changing its numerator j for

then more parts are supposed in an unit, and consequently they

must be smaller, but, as only the same number of them are taken

to form the fraction, the amount in this case must be a less quan-
tity than in the first. Thus 4 is less than |, and j\ than |.

Hence it follows, that if tlie demminalor of afraaion be multi-

plied hy 2, 5, or any number, without the numerator being changed,

Arith, 5



34 Arithmeiic,

tJiefraction benoines a like number of times smaller, or is divided by

that number, for it is composed of the same number of parts as

before, but each of them has become 2, 3, or a certain number
of times less. The fraction | is half of |^, and ^^ the third oi *.

Jl fraction is increased when its denominator is diminished with-

out the numerator being changed ; because, as wnWy is supposed to

be divided into fewer parts, each one becomes greater, and their

amount is therefore greater.

Whence, if the denominator of a fraction be divided by 2, 3, or

any other number, the fraction will be made a like number of times

greater, or tvUl be multiplied by that number ; for the number of

parts remains tije same, and each one becomes 2, 3, or a certain

number of times greater than it was before. According to this,

I is triple of ^^ and | the quadruple of /^.

It may be remarked, that to suppress the denominator of a

fraction is the same as to multiply the fraction by that number.

For instance, to suppress the denominator 3 in the fraction | is to

change it into 2 wimle ones, or to multiply it by 3.

55. The preceding propositions may be recapitulated as follows

5

By multiplying
| „^,„,erator, the fraction is

/«l"!t;pHecl.
By divKhng J (divided.

By mulfiplving ")
., , • 1 *i r *• • f divided.

Tit ,1:. :.iV.l J. the denominator, the traction IS { ,,. ,. ,
13y dividing J

' (^multiplied

56. The first consequence to be drawn from this table is, that

the operations performed on the denominator pw>duce effects of

an inverse or contrary nature with respect to the value of the

fraction. Hence it results, that, if both the numerator and denom-

inator of a fraction be midtiplied at the sume iimef by the same

number, the value of the fraction will not be altered; for if, on the

one hand, multiplying the numerator makes the fraction 2, S, &c.

times greater, so on the other, by the second operation, the half

or third part &,c, of it is taken ; in other words, it is divided by

the same number, by which it had at first been multiplied.

Thus ^ is equal to ^g, and^^j is equal to 1°-.

57. It is also manifest that, if both the numerator ami denomi-

nator of a fraction be divided, at the same time, by the same num-

ber, the value of the fraction will not he altered ; for if, on the one

hand, by dividing the numerator the fraction is made 2, 3, &c.
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times smaller ; on tlie other, by the second operation, the double,

triple, &c. is taken ; in short it is multiplied by the same num-

ber, by which it was at fii-st divided. Thus the fraction | is

equal to i," and |- is equal to ^,

58. It is not witli fractions as with whole numbers, in which a

magnitude, so long as it is considered with relation to the same

unit, is susceptible of but one expression. In fractions on the

contrary, the same magnitude can l)e expressed in an infinite

number of ways. For instance, the fractions

2» 4' T' T TIT' T5' TT» **-^*

in each of which the denominator is twice as great as the nume-

rator, express, under different forms, the half of an unit. The
fractions |. .|. |. ^\, ^'y, ^%, ^\, &c.

of which the denominator is three times as great as the numera-

tor, represent each the third part of an unit. Among all the

forms, which the given fraction assumes, in each instance, the

first is the most remarkable, as being the most simple ; and, con-

sequently, it is well to know how to find it from any of the

others. It is obtained by dividing the two terms of the others

by the same number, which, as lias already been shown, does not

alter their value. Thus if we divide by 7 the two terms of the

fraction ^\, we come back to ^ ; and, performing the same ope-

ration on -^j, we get |.

59. It Is by following this process, that a fraction is reduced

to its most simple terms : it cannot, however, be applied, except to

fractions, of which the numerator and denominator are divisible

by the same number ; in all other cases the given traction is the

most simple of all those, that can represent the quantity it ex-

presses. Thus the fractions -i, ^j, if, the terms of which can-

not be divided by the same number, or Jiave no common divisor,

are irreducibtc, and, coasequently, cannot express, in a more sim-

ple manner, the magnitudes which they represent.

60. Hence it follows, that to simplify a fraction, wc must
endeavour to divide its two terms by some one of the numbers,

2, 3, &c ; but by this uncertain mode of proceeding it will not

be always possible to come at the most simple terms of the given

fraction, or at least, it will often be necessary to perform a great

number of operations.



S6 Jirithmeiic,

If, for instance, the fraction |i were given, it may be seen at

once, that each of its terms is a multiple of £, and dividing them

by this number, we obtain l| ; dividing these last also by 2, we

obtain JL. Although much more simple now than at first, this

fraction is still susceptible of reduction, fur its two terras can be

divided by 3, and it then becomes ^.

If we observe, that to divide a number by 2, then the quotient

by 2, and then the second quotient by 3, is the same thing as to

divide the original number by the product of the numbers, 2, 2,

and 3, which aniounts to 12, we shall see that the three above

operations can be performed at once by dividing the two terms

of the given fraction by 12, and we shall again have |,

The numbers 2, 3, 4, and 12, each dividing the two numbers

24 and 84 at the same time, are the common divisors of these

numbers ; but 12 is the most worthy of attention, because it is

the grcrttest, and it is by employing the greatest common divisor

of the two terms of the given fraction, that it is reduced at once

to its most simple terms. We have then this important prob-

lem to solve, two numbers being given, to Jind their greatest com-

mon divisorj.

61. We arrive at the knowledge of the common divisor of two

numbers by a sort of trial easily made, and which has this rc-

C(nnmendation, that each step brings us nearer and nearer to

the number sought. To explain it clearly, I will take an example.

Let the two numbers he 637 and 143. It is plain, that the

greatest comnion divisor of these two numbers cannot exceed the

smallest of them ; it is proper then to try if the number 143,

which dividi'S itself and gives 1 for the quotient, will also divide

the number 637, in which case it will be the greatest common
divisor sought. In the given example this is not the case ; we

obtain a quotient 4, and a remainder 65. *

Now it is plain, that every common divisor of the two num-

bers, 143 and 637, ought also to divide 65, the remainder result-

ing from tlicir division ; for the greater, 637, is equal to the

t What is liere called the greatest common divisor, is sometimcB

called the greatest common measure.
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less, 143, multiplied by 4, plus the remainder, 65, (50) ; now in

dividing 6S7 by the common divisor sought, we shall have an

exact quotient ; it follows then, that we must obtain a like quo-

tient, by dividing the assemblage of parts, of which 637 is com-

posed, by the same divisor; but the product of 143 by 4 must

necessarily be divisible by the common divisor, which is a factor

of 143, and consequently the other part, 65, must also be divisi-

ble by the same di\ isor ; otherwise the quotient would be a >v hole

number accompanied by a fraction, and consequently could not

be equal to the whole number, resulting from the division of

637 by the common divisor. By the same reasoning, it may be

proved in general, that every ronimon divisor of two nun.bers must

a/so divide the remainder resultingfrom the division oj the greater

of the two by the less.

According to this principle, we see, that the common divisor

of the numbers 637 and 143, must also be the common divisor

of the numbere 143 and 65 ; but as the last cannot be divided by

a number greater than itself, it is necessary to try 65 first.

Dividing 143 by 65, we find a quotient 2, and a i-emainder 13;

65 then is not the divisor sought. By a course of reasoning,

similar to that pursued with regard to the numbers, 637, !43,

and the remainder, resulting from their division, 65, It will be seen

that every common divisor of 143 and 65 must also divide

the numbers 65 and 13; now the greatest common divisor of

these two last cannot exceed 13 ; we must therefore try, if 13 will

divide 65, which is the case, and the quotiejit is 5 ; then 13 is

the greatest common divisor sought.

\\ e can make ourselves certain of its possessing this property

by resuming the operations in an inverse order, as follows ;

As 13 divides 65 and 13, it vviH divide 143, which consists of

twice 65 rfdded to 13 ; as it divides 65 and 143, it will divide

637, which consists of 4 times 143 added to 65 ; 13 then is the

common divisor of the two given numbei-s. It is also evident,

by the very mode of finding it, that there can be no common
divisor greater than 13, since 13 must be divided by it.

It is convenient in practice, to place the successive divisions

one after the other, and to dispose of the operation, as may be

seen in the follovving example
;
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143

4|t30

65

'2|65 5

13

637
579
~65

the quotients, 4, £, 5, being separated from the other figures.

The reasoning, employed in the preceding example, may be

applied to any numbers, and thus conduct us to this general rule.

The greatest common divisor of two numbers will be fonndf by

dividing the greater by the less ; then the less by the remainder of the

Jirst division ; then this remainder, by the remainder of the second

division ; then this second remainder by the third, or that of the

third division ; and so on. till we arrive at an exact quotient ; the

last divisor will be the common divisor sovght.

62. See two examples of the operation.

7529024
7520

3760

il3008

1504

ij 1 504 i5

1504 752 00

752 then is the greatest common divisor of 9024 and 3760.

937 47 44 3 2

47 19|44 1 |3 i4|2 1|?. 2|
4b7 3 14 1
423 1?

44 2

By this last operation we see that the greatest common divi-

sor of 937 and 47, is 1 only, that is, these two numbers, pro-

perly spiking, have no common divisor, since all whole num-
bers, like them, are divisible by 1.

We may easily satisfy ourselves, that the rule of the preceding

article must necessarily lead to this result, whenever the given

numbers have no common divisor ; for the remainders, each

being less than the corresponding divisor, become less and less

every operation, and it is plain, that the division will continue

as long as there is a divisor greater than unity.

63. After these calculations, the fraction |4y ^^^ l^l§» ^^^

be at once reduced to their most simple term, by dividing the

term* of the first by their common divisor, 13, and the terms of

the second, by their common divisor, 752 ; we thus obtain ^|
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and ^j. As to the fraction, //y, it is altogether irreducible,

•ince its terms have no common divisor but unity.

64. It is not always necessary to find the greatest common

divisor of the given fraction ; there are, as has before beea

remarked, reductions, which present themselves without this

preparatory step.

Every number terminated by one of the figures 0, 2, 4, 6, 8,

is necessarily divisible by 2 j for in dividing any number by 2,

only 1 can remain from the tens ; the last partial division cau

be performed on the numbers 0, 2, 4, 6, 8, if the tens leave no

remainder, and on the numbers 10, 12, 14, 16, 18, if they do,

and all these numbers arc divisible by 2.

The numbers divisible be 2 are called even numbers, because

they can be divided into two equal parts.

Also, every number terminated on the .right by a cipher, or

by 5, is divisible by 5, for when the division of the tens by 5 has

been performed, the remainder, if there be one, must necessarily

be either I, 2, S, or 4, the remaining part of the operation will

be performed on the numbers 0, 5, 10, 15, 20, 25, 30, 35, 40, or

45, all of which are divisible by 5.

The numbers, 10, 100, 1000, kc. expressed by unity followed

by a number of ciphers, can be resolved into 9 added to 1, 99

added to 1, 999 a<lded to 1, and so on ; and the numbers 9, 99,

999, &c. being divisible by 3. and by 9, it follows that, if num-

bers of the form 10, 100, 1000, &c. be divided by 3 or 9, the

remainder of the division will be 1.

Now every nu-nbci* which, like 20, 300, or 500'J, is expressed

by a single significant figure, followed on the right by a number

of ciphers, can be resolved into several numbers expressed by

unity, followed on the right by a number of ciphers ; 20 is ecpial

to 10 add^ to 10 ; 300, to 100 added to 1 00 added to lOO ; 5000, to

1000 added to 1000 added to 1000 added to 1000 added to 1000 ;

and so with othei-s. H^-nce it follows, that if 20, or lO added to 10,

be divided by 3 or 9, the re iiainder will be 1 added to 1, or 2 ;

if 300, or 100 added to 100 added to 100, be divided by 3 or 9,

the remainder will be 1 added to 1 added to 1, or 3.

In general, if we resolve in the same manner a number ex-
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pressed by one stgnifinant figure, followed, on the right, by a num-
ber of ciphers, in order to divide it by 3 or 9; the remainder of

this division will be equal to as many times 1, as there are units

in the significant figure, that is, it will be equal to the signifirant

figure itself. Now any number being resolved into units, tens,

hundreds, &c, is formed by the union of several niunbers ex-

pressed by a single significant figure ; and, if each of these last be

divided by 3 or 9, the remainder will be equal to one of the sig-

nificant figures of the given number ; for instance, the division

of hundreds will give, for a remainder, the figure occupying the

place of hundreds ; that of tens, the figure occupying the place

of tens ; and so of the others. If then, the sum of all these

remainders be divisible by 3 or 9, the division of the given num-

ber by 3 or 9 can be performed exactly ; whence it follows, tliat

if the sum of the figures, constituting any number, be divisible

by 3 or 9, the number itself is divisible by 3 or 9.

Thus the numbers, 423, 4251, 15342, are divisible by 3, be-

cause the sum of the significant figures is 9 in the first, 12 in the

second, and 15 in the third.

• Also, 621, 8280, 934218, are divisible by 9, because the sum of

the significant figures is 9 in the first, 18 in the second, and 27

in the third.

It must be observed, that every number divisible by 9 is also

divisible by 3, although every number divisible by 3 is not also

divisible by 9.

Observations might be made on several other numbers analo-

gous to those just given on 2, 3, 5, and 9 ; but this would lead me

too far from the subject.

The numbers 1, 3, 5, 7, 11, 13, 17, &c. which can be divided

only by themselves, and by unity, are called /)7"t«ie immbers; two

numbers, as 12 and 35, having, each of them, devisors, but

neither of them any one, that is common to it with the other, are

called prime to each other.

Consequently, the numerator and denominator of an irreduci-

ble fraction are prime to each other.

Examplesfor practice under drtide 61.

.What is the greatest common divisor of 24 and 36 ? Ms, 12,
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AVhat is the greatest common divisor of 35 and 100 ? ^tw. 5.

Wiiat is the greatest common divisor of 312 and 504 ?

Ans, 24.

Examples/or practice under articles 57y 58, and 60.

Reduce ff to its most simple terms. Ans.
-J.

Reduce ^V/^^ to its most simple terms. *ins. ^.

Reduce j%\ to its most simple terms. dns. ^.

Reduce -^|| to its most simple terms. Ms. -||.

Reduce |f J
to its most simple terms. -ins. f

.

Reduce |||^ to its most siniple terms. Ans. 11.

65. Alter this digression we will resume the examination of

the table in article 55,

By multipbing
| ^^^^ numerator, the fraction is ([Jl^llPf

^'

By dividing J I divided,

By multiplVing
j^^^ denominator, the fraction is j fj^j.^f,^'

,

By dividing J t^inuUiphed,

that we may deduce from it some new inferences.

We see at once, by an inspection of this table, that a fraction

can be multiplied in two ways, namely, by multiplying its nu-

merator, or dividing its denominator, and that it can also be

divided in two ways, namely, by dividing its numerator, or mul-

tiplying its denominator ; hence it follows, that multiplication

alone, according as it is performed on the numerator or denomi-

nator, is sufficient for the multiplication and division of fractions

by whole numbers. Thus yt* multiplied by 7 units, makes || ;

|, divided by 3, makes 5^.

Examples for practice.

Multiply f by 5. Ans. \\ Divide | by 3. Ans. I.

Multiply 2*y b} 4. Ans. l\. Divide j\ by 6. Jns. j\.

Multiply ^\ by 6. Jins. |. Divide f by 10. Jlns. -Jj.

Multiply 4. by 30. Jins. ^Lo, Divide 1 by 8. Jlns, ^j,
[Multiply ^1^ by 5. Ms. |. Divide f| by 4. Ans. 4.

Multiply ^2_ by 9. Ms. f

.

Divide 14 by 4. Mis. 1.

66. The doctrine of fractions enables us to generalize the

definition of multiplication given in article 21. When the multi-

Arith. 6
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plier is a whole number, it shows how many limes the multipli-

cand is to be repcatcjl ; but the term multiplication, extended to

fractional expressions, does not always imply augmentation, as

in the case of whole numbers. To comprehend in one state-

ment every possible case, it may be said, that to multiply one

number by another is, toform a number by means of thejirst, in the

same manner as the second isformed, by means of unity. In real-

ity, when it is required to multiply by 2, by 3, &c. the product

consists of twice, three times, &c. the multiplicand, in the same

way as the multiplier consists of two, three, &q. units ; and to

multiply any number by a fraction, A for example, is to take the

fifth part of it, because the multiplier
-J,

being the fifth part of

unity, shows that the product ought to be the fifth part of

the multiplicand*.

Also, to multiply any number by j is to take out of this num-

ber or the multiplicand, a part, which shall be four fifths of it, or

equal to four times one fifth.

Hence it follows, that the object in multiplying by afraction,

wliatever may be the multiplicand, is, to take out of the midtipticand

a part, denoted by the multiplying fraction ; and that this opera-

tion is composed of two others, namely, a division and a multi-

plication, in which the divisor and multiplier are whole numbers.

Thus, for instance, to take 4 of any number, it is first neces-

sary to find the fifth part, by dividing the number by 5, and to

repeat this fifth part four times, by multiplying it by 4.

We see, in general, that the multiplicand must be divided by tlie

denominator of the multiplying fraction, and the quotient be multi-

plied by its numerator.

The multiplier being less than unity, the product will be small-

er than the multiplicand, to which it would be only equal, if the

multiplier were 1.

67. If the multiplicand be a whole number divisible by 5, fop

* We are led to this statement, by a question which often presents

itself; namely, where the price of any quantity of a thing is required,

the price of the unity of the thing being known. The question evi-

dently remains the same, whether the given quantity be greater or

less than this unity.
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instance, 35, the fifth part will be 7 ; this result, multiplied by 4,

will give 28 for the | of 55, or for the product of 35 by |. If

the multiplicand, always a whole number, be not exactly divisi-

ble by 5, as, for instance, if it were 32, the division by 5 will

give for a quotient 6| ; this quotient repeated 4 times will give 24|.

This result presents a fraction in which the numerator exceeds

the denominator, but this may be easily explained. The ex-

pression |, in reality denoting 8 parts, of which 5, taken to-

gether, make unity, it follows, that | is equivalent to unity added

to three fifths of unity, or 1| ; adding this part to the 24 units,

we have 25f for the value of | of 32.

68. It is evident, from the preceding example, that the frac-

tion I contains unity, or a whole one^ and |, and the reasoning,

which led to this conclusion, shows also, that every fractional

expression, of which the numerator exceeds the denominator,

contains one or more units, or whole ones, and that these whole

ones may be extracted hf dividing the numerator by the denomina-

tor ; the quotient is the number of units contained in the fraction,

and the remainder, written as a fraction, is that, which must ac-

company the whole ones.

The expression y/, for instance, denoting 307 parts, of

which 53 make unity, there are, in the quantity represented by

this expression, as many whole ones, as the number of times

53 is contained in 307 ; if the division be performed, we shall

obtain 5 for the quotient, and 42 for the remainder; these 42 are

fifty third parts of unity -, thus, instead of Yt > "lay be written

Examples for practice.

Reduce the fraction § to its equivalent whole number.

.Sns. 2.

Reduce | to its equivalent whole or mixed number, .^ns. 3|.

Reduce ^^ to its equivalent whole or mixed number.

Ans. 31.

Reduce Y^' to its equivalent whole or mixed number.

Jlns. 24/^.

Reduce y to its equivalent whole or mixed number.

Ans. 12-1.
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Reduce *jY to its equivalent whole or mixed number.

Ms. 10/^.

69. The expression 5||, in which the whole number is given,

being composed of two different parts, we have often occasion

to convert it into the original expression Y/ » which is called,

reducing a whole mimher to afraction.

To do this, the whole number is to be multiplied by the denomi*

nator of the accompanyingfraction^ the numerator to be added to the

productf and the denominator of the same fraction to be given to the

sum.

In this case, the 5 whole ones must be converted into fifty-

thirds, which is done by multiplying 53 by 5, because each unit

must contain 53 parts ; the result will be Yj* 5 joining this part

with the second, ||, the answer will be Y/

•

Examples for practice.

Reduce 19| to a fraction.

Reduce 6| to a fraction.

Reduce 31^'^ to a traction.

Reduce 4rf?j'^ to a fraction.

70. We now proceed to the multiplication of one fraction by

another.

If. for instance, | were to be multiplied by 4 ; according to arti-

cle 66, the operation would consist in dividing! ^^ ^» ^"^ multi-

plying the resulf by 4 ; according to the table in article 65, the first

operation is performed by multiplying 3, the denominator of the

multiplicand, by 5 ; and the second, by multiplying 2, the nume-

rator of the multiplicand, by 4 ; and the required product is thus

found to be -j^.

It will be the same with every other example, and it must con-

sequently be concluded from what precedes, that to obtain the

product of twofractions^ the two numerators must be multiplied,

one by the other^ and under the product must be placed the product

of the denominators.

Examples,

Multiply I by |. Ms. ^%. Multiply ^ by 4. Jns. y«,.

dns. if

Ms. 5»

Ms. 3 17

Ms. 5 871
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Multiply I by |. Ms. -/y. Multiply |^ by 4|. Am. ||.

Multiply ^\ by i. »'i»s. |. Multiply aa by |i. .3«s. |l|.

71. It may sometimes happen that two mixed numbers, or

whole numbers joined with fractions, are to be multiplied, one by

the other, as, for instance, ?4 by 4|. The most simple mode

of obtaijiing; the product is, to reduce the whole numhers to frac-

tions by the procees in article 69 ; the two factors will then be

expressed by y and */» ^"^ their product, by i||* or 18||, bj

extracting the whole ones (68).

72. The name fractions ojfractions is sometimes given to the

product of several fractions : in this sense we say, | of |. This

expression denotes | of the quantity represented by | of the

original unit, and taken in its stead for unity. These two frac-

tions are reduced to one by multiplication (70). and the re-

sult, -j?5, expresses the value of the quantity required, with

relation to the original unit ; that is, 1 of the quantity rep-

resented by 4 *if unity is equivalent to -?y of unity. If it were

required to take 1 of this result, it would amount to taking l of

I of 4, and these fractions, reduced to one, would gi\ e -jMy fop

the value of the quantity sought, with relation to the original

unit.

73. The word contain, in its strict sense, is not more proper in

tbe different cases presented by division, than the word repeat in

those presented by multiplication ; for it cannot be said that the

dividend contains the divisor, when it is less than the latter ; the

expression is generally used, but only by analogy and extension.

To generalize division, the dividend must he considered as hav-

ing the same relation to the quotientf that the divisor has to unity,

because the divisor and quotient are the two factors of the

dividend (36). This consideration is conformable to every

case that division can present. When, for instance, the divisor

is 5, the dividend is equal to 5 times the quotient, and, conse-

quently, this last is the fifth part of the dividend. If the divisor

be a fraction, ^ for instance, the dividend cannot be but half of

the quotient, or the latter must be double the former.

The definition, just given, easily suggests the mode of pro-

ceeding, when the divisor is a fraction. Let us take, for ex-
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ample, |. In this case the dividend ou.^ht to be only | of the

quotient j but |^ beinj^ ^ of ^, we shall have |. of the quotient, by

takin,^ i of tlie dividend, or dividing it by 4. Thus knowing ^
of the quotient, we have only to take it 5 times, or multiply it

by 5, to obtain the quotient. In this operation the dividend is

divided by 4 and multiplied by 5, which is the same as taking

^ of the dividend, or multiplying it by |, which fraction is no

other than the divisor inverted.

This example shows, that, in general, to divide any number by

afruction f it must be multiplied by thefraction inverted.

For instance, let it be required to divide 9 by | ; this will be

done by multiplying it by |, and the quotient will be found to be

Y or 12. Also 13 divided by ^ will be the same as 13 multi-

plied by ^ or y. The re(}uired quotient will be 18|, by ex-

tracting the whole ones (68).

It is evident that, whenever the numerator of the divisor is

less than the denominator, the quotient will exceed the dividend,

because the divisor in that case, being less than unity, must be

contained in the dividend a greater number of times, than unity

is, which, taken for a divisor, always gives a quotient exactly

the same as the dividend.

74. When the dividend is a fraction, the operation must be per-

formed by midiiplying the dividend by the divisor inverted (70),

Let it be required to divide | by | ; according to the preced-

ing article, | must be multiplied by -|, which gives ||.

It is evident, that the above operation may be enunciated thus ;

To divide one fraction by another, the numerator of the first must

be mvltiplied by the denominator of the second, and the denominator

of thefirst, by the numerator of the second.

If there be whole numbers joined to the given fractions, they

must be reduced to fractions, and the above rule applied to the

results.

Examples,

Divide 9 by |. Jins. 45
2 *

Divide 7| by |. Ms. 45

Divide 18 by |. Ms. 15. Divide 2| by 3^. Ms. 33

Divide |- by ^. Jins. 9 Divide %? by /^. Ms. 49.

Divide 4f by /^. Jns. 75
TT* Divide 4* by 44. Ms. 1.
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75. It is important to observe, that any division, whether it

can be performed in whole numbers or not, may be indicated by

a fractional expression; y, for instance, expresses evidently

the quotient of 36 by 3, as well as 12, for | being contained three

times in unity, Y will be contained 3 times in 36 units, as the

quotient of 36 by S must be.

76. It may seem preposterous to treat of the multiplication and

division of fractions before having said any thing of the manner

of adding and subtracting them ; but this order has been follow-

ed, because multiplication and division follow as the imme<

diate consequences of the remark given in the table of arti-

cle 55f but addition and subtraction require some previous

preparation. It is, besides, by no means surprising, that it

should be more easy to multiply and divide fractions, than to add

and subtract tliem, since they are derived from division, which

is so nearly related to multiplication. There will be many op-

portunities, in what follows, of becoming convinced of this truth ;

that operations to be performed on quantities are so much the

more easy, as they approach nearer to the origin of these quan-

tities. We will now proceed to the addition and subtraction of
*

fractions.

77. When the fractions on which these operations are to be

performed have the same denominator, as they contain none but

parts of the same denomination, and consequently of the same

magnitude or value, they can be added or subtracted in the same

manner as whole numbers, care being taken to mark, in the re-

sult, the denomination of the parts, of which it is composed.

It is indeed very plain, that -^^ and -j^^ make y^^, as 2 quan-

tities and 3 quantities of the same kind make 5 of that kind,

whatever it may be.

Also, the difference between | and | is|., as the difference be-

tween 3 quantities and 8 quantities, of the same kind, is 5 of that

kind, whatever it may be. Hence it must be concluded, that, to

add or subtract fractions, having the same denominator, the surn or

difference of their numerators must be taken, and the common de-

nominator u^ritten under the result.

rs. When the given fractions have different denominators, it



4a Jlrithmetic,

is impossible to add together, or subtract, one from the other,

the parts of which tliey are composed, because these parts are

of different magnitudes ; but to obviate this difficulty, the frac-

tions are made to undergo a change, which brings them to parts

of the same magnitude, by giving them a common denomi-

nator.

For instance, let the fractions be | and ^ ; if each term of the

first be multiplied by 5, the denominator of the second, the first

will be changed into ^| ; and if each term of the second be mul-

tiplied by 3, the denominator of the first, the second will be

changed into ^f j thus two new expressions will be formed, hav-

ing the same value as the given fractions (56).

This operation, necessary for comparing the respective mag-

nitudes of two fractions, consists simply in finding, to express

them, parts of an unit sufficiently small to be contained exactly

in each of those which form the given fractions. It is plain, in

the above example, that the fifteenth part of an unit will exactly

measure
-J
and ^ of this unit, because ^ contains five 15*', and

I contains three 15*^. The process, applied to the fractions f
and |, will admit of being applied to any others.

In general, to reduce any twofractions to the same denominatoTf

the two terms of each of them must be multiplied by the denominator

of the other.

79. >Bny number offractions are reduced to a common denomina-

tor^ by multiplying the two terms of each by the product of the denom-

inators of all the others ; for it is plain that the new denominators

are all the same, since each one is the product of all the original

denominators, and that the new fractions have the same value as

the former ones, since nothing has been done except multiplying

each term of these by the same number (56).

Examples.

Reduce | and f to a common denominator. .Bns* ||^, |§.

Reduce -^-^ and ^ to a common denominator. Aus. f|. ^^.

Reduce ^, |, and ^ to a common denominator. Ans. ||^, |4, 1^.

Reduce ^^^ |, ^, and | to a common denominator.

fl*ie 630,1890 1800 1750*imb, 3j^tr» 5TTTr> ttttt' 7TTiy
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The preceding rule conducts us, in all cases, to the proposed

end ; but when the denominators of the fractions in question are

not prime to each other, there is a common denominator more

simple than that which is thus obtained, and which may be

shown to result from considerations analogous to those given in

the preceding articles. If, for instance, the fractions were |, I,

|, |, as nothing more is required, for rrdiicing them to a com-

mon denominator, than to divide unity into parts, wiiich shall be

exactly contained in those of which these fractions consist, it will

be suflScient to find the smallest number, which can be exactly

divided by each of their denominators, 3, 4, 6, 8 ; and this will

be discovered by trying to divide the multiples of 3 by 4, 6, 8 ;

which does not succeed until we come to 24, when we have only

to change the given fractions into 24*^* of an unit.

To perform this operation we must ascertain successively bow

many times the denominators, 3, 4, 6, and 8, are contained in

24, and the quotients will be the numbers, by which each terra

of the respective fractions must be multiplied, to be reduced to

the common denominator, 24. It will thus be found, that each

term of f must be multiplied by 8, each term of | by 6, each

term of f by 4, and each terra of | by 3 ; the fractions will then

Vkprnmp 16 18 20 21oecome j^^, -^-^t ^z* ?*•

Algebra will furtiish the means of facilitating the application

of this process.

80. By reducing fractions to the same denominator, they may
be added and subtracted as in article 77.

81. When there are at the same time both whole numbers and

fractions, the whole numbers, if they stand alone, must be con-

verted into fractions of the same denomination as those which

are to be added to them, or subtracted from them ; and if the

whole numbei's are accompanied with fractions, they must be

reduced to the same denominator with these fractions.

It is thus, that the addition of four units and | changes itself

into the addition of y and |. and gives for the i-esult y*.

To add 3| to 5|. the whole numbers must be reduced to frac-

tions, of the same denomination as those which accompany them,

which reduction gives y and */ ; with these results the sum is

found to be Yj > or 8|4. If, lastly, ^ were to be subtracted from
drith, 7
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S^, the operation would be reduced to taking ^ from ^ , and the

remainder would be ||,

Examples in addition offractions.

ii(Vdd I to |. ,3ns, ||, or 1.

Ad.? f U. I*. Ms. ||.

Add 3 to |. ^«s. 4^.

Add 4» |> and | together. Ans, 3-g\.

Add 21, 4|, and 5^ together. ^Sns. 12^'^.

Add |, 1|, and 6| together. Jns, 8|.

Examples in subtraction offractions.

From I take -]. Jns. ^. From 5^ take 2l. .5ns. 2|.

From I take f . .57is. -/g-. From 8| take 4|. Jns, AJ^,

From II take -*,-. Ms, i. From 3| take ^^. Ms ||.

82. The rule given, for the reduction of fractions to a com-

mon denominator supposes, that a product resulting from the

successive multiplication of several numbers into each other,

does not vary, in w hatever order these multiplications may be

performed ; this truth, though almost always considered as self-

evident, needs to be proved.

We shall begin with showing, that to multiply one number by

the product of two others, is the same thing as to multiply it at

first by one of them, and then to multiply that product by the

other. For instance, instead of multiplying 3 by 35, the pro-

duct of 7 and 5, it will be the same thing if we multiply 3 by 5,

and then that product by 7. The proposition vsill be evident, if,

instead of 3, we take an unit ; for 1, multij)lied by 5, gives 5,

and the product of 5 by 7 is 35, as well as the product of 1 by

35 ; but 3, or any other number, being only an assemblage of

several units, the same property will belong to it, as to each of

the units of which it consists ; that is, the product of 3 by 5 and

by 7, obtained in either way, being tlie triple of the result

given by unity, when multiplied by 5 and 7, must necessarily be

the same. It may be proved in the same manner, that were it

required to multiply 3 by the product of 5, 7, and 9, it would

consist in multiplying 3 by 5, then this product by 7, and the

result by 9, and so on, whatever might be the number of factors.
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To represent in a shorter manner several sacressive multipli-

cations, as of ilie numbers 3, 5, and 7, into each other, we shall

write 3 by 5 by 7.

This being laid down, in the product 3 by 5, the order of the

factors, 3 and 5 (27), may be changed, and the same product ob-

tained. Hence it directly follows, that 5 by 3 by 7 is the same

as 3 by 5 by 7.

The order of the factors 3 and 7, in the product 5 by 3 by 7,

may also be changed, because this product is equi\ alent to 5,

multiplied by the product of the numbers 3 ahd f ; thus we have

in tbe expression 5 by 7 by 3, the same product as the preceding.

By bringing together the three arrangements,

3 by 5 by 7

5 by 3 by 7

5 by 7 by 3,

we see that the factor 3 is found successively, the first, the second,

and the third, and that the same may take place with respect

to either of the others. From this example, in which the par-

ticular value of each number has not been considered, it must

be evident, that a product of three factoi-s does not vary, what-

ever may be the order in which they are multiplied.

If the question were concerning the product of four factors,

such as 3 by 5 by 7 by 9, we might, according to what has been

said, arrange, as we pleased, the three first or the three last, and

thus make any one of the factors pass through all tlie places.

Considering then one of the new arrangements, for instance this,

5 by 7 by 3 by 9, we might invert the order of the two last fac-

tors, which would give 5 by 7 by 9 by 3, and would put 3 in the

last place. This reasoning may be extended without difficulty

to any number of factors whatever.

DECIMAL FRACTIONS.

83. AiTHOUGH we can, by the preceding rules, apply to frac-

tions, in all cases, the four fundamental operations of arithmetic,

yet it must have been long since perceived, that, if the different

subdivisions of a unit, employed for measuring quantities small-
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er than this unit, had been subjected to a common law of de-

crease, the calculus of fractions would have been much more
convcMient, on account of the facility with which we might

convert one into another. By making this law of decrease con-

form to the basis of our system of numeration, we have given

to the calculus the greatest degree of simplicity, of which it is

capable.

We have seen in article 5, that each of the collections of units

contained in a number, is composed of ten units of the preceding

order, as the ten consists of simple units ; but there is nothing

to prevent our regarding this simple unit, as containing ten

parts, of which each one shall be a tenth ; the tenth as containing

ten parts, of which each one shall be a hundredth of unity, the

hundredth as containing ten parts, of which each one shall be a

thousandth of unity, and so on.

Proceeding thus, we may form quantities as small as we

please, by means of which it will be possible to measure any

quantities, however minute. Tliese fractions, which are called

decimals, because tiiey are composed of parts of unity, that

become continually ten times smaller, as they depart further

fr«m unity, may be converted, one into the other, in the same

manner as tens, hundreds, thousands, &c. are converted into

units ; thus,

the unit being equivalent to 10 tenths,

the tenth 10 hundredths,

the hundredth 10 thousandths,

it follows, that the tenth is equivalent to 10 times 10 tlmusandths,

or 100 thousandths.

For instance, 2 tenths, 3 hundredths, and 4 thousandths will

be equivalent to 234 thousandths, as 2 hundreds, 3 tens, and 4

units miake 234 units ; and what is here said may be applied

universally, since the subordination of the parts of unity is like

that of the different orders of units.

84. According to this remark, we can, by means of figures,

write decimal fractions in the same manner as whole numbers,

since by the nature of our numeration, which makes the value of

a figure, placed on the right of another, ten times smaller, tenths
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nahirally take their place on the right of units, then hundredths

on the riglit of tenths, and sd on ; but, that the figures express-

ing decimal parts may not be confounded with those expressing

whole units, a commaf is placed on the right of units. To ex-

press, for instance, 34 units and 2.7 hundredths, we write 34,27.

If there be no units, their place is supplied by a cipher, and the

same is done for all the decimal parts, which may be wanting

between those enujiciated in the given number.

Thus 19 hundredths are written 0,19,

S04 thousandths 0,304,

3 thousandths 0,003.

85. If the expressions for the above decimal fractions be com-

pared with the following, ^\%. ^%%\y T^^V^'
^^^wn from the

general manner of rej-resenting a fraction, it will be seen, that

to represent in an entireform a dedmal fraction^ ivritten as a vJtZ-

gar fraction, tlie numerator of the fraction must tte taken as it is,

and placed after the comma in such a manner, that it may hare as

many figures as tliere are ciphers after the unit in the denominator.

Recipi-ocally, to reduce a decinud fraction, given in the form of

a -whole number, to that of a viUgar fraction, the figures that it

contains, must receive, for a denominator, an unit foUowed by as

many ciphers, as there are figures after the comma.

Thus the fractions, 0,56, 0,036, are changed into ^Y<r ^^^
36

86. j?n expression, in figures, of numbers containing decimal

parts, is read by enunciating, first, tJie figures placed on the left of

the point, then those on the right, adding to the last figure of the

latter the denomination of the parts, which it represents.

The number 26,736 is read 26 and 736 thousandtlis

;

the number 0,0673 is read 673 ten thousandths,

and 0,0000673 is read 675 ten millionths.

t In English books on mathematics, and in those that have been

written in the United States, decimals are usually denoted by a

point, thus 019 ; but the corama is on the whole in the most general

use ; it is accordingly adopted in this and the subsequent treatises

to be published at Cambridge.
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87. As decimal figures take their value entirely from their

positiun relative to the comma, it is of no consequence whether

we write or omit any number of ciphers on their right. For
instance, 0,5 is the same as 0,50; and 0,784 is the same as

0,7^400 ; for, in the first instance, the number, which expresses

the decimal fraction, becomes by the addition of a ten times

greater, but the parts become hundredths, and consequently

on this account are ten times less than before; in the second

instance, the number, which expresses the fraction, becomes a

hundred times greater tiian before, but the parts become hun-

dred ttiousandths, and, consequently, are a hundred times smaller

than before. This transformation, then, becomes the same as

that which takes place with respect to a vulgar fraction, when

each of its terms is multiplied by the same number; and if the

ciphers be suppressed, it is the same as dividing them by the

sainc number.

88. The addition of decimal fractions and numbers accompa-

nying them, needs no other rule than that given for the whole num-

bers, since the decimal parts are made up one from the other,

ascending from right to left, in the same manner as whole units.

For instance, let there be the mimbers 0,56, 0,003, 0,958

;

disposing them as follows,

0,56

0,003

0,958

Sum 1,521

we find, by the rule of article 12, that their sum is 1,521.

Again, let there be the numbers 19,35, 0,3, 48,5, and 110,02,

which contain also whole units, they will be disposed thus

;

19,35

0,3

48,5

110,02

Sum 178,17

and their sum will be 178,17.

In general, the addition of decimal numhers is performed like
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iJMt of whole mimberSf care being taken to place the comma in the

sum, directly under the commas in the numbers to be added.

Examplesfor practice.

Add 4,003, 54,9, 3,51, 6,7203. Ms. 68,8333.

Add 409,903, 107,7842, 6,1043, 10,2,974. Ms. 534,0889.

Add 427, 603,04, 210,15, 3,364, ,021. Mis. I;i43,575.

89. The rules prescribed for the subtraction of whole num-

bers apply also, as will be seen, to decimals. For instance, let

0,3697 be taken from 0,62 ; it must first be observed, that the

second niimbcr, which contains only hundredths, while the

other contains ten thousandths, can be converted into ten thou-

sandths by placing two ciphers on its right (87), which changes

it into 0,6200.

The operation will then be arranged thus ;

0,6200

0,3697

Difference 0,2503

and, according to the rule of article 17, the difference will be

0,2503.

Again, let 7,364 be taken from 9,1457 j the operation being

disposed thus ;

9,1457

7,3640

Difference 1,7817

the above difference is found. It would have been just as well if no

cipher had been placed at the end of the number to be subtracted,

provided its different figures had beeti placed under the corres-

ponding orders of units or parts, in the upper line.

In general, the subtraction of decimal immbers is performed like

that of "whole numbers, provided that the tiumber of decimalfigures,

in the two given numbers, be viade alike, by writing on the right

oj that, which has the least, as many ciphers as are necessary ; and

that tlie comma in the difference is put directly under those of the

given numbers.
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Examples for practice.

Kroni 304,567 take 158,632. .^ns, 145,935.

From 215,003 take 1,1034. Aiis. 213,8996.

From 1 take ,9993. Ms. 0,0007.

From 68,8353 take ,00042. Jlns. 68,83288.

The methods of proving addition and subtraction '»f decimals

are the same as those for the addition and subtraction of whole

numbers.

90. As the comma separates the collections of entire units

from the decimal parts, by altering its place, we necessarily

change the value of the whole. By moving it towaris the right,

figures, which are contained in the fractional part, are made to

pass into that of whole numbers, and consequently the value of

the given number is increased. On the contrary, by moving the

comma towards the left, figures, which were contained in the part

of whole numbers, are made to pass into that of fractions, and

consequently the value of the given number is diminished.

The first change makes the given number, ten, a hundred, a

thousand, &c. times greater than before, according as the comma
is removed one, two, three, &c. placed towards the right, because

for each place that the comma is thus removed, all the figures

advance with respect to this comma one place 'o'vards the left,

and consequently assume a value ten times gi-eater than they had

before.

If, for example, in the number 134,28, the point be placed

between the 2 and the 8, we shall have 1342,8, the hundreds

will have become thousands, the tens hundreds, the units tens,

the tenths units, and the hundredths tenths. Evf'ry part of the

number having thus become ten times greater, the result is the

same as if it had been .multiplied by ten.

The second change makes the given number ten, a hundred, a

thousand, &c. times smaller than it was before, according as the

comma is removed one, two, three, &c. places towards the left,

because for each place that the comma is thus removed, all the

figures recede, with respect to this comma, rne place further to

the right, and consequently have a value ten times less than

they had before.



Deccimal Fraciions. 57

If, in the number 134,28, the point be placed between the 3

and 4, we shall have 13,428 ; the hundreds will become tens,

the tens units, the units tenths, the tenths hundredths, and

the htmdredths thousandths ; every pait of the number having

thus become ten times smaller, the result is the same as if a

tenth part of it had been taken, or as if it had been divided by ten.

91. From what has been said, it will be easy to perceive the

advantage, which decimal fractions have over vulgar fractions;

all the multi[)li(ations and divisions, which are performed by

the denominator of the latter, are performed with respect to the

formtr, by the addition or suppression of a number of ciphers, or

by simply changing the place of the comma. By adapting these

modifications to the theory of vulgar fractions, we tlienre imme-

diaitly deduce that of decimals, atid the manner of performing

the multiplication and division of them ; but we can also arrive

at this theory directly by the following considerations.

Let us first suppose only the multiplicand to have decimal

figures. If the comma be taken away, it will become ten, a
hundred, a thousand, *cc. times greater, according to the num-
ber of decimal figures ; and in this case the product given by
multiplication will be a like number of times greater than the

one required ; the latter will then be obtained by dividing the

former by ten, a hundred, a thousand, 6cc. which may be done

by separating on the right(90) as many decimal figures, as there

are in the multiplicand.

If. for instanre, 34,137 were to be multiplied by 9, we must
first find the product of 34137 by 9, which will be 307233; and,

since taking away the comma renders the multiplicand a thou-

sand times greater, we must (li\ide this product by a thousand,

or separate by a comma its three last figures on the right; we
shall thus have 307,233.

In general, to multiply^ by a whole number, a mimber accompa-

nied by decimals, the comma must be taken away from the multi-

plicand, and as many figures separated firr decimals, on the right

of the product, as are contained in the multiplicand,

Arith, S
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Examples for practice.

Multiply 231,415 by 8. Jns. 1851,320.

Multiply 32,1509 by 15. Jus. 482,2635.

Multiply 0,840 by 840. Ms, 705,600.

Multiply 1,236 by 13. Ans. 16,068.

92. When the multiplier contains decimal figures, by sup-

pressing the comma, it is made ten, a hundred, a thousand, &c,

times greater according to the number of decimal figures. If

used in this state, it will evidently give a product, ten, a hun-

dred, a thousand, &c. times greater than that which is required,

and consequently the true product will be obtained by dividing

by one of these numbers, that is, by separating, on the right of

it, as many decimal figures as there are in the multiplier, or by
removing the comma a like number of places towards the left(90),

in case it previously existed in the product on account of de-

cimals in the multiplicand. For instance, let 172,84 be mul-

tiplied by 36,003 ; taking away the comma in the multiplier only,

we shall have, according to the preceding article, the product

6222758,52 ; but, the multiplier being rendered a thousand times

too great, we must divide this product by a thousand, or remove

the comma three places towards the left, and the required pro-

duct will then be 6222,75852, in which there must necessarily be

as many decimal figures as there are in both multiplicand and

multiplier.

In general, to multiply one by the other, two numbers accompa-

nied by decimalSf the comma must be taken awayfrom both, and as

many figures separated for decimals, on the right a the product,

as there are in both the factors.

In some cases it is necessary to put one or more ciphers on the

left of the product, to give the nianber of decimal figures requir-

ed by the above rule. If, for example, 0,624 be multiplied by

0,003 ; in forming at first the product of 624 by 3, we shall have

the number 1872, containing but 4 figures, and as 6 figures must

be separated for decimals, it cannot be done except by placing

on the left three ciphers, one of which must occupy the place of

units, which will make 0,001872.
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Examples for practice.

Multiply 223,a6 by 2,50p. Ms. 559,65000.

Multiply 35,640 by 26,18. Ms. 933,05520.

Multiply 8,4960 by 2,618. ^s." 22,2425280.

Multiply 0,5236 by 0,2808. Ms. 0,14702688.

Multiply 0,11785 by 0,27. >Sns. 0,0318195.

93. It is evident (36), that the quotient of two numbers does

not depend on the absolute magnitude of their units, provided

that this be the same in each ; if then, it be required to divide

451,49 by 13, we should observe that the former amounts to

45149 hundredths, and the latter to 1300 hundredths, and that

these last numbers ought to give the same quotient, as if tliey

expressed units. We shall thus be led to suppress the point in

the first number, and to put two ciphers at the end of the second,

and then we shall only have to divide 45149 by 1300, the quo-

tient of which division will be 34 ^Y/q.
Hence we conclude, that, to divide, by a whole number, a num-

ber accompanied by dedmaljlgures, the comvia in the dividend must

be taken away, and as many ciphers placed at the end oj the divisor,

as the dividend contains dedmal Jig^ires, and no alteration in tlie

quotient iviU he necessary.

94. When both dividend and divisor are accompanied by deci-

mal figures, we must, before taking away the comma, reduce

them to decimals of the same order, by placing at the end of that

number, which has the fewest decimal figures, as many ciphers

as will make it terminate at the same place of decimals as the

other, because then the suppression of the comma renders both

the same number of times greater.

For instance, let 315,432 be divided by 23,4, this last must be

changed into 23,400, and then 315432 must be divided by 23400 ;

the quotient will be I3i^^||.

Thus, to divide one by the other, two numbers accompanied by

dedmal figures, the number of dedmal Jigures in the divisor and
dividend mu^t be made equal, by annexing to the one, that fius the

least, as many dphers as are necessary ; the point must then be sup-

pressed in each, and the quotient wUl require no alteration.

95. As we have recourse to decimals only to avoid the neces-
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sity of employing vulgar fractions, it is natural to make use of

decimals for approximating quotients that cannot be obtained

exactly, which is done by converting the remainder into tenths,

hundredths, thousandth, &c. so that it may contain the divisor j

as may been in the following example j

45149
I

ISOO
syoo tes
6149

5200

Remainder
tenths

|949

9490
9100

hundredtlis 3900
3900

When we come to the remainder 949, we annex a cipher in

order to multiply it by ten, or to convert it into tenths : thus

forming a new partial di\idend, whicli contains 9490 tenths and

gives for a quotient 7 tenths, which we put on the right of the

units, after a comma. There still remains 390 tenths, which

we reduce to hundredths by the addition of another cipher, and

form a second dividend, which contains 3900 hundredths, and

gives a quotient, 3 hundredths, which we place after the tenths.

Here the operation terminates, and we haNe f(»r the exuct result

34,73 hundredths. If a third remainder had beenlefi,we might

have continued the operjition, by converting this remainder into

tliousandths, and so on, in the same manner, until we came to au

exact quotient, or to a remainder composed of parts so small,

that we might have considered them of no importance.

It is evident, that we must always put a comma, as in the

above example, after the whole units in the quotient, to distin-

guish them from the decimal figures, the number of which must

bo equal to that of the ciphers successively written after the

remainders*.

* The problem above performed with respect to decimals, is only
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Examplesfor practice.

Divide 6345,925 by 54,23. ^ins. 117,018 &c.

Divide 5673,21 by 23,0. Jins. 246,66©/&c.

Divide 84329907 by 627,1. .3ns. 134476,01 &c.

Divide 27845,96 by 9,8732. ^ns. 2820,3581 &C.

Divide 200,5 by 231. Jins. 0,0867 &c.

Divide 10,0 by 563,0. Ans. 0,1^0177 &c.

Divide 513,2 by 0.057. *Sns. 9003,50 &c.

Divide 7,25406 by 957. .3«5. 0,00758

Divide 0,00078759 by 0,525. ^tis. 0,00150 &c.

Divide 14 by 365. *9ns. 0,038356 &c.

96. The numerator of a fraction, being converted into decimal

parts, can be divided by the denominator as in the preceding

examples, and by this means the fraction will be converted into

decimals. Let the fraction, for example, be |, the operation is

performed thus

;

1 8

10 0,125

8

20

16

40

4

Again, let the fraction be ^|^ ; the numerator must be con-

verted into thousandths before the division can begin.

a particular case of the following more general one ; To fijid the

value of the quotient of a division, in fractions of a given denomina-

tion : to do this we convert the dividend into a fraction of the same

denomination by raultipljing it by the given denominator. Thus, in

order to find in fifteenths the value of the quotient of 7 by 3, we
should multiply 7 by 15, and divide the product, 105, by 3, which

gives thirtj-five fifteenths, or yf for the quotient required.
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4

4000
3985

797 *

0,005018 &C.

1500

797

7030
6376

654

Examples for practice,

Reduce | to a decimal fraction. Ms. 0,75

Reduce | to a decimal fraction, Aiis. 0,5.

Reduce j% to a decimal fraction, Ms. 0,0714285 &c.

Reducc^f^ to a decimal fraction. Ms, 0,05.

Reduce f to a decimal fraction. Ms. 0,333 &c.

97. However far we may continue the second division, exhib-

ited above, we shall never obtain an exact quotient, because the

fraction ^§-7 cannot, like |, be exactly expressed by decimals.

The difference in the two cases arises from this, that the de-

nominator of a fraction, which does not diride its numerator,

cannot give an exact quotient, except it will divide one of the

numbers 10, 100, 1000, &c. by which its numerator is suc-

cessively multiplied, because it is a principle, which will be

found demonstrated in Algebra, that no number will divide a

product except its factors will divide those of the product; now
the numbers 10, 100, 1000, &c. being all formed from 10, the

factors of which are 2 and 5, they caimot be divided except by

* It may also be proposed to convert a given fraction into a frac-

tion of another denomination, but smaller than the first, for instance,

^ into seventeenths, which will be done by multiplying 3 by 17 and

dividing the product by 4. In this manner we find -y seventeenths,

or If and | of a seventeenth ; but | of -^V is equivalent to ^\. The

result then, \^, is equal to |, wanting ^.
This operation and that of the preceding note depend on the same

principle, as the corresponding operation for decimal fractions.
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numbers formed from these same factors ; 8 is among these,

being the product of 2 by 2 by 2.

Fractions, the value of which cannot be exactly found by de-

cimals^ present in their approximate expression, wlien it has

been carried sufficiently far, a cliaracter which serves to denote

thera ; this is the periodical return of the same figures.

If we convert the fraction ^^ into decimals, we shall find it

0,324324 , and the figures 3, 2, 4, will always return in

the same order, without the operation ever coming to an end.

Indeed, as there can be no remainder in these successive

divisions except one of the series of whole numbers, 1, 2, 3, &c«

up to the divisor, it necessarily happens, that, when the number

of divisions exceeds that of this series, we must fall again upon

some one of the preceding remainders, and consequently the

partial dividends will return in the same order. In the above

example three divisions are sufficient to cause the return of the

same figures ; but six are necessary for the fraction y, because

in this case we find, for remainders, the six numbers which are

below 7, and the result is 0,1428571 . . . The fraction | leads

only to 0,3333 .....

98. The fractions, which have for a denominator any numbej
of 9s, have no significant figure in their periods except 1 j

I gives 0,11111

^\ 0,010101

^1^ 0,001001001

and so with the others, because each partial division of the num-
bers 10, 100, 1000, &c. always leaves unity for the remainder.

Availing ourselves of this remark, we pass easily from a

periodical decimal, to the vulgar fraction from which it is deriv-

ed. We see, for example, that 0,33333 amounts to the

same as 0,11111 multiplied by 3, and as this last decimal

is the development of |^, or ^ reduced to a decimal, we conclude,

that the former is the development of -l multiplied by 3, or |, or

lastly, |.

When the period of the fraction under consideration consists

of two figures, we compare it with the development of -j^-, and with
that of -547, when the period contains three figures, and so on.
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If we had, for example, 0,324324, it is plain that this fraction

may be formed by multiply ina; 0,001001 by 324 ; if we
multiply then ^j^, of whi( h 0,001001 is the development, by 324,

we obtain |||, ainl dividing eacli term of this result by 27, we
come back again to the IVactioti ^|..

In general, the vulgar fradiou,from -which a decimalfraction

ariseSf is formed by writing, as a dtyiominator, under the number,

which expresses one period, as many 9s, as there arefigures in the

period.

If the period of the fraction does not commence with the

first decimal figure, we can for a moment change the place of

the point, and put it immediately before the first figure of the

period and beginning with this figure, find the value of the

fraction, as if those figures on the left were units ; nothing then

will be necessary except to divifie the result by SO, 100, 1000,

&c. according to the number of places the point was moved to-

wards the right.
*

For instance, the fraction 0,324141, is first to be written

32,4141 ; the part 0,4141 being equivalent to ||^, we shall have

32H, which is to be divided by 100, because the point was

moved two places towards the left ; it will consequently become

^3-2^ and -g^l^T* or by reducing the two parts to the same denomi-

nator, and adding "them, IH^, a fraction which will reproduce

the given expression.

Examples for practice.*

Reduce 0,18 to the form of a vulgar fraction. Ms. •^^.

Reduce 0,72 to the form of a vulgar fraction. Ans. ^j.

Reduce 0,83 to the form of a vulgar fraction, Ms. f

.

Reduce 0,2418 to the form of a vulgar fraction. Ans. -}|||.

Reduce 0,2754.63 to the form of a vulgar fraction.

JJng 2S8 95 3

Reduce 0,916 to the form of a vulgar fraction. Ans. \i.

* In these examples, the better to distinguish the period, a point is

placed over it, if it be a single figure, and over the first and last

fiffura, if it consist of more than one.



Tables of Coin, WdghU and Measure. 65

To form a conect idea of tfie nature of these fractions it is

sufficient to consider the fraction 0,999. In tryins^to discover its

original value we find that it answei-s to 9 divided by 9, that is,

to unify ; nevertheless, at whatever numher of figures we stop in

its expression, it will never make an unit. If we stop at the

first figure, it wants J^ of an unit ; if at the second, it wants

•jlo ; if at the third, it wants y^Vo' ^"^ ^" "" ? ^^ *'^^* ^^'®

can arrive as near to uiiity as we please, but can never reach it.

Unity then in this case is nothing but a limiU to wjiich 0,999

continually approaches the nearer the more figures it

lias.

99. The preceding part of this work contains all the rules

absolutely essential to the ari»hmetic of abstract numbers, but

to aifply them to the uses of society it is necessary to know the

different kinds of units, which are used to compare together,

or ascertain the value of quantities, under whatever form tJjej

may present themselves. These units, which are the measures

in use, have varied with times and places, and their connexion

has been formed only by degrees, accordingly as necessity and

the progre«5s of tlie arts and sciences have i-equired greater

exactness in the valuation of substances^ and the construction of

instruments.

TABLES OP COIN, WEIGHT, AND MEASURE.

Denominations of Federal money, as determined by an act of

Congress, Aug. 8, 1786f.

10 mills make one cent
Marked.

c.

10 cents one dime d.

10 dimes one dollar &
10 dollars one eagle E.

t The coins of federal money are two of gold, four of silver,

and two of copper. The gold coins are an eagle and ha>f-eag(e ;

the silver, a d(jllar, half-dollar, douh'e dime, and dime ; and the cop-

per a cent and Sulf-cent. The standard for gold and siher is eleven

parts fine and one pait alloy. The weight of fine golf^ in the eagle is

246,268 grains ; of fine silver in the dollar, 375,64 grains ; of copper

JbritL 9
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English Money.

4 farthings make 1 penny
12 pence 1 shilling

20 shillings 1 pound

£ denotes pounds.
s shillings.

d pence.

q quarters or farthings.

TROY WEIGHT.

24 grains make 1 penny-weight, marked gps. dwt.

20 dwt. 1 ounce, oz.

12 oz. 1 pound, lb.

By this weight are weighed jewels, gold, silver, coru, bread,

and liquors.

apothecaries' weight.

20 grains make 1 scruple, marked gr. sc.

a sc. 1 dram, dr. or 5.

8 dr. 1 ounce, oz. or f

.

12 oz. 1 pound, !b.

Apothecaries use this weight in compounding their medicines 5

in 100 cents, 2^ lb. avoirdupois. The fine gold in the half-eagle is

half the weight of that in the eagle ; the fine silver in the half-dollar,

half the weight of that in the dollar, &c. The denominations less

than a dollar are expressive of their values ; thus, mill is an abbrevia-

tion of mille, a thousand, for 1000 mills are equal to 1 dollar; centf

of centum, a hundred, for 100 cents are equal to 1 dollar ; a dime is

the French o{ tithe, the tenth part, for 10 dimes are equal to 1 dollar.

The mint price of uncoined gold, 11 parts being fine and 1 part

alloy, is 209 dollars, 7 dimes, and 7 cents per lb. Troy weight ; and

the mint price of uncoined silver, 11 parts being fine and 1 part

alloy, is 9 dollars, 9 dimes, and 2 cents per lb. Troy.

In practical treatises on arithmetic, may be found rules for reducing

the FedeialCoin, the currencies of the several United States, and

those of foreign countries, each to the par of all the others. It may

be sufficient here to observe respecting the currencies of the several

states, that a dollar is considered as 6s. in New-England and Vir-

ginia ; 8s, in New-York and North Carolina ; 7s. 6d. in New-Jersey,

Pennsylvania, Delaware, and Maryland ; and 4s. 8d. in South Caro-

lina and Georgia 5 the denomination of shilling varying its value ac-

cordingly.



Tables of Coirif Weight, and Measure. 67

but they buy and sell their drugs by Avoirdupois weight. Apoth-

ecaries* is the same as Troy weight, having only some different

divisions.

AVOIRDUPOIS WEIGHT.

16 drams make 1 ounce, marked dr. oz.

1 pound, lb.

1 quarter, qr.

16 ounces

28 lb.

4 quarters

20 cwt.

1 hundredweight, cwt.

1 ton, T.

By this weight are weighed all things of a coarse or drossy

nature ; such a butter, cheese, flesh, grocery wares, and all

metals, except gold and silver.

DRY MEASURE.

Marked

8 bushels 1 quarter, qr.

5 quarters 1 wey or load, wey.

4 bushels 1 coom or carnock, co.

2 cooms a seam or quarter.

6 seams 1 wey,

14 we}s 1 last, L.

The diameter of a Winchester bushel is 18i inches, and its

depth 8 inches.—And one gallon by dry measure contains 268|

cubic inches.

By this measure, salt, lead, ore, oysters, corn, and other dry

goods are measured.

Marked

2 pints make 1 quart, pts. qts.

2 quarts 1 pottle, pot.

2 pottles 1 gallon, gal.

2 gallons 1 peck, pe.

4 pecks 1 bushel, bu.

2 bushels 1 strike, str.

ALE AND BEER MEASURE.

Marked

2 pints make 1 quart, pts. qts.

4 quarts 1 gallon, gal.

8 gallons 1 firkin of Ale, fir.

9 gallons i firkin of Beer, fir.

Marked

2 firkins 1 kilderkin, kil.

2 kilderkins 1 barrel, bar.

3 kilderkins 1 hogshead, hhd.

3 barrels 1 butt, butt

Ihe ale gallon contains 282 cubic inches. In London the ale

firkin contains 8 gallons, and the beer firkin 9 5 other measures

being in the same proportion.
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WINE MEASURE.

Marked

S pints make 1 quart, pts. qts.

4 q'.iarts 1 gallon, gal.

42 gallons 1 tierce, tier.

63 g'illons 1 hogshead, hhd.

84 gnlions 1 puncheon, pun.

2 hogsheads 1 pipe or

butt,

2 pipes 1 tun,

18 gallons 1 runlet,

Sl| gallons 1 barrel.

Mulsed

p. or b.

T.
run.

bar.

By this measure, brandy, spirits, perry, cider, mead, vinegar,

and oil are measured.

231 cubic inches make a gallon, and 10 gallons make an an-

chor.

CLOTH MEASURE.

Marked

21 inrhes make 1 nail, nls.

4 nails 1 quariCr, qrs.

4 quarters 1 yard, yds.

Marked

Eh t\.3 qrs. 1 ell Flemish,

5 qrs. I ell English, Ell Ei.g.

6 qrs. 1 ell French, Ell Fr.

XONG MEASURE.

3 barlev corns make 1

inch,

12 inches

3 feet

6 feet

51 yards

40 pohs
8 furlongs

S- miles

bar. c. in

foot,

yard,

fathom,

pole.

1 furlong,

1 mile,

1 league.

Marked Marked

60 geographical miles, or

6 ^ statute miles 1 degree
nearly, deg. or

°

^60 degrees the circumfer-

ence of the earth.

Mso, 4 inches make 1 hand.

5 feet I geometrical Bpace.

6 points 1 line.

12 lines 1 inch.

ft.

fat 1

1

pol.

fui.

mis
1.

TIME.

Marked

60 seconds make 1 minute,

8. or " m. or

'

60 minutes 1 hour, h. or °

24 hours 1 day, d.

7 days I week, w.

4 weeks 1 month,
13 months, 1 day, and 6

hours, or

365 days and 6 hours, 1

Julian year.

Marked

m.

Y.

100. It is evident, that if the several denominations of money,

weight and measure proceeded in a decimal ratio, the funda-

mental operations might be performed upon these, as upon

abstract numbers. This may be shown by a few examples in

Federal Money. If it were required to find the sum of S46,85
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and g256,371, we should place the numbers of the same denom-

ination in the same column, and add them together as in whole

numbei-s ^ thus^

4685
256371

303221

and the answer may be read off in either or all the denomina-

tions ; we may say 30 eagles 3 dollars 22 cents 1 mill, or

303 dollars 221 thousandths, or 30322 cents and 1 tenth, or

303221 mills. It is usual to consider the dollars as whole num-
bei-s, and the following denominations as decimals. The opera-

tion then becomes the same as for decimals.

Add jg34,123

1,178

78,001

61,789

Sum gl75,091

From g542,76

Subtract 239,481

Rem. 303,279

Examples.

Add S456,78
49,83

0,22

7854,394

Sam S836 1,224

From
Subtract

g527,839

22,94

Rem. 504,899

Multiply g6,347 by S4,532.

Divide g28,764604 by S4,532.

Divide S2Q by S2000.

Ms. 828,764604.

J/15. S6,347.

J/W. gO,01.

REDUCTION.

101. Whe5^ the different denominations do not proceed in a
decimid ratio, they may all be reduced to one denomination, and
then the fundamental operations may be performed upon this, as
upon an abstract number. If, for example, the sum to be oper-
ated upon were £4 los. 9d. this may easily be expressed in
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pence. As 1 pound is 20 shillings, 4 pounds will be 4 times 20,

or 80 shillings. If to this we add the 15s. we shall have 95s. 9d.

equivalent to the above. But as 1 shilling is equal to 12 pence,

95s. will be equal to 95 times 12 or 1140 pence. Adding 9 to

this, we shall have 1 '49 pence as an equivalent expression for

£4 15s, 9d, We may now make use of this number as if it had

no relation to money or any thing else; and the result obtained

may be converted again into the different denominations by re-

versing the process above pursued. If it were proposed to mul-

tiply this sum by another number, 37 for instance, we should

find the product of these two numbers in the usual way ; thus,

1149

S7

8043

3447

42513

42513 is, therefore, equal to 37 times £4 15s. 9d. expressed in

pence ; to find the number of pounds and shillings contained in

this, we first obtain the number of shillings by dividing it by 12,

which gives 3542, and then the number of pounds by dividing

this last by 20 ; thus.

42513 12 354,2

15

20
65 3542 177
51 14

33 2

9

42513 pence then is equal to 3542 shillings and 9 pence, or to 177

pounds 2 shillings and 9 pence. Whence 37 times £4 15s. 9d. is

equal to £177 2s. 9d.

It may be remarked, that shillings are converted into po^tnds hy

separating the right handjigure and dividing those on the left hy 2,

prefixing the remainder, if there be one, to the figure separated

for the entire shillings, that remain. This amounts to dividing,

first, by 10 (90), and then that quotient by 2. If 10 shillings

made a pound, dividing by 10 would give the number of pounds,

but as 10 shillings are only half a pound, half this number wtU

be the number of pounds.
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By a method similar to that above given, we reduce other de-

nominations of money and tlte different denominations of the

several weights and measures to the lowest respectively. If it

were required to find how many grains there are in 2lb. 4oz,

irdwt. 5grs. Troy, we should proceed thus,

Ibu oza dwu gitt

2 4 17 5

12

24
4

28
20

560
17

577
24

2308
1154

13848
5

*9ns. 13853

By dividing 13853 by 24, and the quotient thence arising by
20, and this second quotient by 12, we shall evidently obtain the

number of pounds, ounces, pennyweights and grains in 13853
grains. The operation may be seen below.

13853 1 24

120
1

577 20
185 40 _
168 28 12— 177 24
173 160 2
16S 4

5
17

J*

Result
lb.

2
oz. dwt. gr.

4 17 5
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These examples will be sufficient to establish the following

general rules, namely

;

To reduce a compound number to the lowest denomination con-

tained in it^ mtdtiply the hisfhest by so many cfs one of this denomi-

nation makes of the next lower ^ and to the product add the num-
ber belonging to the next lower ; proceed with each succeeding de-

nomination in a similar manner, and the last sum wiil be the num-
ber required.

To reduce a number from a lower denomiymtion to a higher,

divide by so many as it takes of this lower denomination to make
one of the higher, and the quotient will be the number of the higher ;

which may be further reduced in the same manner if there are stiU

higher denominations, and the last quotient together with the several

remaiyiders will be equivalent to the number to be reduced.

Examples for practice.

In 59lb. ISdwt. 5gr. how many grains? Ans. 340157.

In 8012131 grains how many [munds, hcl
Ans. 13901b. lloz. 18dwt. 19gr.

In 12 IZ. Os. 9|d. how many half pence ? Ans. 58099.

In 58099 half pence how many pounds &c. ? Jlns, Vl\l. Os. 9|d.

In 48 guineas at 28s. each how many 4i pence?

Ms. 3584.

In one year of 365d. 5h. 48' 48" how many seconds ?

Ans. 31556928.

102. When we have occasion to make useof a number consist-

ing of several denominations as an abstract number, instead of

reducing the several parts to the lowest denomination contain-

ed in it, we may reduce all the lower denominations to a frac-

tion of the Iiighest, Taking the sum before used, namely, 4l.

15s. 9d. we reduce tl»e lower denominations to the higher, as

in the last article by division. The number of pence 9, or |, is di-

vided by 12, by multiplying the denominator by this nutnber (54),

we have thus, ^'^s. which being added to 15s. or W^- the whole

number being reduced to the form of a fraction of the same

denominator, we have W° and -j?^, which being added, make

tV* '^''•^ *^ further reduced to pounds by dividing it by 20,
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that is, by multiplying the denominator by 20 (5,4), which

gives m. Whence £4 15s. 9d. is equal to £4l|5, or £\\\\
This may now be used like any other fraction, and the value of

the result found in the different denominations. If we multiply it

by 37, we shall have ^^ff^*, or £ir7^M^ ; and £ ^y^, reduced

to shillings by multiplying the numerator by £0, or dividing the

denominator by this number, gives 4|s. or ^^%s, or 2s. 9d.

From the above example we may deduce the following general

rules, namely.

To redxice the several parts of a compound number to a fraction

of the highest denomination contained in it, make the lowest term

the numerator of a fraction, havingfor its denominator the number

which it takes of this denomination to make one of the next higher,

and add to this the next term reduced to a fraction of the same

denomination, then nndtiply the denominator of this sum by so many

as make one of the next denomination, and so on through all the

teinns, and the last sum will be the fraction required^.

Tofind the value of a fraction of a higher denomination in terms of

a Icfwer, multiply the numerator of thefraction by so many as make

one of the lower denomination, and divide the product by the denom'

inator, and the quotient will be the entire number of this denomi-

natiouy the fractional part of which may be still further reduced in

the same manner.

To reduce 2w. Id. 6h. to the fraction of a month.

6h. is 3*^ of a day, and being added to one day, or ||d, gives

l^d. the denominator of which being multiplied by 7, it becomes

_3_^w. and being added to 2 weeks or twice 414w. gives
-f
||w.

If we now multiply the denominator of this by 4, we shall

have |i| of a month, as an equivalent expression for 2w, Id. 6h.

To find the value of f of a mile in furlongs, poles, &c.

t It will often be found more convenient to reduce the several

parts of the compound number to tlie lowest denomination, as by the

preceding article for a numerator, and to take for the denominator

so many of this denomination as it takes to make one of that, to

which the expression is to be reduced j thus 4/. 15s. 9d. being 1149d.

is equal to ^^L because Id. is -^^I.

01
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40
35

5
40

200
14 28

60
5&

4

22
21

1

j3ns. 5fur. 28pls. S^^yds.

Reduce 13s. 6d. 2q. to tjie fraction of a pound.

Jlns, £||§, or £||.

Reduce 6fur. 26p]s. 3yds. 2ft. to the fraction of a mile.

^ns. 1*°^, or f

.

Reduce 7oz. 4iiwt. to the fraction of a pound, Troy. ^ns. |.

"What part of a mile is 6fur. IGpls. ? jJns. |.

What part of a hogshead is 9 gallons ? Ms. ^.

"What part of a day is ^^ of a month ? Ms. ||.

TV hat part of a penny is ^^ of a pound ? Ms. Y-
"What part of a cwt. is 4- of a pound. Avoirdupois ? Ms, ^^.
What part of a pound is | of a farthing ? Ms. ^^V^.
"What is the value of | of a pound, Troy ? .Bns. 7oz. 4dwt.

"W hat is the value of ^ of a pound, Avoirdupois ?

Ms. 9oz. 2|dr.

What is the value of | of a cwt. ? Ms, Sqrs. 3lb. loz. 12|dr;

What is the value of -j-^ of a mile ?

Ms. Ifur. 16pls. 2yds. 1ft. 9fV »"•

What is the value of ^\ of day ? Ms, 12h. 55' 23jY*
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The several parts of a compound number may also be re-

duced to the form of a decimal fraction of the highest denomi-

nation contained in it, by first finding the value of the expres-

sion in a vulgar fraction, as in the last article, and then reducing

this to a decimal, or more conveniently by changing the terms

to be reduced into decimals parts, and dividing the numerator

instead of multiplying the denominator by the numbers succes-

sively employed in raising them to the required denomination.

If*\ve take the sum already used, namely, £4 15s. 9d. the

pence, 9, may be written |^, or |§^. the numerator of which

admits of being divided by 12 without a remainder. It is thus

reduced to shillings and becomes yVo*'* °^ 0,75s. which added to

the 15s. makes 15,75s. or reducing the 15 to the same denomi-

nation, Ytt^ » or V^7^7 j *°*^ t^^^ '^ reduced to pounds, by

dividing it by 20, the result of which is -jViVo* *^'' 0»<'875.

4/. 15s. 9d. therefore may be expressed in one denomination^

thus, 4,7875/. and in this state it may be used like any other

number consisting of an entire and fractional part. If it be

multiplied by 37, we shall bave for the product 177,1375/, Tbis

decimal of a pound may be reduced to shillings and pence, by
reversing the above process, or by multiplying successively by
20 and then by 12.

0,1375
20

2,7500
12

9,0000

The product therefore of 4/. 15s. 9d. by 57 is 177/. 2s. 9d. as

before obtained.

The operation, just explained, admits of a more convenient

disposition, as in the following example.

To reduce 19s. Sd. Sq. to the decimal of a pound.

4

12

20

3,00

3,75000

19,312500

0,965625
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Proceeding as before, we reduce the farthings, 3, considered

^s T§7^1' *o hundredths of a penny by dividing by the figure on the

left, 4, and place the quotient, 75, as a decimal on the right of tlie

pence ; we tiien take this sum, considered as l^^d. or 4^|^^d. that

is, annexing as many ciphers as may be necessary, and divide it by

12, which brings it into decimals of a shilling. Lastly, the sliil-

lings and parts of a shilling, 19,3l25s. considered as YAVVoV *•

are reduced to decimals of a poujid by dividing by 20, which

gives the result above found.

We may proceed in a similar manner with other denomina-

tions of money and with those of the several weights and meas-

ures. One example in these will suffice as an illustration of the

method»

To reduce IZpls. 1ft. 6in. to the decimal of a mile.

12 6

16,5 1,5

320 17»69

0,00531531 &C.

The decimal in this, as in many other cases, becomes period-

ical (97).

From what has been said, the following rules are sufficiently

CA ident. To reduce a number from a lower denomination to the

decimal of a higherf we first change it, or supjwse it to be changed

into a fraction f having 10, or some multiple of 10,for its denomina-

tor, and divide the numerator by so many as make one of this

higher denomination, and the quotient is the required decimal ; which,

together with the xchole numbn of this denomination, may again be

converted into afraction, having 10 or a multiple of 10 for its de-

nominator, and thus by division be reduced to a stiU higher name^

and so on.

Also, to reduce a decimal of a higher denomination to a lower,

we multiply it by so many as one makes of this lower, and those

figures which remain on the left of the comma, when the proper

number is separated for decimals (91), will constitute the whole

number of this denomination, the decimal part of which may be still

further reduced, if there be lower denominations, by multiplying it

by the number which one makes of the next denomination, and so on.
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It may be proper to add in this place, that shillings, pence and

fai-things may readily be conveited into the fraction of a pound,

an<l the fraction of a (jound reduced to shillings, pence and far-

things, without having recourse to the above rules. As shillings

are so many twentieti»s of a pound, by dividing any given num-

ber of shillings by 2, we convert tbem into decinsals of a pound,

thus, 1 5s. which may be written if/, or |Aoi. being divided

by 2 give 75 hundredths, or 0,75 of a pound. Also, as farthings

are so many 960ths of a pound, one pound being equal to 960

farthings, the pence converted into farthings and united with

thtisc of this denomination, may be written as so many 960ths of

a pound. If now we increase the numerator and denominator

one twenty fourth part, we shall convert the denominator into

thousandths, and the numerator will become a decimal.

>> hence, to convert shiUingSf peiice andfartkingSi into the decimal

ofa pound, divide the shillings by 2, adding a cipher when neceS'

sary, and let the quotient occupy thefirst place, or first aiid second,

if there be twofigures, and let the farthings, contained in the pence

andfarthmgs, be considered as so many thousandtliSf increasing tJie

number by one, xvhen the number is nearer 24 tfuin 0, and by 2, ivhen

it is nearer 48 than 24, and so on.

Thus, to reduce los. 9d. to the decimal of a pound, we have,

0,75

37

0,787

This result, it will be remarked, is not exactly the same as that

obtained by the other method ; the reason is, that we have increas-

ed the number of farthings, 36, by only one, whereas, allowing

one for every 24, we ought to have increased it one and a half.

Adding, therefore, a half, or 5 units of the next lower order, we
shall have 0,7875, as before.

On the other hand, the decimal of a pound is converted into the

loricer denominatiims, or its value is found in shillings, pence and

farthings, by doubling t^ie first figure for shillings, increasing it by

one, when the second figure is 5, or Tuore than 5, and considering

what remains in the second and third places, as farthings, after

having diminished them one for every 24.
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In addition to the rules that have been given, it may be observ-

ed, that in those cases, where it is required to reduce a nuuiber

from one denomination to another, when the two denominations

are not commensurable or when one will not exactly divide the

other, it will be found most convenient, as a general rule, to re-

duce the one, or both, when it is necessary, to parts so small, that

a certain number of the one will exactly make a unit of the

other. If it were required, for instance, to reduce pounds to

dollars, as a pound does not contain an exact number of dollars

without a fraction, we first convert the pounds into shillings, and

then, as a certain number of shillings make a dollar, by divid-

ing the shillings by this number, we shall find the nunjber of

dollars required. A similar method may be pursued in other

cases of a like nature, as may be seen in the following examples.

In 178 guineas at 28s. each, how many crowns at 6s. 8d. ?

6s. 8d. 178

28

5980,8

48

80

12 747

80d. 1424
356

4984
12

59808
J3ris. 747 crowns and 4 shillingsf.

In this case, I reduce both the guineas and the crown to pence,

and then divide the former result by the latter. In dividing by 80,

I first separate one figure on the right of the dividend for a deci-

mal, which is the same as dividing it by 10, and then divide the

figures on the left, or the quotient, by 8 (47), joining what re-

mains as tens to the figures separated, to form the entire remain-

der, which is reduced bac k to the original denomination.

To reduce 137 five franc pieces to pounds, shillings, &c« the

franc being valued at §0,1796.

t Questions of this kind may often be conveniently performed by

fractions ; thus, 178 guineas, or 49843. divided by 69. 8d. or 6fs. or

reducing the whole number to the form of a fraction, 2_0s. becomes

4?j8 4 multiplied bjr -2^0 (74), or i\%?2, or **|*'*, which is equal to

'747^1 5 and ^|, or ^, of 6s. 8d. is 3 times | of SOd. or 48d. or 43.



0,1796

Beducticiu

73,8156 20

5 36,907S
20

0,b9bO
137 18,1560

12

6286
2694
898

1,8720
4

123,02S
6

S,4880

79

738,156

JSns. 561, 18s. Id. S|q. nearly.

Examples for practice.

Reduce 7s. 9|d. to the decimal of a i)eund. Ms, 0,390625.

Reduce Sqi-s. 2Ba. to the decimal of a yard. Ans. 0,875.

Find the value of 0,85251/. in shillings, pence, &c.

Ahs, 17s. Od. 2|q. neariy.

Reduce 241?. 18s. 9d. to federal money. Ans, g806,4583 6cc.

Find the value of 0,42857 of a month.

Ans, Iw. 4d. 23h. 59' 5b",

Required the circumference of the earth in English statute

miles, a degree heing estimated at 57008 toisesf.

Ans, 24855,488.

We have given rules for reducing a compound number from

one denomination to another, as we shall have frequent occasion

in what follows for making these reductions. They are not,

however, necessary, except in particular cases, previously to per-

forming the fundamental operations. The several denomina-

tions of a compound number may be regarded like the different

orders of units in a simple one, that is, the number or numbers of

each denomination may be made the subject of a distinct opera-

tion, the result of which, being reduced when necessary, may be

united to the next, and so on through all the denominations.

t A toise or French fathom is equal to 6 French feet, and a French

foot is equal to 12,7893 English inches.
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ADDITION OF COMPOUND NUMBERS.

103. The addition of compound numbers depen<ls on the same
principles as that of simple numbers, the object b«ing simply

to unite parts of the same denomination, and when a num-
ber of these are found, sufficient to form one, or more than one

of a higher, these last are retained to be united to ethers of the

same denomination in the given numbers ; as in simple addition

the tens are carried from one column to the next column on the

left. We mustf then, place the compound numbers, that are to be

added, in such a manner, that their units, or parts of the same

name, may stand under each other ; we must then find separately

the sum of each column, always recollecting how many parts of

each denomination it takes to make one of the next higher. See the

following example in pounds, shillings and pence.

£ 8. d.

984 12 8

38 6 9

1413 14 10

319 18 2

2756 12 5

First, adding together the pence, because they are the parts of

the least value, and taking together both the units and tens of

this denomination, we find 29 ; but as 13 pence make a shil-

ling, this sum amounts to 2 shillings and 5 pence ; we then

write down only the 5 pence, and retain the shillings in order to

unite them to the column to which they belong.

Next, we add separately the units and the tens of the next de-

nomination j the first give, by joining to them the 2 shillings re-

served from the pence, 22 ; we write down only the two units and

retain the two tens for the next column, the sum of which, by this

means, amounts to 5 tens, but as the pound, made up of 20 shil-

lings, contains 2 tens, we obtain the number of pounds result-

ing from the shillings, by dividing the tens of these last by 2 ;

the quotient is 2, and the remainder 1, which last is written

under the column to which it belongs, while the pounds are re-

served for the next column on the left j as this column is the last
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the operation is performed as in simple numbers, and the whole

sum is found to be 27561. I2s. 5d.

The method of proving the addition of compound numbers is

derived from the same principles, as that for simple numbers,

and is performed in the same manner, cai-e being taken in passing

fn»m one denomination to another, to substitute instead of the

decimal ratio, the value of each part in the terms of that, which

follows it on the right. Let there be, for example,

£ s. d.

984 12 8

38 G 9

1413 14 10

319 18 2

2, 56 12

1122 22

The operation on the pounds is performed according to th«

rule of article 19 ; then we change the two pounds into tens of

shillings, and obtain 4 of these tens, which, joined to that written

under the column, makes 5. from which we subtract the 3 units

of this column, and place the remainder, 2, underneath, counting

it as tens with regard to the next column. There still remain

2 shillings, whicii must be reduced to pence ; adding the result,

24 pence, to the 5 that are written, we have a total of 29, which

must be again obtained by the addition of all the pence, as these

are the parts of the lowest denoniination in the question. This

really happens, and proves the operation to be right.

Examples.

£ s. d. £ s. d £ s. d.

17 13 4

13 10 2
10 17 3

8 8 7
3 3 4

84 17 H
75 13 n
51 17 H
20 10 10^
17 15 4^

8 8 10 10 11

175 10 10
107 13 111
89 18 10
75 12 24
3

1

3
1

Sum 54 14 261 5 81 452 19 24-

Proof 23 32 24 23 20 232 13

^rith, 11
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lb. oz. dwt. gvt lb. oz. dwt. gr. lb. tz. dwt. gr.

17 3 15 11 14 10 13 20 27 10 17 18

13 2 13 13 13 10 18 21 17 10 13 13

15 3 14 14 14 10 10 10 13 11 13 1

13 10 10 I 2 3 10 1 2

12 1 17 1444 4433
13 14 1 19 2 1

cwt. qr. lb. oz. dr. T. cwt. qr. lb. oz. dr. T. cwt. qr. lb. oz. dr.

15 2 15 15 15 2 17 3 IS 8 7 3 13 2 10 7 7

13 2 17 13 14 2 13 3 14 8 8 2 14 1 17 6 6

12 2 13 14 14 1 16 10 5 4 17 14 6

10 1 17 15 2 13 17 2 13 12 7 7

12 1 10 10 1 14 1 1 2 2 3 13 10 4 4

10 1 12 17 4 16 1775 5 2 12 88

Mls.fur.pol.yd. ft. in. Mis. fur.pol.yd. ft. in. Mis. fur. pol. yd. ft. in.

37 3 14 2 1 5 28 2 13 1 1 4 28 3 7 2 7

28 4 ir 3 2 10 39 1 17 2 2 10 30 1 f

17 4 4 3 1 2 28 1 14 2 2 27 6 30 2 9

10 56317 48 1 17 227 76 20 21
29 2 2 2 3 37 1 29 3 5 2 2 10

30 4 2 2 20 2 1 7 10 2 2

SUBTRACTION OF COMPOUND NUMBERS.

104. This operation is performed in the same way as the sub-

traction of simple numbers, except with regard to the number

which it is necessary to borrow from the higher denominations,

in order to perform the partial subtractions, when the lower

number exceeds the upper. For instance,

£ s. d.

from 795 3

take 684 17 4

Difference 110 5 8
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In perfoiinicg this example, it is necessary to borrow, from the

column of shillings, 1 shilling or 12 pence, in order to effect the

subtraction of the lower number, 4, and we have for a remainder

8 pence. There now remain in the upper number of the column of

shillings only 2, it is necessary therefore to borrow, from that of

pounds, 1 pound or 20 shillings, s\e thus make it 22, of which,

when the lower number, 17, is subtracted, 5 remain ; we must

now proceed to the column of pounds, remembering to count the

upper number less by unity, and finish the operation as in the

case of simple numbers.

The method of proving subtraction of compound numbers, like

that for simple numbers, consists in adding the difference to the

less of the two numbers.

Examples for practice.

£ s. d. £ s. d. £ s. d.

275 13 4 454 14 2| 274 14 H
176 16 6 276 17 H 85 15 n

Rem. 98 16 10 177 16 H 188 18 H
Proof 275 13 4 454 14 ^ 274 14 Si-

lb. oz. dwt gr. lb. oz. dwt. gr. lb. oz. dwt. gr.

7 3 14 11 27 2 10 20 29 3 14 5

3 7 15 20 20 3 5 21 20 7 15 7

Rem.

Proof

cwt.qr. lb. oz. dr.

5 17 5 9

3 3 21 1 7

cwt. qr. lb. oz.

22 2 13 4

20 1 17 6

dr.

8

6

cwt.qr. lb. oz. dr.

21 1 7 6 13

13 8 8 14

Rem.

Proof
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Mis. fhr. pol. yd. ft. in,

14 3 17 1 £ I

10 7 30 2 10

Jlrithmettc.

jMIs. fur. pol. yd. ft. in.

70 7 13 I 1 2

20 14 2 2 7

Mis. fur. pol. yd. ft. in.

70 3 10 7

17 3 11 1 1 3

Rem.

Proof

m. vv. d. h. r

17 '2 5 17 26

10 18 18

m. w. d. h. '

37 I 13 1

15 2 15 14

m. w. d. h. '

71 5

17 5 5 7

Hem.

Proof

MULTIPLICATION OF COMPOUND NUMBERS.

105. We have seen, that a number consisting of several denom-

inations may be reduced to a single one, either the lowest or the

highest of those contained in it, in which state it admits of being

used as an abstract number. But when it is required to find the

product of two numbers, one of which only is compound, the sim-

plest method is to consider the multiplication of each denomina-

tion of the Compound number by the simple factor, as a distinct

question, and the several results, thus obtained, will be the total

product sought. If it were proposed, for example, to multiply

71. 14s. 7d. 3q. by 9, it may be done thus,

£ s. d. q.

7 14 7 3

9 9 9 9

63 126 63 27

and 6SZ. 126s. 63d. 27q. is evidently 9 times the proposed sum,

beratlso it is 9 times each of the parts, which compose this sum.
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But 27q. is equal to 6d. 3q. and adding the 6d. to the 63d. we

have 69d. equal to 5s. 9d. adding the 5s. to the 126s. we obtain

131s. equal to 6^ lis, and lastly, adding the 6i. to the 63/. we

have 69/. lis. 9d. 3q. equal to the above result, and equal to the

product of

71. 14s. 7d. 3q. by 9.

Instead of finding the several products first, and then reducing

them, we may make the reductions after each multiplication,

putting down what remains of this denomination, and carrying

forward the quotient, thus obtained^ to be united to the next

higRer product.

Hence, to multiply two numbers togetherf one of which is com-

pound, make the compound number the multiplicand and the simjde

number the multiplier, and beginning with the lowest denomination

of the multiplicand, multiply it by the multiplier and divide the pro-

duct by the number, which it takes to make one of the next superior

denomination ; putting doWn the remainder, add the quotient to the

product of the next denomination by the multiplier, reduce this sum,

putting down the remainder and reserving the quotient, as before,

and proceed in this manner through all the denominations to the

last, which is to be multiplied like a simple number.

When the multiplier exceeds 12, that is, when it is so large

that it is inconvenient to multiply by the whole at once, the

shortest method is to resolve it, if it can be done, into two or

more factors, and to multiply first by one and then that product

by the other, and so on, as in the following example. Let the

two numbers be £4 13s. 3d. and 18.

£ s. d.

4 13 3

41 19

83 18 6

Here we first find 9 times the multiplicand, or £41 19s. Sd.

and then take twice this product, which will evidently be twice

9, or 18 times the original multiplicand (82). Instead of multi-

plying by 9 we miglit multiply first by 3 and then that product
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by 3, which would give the same result ; also the multiplier 18

mi£^ht be resolved into 3 and 6, which would j^ive the same pro-

duct as the above. If we multiply £83 1 8s. 6d. by 7.

£ s. d.

83 18 6

7

587 9 6

we sball have the product of the original multiplicand by 7 times

18 or 126.

If the multiplier were 105, it might be resolved into 7, 3, and

5, and the product be found as above.

But it frequently happens, that the multiplier cannot be re-

solved in this way into factors. When this is the case, we may
take the number nearest to it, which can be so resolved, and

find the product of the multiplicand by this number, as already

described, and then add or subtract so many times the multipli-

cand, as this number falls short, or exceeds the given multiplier,

and the result will be the product sought. Let there be £1 7s.

8d. to be multiplied by 17.

£ s. d.17 8

4

5 10 8

4

£2 2 8

1 7 8

Product £23 10 4

In the first place, I find the product of £1 7s. 8d. by 16, whick

is £22 2s. 8d. and to this I add once the multiplicand and this

sum £23 10s. 4d. is evidently equal to 17 times the multiplicand.

106. It may be observed, that in those cases, where the de-

crease of value from one denomination to another, is according to

the same law throughout, that is, where it takes the same number

of a lower denomination to make one of the next higher through

all the denominations, the multiplication of one compound number

by another may be performed in a manner similar to what takes

place with regard to abstract numbers.
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This regular gradation is sometimes preserved in the denom-

inations, that succeed to feet in long measure, 1 inch or prime

being considered as equal to 12 seconds, and 1 second to 12 thirdSf

and so on, the several denominations after feet being distinguish-

ed by one, two, &c. accents, thus,

lOf. 4' 5" 10'".

If it were required to find the product of 2f, 4' by 3f. 10', we
should proceed as below.

2f. 4'

3 10

1 11

7

8 11 4"

The 4 inches or primes may be considered with reference to

the denomination of feet, as 4 twelfths, or ^'^, and the 10 inches

as ^|. the product of which is -^Y** or 41 "^ tV» o^ "^O", which

reduced gives 3' 4"
; putting down the 4", we reserve the 5' to be

added to the product of 2 feet by 10', or -J-l* which product is ||
of a foot, to which 5 being added, we have ||f. or If. and 11';

next multiplying 4' or ^\ by S, we have
-J-f

or I, which added to

the product of 2 by 3 gives 7, Taking the sum of these results,

we have 8f. 11' 4", for the product of 2f. 4' by Sf. 10'. The
method here pursued may be extended to those cases, where there

is a greater number of denominations.

"Whence, to multiply one number consisting of feetf primes,

secondSf Sfc. by another of the same kind, having placed the several

terms of the multiplier under the corresponding ones of the multi-

plicand, multiply the whole multiplicand by the several terms of
the multiplier successively according to the nde of the last article,

placing the first term of each of the partial products under its res-

pective multiplier, andfnd the sum of the several columns, observing

to carry onefor every twelve in each part of the operation ; then the

first number on the left xvill be feet, and the second primes, and the

third seconds, and so on regularly to the last\.

t The above article relates to what is commonly called duodeci-

mals. The operation is ordinarily performed by beginning with the
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Examplesfor practice.

Multiply £1 Us. 6d. 2q. by 5. Ms. £7 ITs. 8d. 2q.

Multiply 7s. 4d. 3q. by 24. Ms. £s 17s. 6d.

Multiply £l 17s. 6d. by 63. Ms. £118 2s. 6d.

Multiply 17s. 9d. by 47. Ms. £4 1 14s. 3d.

Multiply £1 2s. 3d. by 117. w3ws. £130 3s. 3d.

What is the value of 119 yards of cloth at £2 4s. 3d, per

yard ? Ms. £9,6S 5s. 9d.

What is the value of 9cwt. of cheese at £l lis. 5d. per cwt ?

Mis. £14 2s. 9d.

What is the value of 96 quarters of rye at £l 3s. 4d. per

quarter. Ms. £11 Z.

What is the weight of 7 hhds. of sugar, each weighing 9 cwt,

3qrs. 12lb. Ms, 69. cwt.

In the Lunar circle of 19 years, of S65d. 5h. 48' 48" each, how
many days, &c. ? Ans, 6939d. 14h. 27' 12",

Multiply 14f. 9' by 4f. 6'. Ms. 66f. 4' 6".

Multiply 4f. 7' 8"- by 9f. 6'. Ms. 44f. 0' 10".

Required the content of a floor 48f. 6' long and 24f. 3' broad.

Mis. 1176f. 1' 6".

What is the number of squaie feet &c, in a marble slab,

whose length is 5f. 7' and breadth If. 10'? Mis. lOf. 2' 10,"

highest denomination of the multiplier, and disposing of the several

products as in the first example below. The result is evidently the

same whichever method is pursued, as may be seen by comparing

this example with that of the same question on the right, performed

according to the rule in the text. This last arrangement seems to

be preferable, as it is more strictly conformable to what takes place

in the multiplication of numbers accompanied by decimals.

^ r II
f.

' ''

10 4 5 10 A 5

7 8 1 7 B £

72 6 11 5 2 2 6

6 10 11 4'" 6 10 11 4

5 2 2 6"" 72 6 11

79 11 6 6 791". 11' 0" 6'" 6'
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DIVISION OF COMPOUND NUMBERS.

107. A COMPOUND number maj be dividt d by a simple num-

ber, by regarding each of the terms of the former, as forming a

distinct dividend. If we take the product f<»und in article 105,

namely, £63 126s. 63d. srq. and divide it by the multiplier 9,

vc shall evidently come back to the multiplicand, £7 14s. 7d. 3q.

We arrive at the same result abo, by dividing the above sum re-

duced, or £69 lis. 9d. 3q. for we obtain one 9th of each of the

several parts that compose the number, the sum of w hich must be

one 9th of the whole. But si ce, in this case, each term of the

dividend is not exactly divisible by the divisor, instead of employ-

ing a fraction we reduce what remains, and add it to the next

lower denomination, and then divide the sum thus formed, by the

divisor. The operation may be seen below.

£69 lis. 9d. 3q. i 9
63 \£7 14s. rd. 3q.

6
20

131

9

41

56

5
12

69
63

6
4

27
27

Arith. 12
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Whence, to divide a 7iumher consisting of different denominaticms

by a simple number, dnide the highest term of the compound num-

ber by the divisor, reduce the remainder to the next lurwer denomi-

nation, adding to it the number of this denomination^ and divide the

sum by the divisor, reducing the remainder, as before, and proceed in

this way through all the denominations to the last, the remainder

of which, if there be one, must have its qnotent represented in the

form of afraction by placing the divisor under it. The sum of the

several quotients, thus obtained, will be the whole quotient required.

When the divisor is large and can be resolved into two or

more simple factors, we may divide first by one of these factors,

and then that quotient by another, and so on. and the last quo-

tient will be the same as that uhich would have been obtained

by using tiie whole divisor in a single operation. Taking the

result of the example in the corresponding case of multiplication,

we proceed thus,

18s. 6d. I 2

8

3
2

1

20

38
2

18
18

6
6

£41
36

5

20

119
9

29
27

2
12

2r
27

19s. 3d. 9

£4 13s. 3d.

By dividing £83 IBs. 6d. by 2, we obtain one half of this sum,

which being divided by 9, must give one 9th of one half, or one

18th of the whole. The first operation may be considered as

separating the dividend into two equal parts, and the second as
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distributing each of these into nine equal parts, the number of

parts therefore will be 18, and being equal, one of them must be

one 18th of the whole.

But when the divisor connot be thus resolved, the operation

must be |)erformed by dividing by the whole at otice. If the

quotient, whi( h we are seeking, were known, by adding it to, or

subtracting from it, the dividend a certain number of times,

increasing or diminishing the divisor at the same time by as

many units, we miglit change the question into one, wliose divi-

sor would admit of being resolved into factors, which would

give the same quotient ; we should thus preserve the anology

which exists between the muliiplicatiun and division of compound

numbers. 13 ut this cannot be done, as it supposes that to be

known, which is the object of the operation.

Multiplication and division, where compound numbers are,

concerned, mutually prove each other, as in the case of simple

numbers. This may be seen by comparing the examples, which

are given at length to illustrate these rules.

Examplesfor practice

Divide £821 17s. 9|d. by 4. Jlns. £205 9s. 5id. ^
Divide £28 2s. l^d. by 6. ^ns. £4 iSs. S»d.

Divide £57 3s. 7d. by 35 ^ns. £1 12s. 8d.

Divide £23 I5s. 7|d. by 37 .ins. 12s. 10|d.

Divide 1061cwt. 2qr-s. by 28. dns. S7cwl. 3qrs, IBlb.

Divide S75mls. 2fur. 7pls. 2yds. 1ft. 2in. by 39.

Ms, 9mls. 4fur. 39pls. 2ft. Sin.

If 9 yards of cloth cost £4 3s. 7|d. what is it per yard ?

Ms. 9s. 3d. 2q.

If a hogshead of wine cost £33 12s. what is it per gallon ?

dns. 10s. 8d,

If a dozen silver spoons weigh 3lb. 2oz. 13pwt. 12grs. what

is the weight of each spoon. Jins. 3oz. 4pwt. 1 Igrs.

If a persou's int:onie be £150 a year, what is it per day ?

Ans. 8s. 2|(l. nearly,

A capital of £223 16s. Bd. being divided into 96 shares, what
is the value of a share. ? Ans. £2 6s. 7id.
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PROPORTION.

108. "We have shown, in the preceding part of this work,the dif-

ferent metliods necessary for perforniing on ail numbers, whether

whole or fractional, or consisting of different denominations,

the four fundamental operations of arithmetic, namely, addition,

subti anion, multiplication and division ; and all quesiions rela-

tive to numbers ought to be regarded as solved, when, by an

attentive examination of the manner in which they are stated,

th<'y can be reduced to some one of these operations. Conse-

quently , we might here terminate all that is to be said on arith-

metic, for what remains b« longs, properly speaking, to the prov-

ince of algebra. We shall, nevertheless, for the sake of exer-

cising the learner, now resolve some questions which will prepare

him for algebraic analysis, and make him acquainted with

a very important theory' , that of ratios and proportions, which

is ordinarily comprehended in arithmetic.

109. A piece of cloth 13 yards long was sold for 130 dollars,

what will he the price of a piece of the same cloth 1 8 yards long.

It is plain, that if we knew the price of one yard of the cloth

that was sold, we might repeat this price 18 times, and the

result would he the price of the piece 18 yards long. Now,
since 13 yards cost 130 dollars, one yard must have cost the

thirteenth part of 130 dollars, or y^", performing the divison,

we find for the result 10 dollars, and multiplying this number by

18, we have 180 dollars for the answer ; which is the true cost of

the piece 18 yards long.

A courierf who travels always at the same rate, having gone 5

leagues in 3 hours, how many will he go in 1 1 hours ?

Reasoning as in the last example, we see, that the courier

goes in one hour ^ of 5 leagues, or |, and consequently, in 11

hours he will go 11 times as much, or 4 of a league multiplied

by 11, or Y» ^'i^t is 18 leagues and 1 mile.

In how many hours will the courier of the preceding question go

22 leagues ?

We see, that if we knew the time he would occupy in going one

league, we should have only to repeat this number 22 times, and

the result would be the number of hours required. Now the
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courier, requirinji: 3 hours to go 5 leagues, will require only

I of the time, | of an hour, to go one league ; this number,

multiplied by 22, gives «/ or 13 hours and ^, that is, 13 hours

and 12 minutes.

110. We have discovered the unknown quantities by an analy-

sis of each of the preceding statements, but the known numbers

and those required depend upon each other in a manner, that it

would be well to examine.

To do this, let us resume the first question, in which it was re-

quired to find the price of 18 yards of cloth, of which 13 cost

130 dollars.

It is plain, that the price of this piece would be double, if the

number of yards it contained were double that of the first ; that

if the number of yards were triple, the price would be triple also,

and so on ; also that for the half or two thirds of the piece we

should have to pay only one half or two thirds of the whole price.

According to what is here said, which all those, who understand

the meaning of the terms, will readily admit, we see, that if there

be two pieces of the same cloth, the price of the second ought to

contain that of the first, as many times as the length of the

second contains the length of the first, and this ciicunistancc is

stated in saying, that the prices are in proportion to the lengths,

or have the same relation to each other as the lengths.

This example will serve to establish the meaning of several

terms which frequently occur.

Ill, The relation of the lengths is the number, whether whole

or fractional, which denotes how many times one of the lengths

contains the other. If the first piece had 4 yards and the second

8, the relation, or ratio, of the former to tlie latter would be 2,

because 8 contains 4 twice. In the above example, the first piece

had 13 yards and the second 18, the ratio of the former to the

latter is then ^|, or 1/^. In general, the relation or ratio of two

numbers is the quotient arisingfrom dividing one by the other.

As the prices have the same relation to each other, tiiat the

lengths have, 180 divided by 130 must give 14 for a quotient,

which is the case; for in reducing 41°- to its most simple terms,

we get 4|. *
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The four numbers, 13, 18, 130, 180, wriften in this order, are

then such, that the second contains the first as many times as the

fourth contains the third, and tiius they form what is called a

proportion.

We see also, that a proportion is the comhination of two equal

ratios.

We may observe, in this connexion, that a relation is not

changed by multiplying each of iis terms by the same immbrr
j

and this is plain, because a relation, being nothing but the quo-

tient of a division, may always be expressed in a fractional form.

Thus the relation 1| is the sanie as
\ § ^.

The same considerations apply also to the second example.

The courier, who went 5 leagues in 3 hours, would go twice as

far in double that time, three times as far in triple that time ;

thus 11 hours, the time spent by the courier in going 18 leagues

and -|, or Y *^^ ^ league, ought to contain 3 hours, the time re-

quired in going 5 leagues, as often as Y contains 5.

The four numbers 5, Y> 3, 11, are then in proportion ; and in

reality if we divide Y ^Y 5» we get 4|» a resdlt equivalent to y.
It will now be easy to recognize all the cases, where there maj
be a proportion between the four numbers.

112. To denote that there is a proportion between the num-

bers 13, 18, 130, and 180, they are written thus,

13 : 18 : : 130 : 180,

which is read 13 is io 18 as 130 is to ISO ; that is, 13 is the same

part of 18 that 130 is of 180, or that 13 is contained in 18 as

many times as 130 is in 180, or lastly, that the relation of 18 to

13 is the same as that of 180 to 130.

The first term of a relation is called the antecedent^ and the

second the consequent. In a proportion there are two antecedents

and two consequents, viz. the antecedent of the first relation and

that of the second ; the consequent of the first relation and that

of the second. In the proportion 13 : 18 : : 130 : 180, the ante-

cedents are 13, 130; the consequents 18 and 180.

We shall in future take the consequent for the numerator, and

the antecedent for the denominator of the fraction which ex-

presses the relation.
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lis. To ascertain that there is a proportion between the four

numbers 13, 18, 130, and 180, we must see if the fractions ^|
and i|§ be equal, and to do this, we reduce the second to its most

simple terms ; but this verification may also be made by con-

sidering, that if, as is supposed by the nature of proportion, the

two fractious il and 4|| be erjual, it follows that, by reducing

them to the same denominator, the numerator of the one will be-

come equal to tliat of the other, and that, consequently, 18 multi-

plied by ISO will give the same product as 180 by 13. This* is

actually the case, and the reasoning by which it is shown, being

independent of the particular values of the numbers, proves,

that, iffmi*- numbers be in proportion^ the product of the Jirst mid

lasti or of the two extremes, is equal to the product of the second and

thtrdf or of the two means.

We see at the same time, that, if the four given numbers were

not in proportion, they would not have the abovementioned pro-

perty ; for the fraction, which expresses the first ratio, not being

equivalent to that which expresses the second, the numerator of

the one will not be equal to that of the other, when they are re-

duced to a common denominator.

114. The first consequence, naturally drawn from what has

been said, is, that the order of the teims of a proportion may be

changed, provided they be so placed, that the pi*oduct of the ex-

tremes shall be equal to that of the means. In the proportion

13 : 18 : : 130 : 180, the loUowing arrangements may be made;

13: 18: :IS0:; 180

13: 130: : 18: 180

180: 130: : 18: IS

180: 18: : 130: 13

18: 13: : 180: ISO

18: 180: : !S: 130

ISO: 13: :180: 18

130: 180: : 13: 18

for in each one of these, the product of the extremes h formed of
the same factoi-s, and the product of the means of the same fac-
tors. The gccoud arrangement, in which the means have cbang-
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ed places with each other, is one of those that most frequently

occur.=*

115. This change shows that we may either multiply or divide

the two antecedents, or the two consequents, by the same num-
ber, without destroying the proportion. For this change makes
the two antecedents to constitute the first relation, and the two

consequents, the second. If, for instance, 55 : 21 : : 165 : 63,

changing the places of the means we should have,

55: 165:: 21 : 63 ;

we might now divide the terms, which form the first relation, by
5, (Hi) which would give 11 : 33 : : 21 : 63, changing again the

places of the means, we should have 11 : 21 : : 33 : 63, a propor-

tion which is true in itself, and which does not differ from the

given proportion, except in having had its two antecedents

divided by 5.

116. Since the product of the extremes is equal to that of

the means, one product may be taken for the other, and, as in di-

viding the product of the extremes, by one extreme, we must ne-

cessarily find the other as the quotient, consequently, in dividing

hy one extreme the product of the means, we shallJind the other ex-

treme. For the same reason, if we divide the product of the ex-

tremes by one of the means, we shallfind the other mean.

*lt may be observed, that the proportion 13 : 130 : : 18 : 180

might have been at once presented under this form, according to the

solution of the question in article 109 ; for the value of a yard of

cloth may be ascertained in two ways, namely, by dividing the price

of the piece of 13 yards by 13, or by dividing the price of 18 yards

by 18 ; it follows then that the price of the first must contain 13 as

many times as the price of the second contains 18; we shall then

have 13 : 130 :: 18 : 180. We may reason in the same manner
with respect to the 2»* question in the article above referred to, aa

well as with respect to all others of the like kind, and thence derive

proportions; but the method adopted in article 109 seemed preferable,

because it leads us to compare together numbers of the same denom-
ination, whilst by the others we compare prices, which are sums of

money, with yards, which are measures of length ; and this cannot

be done without reducins; them both to abstract numbers.
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We can then find any one terra of a proportion, when we know

the other three, for the term sought must be either one of the

extremes or one of the means.

The question of artirle (109) may be resolved by one of these

rules. Thu:s, wheti we have perceived that the prices of the

two pieces are in the proportion of tlie number of jards contain-

ed in each, we write the proportion in this manner,

13: 18:: 130 :x,

putting the letter a; instead of the required price of 18 yards,

and we find the price, which is one of the extremes, by multiply-

ing together the two means, 18 and 130, which makes 2340. and

dividing this product by the known extreme, 13 j we obtain, for

the result, 180.

The o{)eration, by which, when any three terras of a propor-

tion are given, we find the fourth, is cajled the Rule of Three,

Hi\'riters on arithmetic have distinguished it into several kinds,

but this is unnecessary, when the nature of proportion and

the enunciation of the question arc well understood ; as a few

examples will sufficiently show.

lir. A person having travelled 217,5 miles in 9 days; it is

asked, how long he will be in travelling 423,9 miles, he being

supposed to ti'avel at the same rate ?

In this question the unknown quantity is the number of days,

which ought to contain the 9 days spent in going 217,5 miles,

as many times as 423,9 contains 217,5 ; we thus get the following

proportion
;

days

217,5 : 423,9 : : *J : or, and we find for a:, 17,54 nearly.

118. All the difficulty in these questions consists in the man-

ner of statir.g the proportion. The following rules will be suffi-

cient to guide the learner in all cases.

Among the four numbers which constitute a proportion, there

are two of the same kind, and two others also of the same kind,

but different from the first two. In the preceding exanjple, two

of the terms are miles, and the other two ; days.

Fii"st, then, it is necessary to distinguish the two terms of

each kind, and when this is done, we shall necessarily ha\c the

quotient of the greatest term of tlie second kind by the smallest
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of the same kind, equal to the quotient of the greatest term of the

first kind by the smallest of the same kind, which will give us

this proportion,

the smaller term of the first kind

is

to the larger of the same kind
as

the smaller term of the second kind

is

to the larger of this kind.

In the preceding example this rule immediately gives,

2l-,5 : 423,9 : : 9 :X

for the unknown term ought to be greater than 9, since a greater

number of days will be necessary to complete a longer journey.

119. II it were required to fi'id how many days it Mould take

27 men to perform a piece of woik, which 15 men, working at

the same rate, would do in 18 days ; we see that the days should

be loss in proportion as the nu iibe/- of men is greater, an<l recip-

rocally. There is still a proportion in this case, but the order of

the terms is inverted ; for, if the number of workmen in the

second' set were triple of that in the first, they would require

oiily one third of tlie time. The first number of days then

would contain the second as ma^iy times, as the second number

of workmen would contain the first. This order of the terms

being the reverse of that assigned to them by the enunciation of

the question, we say, that the number of wo-ktnen is in the

inverse ratio of the number of days. If we compare the two first,

and the two last, in the order in which they present themselves,

the ratio of the former will be 3, or 4> and that of the latter |,

which is the same as tlie preceding with the terms in%'erted.

It is evident, indeed, that we invert a ratio by inverting the

terms of the fraction, which expresses it, since we make the an-

tecedent take the place of the consequent, ami the conse({uent

that of the antecedent. | or 2 : 3 is the inverse of | or 3 : 2,

The mod( of proceeding in such cases may be rendered very

simple ; for we have only to take the numbrrs denoting the two

sets of workmen, for the quantities of the first kind, and the num-
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bers denoting the days, for those of the second, and to place the

one and the other in the order of their magnitude ; pi*oceeding

thus, we have the following proportion,

15 : 27 : : a; ; 18,

from which we immediately find x equal to 10.

Recapitulating the remarks already given, we have the fol-

lowing rule ; make the number which is of the same Idnd with

the aiiswer the third term, and the two remaining ones the Jirst

and second, putting the greater or the less Jirst, according as the

third is greater or less than the term sought; then the fourth term

will be found by multiplying together the second and third, and di-

viding the product by thefirst.

1£0. 1st. A man placed 3575 dollars at interest at the rate of

5 per cent, yearly ; it is asked what will be the interest of this

sum at the end of one year ?

The expression. 5 jier cent, interest, means, that for a sum of

one hundred dollars, 5 dollars is allowed at the end of a year;

if then, we take the two principals for the quantities of the first

kind, and the interest for those of the second, we shall have,

100 : 3575 : : 5 : x,

a proportion which may be reduced to £0 : 3575 : :l : x, ac-

cording to the observation in article 115 j then dividing the

two terms of the first relation by 5, we shall have 4 : 715 : : 1 : or,

whence x is equal to 'i*. or gl 78,75 cts.

"We may also resolve this question by considering that 5 is j\
of 100, and that consequently we shall obtain the interest of any
sum put out at this rate by taking the twentieth part of this sum.
Now ^\ of S3575 is gl78,75 ; a result which agrees with the one
before found.

2d. A merchant gives his note for S800,00 payable in a year ,*

the note is sold to a hioker, who advances the money for it eight

montlis before the time of payment; how much ought the broker
to give ?

As the broker advances, from his own funds, a sum, which is

not to be replaced till the expiration of 8 months, it is proper
that he should be allowed interest for his money during this
time.

Let the interest for a year be 6 per cent, the interest for 8
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months will be ^\f or |, of 6, or4 ; a sum then of 100 dollars,

lent for 8 nnonths, must be entitled to 4 dollars interest ; that is,

he who borrows it ought to return Si 04. By considering the

S800, as a sum so returned for what is advanced by the broker,

we shall have this proportion, 104 : 100: : 800 : a:, whence we
get !S769,23| for the value of x, that is, for the sum the broker

ought to give.*

Questionsfor practice.

What is tlie value of a cwt. of sugar at 5|d. per lb. ?

Jins. 2/. lis. 4d.

What is the value of a chaldron of coals at 1 i|d. per bushel ?

Jins 1/. 14s. 6d,

What is the value of a pipe of wine at 10|d, per pint ?

^ns. 44/. 2s.

At SL 9s. per cwt. what is the value of a pack of wool,

weighing 2cwt. 2(irs. I3lb. ^ns, 91. 6d. J/^.

What is the value of l|cwt. of coffee at 5|d. per ounce?

Ms. 6\l. 12s.

Bought 3 casks of raisins, each weighing 2cwt. 2qrs. 25lb.

what will they come to at 21. Is. 8d. per cwt ?

Ms. 17/. 4|-d. ^\\,
What is the value of 2qrs. Inl. of velvet at 19s. Hi.;, per

English ell ? Mis. 8s. lOld. ||.

Bought 12 pockets of hops, each weighing Icwt. 2qrs, 17lb. j

what do they come to at 4/. Is. 4d. per cwt. ?

Ms. 80/. 12s. 1|;1. ^?j%.

What is the tax upon 745/. 14s. 8d. at 3s. 6d. in the pound f

^ns. 130/. 10s. Old ^V4 2+0

t A sum, thus advanced, is called the present worth of the sum due

at the expiration of the proposed time.

* The operation by which we find what ought to be given for a

sum of money, wlien the time of payment is anticipated, belongs to

what is called Discount. There are several ways of caiculatina:

discount, but the above is the most exact, as it has regard merely' to

simple interest.
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If I of a jard of velvet cost 7s, 5d. how many yards can I

buv for IS/. 15s. Gd. ? ^ins, i8| yards.

If an ingot of gold, weighing 9lb. 9oz. 12dwt. be worth 411^

12s. what is that per grain ? Ans. l|d.

How many quarters of corn can I buy for 140 dollars at 4s.

per bu<>hel ? <Aus. 26qrs. 2bu.

Bought 4 bales of cloth, each containing 6 pieces, and each

piece 27 yards, at 16/. -*s. per piece ; what is the value of the

whole, and the rate per yard ?

Ans. 388/. 16s. at 12s. per yard.

If an ounce of silver be worth 5s. 6d. what is tiie price of

a tanliard, ihat weighs lib. lOoz. lOdwt. 4gr.

Ans. 61. Ss. pid. ^%%.

AVhat is the half year's rent of 547 acres of land at 1 5s. 6d.

per acre ? Ans. 211/. 19s. 3d.

At Stj75 per week, how many montiis' board can I have for

100/. ? Ans. 47. m. 2w.
-j-Yy.

Bought 1000 Flemish ells of cloth for 90Z. how must 1 sell it

per ell in Boston to gain 10/. by tlie whole ? Aiis. Ss. 4d.

If a gentleman's income is 1750 dollars a year, ai»d he spends

19s. 7d. per day, how much will he have saved at the year's

end? Alls, 1671. 12s. Id.

What is the value of 172 pigs of lead, each weighing Scwt.

3qrs. 17|lb, at 8/. 17s. 6d. per fother of 19|"wt.

Ans. 286/. 4s. 4|d.

The rents of a whole parish amount to 1750/. and a tax is

granted of 32/. 16s. 6d. what is that in the pound ?

jfliic 41fl 8 8 8

If keeping of one horse be 1 lid. per day, what will be tfiat of

1 1 horses for a year ? Ans. 1 92/. 7s. 8^d.

A pei'son breaking owes id all 1490/. 5s. lOd. and ha^ in

money, goods, and recoverable debts, ZdiJL I7s. 4d. if these

things be delivered to his creditors, what will they ^^ei on the

pound? Ans. 10s. ri.i. |§|^'4.

What must 40s. pay towards a tax, when 65iZ, is^^i 4(1. is as-

sessed at b3/. 12s. 4d. ? Ans. 5h.' U ': l^lH.
Bought 3 tuns of oil for 151i. 14s. 85 gallons of which beios



102 Ariihmetic.

damaged, I desire to know how I may sell the remainder per

guiiun, so as neither to gain nor lose by the bargain ?

Jins. 4s. 6id. -^.^^,

"What quantity of water must I add to a pipe of mountain

wine, valued at 33/. to reduce the first cost to 4s. 6d. per gallon ?

Jlns. 20| gallons.

If 15 ells of stuff, I yard wide, cost 37s. 6d. what will 40 ells

of the same stuff cost, being a yard wide ? Jns. 61. 13s. 4d.

Shipped for Barbadoes 500 pairs of stockings at Ss. 6<l. per

pair, and 1650 yards of baize at Is. 3d. per yard, and have re-

ceived in return 348 gallons of rum at 6s. 8d. per gallon, and

750lb. of indigo at Is. 4d. per lb. what remains due upon my
adventure ? Ms. 24/. 12s. 6d.

If 100 workmen can finish a piece of work in 12 days, how
many are sufficient to do the same in 3 days ? Jlris. 400 men.

How many yards of matting, 2ft, 6in. broad, will criver a

floor, that is 2rft. long, and 20ft. broad. Jins. 72 yards.

How many yards of cloth, 3qrs. wide, are equal in meas-

ure to SO yards 5qrs. wide ? *9ns. 50 yards.

A borrowed of his friend B 250L for 7 months, promising to

do him the like kindness ; sometime after B had occasion for

300/. how long may he keep it to receive full amends for the

favor ? Jlns. 5 months and 25 days.

If, when the price of a bushel of wheat is 6s. 3d. the penny

loaf weigh 9oz. what ought it to weigh when wheat is at 8s. 2|d.

per bushel ? Ans. 6oz. 1 3dr.

If 4|(vvt. can be carried 36 miles for 35 shillings, how many

pounds can be carried 20 miles for the same money ?

Ms. 9071 b. ^%.

How many yards of canvass, that is an ell wide, will line 20

yards of say, that is 3qrs. wide ?
' dns. 12yds*

If 30 men can peVfoim a piece of work in 11 days, how many
men will accomplish another piece of work, 4 times as big, in a

fifth part of the time ? Jus. 600.

A wall that is to be built to tlie heiglit of 27 feet, was raised 9

feet by 12 men in 6 days ; how many men must be employed to

finish the wall in 4 days at the same rate of working ?

Ans, 56.
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If ioz. cost \l\ what will loz. cost ? *ins. 1/. 5s. 8d.

If -j^j of a snip cost 273/. 2s. 6d. what is /^ of her worth ?

d s. Q2TL l£s. Id.

At l|/, per cwt. what does o^lb. come to ? Ms, io«d.

If I of a gallon cos' 4 . vvhat will f of a tun cost ? diis. 140/.

A person, having | of a coal mine, sells ^ of his share for

171/. what is the whole mine worth ? Jlns. 380/.

If, when the davs are 1
'4 hours long, a traveller perform his

journey in 55| days ; in how many days will he perform tlie

same journey, when the days are ll^'^^ hours long ?

Ms. 40«A|. days.

A regiment of soldiers, consisting of 976 men, are to be new

clothed, each coat to contain £^ yards of cloth, that is Ifyd.

wide, and to he lined with shalloon, ^yd. wide ; how many
yards of shalloon will line them ? dns. 4531yds. Iqr. 24.nl.

i COMPOUND PROPORTION.

121. Proportion is also applied to questions, in which the re-

lation of the quantity required, to the given quantity of the same

kind, depends upon several circumstances, combined together; it

is then called Compound Proportion, or Double BuU of Three,

See some examples.

It is required to find how many leagues a pei-son would go
in 17 days, travelling 10 hours a day, when he is known to ha%'e

travelled 112 leagues, in 29 days, employing only 7 hours a day.

This question may be resoh ed in two ways, we will firet give

the one that leads to Compound Proportion.

In each case, the number of leagues passed over depends upon
two circumstances, namely, the number of days the man travels,

and the number of hours he travels in each day.

We will not at first consider this latter circumstance, but sup-

pose the number of hours be the same in each case ; the ques-
tion then will be; a person in 29 days (ravels 112 leagues, how
mamj ivill he iravelin 17 days? This will furnish the following

proportion

;

29 : 17 : ; 112 : x.
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The fourth term will be equal to 112 multiplied by 17 and divid-

ed by 29, or- ^l^* leagues.

Now, to take into consideration the number of hours, we must

say, if a person travelling 7 hours a day, for a certain number of

days, has travelle<) ^|^* leagues, how far will he go in the same

time, if he travel 10 hours a day ? This will lead to the follow-

ing proportion,
h. h. ^.

7: 10::i|§*:a7,

which gives for the fourth term, or answer, 93,793 leagues

nearly.

The question may also be resolved by observing, that 29 days

travelling, at 7 hours a day, is equal to 203 hours travelling;

and that 17 days, at 10 hours a day, amounts to 170 hours; the

problem then is reduced to this proportion,

203: 170: : 112:ar,

by which we find the distance he ought to travel in 170 hours^

according to what he performed in 203 hours.

We see, by the first mode of resolving the question, that 112

leagues has to the fourth ternj, or answer, the same proportion,

thai 29 days has to 17, and that 7 hours has to 10 ; stating this

in the form of a proportion, we have

QQ . 1 7 / lea.
d. d. -V

29: 17 f

h. h. /
7: 10)

by M'hich it appears, that 1 12 is to be multiplied by both 17 and

10, and to be divided by both 29 and 7, that is, 1 12 is to be mul-

tiplied by the product of 17 by 10, and divided by the product

of 29 by 7, which is the same as the second method of resolving

the question.

122. Again, if 9 labourers, working 8 hours a day, have

spent 24 days in digging a ditch 65 yards long, 13 wide, and 5

deep, how many days will it take 71 labourers of equal ability,

working 11 hours a day, to dig a ditch 327 yards long, 18

broad, and 7 deep ?

Here is a question very complicated in appearance, but which

may be resolved by proportion.

If all the conditions of these two cases were alike, except the

I
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number of men and the number of liajs, the question would con-

sist only in finding in how many days 71 men would perform the

work, which 9 men have done in 24 days ; we should have then,

71 : 9:: 24 to:,

but instead of calculating the number of days, we will only indi-

cate, as in article 82, the numbers to be multiplied together, and

place as a denominator those by which they are to be divided j we

thus have for x days,

24bv 9

But as the first labourers worked only 8 hours a day, while the

others worked 1 1, the number of days i^equired by the latter will

be less in proportion, which will give

24bv 9
11:8:: —^— : x

;

Vhence we conclude that the number of days, in this case, is

24 by 9 b V 8

71 by 11 '

This number is that of the days necessary for 71 labourers,

working 1 1 hours a day, to dig the fii-st ditch.

The ditches being of unequal length, as many more days will

be necessary, as the second is longer than the first, thus we shall

have

7 1 by 1

1

and the number of days, this new circumstance being consider-

ed, will be

24 by 9 by 8 hv S27

71 by 11 by 00

Taking into consideration the breadths, which are not alike,

we have

j3^
2_4by9by8by|2_7^

71 by 11 by Oj

and, consequently, the number of days required changes to

24 by 9 by 8 bv >27 hv 18 :

71 by 11 by 65 by 13 *

Arith. 14
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Lastly, the depths being different, we have

^ ^ 24 bv9bv8bv S"27 hv 18

71 oy 11 by 65 uy Ij * *

and the number of days, resulting from the concurrence of all

these circumstances, is

24 by 9 by 8 by 327 by 18 by 7

71 bv 11 b_\ Co by 13 by 5 '

Performing the mnltiplirations and divisions, we get the answer

required, 21 days 4|||||i.
123. This number is equal to 24 multiplied by the fractional

quantity

9by 8hv327hy 18by7 ^

71 >n i 1 u_y oj bj 13 by 5 '

but this last quantity, which expresses the relation of the num-

ber of days given, to the number of days required, is itself the

product of the following fractions ;

9 8 327 187
TT» TT' "SI ' T7» ?•

Now, going back to the denominations given to these numbers in

the statement of the question, we see that these fractions are the

ratios of the men and the hours, of the lengths, the breadths and

the depths of the two ditches ,• hence it follows, that the ratio of

the number of days given, to the number of days sought, is equal

to the product of all the ratios, which result from a comparison

of the terms relating to each circumstance of the question.

This may be resolved in a simple manner by first finding the

value of each of these ratios ; for, by multijjlying together the

fractions that express them, we form a fraction which represents

the ratio of the quantity required to the given quantity of the

same kind.

This fraction, which will be the product of all the ratios in the

question* will have for its numerator the product of all the ante-

cedents, and for its denominator, that of all the consequents. A
ratio resulting, in this manner, from the multiplication of sever-

al others, is called a compound ratio.

By means of the fractional expression

9by 8 by 327 by 1 8 by 7

TTbyll by eyby 13 by 5*

and the given number of days, 24, we make the following pro-

portion,
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71 by 11 by 65 by 13 by 5 : 9 by 8 by 327 by 18 by 7 : : 24 : a;,

which may also be represented iu this manner, as was the preced-

ing example.

M
327

J>
: : 24 : ar.

Our remarks may be summed up in this rule ; ^Make tlie number,

tvhich is of the same kind with the required ansxceri Vie third term ;

and of the remaining numbers^ take any two that are of the same

kind, and place onefor a first term and the other for a second term,

according to the directions in simple proportion ; then any other two

of the same kind^ and so on, till all are used ; lastly^ nmltipiy the

third term by the product of the second terms, and divide tlie result

by the product of thefirst termSf and the quotient will be the fourth

term, or answer required.

Examples for practice.

If lOOZ. in one year gain 5l. interest, what will be the interest

of 750^ for 7 years ? -dns. 262/. lus.

"What principal will gain 262Z. 10s. in 7 years, at 5l. per cent,

per annum ? *>ins. 750L

If a footman travel 130 miles in 3 days, when the days are 12

hours king ; in how many days, of 10 houi-s each, may he travel

360 miles ? -Ans. 9|4 days.

If 120 bushels of com can serve 14 horses 56 days ; how many

days will 94 bushels serve 6 horses? «J»i5. 102i| days.

If 7oz. 5dwt. of bread be bought at 4|d. wlien corn is at 4s,

2d. per bushel, what weight of it may be bought for Is. 2d. when

the price per bushel is 5s. 6d. 2 Ans. lib. 4oz. 3*|^dwt.

If the transportation of 13cwt. Iqr. 72 miles be 2/. lOs. 6d.

what will be the transportation of 7cwt. Sqrs. 112 miles ?

Ans, 2/. 5s. lid. lyVVq.
A wall, to be built to the height of 27 feet, was raised to the

height of 9 feet by 12 men in 6 days ; how many men must be

employed to finish the wall in 4 days, at the same rate of work-

ing ? Ans. 36 men.



108 ^rillbinetict

If a regiment of soldiers, consisting of 959 men, consume S51
quarters of wheat in T montlis ; ijow many soldiers will consume
1464 quarters in 5 months, at that rate ? Ans, :)48S-r^%.

If 248 men, in 5 days of 11 hours each, dig a trench .30

yards long, 3 wide and 2 deep ; in how many days of 9 hours

long, will 24 men dig a trench of 420 yards long, 5 wide and 3

deep ? ^ns, 288//^.

FELLOWSHIP.

124. The object of this rule is to divide a number into parts,

which shall have a given relation to each other ; we shall see in

the following example its origin, and whence it has its name.

Tiiree merchants formed a comparjy for the pur|)Ose of trade

;

the first advanced 25000 dollars, the second 18000, and the third

42000 ; after some time they separated, and wished to divide the

joint profit, which amounted to 57225 dollars ; how much ought

each one to have ?

To resolve this question we must consider, that each man's

gain ought to have the same relation to the whole gain, as the

money he advanced has to the whole sum advanced ; for he, who
furnishes a half or third of this sum, ought, plainly, to have a

half or third of the profit. In the presejit example, the whole

sum being 85000 dollars, the particular sums will be respec-

tively ||H§, UUh 11^^^ "f it ; and if we multiply these

tractions by ihe whole gain, 57225, we shall obtain the gain be-

longing to each man. It is moreover evident, that the sum of

the parts will be equal to the whole gain, because the sum of the

above fractions, having its numerator equal to lis denominator,

is necessarily an unit.

We have therefore these proportions;
O Q! ©
2) jD K>

85000 : 25000 : : 57225 : to the first man's gain,

85000 : 18000 : : 57225 : to the second man's gain,

8f000 : 42000 : : 57225 : to the third man's gain,

wbicb may bo enunciated thus ;

The \^ lu)le sum advanced : to each man's particular sum : : the

whole gain : to_each man's particular gain.
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By simplifying the fii-st ratio of each of these proportions wc

have

S
S5 : 25 : : 57225 : to the gain of the !**• or gl6830|4,

85 : 18 : : 57225 : to the gain of the 2"^ or gl2118||,

85 : 42 : : 57225 : to the gain of the S^ or S28275|f

.

If all the sums advanced had been equal, the operation would

have been reduced to dividing the whole gain by the number of

sums advanced ; we may reduce the question to this in the

present case, by supposing the whole sum, gS5000, divided into

85 partial sums, or stocks of glOOO each, the gain of each of

these sums will evidently be the 85^''- part of the whole gain ; and

nothing remains to be done, except to multiply this part severally

by 25, 18, and 42, considering the sums 25000, 18000, and 42000

as the amounts of 25 shares, 18 shares, and 42 shares.

In commercial language the money advanced is called the

capital or stocky and the gain to be divided, the dividend.

The following question is very similar to that just resolved.

125. It is required to divide an estate of 67250 dollars among

3 heirs, in such a manner, that the share of the second shall be

I of that of the first, and the share of the third | of that of the

second.

It is plain that the shai-e of the third, compared with that of the

first, will be I of I of it, or /^ ; then the three parts required

will be to each other in the proportion of the numbere 1, f and

^g. Reducing these to a common denominator, we find them
|o, -8_, and -\, and have the three numbers 20, 8, and 7, which

ai"e proportional to the first ; but as their sura is 35, it is plain,

that if we take three parts expressed by the fractions, -|^, -^^-j,

and -^jf they will be in the required proportion. The question

will then be resolved by taking ||, then /j, and then /, of 67250

dollars, which will give the sums due to the heirs, according to

the manner prescribed, namely

;

S38428|^, §15371-11, and §13450.

126. Again, there are two fountains, the first of which will

fill a certain reservoir in 2| hours, and the second will fill the

game reservoir in S^ hours ; how much time will be required to
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fill the reservoir, by means of both fountains runnings at the same

time ?

We must first ascertain what part of the reservoir will be filled

by the first fountain in any given time, an hour lor instance. It

is evident that, if we take the content of the reservoir for unity,

we have only to divide 1 by 2|, or |, which gives us | for the

part filled in one hour by the first fountain. In the same man-

ner, dividing 1 by 3|, or Y» we obtain ^\ for the part of the

reservoir filled in an liourb> the second fountain ; consequently,

the two fountains, flowing together for an hour, will fill ^ ad<lod

to -^j, or ^1 of the reservoir. If we now divide 1, or the con-

tent of the reservoir, by 4t» we shall obtain the number of

hours necessary for filling it at this rate ; and shall find it to be

l|^ or an hour and a half.

Authors who have written upon arithmetic, have multiplied and

varied these questions in many ways, and have reduced to rules

the processes which serve to resolve them ; but this multiplica-

tion of precepts is, at least, useless, because a question of the

kind we have been considering may always be solved with facil-

ity by one who perceives what follows from the enunciation ;

especially when he can avail himself of the aid of algebra j we

shall therefore proceed to another subject.

Besides the proportions composed of four numbers, one of the

two first of which contains the other as many times as the cor-

responding one of the two last contains the other ; it has been

usual to consider as such the assemblage of four numbers, such

as 2, 7, 9, 14, of which one of the two first exceeds the other as

much as the corresponding one of the two last exceeds the other.

These numbers, which may be called eqiddiffercnt, possess a

remarkable property, analogous to that of proportion, for the sum

of the extreme terms, 2 and 14, is equal to the sum of the means,

7 and 9*.

* The ancients kept the theory of proportions very distinct from

the operations of arithmetic. Euclid gives this theory in the fifth

book of his elements, and as he applies the proportions to lines, it is

apparent, that we thence derive the name of geometrical proporiioii :
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To show this property to be general, we must observe, that the

second term is equal to the first increased by the difference, and

that the fourth is equal to the third increased by the difference;

hence it follows, that the sum of the extremes, composed of the

first and fourth terms, must be equal to the first increased by the

third increased by the difference. Also, that the sum of the

means, composed of the second and third terms, must be equal

to the first increased by the difference increased by the thii'd

term ; the^e two sums, being composed of the same parts, must

consequently be equal.

We have gone on the supposition, that the second and fourth

terms were greater than the first and third ; but the con-

trary may be the case, as in the four numbers 8, 5, 15, 12 ,* the

second term will be equal to the first decreased by the difference,

and the fourth will be equal to the third decreased by the differ-

ence. By changing the word increased into decreased, in the

preceding reasoning, it will be proved that, in the present

case, the sum of the extremes is equal to that of the means.

We shall not pursue this theory of equidifferent numbei-s fur-

ther, because, at present, it can be of no use.

Questionsfor practice,

A and B have gained by trading Si 82. A put into stock

S300 and B §400 ; what is each person's share of the profit ?

Ms. A SrS a!id B Sl<)4.

and that the name of arithmetical proportion was given to an assem-

blage of equidifferent numbers, which were not treated of till a much
later period. These names are very exceptionable ; the word propor-

tion has a determinate meaning, which is not at all applicable to

equidifferent numbers. Besides, the proportion called geometrical is

not less arithmetical than that which exclusively possesses the latter

name. M, Lagrange, in his Lectures at the Normal school, has pro-

posed a more correct phraseology, and I have thought proper to

follow his example.

Equidifference, or the assemblage of four equidifferent numbers,
or arithmetical proportion, is written thus ; 2.7:9.14.

.
Among English writers the following form is used ;

2 . . 7 : : 9 . . 14.
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Divide !S120 between three persons, so that their shares shall

be to each other as 1, 2, and 3, respectively.

Ms. g20, S40, and S60.

Three persons make a joint stock. A put in Si 85,66, B
^98,50, and C ^76,85 j they trade and gain S222 ,• what is each

person's share of the gain ?

Mn. A Sl04,ir^3VoT' B ^^0,57^%\%\, and C 47,25 ||I^4.

Three merchants. A, B, and C, freight a ship with 340 tutis of

wine ; A loaded 1 10 tuns, B 97, and C the rest. In a storm the

seamen were obliged to throw 85 tuns overboard; how much
must each sustain of the loss ?

Ms. A 27|, B 24^, and C 33|.

A ship worth S860 being entirely lost, of which 4 belonged to A,

i to B, and the rest to C ; what loss will each sustain, supposing

S500 of her to be insured ?
'

.ins. A ;S45, B g90, and C S225.

A bankrupt is indebted to A ^877,33, to B S305,17, to C
S152, and to D Sl05. His estate is worth only §677,50; how-

must it be divided ? Ms. A S223,81|48|, B S246,28-g-y/^,

C S122,66|||», and D S84,73|4||.

A and B, venturing equal sums of money, clear by Joint trade

§154. By agreement A was to have 8 per cent, because he

spent his time in the execution ot tlie project, and B was to have

only 5 per cent. ; what was A allowed for his trouble ?

Ms. S35,531|.

Three graziers hired a piece of land for §60,50. A put in 5

sheep for 4A months. B put in 8 for 5 months, and C put in 9 for

6^ months ; how much must each pay of the rent ?

Ms. A §11,25, B §20, and C §29,25.

Two merchants enter into partnership for 18 months; A put

into stock at first §200, and at the end of 8 months he put in

§100 more ; B put in at first §550, and at the end of 4 months

took out §140. Now at the expiration of the time they find they

have gained §526 ; what is each man's just share ?

Ms. A's §192,95,1°:^, B's §333,04411^.

A, with a capital of §1000, began trade January 1, 1776, and

meeting with success in business he took in B a partner, with a

capital of §1500 on the first of March following. Three months

I
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after that, they admit C as a third partner, who brought into

stock S2800, and after trading together till the first of the next

year, they find the gain, since A commenced business, to be

SI 776,50. How must this be divided among the partners ?

.im, A's S457,4()||-f

B's 571,83111

C's 747,19|f|-

ALLIGATION.

128. We shall not omit the rule of alligation, the object of

which is to find the mean value of several things of the same

kind, of difierent values ; the following examples will sufiiciently

illustrate it.

A wine merchant bought several kinds of wine, namely;

130 bottles which cost him 10 cents each,

75 at 15

231 at 12

27 at 20

he afterwards mixed them together ; it is required to ascertain

the cost of a bottle of the mixture. It will be easily perceived,

that we have only to find the whole cost of the mixtui*e and the

number of bottles it contains, and then to divide the first sum

by the second, to obtain the price required.

Now, the 130 botUes at 10 cents cost 1300 cents

75 at 15 cost 1125,

231 at 12 cost 2772,

27 at 20 cost 540,

fben 463 bottles cost 5737 cents.

5737 divided by 463 gives 12,39 cents, the price of a bottle of

the mixture.

The preceding rule is also used for finding a mean of differ-

ent results, given by experiment or observation, which do not

agree with each other. If, for instance, it were required to

know the distance between two points considerably removed

from each other, and it had been measured ; whatever care

might have been used in doing this, there would always be a

Arith. 15
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little uncertainty in the result, on account of the errors inevita-

bly committed by the manner of placing the measures one after

the other.

We will suppose that the operation has been repeated several

times, in order to obtain the distance exactly, and that twice it

has been found 3794yds. aft. that three other measurements have

given 3795yds. 1ft. and a third 3793yds. As these numbers arc

not alike, it is evident that some must be wrong, andjperhaps all.

To obtain the means of diminishing the error, we reason thus 5

if the true distance had been obtained by each measurement, the

sum of the results would be equal to six times that distance, and

it is plain that this would also be the case, if some of the results

obtained were too little, and others too great, so that the increase,

produced by the addition of the excesses, should make up for

what the less measurements wanted of the true value. We
shoidd then, in this last case, obtain the true value by dividing

the sum of the results by the number of them.

This case is too peculiar to occur frequently, but it almost al-

ways happens, that the errors on one side destroy a part of those

on the other, and the remainder, being equally divided among

the results, becomes smaller according as the number of results

is greater.

According to these considerations we shall proceed as follows

;

yds. ft. ft.

We take twice 3794 2 or 7589 1

yds. ft.

S times 3795 1 or 11386

once 3793 or 3793

6 results, giving in all 22768 1.

Dividing 22768yds. 1ft. by 6, we find the mean value of the

required distance to be 3794yds. 2ft.

129. Questions sometimes occur, which are to be solved by a

method, the reverse of that above given. It may be required,

for example, to find what quantity of two different ingredients it

would take to make a mixture of a certain value. It is evident,

that if the value of the mixture required exceeds that of one of

the ingredients just as much as it falls short of that of the other,

\ve should take equal quantities of each to make the compound.

i
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So also, if tlie value of* the mixture exceeded that of one twice as

mucli as il^ fell short of tliat of the othei-, the proportion of the

ingredients would he as one half to one. To mix wine at SSjier

gallon with wine at S3, so that the compound shall he worth

S2,50, we should take equal quantities, or quantities in the

proportion of 1 to 1, If the mixture were required to he worth

S2,66|, the quantities would be in the proportion of ^ to 1, or of

—— to—r J
^"<1 generally, the nearer the mixture rate is to

that of one of the ingredients, the greater must be the quantity of

this ingredient with respect to the other, and the reverse ; hence.

Tofind the proportion of two ingredients of a given value, Jieces-

sary to constitute a compmind of a required value, make the differ-

ence between the value of each ingredient and that of the compound

the denominator of a fraction, whose immerator is one, and these

fractions will express the proportion required; and being redurod

to a common denominator, the numerators will express the same

proportion, or show what quantity of each ingredient is to be

taken to make the required compound.

"When the compound is limited to a certain quantity, the pro-

portion of the ingredients, corresponding to it, may he found by

saying ; as the whole quantity, found as above, is to the quantity

required, so is each part, as obtained by the rule, to the required

quantity of each.

Let it be required, for example, to mix wine at 5s. per gallon

and 8s. per gallon, in such quantities that there may be 60 gal-

lons worth 6s. per gallon. The difference between bs. and 5s.

is 1, and between 6s. and 8s. is 2, giving for the required quan-

titles the ratio of ^ to ^, or 2 to 1 ; thus, taking x equal to the

quantity at 5s. and y equal to the quantity at 8s. we have these

proportions ; 3 : 60 : : 2 : x, and S : 60 : : I : y, giving, for the

answer, 40 gallons at 5s. and 20 gallons at 8s. per gallon.

Also, when one of the ingredients is limited, we may say j as

the quantity of the ingredient found as above, is to the required

quantity of the same, so is the quantity of the other ingredient

to the projjortional part required.

For example, I would know how many gallons of water at

OS. per gallon, I must mix with thirty- gallons of wine at 6s. per
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gallon, so that the compound may be worth 5s. per gallon. First,

the difference between Os. and 5s. is 5 -, and the difTerence be-

tween 6s. and 5s. is 1 ; the quantity of water therefore will be to

that of the wine, as ^ to \, or as 1 to 5. Then, from this ratio,

we institute the proportion, 5 : SO : : 1 : x, which gives 6, for the

number of gallons required.

As we have found the proportion of two ingredients necessary

to form a compound of a required value, so also we may con-

sider either of these in connexion with a third, with a fourth,

and so on, thus making a compound of any required value, con-

sisting of any number whatever of simple ingredients. The two
ingredients used, however, must always be, one of a greater and

the other of a less value, than that of the compound required.

A grocer would mix teas at 12s. and 10s. with 40lbs. at 4s. per

pound, in such proportions that the composition shall be worth 8s.

per lb. If he mix only two kinds, the one at 4s. and the other at

10s. their quantities will be in the ratio of i to ^, or 1 : 2 1 and

if he mix the tea at 4s. also witli that at 12s. their ratio will be

that of \ to ^, or of 1 to 1. Adding together the proportions of

the ingredient, which is taken with each of the others, we find

the several quantities, at 4s. 10s. and 12s. to be as 2, 2, and 1.

And taking x for the number of lbs. at 10s. and ij for the quan-

tity at 12s. we have the following proportions ;

2 : 40 : : 2 : a- ,• and 2 : 40 : : 1 : y ;

giving, for the answer, 40lb. at 10s. and 20lb. at 12s. per pound.

The problems of the two last articles are generally distin-

guisiied by the names of alligation inedial, and alligation alter-

nate. A full explanation of the latter belongs properly to algebra.

Examples.

A composition being made of 5lb. of tea at 7s. per pound, 9lb.

at 8s. 6d. per pound, and 14ilb. at 5s. lOd. per pound ; what is

a pound of it worth ? .5ns. 6s. lO-^-d.

How much gold, of 15, of 17, and of 22 caratsf fine, must be

mixed with 5oz. of 18 carats fine, so that the composition may be

20 carats fine ? Jlns. 5oz. of 15 carats fine, 5 of 17, and 25 of 22.

t A carat is a twenty fourth part ; 22 carats fine means || of pure

metal. A carat is also divided into four parts, called grains of a carat.
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»^Iisc€llalieous ^eiiionsfor practice^

What number, added to the thirty-first paft*^ 38 IS, will make

the sum 200? *** '*"' Arts. 77.

The remainder of a division is 323, the quotient 467, and the

divisor is 43 more than the sum of both ; what is the dividend ?

Ms. 390270.

Two persons depart from the same place at the same time :

the one travels 30, the other 35 miles a day ; how far are they

distant at the end of 7 days, if they travel both the same road ;

and how far, if they travel in contrary directions ?

Ans. 35, and 455 miles.

A tradesman increased his estate annually by 100/. more than

;- part of it, and at the end of 4 years found that hij estate

amounted to 10SA21. Ss. 9d. What had he at first ?

Ans. 4000Z.

Divide 1200 acres of land among A, B, and C, so that B may
have 100 more than A, and C 64 more than B.

Ans. A 312, B 412, and C 476.

Divide 1000 crowns ; give A 120 more, and B 95 less, than C.

Ans. 445, B 230, C 325.

What sum of money will amount to 13S.L 16s. 3d. in 15 months,

at 5 per cent, per annum, simple interest ? Ans. 125/.

A father divided his fortune among his sons, giving A 4 as

often as B 3, and C 5 as often as B 6 ; what was the whole

legacy, supposing A*s share 5000/. ? Ans. 11875/,

If 1000 men, besieged in a town with provisions for 5 weeks,

each man being allowed l6oz. a day, were reinforced with 500

men more. On hearing, that they cannot be relieved till the end

of 8 weeks, how many ounces a day must each man have, that

the provision may last that time ? Ans. 6|.

What number is that, to which if |- of |- be added, the sum
will be 1 ? Ans. 44.

6 u

A father dying left his son a fortune, i of which he spent in 8

months ; ^ oi the remainder lasted him twelve months longer :

after which he had only 410/. left. What did his father bequeath

'»m? , Ans. 956/. ISs. 4d.
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A guardian paid his ward S500L for 2500J. which he had iw

his hands 8 years. What rate of interest did he allow him ?

Ans. 5 per cent.

A person, being asked the hour of the day, said, the time past

noon is equal to | of the time till midnight. \\ hat was the time ?

Ans. 20min. past 5.

A person, looking on his watch, was asked, what was the time

of the day ', he answered, it is between 4 and 5 ', but a more

particular answer being required, Ije said, that the hoi-r and

minute hands were then exactly together. M'hat was the time ?

Jlns. 21-j\ min. past 4.

With 12 gallons of Canary, at Gs. 4d. a gailoti, I mixed 18

gallons of white wine, at 4s. lOd. a gallon, and 12 gallons of

cider, at 6s. Id. a gallon. At what I'ate must I sell a quart of

tliis composition, so as to clear 10 per cent. ? Jlns, Is. Sfd.

What length must be cut off a board, 8| inches broad, to con-

tain a square foot^ or as much as 12 inches in length and 12 in

breadth ? Jins, 17-g^fin.

What difference is there between the interest of S50f. at 4 per

cent, for 8 years, and the discount of the same sum, at the same

rate, and for the same time ? Jins. '271. S-^^-^s.

A father devised -^-g of his estate to one of his sons, and y\ of

the residue to another, and the surplus to his relict for life ; the

children's legacies were found to be 257/. Ss. 4d. different. What
money did he leave for the widow ? Ans, 6351. 10||d.

What number is that, from which ifyou take f lif |, and to the

remainder add -/g- of ^^y, the sura vi'ill be 10 ? Ans. lO^y^^.

A man dying left his wife in expectation that a child would

be afterward added to the surviving family ; and, making his

will, ordered, that if the child were a son, | of his estate should

belong to him, and the remainder to his mother ; but if it were

a daughter, he appointed the mother |, and the cliild the remain-

der. T5ut it happened, that the addition was both a son and a

daughter, by which the mother lost in equity 2400/. more than

if it had been only a daughter. What would have been her

dowry, had she had onlv a son ? Ans. 2100/.
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A young hare starts 40 rods before a grey-hound, and is not

perceived by him till she has been up 40 seconds ,• she scuds

away at the rate of 10 miles an hour, and the dog, on view,

makes after her at the rate of 18. How long will the course

continue, and what will be the length of it from the place, where

the dog set out ? Jns, GO/^^ seconds, and 535 yards run.

A reservoir for water has two cocks to supply it ; by the lirst

alone it may be filled in 40 minutes, by the second in 50 minutes,

and it has a discharging cock, by which it may, when full, be

emptied in 25 minutes. Now tliese three cocks being all left

open, the influx and efflux of the water being always at the same

rate, in what time would the cistern be filled r

^ns. 3 hours 20 minutes.

A sets out from London for Lincoln precisely at tlie time,

^en B at Lincoln sets out for London, distant 100 miles ; after 7

hours they met on the road, and it then appeared, that A had

ridden li mile an hour more than B. At what rate an hour

did each of them travel ? »ins. A 7||, B t)|^ miles.

"What part of 3 pence is a third part of 2 pence ? Jns, |.

A has by him licwt. of tea, the prime cost of which was S6/.

sterling. Now interest being at 5 per cent, it is required to find

how he must rate it per pound to B,^o that by taking his nego-

tiable note, payable at 3 months, he may clear 20 guineas by the

bargain? *9ns. 14s. l|^d. sterling.

There is an island 73 miles in circumference, and 3 footmen

all start together to travel the same way about it ; A goes 5

miles a day, B 8, and C 10 ; when will they all come together

again ? Ans, 73 days.

A man, being asked how many sheep he had in his drove, said,

if he had as many more, half as many more, and 7 sheep and a

half, he should have 20 ; how many had he ? Jlns. 5.

A person left 40s. to 4 poor widows, A, B, C, and D ; to A
he left ^, to B i, to C 4^, and to D ^, desiring the whole might

be distributed accordingly ; what is the proper share of each ?

Ms. A's share 14s. ^|d. B's 10s. 6^d. C's 8s. 5^\d, J)*»

7s. ^\6.
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A general, disposing of his army into a stinare, ilnds he has

284 soldiers over and above ; but increasing each side with one

soklier, he wants 25 to fill up the square ; how many soldiers

had he ? Ms, 24000.

There is a prize of 212i. 14s. 7d. to be divided among a cap-

tain, 4 men, and a boy ; the captain is to have a share and a

half; the men each a share, and the boy
-J

of a share ; what

ought each person to have ?

Ans. The captain 541. 14s. ^d. each man 361!. 9s. 4^A. and the

boy 12/. 3s. Ifd.

A cistern, containing 60 gallons of water, has S unequal cocks

for discharging it ; the greatest cock will empty it in one hour,

the second in 2 hours, and the third in S ; in what time will it be

emptied, if they all run together ? Ans. 32Jj minutes.

In an orchard of fruit trees, | of them bear apples, ^ pears, ^
plums, and 50 of them cherries : how many trees are thei'e in

all? Ans. 600.

A can do a piece of work alone in 10 days, and B in 13 ; if

both be set about it together, in what time will it be finished ?

Ans. 5^1 days.

A, B, and C are to share lOOOOOZ. in the proportion of
-J,

l,

and i, respectively ; but Cs part being lost by his death, it is

required to divide the whole sum properly between the other two.

Ans. A's part is 5n42|./. and B's 428574-/.



APPENDIX,

OONTAINING TABLES OF VABIOUS WEIGHTS AND SCEASrRES.

JVVm; French Weights and Measures,

The weights and measures in common use are liable to great

uncertainty and inconvenience. There being no fixed standard at

hand, by which their accuracy can be ascertained, a great variety

of measures, bearing the same name, has obtained in different

countries. The foot, for instance, is used to stand for about a

hundred different establislied lengths. The several denomina-

tions of weights and measures are also arbitrary, and occasion

most of the ti'ouble and perplexity, that learners meet with in

mercantile arithmetic.

To remedy these evils, the French government adopted a

new system of weights and measures, the several denomina-

tions of which proceed in a decimal ratio, and all referrible to a
common permanent standard, established by nature, and acces-

sible at all places on the earth. This standard is a meridian of

the earth, which it was thought expedient to divide into 40 mil-

lion parts. One of these parts is assumed as the unit of length,

and the basis of the whole system. This they called a metre.

It is equal to about 59^ English inches, of which submultiples

and multiples being taken, the various denominations of length

are formed.

A millimetre 15 the 1000th part of a metre

A centimetre the 100th part of a metre

A decimetre the 10th part of a metre

A METRE
A decametre

A hecatometre

A chiliometre

A myriometre

10 metres

100 metres

1000 metres

10000 metres

A grade or degree of the meridian equal to

100000 metres, or lOOth part of the quadrant 3937100,00000
Arith, 16

Eog. Incb. De«.

,05937

,39371

3,93710

39,37100

393,71000

3937,10000

39371,00000

393710,00000



1£2 Jlppendix.

The decametre is

The hecatometrc

The chiliometre

The myriometre

The grade or decimal degree of the

meridian

lis. Fur. Yds. YU In.Dr,

10 2 9,7

109 1 1

4 213 1 10,2

6 1 156 6

62 1 23

Measures of Capacity.

A cube, whose side is one tenth of a metre, that is, a cubic

decimetre, constitutes the unit of measures of capacity. It is

called the litrCf and contains 61,028 cubic inches.

Eng. Cub. In. Dec.

A millilitre or 1000th part of a litre ,06103

A centilitre 100th of a litre ,61028

A decilitre 1 0th of a litre 6,10280

A litre, a cubic decimetre 61,02800

A decalitre 10 litres 610,28000

A hccatolitre 1000 litres 6102,80000

A chiliolitre 10000 litres 61028,00000

A myriolitre 100000 litres 610280,00000

The English pint, wine measure, contains 28,875 cubic inches.

The litre therefore is 2 pints and nearly one eighth of a pint.

Hence,

A decalitre is equal to 2 gal. 64^'^^ cubic inches.

A hecatolitre 26 gal.

A chiliolitre 264 gal.

42W cubic inches.

^Yt cubic inches.

TFeights.

The unit of weight is the gramme. It is the weight of a quan-

tity of pure water, equal to a cubic centimetre, and is equal to

15,444 grains Troy.

A milligramme is 1000th part of a gramme

A centigramme 100th of a gramme

A decigramme 10th of a gramme

A gramme, a cubic centimetre

A decagramme 10 grammes

A hecatogramme 100 grammes

Gr. Dec.

0,0154

0,1544

1,5444

15,4440

154,4402

1544,4023
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A cliiUograrame 1000 grammes 15444,0234

A myi'iogramme 10000 grammes 154440,2344

A gramme being equal to 15,444 grains Troy.

A decagramme 6dwt. 10,44gr. equal to 5,65 drams Avoirdupois.

lb. oz, dr.

A becatogramme equal to 3 8,5 avoird.

A chilogramme 2 3 5 avoird.

A mjriogramme 22 1 15 avoird.

100 miriogrammes make a tun, wanting 32lb. 8oz.

Land Measure.

Tiie unit is the are, which is a square decametre, equal to 3,95

perches. The deciare is a tenth of an are, the ceutiare is 1 00th

of an are, and equal to a square metre. The milliare is 1000th

of an are. The decare is equal to 10 ares ; the hecatare to 100

ares, and e€[ual to 2 acres 1 rood 35,4 perches English. The
chilare is equal to 1000 ares, the myriare to 10000 ares.

For fire-wood the stere is the unit of measure. It is equal to

a cubic metre, containing 35,3171 cubic feet English. The de-

cestere is the tenth of a stere.

The quadrant of the circle generally is divided like the fourth

part of the meridian, into 100 degrees, eacli degree into 100

minutes, and each minute into 100 seconds, 6cc. so that the same

number, which expresses a portion of the meridian, indicates

also its length, which is a great convenience in navigation.

The coin also is comprehended in this system, and made to

conform to their unit of weight. The weight of the franc, of

which one tenth is alloy, is fixed at 5 grammes; its tenth part is

called dtcime, its hundredth part centime.

The divisions of time, soon after the adoption of the above,
underwent a similar alteration.

The year was made to consist of 12 months of 30 days each,

and the excess of 5 days in common and 6 in leap years was con-
sidered as belonging to no month. Each month was d ivided

into three parts, called decades. The day was divided into 10
hours, each hour into 100 minutes, and each minute into lOO
seconds. This new calendar was adopted in 1793; in 1805 it
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was abolished, and the old calendar restored. The weights and
measures are still in use, and will probably prevail through-
out the continent of Europe. They are recommended to the

attention of every civilized country ; and their general adoption

would pr*re of no small importance to the scientific, as well as

the commercial world.

Scripture Long Measure.

4t
3

Digit

Palm

Bng. Feet. In. See>

0,912

3,648
2
4

Span
Cubit
Fathom
EzekieP.3 reed

1

7
10

10,944

9,888

3,552

11,328
LO Arabian

Scoenus,
pole

measuring line

14

145
7,104

1,104

N. B. There was another span used in the East, equal to ith

of a cubit.

Grecian Long Measure reduced to English,

Sit

H
H
H
H
4

Eng.paces. Feet. In. Dee.

0,75j4||.Dactylis, Digit

Boron, Dochme, Palesta, O
Lichas O
Orthodoron O

Spithame
Pons, foot

Pygme, cubit

Pygon
Pecus, cubit larger

100 Orgya, pace ^"'

o Stadium, « i
' -^n

^
Aulus ^ furlong 100

Million, Mile 805

N. B. Two sorts of long measures were used in Greece, viz.

the Olympic and the Pythic. The former was used in Pelopon-

nesus, Attica, Sicily, and the Greek cities in Italy. The latter

was used in Thssaly, Illyria, Phocis, and Thrace.

3,02183

7,5546|
8,3101_9j.

9,06561

0,0875

1,5984|

3,109|
6,13125

0,525

4,5

t These numbers show how many of each denomination it takes to

make one of tlie next following.
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The Olympic foot, properly called the Greek foot, according t©

Dr. Hutton, contains 12,108 English inches,

Folkei, 12,072

Cavallo, 12,084

The Pytbic foot, called also natural foot, according to

Hutton, contains 9,768

Paucton, 9,731

Hence it appears, that the Olympic stadium is 201| English

yards nearly ; and the Pythic or Delphic stadium, 162| yards

nearly ; and the other measures in proportion.

The Phyleterian foot is the Pythic cubit, or 1^ Pythic foot.

The Macedonian foot was 13,92 English inches; and Sicilian

foot of Archimedes, 8,70 English inches.

Jexvish Long or Itinerary Measure.

Eng. Miles. Paees. Feet. Dee.

400 Cubit 1,824
5 Stadium 145 4,6
2 Sabbath day's journey 729 3,0
3 Eastern mile 1 403 1,0

8 Parasang 4 153 3,0
A day's journey 33 172 4,0

Roman Long Measures reduced to English,

Ene. Fsen. Feet. In. Dec.

H Digitus traversus 0,725^
5 Uncia, or Inch 0,967
4 Palma minor 2,901

H Pes, or Foot 11,604

H Palmipes 1 2,505

H Cubitus 1 5,406
2 Gradus 2 5,501

125 Passus 4 10,02
8 Stadium 120 4 .4,5

Milliare 967

N. B. The Roman measures began with 6 scrupula = 1 sicili-

cuTTi ; 8 scrupula = 1 duellum -, 1| duellum = 1 seminaria ; and
18 scrupula = 1 digitus. Two passus were equal to 1 decempeda.
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Mtic Dry Measures reduced to English,

10 Cochliarion

H Cyathus
4 Oxybaphon
2 Cotylus

H Xcstes, sextary
48 Choenix

Mcdimnus

Peeks. Gall. Pints. Sol. In*

0,276/,
2,763»

4,144|
16,579

33,158
1 15,705|

4 6 3,501

4ttic Measures of Capacity for Liquids^ reduced to English Wine

Measure,

Gal. Pints. Sol. In. Dec.

2 Cochliarion 1

T2?r 0,03t)6rfj

1^ Cheme 1

•ffo"
0,07K|-

2 Myston 1
7T 0,089-14

2

H
Concha
Cyathus

1
24
1

0,^:81^

0,356|4
4 Oxybathon 1

g- 0,535|
2 Cotylus 1 2,I41|
6 Xestes, sextary

2

1 4.283
12 Chous, congius 6 25,698

Metretes, amphora 10 2 19,626

Others reckon 6 choi = 1 amphoreus. and 2 amphorei = 1

keramion or metretes. The keramion is stated by Paucton to

have been equal to 35 French pints, or 8| En glish gallons, and
the other iMeasures in proportion.

Measures of Capacity for Liquids, reduced to English Wine
Measure,

Gal. Pints. Sol. In. Dec.

0,117/^
0,4rgf
0,704|
1,409

2,818

5,636

4,942

5,33

10,66

11,095

4

H
2

Ligula
Cyathus
Acetabulum

2

2
Quartarius

Hemina
6 Sextarius

4
2

Congius
Urna

20 Amphora
Culcus

1

4T
1

T2
1

1

4
1

J
1

7
3 ^
7 1

143 3
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£0
1T

3

Jewish dry Measures reduced to English,

Fecks.

Gachal
Cab
Gomor
Seah 1

Epha 3

Letteeh 16

Choraer, coron 32

«!. Pints. Sol. Inch.

oiil 0,031

2f 0,073

1,211

1 4,036
3 12,107

26,500

1 18,969

Jewish Measures of Capacityfor Liquids, reduced to English TVine

Measure.

H

10

Gal. Pints. Sol. Ineli.

Caph 1 0,177

Log f 0,211

Gab 5| 0,844

Hin 1 2 2,533

Seah 2 4 5,067

Bath, epha 7 4 15,2

Coron, chomer 75 5 7,625

Ancient Raman Land Measure.

100 Square Roman feet = 1 Scrupulum of land

4 Scrupula = 1 Sextulus

1} Sextulus = 1 Actus
6 Sextuli or 5 Actus = 1 Uiicia of land

6 Unci?c = 1 Square Actus
2 Square Actus = 1 Jugerum
2 Ji!a;pra = 1 Heredium

10 Heredia = 1 Centuria

N. B. If we take the Roman foot at 11,6 English inches, the

Roman jugerum was 5980 English square yards, or 1 acre 37^
perches.

Roman Dry Measures reduced io English.

4
2

Ligula

Cyathus
Acetabulum
Hemina or Trutta
Sextarius

Semi d.

Medius

Peck. Gal. Pint. Sol In. Df

,

OtV 0,01

OtV 0,04

Pi 0,06

H 0,24

1 0,48
1 3,84

1 7,68
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ADVERTISEMENT.

None but those who are just entering upoa

the study of Mathematics need to he informed

of the high character of Euler's Algebra. It

has been allowed to hold the veiy first place

among elementary works upon this subject.

The author was a man of genius. He did not, like

most writers, compile from others. He wrote

from his own reflections. He simplified and im-

proved what was known, and added much that

was new. He is particularly distinguished for the

clearness and comprehensiveness of his views.

He seems to have the subject of m hich he treats

present to his mind in all its relations and

bearings before he begins to write. The parts

of it are arranged in the most admirable order.

Each step is introduced by the preceding, and

leads to that which follows, and the ^hole taken

together constitutes an entire and connected

piece, like a higlily wrought story.

This author is remarkable also for his illus-

trations. He teaches by instances. He presents

one example after another, each evident by

b
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itself, and each throwing some new light upon

the subject, till the reader begins to anticipate

for himself the truth to he inculcated.

Some opinion may be formed of the adapta-

tion of this treatise to learners, from the cir-

cumstances under which it was composed. It

was undertaken after the author became blind,

and was dictated to a young man entirely with-

out education, who by this means became an

expert algebraist, and was able to render the

author important services as an amanuensis.

It was written originally in German. It has

since been translated into Russian, French, and

English, with notes and additions.

The entire work consists of two volumes

octavo, and contains many things intended for

the professed mathematician, rather than the

general student. It was thought that a selec-

tion of such parts as Avould form an easy intro^

duction to the science would be well received,

and tend to promote a taste for anal} sis among

the higher class of students, and to raise the

character of mathematical learning.

Notwithstanding the high estimation in which

this work has been held, it is scarcely to be met

with in th« country", and is very little known in

England. On the continent of liirope this

autlior is the constant theme of eulogy. His

writings have the character of classics. They

are regarded at the same time as the most
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profound and the most perspicuous, and as

affording the finest models of analysis. They

furnish the germs of the most approved ele-

mentary works on the different branches of this

science. The constant reply of one of the fii'st

mathematicians* of France to those who con-

sulted him upon the best method of studying

mathematics was, "s^wtZ?/ £u?er." "It is need-

less," said he, " to accumulate books ; true

lovers of mathematics will always read Euler

;

because in his writings every thing is clear,

distinct, and correct ; because they swarm >vith

excellent examples ; and because it is always

necessary to have recourse to the fountain

head."

The selections here offered are from the first

English edition. A few errors have been cor-

rected and a few alterations made in the

phraseology. In the original no questions were

left to be performed by the learner. A collec-

tion was made by the English translator and

subjoined at the end with references to the

sections to which they relate. These have been

mostly retained, and some new ones have been

added.

Although this work is intended particularly

for the algebraical student, it will be found to

contain a cleai* and full explanation of the fun-

damental principles of arithmetic ; vulgai* frac-

• Lagran^.
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tions, the doctrine of roots and powers, of the

different kinds of proportion and progression,

are treated in a manner, that can hardly fail to

interest tlie learner and make him acquainted

with the reason of those rules which he has so

frequent occasion to apply.

A more extended work on Algebra formed

after the same model is now in the press and will

soon he published. This will be followed by

other treatises upon the different branches of

pure mathematics.

JOHN FARRAR,
Frofessor of Mathematics and Natural Philosophy in the

Vmveraity at Cambridsfe.

Cambridge, February, 1818.
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INTRODUCTION

ELEMENTS OF ALGEBRA.

SECTION L

OF THE DIFFERENT METHODS OF CALCUI-ATION APPLIED TO SIMPLE

qUAXTITIES.

CHAPTER I.

Of Mathematics in general.

ARTICLE I.

Whate^xr is capable of increase or diminution, is called

magnitude or quantity.

A sum of money, for instance, is a quantity, since we may in-

crease it or diminish it. The same may be said with respect to

any given ueight, and other things of this nature.

2. From this definition, it is evident, that there must be so ma-

ny diffeient kinds of magnitude as to render it difficult even to

enumerate tliem : and this is the origin of the different branches

of mathematics, each being employed on a particular kind

of magnitude. Mathematics, in general, is the science of quan-

tity ; or the science which investigates the means of measuring

quantity.

S. Now we camiot measure or determine any quantity,

except by considering some other quantity of the same kind

as known, and pointing out their mutual relation. If it were

proposed, for example, to determine the quantity of a sum of

money, we should take some known piece of money (as a dollar,

a crown, a ducat, or some other coin.) and shew how many of

1
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these pieces are contained in the given sum. In the same man-

ner, if it were proposed to determine the quantity of a weight,

we should take a certain known wright ', for example, a pound,

an ounce, &c., and then shew ho\> many times one of these

weights is contained in that which we are endeavouring to as-

certain. If we wished to measure any length or extension, we
should make use of some known length, as a foot for example.

4. So that the determination, or the measure (»f magnitude of

all kinds, is reduced to this : fix at pleasure upon any one known

magnitude of the same species with that wiiich is to be deter-

mined, and consider it as the measure or unit ; then, determine

the proportion of tlie proposed magnitude to this known mea-

sui*e. This proportion is always expressed by numbers ; so

that a number is nothing but the proportion of one magnitude

to another arbitrarily assumed as the unit.

5. From this it appears, that all magnitudes may be expressed

by numbers ; and that the foundation of all the mathematical

sciences must be laid in a complete treatise on the science of

numbers ; and in an accurate examination of the different pos-

sible meth»)ds of calculation.

This fundamental part of mathematics is called analysis, or

algebra.

6. In algebra then we consider only numbers which repre-

sent quantities, without regarding the different kinds of quantity.

These are the subjects of other branches of the mathematics.

7. Arithmetic treats of numbers in particular, and is the

science of numbers properly so called ; but this science extends

only to certain methods of calculation whi<'h occur in common

practice : algebra, on the contrary, comprehends in general

all the cases which can exist in the doctrine and calculation of

numbers.
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Of S imle Quantities. 3

CHAPTER II.

Explanation of the signs + plus and — minus.

8. When we liave to add one given number to another, this

is iitdicated by the sign 4- which is placed before the second

number, and is read pliis. Thus 5 + 3 signifies that we must

add S to tlie number 5, and every one knows that the result is

8 , in the same manner 12 -f 7 make 19 j 25 + 16 make 41 ; the

sum of 25 -f 4 1 is 66, Ace.

9. We also make use of the same sign + or pluSf to connect

seve^a^ nnmbei-s together ; for example, 7 + 5 -f 9 signifies that

to the Jiumber 7 we must add 5 and also 9, which make 21. The

reader will therefore understand what is meant by

84-5 + 13-l-ll-fl +3+10;
xiz. the sum of all these numbers, which is 51.

10. All this is evident ; and wc have only to mention, that,

in algebra, in order to generalize numbers, we represent them

by letters, as a, 6, c, (/, &c. Thus the expression a + 6 signifies

the sum of two numbers, which we express by a and 6, and

these numbers may be either very great or very small. In the

same manner,/+ m + 6 + x, signifies the sum of the numbers

i-epresentcd by these four letters.

If we know therefore the numbers that are represented by

letters, we shall at all times be able to find by arithmetic, the

sum or value of similar expressions.

11. When it is required, on the contrary, to subtract one

given number from another, this operation is denoted by the

sign —, which signifies minus, and is placed before the j.umber

to be subtracted : thus 8 — 5 signifies that the number 5 is to be

taken from the number 8 ; which being done, there i-emains 3.

In like manner 12— 7 is the same as 5 j and 20— 14 is the same
as 6, &c.

1 2. Sometimes also we may have several numbers to be subtract-

ed from a single one; as for instance, 50— 1— 3— 5— 7 9.

This signifies, first, take 1 from 5C, there remains 49 ; take 3 from
thai remainder, there will remain 46 ; take away 5,41 remains ;

take away 7, 34 remains ; lastly, from that take 9, and there
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remains 25 ; this last remainder is the value of the expression.

But j;s the numbers 1, 3, 5, 7, 9, are all to be subtracted, it is

the same thing if we subtract their sum, which is 25, at once

from 50, and the remainder will be 25 as before.

13. It is also very easy to determine the value of similar

expressions, in which both the signs + 'plus and — minus are

found : for example ;

12— 3 — -5 + 2— 1 is the same as 5.

We have only to collect separately the sum of the numbers that

have the sign + before them, and subtract from it the sum of

those that have the sign—. The sum of 12 and 2 is 14 ; that

of 3, 5 and J, is 9 ; now 9 being taken from 14, there remains 5.

14. It will be perceived from these example's that the order

in "which we write the numbers is quite indifferent and arbitrary,

provided the proper sign of' each be preserved. We might uith

equal propriety have arranged the expression in the ])receding

article t'uis ; 1 2 -f-2— 5— 3— 1, or 2— 1 — 3— 5 + 1 2, or -2+
12— 3 — 1— 5, or in still different orders. It must be observed,

that in the expression proposed, the sign + is supposed to be

placed before the number 12.

15. It will not be attended with any more difficulty, if, in

order to generalize these operations, we make use of letters

instead of real numbers. It is evident, for example, that

a — b — c -j- d — e

signifies that we have numbers expressed by a and d. and (hat

from these numbers, or from their sum, we must subtract the

numbers expressed by the letters b, c, c, \\\\\c\\ have before them

the sign —

.

16. Hence it is ahsohitcly necessary to consider what sign is

prefixed to each numbei' : for in cdgebra, simple quantities are

numbers considered with regard to the signs which precede, or

affect them. Further, we call those positive quantities, before

which the sign + is found ; and those are called negative quan-

iities,yf\\\c\\ are affected with the sign —

.

17. The manner in which we generally calculate a person's

property, is a good illustration of what has just been said. We
denote what a man really possesses by positive numbers, using,

or understaning the sign + ', whereas his debts are represent-
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ed by negative numbers, or by using the sign —-. Thus, Mlien

it is said of any one that he has 100 crowns, but owes 50, this

means that his property really amounts to 100— 50 ; or, which

is the same thing, + 100 — 50, that is to say 50.

18. As negative numbers may be considered as debts, because

positive numbers represent real possessions, we may say that

negative numbers are less than noihing. Thus, when a man
lias nothing in the world, and even owes 50 crowns, it is certain

that he has 50 crowns less than nothing ; for if any one were to

make him a present of 50 crowns to pay his debts, he would

still be only at the point nothing, though really richer than

before.

19. In the same manner tlierefore as positive numbei's are

incontestably greater than nothing, negative numbei-s are less

than nothing.* Now we obtain positive numbers by adding 1 to

0, that is to say, to nothing: and by continuing always to in-

crease thus from unity. This is the origin of the series of num-

bers called natural numbers ; the follow ing are the leading terms

of this series :

0, -f 1, -f. 2, + 3, -f- 4, + 5, + 6, + 7, + 8, + 9, + 10,

and so on to infinity.

But if instead of continuingthis series by successive additions,

we continued it in the oj)|)osite direction, by perpetually sub-

tracting unity, we should have the series of negative numbers :

0,-1,— 2,— 3, —4,— 5,— 6,— 7, — 8,-9,-10,
and so on to infinity.

• By being less than nothing' is meant simply that they are of such a nature

as to cancel or destroy an equal number with tlie sign plus before it, so that

— 4, or— a is as really a positive thing, and is as easily conceived, as +4 or

+ a. The quantity 4 or a may be considered independently of its sign. The
sig^ + implies that this quantity is to be added, and the sign— that it is to

be subtracted. This subject may be illustrated by the scale of a thermome-
ter. After observing the mercury to star.d at 50°, for instance, I am told,

that it has changed 4°, I have a distin::t idea of the portion of the scale de-

noted by four of its divisions, without applying them in any particular dircc
tion. But when I am further informed that this change of the thermometer
is — or subtractive with respect to its former state, I then understand that

the mercury stands at 46°, whereas it would be at 54° if the change had been
•}- or additive.
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20. All these numbers, whether positive or negative, have the

known appellation of whole numbers, or integers, which conse-

quently are eilhcr greater or less than nothing. We call them
integers, to distinguish them from fractions, and from several

other kinds of numbers of which we shall hereafter speak. For
instance, 50 being greater hy an entire unit than 49. it is easy

to comprehend that there may be between 49 and 50 an infinity

of intermediate numbers, all greater than 49, atid yet all less

than 50. We need only imagine two lines, one 50 feet the

other 49 feet long, and it is evident that there may be drawn an

infinite number of lines all longer than 49 feet, and yet shorter

than 50.

21. It is of the utmost importance through the whole of

algebra, that a precise idea be farmed of those negative quanti-

ties about which we have been speaking I shall content myself

with remarking here that all such expressions, as

-f- 1 — 1, + 2— 2, + 3— 3, + 4 — 4, &C.

are equal to or nothing. And that

+ 2 — 5 is equal to — 3.

For if a person has 2 crowns, and owes 5, he has not only

nothing, but still owes 3 crowns : in the bame mannei",

7— 12 is equal to— 5. and 25 — 40 is equal to — 15.

22. The same observations hold true, when, to make the

expression more general, letters are used instead of immbers :

or nothing will always be the value of -f a — a. If we wish to

know the value +a— 6 two cases are to be considered

The first is when a is greater than b ; b must then be sub-

tracted from fl, and the remainder (before which is placed or

understood to be placed the sign +) shews the value sought.

The second case is that in which a is less than b : here a is

to be snbtrarted from b, and the remainder being made negative,

by idacing before it the sign—, will be the value sought.



Chap. S. Of Simple Quantities. T

\ CHAPTER III.

Of the MuUiplication of Simple Quantities.

23. When there are two or more equal numbers to be added

together, the expression of their sum may be abridged ; for

example,

a + a is the same with 2 x fl>

a-f-a + a 3xa,
a-f-a+a-fa 4x"> and so on ; where x is the sign

of nmltiplication. In this manner we may form an idea of mul-

tiplication J and it is to be observed that,

2 X a signifies 2 times, oi' twice a

S X a, 3 times, or thrice a

4 X o 4 times o, &c.

24. J/f therefore a number eocpressed hy a letter is to he multiplied

by any other number, we simply put that number before the letter ^

thus,

a multiplied by 20 is expressed by 20 a, and

b multiplied by 30 gives 30 b. Sec.

It is evident also that c taken once, or 1 c, is just c.

25. Further, it is extremely easy to multiply such products

again by other numbers ; for example :

2 times, or twice 3 a makes 6 a,

3 times, or thrice 4 b makes 12 b,

5 times 7 x makes 55 x,

and these products may be still multiplied by other numbers at

pleasure.

26. fFhen the number, by which we are to multiply, is also re-

presented by a letter, we place it immediately before the other letter ;

thus, in multiplying b by a, the product is written ab ; and p q
will be the product of the multiplication of the number q hyp.
If we multiply this p q again by a, we shall obtain ap q.

27. It may be remarked here, that the order in which the letters

are joined together is indifferent; that a 6 is the same thing as 6 a ;

for 6 multiplied by a produces as much as a multiplied by b.

To understand this, we have only to substitute for a and b
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known numbers, as 3 and 4 -, and the troth will be self-evident

;

for 3 ti^pes 4 is the same as 4 times 3.

£8. It will not be difficult to perceive, that when you have to

put numbei-s, in the place of letters joined together, as we have

described, they cannot be written in the same manner by jrut-

ting them one after the other. For if we were to write 34 for

S times 4, we should have 34 and not 12. When therefore it is

required to multiply common numbers, we must separate them
by the sign x, or points : thus, 3 x 4, or 3*4, signifies 3 times 4,

that is 15. So, 1 X 2 is equal to 2 j and 1x2x3 makes 6. In

like maimer 1x2x3x4x56 makes 1344 ; and 1x2x3
X4x5x 6X7X8X9X10 is equal to 3628800, &G.

29. Iti the same manner, we may discover the value of an

expression of this form, 5 • 7 • 8 « 6 c rf. It shews that 5 must be

multiplied by 7, and that this product is to be again multiplied

by 8 ; that we are then to multiply tiiis product of the three

numbers by a, next by 6, and then by c, and lastly by d. It may
be observed also, that instead of 5 x 7 x 8 we may write its value,

280 ; for we obtain this number when we multiply the product

of 5 by 7 or S5, by 8.

30. The results which arise from the multiplication of two or

more numbers are called products ; and the numbers, or indivi-

ilual letters, are called /acfors.

51. Hitherto we have considered only positive numbers, and

there can be no doubt, but that the products which we have

seen arise are positive also : viz. + a by + 6 must necessarily

give -f a ft. But we must separately examine what the multipli-

cation of + a by — 6, and of— a by — 6, will produce.

32. Let us begin by multiplying— a by 3 or + 3 ; now since

— a may be considered as a debt, it is evident that if we take

that debt three times, it must thus become three times greater,

and consequently the required product is—• 3 a. So if we multi-

ply— a by -f- 6, we shall obtain— h a, or, which is the same things

— ah. Hence we conclude, that if, a positive quantity be multi-

plied by a negative quantity, the product will be negative ;

and lay it down as a rule, that + by -f makes +, or plus^ and

that on the contrary 4- by —•, or — by + gives —, or minuSk
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S3. It remains to resolve the case in which — is multiplied by

— ; or, for example, — a by— b. It is evident, at first sight,

with regard to the letters, that the product will be a 6; but it is

doubtful whether the sign +, or the sign — , is to be placed before

the prod ict ; all we know is, that it must be one or the other of

these signs. Now I say that it cannot be the sign — : for — a

by + 6 gives — a 6, and— a by— b cannot produce the same re-

sult as— a by +b : but must produce a contrary result, that is to

say, + a 6 ,• consequently we have the following rule : — multipli-

ed by— produces -f, in the same manner as + multiplied by -f-.*

• It is a subject of ^reat embarrassment and perplexity to learners to con.

ceive how the product of two negative quantities should be positive. This

arises from the idea they receive of the nature of multiplication as explained

and applied in arithmetic, where positive quantities only are employed. The
term is used in a more enlarged sense when negative quantities are concerned,

as may be shown without making use of letters. If I wished to multiply, for

Instance, 9— 5 (or 9 diminished by 5) by 3, I should first find tlie product of

9 by 3 or 27. But tJiis is evidently taking the multiplicand too great by 5,

and of course the product too g^eat by 3 times 5 ; I accordingly write for the

product 27 — 15, equivalent to 12, which is the product that would arise

from first performing the subtraction indicated by the sign

—

^ and using the

result as the multiplicand. Thus,

Multiplicand 9— 5 which 1b equal to 4
Multiplier 3 3

Product 27— 15 vhich is equal to 12

I^et us now take for the multiplier the quantity 7— 4, which is equivalent

to 3. We multiply, in the first place, by 7, in the manner that we have

just done by 3, and the result is 63— 35. But as tlie multiplier is 7 diminish-

ed by 4, multiplying by 7 must give 4 times too much. Accordingly we take

4 times the multiplicand, or 36 — 20, and subtract this from 63— 33, or 7
times tlie multiplicand. Now in making this subtraction it is to be observed
that the subtraliend 36— 20 is 36 diminished by 20, and if we subtract 36 we
take away too mucli by 20, and must tlierefore add this latter quantit)-. Con-
sequently the true product will be 63— 35— 36 + 20, equivalent to 12, as be-

fore. Thusthis mode of proceeding gives the same result as that obtained
by first performing the subtractions indicated in the latter term of the multi-
plicand and multiplier. The several steps in each case arc as follows :

Multiplicand 9 — 5 which is eqr.al to 4
Multiplier 7 — 4 which is equal to 3

63— 35 Product ' 12— 36+20

Prodact 63 — 35— 35 + 20 or 83 — r 1, i bat is 1 2.

Eul. Alg. 2
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34. The rules which we have explained are expressed more
briefly as foUovvs :

Like signs, multiplied together, give + ; unlike or contrary signs

Thus we see that 7 or + 7 by — 5 gives— 35, and — 4 by + 9 gives — 26,

and— 4 by — 5 gives + 20. The same general reasoning will apply when let-

ters are used instead of numbers.

Multiplicand a — 6

Multiplier c — d

a c— be
— a d+ b

d

Product ac— be— ad+bd.
We say in this case that, when wc multiply a by c we take the multiplicand

too great by 6, and must therefore dimmish the result a c by the product of i

by c or 6 c. So also in multiplying tlie two terms of the multiplicand by c,

we have taken the multiplier too great by d, and must therefore diminish the

result a c— 6 c by the product of a— bhy d, or a d— b d. But if we sub-

tract the whole of a d, we subtract too much hy b d ,• b d must accordingly be

added.

The rule for negative quantities here illustrated is not necessary where

irysre numbers are employed, because the subtraction indicated may always he

performed. But this cannot be done with respect to letters which stand for

no particular values, but are intended as general expressions of quantities*

The truth of the rule may be shown also when applied to quantities taken

singly. We say that multiplying one quantity by another is taking one as

many times as there are units in the other, and the result is the same, which-

ever of the quantities be taken for the multiplicand. Thus multiplying 9 by 3

is taking 9 t'.iree times, or, which is the same thing, taking 3 nine times

(Arith. 27). But in arithmetic, quantities are always taken affirmatively,

that is additively. When therefore we take 9 or -f- 9 tliree times addltively, or

+ 3 nine times additively, the result will evidently be additive or + 27. When
on the contrary one of the factors is negative, as for instance, in multiplying

— 5 by + 3 ; in this case, — 5 is to be taktMi tliree times additively, and — S

added to— 5 added to — 5 is clearly— 15. So also if we consider + 3 as the

multiplicand, then + 3 is to be taken five times subtractively ; now 3 taken

subtractively once (or which is the same thing 3 x — 1) is equivalent to — 3,

taken subtractively twice is — 6, three times is — 9, five times is — 15. But,

wlien the multiplicand and multiplier are both negative, as in the case of mul-

tiplying— 5 by — 4 ; here asubtractive quantity is to be taken subtractively,

that is. wc are to take away successively a diminishing or lessening quantity,

which is certainly equiv..lent to adding an increasing quantity. Thus if we

take away — 5 once, we augment the sum with which it is to be connected

by -J- 5 ; if we take away — 5 twice, we make the augmentation -f 10 ; if four

times, + 20 ; that is, — 5 x — 4 is equivalent to + 20.
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give—. Thus, when it is required to multiply the following

numbers ; + a, — 6, — c,-\-d; we have first -f- a multiplied by

— 6, which makes— ab; this by— c, giYes + a 6 c ; and this by

-f d, gives -^-ab cd.

35. The difficulties with respect to the signs being removed,

we have only to shew how to multiply numbeis that are them-

selves products. If we were, for instance, to multiply the

number a b by the number c d, the product would be abc<lf and it

is obtained by multiplying first « b by c, and then the result of

that multiplication by d. Or, if we had to multiply 36 by 12 ;

since 12 is equal to 3 times 4, we should only multiply 36 first by

3, and then the product 108 by 4, in order to have the w hole pro-

duct of the multiplication of 12 by 36, which is consequently 432.

36. But if we wished to multiply 5 a 6 by 3 cd, we might write

Scdx 5 ah ; however, as in the present instance the order of the

numbers to be multiplied is indiflferent, it will be better, as is

also the custom, to place the common numbers befoi-e the letters,

and to express the product thus : 5x3a6cd, or 15a6cd; since 5

times 3 is 15.

So if we had to multiply 12 p qrhj 7 xi/fX^e should obtaia

12 X 7p qr X y, or S4 p qr X y.

CHAPTER IV. *

OJ the nature of whole numbers or integers, "with respect to their

factors.

37. Wb have observed that a product is generated by the

multiplication of two or more numbei-s together, and that these

numbers are called factors. Thus the numbers a, 6, c, d, are

the factors of the product abed.

38. If, therefore, we consider all whole numbers as products

of two or more numbers multiplied together, we shall soon find

that some cannot result from such a multiplication, and conse-

quently have not any factors ; while others may be the products

of two or more multiplied together, and may consequently have

two or more factors. Thus, 4 is produced by2x2j 6by2xS5
8 by 2x2x25 or 27 by 3X3X3; and 10 by 2 X 5, &c.
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39. But, on the other hand, the iinmhers, 2, 3, 5, 7, 11, 13,

17, kCf cannot be represented in the same manner by factors,

unless for tliat purpose we make use of unity, and represent 2,

for instance, by 1 x 2. Now the numbers which are multiplied

by 1, remaining the same, it is not proper to reckon unity as a

factor.

All numbers therefore, such as 2, 3, 5, 7, 11, 13, 17, &c.

wliich cannot be represented by factors, are called simple, or

prime numbers ; whereas others, as 4,6, 8, 9, 10, 12, 14, 15, 16,

18, kc. which may be represented by factors, are called compound

numbers.

40. Simple or prime numbers deserve therefore particular

attention, since they do not result from the multiplication of two

or more numbers. It is particularly worthy of observation that

if we write these numbers in succession as they follow each other

thus

;

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, &c.

we can trace no regular order ; their increments are sometimes

greater, sometimes less ; and hitherto no one has been able to

discover whether they follow any certain law or not.

41. Ml compound numbers, which may be represented byfactors,

resultfrom the prime numbers aboroe mentioned ; that is to say, all

theirfactms are prime numbers. For, if we find a factor which

is not a prime number, it may always be decomposed and repre-

sented by two or more prime numbers. When we have repre-

sented, for instance, the number SO by 5 x 6, it is evident that 6

not being a prime number, but being produced by 2x3, we
might have represented SO by 5 x 2 x 3, or by 2 x S x 5 ; that

is to say, by factors, which are all prime numbers.

42. If we now consider those compound numbers which may
be resolved into prime numbers, we shall observe a great differ-

ence among them ; we shall find that some have only two factors,

tliat others have three, and others a still greater number. ">Vc

have already seen, for example, that

4 is the same as 2x2, 6 is the same as 2x3,
8 2X2X2, 9 3X3,

10 2X5, 12 2X3X2,
14 2X7, 15 S+5,
16 2X2X2X2, and so on.
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43. Henre it is easy to find a method for analysing any num-

ber, or resolving it into its sinijln factors. Let there be pro-

posetl, f(»r instance, the number 360 ; we shall represent it first

by 2 X 180. Now 180 is equal to 2 x 90, and

901 f2x45,
45 t is the same as •< 3x15, and lastly

I5J Isx 5.

So that the number S60 may be represented by these simple

(actors, £x2x2xSxoX 5; since all these numbers multiplied

together produce 360.

44. This shews, that the prime numbers cannot be divided by

other numbers, and on the other hand, that the simple factors of

compound numbers are founds most conveniently and with the great-

est certainty, by seeking the simpUf or prime numbers, by which

those compound numbers are divisible. But for this, division is

necessary ; « e shall therefore explain the rules of that operation

in the following chapter.

CHAPTER V.

(^the Division of Simple Quantities.

45. When" a number is to be separated into two, three, or

more equal parts, it is done by means of division, which enables

us to determine the magnitude of one of those parts. When we
wish, for example, to separate the number 12 into three equal

parts, we find by division that each of those parts is equal to 4.

The following terms are made use of in this operation. The
number, which is to be decompounded or divided, is called the

dividend ; the number of equal parts sought is called the divisor

;

the magnitude of one of those parts, determined by the division^

is called the quotient ; thus, in the above example

;

12 is the dividend,

S is the divisor, and

4 is the quotient.

46. It follows from this, that if we divide a number by 2, or

into two equal part's, one of those parts, or the quotient, taken

twice, makes exactly the number proposed ^ and, in the same
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manner, if we have a number to be divided by 3, the quotient

taken thrice must give the same number again. In general, the

multiplication of the quotient by the divisor must always reproduce

the dividend.

47. It is for this reason that division is called a rule,

which teaches us to find a number or quotient, which, being

multiplied by the divisor, will exactly produce the dividend.

For example, if 55 is to be divided by 5, we seek a number

which, multiplied by 5, will produce 35. Now this number is

7, since 6 times 7 is 35. The mode of expression, employed

in this reasoning, is j 5 in 55, 7 times ; and 5 times 7 makes

35.

48. The dividend therefore may be considered as a product,

of which one of the factors is the divisor, and the other the

quotient. Thus, supposing we have 63 to divide by 7, we en-

deavour to find such a product, that taking 7 for one of its

factors, the other factor multiplied by this may exactly give 63.

Now 7 X 9 is such a product, and consequently 9 is the quotient

obtained when we divide 63 by 7.

49. In general, if we have to divide a number a& by a, it is

evident that the quotient will be b ; for a multiplied by b gives

the dividend a b. It is clear also, that if we had to divide a 6 by

J, the quotient would be a. And in all examples of division

that can be proposed, if we divide the dividend by the quotient,

we shall again obtain the divisor; for as 24 divided by 4 gives

6, so 24 divided by 6 will give 4.

50. As the "whole operation consists in representing ihe dividend

by twofactors, of which one shall be equal to the divisor, the other

to the quotient ; the following examples will be easily understood.

I say first, that the dividend a b c, divided by a, gives be; for a,

multiplied by b c, produces a be: in the same manner a 6 c, being

divided by 6, we shall have ac; and a be, divided by rtc, gives &.

I say also, that 12 vm, divided by Sm, gives 4 n; for 5m, multi-

plied by 4 n, makes IQmn. But if this same number \2mn had

been divided by 12, we should have obtained the quotient mn.

51. Since every number a may be expressed by I « or one a, it

is evident that if we had to divide a or 1 a by 1, the quotient would
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be the same number a. But, on the contrary, if the same number

a, or 1 a is to be divided by a, the quotient will be 1.

52. It often happens that we cannot represent the dividend as

the product of two factors, of which one is equal to the divisor >

and then the division cannot be performed in the manner we

Lave described.

When we have, for example, 24 to be divided by r, it is at

first sight obvious, that the number 7 is not a factor of 24 ; for

the product of 7 X S is only 21, and consequently too small, and

7x4 makes 28, which is greater than 24. We discover however

from tliis, tuat the quotient must be greater than 3, and less than

4. In order therefore to determine it exactly, we employ another

species of numbers, which are called fractions, and which we

shall consider in one of the following chapters.

53. Until the use of fractions is considered, it is usual to rest

satisfied with the whole number which approaches nearest to

the true quotient, but at the same time paying attention to the

remainder \^hich is left; thus we say, 7 in 24, 3 times, and the

remainder is 3, because 3 times 7 pi-oduces only 21, which is 3

less than 24. We may consider the following examples in the

same manner

:

6)34(5, that is to say, the divisor is 6, the dividend 34,

30 the quotient 5, and the remainder 4.

4

9)41(4, here the divisor is 9, the dividend 41, the quo-

36 tient 4, and the remainder 5.

5

The following rule is to be observed in examples where there

is a remainder.

54. If tee multiply the divisor by the quotient, and to the product

add the remainder, we must obtain the dividend; this is the

method of proving division, and of discovering whether the

calculation is right or not. Thus, in the fii^st of the two last

examples, if we multiply 6 by 5, and to the product 30 add the

remainder 4, we obtain 34, or the dividend. And in the last

example, if we multiply the divisor 9 by the quotient 4, and to

the product 36 add the remainder 5, we obtain the dividend 41,
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55. Lastly, it is necessary to remark here, with regard to the

signs -f plus and— minus, that if wc divide -f a 6 by + a, tlie

quotient will be + b, which is evident. But if we divide + a 6

by — a, the quotient will be— 6 ; because — ax— b gives + a 6.

If the dividend is— ab, and is to be divided by the divisor + a,

the quotient will be— b ; because it is— 6, which, midtiplicd

by -f fl, makes— ab. Lastly, if we have to divide the dividend

— fl 6 by the divisor — a, the quotient w ill be -f 6 ,* for the divi-

dend — a 6 is the product of— a by + b.

56. TVith regard therefore to the signs -f and —, division admits

the same rules that we have seen applied in multiplication ; viz,

+• by + requires + j 4- by — requires —-

;

— by -}. requires— ; — by — requires -f- :

or in a few words, like signs give plus, xmlikc signs give minus.

57. Thus, when we divide 18 p^jf by— 3 2?, the quotient is—6^.

Further j

— 30 X 7/, divided by -f 6 1/, gives — 5 ar, and

—54 a 6 c, divided by— 9 6, gives -f 6 ac,*

for in this last example,— 9 6, multiplied by+ 6 a c, makes— 6 x
9 a 6 c, or— 54 a 6 c. But we have said enough on the division of

simple quantities ; wc shall therefore hasten to the explanation

of fractions, after having added some farther remarks on the

nature of numbers, with respect to their divisors.

CHAPTER VI.

Of the jjroperties of integers with respect to their divisors,

68. As we have seen that some numbei*s are divisible by cer-

tain divisors, while others are not ; in order that we may
obtain a more particular knowledge of numbers, this difference

must be carefully observed, both by distinguishing the numbers

that are divisible by divisors from those which are not, and by

considering the remainder that is left in the division of the

latter. For this purpose let us examitje the divisors j

2,3,4,-5, 6, 7, 8, 9, 10, &c.

59. First, let the divisor be 2; the numbers divisible by it

are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &c. which, it appears
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increase always by two. These nurabei's, as far as they can be

continued, are called even numbers. But there are other num-

bers, namely,

1, 5, 5, 7, 9, 11, 13, 15, ir, 19, &c.,

which are uniformly less or greater than the former by unity,

and which cannot be divided by £, without the remainder 1

;

these are called odd numbers.

The even numbers are all comprehended in the general expres-

sion 2a ; for they are all obtained by successively substituting

for a the integers 1, 2, 3, 4, 5, 6, 7, &c., and hence it follows that

the odd numbers are all comprehended in the expression 2 « + 1,

because 2 a -f- 1 is greater by unity than the even number 2 a.

60. In the serond place, let the number 3 be the divisor ; the

numbers divisible by it are,

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, and so on ; and these num-

bers may be represented by the expression 5a ; for 3 a divided

by 3 gives the quotient a without a remainder. All other num-

ber, which we would divide by 3, will give I or 2 for a remain-

der, and are consequently of two kinds. Those which, after the

division leave the remainder 1, are ;

1,4,7, 10, IS, 16, 19, &c.,

and are contained in the expression 3 a -f 1 ; but the other kind,

where the numbers give the remainder 2, are

;

2, 5, 8, 11, 14, 17, 20, &C.,

and they may be generally expressed by 3 a -f- 2 : so that all

numbers may be expressed either by 3 a, or by 3 a -f- 1, or by

3a-f 2.

61. Let us now suppose that 4 is the divisor under considei-a-

tion : the numbers which it divides are j

4, 8, 12, 16, 20, 24, &€.,

which increase uniformly by 4, and are comprehended in the

expression 4 a. All other numbers, that is, those which are not

divisible by 4, may leave the remainder 1, or be greater than

the former by 1 : as

1, 5, 9, IS, 17, 21, 25, &c.,

and consequently may be comprehended in the expression

4 a 4- 1 : or they may give the remainder 2 ; as

2, 6, 10, 14, 18, 22, 26, &C.,

Eul. Ms. 3
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and be expressed by 4 a + 2 ; or, lastly, they may give the

remainder 3 ; as

3, 7, 11, 15, 19, 23, 2r, &C.,

and may be represented by the expression 4 0+3.
AU possible integral numbers are therefore contained in one or

other of these four expressions ;

4 a, 4a +1, 4 a + 2, 4a+3.
62. It is nearly the same when the divisor is 5 ; for all num-

bers which can be divided by it are comprehended in the

expression 5 a, and those which catmot be divided by 5, are

reducible to one of the following expressions :

5a+l, 5 a + 2, 5a+3, 5a+4;
and we may go on in the same manner and consider the greatest

divisors.

63. It is proper to recollect here what has been already said

on the resolution of numbers into their simple factors j for every

number, among the factors of which is found,

2, or 3, or 4, or 5, or 7,

or any other number, will be divisible by those numbers. For

example ; 60 being equal to 2 x 2 x 3 x 5, it is evident that 60

is divisible by 2, and by 3, and by 5.

64. Further, as the general expression abed is not only divi-

sible by a, and 6, and c, and rf, but also by

abf ac, adf be, bdy cd, and by

abCf abd, acd, bed, and lastly by

abcdf that is to say, its own value ;

it follows that 60, or 2 x 2 x 3 x 5, may be divided not only by

these simple numbers, but also by those which are composed of

two of them ,• that is to say, by 4, 6, 10, 15: and also by those

which are composed of three of the simple factors, that is to say,

by 12, 20, 30, and lastly by 60 itself.

65. When, therefore, we have represented any number, assumed

at pleasure, by its simplefactors, it will be very easy to shew all

the numbers by which it is divisible* For we have only, Jirst, to

take the simple factors one by one, and then to multiply them togeth-

er two by two, three by three, four byfour, ^c, till we arrive at

the mLmber proposed.

66. It must here be particularly observed ; that every number

is divisible by 1 ; and also that every number is divisible by
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itself; so that every number has at least two factors, or divisors,

the number itself and unity : but every number, which has no

other divisor than these two, belongs to the class of numbers,

which we have before called simple, or prime mimbers.

All numbers, except these, liave, beside unity and them-

selves, other divisors, as may be seen from the following table,

in which ate placed under each nuujber all its divisors.

TABLE.

1 "i. 3 4 5 6
~

8 y 10 11 1£ 15 14 15 i6 ir 18 19 201
1

1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1
1

1 1

2 S 2 5 £ ^ :, 3 2 11 2 13 o 3 2 17 2 19 2

4 3

6

4

8

9 5

10

3

4

6

12

7

14

5

15

4

8

16

3

6

9

18

4

10

20!
1

1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 o 6

p. P. P. P. P. P. P. P. P.
1

67. Lastly, it ought to be observed that 0, or nothings may be

considered as a number which has the property of being divisi-

ble by all possible numbers ; because by whatever number a

we divide 0, the quotient is always ; for it must be remarked

that the multiplication of any number by nothing produces noth-

ing, and therefore times a, or a, is 0.

CHAPTER Vn.

Of Fractions in general.

68. "Whest a number, as 7 for instance, is said not to be
divisible by another number, let us suppose by 3, this only
means, that the quotient cannot be expressed by an integral

number : and it must not be thought by any means that it is
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impossible to form an idea of that quotient. Only imagine a

Jinc of 7 feet in length, no one can doubt the possibility of

dividing this line into 3 equal parts, and of forming a notion of

the length of one of those parts.

69. Since therefore we may form a precise idea of the quo-

tient obtained in similar cases, though that quotient is not an

integral number, this leads ns to consider a particular species of

numbers, called fradionSf or broken numbers. The instance

adduced furnishes an illustration. If we have to divide 7 by 3,

we easily conceive the quotient which should result, and express

it by I ; placing the divisor under the dividend, and separating

the tv'.o numbers by a stroke, or line.

70. So, in general f when the number a is to be divided by the

number b, we represent the quotient by —, and call this form of

expression afraction. "We cannot therefore give a better idea of

a fraction -r, than by saying that we thus express the quotient

resulting from the division of the upper number by the lower.

We must remember also, that in all fractions the lower num-

ber is called the denominator, and that above the line the nume-

rator,

71. In the above fraction, l, which we read seven thirds, 7 is

the numei-ator, and 3 the denominator. We must also read |, two

thirds ; |, three fourths
; |, three eighths ; -jV\) twelve hun-

dredths ; and ^, one half.

72. In order to obtain a more perfect knowledge of the

nature of fractions, we shall begin by considering the case in

which the numerator is equal to the denominator, as in —

.

* a

Now, since this expresses the quotient obtained by dividing a

by a, it is evident that this quotient is exactly unity, and that

consequently this fraction — is equal to 1, or one integer ; for

the same reason, all the following fractions,

2 3 4 5 6 7 8 Arf. .

are equal to one another, each being equal to 1, or one integer.

73. We have seen that a fraction, whose numerator is equal to

llic denominator, is equal to unity. All fractions therefore,

whose numerators arc less thaii the denominators, have a value
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less than unity. For, if I have a number to be divided by ano-

ther which is greater, the result must necessarily be less than 1 ;

if we cut a line, for example, two feet long, into three parts, one

of those parts will unquestionably be shorter than a foot : it is

evident then, that| is less than 1, for the same {"eason, that the

numerator 2 is less than the denominator 3.

74. If the numerator, on the contrary, be greater than the

denominator, the value of the fraction is greater than unity.

Thus I is greater than 1, for | is equal to | together with |.

Now I is exactly I, consequently | is equal to 1 -f-i, that is, to

an integer and a half. In the same manner^ is equal to 1|, |.

to 1|, and 1 to ^. And in general, it is sufficient in such cases

to divide the upper number by the lower, and to add to the

quotient a fraction having the remainder for the numerator, and

the divisor for the denominator. If the given fraction were, for

example, -^1, we should have for the quotient 3, and 7 for

the remainder; whence we conclude that -J| is the same as
C 7

75. Thus we see how fractions, whose numerators are greater

than the denominators, are resolved into two parts ; one of

which is an iiiteger, and the other a fractional number, having

the numerator less than the denominator. Such fractions as

contain one or more integers, are called improper fractions, to

distinguish them from fractions properly sojcalled, which, fiav-

ing the numerator less than the denominator, are less than unity,

or than an integer,

76. The nature of fractions is frequently considered in an-

other way, \\ hich may throw additional light on the subject.

If we consider, for example, the fraction |, it is evident that it

is three times greater than i. Now this fraction l means, that

if we divide 1 into 4 equal parts, this will be the value of one of

those parts ; it is obvious then, that by taking 3 of those parts,

we shall have the value of the fraction 4.

In the same manner we may consider every other fraction

;

for example, j\ ; if we divide unity into 12 equal parts, 7 of
those parts will be equal to this fraction.

77. From this manner of considering fractions, the expres-

sions numerator and denominator are derived. For. as in the
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preceding fraction -y\, the number under the line shews that 12

is the number of parts into which unity is to be divided ; and as

it may be said to denote, or name the parts, it has not improper-

ly been called tiie denominator.

Further, as the upper numl)er, namely 7, shews that, in order

have the value of the fraction, we must take, or collect 7 of

those parts, and therefore may be said to reckon, or number
them, it has been thought proper to call the number above the

line the numerator^

78. As it is easy to understand what | is, when we know the

signification of i, we may consider the fractions, whose nume-
rator is unity, as the foundation of all others. Such arc the

fractions,111111111 1 1 JC./,

l^» I' 4» ?» 6'» T» 7' ¥» To'' TT» T2» "'*'"»

and it is observable that these ft-actions go on continually dimin-

ishing ; for the more you divide an integer, or the greater the

number of parts into which you distribute it, the less does each

of those parts become. Thus jl^ is less than -^^ ; 70V7 *^ ^^^^

than
^-J.^ ; and ^^|^^ is less than ^^V^.

79. As we have seen, that the more we increase the denomi-

nator of such fractions, the less their values become ; it may be

asked, whether it is not possible to make the denominator so

great, that the fraction shall be reduced to nothing ? I answer,

no ; for into whatever number of parts unity (the length of a

foot for instance) is divided ; let those parts be ever so small,

they will still preserve a certain magnitude, and therefore can

never be absolutely reduced to nothing.

80. It is true, if we divide the length of a foot into 1000 parts;

those parts will not easily fall under the cognizance of our

scnse,s : but view them tlirough a good microscope, and each of

them will appear large enough to be subdivided into 100 parts,

and more.

At present, however, wc have nothing to do with what de-

pends on ourselves, or with what we are capable of performing,

and what our eyes can perceive ; the questioj) is rather, what is

possible in itself. And, in this sense of the word, it is certain,

that however great we suppose the denominator, the fraction

will never entirely vanish, or become equal to 0.
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81. "We never therefore arrive completely at nothing, how-

ever great the denominator may be j and these fractions always

preserving a certain value, we may continue the series of

fractions in the rsth article without interruption. This circum-

stance has introduced the expression, that the denominator must

be injxniie, or infinitely great, in order that the fraction may be

reduced to 0, or to nothing ; and the word infinite in reality

signifies here, that we should never arrive at the end of the

series of the above mentioned /racfions.

82. To express this idea, which is extremely well founded,

we make use of the sign x> ^^hich consequently indicates a

number infinitely great ; and we may therefore say that this

fraction J is really nothing, for the very reason that a fraction

cannot be reduced to nothing, until the denominator has been

increased to injinity.

83. It is the more necessary to pay attention to this idea of

infinity, as it is derived from the first foundations of our know-

ledge, and as it will be of the greatest importance in the follow-

ing part of this treatise.

"VTe may here deduce from it a few consequences, that arc

extremely curious and worthy of attention. The fraction J
represents the quotient resulting from the division of the divi-

dend 1 by the dfvisor X '. Now we know that if we divide

the dividend 1 by the quotient ^, which is equal to 0, we obtain

again the divisor qd : hence we acquire a new idea of infinity

;

we learn that it arises from the division of 1 by ; and we are

therefore entitled to say, that 1 divided by expresses a number

infinitely great, or X .

84. It may be necessary also in this place to correct the

mistake of those who assert, that a number infinitely great is

not susceptible of increase. This opinion is inconsistent with

the just principles which we have laid down ; for ^ signifying a
number infinitely great, and ^ being incontestably the double of

|, it is evident that a number, though infinitely great, may still

become two or more times greater.
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CHAPTER VIII.

Of the properties of Fractions,

85. We have already seen, that each of the fractions,

3 3 4 5 6 7 8 Jiff.

makes an integer, and that consequently they arc all equal to

one another. The same equality exists in the following frac-

tions,

each of them making two integers ; for the numerator of each,

divided by its denominator, gives 2. So all the fractions

3 6 9 12 15 18 jL-r

are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any fraction, in

an infinite variety of ways. For if we multiply both the nume~

rotor and the denominator of a fraction by the same number, which

may be assumed at pleasure^ this fraction will stUl preserve the

same value. For this reason all the fractions

1234 5 6 T 8 910 krf,
"5» 4» ^» S* T7' TT» T4' T6-» T"g"» 20» *^^'9

are equal, the value of each being |. Also1234 5 6 7 8 910 ^r^.
7' TF» T' T2» TT» T¥» 2T» 2T» zT* 7o» "'^•»

are equal fractions, the value of each of which is |. The frac-

tions.

3 4 8 10 13 1416 Arc

have likewise all the same value ; and lastly, we may conclude

in general, that the fraction j- may be represented by the fol-

lowing expressions, each of which is equal to —; namely,

a Qa 5a 4a 5a 6a 7a .

1' Qb' 3l' rb* 5b' 6b' 7b*
*^*

87. To be convinced of this we have only to write for the

value of the fraction -j- a certain letter c, representing by this

letter c the quotient of the division of o by 6 ; and to recollect

that the multiplication of the quotient c by the divisor 6 must give

the dividend. For since c multiplied by 6 gives c, it is evident that

c multiplied by 2 6 will give 2 a, that c multiplied by 3 6 will give
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3 fl, and that in general c multiplied by m & must give m a. Now
changing this into an example of division, and dividing the pro-

duct m a, by m b one of the factors, the quotient must be equal to

tlie other factor c ; bat m a divided by m 6 gives also the fraction

— , which is consequently equal to c ; and this is what was to
m b

be proved : for c having been assumed as the value of the frac-

tion -r> it is evident that this fraction is equal to the fraction

— , whatever he the value of m,
m

88. We have seen that every fraction may be represented in an

hifinite number ojformsy each of wliich contains the same value;

and it is evident that of all these forms, that, which shall be

composed of the least numbers, will be most easily understood.

For example, we might substitute instead of § the following

fractions,

4 S 8 10 13 krr •

T' ? T2» TT» T?' '^^•'

but of all these expressions f is that of which it is easiest to

form an idea. Here therefore a problem arises, how a fraction,

such as ^%, which is not expressed by the least possible numbers,

may be reduced to its simplest form, or to its least terms, that is

to say, in our present example, to 4.

89. It will be easy to resolve this problem, if we consider that

a fraction still preserves its value, when we multiply both its

terms, or its numerator and denominator, by the same number.

For from this it follows also, that if tee divide the numerator and

denominator of a fraction by the same number, the fraction still

preserves the same value. This is made more evident by means

of the general expitssion — ; for if we divide both the nume-

rator m a and the denominator hi 6 by the number th, we obtain

tlie fraction — , which, as was before proved, is equal to —r.
VI b

90. In order therefore to reduce a given fraction to its least

terms, it is required to find a number by which both the nume-
rator and denominator may be divided. Such a number is

called a common divisor, and so long as we can find a common
divisor to the numerator and the denominator, it is certain that

the fraction may be reduced to a lower form ; but, on the con-
EuL M§. 4
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trary, when we sec that except unity no other common divisor

can be found, this shews that the fraction is already in the sim-

plest form that it admits of.

91. To make this more clear, let us consider the fraction

._Y^. We see immediately that both the terms are divisible by

2, and that there results the fraction |^. Then that it may
again be divided by 2, and reduced to l| ; and this also, having

2 for a common divisor, it is evident, may be reduced to
-f-g.

But now we easily perceive, that the nujnerator and denomina-

tor are still divisible by 3 j jierforming this division, therefore,

we obtain the fraction |, which is equal to the fraction proposed,

tind gives tlic simplest expression to which it can be reduced j

for 2 and 5 have no common divisor but 1, which cannot dimin-

ish these numbers any furtlier.

9'Z. This property of fractions preserving an invariable value,

whether we divide or multiply the numerator and denominator

by the same number, is of the greatest importance, and is the

principal foundation jof the doctrine of fractions. For example,

"we can scarcely add together two fractions, or subtract them

from each other, before we have, by means of this property,

reduced them to other forms, that is to say, to expressions whose

denominators are equal. Of this we shall treat in the following

chapter.

93. We conclude the present by remarking, that all integers

may also be represented by fractions. For example, 6 is the

same as ^, because 6 divided by 1 makes 6 j and we may, in the

same manner, express the number 6 by the fractions y, y, 2^*,

•\S and an infinite number of others, which have the same value..

CHAPTER IX.

Of tilt Addition and Subtraction of Fractions.

U4. When fractions have equal denominators, there is no

difficulty in adding and subtracting them j forf- -f- ^ is equal to

4, and 4—4 is equal to ^. In this case, either for addition or
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subtraction, xve alter only the numerators, and place the com-

mon denominator under the line ; thus.

* J_ 9 __ 12 __ 15 _i_ 2 Iq pniinl in 9 . 24
ToZT "T TSS— Toy— Too + T^ o *'» equal 10 -j^^ , -g^

j^ +U is equal to 4« . or I|
;
i|_ ^3__ _^i ^ i4 jg ^qual to

_7
5

16
2 0^' or I ; also i

-f.1 is equal to I, or 1, that is to saj', an inte-

ger J and I— I + ^ is equal to §, that is to say, nothing, or 0.

95. But when fractions have not equal denominatorSf ice can

always change tnem into otherfractions that have the same denomi-

nator. For example, when it is proposed to add together the

fractions | and |, we must consider that i is the same as |^, and

that 1 is equivalent to | ; we have therefore, instead of the two

fractions proposed, these | -f f, the sum of which is |. If the

two fractions were united by the sign minus, as i— -^, we should

have I— f or |.

Another example : let the fractions proposed be i + 1 ; since

f is the same as |, this value may be substituted for it, and we

may say | + 4 niakes y, or 1 |.

Suppose further, that the sum of ^ and i were required. I

say that it is ^\ ; for ^ makes -y^, and i makes -j\.

96. TFe may have a greater number offractions to be reduced to a

common denominator ; for example, i, |, -^-, ^, f ; in this case

the whole depends on finding a number which may be divisible bif

all the denominators of thesefractions. In this instance 60 is the

number which has that property, and which consequently

becomes the common denominator. AV"e shall therefore have

^° instead of i
;

*« instead of | ;
** instead of ^ • 4| i„gtead

of 4 ; and 1^ instead of |. If now it be required to add together

all tijese fractions |§, *°, *|, ||, and |°, we have only to add

all the numerators, and under the sum place the common denomina-

tor 60 ; that is to say, we shall have Vg?, or three integers, and
3 3 ni* '^ 1

1

97. Tlie wliole of this operation consists, as we before stated,

in chansjing two fractions, whose denominators are unequal, into

two others, w hose denominators are equal. In order therefore

to perform it generally, let -r and — be the fractions propos-

ed. First, multiply the two terms of the first fraction by d, we

shall have the fraction j-^ equal to -r ', next multiply the two
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terms of the second fraction by &, and we shall have an eqiiiva-

b c
lent value of it expressed by j-^ ; thus the two denominators

become equal. Now if the sum of the two proposed frac-

tions be required, we may immediately answer that it is
"—

,
-

;

b d

and if their difference be asked, we say that it is —'^,— . If
bd

the fractions | and |, for example, were proposed, we should

obtain in their stead ^| and 4| ; of which the sura is yy, and

the difference H.
98. To this part of the subject belongs also the question, of

two proposed fractions, which is the greater or the less ; for, to

resolve this, we have only to reduce tJie two fractions to the

same denominator. Let us take, for example,' the two fractions

I and 4- : when reduced to the same denominator, the first be-

comes |i:, and the second ||, and it is evident that the second,

or 4, Is (he greater, and exceeds the former by ^\.

Again, let the two fraction | and | be proposed. "We shall

have to substitute for them, |4 ^"^ 1^ » whence we may conclude

that I exceeds |, but only by ^^,

99. When it is required to subtract afraction from an integerf

it is sufficient to change one of the units of that integer into afrac-

tion having the same denominator as the fraction to be subtract-

ed; in the rest of the operation there is no difficulty. If it

be required, for example, to subtract | from 1, we write -| in-

stead of 1, and say thatf taken from | leaves the remainder 4.

So ^*^, subtracted from 1, leaves y\.

If it were required to subtract | from 2, we should write 1

and I instead of 2, and we should immediately see that after the

subtraction there must remain 1 1.

100. It happens also sometimes, that having added two or

more fractions together, we obtain more than an integer; that

is to say, a numerator greater than the denominator : this is a

case which has already occurred, and deserves attention.

We found, for example, article 96, that the sum of the five

fractions |, |, |, ^, and f , was y^^, and we remarked that the

value of this sum was 3 integers and |^-, or |J. Likewise |- +
h or Ti + Ti» makes ^|, or 1-/^. We have only to perform the
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actual division of the numerator by the denominator, to see how

many integei*s there are for the quotien- and to set down the

remainder. Nearly the same must be done to add together

numbers compounded of integei*s and fractions ; we firet add

the fractions, and if their sum produces one or more integei*s,

tliese are added to tlie other integers. Let it be proposed, for ex-

aniple. to add S^ and £| ; we firet take the sum of 1 and |, or of

I and |. It is ^ or 1 1 ; then the sum total is 6|.

CHAPTER X.

Of the ^Multiplication and Division of Fractions.

101. The rule for the imdtiplicatton of a fraction bij an integer,

or whole number, is to multiply the numerator only by the given

number, and not to change the denominator : thus,

2 times, or twice ^ makes |. or 1 integer ;

£ times, or twice ^ makes ^ ;

S times, or thrice | makes |, or 4 ; and

4 times rf^ makes A| or lj\t or 1|.

But, instead of this nde, we may use that of dividing the denom-

inator by the given integer ; and this is preferable, when it can be

used, because it shortens the operation. Let it be i"cquired, for

example, to multiply | by 3 j if we multiply the numerator by

the given integer we obtain *^, which product we must reduce

to |. But if we do not change the numerator, and divide the

denominator by the integer, we find immediately |, or £ | for

the given product. Likewise 4| multiplied by 6 gives y , or 3i.

102. In general, therefore, the product of the multiplication

•f a fraction — by c is -j- ; and it may be remarked, when the

integer is exactly equal to the denominator, that the product must

be equal to tlie numerator,

fi taken twice gives 1 ;

So tliat < I taken thrice gives 2 ;

t^ taken 4 times gives 3,

And in general, if we mulfiply the fraction -r by the number

/', the product must be a, as we ha?e already shewn 5 for since
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— expresses the quotient resulting frohi the division of the divi-

dend a by the divisor 6, and since it has been demonstrated that

the quotient multiplied by the divisor will give the dividend, it

is evident that -j multiplied by h must produce a.

103. We have shewn how a fraction is to be multiplied by an

integer; let us now consider also how a fraction is to he divided

hy an integer; this inquiry is necessary before we proceed to the

multiplication of fractions by fractions. It is evident, if I have

to divide the fraction | by 2, that the result must be ^ ; and

that the quotient of ^ divided by 3 is f . The rule therefore is,

to divide the numerator hj the integer witJiout changing the de-

nominator. Thus,

If divided by 2 gives -^-^ ;

^1 divided by S gives ^\ ; and

II divided by 4 gives j\ ; &c.

104. This rule may be easily practised, provided the nume-

rator be divisible by the number proposed ; but very often it is

not : it must therefore be observed that a fraction may be trans-

formed into an infinite number of other expressions, and in that

number there must be some by which the numerator might be

divided by the given integer. If it were required, for example,

to divide | by 2, we should change the fraction into |, and then

dividing the numerator by 2, we should immediately have | for

the quotient sought.

In general, if it be proposed to divide the fraction -r by c, we

a c
change it into j—, and then dividing the numerator a c by c,

write J—
for the quotient sought.

105. When therefore a fraction -^ is to be divided hij an integer

c, we have only to multiply the denominator by that number, and

leave the numerator as it is. Thus f divided by 3 gives /^, and

I -divided by 5 gives -g^.

This operation becomes easier when the numerator itself is

divisible by the integer, as we have supposed in article 103.
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For example, ^% divided by 3 would give, according to our last

rule, :^% ; but by the firet rule, which is applicable here, we

obtain ^\, an expression equivalent to ^\, but more simple.

106. We shall now be able to understand how one fraction -r
a

may be multiplied by another fraction — . We have only to

consider that -^ means that c is divided by J ^ and on this prin-

ciple, we shall first multiply the fraction -r by c, which pro-

Q C
duces the result — ; after which we shall divide by rf, which

a c
gives 7—..

Hence the foUowing tide for multiplying fractions ; multiply

separately the numerators and the denominators.

Thus 3 by f gives the product |, or i ;

I by I makes -^^^ ;

I hy ^*5 produces l|, or ^'^ ; &c.

107. It remains to shew hoxv one fraction may he divided by

another. We remark first, tliat if the twofractions have the same

number for a denominator, the division takes place only -with

respect to the numerators ; for it is evident, that y\ is contain-

ed as many times in -j?^ as 3 in 9, that is to say, thrice ; and in

the same manner, in order to divide ^^ by -j?^, we have only to

divide 8 by 9, which gives |. We shall also have ^% in |§, 3

times : ^^_ j,, _4_9_.^ ^ ti^eg . _7^ ;„ _6^^ s . &c.

108. But when the fractions have not equal denominators, we
must have recourse to the method already mentioned for reduc-

ing them to a common denominator. Let there be, for exam-
fl c

pie, the fraction — to be divided by the fraction -j ; we first re-
a

duce them to the same denominator : we have then —, to be
b a

be
divided hy r-j j it is now evident, that the quotient must be

I'cpresented simply by the division of a rf by & c ; which gives ^.
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Hence the following rule : Multiply the numerator of the divi-

dend by the deimminator of the dmisorf and the denominator of the

dividend by the numerator of the divisor ; the first product will be

the numerator of the quotient) and the second will be its denomi'

nator.

109. Appl}' in!? this rule to the division of | by*|, we shall

have the quotient -if ; the diTision of A by A will give f or | or

I and ^ ; and || by f will give |* «, or |,

110. This rule for division is often represented in a manner

more easily remembered, as follows : Invert the fraction which

is the divisor^ so that the denominator may be in the place of the

numerator, and the latter be written under the line ; then multiply

the fraction, which is the dividend by this inverted fraction, and

the product will be the quotient sought. Thus J divided by | is

the same as | multiplied by f , which makes |, or I i. Also |
divided by | is the same as | multiplied by |, which is i*

; or

II divided by | gives tlie sauie || multiplied by |, the product

of which is i^^, or |.

"We see then, in general, that to divide by the fraction l, is the

same as to multiply by ^, or 2 ; tliat division by ^ amounts to mul-

tiplication by 4» or by 5, ^^c.

111. The number JOO divided by i will give 200 ; and 1000

divided ^ will give 3000. Further, if it were required to divide

1 by -f-Q^-^f the quotient would be 1000 ; and dividing 1 by
___ij.^_, the quotient is 100000. This enables us to conceive

that, when any number is divided by 0, the result must be a

number infinitely great j for even the division of 1 by the small

fraction __^_-?g.^^^^ gives for the quotient the very great num-

ber 1000000000.

112. Every number when divided by itself producing unity,

it is evident that a fraction divided by itself must also give 1 for

the quotient. The same follows from our rule : for, in order to

divide | by ^, we must multiply | by
.J,

and we obtain ||, or 1

;

and if it be required to divide — by -r, we midtiply — by — ;

u b
now the product —r is equal to 1.
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113. We have still to explain an expression which is fre-

quently use^l. It may be asked, for example, what is the liiilf

of I ; this means that we must multiply | by ^. So likewise, if

of I were required, we should multiply | 'by 7»the value of |
which produces |^ ; and f of ^\ is the same as -j'^ multiplied by

|, which prodnces |^.

1 14. Lastly, we must here observe the same rules with respect

to the signs + and —, that we before laid down for integei-s.

Thus -f-
i multiplied by— -| makes—^ ; and— f multipled by

— 4 o'^^s-f -y'y. Farther, — | divided by +| makes

and— I di\ ided by— ^ makes -f ^| or -i- 1.

1 5 .

IT »

CHAPTER XL

Of Square A'uvibers.

115. The j'rodnct of a number, when multiplied by itself is

ertUed a square ; and for this reason, the number, considered in

relation to such a prodvct, is called a square root.

For example, when we multiply 12 by 12, the product 144 la

a square, of which the root is 13.

This term is derived from geometry, which teaches us that

the contents of a square are found by multiplying its side by
itself.

116. Square numbers are found therefore by multiplication;

that is to say. by multiplying the i-oot by itself. Thus 1 is the

square of 1, since 1 multiplied by 1 makes 1 ; likewise, 4 is the

square of 2 ; and 9 the square of 3 ; 2 also is the root of 4, and
3 is the root of 9.

W> sliall begin by considering the squares of natural numbers,
and sliall first give the following small table, on the first line of

which several numbers, or roots, are placed, and on the second
their squares.

-> umbel's.

Snnar^s.

1

1

2

4

3

9

4

16

5

25

6

36 49

8

64

9

81

10

100

11

121

12

144

13

169

Eld. Mg,



34 Jllgebra, Sect. 1.

11 f. It will be readily perceived, that the series of square
numbers thus arranged has a singular property ; namely, that

if each of them be subtracted from that which immediately
foHows, the remainders always increase by 2, and form this

series ;

S, 5, 7, 9, 11, IS, 15, ir, 19,21, &c.

118. The squares offractions are found in the same manner, hj

multiplying any givenfraction by itself. For example, tlie square
of ' 'IS i

The squar IS <

1 .

1

9

We have only therefore to divide the square of the numerator

by the square of the denominator, and the fraction, which ex-

presses that division, must be the square of the given fraction.

Thus, II is the square of 4 ; and reciprocally, | is the root

119. When the square of a mixed number, or a number, com-

posed of an integer and a fraction, is required, we have only to

reduce it to a single fraction, and then to take the square of that

fraction. Let it be required, for example, to find the s(j[uare of

21; we first express this number by |, and taking the square

of that fraction, we have Y» or 6i, for the value of the square

of 21. So to obtain the square of 3i, we say 3i is equal to ^-?
;

therefore its square is equal to Y/> "^ to 10 and j\. The
squares of the numbers between S and 4, supposing them to

increase by one fourth, are as follows

:

I^ umbers.

Squares.

3 3i H H 4

9 1^t\- '2| HtV 16

From this small table we may infer, that if a root contain a

fraction, its square also contains one. Let the root, for example,

be 1-/^ ; its square is |||, or 2^^^ ; that is to say, a little great-

er than the integer 2.

120. Let us proceed of general expressions. When the root

is a, the square must be a a: if the root be 2 a, the square is 4aa;

II
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which shews that by doubling the root, the square becomes 4

times greater. So if the root be 3 a, the square is 9 a a; and if

tlie root be 4 a, the square is 16 aa. But if the root be a 6, the

square is aabb ; and if the root bo a 6 c, the square is a abb ce»

121. Thus 7vhen the root is composed of twot or more factors,

Tve multiply their squares together ; and reciprocally, if a square

be composed of two or more factors^ nf which each is a square, we
have only to multiply together the roots of those squares, to obtain

the complete root of the square proposed, Tlius, as 2304 is equal

to 4 X 16 X 36, the square root of it is 2 x 4 x 6, or 48 ,- and

48 is found to be ttie true square root of 2304, because 48x48
gives 2304.

122. Let us now consider what rule is to be observed

with regard to the signs + and —. First, it is evident that

if the root has the sign +, that is to say, is a positive num-
ber, its square must necessarily be a positive number also,

because -f by -f makes +: the square of -f e will be -f- a a.

But if the root be a negative number, as — a, the square is still

positive, for it is -fa a; we may therefore conclude, that -fa a
is the square both o/* +a and of— a, and that consequently every

square has two roots, one positive aud the other negative. The
square root of 25, for example, is both -f 5 and — 5, because
— 5 multiplied by— 5 gives 25, as well as -f 5 by -f 5.

CHAPTER XII.

Of Square Roots, and of Irrational JS'iimbcrs resultingfrom tlwm,

123. What we have said in the preceding chapter is chiefly

this : that the square root of a given number is nuthin" but a
number whose square is equal to the given number i and that

"we may put before these roots either the positive or t!ie negative
sign.

124. So that when a square number is given, provided we
retain in our memory a sufficient number of square numbers, it

is easy to find i's root. If 196, for example, be the given num-
ber, we know that its square root is 14.
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Fractions likewise are easily managed : it is evident, for

example, that 4 is the square root of ||. To be convinced of

this, we have only to take the square root of the numerator, and

that of the denominator.

If the number proposed be a mixed number, as 121, we reduce

it to a single fraction, which here is t?, and we immediately

perceive that ^. or 3 |, must be the square root of 121.

125. But when the given number is not a square, as 12, for

example, it is not possible to extract its square root : or to find

a number, which, multiplied by itself, will give the product 12,

We know, however, that the square root of 12 must be greater

than 3, because 3x3 produces only 9 : and less than 4, because

4x4 produces IG, which is more than 12. We know also, that

this root is less than 3 i ; for we have seen that the square of

3 1, or I is 121. Lastly, we may approach still nearer to this

root, by comparing it with 3 -^^ ; for the square of 3 ^"^y, or of ^f
is VaV' ''*' ^~^¥T' ^*' t''^t this fraction is still greater than the

root required ; but very little greater, as the difference of the

two sqares is only ^|y,
126. We may suppose that as 3 | and 3 -^-g are numbers greater

than the root of 12, it might be possible to add to 3 a fraction

a little less than -j?^., and precisely such that the square of the

sum would be equal to 12.

Let us therefore try with 3^, since |. is a little less than j\.

Now 3^- is equal to ^y*, the square of which is y^^, and conse-

quently less by l| than 12, which may be expressed by ',y.

It is therefore proved that 5^ is less, and that Sr^j is greater

than the root required. Let us tlien try a number a little greater

than S|, but yet less than S^'y, for example, 3^*^., This number,

which is equal to I4, has for its square yVr*. Now, by reduc-

ing 12 to this denominator, we obtain \y^ ; which shows that

3y\ is still less than the root of 12, viz. by y|y. Let us there-

fore substitute for ^'^ the fractioM- ^®-y, which is a little greater,

and see what will be the result of the comparison of the square of

3„«j with the proposed number 12. The square of 3^«^ is Y// r

now 12 reduced to the same denominator is Y// ? ^^ *''^t 3^-^ is

still too small, though only by -jf -y, whilst 3 -{j has been found

too great.

i



Chap. 12. OJ Simple q^naniities. 87

127. It is evident therefore, that whatever fraction be joined

to S, the square of that sum must always contain a fraction, and

can never be exactly equal to the integer 12. Thus, although

we know that the square root of 12 is greater than S j^^ and less

than 3 ^^j, yet we are unable to assign an intermediate fraction

between these two, which, at the same time, if added to 3, would

express exactly the square root of 12. Notwithstanding this,

we are not to assert that the square root of 12 is absolutely and

in itself indeterminate ; it only follows from what has been said,

that this root, though it necessarily has a determinate magni-

tude, cannot be expressed by fractions.

128. There is therefore a sort oJ numbers which cannot be

assi.pied by fraciionSf and which are neverthdess determinate

quantities ; the square root of 1£ furnishes an example. Wc
call this new species of numbers, irrational numbers ; they occur

whenever we endeavour to find the square root of a number

which is not a square. Thus, 2 not being a perfect square, tha

square root of 2, or the number which, multiplied by itself,

would produce 2, is an irrational quantity. These numbers are

also called surd quantities^ or incommemurables,

129. These irrational quantities, though they cannot be ex-

pressed by fractions, are nevertheless magnitudes, of whicli we

may form an accurate idea. For however concealed the square

root of 12, for example, may appear, we are not ignorant, that it

must be a number which, wiien multiplied by itself, would

exactly produce 12 ; and this property is sufficient to give ns an

idea of the number, since it is in our power to approximate its

value continually.

130. As we are therefore sufficiently acquainted with the nature

of the irrational numbers, under our present consideration, a par-

ticular sign has been agreed on, to express the square roots of all

numbei-s that are not perfect squares. This sign is written

thus v^» and is read square root. Thus, v'i^ represents the

square root of 12, or the number which, multiplied by itself,

produces 12. So, V2~ represents the square root of 2 ,• vFthat
of 3 ; v| that of

-f
and, in general, ^/T represents the square

root of the number a. Whenever therefore we would express the
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square root of a number which is not a square, we need only

make use of the mark v by placing it before the number.

131. The explanation, which we have given of irrational num-

bers, will readily enable us to apply to them the known methods

of calculation. For knowing that the square root of 2, multi-

plied by itself, must produce 2 ; we know also, that the multipli-

cation v/2" by \/2 must necessarily produce 2 ; that, in the same

manner, the multiplication of v'J by vs" must give 3 : that vs"

by s/Y makes 5 j that vf '>y v| makes
-f ; and, in general, that

\/^midtiplied by v/a" produces a.

132. But when it is required to multiply \/^ by v/b~ the product

•will be found to be \/ab j because we have shewn before, that if a

square has two or more factors, its root must be composed of

the roots of those factors. Wherefore we find the square root

of the product a &, which is v^, by multiplying the square root

of a or v^ by the square root of b or v'a^ It is evident from

this, that if b were equal to a, we should have viTa for the pro-

duct of v^ by \/K Now \/^a is evidently a, since a a is the

square of a.

133. In division, if it were required to divide y/oT for exam-

ple, by v/^T ^^® *^^tain \-|- ; and in this instance the irration-

ality may vanish in the quotient. Thus, having to divide v/Ts

by %/8^ the quotient is \/V^' which is reduced to v/|> and conse-

quently to |, because | is the square of |.

134. When the number, before which we have placed the

radical sign v*, is itself a square, its root is expressed in the usual

way. Thus \/T is the same as 2 ; \/^ the same as 3 ; ^35 the

same as 6 ,• and Vis^ the same as |, or 3^. In these instances

the irrationality is only apparent, and vanishes of course.

135. It is easy also to multiply irrational numbers by ordi-

nary numbers. For example, 2 multiplied by ^T makes 2 \/5,

and 3 times ys" make 3 v/27 In the second example, however,

as 3 is equal to vi^ we may also express 3 times v2^ by \/9'

times \/2^ or by vis. So 2 \/^ is the same as v/4~a> and 3 vo"
the same as v'9a« And, in general, b ^/T has the same value

as the square root (t/* b b a, or v'abTb ; whence we infer recipro-

cally, that when the number which is preceded by the radical
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sign contains a square, we may take the root of that square and

put it before the sigji, as we should do in writing b Vo" instead

of yTbb. After this, the following reductions will be easily

understood

:

VS, or ^^4

-— r*is equal
\/24, or \/d-4

*

j 3 V^',

4 V2 ;

ts vs ;

\/32, or \/2l6

x/fjT or ViTaH^

and so on.

136. Division is founded on the same principles.

hy ybj gives ^-L, or \^. In the same manner,

V'a divided

Further
2

V2"

^

;>is equal to<

p, or V4, or 2^J
, or V9, or 3

;

, or ^4, or 2.

n

^ ;>is equal to<;

V'2

^, or v|, or v^r;
V3

.:^^, orv'r»orV24,
12

V6~ J

or v/6^> or lastly 2 ^6".

137. There is nothing in particular to be observed with

respect to the addition and subtraction of such quantities, be-

cause we only connect them by the signs + and —. For

example, ^72" added to ^W is written vi" + \/T 9 ond. Vs" sti&-

fraded/rom ^/T is ivritten \/5~— VT.
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138. We may observe lastly, that in order to distinguish irra-

tional numbers, we call all othei' numbers, both integral and frac-

tional, rational numbers.

So that, whenever we speak of rational numbers, we under-

stand integers or fractions.

CHAPTER Xni.

Of Impossible or Imaginary (luantities^ which arise from the

same source,

139. We have already seen that the squares of numbers,

negative as well as positive, are always positive, or affected

with the sign+; having shewn that— a multiplied by — a

gives -^-aa^ the same as the product of + a by -|- o. Wherefore,

in the preceding chapter, we supposed that all the numbers, of

which it was required to extract the square roots, were positive.

140. When it is required therefore te extract the root of a

negative number, a very great difficulty arises ; since there is

no assignable number, the square of which would be a negative

quantity. Suppose, for example, that we wished to extract the

root of — 4 ; we require such a number, as when multiplied by

itself, would produce — 4 ; now this number is neither + 2 nor

— 2, because the square, both of+ 2 and of— 2, is + 4, and not

— 4.

141. We must therefore conclude, that ihe square root of a

negative number cannot be either a positive number, or a negative

number^ since the squares of negative numbers also take the sign

plus. Consequently the root in question must belong to an en-

tirely distinct species of numbers ; since it cannot be ranked

cither among positive, or among negative numbers.

142. Now, we before remarked, that positive numbers are all

greater than nothing, or 0, and that negative numbers are all less

than nothing, or ; so that whatever exceeds 0, is expressed by

positive numbers, and whatever is less than 0, is expressed by

negative numbers. The square roots of negative numbers,

therefore, are neither greater nor less than nothing. We can-
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not say however, that they are ; for multiplied by pro-

daces 0, and consequently does not give a negative number.

143. Now, since all numbers, which it is possible to conceive,

are either greater or less than 0, or are itself, it is evident

thaf we cannot rank the square root of a negative number

amongst possible numbers, and we must therefore say that it is

an impossible quantity. In this manner we are led to the idea

of numbei*s which trom their nature are impossible. These num-

bers are tisually called imaginary quantitieSf because they exist

merely in the iniagination.

144. All such expressions, as v—l, v—2, V— 3, v^, &i"«>

are consequently impossilde, or imaginary numbers, since they

represent roots of jiegative quantifies : and of such numbers we
may truly assert, that they are neither nothing, nor greater than

nothing, nor less than nothiiig ; which necessarily constitutes

them imaginary, or impossible.

145. But notwithstanding all this, these numbers present

themselves to the mind ; they exist in our imagination, and we
still have a sufhcient idea of them ; since we know that b^v^
is meant a number which, multiplied by itself, produces — 4.

For this reason also, nothing prevents us from making use of

these imaginary numbers, and employing them in calculation.

146. The first idea that occurs on the present subject is, that

the square of v—3, for example, or the product of v—3 by

\/—3, must be— 3 ; that the product of v—l by v—l •» — 1 j

and, in general, that by multiplyirjg y' ~a by \/^a, or by taking

the square of v^. we obtain — a.

147. Now, as — a is equal to -fa multiplied by — 1, and as

the square root of a product is found by multiplying together

thf roots of its factoi's, it follows tliat the root of a multi-

plied by — 1, or v—a. »s equal to v*" multiplied by v~i.
Now v'o~ is a possible or real number, consequently the whole

impossibility of an imaginary quantity may be always reduced to

V—l. For this reason, v—4 is equal to v4 multiplied by

v — l, and equal to 2 v—1> on arcount of ^ 4" be4ng equal to 2.

For the same reason, v'-^Q is reduced to ^/g" x V—L t)r3 v'Zl J

and V —16 is equal to 4 \/—i.

EuU dig. 6
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148. Moreover, as v^iT multiplied by ^/V makes v«6) we
shall have vo^ ff>'' value of v/Il2 multiplied by \/—3 5 *"d ^57 or

2, for the value of the product of v'—i by v'—4. We see, there-

fore, that two imaginary numberS) multiplied together, produce a

real, or possible one.

But, on the contrary, a possible numberf multiplied by an im-

possible number, gives always an imaginary product : thus, v/—

3

^y v+5 gives v^^^-
149. It is the same with regard to division ; for \/a divided

by \/r making r_, it is evident that V—4 divided byv—l will

make v+4> or 2 ; that v+3 divided by v—3 will give \A^i

and that I divided by y—l gives IiLL, or v—1 ? because 1 isjs
equal to v+l«

150. AYe liavc before observed, that the square root of any

number has always two values, one positive and the other

negative ; that \/T, for example, is both + 2 and — 2, and that

in general, we must take — v^«~ as well as +\/a' for the square

root of fl. This remark applies also to imaginary numbers;

the square root of — a is both + ^—n. and —V—a ; but we must

not confound the signs + and — , which are before the radical sign

v/, with the sign which comes after it.

151. It remains for us to remove any doubt which maybe
cntcj-tained concerning the utility of the numbers of which we

have been speaking ; for those numbers being impossible, it

would not be surj)rising if any one should think them entirely

useless, and the subject only of idle speculation. This however

is not the case. The calculation of imaginary quantities is of the

greatest importance: questions frequently arise, of which we

cannot immediately say, whether they include any thing real

and possible, or not. Now, when the solution of such a ques-

tion leads to imaginary numbers, we are certain that what is

required is iuipossible.*

• This is followed in the original by an example intended to illustrate what

is htre said. It is omitted by the Editor, as it implies a degree of acquaint,

ance with the subject, which thelcarner cannot be supposed to possess at this

stage of iiis progress.

J
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CHAPTER XIV.

Of Cubic JVumbers.

152. Whe!T a number lias heen mnltipUed twice by itself, or,

which is the same thing, when the square of a number has been

multiplied once more by that number, we obtain a product wMch is

called a cube, or a cubic number. Thus, the cube of a is a a rt, since

it is the product obtained by multiplying a by itself, or by a, and

that square a a again by a.

The cubes of the natural numbers therefore succeed each

other in the followins: order.

lumbers.

Cubes.

1 o 3 4 5 6 i 8

512

9 10

10001 8 27 64 125 216 S4S 729

153. If we consider the differences of these cubes, as we
did those of tiie squares, by subtracting each cube from that

which comes after it, we shall obtain the following series of num-
bers :

7, 19, ST, 61, 91, 127, 169, 217, 271.

At first we do not observe any regularity in them : but if we
take the respective differences of these numbers, we find the

following series

:

12, 18, 24, 30, S6, 42, 48, 54, 60;

in which the terms, it is evident, increase always by 6.

154. After the definition we have given of a cube, it will not

be difficult to find the cube of fractional numbers ; -i is the cube
of I ; ^V ^s *h^ cube of ^ ; and ^^j- is the cube of |, In the

same manner, we have only to take the cube of the numerator
and that of the denominator separately, and we shall have as

the cube of |, for instance, |1.

155. If it be required tofnd the cube of a mixed number, we must
frst reduce it to a singlefraction, and tlien proceed in the manner
that has been described. To find, for example, the cube of U,
we must take that of |, which is y , or 3 and |. So the cube
of li, or of the single fraction |, is VV > or ^H i and the cube
of Si, or of V is 211% or S4|i.
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1 56. Since a a a is the cube of a, that of a 6 will he aaahhh ;

whenre we see, that if a number has two or more factors, tvt

mayjind its cube by multiphjhig together the cubes of those factors.

For example, as 12 is equal to 3x4, we multiply the cube of 3,

which is 27, by the cube of 4, which is 64, and we obtain 1728,

for the cube of 12. Further, the cube of 2 a is 8 a a a, and conse-

quently 8 times greater than the cube of a : and likewise, the

cube of 3 a is 27 a fl fl, that is to say, 27 times greater than the

cube of a.

157. Let us attend here also to the signs + and— . It is

evident that the cube of a positive number -f a must also be

positive, that is -^aaa. But if it be required to cube a negative

number — a, it is found by first taking the square, which is

-\.aa, and then multiplying, according to the rule, this square

by

—

a, which gives for the cube required

—

a a a. In this

respect, therefore, it is not the same with cubic numbers as with

squares, since the latter are always positive : whereas the cube

of — 1 is — 1, that of — 2 is— 8, that of — 3 is — 27, and

so on.

CHAPTER XV.

Of Cube Roots, and of irrational numbers resultingfrom them.

158. As we can, in the manner already explained, find the

cube of a given number, so, when a number is proposed, we may
also reciprocally find a number, which, multiplied twice by itself,

will produce that number. The number here sought is called,

with relation to the other, the cube root. So tliat the cube root of

a given number is the number whose cube is equal to that given

number.

159. It is easy therefore to determine the cube root, when the

number proposed is a real cube, such as the examples in the last

chapter. For we easily perceive that the cube root of 1 is 1

;

that of 8 is 2 ; that of 27 is 3 ; that of 64 is 4, and so on. And
in the same manner, the cube root of —27 is— 3 j and that of

— 125 is — 5,

I
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Further, if the proposed number be a fraction, as ^'y, the cube

root of it must be | ; and that of ^W is *. Lastly, the cube

root of a mixed number 2|^ must be ^, or 1-^ : because 2^^ is

equal to l^

160. But if the proposed number be not a cube, its cube root

cannot be expressed eithtr in integers, or in fractional num-

bers. For example, 43 is not a cubic number ; I say there-

fore that it is impossible to assign any number, either integer

or fractional, whose cube shall be exactly 43. We may how-

ever affirm, that the cube ro )t of that number is greater than

3, since the cube of 3 is only 27 ; and less than 4, because

the cube of 4 is 64. We know therefore, tliat the cube root

required is necessarily contained between the numbers 3

and 4.

161. Since the cube root of 43 is greater than 3, if we add a

fraction to 3, it is certain that we may approximate still nearer

and nearer to the true value of this root : but we can never

assign the number .which expresses that value exactly ; because

the cube of a mixed number can never be perfectly equal to an

integer, such as 43. If we were to suppose, for example, 3 J, or

I to be the cube root required, the error would be | ; for the

cube of I is only ^1', or 42-J.

162. This therefore shews, that the cube root of 45 cannot he

expressed in any ivaij, either by integers or by fractions. How-
ever we have a distinct idea of the magnitude of this root

;

which induces us to use, in order to represent it, the sign \/,

which we place before the proposed number, and which is read

cube root, to distinguish itfrom the square roott which is often called

s _
simply the root. Thus v43 means the cube root of 43, that is to

say, the number whose cube is 43, or which, multiplied twice

by itself, produces 43.

163. It is evident also, that such expressions cannot belong

to rational quantities, and that they rather form a particular

species of irrational quantities. They have nothing in common
with square roots, and it is not possible to express such a rube

root by a square root ; sls, for example, by vis j for the square
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of v/i^ being 12, its cube will be 12 ^\2, consequently still irra-

tional, and such cannot be equal to 43.

164. If the proposed number be a real cube, our expressions
3 3 _ 3

become rational ', Vl ^^ equal to 1 ; \/% is equal to 2 ; v^27' is

3

equal to 3 ; and, generally, \/a a a is equal to a.

3

165. If it were proposed to multiply one cube root, Va, by another,

3_ 3 _
-y/b, the product must be Va b ; for we know that the cube root of

a product a 6 is found by multiplying together the cube roots of

3_ 3_
the factors (156). Hence, also, ifwe divide Va by y'b, the quo-

iicnt will be

166. We further perceive, that 2 v'a ^^ equal to \/8a, because

3^ 3_ 3 3

2 is equivalent to ys ; that 3 y/a is equal to v'27 a, and 6 \/a is

3

equal to \/abb b. So, reciprocally, if the number under the radi-

cal sign has a factor which is a cube, we may make it disappear

by placing its cube root before the sign. For example, instead

3 3 3 3

oi \/6i>a we may write A^^/a-, and 5 \/a instead of v/i25a.

3_ .
3 _

Hence v^ie is equal to 2 v/2, because 16 is equal to S x 2,

16r. When a number proposed is negative, its cube root Is

not subject to the same difficulties that occurred in treating of

square roots. For, since the cubes of negative numbers are

negative, it follows that the cube roots of negative numbers are

3_ 3
only negative. Thus, V—8 is equal to — 2, and %/—27" to — 3.

3 3 3

It follows also, that v/_i2 is the same as — y'ls* and that v—

a

3

maybe expressed by — y/a. Whence we see, that the sign —

,

when it is found after the sign of the cube root, might also have

been placed before it. AYe are not therefore here led to impos-

sible, or imaginary numbers, as we were in considering the

square roots of negative numbers.
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CHAPTER XVI.

Of Powers in general.

168. Thb product^ which we obtain iy multiplying a number

several times by itselff is called a power. Thus, a square which

arises from the multiplication of a number by itself, and a cube

which we obtain by multiplying a number twice by itself, are

powers. fFe say also in theformer case, that the number is raised

to the second degree, or to the second patver ; and in the latlerf that

the number is raised to the third degree, or to the third power.

169. We distinguish these powers from one another by the

number of times that the given number has been used as a factor.

For example, a square is called the second power, because a

certain given number has been used twice as a factor ; and if

a number has been used thrice as a factor, v e call the pro-

duct the third power, which therefore means the same as

the cube. Multiply a number by itself till you have used it four

times as a factor, and you will have its fourth power, or what is

commonly called the bi-quadrate. From what has been said it

will be easy to understand what is meaut by the fifth, sixtlj,

seventh, &c., po\\er of a number. I only add, that the names of

these powers, after the fourth degree, cease to have any other

but these numeral distinctions.

170. To illustrate this still further, we may observe, in the

first place, that the powers of 1 remain always the same; because,

whatever number of times we multiply 1 by itself, the product

is found to be always 1. We shall therefore begin by repre-

senting the powei-s of 2 and of 3. They succeed in Ihc following

order

:
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r"

Powers.
A

Of the number % Of the number 3.
A A

f ^ r 1
c 3

4 9
8 27

16 81

S2 243
64 729

128 2187
£56 6561

5\2 19683

^^•1094
•^ £04 H

59049
177147

4096 531441
8192 1594323

16384 4782969
32768 14348907

• 65536 43046721
131072 129140163
262144 387420489

I.

II.

III.

IV.
V.
VI.
VII.

VIII.

IX.

XI.
XII.
XIII.

XIV.
XV.
XVI.
XVII.
XVIII.

But the powers of the number 10 are the most remarkable ;

for on these powers the system of our arithmetic Is founded. A
few of them arranged in order, and beginning with the first

power, are as follows :

I. II. III. IV. V. VI.

10. 100, 1000, 10000, 100000, 1000000, &r.

171. In order to illustrate this subject, and to consider it in a

more general manner, we may observe, that the powers of any

number, a, succeed each other in the following order.

I. II. III. IV. V. VI.

a, a a, a a a, aaaa, aaaaa^ aaaaaa, &c.

But we soon feel the inconvenience attending this manner of

writing powers, which consists in the necessity of repeating

the same letter very often, to express high powers ; and the

reader also would have no less trouble, if he were obliged to

count all the letters, to know what power is intended to be

represented. The hundredth power, for example, could not be

conveniently written in this manner; and it would be still more

difficult to read it.

172. To avoid this inconvenience, a much more commodious

method of expressing such powers has been devised, which from
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its extensive use deserves to be carefully explained ; r?::;. To
express, lor example, tlie hundredth [Hiwer, we simjdy write the

number 100 above the number whose hundredth power we would

exprejss, and a little towards liie riejht-hand : thus a^"* means

a raised to 100, and represents the hundreth jxnver of a. It must

be observed, that the name exponent is pven to the uumber icrit^

ten above that whose poirer, or degree, it represents, and which in

the present instance is 100.

173. In the same manner, a* signifies a raised to 2, or the

second power of a, which we represent sometimes also by aa»

because both these expressions are written and understood with

equal facility. But to express tlie cube, or the third power a a a,

we write a^ according to the rule, that we may occupy less room.

So a* signifies the fourth, c* the fifth, and a* the sixth power

of a.

174. In a word, all the powers of a will be represented by a,

a*, a', a*, a*, a*, a'', a', a^, o^°, &c. Whence we see that in

this manner we might very properly have written «' instead

of a for the first tei m, to shew the order of the series more

clearly. In fact a* is vo more than a. as this unit shews that the

letter a is to be written only once. Such a series of powers is

called also a geometi-ical progressiou, because each term is

greater by one than the pi'^ceding.

175. As in this serii'S of powers each term is found by multi-

plving the preceding term by «, which increases the exponent

bv 1 : so when any ^erm is given, we may also find the preced-

ing one, if we divide by a, because this diminishes the exponent

by !, This shews that the term which pi-ecedes the first term a*

must necessarily be — , or 1 ; now, if we proceed according to
a » .-3

the exponents, we immediately conclude, that the term which
precedes the first must be a^. Hence we deduce this remark-

able property ; that «<• is constantly equal to 1, hmvever great or

sma'.t the value of the nuviber a may he, and even when a is noth-

ing; that is to say, a* is equal to 1.

1 76. W e may continue our series of powers in a reti-ograde

ord^^r, arid that in two different ways ; first, by dividing always

by , and secondly by diminishing th« exponent by unity. And
Eul. Alg, 7
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it is evident that, whether we follow the one or the other, the

terras are still perfectly equal. This decreasing series is

represented, in botli forms, in the following table, which must be

read backwards, or from right to left.

1.

2.

1 1 I 1 1 1
1 aauaaaa aaaaa aaaa a aa a a a

1 1 1

a*

1 I 1

a-« a-" a-* a-

3

177. We are thus brought to understand the nature of powers,

whose exponents are negative, and are enabled to assign the

precise value of these powers. From what has been said, it ap-

pears that.

a^
-

fi; then

1

^ is equal to <

1 1— ; or -»:
a a a*

- , &c.

178. It will be easy, from the foregoing notation, to find the

powers qfaprodtid, ab. They must evidently be ab, or a^bS

a* b*, a^ b', a* b*, a* b*, «§*c. dnd the powers of fractions wiU
a

befound in the same manner ; for example those of^ are,

a' a=* a^ a* a' a^ a^ „

gi* b*' b"3' b^' M' b^' b''
*^'

179. Lastly, we have to consider the powers of negative num-

bers. Suppose the given number to be— a; its powers will

form the following series :

— rt, -^aaf —a^, +«*> — a«, +aS &c.
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We may observe, that those powers only become negative

whase exponents are odd numbers, and that, on the contrary,

all the powers, which have an even number for the cxjwnent,

are positive. So that, the third, fifth, seventh, ninth, &c., pow-

ers have each the sign — ; and the second, fourth, sixth, eighth,

&c. powers are affected with the sign +.

CHAPTER XVII.

Of the calculation of Powers.

180. We have nothing in particular to observe with regard

to the addition and subtraction of powers; for we only repre-

sent these operations by means of the signs -f- and —, when the

powere are different. For example, a' -f- a* is the sum oj tlic

second and third powers of a ; and a* — a"* is what remains

when we subtract thefourth power of a from thefifth ; and neither

of these results can be abridged. When we have powers of the

same kind, or degree, it is evidently unnecessary to connect

them by signs ; a^ -f-a' makes 2 a^, kc.

181. But, in the raaltiplication of powers, several things re-

quire attention.

First, when it is required to multiply any power of a by a,

•we obtain the succeeding power, that is to say, the power whose
exponent is greater by one unit. Tljus a*, multiplied by a,

produces a^ ; and a^, multiplied by a, produces a*. And, in

the same manner, when it is required to multiply by a the

powers of that number which have negative exponents, we must

add 1 to the exponent. Thus, a"^ multiplied by a produces a° or

1 ; which is made more evident by considering that a~ * is equal

to —, and that the product of— by a being -, it is consequently

equal to 1. Likewise a ^ multiplied by a produces a~^, or

— ; and a~^°, multipled by a, gives o~', and so on.

182. Next, if it be required to multiply a power of a by a a,

or the second power, I say that the exponent becomes greater
by 2. Thus, the product of a» by a^ is a* ; that of a^ by a^
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fl« ; tl)at of «* by a* is a* ; and, more .(generally, fl" multiplied

hy a^ ma/<'fsa"+*. fFif/t regard to negative cxptmentSf we shaU
have aS or a, ^r the product of vr^ by a' ; for a'^ being equal

to —, it is the same as if wc had divided a a by a ; consequently

the product required is —, or a. So a"*, multiplied ly a* pro-

duces a", or 1 ; and a"^, muUiplied hy a^, produces a-*.

183. It is no less evident tliat, to multiply any power of a by
a', wc must increase its exponent by three units ; and that

consequently the product of «" by a' is a"+'. And whenever it

is required to multiply togeiher two powers of a, the product will be

also a power of a, and a power whose exponent will be the sum of the

exponents of the two given powers. For example, a* multiplied by

a' will make a', and a*' multiplied by a' will produce a^', &c.

184. From these considerations we may easily determine the

highest powers. To find, for instance, the Twrnty-fourth power

of 2, 1 multiply the twelfth power by the twelfth power, because

224 is equal to 2^^ X 2^^. Now we have already seen that

2^2 i^ 4095 . I fjay therefore that the number 16777216, or the

product of 4096 by 4096, expresses the power required, 2**.

185. Let us proceed to division. We shall remark in the

first place, that tu divide a power of 'd by r, we must subtract 1

from the exponent, or diminish it by unity. Thus a',, divided by

fl, gives a* ; a°, or 1, divided by o, is equal to a-* or— ; a"^,

divided by a, gives a"-*.

186. If we have to divide a given power of a by fl», we must

diminish the exponent by 2 ; and if by a', we must subtract

three units from the exponent of the power proposed. So, in

general, whatever power of a it is reqiiired to divide by another

jower ofn, the rule is always to ubtract the exponent of the second

from the exponent of thefirst of these powers. Thus a'^", divided

by d'', will give a^ ; «« divided by a', will give a'S* and a-^,

divided by a*y will give a~''

.

187. From what has been said above, it is easy to understand

the method of finding the powers of powers, this being done by

multiplication. When we seek, for example, the square, or the

second power of a% we find a« ; and in the same manner we
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find fl^' for the third power or the cube of a*. To obtain the

sijitare of a poreer, ive have only to double its cjcponent ;J'or Hit cube,

V e must triple the exponent ; and so otu The square of a" is

n'" ,• th e cube of a" is a^" ,* the seventh power of a" is a'", &c.

188. The square of a*, or the square of the square of a,

beii».^ a*, we see why the fourth power is called the bi-qnadrate.

The square of o^ is a* ; the sixth power has therefore received

the name of the square-cubed.

Lastly, the cube of a^ being «*, we call the ninth power the

cnho-dihe. No other denominations of this kind have beea

introduced for powers, and indeed the two last are very little

used.

CHAPTER XVIII.

Of Roots with relation to Powers in generaL

189. Since the square root of a given number is a number,

whose square is equal to that given number ; and since the cube

root of a given number is a number, whose cube is equal to that

given number; it follows that any number whatever being given,

we may always indicate such roots of it, that their fourth, or

their fifth, or any other power, may be equal to the given num-
ber. To distinguish these different kinds of roots better, we
shall call the square root the second root ; and the cube root th»

third root ; because, according to this denomination, we may call

ihefoiirth root, that whose biquadrate is equal to a given rmm-
ber ; and theffth root, that whose fifth power is equal to a given

number, &c.

190. As the square, or second root, is marked by the sign
3

v^, and the cubic or third root by the sign v/» so the fourth root
* s

is represented by the sign v/ j the fifth root by the sign v' ; and
so on ; it is evident that according to this mode of expression,

2

the sign of the square root ought to be ^/. But as of all roots

this occurs most frequently, it has been agreed, for the sake of

brevity, to omit the number 2 in the sign of this root. So that
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when a radical sign has no number prefixed, this always shews
that the square root is to be understood.

191. To explain this matter still further, we shall here exhibit

the different roots of the number a, with their respective values :

^is the<

3_

4
Vo
5

6 _
\/a

So that conversely

;

The 2d "I

The 3d

The 4th ^power of -<

The 5th

r 2d ^

3d

4th ^root of \>a,

5th

^ 6tlL

3_

Va
s _

6 __

Va

^a, and so on.

a,

a,

> is equal to <^ a,

a,

The 6th,

and so on.

192. "Whether the number a therefore be great or small, wc
know what value to affix to all these roots of different degrees.

It must be remarked also, that if we substitute unity for fl, all

those roots remain constantly 1 ; because all the powers of 1

have unity for their value. If the number a be greater than 1,

all its roots will also exceed unity. Lastly, if that number be

less than 1 , all its roots will also be less than unity.

193. When the number a is positive, we know from what was

before said of the square and cube roots, that all the other roots

may also be determined, and will be real and possible numbers.

But if the number a is negative, its second, fourth, sixth, and

all the even roots, become impossible, or imaginary numbers ;

because all the even powers, whether of imsitive, or of negative

numbers, are affected with the sign +. Whereas the third, fijthf

seventh, and all odd roots, become negative, but rational ; because

llie odd powers of negative numbers, are also negative.

i
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194. We Lave here also an inexhaustible scource of new kinds

of surd, or irrational quantities ; for whenever the number a is

not actually such a power, as some one of the foregoing indices

represents, or seems to require, it is impossible to express

that root either in whole numbers or in fractions ; and conse-

quently it must be classed among the numbers which are called

irrational.

CHAPTER XIX.

Of the ^Method of representing Irrational A\mbers by Fractional

Exponents,

195. We have shewn in the preceding chanter, that the square

of any power is found by doubling the exponent of that power,

and that in general the square, or the second power of a" , is

«"»• The converse follows, namely, that the square root of the

power a*° is a" , and that it isfound by taking half the exponent of

that poTver, or dividing it by 2.

196. Thus the square root of a* is a^ ; that of a* iso* ;

that of a* is a' ; and so on. And as this is general, the square
8 S

root of a 3 must necessarily be a* and that of a* a*. Con-
1

aequently we shall have in the same manner a* for the square

root of a 1 5 whence we see that a^ is equal to Va ; and this

new method of representing the square root demands particular

attention.

197. We have also shewn that, to find the cube of a power as

a", we must multiply its exponent h} 3, and that consequently

the cube is a*".

So conversely, when it is required to find the third or cube

root of the power a'", we ha^e only to divide the exponent by

S, and may with certainty conclude, that the root required is a".

Consequently aSor a, is the cube root of f,^ ; a* is that of a^ ;

a^ is that of a' ; and so on.

198. There is nothing to prevent us from applying the same

reasoning to those cases in which the exponent is not divisible
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s

by 5, and concluding that the cube i-oot of a' is a^, and that the

cube root of ft* is a^, or a ^. Consequently the third, or

cube root of a also, or a* must be a^. Whence it appears that

R^ IS equal to va>

199. It is the same with roots of a higher degree. The

fourth root of a will be a *, which expression has the same value
4 _ .1

as Va. The fifth root of a will be a^, which is consequently
s _

equivalent to Va ? ^^^ the same observation may be extended

to all roots of a higher degree.

200. We might therefore entirely reject the radical signs at

present made use of, and employ in their stead the fractional

exponents which we have explained ; however, as we have been

long accustomed to tliose signs, and meet with them in all

books of algebra, it would be wrong to banish them entirely.

But there is sufficient reason also to employ, as is now frequei.tly

done, the other method of notation, because it manifestly corres-

ponds with what is to be represented. In fact, we see immediate-
i_

ly that a^ is the square root of a, because we know that the square111
of a^, that is to say, (i* multiplied by a*, is equal to a* or a.

201. What has now been said is suflScient to shew how we
are to understand all other fractional exponents that may occur.

4

If we have, for exao»ple, a"^, this means that we must first

take the fourth power of a, and then extract its cube or third
4 _ 3_

root ; so that a^ is the same as the common expression, ^/a*.
3

To find the value of «*, we must first take the cube, or the

third power of a, which is a^t and then extract the fourth root

3 4 4

of that power; so that a^ is the same as y/a3. Also a^ is

s

equal io\/a*i &:c.

202. When the fraction which represents the exponent ex-

ceeds unity, we may express the value of the given quantity in

5

another way. Suppose it to be a^; this quantity is equivalent

to a^^, which is the product of fl" by a^. Now a^ being
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equal to v/S" it is evident that a^ is equal to a' y/a. So a ^ ,

or a ^^
is equal to a^ v^ ; and a ^ , that is o •», expresses

o3 v^3. These examples are sufficient to illustrate the great

utility of fractional exponents.

203. Their use extends also to fractional numbers : let there

be given —=, we know that this quantity is equal to -7 ;
now

we have seen already that a fraction of the form — may be ex-

pressed by a-" ; so instead of —t=: we may use the expression

o-l. In the same manner, -— is equal to a-T. Again, let

fl*

the quantity be proposed ; let it be transformed into this,

a* s— , which is the product of a' by a~* ; now this product is equi-

1 li 4 _
valent to a*, or to a *, orlastly to avo. Practice will ren-

der similar reductions easy.

204. We shall observe, in the last place, that each root may

be represented in a variety of ways. For v/a~ being the same

as a^, and 1 being transformable into all these fractions, f . |. 4*
— * — ^—

_5_, ^6j,&c., it is evident that y/a is equal to vas* and to v ^^ and
8 1

to v'a*« ^^^ SO on. In the same manner \/a, which is equal

to a^, will be equal to v/a2» and to \/a^, and to Va*- And

we see also, that the number «, or aS might be i*epresented by

the following radical expressions :

2_ 3 4_ 5_
Va'» Va^t Va*) s/a'y &C.

205. This property is of great use in multiplication and

division : for if we have, for example, to multiply Va hy Va,
6 3 G_ 3

we write Va^ for Va, and v'a^ instead of y/a ; in this man-

ner we obtain the same radical sign for both, and the multi-

plication being now performed, gives the pi'oduct \/as. The
111 1^

same result is deduced from a^ "^j the product of n» multi-

Exd. Als. 8
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plied by a^ ; for A + ^ is |, and consequently the product re-

quired is 6^ or V"'*
.. . , ... - 3 1 3 1
7t were required to divide Va, or a^, by v/aT or a^, w&

should have for the quotient a^ "J, or a^" ^, that is say, a^
6

Va.

CHAPTER XX.

Of the different methods of calculation, and of their mutual

connexion.

206. Hitherto we have only explained the different methods
of calculation : addition, subtraction, multiplication, and divis-

ion ; the involution of powers, and the extraction of roots. It

"vill not be improper therefore, in this place, to trace back the

origin of those different methods, and to explain the connexion

whicli subsists among them ; in order that we may satisfy our-

selves whether it be possible or not for other operations of tlie

same kind to exist. This inquiry will throw new light on the

subjects which we have considered.

In prosecuting this design, we shall make use of a new clia-

racter, which may be employed instead of the expression that

Las been so often repeated, is equal to ^ this sign is =, and is

read is equal to. Thus, when I write a — h, this means that a is

3^6^ equal to b: so, for example <?Sf^ =15.
207. The first mode of calculation, whicli presents itself to the

mind, is undoubtedly addition, by which we add two numbers

together and find their sum. Let a and h then be the two given

numbers, and let their sum be expressed by the letter c, we shall

have a + b = c. So that when we know the two numbers a and

b, addition teaches us to find t!ic number c.

208. Preserving this comparison a + Z/ = c, let us reverse the

question by asking, how wc are to find the number b, when we

know the numbers a and c.

It is required therefore to know what number must be added

to rt, in order that the sum may be the number c. Suppose, for

example, a = S and c^8^ so that we must have 3 + &=8^
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b will evidently be found by subtracting 3 from 8. So, in general,

to find 6, we must subtract a from c, whence arises b = c — a j

for by adding a to both sides again, we have 6 + a = c— a -\- a,

that is to say = c, as we supposed.

Such then is the origin of subtraction.

200. Subtraction therefore takes place, when we invert the

question which gives rise to addition. Now the number which

it is required to subtract may happen to be greater than that

from which it is to be subtracted ; as, for example, if it wero

required to subtract 9 from 5 : this instance therefore furnishes

us with the idea of a new kind of numbci-s, which we call nega-

tive numbers, because 5 — 9 = — 4.

210. When several numbers are to be added together which

are all equal, their sum is found by multiplication, and is called

a product. Thus a b means the product arising from the multi-

plication of a by 6, or from the addition of a number a to itself

h number of times. If we represent this product by the letter

c, we shall have ab=.c; and multiplication teaches us how to

determine the number c, when the numbers a and b are known,

211. Let us now propose the following question : the numbers

a and c being known, to find the number b. Suppose, for

example, a = 3 and c = 15, so that 3 6=15, we ask by what

number 3 must be multiplied, in order that the product may be

15 : for the question proposed is reduced to this. Now this is

division: the number required is found by dividing 15 by 3;

and therefore, in general, the number b is found by dividing c

(J

by o ; from which results the equation 6 = —

.

212. Now, as it frequently happens that the number c cannot

be really divided by the number a, while the letter b must how-

e\er have a determinate value, another new kind of numbers

presents itself; these are fractions. For example, supposing

a = 4, c = 3, so that 46 = 3, it is evident that 6 cannot be an

integer, but a fraction, and that we shall have 6 = |.

213. We have seen that multiplication arises from addi-

tion, that is to say, from the addition of several equal

quantities. If we now pi*oceed further, we shall perceive

that from the multiplication of several equal quantities to-
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gethcr powers are derived. Those powers are represented in

a general mantier bj^ the expression a*, which signifies that the

number a must be multiplied as many times by itself, as is

denoted by the number h. And we know from what has been

already said, that in the present instance a is called the root, 6

the exponent, and a* the power.

214. Further, if we represent this power also by the letter c,

we have a* = c, an equation in which three letters a, 6, c, are

found. Now we have shewn in treating of powers, how to find

the power itself, that is, the letter c, when a root a and its

exponent h are given. Suppose, for example, a = 5, and 6 = 3,

so that c = 53
; it is evidejit that we must take the third power

of 5, which is 125, and that thus c = 125.

215. We have seen how to determine the power c, by means

of the root a and the exponent h ', but if we wish to reverse the

question, we shall find that this may be done in two ways, and

that there are two different cases to be considered : for if two

of these three numbers a, h, c, were given, and it were required

to find the third, we should immediately perceive that this

question admits of three different suppositions, and consequently

three solutions. We have considered the case in which a and 6

were the numbers given, we may therefore suppose further that

c and a, or c and b are known, and that it is required to deter-

mine the third letter. Let us point out therefore, before we
proceed any furtiier, a very essential distinction between invo-

lution and the two operations which lead to it. When in

addition we reversed the question, it could be done only in one

way ; it was a matter of indifference whether we took c and a,

or c and b, for the given numbers, because we might indiffer-

ently write a -f b, or 6 -f a. It was the same with multiplica-

tion ; we could at pleasure take the letters a and 6 for each

other, the equation ab — c being exactly the same as 6 o = c.

In the calculation of powers, on the contrary, the same thing

does not take place, and we can by no means write fc" instead of

fl* , A single example will be sufficient to illustrate this : let

a = 5, and b = S; we have a* = 5» = 125. But t" = 3* = £45 :

two very different results.



SECTION II.

Of THE DIFFEUEN'T METHODS OF CALCULATION APPLI^ TO

COMPOUND QUANTITIES.

CHAPTER I.

Of the Jiddiiion of Compound QiuitUiUes.

.UlTICLE 216.

When two or more expressions, consisting of several terms,

are to be added together, the operation is frequently represented

merely by signs, placing each expression between two paren-

theses, and connecting it with the rest by means of the sign
-f-.

If it be required, for example, to add the expressions a-^ b -{-c

and d -f e -f/, we represent the sum thus :

2ir. It is evident that this is not to perform addition, but only

to represent it. We see at the same time, however, that in

order to perform it actually, we have only to leave out the

parentheses ; for as the number d +e +/is to be added to the

other, we know that this is done by joining to it first + d, then

-f f, and then +/; which therefore gives the sum

a^6-f.c-fd + f -f/.

The same method is to be obscr\'ed, if any of the terms are

affected with the sign— ; they must he joined in the same way,

by means of tlieir proper sign.

218. To make this more evident, we shall consider an exam-

ple in pure numbei.>s. It is proposed to add the expression

15 — 6 to 12 — 8. If begin by adding 15, we shall have

12 — 8 -f- 15 ; now this was adding too much, since we had only

to add 15— 6, and it is evident that 6 is the number which wc
have added too much. Let us thei-efore take tlus 6 away by

writing it with the negative sign, and we shall have the true

sum, 12— 8 + 15 — 6,
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which shews that the sums are found by writing all the terms,

each xvith its proper sign.

219. If it were required therefore to add the expression
d— e ^-J to a— 6 + c, we should express the sum thus :

a— 6 + c + rf— e—/,

remarking however that it is of no consequence in what order
we write these terms. Their place may be changed at pleasure,

provided their signs be preserved. This sum might, for exam-
ple, be written thus

:

c— e + a—f+ d— h,

220. It frequently happens, that the sums represented in

this manner may be considerably abridged, as when two or
more terms destroy each other ; for example, if we find in the

same sum the terms +a—'a, or 3a— Aa-\-a: or when two
or more terms may be reduced to one. Examples of this second

reduction

:

Sa+2a = 5a; 76— 36 = + 46;
— 6c + 10c=-f4cj

5a— 8a=— 3a; — 76 + 6 = —^665— S c— 4c=— 7 c;

2 a— 5a-{-a=:— 2a; — 36— 56 + 26=— 6 6.

Whenever two or more termst therefore, are entirely the same with

regard to letters, their sum may be abridged : but those cases

must not be confounded with such as these, 2 a a + 3 a, or

26^ — 6*, which admit of no abridgment.

221. Let us consider some more examples of reduction ; the

following will lead us immediately to an important truth. Sup-

pose it were required to add together the expressions a + 6 and

a— 6 ; our rule gives a + 6 + a— 6 ; now a + a = 2 a and

6— 6 = 0; the sum then is 2 a : consequently if we add together

the sum of two numbers (a +6) and their difference (a— 6,)

we obtain the double of the greater of those two numbers.

Further examples

:

3 a— 26—

c

5 6 — 6 c + a

4rt+S6-— 7c

a' — 2aa6 + 2a66
— aa6 + 2«66— 6^

a^ — 3aa6 + 4a66 — 6^.
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CHAPTER II.

Of the Subtraction of Compound Quantities,

£>22. If we wish merely to represent subtraction, we inclose

each expression within two parentheses, connecting, by the sign

—, the expression to be subtracted with that from which it is to

be taken.

When we subtract, for example, the expression d— e +/
from the expression a— 6 + c, we write the remainder thus :

and this method of representing it sufficiently shews, which of the

two expressions is to be subtracted from the other.

223. But if we wish to perform the subtraction, we must

observe, first, that when we subtract a positive quantity -f 6

from another quantity a, we obtain «•— b: and secondly, when

we. subtract a negative quantity — 6 from a, we obtai?» a + 6 j

because to free a person from a debt is the same as to give him

something.

224. Suppose, now, it were required to subtract the expres-

sion 6— d from the expression a— c, we fii-st take away &;

"which gives a— c— 6. Now this is taking too much away by

the quantity rf, since we had to subtract only 6— d: we must

tlierefoi-e restore the value of rf, and we shall then have

a— c— h -f-(i;

whence it is evident, that the terms of the expression to he subtract-

ed must hare their signs changed^ and be joined, ivith the contrary

signs, to the terms ofthe other expression.

225. It is easy, therefore, by means of this rule, to perform

subtraction, since we have only to write the expression from

which we are to subtract, such as it is, and join the other to it

without any change beside that of the signs. Thus, in the first

example, where it v.as required to subtract the expression

d— e +f from a— b -\-c, we obtain a— 6 + c— d-|-e—/.

An example in numbers will render this still more clear. If

we subtract 6 —2+4 from 9— 3+2, we evidcntlj^ obtain

9__3 + 2— 6+2— 4;
for9— G + SrrSj also,6—2+4 = 8; now 8— 8 = 0.
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226. Subtraction being therefore subject to no difficulty, we

have only to remark, that, if there are found in the remainder

two, or more terms which are entirely similar with regard to

the letters, that remainder may be reduced to an abridged form;

by the same rules which we have given in addition.

22r. Suppose we have to subtract from a -f fe, or from the sura

of two quantities, their difference a— 6, we shall then have

a-\-h— a + 6 ; now a— o = 0, and 6 -f 6 = 2 6 ; the remainder

sought is therefore 2 6, that is to say, the double of the less of

the two quantities.

228. The following examples will supply the place of further

illustration!?.

aa -^-ab + bb

6 6 -f a ft—. fl «

2, a a.

3a— 4b + 5c
2ft +4 c— 6ft

9 o— 6 6 4- c.

fl3— 5aab + 3abb—fts

eaab + QbK + 5^6.

CHAPTER III.

Of the Multiplication of Compound Quantities.

229. When it is only required to represent multiplication,

we put each of the expressions, that arc to be multiplied together,

within two parentheses, and join them to each other, sometimes

without any sign, and sometimes placing the sign x between

them. For example, to represent Ihe product of the two expres-

sions a— 6 + c and d — e -f/, when multiplied together> we
write.

(^a— b + c) X (rf— e+/.)
This method of expressing products is much used, because it

immediately shews tl»e factors of which they are composed.

230. But to shew how multiplication is to be actually per-

formed, we may remark, in the first place, that in order to

multiply, for example, a quantity, such as a— 6 +c, by 2, each

term of it is. separately multiplied by that number^ so that the

product is

a a— 2&-f.2f.
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Now the same thing takes place with regard to all other

numbei'S. If d were the number, by which it is required t»

multiply the same expression, we should obtain

a d—b d-i-cd.

231. We supposed rfto be aj)ositive number ', but if the factor

were a negative number, as — e, the rule heretofore given must

be applied ; namely, that two contrary sigriSf multiplied together,

produce—, and that two like signs give +,

We shall accordingly have

— ae + h e— ce.

232. To shew how a quantity, A, is to be multiplied by a

compound quantity, d— e ; let us first consider an example in

common numbei'S, supposing that J is to be multiplied by 7— 3,

Now it is evident, that we are here required to take the quad-

ruple of .3; for if we first take .5 seven times, it will then be

necessary to subtract 3 Jl from that product.

In general, therefore, if it be required to multiply by d— c,

we multiply the quantity A first by d and then by e, and subtract

this last product from the first ', whence results d A— e A.

Suppose now A = a— &, and that this is the quantity to be

multiplied by d— e ; we shall have

d A=i ad— bd

e A=zae — be

whence the product required = ad— bd— ae-^be.

233. Since we know therefore the product (a— b) x (d— e,}

and cannot doubt of its accuracy, we shall exhibit the same

example of multiplication under the following form

:

a —

6

d— e

ad— bd— ae -{-be.

This shews, that we must multiply each term of the upper ex-

pression by each term of the lower, and that, with regard to the

signs, we must strictly observe the rule before given ; a rule

which this would completely confirm, if it admitted of the least

doubt.

EuL Alg. 9
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234. It will be easy, according to this rule, to perform the

following example, which is, to multiply a-\-o hy a— h

:

a +6
a— 1)

aa-\-ah
— ah— hb

Product a a— hh.

235. Now we n)ay substitute, for a and h, any determinate

numbers J so that the above example will furnish the follov\ing

theorem; viz. Tiie prodtid of the sum of two numberSf multiplied

btf their differencCf is equal to the difference of the squares of those

numbers. This theorem may be expressed thus

:

(a + ft) X (fl— b)z=zaa— 6 6.

And from this, another theorem may be derived ', namely.

The difference oj two square numbers is ahvatjs a product^ and

divisible both by the sum and by the difference of the roots of those

two squares.

236. Let us now perform some other examples :

I.) 2 a— 3

a+ 2

2aa— 3ft

+ 4rt-

2 ft a + a

—

•G,

II.) 4 a ft— 6 « +

9

2ft +3

8ft3 — 12ftft + 18 ft

+ 12ftft— l8ft+2:

8 a3 +27
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III.) Saa— Qab— bh

2a— 4 b

6a^ — 4aab— 2 abb
— l2flo6 + 8a bb+4b^

6fl3 — i6aa6+6a6& + 4&3

rV.) aa + Slab-{-2bb

aa— 2a 6 -f 266

a* + 2a'6-f 2aa66
—2a^6—4 a abb— Aab^

-{-2aabb +4 ab^ +4i*

a* -i-Ab*.

y.) 2aa— Sab— 466
3 aa— 2a6 + 66

6a* — 9a36— 12oa66
— 40^6 + 6aa66+ Sab^

+ 2 a abb— 3a63 — 4 6*

6 a*— 13a3 6— 4afl66+ 5a63— 46*

VI.) aa + 66-f-cc— a6~ uc— 6c

a -f 6 + c

a^ -j-abb-^-acc— rta6— aa c— a6c
aab-\-b^ -f bcc— a66— abc— 66c

aac+66c + c^ — a b c— a cc—bcc

a^ — 3 a 6c + 62 + c^.

23r. TTTieii we have more than two quantities to muUiphf to-

gether, it will easily be understood that, ajter Iiaving multiplied

two of them together, we must then multiply tliat product by one

nf those which remain, and so on. It is indifferent w'hat order is

observed in these multiplications.
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Let it be proposed, for example, to find the value, or product,

of the four following factors, vix>.

I. II. III. IV.

(a-j-b) (a a -\- a b -{. b h) (a— b) (aa— ab-^hb).

We will first multiply the factors I. and II.

II. aa + ab •\.bb

I. a-f 6

a^ -\-aab-^abb

+ aab + abb + b^

I II. a3 ^£aa6 + 2a66 + 6*.

Next let us multiply the factors III. and IT.

IV. a a— a b -{-bb

III. a— b

a^ — aab-{-abb

— aab-\-abb— 6^

III. IV. a3 — 2 a a 6 + 2 a 6 &— b^.

It remains now to multiply the first product I. II. by thifb

second product III. IV. :

a' +2aa6 + 2fl66 -f 6^ I. II.

a^ —2aab + 2abb— b^ III. IV.

a« +2 a* 6+2a* 6&+ a^ b^

— 2 ft* b— 4a*bb— 4a* 6* — Qaub*
2a'*66 + 4fl3 63 ^.4aa6* + 2a6«

— a^b^ — Qaab* — 2a6« — 6«

a« — 6«.

And this is the product required.

238. Let us resume the same example, but change the order

of it, first multiplying the factors I. and III. and then II. and

IV. together.

I. a -f &

in. a— b

aa -j-ab

— ab— 66

I. III. =aa— 6 6.
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11. aa -^ ab -^bb

IV. a a— ab-^bb

a* +a^ b -\- a abb
— o* b— a abb— ab^

aabb -{.ab^ -^b*,

lLlV.=a* ^aabb + b*.

Then multiplying the two products I. III. and II. IV.

II. IV. = a* + a a 6 6 + i*

I. III. = a a— b b

fl* + «* 66 + aa6*
— a* 6 — aab* — b^

we have a' — 6«,

which is the product required.

2S9. We shall perform this calculation in a still different

manner, first multiplying the I", factor by the IV***. and next
tliell'J.by thelll'J.

IV. a a— ab -\-bb

I. a -\-b

a3 — aab -^ abb
abb— a 664-6^

I. IV. = a= +6^

II. rt a -f a 6 -f 6 6

III. a— b

a^ + aab -j. abb
y — aab— a66— b^

II. III. =03— 6».

It remains to multiply the product I. IV. and II. III.

I. IV. =fl3 +6S

II. III. =a'_63

and we still obtain a^ — i«, as before.
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240. It will be proper to illustrate this example by a numeri-

cal application. Let us make a = 3 and & := 2, we shall have

c -}- & = 5 and a— 6 = 1 j further, rta = 9, ah = &i bb= 4.

Therefore aa + ab •\-bb= 19, and a a— ab -\-bb=7. So that

the product required is that of 5 x 19 X 1 X 7, which is 665.

Now a^ =729, and 6^ = G4, consequently the product re-

«|uired is a^ — 6^ = 665, as we have already seen.

CHAPTER IV.

Of tJie Divison of Compound ([uantUies,

141. Whest we wish simply to represent division, we make

use of the usual mark of fractions, which is, to write the de-

nominator under the numerator, separating them by a line ; or

to inclose each quantity between a parenthesis, placing two points

between the divisor and dividend. If it were required, for

example to divide a -f 6 by c -f- d, we should represent the quo-

tient thus ,, according to the former method: and thus,
c + «

(a -f- 6) : (c -f- d) according to the latter. Each expression is

read a-\-b divided by c -f d.

242. When it is required to divide a compound quantity by a

simple one, xve divide each term separately. For example ;

Q a— 86-1-4 c, divided by 2, gives 3 a— 4 6-f- 2 c

;

and {a a— 2 a 6) : (a) = a—-Qb.

In the snmc manner

(o^ — Z a a b -{- S a ah) : (a) z=: a a — Qab + 5ab;

(4aa6— 6aflC + 8a6c):(2a) = 2a6— 3flc-f-46c;

(gaabc— 12 a & & c + 15 a 6 c c) : (3 a & c) = 3 a— 4 6 +5 c, kc.

243. If it should happen that a term of tiie dividend is not

divisible by the divisor, the quotent is represented by a fraction,

as in the division of a -j- 6 by a, which gives 1 ~f-— . Likewise,

(a a— ab-\-hh) : (a o) = 1 +— *
^ a aa

For the same reason, if we divide 2 a -{- 6 by 2, we obtain

a ^ —
; and here it may be remarked, tliat we may w rite — b,
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instead of —, because — times 6 is equal to — . In the same
2 2 2

h 1 2& 2
manner — is the same as - 6, and — the same as — h, in-C.

S S3 3

244. But when the divisor is itself a compound quantity,

division becomes more difficult. Sometimes it occurs where we

least expect it ; but when it cannot be performed, we must con-

tent ourselves with representing the quotient by a fraction, in

the manner that we have already described. Let us begin by

considering some cases, in which actual division succeeds.

245. Suppose it were required to divide the dividend ac— he

by tbe divisor a— h^the quotient must then he such as, u-hen

multiplied by the divisor a— b, will produce the dividend a c— be.

Now it is evident, that this quotient must include c, since with-

out it we could not obtain ac. In order, therefore, to try

whether c is the whole quotient, we have only to multiply it by

the divisor, and see if that multiplication produces the whole

dividend, or only part of it. In the present case, if we multiply

c— 6 by c, we have ac— & c, which is exactly the dividend ;

so that c is the whole quotient. It is no less evident, that

(a a + ahy. (a -^h) z=: a ; (3 o a— 2 a 6) : (3 a— 2 6) = a

;

(6 a a— 9 rt 6) : (2 fl— 3 6) = 3 «, &c.

246. JFe cannot failf in this way, tofind a part of the quotient

:

if, therefore, what we Iiave found, when multiplied by the divisor^

does not yet exhaust the dividend, we have only to divide the

remainder again by the divisor, in order to obtain a second part of

the quotient ; and to continue the same method, until we havefound

the wlwle quotient.

Let us, as an example, divide oa-f3a6-f-26&by« + 6;itis

evident, in the first place, tliat tRe quotient will include the term

«, since otherwise we should not obtain a a. Now, from the

multiplication of the divisor a -f- & by a, arises a a -f a 6 ; whlcii

quantity being subtracted from the dividend, leaves a remainder

2 a 6 -f- 2 & 6. This remainder must also be divided by a +b; and

it is evident that the quotient of this division must contain the

term 2 6. Now 2 b, multiplied by a + 6, produces exactly 2 a 6 -f

2 6^; consequently a -f 2 6 is the quotient required j which, mul-
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tiplied by the divisor a + 6, ought to produce the dividend

aa+3ai + 26 6. See the whole operation :

a + 6)aa + 3a6+£66(a+ 26
aa + ah

Zab-j-Qhb

Qab+ Zhb

0.

247. This operation -wiU be Jaciliiaied if xve choose one of the

terms of the divisor to be written first, and then, in arranging the

terms of the dividend, begin with the highest powers of thatfirst

term of the divisor. This term in tlie preceding example was a 5

the following examples will render the operation more clear,

a— b)a^-^^aah-{'Qabh— 6» (ao— 2a6 + i6

2aa 6 4- Sa66
2 a ai -{- 2 a 6 6

abb-^b^
abb^b^

0.

a +6) a a— bb{a— b

aa -\- ab

— ab—bb
^ab—.bb

0."

/

3 a— 2 6) 18a a— 8 66(6 a + 46
18ao-- 12a6

12 ab— Sbb
12a6— 866

0.
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7S

o-f.6) a* +63 (ao— 06 + 66

— aah +6'
— aah— a66

abb + b*

a66+6»

0.

£0— b) Ha* —b^ (4aa + 2a6 + 66

S(i3 — 4 a ab

4 aa 6-— 6»

4 aa 6 — 2a &6

2a bb--63

2a 66--63

0.

aa— 2a 6 +66) a* — 40*6 + 60066— 4o6'+6*
aa— 206 +66) a* — Za^b + aabb

^—9.a*b-\.5aabb— 4a 6*

— 2a»6 + 4afl66— 2 a 6'

aabb— 2 06^+6*
aa66— 206^ ^6*

0.

aa— 206+46 6) a* +4aa66+ l6 6*(aa + 2a6 + 466
a*— 2 a' 6 + 4 aa66

2 a* 6 + 16 6*

2 a* 6 — 4 0066 + 806'

4fla66— 8a6» + i66*

40066— 8a63 +166*

0.

EvX^ Alg. 10



74 Algebra. Sect.£.

aa— 2a6 + 26 6)«* +4 6* (aa + 2o6 + 266

2a3 6— 2aa664.46'*

2rt3 6— 4 aa 66 +4 o6»

Slaabh—Aah^ -{-Ah*

Qaahb—4a6» +46*

0.

1— 3X+5XX— a-3) 1

—

Qx-{-xx

—'3 X + 9 XX— 10 x'

— 3a; + 6a?a7— 3x^

Sxx— 7 x^ +5 X*

3x

X

— 6a;' -j-S x*

— x^ +9.X* — X'

— x^ +9.X* —x'

0.

CHAPTER V.

Of the Resolution of Fractions into infinite series.

248. When the dividend is not divisible by the divisor, the

quotient is expressed, as we have already observed, by a IVac-

tion.

Thus, if we have to divide 1 by 1 — a, we obtain the fraction

1 . This, however, does not i)revent us from attempting the
1 — a

division, according to the rules that have been given, and con-

tinuing it as far as we please. We shall not fail to find the true

quotient, though under different forms.
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249. To prove this, let us actually divide the dividend 1 by
the divisor 1— a, thus

:

1— fl) i(i+_^^j or, i~a)l(l+fl + j^^
1— a 1 — a

remaiuder a "o
'

a— aa

remainder a a

To find a greater number of 'forms, we have only to continue

dividing a a by 1 — a;

1— a) a a (a a 4-
^

, then 1— a) a^ (a^ -i
^ ^ 1— a ' ^ ' 1 —a
a a— a 3 nS n*

a
and again 1— a) a* (a* + ^__^

a*, &c.

250. This shews that the fraction may be exhibited un-

dcr all the following forms :

III.)l+a + ««+Y^' IV.)l+a + afl + «'+j^;
fl«

V.) l-{'a-^aa+a^+a*+ , &c.
I —a

Now, by considering the first of these expressions, which is

1 -I , and remembering that 1 is the same as , we
1

—

a 1

—

a
'

have

a 1 — a a 1 — a •}- a 1
1 +

1

—

a 1— fl^l

—

a 1

—

a 1

—

a*

If we follow the same process with regard to the second

expression 1 + a + -r-^^f that is to say, if we reduce the in-
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tegral part 1 + a to the same denominator 1 — a, we shall have

1 — aa ,...n 1,. «« 1111 1— aa-\-aa— , to which if we add + :; , we shall have ; '

,
1 — a 1 — a 1—

a

that is to say,
•^

1 —a
In the third expression, I +a-\-aa-\ , the integers

reduced to the denominator 1 — a make : and if we
1 — a

add to that the fraction :; , we have : wherefore all
1 — a I—

a

these expressions are equal in value to , the proposed

fraction.

251. This being <he case, we may continue the series as far

as we please, without being under the necessity of performing

any more calculations. We shall therefore have

1 a^

1 — a ' 1 — a

or we might continue this further, and still go on without end.

For this reason, it may be said, that the proposed fraction has

been resolved into an infinite series, which is

to infinity. And there are sufficient grounds to maintain, that the

value of this infiiiitc series is the same as that of the fraction

1

1 — fl*

252. "What we have said may, at first, appear surprising;

but the consideration of some particular cases will make it easily

nnderstood.

Let us suppose, in the first place, a = 1 j our series will

become l-fl + l + l + i + l+l, &c. The fraction —-—,

to which it must be equal, becomes -r. Now, we before remark-

ed, that — is a number infinitely great ; which is, therefore,

here confirmed in a satisfactory manner.
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But if we suppose a = 2, our series becomes = 1+2 +4+8

+ 16 + S2 + 64, &c. to infinity, and its value must be ,-^^^>

that is to say, =— 1 5 w hich at first sight will appear ab-

surd. But it must be remarked, that if we wish to stop at any

terra of the above series, we cannot do so without joining the

fi'action which remains. Suppose, for example, we were to stop

at 64, after having written 1+2+4 + 8 + 16 + 32 + 64, we
128 1 '^ 8

must join the fraction , or —^, or — 128 ; we shall

therefore have 127— 128, that is in fact — 1.

"Were we to continue the series without intermission, the frac-

tion i!ideed would be no longer considered, but then the series

would still go on.

£53. These are the considerations which are necessary, when

we assume for a numbers greater than unity. But if we suppose

a less than 1, the whole becomes more intelligible.

For example, let a = i
; we shall have

1 1 1= -^ = 2,

which will be equal to the following series :

I +1+^ + 4 +^V +7V +tV +t1t' &c. to infinity.

Now, if we take only two terras of this series, we hav^ 1 + 1>

and it wants |, that it may be equal to = 2. If we take

three terms, it wants l ; for the sum is 1|. K we take four

terms we have 1|, and the deficiency is only |. "W'e see, there-

fore, that the more terms we take, the less the difference becomes,

and that, consequently, if we continue on to infinity, there will

be no difference at all between the sum of the series and 2,

the value of the fraction ,
1 —a

254. Let a = ^ ; our fraction will be = = | = 1|,

which, reduced to an infinite series, becomes

and to which is consequently equal.
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When we take two terms, we have 1^, and tliere wants |. If

we take three terms, we have .*, and there will still be wantiig

-r\. Take four terms, we shall have \1^, atid the difference is

s\. Since the error, therefore, always becomes three times
less, it must evidently vanish at last.

255. Suppose a = | ; we shall have = = 3, and

the series 1 +| + | + -"^ + i« 4._33^, &c. to infinity. Taking
first if, the error is 1| ; taking three terms, which make ^i,

the error is | j taking four terms we have Q^^, and the error
1 6
2T'IS

256. If a = 1, the fraction is ——^ = — = 1| ; and the se-

ries becomes l + i + ^\. + ^i_ + ^
i
g., &c. The two first terms

making 1 +^, will give -^^ for the error ; and taking one term

more, we have 1^*^, that is to say, only an error of ^\^.

257. In the same manner, we may resolve the fraction ,
1 -j-a

into an infinite series by actually dividing the numerator 1 by
the denominator 1 +a, as follows :

1+a) 1 (\ — a + aa— a^ +a*
1 +a

— a

— a.— aa

aa
aa -)- 03

— fl*

— a3,— a*

a*

a* + aO

— a*, &c.

Whence it follows, that the fraction ——- is equal to the series,

1— a + aa—^a^ i-a^^-^a^ + a« — c^ &c.
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258. If we make a = 1, we have this remarkable comparison :

—I— = ^ = 1 — 1 + 1 — 1 + I— 1 + 1 — 1, &c. to infinity.
1 + o '

This will appear rather contradictory ; for if we stop at —1,

the series J5i\es ; and if we finish by + 1, it gives 1. But this

is precisely what solves the difficulty ; for since we must go on

to infinity without sti>pping either at — 1, or at + 1, it is evi-

dent that ihe sum can neither be nor 1, but that this result

must lie between these two, and therefore be — |.

259. Let us now make a = |. and our fraction will be

= |, which must therefore express the value of the series

1 — 1 + 1 — I +^V — T2 + A' &c. to infinity.

If we take only tlie two leading terms of this series, v\e have |,

which is too small by ^. If we take three terms, we have |,

which is too much by -j^. If we take four terms, we have |
which is too small by Jj, &c.

260. Suppose again a = | ; our fraction will be = - = |,

and to this the series 1 — -j + i — aV + "s t— 3X7 + tIt' *^c,

continued to infinity, must be equal. Now, by considering only

tvNo terms, we have |. which is too small by -j?^ Three terms

make ^, which is too much by ^^. Four terms make |^, which

is tuo small by -j^^^, and so on.

261. The fraction may also be resolved into an infinite

series another way ; namely; by dividing 1 by a + 1, as follows

:
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a

J.

a

a aa

I

aa

1 1— -I

a'

I

i 1.
a* '"o*

;, &C,

Consequently, our fraction , is equal to the infinite

series \- -r— -i + ^—' ;:^> &c. Let us make c = 1,

and we shall have the series

/— 1 + 1 —- 1 + 1— 1, &c, = |) as hefore.

And if we suppose a = 2, we shall have the series

262. In the same manner, by resolving the general fraction

r into an infinite series, we shall have,
a -jr
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c b c bbc b^ c
a+b) c ( + —

z

-^

c +

a a a

be

bj

a

be bbc

a a a

bbc
a a

bbc 5'c

aa + &3

6' c
^

a*

fc3 C 6*c

flS a*

6*c

Whence it appears, that we may compare with the series

c 6c fc6c i'c, i-n •/_
1 ; -, etc. to infinity.

(/, aa a^ a*

Let a=2, &=4,c=S, and we shall have

Let a = 10, & = 1 , and c = 1 1 , and we have

c 1

1

If we ronsider oidy one term of this series, we have |^, which

is too much by -j^ ; if ^ve take two terms, we have -\%, wltich

is too small by ^^^ ; if we take three terms, we have y§§y,
which is too mu( h by ^oVo' ^^'

263. When there are mure than two terms in the divisor, we
may also continue the division to infinity in the same manner.

Thus, if the fraction were proposed, the infinite
1 — .( + « a "^ '^

series, to which it is equal, would be found as follows :

Eld, Mg. 11
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1 — a +oa

a— aa
a— aa -f a'

— a^ -\- a* — a*

— a* +a«

a« — a'' +a'

a'^ — a^ + o

— a"

We have thei'efore the equation of

^- = 1 + a— a^^a* +a^ +0"^ —a^— a^ ", &c.1— a + aa ^ ^

Here, if we make a = 1, we have

1 = 1 + 1 — 1 — 1 + 1 + 1 — 1 — 1+1+ I, &c.

which series contains twice the series found above

1 -_ 1 + 1— 1 + 1, &c.

Now,as we have found this=|,it is not astonishing thatwe should

find |, or 1, for the value of that which we have just determined.

Make a = |> and we shall then have the equation

IT

Suppose a = ^, we shall have the equation

_£ 9 1 _i_ 1 1 __ 1 J_ 1 Urn

9

If we take the four leading terms of this series, we have yij*,

which is only
-yl^y,

less than |.

Suppose again a = |, we shall have

_i 9 1 _I_ 2 __ 8 ___ 1 6 I 6 4 iff, ^

This series must therefore be equal to the preceding one j and

aubtractieg one from the other, ^ — /y— if + %%> ^^^^ ^^ = ^•

These four terms added together make — /y.
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264. The method, which we have explained, serves to resolve,

generally, all fractions into infinite series ; and, therefore, it is

often found to be of the greatest utility. Further, it is remark-

able, that an infinite series, though it never ceases, may have a de-

terminate value. It may be added, that from this branch of

mathematics inventions of the utmost importance have been de-

rived, on ^\hich account the subject deserves to be studied with

the greatest attention.

CHAPTER VI.

Of the Squares of Compound ^antities^

265. When it is required to find the square of a compound

quantity, we have only to multiply it by itself, and the product

will be the square required.

For example, the square of a +6 is found in the following

manner

:

a -f 6

a 4- 6

aa-j-ab

ab + bh

aa -j-2ab -{-bb.

266. So that, 7vhen the root consists of two terms added together,

asa-f6, the square comprehends, 1st, the square of each term,

namely, a a and bb ; 2dly, txvice the product of the two terms, name-

ly, 2ab. So that the sum a a + 2 ab -\-b b is the square of a +6,
Let, for example, a = 10 and 6 = 3, that is to say, let it be requir-

ed to find the square of 13, we shall have 100 -{-60 -f 9,t)r 169.

267. We may easily find, by means of this formula, the

squares of numbers, however great, if we divide them into two

parts. To find, for example, the square of 57, we consider that

this number is = 50 -f- 7 ; whence we conclude that its square is

= 2500 -f- 700 -f 49 = 3249.

268. Hence it is evident, that the square of n -f. l will be

0+2 a -f 1 : now since the square of a is a a, we find the square
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a + 1 by adding to that 2 a + 1 j and if must be observed, that

this 2 a -(- 1 is the sum of the two rof>ts a and a -f 1.

Thus, as the square of 10 is 100, that of 1 1 will be 100 -f 21.

The square of 57 bein.£; 3249, that of 58 is 3249 + 115 = 3364,

The square of 59 = 3364 -f 1 17 = 3481 ; the square of

60 = 3481 +119 = 3600, &c.

269. The square of a compound quantity, as a -f &, is repre^

sented iti this manner: («+6)*. We have then

(fi+by = « « 4 2 a * + 6 6,

whence we deduce the following equations :

(a 4-1)2 =aa + 2a + t; (a + 2)*=art-f4rt+4;
(a + 3)2 = « tt + 6 a + 9 ; (a + 4)^ = a a + 8 a + 1 6 ; &c.

270. If the roof is a— b, the square of it is a a— 2 a b + b b,

which contains also the squares of the two ttrms, but in svch a

manner that we must takefrom their svm twice the product of those

two terms.

Let, for example, a = 10 and 6=— 1, the square of 9 will be

found = i 00— 20 -f 1 = 81.

271. Since we have the equation (a—bY= aa— Saft + ftfo, we

shall have (a— l)«=aa— 2a + l. The square ofa— I isfound

,

therefore, by subtracting from a a the sum of the two roots a and

a— \, namehjt Qa— 1. Let, for example, a = 50, we have

aa = 2500, and a— 1 = 49 : then 49=* = 2500— 99 = 2401.

272. What we have said may be also confirmed and illustrated

by fractions. For if we take as the root | +| (which make l)

the squares will be :

Further, the square ot i —
-| (or of D v\ill be

1 111— 1

273. When the root consists of a greater number of terms,

the method of determinijig the square is the same. Let us find,

for example, the square ofa -f b + c.

fl -f-6 + c

«a-fa6 + rtc -f 6c

a64-rtc4-66 + 6c-f.cc

tta-f2a6 + 2ac + 66-f26c + cc.
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We see that it includes^ JirsU the square of each term of the root,

and beside that, the double products of those terms multiplied txco by

two.

274. To illustrate this by an example, let us divide the num-

ber 256 into three parts, 200 4. 50 + 6 ; its square will then be

composed of the following parts :

40000 256

2500 256

36
20000 15,-G

2400
'

1280

600 512

65536 65536

which is evidently equal to the product of 256 x 256.

275. When some terms of the root are negative, the square is

stillfound by the same nde ; but we must take care what signs we

prefix to the double products. Thus, the squai-e of a — 6— c be-

ing flrt-f-66-f-cc— 2fl6

—

2ac-f26c. if we represeiit the

number 256 by 300— 40— 4, we shall have,

Positive Parts. Negative Parts.

V V

+ 90000 — 24000

1600 — 2400

320

16 — 26400

+ 91936

— 26400

655S6f the square of 256, as before.
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CHAPTER VII.

Of the Extraction of Roots applied to Compound Quantities.

276. Isr order to give a certain rule for this operation, wc
must consider attentively the square of the root fl + 6, which is

aa-^2ab -\-hbf that we may reciprocally find the root of a

given 8<]uare.

277. We must consider therefore, first, that as the square

a a -i- Q ah -{-bb is composed of several terms, it is certain that the

root also will comprise more than one term ; and that if we
write the square, in such a manner that the powers of one of the

letters, as a, may go on continually diminishing, the first term

will he tl»e square of the first term of the root. And since, in

the present case, the first term of the square is a a, it is certain

that the first term of the root is a.

278. Having, therefore, found the first term of the root, that

is to say a, we must consider the rest of the square, namely,

2 a 6 -f 6 6, to see if we can derive from it the second part of the

root, which is b. Now this remainder Qab -\-bb may be repre-

sented by the product, (2 a + 6) 6. Wherefore the remainder

having two factors, 2 « + 6 and fc, it is evident that we shall find

the latter, 6, which is the second part of the root, by dividing

the remainder 2a6-f66hy2a + 6.

279. So that the quotient, arising from the division of the

above remainder by 2 « + 6, is the second term of the root re-

quired. Now, in this division we observe, that 2 a is the double

of the first term a, which is already determined. So that

although the second term is yet unknown, and it is necessary,

for the present, to leave its place empty, we may nevertheless

attempt the division, since in it we attend only to the first term

2 a. But as soon as the quotient is found, which is here 6, we

must put it in the empty place, and thus render the division

complete.

280. The calculation, therefore, by- which wc find the root of

the square aa + 2a& + 6 6, may be represented thus :

I
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aa

2a + 6)2a6 + 6&

2m6+66

0.

281. We may, in the same manner, find the square root of

other compound quantities, provided they are squares, as the

following examples will shew.

ao + 6a6+966(a + 36

aa

2a + 3&)6a6+96 6

6ab + 9bh

0.

4ao— 4a 6 + 6 6(2 a— 6

4 aa

4a— 6) — 4a6 + 66
— 4ab+bb

0.

9pp+ 24 pq-^ 16 qq (^3 p-{-4q

9pp

6 p +4q) 24 pq-j. 16 qq
24p q-\. 16 qq

0.

25 XX— 60 a; + 36 (5 a:— 6

25 XX

10 a? — 6)— 60 X + 56

— 60 a: + 36

0.
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282. When there is a remainder after the division, it is a

proof tlmt tlie root is composed of more than two terms. We
then consider the two terms already found as formin.e; the first

part, and endeavour to derive the other from the remainder, in

the same manner as \^ e found the second term of the root. The
following examples will render this operation more clear.

aa + -2ab— 2ac— 26c + 66-f.cc(a-f.6— c

a a

2a-f6) 2ab — "Zac— '2,bc -f-bb -^cc

2 (lb +bb

2C + 26— c)— Qac— 2h c-j-cc

— 2ac— 26 c + cc

0.

fl* + 2a' + 3aa + 2a + l(aa + a + l

a*

Zaa-^d) 2rt3 + sca
2 a^ + a a

2aa+2a+l)2aa + 2a + l

2aa+2a + l

0.

fl4— 4a^ b-\-Sab^ -\-4b* (aa— 2a6— 266

2aa— 2a6)— 4a3 6-f-8a63 +4 6*

— 4 ft3 I) ^4(1 a b b

Qaa—4«6— 2 6 6) — 4rta66 + 8a6*+4 6'*

— 4arx66 + 8a6' +4 6*

0.
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a*^6a*h-\-l5a*bb—Q0aH* + I5aa6*— 6n6*+ 6«

a« (a*

—

Saab-{.Sabb— b^

2a»

—

Saab)— 6 a* 6 -f 15 a* 6 6

— 6o' 6+ 9 ft* 6 6

3a3—6aa6 + 3a66)6a*6 6— 20 a^ b^ + 15aa6*
6a* 66 — i8a' 6' + 9 a a 6*

2a3_6aa6 + 6a66--63) — 2a» o» -f 6aa6*— baft' -f 6«

— 2a« 63 -f 6aa6*—.6a6« +6«

0.

283. We easily deduce from the rule which we have explain-

ed, the method which is taught in books of arithmetic for the

extraction of the square root. Some examples in uuuibei-s :

529
4

(2S 1764
16

(42 2304 (48
16

43) 129

129
82) 164

164
88) 704

704

0. 0. 0.

•

4096
36

(64

• •

9604 (98
81

124) 496
496

188) 1504

1504

0. 0.

15625
1

(125

• • •

998001 (999
81

22) 56

44
189) 1880

1701

245) 1225
1225

1989) 17901

17901

Evl. Alg,

0.
r

12

0.
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£84. But when there is a remainder after the whole operation,

it is a proof thsit the number proposed is not a square, and con-

sequently that its root cannot be assigned. In such cases, the

radical sign, which we before employed, is made use of. It is

written before the quantity, and the quantity itself is placed

between parentheses, or under a line. Thus, tlie square root of

a a + 6 6 is represented by vCa a+b 6), or by s/'tT^+bT-, and \/{i—xx),

or \/r—xx, expresses the square root of 1 — x x. Instead of

this radical sign, we may use the fractional exponent i, and

represent the square root of a a -f i 6, for instance, by (o o + 6 &)^,

X
or by atn+bb'] 2.

CHAPTER VIII.

Of the calculation of Irrational (luantities.

285. When it is required to add together two or more irra-

tional quantities, this is done, according to the method before

laid down, by writing all the terms in succession, each with its

proper sign. And with regard to abbreviation, we must remark

that instead of \/^ + ^^ for example, we write 2 v/a7 and that

Va~ — Va^ = 0> because these two terms destroy one another.

Thus, the quantities 3 -f-
^2" and 1 + v/2^ added together, make

4 + 2 s/T or 4 + vsl the sum of 5 + v'3~and 4 — V3" is 9 ;

and that of 2 v/s" + 3 v/s" and y/J— \/2 is 3 v^s" + 2 v/i7

286. Subtraction also is very easy, since we have only to add

the proposed numbers, changing first their signs : the following

example will shew this : let us subtract the lower number from

the upper.

4 — v^2' + 2 %/r— 3 v/5"+ 4 y/6~

1+2 V2~— 2 VS"— 5 vr + 6 v/6~

S— 3V2 +4v/3 +2^5—2^6"
287. In multiplication wo must recollect that va" multiplied

hy Va produces a ; and that 1/ the mimhers winchfollow the sign

^ are differentf as a and b, we have viTb for the product of Va"
midiiplied hy vbT After this it will be easy to perform the fol-

lowing examples

:
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1+^2" 4 + 2v/^

1+V2 2— V2

l+V/2 8+4^/2^

+V2'+« — 4^2

l+2v'r + 2 = 3 + 2V2' 8— 4=4

288. What we have said applies also to imaginary quantities ;

we shall only observe further, that ^/ZT multiplied by v-a pro-

duces— a.

If it were required to find the cube of — 1 +v^— 3, we

should take the square of that number, and then multiply that

square by tlie same number : see the operation :

— 1+\/-3

1—V^^
—v^T— s

1—Sy'—S — 3 =— 2— Q\/—3
— 1 + V^^3"

2+2V—

3

_2v/=T + 6

2 + 6 = 8.

289. In the division of surds, we have only to express the pro-

posed quantities in the form of afraction; this may be then chang-

ed into another exjiression having a rational denominator. For if

the denominator be a + v/a7 for example, and we multiply both

it and the numerator by a— vaT ^^^ new denominator will be

a a — 6, in which there is no radical sign. Let it be proposed

to divide 3+2 v/2~ by 1 + ^2^ we shall first have
"^

_ •

Multiplying now the two terms of the fraction by I — ^Yt wc
shall have for the numerator :
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3 + 2v'F
1— V2-

S -f- 2 v2" .

•

— 3v'2"—

4

3— ^2"— 4 =— V 2"~ 1 J

and for the denominator

:

1 +V2"
1 — V2~

1+V2"
•—V'2 —2

1 _. 2 = —. 1

Our new fraction therefore is -III^^^-

—

-^I^— ; and if we again

multiply the two terms hy — 1, we shall have for the numerator

V2~ + 1» SinJ lo'* the denominator + 1. Now it is easy to shew

that V2^ + 1 is ertuHl to the proposed fraction——^—-= ; for
1 + v'2

Vz" + 1 being muliiplird by the divisor 1 + ^2^ thus,

1 + V2"
1 + vr

1 + v'2

+ V'2" + 2

we have l+2v2 +2=3 + 2 V2.
Another example: 8— 5 v'^' divided by 3 — 2 v'^' makes

8— 5 \/~r
'—-=, ^lultiplying the two terms of this fraction by

3— i V2
3 + 2 y/T, we have for the numerator,

8— 5 v^a"

3 + 2 V2"

24— 15v/2"

+ 16v/r— 20

24 + v'a"— 20 = 4 + vil
and for the denominator,
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9— 6v^2"

+ 6 vT— 8

9— 8 = + I.

Consequenllj the quotient will be 4 + v'27 The truth of this

may be proved in the t'oWow ii>g manner :

4 + V2"
5— 2 V 2"

12+ 3v2
— 8 V2" — 4

1 2— 5 v/a" — 4 = 8 — 5 v'T"

290. In the same manner, we may transform such fractions

into oth^s, that have rational denominators. If we have, tor

example, the fraction ——^, and multiply its numerator and— 2 ^6
denominator by 5 + 2 veT we transform it into this

5 + C v/6"

1

= 5+2 V6.

In like manner, the fraction—;

—

-—= assumes this form,

2 + 2 y/ZT _ 1 + ^3T
— 4 —2

And ^ ^ ^
becomes =—^ ^-^^ =11+2 V30.V 6 "^ v 5 1

291. Trhen the denominator contains several fermSf we may in

the same manner make the radical signs in it vanish one by one.

1
*

Let the fraction —r= -= -= be proposed ; we first mul-

tiply these terms by viO + VT + V37 and obtain the fraction

: j ——'—. Then multiplying its numerator and denom-
O— -2. y/^5

inator by 5 + 2 vej we have 5 vio -f H ^/¥+ 9 va" + 2 v'eo-
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CHAPTER IX.

Of Cubes, and the Extradion of Cube Roots,

292. To find the cube of a root a + b, we only multiply its

srquare aa-\-Qab + b b again by a + &, thus,

aa + ^ab -\-b b

fl + ft

o' -f 2fla b + ab b

aab-^2abb + b^

and the cube will be =a*+3aa6-fSa6&-f6^.
It containsf tlrerefore, the cubes of the two parts of the root, and

beside that, 5aab-{-3 abb, & quantity equal to (5 a 6) x (fl + 6) ;

that is, the triple product of the two parts, a and h, multiplied by

tfteir sum.

293. So that whenever a root is composed of two terms, it is

easy to find its cube by this rule. For example, the number

5 = 3+2; its cube is therefore 27 + 8 -f 18 x 5 = 125.

Let 7 -|- 3 = 10 be the root ; the cube will be

343 + 27 4- 63 X 10 = 1000.

To find the cube of 36, let us suppose the root 36 = 30 + 6,

and we have for the power required,

27000 + 216 + 540 X 36 = 46656.

294. But if, on the other hand, the cube be given, namely,

a^ + Saab-^-Sabb + b^, and it be required to find its root, we

must premise the following remarks

:

First, when the cube is arranged according to the powers of

one letter, we easily know by the first term a^, the first term a

of the root, since the cube of it is a^ ; if, therefore, we subtract

that cube from the cube proposed, we obtjiin the remainder,

3 aab + 5abb -j-b^, which must furnish the second term of the

root^

295. But as we already know that the second term is -f b,

we have principally to discover how it may be derived from the

above remainder. Now that remainder may be expressed by

two factors, as (3 a a + 3 o 6 + & &} x (&) ; if? therefore, we divide
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by Saa + Sab + hhf-WQ obtain the second part of the root + b,

which is required.

296. But as this second term is supposed to be unknown, the

divisor also is unknown ; nevertheless we have the first term of

that divisor, which is sufficient ; for it is 3 a a, that is, thrice the

square of the first term already found ; and by means of this, it

is not difficult to find also the other part, 6, and then to complete

the divisor before we perform the division. For this purpose,

it will be necessary to join to 3 a a thrice the product of the two

terms, or 3 a 6, and b b, or the square of the second term of the root.

297. Let us apply what we have said to two examples of other

given cubes.

I. a' +12 a a -f 48 a -f- 64 (a + 4

3aa + 12 a + 16) 12 a a + 48 a + 64

12fla+48a + 64

0.

H. a« — 6 a* + 15o*— 20a* + 15a2 6a + 1

o^ (ao-^2a + l

3 a*— 6a' + 4aa) —-6a* + loo*— 20 a»

— 6a5 + 12 a*— 8a»

3a*—.12o3+ 12afl+Sa»—.6a + l)3a*— I2a3 + I5aa—.6a + l

3 a*— 12a' + loaa— 6o + 1

0.

298. The analysis which we have given is the foundation of
the common rule for the extraction of the cube root in numbers.
An example of the operation in the number 2197

:

2197 (10 + 3 = 13
1000

500 1197

90

9

399 1197

0.
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Let us also extract the cube root of 34965783

Sect. 2.

34965783 (300+20 + 7
27000O00

270000
18000
400

7965783

*

288400 576S000

307200
6720
49

2197785

313969 2197783

0.

CHAPTER X.

Of the higher Powers of Compound Quantities,

299. After squares and cubes come higher powers, or

powers of greater number of degrees. They are represented

by exponents in the manner which we before explained : we
have only to remember, when the root is compound, to inclose

it in a parenthesis. Thus (a + 6)* means that a + 6 is raised

to the fifth degree, and (a— 6)« represents the sixth power of

a— b. We shall in this chapter explain the nature of these

powers.

300. Let a + 6 be the root, or the first power, and the higher

powers will be found by multiplication in the following manner

:
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(a + 6)» = a 4- 6

a +b

a* +ab
-{•ab 4- bb

Ca+6)» =za^ -\-Qab + bb

a +b

a^ + 2aab + abb

+ aab + 2abb + b^

(a+by=: a^ + Saab + Sabb + b^

a +b

a* + Sa^b + oaabb + ab^

ia+by_== a* + Aa^b + 6aab6 + 4a6» + 6*

« +6

iai-by -.

(a+6)« = a« + 6a*6 + \5a*bb + aOa^fea + loaai* + 6a6* + 6«

SOI, The powers of the root a — 6 are fouirl in the same

manner, and \ve shall immediately perceive that they do not

differ from the preceding, excepting that the 2d, 4th, 6th, &c.

terms are affected by the sign minus ;

Eul. Alg. 13
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(a—by=a—b
a— b

aa— h

— ah-\-hh

(a—by=za^ — 'iab + bb

a — b

a^ — 'z.aab-\-abb

— aab + Qabb— b^

(a —by= a^— 3auo + Subb— b^

a —

6

a*— Sa^b -j- Saubb— ab^

— a^b-^5aabb— Sab^ -^b*

(u—.by=za* — 4a^b-i-6aabb— 4ab^ +6*
a — 6

a« —4a*b-^6a^bb'—4aab^ -fat*

— a'^b + 4aHb— &aab^-\-Aab'^~b^

(a—6)6= a« — 5a*6 + I0a3ft6_ ii)aab^ + 5ab*— 6*

a —

6

a6 — 5a^b-\- lOa^/zft— lOa^b^ + Saab* — ab^

(a^by=a^— 6a«6+ I5a*66— aoa^fts ^isaab*— 6ab' +b^.

Here we see that all the odd powers of b have the sign —-^

while the even jjowers retain the s\^n +. The reason of this is

evident ; for since — 6 is a term of the root, the powers of that

letter will ascend in the following: series,
—

*&, + 66, — 6^» + b*,

— 6*, 4- ft«. &r. which clearlv shews that the even powers must

be afTected by the sign +, and the odd ones by the contrary

siirn —

.
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S02. An important question occurs in this place ; namely, how

we may find, without being obliged always to perform the same

calculation, all the powers either of a -f 6, or a— 6.

VTe must remark, in the first place, that if we can assign all

the powers of a + b, those of a— b are also found, since we

have only to change the signs of the even terms, that is to say,

of the second, the fourth, the sixth, &c. The business then is

to establish a rule, by which any power o/" a + b, hoivever hizh,

may be determined ivitfumt the necessity of calaUating all the pre-

ceding ones,

303. Now, if from the powers which we have already deter-

mined we take away the numbers that precede each term, which

are called the coefficients^ we observe in all the terms a singular

order ; Jirsty we sec the first term a of the root raised to the power

which is required ; in thefollowing terms the poicers of a diminish

conlinally by uuity^ and the powers of b increase in the same

proportion ; so that the sum of the exponents of a and of b is

always the same^ and alxvays equal to the exponent of the power

required ; and^ lastly, we find the term b bij itself raised to the

same power. If, therefore, the tenth power of a + 6 were

required, we are certain that the terms, without their coefficients

would succeed each other in the following order; a^", rt*6, a^6',

fl"63, a^6*,a56*, a*6«, a^b'',a^b\ ab^. b^°.

304. It remains, tHerefoi-e. to shew how we are to determine

the coefficients which belong to those terms, or the numbers by

which they arc to be multiplied. Now, with respect to the first

ternif its coefficient is always unity ; and with regard to the

seconds its cofficient is constantly the exponent of the power ; but

with regard to the other terms, it is not so easy to observe any

order in their coeiBcients. However, if we continue those coeffi-

cients, we shall not fail to discover a law, by which we may

advance as far as wc please. This the follow ing table will shew.
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Powers. Coefficients.

I. 1, I

11. 1,2,1
III. 1, 3, S, 1

lY. 1, 4, 6, 4, I

V. I, 5, 10, 10, 5, 1

VI. 1, 6, 15, 20, 15, 6, 1

VII. 1, 7, 21, 35, 35, 21, 7, 1

nil. 1,, 8, £8, 56, 70, 56, 28, 8, 1

IX. 1 ,9, 36, 84, 126, 126, 84, 36, 9, 1

X. 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, &C.

We see then, that the tenth power of ft + 6 'vill be a^*^ +
lOflSfr -f 45a86 6 + 1200^63 ^ ^iQaH* -f 252a*6« +210a*6» +
120a3&7 +45aa68 + I0aft» -f

6i°.

305. With regard to the coefficients^ it must be observed, thatfor

each power their sum must be equal to the number 2 raised to the

same power. Let a=l and 6=1, each term, without the

coefficients, will be = 1 ; consequently, the value of ihe power

will be simply the sum of tl»e coefficients j this sura, in the pre-

ceding example, is 1024, and accordingly

(1 -f-
1)1° = 21° = 1024.

It is the same with respect to other powers ; we have for the

I. 1 +1=2 = 2*,

II. 1 +2 + 1 = 4 = 2^,

III. 1+3+3+1 = 8=2%
IV. 1+4 + 6+4 + 1=16 = 2*,

V. 1+5+10+10 + 5 + 1=32 = 2'

VI. 1 + 6 + 15 + 20 + 15 + 6 + 1 = 64 = 2«

VII. 1 + 7 + 21 + 35 + 35 + 21 + 7 + 1 = 128 = 2% 5cc.

306. Another necessary remark, with regard to the coeffi-

cients, is, that they increase from the beginning to the middle,

and then decrease in the same order. In the even powers, the

greatest coefficient is exactly in the middle ; but in the odd

powers, two coefficients, equal and greater than the others, arc

found in the middle, belonging to the mean terms.

The order of the coefficients deserves particular attention ;

for it is in tins order that wc discover the means of determining

them for any power whatever, without calculating all the pre-
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ceding powei-s. We shall explain this method, reserving the

demonstration however for the next chapter.

307. In order to Jind the coefficients of any power proposed, the

seventh^ for example, let us write the followingfractions, one after

the other ;

7 6 5 4 3 3 1

T» ^» 7* 1» T» e-' T*

In this arrangement we perceive that the numerators begin hy the

exponent of the power required, and that they diminish successively

by unity ; while the denominatorsfollow in the natural order of ilie

numbers, 1, 2, 3, 4, ^'c. J\^ow, the first coffficient be>ng always I,

the firstfraction gives the second coefficient. The product of the

txcojirstfractions, multiplied together, represents the third coefficient.

The product of tfte Viree first fradiom represents the fourth co<ffi~

dent, and so on.

So that the first coefficient = 1 ; the second =1 = 7; the

third = 1 X I = 21 ; the fourth = i x | X | = P5 ; the fifth

= iXfX|x4 = 35j the sixth =lx|x4X^X| = 21;
the seventh = 2 1 X | = 7 ; the eighth =7 x I = 1.

308. So that we have, for the second power, the two fractions

4, 1 ; whence it follows, that the firet coefficient= 1 j the second

= f = 2 ; and the third = 2 x | = 1.

The third power furnishes the fractions 4» l» -j > wherefore

the first coefficient = 1 ; the second = ^ = 3 ; the third

= 3 X I = 3 ; the fourth = 1 x | X 4 = 1.

We have for the fourth power, the fractions 4, |» |> ^ ; con-

sequently the first coefficient = 1 : the second :^ = 4 : tlje thiitl

* X I = G ; the fourth | X | X | = 4 ; and the fifth 4x4x1

309. This rule evidently renders it unnecessary for us to find

the preceding coefficients, and enahles us to discover imme-
diately the coefficients which helong to any power. Thus, for

the tenth power, we write the fractions j°,-^ |, |, |, |, 4, |, |,

j\, by means of which we find

the first coefficient = 1,

the second = y = 10,

the third =l0x|=45,
the fourth =45 X | = 120,

the fifth =120X I = 210,
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the sixth = 2 1 X f = 252,

the seventh =252xf = 2l0,

the eighth = 210 x 4 = 120,

the ninth = 120 x -f
= 45,

the tenth = 45x|=l0,
the eleventh = 10 X-r^= I.

SIO. "We may also write these fractioiis as they are, withoiit

coniputins: their value ; and in this way it is easy to express

any power of a-j-b, however high. Thus, the hundredth power

of a -I- 6 will be (^a + by° z=a^oo ^ loo ^ „99j ^ ^ 'I
I X x^

V ^1X2X3 ^1X2X3X4 ^'

&c.. whence the law of the succeeding terras may be easily

deduced.

CHAPTER XI.

Of the Transposition of the Letters^ on which the demonstration of

the preceding rule is founded.

311. Tf we trace back the origin of the coefficients which we

have been considering, we shall find, that each term is presented,

as many times as it is possible to transpose the letters, of which

that term consists ; or, to express the same thing differently,

the coefficient of each term is equal to the number of transposi-

tions that the letters admit, of which that term is composed. In

the second power, for example, the term a 6 is taken twice, that

is to say, its coefficient is 2 ; and in fact we may change the

order of the letters which compose that term twice, since wc

may write a 6 and & rt ; the term rt a, on the contrary, is found

only once, because the order of the letters can undergo no

change, or transposition. In the third power of a + ft, the

term a a6 may be written in three different ways, a « 6, « fc o,

baa ; thus the coefficient is 3. Likewise, in the fourth power, the

term a^ boraaab, admits of four different arrangements, aaab,

a aba, aba a, baa a; therefore its coefficiejit is 4. The term

nabb admits of six transpositions, aabb, abb a, baba, aba &,

hbaa, baab, and its coefficient is 6. It is the same in all cases*
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312. In fact, if wc consider that the fourth power, for example,

of any root consisting of more than two terms, as j^a + 6 + c + d)*,

is found by multiplying the four factors, I, a + b + c -\-d;

II. a + 6 + c+dj lil. a + 6 + c + d ; IV. o -f-6 + c + d ; we

me may easily see, that each letter of the fii-st factor must be

multiplied by each letter of the second, then by each letter of

the third, and, lastly, by each letter of the foutth.

Each term must therefore not only be comprised of four letters,

but also present itself, or enter into the sum, as many times as

those letters can be differently arranged with respect to each

other, whence arises its coeflicient.

313. It is thei-efore of great importance to know, in how

many different ways a given number of letters may be arranged.

And, in this inquiry, we must particularly consider, whether

the letters in question are the same, or diffei-ent. When they

are the same, there can be no transposition of them, and for this

reason the simple powers, as o',a',a*, &c., have all unity for

the coefficient.

314. Let us first suppose all the letters different ; and begin-

ing with the simplest case of two lettei-s, or a 6, we immedi-

ately discover that two transpositions may take place, namely,

ah and ba.

If we have three letters o 5 c, to consider, we observe that

each of the three ma\ take the first place, while the two others

will admit of two transpositions. For if a is the first letter, we
have two arrangements, abdacb; if 6 is in the first place, we
have the arrangements bac^bca ', h»stly, if c occupies the first

plare, we have also two arrangements, namely, cab, c ba. And
consequently the whole number of arrangements is 3 x 2= 6.

If there are four letters, abed, each may occupy the first place;

and in each case the three others maj form six different ar-

rangements, as we have just seen. The whole number of

transpositions is therefore 4xG=24=4x3x2x 1.

If there ai*e five letters, a 6c (/f, each of the five must be the

first, and the four others will admit of twenty-four transpo-

sitions ; so that the whole numl)er of transpositions will be

5 X ^M = 120 = 5X4X3X2X1.
315. Consequently, however great the number of letters may

be, it is evident, provided they are all different, that we may
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easily determine the number of transpositions, and that we may
inake use of the following table :

Number of Letters. Number of Transpositions.

V
^ ^^

V
'

I. 1 = 1.

II. 2X1=2.
III. 3X2X1 = 6.

IV. 4 X S X 2 X 1 = 24.

V. 5X4X3X2X1 = 120.

VI. 6x5x4x3x2x1 = 720.

VII. 7x6x5x4x3x2x1 = 5040.

VUI. 8X7X6X5X4X3X2X1= 40320.

.IX. 9XBX7X6X5X4X3X2XI = 362880.

X. 10X9X8X7X6X5X4X3X2X1 = 3628800.

316. But, as we have intimated, the numbers in this table

can be made use of only when all the letters are different ; for

if two or more of them are alike, the number of transpositions

becomes much less ; and if all the letters are the same, we have

only one arrangement. We shall now see how the numbers in

the table are to be diminished, according to the number of letters

that are alike.

317. When two letters are given, and those letters are the

same, tlie two arrangements are reduced to one, and conse-

quently the number, which we have found above, is reduced to

the half ; that is to say, it must be divided by 2. If we have

three letters alike, the six transpositions are reduced to one ;

whence it follows that the numbers in the table must be divided

by 6 = 3 X 2 X 1. And for the same reason, if four letters are

alike, we must divide the numbers found by 24 or 4 x 3 x 2 x 1»

&c.

It is easy therefore to determine how many transpositions the

letters aa « 6 6 c, for example, may undergo. They are in number

6, and consequently, if they were all different, they would

admit of 6x5x4x3x2x1 transpositions. But since a is

found thrice in those letters, we must divide that number of

transpositiims by 3 x 2 x 1 ; and since 6 occurs twice, we must

again divide it by 2 x 1 ; the number of ti'anspositions required

..... p 1
6x5x4x3x2x1 ^ ^ „ -^

will therefore be = -——-—-—-——-= 5 x 4 x 3 = 60.5x2x1x2x1
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318. It will now be easy for us to determine the coefficients

of all tlie terras of any power. We shall give an example of the

seventh power (a + by

.

The fii-st terra is a^, which occurs only once ; and as all the

other terras have each seven letters, it follows that the nuiiiber of

transpositions for each tenn would be 7x6x5x4x3x2x1,
if all the letters were different. But since in the second

term, a*6, we find six letters alike, we must divide the above

product by6x5x4xSx2xl» whence it follows that the

„ . .. 7x6x5X4x3x2x1 .
coetncient is = —r = i.6X3X4x3x~Xl ^

In the third term a' b 6, we find the same letter a five times,

and the same letter b twice ; we must therefore divide that

number first by5x4xSx2xl» and then also by 2 x 1 j

1 1**1. m- x7x6x5x4x3x2xl 7x6
whence results the coefficient ; ^

— = .0X4x^X2x1x2X1 2X1
The fourth term a* b' contains the letter a four times, and the

letter b thrice ; consequently, the whole number of the transpo-

sitions of the seven letters must be divide<l, in the first place,

by 4 X 3 X 2 X 1, and secondly, by 3x2x1, and the coeffi-

7x6x5x4x3x2x1 7x6x5
cient becomes =

4x3x:^XlX3xsiXl 1x2x3*

In the same manner, we find for the coefficient1x2x3x4
of the fifth term, and so of the rest ,• by which the rule before

given is demonstrated.

319. These considerations carry us further, and shew us also,

how to find all the powers of roots composed of more than two
terms. We shall apply them to the third power of a + 6 ^-c;

the terms of which must be formed by all the possible combina-

tions of three lettere, each term having for its coefficient the

number of its transpositions, as above.

W^ithout i)erforming the multiplication, the third power of

(a + & -f- c) will hea^-^3aab + 3aac+ 3ahb + 6abc-^3acc
+ b^-^3bbc-{.5bcc + cK

Suppose a= 1, 6= 1, c= 1, the cube of 1 + 1 -f i, or of 3,

will bel+3+3 + 3 + 6-f3-f.l + 3-J-S-fl=27.
This resuli is accurate, and confirms the rule.

EttL Mg, 14
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If we liad supposed a = l, 6=1, andc =— 1, we should

Imve found for the cube of l + 1 — 1, that is, of 1,

1^-S— 3 + 3— 6 + 3 + 1— 34.3— 1 = 1.

CHArTER xir.

of the expression of Irrational Powers by Tvjinite Senes.

320. As we have shewn the method of finding any power of

the root a + 6, however great the exponent, we are able ta

express, generally, the power of a +6, whose exponent is uiide-

terniinrd. It is evident that if we represent that exponent by

«, we sliail have by the rule already given (art. SOT and the fol-

lowing) :

(a + 6)'' = a«+^a«-^6+^X^«"-^62+^X^^X

321. If the same power of the root a— 6 were required, we
should only change the signs of the second, fourth, sixth, &c.

terms, and should have (a— 6)" = a** a "-^ 6 + — x "7

«_2i.o w "— 1 "— 2 „ ,,, n n— 1 M— 2
a«-268 x—^—X —^^a»-'b^ + - X -—— X —^r- X

322. These formulas arc remarkably usefid ; for they serve

also to express all kinds of radicals. We have shewn that all

irrational quantities may assume the form of powers, whose

2_ 1 3 _ 1
exponents are fractional, and that \/" =tt^» V" =a^> and
4 i
y/o = a*, &c. "We have therefore, also,

V (.1 + b) = (a + h)'^ ; V T^+T) = (« + by^

4 1

and \/ (a + b) = (.(i + 6)^» &c.

Wherefore, if we wish to find the square root of a + b, we

have only to substitute for the exponent n the fraction a, in the

general formula, [art, 320,] and we shall have first, for the

roeflBcients,
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B IM— 1 In — 2 3n— 3_ 5 ^
n— 4 __

1 _ 1

Then, a" = a- = Va anda''-^ = —=;w—

o

10' 6 12 V«
1 _ , 1

0"-^= —— ; a"-- = -, &c., or we might express those
a\/a

' aa^a '

— a"
powers of a in the following manner ; a" = x/a ; a" ^ = — =

a ' a* a^ ^ a^ a^ ' a* a""

S2S. This being laid down, the square root of a + 6, may be

expressed in the following manner :

V (a + 6) =

^^:^ o 2 4 aa2 4 6 a\ 2 4

324. If a, therefore, be a square number, we may assign the

value of \/^ and, consequently, the squai-e i-oot of a + 6 may be

expressed by an infinite series, without any radical sign.

Let, for example, a = cCf we shall have >/«" = c ; then

1 b Ibb I 6» 5 b* .

We see, therefore, that there is no number, whose square

root we may not extract in the same way ; since every number

may be resolved into two parts, one of which is a square repre-

sented by c c. If we require, for example, the square root of 6,

we make 6 = 4 + 2, consequently c c = 4, c = 2, 6=2, whence

results V6" = 2 + 1 — ^V + A— tAt» &c.

If we take only the two leading terms of this series, we shall

have 2^ =|, the square of which, y, is ^ greater than 6 ; but

if we consider three terms, we have Q^j = f|, the square of

which, y/gS is still 2V6 ^"^ small.

325. Since, in this example, | approaches very nearly to the

true value of v'e, we shall take for 6 the equivalent quantity

y — ^. Thuscc=y ; c=|; 6 =— 1; and calculating only

_ 1 1

the two leading terms, we find \/6 = | + -| x —^ = |— i x -j
7 -i
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= 2 "- 2V = 41 = *^*^ square of this fraction, being YA^ » exceeds

the square of v6~only by ^1^.

Now, making 6 = VoV — 7^0 » so that c = || and 6 =~ ^^^ j

and still taking only the two leading terms, we have

the square of which is Y^WYoV Now 6, when reduced to the

8a;ne denonjinator, is = *j3_p4tVW 5 ^^^ error therefore is only
1

7T4T5"7r7'

326. In the same manner, we may express thp cube root cf

3 1

a + b by an mfinife series. For since V (« + 6) = (fl + &)'^»

we shall have in the general formula n = |, and for the coeffi-

. . n 1 n—

1

In—

2

5 n —

3

2
cients, - = -,--^=--; -3- = —̂ J -^ = --3,'

fi 4 11—-— = —
Y"

, &c., and with regard to the powers of a, we shall

3 3 3

have a« = y^ a«-^=^ ,- a«-2 = i:^ j a"-3 =^, &c. ; then

243 a*

3

327. If a therefore be a cube, or a= c^, we have \/a = c, and

the radical signs will vanish ', for we shall have

3-T-^r r-. 1 b \ bb 5 b^ \0 b* ^

328. We have, therefore, arrived at a formula, which will

enable us to find by approximationf as it is called, the rube root

of any number ; since every number may be resolved into two

parts, as c^ -f 6, the first of which is a cube.

If we wish, for example, to determine the cube root of 2, we

represent 2 by 1 + 1, so that c= I and b = 1, consequently

V2 =1+4 — ¥ + TT> ^^'f ^^^^ *^^** leading terras of thif*
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series make 1| = ^ the cube of which, 1^, is too great by |^
Let us then make 2 = |^— |^, we have c = 4 and & = — |^,

3 —10

and consequently V2 = 7 + 7 X -^. These two terms give

* — /^ = »4, the cube of which is ^^Ulh ^^"^'' 2 = mV^h
so that the error is srslh' ^" '^^'^ ^^7 ^'^ might still appi-ox-

imate, and the faster in proportion as we take a greater number

of terms.

CHAPTER XIII.

Of the resolution of Mgutive Powers.

329. We have already shewn, that we may express — by cr^ ;

we may therefore also express —r by (a + &)~' ; so that the

fraction —— may be considered as a power of a -f 6, namely,

that power whose exponent is — 1 ; and from this it follows,

that the series already found as the value of (a + 6)" extends

also to this case.

330. Since, therefore, —r is the same as (a + &)~i, let us
a-\-h *

suppose, in the general formula, n =— 1 ; and we shall first

have for the coefficients —=— 1 ; —-— =—« 1 ; —-^ = — 1 ;

n— 3 1—-— =— 1, &c. Tlien, for the powers of a ; a" = a"^ = —
;

4 a

ft«-i = o-»= 4- ; fl"~*= -< 7 fl""^ = T* &c. So that (a -f b)~^

1 1 6 6ft A3 ft4 65

= -7-7= --3 +—, — -^+ -. 6» «c., and this is the
a-{-b a a^ ^ a^ a* a* a«

same series that we found before by division.

331. Further, —i-rr^ being the same with (a + b)-^, let us

reduce this quantity also to an infinite series. For this purpose,

we must suppose n = — 2, and we shall first have for the coeffi-
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len s ^ -
J

; 2 — -g 5 —J- — - ; -^— =
5 J J

, &c. Then, for the powers of o ; a«= — ; a""^ = —
?

n^-2= — ; a"-^ — — , &c. We therefore obtain (a + b)-^ =

2 3 4 5 ft'* „ ^^ „

7 ^ ^ ^ ^ ^ "4 ^ a^'
^'^^ •^°'''' f = 2j|x| = S;4x

|x| = 4j 1x1x4x1 = 5, &c. Consequently, we have

1 1 & 62 ^3 ^4 fc5 J6

SSsJ. Let us proceed and suppose n =— 3, and we shall have

a series expressing the value of
, ^ns * o^' "^ (<* + ^)~^» The

„ . , ... . n 3 w •— 1 4 n— 2 5
coefficients will be - = ^;

___=__. __ =__;

? • = -— , &c. and the i)owers of a become, a^ = — i o"~^ =
4 4

* ' aS'

1 olc II. 1 1 363— ; a"~^ = —«, &c., which ejives , rrr = — -r H

—

4 62 3 4 5 6? 3 4 5 6 6* „

^ -2
a-^
- 1 ^ ^ ^ 1 ^ + 1 ^ 2 ^ ^ ^ -4 a-'

*^^-

1 6 6» 63 6* 6* 68 67
= A — 3-^ + 6-— 10 - + 15-— 21- + 28-— 36--

68

+ 45 -— , &c.

Let us now make « =— 45 we shall have for the coefficients

n__ An— 1_ 5 71— 2 6 ^
n—

3
7 ^

and for the powers, a" = - ; a"-^ = - ; a"-^ ?= - ; a"-^= -^ ;
tt it tX U

a-^ = ^^» &c., whence we obtain ;
^-^-i^ = 1 _ i x ^4 +

4 5 62 4 5 6 6^ 4 5 6 7 6*
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1 b fc2 b^ h* ^ b^ ,= T — ^ ^ + 10 -6 — 20 - + 55 - — 56 - &C.

333. The different cases that have been considered enable us

to conclude, with certainty, that we shall have, generally, for any

negative power of a -f- 6 ;

1 _ 1 m b m tn + 1 6* m m + 1

fl ^ by^~ ^" 1 ^ ^1 "*" T ^ ""2"" ^ a'^+s
"" T ^ 2

—:;— X -rxT &c.

And by means of this formula, we may transform all such

fractions into infinite series, substituting fractions also, or frac-

tional exponents, for m, in order to express irrational quan-

tities,

334. The following considerations will illustrate this subject

further.

"We have seen that,

I _ 1 b 6« b^ ^* _ i^ &
a + b ~~a a2 + ~j a*"^ a^ a^

If, therefore, we multiply this series by a + 6, the ph>duct

ought to be = 1 ; and this is found to be ti'ue, as we shall see by

performing the multiplication :

_1 b^ b^- b^ b± b^ .

a-j-b

b fc2 b^ b* b^ ,

b 6» 63 {,* ^*
c

1-

335. We have also found, that

1 _ 1 26 36 6 4 63 5 6* __ 6 6* „

(a + 6)3 ~ a^ ~~ ^ *'~^^* ^"^ll^ V '

If, therefore, we multiply this series by (a +6)*, the product

ought also to be = 1. Now (a + 6)* =aa +2a6+ 66. See

the operation :
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1 2 6 S66 4 6' 5 b* 6^

£6 466 663 8ft4 J06*+ ^ r + —T '*^C.
a aa 7 a* o* a*

6 6 2 63 3 64 4^5
^ aa a3 ^ a* a* ^

1 = tlie product, which the nature of the thing required.

S36. If we multiply the series which we found lor the value

of ; FTT> hy a + 6 only, the product ought to answer to the
(a+6)3

fraction -, or be equal to the series already found, namely,

+-T i + —c> &c, and this the actual mnltiplication
a a^ a^ a* ' a* *

will confirm.

1 26 366 4 6* 5b* ^
r + —-7 ^ + —— , &C.

a a a^ ' a* a^ a^

a +b

1 26 366 4 6^ 5 6* „

a aa a^ a* a^

b Qbb 3 6» 4 6^ „
_i J , &c.^ aa a3 ^ a* a"

1 _6_ bb ^b^ - ^ f^

~a ~aa la^ «'*'«* '



SECTION III.

OE RATIOS AND PEOPORTlO.,S.

CHAPTER. I.

OJ Arithmetical Ratio, or of the difference between two JVumbers.

AKTICUE 337.

Two quantities are either equal to one another, or they are

not. In the latter case, wliere one is greatei' than the other,

we may consider their inequality in two different points of view :

we may ask, lioic much one of the quantities is greater than the

other? Or, we may ask, /jow many times the one is greater

than the other ? The results, which constitute tlie answers to

these two questions, are both called relations or ratios. We
usually call the former arithmetical ratio* and the latter geomet-

rical ratiOf without however these denominations having any

connexion with the thing itself : they have been adopted arbi-

trarily.

338. It is evident, that the quantities of which we speak must

be of one and the san^e kind ; otherwise, we could not determine

any thing v.ith regard to their equality or inequality. It would

be absurd, for example, to ask if two jxjunds and three ells are

equal quantities. So that in what follows, quantises of the

same kind only are tn be considered ; and as they may always

be expressed by iiuntbers, it is of numbers only, as was men-

tioned at the beginning, that we sh tU treat.

339- When of two given nuinbei's. therefore, it is required to

find, liow nmch one is greater than tl;e -.ther, the answer to This

question determines the arithnieticai ratio of the two rumhei-s.

No ^. sirire this answer consists in ji;iving the difference of the

Eui, jiL§, 15
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two numbers, it follows, that an arithmetical ratio is nothing

but tlie difference between two numbers : and as this appears to

be a better expression, we shall reserve the words ratio and
relation^ to express geometrical ratios.

340. 1 he diflference between two numbers is found, we know,
by subtracting the less from the greater ; nothing therefore can

be easier tiian resolving the question, how much one is greater

than the other. So that when the numbers are equal, the dif-

ference being nothing, if it be inquired how much one of the

numbers is greater than the other, we answer, by nothing. For
example, 6 being =-.2x3, the difference between 6 and 3 x 3 is 0.

341. But when the two numbers are not equiil, as 5 and 3,
and it is inquired how much 5 is greater than 3, the answer is,

2; and it is obtained by subtracting 3 from 5. Likewise 15

is greater than 5 by 10 ; and 20 exceeds 8 by 12.

342. We have three things, therefore, to consider on this

subject ; 1st, the greater of the two numbers ; 2d, the less ; and

Sd, tlie difference. And these three quantities are connected

together in such a manner, that two of the three being given,

we may alv\ays determine the tliird.

Let the greater number = a, the less = b, and the difference

= d; the difference d will be found by subtracting 6 from a, so

that (i = fl— b; Whence we see how to find d, when a and 6 are

given.

343. But if the difference and the less of the two numbers, or

6, are given, we can determine the greater number by adding

together the difference and the less number, which gives « =
6 + d. For, if we take from&+d the less number 6, there

remains d, which is the known difference. Let the less number

= 12, and the difference = 8 ', then the greater number will be

= £0.

344. Lastly, if beside the difference d, the greater number a

is given, the other number b is found by subtracting the differ-

ence from the greater number, which gives 6= a— d. For if

I take the number a— d from the greater, number a, there

remains d, which is the given diffeience.

345. The connexion, tlierefore, among the numbers «, b, d, is

of such a nature, as to give the three following results : I'** d = a

I
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h; 0^'
fl = 6 + d ; 5^- b =a — il ; and if one of tlicse three

comparisons be just, the others must necessarily be so also.

Wherefore, generally, if 2i = x + y, it necessarily follows, that

f/ = s— X. and a: = x— ij.

S46. With regard to these arithmetical ratios we must remark,

that if tee add to the Ixvo numbers a and b, a number c assumed

at pteastiref or subtract it from them, the difference remains the

same. Tliat is to say, if d is the difference between a and &,

that number d will also be the difference between a -^ c and

6 -f c, and between a — c and 6 — c. For examjjle, the differ-

ence between the numbers 20 and 12 being 8, that difference

will remain the same, whatever number we add to the siumbers

20 and 12, arid whatever numbers we subtract from ihem.

347. The proof is evident ; for if a — b = d we have also

(a ^ c) — (b -\-e)= d; and also (a— c) — (b— c) = d.

548. If ive double the tuo numbers a and b, the difference ivill

also become double. Thus, w hert, a — b = d, we shall have,

2 a— £6= 2rf; and, generally^ na— nb = nd, whatever value

ice give to n.

CHAPTER II.

Of Arithmetical Pro/portion.

349. When' two arithmetical ratios, or relations, ai-e equal,

this equality is called an arithmetical proportion.

Thus, when a — & = rf and p — g = d, so that the difference

is the same between the numbers p and q. as between the num-

bers a and b, we say that these four numbers form an arithmeti-

cal proportion ; wliich we write thus, a— b—p— ^, expressing

clearly by this, that the difference between a and b is equal to

the difference between p and q.

350. An arithmetical proi)ortion consists therefore of four

terms, which must be such, tliat if we subtract the second from

the first, the remainder is the same as when we subtract the

fourth from the third. Thus, the four numbers 12, 7, 9, 4, form
an arithmetical proportion, because 12 — 7 = 9 — 4.*

• To shew that these terms make such a proportion, some write them
thus ; 12 . . 7 : : 9 . . 4;
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35 1 . When we have an arithmetical proportion^ as a— b = p
>—

. q, we may make the second and third change places^ writing

a — p = b — q ; and this eqnaliftj will be no less true ; (brj, since

a— b =p— 9, add 6 to both sides, and we have a = b -^p — q;
then subtract p from both sides, and we have «— p = 6— q.

In I he same manner, as 12 — 7 = 9 — 4, so also

12—9 = 7 — 4.

362. We may, in every arithmetical proportionf put the second

teim alio in the place of the Jirst, ij we make the same transposi-.

iion of the third andfourth. 'I'hat is to say, if a — b = p — q,

we have also b — a = q — p. For b — a is the negative of

a — &, and q —^p is also the negative of p— g. Thus, since

12— 7=9— 4, we have also 7 — 12=4 — 9.

353. But the great property of evay arithmetical proportion is

thiti ; that the sum of the second and third term is always equal to

tht sum of the first and fourth. This property, which we must

pat ticularly consider, is expressed also by saying that, the sum
of the means is equal to tiie sum of the extremes. Thus, since

12— 7 = 9— 4, we have 7 + 9=12 + 4^ and the sum we find

is 1 6 in both.

354. In order to demonstrate this principal property, let

a— b=p— q; if we add to both 6 -f g, we have a + q=ib -\-p ;

that is, the sum of the first and fourth terms is equal to the sum
of the second and third. And conversely^ iffour numbers, a, b, p,

q, are such, that the sum of the second and third is equal to tfie sum

of the frst and fourth, that is, if 6 -f p = a + g, we conclude,

without a ;>ossihility of iuistake, that these numbers are in arith-

metical proportion, and that a— b — p— q. For, since

a-f (jr= b+p,
if we subtract from both sides b •\- q, we obtain a— b = p— q.

Thus, the numbers 18, iS, 15, 10, being such, that the sum

of the means (13 + 15 = 28,) is equal to the sum of the ex-

tremes (18 -f- 10 = 28,) it is certain, that tiicy also form an

arithmetical proportion ; and. consequently, that

18—13 = 15^10.
355. It is easy, by means of this property, to resolve the fol-

lowing question. The three first teri' s of an arithmetical pro-

portion being given to find the fourth ? Let «, 6, p, be the three
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first terms, and let us express the fourth by q, which it is

required to determine, then a + g= 6+p; Lj subtracting a

froiH both sides, we obtain 9 = 6 -f-p— a.

Thus, the fourth term isjound by adding together the second and

thirds and subirading the Jirst from that sum. Suppose, tor ex-

ample, that 19, 28, 13, are the three fii*st terms given, the sum

or the second and third is =41 ; take from it the first, which is

19, there regains .2 for the fourth term sougL.t, and the arith-

metical proportion will be represented by 19— 28=13 — 22,

or. by 28— 19 = 22— l3, or, Iast!\, by 28— 22= 19— 13.

356. ff hen in an arithmetical profportion, the second term is equal

to the third, we have only three numbers ; the pmpfity of which

is tiiis, that the first, minus the second, is equal to the second,

minus the third ; or, that the difference between the first and

the serond number is equal to the difference between the second

and tlie third. The three numbers, 19, 15, 1 1, are of this kind,

sinre 19— 15= 15— 11.

357. Three «/cA numbers are said to form a continued arith-

metical proportion, which is sometimes written thus, 19 : 15 : 11.

iSuch pruporiions are also called arithmetical progressions, par-

ticularly if a greater number of termsfollonv each other according

to the same law.

An arithmetical progression may he either increasing, or

decreasing. The former distinction is applied when the terms

go on increasing, that is to say, when the second exceeds the

first, and the third exceeds the second by the same quantity;

as in the numbers 4, 7, 10. The decreasing progression is that,

in which the terms go on always diminishing by the same quan-

tity, such as the numbers 9, 5, 1.

258. Let us suppose the numbers a, b, c, to be in arithmetical

progression; then a— b = b— c, \\ hence it follows, from the

equality between the sum of the extremes and that of the means,

that 2 6 = a + c; and if we subtract a from both, we have

c= 2 b— a.

359. So that xchen the two first fenns a, b, nf an arithmetical

progressi(m are given, the third is found by taking the first from
twice the second. Let i and 3 be the two first terms of an arith-

metical progression, the third will be = 2x3— 1 = 5. And
these three nnmbc!"s 1, 3. 5 give the proportion 1 — 3 = 3 — 5.
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560. By following the same method, wc may pursue the

arithmetical progression as far as we please ; we hare only to

jind thefourth by means of the second and third, in the same man-
ner as we determined tlie third by means of the first and second,

and so on. Let a be the first term, and b the second, the third

will he = 2 &— a, the fourth =46— 2a— b = 3b— 2 a, the

fifth 6 6— 4a— 26 + a = 4 6— 3a, the sixth =86 — 6a— S6

+ 2a=56— 4a, the seventh =106— 8a— 46-f3a = 66
— 5 a, &c. ^

CHAPTER" III.

Of Jnthmeiical Progressions,

361. We have remarked already, that a series of numbers

composed of any number of terms, which always increase, or

decrease by the same quantity, is called an arithmetical progres-

sion.

Thus, the natural numbers written in their order, (as 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, &c.) form an arithmetical progression,

because they constantly increase by unity ; and the series 25,

22, 19, 16, IS, 10, 7, 4, 1, &c. is also such a progression, since

the numbers constantly decrease by S.

362. The number, or quantity, by which the terms of an

arithmetical progression become greater or h\ss, is called the

difference. So that wlien the first term and the difference are

given, we may continue the aiithmetical progression to any

length.

For example, let the first term = 2, and the difference = 3,

and we shall have the following increasi.ig progression ; 2,5,

8, 11, 14, t7, 20, 23, 26, 29, &c. in which each term is found,

by adding the difference to the preceding term.

363. It is usual to write the natural numbers, 1, 2, 3, 4, 5, &c.

above the terms of such an arithmetical progression, in order

that we may immediately perceive the rank which any term

holds in tlie progression^ These numbers \jntten above the
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terms, may be called indices ; and the above example is writtea

as follows :

Indices, 12 345 67 89 10

Jrith. Pro^. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &C.

where we see that 29 is the tenth term.

364. Let a be the first term, and d the difference, the arith-'

metical progression will go on in the following order

:

12 3 4 5 6 7

0, G -f rf, fl + 2(f, a -f 3J, n + 4d, a + ot/, a + 6J, &c.

whence it appeai-s, that any term of the progression might bo

easily found, without the necessity of finding all the preceding

ones, by meaiis only of the first term a and the difference d.

For example, the tentli term will be = a + 9 rf, the hundredth

term = a + 99 rf, and generally, the term n will be

365. When we stop at any point of the progression, it is of

importance to attend to the first and the last terra, since the

index of the last will represent the number of terras. If there-

fore, thefirst term = a, the difference =d, and the number of terms

= n, v:e shall hnve the last term = a + (n — l) d, which is con-

sequentlyfound by miutipiying the difference by the Tiumber of terms

minus one, and adding ih''first term to that pr'?duct. Suppose, fov

exatnple, in an arithmetical progression of a hundred terms,

the first term is = 4, and the difference = 3 ; then the last term

will be = 99 X 3+4 = 301.

366. When we know the fii*st term a and the last x, with tlic

number of terms ti, we can find the difference d. For, since

the last term x = « -f (n— l) d, if \^e subtract a fi-om both sides,

we obtain x— a = (« — 1) J. So that by subtracting the first

term from the last, we ha\e the product of the difference multi-

plied by the number of terras minus 1. We bare, therefore,

onlj to divide s— a by n— I to obtain the required value of

the difference J, which ^^iil be = ^1^^ . This result furnishes

the following rtile : Subtract thefirst term from the last, divide the

remainder by the number of terms minus 1, and the quotient viil

be the difference : by means of which we may write the whole
progression.
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367. Suppose, for example, that wc have an arithntptical

progression of nine terras, whose first is = "2, and last = 26,

and that it is required to find the difference. We must subtract

the first term, 2, from the last, 26, and divide the reniaind^ r,

which is 24, by 9 —-I, that is, by 8 ; the quotient 3 will be equal

to the difference required, and the whole progression will be123456789
2, 5, 8, n, 14, 17, 20, 23, 26.

To give another example, let us suppose that the first term

= 1, the last = 2, the number of terms = 10, and that the arith-

metical progression, answering to these suppositions, is requir-

2— i I

ed ; we shall immediately have for the difference —-—- = —

,

and thence conclude that the progression is128456789 10
1 ll 12 l3 1* 15 l6 IT 8 a
i» ^J* 'T' 'T* '7* '§ ^T* 'T* T' ^'

Another example. Let the first term=2-J, the last = 12|,

and the number of terms = 7 ; the difference will be

12^— 2^ _ 1C| _ 61^ _ 25

7—1 " 6 ~36"" Sfe*

and consequently the progression12 3 4 5 6 7

268. If now the first term a, the last term «, and the differ-

ence (U are given, we may from them find the number of terms

n. For since >5— a = (n — 1) d, by di\iding the two sides

by df we have —-z— = n — 1. Now, n being greater by 1

than n — 1, we have n = -^ \- 1 ; consequently, thenumhei'

of terms isfound by dividing the difference hftween ikefrst and the

last term, or z— a, by the difference of the progression, and adding

unity to the quotient, —^—

.

For example, let the first term =4, the last = 100, and the

difference = 12» the number of terms will be— h 1 = 9

;

and these nine terms will be,123456789
4, 16, 21;, 40, 52, 64, 7G, 88, 100.
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If the first terra = 2, the last = 6, and difference = 1|, the

imher

will be.

4
number of terms will be - + 1 = 4 j and these four terms

12 3 4

2, 3^, 4|, 6.

Again, let the first term = 3|, the last = 7|, and the differ-

72 31.

cnce = 1|, the number of terms will be = ——j—^ +1=4;
which are,

Cl A7 p.2 "2
03-, 4^, D^,

.-J.

369. It must be observed, however, that as the number of terms

is necessarily an integer, if we had not obtained such a number

for 71, in the examples of the preceding article, the questions

would have been absurd.

Whenever we do not obtain an integral number for the value

of —z—, it will be impossible to resolve the question ; and con-

sequently, in order that questions of this kind may be possible,

a— a must be divisible by d.

370. From what has been said, it may be concluded, that we
have always four quantities, or things, to consider in arithmetic-

al progi-ession

;

I. The fii-st term a.
'

II. The last term r.

III. The difference d.

IV. The number of terms n.

And the relations of these quantities to each other are such, that

if we know three of them, we are able to determine the fourth ;

for,

I. IJ a, d, and n art knowjif ice have z = a + (n— 1^ d.

II. If z, d, and n are known^ we have a = z— (n— l) i.

III. If a, z, and n are known, we have d = -^^.
n— 1

rv. If a, z, and d are known, we have n = i^^ + 1.
d

Eul, Alg, 16
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CHAPTER IV.

Of the Summatiun of Arithmetical Progressions.

571. It is often necessar-y also to find the sum of an arith-

metical progression. This might be done by adding all the

terms together; but as the addition would be very tedittus, when

the progression consisted uf a great number of terms, a rule has

been devised, by which the sum may be more readily obtained.

372. We shall first considei* a particular given progression,

such that the first term = 2, the difference = 3, the last term

= 29, and the number of terms = 10 j123456789 10

g, 5, 8, 11, 14, 17, 20, 23, 26, 29.

We see, in this progression, that the sum of the first and the

last term = 31 ; the sum of the second and the last but one

= 31 ; the sum of the third and the last but two = 31, and so

on , and thence we conclude, that the sum of any two terms

equat'y distant, the one from the first, and the other from the last

term, Is always equal to the sum of the first and the last term.

373. The reasons of this may be easily traced. For, if we sup-

pose the first = a, the last = a, and the difference = d, the sum

of the firs.t and the last term is = a -f » ; and the second term

being = a -f-
d, and the last but one = z — d, the sum of these

two terms is also = a + a. Further, the third term being

a -^ -2df and the last but two = » — 2d, it is evident that these

two terms also, when added together, make a -f «. The demon-

stration may be easily extended to all the rest.

374. To determine, theiefore, the sum of the progression pro-

posed let us w rite the same progression term by term, inverted,

and f.dd the corresponding terms together, as follows :

2 -). 5 + 8 + 11 + 14
-f. 17 -f 20 + 23 + 26 -f- 29

29 + 26 -I- 23 + 20 -f 17 + 14 -I- 11 -f 8 + 5 -f. 2.

31 + 31 + 31 + 31 -f- 31 + 31 -f- 31 -f 31 -f- 31 -f- 31

This series of equal terms is evidently equal to twice the sum

of the given progression ; now the number of these equal terms

is 10, as in the progression, and their sum, consequently, = 10

I
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X 31 = 310. So that, since this sum is twice the sum of the

arithmetical progression, the sum required must be = 155.

375. If we proceed in the same manner, with respect to any

aritlimetiral progression, the first term of which is = a, the last

= z, and the number of terms =n; writing under the given

progression the same progression inverted, and adding term to

term, we shall have a series of /i terms, each of which will be

= a + « ; the sum of this series will consequently be = « (a -f- z),

and it will be twice the sum of the proposed arithmetical pro-

gression ; which therefore will be = —^—^

—

.

376. This result furnishes an easy method of finding the sum

of any arithmetical progression ; and may be reduced to the

following rule

:

Multiply the sum of the first and the last term by the number of

termst and half the product will be the sum of the whole progres-

sion.

Or, which amounts to the same, multiply the sura of the first

and the last term by half the number of terms.

Or, multiply half the sum of the first and the last term by the

whole number of terms. Each of these enunciations of the rule

will give the sum of the progression.

377. It may be proper to illustrate this rule by some exam-

ples.

First, let it be requii-ed to find the sum of the progression of

the natural numbers, 1, 2, 3, &c. to 100. This will be, by the

first rule, = ^^ ^ '"^ = 50 x 101 = 50oO.

If it were required to tell how many strokes a clock strikes

in twelve hours ; we must add together the numbers I, 2, "i, as

far as 12 ; now this sum is found immediately = 1 = 6 x

13 = 78. If we wished to know the sum of the same progres-

sion continued to 1000, we should find it to be 500500 : and the

sum of this progression continued to lOOOO, would be 50005000.

378. Another question. A person buys a horse, on condition

that for the first nail he shall pay 5 halfpence, for the second 8,

for the third 11, and so on, always increasing 3 halfpence more
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for each followin.^ one ; the horse having 32 nails, it is required

to tell how much he will cost the purchaser ?

In this question, it is required to find the sum of an arith-

metical progression, the first term of which is 5, the diifereiice

= 3, am] the number of terms = 32. We must therefore beuin

by determining the last term ; we find it (by the rule in articles

365 and 370) = 5 + 31 x 3 = 98. After which the sum requir-

10^ X 32
ed is easily found = —^-- = lOS x 16 j whence we conclude

that the horse costs 1648 halfpence, or 3/. 8s. 8d.

379. Gejieridiy, let the first term be = a, the difference = d,

and the nujnber of terms = n ; and let it be required to find, by

means of the:^e <lata, the sum of the whole progression. As the

last term n)ust be = a + (?i — l) d, the sum of the first and last

will he = 2 n -f (ti— 1) (/. Multipl} ing this sum by the number

of terms n, we have Qna-\-n(^n— 1) rf j the sum required there-

fore will be = 7t a H—^ —

.

2

This formula, if applied to the preceding example, or to a = 5,

d = 3, and n = 32, gives 5 x 32 + ^^ ^^' ^^ = 160 + 1488 =

1648 ; the same sum that we obtained before.

380 If it be required to add together all the natural numbers

from 1 to ??, we have, for finding this sum, the first term = 1,

the last term = w, and tlie number of terms = n; wherefore the

... tin -\- n n (n -\- I)
sum required is = '— = _^^—!

—

'-.

If we make n = 1766, the sum of all the numbers, from 1 to

1766, will be = 883 x n67 = 1560261,

381, Let the prngirssion nf uneven numbers be proposedy 1, 3, 5,

7, &c. continued to n terms, and let the sum of it be required :

Here the first term is = 1, the difference = 2, the number of

terms = n ; the last term will therefore be = 1 + (w— 1)2 =
£n — 1, and consequently the sum required = nn.

The whole therefore consists in multiplying the number of

terms by itself. So that rvhutever number of terms of this pro-

gression we add together, tlie sum will be always a square, namely

,

the square of the number of terms. This we shall exemplify as

follows

;
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Indices, 1 2 3' 4 5 6 r 8 9 10 &C.

Progress, 1, S, 5, 7, 9, 11, IS, 15, 17, 19, &.C.

Sum, 1, 4, 9, 16, 25, 36, 49, 64, 81, KjO, &c.

382. Let the fii-st term be = 1, the difference = 3, and the

number ot terms = n ; we sliall have the progression 1, 4, 7,

10, &c. the last term of which will bel+(n— l)3= 3n— 2;

wherefore the sum of the first and the last term = 3 n— 1, and

.^, . . nC5u— I) 5nn—n
consequently, the sum of this progi-ession =—i— '=—-—

^

If we suppose n = 20, the sum will be = 10 x 59 = 590.

383. Again, let the fii-st term =1, the diffei-ence = rf, and the

number of terras = n ; then the last term will be = 1 -f (u— i) d.

Adding the first, we have 2 -f (re— I) d, and multiplying by the

number of terms, we have 2 n -f 7i (re — 1) d ; whence we deduce

nCn — ])d
the sum of the progression = n + -^—-

—

^ .

We subjoin the following small table :

If d = 1, the sum is = n H ^ = —J—

2n(n— 1)
' ^2

d=3, =n+_l__^ = __

d = 4, = 71 -^ 1- = 2 n 71— n

J „ .5n(n— 1) 5 nn— 3n

d=i6, = n + ^ ^
^

' = 3 n n— 2n

, _ . 7n(n— 1) 7nn— 5n

J ^ 8n(«— 1)d = 8, = n H ^ = ^nn— 3 7i

d = 9, ^^. ^n(n-l)^ 9nn-7n^22
d = 10, = « H ^ =5nn — 4 n

2
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CHAPTER V.

Of Geometrical Ratio.

384. The geometrical ratio of two numbers is found by resolv-

ing the question, Jwiv many times is one of those numbers greaser

than the other? This is done by dividing one by the other

j

and the quotient, tiierefore, expresses the ratio required.

385. We have here three things to consider j 1st, the first of

the tw o given numbers, which is called the antecedent ; 2dly, the

other number, which is called the consequent ; 3dly, the ratio

of the two numbers, or the quotient arising from the division of

the antecedent by the consequent. For example, if the relation

of the numbers 18 and 12 be required, 18 is the antecedent, 12

is the consequent, and the ratio will be y| = \\ ; whence we
see, that the antecedent contains the consequent once and a

half.

386. It is usual to represent geometrical relation by two

points, placed one above the other, between the antecedent and

the consequent. Thus a : 6 means the geometrical relation of

these two numbers, or the ratio of 6 to a.

We have already remarked, that this sign is employed to

represent division, and for this reason we make use of it here

;

because, in order to know the ratio, we must divide a by h. The
relation, expressed by this sign, is read simply, a is to 6.

387. Relation therefore is expressed by a fraction, whose

numerator is the antecedent, and whose denominator is the con-

sequent. Perspicuity requires that this fraction should be always

reduced to its lowest terms j which is done, as we have already

shewn, by dividing both the numerator and denominator by

their greatest common divisor. Thus, the fraction i| becomes

-|, by dividing both terms by 6.

388. So that relations only differ according as their ratios

are different; and there are as many different kifids of geomet-

rical relations as we can conreive different ratios.

The first kind is undoubtedly that In which the ratio becomes

unity ; this case happens when the two numbers arc equal, as

in 3 : 3 ; 4:4; a : a ; the ratio is here 1, and for this reason

we call it the relation of equality.



Chap. 5. Of Ratios and Froportion. 18!^

Next follow those relations in which the ratio is another whole

number ; in 4 : 2 the ratio is 2, and is called double ratio ; in

12 : 4 the ratio is 3, and is called tripU ratio ; in 24 : 6 the ratio

is 4, and is called quadruple ratio, Ace.

We may next consider those relations whose ratios are expres-

sed by fractions, as 12 : 9, where the ratio is ^ <»r 1| ; 18 : 27,

where the ratio is |, &c. We may also distinguish those rela-

tions in which the consequent contains exactly twice, thrice, &e.

the antecedent ; such are the relations 6:12, 5 : 15, &c, the

ratio of which some call, subduple, subtriple^ &c. ratios.

Further, we call that ratio ralionalf which is an expressible

number ; the antecedent and consequent being integers, as in

11 : 7, 8 : 15, &c. and we call that an vratiotial or surd ratio,

which can neither be exactly expressed by integers, nor by frac-

tions, as in \/T' 8, 4 : vs"*

389. Let a be the antecedent, b the consequent, and d the ra-

tio, we know already that a and 6 being given, we find d = —.
b

If the consequent b were given with the ratio, we should find

the antecedent a — bd^ because b d divided by 6 gives d. Lastly,

when the antecedent a is given, and the ratio d, we find the

consequent 6 = — ; for, dividing the antecedent o by the conse-

a
quent -j, we obtain the quotient d, that is to say, the ratio.

390. Every relation a : b remains the same, though we multi-

ply, or divide the antecedent and consequent by the same num-
ber, because the ratio is the same. Let d be the ratio of a : &,

we have d = —; now the ratio of the relation n a :nh is also

-7- = d, and that of the relation — : — is likewise — = d.
* n n b

391. When a ratio has been reduced to its lowest terms, it is

easy to perceive and enunciate the relation. For, example, when

the ratio — has been reduced to the fraction —, we say a :b =
1

p: q^a-.b : : p : Qf which is read, o is to 6 as p is to q. Thus,
the ratio of the relation 6 : 3 being f, or 2, we say 6:3 = 2:1.
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We have likewise 18 : 12 = 3 : 2, and 24 : 18 = 4 : 3, and SO : 45

= 2:3, &c. But if the ratio cannot be abridged, the relation

will not become more evident ; we do not simplily the relation

by saying 9:7 = 9:7.

392. On the other hand, we may sometimes change the rela-

tion of two very great numbers into one that shall be more

simple and evident, by reducing both to their lowest terms. For

example, we can say 28844 : 14422 = 2:1; or,

10566 : 7044 = 3:2; or, 57600 : 25200 = 16:7.

393. In order, therefore, to express any relation in the clear-

est manner, it is necessary to reduce it to the smallest possible

numbers. This is easily done, by dividing the two terms of the

relation by their greatest common divisor. For example, to

reduce the relation 57600 : 25200 to that of 16 : 7, we have only

to perform the single operation of dividing the numbers 576 and

252 by 36, which is their greatest common divisor.

394. It is important, therefore, to know how to find the great-

est common divisor of two given numbers ; but this requires a

rule, which we shall explain in the following chapter.

CHAPTER VI.

Of the greatest Common Divisor of two given numbers.

S95. There are some numbers which have no other common
divisor than unity, and when the numerator and denominator

of a fraction are of this nature, it cannot be reduced to a more

convenient form. The two numbers 48 and 35, for example,

have no common divisor, though each has its own divisors.

For this reasor^ we cannot express the relaftion 48 : 35 more

simply, because the division of two numbers by 1 does not

diminish them.

396. But when the two numbers have a common divisor, it is

found by the following rule :

Divide the greater of the two numbers by the less ; next, divide

the preceding divisor by the remainder; what remains in this

second division will afterwards become a divisor for a third divis-

ion, in which the remainder of the preceding division will be the
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dividend. We must continue this operation, till we arrive at a

division that leaves no remainder ; the divisor of this division^ and

canseqtiently the last divisor, will be the greatest common divisor of

the two given numbers.

See this operation for the two numbers 576 and 252.

252) 576 (2
504

72) 252 (3
216

36) 72 (2
72

0.

So that, in this instance, the greatest common divisor is 36.

397. It will be proper to illustrate this rule by some other

examples. Let the greatest common divisor of the numbers

504 and 312 be required.

312) 504 (1
312

192) 312(1
192

120) 192 (1
1:20

72) 120 (1

72

48) 72 (I

48

24) 48 (2
48

0.

So that 24 is the greatest common divisor, and consequentlv

the relation 504 : 312 is reduced to the form 21 : 13.

398. Let the relation 625 : 529 be given, and the greatest

common divisor of these two numbers be required.

Eul. Jllg, 17
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529) 625 (%
529

96) 529 (5
480

49) 96 (1
49

47) 49 (1

47

2) 47 (23
46

1) 2 (2

0.

Wherefore 1 is, in this case, the greatest common divisor,

and consequently we cannot express the relation 6^5 : 529 by

less numbers, nor reduce it to less terms.

399. It may be proper, in this place, to give a demonstration

of the rule. In order to this, let a be the greater and b the less

of the given numbers ; and let d be one of their common divisors

;

it is evident that a and b being divisible by d, we may also

divide the quantities a — 6, a— 2 6, a^ 3 &, and, in general,

a— n 6 by <f.

400. The converse is no less true ; that is to say, if the num-

bers b and a— nb are divisible by rf, the number a will also be

divisible by d. For nb being divisible by d, we could not divide

a— n 6 by d, if a were not also divisible by d.

401. We observe further, that if d be the greatest common
divisor of two numbers, 6 and a— n6, it will also be the great-

est common divisor of the two numbers a and b. Since, if a

greater common divisor could be found than d, for these num-

bers, a and b, that number would also be a common divisor of 6

and a— nb ; and,^ consequently, d would not be the greatest

common divisor of these two numbers. Now we have supposed

d the greatest divisor common to b and a— nb ; wherefore d

must also be the greatest common divisor of a and b»
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402. These three thin.£«5 being laid down, let us divide,

accoitJing to the rule, the greater number a by the less 6 ;

And let us suppose the quotient = n ; the remainder will be

a— nbf which must be less than 6. Now this remainder a — iib

having the same greatest common divisor with b, as the given

numbers a and 6, we have only to repeat the division, dividing

the preceding divisor b by the remainder a— nb; the new

remainder, which we obtain, will still have, with the preceding

divisor, the same greatest common divisor, and so on.

403. We proceed in the same manner, till we arrive at a

division without a remainder ; that is, in which the remainder

is nothing, help be the last divisor, contained exactly a cer-

tain number of times in its dividend ; this dividend will there-

fore be divisible by p, and will have the form mp ; so that the

numbers p, and m p, aie both divisible by p ; and it is certain,

that they have no greater common divisor, because no number

can actually be divided by a number greater than itself. Con-

sequently, this last divisor is also the greatest common divisor

of the given numbers a and b, and the rule, which we laid down^

is demonstrated.

404. We may give another example of the same rule, requir-

ing the greatest common divisor of the numbers 1728 and 2S04»

The operation is as follows :

1728) 2304 (1

1728

576) 1728 (S

1728

0.

From this it follows, that 576 is the greatest common divisor,

and that the relation 1728 : 2304 is reduced to 3 : 4^ that is to

say, 1728 is to 2304 the same as 3 is to 4»
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CHAPTER VII.

Of Geometrical Proportions,

405. Two geometrical relations are eqiiah when their ratios

are equal. This equalit} of two relations is railed a geometrical

proportion ; and we w rite for example, a : 6 = c : </, or a : 6 : : c : J,

to indicate that the relation a : 6 is equal to the relation c:dj

but this is more simjily expressed by saying, a is loO a.^ c to d.

The following is such a prop»)rtion, 8:4=12:6; for the ratio

of the relation 8 : 4 is |, and this is also the ratio of the rela-

tion 12:6.

406. So that a :b=:c:d being a geometrical proportion, the

£C C
ratio must be the same on both sides, and -r = -^ ; and, recipro-

(t c
cally, if the fractions -r and -j are equal, we have a:b::c:d.

407. A geometrical proportion consists therefore of four terms,

such, that the first, divided by the second, gives the same quo-

tient as the third divided by the fourth. Hence we deduce an

important property, common to all geometrical proportion,

which is, that the product of the Jirst and the lust term is alrvays

equal to the product of the second and third ; or, more simply, that

the product of the extremes is equal to the product of the means.

408. In order to demonstrate this property, let us take the

CL C
geometrical proportion a: b= c:df so that -r = ^» If we mul-

bc
tiply both these fractions by 6, we obtain « = -^j and multiply-

ing both sides further by d, we have ad =ibc. Now a d is the

product of the extreme terms, b c is that of the means, and these

two products are found to be equal.

409. Reciproc(dlijf if thefour numbers a,'b, c, d, are such, that

the product of the two extremes a and d is equal to the jJroduct of

the two means b and c, we are certain that theyforvi a geomctn-

cal proportion. For since a d = 6 c, we have only to divide both

sides by b d, which gives us ^ = r-^, or -r = -p and consequent-

ly a : 6 = c : rf.
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410. Thefour itrms of a geometrical proportion^ os a : b = c : d,

may he transposed in different -ways, withont destroying the pro-

portion. For the nile bang always, that the product of the ex-

tremes is equal to theproduct of the means, or a d = b c, we may say :

1«. b : a = d : c ; £«"?• a : c = b : d 5 S*"^- d : b = c : a 5

4thi7. d : c = b : a.

411. Besides these four geometrical proportions, we may de-

dace some others from the same proportion, a : & = c : rf. ire

may say, thefirst term, plus the second, is to the first, as the third

-f thefourth is the third ; that is, a + b : a = c + d : c.

We may further say ; thefirst— the second is to the first as tlx

third — thejourth is to the third, or a— b : a=c— d : c.

For, if we take the product of the extremes and the means,

we have ac— bc = ac—'ad, which evidently leads to the equal-

ity a d = 6 c.

Lastly, it is easy to demonstrate, that a + b : b = c-^d : d

^

and that a— 6 : 6 = c— d : d.

412. All the proportions which we have deduced from a : &=
c : d, may be represented, generally, as fallows :

ma -i-nb : pa + qbz=mc -^-nd \ pc + qd.

For the product of the extreme terms \s,mpac-\-npb c-\-mqad

+nqbd; which, since ad=bc, becomes mpac+ npbc-i-m qbc

+ nqbd. Further, the product of the mean terms is m p a c +
m qb c-\-np ad -\-nqbd; or, since a d = b c, it \s mp ac + m qb c

^iipbc + nqbd ; so that the two products are equal.

413. It is evident, therefore, that a geometrical proportion

being given, for example, 6 : 3 = 10 : 5, an infinite number of

others may be deduced from it. We shall give only a few :

,

3 : 6 = 5 : 10; 6 : 10 = 3 5;9:6 = 15:10;

3:3 = 5: 5 j 9 : 15= 3 : 5 ; 9 : 3 = 15 : 5.

414. Since, in every geometrical proportion, the product of

the extremes is equal to the product of the means, we may,

when the three first terms are known, find the fourth from them.

Let the thi-ee first terms bp 24 : 15 =40 to as the product

of the means is here 600, the fourth term multiplied by the first,

that is by 24, must also make 600 ; consequently, by dividing

600 by 24, the quotient 25 will be the fourth term required, and

the whole proportion will be 24 : 15 = 40 : 25. In general,



1S4 Mgebra, Sect. 3.

therefore, if the three first terms are a : 6 = c : . . . . we put d

for the unknown fourth letter j and since a d = 6 c^ we divide

be
botli sides by a, and have d= —. So that the fourth term is

be
z= — , and isfouhd by multiplying the second term by the third, and

dividing that product by the Jirst term,

415. Tliis is the foundation of the celebrated Rule of Three in

arithmetic ; for what is required in that rule ? We suppose three

nuiiihers i^iven, and seek a fourth, which may be in geometrical

prttportion ; so that the first may be to the second, as the third

is to the fourth.

416. Some particular circumstances deserve attention here.

First, if in two proportions the first and the third terms are the

same, as in a : 6 = c : d, and a :f=c : g, I say that the txvo

second and the two fourth terms will also be in geometrical propor-

tion, and that b : d =/ : g. For, the first proportion being

transformed irito this, a : c = 6 : rf, and the second into this,

a : c—f : g^ it follows that the relations 6 : d and/: g areequul,

since each of them is equal to the relation a : c. For example,

if 5 : 100 =2 : 40, and 5 : 15 = 2 : 6, we must have 100 : 40

= 15:6.

417. But if the two proportions are such, that the mean terms

are the brwv in both, 1 say that the first terms will be in an

inverse proportion to the fourth terms. That is to say, if a : 6

= €:(/, and/: b = c : g, it foUows that a :f=g : d. Let the

proportions be, tor example, 24 : 8 = 9 : 3, and 6 : 8 = 9 : 12,

"we have 24 : 6= 12 : 3. The reason is evident ; the first pro-

portion ^ives ad = bc; the second gives/^ = 6e; therefore,

a d =fgf and a :f=g : d, or a : g i:f : d,

418. Tv^o proportions being given, we may always produce

a new one, by separately multiplying the first term of the one

by the first term of the other, the secojid by the second, and so

on, with respect to the other terms. Thus, the proportions a : b

=:c : d and e :/= g : h will furnish this, a e : bf=. eg : d h. For

the first giving ad = b c, and the second giving e h —fgi we have

also adeh — b cfg. Now a deh'is the product of the extremes,

and b cfg is the product of the means in the new pro])ortion } so

that the two products being equal, the proportion is true.
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419. Let the two proportions be, for example, 6:4 = 15:10

and 9 : 12 = 15 : 20, their combination will give the proportioa

6 X 9 : 4 X 12 = 15 X 15 : 10 X 20,

or 54 : 48 = 225 : '200,

or 9 : 8 = 9 : 8.

420. We shall observe lastly, that if two products are equal,

ad = 6c, we may reciprocally convert thi§ ejjuality into a geo-

metrical proportion ; lor we shall alwa> shave one of the factors

of the first pi*odurt, in the same proportion to one of the factoi'S

of the second product, as the other factor of the stT«»nd product

is to the other factor of the first product ; that is, in the piesent

case, a : c = b : df or a : b =^ c : d. Let 3 x 8 = 4 x 6» and we
may form from it this proportion, 8 : 4 = 6 : 3, or this, 3:4 =
6 : 8. Likewise, if 3 x 5 = 1 X 15, we shall ha\e

3 : 15 = 1 : 5, or 5 : 1 = 15 : 3, or 3 ; 1 = 15 : 5.

CHAPTER VIIL

Observations on the Rules of Proportion and their utility,

421. This theory is so useful in the occurrences of common
life, that scarcely any pei'son can do without it. 1 here is always

a proportion between prices and commodities ; and when diflTfr-

ent kinds of money ai*e the subject of exchange, the whole con-

sists in determining their mutual relations. The examples,

furnished by these reflections, \\ill be \er\ proper for illustratiiig

the principles of proportion, and shewing their utility by the

appli( ation of them.

422. If we wished to know, for example, the relation between
two kinds of money ; suppose an old Ion is d'or and a ducii! ; we
must first know the value of those pieces, when compai-ed to

others of the same kind. Thus, an old louis being, at Berlin,

worth 5 rix dollars* and 8 dracb(ns, and a ducat bt ing worth
S rix dollars, we may reduce these two values to one denomina-
tion ; either to rix dollars, which gives the proporti in 1 L : l D

• The rix dollar of Germany is valued at 92 cents 6 mills, and a draclun is

one twenty-fourth part of a rix dollar.



136 Mgebra, Sect. S.

= 5-1 R :
'3 R, or = 16 : 9 ; or to drachms, in which case we

have 1 L : 1 D = 128 : 72 = 16 : 9. These proportions evi-

dently give the true relation of the old louis to the ducat ; tor

the equality of tlie products of the extremes and the means gives,

in both, 9 louis = 16 ducats ; and, by ntcans of this comparison,

we may change any sum of old louis into ducats, and vice versa.

Suppose it were required to tell how many ducats there are in

1000 oid louis, we have this rule of three. If 9 louis are equal

to 16 ducats, what are 1000 louis equal to ? The answer will be

1777^ du< ats.

If, on the contrary, it were required to find how many old

louis d'or there are in 1000 ducats, we have the following pro-

portion. If 16 ducats are equal to 9 louis j what are 1000

ducats equal to? Jinswer, 5S2| old louis d'or,

493. Here, (at Petersburg,) the value of the ducat varies,

and depends on the course of exchange. Tiiis course determines

the value of the ruble in stivers, or Dutch half-pence, 105 of

which make a ducat.

So that when the exchange is at 45 stivers, we have this pro-

portion, 1 ruble : 1 ducat = 45 : 105 = 3 : 7 j and hence this

equality, 7 rubles = 3 ducats.

By this we snail find the value of a ducat in rubles ; for 3

ducats : 7 rubles = 1 ducat : Jinswer, 2^ rubles.

If the exchange vvere at 50 stivers, we should have this pro-

portion, 1 ruble : 1 ducat = 50 : 105 = 10 : 21, which would

give 21 rubles = 10 ducats ; and we should have 1 ducat = S-^y

rubles. Lastly, when the exchange is at 44 stivers, we have I

ruble ; 1 dncat = 44 : 105, and consequently 1 ducat = 2^1

rubles = 2 rubles 38^^^ ( opecks.*

424. It follows from this, that we may also compare different

kinds of n»oncy, which we have frequently occa.sion to do in bills

of exchange. Suppose, for example, that a person of this place

has 1000 rubles to be paid to him at Berlin, and that he wishes

to known the value of this sum in ducats at Berlin,

The exchange is liere at 47|, that is to say, one ruble makes

471 stivers. In Holland, 20 stivers make a florin ;
2i Dutch

floiins make a Dutch dollar. Further, the exchange of Holland

• A copeck is -jj^j- part of a ruble, as is easily deduced from the above.
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with Berlin is at 142, that is to say, for 100 Dutch dollars, 14£

dollai-s are paid at Berlin. Lastly, the ducat is worth 3 dollars

at Berlin.

425. To resolve the questions proposed, let us proceed step

by step. Beginning therefore with the stivers, since 1 ruhle =
47i stivers, or 2 rubles = 95 stivers, we shall have 2 rubles : 95

stivers = 1000 : . . . . Answer^ 47500 stivers. If we go fur-

ther and say 20 stivers : 1 florin = 47500 slivers: .... we shall

have 2375 florins. Further, 2^ florins = 1 Dutch dollar, or 5

flt»rins = 2 Dutch dollars ; we shall therefore have 5 florins: 2

Dutchjiollars = 2375 florins : . . . . Ansxver, 950 Dutch dollars.

Then taking the dollars of Berlin, according to the exchange

at 142, we shall have 100 Dutch dollars : 142 dollars = 950 :

the fourth term, 1349 dollars of Berlin. Let us, lastly, pass

to the ducats, and say 3 dollars : 1 djcat = 1349 dollare : . . . .

Answer^ 449| ducats.

426. In order to render these calculations still more complete,

let us suppose that the Berlin banker refuses, under some pre-

text or other, to pay this sum, ajid to accept the bill of exchange

without five per cent, discount ; that is, paying only 100 instead

of 105. In that case, we must make use of the following pro-

portion ; 105 : 100 = 449§ : a fourth terra, which is 428^|
ducats.

427. TVe have shewn that six operations are necessary, in

making use of the Rule of Tiiree ; but we can greatly abridge

those calculations, by a rule, which is called the Rule of Reduc-

tion. To explain this rule, we shall fii*st consider tlie two

antecedents of each j)f the six operations.

I. 2 rubles : 95 stivers.

II. 20 stivei-s 1 Dutch flor.

IIL 5 Dutcli flor. 2 Dutch doll.

rV. 100 Dutch doll. : 142 dollars.

V. 3 doUai-s : 1 Ducat.

YI. 105 ducats : 100 ducats.

If we now look over the preceding calculations, wc shall ob-

serve, that we have always multiplied the given sum by the

second terms, and that we have divided the products by the

first ; i^^ is evident therefore, that we shall aiTivc at the same
Eul. ALg. 18
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results, by multiplying, at once, the sum proposed by the pro-

duct of all the second terms, and dividing; by the product of all

the fust terms. Or, which amounts to the same thing, that we
have only to make the following proportion ; as the product of

all the first terms is to the product of all the second terms, so is

the given number of rubles to the number of ducats payable at

Berlin.

428. This calculation is abridged still more, when amongst

the first terms some are found that have common divisors with

some of the second terms ; foi*, in this case, we destroy those

terms, and substitute the quotient arising from the division by

that common di\isor. The preceding example will, in this

manner, assume the following form.*

Rubles^. : 19*^ sti v. 1000 rubles.

^, : 1^ Dutch flor.

/. : z Dutch dollars.

100. : 142 dollars.

3. : 1 ducat.

//(/,21. : ^?6^ ducats.

sf63C/or : 2698 = lOJgfef :—

7) 26980.

9) 3854 (2

428 (2. Jlnswer, 428|f ducats.

429. The method, which must be observed, in using the rule

of reduction, is this j we begin with the kind of money in rpies-

tion, and compare it vvith another, wiiich is to begin the next

relation, in which we compare this second kind with a third,

and so on. Each relation, therefore, begins with the same kind,

as tiie preceding relation ended with. This operation is con-

tinued, till we arrive at the kind of motiey which the Kijswer

requires j and, at the end, we reckon the fractional remainders.

• Divide the 1st and 9tli by 2, the 3d and 12th by 20, the 5lh and 12th

(which is now 5) by 5, also the 2d and Hth by 5.
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430. Other examples are added to facilitate the practice of

tliis calculation.

If ducats gain at Hamburg 1 per cent, on two dollars banco ;

that is to say, if 50 ducats are worth, not 100, but 101 do|!ai-s

banco ; and if the exchange betsveen Hamburg and Konigs-

berg is 1 19 dratbtns of Poland ; that is, if 1 dollar banco gives

119 Polish drachms, how many Polish florins will 1000 ducats

give ?

30 Polish drachms make 1 Poli^^h florin.

Ducat I, : 3^ doll. B°. 1000 due.M50

1

50

101 doll. B°.

119 Pol. dr.

I Pol.fior.

15j0f^ 12019 = lO0Brdnc. : , .. .

S) 120190.

5) 40063 (1.

8012(3. Jlnswer, 80 1 2| P. fl.

431, We may abridge a little further, by wiiting the number,

which forms the third terra, above the second row ; for then the

product of the second row, divided by the product of the first

row, will give the answer sought.

Q}iestion, Ducats of Amsterdam are brought to Leipsirk^

having in the fornier city the value of 5 flor. 4 stivers currt'iil

;

that is to say, 1 ducat is worth 104 stivers, and 5 ducats are

worth 26 Dutch florins. If, therefore, the agio of the bank* at

Amsterdam is 5 per cent., that is, if 105 currency are equal to

100 banco, and if the exchange from Leipsirk to Amsterdam,

in bank money, is SSi per cent, that is, if for 100 d illars we

pay at Leipsick 13c^ dol!ai"s; lastly, 2 Dutch dollars making

5 Dutch florins ; it is required to find how many dollars we
must pay at Leipsick, according to' tncse exchanges, for 1000

ilucats ?

• The difference of Talue between bank money and current money.
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h^f ducats.

Pucats ^

I

26 flor. Dutch curr.

4, Wf ajdj^fflor. Dutch banco.

' 533 doll, of Leipsick.

^ doll, banco.

21 3) 55432 (1,

7118477(4.

'2639.

Mswer, 263G|| dollars, or 2639 dollars and 15 drachms.

CHAPTER IX.

Of Compound Relations*

432. Compound relations are obtained, by multiplying the

terms of two or more relations, the antecedents by the antece-

dents, and the consequents by the consequents; we say then,

that tlie relation bet\»een those two products is compounded of

the relations ,(^iven.

Thus, rhe relations a : &, c : d, e : f, give the compound rela-

tion ace : bdj.*

433. A relation continuing always the same, when we divide

both its terms by the same number, in order to abridge it, wa
may greatly fa(ilitate the above composition by comparing the

antecedents and the consequents, for the purpose of making

sufh redu( tions as we performed in the last chapter.

For example, we find the compound relation of the following

given relations, thus

;

* Each of these three ratios is said to be one of the roots of the compound

ratio.
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Relations given.

12 : 25, 28 : S3, and 55
-. 56.

2 : 5.

So that 2 : 5 is the compound relation required.

454. The same operation is to be performed, when it is re-

quired to calculate generally by letters ; and the most remark-

able case is that, in which each antecedent is equal to the

consequent of the preceding relation. If the given relations are

axh
b:c
c : d

d : e

e : a

the compound relation is I : 1.

455. The utility of these principles will be perceived, when

it is observed, that the relation between two square fields is

compounded of the relations of the lengths and the breadths.

Let the two fields, fur example, be A and B ; let A have 500

feet in length by 60 feet in breadth, and let the length of B be

860 feet, and its breadth 100 feet ; the relation of the lengths

will be 500 : 360, and that of the iJreadths 60 : 100. So that

•we hare

^&6. 5 : 6, /^/(.T - 7^-

5 : 6

Wherefore the field A is to the field B, as 5 to 6.

436. AnQther example. Let the field A be 721 feet long, 88
feet broad j and let the field B be 660 feet long, and 90 feet

hroad ; the relations will be compounded in the following man-
ner.

Relation of the lengths, TW* ^ - 15,^,6^6
Relation of the breadths, ^99, ^,2 : f^

Relation of the fields A and B, l« : 15.
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437. Further, if it be required to compare two chambers with

respect to the space, or contents, we observe that that relation

is compounded of three relations ; namely, of that of the

lengths, that of the breadths, and that of ^he heights. Let there

be, for example, the chamber A, whose length = 36 feet, breadth

= 16 feet, and height =14 feet, and the chamber B, whose
length = 42 feet, breadth = 24 feet, and height = 10 feet ; we
shall have these three relations ;

F'l' the length ^,/^
Fo' the breadth /p^^ 2

For the height /fi ^

4 : 5

So that the contents of the chamber A : contents of the cham-

ber B, as 4 : 5.

4?-8. When the relations, which we compound in this manner,

are equal, there result multiplicate relations. Namely, two

equal relations give a duplicate ratio or ratio of the squares;

three equal relations produce the triplicate ratio or ratio of the

cubeSf and so on, for example, the relations a : b and a : b give

the compound relation aaibb; wherefore we say, that the

squares are in tlie duplicate ratio of their roots. And the ratio

a : b multiplied thrice, giving the ratio a' : 6^, we say that the

cubes are in the triplicate ratio of their roots.

439. Geometry teaches, that two circular spaces are in the

duplicate relation of their diameters ; this means, that they are

to each other as the squares of their diameters.

Let A be a circular space having the diameter = 45 feet, and

B another circular space, whose diameter = 30 feet ; the first

space Vk'ill be to the second, as 45 x 45 to 30 x 30; or, com-

pounding these two equal relations,

//,/,5 : 2,y,^.

9 : 4.

Wherefore the two areas are to each other as 9 to 4.

440. It is also demonstrated, that the solid contents of spheres

are in the ratio of the cubes of the diameters. Thus, the diame-



Chap. 1). Of Ratios and Proportioru 145

ter of a globe A, being 1 foot, and the diameter of a globe B,

being -2 feet, the solid contents of A will be to those of B, as

1» : 2'; or, as 1 to 8.

If therefore, the spheres are formed of the same substance,

the sphere B will weigh 8 times as much as the sphere A.

441. It is evident, that we may, in this manner, find the

weight of cannon balls, their dianjeters, and the weight of one,

being given. For example, let there be the ball A, whose

diameter = 2 inches, and weight = 5 pounds ; and, if the

weight of another ball be required, whose diameter is 8 inches,

we have this proportion, Q^ : Q^ z= 5 to the fourth term, 320

pounds, which gives the weight of t!ie ball B. For another ball

C, whose diameter =15 inches, we should have,

2^ : 153 = 5 : Answer, 2109| lb.

o. c
442. "When the ratio of two fractions, as -r : tj is requir-

a

ed, we may always express it in integer numbers ; for we have

only to multiply the fractions by 6 d, in order to obtain the

ratio ad -.hCf >\hich is equal to the other ; from which results the

proportion — : — = ad: b c. If, therefore, ad and h

c

have com-
l) a

moM divisors, the ratio may be reduced to less terms. Thus,
1»-: If = 15 X 36 : 24 X 25 = 9 : 10.

443. If we wished 10 know the ratio of the fractions — and —

,

a b

it is evident, that we shoiJd have — : -r = b : a : w hich is ex-
a

pressed by saying, that tn'o fractions, uhich have unitij for their

jiumtrator, are in the reciprocal, or inverse ratio of their denomi-

nators. The same may be said of two fractions, which have any
c c

eommon numerator; for — : — = 6 : a. But if two fractions have

a b
their denominators equal, as — : —, therj are in the direct ratio of

the numerators ; namely, as a : 6. Thus, | : ^j = ^^-jj = 6:S
= £ : 1, and y : y = 10 : 15, or, = 2:3.

444. It is observed, that in the free descent of bodies, a body
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falls 16* feet in a second, that in two seconds of time it falls

64 feet, and that in three seconds it falls 144 feet ; hence it is

concluded, that the heights are to one another as the squares

of the times ; and that, reciprocally, the times are in the sub-

duplicate ratio of the heights, or as the square roots of the

heights.

If, therefore, it be required to find how long a stone must

take to fall from the height of 2304 feet ; we have 16 : 2304 = 1

to the square of the time sought. So tlmt the square of the time

sought is 144; and, consequently, the time required is 12 seconds.

445. It is required to find how far, or through what height,

a stone will pass, by descending for the space of an hour ; that

is, 3600 seconds. We say, therefore, as the squares of the times,

that is, 1* : 3600' ; so is the given height =16 feet, to the

height required.

1 : 12960000 = 16 : . . . .207360000 height required.

16

77760000

1296

207350000

If we now reckon 19200 feet for a league, we shall find this

height to be 10800 ; and, consequently, nearly four times greater

than the diameter of the earth.

446. It is the same with regard to the price of precious stones,

which are not sold in the proportion of their weight j every

body knows that their prices follow a much greater ratio. The

rule for diamonds is, that the price is in the duplicate ratio of

the weight, that is to say, the ratio of the prices is equal to the

square of the ratio of the weights. The weight of diamonds is

expressed in carats, and a carat is equivalent to 4 grains ; if,

therefore, a diamond of one carat is worth 10 livres, a diamond

of 100 carats will be worth as many timos 10 livres. as the

square of 100 contains 1 ; so that we shall have, according to

the rule of three,

15 is used in the original, as expressing the descent in Paris feet. It is

here altered to Eaglisli feet.
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1» : 100» = 10 livres,

or 1 : 10000 = 10 : . . . . Answer, 100000 livres.

There is a diamond in Portugal, which weighs 1680 carats ; its

price will be found, therefore, by making
1» : 1680« = 10 liv : or

1 : 2822400 = 10 : 28224000 liv.

447. The posts or mode of travelling in France furnish exam-

ples of compound ratios, as the price is according to the com-

pound ratio of the nuniber of horses, and the number of leagues,

or posts. For example, one horse costing 20 sous per post, it

is required to find how much is to be paid for 28 iiorses and 41

posts.

We write first the ratio of horses, 1 : 28,

Under this ratio we put that of the stages or posts, 2 : 9,

And, compounding the two ratios, we have 2 : 252,

Op, 1 : 126 = 1 livre to 126 francs or 42 crowns.

Another question. If I pay a ducat for eight horses, for 3

German miles, how much must I pay for thirty horses for four

miles ? The calculation is as follows :

^^: ^,^,^1

f'

1 : 5, = 1 ducat : the 4th term, which will be

5 ducats.

448. The same composition occurs, when workmen are to be

paid, since those payments generally follow the ratio compound-

ed of the number of workmen, and that of the days which they

have been employed.

If, for example, 25 sous per day be given to one mason, and

it is required to find what must be paid to 24 masons who have

worked for 50 days ', we state this calculation ;

1 : 24

1 : 50

1200 = 25 : .... 1500 francs.

25

20)30000(1500.

Eul. Alg, • 19
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As, in such examples, five things are given, the rule, which

serves to resolve them, is sometimes called, in books of arith-

metic. The Rule of Five.

CHAPTER X.

Of Geometrical Progressions.

449. A SERIES of numbers, which are always becoming a

certain number of times greater or less, is called a geometrical

progression, because each term is constantly to the following one in

the same geometrical ratio. And the number which expresses

how many times each term is greater than the preceding, is

called the exponent. Thus, when the first term is 1 and the

exponent = 1, the geometrical progression becomes.

Terms 1234567 89 &c.

Prog, 1,2, 4, 8, 16, 32, 64, 128, 256, &c.

the numbers 1, 2, 3, &c. always marking the place which each

term holds in the progression.

450. If we suppose, in general, the iir^f^ term =«, and the

exponent = 6, we have the following g^oinetrical progression ;

1, 2, 3, 4, 5, 6, '7, 8 . . . . n

Prog, a, ah, a b^, ah^, ah*, ah^, ah^, ah'' , , , , ab^~^.

So that, when this progression consists of n terms, the last

term is = a 6"~*. We must remark here, that if the exponent 6

be greater than unity, the terms increase continually ; if the ex-

ponent 6=1, the terms are all equal ; lastly, if the exponent b

be less than 1, or a fraction, the terms continually decrease.

Thus, when a = 1 and 6 = |, we have this geometrical progres.

sion ; 11111 1 1 1 Jtr/..
^' 2' T' T» T(5"' •3 2' TIT' Tzf °^^*

451. Here therefore we have to consider ;

I. The first term, which we have called a.

II. The exponent, which we call 6.

' III. The number of terms, which we have expressed by n.

IV. The last term, which we have found = a 6"~\

So that, when the three first of these are given, the last term is
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found, by multiplying the n— 1 power of b, or 6"~S by the first

term a.

If, therefore, the 50th term of the geometrical progression

1, 2, 4, 8, &:c. were required, we should have a = 1, 6 = 2, and

n=50; consequently the 50th terra = 2*^. Now 2' being =5 12 j

2^'^ will be = 1024. Wherefore the square of 2i*>, or 22«, =
1048576, and the square ' f this number, or 1099511627776 =
2*°. Multiplying therefore this value of 2*° by 2', or by 512,

we have 2*^ equal to 562949953421312.

452. One of the principal questions, which occurs on this

subject, is to find the sum of all the terms of a geometrical pro-

gression ; we shall therefore explain the method of doing this.

Let there be given, first, the following progression, consisting of

ten terms

;

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

the sum of which we shall represent by s, so that s = 1 -f. 2 4.

4 + 8 + 16 + 32 + 64 + 128+256 + 512; doubling both sides,

we shall have 2 s = 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 +
512 + 1024. Subtracting from this the progression represented

by s, there remains s = 1024 — 1 =: 1023 j wherefore the sum
required is 1023.

453. Suppose now, in the same progression, that the number
of terms is undetermined and = n, so that the sum in question,

or s, = 1 + 2 + 2» + 23 + 2* 2"-^ If we multiply by 2,

we have 2 s = 2 + 2* + 2^ +2* .... 2", and subtracting from
this equation the preceding one, we have s = 2"— 1. We see,

therefore, that the sum required is found, by multiplying the last

term, 2"~S by the exponent 2, in order to have £", and subtract-

ing unity from that product.

454. This is made still more evident by the following exam-
ples, in which we substitute successively, for n, the numbers 1, 2,

3, 4, &c.

^1 = 1; 1+2 = 3; 1+2 + 4 = 7; 1+2+4+8 = 15;
1 +2 + 4 +8 + 16 = 31; 1+2 +4 + 8 + 16 + 32 = 63, &c.

455. On this subject the following question is generally pro-

posed. A man offers to sell his horse by the nails in his shoes,

which are in number 32 ; he demands 1 Hard for the first nail.
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2 for the second, 4 for tlie third, 8 for the fourtli, and so on, de-

manding for each nail twice the price of the preceding. ]t is

required to find what would he the price of the horse?

This questioji is evidently reduced to finding the sum of all

the terms of the geometrical pi'ogression 1, 2, 4, 8, 16, &:c. con-

tinued to the 32d term. Now this last term is S^i . a,jt]^ ^g ^^
have already found S^o _ io48576, and S^" = 1024, we shall

have 220 X s^" =23" equal to 1073741824; and multiplying

again by 2, the last term 2^1 = 2147483648 ; doubling there-

fore this number, and su!>tracing unity from the product, the

sum required becomes 4294967^95 liards. These Hards make
1073741823^ sous, and dividing by 20, we have 53687091 livres,

3 sous, 9 deniers for the sum required.

456. Let the exponent now be = 3, and let it be required to

find the sum of the geometrical progression 1, 3, 9, 27, 81, 243,

729, consisting of 7 terms. Suppose it = s, so that

S = 1 -f 3 + 9 + 27 + 81 + 243 + 729 ;

we shall then have, multiplying by 3,

3 s = 3 + 9 + 27 + 81 + 243 + 729 + 21 87 ;

and subtraring the preceding series, we have 2s = 2187— 1 =
2186. So ihat the double of the sum is 2186, and consequently

the sum required = 1093.

457. lu the same progression, let the number of terms = n, and

the sum = s ; so that 5=1+3 + 32+33 +3* + . . . .
3»-^

If we multiply by 3, we have 3s=3 + 32+33 +3^ + ... . 3".

Subtracting from this the value of s, as all the terms of it,

except the first, destroy all the terms of the value of 3 s, except

3**—

t

the last, we shall have 2s=3" — 1; therefore s =—-— . So

that the sum required is found by multiplying the last term by

3, subtracting 1 from tlie product, and dividing the remainder

by 2. This will appear, also, from the following examples j

1 = 1; 1 +3 = !^li=i=4; 1 +3 + 9 =^^ = 13;

1 + 5 + 9 + 27 = S^^J""^ =40; 1 + 3 + 9 + 27 + 81 =

"X^'-^ = 121.
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458. Let us now suppose, generally, the first term = a, the

exponent = 6, the number of terms = n, and their sum = s, so

that

s=:a = nb + ah* +ah^ + ah* +. , . . a 6"-^

If we multiply by h, we have

bs=: ah + a62 + ab^ + oft* + aft* +. ... aft*, and subtract-

ing the above equation, there remains (6— 1 ) s = ab'^ — a;

, a i,"— a ^
whence we easily deduce the sum required s = - _ . Conse-

queniliff the sum cf any geometrical progi-ession is found by multU

plying the hist term by the exponent of the progression, subtracting

thejirst term from the product, and diviaing the remainder by the

exponent minus unity.

459. Let there by a geometrical progression of seven terms,

of which the fiist = 3 ; and let the exponent be = 2 : we shall

then have a = 5, 6 = 2, and n = 7 ^ wherefore the last term =
3 X 2*, or 3 X 64 = 192; and the whole progression will be

S, G, 12, 24, 48, 96, 192.

Further, if we multiply the last term 192 by the exponent 2,

we have 384; subtracting the first term there remains 381;

and dividing this by 6 — 1, or by 1, we have SSI for the sum of

the whole progression.

460. Again, let there be a geometrical progression of six

terras ; let 4 be the first, and let the exponent be = |. The
progression is

A « q 27 81243

If we multiply this last term 2*3
]yy (jje exponent |, we shall

have 'y\? ; the subtraction of the first term 4 leaves the remain-

der Y/* which divided by 6 — I = |^, gives *|* = 83|.

461. When the exponent is less than 1, and consequently,

when the terms of the progression continually diminish, the sum
of such a decreasing progression, which would go on to infinity,

may be accurately expi-essed.

For example, let the first term = 1, the exponent = 1, and

the sum = s, so that

« = 1 + i + ^ + 4 + tV + 3V + ^'* + &c.

ad infinitum.
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If we multiply by 2, we have

2s = £ + | + i + J+T.V+7V +&C.
ad infinituin.

And, subtracting the preceding progression, there remains

s = 2 for the sum of the proposed infinite progression.

462. If the first term = 1, the exponent = 4» and the sum
= 8; so that

s = 1 -I- -I + I + ^V + TT + *^C' *^ infinitum.

Multiplying the whole by 3, we have

3s = 3-f.l-f|4-^-f.J^-f &c. ad infinitum ;

and subtracting the value of s, there remains 2 s = 3 j wherefore

the sum s = 1|.

463. Let there be a progression, whose sum = s, first term

= 2, and exponent = | ; so that s = 2+|+|+|| + -j^f +
&c. ad infiiiitum.

Multiplying by 4, we have | s = | + 2 + | + | + || + ^s^i

-f &c, ad infinitum. Subtracting now the progression s, there

remains ^ s = | ; wherefore the sum required = 8.

464. If we suppose, in general, the first term = a, and the

exponent of the progession = — , so that this fraction may be

less than 1 , and consequently c greater than b 5 the sum of the

progression carried on, ad infinitum, will be found thus 5

^, . a 6 afe^ aft^ a6* „

Make s = a + 1
f-
—_+__ + &c.

Multiplying by — , we shall have

b ab ab* ah^ ab* ^ 1 • /. •*— s= — +—X- + 1 r + &c. ad infinitum.
c c c* c^ c*

And, subtracting this equation from the preceding, there re-

mains (1 )s = a.
^ c'

Consequently s = r-

c

If we multiply both terms of this fraction by c, we have

s— f^. The sum of the infinite geometrical progression
c—-b
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proposed is, therefore, found by dividing the first term oby 1

minus the exponent, or by multiplying the first term o by the

denominator of the exponent, and dividing the product by the

same denominator diminished by the numerator of the exponent.

465, In the same manner, we find the sums of progressions,

the terms of which are alternately affected by the signs + and

—. Let for example,

ah ah^ ah^ ab* „

Multiplying by —, we have

b _ah ah^ ah^ oft* -,

c ~ c c^ ~c^ c*

And, adding to this equation to the preceding, we obtain (1 ^

—

)s

a
= a. Whence we deduce the sum required s = / ? or s =

c + &
466. We see, then, that if the first terra a = 4, and the expo-

nent = |, that is to say, 6=2 and c = 5, we shall find the sura

of the piDgression ^^^\ ^ _y^ + ^y^ + &c. = 1 ; since, by

subtracting the exponent from 1, there remains |. and by divid-

ing the fir'st term by that remainder, the quotient is 1.

Further, it is evident, if the terms be alternately positive and

negative, and the progression assume this form ;

the sum will be

1 + b-i - 7

c

467. Mother example. Let there be proposed the infinite

progression.

The first term is here ^\, and the exponent is ^^^. Subtract-

ing this last from 1, there remains j\, and, if we divide the

first term by this fraction, we have | for the sum of the given

progression So that taking only one term of the progression,

namely -y^, the error would be t^^.



152 Algehra. Sect. 3.

Taking two terras -j^^ + t¥7 = Tinr» *he*'e would still be

wanting -^^^ to make the sum =
-J.

468. Jlnother example. Let there be given the infinite pro-

gression.

The first term is 9, the exponent is ^^. So that 1, minus the
9

exponent, = -j?^ ; andX = 10 the sum required.

This series is expressed by a decimal fraction, thus 9,9999999,

&c.

CHAPTER XI.

Of Infinite Decimal Fractions.

469. It will be very necessary to shew how a vulgar fraction

may he transformed into a decimal fraction ; and, conversely,

how we may express the value of a decimal fraction by a vulgar

fraction.

470. Let it be required^ in general, to change thefraction t-, into

a decimal fraction ; as this fraction expresses the qtiotient of the

division of the numerator a by the denominator b, let us write,

instead of a, the quantity a,0000000, whose value does not at all

differfrom that of a, since it contains neither tenth parts, nor hun-

dredth partSf ^c. Let us now divide this quantity by the number b,

according to the common rules of division, observing to put the point

in the proper place, which separates the decimal and the integers.

This is the whole operation, which we shall illustrate by some

examples.

Let there be given first the fraction |, the division in deci-

mals will assume this form,

£) 1,0000000 _ 1

0,5000000
"~ 2"'

Hence it appears, that | is equal to 0,5000000 or to 0,5 j

which is sufficiently evident, since this decimal fraction repre-

sents -Z^,
which is equivalent to |.
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471. Let I be the given fraction, and we have,

3) 1.0000000 - 1^
&c. =-.

0}533.">333

This shews, that the decimal fraction, whose value is = |,

cannot, strictly, ever be discontinued, and that it goes on ad

infinitum, repeating always the number 3. And, for this reason,

it has been already shewn, that the fractions j\ + ^|^ -f j-q%-^

-h To #0 ^^' ^^ infinitum, added together, make |.

The decimal fraction, which expresses the value of |, is also

continued ad infinitum ; for we have,

5) 2,0000000 , 2
"^

^ . . . . . &c. = —.
0,obt)bObb 3

And besides, this is evident from what we have just said,

because f is the double of -i.

472. If ^ be the fraction proposed, we have

4) 1.0000000 _ 1

0,2500000 ^* — 4*

So that 1 is equal to 0,2500000, or to 0,25 j and this is evi-

dent, since ^\ +^ = ^%'^ = |.

In like manner, we should have for the fraction |,

4) 3,0000000 _ 3

0,7500000
""

i"'

So that 1 = 0,75 ; and in fact ^\ + ^lo = tVV = I-

The fraction A is changed into a decimal fraction, by making

4) 5.0000000 _ 5

l,2JO0O00
~" 4*

Nowl+^Vo =1-
473. In the same manner, | will be found equal to 0,2; | =

0,4 ; I = 0,6 ; 4 = 0,8 ; | = 1 ; f = 1,2, &C.

"W hen the denominator is 6, we find | = 0,1666666, &c. which

is equal to 0,666666 — 0,5. Now 0,666666 = |, and 0,5 = |^,

wherefore 0,1666666 = • — i = |.

We find, also, | = 0,353333, &c. = ^ ; but f becomes

0,5000000 = |. Further, « = 0,833333 = 0,333333 + 0,5,

that is to say, -j + i = f •

474. When the denominator is 7. the decimal fractions be-

come more complicated. For example, we find 4 = 0,142857,

however it must be observed, that these six figures are repeated

Eul. Als. 20
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continually. To be convinced, therefore, that this decimal

fraction precisely expresses the value of |, we may transform it

into a geometrical progression, wiiose first term is = ^i^YAViy
and the exponent = t-o^t^Vo^oj ^'^^j consequently, the sum

(art. 464)= -121^^- (multiplying both terms by 1000000)
^ Toooooo— 1428*7 1

4:5. We may prove, in a manner still more easy, that the

decimal fraction which we have found is exactly = y J for sub-

stituting for its value the letters, we have

S = 0,142857142857142857, &C.

10 S = 1, 42857142857142857, &c.

100 S = 14, 2857142857142857, &c.

1000 s = 142, 857142857142857, &;c.

10000 s = 1428, 57142857142857, &c.

100000 s = 14285, 7142857142857, &c.

1000000 s = 142857, 142857142857, &C.

Subtract s= 0, 142857142857, &c.

999999 s = 142857.

And, dividing by 999999, we have s = •^|||||- = \. Where-

fore the decimal fraction, which was made = s, is = \.

476. In the same manner |- may be transformed into a deci-

mal fraction, which Vfill be 0,28571428, &c. and this enables us

to find more easily* the value of the decimal fraction which we
have supposed = s; because 0,28571428 &c. must be the double

of it, and, consequently, = 2 s. For we have seen that

100 s — 14,;2B571428571 &C.

So that subtracting 2 s = 0,28571428571 &c.

there remains 98 s = 14

wherefore s = |.| = |,

We also find ^ = 0,42857142857 &c. which, according to our

siipposition, must be = 3 s ; now we have found that

10 s = 1,42857142857 &c.

So that subtracting 3 s = 0,42857142857 &c.

wc have 7 s = 1, wherefore s = |.
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477. When a proposed fraction, therefore, has the donomina-

tor 7, the decimal fraction is infinite, and 6 figures are con-

tinually repeated. The reason is, as it is easy to perceive, that

when we continue the division we must return, sooner or later,

to a remainder which we have had already. Now, in this divis-

ion, 6 diffeient numbers only can form the remainder, namely,

1, 2, 3, 4, 5, 6 ; so that, after the sixth division, at furthest, the

same figures must return ; but when tlie denominator is such as

to lead to a division without remainder, these cases do not

happen.

478. Suppose, now, that 8 is the denominator of the fraction

proposed j we shall find the following decimal fractions ;

I = 0.125 J I = 0,25 ; | = 0,375 ; | = 0,5 j | = 0,625 ;

» = 0,75 ; I = 0,875 ; &c.

If the denominator be 9, we have ^ = 0,111 kc. | = 0,222

&c. I = 0,333 ice.

If the denominator be 10, we ^\y = 0,1 ; y*^ = 0,2 j j\ =
0,3. This is evident from the nature of the tiling, as also that

T^TT = O'Ol J that tVV = 0>3'; that tV/o = 0»256; that j^%%^
= 0,0024 &c.

479. If 11 be the denominator of the given fraction, we shall

have y^-j- = 0,0909090 &.c. Now, suppose it were required to

find the value of this decimal fraction ; let us call it s, we shall

liave«= 0,0'd0909, ainl 10 s = 00,909090; further, 100 s =
9,09090. If, therefore, we subtract from the last the value of 5,

we shall have 99 s = 9, and consequently s = /^ = ^\. We
shall have, also, ^\ = 0,181818 &c. ; ^\ = 0,272727 kc, ; ^\ =
0,545454 &C.

480. There is a great number of decimal fractions, -therefore,

in which one, two, or more figures constantly recur, and which

continue thus to infinity. Such fractions are curious, and we
shall shew how their values may be easily found.

Let us first suppose, that a single figyre is constantly repeat-

ed, and let us represent it by a, so that s = QfOaauaaa. We have

10 s = Qfaaaaaaa

and subtracting s = o,aaaaaaa

we have 9s = o; wherefore s = —.
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When two figures are repeated, as aft, we have s = OfUhahaba.

Therefore 100 s = ab,ababab; and if we subtracts from it, there

remains 99s = ab; consequently s—~.

When three figures, as a be, are found repeated, we have

s = O^abcabcabc ; consequently, 1000 s = ubc,abcabc ; and sub-

tract s from it, there remains 999 s = abc; wherefore s =
abc .—, and so on.

Whenever, therefore, a decimal fraction of this kind occurs,

it is easy to find its value. Let there be ^iven, for example,

0,296296, its value will be |||. = s\, dividing both terms by 27.

This fraction ought to give again the decimal fraction pro-

posed ; and we may easily be convinced that this is the real

result, by dividing 8 by 9, and then that quotient by 3, because

27 = 3 X 9. We have

9) 8,0000000

3) 0,8888888

0,2962962, &C.

"which is the decimal fraction that was proposed.

481. We shall give a curious example by changing the frac-

tion T-
—

;i K—rn> into a decimal frac-"1X^X3X4X0X6X7X«X9X lO'

tion. The operation is' as follows.

2) 1,00000000000000

3) 0,50000000000000

4) 0,16666666666666

5) 0,04166666666666

6) 0,00835333333333

7) 0,00138888888888



Ghap. 11. Of Ratios and Proportion. 157

8) 0,00019841269841

9) 0,00002480158730

10) 0,00000275573192

0,00000027557319.



SECTION IV.

05 ALGEBRAIC EQUATIONS, AND OF THE RESOLUTION OF THOSE

BqUATIONS.

CHAPTER I.

Of the Solution of Problems in general,

ARTICLE 482.

The principal object of Algebra, as well as of all the parts

of Mathematics, is to determine the value of quantities which

were before unknown. This is obtained by considerihg atten-

tively the conditions given, which are always expressed in

known numbers. For this reascm Algebra has been defined.

The science which teaches how to determine unknown quantities hj

means of known quantities.

483. The definition, which we have now given, agrees with all

that has been hitherto laid down. We have always seen the

knowledge of certain quantities lead to that of other quantities,

which before might have been considered as unknown.

Of this, addition will readily furnish an example. To find

the sum of two or more given numbers, we had to seek for an

unknown number which should be equal to those known num-

bers taken together.

In subtraction we sought for a number which should be equal

to the difference of two k»iown numbers.

A multitude of other examples are presented by multiplica-

tion, division, the involution of powers, and the extraction of

roots. The question is always reduced to finding, by meang

of known quantities, another quantity till then unknown.

484. In the last section also, different questions were resolved,

in which it was required to determine a number, that could not
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be deduced from the knowledge of other given numbers, except

under certain conditions.

All tliose questions were reduced to finding, by the aid of

some given numbers, a new number which should have a certain,

connexion with them ; and this connexion was determined by

certain conditions, or properties, which wei-e to agree with the

quantity sought.

485. ff hen we have a question to resdvt, we represent the num-

ber sought by one of the last letters of the alphabet, and then con-

siller in what manner the given conditions can form an equality

between two quantities. This equality, which is represented by

a kind of formula, called an equation, enables us at last to deter-

mine the value of the number sought, and consequently to resolve

the question. Sometimes several numbers are sought j but

they are found in the same manner by equations.

4S6. Let us endeavour to explain this further by an example.

Suppose the following question, or problem was proposed.

Twenty persons, men and women, dine at a tavern ; the share

of the reckoning for one man is 8 sous,* that for f»ne woman is

7 sous, and the whdle reckoning amounts to 7 livres 5 sous ;

required, the number of men. and also of women ?

In order to resolve this question. let us suppose that the niun-

ber of men \s — x; and now considering this number as known,

we shall proceed in the same manner as if we w ished to try

whether it corresponded with tlie conditions of the question.

Now, the number of men being = x, and the men and women
making together twenty persons, it is easy to determine the

number of the women, having only to sobti-act that of the. men
from 20, that is to say, the number of women = 20— x.

But each man spends 8 sous ; wherefore x men spend 8 x sous.

And, since each woman spends 7 sous, 20— x women must
spend 140 — 7x- sous.

So that adding together 8x and 140— 7 x, we see that the

whole 20 persons must spend 140 + x sous. Now, we know
already how much they have spent; namHy, 7 liv«'es 5 sous,

or 145 sous ; there must be an equality therefore between 140

• A sous is ^^ of a livre ; a livre |- of a croiMi, or 17 cents 6 mills.
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-f- X and 145 ,• that is to say, we have the equation 140 + ic =
145, and thence we easily deduce x= 5.

So that the company consisted of 5 men and 15 women.
487. Another question of the same kind.

Twenty persons, men and women, go to a tavern ; the men
spend 24 florins, and the women as mucli ; but it is found that

each man has spent 1 florin more than each woman. Required,

the number of men and the number of women ?

Let the number of men = x.

That of the women will be = 20— x.

Now these x men having speut 24 florins, the share of each
24

man is— florins.
a;

Further, the 20— x women having also spent 24 florins, the

24
share of each woman is florins.

20—

X

f But we know that the share of each woman is one florin less

than that of each man ; if, therefore, we subtract 1 from the

share of a roan, we must obtain that of a woman ^ and conse-

24 24
quently 1 = — . This, therefore, is the equation from

which we are to deduce the value of x. This value is not found

with the same ease as in the preceding question j but we shall

soon see that x = 8, which value corresponds to the equation j

for Y'— 1 = fI includes the equality 2 = 2.

488. It is evident how essential it is, in all problems, to con-

sider the circumstances of the question attentively, in order to

deduce from it an equation, that shall express by letters the

numbers sought or unknown. After that, the whole art consists

in resolving those equations, or deriving from them the values

of the unknown numbers ; and this shall be the subject of the

present section.

489. We must remark, in the first place, the diversity which

subsists among the questions themselves. In some, we seek

only for one unknown quantiy ', in others, we have to find two,

or more ; and it is to be observed, with regard to this last case,

that in order to determine them all, we must deduce from the

circumstances, or the conditions of the problem, as many equa-

tions as there are unknown quantities.



Chap. 2. OfEquations, 161

490. It must have already been perceived, that an equation

consists of two parts separated by the sign of equality, =, to

shew that those two quantities are equal to one anotlier. We
are often obliged to perform a great number of ti'ansformations

on those two paits, in order to deduce from them the value of

the unknown quantity ; but these transformations must be all

founded on the following principles ; that two quaniities remain

eqiudf -whether we aid to them, or subtractfrom them eqiud quanti-

ties ; whether we multiply them, or divide them by the same nvm-

her ; wJtether we raise tliem both to the same j^ower, or extract

their roots of the same degree.

491. The equations, which are resolved most easily, arc those

in which the unknown quantity does not exceed the first power,

after the terms of the equation have been properly arranged

;

and we call them simple equations, or equations of thefirst degree.

But if, after having reduced and ordered an equation, we find in

it the square, or the second power of the unknown quantity, it

may be called an equation of the second degree, which is more

difficult to resolve.

CHAPTER II.

Cf the Resolution cf Simple Equations, or Equations of Vie first

degree.

492. "When the number sought, or the unknown quantity, is

represented by the letter x, and the equation we have obtained

is such, that one side contains only that x, and the other simply

a known number, as for example, x = 25, the value of x is

already found. We must always endeavour, therefore, to

arrive at such a form, however complicated the equation may
be when first formed. We shall give, in the course of this

section, the rules which serve to facilitate these reductions.

493. Let us begin with the simplest cases, and suppose, first,

that we have arrived at the equation a; + 9 = 1 6 ; we see imme-
diately that x = 7. And, in general, if we have found x + a

= b, where a and 6 express any kuown numbers, we have only

Eld. Alg. 21
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to subtract a from both sides, to obtain the equation x=:b— a,

which indicates the value of x.

494. If the equation which we have found is a?— o = 6, we
add a to both sides, and obtain the value of a? = 6 -f a.

"We proceed in the same marmer, if the equation has this

form, X— a = aa+ 1 ; for we shall have immediately x=zaa
-f-a+ 1.

In this equation, x— 8 a = 20— 6 a, we find x — 9.0— 6 a

+ 8 fl, or 07 = 20 + 2 a.

A»id in this, a; + 6 a= 20 + 3 a, we have a: = 20 + 3a— 6a,

or a? = 20— 3 a,

495. If tlie original equation has this form, x— a-\-h=iCf

we may begin by adding a to both sides, which will give x -f

h~c-{-a; and then subtracting b from both sides, we shall

find x=ic-^a— h. But we might also add + a— 6 at once to

both sides ; by this we obtain immediately a; = c + a— 6.

So in the following examples.

If X— 2 a + 3 6 = 0, we have £c = 2 a— Sh.

If a:— 3 a -f- 2 & = 25 + a + 2 &, we have x = 25 + 4 a.

If a?— 9 + 6 a = 25 + 2 a, we have a? = 34 — 4 a.

496. When the equation wliich we have found has the form

fl a?= 6, we only divide the two sides by a, and we have a? = -,
a

But if the equation has the form a a: + 6— c= d, we must first

make the terms that accompany ax vanish, by adding to both

sides— & -f c ; and then dividing the new equation, ax = d-—

6 -}. c, by a, w^e shall have a?= -^I—

.

We should have found the same value by subtracting + 6— c

from the given equation ; that is, we should have had, in the

same form, ax= d^h + c, and x = —^^ -, Hence,

If 2 a; + 5 = 17, we have 2 a; = 12, and a? = 6.

If 3 X— 8 = 7, we have 3 a; = 15, and x= 5.

U4x— 5— 3a= 15+9a, we have 4 a;= 20+12 a,and, con-

sequently, a: = 5 + 3 a.

497. When the first equation has the form -= b, we multiply
* a

both sides by a, in order to have xzs.ab.
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But if we have - + &— c= (f, we must first make — = d — 6
a a

+ c; after which, we find .t = (d— b -^c)a:=ad— ab -\-c.

Let 1 T— 3 = 4, we have i .x = 7, and x = 14.

Let ^ X — l+2a = S+a, we have ^ a: = 4 — a, and x =
12 — 3 a.

= + 1, and x=:z aa — 1.

498. When we have arrived at such an equation as -— = c,

we first multiply by 6, in order to have ax= bc, and then divid-

ing by a, we find x= —.

If ?_f — c = d, we begin by giving the equation this form "—
b

'
b

= d + c, after which sve obtain the value of ax=ibd-\-b c, and

., . - h'J + hc
that of a;= .

a

Let us suppose fa:— 4 = 1, we shall have ^ a: = 5, and 2 x
= 15 J

wherefore a;= y , or r|.

If 3 ,^ ^ I
— 5j vve have |a; = 5— 1 = |; wherefore 3 x =

18, and a: = 6.

499. Let us now consider the case, which may frequently

occur, in which two or more terms contain the letter ar, either

on one side of the equation or on both.

If those terms are all on the same side, as in the equation x +
i a: + 5 = ll, we have a; +| x= 6, or 3a:'= 12. and, lastly, a;=4.

Let x-\-\ X -^-^ X = 44, and let the value of x be required :

if we first multiply by 3, we have 4 a; -f-| c = 132 ; then multi-

pl\ ing by 2, we have 1 1 a- = 264 : wherefore x= 24. We might

have proceeded more shortly, beginning with the reduction of

the three terms which contain a:, to the single terra ya:; and

then dividing the equation ya:=44 by 11, we should have

had i a;= 4, whei*efore x = 24.

Let ^ X— I a* -f I a;= 1, we shall have, by reduction, -^ x
= 1, and a: = 2|.
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Let, more generally, ax-^hx-\.cxz=di this is the same as

(a— h + c) xzzidf wlience we derive x = .^ a— 0+ c

500. When there are terms containing x on hoth sides of the

equation, we begin by making such terms vanisji from the side

from whicli it is most easily done j that is to say, in which there

are fewest of them.

If we have, for example, the equation 3 a; + 2 = a; + 10, we
must first subtract x from both sides, which gives 2 a; + 2= 10 j

wherefore 2 x'= 8, and x = 4.

Let a: + 4 = 20— X} it is evident that 2 a: + 4 = 20 ; and

consequently 2 a: = 16, and a? = 8.

Let a? + 8 = 32— 3 a:, we shall have 4a; + 8 = 32 ; then 4x
=z 24, and x= 6.

Let 15 — 07 =j 20 — Qx, we shall have 15 +x = 20, and

DC z^ i?»

Let l+x=5-~lx, we shall have 1 + 1 a; = 5 ; after that

lx= A; 5xz=8; lastly, a?= | = 2 §.

If I— 1^ = T— ^ '*^> we must add | x, which gives | = | +
^-^ X ; subtracting |, there remains -j^^ a:= |^, and multiplying by

12, we obtain a;= 2.

If 1 1— I a; = 1 + i a;, we add | Xf which gives 1| = ^ + 1 a;.

Subtracting i, we have |^ x = 1^, whence we deduce x = l-^Ay =
l|, by multiplying by 6, and dividing by 7.

501. If we have an equation, in which the unknown number

a; is a denominator, we must make the fraction vanish, by multi-

plying the whole equation by that denominator.

Suppose that we have found — 8 = 12, we first add 8, and

have = 20 5 then multiplying by x, we have 100 = 20x ;

and dividing by 20, we find x = 5.

Let = 4 .

X-— 1

If we multiply by o?— 1, we have 5x + 5 = 7x— 7.

Subtracting 5 x, there remains 3 = 2x— 7.

Adding 7, we have 2 ac= 10. Wherefore x = 5.



Chap. S. OfEquatims. 1««

502. Sometimes^ also, radical signs are found in equations of

the first degree. For example, a number x below 100 is re-

quired, and such, that the square root of 100— x may be equal

to 8, or v/(ioo— r) = 8 J the square of both sides will be 100

— a;= 64, and adding x we have 100= 64 -far; whence wc
obtain ic = 100— 64 = 36.

Or, since 100— a; = 64, we might have subtracted 100 from

both sides ; and we should then have had—x =—'56 ; whence

multiplying by — 1, ar= S6.

CHAPTER III.

Of the Solution of Q^uestions relating to tlie preceding cliupter.

50S. Question I. To divide 7 into two such parts, that the

greater may exceed the less by 5.

Let the greater part = x, the less will be = 7— x ; so that

x=:7— a;-f3, ora; = 10— x ; adding x, we have 2 a; = 10

:

and, dividing by 2, the result is ar = 5.

Answer. The greater part is therefore 5, and the less Is 2.

Question II. It is required to divide a into two parts, so that

the gr«ater may exceed the less by b.

Let the greater part = x, the other will be a— a: ; so that

x= a— x-}-b ; adding x, we have 2 a:= a + 6 ; and dividing

hy2,a:=-^.
Another SohUion. Let the greater part = x ; and, as it ex-

ceeds the less by b, it is evident that the less is smaller than the

other by 6, and therefore must be = a:— b. Now these two

parts, taken together, ought to make a ; so that 2 ar— 6 = a

;

adding 6, we have 2 a; = a + 6, wherefore x = " "^
, which is

the value of the greater part ,• that of the less will be—^— &,

a + b 2b a— b
or -5 2'<*-T-

504. Question III. A father, who has three sons, leaves them
1600 crowns. The will specifies, that the eldest shall have 200
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crowns more than the second, and that the second shall have

100 crowns more than the youngest. Required the share of each ?

Let the share of the third son =x ; then, that of Hie second

will be = a; + 100, and that of the first = a; + 300. Now these

three shares make up together 1600 crowns. We have,

therefore.

3 a; + 400= 1600

3 X = 1 200

and X = 400.

Mswer. The share of the youngest is 400 crowns ; that of

the second is 500 crowns ; and that of the ehlest is 700 crowns,

505. Question IV. A father leaves four sons, and 8600 livres;

according to the will, the share of the eldest is to he double that

of the second, minus ^ 00 livres ; the sec^ond is to receive three

times as much as the third, minus 200 livres ; and the third is

to receive four times as much as the fourth, minus 300 livres.

Required, the respective portions of these four sons.

Let us call x the portion of the young&st ; that of the third

son will be = 4 a:— 300 ; that of the second = 1 2 a?— 1 1 00, and

that of the eldest = 24 a? «— 2300. The sum ot these four shares

must make 8600 livres. We have, therefore, the equation 41a;

— 3700 = 8600, or 4 1 a? = 1 2300, and x = 300.

Jinswer. The youngest must have 300 livres, the third son

900, the second 2500, and the eldest 4900.

506. Question. V. A man leaves 1 1000 crowns to be divided

between his widow, two sons, and three daughters. He intends

that the mother should receive twice the share of a son, and each

son to receive twice as much as a daughter. Required, how

much each of them is to receive ?

Suppose the share of a daughter = x, that of a son is conse-

quently = 2a?,and that of the widow = 4 a;; the whole inheritance

is therefore 5x-^4x + 4x ; so that 1 1 a: = 11 000, and a; = 1000.

Answer, Each daughter receives 1000 crowns.

So that the three receive in all 3000

Each son receives 2000 crowns.

So that both the sons receive 4000

And the mother receives 4000

Sum 11000 crowns.
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507. ^lestion VI. A father intends, by his wilJ, that his

three sons should share his property in the following manner ;

the eldest is to receive 1000 crowns less than half the whole

fortune; the second is to receive 800 crowns less than the third

of the whole property ; and the third is to have 600 crowns less

than the fou rth of the property. Required, the sum of the whole

fortune, and the portion of each son ?

Let us express the fortune by x.

The shai-e of the first son is i t — 1000

That of the second
-J
x— 800

That of the third ^x— 600.

So that the three sons receive in all | a? 4-^0? + ^ x— 2400,

and this sum must be equal to x.

We have, therefore, the equation :^^ x— 2400 = x.

Subtrating x. there remains, ^'^ x— 2400 = 0.

Adding 24U0, we have ^\ x — 2400. Lastly multiplying by

12, the product is x equal to 28800.

•insurer. The fortune consists of 28800 crowns, and

The eldest of the sons receives 13400 crowns

The second 8800

The youngest 6600

28S00 crowns.

508. Question VII. A father leaves four sons, who share his

property in the following manner :

The first takes the half of the fortune, minus 3000 livres.

The second takes the third, minus 1000 livres.

The third takes exactly the fourth of the property.

The fourth takes 600 livres, and the fifth part of the property.

"What was the whole fortune, and how much did each son

receive ?

Let the whole fortune he=x ;

The eldest of the sons will have i x— 3000

The second ^x— 1000

The thii-d 1 x

The youngest ^^ + 600.

The four will have received in all |a; + |x-|-ia? + |x'—
3400, which must be equal to x.
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Whence results the equation ^^ a:— 3400 = x

;

Subtracting x, we have l^ x— 3400 = ^

Adding 3400, we have llx= 3400

;

Dividing by 17, we have j\ x = 200 j

Multiplying by 60, we have a;= 12000,

Answer. The fortune consisted of 12000 livres.

The first son received 3000

The second 3000

The third 3000

The fourth 3000
• 509. Qiiestion VIII. To find a number such, that if we add

to it its half, the sura exceeds 60 by as much as the number itself

is less than 65.

Let the number = x, then a? + 1^ a;— 60 = 65— x ; that is to

say {-X— 60 = 65— a?

;

Adding x, we have ^x— 60 = 65

;

Adding 60, we have ^x= 125 ;

Dividing by 5, we have ^ a: = 25 ;

Multiplying by 2, we have x = 50.

Jlnswcr, The number sought is 50.

510. Question IX. To divide 32 into two such parts, that if

the less be divided by 6, and the greater by 5, the two quotients

taken together may make 6.

Let the less of the two parts sought = a; ; the greater will be

= 32 — x; the first, divided by 6, gives - j the second, divid-

ed by 5, gives ^—^— ; now, - -j ^^^ = 6. So that multiply-

ing by 5, we have f a; + 32— a;= 30, or— | a: + 32 = SO.

Adding ^ Xy we have 32 = 30 + 1^ a?.

Subtracting 30, there remains 2 = | a;.

Multiplying by 6, we have x =. 12.

*Snswer, The two parts are ; the less = 12, the greater= 20.

511. question X. To find such a number that if multiplied

by 5, the product shall be as much less than 40, as the number

itself is less than 12.

Let us call this number x. It is less than 12 by 12— x.

Taking the number x five times, we have 5 x, which is less than

40 by 40 —- 5 a> and this quantity must be equal to 12— x.
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We have therefore 40— 5a;=12 — x.

Adding^ 5 x, we have 40 = 12 +4 a?.

Subtracting 12, we have 28 =4 t.

Dividiii.s: by 4, we have x = 7, the number sought.

512. Question XI. To divide 25 into two such parts/that the

greater may contain the less 49 times.

Let the less part be= x, then the greater will be = 25 — x.

The latter divided by the former ought to give the quotient 49 ;

2t —^ X
we have therefore -^^ = 49.

Multiplying by a?, we have 25— ar = 49 a?.

Adding x 25 = 50 x.

And dividing by 50 a: =1.
Answer. The less of the two numbers sought is ^, and the

greater is 241 ; dividing therefore the latter by i, or multiplying

by '^f we obtain 49.

513. Question XII. To divide 48 into nine parts, so that

every part may be always | greater than the part which pre-

cedes it.

Let the first and least part = x, the second will be = t + 1,

the third = a? + 1, &c.

Now these paits form an arithmetical progression, whose

first term = a: ; therefore the ninth and last will be=a:+4.
Adding those two terms together, we have 2 a? +4 ; multiplying

this quantity by the number of terms, or by 9, we have 18a: +
36; and dividing this product by 2, we obtain the sum of all

the nine parts = 9 a; -f- 18 ; which ought to be equal to 48. We
have, therefore, 9 x + 1 8 = 48,

Subtracting 18, there remains 9 a? = 30:

And dividing by 9, we have x = 3^.

Answer, The first part is 5|, and the nine parts succeed in

the following order

:

123 4567 89
S4 + ^'f +4|+4|- + 5^+5f+6i+6f + 7^

which together make 48.

514. ^lestion XIII. To find an arithmetical progression,

whose fii"st term = 5, last = 10, and sum = 60.

Here, we know neither the cLi£fei'ence> nor the number of

Enl. die, 22
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terms ; but we know that the first and the last term would ena-

ble us to express the sum oi' the pro,e:ression, pn»\ ided only the

number of terms was given. We shall, therefore, suppose this

number = x, and express the sum of the progression by

15 ~.

now we know also that this sum is 60 ; so that = 60 ; I

2

2 ' i

= 4, and x = S.

Now, since the number of terms is 8, if we suppose the differ-

ence = », we have only to seek for the eighth term upon this

supposition, and to make it =10. The second terra is 5-{-%,

the third is 5 + 2 «, and the eighth is 5 + f » ; so that

5-f-7»=10
7a = 5

and »= |.

Answer. The difference of the progression is 4., and the

number of terms is 8 ^ consequently the progression is12345678
5 + 5| + 6» + 7^. 7f + 84 + 9* +10

the sum of which = 60.

515. Question XIV. To find such a number, that if 1 be

subtracted from its double, and the remainder be doubled, then

if 2 be subtracted, and the remainder divided by 4, the number

resulting from these operations shall be 1 less than the number

sought.

Suppose this number = x ; the double is 2 a; ; subtracting 1,

there remains 2 a;— I5 doubling this, we ha?e 4 a;— 2; sub-

tracting 2, there remains 4x— 4; dividing by 4, we have

X— 1 1 and this must be one less than x ; so that,

X— 1 =a;— 1.

But this is what is called an identical equation ; and shews that

X is indeterminate ; or that any number whatever may be sub-

stituted for it.

516. Question XV. I bought some ells of cloth at the rate of

7 crowns for 5 ells, which I sold again at the rate of 11 crowns

for 7 cUs, and I gained 100 crowns by the traffic. IIow much

cloth was there ?

Suppose that there were x ells of it ; we must first see how

much the cloth cost. This is found by the following proportion

;
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If five ells cost 7 crowns ; what do x ells cost ?

Ansxvery ^ x crowns.

This was my expenditure. Let us now see my receipt : w©

must make the following proportion 5 as 7 ells are to 1 1 crowns,

so are x ells to y x crowns.

This receipt ought to exceed the expenditure hy 100 crowns ;

we have, therefore, this equation.

\^x = :^x + WO;
Subtracting ^ 2, there remains ^\ x = 100.

Wherefore 6 a: = S500, and x = 585>.

Jlnswer. There were 583i ells, which were bought for 81 6|
crowns, and sold again for 91 6| crowns, by which means the

profit was 100 crowns.

517. Question XVI. A person buys 12 pieces of cloth for 140

crowns. Two are white, three are black, and seven are blue.

A piece of the black cloth costs two crowns more than a piece of

the white, and a piece of blue cloth costs three crowns more than

a piece of black. Required the price of each kind ?

Let a white piece cost x crowns ; then the two pieces of this

kind will cost 2 a:. Further, a black piece costing a: + 2, the

three pieces of this colour will cost 3 a: + 6. Lastly, a blue

piece costs a: -f- 5 j wherefore the seven bine pieces cost 7 a? -f

35. So that the twelve pieces amount in all to 12 a: -f 41.

Now, the actual and known price of these twelve pieces is

140 crowns ; we have, therefore, 12 a? + 41 = 140, and 12 x =
99 ; wherefore ar = 81

;

So that a piece of white cloth costs 81 crowns ; a piece of black

cloth costs 101 crowns, and a piece of blue cloth costs 131 crowns.

518. ^estion 'KYlh A man, having bought some nutmegs,

says that three nuts cost as much more than one sous as four cost

him more than ten liards : Required, the price of those nuts ?

"We shall call x the excess of the price of three nuts above one

sous, or four liards, and shall say ; If three nuts cost a; + 4

liards, four will cost, by the condition of the quCvStion, a: + 10

liards. Now, the price of three nuts gives that of four nuts in

another way also, namely, by the rule of three. We make 3 : x

+ 4 = 4: AnsweVi— .
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4x 4- 16
So that ——— = ^ + 10 j or, 4 a? + 16 = 3 a:+ SO 5 where-

fore or+ 16 = SO.

and X = 14,

Answer. Three nuts cost 18 Hards, and four cost 6 sousj

wherefore each cost 6 liards.

5 1 9. Question XVHI. A certain person has two silver cups,

and only one cover for both. The fiist cup weighs 12 ounces,

and if the cover he put on it, it weighs twice as much as the

other cup ; but if the otlier cup be covered, it weighs three times

as much as the first : Required, the weight of the second cup

and that of the cover ?

Suppose the weight of the cover = x ounces ; the first cup

being covered will weigh a; + 12 ounces. Now this weight

being double that of the second cup, this cup must weigli |^ x-f 6.

If it be covered, it will weigh | a; + 6 ; and this weight ought to

be the triple of 12, that is, three times the weight of the first

cup. We shall therefore have the equation | a;+ 6 = 36, or | a:

= SO ; wherefore i a? = 10 and x= 80.

Answer. The cover weighs 20 ounces, and the second cup

weighs 16 ounces.

520. Question XIX. A banker has two kinds of change ;

there must be a pieces of the first to make a crown ; and there

must be b pieces of the second to make the same sum. A per-

son wishes to have c pieces for a crown ; how many pieces of

each kind must the banker give him ?

Suppose the banker gives x pieces of the first kind ; it is evi-

dent that he will give c— x pieces of the other kind. Now, the x

pieces of the first are worth— crown, by the proportion a : 1 =

X'. — f
and the c—x pieces of the second kind are worth —-r—

crown, because we have J : 1 = c— a; : —7—. So that —f-

a

C I
ne* J) /p—;— =1; or f-c—x=b: or bx+ ac^-'ax = ab; or

b a '

ah—^a c
rather, bX'—ax^ab—^aci whence we have x = -v > or
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X= —^^ ~» Consequently, c—x= —, = -7 .

b a b— a b— a

Mswer. The banker will cive °, ^pieces ofthe firstkind^— a

and
,

- '' pieces of the second kind.— a

Remark. These two numbers are easily found by the rule of

three, when it is required to apply the results which we have

obtained. To find the first we say :b— a:h— c = a:
,

K
b— a

The second number is found ihus : b —a: c— a = b :
~ -,
b— a

It ought to be observed also that a is less than 6, and that c

is also less than b ; but at the same time greater than a, as the

nature of the thing requires.

521. Question XX. A banker has two kinds of change ; 10

pieces of one make a crown, and 20 pieces of the other make a

crown. Now, a person wishes to change a crown into 17

pieces of money : How many of each must he have ?

We have here a = 10, 6 = 20, and c = 17 ; which famishes

the following proportions;

I. 10 : 3 = 10 : 3, so that the number of pieces of the first

kind is 3.

II. 10 : 7 = 20 : 14, and there are 14 pieces of the second

kind.

522. ^lestion XXI. A father leaves at his death several

children, who share his property in the following manner ;

The first receives a hundred crowns and the tenth part of the

remainder.

The second receives two hundred crowns and the tenth part of

what remains.

The third takes three hundred crowns and the tenth part of

what remains.

The fourth takes four hundred crowns and the tenth part of

what then remains, and so on.

Now it is found at the end, that the property has been divid-

ed equally among all the childi-en. Required, how much it was,

how many children there were, and how much each received ?



IT4 Mgebra. Sect. 4.

This question is rather of a singular nature, and therefore
deserves particular attention. In order to resolve it more easily,

we shall suppose the whole fortune = x crowns ,• and since all

the children receiv e the same sum, let the share of each = Xy by

which means the number of children is expressed by - This

bein^ laid down, we may proceed to the solution of the question,
which will be as follows.

Sum, or pro
perty to be
divided.

Order of
the

Children

% pt.

a— X £d.

% — 9.x 3d.

a ^ X 4th,

«— 4 a;
5th.

«— 5 a;
gth.

Portion of each.

X.— lO'J

07 = 400 +

X = 500 +

X = 600 +

z—3.r—400

z—4a;—-500

To

X—5x—600

To

Differences.

100 ~ =

00 —
and so on.

"We have inserted, in the last column, the differences which

we obtain by subtracting each portion from that which follows.

Now all the portions being equal, each of the differences must

be =0. And as it happens that all these differences are express-

ed exactly alike, it will be sufficient to make one of them equal

X— 100
to nothing, and we shall have the equation 100 — — = 0.

Multiplying by 10, we have 1000— x— 100 = 0, or 900 — x
= ; consequently x — 900.

We now know, therefore, that the share of each child was

900 crowns ; so that taking any one of the equations of the

third column, the first for example, it becomes, by substituting

the value of a;, 900 = 100 + -^^^-— , whence we immediately

ohtain the value of % ; for we have 9000 = 1000 + »— 100, or

9000 = 900 + « 5 wherefore »= 8100 5 and consequently— = 9.
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Msu'er, So that the number of children = 9 ; the foi-tune

left by the father = 8100 crowns ; and the share of each child

= 900 crowns.

CHAPTER IV.

Of the Resolutions of two or more Equations of the First Degree.

523. It frequently happens that we are obliged to introduce

into algebraic calculations two or more unknown quantities^

represented by the letters x, y. » ; and if the question is deter-

minate, we are brought to the same number of equations ; from

which, it is then required to deduce the unknown quantities.

As we consider, at present, those equations only which contain

no powers of an unknown quantity higher than the fii-sf, and no

products of two, or more unknown quantities, it is e\ ident that

these equations will all have the form az-^by + cx — d.

524. Beginning, therefore, with two equations, we shall en-

deavour to find from them the values of x and y. That we may
consider this case in a general manner, let the two equations be,

I.ax-{-by = Cf and 11.fx +gy = h, in which a, b^c^ and/, ^,

h are known numbers. It is required, therefore, to obtain, from

these two equations, the two unknown quantities x and y.

525. The most natural method of proceeding will readily

present itself to the mind; which is to determine, from both

equations, the value of one of the unknown quantities, x for

example, and to consider the equality of those two values ; for

then we shall have an equation, in which the unknown quantity

y will be found by itself, and may be determined by the rules

which we have already given. Knowing t/, we have only to

substitute its value in one of the quantities that express x.

526. According to this rule, we obtain from the first equa-

tion, x = ^ ^
, and from the second, x = ~~,^^

; stating

these two values equal to one another, we have this new equa-

tion ;

c^hy _ h—^y
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multiplying by a, the product is c— hyz=.
~°gy

. multiply-

ing by/, the product is/c—J'h y = ah— agy; adding agy^ we
have /c

—

Jby+agy=ah; subtracting /c, there remains

—/6 y + agy = ah -—fc ; or (o jr— 6/) i/ = ah^fc ; lastly,

dividing by a^— bf, we have t/ = ^^——44*

In order now to substitute this value of y in one of the two

values which we have found of x, as in the first, where a:=
^, we shall first have

—

by =— °
—r^i whence c

—

by

^C "^^+^'^f
o^, c ^

acg—bcf^nbh+bcf _
<^S--bf

* ^ ag^bf
acg— abh , ., ... , c— by cs— bh— TT- 5 and dividme: by a, a; = ^ = -

,

527, Question I. To illustrate this method by examples let

it be proposed to find two numbers, whose sum may be = 15,

and difference = 7.

Let us call the greater number x, and the less y. We shall

have,

I. X + y = 15, and II. x — y = 7.

The first equation gives x= 15 — y, and the second x = 7

-ft/; whence results the new equation 15

—

y=7 +y. So

that 15 = 7-f2y; 2i/=8, and t/ = 4 ; by which means we find

x=. 11.

Answer, The less number is 4, and the greater is 11.

528. Question II. We may also generalize the preceding

question, by requiring two numbers, whose sum may be = a,

and the difference = b.

Let the greater of the two be = x, and the less = y.

We shall have I. cT -f i/= a, and II. x — y=:b ; the first

equation gives x = a— y ; and the second x=ib-^y.

Wlierefore a —y = b + y ; a = b-^Qy; 2y = a— 6; lastly,

fl— 6 a—b a -}-

6

y = , and consequently x= a —y = a —— = —-—

.

Ansxver, The greater number, or x, is = —-—, and the less,

7

or yf is = 7"
> ^^ which comes to the same, a;= | a -f-| 6, and
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« = I a — I 6 ; and hence we derive the following theorem.

When the S2im of any two numbers is a, and their difference is b,

the greater of the two numbers will be equal to half the sum plus

haf the difference ; and the less of the two numbers will be equal

to half the sum minus half the difference.

529. We may also resolve the same question in the following

manner

;

Since the two equations are x + 1/
= «, and x— y = b ; if

we add one to the other, we have 2 a: = a -f 6.

Wherefore x = .

Lastly, subtracting the same equation from the other, we have

Qy = a— b ; wherefore y = —-—

.

530. (^lesiion III. A mule and an ass were carryifig burdens

amounting to some hundred weight. The ass complained of his,

and said to the mule, 1 need only one hundred weight of your

load, to make mine twice as heavy as yours. The mule answer-

ed, Yes, but if yon gave me a hundred weight of yours, I should

be loaded three times as much as you would be. How many
hundi*ed weight did each carry ?

Suppose the mule's load to be x hundred weight, and that of

the ass to be y hundred weight. If the mule gives one hundred

weight to the ass, the one will have t/ + 1, and there will remain

for the otiier x— 1 ; and since, in this case, the ass is loaded

twice as much as the mule, we have y -}- I = 2x—2.
Further, if the ass gives a hundred weight to the mule, the

latter has a: -f 1. and the ass retains y— l ; but the burden of

the former being now three times that of the latter, we have

a: + l = Sy— s.

Our two equations will consequently be,

I. 1/4- 1=2.T— 2, II. a: +1=3 y— 3.

The first gives x = —~—9 and the second gives x=3y— 45

whence we have the new equation ^ ^ =Sy— 4, which gives

y= V» and also determines the value of x, which becomes 2|.
Answer. The mule carried ^ hundrcil weight, and the ass

carried 2i. hundred weight.

£tt/. Mg, 23
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531. When there are three unknown numbers^ and as many
equations j as, for example, I. a? + i/— «;=8, \l,x+%— y = 9,

III. y + ^— ic = 10, we begin, as before, by deducing a value

of X from each, and we have, from the I'S ic =3 8-f-»— t/

;

from the 11^, .T= 9+t/— «; and from the 111'', a? = 7/ + «

— 10.

Comparing the first of these values with the second, and after

that with the third also, we have the following equations ;

I. 8 + »— i/ = 9 + i/— a, II. 8-f a— y = i/4.«— 10.

Now, the first gives 2 »— 2 1/ = 1 , and the secoiul gives 2 y =
18, or y =9 ; if therefore we substitute this value of a/ in 2 a—
2 t/ = 1, we bate 2 si— 18 = 1, and 2 « = 19, so that a = 9|

;

it remains therefore only to determine x, which is easily found

= 81.

Here it happens, that the letter « vanishes in the last equation,

aud that the value of y is found immediately. If this had not

been the case, we should have had two equations between % and

y, to be resolved by the preceding rule.

532. Suppose we had found the three following equations.

^, Zx-\-5y— 4a= 25, 11.5 a;'— 2i/ + 3a= 46,

III. 3t/ + 5«-— ar= 62.

If we deduce from each the value of a;, we shall have

25

—

5q-\-4z ,_ 46 + 2 m— 3 2;

I. 07 = -r , II. X — fo O

III. a:=3i/ + 5s— 62.

Comparing these three values together, and first the third

25— 5 11 \ '\ X
with the first, we have Sy + 5^— 62= ^-^ ; mul-

tiplying by 3, 9y + \5% — 186 = 25 — 5y + 4z; so that

9y + 15K=211 — 51/4-4 «, and 14t/-fll« = 211 by the first

and the third. Comparing also the third with the second, we
46 4- 2 V— 3 ^

hav6 3y + 5a— 62= ^ , or 46 +2y— 3 a = 15 y

+ 25 s— 510, which when reduced is 356 — 1 3 7/ -f 28 «.

We shall now deduce, from these two new equations, the

value of t/

;

I. 211 = 14 ^ + 11 »5 wherefore I4y = 211 — 11 », and

211—112;
i/ =—IT—
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II. 356=t5f/ + 28sj wherefore 13i^= S56— 28 », and

356— 28 z»=—
13

These two values form the new equation

21 i — II z _ 35*6— 28z

14
~

13 '

which becomes, 2743— 143 a = 4984— 392 x, or 249 » = 2241,

whence » = 9.

This value bein^ substituted in one of the two equations of y
and a, we find y = 8 ; and lastly a similar substitution, in one of

the three values of a?, will give x = 7.

533. If there were more than three unknown quantities to be

determined, and as many equations to be resolved, we should ^

proceed in ,the same manner; but the calculations would often

prove very tedious.

It is proper, therefore, to remark, that, in each particular

case, means may always be discovered of greatly facilitating its

resolution. These means consist in introducing into the calcu-

lation, beside the principal unknown quantities, a new unknown

quantity arbitrarily assumed, such as, for example, the sum of

all the rest; and when a person is a little practised in such cal-

culations lie easily perceives what is most proper to do. The
following examples may serve to facilitate the application of

these artifices.

534. ^aest'wnW. Three persons play together; in tlie first

game, the fii*st loses to each of the other two, as much money
as each of them has. In the next, the second person loses to

each of the other two, as much money as they have already.

Lastly, in the third game, the first and the second person gaiu

each, from the third, as much money as they had befoi-e. They
then leave off, and find that they have all an equal sum, namely,

24 louis each. Required, with how much money each sat down
to play ?

Suppose that the stake of the first person was x louis, that of

the second i/, and that of the third 'X. Further, let us make the

sum of all the stakes, or x +y-{-x = s. Now, the fii*st person

losing in the first game as much money as the other two have,

ke loses «— .t; (for he himself having had a*, the two others
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must have had s— a?) ; wherefore there will remain to him 2 x
— s ; the second will have 2 i/, and the third will have 2 %,

So that, after the first game, each will have as follows ;

the I. 2 X— s, the II. 2 z/, the 111. 2 z.

In the second game, the second person, who has now 3 1/, loses

as much money as the other two have, that is to say s— 2i/ ; so

that he has left 4 y— 5. With regard to the others, they will

each have douhle what they had -, so that after the second game,

the three persons have ;

the I. 4 07— 2 s, the II. 4 ?/— s, the III. 4 «.

In the third game, the third person, who has now 4 », is the

loser ; he loses to the first 4 x— 2 s, ^nd to the second 4 i/— s

;

consequently after this game the three persons will have

;

the I. Sx— 4 s, the II. Sy— 2 s, the 111. 8 a— s.

Now, each having at the end of this game 24 louis, we have

three equations, the first of which immediately gives x^ the

second t/, and the third a ; further, s is known to be = 72, since

the three persons have in all 72 louis at the end of the last game

;

but it is not necessary to attend to this at first. We have

I. 8a:— 4s = 24, or8x = 24+4s, ora; = 3-f|s;
II. 8 y — 2 s = 24, or 8 1/ = 24 -f- 2 s, or y = 3 -f ^ s 5

III. 8» — s = 24, or8« = 24+s, or» = 3+^S5
Adding these three values, we have

So that, since x + y + % = Sf we have s = 9 + ^ s ; wherefore

i s = 9, and s = 72.

If we now substitute this value of s in the expressions which

we have found for x, y, and a, we shall find that before they

began to play, the first person had 39 louis ; the second 21 louis 5

and the third 12 louis.

This solution shews, that by means of an expression for the

sum of the three unknown quantities, we may overcome the

difficulties which occur in the ordinary method.

535. Although the preceding question appears difficult at first,

it may be resolved even without algebra. We have only to try

to do it inversely. Since the players, when they left off, had

each 24 louis, and, in the third game, the first and the second

doubled the money, they must have had before that last game ^
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The I. 12, the II. 12, and the III. 48.

In the second game the first and the third doubled their

money ; so that before that game they had

;

The I. 6, the II. 42, and the III. 24.

Lastly, in the first game, the second and the third gained

each as much money as they began with ; so that at first the

three persons had j

I. S9, II. 21, III. 12.

The same result as we obtained by the former solution.

536. Question V. Two persons owe 29 pistoles ; they have

both money, but neither of them enough to enable him, singly to

discharge this common debt : the fii'st debtor says therefore to

the second, if you give me
-f

of your money, I singly w ill imme-

diately pay the debt. The second answers, that he also could

discharge the debt, if the other would give him | of his money.

Required, how many pistoles each had ?

Suppose that the firet has x pistoles, and that the second has

y pistoles.

We shall first have, a: + 1 t/ = 29 ;

then also, i/ -f.
l a: = 29. /

The first equation gives a; = 29— f y, and the second, a:=
7" '^

; so that 29— 1 7/
=

T~~^' From this equation,

we get y= 14^ ; wherefore a:= 19-|.

Answer. The first debtor had 19-J pistoles, and the second had
14i pistoles.

537. ^estion VI. Three brothers bought a vineyard for a

hundred louis. The yougest sa\s, that he could pay for it

alone, if the second gave him half the money which he had; the

second says, that if the eldest would give him only the third of

his money, he could pay for the vineyard singly ; lastly, the

eldest asks only a fourth part of the money of the youngest, to

pay for the vineyard himself. How much money had each ?

Suppose the first had x louis ; the second, y louis ; the third,

% louis j we shall then have the three following equations ;

I. a; + 1 ?/ = iOO. II. y -f 4 5 = 100.

Ill, a -f ^ a; = 100 J two of which only give the value of Xf
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namely, 1.07= 100— \yt III. or = 400— 4 «. So that we
have the equation,

100— It/ = 400— 4 «, or 4«— 1 1/ = 300, which must be

combined with the second, in order to determine y and %, Now
the second equation was t/ -j-^ a= 100 j we therefore deduce

from it t/ = 100— ^ %', and the equation found last being 4 «
— 2 t/ = 300, we have y=S!Z>— 600. Consequently the final

equation is,

100— -1 a = 8 »— 600 ; so that 8 * » = 700, or y « = 700,

and >5=84. Wherefore y = 100— 28 = 72, and x = 64.

Answer. The youngest had 64 louis, the second had 72 louis,

and the eldest had 84 hiuis,

538. As, in this example, each equation contains only two

unknown quantities, we may obtain the solution required in an

easier way.

The first equation gives i/ = 200— 'Z x ; so that t/ is deter-

mined by X ; and if we substitute this value in the second equa-

tion, we have 200— 2 a; -f- -^ ;i = 100 ; wherefore ^ a = 2 a:—
100, and a=6x— 300.

So that z is also determined by x ; and if we introduce this

value into the third equation, we obtain 6x— 300 -\-^ x z= 100,

in which a; stands alone, and which, when reduced to 25 a?—
1600 = 0, gives X = 64. Consequently, t/ = 200— 1 28 = 72,

and « = 384— 300 = 84.

539. We may follow the same method, when we have a greater

number of equations. Suppose, for example, that we have in

general

;

I. w + — = «, IL x-\-~ = 11, III. y+ - = TC,

a o c

IV. x, +— =zn; or, reducing the fractions,

1. au-{-x = an, 11. bx + y = bn, llh cy+ ^=.cn,

IV. d^+ u=:dn.

Here, the first equation gives immediately x=an— a «,

and, this value being substituted in the second, we have a 671

—

abu-\.y = bn;so that y=bn— abn-^abu', the substitution of

this value, in the third equation, gives 6cn— abcn-}.abcu+a=
en; wherefore » = c 71

—

bcn-^abcn— abcii', substituting this
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in the fourth equation, we have cd n— hcdn + ab cdn—^ahcdtL

+ u = d M. Sothatd7»— cdn + hcdn'—abcdn =— abcdu + u,

or (abed— l)u = abcdn— b cdn-\.cdn— dn: wiionce v> e

, abcdn— bcdn + cdu^—r}t7 Cubed— hcd-i-cd— d)
have M= --—

!

=n x : -.

-•

abed'— 1

Consequently, we shall have,

abcdn— acdn + odn— an

abed— 1

abcdn— abdn + abn— bn
y=

ab7a=^i
= "^

abcdn— abcn -f bcv— en = nx

^ —
abcu — I

(abed —-acd + ad—-a)
abed — 1

[abed •— ahd -\- ab— h)

abed— 1

(abed — abe -f 6c— c)

abed— 1 abed— 1

ahcdn— bcdn -^ cdn— dn (abed— bed -\- cd— d)

abed— 1 abea— 1

540. ^uesiion VII. A captain has three companies, one oi

Swiss, another of Swabians, and a third of Saxons. He wishes

to storm with part of these troops, and he promises a reward of

901 crowns, on the following condition j

That each soldier of the companj, which assaults, shall re-

ceive 1 crown, and that the rest of the money shall be equally

distributed among the two other companies.

Now it is found, that if the Swiss make the assault, each sol-

dier of the other companies receives \ of a crown ; that, if the

Swabians assault, each of the othei-s receives ^ o^ ^ crown
;

lastly, that if the Saxons make the assault, each of the otiiers

receives i of a crown. Required, the number of men in each

company ?

Let us suppose the number of Swiss x = , that of Swabians

= y, and that of Saxons =«. And let us also make a; -f-y -f

»

= s, because ir is easy to see, that by this, we abiidge the cal-

culation considerably. If, therefore, the Swiss make the assault,

their number being x, that of the other will be s— x ; now, the

former receive 1 crown, and the latter half a crown ; so that we
shall have,

K+is — ix = 901.

"We find in the same manner, that if the Swabians make the

assault, we have,
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And lastly, that, if the Saxons mount the assault, we have,

» + ^«— i» = yoi.

Each of these three equtions will enable us to determine one

of the unknown quantities a;, ?/, «

;

For the first gives a;=1802— s,

the second gives Zy = 2703— s,

the third gives 3 a = 3604— s.

If we now take the values of 6 a?, 6 i/, and 6 a, and write those

talues one above the other, we sliall have,

6 07=10812— 6 s,

6y= 8109— 3 s,

6 JS = 7208— 2 s,

and adding

;

6 s = 26129— lis, or 17 s = 26129 ; so

that s = 1537 ; this is the whole number of soldiers, by which

means we find,

a:= 1802—1537 = 265;

Qy= 2703— 1537 = 1166, or ^= 583 ;

3%z=z 3604 — 1 537 = 2067, or »= 689.

Answer. The company of Swiss consists of 265 men } that of

Swubians 583 ; and that of Saxons 689.

CHAPTER V.

Of the Resolution of Pure Quadratic Equations,

541. An equation is said to be of the second degi-ee, when it con-

tains the square or the second power of the unknown quantity, with-

out any of its higher powers. An equation, containing likewise

the third power of the unknown quantity, belongs to cubic equa-

tions, and its resolution requires particular rules. There are,

therefore, only three kinds of terms in an equation of the sec-

ond degree.

1. The terms in which the unknown quantity is not found at

all, or which are composed only of known numbers.

Q. The terms in which we find only the first power of the

unknown quantity.

3. The terms which contain the square, or the second power

of the unknown quantity.
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So that X sisrnifying an unknown quantity, and the letters a,

hf c, d. &r. representing known numbers, the terms of the

first kind will have the form a, the terms of the second kind

will have the form b x, and the terms of the third kind will have

the form c xx.
542. We have already seen, how two or more terms of the

same kind may be united together, and considered as a single

term.

For example, we may consider the formula ax x— bx x +
car a: as a single term, i-epresenting it thus (rt— 6 + c)a;a?5

since, in fact, (a— 6 -f c) is a known quantity.

And also, when such terms are found on both sides of the

sign =, we have seen how they may be brought to one side, and

then reduced to a single term. Let us take, for example, the

equation,

Zx X— 3x -^4 = 5 XX — 8a: + ll;

TVe first subtract '2 x x, and there remains

— 5 x -{-4 = 3xx— 8a? + ll;

then adding 8 x, we obtain,

Lastly, subtracting 1 1 , there remains 3xx = 5 x— 7,

543. We may also bring all tlie terms to one side of the sign

==, so as to lea* e only on the other. It must be remembered,

however, that when terms ai'e transposed from one side to the

other, their signs must be changed.*

Thus, the above equation will assume this form, Sxx— 5 x •{-

7 = 0; and, for this reason also, the following general formula

represents all equations of the second degree,

axx ± bx zt.cz=Of

in which the sign =b is read plus or minus, and indicates that

such terms may be sometimes positive and sometimes negative.

544. W'hatever be the original form of a quadratic equation,

it may always be reduced to this formula of three terms. If we

have, for example, the equation

c je \- d gx + A

• That is, the quantity thus transposed is added to or subtracted from each

side of the equation.

Eld, Jig. 24
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we must, lii'st, reduce the fractions^ multiplying, for this pur-

pose, hj cx + a, we have ax + b = —-

—

— -^^t
g X -\- II

then hy gx { h, we have ag xx -\-b gx -\-nhx-^bh = cexx-\-

cfx + edx-\-fdf which is an equation ot* the second degree, and

reducible to the three following terms, which we shall transpose

by arranging them in the usual manner

:

= agxx-^bgx -^bhf

— cexx+alix—fd,
— cfx,
— e dx.

We may exhibit this equation -also in the following form,

which is still more clear :

= (ag— ce)xx + (b g -}-ah— c/— ed) x + bJi—fd.
545. Equations of the second degree, in which all the three

kinds of terms are found, are called complete, and the resolution

of them is attended with greater difficulties ; for which reason

we shall first consider those, in which one of the terms is wanting.

Now, if the term x x were not found in the equation, it would

not be a quadratic, but would belong to those of which we have

already treated. If the tcrnif which contains only known numbers,

were wanting^ the equation would have thisform, axxdbbx = 0,

which being divisible bij x, maij be reduced Zo a x d= b = 0, which

is likewise a simple equa'ioh, and belongs not to the present class.

546. But when the middle term, which contains thefirst poiver

of X, is wanting, the equation assumes thisform, a x x db c = 0, or

a X x = =F c ; as the sign of c may be either positive or negative.

AVe shall call such an equation a pure equation of the second

degree, since the resolutitm of it is attended with no difficulty j for

we have only to divide by a, which gives x x= — ,* and taking the

square root of both sides, wefnd x = ^^- ; by means of which the

equation is resolved,

547. But there are three cases to be considered here. In the

first, when — is a square number (of which we can therefore

really assign the root) we obtain for the value of x a rational
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number, which may he either integer orfractional. For example,

the equation xx=144 gives t=12. And xx = -^^ gives

The second variety is ichen — is not a square, in which case

we must therefore be contented viith iJie sign ^z. If, for example,

a;a;= 12, we havea; = v/Ts* the value of which may be deter-

mined by approximation, as we ha^ e already shown.

The third case is thai in which — becomes a nezative number

;

ihtii the value of xis altogether impossible and imaginary ; and this

result prnres that the question, which leads to su£h en equation, is

in tf^'elf impossible.

548. We shall also observe befoi-e proceeding further, that

whenever it is required to extract the square root of a number,

that root, as we have already remarked, has always two values,

the one positive and the other negative. Suppose we have the

equation x x = 49, the value ofx will be not only + 7, but also— 7,

which is expressed by xz= zh 7. So that all those questions ad-

mit of a double a answer : hut it will be easily perceived that in

several cases, in those, for example, which relate to a certain

number of men, the negative value cannot exist.

549. In such equations, also, as a x x = b x, wiiere the known
quantity c is wanting, there may he two values of a*, though we
find only one if we divide by x. In the equation xxz=:5x, for

example, in which it is required to assign such a value of r, that

XX may become equal to 3 x, this is done by supposing x = 3,

a value which is found by dividing the equation by a; ; but

beside this value, there is also another, which is equally satis-

factory, namely a^ = ; for then xx=.0, and 3 a? = 0. Equa^
iions, therefore, of the second degree, in general, admit of two solu-

tions, 7vhilst simple equations admit only of one.

We shall now illustrate, by some examples, what we have

said with regard to pure equations of the second degree.

550. Question I. Required a number, the half of which mul-

tiplied by the third may produce 24.

Let this number= a:
; | x, multiplied by ^ x, must give 24 ;

•ve shall tlierefore have the equation ^xx= £4.
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Multiplying by 6, we have .r x = 144 ; and the extraction of

the root gives a;= =fc 12. We put ± ; for if a? = + 12, we
-'have I a? = 6, and ^ a? = 4 j now the product of these two num-
bers is 24 ; and if a? =— 12, wc have | ar =— 6, and | a; =— 4,

the product of which is likewise 24.

551. Question II. Required a number such, that by adding

5 to it, and subtracting 5 from it, the product of the sum by the

difference would be 9G,

Let this number be x, then a: -f- 5, multiplied by a— 5, must

give 96 ; whence results the equation, xx^^ 25 = 96.

Adding 25, we have a; a? = 121 ; and extracting the root, we
have a?= 1 1 . Thus a; + 5 = 16, also x— 5 = 6^ and lastly,

6x 16 = 96.

552. (luesiion III. Required a number surh, that by adding

it to 10, and subtracting it from 10, the sum, multiplied by the

remainder, or difference, will give 51.

Let a: be this nuuiber; 10 -fx, multiplied by 10— or, must

make 5\, so that 100— xx=. 51. Adding a? a;, and subtracting

51, we have xx — 49, the square root of w hi( h gives x = 7,

553. Question IV. Three persons, who had been playing,

leave offj the first, with as many times 7 crowns, as the second

has three crowns ; and the second, with as many times 17

crowns, as the third has 5 crowns. Further, if we multiply the

money of the first by the money of the second, and the money

of the second by the money of the third, and lastly, the money

of the third by that of the first, the sum of these three products

will be 38S0|. How much money has each ?

Suppose that the first player has x crowns ; and since he has

as many times 7 crowns, as the second has 3 crowns, we know

that his money is to that of the second, in the ratio of 7 : 3.

We shall therefore make 7 : 3 = a:, to the money of the

second player, which is therefore ^ .r.

Further, as the money of the second player is to that of the

third in the ratio of 17 : 5, we shall say, 17 : 5 = ^ x to the

money of the third player, or to -jW ^'

Multiplying x, or the money of the first player, by | x, the

money of the second, we have the product ^x x. Then | .r, the

money of the second, multiplycd by the money of the third, or
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by J^yV X, gives /,«, a: or. Lastly, the money of the third, or

'^Y^ X multiplied by Xy ov the money of the fii-st, gives -^^-^xx.

The sun of these three products is | a; a;+ ^Vf ^^ ^ + ttV ^ * >

and, reducing these fractions to the sanie denominator, we find

their sum |§^.r a*, which must be iqudl to the number 3b30|.

We have, therefore, |°| xx = 3830f

.

So that V7Va;a;= 11492, and 1521 x x being equal to 95/2836,

dividing by 1521, we havexx= 'VAV ^ ' ^"^ taking its root,

we find X = ^f|*. This fraction is reducible to lower terms if

we divide by IS ; so that a;= «4» = 7£<^ ; and hence we con-

clude, that 3 X = 34, and ^\V x = 10.

Annver. Tlie first player has 79\ crowns, the second has 54

crowns, and the third 10 crowns.

Remark. This calculation may be performed in an easier

manner; namely, by taking the factoi-s of the numbers which

present themselves, and attending chiefly to the squares of those

factors.

It is evident, that 507 = 3 x 169, and that 169 is the square

of 13; then, that 833 = 7 x 119, and 119 =7 X 17. Now we

have ^_2i^ xx = 38304, and if we multiply by S, we have
17 X 49 *

^ ^ xx=: 11492. Let us resolve this number also into its

17 x49
factors ; we readily perceive, that the first is 4, that is to say,

that 1 1492 = 4 X 2873 ; further, 2873 is divisible by 17; so that

2873=17x169. Consequently our equation will assume the

9 X 169
following form

;

x a' = 4 x 17 X 169, which, divided by

169, is reduced to —

—

-= xx=4xl7', multiplying also by 17 X
1/ X '^*'

4 X 289 X 49 .

49, and dividing by 9, we have x x = -, in which al

the factors are squares ; whence we have, w ithout any further

2 X 17 X 7 238
calculation, the root x = =-^ = 79|, as before.

554. ^estion V. A company of merciiants appoint a factor

at Archangel. Each of them contributes for the trade, which

tliey have in view, ten times as many crowns as there are part-
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tiers. The profit of the factor is fixed at twice as many crowns
per cent, as there partners. Further, if we multii)ly the ~\^
part of his total gain hy 2|, the number of partners will be

found. Required, what is that number ?

Let \the z=x ; and since, each partner has contributed 10 a:,

the whole capital is =z\Q xx. Now, for every hundred crowns,

the factor gains a a?, so that with the capital of \0 x x his profit

V ill be I a; 3. The ^^^ part of this gain is fl^x^ ; multiplying

by 2|, or by y, we have ^|^^ a?', or ^\^ x^, and this must be

equal to the number of partnei*s, or x.

We have, therefore, the equation -^\-^ x^ = x, or x^ = 225 x ',

which appears, at first, to be of the third degree ; but as we may
divide by a:, it is reduced to the quadratic a? a: = 225, whence

ar= 15.

Answer. There are fifteen partners, and each contributed 150

crowns.

CHAPTER Vr.

OJ the Resolution of Mixt Equations of the Second Degree,

555. An equ(dion of the second degree is said to he mixt, or com-

plete,* rvhen three kinds of terms are found in 7t, namely, that

which contains the square of the unknown quantity, as a x x ; that,

in which the unknown quantity is found only of thefirst power, as

b X ; lastly, the kind of terms which is composed only of known

quantities. And since we may unite two or more terms of the

same kind into one, and bring all tlie terms to one side of the

sign =, the general forrat^of a mixt equation of the second de-

gree will be

flXa'qp&x=FC=0.
In this chapter, we shall show, how the value of x is derived

from such equations. It will be seen that there arc two methods

of obtaining it.

556. An equation of the kind that we are now considering

may be reduced, by division, to such a form, that the first term

may contain only the square xoe oi the unknown quantity x. We

• Sometimes called al^o affected^
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shall leave the second term on the same side with x, and trans-

pose the known term to the other side of the sign = . By these

means our equation will assume the form xxdt:px = ±zq9

in which p and q repiesent any known numbers, positive or

negative ; and the whole is at present reduced to determining

the true value of a?. We shall begin with remarking, that i(xx
•}-p X were a real square, the resolution would be aite .„cd with

no difficulty, because it would only be required to take the square

root of both sides.

557. But it is evident that or a; +p a? cannot be a square ;

since we have already seen, that if a root consists of two termSf

for example, x + n, Us square always contains three terms,

namely, twice the product of the two parts, besides the square ofeach

part ; that is to say, the square ofx -fnisxx-f-2nx + nn. Now
we have already on one side xJc-^-px; we may, therefore, con-

sider X X as the square of thefirst part of the root, and in this case

p X must represent twice the product of x, thefirst part of the roof,

hy the second part ; consequently, this second part must be ^ p, and

infact the square o/" x -f-
i p, isfound fo fie x x -f- p x -f 1 p p.

558. JS'*ow xx+px-flpp being a real square, which hasfor its

rooix + ip, if we resume our equation xx-f.px=q, we have

only to add -^ p p /o both sides, which gives Msxx-fpx-flpp= q
+ t pp, thefirst side being actually a square, and the other contain-

ing only known quantities. If, therefare, we take the square root

of both sides, wefind x -J- 1 p = V(ipp + q) ; and subtracting A p,

we obtain x =— | p + v/cTpp-Hi) 5 «"^» «« every square root

may be taken either affirmatively or negatively, we shall have fov x
txvo values expressed thus ;

^ =— iP±^:^PP + q.

559. This formula contains the rule by which all quadratic

equations may be resolved, and it will be proper to commit it to

memory, that it may not be necessary to repeat, every time, the

whole operation which we have gone through. We may always
arrange the equation, in such a manner, that the pure square
XX may be found on one side, and the above equation have the

form X a:+ px=zq, where we see immediately that

r = -.|pd=Jipj,4.^.
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560. The j^eneral rule, therefore, which we deduce from this,

in order to resolve the equation xxz=—px + q^ is founded on
this consideration ;

That the unknown quantity x is equal to half the coefficient,

or multiplier of .r on the other side of the equation, pZws or minus
the square root of the square of this number, and the known
quantity which forms the third term of the equation.

Thus if we had the equation o^ or = 6 a? -f 7, we should imme-
diately say, that ^ = 3 =b voT? = 3 ± 4, whence we have
these two values of ^, l.a^ = 7; U. x =z— l. In the same
manner, the equation 0:07= 10 ar— 9, would give a:=5dr
\/25—9 = 5 ± 4, that is to say, the two values of a- are 9 and 1,

561. This rule will be still better understood, by distinguish-

ing the following cases. I. when p is an even number ; II.

when p is an odd number ; and ill. when p is a fractional

number.

I. Let p be an even number, and the equation such, that x x
= 2 p a? -f g ; we shall, in this case, have x=.pd= ^pp + g.

II. Let p be an odd number, and the equation xx=px + q;

vvc shall here have xz=^p dz \— pp + q} and since ^pp + q^

^
'

~[—-, we may extract the square root of the denominator, and

write ^ = 1 p ± ^:^^i^ == ?-^Al|^±l^.

III. Lastly, if p be a fraction, the equation may be resolved

in the following manner ; let the equation be a a? a? = 6;r + c, or

J7 07 = —^ + — , and we shall have by the rule, x = -—— ±

4
bb c ^, bb c bb + 4ac ,. . ., .

1—, Now, -i
— = , the denominator of

4 a a a 4 a a ' a 4aa

, . , . ... 6 rb \/b b + 4ac
which is a square : so that x = .^ 2a

562. The other method of resolving mixt quadratic equations,

is to transform them into pure equations. This is done by sub-

stitution ; for example, in the equation xx = p x+ q* instead of

the unknown quantity a?, we may write another unknown quan-

tity t/, such, that a- = 1/ 4-|p ; by which means, when wc have

determined y, we may immediately find the value of x.
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If Nve make this substitution of 1/ +1 p instead of x, we have

a^x = yy+py-h^PPf and ;j a- = p t/ + 1 p p ; consequently oui-

equation will become y y + p y -h ^PP=P H + ^ P P + Q' which is

first i-educed, by subtracting py. tot/y + lpp = |pp4-9; and

then, by subtracting ^pp, to?/y=ipp + g. This is a pure

quadratic equation, w hich immediately gives y = d=f-^p p -f.^.

Now, since x = y -}- ' p, we havg xz^^pdt ]- pp ^q, as we

found it before. We have only, therefore, to illustrate this rule

by some examples.

563. (^uestim I. There are two numbers ; one exceeds the

other by 6, and their product is 91. Wiiat are those numbers ?

If the less is x, the other is a; -f 6, and their product x x+6x
= 91. Subtracting 6 a', there remains o-a* = 91 — Gx^ and the

rule gives x =— 3 ± y^g +91 =— 3 ± 10 5 so that x = 7, and

a; =— 1 3.

Answer. The question admits of two solutions ;

By one, the less number a' is = 7, and the greater a: + 6 = 13.

By the other, the less number x =— 13, and the greater

4C + 6 =— 7.

564. Question II. To find a number such, that if 9 be taken

from its square, the remainder may be a number, as many units

greater than 100, as the number sought is less than 23.

Let the number souglit = x ; we know, that xx— 9 exceeds

100 by xx— 109. And since x is less than 23 by 23— x, we

have this equation ; a: a'— 109 = 23— x.

Wherefore xx =— x -f- 132, and, by the rule.

X Jl
1 \y^ 1 2G-+132=-^^^— =-^±^.

So that a;= 11, and .t=— 12.

Answer. When only a positive number is required, that

number will be 11, the square of which minus 9 is 112, and

consequently greater than 100 by 12, in the same manner as 11

is less than 23 by 12.

565. Question III. To find a number such, that if we multi-

ply its half by its third, and to the product add half the number
required, the result will be 30,

Eul, Sk. 25
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Suppose that number = a;, its half, multiplied by its third,

will make ^x x ; so that | a: a? + i x = 30. Multiplying by 6,

we have xx -}-5x=: 1 80, or x x =— 3 a;
-f- 180, which gives

S |9 S 27

Consequently x is either = 12, or — 15.

566. Question IV. To find two numbers in a double ratio to

each other, and such that if we add their sum to their product,

we may obtain 90.
*

Let one of the numbers = x, then the other will be = 2 a?

;

their product also =2xx, and if we add to this 3 x, or their

sum, the new sum ought to make 90. So that 2xx-j-3x=z90;
2a(;a: = 90— 3a:; xx = ~-^x + 45, whence we obtain

^^=-l^Jr
9 3 27
- + 45= r±-i'b ' 4 4

Consequently a; = 6, or — 7|.

567. (luestion V. A horse dealer, who bought a horse for a

certain number of crowns, sells it again for 119 crowns, and his

profit is as much per cent, as the horse cost him. Required,

what he gave for it ?

Suppose the horse cost x crowns ; then as the horse dealer

gains X per cent, we shall say, if 100 give the profit x ; what

does X give ? ^nsuier, —— . Since, therefore, he has gained '——

and the horse originally cost him x crowns, he must have sold

it fora: + —— ; whereforea; + —— = 119. Subtracting x,

we have——=— a; + 119; and multiplying by 100, we have

ara;=— 100.r-f 11900. Applying the rule, we finda; =—

•

50 db \/2500 + 11900 =— 50 d= v/l44U0 =— 50 ± 120.

Answer, The horse cost 70 crowns, and since the horse

dealer gained 70 per cent, when he sold it again, the profit must

have been 49 crowns. The horse must have been, therefore,

sold again for 70 +49, that is to say, for 119 crowns.

568. Qiiestion VI. A person buys a certain number of pieces

of cloth ; he pays, for the first, 2 crowns ; for the second, 4

crowns ; for the third, 6 crowns, and iu the same manner always
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2 crowns more for each following piece. Now, all the pieces

together cost him 110. How many pieces had he?

Let the number sought = x. By the question the purchaser

paid for the different pieces of cloth in the following manner;

for the 1, 2, 3, 4, 5 .... a;

he pays 2, 4, 6, 8, 10 .... 2 a; crowns.

It is therefore required to find the sum of the arithmetical

progression 2 + 4+6 + 8 + 10 -f 2x, w hich consists of

X terms, that we may deduce from it the price of all the pieces

of cloth taken together. The rule which we have already given

for this operation, requires us to add the last term and the first

;

the sum of which is 2 a; + 2 ; if we multiply this sum hy the

number of terms x, the product will be 2 a; a: + 2 a; ; if we lastly

divide by the difference 2, the quotient will be a* a* + a*, which

is the sura of the progression ; so that we have ^* a; + u; = 1 10

;

wherefore Jca: =— or + UO,

1 II 1 21
and ar =-- + ^-+ 110 =__ + -= 10.

Jinsvier, The number of pieces of cloth is 10.

569. Question VI [. A person bought several pieces of cloth,

for 180 crowns. If he had received for the same sum 3 pieces

more, he would have paid three crowns less for each piece ;

How many pieces did he buy?

Let us make the number sought= x ; then each piece will

1 80
have cost him —;- crowns. Now, if the purchaser had had or+ s

1 80
pieces for 180 crowns, each piece would have cost crowns

;

and, since this price is less than the real price by three crownsj

we have this equation,

180 180
-S.

X
180x

Multiplying by x, we have—- = 180— 3 a? ; dividing by

x + a

a- + 3

Qq X
«, we have j-p^ = 60 — a- ; multiplying by ar + 3 we have

60 ar= 180 + 57 rt?— xx; adding x x, we shall have «> « + 60 x
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= 180 + 57 a; ; subtracting 60 x, we shall have ^ .r =— 3 ^ +
180.

The rule, consequently gives

|"9 5 27 ,a.=-- + ^- + 180,ora- =-- + _=12.

Jlnswer, He bought for 180 crowns 12 pieces of cloth at 15

crowns the piece, and if he had got 3 pieces more, namely 15

pieces for ISO crowns, each piece would have cost only 12

crowns, that is to say, 3 crowns less.

570. Question VIII. Two merchants enter into partnership

with a stock of 100 crowns ; one leaves his money in the part-

nership for three months, the other leaves his for two months,

and each takes out 99 crowns of capital and profit. What pro-

portion of the stock did each furnish ?

Suppose the first partner contributed x crowns, the other will

have contributed 100— x. Now, the former receiving 99

crowns, his profit is 99 — , wliich he has gained in three

months with the principal jc ; and since the second receives also

99 crowns, his profit is a?— 1, which he has gained in two

months with the principal 100— x; it is evident also, that the;

3 :r— 3
profit of this second partner would have been —-— , if he had

remained three months in the partnership. Now, as the profits

gained in the same time are in proportion to the principals, we
3 X— 3

have the following proportion, a; : 99— a^ = 100— a: i .

The equality of the product of the extremes to that of the

means, gives the equation,

Sx jc— 3 a? = 9900— 199a7+a'ar;

Multiplying by 2, we have Sxoc — 3x = 19800 — 398 x
^2 XX', subtracting 2 a? a?, we have a- x— 3^7= 19800— 398 a?

adding 3 a-, we have x x = 19800— 395 x.

Wherefore by the rule,

395 fl5b025 79200 [395 485 90 _,
"2-= 2- = ^^-

JlnsTJuer. The first partner contributed 43 crowns, and the

other 55 crowns. The first, having gained 54 crowns in three
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months, would have gained in one month 18 crowns ; and the

second having gained 44 crowns in two months, would have

gained 22 crowns in one month : now these protits agree ; for,

if \%ith 45 crowns 18 crowns are gained in one month, 22

crowns will be gained in the same time with 55 crowns.

571. Question IX. Two girls carry 100 eggs to market ; one

had inwc than the other, and jet the sum which they both re-

ceived for them was the same. The first says to the second, if

I nad bad your eggs, I should have received Ip sous. The
other answei-s, if 1 had had yours, I should have received 6|

sous. How many eggs did each carry to market ?

Suppose the first had x eggs ; then the second must have had

100

—

X,

Since therefore the former would have sold 100 —>x eggs for

15 sous, we ha\e the following proportion ;

15 .r
100— X : 15 = Jf . , . , to sous.

lOU— JC

Also, since the second would have sold .t eggs for 6| sons, we
find how much she got for 100— a- eggn^ by sa>ing

20 2000—00^
a' : -r- = 1 GO— o" .... to ,

Now both the girls received the same money ; we have con-

., ^, ^. 15 JC 2000 — 20.

T

swiuently the equation,
^^qq _^ ^

= ^ , which becomes^^

this^

S.5xx= 200000— 4000 x ;

and lastly this,

xx=:— 160 a-
-f 8000;

whence we obtain

x= — 80 + V6400 + SOOO =— 80 + 120 = 40.

Mswer, The first girl had 40 eggs, the second had 60, and?

each received 10 sous.

572. qustion X. Two merchants sell each a certain quantity
of stuff; the second sells 3 ells more than the first, and they
received together 35 crowns. The first says to the second, I

should have got 24 crowns for your stuff ; the other answers^
and 1 should have got for yours 12 crowns and a half. How
many ells had each ?

Suppose the first had x ells : then the second must have had
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X +3 ells. Now, since the first would have sold a; + 3 ells for

24 X
24 crowns, he must have received—-— crowns for his x ells.X -{- 5

And with regard to the second, since he would have sold x ells

2') :c + 75
for 12i crowns, he must have sold his x + 3 ells for "

2x '

24 X 25 X -4* 75
SO that the whole sum they received was ——- + —-^-— = S5'' X 4- 3 ' 2 X

4
'

crowns.

This equation becomes a; a^ = 20 a;— 75, whence we have

ic= 10 ± Vioo— 75 = 10 ± 5.

Answer. The question admits of two solutions ; according to

the first, the first merchant had 15 ells, and the second had 18 ;

and since the former would have sold 18 ells for 24 crowns, he

must have sold his 15 ells for 20 crowns ; the second, who would

have sold 15 ells for 12 crowns and a half, must have sold his

18 ells for 15 crowns; so that they actually received 35 crowns

for their commodity.

According to the second solution, the first merchant had 5

ells, and the other 8 ells ; so that, since the first would have

sold 8 ells for 24 crowns, he must have received 15 crowns for

his 5 ells ; and since the second would have sold 5 ells for 12

crowns and a half, his 8 ells must have produced him 20 crowns.

The sum is, as before, 35 crowns.

CHAPTER VII.

Of the J\'*ature of Equations of the Second Degree.

573. "What we have already said suiBciently shows, that

equations of the second degree admit of two solutions; and this

property ought to be examined in every point of view, because

the nature of equations of a higher degree will be very much

illustrated by surh an examination. We shall therefore retrace,

with more attention, the reasons which render an equation of

the second degree capable of a double solution ; since they un-

doubtedly will exhibit an essential property of those equations.
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574. We have already seen, it is true, that this double solu-

tion arises from the circumstaiue tiiat the square root of any

number may be taken either jwsitively, or negatively; however,

as this principle will not easily apply to equations of higher

degrees, it may be proper to illustrate it by a distinct analysis.

Taking, for an example, the quadratic equation, jcx= 12 a:— 35,

we shall give a new reason for this ecjuation being resolvible ia

two ways, by admitting for a* the values 5 and 7, both of which

satisfy the terms of the equation.

575. For this |)urpose it is most convenient to begin with

transposing the terms of the equation, so that one of the sides

may become 0; this equation con>equently takes the form a-

x

— 12 a: + 35 = 0; and it is now required to find a number

such, that, if we substitute it for a-, the quantity o-x— l2x + 35

may be really equal to nothing ; after this, we shall have to

show how this may be done in two ways.

576. Nuw, the whole of this consi'sts in showing clearly, that

a quantity of the form x x— 12 x -f 35 viaij he considered as the

prodtict of two factors ; thus, in fact, the quantity of which we
speak is composed of the two factors (.v— 5) x (x— 7). For,

since this quantity must become 0, we must also have the pro-

duct (ar— 5) X (jc— 7) = ; but a product^ of ivhatever number

offactors it is composed^ becomes = 0, only when one of thosefaC'

tors IS reduced to ; this is a fundamental principle to which we
must pay particular attention, especially when equations of ser-

eral degrees are treated of.

577. It is therefore easily understood, that the product (x— 5)

X (x— 7) may become in two ways: OTie^ when the first factor

X— 5= 0; the other, when the secondfactor x— 7 = 0. In the

first case x= 5, in the other, x = 7. The reason is, therefore,

very evident, why such an equation xx— 12.r 4-35 = 0, ad-

mits of two solutions, that is to say, why we ran assign two
values of ,r. both of which equally satisfy the terms of the equa-

tion. This fundamental principle consists in this, that tlie

quantity a: a-— 12 x -\- 55 may be represented by the product of

two factors.

578. The same circumstances ^are found in all equations of

the second degiee. For, after having brought all the terms to
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one side, we always find an equation of the followin.i* form xx
'—ax + b = o, and this formula may be always considered as

the pmduct of two factors, which we shall represent by (x— p)

X {.V— q)f without concerning ourselves what numbers the

letters p and q represent. Now, as this product must be = 0,

from the nature of our equation it is evident tiiat this may hap-

pen in two ways ; in the first place, when x=zp; and in the

second place, whena'= g; and these are the two values of a;

•which satisfy the terms of the equation.

579. Let us now consider the nature of these two factors, in

order that the multiplication of the one by the other may exactly

produce xx— ax-{- b. By actually multiplying them, we get

XX— (^p +9) x -f-p q ; now this quantity must be the same as

xor— ax-^bf wherefore we have evidently p + rj'iz: a, and p g
z=b. So that we have deduced this very remarkable property,

that in every equation of' the form x x— a x -f- b = 0, the two

values of x are such, that their sum is equal to a, and their product

equal to b ; whence it follows that, if we know one of tlie values,

the other also is easilyfound,

580. We have considered the case in which the two values

of X are positive, and which requires the second term of the

equation to have the sign —, and the third term to have the

sign -f . Let us also consider the cases in which either one or

both values of a' become negative. The first takes place when

the two factors of the equation give a product of this form

(x— p) X (x-^q") ; for then tlie two values of x are x.=:p. and

a?=— (/
; the equation itself becomes xx -{.(^q—p) x—p </= ;

the second term has the sign -f , when q is greater than p, and

the sign —, when q is less than p 5 lastly, the tliird term is

always negative.

The second case, in which both values of x are negative,

occurs, when the two factors are (x -|- p) x (x-\-q)i for we

shall then have x=z— p and x:=z—
</ ; the equation itself be-

comes xx^(^p'^q)x -\.p q = Of in which both the second and

third terms are afi'ected by the sign +.

581. The signs of the second and the third term consequently

show us the nature of the roots of any equation of the second

degree. Let the equation be xx , , , , ax . , ,,b = 0, if the
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second and third terms have the sign +, the two values of x are

both negative ; if the second term has the sign —» and the third

term has -f-, both vahies are positive ; lastly, if the third term

also has the sign —, one of the values in question is positive.

But in all cases, whatever, the second term contains the sum

of the two values, and the thii-d term contains their product.

582. After what has been said, it will be very easy to form

equations of the second degree containing any two given values

Let there be required, for example, an equation such, that one

of the values of x may be 7, and the other— 3. We first form

the simple equations x = 7 and x =— 3 ; thence these, .t— 7

= and a: + 3 = 0, which gives us, in this manner, the factors of

the equation required, which consequently becomes a; a;— 4 x—
21 = 0. Applying here, also, the above rule, we find the two

given values of x ; for if x x = 4 a; + £ 1, we have x= 2 =fc ^^5
= 2 db 5 , that is to say, or= 7, or .r =— 5.

583. The values of x may also happen to be equal. Let there

be sought, for example, an equation, in which both values may
be = 5. The two factors will be (x— 5) x (^— 5), and the

equation sought will be x x — 10 x + 25 = 0. In this equation,

X appeal's to have only one value ; but it is because x is twice

found = 5, as the common method of resolution shows ; for wc
have xx=\Ox — 25 ; wherefore x= 5 ± v/cT= 5 ~z 0, that

is to say, x is in two ways = 5.

584. A very remarkable case, in which both values of x be-

come imaginary, or impossible, sometimes occurs ; and it is

then wholly impossible to assign any value for x, that would
satisfy the terms of the equation. Let it be proposed, for ex-

ample, to divide the number 10 into two parts, such, that their

product may be 50. If we call one of those parts .t, the other
will be = 10— X, and their product will be 10 x— xx = 30*
wherefore x x = 10 x— 30, and x = 5 ± V^^, ^ hich being
an imaginary number, shews that the question is impossible.

585. It is very important, therefore, to discover some sign,

by means of which we may immediately know, whether an
equation of the second degree is possible or not

Let us resume the general equation ax— x.r + & = o.

EiU. JUg. 26
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AVe shall have xx = a x— b, and a: = — a ±.1-: a a— &.

This shows, that if b is greater than J a o, or 4 6 greater than « a,

the two vahies of x are always imaginary, since it would be

required to extract the square root of a negative quantity ; on
the contrary, if b is less than -^ a a, or even less than 0, that is to

say, is a negative number, both values will be possible or real.

But whether they be real or imaginary, it is no less true, that

they arc still expressible, and always have this property, that

their sum is = «, and their product = 6. In the equation x x
— 6 a; + 1 = 0, for example, the sum of the two values of a: must
be = 6, and the product of these two values must be = lOj now
we find, I. x = 3-fv'-—T ^"^ ^^' ^=3

—

V — h quantities

whose sum = 6, and the product = 10.

586. The expression, which we have just found, may be
represented in a manner more general, and so as to be applied

to equations of this form,/x x±:gx-\-h = 0; for this equation

^ —— y5'^~
; whence we conclude that the two values

are imaginary, and consequently the equation impossible, when
4//i is greater than gg ; that is to say, when, in the equation

fx X— ^ a: + A = 0, four times the product of the first and the

last terra exceeds the square of the second term : for the product

of the first and the last term, taken four times, is Ajhxx, and

the square of the middle term is ^ ^ a; ,t ^ now, if 4//i xx\b greater

than ^^^ a;, 4/ A is also greater than gg, and in that case, the

equation is evidently impossible. In all other cases the equa-

tion is possible, and two real values of x may be assigned.

It is true they are often irrational ; but we have already seen,

that, in such cases, we may always find them by approxima-

tion ; whereas no approximations can take place with regard to

Imaginary expressions, such asv^^^J for 100 is as far from

being the value of that root, as 1, or any other number.

587. We have further to observe, that any quantity of the

second degree, x x ± a x± b, must always be resolvible into two

factors, such as (x dcp) x(x ± ?)• For, if we took three
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factors, such as these, we should come to a quantity of the third

degree, and taking only one such factor, we should not exceed

the first degree.

It is therefore certain that every equation of the second degree

necessarily contains two values of x, and tliat it can neither have

more nor less.

588. We have already seen, that when the two factors are

found, the two values of x are also known, since each factor

gives one of those values, when it is supposed to he = 0. Tiie

converse also is true, viz. that when we have found one value of

Xf we know also one of the factors of the equation ; for if z =p
represents one of the values of Xf in any equation of the second
degree, x— pis one of the factors of that equation ; that is to

say, all the terms having been brought to one side, the equation

is divisible by a:— p; and further, the quotient expresses the

other factor.

589. In order to illustrate what we have now said, let there

be given the equation a; a; + 4 j;— 21 = 0, in which we know
that X = 3 is one of the values of x, because "sxl^ -f Txs"!— 21=0; this shows, that z— 3 is one of the factors of the
equation, or that x a:- + 4 x— 21 is divisible by x 3, which
the actual division proves.

.T— 3) xx-\.4x— 21 (x+7
XX— 3 a*

7jc— 21

7x— 21

0.

So that the other factor is a; + 7, and our equation is repre-
sentcd by the product (j— s) x (a- + 7) = o j whence the two
values of x immediately follow, the first factor giving x= 3
and the other x =— 7,



QUESTIONS FOR PRACTICE.

Fractions.

SECTION I. CHAPTER 9.

1. Reduce — and — to a common denominator.
a e

2cx . ab
Jlns, and —

.

ac a c

2. Reduce -^ and
"

to a common denominator,
o c

- ac - a 6 + 6*
^ns, -r— and —r •

DC be

3 X 2 b
3. Reduce -— , t— , and d to fractions havine a common de.

2 a 3 c ^

. . „ 9c X 4ah . 6acd
nominator, *flns» ^—— , ^--— and -^ .

o a e ba c oa c

S ^ X 2 X
4. Reduce —, -r- and a -i to a common denominator.

4 3 a

9 a Sax .12a^+Z4x
Ans. ——, —-— ,and —

,

5. Reduce — , — . and : to a common denomiriator.
2 3 X + a

S :f 4- 3 a 2 a2 :c + 2flS 6 jt* + 6 a«

' 6 X -\- da* 6 X -^ i) a ' Gjr + tio'

6. Reduce -» — . and —, to a common denominator.
2a^ 2 a a

Qa^b 2a^ c . 4 a^ d
A71S. . . , —r—Ti and --—r-

4 a* ' 4 a'*
' 4 a*
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SECTIOIT I, CHAPTER 10.

7. Required the product of -g and -g-. Ans. —

.

8. Required the product of -, —r-, and -^p* »fln5. -jT-*

9. Required the product of — and —;— . ^ns. —r— .

10. Required the product of —r~ and -r— . .4n5. -tt-«

2 iT S jr* 3 jr'
11. Required the product of ^— and -?^—. Ans. ——

.

^ ,, -^-2xSfl6 ,Soc
12. Required the product of , , and -r-r-. Ans.9ax,

13. Required the product of 6 -f — and — . Ans, ————,

14. Required the product of —r and —r—r—

.

Ans.
63 c +6c2*

15. Required the product of x, , and ^ ""
^ .^ *^ a a + 6

X
Ans,

a^ +ab'
•E" 2 JT 1

16. Required the quotient of — divided by -q— . Ans. 1—.

17. Required the quotient of -r- divided by -^. .fl/is. -^.

a;* -1. d ^ 1 A
18. Required the quotient of divided by

3jr — ah ' b X -{ a

5 x^ -^ ^ a X -\-
a"^

Ans,
2 x» — 2 ft

a

2 x' T"

19. Required the quotient of —j-r—j divided by

3 X
Ans,

x^— ax+ a**

20. Required the quotient of— divided by —. Ans. ^^.
o 13 60

21. Required the quotient of -|- divided by 5 x, Ans. —
7 55
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22. Required the quotient of ^-i-J divided by—. Ms, "^"^^

23. Required the quotient of "^f^ divided by ^. Ms.^^
o c a 4

«

6 c*a?*

524. Required the quotient of -^-f^^l-^ divided by

or— 6 • '^^^ ^+ —

.

Infinite Series.

SECTION II. CHAPTER 5.

it ^
25, Resolve into an infinite series.

a— x
x^ x^ x^,aus.a:+_ + ^^ + __,&C.

26. Resolve —;— into an infinite series.
a -\- X

a a^ ^ a^ a* ^
or resolved intofactorSf

b
^ y,^ X x^ x^ „ ^

Sr. Resolve ——j- into an infinite series.

^ttS. - \(1. +- - + &c.)X ^ x x^ or' '

28. Resolve ^ into an infinite series.
1 — X

Ms. 1 + 2 or + 2 :r3 + 2 x3 + 2 :c*, &C.

a
29. Resolve ,—;—r^ into an infinite series.

(a + x)

„ , 9.x 3x^ 4 x^ ,

Ms. 1 — + — _, &c.
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Surds or Irrational jyTumbers.

SECTION I. CHAPTERS 12, 19 ; and SECTION II. CHAPTER 8, &C.

SO. Reduce 6 to the form of v/J". -ins. vSe.

31. Reduce a +6 to the form of \/Tc» Aiis. Vaa-f-2 a 6+6 6.

S2. Reduce -—= to the form of v^. Ans. ^^^
b \/c O c

t 1
33. Reduce a* and & to the common exponent —

.

611 Til
Ans, a p, and h^\^.

34. Reduce v/48 to its simplest form. *ins. 4 ^3".

35 Reduce Va' x— a^ xs to its simplest form.

dns. a\/ax—xx-
3

36. Reduce ^ to its simplest form.
\'86— 8a

*^

2 \b— a

$7. Add v'6~ to 2 v'6"; and vi" to ^50. Ans. 3 ve"; and v/gs.

38. Add v^4a and Va* together. Ans» (a + 2) y'a.

6l
1 cli 6 6 4- c c

39. Add — ' and -rp tosether. .tfn. ——=^.
c| fc|

'^
6v'6c

4 _
40. Subtract \/^a from \/a6, dns. (a— 2) \/a'.

41. Subtract -^^ from -^- Ans, ii=ii JX.
6 cl b ^ be

1. Multiply ^T^hj^^J. .3ns. \f42
' ' ^ 3c

3

3 a' c?

3 6 _^____
43. Multiply v^ by v/oA* Ans. \/a^b^d^.

44. Multiply V4 a— 3 a- by 2 a. .^ns. Vl6« s _ 120' x.

45. Multiply Yi Va — x by (c— d) ^TT.

a c—mttd
Ms. —gT Va» a: .^o a;*.
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46 Multiply v^— V*"— v's* by \/a + k/T-^ V3".
^ns. ^aa — b + V/s"*

47. Divide a^ by o"*^ ; and a" by a*", w9«s. aJ^ and a

48. Divide——r— Va* x— ax^ by —r s/a — x»

Ms. (c— d) vJ^
49. Divide a^ —-ad— h -\-d V6~ by a— v*^

Jins, a + yft"— d.

50. What is the cube of vs"? .5«s. VsT
3 3

51. What is the square of 3 v 6 c3 ? Ms. 9 c v6* c

.

52. What is the fourth power of —r \l -z~i •

4 6* (^c8— 26c + 62/

53. What is the square of 3 + \/s' ? Ms. 14 + 6 v^sT

3

54. What is the square root of a' ? Ms. a^ j or v/as,
1 3

55. What is the cube root of a 6' ? *^ns. abb"^ ; or Vo 6 6.

56. What is the cube root of v'o*— x^ ? Jlns. \/a^— x*,

57. What is the cube root of a* — \/ax— x^ ?

58. What multiplier w ill render a -f ^/T rational ?

Ms. a— v's".

59. What multiplier will render y^J" — x/T rational ?

Ms. vo" +\/6~.

CO. What multiplier will render the denominator of the frac-

tion —=^-

—

z=r rational ? Ms. x/f— V3.'

SECTION U. CHAPTER 12.

61. Resolve \/a* + x^ into an infinite series.

x^ x* x^ 5 x^ g
Ms. a + — r + TTTT •" o-,o 7"> '*^»

2 a b a* ' lb a* 828 a'
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62, Resolvevm i»to an infinite series.

63. Resolve \a=»— .r» into an infinite series.

x^ X* a-* -

^715. a— r--: — TTTsf *^'

64. Resolve \ l— a:' into an infinite series.

Jns. 1
— '— -

b

65. Resolve \ r« — x» into an infinite series.

Aas. r—^--^— ^^, - j^^^, &c.

66. Resolve—== into an infinite series.

1 .r« S T* 15 .r« .

t

6r. Resolve («* — a:')* into an infinite series.

^ 5 a* 25 a* 125 a«

68. Resolve F'^
"^•*"

into an infinite series.ve p+-''
\a2 — a-»

1"* T* Jf*

Jins. 1 + — + -1—- 4- —— , &c.

s

69. Resolve ^ 1,-4—r'—Wr into an infinite series.

Summation of Jlrithmelical Progressions.

SECTION III. CHAPTER 4,

70. RECirrRED the sum of an increasing arithmetical pro-

gression, having 3 for its first term, 2 for the common difference,

and the number of terms 20. ^ns. 440.

71. Re<juired the sum of a decreasing arithmetical progres-

Eul,Jlg. 27
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sion, having 10 for its first term, | for the common diflference,

and the number of terms 21, Ans. 140.

72. Rc(|uired the number of all the strokes of a clock in

twelve hours, that is, a complete revolution of the index.

Ans, 78.

73. The ch)cks of Italy go on to 24 hours ; how many strokes

do they strike in a complete revolution of the index ? Ans. 300.

74. One hundred stones being placed on the ground, in a

straiglit line, at the distance of a yard from each other, how far

will "A person travel who shall bring them one by one to a

basket, which is placed one yard from the first stone.

Ans. 5 miles and 1300 yards.

The greatest Common Divisor,

SECTION III, CHAPTER 6.—SECTION I. CHAPTER 8.

75, Reduce —5——5— to its lowest terms. Ans. —r.
ca^ + a* X a*

_ - .r3 — 6*07
, ., , „ oc^— bx

76, Reduce—5—— -7 —rr to its lowest terms. Ans. r"r~«X* -\- -4. X -{- b* X -\-

X* h* x^ +h'i
77, Reduce — ——- to its lowest terms. Ans, r—

•

x^ — b^ x^ x^

x^ — w^ 1

78, Reduce —r—-- to its lowest terms. Ans,

fl* —" x^ n "4- X
79. Reduce —^

,
r r to its lowest terms. Ans, ,

a3

—

a^ X -\-ax^—x^ 1

SO. Reduce -z—
,

' „ j-t—i *o ^^^ lowest terras.

Ans.
a^ x-i-ax^ +^3

Summation of Geometrical Progressions.

SECTION III. CHAPTER 10.

81. A SERVANT agreed with a master to serve him eleven

years without any other reward for his service than the pro-

duce of one wheat corn for the first year ; and that product to

bQ sown the second year, and so on from year to year till the



Questions for Practice. 21

1

«nd of the time, allowing the increase to be only in a tenfold

proportion. What was the sum of the whole produce ?

Jifs. llillllUllO wheat corns.

N. B. It is further rf-quiied, to reduce this number of corns

to the pro|)er mea^ures of rapacity, and then by supposing an

average price of wheat to compute the value of the corns in

money.

82. A servant agreed with a gentleman to serve him twelve

months, provided he would give him a farthing for his fii'st

moiitli*s service, a penny for the second, and 4d. for the third,

&c. \> hat did his wages amount to ? J/w. 58- 5i. 8s. 5\d.

83. Sessa, an Indian, having invented the game of chess,

showed it to his prince, who was so delighted with it, that he

promised him any reward he should ak; upon which Sessa

rerjuested that he might be allowed one grain of wheat for the

first square on the chess board, two for the second, and so on,

doubling continually, to 64, the whole number of squares ; now
supposing a pint to contain 7680 of those grains, and one quar-

ter to be worth 1/. 7s. 6d. it is i-equired to compute the value of

the whole sum of grains. Jlns. £64481488296.

Simple Equations.

SECTION IV. CHAPTER 2.

84. If X— 4 + 6 = 8, then wilLr = 6.

85. If 4 a-— 8 = 3 or -f 20, then will x — 28.

86. U a X = a b ~— a, then will x = b— 1.

87. If 2 a: + 4 = 1 6, then will x = 6.

88. U ax4.Qbn = Sc^. then will x = 2 6.
' a

89. If ^= 5 + 5, then will x= 16.

90. If -^ — 2 = 6 + 4, then will a: = 18.

b f-

91. If a—— = c, then will x =X a — c

92. If 5 a:— 1 5 = 2 a; + 6, then will x=7.
93. If 40— 6 a:—16 =120 —14 a:, then will a: =12.
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94. If -f
— -^ + ^ = 10, then will x = 24.

^ O *T

_. ^r— 3 X X— 19 ^,

95. If —-— + - = 20 — , then will x = 231.
2 3 a *

96. If p X + 5 = 7, then will x = 6.

97. If a; + \Ia^ -\- x^ = _
"

, then will x = a [l.
Va^+ x^ \S

98. If 3 a a? + —— 5 = hx— a, then will x = ^
""^°,

.
^ 6a— 2&

99. If V 12 + X = 2 +v^ then will a; = 4.

2 a* 1
a» -{- ?/^ = -—

J, then will ij=: — a v^sT

«4.l v4-2 «4-3
101. If ^-~- + -^-y- = 16 — ^-^-, then will y=13,

2 rt a
102. If Va: +Va + x= » then will' a; = —.

V « + X 3

103. If \ a» + a:3 = ^6* + x"*, then will x = J 2 a*'

104. If a;= V** +aJV6» -fa^— «, then will a;= a.

.. 1^8 216
^05. If

si^::^ = j^^TTb' *^»«" ^'^^ ^= ^2-

106. If = \, then will x— 8.
X— 2 a?— 3

45 57

108. If ^ ~— = P— , then will 07= 6.
b 4

109. If 615 x—T x^ =4SXf then will a: = 9.

SECTION IV. CHAPTER 3.

110. To find a number, to which, if there be added a half, a

third, and a fourth of itself, the sum will be 50. Jns» 24.

111. A person being asked what his age was, replied that |
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of bis age multiplied by ^j of bis age gives a product equal to

bis age. W fiat was bis age? ^ns. 16.

112. The sum of 66U/. was raised for a particular purpose by

four persons. A, B, C, and D ; B advanced twice as much A ;

C as much as A and B together; and D as much as B and C.

What did each contribute ? JJns. 60/, 120/, 180/, and 300/.

113. To find that number whose | part exceeds its i part

by 12. Ans. 144.

114. What sum of money is that, whose ^ part, ^ part, and ^
part added together, amount to 94 [raunds? ^'is. 120/.

115. In a mixture of copper, tin, and lead, one I»alf «)f the

whole— 16/6. was copper ; ^ o( tlie whole — 12/6. tin ; and \
of the whole + 4/6. lead : what quantity of each was there in the

composition ?

^ns. 128/6. of copper, 84/6. of tin, and 76/6. of lead.

' 116. What number is that, whose ^ part exceeds its | by T-z ?

^ns. 540.

117. To find two numbers in the proportion of S to 1, so tiiat

if 4 be added to each, the two sums shall be in the proportion of

5 to 2. Ans. 8 and 4.

118. There are two numbers such that ^ of the greater ad'icd

to
-I

of the less is 13, and if i of the less he taken from \ of the

greater, the remainder is nothing ; what are the numbers ?

*Sns. 18 and 12.

119. In the composition of ac£i'tain quantity of gunpowder |
of the whole plus 10 was nitre; | of the whole minus 4i was

sulphur, and the charcoal w as 4 of the nitre— 2. How many
pounds of gunpowder were there 2 Jins. 69.

120. A person has a lease for 99 years; and being asked

how much of it was already expired, answered, that two thirds

of the time past was equal to four fifths of the time to come :

required the time past. Ans. 54 years.

121. It is required to divide the number 48 into two such

parts, that the one part may be three times as much above 20
as the other wants of 20. Ans. 32 and 16.

122. A person rents 25 acres of land at 7 pounds 12 shillings

per anoum 5 this land consisting of two sorts, he rents the better
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sort at 8 sliillings per acre, and the worse at 5 : required the

number of ai res ol" the better sort. Jins. 9.

123. A certain cistern, which would be filled in 12 minutes

by two pipes running into it, would be filled in 20 minutes by

one alone. Required, in what time it would be filled by the

other alone. Ms. 30 uiiniites.

124. Required two numbers, whose sum may be s, and their

proportion as a to b, Jns. ,- and
a + 6 a -\- b'

125. A privateer, running at the rate of 10 miles an hour,

discovers a ship 18 miles off making way at the rate of 8 miles

an hour ; it is demanded how many miles the ship can run be-

fore she will be overtaken ? Ms. 72.

126. A gentleman distributing money among some poor

people, found he wanted 10s. to be able to give 5s. to each ;

therefore he gives 4s. only, and finds that he lias 5s. left : re-

quired the number of shillings and of poor people.

Jins. 15 poor people, and 65 shillings.

127. There are two numbers whose sum is the 6th part of

their product, and the greater is to the less as 3 to 2. Required

those numbers. Jins. 15 and 10.

•A^. B. This question may be solved likewise by means of one

unknown letter.

128. To find three numbers, such that the first, with half the

other two, the second with one third of the other two, and the

third with one fourth of the other two, may be equal to 34.

Ms. 26, 22, and 10.

129. To find a number consisting of three places, whose

digits are in arithmetical progression j if this number be divided

by the sum of its digits, the quotient will be 48; and if from

the number be subtracted 198, the digits will be inverted.

Jim. 432.

ISO. To find three numbers such, that | the first, \ of the se-

cond, and 1 of the third, shall be equal to 6-2
; \ of the first, 1 of

the second, and i of the third, equal to 47 ; and \ of the first,

\ of the second, and \ of the third, equal to 38.

Ans. 24, 60, 120.

131. To find three numbers such that the first with | of the
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sum of the second and third shall be 120, the second with |. of

the diflfei-ence of the third and first shall be 70, and ^ of the sum

of the three numbei*s shall be 95. dns. 50, 63, 75.

132. What is that fraction which will become equal to ^, if

an unit be added to the numerator ; but on the contrary, if aa

unit be added to the denominator, it will be equal to ^ ?

133. The dimensions of a certain rectangular floor are such,

that if it had been 2 feet bi*oader, and S feet longer, it would

have been 64 square feet larger ; but if it had been 3 feet broad-

er and 2 feet longer, it would then have been 68 square feet larg-

er : required the length and breadth of the floor.

Jns. Length 14 feet, and breadth 10 feet.

134. A person found that upon beginning the studv of his

profession ^ of his life hitherto had passed before he commenced

his education, ^ under a private teacher, and the same time at a

public school, and four } ears at the university. What was his

age ? wins. 21 years.

135. To find a number such that whether it be divided into

two or three equal parts the continued product of the parts sjtall

be equal to the same quantity. Jins. 61.

136. There is a certain number, consisting of two digits.

The sum of these digits is 5, and if 9 be added to the number

itself the digits will be inverted. What is the number ?

Ans. 23.

137. What number is that, to which if I add 20 and from ^ of

^is sum I subtract 12, the remainder shall be 10 ? dns, 13.

Quadratic Equations,

SECTION IT. CHAPTEK 5.

138. To find that number to which 20 being added, and from

which 10 being subtracted, the square of the sum, added to

twice the square of the remainder, shall be 17475. w3ns. 75.

139. What two numbers are those, which are to one another

in the ratio of 3 to 5, and whose squares, added together, make
1666? Ms, 21 and 35.
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140. The sum 2 a, and the sum of the squai'es 2 6, of two num-

bers being given ; to find the numbei-s.

*Sns. a— v/6 — a^ »«<! « + Vb a» •

141. To divide the number 100 into two such parts, that the

sum of their square roots may be 14, Jns. 64 and 36,

142. To find three such numbers, that the sum of the first

and second multiplied into the third, may be equal to 65 ; and

the sum of the second and third, multiplied into the first equal

to 28 ; also, that the sum of the first and third, multiplied into

the second, may be equal to 55. Jlns. 2, 5, 9.

143. What two numbers are those, whose sum is to the

greater as 11 to 7 , the difference of their squares being 132?

»3ns, 14 and 8.
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