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PREFACE
o

^ The following book is the outcome of a course of lectures on

^Kinematics and the Mechanics of the Steam-engine, which has

k^been issued in the form of notes to students in the Department

of Mechanical Engineering of the University of California for

several years past. The first two parts embody the more im-

portant principles of what is generally called the Kinematics of

Machinery, though in many instances dynamic problems which

present themselves are dealt with ; the real purpose of the book

being the application of the principles of mechanics to certain

problems connected with machinery. In the third part there is

discussed the Mechanics of the Steam-engine, that machine

being perhaps the most important from a designer's point of

view. Here the subject is treated under two distinct heads,

Kinematics and Dynamics.

No special originality is claimed for the major part of the

material, and free use has been made of whatever literature

could be found relating to the special subjects under considera-

tion. To the more important of these, references are given by

foot-notes.

JOSEPH N. Le CONTE.

Berkeley, California.

November, 1902.
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INTRODUCTORY

Kinematics.— Kinematics is that branch of Mechanics which

deals with motion without reference to the cause producing it. It

is important in dealing with machinery, where motion is entirely

independent of the direction of the acting forces. In the follow-

ing chapters we always assume rigid bodies, that is, bodies such

as have their particles at an invariable distance from one another.

Though there are no absolutely rigid bodies, all substances being

more or less elastic, still, for the materials of machine construc-

tion, the effect of elasticity in affecting constrained motion is

insignificant.

When a body has any motion whatever, its position at any given

time is completely determined when the position of three of its

points are known, provided these three points do not lie in one

straight line. Hence no motion is possible if three such points

are fixed. If one point is fixed, a knowledge of the position of

two others, not in line with the first, is sufficient to determine the

position of the body. Likewise if two are fixed, a knowledge of

the position of a third only is required.

Kinds of Motion.— If a body has none of its points fixed, we

study its motion generally by investigating the paths traced by

three of its points. Such cases are not frequent in machinery,

with the exception of helical screw motion, which can be reduced

to a conbination of two simpler forms. If a body has one point P
fixed, all its other points move on the surfaces of a system of con-

centric spheres with centre P, hence this motion is called Spheric

Motion. In its general form it is not common in machine move-

ments, but in the special case, where the fixed point is removed to

infinity, it becomes the most important of all forms. In this case

the system of concentric spheres becomes a system of parallel

3



4 INTRODUCTORY

planes within any finite space. This form is called Uniplanar

Motion, and all planes of the body at right angles to the line

drawn toward the fixed point continue to move in their own
planes. This fixing of one point at infinity vastly simplifies the

motion, and nearly all machine motions are of this type. In treat-

ing of plane motion we have to consider the motion of but one of

these planes, which may be called the Reference Plane, and the

motion of all other points of the body can be studied by their pro-

jection on this plane. Hence the whole is reduced to a problem

in Plane Geometry. Since one point is already fixed, we have

only to consider the motion of two points, that is, of a line of the

body. In uniplanar motion, then, we can treat all bodies as lines.

Kinds of Uniplanar Motion.— If we still further constrain the

body by fixing a point in the reference plane or at any finite dis-

tance from it, we have the particular case of Pure Rotation.

Here all points in the body describe a system of concentric circles

about the line connecting the two fixed points, which line is called

the Axis of Rotation. If the second fixed point is also removed

to infinity in any direction not at right angles to the reference

plane, we have the particular case of Rectilinear Translation.

The concentric circles within any finite space become a system of

straight lines parallel to the line of intersection of the two refer-

ence planes.

Combination of the Two Elementary Forms of Uniplanar Motion.

— The combination of two or more rectilinear translations is an

elementary principle of Mechanics, as is also the combination of

two rotations. A displacement caused by a translation and a rota-

tion taken in either order can be replaced by a single rotation.

The construction for this is shown in Fig. i, where changes of

position only are considered. Let the rotation be such that if act-

ing alone the body would move from AB to A'B' about C as a

centre. The translation in the same plane is such as would shift

the body from A'B' to A"B". The result of the two is to shift

the body from AB to A"B". Connect AA" and BB" by straight

lines, and at the middle points of these last erect perpendiculars

intersecting at /, which then must be the point sought. Now if
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the body moves according to a given law, we may take a series

of determinate positions, and find the point / for each successive

pair of these. Finally, when these successive positions become

indefinitely close together, the

motion becomes continuous,

and hence the centre / must

move continuously also. Since,

then, the position of the centre

/ at any time has but an instan-

taneous value, it is called the

Instantaneous Centre.

The Instantaneous Centre.—
When the positions AB and

A"B" are indefinitely close to-

gether, the arc AA" and the

chord AA" coincide, and the

line IE coincides with IA, and

is perpendicular to v1} the direc-

tion in which A is moving. The

same is true with reference to IB, IF, and z/2. Hence if we know

at any instant the direction of motion of two points of a body

(moving with uniplanar motion), the instantaneous or virtual

centre will lie at the intersection of the perpendiculars drawn to

them.

Centrodes of Motion. — The instantaneous centre will itself,

therefore, trace out a curve on the reference plane. The curve

thus traced out with reference to axes fixed in space is known as

the Space Centrode, or Fixed Centrode. If we refer the motion

of the instantaneous centre to axes fixed in the moving body, we

shall obtain another curve called the Body Centrode, or Moving

Centrode: The body centrode can be constructed for any given

position of the body by transferring every other position of the

body to the given position, and carrying with each its instanta-

neous centre. Another curve is thus formed which must have a

point in common with the first ; namely, the instantaneous centre

of the reference position. A simple pair of centrodes which cor-
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respond to a line moving with its extremities on a pair of rectan-

gular coordinates is shown in Fig. 2. Let AB be one position of

the body. A moves ver-

tically downwards, and B
horizontally to the right.

The instantaneous centre,

therefore, lies at the inter-

section of the perpendic-

ulars to the directions of

motion of these, or at /.

Other positions of the

body give plt p2 , etc.

These points lie on a cir-

cle with centre O, and

radius 01 = AB, which

is the space centrode.

Choosing any reference

position of the body such

as AB, we construct the body centrode by replacing on AB
every other position of the body with its instantaneous centre

" attached." For example, the position A2B2 with centre at p2

gives, when replaced on AB, the point q2, on the" body centrode.

The body centrode in this case is seen to be a circle of half the

diameter of the space centrode, since it is the locus of the right

angle of a right triangle of invariable hypothenuse. When a

circle rolls within another of double its diameter, every point on

the circumference of the small circle describes a diameter of the

large one, which is a straight line hypocycloid. The pair of cen-

trodes above is a pair of such circles. But A and B (points on

the circumference of one circle) move on diameters of the other

circle by the conditions of the problem ; hence in this particular

case the centrodes roll without slipping. Moreover, this is true

for all cases.* Another more complex example of a pair of cen-

trodes is shown in Fig. 3, and exhibits the case of the connecting

Fig. 2

For proof of the general theorem of rolling centrodes, see Appendix I.
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rod of an ordinary steam engine. Here both are infinite curves

with straight asymptotes. Any point such as F (Fig. 2) is mov-

ing at right angles to IF; hence if about / as a centre, with a

radius equal to IF, we describe a circular arc, it will touch the

path of F. But the same is true of a circle drawn about pY with

.- ~JY

Fig. 3

a radius qxF. Thus if we draw a series of arcs about plf p.2 , pg, etc.,

with radii equal to qxF, q.2F, q3F, etc., these will form the envelope

of the path of F.*

Applications of the Instantaneous Centre in Machines.— In de-

scribing a machine we will use the definition given by Professor

* For important and interesting properties of rolling curves, see Appendix II.
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Kennedy* as being the best, and it is as follows : "A machine is

a combination of resistant bodies, whose relative motions are com-

pletely constrained, and which serve by these relative motions to

transform the energies at our command into any special form of

work." Considering the different parts of the definition, he points

out that :
—

i. A machine is a combination of bodies ; that is, no one body

can constitute a machine.

2. They must be resistant bodies, or bodies which have the

property of resisting force in the direction in which it is applied.

In the great majority of cases we deal with practically rigid

bodies, or bodies which have their particles at an invariable

distance from one another.

3. The motion must be constrained, or all points when referred

to a given set of reference axes must follow paths determined by

the construction of the machine itself, and not by the direction

and magnitude of the acting forces.

4. Motion is an essential condition, as otherwise energy will not

be transformed.

We are now to examine the methods used to constrain relative

motion. We must have in the first place at least a pair of bodies

or elements. The motion, if completely constrained, will depend

on the form of the portions in contact. If these portions are so

constructed that the contact between the bodies at all times during

motion is a surface contact, the pair is known as a Lower Pair.

But if it is such that the bodies touch upon a point or along a line,

they are called Higher Pairs.

Elementary Machine Motions. — The two commonest and most

important forms of motion to be found in machinery are the two

elementary forms of uniplanar motion, viz., the rotation and the

rectilinear translation. The first of these can be realized when the

parts in contact are identical portions of any surfaces of revolu-

tion, and the second when they are identical prismatic surfaces.

It will be noticed that the nature of both of these surfaces is such

* "Mechanics of Machinery," Alex. B. Kennedy. Macmillan & Co.
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as to form a lower pair of elements, and while from a geometric

standpoint the higher and lower pair are equally good for the con-

strainment of motion, practically the lower is the preferable as

being less affected by the wearing away of the parts. The vast

majority of machine motions are constrained in these ways, as by

the journal and bearing, and the prismatic guide. The only other

surface which will work as a lower pair is the cylindric screw sur-

face, and this does not constrain a uniplanar motion.

Relative Motion.— In order that all points of a machine should

be completely constrained, no part should move without all others

undergoing a corre-

sponding change in

position. Take, for

example, the com-

bination of pairs or

links shown in Fig. 4.

Consider the body

a fixed in space, so

that the motions of

the other three can be examined relatively to it. The links b and

c are then completely constrained by being hinged at O and P to

a, since all points of these links must follow definite, i.e. circular,

paths. Concerning the link d we know that it has a point R common

j

to b, which is therefore constrained relatively to a, and a point Q

Fig.

common to c similarly constrained. Therefore the body d is com-
pletely constrained, as the paths of two points determine the

uniplanar motion of a body. It will be noticed that the motions

of b and c relatively to a are pure rotations, but that the

motion of d is not. If any other link besides a were fixed, we
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would arrive at a similar result, hence the combination shown in

Fig. 4 is a true machine. Fig. 5 is another very common example

of a machine, being in fact the elementary combination used in

Fig. 6

the steam engine. Fig. 6 is, however, not a machine, as neither

of the links x or y are constrained relatively to a. If the point A
is connected to a by means of a sixth link z, x and y are then con-

strained.

Determination of the Instantaneous Centre in Machines.— In

order to determine the instantaneous centre of a link referred to

Fig. 7

any other link, we must know the direction of motion of two of its

points at the position considered. In Fig. 7 we have the same

combination of links as in Fig. 4. Here, as in all cases, we can
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write down at once the permanent centres as Oai , Oac , Obd, and

Ocd, the notation meaning that, for example, Oab is the centre

about which b is turning relatively to a (or a to b), etc. But dTs

not turning about a fixed centre relatively to a, and only an instan-

taneous centre exists for this motion. In order to determine Oad,

we know that Obd (a point common to both b and d) is moving in

a direction v1 perpendicular to the line Oab Obd, and that the

instantaneous centre Oad lies somewhere on a line at right angles

to this direction of motion, or somewhere on the line OahObd,
pro-

duced if necessary. Similarly we know it must lie somewhere on

OacOcd . Therefore it lies at the intersection of these two as

shown in the diagram. The same result would evidently be

obtained if we were to study the motion of a relatively to d. By

exactly the same process of reasoning we find, when either b or c

are fixed, that the relative instantaneous centre of these two lies

at the intersection of Oab Oac and ObdOcd . We have in all six

centres (permanent or instantaneous), which give the relative

points of rotation of every link with respect to every other. If

we select any three links in the above

mechanism, such as a, b, and d, the three

relative centres are Oah , Oad , and Obd,

and it will be noticed that these lie in a

straight line, as do the relative centres of

any other three links.

That this law is universally true may
be shown as follows : let a, b, and c, be

any three bodies having relative plane

motion, whose three centres are at Oab ,

Oac , and Obc (Fig. 8). Consider a fixed.

Then b is turning about Oab , and c about

Oac . But according to the definition of

a centre, the point Obc has no motion

relatively to either b or c, hence it is a Fig. 8

point common to both. Considered as

a point of b, it is moving in a direction Y, at right angles to

OabObc , and when considered a point of c it is moving in a



12 INTRODUCTORY

direction X, at right angles to OacObc, both taken relatively to a.

But, as a point can move in but one direction relatively to a

given body, X and Y must coincide, or Obc must lie on the line

joining Oac and Oal . This proposition is of great help in finding

the relative centres of more complicated combinations of links

than Fig. 7, or in those where the relative motions are not easily

seen by mere inspection. In the simple combination reproduced

in Fig. 9 the centre Obc can be found by its aid. Fig. 10

Fig. 9

shows the fifteen centres of a more complicated combination

of six links. The above law can be traced throughout the

construction.

Determination of Relative Linear Velocity.— A most useful

property of the instantaneous centre in machine design is that

which enables us to find the velocity of any point in the machine

when that of any other is given. Let a, b, and c (Fig. n) be any

three bodies, of which a is fixed. The three relative centres will

evidently lie in a straight line. Let vY be the known velocity of any

point P in b. It is required to find the velocity v2 of point Q in
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'Obf

Fig. 10

the body c. The velocities of all points of a rotating body being

proportional to their respective distances from the centre of

rotation, we have :

YelObc = v1

ÔnhP

the velocities being referred to a, and

Obc being a point of b. But also :

Vel. Olc = v9
Q^>
OacQ

where Obc is a point of c. As Obc is a

point common to both b and c, its Fig. 11



14 INTRODUCTORY

velocity, when considered a point of either and referred to a
i

must be the same. Hence :

„ _
7;
Oah Ob OacQ
OahP oacobc

A simple graphical solution of the above equation is shown in Fig.

n. This consists of finding by circular projection points R and S
on the line OabOac which have the same velocities as P and Q,

Fig. 12

and solving the equation by similar triangles. Suppose, in the

mechanism of Fig. 10, we have given the velocity of a point P
(Fig. 12) in link d, to find velocity of point Q in link e, both

referred to a. We first pick out from Fig. 10 the three relative

centres Oad , Oae , and (le , all of which are instantaneous centres.

Pis turning about Oad relatively to a, hence the velocity of P will

be vx of magnitude given, and in the direction at right angles to

PO„d . We then project Pow a circular arc to R, on the straight
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line joining the three centres. From R we lay off the velocity of

P in any direction, though it is preferable to lay it off at right

angles to the line of centres, in order to preserve the direction as

well as the magnitude of the velocity of R also. Connect the

extremity of Vi with Oad, and draw v through Ode parallel to vj to

intersect this last line. v is the velocity of Ode , or the common

point of the two moving bodies. Q is turning about Oae, hence

Fig. 13

project Q on a circular arc to .Son the line of centres. Through

the extremity of v and Oae draw a line and produce in the direction

of S. Through 5 draw v£ parallel to vx
' to intersect this last line.

Then v2
' is the velocity of .S in magnitude and direction, and the

required velocity of Q, viz., v2 is drawn at right angles to QOae ,

and equal in magnitude to v2
'. The above construction applies in

all cases except where all three centres are at infinity. It is equally

applicable whether the points under consideration lie in the same
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or in different links, and whether any or all of the links are turning

about permanent or instantaneous centres. When the points lie

in the same link, the two centres Oae and Oad coalesce, and Ode ,

the point common to both, may be any point of the moving body.

In this case the line connecting the three virtual centres and upon

which we project the points /'and Q is not fixed in direction, and

hence may be taken in any direction at random. It is preferable

to take it passing through one of the points under consideration,

Cd

Fig. 14

as by doing so the construction is simplified. Fig. 13 shows the

simple construction in this case, both where the projection line is

drawn at random and where it is drawn through Q.

In the case where the three relative centres lie at infinity, the

motion of the two links which carry the points must be motions of

translation relatively to the fixed link, and relatively to each other.

But in this case all points in the moving bodies have the same

velocities, and therefore the points of the links hinged to these have
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the same velocities also. So the problem reduces to the compar-

ison of the velocities of these points of attachment. Take the case

exhibited in Fig. 14, which is essentially the reducing motion of the

Tabor Indicator. We have two blocks, a and b, moving parallel

to one another, with rectilinear translations, but with different veloc-

ities, which we wish to compare. This is evidently the same thing

as comparing the velocity of the point Oad of the link d with that

of Ohe of e. All the centres, as well as the construction in the par-

ticular case, are shown.

Determination of Relative Angular Velocity. — Problems in

Angular Velocity can be solved in a similar manner by the use of

the instantaneous centre. Referring to

Fig. 15, let the body b turn with an an-

gular velocity a^ about Oah , required <o2,

that of c about Oac . Obc being a point

common to both b and c, we have already

seen that its velocity referred to a, is the

same when considered a point of either.

Calling its velocity v , we have

or w2 — wl ~ZZ—TT"

Fig. 15

This is easily solved graphically by laying

off in any direction a^, the given angular

velocity of b from the centre of c referred

to a, then drawing a line from its extremity through Ohcy and pro-

ducing if necessary to meet a line from the centre of b parallel to

coj. This last line will give the magnitude of <o2 , and evidently, if Obc

lies between the other two, the angular velocities will be in oppo-

site directions, and if not they will be in the same direction. The
above proposition stated in words is as follows : the relative

instantaneous centre of two moving bodies divides the distance

between their centres in the inverse ratio of their angular veloci-

ties referred to a fixed body. Applying this in Fig. 16 to the

c
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combination of Fig. 10, we have the angular velocity of d about

its instantaneous centre given, and are required to find that of e.

The given angular velocity o)x is laid off from Oae) and <o2 is drawn

Fig. 16

parallel to it and from Oad to meet the line from the tip of o^

through Ode . Generally the only angular velocities which are

of importance in machine design are those taking place about

permanent centres.



PART II

MACHINERY OF TRANSMISSION





CHAPTER I

TRANSMISSION OF PURE ROTATION THROUGH A RIGID

INTERMEDIATE MEMBER

i. AXES OF ROTATION IN ONE AND THE SAME
STRAIGHT LINE

A. Direct Connection and Rigid Couplings

In this case mereTy an axle or shaft is used to connect the two

rotating parts, and the kinematics of the arrangement is of the

utmost simplicity. Regarding the dimensions of the parts, how-

ever, a few words may be necessary.

Journals and Bearings.— A Journal in machinery is a rigid

body bounded by a surface of revolution, which is usually cylindric

or conic. In order that this piece may partake of no motion

other than rotation, a second piece must be associated with it

;

namely, the Bearing. This must be bounded by the same surface

of revolution with concavities and convexities reversed. The

journal and bearing, therefore, form a pair of elements designated

as a turning pair, and the character of the contact is that of a

lower pair. Owing to the frequency with which such journals

occur in machinery, they require careful designing. This should

first be done according to the principles of the Strength of Mate-

rials. If we consider the journal as an overhanging beam of

length / uniformly loaded, the equation of moments will be

** Pl KIM= — =—

,

2 e

where K is a constant of the material, /the moment of inertia of

a circle about its diameter, and e the distance of the outermost

fibre from the neutral layer.
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o- t "xd* , d
Since /=—- and e = -,

64 2

e 32

, />/ *d3

and — = K
2 32

This involves two variables, /and ^/j but as we can generally assume

their ratio, we may write : .

c
d

whence d= 2. 26a/

d being the diameter in inches. (For cast iron, ^=4200;
wrought iron, ^=8500; steel, A^= 12000.)

A journal designed in this way for strength may be, and gen-

erally will be, found much too small to stand the wear of con-

tinuous use and radiate the heat produced by friction at a

sufficiently rapid rate. In this case it is usual to allow a certain

pressure per square inch of projected area, this latter being the

product of length and diameter. Let this allowable pressure be/.

The projected area is / x d, and / x d x p = P. Now as /= c x d,

-t
The value ofp varies greatly, depending on the total load and the

nature and velocity of the rubbing surfaces. Its limits are gen-

erally between 100 and 500 pounds per square inch.*

When considerable space intervenes between journals, the

connecting part may be called an Axle. If loaded it also must be

designed according to Strength of Materials.

Shafting.— When of great length and used for transmitting

power, the shaft and its journals are to be designed to resist tor-

sion also. This is given by the well-known formula :

* For accurate design of journals, see some work on Machine Design.
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, slC x B.P.

.

*=\—-N-*
where C is a constant of the material, N the number of revolu-

tions per minute, and H.P. the horse-power transmitted.

The following are rough values of C :

Wrought-iron shafting . . . . C ' = 1 00

Steel shafting C = 75

Also for shafting up to 4" in diameter,

Z = 4.8a/72,

where L is the distance between hangers in feet, and d the

diameter of the shaft in inches.

Pivots are end journals which sustain pressure in the direction

of their axes. Their diameters need be calculated to withstand

wear and heating only. They are usually flat on the thrust sur-

face, though for light, high-speed machinery they are sometimes

conical. For heavy thrusts, collars are turned on the shaft.

A line of shafting is often of very great length, and is made of

many pieces coupled together. This gives rise to many forms of

rigid couplings, but this is purely a problem of Machine Design.

2. AXES OF ROTATION PARALLEL

A. Parallel Bars, or Cranks

In the combination of links shown in Fig. 4 a transmission of

rotation is effected between parallel shafts at O and P. In order

that both shafts should revolve through a complete circle, it is

necessary that the two links b and c must be of the same length,

as must a and d also. It will be noticed in this case, however,

that the motion is not constrained at the instant the four per-

manent centres come in line. To overcome this defect a second

pair of cranks must be placed upon the same shaft, making some

angle other than zero or 180 with the first pair. This second

pair is usually at 90 with the first pair, and the combination is well

illustrated in the side rods of locomotives.
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B. Oldham's Coupling

In this form, two disks A and B (Fig. 17) are keyed to the ends

of the shafts. These disks are connected by means of an inter-

E*

y

Fig. 17

mediate disk C, upon each of whose faces a prismatic groove is

cut, the two crossing one another at an angle (3. These grooves

fit two prismatic ridges, one on

each of the disks A and B, and

thus driving is effected. If the

shaft A turns at any angular

velocity, B will follow at the

same velocity. In Fig. 18, A
and B are the centres of the

shafts, and the lines DD and

EE intersecting at C are the

*">» ridges of the disks. As the

disks turn, these lines will al-

ways pass through A and B, and

on account of the intermediate

disk C they will always intersect

at the same angle /3. Hence the locus of C is a circle on AB as

a chord. Let .£>'£>' and EE' be any other positions of the ridges.

Then angle Z>BZ>'= angle EAE' or A will turn through the same

Fig. 18
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angle as B. It will be noticed that the motion of the intermediate

disk C can be reproduced by the rolling upon circle ABC of

another circle of double the diameter. (Compare Fig. 2.) Driv-

ing is best effected when the angles at C are right angles. Then

AB becomes a diameter.

C. Certain Forms of the Universal Joint

This will be described under intersecting shafts in the next

section.

3. AXES OF ROTATION INTERSECTING

A. The Universal Joint

Hook's Universal Joint is used between intersecting shafts when

it is necessary to vary the angle between the shafts. The single

joint can be used only between intersecting shafts, but the double

joint can be used between parallel shafts also, and this latter com-

bination forms the most flexible of all couplings.

Its construction is as follows : the shafts are provided with

forked ends AB and CD (Fig. 19), whose four bearings at A, B,

C, and D, fit the four journals of an intermediate body. This lat-

ter is generally in the form of an equal armed cross, a circular disk,

or a sphere, where the common axes of the opposite pairs AB and

CD intersect in a point S at right angles. The forks are so pro-
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portioned that S lies at the intersection of the shaft axes also.

When the shaft F turns, the centre line of its bearings A and B
moves in a plane at right angles to the axis of F, and will trace out

a great circle AGBH (Fig. 20) on the surface of a sphere whose

centre is S. At the same time

the driven shaft E must turn,

and the axis of the bearings

of its fork must remain in a

plane at right angles to the

axis of F, describing a great

circle ADBC on the sphere.

When the forks ofF are at A
and B, those of E are at D
and C. WT

hen the forks of F
are at G and N, those of E
are at A and B ; or when the

driving fork has turned through

a quadrant from either of these

positions, the driven fork turns

through a quadrant also. Consider the forks of F to have turned

through an angle a, so that A arrives at O. Then E will turn

through an angle (3, and D will move to P, where :

cos OSF= (cos ASO) (cos ASP) + (sin ASO) (sinASP) (cos OAF),
cos 90°= cos« cos (90°+ /?) -f sin a sin (90°+/?) cos 8,

where 8 is the angle between the planes of the great circles AGBH
and AF>BC, which is also the constant inclination between the in-

tersecting shafts. Hence

:

o = —cos a sin /3+ sin a cos ft cos 8,

« cos a sin B tan B
cos 8 = £ = ^.

sin a cos (3 tan a

The angles a and ft are therefore not in general equal, nor is their

ratio constant during any time, but the ratio of their tangents is a

constant and is equal to the cosine of the angle between the shafts.

Since cos 8 is always less than unity and is positive in any practical

construction, tan (3 is always less than tan a. Thus in the first and

Fig. 20
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J

third quadrants fi < a, while in the second and fourth, /? > a. If

F is driving at a uniform rate, E will follow at a greater and less

speed alternately. The relation between the angular velocities for

any given value of a is determined as follows. Let o)X be the angu-

lar velocity of F, and <o2 that of E. Then :

da , dB= wt, and 'to!, anu -j- = <o2 ,

at at

dft _ sec 2 a cos 8 afo

I + tan2 « cos2
8 <#

0)l cos 8

cos2 «(i + tan2 a cos ; 3)'

(o
1
cos 8

•*=*

i — sin
2 « sin

2
8

If the driver is turning with a constant angular velocity we can

determine those values of a at which the angular velocity of the

follower is a maximum or minimum by putting —— equal to zero.
dt

da)2 _ 2 (Oi cos 8 sin
2
8 (sin a cos a) _

dt (i — sin
2
oc sin

2
8)

= <*

sin a cos a = o.

q
This condition is fulfilled when a is either o, -, ir, or —-. In

2 2

order to discriminate between the maxima and minima, substitute

these angles in —j, and the algebraic sign of the result shows

that:

a)2] min .
at a = o and a = ir,

w2jmax at « = — and a = ^

—

2 2

Substituting these values in the original expression for the angu-

lar velocity <d2 we find :

w2_Jmax. = ~»

COSO

<°2]min. = wl COS 8.
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Thus as the driving fork is turned at a constant angular velocity

<ah that of the follower will vary between ^ and ^ cos 8.

cos 8

If written in terms of the angular velocity ratio, it is evident that

COi

at a = o and a = ir,

(02_ max.

ft). 7T . ?7T
at « = - and « = —

0)2 min. 2 2

Likewise

:

Cl>2

I

nmx . cos 8'

«1 = cos 8.
002 min.

When 8 is 90 , the angular velocity of the follower will vary be-

tween zero and infinity, or the joint will fail to work. If 8 is zero,

the angular velocity ratio is constantly equal to unity. For prac-

tical purposes 8 should not be larger than 30 .

If o)
x
is constant, the angular acceleration of the follower can be

found for any given value of a as follows

:

o)2 =
w

l cos 8

1 — sin
2 a sin

2 8

And since o^ is constant

do32 _2w! cos 8 sin
2
8 sin a cos a da

dt (1 — sin
2 « sin

2
8)

2 dt

_ 2 a*!
2 cos 8 sin

2
8 ( sin a cos a)

(1 — sin
2
cc sin

2
8)

2

which becomes zero at a = o, -, 71-, and ^. Since the quantity
2 2

2 Wi
2 cos 8 sin 8 is a constant, we can find the value of a corre-

sponding to the maximum or minimum value of —= by simply con-
dt

sidering the variation of — sin a cos a— put ^jg eqUa
i to/.

(1 — sin
2 «sin 2

8)
:
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Then:

(cos2 <*— sin
2 «)(i — sin

2 a sin
2
8)

2+4 since cos a sin
2
8 (sin a cos a)

dp (1— sin
2 6csin

2
8)

2

da (1— sin
2 a sin

2
8)

4

Putting this expression equal to zero, it reduces to

:

(cos2 a — sin
2 «)(i — sin2 a sin

2
8) + 4 sin

2 a cos2 a sin
2
8 = o

'2 + 3 sin
2
8N

sin
4 a -\- snr a

2 sin
2
8 2 sin

2
8

sin a ^ /(3 sin
2
8 — 2) ±V9 sin

48—4 sin
2
8 + 4

^
4 sin

2
8

which gives two real values of sin a, or four values of a, corre-

sponding to two maxima and two minima. These values of a will

be symmetrically grouped about the position « = o (Fig. 21).

If we know the total moment
;

of inertia of all masses rotating

with the follower, we can cal-

culate the maximum twisting

moment in the follower due to

its angular acceleration. As

an extreme case take 8 = 45 °,

and take the number of revo-

lutions per minute at 300. $<

Then the values of a at which

the angular acceleration will

be a maximum will be

:

a = sin
-1 ±* 2 ± Vf- 2 = sin"1 ± V.7808

<*]max.= 62° 5' and 242 5',

a]min.= n7° 55' and 297° 55'-
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Now U)
l

2 TtN
x

60
31.416 radians per second. Therefore substi-

tuting these values in the expression for angular acceleration, we

find

± 776-94 radians per second, per second.
dt

Let a cylinder of cast iron 1 ft. in radius, 1 ft. in axial length,

and of density equal to 450 lbs. per cubic foot, be keyed to the

follower. If we neglect all other masses, and call the force moment

Ph, then :

Ph = I
dw.2

~d~i

Jf
r; = 45o_XZ
2 64.4

21-95)

Ph = 21.95 X 776.94= ± i7>°54>

or 17,054 lbs. acting on a lever arm of 1 ft.

In order to transmit a uniform angular velocity ratio by means

of a universal joint, two joints should be used (Fig. 22). Here the

Fig. 22

angle 8 is the same for both, and the axes of the bearings in the

intermediate shafts' forks are parallel, Then fluctuations in angu-
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1

lar velocity produced by the first are neutralized by the second.

Transmission between shafts which are parallel but not in the same

straight line may be effected by this means also. If the link which

connects the two joints is made short enough, the two axes or bars

a'fr' and cd coalesce, and we have the double universal joint. In

this case, however, we must provide some means for guiding this

bar in the plane bisecting the angle between the shafts, and there

is no simple means of accomplishing this.

4. AXES OF ROTATION CROSSING

There appears to be no practical means of transmitting rotation

between crossing shafts by means of a coupling.



CHAPTER II

TRANSMISSION OF PURE ROTATION BY MEANS OF

FRICTION GEARING

I. AXES OF ROTATION IN ONE AND THE SAME
STRAIGHT LINE

A. Direct Connection, Friction Couplings

The problem of Friction Couplings is purely one of Machine

Design, and therefore has no place in this discussion.

2. AXES OF ROTATION PARALLEL

A. Friction Wheels

If two bodies have pure rotary motion relatively to a third, their

centrodes, while rolling upon one another, may be used to transmit

motion in certain cases. Suppose we have two bodies, b and c

(Fig. 23), rotating about fixed centres relatively to a. Let the

angular velocity of b be co: , and that of c be w2 . Concerning the

point Ohc, or the relative centre of b and c, we know that it must

lie on the line of centres. Further, from Fig. 15 we know that its

position on Oah Oac is fixed by the angular velocity ratio, and

that:

Obr.Oac _<*>l
}

ObcOab o>2

and since the distance Ohc Oac + OhcOah is constant, the position

Obc divides a fixed length in the inverse ratio of the angular veloci-

ties. If the angular velocity ratio varies, Ohc will move along the

line of centres, tracing out a curve with respect to the moving

plane of c and another with respect to the plane of b. Such

32
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curves are known as "pitch curves," and will be again considered

in the case of toothed gearing. They are the centrodes of the

relative motion, and if cut out of metal and rolled one upon the

Fig. 23

other, the original motion would be reproduced. Also power

could be transmitted provided (1), there is a component of the

driving force normal to the curves at the point of contact, and in

the direction of the follower, or (2) if this component be zero,

that the coefficient of friction be great enough to prevent slipping.

Fig. 24

If the curves both make complete and practical revolutions, i.e.

are closed curves, the first condition is impossible of fulfilment,

since it necessitates the contact radius of the driver being continu-

D
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ally on the increase. Hence the only case in which the centrodes

themselves can be used is the second, and it is applied as follows :

Let the angular velocity ratio — be constant. Then point Obc

is fixed on the line of centres, and traces out two circles in the

planes of c and b, the ratio of whose radii is the inverse ratio of

the angular velocities. It will be noticed that if the angular veloci-

ties are in opposite directions, the pitch circles will touch one

another on their convex or outer sides ; but if w1 and <o2 are in the

same direction, the convex side of the circle having the larger

angular velocity will touch the concave or inner side of the other.

(See Fig. 24.) In this case there is no,

component of driving force in the direction

of the normal, and the second condition is

satisfied.

The difficulty with all such Friction Gears

is that there is no real tendency of the wheels

to drive. If a force K (Fig. 25) is to be

exerted at the circumference and the co-

efficient of friction is
<f>,

then the two axles

must be pressed together with a force Pat
least equal to

Fig. 25

Since P is directly in line with the axles, <£ should be made as

large as possible in order to diminish P, which causes hurtful fric-

tion in the bearings. Leather or paper may have
<f>

as large as .4.

Another way to diminish friction in the bearings is to have only

a small component of the force P in their direction. To ac-

complish this grooved gearing is used. Here a series of circular

ridges on one cylinder is made to fit a series of grooves on the

other. The angles of the ridges and grooves are made about 30

(Fig. 26). Since a point C at the base of a ridge is moving

slower than a point D at its tip, there will be rubbing between the

surfaces at both C and D, causing a waste of energy. Hence in
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most cases the surfaces of the ridges and grooves are made curved

instead of straight, as shown, and therefore touch in but a single

point. The great disadvantages

of all friction gearing are, the loss

of energy at the bearings, due to

friction there, and the fact that

the centre distance of the wheels

must be made adjustable in order

that wear may be taken up. It is

impossible to make — absolutely

constant, owing to the wear and

slip, and hence it is used in driv-

ing light-running machinery only,

except where grooved gearing is

employed.

3. AXES OF ROTATION INTER-
SECTING, AND

4. AXES OF ROTATION CROSS-
ING.

A A'

B

W^W

B'

6

.

Fig. 26

Friction gearing is seldom used in these cases, though any of the

pitch surfaces fulfilling these requirements (see chapter on Toothed

Gearing) might be used in a manner similar to the preceding.



CHAPTER III

TRANSMISSION OF PURE ROTATION BY MEANS OF BELTS
AND ROPES

i. AXES OF ROTATION PARALLEL, PLANES OF PULLEYS

THE SAME

A. Ordinary Belting

In these cases motion is transmitted from a rotating body to an

intermediate one by pure rolling, and from that similarly to a

third. The case is a general one, though used extensively in but

a single form. Let any two bodies b and c have purely rotary

motion relatively to a third body a. A fourth body d may be

made to so move that its centrodes, with respect to both b and c,

Fig. 27

shall be identical. This may be accomplished by assuming any

form for the centrodes of b, c, and d, and forcing the three to roll

together. The only important case is that in which the centrode

fixed in d is straight, or practically so (Fig. 27) . The centrodes of

b and c can be cut out of rigid disks, and the straight edge of d will

roll upon them, transmitting motion by friction, provided no points

of inflection exist in the outlines of either b or c, and that these

36
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latter do not interfere. The tendency of the centrodes to slip may

be overcome by forming d of a flexible band, which wraps around

and is fastened to the outlines of the other curves. This is called

Transmission through a Wrapping Connector, and power can be

transmitted in but one direction. The angular velocity ratio will

evidently be equal to the inverse ratio of the perpendiculars let fall

from the centres of rotation upon the straight edge of the con-

nector, or will be equal to the inverse ratio of the segments into

which the line of the connector cuts the line of centres (produced

if necessary) . If the motion is to be continuous, i.e. if both b

and c are to make complete revolutions, the connector cannot be

fastened to their outlines, but must continuously surround them

with a belt of constant length. The centrodes of b and c will then

be circular, — will be constant, and power can be transmitted in
<*>2

either direction.

(a) Stresses in the Belt, and Power Transmitted

Belts possess the great advantage of lying around a large portion

of the circumference of the pulleys, and hence, for a given pull P
between the shafts, create a greater frictional resistance than

merely P<\>. They also possess the advantage of being elastic, and

take up by this means any slight variation in the centre distance

of the shafts, due to wear. The method of finding the total fric-

tional resistance of a belt at the instant of slipping, in terms of

the tensions on the tight and slack side, is easily shown by the

principles of Mechanics to be

P= 71- T2

and Tx = T/ a *

where F is the total frictional resistance, Tx the tension on the

tight side, 7
T

2 .the tension on the slack side, a the angle of the

pulley covered by the belt, and </> the coefficient of friction

* Values of e$a for values of
<f>
between o and .8 and of a between o and

360 can be taken from the accompanying Diagram No. 1.
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between the belt and pulley. If the force to be transmitted is K,

then K must be something less than F, or

K=CF= C(TX - T2) = c(tx -^]= CrJ'
'

e <bi

\ e!>
a
J V e*°

where C is a factor of safety. In most cases of belt transmission

a = 7r. Now the horse-power transmitted will be

HP. = v xK = V e*a

33000 33000

where v is the velocity of the belt in feet per minute. The only

variables in the above equation are the horse-power and the

velocity, hence one varies directly, as the other. 7\ is determined

as the maximum working tension that the belt will stand. If p is

the maximum allowable working tension per inch of width of single

belting, and w is the width of the belt in inches,

Tx _ 33000 x H.P.

/^^ ei>a — 1

w =

Fair average values of the constants involved will be about as

follows: <£ = .25, a = 7r, (Cp) = 55. This last constant includes

the safety factors of both strength and slip.

TT 3^000 x H.P. 1062 x H.P.
Hence, w = — =

,

v x 55 x .545 v

or as it is usually written

1000 x H.P.w =
V

If D is the diameter of the pulley in inches, and N the number

of revolutions per minute,

V = ttN—

j

12

, 3800 x HP.
and w = -

—

=z TTDxJV
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The increase in friction over ordinary friction gears for a given

pull between shafts, may now be readily computed. Let P be

the pull between shafts. In the case of the belt we may take

P=TX + T2 whena = i8o°. Hence:

P= T2e^ + T2 = T2 (e*°- + i),

T P

The force transmitted at the circumference of the pulley at the

instant of slipping is

K=F=T1 -T2 = T2(e*« - i )

.

If <£ = o.28, ^=2.41.

Hence for the belt,

^=.413^.

In the case of friction gears

X=cf>P=. 28P.

The gain will then be in the ratio of 413 to 280.

The above formulae can only be considered as an approximation

to the truth in the case of a rapidly moving belt. In fact they

give us more the general law of the variation of the quantities

involved than an exact measure of them. In a rapidly moving

belt the sudden change in the direction of velocity as the belt

passes around the pulley creates an additional tension not hitherto

considered. This may amount to a large proportion of the total

tension, so that if the belt is tightened up to its safe limit at rest,

it will be overstrained at high velocity. In fact the velocity may
become so great as to make the tension due to this centrifugal

effect equal to the safe tension, so that the belt would not touch

the pulley at all, if kept within the safe limit.
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Let us examine more closely into this effect. In Fig. 28, the

normal pressure under an elementary length of the belt due to the

opposite tensions is

dN1 =T- da.

But this is diminished by

the centrifugal effect above

mentioned, so that the true

normal pressure is

dN,= T- da - dm -•
r

The frictional force is

Fig. 28 dF=<f>(Tda-dm-

But dF is equal to dT, and dm = - • r • da where 8 is the weight of

the belt per unit of length. But the tension varies directly as 8,

hence we may write

8 = nT,

or dF= dT= 4> f Tda -—2

da\

dT 11

V

2\

in

Hence,

and

IH1--)}

33000 1 e^a{1
-z)

)

The constants of this equation can best be determined experi-

mentally, or rather should be determined as experience dictates,

*" Rope Driving," by John J. Flather, p. 115. Wiley and Sons, 1895.
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1

and no attempt should be made to get exact values of cf>, S, and the

safety factors of slip and strength. In general we can say that as

the velocity is varied, the horse-power transmitted will follow the

general law of the equation as given, whose constants are to be

determined experimentally. Diagram No. 2 shows a series of

curves drawn by Professor Flather* which takes account of many

sources of variation in belt transmission.

To use the diagram, take the speed of the belt at the bottom,

and follow up to the belt curve required. Then follow horizontally

to the centre line of the diagram, then parallel to the logarithmic

curves to the abscissa, showing the angle of the belt at the top of

the diagram. Going either to the right or left to the margin will

give the horse-power which one inch width of the belt would trans-

mit at the given velocity. Suppose we wish to find how wide

should be a double-laced belt to transmit 30 H.P. at 4100 ft.

per minute when covering 155 of the pulley. Following from the

4100 abscissa upwards to the double-laced belt curve, and passing

horizontally to the centre line, where a equals 180 , we find that if

covering 180 of the circumference the belt would transmit about

6.25 H.P. per inch of width. But by following parallel to the

logarithmic curves to a = 15

5

, it is seen that but 5.5 H.P. will

be carried per inch of width. Dividing 30 by 5.5 gives for the

width of belt about 5 J in.

There are still other causes by which the power will be reduced.

Air is drawn in by the belt at high speeds, and lessens the normal

pressure between the belt and the pulley, where the two first come
into contact. Also, if the diameter of the pulley is comparatively

small, say less than 20 in., the necessary bending of the belt

tends to injure it, and hence still less tension can be given. This

is taken into account in the preceding diagram. If from the point

last found on the 155 line in the previous example, we follow

horizontally to one of the diagonal lines springing from the lower

right-hand corner, and from the intersection with it follow upward

to the scale at the top, we find the still further decreased horse-

* Western Electrician, June 12, 1897,
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power which each inch width of the belt will transmit. P'or ex-

ample, if our belt should pass over a 12" pulley, we find the horse-

power per inch of width to be but 4.45, and that the belt must be

about 6| in. If necessary, other lines can be interpolated

between the three already drawn.

If the angular velocities of the two pulleys are in the same

direction, the ordinary open belt is used, where the point of inter-

section of the line of centres with the belt line (produced), lies

without the space between the centres. If the directions of ro-

tation of the two are opposite, the crossed belt must be used, and

the belt cuts the line of centres between the axes. The crossing

of the two halves of the belt can be accomplished without serious

interference by giving the belt a half twist.

The greatest source of loss is by friction at the bearings, due to

the necessary tension on the belt. This can be roughly calculated

when the diameters of the pulley and shaft are given," as well as the

velocity of the belt, the tensions, and the coefficient of friction

between the journal and its bearing. If «// is the coefficient of

journal friction, v the velocity of the belt in feet per minute, and

R and r the radii of the pulley and shaft, then the opposing force

at the belt due to journal friction will be

f= (T1 + r2) +ji
.

And the power wasted will be

33000 33000 R

Hence the tensions should be as small as possible to prevent slip-

ping, \p should be as small as possible, and r as small, andi? as large

as possible, for the greatest efficiency. There is also a loss due to

the creeping of the belt. As the belt arrives at the driving pulley

in a state of greater tension, and hence of greater stretch than

when it leaves, there will be a slow creeping. The same is true of

the driven pulley. This loss does not amount to more than \ of

1%.
In running a long horizontal belt it is best to have the tight side
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below, as by the greater sag of the slack side the arc of contact on

both pulleys will be increased.

A variable angular velocity ratio is not practicable in belted

transmission.

(b) Stepped Cones

When a follower shaft is required to have various speeds ob-

tained from a constant speed driver, or when in any way the

angular velocity ratio must be varied with belted connection, we

must resort to Stepped Cones or an equivalent. This is always

the case in lathes, milling machines, boring machines, etc. In the

problem of stepped cones in its simplest form, we are given the

distance between shafts, the diameters of the steps on one cone,

and diameter of one step on the other cone ; and we are required

to find (1) the length of belt that will fit the given pair of steps,

and (2) what must be the rest of the steps so that this same belt

will fit them all with equal tension.

If the belt is crossed, the problem is a simple one. In Fig. 29

let / be the half length of the belt, a the angle between the belt

and the line of centres, and R and r the radii of any pair of steps.

Then
d since = R -\-

r

I.

Also, l=dcosa + - R + aR + - r + ar,
2 2

= dcosa + -(R + r) + a(R + r) . . II.
2

The length of belt which will fit the given pair of steps is now
immediately known, for a is calculated from No. I, and / from

No. II. Hence / becomes a known quantity. If now we sub-

stitute for cos a and a in No. II their values as deduced from

No. I, we get

/= Vd2 ~(R + rf + {R + r)fc + sin"1 *±iY III.

In this, if the radius of any step of one cone, such as R, be given,

the only unknown quantity is r, which would be the corresponding

radius of the step on the other shaft, around which the already
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calculated belt length would fit. But equation No. Ill is transcen-

dental, and of such a form that a direct solution is impossible.

However, if we substitute in No. II the value of r or R deduced

from No. I, both R and r eliminate from the equation. But R
and r are variables. Hence «, the only other unknown quantity,

Fig. 29

must be a constant, as neither of the variables can be expressed

in terms of it. If a is constant, R + r is constant, or

R\ + n = R2 -f- r2 = R3 + r3 = • • • and Rx
— R2 = r2 — r1?

R2 -R3
= r3 -r2, etc.,

and the steps of the two cones are equal. This is readily seen to

be true in equation No. II, for if R + r is constant, / is con-

stant, a necessary condition.

The case of the open belt is more complex, and an exact analytic

solution has not yet been arrived at. In this case we have from

Fig. 30,

and

d sin « = R — r

/= d cos a

IV,

- R + aR ^- - r— ar
2 2

= d cosa + - (R + r) + a (R - r)
2

Substituting for « and cos a as before, we get

/= Vd 2 - (R - rf + - (R + r) + (i? - r) sin"1 ^—^ VI,
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which is transcendental also, and not capable of algebraic solution.

Furthermore, if we substitute for r or R in No. V their values as

deduced from No. IV, we get

R = — (« sina + cos«) + - sina,
7T 7T 2

— (« sin« -h cos u) — — sin a,

which differ from one another only in the sign of the last term.

But a is an unknown variable, and, as can readily be seen by

inspection of the figure, cannot be a constant. Hence algebraic

solution of the open belt is impossible.

Fig. 30

Reuleaux* has deduced an exact graphical solution of the above

equations, but it involves the tracing of certain higher plane curves,

and is therefore not practical. His extremely beautiful and in-

genious solution is as follows: in Fig. 31, draw BC and AD
parallel, and at a distance apart equal to the shaft distance d.

Draw AB at right angles to AD. With A as a centre and with a

radius equal to AB draw the quadrant BE, which quadrant will

contain all possible values of «. Draw the involute EF of the

quadrant BE, with cusp at E. Let EAP be any arbitrary value

* "Constructor," p. 1S9.
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of a. Draw the tangent at P, cutting the involute at N. Then

PN=PE. Draw PM perpendicular to AD, NK perpendicular

to PM, and QY perpendicular to AD, passing through N. Then

A Q =AM+MQ= d (a sin a + cos a)

.

Now make BC=7rd—7r(AB) , and complete the rectangle ABCD.
Draw the diagonal BD. This diagonal must make with BC an

angle whose cotangent is tt, or 17 39' 19''. Then

YG = - (a sin a + cos a),

31 E Q H
Fig. 31

which is the middle term of the equations for R and r. Again, if

we lay offBL = I, the half length of the belt, which can be calcu-

lated for the given pair of steps, then

LS=YJ=-,
TV

which is the first term in the equations, and then we have

JG = YJ- YG= (a sin a + cos a).
7T 7T

Finally, if we draw a semicircle on \AB as a diameter, then

^r=-sin a.
2
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This we may add and subtract from/^ to get the values of R and

r corresponding to any chosen value of a. Lay off AT upwards

from G and downwards from G, determining the points £7 and V.

Then
JU=R

and JV= r.

Now similar points may be obtained for other values of a, and thus

a smooth curve HVXUF is drawn, tangent to WE at X, and sym-

metrical as to ordinates about BD as an axis. The assumed pair

of radii by which / was calculated must fit the curve, and thus may

check the work. But we may even find the value of / from the

diagram without calculation, for the curve HVXUF may be drawn

without reference toy at all. Then if we assume our first pair of

steps, we will know their difference, which is equal to UV. So we

merely need to try along the curve till we find an intercept UV
equal to (R — r), then lay off UJ equal to R, or VJ equal to r,

and the pointy becomes immediately fixed.

Hence Reuleaux's solution is exact and complete, but it is labo-

rious, and involves the plotting of the involute EF, and the curve

HVXUF.
Lately Professor W. K. Palmer* has proposed a modification of

Reuleaux's method. He introduces a negligible approximation,

but the method is eminently practical. Instead of plotting the

curve HVXUF as double ordinates QU and QV laid off along

the same line, and therefore in the same direction, he lays off

QU as an abscissa and QV as an ordinate with reference to A as

an origin of rectangular coordinates. It will be noticed on our

old diagram that as we pass along the curve from H towards V,

the values of R and r become equal at X. When we pass beyond

this point, the quantities R and r exchange places, and all those

values formerly given to R must now be given to r, and vice versa.

Also that the maximum value that can be given to R is when /= icd.

* "The Designing of Cone Pulleys," by Walter K. Palmer, Lawrence.

Kansas.
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Then R = d and r= o, or r= d and R — o. On our new diagram

then (Fig. 32), if BFE be our new curve plotted in rectangular

coordinates, it must be symmetrical with respect to a 45 ° line AF
through the origin A, Furthermore, it must pass through the points

B and E of the old diagram. Now in Fig. 31.

R=JU= QU-

r=JV= QV-

Hence to correctly represent the values of R and r on our new

diagram, we must subtract the constant length QJ from both the

Fig. 32

ordinates and abscissae of the new curve. This can be done by

shifting the origin, from which we measure our step radii, along

the 45 line from A to A'. Now

p = WP= YP - YW
9

r=XP = MP-MX,

and XM= YW. Hence

R = A'X and r=XP.

The point A' is determined by the length of the belt, and by the

diagonal BD exactly as/ was determined in Fig. 31. But we may

even do away with the calculation of /, and find it directly from the

diagram, for any given pair of steps will give the point A\ Make

AI=R and IT= r for the assumed pair of steps. Draw AT.
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Now shift the triangle AIT, so that its angle at A remains on the

45 line, and its sides AI and IT remain parallel to the coordinate

axes, till the angle at T touches the curve at P. This can be done

by drawing TP parallel to AF, and PA' parallel to TA. Then A'

is the new origin from which BL = I can be obtained. All other

pairs of radii such as P1
= A'G, ?\= GH, etc., can be drawn.

Palmer finds that the arc BFE can be very exactly approximated

by the arc of a circle whose centre lies on the 45 line produced

below A a distance equal to the diagonal of a square whose side is

one-tenth of d. This removes all necessity of plotting curves of any

sort, and leads us to a direct and practical result.

It is of interest to notice that in the case of crossed belts the

circular arc BFE in Palmer's diagram becomes a straight line BE,
since the coordinates of points along such a line measured from any

set of axes parallel to AD and with origins on AF will have a con-

stant sum. Hence R + r = constant, the necessary condition for

crossed belts. Otherwise the construction is the same as for the

open belt.

When the distance between shafts is great as compared with

the radii of the pulleys, we may consider a equal to zero in the

equation

/= d cos a + - (R + r) + a(R- r),

and any slight error due to this assumption will be made up by the

elasticity of the belt. In this case our equation reduces to

Here, as in the case of crossed belts, if we make R + r constant, the

equation is satisfied, or the steps on the two cones will be equal.

Professor John E. Sweet* has employed the following graphical

method of designing the steps of cones, where the distance be-

tween shafts is great enough to allow7 equal steps. It is as follows :

* American Artisan, February, 1 874; American Machinist, October 13,

1898, p. 757.

£
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Let A and B (Fig. $$) be the centres of the pulleys, B being the

countershaft, which runs at a constant angular velocity, wj. Since

the speeds vary inversely as the pulley diameters, we lay off the

Fig. 33

velocity of B from the centre of A, and in any direction as AX.
Similarly we lay off the smallest velocity of the driven machine

(back gear out) from B parallel to AX and equal to BZ. Produce

AB and draw XZD. Now

Ang. vel. A : Ang. vel. B : : BZ: AX : : BD : AD.

Let BF be the radius of any step of the cone, assumed to begin

with. Draw a line from D tangent to circle BF, and produce

toward A. Draw a circle about A as a centre, and tangent to

DF at G. Then

GA:FB::AD: BD : : Ang. vel. B : Ang. vel. A.

Now lay offBY equal to the next speed required of the machine

A. Draw XYE. Take C at the middle point of AB and erect

a perpendicular CQ intersecting GF at P, then P is the middle

point of GF (nearly) . Connect EP and produce. Draw circles

about A and B tangent to this line, and these will be the next pair

of steps. It will be noticed that since P is the middle point

of GF, the steps will be equal, or the same belt will fit all steps.

Modifications have been proposed for the above to suit cases

where the shaft distance is not great enough to allow equal steps.*

* C. A. Smith, American Machinist, February 25, 1882; John Coffin,

American Machinist, April I, 1882.
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The angular velocity ratio of a pair of stepped cones should

form a geometrical progression, and if the driven machine is

back geared the back gearing should carry the geometrical pro-

gression on. Let us suppose that we have a three-stepped cone,

with back gear, which runs at ten revolutions per minute with the

back gear in and the belt on the step of largest radius. Further-

more, suppose that each succeeding step increases the speed 50%.
Then we would have

fStep(i), 10.

Back gear in
-I
Step (2), 1.50 x 10.00 =15.

I Step (3), 1.50 x 15.00 = 22.5

fStep(i), 1.50x22.50 = 33.75.

Back gear out
j
Step (2), 1.50 x 33.75 = 50.52.

I Step (3), 1.50 x 50.62 = 75.94.

The ratio of the back gearing would be

P
IO I , , s= - (nearly).

33-75 3

If these speeds are laid off as ordinates equally spaced along a

horizontal line, we get a smooth curve (Fig. 34). If, however, we
find by trying the differ-

ent speeds of a cone-

driven machine that the

curve is irregular, then

the cones are badly de-

signed. This method

of testing the cones of

a lathe has been sug-

gested" by Professor

Sweet. He also uses
Fig. 34

the following method of graphically computing the geometrical

progression of speeds : lay off PO (Fig. 35) equal to 100 units,

and OA equal to the number representing the percentage of

increase in speed. In the preceding case OA = 50. Erect a
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perpendicular at O and another at A. Lay off Oa = 10, or the

slowest speed of the cone with back gear in. Draw PaB ; then

AB — 15, the speed of the second step. Square back from B to

b, so that Ob equals AB, and draw PbC. Then AC= 22.5, the

third speed, and so on.

Fig. 35

Frequently the extreme speeds of the driven machine are given,

and we are required to divide up the interval according to a

geometrical progression. If a is the slowest speed or the first

term of the series, and x the constant multiplier, then our series is

a, ax, ax2
, ax3

, ax*, etc.

The nth. term will be ax71-1 = b. In our problem we are given

a, b, and n to find x.

x •%

and the ratio of the back gear will be

In the preceding problem a = 10, b = 75.94, n = 6.

75-94

3-375

Sweet's method of constructing the geometrical progression of

speeds can be combined in a very elegant manner with Palmer's
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method of designing the cones, as the following problem will

show: let the distance between the shafts of a foot lathe be

30". Let the radius of the largest step on the driving wheel be

io|", and of the smallest step on the headstock be 1,5". The

maximum angular velocity ratio will then be y = 7 (back gear

out). Furthermore, let the minimum angular velocity ratio be

y= 1 (back gear in), and let there be three steps to the cones, so

that n — 6. Then
£ = JJ>max. _ 7

a

max.

7min.
~"

I
'

The ratio of increase in speed is

x=\rj= i-475 8
,

and the ratio of the back gear is

P = i-475 8 3.2141
- (nearly),

Lay off AB equal to 30" (Fig. 36), and AK and KO each 3",

determining the centre O. Draw the arc BE about O. Lay off

Fig. 36

from origin A, R±= 10.5", and r, = 1.5". Shift origin to A 1

, and

produce A'S. Make A'M equal to 100 units of any convenient



rx = i".5p

r2 = 2.14.

H = 2.96.
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scale, and MN equal to 47.58 units. Erect perpendiculars at

M and N. Produce A'P to Q. Square back to U and draw

AU, etc. Measurement of a large scale drawing gives us the

following results :

^=io".5o

d= 30" \ R2 = 10.10

LiP8 = 9.50

The half-length of belt is

BL = IA = 48".04, or 8' Jg." for the whole length.

The ratio of the back gears is \.

B. Wire Ropes

For transmitting power over great distances, wire rope is used

in place of belting. In this case the rope runs in grooved wheels

of large diameter, known as sheaves. The bottoms of the grooves

are often lined with wood or rubber to increase the coefficient of

friction. The diameter of the sheaves being great compared with

the diameter of the journal, the loss of power in the boxes is

reduced to a minimum. The rope is supported at intervals by

smaller pulleys known as idlers.

In the rope transmission problem, the horse-power to be trans-

mitted, the velocity of the rope, and the distance between idlers

are given. The tensions on the tight and slack side, which are

necessary to transmit the required horse-power at the given veloc-

ity at the instant of slipping, can be calculated approximately from

H.P. x 33000
T,= — 1

and j
^1

Then if the rope is at rest, the tensions on the two sides will be

equal, and will be approximately
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Generally Tx is taken equal to 2 7^, which gives with a = tt the co-

efficient of friction <£ as only 0.22. This then allows an ample

factor of safety ; in other words it will include the factor C, and the

mean tension will be T= J 7j.

Now to find what size of rope will bear the maximum tension

Tlt we must look in some table of wire rope sizes and strengths,

select that size which will bear Tx as a working stress, and from the

same table find the weight per foot of such a rope. The rope is

then drawn up to the required tension T, and spliced in place.

The best way to measure the tension in such a rope is to meas-

ure the sag or deflection at the middle point of the span. The

calculation of this sag we will now take up.

{a) Horizontal Transmission

Let POQ (Fig. 37) be a suspended rope, whose points of sus-

pension P and Q are in a horizontal plane. Then O the lowest

point will also be the middle point. The coordinates of P are x

Fig. 37

and y when referred to an origin at O, with axis of X tangent to

the rope {i.e. horizontal). The tension at .Pcan be resolved into

its vertical and horizontal components, which are

V= Tsm a,

H= Tcos a,

V ,— = tan aH
ay

dx
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TABLE

Standard Iron and Steel Hoisting Ropes, John A. Roebling's

Sons Company

Wire Ropes of 19 Wires to the Strand

T3
a
3

Iron Cast Steel

a c ft-* *o
«j 01 g-s l*H

a c cr n c §•

1
3
a
D

22

1

U
c

"I

,o

u

Pa

X!
be

a

_c
'« .

bJD

c

Si °

M O
.5 8

u a.

6 5 c
§ « Si

6*5
<i2

I'i
.§s
ex:

.5

c
'« •

bfl

•5 8

« O

« «;°£
bf

.5 8

^0

8 p.
c 2

3 «

«

« .

6S
'-5

a

IS
.5-5

H Q O £ PQ £ O S pq £ U 3

I 2| 6f 8.00 74 15 14 13 155 31 — 81
2 2 6 6.3O OS 1.3 13 12 125 25 — 8

3
T 3
*4 52- 5-25 54 II 12 IO 106 21 —

71
4 *8 5 4.IO 44 9 II 81 86 17 J 5 H
5

,1J 2 4i 3.65 39 8 IO 7l 77 15 14 5*

51 if 4t 3.00 33 6* 9l 7 63 12 13 Si
6 I* 4 2.50 27 5l 81 61 52 IO 12 S

7 I* 3l 2.00 20 4 7l 6 42 8 11 4+
8 I 3* I,S8 16 3 61 5l 33 6 9* 4
9 ^ 2f I.20 11.50 *1 Si 4* 25 S 81 31
10 3

4 *1 O.88 8.64 *t 4| 4 18 31 7 3

101 5
8

2 0.60 5-1.3
t1*4 3l 3 2 12 2i

5i *1
w>4 T

9
6

I* O.44 4.27 * 02 2| 9
,1

5 If
1of 1

2 ii o-35 3.48 1 3 2i 7 I 4l II
10 a TV 1* 0.29 3.00 * 2* 2 52" ¥ 4f li

IO| 8"
T l
x 4" 0.26 2.50 1 2* I* 4l

1
2 3i

Wire Ropes of 7 Wires to the Strand

II II 4l 3-37 36 9 IO 13 62 13 13 81
12 I 8" 41 2.77 30 71 9 12 52 10 12 8

13 *1 3t 2.28 25 6i «1 1of 44 9 II 71
14 II 3t 1.82 20 5 71 91 36 71 IO 61
15 I 3 1.50 16 4 61 81 30 6 9 51
16 7

8 2f 1. 12 12.3 3 51 71 22 4l 8 S

17
3
4 2f 0.88 8.8 2i 41 <* 17 31 7 41

18 1 1

16 21 0.70 7.6 2 41 6 H 3 6 4
19 5 T 7

*8 o-57 5.8 T l
X 2 4 51 11 2i 51 31

20 _9_
16

T 5
*8 0.41 4.1 I 31 41 8 ,3x 4 41 3

21 1 T3*8 0.31 2.83 £ 2| 4 6 ,1 4 2!
22 tV T lI 4 0.23 2.13 1 2! 31 4 2

- *1 31 2l
23 1

tl 0.19 1.65 2i 2| 4 34 2

24 5
T6 0.17 1.38 — 2 21 3 I 2} ,3Z 4"

25 9
32 ¥ 0.125 1.03 — t3*4" 2i 2 1 H *2
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Now the horizontal component of the tension is necessarily con-

stant in magnitude, and if we consider the weight of the rope as

uniformly distributed along its horizontal projection PQ, then

approximately
V= wx

where w is the weight of the rope per running foot. So our

equation is

dy _wx
~dx~~H'

w x2

The equation represents a parabola with origin at the vertex.

From the triangle of forces at P
T2 = J? 2 + V2

,

So our equation becomes
w s

2

y =

jT2 W2
S
2 8

^ 4

where y is the sag or deflection at the middle, and s= 2 x is

ID'S
the span between idlers. In most cases the term is insig-

4
nificant compared with T'2, and can be neglected, hence the

formula simplifies to the extent

y 8T
As an example of the use of the formulas, take the following

:

In a horizontal transmission let the span be 250 ft., the power

to be transmitted is 100 H.P., and the velocity of the rope is

4000 ft. per minute. We will assume 7^ = 2 r2 .

^ H.P. x 33000 , „

2" v

r
2
=~̂ 825 lbs.

2
J

T=^±B= 1237 lbs.
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By reference to the table it is seen that the diameter of a rope,

which is to stand a working load of 1650 lbs., is T
9
g in., and that

the weight of such a rope per foot is 0.44 lbs. The deflection at

rest is

ws2

The deflection at full load is

O.44 x 62,500
5 = 2.5 It.
8 x 1237

and

IDS
yi = ——=2.oS ft. on the tight side,

8 J1

72 = ^-^7 = 4.16 ft. on the slack side.
8 T2

(b) Inclined Transmission

In the case where PQ is not horizontal, as in Fig. 38, the

method is slightly more complicated. As before, we consider

Fig. 38

the weight of the rope uniformly distributed along the chord PQ

;

hence, if this distance be called r, the total weight of the rope
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will be w ' r, where w is the weight per running foot as given

from the tables. But the weight will be distributed uniformly,

though at a different rate, along the horizontal projection s. Let

the weight per foot distributed in this way be wQ . Then

r a/c2 + s
2

s s

c being the difference in level between the points P and Q.

Taking as before the origin at the vertex of the parabola, and

calling the coordinates of Q, a, and /?,

T'2=&2 + w 2(a + s)
2
. ... 1

T»2=H2+wQ
2a2

. . . - . . . 2

* =f£ 3
2 Jo.

2 12

In these four equations, s and c are known from the conditions

of transmission. One of the tensions, viz., T", is known from the

horse-power conditions. This leaves four unknown quantities,

a, (3, T', and H, to be found from the four equations. They can

be combined with the following result. As equations 2, 3, and 4

contain but three unknowns, we combine them first. Taking

3 and 4

:

WqCi
2 w (a + s)

2 w s(2a + s)

Yh +c=z 2H >

H=
Yc *

*
5

Combining 5 with 2 :

W3 ± ^4 T"2
(c2 + s

2
) - wfs\

6

H then becomes known from 5, pi from 3, and T 1 from 1.

For example, in an inclined transmission, let the horizontal

distance between points of support be, s= 250 ft., and the ver-



6o MACHINERY OF TRANSMISSION

tical distance between the same points be, ^=150 ft. Eighty

horse-power are to be transmitted at 4000 ft. per minute velocity

of rope. Then (Fig. 39)

80 x 33000=qo
K4000)

*

7- = ^00 = 650 lbs.

T= 1300 + 650 ^ 975 lbs.

Fig. 39

Select as before a j^-rope weighing 0.44 lbs., per foot.

Wc2 + s
2 V25o2 +i5o2

„w = w = .44 — = 0.5 13 lbs.
s 250

Deflections at full load :

«!=
- .513 x 25o3 ± 150V4 x i3Qo2 (i5o2 + 25o2)-.5i3 2 X25o1

2 x .5i3(25o2 + 150
2

)

Since in our case s is positive, and is measured in the same

direction as a, we take the positive value.

«!= 1207.5 ft - (or - ^S* 1^ ft-)-
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1

ai tt •S I 3 X 2 5°( 2 X 1207. c + 250)
Also H1

=-^~^ ^—

-

/-^-J—^-^=1139.6 lbs.
2 x 150

oy

5 i3Xi20 7 5
2

= t^ 2x1139.6 "> ^

?!' = Vii39- 62 + .5132(1207.5 + 250)2= 1363. 1 lbs.

The deflection at the middle is taken as the difference in level

between the middle point of the chord r (see Fig. 38), and the

point of the rope vertically below it. Calling the abscissae of

these points Y± and Y±, and the deflection ylf

y^Y.-Y'.

F1= ft+ ^= 403.3ft.

*i'= V
'' = 399-74 ft-

2 /Z x

^=3.52 ft.

Similarly for the slack side,

7]," = 650 lbs.

«2 = 551.6 ft. (or -73542 ft).

#2 = 578.63 lbs.

&= 134.9 ft.

TJ = 709.91 lbs.

Pa= 2O9.9O ft.

Y2
' = 202.99 ft-

y2 = 6.91 ft.

Similar figures might be obtained for the rope at rest.

The material of the rope is subjected to two tensions,— the

working tension, and the tension due to bending around sheaves.

The working tension may therefore be greater as the bending

tension is less, or as the diameter of the sheaves becomes larger.

The size of sheave which will keep the bending tension down to
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a low limit is as follows (expressed as a multiple of the rope

diameter) :

Rope of 7-wire strands, Ratio =150.

Rope of 12-wire strands, Ratio=ii9,

Rope of 19-wire strands, Ratio= 90.

When the velocity of the rope is high, the effect of centrifugal

force will be felt exactly as in the case of belts. If the span is less

than 60 ft., the transmission cannot be effected economically.

For distances up to 2000 ft., such transmission is very efficient.

2. AXES OF ROTATION PARALLEL, PLANES OF PULLEYS

DIFFERENT

In belting up shafts where the medial planes of the pulleys are

not identical, care has to be taken that the belt does not run off.

Fig. 40 Fig. 41

If the belt approaches the pulley at an angle other than 90 with

the axis, it will fall to one side because the inclination causes it to
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describe a helical path. On the other hand, in leading the belt off,

the receding part may be given an angle of departure as great as

20 without causing it to fall off, because in this case the actual

friction between the belt and pulley must be overcome. In every

instance the point at which the belt is delivered from one pulley

must lie in the medial plane of the next pulley. This is the only

condition to be fulfilled, provided the angles of departure do not

exceed 20 . By properly applying the above condition, and by

the use of idlers or guide pulleys, which must themselves comply

with the condition, parallel shafts can be belted up where the

planes of the pulleys are different. Fig. 40 shows one method of

doing this. The belt leaves pulley A at an angle of departure 8,

but the guide pulley c delivers it in the medial plane of B. The
guide pulley d similarly handles the part receding from B. It will

be noticed that the guide pulleys will have their planes determined

by the belt lines, and that the belt must be given a quarter twist in
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passing around them. The above arrangement can be run in but

one direction as shown by the arrows, but if the shafts are to turn

in opposite directions, the arrangement of Fig. 41 can be used,

and the belt run either way, when the diameters of both guide

pulleys are equal to the distance between the planes of A and B.

It is not possible in any case to dispense with either of the guide

pulleys.

3. AXES OF ROTATION INTERSECTING

Fig. 42 shows a method of belting a pair of shafts whose axes

intersect at O. The belt leaves the pulley B at an angle of depar-

ture, but the guide pulley c delivers it to B in the medial plane of

Fig. 43

the latter. The whole method is practically identical with the

preceding. If c and d are so placed that the angles of departure

of the belt are zero, the apparatus will run in either direction. If

the medial plane of B is made to include the point at which the
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belt is delivered.from A, the guide pulley c can be dispensed with,

but in this case the angle between the shafts cannot be greater

than 20 . In no case can both guide pulleys be dispensed with

(Fig. 43 )•

4. AXES OF ROTATION CROSSING

In this case the method of procedure is the same as in the

former. In one particular instance both the guide pulleys can be

omitted, as in Fig. 44. Here the radius of pulley A is equal to

Fig. 44

the distance from its shaft to the plane of B, and the radius of B
is similarly proportioned with respect to A. The belt will then

run only in the direction shown by the arrows.



CHAPTER IV

TRANSMISSION OF PURE ROTATION BY MEANS OF

TOOTHED GEARING

i. GENERAL CONSIDERATIONS

When a constant angular volocity ratio is required to be main-

tained at every instant of time, toothed wheel transmission is

usually resorted to. In this form certain projections upon and

depressions within the rotating bodies are made to mesh, so that

they are driven by direct contact. Any sort of projections and

depressions will cause one wheel to follow the other, and will keep

up an average constant velocity ratio, provided they neither inter-

fere nor fail to engage at any time. But if an absolutely Constant

angular velocity ratio is required at every instant, the outlines of

the teeth must be formed according to certain laws.

In all cases of toothed gearing, the teeth are considered as fixed

upon certain imaginary surfaces known as Pitch Surfaces. These

are of such a form that any pair will be tangent along a straight

line, and that when rotated about fixed axes, with equal component

velocities at right angles to the line of contact, the required motion

of the gears will be reproduced. In general such motion will be

one of pure rolling normal to the line of tangency, and of sliding

along it.

2. AXES OF ROTATION PARALLEL, SPUR GEARS

A. Laws of Action

In this, the most important case, the pitch surfaces are cylin-

drical, and tangent along an element which lies in the plane of the

axes. Here, since the resultant velocity of a point on the surface

66
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is normal to an element, the motion will be one of pure rolling,

with no sliding along the element. The sections of the cylinders

at right angles to the axes being parallel, the relative motion is

evidently uniplanar ; hence we need consider the motion in but a

single plane. The curves of intersection of the pitch surfaces by

the normal planes, are known as Pitch Curves, which must have a

point of tangency on the line of centres.

Profiles.— Two curves are said to be profiles when during any

relative motion they remain tangent. The case of two free profiles

is one of little practical use, but

when we impose the further con-

dition that they rotate about fixed

axes, especially when these are par-

allel, it becomes one of great im-

portance.

Let xx and yy (Fig. 45) be two

profiles, which rotate about centres

A and B, at angular velocities o^

and o>2 . Let x be the driver and

y the follower. P is the point of

contact of the profiles, and PA = rx

and PB = r2 are the contact radii.

Consider P to be a point of x. Its

velocity z\ will be at right angles to

rx and equal to r^. The compo-

nent of i\ along the tangent to the

profiles at P will be i\mx cos a, and

the component along the normal

will be 7\wx sin a. Consider now

P as .a point of y. Its velocity v2 is r2o>2 , and its component

resolved as before are r2w2 cos j3, and r2aj2 sin (3. If the curves

are to remain continually tangent (i.e. are to be profiles),

Fig. 45

r^tox sin a = r2co2 sin (3,

wi _ ri sin /?

w2 rx sin a
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otherwise they would either leave contact or cut into one another.

Now from the centres A and B drop perpendiculars AG and BH
upon the normal. Then,

AG = rx sin a,

BH=r2 sin (3,

oi, BH
0>2 AG

But if the normal cuts the line of centres at I,

BH BI
AG AI

0)i =
.BI

a)2

" AI

Thus in direct contact transmission, the angular velocity ratio is

inversely proportional to the segments into which the line of cen-

tres is divided by the common normal to the profiles.

The above proposition can be proved by the instantaneous cen-

tre relation also. The bodies x and y are rotating about fixed

centres A and B. The instantaneous centre of x referred to y
must lie somewhere on the line connecting these centres. Now
the point P, when considered a point of x, must be moving in the

direction of the common tangent relatively to y, from the profile

condition. Hence Oxv must lie somewhere on the line drawn at

right angles to this direction, or somewhere along the common nor-

mal. It therefore lies at the intersection of the normal with the

line of centres. But from Fig. 15 we know that

Ml __BO
o>2 A Oxy

Hence the proposition is established.

If the ratio — is to remain constant we must have
oj2

BI— = const.
AI

But BI-\-AI= const.
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Hence / must be fixed on the line of centres. This important

proposition can be summed up as follows : when profiles are to

transmit a constant angular velocity ratio, they must be so formed

that their common normal continually passes through a fixed point

on the line of centres, which point divides the centre distance in

the inverse ratio of the angular velocities. Profiles so related are

known as Conjugate Profiles.

The velocity of sliding between the curves will be the difference

of their velocities along the tangent, or

vs
— r2(o2 cos (3 — r1o)1 cos a.

If the velocity of sliding is zero, there will be pure rolling between

the profiles, which then become centrodes. In that case

r^i cos a = r2<i>2 cos /3.

But also

r^ sin a = r2w2 sin /?.

Both these conditions can be satisfied only when vx — v2 both in

magnitude and direction. But zf1 and v2 are at right angles to rx

and r2, hence for pure rolling, P must lie on AB. This is easily

seen to be true, since for pure rolling, P must be Oxy .

Conditions to be Fulfilled.— The conditions to be realized if

possible are :

1. That the angular velocity ratio be constant.

2. That there should be positive driving, and that, therefore,

there should be a component of driving force in the direction of

the normal, and on that side of the tangent occupied by the

follower. From this it follows that the contact radius of the driver

must be on the increase.

3. The velocity of sliding should be zero if possible.

All three of these conditions cannot be fulfilled, for if (3) be

true, P must continually lie on the line of centres, and if in

addition (2) be true, the common tangent at P must cut the line

of centres at some angle other than 90 . Hence the point of con-

tact cannot remain fixed on the line of centres, but must move,

thus giving a variable angular velocity ratio. Similarly if any two
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of the three conditions be fulfilled, the third will fail. This gives

rise to three general forms of such driving

:

When (i) and (2) hold, and (3) is abandoned, we have the

ordinary toothed gearing.

When (1) and (3) hold, we have the case of friction wheels.

When (2) and (3) hold, we have some variable angular velocity

ratio, such as may be produced through limited angles by equal

ellipses or logarithmic spirals.

The second case we have already considered, and the third is of

little value, though the elliptic form as applied to a pitch curve will

be treated in its proper place, but the first is of great importance,

and we now proceed to take up its study.

Curves of Action.— Let aa and bb (Fig. 46) be two pitch

curves rotating about A and B. If there is to be pure rolling at /,

*>i BI Tr ,— = —- • If the motion
w2 AI
is to be transmitted by

the direct contact of two

profiles yy and Xx while

rolling still continues be-

tween aa and bb, the

common normal to the

profiles must continually

pass through I, which is

called the Pitch Point.

Evidently as motion con-

tinues, P will trace up

a curve in space, whose

form depends on the

forms of the pitch curves

and profiles. This curve

is called the Curve or Locus of Action. The pitch curve, the

profile, and the curve of action, are connected by the general

law, that the line connecting the point of intersection P of the

last two, with the point of intersection of the first and the line of

centres, must always be normal to the profile at P. (See Fig. 46.)

Fig. 46
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Evidently then the profile cannot approach nearer to, nor recede

further from, its centre of rotation than does the curve of action.

The pitch curve is determined once for all when the nature of

the angular velocity ratio is chosen. The curve of action is a curve

fixed in space. If it be chosen of any desired form, the profile

will then be determined. The most general proposition is as

follows : let B (Fig. 46) be a centre of rotation, and BA a line

fixed in direction from which angular position can be measured.

Let bb be any given pitch curve, whose equation is known, cutting

BA at I. Assume any curve of action cc, which will be fixed in

space. We are then to find what curve xx fixed in the plane of bb,

and therefore carried around B thereby, will have as a normal the

line connecting its point of intersection with cc to /. The general

solution of this problem is one of considerable complexity, and

even in the simpler cases, the correctness of action of an assumed

pair of profiles can be shown by methods far easier than its direct

solution, but as the underlying law

it is well to be kept in view.

Definitions and Standard Dimen-

sions. — Before proceeding to the

deduction of any system of special

profile forms, it will be best to

give a few general definitions and

dimensions, so that what follows

may the more readily be under-

stood. The teeth of gears are

usually equally spaced along the /

pitch curve, that is to say, the a
'

distance measured along the pitch

curve between its successive inter-

sections with profiles facing in a

given direction, will all be the

same. One of these distances

is called the Circular Pitch (Fig.

47), and is denoted by F. It is measured usually in inches.

The circular pitch must of course be the same on both of a pair

Fig. 47
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of mating wheels. A fraction of a tooth being an impossibility, it

must be an aliquot part of the perimeter of the pitch curve.

C
Hence if C be this perimeter, and iVthe number of teeth, P'=— •

In good cut gears the circular pitch is equally divided between the

tooth and the space, so that the thickness of the tooth on the pitch

curve will be t= \P'. In rough cast gears the tooth is made a little

smaller than the space, and the difference is called the Backlash.

Another most important pitch dimension, which really should be

used only in connection with circular gears, is the Diametral Pitch,

denoted by P. It measures the number of teeth per inch of

diameter of such a gear. Hence if D be the pitch diameter,

P=— . But in a circular gear, C= irD, thus P' == -^r, and we

obtain the relations, P= —,, and P'= — . Since the size of tooth

represented by a given diametral pitch is of fixed magnitude, we

may apply the term to non-circular pitch lines, remembering that in

these cases it means that if there wereN teeth of such a size placed

on a circular gear, there would be P teeth per inch of its diameter.

That portion of the tooth lying without the pitch curve is called

the Addendum, and is denoted by a. The portion lying within

the pitch curve is a little greater than the Addendum, and the

difference is called the Clearance. The angle through which a

wheel turns while a tooth is in contact with its fellow is called

the Angle of Action. That portion of this angle turned off while

the point of contact is approaching the line of centres is called the

Angle of Approach and the rest, the Angle of Recess. Those

portions of the pitch curve intercepted by these angles, are called

the Arcs of Action, Approach, and Recess. The Arc of Action

must evidently be greater than the circular pitch.

B. Velocity Ratio Constant, Circular Wheels

In this case the pitch curves must evidently be circles, and / will

be a fixed point on the line of centres. A curve of action being

assumed, all the teeth will be alike. Upon the nature of the curve

of action only will depend the various forms of teeth used.
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(a) The Cycloidal System

In this system the curve of action is a circle tangent to the pitch

circle (Fig. 48). The solution of the general proposition in

this case is of rather a

complex nature (see

Appendix III), but the

special case where the

radius of the pitch cir-

cle is infinite, that is,

where it becomes a

straight line as in the

ordinary rack, is simple

enough to be inserted

here.

Let x and y (Fig. 49)

be the coordinates of

the point of contact P.

Let x — f (y) be the

equation of the profile,

and x =
(f> (y), be that

of the curve of action,

which in this case is,

x = V2 ay — y-, " a "

being the radius of the circular line of action. The tangent

of the angle which the tangent to the profile at P makes with the

dx
axis of Y is — — • The tangent of the angle between OP and the

axis of X is
y

dy

But these are equal, hence,

y _ y _ dx

—f:
X

ydy

V 2 ay —y dy

-1 y /
—

- = a vers 1 V 2 ay
,2 a

f+C,
V2 ay —y

which is the equation of a cycloid, with origin on the line of cusps,

and at a distance C from a cusp. C is the variable parameter

which determines the position of a tooth.
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A simple method of finding the nature of the profile for the

general case is to imagine a reversal of the relative motion. Bring

the pitch curve and profile to rest by giving the whole system an

equal and opposite rotation about B (Fig. 48) thus rotating the line

SB, which carries the circle £ with it. If, however, the circle S
be rotated about its own centre, its intersection with the profile

will not be altered, hence we may allow it to roll upon the pitch

circle, while S is carried around B. The path of any point on the

circumference of circle S, is an epicycloid on circle B, and, / being

Fig. 49

the instantaneous centre, ZP must be normal to the curve described.

If the circle *S lies within the circle B the curve described will be

a hypocycloid, hence these curves may be used as profiles. The
fact that any point in the plane of any curve rolled on the pitch

curve will sweep up a correct profile, has led to the use of this

feature as a basis for a tooth theory. It does not apply, however,

in a practical way to all forms of tooth outlines in use.

The relative positions of two profiles on a pair of pitch circles

are shown in Fig. 50. The profile of circle B will be an epicycloid

ee since the circular curve of action lies without its circumference.
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The profile of A will evidently be a hypocycloid kk . The point of

contact is P, and the common normal PI continually passes through

/, a fixed point. The circular curve of action is called the De-

scribing Circle. Action will take place, i.e. driving at the required

constant angular velocity ratio will take place, on one side of the

line of centres only. If A be the driver while rotating counter-

clockwise, this will be on the left side as shown. After P has

Fig. 50

passed the point / where the cusps come together, contact will no

longer be between e^e and /i k, but between the second branches

e e' and A k' beyond the cusps, and furthermore, the tendency

would be for hji 1

to separate from e e' instead of driving it for-

ward by pushing.

By using a describing circle within each of the pitch circles, the

angle of action may be extended to both sides of the line of

centres. It will then be divided into an angle of approach plus an
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angle of recess on each wheel. Fig. 5 1 is a diagrammatic represen-

tation of the manner of forming the tooth outlines. Point P of

describing circle S traces the face PC of the tooth of B, and the

flank PD of the tooth of A ; while the point Q of the circle T
traces the face QE = face DX of the tooth of A, and the flank

QF= flank CFof the tooth of B. We see that in this case the locus

of contact of two teeth will be PMINQ. The arcs of action CIF
or DIE will be composed of arcs of approach DI or CI, plus arcs

Fig. 51

of recess IE or IF. The arc of approach depends upon the

length of the follower's face only, and that of recess upon the

length of the driver's face.

Inside or Annular Wheels.—When one pitch circle lies within

the other, the teeth of the larger wheel must be cut on the inside

of an annulus or ring. In this case the direction of rotation of

the wheels will be the same. The tooth outlines are generated in

precisely the same manner as in outside gearing. The flanks of
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the teeth will be epicycloids, and the faces hypocycloids ; in

fact, the spaces correspond exactly with the teeth of outside

gearing of the same size. Inside gearing will in general run more

smoothly than outside gearing, but owing to the difficulty of con-

struction they are seldom used. When rotations in the same

direction are desired, an idle wheel is introduced.

Racks.—A rack is simply a portion of a wheel of infinite diam-

eter, hence the pitch curve of a rack is a straight line tangent to the

Fig. 52

pitch circle of its mating wheel. Both the faces and flanks of the

rack teeth will be cycloids, and if the two describing circles are

equal, the faces and flanks will be alike.

Interchangeable Wheels.— If we wish to make a set of wheels

any one of which will gear with any other, we must use the same

size of a describing circle for all the faces and all the flanks. The

size of the describing circle depends on the properties of the

hypocycloid. If the diameter of the describing circle is less than
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one-half that of its pitch circle (Fig. 52), the flanks of any tooth

will be less converging than the radii of the pitch circle ; if equal

to half the diameter (Fig. 53), the flanks will be radial; and if

more than half the diameter (Fig. 54), the flanks will be more

converging than the radii of the pitch circle. Since converging or

even radial flanks weaken the tooth at its root, which is the place

where the greatest strength is needed, we should not have the

common describing circle of a set of wheels much greater than

Fig. 53

half the diameter of the smallest wheel of the set. The Brown

and Sharpe Mfg. Co. uses a describing circle which is half the

diameter of a gear of 15 teeth, and cuts down to 12 teeth. Since

the diameter of a wheel of 15 teeth is

P P
the diameter of the describing circle will be

'-*
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Formulae for proportioning Teeth (Fig. 55).

Let N= the number of teeth,

a = the addendum,

/ = the thickness of the tooth on the pitch curve,

/= the clearance at the bottom of a space,

79

FIG. 54

d= the working depth of a tooth,

d -{-/= the whole depth of a tooth,

D — the pitch diameter,

Z>' = the outside diameter,

P' = the circular pitch,

and P= the diametral pitch.
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Then P=^
y

P' =
P*

a =±=£ = .31*3 P,

d = 2a,

NP =
D'

N£>'=D+2a =— + ^- =pTp
t— i/3

' ——
Fig. 55

/= l /_ l pi

—

2oP'

P ' 20P
=
l |1 = 2.i57i

Note.— /*' and / are measured on the arc of the pitch circle, and not on

the chord.

In cutting gears with the rotary cutter, the important formulae

are (i), P=— • This gives the relation between size, pitch, and

number of teeth. (2), D' =—^t—
, which gives the size to which

the blank must be turned, and (3), d+f= * "
-, which is the

depth the cutter must be run into the blank. These are all that

are required in simple spur gear cutting. In cut gears the tooth

is made equal to the space, and hence the backlash is zero.

Approximate Methods of drawing Teeth.—The most exact method

is by using the average radius of curvature of the cycloidal arc and

approximating it by means of the arc of a circle. George B. Grant *

has constructed a table giving radii and positions of centres, the

* " Odontics, or the Theory and Practice of the Teeth of Gears." Lexington

Gear Works, Lexington, Mass.
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radius of the describing circle being one-half that of a gear of 12

teeth. This he calls the " Three-point Odontograph." To use

the table draw the pitch circles, and divide them up into the tooth

intervals. Draw the circle of face centres at a tabular distance

(dis.) inside the pitch circle, and the circle of flank centres at a

tabular distance outside the pitch circle. Draw faces and flanks

with tabular radius (rad.). Note must be taken of the algebraic

sign of the radius. For 12 teeth the flank radius is infinite, and the

flanks are straight. For less than 1 2 teeth the flanks are convex, and

for more than 12 they are concave. Fig. 56 shows the complete

construction for the case of 15 teeth, 3-pitch. No odontographic

table,, such as is shown above, has been worked out for a system

where the describing circle is half the diameter of a gear of 15

teeth, and is used by the Brown and Sharpe Mfg. Co., but suffi-

ciently accurate methods for finding the approximate radius and

position of the centre by graphical construction are given in " A
Practical Treatise on Gearing," published by the company.

Draughted teeth are used principally by the pattern-maker.
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THREE-POINT ODONTOGRAPH
Standard Cycloidal Teeth

From a Pinion of Ten Teeth to a Rack

For One Diametral Pitch. For One-inch Circular Pitch.

For any Other Pitch, divide For any Other Pitch, multi-
Numb
Te

ER OF

2TH
by that Pitch . ply by that Pitch.

Faces Flanks Faces Flanks

Exact Interval Rad. Dis. Rad. Dis. Rad. Dis. Rad. Dis.

IO IO 1.99 .02 —8.00 4.OO .62 .OI —2-55 I.27

II II 2.00 .04 —II.05 6.50 .63 .OI —3-34 2.07

12 12 2.0I .06 00 00 .64 .02 00 00

13-5 I3-H 2.04 •07 15.IO 9-43 .65 .02 4.80 3.OO

!5-5 I5-I6 2.IO .09 7.86 346 .67 •03 2.50 I.IO

17-5 I7-I8 2.14 .11 6.13 2.20 .68 .04 i-95 •70

20 19-21 2.20 •*3 5.12 i-57 .70 .04 1.63 •50

23 22-24 2.26 •15 4-5° i-i3 .72 •°5 1-43 .36

27 25-29 2-33 .16 4.10 .96 •74 •05 1.30 .29

33 30-36 2.40 .19 3.80 .72 .76 .06 1.20 •23

42 37-48 2.48 .22 3-5 2 .63 •79 •°7 1. 12 .20

58 49-72 2.6o •25 3-33 •54 .83 .08 1.06 •17

97 73-M4 2.83 .28 3-i4 •44 .90 .09 1.00 .14

290 I45-300 2.92 •3i 3.00 •38 •93 .IO •95 .12

00 Rack 2.96 •34 2.96 •34 •94 .11 •94 .11

Radius of fillet at the root of tooth may be taken as one-sixth the distance

between tips of teeth.

General Expressions for Angles of Action.— Let A and B
(Fig. 57) be the centres of two pitch circles whose radii are R\

and R2 . Let rx and r2 be the radii of the corresponding de-

scribing circles. Draw the addendum circles KL and GH,
where ax and a2 are the addenda. Suppose the wheels revolve

so that the teeth move from right to left, with A as driver. We
are to find the value of a, the angle of approach of A. The point

P, at the intersection of the describing circle and the addendum

circle, is the first point of contact. Draw PS and PB. Then in

the triangle PSB, all the sides are known, for PS=r1} SB=R2 -\-rlf
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and PB = R2 + #2- In any sucn triangle we can find the angle

from

tan
-(P2+ r1)l\x-r1 l

(^2 + ^2)!

where ^ is half the sum of the three sides, or

x= P2 + r1 +
2

.4

^v

?! /

B

H

Hence, 6=2 tan"1

0=2 tan"

1

?(
2 ^2 + <^2

N

)

/
(2 R* + 2 ;

2

"l + ^>V 2 *i- «2
N

'A A 2
/
/

! ^2(2 •ff2 + <22 )

«a)
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Since arc/£> = arc ZP= arc 7C, a = 0^-, y = f±.
#1 #2

Hence, a =^ tan" 1J-_

—

^1 * ( 2 /to

«2(2^2 + a2)

i?! ^(2^+2 rj + a2 ) (2 rx
— a2 )

This is the most general expression for the angle of approach

of the driver. For standard teeth the following arbitrary propor-

tions can be substituted :

ax
= a2

= —

•

15

Substituting these values, we get

3 tan" 1

2PRX

And since 2 PR = N, the number of teeth,

V(-*+3+?X3-?)

« = ^tan-1\/^r4W + 1)

2^+17)

In exactly the same way we get the angle of recess of the

follower

:

8
Ij

tan
-W' 4W+x)

JVi \ 13(2^+17)

Since y = <*— , the angle of approach of the follower is

^2

? =
2̂

tan V I3(a^+I7 )-

And finally,

fl

I5
tan-J 4W+0)_

7)'

In all cases the arcs of action, which are .£,(«+/?) =iPs(y+8),

must be greater than the circular pitch. When the standard

addendum and describing circle are used, the least number of
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teeth on a wheel is not decided by the above conditions, but by

the undercutting which occurs when the pitch circle becomes less

than twice the describing circle. When, however, the addenda

and describing circles are functions of their respective pitch cir-

cles, then definite limiting cases can be worked out. For exam-

ple, let rx
= KRX , r2 = CR2 , ax =pRx , a2 = qR2, where K, C, p,

and q are known constants. Then the angle of C is

a+fl=,X*r*4(2^+2 KRX + qR2) (2 KRX
- qR2 )

+2 c^ua-4 >*'<»+»
Ri ^(2^+2 CR2 +pRx) ( 2 CR2 -pRx )

The limiting case will be when a-\-fi equals the pitch angle,

2 7T
or -—, and in general it cannot be less. Hence, writing theN . N
inequality, and remembering that Rx ——^, etc.,

^tan-^
:JV.2(2 + q) + 2KNX \ \ 2 KNX- qN,

VPNH2 +fi)

\N,{2 +p) + 2 CJV,J
S
2 CN2 -/Ai|

> *•

Having given all quantities except N2, this latter can be found

by a process of trial and error as that whole number giving the

nearest result larger than ir. The still further limitation must then

be investigated as to whether the epicycloids forming the two

faces of a tooth do or do not cross before reaching the addendum

circle. The whole problem of limiting numbers is one which can

best be studied by graphical trial processes.

(b) The Involute System

The simplest and in many respects the best curve for the out-

line of a tooth is the involute of a circle (Fig. 58). In this system

the curve of action is a straight line passing through the pitch
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point. Here again the profile for the special case where the pitch

curve is a straight line can be deduced very simply from the gen-

eral law. Here x =/ (y) is the equation of the profile, and that

of the curve of action is x

gent of (Fig. 59). Hence,

y _ y _ dx

x y dy

m
y = — mx + C,

^(y)~m> m bemS equal to the tan-

dy

dx

Fig. 58

which is the equation of a straight line at right angles to the curve

of action, C being the arbitrary parameter giving the position of

the tooth.*

Again resorting to simpler methods of procedure, imagine a

reversal of relative motion, thus bringing the pitch curve and pro-

file to rest, and rotating the curve of action about the axis of the

* For the solution of the general case, see Appendix IV.
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wheel. Then, as any motion of the curve of action in the direc-

tion of its own length will not affect its intersection with the pro-

file, we may consider it as rolling upon a circle drawn concentric

with the pitch cir-

cle and tangent to

the curve of ac-

tion. (See Fig.

58.) The part

of any point of

the line will be

an involute of

this inner circle.

The curve of ac-

tion itself is a

normal to the

involute, and as

it always passes

through the point

/, the tooth law

is satisfied. The

relative positions of two profiles are shown in Fig. 60. In this

let A and B be the centres of two pitch circles tangent at /.

Through I draw a line WW making an angle with the common
tangent to the circles. From A and B drop perpendiculars AE
and BF upon WW, and with these as radii draw circles concen-

tric with the pitch circles, and therefore tangent to the line of

action. Now suppose the line WW to be pushed in the direction

of its length so as to drive circle CEO by friction at E, and

circle DFQ by friction at F. Then will the pitch circles roll

IA
upon one another also, for vel. /= vel. E when considered a

IB
EA

point of A, and vel. /= vel. F— when considered a point of B.

IA _IB
,

FB
But -jrz —

~J^E>,
and vel. E =vel. F. Hence vel. /when considered

a point of A is equal to vel. / when considered a point of B, or the

pitch circles roll at /. Now if we consider any pointP of the line

Fig. 59
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WW, it will sweep up an involute GPH of the circle OEC in the

plane of A, and an involute MPN oi the circle DFQ in the plane

of B. The curves will always be tangent at the common generat-

ing point P, and their common normal will be the line WW, which

always passes through a fixed point / on the line of centres. The
circles OEC and QFD are called Base Circles.

Fig. 60

In involute teeth the addenda a cannot be of greater lengths than

those which cause the last points of contact to occur at E and F.

In other words, the radii of the addendum circles cannot be greater

than BE and AF. In this case the action ends at the tips and at

the roots {i.e. at the point where the involute comes down to the base

circle) of the teeth. If the tooth of B, for instance, were made

any longer, action would continue beyond the root of A, that is

along the second branch GXHX of the involute beyond the cusp as

shown at Px in Fig. 60. Hence we see that the maximum line of
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action is EF. If the tooth were made longer than the theory would

indicate, not only would correct angular velocity transmission end

at E, but the prolonged tooth would actually interfere with the

other. This arises from the fact that the curvatures of the por-

tions mathematically in working contact are in the same direction,

and the radius of curvature of the tooth of B being FF1} while

that of A is only EF1} the latter would lie within the former, as

would also the cusp of A at G±.

A valuable feature of the involute tooth outline is that which

allows the shafts of the two wheels to be separated slightly without

affecting the constancy of the angular velocity ratio. In this case

the base circles remain the same as before, and hence their invo-

lutes are unchanged. What is changed by the separation of the

axes is the pitch circle. Since the ratio of the radii of these

always equals the ratio of the radii of the base circles, the former

ratio will remain unchanged. It is readily seen that the angle 0,

or the " obliquity," is changed also. Since the new pitch circles

do not cut the teeth in the same positions as the old, the tooth

will not equal the space on any pitch circle except the one origi-

nally designed, but there will be back lash. Care must be taken

that the shafts are not so far separated as to make the angle of

action less than the pitch angle.

Standard Involute Tooth.—The draughted tooth is usually one

having an angle of obliquity of 15 . Other proportions are the

same as for cycloidal teeth. The Brown and Sharpe Mfg. Co.

makes its cutters with an obliquity of 14J . If the obliquity is

1

5

, and the standard addendum — is used, it will be found too

long to work without interference on anything under 20 teeth on

equal wheels. Therefore the involute is used as far as possible,

and the remainder of the tooth outline is made an epicycloid to

work on a radial flank within the base circle. This is known as

the correction for interference.

The Invplute Odontograph.—In the involute odontograph of

George B. Grant the centres are taken on the base circles. These

latter may be drawn tangent to a line of action with an obliquity
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THREE-POINT ODONTOGRAPH

Standard Involute Teeth

Obliquity 15

For One Diametral Pitch. For For One-inch Circular Pitch.

Number of
Teeth

any Other Pitch,divide by that

Pitch.

For any Other Pitch, multiply
by that Pitch.

Face Rad. Flank Rad. Face Rad. Flank Rad.

IO 2.28 .69 •73 .22

II 2.40 •«3 .76 .27

12 2.51 .96 .80 •31

13 2.62 I.09 ^3 •34

H 2.72 1.22 .87 •39

J5 2.82 i-34 .90 •43

16 2.92 1.46 •93 •47

17 3.02 1.58 .96 .50

18 3.12 1.69 •99 •54

19 3.22 1.79 1.03 •57

20 3-32 1.89 1.06 .60

21 3-41 1.98 1.09 •63

22 3-49 2.06 1. 11 .66

23 3-57 2.15 113 .69

24 3-64 2.24 1. 16 .71

25 3-7i 2-33 1. 18 •74
26 378 2.42 1.20 •77

27 3-85 2.50 1.23 .80

28 3-92 2-59 1.25 .82

29 3-99 2.67 1.27 •85

30 4.06 2.76 1.29 .88

31 4.13 2.85 i-3* .91

32 4.20 2-93 i.34 •93

33 4.27 3.01 1.36 .96

34 4-33 3-09 1.38 •99

35 4-39 3.16 i-39 I.OI

36 4-45 3-23 1.41 1.03

37-4o 4.20 1-34

41-45 4.63 1.48

46-51 5.06 1.61

52-60 5-74 1.83

61-70 6.52 2.07

71-90 7.72 2.46
91-120 9.78 3-ii

121-180 I3-38 4.26
181-360 21.62 6.88

In all cases the centres are on the base circles,

method described in text.

Draw rack by special
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of 1

5

, or they may be drawn within the pitch circles at distances

equal to .017 — . It is necessary to round off the points of the

teeth in some cases to prevent interference. This makes it

impossible to compute the positions of the centres, hence careful

draughting is resorted to. The involute is plotted, corrected for

interference, and the circle most nearly coinciding with it is

found by trial. This is done on a very large scale so as to reduce

Fig. 61

the errors to a minimum. Separate curves are required for face

and flank up to 36 teeth, but above that one curve is sufficient.

The sides of the rack teeth are straight lines drawn at an angle

of 1

5

with the perpendicular to the pitch line, but the tips must

be corrected for interference by rounding them off. Hence draw

the outer half of the rack face from a centre on the pitch line

with a radius equal to 2.1 divided by the diametral pitch or .67

multiplied by the circular pitch. An example is shown in Fig. 61.
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Angles of Action.— Let A and B (Fig. 62) be the centres of two

pitch circles, whose radii are B2 and RY . The radii of the corre-

sponding base circles are r2 and r1} and the addenda are a2 and aL .

The obliquity is d. Action will begin at P, where the addendum

Fig. 62

circle of B cuts the line of action. The angle of approach of B
is JBC=y, and it can be calculated as follows :

y + s^^J^ + atf-r*,

s =V(B1 + a 1
y-^-y

Or s =V {Bi + a xy - B{ cos
2 - Rx sin 6.
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But since IP == s = GH,

„ V(i?i + a,)
2 - i

1

?!
2 cos2

6 — R x sin (9

Hence, y = -

—

v
*

l
•

'
Y Rx cos e

In the same way the angle of recess of A is

q = V(^2 + atf - Rj cos2
9 - R2 sin 6

P R2 cos 9

r>

Since a = y ~, the angle of recess of B is

Ri

a = v (^1 + ^i)
2 - Rf cos2

fl - Rx sin

RoCosO

and that of approach of A is

g = V(^2 + a2)

2 - i?2
2 cos2

9 - #, sin (9

^cos e

If we use the standard values for a and 9, i.e. a = — and
P

9 = 15°, then

^x + jjY- .933 *i
2 - .2588 ^

7=
.966 ^

The above does not consider the effect of interference. The
angles of approach and recess as limited thereby can be simply

deduced as follows. In this case s = R2 sin 9, and

s R2 sin 9 R2 . n
y = ~ = -± = -l tan 9.
1

j\ R1 cosd Rx

Similarly, = ^ tan 9.

R2

And as a =y —,1
R2

a = tan 0, 8 = tan 9.
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(c) The Pin-tooth System

The pin-tooth system, though totally different from either of

those previously described, can be deduced from the cycloidal

system. Suppose in this case one describing circle becomes equal

in diameter to the pitch circle within which it lies, while the other

is omitted. Since there is but one describing circle, the teeth will

consist of merely epicycloidal faces on one wheel, and hypocy-

cloidal flanks on the other. But the hypocycloidal portions will

vanish, these reducing in fact to a point which is the describing

point itself. This point will then work correctly with the epicy-

cloid of the other wheel. The combination of P' with P'Q'S'

(Fig. 63) is a true cycloidal pair, the line IP being the normal

to both. A mathematical line at P' would drive the epicycloid as

far as 7, but beyond / there would be no positive driving. If now
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in place of P' we put a cylindrical pin of radius r0t the line IP 1

will always be normal to the pin. Finally if we replace the epicy-

cloid by a curve PQ at a constant normal distance from it, the

line IP will be normal to this also. Hence the combination of the

cylindrical pin and the parallel to the epicycloid will work as a

pair of gear teeth, the common normal always passing through /.

The proof of the correct action of teeth in this system can also

be studied by imagining the outlines as being formed by the "con-

jugate method." It is evident that if any form of tooth outline

be assumed for the pinion, a corresponding correct tooth outline

Fig. 64

can be devised for the wheel, if only the mathematical conditions

are to be fulfilled. For if the required angular velocity ratio take

place, this outline will be the envelope of all positions of the

assumed outline when referred to the wheel. Assuming one tooth

as a circle, the other must be the parallel to the curve traced out

by that circle's centre (Fig. 63).

The point of contact of the pin and tooth lies on the line P'l

at the point P. The curve of action will be the curve IPF. This

curve is evidently the locus of a point of a line which moves with

one extremity on a circle, and always passes through a point on

the circumference of the circle. P' is the moving point, P the



96 MACHINERY OF TRANSMISSION

tracing point, and / the fixed point. The distance PP — PP' =
constant = r is the radius of the pin. Such a curve is known as a

limacon (see Fig. 64), and was first investigated by Pascal. If

we take / as the pole, and the diameter through / as the reference

line, the equation of the limacon will be

r — 2 a cos 6 — b.

It is evident that action will take place wholly upon one side

of the line of centres, and hence will be wholly approaching or

receding, depend-

ing upon whether

the pin wheel is

driving or following.

Since the friction of

approach is greater

than that of recess,

it is best to give the

pins to the follower.

In the case of

inside or annular

gears, the tooth

curves will be par-

allels to the hypo-

cycloid. One case

is of particular

interest ; namely,

when the pin wheel

is half the diameter

of the gear. The tooth outlines will then be parallel to the

straight line hypocycloid, or will themselves be straight (Fig. 65).

If the pins are set on the circumference of the pitch circle itself,

the action will be defective while the line of centres is being passed.

This is best seen by considering the epicycloid as being generated

by a point of a line which rolls upon its evolute. Let Oabcd, etc.,

be the epicycloid, and OX its evolute (Fig. 66). Then the parallel

to the epicycloid is generated by another point of the same rolling

Fig. 65
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line. But this latter will come down to the evolute at b', while the

point tracing the epicycloid is still at b, and by the time the latter

reaches O the parallel curve will have risen again to O', forming a

cusp at b'. So the curve O'a'b'c'd'e'f is the parallel to the epicy-

cloid Oabcdef. But the branch O'b' would work on internal contact

with the pin when near the cusp, and hence is impracticable. The

only way to prevent this failure of action is to use some other curve

than the epicycloid to parallel. If the pins are set a suffi-

Fig. 66

cient distance within the pitch circle, the resulting curve, the epi-

trochoid, can be paralleled without a cusp. (See Fig. 67.)

Approximate Formula for Angles of Action.— In Fig. 68 the

first point of contact will be where the addendum circle cuts the

limacon IF. The circumference of the pin, the tip of the tooth,

and the line (?/also pass through this point. Construct the tooth

curve PC. Then angle IBC = a is the angle required. Let r

equal the radius of the pitch circle of A, R that of B, r the radius
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of the pin, and a the addendum. The irregular action at / is dis-

regarded, the mathematical action only being considered.

s = BP=R + a,

P = angle QIA,

e = angle QIB,

P + t= 180
,

cos
-J-

e = cos \ (i 8o° — P) = sin i /?.

Fig. 67

Call //> = > Then fQ=y + r , also PB = s
9
BI=R,

IA= QA = r. Then
, x(x — s)

where # = |(^? +y + j) ;

hence, cos2

J c = (P+y + s)(P+y-s)
yR

= sin
2

ip.



AXES OF ROTATION PARALLEL

But we also have

99

where

hence,

sin i
J(x>-r)(x'-y-r )

P-M r(r +y)

x' = i(r+r+r +y) ;

&t ip

=

*"-*- y)
-

Fig. 68

Equating values of sin
2

\ /?, we get

(R+y + s)(R+y-s) 2r-r -y

Reduction gives

yR

Rr, \/-R* RW
> + r)^\ r+ R ^

4 (r+ Ry2(R

which is in terms of known quantities.

LofC.
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Now sin J

Hence,

Uy + n) _,_--i fK-y+^o)or = 2 sin
-1

{

Arc QI=rO = Arc /£>,

Arc /C = Arc /Z? — r (nearly)

.

Arc IC= rO — r (nearly)

.

.^(^l-r,
I

r
j

2 r sin"

-Rn
2(R + r)

+v
.y
2-^2

, R2r 2

r —
-f-

r + R 4{R + r)'
+ r

— r

(d) Special Forms of the Above, Twisted Gears

If a pair of spur gears be divided by a series of parallel planes

perpendicular to the axes of rotation into a set of thinner gears, and

if each pair of these on both wheels be given an angular displacement

with respect to the pair

preceding, we will have

what is called a pair of

stepped gears (Fig. 69).

They will, of course,

work together exactly as

did the original wheels,

but with the advantage

that the number of teeth

passing the line of cen-

tres during a given an-

gular displacement will

be increased as many

times as there are lam-

inae. In this way the

effective number of

Fig. 69 teeth may be increased

II 1 1 1
1 1 1 II

II 1

1

II II II

1 II 1

1

II III
II 1

II 1 1 II
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without reducing the size of a tooth. Since, when the point of

contact between two teeth is passing the line of centres, driving

is secured with pure rolling, the pair of teeth is at that instant

acting at its best. Hence by subdividing a gear in this way the

action will be smoother, while the strength will not be impaired.

If the number of laminae is made infinite, the effect will be the

same as if we gave the gear a uniform twist throughout its length

Fig. 70

and about its axis of rotation. These are called Twisted Gears,

and are much used on account of their smooth action. The tooth

surface can also be imagined as swept up in a manner identical

with those already mentioned. We have so far considered the

whole subject of spur gearing as a problem in plane geometry, but

when successive sections of our gear differ either in form or in

position, we must employ the geometry of three dimensions.
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According to this last the cycloidal tooth would be a surface

generated by an element PR (Fig. 70) of a right circular cylinder,

rolling within and without a pitch cylinder, and the involute tooth

a surface swept up by a line PR of a plane (Fig. 71), rolling

between base cylinders, the generating line being parallel to the

line of contact TS between the plane and the base cylinders.

Fig. 71

Now in the twisted gear the tooth surface is swept up by a helix

PQ (Fig. 70) of uniform pitch on the describing cylinder, where

cycloidal teeth are considered, or by a line PQ (Fig. 71) of a

plane, the generating line being oblique to the plane's lines of con-

tact with the base cylinders, in the involute system. In either case

it will be seen that the elements will no longer be straight lines

but helices, and the tooth surfaces more or less complicated

helicoids.
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In such a gear the sections of the tooth made by planes normal

to the axes of rotation, such as CD (Fig. 72), will give true profiles

according to any of the systems already mentioned ; but if cut on a

milling machine with a rotary cutter, the form of this cutter should

not be that of the true tooth, but of the normal section of the tooth

EC, perpendicular to its helical elements. Such teeth are usually

cut with the same cutters as are used in cutting spur gears, and the

resulting tooth form cannot be exactly correct. However, the
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difference is so slight as to be inappreciable, and the action is in all

cases extremely smooth, for there is always a point of contact on

the line of centres, provided the twist displacement is at least

equal to the circular pitch.

In a plain twisted gear the normal pressure between two

teeth can be resolved into a useful component tangent to the

pitch surface and normal to the plane of the axes, and a useless

component of end pressure. The components of end pressure can

be neutralized by placing two twisted gears on the same axis with

equal twists in opposite directions. (See Fig. 73.)

(<?) Strength of Spur Teeth

The actual load which is applied to a tooth at the instant of

rupture is the same as that applied to one end of a beam which is

fixed at the other. If w is the width, d the depth, and / the

length of such a beam,

where F is the breaking load and K a constant of the material.

In the case of the tooth, w=f, the "face" of the gear, or the

length of the tooth parallel to the axis,

d=— = — , and /==2<z=—

.

2 2P P

Hence, F= K—=^ = C — •

' 4P2 X 2 P

The value of C is given by Grant as 11,000, but for actual running

conditions a factor of safety of 10 is introduced, so that the work-

ing load is

^ = 1100^.

This is for rough cast gears, where the whole load may be borne

by one tooth. If two teeth are always in contact, it may be safe

to allow twice the working load. This can only be done when the

tooth outlines are correctly formed.
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The horse-power which a gear will transmit can best be com-

puted from the following empirical formula

:

H. P. = .I2^,

where / is the " face " of the wheel, d the pitch diameter in

inches, and n the number of revolutions per minute. This is for

cast gears ; for the best cut gears we allow

fVdnH. P. = .40
p2

C. Velocity Ratio Variable, Non-circular Wheel

The most general practical case is that of two curves

form so related that they roll upon one another while

about fixed centres. If

one curve is chosen of

definite form, the mating

curve can always be con-

structed by the method

of Fig. 74. Let FE be

any curve rotating about

B. Let A be the other

centre. / is the intersec-

tion of the given curve

with the line of centres.

Step off small arcs la, aa,

aa, aa, etc., along FE.
With centre B draw cir-

cular arcs ac, ac, ac, etc.,

intersecting AB in c, c.

With radius Ac draw cir-

cular arcs cb, cb, cb, and

lay off distances lb, bb,

bb, equal to la, aa, aa.

Then will Ibbbb be the

required curve. If the

of any

turning
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curve FE is closed, the curve CD is not necessarily closed, but

A can be chosen so that it will close.

Fig. 75

(a) Elliptic Gears

The only pair of like closed curves which will roll upon one

another while rotating about fixed centres, and make a complete and

practical revolution, is a pair of

equal ellipses. Let Fig. 75 rep-

resent two such ellipses, with foci

at A and C, and at B and D.

Suppose them to have been origi-

nally tangent at E and F (the

extremities of the major axes),

and to have rolled until tangent

at /. Draw IA, IB, IC, and ID.

Arc EI equals arc FI, and since

the ellipses are exactly alike,

CI=BI, and AI=DI Also

A C = DB. Hence triangle AIC = triangle DIB, and angle

AIC = angle DIB. But by the property of the ellipse, angle BIT
= DIT1 , where TITX is the common tangent at /. Also by the

equality of the ellipses, angle BIT= angle CIT. Hence, as the

sum of the angles about / on each side of AIB or CID are

equal, these latter must be straight lines. Furthermore by the

property of the ellipse

CI + IA= GE. But

DI=AI. Hence DC
= GE constant. So if

we pivot the two ellipses

at their two foci A and

B, at a distance apart

equal to their major axes,

they will roll together without slipping. The free foci may, if

required, be connected by a link, since CD = AB = GE.

Let the ellipse whose axis is A be the driver, turning with a

Fig. 76
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constant angular velocity wj. When the ellipses are in the position

shown in Fig. 76, we will have

t _ w
i _ BE — ( T + e) a _ I + e

o>2 ^G (1 — e) a \ — e

where a is the semi-axis major, or \ GE, and where e is the

eccentricity. When the ellipses are as in Fig. 77, we have

_ <°i _BH_(* — e)a_i — <?

w3 AE (1 + e) a 1 -f e

Hence,
77 o>2 (1 - ^)

2

FIG. 77

This quantity Z is generally the one assumed in the design of a

pair of elliptic gears. It is the ratio between the maximum and

minimum angular velocities of the follower when the speed of the

driver is constant. From the last equation we can find the value

of e from the given value of Z, for it gives

e =

In some cases we assume the ratio of minor to major axes, or -= K.

Then e is calculated from its defining equation, viz., b2 = a2
(1 — ^),

which gives

-4 = Vi-X2
.
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In addition to Z or K we may assume the number of teeth, and

the size of a tooth, that is the circular or diametral pitch. Let s

represent the length of an elliptic quadrant. Then

N P' =^
-kN

AP

TABLE OF COMPLETE ELLIPTIC FUNCTIONS, E
(••;)

« E e E e E e E

.OO I 5708 25 1-5459 •5° I.4674 •75 I.3I83

OI I 5707 26 1-5439 •5" I.4630 .76 I.3I02

02 I 5706 27 1.5418 •52 I4585 •77 I.3020

03 I 5704 28 1-5395 •53 "4539 .78 1.2936

04 I 570I 29 J-537" -54 "4493 •79 1.2852

°5 " 5698 30 "•5347 •55 "•4445 .80 1.2762

06 1 5 694 31 1.5322 .56 "•4395 .81 1/2671

07 1 5689 32 1.5297 •57 "•4344 .82 1.2578

08 1 5683 33 1.5271 .58 1.4292 .83 1.2482

09 1 5676 34 1.5244 •59 1.4238 .84 1.2381

10 1 5668 35 1.5216 .60 1.4182 .85 1.2277

11 1 5660 36 1.5187 .61 1.41 25 .86 1.2172

12 1 5651 37 "5"56 .62 1.4066 .87 1.2063

13 " 5642 38 1.5 1 24 .63 1.4006 .88 1. 1950

14 1 5 6l 3 39 1.5092 .64 "•3944 .89 1.1833

"5 " 5620 40 1.5058 .65 1.3881 .90 1.1712

16 1 5607 4i 1.5024 .66 1.3817 .91 1.1586

17 1 5594 42 1.4989 .67 "•3753 .92 "•"455

18 1 5580 43 1.4952 .68 1.3688 •93 1.1318

19 1 5565 44 1.4918 .69 1.3622 .94 1 "75
20 1 555o 45 1.488

1

.70 "•3544 •95 1. 1023

21 1 5533 46 1.4842 .71 1.3484 .96 1.0860

22 1 5515 47 1.4802 .72 1.3412 •97 1.0686

23 1 5497 48 1.4761 -73 *-3337 .98 1.0500

24 1 5478 49 1 .4718 •74 1.3261 •99 1.0275

1.00 1.0000
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or the length of the elliptic quadrant is known. We must now find

what length of major axis, i.e. what value of "a" in conjunction

with the known value of e will give the required length of quadrant.

The equation of the ellipse is

9 1

9 79
or b'

When written in terms of the eccentric angle
<f>

(Fig. 78) this

becomes
x = a sin

<f>,

y — b COS
<f>,

dx = a cos <fi d(f>, dx2 = a2 cos2
<£ d<f>

2
,

dy = b sin cf> d<$>, dy2 = b2
sin

2

<f> d<f>
2
,

=f
:Vdx2 + dy2

,

= \-y/a2 cos2
4> -h b2

sin
2

<^> d<j>,

n

= I -yja
2 — (a2 — b2

) sin2 <ft d<f>,

= al\ — sin
2

<5f> d<j>,

c/0
e
2 sin

2
</> d<f> = aE.

The above integral is one of the forms of the " elliptic integral,"

and cannot be expressed in any simpler form. There are, however,

methods of approximating to its value to any required degree of

accuracy, and the results will be found in tables of Elliptic Func-

tions. The accompanying table gives values of E where e advances

by hundredths, and where c/> is equal to -•

2
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We see that s can be expressed as

s = a x E,

where E is known as soon as e is known. But

hence, a = ->
4PE

Fig. 78

which gives us the semi-axis major of the ellipse which will fulfil

the requirements. A few problems will place the method in a

clearer light.

Let Z— 9, N— 30 teeth, P= 2 (diametral pitch).

V2+1 3 + 1

From the table, when e — .5, E = 1.476. Therefore

^^ 3- J 4i6 x 30
•o75=

4 x 2 x 1.476

b = a Vi - <? = 8.075 V.75 = 6.993,

£ = 0(1 -<?) = 8.075 --5) = 4-037-

(See Fig. 79.)
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As another example let Z= 2, N— 30, P= 2,

V2 — 1
e = .1679. .'. E= 1.5576,

V2 + 1

a =f. s 66, £ = 7"-457> r = 6".2 9 8.

In this case we see that the ellipse is very nearly a circle.

Sometimes the distance between shafts is given, and we are

Fig. 79

required to fill up, by means of elliptic gears, this distance, while

Z retains some definite value. In this case the shaft distance is

evidently the major axis, 2 a, which immediately becomes known.

Then

P = a2
{i -e2)=a2 li- V* 4 a2 Vz

Vs+il y~(Vs+i) :

Let the shaft distance be 10", and 2 = 4.

10 . 20 ^Jz _ 10 x 1.4142 _ „Then a =— = 5, b =
2 Vz+ 1

3 .714,

Vz — 1 1
e= —r~x

— = - = -3333,
V2+1 3

t = a(i-e) = 3
".
33 .
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In this case the circumference becomes fixed, and a given size of

tooth cannot in general be used. The circumference will be

4J- = 4<zE = 20X 1-5271 = 3o".542.

IfN= 15 teeth, the circular pitch will be

i»=^=2".o36.

Having calculated its dimensions, the ellipse must now be laid

out on the drawing board. When the major and minor axes

are given, the best construction is that of Fig. 80. Draw circle

of radius OB = b, and one of radius OA = a. Draw a num-

ber of lines through O cutting these circles, such as Oba.

Through b draw bP parallel to OX, and through a draw aP par-

allel to OY. The intersection of these at P is a point on the

ellipse. We must now lay off the tooth intervals all the way around

by laying off the circular pitch P'. Bisect each of these intervals

for the tooth and the space. At the centre of each tooth we must

now draw a normal to the ellipse. Suppose we wish to draw a

normal at Q. Draw Qr and Qs. Draw Ors, and produce to /
where the circle whose radius is {a -f- b) is intersected. Then Qf
is the required normal. The same is shown at P. When the

normals at every tooth have been drawn, they will envelop the evo-

lute of the ellipse, one branch of which is shown at Imn. The point

of tangency at m between the normal and the evolute will give the

centre of curvature at P. If required, the radius of curvature can

be calculated from

p
=

r~'

but this is unnecessary.

We now construct each tooth as if on a circle whose radius is

the radius of curvature at the point required. It is evident that all

the teeth in a quadrant will be different, but if the ellipse is of small

eccentricity, there will be a number of teeth at the extremities of

the axes very nearly alike.

If the number of teeth is odd, the major axis should bisect a

tooth at one end and a space at the other. If even, the tooth pro-
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file should pass through the extremity of the major axis at each

end. If these rules are followed, the two wheels will be exactly

alike, and can be cast from one pattern. Elliptic gears can be cut

approximately on the milling machine by mounting the blank on a

reversed trammel.

Fig. 80

As has been said, the free foci C and D (Fig. 75) can be con-

nected by a link in case the shafts overhang, and we need then put

teeth at the extremities of the major axes only. These will carry

the wheels past the dead points, and the pull and push of the link

will carry them the rest of the way, while the pitch ellipses roll

upon one another.

Elliptic gears are frequently used for a quick return on small

shapers, slotting machines, etc. The eccentricity should be less

than .4 except where a link is used.

1
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3. AXES OF ROTATION INTERSECTING, BEVEL WHEELS

Thus far we have considered only the transmission of rotation

by means of gearing between parallel shafts. In this case we have

seen that the pitch surfaces are cylinders. When the axes inter-

sect, the cylinders must be replaced by cones having a common
apex at the point of intersection of the shafts. Such cones will

transmit motion as pitch surfaces by pure rolling along an ele-

ment. As in the case

of cycloidal spur teeth

where the tooth surface

is swept up by elements

of a pair of describing

cylinders rolling within

and without the pitch

cylinders, so in the case

of cycloidal bevel teeth

the tooth surfaces are

swept up by elements

of a pair of describing

cones rolling within and

without the pitch cones,

all four having a common
vertex. The intersec-

tion of the tooth surface

with a sphere whose cen-

tre is the common apex of

the cones forms a curve

in space known as the

spherical epi- or hypo-

cycloid, PX, FY (Fig. 81). The involute bevel tooth surface is

swept up by a line of a plane which rolls between base cones, coaxial

with but with smaller vertical angle than the pitch cones. The

generating line must be one which always passes through the apex

of the cones. Fig. 82 shows the generation of the spherical invo-

lute. The plane GEH (taken for clearness as a circle with radius

Fig. 81
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equal to the slant height of the cone) rolls upon the base cone

DA C, AE being the line of tangency. Any radius of the circular

plane such as AX will sweep up the tooth surface, the point X
sweeping up the spherical involute XP. Thus we see that the

bevel tooth curves may be treated by spherical geometry just as

spur tooth curves were treated by plane geometry. Small circles of

Fig.

the circumscribing sphere will replace circles in the plane geometry,

and great circles of the sphere will replace straight lines. Thus
the spherical epicycloid is traced by a point in the circumference

of a small circle rolling outside of another small circle. The spheri-

cal cycloid is traced by a point of a small circle rolling upon a great

circle. This would be the tooth curve of the crown wheel or bevel
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rack. The spherical involute is traced by a point of a great circle

which rolls upon a small circle, etc. Being on the surface of

a sphere, the spheri-

cal involute does not

pass to infinity, but

terminates in a se-

ries of cusps upon

the base cone and its

prolongation. (See

Fig. 83.)

For drawing bevel

gears, Tredgold's ap-

proximation is used

(Fig. 84). At the

base of the pitch

cone another is

drawn, having its ele-

ments at right angles

to those of the pitch

cone. This " normal

cone" is developed

upon a plane, and

the teeth are laid

out upon its devel-

oped circumference as on a spur gear. This is then wrapped

back upon the normal cone, and the tooth surface is supposed to

be generated by a line which always passes through the vertex of

the pitch cone, and always touches the tooth profile. In practice

only frusta of the pitch and normal cones are used, as shown in

Fig. 84. The slant heights of the frusta should seldom be more

than one-third those of the cones.

Bevel wheels whose shaft angle is 90 are called Mitre Wheels.

Since all the surfaces of bevel teeth are conical by reason of their

generation, they cannot be cut correctly with a rotary cutter, as such

a cutter can make a cylindric surface only. However, they can

be cut approximately by following the rules given in Brown and

Fig. 83
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Sharpe's " Formulas in Gearing," published by the company.*

The teeth can be cut perfectly only by planing them out element

by element on a special machine. With such a machine twisted

Fig. 84

bevels can be cut by giving the blank a reciprocating circular

motion in unison with the reciprocating rectilinear motion of the

cutter.

4. AXES OF ROTATION CROSSING, SKEW WHEELS

A. Spiral Gears

We have seen how a twisted gear is derived from a spur gear,

and works according to exactly the same theory. Suppose CD
(Fig. 85) to be an ordinary twisted gear, in mesh with a piece of

twisted or oblique rack EFGH. If CD is turned with a constant

angular velocity counter-clockwise as viewed from A\ EF will

move with a constant velocity PV in the direction EF, and there

will be no sliding parallel to the elements of the rack teeth. But

if the rack is constrained by means of guides to move in any other

* For the dimensions of bevel teeth consult this book also.
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direction, the gear will drive it at some other constant velocity,

and there will be a sliding parallel to the elements of the rack teeth.

In fact, it is self-evident that a twisted gear will drive an oblique

rack in any direc-

tion except paral-

lel to its own teeth,

and that the ratio

between the ve-

locity of the pitch

surface of the gear

and that of the

rack will be a con-

stant.

Now supposewe

have instead of a

solid rack merely

the surface of a

rack, such as might

be made by bend-

ing a thin sheet of

metal into an ob-

lique rack. Then

a second twisted

gear could mesh

with this rack from

below, and if the rack were driven in any direction by the upper

gear, the two gears would turn with a constant velocity ratio. In

Fig. 86 let the twisted gear EFGH mesh with a piece of rack,

as shown from above, and let this mesh with another, ABCD,
below. We will suppose for simplicity that the teeth are involute.

The lines RS and TU are the lines of the root edge and the tip

edge of a rack tooth when seen from above. This is shown in per-

spective in Fig. 87. To the right, and above in Fig. 86, are shown

projections of the faces EF, GH, AB, and CD of the gears and

rack, showing the tooth faces of the latter by the lines e'f', g'k', etc.

The point of contact on the face EF will be where the line of
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obliquity intersects at right angles the tooth outline at m\ and when

projected back gives the point m in its proper position. In the

same way we find for the face GH the tooth face g'/i', the point

of contact /', and the projected point /. Now when viewed from

below the line ftS becomes the tip edge, and the line TU the

root edge. Projecting the faces AB and CD of the lower gear

upward, drawing the obliquity, and projecting the contact points

back, we find the point n of contact on the face AB and the point

o of contact on the face CD. Hence the upper gear touches the

rack along the line ml, and the lower gear along the line no. These

lines are evidently the oblique generating lines PQ (Fig. 71) of

the teeth of the two wheels, which in twisted gears are coincident.
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If now we remove the rack surface, the two gears themselves will

touch in a single point E, which is the intersection of the two lines.

Hence spiral gears, which are nothing more than twisted gears

with shafts askew, will touch in one point only, but they will main-

tain a constant angular velocity ratio, since the lines ml and no will

continue to intersect at some point as the action continues. Two
twisted gears will therefore work together at any angle, but the

wheels must be at the shortest distance between the crossing shafts.

They can be cut on a milling machine by giving the blank a motion

of rotation about its own axis as it passes under the cutter, and the

tooth surface is approximated by the ordinary spur tooth cutter.

/\ 5

The true circular pitch of a spiral gear is the pitch circumference

divided by the number of teeth, viz., CD (Fig. 72). The normal

circular pitch is the perpendicular distance between similar ele-

ments of two adjacent teeth measured upon the pitch surface, or

CE. This will be the circular pitch of the rotary cutter. Hence

we cannot calculate the pitch of the cutter in the ordinary' way.

If we call the angle between a tangent to a tooth on the pitch sur-

face and a line parallel to the axis, the spiral angle, and denote

this by a, then

CE = CD cos a.

If E' is the true circular, and En
' the normal circular pitch,

2 ^R = P>N
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exactly as in the case of spur gears ; but

2 7rR cos a

N P'

and
PS

where P is the diametral pitch of the rotary cutter. Hence,

p= f2 it cos a

We will first deduce the relation between the angular velocity

ratio and other constants of the gear. Consider two spiral gears

whose axes are AA' and BB' (Fig. 88). Let XY be a common

element at the point of contact O. Let XY move through a

differential distance to X'Y'. Then a point of wheel A has

moved through a distance ^ and a point of i? through a distance
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V2 . If we call the normal distance between XY and X'Y' Vn ,we
will have

V1 cos a = Vn — V2 cos /?,

VY _ cos ft

V2 cos a

Now V1 and F2 may be considered the velocities of the circum-

ferences of the two gears, and if oix and w2 are their angular

velocities, and Rl and R2 their pitch radii,

wj _ VXR2 _ R2 cos /?

w2 V2RY R1 cos a'

or the angular velocity ratio is equal to the inverse ratio of the

radii multiplied by the inverse ratio of the cosines of the spiral

angles.

Suppose in a pair of spiral gears we are given the value of 8, or

the inclination between the shafts, the angular velocity ratio

— = 7}, and the ratio of the radii — . We are also given Nu the
o)2 R2

number of teeth on one wheel, and P, the diametral pitch of the

rotary cutter. Then as

<* + £ = S,

<!>! R2 cos(8 — a) R2 (cos 8 cos a + sin 8 sin a)

w2 R± cos a Rx cos a
n

rj— = cos 8 + sin 8 tan a,

or a = tan
-1

<{ -^ -~ — cot 8 \
•

{

R

2 sm 8 J

Then we know j3 from

(3 = 8- a.

Now />, the diametral pitch of the rotary cutter, is the same for

both wheels, as is — = Pn ', the normal circular pitch also. Then

P' = PJ = true circular pitch of Rlf

cos a

and P2 = PJ ^ = true circular pitch of R2 ;

cos/3
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hence, R1
=

R,=

PJNX

27T

PJN*
2 IT

#1
2 P cos a

No

2 P cos (3

The dimensions of the blanks and the cutting angles being now

determined, we must select the proper cutter of the set whose

pitch is given. If we select any tooth upon a spiral gear and pass a

plane through it normal to its helical elements, the intersection of

this plane with the pitch cylinder will be an ellipse whose minor axis

is 2R, and whose major axis is
2R

cos a
, a being the spiral angle.

The spur gear whose tooth would most nearly coincide with the

profile of the spiral gear selected would be the gear cut upon the

osculating circle at the extremity of the minor axis of the ellipse.

The radius of curvature at the point mentioned is found in the

ordinary way as follows : the equation of the ellipse is

I
b2 h

dx

bx

:Vfl s

d*y

die
2
= T

ab

[

(a2 -x2

)

dy\
1 +

dxj

dx'

1 +
b2x2

a2 (a2 -x2

)

ab

{a2 -x2)?

At the extremity of the minor axis x = o, so we have

1

ab
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Now in the ellipse formed by the intersection above described

a = , and b = R. Hence,
cos a

R2 R
Po R cos a cos2 a

This is the radius of curvature of the " Osculating Spur Gear."

The number of teeth on this gear would be

2 7iy> 2 ttR
""O — R'

~
Pn cos2 a

But on the spiral gear itself we have

N— 2ttR 2 irR cos a

P P'

Nn — N
J-Vq -—

cos3 a

The cutter should therefore be chosen from the set, not according

to the number of teeth on the spiral gear itself, but according to

the number on the osculating spur gear.

If 8 = 90 , the following special cases may occur

:

a = tan
-1 —- rj.

P2

If in addition Rx = R2, a = tan
-1

rj.

h,=i, a = tan
-1—

•

P2

If R1 — R2 , and 17 = 1, a = tan
-1

1 = 45

and the two wheels will be exactly alike.

If 8 = o, the case reduces to a spur gear.

Critical Angles or Angles of Maximum Efficiency.— It has now

been shown that the fundamental laws connecting the various

quantities in the spiral gear are

(Oi_ A^cosJ? , v

w2 R\ cos a

X=Rl
+R2} . . . . . (2)

8=a + /3, . . . , . . (3)
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where K is the distance between shafts. The three quantities on

the left sides of the equations are evidently fixed once for all by

the requirements of the design, leaving four unknown quantities,

viz., «, (3, fi^ and R2, one of which must be chosen arbitrarily, or

by some other independent condition. This condition may be

made that of maximum efficiency.

Loss of power on spiral gears is due to friction (1) in the bear-

ings, and (2) between the teeth. The first of these can be further

separated into (a) journal friction due to the obliquity of action

of the teeth forcing the shafts apart, as in any form of gearing,

and (£) end-thrust friction. The sliding between the teeth may

be separated into (a) a. component of approaching and receding

action, also common to all forms of gearing, and (b) a component

of sliding along the helical elements of the teeth. Now it is useless

to attempt to deduce that diameter of gear and angle of tooth

which, with given coefficients of friction, would reduce all these

various losses to their combined minimum value, for even when

obtained the result would be too complicated and uncertain to be

of any practical value. So let us see which of the above are the

most wasteful of energy which are small enough to be neglected,

and which may be omitted because their effects would not be

greatly changed by change in radius and angle. The two losses

designated (a) will be small compared with {b), particularly in

the first case. Roughly speaking, their effects will be smallest

in wheels of equal size, though change in radii and tooth angles

will not greatly vary their magnitude. Next in importance

will be the end-thrust factor, which may be varied widely by

change in the angle of the tooth. And last and most impor-

tant of all is the sliding between the teeth along the helical

element.

Omitting first all other sources of loss of power, let us investigate

that of end thrust. Let A (Fig. 89) be the driver through which

power is transmitted to B. Let ON be the normal pressure or

force active between the elements of the teeth in the tangent plane

to the two wheels. Then OP, the projection of ON in the plane

of the gear A, will \)$ the effective driving force of A in its. own
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plane, and NPw'iW be the end thrust on its shaft. Similarly OQ
will be the driving force on B, and NQ its end thrust.

Now the total power

given to the system

by A will be equal to

{OP) x V1} where V1

is the velocity of the

surface of A in the

direction of OP. The

power lost due to fric-

tion through the end

thrust of A will be

(PN) x v' X <f>,

where v' is the mean

Fig. 89 velocity of the end-

thrust collar, and <£

the coefficient of friction at that point. Hence the ratio of power

lost to total power in the system due to this single cause will be

£ = PNxv'x<f> + QNxv" Xcj>

OPxVx

But v' = r^, and v" = rxw2, where rx is the mean effective frictional

radius of the end-thrust collar taken the same for both shafts ; also

PN= OP tan a, QN= OQ tan /?, and V1
= P1w1 , which substi-

tuted give

P _ ^(£((0! X OP tan a -f- <o2 x OQ tan /?)

OP X iVi

Furthermore, 0Q= OP—-", so that the equation reduces to
cos a

E=rl4>\
f 0^ sin a -f- w2 sin /3

^wj cos a
(4)

In this we must substitute for all unknown quantities in terms of a,

and find what value of a will make E a minimum. Combining

equation (1) with (2), and solving for Rx , we get
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D X(i)<> cos 3
Jv 1
= —

)

w1 cos a + w2 cos /?

and substitution gives

P _ r^ \ (cox sin « + ^2 sm /?)(Mi CQS « + <^2 cos P) \

K [
o>1(o2 cos a cos /3 J

which by reduction becomes

r, 1\<I> f cui sin « . o)o sin B
, , , . «_] , >.^= -^i — ^+— ^- + tan«-f-tan/3 !-. . (5)K [ 0>2 COS /5 <u2 COS «

J

That value of a in the general case given above which makes E. a

minimum leads to an unsatisfactory result when the shaft angle 8

and the angular velocity ratio — , which we may call rj, are small,
0)2

for then there may be no real minimum value of a within the

angle 8. But fortunately in the particular case where the shafts

cross at 90 , the solution is easily applicable to all cases. In this

case

^^^(ry + I + tanft + tan
A

l 77

Before applying the ordinary methods of finding that value of

a which makes Ex a minimum, we must notice a certain restric-

tion which must be placed on all the above equations. Should for

any reason the algebraic sign of either of the angles a or /? change,

the sign of the resulting power lost will not change. In other

words, the formulae do not necessarily hold for any other than

positive angles, or angles between the limits of 8. Differentiating

the above equation with respect to a, and putting the first differ-

ential coefficient equal to zero,

dE 1\d» co o n )— = -=- 1 sec- a — sec2
(3 \ = o,

da K
sec2 a = sec2

/?,

a=p.

For positive values of a and (3, this is easily distinguished as a

minimum, and the result is independent of r3 <j>, or K. In this
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case then it would seem that teeth set at an angle of .45° would

give a minimum of work lost by end thrust.

In the problem of minimum power lost by the sliding of the

teeth along a helical element, the angle a has usually been taken

as that angle giving the minimum velocity of slip in that direction,

with given fixed angular velocities of both shafts. Referring again

to Fig. 89, if OC=V1 is the velocity of a point on the pitch

surface of A in its own plane, and tangent to its surface, and

OD = V2 the velocity of a point similarly related to B, the length

CD will be the velocity of these points relatively to one another

along the tangent to the helical element. Calling this velocity

of slip v8i
then

vs
= V1 sin a-\-V2 sin /3,

= Rx <*>! sin a-\- R2 oi2 sin
f3,

= RY (ox sin a -f (K—

R

x ) sin j3.

But from the previous case

„ _ Ka)2 cos (3

wj cos a + w2 cos fi

Hence by substitution

vs
= ^^

] cos a sin j3 + cos /5 sin a
toj cos a -f w2 cos /5 l

Koy^.2 sin 8

w1 cos a + <*>2 cos ft

Now the numerator of this fraction is a constant, hence vs
will

vary only by the variation of the denominator, or vs
will be a

minimum when (a^ cos a + a>2 cos/3) is a maximum. Call this

quantity Y, then

dY .= — 0^ sin a -+- o>2 sin p = o,
da

wj _ sin (3

oo2 sin a

By using again the positive pair of angles given by this last we can

easily distinguish Y as a maximum. If along the axis of A (Fig.

90) we lay off the angular velocity ^ of A to any scale as OL,

and along B lay off w2 equal to OM, and complete the parallelo-
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Fig, 90

gram OLFM, the diagonal OF will give the proper values of a

and p to give minimum velocity of slip. It will be noted that

since the ratio of angu-

lar velocities is equal to

the inverse ratio of the

numbers of teeth, we

might lay off the num-

ber of teeth of B along

the axis of A, and vice

versa. This same re-

sult has been shown by

MacCord and others by

different methods of

procedure.

But it does not appear

that the angles giving

the minimum velocity

of slip are necessarily those giving the minimum power lost by

that slip. Power is composed of two factors, force and velocity,

and it is the product of these and not one alone which must be

a minimum. Attacking the problem then along the lines of the

first one, we see that

Power put in by A — FV1}

Power lost due to vs
= N$v„

where N is the normal pressure between the teeth, and <j> the co-

efficient of friction.

Then it is E = W»*=#&±,
FVX FR^

which must be a minimum. From the figure,

P
cos a

Kui^o sin 8

N:

From the preceding,

md

vs =

*1

(o1 cos a -f- <o2 cos (3

Koio cos ft

w1 cos a 4- «2 c°s j8
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Substituting these in the expression for E, it reduces to the

simple form

<£ sin 8
±L = ->

cos a cos p

and rejecting constants,
cos a cos p

is to be a minimum, or F= cos a cos (S — a)

is to be a maximum. Differentiating,

— = — sin a cos (3 -f sin (3 cos « = o,

sin (ft
— a) = o,

By the ordinary methods of second differentiation, this may be

shown to be a maximum, and therefore when the tooth bisects the

shaft angle, the power lost by sliding between the teeth as above

stated is a minimum.

When a and ft are known, i?x is found from

_ Xcos/3
1

77 cos a -j- cos /?

and R2 =K- Rx .

The methods of using the above formulae can best be seen by

applying them to a definite case. Let the distance between the

shafts be K = 6", and let the shafts cross at 90 . The angular

velocity ratio is to be rj =— =
-J-,

and P= 10. The angles are to

be those giving the maximum efficiency. Then

a = P= 45°,

R Xcos/3 = K
1

77 cos a + cos (3 r] + *

R2 =£-R1
=2".

The numbers of teeth on the two wheels must now be calculated.

These in general will not be whole numbers, and as a fractional
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tooth is an impossibility, we must select the nearest whole numbers

to the ones found, and recalculate the angles and radii to fit the

new case. The numbers of teeth will be found from

N-i = 2 PRX cos a,

N2=2 PR2 cos p,

which in the above example become

JVi= 2 x 10 x 4 X .7071 = 56.568,

and N2 = 2 x 10 x 2 x .7071 = 28.284.

Hence we must select for our gears ^ = 56 teeth, and JV2 = 28

teeth, as being the numbers giving the highest efficiency. Trans-

posing the equations for tooth numbers we have

£1 =

and P2
=

2 P cos a

2P cos p 2 P sin a

Hence, K——= h
2 P cos a 2 P sin a

t a 2 '8
.

T '4
In our case 6 = h

cos a sin a

If we could solve the above equation for a, our inverse compu-

tation would be complete. But unfortunately the equation is of

the fourth degree, and, though possible of solution, such solution is

not practical. Furthermore there are four real values of a which

will satisfy it. Graphic methods or continued approximations must

then be resorted to. One of the best graphic methods appears to

be that of Robert Bruce,* which is as follows : let OX, OY (Fig.

91) be a pair of rectangular coordinates. Lay off upon the axis

of X —^, and upon the axis of Y -~, thus determining the point

* American Machinist, April 12, 1900.



132 MACHINERY OF TRANSMISSION

C. Lay a graduated scale upon the paper, so that its edge passes

through C, its zero point lies upon one of the axes, and shift it

until it intercepts K inches between the axes. Then the angles a

and fi in the figure are evidently the required ones. The appended

Diagram No. 3 gives a method by which the angles can be read

off directly. Having obtained the nearest whole numbers of teeth

on the gears, find on the diagram the point G, whose coordinates

^1 Aare —=rr; and
Nt

Fig. 91

..., on the inner scales. Through this point
2 l^K 2 r^K

draw a line or merely lay a straight edge tangent to the curve

representing the shaft angle. The outer scales on the bottom and

left will give roughly the angles a and /? respectively, and the inner

scales the values of cos a and cos (3 quite accurately. The radial

lines of velocity ratio will facilitate the locating of the desired point,
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for if the ratio be one of those given, the point must lie on

its line.

It is interesting to note that two lines can be drawn through a

given point tangent to the curves as shown. As a matter of fact,

four such lines could be drawn provided the whole of the curves

were drawn in, but that portion shown is the only portion giving

positive angles, i.e. angles within the angle 8. But there will be

two separate positive values of the angle a, which, with a given

velocity ratio, number of teeth, and shaft distance, will work

correctly together, giving of course different values of the radii.

Which of the two is the one required can be easily told as lying

nearest to the first approximation of the angle. The same result

is seen in the case of Mr. Bruce's solution. Two positions of the

line AE (Fig. 91) can be found passing through C, where the

length is K inches. If the point G lies on one of the curves,

the two positions coincide, a limiting case, and if it lies on the

concave side, the solution is impossible within the angle 8.

By the application of either method to our problem, we find

« = 46° 33',

P = 43° 27',

*i =-#— =—& = 4".o 7 2,
2 P cos a 20 x cos a

j?
N2 28 QJ\-2 Z=Z = = I.928.

2 P cos (3 20 x cos (3

The cutters are then selected from

N ' =-^ = 169 = No. 1 (rack),
cos3 a J

N»'=-^h= 73 = No. 2.
cos3 fit

As a more general case take the following : let 8 = 6o°, K— 6",

rj = —= ^-, P= 10. Suppose certain considerations in the design
(U

2



134 MACHINERY OF TRANSMISSION

make it necessary that Rx should be as nearly as possible 4! inches,

then approximately R2 = if.

a=tan-1 {—1 ^--cot8J,
I
R2 sin 8

J

'

= tan"1 { 4i^5 _^5 _ cot 6o
o
] = o /

J 1.75 sin 6o°
f
^ 6 >

Q = 8 — a = 6o° — 39 31'= 20 29',

iVi = 2 7^ cos a = 65.572,

N2 =2 PR2 cos /? = 32.787.

In this case we would have to use

Nx = 66 teeth,

and N2 = 33 teeth.

From the diagram, or by repeated trials from

3-3
j

i-65 = 6.
cos a cos (8— a)

or 2 sec a + sec P=3- 6364,

we find that a = 3 S
c

43',

0=21 ' 17',

from which the exact radii are

*i= 4" .229,

and tf2 =i" 771.

Method of cutting Spiral Gears.— The lead of a helix or screw

is the distance between two of its consecutive intersections with

an element of its pitch cylinder. If the helix is developed by

C
rolling on a plane, it is readily seen that — = tan a, where C is

the circumference of the pitch cylinder, / the lead, and a the spiral

angle of the helix. In cutting a spiral gear on a milling machine,

the blank is first set at the proper spiral angle under the rotary
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cutter. It is moved forward by means of the screw, and also

rotated by means of the spiral head. It is evident that when the

screw has moved it forward a distance equal to the lead, the spiral

head must have rotated it through one complete turn. The screw

is connected to the worm which actuates the spiral head by a train

of four gears. The numbers of teeth on these gears we will repre-

sent by a, b, c, and d. If there are N revolutions of the screw

corresponding to n revolutions of the worm, then

N~ = n.
ac

Now it requires 40 revolutions of the worm to rotate the spiral

head once, and there are 4 threads per inch on the screws of the

Brown and Sharpe milling machines. Hence to move the blank a

distance equal to the lead requires, N= 4/ turns, and to rotate the

spiral head once requires n = 40 turns, or

hd
aI— — 40.

ca

, 2ttR
But /=

tan a '

2ttR bd
hence, X — =10,

tan a ca

R and a being given, the ratio— must be so chosen as to satisfy

the equation. In the directions which come with the machines, a

number of such combinations are worked out. It is evident that

but few angles can be cut with absolute accuracy. (1st gear on

stud=^ teeth, 2d gear on stud = c teeth. Gear on worm = a

teeth, gear on screw = d teeth.)

B. Worm Gears

If the spiral angle of one gear is very nearly 90 , one tooth may

be made to return on itself, and the wheel reduces to an ordinary

screw. If in addition the angle a is nearly 90 , the spiral angle of

the other wheel is very small, and is in fact very nearly a spur gear.
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This combination is called a Worm Gear. In the case of the

worm, since p =—%— , when a approaches 90 , p approaches 00,

or the tooth outline of a worm is practically that of a rack.

The action of a screw upon a gear can be much improved by

the following method : a copy of the screw is made in tool steel,

and this is notched parallel to its axis like a tap. The wheel is

notched into the required number of teeth upon a milling machine.

The notched screw or " hob " is rotated between centres, and the

wheel, free to revolve upon a stud, is fed up against it. The

cutting edges of the hob soon work into the notches of the wheel

blank, until the proper depth is reached. The hob is then re-

placed by the original screw. Such concave gearing is excellent

for causing slow or small amounts of motion, but is not very

economical for transmitting power, as the sliding between the teeth

is large. A worm wheel will not work properly if it contains less

than from 25 to 30 teeth.

TABLE FOR DIAMETRAL PITCH OF WORM TOOLS. (Grant)*

Diametral Pitch 1 2 3 4 5 6 7 8

Point of Hob tool

.

1-035 .517 •345 .258 .207 •I7S .148 .129

Point of Worm tool .968 .484 •323 .242 .197 .162 .138 .121

Depth of Cut . . 2.125 1.063 .708 •532 425 •354 .304 .266

Increase . .250 .125 .083 .063 .050 .042 .036 .032

Diametral Pitch 9 10 11 12 13 14 15

Point of Hob tool . •"5 .104 .094 .086 .078 .074 .069

Point of Worm tool .105 .097 .088

•193

.081 •073 .069 .064

Depth of Cut . . . .236 .213 .177 .164 .152 .142

Increase .028 .025 .023 .021 .019 .018 .OI7

* " The Teeth of Gears," by George B. Grant, Lexington Gear Works.
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TABLE FOR CIRCULAR PITCH OF WORM TOOLS. (Grant)

Circular Pitch 2 if ii i? Ig 1 §
3
5

Point of Hob tool

.

.644 •564 483 .402 .362 .322 .282 .241

Point of Worm tool .620 .542 .466 .388 •349 .310 .271 .233

Depth of Cut . . 1.416 1.240 1.062 .886 •797 .708 .620 •53i

Increase . . . .166 .146 •125 .104 .094 .083 •073 .062

Circular Pitch 1 h XB
3

ft
1
3 &

Point of Hob tool .

• •

.201 .161 .141 .121 .100 .080 .060

Point of Worm tool .194 •155 •135 .116 .097 .078 .058

Depth of Cut . . •443 •354 .3IO .265 .222 .177 •133

Increase .052 .042 .O36 .031 .026 .021 .016

" The sides of the tool should come together at an angle of 30 .

Make the tool the proper width at the point, and thread the

worm to the required depth of cut. Make the diameter of the hob

greater than that of the worm by the amount of the increase.

Grind off half of the increase from the point of the tool, and use it

to thread the hob to the same depth of cut."— (Grant.)

C. Hyperboloidal Gears

The gears we have just been considering have but one point of

contact between the teeth. Gears can be constructed, however,

upon shafts which cross without intersecting, having a true line

contact. Nor must these wheels be placed at the shortest distance

between shafts, but may be anywhere along the axes.

The pitch surfaces are hyperboloids of revolution of one sheet,

for let AA' and BB' (Fig. 92) be two axes, crossing without inter-

secting, their shortest distance apart being at O. From the defini-

tion of pitch surfaces they must touch along a line, such as XY.
Then as the axes revolve, the line XY will sweep up an hyper-



138 MACHINERY OF TRANSMISSION

boloid with respect to each axis. Hence the line is called the

Generatrix. If viewed directly from above as in the figure, a and

(3 will be the angles between the generatrix and the axes. The

surfaces are not necessarily tangent along XY unless the proper

relation exists between «, (3, Rx , and R2 . If they are tangent at

any point, there must be a common normal to the surfaces at that

point. But these surfaces are surfaces of revolution, and every

normal to such a surface intersects its axis. Hence if two hyper-

boloids are tangent along the generatrix, a perpendicular let fall

Fig. 92

from one axis upon the generatrix will, if produced, intersect the

other axis. The line connecting the shortest distance between

shafts is such a line, and therefore the generatrix must pass through

the point O in the figure. Let PSQ be another such line. ' Since

the axis and generatrix are both parallel to the plane of projection,

the projection of the angle PSO is a right angle as shown.

Hence QS_ tan a

PS~ tail

Fig. 93 is a horizontal projection of the same two hyperboloids,

and the points P', <7, and S' are found by projecting P, S, and Q
of Fig. 92. Now if a straight line be divided into any two parts,
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the ratio of these will be equal to the ratio of their projections

upon any plane, therefore

RS
QS

/T7- \ R'S' /T7 . v tan a
~ ~7^, (

FlS- 93)=—g-
Q'S'

R'S' = R,

q's' r2

'

tan a _ Rx

tan J3
~

A^'

It is evident that if the tooth surfaces are so formed that their

intersections with the pitch hyperboloids are coincident with the

But

Hence

a' 1

^^
f r t ( Q'\ A

V4'k V'Y \Js' T

B r \p' B

Fig. 93

generatrices, a and /? will be the spiral angles of the two gears.

There will be positive driving at right angles to the generatrices,

and sliding along them. As in the case of spiral gears (Fig. 88),

we haye
o)i _ R± cos (3

t

o>2 Rx cos a

but

Hence

R2 _ tan /3

Ri tan a

co! _ sin /?

o)o sin a
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This is the same relation that we obtained when investigating the

angles that give the least velocity of slip for spiral gears. (Com-
pare Fig. 90.)

The method of producing cycloidal skew teeth, analogous to

that used for spur and bevel teeth, fails in the present instance,

for it has been shown by MacCord and others that tooth surfaces

swept up by the generatrix of a small describing hyperboloid rolling

within and without a pair of pitch hyperboloids will intersect

along the generatrix instead of being tangent along it. (See also

the American Machinist, September 5, 1889.)

Fig. 94

Involute skew teeth can, however, be formed by a peculiar

method. Let OA and OB (Fig. 94) be the axes of the pitch

hyperboloids, tangent along the line OX, and with gorge circles

tangent at O. Construct two cylinders, coaxial with the hyper-

boloids, and of diameters equal to the diameters of the gorge

circles. These cylinders will be tangent at a single point, O. If

we place a plane between the cylinders in such a way that it is

tangent to both, this planewill contain the generatrix OX. If the

plane be moved in the direction of the arrow at right angles to

the generatrix, it will rotate the cylinders as if by friction, but
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there will be a sliding between the plane and the cylinders along

the elements of the cylinders. If the generatrix is carried along

with the plane it will sweep up a surface with respect to each

cylinder, which is known as an Involute Spiraloid. Such surfaces

will work together as perfect tooth surfaces if we make them

of proper length to avoid interference. They will always be tan-

gent along a line which is the generatrix itself.

The gears made by O. J. Beale for the Brown and Sharpe Mfg.

Co. are made according to the above theory, which is due to

Theodore Olivier. Beale's gears are planed out, the straight cut-

ting edge of the tool acting as the generatrix.

Approximate skew gears can be drawn by Tredgold's approxi-

mation in the same way as bevel gears.



CHAPTER V

TRANSMISSION OF RECTILINEAR TRANSLATION

I. PRISMATIC GUIDES

If a point in a given piece of machinery is to be moved in a

straight line, its motion may be constrained by means of guides.

The form of these sliding pairs may be either cylindric or pris-

matic. The former is used usually where a rod works through

packing. Prismatic guides are used in nearly all other cases, the

flat guide to take up heavy pressures, and the V-shaped to prevent

lateral motion. The problem of the prismatic guide is purely one

of machine design.

2. PARALLEL MOTIONS

A. Classification

When a point is guided in a straight line, either wholly or in

part by an assemblage of turning pairs, the mechanism is called a

Parallel or Straight Line Motion. All forms of parallel motions

will fall under one of the following four kinds :

f i. Composed wholly of turning pairs.

[2. Composed of turning and sliding pairs.

(3. Composed wholly of turning pairs.

[4. Composed of turning and sliding pairs.

B. The Cycloidal Straight Line Motions

If a circle rolls within another of double its diameter, every point

on the circumference of the inner circle describes a straight line.

This can be used as a parallel motion by constraining the centre

of the small circle to move in a circle by means of the link OC
142
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(Fig. 95). The point P will then move in a straight line A OB.

But as two circles can be forced to roll together by means of gear-

ing only, this form belongs to

Class 2.

In the case of the epicy-

cloid, the rolling wheel turns

in the same direction as the

revolution of its centre. But

by the introduction of an idle

wheel, this can be reversed.

At the centre O of the fixed

gear (Fig. 96) an arm is hinged

upon which are pivoted two

gears, D and C, C being half

the diameter of O. Upon C
is fastened a link CP equal

in length to CO. Then the

triangle PCO is isosceles, and angle OPC
Let angle PCO = fi.

Then

l
6 = 7r-2y.

Let CO revolve through an angle a. Then wheel C has turned

through 2 a, and S = ($ + 2 a, or

angle POC = y.

So we have
B = tt — 2 y -f- 2 cc.

1(tt — 8) —\ (tt — tt + 2 y — 2 a)

But angle POC' = y

y -a= Angle P'OC.

Thus OP coincides with OP', and the

locus ofP is a straight line.

If in the hypocycloidal straight line motion we consider two

diametrically opposite points of the small circle, we see that they

will describe straight lines at right angles to one another. There-

fore if we guide the centre of the small circle by means of a link

CO (Fig. 97) and guide R through a short distance RS by means

of a sliding pair, the motion of all points of circle C will be deter-

mined, and P will move in a straight line AB through quite a long

distance for a very small motion ofA3 . This also belongs to Class 2.
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The angle a in Fig. 98 should not exceed 20 , otherwise the

sliding at R becomes excessive. If a = 20 , s = -| of 2a = i\a

(nearly). During such a stroke R travels through a distance

p = 2<z(i — cos a) = 2a x .06 = .1 2a = .09^. The use of the sliding

pair at R is sometimes avoided by carrying this point on a vibrat-

ing pillar (Fig. 99). The motion now comes under Class 3. If the

length of the pillar is equal to the stroke, and the angle a is equal

Fig. 96

to 20 , the maximum deviation from a straight line will be only

4T00" °f tne str°ke.

It was seen that if the middle point of the link PR be chosen

as the point of attachment of the link CO, the path of C was a

circle. If any other point be chosen, its path will be an ellipse.

The elliptic arc can then be approximated by the arc of a circle,

and an approximate parallel motion is thus obtained. Fig. 100

shows the paths of the various points of the line PR, and also the
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radii and centres of the approximating circles. This form belongs

to Class 4. If R is carried on the end of a vibrating pillar, it

belongs to Class 3. The constrainment of P to move in a straight

line may be accomplished in other ways. Two points may be

Fig. 98

chosen in the plane of the small circle, and the elliptic arcs

approximated by circles. This is Robert's parallel motion.
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C. The Conchoidal Straight Line Motions

If a line moves, so that one of its points lies on a straight line,

while the line itself always passes through a fixed point, all points

of the line describe curves known as Conchoids. We can obtain

the equation of the curve as follows : let AB (Fig. 101) be the

Fig. ioi

straight line, and G the fixed point. From G drop a perpendicu-

lar GO on AB, and take O as the origin. Let PXG be the

moving line, and consider the conchoid as traced by point C
whose coordinates are x and y. Then
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y = (b — x) tan«,

tan a = V*2

V^-x2

y= W-x)—-

—

»

xy= (b — x) V*2 — xr-

If e is positive, and less than b, the curve is such as is described

by C. If e is positive and equal to b, we have a cusp at G. If e

is positive and greater than b, the curve is described by a point

C2 . If e is negative, C3 describes the curve. The curve can be

used as a straight line motion by constraining points such as Clf

C2, or Cs> to move in the arc of the conchoid, and also by con-

Fig. 102

straining the line to pass through G. The conchoidal arc must be

approximated by means of the arc of a circle. The point C2 is

the best one to constrain, as the looped portion of the curve is very

nearly a circle where it cuts the axis of X. (See Fig. 102.) At

that point the radius of curvature is equal to p=- - All
e

conchoidal guides belong to Class 4.



PARALLEL MOTIONS 149

D. The Lemniscate Straight Line Motions

If two points C and D of a line are made to describe circles,

then any other point of the line will describe a peculiar looped

curve known as a Lemniscoid. This curve is of the fourth degree,

and a special form known as the Lemniscate, where the radius bars

are equal and the tracing point is midway between C and D, is

shown in Fig. 103. CD is the moving line, and A and B are the

Fig. 103

fixed centres about which C and D revolve. P is the tracing point.

That portion of the curve which is traced when the arms are

parallel is of peculiar interest. Examination shows that for quite

a distance on either side of this position the curve approximates a

straight line. At the instant the arms are parallel, the line CD is

turning about a centre at an infinite distance, and is therefore
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moving parallel to itself. We may consider the curve near the

double point O as a straight line, and attach a cross-head or other

portion of a machine to it. The conditions usually chosen are

that the guided point should not only pass through the middle but

also through the extreme positions of the rectilinear path. James

Watt used this parallel motion to guide the cross-head of his steam-

engine. He did not attach the cross-head directly to P, however,

but duplicated the motion of P by means of an ordinary panto-

graph. All lemniscate straight line motions belong to Class 3.

E. Inversors

The first straight line motion discovered which fulfilled the con-

ditions of Class 1 was based on the properties of inverse curves,

particularly those of the circle. IfP (Fig. 104) be a fixed point,

UY any curve, and PB a radius vector intersecting UY dX A, then

the curve WX so constructed that PA x PB = PA' x PB'

=

Fig. 104

constant, is called the inverse of UY with respect to /'as a pole of

inversion. It is shown by modern geometry that if UY is a circle,

the curve WX is a circle also, and if the circle UY passes through

P, WX becomes a straight line. This last proposition can be

shown very simply. Let (P Fig. 105) be the pole of inversion.

The circle A'AP, which we wish to invert, passes through it.
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Draw BB' perpendicular to the diameter through P. Then by

similarity of triangles,

PA:PB'::PA':PB,

or PA x PB = PA' x PB' = constant.

Hence BB' is the inverse of the circle through P.

Fig. 105

Peaucellier's Straight Line Motion.— This consists of two equal

links PD and PE hinged at a fixed point P. The extremities D
and E are connected together by a rhombus of hinged links

ADBE (Fig. 106). The lines PAB and DE intersect in the

centre of the rhombus at C. We have

PA = PC- CA = /cos a - m cos /?,

PB = PC+ CA = /cos a + m cos (3,

PA x PB= P cos2 a - m 2 cos2
(3.

But also /sin a = ;;/ sin /?,

pi
2 cos2 a = ;;r — /

2
sin

2
a.
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Hence, PA X PB = /
2 cos2 a — m 2 + /

2
sin

2 a = P — ?n
2 = constant.

Therefore if we move ^ on any curve, B will move on the inverse

curve with respect to P as a pole of inversion. Now if we con-

strain A to move in the arc of a circle by means of a link PA, B
will move in a circle also. If PA is less than PP, B will travel in

a circle whose concavity faces away from P. If PA is greater

Fig. 106

than PP, B will travel in a circle whose concavity faces toward P.

If ^4i? equals PP, so that the circle in which A moves passes

through P, B will describe a straight line. It is easy to find an

expression for the radius of the inverse circle in terms of known

constants. Call the constant product PA x PB p
2
. Then in Fig.

107,

PA xPB = PA' x PB' = p
2
,

PB = -£-
PA

PB'
PA

PB'-PB^2r'=-£- —

,

PA' PA'
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where r* is the radius of the inverse circle. If we denote by r the

radius of the original circle, and the distance of its centre from P
by a, we have

2r , _ p
2 {PA - PA')

PA X PA'
2rp-

PA x PA'

Fig. 107

Hart's Straight Line Motion. — Let the four rods GH, FK,
GF, and KH (Fig. 108) be jointed together as shown. The figure

FGSKH is called a complete parallelogram when FK — GH= L,

and GF= KH= I, which two lengths become constants of the

chain. Call the distance GK = x and FH = y. Then, as the

form of the apparatus is changed, x and y will vary in length.

Since the triangles GFH and KFH are equal (all three sides

being equal), angle KHF is equal to angle GFH, which may be

called /?. Also the lines x and y are always parallel, since / sin (3

expresses their distance apart at either end. Take any fixed point

in GF such as O, and through it draw a line parallel to x and y.

Call OF=a. The line will evidently cut KH at R at a fixed

distance a from H It will also cut the other two links at P and

Then b = a — and b is constant, or P is aQ. Qz\\ FF=b,
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fixed point on link KF. Similarly Q is a fixed point on GB, and

QB= Now OP=x-, and OQ=y-—-; hence,

But x = L cos a — I cos
ft,

y = L cos a + / cos
ft,

xy =D cos2 a — P cos2

ft
= L2 cos2 a — I

2 (/— sin
2

ft).

G^

From the figure

or

/sin a = L sin /?,

. L .

sin p = ^ sin a,

xy = Z2 cos2 a - /
2 (7- ^ sin

2
(1\ = Z2 -I2

.

Hence, OPxOQ = (L2 - P)
aAL^L = constant.

Or, if the apparatus be hinged at O, P and Q will describe

mutually inverse curves with respect to O as a pole of inversion.

If P is made to move in a circle whose circumference passes

through O, then will Q describe a straight line.



CHAPTER VI

TRANSMISSION OF MOTION BY CONTACT WHEN DIRECTIONAL

RELATIONS ARE NOT CONSTANT

i. CAMS

A cam is a rotating body, which transmits motion to a follower

by means of a curved edge. Usually the conditions do not

involve any variable velocity ratio, but a series of positions of both

driver and follower being given, as well as the outline of one, the

form of the other is constructed.

A. Disk Cams

In the disk cam the motions of the driver and follower take

place in the same plane. There are two principal kinds of disk

cams. One transmits motion to

a pin or roller, and the other to

a straight bar. In the first case

(Fig. 109), let O be the centre

about which the cam revolves,

and let OQ be the path of the

pin or roller. A, 1, 2, 3, and

4 are given positions of the

centre of the pin corresponding

to positions OA, Oi', O2', O
3', and O 4' of the cam radius.

About O as a centre, and with

a radius Oi, draw an arc OB
intersecting O 1' in B. Then B
is a point on the pitch curve

of the cam. In like manner

points C, Z>, and E are ob- Fig. 109

!55
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tained. It is readily seen that the point A can be brought to

rest at any time by giving the cam a circular outline about O as

a centre. Having thus found the pitch curve, the working edge

is obtained by drawing a parallel curve at a constant normal dis-

tance from it equal to the radius of the roller. If A is started

from rest, care should be taken not to give it too great velocity at

first ; in other words it should be given, if possible, a gradually

increased velocity, and the same care should be observed in

bringing A to rest. If A is given a constant acceleration during

the first part of its travel, the equation of the cam curve can be

worked out easily if the angular velocity of the cam is constant.

The constant distance

OA we may call a.

Then

Ai=\ct\
where c is the constant

acceleration. The an-

gle BOA = 6, hence

^ - = q) = constant,

r= OB = a + ±ct2

or the polar equation

of the curve is of the

form

In a similar method the equation of that portion giving a constant

retardation can be worked out. Care should be taken in this case

that c is not greater than g, the gravitation constant, otherwise the

follower will leave the cam curve unless some other force than

gravitation is employed to cause its return.

If QA produced does not pass through O, we proceed as follows :

let A, i, 2, 3, and 4 (Fig. no) be positions of the follower corre-

sponding to positions OA, Oi ,,02 l

}
0^', and O4' of the cam. Draw

Fig. 1 10
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OP through A. Construct arcs about O as a centre cutting the

radii in B, C, D, and E, and the line OP in W, X, Y, and Z
On arc 1 B lay offBR equal to IV 1, on arc 2 C lay off CS equal

to X2, etc. Then obviously ARSTU will be the pitch curve of

the cam.

In the second case of disk cam, the motion which can be given

to a follower is not so universal as that which can be given by the

first. The manner of constructing the cam curve to satisfy a given

Fig. hi

condition is as follows: let AA", n", 22", 33", and 44" (Fig.

in) be successive positions of a bar which moves parallel to itself

in the direction OQ. Let the corresponding radii of the cam which

successively occupy the position OQ be OA, Oi', O2', O3', and

O4'. Suppose we bring the cam to rest by giving the whole an

equal and opposite rotation about O. The lines n", 22", 33",

and 44" will take up the positions XX", YY", ZZ", and UU",
where these are drawn at right angles to the several radii, from
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points projected by circular arcs from 1, 2, etc. But these lines

must all touch the cam, hence they form the envelope of the

required curve. That these conditions cannot always be fulfilled,

can best be seen by referring to Fig. 112. If the line which forms

the envelope intersects its previous positions in points 1, 2, 3, 4,

Fig. 112

etc., one beyond the other, the cam curve can be cut out of metal.

But if any intersection falls between two previous ones, the con-

struction is impossible, as a cusp is formed at the point where the

first two intersections coincide.

If the straight bar rotates about a fixed centre instead of moving

with pure translation, the same general method would be pursued.

B. Cylindrical Cams

Here the motion of the follower is in a plane at right angles to

that of the driver. A helical slot or groove of the desired form

is cut in the surface of a cylinder, and is made to engage a pin

or roller whose diameter is equal to the width of the slot. The

cylindrical surface of the cam must here be developed on a plane

and the motion of the follower be considered as referred to it. In
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Fig. 113 is shown the complete solution of a case of the cylindrical

cam. The developed projection gives the best idea of the general

form of the slot, but the curve can be reprojected on the original

cylinder as shown if required.





PART III

MECHANICS OF THE STEAM-ENGINE





CHAPTER I

KINEMATICS

i. GENERAL DESCRIPTION OF THE STEAM-ENGINE CHAIN

In its most elementary form the steam-engine consists of six

links as shown in Fig. 114. The bed or frame is represented by a,

and to this the motion of all other links is referred ; b is the crank,

including the shaft, eccentric, and fly-wheel ; c is the piston, piston-

rod, and cross-head ; d the connecting rod ; e the eccentric rod

;

Q

I

Fig. 114

and f the valve. This compound chain may be divided into two

simple ones, the crank and engine bed being common to both, and

the whole reduces to two chains like Fig. 5. It is the purpose of

this chapter to discuss the relative motions of the various parts of

the steam-engine chain, and to find the general proportions and

positions of the parts which will give the best results.

2. THE PISTON-CRANK CHAIN

This chain consists of four links,— the engine bed, the crank, the

connecting rod, and the piston. Referring all motions to the engine

bed, the motion of the crank is one of pure rotation, that of the

piston is pure rectilinear translation, while that of the connecting

rod is a combination of both.

163
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A. Relation between the Position of the Crank and the

Positions of Other Points of the Chain

The position of a point in the connecting rod for any given

angular position of the crank can be expressed as follows : Let

O (Fig. 115) be the centre of the crank shaft. Since the motion

of the piston is identical with that of the centre of the wrist pin,

we may consider the whole of the piston and cross-head as con-

centrated there. Consider the position of any point R of the

Fig. 115

connecting rod. Call its coordinates referred to an origin at O
and axis ofX in the line of connection, x and y, and call its fixed

polar coordinates referred to pole at P and vectorial angle

measured from PQ, r and 8. 6 is the variable crank angle, a the

corresponding angle of the connecting rod, L the length of the

connecting rod, and / that of the crank. Then

x — I cos 9 — L cos u + r cos (a — 8)

,

y= rsin(« — 8).

/ sin = L sin a, sin a = — sin = n sin 6,Since

cos a = —V 1 — n2
sin

2
0.

Expanding the expression for x,

x = I cos 6 — L cos a-\-r cos a cos 8 + r sin a sin 8.
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And substituting for a in terms of 6,

I— nr cos 8
x = I cos 6 + ( Vi — n 2

sin
2
6 -f rn sin 8 sin 0.

In the same way,

y = r sin a cos 8 — r cos « sin 8

= 772 cos 8 sin 8 + r sin 8 Vi — ^2
sin

2
0.

These are the most general expressions for the coordinates of a

point of the connecting rod in terms of the variable angle 0. When
the point R lies in the axis of the rod, 8 = 0, and the equation

reduces to

x == / cos + (/~ nr) Vi - n2
sin

2
0,

n

y = rn sin 6.

Finally, if r — L, we get the position of the crank pin referred to

O as an origin,

Xq = / cos 6,

jyQ = /sin 0.

The coordinates of other points of the crank can be similarly ex-

pressed in terms of their angular position and distance from the

centre of rotation.

Now if r= o, the position of Pis defined, or

xP == / cos + -V 1 - n2
sin

2
6,

yP = o.

If the stroke of the piston is supposed to take place along the

diameter C'H' of the crank orbit (Fig. 116), its position

measured from the middle of its stroke will be

= /cos0 + -(Vi-/* 2
sin

2 0-i).

These last, which are the most important of all, express the posi-

tion of the centre of the wrist pin as a distance measured from the
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centre of the shaft or from the middle of the stroke. But piston

positions are often measured from one or the other ends of the

stroke, or from H and C (Fig. 116). Calling these distances in

general z,

= /( i - cos 0) + -(i -V i - n2
sin

2
$),

/(i + cos ^)--(i-Vi-«2
sin

2
0).

Fig. ii6

If finally the connecting rod be of infinite length, n = o, the

motion of P becomes simply harmonic, and substituting n — o in

the expression for z, and evaluating the indeterminate form, we

have
XP = 00, Xp = / cos 0,

zH =l{\ —cosO),

Zc =/(l + COS0).

It is often useful to lay off xF ' as a polar curve, using OR as a

radius vector. Calling p = xF ', the equation of the curve is

P = /cos<9-f--fV i — n 2
sin

2 6— i),

and its form is shown in Fig. 117. If n = o, the equation reduces

to the simple form
p = I cos 0,
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which is the equation of a circle whose diameter is /, whose centre

lies on the axis ofX to the right of the origin, and whose circum-

ference passes through O.

The graphical solution of all the preceding cases consists in

nothing more than the construction of an accurate drawing of the

Fig. 117

chain for the chosen value of 6, from which x or z can be scaled

off. If the stroke of the piston be considered to take place on

C'H' (Fig. 116), the position of the piston can be easily found

at E' by projecting Q on a circular arc from a centre on the line

of connection and with a radius equal to L. Similarly, if the

length of the rod be infinite, the position will be at E> found by

straight projection from Q.

B. Relation between the Position of the Crank and the

Velocities of Other Points in the Chain

The component velocities of R, parallel to the axes of X and Y,

can be found by evaluating — and —
-, after which the resultant

velocity can be found both in magnitude and direction. We have,

/t—nr cos $\
x — l cos + [

- )Vi-» siir V + rn sin sin 6,

from which

dx , . ad0 n sin 6 cos jq .
m

= —/sm6——n(/—nrcosd)—7===== p rn sin 8 cos 6— .

dt dt
v Wi-n2

sin
2 6dt dt
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And also y = rn cos & sin + r sin 8 Vi — ri
2
sin2

0,

dy . A d0 „ . « sin cos ^9— = ;tz cos o cos 6 rnr sm o

—

— —
<# <# Vi -n2

sin
2 6 dt

In nearly all cases of steam-engine analysis, the fly-wheel is suf-

ficiently large and heavy to make — practically constant. Calling
dt

this w, the formulae reduce to

dx 7 • a // s\ sin cos , . « A— = — /o) sm — fna{l— nr cos o)- + rtna sm 8 cos 6,
dt -Vi — n2

sin
2

-=£ = r;z<D cos o cos — *72
J
o> sin o

—

—
dt Vi-7*2

sin
2

These are the general expressions in terms of 6 for the component

velocities of any point in the connecting rod, whose position is

defined as before. The resultant velocity will be

*=V(fM;)'
and the angle which its direction will make with the axis of X
will be

dx

Now if the point R lies in the axis of the rod, S = o, and the

velocities are

dx j • a / / \ sin cos
lui sin — n\l— nr)

m

dt Vi - n2
sin

2 6

^ = rno>cosO.
dt

If r= Z, we get the component velocities of the crank pin,

ux = — /(o sin 6,

and u
y
= loi cos 0.
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The component velocities of all other points in the crank can be

similarly expressed in terms of their angular position and distances

from the centre.

Finally if r= o, we have the velocity of P, or that of the centre

of the wrist pin,

7 n 7 sm cos $
vx = — Ao sm — n/o> — »

Vi — n2
sin2

And the velocities of all other points of the piston and cross-head

will be the same.

This most important velocity can be expressed as the ordinate

of a curve in rectangular coordinates, whose abscissae are piston

Fig. 118

positions. Taking a number of arbitrary values of 6, the corre-

sponding values of x and vx can be calculated, and the results

plotted in graphical form along the stroke of the piston or the

diameter of the crank orbit. (See Fig. 118.)

When the length of the connecting rod is infinite, compared

with the throw of the crank, n becomes equal to zero. Substi-

tuting this value,
v x = — /o) sin 0.

In this case can be simply eliminated between the equa-

tions of position and velocity. Referred to the diameter of
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the crank orbit as a stroke, the position of the piston measured

from O is

Xp = I cos 0.

Eliminating 6,

This is the equation

of an ellipse referred

to its principal axes,

as is evidently the

necessary result of a

simple harmonic mo-

tion. The angle is

the eccentric angle

(Fig. 119).

The piston velocity, viz., vxi may be laid off along the crank OR
in such a way as to form a polar curve of piston velocities. Calling

the radius vector o-, the equation of the curve is

, . n 7 sin $ cos 6
a- = — /(o sin — n/u) —

.

This curve is shown in Fig. 120.

When n =0,

Fig. 119

V 1 — n 2,

sin
2

o- = — /a) sin 9,

Fig. 120

the equation of a circle whose centre lies on the axis of Y, below

the origin, whose diameter is /, and whose circumference passes

through the origin.
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The angular velocity of the crank is, as we have said, constant

and equal to w.

The angular velocity of the connecting rod is found by evaluat-

ing— . Since a = sin
_1

f
n sin 0\,

dt

we have
da _ — n<D cos 9

dt Vi-^2
sin

2

Graphical constructions for the above velocities are, in general,

simpler and more useful than the analytic. Produce the axis of

Fig. 121

the connecting rod to cut the axis of Y at S (Fig. 121). Let /be
the instantaneous centre of the connecting rod referred to the bed

of the engine. Then
velQ _u _IQ
velP

But from similarity of triangles —— = —^

;

hence, vx = u
OS
0$

and since u (=/w) and OQ (=/) are constants, vx \s propor-

tional to OS. Furthermore if we choose our scale of velocities so
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that u is laid off equal to the crank throw, OR becomes equal to u,

and OS = vx .

Another simple construction is to lay off u from Q along QI.

Through its extremity draw a line parallel to the connecting rod,

and where this cuts IP will give vx, since — = *=-. In either case
vx PI

the curve of velocities can be simply drawn in.

When the length of the connecting rod is infinite, OS is simply

the projection of OQ on the axis of Y, and the velocity curve

becomes a circle when the scale is taken such that u = OQ = /.

Fig. 122

This is seen also from the analytic expression, for, when Ao = / by

reason of choice of scales, the equation of the ellipse reduces to

that of a circle.*

The angular velocity of the connecting rod can also be graphi-

cally constructed by employing the instantaneous centre method.

By reference to Fig. 16, Part I, the following construction can be

verified. Lay off from / in any direction the constant angular

* Care should be taken here to avoid confusion. It is not intended that

since fe = /, a, = I 5 but that « - * - i
scale of len^hs

1 x
scale of velocities
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velocity of the crank. From the extremity of this line draw a line

through Q. From O draw a line parallel to w to meet the one

last mentioned, and this will give the magnitude of— . Its direc-
dt

tion can be told by simple inspection of the drawing. This con-

struction is shown in Fig. 122.

Another simple solution, where the velocities of both P and Q
are given, is also shown on the same figure. Bring P to rest by

giving the whole system a velocity equal and opposite to vx . Com-
bining — vx with u at Q, we get QN, the absolute velocity of Q
referred to the piston. This is L— , from which— can be obtained

dt dt

by simple division,

C. Relation between the Position of the Crank and the

Accelerations of Other Points in the Chain

The component accelerations of R parallel to X and Y can be

d x d v
found by evaluating —=-$ and —-^ We have, where o> = constant,

dx 7 • a / 7 *\ sin cos . <> „
.— = — /o> sin — «a)(/— nr cos 0)— — -+- rina sin 8 cos 0,
dt Vi-»*sin2

d2x _

72 a 2/7 &\ f cos 2 0+n2
sin* } a - * • /1—/V cos 9—n<a\I— nr cos 6) 4 !

I —rW sin 8 sin 0.

And also
l (i-«2

sirftf)

//y a /i 2 • & sin 9 cos 6
->l — moi cos 6 cos V — r;ra> sin — —

,

dt Vi-/z 2
sin

2
<9

d2
y 2 a • a 2 2 • s f cos 2 + ?z

2
sin

4
1—j£ = — rntf cos 8 sin — rn'm* sin ^ !

}.
•

dt
I (i-?z2

sin
2 0)* J

These are the general expressions in terms of 0, for the com-

ponent accelerations of any point of the connecting rod whose

position is defined by r and 8 as before described. The resultant

acceleration will be,
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in magnitude, and its direction will be defined by the angle e,

where
d2

y
,~d£

£==tan 35"

dt2

If the point R lies in the axis of the rod, 8=0, and we get,

d 2x jo a . 2/7 \ r cos 2 + n2
sin4—-9 = — /a)

J cos 6 + noi\l— nr)

(i-«2
sin

2
6*)2 J

^=-,Wsin0.
dt

If r = Z, we get the component accelerations of the crank pin,

qx — — /(o
2 cos 0,

and <7„ = — /w
2
sin 0.

Fig. 123

The accelerations of all other points of the crank can be similarly

expressed in terms of their angular positions and distances from

the axis of rotation.

Finally, if r = o, we have the acceleration of P or of the centre

of the wrist pin,

7 2 a 2/ f cos 2 + n2 sin
4

\

px
= — loi

2 cos 6 — nw2
/

\

—
\

,

I (i-?*2
sin

2 0p J

and py
= o.
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and all other points of the piston and cross-head have the same

acceleration. All these accelerations are of the utmost importance

in connection with the dynamics of the steam-engine.

By choosing arbitrary values of 0, and computing the corre-

sponding values of px and x'p , a. curve can be drawn with reference

to rectangular coordinates, which shows by its ordinates the magni-

tude of the piston acceleration and by its abscissae piston positions.

Such a curve is shown in Fig. 123. When the length of the con-

necting rod is infinite compared with that of the crank, n=o,
and the motion becomes simply harmonic, as in that case,

px = — /o>
2 cos 0.

Here we can easily eliminate between this, and the equation for

piston position, which is,

x'p= /cosO,

and we have

, /(x)
2X oA= — = -xo>2

,

the equation of a straight line through the origin.

Fig. 124

We may also lay off /„ as a radius vector along the crank throw,

and thus construct a polar curve of accelerations. Calling the

radius vector t, the equation of the polar curve would be,

72 a 27 f cos 2 + «2
sin

4
1

T = — f(x) COS — «0)V
\ [

.

I (i-n2 sm2 $y )

This curve is shown in Fig. 1 24.
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If n = 0, the equation reduces to

T = — /a)
2 cos 6,

the equation of a circle whose diameter is /, whose centre lies on

the axis of X to the left of the origin, and whose circumference

passes through the origin.

The angular acceleration of the connecting rod can be found by

simply differentiating the expression for its angular velocity,

da _ — nay cos

~dt~ Vi sin
2

d2a n(i — n2
)u)

2
sin 6

df1 (i-n2
sin

2 6)%
'

o) being taken as constant.

Graphic solutions of the general case can best be done by com-

bining the solutions of the special cases of the two ends. The

graphic solution of

the acceleration of

the crank pin Q
follows immediately

from the analytic

equations for qx and

qy . For if we lay

off a distance from

Q toward O equal

to-/o>2 (Fig. 125),

the projections of

this length on the

coordinate axes will

give the component

accelerations ofQ as

these are evidently

If the scale of accelerations is so

Fig. 125

IJ- cos 0, and — /o>
2 sin

chosen that — /w2
is equal to OQ, the component accelerations

will be merely the projections of the crank-throw itself upon the

coordinate axes.
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The graphic solution of the acceleration of the wrist pin is more

complex. We must here again employ the instantaneous centre

of the connecting rod with respect to the bed of the engine.

Since OS (Fig. 121) is proportional to the velocity of P, and since

OS is measured from a fixed point O and in a fixed direction

O Y, the velocity of S along OY will be proportional to the accel-

eration of P. Imagine the line Qw (Fig. 126) as moving with

.J 1

"" '/'
'

*-"^ /'

'

,"'' '' /

''' '' /
,-' " '

^'*' s' S !

»•''"' s* '

u '**' y' S
tf-A

K ''' /' 9

\ T>

"^
>X /

u^>~^-^\ / ;/^ s
^^^>fcl

A \ ^^^^-J**
\h

Fig. 126

PQ, being in fact a prolongation of the axis of the rod. Then S,

when considered a point of PQ, is moving in a direction SJV per-

pendicular to SI, the instantaneous radius. If we project Q to M
on the arc of a circle about / as a centre, the velocity of M will

evidently be equal to that of Q, and at right angle to SI. This

velocity u can then be laid off, and from it the magnitude of the

velocity of S follows by obvious construction. Now if this velocity
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SJV of S be resolved along the axis of Y and along PQ, the

former will evidently be proportional to the acceleration of P.

This proportionality becomes an equality when as before the

scale of accelerations is so chosen that the acceleration of Q, viz.,

— /o>
2
, is taken equal to OQ.

This choosing of the proper scales of velocity and acceleration

sometimes give rise to confusion in the mind of the student. All

such trouble can be avoided by the following simple device. The

analytic expression for the acceleration of P is

px
~— /o>

2 cos 6— noi
2
l

\

{ cos 2 4- n 2
sin

4
1

(i -«2
sin

2 0)^

At the head-end dead point, i.e. when = o°, this reduces to the

simple form

and at the* crank-end dead point to

A]^180° = + ^2
(l n),

which expressions can be simply calculated Now in the preced-

ing construction when the crank pin Q arrives at one of the dead

Fig. 127

points, H, for instance, / coincides with P, M and Q with B, and

S and w with O. The construction in this case is as in Fig. 127,

where Hu is the velocity of the crank pin, and ONH the accelera-
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tion of the cross-head. Then if we calculate this acceleration

from the simplified analytic expression, lay it off to any convenient

scale as ONH, and draw NHPH, the proper scale of velocities

becomes immediately known as Hu, and this may now be used all

around the crank orbit to get other values of the acceleration of P
on the same scale as ONB.

Having now the accelerations of both ends of PQ, it is easy to

determine that of any other point R (Fig. 128). Project R on the

arc of a circle about P as a centre to A, and consider first the

acceleration of A. The absolute acceleration of Q is QT equal to

— /to
2 directed inward along the radius vector. Bring P to zero

acceleration by giving the whole system an acceleration equal and

Fig. 128

opposite to that of P. Combining — px with — lay
2
at Q, we get

Qw, the resultant acceleration of Q referred to origin P in the

piston. The component of Qiv at right angles to QP, viz., Qb, is

evidently a tangential component of acceleration about P, and
d2aQb= L—-, from which the angular acceleration of the connect-
dt-

ing rod can be found by simple division. The component of Qw

along the rod, or Qa, is a normal component, or Qa = — L del

dfz

from which the angular velocity might be determined. Now the

tangential and normal components of all points of the body being

simply proportional to their respective distances from P, when P
has no acceleration, it follows that the components of A are equal
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to those at Q when multiplied by—- Hence the construction as

given in Fig. 128. The components at R will be equal to those

at A, but their directions are of course different, being along and

at right angles to RP. The resultant Rw' is the absolute accel-

eration ofR referred to the piston and origin at P, and combining

this with +A> we get RS, the absolute acceleration of R when

referred to the bed of the engine both in magnitude and direction.

The projection of this on lines parallel to the coordinate axes gives

^and^.
dt2 dfi

3. VALVE GEARING

A. Relation between the Position of the Crank and

the Position of the Valve

The chain of links forming the valve gearing consists, as is seen

in Fig. 114, of four links, which are the engine bed, the eccentric,

the eccentric rod, and the valve. If we express positions, veloci-

ties, and accelerations of points of this chain in terms of an angu-

lar position 61 of the eccentric, the results will be identical with

what has preceded, and if expressed in terms of an angular posi-

tion 6 of the crank, a phase angle, viz., angle QOC (Fig. 114),

must be introduced.

The valve of a steam-engine performs the duty of admitting

steam alternately into the ends of the steam cylinder, and of

exhausting the same into the atmosphere or the condenser. In

the design of the valve gear the problem is to open and close the

ports at certain given positions of the piston. It is therefore

the position of the valve with which we are principally con-

cerned, its velocity and acceleration being of minor importance

at present.

{a) The Plain Slide Valve

The motion of the slide valve is usually produced by means of

an eccentric, which consists of a circular plate, keyed to the shaft

in a plane at right angles to its axis, and surrounded by a strap

which is fastened through the eccentric rod to the valve. It is of
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course evident that the eccentric acts exactly as a crank, whose

throw is equal to the distance between the centre of the shaft and

that of the eccentric

sheave. In Fig. 129

OC is the throw of

the eccentric, and

it is always denoted

by r. The valve

which it operates

will move through

a total distance 2r

when directly con-

nected.

In Fig. 130 let

OQ be the crank,

and OC the eccen-

tric of an engine whose shaft is at O. The invariable angle QOC
between the two we shall call /?. If 6X is the angle between the

line of connection of the valve and the throw of the eccentric,

then the position of B can be written

Fig. 129

xj = r cos 0! + - { Vi — n2
sin

s

C? -

— I

i-*i-H

Fig. 130

when the distance xB ' is measured from the middle of the stroke

of B. Now if 1 = 4-
ft,

we have, on substituting this,

xB ' = rcos(0 + P) + -\ Vi-«2
sin

2
(0-r-/3)

Fig. 131 is a diagrammatic representation of a plane slide valve

in its central position with respect to its travel, i.e. when B is at

O' (Fig. 130). The steam ports 5S" are separated from the exhaust
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port E by means of the bridges bb. The valve is always made

longer than the sum of the widths of the three ports and two

bridges. The amount by which the outside edges of the valve

project beyond the outside edges of a steam port when the

valve is in its central position of travel is called the Outside Lap,

Fig. 131

and is always denoted by e. The amount by which the inside

edges of the valve project beyond the inside edges of a steam port

when the valve is in the same position, is called the Inside Lap,

and is always denoted by i. These laps are given to the valve to

work the steam expansively. They may or may not be the same

at the two ends.

Fig. 132 shows the relative positions of the crank, eccentric,

and valve for the head-end dead point. As the valve moves very

Fig. 132

nearly symmetrically across the face of the ports, in order that the

steam distribution may be nearly alike on the two sides of the

piston, the middle position of the valve referred to its own travel

will coincide very nearly with the middle line AA of the ports.

The middle position of the valve will evidently come when the
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eccentric throw r makes an angle of about 90 with the direction

of motion of the valve, which is usually identical with that of the

piston. Hence if the valve is made longer than the sum of the

three ports and two bridges, the eccentric must be drawn past

this position when the crank is on the dead point, as at that time

the steam port must be just opening on the head end as shown.

In most engines, especially if high speed, the valve is made to

open a little while before the crank arrives at the dead point.

The small amount by which the steam port is open when the

crank turns the centre is called the Lead, and is denoted by v.

If we denote by 8 the angle between the eccentric and the per-

pendicular to the line of valve connection, then, if the piston and

valve move parallel,

P = 9o° + 3,

and 8, a constant of the valve gear, is called the Angular Advance,

and its exact value will be determined hereafter.

Substituting this value for /? in the equation for valve position,

we get

xB' = -r sin (0 + 8) + - (Vi - ;rcos2
(<9 + 8) _ 1

)

.

Now in a valve design the second term of the equation can be

generally neglected, as will be seen from the following case.

Let r — 2, and n — .04 (ordinary dimensions). Then the maxi-

mum value of the first term will occur when (0 + 8) = -, and then
7T

2'

r sin (0 + 8) = — 2. The maximum value of the second term

will occur when cos2
(0 -f- 8) is equal to unity, or

- (Vi - n2 cos2
(0 + 8) - 1) =— (Vi - .0016 - 1) = - .04,

n v v J
.04

x

which is small enough compared with 2.00 to be neglected for

purposes of design. Hence we shall always write

xB ' = — rsm(8 + 6),

a simple harmonic equation.

Expanding the right hand side, we get

xj = — r cos 8 sin 6 — r sin 8 cos 0.
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But r sin 8 is a constant, as is r cos 8 also. Calling these A and B
respectively, and dropping subscripts and accents,

x = — A cos 6 — B sin 6.

If we consider this as a polar curve whose radius vector is laid

off along the crank throw, we see that it represents a circle whose

circumference passes through the pole, and whose diameter through

the pole is inclined at an angle (270 — 8) with the reference line.

For let O (Fig. 133) be the pole, and OQ the reference line. Draw

OC = r and inclined at an angle (270 - 8) with OQ. On OC
as a diameter describe a circle cutting the reference line at D, and

cutting the perpendicular to it through O, at S. Then

and

(9^=-rsin8 = — A,

OS=-rcosS = -B.
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Draw any radius vector OQ inclined at an angle 6 with the refer-

ence line. Draw CP' and DR' perpendicular to OQ. Then

OP' = OR ' + R 'P' = — A cos — B sin = x. Hence the posi-

tion of the valve with reference to its central position for any given

angular position of the crank measured from its head-end dead

point is given by the intercept OP'. The valve will be in its central

position, or x will be zero when the crank is at OQ'. The valve

Fig. 134

will be at its maximum distance- to the left, i.e. will have its maxi-

mum negative displacement, when the crank is at OC, and will

have its greatest positive displacement when the crank is at OC.
At the dead point OQ , x is equal to — A. This polar diagram

is the same as was considered in connection with piston position,

with the exception of the different phase angle.

The above position of the polar locus or valve circle is correct

when we take into account the algebraic sign of the valve displace-

ment. But it is more convenient to draw another circle on CO

Fig. 135

produced to C, and consider the valve displacement as equal to

OP, since, as we generally work with but one end of the cylinder

at a time, the algebraic sign of the displacement is of but little

consequence. By using the upper circle we have the advantage

of measuring our radius vector in the direction of the crank throw.

Let the valve shown by the dotted lines (Fig. 134) be in its

central position, and let that shown by the full lines be the same
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valve after having moved a distance x to the left, and opened the

head-end port. In this second position call the amount that the

steam port is open a x . Then, as x is negative,

Fig. 136

Now suppose that the valve moves a distance x to the right of

its central position, so as to exhaust the port S. Then from Fig.

135 we see that

+ x = a2 + i,

a2 = (+ x) — i,

where a2 is the amount that the port is open to the exhaust, and x

is positive in this case.

In Fig. 136'we draw a valve circle as in Fig. 133. We also draw

a circle about O as a centre, and with radius equal to e, the outside
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lap. Then 0PX
= — x, 0RX

= e, and R1P1
= (— x) — e = alt the

amount by which the steam port is open for the position OQ of

the crank. At the point Xx where the valve circle intersects the

e circle, — x = e, and ax
= o. Hence at OQx we have admission.

When the crank has moved up to OQ , the dead point, the port is

open the amount of the lead v. At Ylt
— x = e again, and we

have cut-off with the crank at OQ2 . At OQr the port is wide

open by the amount FC\ When the crank has arrived at OQ'
(the tangent to the circle at O), the valve will be in its central

Fig. 137

position, since there x = o. If it passes beyond OQ' we will

have positive values of x, and positive intercepts on the circle OC.
Let OQ (Fig. 137) be such a position of the crank. The value

of -h x is OP2 on the circle OC 1
. Now finally if we draw a circle

about O and with a radius equal to i, the inside lap, then OR2= i,

and R^P^ = (+ x) — i = a2, the amount by which the exhaust port

is open for any angular position of the crank. At OQ3 , -\-x= i,

and a2 = o, so we have release. At O Q^ a2 is again equal to

zero, and compression begins, so that OQ4 is called the Compres-

sion Point.
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The regular polar or Zeuner valve diagram is shown in Fig. 138.

Here an upper or negative circle is introduced as in Fig. 133, upon

which — x can be laid off in the direction of the crank throw. It

will be noticed that while the radius vector OQ is sweeping over

the upper circle OC, the steam features of the head end will be

taking place, and while sweeping over the lower circle OC the

exhaust features of the head end occur. But it is evident also

Fig. 138

that the exhaust features of the crank end come within the circle

OC, while the steam features of the same end come within the

circle OC. These latter are, however, omitted in Fig. 138. The

points <2i, (?2> (?3> and <24 are the critical points of the cycle taking

place in the head end of the cylinder. Variations of any of the

quantities produce effects which are easily seen on the diagram.

Increase in 8 admits steam earlier and cuts it off earlier. Increase
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in e admits steam later and cuts it off earlier. Increase in r admits

steam earlier and cuts it off later, etc., and similarly for the exhaust

side.

Evidently neither ax nor a2 can be greater than a, hence if r is

greater than a + <?, the valve will overtravel the port. If in this

case a circle be drawn about O as a centre, and of radius equal to

a + e, its points of intersection Ux and V1} with the valve circle,

will give the crank positions at which the port is just wide open.

The distance ox on the diagram is called the Overtravel. Similarly

o2 is the overtravel on the exhaust side. The shaded portion of

the diagram shows the variation in port opening.

It is always well to make the valve as short as possible so that

the pressure on its back and hence the work of moving it under

this pressure may be a minimum. We must remember, however,

Fig. 139

that the ports are determined as to width by the general dimen-

sions of the engine, and that the laps are also fixed by the design.

The bridge b then should be as small as possible, but not so small

that the valve will travel across it, and admit live steam into the

exhaust port, as would be the case in Fig. 139. At the extreme

travel of the valve x — r, hence in all cases we must have

e + a + b > r,

or b~> r — a — e.

Neither should the exhaust port be so far covered by the inside

edge of the valve as to make the effective opening of that port less

than a. In every case then we must make

#o + b — (2 + r) > a,

or a > a + 1
' + ** — b,

as is evident from Fig. 140.
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Problems in Valve Gearing. — In the design of any valve gear

we have certain constants or dimensions given, and are required to

find the values of all others. These constants may be any of the

following

:

c s

Constants of the gear
e, i.

Crank positions f <2n & Q3 , or <24-Oi or a2 being zero.)

Q in general. {ax or a2 being known.)

The last of these is the most important when Q = Q , and ax
= v,

the lead.

It will be noticed that all four of the crank positions cannot be

taken arbitrarily, as three will determine the position of a circle,

and the fourth must follow from these. Also that one constant at

Fig. 140

least of the gear must be given, viz., e, i, r, or 8. If three crank

positions are given, 8 is superfluous, and hence some other con-

stant must be chosen. Also one at least of both steam and

exhaust features must be given. The following are a few examples.

1. Given e, i, y, and cut-off ; to find 8, r, Qa , and Q±. (y is

the angle at which the crank stands when admission occurs.) Lay

off y and the position of the crank at cut-off. (See Fig.. 138.)

Draw the e- and /-circles. Draw the valve circle passing through

the origin and the two points of intersection of the ^-circle with

the given crank positions. The diameter of this through the

origin will give r and 8. Produce this beyond O, and upon the

prolongation draw another and similarly situated circle. The

intersection of the /-circle with this last will give the release and

compression positions.

2. Given e, i, v, and cut-off position of the crank; to find the
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same quantities as before. Draw the e- and /-circles. Draw

the crank positions at cut-off, and lay off the lead. Pass the

valve circle through the origin, the lead point, and the point of

intersection of the ^-circle with the cut-off position of the crank,

and proceed as in problem No. 1.

3. Given e
y
v, and r. Draw the ^-circle and lay off the lead.

About the origin as a centre draw a circle of radius equal to r.

Erect a perpendicular to the axis ofX through the lead point, and

where this intersects the circle last drawn will be the extremity of

the diameter of the valve circle.

4. Given cut-off position of the crank, a, and ox . (ox being the

overtravel on the steam side.) We are also given the compression

position or the release position. Call (# + ox ) — a'. We have

e + a' = r, (1)

x = r sin (8 + 6).

If we put 6 = in this last equation,

xQ = r sin 8 = e + v. . . . (2)

If we put 6 = 2 where 2 is the angle of the crank at cut-off,

x1
= rsin(02 + $) = e, . . (3)

we have three unknown quantities, viz., e, r, and 8, and three inde-

pendent equations. Substituting for r in (1) its value in (2), we

get
e -f- v— {e + a') sin 8,

a' sin 8 — v , Ne=ir^T- • • • (4)

Substituting in (3) the value of e from (4) and of r from (1), we

get
'sin 8 — v fa' sin 8 — v . A . ,n . «.+ a'\ sin (02 + 8),
1 — sin 8 \ 1 — sin 8

a' sin 8 — v = (a' — v) sin(02 + 8).

Reduction gives

sin 8 \a' + (v — a') cos 2 \ + cos 8
|
(v — a') sin 2 ] = p.

This is the equation of a circle in polar coordinates whose circum-
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ference passes through the origin, and whose intercepts on the

axes ofX and Fare (v — a') sin 2 and a' -f- (v — a') cos 62, respec-

Fig. 141

tively. Hence we lay off these known quantities on the axes (Fig.

141), and pass a circle through the origin, and through their ex-

tremities. Then we
draw a second circle

about the origin and

with a radius equal

to v. The line join-

ing the point of in-

tersection A of the

two circles with the

origin will give by

its angle with the

axis of X the value

of 8. Since a' is

always greater than

v, and since sin 62 is

positive in any prac-

ical construction, the

FlG. I42 term (v — a') sin 6
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will always be negative. Also it is readily seen that a + (v — a')

cos 2 will always be positive. Hence the former is laid off to

the left of the origin, and the latter upwards. The other inter-

section B of the circles gives a perfectly correct though imprac-

ticable value of 8.

In solving the above problem a partly analytical and partly

graphical method seems to be the best. Take the following

:

a 1 = J", v = -^q", cut-oif at \ stroke. To find 8, e, and r. If the

cut-off comes at \ stroke, 2
= 6o° (approximately)

.

a'+ty-a 1

) cos6>2= i+(T3g--i) cos 60°=^",

(v - a') sin
2 =

(T\ - £> sin 6o° = l#».

Now if we lay off (v — a') sin 2 vertically downwards from the

origin, and a' +(v — a') cos 2 horizontally to the right, we will

measure our 8 to the right of the axis of Fas it is usually placed.

Hence the construction of Fig. 142 gives 8 immediately as 69 .

Now e = a ' sin8 - v = - 2M-' l8 7-=.64 ",

1 — sin 8 1 — .933

r— e + a! = .64 + .25 = .89.

Some persons prefer a purely graphical construction for such a

problem, even if more complicated in reality. Therefore the fol-

lowing graphical method is introduced. About the origin as a

centre draw a circle of radius OA = a' (Fig. 143), and one of ra-

dius OV= v. Draw the given crank position at cut-off OQ2 . Pro-

duce Q2 to M, so that UM=RO. Then OM=v-a\ and

since angle A OR = 6>
2, WO = {v -a') sin <92, WM= (v-a') cos 62,

and by completing the parallelogram OMAB, we see that

WB = WM+ OA =a'+ (v—a') cos <92 . Hence the circle drawn

on OB as a diameter gives by its intersection with the z'-circle the

value of 8 correctly placed.

In order to explain the theory of the construction for e and r,

o
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we must combine equations (i) and (2), remembering that 8 is

now a known quantity. We have

e + a' = r,

e + v = r sin 8.

Fig. 143

Eliminating e from the above, there results

r = a' — v

If we divide both sides of (5) by a', we get

a' — v

a' a' — a' sin 8

Hence from the point D, where OD cuts the ^-circle, drop the

perpendicular DE. On ED lay off EF=VA=a'-v. Draw
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AF, and produce to cut the axis of Fat G. Then will OG — r,

for by geometry
GO = FE
A0~ AE

or

We now project G on the arc of a circle to C, and draw our valve

circle on OC. The outside lap e will be GH— r— a'.

Fig. 144

Variable Cut-off with Plain Slide Valve.— If the point of cut-

off is to be changed, it must be done by altering some of the con-

stants of the driving gear, and not of the valve itself, since the laps

and ports are absolutely fixed by the construction of the engine.
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We must also be careful that by varying the cut-off we do not vary

the admission position nor lead to any great extent. Let us first

see how r and $ must be changed in order to give variable cut-off

with constant lead. In this case, however the valve circle may
change, all the circles must pass through the same lead point V,

Fig. 144. Therefore the locus of the centres of all valve circles

which give a constant lead will be a straight line at right angles to

the middle point of the chord O V, and the locus of the extremi-

ties of their diameters will be the perpendicular erected at V.

Fig. 145

In the figure are shown the positions of three valve circles, the

extremities of the diameters being at A, B, and C. These all give

the same lead EV, but the admissions vary slightly, being at Qx \

Qi', and Qi". The cut-offs vary widely through the range Q3
',

Q2
", and Q2

'". The exhaust features vary also. When the inside

lap is considerable as shown, the release points do not vary much,

being at Q3 ', Qs
", and <23

'", but the compression points do, as is

seen at Q4 ', Q4 ", and Q"'. If z = o, the release and compres-

sion points vary an equal amount. It will be noticed that the

change is produced by increasing 8 and diminishing r. It is
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accomplished in practice by cutting a slot in the eccentric at right

angles to the crank, so that it can be shifted across the shaft as in

Fig. 145. This shifting is done automatically while the engine is

running by means of a shaft governor.

If we wish to keep the admission point constant, the circles must

be varied as in Fig. 146. Here the locus of the extremity of the

valve circle diameter is the perpendicular to the admission posi-

tion OQx at its intersection with the <?-circle. The three positions

Q,Q,Q,

A, B, and C give a constant admission at Qlf but a variable lead

EV, EW, and EX. The cut-offs, releases, and compression

points are similar to Fig. 144. This is the method of variation in

most single valve, automatic, high-speed engines. The shifting of

the eccentric at the dead point is as shown in Fig. 147. Since

it is difficult to get the motion of pure translation given by the

straight line ABC, it is usually approximated by means of the arc

of a circle.
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Reversing Gears. — Valve gears which are so arranged as to run

the engine in either direction are known as Reversing Gears.

These must be applied to all marine, locomotive, and hoisting

engines. Those reversing motions which are actuated by means

of the so-called link are amongst the most interesting kinematic

movements. By simply shifting the position of this very ingenious

piece of mechanism, the engine may be run in either direction and

with any degree of expansion.

The Stephenson link is the one most generally used upon loco-

motive and marine engines. Upon an axle O (Fig. 148) are keyed

Fig. 147

two eccentrics C and C, from which the rods extend and are

joined to the two ends of the expansion link BB'. The block M
on the end of the valve stem fits the slot of the link. The valve

stem T is held by fixed guides, and the link can be raised and

lowered at will. Let O (Fig. 149) be the centre of the engine

shaft, and OQQ the crank at its head-end dead point. In order

that the engine may throw over, the eccentric must be set with an

angular advance 8 as shown. If, however, the engine is to throw

under as in Fig. 150, the angular advance must be 8 to the left of

the perpendicular below the origin. Now if both eccentrics are
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put on as in Fig. 151, and the ends of the arms are connected by

the link, then when this is depressed the engine will throw over,

By\*^\(\

II c

T7
^-^^--^zzz:~j-^^Ll

KSy

-M

\ \\^c 5Tp
T

:^^**jJI

Fig. 148

and when raised it will throw under. In these cases one eccentric

will control the motion of the valve. When the link is in any

other than one of its two extreme positions, the motion of the valve

will partake of the motion of both eccentrics.

Fig. 149

By considering the length of the eccentric rods very great, and

by making the radius of curvature of the link very great also {i.e.
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by making the link straight) , we will have the arrangement shown

in Fig. 152. Here the points of attachment BB' (Fig. 148) are

supposed to lie in the pitch line of the link, and that of the block

M remains rigidly fixed in the link for any given position. When

Fig. 150

the crank is on the dead point OQ , the eccentrics are at 0CX and

OCi, and the link at BxBy. When the crank is at the other dead

point, the eccentrics are at 0C2 and 0C2, and the link at B2B2 .

XYis the mean of these two link positions, hence we can measure

movements of points of the link from it as a central position, and

as the valve is rigidly attached to the link block, these movements

will correspond exactly to valve movements. Let the crank turn

Fig. 151

through an angle 0, and consider the motion of the extremities of

the link which have now moved to B and B'. Let BS equal xlt

and B'T equal x2 . Since xx is entirely due to eccentric C, we

have
xx =r sin (0 + S).
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And for x2 , the motion of the other end of the link, we have

x2 = r sin (0 + (180 — 8)).

Expansion of these two equations gives

xx = A cos 6 -+-B sin 0,

x2 = A cos — B sin 0.

Now consider the motion of any other point of the link such as

M, and call the distance MN= x. Let the whole length BB'

Fig. 152

of the link be represented by a, and the amount B'M by Ka.

Then by similarity of triangles,

x1
— x2 : x — x2 : : a : Ka : : 1 : K.

x = Kxx
-+- (1 — K)x2 .

Substituting the values of x1 and x2,

x = Ka cos O + KB sin + (i—K)A cos 6- (1 -K)B sin 0,

x — A cos 6-\-(2K — i)B sin 0.

This is the equation in polar coordinates of a circle passing

through the origin whose intercept on the axis of X is A, and

on the axis of Y is (2 K — 1) B. It will be observed that how-
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ever the link be moved, that is, however K be varied, the intercept

A will not be changed, or the lead will be constant. The system

of valve circles is shown in Fig. 153. OC is the valve circle

corresponding to the upper eccentric, and OC that of the lower

one. The angle/0C=8, and the angle JOC ' = 1 8o° - 8,

OV=A, the same for all the circles OJ=B, and OJ'= —B.
If any radius vector be drawn as O Q, OPY = xlf OP2 = x%- If

J>-—-\c

A!
<-\r-zA-y>\ \

J'^ 'Z^Q

Fig. 153

we lay off OH= (2K— 1) B, and pass a circle through O, V, and

H, we have circle OZ, representing the motion of the valve for any

intermediate position of the link, and OP=x.
For rods of finite length the action is far more complex. Let

CC (Fig. 154) be the position of the eccentrics when the crank

is on the head-end dead point. Let the pitch curve of the link

slot be the arc of a circle whose radius is in general R. Then

with the crank stationary, the point B will, as the link is raised
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and lowered, follow the circle PA about C as a centre. Let

BqSPq be the link at mid gear, i.e. when BQ and B ' are equi-

distant from the line of connection. It is readily seen now that

the lead cannot be constant, as the extent of its variation, or the

difference between the maximum and minimum widths of the lead

will be PS. When the crank is on the crank-end dead point, the

arms of the link will be crossed, and the locus of B, as the link is

raised and lowered, will be the circle A'P' about C2 as a centre,

and the variation in lead will be S'P'. The best that can be

done, then, is to so choose the radius of the slot that the variation

of the lead on the two ends will be the same. Let us find, then,

an expression for the distance PS.

a\ 4

L M
1 V / ~ \

/ D \--BL
'-'
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I 0) -J ^J^^
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u
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C"^- —<v T1
1
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Fig. 154

When the link is in mid gear the centre of curvature of the slot

will lie on the axis of X, as the whole apparatus is then symmet-

rically arranged about that axis. Let it be at D, and call the

distance OD = b. Then

OS=fi + P.

Call the length of the chord B B ' = a, a constant of the link, and

denote the point at which this chord cuts the axis of X at right

angles when the link is in mid gear by 7.

{OT-b) 2 + - = R\
4

b=OT-^P2--
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But OT=MG==MC-CG=\L2 -f~-rcosS\
2

-rsm8,

where Z is the length of the eccentric rod or link blade.

=V"Hence b=\D- f
-- rcosS ) -rsinS-\R2 --

and finally,

„^s Jm «
2

.

\L2 - f- - r cos sY - r sin 8-\R2 - - + R.OS.
2

Now the distance OP we know to be

0P= ZV i - n2 cos2
3 - r sin 8,

where n='y Hence the variation in lead is

PS= OS- OP,

PS=\L2 -(--r cos Z)-\R2--+R- ZVi-«2 cos2
8.

At the other dead point we obtain an expression for OS' by

putting i8o° — 8 for 8; hence

OS' =aJl2 -(- + r cos sY + r sin 8 -V^2 - - + #>
\2 7

% 4

and OP' = ZVi-«2 cos2
8 + r sin 8.

^'5' = OP' - OS',

p>S'= -\L2 -(- + rcos8)\\R2---R + LVi-n2 cos2
8.

* J " 4

But these distances are to be equal ; hence

xM4

=^Z2-^-rcos8Y+i^/z2-^+rcos8Y-ZVi-«2 cos2
8.
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The right side of the equation contains constants only, and there-

fore can be calculated for any given case. Call it C. Then

R =
2 C

From this we may obtain an exact result for the radius of the link

slot. However, as r is usually small in comparison with L and a,

we may expand the first two radicals by the binomial theorem,

then add them term for term, and reject all terms containing

the square or higher powers of r. The remaining terms will

be merely the expansion of I

D

)
• Likewise we may neglect

the term n2 cos2
8, n2 being too small to be considered. The

approximate form of the equation then is

V*-J-*-V^?-A
which is satisfied when R = L.

In most cases it is amply close enough to make the radius

of the link slot equal to the length of the rod or blade. When

the link is not hung on its pitch line, the radius of the slot will be

practically the same.
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In order to investigate the steam distribution, graphical methods

can be best used. Let the crank stand at any angular position

(Fig. 155), and lay in the eccentrics Cx , C\', in their proper

positions. Having the length L of the blade given, draw the

locus circles AP oi the point B, and A'P' of the point B'. Con-

struct a template of thin sheet metal as shown in the figure, the

Fig. 156

corners at B and B' representing the same points as in Fig. 148,

and let the edge SS' be drawn with the proper radius R. The

distance BB' is, of course, a. The link is suspended from some

point on its pitch line (usually the middle point U) by a radius

bar from a point V. This point V can be shifted along an arc,

thus varying the steam distribution. Suppose in the present

instance the link is suspended from the point Vx . Then with
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Vx as a centre, and a radius equal to the length of the radius bar,

strike an arc Ux . Now shift the template upon the drawing, keep-

ing B and B' over their respective loci, until the middle point U
of SS' falls upon the circular arc UUX , and draw in the arc SS1

.

Then will the distance x, measured from the middle line XX to

Px , be the distance that the valve is drawn past its central position.

The line XX is obtained by taking the mean of the positions of

Px at mid gear for the two dead points. Now take a new position

of V, say at V2 , strike the arc C72 , shift the template till U falls

upon this, and measure x again. Having obtained a number

Fixed Point

FIG. 157

of such measurements for different positions of the link, proceed

to lay them off on a Zeuner diagram as intercepts Oi, O2, 0$,

etc., along the crank throw OQ in its given position 6. Now take

a new crank position and go through the same construction again,

using the same points V1}
V.2, VS) etc., as before. By connecting

corresponding points on the Zeuner diagram with a smooth curve,

an exact polar diagram of valve travel can be obtained. If the

length of the link blade is sufficiently great to admit of the motion

of the valve being considered as simply harmonic, the above curves

will be circles, and but two positions of the crank will be necessary
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to determine all the circles. These two positions may conveniently

be 6 = o°, and = 90 , as shown in Fig. 156.

If the blades are crossed with the crank on the crank-end dead

point as shown above, the link is known as a crossed link, and

the lead will be least at mid gear. If the blades are crossed on

the head-end dead point, the link is an open link, and the lead

will be greatest at mid gear.

In the Gooch link the link itself is not raised and lowered, but

the valve rod is (Fig. 157). It has the property of giving an abso-

lutely constant lead, but otherwise the steam distribution is not as

good as that given by the Stephenson link. It requires more room

also to get in the long arm AB.

{fi) The Gridiron Valve

In this valve gear the steam chest is divided into two compart-

ments by means of a partition parallel to the valve face. In the

lower compartment the distribution valve works. It is a plain

slide valve with small laps. In the upper compartment is the

expansion valve, which consists of a plate with a rectangular

opening in the centre. This plate slides back and forth over a

single port in its

seat, and cuts off

the steam with its

inner edges. The

motion of this valve

will be a simple

harmonic motion,

and will be given

by an equation of

the same form as that of the plain slide valve cutting off with its

outer edges. If we represent by x the distance which the ex-

pansion valve has moved past its central position, for any given

angular position of the crank, by r the throw, and by S the

angular advance of the eccentric which drives it, our equation of

motion will be of the form

^ =r sin(^ + 8 ).

Fig. 158
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The eccentric will, however, usually have a negative angular advance.

Now consider the expansion valve in its central position as shown

by the dotted lines in Fig. 158. Call the total width of the port

a , and the amount by which the edge of the valve is beyond the

Fig. 159

edge of the port e . Now let the valve move a distance x to the

left, throttling up the port to width ax . Then we will have

x -\-a1 = a + e
,

a1= (a + e ) — x .

The value of x can be found at once by means of a Zeuner

diagram. In Fig. 159, OC is the expansion valve circle, inclined

at an angle — 8 to the left of the perpendicular to OQ . OQ is
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any position of the crank, and hence OPQ = x . With centre O
and with radius a + e0> describe a circle. Then OP = a + eQt

and PR = (a + e ) — x = ax . We can conveniently measure

the port opening as affected by the left hand edge of the valve

by means of another circle drawn on C O produced below the

origin. The expansion valve will then admit steam into the lower

Fig. 160

steam chest by its left edge when the crank is at OQi and cut it

off with its right edge at OQ2
'. If we draw the distribution valve

circle on the same diagram, we can follow the whole distribution

of the steam. In Fig. 160, OC is the distribution valve circle at

its angular advance 8, and OC the expansion valve circle at its

angular advance 8 . OR — e, the outside lap of the main valve,

and OR — a + e of the expansion valve. For any crank posi-
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tion OQ, /y? is the port opening of the expansion valve, and

PR the port opening of the distribution valve. The expansion

valve opens first at OQx

l

, but steam does not flow into the cylinder

till the distribution valve opens at OQx . The expansion valve

closes first at OQ2
', and hence determines the cut-off. The main

valve closes at OQ2 before the expansion valve opens again. If

Fig. 161

the distribution valve fails to close before the expansion valve

opens again, there will be double admission. It is evident that if

#o + e > ro> there will be no cut-off by the expansion valve. The

shading shows the effective port opening.

This form of expansion valve is frequently made with a number

of slots or openings in the valve, and a corresponding number of

ports in the seat (Fig. 161) ; hence the name "Gridiron Valve."

(e) The Meyer Valve

This gear produces an early cut-off by means of an expansion

valve running on the back of the distribution valve. The distri-

bution valve consists of a flat plate (Fig. 162), in which are cut

two rectangular ports D, Z>, as well as the exhaust hollow. It is

evident that its action is exactly the same as an ordinary slide

valve. The expansion valve runs on top, covering the ports D, D,

and thus effecting the cut-off. If the distribution valve is driven

by an eccentric of throw r and angular advance 8, and the expan-

sion valve by one of throw r and angular advance 8 , we will have

as before

*=rsin(0-}-S),

x = r sin (0 + 8 ) •

Now x and x are the motions of the valve referred to the fixed

valve seat ; but the cut-off is determined by the relative motion
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of the two valves, or by (x — x ). Let us first get the equation

of relative motion. The upper portion of Fig. 162 represents the

two valves in their central positions (a state of affairs which could

never occur when the engine is running, however) . The lower half

shows the valves after having moved to the right ; the distribution

through a distance x and the expansion through a distance x . Uy

Fig. 162

is the distance from the edge of the expansion valve to the outer

edge of the port D, when the upper valve is in its central position

relatively to the lower one, y will be a constant of the valve gear.

Call the port opening ofD ax as before. The equation of motion

is evidently

ax + x =y + x
,

a1 =y— (x—xQ).

If we draw two valve circles representing x and x , as shown in

Fig. 163, OP=x, and OP = x . Hence PP = x — x . But

this last distance is not measured from a fixed point, viz. the
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origin, and hence we cannot subtract it graphically from a con-

stant quantity y by drawing a circle of radius y about the origin.

We must first, therefore, find the curve which will give for every

position of the crank the value of x — x measured from the

origin.

x — x = r sin (6-}- 8) — r sin (0 + 8 ) = z,

z = r sin 8 cos 6 + r sin 6 cos 8 — r sin 8 cos — rQ sin cos 8
,

2 = (r sin 8 — r sin 8 ) cos + (r cos 8 — r cos 8 ) sin 6

= A'cosO+ £'smO,

where A' and £' are constants of the valve gear. This is the

equation of a circle whose intercepts on the axes of X and Y are

Fig. 163

A' and B' respectively. In Fig. 164 let OC= r and COY=S;
let OC = r and C OY= 8 . Connect C C, and complete the
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parallelogram OC CCZ , thus determining the side OCz . From
C , C, and Cz drop perpendiculars on the axes of X and K
Then

SO = XC = OH- <9£ = rsinS-r sinSo = ^',

OT=KC= CH- C G = rcos8-r cos B'

Hence the circle on OCz as a diameter will give by its intercepts

on the axes of X and Y the values of A and B\ and by its

intercept on any radius vector {x — x ) for that particular crank

position. Fig. 165 shows the complete Zeuner diagram for the

Meyer valve. OC is the throw of the distribution valve eccentric

with its angular advance 8. OC is that of the expansion valve.

Fig. 164

From these, by completing the parallelogram, we get OCz and Sz

of the auxiliary circle. On OC and OCz as diameters, describe

circles. There is no use in drawing a circle on OC , as it is not

used. Then if OQ is any position of the crank, OP=x and

OPz = x — x = z. We now draw a jy-circle about the origin,

hence ORz —y, and PzPz =y — z = a1 . The expansion valve
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opens first at Qi, but steam is first admitted into the cylinder

at OQx , where the distribution valve opens. Cut-off is determined

by the expansion valve at OQJ, and the distribution valve closes

at OQ2, before the expansion valve opens again at OQi. The

second opening of the expansion valve on Qi'O produced is on the

other end of the valve, and hence does not interfere with OQ2 in

Fig. 165

such a way as to cause a double admission on the head end. Cut-

off can be varied by varying the value of y. This can be done

by making the cut-off plate in two parts, which can be separated

by means of a right and left hand screw on the valve stem. Another

way is by varying 8 with an automatic shaft governor, as in Fig.

166.
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(a
7

) The Thompson Valve

In this valve gear, which is used on the Buckeye engine, the

arrangement of valves is the same as in the Meyer gear. The

driving mechanism, however, is different. The distribution valve is

driven directly by an eccentric r (Fig. 167). The point B, where

Fig. 166

the eccentric rod is hinged to the valve stem, is carried on a

vibrating pillar BC. The expansion valve is driven from the

extremity A of a lever AE, whose middle point D is pivoted to

the middle point of BC, and whose other end is driven by an

eccentric rz . We have, as in the case of the Meyer valve,

a^y-ipc-x^),
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where a x
is the port opening, y a constant, and x and x distances

moved through by the distribution and expansion valves, both

measured from their central positions referred to the fixed valve

Fig. 167

seat. The value of x will be determined both by r and by rz .

Since AB — BD and DC = DE, that component of A J

s motion

due to r will be simply x, where

x = r sin (6 -f 8)

.

That component of A's motion due to rz will be — xz, and

-*
2
= -^sin(0 + S,).

Now x is the algebraic sum of these two as they take place in the

same straight line. Hence,

ax =y — (x — x + xz) =y — xz .

The motion of the expansion valve relatively to the distribution

valve when driven through the above kinematic chain will be the

same as if the expansion valve were driven directly from the eccen-

tric rz upon a fixed seat. The form of the equation of motion is

identical with that of the gridiron valve, hence the travel of the

expansion valve on the top of the distribution valve will be of con-

stant magnitude for all cut-offs when the expansion eccentric is

rotated about the shaft by means of a shaft governor.
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B. Relation between Position of the Crank and Veloci-

ties and Accelerations of the Valve

Since the motion of the valve is taken as simply harmonic, we

can express the velocity of the valve for any angular position of

the crank by differentiating xj with respect to time.

xB ' = — r sin (8 + 0),

dxj ,«
, n,d0-^=-,003(8+ *)-.

And if — = (o = constant,
dt

Fig. i68

If this be laid off as a polar curve along the crank throw as a

radius vector, we see that it represents a circle (Fig. 168), whose

diameter is rw, whose circumference passes through the pole, and

whose diameter through the pole is inclined at an angle i8o°— 8

with the axis of X.
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The acceleration of the valve would be obtained by differentiat-

ing with respect to time the expression for the velocity, or

at at

= ro>
2 sin(S + 0).

Y

Fig. 169

This is the equation of a circle (Fig. 169) whose diameter is roi
2
,

whose circumference passes through the pole, and whose diameter

through the pole makes an angle of (90 — 8) with the axis of X.

4. RELATION BETWEEN PISTON AND VALVE POSITIONS

In the two preceding sections we have obtained exact relations

between the crank and piston position and the crank and valve

position. It is the purpose of the present section to investigate

the relation between the position of the piston and valve. Analytic

expressions for this relation are, in the exact case, and even in the
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approximate ones, too cumbersome to be employed. But by the

graphic line of analysis already discussed the solution is direct and

complete.

Let Fig. 170 represent a polar valve diagram. About O
describe any circle, as that through Q, to represent the crank orbit.

If OQ is any position of the crank, PR* is the port opening. But

the piston position corresponding to Q on the diameter of the

crank circle as a stroke is at E, projected on a circle about Pas a

centre. Hence piston position E corresponds to port opening

PR 1 of the valve, and piston positions E1} E2, Es, and E4 corre-

spond exactly to admission, cut-off, release, and compression.

3f
/

QjZjf
e

i 72h—____
~——— .

p

vf\ \p

Fig. 170

Conversely, if any three of these piston positions be given, a valve

can be designed to fulfil the conditions.

If the laps are the same on the two ends, then evidently the pis-

ton positions corresponding to admission, cut-off, etc., cannot be

the same on the two ends. Consider, for example, the cut-off

positions for equal laps in Fig. 171. The crank positions OQ2
'

and OQ2
" will be diametrically opposite, but the piston when at

E2
' will have completed a larger fraction of its stroke than when

at E2
". This defect can be remedied by making the outside laps

different on the two ends, giving the larger to the head end, but

by doing so the admission and lead on that end are changed. For

the same reason the head end will have a greater compression,
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as the exhaust will close when the piston is farther from the end of

the stroke. If a valve is set with equal leads, the cut-off will be

later and the compression will begin earlier on the head than on

Fig. 171

the crank end. With a variable cut-off, such as is produced by a

shaft governor (Figs. 144 and 146), or by a Stephenson link

(Fig. 156), if the cut-offs be equalized in one position by change

of laps, they will not be exactly equal for any other position.



CHAPTER II

DYNAMICS

The forces acting upon the moving parts of the steam-engine

are due to two causes: (i) to steam pressure, and (2) to the

inertia effects of the moving masses. Of these two the first is in

general the largest and most important, and it is the force which

does work outside of the machine itself. The forces due to the

second cause are resident entirely within the machine, and the net

work due to them within any complete revolution made under

steady conditions is always zero. We will take up the discussion

of these forces in the order given.

1. FORCES DUE TO STEAM PRESSURE IN THE CYLINDER

These forces are resident entirely within the cylinder of the

engine, and they will act upon the piston in the direction of the

main line of connection of the machine, that is, in the direction of

the motion of the piston. Their magnitude then is the only im-

portant consideration, and this can best be studied by reference

to a curve in rectangular coordinates, which shows the relation

between piston position and total steam force. This curve can be

deduced from the familiar indicator card, and for the accurate

study of the steam effects it is best to use an actual card, either

taken upon the engine under discussion or upon another of the

same type. If no such card is at hand, an approximation to its

form can be drawn after the following constants and dimension?

are known

:

1. The boiler pressure. 4. The release point.

2. The back pressure. 5. The point of compression.

3. The point of cut-off. 6. The clearance.
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Of these, 1 and 2 are simply working conditions ; 2 is immedi-

ately known in the case of the simple engine, but must be obtained

by calculation in the case of the compound
; 3 and 5 are known

from the valve design, and 4 may be taken as occurring at the end

of the stroke without serious error ; 6 may be assumed from what

is known to be an average value in the particular type of engine

treated
; 3, 5, and 6 can be expressed as fractions of the stroke

or of the volume swept through by the piston.

B' D'
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Fig. 172

The Simple Engine.— The cycle of changes of pressures and

volumes taking place upon one side of the piston during one revo-

lution of the engine is as follows : steam is admitted into the head

end of the cylinder at boiler pressure (or a little less), at B (Fig.

172), and as the force exerted by the steam upon the piston is

toward the origin O, or to the left, this pressure is negative and is

laid off below the axis of X. Call this total pressure, i.e. the spe-

cific pressure multiplied by the area of the piston, JPlt and we must

measure it above the vacuum or line of zero pressure. Hence
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BH=PX . This pressure is maintained pretty constantly up to the

point of cut-off at D, so that DL = P1 also. Let BE = AB = sc)

the clearance expressed in terms of the stroke BC=s of the

piston. At D expansion begins, the pressure dropping off on a

curve DYE, which is nearly enough a rectangular hyperbola with

asymptotes EA and EC to be taken as such by the designer.

The terminal pressure CE=P2 is determined by the equation of

the rectangular hyperbola, viz.

^2—
;

>
s +sc

or by graphical construction. The release then occurs, the press-

ure dropping still farther to CG = P3, the back pressure, which

in a non-condensing engine is about 17 lbs., while in a con-

densing engine it is from 6 to 8 lbs., multiplied by the piston

area. This back pressure is maintained at a fairly constant value

during the return stroke until at / the exhaust closes, and compres-

sion begins, the pressure rising on the hyperbola IJ to Pc, where

Pc is given by

x c

Meanwhile a similar cycle of pressures has been taking place on

the crank end, and as all forces acting on the piston due to steam

in this end are positive, the curves will all lie above the axis of X.

The work done by the steam in the head end in passing from

B to C will evidently be proportional to the area BDFCH, and

the work done upon the steam in the head end in passing from C
back to B will be proportional to the area GIJHC. Hence the

total or net work done in the head end during one complete revo-

lution is proportional to the area BDFGIJ. Similarly on the

crank end of the cylinder the net work done in one complete revo-

lution will be proportional to the area B'D'E' G'f'J', and the whole

output of work will be proportional to the sum of these areas.

Now as the piston passes from B tc C, the negative forces will

be given by the ordinates of the steam curve of the head end

or by BZ>E, and during the same stroke the positive forces are
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given by the ordinates of the back pressure curve of the crank

end. Hence the net force acting on the piston-rod will be given

J

^~-^___T Position Pressure G'
z

. H
c \
F

Nv\F X

D B
Fig. 173

by the algebraic sum of these curves or by the ordinates of XYZ
( Fig- T 73)- The area XYZCH will be proportional to the net

work done by the steam in passing from H to C, or during one
forward stroke of the engine. Similarly the area under the curve

B' D'

X
\

FJ

c H
Negative Pressure

1

Z
<? /^\

J
Fig. 174

X'V'Z'UC (Fig. 174) is proportional to the work done by the

steam during one backward stroke of the engine. These areas will

Q
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not in general be equal to the areas of the original cards BDFGIJ
etc., unless the cards themselves are exactly alike, but it is evident

on comparison of areas that the sum of the areas of the curves

XYZCH and X'Y'Z'HC will be equal to the sum of the areas of

the indicator cards.

These last curves of Net Horizontal Steam Effort are particu-

larly useful in the analyses which follow.

The Multiple-cylinder Engine.— In a multiple-cylinder engine

the steam is expanded through more than one cylinder, the first

taking its steam from the boiler, the second taking it from the

exhaust of the first, and so on. In every case all the cylinders

work upon the same shaft and have the same stroke, though the

arrangement of the cranks may be different in different cases. It

is readily seen that the steam line of any cylinder beyond the first

up to its point of cut-off will be identical as to specific pressure at

any given instant of time with the back pressure line of the pre-

ceding cylinder. Here, as before, it is best to base the analysis of

the acting forces upon actual indicator cards. But if unobtain-

able, theoretical ones must be drawn. It is not the province of

the present work to go into the calculations necessary to obtain

the pressures around the cycles of a multiple-cylinder engine, that

being more a problem in thermodynamics. It is sufficient to say

that such cycles can be drawn quite accurately to scale when the

proper dimensions and constants are known. The curves of any

one cylinder can then be combined to find the net horizontal force,

as in the case of the simple engine. When the several pistons act

upon a single rod and crank, in other words are tandem, the net

horizontal pressure curves can be added directly. But when act-

ing on different cranks each cylinder must be considered by itself.

Power developed in the Cylinder.— The power developed in

the cylinder can readily be calculated from the net pressure

curves. Let A be the area under the curve XYZCH, obtained by

a planimeter in square inches, and b the length HC in inches.

A
Then — will give a number which, on the scale of forces used, is

b

the total mean pressure. This constant force acting on the piston
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would do the same work in one stroke as the variable force before

considered. Call it Pm , and let PJ be a similar pressure for the

backward stroke. Then

Pm x (number of forward strokes per minute) x L
33000

PJ x (number of backward strokes per minute) x L
+ H.P.,

33000

where L is the length of the stroke in feet, and H.P. the horse-

power developed.

H.P.=
(Pm +PJ)xZxN

33000

N being the number of revolutions per minute.

In all the above the pressures are taken as total pressures act-

ing on the piston-rod. If specific pressures are employed, the

area of the piston will enter as a constant factor on the right side

of the equation.

Forces at the Wrist Pin.— The net horizontal force active on

the piston-rod being now known, its components at the wrist pin

can be obtained. In Fig. 175 Px is this horizontal force. Its

T

Qz

Fig. 175

component at right angles to OX will be P
y , which is the thrust

upon the guide. Its component along the connecting rod is Px
.

P
y
can be plotted along the path of P as a curve of normal press-

ures. As the force is at right angles to the direction of motion,
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the area of the curve represents no energy. The general form of

the curve is shown in Fig. 175. On the return stroke from C to

H a similar curve will be produced.

Forces at the Crank Pin.— The force Pz will be transmitted

directly to Q as a force Qz . This can be resolved in the tan-

\
0' Q H'

Fig. 176

gent and normal to the crank orbit, giving components J7

and

N. The tangential component is the true turning force of the

main shaft at O. If we develop the semicircumference I/'QC
along a straight line, as in Fig. 1 76, and lay off along this as a

base a curve whose ordinates are the tangential forces T, the

area of the curve will be proportional to the total work done

upon the crank pin during a semirevolution from H l to C, as

the force ^acts in the direction of the motion of Q. In other

Fig. 177

words, the area of the curve H'TCB' (Fig. 176) must be equal

to the area XYZCH (Fig. 173), when the two are drawn on the

same scale of pressures. If now we divide the area of this

curve in square inches by the length of its base in inches, we will

get a number which, on the scale of forces employed, will be the
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mean turning effort. If this constant force be applied at right

angles to the crank, it would do the same work in passing from

H [

to C as the variable force previously considered. Call this

A A
mean turning effort Tm . Then — = Tm . But - = Pm , and b = 2/.

TT 7r/ b
Hence,

Tm =-Pm.

7T

The normal component at the crank pin may also be laid off as

the ordinates of a curve along the developed semicircumference

as a base, giving results something like Fig. 177. The area of

this curve represents, no energy, as the direction of N is at right

angles to the path of Q.

2. THE INERTIA EFFECTS OF THE RECIPROCATING PARTS

A. Analytical and Graphical Calculation of Forces Active

at the Crank and Wrist Pins

The method rests primarily upon two principles of Analytic

Mechanics, viz.: (1) that the sum of all forces acting upon a

body when resolved in a given direction is equal to the mass of

the body multiplied into the acceleration of its centre of mass in

the given direction and (2) that the moment of all forces about

an axis through the centre of mass is equal to the moment of

inertia of the body about that axis into its angular acceleration.

In order to clearly illustrate the application of these principles

to the question in hand, let us consider the case exhibited in Fig.

1 78. Here O is the centre of a shaft of a horizontal steam-engine

and OQ is the crank, turning with a constant angular velocity w.

QP is the connecting rod with wrist pin at P. Let / represent the

throw of the crank, L the length of the connecting rod measured

from centre to centre of brasses, and r the distance of the centre

of mass G of the rod from the centre of the wrist pin. Taking O
as the origin of coordinates, and the line of connection of the

engine as the axis of X, we will call the coordinates of G x and y.

Let be the angle between any position of the crank and the axis
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of X, and let a be the corresponding angle of the connecting rod.

Qx and Qy
are the component forces acting on the crank-pin end

Fig. 178

of the rod parallel to the axes ofX and Y respectively, and Px and,

P
y
are the components at the wrist-pin end. Then if M' is the

mass of the rod, we will have from the first principle

QX +PX =M 1 (Px

Q, + P„=M'^+ M'g.

(x)

(2)

Projecting these forces at right angles to the rod, and taking the

moments about G, we get from the second principle

—
.{
— Qy cos a + Qx sin a\ (L — r) + \PX sin a — P

y
cos a] • r

d2a
A

dfi
(3)

In these equations Px is any external force acting on the wrist-

pin end of the rod parallel to the axis of X, and is due to steam

pressure on the piston, the acceleration of the cross-head and

piston, and to friction. It may be either positive or negative, but

can always be calculated for any value of 0. I is the moment of

inertia of the rod about an axis through G parallel to the main

shaft, and can be experimentally determined. We have, there-
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1

fore, three equations from which to determine three unknown

quantities,— Qx , Qy , and P
y

. Solving (3) for P
y , we get

Iq —- + (L — r) Qx sin a — (L— r) Qy
cos a — rPx sin a

p= * —
y r cos a

Substituting this in (2),

79

I —- -f- (L — r) Qx sin a — (Z — ;-) Qy
cos a — rPx sin a

dr
r cos a

Substituting for Qx its value from (1), and solving for Qy, we

finally get

Qs=
J^^+LM,g+LM-gL cos a at- L dt~ L

+£—?M } ****
tan u-Px tan «, . . (4)

L dt"

QX=M'^-P„ (5)
dt~

P^M^-M'g-Q, (6)

In these three equations there are, in addition to the unknown

quantities, certain dimensions and constants of the engine as well

as three accelerations which must be determined. These latter

we have already deduced in Chapter I. Since G lies in the axis

of the rod,

d*x /9 n 9/7 x (cos 2 4- ?r sin
4
0) ,„v—

- = — /orcosfl — «(!)-(/— nr)- —
-, . . (7)

dt"

(T-/r'sin2 0)*

-t4 = —rnor sin 0, . (8)dr x

<d
2
ct _ na)

2
(i — n 2

) sin

dt2

(i_^ sin2 0)f
(9)
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It is also convenient to write down,

Z cos a = ZVi — n2
sin- 0,

n sin0
tan a =— — •

Vi-«2
sin

2

All of these are known in terms of 6.

Of the constants, r and Z are the only ones that require any spe-

cial methods of measurement. They can be determined approxi-

mately from a working drawing of the rod itself, but can better

be determined experimentally as follows : let the connecting rod

swing as a pendulum on a knife edge, first through the wrist pin

and then through the crank-pin brasses. Let tw be the. observed

time of one vibration in the first case, and tc the time in the

second. Then

where lw and /c , the lengths of equivalent simple pendulums, become

immediately known. Now if hw is the distance from the point of

suspension at the wrist-pin end to the centre of gravity of the rod,

K (4 - hw) = q\

where q is the radius of gyration about G. Also,

*.(/.- *.) = $»,

and hw + hc = Z
,

where Z = L + (radius of crank pin) -f (radius of wrist pin).

Combination of these equations gives

^ _ Z (Zq — /c)
^

2 z 4, ic

from which r is obtained by subtracting the radius of the wrist

pin. The moment of inertia about G is also determined from

TV

o

where W* is the weight of the rod in pounds.
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In order to study the effects of these forces it will be best to

follow through an actual case. Curves showing their magnitude,

direction, and general variation will give a better insight into the

subject than many pages of formulae. Take for example a small

6x8 horizontal engine, whose dimensions are as follows :

W' = weight of connecting rod ....
W" = weight of piston and cross-head

/ = throw of crank

L = length of connecting rod ....
/

n =
z

N — number of revolutions per minute

a) = number of radians per second .

r = distance of centre of mass of rod from centre of

wrist pin ......
I = moment of inertia of rod about G

24 lbs.

33.6 lbs.

333 ft.

2 ft.

.1666

300

3 I -62 5

1. 123 ft.

4233

We must now compute the values of
d 2a

for
d*x , d~yw w and

IP'

every io° of the crank orbit. Table No. 1 shows the results

of these computations. The last column gives the values of

or the acceleration of the cross-head and piston. This is

dt2

easily obtained from the expression for

This then becomes

d*x

"dt
2

by putting r = o.

dhc

dt
— /<o

2 cos 6 —
/n<D

2 (cos 2 6 4- n2
sin

4
0)

(i-n2 sm2 0)%

These accelerations are expressed in feet per second per second,

or in radians per second per second.

The curves of Plate I show graphically the results of Table

No. t, and the curves as numbered correspond to the columns

of the table. The values in the table extend from = o° to

= 180 , but it is easily seen that for the remainder of the circle
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columns 2 and 4 will be repeated in reverse order without change

of sign, while columns 1 and 3 will be repeated in reverse order

with change of sign.

TABLE No. 1

Computation of Accelerations

e
d2a J^x d*y d*x
dP dp dP dp

(1) (2) (3) (4)

o° .OOO - 357.746 .OOO ~ 388.937

IO° + 28.I76 35 I - 24i - 32-5°2 380.589

20 55-696 332.040 64.016 356.063

30° 81.878 301.078 93584 316.893

40 IO5.985 259.805 120.310 265.466

5o° I26.944 210.192 143.380 204.946 _

6o° I44.847 154.506 162.093 138.913

7°° I58.060 95- x 94 175.882 7L093

8o° 166.265 -34.696 184.325 -5.OO9

90 I69.O49 + 24.715 187.169 + 56.350

IOO° 166.265 81.084 184.325 IIO.77I

IIO° I58.060 132.850 175.882 I56.95 1

I20° I44.847 178.872 162.093 I94.465

130° I26.944 218.388 143.380 223.634

140° IO5.985 250.859 120.310 245.298

150° 81.878 276.368 93-5 84 260.553

160 55-696 294.504 64.016 270.481

170 + 28.176 305-383 - 32-5°2 276.035

180 .000 + 309.008 .000 + 277.817

We now come to the calculation of the forces ; namely, Qx , Qy ,

Px , and Py
. In the expression for Qy

(equation No. 4) the third

term is merely the upward reaction of the crank pin upon the rod

due to its own weight. The fifth term is the horizontal thrust

upon the rod at the wrist pin due to external forces. These two

terms, being independent of the others, may be considered at any

time during the discussion. The same applies to the second term

in the expression for Qx and the second term in the expression

for P
y

. For the present we will omit these, or in other words we
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will first consider the effect of the connecting rod on the crank

pin due to its own inertia, and call the forces thus exerted on the

ends of the rod QJ, QJ, PJ', and PJ. Then

QJ =M , djx

df
In d2a

(10)

n/rl r d~y , ,,-, L — r d~x . , N\-M' *- + M' tan a, (n)
Z cos a df1 L dt2 L df1

v J

0,'-

• (12)

• (13)

Finally the pressures of the rod on the pins will be equal and

opposite to those exerted by the pins on the rod, and these latter

we will denote by (QJ), (QJ), and (PJ). The effect of the first

Fig. 179

two of these upon the rotation of the crank can best be studied

by resolving them along the tangent and normal to the crank

orbit, as in Fig. 179. Denoting these forces by (T 1

) and (JV 1

),

(T') = (QJ)cosO-(QJ)smO,

(N') = (QJ) sin + (QJ) cos 0.

The values of these various forces acting upon the crank pin and

guides, due to the inertia of the connecting rod alone, are given

in Table No. 2, and the graphical results in Plates II and

III. Since the force (T') acts in the same line as the direction

of motion, the area between Curve No. 3 (Plate No. 2), the axis
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of X, and any ordinate represents work done upon or by the

pin, and stored up as kinetic energy in the rod. Since the state

of the rod as regards kinetic energy is identical at the two dead

points, we should expect the net area of the curve between O and

B to be zero, which a planimeter shows to be a fact. The curve

on Plate III shows the variation of (P
y
'), or the pressure of the

wrist pin upon the guides. In this case, however, the curve is

plotted along the guide itself. All forces are expressed in pounds.

TABLE No. 2

Forces acting on Crank Pin and Guides due to Connecting Rod

e (0*')
. (&/) (T) (A") W)

o° + 266.649 .000 .000 4- 266.649 .000

IO° 261.800 + 16.204 - 29.503 260.636 + 8.021

20° 247.488 32.329 54.267 243.620 15.386

3o° 224.411 48.229 70.441 218.459 21.528

40 193.648 63.650 75-7I3 189.256 26.024

5°° 156.668 78.144 69.785 160.566 28.725

6o° 115. 162 91.360 54-053 136.701 29.458

7°° 70-955 102.478 31.624 120.566 28.616

8o° + 25.861 1 10.895 -6.21

1

113.701 26.493

9o° — 18.422 115.989 + 18.422 115.989 23.5 ! 9

ioo° 60.437 117.264 39.155 125.687 20.124

IIO° 99.021 114.434 53-9IO 141.400 16.660

120° 133.324 107-433 61.746 159.702 13.385

i 3o° 162.777 96.379 62.743 178.461 10.490

I40° 186.980 81.841 58.028 195.841 7.833

I 5
0° 205.993 64.191 47.406 210.490 5-564

160 219.511 44-I5 1 33-589 221.374 3-564

1
70° 227.620 + 22.489 + 17-379 228.067 + 1.736

180 - 230.321 .000 .000 + 2302.31 .000

The next point to be considered will be the effect of the external

force Px . This, as has been said, is due to two causes, the inertia

of the piston and cross-head, and the varying pressures on the

cross-head due to steam pressure and friction. We will not con-
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sider in this case the last causes, but take up the purely theoretical

case of the crank and reciprocating parts, moving without friction

;

and neglect the pressures due to the weight of the parts. The

portion of Px due to this cause we will call Px
". We then have

PJ' =M»~, .... (14)
dt2 V q;

d2x
where M" is the mass, and —y the acceleration of the piston and

cross-head. Now, if the component forces acting on the crank

pin parallel to the axes of AT and Y due to Px
" are (Qx") and

(Qy")> and the force at right angles to the guides is (P
y
"), we will

have
(QJ')=PJ', (15)

(<2/) = ^"tan«, .... (16)

W) = -(&") (n)
d2x

The values of —j we have already computed in Table No. 1, and

these only need to be multiplied by M" to give us Px
". The

components (Qx") and ((?/') may also be resolved along the

tangent and normal to the crank orbit, giving (T") and (W).
All these forces are given in Table No. 3. Plate IV gives the

curves of (Qx"), (£,"), (T"), and (N"), while Plate V gives

the curve of (P
y
") laid out along the guide. The curve of

tangential effort, namely, (T")
}
must have a net area equal to

zero, and such is found to be the case.

Taking now the total inertia effects of connecting rod and

cross-head and piston, we have the complete curves in Plates VI,

VII, and VIII. The first of these shows the total horizontal

and total vertical components of the forces active at the crank pin

due to inertia. The second shows the total tangential and total

normal components. A most remarkable resemblance is seen to

exist between the two curves of tangential effort. In fact, if a

mass about .535 of the mass of the connecting rod were con-

centrated in the cross-head, an almost identical curve of total

tangential effort would be produced by the acceleration of the

cross-head alone.
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TABLE No. 3

Forces acting on Crank Pin and Guides due to Piston and

Cross-head alone

e (£*") (Qy") (T") {N") W)

o° + 405.847 .000 •OOO + 405.847 .000

IO° 397.127 -ii.497 - 80.283 389.086 + n-497

2O 371-543 21.206 I47.OO4 341.806 21.206

So 330.671 27.025 189.284 272.543 27.025

40 227.008 29.848 200.922 I93.OI4 29.848

5o° 213-857 27.522 181.515 1 16.381 27.522

6o° 144.952 21.139 136.IO2 54.169 21.139

7o° 74.184 11.764 73-734 14.317 11.764.

8o° + 5.227 -.870 - 5.298 .052 -f 0.870

90° - 58.800 + 9-939 + 58.800 9-939 - 9-939

IOO° 115.587 19.234 I IO.491 38.581 19.234

IIO° I03-775 25.972 i45-OI 5 80.420 25.972

120° 202.920 29-593 160.938 127.088 29.593

i3o° 233-357 30.032 I59-458 I73-005 30.032

140° 255-963 27.581 143.402 213.807 27.581

i 5o° 271.880 22.738 116.249 246.827 22.738

i6o° 282.234 16.109 8i.393 270.723 16.109

170 288.036 + 8.339 + 41.803 285.I08 - 8-339

180 - 289.896 .000 .000 + 289.896 .000

Thus far we have neglected the weight of the rod in producing

pressure on the crank pin and wrist pin, but this can readily be

taken into account. By referring to equations (4) and (6), we

see that the effect of this is to add a constant positive quantity

— M'g to QJ, and a constant positive quantity —— M'g to P
y

'.

The effects on the crank pin and guides will be equal and oppo-

v
site to these, or we will add constant negative quantities — M'g

L — r
and —-

—

M'g to (<2/) an(^ (^V)* No change will be produced

in (<2x')- The values of (Q¥
') and (Py), however, change sign in
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passing the dead points, while the pressure due to the weight of

the rod is constantly downward. Hence these two values, when

corrected for the weight of the rod, will be different in the two

semirevolutions above and below the axis of X. Likewise the

value of (7*') will be affected to the extent of having the term

—yM'g cos added. Plate IX shows these various corrected

curves. The correction to be applied to (PJ) could be shown,

if required, in Plate III, by a straight line whose ordinates

would be subtracted from those of Curve No. 3, and in the same

way the weight of the cross-head might be taken into account in

Plate V.

The above analysis is exact and complete, but simpler approxi-

mate formulae can be deduced from them, which in most cases

will give results sufficiently close. These approximations will be

taken up under the special cases to which they apply.

B. Applications

(a) The Fly-wheel

We have seen that the tangential force at the crank pin, or the

turning effort, is far from constant. In fact, it is necessarily zero

at the two dead points, and for a single crank reaches a maximum
somewhere before the 90 position. Hence, in order to secure an

approximately constant value of the angular velocity, we must

provide some reservoir of energy in the shape of a large mass

rotating with the main shaft. This is realized in the fly-wheel.

Let H'bTeC (Fig. 180) be the curve of tangential forces or turn-

ing moments of a steam-engine. This is the sum of all such

forces, due both to steam and inertia. Let Tm be the mean
turning effort found by means of a planimeter. Then

• Area (b Te) = Area (B'at) + Area ( Cde)

.

The ordinate Tm also represents the net resistances to turning due

to the pull on the belt and to friction reduced to a lever arm
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equal to the crank throw. Suppose the crank pin to be travelling

from H' toward C. Then while moving from E/' to B the engine

will be slowing down, as the tangential force on the crank pin is

less than the mean tangential force or belt pull. But at B the

forces are equal, and beyond B the engine is speeding up ; hence

the minimum velocity of the crank pin is at B. The engine then

speeds up till E is reached, and hence at E occurs the maximum
velocity of the crank. Again the engine slows down, and the

minimum occurs again at B. While the crank is passing from B
to E, the total work done by the tangential force is proportional

Fig. 180

to the area BbTeE. But of this work the belt takes out energy

proportional to the rectangle BbeE. Hence the area bTe is pro-

portional to the excess of energy which the engine puts in over

what the belt takes out, and must be represented as change of

kinetic energy in the rotating fly-wheel due to change in speed

between B and E. Call this area AE ft. lbs.

Let vx and v2 be the greatest and least velocities of the rim of

the fly-wheel allowable during one stroke of the engine. Let Ex

and E2 be the energies stored up in the rim at these velocities.

Then

Ex
= W

2g

and £i

E2 = W V-^
2g

E2 = AE = ^(v1
2

2g

(very nearly),

vi).
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1

If v be the mean velocity of the rim (as given by a speed counter),

then, since vx and v2 are very nearly equal, the value of v will be

given nearly enough by

« ?
'i + v*

2

Also call S the Coefficient of Fluctuation of speed, where

3 _ i\ — Vi
t

V

Now factoring the expression for &E we get

A£ = (Vl + 7'
2) (^ - »2)-- - —— -

If the diagram of turning efforts is drawn accurately to scale,

&.E can be measured by means of a planimeter, and expressed in

foot-pounds. Hence 8, the coefficient of fluctuation, can be calcu-

lated, or if S be assumed, the weight of rim necessary to preserve

this fluctuation at the given speed of rim becomes known.

Fig. 181

If two or more cylinders are working on the same shaft, the

turning efforts must be combined into a single diagram. Where

the pistons work on one rod and crank, the phases of the turning

efforts are identical, and the ordinates of the curves of each cylin-

der are merely added for each position of the crank, as in Fig. 181.

Where two pistons work on different cranks at 180 apart, the

effect is practically the same only that the turning effort of the

R
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head end of one cylinder is to be combined with that of the crank

end of the other. In both of these cases it will be seen that the

double cylinder presents no superiority so far as speed fluctuation

is concerned over the single. If, however, the two cranks are at

90 , the phases are not identical, and the maximum turning effort

of one cylinder comes very nearly when that of the other is zero.

The resulting curve of turning efforts is therefore much smoother

Fig. 182

than for zero or 180 cranks, and the result will be something

like Fig. 182. The magnitude of 8 will be greatly reduced, and

hence a much lighter fly-wheel will be needed. For three cylin-

ders working at 120 the turning effort is still more uniform.

Having the curve of total tangential forces, we can construct an

approximate curve of tangential velocity of the fly-wheel by a pro-

cess of mechanical integration. From the preceding we have

approximately

v1 = v[i +

v9 = v[ I —

Hence knowing v and 8, the extreme speeds v1 and v2 can be cal-

culated, and laid off at B and E (Fig. 183). Now draw an ordi-

nate at X at a small distance beyond B, writing the equation of

energy between B and X,

2 2

W^ + (Area xx'd) = ^—

•

2g 2g
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From which

z/x =yvi +
2,g-(Area xx'fi)

W
Similarly at point Y,

V
2 . 2P-(Area xx'yy')

and so on. Thus we can obtain the velocity at each point along

the crank orbit, and a curve of velocities can be drawn in as

shown along the mean velocity as an axis of X.

YXB
Fig. 183

Having obtained the velocity curve, the curve of space variation

can be laid in by similar means, as shown in Fig. 184. Divide

up the velocity curve by means of a number of ordinates spaced

at equal small distances along I/"C", the semicircumference of

the fly-wheel rim. Take one of these ordinates at A, the point of

minimum velocity, v2 (or at the point of maximum velocity, v^).

If we consider another equal wheel rotating about the same axis,

* The areas are, of course, expressed in foot-pounds.
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and at the mean velocity v, we can study the space variation of

the actual wheel with reference to axes fixed in this imaginary one.*

Now consider a point in each of these wheels which when at A
are coincident. Call the small distance AB, As. The time re-

quired for the mean velocity wheel to cover this distance will be

A/= As

Fig. 184

d c B XA

v being constant. But during this same interval of time the actual

wheel has covered a distance equal to

As' = v' • At,

As'
or At=

v' being the average velocity of the wheel throughout the interval

As, which will be very nearly xx, the ordinate of the velocity

curve midway between A and B. Hence,

As' = - A*,
v

* Strictly, we should obtain a new and exact value of v by getting the

average ordinate of the velocity curve.
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and the distance that the actual wheel is behind the mean velocity

wheel at B will be

s1 = As'-As = As(V--

Choosing now two points which are coincident at B, we can find

in the same way the distance that the actual wheel falls behind the

mean velocity wheel during the next interval As or BC. It will

be

As" -As = As(—-i\

and the total space displacement between A and C will be the

sum of these, or

s2 = As
[

—! — 2

and so on. These ordinates, slf s2, s8, etc., laid off with regard to

their proper sign, constitute the space variation curve. It will be

noticed that the actual wheel will be falling behind the mean

velocity wheel whenever the velocity curve is below the mean axis,

but will be gaining on it when above. Hence a check on the work

consists in a closure of the space curve at A again.

Each step in the above deduction consists of a graphical method

of forming a curve which is the integral of a previous periodic

curve. The curve of turning efforts is a periodic acceleration

curve, and from it a periodic velocity curve is obtained by a pro-

cess of graphical integration ; and from this a space curve is

obtained by a similar means. It will be noticed also that the first

or acceleration curve is quite irregular in outline, or departs in a

marked way from a simple sine curve. The velocity curve is

more nearly a pure sine curve, and the space curve still more

nearly a simple harmonic. Furthermore it can be shown mathe-

matically that curves formed by successive integrations from a

complex harmonic, expressed as a Fourier's Series, approach

indefinitely toward the fundamental harmonic as a limit. Advan-

tage can be taken of this fact to form an approximate analytic

expression for the space variation curve, and thus save the great
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amount of labor necessary in the graphical method. To do this

consider the velocity curve a simple harmonic function of the

time. Denote the relative velocity of the actual and mean veloc-

ity wheels by w, where
w' == v' — V.

Then by the preceding approximation,

w = wmax sin Kt,

K being a constant, and z£/max is a known quantity, being equal to

v-. The time required for a point on the wheel to cover one
2 s

complete period of the curve is — seconds. Hence our equation

is

8 . irNt dsw = v - sin =—j

2 15 dt

v\Si

irNt ,.
sin dt.

15

and the equation of the space curve is

8 15 irNt r „
s == — v ^ cos \-\C = o.

2 TvN 15
L

The maximum values of the space variation will be

8 15
s™*- ±z'

27rN
>

7V in every case being the number of revolutions per minute.

27rJV
If expressed in terms of angular measure, s= aR, and v=R

60
'

where R is the radius of the fly-wheel. Hence,

8 tvNt
a = — - cos ,

4 15

and «max = ± -
4

If the angle is measured in degrees,

<ax = i4°-3 24S.

The labor of constructing the exact curve of turning efforts may

be greatly abridged by making an approximation to the value of
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the inertia effect. In fact, the exact value is useless in connec-

tion with fly-wheel work, as the irregularities and wide variations

in the steam effect are so great as to utterly mask any small error

due to this approximation. We may consider, then, that a portion

of the connecting rod equivalent to one half of its total mass is

concentrated at the cross-head, and merely compute the tangential

force due to (M"+ \M }

) px . Furthermore, no great error will be

committed if we consider px as a simple harmonic accelera-

tion, in which case

px = — /<o
2 cos 0,

and since then (T) = (M" + \M<)

p

x sin 0,

we will have (T)=-l ^ 2

J

/<o
2
sin 2 6.

The use of these formulae can best be illustrated by applying

them to a specific example. Consider the curve of turning

moments of the small 6x8 horizontal engine before mentioned.

In Plate X are shown the total steam and back pressure lines of

one forward stroke of the engine, deduced from the actual indi-

cator card. Resolving the total horizontal force by the graphical

method into its components at the crank pin, we obtain the curve

of turning moments due to steam. Adding to this the curve of

tangential accelerative forces already obtained in Plate VII, or as

calculated more approximately from the preceding paragraph, we

get the curve of net turning efforts (Plate XI). These are drawn

on a scale of 1" = 1000 lbs. The mean turning effort is Tm = 692

lbs., from which A£ = 293 ft. lbs. If the weight of the fly-wheel

rim be 195 lbs., and its diameter be 30 in., we have, at 300 revo-

lutions per minute,
# = 39.270 ft. per sec,

A£ X 32.2
d = -r^- ^=.03191,

195 x(39-27) 2

or 3.2%. We also have

;

1 +
-J
= 39.896,

and v2= v[i ] = 38.646 ft. per sec.
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Now forming the equation of energy at each io° of the fly-

wheel semicircumference, we get the velocity at each of these

points, and the final result is shown in Plate XII.

Again measuring the velocity at the middle of each io° interval,

and calculating the space variation, we get the space curve,

also shown on Plate XII. It will be noticed that the mean of the

two maximum values of s is

W = .01004 ft.,

and the maximum angular variation will be

«°max = .45 84°

on each side of the mean.

Applying the approximate formula based on the supposition

that the velocity is a simple harmonic function of the time,

we have

8 15 1
Sm„ =V v*= 30.27 X .Ol^oq X

1 TTiV
-39 * 27 X -OI 595 x—=.009972 ft.,

and 14.3248=4576°.

The difference is seen to be very small, in fact much less than

experimental errors.

(b) Counterbalancing

In the problem of counterbalancing we generally attempt to find

what mass placed at a fixed position opposite the crank will most

nearly counteract certain components of the forces acting on the

shaft in the direction of the crank throw. These forces will be

due to two causes : ( 1 ) to the unbalanced mass of the crank

itself, and (2) to normal components of the forces due to the

inertia of the reciprocating parts.

We will first ascertain the counterbalance required for the crank

alone. Since the only force exerted by the unbalanced crank is

in the direction of the normal to the crank circle, and is constant

in magnitude, its effect may be completely counterbalanced by a

mass placed opposite the centre of the crank pin. This, of course,
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is not possible in all cases, but can be realized in the case of a

centre crank engine by placing one-half of the counterbalancing

weight on each crank arm. If MQ is the mass of the unbalanced

part of the crank, and s is the distance of the centre of mass of

this part from the centre of rotation ; and if Mx is the mass of the

counterbalance, and s1 is the distance of its centre of mass from

the centre of rotation, then

M s a>
2 = Mis^2

, M^M^-, or Mx =M % . (1 8)

when sx is equal to the crank throw. This balance will evidently

exist for all speeds.

On considering the effect of the reciprocating parts it will be

seen from a simple inspection of the variable magnitude of the

total normal component as exhibited in Curve No. 1 (Plate VII),

that no fixed counterbalance can even approximately reduce the

effect to zero. However, it may be of importance to counter-

balance, if possible, certain components of the forces acting at the

crank pin. For example, let us see how nearly we can counter-

balance the total vertical component at the crank pin due to iner-

tia, viz. y — { Qy), by means of a mass placed opposite to and

rotating with the crank.* IfM2 is the mass of this counterbalance,

and s2 the distance of its centre of mass from the centre of rota-

tion, its total normal force will be M2s2<n
2
, and the vertical compo-

nent of this will be — M^^ya2 sin 6, which is directly opposed to

the vertical component of the inertia effect. This can be repre-

sented by a simple harmonic curve of semi-period equal to it, and

of amplitude M2s2w
2

. It will of course reach its maximum value

at = 90 . As opposed to this is the complex harmonic curve

No. 2 of Plate VI. Evidently these cannot completely neutral-

ize one another, but we may find a value ofM2s2 which will reduce

the unbalanced component remaining to a minimum value. The

* It is readily seen that the vertical component due to steam is, in general,

continually in one direction, and therefore cannot be balanced ; while the

horizontal component due to steam balances itself against the cylinder head.
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equation of our complex harmonic curve is (from equations Nos.

n, 14, and 16)

j=KG/>+(G")

Zcosadt2 Ldt1 L dt2 df v yy

Substitution gives

—

7

;zw
2
(i — n2

) sin li/r} r2
9 . ^

y = - *-— f— M' — n<D~ siny £{1 -n2 sin2 0)
2 L

±L—t-M'l -/o)2 cos(9
L

I

nw2(/— fir) (cos 2 + ft
2
sin

4
0) (— n sin 0)

(i-/*2
sin

2 0)2 Vi-/r'sin2

r

+ J/"<! -/co2 COS0

/nw2 (cos 2 + ^2
sin4 0) (— ^ sin 0)

(i-n2
sin

2 0)% Vi-^2
sin

2

}

(20)

It is evidently impossible to counterbalance, even approximately,

any terms in the above equation except those which have a semi-

period equal to ir. Let us examine, then, each term separately,

rejecting those which have a semi-period less than tr. The first

term is

Kx sin

*- (i-«2
sin

2
0)

2'

Kx being a constant. In this term the denominator is practically

unity for all values of 0, varying between unity and .9724 when

n is equal to \. Its effect, therefore, will be insignificant in modify-

ing the numerator whose semi-period is it. The second term is

y2
= K2 sin 0,

and this has a semi-period ir. The third term may be broken up

into three, which can be written

~ , cos sin . «. ,, cos 2 sin . ~ „,
^3 = ^-3 1-^-3 7 —T~. 2n\2^~ K z

sin
5

Vi-/z2 sin2 (i-«2
sin

2
0)

2 (i-«2
sin

2
0)
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1

Of these, the term whose coefficient is Xs
' has a semi-period of

-, since the denominator is practically unity ; that whose coeffi-
2

7T

cient is Xs
" has a semi-period- ; while the last has a semi-period

ir. But the value of the coefficient K% u
is so small in any prac-

tical case that we are justified in rejecting all three of the terms.

The same applies to the fourth term of equation No. 20. Hence

the only terms which we can expect to counterbalance are

L {(i-;rsin2
0)

2

J

V ;

and these must approximate to M^^o2
sin 6. The best value, then,

for this counterbalance would be that which gave at its maximum

ordinate (viz. at 9 = 90 ) a result equal and opposite to that ob-

tained by putting = 90 in equation No. 21. Hence,

M2s2
^ =^\-^-2

+ M'A. . . (22)

Or the mass of the counterbalance will be

M2 = ^-\-^- + M'r*'
s2L { 1 — tr

j

In our case M2 is found to be .3438, and its weight is 11.07 lbs.,

when s2 is taken equal to /.

The results of using this counterbalance are seen in Plate XIII.

The difference between the vertical components of the recipro-

cating parts and of the counterbalance is shown in Curve No. 1.

This sums up all the more important higher harmonics rejected in

the above method. It has in general a semi-period -, but by no
2

change in the mass of the counterbalance could its effect be appre-

ciably diminished. This counterbalance will also have an effect

* Still more approximately, when we neglect I — n2
,

Mo=—{f +M>r2
}.

s2JL
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in diminishing, to a small extent, the horizontal component as

shown.

If we wish to counterbalance the horizontal component, a similar

method must be pursued. Here

y^(Qx) = (QJ) + (UJ') =M>^+M"^, . . (23)

y = A/' { - /V cos 6 - nv?V- nr) (cos 2 ° + ** sin4 0)
1

I (i-/z2
sin

2 0)* J

, i^ff f 72 /i
^

a

2 (cos 2 + 7z
2
sin

4
0) 1 , v+ J/" j — /or cos 6 v — '-\- . (24)

I (i-/z2
sin

2 0)* J

In this equation the term

cos 2
y\ = K±

(i-n2 sm2 6)*

has a semi-period -, as has the term

r sin
4

ys =x5 -,

(i-;*2
sin

2 0)*

also. Hence these must be rejected, an 1 the counterbalance,

whose horizontal component is

M3sS'd
2 cos 6,

must approximate to

(M' + M")fco2 cosO.

These agree exactly for all values of and for all speeds when

M3 = (M'+ M")->

In our case Mz is found to be 1.7888, and its weight is 57.6 lbs.

when s% is taken equal to the crank throw /. The effect of this

counterbalance is to almost entirely neutralize the horizontal com-

ponent as shown in Curve No. 1 (Plate XIV) but it very much

overbalances the vertical component Curve No. 2.
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The problem of counterbalancing, then, is one which cannot be

given a general solution, but each individual case must be worked

out to best suit the existing conditions. The case of the loco-

motive may be cited as one where the balancing of the vertical

component is important. In certain paddle-wheel ferry-boats with

single horizontal engines, the unbalanced horizontal component is

so great as to cause an oscillation of the whole boat backward and

forward referred to its mean velocity. In some cases the counter-

balance might be taken to average up the total normal component,

which gives in our case a weight of 33.95 lbs. at a distance equal

to the crank throw from the centre. This is very nearly the mean

of the other two.

In conclusion will be given some results for a large passenger

locomotive. The engine examined is one in regular service on

the road of the Southern Pacific Co., and the following dimensions

were obtained through the courtesy of the railroad officials at the

West Oakland shops :

Type, CW.Southern Pacific Locomotive No. 1436

Total weight of engine .

Weight of drivers ....
Diameter of cylinders

Stroke

IV' = weight of connecting rod

IV" = weight of piston and cross-head

JV'" = weight of side rod

/= throw of crank .

L — length of connecting rod

/
n = —

L
D = diameter of drivers

JV= revolutions per minute, at 60 miles an hour

w = radians per second, at 60 miles an hour

r= distance of centre of mass of rod from centre

of wrist pin ....
I = moment of inertia of rod about G

131,400 lbs.

85,850 lbs.

20 in.

24 in.

549 lbs -

507 lbs.

275 lbs.

1 ft.

8. 1 1 94 ft.

.12316

6.0000 ft.

280.1

29-333

5.0903 ft.

171.81
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The last two dimensions were obtained by swinging the rod as

a pendulum, and it was observed to make 40.50 vibrations per

minute when suspended from the wrist-pin end, and 43.0 vibrations

when reversed.

In the discussion of this case a new member appears ; namely,

the side rod. The effect of this is easily seen, however. Since its

centre of mass, which as nearly as could be determined was at the

middle point of a line connecting the centre of its bearings, travels

uniformly in a circle relatively to the locomotive, the force neces-

sary to maintain this path will be directed toward the centre of

this circle and will be equal to — M"'/uj2
, where M'" is the

mass of the side rod. The horizontal component of this force

will be QJ" = — M/u)2 cos 0, and the vertical component will be

QJ" = —MhJ sin 0. The forces active on the two crank pins will

each be equal to one-half of this, and will be opposite in sign.

Hence,

(T'") = °,

(A-»<) =^.
In Table No. 4 are given values of total horizontal force at the

crank pin of the forward driver, or

and of the total vertical force,

(&) = (&') + (ft")+ (&'")•

The curves of Plate XV show graphically the same thing. They

are of form similar to those obtained for the 6 X 8 engine, but

the irregularities are even less, this being due to the smaller

value of 11. They are interesting as showing the enormous magni-

tude of these forces in a high-speed locomotive. They all increase,
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TABLE No. 4

Horizontal Unbalanced Vertical Unbalanced

e ((?*) Component Horizontal (&) Component Vertical

of Counter Component of Counter Component

o° + 34666 -H717 + 22949 O O O

IO° 34047 "539 22508 + 1574 -2035 — 461

20° 32084 IIOIO 21074 3170 4007 831

3o° 29025 10147 18878 4749 5858 1 109

40 24954 8976 15978 6324 7531 1207

5o° 20024 7531 12493 7838 8976 II38

6o° 14572 5858 8714 9244 IOI47 903

7o° 8770 4007 4763 10460 IIOIO 550

8o° + 2895 -2035 + 760 1 1408 "539 - 131

90 -2796 -2796 1 201

1

11717 + 294

IOO° 8164 + 2035 6126 12213 "539 674

IIO° 13045 4007 9038 11977 IIOIO 967

I20° 17273 5858 "415 11281 10147 "34
I30° 20975 753i 13444 10158 8976 1182

I40° 23934 8976 14958 8642 753i mi
I5O 26213 10147 16066 6785 5858 927

160 27829 IIOIO 16819 4664 4007 657

170 28815 "539 17276 + 2376 -2035 + 341

180 -29117 + 11717 - 17400

of course, with the square of the speed. The counterbalance neces-

sary for the reduction of the vertical component to a minimum
can also be calculated, remembering that the effect of the side

rod must be taken into account. Hence we have

M9 =
SoL 1 1 — nr

J
2 s2

and if s2 is taken equal to the crank throw, M2 becomes 13.61,

and its weight is 438.49 lbs. The result of using this counter-

balance on the forward driver is seen in Plate XV, where the

unbalanced vertical component is shown in Curve No. 1. This

unbalanced force reaches a maximum of between 1 100 and 1 200 lbs.

In addition to this weight must be added another sufficient to
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balance the crank pin, etc. As nearly as could be determined

by measurement of volumes this weight would amount to 267 lbs.,

or the total counterbalance would be about 705 lbs., if the vertical

component alone were to be balanced. The weight added to

balance the crank would, of course, affect in no way the values of

Curve No. 1 of Plate XIII. The counterbalance for the rear

driver, when placed at a distance / from the centre of this driver,

would have a mass equal to merely

M'"
2

or, as nearly as the weight of the crank pin, etc., of the rear driver

could be determined, the weight of the rear counterbalance would

be 202 lbs. This counterbalance would exactly neutralize all com-

ponents on the rear driver.

3. GOVERNORS

The governor is intended to regulate variations in speed extend-

ing over longer intervals of time than can be kept within proper

limits by the fly-wheel. It may act by opening and closing a

throttle valve, thus varying the work by varying the initial pressure,

the cut-off remaining constant. Or it may vary the cut-off, the

initial pressure remaining constant.

A. The Fly-ball Governor

The oldest form of governor is the fly-ball, invented by Huygens,

and used first on the steam-engine by James Watt. The theory

of the arrangement is simple. The ball at B (Fig. 185), at the

extremity of the arm CB, revolves about the axis CD, and is

hinged at C. When equilibrium is attained, the resultant force

acting on B must be in the direction CB. Let this force be P.

Then

g h
tan a=^-2

=—

,

g.4
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We see that w varies as v
const

, but h is not a constant, hence

cannot be constant. The fly-ball governor is therefore static or

stable. That is to say, if it is rotated at a constant angular

velocity, it will take

up a certain definite

position, and if dis-

turbed from that po-

sition, will return to

it when the disturb-

ing force is removed.

It is evident, there-

fore, that we must

use some other curve

than the circle if the

governor is to be

astatic or neutral. Let

DBE (Fig. 186) be

the required curve. If the ball is to be in equilibrium, we must

have the resultant force in the direction of the normal to the curve.

MRu*

Fig. 185

tana
g

dy,

dx

**= 2
4y-

This is the equa-

tion of a parabola.

We also have

tana=f
h

or a) •4-

Hence, if <o is to

be constant, h

must be constant,
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which is true in the case of the parabola. The parabolic governor

is approximated in practice by hinging the arm at the centre of

curvature C of the working arc of the parabola. This always lies

on the opposite side of the axis, and therefore the arms must

cross. For very fine work such governors are much used, as in

the driving clocks of telescopes.

A governor always has a certain amount of work to do in open-

ing the throttle or in moving the valve gear. Suppose the gover-

nor is running at a certain speed <o, at which it is in equilibrium.

Now let the speed increase to a value w1 such that ^ = Km. The
unbalanced radial force exerted by the weight will be

MR{^ - a)
2
) = MRo>\

K

2 - 1 ) = P\

For a given ratio of increase in speed it is seen that the force ex-

erted varies as the square of the speed. Hence the faster the

governor is run the more sensitive it becomes, as a smaller percen-

tage of variation of speed will cause it to overcome the frictional

drag of the moving parts. The increased effect of centrifugal

force due to this higher speed can be counteracted by a weight

whose centre of mass lies in the axis, or by a spring.

B. Shaft Governors

In many types of slow-speed and in some types of high-speed

engines the fly-ball governor has been made to actuate an auto-

matic cut-off. But in most high-speed engines the heavy load

thrown upon the governor is an objection to its use. A far more

powerful governor is needed, and this is usually located in the main

axis of rotation of the engine. The shaft governor is arranged in

such a way that gravity has no effect upon it, and we substitute

some other returning force which varies according to the same law

as that due to the normal acceleration of the rotating parts. This

can be realized by the use of the helical spring. Before discussing

the arrangement of such governors we must look into the theory

of the helical spring.
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Law of the Helical Spring. — Let RQS (Fig. 187) represent

one- half of a turn of the spring, the sections at R and at S being

made by a plane

passing through the

axis of the helix.

Let AB be a fixed

diameter of the sec-

tion R parallel to

the axis, and CD
a similar diameter

in the section S.

Now suppose also

that the line AB is

fixed in space. Let

a force P be ap-

plied at the centre

S as shown, the line

CD being free to

move. The whole

will now take up

the position RS\ and CD will take up the position CD'. There

will be bending and also a certain amount of torsion along

RS'. Suppose now that CD, instead of being free to move,

is constrained to remain parallel to its original position. This

must be the case in the helical spring, for if it were not, CD
would twist more with respect to one section than with respect to

the next equal section. This can be realized by applying P at the

centre or axis of the helix as in Fig. 188. There will now be

an additional bending moment along S'R equal and opposite to

the first one, and also an equal amount of torsion in the same

direction. Hence the bending moments tend to neutralize one

another, while the torsions add their effects. But the same is true

of every section of the spring ; so if the spring be long in propor-

tion to its diameter, there will be no bending at all, but only uni-

form torsion along the wire. Hence we treat the helical spring as

a problem in pure torsion. Consider a bar subject to torsion by a
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force P being applied at the extremity of a lever arm a. If r is

the radius of the bar, / its length, and the angle through which
the moment Pa twists it, we have from Strength of Materials,

Pa = E - —

,

/ 2

where E is the coefficient of elasticity of the material. Now in the

helical spring let rx equal the radius of the helix, r the radius of

Fig. 188

the wire, and n the number of turns of the helix. If e is the elon-

gation of the spring for full P, then

a = r1}

since the force acts through the axis of the helix. Also when the

deflection is small as compared with rlt

6= e
-,

as then a =—, and 0=2 a. (See Fig. 188.) Finally,

/= 2 TT1\1I.
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I

Substituting these in the equation for torsion,

Prx — E
rx X 2 -nrxn X 2

Pr* 4 tt/z ?'!
3 4 n

Hence, e =—^

—

r- =P——

Let ^ = O, where C is the ratio of the diameter of the helix

to that of the wire.
CV 3

4 /zP

{-.

Er )

Csn
j

So we see that the elongation of the spring varies directly with the

pull. K is called the constant of the spring. If P is measured in

pounds and e in inches, K is that number of pounds necessary to

stretch the spring one inch.

Forces Active in the Shaft Governor.— Let O (Fig. 189) be

the axis of rotation of the main shaft about which the wheel rotates

at an angular velocity w. Let the mass whose centre of mass is at

G be pivoted to the wheel at Q. Let us consider the forces caus-

ing moments about Q.

1. Centrifugal Eorce.— This is the force due to the change in

direction of the velocity u of the centre of mass. Its magnitude

will be
P=MPJ

)

and its direction will be radial. Its moment about Q will be

Ph =MRM.
Llence if Q lies on OG, the moment will reduce to zero. Per-

manent change in angular velocity or in radius will permanently

change the magnitude of this force.

2. Tangential Accelerative Force.— This is due to change in

the magnitude of the velocity u of the centre of mass, resulting

from rotation about Q. Its magnitude will be

P' =M dA
dt
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and its direction will be at right angles to OG. The moment

about <2 will be

P'y= My du

~di

Hence if G lies anywhere on a circle drawn on OQ as a diameter,

the moment will be zero, and if Q lies at O it will have no exist-

ence. So long as R is constant, it will have no existence, and

permanent change in to and R will not affect it.

Fig. 189

3. Angular Accelerative Moment. — This moment is due to

change in angular velocity w. The moment will be

Moment = I,

dt2

'

Its effect will be felt no matter where Q and G may be. So long

as co remains constant it will have no existence, hence permanent

change in o> and R will not affect it.

Of these three force moments, the first is the most important,

as being the necessary result of a permanent change in speed.
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We will consider its effect at some length, and calculate its varia-

tions with considerable care. In this case it will be best to begin

with the simplest possible arrangement, and proceed to more com-

plex conditions as the theory is developed.

Centrifugal Force and Moment.— The simplest or ideal case of

the shaft governor is shown in Fig. 190. O is the centre of

rotation, and the weight G moves with its centre of mass on a

radius. A spring is attached to the centre of mass G, and to a

Fig. 190

diametrically opposite point on the rim of the wheel. When the

whole is rotated about O, the centrifugal force of the weight and

the pull of the spring are directly opposed. The outward force is

W
g

P1 = —Ru? %

and the inward force is

P* = Ke.

If these are to be in equilibrium,

W
g
Ru2 = Ke,
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and if this equilibrium is to be maintained for every value of R,
W

while co remains constant, then, since — o>
2= const, and K= const,

e must be equal to R, since on no other condition could the equa-

tion be universally satisfied. Then ifR = o, e = o, or if the cen-

tre of mass G were to move in to O, the tension on the spring

and the centrifugal force would vanish simultaneously. Such a

governor would be perfectly astatic, and if the whole were bal-

anced with an equal and similarly situated weight on the opposite

side of O, and connected to the first by some form of kinematic

chain, we would have the ideal case satisfied. It is readily seen

that in this case

K
g

from which r can be calculated by

4 CznK
r=—E->

when E is known.

In a governor so proportioned, the spring is said to have its

" full theoretic tension." Practically we can never have this exact

equilibrium of forces, as the inertia of the heavy masses causes a

racing or " hunting " action. We must therefore give some stabil-

ity to the governor by employing less than this full tension. Let

us call the forces acting outward from the centre of rotation posi-

tive (+ ), while those which act inward toward the centre are

negative ( — ). If the weight could move inward till its centre of

mass coincided with O, the elongation which the spring would

still retain we shall call e . If there is tension at this point, e will

be negative, and the force due to <? will be negative. If the ten-

sion vanishes before we reach this point, and there is compression

at the centre, then are eQ and the force due to it positive. For

any position of the weight,

e=R — <? .

Now the outward force acting on the weight is

P1 =+MRo>\
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and if we plot a curve between J\ as ordinate, and R as abscissa,

we will have a straight line through the origin, inclined at an angle

whose tangent is Mm2 with the axis of R. The inward force act-

ing on the weight is

P2=-X(R-eQ).

This is also the equation of a straight line, which cuts the /'-axis

at a distance KeQ from the origin. Suppose that when R = Rlf

P1
— — P2, and that e = ( + ) . Then our lines will be as shown in

Fig. 191, where AB = AC. Call P— Px + P2, then /> is any un-

balanced force acting on the weight. The line EAF will show by

+^0

+p

^^%urC imfi~~
:— ___

B

B

A D 4

-P

G

J

\ F

?2

Fig. 191

its ordinates the magnitude and direction of P. At A, P=o, but

any positive change or increase in R will cause a negative value of

P. Likewise a decrease in R will cause a positive value of P. In

other words, any change in R will cause a value of P which will

oppose, the change, or the governor is stable. In all engines an

increase in R must cause a shutting off of steam. Hence, if by

throwing off load R increases to OD, then in order to maintain

equilibrium DJ must equal DH, or the speed must increase to a

value wj, where

angle HOD = tanM^2
.
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When e is positive, therefore, the engine will run faster on light

load than on heavy load, but the governor will be stable in every

position. The amount of change in velocity between no load and

full load can be made as small as we please by decreasing eQi but

by doing so the stability of the governor is sacrificed. If e = o,

the engine would run at the same speed at all loads, but the gov-

ernor would be in neutral equilibrium, and of no practical use.

If, however, e is negative, <? = (— ), then our lines will be as in

Fig. 192. Here P1AF1 is the line showing the magnitude and

direction of P. Any increase in R in this case gives a positive

Fig. 192

value of P, and a decrease gives a negative value, or any change

in R causes a value of P which assists the change. Hence the

governor is unstable. If for any reason the weight be disturbed

from its position of equilibrium at A, it will rush to its extreme

position, say at Z>2 > The engine must now decrease in speed till

D2H2 is equal to D2J2 , or till

angle H2OD2 = tan
- x Mw2

2
.

The slightest disturbance at this point will cause the weight to

rush to its extreme inner position at Z>lf and now the speed must

increase till D1H1 is equal to Z>lm/lt or till

angle HxOD1
= tan

- 1 M^2
,
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The engine will fluctuate violently in speed therefore between the

limits.

=\/— I 1 -] (minimum),0)2 -MV R2

and Wl=z
\lw \

l
~J?) (

maximum )'

where RY and R2 are the limits of the motion of the weight.

The value of e must, therefore, always be positive. That is to

say, the tension on the spring must vanish before G reaches O, or

the engine must run faster on light than on heavy load.*

In the governor of Fig. 190 suppose we assume a reasonable

range of speed fluctuation, say inx at no load, and o>2 at full load.

From the valve gear design we know the values of R correspond-

ing to these loads, or the extreme limits of the weights' motion.

Let these be R1 and R2 . Then we have

W— R1u^ = Ke1 (I)

~R^i^Ke2 (II)

Subtraction gives

W— (Ri^i — i?2°v) = -K{?\ — ez) •

But e1—e2=R1
—R2.

Hence,

W— (R1a>1
2-R2a>2

2
) = R(R1-R2) . . . (Ill)

and KJ^\^l- (IV)

This gives us the constant of the spring.

Equation III gives us the relation between the various quantities

for two definite positions Rx and R2 . Now if we substitute R for

* Professor John Barr has used a diagram similar to the above. See Sibley,

Journal ofEngineering, 1896.
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R2, and <o for w2 , where ^ and w are any position and angular

velocity, we get the general relation between R and o>>

W— (jW - R«?) = K{RX
- R)

,

o

Kg
W
<*-*)

(V)

We have seen that if the governor is to be stable, e must be posi-

tive, which means that the engine must run faster on light load

than on full load, or the angular velocity must increase with an

increase in R. Hence if we plot a curve which shows the rela-

T

t ^ ^

—

ij ,.2

1 7
°2 u

t

/ il3 1*i X

Fig. 193

tion between w (or w2
) and R, this curve must constantly ascend

as we pass to the right of the origin. So long as this is the case,

the governor is stable, but if in any part the curve falls off as we

pass to the right, then will the governor race over that portion.

Equation V gives us the relation between co and R for the ideal
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case of a shaft governor. Taking w2
as the dependent variable,

this equation is of the form

b
y = a •

It is the equation of a rectangular hyperbola, having x =0 and

y = a for its asymptotes (Fig. 193). Hence the curve will always

ascend as we pass to the right, provided -^ > u^
2
, which is true

when <? = ( + ). Care should be taken not to use the curve too

far to the right, or too near its asymptote y = a, otherwise the

governor will not have sufficient stability.

It is of interest to note that if e =o, the hyperbola becomes a

pair of straight lines, and o>
2 = a = -yp, which is constant. If e is

negative, we have the hyperbola conjugate to y — a , and this

will continually fall off as we pass to the right. It is impossible

to use the negative

branch of the hyper-

bola, as the angular

velocities become

imaginary.

The case shown

in Fig. 190 is not

adapted for a prac-

tical design. It is

difficult to have the

spring cross the

shaft, to say noth-

ing of the interfer-

ence of two springs

and weights as soon

as another is intro-

duced. A more prac-

tical arrangement is shown in Fig. 194. If the weights GG do

not move through too great a range, we may consider their paths

Fig. 194
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as approximately radii, and work out our design exactly as in the

preceding case. The result may be close enough in many in-

stances. The moment about Q due to centrifugal force is

MRM,

and the moment due to the returning force of the spring is

Kea.

Hence, MRx^b = Kela, (I)

MR2 2̂
2b = Ke2a. . (II)

Subtraction gives

W— b(R^2 - R2w2
2
) = Ka (>! - e2) .

o

But b fo — e2) = a (R±
— R2) ,

W a— b(R1<»1
2-R2a>2

2
) = Xa(e1 -e2)-, . . . (Ill)

o

^^'~y, . . (iv)
g cr R1

— R2

where R1 and R2 , and o^ and w2 are the extreme values of the ra-

dius and angular velocity.

If finally we substitute R for R2, and o> for w2, these being any

corresponding values of radius and angular velocity,

W— F\RX^ - Ra>2
) = Ka2(Rx

- R),
o

, Kg a*
Al \WF-~ mi

CO —
IV b2 R

(IV)

And this is the equation of a rectangular hyperbola between <o
2

and R.

If close regulation is to be attained, the fact that the weight
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does not move on a radius, but on the arc of a circle must be

taken account of. In Fig. 195 let the centre of mass of the bar

and weight be at G. Let the spring be attached to the bar at E
and to the rim of the fly-wheel at A. If the spring is very long,

as it usually is, we can consider it as always pulling parallel to

itself. Draw QF perpendicular

to the direction of the pull of

the spring, and drop a per-

pendicular OF on QF. Call

QG = b, QF = a, QF = s,

and OF=c. Let QG make

an angle 8 with QF. Given

values of c, s, and 8, completely

fix the position of QG. Now
draw OG =R and QH = h

perpendicular to OG. The

moment about Q due to the

centrifugal force of the mass

rotating about O will be

MRu-h = Moment.

But — = -, where p is the per-
p h oa

Fig. 195
pendicular dropped from O
upon QG.

W
Hence, M^bp =— w2

b (c cos 8 + s sin 8) = Moment.

The moment about Q due to the returning force of the spring

will be
Kea cos 8 = Moment.

If these are to be in equilibrium,

W— bu?{c cos 8 + s sin 8) = Kea cos 8.

o

W
\c + s ta.n 8) = Kea.



272 MECHANICS OF THE STEAM-ENGINE

When 8 = $lt let to = o^ and e — ex . When 8 = S2, let w = w2 and

<? = <?2 . The values of Sx, 82j wi> and w2 are given by the range of

action of the valve gear, and the allowable range of speeds.

W
g

W
S

bitil
2
(c + stanh

l ) = Kela, (I)

ba>£(c + s tSLn82) = Ke2a (II)

Subtraction gives

Fig. 196

Wb

g

But

(otic -\~ (a* s tan 8i
— <ti

2
c — o>2

2
s tan S2) = Ka {ex — e2).

*i e2= a sin Sx — a sin S2H 1-2 — «* oi" "1 «*

J^2 f I—
- <| c((tii—o)2

2
) -\-s((tii tan Si—

w

2
2 tan 82) [

= X#2
(sin Si— sin S2).

K_Wb\ c(iti
2 - o)2

2
) + s (iti

2 tan 8t - o>2
2 tan 82)

£ ^ ^(sinSi — sinS2)

(in)

(IV)
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If the governor is arranged as in Fig. 196, so that QF bisects

the total angle through which the lever acts, then we have

^ I c(rf
_ W22) + s tan SL ( Wl

2 + w2
2
) 1 = 2 Ka? sin 82, . (Ill')

and K= m{cW-«i) +s^W + «i)^

g {
2^sind

J

The general equation IV gives the constant of the spring which

will give the assumed speeds at the limits. It remains to be seen

whether the governor will work correctly at intermediate positions,

which can be determined by plotting the curve between w2 and 8.

Equation III shows the general relation between the various

quantities for two definite positions 8X and 82 . Now let us write

this equation so as to show the relation between the definite

position 8X and any other position 8. For this latter let the speed

be o). Then

— { r(o)!
2 - cu

2
) + si^2 tan Sj - o2 tan 8) ]

=^2
(sin S± - sin 8).

Solving this equation for w2
, we get

to?(c + s tan SO - -7J7T- (sin 8X- sin 8)

co
2 = ^ }

c-\-s tan

which may be written,

J

^-{c + s tan SO -^ sin 8, \ +^ sin 8

c-\- s tan 8

This equation is of the general form,

a + b sin #

(V)

/=
<: -+- >** tan x

The curve is shown in Fig. 197, where a>b and c>s, and also

in Fig. 198, where a > b and c < s. We must always have a

portion of the curve where it crosses the axis of Y which ascends
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as we pass to the right. This can be known by putting x = o in

the first derivative, and noticing whether the result is positive.

, _ a + b sin x

dx

e -\-s tan x

b cos x (e + s tan x) — s sec2 x (a + b sin x)

{c -\-s tan x)2

dx

be = (+)•

the numerator is positive, or when

Now c
2
is always positive, hence the fraction will be positive when

be > sa.

That the governor will be

stable all the way from A
to B (Fig. 197) can only

be found by plotting the

whole curve.

The methods of per-

manently changing the

speed of an engine may

be seen by observing the

equation of equilibrium

for the astatic governor

in one of the simpler

cases. In Fig. 194 we

have
\Ke a

CD =\^MRb
Since e is very small in

most cases, it is very

nearly true that'

e__a
~R~~b

Fig. 197

In this case, then, w= rv
a I_

Since K is unchangeable in any given spring, we may change the

speed of the engine by :
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1. Varying -, or by shifting the weight G, or the point of
b

attachment of the spring, along the arm. Care must be taken,

however, that by so doing we do not destroy the relation

e _ a

~R~~b

so e must be changed to meet the new requirements.

FIG. 198

2. By changingM the mass, since w = const

-VM
The calcu-

lation for the size of the spring wire, as determined by the formula

. 8 ChiK
a = .

can be considered as an approximation only, as the elasticity of

steel wire varies greatly with its temper. A sample of the spring
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should be obtained and tested, and if this does not agree with the

assumed value of K, we can vary the value of a till the proper

result is obtained. If K is known to start with, we must first

compute the value of a from

2 _ Wb f c (0)1 — qj2
2
) + s (o)!

2 tan S1
— <d2

2 tan 82)

K&s [
(sin 6\ — sin S2)

and proceed as before.

The length L of the spring is determined by the dimensions of

the governor and wheel, but we must be certain that it is great

enough to prevent the wire of the spring being twisted beyond its

elastic limit for the maximum value of e.

Fig. 199

Tangential Accelerative Force. — The variations of this force

cannot, in general, be exactly calculated as in the case of the

preceding, as the value of the coefficient — depends on too
dt

many and too complicated expressions to be put in any useful

form. The best we can do is to investigate the direction of the
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resulting moment, and find out the relative position of the three

points O, Q, and G in order that this force moment may not give

instability to the governor.

In Fig. 199, let Q be the point of suspension of the arm.

Draw OG tangent to the path of the centre of mass G, and GQ
perpendicular to OG. If the weight shifts suddenly from G to

Gly the wheel meantime rotating counter-clockwise, its velocity will

Fig. 200

have to be increased in the direction A G, and hence it will tend to

hold back, giving rise to a force AC, acting through a lever arm

A Q which tends to assist the change. In shifting from G to G2 ,

the moment BD x BQ tends to oppose the change. This effect

tends to cause the governor to race from G to G1} but gives it

stability from G to G2 . In Fig. 200 the direction of rotation is

reversed, and the tendency to race is now from G to G2, while

from G to G± greater stability is given to the governor by reason
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of this inertia effect. In some engines the whole action is from

G to Gi with the direction of rotation as in Fig. 200. In order to

check this effect when undesirable, a dash pot may be introduced.

Angular Accelerative Moment. — The same general remarks

apply here as in the preceding case, although in the ordinary

form of governors already discussed the effect is small. In a

certain special form of governor, however, this angular accelerative

Fig. 201

moment produces a most powerful effect. Let MM (Fig. 201)

be a heavy bar pivoted at Q, and with centre of gravity at G.

A stud at C is directly connected to the slide valve through the

rod CB. The position of the governor shown is that of the head-

end dead point. Now so long as the angular velocity of the

engine is constant, the governor acts exactly as do those previously

described, through P causing a moment directly opposed to that of
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the spring. But if for any cause the engine slows down, the bar will

tend to run ahead of the wheel, promptly drawing out the cut-off, and

increasing the steam supply. Such effect can only occur while the

speed is changing. Hence the arrangement as shown furnishes a

powerful means of checking slight variations in speed. The rela-

tive positions of Q, O, G, and C are evidently such as will cause

the angular accelerative effect to aid in governing, and Q cannot

be located at Q', as such a location would cause the angular

acceleration to destroy the governing. But if C turns about Q', a

slightly better steam distribution would follow, and hence some-

times a separate eccentric is used. This is pivoted at Q', while

the weight is pivoted at Q, and the two are connected by a pin

of the bar working in a slot of the eccentric. This forms one of

the latest and most successful of the inertia governors.
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At any instant during uniplanar motion, the body and space

centrodes roll without slipping on one another. *

It is evident that there is always a point in common, as they are

both swept up by the

same point ; but we

are to prove that they

are always tangent at

this point, and that

equal arcs are swept

up by the describing

point in equal times.

Let Q be a point

fixed in the body

(Fig. 202), and let

the coordinates of Q
referred to space axes

be a and (3. Let P
be any particle of the

body at a distance r from Q, whose coordinates are x and y. If

PQ makes an angle with the axis of x,

x = a + r cos 9 . . . . (1)

and y = /? 4- r sin $ . . . . (2)

Differentiating with respect to time,

r
s

B 1

^/ V^
^""^^

's'

%s

«Ad A
1 y/
\ ^^^B

V s

/ (3

1

<-.--c.- --*.

1

X
x >

Fig. 202

dx

dt

dt

r s'm.0
dOda

~dt

^ + rCos0~
dt dt

dt'

dO

* Adapted from " Uniplanar Kinematics of Solids and Fluids," by George

M. Minchin, pp. 79-80.
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Now ifP is to be the instantaneous centre, its component veloci-

ties parallel to both X and Y must be zero ; also it is seen that

—
- is the angular velocity of the body in this case. Hence,

at

da

dt

d$

dt

ro) sin v = o

4- r<a cos = o

(3)

(4)

Substituting the values of r sin 6, and r cos 6 obtained from (3) and

(4), in (1) and (2), we get

d@

dt
x = a >

a)

da

These are the coordinates of the instantaneous centre, and the

equation of the space centrode can be obtained from them by

eliminating /.

Fig. 203

Now let a set of coordinate axes be fixed in the body with origin

at Q (Fig. 203.) The coordinates of P referred to these are 77
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and y. At the same time that P is the instantaneous centre, let

these axes be parallel to the space axes, but at any other time, let

them make an angle <f> with the space axes. In general,

£ = (x — a) cos
<f> + (y — ft) sin <£,

7) = (y — (3) cos
<f>
— (x — a) sin c/>.

But if a point is on the body centrode, it will at some time be the

instantaneous centre ; and hence,

dt
x — a = ,

CO

da

Substitution gives

o dt

dp da

dt
jl ,

dt
JL 1— cos d> -\ sin <f> = L

CO CO

da df$

dt dt .— cos <p H sin <p = rj.

These equations express the locus of all points of the body which

have been or will be the instantaneous centre. This locus or cen-

trode will be swept up with a certain velocity whose components

parallel to the axes of £ and 77 will be

— and _?. where
dt dt

[dp] d/3 (da] da

d£ d \ dt \ ,
dt . dd> d"\ dt \ . , dt , d<f>

1 da ) da

d-n d \ dt \ ,
dt . ,dd> d

Tt = dt\^\™*-^m *Tt+-dt

Up] d(3

dt \ . , dt ,dcf>—
I
smc/>H cose/) -77.

co
j

co at
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These equations are general all along the body centrode, but at the

particular time when P is the instantaneous centre, the curves are

being simultaneously swept up at P, and
<f>
=o.

but

dt

C
da

dr\ d \ dt

di~~dt

da

~di~"di {'

{da

d{3 d \ dj_

d \ dt
-ha

o>
J

dt dt
+ P

d/3

dt

da

-h a, and
dt ny=-+P;

hence, 0=* *L =* ** = &,
dt dt' dt dt d$ dx

or the tangents to the two curves are in the same line, and they

roll without slipping, since

Vdx2 + df = -Vde -j- drf.



APPENDIX II

Body

Space

Rolling Curves.— The velocity of the point of contact of two

curves along the curves, when rolled one upon the other, can

always be expressed in terms of the angular velocity of the moving

body about the in-

stantaneous centre,

and the radii of

curvature of the

centrodes. In Fig.

204 let p be the

instantaneous cen-

tre, and let ppx and

qqx be the infini-

tesimal elements of

the space and body

centrodes respec-

tively. If we draw

the common normal

at p (or q) , and also

the normals at p^

and qx , we will get

the centres of cur-

vature A and B, and also the radii of curvature p1 and p2 of tne

centrodes. Let dax be the small angle pApx and da2 be the angle

qBqY . When the body centrode rolls upon the space till^ coin-

cides with q1} the whole system will have rotated through the dif-

ds
ferential angle da

x
— da2 . But dax

=— where ppx

dO

Fig. 204

where 1>i>\ = ds. Also
Pi

da2 —— or d&= dsl ) and -t:=-j-( ].

p2 \Pl P2J dt dt\px p2j

angular velocity of the body about the instantaneous centre, and

287

„ de.
But — is w, the

dt
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It

centrode.

is u, the velocity of the instantaneous centre along the space

i
If the curvatures of theHence, finally, -=

u Pl p* 0) I I
centrodes are in opposite directions, then evidently — =—1

u Pl ?2

The acceleration of the point in the body corresponding to the

instantaneous centre can be expressed in terms of u and a>. In

Fig. 205 p is the moving centre

which has its position changed

by the rolling of the curve qqx

on ppv Let us find the acceler-

ation of q first in the direction

of the normal and then in the

direction of the tangent to the

space centrode at the instant it

comes in contact with /. The

velocity of q will be in a direc-

tion at right angles to the chord

qqlf since the body is rotating

about q1} and the magnitude of

this velocity will be v— so) where

o> is the angular velocity as be-

fore, and s = qqx . The compo-

nents of this velocity in the direction of the normal and tangent

to the space centrode at p are

vn = S(D cos
<f>,

vt
= sot sin

<f>.

dv„ [ ds , dot ] . . d<j>
-ii« = — <o H s 1 cos d> — sat sin d> —s
dt J dt dt

J
^ v

dt'

Fig. 205

and

Hence

and
dv, f ds . d<o ) . , , , deb—* = J — o) -\ s \ sin <b -f soy cos d> —^>

dt {dt dt
J

r ^ dt

As q approaches and finally coincides with p, s and <^> become

equal to zero, or
dVn

dt

dvt

dt

ds

It

o.

(O = U(0,
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Hence the point in the body centrode corresponding to the instan-

taneous centre has an acceleration in the direction of the normal

to the centrodes only.

The Instantaneous Centre of Acceleration.— With origin at the

instantaneous centre, the accelerations of a point of a moving body

will then be three in number, viz. : — no2
in the direction of the

radius vector, r— in the direction at right angles to that line, and
dt

uj) in the direction of the normal to the centrodes. Let P (Fig. 206)

be a point of a body whose centrodes are in contact at O. Take

Fig. 206

the origin at O, and let the X-axis coincide with the tangent to

the centrodes. If we resolve the accelerations parallel to the two

axes, and denote their sums by X and Y, we get

v do> . oX= — r— sin a — rar cos a,
dty, dio o .= uo)-\- r — cos a — rar sin a,

at

or since r • sin a —y, and r • cos a = x,

X=-y—-X(d2
,

at

F' ,
doi= U(ji + x yuf.
dt
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If we make X equal to zero, we get the locus of all points which

have no acceleration parallel to the axis of X, or

y =
0)

dw

~dt

This is the equation of a straight line through the origin the tan-

gent of whose angle with the X-axis is

tany = ——

•

'
do)

dt

If we make Y equal to zero, we get the locus of all points having

no acceleration parallel to the axis of Y
}
or

u dt
y = - +— x.

This is the equation of a straight line which cuts the X-axis at

a distance — — from the origin, and cuts the JK-axis at a distance
dio

Yt
u
- from the origin, hence the angle 8 will be such that

U<0

doi

tan 8 = =—— = tan y,
u day

'

dt

or the two lines cut one another at right angles. The point of

intersection G of these is called the Centre of Acceleration. The

axes ofX and Y being independent of the direction of r, it follows

that G has no acceleration at all, or a moving body has a centre

of no acceleration as well as one of no velocity.
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If we call the coordinates of G x a.ndy , these can be deter-

mined by elimination from the equations of the two straight lines

;

hence,

mo —
dt

x =
»4+

(f

yo = +

•-m
As an interesting extension of the above, let the accelerations

of P be resolved in still other ways, viz., in the direction of the

radius vector and at right angles to it. Denoting these compo-

nents by A and B,
A = um sin a — no2

.

T> da)
,B = r \~ uoi cos a,

dt

but cos a

hence,

X
?

A

sin a

= Uoi

y
~v
y

and x1

x2 +y2

-.S;

r r

_ xx2
-fy

2 daB = uu)
r r dt

Put A equal to zero, and its equation gives

2 , & u
X" -\-)T y = o.

(0

The equation of a circle of radius a, which passes through the

origin, and whose centre lies on the axis of Y, is

x2
-j-y

2 — 2ay = o,

wise if B is zero, we get

u
hence our equation represents such a circle where 2a = -. Like-

to

2 . o .
tilt)

(I'M

dt
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This represents a circle passing through the origin and with

centre on the axis of X. This cuts the Jf-axis at a distance

2 a = —— from the origin. These two circles cut the axes at the
du)

It
same points the straight lines do, and cut each other at the same

point G, since the angles about G are at right angles.

As an example of the method of determining the instantaneous

centre of acceleration, let a cylinder of mass M and radius r roll

down a plane inclined at an angle a with the horizontal. The

cylinder is supposed to start from rest, and, after its centre of

mass has fallen through a distance h, we are required to find the

coordinates of the centre of acceleration. In this case

0}

U

ii i=
j Or CD =

co r r

u

r

From the principle of the conservation of energy,

2 2

and since
r2

2

then will

and

2/ = 2a/^-,
* 3

U 2

r r^
6*
' 3

Also since h = s sin a (see Fig. 207),

^ gysin«

3

Differentiating,
du 4 ds

211— = 2 or sin a—i

dt 3 dt

and as
dsu= —

,

dt

, dui
and — = -

dt

du 2— = -gsma,
dt 3

1 du 2 g .

r = -sina =
r dt xr
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Then -= — r and —-— = -2;, and we can write down imme-
0) ClUi

dt

diately the coordinates of the centre of acceleration,

— 2r2s
Xq =

4r + H

yo
4rs*

4s2+ r>

Fig. 207

In Fig. 207, where r=^ and «$" = 3, these values become

# = — .0414,

^ = -.4965.
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Proof of the General Theorem.—What must be the form of the

curve xx (Fig. 208), which, during its rotation about a perma-

nent centre B, will have as a

normal the line connecting

its point of intersection P
with a fixed curve, and a

fixed point / on that curve?

In the solution of this prob-

lem, then, we would consider

the profile as fixed to and

carried around by the pitch

circle. Since, however, it is

the equation of the profile

that we are seeking, it will

prove simpler to exchange

the relative motions of the

profile and curve of action,

thus bringing the former to

rest, and referring it to a fixed origin. From this point of view the

curve of action is fixed to and carried around by the pitch circle.

Let the origin be taken at the centre of the pitch circle. Let

OC (Fig. 209) make an angle
\f/

with the axis of X, where OC is

a radius vector moving with the curve of action. The equation

of the given curve of action may then be expressed in terms of

the parameter «//, or its equation will be

F(x,y,^)=0 (1)

Fig. 208

* For the following beautiful method of deducing the equation of the

gear-tooth profile from that of its curve of action, the author is largely

indebted to Mr. A. V. Saph of the University of California.

294
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Let the equation of the required profile be

x = 4>W), y=f(+) (2)

At the point P where the two curves intersect, both relations must

be satisfied, or
F^if/), /(if/), y\ = o . . . . (3)

The slope of the tangent to the profile will be

dx <fi'(if/)

(4)

Fig. 209

If the radius of the pitch circle is a, and the constant angle COI
is a, the slope of the chord PI is

a sin (if/
— a) — /(if/)

a cos (if/
— a) — cf>(if/)

Since these are to be at right angles,

/'(if/) a sin (if/ - a) - /(if/) ^ ^

cf>'(if/) a cos (\p — a) — cf>(ij/)
'

/(if/) _ a cos (if/
— a)— <f>(if/)

^j~ ~ a sin (if/
~ a)-/(if/)

/'0/0 = ~p\a cos («A - «) - <K«A)

<f>'(if/) = P lasm(if/-a)-/(if/)l

(5)

or

Let

and

(6)

(7)

(8)
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where p

equation

from (7)

(7) and

As an

action a

this case

hence, a

may be a constant or a function of if/. Differentiating

(3), and substituting in it the values of /'(«/>) and
<f>'(\j/)

and (8), we can obtain an expression for p, after which

(8) may be integrated to give the required equations,

example of the above method let us take as a curve of

circle of radius b tangent to the pitch circle at I* In

we will take OC (Fig. 209) as coinciding with 01;
= o. (See Fig. 210.)

Fig. 210

The equation of the curve of action is

x2+y2-2x(a+?>) cosil/—2y(a+d)smij/-{-(a+Z>y—P=o (1)

and the equations of the profiles are

x = <j>W), y=/W) . ..." (2)

At the point of intersection of the two curves at P

</>0A)
2

+/GA)
2 - 2{a + b) cos ^ • 4>(#)

-2(^ + ^)sin^./W + (^ + ^)
2 -^2 = • (3)

* It is to be observed that there is no rolling between the circles.
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The slope of the tangent to the profile is

dy /'(if/)

dx cj>'(}f/)

The slope of the chord PI is

a sin if/
— /(if/)

a cos if/
— 4>($)

Hence, /W = _ a cos ^ - <j>(if/)

<f>'(if/) a sin if/
— /(if/)

(4)

(5)

(6)

or /'(if/) = -p\a cos if/ -<j>(if/)\ ... (7)

and <t>'(if/)=p{asmif/-/(if/)\ . . . (8)

Differentiating equation (3), and rejecting the factor 2, we

have

/WO -/W + <K<A) • 4>'« + (<*+<*) sin ^ ' *ty)

— (0+ £) cos ^ • c/>'(^) — (0 4- <*) cos if/ -/(if/) — (a+ b) sin if/ -/'(if/) = o,

and substituting for ^>'(^) and/'(^) their values from (7) and (8)

we obtain

—/(«A)p * * cos i// + p • /(i/r) • <f>(if/) + <f>(if/)pa sin «/>

— p •
<f>(\j/)/(\J/) + (a+b)smif/ - cf>(if/)— (a+b) cos if/- pa smif/

+ (a+b)cosif/.p -/(if/) -(a+ b) cos ^ ./(^)

+ (a+ b)a smxpp cosi\/— (a+b) smip- p' ^>(\p) = o . . (9)

_ (a + b) cos i/r • /(if/) — (a + b) sin ^ •
<f>(if/)

p ~
b cos i/f • /(if/) — b sin if/

-
cf> (if/)

a + b=—!— = constant.
b

Differentiating equation (8), we have

cf>"(if/) = p(a cos if/
— /'($)) = pa cos if/

— p
2a cos ^ - p

2
cf> (if/)

<j>"(if/)+p
2
<l>(if/) = pa(i+p)cosi!/ (10)
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A particular solution of this may be seen by inspection to be of

the form A' cos ij/ whose second derivative is —AT cos i{/. Then

— K cos \p + p
2K cos if/

= pa ( i + p) cos \j/,

x==
pa(i+p) =J>a_

==

p
2 - i p - i

The particular solution, then, is

<£(^) = (a-\- b) cos «/f.

The solutions to <£"(«/0 4 p
2
(cj> (}{/)) = o are

and <£ (»/>) = Atf-M.

Then <£ (^) = (a + £) cos ^ 4- ^'p* + Atf-'W . (i i)

When ^ = o, <f>(if/) = a, and ^ -f- ^42 = — ^,

- _ H±i tf cos ^ + ^ + ^
2

cos ^ +^^ Mi*** + ^-**,}

/'(,/,) = (* + ^) cos^ + ^t-^M^P'A-'r^-^S,

/(,/,) = (> + £)sin^ + a-\-b {

A

xe
{rt

,
A2e-^

(12)
£ 1 fp

—
*]p

When if/
= o, /(^) = o, then ^ — ^2 = °> but ^ + A2 = — £

;

hence, A1 = A2 —
2

Then, finally,

x=<j>(*l/)= (a + 6) cosxp—b <j |- =(a+^) cos^— b cos pij/,

I
2

J

y=f(^j)=z{a-\-b) sm\\/—b
ei(>ty— e -ipty )

21
j.
= (#4<£) sin^— <5 sinpi/f,

# = (# + £) cos if;
— b cos

a
if/,

b

y=(a-\-b) sinxf/ — b sin
g

"J"
if/,

which are the equations of the epicycloid.
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If there is a second pitch circle working within the first at the

pitch point I, and whose profile works on the same circular curve

of action, we could deduce the equation of its profile by consider-

ing the circle of radius b to touch in internal contact. In this

case the sign of b would become negative, or

x = (a — b) cos if/ + b cos
~

if/,— b

y = (a — b) sin if/ -f- & sin if/,— b

which are x = (a — b) cos if/
4- b cos

~
. if/,

b

y— (a — b) sin if/
— b sin

~
if/,

b

the equations of the hypocycloid.

In the case of the rack we must make a equal to infinity.

It is therefore necessary to move our origin from O to Q, and

express our equations in terms of the parameter (see Fig. 210)

instead of if/. In this case

y=y,
x' = x — a,

(from the property of the epicycloid). Substituting these values

in the equations of the epicycloid,

x' = (a + b) cos - - b cos £±i $ - a
,

a b

y' = (a + b) sin -6-b sin ^±^ 0.
a b

Putting a = 00 , and evaluating the indeterminate forms, these

become
x' = b(i — cos0),

y' = 6(0- sin 0).

These are the equations q( the cycloid.
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Another important case is that in which the curve of action is a

straight line through I and making a constant angle with 01. In

Fig. 211 let PIC be the straight line of action, with / as the pitch

Fig. 2ii

point. In this case we take the radius vector OC as the perpen-

dicular let fall upon the curve of action from the origin, a is

constant, and OC =p = constant. The equation of the curve of

action is

x cos \j/ +y sin \p = a cos a =p .

while those of the profile are

* = <M), y=A*l>) • • •

At the point P
<f>

(«/r) cos \p +/(«/') sin i}/ =p

The slope of the tangent to the profile is

dx $\f> .

and that of the line PI is

a sin (if/
— a) — /(«ft)

a cos (if/
— a) — <£(«//)

Expanding equation (5),

a cos a sin if;
— a sin a cos \p — f(\J/) _ p sin \\i — q cos ij/ — f(ifi)

a cos a cos
\J/

-j- a sin a sin ^ — </>(^) / cos ^ + q sin ^ — <f>(\fi)

(^)

(3)

(4)

(5)
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where p and q are constants having the values shown in Fig. 211.

Hence,

/W /sin^-gcos^-/M =
<f>'(if/)

' /cos \p + q sin \p -cf>(ij/)
'

' \)

or /r(^)=- P 5/cos^ + ^sin^-^)J . . (7)

*'ty)=p{/sin^-7cos^-/ty)} . . (8)

Differentiating the equation of the curve of action (3),

<jE)'(^) cos if/
— <£(i/>) sin if/ +/(if/) sin 1// —/(if/) cos ^ = o,

and substituting from equations (7) and (8),

p J/ sin ^r — q cos 1// —/(if/) \ cos if/
— cf>(if/) sin ^

— p \p cos ^ + q sin ^ — <£(^) j sin ^ —/(iff) cos if/ = o,

from which we find

<£(t//) sin i/f —/(if/) cos «/r

^ ~~
<£(^) sin if/

—/(«//) cos i/> — /

which is a function of i/^. We now have from equation (7)

^lVmt7>m*^^^-^ (9)

and from equation (1) of the curve of action,

()=_^_yw^ . . . (I0)
7 COS if/ cos ^

'

Substituting (10) in (9),

/'(if/) COS if/

= -/sin^+/W , 2
sin^+ sin ^ cos ^+/ sin^ jpsmifz—f^—qcosif/ 1 r r * r r y vry>

_ (/ sin ^ —/(if/) — ^ cos i/^) (/ sin
2
t^ —/(if) sin t//)

sin »// —/(if/) — q cos ^

. /'(if/) cos if/ -[-/(if/) sin if/ =p sin
2

if/ . . . (n)

In the same manner we may show that

—
<f>'(if/) sin if/ + cf>(if/) cos ^ =/ cos2

if/ . . (12)
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These are the differential equations of the profile. They may be

written

sin
2

^/W+/Wtan^=/

and <£'0/0 -<K</0 cot </, = -/

COS if/

COS2 \j/

sinxj/

and are of the form y' + Py = Q.

The integrating factor for the first will be

and for the second,

^-Jcot^ d>p _ ^-log sin^ _ cgc ^ #

The solutions are

f(xf) sec xj, =pj^^ sec $d$=pj tan2

f dij,=p(tm $-if)+AU

</>({}/) CSC if/
=

/~COS
2

\b C
—p\ —:—^ esc \}/di}/= —p\ COt2

lj/ d\j/= — p(—COt\f/— lf/) + A2.

When ^ = o, /(»//) = o, <£(^) =/. Hence, Ax = o directly, and

^sin^r r T
J ^y sin^ J \i

>in
2 ii^ _ \2 sin

T
2

which last expression becomes zero when xp = o; hence, A2 = o.

Hence, finally, x = <f>(\fi) =p (cos \p -\-
if; sin \p),

y = f(if/~) =p (sinij/ — i}/ cos if),

which are the equations of the involute of a circle whose radius is/.

When the radius of the pitch circle becomes infinite, we have

the special case of a rack. But when a — oo, p — a cos a — oo also.

The radius of curvature of the involute for any value of if/ is q=p$,
which is infinite when p is infinite for all values of ij/ except if/=o.
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Hence any finite portion of the rack tooth is a straight line. The

slope of the tangent to the profile is

dy

dy_<fy_
dx ~ dx ^'

dj>

or the tangent to the profile always cuts the axis of x at an angle if/.

At the point S (Fig. 212), where the involute cuts the pitch circle,

x*+f=a\

Ac 4vtf2 -/=-^= tana -

p p

Fig. 212

Hence the tangent at -S cuts the axis of x at an angle equal to

(tan «). The angle SOX= if/
— a = tan a — a. Hence the invo-

lute cuts- the radius c^S at an angle 8, where

8 = tan a — (tan a — a) = a.

In the case of the involute rack, therefore, the teeth are straight

lines inclined at an angle a with the normals to the pitch curve.
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Acceleration of connecting rod, angular,

176.

curve of piston, 174-175.

of crank pin, 174, 176.

of points in piston-crank chain, 173-

180.

of slide valve, 219.

of wrist pin, 174, 177-178.

Accelerations, table of, for steam-engine

parts, 234.

Accelerative force moment, angular, 262,

276-278.

tangential, 261.

Action, angles of, 72, 84-85.

Admission position of crank, 187.

Advance of eccentric, angular, 183.

Angles of action, approach, and recess,

72, 82-84, 92-93, 98-100.

of maximum efficiency of spiral gears,

124-13 1.

Angular acceleration of connecting rod,

176.

accelerative force moment, 262, 276-

278.

advance of eccentric, 183.

velocity of connecting rod, 171-173.

determination of, by instantaneous

centre, 17.

of universal joint, 27-28.

ratio in gearing, 67-68.

Annular gears, 76, 96.

Appendices, 283-303.

Approach, angle of, 72, 82-84, 92-93>
98-100.

Astatic governors, 257, 264, 269.

Axis of rotation, 4.

Axle, 22.

B
Base circles,

cones, 115.

Beale's gears, 141.

Bearing, 9, 21.

Belts between crossing and intersecting

shafts, 62-63.

between parallel shafts, 36-55.

diagram for, 41.

effects of centrifugal force on, 39-41.

length of, for stepped cones, 43, 44,

47, 49-

losses in, 42.

stresses in and power transmitted by,

37-43-

transmission of rotation by, 36-55,

62, 63.

Bevel gears, 114.

method of cutting, 117.

method of draughting, 116.

Body centrode, 5, 285.

construction of, 6.

Bridge of valve ports, design of, 189.

Cams, cylindrical, 158-159.

disk, 155-158.

Central position of valve travel, 182.

Centre of acceleration, 289-293.

instantaneous, 5, 33, 68, 171, 177, 284,

289.

Centrifugal force moment in shaft gov
ernors, 261, 263-276.

Centrodes of motion, 5A 32, 36, 283.

of steam-engine connecting rod, 7.

rolling of, 6, 283-293.

Circular pitch, 71.

normal of spiral gears, 120.

Coefficient of fluctuation of fly-wheeJ

velocity, 241.

Combination of elementary forms of

plane motion, 4.

Compression position of crank, 187.

of piston, 220.

305
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Conchoid, equation of, 148.

radius of curvature of, at X-axis, 148.

Conchoidal straight line motions, 146-

148.

Cones, describing, 114.

pitch, 114.

stepped, 43-54.

Conjugate method of forming tooth out-

lines, 95.

profiles, 69.

Connecting rod of steam-engine—
acceleration of points of, 173-180.

angular acceleration of, 176, 179.

angular velocity of, 172-173.

centrodes of motion of, 7.

forces due to inertia of, 235-236.

instantaneous centre of, 12, 171, 177.

position of points of, 165.

velocity of points of, 167-168.

Constrainment of motion, 8.

Counterbalancing of crank, 249.

of locomotive parts, 253-256.

of reciprocating parts of steam-engine,

249-253.

Crank pin, acceleration of, 174, 179-

180.

forces active at, 228-239.

position of, 165.

velocity of, 168.

Creeping of belts, 42.

Critical angles of spiral gears, 124-131.

Crossed belts, in stepped cones, 43-44.

links, 208.

Cross-head, forces due to inertia of piston

and, 236-237.

Crossing shafts, transmission of rotation

between, 31, 35, 65, 117, 141.

Crown wheel, 115.

Curves of action, 70, 71, 294-303.

pitch, of gears, 67.

of cams, 155-157.

Cut-off position of crank, 187.

of piston, 220.

Cycloidal straight line motions, 142-146.

system of gearing, 73-85, 296-299.

Cylinder of steam-engine, back pressure

in, 224.

clearance in, 224.

forces due to steam in, 223-229.

power developed in, 226-227.

Cylindrical cams, 158-159.

Describing circle, 75.

standard size of, 78.

Diametral pitch, 72.

normal of spiral gears, 121.

Dimensions of teeth (standard), 71, 79-80.

Disk cams, 155-158.

curves of, for constant acceleration,

156.

limitations of action of, 158.

Double universal joint, 30.

Dynamics of the steam-engine, 222-279.

forces due to steam pressure, 222-229.

governors, 256-279.

inertia effects of the reciprocating

parts, 229-256.

Eccentric of steam-engine, 181.

angular advance of, 183.

throw of, 183.

Ellipse, 106-113, 144-145.

method of calculating perimeter of,

109.

method of drawing, 112.

Elliptic functions, complete (table of),

108.

gears, 106-114.

Engine, steam. (See Steam-engine.)

Epicycloid, 74-75, 94~97. M3. 298 -

spherical, 114.

Exhaust port of steam-engine, design of,

189.

position of crank, 187.

position of piston, 220.

Fluctuation of fly-wheel velocity, coeffi-

cient of, 241.

Fly-ball governors, 256-258.

circular, 256.

parabolic, 257.

Fly-wheel, analysis of, 239-248.

coefficient of fluctuation of velocity

of, 241.

space variation, curve of, 243-248.

velocity curve of, 242-243.

Forces active at crank pin, 228.

at wrist pin, 227.

in shaft governor, 261, 268.

M
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Fourier's Series, application of, to fly-

wheel analysis, 245-246.

Friction gearing, 32.

Functions, complete elliptic (table of),

108.

G

Gearing, friction, 32.

toothed, 66-141. (See Toothed Gear-

ing.)

Generatrix, 114, 115, 138, 140-141.

Geometrical progression of speeds in

stepped cones, 51-53.

Gooch link, 208.

Governors, 256-279.

angular accelerative force moment in,

278-279.

astatic, 257, 264.

centrifugal force moment in, 263-

276.

changing speed of, 274-276.

fly-ball, 256-258.

inertia, 278-279.

parabolic, 257.

regulation curves of, 268-269, 270, 273-

275-

sensitiveness of, 258.

shaft, 258-279. (See Shaft Governors.)

static or stable, 257, 265.

tangential accelerative force moment
in, 276-278.

unstable, 266-267.

Grant's odontographic tables, 82, 90.

tables for worm tools, 136-137.

Gridiron valve, 208-211.

double admission in, 211.

Grooved friction wheels, 34-35.

Guides, forces acting on, due to inertia

of parts, 236.

forces acting on, due to steam, 227.

prismatic, 142.

H
Hart's straight line motion, 153-154.

Helical spring, laws of, 259-261.

Higher pairs, 8.

Hobs for worm gears, 136.

Horizontal transmission by wire ropes,

55-58.

Hyperbola, rectangular, 224, 268, 270.

Hyperboloidal gears, 137-141.

Beale's, 141.

failure of, analogy of, to spur and
bevel, 140.

involute spiraloid teeth of, 140- 141.

relation between radii and angles of,

I37-I39-

Hypocycloid, 6, 74, 75, 78, 143, 299.

spherical, 114.

I

Inclined transmission of power by wire

ropes, 58-62.

Inertia effects of reciprocating parts,

229-256.

application of, to counterbalancing,

248-256.

application of, to fly-wheel analysis,

239-248.

moment of, experimental determina-

tion of, 232.

Inertia governors, 278-279.

Inside gearing, 76, 96.

lap of valve, 182.

Instantaneous centre, 5, 33, 68, 171, 177,

284, 289.

application of, to machines, 7-17.

determination of, in machines, 10.

location in threes on straight line, n.
of acceleration, 289-293.

Interchangeable system in gears, 77-78.

Interference in gearing, 88, 97.

Intersecting shafts, transmission of ro-

tation between, 25-31, 35, 64,

114-117.

Introduction, 3-18.

Inverse curves, property of, 150.

Inversors, 150-154.

Involute of circle, 46, 85.

spherical, 114-116.

spiraloid, 141.

system of gearing, 85-93, 300-303.

Journal, 9, 21.

design of, 21.

J

K
Kinds of motion, 3-4.

of uniplanar motion, 4-5.

Kinematics, definition of, 3.

of the steam-engine, 163-221,
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Laps of valve, 182.

Lead of valve, 183.

Lemniscate straight line motions, 149-

150.

Lemniscoid, 149.

Limacon, 96.

Link, Gooch, 208.

Stephenson, 198-208.

Locomotive, counterbalancing of, 253-

256.

Lower pairs, 8.

M
Machine, definition of, 8.

Machinery of transmission, 21-159.

Mean pressure, total, 226.

turning effort, 229.

Mechanics of the steam-engine, 163-279.

Meyer valve, 211-215.

auxiliary circle for, 214.

diagram for, 215.

Mitre wheels, 116.

Moment, angular accelerative force, 262,

276-278.

centrifugal force, 261, 263-276.

of inertia, experimental determination

of, 232.

tangential, accelerative force, 261.

Motion, elementary machine, 8.

helical screw, 3.

kinds of, 3.

relative, 9.

spheric, 3.

uniplanar, 4.

Motions, straight line, 142-154. (See

Straight Line Motions.)

Multiple-cylinder engine, forces due to

steam in cylinders of, 226.

N
Net horizontal steam effort, 225-226.

Non-circular spur gears, 105-113.

Normal component of forces at crank

pin, 228-235.

component of forces at wrist pin, 227.

O
Obliquity of involute teeth, 89.

Oldham's coupling, 24.

Open link, 208.

Osculating spur gear, 124.

Outside lap of valve, 182.

Overtravel of valve, 189.

Pairs of bodies or elements, 8.

higher and lower, 8.

Palmer's graphical solution for stepped

cones, 47-49, 53.

Parabolic governor, 257.

Parallel bars or cranks, 23.

motions, 142-154. (See Straight Line

Motions.)

shafts, transmission of rotation be-

tween, 23, 24, 32-35, 36-64, 66-113.

Peaucellier's straight line motion, 151-

153-

Pin-tooth system of gearing, 94-100.

interference in, 97.

Piston, forces due to inertia of cross-

head and, 236-237.

forces due to steam pressure on, 222-

229.

Piston-crank chain of steam-engine, 164-

180.

accelerations of points of, 173-180.

relative positions of points of, 164-167.

velocities of points of, 167-173.

Pitch curves, 33, 67, 295-303.

surfaces, 66, 114, 137.

Pivots, 23.

Plain slide valve, 181.

variable cut-off with, 195-208.

Position, central, of valve travel, 182.

curve of piston of steam-engine, 167.

curve of slide valve, 184.

of valve relatively to crank, 180-219.

of valve relatively to piston, 219-221.

Power developed in engine cylinder,

226-227.

Prismatic guides, 142,

Profiles, 67, 294-303.

Pure rotation, transmission of, by means
of belts, 36-54, 62-65.

transmission of, by means of friction

wheels, 32-35.

transmission of, by means of ropes,

55-62.

transmission of, by means of toothed

wheels, 66-141.

transmission of, through a rigid inter-

mediate member, 21-31.
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R

Racing of governors, 266-267, 274-
Racks, 74, 76, 86, 299, 302-303.

Radius of curvature of Stephenson link,

203-205.

Rectilinear translation, 4, 142-154.

Reference plane for uniplanar motion, 4.

position of body centrode, 5, 6.

Regulation curves of shaft governors,

268-270, 273-275.

Relative motion, 9.

Release position of crank, 187.

position of piston, 220.

Reuleaux's graphical solution of the

stepped cone, 45-47.

Rigid bodies, definition of, 3.

couplings, 21.

Robert's straight line motion, 145.

Rolling curves, 287-293.

normal acceleration of contact point

of, 288.

Rolling of centrodes, 6, 283-286.

Rope transmission of power, 55-62.

(See Wire Rope.)

Rotation, 4.

transmission of, between crossing

shafts, 31, 35, 65, 117-141.

between intersecting shafts, 25-31,

35. 64. ii4-"7.

between parallel shafts, 23, 24, 31,

32-35. 36
-64. 66-113.

between shafts in line, 21, 32.

by means of belts and ropes, 36-65.

by means of friction gearing, 32-36.

by means of toothed gearing, 66-

"3-
through a rigid intermediate member,

21-32.

Shaft governors, 258-279.

changing speed of, 274-276.

forces active in, 261-263.

ideal case of, 263-269.

inertia, Z78-279.

regulation curves of, 269, 270, 273-275.
Shafting, 22.

Sheaves for wire ropes, 62.

Side rod of locomotive, counterbalance
for, 254.

Simple engine, forces due to steam in

cylinder of, 223-226.

Skew gears, 1 17-14 1.

Slide valve, 180-221.

acceleration curve of, 219.

gridiron, 208-211.

laps of, 182.

lead of, 183.

Meyer, 211-215.

plain, 180-208.

position curve of, 184.

problems in connection with, 190-195.

variable cut-off in, 195-208, 215, 217.

velocity curve of, 218.

Space centrode, 5, 284.

variation curve of fly-wheel, 243-248.

Speed of shaft governor, method of

changing, 274-276.

Spheric motion, 3.

Spherical epi- and hypo-cycloid, 114.

involute, 114.

Spiral gears, 117-135.

circular pitch of, 103, 120.

critical angles of, 124-130.

diagram for laying out, 131.

diametral pitch of rotary cutter for, 121.

formulas for calculating angles of,

121-124.

osculating spur gear of, 124.

proof of action of, 117-120.

selection of cutters for, 123-124.

Spring, laws of helical, 259-261.

Spur gearing, 66-113.

circular, 66-105.

non-circular, 105-113.

Static governors, 257, 265.

Steam-engine, acceleration of parts of,

173-180, 219.

angular acceleration of connecting rod

of, 176, 179.

angular velocity of parts of, 172, 173,

218.

counterbalancing of, 248-256.

dynamics of, 222-279.

eccentric, 181.

elementary combination of links of,

10, 12, 163.

fly-wheel, analysis of, 239-248.

forces due to steam pressure in cylin-

der of, 222-229.

general description of chain, 163.
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Steam-engine— Cont.

Gooch link, 207.

governors, 256-279.

inertia effects of reciprocating parts of,

229-256.

kinematics of, 163-221.

link motions of, 198-207.

multiple cylinder, 226.

piston-crank chain of, 163-180.

relative acceleration of parts of, 173-

180, 219.

position of parts of, 164-167, 219-221.

velocity of parts of, 167-173.

reversing gears of, 198-208.

simple, 223-226.

Stephenson link, 198-208.

valve gearing of, 180-217.

Stephenson link, 198-208.

infinite blades in, 199-202.

radius of link in, 203-205.

short blades in, 202-207.

valve diagrams for, 202-206.

Stepped cones, 43-54.

equations for crossed belt, 43.

for open belt, 44-45.

geometrical progression of speeds in,

51-54-

Palmer's graphical solution for, 47-49,

53-

Reuleaux's graphical solution £^,45-47.

Sweet's graphical solution for, 49-50, 52.

Straight line motions, 142-154.

classification of, 142.

conchoidal, 147-148.

cycloidal, 142-147.

Hart's, 153-154.
- inversors, 150-154.

lemniscate, 149.

Peaucellier's, 151-153.

Robert's, 147.

Watt's, 150.

Strength of spur gear teeth, 104.

Sweet's graphical solution of geometrical

progression, 51-54.

graphical solution of the stepped cone,

49-5°-
T

Tangential accelerative force moment,
261, 276-278.

components of forces at crank pin,

228, 235.

Tension, full theoretic, 264.

Theoretic tension, full, 264.

Throw of eccentric, 183.

Toothed gearing, 66-141.

angles of action, approach, and recess

of, 72, 82, 92, 98.

angular velocity, ratio in, 67-68.

annular wheels, 76, 96.

base circles of involute, 88.

bevel, 114.

circular spur, 72-105.

curves of action of, 70.

cycloidal system of, 73-85, 114.

deduction of profile from curve of

action of, 294-303.

describing circle of cycloidal, 75-78.

elliptic, 106-114.

formulae for proportioning teeth of, 79,

80.

general considerations concerning, ^66.

Grant's odontographic tables, 82, 90.

hyperboloidal, 137-141.

interchangeable wheels in, 77-78.

interference in, 88-89, 97-

involute system of, 85-93, TI4-

methods of draughting, 80-82, 90-91.

non-circular spur, 105-113.

obliquity of involute (standard) , 89.

pin-tooth system of, 94-100. .

pitch curves of, 67.

surfaces of, 66, 114, 137.

profiles of, 67, 294-303.

racks, 74, jj, 86.

skew, 117-141.

sliding between teeth of, 69.

spiral, 117-135-

spur, 66-113.

standard describing circle of cycloidal,

78.

dimensions of teeth of, 71.

obliquity of involute, 89.

strength of spur, 104-105.

Tredgold's approximation, 116, 141.

twisted, 100-104.

worm, 135-137.

Translation, rectilinear, 4, 141-154.

Transmission of motion —
directional relation not constant, 155-

159-

of rectilinear translation, 141-154.

of rotation, 21-141.
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Turning effort, 228, 240-242.

mean, 229-239.

Turning pairs, 8, 142.

Twisted gears, 100-104.

component pressures in, 104.

U
Uniplanar motion, 4.

Universal joint, 25-31.

angular acceleration of, 28-30.

position of, 26.

velocity of, 27-28.

double, 31.

Unstable governors, 266, 267.

Valve, acceleration of, 219.

distribution, 208, 211, 216.

expansion, 208, 211, 216.

gridiron, 208-211.

inside lap of, 182.

laps of, 182.

lead of, 183.

Meyer, 211-215.

outside lap of, 182.

plain slide, 180-208.

position of, with respect to crank, 180-

217.

of, with respect to piston, 219-221.

Thompson, 216-217.

variable cut-off in plain slide, 195-208.

in Meyer, 215.

in Thompson, 217.

velocity of, 218.

Valve circles, critical points of, 188.

gridiron, 209-210.

Meyer, 213, 214, 216.

plain slide, 184-189, 195-197, 202, 206.

Valve diagrams. (See Valve Circles.)

Valve gearing of steam-engine, 180-221.

duty of, 180.

problems in connection with, 190-195.

Variable cut-off with constant admission

in plain slide, 197.

with constant lead in plain slide, 195-

197.

cut-off in Meyer valve, 215.

in Stephenson link, 202.

Thompson valve, 217.

Velocity, angular, 17-18.

angular, of connecting rod, 171-173.

curve of fly-wheel, 242-243.

curve of piston, 170.

curve of valve, 218.

determination of relative angular, 17.

of relative linear, 12-17.

of crank pin, 168.

of points in piston-crank chain, 167-

173-

of valve, 218.

of wrist pin, 169.

W
Watt's straight line motion, 150.

Wire ropes, deflection at middle of span

of, 57, 61.

horizontal transmission by, 55-58.

inclined transmission by, 58-62.

sizes of sheaves for, 62.

table of sizes of, etc., 56.

tensions in, 54.

transmission of rotation by, 55-62.

Worm gears, 135-137.

methods of hobbing, 136.

tables for worm tools, 136-137.

Wrapping connector, transmission of

motion through, 36-37.

Wrist pin, acceleration of, 173.

forces active at, 227, 229-239.

position of, relatively, to crank, 165-166.

velocity of, 169-172.

Zeuner valve diagram, 188, 210, 215.

auxiliary circle in, 214.
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PLATE X.

Steam lines of 6 X 8 Engine.
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sources of information are of the greatest value."— Street Railway Journal.
"The work is clearly and concisely written, the fact that it is edited by Professor Nichols

being a sufficient guarantee of merit." — Electrical Engineering.
"It will be a great aid to students. The notes of experiments and problems reveal

much original work, and the book will be sure to commend itself to instructors."

r- San Francisco Chro?iicie.
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It has been written with a view to providing a text-book which shall correspond with
the increasing strength of the mathematical teaching in our university classes. In most of
the existing text-books it appears to have been assumed that the student possesses so
scanty a mathematical knowledge that he cannot understand the natural language of
physics, i.e., the language of the calculus. Some authors, on the other hand, have assumed
a degree of mathematical training such that their work is unreadable for nearly all under-
graduates.

The present writers having had occasion to teach large classes, the members of which
were acquainted with the elementary principles of the calculus, have sorely felt the need of

a text-book adapted to their students. The present work is an attempt on their part to

supply this want. It is believed that in very many institutions a similar condition of affairs

exists, and that there is a demand for a work of a grade intermediate between that of the

existing elementary texts and the advanced manuals of physics.

No attempt has been made in this work to produce a complete manual or compendium
of experimental physics. The book is planned to be used in connection with illustrated

lectures, in the course of which the phenomena are demonstrated and described. The
authors have accordingly confined themselves to a statement of principles, leaving the

lecturer to bring to notice the phenomena based upon them. In stating these principles,

free use has been made of the calculus, but no demand has been made upon the student

beyond that supplied by the ordinary elementary college courses on this subject.

Certain parts of physics contain real and unavoidable difficulties. These have not been
slurred over, nor have those portions of the subject which contain them been omitted. It

has been thought more serviceable to the student and to the teacher who may have occa-

sion to use the book to face such difficulties frankly, reducing the statements involving

them to the simplest form which is compatible with accuracy.

In a word, the Ele?nents of Physics is a book which has been written for use in such
institutions as give their undergraduates a reasonably good mathematical training. It is

intended for teachers who desire to treat their subject as an exact science, and who are

prepared to supplement the brief subject-matter of the text by demonstration, illustration,

and discussion drawn from the fund of their own knowledge.
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