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PREFACE.

This elementary treatise on Rigid Dynamics has arisen

out of a course of lectures delivered by me, during the past

few years, to advanced classes in the University.

It is intended as a text-book for those who, having already

mastered the elements of the Calculus and acquired some

familiarity with the methods of Particle Dynamics, wish to

become acquainted with the principles underlying the equations

of motion of a solid body.

Although indebted to the exhaustive works of Routh and

Price for many suggestions and problems, I believe that the

arrangement of the work, method of treatment, and more par-

ticularly the illustrations, are entirely new and original ; and

that they will not only aid beginners in appreciating fundamen-

tal truths, but will also point out to them the road along which

they must travel in order to become intimate with those higher

complex motions of a material system which have their culmi-

nating point in the region of Physical Astronomy.

My thanks are due Mr. J. C. Glashan of Ottawa, who has

kindly read the proofsheets and supplied me with a large

collection of miscellaneous problems.

\V. J. LOUDON.

University of Toronto, Aug. 19, 1895.
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RIGID DYNAMICS.

CHAPTER I.

MOMENTS OF INERTIA.

1. In attempting to solve the equations of motion of a Rigid

Body in a manner similar to that employed for a single particle,

it will be found that certain new quantities appear, which

depend on the extent and shape of the body, on its density,

and on the way in which it may be moving in respect of some

particular line or system of coordinate axes.

2. These quantities are called Moments of Inet'tia and

Products of Inertia. A moment of inertia of a body about any

line is defined to be the sum of the products of all the material

elements of the body by the squares of their perpendicular dis-

tances from tliis line. It may be denoted in general by the

letter /, and when / is expressed in the form MK'^, where M is

the mass of the body, K is called the radius of gyration. When
the body is referred to three coordinate rectangular axes, the

moments of inertia about the three axes will evidently be

A = lin{f+ a''-), .5= I;«(.s-2+.r2), C=lvi{x''-+f),

in being the mass of any element at the point {x, y, s), and the

summation being taken throughout the body.

A product of inertia is defined with reference to two planes

at right angles to one another and is found by multiplying the

elements by the products of their distances from these coordi-

B I



RIGID DYNAMICS.

nalc planes, and summini; them tliroutihnut the body. Products

of inertia e.xist in sets of three, and for three rectangular axes

''^''^

J)='±wya, Ji=^mzx, F=lvixy.

3. It is evident that when the law of ;// is known and the

.sliape of the boiiy is given, the finding of a moment or of a

product of inertia involves an integration ; and the following

examples will serve to show how the process of integration may

be used for this purpose. Further on, several propositions will

be given by which the method may be usually much simplified.

4. Illustrations offiuditig Moments of Inertia by Integration,

(a) A uniform rod of small cross-section about a line perpen-

dicular to it at one end.

Here, if the length of the rod be 2 a, and the density p,

y2

l=^rdx'X x^dx=M A a'

[b) A circular arc of uniform density about an axis through

its midpoint perpendicular to its plane.

o

In Fig. I, let OA = r, OCA=tf, OCB=a\ then the moment
t inertia of the arc BOD about an axis through O pcrpcn-

loular to the plane of the paper is 2^pds-t^, where ds is an

Icmcnt of the arc at A.



1=8

MOMENTS OF INERTIA.

sin2^,/^= 4p^3jj'^{i -cos e)dd=2Jl/fi --^y

(c) An elliptic plate, of small thickness and uniform density,

Fig. 2.

In Fig. 2, divide the plate into strips, and then we have

/ about O V=4Jyx^julr= 4 pJJtvWa'^^^Uv=M-.

Similarly, /about OX=M-.

And /about a line through O perpendicular to the plate will

evidently be yJ/
^

4
For a circular plate a— d.

(d) A rectangular plate, sides 2 a, 2 b.

By dividing the plate into strips of mass vi it will be seen that

. , 4 ''^-\ 4 ^
/about side 2a = \[in ^\ =M^—,

and /about side2^= l(;;/4^') = J/4^.

Also, / about a line through a corner perpendicular to the

plate is J/A(rt2+ /;2^. For a square plate a= b.



4 RIGID DYNAMICS.

(r) A triangular plate.

Let the triangle be ABC, and choosing C as origin of coordi-

nates, let CA, CB be the axes. Then, dividing the triangle into

strips parallel to AC^ an elemental mass at (x, y) is equal to

fuixdy sin C, p being the density. The distances of this ele-

ment from AC, EC, and the point C are ;rsin^, j/ sin C and

V.t^ +y* -t- 2 ;ry cosC

1 1 once / about AC=
\ \

px^ sin^ Cdxdy,

I about BC= f r pf sin3 Cdxdy,

and /about a line through C perpendicular to the triangle

=
1 I

p ^'n\ C {at+j^+ 2 xy cos C)dvdy.

These integrals can easily be evaluated, and the moments of

inertia expressed in terms of the two sides and included angle.

(/) A sphere about a diameter.

Dividtfl^ the sphere up into small circular plates of thickness

Fig. 3.
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dx, as in Fig. 3, we have

I about a diameter =2 3!/^- iry^dx * — = p7r i {a^—x'^)^dx=M\a^.

{g) A right circular cone, about its axis.

Fig. 4.

Dividing the cone up into circular strips^perpendicular to its

axis, as in Fig. 4, we have, if a be its heig^B '

^ ^ y^ bx
I=^pi7y- • d.^ — , and y= -^.

1= -np x^dx=M^ ^2

5. Products of inertia can be evaluated in a similar way ; but

as they are generally eliminated from the equations of motion by

a proper choice of axes, their absolute values in terms of known

quantities are seldom required.

6. Although integration gives directly the values of moments

and products of inertia, yet the process becomes tedious for

many bodies ; and the following propositions will be found us^
ful for their determination, when one knows the position of the

centre of inertia.
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Proposition I.— To connect mcnunts and products of inertia

of a rigid body about any axes zvlth viojncnts and products of

inertia about parallel axes through the Centre of inertia.

Fig. 5.

Lctlhe plane of Fig. 5 represent any plane of the body per-

pendicular to the two parallel axes, of which one cuts this

plane in the •pint O^ and the other passing through the centre

of inertia cuft it in^. Then for any point P in this plane, we

have ^^
-=/-+ ;-'- + 2/- GM.

Ilcnc^ftr the whole body we ifiust have

= J//'2-f-w/r'-, since 1ni(JM=0.

Or, as it may be written

where / is the moment of inertia about any axis, and l„ is that

about a parallel axis through the centre of inertia, and / is the

perpendicular distance between the axes.

If three parallel axes be taken in a body, of which the third

passes through the centre of inertia, and a plane be taken cut-
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ting these axes perpendicularly at the points O, 0\ G, then we
can prove for the whole body, as before, that

/ about axis through O -=1" ^Ma^,

I' about axis through O' = I,,^Mb'^^

^^'here OG= a, 0'G= b.

If G happens to be in the line 00', this relation is much sim-
phfied. Also, if O'G is at right angles to 00\ then

l=r-VM{00'f.

which relation is sometimes useful in the case of symmetrical
bodies.

It is evident, moreover, from these relations that, of all strai-ht
lines having a given direction in a body, the least moment'of
inertia is about that one which passes through the centre of
inertia.

In the case of products of inertia, similar results may be
obtamed. Thus, if we require the product of inertia with regard
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to anv two coordinate planes of a body, let parallel planes be

taken passing through the centre of inertia. Let the plane of

the paper in Fig. 6 be any plane of the body perpendicular to

these four planes. Then, if P be any point whose coordinates

referred to the two sets are (.i-,^) and (.r',/), we must have for

the whole body

^mxy = Iviix-' +/>) (/ + q)

.
. 1t>/xy— If/ix'j' + .1/ • Pq.

Proposition II. — /// the case of a lamina, the moment of

inertia about any axis perpendicular to its plane is equal to the

sum of the moments about any two perpendicular lines drawn in

the plane through the point where the axis meets the lamina.

I-'or /= 1m{x^+ r) = ^imx^+ ^my"^.

Tkopositiox III.— To find the uiomiut of inertia of a body

about anv line, kno'iving the moutcut and products of inertia

about any three rectangular axes drawn through some point on

this line.

In l*'ig. 7 let the three rectangular a.xos be OX, O)', OZ, and

let /' be any point of the body {x, y, z), and (9iVany line drawn

from O, inclined at angles <«, /3, 7 to the axes.

Then /about ON='^mPX'-, /'.A' being perpendicular to OX,

and rX^= or- - OX^= U-2 +1-2 4- z^) - (.1- cos it. + J' cos /3+ .^ cos 7)=

= (4^ -V)^+ z^) (cos* «t + cos^ /3+ cos* 7) - (.r cos «

+j'Cos/3+ .^cos7)2

= 0^+-5*)cos*rt+ ••• 4- ••• — 2 r- COS /3 cos 7 — •••

.

• /= 2iw
i (

J-*+ z^) COS* rt H— -f • • •
j
— 2 "^m \ yz cos /3 cos 7

+ - + •••!
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JY/

Fig. 7.

= /^cos2«+ ^cos2^+ (fcos2Y-2Z)cos/3cos7

— 2 ^ COS 7 COS « - 2 ^^COS a COS yS,

^, B, C being moments of inertia about the three axes, and
D, E, F products of inertia with regard to the coordinate
planes.

In this expression, it will be seen that if the axes of coordi-

nates be so chosen that D, E, F vanish, then

/=^cos2«+^cos2/3+Ccos2 7.

Axes for which this holds are called Principal Axes, and A, B, C
Principal Moments In many cases such axes can be found by
inspection. Thus, if a body be a lamina, one principal axis at
any point is the perpendicular at that point. Also, if a body be
one of revolution, the axis of revolution must be a principal
axis at every point of its length. And it may be stated as a
general rule that axes of symmetry are principal axes.
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7. In most of the problems dealing with the motion of

cxlcncled bodies the axis about which the moment of inertia is

to be found usually passes through the body ; but it is apparent

that the preceding propositions apply equally to all cases where

the axes about which moments of inertia are required do not

cut the body. Thus in the first proposition the axes parallel to

that pa.ssing through the centre of inertia need not cut the

body ; in the case of a lamina, the moment of inertia about any

line perpendicular to the lamina and yet not intersecting it will

still be the sum of the moments about any two perpendicular

lines drawn at the point where the axes meet the plane of the

lamina produced ; and similarly the moment of inertia about

any line outside of a body will be known when we know, at any

point on this line, the moments and products of inertia with

respect to any three rectangular axes drawn through this point.

8. To-u'iisi'mfs Tlicoreui.

A closed central curve, of any magnitude and form, being

supposed to revolve round an arbitrary axis in its plane not

intersecting its circumference ; the moment of inertia with

respect to the axis of revolution of the solid generated by its

area is given by the formula

/=J/(.72 4-3/r),

where M is the mass of the solid generated, a the distance of

the centre of the generating area from the axis of revolution,

and // the arm length of the moment of inertia of the area with

respect to a parallel axis through its centre.

^^M
. if ,iA be an element of generating area,

p being the density, and .r a variable coordinate.
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But, by the symmetry of the generating area with respect to its

centre, t{xdA)=o and t{x^dA)=o.

.: /=2'7rpS[{a^+ 3ax'-)dAl

Illustrative Examples oji Aloments of Inertia.

i. Find the moment of a rectangular plate about a diagonal,

the sides being 2 a, 2 b.

In this, applying Proposition III., we have

/=^cos2 6^+ ^'sin2^,

the centre of the plate being the origin, and A, B principal

moments.
2 aH^

.-. I=M
3^2+ ^2

2. A sphere or a circular plate, about a tangent. Apply

Proposition I.

3. Find the moments of inertia of a rectangular parallelo-

piped and of a cube, about their axes of symmetry ; also about a

diagonal.

4. The moment of inertia of a right circular cone about a

slant side \% M ^
1 ui

' ^ h€\r\g the height and 6 the radius

of the base.

5. If a is the length and b the radius of a right circular

cylinder, the moment of inertia about an axis through the cen-

tre of inertia perpendicular to its axis is — (

—

Vb'^X

6. The moment of inertia of a

the form of an equi-convex lens oj

about its axis is -wp \ {2 ax —x'^fdx.

3

6. The moment of inertia of a pendulum bob, density p, in

the form of an equi-convex lens of thickness 2/ and radius^?.
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7 Find the moment of inertia of an anchor ring about its

axis.

8. The moments of inertia of an ellipsoid about its three axes

arc M , M , ^'^

5 5 5

To find these, either divide the solid ellipsoid up into elliptic

plates, or deduce from the case of a sphere.

9. A trianrjular plate of uniform density.

(I) To find the moment of inertia about the side EC.

In V\g. 8. divide the triangle into strips of mass pjv/.r, where

Then / about /?r= "ipydx -.x^= p Ct^l^ax^dx=M • ^*-

(2) About a line through the centre of inertia parallel to BC.

^3) About a line through ./ parallel to BC.
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(4) About a median line.

In Fig. 9, divide the triangle into strips parallel to BC, as

before, and X^'i y= B'C . Then the mass of a strip is pydx sin D,

and its moment of inertia about AD is pvdv sin Z? • ^^ sin^ B.'^

12

Hence / of triangle about AD= -
| y^dx, and j/=——

.

•. /=J/
24

(5) About a line through A, perpendicular to the plane of the

triangle.

Use Fig. 9, and the moment of inertia will be found to be

—
(

b'^+ c^——\ a, b, c being the three sides.

4 \ 3.

(6) About a line through the centre of inertia, perpendicular

to the plane of the triangle.

36

10. Find the moment of inertia of a hemisphere about

«r(i) Its axis.

4{2) A tangent at its vertex.

(3) A tangent to the circumference of its base.

rf(4) A diameter of its base.
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1 1. The moment of inertia of an ellipsoidal shell of mass ^f
A2 _i_ ^

ibout the major axis is M^^ Vov a spherical shell about a

diameter, /= J/ §^2.
^

Deduce, by differentiation, from the ellipsoid and the sphere.

12. For an oblate spheroid (such as the earth), of excen-

tricity e, composed of similar strata of varying density, the

moment of inertia about its polar axis is ^ -n^ \ — e^ \ px^dx,

where a is the equatorial radius and p the density at a distance

.r from the centre. This can be integrated when the law of p

is known.

13. The moment of inertia of a paraboloid of revolution

about its axis of figure is M • '-. where r is the radius of the

base.
^

14. The moment of inertia of the parabolic area cut off by

any ordinate distant x from the vertex is J/ f .i-- about the tan-

,.2

gent at the vertex, and J/' about the axis, where j' is the ordi-

nate corresponding to x.

15. The ratlins of gyration of a lamina bounded by the lem-

niscate r"^= a"^ cos 2 6 , (i) about its axis is -Vtt — |; (2) about
4

a line in the plane of the lamina through the node and perpen-

dicular to the axis is -Vtt+I; (3) about a tangent at the node
4

16. To find the radius of gyration of a lamina bounded by a

parallelogram about an axis perpendicular to it through its cen-

tre of inertia. (Euler.)

If 2a, 2 b, be the lengths of two adjacent sides of the parallel-

ogram, then, whatever be their inclination,

3
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17. To find the radius of gyration of a hollow sphere about
a diameter. (Euler.)

a and b being the external and internal radii.

18. To find the radius of gyration of a truncated cone about
its axis. (Euler.)

A-^^-i..^ b^

10 rt3_^3

a, b, being the radii of its ends.

19. The moment of inertia of a lamina bounded by a regular
polygon of ;/ sides, each of length 2 a, about an axis througli its

centre perpendicular to its plane is

6
(+3cot^,^)

And from this it can be seen that the moment of inertia about
any line in the plane of the lamina through the centre

20. A quantity of matter is distributed over the surface of a
sphere of radius a, so that the density at any point varies in-

versely as the cube of the distance from a point inside distant b
from the centre. Find the moment of inertia about that diame-
ter which passes through the point inside, and prove that the
sum of the principal moments there is equal to 2 M{a'— b^).

What if the point be outside ?
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F.LLIPSOIDS OF INERTIA AND PRINCIPAL AXES.

9. lillipsoids of Inertia.

At any point 6^ in a rigid boily let there be taken three

rectangular axes OX, OY, OZ, as in Fig. 10. Describe with O
as centre the ellipsoid,

Ax^ H-Bf+ C-2- 2 Dyz - 2 Ezx- 2 Fxy= c,
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where A, B, C, D, E, F, have the meanings already attached to

them, and are positive. Then, if OP be any line drawn from
O, and cutting the ellipsoid in the point P, the moment of

inertia of the body about OP is

A cos^a+ Bcos'^jB+Ccos^y =/,

where a, (3, 7 are the angles which OP makes with the coordi-

nate axes.

But if X, V, c, are the coordinates of the point P, and if

OP= r, we must have, since the point is on the ellipsoid,

I,^= Ax''-+Bf+Cc''- ... =c.

And since this relation is true for any position of OP, we see
that the moment of inertia about any line drawn from O will be
inversely proportional to the square of the corresponding radius
vector cut off by the ellipsoid. Any such ellipsoid is called a
Momeiital Ellipsoid.

10. If we refer the ellipsoid to its axes OA, OB, OC, then
D, E, F disappear, and the axes of the ellipsoid are therefore
what we have defined as Principal Axes.

11. It is evident that any set of principal axes at a point
mio^it be found in the foregoing manner, namely, by construct-
ing a momental ellipsoid at the point in question and trans-
forming to the axes of figure, which would therefore give the
directions of the principal axes. And it may be stated also that
three principal axes necessarily exist at each point in space for
a rigid body, since the above process can always be performed.

12. From the properties of the momental ellipsoid it follows
that at any point there is, in general, a line of greatest moment
and also one of least moment ; if the ellipsoid degenerates into
a spheroid, the moments of inertia about all diameters perpen-
dicular to the axis of the spheroid are the same ; if it becomes
a sphere, as in the case of all regular solids at their centres,
the moments of inertia about all lines through the centre are



,8 RIGID DYNAMICS.

equal, a proposition which can be apjilicd with advantage to

the cube, proving that the moments of inertia about all lines

through the centre are the same.

13. For a lamina, at any point, the section made by the cor-

responding momenta! ellipsoid is called the Mometttal Ellipse of

the j)oint.

///// strati',, 'c Exatuples.

1. To construct a momental ellipsoid at one of the corners of

a cube.

Taking the edges as axes, A = B=C, D=E= F, and the

equation for the momental ellipsoid becomes

A {x^ -^f + c-)-2 I){xy +j'^+ zx) = r,

which on transformation would give a spheroid of the form

Ax'^B\y^+ z')=c\

and it can be seen that one principal axis is the diagonal through

the corner in question, and any two lines at right angles to one

another and to the diagonal will be the other two principal axes.

2. To find the momental ellipsoid at a point on the edge of

a right circular cone.

Choosing axes OX, OV, OZ, as in Fig. 11, it is evident bv

inspection that D=F=o, and the axis OY is one principal axi.s.

Then, if .//;= ,/. (7/?= /;; BG=\<i, and A=^^f(^---\-—\
* \20 10'

H = A^An^, C=M^-^^, E = M'-^, and the equation of the
10 4

momental ellipsoid at O is

{lif^-ir2a\x^-\-{2i //2+ 2 ,t^)f-\- 26 l^c-~ \Ocihxs= c.

The momental ellipsoid at the point A, or at any point along

the axis AR, is a spheroid.
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3. The momental ellipsoid at a point on the rim of a hemi-
sphere is

4- The momental ellipsoid at the centre of an elliptic plate is

1-2 1,2
r

. I

5. The momental ellipsoid at the centre of a solid ellipsoid is

(^2+ ^2)^^,2+ (^2^ ^2^y.^ (^2+ /,2) .2_ ^>

14. r//^ Ellipsoid of Gyration.

If at a point in a body an ellipsoid be constructed such that
the moment of inertia about any perpendicular drawn from
the origin on a tangent plane is equal to Mp''-, where ]\I is the
mass of the body and / the length of the perpendicular, it is

called an ellipsoid of gyration. And, since, referred to its axis,
we have by definition A = Md^ about the axis of .r, B= Mir-
about the axis of j, and C=Mc^ about the axis of z, its equation
"""''^^

x^ v^ ^2
,ABC M

This ellipsoid may also be used to indicate the directions of
the principal axes

; and, from the form of its equation, it is
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apparent that it is co-axial, but not similarly situated, with a

momental ellipsoid.

15. When ellipsoids arc constructed at the centres of inertia,

it i.s customary to speak of them as central ellipsoids.

16. l'.(]iiimo)ncutal Systems.

Two .systems are equimomental when their moments of inertia

about all lines in space are equal each to each. And from this

definition, taken along with the two fundamental propositions

already proved, —
7=4 + J//,

/= A cos- « 4- /) cos^ ^-\-C cos^ 7,

it follows that systems will be equimomental when they have

1. The same mass and centre of inertia.

2. The same principal axes at the centre of inertia.

3. The same principal moments at the centre of inertia.

In some particular cases we may, instead of considering a

system or single body, use a simple equimomental system in

determining its moticjn ; but generally the labour of proving that

systems are equimomental, or of finding a simple system which

will be equimomental with a complicated one, is greater than

that of solving the problem directly. The following examples,

however, will serve to show how the process is carried out.

Illustrative E.xamples.

I. .Show that three masses, each equal to — . jilaced at the
3

middle points of the sides of a triangular plate of mass J/, are

equimomental with the triangle.

It this equimomental system be assumed, all the problems in

connection with a triangular plate, such, for example, as finding

moments of inertia about the sides, perpendiculars, and median

lines, arc very much simplified ; but the difficulty of proving
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1

this assumption is greater than that of solving the problems, as
has already been done by a direct process.

2. In an elliptic plate, find three points on the boundary at

which, if three masses each equal to ^~ be placed, they will form

a system equimomental with the plate, whose mass is M.

3. Show that three points can always be found in a plane area

of mass M, so that three masses, each equal to —
, placed at

3
these points will form a system equimomental with the area.

The situation of the points is shown in Fig. 12, which repre-

sents the momental ellipse at the centre of inertia of the area.

A may be anywhere on the boundary of the ellipse ; i5 and (T

are so situated that BD=DC Tind OD= DE.

4- Find the momental ellipse at the centre of gravity of a
triangular area.
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5. The momental ellipse at an angular point of a triangular

area touches the opposite side at its middle point, and bisects

the adjacent sides.

17. Pnnctpal Axes.

To find the principal axes at any point of a rigid body, three

rectangular a.xes might be chosen, and the conditions lmxj=o,
lffiyc=o, }imcx=o, would be sufficient to solve the problem,

cither by direct analysis or by the construction and subsequent

transformation of the equation of the momental ellipsoid. But
this process would often be tedious, and is generally unneces-

sary. Usually, by inspection, one at least of the principal axes

can be found, as has been already mentioned, and then the other

two may be obtained by the following propositions.

Given one principal axis at a point, to find the other two.

Let O be any point in the body, and let OZ, drawn perpen-

dicular to the plane of the paper be one perpendicular axis.

Take any two lines, 0X\ OV, at right angles to one another as
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axes in this plane, and let 0X\ OV be the other two principal

axes at O.

Then if P be any point {x, y) or {x'y'), and the body extends

above and below the plane of the paper, we must have as a

condition that OX',OY' shall be principal axes, ^inx'y' =
throughout the body. But x'=x cos 6-{-y sin 6, and y' = —x sin 6

+y cos 9.

Therefore the condition becomes

^ml—x"^ sin 6 cos O+y"^ sin 6 cos 9+xy cos^^— sin^ d\ =0,

which becomes, on reduction,

/, 2 Ijnxy 2 F

according to our previous notation.

If, then. A, B, F be found in respect of any two rectangular

axes OX, OV, 6 is known, and therefore the position of OX',

OV.

18. The condition that a line shall be a principal axis at

some point of its length is, that taking the line as axis of ,: and

the point as origin, the relations ^j;2xs= o, 1mys= o shall be

satisfied. It is not true, however, that if a line be a principal

axis at one point of its length, it will be a principal axis at any

other, or at all points of its length. F"or example, in Fig. 1 1, the

line OX is a principal axis at the point B on account of the sym-

metry of the cone, but it is not a principal axis at the point O.

Similarly, in a hemisphere, any diameter of the base is a prin-

cipal axis at the centre of the base, but not at a point on the

rim. There is one case, however, in which a line is a principal

axis throughout its length, and as this is of some importance,

the following statement and simple proof are given.

19. If a line be a principal axis at the centre of ijiertia, it

zvill be a principal axis at every point of its length.
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Let a portion of the body be represented in Fig. 14, O being

the centre of inertia, 00' the principal axis at the centre of

inertia, OX, OY any rectangular axes at O, perpendicular to

00\ and 0X\ OV parallel axes through O'.

Fig. 14.

Then we have, by a previous proposition

:

Ivu-y at 0'= lffucat + A/{//x),

and :i,„yc ' at (9= 'Iwjc at + Mi/ty).

l^ut x=y= o=)Ltnxc=^)nyz, by hypothesis.

• at O' ^vix'v'= o=^tny'c\

and therefore 00' is a principal axis at 0\ and therefore also

at any point in its length. Conversely, it may be shown that

if a line be a principal axis at all points in its length, it must
pass through the centre of inertia.
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20. To determine the locus of points at which the momenta!

elHpsoid for a given body degenerates to a spheroid, and the

points, if such exist, at which it becomes a sphere.

Let the body be referred to its principal axes at the centre

of inertia, and let A, B, and C be its principal moments, and

J/ its mass :
—

(i) If all three moments be unequal, say A > B > C, there

will be no point at which the momental ellipsoid for that

body will be a sphere, but at any point P on the ellipse

r2 -1-2
J

A-C B-C M'

or on the hyperbola.

^,^= 0.A-B B-C M
it will be a spheroid with axes of revolution touching the conic

at P: The momental ellipsoid at all other points will have

three unequal axes.

(2) If two of the moments be equal, and each less than the

third, say A> B—C, there will be two points at which the mo-

mental ellipsoid for that body will be a sphere, viz., the points

on the axis of .r, distant ±\/( ) from the centre of inertia.

At every other point on the axis of x, the momental ellipsoid

will be a spheroid with the axis of x as axis of revolution. At
all points not on the axis of x the momental ellipsoid will have

three unequal axes.

(3) If two of the moments be equal, and each greater than

the third, sdiy A=B> C, the momental ellipsoid for that body

will be a spheroid at every point on the axis of a, or on the

circle.

At all other points it will have three unequal axes.
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(4) II A = Iy = C, the momcntal ellipsoid will be a sphere at

the centre of inertia and a spheroid at every other point.

From the above it is seen at once that in the majority of

boilies there is no point for which all axes drawn through

it are principal axes.

Illustrative Examples.

I. To find the principal axes of a triangular lamina, at an

angular point.

One principal axis is the line drawn through the angular

point perpendicular to the lamina, and the other two are found

in the following way. In Fig. 15, let OA, OB be two rectan-

gular axes, OX, O Y the principal axes in the plane of the

lamina. Then the angle which OX makes with OA will be

-, j:
given by the formula tan 2 6= ~

,, whereh—A

/J = moment of inertia about OA

J«J«"
psin3a,y./.n/,',
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^= moment of inertia about OB

= 1 I p sin &; (.I'+jcos &j)'^</.r</j/,

F= I I p sin ft) (,r -\-y cos (ii)y sin wdxdy,

p being the density of the lamina, and the axes of x and y lying

along the sides of the triangle.

It will be found, on evaluating: these integ-rals, that

ta.n2 6 = -

d^+ ab cos ftj + b^ cos 2

As a simple case, let a) = -
; then the triangle is right angled,

A "

and tan 2 ^= -7^ ;, as can easily be found independently of the
a^— B^

above formula.

2. To find the principal axes at any point of an elliptic

lamina.

In Fig. 16, let (9' be the point (a, /3) at which we require the

Fig. 16.
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principal axes. Then the angle whicli O'X' makes with the

principal axis at O' is given by

tan 2^:
^^
B-A

where /I = / about <9'A" = / about OX+M^

i)'= / about (9'r'= /about OV-{-M(^

and F=^mx'y '= ^mxy+ J/«/9= Ma^.

2 Ma3
tan 26=

8 ft/3

The third principal axis is, of course, at right angles to the
l.iniina. through the point O'.

3. To find at what point a side of a triangle is a principal

ixis.

Fig. 17 shows the construction and proof. BC is the side in

question, and is bisected at E. AD is drawn perpendicular to

nC, and DH is bisected at O. Then, taking the cquimomental
M

system - at the middle points of the sides, in order that the

inertia-product F may vanish, the principal axis perpendicu-
lar to the side BC mnst. bisect the join of the mid-points of the
sides ^/?and AC, hence BC, (9 Fare the principal a.xes in the
plane of the lamina at the point O.



ELLIPSOIDS OF INERTIA AND PRINCIPAL AXES. 29

Y

Y 4- Find the principal axes at any point of a square or a rec-

tangular plate.

5. Find the principal axes at any point within a cube or

a rectangular parallelepiped.

6. The principal axes at any point on the edge of a hemi-

sphere are, one touching the circumference of its base, and two

others, given by the relation tan 2 d = \.

7. The principal axes at any point on the edge of a right

circular cone are, one touching the circumference of its base,

\Oaband two others, given by the relation tan 2 ^=
23^2.

where <

is the altitude of the cone and /; the radius of the base.

If a — 2 b, then one of the principal axes passes through the

centre of inertia, and at the centre of inertia itself all axes are

principal axes.

8. Find the principal axes at any point in a lamina in the

form of a quadrant of an ellipse.
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9. Determine the condition that the edge of any tetrahe-

dron may be a principal axis at some point of its length, and

find the point.

10. Two points /' and Q are so situated that a principal

a.xis at P intersects a princij)al axis at Q. Then if two planes

be drawn at P and Q perpendicular to these principal axes,

their intersection will be a principal axis at the point where it is

cut by the plane containing the principal axes at P and Q.

(Townsend.)

21. In determining the directions of the principal axes by aid

2 /•'

of the relation tan 2^= — , if F=o and at the same time
/) — A

B= A, then the value of 6 is indeterminate, and any two axes

perpendicular to the given one and to one another are principal

axes ; if B=A and F'\s finite, then tan 2 ^= infinite and 2 ^= -
;

2

if F=o, and B is not equal to A, then tan 2 = and 6= or-.
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CHAPTER in.

D'ALEMBERT'S PRINCIPLE.

22. In determining the motion of a single particle of mass

;;/, three rectangular axes are chosen, and if X, V, Z be the

accelerations in the directions of these three axes, the equation

of the path is found from the relations

Vt ——=7)1A,
dr

dh' ^

d^z ^

In the case of a body which is composed of a number of parti-

cles collected into what is termed a rigid body, i: we follow the

above method, we get three relations of the type

d\v ,. ,

where /j arises from the internal molecular actions, and X is,

as before, the acceleration of a single particle whose mass is m.

For every particle we should get similar relations, the value of

/i, however, changing from point to point in the body. We can

proceed no further in the solution of such equations, owing to

our imperfect knowledge of the value and variation of /j. But

the Principle of D'Alembert enables us to form an equation

independent of the internal molecular actions by taking the

31
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sum of all the forces acting on the individual particles which

compose the body. Thu.s, for all the particles, we must have

and U'Alcmbcrt's principle states that

23. The equations of motion of a rigid body, then, are

(A)

Each force of the type vi '
--'- is termed an effective force ; and^

(it-

the above relations are equivalent to saying that the effective

forces, if reversed, would be in equilibrium with the external or

impressed forces ; they may be looked upon either as equations

of motion or as conditions for ccjuilibrium.

24. It is evident, also, from this same principle, that if we take

the Slim of all the moments of the effective forces, these, if re-

versed, will balance the sum of all the moments of the external

forces. Consequently, for any set of rectangular axes, we must

also have
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H M,

-^-^^'%-m--'

(B)

where L, M, iVare the couples produced by the external forces.

25. It may be stated here that D'Alembert's principle holds

also in the case of a system of bodies moving under their mutual

actions and reactions, and applies to the motion of liquids. It

is a direct consequence of Newton's Third Law of Motion.

26. Deductions from UAlemberfs Prmciple.

Taking any one of the equations (A), we have

S?//—'— = ImX.
dr

But, by definition of the centre of inertia,

and .-. I.M^=M~
dfi dfi

Therefore the above relation becomes

dt-

and similarly for the other two.

(i) Hence, the motio7i of the centre ofgravity of a system under

the action of any forces is the same as if all the mass zuere col-

lected at the centre of inertia and all the forces were applied there

parallel to theirformer direction.

And so the problem of finding the motion of the centre of

inertia of a system, however complex, is reduced to finding that

of a single particle.

D
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Moreover, takiiii^ one of the equations (B),

iiince wc may choose the origin of coordinates at any point, let

it be so chosen that at the time of forming these equations the

centre of inertia is coincident with it, but moving with a certain

velocity and acceleration. Then, evidently, we must obtain a

relation of the same form as the foregoing, just as if we had

considered the centre of inertia as a fixed point. In other

words, such a relation as the above will hold at each instant of

the body's motion, independently of the origin and of the posi-

tion of the body.

(2) Ifiucc, tlw motion of a body, under the action of any finite

forces, about its centre of inertia, is the same as if the centre of

inertia were fixed and the sameforces were acting on the body.

27. The two previous deductions are known as the principles

of the Conservation of the motions of Translation and Rotation,

and show us that we may consider the two motions indepen-

dently of one another.

28. Imfuisive Equations of Motion.

Since an impulse can be measured only by the change of

momentum it induces in a body, in applying D'Alembert's Prin-

ciple to impulsive forces we must alter the expressions for the

effective forces, which will be represented not by the products

of masses and accelerations, but by the products of masses

and changes of velocity. All the preceding relations will hold

equally for impulsive forces if we then write changes of velocity

for accelerations.

Thus, such a relation as

V d^x V \-
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for finite forces will become

-l(f)'-(f)h-'

for impulsive forces where the velocity of each particle of mass

dr fdx\
VI is changed from -^ abruptly to (— j by the action of an

impulse X. And it may be said, generally, that equations of

motion for impulsive forces can be obtained from the corre-

sponding equations for finite forces by substituting in the latter

changes of velocities for accelerations.

29. In forming any relations for impulses, it must be borne

in mind that all finite actions, such as that of gravity, are to be

neglected ; after the impulse has acted, the subsequent motion

will, of course, be found by applying the equations for the

finite forces which usually are called into play after the impulse

has operated.

Ilhcstj'ativc Examples.

I. A rough uniform board, of length 2 a and mass ;;z, rests on

a smooth horizontal plane. A man of mass J/ walks from one

end to the other. Determine the motion.

This example furnishes an excellent illustration of the truth

of D'Alembert's principle, which asserts that the motion of the

centre of inertia of the system will be the same as if we applied

there all the forces external to the system, each acting in its

proper direction. All the forces at the centre of inertia are

then downwards, and as the centre of inertia cannot move

downwards, it must therefore be at rest ; and as the man walks

along the whole board, he will therefore advance relatively to

the fixed horizontal plane through a distance JlJUH- and the
J/+m

board will recede through a distance ~ ' ^^
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Analytically, we have for the motion in a horizontal direction,

since there are no horizontal forces cxtcntal to the system, the

equation

2w-— =o.

-':^=°'

and .'. —=o or constant.
(it

If the man and board start from rest, as we have supposed,

then

dt

.". J= constant,

which means that the position of the centre of inertia remains

unaltered throughout the motion of the two parts of the system.

2. Two persons, A and B, are situated on a smooth horizon-

tal plane at a distance a from each other. If A throws a ball

to B, which reaches B after a time /, show that A will begin to

slide along the plane with a velocity ~, where M is his own
Alt

mass and ;;/ that of the ball.

3. A person is placed on a perfectly smooth surface. How
may he get off .-^

4. Explain how a person sitting on a chair is able to move
the chair along the ground by a series of jerks without touching

the ground with his feet.

5 How is a person able to increase his amplitude in swing-

ing without touching the ground with his feet }
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6. Explain dynamically the method of high jumping with
a pole; and show that a man should be able to jump as far
on a horizontal plane without a pole as with one.

7. Two coins, a large and a small one, are spun together
on an ordinary table about an axis nearly vertical. Which will

come to rest first, and why ?

8. A circular board is placed on a smooth horizontal plane,
and a dog runs with uniform speed around on the board close
to its edge. Find the motion of the centre of the board.

30. T/ie Principle of Energy.

Before entering upon the discussion of the motion of a
rigid body, what is known as the principle of energy will be
explained, as it is exceedingly useful, and often gives a partial
solution of a problem without any reference to the equations
of motion, and in many cases furnishes solutions which are
both simple and elegant when compared with those obtained
by the use of Cartesian coordinates.

If a single particle of mass in be moving along the axis of ,r,

under the action of a force F in the same direction, we have,'
as the equation of motion.

And multiplying both sides by ^' and integrating, we get

where V is the initial value of v or —

•

dt

The expression on the left-hand side of the equation is the
change in kiiictic energy, which is equal to the zvork done by
the force from o to x.
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What is true of a sini;lc loicc acting in a definite direction

and of a single jjarticle of mass ;// is also true of a number

of forces acting on a rigid body or on a system. Then the

analytical expression for the work done by a system of forces

becomes

wliich must be cciual to

In the general case, where bodies move with both translation

and rotation, the total kinetic energy can easily be shown to

be that due to translation of the whole mass collected at the

centre of inertia, together with that due to rotation about the

centre of inertia considered as a fixed point.

P'or if X, }>, z be the coordinates of any particle of mass ;;/

and velocity v at time t, and J, y, z be the coordinates of the

centre of inertia, f, % ^ the coordinates of the particle referred

to the centre of inertia, then the total kinetic energy is equal to

since by definition of the centre of inertia the other terms

disappear. This proves the proposition.

31. According to the kind of motion and the choice of coor-

dinates and origin, this expression for energy will assume

various forms which will be given under the discussions of the

special cases throughout the treatise.

Twice the energy is termed the 7>is viva.
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32. To find the work done by an impulse ; let Q be the

measure of an impulse which, acting on a particle of mass m
moving with velocity V, changes its velocity suddenly to v

;

then the kinetic energy is changed from | m V^ to ^vtv^.

Work done by the impulse

= I mv^- 1 m F2= I {inv- m V) {v + V)

= lQ'(v+V),

since the impulse is measured by the change of momentum and

Q is therefore equal to mv—m V.

A similar relation will evidently apply to a rigid body where
V and V are the velocities of the point of application of the

impulse resolved in the direction of the action of the impulse.

Illustrative Examples on Energy.

I. A rod OA, of length 2 a, fixed at O, drops from a horizon-

tal position under the action of gravity : find its angular velocity

when it is in the vertical position OB. (See Fig. 18.)

o a ,^

l^

"ig. 18.



40 RIGID DYNAMICS.

Here, the work done by gravity in moving the rod from the

position OA to OB is Af£-a, AT being the mass of the rod. The

rod starts from rest in the position OA, so that when in the

position OB the change in kinetic energy is measured simply

by the energy in the position OB. This kinetic energy is equal

to the expression ^ Hmv^, v being the velocity of any particle

m ; and the linear velocity of any particle in OB is <or, where

<u is the angular velocity and r the distance of the particle

from O.

Hence ^ ^;«7'2_^ ^)n{oi>r)'^= Afga.

and ^;;/;~, t/ic viouunt of inertia of the rod about O, is Mil—;
3

2 a

which gives the angular velocity of OB.

This example may serve also to show the independence of

the motions of translation and rotation ; for, taking the expres

sion just found,

this may be put in the form

Mga=\ J/(rt(B)2 4-.] :i;;/(;-a))2,

where r is measured now from the centre of inertia, and Sw//^

= ^f - about the centre of inertia.

This is equivalent to saying that the rod in dropping from

OA to OB has acquired an amount of energy of translation of

the centre of gravity (where the whole mass may be supposed

to be collected) equal to \ M(aco)^, and also an amount due to
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rotation, just as if the centre of gravity were fixed and the rod

2

rotating about it, equal to \^ni{7'co)'^ or |^ • J/— • co^. Or, to

put it in another way, if the rod were freed when in the posi-

tion OB, and gravity removed, it would move on so that the

centre of gravity would have a velocity {aw) in a straight line,

and would keep rotating about this centre of gravity with an

angular velocity o) ; and the two energies taken together would

be the equivalent of the work done, or of Mga.

2. A uniform stick of length 2 a hangs freely by one end, the

other end being close to the ground. An angular velocity in a

vertical plane is then communicated to the stick, and when it

has risen through an angle of 90°, the end by which it was

hanging is loosed. What must the initial angular velocity be

so that on falling to the ground it may pitch in an upright

position .''

Figure 19 shows three positions of the stick. It starts with

an angular velocity &>, communicated to it in some way, and

reaches its second position with an angular velocity w', such that

:a)^^+ (^0

a relation which may be obtained at once from the principle of

energy. Then, the stick being freed, the centre of inertia has a

I (C

Fig. 19.



42 RH'Al) DYNAMICS.

motion of translation upwards represented by aco', and at the

same time the stick keeps on rotating about the centre of inertia.

Owing to the action of gravity, the motion of translation ceases,

alters in direction, and finally the stick drops to the ground in

an upright position. The time it takes the centre of inertia to

move from its second position to its final position when the

stick pitches upright is found from the well-known formula for

space described under the action of gravity, which, in this case,

becomes
(7 = - (70)' t+ 1

^/^. {d)

The condition for pitching upright is evidently to be found

from the condition that the rod after leaving position (2) must

rotate through (2;/+ i)^ before touching the ground, and there-
2

fore

a)'./= (2;/+i)'^. (c)

2

{(i), (d), and (c) give the result

where /=(2;/+i)—

3. A uniform heavy board hangs in a horizontal position

suspended by two equal parallel strings fastened to the ends.

If given a twist about a vertical axis, prove that it will rise

2 2

through a distance --^, where 2 a is the length of the board, and

o) the vertical twist.

4. A cannon rests on a rough horizontal plane, and is fired

with such a charge that the relative velocity of the ball and

cannon at the moment when the ball leaves the cannon is V.

If M be the mass of the cannon, ;;/ that of the ball, and /x the

coeflFicicnt of friction, show that the cannon will recoil a dis-

/ f„ y \2 ,

tance -—
) on the plane

KM+fft) 2 fig
^
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5. A fine string is wound around a heavy grooved circular

plate, and the free end being fixed, the plate is allowed to fall

freely. Find the space described in any time.

6. A coin is spun about an axis nearly vertical upon an ordi-

nary table. Form the equation of energy at any time as the

coin descends to its position of rest.

7. A narrow, smooth, semicircular tube is fixed in a vertical

plane, the vertex being at the highest point ; and a heavy flexi-

ble string, passing through it, hangs at rest. If the string be

cut at one of the ends of the tube, to find the velocity which

the longer portion will have attained when it is just leaving the

tube.

If a be the radius of the tube, / the length of the longer por-

tion, then, on equating the kinetic energy at the time the string

is leaving the tube to the work done by gravity up to that time,

it will be found that the required velocity is given by the relation

f(-^-4)}-
^^= cra\2im-

8. Explain why the grooving in a rifle barrel diminishes the

force of recoil.

9. A rough wooden top in the form of a cone can rotate

about its axis, which is fixed and horizontal. A fine string is

fastened at the apex, and wound around it until the top is com-
pletely covered. A small weight attached to the free end is

allowed to fall freely under the action of gravity, unwinding
the string from the top which rotates about its axis. Find
the angular velocity of the top when the string is completely

unwound
; also, the equation of the path of the descending

weight.

10. Two equal perfectly rough spheres are placed in unstable

equilibrium, one on top of the other ; the lower sphere resting

on a perfectly smooth horizontal surface. If the slightest
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disturbance be given to the system, show that the spheres will

continue to touch each other at the same point, and form the

equation of energy at any time.

Figure 20 shows the solution of this problem. D'Alembert's

principle asserts that the centre of inertia must descend in a

straight line, since the only external force is gravity.

^^- - - - ^^
^

X
/ ^\

/ \
/ \

/ \

\

\

\

1

1

\
y^^^ r^^^\

\ / \\ / / \
\ ^ ^' \
^v / / \\ /^ / y

-. /

^*'"*^<r " r
"^""^ — ^ 1

^r ^"^^v 1 ^ ^^^^

/ / \^^y^^\ 1
/ f ^lA Jf \ /

1 ! )V ; ^
\ \

/ /

\ \ / /

\ ^ y /\ ^ y /
/

Nw ^ / /
\^ ^^^^^-^^ ^-"--^-^ ^ "^

Then, considering the ene'.-gy of translation of the whole mass

of the two spheres collected at the centre of inertia along with

the energy of rotation of the system about the centre of inertia,

and equating the sum of these to the work done by the external

force of gravity, it will be found that at any time the angular

velocity is given by

a^oi^sw?" 6-\-\) — 2ga{\—QQi% 6).
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CHAPTER IV.

MOTION ABOUT A FIXED AXIS. FINITE FORCES.

33. When a body moves in such a way that two points in it

are fixed, this is equivalent to fixing a line of particles, and the

motion can only be about a fixed axis. The external forces

being any whatever, these, taken along with the pressures on

the fixed axis, measured in the proper directions, must produce,

according to D'Alembert's principle, equilibrium with the re-

versed effective forces. The pressures on the axis, no doubt,

are distributed all along the fixed axis and vary both in direction

and in magnitude from point to point and cannot generally be

determined in terms of known quantities ; but it is usual to

suppose that they may be regarded as equivalent to ttvo forces

acting at two definite points (which may be chosen anywhere

along the axis), and in particular cases to a single pressure

acting at a symmetrical centre.

34. General Eqiiations of Motion.

Let the body be an extended cne surrounding the point O,

as in Fig. 21 ; let ZOZ' be the fixed axis about which rotation

can take place, and the plane of xz the plane of the paper.

The axis OY (not shown) is perpendicular to the plane of the

paper. Let the pressures on the axis be equivalent to P-^ and

/*.2 acting at the points distant z^, ^2 from the origin O, and let

the angles which these pressures make with the axis of coordi-

nates be
«i, /Sj, 7i, «.2, ^82, 72-

45
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riicn by D'Alembert's principle, we have

2w -
.J
= '^VlX+l\ cos «, + /*2 COS r<2,

2w^=S//F+/^,COS/9,+/'2COS;92»

-'"
^y^-j

= -W'^^^- ^^ COS 7, + /', COS 72,

X )'. Z, bcins^ the accelerations on the unit mass m.

Fig. 21.

Wc mii.st have, also, the relations

"'"V^ "'*'
.//sj = ^'^± ^^1

'i
c"=^ «i ± ^-fi cos «»

where Z, J/, iV, are the couples produced by the external forces.
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It will be seen that there is one relation independent of the

pressures

and this gives at once, by transformation to polar coordinates,

dr

and
^^^_ moment of external forces about the fixed axis

moment of inertia about the fixed axis

which, evidently, on integration gives the angular velocity at

any time, and consequently the angle described in any given

time.

35. Angular Velocity of Any Heavy Body about a Fixed Hori-

zontal Axis.

If the body moving about a fixed horizontal axis be acted

upon by gravity only, the angular velocity at any time can be

7> o

Fig. 22.
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found from the preceding relation, or can be readily deduced

from elementary considerations in the following way.

Let the heavy body be moving about an axis through O
(F"ig. 22) perpendicular to the plane of the paper. It may

either surround O or be rigidly connected to it. Let the plane

of the paper contain the centre of inertia {A), and let OA—h.
Then, if at any time, the body be situated as represented, the

angle between the vertical and OA being Q, and if it be moving

in the direction of Q increasing, each particle of the body is

acted upon by gravity and produces a couple about the axis

through O.

The acceleration of each particle transversal to the radius

vector is - ^
(
/'^—

), which will produce a couple
rdt\ dt)

in Sl±{.2dl\{I If
rdkXrdK dt S'

about the axis through O. D'Alcmbcrt's piinciple states that

when we sum up all the couples produced by the external forces

and by the effective forces reversed, we must obtain equilibrium.

ILnce we must have

lw/j^;-j sin^i4-w/2.V''o^^"^2"'

—

\
+-w] -t\^~t]' ' (

~^'
y dt\ dt) i

or "^{mgr sin Q) \-^uin - -~ = 0.
dt'

"
df^ Swr^ '

which is the same relation we should have obtained from a con-

sideration of the general equations already found. Writing this

relation in the form .

(//2+ /(-2)^=-^.//sin^,
dt*
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where k is the radius of gyration about a parallel axis through
the centre of inertia, and integrating, we get

(/^H^2^(^JJ=2,-/.(C0S^-C0S«),

or, multiplying by the mass M,

I
M{/t^+ k^^)(^^J^jWg/i{cos ^-cos a),

which is the equation of energy ; so that the relation obtained
is merely another way of expressing the equivalence between
work done by gravitation and the kinetic energy developed dur-
ing the time that gravity acted.

36. T/ie Pendulum.

If we suppose any body, capable of motion about a fixed
horizontal axis, and under the action of gravity, to be slightly
disturbed from its position of equilibrium, it moveo to and fro,
and is said to make small oscillations. The time of one of these
excursions can be found from the expression for angular accel-
eration by supposing the angle 6 so small that sin e can be
represented by 6. Thus we have, in the case of a pendulum,

dt^ h^+ k^

which represents oscillatory motion and periodic values of 6,
the time of a complete oscillation being

gh

Now we know that a single particle suspended by a weight-
less string of length / will make small oscillations in time

V
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If. then, we wish to find the lcnf;th of a simple pendulum
which will oscillate in the same time as an extended body, we
take

// '

which is called the length of the equivalent simple pendulum.

I'Lxpcrimcntally, / may be found approximately by suspending

near tiie body a simple pendulum made of a small heavy body

and a fine string whose length can be adjusted until the times

of oscillation of the two are the same.

37. Centres of Suspension and of Oscillation.

Let a body be oscillating under the action of gravity about an

axis through S perpendicular to the plane of the paper, Fig. 21,

Fig. 23.

and let G be the centre of inertia, and

length of the equivalent simple pendulum

SO^lJ^^^. the

5 is called the

centre of suspension, and O the centre of oscillation. Now, if
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the body be inverted so that it can oscillate about a new axis

through O, then the new length /' of the simple equivalent pen-

dulum will be equal to

(f)^

h

Hence, the centres of suspension and of oscillatioji are inter-

changeable.

38. If the position of the axis of oscillation in a body is

changed, the time of oscillation also changes, and it will be
found that this time is a maximum when the axis passes
through the centre of inertia, and a minimum when h= k,

and k itself is a minimum. This may be seen either by differ-

entiating the expression for / or by throwing it into the form

Illustrative Examples.

1. A cube, edge horizontal and fixed, makes small oscilla-

tions about this edge.

If 2 « be the edge, /=^^z.
3

2. Fmd the time of a small oscillation of a hemisphere about
a horizontal diameter as fixed axis, under gravity.

3. A wire, bent into a circle, oscillates under gravity (i)

about a horizontal tangent, (2) about a line perpendicular to
this tangent at the point of contact. Compare the times of

oscillation.
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4. A magnetic needle suspended horizontally by a fibre with-

out torsion makes small oscillations under the action of the

earth's majrnetism. Find the time of a small oscillation.

^m:

Fig. 24.

If H be the horizontal intensity of the earth's magnetism, vi

the magnetic strength of either pole, and 2 / the length of the

needle, then it is evident, from Fig. 24, that when the needle

makes an angle 6 with the magnetic meridian, we have

MP'^= -Ilm 2 /sin e= -IL\r sin 6,
dr

where ]\Ik'^ is the moment of inertia about the axis of rotation,

and M' is the magnetic moment.

Hence, for small oscillations,

and the time of a small oscillation is

'~T~
2 7r\'

lur

5. A circular wire carrying a current and freely suspended,

as in Ampere's experiment, places itself at right angles to the

magnetic meridian. If slightly disturbed, find the time of an

oscillation.

If a solenoid be used, find also the time of a small oscillation.

6. Find the equation of motion of a mctronovic and the time

of a small oscillation.
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7. Find the least axis of oscillation for a sphere and an
ellipsoid.

8. A right circular cone makes small oscillations about a
diameter of its base. Find the time of one of these oscillations,
a being the altitude, and b the radius of the base. Find, also,'

the least axis of oscillation when a= 2b.

9. A helix of wire, with the ends bent inwards and ending
on the axis, is fastened at the upper end, and on being pulled
slightly by the lower end vertically downwards, and then freed,
oscillates under gravity. Find the time of an oscillation.

10. A uniform beam rests with one end on a smooth hori-
zontal table, and has the other end attached to a fixed point by
means of a string of length /. Show that the time of a small

oscillation in a vertical plane will be 2 vta/—•

11. A sphere rests on a rough horizontal plane with half its

weight supported by an extensible string attached to the high-
est point, whose extended length is equal to the diameter of The
sphere. Show that the time of a small oscillation of the sphere

parallel to a vertical plane is 2 tta/i^^, a being the radius of
the sphere. ^SS^

12. A uniform beam of length 2^ is suspended by two
equal parallel strings, each of length b, fastened at the ends,
and attached to fixed points in the same horizontal line. Show
that if given a slight twist about a vertical central axis it will

make small oscillations in time 2 tta/— •

39- Determination of g by the Pcndulinn.

If a pendulum of any form be allowed to make small oscilla-
tions under the action of gravity, we have the time of a com-
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plcte oscillation jrivcn by the relation /= 2 7r\/-, where / is the

length of the equivalent simple pendulum and equal to —-—

.

If, now, / be observed by means of a clock, and /i and /.- be

found, we have the value of ^ given. This method is one of

the most accurate known for finding the intensity of the earth's

attraction at different points on its surface. Various forms have

been given to these pendulums, from time to time, in order to

ensure accuracy of measurement ; and the most important of

those which have been used for the scientific determination of

gravity are described below,

(a) Bordas Pendulum.

Borda (1792) constructed his pendulum so as to realize as

nearly as possible the simple pendulum. It was made of a

sphere of known radius, equal to a. To render it very heavy it

was composed of platinum and was suspended by a very fine

wire about twelve feet in length. The knife edge which carried

the wire and sphere was so arranged by means of a movable

screw as to oscillate in the same time as the complete pendulum.

The time was determined by the viethod of coiiuidemes, and

g was found from the relation

/=2 7rt' ^ (-7:)

where / is the length from the knife edge to the centre of the

sphere, a the radius of the sphere, and « half the angle through

which the pendulum swings at each oscillation to or fro.

(b) Katcr s Pcnduluw.

In 1 81 8, Captain Katcr determined the value of gravity at

London by applying to the pendulum the principle discovered

by Huyghais, that the centres of suspension and oscillation are

reversible. He made a pendulum of a bar of brass about an
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inch and a half wide and an eighth of an inch in thickness.

This bar was pierced in two places, and triangular knife edges

of hard steel were inserted so that the distance between them

was nearly 39 inches. A large mass in the form of a cylinder

was placed near one of the knife edges, being slid on by means

of a rectangular opening cut in it. A smaller mass was also

attached to the pendulum in such a way as to admit of small

motions either way. The pendulum was then swung about the

two axes and adjustment of the masses made until the times of

small oscillations were the same. This time being noted, and

the distance between the knife edges being accurately meas-

ured, jf was readily calculated. A small difference being gen-

erally found in the two times, it can be shown that the length

of the seconds pendulum will be found from the expression

(/.i-f-/g(/.,-/.,)

where 7/^, /i^ are the distances of the centre of inertia from the

two knife edges, and t^, t.^ the corresponding times of oscillation.

(c) Rcpsold's Pendnluni.

It was noticed in experimenting with pendulums made like

Kater's that the vibration is differently affected by the sur-

rounding air according as the large mass is above or below.

This led to the form known as Rcpsold's, in which the two ends

are exactly similar externally, but the pendulum (which is cylin-

drical) is hollow at one end.

The centre of inertia of the figure is equidistant from the

knife edges, but the true centre of inertia of the whole mass is

at a different point.

40. Many observers have, during the present century, con-

ducted observations at different points on the earth's surface

in order to determine not only the length of the seconds pendu-

lum, but also the excentricity of the earth considered as a

si)hcroid.
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Iltlnicrt in his \V(irk on Geodesy has collated the results of

nearly all the more important expeditions, and the following

table gives some of the principal stations with the corresponding

lengths of the seconds, pendulums there, and the name of the

observer. To find g from this table for any place, the relation

log ^.'-=2 log 77+ log/

Latitude. Observer.

Kawak . .

.St. Thomas

( lalapagos

I'ara . .

Ascension

.

Sierra Leone

Trinidad .

Aden . .

Madras

St. Helena

Jamaica

Calcutta .

Rio Janeirt)

Valparaiso

Montevideo

Lipari . .

Iloboken, N
Tidis . .

Toulon

Bordeaux .

Padua . .

Paris . .

.Shanklin I'ar

Wight) .

Kcw . .

("irccnwich

London

Berlin . .

Statcn Islan<

Cape Horn

Liilh . .

Sitka . .

Pulkowa .

Petersburg

I'nst . .

Isle o

I'S.

24 N.

32 N.

27 S.

55 i^-

29 N.

38 N.

46 N.

4 N.

56 S.

56 N.

55 «•

2 S.

54 S.

28 N.

44 N-

41 N.

7 N-

50 N.

24 N.

50 N.

50 37 N.

51 28 N.

51 28 N.

51 31 N.

52 30 N.

54 46 S.

55 5' S.

55 58 N.

57 3 N.

59 46 N.

59 56 N.

r<o 45 N.

99.0966

991134

99.1019

99.0948

99.1217

99.1104

99.1091

99.1227

99.1168

99.1581

99.1497

99.1712

99.1712

99.2500

99.2641

993097

99-3«9«

99.3190

99.3402

99-347°

99-3<>23

99.3858

99.4042

99.4169

99-4 "43

994140

994235

99.4501

994565

99-455°

99.4621

99.4854

99.4876

99-4959

Freycinet

Sabine

Hall

Foster

Sabine

Basevi and Heaviside

Basevi and Heaviside

Sabine

Basevi and Heaviside

Liitke

Foster

Biot

Dupcrrey

Biot

Biot

Katcr

Foster

Foster

Liitke

Sawitsch

k
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may be used, where / i.s the length of the seconds penck.lum
HI centimetres. See also Geodesy, by Colonel A R Clarke
Chap. XIV.

The places are arranged geographically in order of their lati-

tudes, and show thereby the gradual increase in the length of
the seconds pendulum as we go from the equator to the pole.
Those places, in the preceding table, for which the lengths

of the seconds pendulum have been calculated from a nuntber
of observations made by different observers, are indicated by a
dash.

41. During the past few years several observers have made
observations on the value of g at different points in North
America. Professor Mendenhall, of the U. S. Coast Survey,
during the summer of 1891, visited a number of places on the
Pacific coast between San Francisco and the coast of Alaska,
and in his report of the expedition gives a table of the values
determined, with the places and corresponding latitudes. He
made use of a half-seconds pendulum enclosed in an air-tight
chamber which could be exhausted with an air pump. A sp^ec-
lal method was used for noting the coincidences (see U. S. Coast
and Geodetic Survey. Report for 1891, Part 2).

Defforges, one of the greatest living authorities on methods
of gravity determination, crossed from Washington to San
Francisco during the summer of 1893 and made a number of
observations which are given in the following table. The value
of ^ alone is given.

Washington
, ^80.169

^^^""^'^^J
980.747

^'"^-^°
980.375

^'"^•^•-
980.983

^"'^I'^'^^City gS^^^^
^^"^^ilton

^^^^,g
San Francisco

^8^^^^

These are all reduced to sea level.
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42. Expinmental Ditcnnination of a Moment of Inertia.

In many cases of small oscillations under gravity, where it

is difficult to calculate the moment of inertia of a body from its

elements, the time of oscillation is observed ;
and, the moment

of inertia being increased by the addition of a mass of definite

figure, the time of oscillation is again noted.

The required moment of inertia may then be calculated.

This method is particularly useful in the case of magnetic

oscillations about a vertical axis.

43 Pressnrc on the Fixed Axis. Forces and Body Sj'mmet-

rical.

If a body be moving about an axis, and it is symmetrical with

respect to a plane passing through the centre of inertia and

perpendicular to the axis, and at the same time the forces acting

on the body are also symmetrical with respect to this plane,

then we may suppose that the pressures on the axis are reduci-

ble to a single one which will lie in the plane of symmetry and

will cut the axis of rotation. To determine, in such case, the

direction and magnitude of the resultant pressure, we proceed

in the following way.

Let the body, Fig. 25, surround the point O and let it be

symmetrical with respect to the plane of the paper which con-

tains C, the centre of inertia : the axis of rotation being perpen-

dicular to the plane of the paper, and passing through O. Let

the forces acting on the body also be symmetrical with reference

to this plane. And let the body, moving about the axis through

6>, be situated at any time / as represented, being the angle

which the line OC fixed in the body and moving with it makes

with the line OA fixed in space. Then the resultant pressure

on the axis will be in the plane of the paper, and its direction

will pass through O Let its components measured along two

rectangular axes OX, OY'wy the body, be P and Q. Let CO-li.

Then, X, Y, being the accelerations on unit mass in the
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directions OX, OY, we have, by D'Alembert's principle, the
relations

ar

Fie. 25.
Fig. 26.

Now, if CO be the angular velocity, any particle such as ;;/

will be acted on by the forces nmh-, vi^r, as is indicated in the
figure; and these forces resolved along OX, OY, as shown in

Fig. 26, would give

d\r

^-^ = — ni(o-y+ viwx.

The values of ^', ^' may also be obtained by direct differ-

entiation from x=r cos d, y=r sin B. Thus,

dt '"" dt

dx . ^dQ
CO%0'^= x.
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Ilencc, our relations for determining the pressures become

P + 1;;/
A'

-t- ^m{(ii\x + wy) = O,

(2 + S;;/ K+l;;/(&)-V — tw.i) =0.

.-. /'= — 2wA'— -;;/(&)-.r + (u>'),

Q= —^111 Y— ^ni(ury-(iix).

But, by definition of the centre of inertia,

2 ;;/ (u-j ' = &)"—
///J'

= O. — ;// &).i = ti)— ;//a'= Mliia.

which equations determine the pressures P, Q, and therefore

the direction and magnitude of the resultant pressure when

we know (o. which is found from the relation already given,

where N is the moment of the external forces about the rota-

tion axis, and 2!;;//^ is the moment of inertia about the same

axis. This, on integration, gives o), and on substituting its

value in the preceding expression, P and Q are found.

44. ILaw Sylinnetricxi Body. Pressure on the Axis.

In the particular case of a heavy body which is symmetrical

about a plane through its centre of inertia perpendicular to the

rotation axis, which is horizontal, the external forces are only
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those of gravity, and we have, Fig. 27, the pressures given by

the relations

and if we suppose P estimated in the opposite direction, the

complete solution of the motion is obtained from

itP

Fig. 27.

'dt~~dfi~~''¥+¥'
I

p=jrgco?>e+Mh(o\ 1

P being measured always upwards from the vertical and k bcin^

the radius of gyration about the centre of inertia.
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Illustraiivc Examples.

I. A rod, movable about one end, falls in a vertical plane,

starting from a horizontal position. Find the pressure on the

end in any position.

Figure 28 shows the motion ; when the rod makes an angle

B with the vertical line OA, we have

(/(o_(Pd_ (^as\x\6_ T,c;- .

lit dt- Aa- A a
sin^.

<^^ Sir • nii^
: 2 0) , = --^-^ sm 6'r-

dt 2 a dt

.: C2o}d(o=-j —smOde.
J" *^T 2 (I

Fig. 28.

and

0)-=^ cos 0,
2 a

P= J/^r cos e + JAra)2^ ^
j/^r cos ^,

Q=Mg sin e+ Miuo = \ .Vtf sin 0.
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When the rod i.s in the lowest position, d= o, and P=lMg,
Q = o.

2. Rod, movable about one end, falling from the position of

unstable equilibrium.

As in the preceding problem, we have (Fig. 29)

-T-=-^^sm^,
at 4. a

(
"2 (odoi= - f^^ sin ddO,

Jo Jt, 2 a

«2= |f(i+cos^),

and P=Mg cos e+ MaaP^= \ Mg{z + 5 cos &),

Q= Jl/g sin 6+ J/ao) = \ Mg sin d.

Fig. 29.

In the lowest position, ^= 0, (?= o, P= 4J/g, which shows

that if the rod can just make complete revolutions, the pressure
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on the axis in the lowest position is in the direction of the rod,

and equal to four times its weight.

MaxiviiDii andMmiinu in I'alitis of P and Q.

P is a maximum when 6= or tt, and its values then are

4J4'" and —^^fjf, it is a minimum when cos^= — ;^. Q is a.

maximum when 6= -, and its value then is 1 J/^; it is a mini-
2

mum when 6= or tt, and its value then is o.

Resultant Pressure at Any Time.

This maybe found by taking R-= P^^-Q-, and substituting

the general values of P and Q in terms of 6. The maximum

and minimum values of the total pressure may be obtained by

differentiating in the usual way. The angle which the result-

ant pressure makes with the rod will be determined from the

Q^ smO
y^~'6-f lo cos^

relation tan i/r:

3. Cube, edge horizontal, performing complete revolutions

under gravity.

O ^r

Fig. 30. Fig. 31.

Figs. 30 and 31 show the motion. Since the body and forces

are symmetrical about the central plane perpendicular to the

axis of rotation, the pressures on the axis, as the cube swings
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around, arc reducible to a single pressure lying in this central

plane and cutting the axis. Taking, then, the auxiliary figure,

we need only consider the motion of OC, which in any position

makes an angle 6 with the vertical line OA.

The angular velocity at any instant is given by

dt dfi 4V2-«
sm

the edge of the cube being of length 2 a.

Supposing the cube to start initially with OC vertically

upwards, and to swing completely around,

2 cod(o = - -^p- sin diie.

.2^ 3^6)2^ ^1 (l+COS^),
2V2rt

and P= Mzcose+MaV 2 -^^ i + cos ^M^ cos e+ iWa^ 2(^^ I + cos ^\

Q= Jl/rr sin e+ 3/aV2( ^— sin A
V 4V2 a J

•'. P=--f (3 + S COS 6),

Qj-^sinO.

The maximum and minimum values of P and Q can easily be

found, as in the previous case of the rod.

To find the f^fa/ pressure, we have

^+5COS^)2 + (^-^

.uum au im values of R can be found by

oss of different. with respect to 6. It will be
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found that A' is maximum when 6= or hit, and its values then

arc 4^4' ^'^'I'J —^L?-

/v is a minimum when cos 0= —\%, and its value is —\~~.

4. A hemisphere revolves about an axis which coincides with

a diameter of its base, and which is inclined at an angle « to

the vertical. If it swings completely around, the total pressure

on its axis, when in the lowest position, is

—- * ( 1 09 sin u)- + (64 cos fi)-l '.

64

5. A right circular cone whose height is equal to the radius

of its base swings about a horizontal axis through its vertex.

If the axis of the cone starts from a horizontal position, find the

angular velocity and the pressure on the rotation axis when in the

lowest position.

6. A uniform heavy rod oscillates about one end in a vertical

plane, under gravity, coming to rest in a horizontal position.

If yfr be the angle between the rod and the line of the resultant

pressure, and ^ the angle of inclination of the rod to the horizon

at the same time, then tan y{r tan ^=
jV-

7. A liomogeneous solid spheroid, the equation of whose
bounding surface is

-t^. 1^ + ^-"

a'i+'-^-='.

is suspended from an axis passing through one of the foci.

Prove that the centre of oscillation lies on the surface

I
oh- + /A'(.,-2 + ,.2 ^ .2^ p^ -,

5 ^^2(^,2 _ ^.
^
^^ _^y ^ ^)2

8. A uniform wire is bent into the form of an isosceles tri-

angle, and revolves about an axis through its vertex perpendi'^u-
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lar to its plane. Prove that the centre of oscillation will be at

the least possible distance when the triangle is right angled.

9. A uniform heavy rod revolves uniformly about one end in

such a manner as to describe a cone of revolution. Find the

pressure on the fixed point, and show that if 6, -<|r be the angles

which the vertical makes with the rod and the resultant press-

ure, 4 tan i/r = 3 tan ^.

10. A rough uniform board is placed on a horizontal table

with two-thirds of its length projecting over the table, the

board being initially in contact with the table, and perpendicu-

lar to the edge. Show that it will begin to slide off when it

has turned through an angle tan'^-, ^l being the coefificient of

friction.

45. General Case.

If the forces and body are not symmetrical, then we take the

general equations already found ; and supposing the pressures

to be equivalent to two at two points on the axis whose com-

ponents are P, Q, R; P'
,
Q' , R' ; we get, for the determination

of these pressures, the relations

tm^=^mX+P+ P',

l.m'^-= ^mY+0+Q',
ilr

~

l.m'^=^mZ+R + R',
dr

V / d^y d'^x\ -ir V o dio
2.1)1 x-^— y—- = ^A = 2,;;/;- • —

-

V dfi ^ dfi) dt
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This last relation gives at once the value of &> and, by integra-

tion, of Q). /,, J/, jV are the couples produced by the external

forces ; and Ci, C^, C^, C^, the couples produced by the pres-

sures, which can be expressed in terms of these pressures, and
the distances from the origin at which they are supposed to act.

The process of solving any particular problem will be to

(i) I-'ind d) and co.

(2) Express the quantities
'-'J, etc., in terms of <u, tu, and

known expressions.

(3) Thence find the pressures.

The effective forces can be expressed in terms of the radial

and transversal forces either by resolution or by direct differ-

entiation, and it will be found that

= — (y-I'-f <u.r.

Thu.s, the previous relations will become

1ifiX+ P + P' = Iw(-a)-.r-&)j') = -m-^rx-(o^fy,

S/w y+Q + O' = S;;/ (
- afiv -f <w.r) = - oi~My + 6iMx,

SwZ-f /v -f-A"= 0.

where x, y are the coordinates of the centre of inertia.

Also, since -."=0, we have
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46. It will be seen that the last expressions arc much simpli-

fied if we make a proper choice of axes. The first thing to be
done, then, is to choose the origin on the rotation axis so that
it is a principal axis at that point. Then l^inxz^o, 'Lmv.~= o.

Thus, for example, if we suppose a triangle to be rotating
under gravity about one side which is horizontal, the equa-
tions of motion will be much simplified if we choose as origin
that point in the side at which it is a principal axis ; see Ex. 3,

p. 28. Then, supposing the pressures to be equivalent to two
acting at the ends of the side, the solution is very simple, as
the angular velocity at any time is found from the relation

dt ^ f - p '

6

where/ is the perpendicular on the rotation axis from the oppo-
site angle

;
and the pressures can then be immediately written

down in terms of o), w and the coordinate x of the centre of
inertia, y being o, since the body is a lamina.
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47. (jtiiciiil Case.

An impulse being defined, as already explained, to be a force

which produces a sudden change of velocity, and which only

acts for an indefinitely short time, we can obtain the general

impulsive equations of motion of any body capable of motion

about a fixed axis by considering the relations found in Art. 45.

In those relations, by the substitution of changes of velocity

for accelerations, we get

SA'+/' +r = I;//
f)}'

.»c.(p-..j(:^0'-(l)|,

5:z+/e+/v"=o,

where X, Y, Z arc the impulsive actions on individual parti-

cles due to external impulsive forces ; /', Q, R, P\ Q' , R' are

impulsive pressures on the fixed axis ; and where the velocity

--- ) of any particle before the impulsive action takes place, is

changed suddenly to f—
j

•

70
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And, since ^= 0, and the angular velocity &> is suddenly

changed to co', we have for the impulsive couples,

Now we have ^ at any time equal to —wy, and ~^= o}x;

and, substituting these values in the preceding equations, we
have the complete solution of the problem given by

^y+Q + Q' = ^m{(o' - oo)x= (o)' - ai)Mx,

^Z+R + R'=o,

L + C^ + C^^ — ^in::{co' — co)x= — (cw' — (0)^7^1x2,

A/+ C^ + Q' = 2w.s-((y' -a))j= {(xi' -w)^my::,

N= (q)' — CO) • ^nii^.

48. If the body starts from rest, then &) = o, and the sudden
angular velocity generated by an impulse which tends to turn a
body about a fixed rotation axis is obtained from the relation

, N

where N is the moment of the impulse about the axis, and
2w;-2 is the mom.ent of inertia. As before, the problem is sim-
plified by choosing the origin at a point where the rotation axis
is a principal axis.
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49. Centre of Percussion.

In the general equations just found, let us suppose that the

impulsive actions are those caused by a blow Q represented by

components X, Y, Z\ and that the blow is struck at some point

on the surface of a body, capable of motion about a fixed axis,

which either passes through it or to which it is rigidly con-

nected. What is the condition that there shall be no impulsive

pressure on the axis ? Or, in other words, is it possible to

strike the body at a certain point in such a way as to produce

no strain upon the axis about which it is free to rotate ? Let

the body (Fig. 32) surround 0\ let ZZ' be the axis of rota-

tion, and let the plane of zx, which is the plane of the paper,!

contain G, the centre of inertia of the body. Suppose that the]

blow Q is applied at the point whose coordinates are |^, ?;, f (th<

coordinate 1) not being shown, being drawn upwards perpen-

dicular to the plane of the paper). If there be no resulting
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pressure when the body is struck, the general relations
become :

A'=o,

V=(co'-Q})Mx,

L = i]Z-^K= - (c' - 0)) ^mxz,

M= ^X- |Z= - (a,' - co)l.vij'C,

where k is the radius of gyration about the axis.

From these it will be seen that, since A'=o, Z=o, we have
also lmjc= o. And also,

Y={co'~oy)Mx.

Mx ~ ^mx

And I is given by the last relation,

^=
Y ((o' — (o)J/x X

The above conditions holding, and there being no pressure on
the axis, the line of the blow is called a Line of Percussion, and
any point in this line is termed a Ccjitrc of Percussion.

50. By an inspection of the foregoing relations, we have,

I. -\ =0, Z=o; and therefore one condition, that there may
be no strain upon the axis, is that the line of the blow must be
perpendicular to the plane containing the rotation axis and the
centre Cif inertia.
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2. 2£;;/;c= o, and ^>j/xc = ^- 1>/ix.

Now, since O may be chosen anywhere on the axis, let it be

so chosen that t=o. Then for that origin so chosen 2;;/j'^

would be zero, and ^nixz also zero.

Therefore, an essential condition, to be first satisfied for a

line of percussion, is that the axis of rotation must be a prin-

cipal axis at some point of its lenLjth.

3. ^= , which shows that when a centre of percussion does
X

exist, its distance from the axis is the same as that of the centre

of oscillation.

If ^=0 and 5=0, then the line of percussion passes through

the centre of oscillation, which may be stated in the following

way :

If the fixed axis be parallel to a principal axis at the centre of

inertia, the line of action of the blow will pass through the centre

of oscillation.

Illustrative Examples.

I. A uniform rod, fixed at one end and capable of motion in

a vertical plane, is hanging freely under the action of gravity,

and being struck perpendicular to its length, rises into the

|i()siti()n of unstable equilibrium. Find the magnitude of the

blow that there may be no .strain at the fixed point.

In onk-r that there may be no strain on the axis, it must be

struck at the centre of percussion, which jjoint will be at a

distance ^'- from the fixed end, if the length of the rod be 2a.

'J'hcn, if M bo the angular velocity produced by the impulse, we

have from the equation of moments.

D • ^^—= 2.1111^ • CO.

'. B=Jfa(o.
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Also, —=— ^^.^sin^
dt 4 a

is the equation of motion of the rod as it rises upwards, being

acted upon by gravity, and starting with an angular velocity 00.

• \ 2 codai= -^ ("sin dde,

0,2= 31-.

a

.-. B=^JMaw = M^iga.

From this it may be seen that generally when a body is

struck at the centre of percussion, the value of the impulse is

measured by the product of the mass and the velocity of the

centre of inertia.

2. A circular plate free to move about a horizontal tangent

is stuck at its centre of percussion and rises into a horizontal

position. Find the blow.

As before, B— Maw, a being the radius,

J d(0 ACT .

and — = —n:^ sm p gives &,.

dt 5 ^

.-. B=M^^.
^

5

3. A sector of a circle, whose radius is a and angle «. is

capable of turning about an axis in its plane which is perpen-

dicular to one of its bounding radii. Find the coordinates of

the centre of percussion.

Fig. -i,-}, shows the position of the centre of percussion C
whose coordinates are

'Evix

'

f-^
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On transforming to polar coordinates it will be found that

^= |r7 sin n,

^=i^i 1- cos rt ).

\sin /

Fig. 33.

4 To find the centre of jicrcussion of a triangular plate

callable of rotation about a side.

FiR. 3<.
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Fig. 34 shows the position of the centre of percussion. AB
is the rotation axis, PD perpendicular to AB, E the middle

point of AB, F the middle point of DE. Then AB is a prin-

cipal axis at the point F, and G being the centre of inertia of

the plate, and PD=p,

C is the centre of oscillation,

C is the centre of percussion,

and OcJ;=^-= t
h p 2

3

When the triangle is isosceles, C and O coincide.

5. ABCD is a quadrilateral (Fig. 35), AB being parallel to

CD. Show that, if AB^=t,CD\ the point P is a centre of per-

cussion for the rotation axis AB. (Wolstenholme.)

Fig. 35.

6. A uniform beam capable of motion about one end is in

equilibrium. Find at what point a blow must be applied per-

pendicular to the beam in order that the impulsive action on the

fixed end may be one-third of the blow.
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51. Initial Motions. Changes of Constraint.

If a body, moving about a fixed axis with known angular

velocity, is suddenly freed from its constraint and a new axis

fixed in it, or if a body at rest is disturbed so that there is a

sudden impulsive change of pressure, we can determine the

new angular velocities and changes of pressure by reference to

the impulsive equations of motion already found. Sometimes,

however, solutions which are more instructive may be obtained

by considering elementary principles ; and the following exam-

ples are given to illustrate the methods to be employed in

various cases.

Illustrative Examples.

I. A uniform board is placed on two props; if one be sud-

denly removed, find the sudden change in j^ressure at the other.

Fig. 36 illustrates the problem. The board is of length 2 a,

and rests on the props A and B, which are fixed in position in

Jl

s:

M^ B

Fig. 36.

Mc,

the first figure, so that /? = .] Mg. If B be now removed, the

board begins to turn about the upper end of A under the action

of gravity, and to each element of the board an acceleration iar

is given suddenly ; so that if we communicated to each element

;;/ an acceleration iar in the opposite direction (upwards), we
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would have, by the application of D'Alembert'.s principle, R',
^mwr), and Mg in equilibrium with one another, as indicated
in the second figure.

.-. R' + ^{mwr)-Mg=o.

Also, taking moments about O, just when the prop is removed,
we have

^{nmr) 'r=Mg- a.

. . Ig
4 a

.'. R' =Mg-Ma^= \Mg.

2. The extremities of a heavy rod are attached by cords of
equal length to a horizontal beam, the cords making an angle of
30° with the beam. If one of the cords be cut, show tha't the
initial tension of the other is two-sevenths of the wei-ht of the
rod.

^

3. A uniform rod is suspended in a horizontal position by
means of two strings which are attached to the ends of the rod
If one of these strings be suddenly cut, find the sudden chan-e
in tension of the other string.

^

4. Two strings of equal length have each an extremity tied
to a weight C and their other extremities tied to two points
A, B in the same horizontal line. If one be cut, the tension of

the other is instantaneously altered in the ratio i rscos^^l^.
2

5- A particle is suspended by three equal strings of len-th a
from three points forming an equilateral triangle of side 2 ^ in a
horizontal plane. If one string be cut, the tension of each of

the others is instantaneously changed in the ratio 3 ^^-4^"

2{d~-b-)
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6. A rod of length 2 a falls from a vertical position, being

capable of motion about one end in a vertical plane, and when

in a horizontal position, strikes a fixed obstacle at a given dis-

tance from the end. Find the magnitude of the impulse, and

the pressure on the fixed end.

Fig. 37.

Let the rod (Fig. 37) drop from the vertical position and

strike an obstacle when in the position OB with a blow Q.

Let R be the impulse on the fixed end O, and then we have,

taking moments about O,

M
3

and since the rod falls from the vertical position, its angular

velocity when in the horizontal position is found in the usual

way to be given by

2rt

The impulsive pressure on the fixed end is obtained from the

relation

C^= A' + :S ( tnrw) = R + M<m.
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1

.-. /i = Q-J/aco = J/aco\'l~-i\.

These two values of Q and R will change as d changes
; Q

will be a ma.ximum when d=^, and R will be positive, zero,

or negative, according as

A.a
or as d< = >^—.

Hence, if the obstacle is beyond the centre of percussion, the
impulsive strain at O is downwards. If at the centre of per-

cussion there is no impulsive action on the axis, and when

^/<li:, the impulse at O is upvN^ards.

These results can easily be verified by experiment. An iron

bar movable about an axis in which it is very loosely held, if

dropped so that it strikes an obstacle in a horizontal position,

will throw its fixed end downwards or upwards according as the
obstacle is beyond or nearer than the centre of percussion ; and
if the bar falls so that it strikes the obstacle just at the centre
of percussion, then there is no jar on the fixed end, no matter
how loosely it may be held. The experiment may be modified
in many ways, and a familiar illustration of there being a centre
of percussion is afforded by the use of the cricket bat or base-

ball club with which a ball is struck. If the ball be struck by a

portion of the bat out near the end, the fingers tingle from the

impulsive reaction outwards; if it be struck nearer than the
centre of percussion, the impulsive reaction is inwards against
the palm of the hand ; when the ball is struck properly, there is

no impulsive reaction on the hand, and the energy is all com-
municated to the ball.
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7. A rod is moving with uniform angular velocity about one

end fixed ; suddenly this end is freed and the other end fixed.

Find the new angular velocity.

O V n' r ,-r
^ I ^

r
Fig. 38.

Fig. 38 indicates the solution. In the first figure each

particle has a linear velocity wr in the direction indicated, on

account of the angular velocity w. In the second figure both

ends arc free, and the velocities remain as before. In the third

figure O' is instantaneously fixed, which does not affect the

velocities of the other elements of the rod, by the definition of

an impulse. And hence a)', the new angular velocity about 0\

will be as shown in the figure in direction, and its magnitude

will be found by using the formula for moment of momentum.

Thus

And if x-\-r=a, and p is the density,

.'. o) I p{a—x)xdx=M-" o)',
Jo

3

.'. w =\u).

8. A rod of length a is moving about one end fixed with uni-

form angular velocity, when suddenly this end is freed, and a

point distant / from it is fixed. What in general will be the

direction and magnitude of the new angular velocity }

This is an extension of the preceding problem, and the

method of solution will be similar. Let O (Fig. 39) be the first

point fixed, and the angular velocity be o), as indicated. Then

this point being freed, let the second point O' be fixed.
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The new angular velocity will be obtained by equating the
moments of momentum before and after the fixing of the point
O'. Thus

^Jo
^-^'(^-'^')

• '^-''-py, '^^V+-r) ' dx=Am (about O') x a,'.

For, the linear velocity of an element at P is {l-x)oi before
O' is fixed, and its moment of momentum about O' will there-

JC

<i

/
I

I

1

\

\
Fig. 39.

fore be m{/-x)co-x; while the moment of momentum of an
element at Q will be m{/+x)(o x in an opposite direction to the
former with reference to the point O'. If p be the density and
a the length of the rod, we then get the above relation which
determines the sign and value of (o'.

It will be found on integrating the above expressions that co'

will have the same sign as co, the opposite sign, or will be zero,
according as

which shows that if a rod be moving about an axis, and this
axis be freed and a new axis fixed through the centre of percus-
sion, it will be reduced to rest.

9- An elliptic lamina is rotating with uniform angular
velocity about one latus rectum, when suddenly the axis is

freed and the other latus rectum fixed
; find the new angular

velocity.

/ I — 4 e^

i+4e
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10 A circular plate rotates about an axis through its centre

perpendicular to its plane with uniform angular velocity. If

this axis be freed, and a point in the circumference of the plate

be fixed, find the new angular velocity.

Fig. 40 gives the solution. For an element at /' the linear

velocity is tu x OP, and its moment of momentum about O' is

intoxOP y.0'Pf If OP = r and the radius of the plate be a,

then will

^inwtir— n cos 6)= Mi''(o'

.

^^X"i"7Hr-ncosd)drde
= M^^<o'

OP

cc

&\
O'

\

o ct

F)g. 40.

II. A circular plate is turning in its own plane about a

point A on its circumference. Suddenly A is freed, and a
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point B, also on the circumference, is fixed. Show that the

plate will be reduced to rest if AB be one-third of the cir-

cumference.

12. A triangular plate ABC, right-angled at C, is rotating

about AC. If AC be loosed suddenly, and BC fixed, find the

new angular velocity.

, BC
(O' = -—CO.

2AC

13. A square lamina is rotating with angular velocity co about

a diagonal, when suddenly the diagonal is freed and one of the

angular points not in the diagonal becomes fixed
;
prove that

the angular velocity about this angular point will be | co.

14. A cube is rotating with angular velocity co about a

diagonal, when suddenly the diagonal is freed and one of the

edges which does not meet that diagonal becomes fixed
;
prove

that the angular velocity about this edge will be ^V ^ ^^•

15. A uniform string hangs at rest over a smooth peg. If

half the string on one side be cut off, show that the pressure on

the peg is instantaneously reduced by one-third.

52. T/ie Ballistic Pcndnhun.

This is a device for measuring the velocity of discharge of

a rifle bullet, and was invented by Robins about 1743, and

afterwards used by Dr. Hutton ; and although of recent years

superseded by the more accurate electric chronograph, it is

to be noticed here as illustrating the nature of an impulse.

In its simplest form it is a heavy pendulum capable of moving

about a horizontal axis ; a bullet discharged into it produces a

certain angular velocity, and the pendulum rises through an

angle which can be easily measured ; or else a rifle is attached

to it, and the discharge of the bullet produces a recoil.

The latter method is shown by Fig. 41, in which OA repre-

sents the pendulum, holding the rifle, and in its position of
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equilibrium under the action of gravity. The bullet being

driven out produces a recoil through the angle «, and the

velocity of discharge is found as follows :

Let w = mass of bullet,

z'=its initial velocity,

/ = distance of gun from O,

i1/ = mass of pendulum and gun,

/•= radius of gyration about O,

// = distance of centre of inertia from 0.

.-. vtvl = M{l^-\-h'^)(o,

where to is the angular velocity generated.

7^^/

The pendulum then moves back through the angle «, which

is observed, and its equation of motion on the way up is

//&)_ g/i %\\\$

dt~ h^->rk^'
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2codoi=--^i sm Odd.

2<r/l

and this, combined with the previous relation, determines v.

In the other method a similar relation will be found ; the only
difference being that at each shot the pendulum is increased in

mass by the addition of the bullet fired into it.

A rough pendulum made of a wooden box filled with sand,
and attached to an iron bar which carries knife edges resting
on a horizontal smooth plate, will readily illustrate the above
equations.

The preceding solution assumes that the recoil of the pen-
dulum, when the gun is fired without a ball, is so small that
it may be neglected. Experiments have shown that this as-

sumption may safely be made for small charges of powder but
not for large charges. In the case of the latter, Hutton as-

sumed that the effect of the charge of powder on the recoil

is the same when the gun is fired with a ball as it is when it

is fired without a ball. Consequently if the recoil is through
an angle ^ when the gun is discharged without a ball, and
through an angle « when it is discharged with a ball, the
velocity of the ball will be

2My/\gh{k''+ /l'')\f . a

ml \
sm -sin|)-

It has been found that the actual velocity of the ball lies

between the velocities given by the two solutions.



CHAPTER VI.

MOTION ABOUT A FIXED POINT.

Finite Forces.

53. If a body, fixed at one point only, moves under the action

of any finite forces, then at every instant there is a line of

particles at rest, so that the body is moving about what is

called an instantaneous axis passing through the fixeil point.

Each particle will have a certain angular velocity about this

axis, and the equations of motion with reference to any three

rectangular axes passing through the fixed point can be written

down in accordance with the principles already explained. In

these equations the expressions for the effective forces will

have to be evaluated in terms of the angular velocity about

the instantaneous axis, and in order to explain how this may

be done, the following propositions on the composition and reso-

lution of angular velocities will be found useful.

54. .l//i^n/ar velocity is measured in the same manner as

linear velocity : by the angle described in a unit of time if

the motion be uniform, or by '
if the motion be not uniform.

^ dt

It may be represented by a straight line drawn in the proper

direction, and perpendicular to the plane of rotation. And it

will be seen that angular velocities can be compounded or

resolved in the same way as forces acting at a point.

Proposition i. — For am^nlar velocities about the same rota-

tion axis, the resultant is the alj^ebraic sum.

SS
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This is evident, since the successive displacements in a small
time are superimposed.

Proposition 2. —If a body have at any instant two angular
velocities about two axes drawn from a point, and if lengths OA,
OB be taken upon the axes to represent in direction and in mag-
nitude the angular velocities, then the residtant angular velocity
ivill be the diagonal OC of the parallelogram of which OA, OB
are adjacent sides.

Let a body, fixed at O, have two angular velocities repre-
sented in direction and in magnitude by OA, OB; and let the
positive direction of rotation be with the hands of a watch.
Take any point P in the plane containing OA, OB, and con-
struct Fig. 42. And let OA^w^ OB= (o,.

Fig. 42.

Then, owing to ca,, the point P would be displaced down-
wards in an infinitely small time dt, a distance a>a-PM.dt
or oi.y sin AOB dt. Due to «» its displacement would be
upwards (above the plane of the paper) and equal to (d RNdt
or cotx s'm AOB . dt. • ^

Therefore the total displacement of P is

s i n ^ OB
(
J 'CO, - x(i)/) dt.
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and this is zero when

X y x _ y
«„~a) ""^ 0/\~ OB

which is the equation of the straight line OC. And thus for

all points along OC there is no displacement ; that is, the body

is turninj; about OC, due to rotations about OA and OB.

That the line OC represents the magnitude of the resultant

angular velocity may be shown by considering the displace-

ment of the point A. Let w, be the resultant angular velocity

about OC.

The displacement of A, due to w^, is zero.

The displacement of A, due to tOi, is OA sin AOP u)^,df.

The displacement of ./, due to o>,, is OA sin AOC • <o^dt,

and therefore

OA sin AOC &)///= OA sin AOB • w^dt

,^p i>\n AOB ,-,^

s>\x\AOL

Proposition 3. — If a body fixed at a point have atiipilar

velocities qj^, Wy, w, eouivinnicated to it about three rectanguhir

axes passing through the fixed point, the resultant angular veloc-

ity is given by

Also, if a body have an angular velocity to about an instanta-

neous axis it may be said to have three angular velocities w,, tu,,

w, about three rectangular axes ; and if «, (3, 7 be the angles

which the instantaneous axis makes with the coordinate axes,

»l ''>r (O, (1)'

then —'- = • = =(0,
cos « cos i3 cos 7

(1), U), (O,

give the equations of the instantaneous axis when ro„ (i\, w, are

known.
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55. That a point may have at the same instant three angular

velocities can be seen by means of the apparatus shown in

Fig. 43-

To an upright stand is attached by means of pivots a system

oi two rings and a sphere. The outer ring can rotate about

an axis passing through the points A, B ; the second ring may

be made to rotate about CD ; and the inner sphere about EF.

Now, the axis AB is initially in a horizontal position, and

coincident with the axis of x drawn from O, the centre of the

sphere ; and if CD be made coincident with the axis of y by

placing the plane of the outer ring in the plane of x)\ then

it is evident that by turning the inner ring the axis EF may

be made initially coincident with the axis of z. ^

This having been done, rotations may be given first to the

sphere, then to the inner ring, and lastly to the outer ring;

and thus any point on the sphere will have simultaneously the
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three angular velocities given to the system, and the sphere

will rotate about a resultant axis in space, which would be

fixed were there no friction at the pivots and no resistance

of the air.

The arrangement also shows how a heavy body may be fixed

at its centre of gravity and at the same time be given rotations

about axes fixed in space.

55. Lnuar Wlocity and Auf^ular Velocity.

In the case of a body moving with one point fixed we may

replace the angular velocity co about the instantaneous axis

by CD,, cu^. &), about three rectangular axes drawn through the

fixed point. The next thing to be done is to connect the

expressions for the effective forces with these component

angular velocities and the coordinates of any element of the

body, and in order to do this we must obtain an expression

for the linear velocities ^, -r^.'f of any element at the point
lit lit (it

{x, J, c) in terms of x, y, c, and &>„ cd^, <u, ; on differentiating

these expressions, we shall then obtain the linear accelerations.

We may proceed either geometrically or by direct analysis.

I. By Geometrical Displacement.

Fig. 44 shows how the linear displacements arise trom the

rotations about the coordinate axes.

In the first figure the body is supposed to be fixed at O,

and 01 is the instantaneous axis about which the body is

moving with angular velocity o). The body may be supposed

to have three rotations o),, o)^. w, about the three coordinate

axes instead of o) about the instantaneous axis. Then, con-

sidering positive rotations as those in the direction of the

motion of the hands of a watch, and taking the displacements

of the point P{x, y, c) due to a rotation &»„ we have, in the

second figure. /* moving along a small arc PQ in time lit, due
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to Q)^. This small displacement PQ is equivalent to two PK,

RQ in the directions indicated. Hence we have,

PQ = oi,. O'P -dt,

PR=-PQ- X,O'P
-ywjdty

and QR = PQ--^=xo>,dL

Fig. 44.

And, by considering the other planes, we should get the dis-

placements of P due to co^ and to w^, thus :

Along Ox Oy Oz

Displacements due to w^ —yw^dt xw^dt

Displacements due to co^

Displacements due to co^

— aco^dt yjjidt

Z(j3,dt —xcojit

These are written down symmetrically ; and from them we
see that the linear displacement along Ox, which we call dx, is
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equal to {c(o^—jo)^)d/, and, therefore, in the Hmit the Hncar

velocity

dx= ^G),-JC

and

dt'

dz

2. By Direct Analysis.

Let the body (Fig. 45) be fixed at the point O, and let 01 be

the instantaneous axis as before, and the angular velocity w be

o X

Fig. 45.

equivalent to <w^, to^, &)„ as shown. Then an clement at P is

tending to move at anv instant in a circle about 01, and its
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absolute velocit}- is ct»/ =— , where/) is the perpendicular from P

on the instantaneous axis.

And, if «, /5, 7 be the angles which 01 makes with the

coordinate axes, then

/2= (.- cos /3 -7 cos 7)2+ •• + .••
;

also — , -^, — are the direction cosines of the tangent at P,
ds ds ds

-,-,- are the direction cosines of OP,

cos «, cos /3, cos 7 are the direction cosines of 01.

And, since OP is perpendicular to the tangent at P, and 01

also perpendicular to this tangent, we have

ds r ds r ds r

dx
,
dv n ,

(^^
cos '<+ ^^ COS lo+—r cos 7= 0.

ds ds ds

dx_ dy^ (h

ds ds ds I

^ COS /3—J/ COS 7 .r COS 7— ,:• cos « j' cos «— .r cos /3 p

And, therefore, since —= &)/, we have, multiplying each
,

dt

quantity by —

>

—= (.c cos ^—y cos 7)&)= .cfw„ — reo.,

dt

^^= anal. = xco, — cco^

,

dt

dz
anal. =rw^— -t'^Wy,

dt

as found betore.
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57. The former of the two investigations in the preceding

article may be presented in purely analytical form thus :

(i) From the point P (Fig. 45) let fall perpendiculars on the

coordinate axes OX, OY, OZ, and let B, <^, i/r be the angles

which these perpendiculars make with the coordinate planes

XY, YZ, ZX. The angular velocity of P about the axis OX
JQ

will be — , and the resolved parts of this parallel to the cobr-

dmate axes will be ^ —, [ A , and ;; — respectively.
Kddji^t \dd)dt \dejdt *

^

Now j'= y'(;^— .1-2) cos 6,

, al-
and -^=0.

and -z'^=y/{r^-^)cos0=jy.

And by definition,
dt'

KbOjdt

Treating the rotations about (9Kand OZ in like manner, we

obtain the following complete system of equations :

-f= yji''"^-^) cos >/r= ^ (/2-j-S) sin ^^

y= ^{r^-x^) cos 6= ^(r^-c^) sin yjr,

s= ^/(;-2-)'2) cos (^= ^/(;-2-.t-2) sin 6 :
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Um =°' Weh =-^""-
[oe)dt

^'""^^

fdyy4> ^ (dc\d<^ (dx\d4>

\dfjdt Kdfjd/! -" " \dfjdt

The total velocity parallel to OX is the al-ebraic sum of the

partial velocities, that is

^/ WA// \dcf>Jd/ [dyjrjdr

.
^,1' rt'ci dylr

. . -~= z-y — v—J- = CO) —yco^.
dt dt dt

Similarly, 4'^,/^_ .^^= ,.^ _ ,„
^/ .// ^//

- . - X,

and dr. dB deb

dt ^ dt dt ^

(2) The second investigation in Art. 56 may also be pre-

sented in a purely analytical form thus :

,r2+j'2+ ^-2^;-2, (I)

;rcos«+j'COs/3+ ^cos7= rcose, (e= angle IOP).

p^={j: cos ^—jf cos 7)2+ Cr cos 7 — ;: cos «)2+ (j cos «—.vco^)-.

Also _^__fii___«^=.o^
cos a cos /:? cos 7

.
•. xco^+ ywy + c(o^ — ro) cos e, (2)

and
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The body being rigid and O u fixed point in it, r and e are

constants ; also co, oo^, co^, w, are independent of x, j', a, the

coordinates of P, therefore from (i) and (2) we obtain, by

differentiation,

dx dy dz

dt dt dt
±1, by (3). (4)

::(o^ —j'co. xo), — c(o^ yco^—xco^

The ambiguity of sign in (4) arises from the fact that in

equations (2) and (3) there is nothing to determine whether the

rotations &>,, w^, &>,, are in the directions x to j, j' to c, a to x, or

in the opposite directions .r to ::, ;: to y, y to x. If they are in

the former dii;ections, the value + i must be taken, if they are

in the latter diiSections, the value — i must be taken.

58. (ji/it-ral Eqiiiinous of Motion.

Let the body be inNiiotion, with one point O (Fig. 46) fixed,

and let three rectangular axes be drawn from O, OX, OY, OZ^

to which we may refer the j^osition of the body at any time dur-

ing its motion. And let it be acted upon by external forces,

producing on each element of the body ;;/, accelerations X, F, Z
in the directions of the three fixed axes. Then, if F be the

jiressure on the fixcil point, and X, /*, v, the angles which the

direction of the pressure makes with tiie fixed axes, we have,

by D'Alembert's principle, the relations

Sw ~y=^mX -f /' cos X, (
I

)

dr

2;;/ v!'=1,nY-vP cos /x, (2)
dt"

I.>n'^=^viZ 4- P cos V. (3)
di*
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And, also,

I

(4)

(6)

Fig, 46.

where L, HI, .Vare the couples due to the external forces. Now,

since the body, when we form the above equations, is moving

about an instantaneous axis 01 with some angular velocity co,

which we may suppose equivalent to (o^, (d^, co^, and since we

have shown that ^~= 2W.,— yco., -^.
dt ' ^ ~ dt

,da
), — S(o^, and = yoi^

dt '
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it is evident that these equations can be expressed in terms of

known quantities, and &>,, (o^, to^.

Hence the equations (4), (5), (6), taken with the initial cir-

cumstances, will serve to determine cu,, (o^, co,, and therefore to

and the position of the instantaneous axis; equations (i), (2),

(3) will then give, on substitution, the value of P.

59. }'.i]!iatio}is of Motion referred to Axes fixed in Space.

Taking the equation (6), we shall proceed to evaluate it in

terms of eu., Wy. <u^ by takinij^ the values

dx dv d-.

dt ""' ''""
dt "~' ~""

dt ''' "~"

and differentiating.

, , ,
d^x dio^ da dw, dy

,Thus we should get ^.1 = ^"

^/+ '"v^-^ ,77-'"-^^. and

substituting in this the values of -", '
, we get

d^x dco^ d(o^ / •'
, o , o-

, / ,
,

.—— = a —-^ —J'
—^ — .r(«i)/ 4- <u/ + (or) + oA-Xf^s +yo}^ + a(o.).

dt dt dt

dhr_ ^ </wy doi, ^

dt'^~^ dt~^ dt

and, similarly, we should get, by symmetry,

d^y dw, da>, „

Therefore relation (6) becomes

V / > , 9\ (lU), V= 2.tn{x--\-y) —— — 2.mxz
da), V dco, v> dt

myz
dt dt dt

+ S;// {xw^ +y<o^ + -&),) {XQ}^ —,)'&),),
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and by analo-y J/ and L can be written down. Since Z, .}/, N
are given, these results would give the values of co,, a,J, a> 'on
integration, after calculation of the moments and products of
inertia required. But this calculation, as can be seen, would
be tedious, and we can avoid most of it by choosing axes which
although still fixed in space are in coincidence with the princi-
pal axes of the body when we form the equations of motion
This device enables us at once to disregard the products of
inertia, and makes a great simplification in the problem. It is
due to Euler, and the equations thus obtained are known as
hulcrs equations of motion.

6n. Elders Equations of Motion.

Instead of choosing any three rectangular axes fixed in space
at the instant under consideration, let axes be so chosen that
they coincide with the principal axes of the moving body; and
let «!, a>2, 0)3 be the angular velocities about these principal
axes, which will then be the same as a,., a.,, a,, in the preceding
equations. We shall then have

and it can be shown (see Art. 6i), that ^== ^^'^.

dt dt
'

Thus the equations for determining co„ co.„ co, become
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These equations, on intci;ralion, being three in number,

should serve theoretically to determine the angular velocities

toi, 0)2, 0)3, and the position of the instantaneous axis. The

actual situation of the body with reference to known direc-

tions in space can also be found from these, combined with

certain other relations which will be given further on.

61. It might seem that -^'= ^-^ follows at once from the
i// dt

relation cy,= 0)3, but it does not necessarily so follow; that the

former relation holds as well as the latter may however be

shown in the following manner:

Let OX, 0\\ OZ be the three axes tixed in .space (F"ig. 47) ;
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then a body movinc^ with the point O fixed will produce about

OP an angular velocity

w^ cos « + (Oy cos /3+ <w, cos 7,

if «, /3, 7 are the angles which OP makes with the axes.

Differentiating this expression with respect to /, we get for

the angular acceleration about OP

da,. . da
,

ndw. ndB
,

dw^
cosa—-^— 0), sin « hcos/3—^— &>„sin yS-^ + cos 7

—

-

dt dt dt ' dt ' dt

d'v— (£), sin 7—i--

' dt

Suppose now that OP approaches OX and ultimately coin-

cides with it, then the angular acceleration becomes

doa. dR dy

dt ' dt dt

because «= o, /3= 7= — when OP coincides with 0X\ and it

is also evident from the figure that in such case ~ is the same

d
as ft), or (Wg, and that — = — w^ or —&).,.

dt

dca^ da)r ^ ^1 ^- ^1 ^
. .

—-^=—- at the same time that a),=ct)„
dt dt

^

The relations between —1, ^, "^-^ the angular accel-
dt dt dt

erations around axes fixed in the body, and -^, —^ ^,^
^/ ^Z dt

the angular accelerations around axes fixed in space, may be

determined for any given position of the moving body,

as follows :

Let /j, niy Ji^ ; l^, 7n^, n^
; 4, Wg, n^, be the direction cosines
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of axes fixed in the body referred to coordinate axes fixed in

space. Then will

0)2= /jft), + W2<y, + "2^'\ (')

0)3= /^cij^ + "ir^o)^ + WgO), J

(2)

(3)

6),= /jtU] + /.)«.>+ /s^Ws

O)^ = /;/
J
(U

J
+ ;// .,a>2 + "^gf^s '

/2"-+ ^2^ + ''2"~ '
' ^2^i + '''2"'

.3 + ''2"3 ~ ^'

42+ WgS+ //g^= I , /g/, + W3W , + ;/3;/i
= O.

Differentiating the first equation in group (i),

i/(i>, , doi, doiy d(M>. dL dniy dtt,

dt ^ dt ^ » dt ^^ dt ^^dt ^ ' dt ^ ' dt

But the sum of the last three terms on the right hand side of

this eciuation is zero, for

dL dm^

dt
+ 0)

dn^

.dfl,

+ (;/,G)j + >/^a).,+ ti^(o^
^^1

f ,dL duty dfiy\ i ,dL dm, dpi,\

/ , d/, dm, dtiy
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as appears at once on differentiating the equations in group (3).

dm. , dw^ d(o^ dw, . -

From the second and third equations in group (i) we may in

like manner obtain

d(i)^ , d(o^ doi,. da>,

dt - dt ^- dl - dt

J (/(Wo , dod^ d(s>„ doi,

dt ^ dt ^dt ^ dt

Hence the acceleration around any axis may be projected on

coordinate axes just as angular velocities and as segments of

the rotation axis may be projected, and all theorems on the

projection of segments of a line may be interpreted as theorems

on the projection of angular accelerations about the line.

If the axis of w^ coincide at any moment with the axis of w^,

then will /i=i, in-^= o, n^= o, co^= (o^, and by (4) above

dco^ dco^

'df~l/i'

62. Angular Coordinates of the Body.

The equations of motion known as Euler's enable us to find

cop &)2> '"s'
the angular velocities of the body with reference to

the principal axis drawn through the fixed point about which

the body is moving. As these principal axes, however, are

in the body, and move with it, we must have some means of

determining the position of the body with reference to axes

fixed in space, because the values of the angular velocities

found by solving Euler's equations tell us nothing whatever

as yet of the situation of the body with regard to any known

directions in space. In order, then, to fix the position of the

body at any time and give us a definite idea of its situation

with reference to some initial position, three angles Q,
(f),

yjr
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a^.'^i^f ^6in^

CC2

ecj cos^

F:g. 48.
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are chosen, known as the angular coordinates ; they define the

situation of the principal axes, and therefore of the body itself,

being measured from some initial fixed axes of reference which,

at the beginning of the motion, coincide with the principal axes

of the body. Relations can be easily found between 0, (p, xjr,

and &)j, <»2. Os, so that knowing the angular velocities we can

find 6,
(f),

yjr, and the motion of the body is fully known. The

subjoined figures (Fig. 48 and Fig. 49) show how the position

of the principal axes at any instant may be determined by

displacements 6,
(f),

^|r ; they also indicate how the relations

existing between these displacements and the angular velocities

about the principal axes are to be found.

Let a spherical surface of radius unity be constructed at the

fixed point O (Fig. 48), about which we suppose a body to be

moving. Initially, let the body, which we may represent by its

principal axes OA, OB, OC, be in such a position that OA, OB,

(9C coincide with OX, OY, 6>if respectively. Then, by suppos-

ing the body to turn through the angles t/t, $, ^ in order, so

that the point A travels in the directions indicated by the

arrows, it is evident that any position of the body will be fully

known in respect of the fixed axes OX, OY, OZ, when we know

three such angles as 0,
(f), ^lr.

At any instant the body has angular velocities a>^, co.^, co^ indi-

cated by arrows ; and in order to connect these with the angular

coordinates, consider the motion of a particular point such as C.

The velocity of the point C at the instant in question, may be

considered as the resultant of the angular velocities toj, w^, 0)3,

or as due to changes in 6, 6, yjr, i.e., to velocities —, — ,
^-^;^

dt d-t dt

and by expressing in the two systems of change the velocity of

C resolved in three determinate directions, and equating the

results, we shall arrive at the relations between oa^, co.^, 00^, and

(il d± d±
dt' dt' dt'
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The auxiliary figure shows the motion of the point C due to

the two systems. The line ZCZ^ is the tangent to the line

of the great circle, and the point 6* will evidently have angular

velocities w^ w.,^ in the directions indicated by the arrows ; it

has also a motion '-— along the tangent to the great circle at C,
dt

and a motion ' ^ sin 6 perpendicular to this former. This
dt

velocity -l] sin Q arises from the fact that C, owing to the >/r

motion, has a velocity along a tangent to a small circle with

CC as radius, and its velocity perpendicular to ZCZ^ must be

CC • —^= C^Csin •
-J^= '-^ sin 6, since we have agreed to call

dt dt dt

the radius OC unity.

Hence, we have from the auxiliary figure, remembering that

the radius is unity, the relations,

velocity of C along ZC=—-=
q)i

sin <^ + (u., cos
<f>,

(l)
dt

velocity of C perpendicular to ZC=
J-

sin $
^d±

0)1 cos
(f)
+ (o.-, sin

(f).
(2)

And by considering the motion of the point B, we have the

velocity of li along the tangent at E equal to

q + O/^co.0-''-t=-!i+'^cose= .,. (3)
(tt (it dt dt

The relations (i), (2), (3), along with Euler's equations of

motion, Art. 60, give a complete solution of the problem as far

as the actual motion and position of the body are concerned.

Fig. 49 is given merely to show how the principal axes which

at any time really represent the body itself were initially coin-

cident with the fixed axes in space, and have turned through

angles 0, ^, \/r. The complications in the former figure are

omitted.
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Fig. 49.

63, Pressure on the Fixed Point.

The pressures on the fixed point, measured along three fixed

rectangular axes, will be given by the equations,

2w

—

'—=^mX-^P cos X,
dt^

1m—^=1m V+P cos fi,

'Lm—^='^})iZ+P cos V,

dt^

where S;;/—— is now to be expressed in terms of the co5rdi-

nates of the centre of inertia, the mass of the body, and the
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angular velocities. Thus, if we evaluate as formerly —^ in terms

of o),, Q)^, (ti„ wc fjet

2.w —7 = >-;//
j

i-—« —J - — - <u-^- 4- o)A.rQ)^ +J'«w»+ -<»,)
[

;

and if x, y, z be the coordinates of the centre of inertia, we

have, on reduction, to determine the three pressures,

Mass . ( 3-^- y^- w^x+ a),(.ra), +jo),+ 3a,,) l = /^ cos A.+2wA',

and two similar relations for P cos fi, Pecs v.

These equations are with reference to axes fixed in space

;

but if we refer them to the principal axes moving with the body,

we may use Euler's equations, and substitute for '-—', —-, —

^

at at at

their values in terms of A, B, C, L, Jil, N, Wj, Wj, Wg.

The equations when finally reduced in this way become

Mass . Li(^+C-^)fe^4--^')-(cu2-+ a)32)I-

= /'cos\ + S;;/A'-Mass. |^5-^J'l,

with the two analogous expressions for P cos fi, Pcosv. In

these expressions x, y, a are the coordinates of the centre of

inertia, A, M, A'' the couples due to the external forces. A, By C
the principal moments at the fixed point.

And it is evident that if x=y= c= o, the pressure on the

fi.xcd point will be the resultant of the external forces 'LtnX,

ImV, S;;/Z; as, for example, in the case of a hea\7 body fixed

at its centre of gravity, where the pressure must be simply the

weight of the body.
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Ilbistrative Examples.

1. If 0)^, &)y, «D^ be the angular velocities about the coordinate

axes by which the motion of a body about the origin may be

exhibited, find the locus of the points the magnitude of whose

velocity is aa^.

2. The locus of points in a body (which is moving with one

point fixed) that have at any proposed instant velocities of the

same magnitude, is a circular cylinder.

3. A body fixed at one point moves so that its angular

velocities about its principal axes are a sin nt, a cos nt, in which

t represents the time, and n and a are constants. Show that the

instantaneous axis describes a circular cone in the body with

uniform velocity.

4. A uniform rod, length 2 a, turns freely about its upper

end, which is fixed, and revolves so as to be constantly inclined

at an angle « to the vertical. Find the direction and magni-

tude of the pressure on the fixed end.

5. Any heavy body, for which the momental ellipsoid at the

centre of inertia is a sphere, will, if fixed at its centre of inertia,

continue to revolve about any axis around which it was origi

nally put in motion.

6. A right circular cone, whose altitude is equal to the diam-

eter of its base, turns about its centre of inertia, which is fixed,

and is originally put in motion about an axis inclined at an

angle a to its axis of figure. Show that the vertex of the cone

will describe a circle whose radius is | a sin «, a being the

altitude.

This is evident, since the momental ellipsoid at the centre of

inertia of the cone is a sphere ; therefore the cone will revolve

about the original axis permanently (Ex. 5 above), and its axis
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will describe another cone, and its apex will trace out a circle of

radius | a sin «.

7. A circular plate revolves about its centre of gravity fixed.

If an angular velocity on were originally impressed upon it about

an axis making an angle « with its plane, show that a normal

to the plane of the plate will make a revolution in space in time

a)V I +3 sin^'a

8. A body has an angular velocity w about a line passing

through the point «, /S, 7, ami having direction cosines /, w, ;/.

Show that the motion is equivalent to rotations /to, tnw, nm

about the coordinate axes and translations {my— fif3)Q), (;/« — /y)©,

{ifi — »ia)w in the directions of these axes.

9. A body has equal angular velocities about two axes which

neither meet nor are parallel. Show that the motion is equiva-

lent to a translation along a line equally inclined to the two

axes and a rotation about this line.

64. Top spinnini^ on a Roug/i Horizontal Plane.

When a common top, symmetrical with respect to its axis,

is spun and placed on a rough horizontal plane, with its axis

inclined at an angle to the vertical, it satisfies approximately

the conditions for motion about a fixed point ; and we may

first consider the ideal case of a top. spinning on a perfectly

rough horizontal plane, with its apex fixed, and free to move in

all directions about this apex considered as a fixed point.

Let a top. Fig. 50 (i), be set spinning about its axis, and placed

on a rough horizontal plane, with its axis inclined to the vertical

at a given angle. Then after a certain time its position with

reference to fixed lines in space will be as indicated in the

figure by its principal axes OA, OB, OC, drawn through the

fixed point. G is the centre of gravity of the top, and OG= li.
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Fig. 50.
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The angle Z0C=6, and the line NON' is the line of nodes.

The angular velocity — is called the Nutation, and LjL the Pre-
.

(it dt
cession.

The top is acted upon onl)' l)y the external force of gravity,

since we suppose an ideal case first and neglect the couple of

friction acting at the fixed point, as well as the Resistance of

the air. The external couple is equal to Mgh sin Q, as is seen

from Fig. 50 (3), which tends to turn the top about the line of

nodes. This couple may evidently be resolved into two others,

one equal to Mgli?^\w 0cos(f>, tending to turn the top about OB,

and the other, equal to Mg/i sin ^sin
<f),

tending to turn it about

OA, as may be seen from Fig. 50 (2). Hence the equations of

motion are

A '-^ — (B — C)(o.,o}^ = M^/i sin sin 6,

B'^^-{C-A)o)^(o^ = A/g/i sin ^ cos 0,
dt

dt

(0

(2)

(3)

ami we have also the relations

^^
• ^ . J.—-= 0), sni d) + ft)., cos 0,

dt ^ - ^

—^ sin 6= &>., sin d) — w, cos <^,
dt - ^ 1

y>

^^+^cos^= «3. » ^
dt dt

^

(4)

(6)

and it is known that A=B, since the top is symmetrical about

its axis ; and that Wg has an initial value // given to it in spin-

ning, while 6 has an initial value 0^, at which inclination to the

vertical we place the top at the beginning of the motion.
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Equation (3) becomes

dt

.-. («3 = constant = ;/, its initial value.

Equations (i) and (2) give, when multiplied by eo^, cu.^, respec-

tively, and added together,

A[(i>^—^^w^--^\ = Mgh sin^(&)^ sin <^ + w.^ cos (^),

which, by aid of (4), becomes

A[ (^i-~+<^<i~-if] =Mgh sm e
dt ^ dt J ^ dt

This, on integration, gives

A i
"'2

Q)^d(o^ -\-A y'2 w.^dw.^= 2 Mghi sin 6d6.

. : A (wj2 _(_ ^^2^ = 2 3Igh{cos 6Q- cos 6).

But, taking (4) and (5), and squaring and adding, we get

'
^(^J+ ^si"'^(^/J

= 2y]/^//{cos^,-cos^), (cr)

which, as will be seen hereafter, is one form of the equation of

energy.

dd dylr
05. In order to obtain another relation between - , . —f,

at at
wc may proceed as follows.

Multiply (i) by cos and (2) by sin and subtract, and we
get

. ,dco.^ ,do), C—A dO r / Xs,n^^-cos,#,^= -^«-^^-, from (4).
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But by (5),

J sin 6= 0)^ sin <^ — «, cos c^.

lit

dylr ^dO . .cPyfr dO /'d(f> C-A \ '

.
•. -f COS ,- + sin ^ -- V = -,- -r H r-« .

dt dt dt- dt \ dt A y

and since by (6)

d<^ dyjr .

dr dt

dylr ^dO . ^d^-ylr Cn dd
.'. 2 -J- COS, 6 — + sm 6 —TV =—r--r*

dt dt dt^ A dt

and therefore, multiplying through by sin and integrating, we

have

A s\n'^e'^f= Oiicos ^,,-cos 0), {b)
dt

since, initially, the value of the left-hand side of the relation

is zero.

66. The relation (/;), which may also be obtained geometri-

cally, shows that the sign of '

J depends upon the sign of

;/(cos^Q — cos^), since A and C are positive quantities. In the

case we have supposed, cos 6^ is always greater than cos 6,

since 6^ is the least angle the axis of the top can make with

the vertical ; if the top were spun so that the centre of gravity

were below the fixed point, then cos ^,)<cos 6. Thus we see
dylr

that the signs of
J^

and of eug will be the same or opposite,

according as the centre of gravity is above or below the fixed

point. This is equivalent to saying that the motion of pre-

cession which the top acquires is direct or retrograde according

as the centre of gravity is above or below the fixed apex about

which it moves.

This motion of precession and its sign can easily be shown

by a top of special construction, which is so arranged that one

can alter at will the position of its centre of gravity.
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A section of the top is shown in Fig. 51. It consists of an

axis of steel AB, pointed at A and B, to which is attached

a thick conical shell S, of brass, with flanges ; a sliding weight

C can be moved along the axis. Without the slider C, the

centre of gravity of the top is nearly at the point B, and thus

Fig. 51.

by moving C up and down, it can be made to fall either above

or below the point B, or to coincide with it.

The top is spun by holding it in the position shown in the

figure between an arm ADE (movable about .a hinge at E)

and a fixed upright with a small cup, roughened on the inside,

in which the point B rests.

A string is wound about the axis, and the arm ADE being

held lightly in position, the top is spun by pulling the string;

and the arm being then removed, it remains spinning about

the point B and exhibits the "motions of precession indicated

by the theory.
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It may be noticed here that if the centre of gravity be exactly

at the point B, and the top be accurately made, its axis will be-

come a pcrmamnt axis, and no motion of precession will be

seen, the top while spinning preserving the position initially

given to it.

67. The motion of the top after it has been set spinning

and placed on the plane, may be completely determined ex-

plicitly from the initial conditions and the two relations {a) and

(h) just obtained :

Kft) "^^ ^'"'
^C^^T

" ^ ^rgh{cos 6,- cos 0),

A sin2^^ = 0/(cos 9^ - cos 6).
(it

These sive -—, '-^, and then the position and the motion of the
^ dt dt

^

top at every instant are known.

As we have seen, —^ depends for its sign on ;/ and the posi-
dt

tion of the centre of gravity; it also changes with 9\ and, on

,. . d^
elimmating '^

, we get
dt

Ja
^I si n ^— = Vcos e,,- cos 9 V2 J/^// -.-i sin^^- C^nHcose^- cos 9)

;

A3

and — will also change in-valuc^ and will have minimum values
dt

(o) when ^= ^0 ^"^^ ^= ^1. 0\ being a root of the quadratic

2 A Mgit sin2^ - C^tr (cos 9^ - cos 9) = o.

The top will then, as it is first placed on the plane, tend

to drop down, and — will go on increasing until, having
dt

passed some maximum value, it reaches its minimum value
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when e= e^. Meanwhile ^^ has also been going through peri-

odic changes, being a maximum when = 6^
The top then oscillates between the positions d^ and 6^, and

at the same time is carried about a vertical axis with a pre-

cessional motion (not constant) ^•
To an observer placed above the top and watching the pro-

jection of its centre of gravity on the horizontal plane, that
point would describe the curve indicated in Fig. 52, lying
between two circles whose radii are h sin 6^ and k sin 6^.

Fig. 52.

The curve described will not necessarily be closed ; that
will depend on a being an integral part of 2 tt. It is evident
also, from the fact that maximum and minimum values exist at
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the cusps and the outer points, that the curve described touches

one circle and cuts the other at right angles.

de

The maximum value of
'^J^

may be found by putting ^ = o

in the equations on page ii8, which will give

A sin2 s ^/J
= 0/(cos d^ - cos 6).

Whd^ 2 Mf^h _
dt
~

Cti ~ Cn

IF being the weight of the top.

When e = e,. it can be seen that both ^^
and

^^J^

vanish

identically.

68. To^ srunnng ^vith Great Velocity on a Rough Horizontal

Plane.

In most cases the top is spun with a very great velocity, and

then placed on the plane. By taking the value of ^^^
already

found,

A sin ^'^= V^^JV^^^s^ V2 MghA sMi=»^-C^/r^(cosdo"^=^^^^)-

it will be seen that if ;/ become very great, cos^o-^os^ must

become very small in order that the expression under the radi-

cal may remain p.isitive, hence the axis of the top, instead of per-

forming large oscillations, will depart but little from ^,, its initial

position, and '^~^- will approach a constant value, and the motion

will therefore become steady. The time of a small oscillation

may be found in the following way

:



MOTION ABOUT A FIXED POINT. 131

Let 6= df^ + H, u being small.

.
cos ^^ — cos ^

sin 6 ~

approximately, and the foregoing relation for ^ becomes
dt

. .d0 ,
.

* Yr"^" ^^"^S'l^ sin e^u - Chthfi.

. A_ dl_ .

where ^^ ^Ifg/iAsind^

ChP-

But dd_du
dt dt

Cn ^/

die
=^dt.

\2a?i— ?i-

f= -pr vers"^
L7l ©

7i= a vers—/,
A

'-^"^
^= ^0 + ^(1 -cos ^''/

This* is a periodic function which repeats values of 6 every
tmie / is increased by

27r

A
and therefore the time of a complete small oscillation is

2jtA

Cn
'
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,/ylr Cn cosi 0n- con 6 _Cn n
'^^^'°' dJ^ A ' "^fe A sin e.

Cn .y,_cos^'/

^d^_ Cn _Jl/̂ /^A.mej ^_^^^0!,\
•• d^'Asmd^ Chi' V A J

Oi \ A J

^ Cn C^;r A

and consist of two terms, one incrcasin.c: uniformly with the

time, the other very small, and a periodic function of the time.

If ;/ be extremely large, we have, approximately,

and the precession is then nearly constant and equal to

m
Cn

jr being the weight of the top.

69. If, then, a top be spun with very great velocity and

placed on a rough horizontal plane, inclined at an angle to the

vertical, it will make small cscillations in time ^^^, and at the

same time will revolve about a vertical axis with an angular

velocity very nearly equal to ^- In the ordinary case, the

oscillations will be so rapid at first as to be barely visible to the

eye; as the speed diminishes, owing to resistance of air and

friction at the apex, they become more noticeable ;
until finally,
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when the top is "dying;' n becomes comparable with the other
quantities, the oscillations become wider, and the formulas of
Art. 67 apply.

70. Top spinning on a Smooth Horizontal Plane.

Let a top (Fig. 53) be spun and placed in any manner on
a smooth horizontal plane, and let its position after any time

Fig. 53.

t has elapsed be that shown in the figure. It is acted upon
only by the reaction R of the plane and its weight Mg actin-
at G the centre of gravity; and if ^, y, ^ be the coordinates
of G, the equations of motion of translation are

^""'B=^'f^--
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^=Afg=K-Af^.

From these it is seen that '-^ = constant = initial value
;

' = constant = initial value ; and if therefore any horizontal

motion be imparted initially to the centre of gravity, it will

preserve that velocity at every instant thereafter.

And, since ^=/icos6, CG being equal to //, and d being the

inclination of the axis of the top to the vertical, the third

relation becomes

R = M\,^-^±3.\

The equations of motion of the top about the centre of

gravity considered as a fi.xcd point are

dt

(2) A'-^-\-{A — C)(ji^ti>.^= Rli%\x\Bzos>^,

(3) ftj^= ;/
;

and \vc have also the relations

(4) —= tu, sin <i) + &>ocos 0,
dt ^ ^ - ^

(5) ^sin = 0)0 sin <^— (Uj cos<^,
dt



MOTION ABOUT A FIXED POINT. 125

Thus it will be seen that, considering the centre of gravity

as a fixed point, these equations are similar to those previously-

obtained in the case of a top spinning on a rough plane; the

only difference being that for Alg in those relations we have

A^ in these.

The solution is therefore similar to that given in Arts. 64

and 65.

We have R = iMg+M'^^^li^
at-'

r df' \dt) S

And multiplying (i) by (Hy and (2) by Wg- ^^^ have

y4a)i^ + ^G).,^ =A//sin^{&)isind)+ («.,cos(i|
^ dt ^ dt

< 1 T - -T)

= A//sini9—

•

dt

.: A (o) 2+ co.^) = 2 Cr/i sin 6 '^ dt
•^ dl

^2^\Mgh sin e-MJP- sin2 (9^ - J///2 sin ^cos oi^'^.de.

.: A((oi^+co.^)=2Afg/i{cos ^o-cos 6)-M/i^ sin' of^J-

= 2 Afg/l {cos Oq- COS d),

and the other relation will be as before

:

d^

These two relations give the solution of the problem.

A sin2 6'-^ = O^icos ^^- cos 0).
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And it is evident that, independent of its motion of translation

in a horizontal direction, the centre of gravity can only move up

and down with an oscillatory motion while the apex describes

on the plane the fluted curve already obtained in the case of a

rough plane (Fig. 52), the values of 0^ and 0^ being as before

those which make — a minimum.

If ojg = ;/ be very great, the discussion is the same as before,

and it can easily be seen that the apex of the top will describe

a simple circle (approximately) on the plane, and the motion

will be steady, the time of a small oscillation and the period of

precession being obtained as formerly.

71. All the previous results obtained theoretically in the

case of motion of a top on a smooth or rough plane can be

verified experimentally by having a number of tops made similar

to that shown in Fig. 54.

Fig. 54.

A circular plate of brass, a quarter of an inch in thickness,

and from three to five inches in diameter, has a steel axis

through the centre. The centre of gravity of the top may be

from one to two inches from the apex on which it spins, and

the point may have varying degrees of sharpness.

Everything should be symmetrical and made true, so that
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The top is most readily set spinning by using a two-pronged

handle with openings through which the axis may pass : a cord

put through a hole in the axis and wound about it, is pulled

rapidly, and the top drops with a high speed from the handle.

A little practice enables one to spin the top and let it drop on a

smooth or rough surface at any required inclination.

The following problem may also be examined by using several

of these tops of various sizes, and with points of varying degrees

of sharpness :

A common top, zvhen spun and placed on a rough hoTizontal

pla7ic, at an angle to the vertical, gradually assumes an upright

position. Explai7i this.

This is the case of the ordinary peg top of the schoolboy,

which is usually made of a cone of wood through which passes

a steel axis ending in a sharp point ; when spun upon a rather

rough surface, it gradually becomes upright and 'sleeps.'

It will be found, after a little experimenting, that this appar-

ently paradoxical rising of the top to a vertical position against

the force of gravity depends on two things :

1. TJie degree of sJiarpness of the apex on ivhich the top spins.

2. The position of the centre ofgravity.

If the point be very sharp so that the top in spinning is not

able to form a small conical bed for itself and thereby be acted

on by a couple arising from friction at a considerable distance

from the point, it cannot possibly become erect.

When, however, the point is rather blunt, and the centre of

gravity not too high, the top will slowly rise up under the action

of the friction (which tends to diminish the angle of inclina-

tion), and 'sleep.'

The equations of motion are similar to those obtained in Art.

64, with the additional relations introduced by friction.

The solution of the equations shows that the top rises to the

vertical, on the supposition that the point of the top is a portion
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of a spherical surface and that friction is thus enabled to act in

the proper manner.

A complete analytical solution of the problem is given in

jellett's Theory of Friction, Chap. VIII., where the top is sup-

posed to be a symmetrical pear-shaped cone with a spherical

surface as the apex upon which it spins.

Fig. 55.

72. The Gyroscope tnoviti^ iu a Horizontal Plane about a

Fixed Point.

If a gyro-scope be put in rapid motion and placed so that the

|)rolongation of the a.xis of rotation can rest on a fixed point of

support, and if, at the same time, an initial angular velocity
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about the point of support be given bodily to the gyroscope (in

the proper direction) in a horizontal plane, it will revolve about

a vertical axis, and the apparently paradoxical motion is pre-

sented of a body whose centre of gravity moves in a horizontal

plane although its point of support is at quite a distance from

the vertical through the centre of gravity.

In Fig. 55 the gyroscope is supposed to be set rotating and

started in a horizontal plane with its centre of gravity at the

point G, the weight acting vertically downwards in the direc-

tion indicated by the arrow. It is supported only at the point

O, and, if rotating rapidly enough, will keep on moving uniformly

in this horizontal plane in a direction hereafter determined.

Its position at any time is given by the position of its pri7i-

cipal axes at O : these are OA, OB, OC.

It is evident that 9 = — and that C moves along XNN'

,

NON' being the line of nodes, and the angle BON =
(f).

At each instant the gyroscope tends bodilv to turn about

NON' under the action of gravity, and the value of this turning

couple is mo^/i, vi being the mass of the gyroscope and OG = Ji.

Resolving this couple ingJi into two, we get

vigh cos </) about OB,

and mgJi sin ^ about OA.

Then Euler's equations become :

A-~-\-{C—A)ui^w^ = vigh sin ^,

A-~ — {C— A)(o^o)^= uigh cos (/),

from which it is seen that

&)., = constant = ;/.
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Also, wc have

-— = = &)j sin </> + <u.^ cos<^,
at

= (o.y s'\n
(f)
— &)j cos

<f),

d<i>

dt

uncc 0= -, and therefore cos6?= 0.

From the preceding relations wc have

:

0)^ s\n<}) + (o^ cos
<f)
= 0.

co^ sin 4> — fOi cos <f)= J-.

.-. squaring and adding

2 , 2 ^^^V^A'<+ '"2'=l V/
v^/'/y

l?ut since

(/(O,

A ^ -\-{C—A )&)./D., = »i^/i sin

.'/ ' — ( (7— .-? ) a) jO)., = /;/^// cos 0.

Therefore, multiplying the former by tuj. and the latter by euj,

and aiKling, wc get

/IcDj .
' + WtOo y. = "'.s:"{^\ sin (^ + &)2 cos ^) ^ O.

. ./ (ft),- + &)o^) = constant.

.-. a)j2 4-&'.r = its initial value, = rt2 say.

Then
Uy\r d<i>
--/- =a, and -,- = «.
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1

.
.

(f)
— )it, -^= at,

since both may be taken zero when / is zero.

.'. Q}^= —a cos nt,

0)2 = « sin «/,

And, substituting these values in the relation for the first

couple, we get

A{aH sin «/) + {C—A)n{a sin nt)—mgh sin Jit.

. \ Cna sin )it— vigli sin nt.

.'. Cn<.(. = ))ig]i,

d-ir mo;JI Wh
and a= -^=--^ =—-,

at Ln Ln

JF being the weight of the top, and ;/ being the initial velocity

of rotation. Hence the axis OC moves around in a horizontal

plane with uniform velocity , and the direction of revolution
Cn

is indicated by the sign of n or 0)3 ; that is, to an observer

looking doivn in the direction ZO, the gyroscope zvill revolve

bodily in the same direction as the gyroscope rotates about its

axis ivhen viewed by an observer at C.

It is important to observe that the necessary condition for

the motion of the gyroscope bodily about OZ is that it receives

an initial angular velocity, so that

(U,-+ fO.,

(d^lr\- ^ .

\-j-] =some finite quantity.

If this initial velocity be not given to it, it will act in the

same way as a top, tending to drop down and oscillate as it

moves around the vertical.
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Usually ;/ is very great, so that « is small, and the preces-

sional motion is slow.

For a complete discussion of the experiments which can be

performed with the Gyroscope see Chap. X.

73. To find the Pressure on the Fixed Point in the Case of the

Gyroscope.

As an illustration of the use of the equations of Art. 63, we

may find the pressure on the point about which the gyroscope

revolves.

In this case we shall have, calling the mass of the gyroscope

5 to avoid confusion,

5 .,..,. ^4-C-j(-^p+ ^.n-(-.^+ o,3V

=P cos \ + S;;/A

5 jo,.,

- JM N \

Pcosfi+ 2,niV—S^—x ^^ j,

;fT^^(-'p+^7}-(a,,=+<„/,.-|

= P cos v+^tnZ— Sl-^y— -x

which become, since A = f>, and {x, y, c) are (o, o, //),

.,{ /^ hn) n . c- • J ,
el-^csinif) ,o|

.S 0)2 • C • — =P cos fi + .S^ sm <f)+S ^i^— /r
J

,

S\-{fo^^-\-(o.^h\=Pcosv,

the last of which can be obtained from elementary consider

ations.
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P cos A. = ;;<'-^ -^ ^ • //-— ^cos <h-\-w.C— /,
\ A ^ ^ A)

P cos /u= m • ^——^ . ¥—g sin (fi + co^C-jl,

P cos t- = W ^
— (w/-+ (02^)/l

I

,

the mass being denoted by jn.

These relations taken in conjunction with

cci sin
(f)
+ C0.2 cos ^ = o,

CO, sm — o), cos =

d^

d;f_Wk
dt ~ Cn

'

give, on squaring and adding, the value of P in terms of known

quantities.

Similar equations may be obtained in the case of the top

spinning on a smooth horizontal plane.
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Impulsive Forces.

74. In forming the general equations of motion for finite

forces, we had two sets of relations of which the types are

V Cp-X d y;^ dx s: \-
, n ^2.m —- =— 2,m— = 2.niA + r cos \,

dfl dt dt

, V j
d'h d-r] d^

\
dz dv] ,

i dp- dt^\ dt {' dt dt)

and, remembering the definition of an impulse, we get our

impulsive equations from these by integrating with respect to /,

from o to T, some small value of the time.

That is, instead of a continuous change we have an abrupt

change of velocity and of moment of momentum taking place

during an exceedingly small time t.

Hence, for impulses A*, )', Z, we get the equations

= (o),' — fi)^)3!;;/r— {(oj — o),)'^))ty

=Ma . (a)J - 0),) - My{(oJ - co,)

= ^X+Pcos\,

with two similar relations for }' and Z. These determine the

impulse J\

«34
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For the couples we have

But

^''{-^f"^^f) = ^^'^^-^'(-^"^'-'^'"^)--('^«^--^«^)}

= ft)^2;;y/2+ ^2_ ai^^^nxy- w^nixz

= Aco^— Fcoy— Ew^.

.'. we get, for the three couples,

f A (coj - ft),) - F{co; - co^) - E(coJ - ft,J = Z,

j
B(co,' - (o^) ~jD((oJ - (o,) - F(coJ - ft)^) =M,

I C{C0J - ft)J - ^(ft,^' _ a)J _ /^((y/ _ ft,^) = yV;

<»x, «., CO, being the angular velocities about axes fixed in space
at time /, and these being suddenly changed by the impulsive
actions to (oj, coj, coj

.

sive
75- Taking the foregoing expressions for the impuL...

couples, we can simplify them , by choosing principal axes,
which make D, E, F vanish

; if, at the same time, the body
starts from rest, ««„ a,,, ft,, are zero, and the equations become

Bco\=M,

The equations of the instantaneous axis are

<y'x Co\ (ji'l

fL—Z.— ^

ABC
L M~N
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The plane of the impulsive couple is

and therefore the instantaneous axis (that is, the line about

which the body will be<,nn to rotate under the action of the

impulse) is the line conjugate to the plane

Lx+ Jl/y+ iVc = o

with regard to the ellipsoid

The equations of the instantaneous axis are

L M N'

and the equations of the axis of the impulsive couple are

£ _ r _ £_
L "m N'

Hence it will be seen, by comj^aring these two sets of rela-

tions, that if a body fixed at a point be struck, it will not begin

to rotate about the axis of the impulsive couple induced by the

blow, unless A = B=C, or unless the plane of the impulsive

couple be a principal plane or parallel to a principal plane.

For the two sets cannot reduce to a single set unless A = B=C,
or unless two of the quantities, x, y, z, vanish, (which means

that the axis of the couple is one of the principal axes).

It will be seen from the preceding investigation that, if a

rigid body be free to turn about a fixed point, the problem of

determining the change produced in the motion of the body by

the action of a given imjiulse, is equivalent to determining the

change in its motion when the body is acted on by a given

impulsive couple. This equivalence also appears from the fol-

lowing considerations. The impulse may be resolved into an
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equal and parallel impulse acting at the fixed point and an

impulsive couple. The impulse acting at the fixed point will

have no influence on the motion of the body, and therefore only

the couple need be considered. Resolving the latter with

respect to the coordinate axes we obtain the equations on

page 135.

Illustrative Examples.

I. A cube is fixed at its centre of inertia, and struck along

an edge.

In this simple case it is evident, without forming the equa-

tions of motion, that, since the momental ellipsoid is a sphere,

A=B=C, and the cube begins to rotate about the axis of the

impulsive couple.

Thus, in Fig. 56, the cube is fixed at O, its centre of inertia,

and on being struck by a blow Q, begins to rotate about the

axis of the impulsive couple AOB.

\ N
^

cy^
B

\ \

\lCi

Fig.

2. A homogeneous solid right circular cylinder is rotating

with given angular velocity about its centre of inertia, which is

fixed ; the cylinder receives a blow of given intensity in a direc-
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tion perpendicular to the i)lane in which its axis moves. Deter-

mine the subsequent motion.

3. A lamina in the form of a semi-ellipse bounded by the

a.\is minor is movable about the centre as a fixed point, and

falls from the position in which its plane is horizontal ; deter-

mine the impulse which must be applied at the centre of inertia,

when the lamina is vertical, in order to reduce it to rest.

If this impulse be applied perpendicularly to the lamina, at

the extremity of an ordinate, through the centre of inertia,

instead of being applied at the centre of inertia itself, show

that the lamina will begin to revolve about the major axis.

4. A triangular plate (right angled) fixed at its centre of

inertia and struck at the right angle perpendicularly to the plate.

Fig. 57.

In Fig. 57 let G be the centre of inertia of the triangle, and

C the point where the blow is struck at right angles to the plane
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of the paper. Then if wc construct the momental ellipse at G,

it touches the three sides at their middle j^oints. The impulsive

couple in this case contains the lino CG in its plane ; but since

AB is a tangent to the ellipse, A' GB' is the diametral line con-

jugate to CG. The triangle therefore commences to rotate

about A' GB' , which is drawn parallel to the hypothenuse.

5. A solid ellipsoid fixed at its centre is struck normally at a

point/, g, /•-.

If /, 1)1, n, be the direction cosines of the line of the blow

whose magnitude is Q, and if the equation of the ellipsoid be

a^ b- c^

then the equations of the instantaneous axis will be

Ax^B)^^Cz
L M N'

Q{qn — rm)
'

qn — rm rl—pn pvi — ql
'

and since the blow is normal to the ellipsoid at /, q, r,

/ _fn _ 11

du dit dii

dx dy dz

I _m _n

a' /;2 ,%

Therefore the equations of the instantaneous axis will be



CHAPTI^R Vril.

MOTION ABOUT A FIXED POINT. NO FORCES ACTING.

76. Heavy Bodyfixxd at its Centre of Gravity.

The simplest case of motion under no forces which ordinarily

presents itself is that of a body acted on by gravity and fixed

in such a manner that it can only rotate about its centre of

gravity considered as a fixed point.

Here we have

B-^-{C-A)(o^oi^ = o,

C'^-{A-B)o>,co,=o.

And, multiplying these three equations by (o^, w^, 0)3, respec-
tively, and adding, we get

rt'o),
, ,, d(o^

^«','-^+/>S'-^- + CV»,2|3=o.

•. Aw^+ B(o^-ifCu}.^= a constant

(I)

Similarly, multiplying the three equations by Aco^, Bto^ (Tajg,

respectively, adding, and integrating, we get

^2o,j2-f^2^22^.^2„^2^ a constant

(2)
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(i) states that the kinetic energy is constant, as might be

expected, since no forces act ; this can be seen by taking

,w.i..{(-)%(|)V(|J|

since the products of inertia vanish.

(2) is another way of expressing the constancy of the

moment of momentum.

For (moment of momentum)^

=v+ h2^/., 2
3

^h\

fi = Sw|>
'

dt

t^=tmY
dx

'

dt

dr.

where h.=i.vi\y^—z^\=A

^
\ dt ^ dtS

^

77. Now, since 7/^, 7^2, h^ are constant at all times, the plane

h^x-\-}i^y-^}i.f= o, or Am^x-^-Bw^y-VC0)2^= is an Invariable

Plajie fixed in space ; the line

X _ y _ z

Aco^ Bw^ Cw^

is perpendicular to this plane, and is an Invariable Axis.

The instantaneous axis is given by

X _y _ z _r
©J W.^ CUg O)
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78. If we now construct the momcntal ellipsoid at the fixed

point O, as in Fig. 58, OA, OB, OC being the principal axes,

Fig. 58.

and POP' the instantaneous axis at any time /, the equation

of the ellipsoid will be

and those of the instantaneous axis

Now, X, J',
c being any point on this line, let it represent

the point P ; then at P we have
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Q), (Wo COr, CO

143

and

.*. w =
_k

^

c
r.

X-=«1
c

'

k'

y.= &).2

c

Z--= «3
c

'k

Therefore the angular velocity at any instant is proportional

to the radius vector of the ellipsoid.

Moreover, taking the tangent plane at P to the ellipsoid, its

equation is

dx ay dz

where x=oi^^-, y= w.,f-j, s= o3S,

which becomes

^-".|)|-—

or f |— (Uj • Mzy^ jcOjH 1 =0,

or yJ(Wi • I+ /)&)., • T) + C&jg • ^= kc.

And, if we construct the plane

Aw^x+ Bco^y + Cw^c= o

and represent it by XYX'Y', this is the invariable plane ; and

we see that the tangent plane to the momental ellipsoid at the
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point where the instantaneous axis cuts the ellipsoid is always

parallel to this invariable plane.

Hence, the motion of the body fixed at O, and under the

action of no forces, is completely represented by the rolling of

the momcntal ellipsoid on a plane fixed in space and parallel to

the invariable plane, and at a distance from it equal to 00'

.

79. The ellipsoid in rolling on the fixed plane traces out a

curve on that plane, and also one on its own surface.

The curve traced out on the surface of the ellipsoid is called

the PolJiode^ and its equation is found by taking the condition

that the perpendicular from the centre of the ellipsoid on a

tangent plane at.r, j, z is constant, and combining it with the

equation of the ellipsoid itself.

The equation of the Polhode is, therefore,

The curve traced out on the plane is called the Herpolhodt,

and its equation is found from the relation

ar-=p^=or'-oo'-=f^-f^,

and will vary with r, and therefore with o) and with p.

It is apparent that any one of the central ellipsoids might be

chosen instead of the momental ellipsoid, and the motion of the

body exhibited in a similar manner by the changes in motion of

the ellip.soid chosen.

Innumerable problems may be constructed from the preceding

rcjircscntation ; but they are all dependent on properties of the

ellipsoid, and are not problems in Dynamics.



CHAPTER IX.

MOTION OF A FREE BODY.

80. We have already seen, in discussing DAlcmberfs Prin-

ciple, that the general equations of motion of any body are

^"<^-a
1m\Z-''-^„

and 4bM-.

If M be the whole mass, x,y, 1 the coordinates of the centre

of inertia at time t, and x^
, y\ 2' the place of ni relatively to a

system of axes originating at the centre of inertia and parallel

to the original set of axes, then the equations of motion become

at-

df-
^m V,

dfl

145
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S;;/{j'(-'f)--(-'^)}-

which latter can be transformed in the ordinary way so as to

determine the angular velocities.

These equations theoretically give a complete solution of the

problem.

But the most important case of free motion of a body, and

the only one which admits of simple solution, is that in which

o
Fig. 59.

the particles of tlie body move in partxllel planes. Here it is evi-

dent that we need only consider the motion of one particular

plane of particles, and that containing the centre of inertia is
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chosen, and the position of the body at any time determined in

the following way.

Let the plane in which the centre of inertia moves be repre-

sented by the plane of the paper, the same section of the body

being represented at any two times as in Fig. 59.

Let the body be referred to fixed axes OX, OY, and let ACB
be any line in the body passing through the centre of inertia

C, and in its initial position let this line be parallel to OY, as

shown. Then, after any time t, the body has reached its second

position, and it is evident from elementary geometry that the

body can get from its first position to the second by translation

of the centre of inertia C, and by rotation about C through an

angle 0, equal to that which ACB in its second position makes

with the axis O Y, or with a parallel line fixed in space.

For translation of the centre of inertia, we have, by D'Alem-

bert's principle,

And for rotation about the centre of inertia considered as a

fixed point, we get

\ dt'^ -^ dt'^S dr-

Therefore, at any time, the motion of the body will be fully

known when we know

1. The initial conditions, so that 6 is known.

2. The coordinates of the centre of inertia with reference to

some axes fixed m space ; this gives -—z, -j^.
dt^ dt^

3. Mk''- about the axis of rotation through the centre of

inertia.

4. Geometrical relations between x, y,
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In cases of constraint wlicrc bodies roll or slide on others,

geometrical relations are easily found, and the unknown reac-

tions eliminated by taking moments.

Illustrative Examples.

I A heavy sphere rolling down a perfectly rough inclined

plane.

In this problem gravity, by the aid of friction and the reac-

tion of the plane, produces both the translation of the centre of

inertia and the rotation.

Let OX, (9F(Fig. 60) be the axes of the coordinates fixed in

space, the sphere starting to roll from O. Then at any time /,

A" ^
It \^^\

^
( \̂J^^^ i^l/^

Fig. 60

the position of the sphere, is given by.r, j, the coordinates of

C, the centre of inertia, and the angle through which the

sphere has rolled ; that is, through which it has rotated about

C, considered as a fixed point.

The initial conditions, combined with the geometrical condi-

tions for perfect rolling, give

x=ae, r= a. (i)
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For the translation of the centre of inertia, we have

M^+F-Mgsma= o,

The rotation about C is given by

149

(2)

(3)

(4)

These four relations give a complete solution of the problem,

for we have

df °'
dfi '^ dfi'

and, therefore, from (2) and (4)

from which it is seen that

dP-x

m sm a, (5)

dfi
^ gs\n a.

and

also, R =Mg cos «,

F=^ Mgsma.

These results give the space passed over in time /, and show

that five-sevenths of gravity is used in translation, while two-

sevenths is used in turning the sphere about the centre of

inertia.

The relation (5) may also be obtained at once by forming the

equation of energy. For the sphere has fallen through a dis-

tance X sin «, and therefore the work done by gravity is
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A/g^x sin rt,

or AlgaS sin a,

which must be equal to the kinetic energy at time /, and there-

fore

.V J/(7'-^+ /-V) = Mgad sin «.

.-. ^ J/(.?2 _,_ /.2y^y = ,]/^^(9 sin rt,

which gives, on differentiation,

M{a'^+ k'^)^= Mgasma,

as befoi

2. If a heavy circular cylinder rolls down a perfectly rough

inclined plane, one-third of gravity is used in turning and two-

thirds in translation.

3. A very thin spherical shell surrounds a sphere, both

being perfectly smooth and consequently no friction between

them, and the system rolls down a rough inclined plane.

In this case, if we neglect the mass of the outer shell, the

inner sphere acts just as if it slid down the plane, because,

since there is no friction between it and the shell, as the shell

rolls it slips around, and therefore the equation of motion is

M being the mass of the sphere, which is so large that the

mass of the outer shell is negligible in comparison.

If, however, the shell and sphere were united, the system

would roll down, and then the equation of motion would be

. . „ if sin rt.

it-

And the times occupied in rolling a given distance in the two

cases would be to one another as v'5 : ^'j.
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In the case of a cylinder surrounded by a cylindrical shell,

gravity would be diminished to two-thirds of its value, and the

times occupied in rolling a given distance would be as V2 : V3
under similar circumstances.

4. To determine whether a sphere is hollow or solid by roll-

ing it down a rough plane. This could be done by observing

the space passed over in a given time, and by calculating the

moments of inertia and forming the equations of motion (i)

on the supposition of a solid body
; (2) on the supposition of

a shell of radii a, b.

5. A homogeneous heavy sphere rolls down within a rough

spherical bowl ; it is required to determine the motion.

Fig. 61.
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Let the radius of the spherical bowl (Fig. 6i) be ^, and of the

sphere, a ; and let the sphere start with AP coincident with BQ.

Then, at time /, the circumstances are as shown in the figure.

Let w= angular velocity about P,

OCP= <^, OM=x,

DPA = d, PM=y,

BCO = a,

x= (b — a) sin 0,

y= b — {b— a) cos</).

And the equations of motion are

(Px

then will

and

M Rsxn <\> -\- F cos <\>,

M-^=P cos
(f)
+ F sin (^ — mg,

dr

(I)

(2)

F being the friction, and R the reaction at the point D. acting

in the directions indicated by the arrows.

d{MPA
) _ d((}> + e)_ d(i>^ d0

Moreover,
di dt

MPA being the exterior angle at P, and

a— b d^
a dt

dt^ dt

(3)

Along with the foregoing relation we have, also, taking

moments about /',

MK-'^f-=F-a. (4)
dt

It is then easy to find A' and F hy taking the values of x and y,

and differentiating twice and substituting in (i) and (2).
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It will be found on reduction, that

R= ^—{17 cos (f)— 10 cos «),

and (^-«)(^J=V-<.-(cosc^-cos«).

From this latter expression, by differentiation, we get

and if
<f)
becomes small, this gives the ^hue of a small oscillation

of a sphere within a spherical bowl. For

dfi 7 b-a ^

represents a motion of oscillation of which the periodic time is

It may also be noticed that the pressure on the bowl vanishes

when cos <^= ^^-cos a.

If BOB^ were completed and the sphere supposed to rotate

about C with angular velocity sufficient to keep the smaller

sphere at the top, the pressure against the outer sphere and the

conditions of equilibrium can at once be found from the rela-

tions already obtained, which also furnish a solution to the

following instructive problem :

6. A perfectly rough ball is placed within a hollow cylindrical

garden roller at the lowest point, and the roller is then drawn

along a level walk with a uniform velocity F Show that the

ball will roll quite round the interior of the roller if V~ be >
%^ g{p— a), a being the radius of the ball, and^ of the roller.
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7. A uniform straight rod slips clown in a vertical plane

between two smooth planes, one horizontal, the other vertical

;

find the motion.

Let OX, OY he the horizontal and vertical planes, and let

the rod starting from its upper position when / = o assume the

position AB at time /, as in Fig. 62.

^//

^0
J

/ \

n
'^tM'c

O

Fif. 62.

Then we have two reactions at the points A and B, and the

weight Afg^ acting at the centre of gravity, C.

So that if .r, J/ be the coordinates of C, and the angle of

inclination of the rod AB to the horizontal, we get

"— = ^^77^ = ^1
cit^
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and x=a cos 6,]

y= a sin 6, J

where 2 ^ is the length of the rod.

Also, taking moments about the centre of gravity, we would

have

and we may suppose that Q is initially equal to «.

These four relations give a complete solution of the problem.

It will be found that the rod leaves the vertical plane when

sin ^= 1 sin a, and then the motion becomes changed, the rod

moving with a constant horizontal velocity along the horizontal

plane equal to \^——^^ -, until it finally drops and lies in the

plane.

The problem may also be solved by aid of the principle of

energy.

8. A circular disc capable of motion about a vertical axis

through its centre perpendicular to its plane is set in motion

with angular velocity H. A rough uniform sphere is gently

placed on any point of the disc, not the centre
;
prove that the

sphere will describe a circle on the disc, and that the disc will

revolve with angular velocity '
^—'-

• O, where Mk~ is

the moment of inertia of the disc about its centre, ni is the

mass of the sphere, and r is the radius of the circle traced out.

9. A homogeneous sphere is placed at rest on a rough

inclined plane, the coefficient of friction being jx ; determine

whether the sphere will slide or roll.

10. A homogeneous sphere is placed on a rough table, the

coefficient of friction being yu, and a particle one-tenth of the

mass of the sphere is attached to the extremity of a horizontal
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diameter. Show that the sphere will begin to roll or slide

according as /x>or< ' -^:r- What will happen if /i = —?-^?
10V37 10V37'

81. I))ipiilsivc Actions. Mohou of a Billiard Ball.

The complex motions of a homogeneous sphere moving on a

rough horizontal plane are well illustrated in the game of

billiards, where an ivory sphere is struck by a cue and made

to perform evolutions that seem to the unscientific little short

of marvellous.

In the general case the course which the billiard ball takes

depends on the initial circumstances, that is to say, on the way

in which it is struck by the cue ; and the motion is made up of

both sliding and rolling, so that the centre of the ball moves

in a portion of a parabola until the sliding motion ceases, when

it rolls on in a straight line. If struck so that the cue is in the

same vertical plane with the centre of the sphere, then the

motion is purely rectilinear; which is also the case if the cue is

held in a horizontal position.

It may also happen that if the ball be struck by the cue at a

certain oblique inclination to the table, its path, after sliding

ceases, will be opposite to the horizontal direction of the stroke,

and it will roll backwards.

For a complete solution of the problem, then, we should

know the direction, intensity, and point of application of the

blow struck by the cue, so that the velocity of translation of

the centre of gravity is known, and the initial angular velocity.

82. In ordinary blows, the initial value of the rolling friction

will be very small compared with the sliding friction, so that at

the beginning the former may be neglected, and the equations

of motion for sliding found in the following way.

Let the plane in which the centre of the ball moves be the

plane oi xy, so that {x, y, —a) are the coordinates of the point

of contact at time t. Let F be the value of the sliding friction,

and y9 the angle it makes with the a.xis of x.



MOTION OF A FREE BODY. 157

Then evidently the pressure on the table is equal to the

weight of the ball, so that R =Mg and F=imR.

The equations of motion of the centre of gravity are

F cos

Fsin/3,

M^^=o^R-Mo

For rotation about the centre of gravity we have

A—1= —aFsm
dt

A'^^= aF cos
dt

A^^= o.
dt

A(co,-n,).

^(6).3-n,)=-rtj/i(f-4

where ?(q, z'^ are the axial components of the initial velocities

of the centre of gravity, and O^, i^.^, Q^ are the initial angular

velocities about axes through the centre of gravity.

The above give a complete solution of the motion during

sliding which, however, in the case of an ordinary billiard ball,

lasts but for a small fraction of a second.

83. At the instant the ball is struck by the cue the impidsive

equations will evidently be formed as follows.
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Let Q be the value of the blow struck by the cue, and a the

angle the cue makes with the table ; also, let /•' be the impulsive

value of friction at the instant of striking, and y3 the angle

which it makes with the axis of .r.

Then, the axes being chosen as in the preceding problem,

and the line and angular velocities being denoted as formerly

by Uq, Vq, Xlj, ^2, Hg, we have

Muq= Q cos « — Fcos /8,

Mvq= —Fsinff,

A^i= —Qh sin u — aFs\\\ /3,

A£i.^= Qk +aF cos ^,

where // is the horizontal distance from the centre of the ball to

the vertical plane containing the line of blow, and k is the per-

pendicular on the line of blow from the point where // meets the

vertical plane containing that line. And the impulse on the

table must be equal to Q sin «. See, Tlu'orie matht'matique

dcs cffcts du jcu de billard, par G. Coriolis, Paris, 1835.

84. I»ipulsivf Actions. Free Body. Illustrative Examples.

1. A uniform rod is lying on a smooth horizontal table and

is struck at one end in a direction perpendicular to its length.

Determine the motion.

What if it be struck at the centre, or at the centre of per-

cussion for a rotation-axis through one end of the rod }

2. Two uniform rods of equal length are freely hinged

together and placed in a straight line on a smooth horizontal

plane. The system is then struck at one end in a direction

perpendicular to its length. E.xamine the motion initially and

subsequently
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Here, the circumstances are a little more complicated than

in the preceding problem, so that it is well to form the equa-

tions of motion of the two rods separately.

Let in be the mass of each rod, 2 a the length, C, C the

centres of gravity, v, v' the velocities of translation of C, C

,

and o), (o' the angular velocities.

Then if O, O' be the instantaneous centres so that C0=^
and CO' =x', we get

cox = c

and (a—x)co=(a+x')(o'.

And if Q be the blow, and R the reaction at the free hinge,

the equations of motion of the two rods are

mv=Q + R,

3

' r\
3

from which it will be found that

and the initial velocity of the end struck is four times that

of the other end.

3. Three uniform and equal rods AB, BC, CD are arranged

as three sides of a square having free hinges at B and C; the

end A is struck in the plane of the rods and at right angles

to AB by a blow Q. Determine the motion, and show that

the initial velocity of A is nineteen times that of D.
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This is solved in the same way as the former problem by

considering each portion separately. Thus, if A' be the reaction

of B, we have

3

and (ox=v.

Also, if R' be the reaction at C,

R — R' = j;i{a—x)(i} = t>i(a+x')(i)',

since the displacements of B and C are equal and in the same

direction.

And for CD, mv' = R',

3

4. If in the preceding problem BC be a thin string whose

mass is negligible, show that the initial velocity of A will be

seven times that of D.

This is evident, for R = R'.

5. Two equal uniform rods AB, BC, freely jointed at B, are

placed on a smooth horizontal table at right angles to one

another, and a blow is applied at A perpendicular to AB

;

prove that the initial velocities of .•/, C are cL?. 8 to i.

6. Four equal uniform rods AB, BC CD, DE, freely jointed

at B, C, D, are laid on a horizontal table in the form of a square,

and a blow is applied at A at right angles to AB from the inside

of the square
;
prove that the initial velocity of A is 79 times

that of E.

7. Three equal inelastic rods of length <?, freely hinged

together, are placed in a straight line on a smooth horizontal

plane, and the two outer ends arc set in motion about the ends
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of the middle rod with equal but opposite angular velocities {(o) ;

show that after impact the triangle formed by the three will

move on with a velocity ^aco.

8. Four equal rods freely jointed together so as to form a

square are moving with given velocity in the direction of a

diagonal of the square, on a smooth horizontal plane. If one

end of this diagonal impinge directly on an inelastic obstacle,

find the time in which the rods will be in one straight line.

9. Four equal uniform rods each connected by a hinge at

one extremity with the middle point of the rod next in order,

initially form a square with produced sides, and are in motion

with a given velocity in direction parallel to one of the rods.

If an impulse be given at the free extremity of this rod, and

the centre of inertia of the system be thereby reduced to rest,

find the initial angular velocities of the four rods, and prove

that these angular velocities remain unchanged during the sub-

sequent motion.

10. A lamina in the form of an ellipse is rotating in its own
plane with angular velocity co about a focus. Suddenly this

focus is freed and the other fixed. Find the velocity about the

second focus.



CHAPTER X.

THE GYROSCOPE.

85. This instrument, to which reference has already been

made in connection with motion about a fixed point, consists

essentially of a wheel which is put in rotation within an outer

ring : the latter being provided with knife edges and other

arrangements whereby the whole mass may be experimented

upon while the wheel is kept in motion.

A type of gyroscope, known as Foucault s, is shown in Fig.

63, and also more in detail in Figs. 65 and 66.

It is made of a disc, turned to offer the least resistance to

the air, which can be made to rotate with great speed (from

two hundred and fifty to five hundred times per second) about

an axis through its centre of gravity.

This is done by means of the wheelwork motor (driven by

hand) shown in Fig. 64, which is geared up at the top to the

small toothed cog-wheel seen in Fig. 61, at the left-hand side

of the disc, on the axis of the gyroscope, and within the outer

ring.

162
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The axis of rotation is of course movable in the outer ring,

and this latter is provided with two knife edges which should

be exactly in the prolongation of a line passing through the

centre of gravity and perpendicular to the rotation axis.

Fig. 64.

Four movable masses, two within the ring, and two outside,

Fig. 65, are used to adjust the instrument in two perpendicular

planes, so that the centre of gravity of the system will be in the

line of the knife edges.

It is quite a difficult matter to perform this adjustment, which

must be exact ; since the slightest deviation of the position of

the centre of gravity from this line destroys the value of the

results obtained in the pendulum experiment.

The readiest way to adjust the gyroscope is to let it oscillate,

under the action of gravity, about the knife edges, the centre

of gravity being arranged at first to fall below the line of the

knife edges (by properly altering the positions of the movable

masses)
; and then, by slight variations of these positions, to

bring the centre of gravity up until the oscillations about the

knife-edge axis are made in from eight to ten seconds : the line

of the knife edges is in that case infinitely close to the centre of

gravity and the equilibrium nearly neutral.
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86. T/ie Gyroscope moving in a Horizontal Plane about a

Fixed Point.

The gyroscope being adjusted, the experiment indicated by

the theory of Art. 72 may easily be performed.

It is only necessary to place the instrument on top of the

motor so that the wheels are properly geared, and to set the

disc in rapid rotation, taking care that the bearings are care-

fully cleaned and oiled.

Then, placing it as shown in Fig. 65, so that a small pointed

hook which is directly in the prolongation of the axis of rota-

Fig. 65. Fig. 66.

tion rests on a little agate cup at the top of an upright stand,

the instrument is given a slight angular displacement bodily

about a vertical axis passing through the point at which the

hook rests, and it slowly moves about the vertical with an angu-

lar velocity equal to that found by the theory of Art. 72.

Moreover, the direction of motion is as shown in Fig. 66;

that is, the gyroscope moves bodily about a vertical axis (when

viewed from above) in the same direction as the disc rotates

when viewed by an observer looking towards the fixed point

about which the motion takes place.

Thus there is a perfect accord between theory and exper-

iment, and the truth of the fundamental equations of motion

is established.
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«=^p»

Pig. 67.
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It may be observed also that if the gyroscope be given no

initial impulse, but be merely let drop, it will act in the same

manner as a top, and oscillate up and down while it keeps in

motion about the vertical.

87. To prove the Rotation of the Earth upon its Axis.

This experiment depends on the permanency of the rotation

axis in space.

A stand with pendulum is arranged as shown in Fig. 67.

There is a ring suspended by means of a fibre without torsion

from a hook above, and the whole being carefully levelled so

that the line of suspension is vertical, the gyroscope is put

in rapid rotation and placed in the ring with the knife edges

resting within beds provided for them : the ring, being then

released by the small screw seen at the right, is quite free

in space, and owing to the rapid rotation of the disc the axis of

rotation is th permanent axis and remains fixed in space.

Hence, while the earth moves along, carrying with it the stand

and observer, the gyroscope preserves its position in space for

some time ; and if a long index be attached to it in prolonga-

tion of the rotation axis or parallel to it, this index will have an

apparent motion from east to west, as the observer is carried

along with the earth from west to east.

If the pendulum with the gyroscope were placed at the north

pole, it is evident that the apparent motion of the index would

be 360'' in twenty-four hours.

At the equator there would be no apparent motion ; as although

a permanent axis would still exist, the earth would simply carry

the whole instrument bodily about the rotation axis of the earth.

Action in Any Latitude X.

To find the angular velocity of the gyroscope in any latitude,

let PCF, Fig. 68, be the axis of rotation of the earth.

And let the gyroscope be suspended at A, in the tangent

plane, and preferably let the plane of rotation of the disc be in

the geographical meridian plane.
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Then the angular velocity of the earth about PCF is

o) = 360° in twenty-four hours.

And this, if resolved along CA, will produce a rotation about

CA equal to 03 sin X, and this is the component which affects the

gyroscope at A.

Since to is against the hands of a watch, looking towards C
from P, therefore co sin X, looking from A towards A or C,

will be against the hands of a watch, and therefore if Fig. 69

\V

represents the tangent plane at A, to an observer at A' above

the gyroscope, the earth will move from west to east as indi-

cated by the arrow, and the apparent motion of the index

attached to the gyroscope will be as before from cast to west.

88. It is evident also that the angular velocity being w sin X,

if this be observed by noting the time and the angle passed over

in that time, since w is known to be 360° in twenty-four hours,

we get a method for finding X, the latitude of the place of

experiment.
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89. Electrical Gyroscope.

The defect of Foucault's gyroscope being that it does not

keep up its motion long enough to give marked results in the

pendulum experiment, an electrical gyroscope has been devised

by Mr. Hopkins, who gives a description of his instrument in the

Scientific American of July 6, 1878, and also in his recent text-

book on Physics. His instrument is shown in Fig. 70.

The rectangular frame which contains the wheel is supported

by a fine and very hard steel point, which rests upon an agate

step in the bottom of a small iron cup at the end of the arm

that is supported by the standard. The wheel spindle turns on

carefully made steel points, and upon it are placed two cams,

one at each end, which operate the current-breaking springs.
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The horizontal sides of the frame are of brass, and the ver-

tical sides are iron. To the vertical sides are attached the

cores of the electro-magnets. There are two helices and two

cores on each side of the wheel, and the wheel has attached to

it two armatures, one on each side, which are arranged at

right angles to each other. The two magnets are oppositely

arranged in respect of polarity, to render the instrument astatic.

An insulated stud projects from the middle of the lower end

of the frame to receive an index that extends nearly to the

periphery of the circular base piece and moves over a graduated

semicircular scale. An iron point projects from the insulated

stud into a mercury cup in the centre of the base piece, and is

in electrical communication with the platinum pointed screws

of the current breakers. The current-breaking springs are con-

nected with the terminals of the magnet wires, and the magnets
are in electrical communication with the wheel-supporting frame.

One of the binding posts is connected by a wire with the mer-

cury in the cup, and the other is connected with the stand-

ard. A drop of mercury is placed in the cup that contains the

agate step to form an electrical connection between the iron

cup and the pointed screw.

The current breaker is contrived to make and break the

current at the proper instant, so that the full effect of the mag-
nets is realized, and when the binding posts are connected with

four or six Bunsen cells the wheel rotates at a high velocity.

The wheel will maintain its plane of rotation, and when it is

brought into the plane of the meridian, the index will appear to

move slowly over the scale in a direction contrary to the earth's

rotation, but in reality the earth and the scale with it move
from west to east, while the index remains nearly stationary.

90. Fesse/'s Gyroscope.

Another most useful and instructive form of gyroscope is

that known as Fessel's, which is represented in Fig. 71.

" g is a heavy fixed stand, the vertical shaft of which is a
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cylinder bored smoothly, in which works a vertical rod CC\ as

far as possible without friction, carrying at its upper end a small

frame BE' . In BB' a horizontal axis works, at right angles to

which is a small cylinder D, with a tightening screw H, through

which passes a long rod GG\ to one end of which is affixed a

large ring AA' , and along which slides a small cylinder carrying

a weight W, which is capable of being fixed at any point of the

rod ; and so that it may act as a counterpoise to the ring, or to

the ring and any weight attached to it. An axis AA^ works on

pivots in the ring, in the same straight line with GG' ; to AA
a disc, or sphere, or cone, or any other body, can be attached,

and thus can rotate about AA' as its axis ; to the body thus

attached to AA' a rapid rotation can be given, either by means

of a string wound round AA' or by a machine contrived for the

purpose when AA' and its attached body are applied to it. It

is evident that the counterpoise W can be so adjusted that the

centre of gravity of the rod, the ring, the attached body, and

the counterpoise, should be in the axis BB' ; or at any point on

either side of it ; that is, // may be positive, or be equal to o, or

may be negative. Also by fixing BB' in the arm of CC which

carries it, the inclination of the rod GG' to the vertical may be

made constant; that is, 6 may be equal to ^^ throughout the

motion. When the counterpoise is so adjusted that the centre of-

gravity of the rod GG' and its appendages is in CC , then // = o,

or, what is equivalent, inhg = o." (Price, Calculus ; vol. iv.)

It is evident that with such an instrument, with its various
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adjustments, all the motions about a fixed point can be fully dis-

played and examined ; and the results already obtained in the case

of the top (Art. 66) and the gyroscope (Art. 72) thereby shown.

91. Another form of gyroscope worthy of notice is that first

constructed by Professor Gustav Magnus of Berlin, and de-

scribed by him in Poggendorff' s Annalcn der Physik nnd

CJiemie, vol. xci., pp. 295-299. The instrument consists of two

rings and discs such as AA\ Fig. 71, connected by a rod sup-

ported in much the same way as the rod GQ in Fessel's gyro-

scope. There is a binding-screw at B, to arrest, when so

desired, motion about the horizontal dixxs BB', and also a short

rod projecting horizontally from the upper part of the vertical

axis CC by which the motion about that axis may be accel-

erated, retarded, or completely arrested at will. By means of

two cords wound round their axes and simultaneously pulled off,

the discs can be put in rapid rotation with nearly equal veloci-

ties either in the same or in opposite directions. The follow-

ing phenomena are exhibited by this apparatus

:

If the connecting rod be supported midway between the

discs, and if the discs be made to rotate rapidly with equal

velocities in the same direction, and no weight be suspended

at W (Fig. 71), the connecting rod will remain at rest. If a

weight be suspended at W, the rod and discs will slowly rotate

about the vertical axis CC . If the motion round the vertical

axis be accelerated, the loaded end of GG' will rise, if the

horizontal rotation be retarded, the loaded end Avill sink. If

the binding-screw be tightened so as to arrest this rising or

sinking, the rotation about the vertical axis will also cease, to

commence again as soon as the binding-screw is loosened.

If the discs rotate with equal velocities in opposite directions,

-the loaded end of GG' will sink. If the connecting-rod be sup-

ported at a point nearer to one disc than to the other, and the

discs be made to rotate v/ith equal velocities in opposite direc-

tions, the instrument will still be found extremely sensitive.



NOTE ON THE PENDULUM AND THE TOP.

I. In Art. 35, pp. 47 to 49, we have found the equation

(/r+ i^) (^Y= 2 g/i (cos d - cos «),

or, as it may be written (see page 50),

/(^J
= 2^(cos^-cos«) (i)

for the oscillations of a rigid body about a fixed horizontal axis,

and have applied it to the case of a pendulum making extremely

small oscillations. We shall here consider the general case,

when the arc of the oscillations is not necessarily small.

' Let cos ^— cos « = ( I — cos«)cos2 (^.

.". I — cos ^ = (1 — cos «) sin-
(^

and cos B= cos^^ + cos « sin^ <^. (W)

Differentiating,

s\n ffy =2 sm
<f)

cos (f>(i — cos «

)

-—.

.: (I 4-cos 6)
(^^J

= 4(cos0-cos«).
('^^J.

Substituting in (i),

/(^^J=,?-(i-sin2i«sin2<^).
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Let /c2=sin^|^a,

and ^v^=g-

an elliptic integral of the first kind.

.-. ^ = am(y^),

and (ii) becomes

cos ^= cn2(iy/)+ cos « sn2(i^^). (ivj

Equation (ii) may be written in the form

sin
I
9= sin 1 « sin

;

consequently (iv) may be written in the form

sin 2^ = sin .] a sn vt.

This equation determines the position of the pendulum at any

given instant, and, by inversion, the times at which the pendulum

is in a given position.

If T be the period of the pendulum, i.e. the length of time

required for the pendulum to make a double swing through the

arc 2«,

T= C ^"^

Integrating and writing 'l for \r- and sin \ « for «,

IS) 1
1 +(^-)^(sin J )2 +(l^y (sin \ ay

\2 • 4-6/ "
J
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2. In Art. 67, p. 118, \vc have found the equation

(a .sin ^—Y= (cos e,-cos 6)12 AM^/i sin^d

-(r2,^2(cos(9o-cos0)|, (n)

for the nutation oscillations of a top spinning about a fixed point,

and in Art. 68 we have determined the approximate period of

small oscillations. The period of oscillations of any magnitude

and the value of at any given instant may be determined as

follows

:

Let A = M(/r+ P)= M/!/, (see page 50)

and 2 AA/^/r sin2 ^- CV (cos ^o-cos 0)

= 2AMg/i (cos ^ — cos ^i)(cosh 7 — cos 6\

which requires that

cos ^1 + cosh 7=
2 AMg/i"

C'ffi cos e^
and cos ^j- cosh 7= . ,

'

,

"— i.

2 AMgli

Substituting in {a\ that equation becomes

/Csin^^-y = 2^^(cos^o-cos^)(cos^-cos^i)(cosh7-cos^). (0

Let cos^Q— cos^= (cos^^ — cos^i)cos2t.

.•. cos ^ — cos^j=(cos^o— cos^i)sinV,

and cos ^= cos ^j cosV+ cos^y sin-T. (2)

Differentiating.

— sin B^-—=2 sin t cost (cos ^y — cos^j)—

•

dt (it

'sin6''^Y= 4(cos(9„-cos6>)(cos0-cos<9i)r^J.

Substituting in (
i ),

l{^'^ =.]^|cosh7-cos^i-(cos^,-cos^i)sin2T|
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1 / u zi X i
COS ^0— COS ^1 . „

I= i^^(cosh 7 - cos 6,) I r-5 1 sin2T
[^^ '

^M cosh 7— cos ^1 j

/ U"! 21/3\L COs2J^Q-COs2 1^j .^
=^ (cosh2 J 7- cos2 J 6'j)n . o/ oV^ sin-^^ - - A/

^ cosh'^ ~^- 7— cos'' I ^j

Let ^^_^
cos^-0^-cos^e^

175

cosh^ |- 7— cos^ I ^j

'

and /y^ =^''(cosh2 2 7~ ^os^ |- ^j).

Ji> v(i — /c-sin-r)

an elliptic integral of the first kind.

.•. T= a.m{vt),

and (2) becomes

cos 6= cos ^1 cn^ (v/)+ cos ^q sn- (vt), (4)

thus determining the inclination of the axis of the top to the

vertical at any given instant.

The period of a complete oscillation will be

r=4 p-
VJo ^/{ I — K^ sinV

)

Comparing equations (4) and (5) with (iv) and (v), it will be

seen that the top's oscillations in nutation are of exactly the

same character as the oscillations of an ordinary pendulum.

Note, however, that in the discussions of the oscillations of the

pendulum, 6 is measured from an initial axis directed straight

downwards, while in the discussion of the motion of the top, 6
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is measured from the vertical axi.^ as initial, so that 6, a, and <^

in the former discussion should be replaced by n — d, ir — u, and

TT — T, to bring it into strict conformity of notation with the

discussion of the movements of the top. On makin<; these

changes, it will be found that the pendulum oscillating about a

fixed horizontal axis is merely the special case of the top in

which 6^= 17— a, 6^ = 77, n= o, and, therefore, 7= and i/r is

constant.

Equation (4) enables us to find the value of 6 at any given

instant /, but to completely determine the position of the top, it

is necessary to be able also to find i/r. To do this requires the

integration of the equation (/;) of Art. 65, p. 1 16, which may be

reduced to the integration of two elliptic integrals of the third

kind, as follows

:

A s'mW ^^~ = Cn (cos 6^ - cos 0). {b)

dylr_ Cn
f
cos2 16(^ _ sin^ I ^,A

"^~^\i+cos^~i— cos^y

^Cft^f cos^i^^
~ A\\ +COS ^1 cos'-^+ cos d^ sin'V

sin^]^,
^\

I —cos ^1 cos'-^— cos 0Q sin'V/

^ Cn f cos^ \ e^
~" A Vi +cos^i + (cos^„ — cos^,)sn-(v/)

I — cos ^1 — (cos Oq— cos 6^ ) sn^ {vt))

Thus -v/r is expressed as the difference of two elliptic integrals

)f the third kind.



MISCELLANEOUS EXAMPLES.

1. Find the principal axes of a quadrant of an ellipse at the

centre.

2. If a rigid body be referred to three rectangular axes such

that A = B and 2 (mxy) = o, show that the mean principal

moment of inertia = A.

3. Determine the position of a point (9 in a triangular lamina,

such that the moments of inertia of AOB, HOC, COA, about an

axis through O, perpendicular to the plane of the lamina, may-

all be equal.

4. Find the moment of inertia of the solid formed by the

revolution of the curve r = a{\ +cos^) about the initial line,

about a line through the pole perpendicular to the initial line.

5. A uniform wire is bent into the form of a catenary. Find

its moments of inertia about its axis, and its directrix.

6. Find the moment of inertia of a paraboloid of revolution

about a tangent line at the vertex ; the density in any plane

perpendicular to the axis varying as the inverse fifth power of

its distance from the vertex.

7. Find the moment of inertia of a semi-ellipse cut off by the

axis minor about the line joining the focus with the extremity of

the axis minor.

8. If the moments of inertia of a rigid body about three axes,

passing through a point and mutually at right angles, be equal

to one another, show that these axes are on the surface of an

N 177
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elliptic cone whose axis is that of least or greatest moment
according as the mean moment of inertia is greater or less
than the arithmetic mean between the other two.

9- Show that the moment of inertia of a regular octahedron
about one of its edges is |«W, where a is the length of an edge
and M is the mass of the octahedron.

10. Prove that the moment of inertia of a solid regular tetra-

hedron about any axis through its centre of inertia is J/—, a
being the length of an edge.

~°

11. If ^, 7 be the perpendiculars from B and T on a principal
axis at the angular point A of the triangle ABC, show that

(,,2 _ ^2 _ ^2)(^ - 7^) = /;2^2 + ^y2 4- 2 (^ - c'^)^y,

12. Show that if a plane figure have the moments of inertia
round two lines in it, not perpendicular to one another, equal, a
principal axis with respect to the point of intersection bisects
the angle between them.

13- Determine the points of an oblate spheroid with respect
to which the three principal moments are equal to one another.

14- Show that the conditions which must be satisfied by a
given straight line in order that it may, at some point of its
length, be a principal axis of a given rigid body, is always satis-
fied if the rigid body be a lamina and the straight line be in its
plane, unless the straight line pass through the centre of inertia.

15- If a straight line be a principal axis of a rigid body at
every point in its length, it must pass through the centre of
inertia of body.

i6. Assuming that the radius of gyration of a regular poly-
gon of ;/ sides about any axis through its centre of inertia and
in its own plane, is

^V{(--V-)/(,-cosH.)},

where c is the length of any side; find the radius of gyration
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of a circular disc about a line through any point in its circum-

ference and perpendicular to its plane, and show that it is equal

to the radius of a circular ring about a tangent.

17. The locus of a point such that the sum of the moments

of inertia about the principal axes through the point is constant,

is a sphere whose centre is the centre of inertia of the body.

18. If A, B, C be the moments of inertia of a body about

principal axes,

A cos- « + ^ cos^ /3 + C cos^ 7

will be the moment of inertia about any other axis passing

through the origin and having cos a cos ^ cos 7 for its direction-

cosines.

19. If the centre of inertia of a rigid body be the origin, and

the principal axes at that point the axes of coordinates, then at

an umbilicus of the ellipsoid

A'2 1/2 ^2

A+\ B+\ C+X

two of the principal moments of inertia will be equal.

20. If the density at any point of a right circular cone be

proportional to the distance from the exterior surface, show that

the radius of gyration about the axis of figure is — , where a is

the radius of the base.

21. Find the moment of inertia of the solid

about the axis of x.

Find also the moment of inertia of the surface of this solid.

22. The locus of points at which one of the principal axes

passes through a fixed point in one of the principal planes

through the centre of inertia, is a circle.

23. If a and /' be the sides of a homogeneous parallelogram,

6 and (j> the inclinations of its principal axes in its own plane.
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through its centre of inertia, to these sides respectively, show

that V2r7'sni 2 = //- sin 2
(f).

24. Find the moments of inertia of a uniform circular lamina

about its principal axes through a given point in its plane.

25. Show that two of the principal moments of inertia with

respect to a point in a rigid body cannot be equal unless two

are equal with respect to the centre of inertia and the point be

situated on the axis of unequal moment.

26. Prove that in any rigid body the locus of the point

through which one of the principal axes is in a given direction

is a rectangular hyperbola whose plane passes through the

centre of inertia, and one of whose asymptotes is in the given

direction ; unless the given direction be that of one of the prin-

cipal axes through the centre of inertia.

27. A series of parabolas are described in one plane having

a common vertex A and a common axis, and from a point P in

one of them an ordinate PiV is drawn to the axis. Show that

if the moment of inertia of the curvilinear area APN about an

axis through A perpendicular to the plane of the parabolas be

proportional to the area APN, the locus of P is an ellipse.

28. Show that if the momental ellipsoid at a point not in

one of the principal planes through the centre of inertia be

a spheroid, it will at the centre of inertia be a sphere.

29. Find the moment of inertia of a segment of a circle

about its chord.

30. Find the moment of inertia of an equilateral triangular

lamina about an axis through the centre of inertia and perpen-

dicular to the lamina if the density of the lamina at any poini

varies directly as the distance of the point from the centre 01

inertia.

31. If ,-/, /), C be the moments of inertia about principal axes

through the centre of inertia and «, yS, 7 be the moments ot

inertia about principal axes through a point P, show that
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(I) If (a + ^-rY)=A + B- C, the locus of P will be one

of the principal planes through the centre of inertia.

(II) If a + /3 + 7 be constant, the locus of P will be a sphere

with centre at centre of inertia.

(Ill) If (V« + v/^ + V7)(v;8+ v^- Va)

X (V7 + V« - V^){V7c + V^ - V7)

be constant, the locus of P will be an ellipsoid similar and simi-

larly situated and concentric with the central ellipsoid at the

centre of inertia.

(IV) If /3 — 7 < « and P lie on a lemniscate of revolution

having for foci the points where the momental ellipsoid is a

sphere, a — 13 = A — B, a and ^ being the moments about the

axes through P which pass through the axis A.

32. Find the moment of inertia of a portion of the arc of an

equiangular spiral about a line through its pole perpendicular to

its plane.

33. Find the moment of inertia of the segment of a parabolic

area bounded by a chord perpendicular to its axis, about any

line in its plane through the focus ; and determine the position

of the chord that all such moments may be equal.

34. Prove that if the height of a homogeneous right circular

cylinder be to its diameter as V3 : 2, the moments of inertia of

the cylinder about all axes passing through the centre of inertia

will be equal.

35. Find the moment of inertia of a parabolic area bounded

by the latus rectum about the line joining its vertex to the

extremity of its latus rectum.

36. Find the locus of those diameters of an ellipsoid, the

moments of inertia about which are equal to the moment of

inertia about the mean axis.

37. One extremity of a string is attached to a fi.xed point; the

string passes round a rough pulley of given radius and over a
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smooth peg and is attached to a weight equal to that of the

pulley. Determine the motion, the positions of the string on

either side of the pulley being vertical.

38. A heavy uniform rod has at one extremity a ring which

slides on a smooth vertical axis ; the other extremity is in

motion on a horizontal plane, and is connected by an elastic

string with the point where the axis meets the plane. Deter-

mine the motion supposing the string always stretched.

39. A ball spinning about a vertical axis moves on a smooth

horizontal table and impinges directly on a perfectly rough ver-

tical cushion. Show that the vis viva of the ball is diminished

in the ratio lOt^-f i^Xvlv^O: io + 49tan2^, where e is the co-

efficient of restitution of the ball and 6 the angle of reflection.

40. A homogeneous lamina rotating in its plane about its

centre of inertia, is brought suddenly to rest by sticking a two-

pronged fork into it. Show that the impulses on the prongs arc

equal to one another, and are of the same magnitude wherever

the fork is stuck in.

41. A free rod is at rest and a ball is fired at it to break it.

Show that it will be most likely to cause it to break if it strike

it at the midpoint, or at one-sixth of its length from either end

;

and that it will be lea.st likely to break the rod if it strike it at

one-third of its length from either end. And that in either case

the most likely point for it to snap is the middle point.

42. Three pieces cut from the same uniform rigid wire are

connected together so as to form a triangle ABC, which is

then set in contact with a smooth horizontal plane. Find the

direction and magnitude of the strains at the angular con-

nections.

Prove the following construction for the direction of the

strains: If AB, AC hQ produced to D, E respectively, and

BD and CE be each made equal to BC, then will DE be paral-

lel to the direction of the strain at A.
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Also show that the direction of the strain at A makes with

the side BC an angle

^ _, f sin /3 ~ sin C= tan 1

\
^^-—

-^i
(. I +C0S ^ + cose J

43. The ends of a uniform heavy rod move on the same

smooth, fixed, vertical ring. Determine its angular velocity in

the lowest position, supposing it to fall from a given position

starting from rest.

44. A body revolves about a horizontal axis, starting from

rest when the centre of inertia is in the horizontal plane con-

taining the axis. Show that when the body has revolved through

45°, the effective force upon the centre of inertia makes with

the vertical an angle = tan"^ 3.

45. A box is fixed upon a horizontal plane and its lid is

placed in a vertical position ; a blow is given to the lid at the

midpoint of the upper edge and perpendicular to its plane.

Determine the initial impulse on the hinges, the finite pressure

on them during the motion, and the impulsive pressure on them

when the lid impinges on the opposite edge and closes the box.

46. AB, BC are two equal heavy rods hinged together at B

;

the rod AB is capable of moving in a vertical plane about A,

and C can slide by means of a small ring along a vertical axis

passing through A. Find the angular velocity with which the

whole must revolve about AC that the triangle ABC may be

equilateral.

47. A string with one end fastened to a smooth vertical wall

is wrapped round a cylinder which is then placed in contact

with the wall. Find the velocity of the cylinder and the tension

of the string in terms of the inclination of the string to the wall.

48. The lower extremity of a heavy uniform beam of length

a slides on a weightless inextensible string of length 2 a, whose

extremities are attached to two fixed points in a horizontal line,

and the upper extremity slides on a vertical rod which bisects

the line joining the fixed points. Prove that the only position
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of equilibrium of the beam is vertical and that the time of a

small oscillation about this position is —;

—

^^^ ;— , where

2 V(^^ ~ ^') '^ ^^^ distance between the two fixed points.

49. P pulls Q by means of an une.xtensible string passing

over a rough pulley in the form of a vertical circle, which can

turn freely about an axis through its centre, which is fi.xed.

Determine the velocity attained after a given space has been

described.

50. A hoop of mass J/ rolls down a rough inclined plane,

and carries a heavy particle of mass ;;/ at a point of its circum-

ference. Determine the motion.

51. A hollow tubular ring of radius a contains a heavy

particle with its plain vertical upon a smooth horizontal plane

;

a horizontal velocity 2^2ag is communicated to the ring in its

own plane. Show that the particle will just rise to the top of

the tube.

52. Four equal particles are connected by four equal strings,

which form a square, and the particles repel each other with a

force varying directly as the distance. If one of the strings bo

cut, find the velocity of each particle at the instant when they

are all in a straight line.

53. One half of the inner surface of a fixed hemispherical

bowl is smooth and the other half rough ; a solid sphere slides

down the smooth part of the bowl, starting from rest at the

horizontal rim, and at the bottom comes in contact with and

rolls up the rough part of the surface. Find the change of vis

viva of the sphere at the bottom of the bowl, and show that if

6 be the angle which the line joining the centres of the sphere

and bowl makes with the vertical when the sphere begins to

descend the rough surface, cos^=S.

54. A cone of mass ;;/ and vertical angle 2 « can move

freely about its axis and has a fine smooth groove cut along its

surface so as to make a constant angle B with the generating
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lines of the cone. A heavy particle of mass P moves along

the groove under the action of gravity, the system being initially

at rest with the particle at a distance c from the vertex. Show

that if B be the angle through which the cone has turned when

the particle is at any distance r from the vertex, then

—

!

=2 6 sm « cot ^e,
vik^+ Pc-' sm- a

k being the radius of gyration of the cone about its axis.

55. A heavy ring just fitting round a smooth vertical cylinder

is suspended by n vertical strings of equal lengths, and fixed to

the ring at equidistant points. When an angular velocity is given

to the ring about its centre, show that the height to which it

rises is independent of the length of the strings. Find also

the greatest value of the angle through which it turns.

56. A sphere has a fine wire fastened normally to a point

on its surface, the other end being fastened to a point on a

rough inclined plane. If the sphere be slightly displaced from

its position of equilibrium on the plane, find the time of a small

oscillation, neglecting the weight of the wire.

57. Two equal uniform beams AB, AC are freely movable in

a vertical plane about A, B and C are connected by an elastic

string whose natural length is equal to AB. The beams are

held in a vertical position and suffered to descend. Determine

the motion, the coefficient of elasticity of the string being equal

to four times the weight of either beam.

58. A circular wire is revolving uniformly about its centre

fixed. If it be cracked at any point, show that the tendency

to break at an angular distance a from the crack is proportional

. o '^

to sni- •

2

59. A disc which has a particle of equal mass attached to its

circumference, rolls on a rough inclined plane. Determine the

motion and the friction in any position of the disc, supposing it
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to start from the position in which the particle is in contact

with the plane.

60. A spherical shell whose centre is fi.xcd contains a rough

ball which is held at one extremity of a horizontal diameter of

the shell and then allowed to descend. If the radius of the

shell be three times that of the ball, and when the ball is next in

instantaneous rest the same point of each is again in contact, the

angular velocity of the line joining their centres is 3\/]'^ [»

6 being the inclination of this line to the horizon, and a being

the radius of the ball.

61. A circular ring is suspended with its plane horizontal, by

three equal vertical inextensible strings attached at equal dis-

tances to its circumference. If the ring be twisted till the

strings just meet in a point, and be then left to itself, find its

angular velocity when the strings are vertical again.

62. Two rods AB, BC connected by a hinge at B are in

motion on a smooth horizontal plane, the end A being fi.xed.

If initially AB has no angular velocity, that of BC being w, show

that when BC has no angular velocitv. that of AB will be —
and the angle between the rods will be cos"M ^^^^

—

-^— [» 2 a

and 2 b being the lengths of the rods which are supposed equal

in mass.

63. A uniform heavy beam of length 2r is supported in a

horizontal position by means of two strings without weight, each

of length b, which are fastened to its ends, the other ends of the

.strings being fixed ; in equilibrium each of the strings makes an

angle « with the horizontal. Find the time of a small oscillation

when the system is slightly displaced in the vertical plane in

which it is situated, the strings not being slackened.

64. A lamina bounded by a cycloid and its base has its centre

of inertia at the middle j^oint of its axis. It is placed with its

base vertical on a perfectly rough horizontal plane, and allowed
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to roll down. Show that at the moment its vertex reaches the

plane its angular velocity is-y/J —

\

T a2 p where a is the

radius of the generating circle and k the radius of gyration

about the centre of inertia.

65. A wire is bent into the form of the lemniscate v^^a^cosiO,

and laid upon a smooth horizontal table ; a fly walks along the

top of the wire, starting from one vertex. Show that if the

masses of the wire and fly be in the ratio cfi : B, where k is

the radius of gyration of the lemniscate about a vertical axis

through the node, then when the fly has arrived at the node
rr I

the wire has turned through an angle 42
66. A uniform circular wire of radius a, movable about a fixed

point in its circumference, lies on a smooth horizontal plane. An
insect of mass, equal to that of the wire, crawls along it, starting

from the extremity of the diameter opposite to the fixed point,

its velocity relative to the wire being uniform and equal to v.

Prove that after a time / the wire will have turned through an

, vt I ^ 1/ I ^ ^i'
ansfle = tan"M —z tan—

2 a V3 VV3 2 ay

6"/. A uniform string is stretched along a smooth inclined

plane which rests on a smooth horizontal table. Enough of the

string hangs over the top of the plane to keep the whole system

at rest. If the string be gently pulled over the plane, and the

whole system be then left to itself, investigate the ensuing motion,

supposing the length of the string to be equal to the height of

the plane.

6?!. Two particles of equal mass are attached to the extremi-

ties of a rigid rod without inertia, movable in all directions about

its middle point. The rod being set in motion from a given

position with given velocity, find equations to determine its sub-

sequent motion.

69. A rod of length 2 a movable about its lower end is inclined

at an angle a to the vertical, and is given a rotation <u about the
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vertical. U 6 be its inclination to the vertical when its angular

velocity about a horizontal a.xis is a ma.ximum, show that

3 ^<^ sin-"^ d tan 6 + 4 aar sin^ a = O.

70. The time of descent, down a rough inclined plane, of a

spherical shell which contains a smooth solid sphere of the same

material as itself is /j, the time of descent down the same plane

of a solid sphere of the same material and radius as the shell is

/j. Determine the thickness of the shell.

71. A heavy chain, flexible, inextensible, homogeneous, and

smooth, hangs over a small pulley at the common vertex of two

smooth inclined planes. Apply d'Alembert's principle to deter-

mine the motion of the chain.

72. A perfectly rough right prism, whose section is a square,

is placed with its axis horizontal upon a board of equal mass

lying on a smooth horizontal table. A vertical plane containing

the centres of inertia of the two is j^erj^endicular to the axis of

the prism ; a horizontal blow in this plane communicates motion

to the sy.stem. Show that the prism will topple over if the

momentum of the blow be greater than that acquired by the

system fallintr throuirh a height " tan 77^, where a is a side of

the square section of the prism.

73. Determine the small oscillations in space of a uniform

heav^y rod of length la, suspended from a fixed point by an

inextensible string of length / fastened to one extremity. Prove

that if X be one of the horizontal coordinates of that extremity

of the rod to which the string is fastened

X = A sin {)i^t + u)+ B sin (f/^f + /3),

whore //j, ;/., arc the two jjositive roots of the equation

ii/n* - (4^/ + 3 /)o-fr + 3^^^ = o

and A, B, u, /3 are arbitrary constants.
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74. The bore of a gun-barrel is formed by the motion of an

ellipse whose centre is in the axis of the barrel and plane per-

pendicular to that axis, the centre moving along the axis and

the ellipse revolving in its own plane with an angular velocity

always bearing the same ratio to the linear velocity of its centre.

A spheroidal ball fitting the barrel is fired from the gun. If

V be the velocity with which the ball would have emerged

from the barrel had there been no twist, prove that the velocity

of rotation with which it actually emerges in the case supposed is

V(/'4-47rV/&2y

the number of revolutions of the ellipse corresponding to the

v/hole length / of the barrel being n, and k being the radius of

gyration of the ball about the axis coinciding with the axis of

the barrel, and the gun being supposed to be immovable.

75. A plane lamina moving either about a fixed axis or in-

stantaneously about a principal axis, impinges on a free inelastic

particle in the line through the centre of inertia of the lamina

perpendicular to the axis of rotation at the moment of impact.

If the velocity of the particle after impact be the maximum

velocity, prove that the angular velocity of the lamina will be

diminished in the ratio of i : 2.

jG. Two equal uniform rods are placed in the form of the

letter X on a smooth horizontal plane, the upper and the lower

extremities being connected by equal strings. Show that which-

ever string be cut the tension of the other will be the same

function of the rods, and initially is | g sin «, where « is the

inclination of the rods.

jy. An equilateral triangle is suspended from a point by

three strings, each equal to one of the sides, attached to its

angular points. If one of the strings be cut, show that the

tensions of the other two are diminished in the ratio of id : 43.
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78. Apply the principle of energy to determine the time of a

small oscillation of a uniform rod placed in a smooth, fixed, hemi-

spherical bowl, the motion taking place in a vertical plane.

79. A frame formed of four equal uniform rods loosely jointed

together at the angular points, so as to form a rhombus, is laid

on a smooth horizontal plane and a TjIow is applied to one of the

rods in a direction at right angles to it. Prove that the frame-

will begin to move as a rigid body provided the middle point of

the rod which receives the blow be equidistant from the line of

action of the blow and the perpendicular dropped upon the rod

from the centre of inertia of the frame.

Prove also that in this case the initial angular velocity of the

rod which receives the blow is one-eighth of what it would have

been had it been unconnected with the remaining rods.

80. Three equal uniform rods AB, BC, CD, freely jointed at

B and C, are lying in one straight line on a smooth horizontal

table, and an impulse is applied at the midpoint of BC, perpen-

dicular to that rod. Find the stresses on the hinges at B and C

in any subsequent positions of the rods, and show that when

AB, CD are perpendicular to BC, their midpoints arc moving in

directions which make an angle cos~'(^) with BC.

81. A parallelogram is formed of four rigid uniform rods

freely jointed at their extremities. If the parallelogram be laid

on a smooth horizontal table and a blow be applied to any one

of the rods at right angles to it, and in a direction passing

through the intersection of the lines drawn through its extremi-

ties parallel to the diagonals, determine the initial motion of the

parallelogram.

82. A circular disc is capable of motion about a horizontal

tangent which rotates with uniform angular velocity tu about a

fixed vertical axis through the point of contact. Prove that if

the disc be inclined at a constant angle « to the horizontal,

<D-snirt = Z±.
5«
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W(|)
about its centre of inertia, which is at rest at the instant when

the rod, being vertical, comes in contact with an inelastic plane

inclined to the horizontal at an angle sin"V|. The motion

being in a vertical plane normal to the inclined plane, prove

that the angular velocity of the rod when it leaves the inclined

plane is ^ {-?(.+-!-)
I

.

84. If a rigid body which is initially at rest, and which has a

point in it fixed, is struck by a given impulsive couple, show that

the vis viva generated is greater than that which would have

been generated by the same couple if the body had been con-

strained to turn about an axis through the fixed point and not

coincident with the axis of spontaneous rotation.

85. A and B are two fixed points in the same horizontal line;

CD, a heavy uniform rod equal in length to AB, is suspended by

four inextensible strings AC, AD, BC, BD, where y^^'is equal in

length to BD, and AD to BC. If two of the strings AC, BD be

cut, determine the tension of the other two immediately after

cutting, and find the angular velocity of the rod when it reaches

its lowest position.

86. A beam AB is fixed at A. At B is fastened an elastic

string whose natural length is equal to AB; the other end of the

string is fastened to a point C vertically above A, AC being

equal to AB. The beam is held vertically upwards and then

displaced. If it come to rest when hanging vertically down-

wards, find the greatest pressure on the axis during the motion.

Sy. Two equal rods AB, BC are connected by a hinge at B.

A is fixed and C is in contact with a smooth horizontal plane,

the system being capable of motion in a vertical plane. If

motion commence when the rods are inclined at an angle « to

the horizon, show that there will be no pressure at the hinge

when their inclination 6 is given by the equation

3 (sin-'^ -f sin 6)= 2 sin a.
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88. A rod .IB i.s movable freely in a vertical plane about A
;

to B is fastened an elastic string, the other end being attached

to a point C in the vertical plane at such a distance from A that

when the rod is held horizontal the tension on the string vanishes.

If the rod be now allowed to fall, find the modulus of elasticity

of the string that the rod may just reach a vertical position.

89. A prolate spheroid is fi.xed at one of its poles, and is

allowed to fall from its position of unstable equilibrium under the

action of gravity only. Find the pressure at the fi.xed point in

any subsequent position.

90. Every particle of two equal uniform rods, each of length

2^, attracts every other particle according to the law of gravita-

tion ; the rods are initially at right angles and are free to move

in a plane about their midpoints, which arc also their centres of

inertia and are coincident. If angular velocities co, &>' be com-

municated to the rods respectively, show that at the time / the

angle 6 between them is given by the equation

(3-2V2)(^cos-+ sin—l-i)
a)7-f -3-log

cos--}-sm I

2 2

91. Two equal spheres of radius a and mass M are attached

to the extremities of a rigid rod of the same material, whose

length is ^a and section ^V of ^ principal section of the sphere.

If the rod can move freely about its midpoint and one sphere be

struck by a blow P normal to it and the rod. the time which

must elaj)se before the other sjihere takes the place of this one is

44 iraAf

7P

92. A thin uniform rod, one end of which is attached to a

smooth hinge, is allowed to fall from a horizontal position.

Prove that the stress on the hinge in any given direction is a

maximum when the rod is equally inclined to this direction

and to the vertical, and the stress perpendicular to this is then
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-Y-JFcos«, where ^-^is the weight of the rod and « is the incli-

nation of the given direction to the horizontal.

93. A man standing in a swing is set in motion. Supposing

that the initial inclination of the swing to the vertical is given,

and that the man always crouches when in the highest position,

and stands up when in the lowest, find how much the arc of

vibration will be increased after }i complete oscillations.

94. Three rods are hinged together so as to form an isosceles

triangle ABC, A being the vertex. The whole is rotating with

angular velocity <o round an axis through the middle point of

the base and perpendicular to the plane of the rods, when it is

suddenly brought to rest. Show that the impulsive action at A
bisects the angle BAC, and find its magnitude.

95. A triangular lamina is suspended at rest horizontally by

vertical strings attached to its angular points A, B, C. If the

strings at B and C be simultaneously cut, show that there will

be no instantaneous change of tension in the string at A, if AD
be perpendicular to either AB or AC. AD = CD cos ADC,

D being the midpoint of BC.

96. A hollow spherical shell is filled with homogeneous fluid

which gradually solidifies without alteration of density, the

solidification proceeding uniformly from the outer surface, so

that the mass of the solidified portion is proportional to the

time. If the shell initially rotate about a given axis with a

given angular velocity w, find the angular velocity at any subse-

quent period before the solidification is complete.

97. A lamina whose centre of gravity is G is revolving

about a horizontal axis perpendicular to it and meeting it in C.

Supposing it to begin to move from a position in which CG is

horizontal, prove that the greatest angle which the direction

of the pressure on the axis can make with the vertical is

cot~M^-^tan^ ), where 6 is the corresponding angle which CG
V3 /r )



194 Kl(;iD DYNAMICS.

makes with the vertical, /• is the radius of gyration about an axis

through G perpendicular to the lamina, and // = CG.

98. A rough uniform rod, length 2 a, is placed with a length

r{ > a) projecting over the edge of the table. Prove that the rod

will begin to slide over the edge when it has turned through an

angle tan"'— —

99. If gravity be the only force acting on a body capable of

freely turning about a fi.xed axis and the body be started from

its position of stable equilibrium with such a velocity that it

may just reach its position of unstable equilibrium, find the time

of describing any angle.

100. If an isosceles triangle move, under the action of gravity

only, about its base as a fi.xed axis starting from a horizontal

position, show that the greatest pressure on the axis is seven-

thirds the weight.

loi. If the centre of oscillation of a triangle, suspended from

an angular point and oscillating with its plane vertical, lie on

the side opposite the point of suspension, show that the angle

at the point must be a right angle.

102. A horizontal circular tube of small section and given

mass is freely movable about a vertical axis through its centre.

A heavy particle within the tube is projected along it with a

given velocity. Given the coefficient of friction between the

tube and the particle, determine the terminal velocity of both,

anil the time which must elapse before that motion is attained.

103. Part of a heavy chain is coiled round a cylinder freely

movable about its axis of figure which is horizontal, and the

remainder hangs vertically. Determine the motion, supposim:

the system to start from rest and neglecting the thickness v\

the chain.

104. Two weights are connected by a fine chain which passes

over a wheel free to rotate about its centre in a vertical plane.
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Given the coefficient of friction between the strinc^ and the

wheel, find the condition which determines whether the string

will slide over the wheel or will not slide.

105. Two straight equal and uniform rods are connected at

their ends by fine strings of equal length a so as to form a par-

allelogram. One rod is supported at its centre by a fixed axis

about which it can turn freely, this axis being perpendicular to

the plane of motion, which is vertical. Show that the middle

point of the lower rod wall oscillate in the same way as a simple

pendulum of length a, and that the angular motion of the rods

is independent of this oscillation.

106. A loaded cannon is suspended from a fixed horizontal

axis, and rests with its axis horizontal and perpendicular to the

fixed axis, the supporting ropes being equally inclined to the

vertical. If v be the initial velocity of the ball w^hose mass is —
;/

of the weight of the cannon, and h the distance between the

axis of the cannon and the fixed axis of support, show that

when the cannon is fired off the tension of each rope is imme-

diately changed in the ratio v^ -f n^gh : ;/(;/ + i)gh-

107. Two equal triangles ABC, A'B'C, right-angled at C

and C, rotate about their equal sides CA and A'C as fixed

axes in the same horizontal straight line. The distance CC
is less than the sum of the sides CA, A'C. The triangles,

being at first placed horizontally, impinge on one another when

vertical. Determine the initial subsequent motion and discuss

the case in which AA' is less than one-fifth CC

.

108. Find the envelope of all the axes of suspension that lie

in a principal plane through the centre of inertia of a rigid

body, and such that the length of the simple pendulum may be

always twice the radius of gyration of the body about one of

the axes lying in the plane.

109. A flat board bounded by two equal parabolas with their

axis and foci coincident, and their concavities turned towards
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each other, is capable of movin<; about the tangent at one of

the vertices. Find the centre of percussion.

1 10. A uniform beam capable of motion about its middle

point is in equilibrium in a horizontal position ; a perfectly

elastic ball, whose mass is one-fourth that of the beam, is

dropped upon one extremity and is afterwards struck by the

other extremity of the beam. Prove that the height from which

the ball was dropped was ||(2 « + i)7r x length of beam.

111. Two equal circular discs are attached, each by a point

in its circumference, to a horizontal axis, one of them in the

plane of the axis and the other perpendicular to it, and each is

struck by a horizontal blow which, without creating any shock

on the axis, makes the disc revolve through 90°. Show that

the two blows are as V6 : \^.

112. A rigid body capable of rotation about a fixed axis '\z

struck by a blow so that the axis sustains no impulse. Prove

that the axis must be a principal axis of the body at the point

where it is met by the perpendicular let fall on it from the

point of application of the blow.

113. A uniform rod AB of mass ^f is freely movable about

its extremity A, which is fixed; at C, a point such that AC is

horizontal and equal to AB, a smooth peg is fixed over which

passes an inelastic string fastened to the rod at B, and to a

body also of mass A/ which is supported in a position also

below C. If the rod be allowed to fall from coincidence with

AC, and the string be of such a length as not to become tight

until the rod is vertical, the angular velocity of the rod will be

suddenly diminished by three-fifths.

114. A piece of wire is bent into the form of an isosceles

triangle and revolves about an axis through its vertex perpen-

dicular to its plane. Find the centre of oscillation and show

that it will lie in the base when the triangle is equilateral.
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115. A circular lamina performs small oscillations

(i) about a tangent line at a given point of its circumference,

(2) about a line through the same point perpendicular to its

plane.

Compare the times of oscillation.

116. A uniform beam is drawn over the edge of a rough hori-

zontal table so that only one-third of its length is in contact with

the table ; and it is then abandoned to the action of gravity. Show

that it will begin to slide over the edge of the table when it has

turned through an angle equal to tan~^ -, /x being the coefficient

of friction between the beam and the table.

117. A uniform beam AB, capable of motion about A, is in

equilibrium. Find the point at which a blow must be applied

in order that the impulse at A may be one-eighth of the blow.

118. A rectangle is struck by an impulse perpendicular to its

plane. Determine the axis about which it will begin to revolve,

and the position of this axis with reference to an ellipse inscribed

in the rectangle.

119. A rectangle rotates about one side as a fixed axis. Find

the pressure on the axis (i) when horizontal, (2) when inclined

to the horizontal.

120. About what fixed axis will a given ellipsoid oscillate in

the shortest possible time .?

121. A uniform semicircular lamina rotates about a fixed hori-

zontal axis through its centre in its plane. Determine the

stresses on this axis.

122. If T^ and T^ are the times of a small oscillation of a

rigid body, acted on only by gravity, about parallel axes which

are distant a-^ and a^^ respectively from the centre of inertia, and

7" be the time of a small oscillation for a simple pendulum of

length a^ + c?.,, then will {a^ — iU^iT"- = c7^ T^ — a^^ T^.

123. A uniform beam of mass ;;/, capable of motion about its

middle point, has attached to its extremities by strings, each of
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Icn^^th /, two particles, each of mass/, which hang freely. When
the beam is in equilibrium, inclined at an angle « to the vertical,

one of the strings is cut
;
prove that the initial tension of the

other strinfr is
"''

. ., , and that the radius of curvature of
^ m + 3/>sm^«

, . -

Q/^sm^rt
the initial path of the particle is

^^^ ^pg ^^
•

124. A uniform inelastic beam capable of revolving about its

centre of inertia, in a vertical plane, is inclined at an angle « to

the horizontal, and a heavy particle is let fall upon it from a

point in the horizontal plane through the upper extremity of the

beam. Find the position of this point in order that the angular

velocity generated may be a maximum.

125. A uniform elliptic board swings about a horizontal axis

at right angles to the plane of the board and passing through

one focus. Prove that if the e.xcentricity of the ellipse be V|,

the centre of oscillation will be the other focus.

1 26. A circular ring hangs in a vertical plane on two pegs.

If one peg be removed, prove that, P^, P., being the instanta-

neous pressures on the other peg calculated on the supposition

that the ring is (i) smooth, (2) rough, P^ : P^ : : \ : \ -f ^tan^rt,

where « is the angle which the line drawn from the centre of

the ring to the centre of the peg makes with the vertical.

127. A uniform beam can rotate about a horizontal axis

so placed that a ball of weight equal to that of the beam,

resting on one end of the beam, keeps it horizontal. A blow,

perpendicular to the length of the beam, is struck at the other

end. Investigate the action between the ball and the beam,

and the stress on the axis.

128. There are two equal rods connected by a smooth joint;

the other extremity of one of the rods can move about a fixed

point, and that of the second along a smooth horizontal axis

passing through the fixed point, and about which the system is
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revolving under the action of gravity. Find a differential equa-

tion to determine the inclination of the rods to the axis at any-

time.

129. An elliptic lamina whose excentricity is -5-VT0 is sup-

ported with its plane vertical and transverse axis horizontal by

two smooth, weightless pins passing through its foci. If one of

the pins be suddenly released, show that the pressure on the

other pin will be initially unaltered.

130. A plane lamina in the form of a circular sector whose

angle is 2 «, is suspended from a horizontal axis through its

centre, perpendicular to its plane. Find the time of a small

oscillation, and show that if 3 « =4 sin a the time of oscillation

will be the same about a horizontal axis through the extremity

of the radius passing through the centre of inertia of the lamina.

131. A hollow cylinder open at both ends, of which the height

is to the radius as 3 to V2, has a diameter of one of its ends

fixed. Show that the centres of percussion lie on a straight

line the distance of which from the fixed axis is eight-ninths of

the height of the cylinder.

132. A lamina ABCD is movable aoout AB as a fixed axis.

Show that if CD be parallel to AB and AB'^=s CD"-, the centre

of percussion will be at the intersection oi AC and BD.

133. In the case of a rigid body freely rotating about a fixed

axis, show that in order that a centre of percussion may exist

the axis must be a principal axis with respect to some point in

its length.

134. A uniform rod movable about one end, moves in such

a manner as to make always nearly the same angle « with

the vertical. Show that the time of its small oscillations is

W[
2 a cos a

3^i-f3co.s2a).

a being the length of the rod.
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135. One end of a heavy uniform rod slides freely on a fine

smooth wire in the form of an ellipse of excentricity _!, and
2

axis minor equal to the length of the rod ; the other end of the

rod slides on a smooth wire coinciding with the axis minor of

the ellipse. The system is set rotating about the latter wire,

which is fixed in a vertical position. Prove that if be the

inclination of the rod to the vertical at the time /, « the initial

value of 6, and co the initial angular velocity of the system about

the vertical axis, cos ^= cosrtCos((y/ sin«).

136. A lamina in the form of an equilateral triangle rests

with its base on a horizontal plane, and is capable of moving in

a vertical plane about a hinge at one extremity of its base.

Prove that it will turn completely over if it be struck at its

vertex a blow greater than 2 ;;//{• -y/f

—

-pj in a direction perpen-

dicular to that side which does not pass through the hinge, ;;/

being the mass, a the length of a side of the lamina, /• its radius

of gyration about an axis through one of its angular points per-

pendicular to its plane.

137. In the case of the motion of a rigid body about a hori-

zontal axis under the action of gravity, show that the forces are

reducible to a single force if the axis be a principal axis at the

point where the perpendicular on it from the centre of gravity

meets it and not otherwise. If the horizontal fi.xed axis be a

principal axis at a point other than that at which the perpendic-

ular on it from the centre of gravity meets it, and if the centre

of gravity start from the horizontal plane passing through the

fi.xed axis, determine the pressures.

138. An elliptic paraboloid, cut off by a plane parallel to the

tangent plane at the vertex, is capable of freely rotating about a

diameter of the base as a fixed axis. Find the line of action of

an impulse which, acting on the paraboloid, produces no impulse

on the fixed diameter.
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139. If a rigid body have a centre of percussion with respect

to a given axis, show that there is one with respect to any

parallel axis, in a plane containing the given axis and the

centre of inertia.

140. Investigate the angular velocity of the top (Fig. 51,

page 117) while the string is still unwinding, assuming (i) the

tension of the string to be constant and the axis to be cylindri-

cal, (2) the increase of the tension of the string over the initial

tension to vary as the length of string drawn off and the axis to

be conical.

141. The part of a paraboloid of revolution cut off by a plane

through the focus is fixed at a point in the circumference of its

circular base. If it be struck by a blow at any point, in a direc-

tion parallel to its axis, find the initial instantaneous axis.

142. If but one force act on a rigid body, one point of which

is fixed, the body's angular velocity about the instantaneous axis

will be a maximum or a minimum when the instantaneous axis

is perpendicular to the direction of the force.

143. A uniform rod can turn freely about one end w^hich is

fixed, the other end resting on a smooth inchned plane. If it

be just disturbed from its position of unstable equilibrium, prove

that it will never leave the plane unless its inclination to the

horizon be > tan"^ (4 tan B), where B is the semi-vertical angle

of the cone described by the rod.

144. A rigid body, fixed at one point only, is in motion under

the action of finite forces. If, throughout the motion, the

angular acceleration of the body about the instantaneous axis

bear to the moment of inertia about this axis and to the forces

acting on the body the same relation as if the axes were fixed,

prove that if the three principal moments of inertia at the fi.xed

point be not all equal the locus of the axis relatively to the

body is a cone of the second order.

145. A triangular lamina ABC has the angular point C fixed,

and is capable of free motion about it. A blow is struck at B,
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perpendicular to the plane of the lamina. Show that the instan-

taneous axis passes through one of the points of trisection of the

side AB.

146. Two equal uniform rods arc capable of motion about a

common extremity which is fixed, their upper ends being joined

by an elastic string. They arc set in vibration about a vertical

axis bisecting the angle between them. If in the position of

steady motion the natural length (2/) of the string be doubled,

the modulus of elasticity being equal to the weight of either

rod, then the angular velocity about the vertical will be

where /i is the height of the string above the fixed extremity.

147. A rigid body, of which two of the principal moments at

the centre of inertia are equal, rotates about a third principal

axis, but this axis is constrained to describe uniformly a fixed

right circular cone of which the centre of inertia is the vertex.

Prove that the resultant angular velocity of the body is con-

stant, that the requisite constraining couple is of constant mag-

nitude, and that the plane of the couple turns uniformly in the

body about the axis of unequal moment.

148. An ellipsoid is rotating with its centre fixed about one

of its principal axes (that of x) and receives a normal blow at a

point (//, k, I). If the initial axis of rotation after the blow lie

in tiie princijial plane of r", its equation is

149. A sphere whose centre is fixed has an elastic string

attached to one point, the other end of the string being fastened

to a fixed point. To the sphere is given an angular velocity

about an axis. Give the equations for determining its motion,

the string being supposed stretched and no part of it in contact

with the surface of the sphere. If the natural length of the
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string be equal to a, the radius of the sphere, and it be fixed at

a point O at a. distance = «(V2 — i) from its centre, and if the

sphere be turned so that the point on it to which the string is

fastened may be at the opposite extremity of the diameter

through O, prove that the time of a complete revolution

2V2^

-VfeX7r +
5«^/V 3

, _ modulus of elasticity _ lfaM\f 2V2
'

weight of sphere \ V5 yLt /V 3

where /x = modulus of elasticity.

1 50. If the angular velocities of a rigid body, at any time /,

about the axes x, y, z, are proportional respectively to

cot {in — 11) t, cot (;/ — /) /, cot (/ — w) t,

determine the locus of the instantaneous axis.

151. A uniform rod of length 2 a can tui.i freely about one

extremity. In its initial position it makes an angle of 90° with

the vertical and is projected horizontally with an angular ve-

locity CO. Show that the least angle it makes with the vertical

is given by the equation 4 aar- cos 6 = T^g sin- 6.

152. A rigid body rotates about a fixed point under the

action of no forces. Investigate the following equations, the

invariable line being taken as the axis of z :

dd

dt
G sin 6 sin cos (/)f— — —

j,

d^ _ ^/^cos^cf) . sin^Y
dt~ \ A '^'nrp

# +cos^^ = -^^^^^-
dt ' dt C '

G denoting the angular momentum of the body, and the other

symbols having their usual meaning.
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153. One point of a ri<;i(l body is fixed and the body is set in

motion in any manner and left to itself under the action of no

force. Prove that if A, B, C be its principal moments of inertia

at the fixed point, G its angular momentum, \ its component

angular velocity about the invariable line, tu its whole angular

velocity, the component angular velocity of the instantaneous

axis about the invariable line will be

(g - A\){G - B\){G - CX)

ABC{co^ - X2)

154. A rod is fixed at one end to a point in a horizontal

plane about which it can move easily in any direction. When
it is inclined to the horizon at a given angle, a given horizontal

velocity is communicated to its other end. What will be the

velocity and direction of the motion of the free end at the

moment when the rod falls on the horizontal plane .-'

155. AD, BC are two equal rigid rods movable about a pin

at Z, such that AL = DL = BC = CL, and their ends are con-

nected by four elastic strings of equal lengths. If the beams

are made to revolve in opposite directions about L through a

given angle, and then the system be left to itself, determine its

subsequent motion.

156. AB, BC, CD are three equal beams connected by pins

at B and C and lying in the same right line. If a given im-

pulse be communicated to BC at its centre in a direction per-

pendicular to its length, determine the impulse on the pins.

157. A uniform rod is free to rotate about its extremity in a

vertical plane, while that plane is constrained to revolve uni-

formly about a vertical axis through the extremity of the rod.

Show that if the rod be let fall from an inclination of 30"^

above the horizon, it will just descend to the vertical position

if rtcD^ = 3^^, where a> is the angular velocity of the plane and 2 a

is the length of the rod. Also explain the nature of the motion

according as rtw* is less than 3^ or greater than 3^.
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158. A rigid rod of given mass can revolve about its middle

point in a plane inclined at a given angle to the horizon. A
given angular velocity is communicated to both rod and plane

about a vertical axis through the middle point of the rod, the

system being then left to itself. Show that the rod will oscil-

late about its horizontal position.

1 59. One of the principal axes of a body revolves uniformly

in a fixed plane, while the body rotates uniformly about it.

Determine the constraining couple and show that if the mo-

ments of inertia about the other two principal axes are equal,

the couple has a constant moment.

160. A body, two of whose principal moments are equal, is free

to rotate about its centre of gravity, which is fixed relatively to

the earth's surface. Prove that if the body be made to rotate

very rapidly about its principal axis of unequal moment, that axis

will move both in altitude and azimuth, and that if the motion

in altitude be prevented and the axis be originally placed hori-

zontally in the meridian, it will be in a position of equilibrium,

stable or unstable, according as the rotation is from west to east,

or from east to west. If the axis be originally directed in any

other azimuth, it will oscillate about its position of stable equi-

librium nearly in the same way as the simple circular pendulum

whose length = BgJ{A.£i(x) cosX), where A and B are the princi-

pal moments, O the angular velocity of the earth about its axis,

« that of the disc, and \ the latitude of the place of experiment.

161. A body turning about a fixed point of it is acted on by

forces which always tend to produce rotation about an axis at

right angles to the instantaneous axis. Show that the angular

velocity cannot be uniform unless

C-B
,
B-A^A-C ^

A, B, C being the principal moments of inertia with respect to

the fixed point.
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162. If forces act on a homogeneous spheroid tending

always to produce rotation about an axis «, in the plane of the

equator, the instantaneous axis will describe a circular cone in

the body about its polar axis ; but the angular velocity about

the instantaneous axis will not be uniform unless the axis « be

always at right angles to the instantaneous axis.

163. A sphere movable about a point in its surface, which

is fixed relatively to the earth, is in equilibrium under the action

of gravity. Suppose the earth to suddenly cease rotating about

its axis, find the instantaneous axis of rotation of the sphere

and show that the angular velocity about it would be

a)C0S^^[i+(^^^^^Jtan2^|.

Q) being the angular velocity of the earth, /i the ratio between

its radius and that of the sphere, and B the latitude of the place.

164. A rigid body under the action of given forces is in

motion about a fixed point. Defining the momental plane at

any instant as that which would be the invariable plane if the

forces affecting the body were at that instant to cease acting,

show that if the body be constantly acted upon by a couple

whose plane passes through the instantaneous axis and is

normal to the momental plane, the distance of the momental

plane from a fixed point will remain unchanged. If the body

be acted upon at any instant by an impulsive couple in the

plane referred to, show that the tangent of the angle through

which the momental plane is suddenly turned varies as the

moment of the couple.

165. A body is moving about a fixed point at a distance P
from the invariable plane. Assuming that the central ellipsoid

rolls upon the invariable plane, show that the equation to the

surface generated by the instantaneous axis in the body is

the equation to the central ellipsoid being Ax^+ B\^-^Cc^= i.
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166. If the motion of a rigid body about a fixed point in it

be represented by three coexistent angular velocities co^, Wy, w^,

about three axes mutually at right angles, show that all the

particles in a cylindrical surface whose axis is —=^=—
^ will

Wj. Wy co^

have linear velocities of equal magnitude. (See Prob. 2. p. 11 1.)

167. An equilateral triangular lamina is revolving in its own

plane about its centre of inertia. If one of the angular points

becomes suddenly fixed, show that the lamina will rotate about

it with one-fifth of the original angular velocity.

168. A rigid body is free to move about a fixed point, and in

the notation of Art. 62,

(jo^ =asmd sivKf), (0.^= a s'm cos cf), co^= a cos 0,

find the position of the body at any given time.

169. Show from Euler's Equations of Motion (Art. 60), that

when no impressed forces act, no axis other than a principal

axis can be a permanent axis.

170. When a body is acted on by no forces and moves about

a fixed point, show that the locus of the instantaneous axis is a

conical surface.

171. A prolate spheroid of revolution is fixed at its focus; a

blow is given it at the extremity of the axis minor in a line tan-

gent to the direction perpendicular to the axis major. Find the

axis about which the body begins to rotate.

172. A rigid body fixed at a given point is free to rotate in

any way about that point. Given the angular velocities about

three axes mutually at right angles and fixed in space, find the

velocity of any point in the body and the vis viva of the whole

system.

173. In the case of a rigid body moving about a fixed point

and subject to the action of no forces if the moment ^ be a bar-
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monic mean between the moments A and />, and the instan-

taneous axes describe the separating polhode, then will b>

constant, yjr will increase uniformly, and tan 6 = c" tan fi^, wher^

174. Integrate Euler's equations determining the motion of a

rigid body about a fixed point for the case in which no forces

act and two of the principal moments are equal.

175. If a body be in motion about a fixed point under th>

action of no external forces, show that the angular velocit\

about the radius vector of the momental ellipsoid, about which

the body is turning, varies as that radius vector, and that the

perpendicular on the tangent plane at the extremity of the

radius vector is constant.

176. A plane lamina of uniform density and thickness,

bounded by a curve represented by the equation r=a + ^s\n^2 0,

moves about its pole as a fi.xed point. Show that if the lamina

be under the action of no forces, its angular velocity will be

constant, and its axis will describe a right cone in space.

177 A lamina in the form of a quadrant of a circle is fixed

at one extremity of its arc and is struck a blow perpendicular to

its plane at the other extremity. Find the velocities generated

and the pressures on the fi.xed point. If be the inclination of

the instantaneous axis to the radius vector through the fixed

pomt, show that

tan^ = l°-3^ .

I57r — 10

1 78. The point O of a rigid body is fixed in space, but tli'

body is capable of free motion about the point. OA, OB, 0(

are the principal axes and J', B', C are the principal moments

of inertia of the body at O. Show that the couple necessary U'

keep the body moving so that OC shall describe a cone with
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semi-vertical angle « uniformly about the fixed line OZ and COA
shall maintain a constant inclination to ZOC, must be in the

plane x{C — B') cos yS cos a + j<C — A') sin /3 cos a + ^(^' — ^')

sin/3sin« = o, referred to OA, OB, OC a.s axes.

179. If the component angular velocities of a rigid body about

a system of axes fixed in space be (o^, cOy, co^, and those about a

system fixed in the body be coj, co^, w^, and if these coincide

respectively with the former at the time /, prove that

d^Q)^ d'^a>. dw,
,

d(ji„

di^ de- ^ dt ' dt

Examine this and get the equation for —^ in terms of w^, Wy, co^.

180. A body acted on by no forces, and having one point

fixed, is such that if A, B, C are the principal moments of

inertia at the fixed point, C is a harmonic mean between A and

B. Show that if 6 be the angle which the axis of C makes with

the invariable line, and ^ the angle which the plane of CA
makes with the plane through the invariable line and the axis

of C, then will sin^ 9 cos 2 </> be constant.

181. A rigid lamina, not acted on by any forces, has one point

in it which is fixed, but about which it can turn freely. If the

lamina be set in motion about a line in its own plane, the

moment of inertia about which is Q, show that the ratio of its

greatest to its least angular velocity is A + Q : B -{- O, where

A and B are the principal moments of inertia about axes in the

plane of the lamina. If the lamina in the previous problem be

bounded by an equiangular spiral and the intercept of the

radius vector to the extremity of the curve, and if the fixed

point be the pole,

A + Q : B -{- Q : : I + cos 2-/ sin2(Y — /3) : i — cos 2 7 cos2(7 — yS),

where the extreme radius vector is inclined to one principal

axis at an angle 7 and to the initial position of the instantaneous

axis at an angle /3.

p
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182. A smooth ball of radius n moves around the circum-

ference of a disc of radius r-^-a and of four times the mass of

the ball ; the disc is supported at its centre and provided with a

rim (whose weight may be neglected) suflficient to keep the ball

from falling off. Show that the velocity of the ball, in order

that the disc may maintain a constant inclination of 45'' to the

horizontal, is

\ \2V2a{r-\-a)^'

183. A rigid lamina in the form of a loop of a lemniscatc

}^= a^cos2d, not acted on by any force, is started with a given

angular velocity about one of the tangent lines through its nodal

point, the nodal point being fi.xed. Prove that its greatest

angular velocity has to its least angular velocity the ratio

V(3'n--f4): v(3 7r)-

184. A rigid body, movable about a fi.xed point, is struck a

blow of given magnitude at a given point. If the angular

velocity thus impressed upon the body be the greatest possible,

prove that

where A, B, C are the moments of inertia of the body about the

principal axes at the fixed point, a, b, c are the coordinates of

the point struck in relation to the principal axes at the fi.xed

point, and /. ;;/, ;/ are the direction-cosines of the line of action

of the blow.

185. A square lamina with one angle attached to a fixed point

rotates about a side. What must be the angular velocity of the

lamina in order that the side about which it rotates may remain

vertical 1

186. A rigid body is rotating about an axis through its centre

of inertia, when a certain point of the body becomes suddenly

fixed, the axis being simultaneously set free. Prove that if the
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new instantaneous axis be parallel to the original fixed axis, the

point must lie in the line represented by the equations

aVx+ bhny + chuz= o, {IT-- c^) - + ic^ -d^)L^{d^-b'^)^= o,
/ ;;/ n

the principal axes through the centre of inertia being taken as

axes of coordinates, a, b, c the radii of gyration about these lines,

and /, ;;/, n the direction-cosines of the originally fixed axis

referred to them.

187. An elliptic lamina, fixed at the focus, is struck in a direc-

tion perpendicular to its plane. Find the instantaneous axis

and show that if the blow be applied at any point of the ellipse

/
I

-^ -A

the angular velocity will be the same, the focus being origin,

and the axis major and latus rectum the axes of x and j respec-

tively, and e being the excentricity.

188. A uniform rod of length a, freely movable about one end,

is initially projected in a horizontal plane with angular velocity

ft) about the fixed point. If B be the angle which the rod makes

with the vertical and ^ be the angle which the projection of the

rod on the horizontal plane makes with the initial position, show

that the equations of motion are

sin^fl# = «, ffY= 3-^'co,s(»-,„=cotM.
dt \dt I a

Find the lowest position of the rod and if this be when 6= —i

show that the resolved vertical pressure on the fixed point is

then equal to -|^ of the weight of the rod.

189. A lamina having one point fixed is at rest and is struck

a blow perpendicular to its plane at a point whose coordinates,

referred to the principal axes at the fixed point, are a, b. Show
that the equation to the instantaneous axis is alrx^rbt<P-y= 0,

h, k being the radii of gyration about the principal axes. Show
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that if ab lie on a certain straight line, there will be no impulse

on the fixed point.

190. A uniform rod of length 2 a and mass ;//, capable of free

rotation about one end, is held in a horizontal position, and on

it is placed a smooth particle of mass /» at a distance c from the

point, c being < '^
-; the rod is then let go. Find the initial pres-

sure of the particle on the rod, and show that the radius of

curvature of the particle's path is

4rt — 3rv avtj

191. A lamina in the form of a symmetrical portion of the

curve r=ii{mr'— ff^) is placed on a smooth plane with its axis

vertical, then infinitesimally displaced and allowed to fall in its

own plane. If the lamina be loaded so that its centre of inertia is

at the pole and its radius of gyration = 2 r?, find the time in which

its axis will fall from one given angular position to another.

192. An elliptical lamina stands on a perfectly rough inclined

plane. Find the condition that its equilibrium may be stable,

and determine the time of a small oscillation.

193. A perfectly rough plane, inclined at a fixed angle to the

vertical, rotates about the vertical with uniform angular velocity.

Show that the path of a sj^here jihiced \\\)ox\ the plane is given

by two linear differential equations of the form,

///-* (// - lit^ dt

the origin being the point where the vertical line, about which

the plane revolves, meets the plane ; the axis of y being the

straight line in the plane which is always horizontal.

194. The equal uniform beams AB, BC, CD, DE, are con-

nected by smooth hinges and placed at rest on a smooth hori-

zontal plane, each beam at right angles to the two adjacent,

so as to form a figure resembling a set of steps. An impulse
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3

is given at the end A, along AB ; determine the impulsive action

on any hinge.

195. A rectangle is formed of four uniform rods of lengths

2 a and 2 d respectively, which are connected by smooth hinges

at their ends. The rectangle is revolving about its centre on a

smooth horizontal plane with an angular velocity co, when a

point, in one of the sides of length 2 a, suddenly becomes fixed.

Show that the angular velocity of the sides of length 2 d immedi-

ately becomes -r rw. Find, also, the change in the ans:ular

velocity of the other sides and the impulse at the point which

becomes fixed.

196. A uniform revolving rod, the centre of inertia of which

is initially at rest, moves in a plane under the action of. a con-

stant force in the direction of its length. Prove that the square

of the radius of curvature of the path of the rod's centre of

inertia varies as the versed sine of the angle through which the

rod has revolved at the end of any time from the beginning of

the motion.

197. Six equal uniform rods are freely joined together and

are at rest in the form of a regular hexagon on a smooth hori-

zontal plane. One of the rods receives an impulse at its mid-

point, perpendicularly to its length, and in the plane of the

hexagon. Prove that the initial velocity of the rod struck is

ten times that of the rod opposite to it.

198. A uniform rod of length 2 a lies on a rough horizontal

plane, and a force is applied to it in that plane and perpendicu-

larly to its length at a distance P from its midpoint, the force

being the smallest that will move the rod. Show that the rod

begins to turn about a point distant V(^'"+/~)—/ ^^om the

midpoint.

199. AB is a rod whose end A is fixed and which has an

equal rod i^C attached at B. Initially the rods AB, BC are in

the same straight line, AB being at rest and BC on a smooth
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horizontal j)lanc having; an angular velocity tu. Show that the

greatest angle between the rods at any subsequent time is

cos"^ A ^^^ that when they arc again in a straight line, then-

angular velocities are :^ and —~ respectively,
o o

200. A rectangular board moving uniformly without rotation

in a direction parallel to one side, on a smooth horizontal plane,

comes in contact with a smooth fixed obstacle. Determine ai

what point the impact should take place in order that the

angular velocity generated may be a minimum.

201. Four equal uniform rods, freely jointed at their extremi-

ties, are lying in the form of a square on a smooth horizontal

table, when a blow is applied at one of the angles in a direction

bisecting the angle. Find the initial state of motion of each rod.

and prove that during the subsequent motion the angular veloc-

ity will be uniform.

202. A sphere is moving at a given moment on an imperfectly

rough horizontal table with a velocity v, and at the same time

has an angular velocity co round a horizontal diameter, the angle

between the direction of i> and the axis of o) being «. Prov

that the centre of the sphere will describe a parabola if

a^^ccr + (a^ — l'^)va) sin « — ai^.

203. Two rods, OA and OB, are fixed in the same vertic*

plane, with the point O upwards, the rods being at the sam<

angle « to the vertical. The ends of a rod AB of length

slide on them. Show that if the centre of inertia of AB be it

middle point, and the radius of gyration about it be k, the tim<

of a complete small o.scillation is

\ ( agcotn )

204. One end of a heavy rod rests on a horizontal plane an<

against the foot of a vertical wall ; the other end rests against

parallel vertical wall, all the surfaces being smooth. Show that

if the rod slip down, the angle ^, through which it will turt
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round the common normal to the vertical walls, will be given by

the equation -jj{ ^ + 3 cos- ^) + -^y-^-^x sin (j) = C, where 2 a

is thj length of the rod and 2 d the distance between the walls.

205. Two equal uniform rods, loosely jointed together, are at

rest in one line on a smooth horizontal table, when one of them

receives a horizontal blow at a given point. Determine the ini-

tial circumstance of the motion, and prove that, when next the

rods are in a straight line, they wall have interchanged angular

velocities.

206. One end of a uniform rod of weight w can slide by a

smooth ring on a vertical rod, the other end sliding on a smooth

horizontal plane. The rod descends from a position inclined at

an angle /8 to the horizon. Show that the rod will not leave

the horizontal plane during the descent, but that its maximum
pressure against it is ^zacos^^ and that its ultimate pressure

207. A lamina capable of free rotation about a given point in

its own plane, which point is fixed in space, moves under the

action of given forces. If the initial axis of rotation of the

lamina coincide very nearly with the axis of greatest moment
of inertia in the plane of the lamina, the angular velocities about

the other principal axes will be in a constant ratio during the

motion.

208. A sphere of radius a is partly rolling and partly sliding

on a rough horizontal plane. Show that the angle the direction

of friction makes with the axis of x is tan-i -, u and v

being the initial velocities, &)^, o)., the initial angular velocities.

209. A perfectly rough circular cylinder is fixed with its axis

horizontal. A sphere is placed on it in a position of unstable

equilibrium, and projected with a given velocity parallel to the

axis of the cylinder. If the sphere be slightly disturbed in a
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horizontal direction perpendicular to the direction of the axis of

the cylinder, determine at what point it will leave the cylinder.

210. A parabolic lamina, cut off by a chord perpendicular to

its axis, is kept at rest in a horizontal position by three vertical

strings fastened to the vertex and two extremities of the chord

;

if the string which is fastened to the vertex be cut, the tension

of the others is suddenly decreased one-half.

211. Three equal, perfectly rough, inelastic spheres are in

contact on a horizontal plane; a fourth equal sphere, which is

rotating about its vertical diameter, drops from a given height

and impinges on them simultaneously. Investigate the subse-

quent motion.

212. A rod of length a, moving with a velocity v perpendicu-

lar to its length on a smooth horizontal plane, impinges on an

inelastic obstacle at a distance c from its centre. Show that its

angular velocity when the end cjuits the obstacle is ^^-.

213. A solid regular tetrahedron is placed with one edge on

a smooth horizontal table and is allowed to fall from its position

of unstable equilibrium. Find the angular velocity of the tetra-

hedron just before a face of it reaches the table, and the magni-

tude of the resultant impulsive blow.

214. A uniform s])here of radius ^7, when placed upon two

parallel, imperfectly rough, horizontal bars, has its centre at a

height b above the horizontal plane which contains the bars. It

is started with a velocity v parallel to the bars, and an angular

velocity w about a horizontal axis perpendicular to the bars in

such a direction as to be diminished by friction. In the case in

which 2aH\ > 5/;!', the sphere will begin to roll after a time

2(ib{v->tbil)

ygX2d'~TW)

where y. is the coefficient of friction. What will at that instant

be the velocity and position of the sphere .''
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215. A heavy uniform rod sli{)s clown with its extremities in

contact with a smooth horizontal floor and a smooth vertical

walJ, not being initially in a plane perpendicular to both wall

and floor. Prove that if 6 be the inclination to the horizon and

9 the angle which the projection of the rod on the floor makes

with the normal to the wall,

/70 , 9x • , .^^(cos ^ cos(i) ,0 , d^cos 6 s'm <h)
(I- + a-)sm(}>-^ — ^'= /L'2cos</)-^

—

— ^,

and

,0 . ^c/^(cos ^ sin (6) a • J

2 a being the length of the rod and k its radius of gyration

about an axis perpendicular to it through the centre of inertia.

216. A body possesses given motions of translation and rota-

tion referred to a given point of it. Find under what condition

the motion may be exhibited by rotation about a single axis, and

the equations to this axis when the condition is satisfied.

217. A heavy straight rod slides freely over a smooth peg.

Show that the equations to its motion are

dr- \dt) ""

and --
( r^ + k-)- [ = ^^rcos 6,

dt\ dt \

where ;• and Q are coordinates of the centre of inertia reckoned

from the peg and a horizontal line.

218. A smooth wire of given mass is bent into the form of an

ellipse and laid upon a smooth horizontal table ; an insect of

given weight is gently laid on the wire and crawls along it.

Find the path described by the centre of the elliptic wire and

trace it on the table.

219. The effect of an earthquake being assumed to be a sud-

den horizontal displacement in a given direction of every body
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fixed to the surface of the earth, explain the nature of the

motion caused by the shock in the half of a uniform cylindrical

stone column which is cut off by a plane bisecting the cylinder

diagonally, and which rests with its base upon a fixed horizontal

plane, friction being supposed the same at every point.

220. If a rigid body initially at rest be acted on by given im-

pulses, whose resultant is a single impulse, show that the axis of

instantaneous rotation will be perjiendicular to the direction of

that resultant.

221. A circular disc rolls down a rough curve in a vertical

plane. If the initial and final positions of the centre of the disc

be given, show that when the time of motion is the least pos-

sible the curve on which the disc rolls is an involute of a

cycloid.

222. A circular ring is free to move on a smooth horizontal

plane on which it lies, and an uniform rod has its extremities

connected with and movable on the smooth arc of the ring.

The system being set in motion on the plane, show that the

angular velocity of the rod is constant, and describe the paths

of the centres of the rod and ring.

223. A wheel whose centre of gravity does not coincide with

the centre of the figure is allowed to roll down an inclined

plane which is so rough as to prevent sliding. If « be the incli-

nation of the plane, a the radius of the wheel, // the distance of

its centre of inertia from the centre of the figure, and /• the

radius of gyration of the wheel about an axis through its centre

of inertia perpendicular to its plane, show that when the wheel

has rolled from rest through an angle 7, the resistance exerted

by the plane either equals zero or is normal to the plane, 7

being given by the cc|uation,

[tan«tan.]7l(</ + /i)2-}-F-„2;+rt2p
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224. A sphere on a smooth horizontal plane is placed in con-

tact with a rough vertical plane which is made to revolve with a

uniform angular velocity w about a vertical axis in itself. If a

be the initial distance of the point of contact from the axis,

r the distance after a time /, and c the radius of the sphere,

prove that 2r^{a-\-cVl)e"'"^" + {a — cVl)e~''''^'^. Also show that

as / increases indefinitely, the ratio of the friction to the

pressure approximates to i : V35.

225. A free plane lamina receives a single blow perpendicular

to its plane. Show that (i) if the locus of points where the blow

may have been applied be a straight line, the spontaneous axis

will pass through a determinate point, (ii) if the locus be a

circle (centre C), the spontaneous axis will be a tangent to an

ellipse whose axes are in the direction of the principal axes at

C in the plane of the lamina.

226. A sphere, in contact with two fixed rough planes, rolls

down under the action of gravity. If 2 a be the angle between

the planes which are equally inclined to the horizon, and with

which their line of intersection makes an angle /9, show that the

acceleration of the centre of the spheres is uniform and equal to

5 sin^ « sin B
2 + 5 sin «

"^

227. Three equal smooth spheres are placed in contact, each

with the other two, on a smooth horizontal plane, and connected

at the points of contact. A fourth equal sphere is then placed

so as to be supported by the other three. Supposing the con-

nections between the three spheres suddenly destroyed, show

that the pressure between the fourth sphere and each of the

other three is suddenly diminished by one-seventh. Also deter-

mine the subsequent motion.

228. A sphere is placed upon two smooth equal spheres held

in contact, and these rest on a smooth horizontal plane in the

position of equilibrium. Show if the spheres be left to them-
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selves, the pressure on the upper sphere is instantaneously

diminished to six-sevenths of its former amount.

229. A plane lamina lies on a smooth horizontal table. If one
point of it be constrained to move uniformly along a straight

line on the tabic, show that the lamina will revolve about the

point with uniform anj:jular velocity, and determine the magni-
tude and direction of the force of constraint at any time.

230. A sphere has an angular velocity about a horizontal

diameter and falls upon a rough, inelastic board which is moving
uniformly in a horizontal plane in the direction of this diameter.

Find the initial direction of the motion and its path afterwards.

231. If the velocities of two given points of a rigid body be

given in magnitude and direction, determine the velocity of any
other point in the body.

232. Prove that any motion of a rigid rod may be represented

by a single rotation about any one of an infinite number of a.xes,

and find the locus of these a.xes.

233. A free ellipsoid is struck a blow normal to its surface.

Show that, in general, there is no axis of spontaneous rotation.

234. A free rigid body is at a certain moment in a state of

rotation about an axis through its centre of inertia, when another

point in the body suddenly becomes fixed. Prove that there

are three directions of the original instantaneous axis for

which the new instantaneous axis will be parallel to it, and that

these directions are along conjugate diameters of the momental
ellipsoid at the centre of inertia.

235. A little squirrel clings to a thin rough hoop, of which
the plane is vertical and is rolling along a perfectly rough

horizontal plane. The squirrel makes a point of keeping a con-

stant altitude above the horizontal plane and selects his place

on the hoop so as to travel from a position of instantaneous rest,

the greatest possible distance in a given time. Prove that ;;/
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being the weight of the squirrel and ;;/' that of the hoop, the

inclination of the squirrel's distance from the centre of the hoop

to the vertical is equal to cos~^ (
—;— ,

\7n + 2 m ,

236. A rough homogeneous sphere rests on a rough horizon-

tal plane ; a heavy inelastic beam sliding through two smooth

rings in the same vertical line falls upon it from a given height.

Find the position of the sphere relatively to the beam, in order

that the angular velocity communicated to the sphere may be

the greatest possible.

237. Two equal uniform rods, freely jointed together at one

extremity of each, are at rest on a smooth horizontal plane.

Find the point at which either must be struck in order that the

system may begin to move as if it were rigid.

238. A heavy beam is placed with one end on a smooth

inclined plane and is left to the action of gravity. If the verti-

cal plane constraining the beam be perpendicular to the inclined

plane, find the motion of the beam and the pressure on the

plane when a given angle has been turned through.

239. A disc rolls upon a straight line on a horizontal plane,

the disc moving with its flat surface in contact with the plane.

Show that the disc will be brought to rest after a time
64 /i

where v is the initial velocity of the centre, and jjl the coefficient

of friction between the disc and the table.

240. Determine how a free rigid body at rest must be struck

in order that it may rotate about a fixed axis.

241. A uniform bar is constrained to move with its extremities

on two fixed rods at right angles to each other, and is under the

action of an attraction varying as the distance from, and tending

to, the point of intersection of the rods. Determine the time of

a small oscillation when the bar is slightly displaced from the

position of rest.
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242. A heavy cycloid, the radius of whose generating circle

is -, is mounted so as to admit of sliding in a vertical plane
4

with its base always horizontal and so that every point of it

moves in a straight line, inclined at an angle of 45° to the hori-

zontal. A uniform, smooth, heavy chain of length a and mass

equal to that of the cycloid is laid over it so as to be in

equilibrium when the cycloid is supported ; if the support be

suddenly removed, find the tension at any point at the com-

mencement of motion and show that it is a ma.ximum at a

distance from the vertex given by the equation

8 TT ^ =(96 - 7r2)j- - 32 v(^- - s^).

243. A body is turning about an axis through its centre of

inertia ; a point in the body suddenly becomes fixed. If the new

instantaneous axis be a principal axis with respect to the point,

show that the locus of the point is a rectangular hyperbola.

244. A uniform rod of mass ;// and length 2 a has attached

to it a particle of mass/ by a string of length /;. The rod and

string are placed in a straight line on a smooth horizontal plane,

and the particle is projected with velocity v at right angles to

the string. Prove that the greatest angle which the string makes

with the rod is

\2b

and that the angular velocity at the instant is

a-\-h

245. A rough sphere is projected on a rough horizontal plane

and moves under an acceleration tending to a point in the plane

and varying as the distance from that point. Show that the

centre of the sphere will describe an ellipse, and find its com-

ponent angular velocities in terms of the time.

246. Three equal uniform rods, AB, BC, CD, freely jointed

together at B and C, are lying in a straight line on a smooth
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horizontal plane and a given impulse is applied at the midpoint

of BC at right angles to BC. Determine the velocity of BC
when each of the other rods makes an angle Q with it, and

prove that the directions of the stresses at B and C make with

BC angles equal to tan"^(| tan Q).

247. Three equal uniform straight lines, AB, BC, CD, freely

jointed together at B and C, are placed in a straight line on a

smooth horizontal plane and one of the outside rods receives a

given impulse in a direction perpendicular to its length at its

midpoint. Com.pare the subsequent stresses on the hinges

with the impulse given to the rod.

248. A homogeneous right circular cylinder of radius a,

rotating with angular velocity on about its axis, is placed with its

axis horizontal on a rough inclined plane so that its rotation

tends to move it up the plane. If « be the inclination of the

plane to the horizontal and tan « the coefficient of friction, show

that the axis of the cylinder will remain stationary during a

period T— :— and that its angular velocity at any time /
2^sm« "

during this period is equal to w — -.^ sm «

a

249. A hoop is hung upon a horizontal cylinder of given

radius. Determine the time of a small oscillation

I. When the cylinder is rough.

II. When the cylinder is smooth.

250. Prove the following equations for determining the mo-

tion of a rigid body whose principal moments of inertia at the

centre of inertia are equal

:

^ =~ - .93 + u.e„ etc., - = -^ - ..A + »3«„ etc.

;

n, V, w being the velocities of the centre of inertia parallel to

the three axes moving in space, co^ o).,, cwg the angular velocities

about these axes, 0-^, d.j., 6^ the angular velocities of these axes

about fixed axes instantaneously coincident with them, X, K Z
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the resolved forces, L, M, X their moments about the axes,

G the mass of the body, and A its moment of inertia about any

axis through the centre of inertia.

251. A uniform rod of mass ;;/ and length 2a has attached

to it a particle of mass p by means of a string of length /;

the rod and string arc placed in one straight line on a smooth

horizontal plane, and the particle is projected with a velocity

V at right angles to the string. Prove, then, when the rod

and string make angles 6,
(fy

with their initial positions,

|/- + n/> cos((f> - 6)1 '^- + j/;'-^ + ab cos(<f> - 0)\ '^ = 0' + ^)^'.

wh e re P = a- li ^^

It + 3 '«

252. A sphere of radius a is projected on a rough horizontal

plane so as partly to roll and partly to slide. If the initial

velocity of translation be v, the initial rotation o) about a hori-

zontal axis, and the direction of the former make an angle «

with the axis of the latter, show that the angle through which

the direction of motion of the centre has turned, when perfect

rolling begins, is

^ _, 2 IKH cos rt

tan *

2 0(0 sm «

253. If a homogeneous sphere roll on a perfectly rough plane

under the action of any forces whatever, of which the resultant

passes through the centre of the sphere, the motion of the centre

of inertia will be the same as if the plane were smooth and all

the forces were reduced in a certain constant ratio ; and the

plane is the only surface which possesses this property.

254. A smooth ring of mass ;// slides on a uniform rod of

mass M. Determine the velocity of the ring at any point of the

rod which it reaches, no impressed forces being sujiposed to act.
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If when the ring is distant c from the centre of the rod, the

angle at which its path is inclined to the instantaneous position

of the rod be greater than cof-M 2 + ^ ,
—— L show that it^

1 {M-\-m)BS
will never reach the centre of the rod, k'^ being the radius of

gyration of the rod about its centre.

255. A uniform rod of weight W and length 2 a is supported

in a horizontal position by two tine vertical threads, each of

length r, and each is attached at a distance c from the centre

of the rod. The rod is slightly displaced by the action of a

horizontal couple whose moment is b\V, and which does not

move the centre of the rod out of a vertical line. Show that the

time of a small oscillation of the rod will be

256. A circular lamina, rotating about an axis through the

centre perpendicular to its plane, is placed in an inclined posi-

tion on a smooth horizontal plane. Give a general explanation

of the motion deduced from dynamical principles, and show that

under certain circumstances the lamina will never fall to the

ground, but that its centre will perform vertical oscillations, the

time of an oscillation being

/ 1 + 4 cos^ a\ \
IT

2\G)2_'lsn
V a

a being the inclination of the lamina to the horizon at first, a

its radius, and &) its angular velocity.

257. A beam rests with one end on a smooth horizontal plane,

and has the other suspended from a point above the plane by a

weightless, inextensible string ; the beam is slightly displaced in

the plane of beam and string. Find the time of a small oscil-

lation.

Q
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258. Find the condition that a free rigid body in motion may

be reduced to rest by a sin^i^le blow.

259. A perfectly rough horizontal plane is made to rotate

with constant angular velocity about a vertical axis which meets

the plane in O. A sphere is projected on the plane at a point

r so that the centre of the sphere has initially the same velocity

in direction and magnitude as if the sphere had been placed

freely on the plane at a point Q. Show that the sphere's centre

will describe a circle of radius OQ, and whose centre R is such

that OK is parallel and equal to OP.

260. If a free rigid body be struck with a given impulse, and

any point of the body be initially at rest after the blow, show

that a line of points will also be at rest, and determine the con-

dition that this may be the case in a body previously at rest.

261. A free rigid body of mass m is at rest, its moments of

inertia about the principal axes through its centre of inertia

being A, B, C. Supposing the body to be struck with an impulse

R through its centre of inertia, and with an impulsive couple G,

prove that it will revolve for an instant about an axis whose

velocity is in the direction of its length and equal to

Am Ihn Cm

\A^ B^ C^J

X, V, Z being the components of A\ and /,. M, X the com-

ponents of G, in the principal planes.

262. A sphere with a sjihere within it, the diameter of the

latter being equal to the radius of the former, is placed on a

perfectly rough inclined plane, with the centre of inertia at its

shortest distance from the plane, and is then left to itself. Find

the angular velocity of the body when it has rolled round just

once, and determine the pressure then upon the plane.
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263. Two equal rods of the same material are connected by a

free joint and placed in one straight line on a smooth horizontal

plane ; one of them is struck perpendicularly to its length at its

extremity remote from the other rod. Show that the linear

velocity communicated to its centre of inertia is one-fourth

greater than that which would have been communicated to it

by a similar blow if the rod had been free.

In the subsequent motion show that the minimum angle

which the rods make with one another is cos^^|^.

264. AB, BC, CD are three equal uniform rods lying in a

straight line on a smooth horizontal plane, and freely jointed at

B and C ; a blow is applied at the midpoint of BC. Show that

if (o be the initial angular velocity of AB or CD, the angle

which they make with BC at time /,

dd ^ &)

d/~ -^(i + sin"-^ ^y

265. A lamina of any form lying on a smooth horizontal

plane is struck a horizontal blow. Determine the point about

which it will begin to turn, and prove that if c, c' be the dis-

tances from the centre of inertia of the lamina of this point and

of the line of action of the blow respectively, cc' —k'^, where /- is

the radius of gyration of the lamina about the vertical line

through its centre of inertia.

266. A circular lamina whose surface is rough is capable of

revolution about a vertical axis through its centre perpendicular

to its plane, and a particle whose mass is equal to that of the

lamina is attached to the axis by an inelastic string and rests on

the lamina. If the lamina be struck a blow in its own plane,

determine the motion.

267. A bicycle whose wheels are equal and body horizontal

is proceeding steadily along a level rough road. Obtain equa-

tions for determining the instantaneous impulses on the machine

when the front wheel is suddenly turned through a horizontal

angle 6.
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Show that the initicil horizontiil an<,^ular velocity is propor-

tional to the original velocity.

268. The radii of the portions of a horizontal differential a.xle

of weight IV arc a and /;, and their lengths are d and a. The
suspended weight is also JV. If the balancing power be re-

moved and the weight be allowed to fall, show that in time it

will fall through

3{a-df+2ad'

269. Show how to determine the angular velocities of a

rotating mass by observations of the instantaneous direction

cosines of points on its surface referred to three fi.xed rectangu-

lar axes, and their time rates of increase ; />. — , etc. How

many such observations are necessary }

270. A sphere composed of an infinite number of infinitely

thin concentric shells is rotating about a common axis under no

forces. Assuming that the friction of any shell on the consecu-

tive external one at any point varies as the square of the angular

velocity and the distance of the point from the axis, obtain the

equation /r - — rw = 2aj^ for the angular velocity at any

time of shell of radius r, and show that the solution of this

equation is ;-&>=/(— + '"

)> ^vhere/is an arbitrary function.

271. An egg with its axis horizontal is rolling steadily round

a rough vertical cone of semi-vertical angle «. The shape,

weight, moment of inertia, etc., of the c^^ being known, find

the friction acting, and the time of completing a circuit.

272. A vertical, double, elastic, wire helix is rigidly attached at

one end to a horizontal bar, mass J/, and is constrained io retain

the same radius a. V\'hen in equilibrium the tangent angle is «.

\n additional weight Mg^, or a torsion couple ^Vgdd, can alter

a into a + 0. If the bar be depressed, and consequently turned
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through an angle, show that the time of a small oscillation will

be 27ryl
-^
_^(cos a +

I
sin a)

I

, where / and 2 ua are the lengths of

the helix and the bar respectively.

273- Four equal, smooth, inelastic, circular discs of radius a
are placed in one plane with their centres at the four corners
of a square of which each side = 2 a. They attract one another
with a force varying as the distance. A blow is given to one
of them in the line of one of the diagonals of the square.
Investigate the whole of the subsequent motion.

274- P and Q are two points in a uniform rod equidistant
from Its centre. The rod can move freely about a hinge at P.
The hinge is constrained to move up and down in a "vertical
hne. If the motion be such that Q moves in a horizontal line
determine the velocity when the rod has any given inclination'
the rod being supposed to start from rest in a horizontal position.

In the case in which the whole length of the rod =P0^^,
show that the time of a complete oscillation is (2 7r)|(r^)-2^

275. A circular and a semicircular lamina of equal radii a
are made of the same material, which is perfectly rough. Their
centres are joined by a tight inelastic cord; also the centre of
the circular lamina is joined to the highest point of the semi-
circular lamina by a string of length aVl The semicircular
lamina stands with its base on a perfectly rough, inelastic plane
Ihe circular lamina rests on the top of the semicircular lamina
and in the same vertical plane with it. It is disturbed from its
position of equilibrium. Prove that just after it has struck the
plane its angular velocity =~J(JL\

n^\3 (fJ

276. A uniform rod, capable of free motion about one extrem-
ity, has a particle attached to it at the other extremity by means
of a string of length /and the system is abandoned freely to
the action of gravity when the rod is inclined at an angle a to
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the horizon and the strinj^ is vertical. Prove that the radius of

curvature of the particle's initial path is

. w 4- 2 /> cos'

«

;;/ sin«(2 — 3sin"-^rt)

jft and /> being the masses of the rod and particle respectively.

277. To a smooth horizontal plane is fastened a hoop of

radius r, which is rough inside, /i being the coefficient of friction.

In contact with this a disc of radius ti is spun with initial angu-

lar velocity ;/ and its centre is projected with velocity v in such

a direction as to be most retarded by friction. Show that after

a time • — •
— '-—z the disc will roll on the inside of

fi V oH' — anfr

the hoop.

278. An elephant rolls a homogeneous sphere of diameter a

inches and mass 5 directly up a perfectly rough plane inclined

/8 to the horizon, by balancing himself at a point distant « from

the sphere's highest point at each instant. Show that, the

elephant being conceived as without magnitude but of mass E,

he will move the sphere through a space

/2 ,^ Es,\r\a-{E+S)s\nfi
2' a' Ecos{a-\-li)+E-k-l^

where / is the time elapsed since the commencement of the

motion.

279. A circular disc of mass J/ and radius r can move about

a fi.xed point A in its circumference, and an endless fine string

is wound round it carrying a particle of mass ;;/, which is initially

projected from the disc at the other end of the diameter through

A, with a velocity v normally to the disc, which is then at rest.

Show that the angular velocity of the string will vanish when

the length of the string unwound is that which initially sub-

tended at the point A an angle /9 given by the equation

(^ tan /3-f I )cos'-^^+ I— = o,
8 w

and that the angular vclocitv of the disc is then — (2-f /3 tan/9)~l.
2r
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1

280. A uniform rod AB can turn freely about the end A,

which is fixed, the end B being attached to the point C, distant c

vertically above A, by an clastic string which would be stretched

to double its length by a tension equal to the weight of the rod.

If the rod be in equilibrium when horizontal and be slightly

displaced in a vertical plane, prove that the period of its small

oscillations is ~^(t~)' ^^ere p is the stretched length of the

string in equilibrium.

281. A hollow cylinder, of which the exterior and interior

radii are a and b, is perfectly rough inside and outside, and has

inside it a rough solid cylinder of radius c. When the two are

in motion on a perfectly rough horizontal table, prove that

\{M+in){T,a^+ b'^)-7?ia-](li = m{b-c)\bd-\-2asine\ + Ct+C',

where J\I and in are the masses of the hollow and the solid

cylinder respectively, ^ the angle the hollow cylinder has

turned through, and 9 the angle which the plane containing

fhcir axes makes with the vertical after the time /.

282. A string of length c, fixed at one end, is tied to a uniform

lamina at a point distant b from the centre of inertia. The

centre of inertia is initially at the greatest possible distance

from the fixed point and has a velocity v given to it in the plane

of the lamina and perpendicular to the string. Prove that when

the angle between the string and line ^ is a maximum, the

angular velocity of the lamina is ^— ^^^ the tension of the

,. . 2m'i^c K--2c{b+ c) ,rSX^- .ustrmg IS jj-—-;
•
-— — -', MK- bemg the greatest moment

\o-\-c)- K~— AfC\b-\-c)

of inertia of the lamina at the centre of inertia.

283. In a circular lamina which rests on a smooth horizontal

table and which can turn freely about its centre, which is fixed,

a circular groove is cut. If a heavy particle be projected along

the groove, supposed rough, wdth given velocity, find the time

in which the particle will make a complete revolution (i) in

space, (ii) relatively in the groove.
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284. Four equal rods, each of mass ;;/ and length /, are con-

nected by smooth joints at their extremities so as to form a

rhombus. A constant force mf is applied to each rod at its

middle point, and perpendicular to its length,— each force tend-

ing outwards. If the equilibrium of the system be slightly

disturbed by pressing two opposite corners towards each other,

and the system be then abandoned to the action of the forces,

show that the time of a small oscillation in the form of the

system is 27r-i/(— j.

285. A spherical shell of radius a and mass m rolls along a

rough horizontal plane, whilst a smooth particle of mass P oscil-

lates within the shell in the vertical plane in which the centre

of the shell moves, the particle never being very far from the

lowest point. Show that the time of its oscillation will be the

same as that of a simple pendulum of length =^ via{ifi \- k^)-^

\(m -\- P)a^ + 7/d^\, where /' is the radius of gyration of the

shell about a diameter.

286. A solid cylinder with projecting screw-thread is freely

movable about its axis fixed vertically, and a hollow cylinder

with a corresponding groove works freely about it without

friction. Find the moment of the couple which must act on

the solid cylinder in a jilane perpendicular to its axis in order

that the hollow cylinder may have no vertical motion.

287. A sphere rolls from rest down a given length / of a

rough inclined plane, and then traverses a smooth part of the

plane of length ;///. Find the impulse which the sphere sustains

when perfect rolling again commences, and show that the sub-

sequent velocity is less than it would have been if the whole

plane had been rough. In the particular case when ;;/ = 120,

show that the velocity is less than it would otherwise have been

in the ratio of 67 to yj.

288. A rough sphere is placed ujjon a rough horizontal plane

which revolves uniformly about a vertical axis; the centre of
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the sphere is attracted to a point in the axis of rotation, and in

the same horizontal plane with itself by a force varying as the

distance. Determine the motion.

289. A heavy uniform beam AB is capable of rotating in a

vertical plane about a fixed axis passing through its middle

point C, and is inclined to the vertical at an angle of 60''. If

a perfectly elastic ball fall upon it from a given height, find

how long a time will elapse before the ball strikes the beam

again.

290. A sphere rests on a rough horizontal plane, half its

weight being supported by an elastic string attached to the

highest point of the sphere ; the natural length of the string

is equal to the radius and the stretched length to the diameter

of the sphere. If the sphere be slightly displaced parallel to a

vertical plane, show that the time of an oscillation is 7^\f(-^)-

291. A uniform heavy rod, movable about its middle point A,

has its extremities connected with a point B by clastic strings,

the natural length of each of which is equal to the length AB.

Find the period of its small oscillations.

292. A squirrel is in a cylindrical cage and oscillating v/ith it

about its axis, which is horizontal. At the instant when he is at

the highest point of the oscillation, he leaps to the opposite

extremity of the diameter and arrives there at the same instant

as the point which he left. Determine his leap completely.

293. A perfectly rough sphere rolls on the internal surface

of a fixed cone, whose axis is vertical and vertex downwards.

Prove that the angular velocity about its vertical diameter is

always the same and that the projection on a horizontal plane

of the radius vector of its centre, measured from the axis, sweeps

out areas proportional to the times. Show also that the polar

equation to the projection on a horizontal plane of the path of

the centre is

^(Pn ,
, , •> X 5 ',' sin rt cos « 2^7 cos

«
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where a is the semi-vertical angle, 7 the constant angular

velocity about the vertical diameter, and // is half the area

swept out by the radius vector in a unit of time.

294. A thin circular disc is set rotating on a smooth horizontal

table, about a vertical a.xis through its centre perpendicular to

its plane, with angular velocity oj in a wind blowing with uniform

horizontal velocity v. Supposing the frictional resistance on a

small surface a at rest to be cvma, where m is the mass of a unit

of area, show that the angle turned through in any time is

-( I —e^"), and that the centre of gravity moves through a space

vt— -{i—c"). Determine the same quantities for a frictional

resistance = <-:•-;// (^?.

295. A uniform rod of length 2a passes through a small fixed

ring, its upper end being constrained to move in a horizontal

straight groove. Show that if the rod be slightly displaced from

the position of equilibrium, the length of the isochronous simple

pendulum will be ^—^^^~ '
, where b is the distance of the ring

3rt
from the groove.

296. A homogeneous solid of revolution spins with great

rapidity about its a.xis of figure, which is constrained to move in

the meridian. Prove that the axis will oscillate isochronously,

and determine its positions of stable and unstable equilibrium.

297. A wire in the form of the portion of the curve

r=<7(i+cos^),

cut off by the initial line, rotates about the origin with angular

velocity g). Show that the tendency to break at a point = - is

measured by J^^ V2 • ;;/<?"V-, where ;// is the mass of a unit of

length.

298. Show that in every centrobaric body the central ellipsoid

of inertia is a sphere. Is the converse of this proposition true }
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299. A uniform sphere is placed in contact with the exterior

surface of a perfectly rough cone. Its centre is acted on by a

force the direction of which always meets the axis of the cone

at right angles and the intensity of which varies inversely as the

cube of the distance from that axis. Prove that if the sphere

be properly started the path described by its centre will meet

every -generating line of the cone on which it lies at the same

angle.

300. A sphere of radius a is suspended from a fixed point by

a string of length / and is made to rotate about a vertical axis

with an angular velocity to. Prove that if the string make small

oscillations about its mean position, the motion of the centre of

gravity will be represented by a series of terms of the form

Xcos {kt+ M), where the several values of k are the roots of the

equation {IB-g) (^'" «^
" f^

J =^•
301. A rigid body is attached to a fixed point by a weightless

string of length /, which is connected with the body by a socket

(permitting the body to rotate freely without twisting the string)

at a point on its surface where an axis through its centre of

inertia, about which the radius of gyration is a maximum or a

minimum, = k, meets it. The body is set rotating with angular

velocity w about such axis placed vertically (the string, which is

tight, making an angle a with the vertical), and being then let

go, show that it will ultimately revolve with uniform angular

velocity

\\ 2 ,

2^^(l -COS«))

302. Three equal uniform rods placed in a straight line are

jointed to one another by hinges, and move with a velocity v

perpendicular to their lengths. If the middle point of the

middle rod become suddenly fixed, show that the extremities of

the other two will meet in time 1^, a being the length of each
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303. A top in the form of a surface of revolution, with a cir-

cular plane end, is set spinning on a smooth horizontal plane-

about its axis of figure, which is inclined at an angle « to the

vertical. It is required to determine the motion and to show that

•the axis will begin to fall or to rise according as tan a > or < -,

(I

where b is the radius of the circular plane end perpendicular to

the axis, and a is the distance of the centre of inertia from this

end.

304. A heavy uniform beam AB of length a is capable 01

freely turning about the point A, which is fixed; the end B i-

suspended from a fixed point C by a fine incxtensible chain c^;

length c. The system being at rest is slightly disturbed. Find

the time of a small oscillation, the weight of the chain being

neglected.

Examine the case in which the line AC \s vertical.

305. A perfectly rough sphere of radius a moves on the con-

cave surface of a vertical cylinder of radius a + b, and the centre

of the sphere initially has a velocity x- in a horizontal direction.

Show that the depth of its centre below the initial position aftc;

a time / is • v,/^i — cos;//), where u^ = ~
.

Show also that in order that perfect rolling may be main-

tained the coefficient of friction must not be less than "
^^

.

306. A heavy particle slides down the tube of an Archi-

median screw, wMiich is vertical and capable of turning about

its axis. Determine the motion.
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