
i-n

n

m





Digitized by the Internet Archive

in 2007 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/elementarytreatiOOmacguoft





,|yit<

1
I

I
^1;.

'

V^K.^^





m

AN ELEMENTAEY TREATISE

ON

KINEMATICS AND DYNAMICS.





AN ELEMENTARY TREATISE

ON

KINEMATICS and DYNAMICS.

BY

JAMES GORDON MACGREGOR, M.A., D.Sc,

FELLOW OF THE ROYAL SOCIETIES OF EDINBURGH AND OF CANADA,

MUNRO PROFESSOR OF PHYSICS, DALHOOSIE COLLEGE, HALIFAX, N.S.

Ronton:
MACMILLAN AND CO.,

AND NEW YORK.

1887.

All rights reservtd.



UNIVERSITY PRESS, GLASGOW : ROBERT MACLEHOSE.



PEEFACE.

This book treats in an elementary manner the whole of

what is ordinarily known as Abstract Dynamics, including

Kinematics, Kinetics, and Statics, and is designed for

use in the higher classes of Schools and the junior classes

of Colleges and Universities. It assumes, therefore, a

knowledge of only the more elementary branches of

Mathematical Science—Geometry, Algebra, and Plane

Trigonometry.

The kinematical portions of the subject are treated by

themselves, not only because this course is the more

logical, but also because it has been found in my experience

to be the better from an educational point of view.

The usual division of Dynamics into Kinetics and

Statics has not been adopted ; but statical problems are

throughout regarded as boundary cases of kinetic prob-

lems, the equations of equilibrium being in all cases

deduced from the equations of motion. This course also
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has recommended itself to me both by its logical fitness

and in my experience as a teacher.

A careful analysis of the subject has been made, that

the reader may be able to recognise at once the exact re-

lation which each department bears to the whole. The

scrappiness of treatment which characterizes many of our

text-books has thus been avoided.

An endeavour has been made to eliminate all un-

necessary assumptions, the various so-called " Principles,"

which have obtained currency in our text-books, being

deduced from Newton's three Laws of Motion, which are

adopted as the fundamental hypotheses of theoretical

Dynamics.

It has been found necessary to modify the current

definitions of a few important terms, e.g., velocity and

acceleration. This is due to the adoption of the

distinction, proposed by Prof. Tait, between velocity and

speed, and the extension of this distinction to acceleration

and rate of change of speed. Velocity and acceleration

have therefore been defined so as to connote both magni-

tude and direction.

A large number of illustrative problems have been

inserted both in the text and at the end of the volume.

These have been drawn, for the most part, from the ex-

amination papers of the more important British and

American Universities and Colleges; but some ofthem are

original, and some are taken from works mentioned below.
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For problems in Rigid Dynamics, I am especially indebted

to Walton's " Problems in Theoretical Mechanics." Readers

who wish a larger selection of examples may be referred

to Gamett's " Elementary Dynamics," Greaves' " Elemen-

tary Statics," and Walton's "Problems in Elementary

Mechanics."

The traditional chapter on simple machines has been

omitted, but the treatment of simple machines has been

introduced here and there as illustrative matter.

In the preparation of my class lectures, which formed

the basis of this book, I derived assistance from a large

number of works on Kinematics and Dynamics. As the

lectures were prepared without any intention of publica-

tion, I am unable now to acknowledge, except in a general

way, the assistance thus derived. I am sensible of being

directly indebted, however, to a greater or smaller extent,

to the following works:—Thomson and Tait's "Treatise

on, and Elements of. Natural Philosophy "
; Tait's Article

on Mechanics in the " Encyclopaedia Britannica," 9th ed.,

and his "Properties of Matter": Frost's "Newton";

Clifford's " Elements of Dynamic "
; Maxwell's " Matter

and Motion "
; Parkinson's " Elementary Mechanics "

;

Goodeve's " Principles of Mechanics "
; Gamett's "Elemen-

tary Dynamics "
; Wormell's " Principles of Dynamics "

;

Lodge's " Elementary Mechanics "; Earnshaw's " Statics ";

Minchin's " Treatise on Statics " : Routh's " Rigid

Dynamics " ; Thomson's Article on Ela.sticity in the
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''Encyclopaedia Britannica," 9th ed. ; Everett's " Unitsi

and Physical Constants "
; and " Force, Impulsion

and Energy, by John O'Toole."

I am indebted for valuable suggestions to my colleagues,

Chas. Macdonald, M.A., Professor of Mathematics, and D.

A. Murray, B.A., Tutor in Mathematics, and to Professor

J. A. Ewing, F.R.S., of University College, Dundee, who

have kindly read portions of the proof sheets. To Mr.

Murray I am indebted also for the verification of a large

number of the examples.

I have taken pains to attain as great accuracy as

possible ; but errors are inevitable ; and readers will

confer a great favour if they will kindly point out to me

any they may detect.

J. G. MACGPtEGOR.

Dalhousie College,

Halifax, N.S.,

Aiigust 19M, 1887.
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Page 32, 4th line—/or 0-003, read 0-0003.

—for Fj) and pP^^ read pP^ and P^j).

—for these moments, read the moments of OA and
OB.

—for are, read area.

—for p, read pv.

—for KLMN, read HKLM.

-for x^^J^, read x=^^^.

—for x= x + ^, read x= x + ^.

—for single 7'ead resultant.

—for is, read are.

from the foot of the page—/o7* ns, 7'ead Ans.

-..for - ^ . , read -'j . d.

from the foot of the page—the equation should be,

r' - (a'a cos ^ = 0.

„ 42, 14th

,, 63, 4th

„ 79, 1st

„ 79, 2nd

„ 123, 1 3th

,, 307, 9th

„ 320, 19th

,, 344, 12th

„ 344, 13th

„ 370, 2nd

„ 375, 3rd

,, 383, 7th

,, 385, 10th

„ 391, 2nd

„ 426, 5th

-for s, read is.

-the equation s

-for hinge-pin, read hinge-pins.

—the equation should be, <P=J^^L'^\.^ 2{mr + m'r)
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CHAPTER I.

POSITION AND MOTION.

1. Kinematics is that branch of Mathematical Science

which investigates motion. It makes no inquiry as to

the causes of the changes of motion in bodies, but studies

their motion in itself.

2. Position.—We recognize bodies as existing in space

and having definite positions among one another. We
recognize them as having positions, however, only by the

aid of neighbouring bodies, and we describe the positions

of their various points by reference to chosen points

in neighbouring bodies. Position in space is thus a

relative conception. "Absolute position" is a meaning-
less phrase.

The position of a point P, relative to anj'- other point

0, is completely determined if we have sufficient data to

enable us to proceed from to P. There are various

modes of specifying the necessary data. They are called

systems of co-ordinates. Of these we may mention two :

(1) that of Polar Co-ordinates; (2) that of Cartesian

Co-ordinates.

A
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3. Polar Co-ordinates.—If the point P is situated in a

given plane, its position relative to 0,

another point in that plane, may be de-

scribed by the aid of ON, a known line

in the same plane, by a statement of the

angle NOP and the length OP. Thus,
if and P are points in a horizontal plane, a.nd ON the

north and south line through 0, the angle NOP (which
in that case is called the azimuth of P) and the distance

of P from determine the position of P.

The point is called the pole in this system of co-

ordinates, ON is called the initial line, and OP the radius

vector. The length of OP and the magnitude of the

angle NOP are the polar co-ordinates of the point P.

They are usually denoted by the symbols r and Q.

To describe the position of a point P not in a known
plane, let be the pole, ON the initial line, and ONA

a known plane containing ON but not

P. Let OA be the intersection of the

plane ONA with a plane perpendicular

to it through OP. Then, if the angles

NOA and ^OP are given, the direction

of OP is known, and if the length of
'^ OP is also given, the position of P is

completely determined. The length of OP and the

angles NOA and AOP are then the polar co-ordinates of

P. They are usually denoted by r, <p, and Q respectively.

0, for example, may be a point on the earth's surface,

ONA the horizontal plane, ON the north and south line

through ; in which case the angles NOA and AOP are

what are called in Astronomy the azimuth and altitude

of P.

4. Cartesian Co-ordinates.—If the point whose position

is to be specified is known to be situated in a given plane,

its position may be described by a statement of the



5 ] POSITION AND MOTION. />

distances which must be traversed in directions parallel

to two known lines in that plane, in passing from the

point of reference to the given point. Let be. the

point of reference, Ox and Oy two known lines in the

given plane, and P the point whose
position is to be described. From
F draw PM parallel to Oij. If the

lengths of OM and MP are given,

the position of P is determined.

These lengths are called the Car-

tesian co-ordinates ofP (this system ^ MX
having been first employed by Descartes). The point

is called the origin of co-ordinates, and the lines Ox and
Oy the axes of co-ordinates—the one the axis of x or the

x-SLxis, the other the axis of y or the ^/-axis. If the axes

are perpendicular to one another they are said to be

rectangular, and the co-ordinates are called rectangular
co-ordinates. In that case OM is called the abscissa,MP
the ordinate. These co-ordinates are usually denoted
by the symbols x and y respectively. A point whose
co-ordinates are x and y is called the point {x, y).

If P is situated to the left of Oy, the distance OM must
be traversed from in the opposite direction to that

shown in the diagram. In that case, the co-ordinate OM
is considered negative. Similarly, if P is below Ox, the

co-ordinate MP is considered negative. Thus a point to

the left of Oy and above Ox will have the co-ordinates

— x,y\ one to the left of Oy and below Ox the co-ordi-

nates — X, —y.

o. If the point P is not known to be in a given plane,

its position may be described by reference to three axes

drawn through the origin in known directions in space.

Let Ox, Oy, Oz be three such axes. From P draw PM
parallel to Oz and meeting the plane Oxy in M. From
M draw ML parallel to Oy and meeting Ox in L. The
position of P is specified if OL, LM, MP are given, i.e.,
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if the distances are known which must be traversed in

the directions of the axes, in passing from to P. OL,

B s

/
F

y^
/y / L

LM, MP, the co-ordinates of P, are usually denoted by
the symbols x, y, z respectively.

If Ox, Oy, Oz are at right angles to one another, the

co-ordinates are said to be rectangular. 0, for example,

being a point on the surface of the earth, Ox the north

and south line, Oy the east and west line, and Oz the

vertical line, the co-ordinates of P are the distances that

must be traversed northwards, eastwards, and upwards
in order to reach P.

The same convention as to signs is employed as in 4,

co-ordinates drawn from in directions opposite to those

of Ox, Oy, Oz respectively being considered negative.

With this convention no two points in space can have the

same co-ordinates.

6. If from P lines be drawn parallel to OL and LM,
and meeting the Oyz and Oxz planes in R and 8 respect-

ively, and if from Oy and Oz, OA and OB be cut off equal

to LM and MP respectively, and if MA, RA, RB, SB,
SL be joined, it will be clear that OP is the diagonal of

a parallelepiped, of which OL, LM, and MP are the
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edges ; and it follows that the same point P is reached
in whatever order the distances OX, LM, MP may be
traversed.

It will also be clear that, if the co-ordinates are

rectangular, PM is the distance of P from the plane

containing the axes of x and y, or, as it is called, the

plane of xy ; and that OL and ML are the distances of

P from the planes of yz and of xz respectively. Hence
the rectangular co-ordinates of a point may be taken to

be its distances from three planes which intersect in

three straight lines at right angles to one another. Thus
the position of a point in a room is completel}^ specified

if its distances from the floor and from any two adjacent

walls are mven.&'

7. If a, P, y are the angles at which OP is inclined to

the rectangular axes of x, y, and z respectively, we have,

since AP is perpendicular to OA,

OA or y = OP cos 13.

Similarly x = OP cos a,

Z= OP cos y.

Now OP being the diagonal of a rectangular parallelo-

piped whose edges are x, y, 0,

OP^- = x^-{-y^+z^

Hence OP^= OP\cos^a+ cos^/3+ cosV),

and cos^a+ cos^/?+ cos-y= 1

.

If therefore the length of OP, and any two of the

angles a, ^, y, be given, the position of P is completely
specified.

The direction of OP is specified by any two of the

angles a, /3, y. The cosines of these angles are therefore

called the direction cosines of OP.

8. It is frequently convenient to be able to express the
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inclination* of two straight lines in terms of their direc-

tion cosines. Let OP and OP' be two such lines or

lines drawn parallel to them, Ox, Oy, Oz rectangular

axes, QL, LM, MP the rectangular co-ordinates of any
point P of OP, and a, /3, y the angles of inclination of

OP to the axes of x, y, and z respectively. Then

OL = OP cos a, LM= OP cos /3, MP = OP cosy.

Now the projection! of OP on OP' is equal to the sum of

* The inclination of one straight line to another, whether they
are in one plane or not, is the angle between two lines drawn
parallel to them from any point.

t (1) The foot of the perpendicular from a point on a straight

line is called the orthogonal projection or simply the projection of

the point on the line,

(2) The locus of the projections of all the points of any line on a
given straight line is called the projection of the former on the latter.

(3) The projection of a finite straight line on a straight line is

equal in length to the product of the length of the projected line

into the cosine of its inclination to the given straight line. LetLM
be the projected line, AB the line on w^hich it is projected. In
general these lines will not be in the same plane. From L, J/, draw
LI, Mm, perpendicular to AB. Then Im is the projection of LM.
From m draw ml' equal and parallel to ML, and join LI' and W.
Then LV is parallel to Mm and therefore perpendicular to AB.
Hence the plane JM' and therefore the line W are perpendicular
to A B. Hence

lm = rm cos ImV =LM cos bnl'.
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the projections of OL, L3I, and MP on the same line.

Hence, if 6 is the angle between OP and 0P\ and a, /3',

y, the inclinations of OP' to the axes of x, y, and z

respectively,

OPcos0= Oi/COSa +i^il^ cos ^'+ i/P cosy'

= OPcos a cos a'+ OPcos j8 cos ^8'+ OP cos y cos y.
Hence

cos = cos a cos a + cos /3 cos /3'+ cos y cos y'.

9. To find the value of sin 0, call cos «, cos /3, and
cosy, Z, m, and n respectively, and cos a', cosyS', and
cos y, I', m\ and n' respectively. Then

I.e., the projection of L3I is equal to the product of LM into the
cosine of its incUiiation to AB. The simpler case in which LM and
AB are in one plane may be left to the reader.

(4) The algebraic sum of the projections of the parts of a broken
line is equal to the projection of the straight line joining its end
points. Let OLMP be a broken line, the straight portions of which,
OL, LM, MP, are not in one plane. From and P draw Oo and
Pp perpendicular to A B. Then ol, Im, and mp are the projections

of OL, LM, and MP on A B. Also, from the constructioo, op is the
projection of the line OP on AB. And op= ol+ lm-{-mp. Hence
the projection of OP on AB is equal to the sum of the projections

of OL, LM, and MP on the same line.

If the position of X is such that the point I is situated to the left

of o, ol being drawn to the left instead of the right must be con-

sidered negative, the lines Im and mp being taken as positive. In
that case we have op= lm + mp — ol, i.e., the projection of OP on AB
is equal to the algebraic sum of the projections of OL, LM, and MP
on the same line.
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=
{{mn - nm!f+ {nV - In'f+ (Zm - mVf}K

10. It is frequently convenient also to be able to

express the direction cosines (X, /x, i^) of the common
perpendicular to two lines, in terras of the direction

cosines {I, m, n, and V, m', n') of the lines themselves.

For this purpose we have (8), since cos (7r/2) = 0,

l'\-\-mfiJL-\-n'v = 0.

We have also (7) X^+mH i^ = 1.

From these equations we obtain values of X, />t, v.

Writing sin 6 for its value as given above (9) they are

_mn — nni _ nV— In _ hn'— ml'
^~ sine '

^~ sine '
"""

sin '

11. The positions of any two points relative to a third

being given, that of either of the two relative to the

other can be determined.

The positions of P and Q being given relatively to 0,

p the lengths and directions of OP and
OQ are known. Hence also (8) the

angle POQ is known, and consequently

all the sides and angles of the triangle

OPQ. The direction and length of PQ
being thus determined, the position of either of the two
P, Q, relative to the other is known.

It follows that, if the positions of all the points of a
S3^stem relative to any one are known, their positions

relative to any other are known also.

12. Configuration.—The arrangement of the points of

a system is called its configuration. The configuration
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of a system is thus known if the positions of all points

relative to any one are known.

13. Dimensions of Space.—Whatever system of co-

ordinates we may adopt, we require, in order to specify

the position of a point, to have three quantities given.

In the case of rectangular co-ordinates they are distances;

in that of polar co-ordinates they consist of two angles

and a distance. Hence space is said to be tri-dimen-

sional.

Similarly, any point in a given surface may be specified

by a statement of two quantities, two distances or a
distance and an angle ; and any point in a given line

may be specified by the statement of a distance merely.

Hence a surface is said to have two dimensions, and a
line one dimension.

14. Measurement—The specification of the position of

a point requires therefore that we should be able to

measure lengths and angles.

The measurement of any quantity is the comparison of

its magnitude with the magnitude of a known quantity

of the same kind. The known quantity of the same kind
is called a standard or unit; and a description of any
measurement must include a statement of (1) the unit

employed, and (2) the ratio of the magnitude of the

quantity to be measured to the magnitude of the unit.

This ratio is called the numencal measure or value of

the quantity. Prof James Thomson has proposed to

shorten these terms to numeric.

Any quantity whatever, of the same kind as that to be
measured, may be chosen as a standard or unit. But it

will be evident that no standard should be employed
which is not (1) constant in magnitude, (2) well known,
and (3) easily reproduced ; and we shall see farther on,
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that among standards satisfying these conditions, there

are reasons for preferring some to others.

15. We have seen that the numerical measure of any
quantity in terms of any unit is the ratio of the magnitude
of the quantity to that of the unit. It follows that the

numerical measure of a given quantity must be inversely

proportional to the magnitude of the unit in terms of

which the quantity is expressed. Let Q be the numerical
value of any quantity, and let [Q] denote the magnitude
of the unit in terms of which it is expressed. Then we
have

16. Measurement of Length.—The selection of stand-

ards of length presents no difficulty. A certain distance

in space cannot, it is true, be marked off" and kept ; but
a body, say a rod, may be selected and carefully preserved,

and when it is in a specified physical condition (as to

temperature, etc.), its length may be taken as unit of

length. The submultiples of the unit thus chosen may
then be determined by geometrical methods. For the

various methods of comparing the length of a body or the

distance between two points in space with the standard
length, the reader is referred to works on Laboratory
Practice.

Different nations have adopted different units of length.

The more important are the English and French units.

The English unit, the yard, is defined by Act of Parlia-

ment to be the distance between the centres of two gold

plugs in a certain bronze bar deposited in the Office of

the Exchequer in London, the bar having the temperature
62°F. (The specification of the temperature is necessary,

because the lengths of bodies vary with temperature.)

The foot is one-third of the yard. The inch is one-

twelfth of the foot. The statute mile is 1,760 yards.

The French unit^ the metre, is the distance between the
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end planes of a certain platinum bar deposited in Paris^

the temperature of the bar being O'C. The metre was
intended to be the ten-millionth part of a quadrantal

arc of a meridian on the earth's surface. It is now-

known to be a somewhat smaller fraction. The decmietre,

centimetre, and inillimetre are the tenth, hundredth, and
thousandth parts of a metre respectively. The decavietre,

hectometre, and kilometre are equal to ten, one hundred,
and one thousand metres respectively. The decimal

division of the metre renders it a much more convenient
unit than the yard.

The following table shows approximately the relative

values of English and French units of length :

—

1 inch = 2-5400 cm. i 1 centimetre= 0-39370 in.

1 foot =30-4797 cm. do. =0-032809 ft.

1 yard = 91 -4392 cm.

1 mile= 1-60933 km.

1 metre =3-28087 ft.

1 kilometre =0-62138 ml.

17. Measurement of Area and Volume.—We may
notice here, though it is not necessary for our present

purpose, the measurement of area and volume.

Any arbitrary area may be chosen as unit of surface or

area. But the most convenient unit is the area of a
square whose side is of unit length. The English units

are therefore the square yard, square foot, square incb^

etc.; the French units, the square metre, square centi-

metre, etc.

1 sq. inch = 6*4516 sq. cm. '

1 sq. centimetre= 0-1550 sq. in.

1 sq. foot =92901 sq. cm.
j

do. =0-001076 sq. ft.

1 sq. yard = •836113 sq.m. I 1 sq. metre =1-196 sq. yd.

1 sq. mile = 2-59 sq. km.
|

1 sq. kilometre =0-3861 sq. ml.

Similarly, the most convenient unit of volume is that

of a cube whose edge is of unit length. The English
units are thus the cubic yard, cubic foot, etc.; the French
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units are the cubic metre, cubic decimetre (called the

litre), etc.

1 cu. inch = 16 "387 cu. cm.

1 cu. foot =28316- cu. cm.

1 cu. yard= 0*764535 cu. m.

1 cu. cm. =0-06102 cu. in.

do. = 3-532 X 10-5 cu. ft.

1 cu. metre= 1 -308 cu. yd.

18. Derived Units.—A unit of a quantity of one kind
which is thus defined by reference to the unit of a quan-
tity of another kind is called a derived unit. The
magnitude of such a unit will depend upon that of the

simple, or arbitrarily chosen, unit, by reference to which
it is derived. Thus it is clear that if our unit of length

be increased two, three, four, etc., times, our unit of area

will be increased four, nine, sixteen, etc., times respec-

tively ; or, generally, that the magnitude of the unit of

area is directly proportional to the square of the magni-
tude of the unit of length. In symbols, if [*S'] represent

the magnitude of the unit of area, and [L] that of the

unit of length, [>SG a [Lf.

A statement of the mode in which the magnitude of a
derived unit varies with the magnitudes of the simple
units involved in it, is called a statement of the dimen-
sions of the unit. The unit of area has thus the
dimensions [L]^.

19. Though this result is sufficiently obvious, we may
obtain it by a method which we shall find useful when
dealing with more complicated units. Let s be the area

of a square whose side is I. Then s = l^. Now (15)

s a l/[>Sf] and I oc l/[Ll Hence [S] a [Lf.

20. The reader will find no difficulty in showing in a
similar way, that the unit of volume has the dimensions

[Lf.

21. Measurement of Angle.—There are two units of
plane angle in ordinary use, the degree and the radian.
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The degree is the ninetieth part of a right angle ; and its

subdivisions are the minute, which is one sixtieth part of

a degree, and the second, which is one sixtieth part of

a minute. The radian is the angle subtended at the

centre of a circle by an arc equal in length to the radius.

As the circumference of a circle is 27r times the radius,

the radian is equal to 360°-r-27r, i.e., to 57°'29578... or to

57° 17' 44''-8 nearly. It is subdivided decimally. The
numerical measure of an angle in radians is often called

its "circular measure." It is obvious that the angle sub-

tended at the centre of a circle of radius r, by an arc of

length a, is equal to ajr radians, and that consequently

the magnitude of the radian is independent of the mag-
nitude of the unit of length.

22. The unit of solid angle is the solid angle sub-

tended at the centre of a sphere by a portion of its

surface whose area is equal to the square of its radius.

It may be called the solid radian. It follows that the

solid angle subtended at the centre of a sphere of radius

r, by a portion of its surface whose area is A, is Ajr"^

solid radians, and that the magnitude of the solid radian

is thus also independent of that of the unit of length.

23. Motion.—The motion of a point is its change of

position in space. It is therefore completely described

by a statement of the changes in the co-ordinates of the

point. Motion is thus, like position, a relative con-

ception.

24. Rest.—A point which is undergoing no change of

position, whose co-ordinates therefore are not varying, is

said to be at rest relative to the origin of co-ordinates or

point of reference. In any case in which we speak of a

body as being simply " at rest," it is assumed that the

point of reference is known.

A " fixed point " or a " point fixed in space " is one
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which, during the time under consideration, is at rest

relatively to the point which has been chosen as point of

reference. A line fixed in space is one containing fixed

points.

2.5. Relation ofMotion to Time.—The motion of a body
is found to occupy time ; and one important object of

Kinematics is to compare the contemporaneous motions
of different bodies, and to determine the laws according

to which the changes in the co-ordinates of some bodies

are related to the contemporaneous changes in the co-

ordinates of others. As it is not possible for one observer

to make many observations of the positions of bodies at

the same instant, it is necessary, for the attainment of

this object, to be able to describe instants of time, in

order that the observations of different observers may
be comparable.

26. Description of Instants of Timie.—To describe the

times of occurrence of events, it is only necessary that

we should fix upon some series of continually occurring

events and keep a record of them. We may choose, for

example, the daity passage across the meridian, of a

known point in the heavens, say a *' fixed " star. In that

case, the time of the occurrence of an event would be

described as between the n^'^ and the {n-\-\y^ transits

of this star. To make the description more definite, we
may use a rapidly oscillating pendulum, and describe

the event as occurring between the m*^ and {m-{-iy-^

oscillations of the pendulum after the n^^ transit of the

fixed star. By thus selecting a series of events occurring

with sufficient frequency, it is possible to give our de-

scriptions of instants of time as great precision as may
be desirable.

27. " Measurement " of Time.—As we are thus able to

describe instants, it is possible to record the magnitudes
of quantities {e.g., distances, angles, etc.) at definite
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instants, and therefore to compare the changes which the

positions of bodies may have undergone in any required

interval of time.

28. In order to compare tlie contemporaneous motions
of any number of bodies among one another, it is only

necessary to compare the motion of each body with that of

some one selected as a standard ofcomparison. In selecting

a standard, it will save a great deal of labour if we choose

a body whose motion is such that as many as possible

of the laws of the motions of other bodies, when expressed

in terms of its motion, are (1) simple, and (2) permanent,
i.e., independent of the date of their determination. To
fix upon such a moving body, it is necessary to make
observations of the positions of many bodies at short

intervals during long periods of time, and to keep records of

them. This has been done by astronomers, whose records

extend over 2,500 years. Their observations show, that if

the motions of other bodies are compared with the rotation

(194) of the earth relative to the "fixed" stars, the laws of

their motions take forms which are simpler and more per-

manent than if any other motion is taken as the standard.

Hence by common consent the motion of the earth about
its axis is taken as a standard with which other motions
are compared.

29. When the law of the change of the position of a
body, with reference to the rotation of the earth about
its axis, is determined, we are said to have determined
the law of its change of position with reference to time,

successive rotations of the earth being assumed to occur

in equal intervals of time. Whether they do so or not,

we have no means of knowing, as we have no means of

measuring time But this form of speech, which assumes
the possibility of measuring time, is conveniently short,

and so long as we keep in mind its real meaning, can
lead to no error. The period of the earth's rotation with
reference to the fixed stars, i.e., the period between sue-



16 KINEMATICS. [29

cessive instants at which a fixed star is on our meridian,
is called a sidereal day. When we employ the earth's

rotation relative to the fixed stars as a standard motion,
we may be said to employ the sidereal day as a unit of

time.

30. Recent discussion of astronomical observations*
seems to show that the laws of the motions of heavenly
bodies would take simpler forms, and would be more
permanent, if the standard motion were that of an ideal

earth, rotating so that its rate of rotation would slowly
gain on the i-ate of rotation of the actual earth. At what
rate the ideal earth's rate of rotation should gain on that

of the actual earth in order that these laws may take
their simplest and most permanent forms, is not known.
But the astronomical data are sufficiently definite to show
that it is exceedingly small. This result is expressed in

the language of time by saying that the sidereal day is

increasing at a very slow rate.

31. It is found practically inconvenient to compare the

motions of bodies directly with the rotation of the earth

relative to the fixed stars. They are usually compared
directly with the rotation of the earth relative to the

sun ; and the law, according to which the earth rotates

relatively to the sun, having been determined in terms

of its rotation relative to the fixed stars, they can thus

be indirectly compared with the standard motion. In

the language of time, it is found more convenient to

measure time in terms of the solar day than of the

sidereal day. The solar day being a variable period, the

mean solar day is chosen as practical unit. It is found

to be equal to 1-002738... sidereal days.

32. It is frequently convenient to compare motions

with some periodic motion of much greater frequency than

* See Thomson and Tait's " Treatise on Natural Philosophy,"

pt. II., § 830.
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the rotation of the earth. In such cases the oscillation

of a pendulum is chosen ; for it is found that, if a pen-
dulum is kept in a constant physical condition, it will

oscillate the same number of times in different sidereal

days, and that in 1/?^*^ of a day {i.e., while the earth is

making 1/n^^ of a rotation) it will make 1/n^^ of the

number of oscillations made in a whole day. The second
is the time of oscillation of a pendulum which oscillates

86,400 {i.e., 24 x 60 x 60) times in a mean solar day. The
sidereal day contains 86,164 mean solar seconds. A clock

is an instrument for maintaining a pendulum in oscilla-

tion and for counting its oscillations.

83. Complexity of Motion.—The motions of bodies

may be of various degrees of complexity. The simplest

form is that in which all points of the body move
through equal distances in the same direction. Such
a motion is called a translation. If, though the various

points of the body maintain the same relative positions

during the motion, they do not move through equal

distances in the same direction, the motion is partly or

wholly a rotation. If, finally, the points of the body do
not maintain the same distances from one another during
the motion, the motion consists partly of a strain or

change of volume or form.

We shall see farther on that the action of a force upon
a body usually affects the motion of the body in all these

ways. It is convenient, however, to study the different

kinds of motion separately, assuming bodies to have that

kind of motion alone, which, for the time, we may wish
to investigate.
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CHAPTER II.

TEANSLATION :—PATHS.

34. We have defined translation to be the motion
which a body has when all its points move through
equal distances in the same direction. If then the

motion of one point is known, the translation of the

body is known. Hence the study of the translation of a

body is the same as the study of the motion of a point.

35. Degrees of Freedom.—The position of a point, as

we have seen, is determined by three numbers, which
may be measures of distance or of distance and angle.

The motion is determined if the changes in these meas-
ures are known. Hence a point is said to have three

degrees of freedom to move.

If the point be constrained to remain on a given sur-

face its position can then be determined by two numbers,
and it has therefore two degrees of freedom. One degree

of constraint is said to have been introduced. The con-

dition of constraint in this case is that the distance of the

point from the surface shall be zero. If the point be
constrained to remain on each of two surfaces it must
remain on their line of intersection. Hence its position

and its motion may be determined by one number, the

distance or the change of distance from a given point in

the line. It has one degree of freedom. Two degrees of
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constraint have been introduced. A third degree of

constraint, the condition for instance that the point

remain on a third surface, will confine it to the point

in which the three surfaces intersect: it has then no
freedom.

Constraint is of course not necessarily applied in the

way mentioned above. Thus the condition that a point

shall maintain a given distance from a given fixed point

restricts its motion to the surface of a sphere. A second

degree of freedom is destroyed by constraining the point

to move in a vertical plane, and it can now move only in

the curve of intersection of the vertical plane and the

sphere. If now it be so constrained that the line joining

it with the fixed point maintains a constant inclination

to a fixed line in the given vertical plane, the point has

three degrees of constraint and consequently a definite

position.

36. Paths.—The path of a moving point is the locus

of its successive positions. It must be a continuous

line, but may have any form whatever. We shall

see farther on (295), however, that the path of a material

particle (310) can undergo no abrupt changes of direction,

unless indeed its motion cease and recommence ; and
we shall restrict ourselves to the study of paths which
are possible for material particles.

The direction of such a path at any point is that of the

tangent at that point.

37. Curvature.—The change of direction between any
two points of a path lying wholly in one plane is called

the integral curvature between these points. It is

evidently measured by the angle between the tangents

at these points.

The mean curvature between two points is the

integral curvature between them divided by the length
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of path intercepted by them. Thus, if AB is a portion
of the path of a moving point, AC and BD being tan-

gents at A and B respectively,

inclined at the angle 0, then (p

is the integral curvature be-

tween A and B ; and, s being

the length of the arc AB, <p/s

is the mean curvature between
A and B.

The mean curvature between
A Siud B will in general have
different values as B is taken
nearer or farther from A. If it

is the same whatever the posi-

tion of A and B on the path, the

curvature of the path is said to

be uniform.

The mean curvature between A and B will have a

finite value, however small the distance between them,

in the case of the path of a material body. For, as there

can be no abrupt changes of direction in the path, ^ and
s vanish together, and to an indefinitely small change in

s corresponds an indefinitely small change in (p.

The limiting value of the mean curvature between A
and B, when B is brought indefinitely near to J., is called

the curvature at A. The curvature at any point of a
curve of uniform curvature is evidently equal to the

mean curvature between any two points.

38. The Curvature of a Circle.—Let A, B he any two
points on a circle whose centre is 0, and AC, ED tangents

Sit A, B respectively. The angles QBE and OAE are

right angles, and hence the angle BEC is equal to the

angle 0. Hence, if stand for the angle 0, r for the

radius, and s for the length of the a^rcAB, the mean
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curvature between A and B has the value 0/s, which, if

is measured in radians, is (21) equal to 1/s x s/r or to

1/r. Since A, B are any two points on the circle, its

curvature is uniform ; and consequently both the mean
curvature between any two points and the curvature at

any point are measured by the reciprocal of the radius.

39. The Curvature of any Plane Curve.—As the curv-

ature of a circle depends upon its radius only, a circle

can always be found whose curvature is the same as the

curvature of any given curve at any given point. That
circle whose curvature is equal to the curvature of a
given curve at a given point is called the circle of curva-

ture of the curve at that point. Its radius is called the

radius of curvature, and its diameter the diameter of
curvature. If p is the radius of curvature, the curvature

of the given curve at the given point is 1/p. If a circle

whose curvature is equal to that of the curve at the given

point, be drawn touching the curve at the given point,

the concavities of the two curves having the same aspect,

its centre is called the centre of curvature of the curve at

the given point ; and any chord of the circle through the

point of contact is called a chord oj curvature.

40. The only plane curve whose curvature is uniform

is clearly the circle. For every element or indefinitel}'^

small portion of such a curve coincides with an element

of a circle of constant radius.

41. Tortuosity.—In the case of paths (called tortuous

paths) not lying wholly in one plane, the nature of their
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curvature may most readily be seen by imagining them
to be polygons with an indefinitely large number of

indefinitely short sides. Then any two adjacent sides

must be in the same plane ; but the planes containing

pairs of adjacent sides are different at different parts of

the curve. Let AB, BC, CD be three sides of such a
polygon. Then AB and BC are in one plane, and BC
and CD are in one plane also ; but the plane containing

AB and BC is not the same as that containing BC and
CD. The osculating plane of such a path at any point

is the plane in which the portion of the path indefinitely

near that point lies. In other words, it is the plane in which
adjacent sides of the imaginary polygon lie. The osculat-

ing plane at B contains BA and BC, that at C contains CB
and CD. Hence it passes from the position in which it

contains AB and BC to that in which it contains BC
and CD by rotating about BC. Therefore the osculating

plane passes from its position at any one point of a curve

to its position at any other point by rotating about the

tangent to the curve. The amount of this rotation (i.e.,

the total angle through which the osculating plane rotates)

between any two points of a curve is the integral tortu-

osity between them. The integral tortuosity divided by
the distance of the points measured along the curve is

the mean tortuosity between them. And the tortuosity

at one of these points is the limiting value of the mean
tortuosity when the second point is moved up towards
the first. The consideration of tortuous paths is beyond
the scope of this book.

42. Speed.—The mean speed of a moving point, during
a given time, is the quotient of the length of its path
traversed in the time, by the time ; or, in other words,

the mean rate of motion in the path during the time. If
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s and s' are the initial and final distances (measured
along the path) of the moving point from a fixed point
in the path, t being the interval of time, the mean speed
is thus (s—s)/t. As the distance from the fixed point

may be either increasing or diminishing, the mean speed
is a quantity which has not magnitude merely, but also

sign. Such a quantity is called a scalar quantity.

In general, the mean speed has difierent values for

different intervals of time, and is said to be variable.

In special cases in which it has the same value, what-
ever the interval of time to which it applies, the point is

said to move with uniform speed. A point having such

a motion obviously traverses equal portions of its path in

equal times.

43. The instantaneous speed of a moving point (usually

spoken of as the speed simply) at a given instant is the

limiting value of the mean speed between that instant

and another, when the interval of time between them is

made indefinitel}^ small. We shall see later on (295)
that in an indefinitely short time a particle can traverse

only an indefinitely small portion of its path. Hence
the instantaneous speed of a particle has always a finite

value.

It is clear that the instantaneous speed, at any instant,

of a point whose speed is uniform, is equal to its mean
speed during any period of time.

The speed of a moving point is usually called its

velocity. To assist the beginner in keeping his ideas

clear, it is better to restrict the term velocity to a more
complex conception (92) to which it is also usually

applied.

44. A quantity which varies with time is called a

fluent, and the rate of its variation is called its fluxion
or its flux. Thus the distance s measured along the
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path of a moving point from a fixed point in the path is

a fluent; its speed is the fluxion or flux. When the

phrase " rate of change " is used without further speci-

fication, the rate of change with time or the fluxion of

the quantity under consideration is always meant. New-
ton denoted the fluxion by the symbol for the fluent

with a small dot above it. Thus his symbol for the

speed is s.

45. Measuremient of Speed.—We might choose any
concrete speed, as for instance that of a ray of light in
vacuo, as a unit. But if we keep to the units of length

and time selected above, our unit of speed is determined
by the definitions already given (42 and 43). For both the

mean and the instantaneous speeds of a moving point

were defined to be quotients of the value of a certain

length by that of a certain time. If, then, v is the

numerical value of the speed, s that of the length, and t that

of the time, we have v= s/t. If now s and t are both unity,

V must be unity also. Hence we have taken as unit of

speed that of a point moving at the rate of one unit of

length in one unit of time. Expressed in English units,

it may be one foot per second, one mile per hour, etc. ; in

French units, one centimetre per second, one kilometre

per hour, etc. The unit of speed is thus a derived unit,

like the units of surface and volume.

4G. Systems of Units.—The simple units (of length

and time so far as we have gone), together with the

units derived from them, constitute a system of units.

Thus we have the foot-second system, consisting, so far

as we have gone, of the foot, the second, the square foot,

the cubic foot, the foot-per-second. We may have also

the mile-hour system, the centimetre-second system, and
as many others as there are sets of simple units. For
scientific purposes the centimetre-second system is the

most useful.
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47. Dimensions of the Unit of Speed—li [V], [L], [T]
deDote the magnitudes of the units of speed, length, and
time respectively, in terms of which v, s, and t of the

formula v = s/t (45) are expressed, we have (15)

V oc 1/[F]; s a 1/[Z] ; t a ll[T].

Hence [F] oc [X]/[T]; i.e., the magnitude of the derived

unit of speed is directly proportional to the magnitude
of the unit of length, and inversely proportional to the

magnitude of the unit of time involved in it. The
dimensions of the unit of speed are thus [^][^]~'^.

48. If [ F], [ V] are the magnitudes of different derived

units of speed, and [L], [T], and [L'], [T] those of the

simple units involved in them respectively, we have

[F]:[F'] = [i]/[r]:[i']/[r],

[F]/[F']=[i]/[i']^[y]/[r].

If therefore the magnitude of any derived unit of speed

be expressed in terms of some other similarly derived

unit of speed, and if the magnitudes of the simple units

involved in the first be expressed in terms of those

of the simple units involved in the second, the magnitude
of the unit of speed thus expressed will be equal to the

ratio of the magnitude of the unit of length to that of

the unit of time.

49. If V and v' be numerical values of the same speed
in terms of units whose magnitudes are [F] and [F'],

then (15) v:v' = [V] : [F].

Hence, with the symbols of 48,

v:v' = [L]l[r]:[m[n
If therefore the numerical value of a speed be given in

terms of one set of units, its value can be determined in

terms of any other set.
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50. Exaiwples.

(1) A point moving in a circle of 40 ft. radius makes 4*5 revolu-

tions in 20 seconds. Show that the mean speed is 56"5... ft. per sec.

(2) A railway train runs from A to Z>, stopping at B and C. The
distances are : A to B, 20 miles ; B to C,5 miles ; C to Z>, 10 miles.

It goes from ^ to ^ in 30 min., from B to C in 10 min., and from

(7 to i> in 14 min. It remains 2 min. at B and 10 min, at C. Find

the mean speed (a) during the whole time, (6) between the times of

leaving A and (7, and (c) between the time of leaving B and that of

arriving at D.

Ans. (a) 0-53..., (6) 0-48..., (c) 0'44... mile per min.

(3) The distance (s feet, measured along the path) of a moving

point from a given point in its path, at any time (t seconds after

the instant chosen as zero) being given by the formula s= 4+ 5^,

show that the mean speed for any interval and the instantaneous

speed at any instant are both 5 ft. per sec. [To determine the

instantaneous speed find the value of {s' - s)l{t'
-

1) where t and t'

and therefore s and s' differ by indefinitely small quantities.]

(4) The distance s of Example 3 being represented by the formula

5=5^+6^^, show that the mean speed between the beginning of the

10th and the end of the 12th second is 131 ft. per sec, and that the

instantaneous speed at the end of the 10th second is 125 ft. per sec.

[To find the instantaneous speed at the end of t seconds, we have

s'-8=b{t'-t)+ Q{t'^-t'^).

Hence (s' - s)l{t' -t)= b + Q{t' + = 5 + 12^,

since t and t' are indefinitely nearly equal.]

(5) Compare the magnitudes of the foot-second and the mile-hour

units of speed.

The magnitudes of the units of length and time involved in these

units of speed are: [X]= l ft., [7']= 1 sec, [//']= 1 mile= 5280 ft.,

[7"] = 1 hour=3600 sec Hence (47) the magnitude of the ft.-sec

unit being [F] and that of the mile-hour unit being [F'] we have

[F] : [F']= [Z]/[r : [L%T']= l : |?^^.
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Hence 1ft. per sec. = mile per hour,
^ 5280 ^

Otherwise, without the intervention of formulae, thus :

1 ft. per sec.= mile per sec.^ 5280
^

mile per hour
5280 " 3600

3600 ., ,= mile per hour.
5280

^

(6) How many cm.-sec. units of speed are equivalent to 20 ft.-sec.

units 7

Ans. 609-594.

(7) Compare the centimetre per second with the mile per hour.

Ans. 1 mile per hour= 44*704 cm. per sec.

(8) Show that 1 kilometre per hour is equivalent to 27'7 cm.

per sec.

(9) A speed of 20 ft. per sec. being a derived unit, and 14 inches,

being the unit of length involved in it, find the unit of time.

Here (48) [ F]= 20 ft. per sec. and [X]= 14 in. = H ft. Hence, the

magnitudes of these units being both expressed in terms of the unit&

of the foot-second system,

[v]=[L]i[n

and [T] = {i;^[V] 14
-

12x20
Otherwise, without using formulae, thus :

Unit of speed= 20 ft. per sec.

= 20x 12 in. per sec.

20 X 12=—_—— units of length per sec.

14= 1 unit of length per sec.
"^ ^ 20x12

Hence Unit of time= sec.
20x12

(10) One cm. per sec. being the unit of speed of a derived system
and 1 min. the unit of time, show that 60 cm. is the unit of length.
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(11) Eeduce 25 ft. per miii. to cm. per sec.

The magnitudes of the units involved (49) are: [X]= 1 ft. = 30*4797

cm., [7^]= 1 min.=60 sec, [L']= l cm., [^'1 = 1 sec. respectively.

Hence, if v' is the numerical value in cm. per sec,

30-4797
25: v' = l :

60

Hence v'= 25x30-4797
^^^^

60
^

Otherwise, without using formulae, thus :

25 ft. per min. = 25 x 30*4797 cm. per min.

= 25 X 30*4797 cm. per 60 sec

25 X 30*4797

60
cm. per sec

(12) Eeduce 24 ft. per sec to yds. per min.

Ans. 480 yds. per min.

(13) In 40 cm. per sec, how many miles per hour ?

Ans. 0*8947...

(14) Find the value in kilometres per hour of 10 yds. per sec.

Ans. 32*918...

(15) Compare the speeds, 14 miles per hour and 14 yds. per min.

Ans. The former is 29*3 times the latter.

(16) One point traverses 50 ft. in 6 min., another 50 cm. in 6 sec.

Compare their mean speeds.

Ans. Their ratio is 0*50799...

51. Change of Speed.—The change of speed during a
given interval of time is the difference between its final

and its initial values.

52. Rate of Change of Speed.—The mean rate of
change of speed of a moving point during any given
time is the quotient of the change of speed by the time.

In general, the mean rate varies with the length of the

interval of time to which it applies, and is thus said to

be variable. In cases in which it has the same value,
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whatever the interval of time to which it applies, it is

said to be uniform.

53. The instantaneous rate of change of speed (called

usually the rate of change of speed simply), at a given
instant, is the limiting value of the mean rate between
that instant and another, when the interval of time
between them is made indefinitely small. We shall see

farther on (295) that the speed of a body cannot under-

go any sudden change. Hence the instantaneous rate of

change of speed of a body can never have an infinite

value.

In general, the instantaneous rate of change of speed
varies from instant to instant. In cases in which the

mean rate of change is uniform, the instantaneous rate is

clearly both the same at all instants and equal to the

mean rate for any interval.

54. Rate of change of speed may be either rate of
increase or rate of decrease, and may be thus either

positive or negative. Hence it is a quantity having
both magnitude and sign, i.e., a scalar quantity (42).

Rate of change of speed is usually called acceleration.

This term is also applied, however, to a more complex
conception, to which we shall restrict it, that beginners

may not be confused. It is desirable that a name should

be invented for the phrase " rate of change of speed."

Hayward has proposed the term quickening.

55. According to Newton's notation (44), a rate of

change of speed, being the fluxion of a speed, should be

written s. It is usually written s.

b(d. Measurement of Rate of Change of Speed.—The
definitions of rates of change of speed given above deter-

mine at once the unit to be employed in their measure-



30 KINEMATICS. [56

ment. Whether mean or instantaneous, uniform or

variable, they are quotients of a certain speed by a

certain time. If a be the value of the rate of change,

V that of the speed, and t that of the time, we have

a= vjt. If then v and t are both unity, a must be unity

also. Hence we have taken as our unit of rate of change

of speed that of a point whose speed is changing at the

rate of unit of speed per unit of time. The English unit

of the foot-second system is thus 1 ft.-per-sec. per sec;

that of the mile-hour system, 1 ml.-per-hour per hour.

Similarly, the French unit of the cm.-sec. system is 1

cm.-per-sec. per sec. The second " per second " is often

omitted ; but this mode of specifying the unit is apt to

be misleading.

57. Dimensions of Rate of Change of Speed.—We
have seen (56) that a = v/t. If now [A] denote the

magnitude of the unit of rate of change of speed, [V]

and [T] those of the units of speed and of time respec-

tively, we have (15)

a Oil/[A]; voil/[V]; t o: 1/[T]

Hence [A] a [V]/[n
But (47) [v] a imn
Hence [A] ex [L]l[Tf,

or [A] a [£][T]-\

i.e., the magnitude of the unit of rate of change of speed
is directly proportional to the magnitude of the unit of

length, and inversely proportional to the square of the

magnitude of the unit of time.

58. As in the case of speed (48), so also in that of rate

of change of speed, it may be shown that, if [A], [L], and
[T] are the magnitudes of the units of one derived system,
and [A'], [L'], [T] those of another similarly derived
system,

\A]/[A']^[Ly[L']-^[Tf/[rf;
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1

i.e., if the magnitudes of the units of rate of change of

speed, of length, and of time, of one system of derived

units, be expressed in terms of the magnitudes of the

corresponding units of another similarly derived system,

the magnitude of the unit of rate of change of speed will

be equal to the magnitude of the unit of length divided

by the square of the magnitude of the unit of time.

59. Uxamples.

(1) A point has at a given instant a speed of 4 ft. per sec; andj

after 8 sec, one of 20 ft. per sec Find (a) the integral change of

speed, and (6) the mean rate of change.

Ans. (a) 16 ft. per sec; (&) 2 ft.-per-sec per sec.

(2) If a point which moves in a curve traverse in t units of time

after zero of time, an arc whose length s= 2^+ 3^^ + 4^^, find (a) the

instantaneous speed, and (b) the instantaneous rate of change of

speed, at the end of the 5th second.

Ans. (a) 332 units of length per unit of time; {b) 126 units

of speed per unit of time.

(3) If the formula of Ex. 2 had been s=a/t+ bt^ (a and b being

constants), show that the instantaneous speed and rate of change

of speed at the end of t units of time would have been 2bt — ajfi

and 2{ajt^+ b) respectively.

(4) If the formula of Ex. 2 had been s= at+ bt^j show that the

rate of change of speed would have been uniform.

(5) Find the number expressing the uniform rate of change of

speed of a train which, 5 minutes after starting, is moving at the

rate of 40 mis. per hour.

Ans. 480 mls.-per-hour per hour.

(6) Find how many kilometre-hour units of rate of change of

speed are equivalent to 392 ft.-min. units.

The magnitudes of the units involved in these systems are : [X]

= 1 kilometre; [7^ = 1 hour; [L']= l ft. =0-00030... kilom., [r]=l
miu. = eV hour. Hence, if a be the equivalent required, we have.
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by 57, employing a formula similar to that of 49, viz.,

a:a'= [Z']/[rp:[L]/[rp,

a : 392= 0-0003x602: 1.

Hence a = 392 x 60^ x 0*003 kilom.-per-hour per hour.

Otherwise, without using formulae, thus : 392 ft.-miii. units of

rate of change of speed

= 392 ft.-per-min. per min.

= 392 X 0'0003 kilom.-per-min. per min.

= 392 X 0'0003 X 60 kilom.-per-hour per min.

= 392 X 0*0003 X 60^ kilom.-per-hour per hour.

(7) Compare the foot-sec. and the yd.-min. units of rate of change

of speed.

Ans. 1 ft.-sec. unit= 1,200 yd.-min. units.

(8) How many cm.-sec. units of rate of change of speed in 1 mile-

min. unit ?

Ans. 44-704....

(9) The rate of change of speed of a falling body (32*2 ft.-sec.

units) and 1 pole (5^ yds.) being the units of rate of change of

speed and of length respectively of a derived system, find the unit

of time. [See 58 and 50 (9).]

Ans. 0*7... sec.

(10) The unit of speed of a derived system being the speed of a

point in the earth's equator (the earth being supposed a sphere of

4,000 mis. radius), and the unit of time the month (30 days),

compare the unit of rate of change of speed with the ft.-sec. unit.

Ans. It is equal to "00059... ft.-sec. unit.

(11) Eeduce 101 metre-min. units of rate of change of speed to

cm.-sec. units.

Ans. 2*8... cm.-sec. units.

(12) Express {a) in cm.-sec. units, and (6) in kilom.-hour units, a

rate of change of speed of 90 ft.-per-sec. per sec.

Ans. (a) 2,743-17...; (6) 355,515-6....

60. Motion under Given Rates of Change of Speed.—
We have seen that the rate of change of speed of a point or
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a particle may be uniform or variable. Its value may
be the same at all instants of any interval of time, and
therefore at all points of the path occupied during
that time, or it may vary from point to point of the
path and therefore from instant to instant. And, when
the rate of change is variable, it may vary according to

different laws. For example, it may vary directly as the

distance of the moving point from a fixed point in its

path (the distance being measured along the path), or

inversely as this distance, or directly (or inversely) as

the square of this distance, and so on.

61. Case I.—The Rate ofChxmge ofSpeed being Zero.—
In this case the speed is uniform. Hence the instantane-

ous speed at any instant is equal to the mean speed
during any interval (43), and therefore to the quotient of

the length of path traversed in that time, by the time.

If therefore v is the speed, and s the length of path
traversed in t units of time, we have (42) v= s/ty and
therefore s = vt.

()2. Examples.

(1) A point has a unifomi speed of 10 ft. per sec. Find the

length of path traversed in 1 hour.

Ans. 6-8i mis.

(2) A point moves for I min. with uniform speed in a circle of

30 decimetres radius, traversing in that time an arc of 0*4 radian.

Find the speed.

Ans. 2 cm. per sec.

(3) Find the time required by a point moving with a uniform

speed of 40 cm. per sec. to traverse a path 20 metres long.

Ans. 50 sec.

63. Case II.—The Rate of Change of Speed being

Uniform.—In this case the instantaneous rate at any
instant is equal to the mean rate during any interval

c
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(53). Let v^, V be the initial and final values of the

speed of the moving point during the time t, a being
the rate of change of speed. Then a = (v— v^)/t, and
v= VQ-{-at. Hence the final speed is expressed in terms
of the initial speed, the rate of change of speed, and
the time.

64. As the speed increases uniformly with the time,

its value at the middle of the interval is the arithmetic

mean of its values at instants r seconds before, and r
seconds after, the middle of the interval. Its value at the

middle of the interval is therefore equal to the arithmetic

mean of its initial and final values, and also to the mean
speed during the interval. The mean speed is therefore

equal to

iK+(^o+ f*0] =
'yo+ Ja^-

Hence, if s denote the distance measured along the path
between the initial and final positions of the moving-

point.

Hence this distance also is expressed in terms of the

initial speed, the rate of change of speed, and the time.

65. Eliminating t between these expressions for v and
8 (63 and 64), we find

v- = v^^-\-2as.

Hence the final speed is expressed in terms of the initial

speed, the rate of change of speed, and the length of path

between the initial and final positions.

Q6. By means of the above equations, if the initial

position of a point moving in a given path, its initial

speed, and its uniform rate of change of speed be given,

its final position and its final speed after any interval

ot time can be determined.
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67. Examples.

(1) A railway train is moving with a speed of 20 mis. per hour,

and is increasing its speed uniformly at the rate of 10 mls.-per-hour

per hour. Find (a) its speed after 1^ hours, and (6) the distance

traversed in that time. [For (a)—Data : ^Jq= 20 mis. per hour ; «= 10

mls.-per-hour per hour; i= 1*5 hours. To be determiued : v. And
(63) v= VQ+ at. For (b)—Data: as above. To be determined: s.

And (64) s= VQt+^at-.]

Ans. (a) 35 mis. per hour; {b) 41j mis.

(2) A railway train, moving at 50 mis. per hour, has the brakes

put on, and its speed diminishes uniformly for 1 minute, when it is

found to have a speed of 20 mis. per hour. Find (a) its rate of

change of speed, and (6) the distance traversed in the time..

Ans. (a) —1,800 ml.-hour units; (6) /g ml.

(3) A point whose speed is initially 20 m, per sec, and is

diminishing at the uniform rate of 50 cm.-per-sec. per sec, moves

in its path until its speed is 120 m. per min. Find the length of

path between the initial and final positions. [Data: Vo= 20 m.

per sec; a= — 50 cm.-per-sec. per sec= —05 m.-per-sec per sec ;

<?=120 m. per min. = 2 m. per sec And (65) v^= Vo-+ 2 as.]

Ans. 396 m.

(4) A point has a uniform rate of increase of speed of 20 cm.-per-

sec. per sec. and an initial speed of 30 cm. per sec Find (a) the

speed after 16 sec; (6) the time required to traverse 300 cm.; (c) the

change of speed in traversing that distance.

Ans. (a) 350 cm. per sec; (6) (VT29-3)/2 sec; (c) 10(^129-3)
cm. per sec.

(5) If in Ex. (4) the speed be decreasing instead of increasing,

find (a) the distance from the starting point to the turning point,

(6) the distance from the starting point after 10 sec
;

(c) the length

of path traversed during the time in which the speed changes

to 60 cm. per sec.
;

(d) the time required by the moving point to

return to the starting point. [To find (a), note that the speed
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at the turning point is zero; and to find (o?), note that on the

return to the starting point the distance therefrom is zero.]

Ans. (a) 22-5 cm,; (b) 700 cm.; (c) 112*5 cm.; (d) 3 sec.

(6) A particle moves round a closed curve with a uniform rate of

change of speed. In the m^\ n^^, and p^^ seconds, it describes a, 6,

and c circuits respectively. Show that, the initial speed being zero,

a{n —p) + h{p - m) + c{m - n) = 0.

N.B.—The reader should solve the above problems also without

using formulae. Others of a similar kind will be found in 141.

68. Case III.—The Rate of Change of Speed Variable.

—A useful case in which the rate of change of speed

varies with the position of the moving point in its path
will be discussed farther on (164).
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CHAPTER III.

TRANSLATION :—DISPLACEMENTS, VELOCITIES,

ACCELERATIONS.

69. Displaceraents.—The change of position of a point,

considered without reference to the intermediate positions

occupied by it, is called its displacement. The displace-

ment in any time is thus completely determined, if we
have data by the aid of which the point may be brought
from its initial to its final position. Let
P^ and P^ be the initial and final posi-

tions of the point relative to 0. The
displacement is completely determined if

the direction and length of the straight

line PjPg ^^^ known. A displacement

is thus a quantity having both magni- ^
tude and direction.

70. Any such quantity is called a vector. It may be
completely represented by a straight line. For the

length of the line may be made proportional to the

magnitude of the vector, and its direction may be made
the same as that of the vector. As a line, however, may
represent either of two opposite directions, it is necessary

to indicate, in the case of any given representative line,

which of the two possible directions is that of the vector

which it represents. For this purpose an arrow-head is

frequently employed in diagrams, and in naming a line



38 KINEMATICS. [70

that letter is always placed first, which stands at the end
of the line from which the vector is directed. Thus a
displacement P^Pg DQGans one in the direction of the

straight line ^^^2 f^'oi^ P^ towards I\. When we speak
of a vector as being represented by a line, complete repre-

sentation as to both magnitude and direction is intended.

It should be noted that all lines which have the same
length and direction represent the same vector. It is not

necessary that a line intended to represent a vector

should be drawn from any particular point.

71. Change of the Point of lieference.—A displacement

being a change of position can be described only by
reference to some chosen point. As it is frequently

necessary to change the point of reference, the following-

propositions will be found useful.

72. Prop. I.—A change in the relative positions of two
points P and may be regarded as either a displacement

of P relative to or an equal and opposite displacement

of relative to P.—Let P^ and 0^ be the initial positions

of two moving points P and
(the point of refereuce is not
marked in the figure), and let

P9 and 0^ be their final positions.

From 0^ draw O^P^ equal to and
codirectional with 0,-,P,^. Then
PiP^ represents the displacement
of P relative to 0. From P^
draw PiO.^ equal to and codirec-

tional with P2O2' Then Ofi^ represents the displace-

ment of relative to P. Now, since Pfi^ is equal and
parallel to PgO^, PjP^ is equal and parallel to OiO^, and
they are drawn in opposite directions. Hence the above
proposition.

73. Prop. II.—Given the displacement of a point P
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relative to a point Q, and that of Q relative to a point 0;

to find the displacement of P relative to 0.—Let A and

B represent the given displacements of P and Q respec-

tively, and let 0^ P^ Q^, be the initial positions of 0, P,

Q. Draw P1P2 and Q1Q2 equal to and codirectional with
A and B respectively. Join Q1P2 and complete the

parallelogram Q^Pg.

P's final position relative to Q is given b}^ the line

QjPg. Whatever, then, Q's final position relative to

may be, P's must be distant from it by the length QjPg
and in the direction Q^P^. Now Q^ is Q's final position

relative to 0. Hence Pg is P's final position relative to

0, for Q.-^P^ is equal to and codirectional with Q^P.,. And
P^, P3 being P's initial and final positions relative to 0,

P^P.^ is its displacement relative to 0. Now P-^P.^ and
P^P^ represent P's displacement relative to Q and that of

Q relative to 0, respectively. Hence, if two sides of a

triangle, taken the same way round, represent the dis-

placements of P relative to Q and of Q relative to

respectively, the third side taken the opposite way round
will represent the displacement of P relative to 0.

74. Prop. III.—Given the displacements of P and Q
relative to 0; to find that ofP relative to Q.—Let A and B
represent the respective given displacements. Then (72),

if C be drawn equal to B and in the opposite direction,

A and C will be the displacements of P relative to and
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of relative to Q, respectively. From any point D draw
DE equal to and codirectional with A. From E draw

EF equal to and codirectional with G. Then (73) DF
will represent the displacement of P relative to Q.

Hence, if two sides of a triangle taken the same way
round represent the displacement of P relative to 0, and
one equal and opposite to that of Q relative to 0, respec-

tively, the third side, taken the opposite way round, will

represent the displacement of P relative to Q.

In the special case in which A and B have the same
direction the point F is on the line DE, and it is obvious

that the displacement of P relative to Q is equal to

that of P relative to minus that of Q relative to 0.

75. Examples.

(1) Two railway trains run on parallel roads, the one 5 miles

northwards, the other 6 miles southwards. Find the displacement

of the latter relative to the former.

Ans. 11 miles southwards.

(2) Two trains run, the one north-eastwards a distance of 20

miles, the other south-eastwards through the same distance. Find

the displacement of the former relative to the latter.

Ans. 28*28... miles in a northerly direction.

(3) ^'s displacement relative to B is 10 ft. westward. C"s dis-

placement relative to B is 20 ft. in a direction 30° west of south.

Show that ^'s displacement relative to C is 17*32... ft. northward.

(4) The point A moves a distance of 3 ft. in a given direction,

relatively to a point 0. Another point B moves, relatively to 0, 4
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ft. in a direction at right angles to the direction of A's displacement.

Find the displacement of A relative to B.

Ans. 5 ft. in a direction inclined sin~H to that of ^'s displace-

ment.

(5) Two trains A and B start from the same point and run, A 10

miles northwards, and B 8 miles north-eastwards. Find jB's dis-

placement relative to A.

Ans. 7-13183 miles in a direction 37° 30'-96 S. of E.

(6) A's displacement relative to B, is 13 miles southwards, and

relative to C, 4 miles westwards. C is initially 10 miles south of B.

Find (7's final position relative to B.

Ans. Distance 23*34... miles ; direction 9°51''9 E. of S.

(7) Two points move in the circumferences of equal circles

(radius= 2 ft.) which are in contact. Both start from the point of

contact. The one moves through a semicircle, the other through a

quadrant. Find the displacement of either relative to the other.

Ans. 2 x^lO ft. in a direction inclined tan~^3 to the common
tangent.

(8) Find the displacement of the end of the minute hand of a

clock relative to the end of the hour hand (both minute and horn-

hands being 6 inches in length) between 3 and 3%30 o'clock.

Ans. 6(6 - 2 cos 15° - 4 sin 15°)^ in. ; direction inclined to the final

<lirection of minute hand, sin~^{2 sin-7°'5/(6 — 2 cos 15° - 4 sin 15°)^}

.

(9) A wheel of 1 ft. radius rolls on a horizontal road turning

through an angle of 7r/2 radians. Find the displacement of the point

of the wheel initially in contact with the road relative to the point

diametrically opposite to it.

Ans. 2 ^J2 ft. ; direction inclined 7r/4 radians to the vertical.

76. Composition ofSuccessive Displacements.—A point

P undergoes given successive displacements, relative to

the same point ; it is required to determine the resulting

(or resultant) displacement.
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Case I.—Two Bisplacements.^-Let A, B represent the

displacements, and let P^ be the initial position of the

point. Draw P^P^ equal to and codirectional with A,
and from P^ draw PJ^.^ equal to and codirectional with

B. Join P^Py As the point is displaced first from P^
to P^, and then from P., to P^ P^ is its final position, and
P^P^^ is its resultant displacement. Complete the paral-

lelogram i^P,. Then P^p = P^P^= 5; and ijP^ = PJP,=A .

Hence the point P reaches the same final position what-
ever the order in which it undergoes the displacements

A and B.

P^P^ is the third side of the triangles P^P,P.,, P^vP.,,

whose other sides P1P2 and P^P.^ in the one triangle, and

PjP and ^Pg in the other, represent the displacements A
and B respectively. Hence, if two sides of a triangle

taken the same way round represent the two successive

displacements of a moving point, the third side taken
the opposite way round will represent the resultant

displacement.

Also P^P.^ is the diagonal of the parallelogram pP„
through the point of intersection of the adjacent sides

PyP^j Pi2^, which represent the two successive displace-

ments A and B. Hence, if two successive displacements

of a point be represented by two adjacent sides of a
parallelogram, taken opposite ways round, the diagonal

of the parallelogram through their point of intersection

will represent the resultant displacement.

Case II.—More than Two Displacements.—Let A, B,

represent the successive displacements, P^ being the
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initial position of the moving point. Draw P^P.^, ^2^3-
P3P4 equal to and codirectional with A,B,&nd G respec-

tively. Join PjP^. Then P^ being the final position of

the moving point, P1P4 is the resultant displacement.

The same construction is applicable to any number of
displacements. If A, B, C, etc., are all in one plane^

P^P^P^P^... is a plane polygon; if not, it is a gauche
polygon.

It is clear that the same point P^ is reached in what-
ever order the displacements occur. For, if the parallelo-

gram P2P4 be completed, and then the parallelograms

29jP„, p^P^, and p^Po, it follows from the equality and
parallelism of the opposite sides of parallelograms that

the line J).-^^ will complete the parallelogram ]^JP^, and
that the six sets of displacements thus laid down, by
which P4 may be reached, are the displacements A, B,

C taken in all possible orders. And the same con-

struction may be made whatever the number of dis

placements.

Hence, if any number of successive displacements of a

moving point, in any directions whatever, be represented

by n — 1 of the sides of a polygon, taken the same way
round, the resultant displacement will be represented by
the n^^ side taken the opposite way round.
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77. It follows from the last proposition that a given
displacement may be resolved into any number of succes-

sive displacements, provided these displacements can be
represented hy n— 1 of the sides of a polygon, taken
the same way round, by the n^^ side of which, taken the

opposite way round, the given displacement is represented.

In the special case in which the successive displacements

have directions parallel to the given displacement, it is

clear that their algebraic sum must be equal to the given
displacement.

78. Composition of Simultaneous Displacements.'—

A

point undergoes simultaneously, given displacements

relative to the same point; it is required to deter-

mine the resultant displacement. Simultaneous dis-

placements of a point are usually called component
displacements.

Let A, By 0, etc., be the component displacements, and
let each of them (77) be resolved into oi equal successive

displacements in its own direction. < The magnitudes of

these displacements will be A/n, B/n, C/n, etc., respec-

tively. Then (76) the same final position will be reached

whether the point undergo successively the displacements

A, B, G, etc., or undergo, n times, the successive displace-

ments Ajn, B/n, C/n, etc. But if n is indefinitely great

and therefore A/n, etc., indefinitely small, the successive

occurrence of the displacements A/n, Bjn, C/n, etc., n times,

is the same as the simultaneous occurrence of the dis-

placements A, B, C, etc. Hence the same final position

is reached when A, B, C, etc., occur simultaneously as

when they occur successively. Consequently the pro-

positions established in 76 for successive displacements

apply also to simultaneous or component displace-

ments. These propositions when formulated for simul-

taneous displacements are usually called the triangle,

the parallelogram and the polygon, of displace-

ments.
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79. Resolution ofDisplacements.—A displacement and
two straight lines being given, to find two displacements

parallel to these lines, of which the given displacement

is the resultant.—Let OA be the

given displacement, B and G the /
given lines. From and A /

draw lines parallel to 5 and '

G respectively, meeting in D.

Then, by 78, the displacement ^

OA is the resultant of the com-
ponent displacements OD and i)^, and these displacements

are parallel to the given lines.

80. When the components, in given directions, of a

given displacement are thus determined, the given dis-

placement is said to be resolved into components in those

directions.

Displacements are frequently resolved in directions

which are at right angles to one another, in which case

the components are called rectangular components.
When we speak of tlte component of a displacement
in a given direction, we mean its rectangular com-
ponent in that direction. It is clear that the rectangular

component of a displacement in any direction is the
(orthogonal) projection of the displacement on any
straight line in that direction.

81. The component (rectangular) ofa given displacement
in a plane parallel to any given plane may also be found.

OA being the given displacement, draw from
A a line AP perpendicular to the given plane,

and from a line OP perpendicular to ^P
and meetinoc it in P. OP is a rectangular

component of OA, and it is in a plane

parallel to the given plane. It is clearly

equal to the projection (orthogonal) of OA
on the given plane.
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82. The components of a given displacement, in three

directions which are not all in the

same plane, may also be found.—Let

OA be the given displacement, and
OB, 00, OD lines having the given
directions. From A draw AE parallel

to OD and meeting the plane of OB
and OC in E. Join OE, and through
E draw ^'i^ parallel to OCand meeting
OB in F. Then (78) OE and EA are

components of OA; and OF and FE
are components of OE. Hence OF, FE, and EA are

components of OA ; and they are in the given directions.

The special case, in which each of the three directions

OB, 00, OD is at right angles to the plane of the other

two, is of great importance. In this case the components
are adjacent edges of a rectangular parallelopiped of

which OA is the diagonal through their intersection.

Fig.l

83. The resultant of two given displacements is equal

to the algebraic sum of their components in its direction.

^
Let OA, AB be the given dis-

placements and OB therefore the

resultant displacement. From
A draw AC perpendicular to

OB. Then 00 and CB are the

components in the direction of

OB, of OA and AB respectivel}'.

In Fig. 1, 'the components OC
and CB have the same direction,

B and we have also OB=OC-\- CB.
In Fig. 2, OC and CB have oppo-

'

site directions, and we have also

OC. Hence the displacement OB is equal

to the algebraic sum of the components OC and CB,
in the direction of OB, of the displacements OA and
AB.

Fig.

2

OB= CB
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84. The component in a given direction, of the result-

ant of any number of displacements in any directions

whatever, is equal to the algebraic sum of their compon-
ents in the same direction. Let OA, AB, BC, CD, BE

represent the given displacements. Then (78) OE repre-

sents their resultant. Now the })rojection of OE on any
line MP is equal (8) to the algebraic sum of the projections

of OA, AB, BC, CD, DE. Hence (80) the above proposi-

tion is proved.

The proposition of 83 is clearly a special case of the
above proposition.

85. Trigonometrical Expression for the Resultant.—
The magnitude and inclination of component displace-

ments being given, to find expressions for the magnitude
and direction of the resultant.

First, ivhen there are two given coiDiponents.—Let A
and B be the two components, their magnitudes being d^

and d^y and their inclination 0. 6 may be an acute angle

(Fig. i) or an obtuse angle (Fig 2). Let P^ be the initial

position of the point. Draw P^P^ and Pc^P^ equal to and
codirectional with A and B. Then (78) P^P.^ is the

resultant. Produce P^P^ to 0. Then OP,_P.^ is the

angle 6. From P^ draw P^Q perpendicular to Pfi.
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To determine the magnitude of the resultant, we have
from Geometry

(Fig. 1) P,P3^ = P,P/+P,P/+2P,P,.P,Q,
(Fig. 2) 1\P.^ = F^P^^+P,P^^-2F,P,.P^Q.

Now in Fig. 1

P,Q = P,P,eme,
and in Fig. 2

F^Q = P^P^cos (tt- 0) = - P^PgCOS 0.

Hence in both cases

P^P^^ = P^P^J+ PJP,^+ 2P,P, . P,P3COs 0,

and, writing R for P^P.^ and d^, d,^ for the components,

R^ = d^^-{-d^J^-2d^dfo^6.

x e

To determine the direction of the resultant, we may
find its inclination to one or other of the components,
either the angle P^ which we may call a, or the angle

P^PJP^ which we may call ^8. For this purpose we have,

from Trigonometry,

sin P^: sin P^P^P.^= P^P^: P^P^.

Now in both the above cases the angle P^PJP^ is equal

to (tt— O). Hence

sin a : sin = c?„ : R,

and sin a=^ sin 6.
Jti
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Similarly sin /5= ^ sin 0.
It

It follows that the displacement jR has in the directions

inclined a and ^ to its direction respectively, components
whose magnitudes are

cZ^ = i2sin^/sin(a4-/S),

c?2 =R sin a/sin (a+ /3).

86. Of these general results, the following are import-

ant special cases.*

Case I.—The displacements equal. Let both be called cL

Then R^= 2d\l -f cos 6) = U^co^^{ei2).

Hence R= 2d cos (0/2).

A

1

• d . ^ d sin 6 . 6
Also sm a = -^ sin 6 =— ^^ = sm ^.

It 2d cos (6/2) 2

Hence a= 0/2. Similarly ^= 0/2.

CaseII.—Th.Q displacements equal and their inclina-

tion 120°. Then, by Case I.,

E = 2dcos60° = d,

and a = /3 = 60\

Case III.—The displacements in the same direction,

i.e., = 0. Hence cos = 1.

Therefore R^= d^^+ d^ 4- 2d^d^,

and R = d^-\-d^.

Case lY.—The displacements in opposite directions, i.e.,

= 180°. Hence cos0=-l.
Therefore R^ = d^^+ d,J - 2d^d^,

and R= d^— d.^

Displacements in opposite directions being considered

of opposite sign, Cases III. and IV. may be generalized

* The reader should obtain the results of these special cases directly.

D
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thus : The resultant of component displacements in the
same straight line is their algebraic sum.

Case V.—The displacements at right angles to one
another, i.e., = 90°. Hence cos = and sin = 1.

Therefore m= d^+ d^,

and R= id^^-{-d,^)K

Also sin a = dJR,
and sin /3 = dJR.

In this case a+ /3= 90°, and therefore sin /3 = cos a.

Hence tan a = cZ^cZj. Hence also the component (rect-

angular) of a displacement ii in a direction inclined at

the angle a to the direction of R is equal to R cos a.

87. Secondly, lulien there are more than tivo given
components.—-The magnitudes and directions of three or

more displacements being given, expressions may be
found for the magnitude and direction of the resultant

by finding, first, the resultant of any two, then the re-

sultant of this first resultant with a third, then the
resultant of this second resultant with a fourth, and so

on, until all the component displacements have been
compounded.

88. An important special case of 87 is the composition
of three displacements, the direction of each of which is

perpendicular to the plane of the other two. Let OA,
OB, 00 be the three displacements, the angles AOB,
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AOG, and BOG being right angles. Complete the rect-

angle AB and draw the diagonal OD. Then 00, being
at right angles to OA and OB, is also at right angles to

OB. Complete the rectangle CD and join OE. Then
OD is the resultant of OA and OB, and OE that of OD
and OC. OE therefore is the resultant of all three. Now,
by Geometry, OE^ = OA^+ OB'^-{-OC-. Hence, calling

the resultant R, and the components d^, d.„ d^, we have

The direction of OE is known, if either the angles

AOD and DOE (0 and x), or two of the angles AOE^
BOE, GOE (a, /8, y) are known. These angles may be

expressed in terms of the magnitudes of the given dis-

placements. For we have

cos = djOD = dj{d,^ -}- f?,/)i,

cos X= OD/OE= {d^^ -{- d.f)^IR,

cos a = dJR,
cos P = djR,

cos y= djR.

89. It follows that the components d^, d^, d^, into which
a given displacement R may be resolved, in three direc-

tions which are at right angles to one another and are

inclined to the direction of R at the angles a, /3, y, are

d^ =R cos a; d.^=R cos 0; d.^=R cosy.

90. Analytical Expression for the Resultant of any
number of component displacements. Convenient expres-

sions for the magnitude and direction of the resultant of

any number of component displacements, may be obtained

by resolving the given components in rectangular direc-

tions which are the same for all, adding the components
in these directions, and finding the resultant by 86 (V.)

or 88.
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First, let the given displacements he all in one plane.

—Let d^, d^y d^, etc., be the given displacements. Take
two lines Ox, Oy at right angles to one another in the

plane of d^, d^, etc. Let the inclinations of d^, d^, etc.,

to Ox be a^, a^, etc. Then the displacements d^ d^, etc.,

have, in the direction of the x axis, components c^^cos a^,

d,/iosa.-,, etc., and, in the direction of the y axis, com-
ponents d^sin a^, c^g^in a^, etc. Hence, 86 (III.), we have
in the direction of the x axis a resultant displacement

equal to d^cos a^^-]- d^cos a^-^ etc., which may be written

l^d cos a ; and, in the direction of the y axis, a resultant

displacement equal to cZjSinaj+ cZgSina^-f etc., which may
be written 2cZ sin a. Ox and Oy being at right angles,

the resultant of these resultants is, 86 (V.),

R= [(Zd cos a)2+ {Id sin a)^]^

The inclination of this resultant to the x axis is

determined by the equation

tan 6= (Ed sin a)/(Ed cos a).

In adding together the components of the given dis-

placements in the x and y axes respectively, we have
assumed that the displacements are all in such directions

as to give components in the directions of Ox, Oy respec-

tively. If the directions of any are such as to give

components in the directions xO or yO respectively,

they must be (86, IV.) considered as negative, in deter-

mining the resultant displacements in these axes. Thus
Ed cos a, Ed sin a are short expressions for the algebraic
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sums of all components of the form d cos a, d sin a re-

spectively.

SecondZy, let the given components have any direc-

tions vjhatever.—Take three rectangular axes, Ox, Oy, Oz,

and let the inclinations of the displacements d^, d^, etc.,

to the X, y, z axes, be a^, /3^, y^ a^, /S^, y^, etc., respectively.

Then the components of d^, cZg, etc., in the direction of

the X axis, are cZ^cos a^, d.fos a.,, etc., and their resultant is

^d cos a. Similarly, the resultant of the component dis-

placements in the y and z axes are Hd cos ^8, Hd cos y
respectively. Hence (88), if R is the magnitude of the

resultant,

B=:{(I.d cos ay'-h&l cos fif+ (ld cos y)2}*

Also, if the direction cosines of the resultant with reference

to the X, y, z axes, are X, /x, v respectively, we have

\ = {^d cos a)/R; iui = (Id cos P)/R; v = {1dcosy)/R.

91. Examples.

(1) ABCD is a quadrilateral. Show that, if AC is produced to JS,

and CB made equal to AC, the resultant of component displace-

ments represented by AC, DB, AD, and BC will be represented

by AE.

(2) ABCD is a parallelogram. B is the middle point of AB.

Find the components, in the directions of ABsmd AD,oia, displace-

ment which has the direction and half the magnitude of the

resultant of component displacements represented by ^C and AD.

Ans. ^^and AD.

(3) The resultant of two equal displacements of magnitude, a,

and inclined 60°, is equal to that of a and 2a inclined 120°.

(4) Two component displacements are represented by two chords

of a circle drawn from a point F in its circumference and perpen-

dicular to one another. Show that the resultant is represented by

the diameter through the point.
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(5) POPy and QOQ^ are two perpendicular chords of a circle,

whose centre is C. Show that the resultant of four component

displacements represented by OP, OP^, OQ, OQ^, has the direction

oi OC and twice its magnitude.

(6) The resultant D of two displacements, c^^ and c/g^ i^ perpen-

dicular to d^. Find the resultant of displacements c/i/2 and d^,

their inclination being the same as that of d^ and d^.

Ans. o?i/2 in a direction inclined tan~^(Z>/o?2) to that of -c^g.

(7) A point undergoes two component displacements, 60 ft.

W. 30° S., and 30 ft. N. Find the resultant.

Ans. 51-9... ft. W.

(8) Show that three component displacements whose magnitudes

are 1, 2, 3, and whose directions are represented by the sides of an

equilateral triangle, taken the same way rouod, have a resultant

whose magnitude is J^.

(9) A point undergoes three component displacements, 40 yds.

N. 60° E., 50 yds. S., and 60 yds. W. 30° N. Find the resultant.

Ans. 10 v/3 yds. W.

(10) A ship is carried by wind 4 mis. N., by her screw 8 mis.

N. 15° W., and by a current 3 mis. E. 15° N. Find her resultant

displacement in a north-easterly direction.

Ans. 9-4265 mis.

(11) A boat is headed directly across a river flowing from north

to south, and reaches a point from which the starting point is found

to bear N. 30° W., and is known to be at a distance of 400 ft. How
far has the boat been carried by the current, and what distance

would it have made in still water 1

Ans. 346"41... and 200 ft. respectively.

(12) To an observer in a balloon his starting point bears N. 20° E.,

and is depressed 30° below the horizontal plane; while a place

known to be on the same level as the starting point and 10 mis.

from it, is seen to be vertically below him. Find the component

displacements of the balloon in southerly, westerly, and upward

directions.

Ans. 9'39,.., 3 •42,.., and 5 '77... mis. respectively.
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92. Velocity.—The 7)iean velocity^ of a moving point

during a given time is a quantity whose direction is that

of the displacement produced during the time, and whose
magnitude is the quotient of the magnitude of the dis-

placement by the time. Thus, if a point move in the

path A from P^ to P^ in the time t, its displacement in

that time is the straight line P^P^, the direction of its

mean velocity is the direction of P^P^, and the magnitude
of its mean velocity is P^Pjt.

In general the mean velocity of a point varies with the

interval of time to which it applies. Thus, if in a time t'

the point moves from P^ to Pg, the direction of its mean
velocity during t' is that of P^Py and the magnitude is

PJPJt. In the special case in which a point moves so

that its mean velocity changes neither in magnitude nor
in direction, it is said to move with uniform velocity. In

that case its path must be a straight line. For, wherever
P^ and P3 may be, P^P^ and Pj-Pg must have the same
direction. It must also obviously be moving with uniform
speed.

It will be seen that a point whose speed is uniform has

not necessarily a uniform velocity. The speed is uniform
if

arc P,P2/^= arc P.Pg/^'.

But the velocity is not uniform, unless the chords PjP..

and P2P3 have the same direction, and their quotients by
t and t' respectively, the same magnitude.

* The term mean velocity is employed by most writers to denote
what we have called (42) mean speed.
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93. The instantaneous velocity at a given instant

(usually called velocity simply) is a queintity whose
inao^nitude and direction are the limitinor maofnitude and
direction of the mean velocity between that instant and
another when the interval of time between them is made
indefinitely small.

As bodies are found to require in all cases a finite time
to traverse a finite distance, the instantaneous velocity of

a body has always a finite value.

When the interval of time t (92) is made indefinitely

small, Pg is indefinitely near P^, and the chord P^P^
coincides with the arc P^P.^. Hence the direction of the

instantaneous velocity at a given instant is that of the

tangent to the path at the point occupied by the moving
point at that instant ; and its magnitude is equal to the

instantaneous speed (43) of the point at that instant.

Velocity, having both magnitude and direction, is thus,

like displacement, a vector (70).

94. Measurement of Velocity.—The specification of a

velocity involves specification of both magnitude and
direction. The direction may be described in terms of

the unit of plane angle (21). The magnitude, being the

quotient of a distance by an interval of time, is a quantity

of the same kind as a speed (42), and may therefore be
measured in terms of the unit of speed (45). A unit of

speed is thus also a unit of velocity; and the results

of 47-49 apply to units of velocity as well as to units of

speed.

95. Examples.

(1) A point (see 91, Ex. 7) moves in a straight line from A to B,

60 ft., W. 30° S., in 10 sec, and thence in a straight line to C, 30

ft. N., in 20 sec. Find (a) the mean speed, and (b) the mean
velocity during the whole time.

Ans. (a) 3 ft. per sec; (b) 1*73,.. ft. per sec, W.
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(2) A point moving with uniform speed in a circular path passes

from one end of a diameter to the other in 10 sec. The radius

being 30 cm., find (a) the mean speed, (6) the mean velocity, and

(c) the instantaneous velocity at any instant.

Ans. {a) 9'4... cm. per sec; (6) 6 cm. per sec. in the direction of

the given diameter; (c) 9'4... cm. per sec. in the direction of the

tangent at the point occupied by the moving point at the chosen

instant.

(3) A man 6 ft. high is walking at the rate of 4 mis. per houi-

directly away from a lamp-post 10 ft. high. Find the magnitude of

the velocity of the extremity of his shadow.

Ans. 10 mis. per hour.

96. Change of the Point of Reference.—Velocity, being
defined in terms of displacement, can be specified only by
reference to some chosen point, which point of reference

it is frequently desirable to change.

Since the direction and magnitude of a velocity are

the direction and magnitude of a displacement, viz.,

either one which actually occurs in a unit of time, or

one which would occur in that time were the velocity

not variable, the propositions established in 71-74 for

displacements apply also to velocities. Hence,

(1) The velocity of one point relative to another is

equal and opposite to the velocity of the second relative

to the first.

(2) If two sides of a triangle, taken the same way
round, represent the velocities of P relative to Q, and
of Q relative to respectively, the third side, taken
the opposite way round, will represent the velocit}^ of

P relative to 0.

(3) If two sides of a triangle, taken the same way
round, represent, the first the velocity of P relative to

0, and the second a velocity equal and opposite to that
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of Q relative to 0, the third side, taken the opposite way
round, will represent the velocity of P relative to Q.

In the special case in which the velocities of P and Q
relative to have the same direction, the velocity of P
relative to Q will be equal to the difference of those of

P relative to and of Q relative to 0.

97. Examples.

(1) A is moving with velocity 1' in a north-easterly direction, B
with an equal velocity in a direction 15° east of south. Show that

A'a velocity relative to B has a magnitude V ^3 and is in a direc-

tion K 15° E.

(2) Two points are moving with equal uniform speed v, the one

in a circle of radius r, the other in a tangent to the circle. Both

start at the same instant in the same direction from the point of

contact of their paths. Find their relative velocity after t units

of time.

Ans. 2v sin — , in a direction inclined to the tangent at an angle
2,.' o «

vt

I

i(-?)-

(3) One railway train is running at 20 mis. per hour in a northerly

direction. Another running at half the speed appears to a passenger

in the former to be running at 25 mis. per hour. Find the direction

of the velocity of the latter,

Ans. 71° 47''4 W. or E. of N.

(4) To a person travelling at 8 mis. an hour along a road tending

west, the wind appeared to come from the N.W. On his standing

still, it seemed to shift 5° to the north. Find its velocity.

Ans. 64-905 mis. per hour S. 40° E.

(5) A man walks at the rate of 4 mis. per hour in a shower of

rain. If the drops fall vertically with a speed of 200 ft. per sec. in

what direction will they seem to him to fall ?

Ans. In a direction inclined 1° 40''8... to the vertical.
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(6) Two candles, A and B, each 1 ft. long and requiring 4 and 6

hours respectively to burn out, stand vertically at a distance of 1

ft. The shadow of B falls on a vertical wall at a distance of 10 ft.

from B. Find the speed of the end of the shadow.

Ans. 8 inches per hour.

(7) Two equal circles touch each other. Two moving points start in

opposite directions from the point of contact and move on the circles

with equal uniform speeds. Prove that the path of each, relative

to the other, will be a circle whose radius is equal to the diameter

of either of the first circles.

98. Composition of Velocities.—A point has two or

more component velocities ; it is required to find its

resultant velocity.

As in 96, it may be shown that the propositions proved
in 78 to be applicable to displacements are applicable

also to velocities. Hence

(1) If two sides of a triangle, taken the same way
round, represent two component velocities, the third side,

taken the opposite way round, will represent the resul-

tant velocity. This proposition is known as the triangle

of velocities.

(2) If two component velocities be represented by two
adjacent sides of a parallelogram taken opposite ways
round, the diagonal of the parallelogram through their

point of intersection will represent their resultant. This
proposition is known as the parallelogram of velocities.

(3) If any number of component velocities be repre-

sented by 71— 1 of the sides of a polygon, taken
the same way round, their resultant will be represented

by the -y^*^ side, taken the opposite way round. This

proposition is known as the polygon of velocities.

99. Resolution of Velocities.—It follows also that

velocities may be resolved into components in the same
manner as displacements (see 79-84).
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100. From the above propositions (98) there may be

deduced trigonometrical and analytical expressions for

the magnitude and direction of a resultant velocity in

terms of the magnitudes and inclinations of the compon-
ents, just as in the case of displacements. All the formulae

of 85-90 hold if we take d^ and d^ to represent component
velocities and R to represent the resultant velocity.

101. In the important case in which the position of a

moving point is specified by reference to fixed rectangular

axes, Ox, Oy, Oz, the components of the instantaneous

velocity of the moving point in the directions of the x, y,

and z axes are (93) equal to the rates of change of the

X, y, and z co-ordinates. The}^ are thus denoted by x, y, z.

102. JExamples.

(1) A point has three component velocities, A, B, and C in one

plane. Their magnitudes are 4, 5, and 6 respectively, and their

directions are such that A is inclined 30° to B, and C 60° to B and
90° to A. Find (a) the resultant of A and B, (6) the resultant of

all three, and (c) the component of the resultant in the direction

of ^.

Ans. (a) (41+20^/3)^ inclined to A at sin-i—
^_^^^ ; (6)

(107 + 20 V3)i inclined to C at tan-i?^^t^^
;

(c) 8+ 2 J3.

(2) A boat's crew row 3^ mis. down a river and back again in

1 hour 40 min. If the river have a current of 2 mis. per hour, find

the rate at which the crew would row in still water.

Ans. 5 mis. per hour,

(3) A river 1 ml. broad is running at the rate of 4 mis. per hour
;

and a steamer which can make 8 mis. per hour in still water is to go

straight across. In what direction must she be steered ?

Ans. At an angle of 60° to the river bank.

(4) A ship has a north-easterly velocity of 12 knots an hour.
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rind the magnitude of her velocity (a) in an easterly direction,

(6) in a direction 15° W. of N.

Ans. (a) 6 /^/S, and (6) 6, knots per hour,

(5) From a ship steaming east at 10 mis. an hour a shot is to be

fired so as to strike an object which bears N.E. If the gun,

properly elevated, can give the shot a mean horizontal velocity of 88

ft. per sec, towards what point of the compass must it be directed ?

Ans. N. 38° 13'-9... E.

103. Moment of a Velocity.—The moment of the

velocity of a moving point about a given fixed point

(24) is the product of the magnitude of the velocity into

the perpendicular from the given point on a line through
the position of the moving point at the instant under
consideration, and in the direction of its motion.--Let P
be the position of the moving point at the instant under
consideration, A that of the fixed

point. Let PC be the direction of

the velocity, and v its magnitude.
Let p be the length of the perpen-
dicular AB from A on PC. Then
the moment of v about A is pv. If

PC represents the velocity in mag-
nitude as well as direction, the magnitude of the moment
of the velocity is evidently represented by twice the area

of the triangle PA C.

If the moving point have a velocity represented by CP
instead of PC, the moment of its velocity about A will be

of the same magnitude. To distinguish between the

equal moments of velocities represented by PC and by
CP, they are considered to be of opposite sign. If the

motion of the moving point is such that the radius vector

AP moves counter-clockwise (i.e., in the opposite direc-

tion to that of the hands of a clock), the moment of its

velocity is considered to be positive. If its motion is

such that the radius vector moves clockwise, the moment
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of its velocity is considered to be negative. Thus the

moment of the velocity PC is —])V\ that of the velocity

CP would be -\-pv.

104. The moment of the velocity of a moving point

about a given line or axis, fixed in space (24), is the

moment of the component of the velocity

in a plane perpendicular to the given line

about the point of intersection of that

plane with the given line. If P is the

position of the moving point at the instant

under consideration, V its velocity, OA
the given line, v the component of F in a
plane perpendicular to OA, A the inter-

section of OA with that plane, and AB (length =_p) the

perpendicular from A on v, the moment of V about OA
is the product fv. The same convention of signs is em-
ployed as in 103.

105. The algebraic sum of the moments of two com-
ponent velocities about any point in their plane is equal

to the moment of their resultant about the same point.

—

Let OA, OB be two component velocities whose resultant

is 00, and P any point in their plane, either (Fig. 1)

outside or (Fig. 2) inside the angle between the resultant

and either of the components. Then, by a familiar

geometrical proposition,* the sum of the triangles OAP
* If a point P he taken in the plane of a parallelogram OACJB,

and lines drawn from it to the angular points, the area of the
triangle OCF is equal to the sum or the difference of the areas of

the triangles OAF, OBP, according as these triangles are on the
same side or on opposite sides of OP. For

area 0PC=aire3i 0J(7+area ^P(7±area OAP;
and, since the base OB of the triangle OBP is equal and parallel to

the base AC oi the triangles OAC and A PC, and the altitude of

OBP equal to the sum of the altitudes of OA C and A PC,

area OBP =Siresi OJC+area A PC.
Hence, area 0P(7=area 0>SP±area OAP.
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and OBP in Fig. 1, and their difference in Fig. 2, is equal

to the triangle OPC. But these triangles are propor-

tional to the moments of the velocities OA, OB, OC

Fig.l Fig.2

respectively. And these moments have, in the case of

Fig. 1, the same sign, and in that of Fig. 2, opposite signs.

Hence the algebraic sum of the moments of OA and OB
is equal to the moment of 00.

The cases in which the point P is on the line OA or

the line 00 may be left to the reader. In the former, the

moment of the one component is zero, and that of the

other is equal to the moment of the resultant. In

the latter, the moment of the resultant is zero, and the

moment of the one component is equal and opposite to

that of the other.

This proposition may obviously be extended to any
number of component velocities in one plane.

106. If the position of the moving point P is specified

by reference to fixed rectangular

axes, Ox, Oy, in the same plane

with P's velocity, its co-ordinates *

being x, y, its component velocities

in the directions of the axes are

X and y respectively, and their

distances from 0, y and x re-

spectively. Hence the moments
of the components about are

(103) —xy and +yx respectively.

y v

pV- ^x

The moment of F



64 KINEMATICS. [106

(the velocity of P) about is therefore (105) yx— xy.

If V is not in the xy plane, yx— xy is obviously equal to

its moment about the axis of z.

107. The algebraic sum of the moments of any number
of component velocities about any fixed axis is equal to

the moment of their resultant about the same axis.—Let

the component velocities of the point P be represented

by PA, A B, BG, and its resultant

velocity therefore by PC.—Let a,

6, c be the feet of perpendiculars

from A,B,G on the plane through
P perpendicular to the given fixed

axis OQ. Then Pa, ah, he, Pc are

the components of PA, AB, BG,
PG in this plane. Since Pa, ah,

he are in a plane perpendicular to

the axis, the moment of Pc about

the axis is (105) equal to the

algebraic sum of the moments of

Pa, ah, and he. And since Pa,
ah, he, Pe are the components, in

the aforementioned plane, of P^,
AB, BG, PG respectively, the

moments of the former about the given axis are equal

respectively (104) to the moments of the latter. Hence the

moment of PG about the given axis is equal to the alge-

braic sum of the moments of PA, AB, and BG.

108. Exam.'ples.

(1) AB \»Si diameter of a circle of which BC is a chord. When
is the moment about ^ of a velocity represented by BC the

greatest ?

Ans. When angle ABC=45\

(2) A moving point P has two component velocities, one of which

is double the other. The moment of the smaller about a point
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in their plane is double that of the greater. Find the magnitude

and direction of the resultant.

Ans. If a and ^ are the inclinations of the greater and smaller

components respectively to PO, the resultant is \/5 + 4 cos (jS — o)

times the smaller component, and is inclined to FO at the angle

1 2 sin a + sin 8
sin-i—

—

^—
^

\'5 + 4cos(i3 — a)'

(3) If the component velocities of a moving point can be repre-

sented by the sides of a plane polygon, taken the same way round,

the algebraic sum of their moments about any point in their plane

is zero.

(4) Show that, if the algebraic sums of the moments of the

component velocities of a moving point about two points P and Q
be each zero, the algebraic sum of their moments about any point

in the line PQ will also be zero.

109. Change of Velocity.—The velocity of a moving
point in general changes from instant to instant both in

magnitude and in direction. Let P^PJP.^ be the path of

a point, and let F^, which touches the path at P^, repre-

sent the velocity of the point at P^; and let F^, F^
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similarly represent the velocities of the point at P^ and
P3 respectively.

The change in the point's velocity, which has occurred

in the time occupied by the point in moving from Pj to

P2, is that velocity which must be compounded with the

initial velocity F^ to produce the final velocity Fg.

Take any point ; from it draw OQ^ and OQ^, equal to

and codirectional with V^ and Fg. Join Q^Q^- Then
(98) the final velocity OQ^ is the resultant of the two
components OQ^, the initial velocity, and Q-^Q.2. Hence,

Q^Q2 represents the change of velocity which the point

has experienced between P^ and P^.

The change of velocity must be carefull}^ distinguished

from the change of speed. The change of speed in the

above figure is Fg— F^ and is represented by OQc^— OQ^.

110. Acceleration.—The integral acceleration during
a given time is the change of velocity undergone by the

moving point during that time.

The mean acceleration during any time is a quantity
whose magnitude is the quotient of the integral accelera-

tion by the time, and whose direction is that of the
integral acceleration. Thus, if t units of time are

occupied by the point in moving from P^ to P^ (109),

the mean acceleration during that time is in the direc-

tion of Q^Q^ and of the magnitude Q^Qjt. If t+t'
units of time are occupied in moving from P^ to P3, and
if OQ3 is drawn equal to F3 and in the same direction,

then the mean acceleration during these t-\-f units of

time is in the direction QiQ^ and of the magnitude

Thus the mean acceleration of a point varies in general

both in magnitude and direction with the interval of

time to which it applies. In the special case in which
it varies neither in magnitude nor in direction, the point

is said to move with uniform acceleration.
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The instantaneous acceleration of a moving point at a
given instant (called usually the acceleration simply) is

a quantity whose magnitude and direction are the limit-

ing magnitude and direction of the mean acceleration

between that instant and another when the interval of

time between them is made indefinitely small. As (295)
in the case of a body a finite time is required for a Unite

change of velocity, the instantaneous acceleration of a

body can never have an infinite value.

If the point is moving with uniform acceleration, the

instantaneous acceleration at any instant has clearly the

same magnitude and direction as the mean acceleration

for any interval.

Acceleration, having both magnitude and direction, is

a vector (70), like displacement and velocity.

111. Measubrement of Acceleration.—The specification

of an acceleration involves specification both of its mag-
nitude and of its direction. Its direction may be described

in terms of the unit of angle (21). Its magnitude being
the quotient of the magnitude of a certain velocity by an
interval of time, is a quantity of the same kind as a rate

of change of speed (-52), and may therefore be measured
in terms of the unit of rate of change of speed (56). This

unit is thus called also the unit of acceleration ; and the

results of 57, 58 hold for units of acceleration.

112. Examples.

(1) The initial and final velocities of a moving point during an

interval of 2 hours are 8 mis. per hour E. 30° N., and 4 mis. per

hour N. Find {a) the integral, and (6) the mean acceleration.

Ans. (a) 4 sj'^ mis. per hour W.
; (6) 2 ^3 mLs.-per-hour per

hour W.

(2) A point moves in a horizontal circle with uniform speed v,

starting from the north point and moving eastwards. Find the
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integral acceleration when it has moved through («) a quadrant,

(6) a semicircle, (c) three quadrants.

Ans. (a) V ^2, S.W. ; (6) 2??, W. ;
(c) v ^/2, N.W.

(3) The velocity v of a point moving in a straight line being

supposed to vary as the square root of its distance s from a fixed

point in the line, show that its instantaneous acceleration in any

position is equal to v^\^i.

(4) The velocity of a point moving in a straight line varies as

the square root of the product of its distances from two fixed points

in the line, show that its instantaneous acceleration varies as the

mean of its distances from the fixed points.

113. The Hodograyh.—The variation of the velocity of

a moving particle from one position to another of its

path may be studied by means of an auxiliary curve,

called the hodograph of the path

.

The velocity of a particle must have (295) indefinitely

nearly the same magnitude and direction at points of its

path which are indefinitel}^ near. If therefore (109) the

angle between OQ^ and OQ^ is indefinitely small, the

length of OQ^ must be indefinitely nearly equal to that

of 0Q.2- Hence the locus of the end Q of the line OQ,
which represents the velocity of the moving particle P in

its successive positions, must be a curve of continuous
curvature. This curve is called the hodograph of the

path. The point is called the pole of the hodograph.

The hodograph has two important properties which
may be proved as follows :—The straight line Q-^Q.2 re-

presents in magnitude and direction the integral accele-

ration during the time r occupied by P in moving from
Pj to Pg, and Q^Q^iT represents the magnitude of the

mean acceleration during the same time. When P^ is

taken indefinitely near P^, the direction of Q^Q.2 is the

direction, and the magnitude of Q^QJt is the magnitude,
of the acceleration of P at the instant at which it is at
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Py But when P^ is taken indefinitely near P^, and
therefore Q2 indefinitely near Q^, the direction of Q^Q2
is that of the tangent to the hodograph at Q^, and the

magnitude of Q^Qo/t is that of the velocity at Q^ of the

point Q in the hodograph. Hence (1) the direction of

the acceleration of the moving point P at the instant at

which it occupies a given position in its path is that
of the tangent to the hodograph at the corresponding
position of Q, and (2) the magnitude of the acceleration

of P at the instant at which it occupies a given position

in its path is equal to the magnitude of the velocity of Q
at the corresponding position in the hodograph.

114. Examples.

(1) Show that the hodograph of a point movmg with uniform

speed in a straight path reduces to a point.

(2) A point moves with uniform acceleration, either in a straight

or in a curved path. Show that the hodograph of the path is a

straight Hue, and that the point in the hodograph moves with

uniform speed.

(3) The hodograph of a point which moves with uniform speed

in a circle, is a circle, in which the corresponding point moves also

with uniform speed.

(4) If a point move in either a parahola, an ellipse, or an hyper-

bola, so that the moment of its velocity about a focus is constant,

the hodograph is a circle. [Note that the locus of the foot of the

perpendicular from a focus on a tangent is a circle in the case of

either the ellipse or the hyperbola, and in the case of the parabola

a straight line. Note also that the locus of the foot of the perpen-

dicular from the vertex of a parabola on a straight line drawn

through the focus is a circle.]

(5) Tlie hodograph of a point moving in an ellipse so that the

moment of its velocity about the centre is constant, is a similar

ellipse. [Note that the area of the parallelogram formed by

drawing tangents to an ellipse at the extremities of a pair of con-

jugate diameters is constant.]
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115. Change of the Point of Reference.—Acceleration

being simply the velocit}^ which must be compounded
with the velocity of a moving point at a given instant,

to produce the velocity which it either has after unit of

time, or would have if the acceleration were uniform, the

propositions (96) dealing with the change of the point of

reference in the case of velocities, apply also in the case

of accelerations.

116. Composition and Resolution of Accelerations.—
Similarly the laws of the composition of velocities (98)
may be shown to be those according to which accelera-

tions also are compounded. We have thus propositions

called the triangle, the parallelogram, and the polygon

of accelerations identical in form with the corresponding
propositions for velocities. Hence also accelerations may
be resolved after the same manner as velocities (99) ; and
the formulae of 85-90 hold, if d^, d.2, etc., and R denote
component and resultant accelerations.

117. The component of an acceleration in any direction

is equal to the rate of change of the component in that

direction of the velocity.—Let
OP and OQ be the initial and
final velocities of a moving point

'Q during a given time. Then PQ is

the integral acceleration. Draw-
ing OR, QT at right angles to anv
line PR, we have PT=RP-Rf.
If then T be the time,

PT/t=(RP-RT)/t.

Now PT, RP, and RT are the components in the line

PR of PQ, OP, and OQ respectively. If t is indefinitely

short, PT/r is thus the component of the instantaneous
acceleration in the direction PR, and {RP— RTj/r is the
instantaneous rate of change of the component velocity

in the same direction.
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118. If the position of a moving point be specified by
reference to rectangular axes Ox, Oy, Oz, its component
accelerations in their directions will therefore be equal

to the rates of change of its component velocities in

their directions, namely of x, y, z respectively. They
are therefore (55) x, y, z.

119. ExaTuples.

(1) A ball is let fall in an elevator wliicli is rising with an

acceleration of 7 2 kilometres per min. The acceleration of the

falling ball relative to the earth is 981 cra.-sec. units. Find its

acceleration relative to the elevator.

Ans. 1,181 cni.-sec. units towards the floor.

(2) Two railway trains are moving in directions inclined 60°.

The one A is increasing its speed at the rate of 4 ft.-per-min. per

min. The other B has the brakes on and is losing speed at the rate

of 8 ft.-per-min. per min. Find the relative acceleration.

Ans. 4/^/7 ft.-min. units inclined sin~i. /^ ^q ^jjg direction of

TT /3
motion of A , and - sin-^ . / - to that of B.

(3) The locus of the extremity of the straight line representing

either of the two equal components of a given acceleration, is a

straight line perpendicular to the straight line representing the

given acceleration and through its middle point.

(4) A bullet is fired in a direction towards a second bullet which

is let fall at the same instant. Prove that the line joining them

will move parallel to itself and that the bullets will meet.

(5) Find the resultant of four component accelerations, represented

by lines drawn from any point P within a parallelogram to the

angular points.

Ans. If C is the point of intersection of the diagonals, PC repre-

sents the direction of the resultant, and APC its magnitude.

(6) The resultant of two accelerations a and a' at right angles
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to one another is R. If a be increased by 9 units and a' by 5,

the magnitude of R becomes increased to three times its former

value, and its direction becomes inclined to a at the angle of its

former inclination to a'. Find «, a', and R.

Ans. 3, 4, and 5 units respectively.

120. Tangential and Noi'mal Acceleration.—An im-

portant special case of the resolution of accelerations is

the resolution of the acceleration of a point moving in

a plane curve, into components in and normal to the

direction of motion at any instant.—Let P, Q be points

on the path, and PA, QB tangents

to the path at P, Q respectively.

Let CA, OB represent the velocities

of the moving point at P and Q
respectively. From CB cut off

GI) equal to CA. If the point Q
be made to approach P, the angle

BOA becomes ultimately zero, and the angles CDA and
CAB therefore ultimately right angles. Nov^ AB
represents the integral acceleration between P and Q,
and it may be resolved into ^D and DB as components.
Hence ultimately AD and DB, divided by the time, re-

present the normal and tangential components of the
instantaneous acceleration at P.

Since CD was made equal to CA, DB is the change of
speed. Hence ultimately, when P and Q coincide, DB
divided by the time is the rate of change of the speed of
the moving point. Hence the tangential component
of the acceleration of a moving point is equal to the rate

of change of speed.

From P, Q draw PO, QQ, normals to the path at those
points, and let them meet in 0. Then the angle QCA is

equal to the angle QOP. Calling these angles 0, the
velocity at P, F, and the component integral accelera-
tion AD, V, we have

v= 2 Fsin (6/2) = Fsin O/cos (6/2).
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If a is the component in the direction AD oi the mean
acceleration between P and Q, and t the time of motion
from P to Q, we have thus

_-?;_ T^ sin ^ 1
^~^~

cos~(S/2) •
t

Now ultimately the time of motion from P to Q may be
put equal to PQ/V. Hence, calling PQ, s, we have

— 1^2
^^^^ }^~

cos (0/2)
•

s

Also ultimately PQ may be considered an arc of a circle,

and PO, QO become equal to one another and to the

radius of curvature (p) of the path at P, in which case

s = pO. Hence
sin0 1_

cos (0/2)
• pO'

Also, being indefinitely small,

sin 0/0= cos (0/2) = 1.

Hence a=V^ip.

Now a, being the mean acceleration in the direction AD,
becomes ultimately the instantaneous acceleration normal
to the path at P. Hence the normal component of the

acceleration of a point moving in a curved path is the

product of the square of its velocity into the curvature of

its path.

121. If the path be a circle, the radius of curvature

is the radius of the circle. Also a normal to the circle

through any point passes through the centre. Hence
the acceleration of a point moving with uniform speed

in a circle is directed towards the centre, and is equal to

the quotient of the square of the speed by the radius.

(The reader should prove this special case directly.

Thomson and Tait ("Elements," § 36) prove it by
means of the hodograph.)
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If T be the time of a complete revolution (the periodic

time) of the point in the circle, and if V be the uniform

speed and R the radius, V=2irR!T. Hence the accelera-

tion has the magnitude A^-wRjT^. (See also 131.)

122. Examples.

(1) A circus rider is moving with the uniform speed of a mile in

2 min. 40 sec. round a ring of 100 ft. radius Find his acceleration

towards the centre.

Ans. 10 "89 ft.-sec. units.

(2) Show that a shot fired at the equator with either a westerly

velocity of 8,370"7 metres per second, or an easterly velocity of

7,440*5 m. per sec, will, if unresisted, move horizontally round the

earth, completing its circuit in about 1^ or 1^ hours respectively.

[Data : The mean radius of the earth is 6,370,900 metres ; the speed

of a point on the equator 465*1 m. per sec. ; and the acceleration of

a falling body 9*81 m.-sec. units.]

(3) A point moving in a circular path, of radius 8 in., has at a

given position a sj^eed of 4 in. per sec, which is changing at the

rate of 6 in.-per-sec per sec. Find (a) the tangential acceleration ;

(6) the normal acceleration
; (c) the resultant acceleration.

Ans. (a) 6 in,-sec. units
; (6) 2 in.-sec units

;
(c) 2 a/10 in.-sec,

units, the direction being inclined at tan-^S to the normal.

(4) If different points be describing different circles with uniform

speeds and with accelerations proportional to the radii of their

paths, their periodic times will be the same.

123. The Tfioment of an acceleration is defined in

exactly the same way as the moment of a velocity. See
103 and 104. Also the propositions of 105 and 107, being
deductions from the parallelogram law, apply to accelera-

tions as well as to velocities. And it may be shown, as

in 106, that, if the position of a moving point be referred

to rectangular axes of co-ordinates, the moment of its

acceleration about the z axis is equal to yx—'xy.
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124. The moment of the acceleration of a moving point

about a fixed point in the plane of its motion is equal to

the rate of change of the moment of its velocity about
the same point.

For the final velocity in any time is the resultant of

the initial velocity and the integral acceleration, and
therefore (105) its moment about any point in their plane
is equal to the sum of their moments. Hence the moment
of the integral acceleration is equal to the difference of

the moments of the initial and final velocities ; and
therefore, dividing by the time and making it indefinitely

small, the moment of the instantaneous acceleration is

equal to the rate of change of the moment of the velocity.

125. Angular Displacement^ ofa Point.—The angular
displacement of a moving point about a given point in a
ojiven time, is the auoie between
the initial and final positions of

the radius vector from the given

point. Thus, if the point has

moved from P^ to Pg its angular

displacement, relative to 0, is

That an angular displacement „.

about a given point may be
completely specified, the magnitude of the angle must be
given through which the radius vector has moved, the
direction of the radius vector's motion, and the plane in

which its initial and final positions lie. This plane is

specified if a line normal to it be given; and the direc-

tion of the radius vector's motion is specified if this line

is always so drawn from a point in the plane of the dis-

placement that, on looking along it towards that plane^

* When there is danger of confounding angular displacements,

with the displacements considered in 69, the latter are called linear

displacements.
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the radius vector is seen to move counter-clockwise, i.e.,

in a direction opposite to that of the hands of a clock.

An angular displacement about a point may therefore be

completely represented by a line normal to the plane of

the displacement, whose direction is determined by the

above convention, and whose length is proportional to

the magnitude of the angular displacement. By the

direction of an angular displacement is meant the direc-

tion of this line.

126. The angular displacement in a given time of a

moving point about a given line or axis, is the inclination

of perpendiculars from the initial and final positions of

the moving point on the axis. Let

OA be the given axis, P and Q the

initial and final positions of the

moving point, and PR and QS
perpendiculars to OA. Then the in-

clination of PR to QS is the angular

displacement about OA. Complete
the rectangle RQ by the lines Rq, Qq. Then (8), since

Rq is parallel to SQ, PRq is the angular displacement.

Since the plane of PqR is perpendicular to OA, and

Qq being parallel to RS is perpendicular to that plane,

Pq is the projection of PQ on that plane. Hence the
angular displacement is the angle subtended by the pro-

jection of the linear displacement on a plane perpen-
dicular to the axis, at the point of intersection of the axis

with that plane.

127. Angular Velocity of a Point*—The mean
angular velocity of a moving point about a given point,

during a given time, is a quantity whose direction is

that of the angular displacement during the time, and

* When there is danger of confounding the velocity of 92 with
angular velocity, the former is called linear velocity.
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whose magnitude is the quotient of the angular displace-

ment by the time.

The mean angular velocity varies in general with the

time. In cases in which it does not, the angular velocity

is said to be* uniform.

If the motion of the moving point is confined to a

plane, its angular velocity must have one of two opposite

directions. In other words, it can vary only as to mag-
nitude and sign.

The instantaneous angular velocity of a point at a

given instant has a magnitude and a direction, which
are the limiting magnitude and direction of the mean
angular velocity between that instant and another, when
the interval of time between them is made indefinitely

small.

The mean and instantaneous angular velocities about
a given axis are defined in a manner similar to that in

which they are defined with reference to a given point.

128. Measurement ofAngular Velocity.—The measure
of an angular velocity being the quotient of the measure-
of a certain angle by that of a certain time, the most
convenient unit of angular velocity will be unit of angle

per unit of time. The unit of angle which is usually

employed in measuring angular velocities is the radian.

Unit of angular velocity in terms of the radian is one
radian per unit of time.

As the magnitude of the radian is (21) independent of

that of the unit of lenorth, the maojnitude of the radian

per unit of time depends only upon that of the unit of

time and is inversely proportional to it.

129. Relation between Angular and Linear Velocity.—
Let the moving point P be displaced from P^ to P^ in

the time t with the mean linear velocity i\ and the
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mean angular velocity co about the point 0. Then

i^^PfiPjt, and the chord P^P, = vt. From P^ draw

P^N perpendicular to OP.,. Then, if the angle P^P.^J^

be called 0,

P^N= P,P2sin = vt sin 0.

Hence sin PfiP.2 = vt sin d/OP^.

If now Pg ^® indefinitely near P^^, o) and v become
instantaneous velocities at P^, becomes the angle

between the radius vector and the direction of the linear

velocity at P^, and sin P^OPg becomes equal to PfiP2-
Hence, if r is the radius vector, co = vsin^/r. Hence

• the angular velocit}^ of a moving point about a given

point, expressed in radians, is equal to the component of

its linear velocity perpendicular to the radius vector

from the given point, divided by the length of the radius

vector.

130. If the point be moving in a circle, its linear

velocity is at all points perpendicular to the radius

vector from the centre. Hence, if r is the radius and
<jo the angular velocity about the centre, w = vjr.

131. Hence the normal component of the linear accele-

ration of a point moving in a circle, which (121) is equal
to ^'2/r, is, in terms of angular velocity about the centre,

equal to w^r.

132. Moment of Velocity in Terms ofAngular Velocity.—Since PJPJt (129), when t is small, is the velocity of
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the moving point, its moment about is twice the area

of the triangle OP^P^ divided by the time. Hence, if jpv

be written for the moment,

jiv= OP, . P^Njt= vr sin = wr\

133. Areal Velocity.—The area swept out by the

radius vector of a moving point per unit of time, is

sometimes called its areal velocity. It follows from 132

that the areal velocity of the point P (129) is represented

by area OPJPJt and is equal to \wr'^.

134. These results (129-133) apply also to angular veloci-

ties about axes, provided v stand for the component linear

velocity in a plane perpendicular to the given axis, and r
for the perpendicular distance of the point from the given

axis.

135. Angular Acceleration of a Point.—We might
define the angular acceleration of a moving point about
a given point, as we did its angular velocity, generally.

We restrict ourselves, however, to the useful case of the

angular acceleration about a given axis. An angular
velocity about a given axis must have one of two opposite

directions, and can vary therefore in magnitude and sign

only. Hence the integral angular acceleration about a
given axis is the difference between the final and initial

values of the angular velocity about that axis; the mean
angular acceleration in a given time is equal to the in-

tegral acceleration divided by the time ; and the magni-
tude of the instantaneous anorular acceleration at a given
instant is the limiting value of the mean angular accelera-

tion between that instant and another when the interval

of time between them is made indefinitely small, or in

other words it is the rate of change of angular velocity.

The angular acceleration of a point moving in a plane

about a given point in that plane is an angular accelera-

tion about a given axis.
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136. Measurement ofA ngnlarAcceleration.—The most
convenient unit of angular acceleration is clearly unit of

angular velocity per unit of time, e.g., one radian-per-sec.

per sec. With the radian as unit of angle its dimensions

are \Ty\

137. Examples.

(1) The earth makes a complete rotation in 86,164 mean solar

seconds. Assume her radius to be 6,370,900 metres, and find {a)

the angular velocity, and (6) the linear velocity of any point on

the equator.

Ans. (a) 7^»Yo i'3'dians per sec. ; (6) 465*1 m. per sec,
13713

(2) A wheel of a carriage which is travelling at the rate of 7

mis. per hour is 3 ft. in diameter. Find the angular velocity of

any point of the wheel about the axle.

Ans. 6*8... rad. per sec.

(3) Compare the angular velocities of the hour, minute, and

second hands of a watch.

Ans. As 1 : 12 : 720.

(4) Express in terms of the radian per second an angular velocity

of 20° per min.

Ans. 20-94....

(5) A point is moving with uniform speed v in a circle of radius

/•. Show that its angular velocity about any point in the circum-

ference is v/2r.

(6) The angular velocity of a point moving with uniform speed

in a straight line is inversely proportional to the square of the

distance of the point from a fixed point not in the line.

(7) Show that the angular velocity of the earth about the sun

is proportional to the apparent area of the sun's disc. [Datum :

The radius vector from the sun to the earth sweeps over equal

areas in equal times.]
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(8) If the velocity of a particle be resolved into several com-

ponents in one plane, its angular velocity about any fixed point in

the plane is the sum of the angular velocities due to the several

components.

(9) A wheel makes 200 revolutions per hour. Express its angular

velocity (a) in radians per sec. ; (6) in degrees per miu.

Ans. (a) ^ ; (6) 1,200.

(10) Reduce an angular acceleration of 300 radians-per-min. per

min. (a) to revolution-hour units, (b) to degree-second units.

. , , 540,000 .,. 15
Ans. (a) ; (o) —

.

TT TT

(11) A point F moves in a parabola with a constant angular

velocity about the focus S. Show that its linear velocity is pro-

portional to aSF^.
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CHAPTER IV.

TEANSLATION :—MOTION UNDER GIVEN
ACCELERATIONS.

138. Unconstrained Motion.—The motion of a point

under given accelerations will depend upon the degree of

its freedom to move (35). We shall take, first, cases of

unconstrained motion, the moving point having all three

degrees of freedom.

Case I.—The Acceleration being Zero.—If there is no
acceleration, there is no chancre in either the magnitude
or the direction of the velocity. The path is therefore a
straight line, and the magnitude of the velocity is con-

stant. Hence the mean and instantaneous velocities,

and therefore also the mean velocity and mean speed,

have the same values (93 and 43). The results of 61 are

thus at once applicable to this case.

139. Examples.

(1) A point moves with a uniform velocity of 2 cm. per sec.

Find the distance from the starting point at the end of 1 hour.

Ans. 72 metres.

(2) Two trains having equal and opposite velocities, and con-

sisting each of 12 carriages, of 23 ft. length, are observed to take 9

sec. to pass one another. Find the magnitude of their velocities.

Ans. 20'91 mis. per hour.
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(3) Two points move with uniform velocities of 8 and 15 ft. per

sec. in straight lines inclined 90°. At a given instant their

distance is 10 ft., and their relative velocity is inclined 30° to the

line joining them. Find (a) their distance when nearest, and (6)

the time after the given instant at which tlieir distance will be

least.

Ans. (a) 5 ft. ; (6) ^ V3 sec.

140. Case II.—The Acceleration Uniform.—The motion
of a point under a uniform acceleration will be different

according as the point has or has not at any instant a

velocity inclined to the direction of its acceleration.

(a) Rectilinear motion.—If at any instant the velocity

of the moving point is in the same straight line with the

acceleration, the path is a straight line. For (109) OQ^
and Q^Q^ being in the same straight line, so also are OQ^
and OQ^. Hence the velocity does not vary in direction.

Also, 0(2,Q2 being a straight line, Q,Q,= OQ,-OQ^. If

then t is the time in which the velocity changes from
OQ, to OQ,,

Q,Q,lt={pQ-OQ,)lt-

and t being taken indefinitely small, we find that the

instantaneous acceleration is equal to the rate of change
of the magnitude of the velocity, and therefore (93) to

the rate of change of speed. Hence the results of 63-0(5

are applicable to this case.

We have a familiar instance of the motion under con-

sideration in the motion of bodies vertically upwards or

downwards through short distances at the surface of the

earth, except in so far ?cs their velocity is modified by
the resistance of the air. For all bodies falling freely

near the surface of the earth are found to have a down-
ward acceleration of about 32'2 ft.-sec. units, or 981
cm.-sec. units. When represented by a symbol, the
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special symbol ^"^ is usually employed to denote this

acceleration.

141. ExamplesA

(1) A body is projected vertically upwards with a velocity of 300

ft. per sec. Find («) its velocity after 2 sec.
; (6) its velocity after

15 sec.
;

(c) the time required for it to reach its greatest height

;

(d) the greatest height reached
;

(e) its displacement at the end of

15 sec; (/) the space traversed by it (i.e., the length of path

described) in the first 15 sec. ; (g) its displacement when its velocity

is 200 ft. per sec. upwards ; (h) the time required for it to attain a

displacement of 320 ft. [Note that if the upward direction be

taken as positive, the acceleration in this case is negative.]

Ans. {a) 235*6 ft. per sec. upwards
; (6) 183 ft. per sec. down-

wards
;

(c) 9-3... sec; (d) 1,397-5 ft.; (e) 877-5 ft. upwards; (/)

1,917-5 ft.; (g) 776-3 ft. upwards; (A) 1-13 sec in ascending, 17-5

sec in descending.

(2) A ball is projected vertically upwards from a window half

way up a tower 117'72 metres high, with a velocity of 39-24 m. per

sec After what times and with what speeds does it (a) pass the

top of the tower ascending
; (6) pass the same point descending

;

and (c) reach the foot of the tower ?

Ans. (a) 2 sec, 19*62 m. per sec; (6) 6 sec, 19'62 m. per sec;

(c) (4 + 2^7) sec, 19-62 x ^7 m. per sec

(3) A stone is dropped into a well, and the splash is heard in 3*13

sec. Given that sound travels in air with a uniform velocity of 332

metres per sec, find the depth of the well.

Ans. About 44*1 m.

* The value of g at any place near the earth's surface is given
approximately in centimetre-second units by the following formula,
in which \ is the latitude of the place, and h its height above sea-

level

g= 980-6056 - 2-5028 cos 2\ - -000003/^

t In problems on falling bodies the resistance of the air is not to

be taken into account. When the value of g is not given it is to be
taken as 32-2 ft.-sec. units or 981 cm.-sec units.
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(4) Show tliat a body, projected vertically upwards, requires

twice as long a time to return to its initial position as to reach the

highest point of its path, and has, on returning to its initial position,

a speed equal to its initial speed.

(5) A stone projected vertically upwards returns to its initial

position in 6 sec. Find (a) its height at the end of the first second,

and (6) what additional initial speed would have kept it 1 sec.

longer in the air.

Ans. (a) 80-5 ft.
;

(b) 16'1 ft. per sec.

(6) A body let fall near the surface of a small planet is found to

traverse 204 ft. in the fifth and sixth seconds. Find the accele-

ration.

Ans. 20*4 ft. -sec. units.

(7) A particle describes in the oi^^ second of its fall from rest a

space equal to p times the space traversed in the {n — iy^ second.

Find the whole space described.

Ans. (1-Spygmi-pYl

(8) A body uniformly accelerated, and starting without initial

velocity, passes over b feet in the first p seconds. Find the time of

passing over the next b ft.

Ans. p{J'2. — \) sec.

(9) A ball is dropped from the top of an elevator 4*905 metres

high. Find the times in which it will reach the floor, (a) when the

elevator is at rest ; (b) when it is moving with a uniform downward
acceleration of 9'81 m. per sec.

;
(c) when moving with a uniform

downward acceleration of 4*905 m. per sec.
;
{d) when moving with

a uniform upward acceleration of 4*905 m. per sec.

'2

Ans. (a) 1 sec.
; (6) qo

;
(c) sj^ sec.

;
{d) .j-.. sec.

6

(10) If Sj, 52 are the heights to which a body can be projected

with a given initial vertical velocity at two places on the earth's

surface at which the accelerations of falling bodies are g^ and g^

respectively, show that s-^g^= s^g,,.

(11) A stone A is let fall from the top of a tower 483 ft. high.
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At the same instant another stone B is let fall from a window 161

ft. below the top. How long before A will B reach the ground ?

Ans. ( ^6 - 2) sjb sec.

(12) A ball falling from the top of a tower had descended a ft.

when another was let fall at a point h ft. below the top. Show
that if they reach the ground together the height of the tower is

{a + hflAait,

(13) If two bodies be projected vertically upwards with the same

initial velocity V^ at an interval of t sec, prove that they will meet

at a height |(~- 1).

(14) Two stones are falling in the same vertical line. Show that

if one can overtake the other it will do so after the same lapse of

time, even if gravity cease to act.

(15) Bodies are projected vertically downwards from heights Aj,

L>^ h^, with velocities %, ^2, v^ respective!}'', and they all reach the

ground at the same moment. Show that

{K - ^^-^a^i - ^2)= (^2 -hWz - ^3)= Uh - ^i)l(v3- ^\)-

(16) Two points move in straight lines with uniform accelerations.

Show that if at any instant their velocities are proportional to their

respective accelerations the path of either relative to the other will

be rectilinear.

(17) Particles are projected vertically upwards from diflferent

points in a horizontal straight line AX, with velocities respectively

proportional to the distances of the points of projection from A,

Prove .that all the particles when at their highest points will be on

a parabola whose vertex is A.

142. (6) Curvilinear motion.—If the moving point has
at any instant a velocity inclined to the direction of its

acceleration, the direction of the velocity must change
with the time, and consequently the path must be
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a curved line. For if OA is the initial velocit}^ and
AQ, AQ\ the integral accelerations after t and f units of

time respectively, OQ and OQ' are the velocities after

these intervals of time. And since AQ and AQ' have
the same direction, OQ and
OQ' must have different direc-

tions.

Nevertheless the component
acceleration in any given di-

rection being uniform in this

case (140), the formulae of 63-66 apply to curvilinear

as well as to rectilinear motion, provided we restrict

our attention to a component motion in a given

direction.

Curvilinear motion under uniform acceleration is of

interest because it is the motion which projectiles near

the earth's surface would have, if they were not resisted

by the air, and if their accelerations were rigorously, as

the}?" are approximately, the same at all points of their

paths.

143. Tofind the Velocity after any Time.—The moving
point has after the time t two component velocities, one
the initial velocity F, represented by OA (142), the other

the integral acceleration at (if a is the acceleration),

represented by AQ. If then the inclination of the two
be given, the resultant, represented by OQ, may be found
by 100.

144. To find the Displacement of the Point after any
Time.—The moving point will have two component dis-

placements after any time t, one due to the initial velocity

V, the other due to the acceleration a ; the one therefore

having the value Vt, the other the value ^at\ If their

inclination be known, their resultant may be determined
by 85.
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145. To find the Displacement in any
tion.*—Let P be

the point will reach in

FN at the angle a.

given Direc-

the initial

position of the moving point, PA
the direction of the initial velocity

V, and PB that of the acceleration

a. (We draw PB vertical because

of the importance of this problem
in the study of proj ectiles.) Draw
PN perpendicular to PB. Let

PA be inclined to PN at the

angle O.f It is required to de-

termine the displacement which
the direction of PM, inclined to

The initial velocity has a component Fsin(0— a)
perpendicular to PM. The acceleration has a component
a cos a perpendicular to PM and opposite in direction to

the above component of the initial velocity. Hence, if t

is the time at the end of which the displacement per-

pendicular to PM is zero, we have (64)

t =
2Fsin(e-a)

a cos a

Now the point has in the direction PN a velocity Fcos
and no acceleration. Hence in the time t its displacement
in that direction is

2Fsin(0-a)
a- cos a

X Fcos 0.

Let PN represent this displacement. Draw NM perpen-
dicular to PN. Then PM is the required displacement

* In gunnery the displacement of a projectile in a given direc-

tion is called its range on a given plane ; the time required to reach
that displacement is called the time of flight.

t Id gunnery this angle is called the elevation of the projectile.
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in the direction PM. But Pi¥ = PiV/cos a. Hence,

denoting PM by R,

^ 2F2sin(e-a)cose

a cos^a

Expanding sin {0— a), adding and subtracting

F%ina/(acos^a),

and remembering that 2 cos"^— 1 = cos 20, we find

^^ F^[sin(2e-a)-sin«]

a cos^a

The required displacement is therefore determined in

terms of known quantities.

146. If the given direction be upon the other side of

PiV; viz., that of the line Pi/' (the angle M'PJS^ being

equal to a), we obtain the result

^^ F^[sin(2^+ a)+ sin«]

a cos^a

If therefore in this case the inclination of the given
direction to PJV be considered negative, so that angle

M'PN= — a, we get the same expression for R as in 145.

147. If 0' is such that 26' -a= 180° - (26- a), we have

sin(2e'-a) = sin(2e-a).

Hence R will have the same value, whether the incli-

nation of the initial velocity to PN be or 90°- 0+a.
With a given acceleration and an initial velocity of given

magnitude, there are therefore two directions of initial

velocity, and therefore two paths, by which the point

may attain a given displacement in a given direction.

148. The above expression for R involves F, a, and

a. If F, a, and a are given, 6 is the only variable. The
magnitude of R will therefore depend upon that of 6.
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Now sin (20— a) has its greatest value when 20— a= 90°.

Hence, with a given acceleration and an initial velocity

of given magnitude, the displacement in a given direction

has its greatest value, viz., F^(l — sin a)/((X cos^a), when
= 45°+ a/2. When has this value, 90°-0+ a has the

same value. Hence there is but one direction of initial

velocity by which the maximum displacement in the

given direction can be attained ; and that direction bisects

the angle between the direction opposite to that of the

acceleration, and the given direction.

149. In the important special case in which PM co-

incides with Pl^y we have a= 0. Hence

and this displacement is attained whether the inclination

of PA to PN have the value or the value 90°- 0. The
greatest possible value of R in this case is V^/a, and it is

attained when the inclination of the initial velocity has
the value 45°.

150. The important practical problem of determining
the direction of an initial velocity of given magnitude,
with which the moving point will pass through a given
point, may be solved at once by means of the above
expression (145) for P. For the point, say M, being
given, PM (i.e., R) and a are known, and a and V being
given, all the quantities involved in this expression except

are known. We thus have for determining 0,

= Jsm-i^^ yr^— +smaj + 2*

As pointed out above, may clearly have either of two
values. In practice allowance must of course be made
for the resistance of the air.

* In gunnery the range on a horizontal plane.—The reader should
prove this special case directly.
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151. To Determine the Path of the Point.—The accele-

ration and initial velocity being given, the value of R in

the above expression (145) will depend upon that of a.

If different values be given to a, the displacements of the

moving point in known directions, and therefore as many
positions as we please of the point in its path may be
determined. Thus, as the reader who is familiar with
analytical geometry will see, this expression is an equa-
tion to the path of the moving point expressed in polar

coordinates.

152. The path may be determined also by the follow-

ing geometrical method. Let P be the initial position of

the moving point, and let PQ represent in direction the

direction of the initial velocity and in magnitude the
component displacement due to the initial velocity in t

units of time. Let QR represent the component displace-

ment due to the acceleration in t units of time. Then R
is the position of the point after t units of time. Now
PQ= Vt and QR= ^at\ Eliminating t^ we find

PQ^= (2V^la)QR.

This relation must hold for all values of t and therefore

for all positions of the moving point. But we know,
from the geometry of the parabola, that, if S is the focus
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of a parabola which touches QP in P and whose axis is

parallel to QR,
PQ^= 4^SP.QR

Hence the path of the moving point is a parabola which
touches PQ in P, has an axis parallel to QR, and has a

focus distant V^/2a from P. To find the directrix of the

parabola, we know that it must be perpendicular to QR
and at a distance from P equal to PS. Hence from P
draw PM parallel to QR and make it equal to V^/2a.

Then from M draw MM' perpendicular to PM. MM' is

the directrix. To find the focus S we know that PS and
PM must be equally inclined to PQ. Hence from P
draw PS, making the angle SPQ equal to MPQ, and
make PS equal to V^/2a. S is the focus of the parabola.

The directrix and focus being thus known, the parabolic

path is known.

153. The acceleration and the magnitude of the initial

velocity being given, PM will be constant. The length

of PS will also be constant, but its direction will vary
with the direction of the initial velocity. Hence the

diifferent positions occupied by S, for difierent directions

of the initial velocity, lie on a circle whose centre is P
and radius PS.

154. We may apply the geometrical method to deter-

mine the displacement in a given direction with given
acceleration and initial velocity. Let P be the initial

position of the point, PA the direction of the initial
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velocity, Mlf the directrix of the path. Then the focus

of the path must lie on the circle MAS. If then the

angle APS is made equal to the angle MPA, S is the

focus. To find at what point the path cuts the given

direction Pth, it is necessary to find a point P' in Pnt,

whose distance from S is equal to its distance from MM\
i.e., to find in Ptti the centre of a circle which will pass

through >S^ and touch 3lJ\r—a simple geometrical problem.

Let P' be this point and M'SS' the circle. Then P'i/'=
P'S. Hence P' is a point on the parabola whose focus is

S, and therefore PP' is the displacement of the point in

the direction P'ni.

As the circles meet in general in two points we have
MP^PB\ and MT'= P'S\ Hence P and P' are also

points on the parabola whose focus is S\ Hence there

are two paths by which, with a given acceleration and
an initial velocity of given magnitude, a given distance

in a given direction may be attained. The direction of

the initial velocity which gives the second path is that

of the line bisecting the angle S'PM.

As the angle MPA increases, 8 and 8' approach one
another and PP' increases in length. When MPA =APm,
S and S' coincide, the circles merely touch, and PP'=
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PS+SP'. This is the greatest distance the moving point

can attain in the given direction with an initial velocity

of given magnitude ; and it can be attained obviously by
one path only.

The locus of P\ when PP' is the greatest distance

which can be attained in different directions with an
initial velocity of given magnitude, is the curve inside

which all points can be reached by the moving point

with an initial velocity of the given magnitude, outside

which no points can be reached. It is evidently a para-

Q Q'

m'

p' j

bola whose focus is P and vertex M. For if PM be
produced to Q, so that PM=MQ, and if QQ' be drawn
parallel to MM\ and P'M' produced to meet it in Q\ we
have P'P= P'Q\ Hence P' is a point on a parabola
whose focus is P and directrix QQ\ and whose vertex
consequently is M.

155. Examples*
(1) A body is projected with an initial velocity of 30 ft. per sec

inclined 60° to the horizon. Find the velocity after 20 sec.

* In the solution of these problems the resistance of the air is

not taken into account. When the value of g is not specified it is

to be taken as 32"2 ft.-sec. units or 981 cm.-sec. units.
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Ans. 618-2 ft. per sec. inclined 148° 36' '6 to tlie direction of the

initial velocity.

(2) Find the direction and magnitude of the velocity of projection

in order that the projectile may reach its maximum height at a

point whose horizontal and vertical distances from the starting

point are h and h resj)ectively.

Ans. Direction inclined tan~i(2A/6) to the horizon, magnitude

i:(4A2+ 62)^/2^]i.

(3) A particle is projected horizontally with a speed of 32'2 ft.

per sec. from a point 128"8 feet from the ground. Find the direc-

tion of its motion wlien it has fallen half way to the gromid.

Ans. Inclination to the vertical= tan" i|-.

(4) A stone is let fall in a railway carriage travelling at the rate

of 30 mis. per hour. Find its displacement relative to the road at

the end of 0*1 sec.

Ans. 4'4028... ft. inclined 2° 3'"4 to the horizon.

(5) A stone is thrown into the air at an angle of 45° to the

horizontal plane with a speed of 50 ft. per sec. Find the magnitude

of the displacement at the instant at which the stone's velocity is

horizontal.

Ans. 43-4... ft.

(6) A gun is fired horizontally at a height of 144'9 ft. above the

surface of a lake and gives the ball an initial speed of 1,000 ft. per

sec. Find (a) after what time, and (6) at what horizontal distance,

the ball will strike the lake.

Ans. {a) 3 sec; {h) 3,000 ft.

(7) A stone thrown at an elevation of ] 9° from the top of a tower

falls in 5 sec. at a distance of 100 ft. from the base. Find (a) the

height of the tower, and (6) the speed of projection.

Ans. (a) 368-06... ft.; {h) 21-15... ft. per sec.

(8) The elevation of a projectile is that of maximum range on a

horizontal plane. Show that the time which elapses before it

reaches a point in its path whose horizontal and vertical distances

from its starting point are h and 1c respectively is ( -{h — h)j.
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(9) Three particles are projected at the same instant from the

same point in different directions. Show that the area of the

triangle of which they form the angular points varies as the square

of the time, and that the plane passing through them remains

parallel to itself.

(10) The velocities of a projectile at any two points of its path

being given, find the difference of their altitudes above a horizontal

plane.

Aus, {V'^sm^a-V'hm^ay2g,vfhere V, F' are the magnitudes of

the given velocities, a, a their inclinations to the horizon.

(11) A ball is projected with a velocity of 100 ft. per sec. inclined

75° to the horizon. Find (a) the range on a horizontal plane
;

{b)

the range on a plane inclined 30° to the horizon ; and (c) what

other directions of the initial velocity would give the same respec-

tive ranges.

Ans. (a) 155-2 ft.; (6) (^3- 1)207-0... ft.; (c) inclinations 15°

and 45° respectively.

(12) At what elevation must a body be projected with a speed

of 310-8 ft. per sec. that it may reach a balloon 500 ft. from the

earth's surface and at a distance of 1,000 ft. from the point of

projection ?

Ans. Either 39° 17'-7... or 80° 42'-3.

(13) On a small planet a stone projected with a speed of 50 ft.

per sec. is found to have a maximum range on a horizontal plane of

400 ft. Find the acceleration of falling bodies at the surface of

that planet.

Ans. 6'25 ft.-sec. units.

(14) Show that with a given initial speed the greatest range on

a horizontal plane is just half as great as the greatest range down
an incline of 30°.

(15) The greatest range on a horizontal plane of a projectile with

a given initial speed being 500 metres, show that the greatest

range on a plane inclined 60° to the horizontal is 2 - /^3 kilometres.

(16) AB being the range of a projectile on a horizontal plane,
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show that if t be the time from A to any point P of the trajectory

{i.e. J the path), and t' the time from P to B, the height of P above

AB\a \gtt'.

(17) A particle projected at a given elevation with an initial

speed V reaches the top of a tower h ft. high and 2A ft. from the

point of projection in t seconds. Find (a) the initial speed of

another particle which, being projected at the same elevation from

a point distant Ah ft. from the tower, will also reach its summit,

and {h) the time it will require.

Ans. (a) s/¥gVt!{h+gfy- ; (h) i^{h+gt^)lgj.

(18) Two stones thrown at the same instant from points 20 yds.

apart, with initial velocities inclined 60° and 30° respectively to the

liorizon, strike a flag-pole at the same point at the same instant.

Show that their initial speeds are as 1 : sj'i ; and that the distance

of the pole from the nearer point of projection is 10 yds.

(19) If a particle, projected with a speed u, strike at right

angles a vertical wall whose distance from the point of projec-

tion is w^cos 0/2^, prove that the angle of projection may be 7r/4+ 0/2

or ir/4 — ^/2, and that the distance between the points at which it

will strike the wall if projected at these elevations successively is

u\\\\ 'Pl2g.

(20) Show that if two particles meet, which have been projected

with the same initial speed, in the same vertical plane, at the same

instant, from two given points, the sum of their elevations must be

constant.

(21) A particle is projected from a platform with a velocity V
inclined a to the horizontal. On the platform is a telescope fixed

at the elevation /3. The platform moves horizontally in the plane

of the particle's motion, so as to keep the particle in the centre of

the field of view of the telescope. Show that the initial speed of

the platform must be Fsin(j3 — a)/sinj3, and its rate of change

of speed g cot ^.

(22) In the parabola described by a projectile, its speed at any

point is that which it would have had, had it fallen to that point

from the directrix ; and the horizontal component of its velocity at

G
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aiiy point is that which it would have had, had it fallen from rest

through a distance equal to one-fourth of the latiLS rectum.

(23) The speed of a projectile at any point of its path is equal to

that which it would have acquired had it fallen from rest through

a distance equal to one-fourth of the focal chord, parallel to the

direction of motion at the given point.

(24) If I is the length of a focal chord of the path of a projectile,

show that the time of flight from one of its extremities to the other

is {2lg-^)K

(25) If any number of bodies be projected from the same point

in difi"erent directions and with equal speeds, prove that the foci of

the parabolas they will describe will lie on the surface of a sphere.

(26) Particles are projected from the same points in horizontal

directions and with different speeds. Show that the extremities of

the latera recta of their paths will lie on a cone whose axis is vertical

and whose vertical angle is 2tan~^2.

(27) Prove that the angular velocity of a projectile about the

focus of its path varies inversely as its distance from the focus.

(28) Show that if a ball is projected from a point on an inclined

plane in such a direction that its range on the plane is a maximum,
the direction of its motion at the moment of striking the plane is

perpendicular to the direction of projection.

(29) A sphere (radius= r) rests on a horizontal plane. Find at

what distance from its point of contact with the plane a particle

must be projected, with the speed which it would have gained in

falling through a distance equal to the diameter of the sphere, in

order that the focus of its path may be the centre of the sphere.

Ans. fjh^ — r'K

156. Case III.—Central Acceleration, the acceleration

directed towards a fixed point or centre. (See 138.)

If a point move under a central acceleration the

moment of its velocity about the centre will be constant.

—Since the velocity of tlie moving point at any instant
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is the resultant of the velocity at a former instant, and
of the inteo-ral acceleration durinor the interveninor time, its

moment about the centre is (105) equal to the sum of their

moments about the same point. But the moment of the

acceleration about a point towards which it is directed

is zero. Hence the moment of the velocity of the moving
point about the centre is constant.

It is clear also that the converse proposition holds,

that if the moment of the velocity of a moving point

about any fixed point be constant, its acceleration must
be directed towards the fixed point.

It follows from 132 that, if co be the angular velocity

of the moving point about, and t its distance from, the

centre of acceleration, co/ "^ and therefore Jwr^, are con-

stant. Hence (133) the areal velocity of the moving point,

or the area described per unit of time by the radius vector

from the centre of acceleration, is constant.

157. Examples.

(1) Various particles, whose accelerations are all directed to one

centre (7, are projected from a given point A with equal speeds but

in different directions. Show that the areas described in a given

time by lines drawn from C to the particles will be proportional to

the sines of the inclinations of their initial velocities to the line AC.

[The areal velocities are proportional to the moments of the linear

velocities, and the perpendiculars on the directions of motion are

proportional to the sines of the inclinations.]

(2) A point moves in an elliptic path with an acceleration directed

to one of the foci. Show that its velocity varies inversely as the

square root of its distance from that focus, and directly as the square

root of its distance from the other, and has maximum and minimum
values when the point is nearest to and farthest from the centre of

acceleration respectively. [Note that the product of the perpen-

diculars from the foci on a tangent is equal to the square of thf

semi-axis minor.]
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(3) A point moves in a parabola under an acceleration directed

towards the vertex. Show that the time required to move from

any point to the vertex will be found to vary as the cube of the

distance of the point from the axis. [Tf P is a point on a parabola

whose vertex is A, and if FM is a perpendicular on the axis of the

parabola, the area APM is proportional to the product of AM
into MP?^

(4) If an ellipse be described by a point under an accelei^tion

directed towards its centre, the velocity of the point will vary

directly as the diameter conjugate to that which passes through

the point.

(5) A point moves in an ellipse ABA'B' (major axis, AS8'A' ;

minor axis, BB' ; foci, S and S) with an acceleration directed

towards S. Show that the ratio of the times of describing AB and

BA' is (tt - 2e)/(7r+ 2e), where e is the excentricity of the ellipse.

(6) A j)oint moves in a circle and is observed to occupy, in

jmssing from a fixed point in the circle to any other point, a time

proportional to the sum of the lengths of the arc described and of

the perpendicular from one extremity on the diameter through the

other. Show that the acceleration of the moving point is directed

towards a fixed point.

(7) Find the angular velocity of a point moving with a centi-al

acceleration, about the centre, in terms of the length of the radius

vector (r) and the areal velocity (A).

Ans. 2A/r2.

158. We shall discuss two important cases of central

acceleration, viz., that of planetary motion and that of
harmonic motion.

I. Planetary motion, the acceleration being inversely
proportional to the square of the distance of the moving
point from the centre of acceleration. This case is of
interest, because it is that of the motion of planets about
the sun and of satellites about their primaries.
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(a) The motion rectilinear, the velocity being in the

same straight line as the acceleration at any instant

(140). Let s be the distance of the moving point from
the centre of acceleration at any instant. Then if a be
the acceleration at that distance, and k a constant,

a= —k/s^, the negative sign being used because the

acceleration is towards the point from which the distance

s is measured. If v be the speed at the instant under
consideration, and v' the speed after an indefinitely short

time T,

a={v'-v)/T=-k/s\

If s' is the distance after the time r, (s'— s)/t is the mean
speed during r ; and as r is indefinitely short, we ma}^

consider it equal either to v or to v\ Hence

v-\-v' = 2(s'-s)/t.

Hence also

.
,
,y—v Jc s—s

T b T

As T is indefinitely small we may consider s^ equal to

ss'. Hence

Let V be the velocity of the point when at a distance 8.

Then the space between the positions, whose distances

from the centre are s and S, may be divided into an
indefinitely great number of parts by points whose
distances from the centre are s^, s^, etc., s„. In that

case, if t\, v^, etc., Vn, are the velocities of the moving
point when it is at the above distances respectively,

we have

etc.,
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' \s^ s/

Hence by addition we obtain

V^-v^= 2h(i-D

Therefore V^-^= v^--,
o s

2k
or v^——— A{ab constant).

If Sq is the distance from the centre of acceleration at

which the velocity becomes zero (the distance of the

starting point, if the moving point start from rest), we

have

and

Hence v^ = 2k

2k ,

=--^+A,
%

2k^
A =

So

G-})-
and the speed at any given distance from the centre of

acceleration is thus expressed in terms of that distance.

159. We may apply the above to the case of the falling

of bodies to the earth from great distances. For this

purpose we must determine the value of k in this case.

Now the acceleration of a falling body at the earth's

surface, i.e., at a distance equal to the earth's radius (R)
from the centre of the earth, is g ; and by Newton's law
of gravitation the acceleration of a falling body is in-

versely proportional to its distance from the earth's

centre. Hence at a distance s we have

R^

and therefore in this case k=gR^. Hence, if v is the
velocity of a falling body at a distance s from the earth's
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centre, its velocity at a distance s^ having been zero,

At the earth's surface therefore its velocity will be such

that .^ = ,,R^(^-iy2gIl(l-f).

If the point from which the body has fallen be a short

distance h from the earth's surface, SQ= R-{-h, and

= 2^i?(l-(l-J+|-etc.)).

If now h be suflSciently small {h/B)^ and higher powers
may be neglected. Hence we have v^= 2gh, the result

obtained in 65.

If a body fall to the earth's surface from a very great

(practically infinite) distance, we have 1/s =0, and hence
v'-= 2gR,

160. Examples.

(1) The acceleration (expressed in ft. -sec. units) of a moving point

towards a centre is four times the square of the reciprocal of its

distance from the centre. If it start from rest at a distance of 6 ft.,

find its speed at a distance of 1 ft.

Ans. 2 "58... ft. per sec.

(2) A body falls to the earth from a point 1,000 mis. above its

surface. Find its speed on reaching the surface (neglecting resist-

ance of air and taking the earth's radius to be 4,000 mis.).

Ans. 3'12... mis. per sec.

(3) "With the data of the last problem find the body's distance

from the earth's surface when its speed is 2 mis. per sec.

Ans. 535*2.. . mis.

(4) With what speed must a body be projected vertically at the

earth's surface that it may never return ? (Assume the earth to

liave no atmosphere and not to be rotating.)

Ans. 6*98... mis. per sec.
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(5) At what point on a line joining the centres of the earth aiul

moon will a body have no acceleration ? (Acceleration of falling

bodies at the moon's surface due to moon's attraction= 5 "5 ft.-sec.

units; radius of moon= 1,080 mis.; distance between centres of

earth and moon= 240,000 mis.)

Ans. At a point about 215,900 mis. from the earth's centre.

161. (6) The motion curvilinear, the velocity at any
instant being inclined to the acceleration.

As wr^ is constant (156), the angular velocity of the

moving point P about the centre of acceleration is pro-

portional to l/r^, and therefore to its linear acceleration.

Now the angular velocity ofP is also the angular velocity

of the direction of the acceleration, and is therefore (112)

equal to the angular velocity of the tangent at the cor-

responding point Q of the hodograph. And the linear

acceleration of P is equal to the linear velocity of the

point Q in the hodograph. If therefore s be the length

of the small arc between two points of the hodograph,
and the angle between the tangents at these points,

0/s is constant. Now the acceleration of P is in the

same plane as its velocity at any instant, and the centre

of acceleration, and therefore its path also, is in that

plane. Hence the hodograph is a plane curve of constant

curvature, i.e. (40), a circle. Let
H be the circular hodograph,
its pole (which may be either

inside or outside or upon the

circumference), A its centre, and
Q the point in it corresponding to

the position P of the moving
point in its path. Through
draw OM perpendicular to QA or

QA produced, and through Q draw
QN perpendicular to OA or OA

produced. Since the tangent at Q is in the direction of
the acceleration of P, and therefore in that of the radius
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vector, OM is the component of the velocity of P, in the

direction of the radius vector, and is therefore clearly

equal to the rate of change of the length of the radius

vector. Also QN is the component perpendicular to the

fixed line OA of the velocity of P. Hence the ratio of

OM to QN is the ratio of a small increment of the radius

vector to the simultaneous increment of the distance of

the point P from a fixed line in the plane of motion.

Now the triangles 0AM and QAN are similar, and the

ratio of OM to QN is therefore equal to the ratio of OA
to AQ, and consequently is constant. P's path is there-

fore such that if r and r are initial and final values of

the radius vector in a short time, and if d and cV are

corresponding values of the distance of P from a certain

fixed line in the plane of motion, (r—r)/(d'—d) = k (a

constant). Take another fixed line parallel to the given
fixed line, and so placed in the plane of motion that, if

P's distance from it is S, when the radius vector is r, we
may have r/S= k. Also, when the radius vector is /, let

S' be the distance of the point from this line. Then

d'-d= S'-S.

Hence r-r = k(S'-S).

Now r = kS.

Therefore r=kS\

Hence the ratio of the distance of the moving point from
a fixed point to its distance from a fixed line has a

constant value, or, in other words, the path must be
a conic section. If A; < 1 (and therefore the point

inside the circle), the path is an ellipse. If k= l (the

point on the circumference) it is a parabola. If A; > 1

(0 outside the circle) it is an hyperbola.*

162. The astronomical problem is the converse of the

above. Kepler generalized from many series of observa-

* Tliis proof is due to Prof. Tait. See Encyclopaedia Britannica,

9th ed., art. Mechanics.
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tions (1) that the path of each planet is an ellipse, one of

whose foci is occupied by the sun ; and (2) that the

radius vector of each planet, from the sun, describes equal

areas in equal times. These are two of what are known
as Kepler's laws. In astronomy, therefore, we have to

determine the direction and magnitude of the accelera-

tion of a point whose path is

an ellipse and whose radius vec-

tor from one focus describes equal

areas in equal times. Let P be
the position of the planet at

any instant, V its velocity, APA'
its elliptic path, AA' the axis

major of the path, 8 the focus

occupied by the sun, and /SF a
perpendicular from 8 on the tan-

gent at P. The locus of F is a

circle on AA' as diameter. Draw this circle and let Y8
meet it in Q.

By the second of Kepler's laws, V. >SfFis constant (132),

and by a property of the circle 8Y . 8Q is also constant.

Hence SQ is proportional to V. And it is at right angles

to the direction of V. Hence the locus of Q, the circle

A YA', turned through a right angle about 8 so that 8Q
may become codirectional with F, is the hodograph of

P's motion. By a property of the ellipse, GQ is parallel

to P8. Hence the tangent QE at Q, whose direction is

that of Q's velocity, is perpendicular to P8, and, if the

circle be turned through a right angle, will be codirec-

tional with P8. But (112) the direction of the velocity

of Q is that of the acceleration of P. Hence P's accelera-

tion is towards 8.

Also the magnitude of P's acceleration is equal to that

of Q's velocity. And Q's velocity is proportional to the

angular velocity of Q about C, i.e., since CQ and P>Sf are

parallel, of P about 8. And the areal velocity ofP about
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S being constant, its angular velocity about S is inversely

proportional to the square of PS. Hence the acceleration

of P is inversely proportional to its distance from S*

163. //. HarTnonic motion, the magnitude of the

central acceleration being directly proportional to the

distance of the moving point from the centre of accelera-

tion.—This case is of interest because it is that of the

motion of elastic bodies after compression or distortion.

It includes therefore the motion of air and of the lumi-

niferous ether in the transmission of sound and light

respectively.

(a) The onotion rectilinear, the velocity at any instant

being in the same straight line as the acceleration

(140)

—

simple harmonic motion.

Let a be the acceleration of the moving point when at

a distance s from the centre of acceleration. Then, k
being a constant, a = — Jcs, the negative sign being used, as

in 158. Let the point move to a position at a distance s'

from the centre. Then, since the acceleration increases

uniformly with the distance, its average value per unit

distance during the above displacement must be half the

sum of its initial and final values, i.e., —k{s-{-s')/2. The
change of velocity during the displacement is the same
as if the point had had an acceleration of this amount
during the whole displacement. Hence, if v, v' are the

velocities of the moving point at the distances s, s respec-

tively (140, 65),

As the point moves away from the centre its velocity

diminishes. Let s^ be the distance at which it becomes

* This proof is also due to Prof. Tait. See his " Properties of

Matter," § ]46.
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zero. Then at any other point distant s its velocity v is

such that
^2^J,(^s^2_^2y

When the point reaches the centre of acceleration, s= 0,

and v^= hs^. Hence its speed on passing through the

centre .is Ijh . s^. At any point distant — s from the

centre its speed is such that

v^= h{s^— s^)

and is therefore the same as at a point distant + s. At a

point distant — S(,its speed is zero. Hence the moving
point starting from a distance s^, with zero speed, moves
with increasing speed to the centre of acceleration where
its speed is ^^k . s„ ; thence with decreasing speed to a
distance — Sq ; and thence back to the starting point,

undergoing the same changes of speed in the reverse

order ; and so on, its whole motion consisting of a series

of such oscillations.

Let S be the centre of acceleration, SA the line of

motion. From S as centre with
a radius equal to Sq describe a
circle. From P, whose distance

from S is s, draw PM perpendic-

ular to SA and meeting the circle

in M. If now the pointM move
with a uniform speed ^k . s^ in the circle, P, the foot of
the perpendicular from M on SA, will move in SA with
a speed which is the component of If's velocity in the
line SA and is therefore

^k . s.cos SMP= Jk . s^^= Jks/^l^8\
If then P's velocity is y,

Hence P's velocity, and consequently also its acceleration,

at any given distance from S, are the same as the velocity
and acceleration respectively of the moving point under
consideration when at the same distance from its centre
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of acceleration. Hence the motion of a point moving in

a straight line with an acceleration directly proportional
to its distance from a centre of acceleration in that line is

the resolved part in the direction of that line of the
motion of a point moving with uniform speed ^k . s^ in

a circle whose centre is the centre of acceleration and
whose radius is s^.

The time required by the moving point to make a
complete oscillation from A to A' and back to A being
that required by M to move once round the auxiliary

circle is clearly

^^'^Ip _ _rJ _ 2 /displacement

aJ^^Sq ^k \ acceleration
'

since the magnitude of k is the ratio of the acceleration

of the point to its displacement, in any position. The
time of a complete oscillation depends therefore only upon
the value of k, the constant ratio of the acceleration of

the moving point to its displacement from the centre of

acceleration. It is independent of the extent of the
oscillation. For this reason such oscillations are said to

be isochronous.

The time required by the moving point to move from
a position P^ to P is, if M^ is the intersection with the

circle of a line drawn from P^ perpendicular to SA,

> angle iV^i¥ _ 1 ^^ . ^ ^^jr 27r
- ^^ . angle il2o^#7,

the angle being measured in radians.

The oscillation of a point moving in a straight line

about a fixed point in the line towards which its accelera-

tion is directed, the acceleration being directly propor-

tional to the distance between the points, is called Simple
Harmonic Motion.*

* Simple Harmonic Motion is thus not only the simplest form of

the motion of bodies after release from strain, but is also the

apparent motion of bodies moving in circular orbits when observed
from a distant point in the plane of the orbit, as, e.g., approximately
in the case of the motion of Jupiter's Satellites.
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164. It will be obvious that the above results apply
also to the case of a point moving in a curved path, pro-

vided its rate of change of speed is proportional to its

distance (measured along the path) from a fixed point in

the path, and is positive or negative, according as it is

moving towards or from the fixed point.

165. The distance of the centre of acceleration or the

mean position of the moving point P from its extreme
position, SA in the figure of 163, is called the Amplitude
of the simple harmonic motion. The interval of time

between two successive passages of the moving point

through the same position in the same direction is called

the Period. The fraction of the period intervening

between the instant of the point's occupying its extreme
position A in the positive direction, and that at which it

occupies any given position is called the Phase. The
phase is frequently described by reference to the auxiliary

circle. In that case it is defined as the ratio of the angle

ASM (P, 163, being the given position of the moving
point) to the whole angle (2'7r radians) through which
SM moves in the period. These two modes of defini-

tion give clearly the same A^alue of the phase in any
particular case. The angle ASM^ (P^ being the position

of the moving point at zero of time) is called the Ejooch

of the simple harmonic motion. The epoch is thus equal

to the product of the phase at zero of time into 27r. The
epoch determines the position of the point at zero of time,

the phase its position after any given interval. The
epoch has a definite value in any given case of simple

harmonic motion, the phase varies with the time.

166. Examples.

(1) A point whose motion is simple harmonic has velocities 20

and 25 ft. per sec. at distances 10 and 8 ft. respectively from its

centre of acceleration. Find (a) its period, and (6) its acceleration

at unit distance from the centre.

Ans. (a) ^^'^sec.
;

(b) 6'25 ft.-sec. units.
o
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(2) The period of a simple harmonic motion is 20 sec. and the

maximum velocity of the moving point is 10 ft. per sec. Find its

velocity at a distance of GO/tt ft. from the mean position.

Ans. 8 ft. per sec.

(3) A point moves from rest towards a fixed point 10 metres dis-

tant, its acceleration being everywhere 4 times its distance from the

fixed point. At what distance will it have a velocity of 12 metres

per sec. ?

Ans, 8 metres.

(4) Find the mean speed of a point executing a simple harmonic

motion, during the time occupied in moving from one to the other

iixtremity of its range, its maximum speed being 5 ft, per sec.

Ans. IO/tt ft. per sec.

(5) If T be the period and a the amplitude of a simple harmonic

motion, and if v be the velocity and s the distance from the centre,

of the moving point at a given instant, show that

« =(-4^H-
(6) A point oscillates about a centre, its acceleration being pro-

portional to its distance from the centre. Show that the ratio of its

maximum velocity to the square root of the excess of the square of

its maximum velocity over the square of the velocity which it has

when at a given displacement from the centre, is equal to the i-atio

of its maximum displacement to the given displacement.

(7) A point has a simple harmonic motion whose period is 4 min.

12 sec. Find the time during which its phase changes from ^V to

\ of a period.

Ans. 21 sec.

(8) A moving point has a velocity of 1 ft. per sec. when at a

distance of sj'^ ft. from a fixed point in its line of motion towards

which its acceleration is directed, its acceleration being everywhere

numerically equal to its distance from that point. After what time

will it be at a distance of 1 ft, ?

Ans, 7r/12 sec,

(9) Show that a point having a simple harmonic motion requires
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^ of its period to move from a position in which its displacement is

a maximum to one in which its displacement is one-half the ampli-

tude.

167. (h) Curvilinear motion, the velocity of the

moving point at any instant being inclined to the

acceleration

—

com'pound harmonic motion.

Let S be the centre of accelera-

tion, P the position of the moving-
point at any instant, and V its

velocity at that instant. In the

plane of V and 8P take two fixed

rectangular axes 8x, Sy. From P
draw PM, PJS[ perpendiculars on
Sx and Sy respectively. Let the
inclination of V to Sx be a. Then

the moving point has in the direction of Sx a component
velocity Fcosa, and, if s is the distance of P from S, a
component acceleration

- ks cos PS3I= - ks|p = - k . SM,

Similarly in the direction of Sy, P has a component
velocity Fsina and a component acceleration —k.SJS^.

Hence the motion of the moving point is the resultant

of two component simple harmonic motions, the one in

the direction Sx, the other in the direction Sy. We may
therefore determine its motion by determining the laws
of the composition of simple harmonic motions. We
shall investigate these laws at greater length than is

necessary for the mere solution of the above problem,

as they are of great importance in the study of sound
and light.

168. Composition of Simple Harmonic Motions.—

A

point has two or more component simple harmonic
motions; it is required to determine its resultant motion.
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(1) Tivo Simple Harmonic Motions in the same line

and with the same period.—Let the point P, moviDg in

the line BB', have two component simple harmonic

motions, of amplitudes CA and CB, and of the same
period. Let GP^ and CP^ be the component displace-

ments due to the respective simple harmonic motions at

a given instant. Then the resultant displacement is (86,

III.) CPj + CP^. Draw the auxiliary circles, and let

3T^, M.^ be the points in these circles corresponding to P^,

P... Complete the parallelogram M^M^, and from S draw
HR perpendicular to BB\

Since ilf^(7=>Sfl/, and angle CM^P^ = m\8R, GP^ = P^R.
Hence GR is equal to the resultant displacement, and P's

motion is the resultant motion. Since the periods of the

motions are the same, the angular velocities of GM^ and
CM,-y are the same. Hence the angle MfiM^ is constant,

and therefore the length of the diagonal GS of the paral-

lelogram M^M^, and its inclination to GM^ or GM^, are

constant. S therefore moves with uniform speed in a
circle. Hence P's motion is simple harmonic, and there-

fore the resultant of two simple harmonic motions in the

same line and of the same period is also a simple harmonic
motion.

As the inclination of GS to G3I^ is constant, the period

of the resultant simple harmonic motion is the common
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period of the components. Its amplitude is CS. Its

phase is intermediate between the phases of the com-

ponents. If the phases of the two components are the

same, the amplitude of the resultant motion is the sum
of those of the component motions. If the difference

of phase is tt radians (or [271+ IJtt radians), the amplitude

of the resultant is the difference of those of the com-

ponents.

169. As, by taking CM^ and CM^ of proper lengths,

the angles MfiP^ and MfiM^ may be made what we
please, while CS is kept constant, any given simple

harmonic motion may be resolved into two components
in the same line, having any desired difference of phase,

and one of them having any desired epoch.

170. (2) Three or more component Simple Harmonic
Motions in the same line and of the same period may be
compounded two and two, the above process being applied

in each case. The resultant motion will evidently be

simple harmonic of the period common to the components.

171. (3) Two component Simple Harmonic Motions
in the same line hut of different periods.—If the periods

are not the same, the angle MfiM^ (168), and consequently

also OS, are variable. At the instants at which the phases

of the component motions are the same or differ by 27? tt

radians, CS has its maximum value, viz., CM^ -j- CM,,.

At the instants at which the phases differ by (27?,-|-l)x

radians, CS has its minimum value, viz., CM,^— CM^. The
angular velocity of CS will also be variable. The direc-

tion of CS will oscillate back and forth about that of

CM^, their maximum inclination being ^m~\CMJCM^.
The resultant motion is therefore not simple harmonic
but a more complex motion.

172. (4) Component Simple Harmonic Motions in
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different lines vjith the same period and phase.—Let the

point P have two component
simple harmonic motions in

the lines AA' and BB'. Let
CP^ and GP^, and Cp^ and C%
he the componentdisplacements
ofP at times t^ and ^.„ due to the

respective component motions.

Then, as periods and phases are

the same, GPJCP.^ = CpJCp.^.

Complete the parallelograms

pA'PA' Then C% and CE.^

are in the same straight line and GPjCP., = CRJGR.^\
i.e., the resultant motion is a simple harmonic motion in

the line C'P^, and is of the same period and phase as the
components. The amplitude is the diagonal of the paral-

lelogram, whose adjacent sides represent the amplitudes
of the components and are inclined at the inclination of

the lines in which the simple harmonic motions occur.

Hence a simple harmonic motion may be resolved in

any two directions into two simple harmonic motions of

the same period and phase as the given simple harmonic
motion.

It follows that the projection of a simple harmonic
motion on any straight line or on any plane is also a
simple harmonic motion of the same period and phase as

the projected simple harmonic motion.

If the component simple harmonic motions are more
than two, they may be compounded two by two accord-

ing to the above law, and it follows that any number of

component simple harmonic motions, in any directions,

and of the same period and phase, give as resultant a
simple harmonic motion of the same period and phase in

a determinate direction and of determinate amplitude.

173. (5) Two component Simple Harmonic Motions in
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different lines tuith the same 'period but with different

phases.—We have seen (163) that if a point move uni-

formly in a circle, the component of its motion in the

direction of a diameter is a simple harmonic motion.

Hence the uniform motion of a point in a circle may be

resolved into two simple harmonic motions in directions

at right angles to one another.

These simple harmonic motions
will clearly have the same
periods and amplitudes. They
will differ in phase however by
one quarter of a period. For
let AA\ BB' be perpendicular

diameters of the circle ABA'B\
in which the point M is moving
counter-clockwise. Then the

foot Pj of the perpendicular

towards (7, while P^, the foot of

the perpendicular MP,,, will be moving towards B. When
Pj is at A {i.e., has the phase zero), P^ will be at (7, and
not until M has moved from A io B will P^ have the

phase zero.

It follows also that two component simple harmonic
motions in perpendicular directions, of the same period,

of equal amplitudes, and \vith phases differing by one
quarter of a period, will give as resultant, uniform motion
in a circle whose radius is the common amplitude of the

components.

Now the orthogonal projection of a circle is an ellipse,*'

the centre of the circle projecting into the centre of the

ellipse; the projection of uniform motion in a circle (a

motion in which the areal velocity about the centre is

constant) is motion in an ellipse with constant areal

ilfPj will be movinof

* If the reader is not familiar with the geometry of projection,

he should read the chapter on this subject in Todhunter's " Conic
Sections " or some similar work.
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velocity about the centre; the projections of perpen-

dicular diameters of a circle are conjugate diameters of

the ellipse, whose inclination and relative length may be

made what we please by a proper selection of the plane

of projection; and the projection of a simple harmonic
motion we have seen (172) to be a simple harmonic
motion with unchanged period and phase. If, therefore,

w^e project the circle A'BAB', with its perpendicular

diameters, on a plane so selected that the projections of

the diameters have any desired inclination and relative

length, the projections of the motions of P^ and P^ will

be simple harmonic motions differing in phase by a

quarter of a period ; and their resultant motion, the pro-

jection of that of M, will be motion in the ellipse which
is the projection oi A' BAB', the motion being such that

the areal velocity of the moving point about the centre

of the ellipse is constant. Hence, if a point have two.

component simple harmonic motions in any directions,

of any amplitudes, of the same period, and with phases

differing by a quarter of a period, the resultant motion
will be motion in an ellipse, with conjugate diameters

whose directions are the directions, and whose lengths

are the amplitudes, of the component motions, and with

constant areal velocity about the centre. Such a motion
is called elliptic harmonic ^notion.

174. If now the two component simple harmonic
motions differ in phase by any amount, each of them
may (169) be resolved into two in its own direction,

which differ in phase by a quarter of a period, and one

of which has any desired epoch. Thus we have now two
pairs of components, the components of each pair having
the same phase, but differing in phase by a quarter of a

period from those of the other pair. The components of

each pair give as resultant a simple harmonic motion of

determinate amplitude and direction, and of their common
period and phase. Hence we obtain two simple harmonic
motions of determinate amplitude and direction, equal in
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period, and differing in phase by one quarter of a period,

the resultant of which is determined by 173. Hence the

resultant of two component simple harmonic motions of

the same period, whatever may be their amplitudes,

directions, or phases, is elliptic harmonic motion.

175. It will be obvious that all possible paths of a point

having two such component simple harmonic motions,

represented by AA' and BB\ must touch each of the

sides of a parallelogram DEFG, whose sides pass through

A, A\ B, B\ and are parallel to AA' and BR. What the

particular path will be, with amplitudes and directions

given, will depend upon the difference of the phases of

the components. If there is no difference of phase the

path is the diagonal GE. If the phases differ by one
quarter of a period (that of the simple harmonic motion
in AA' being ahead), the point will move in the ellipse

ABA'B', and its motion will be counter-clockwise. If

they differ by one-half period, the diagonal FD will be
the path. If by three-quarters, the point will again move
in the ellipse ABA'B', but its motion will be clockwise.

For differences of phase of intermediate value the paths
will be ellipses in intermediate positions. Thus, for dif-

ferences between and \ or | and 0, the paths will be

such ellipses as HKLM, the motion being counter-clock-

Avise or clockwise respectively ; and for differences between

] and ^ or \ and | such ellipses as NOPQ traversed counter-

clockwise or clockwise respectively.
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176. (6) Three or more component Simple Harmonic
Motions in different lines with the same 'period hut with
different phases.—If there be more than two component
simple harmonic motions of the same period, but in

different lines, and of different amplitudes and phases,

each of them may, as in 174, be resolved into two in its

own direction, which differ in phase by a quarter of a
period, and one of which has any desired epoch. We
thus obtain two sets of component motions, all the mem-
bers of each set having the same phase, but the members
of each set differing in phase from those of the other

set by a quarter of a period. The components of each of

these sets give, when compounded (172), a simple har-

monic motion in a determinate direction, of determinate

amplitude, and with the common phase of its components.
Hence we obtain two simple harmonic motions in known
directions, of known amplitudes, and differing from one
another in phase by one quarter of a period. The re-

sultant motion is therefore determined by 173. Hence
the resultant of any number of component simple har-

monic motions of the same period, whatever their ampli-

tudes, directions, or phases, is elliptic harmonic motion.

177. (7) GoTYiponent Simple Harmonic Motions differ-

ing in period.—If a point have two or more component
simple harmonic motions differing in period, the complete
determination of the resultant motion is not possible by
elementary mathematical methods. The path of the

point may however always be found by determining its

positions at a series of instants and drawing a curve

through them.

For example, let us find the path of a point P which
has two component simple harmonic motions in lines at

right angles to one another, with periods as 1:2, the

simple harmonic motion of longer period having zero

epoch, and that of shorter period an epoch 87r/2. Let AA\
BB' be the given lines at right angles to one another.
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CA and CB the given amplitudes of the simple harmonic-

motions in these lines. Let the simple harmonic motion
in AA' be the one of longer period. The component
displacement of P from G at zero of time in AA' is ('A.

/^ ^\ 1 y^ ^
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\. /
E

\
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d c \
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\
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\

G F/ : \ L M /
V y V y

Since the epoch of the simple harmonic motion in BB' is

37r/2, the component displacement of P from G in BB at

the same instant must be zero, and its component motion
must be from G towards B. Hence the position of P at

zero of time is A. To find other points in the path we
may divide AA' and BB' into portions requiring equal

times for their description. This may be done by de-

scribing: semi-circles on A A' and BB' as diameters, dividinof

the semi-circles into a convenient number (say six) of

equal arcs and dropping perpendiculars from the points

of section on the respective diameters. Let Ba, a^, ^G,
Gy, etc., be portions of BB', thus determined, requiring

equal times for their description, and let Aa, ah, hG, etc.,

be similar portions of AA'. Through B, a, /3, y, S, B'

draw lines parallel to AA', and through A, a, h, c, d, A'
draw lines parallel bo BB'.

Since the simple harmonic motion in ^ J.' is the one

of longer period, a component displacement in AA' is

accompanied by one in BB' of double the amount.
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Hence, while P undergoes the displacement Act in the

line AA\ it undergoes the displacement Ga in BB\ Hence
P moves from A to D. Similarly the component dis-

placements ah and aB-\-Ba occur in the same time.

Hence P moves from D to E. Similarly bC and aC, Co
and CS, cd and SB'+ B'S, dA' and 60, A'd and Ca, dc and
aB+ Ba, cC and aC, Ch and CS, ha and SR+ B'S, and aA
and SO are pairs of displacements occurring in the same
time. And hence the path passes through the following

points in order, viz.. A, D, E, (7, F, G, A', H, K, C, L, M, A,
and will be approximately represented by a smooth curve
through these points.

The figures on next page represent a few paths of points

having two component simple harmonic motions in lines

at right angles to one another and differing in period and
epoch. The ratio of the periods is indicated at the left

of the row of figures to which it refers. The component
simple harmonic motion of shorter period is horizontal.

Its epoch is indicated in each case. The epoch of the

vertical simple harmonic motion is zero.

178. If the periods of component simple harmonic
motions are commensurable, at the end of a period which
is their least common multiple the resultant displace-

ment of the moving point from the mean position will be

the same as at the beginning of the period ; and the path
will return into itself, forming a closed curve. If the

periods be not commensurable, the path will not thus

form a closed curve.

179. If the ratio of the periods of two component
simple harmonic motions is very nearly a simple ratio,

but not exactly, the path very nearly returns into itself

;

and it is clearly the same as if the periods were thus

simply related, with the difference of epoch slowly in-

creasing, the simple harmonic motion with the shorter

period gradually gaining in epoch on the other. Hence
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the point will very nearly pass through all the paths of a
point with component simple harmonic motions having
periods in the given ratio and of the given amplitudes
and directions, with all differences of epoch. Thus, if the

amplitudes and the directions are as represented in

175, the periods being very nearly equal, and if at a given,

instant the phases are the same, the point will first oscil-

late in a very elongated ellipse about GE. The ellipse

will gradually open out through HKLM to ABA'B', and
passing through all such forms as OPQN will gradually

come to oscillate in DF. It will then open out again,

and retrace nearly the same ellipses in the opposite

direction, passing through OPQN, ABA'B\ and KLMN
until it again oscillates in the line GE. Similarly, if the

periods be very nearly as 1 : 2, the path of the moving
point will gradually pass through the series of forms
represented on p. 122.

180. Paths similar to those represented on p. 122 are

traced out most simply by the aid of Blackburn's pen-
dulum, which consists of a bob hung by a Y-shaped
arrangement of wires CDEB, the ends q g
G and D being attached at points in

a horizontal line. Thus hung, the

bob oscillates in a direction perpen-

dicular to the plane CDEB, about
the axis CD. In this plane it

oscillates about E. Hence (187) B
has two component simple harmonic
motions at right angles to one another and of different

periods. The difference of period may be made what we
please by properly adjusting the lengths of the wires.

If the bob be provided with a funnel containing sand
or ink, it will leave a tracing of its path.

181. Constrained Motion under given Accelerations^

—We take next certain cases of the motion of a point

under conditions of constraint (see 138).
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(1) Motion on an Inclined Plane under Uniform
Acceleration.—Let a point having a uniform acceleration

a, whose direction is OA, be constrained to remain in a

plane whose inclination to OA is y. From
A draw AB perpendicular to the plane

and meeting it in B. Then the angle

AOB is y. The effective component of the

acceleration in the plane is a cos y in the
>B direction OB. For the component normal

to the plane cannot affect motion in it.

Hence the motion of the point will be

rectilinear or parabolic according to the

direction of the initial velocity, and will

be determined by the equations of 140 and
142-150, a cosy being the acceleration in

the formulae of those articles instead of a. In the case

in which the acceleration is that due to the weight of

a body, OA is vertical and the given plane OB may
have any inclination.

182. The speed gained by the point in moving on the

given plane through the distance OB is equal to that

which would be o-ained in movins: in the direction of the

acceleration OA, through a distance which is the projec-

tion of OB on OA. To prove this, draw BG from B
perpendicular to OA. Then, calling OB I, 00 h, the

initial speed F, and the speed at B v, we have

^2_ Y'z ^ 2al cos y.

Had the point moved from to C with the same initial

•speed its speed v at C would have been such that

y"2_Y- = 2ah= 2al cos y.

Hence v = v.

183. The times required to produce these changes of

speed are of course different. Thus, if t, t' are the times
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required by the point to move from to C and from O
to B respectively, we have

v=V-{-at, and r=F+f/icosy.

Hence f = fcosy.

184. Examples.

(1) A point having a constant acceleration of 24 ft. -sec. units is-

constrained to move in a direction in which its speed changes in 1

min. from 10 to 250 yds. per sec. Find the inclination of its direc-

tion of motion to that of the given acceleration.

Ans. 60".

(2) A heavy particle (^= 32) is projected* up an inclined plane-

whose inclination to the horizon is 30". Find the distance ti-aversed

during a change of speed from 48 to 16 ft. per sec.

Ans. 64 ft.

(3) A railway carriage has, when 1 mile up an incline of 1 in 50

{i.e., one having an inclination to the horizon of sin~^^V)>'^^'^ upward

velocity of 30 miles per hour, (a) In what time will it come to a

standstill ? (6) If it afterwards run back, with what speed will it

reach the foot of the incline ? (Take _^ = 32.)

Ans. (a) 1 min. 8*75 sec.
;

(b) 63'5 miles per hour.

(4) A body slides from rest down a smooth sloping roof and their

falls to the ground. The length of the slope is 18 ft., its inclination

to the horizon 30°, and the height of its lowest point from the

ground 40 ft. Find the distance from the foot of the wall to the^

point where the body reaches the ground. (Take ^ = 32.)

Ans. 15^3 ft.

(5) The times in which heavy particles slide from rest down^

inclined planes of equal height are proportional to their lengths.

(The length of an inclined plane is the distance between its highest

* In these problems friction and other foniLS of resistance are not
to be taken into account. Also, the motion on an inclined plane is

always supposed to be in the direction of greatest slope, unless-

specially stated to be in some other direction.
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.tind lowest points ; its height is the distance between horizontal

jjlanes through these points.)

(6) If heavy particles slide down the sides of a right-angled

triangle whose hypothenuse is vertical, they will acquire speeds

proportional to the sides.

(7) The times required by heavy particles to descend in straight

lines from the highest point in the circumference of a vertical circle

to all other points in the circumference are the same.

For, if d is the diameter of the circle and 6 the inclination to the

vertical diameter of any chord through the highest point, the com-

ponent acceleration in the direction of the chord is g cos 0, and the

length of the chord is d cos d. Hence, if t is the time in which

a particle would fall from rest down this chord,

d cos 6= ^(/i'^cos 6 and t= 'J'idlg.

Thus t is independent of 6 and is therefore the same for all chords

through the highest point of the circle.

(8) The times required by heavy particles to descend in straight

lines to the lowest point in the circumference of a vertical circle

from all other points in the circumference are the same.

(9) If any focal chord PQ of a parabola be vertical, and the tan-

gents TP^ TQ be drawn, heavy particles starting simultaneously

from rest at P and T, and falling along the lines PQ, TQ respec-

tively, will reach Q at the same instant.

(10) A number of heavy particles start without velocity from a

•common position and slide down straight lines in various directions.

Show that the locus of the points reached by them with a given

.speed is a horizontal plane, and that of the points reached by

them in a given time is a sphere whose highest point is the starting

point.

(11) Show that, if a circle be drawm touching a horizontal straight

line in a point P and a given curve in a point Q {P and the curve

being in the same vertical plane and P being higher than Q\ PQ is

the line of quickest descent to the curve {i.e., a heavy particle

requires less time to fall from P to the curve along this line than

along any other).
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(12) Find the straight line of quickest descent from a given point

to a given sti-aight line, the point and the line being in the same

vertical plane.

Ans. From P, the given point, draw a horizontal line meeting

A B, the given line (A being higher than B)y in C. From CB cut off

CD equal to CP. PD is the required line.

(13) Show that if, from a given point in the same plane as a given

vertical circle and outside it, a straight line be drawn to the lowest

point of the circle, the part intercepted between the given point

and the circle is the line of quickest descent from the one t<»

the other.

(14) Find the loci of points («) inside, and (6) outside, a given ver-

tical circle, which are such that the times of falling from them down
lines of quickest descent to the given circle may have a given value.

Ans. (a) a circle, (6) a circle.

(15) A given point P is in the same plane with a given vertical

circle and outside it, the highest point Q of the circle being lower

than P. Find the line of slowest descent from F to the circle.

Ans. Join PQ and produce it to meet the circumference in R.

PR is the required line.

185. (2) Motion in a Curved Path under a Unifm-m
Acceleration.—Let OC be the curved path and OA the

direction of the acceleration

a. Since any small portion

P^P^ of ^^^ curve may be
considered to be a straight

line, the change of speed of

the moving point between P^
and P., is (181) the same as

it would have been had the

point moved from M^ to M.,,

il/ji/^ being the projection

also the change of speed which the moving point under
goes in traversing a finite portion of its path PQ is

the same as it would undergo in traversing 'pq, the pro-
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jection of PQ on a line in the direction of the acceleration.

Hence, if 1^ is the speed at P and v that at Q,

186. If a point moving under a uniform acceleration

is constrained to remain on a surface, it must move in a
plane curve which is the section of that surface by a

plane through the position of the point at any instant

and containing the directions of the acceleration and of

the velocity at that instant.

187. (3) Motion of a Point constrained to remain on a
Spherical Surface under a Uniform Acceleration.—This

is the case of the Simple Pendulum, which consists of a
small body (called the bob) attached to a fixed point b}^

an inextensible string.—Let C be the

centre of the spherical surface, GA
the radius whose direction is that of

the acceleration of the moving point.

LetP be any position of the point.

P's acceleration a may be resolved

into two rectangular components in

the plane PGA, one, acos^ (angle

AGP = 6), normal to the spherical

surface at P, and the other, asinO,
tangential to it and towards A.

^ The normal component cannot affect

the motion in the spherical surface. The motion of 7^

therefore depends upon the other.

If P's velocity at any instant is wholly in the plane

PGA, its acceleration being also wholly in that plane, its

path must be the circle PAQ. How it will move in that

path it in general requires high mathematical methods to

determine. But the problem is easily solved for the

special case in which is so small that it may be con-

sidered equal to sin 0. In that case P's tangential accele-

ration is o£, or if the length of GA be I, a x arc AP/l.
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It is therefore directly proportional to the displacement
of P from A (measured along the path). P's motion is

consequently simple harmonic about A as centre (1G4).

The period of the motion is thus (163)

27rV'displacement -r- tangential acceleration.

For a displacement of arcAP the tangential acceleration

is a X arc AP/l. Hence, if T is the period,

and is independent of the amplitude.

The time of oscillation of a pendulum swinging in a
vertical plane is usually taken to be half the period,

i.e., to be the time between the instants at which the

pendulum reaches opposite ends of its oscillation. Thus
the seconds' pendulum is one making a complete oscilla-

tion in 2 seconds.

If 6 is not indefinitely small, sin is less than 6. The
tangential acceleration therefore increases less rapidly

than the displacement ; and the period of the oscillation,

which will be approximately simple harmonic if 6 is com-
paratively small, will increase with 0.

188. If P's velocity at any instant is not wholly in the

plane PGA, it may be resolved into two components, one
in the plane PGA and the other perpendicular to it, and
both tangential to the spherical surface. Hence, in the

case in which is indefinitely small, P's motion may be
resolved into two simple harmonic motions of the same
period; and its motion is therefore (174) elliptic harmonic
motion, the period being the common period of the com-
ponents, the particular ellipse described being dependent
upon the amplitude and epoch of the components, and
therefore upon the magnitude and direction of the point's

initial velocity.

I
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189. If is not indetinitely small, and if the component
motions are of different amplitudes, the periods will have
different values. If they are very nearly equal, the point

P (i.e., the pendulum bob) will go through the motions
described in 179.

190. In the case in which the component motions are

equal in amplitude, and therefore in period, and differ in

phase by one quarter period, the point P moves (173)
in a circle about the foot of the perpendicular on GA
(187), as centre. This is the case of the conical pendu-
lum (320, Ex. 19).

191. Examples.

(1) Find the time of oscillation of a pendulum 20 ft. long at a

place at which g= 32'2 ft.-sec. units.

Ans. 2*47... sec.

(2) Find the length of the seconds' pendulum at a place at which

^= 31-9.

Ans. 3-232... ft.

(3) Find the length of the pendulum which makes 24 beats in 1

min. where g=32'2.

Ans. 20-39... ft.

(4) A seconds' pendulum is lengthened 1 per cent. How much
does it lose per day ?

Ans. 7 min. 8-8... sec.

(5) The length of the seconds' pendulum being 99*414 cm., find

the value of g.

Ans. 981 -17 cm. -sec. units.

(6) A pendulum 37-8 inches long makes 182 beats in 3 min. Find

the value of g.

Ans. 31-78... ft.-sec. units.

(7) If two pendulums at the same place make 25 and 30 oscilla-

tions respectively in 1 sec, what are their relative lengths ?

Ans. 1-44 : 1.
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(8) A pendulum which beats seconds at one place is carried to

another where it gains 2 sec. per day. Compare the values of g at

these places.

Ans. As 0-999953... : 1.

(9) A pendulum which beats seconds at the sea,-level is carried to

the top of a mountain where it loses 40 '1 sec. per day. Assuming

the value of g to be inversely proportional to the distance from the

centre of the earth, and the sea-level to be 4,000 miles from that

point, find the height of the mountain.

Ans. 1"86... miles.

192. (4) Motion of a point constrained to remain in a
cycloid, the acceleration being uniform, in the direction

of the axis, and towards the vertex.—A cycloid is the

curve traced by a point in the circumference of a circle

which rolls along a straight line. If the circle EP roll

along the line AB, starting from that position in which
P the point in its circumference is at A, P's path will

be the cycloid ACB. If (7 is the position of P when
the diameter of the circle through P is perpendicular to

AB, CD (perpendicular to AB) is called the axis of the

cycloid, and the point C its vertex.

Let the moving point Q have at Q^ a speed zero. Its

speed V at Q., is (185) such that, a being the acceleration,

v^-= 2a,N^]^^_,

iVj^2 being the projection of Q^Q., on CD. Let t be the
time in which the point would, with the same accelera-
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tion and with initial speed zero, move from D to C.

Thenai) = Ja^2 He^ce

Now by a property of the cycloid

and 4^GD .CN^=CQ^\

Hence ^'' = \{CQ;--CQ.^)-

Now t^ being equal to WDIa is a constant. Hence (163-4)
the motion of Q in the cycloid is simple harmonic, the

tangential acceleration a of Q (in other words the rate of

change of speed of Q) being such that l/f = a/s, where s

is the distance of Q from C, measured along the curve. If

T is the period of the oscillation (double) of Q,

y a y a

The time of describing any arc of the cycloid may be
determined as shown in 163.

If f is the time occupied in moving from Q^ to C,

IT I2GJJ

As this expression involves only constant quantities, the

time is the same whatever be the position of the starting

point Qy Hence the cycloid is called a tautochrone.

193. This result is rendered of practical importance by
one of the properties of the cycloid, viz., that if a flexible

and inextensible string AB having one end fixed at A be

wrapped tightly round the semi-cycloid AC, the end B
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will, as the string kept tight is unwrapped, describe

another semi-cycloid. If therefore AC and AD are fixed

semi-cycloids symmetrically placed about a vertical line

through A and J.J5 a simple pendulum, and if B is made
to oscillate in the plane of CAD, B will describe a cycloid,

and its oscillations will consequently be isochronous what-
ever their extent.



l;j4 KINEMATICS. [194

CHAPTER V.

EOTATION.

194. We have called a translation any motion of a

body which is such that its various points move through

equal distances in the same direction. If then one point

of the body be fixed, there can be no translation. The
motion of which it is capable under these circumstances

will be more or less complex according as its parts can or

cannot move relatively to one another. We restrict our-

selves here to the case of bodies whose parts cannot move
relatively to one another, or, as they are called, rigid

bodies. The motion of which a rigid body or system
of points is capable when one point is fixed is called

rotation.

195. It will be evident that, whatever may be the

motion of such a system, straight lines through given
points of the system must remain straight lines of un-
changed length and inclination, and planes must continue

to be planes of unchanged form, area, and inclination.

It will also be evident that the motions of two points

which are indefinitely near must be indefinitely nearly
the same.

196. The positions of all the points of a rigid system
whose configuration is known are determined if the
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positions are known of any three points which do not
lie in the same straight line.

For let the positions of three

points, A, B, and G be known.
Then that of their plane is known
also; and consequently the posi-

tion of any fourth point E is

known, for it must maintain given
fixed distances from this plane and
from every point in it.

197. If therefore one point J. of a rigid system is fixed,

the specification of the positions of two other points B and
C, not in the same straight line with the fixed point,

determines the position of the system. Now J.'s position

being fixed, and the distance of B from A being given,

5's position is known, if the direction of AB is known.
And the direction of AB can be described (3) by a state-

ment of the magnitudes of two angles. Hence, A 's position

being given, Bs position is determined by two numbers.
5's position being given, and O's distance from B, C's

position is known if the direction of BCis known. Now
to determine this direction one angle, \iz., ABC, is already

known (the three sides of the triangle ABC being known).
Hence one other angle determines O's position. Hence,
also, the positions of A and B being given, one number
determines that of C. If therefore the position of one
point of a rigid system is fixed, the positions of any other

two points not in the same straight line with the first,

and therefore the position of the rigid system itself, are

determined by three numbers.

198. Degrees of Freedom.—The position of a rigid

system with one point fixed being described by three

numbers, any change of position will be described by the

changes which these numbers undergo. Any motion of

a rigid system, one point of which is fixed, may therefore
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be specified by three numbers; and such a system is

consequently said to have three degrees of freedom.

199. Rotations.—If a line passing through the fixed

point of a rigid system be also fixed both in the system

and in space, the various points of the

body can move only in circular arcs,

these arcs being in planes perpendicu-

lar to the given fixed line, and their

centres being the intersections with the

fixed line, of perpendiculars on it from

the various points. Thus, if A be the

fixed point, and AB a fixed line of the system, any point

C can move only in a plane through C perpendicular to

AB, and its path must be a circular arc whose centre is

D the foot of the perpendicular from Con AB, -diid whose
radius is DC.

The angle between the final and initial positions of DC
is (126) the angular displacement of C about AB. As all

planes of a rigid system must remain planes, and must
maintain their mutual inclination, the angular displace-

ments of all the points of the system about AB must be
the same as that of C. This angular displacement is

therefore called the angular displacement of the system
about AB.

Even if the line AB fixed in the system be not fixed

in space, a motion of the system may be specified by
reference to AB, and in that case also the various points

of the system must move in circular arcs relatively to AB,
though relatively to a line fixed in space they may have
a much more complex motion.

The motion of a rigid system with one point fixed

about a line through that point and fixed in the system,

is called a rotation of the system about the fixed line,

and the fixed line is called the axis of the rotation. A
rotation is thus completely specified if the direction of
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the fixed line is given, the sense of the rotation about it,

and the magnitude of the angular displacement. It is

thus a vector, and may be completely represented by a
straight line, whose length is proportional to the angular

displacement and whose direction is that of the axis,

provided also that the line be so drawn from the fixed

point that an observer looking along it toward the fixed

point will see the perpendicular from any point of the

system on the axis in moving from its initial to its final

position move counter-clockwise.

200. Composition of Successive Rotations.—A rigid

body with one point fixed undergoes successive rotations;

it is required to determine the resultant rotation. The
given rotations may be about the same or about different

axes.

(a) About the same axis. It is obvious that the resul-

tant of any number of successive rotations about the same
axis is equal to their algebraic sum.

It follows that any rotation about a given axis may be
broken up into any number of successive rotations

about the same axis, provided the algebraic sum of their

magnitudes is equal to the magnitude of the given

rotation.

201. (h) About different axes. As these axes must pass

through the fixed point they must be inclined to each

other. The angular displacements about them may be
finite or indefinitely small.

First, let the rotations be finite. Let be the fixed

point of the system, OA and OB, drawn so as to indicate

the sense of the rotation, the axes fixed in the system
about which the rotations occur, and and <p the mag-
nitudes of these rotations respectively. Make OA equal
to OB. Then during the motion A and B move on the
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surface of a sphere. Let OA^, OB^ be the initial positions

of OA and OB in space, and let OB^ be the position in

space of OB after the rotation about OA, the rotation

about OA occurring first. Join A^B^,
^i-^.,' AA V great

circles of the sphere. Then angle B^A^B.^ = 0. Bisect

this angle by a great circle meeting B.,B^ in D. Draw a

great circle through B,,, inclined to B.A^ at the angle (p/'2

and meeting A^D in the point C\. It is obvious from the

symmetry of the sphere about a plane through its centre

that a point C^ can be found on the other side of B^A^
from Op whose position is such that BJJ^ = BXJ^, Afi^=
Afi\, angle Afif^^= ^/2 and angle B.^Afi.^ = e/'2.

"

If now the system be rotated about OA , OB will move
from the position OB^ to OB^ and the line 00 of the sys-

tem initially occupying the position OC^ in space will

come to occupy the position 0C„. When now the system
is rotated about OB in its new position OB,^, OC must
move from the position 00^ to the position OC^, for the

anoxic C^B,fi\ is equal to ^ -dJid B.fi.,= Bfi^. Hence the

line OC tixed in the system has the same position in space
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after the rotations as before them; and therefore the

resultant motion is a rotation about OG.

202. Secondly, let the rotations be indefinitely small.

Let them be represented by the lines OA, OB. Complete
the parallelogram AB and join 0(7. Take P any point

of the rigid system in the plane of OA and OB and out-

side the angle AOB, and draw PQ, PR, PS perpendicular

to OA, OB, OG respectively. If the rotation OA occur
first, P will move perpendicularly

to the plane of OA and OB to-

wards the reader through an
indefinitely small distance repre-

sented by OA X PQ (199). When
the rotation OB occurs P will

move in a direction perpendicular /

to the plane of OA and OB to- /

.

wards the reader through a dis- o r

tance represented by OBxPR. As these linear displace-

ments have indefinitely nearly the same direction, the

resultant displacement of P is (86, III.; and 105, footnote)

OA.PQ-{-OB.PR = OG.PS.

Hence the resultant displacement of the point under
consideration will be the same as if the system had
undergone a rotation represented by OG.

The same result would have been obtained had the

rotation OB occurred first and had the point P been
taken inside the angle AOB. Also, it is obvious that the

same result is obtained whether OA and OB be axes
fixed in the body or axes fixed in space.

Hence, if a rigid system with one point fixed undergo
two successive indefinitely small rotations about difierent

axes either fixed in the system or fixed in space, and if

these rotations are represented by two adjacent sides of a
parallelogram, the resultant displacement will be a rota-
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tion represented by the diagonal of the parallelogram

through their point of intersection.

If there are more than two successive indefinitely small

rotations, the third may be compounded with the result-

ant of the first two by the above parallelogram law, and
so on.

203. Composition of Simultaneous Rotations.—Simul-

taneous rotations are usually called component rotations.

{a) About the same axis.—Let the component rotations

«. A y, etc., be broken up each into n equal rotations

about the same axis and of the magnitudes a/n, ^/n, y/n,

etc., where n is a, large number ; and let these rotations

occur in the order a/n, ^/oi, y/n, etc., a/n, j^jn, y/n, etc.,

and so on. li n is indefinitely great this is equivalent to

the simultaneous occurrence of a, /3, y, etc. And the

resultant of all these rotations is obviously (200) equal to

a-[-/3+ y+ etc. Hence the resultant of any number of

component rotations about the same axis is their algebraic

sum.

204. (h) About different axes.—ljQi OA, OB (Fig. of

202) represent two component finite rotations about axes
either fixed in the system or fixed in space. Let them
be broken up each into n equal indefinitely small rota-

tions of the magnitudes OA/n, OB/n respectively. Let
these rotations occur in the order OAjn, OB/n, OA/n,
OB/n, and so on. This is equivalent to the simultaneous
occurrence of OA and OB. Then (202) the resultant of

the first pair of small rotations is a rotation OC/n, that of

the second pair the same, and so on for the oi pairs. Hence
the resultant of all is equal to n rotations of the magni-
tude OC/n each and about the axis 00 ; that is (200), it

is a rotation OC. Hence two component rotations are to

be compounded according to the parallelogram law.

205. If there are more than two components, the third
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may be compounded with the resultant of the first two,

and so on.

206. Component rotations are thus compounded ac-

cording to the same law as component translational

displacements. We have therefore propositions called

the triangle, the parallelogram, and the polygon of rota-

tions, the enunciation of which may be left to the reader.

It follows that all the formulae of 85-90, deduced from
these propositions, apply to rotations as well as to trans-

lations.

207. Resolution of Rotations.—It follows also that

rotations may be resolved into components after the same
manner as translations.

208. Rotational Displacements in general.—In any
displacement of a rigid system with one point fixed, there

is one line fixed in the system which has the same posi-

tion in space in both the initial and final positions of the

system.

Let A be the fixed point of the system and B and G
other two points not in the same straight line with it.

Let B^, C\ be the initial posi-

tions, and B.,, (X, the final

positions in space of B and C
respectively.

As the system is rigid we
must have J.^^^^^^- Hence
the point B may be brought
fi'om B^ to B^ by a rotation

about an axis through A per-

pendicular to the plane of

B^AB^. By this rotation C
will be moved from C\ to a
new position c, which, owing
to the rigidity of the system, must be such that -4 c
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and B,fi = BJJ„. Hence the triangle AB^C[^ is equal in all

respects to the triangle AB^c, and therefore c may be

brought to coincide with C., by a rotation about AB in

the position AB.,. Hence the given displacement may be
produced by two successive rotations about axes passing

through the fixed point A. Now (201) two such rotations

give as resultant a single rotation about an axis through
A. Hence the given displacement may be produced by a
sinorle rotation about an axis throu^fh J., and this axis has

therefore the same position in space in both the initial

and the final positions of the system. This axis is called

the axis of the displacement.

209. Hence any displacement of a rigid system with
one point fixed may be completely specified by giving the

direction of its axis and the magnitude of the angular

displacement about the axis.

210. Hence the three numbers which determine any
displacement of such a system (198) may consist of two
determining the direction of the axis and one giving the

magnitude of the angular displacement about that axis

;

and therefore the three degrees of freedom of such a sys-

tem consist of freedom to rotate about any axis through
the fixed point.

211. It follows from 208 and 207 that any displace-

ment of a rigid system with one point fixed may be

resolved into thiee rotations about given rectanorular axes

through the fixed point. Any such displacement may
therefore be completely determined by three numbers
which are the magnitudes of rotations about three given

rectangular axes. Hence the three degrees of freedom of

a rigid system with one point fixed are usually described

as consisting of freedom to rotate about each of three

rectangular axes.

212. Angular Velocity of a Rigid System.—The mean
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angular velocity of a rigid system with one point fixed,

during a given time, is a quantity whose magnitude is

the angular displacement produced during that time,

divided by the time, and whose direction is that of the

axis of the angular displacement.

In general both the direction and the magnitude of the

mean angular velocity of a rotating body vary with the

interval of time over which it extends. If both direction

and magnitude are the same whatever the interval of

time, the rotation and the angular velocity are said to be
uniform. In that case the axis of rotation is constant in

direction and the angular displacement is proportional to

the time.

213. The instantaneous angular velocity of such a
system at a given instant has a magnitude and a direction

which are the limitinor magnitude and the limitinor direc-

tipn of the mean angular velocity between that instant

and another when the interval of time between them is

made indefinitely small. The direction of the instantaneous

velocity is called the instantaneous axis of rotation.

In the case of bodies under finite forces (295) the

instantaneous angular velocity, as above defined, has
always a finite value, and abrupt changes of the direction

of the axis are impossible.

The angular velocity of a rigid system (whether mean
or instantaneous) is thus seen to be a vector. It may be
represented by a sti-aight line after the same manner as a
rotation.

214. Relation between the Angular Velocity of a Rigid
System and the Linear Velocity of one of its points.—As
all points of a rigid system with one point fixed move, at

least instantaneously, in circular paths about the axis of

rotation, the linear velocity of a point (130) will be the

product of its angular velocity into its distance from the
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axis. If o) is the angular velocity of the system and v

the linear velocity of a point whose distance from the

axis is r, we have v = wr.

215. The angular velocity of a system is measured in

terms of the same unit as the angular velocity of a

point (128).

216. Composition of Angular Velocities.—If a rigid

system with one point fixed have any number of com-
ponent angular velocities of given magnitudes and direc-

tions, we may prove, by reasoning similar to that employed
in determining the law of the composition of linear

velocities, that their resultant is to be determined accord-

ing to the same law. We have therefore propositions

called the parallelogram, the triangle, and the polygon of

angular velocities of the same form as the similar pro-

positions for linear velocities. The reader can easily

construct them for himself.

217. All the deductions from these propositions made
in the case of linear velocities may also be made in that

of angular velocities ; and hence all the formulae of 85-90

apply to angular velocities, d^, d^, etc., being now the mag-
nitudes of the component angular velocities and R the

magnitude of the resultant.

218. It follows also that angular velocities may be

resolved after the same manner as linear velocities or

displacements (79-84).

219. Angular Acceleration of a Rigid System.—The
angular velocity of a rigid system will in general vary
from instant to instant both in magnitude and direction.

The integral angular acceleration of a rigid system
during any time is that angular velocity which must be

compounded with the initial angular velocity, in order to

produce the linal angular velocity.
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The mean angular acceleration of such a system during
any time has a direction which is that of the integral

angular acceleration, and a magnitude which is that of

the integral angular acceleration divided by the time.

In general the mean angular acceleration will be different

for different intervals of time. If it is the same, both in

magnitude and in direction, whatever be the interval of

time, the system is said to be rotating with uniform
angular acceleration.

The instantaneous angular acceleration of a rigid

system at a given instant has a direction and a magnitude
which are the limiting direction and the limiting magni-
tude of the mean angular acceleration between that

instant and another when the interval of time between
them is made indefinitely small. The instantaneous

angular acceleration of a rigid body is in all cases finite.

220. The angular acceleration of a system is measured
in terms of the same unit as that of a point (1 36).

221. Composition and Resolution of Angular Accele-

rations,—The laws of the composition and resolution of

angular accelerations are the counterpart of those of linear

accelerations. As the latter were deduced from the laws
of the composition of linear velocities, so may the former
be deduced from the laws of the composition of angular
velocities.

222. It follows that the relations between the magni-
tudes and inclinations of the components and the mag-
nitude and direction of the resultant, as expressed in the

formulae of 85-90, hold also for angular accelerations,

rZj, d„, etc., standing now for the magnitudes of these

accelerations.

223. An angular acceleration may, like a linear accele-

ration (120), be resolved into tangential and normal
K
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components, i.e., into components whose respective direc-

tions coincide with, and are normal to, the instantaneous

axis of rotation ; and in the one case as in the other, it

may be shown that the normal component determines
the change of the direction of the angular velocity, i.e.,

the change of the direction of the instantaneous axis;

while the other component is equal to the rate of change
of the magnitude of the angular velocity.

If therefore a rotating body have an angular accel-

eration which is continuall}^ perpendicular to its axis

of rotation, its angular velocity will change in direc-

tion but not in magnitude. If it have an acceleration

which has the same direction as its angular velocity, the

direction of the rotation will be constant, and the rate of

change of the magnitude of its angular velocity will be
equal to its angular acceleration.

224. Motion under given angular accelerations, of a

rigid system with one point fixed. We may take a few
of the simpler cases of such motion.

(1) Angular acceleration zero.—If there is no accelera-

tion, the direction and magnitude of the angular velocity

must remain constant. Hence, as in 138, if w be the

angular velocity and 6 the displacement in a time t, we
have = wt; and the axis of the angular displacement is

the constant axis of rotation.

225. (2) Angular acceleration constant in magnitude
and direction.

(a) Direction the same as that of the instantaneovj<

axis at any instant.—The directions of the acceleration

and of the instantaneous axis of rotation at a given
instant being the same, that of the instantaneous axis is

constant (140). Hence, also, the rate of change of the

magnitude of the angular velocity is equal to the angular

acceleration. If therefore a be the magnitude of the
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angular acceleration, Wq and Wt the initial and final angular
velocities, and 6 the displacement in a time t, we may
obtain, as in 63-65, the formulae

—

ftj,= a).^+ a^,

226. (b) Direction any luhatever.—Let OA represent

in direction the initial angular
velocity o), OB that of the angular
acceleration a, the angle AOB be-

tween their directions being 0. In
the plane of OA and OB draw 00
perpendicular to OA. The com-
ponents of the acceleration in the

directions OA and 00 are thus

a cos ^ and a sin (/>.

To find the angular velocity after any time t we know
that its components about OA and 00 are co-\- at cos (p

and at sin respectively. Hence, if Q is its magnitude,

Q={{a)-\-at cos <l))^-\-{at sin (pY}K

Also, if ^ is the angle made by its direction with OCj

, . .w -{- at con d)

\]r = tan - ^ 7-^ ^•
^ at sm (j)

To find the angular displacement after any time t, we
know that the component displacements about OA and
00 respectively are w^-f Ja^^cos^ and hath\n(l>. Hence,

I

if is the magnitude of the resultant,

:

e = { (cot 4- -Ja^^cos 0)2 -f (-i-a<%in 0)2}*.

And, if X is its inclination to 0(7,

ft)^+ ^a^^cos0
tan y = ,

"
. , •
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227. The axis about which, in 225-6, we have sup-

posed the angular acceleration given may be one fixed

either in the body or in space. If the given accelerations

be about axes fixed in space, the position in space of the

axis of the displacement, and its magnitude, after any
time, may be determined as above, and the new position

of the system in space is thus known. If, however, the

given accelerations be about axes fixed in the body (as

they usually are in practical problems) the above equa-

tions determine the resultant displacement only with
regard to the fixed axes in the body. The determination

of the position in space of the body after any time is in

this case too difficult a problem for readers of this book.

In attacking problems therefore in which the accelerations

are given about axes fixed in the bodies, we shall require

to restrict ourselves to those in which these axes are

fixed also in space.

228. Examples.

(1) A rigid system undergoes two component rotations, whose

magnitudes are 2 and 4 radians respectively, and whose axes are

inclined 60°. Find the resultant rotation.

Ans. Magnitude, 2;^/7 radians; axis inclined sin-^^. /- to the

greater component.

(2) A sphere with one of its superficial points fixed undergoes

two component rotations—one of 8 radians about a tangent line,

and one of 15 radians about a diameter. Find the axis of the

resultant displacement and the number of complete revolutions

made about it.

8
Ans. Inclination of axis to greater component is tan"^— , and the

ID
number of revolutions is 17/27r.

(3) A sphere is rotating unifomily about a diameter at the rate

of 10 radians per min. Find (a) the component angular velocity

about another diameter inclined 30° to the former, and (6) the
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component rotation produced in 2 min. about a diameter inclined

45° to the first.

Ans. (a) 5 ^3 radians per min.
; (6) 10 J2 radians.

(4) A pendulum, suspended at a point in the polar axis of the

earth, oscillates in a vertical plane. Find the motion of this plane

relative to the earth, it being given that the earth rotates once a

day about its polar axis from west to east.

Ans. It rotates about the polar axis from east to west at the rate

of one complete rotation per day.

(5) A pendulum is hung at a place of latitude X and oscillates in

a vertical plane. Find (a) the angular velocity of the plane of the

pendulum's motion relative to the earth, and (b) the time in which

this plane will make one complete revolution at a place in latitude

60° N. [A pendulum, so mounted that the angular velocity of the

plane of its motion may be observed, is called Foucaidt's pejidulum^

the experiment having been first made by Foucault. That the

experiment may be successful, the pendulum must be long, must
have a very carefully made bob, and must be very carefully started.

The agreement of the angular velocities deduced, as in this problem,

from the assumption of the rotation of the earth on its axis once in

24 hours, with the actually observed angular velocities, is strong

evidence for the rotation of the earth.—To obtain the angular

velocity of the plane of the pendulum's motion, note that it is only

the component of the earth's angular velocity about an axis through

the centre of the earth and the point of suspension of the pendulum,

which causes a relative motion of the plane of the pendulum's

motion and the surface of the earth.]

2
Ans. (a) 2ir sin X radians per day east to west

;
(h) — days.

(6) A cube rotates about a vertically upward axis through one of

its edges. At a given instant at which that diagonal of the upper

surface which passes through the axis, points north, the cube has an

angular velocity of 40 radians per sec. and begins to have a uniform

angular acceleration about an axis vertically downwards through

the same edge, of 6 rad.-per-sec. per sec. (a) In what direction
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will the above diagonal i)oint after 20 sec. ? (6) How many revolu-

tions will the cube have made ^

Ans. (a) S. 57°-90... W.
;

(b)
?^'-^-

(7) A sphere is rotating at a given instant about a given dia-

meter ACB with an angular velocity of 4 rad. per min. It has an

angular acceleration of 2 rad.-per-min. per min. about a diameter

BCE inclined 30° to A CB. Find {a) the angular velocity, and (6)

the angular displacement, after 20 min.

Ans. (a) 4^101 + 10^3 rad. per min., inclined to CB at

5
tan~^

ST^/Q ' (^) 80 V ^6 + 5/^/3 I'adians, inclined to CB at

tan
2+5^3

229. GeovietHcal representation of the motimi of a
rigid systeon about a fixed point. At any instant the

instantaneous axis of a rotating rigid body occupies both
a definite position in the body and a definite position in

space ; but from instant to instant it changes both its

position in the body and its position in space. As its

changes of direction must (295) be gradual, the successive

positions of the axis in the body describe a surface in the

body, and the successive positions of the axis in space

describe a surface in space. One point of the body
being fixed, the instantaneous axes all pass through it.

Hence the surfaces, described as above, both in the body
and in space are conical surfaces. At each instant these

surfaces are in contact along a line which is the position

both in the body and in space of the instantaneous axis

at that instant. Hence the motion of a rigid body with
one point fixed may be represented by the rolling of a
cone fixed in the body on a cone fixed in space, the

vertices of the cones being the fixed point. This mode of
representing geometrically the rotation of a rigid body is

of great utility in the higher departments of this subject.
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CHAPTER YI.

MOTION OF EIGID SYSTEMS.

230. Motion of Free Rigid Systerns.—We are now able

to discuss the motion of rigid bodies or systems of points,

having studied the two forms of motion which they are

capable of undergoing. We shall first consider systems
which are perfectly free to move.

231. Degrees of FreedoTn.—We have seen (197) that

three numbers are necessary to determine the position of

a rigid body one point of which is fixed. As three num-
bers are necessary to describe the position of that point,

six will be necessary to determine the position of a rigid

system which has no point fixed. Six conditions of con-

straint will be necessary to fix the system. It has six

degrees of freedom.

232. Displacement of a Rigid System.—Any displace-

ment of a rigid system may be produced by a translation

of the system together with a rotation about any point

in it.—Let A, B, C be the positions of any three points

determining the initial position of the rigid system, and
let Aj, J5^, G^ be the positions of these points after any
displacement. Translate the system so that A comes to

occupy its final position A^. Then B and will take
positions B^, C^, the ends of lines from B and C equal and
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parallel to AA^. Then A^ is a fixed point in the system so

far as the two positions A^Bfi^ and A^Bfi^ are concerned.
Hence (208) the system may pass from "the one to the

other of these positions by rotation about an axis through
this point.

233. In the special case of a rigid plane system move-
able in its own plane, any displacement which is not a

mere translation may be produced by rotation about some
point in its plane.—Let BC, B'C be initial and final posi-

' tions of the same line of the

system. Bisect BB' and CC in

I) and E, and draw BO and EO
perpendiculars to BB' and CC.
DO and EO will in general be in-

clined and will meet in a point 0.

Join OB, 0B\ OC, OC.

It may readily be shown that

OB and OG are equal respectively

to OR and OC. Also BG is equal
^'3

1

to BV. Hence the triangle OBG
is equal to the triangle OB'C in every respect, and hence
OBG may be brought to coincide with OB'G' by rotation

about 0.

Since the angle BOG is equal to the angle B'OC,
taking B'OG from both, the remainder BOB' is equal

to the remainder GOC Hence, if the displacement

is such that the point B is on GO or GO produced, the

point B' will be on CO or CO produced respectively.

In the former case we have Fig. 2, in the latter Fig. 3.

In both these cases OB will be in the same straight line

with OE, and therefore the above construction will fail.

In both cases however it is obvious that the point in

which either BC and B'C, or these lines produced, cut

one another, is the point about which a rotation would
produce the given displacement.
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If, in Fig. 2, BB' be equal to CC\ the point becomes
infinitely distant, and in this case also the construction

ng2

fails. Here however BG must be parallel to B'C, and
the displacement is thus a mere translation.

If BB' and CC are indefinitely small, the point is

called the instantaneous centre of the motion of the rigid

plane system.

234. It follows from 232 that the displacement of a
rigid system is known if the magnitudes and directions

of the linear displacement of any point in it, and of the

angular displacement of the system about that point, are

known.

235. Hence also the displacement of a rigid system is

known if the magnitudes of the component linear dis-

placements of any point in it parallel to three rectangular
axes, and of the component angular displacements of the

system about axes, parallel to the above axes, through the
point, are known.

236. The six degrees of freedom of a rigid system are

therefore usually described as consisting of freedom to

undergo translation in, and freedom to rotate about three
directions at right angles to one another.
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237. Examples.

(1) How many degrees of freedom has a sphere constrained (a) to

remain in contact with a plane surface, (b) to remain in contact

with a curved surface, (c) to maintain a given diameter in a given

direction ?

Ans. («) 5, (b) 5, (c) 4.

(2) How many conditions of constraint must be applied (a) to

keep the surface of a sphere in contact with a given point, (b) to

keep its centre in a given line ?

Ans. (a) 1, (6) 2.

(3) How many degrees of freedom has a three-legged stool which

must remain (a) with the three legs in contact with a plane, {b)

with one leg in a trench of V-shaped section, and the othera in con-

tact with a plane, (c) with one leg in a conical hole and the others

in contact with a plane, (d) with one leg in a conical hole, another

in a V-shaped trench, and the third in contact with a plane ?

Ans. (a) 3, (b) 2, (c) 1, (d) 0.

(4) How many degrees of freedom has a rod connected to a fixed

body (a) by a hinge, (b) by a ball-and-socket joint ?

Ans. (a) 1, (6) 3.

(5) To how many degrees of constraint is a nut subjected which

is moveable on a fixed screw ?

Ans. 5.

(6) A nut can turn on a fixed screw. To the nut is hinged a rod

on which a second screw is cut. How many degrees of freedom has

a nut turning on the second screw ?

Ans. 3.

(7) A series of 7i rods are joined by vertical hinges, the first to a

fixed body, the second to the first, and so on. How many condi-

tions of constraint are necessary to fix the system ?

Ans. n.

(8) The ends of two rods are attached to a fixed body, their other

ends to the ends of a third rod. How many degrees of freedom has
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the third rod if the attachments are (a) hinges perpendicular to the

plane of the rods, (b) ball-and-socket joints ?

Ans. (a) 1, (6) 4.

238. Composition of Translations and Rotations.—
We have now to determine the resultant of any number of

translations and rotations which may be impressed upon
a free rigid body. The following proposition will be
useful.

The resultant of a rotation about a given axis and a
simultaneous translation in a direction perpendicular to

that axis is an equal rotation about a parallel axis.—Let
the plane of the diagram be a plane of the body perpen-

dicular to the axis of rotation, and let A be the point in

which the axis cuts the plane, and AT the direction and
magnitude of the translation. Let BAG be a line of the

body making with AT d^n angle TAB equal to half the

supplement of the magnitude of the rotation. Draw
BAC so as to make the angle CAC equal to the rota-

tion. From T draw TB parallel to AB'; and from B,

BB' parallel to TA. Then TB' is a parallelogram ; and
the angle TAB being equal to TAG\ AB, AB\ and BT
are equal.

When the body is rotated through the angle CAC\ the
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line BAG takes up the position B'AC. If now it under-

go the translation AT, this line moves parallel to itself so

that B moves from the position B' to its initial position

and A moves to T. The result of the two operations is

therefore that the line BAG is brought to the position

BT, the point B occupying its initial position. As the

angle ABT is equal to the angle GAG', the line BAG and
therefore the whole body has undergone a rotation equal

to the given rotation, about a parallel axis through B.

It will be clear that the result would have been the

same had the body been first translated and then rotated,

and consequently that the result would be the same were
the translation and rotation simultaneous.

239. By producing TA to T\ making AT equal to AT
and drawing TB" parallel to TB, it may readily be shown
that reversing the direction of the component translation

reverses the direction of the displacement of the axis of

rotation.

240. If 8 is the translation and Q the rotation, we have

A R— ^

2sin(e/2)'

and the angle TAB is equal to (tt— 0)/2. Hence the

axis 5 is in a line inclined (tt— 0)/2 to the direction of

the translation and at a distance from the axis A equal

to s/[2 sin (0/2)].

241. It follows from 238 that a rotation about a given

axis may be resolved into an equal rotation about a par-

allel axis at a given distance in a given direction, together

with a translation whose magnitude and direction may
be determined by the above construction.

242. Hence, if a rigid system have any number of com-
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ponent rotations about any axes whatever (the axes will

of course in general not intersect), they may be reduced
to the same number of component rotations of the same
magnitudes respectively, about axes parallel to the given
axes through some one point, together with as many trans-

lations. The resultant of the component rotations may
then be found by 206, and the resultant translation by 78.

243. Hence, if a rigid system have any number of com-
ponent translations and rotations, they may be reduced

to a single translation, and a single rotation about some
given point. The displacement of the system may there-

fore be determined.

244. It is evident from 242 that the single rotation

referred to in the last paragraph will have the same value

whatever the position of the given point, but that the

translation will vary with its position. Hence, that the

displacement of a rigid system may be known, its rota-

tion about any point fixed relatively to the system and
the translation of some given point of the system must
be known.

245. Every displacement of a rigid system may be
produced by a rotation about a determinate axis and a
translation in the direction of that axis.—Let AB and

BC represent the translation and
rotation to which its component
translations and rotations are re-

ducible. From A Si>nd B draw lines

parallel and perpendicular respec-

tively to BC meeting in D. Then the translation AB has

the two components AD and DB. But the translation

DB with the rotation about BC give as resultant an equal

rotation about some other axis parallel to BC. Hence the

translation AB and the rotation about BC are equivalent

to a translation AD and a rotation about an axis parallel

to AD,
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Ball gives the name screw to the common direction of

the translation and rotation to which any displacement

of a rigid system may thus be reduced. The linear dis-

placement in this direction per unit of angular displace-

ment about it he calls the pitch of the screw. A rotation

about a screw accompanied by a translation parallel to

the screw through a distance equal to the product of the

pitch and the angular displacement he calls a twist about
a screw.

246. A twist about a screw is thus the most general

possible motion of a rigid body. Hence one degree of

constraint of the most general kind is attained by allow-

ing a body to rotate about a given line in it, only in fixed

proportion to the amount of its translation along it.

Then the body has freedom to screw in the direction of

this line, together with freedom to rotate about and to be
translated in any other two directions perpendicular to

one another and to the given line ; on the whole, five

degrees of freedom which, with the one degree of con-

straint, make up the six necessary elements.

247. Composition ofLinear and Angular Velocities.—
Velocities, whether linear or angular, being displacements
per unit of time, the results of 238 are true of them as

well as of displacements.

In the case of instantaneous velocities however, the

(quantitative relations of 240 become simplified. For, if

the translation and rotation of 240 are both indefinitely

small, we have AB = s/0 and angle TAB = '7r/2. If these

small displacements occur in the time t, and if v and w
are the component instantaneous linear and angular
velocities respectively, we have

AB={s/t)MO/t) = vIco.

Hence the resultant of an angular velocity co about a
given axis and a linear velocity t^ in a plane perpendicular

i
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to the given axis is an equal angular velocity about a
parallel axis distant vju) in a direction perpendicular to

that of V.

248. Hence also a given angular velocity o) may be re-

solved into an equal angular velocity about a parallel

axis distant d in a given direction, together with a linear

velocity equal to dw perpendicular to the plane of the

axes.

249. Composition of Angular Velocities about Parallel

Axes.—By the aid of this result, we may determine

the resultant of two component angular velocities about
parallel axes. Let J., 5 be the parallel axes, d the

distance between them, w^, w,^ the angular velocities about
xL, B respectively. Then the angular velocity w^ about A
is equivalent to an equal angular velocity about B with a
linear velocity perpendicular to the plane of the axes and
equal to dw^. The given angular velocities about A and
B are therefore equivalent to an angular velocity equal to

their sum about B together with the linear velocity equal

to dwy Similarly, an angular velocity of cOj+ Wg about

B is equivalent to a linear velocity —dw^^ with an
angular velocity w^-\-w.y about a parallel axis O, distant

-'d(£)J{w^-^oo.^ from B in the direction AB, and therefore

dwJ{o}j^+ CO.,) in the direction BA. Hence, as positive and
negative equal translations destroy one another, the two
angular velocities w^ and w.,, about parallel axes A and B
respectively, are equivalent to an angular velocity coj+ <«).,

about a parallel axis through C in the same plane as A
and B, whose distance from B is dajj^w^+ w.,), and from A
d— dcojico^+ o).^), and which therefore intersects the line

BA so that Bb : CA = w^ : w^.

If the component angular velocities about A and B are

equal and opposite, Wj+ oj^ = 0, and da)J(w^+ a.>._,) = oo . The
axis of the resultant angular velocity is thus at an infinite

distance; in other words, the resultant velocity is a trans-
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lational velocity in a direction perpendicular to the plane

of A and B.

250. Go7n])Osition of Linear and Angular Accelera-

tions.—As in 116, it may be shown that the laws of the

composition of linear and angular velocities apply also to

linear and angular accelerations.

251. Motion of a Rigid System under given Accelera-

tions.—The resultant linear acceleration of any point of

the system and the resultant angular acceleration being-

known, together with the initial velocities, the displace-

ment and the final velocities of the S3^stem may be deter-

mined by 138-180 and 224-226. In practical problems
the angular accelerations are usually known about axes

fixed in the body. Of such cases we must restrict our-

selves (227) to those in which the axes fixed in the body
have also fixed directions in space.

252. Geometrical Representation of the Motion of a

Rigid Lamina in its own Plane.—The instantaneous

centre of such a lamina occupies at any instant a definite

position both in the lamina itself and in space ; but from
instant to instant its positions, both in the system and in

space, change. By 295 the successive positions in the

case of a body must be indefinitely near ; and therefore

the series of positions of the instantaneous centre in the

system forms one curve and the series of positions in

space forms another. At each instant these curves must
be in contact, the points of the curves in contact being
the positions of the instantaneous centre at the given
instant. Hence the motion of a rigid plane system in its

own plane may be geometrically represented by the roll-

ing of a curve fixed in the system on a curve fixed in

space. This conception is of great use in the treatment
of some of the more difficult problems of the motion of

rigid systems.

I
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253. Motion of Rigid Systems under Constraint.—
If two or more bodies are connected together in any way
they form a system, the motion of any one member of

which, thus subjected to constraint, depends upon the

position and the motions of the others. In such cases it

may be required to determine the instantaneous axis of

rotation of any one member, to find relations between
the velocities of various members of the system, etc. We
may illustrate such cases by a few examples. Keaders
who wish a thorough treatment of the constrained motion
of rigid bodies should study works on the Kinematics of

Machinery.

254. Examples.

(1) The line DE moves, keeping its extremities in two fixed lines

ABB, A EC. Find the instantaneous centre and the direction of

motion of any point G in BE, when BB occupies any given position.

From B and F draw BF and EF perpendicular to AB and AC
and meeting in F. F is the instantaneous centre (233); for in-

definitely small displacements of B and E have the same directions

as ^^ and AC respectively, and their middle points coincide

ultimately with B and E. Join GF. The line through G per-

pendicular to GF is the direction of 6^'s motion at the given instant.

(2) A rod BE falling with its ends in contact with two other

rods, one ABB vertical and the other AEC horizontal, is inclined

30° to the horizontal rod. Find (a) the direction of motion of the

middle point of BE, and (b) the point of the rod whose motion is

inclined 30° to AC.

Ans. (a) Inclined 60° to AC
;

(b) BEjA from E.

(3) A rod moves so that its end points remain in a given circle.

Show the centre of the circle to be the instantaneous centre of the

motion.

(4) Find the ratio of the velocity of any point of a screw to its

velocity of advance. [The screio consists of a convex or concave

cylinder with one or more helical projections called threads winding

round it, the inclination of the thread to the axis of the cylinder

being constant. The pitch of a screw with one or more threads

L
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is the distance between successive windings of the same thread

measured parallel to the axis of the cylinder.]

If J5 be equal to the pitch of the screw, and if BC, perpendicular

to AB, be equal to the circumference of a right section of the

B, . ^G

cylinder, then the straight line AC will represent in length and

inclination to ^.B a single winding of the thread. For only the

straight line CA has its end points at G and A and is equally

inclined throughout to BC and therefore to a line perpendicular to

BC. If the screw advance through the distance BA^ every point in

its surface will move through the distance CA ; and if the screw

advance through any fraction of BA^ each point on its surface will

move through a distance which is the same fraction of CA. Hence

the ratio of the velocity of any point on its surface to its velocit\-

of advance is CAjBA, or, if p is the pitch and r the radius of the

screw, (p2+ 47rV2)VjO.

(5) Two bodies hang by strings from the wheel and the axle

respectively of the simple machine called

the Wheel and Axle. Find the ratio of

the magnitudes of their velocities. [The

_
-J

Wheel and Axle consists of a rigid cylindei-

ABj moveable about its axis CD^ and hav-

ing different diameters at different parts

A and J5, called respectively the wheel and

the axle. In a simple form of it the axis

is horizontal, and strings attached to the

wheel and the axle respectively and

wrapped round them in opposite direc-

tions, carry heavy bodies, one of which therefore rises when the

other falls.]

Ans. i2/r, if R is the radius of the wheel and r that of the axle.

(6) Two bodies A and B are connected by means of a system of

pulleys represented in the figure, one, C, being moveable, the other,
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Z>, being fixed. Express the angular velocity of G in terms of {a)

the velocity v of i?, and {h) the velocity v' of A. \A pidley is a con-

trivance for changing the direction of a string. It usually takes the

form of a grooved wheel or sheaf, whose axis is fixed in a fiume-

work or block, the block being sometimes fixed, sometimes moveable.]

Ans. (a) vj2r
; (6) v'jr, where r is the radius of C.

(7) Two bodies D and A^ are connected by means of the system

J

V

r ^

J

A A-
(Fig. of Ex. 6.)

of pulleys represented in the figure, A

being a fixed block with four sheaves,

B a moveable block with three sheaves,

and the string being fastened at C and

passed round sheaves in A and B alter-

nately until it has passed round them

all. Compare the velocities of D and E,

and find the radii of the sheaves that

their angular velocities may be the

same.

If the distance between D and A is

increased by any amount, the lengths of

the plies 1... 7 must be diminished each (Fig. of Ex. 7.)

by one-seventh of that amount. Hence, if v is the velocity of Z>, and
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?'' that of Ey V= 7v'. If the sheaves have all the same radius r, the}'

will have different angular velocities. Let Wj, Wg, etc., be the angu-

lar velocities of the first, second, etc., sheaves met with in passing

along the cord from C to D. Then io^ = v'/r. As twice as much
cord passes round the second sheaf as round the first, o}.^= 2v'/i\

Similarly u}s= 3v'/r, and so on. That the angular velocities may be

the same, the radii of the 1st, 2nd... n^ sheaves must be as the

numbers 1, 2... n respectively.

(8) AB, BC, CB are three rigid rods jointed to one another at B
and (7, and to fixed points at A and i), and moveable in one plane.

Find the angular velocity of CB when that of ^5 is w. [The motion

of this system is called three-har motion. The system is one of the

"elementary combinations" of machinery.]

Produce AB and BC to meet in E. Then at any instant the

linear velocities of B and C are perpen-

dicular to AB and CB respectively. Hence

at that instant BC is rotating about E.

Now ^'s linear velocity i^ w . AB. Hence

the angular velocity of BC about E is

wAB/BE. Hence also the linear velocity
^ ^ ^^ ^ _^ ^^j^ ^Qjj^j^^ ^^^ ^j^g angular

velocity of CB is u,AB . EC/{BE . CB).

(9) A disc (radius= r) rolls without sliding on a plane. Find the

relation between its angular velocity w and the linear velocity v of

its centre.

The point of the disc in contact with the plane has two com-

ponent linear velocities, one the translational velocity v which it

has in common with the centre, and another equal to w due to its

rotation about the centre. These components are in the same

straight line. Hence their resultant is equal to their algebraic

sum. But their resultant is zero. For as the disc rolls without

sliding the point of the disc in contact with the plane is instantane-

ously at rest. Hence v+ b)r= 0. As this equation holds at all

stages of the motion, if a and a are the angular and linear accelei-a-

tions respectively, we have also a+ ar=0.

(10) A rod (length= 2^ hangs by a small ring at its upper end

from a fixed horizontal rod. To the former an angular velocity
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w is communicated in a vertical plane through the fixed rod, so that

the centre of the moveable rod moves vertically. Find the linear

velocity of its centre when its inclination to the vertical is 6.

, Ans. 0)1 sin d.

(11) A rod AB (length =/) is freely moveable about a hinge at A
and rests with its end B on one plane surface of a wedge BCD^

whose other plane surface is in contact with a table in which A is

situated, the rod AB being in a plane perpendicular to the edge of

the wedge. Show that if BCD be advanced along the table towards

A^ with velocity v, and if the angles BAG and BCD are B and <t>

respectively, the angular velocity of the rod will be

y sin0

J ' cos~(0^^)*
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CHAPTER VII.

STRAINS.

255. We have next to discuss the motion of systems of

points whose distances from one another are variable.

Any change of configuration of such a system is called a

strain.

256. Strains may involve both translation and rotation,

i.e., there may be no point of the vsystem which occupies

the same position in space in both the initial and the final

configurations of the system, and there may be no three

intersecting straight lines in the system whose directions

in the initial and final configurations are parallel. In

considering strains however it is usual to exclude from
consideration the translation involved, as occasioning no
difficulty. For this purpose one point of the body is

assumed to be fixed in space.

257. Homogeneous Strains.—We shall restrict our-

selves to the most simple strains to which bodies are

subjected, those, viz., which are such that the distances of

pairs of points so placed in any part of the unstrained

system that the lines joining them have the same direc-

tion, are increased or diminished in the same ratio. Such
strains are called homogeneous strains.

The ratio of the distance of two points after the strain
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to their distance before the strain is called the 7'atio of the

drain for the direction of the line joining them.

The ratio of the increment of the distance of two points

to their initial distance is called the elongation of the

strain for the direction of the line joining them. The
elongations of a strain may be positive or negative.

If d and d' are the initial and final distances of two
points, a the ratio of the strain, and e its elongation, for

the direction of the line joining the points, we have thus

a= d'/d, e = {d'— d)/d.

Hence a= 1 + e.

258. Points which lie in straight lines before a homo-
geneous strain lie also in straight lines after the strain.

I

Let A, B, G be points lying in a straight line before the

strain and let A\ B\ C be their positions after the strain.

Then (257)

A'EIAB = FG'IBG=A'G'jAC.
Hence
{A'B'+BGyiiAB^BG) = {A'B'+B'G')/AG= A'G'jAG,

and hence A'F+BV= A'G\

E is therefore a point in the straight line A'G\

259. Since all straight lines remain straight after the

strain it is clear that planes must remain planes.
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260. Lines which are parallel in the unstrained state

of the system are parallel also after the strain.—Let AB,
CD and AG, BD be pairs of intersecting parallel lines in j

the unstrained system. These lines being in the same
plane before the strain must be in the same plane after it.

Also AB and CD being equal before the strain must re-

main equal. Similarly AG and BD must remain equal.

Moreover, as one portion of a material body cannot pass

through another portion, GD cannot cut AB ox AG cut BD
after the strain. Hence, liA'B'D'G' represent the strained

system, A'G' and G'U are equal respectively to D'B' and
B'A'; and J.'Z)' being common to the two triangles A'G'D'
and UB'A', these triangles are equal in every respect.

The angles B'A'D' and A'D'G' are therefore equal, and
likewise the angles B'UA' and D'A'G'. Hence AV is

parallel to B'D' and A'E to G'U,

261. Parallel straight lines remaining parallel and
straight, parallelograms must remain parallelograms,

parallel planes must remain parallel, parallelopipeds must
remain parallelopipeds, and figures which are similar and
similarly situated must remain similar and similarly

situated after the strain.

262. Since parallel straight lines must remain parallel

and must be increased or diminished in the same ratio, a
circle drawn in any part of the system must be strained

so that parallel chords remain parallel and become in-

creased or diminished in length in a given ratio. Hence
(173) after the strain it will be an enlarged or diminished
orthogonal projection of the circle on some plane, i.e., it
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will be an ellipse, perpendicular diameters of the circle

having become conjugate diameters of the ellipse.

There is one pair of perpendicular conjugate diameters
in every ellipse, viz., the major and minor axes. Hence
there is one pair of perpendicular diameters in the circle

whose mutual inclination is not changed by the strain.

263. As all plane sections of a sphere are circles, a
spherical portion of the unstrained system must after the

strain have the shape of a figure whose plane sections are

ellipses, i.e., of an ellipsoid.

A cube circumscribing the sphere will become a paral-

lelopiped (in general not rectangular) circumscribing the

ellipsoid, the points of contact of the cube with the

sphere, which are the extremities of three diameters at

right angles to one another, becoming the points of con-

tact of the parallelopiped with the ellipsoid, which are

the extremities of conjugate diameters. Hence perpen-
dicular diameters of the sphere become conjugate

diameters of the ellipsoid after the strain.

There is one set of conjugate diameters of every ellip-

soid which are at right angles to one another, viz., the

principal axes. One of them is the greatest diameter,

another the least, and the third has in general an inter-

mediate value. There are thus three perpendicular

diameters of the sphere which after the strain become
the axes of the ellipsoid. Lines in their directions in the
initial configuration have the same mutual inclination in

the final configuration, though the inclination of these

lines to fixed lines in space or to lines in other directions

in the system may have changed.

The directions of the axes of the ellipsoid in the
strained system and of the corresponding rectangular

diameters in the unstrained system are called the prin-
cipal axes of the strain. The elongations in these direc-
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tions are called the principal elongations ; the ratios of

the strain in these directions, the principal ratios.

264. The ellipsoid into which any spherical portion of

the system is strained is called the strain ellipsoid. It

has obviously (257) in the case of a homogeneous strain

the same form and relative position in whatever part of

the system the sphere may be taken.

If the principal elongations of a strain are all equal,

the strain ellipsoid becomes a sphere, and the ratios of

the strain in all directions are the same as the principal

ratios. All lines in a system subjected to such a strain,

whatever may be their directions, are changed in length

in the same ratio. There is no change of form. If two
of the principal elongations are equal and the third either

greater or less than the other two, the strain ellipsoid is

a spheroid, prolate or oblate. If two of the principal

elongations are equal to zero, it is also a prolate or oblate

spheroid, its equal axes having the same length as the

diameter of the sphere.

A strain in which two of the principal elongations are

zero is called a simple longitudinal strain.

265. There are two sets of parallel planes which remain
undistorted after the strain.—Let ABCD be a section of

the strain ellipsoid by a plane through the greatest and

J<'^^

-^
^~^-v^

^^ ^^-..^^^ J
1^-^^ .^"-^^

least of the principal axes. Let SO^' and TOT be dia-

meters in this plane equal to the mean principal axis.
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Then the sections of the ellipsoid by planes through SOS'
and TOT' perpendicular to the plane ABCD are ellipses

with equal principal axes, i.e., circles. Hence the elonga-

tions of all lines in these planes are the same as the mean
principal elongation, and these planes therefore, and all

planes parallel to them, remain undistorted after a strain

though they may be changed in area. The axes AC and
IW evidently bisect the angles of inclination of the planes

of no distortion.

260. The ratio of the final to the initial volume of a

system homogeneously strained is the same as the ratio

of the volume of the strain ellipsoid to that of the corre-

sponding sphere. Hence, if a sphere of radius r is strained

into ah ellipsoid whose principal semi-axes are a, b, c, the

ratio of the final to the initial volume of the system is

»^«=«.J..,^=(i+.)(i+/)(i+,).

if e, f\ and g are the respective elongations.

If e, /, and g are so small that their products may be
neglected, we have

(l+«)(l+/)(l+^) = l+e+/+S'-

Hence, in the case of a small strain, the cubical dilata-

tion, or expansion per unit of volume, is equal to the sum
of the principal elongations.

267. Pure Strains.—Strains in which the initial and
final directions of the principal axes are the same, are

called pure strains. They are so called because their

characteristic property excludes the possibility of rotation.

268. Rotational Strains.—In general, however, the

initial and final directions of the principal axes of the

strain are not the same. In all such cases, since the princi-

pal axes maintain their mutual inclinations, they may be
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brought into the positions which they occupy after the

strain, by a rotation, and the body thus rotated may then

have its final configuration given it by a pure strain. It

will be obvious also that the same result will be attained

if the body be first subjected to the pure strain and then

to the rotation.

269. The Shear.—If one plane of a system be held

fixed, and if the planes parallel to it be moved in their

own planes, without change of form or area, those on the

one side of the fixed plane in any one direction, and those

on the other side in the opposite direction, and all through
distances proportional to their distances from the fixed

plane, the system is said to have undergone a shear. The
amount of the shear is the relative displacement of any
two of the parallel planes divided by the distance between
them. The plane of the shear is any plane intersecting

the fixed plane normally in a line parallel to the direction

of relative motion. The direction of the shear is that of

the relative motion of the parallel planes.

Similarly, if one line of a plane system be held fixed,

and if all lines parallel to it be moved parallel to it in one
direction or the other according as they are on one side

or the other of the fixed line, and through distances pro-

portional to their distances from the fixed line, the plane

system will undergo a shear, whose plane is the plane of

the system, whose direction is that of the fixed line, and
whose amount is the relative displacement of any two
lines per unit distance between them.

Thus any parallelogram ahcd may be produced from
any other parallelogram ABGD on an equal base (AB= ah)

and between the same parallels (aB and Dc) by subjecting

it to a shear whose plane is the plane of the parallel lines

aB and Dc, whose direction is that of the fixed line EF
which is parallel to aB, and whose amount is the quotient

of Dd by the perpendicular distance of EF from Dc.
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A familiar approximate illustration of a shear in three

dimensions is the change of configuration by which a

pack of cards initially forming a rectangular parallelo-

piped is made to take the form of a parallelopiped not
rectangular. The illustration would be exact if the cards

were indefinitely thin.

270. Homiogeneity of the Shear.—Let AB and CD be
parallel lines having any direction in the unstrained

system. From their extremities let fall perpendiculars

Aa, Bb, Cc, Dd on the fixed plane of the shear to which

the system is to be subjected. Let A\ B', C\ D' be the

positions of A, B, C, D after the shear. Then AA\ BB\
GG'y DU are parallel, and

AA'IAa= BElBh = CCjCc = DD'/Dd.

Let BA and DC produced meet the fixed plane in E and
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F respectively. Then Eah and Fed being the projections

of EAB and FCD on the same plane are parallel straight

lines. Since Eah is a straight line and Aa is parallel to

Bh, AE/Aa = BE/Bb. Hence AA'/AE^BB'/BE; and
therefore EA'B' is a straight line. Similarly FCD' is a

straight line. Since EB, Bh, and bE are parallel respec-

tively to FD, Dd, and dF, the triangle EBh is similar to

the triangle FDd, Hence BE/Bb = I)F/I)d. Hence also

BB'/BE= DD'i'DF. Now i?5' and j5£^ are parallel to BD'
and DF respectively. Hence the triangle EBB' is similar

to FDD' ; and therefore

A'B'<AB=C'D'iCD.

Hence the lengths of the parallel lines xiB and CD are

increased by the shear in the same ratio. The shear

is therefore a homogeneous strain. It has consequently

principal axes, ratios, and elongations, like all homo-
geneous strains.

271. It is obvious that as, in a shear, all planes of a

body parallel to a given plane are translated in their own
planes but not changed in area, there can be no change in

the volume of the body.

272. Reduction of the Shear to a Pure Strain and a

Rotation.—Let be the centre of a spherical portion of

a system subjected to a shear, AGB the intersection of

the sphere with the plane of the shear through 0, and
AB the intersection of the fixed plane with the same.

Let the system be subjected to a shear of amount s, and
such that planes parallel to the fixed plane through AB
and on the C-ward side of AB move in the direction AB,
parallel planes on the other side of AB moving in the

opposite direction. Then (270 and 262) the circle ACB
will after the shear have the form of an ellipse ADB
whose centre is ; and the sphere intersecting the plane

of the shear in ACB will become the ellipsoid intersecting

that plane in ADB. Since the distances of points of the



272 STKAINS. 175

system from the plane of the shear through remain
constant, this plane must contain the greatest and least

principal axes of the ellipsoid. Now, by 265, EE' and

\

FF', the bisectors of the angles AOa and BOa respec-

tively, will be the minor and major axes of the ellipse

ADB. Hence OE, OF, and a line through 0, perpen-

dicular to both and equal to OB, are the least, greatest,

and mean principal axes of the ellipsoid.

If 00 is perpendicular to AB, and CB touches the circle

at G, it will also touch the ellipse, and its point of con-

tact D will be the position of after the shear. OD is

therefore conjugate to OB. Hence, fjince 00 is equal to

the perpendicular from D on OB,

OF/OC=OC/OE.

Hence the circle may be brought to have the shape ot

the ellipse by elongating all chords parallel to one dia-

meter in the ratio OF/00, and shortening all chords

perpendicular to that diameter in the ratio of OG/OF.

Let a line through E parallel to OA meet the circle in

€. Then E is the position of e after the shear. Hence
(262) Oe and a line perpendicular to it in the plane of

AOB coincide in direction after the shear with OE and
OF. And a line through perpendicular to the plane of

J. (7JB remains unchanged in direction. Hence these lines
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are the positions before the shear of the principal axes of

the shear. And therefore, if the sphere be first rotated

about an axis through perpendicular to the plane of

AGB, through the angle eOE, it may then be brought to

its final configuration by a pure strain whose axes are

OF, OE, and a line perpendicular to both. The ratios of

the strain in these axes are OFjOG, 0E/0C[ = 1/(0F/0G)]
and 1 respectively. If OF/OC be called a. they are a, 1/a,

and 1.

273. From the symmetry of the figure it is obvious
that a shear of the same plane and amount, but with the

plane through ab as fixed plane, is equivalent to the same
pure strain as above, together with a rotation of equal

amount and about the same axis but in the opposite

direction.

Hence, rotation being neglected, the same change of

configuration is produced in a system by a shear of given

plane and amount, whether its direction be one or other

of two directions equally inclined to the greatest and
least principal axes of the shear.

274. It is obvious from 265 and 272 that planes through
AB and ah, normal to the plane of the shear, and all

planes parallel to these planes respectively, are both un-

distorted and unchanged in area by each (273) of the

above shears. Hence in any body subjected to a shear

there are two sets of planes which are unchanged in area

and form, these sets of planes being equally inclined to

the greatest and least principal axes and parallel to the

mean principal axis.

275. It is obvious also, with the aid of the above, that

Oe may be brought to coincide in direction with OE, its

length remaining unchanged, either by a rotation about

an axis through perpendicular to the plane J. (75, through

the angle eOE, or by a shear of the amount CD/CO in the
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plane ACB, and in the direction OD, together with a pure

strain whose ratios in the principal axes OF, OE have the

values OGjOF and OCjOE respectively, and in a direction

perpendicular to both, the value unity.

276. The amount s of the shear may be expressed in

terms of its principal ratios or elongations. By a pro-

perty of the ellipse (Fig. of 272)

OD^+ OB^=OF^+ OE\
Hence OD^ = OF^ -f- OE^ - 0G\
and GD^= OF^ -{- OE^- 20G\
and (272) GD"" = OF^-\-0E^-20E . OF

= (OF-OE)\
Hence GD/OG=s= OF/OG- OE/OG=a-lla.
If e is the greatest principal elongation (257),

s= l+ e-l/(l+e).

If the shear be indefinitely small, we have

l/(l-|-e) = l-6,

and hence s= 2e.

Also, when the shear is indefinitely small, OG, OD and
Oa (Fig. of 272) ultimately coincide. Hence Oa is at

right angles to OA, and therefore (265) is inclined to OE
and OF at angles of 45°.

Hence, if a system be subjected to a strain consisting of
two indefinitel}^ small elongations, one e in any direction,

and the other — 6 in a perpendicular direction, the resul-

ting strain is a shear whose amount is 2e, whose plane is

that of the two rectangular directions, and whose direction

bisects the angle between them.

277. Examples.

(1) Show that, if rotation be left out of account, a small simple

elongation e in any direction is equivalent to a uniform cubical
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dilatation together with two shears, each having the given direction

for one principal axis and lines at right angles to it and to each

other for the other axes ; and determine the magnitude of the dila-

tation and the amounts of the shears.— Let OA be the direction of

D the simple elongation and OB a cube of which

OA is an edge. The elongation e in the direc-

tion OA is equivalent to three elongations in

the same direction, each having the magni-

tude e/3. As there are no elongations in the

^ directions OB and OC perpendicular to OA
and to each other, we may regard the cube as subjected to two

elongations in each of these directions, having the magnitudes e/3

and — e/3. Now an elongation e/3 in each of the three rectangular

directions OA , OB^ and OC is (266) equivalent to a uniform cubical

dilatation of the magnitude e. Also, the elongation e/3 in the direc-

tion of OA with the elongation -e/3 in the direction of OB are

equivalent (276) to a shear whose principal axes are these lines and

whose amount is 2e/3 ; and similarly the remaining elongation e/3 in

the direction of OA with the remaining elongation —e/3 in the

direction of OC are equivalent to a shear whose principal axes are

OA and OC^ and whose amount is 2e/3.

(2) Show that, if a square be subjected to a small shear whose

axes are in the directions of its diagonals, it becomes a rhom-

bus whose sides are equal to those of the square and whose angles

differ from right angles by B radians, Q being the amount of the

shear.

(3) Investigate the strain in the case of a uniform circular cylinder

of length I fixed at one end and having its other end twisted through

an angle Q. This form of strain is called Torsion.

The cylinder being uniform, every normal section of it will rotate

about its axis ; and, djl being the amount of the twist per unit

length of the cylinder, the amount of the rotation of any section

will be the product of Oil into its distance from the fixed end

of the cylinder. Hence, also, any normal section will be twisted

relatively to any other normal section distant d from it through an

angle ddll.

Let ^a be the axis of the cylinder, ABba and ADda planes
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through Aa, in the unstrained system, inclined at an indefinitely

small angle, ABD and abd planes normal to A a, CE and ce arcs

of circles having ^C as radius and A and a as centres respectively,

I

and BD and hd arcs of circles having A and a respectively as

centres, and as radius AB indefinitely nearly equal to AC. Then

GEj ce, BDy and hd may be considered to be equal and parallel

straight lines, and BcDe a rectangular parallelopiped whose edges Bh,

Cc^ Dd, and Ee are parallel to Aa.

After the strain B^ C, Z), E will have moved relatively to 6, c, o?, e

to B\ C\ B\ E'\ BB' and DB' being equal to {e\V)Bh . AB, and OC
and EE' equal to (6}l)Bb . AC. These quantities, when angle BAB
and BC are made indefinitely small, are ultimately equal. Hence

the small rectangular parallelopiped BcBe becomes after the strain

the non-rectangular parallelopiped B'cB'e, on the same base and

between the same parallel planes. Hence the parallelopiped BcBe
has been subjected to a shear whose plane is BBdb, direction BB,

and amount BB'/Bb, i.e., (9/1)A B.

Hence at every point distant r from the axis of the cylinder thus

subjected to torsion, it undergoes a shear whose plane is parallel to
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the axis and perpendicular to a plane through the point and the

axis, whose direction is normal to this plane and whose amount
is dr!L

(4) A uniform straight beam is bent so that lines initially longi-

tudinal and straight become arcs of circles in parallel planes (called

planes of bending), with centres in a line normal to these planes
;

transverse sections initially parallel become so inclined that they

intersect in this line, and longitudinal lines in a surface, called the

neutral surface, normal to planes of bending and initially a plane,

are not changed in length. Investigate the strain.

b

Let ABBC be a section of the bent beam by a plane of bending,

EF the intersection with ABBC of the neutral surface, ac and hd

the intersections with it of two transverse sections of the beam

(6 being their inclination), and the centre of curs^ature oi AB
and CB.

Then it is obvious that longitudinal lines, such as GJIy between

AB and EF ^.ve lengthened, and longitudinal lines between i2!Fand

CD are shortened, by the strain. The line gh was initially equal to

ef. Hence it has undergone an elongation (per unit of its length)

equal to {gh - ef)jef. Now gh = 0g .6 and ef= Oe . d. Hence the

elongation of gh is

{Og - Oe)jOe =gelOe= djp,

if d is the distance of the line GH from EF, and p the radius of

curvature of EF. This result applies to all lines parallel to gh and

intercepted between the transverse sections ac and bd, d being
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positive when measured from ef towards aft, and negative when

measured from ef towards cd. Hence at every point of the beam

there is a longitudinal strain in the direction of its length, the

elongation being equal to d\p. It is positive for all points between

the convex surface and the neutral surface, and negative for all

points between the neutral and the concave surfaces.

It is obvious however that these longitudinal elongations alone

would not involve bending, and that in order to bring the beam

into its final configuration longitudinal planes nonnal to planes of

bending, which have thus been elongated, must slide over one

another. Hence at each point of the beam there is not only a

longitudinal elongation, but also a shear whose plane is the plane of

bending and whose direction is longitudinal. By 273 and 276, if this

shear is small it is equivalent to another in the same plane, but with a

direction transverse to the beam and in the plane of bending, trans-

verse slices of the beam sliding over one another in the direction of

their intersections with planes of bending.

Hence the strain at any point of the beam consists of a longitud-

inal elongation equal to c?/p, together with the above shear.

278. Specification of a Strain.—The elongations of a

homogeneous strain in any three non-coplanar directions

being given, the elongation in any other direction can be

found.—Let Ox, Oy, Oz be lines having any three direc-

tions and Cy f, g the elongations in them respectively.

Then any point P whose co-ordinates referred to these

lines as axes are x, y, z, has component displacements ex,

fy, gz, and the resultant displacement may be determined
by 78. The final distance ofP from may thus be deter-

mined, and hence also the elongation in the direction of OP,
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279. Hence a homogeneous strain is completely speci-

fied if the elongations in any three non-coplanar directions

are given.

280. The specification of three non-coplanar directions

requires (7) six numerical data, and that of the elonga-

tions in these directions three more. Hence, in general,

nine quantities are requisite for the complete specification

of a strain.

281. As a pure strain consists simply of elongations in

certain rectangular directions, the principal axes, the

specification of a pure strain requires only data sufficient

to determine the directions of these axes and the elonga-

tions in them. To determine three rectangular directions

three numerical data are sufficient. Hence the specifica-

tion of a pure strain requires only six numerical data.

282. As any homogeneous strain may be regarded as

compounded of a pure strain and a rotation, the nine data
necessary for its specification may consist of the six

necessary for the specification of the pure strain and the

three necessary (198) for the specification of the rotation.

283. Rectangular Specification of a small Strain.—
Let Ox, Oy, Oz be rectangular axes of co-ordinates, OA,

OB, 00 the principal axes of the

pure strain, and Or the axis of the

rotation, of which the given small

strain may be regarded as com-
.X pounded.

The elongations being given for

the directions OA, OB, 00, equiva-

lent elongations for the directions

Ox, Oy, Oz may (278) be determined.

The rotation about Or may be resolved into com-
ponent rotations about Ox, Oy, Oz. Now the rotation
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about Ox being small may be regarded (275-276) as

compounded of a shear whose plane is the yz- plane and
direction either the y or the z axis, together with a pure
strain whose principal axes are Ox, a line bisecting the

angle yOz, and a line perpendicular to both these. The
elongation in the direction of Ox is zero, and those in the

directions of the other principal axes may (278) be con-

ver:ed into elongations in the directions of the Oy and Oz
axes. Similarly the rotation about Oy may be regarded
as compounded of a shear whose plane is the xz plane and
direction either the x or the z axis, together with elonga-

tions in the x and z axes ; and the rotation about Oz, as

compounded of a shear whose plane is the xy plane

and direction either the x or the y axis, together with
elongations in the x and y axes.

Now these various component strains being all small

may be applied in any order. The three component
elongations in the direction of the x axis are thus equiva-

lent to a single elongation in that direction, and similarly

for the components in the y and z axes respectively. Hence
a small strain may be resolved into three simple elongations

e, f, g in the directions of the three rectangular axes Ox,

Oy, Oz respectively, and three shears whose amounts may
be represented by a, b, c, whose planes are the yz, xz, and
xy planes respectively, and whose directions are those

of either the y or z axis, either the x or z axis, and either

the X or y axis, respectively. Any small strain is there-

fore completely specified if the values of e, /, g, a, b, c,

are given.

284. Heterogeneous Strains.—The elongations of a
homogeneous strain we have seen to have the same values

in the same directions throughout the system. In general

however, in the strains to which bodies are subjected, the

elongations in a given direction are difierent at different

parts of the system. Such strains are called hetero-

geneous strains. If throughout the system the elonga-



184 KINEMATICS. [284

tions at points indefinitely near one another are indefinitely

nearly the same, the strain is said to be continuous. The
strains of bodies, except in cases of fracture, are usually

continuous.

The variation of the elongations from point to point

being gradual in the continuous strain, they may be con-

sidered constant throughout indefinitely small spheres,

and the dimensions and position of the ellipsoids iato

which these spheres are changed ma}^ then be determined
as in the case of homogeneous strain. The ellipsoids

however will in this case be different for different points

of the body, and that the strain may be known, the strain

ellipsoid, or sufficient data for determining it, must be
known for every point of the system.

The consideration of strains of this kind requiies

mathematics of a higher order than readers of this work
are supposed to have at command.
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PAET IL—DYNAMICS.

CHAPTER I.

THE LAWS OF MOTION.

285. So far we have dealt with the motion of bodies

only by means of our mathematical generalizations. We
have thus seen how to determine the displacements,

velocities, paths, of bodies when their accelerations are

known. Farther mathematics alone does not enable us

to go. If we wish to inquire into the way in which
bodies come to have accelerations and how they influence

one another in their motions, we must obtain additional

generalizations on which to build ; and we thus pass from
the department of mathematical science into that of

physical science.

Dynamics is that branch of physical science which
treats of the effect of the exertion of force upon bodies.

The idea of force is ultimate. It is given us by sense.

Like colour, taste, smell, it cannot be described. But we
all have the idea, and when any one speaks of exerting

force we all know what he means. What the organ of

the sense is from which we have this idea physiologists

have not definitely settled. It has been supposed to

reside in the muscles, and has been consequently called
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the muscular sense. We do not require to know the

seat of the sense, and may call it simply the sense of

force.

A sensation of force is not qualitative merely, but
quantitative as well. We recognize ourselves in any
case, not only as exerting force on a body, but as exerting

a greater or a smaller force in a detinite direction. Our
power of perceiving the magnitudes of the forces we
exert is not naturally strong, but it is susceptible of

cultivation ; and it is the education of the sense of force

which renders all manual skill attainable.

286. Fio'st Laiv of Motion.—Among our earliest gene-

ralizations are included those with regard to the effects

of the exertion of force on bodies. These effects are very
different in different circumstances; but when examined
they are found to be in all cases composed of changes of

velocity and changes of form or volume. And as a change
of the form or volume of a body is a change of the

relative positions and therefore of the relative velocities

of its constituent parts, we find the effect of the exer-

tion of force on bodies to be in all cases change of velocity,

or acceleration.

Cases of equilibrium (323), i.e., cases in which a body,
though acted upon by two or more forces, has an accel-

eration zero, apparently form exceptions to this result.

But in such cases, if the forces are allowed to act on the

body successively, the accelerations produced are found
to be such as would give a resultant acceleration zero

were they to occur simultaneously. Thus, though the

forces together produce an acceleration zero, each may be
regarded nevertheless as producing its own acceleration.

Having exerted forces on all bodies within our reach and
found acceleration invariably produced, we are led to ex-

pect this effect in all cases whether within the range of our
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experiments or not, and to conclude that a force exerted
on any body will produce an acceleration in it.

We observe also, however, that many bodies move with
acceleration when we are exerting no force upon them.
Two billiard balls, for example, which impinge upon one
another, have their velocities changed. A body which is

simply let fall is found to fall with continually increasing

speed. One body in short is found to be able to produce
acceleration in others, it may be during contact, it may
be even without contact. In such cases the effect pro-

duced is the same as if we exerted force upon the bodies

;

and we therefore regard the action between them as of

the same kind as our action on them when we are exert-

ing force.

We are thus led to conclude that the exertion of force

on a body is invariably the antecedent of acceleration in

it. We may express this result negatively by asserting

that a body not acted on by force will experience no
acceleration ; and it was in this form that Kepler, and
afterwards Newton, enunciated it. Newton called it

the first law of motion and expressed it thus

—

Every body continues in its state of rest or ofuniform
motion in a straight line except in so far as it may he

compelled by impressed forces to change that state.

The necessity of exerting force in order to produce
acceleration in a body is said to be due to its inertia.

287. Second Latu of Motion.—We have next to ask
how the acceleration produced by a force depends upon
the magnitude and the direction of the force which pro-

duces it. The investigation of this dependence involves

the measurement of force. For this purpose we may take

as a provisional unit of force that exerted by a given

spring when stretched a given amount. We may also

prepare several exactly similar springs. Both our educated
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sense of force and our confidence in the " uniformity of

nature" assure us that when extended by the given amount
they exert the same force. Let us now act by means of

these springs on, say, a curling-stone lying on a smooth
horizontal surface of ice, taking care so to apply the springs

that no appreciable rotation or change of form or volume
may be produced. Preliminary trial shows that if, having
started the stone, we exert no force upon it, it moves
with a nearly uniform speed in a straight line over the

surface of the ice. If now we attach one of our stretched

springs to the stone and allow it to act on the stone during

known intervals of time, keeping the spring stretched to

the same extent and in a constant direction as the stone

moves, we may, by noting the positions of the stone at a
series of instants, determine the direction and magnitude
of the acceleration which is produced. The same deter-

mination may be made with two or with any number of

springs attached and for longer or shorter periods of time.

When that is done it is found (1) that in all cases the

accelerations produced are uniform
; (2) that the direction

of the acceleration is always that of the force ; and (3)

that the acceleration produced by a force in a given body
is proportional to the force, double the force producing

double the acceleration, three times the force three times

the acceleration, and so on. The same result is obtained,

whatever the kind or the condition of the body experi-

mented with, whatever its initial velocity, and whatever
component accelerations it may have besides that produced
by the springs.

The rough experiments sketched above apply only to

forces whose direction and magnitude are the same during
the whole time of their action. As we find, however,
that the result does not depend upon the length of time
during which the force acts, and as a variable force may
be considered to consist of a succession of constant forces

of different magnitudes or directions, each acting for a

short time, we extend our results to all forces, uniform or
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variable, and conclude that the magnitude of a variable

force is at any instant proportional to the instantaneous
acceleration of the body at that instant, and that their

directions are the same.

288. If by F we indicate the magnitude of the force

exerted on a given body, and by a that of the acceleration

thereby produced, the third part of the above result may
be expressed in symbols thus: F<xa. Hence F/a = ?i

constant, i.e., the ratio of the force acting on a given body
to the acceleration thereby produced in it is constant.

The value of this constant ratio will clearly depend upon
the magnitudes of the units of force and acceleration.

But with given units this ratio will have a tixed value

for a given body, whatever its condition (as to tempera-

ture, etc.) and whatever the circumstances of its motion.

289. We describe the constancy of the relation between
the force acting on a body and the acceleration thereby

produced by saying that the mass of the body is constant,

the mass of a body being thus defined to be a quantity

proportional to the constant ratio of the force acting on
the body to the acceleration produced by it. If vi denote

the mass of the body we have thus : F/a<xon = kin, where
k is Si constant, whose value for any given body will

depend upon the magnitudes of the units of force, accele-

ration, and mass which may be employed.

The term Tnass is clearly the scientific equivalent of

the popular term rtiassiveness. We speak of a body as

being massive when we require to exert a great force

upon it in order to produce a small change in its velocity.

Thus an iron gate is said to be more massive than a

wooden gate of the same dimensions, because it takes a

greater force to produce in it a given angular acceleration

than in the wooden gate, though the friction and other

opposing forces may be the same in both cases. The
greater the force required to produce a given acceleration,
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and the smaller the acceleration produced by a given
force, in other words, the greater the value of the ratio

Fjcty the greater do we consider the massiveness to be.

290. The reader should carefully note that the mass of

a body is quite a different thing from its weight. Its

weight is the force with which it is drawn vertically

downwards in the neighbourhood of the earth, and will

have different values at different parts of, and at different

distances from, the earth's surface. Its mass is not a force

at all, but, as we have seen, the value of a certain ratio

which is the same everywhere.

At any one place all bodies fall with the same accelera-

tion. Now the acceleration with which a body falls is

that produced in it by its weight. Let lo and %v' be the

weights of two bodies, g the acceleration with which they
fall at any given place, then their masses are proportional

(289) to %vlg and w'jg respectively. If, then, ini and 7\i'

are their masses, we have

m : rii=w/g : w'lg=w : iv\

Hence the masses of bodies are proportional to their

weights at the same place, and the ratio of the masses of

two bodies is the same as that of their weights. For this

reason the term weight is frequently employed not only
with its primary signification given above, but also as

synonymous with mass. As this double meaning of the

term leads to confusion, we shall restrict it to its primary
signification.

291. The mass of a body is by many writers defined as

the quantity of matter which it contains. As we do not
know what matter is, still less how to measure it, this

phrase (for it is thus a mere phrase) must then itself be
defined ; and such writers define it more or less directly

as being proportional to the ratio of the force acting on
the body to the acceleration thereby produced. This
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mode of definition is clearly the same as that employed
above, except that a useless intermediate term is in-

troduced.

The phrase quantity of inertia has been similarly used
as an intermediate term.

292. By 117, the acceleration of a body is equal to the

rate of change of its component velocity in the direction

of the acceleration ; and, by the second part of the above
experimental result (287), the acceleration is in the direc-

tion of the force. Hence, if v and v' be the initial and
iinal values of the body's component velocity in the direc-

tion of the force {F) during a time t (which, if F is

variable, must be small), we have

-r, 7 v'— V Tonv'—mvF= km—-— = h
V V

293. The product of the mass of a body into its velocity

is called its momentum.^ The product of its mass into

the component of its velocity in a given direction is called

its momentum in that direction.

Hence the result of 292 may be thus expressed : When
a body is acted on by a force its momentum in the direc-

tion of the force changes at a rate which is proportional

to the force.

294. From the expression of 292 we obtain

Ft= k(7)iv'— mv).

The product Ft is called the impulse of the force during

the time t Hence we obtain Newton's expression of the

second law of motion

—

* The momentum of a body is often defined as its " quantity of

motion," the quantity of motion being then defined as the product
of mass into velocity—another case of the introduction of a useless

intermediate term.

N
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^8^Cha7ige of momentum is pi^oportional to the impid
of the impressed force and takes place in its direction.

295. It follows from the second law of motion that a
finite force can produce in a body only a finite change of

momentum and therefore a finite acceleration. As we
find no infinite forces in nature it follows that the speeds,

velocities, and accelerations of bodies cannot have infinite

values, and that the directions of their paths, velocities,

accelerations cannot undergo abrupt changes.

296. Measurement of Force and Mass.—The second
law gives us at once a mode of measuring both force and
mass. If forces F, F act on masses* m and on' and produce
accelerations a and a' respectively, we have F=hna and
F'= hna. To compare two forces, allow them to act

successively on the same mass and note the accelerations.

We have then
F .F'=-a:a'.

To compare the masses of two bodies, let equal forces act

on them and note the accelerations. We then have

m : m'= a : a.

297. Having thus found modes of measurement, we
must next choose units. Either both may be chosen

arbitrarily, or one being so chosen the other may be
derived. If both be chosen arbitrarily, the constant h

in the above equation will usually have an inconvenient

value. Thus let the weight of the body called a pound
be chosen as unit of force, the mass of the pound as unit

of mass, and the foot and second as units of length and
time. We know that the weight of any body produces

in it an acceleration of about 82-2 ft.-per-sec. per sec.

Hence our unit of force will produce this acceleration in

* This is a shortened expression for : bodies whose masses are m
ajid m'.
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our unit of mass. Substituting these values, F=r)i = l

and a = 32'2, in the equation F=kma, we find Z,- = 1/32-2.

298. If, however, either the unit of force only or that of

mass only be chosen arbitrarily, the other may be so

chosen as to give k the convenient value unity, in which
case the symbolic statement of the second law becomes

F= ma.

The constant A; will have the value unity if F=7n = a= l.

Hence, if the unit of force be arbitrarily chosen, the unit

of mass which will make Z;= l is that mass in which the

unit of force will produce unit of acceleration. And if

the unit of mass be arbitrarily chosen, the unit of force

which will make A; = 1 is that force which will produce in

unit of mass unit of acceleration. According as the unit

of force or that of mass is chosen arbitrarily do we obtain

one or other of two groups of systems of units.

(1) Unit of Force chosen Arhitrarily.—We may select

as unit of force any force we please ; but practically the

weight of some body is always selected. The bodies in

general use are the pov/iid, which is a piece of platinum
kept in the Standards Office in London, the hilogramnie,

another piece of platinum, kept in the Palais des Archives
in Paris, and multiples or submultiples of these.

These units and all units derived from them are called

gravitational units because their magnitudes depend
upon the attraction of the earth. As the weight of a
given body has different values at different points on the

earth's surface, gravitational units are not constant. They
are sufficiently constant, however, for many non-scientific

purposes, and are very extensively used.

299. Corresponding to each unit of force we have a
system of gravitational units, as follows :

—

Foot-iDOiind-second (F.P.S.) Gravitational System.—
The unit of force is the weight of the pound.



196 DYNAMICS. [299

The unit of mass is that mass in which a force equal to

the weight of a pound will produce an acceleration of 1

ft.-per-sec. per sec. As the weight of the pound produces

in the pound an acceleration of ^ (about 32'2) ft.-sec. units,

it will produce one of 1 ft.-sec. unit in a body whose mass
is g lbs. Hence the unit of mass of this system is

a mass of about 32*2 lbs.

MetTe-lcilograr)irrie-second{M.K.S.) GravitationalSystem.

—The unit of force is the weight of the kilogramme.

The unit of mass is that mass in which a force equal to

the weight of 1 kilogramme will produce an acceleration

of 1 m.-sec. unit. It may be shown as above that the

unit of mass of this system is a mass of 9*81 kilogrammes.

Other gravitational systems, based on other simple

units of length, time, and force the reader will readily

construct for himself The two given above are those

most generally used and are sufficient for purposes of

illustration.

300. Dimensions of DeHved Unit of Mass.—The mag-
nitude of the unit of mass, derived as above, will depend
upon the magnitudes of the simple units of force, length,

and time. With the notation of 15 we have (289 and 15)

Fcxma; ^cc^^y, mcc—; acc~^

Hence Ma[^]/M;
i.e., the magnitude of the unit of mass is directly pro-

portional to the magnitude of the unit of force, and
inversely proportional to that of the unit of acceleration.

Hence (111 and 57) the dimensions of the derived unit of

mass are given by the equation

This equation may be employed in the solution ofproblems
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in the same way as the similar equations in the case of

speed and rate of change of speed (47-50, 57-59).

301. (2) Unit of 21ass chosen Arbitrarily.—The units

ordinarily selected are the mass of the pound and that of

the gramme (a body whose mass is 1/lOOOth of that of

the kilogramme), with their multiples and submultiples.

The English hundredweight is equal to 112 pounds, the

American hundredweight to 100 pounds. The ton is

equal to 20 cwts. The decagramme and hectogramme
are 10 and 100 grammes respectively. The decigramme,
centigramme, and milligramme are the tenth, hundredth,
and thousandth parts respectively of a gramme.

The following are approximately the relative magni-
tudes of these units

:

lib. = 453-59 grm. I 1 grm.=0'0022046 lb.

1 ton (English)= 1016-05 kgr. I 1 kgr. =0-0009842 ton.

As the mass of a body is constant, these units are con-

stant ; and the magnitudes of the units derived from them
depend therefore only on the magnitudes of the simple

units involved in them. Hence they are called absolute

units to express their independence of all such varying
quantities as terrestrial attraction.

302. Corresponding to each unit of mass selected, we
have a system of absolute units. The following are im-

portant systems :

—

F.P.S. Absolute System^—The unit of mass is the mass
of the pound.

The unit of force is therefore that force which will

produce in the pound an acceleration of 1 ft. -sec. unit.

This force is called the poundal. As the weight of 1 lb.

produces in it an acceleration of 32-2 ft.-sec. units, it is

clear that the poundal is equal to the l/32-2th part of
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the weight of a pound, i.e., to about the weight of half an
ounce.

Gentimeti^e-gramme-second (C.G.S.) Absolute Syster)i.—
The unit of mass is the mass of the gramme.

The unit of force is therefore that force which will

produce in 1 gramme an acceleration of 1 cm.-per-sec. per

sec. This force is called the dyne. It will be clear that

the dyne is equal to about l/981th of the weight of a

303. Dimensions of Derived Unit of Force.—From the

equations of 300 we obtain at once [-^]o^[il/][«], i-e., the

magnitude of the derived unit of force is directly propor-

tional both to the magnitude of the unit of mass and to

that of the unit of acceleration. Hence (111 and 57) the

dimensions of the derived unit of force are given by the

equation

[F]o:[M][L}[T]-K

This equation may be employed in the solution of prob-

lems in the same way as the corresponding equations in

the case of speed and rate of change of speed (47-50,

57-59).

304. Density.—The mean density of a body is the

quotient of its mass by its volume.

The density at a given point of a body is the quotient

of the mass by the volume of an indefinitely small portion

of the body surrounding the given point. If the density

of a body is the same at all its points, it is said to be

Jiomogeneous or of uniform density. In general the

density of a body varies from point to point : the body is

heterogeneous.

The density of a substance in a given state is the

quotient of the mass by the volume of any portion of the

substance in that state.
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If d be the density of a body, in its mass, and v its

volume, we have by definition d=mlv. Hence the

dimensions of density are given by the expression.

The unit of mass of an absolute system of units, in-

stead of being arbitrarily selected as in 301, may be
defined to be the mass of unit volume of some standard

substance whose density in terms of those units is there-

fore unity. This amounts to choosing a unit of density

arbitrarily and deriving from it the unit of mass. The
French unit, the gramme, was intended to be the mass of

1 cubic centimetre of water at its temperature of maxi-
mum density (about 4°C.). But though it may for most
practical purposes be considered to liave that mass, it has
not rigorously ; and thus the gramme must be considered

to be an arbitrarily chosen unit. The great advantage of

deriving the unit of mass from an arbitrarily chosen unit

of density is that the density of any given substance is in

that case equal to the ratio of the masses (and therefore

(290) of the weights) of equal volumes of the given sub-

stance and of the standard substance, or to what is called

the specific gravity of the given substance. If the unit

of mass is not thus derived, the density of a given sub-

stance is obviously equal to the product of its specific

gravity into the density of the standard substance (usu-

ally water) by reference to which its specific gravity is

expressed.

The mean linear density of a body whose length is

great relatively to its other dimensions is the quotient of

its mass by its length. The dimensions of linear density

are thus [i/][Z]-i.

The mean surface density of a thin body is the quo-
tient of its mass by the area of one of its surfaces. The
dimensions of surface density are thus [il/][X]~-.
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305. Examples.

(1) Two forces produce in two masses accelerations of 25 and 30

units respectively. Show that, if the masses are equal, the forces

are as 5 to 6, and that, if the forces are equal, the masses are as

6 to 5. .

(2) Forces of 20 and 30 units acting on two masses produce accel-

erations of 40 and 50 units respectively. Show that the masses are

as 10 : 12.

(3) Show that 1 poundal is equivalent to 13,825 dynes.

(4) Prove that the weight of 1 lb. is equal to 4*45 x lO'"' dynes

approximately.

(5) Show that the value of 1 dyne, expressed in terms of the

weight of 1 ton,* is 1003 x 10~^- approximately.

(6) Compare the values of the mass of a body as expressed in

gravitational units of the ft.-lb.-sec. and yd.-ton-min. systems.

Ans. 2,688,000 : 1.

(7) The value of a force expressed in dynes has to be expressed

in absolute units of the metre-kilogramme-minute system. By
what number must it be multiplied ?

Ans. 0-036.

(8) Reduce 20 poundals to absolute units of the yd.-cwt.-min.

system.

Ans. 214f.

(9) The unit of mass being a mass of 10 lbs., the unit of time 1

min., and the unit of length 1 yd., compare the derived unit of

force with the poundal.

Ans. As 1 : 120.

(10) With 20 lbs. and 40 sec. as units of mass and time respec-

tively, find the miit of length that the derived unit of force may be

equal to the weight of 1 lb. at a place where ^= 32*2 ft.-sec. units.

Ans. 2,576 ft.

(11) The unit of acceleration being 6 ft.-per-sec. per sec, find {<i)

*The ton used in these Examples is the English ton of 2,240 lbs.
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the unit of mass when the derived unit of force is equal to the weight

of 20 lbs., and (6) the unit of force when the derived unit of mass

is a mass of 20 lbs.

Ans, (a) 107^ lbs., {b) 37... pounds-weight.

(12) The unit of velocity being 20 cm. per sec, the unit of mass

1 5 grammes, and the derived unit of force the weight of a kilo-

gramme, find the unit of time.

Ans. 1/3270 sec.

(13) The density of water is about 1,000 oz. per cub. ft. Show
that it is also about 1687*5 lbs. per cub. yd., and about I'OOl grm.

]ier cub. cm.

(14) The masses and radii of two spheres are as 1 : 2. Show that

their densities are as 4 : 1.

(15) Given that the diameter of the earth is 1"275 x 10^ cm. and

its density 5'67 times as great as that of water, show that its mass

is about 6*15 X 10-" grammes.

(16) The unit of density being that of water, and the units of

time and mass 1 min. and 1 cwt. respectively, find the magnitude

of the derived unit of force.

Ans. 0*0378 poundals nearly.

(17) The number of seconds in the unit of time being equal to

the number of feet in the unit of length, the unit of force being the

weight of 750 lbs. (^= 32 ft. -sec. -units), and a cub. ft. of the stand-

ard substance having a mass of 13,500 oz., find the unit of time.

Ans. 5^- sec.

806. Force is usually exerted upon some portion of the

[bounding surface of a body and acts therefore across an
[area. In specifying the magnitude of a force we may do

fso, as above, without reference to the area across which it

[acts, or we may divide its total magnitude by this area

[and thus express its magnitude per unit of area or

its intensity. When we do so we usually describe the

[force as a pressure, a tension, a stress, though these terms
[have another not inconsistent connotation (307) as well.

[Thus a force of F poundals which is transmitted by a
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string of s square feet section would be a tension of F/s
poundals per square foot, and the total force exerted

through the string would of course be determined by-

multiplying this quantity by the area across which the

force is acting.

It should be noted however that forces are not always
measured in this way when they are spoken of as pres-

sures, tensions, etc. Unless either it is stated, or the

context shows, that they are so measured, they should

always be assumed to be measured without reference to

the area across which they act.

307. Third Laiu of Motion.—If we now return to the

examination of cases in which bodies are acted on by
forces, we find that forces always act between pairs of

bodies, never on single bodies alone. I push a body with
my hand ; the body is urged forwards ; the forward
motion of my hand is lessened. Both the body pushed
and the hand are acted on by force. A horse draws a
carriage ; the carriage is pulled forwards ; the horse is

pulled backwards and does not move forwards so fast as

he would otherwise do with the muscular exertion he is

putting forth.

To investigate this mutual action more thoroughly we
may take two of our curling stones and project them,
without rotation, on the ice so as to make them collide,

noting the direction and magnitude of their velocities

before and after collision. Let OA, OB and Oa, Ob be
drawn representing the velocities

before and after collision, of the

respective stones. Then AB, ah
will represent the respective in-

tegral accelerations. They will be
found in all cases to be parallel and
in opposite directions. If the

^B stones used were of equal mass,

they will be found equal. If not, it will be found that
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if M,m are the masses of the respective stones, then M.AB
= 7)1. ah. Now the product of the raass of a body (294
and 117) into its integral acceleration measures the
impulse of a force. Hence the stones during collision have
experienced equal impulses in opposite directions.

Other simple experiments give the same result and
suggest a third law of motion, which Newton enunciated

as follows :

—

To eveinj action there is ahuays an equal and contrary

reaction; or the mutual actions of any tvjo bodies are

always equal and oi^positely directed.

The exertion of a force upon one body is thus only a

one-sided view of a more complex phenomenon, viz., the

simultaneous exertion of equal and opposite forces upon
two bodies. When we are thinking of a force as acting

not on one body, but between two bodies, we call it a
stress. When the stress is such as to make the bodies

move towards one another it is called an attraction or a
tension ; when its effect is to increase their distance it is

called a repulsion or a pressure (see 306).

308. The experiments which we have sketched above
as leading up to the laws of motion are of necessity rough,

and are quite insufficient to demonstrate the truth of

these laws. They merely serve to suggest them. They
apply moreover only to bodies of so large size that experi-

ments may be made with them. Now, in studying the

motion of bodies, we are forced to regard them as consist-

ing of indefinitely small parts called particles, and the

extension of the above laws to indefinitel}^ small bodies

we cannot prove to be warranted. Hence the laws of

motion as employed in Dynamics are simply hypotheses

suggested by rough experiments, and their accuracy must
be tested by the agreement of deductions made from them
with observed fact. The body of deductions from these

hypotheses constitutes the theoretical yjortion of Dyna-
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mics. Many of the deductions which will be made in

subsequent chapters may be tested by experiment. But
for the most part we shall have to do with ideal bodies

and our deductions will be only approximately true of

real bodies. The most satisfactory tests of the laws of

motion are furnished by astronomical calculations. These
laws are assumed in the determination of the positions of

the moon and other heavenly bodies at given times, of

the times of occurrence of eclipses, of the dates of the

return of comets, etc., and the precision with which such

predictions are fulfilled is well known. The assumption
of the truth of these laws has even led to the discovery of

heavenly bodies not previously known to exist. In short,

they have stood such rigorous tests that not the slightest

doubt is now entertained of their truth. And we may
make deductions from them, even in cases in which veri-

fication by experiment is impossible, with full confidence

that, if our mode of deduction is correct, the result will be
true.

309. The three laws of motion adopted by Newton as

the fundamental hypotheses of Theoretical Dynamics
have not been universally adopted. Some authors sub-

stitute for Newton's second law one first enunciated by
Galileo, and therefore bearing his name, which has been
expressed by Thomson and Tait in the following words :

—

When any forces whatever act on a body, then tuhether

the body be originally at rest or moving luith any velocity

in any direction, each force produces in the body the

exact change of motion vjhich it vjould have i^roduced if

it had actedj singly on the body originally at rest.

As Newton's second law is perfectly general it includes

Galileo's law. Those who make Galileo's law the second

law of motion must deduce Newton's law from it. This

deduction is made as follows :—Let two forces each equal

to F act in the same direction on a particle. Then if a is

the acceleration which each would produce if it acted
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singly, 2a is by Galileo's law the acceleration produced
when they act together. Similarly .3rt is that which
would be produced by three forces each of the magnitude
F and in the same direction ; iia that which would be
produced by n such forces. And hence the acceleration

produced in the particle is proportional to the force. It

will be noticed that the assumption is here made that n
equal forces in the same direction are equivalent to a
force of n times the magnitude, a special case of the Law
of the Composition of Forces (313 and 8C, iii.). We
made the same assumption in discussing the rough ex-

periments used to suggest the fundamental hypotheses.

But such an assumption made after the choice of three

fundamental hypotheses is equivalent to the introduction

of a fourth.

For D'Alembert's " Principle," which is extensively

employed instead of Newton's second and third laws in

the solution of problems on the motion of extended bodies,

see 417.
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CHAPTER II.

DYNAMICS OF A PAETICLE.

310. We shall first restrict ourselves to the considera-

tion of force as affecting the translation of bodies. Now
the translation of an indefinitely small body differs in no
respect from that of a body of finite size, while rotation

is possible only for bodies of finite size. Hence in con-

sidering the effect of force on the translation of bodies,

in order to exclude the possibility of its having rotational

effects, we imagine the bodies acted upon to be indefin-

itely small. Such bodies are called material points or

particles, or, if they form parts of a continuous body,

elements.

311. A force which we imagine as acting on a particle

is of course one whose place of application is a point.

The lines of action of forces which act on the same par-

ticle must intersect in the position of the particle. A
force is completely specified if its place of application, its

direction, and its magnitude are given. If it act on a
particle, its place of application is the position of the

particle itself. In that case therefore it is completely

specified if its direction and magnitude are given. It

may therefore be completely represented by any straight

line of the proper length and direction.

312. Composition and Resolution of Forces.^—Forces
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which act simultaneously on a particle are chilled com-
ponent forces. The resultant of any number of compon-
ent forces is that single force by which the same resultant

acceleration would be produced.

313. Let OA and OB represent two component forces.

Since these forces act upon the same particle, OA and OB
represent also the accelerations they would produce act-

ing singly. Now OA and OB representing the compon-
ent accelerations, OC the diagonal

of the parallelogram AB represents

the resultant acceleration (116).

And OA, OB, OC representing ac-

celerations of the same particle are

proportional to the forces which
would produce them. Hence OC represents the resultant

force.

Forces acting on a particle therefore are to be com-
pounded according to the parallelogram law after the

manner of the displacements, or velocities, or accelerations

of a point. We have therefore propositions called the

parallelogram, the triangle, and the polygon of forces, the

same in form as those enunciated under velocities (98).

Hence forces are to be resolved in the same manner as

displacements, or velocities, or accelerations.

Hence all the consequences of the parallelogram law, as

deduced in the case of the displacements of a point, apply
also to forces acting on a particle, and the formulae of

85-90 are applicable to component forces, if the symbols
representing displacements are taken to represent forces.

314. Examples.

(1) The resultant of forces of 7, 1, 1, 3 units represented in

direction by lines drawn from one angle of a regular pentagon

towards the other angles, taken in order, is ^Jll.

(2) P and Q are two component forces whose resultant is R. S
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is the resultant of R and 1\ Show that if P ana Q be inclined to

each other at a right angle, and if Q=^P, then S=2P sj2.

(3) Component forces P, Q, R are represented in direction by the

sides of an equilateral triangle taken the same way round. Find

the magnitude of their resultant.

Ans. (P^+Q^ + R^-QR-PR-PQy.

(4) Three component forces are represented b}- lines drawn from

the angular points of a triangle to the points of bisection of the

opposite sides ; show that their resultant is zero.

(5) Three component forces are represented in direction by lines

drawn from the angular points A, £, C oi a. triangle to the points

of bisection of the opposite sides, and have magnitudes equal to the

cosines oi A, B, and C respective!}'. Prove that their resultant is

equal to (1 — 8 cos A cos B cos C)K

(6) The centre of the circumscribed circle of a triangle ABC is 0,

and the intersection of the perpendiculars from angular points on

opposite sides is P. Prove that the resultant of forces represented

in magnitude and direction by OA, OB, 00 will be represented

by OP.

(7) Three forces are represented by the sides AB, AC, BC of a

triangle. Show that the resultant has the direction AC and is

represented in magnitude by 2 A C.

(8) ABCD is a parallelogram. From AB, AE is cut off equal to

one-third of AB. Prove that the resultant of forces represented by

AC and '2AD is equal to three times the resultant of forces repre-

sented hj AD and AE.

(9) If AB represent the resultant of two forces AC and AD, and

if the angle CAD be given, show that the extremities of the lines

representing the two forces {AC and .4Z>) will lie on two circles,

which, if the given angle be a right angle, will be coincident. Also

show that, if the given angle be obtuse, each force has its maximum
value when the other is perpendicular to the resultant.

(10) A particle is acted upon by two forces represented by the

lines joining the particle to two given points. Show that, if the
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particle be made to describe any plane curve, the end of the

straight line representing the resultant of the above forces will de-

scribe an equal and similar curve.

(11) Give a geometrical construction for resolving the force

represented by the diagonal DB of a square ABCD into three

forces, each represented in magnitude by a side of the square and

one represented by DC in direction.

Ans. Upon BC describe an equilateral triangle BCE. The

required components are represented by DC, CE, EB.

315. Attractions.—An important case of the composi-

tion of forces is the determination of the attractive force

exerted on a particle by an extended body, the law of the

attraction being that of gravitation, viz., that the force

exerted between two particles is directly proportional to

the product of their masses and inversely proportional to

the square of the distance between them. In such cases

the attraction on the particle is the resultant of compon-
ent attractions exerted on it by the elements into which
the attracting body may be divided. Its determination

requires usually the application of the Integral Calculus.

But in a few important cases it may be found by elemen-

tary methods.

If m, m are the masses of two particles, d their dis-

tance, and F their mutual attraction, the law of gravita-

tional attraction is expressed by the equation

where k is ei constant. The value of 7c, when units of

force, mass, and distance already chosen are employed,
may readily be determined from our knowledge of the
dimensions and density of the earth and of the value of

g. We may give it the more convenient value unity,

however, by choosing a new unit of either mass or force

;

for example, by taking as unit of mass a mass which
attracts an equal mass at unit distance with unit force

o
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This is called the astronomical unit of mass. We shall

use it in the following examples.

316. Examples.

(1) Find the attraction of a uniform thin circular disc on a particle

placed at any point on a line through its centre and perpendicular

to its plane.

Let AB be the disc, C its centre, CP a line through C perpen-

dicular to AB. Let P be the position of the particle, and m its

mass.

Consider first the component attraction exerted by the element

(i.e., small portion) of the disc surrounding any point i), the line

DP having the length r, and its inclination to CP being 6 radians.

Let the element at D subtend at P the small solid angle w (solid

radians, 22). Z>P's inclination to CP being 6, the surface of the

element at D is inclined to a svirface normal to DP at the same

angle. The element at D being indefinitely small, the cone of which

it is a section is one of indefinitely small angle. Hence the ortho-

gonal section of this cone at D is the projection of the element at D
on a plane inclined 6 to the plane of the element. If therefore A
is the area of the element, A cos 6 is the area of the orthogonal

section. But w being the solid angle subtended at P by this

section, its area must be wr^. Hence the area of the element at D
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is ur^/cosd. Let p be tlie surface density of the disc. Then the

mass of the element is wr-p/cos 6. Hence the force exerted by the

element on the particle at P is in the direction of FD and of

the magnitude
(or^p—^xm
cos d up

r^ cos d

This force has one component in the direction PC of the magnitude

^^ jn X cos ^= oipm,
cos^

and another in the direction CD of the magnitude wpm tan 6.

If DC be produced to D\ and CD' made equal to Ci>, the element

of area A at D' will exert on the particle at P a force whose

components in the directions PC, CD' are of the same magnitudes

as the components above determined. The components CD and

CD' therefore neutralize each other, and hence the only effective

component of the attraction of the element at D is that perpen-

dicular to the disc, whose magnitude is wpm.

Now the same is true of all the elements into which the disc may
be divided. Hence the resultant attraction will be perpendicular

to the disc, and equal to the sum of the effective components of

magnitude wpm, for all the elements of the disc, i.e., since pm is con-

stant, to the product of pm into the solid angle subtended at P by the

whole disc. If a is the radius of the disc and h the distance of P
from it, the area of the segment of the sphere whose centre is P
and radius PA or s'W+a?' is Stt slh^+ a\ sIhP-+ a^- k). Hence the

solid angle subtended at P by the disc is 27r(l -A/ V/i'^+ a^^j and

therefore the attraction of the disc on the particle at P is

2-irfyni{l-hlsl¥+a?).

If the disc be of indefinitely great extent {a= oc ), or if the

l^article be indefinitely near it (A=0), the attraction becomes 2n-/5»i.

(2) Find the atti-action of a thin circular ring of gravitating

matter of uniform linear density p and radius a on a particle of

unit mass on its axis, at a distance h from its centre.

Ans. 27rpc«A/(a2+ A2)f,

(3) All parallel sUces of equal thickness of a homogeneous cone
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of gravitating matter exert the same attraction on a particle at its

vertex. [First prove for a cone of indefinitely small angle and then

extend to one of finite angle.]

(4) A right cone of gravitating matter of semi-vertical angle a,

length ly and uniform density p, attracts a particle of unit mass at

its vertex with a force 2Trpl{l — cos a).

(5) Show that the attraction of a thin spherical shell of uniform

thickness and density on a particle inside it is zero.

Let P be the position of the particle, and A any point in the

spherical surface. Join AP and produce it to meet the surface in

A . Consider a small element of the shell at A . If, from points in

its boundary, lines be drawn through P, their end points will mark

off a corresponding element about A '. These corresponding elements

are both sections of the same cone, and as they coincide with the

tangent planes at A and A\ we know from the geometry of the

sphere that they are equally inclined to the line A A'. Hence their

areas, and therefore their masses, are directly proportional to the

squares of their distances from the vertex P. But their attractions

on a particle at P are directly proportional to their masses and

inversely proportional to the squares of their distances from P.

Hence their attractions have the same magnitude. And they have

opposite directions. Hence the pair of elements about A and A'

exert no resultant attraction on the particle at P. But the whole

shell may be divided into such pairs of elements. Hence the

resultant attraction of the shell on a particle at P is zero.
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Clearly the same would hold for a shell of any thickness, provided

it is either uniform in thickness and density, or uniform in thick-

ness and symmetrical about the centre as to density.

(6) The attraction of a uniform thin spherical shell on a particle

placed outside it is the same as if the whole mass were condensed

at the centre.

Let P be the position of the particle and C the centre of the

spherical shell. Join (7P, meeting the shell in Z), and divide it

k

at B, so that GB : CB= GD : CP. Take any point A in the shell.

Join AB and produce it to meet the shell in A'. Join CA, CA',

PA, PA'* Since CB :'CA =CA : CP, the triangles CAB and CPA
are similar, and the angle CAB equal to the angle CPA. Similarly,

the angle CA'B is equal to the angle CPA'. Hence also the angle

CPA is equal to the angle CPA'.

If straight lines be drawn from the boundary of a small element

surrounding A , through B, their end points will mark out a corre-

sponding element about A '. These elements are sections of a cone

whose vertex is B and solid angle w (solid radians); and their

common inclination to an orthogonal section of the cone, is the angle

CAB. Hence, as in Ex. (1), their attractions on a particle of mass

m at P are respectively in the directions PA and PA', and of

the magnitudes
mpoj . AB^ , mp(^ . A'B'^

APK cos CAB A'P'K cos CAB'

P being the surface density of the shell. Now
AB CA^CA'^A'B
AP~CP~CP~A'P

* PA and PA' are not tangents, as would appear from the figure.
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Hence the magnitudes of the above attractions are equal, and the}"

are equally inclined to PC. Hence the direction of their resultant

is PC, and its magnitude is 27npw . CA^jCP'^. Now the whole sphere

may be divided by lines through B into pairs of corresponding

elements similar to the above, the resultant attraction of each pair

being in the direction PC, and equal to the product of its solid

angle into the constant 2wi/). CA^jCP'^. Hence the resultant attrac-

tion of the spherical shell is in the direction PC, and is equal to

the product of this constant into the sum of the solid angles of all

the pairs of elements into which the sphere may be divided, which

is clearly the solid angle subtended at its centre by a hemisphere. Its

magnitude is therefore ^-mnp . CA^/CP^ which is equal to the product

of the masses of the particle and shell divided by the square of the

distance of the particle from the centre of the shell. Hence the

shell attracts the particle as if its mass were condensed at its

centre.

Hence also a spherical shell of any thickness, and a sphere also,

attract particles outside them as if their masses were condensed at

their centres, provided their density is symmetrically distributed

about their centres.

(7) Show that the attraction of a homogeneous sphere on a

particle of unit mass inside its bounding surface is directly pro-

portional to its distance from the centre.

(8) Assuming the earth to be a homogeneous sphere, compare its

attraction on a given mass at a distance from its centre equal to one-

half its radius with the attraction when the given mass is at a

distance equal to twice the radius.

Ans. As 1 : 8.

(9) Find in dynes the attraction of two homogeneous spheres,

each of 100 kgr. mass, with their centres 1 metre apart. [Data.

—

Quadrant of earth, assumed spherical= 10^ cm. ; mean density of

earth=5*67 grms. per cu. cm.
; ^=981 cm.-sec. units.]

Ans. 0-0649 nearly.

(10) A pendulum beating seconds at the surface of the earth is

taken (a) up a mountain 1,400 ft. high, and (b) down a mine of
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equal depth. Find its loss or gain per day in each case, assuming

the earth to be a uniform sphere of 21,000,000 ft. radius.

Ans. (a) loss of 5"76 sec.
; (6) loss of 2*88 sec.

(11) Show that, if a pendulum oscillates in the same time at the

top of a hill as at the bottom of a mine, the depth of the mine is

very nearly twice the height of the hill.

(12) Show that the astronomical unit of mass of the C.G.S.

system is 3,928 grammes (mass of earth= 6*14x 10^'' grms. ; radius

of earth= 6'37 x 10^ cm.
; ^=981 cm.-sec. units).

(13) Find in C.G.S. units the value of k in the formula F=Jc-^'

Ans. 6-48x10-8.

(14) Compare with the dyne the unit of force employed when it

is stated that the attraction between two masses of m and m' grms.

at a distance d cm. has the value mra'jdK

Ans. Unit employed= 6*48 x 10"^ dynes.

317. Equations of Motion.—The second law of motion
provides us with an equation, F=ma, by means of which
any one of the three quantities, force acting, mass of

particle acted upon, and acceleration produced, may be

determined, if the other two are given. These two being

expressed in the units of a derived system, the third

determined by the above equation will be expressed in

terms of the unit of the same system.

The acceleration of a particle being determined, the

character of its motion is known from Kinematics. Hence
the above equation is called the equation of motion of a
particle.

If a particle is given as acted upon by several forces,

the resultant force may be found as in 313, or, the com-
ponent accelerations having been found by the equation

of motion, the resultant acceleration may be determined
by 116.

It follows that if F^, F^, etc., are the components in a
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given direction of the forces acting on a particle, and a its

component acceleration in that direction, 'ZF= ma.

318. It is in many cases found convenient in describing

the forces acting on particles, to specify not their mag-
nitudes and directions, but the magnitudes of their

components in three given rectangular directions. Ex-
pressions for the component accelerations in these three

directions may be at once written down. Thus, if X^, X^,

etc., Fj, Fg, etc., Z^, Z^, etc., be the components in the x, y,

z axes of the forces acting on the particle, if a^, ciy, ciz be
the component accelerations of the particle in these direc-

tions, and X, y, z the co-ordinates of the particle at the

instant under consideration, we have (317 and 118)

ax= x= (2X)/m,

ay= y = (EY)/m,

az = z = (EZ)/m.

319. It is frequently convenient to express the equation

of motion in terms of the impulse of the force rather than
of the force itself If the force (F) is constant, its impulse

($) during a time t is (294) Ft, and we have from 294
and 298

^= Ft= mv'— mv,

where v' and v are the final and initial values of the

component velocity in the direction of the impulse, and
m is the mass of the particle acted upon.

If the force is variable, it may be considered constant

during indefinitely short intervals of time. Let t be
divided into n such short intervals t^, t^, etc., tn. Let the

components, in any given direction, of the force (supposed

constant) during these intervals be F^, F^, etc., Fn ; and
let the components, in the given direction, of the initial

velocity and of the velocities at the ends of the above
intervals be v, v^^ v^, etc., v' respectively. Then
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Ft
F^t^ = mv^— mv,

etc.,

FJn= mv'— mVn-i.

The impulse ($) of the force, in the given direction, is the

sum of the impulses FJ;^^ F^t^, etc. Hence

$= ^Ft = onv' — mv.

This form of the equation of motion is especially con-

venient when the force is one whose magnitude is great

and time of action small, as in cases of impact, collision,

explosion, etc. Such forces are therefore frequently

called impulsive forces. It will be obvious however
that the above form of the equation of motion is applic-

able generally, and that the restriction of the term
impulsive force to one whose time of action is short is

merely a matter of convenience.*

320. ExaTYi'ples.

(1) A constant force of 20 poundals acts on a mass of 10 lbs.

Find {a) the acceleration, (6) the displacement in 5 sec, the initial

velocity having been 4 ft. per sec. in the same direction as the

acceleration
; (c) the velocity at the end of the same time, the

initial velocity of 4 ft. per sec. having been inclined 60° to the direc-

tion of the force.

Ans. (a) 2 ft. per sec. per sec, (6) 45 ft. in the direction of the

initial velocity, (c) 2 ^39 ft. per sec, inclined sin-X5/2 /v/13) to the

direction of the initial velocity.

* The term impulse is unfortunately sometimes applied to these
short-lived forces. But it should be restricted to the sense in

which it is used above. Otherwise it becomes necessary to speak
of the impulse of an impulse. The term impulsive force is some-
times used to denote the impulse of a short-lived force. But this

use of the term leads to confusion and should be avoided.
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(2) All unknown force produces in a body of 50 lbs. mass an

acceleration of 12*5 ft.-sec. units. Express the force (a) in poundals,

(6) in terms of the weight of a pound.

Ans. (a) 625, (6)19-4....

(3) A uniform force of 200 dynes changes the velocity of a body

moving in a straight line from 250 to 300 metres per sec. in 1

minute. Find the mass of the body.

Ans. 2 '4 grammes.

(4) What acceleration will be produced in a mass of 20 lbs. by a

force equal to the weight of 50 lbs. ?

Ans. 5^/2.

(5) How long must a force of 14 lbs.-weight act on a mass of

1,000 tons to move it from rest through 1 inch ?

Ans. 28*8 sees, nearly.

(6) A spring balance (an instrument for measuring force, being a

spring provided with a scale to show the amount of its elongation)

is graduated for a place where ^= 32*2 and indicates 1-6 pounds-

weight at a place where ^= 32. Find the correct value of the force

thus measured.

Ans. 1-61 pounds-weight.

(7) Find the force which must be exerted by a man in an elevator

on a body of 1 lb. mass w^hich he holds in his hand, to prevent its

moving relatively to the elevator when the elevator is moving (a)

with unifonn speed, (6) with an upward acceleration of 8 ft. per sec,

(c) with a downward acceleration of 8 ft. per sec, (d) with a down-

ward acceleration of 33 ft. per sec

Ans. (a) 32 '2 poundals upwards, (6) 40*2 poundals upwards, (c)

24*2 poundals upwards, {d) O'S poundals downwards.

(8) Show that in any motion of a particle the tangential compon-

ent of the force acting on it may be measured by the rate per sec.

at which momentum is increased.

(9) Prove that if TT'' lbs. be acted upon by a imifomi force of P
pounds-weight for t sec, the velocity acquired will be Pgtj W, and

the distance traversed Pgt'^l{2 W).
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(10) A body of 10 lbs. mass and with an initial velocity of 20 ft.

per sec. in a northerly direction is acted upon by two forces, one of

100 poundals in a north-easterly direction and the other of the

same magnitude in a north-westerly direction. Find its velocity

after 1 min.

Ans. 868 '5.. . ft. per sec. in a northerly direction.

(11) Find the impulse necessary to produce in 20 lbs. a speed of

25 ft. per sec.

Ans. 500 absolute ft. -lb. -sec. units.

(12) Two particles, each of mass tw, are at rest side by side when
one is struck a blow of impulse * in a given direction, while a con-

stant force F begins at the same instant to act upon the other in the

same direction. Prove that if after travelling a distance s in the

time ^, they are again side by side, 2€>= Ft and 2$^= mFs.

(13) A particle of mass m is moving in an easterly direction with

a velocity v. Find the impulse necessary to make it move in a

northerly direction with an equal velocity.

Ans. mv sj2 in a north-westerly direction.

(14) A particle of mass m moves with uniform speed v in a circle

of radius r. Find the force acting uj)on it.

The particle has an acceleration equal to v^jr directed towards the

centre of the circle (121). Hence the force must be in the same

direction and equal to mv^jr.

[A body moving in a cur\^ed path was formerly thought to have

what was called centrifugal force, which required to be neutralized

by a force applied to the body (through a string or by other means)

towards the centre of cui-vature (and called therefore centripetal

force), in order that the body might be kept in the curved path.

Thus a body moving with uniform speed in a circle was considered to

be in equilibrium {i.e., to have no acceleration) under equal and

opposite forces, the supposed centrifugal force and the actually

applied centripetal force. The necessary centrij^etal force being

known to have the magnitude mv^jr, the centrifugal force was
supposed to have that magnitude also. According to our modem
conception of force, a body cannot be said to have a force. More-
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over, we now know that if no force be applied to a body it will

move with uniform speed in a straight line, and that, if it is to be

made to move in a circle, the resultant force on it must be centripetal.

Though the old notion of centrifugal force has been abandoned, the

term is still used, being applied by different writers in different

ways. It is applied (1) in its original sense, some writers finding it

still convenient in some cases to imagine a body moving uniformly

in a circle as acted on by a force equal and opposite to the actual

centripetal force imder which it moves
; (2) to the actual centri-

petal force under which the body moves
; (3) to the reaction of the

moving body on the body by which the centripetal force is exerted,

the centrifugal and centripetal forces being thus opposite aspects of

the same stress
; (4) to the acceleration of the moving body. Such

varying usage leads to great confusion. The old term should be

laid aside with the old hypothesis on which it was based.]

(15) Find the horizontal force which must be exerted on an

engine of 20 tons which is to go round a curve of 600 yds. radius

at the uniform rate of 30 mis. an hour.

Ans. 0*67 ton-weight nearly.

(16) A stone of 4 kgr., attached to a fixed point by a weightless

inextensible string 3 metres long, moves uniformly in a circle

in the horizontal plane through the fixed point. Find (a) the

tension in the string when the speed of the stone is 20 cm. per

sec, and (b) the time of revolution when the tension of the string

is equal to the weight of 12 kgr. [We shall investigate farther on

(383) the action of forces on bodies through strings. Meantime,

we may consider the above string to be a means of keeping the

particle at a constant distance from the fixed point and of exerting

on it a force, usually called a tension, directed towards the fixed

point.]

Ans. (a) 5,333^ dynes
; (6) 2 sec. approximately.

(17) A man, standing at one of the poles of a rotating planet,

whirls a body of 20 lbs. mass on a smooth horizontal plane by a

string 1 yd. long at the rate of 100 turns per minute. He finds

that the difference of the forces which he has to exert according as
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he whirls the body one way or the opposite is 0"01 pound-weight.

Find the period of rotation of the planet.

Ans. 13 h. 37 min. 21 '6 sec.

(18) A railway carriage is going round a cui-ve of 500 ft. radius

at the rate of 30 mis. per hour. Find how much a plummet hung

from the roof by a thread will be deflected from the vertical.

Ans. 6° 51''4....

(19) A particle of mass m is attached by a massless string of

length ^ to a fixed point, and moves with uniform speed v in a

circular path about a vertical axis through the fixed point. Find

the tension in the string and the time of a revolution, when the

string has a given inclination 6 to the axis. [This arrangement is

called the conical pe7iclulum. Tlie distance h of the fixed point

from the plane of the particle's motion is called the height of the

pendulum.]

The particle is acted upon by two forces, its weight mg vertically

downwards, and the tension in the string T directed towards the

fixed point. Its resultant acceleration is v^l{l sin 6) and is directed

towards the centre of its path. The sum of the components of the

acting forces in this direction is T^sin d. Hence

T^me= mv^l{lsmd).

The particle has no acceleration in a vertical direction, and the

components of the forces in that direction are mg downwards and

T cos d upwards. Hence

Tcose-mg= 0.

From either of these equations T may be found. Eliminating 7\

we obtain

i^=Igsmdt?iii 6.

Hence, if r is the radius of the circular path,

v^=i'^glk.

If therefore w is the angular velocity of the particle about the

centre of its path, w= ^VM, and if t is the time of revolution,

i= 27r/a>= 27r\/%.
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which also (187) is the time of oscillation of a simple pendulum of

length h.

If 6 is indefinitely small, h and I are ultimately equal, and hence

t=2irsJllg ultimately. Compare this result with that of 190,

which shows that in this case the motion is the resultant of two

simple harmonic motions whose common period is 2ir 'Jtig.

(20) A particle of mass m, attached by an inextensible string

(length =^) to a fixed point, moves in a vertical plane through

the fixed point in a circle of radius I. Find the tension T of the

string in any position.

Let V be the speed at the highest point A of the path, v the

speed at any point P, d the angle subtended at the fixed point by

the arc A P. The normal component of the particle's acceleration

when at P is v^jl. Since the vertical distance through which it has

fallen from A is then ^(1 - cos B\ we have (185)

Z72= 72+ 2^^(1- cos ^).

Hence the normal acceleration

«;2/^= 72/^+ 2^(1 -cos ^).

The forces acting on the particle at P are the tension T towards

the fixed point and the weight of the particle mg downwards. The
sum of the components towards the fixed point is T-\-mg cos B.

Hence

T-^mg cosd=m{ V'^ll+ 2g{l - cos 6)},

by which equation T is determined.

Show that the least and greatest values of 7^ are m.{V^/l—g) and

m{V^ll+ 5g) respectively, and that ^has these values at the highest

and lowest points of the path respectively.

Show also that the least value of V with which a circle will be

described is fJlg^ and that, when V has this value, the greatest

value of 7' is equal to six times the weight of the particle.

(21) A particle moving in a straight line is acted upon by a force

directed towards a fixed point in the line and proportional to the

distance of the particle from it. Show that the particle's motion

is simple harmonic, and that, if / is the force on the particle when



320] OF A PARTICLE. 223

at unit distance from the fixed point, the period of its simple

Iiarmonic motion is 27r \^mlf\ m being its mass.

(22) A mass of 7 lbs., hung from a fixed support by a massless

spiral spring, and set to vibrate in a vertical line, makes 80 com-

plete vibrations per minute. What force will the spring exert when
extended 2 inches ? [The force exerted by a compressed or ex-

tended spiral spring is proportional to the amount of the compres-

sion or extension.]

Ans. 81 "9 poundals approximately.

(23) A particle moves in an ellipse under a force directed towards

one of the foci. Show that the force is inversely proportional to

the square of the distance of the particle from the focus.

(24) A particle of mass m slides down a smooth inclined plane

{inclination= ^), its motion being opposed by a force F^ inclined

to the plane at the angle 0. Find (a) the acceleration, and (6)

the reaction of the plane. [A smooth body is one which reacts

upon another body in contact with it in a direction normal to its

surface at the point of contact. Smooth bodies are of course purely

ideal. The stresses between actual bodies in contact are not in

general normal to the surface. We shall see farther on (328) how
their directions are determined.]

Ans. {a) Fcos (p/m—g sin 6, up the plane
; (6) tng cos 9 — F&in (p.

(25) A particle slides down a smooth curve in a vertical plane,

starting from rest at a given point. If the curve have such a form

that at every point the resultant force on the particle is equal to

its weight, the radius of curvature at any point will be twice the

intercept of the normal to the curve at that point between the curve

and the horizontal line through the starting point.

(26) A particle (mass= wi) slides in a vertical plane down the

•edge of a smooth circular disc (radius = r) whose axis is horizontal.

Show that if it start from rest at the highest point, it will quit the

disc after describing an arc subtending at its centre an angle

€0S~^§.

Let V be the speed of the particle after describing an arc sub-
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tending at the centre an angle 6, then (Ex. 20) the normal accele-

ration is

r2/r=2^(l-cos^).

The forces acting on the particle are the reaction R of the disc,

normally outwards, and its weight mg ; and the sum of their

normal components is rag cos 6 — R. Hence

mg cosd-R = 2mg{l — cos 6) ;

and R= m^(3 cos d - 2).

Hence, for 0=cos~if, ^= ; and for ^> cos~i|, R is negative, i.e.y

the disc must attract the particle if they are to remain in contact.

(27) A particle slides down a smooth cycloid placed in a vertical

plane, with its vertex upwards and base horizontal. It starts from

rest at the vertex. Show that it will leave the curve at the point

where the horizontal line drawn through the centre of the generat-

ing circle cuts the curve. [If from a point /* of a cycloid a normal

be drawn meeting the base in the point S, the radius of curvature

at P is equal to 2P*S'.]

321. Impact—When two bodies in relative motion
come into contact, they are said to impinge upon one
another or to undergo impact. The consequence of the

impact is a change in their velocities. Hence during
the impact a stress must have acted between the bodies;

and in applying the equation of motion it is often

necessary that we should have some means of deter-

mining the stress.

In actual bodies the stress is usually of very short

duration, and it is thus more convenient to determine

the impulse of the stress than the stress itself In all

cases it affects only the component velocities of the im-
pinging bodies in its own direction. In some cases it is

of sufficient magnitude only to equalize these component
velocities ; in others its magnitude is such as to make
the bodies recoil, or move away from one another, after

impact. Whether or not particles would behave, on im-
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pinging, like actual bodies, we have no means of knowing.
For the purpose of illustrating the subject by problems,
we ma}^ assume that they would.

At our present stage we have to consider only the

special case of a particle impinging upon a smooth surface

of a fixed body. In that case the direction of the stress

is normal to the surface. If u and tt are the components
normal to the surface, of the particle's velocity just

before and just after impact, u is called the velocity of

approach and u' that of recoil. Now the stress must be
sufficient to change a velocity of approach u into a
velocity of recoil it, i.e., if ni is the mass of the particle,

to produce a change of momentum equal to 7)iu-^mu'.

Hence, if $ is the impulse,

If e is the ratio of the velocity of recoil to that of

approach, e^uju. Hence

If is the stress which is just sufficient to destroy the

velocity of approach, and produces no recoil, we have

(f)
= 7nu. Hence

$ = 0(l+e).

Newton found by experiment (379) that with given

impinging bodies the ratio of the velocity of recoil to

that of approach was constant. The ratio e is therefore

called the coefficient of restitution for the given bodies.

322. Exaiwples.

(1) A body of 4 lbs. mass, moving with a velocity of 10 ft, per

sec. in a direction inclined 60° to a smooth surface, impinges upon

and is reflected by that surface, the coefficient of restitution being

0*5. Find the impulse of the stress.

Ans. 30 a/3 absolute ft. -lb. -sec. units.

P
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(2) A particle impinges on a smooth plane, the coefficient of

restitution being e, the angle between the direction of the particle's

motion before impact and the normal to the plane (called the angle

of incidence) being a, and the angle between the direction of its

motion after impact and the normal (called the angle of reflection)

being d. Show that

tan ^/tana= l/e.

[Let lb, V be the components of the particle's velocity normal and

parallel respectively to the given plane before impact ; u, v the

same quantities after impact. Then •y/w= tana and y/w'=tan^.

And u' = eic.']

(3) A particle of mass m is let fall from a height h upon a smooth

horizontal plane and rebounds to a height h'. Find (a) the impulse

of the stress, and (b) the coefficient of restitution.

Ans. (a) mgj2(^'h+ sjh'); (b) \/7i/Jh.

(4) Prove that the velocity of a particle moving on a smooth

horizontal plane is reversed in direction after impinging successively

on two fixed smooth vertical planes at right angles to one another,

the coefficients of restitution being the same for both planes.

(5) A particle is projected from a point A in the circumference

of a circle and after impinging at three other points in the circum-

ference returns to A. Show that the tangents of the four angles

of incidence are e^, ei, e~i, and e~^, e being the coefficient of

restitution.

(6) A ball falls vertically from rest for 1 sec. and then strikes a

smooth plane inclined 45° to the horizon, the coefficient of restitu-

tion being 1. Show that it will again strike the plane in 2 sec.

(7) A particle, after sliding from rest for 4/Ay3 sec. down a

smooth plane inclined 60" to the horizon, strikes a horizontal plane

(coefficient of restitution =^) and rebounds. At what distance will

it again strike this plane ?

Ans. 37-18... ft.

(8) A ball is projected at an elevation a towards a smooth

vertical wall (coefficient of restitution= e) from a point whose
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distance from the wall is a. What must the velocity of projection

be that the ball may return after its rebound to the point of

projection ?

Ans. [ga{l + e)/(e sin 2a)]i.

(9) A particle is projected from a point on an inclined plane of

inclination a, with a velocity v, inclined ^ to the plane. Find the

time between the ?2.*^ and the (?i+l)*^ rebounds, the coefficient of

restitution being e.

Ans. 2e'*v sin ^[{g cos a).

(10) A ball is projected with a velocity of given magnitude from

a given point in a smooth plane inclined a to the horizon (coefficient

of restitution= e). Find the direction of the velocity that the ball

may cease to hop just as it returns to the point of projection. [The

ball ceases to hop after an infinite series of hops. Express the time

in which the ball returns to the point of projection (1) by the aid

of the last example, noting that

l/(l-e)= l+e+ eHetc.;

and (2) by considering the component motion parallel to the plane

;

and equate these expressions.]

Ans. The inclination of the velocity to the inclined plane is

cot-i[tana/(l-e)].

(11) A ball is projected from a point in a plane of inclination a

(coefficient of restitution= e), with a velocity V at right angles to

the plane. Find its distance from the point of projection when it

ceases to rebound.

Ans. 2 F-sin oLJ\^g{\ — e)-cos-a].

(12) A stream of particles, each of mass m grm., moving in the

same direction with a velocity u cm. per sec, impinge successively

on a fixed plane (coefficient of restitution= e) inclined a to the

direction of their velocity. If n particles reach the plane per sec,

find the force exerted by the plane. [The plane exerts on the

particles a series of impulses. The force exerted is the sum of all

the impulses occurring in 1 sec]

Ans. mmi{l + e) sin a dynes.
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(13) A uniform chain (linear density=p lbs. per foot) is held in

the hand by one end, its other end being in contact with a horizon-

tal table (coefficient of restitution =0). At a given instant it is let

go. Show that the force exerted by the' table on the chain after

t sec. is three times the weight of the portion of the chain then

lying coiled on the table. [The various links of the chain having

all at any given instant the same velocity fall as though they were

uiicoimected particles. After t sec. ^pgt^ lbs. of chain lie on the

table, and the force exerted by the table is also destroying the

momentum of pgt lbs. of chain per sec]

323. Equilibrium.—A particle is said to be in equi-

librium or in a static condition when the forces acting on
it produce in it a resultant acceleration equal to zero.

The acting forces are also said to be in equilibrium in

this case. A particle in equilibrium must therefore

either be at rest or be moving with uniform speed in a

straight line.

The subject of equilibrium, together with all those

portions of Dynamics which are necessary for its discus-

sion are frequently treated separately under the title

Statics, the other department of Dynamics, which treats

of forces as producing acceleration, being then called

Kinetics. Some writers employ the term Dynamics as

synonymous with Kinetics, and apply the term Mechanics
to what we have called Dynamics.

324. Condition of Equilibrium.—That the resultant

acceleration of a particle may be zero, the resultant force

acting on it must (317) be zero also. And if the result-

ant force be zero, the resultant acceleration will be zero

also. Hence the vanishing of the resultant force is the

necessary and sufficient condition of equilibrium. This

condition may be otherwise expressed, viz., that any one
of the forces acting on a particle must be equal and
opposite to the resultant of all the rest.

I



325] OF A PARTICLE. 229

325. Expressions for Condition of Equilihrium in
/Special Cases.—In special cases the following different

modes of expressing completely or partially the condition

of equilibrium are found convenient in the solution of

statical problems.

(a) If two forces only act on a particle, they must be
equal and opposite.

(b) If three forces act on a particle, they must all lie in

one plane. For the resultant of an}^ two must be in their

plane and must be opposite to the third.

(c) If three component forces can be represented by
the sides of a triangle taken the same way round, the

resultant is zero. This is an immediate inference from
the triangle offerees (313).

(d) Conversely, if three forces are in equilibrium and
if they can be represented in direction by the sides of a

triangle taken the same way round, they will also be
represented by them in magnitude. —Let AB, BC, CA
represent in direction the three

component forces P, Q, R re-

spectively, which are in equi-

librium. Let AB represent P
in magnitude also. If BC does

not represent Q in magnitude, ^

cut off BD from it of the proper length to do so. Then
the resultant AD of AB and BD must be in equilibrium

with the third force whose direction is CA. That is, two
forces whose directions are not in the same straight line

may be in equilibrium, which is impossible. Hence the

assumption that BC does not represent Q in magnitude
was wrong. Similarly it may be shown that CA repre-

sents R in magnitude.

(e) If three forces P, Q, R are in equilibrium, they are

proportional to the sines of the angles between the
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directions of Q and B, P and R, and P and Q respectively.

OA and OB representing P and Q, R must be represented

by GO the diagonal of the parallelogram AB. Now

OA : AG:CO = ^m OCA : sin COA : sin OAG.

If the angle between the directions ofP and Q be written
A

PQ, we have

sin OGA = sin (180°- QR) = sin QR,

sin 00^ = sin (180° - PR) = sin PR,

sin 0^6'= sin (180° -PQ) = sin PQ.

Hence P : Q : P = sin Qi2 : sin PR : sinPQ.

(/) If more than three forces act, it may be shown
from the polygon of forces that, if any number of com-
ponent forces can be represented by the sides of a polygon
taken the same way round, their resultant must be zero.

But the converse proposition similar to that of (d) does
not hold.

326. Analytical Expression for Gondition of Equi-
lihrium.—We may express the condition of equilibrium

of a particle in a way applicable to all cases by employ-
ing the analytical expression for the resultant of any
number of forces. If P,, F^, etc., are the magnitudes of

component forces, a^, /5j, y^, a^, /3,-^, y.-,, etc., the angles made
by their directions with three fixed" rectangular axes, and
if R is their resultant, we have (313 and 90)
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R =
[
(IF cos aY+ (LFcos ^f+ (Si^cos y)^}*.

If there is equilibrium, jR = 0. Hence in that case

(SF cos af+ (2^ cos fif 4- (^F cos yf = 0.

But if the sum of three essentially positive quantities is

zero, the quantities themselves must each be zero. Hence

2i^ cos a= 2i^ cos /3= 2i^ cos y = 0,

i.e., the condition that the algebraic sum of the compon-
ents of the acting forces in each of any three rectangular

directions must be equal to zero is a necessary condition

of equilibrium. It is evident that it is also sufficient.

If the forces are coplanar, the angles y become right

angles and the angles ^ become the complements of the

angles a. Hence the equations expressing the condition

of equilibrium become

Xi^cosa= 2i^sina= 0.

327. Examples.

(1) A particle of weight W rests upon a smooth inclined plane of

inclination a (to the horizontal plane) under a force F acting up the

plane (i.e., in the direction of a line of greatest slope). Find the

magnitude of F and of the reaction R of the plane.

Let ABhe the line of greatest slope of the inclined plane, J (7 a

horizontal line in the vertical plane through AB. Then the particle

at P is in equilibrium under the three

forces, TF acting vertically downwards,

R acting at right angles to AB in a

vertical plane, and F in the direction

AB.
If a perpendicular be let fall from D

(the point in w^hich a vertical line ^

through P meets AC) on the direction

of R and meet it in E, we form a tri-

angle PDE whose sides PD^ BE, and EP taken the same way
round have the same directions as the forces W, F, R respectively.

Hence (325, d) W : F : R = PD : DE '. EP.
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Now APE being a right angle, the angle DPE is equal to a. Hence

DE=PD sin a and EP=PD cos a. Therefore

IF \ F : R= l : sin a : cos a.

And hence 7^= TFsina, and R= TFcosa.

A A
Otherwise thus :—The angle RF is 7r/2 radians, the angle RW

(TT-a) radians, and the angle FW {TTJ'2. + a) radians. Hence (325, e)

TF : i^ : i?= sin (7r/2) : sin (it - a) : sin (7r/2 + a)

= 1 : sin a : cos a.

Otherwise thus :—Choose any two directions at right angles to

one another and put the algebraic sum of the components of the

forces in each of these directions equal to zero (326). To simplify the

equations it is well to choose the directions so that they may
coincide with those of as many of the forces as possible. In the

direction ^^ we have

F- IF sin a= 0,

In the direction perpendicular to J5 we have

R- >fcosa= 0.

When the inclined plane is used as a simple machine the ratio of

W the weight of the body kept in equilibrium on it to F the force

which must be applied to the body for this purpose is called its

mechanical advantage. Hence in the case in which the force F
acts up the plane the mechanical advantage is cosec a.

If from B a perpendicular BC be drawn to AC, BC is called the

height of the inclined plane, whose length is ^jS and base AC.

The letters h, ?, h are frequently used to denote these lines. Hence

in the present case WlF=l\h.

(2) (a) Find the mechanical advantage of a smooth inclined plane

(length= ?, height= A, base= 6) when the applied force acts in a

horizontal direction, and (6) express the reaction {R) of the plane

on a particle in equilibrium on it in terms of the weight (II') of

the particle.

Ans. {a)h\h,{h)R=Wl\h.

(3) A particle is in equilibrium on a smooth inclined plane (in-

clination= a) under the action of a force F whose inclination to the
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inclined plane is d and to the horizon {a+ d). Find (a) F, and (6)

the reaction of the plane, in terms of the weight W of the particle.

Ans. (a) TTsina/cos^, (6) prcos(a+ e)/cos^.

(4) A body is kept at rest on a smooth inclined plane by a force

acting up the plane and equal to half the weight of the body. Find

the inclination of the plane.

Ans. 30°.

(5) A body is in equilibrium on a smooth inclined plane, and the

applied force and the reaction of the plane are each equal to the

weight of the body. Determine {a) the inclination of the plane, and

(6) the direction of the applied force.

Ans. (a) 60°, (6) inclined 30° to both inclined and horizontal planes.

(6) A body is supported on a smooth inclined plane by a force

equal to its weight. Show that the reaction of the plane is double

what it would be if the body were supported by the least possible

force.

(7) P is the value of the force which, acting up a smooth inclined

plane, keeps a body on it in equilibrium. Q is the magnitude of

the force necessary to support the body when its direction is such

that it is equal to the reaction of the plane. Show that F acting

up the plane could just support a body of weight § on a plane of

twice the inclination.

(8) A heavy body of 12 lbs. mass is kept in equilibrium by two

applied forces, one horizontal and the other inclined 30° to the

horizon. Find the forces.

Ans. Horizontal force= 772'8 pdls., the other= 669 "2... pdls.

(9) Forces of 2^, 6, and 6^ poundals keep a particle in equilibrium.

Show that two of them are at right angles, and find the angle be-

tween the greatest and least.

Ans. cos~X-T7).

(10) A heavy bead (weight= W) capable of sliding on a smooth

circular wire in a vertical plane is held at a distance equal to the

radius of the circle from its highest point by a force directed to
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that point. Find («) the force, and (6) the reaction of the wire on

the bead.

Ans. (a) W, {b) W.

(11) R is the smallest and R' the greatest force which, along w^ith

P and Q, can keep a particle in equilibrium. Show that, if P, Qy

and a force {R+ R')I2 keep a particle in equilibrium, two of these

forces are equal ; and that, if P, Q^ and a force \^RR' do so, two of

them must be at right angles.

(12) Two equal particles, each attracting with a force varying

directly as the distance, are situated at the opposite extremities of

a diameter of a horizontal circular wire on which a small smooth

ring is capable of sliding. Prove that the ring will be kept at rest

in any position under the attraction of the particles.

(13) Show that there is but one point in a triangle at which a

particle would be in equilibrium if acted upon by forces represented

by the lines drawn from it to the angular points of the triangle.

(14) Show that a particle is in equilibrium if acted upon by three

forces represented in direction bythe perpendiculars from the angular

points of a triangle on the opposite sides, and in magnitude by the

reciprocals of the lengths of those perpendiculars.

(15) On a smooth inclined plane of inclination cos"^^ a particle is

in equilibrium under the action of a certain force up the plane.

Find the direction in which an equal force must be applied, that it,

along wdth a horizontal force of the same magnitude, may also keep

the particle in equilibrium.

Ans, Inclination to inclined plane =cos~-^§.

(16) Show that a particle is in equilibrium under the following

forces :—4, JV. ; 2, JV. 30°K; 4, ^. ; 2 ^3, ^. 30° &. ; 4 ^2, S. W. ;

2 V3, W. 30° S. ; and 2, N. 30° W.

(17) From two points lines are drawn to the angular points of a

triangle. Find the condition that a particle acted upon by forces

represented by these six lines may be in equilibrium.

Ans. The given points must be on a straight line through the

point of intersection of the straight lines drawn from the angular
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points of the triangle to the middle points of the opposite sides, and

must be at equal distances from this point.

(18) A string whose ends are fixed at two points A and B in the

same horizontal line has, knotted at (7, another string carrying a

heavy body. Compare the tensions in CA and CB^ when they are of

such length that A CB is a right angle, the whole system being in

equilibrium. [We shall prove farther on, (389) that when strings

are knotted together, the stresses or tensions in them are in general

different. In such cases, if there is equilibrium, the knot must be

considered to be in equilibrium imder the action of the stresses in

the strings.]

Ans. A^CB.CA.

(19) A string has its ends fixed at A and B. Another string is

knotted to it at C and supports a body of weight W. The inclina-

tions of CA and CB to the horizon are 6 and ^ respectively. Find

the tensions in CA and CB when there is equilibrium.

Ans. W cos 0/sin {d+ <t>) and W cos djsm {6+ 0) respectively.

(20) Three strings have one end each knotted together at C. Two
of them are attached to fixed points at A and 5, and the tensions in

them are T and T respectively. The third supports a particle

whose weight is W. Find the inclinations d and <t> of CA and CB
to the horizon when there is equilibrium.

Ans. ^=-n-^2TF7^' ^= "" ' ^WT '

(21) A string whose length is 10 feet has its ends fastened' at two

points in a horizontal line 6 feet apart. A small smooth massless

ring slides on the string carrying a body weighing 10 lbs. Find

the tension in the string when there is equilibrium. [We shall

prove farther on (391) that when the direction of a flexible string is

changed by its being bent round a smooth body the stress through-

out the string is the same. In this problem the portion of the

string in contact with the ring is in equilibrium under the action

of a force equal to and codirectional with the weight of the body

which the ring carries and of the equal tensions in the two portions

of the string.]

Ans. 201J poimdals.
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(22) A fixed smooth hemispherical bowl whose rim is horizontal

has, resting inside it, a particle of weight W attached by a string

which passes over the rim to another particle of weight W which

hangs freely. Find the position of the particle in the bowl.

Ans. If 6 is the angle subtended at the centre of the bowl by the

portion of the string within it

^= 2cos^ !-5=

—

—l ^.
411

ru\

w

328. Friction.—We are now able to understand the

experimental determination of the direction of the stress

between two actual rough bodies in contact with one

jfi another. The figure shows
the apparatus employed.

^U^ ^ II
fr AB is 3l horizontal table, C a

^^^1 " ^g flat-bottomed box upon it.

To (7 a string is attached

<^ which passes over a pulley
^ Sit B and supports a pan JD.

Weights (i.e., standards of

mass) are placed in G and D. Before the string is attached

G remains motionless on the table. The only forces acting

on it are its weight and the reaction of the table. Hence
this reaction must be vertical and therefore normal to the

surface of contact between G and the table. If now the

string be attached and weights added gradually to D, G
remains motionless until they reach a certain amount.
For all loads in D less than this amount, G is in equi-

librium"^ under three forces—its weight W, the reaction of

the table B, and the force F exerted by the string (equal

to the weight of D and in the direction of the string).

Hence R must be in the plane of F and W, and so

inclined to W, which is normal to the surface of contact,

that it has a component F' equal and opposite to F.

* The motion of the box is (454) the same as that of a particle

acted upon by the same forces, provided the box undergo transla-

tion only.
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This component F resists the sliding of the box over

the surface of the table, and is called thefriction between
the box and the table. It increases with F until the box
is just on the point of moving, when it has its greatest

value and is called the limiting static friction. If we
increase F still more the box begins to move with an
acceleration ; and the greater we make F, the greater is

the acceleration. If the acceleration be observed, the

resultant horizontal force may be determined, and the

difference between this force and F is the value of F in

this case. The value of F when the box is in motion
is called the kinetic friction. It is found (by more re-

fined experimental methods than the above) to be usually

slightly less than the limiting static friction and to be (at

any rate very nearly) independent of the velocity of the

box.

If weights of different amounts are put into the box C
it is found that the friction (whether limiting static or

kinetic) is, within limits, proportional to the weight of

the box and its contents, and therefore to the normal
component of the reaction. If boxes of the same sub-

stance and weight, but with bottoms of different areas,

are used, the friction is found to be independent of the

area of the surface of contact. If the substance of the

bottom of the box and that of the table, or their state

of surface, be changed, the friction is found to change
also.

K i^ is the value of the friction (whether limiting

static or kinetic), and R' the normal component of the

reaction B, we have thus F = jjlR, where /x is a constant

for two bodies of given substances with their surfaces of

contact in given states. It may be determined by such
experiments as the above, and it has different values

according as relative motion of the one body over the

surface of the other is on the point of occurring or is

actually occurring, being usually slightly greater in the

former case than in the latter. In the former case, /x is
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called the coefficient of static friction ; in the latter, that

of kinetic friction.

The inclination to the normal of the reaction R of the

bodies in contact may be expressed in terms of the co-

efficient of friction. M' and F' being the normal and
frictional components of B, we have, if e is the inclination

of B to the normal, ta,n e= F'

I

R'= iul, and e = tan"V

If lUL is the coefficient of static friction the value of e

thus determined is the greatest possible inclination of the

reaction to the normal. It is called the angle of repose.

As R is in the plane containing the normal to the surface

of contact, and the direction in which the acting forces

tend to produce sliding, and as this direction may be any
whatever in the tangent plane at the point of contact of

the bodies, the direction of the reaction when sliding is

on the point of occurring may be any line on the surface

of a cone whose axis is the normal at the point of contact,

and whose semi-vertical angle is the angle of repose.

The direction of the reaction under all circumstances

must be included in this cone.

The ideal jperfectly rough body is one over whose
surface sliding is impossible. In the case of such a body
the reaction is supposed to have any direction and mag-
nitude that may be necessary to prevent sliding.

The above statement of the laws of friction is sufficient

for our purpose. For a more detailed statement of our
knowledge of this subject, see recent works on en-

gineering.

329. Examples.

(1) A particle of mass m is moving up an inclined plane (co-

efficient of friction =Ai) of inclination a, being acted upon bj a force

F up the plane. Find its acceleration and the reaction of the

plane.—Let R be the normal component of the reaction of the plane.

Then /xR is the component in the plane, and as the jDoint is moving
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up the plane, ij.R is directed down it. Hence, if a is the acceleration

up the plane,

a={F-f^R- TF sin a)lm.

As there is no acceleration normal to the plane,

=R- Wcosa.

Hence a= [F- Tf(/i cos a+ sin a)]/wi.

Also the resultant reaction is (313 and 86, V)

R >/l+At'^= W s/r+/x^ cos a.

In the above formulae fi is the coeificient of kinetic friction.

(2) A body of 100 lbs. mass, moving on a horizontal surface with

a speed of 10 ft. per sec, comes to rest in 2 sec. Find the coefficient

of kinetic friction (supposed independent of the velocity).

Ans. 0-15....

(3) A mass of 100 lbs. is moved along a horizontal plane by a

constant horizontal force of 20 lbs.-weight. Determine the dis-

placement in 10 sec, the coefficient of kinetic friction being 0*17.

Ans. 48-3 ft.

(4) A force equal to the weight of 28 lbs. is required to draw a

mass of 30 lbs. up a plane inclined 30° to the horizon. Find (a) the

coefficient of friction
; (6) the force that would be necessary if the

inclination were 45°.

Ans. (a) 0*5...
; (&) 4^1 sj2 lbs.-weight approximately.

(5) A train is going up an incline of 1 in 70, at the rate of 10

mis. per hour, the friction being equivalent to a force of 8 lbs.-
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weight per ton of the train's mass. The incline is 500 ft. in length,

and when the train is half way up, a coupling-chain breaks. Find

(a) how far the train will go up the incline, and (6) its speed at the

foot of the incline.

Ans. {a) 187-05... ft.; (/>) 17-36... ft. per sec.

(6) A particle impinges on a fixed rough plane (coefficient of

friction =/i, that of restitution= e) with a velocity v inclined a° to

the normal. Find (a) the magnitude, and (6) the inclination to the

normal, of the velocity after impact. [The frictional impulse is

equal to fx times the normal imf)ulse.]

Ans. (a) {
e-v-cos,^a+ [v sin a-fji.v{l+e) cos a]- }

*

;

(6) tan-i[- tan ci-~{l + e)].

(7) A particle is in equilibrium on a rough inclined plane of

inclination a, being just prevented from moving down by a force

/'acting up the plane. The coefficient of static friction being /*,

find F and the reaction of the plane.

This problem may be solved by means of the result of Ex. 1.

That the particle may be in equilibrium on the plane we must have

a= 0. Hence

F- M^(Atcosa + sina)=0.

In the formula of Ex. 1, fi was the coefficient of kinetic friction.

When we make a= 0, it becomes the coefficient of static friction.

Also that formula was obtained on the assumption that fxR acts

down the plane, and therefore that the particle moves, or tends to

move, up the plane. If we make /j. negative and thus obtain

F— Tr(sina — /icosa)=0,

we reverse the direction of fiR, i.e., we get a formula applicable to

the case in which /j-R acts up the plane, and the particle therefore

is prevented by friction from moving down the plane.

Otherwise thus :—The particle is acted upon by three forces, its

weight W, F, and the reaction of the plane R'. R' is inclined to

the normal PN at the angle of repose (e), the angle being measured

towards PB, because the body is on the point of moving down the

plane. Since
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W%= lSO° + e-a, R^F=90°-e, and WF=90° + a,

we have

and hence

and

F : W : R'=sm(a-€) : cose : cos a

F= FFsin (a - e)/cos e,

R'= TFcos a/cose.

Otherwise :—Replacing R' by its normal component R and its

frictional component fiR (up the plane), and resolving in and per-

pendicular to the direction of AR, we have

and

Hence

and

F+fiR- Trsina=0,

R- TFcosa= 0.

F= TF(sin a — /* cos a),

R'=R VI+^= [Fcos aV l+iii-.

I

Recollecting that e=tan-V, it is easy to show the consistency of

the above results. The same equations may be obtained in other

ways. [See 327 (1)].

(8) A body is in equilibrium on a rough inclined plane of incli-

nation a, under a force F, inclined at the angle 6 to the inclined

plane. Find the ratio of the weight of the body to the force F
(a) when the body is on the point of moving up the plane

; (6)

when it is on the point of moving down.

fi sin

fji cos a

I

. y . COS 6 + fi siJi 6 ,,.cos(?-
Ans. (a) -. ; (o) -^

' sma-H/icosa ' sma-
Q
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(9) Prove that the horizontal force which will just sustain a

heavy particle on a rough inclined plane will sustain the particle

on a smooth inclined plane provided its inclination is less than that

of the rough plane by the angle of repose.

(10) Show that the least coefficient of friction that will allow of

a heavy body's being just kept from sliding down an inclined plane

of inclination a, the body (weight= W) being sustained by a given

horizontal force F, is (W tarn a- F)I{Ftana + W).

(11) A heavy body is kept at rest on a given inclined plane by a

force making a given angle with the plane. Show that the reaction

of the plane when it is smooth is a harmonic mean between the

normal components of the greatest and least reactions when it is

rough.

(12) A bead, capable of sliding on a rough circular wire (radius

=r, coefficient of friction

=

/a) in a vertical plane, is in equilibrium

in the highest position (not being the highest point of the wire) in

which equilibrium is possible. Find its position.

Ans. Its distance from the lowest point of the circle measured

along the circumference is r tan"V.

(13) Show that it is easier to lift a body a given height than to

drag it up an inclined plane of that height by a rope jjarallel to the

plane, if the coefficient of friction is greater than the ratio of the

difference between the length and height of the plane to its base.

330. Work done.—Work is said to be done by a force

on a body when its place of application has a component
displacement in the direction of the force, and by a body
against a force when the place of application of the force

has a component displacement in the direction opposite

to that of the force. Work may in both cases be said to

be done by the force if in the one case it is considered as

positive and in the other as negative.

If the force doing the work is uniform, the work done
is measured by the product of the force into the compon-
ent in its direction of the displacement of its point of

application. If W, F, s, a represent the work done, the
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force acting, the displacement, and the inclination of the
directions of the displacement and the force, we have thus,
by definition,

W oc Fs cos a.

The work done is therefore measured also by the product
of the displacement into the component in its direction

of the acting force.

If the force doing the work is variable, the motion of

the body may be supposed to be broken up into a large

number of small displacements during each of which the
force may be considered constant, and the work done is

the sum of all the quantities of work done during these

small displacements.

331. Measurement of Work done.—If we write I for

the component of the displacement in the direction of the

force, we have W—JcFl, where it is a constant whose
value will depend upon the units involved in the other

quantities. We have already selected units of force and
length. We can give k the convenient value unity there-

fore only by properly selecting the unit of work. If

W= F=l = l, k will be equal to 1. Hence we take as

unit of work the work done when under the action of

unit force a particle has a component displacement of 1

unit in the direction of the force. This derived unit of

work will of course vary with the units chosen as simple

units.

F. P. S. Gravitational Systern.—The weight of the

pound being the unit of force, the unit of work is the

work done when a body under this force moves through
a distance of 1 foot in its direction. This unit is very
largely used in Engineering. It is called the foot-pound,
and is usually defined as the work done in lifting one
pound one foot vertically.

M. K. S. Gravitational System.—The weight of the
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kiloerramme bein^c the unit of force, the unit of work is

that done when under this force a body moves through
1 metre in its direction. It is largely used by French
engineers, and is called the kilogramme-metre. The
kilogramme-metre is equivalent to 7'2331 foot-pounds.

F. P. S. Absolute System.—The unit of work is the

work done when under a force of 1 poundal, a body
moves through 1 foot in the direction of the force. This

unit is called the foot-poundal. It is clear that, as the

weight of I lb. is g times the poundal, the foot-pound

must be g times the foot-poundal.

C. G. S. Absolute System.—The unit of work is the

work done when under a force of 1 dyne a body moves
through 1 centimetre in the direction of the force. It is

called the erg. The joule is 10,000,000 ergs, and is equi-

valent to nearly f of a foot-pound.

832. Dimensions of Unit of Work.—From the equa-

tion WocFl, we deduce, as in 300 and 303, [F] x [F][L]

and [W] X [ilf ][Zp[T]~^. The former expression applies

to gravitational units in which the unit of force is a
fundamental unit. The latter applies to absolute units

in which the unit of mass is chosen arbitrarily. A know-
ledge of the dimensions of units of work is applied in the

solution of problems in exactly the same way as in the

case of units of speed and rates of change of speed.

333. Rate of Woi^k.—The mean rate at which a force

does work in a given time is the quotient of the work
done in the time by the time. In general the mean rate

varies with the interval of time to which it applies. In
any case in which it does not, the rate of doing work is

said to be uniform.

The instantaneous rate at a given instant is the mean
rate between that instant and another when the interval
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of time between tliem is made indefinitely small. It has

(295) in all cases a finite value.

The rate at which an agent {e.g., a steam engine) can

do work is called its Poiver or Activity.

334. Let W be the work done by a force i^ on a
particle of mass w, in a short time t, and R the rate at

which the work is done. Then Il=W/t. If s is the

distance traversed by the body in the direction of F
during t, R = Fs/t= Fv, where v is the component of the

instantaneous velocity of the particle in the direction of

F. If a is the instantaneous acceleration produced in

the particle by F, we have F= ma, and therefore R = miav,

whence a = R/(jnv), i.e., the acceleration produced in a

particle by a force working at the rate R, is equal to the

quotient of this rate by the momentum of the particle in

the direction of F.

If the work is done against a force F\ which has a
direction opposite to that of F, and produces an accelera-

tion a, the resultant acceleration is a— a = R/{niv) — F/m.
As V increases a decreases. When a = a' there is no
resultant acceleration and v becomes uniform and has its

greatest value. Hence the greatest velocity which a
force working at the rate R can produce against an
opposing force F' is equal to R/F\

335. Measurement of Rate of Work.—We have by
definition R = Wjt. When W=t= l, R= l. Hence unit
rate of work is unit of work per unit of time. The fol-

lowing are therefore the units of rate of work in the

various systems.

F. P. S. Gravitational System—One foot-pound per
second.—The unit employed by English engineers is a
multiple of this, viz., 550 ft.-pounds per sec, or 33,000
ft.-pounds per min., which is called the horse-poiver.

M. K. S. Gravitational System— One kilogi-amme-
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metre per second.—The unit practically employed by
French engineers is 75 kilogramme-metres per sec.

(equivalent to 542*486 ft.-pounds per sec), which is

called the force de clieval.

F. P. S. Absolute System—One ft.-poundal per sec.

G. G. 8. Absolute System—One erg per sec.—A mul-
tiple of this unit, viz., 10,000,000 ergs per sec. (equivalent

to nearly | ft.-pound per sec.) is extensively employed in

electrical work. It is called the watt.

The dimensions of units of rate of work can be readily

shown from the formulae of 334 and 332 to be [F][L][T]-^

or [M][Lf[T]-^

336. Examples.

(1) Keduce 50 ergs to kilogramme-metres.

Ans. 5*09 X 10"'' approx.

(2) Reduce 20 foot-pounds to ergs.

Ans. 2'712 X 10^ approx.

(3) Show that 1 foot-poundal= 42 1,390 ergs.

(4) Find the multiplier by which ergs are reduced to foot-pounds.

Ans. 7-37x10-8.

(5) The second and the foot being the units of time and of length

respectively, determine the unit of mass that the derived unit of

work may be equal to the foot-pound.

Ans. 32-2 lbs.

(6) The units of mass, work, and length being taken as funda-

mental units, find the dimensions of the derived miit of time.

Ans. [L][MJ[W]-i.

(7) A man weighing 168 lbs. climbs a mountain 11,000 feet high

in 7 hours, the difficulties of the way being equivalent to the carry-

ing of an additional weight of 42 lbs. Show that he has worked at

^ horse-power.
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(8) A boy drags a body of 50 lbs. mass on a smooth horizontal

plane, doing work upon it at the rate of ^^ horse-power. Find its

acceleration when its speed is 1 mile per hour.

Ans. 24-15 ft, -sec. units in the direction of motion.

(9) An engine is employed in lifting vertically a bale of goods

weighing 1 cwt. {a) If the engine is working at 5 H.-P. and the

bale has a speed of 5 ft. per sec, find its acceleration, (h) At what

H.-P. must the engine work to lift the bale with a uniform speed of

1 ft. per sec.

Ans. {a) 158"1 ft.-sec. units upwards
; (&) ^ H.-P. approx.

(10) A train weighing 75 tons ascends an incline of 1 in 800 with

a uniform speed of 40 miles per hour. Assuming the friction to be

equivalent to a force of 6 pounds-weight per ton of the train's mass,

find the rate at which the engine is working.

Ans. 70*4 H.-P. approx.

(11) Find the greatest speed an engine of 100 H.-P. can give a

train of 70 tons mass on an incline of 1 in 100, friction being equiva-

lent to a force of 8 pounds-weight per ton.

Ans. 17'62... miles per hour.

(12) Reduce 20 horse-power to ergs per second.

Ans. 1-492x10".

(13) In 1 force de cheval how many ergs per second?

Ans. 7-36 xlO».

(14) If the acceleration of a falling bod}^ be taken as unit of

acceleration, 1 ton as unit of mass, 1 horse-power as unit rate of

work, and 1 minute as unit of time, find the derived unit of

length.

Ans. 14-7... feet.

337. Determination of Work done under given Forces.

(1) Under a Uniform Force.—If a particle undergo any
motion under a uniform force, no difficulty arises in

determining the work done. It is simply the product of

the magnitude of the force into the component displace

ment in its direction.
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338. (2) Under a Central Force, i.e., a force directed

towards a centre and varying with the distance from the

centre.—Let be the centre of force, AB any path of a

particle from A to B, and PQ any
indefinitely small portion of the path.

Join OA, OP, OQ, OB, and from as

centre describe arcs of circles A a, Pp,

Qq, M being the point of intersection

of Pp with OQ.

PQ being small, the force on the

particle between P and Q may be considered constant.

Let i^be its magnitude. QO may be considered its direc-

tion. Hence the work which must be done in moving
the particle from P to Q is F. PQ cos MQP, which, since

PM and PQ may be considered straight lines and PM is

at right angles to OQ, is equal to F. MQ. Now p and q
being at the same distance from sls P and Q respectively,

the force on the particle, if taken from p to q, would be F
also, and MQ=pq. Hence the work which must be done
in moving the particle from P to Q is the same as that

necessary to move it from p to q. We may treat every
element of the path in the same way. Hence, by sum-
mation, the work necessary to move the particle from A
to B is equal to that necessary to move it from a to 5 in

a straight line.

Hence also the work done in moving a particle from
A to B is independent of the path, and depends only on
the initial and final distances of the points.

339. (a) The Force directly proportional to the Distance

of the Particle from the Centre,—Let / be its value at

unit distance. Then its values at a and B are /. Oa and
/. OB respectively. Hence its mean value per unit dis-

tance between a and B is \f{Oa-\-OB) ; and consequently
the work which must be done in moving the particle from
a to 5, and therefore from A to B, is
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lf{Oa+ OB){OB- Oa) = if{OW- Oa^) = if(OB'- OA^).

If V and jR are the initial and final distances respectively,

the work done is ^/{R^— r^).

340. (6) The Force inversely proportional to the Square
of the Distance of the Particle from the Centre.—Let / be
its value at unit distance. Then its values at p and q
are fjOp^ and fjOif respectively. Since pg is indefinitely

small, the value of the force between p and q may be put
equal to either or to the intermediate value f/{Op. Oq).

Hence the work which must be done in moving the
particle from |9 to q is

Let the line aB be divided into the indefinitely small

portions (or elements) ap^, p^p^, etc., Pn-iB. Then,
adding together the amounts of work done throughout all

the elements of aB, the work done in moving the particle

from a to B, and therefore from A to B, is

^Ao^~OB)^AoA~OB)^Ar~Br
if r and B are the initial and final distances respectively.

Hence also the work done in moving the particle from
a point at distance r to a point at an infinite distance from
the centre is f/r.

34?1. ExOjTnples.

(1) Find the work done by the weight of a body of 20 lbs. mass

during the first three seconds of its fall from rest.

Ans. 93,315-6... ft.-poundals.

(2) A body of 80 lbs, mass is projected along a rough horizontal
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plane (coefficient of friction =0*25) with a speed of 50 ft. per sec.

Find the work done against friction in 1 sec.

Ans. 919*5 ft. -pounds.

(3) Show that the work done in drawing a heavy body up a

rough inclined plane is the same as if the body were drawn along

the equally rough base and then lifted through the vertical

height.

(4) The distance from X to Fis 105 miles, and there are 27 inter-

mediate stations. Train A stops at all stations. Train B runs

through without stopping. The average resistances to A and B
with the brakes off are equal to ^^ and -^^ of their respective

weights. With the brakes on, the resistances are in both cases

equal to ^V of the respective weights. Suppose the brakes to be

always applied when the speed has been reduced to 30 miles per

hour and not before, find which train is the more expensive and by
how much per cent.

Ans. Train A, by 9*4... per cent.

(5) A particle of mass m moves in a circular path of radius r, (a)

with uniform speed, (6) with uniform rate of change of speed /.

Find the work done in both cases during the motion of the particle

through a semicircle.

Ans. (a) none, (b) irmrf,

(6) Show that in the case of a particle which is oscillating with a

simple harmonic motion, the work done during its motion from its

extreme position to its mean position is twice that done during its

motion from a distance equal to f of its amplitude to a distance

equal to J of its amplitude.

(7) A particle weighing yV oz. has a simple harmonic motion of

0'5 sec. period. Find the work done during the motion from a

distance of 3 inches to a distance of 1 inch.

Ans. 0*0274 foot-poundals.

(8) Find the work done by the sun's attraction during the

motion of the earth from Aphelion to Perihelion. (Mass of

earth=6*14x 10^'' grammes, mass of sun= 324,000 times that of
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earth, distance at Aphelion= l'512x 10^^ ^j^^^ distance at Peri-

helion= 1 -462 X 1013 cm. See 316, Ex. 12.)

Ans. 1-79x1039 ergs.

(9) At the three corners A, B, C, of a square A BCD (side= 100

metres) are material particles of 3,928, 7,856, and 11,784 gi-ammes

respectively. Find the work done against the gravitational attrac-

tion of the particles in moving 1 gramme from the centre to the

fourth corner.

Ans. 7'82 x 10~^ erg approx.

342. Relation of Work done by Component Forces to

that done by Resultant—The work done by a force

during any displacement of a particle is equal to the sum
of the quantities of work done by its components.—Let

00 be the force, OA, AB, BO,
its components, whose directions

may be any whatever. Let OD
be the displacement. By 8 (foot-

note), 0, a, /5, y being the in-

clinations of 00, OA, AB, and
^ BO respectively to OD,

00 cos e=OA cosa+AB cos /3+BO cos y.

Multiplying by OD we obtain

0O.0Dcose = 0A.0Dcosa+AB,0Dcosl3-{-BO.0Dcosy,

by which the proposition is proved.

If F^, F^, etc., R denote the component and resultant

foi'ces respectively, d^, d^, etc., r the component displace-

ments in the directions of the forces respectively, the

above may be written

F^d^ -f F^d^ -I- etc. = ^Fd = Rr,

care being taken that, where F and d have opposite

directions, the product must have the negative sign.



252 DYNAMICS [343

343. Energy.—We have seen that work is said to be
done by a body against a force which is acting on it,

when it undergoes a displacement having a component in

a direction opposite to that of the force. When a particle

is thus able to do work it is said to possess work-power
or energy.

Energy being power of doing work is measured in

terms of the unit of work.

344. Kinetic Energy.—A particle which has a velocity

is able to do work against a force which has a component
in a direction opposite to its velocity. It is therefore

said to possess kinetic energy. Kinetic energy is thus
work-power due to the possession of a velocity.

To find the kinetic energy of a particle we determine
the work done by it against any force during a given
diminution of its velocity.—Let the particle of mass m

have an initial velocity V,

and let it do work against a
constant force F. It will

undergo a displacement hav-
ing a component in a direc-

tion opposite to that of F.
^ "^ m Let that component be d
and let the velocity of the particle be reduced to v. Let

the inclination of V to i^'s line of action be a. Then the

particle has in that line a component initial velocity

Fcos a and an acceleration —F/m, and at right angles to

it an initial velocity Fsina and no acceleration. Hence,

after the displacement, its component velocity u in F's

line of action is such that

u^-V'^cos^a^ -2Fd/m.

Its resultant velocity v is such that
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Hence ^2_ j^2 = _ 2Fdlm,

and Fd=\my'--\mv\

If the force against which the work is done be variable,

let the path of the particle be divided into a large num-
ber {n) of small displacements, so small that the force may
be considered constant during each. Let F^, F.^, etc., be the

magnitudes of the force during these small displacements,

c\, rZ^, etc., the components of the displacements in the

lines of action which the force has during the displace-

ments, and t\, v.^, etc., the velocities of the particle after

the successive displacements. Then

F^d^ = ^mv{-— \mv^,

etc.,

Fndn = imv-n-i" imv^

Hence, if W be the whole work done, we have by sum-
mation W=imr'-imv'^.

Hence the work which can be done by a particle

during a given reduction of its velocity is equal to the

change produced in the product of half its mass into the

square of its velocity.

If its final velocity is zero, its work-power due to its

velocity is exhausted. In that case W = ^m V^. Hence
the kinetic energy of a particle is equal to half the pro-

duct of its mass into the square of its velocity.

345. Fotenticd Energy.—A particle which is acted

upon by such a force as that of gi-avitational attraction

and is in a position from which it can move in the direc-

tion of the force, can in virtue of its being so acted upon
do work against a second force having a component in a

direction opposite to that of the first. It therefore pos-

sesses work-power or energy. Thus a heavy body in a
position from which it can fall can do work against a
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force acting on it in an upward direction, water from a
mill-pond, e.g., against the reaction of the buckets of a mill-

wheel. So also the string of a bent bow can do work
against the reaction of the arrow in contact with it.

This form of energy has been called energy of ^position

for an obvious reason, and static energy to indicate its

independence of the particle's possessing a velocity. The
latter term however is defective as seeming to imply that

the particle possessing this form of energy must be in

equilibrium (323).

A particle acted on by a force and in a position from
which it can move in the direction of the force may also

be recognized as possessing energy, if we note that, even
if no other force be supposed to act on it, it must move in

the direction of the force, gaining velocit}^ and therefore

work-power. For this reason energy of position has
appeared to some writers to be simply a potential form of

kinetic energy and it has been named for this reason

potential energy. We have seen however that a particle

acted on by a force and in a position from which it can
move in the direction of the force, may do work without
first acquiring kinetic energy; and energy of position

must therefore rank as an independent form of energy.

The term potential energy should not therefore be em-
ployed in the sense in which it was hrst proposed. We
shall see however (356), that this form of energy has
a very simple relation to a quantity called the potential

;

and to indicate this relation the term potential energy is

employed.

In speaking of a particle as possessing potential energy
we are taking a narrow view of the phenomenon and
neglecting the third law of motion, which states that a
force acting on a particle is but one aspect of a stress

which acts between it and another. What we have said

of the one particle applies obviously equally to the other.

Hence the potential energy belongs not to either of the
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particles alone but to the pair, and it is due to the stress

between them. When we speak of the potential energy
as possessed by the one, we are imagining the otlier for

the moment to be immoveable, or, in other words, we are

taking the position of the other as our point of reference.

346. It follows from 345 that all forces do not confer

potential energy on the particles on which they act, but
those only in whose directions the particles can move.
If, e.g., a particle be in motion in contact with a rough
surface, it will be acted upon by friction. But the

direction of this force must always be opposite to that of

the particle's velocity, and the particle therefore cannot
move in its direction. Hence friction cannot confer

potential energy on a particle. Now all natural forces

may be divided into two classes, those of the one class

(including such as gravitational attraction) depending
only on the position of the particle acted upon, those of

the other class (including such as friction) depending
upon its velocity and having in all cases directions opposite

to that of its velocity. Potential energy is thus conferred

on a particle only by forces of the former class whose
action depends upon the position of the particle only,

and is independent of its velocity.

347. The particle will possess potential energy at

whatever point it may be placed of the region through-

out which the force acts, but the farther it is displaced

in the direction of the force the less it will have. The
excess of the value of its potential energy at any point P
over its value at another point Q is equal to the work it

can do in moving from P to Q. Now, even if it have no
initial velocity, it can move from P to Q though acted on
by a force F' opposite and indefinitely nearly equal to the

force F, to which its potential energy is due. And the

work done against F' during this displacement is the

product of F' into the component d of PQ in its direc-

tion. But since F' is indefinitely nearly equal to F, we
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may put F'd = Fd. Hence the excess of the potential

energy at P over that at Q, and therefore the diminution

of potential energy during the motion from P to Q, is

equal to the work done on the particle, during the motion
from P to Q, by the force to which the potential energy

is due. Hence also the increase of the potential energy

of a particle during any displacement is equal to the work
done against this force. Thus the potential energy ofa par-

ticle ofmassm at a height/^'is greater than that ofa particle

of the same mass at the smaller height h by the amount
mg(hf— h). For the work done by the weight {mg) of Tn

during its motion from height K to height h would be
TYigQi —h). Hence also the increase of potential energy

of a mass m in moving from a height It to a height h is

mg{li— h').

348. The Laiv of Energy.—Let a particle having any
initial velocity V undergo displacement when under
the action of any number of forces P^, P^, etc. Let R be
their resultant and r the component in its direction of the

displacement b of the particle; then, the
acceleration of the particle being P/m,
it may be shown as in 344 that

Rr = Imv^— JmV\ Now, if d^, d^, etc.,

2 are the components of the displacement
in the directions of the forces P^, P^,

etc., we have (342) Pr = 2Pd Hence
^Fd =^ ^mv'^— ^mV^ ; i.e., the algebraic

sum of the quantities of work done by
the acting forces is equal to the increase of the kinetic

energy. If the displacement be finite, it may be shown
as in 344 that the same result holds.

We may write this result

hmv^-imV^-\-{2-Fd) = 0.

The quantity ^{-Fd) is (330) the algebraic sum of all the
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work done against the acting forces. Hence, in any dis-

placement of a particle, the increase of kinetic energy
together with the work done against the acting forces is

zero.

If now the acting forces are all independent of the

velocity of the particle, the work done against them is

equal to the increase of the potential energy of the

particle. Hence, in any displacement of a particle acted

on by forces independent of its velocity, the sum of

the increments of the kinetic and potential energies

is zero, or, in other words, the sum of the potential

and kinetic energies is constant. This result is the

Law of the Conservation of Energy as applied to a single

particle.

Forces which depend only on the position of the

particle acted upon are usually called conservative forces,

as being subject to the above law of conservation of

energy. Those which depend on the velocity are called

non-conservative forces.

If any of the acting forces are dependent upon the

velocity of the particle, the work done against them does

not result in the production of an equivalent amount of

potential energy. In such case, therefore, the sum of

the increments of the kinetic and potential energies, and
of the work done against such forces, is equal to zero.

This result is the Law of Energy as applied to a single

particle. The law of the conservation of energy is

obviously a special case of the more general law of

energy.

349. If a particle acted on by forces be in motion, its

energy at any instant consists partly of kinetic, partly of

potential energy. During the motion the relative amounts
of these energies will in general change. In such a case its

energy is said to be undergoing transformation. Thus
the energy of a pendulum at the extremity of its swing

R
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is wholly potential energy. In its mean position (if it be

supposed that the string cannot be cut, and that the bob
therefore cannot fall lower than the mean position) the

energy is wholly kinetic ; at intermediate positions it

possesses energy of both kinds. The transformations of

a particle's energy are always subject to the law of

energy. Thus the sum of the kinetic and potential

energies of the pendulum at any instant, together with
the work done since any former instant against non-

conservative forces, must be equal to the energy of the

pendulum at that former instant. If the forces acting are

all of the conservative class, the sum of the kinetic and
potential energies of the pendulum must be the same at

all instants.

850. Examples.

(1) Compare the amounts of the momentum and kinetic energy

in (a) a mass of 20 lbs. having a speed of 16 ft. per sec, and (6) a

mass of 1 oz. moving at 5,120 ft. per sec.

Ans. Momenta the same, kinetic energy of {b) 320 times that of (a).

(2) A cannon ball of 5,000 grammes is discharged with a speed of

500 metres per sec. Find the kinetic energy in (a) ergs, and (&)

foot-pounds.

Ans. (a) 6-25 x 10^2, (b) 4-61 x 10-^, approx.

(3) A bale of goods weighing 1 cwt. is lifted 20 ft. Find the

increment of its potential energy.

Ans. 2,240 ft.-pounds.

(4) A bow 1 yard long is straight when the string is just tight,

but when bent has the form of a circular arc of 1 ft. 6 in. radius.

The mean force exerted by the hand in bending, per unit distance

through which it has moved, is equal to the weight of 10 lbs. Find

the potential energy of the bow.

Ans. 483 ft.-poundals.

(6) A body is projected either (a) vertically upwards, or (6) in
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any direction. Show, by calculating its kinetic and potential

energies after any time, that in both cases the energy of the body

is the same at all points of its path. [Neglect the resistance of the

air and assume g to have the same value at all points of the path.]

(6) A meteorite falls in a straight line towards the earth from a

great distance, no other heavenly body being supposed near. Show,

by calculating the changes produced in its kinetic and potential

energies between any two points of its path, that there is no change

produced in its energy.

(7) A particle weighing 1 lb. has a simple harmonic motion with

a period of 20 sec. and an amplitude of 1 ft. Find (a) its kinetic

energy in its mean position, (6) its potential energy in either ex-

treme position, {c) its kinetic energy and potential energy and their

sum when at a distance of 8 inches from the mean position.

Ans. (a) 7r2/200 ft.-poundals, (6) the same, (c) kinetic energy

= 7r2/360 ft.-poundals, potential energ}"= 7r2/450 ft.-poundals, their

sum = 7r2,'200 ft.-poundals.

351. Application of the Law of Energy to Kinetic
Problems.—The law of energy being a generalized form
of the laws of motion may be applied at once to the

solution of kinetic problems such as those of 320. If the

forces acting are all conservative, the law of the conser-

vation of energy is applicable. If some of the forces are

non-conservative, and if the work done against them
cannot be determined, the law of energy cannot be
applied.

352. Examples.

(!) What speed will the bow of 350, Ex. 4, communicate to an

arrow weighing 2 oz. [Assume no work done against non-conserv-

ative forces.]

Ans. 87'9 ft. per sec.

(2) A ball weighing 5 oz. and moving with a speed of 1,000 ft.

per sec. strikes a shield 2 inches thick and after piercing it moves

on with a speed of 400 ft. per sec. Find the force (supposed
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uniform) with which the shield resisted the ball. [Assume as

above,]

Ans. 787500 poundals.

(3) Find the height {h) to which a body weighing 2 grammes and

projected vertically upwards with a speed of 20 metres per sec. w^ill

have risen before its speed is reduced to 5 metres per sec, assuming

the mean resistance of the air to the motion of the body per unit of

distance travelled to be 10 dynes.

Loss of kinetic energy= 3,750,000 ergs, gain of potential energy

= 1,962A ergs, work done against resistance= 10A ergs. Hence

A= 1,091 -6 cm.

(4) A body of mass m is projected with speed V up an inclined

plane of inclination a, the coefficient of kinetic friction being /a.

Find the space s traversed before the body comes to rest.

Loss of kinetic energy =|mF2, gain of potential energy =771,75 sin a,

work done against friction= firngs cos a. Hence

mgs sin a + ixmgs cos a — ^m V'^= 0,

and s= V^l[2g (sin a+fi cos a)].

Hence also the acceleration is constant and equal to ,9'(sin a+ /j. cos a).

(5) Find the speed v of the bob (mass= m) of a simple pendulum

(length= Z) which has swung from its extreme position through a

given angle, neglecting the resistance of the air.

Let /3 be the angle made with the vertical in the extreme position,

6 the angle made with the vertical in the position in which the

speed of the bob is to be determined. The kinetic energy gained

is ^mv^. The vertical height through which the bob has fallen

is I cos d - 1 cos, ^, and therefore the potential energy lost is

7ngl{cos d — cos /3). The stress in the string has done no work
because the bob has had no displacement in its direction. Hence

\mv^ — mgl{cos 6 - cos j8)= 0,

and ^•2= 2gl(cos 6 - cos ^3).

The reader should solve some of the Examples of 320 and 329 by
the application of the law of energy. Those of 322 cannot be solved
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by this method, because we as yet know too little of the forces which

come into play during impact. We cannot tell whether or not they

are conservative forces, nor can we calculate the work done against

them.

353. Application of the Law of Energy to Static

Problems.—The law of energy may also be employed to

obtain an expression for the conditions of equilibrium of

a particle. A particle in equilibrium must either be at

rest or be moving uniformly. In any indefinitely small

displacement of a particle, therefore, from a position in

which it is in equilibrium, whether or not it be one
which the particle actually undergoes, there can be no
change of velocity, and hence no change of kinetic energy.

But in any displacement the sum of the increments of

potential and kinetic energies, together with the work
done against non-conservative forces, must be zero. Hence
in any indefinitely small displacement from a position of

equilibrium the increment of the potential energy, to-

gether with the amount of work done against non-

conservative forces, or, in other words, the work done
against (and therefore by) all the forces acting on the

particle, must be zero. With the symbols of 342, ^Fd = 0.

This equation might have been deduced at once from
that of 342, viz., llFd = Br. For, since for equilibrium

ii = 0, wehave 2i^c^ = 0.

A small displacement which a particle in equilibrium

may be supposed to undergo is often called its virtual

displacement or virtual velocity, and its product into the

component of any acting force in its direction the virtual

work or the virtual moment of the force. The condition

of equilibrium as obtained above is then called the

Principle of Virtual Work or of Virtual Velocities.

354. Example.

A particle of weight W is on the point of moving up an inclined
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plane of inclination a under a force F inclined 6 to the plane, the

coefficient of friction being fi. Find F in teims of W.

The inclination of the reaction R of

the plane to the normal PN is e= tan~V.

As we wish to find F in terms of TF,

we select a displacement PA perpen-

dicular to R. If then AB, AG be

drawn perpendicular to the directions

of F and W respectively, the work

done by Fy W, and R during the dis-

placement are F. PB, — W . PCy and

zero respectively. Hence F.PB-W. PC=Oy
and consequentl}' F . cos APB — VFcos APC^ 0.

Now the angle APB is equal to d-e, and the angle A PC to

90° - a - e. Hence i^cos (^ - e) - W sin (a -1- e) = 0,

and substituting for e its value tan~V,

sin a+ ix cos a
TF,

co^d+ixsmd

The reader should apply this method to some of the Examples of

327 and 329.

355. Potential.—The region surrounding one or more
centres of force (an attracting mass, for example) is called

a field of force. If a particle be moved from any one to

any other point in such a field, work is in general done
either by or against the resultant force of the field, and
the amount of work so done we have seen to be inde-

pendent of the path (338). If therefore some convenient
point of reference be chosen, the work done in bringing a
given particle, say a particle of unit mass, from any other

point to the chosen point has a definite value for every
point of the field. So also will the work done in carrying

the given particle from the chosen point to all other

points of the field. This definite value, when the

given particle is one whose mass is unity, is called the

potential of the point. The magnitude of the potential

of a point will depend upon the position of the point of
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reference, and its sign will vary according as we give the

name potential to the work done during motion to or

from the point of reference and by or against the force of

the field. The choice of the point of reference and of the

exact mode of defining potential are matters of conven-
ience and vary with the kind of field of force under
consideration.

356. The importance of the potential depends upon the

following proposition :

—

The rate of change of the 'potential 'per unit distance

in any direction at any point of a field offorce is equal
to the component force in that direction luith which a
particle of unit mass would he acted upon if placed at

that point.—Let A, B he two points in the field of force

and G the chosen point of reference. Since the work
done during any displacement is independent of the path
of the particle, the work done in carrjdng unit mass from
J. to 5 is equal to the difference of the amounts of work
done in carrying it from A to C and from B to C. Hence,
if Vj and Fg are the potentials of A and B, the differ-

ence Vj -- Vb is equal to the work done in carrying the

unit mass from A to B or from B to A. If now F is the

component in ^jB of the mean force per unit distance

acting on the particle between A and B, the work done
between A and B is F . AB. Hence

F.AB=Va-Vb,
and F=(Va-Vb)/AB.

If now B be indefinitely near A, F becomes the compon-
ent force at A in the line AB, and (F^ - Vb)/AB the rate

of change of the potential at A per unit distance in the

line AB. Hence the above proposition is proved.

As the value of a central force at any point of the

region through which it acts is equal to the rate of

change of the potential at that point, such forces are said

to be derivable from a potential.
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It follows from 347 that F . AB is the difference be-

tween the potential energies of unit mass at A and at B.

This difference is thus equal to the difference in the values

of the potential for these points. Hence the appropriate-

ness of the term potential energy.

357. If at any point, F= 0, there also the rate of change
of potential must be zero. Hence, e.g. (316, Ex. 5), at all

points inside a uniform spherical shell the gravitational

potential is the same.

358. Fquipotential Surfaces.—A surface, at every
point of which the potential has the same value, is called

an equipotential surface. The attraction on a particle

placed at any point of such a surface will be normal to

the surface. For in no direction tangential to the surface

is there a rate of change of potential or, consequently, a
component force.

We may imagine equipotential surfaces drawn in any
field of force for any values of the potential. If they be
drawn for values increasing by equal amounts, which are

also small, the resultant force acting at any point will be
inversely proportional to the distance between successive

equipotential surfaces in the neighbourhood of the point.

For, if A and B are the successive equipotential sur-

faces, and AB the distance between them at any point,

Va '^ Vb is constant, and hence (356) F cc 1/AB.

359. Lines of Force.—A line so drawn in a field of force,

that its direction at any point is also the direction of the

resultant force at that point, is called a line of force. As
the resultant force at a point has no component in the

tangent plane of the equipotential surface passing through
the point, lines of force must be normal to the equi-

potential surfaces they may meet.

360. Tubes of Force.—If from points in the boundar}^

of any portion of an equipotential surface lines of
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force be drawn, the space thus marked off is called a tube
of force.

361. Gravitational Potential.— We may consider, as of

special importance, the potential in a field of force due to

gravitational attraction. If such a field is due to the

attraction of a single particle of mass m, the force on
unit mass at unit distance (the astronomical unit of mass

(315) being employed) ism. Hence (340) the work done
in moving unit mass from one point at a distance r to

another at a distance R is on{l/r — l/R). If R is in-

finitely great, the work done is equal to m/r. Hence if

the chosen point of reference be a point at an infinite

distance from the attracting particle, the potential of a
point at a distance r has the magnitude m/r. If the

field is due to any number of particles of masses, m^,

m^, etc., the magnitude of the potential will be ^(on/r).

It is convenient to have the potential for all points of

a gravitational field positive. Now gravitational force

being in all cases attractive, the work done by the force

of a field in moving a particle from a greater to a smaller

distance from the attracting mass is always positive.

Hence in this case we define the potential of a point

as the work done hy the force of the field in moving
unit mass from a point at an infinite distance from the

attracting mass, to the given point.

362. It follows that the component force on unit mass
at a given point of a gravitational field in a given direc-

tion is equal to the rate of increase of the potential per

unit distance in the same direction.

It follows also (347) that with the above convention,

if Pa and Pb are the potential energies of unit mass at

A and B, and Va and Fg the potentials of these points

respectively.
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and that therefore the rate of increase of the potential

with distance in a given direction is equal to the rate of

decrease of the potential energy of unit mass in the same
direction.

363. Calculation of the Potential.—The value of the

quantity '2(on/r) for a given point may, in simple cases,

be determined by elementary mathematical methods.
Usually, however, the Integral Calculus is necessary to

effect the summation.

364. Examples.

(1) Show that the potential at a given point due to j^articles of

masses ??i^, mg, etc., situated on either a circle or a sphere whose

radius is r and centre the given point, is equal to (2m)lr.

(2) Particles of masses 3*928, 39*28, and 392*8 kilogrammes are

situated at three of the corners of a square whose side is 1 metre.

Find the potential at the fourth corner.

Ans. 1*0807 C. G. S. units.

(3) Find the potential (a) at the centre of a thin circular wire of

linear density p, and (6) at a point on a line through its centre per-

pendicular to its plane, distant I from all points of the wire.

Ans. (a) 27r/), (6) 2irprll,

(4) Find the potential at the centre of a circular plate of radius r

and surface density p.

Ans. 2irpr.

(5) Find the potential at the centre due to a sector of the plate

of Ex. 4, of angle 6 radians.

Ans. r9p.

(6) Find the potential {a) at any point inside a uniform spherical

shell of mass m and radius r, and (6) outside it at a distance d from

its centre. [See 316, Exs. 5 and 6.]

Ans. (a) m/r, (b) mjd.
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(7) Ay a, point near the earth's surface, is h feet above another

such point B. Find the excess of the potential of A over that

ofi?.

Ans. -g/i.

365. Integral Novmial Attraction over a Surface.—If
any closed surface in a field of force be divided into
indefinitely small portions, the sum of tlie products of the
areas of these portions into the normal components out-
wards (or inwards) of the forces exerted at them on unit
mass is called the integral normal attraction over the
surface (in the language of the Higher Mathematics, the
surface integral of normal attraction).

The integral normal attraction over any closed surface
in a gravitational field of force is equal to 47r times the
mass enclosed by the surface.—Let m be the mass of any

Figi fig 2

particle, at 0, of the attracting mass. Let a Cone of
indefinitely small solid angle meet the closed surface S
at P^, P^, Pg, P^, etc., marking out on it areas A^, A^, A^, A^,

etc., inclined to orthogonal sections of the cone at the

angles 0^, 0^, 0^, 0^, etc., radians. The resultant force due
to this particle at P^, P.„ Pg, P_,, etc., is towards and
inversely proportional to OP;^ 0P;^ OP.^, OP^^ etc. The
normal components at these points are therefore pro-

portional to cos OJOP^^, cos QJOP^, etc. The orthogonal

sections of the cone at P^, P,, etc., have areas proportional

to OP^, OP^, OP.^, etc. Hence the sections inclined to

them at the angles Op d^, etc., at the same points, have,

since the cone is of indefinitely small angle, areas pro-
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portional to OP//cos 0^, OPJ^/cos 0.,, etc. The products

of the areas A^, A^, etc., into the respective normal
components of the force over them are therefore con-

stant.

If now the point be outside the surface, the force

at Pj is outwards, that at F^ inwards, that at P.^ out-

wards, that at P^ inwards, and" so on ; and the cone must
meet the surface an even number of times. Hence, if

the forces at P^, P^, etc., be reckoned either all outwards
or all inwards, as many of the above equal products are

positive as negative, and their algebraic sum is con-

sequently zero. But the whole surface may be divided

into indefinitely small areas by such cones. Hence the

integral normal attraction over the surface is equal

to zero when the attracting mass is a particle outside

it.

If the point be inside the surface, the cone whose
vertex is will cut the surface in whatever direction it

be drawn an odd number of times. Hence the sum of

the products of the areas intercepted by the cone into the

normal components of the attractions at them is equal to

the value of the product at any one section. At P^ the

normal component of the attraction is tyi cos OJOP-^. If

ft) is the solid angle of the cone (in solid radians), the

area of the section at P^ is ft) . OP^JQOs 0^. Hence the

value of the above product at P^ is com, and consequently

the value of the integral normal attraction is the product
of m into the sum of the solid angles of all the cones with

(inside the surface) as vertex, by which the surface

may be divided into small elements, which is ^tt. Hence
the value of the integral normal attraction when and
therefore r)i are inside is 47rm,

Hence its value when any mass M is inside is

366. In a tube of force whose ends are indefinitely
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small portions of equipotential surfaces, the force perpen-

dicular to the tubular portion of

the surface vanishes, and at the

end surfaces the resultant force is

normal.—Let F^ and F^ be the

resultant forces at the ends, and
let Sp §2 be the indefinitely small

areas of the ends. If then the

tube contain no attracting mass,

one of the two, F^, F^, is outwards, the other inwards, and
we have, by 365, F^s^— F^s.^ = 0, i.e., if F be the force at

any point of a small tube of force and s its normal section

at that point, Fs = constant, or F oc 1/s. Hence the

resultant force at any point of a small tube of force is

inversely proportional to its transverse section at that

point.

367. If the attracting mass is a uniform spherical shell

or a sphere with density proportional to distance from
the centre, the lines of force are clearly straight lines

radiating from the centre, and the tubes of force are cones,

right sections of which are directly proportional to the

squares of their distances from the vertex of the cone or

centre of the sphere. Hence the attraction exerted by
a sphere such as that specified above, at external points,

is inversely proportional to the squares of their distances

from its centre. (Compare 316, Ex. 6.)

368. If the attracting mass is a cylinder of circular

section and infinite length and with density proportional

to distance from the axis, the lines of force are clearly

straight lines perpendicular to the axis of the cylinder,

and the tubes of force are therefore wedges, the areas of

right sections of which are directly proportional to their

distances from the axis. Hence the forces at external

points are inversely proportional to their distances from
the axis.
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869. If the attracting mass is a plate of uniform thick-

ness and infinite extent, and with the density at its

various points proportional to their distances from either

bounding surface, the lines of force are clearly straight

lines normal to either bounding surface, and the tubes of

force therefore are cjdinders of constant section. Hence
the forces exerted at all external points are the same.

870. If a tube of force cut through a plate of attracting

matter of surface density p, and if the area of the plate

inside the tube be cr, we have {"^^^ and 866)

^A-^2«2 = 47rpo-.

If the plate be indefinitely thin and the ends of the tube

indefinitely near the surfaces of the plate, s^ = (t = s,^.

Hence F^-F, = 4"7rp,

i.e., the attractions on unit mass on opposite sides of the

plate at points indefinitely near it differ by 4;7rp. As
they are clearly equal in magnitude and opposite in direc-

tion, the attraction at either side indefinitely near the

plate is thus 27rp. (Compare 316, Ex. 1.)

371. The potential cannot have a maximum or a mini-

mum value at a point in free space. For, if it could, it

must increase or diminish respectively from point to

point in all directions outwards from the given point, and
hence the force at all points of a small surface enclosing

the given point must be outwards or inwards respectively,

and must consequently have a finite value, though the

surface encloses no attracting mass.

Hence, if the potential is constant over a closed surface

containing no attracting mass, it must be constant

throughout the whole enclosed space. For otherwise

there must be somewhere in it a point of maximum or

minimum potential.
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372. A field of force whose law is that of gravitation

may be so mapped out by lines of force that they may
indicate not only the direction, but also the magnitude of

the forces acting at different parts of the field. For let

s^, s.-, be normal sections of any tube of force not enclosing

any attracting mass, and F^, F^ the resultant forces on unit

mass at these sections. Then these sections are cut through
by the same number of lines of force. Let the number
{n) be such that F^ = n/s-^^. Then, since F^Sj^ = F^s.-^, we
have also F^ = n/s^^. Hence, if the lines of force in a tube
of force are so drawn that at any one point the quotient

of their number by the normal section of the tube is

equal to the force at that point, the same will be true for

any other point. If therefore the lines of force of a field

are so drawn that over any equipotential surface the

number of lines of force per unit of area at every point is

equal to the force at that point, then throughout the field

the number of lines of force per unit of area normal to

them at any point will be equal to the force at that

point.

373. A uniform field of force is one at all points of

which the resultant force has the same magnitude and
direction. The tubes of force must therefore be cylinders,

and the lines of force must be parallel straight lines, equal

numbers of which pass through equal areas normal to

their direction.
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CHAPTER III.

DYNAMICS OF SIMPLE SYSTEMS OF PARTICLES.

374. For the discussion of the motion of a single

particle we have found the first two laws of motion to

be sufficient. If we wish, however, to discuss the

motions of even only two particles which act upon one
another, we have to deal with both aspects of the stress

between them and must know how the stress affects both
particles. The third law tells us that it affects them
equally in opposite directions, producing in them equal

and opposite changes of momentum in the same time.

With the aid of the third law it is often possible to pass

from particle to particle of a simple system, applying to

each particle the equations of motion or the conditions of

equilibrium of a single particle, and thus determining the
motion of the whole system.

375. It is hardly necessary to point out that the law
of energy also may be applied to a system of particles.

For since, if the system is in motion, the increment of
the potential and kinetic energies, together with the

work done against non-conservative forces, during any
displacement, is for each particle equal to zero, it must be
equal to zero also for the whole system. And since, if

the particles of the system are in equilibrium, the sum of
the quantities of work done by the forces acting on each
particle during any small displacement is zero, it is zero

also for all together.
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376. The forces acting on a system of particles may-
be divided into two classes, those acting between the

particles of the system and bodies external to the system,
called external forces, and those acting between the

particles of the system themselves, called internal forces.

The internal forces may be mutual attractions such as

gravitational attraction, explosive forces, reactions exerted

during collision, or the stresses or tensions in connecting
strings. Some of these cases may be dealt with without
further comment.

377. Examples.

(1) Two particles of masses, 20 lbs. and 1 lb. respectively, initially

at rest on a smooth horizontal table attract one another. After a

time the greater mass has a velocity of 10 ft. per sec. Find the

velocity of the other.

Ans. 200 ft. per sec. in the opposite direction.

(2) Two attracting particles initially at rest on a smooth hori-

zontal table are observed at a given instant to be approaching one

another with a speed Uy the speed of each particle being measured

relatively to the other. If m and M are their masses, find their

speeds v and V respectively relative to a fixed point in the table.

Ans. v=Mul{m+ M), V=muj{m-\-M).

(3) A body having a velocity of 10 ft. per sec. in a given direction

is divided by an explosion into two portions whose masses are 2 lbs.

and 1 lb. respectively. Both portions move, after the explosion, in

the original line of motion, and the portion of smaller mass has a

velocity of 25 ft. per sec. in the original direction of motion, {a)

Find the velocity of the other portion. (6) Find what it would

have been had the velocity of the smaller portion been 50 instead

of 25 ft. per sec. (c) Find the value of the explosive impulse in

the latter case.

Ans. {a) 2| ft. per sec. in the given direction, (b) 10 ft. per sec. in

the opposite direction, (c) 40 absolute ft.-lb.-sec. units of impulse.

(4) Two particles of masses m and m' astronomical units, moving

on a smooth horizontal table, attract one another according to the

S
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gravitational law. Find the acceleration of either relative to the

other when they are at a distance d.

Each is acted on by a force mm'l<P. Hence their accelerations

are m'l(P and mjcP respectively in opposite directions, and therefore

the acceleration of either relative to the other is {m+m')/dP. Hence

each relatively to the other moves as it would if the other were

fixed and had a mass m+ ni'.

878. Collision.—If particles come into collision, we
require to know the stress between them during collision

before we can determine their subsequent motion.

If the direction of the stress during the collision be
known, its impulse may readily be determined, pro-

vided there be no recoil. Let m and n be the masses of

two colliding particles, n and v their respective compon-
ent velocities before collision and V their common com-
ponent velocity after collision, in the line of action of the

stress, and (j) the impulse of the stress. As we have
taken u and v both positive, one of them must he greater

than the other that collision may occur, and V must be

less than it and greater than the other. Let u be greater

than u Them m(u—V) is the momentum lost by the

one particle, oi(V—v) that gained by the other. Since

these changes of momentum are produced by the same
impulse <p, they must be equal. Hence

m{'U -y) = (p^ n{V-v).

Hence also y mu-\-nv

'm-\-n
'

and
mnhi— v)

Til -f-n

379. If there be recoil, the impulse of the stress # ma}^

be determined in terras of the value it would have if

there were none. For u' and v' being the component
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velocities of on and n respectively after collision, in the
direction of the stress, we have

Hence

m(u— u') = $ = n {v'— v).

$ 16— U V'— V

<p u-V V-v
From the last of these equations we find

^ u(v— v') — v{u — i6')

V— V — (l6 — i//) '

and substituting this value of V in either of the expres-
sions for $/0 we obtain

# v'— u'

(j>~ w— v'

The relative velocity of the particles before collision, in

the line of action of the stress, is called the velocity of

approach, and their relative velocity in the same line

after collision is called the velocity of recoil. With the

above symbols u— v is the velocity of approach, v'— v'

the velocity of recoil. If we call the ratio of the velocity

of the recoil to that of the approach e, we have

e = (v - u)/{u— v).

Hence ^=0(1+^),

i.e., the impulse of the actual stress between two imping-

ing particles is greater than that of the stress which
would equalize their velocities in the ratio of 1 -j-e to 1.

Newton found by direct experiment (380, Ex. 12) that

in bodies of finite size the velocity of recoil has to the

velocity of approach a constant ratio, independent of the

masses and velocities of the colliding bodies and depend-
ent onl}' on their substance. The value of this constant

ratio e therefore, for bodies of given substances, is called

their coefficient of restitution (often, but improperly, their

coefficient of elasticity).
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380. Exmwples.

(1) Two particles of masses m and M moving in a straight line

with velocities v and V respectively, come into collision, the stress

between them during collision being in the direction of the line of

motion and the coefficient of restitution being e. Find the veloci-

ties v' and V respectively after the collision.

Clearly the particles move after collision in the same straight line

as before it. Since the same stress acts on both particles during the

collision, the change of momentum produced in the one is equal and

opposite to the change of momentum produced in the other. Hence

the sums of the momenta of the particles before and after impact

are the same ; i.e.,

mv+M V= mv' -\-MV'.

V and V being both positive, the particles are moving in the same

direction. If M is ahead, v must be greater than V that collision

may occur. Hence the velocity of approach is v - V, and that of

recoil V - v', and (379)

V — v'= e(v- V).

From these equations, eliminating first V and secondly v', we obtain

,

_

mv+MV-eM(v- V)
""

m+M '

y_ '>nv-\-MV- etn{ V— v)

m +M

If the particles be moving each towards the other, one of the

velocities before impact, viz. F, must be made negative in these

equations.

The above result applies, as we shall see in a future section (498,

Ex. 10), to the collision of spheres whose centres are before impact

moving in the direction of the line joining them. The impact of

spheres under this condition is said to be direct,

(2) Two particles whose masses are as 2 : 4 are moving towards

one another in a straight line with speeds of 10 and 20 ft. per sec.

respectively. They impinge, the stress during impact being in the

I
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line of motion. Find the velocities after impact, the coefficient of

restitution being ^.

Ans. 50/3 and 20/3 ft. per sec. respectively in the direction of the

velocity before impact, of the particle of greater mass.

(3) Two particles of equal mass, and with coefficient of restitu-

tion equal to unity, are moving in the same straight line, and

collide, the stress during collision being in the line of motion.

Show that they exchange velocities.

(4) Two particles are moving in opposite directions in a straight

line with equal momenta. They collide and do not separate after

collision. Show that their kinetic energy has disappeared.

(5) Two particles of equal mass move one after the other in the

same straight line, and the A^elocity of the hindermost is double that

of the other. Show that if on colliding the stress between them is

in the line of motion, their velocities after impact will be as

3 - e : 3+ e, e being the coefficient of restitution.

(6) A series of particles (coefficients of restitution = 1) are move-

able in a given straight line. The first of them impinges on the

second, the second on the third, and so on, the stresses during im-

pact being in the given straight line. Prove that, if their masses

form a geometric progression whose common ratio is 2, their veloci-

ties after impact will form a geometric progression whose common
latio is f

.

(7) Three particles A, B, C oi different masses and materials are

capable of moving in a given straight line. They are originally at

rest and not in contact. A is projected with a speed V against B,

which then strikes C and communicates to it a momentum M. The

stresses during impact are in the given straight line. Show that,

if C had been projected with the same speed V in tlie opposite

direction, the same amount of momentum J/ would have been com-

municated to A.

(8) A particle lying at a point A on a smooth horizontal plane is

driven perpendicularly against a vertical wall by the impact of

another particle of equal mass moving perpendicularly to the wall
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the stress during impact being in the line of motion. After re-

bounding from the wall at a point C, it is brought to rest by a

second impact at B. Show that BC=e. AC, w^here e is the common
coefficient of restitution of balls and vertical wall.

(9) Two heavy particles of equal mass (coefficient of restitution

= ^) which are in the same horizontal plane at a distance 2a from

each other are projected with the same speed \^ga towards each

other. Show that their common speed aftei- collision will be

^ 'Jbga^ the direction of the stress during impact being parallel to

the line joining their initial positions.

(10) Two particles of equal mass, whose coefficient of restitution

is unity, move along a smooth horizontal table with equal velocities

in directions perpendicular to one another and collide at the edge,

the direction of the stress during collision being that of the edge.

The speed of each ball is that which it would acquire in falling from

rest through a distance equal to half the height of the table. Show

that the distance between the points at which the particles strike

the floor is twice the height of the table.

(11) A series of n particles with masses 1, e, e^, etc., are at rest in

a straight line and not in contact. To the first is given a velocity

u and it impinges on the second. The second strikes the third, and

so on, the stresses during all the impacts being in the line of

motion. Show that the final kinetic energy of the system is

(12) Two particles of the same mass are suspended by equal

strings so that they rest in contact. One of them is draAvn aside

through an arc whose chord is a and being allowed to fall drives

the other up an arc whose chord is b. Show that the coefficient of

restitution is (26 - a) la. [It was by experiments of this kind, per-

formed with spheres instead of particles (see 498, Ex. 10), that

Newton proved the coefficient of restitution to be independent of

the mass and velocity of the impinging bodies and dependent only

upon their substance . The spheres were suspended from fixed points

in the same horizontal plane by parallel strings of such length that

the spheres rested in contact with their centres in the same hori-

zontal plane.]
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381. Systems of Particles connected by Strings.—We
shall investigate farther on (383-397) the stresses in

strings. Meantime we may assume that tense strings

connecting the particles of a system are straight, except
in cases in which their direction may be changed by
contact with bodies or by the action of other strings

knotted to them ; that the stress in a straight string and
in one which bends round a smooth body such as a peg, a
beam, a pulley, is the same throughout ; and that the

stresses in strings knotted together are not in general the

same.

382. Examples.

(1) Two particles of masses m and m' (m > m') are connected by a

massless inextensible string which passes over a smooth horizontal

cylinder (or peg, or pulley). Find their accelerations and the ten-

sion in the string.

As the tension T is the same throughout the

string, each particle is acted upon by two

forces, T vertically upwards and its weight down-

wards. As the string is inextensible and m is

greater than m', m will move downwards with

the same acceleration a with which m' moves

upwards. The resultant force downwards on m is
^ ''

mg~T. Hence (317) a = {mg-T)lm. The result-

ant force upwards on m' is T— m'g. Hence

a= {T—m'g)lm'. Equating these values of a we
obtain

[mg- T)lm= {T-m'g)lm'.
Y
mg

/<T

mg

Hence y_ 2mm'

m + m'

and substituting this value of T in either of the above expressions

for a. we have
m-m

a = g.m+m

Otherwise, by applying the law of energy, thus : Let m move down
and therefore m' up through a distance s, and let the initial and
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final velocities be V and v respectively. Then the gain of kinetic-

energy is ^{m + m'){v^- V^). Equal amounts of work are done by

and against T. The work done against the weight of ra' is m'gs,

that done by the weight of m is mgs. Hence the total gain of

potential energy is {m' — m)gs. If we neglect the resistance of the

air there are no other forces acting. Hence

h(m + m'Xv^ - F2) + {m'- m)gs=0,

and v^- V^= 2 ,gs,
m+m

'

from which it follows that the particles are moving with constant

acceleration of magnitude {m — m')gl{m+ m').

If m and m! are known and if a be observed, g may be determined.

But, as no smooth bodies exist in nature and the conditions of the

above ideal problem cannot therefore be realized, this mode of

determining g is of no value. A twood's Machine, a piece of appar-

atus of historic interest, is an attempt to realize as nearly as

possible the above ideal arrangement. The string passes round a

pulley so rough that the string does not slip on it. The axis of the

pulley is mounted on " friction wheels " which diminish the friction

of the axis very greatly. "When the particles move the pulley

rotates, and the kinetic energy produced exists partially in the

rotating pulley. "Work is also done against friction and the resist-

ance of the air. The complete discussion of this apparatus is

therefore too complicated for us at our present stage.

(2) At the extremity of a string which passes over a frictionless

pulley moving in a vertical plane are masses of m and 3 lbs.

Initially the masses are at rest at the same height, and 3 seconds

later the mass w is 72 feet below the other. Show that m = 5 lbs.

(3) Bodies of p and q grms. {p > q) respectively are attached to

the ends of a string which passes over a pulley. At the end of

each second after motion begins, 1 grm. is taken from p and added

to q without jerking. Show that the motion will be reversed

aStQY p-q+\ seconds.

(4) Two particles of masses m and m' move on two rough inclined

planes (inclinations a and a', coefiicients of friction ij. and fx) in a
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vertical plane noimal to the intersection of the inclined planes.

They are connected by a string which passes over a smooth peg at

the common summit of the inclined planes. Find their common
acceleration, assuming m to move down its plane.

Ans. {w(sin a-,u cos a) - m' (sin a' +/cos a) }ffi{m+ m').

(5) A body weighing 19 lbs. is placed at the centre of a smooth

round table 6'44 ft. in diameter. It is moved by a body weighing

1 lb. at the end of a cord passing over the edge of the table. How
long will it be before it reach the edge of the talile ?

Ans. 2 sees.

(6) A mass of 6 oz. slides down a smooth inclined plane whose

height is half its length, and draws another mass by means of a

string along a smooth horizontal table which is level wdth the top

of the inclined plane over which the string passes. In 5 sees, from

rest it moves through 3 feet. Find the mass on the table.

Ans. 396-5 oz.

(7) A string having at one end an unknown mass J/, and at the

other a small smooth massless ring, hangs over a smooth horizontal

cylinder. Through the ring a second string passes, having at

its ends masses m and m' [m > in). Find (a) what value M must

have in order that m', if initially at rest, may remain at rest during

the motion of the system, and (5) the acceleration of the ring.

(8) Three particles A, B., C of masses Wj, wig* *^3 (*''*i
'^ ''^2) ^^^

connected by strings, A to B and B to C. The string between A
and B passes over a smooth horizontal cylinder. C lies on a table

vertically below B and the string joining B and C is slack. At a

given instant A and B begin to move from rest, and after t sec.

the string between B and C tightens. Determine the subsequent

motion.

The acceleration with which A and B move while BC is slack is,

Ex. 1, {m-^^-m^gl{m^-[-m<^. Hence their velocity at the instant at

which BG becomes tight is {mi — m^gt!{m^ +^2). Call this v. . Let

).c be the common speed of J, B^ and C inmiediately after the tight-

ening of BC. Then (7's momentum upwards has suddenly increased
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by m^u. It has therefore been acted upon by a short-lived stress

of impulse m^tc upwards, ^'s momentum in an upward direction

has changed from -m^v to -m-^u. Hence it has

been acted upon by a stress of impulse mi{v — v)

upwards. Both these stresses have acted on B—the
latter upwards, the former downwards. Hence the

impulse of the resultant upward stress on B is

[v - u)- 711^11 . Now
changed from lUoV to 71I2U.

m^iv -u) — m.^u = m^iu - v),

m, -I- m.

B^s momentum upwards ha?

Hence (319)

and
'Ml -\-m.2+ m..

i-—L_2 __ at.

The acceleration with which J, B, and C move after BC becomes

tight may be shown (as in Ex. 1) to be

m-^ -7712- ms
9-

Hence the subsequent motion is determined. If m2+W3>>%, the

acceleration is negative, the velocity will gradually diminish from

We cannot apply the law of energy to a problem such as the

above, because we do not know what non-conservative forces may
be acting, and cannot therefore determine the work done against

them. I

(9) Three bodies J , J?, C of equal mass are connected by strings

A to B and B to G. A and B are placed close together on a smooth

horizontal table, and C hangs over the edge. The string AB is Z

ft. long, and i? is 3'5 ft. from the edge. Find the velocity of A {a)

when it begins to move, and (6) when B arrives at the edge.

Ans. («) 2slglZ, (b) ^fog/'S.

(10) Two particles A and B of equal mass are connected by a

string which passes over a smooth horizontal cylinder. While

moving with a speed v {A moving downwards) a third particle, C,

of the same mass and at rest, is suddenly attached to the string

between A and the cylinder. Find (a) the common speed of A and



382] OF SIMPLE SYSTEMS OF PAPtTICLES.

(J immediately after C's attachment, (6) the time after which the

.string BC again becomes tight, (c) the common speed of A and C
and the speed of B jnst before the string BC tightens, and {d) the

common speed of all three jnst after the string tightens.

Ans. {a) vl% (b) v/{2q), (c) v, v/2
;

{d) 5v/6.

(11) In Ex. 4, find the ratio of the masses wi aud on' that there

may be equilibrium with m on the point of moving down its plane.

Equating to zero the value of the acceleration found above (Ex.

4), we have

m(sin a-
fj.
cos a) - v)i,'(sin a '+ /i'cos a') = 0,

_j ^
m _siu a'+ At'cosa'

on' sin a — /* cos a

Otherwise thus : The acting forces are represented in the figure.

mg mg

which will be understood without explanation. Eesolving forces

parallel to the planes we obtain

T— mg sin a + fiR = 0,

T- on'g sin a - lui'R' =0.

Eesolving in directions perpendicular to the planes we obtain

Ji - mg cos a= 0,

R' — m'g cos a' = 0.

Hence, substitutiDg for R and R' in the first pair of equations their

values as given in the second pair and eliminating 7', we obtain

m __ sin a + ju'cos a'

m! sin a — /x cos a
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Otherwise thus : Let the particles move a short distance s, m
down the plane CA and m' up the plane CB. Then, equating to

zero the algebraic sum of the amounts of work done by the various

forces on both particles during the displacement, we have

mgs sin a — m'gs sin a! - fxRs — n'R's= ;

and substituting for R and R' their values mg cos a and m'g cos a

respectively, we obtain the same result as above.

(12) Two particles A and B of weights W and W are connected

by a string. A rests on a rough inclined plane (inclination= a, co-

efficient of friction =Ai) over whose smooth summit the string passes

;

.and B hangs freely. Find the ratio of W' to W that there may be

equilibrium with A on the point of moving up the plane.

Ans. sin a + At cos a.

(13) A string fastened by one end at a fixed point A passes

through a fixed smooth ring at B, AB being horizontal, and is

pulled by a force at its other end. Between A and B a body of

weight W is hung by a smooth ring moveable on the string. How
near to AB will it be possible to raise this ring by pulling at the

.string, if the string can bear a tension equal to 2 Tf only.

Ans. .4.5/60^.

(14) A rough parabolic wire is placed with vertex upwards and

axis vertical. A small ring of weight W moving on the wire is

supported at one extremity of the latus rectum by a body of weight

W attached to a string passing over a smooth peg at the focus.

Find the coefficient of friction.

Ans. {W-W')I{W+W').

(15) Two small smooth rings sliding on a circular wire in a

vertical plane are connected by a string which passes through a

smaU smooth fixed ring at the highest point of the circle. Show-

that if the masses of the moveable rings are inversely proportional

to the adjacent segments of the string, there will be equilibrium.

(16) Two particles A and B (masses m and m') rest upon smooth

inclined planes of inclinations a and /3 respectively. They are con-
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iiected by a string (length = which passes over a smooth peg /*,

vertically over the common summit

C of the two planes, and distant h

feet from it. Find the inclinations

e and of AP and BP to the

planes.

Let A be displaced up its plane

through an indefinitely small dis-

tance AA' . Then B will move

through a small distance BB' down
its plane. From A' and B' draw

A'a and B'h perpendicular to PA
and PB produced, respectively.

Since the angles APA! and BPB' are indefinitely small, A
^nd B'P^bP. Hence

P=aP

aP+Pb= A'P + PB'= AP + PB,

and therefore Aa=Bb. The angles APA' and BPB' being in-

definitely small, PA and PB may be considered the directions of

the tension T in the string during the displacement. Hence the

amounts of work done by the tension are T. Aa and — T .Bb, which

are equal and of opposite sign. No work is done by the normal

reactions. The amount of work done by the weight of A is

— mff sin a. A A ', which is equal to — m^ . Aa . sin a/cos 6. That

done by the weight of B is m'g . Bb . sin /3/cos (f>. Hence

m'g . Bb . sin j8/cos - ong . Aa. sin a/cos ^= 0,

, m'_sina cos0

m cos 6 ' sin jS'

We have moreover

AP : PC= sin A CP : sin PAC
= cos a : sin 0,

and BP :PC=cosp: sin 0.

Hence AP+PB=PC(^cos a cos /3\

sin ^ sin0/

cos a cos )3

sin 6 sin >
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This equation with that obtained above are sufficient to determine

and when there is equilibrium.

The reader should solve the jjroblem also by applying the condi-

tions of equilibrium in other ways.

(17) Two particles, of masses m and m\ connected by a string, rest

upon the edge of a smooth vertical circular disc. Find the position

of equilibrium and the tension T in the string.

Alls. If a is the angle subtended at the centre by the string and

j8 the angle subtended by the portion between m and the highest

. , a . 1 m'sina ^ mm a sin a
point, i3= tan-^ ,

>f =.—

o

,., rm + m'cos a {m^+ m'-+ 2mm' cos a)*

(18) Three smooth tacks J, B, C are driven into a vertical wall,

B and C being on the same level. A string, to whose ends bodies

of equal weight 2o are attached, is hung over the three tacks. Find

the forces exerted by them on the string when there is equilibrium.

Ans. «^2*(1 -f-cos Ay
J
w2^-{l - sin B)°-, w2"-{l - sin C)^ respectively.

(19) Two I'ough bodies rest on an inclined plane and are con-

nected by a string which is parallel to the plane, W and W being

the weights of the bodies, and m, m' their coefficients of friction, and

the rougher body having the highei- position. Find the greatest

inclination of the plane consistent with equilibrium.

Ans. tnn-\(fi W+fx.'W')/{ W+ W')].

(20) Two l)odies weighing A and B lbs. respectively are connected

by a string and placed on a rough horizontal table (coefficient of

friction =m). A force P, which is less than fjL{A+B) but greater

than /ms/a'^+ B'^, is applied to A in the direction BA, and its direc-

tion is gradually turned round through an angle 6 in a horizontal

plane. Show that both A and B will slip when

,=eos-^^(^^-^^^
2,iBP

Show also that, if F is less than /j. \Li^+ B'^ but greater than fiA, it

will' cause A only to slip, and that A will slip when d=am-^ {fiA /P).

(21) Particles A, B, etc., 9i in number, of weights io\, w^, etc., are

connected to one another and to two fixed points P and (^, whose
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horizontal distance is d and vertical distance /<, by weightless

strings, P being connected to A , A to B, and so on, and the last to

Q. The string connecting F and A has the length a^, that connect-

ing A and B the length ag^ ^^^ so on. Find the tensions Ti, T^,

etc., in these strings and their inclinations a^, Og, etc., to the horizon,

when the particles are in equilibrium.

Each particle is acted upon by three forces, its weight and the

tensions in the strings attached to it. Since w^^ w^., etc., are all verti-

cal, and since 7\ and T^ are in the same plane as w^, T^ and T^ in the

.same plane as ?^2j ^^^ ^^ on, the whole system must be in the verti-

cal plane through P, Q. A is in equilibrium under the forces 7\,

T.,, and w^. Hence, resolving horizontally and vertically, we get

T^jCOS aj — T^gCos <*2= 0? ^^d T^isin a ^ - T'^sin a^ — o\= 0.

Similar equations may be obtained for each particle—in all 2/t

equations. Moreover

and

d=aiCOSai+ a2COiia2+ etc. -|-«„+iC0s a„+i,

A= <z^sin ttj + «2sin ag + 6tc. + a„+isin a„+i.

We have therefore 2?i+ 2 equations involving 2n + 2 unknown

quantities, viz., n+ 1 tensions and 7i+i inclinations. The inclina-

tions of the strings being determined and their lengths given, the

positions of the particles are known.
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(22) Particles A, B, C, etc., oi in number, are connected by
weightless strings A to B, B to C, etc., and the n^ to a fixed point

Q. A force of given magnitude T^ is applied to A through the

string FA. Find the weights of the particles that the strings PA,
AB, etc., may have given inclinations Oj, Og, etc., to the horizon.

From any point draw OFi, OP2, etc., with

inclinations a^, a.^, etc., to the horizon. These

lines have therefore the same directions as the

strings FA, AB, etc. Draw a vertical line

meeting OF^, OF.,, etc., in Pj, F2, etc. If 7\,

7^3, etc., are the tensions in AB, BG, etc., the

particle A is acted upon by three forces, T^, T.,,

and w^. These are represented in direction by

the lines OF^, F2O, and P1P2 respectively.

Hence (325, d) they are also represented by
these lines in magnitude. Similarly the forces

acting on B, viz., T2, T.^, and W2'^ are represented

in direction and therefore also in magnitude
'Pn^i by OP2, PzO, and Pg^a respectively. Thus it

may be shown that PiP2> ^i^-i^ -^sA) ^^c., FnFn+\ represent the

weights Wj, if?2, etc., on the same scale as that on which OF^ repre-

sents 7\. Hence the values of u\, 102, etc., may be determined by

carefully drawing the diagram (called -a.force diagram) and measuring

the lengths of F-^F^, F2F3, etc. For this reason the above method

is called a graphic method. It is of great practical value for the

rapid solution of engineering problems.

(23) Particles A, B, C, etc., are connected together aud to two

fixed points, as in Ex. 21, and are in equilibrium, their masses m^,

m2, etc., and the inclinations of the strings a^, Og, etc., being known.

Any one of the strings is cut, say BC. Find the tensions t-^, ^2 in

FA, AB respectively immediately afterwards. [These tensions are

called initial tensioTis, because. they are the tensions when C, B
begin to move.]

A moves, after the cutting of the string, in a circle about F. At
the beginning of its motion its speed is zero, and hence the com-

ponent of its acceleration normal to its path {i.e., in the direction

AF) is zero. Its acceleration is therefore initially wholly tangential



382] OF SIMPLE SYSTEMS OF PARTICLES. 289

to its path {i.e., in a direction perpendicular to AP). J^'s accelera-

tion in the direction AP being zero, the sum of the components in

that direction of the forces acting on A is zero also. Hence

ti — ^2C0s(aj — ttg) — m-^g sin a^= 0.

^'s acceleration in a direction perpendicular to AP is the quo-

tient by its mass of the sum of the component forces acting on it in

this direction, and is therefore

[rriig cos a^ — ^2sin(aj — a.^'\lm-^.

B also after the cutting of the string moves in a circle about A , and

as above it may be shown that it has no acceleration relative to A
in the direction BA. Hence its acceleration in this direction is

equal to ^'s component acceleration in the same direction, and is

therefore equal to

,gc^OBa,-t,^in{a,-a,)
^ ^.^^^^^ _ ^^^^

But it is also equal to {t^ — m^g sin a^lm.^. Hence

-^— g sin ac>=g cos a, sin (a^ — a.,) — -^ sin2(aj — a.,).

We have therefore two equations containing no other unknown
quantities than ^^ and ^2? which therefore may be determined. The

instantaneous changes of tension on cutting BC are of course 7\ — t^

and T^-t-i, where T^ and T^ are the tensions before cutting as

determined in Ex. 21.

(24) A particle is connected by two equal strings to two points in

the same horizontal line and is in equilibrium. Show that, accord-

ing as the inclination of the strings is less or greater than a right

angle, will the tension of either string be instantaneously increased

or diminished by cutting the other.
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CHAPTER IV.

DYNAMICS OF FLEXIBLE INEXTENSIBLE STEINGS.

383. A string or cord or chain may be considered to be
a series or row of particles or elements placed end to end.

It may thus be regarded as a system of particles less

simple than those of Chapter III., but more simple than
those of subsequent chapters.

A perfectly flexible string is one which is capable of being

bent without the exertion of any finite force. An inex-

tensible string is one whose length is constant. Flexible

and inextensilDle strings are ideal. Ileal strings all re-

quire force to bend them and can be elongated. In many
cases however the forces required to bend real strings are

so slight and the elongations under the acting forces so

small that they may be considered to be practically per-

fectly flexible and inextensible.

Since such a string may be bent at any point without the

exertion of an}^ finite force, the internal forces acting at

that point can have no component normal to the direc-

tion of the string. For, otherwise, this component would
have to be overcome in bending the string and a finite

force would be necessary. Hence the stress in a flexible

string has at any point the direction of the string at the

point.

We restrict our attention to the simple case in which
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the string itself and the external forces acting on it are

in the same plane.

38-i.

—

Equations of Motion.—Let J.5 be a tense string

of which PP' is any element. Let the stresses in the

string at P, P' be T, T. Then the element PP' is acted

upon at its end-points by forces T, T tangential to the

string at P, P' respectively. Let it also be acted upon
b}' some external force whose magnitude we may indicate

by the product F\, where \ is the length of the element
PP' and F consequently the magnitude of the external

force acting on the string per unit length of the string.

Let the lines of action of T and T be inclined at the angle

d, those of T and F\ at the angle 0. Also, let c be the

linear density of the string at PP', and at and an the

components of the acceleration of the element in directions

tangential and normal to the string at P. Then, resolving

tangentially and normally, we have, as the equations of

motion of the element (317),

T'cos e-T-\-F\ cos
(t>
= o-Xat,

T'sin 0-FXsm^ = crXor^.
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385. Conditions of Equilibrium.—Putting at = an =
in the equations of motion we obtain those of equilibrium,

viz., T cos e-T+F\ cos 9^ = 0,

T'sin0-i^X sin 9^ = 0.

386. The above equations hold for every element of

the string. The results which may be deduced from
them will vary with the nature of the external forces.

387. (1) No External Forces.—If there are no external

forces, F=0. Hence the equations of motion become

rcose-T=a-\at,
rsine = a-Xa,,.

Ultimately, when P' is very near P, is indefinitely

small, and consequently cos = 1 and sin = 0. Also,

ultimately T' is indefinitely nearly equal to T, and
X/0 = p the radius of curvature at P. Hence the above
equations become

{r-T)/X = a-at,

T/p = o-««.

If we are dealing with ideal massless strings or with real

strings whose mass may be neglected, we have o- = 0.

Hence T=T and l/yo = 0; i.e., the tension is the same
throughout the string and the string has no curvature.

If the various elements of the string are in equilibrium,

we have cit = an = 0, and therefore in this case, even though
the string be not massless, we have also T=T' and
l/p = 0. The string is straight and the tension is the

same throughout.

388. Examjples.

(1) An endless string of uniform linear density c, but witliout

weight, is moving so that the velocity of each element has a con-

stant magnitude F, and a direction continually tangential to the
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string. Show that the tension is the same throughout, and

find it.

As the tangential velocity is constant c<<=0. Hence T' — T=0.
If p be the radius of curvature at any point, «„= V^lp. Hence

(2) An endless circular string of radius r and of uniform linear

density a, but without weight, is spimiing in its own plane about

its centre with the angular velocity w. Find its tension.

Ans. (raj2/-2.

389. (2) The External Forces acting at Isolated Points,

as, e.g., wheD FX is the stress in a second string knotted

at PP', or the force exerted by a small peg in contact with
AB at PP\ In this case, if there is equilibrium, PP'
will be in equilibrium under the three forces T, T\ F\.
Hence T and T' must have such directions and magni-
tudes that the resultant of the three may be zero. In
general therefore T and T' will have different values.

Only in the case in which they are equally inclined to

F\ will they be equal. The portions of the string be-

tween the isolated points at which the forces act are

portions on which no external forces act. To these

portions therefore the results of 387 apply. (See 297,

Exs. 18-20.)

390. (3) The External Forces continuously applied
throughout the String., i.e., so applied that the forces

acting on contiguous equal elements have indefinitely

nearly the same magnitude and direction. In this case

the curvature of the string is clearly continuous, 6 there-

fore indefinitely small, and Xjd = p. Hence the equations

of motion become

{r-T)/\+F cos cp=-o-at,

T/p—F sin (p = (Tan,

and the conditions of equilibrium

(r-T),\+ 7^cos0 = O,

T/p-Fsm^ = 0.
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Hence, when there is equilibrium, the rate of change of

the stress in the string at any given point, with respect to

its distance measured along the string from a fixed point

in the string, is equal to the tangential component of the

external force per unit of length, at the given point ; and
the curvature of the string at any point is equal to the

ratio of the normal component of the external force (per

unit length of the string) to the stress at that point.

As instances of external forces continuously applied,

we may take the reactions of continuously curved sur-

faces on strings wound round them, and the weights of

heavy strings.

391. (a) The External Force being the Reaction of a
Continuously Curved Surface.—First, let the surface be

a smooth one over which the string is stretched. Then,

as we are supposing the string to have no weight (and in

many cases the weight is so small relatively to the stress

that it may be neglected), each element of the string is

acted upon by three forces only, viz., the reaction of the

surface, F\ normal to the surface, and the tensions T, T\
whose directions are those of consecutive tangents to the

string. Hence in the special case to which we restrict

ourselves (383) the osculating plane (41) of the string at

any point is normal to the curved surface, and the form
of the string is that of what is called a geodetic line

on the surface. Since F\ is normal to the surface and
therefore to the string, (p = 7r/2. Hence the equations of

motion (390) become

{r-T)/\ = crat,

Tip -F= era,,

if 0- is so small that it may be neglected, we thus have
T'— T=0 and T/p = F, or, in words, the tension in the

strinor is the same throuorhout, and the reaction of the

surface per unit length of the string is equal to the pro-

duct of the tension into the curvature.
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If there is equilibrium, T, T and F\ must in all cases

be in the same plane, and the form of the string must
therefore in all cases be that of a geodetic line. Since
for equilibrium ctt = cin= 0, we have, even if a- cannot be
neglected, T'— T=0 and T/p= F. If the curved surface

be that of an indefinitely small peg, its reaction may be
considered a single force, and its direction will be equally

inclined to the directions of the string on each side of the

peg. (See 381 and 382.)

392. Secondly, let the surface over which the string is

stretched be a rough one. As before, each element is

acted on by three forces, the two tensions and the re-

action of the surface ; but the last will not in general be
normal to the surface. The conditions of the special case

to which we restrict ourselves (383) may be realized,

however, if the string tend to slip in its own direction.

If in this case we resolve F into its normal component R
and its tangential component imR, and if we suppose that

the string tends to slip in the direction of T', we have
(390), as equations of motion, since Fsin(p= Ii and
Fcos(p= —fjiRy

(T-T)/\-f,R= crat,

Tjp—R~ a-an,

where /m is the coefficient of kinetic friction.

If there is equilibrium therefore, we have

(r-T)/\-i^R= 0,

T/p-R= 0,

where jul may have any value up to that of the coefficient

of static friction, which it will have when the string is on
the point of slipping. Eliminating R, and noting that

l/p = 0/\, we obtain
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Let A, B be any two points of the string in contact with
the rough surface, the stress

in the string at A being Ty

and the direction of the

tendency to slip being from
A towards B. Let a be
the angle between the tan-

gents at A and B. Divide
AB into an indefinitely

great number (n) of ele-

ments ^^^j^^-B^, etc., ofsuch

length that in each case the

tangents at the ends are inclined at the angle 0. Then
= a/n. Let the stress in the string have at B^, B^, etc.,

the values T^, T.,, etc., and at B the value T. Then

etc.,

T=T,(l+'^J= T,et^^

where e is the base of Napier's logarithms (2-71828...).*

Hence, as a increases in an arithmetical ratio, T increases

in a geometrical ratio.

393. Examples.

(1) A rope attached to a ship is wrapped three times round a

rough cylindrical post (coefficient of friction= 0'5). If a man pull

at one end of the string with a force of 50 pounds-weight, what

force must be exerted by the ship at the other end to bring the

string to the point of slipping in its direction. [Assume the

osculating plane of the string to be everywhere normal to the sur-

* See Todhunter's " Algebra," chapter on Exponential and Loga-
rithmic Series.
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face. In other words, assume the thickness of the string to be

negligible.]

Ans. About 619,500 pounds-weight.

(2) A string hanging over a rough horizontal cylinder is on the

point of slipping, with 10 lbs. hanging at one end and 1 lb. at the

other. Find the coefficient of friction between the cylinder an

string.

Ans. 0-73...

(3) Over two parallel horizontal rough cylinders of equal radius,

whose axes are in the same horizontal plane, a string hangs in a

plane perpendicular to their axes. The coefficient of friction is 0*5.

Find the masses of the particles which must be attached to the ends

of the string, that a particle weighing 1 lb. and hanging from a

smooth ring which slides on the string between the cylinders may
be in equilibrium and on the point of moving upwards when the

portions of the string on each side of the ring are inclined 60° to

the vertical.

Ans. 2*85 lbs. nearly.

394. (6) The External Force being the Weight of the

String.—The weight of unit length of the string being

o-g, we have F=o-g. The equations of motion (390) thus
become

(T - T)/X+ a-g cos = a-at,

and those of equilibrium

(r-T)/X+ o-r/cos0 = O,

jT/p -o-<7 sin ^ = 0.

We may consider two special cases.

395. Case I.—That of a string hanging vertically in
equilibrium.—If P' be a point above P,

(f)
= iry since FX

is now directed vertically downwards. Hence

r-T=\ag,
Tip= 0.
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The first equation asserts that the stress increases from
below upwards, and that the difference of stress between
two points indefinitely near is equal to the weight of the

intervening portion of string. Hence, by summation, the

difi*erence between the stresses at two points whose dis-

tance is finite, is equal to the weight of the portion of string

between them. The second equation asserts that the

string is straight.

396. Case II.—That of a uniforim string hanging in
equilibrium with its end points fixed.—Let A, B he

the fixed points, PP' an element of the string. From
394 we have

T— T= — a-gX cos = a-gX cos (tt— (p).

Ultimately, when PP\ and therefore 6, are indefinitely

small, (j) becomes (384) the inclination of PP' to a vertical

line from P drawn down wards. Hence X cos (tt— (p) is the
projection of PP' on a vertical line. Let the distances of
P, P' from any horizontal line CD be y, y' respectively.

Then X cos [-n-— cp) = y'— y, and

{T-T)l{,ag) = y'-y.

Now a-g is the weight of unit length of the string. If
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therefore we adopt this weight as our unit of force,

we have

r-T=y'-y.

Let CD be so chosen that its distance a from G, the
lowest point of the string, may be numerically equal to

the tension 1\ at G. Then T^ = a\ and since, as we go
along the string from G to P\ the increment of T is equal
to that of y, we have at P, T=y, i.e., the tension at any
point P is numerically equal to the distance of P from
the line CD.

From any point draw OQ' and OQ representing T
and T, and therefore proportional to

y' and y respectively. Then, since T,

T and the weight of FF' are in

equilibrium, and since QO and OQ'
represent the tensions acting on FF'

,

Q'Q will represent the weight, and be

proportional to the length, of FF\ ^'

Similarly, if OQ^^i represent Tn-i,
the tension at P^-i, QQ.i-i will represent the weight of

FFn-i, and will consequently be in the same straight

line as Q'Q and proportional to the length of FFn_i,
Similarly, the portion of the line Q'Q produced which
is intercepted by lines representing the tensions at the

ends of any element will be proportional to the length

of that element; and consequently, by summation, the

portion of Q'Q produced which is intercepted by lines

representing the tensions at any two points of the string

will be proportional to the length of the string between
those points. If s, s' represent the length of arc between
G and P, G and P", we have thus Q'Q proportional to

s—s. From draw Oq perpendicular to Q'Q produced.

Then clearly Oq represents the tension T^ at G and is

consequently proportional to a, and Qq is proportional

to s.



300 DYNAMICS [396

From Q draw QAl perpendicular to 0Q\ Ultimately
OQ is equal to OM, and hence MQ' to OQ'-OQ. Also,

since OQ'Q is the inclination of FF' to the vertical, and
Q'Q is proportional to FF\ MQ is proportional to the

horizontal projection of FF\ Let the distances of P,
F\ etc., from a vertical line EF, through G, be called x,

X, etc. Then MQ is proportional to x'— x.

Since the angle OQ'Q is ultimately equal to the angle

OQq, the triangle MQ'Q is similar to the triangle qQO.
Hence

Q'QlOQ= qMIQq= MQlOq,

or (s'- s)/2/= (2/'- y)ls= (x'- x)la.

Hence
s's+y'-y ^^^j^^

s+y a

I x' ~~ x\
and s'+ 7/' = (.s+ 2/)(^l+—^j.

Let points P^, P^, etc., P,i_i be so chosen between G
and P that the projections of the elements Ffl, PJ^^y etc.,

on CD maj^ be equal. Then the projection of each element
on CD is xjn, n being an indefinitely large number; and,

the values of s and y for the point G being zero and a
respectively, we have, if s^, y^, s.„ y.-,, etc., are the values

of s and y at P^, P.„ etc.,

etc.,

(X \" -

where e is the base of Napier's logarithms. (See 392.)
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By a similar process, it may be shown that

s—y= —ae ".

Hence 2s = a{e" -e"«),

and 22/ = a(e«+6~«).

The first of these equations expresses the relation

between the weight of string (s), and the horizontal

distance (x), between any given point of the string and
its lowest point, and the tension (a) at the lowest point.

The second expresses the relation between the distances

of any point of the string from CD and EF, and enables
us therefore to draw the curve in which it hangs. This
curve is called the common catenary.

397. Examples.

(1) A body weighing 7 lbs. is suspended from a fixed point by
means of a uniform string 12 inches long weighing 18 oz. Find the

stress in the string at its middle point and at its upper and lower

ends (5'= 32).

Ans. 242, 260, and 224 poundals respectively,

(2) A heavy uniform chain, whose extremities are A and B, can

move freely over a small smooth pulley placed at the highest point

of a smooth inclined plane. Show that the chain will be in equi-

librium if the line AB is horizontal.

(3) Show that the horizontal component of the tension at any

point of a uniform string hanging in equilibrium from two fixed

points is equal to the tension at the lowest point, and that the

vertical component is equal to the weight of the portion of the

string between the given point and the lowest point.

(4) Show that at any point of a uniform string which is hanging

in equilibrium with two points fixed, its inclination to the horizon

is the angle whose tangent is the ratio of the weight of the portion

of the string between the given point and the lowest point, to the

tension at the lowest point.
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(5) A uniform string liangs in equilibrium between two points.

Prove that the square of the tension at any point is equal to the

sum of the squares of the weight of the portion of the string

between the given point and the lowest point, and of the tension

at the lowest point.

(6) Show that, if a finite string of uniform density and thickness

hang freely over two smooth pegs, the extremities of the string

will be in the same horizontal line when the string is so placed as

to be in equilibrium.

(7) A telegraph wire, weighing 400 lbs. per mile, is stretched

between two points in the same horizontal line at a distance of 100

yds., with a horizontal tension of 400 pounds-weight. Find how

much the lowest point of the wire will be below the fixed points.

Ans. 2-1... ft.

(8) Two light rings slide on a rough horizontal rod (angle of

repose= a). The ends of a heavy chain (length= 21) are attached

to the rings. Obtain an equation to determine the greatest distance

{d) at which the rings can rest apart.

Ans. 2 = tana(e-'^"«-e 2'tanaj_

(9) A uniform wire weighing iv lbs. per foot and just able to

stand a stress of P pounds-weight is to be hung between two
points in the same horizontal line, distant d ft., so as to be on the

point of breaking. Obtain an equation to determine the length (I)

of the wire.

(dw _ dw \

(10) A cord, 202 ft. long, 10 ft. of which weigh 1 lb., is hung
between two points in the same horizontal line distant 200 ft.

Obtain an equation to determine the tension (t) at the lowest

point in terms of the weight of a pound.
,10 _ 10

Ans. 202 = 10^(e' -e '/. Solving this equation by a series of

approximations, we find t to be about 40 Ibs.-Aveight.
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CHAPTER V.

DYNAMICS OF EXTENDED BODIES.

398. We shall consider next systems of particles which
are so complex that it is impossible to determine the

motions of the particles singly, as we did in the case of

the simple systems of Chapter III.

An extended body, whether it be in the solid, liquid, or

gaseous form, or consist of bodies in diflferent forms, may
be regarded as an assemblage of an indefinitely great

number of particles.

The internal forces of such a system are those which
act between the particles of the system themselves ; the

external forces are those which are exerted upon par-

ticles of the system by bodies which are not parts of the

s^'stem. Thus, if we are considering the Solar System,
the attractions of the sun on the planets and of the planets

on one another are internal forces ; the attractions of

other heavenly bodies on the sun or planets are external

forces.

399. Centre of Mass.—In studying systems of particles,

we shall find it convenient to determine at the outset the

position and properties of an important point called the

Centre of Mass or Centre of Inertia.
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Iftwo particles of masses m^ and m.^ occupy the positions

P^, P^, and if the line PJP„ be divided

at Qi, so that

QA.-QA
the point Q^ is called the centre of
mass of the two particles. If there be
at Pg a third particle, of mass mg,
and if Q^P^ be divided at Q^, so that

m^+m,: 7713= Q^PgiQ.^Q^,

the point Q^ is called the centre of mass of the three

particles. If there be at P^ a fourth particle of mass tyi^,

and if Q.^P^ be divided at Q^, so that

the point Q3 is called the centre of mass of the four par-

ticles. If there be any number of particles in a given

system, and if the above process be extended to all the

particles of the system, the point thus determined is

called the centre of mass of the system.

400. To determine the distance from a given plane of

the centre of mass of a system of particles in terms of the

masses of the particles and their distances from the same
plane.—Let m^, m,-,, etc., be the masses, and P^, P^, etc., the

positions, of the particles of the system, and let d^, d.„ etc.,

be their distances from the given plane. P^, P^, etc., will

not in general be in the same plane. Let a plane through
P^ and P,, and perpendicular to the given plane, intersect

it in AB ; and let P^P^, produced if necessary, meet the

given plane, and therefore AB, in C. The distances of

Pj, P^, from the given plane will be the perpendiculars

P-^p^, P^Poy from Pj and P., on AB. From Q^, the centre

of mass of m^ and m^, draw a perpendicular to the given

plane, intersecting AB therefore in a point g^, and call
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We have by construction

= CP^-GQ^:CQ^-GP^
= (GP^- GQ;) sin PfiB : (GQ^ - GP^) sin PfiB
= d^-\:S,-d,.

Hence ^ y^.+^A

Let a plane through Q^ and P^ and perpendicular to the

T

/I'

given plane intersect it in A'B\ If Pg is in the same
plane as PjP^ and AB, A'B' will coincide with AB ; if

not it will intersect it in q^. From P^ and Qo the centre

of mass of m^, m^, and mg, draw P3P3 and Q^^^ perpendi-

culars to the given plane, and therefore to A'B\ and let

PgQj meet A'B' in 0'. Then as before, calling Q^q^, S^,

we have

m, + m,:m^=Q^P^:Q^Q^
= (CTs- G'Q,)smPfi'R : (O'Q,- G'QJsinPfi'B

d.-S..,:S^-8,.
u
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Hence A,= <™.±^?^--+^»,

and, substituting for S^ its value as determined above,

Similarly, by extending the investigation to all the

n particles of the system, we find, if A be the distance of

the centre of mass of the system from the given plane,

. _ m^d^+ tn^d^+ etc. + nindn_ ^rnd
.

mj+mgH- etc. +onn 2m
i.e., the distance of the centre of mass of a system of

particles from a given plane is equal to the sum of the

products of the masses of the particles into their distances

from the plane, divided by the sum of the masses of the

.

particles.

401. As the order in which the particles are taken up
in the above investigation affects only the order in which
the various terms of the numerator and denominator of

the above expression, 'Evid/'Em, are written, the centre of

mass has the same distance from any given plane, i.e.,

the same position, in whatever order the particles may
be subjected to the process by which the point is deter-

mined.

402. The same result will be obtained if the particles

of the S3^stem be divided into groups, and the centres of

mass of the groups determined, and if the above process

be then continued, the groups being imagined as replaced

by particles situated at their centres of mass and having
masses equal to their masses.

403. If the given plane pass through the centre of

mass of the system, we will have A = 0, and therefore

2m(Z = 0. Hence the sum of the products of the masses
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of the particles of a system into their distances from a

plane passing through the centre of mass is zero.

404. If x^,
2/i' ^i» •^•j' V-i? ^2' ^*'^-' ^^'^ ^^ rectangular co^

ordinates of particles of masses m^, 77i,, etc., and if x^ 'if, z

are the co-ordinates of their centre of mass, x^, x^^ etc.,

X are (6) distances from the yz plane, ^j, 2/.., etc., y dis-

tances from the xz plane, and z^, z.,, etc., z distances from
the xy plane. Hence

llinx - ^rtiy, _ ^mz
X= y = ^ z ==

These three equations determine the position of the

centre of mass.

If the origin of co-ordinates coincide with the centre

of mass we have

x = y= z = 0,

and hence ^mx= llriiy = ^viz = 0.

405. Determination of Centres of Moss in Special

Cases.—In general the determination of the position of

the centre of mass requires the use of the Integral Cal-

culus to effect the necessary summation. In the case of

some bodies, however, of simple geometrical form and
uniform density, its position may be determined by
elementary mathematical methods. Examples are given
below (408).

406. Centres of 3Jass of Homogeneous Symmetrical
Bodies.-—If a homogeneous body is symmetrical about a
point, a line, or a plane, its particles may be divided into

pairs, the members of each of which are of equal mass
and at equal distances from the point, line, or plane, re-

spectively. The centres of mass of the various pairs are

therefore in the point, line, or plane, and consequently

also the centre of mass of the whole body. Hence the

centre of mass of a uniform thin straight rod is its middle
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point, that of a uniform thin circular rod its centre, that

of a uniform thin rod bent in the form of a parallelogram

the point of intersection of its diagonals, that of a uni-

form thin circular plate its centre, that of a uniform thin

plate in the form of a parallelogram the point of intersec-

tion of its diagonals, that of a uniform spherical shell its

centre, that of a parallelopiped the point of intersection

of its diagonals, that of a circular cylinder with parallel

ends the middle point of its axis, that of a sphere its

centre, and so on.

407. Centre of Mass of a Body, the Classes and Centres

of Mass of whose Parts are knoivn.—Let m^, m,2, etc., be
the masses of the various portions of the body, x^, y^, z^,

iCg, y^ ^, etc., the co-ordinates of their centres of mass,

and X, y, i, the co-ordinates of the centre of mass of the

body, then (402) we have

- n\x. + 7)1jx„ -h e tc.
X=—^— ^ ^—

^

,

m^+ rn^+ etc.

and similar expressions for y and z. By the aid of these

expressions, the centre of mass of a part of a body also

may be determined when the masses of all the parts are

known, together with the centres of mass of the whole
body and of all the parts except this one.

408. Examiples.

(1) Four particles of 12, 11, 7, and 5 kilogrammes are placed in a

line, their distances being 48, 48, and 42 cm. respectively. Find

their centre of mass.

Ans. Distance from body of greatest mass= 54 cm.

(2) A line AB is bisected in Cj, C^B in C,, C^B in C3, and so on ad
infimtum. Particles are placed at Cj, C2, Cg, etc., of masses m, mj^,

mJ2', etc. Show that the distance from B of the centre of mass of

the whole system is equal to one-third of AB.

(3) At A, B, C are three particles of equal mass. Show that, if

AB be bisected in D and DC divided at A' so that DE=BC/3, the

point jE is the centre of mass of the system.
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(4) Show that, if be the centre of mass of three particles of un-

equal masses P, Q, R situated at A, B^ (7,

area OBC : area OCA : area OAB= P:Q:R.

(5) Find the centre of mass of five equal particles at the angular

points A, B, C, D, E oi s. regular hexagon ABCDBF.
Ans. On the line joining the centre of the circumscribing circle

with (7, and at a distance from equal to OCjb.

(6) At the corners A, B, C, D, E, F, G, H of a. cube of 1 ft. edge,

particles are placed of 1, 2, 3, 4, 5, 6, 7, 8 lbs. respectively. Find

the centre of mass.

Ans. Distance from face ABCD, if ft. ; from ABGF, f ft. ; from

ADEF, ^ ft.

(7) A piece of uniform wire is bent twice at right angles so as to

form three sides of a square of side a. Show that the distance of

the centre of mass from the centre is a/6.

(8) Find the centre of mass of a uniform wire, bent into the form

of a scalene triangle.

Ans. It is at the centre of the circle inscribed in the triangle

formed by joining the middle points of the sides of the scalene

triangle.

(9) Find the centre of mass of a uniform wire, bent so as to have

the shape of n of the sides of a regular polygon.

Let ABCDEF be the wire. Then the

centres of mass of the portions AB^ BC^

etc., are at their middle points a, &, c, d,

e. Let be the centre of the inscribed

circle and let its radius be r. Let ae

subtend at an angle 2a, and let «6, 6c,

etc., subtend each the angle d. Then
2a=(/i — 1)^. Take Oa as axis of x and

a line perpendicular to it as axis of y.

Then the distances of a, 6, c, etc., from

Oy are r, r cos 6, r cos 2^, etc., and their

distances from Ox are 0, r sin d, r sin 2^, etc., respectively. Hence,
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if X, y are the distances from Oy^ Ox respectively of the centre of

mass of the wire,

J=5[l + cos^ + cos2^+ etc. + cos(?i-l)^]
n

n

'

sin(^/2)

_ r cos a sin (n/n - 1 )a

*^' sin(a/^r^)

y= -[sin d + sin 29+ etc. + sin (n - 1 )d]

n

^r sin {n - 1/2)0 sin (n 12)0^
n' sin (0/2)

^r siDasin(?i/?i- l)a

"1^ sin(a/7i-l)

Hence y:x= tan a,

,— /• sin {nln—\)a
and sJx-+ ?/-= - • . , ,—^. y

1^ sm(a/7^-l)

i.e., the centre of mass is on a line through whose inclination to

the X axis is a, and is at a known distance from 0.

(10) Find the centre of mass of a uniform wire in the form of a

circular arc. [If n of Ex. 9 be made indefinitely great, and the

sides of the polygon indefinitely short, ABCDEF becomes a circular

arc subtending at its centre an angle 2a.]

Ans. Distance from centre=r sin a/a.

(11) The distance of the centre of mass of a uniform semicircular

wire of radius r from its centre is 2r/7r,

(12) Find the centre of mass of a uniformly thin homogeneous

triangular plate.—Let ABC be such a triangular plate, and let it be

divided by lines parallel to BC into an indefinitely great number of

indefinitely narrow strips. Then the centre of mass of each strip

is its middle point. Now the middle points of all these strips lie

on the line AD drawn from ^ to i> the middle point of BC. Hence

* See Todhunter's " Plane Trigonometry," chapter on Summation
of Series.
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the centre of mass of the plate is in the line AD. Similarly if E
is the point of bisection of AB, the centre of mass lies in £C.
Hence it is the point 2^ in which AB and £0 intersect.

Since E and D are the middle points oi AB and BC^ ED is

parallel to AC. Hence the triangles AFCamd DFE&re similar, and

DF:FA=DE:AC=l:2.

Hence the centre of mass is on the line DAj and at a distance from

D equal to DAjS.

(13) Show that the centre of mass of the triangle* formed by join-

ing the middle points of the sides of a triangle has the same posi-

tion as that of the latter triangle.

(14) ABC is a triangle and D a fixed point in BC. A triangle

BPC is cut away, whose vertex P is in AD. Show that whatever

be the position of P, the centre of mass of the remainder lies on a

fixed straight line.

(15) Given the base and perimeter of a triangle, show that the

locus of its centre of mass is an ellipse.

(16) Prove that the centre of mass of the trapezoid formed by
joining the middle points of two sides of a triangle is on the line

joining their point of intersection to the middle point of the third

side, at a point which is 2/9 of this line's length from the middle

point of the third side.

(17) P is the point of intersection of the diagonals of a quadri-

lateral, Q the point which bisects the line joining the middle points of

* By the centre of mass of a surface is meant that of a uniforml}-

thin homogeneous plate having the form of the surface.
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these diagonals, and R a point in PQ produced, such that QR= FQlS.

Prove that R is the centre of mass of the quadrilateral.

(18) ABC is an isosceles right-angled triangle, right-angled at B.

Squares are described on its three sides. Show that the distance of

the centre of mass of a uniform thin plate of this form is at a dis-

tance from B equal to 13x^2^5/27.

(19) One circle touches another internally. The diameter of the

latter is d^ that of the former fo?. Find the distance from the point

of contact, of the centre of mass of the crescent or lune thus formed.

(20) Find the centre of mass of a sector of a circle of angle 2a and

radius r.

If the curved portion of the boundary of the sector be divided

into an indefinitely large number of equal arcs, the sector may be

regarded as consisting of an indefinitely large number of equal

isosceles triangles whose bases are the elements of the circular arc

and whose equal sides are radii. The centre of mass of each of

these triangles is at a distance |r from the centre of the circle.

Hence the centre of mass of the sector is the same as that of a cir-

cular arc of the angle 2a and the radius |r, and is therefore (Ex. 10)

at a distance from the centre equal to |;'siu a/a.

(21) The centre of mass of a uniform thin semi-circular plate of

radius r is at a distance from the centre equal to 4r/37r.

(22) The centre of mass of a uniform thin conical shell is on the

axis, and at a distance from the A^ertex equal to f of the height of

the cone.

(23) Find the centre of mass of a homogeneous triangular pyra-

mid.

Let the triangular pyramid ABCD be divided by planes

parallel to ABC into an indefinitely great number of indefinitely

thin triangular plates of which abc is any one. Let F be the centre

of mass of the plate ABC, and let the plane jBZ>/^ intersect ABC,
abc and ABC in BE, be, and Z>£ respectively, and let BF and be,

which are in the plane BBF, intersect in /. Since F is the centre
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of mass of ABC^ E is the middle point of AC. Since ac is parallel

to AC^ these lines being the intersections of parallel planes ahc,

ABC with the plane ADC,

ae :AE=De : DE=ec : EC.

Hence e is the middle point of ac. Since eh is parallel to EB^ these

lines being intersections of the parallel planes abc, ABC, with the

plane BDE,
ef : EF^Df : DF=fb : FB.

Hence ef=^eb, and /is therefore the centre of mass of abc. Hence

the centres of mass of all the triangular plates into which the

pyramid is divided, and therefore the centre of mass of the pyra-

mid, lie on the line BF. Similarly, if EG be equal to ^ED, G will

be the centre of mass of ACI), and the centre of mass of the pyra-

mid will lie on the line GB. Now GB and BF are in the plane

DBF, and intersect in H. Hence H is the centre of mass of the

pyramid.

Since EG : GD= EF:FB, GFis parallel to DB, and the triangle

GHF similar to the triangle BHD. Hence

FH : HD=FG : BD=EG .ED^l.Z.

Hence the centre of mass of the pyramid is on the line drawn from
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the centre of mass of the base to the vertex, and at a distance from

the base equal to j of the height of the pyramid.

(24) The centre of mass of a homogeneous pyramid with poly-

gonal base, or of a cone with plane base, is on the line joining the

centre of mass of the base to the apex, and at a distance from the

base equal to | of the height.

(25) The centre of mass of a homogeneous triangular pyramid

coincides with that of four homogeneous spheres of equal mass,

whose centres are at the four angles of the pyramid.

(26) The centre of mass of a homogeneous wedge, bounded by

two similar, equal, and pai:allel triangular faces and by three

rectangular faces, coincides with that of six equal particles placed

at its angular points.

(27) A cube (edge= l) is truncated at one angle by a plane which

bisects three adjacent edges. Show that the distance of the centre

of mass of the remainder from the angle opposite to that which is

cut off is ^fI s,f'S.

(28) From a right cone standing on a circular base another right

cone is cut, standing on the same base, and the centre of mass of

the remainder is at the vertex of the smaller cone. Show that this

smaller cone is i of the whole body.

(29) A cylindrical vessel of radius a stands vertically and con-

tains water to a height h. A heavy sphere of radius a/2 is dropped

into the water, and lies at the bottom of the vessel. Prove that

the new centre of mass of the water lies somewhere within a

circle whose radius is a^/l2h, and whose centre is at a distance

a/6 - oa^/72h from the old centre of mass of the water.

409. Velocity of the Centre of Mass.—The component
velocity, in a given direction, of the centre of mass of a

system of particles is equal to the sum of the products of

the masses of the particles into their component velocities

in the same direction, divided by the sum of the masses

of the particles.

Let m^, m.„ etc., be the masses of the particles of the
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system, s^, s^, etc., s the distances from a plane perpendi-

cular to the given direction, of the particles and their

centre of mass i-espectively, at a given instant, s/, sj, etc.,

s\ their respective distances after a short time t Then

- _ ''^^1^1 + ^V2+ ®^^-
. -'— '^^^i^i'

"*" ^^h^'+ e tc.

m^ +7712+ etc. ' mj+mg+etc.

Hence, subtracting, and dividing by t,

mi+m2+ etc.

or (44 and 101), D being the velocity of the centre of mass
in the given direction,

- - llnis

This result may be otherwise expressed thus:—The
velocity of the centre of mass in a given direction is

equal to the momentum of the system (i.e., to the alge-

braic sum of the momenta of the various particles) in the

given direction, divided by the mass of the system.

410. It follows that the momentum of the system in

any given direction relative to the centre of mass is zero.

For from 409 we have

Urns — slim — ^m(s— i) = ;

and from 96 (3) it is obvious that 2m(.s - s) is the
momentum in the given direction relative to the centre

of mass.

411. Acceleration of Centre of Mass.—The component
acceleration, in a given direction, of the centre of mass of

a system of particles is equal to the sum of the products
of the masses of the particles into their component
accelerations in the same direction, divided by the sum of

the masses of the particles.
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The proof may be left to the reader. It is similar to

that of 409, s, s^, etc., being replaced by s, s^, etc. Hence
(118), a being the acceleration of the centre of mass in the

given direction,

- Sms
a='S= ^—

.

412. It follows, as in 410, that the sura of the pro-

ducts of the masses of the particles of a system into their

component accelerations, in any given direction, relative

to the centre of mass,, is zero.

413. Examples.

(1) If two particles move with uniform speed in straight lines,

their centre of mass will either be at rest or will move with uniform

speed in a straight line also.

(2) A number of particles of masses, m^, m^, etc., are projected at

the same instant vertically upwards from given positions with given

speeds, v-^, V2, etc., respectively. Find (a) how long, and (6) how

Ans.(a)i-^; (6) -If^^V
g 2m

(3) Two particles coiniected by a string are placed on two smooth

inclined planes, the string passing over a smooth peg at the common
summit of the planes. Show that the path of their centre of mass

is the straight line which joins them Avhen they are in such a posi-

tion that the parts of the string on the two planes are to one another

as the masses of the particles at their extremities, and that that

paiticle will descend which in this position is the lower of the two.

(4) Of three equal particles which start from the highest point of

a vertical circle, one drops down the vertical diameter, and the

others slide down chords of 60° and 120° respectively, on the same

side of the diameter. Show that the centre of mass slides down a

chord of cos^X-it)) ^^^d that its rate of change <of speed is

o
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414. Acceleration of Centre of Mass in terms of Ex-
ternal Forces.—The component accelerati'^n, in any given
direction, of the centre of mass of a system of particles is

the same as the acceleration of a particle of mass equal to

the mass of the system, acted on by a force in the given
direction equal to the sum of the components in that

direction of the external forces acting on the particles of

the system.

Let F^, F^, etc., be the components, in the given direc-

tion, of the resultants of all the external forces actiug on
the particles (masses = 771^ m„, etc.); and let i^^', F^\ etc.,

be the components, in the same direction, of the resultants

of all the internal forces acting on m^, ni.^, etc., respectively.

Then s^, s^, etc., being the distances from a plane perpen-
dicular to the given direction, we have (317 and 318)

i^i+ i^/= m^s\; F^-{-F^= rtiJ^; etc.

Hence Si^+ZCi^' =2ws

Now by the third law of motion, the internal forces consist

of pairs of equal and opposite forces, whose sum is there-

fore zero. Hence HF' =0, and '2F='Evis. Now (411)

s = ^ms /'E7)i. Hence, calling d the acceleration, in the

given direction, of the centre of mass,

_ :. ^F
a=s =^.zm

And it follows from 317 that d, as determined by this for-

mula, is the acceleration that a particle of mass 2m
would have, if acted on by a force equal to ^F.

If therefore the external forces acting on the system
and the mass of the system are known, the acceleration

of the centre of mass may be determined.

415. If the components of the external forces in three

rectangular directions, the axes of x, y, z, are X^, X„, etc.,
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Fj, Yo, etc., ^j, Z,, etc., respectively, the component acce-

lerations of the centre of mass in these directions are

and the component accelerations being known, the magni-
tude and direction of the resultant acceleration may be

determined.

416. In the special case in which a system of particles

is acted upon by external forces, the sum of whose com-
ponents in any given direction is zero, the acceleration of

the centre of mass is zero. For l^F being zero, so also is i.

It follows also from 411 that if 5 is zero, 117/18 is zero

also, and Xins may easily be shown to be the rate of change
with time of the momentum of the system, in the given
direction. Hence if there are no external forces the

momentum of the system is constant. This result is often

spoken of as the "Principle'' of the Conservation of
Linear Momentmn.

417. [UAlemherfs Principle.—In 1742 D'Alembert
proposed as a law of motion what is called his "principle." |

It is usually enunciated in the following form, though
this is not the form in which it was enunciated by
D'Alembert himself:

—

The impressed forces, with the reversed effective forces,

of a system of material particles, constitute together a
i^ysteni offorces in equilibrium.

By the term " impressed force " is meant an external

force acting on the system. The " effective force " on a

particle was the name given to the product of its mass
into its acceleration, and this hypothetical force was sup-

])Osed to act in the direction of the acceleration. A re-

versed effective force would thus act in the opposite direc-
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tion. If F is the component in a given direction of the

resultant of all the external forces acting on a particle,

m its mass and a the component in the given direction

of its acceleration, ^F is the sum of all such components
of external forces, 2ma the sum of the components, in the

given direction, of the effective forces, and — y,nia there-

fore the sum of the components in the given direction of

all the reversed effective forces. Since the sum of the

components in a given direction of all the forces of a
system of forces in equilibrium (323 and 326) is zero,

D'Alembert's principle may be expressed by the equation

1,F—y,)nct = 0. This equation is obviously that obtained
in 414 ; and thus D'Alembert's principle may be deduced
immediately from Newton's second and third laws, which
were formulated in 1687.

By D'Alembert's principle every kinetic problem was re-

duced to one of equilibrium between actual and fictitious

forces. It was thus of great practical importance, as

enabling the equations of motion to be written down for

any system for which the conditions of equilibrium had
been investigated.]

418. The Moment of Momentum of a particle about a
given line is the product of its mass into the moment of

its velocity (104) about the line. If /; be the component
velocity of the particle of mass m>, in a plane perpendicular
to the given line, and p the distance of this component
velocity from the line, the moment of momentum of the
particle is mvp, the sign being determined according to

the convention of 103.

The algebraic sum of the moments of momentum of ail

the particles of a system about a given line, is the moment
of momentum of the system about that line.

If the given line be taken as axis of z, the analytical

expression for the moment of momentum of the particle
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will be (106), rii{yx— xy), and for that of a system of

particles, llr)i(yx— xy).

419. The moment of momentum of a system of particles

about a given axis is equal to its value about a parallel

axis through the centre of mass, together with the moment
of momentum, about the given axis, of a particle of mass
equal to the mass of the system, and situated at, and hav-
ing the acceleration of, the centre of mass.

y Take the given axis as axis

of z, and Ox, Oy, as the other

rectangular axes of co-ordi-

nates. Let X, y, z, be the co-

ordinates of any particle of

mass 771, at P, and x, y, i,

those of the centre of mass C.

Let P's distances from C in

the directions of Ox, Oy, Oz,

be ^, rj, ^. Then

(

i

X

U 'A

/- 1/—y
/

/

x= x+ ^, y

x = x+ ly.
Also (96)

Hence the moment of momentum of the system

^m{yx-xy) = ^m{{y + ;j){x+ ^)-{x+^){y+ ,i)}

= (yx- xy)2m+ 2m(;Jf- ^rj)

+ xllm^ -j-ylm^— xl^mt]— yl^m^

= [yx- xyyLm -h 2m(if- ^^),

since (404 and 410)

Ijmri = 2m^= Sm^i = i:m^= 0.

^m(ij^-^t]) is clearly the moment of momentum of the
system about an axis, parallel to the given axis, through
the centre of mass, and (^x-xy)lm is equal to the mo-
ment of momentum of a particle of mass 2m, whose co-
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ordinates and component velocities are those of the centre

of mass.

420. The Angular ^lomentuvi of a particle about a

given line is the product of its mass (m), into its angular

velocity (co) about the given line, into the square of its

distance (r) from the given line—in symbols oncor^.

The alofebraic sum of the anovular momenta of all the

particles of a system about a given line is the angular

momentum of the system about that line.

421. It follows from 182 that mi'p = mcor^. Hence the

moment of momentum about any given axis is equal to

the angular momentum about the same axis of either a

single particle or a system of particles. Hence also the

rate of change of angular momentum about any given

axis is equal to the rate of change of moment of momen-
tum about the same axis.

422. The Moment of the Acceleration of Momentum of

a particle about a given line is the product of its mass
into the moment of its acceleration about the given line.

The algebraic sum of all such products for all the particles

of a system is the moment of the acceleration of momen-
tum for the system.

If a be the component acceleration of a particle in a

plane perpendicular to the given line, and if p be the dis-

tance of a from it, the moment of the acceleration of

momentum for the particle is ma'p and for the system
^map. The analytical expression for it will be (123, and
106) llm(yx— xy).

423. It follows from 124 that the moment of the acce-

leration of momentum of a particle about a given axis is

equal to the product of its mass into the rate of change
of the moment of its velocity, and therefore to the rate of

change of its moment of momentum, and therefore to the
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rate of chauoje of its anovular momentum about the same

axis. In symbols map =m (^jr^). Hence also for a system

of particles Xmap=Xm {^).

424. It may be shown by the method employed in 419
that the moment of the acceleration of momentum of a
system about a given axis is equal to its value about a
parallel axis through the centre of mass, together with
the moment of the acceleration of momentum about the

given axis, of a particle, having a mass equal to the mass
of the system, and situated at, and having the acceleration

of, the centre of mass. With the symbols of 419,

425. The Moment of a Force about a line or axis is the

product of the component of the force in a plane perpen-
dicular to the axis, into the distance from the axis of

the line of action of the component. If F is the magni-
tude of the component, and p its distance from the given
axis, Fp is the magnitude of the moment of the force

about the axis. Its sign is determined by a convention
similar to that of 103.

426. It follows from 313 and 107 that the moment of

a force is equal to the algebraic sum of the moments of

its components about any fixed axis.

427. If the given line be taken as axis of z, and other

lines perpendicular to it and to one another (as in 419) as

axes of X and y, and if x, y, and z be the co-ordinates of

the particle on which the force acts, and X, Y, Z the

components, in the directions of the axes, of the given

force, then X and Y are rectangular components of F in

the plane perpendicular to the given line, and y and
X their respective distances from the given line, and
therefore Yx and —Xy their respective moments about

it. Hence (426) Fp= Yx— Xy. This is the analytical

expression for the moment of a force.
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428. The sum of the moments, about an axis fixed in

space, of the external forces acting on a system of particles

is equal to the rate of change of the angular momentum
of the system about the given axis.

R being the component, in a plane perpendicular to the

given axis, of the resultant force acting on the particle, a
its component acceleration in the same plane, and m its

mass, we have R = ma. If "p is the common distance of

R and a from the given axis, Rp = 7nap. If F and F' are

the components in the same plane of the resultants of the

external and internal forces respectively, acting on 771, F
and F' are components of R. If therefore P and P' are

their respective distances from the given axis (426),

Rp =FP+Fr= map.

Hence, for the system (423),

2PP + EPT' = Imap= m2:(^^).

Now the internal forces consist of pairs of equal and
opposite forces equidistant from the axis. Hence

SPT' = 0,

and i:FP = 2m(^).

The analytical expression of this result is (427 and 422)

2( Yx— Xy) = ^m(yx - xy).

429. In the special case in which the sum of the

moments of the external forces about the given axis is

zero, the angular momentum of the system about the

given axis is constant. For we have 2PP= Sm(^) = 0.

Hence Smwr^ is constant. This result is called the

"principle " of the conservation of angular Tnomentum.

It follows that 2ma)r72 = constant. Now (133) oor^/2

is the area swept over per unit of time by the radius vec-
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tor of the particle of mass m. Hence the above result is

also called the " principle " of the conservation of areas.

430. From 428 and 424 it follows that

^{Yx—Xy) = {yx— xy)1.m+ l.m(ij^— ^rj).

This applies, as we have seen, to an axis fixed in space.

If we choose the axis so that at the. instant under con-

sideration it is passing through the centre of mass of the
system, we have x= y = 0, x = ^, and y = »;, and therefore

2(F|-X,)= 2m(^-#-^,).

Now Hm(ri^—^rj) is the rate of change of angular momen-
tum about an axis parallel to the given axis through the

centre of mass; and '^{Y^—Xr}) is (427 and 428) the

value the rate of chano^e of angular momentum would
have if the centre of mass were fixed. Hence the rate of

change of angular momentum about the centre of mass,

produced in a system of particles by the forces to which
it is subjected, is the same as that which would be pro-

duced if the centre of mass were fixed.

431. Equations of Motion.—We have now obtained

two important results; the first, that of 414, by which
the acceleration of the centre of mass of a system is

expressed in terms of the external forces acting on it,

and its mass ; and the second, that of 428, by which the

rate of change of angular momentum of a system about
a fixed axis (or, 430, about an axis through the centre of

mass) is expressed also in terms of the external forces

acting on it. These equations tell us all that we can
know of the motion of a system of particles without data

as to the internal forces. They are therefore called the

equations of motion of a system of particles or of an
extended body. The principles of the conservation of

linear and angular momentum are special cases of these

equations of motion.
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432. Energy of a System of Particles.—The energy of

a system of particles is the sum of the amounts of energy
possessed by its particles. The amounts of potential

energy possessed by its particles depend upon their

mutual attractions, and on the action of external forces,

and vary as their distances from one another vary, and
as the position of the system varies with respect to the

bodies exerting force on it from outside. The potential

energy therefore depends only upon the configuration

and position of the system. If the system is isolated, so

that no external forces act upon it, its potential energy
depends upon its configuration only.

433. If the forces of the system are independent of the

velocity of the particles, the change of potential energy
during any change of configuration will be independent
of the paths in which the particles have moved, and
therefore of the series of configurations throuo^h which
the system has passed, and will be equal to the work
done against the forces of the system during the change
of configuration. If we choose some convenient configu-

ration of the system as the configuration of zero potential

energy, the potential energy of the system in any other

configuration will be the work done against the forces of

the system during the passage from the zero configuration

to the other.

434. The work done by the forces acting on the par-

ticles of a system, during any change of configuration, is

equal to the change produced in the kinetic energy of

the system.

Let X, F, Z be the components, in three rectangular

directions Ox, Oy, Oz, of the resultant of the external and
internal forces acting on a particle of mass m at a point

P, whose co-ordinates are OL, MP, LM, or x, y, z. Then
(414) taking all the particles of the system into considera-

tion, we have
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and therefore

2(Z- mx) = 0, 2(Y- mij) = 0, 2(^- m^') = 0.

y

Let the particle undergo any indefinitely small displace-

ment, say to a point P', whose co-ordinates are 0L\ M'P',

L'M', or x\ y, z'. The displacement being indefinitely

small, the resultant force acting on the particle may be
considered uniform. The components of the displacement
in the axes of x, y, and z will be x —x, y—y, z'— z.

Multiplying by these components, we have

^{X-mx){x -x) = 0,J.{Y-my){y -y) = 0,

i:(Z-mz)(z-z) = 0.

Hence, also,

2{X-mx)(x'-x) + l{Y^my)(y'-y)
-\-2{Z-mz)(z'-z) = 0,

and

^{X(x'-x)-\rY{y-y)+Z(z'-z)-m[x{x-x)-^y(y'-y)

+ z(z'^z)]}=0.

The component velocities of the particle at P and P' will
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be x,_y, z and x, if', z respectively ; and, as the time t of
the displacement is small, the mean component velocities

may be taken to be {x-[-x')l% {jj+ y')l^, {z-{-z)l2. The
component accelerations are {x—x)/t, (y—y)/t, {z -z)/t;

and, as t is small, these may be taken to be the same as

Xy 2/, z. Hence

^^X{x'-x)+Y(y'-y)+Z(z-z)-m(^^-^^ . ^t

and

^{X{x-x)-\-Yiy'-y) + Z(z'-z)~''^[x^+ y''^+ i'-^

If W denote the work done on the particle on, v the

velocity of the particle at P, and v its velocity at P',

we have (342, 98 and 88),

W=X(x-x)-\- Y(y - y) + Z{z' - z),

v'^= x'^+ y'^-\-z\

i^ = x^-[-y^-\-z^.

Hence

^{W-~{v'^-vyj=o.

Hence the sum of all the quantities of work done by the

forces acting on the particles of a system, during any
indefinitely small change of configuration, is equal to

the sum of the quantities of kinetic energy gained by the

particles.

Any finite change of the configuration of a system may
be broken up into an indefinitely large number of inde-

finitely small changes, to each of which an equation
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similar to the above applies. Adding them, we have for

a finite chans^e of confioruration,

ur the work done by the acting forces during an}^ finite

change of configuration of a system of particles is equal

to the increment of the kinetic energy of the system.

435. Conservation of Energy.—If all the forces (ex-

ternal and internal) are dependent only on the positions

of the particles (346) on which they act, the work done
against them results (347) in the increment of the poten-

tial energy of the particles. The amount of the potential

energy produced is equal to the work thus done against

the forces, and is therefore equal to minus the work done
hy them. If therefore P is the increment of potential

energy of a particle in any small displacement, P= — TF

;

and hence

and ifK denote the increment of kinetic energy,

22(P+^) = 0.

Hence the sum of the potential and kinetic energies of

a system of particles is constant, provided all the acting

forces are dependent only on the positions of the particles

on which they act. This result is called the law of the

Conservation of Energy. A system of particles to which
it applies is called a conservative system.

436. A cycle of transformations of a system is a series

of changes of configuration by which the particles are

brought finally to their initial positions. If the system
is conservative and isolated, it is clear that the initial

and final potential and kinetic energies must be the same.

If therefore a conservative system of particles be so

arranged that when set in motion it undergoes a cyclical
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transformation, the cycles of transformations will go on
for ever. If, for example, heavenly bodies moving in

space met with no resistance to their motion, of the

nature of friction, the solar system would form a system
of this kind and the planets must continue to move
round the sun for ever. If we had materials of perfect

smoothness and with other properties excluding the pos-

sibility of the action of non-conservative forces, it would
be possible to make a machine which, once started, would
run for ever without work being done upon it, provided

work were not done by it.

An isolated conservative system thus undergoing cycles

of transformation can never, however, increase the total

quantity of its energy. If therefore natural forces are of

the conservative kind, it will be impossible to devise a

machine which, when set in motion and left to itself, will

both run itself and do external work—in other words,

the "perpetual motion" will be an impossibility. The
universal failure of efforts to discover the, perpetual

motion have placed it in the same category as the philo-

sopher's stone and the elixir" vitae.

Many writers accept the impossibility of the perpetual

motion as having been proved by experience and make it

a fundamental law of motion (usually without saying so),

deducing the law of the conservation of energy imme-
diately from it. It will be clear that such a course is

unphilosophical if Newton's three laws have already

been chosen as fundamental laws of motion, because

the conservation of energy and the impossibility of the

perpetual motion may be deduced from these laws. If

the impossibility of the perpetual motion be chosen as a

law of motion, one or more of Newton's laws should be

obtained as deductions from it.

437. Law of Energy.—If any of the forces acting on

the particles of the S3^stem are of the nature of resistances

which depend upon the velocity of a particle, not on its
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position merely, the work done against them does not

result in the production of potential energy. In such

systems therefore, which are at any rate apparently non-
conservative, the work done against the acting forces is

equal to the sum of the increment of potential energy and
of the work done against such resistances. If this work
be denoted by ^v, we have thereforeP -f- ^(;= — TT, and hence

Hence the kinetic and potential energy of a material

system, together with the energy expended in overcoming
friction and other forms of non-conservative force, is a
constant quantity.

This result is the general law of energy, of which the

law of the conservation of energy is a special case.

438. If therefore a non-conservative system of particles

be so arranged that, when set in motion, it undergoes
cyclical transformations, its energy will gradually dimin-

ish, and its cyclical transformations cannot therefore go
on for ever. It is probable that the planets move in a
resisting medium, whose resistance they expend energy
in overcoming. If so, they must be moving in spiral

paths and getting gradually nearer the sun. No machine
can be constructed whose parts in their relative motions
do not meet with frictional resistance and other forms of

(apparently) non-conservative force. Hence no machine
can be constructed which will run itself even if no ex-

ternal work be done.

439. When work is done against forces, such as friction,

which are, apparently at least, non-conservative, there

seems at first sight to be no return in the form of energy

;

and until recently energy thus expended was believed to

be lost. Experiment, however, has shown that when
energy is thus expended heat is always produced, that

heat is a form of energy, and that the amount of thermal
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energy produced when work is done against friction or

other such forces, is the exact equivalent of the work so

done. Hence tlie law of energy in the case of material

systems which are apparently non-conservative may be
thus expressed

:

The energy of the system, including kinetic, potential,

and thermal energy, is a constant quantity, if the system
is isolated, so that it can neither give energy to, nor re-

ceive energy from, outside bodies.

440. The frictional and other non-conservative forces

which we find acting on bodies in their relative motions,

and to whose action is due the apparent non-conservative

character of material systems, are observed to act between
bodies of finite size. It is possible therefore that, ifwe could

observe all the motions of the particles or small parts of

bodies, their apparent non-conservative character might
disappear. When work is done against friction, for ex-

ample, it may be that the relative motions of the particles

of the bodies in contact are increased, so that though the

rubbing bodies do not gain potential energy their particles

gain kinetic energy. Thermal energy is generally be-

lieved, though not yet proved, to be the kinetic energy

of the particles of a body due to their motion among one
another. If so, the laws of Thermodynamics should be

capable of deduction from the laws of motion. At present

however we do not know enough about the relative

motions of the particles of a body, or how they are

affected when the body meets with frictional or other

such resistances, to make this deduction.

441. In applying the law of energy, obtained above,,

to the solution of problems on the motion of material

systems, it is important to notice that forces acting on
fixed portions of the system, stresses between particles

whose distances are invariable, and forces acting on par-

ticles whose motion is normal to the direction of the force.
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do no work and therefore do not appear in the equation
of energy.

442. In the solution of such problems the following

proposition will be of use to facilitate the calculation of

the kinetic energy of the system :

The kinetic energy of a system of particles is equal to

the sum of the kinetic energies of the particles of the

system moving with velocities equal to their velocities

relative to the centre of mass, together with that of a

particle having a mass equal to the mass of the system
and a velocity equal to the velocity of the centre of mass.

Ox, Oy, Oz being rectangular axes, let the co-ordinates

of a particle of mass m be x, y, z. Then its component
velocities are x, y, z and its kinetic energy \7Yi{d?-\-y'^-\-z^).

The kinetic energy of the system is thus l^^ra{p(?-\-y'^-\-z^).

Let X, y, z be the co-ordinates of the centre of mass and

^, t], f the distances of a particle from it in the directions

of Ox, Oy, Oz respectively. Then (419)

x= x-\-^, y = y-\-ri, and z = z + ^.

Also (96) x= x-{-^, y — y-^y), and z = z+ ^.

Hence the kinetic energy of the system,

2im(d;H^Hi^) = 2im{(^-f^)2+ (^+ r;)H(^+ D'}

=SM^H^Hi^) + 2im(f+ ,)HH
+^Sm^-h y^mr]+ 'zLm^

= 2im(S-2+jH s^) +SM^H )iH r),

since (410) 2m^=2m>/ = Z77if=0. And 2im(^"2-}->?Hr)
is the sum of the kinetic energies of the particles mov-
ing with velocities equal to their velocities relative to

the centre of mass, and 2|m(^^-|-§^-h5^) is the kinetic

energy of a particle having a mass equal to the mass of

the system and a velocity equal to the velocity of the

centre of mass.
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443. Examples.

(1) Two particles of masses m and M moving in a straight line,

with velocities v and V respectively {v > V) come into collision, the

stress between them during collision being in the line of motion,

and the co-efficient of restitution being e. Find the loss of kinetic

energy.

Let U be the velocity of the centre of mass, which (416) is the

same after as before the collision. Then their velocities relative to

the centre of mass before the collision are v— U and V— U respec-

tively ; and if v' and V are the velocities of m and M respectively

after the collision, v' — U and V—U are their respective velocities

relative to the centre of mass after the collision. Hence (442) the

kinetic energy is, before the collision,

i(m+M) U^+^m{v - Vf 4- ^if( F - Uf,

and, after the collision,

\{m+MW^+^m{v'- UY+\M{V'-Uf.
Hence the loss of kinetic energy is

^n[{v-Uf-{v'-Uf]+\M[{V-U)'^-{V'-UY'\.

Now, as both particles have at the instant of collision the velocity*-

V, we have (416),

and (380, Ex. 1),

,_mv+MV-eM{v- V)

y, _m.v -\-MV— em{ V— v)

m+M *

Hence z;'- r= -^J^zJ)'m+M
= e{U-v).

And similarly V - U= e{ U- V).

Hence the loss of kinetic energy is

\{l-e^)[m{v- Uf-\-M{V- Uf\.

If therefore e=l, there is no loss of energy. If e—0, the loss of

energy is equal to the energy due to the motion of m and M relative

to their centre of mass before the collision.
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(2) In any displacement of a system of heavy particles, the work

ilone against the weights of the particles is equal to the product of

the weight of the system into the vertical displacement of the

centre of mass of the system.

Let m^, ^2, etc., be the masses of the particles, c?i, o^g? ^tc, the

vertical components of their displacements, .r^, jTg, etc., their initial

distances from a horizontal plane. Then the amounts of work done

on the various particles are m-^gd^, m^^gd^^ etc. Hence the whole

work done is g'^md. Now the vertical displacement of the centre

of mass is

i:m{x \-d)_ ^mx_ 'Ltnd

2m 2m 2m

Hence the product of the weight of the system into this vertical

•displacement,

^2m X^— =g'^mdf

which is the whole work done.

(3) Find the work done in raising from the ground the materials

(cubical blocks of stone of 1 foot edge and of density 1 cwt. per

cubic ft.) in building a uniform column 66 ft. high and 20 ft.

square.

(4) A right pyramid on a square base of 16 ft. side, has an alti-

tude of 24 ft., and stands on a horizontal plane. Find the work

necessary to turn it round one of its edges, its density being 100

lbs. per cubic ft.

Ans. 819,200 ft.-pounds.

(5) A chain whose mass is 100 lbs. and length 50 ft. hangs freely

by the upper end, which is attached to a drum, upon which the

chain can be wound, the diameter of the drum being so small

relatively to the length of the chain that it may be neglected.

Find the work done against the weight of the chain in winding up

one half of it.

Ans. 1875 ft.-pounds.
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(6) The cylindrical shaft of a mine, whose section is 50 sq. ft.,

contains water (density=1000 oz. per cubic ft.) to within 90 ft, of

the surface. How much will the surface of the water be lowered

by an engine working at 10 horse power for 1 hour.

Ans. 54-1 ft.

(7) Find the initial speed of a shot of 1000 lb. mass, discharged

from a 100-ton gun, the energy of the charge being 300,000 ft.-

pounds, and 1 per cent, being lost in heat, light, etc,

Ans. 24'3... ft. per sec.

444. Equilibrium of Extended Systems.—By the

equilibrium of a system of particles may be denoted
either of two states of motion : (1) a state in which the

centre of mass of the system has no linear acceleration,

and the system a constant angular momentum about the

centre of mass, (2) a state, in which the particles of the

system are all without linear acceleration. The former
may be called a state of molar equilibrium or equilibrium

of the sj^stem as a whole, the latter a state of molecular
equilibrium or equilibrium of the individual particles or

molecules of the system.

445. The necessary and sufficient conditions of molar
equilibrium may be obtained at once from the equations

of 431, viz., a= Si^/2m, and l.FP = I.m{;^2). For in

order that the acceleration of the centre of mass may be
zero, and the angular momentum constant, we must have
l.F=0 and i:FF = 0; and if these conditions are fulfilled,

we have d= and 'Zm.Q^) = 0. Hence the necessary and

sufficient conditions of molar equilibrium are (1) that the

algebraic sum of the components, in any given direction,

of the external forces must be zero, and (2) that the

algebraic sum of the moments of the same forces about
any axis must be zero also.

446. An expression of the condition of molecular
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equilibrium may be obtained from the equation of energy

(437), which may be written (434)

W is here the work done by all the forces acting on m in

any small displacement whose components are x'— x,

y'— y, z'— z. 2 TT is therefore the work done by all the
forces of the system during its corresponding change of

configuration. Dividing by t, the time of the small dis-

placement of 771, we get

2
{f-f(^'(^'^^>-^^%'-^)^'(^'-^))}=«-

If now the given change of configuration be from one of

equilibrium to one indefinitely near it, the component
accelerations {x'— x)\t, etc., may be put equal to zero.

Hence we have 2(Tr/Q = 0, i.e., the rate at which the

forces acting on the system do work is zero. If the work
done by external forces be denoted by w, and that done
by internal forces by w\ we have Y^W=1jw -\-^w', and
therefore ^{wji) = 2(— w'lt). Hence if a material system
in any given configuration be in molecular equilibrium,

the rate at which the external forces do work during any
small motion through that configuration is equal to the

rate at which work is done against the internal forces

;

or, if the system is conservative, to the rate of increase

of the potential energy of the sj^stem due to internal

forces.

447. Conversely, if in any small motion of a material

system through a given configuration, the rate at which
the forces of the system do work is zero, the given con-

figuration is one of molecular equilibrium.

For if not, some of the particles of the system must in

that configuration have accelerations. Let them be re-
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duced to equilibrium by the action of forces F^, F.^, etc.,

equal to the products of their masses into their accelera-

tions and in directions opposite to these accelerations.

Let the system now undergo an indefinitely small change
of configuration, such that the particles having accelera-

tions move in the directions of their accelerations. Then
work will be done against F^, F.^, etc., and the rate at

which work is done by these forces will in all cases be
negative. But the rate at which work is done by all the

forces of the system together with F^, F.^, etc., is zero

(446), since the system is now in molecular equilibrium.

Hence the rate at which work is done by the forces of

the system alone is positive, and cannot be zero. Hence
none of the particles of the system can, in the given con-

figuration, have accelerations, and that configuration is

therefore one of molecular equilibrium.

448. Hence the necessary and sufficient condition of

the molecular equilibrium of a material system in any
given configuration is that in any small motion through
that configuration the rate at which the external forces

do work shall be equal to the rate at which work is done
against the internal forces, or, if the system is conserva-

tive, to the rate of increase of the potential energy of the

system due to internal forces.

449. Hence also the necessary and sufiicient condition

of the molecular equilibrium of a material system in any
given configuration is that in any small motion through

that configuration the work done by the external forces

shall be equal to that done against the internal forces, or,

in other words, that the algebraic sum of the amounts of

work done by all the forces shall be zero. In symbols, if

F^, F.,, etc., be the forces acting on the particles of the

.system, and c?j, cZ.„ etc., their component displacements in

the directions of F^, F.2, etc., respectively, HFd = 0.

450. Stability ofEquilibrium.—If a system of particles

Y
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which has undergone any indefinitely small change of

configuration from that of equilibrium, returns, when left

to itself, to the configuration of equilibrium, its equilib-

rium is said to be stable for a change of configuration of

that kind. If, when left to itself, the system deviates

still more from the configuration of equilibrium, its equi-

librium is said to be unstable. If the new configuration

is also a configuration of equilibrium, the equilibrium of

the system is said to be neutral. Thus the position of

equilibrium of the bob of a pendulum is the lowest point

of its swing. If it be slightly displaced from that position

and left to itself it will return to that position. Hence
its equilibrium is stable. A symmetrical egg may be
made to stand on one end ; and this position is thus one
of equilibrium. But if it be displaced from this position

ever so slightly and left to itself, the displacement increases

with the time and it falls over on its side. Hence an egg
standing on one end is in a position of unstable equilib-

rium. If a uniform sphere, resting in equilibrium on a
horizontal plane, be slightly displaced and left to itself, it

will still remain in equilibrium; and thus a uniform
sphere on a horizontal plane is in neutral equilibrium.

A configuration of equilibrium of a system may be
such that for different small changes of configuration the
stability of its equilibrium may be different. Thus a
sphere resting on a horizontal cylinder is in neutral
equilibrium for small displacements, which are rotations

about an axis through the point of contact and perpen-
dicular to the axis of the cylinder, while, for rotations

about all other axes through the same point, its equilib-

rium is unstable. The equilibrium of a sphere resting in

a cylindrical trough is stable for some displacements and
neutral for others; and that of a sphere resting on a
saddle-back, or col, is stable for some displacements and
unstable for others. The equilibrium of a system which
is stable, unstable, or neutral, as the case may be, for all

possible small displacements of the system is said to be
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wholly or absolutely stable, unstable, or neutral. The
equilibrium of a system which is unstable for any small

change of configuration, though it may be stable or neutral

for others, is said to be practically unstable.

451. There is a simple relation between the potential

energy of a conservative system in its configuration of

equilibrium and the stability of its equilibrium. If,

after a small displacement from a configuration of equi-

librium, the system, when left to itself, returns to the

configuration of equilibrium, the forces of the system on
the whole do work on the particles of the system in

bringing it back to the configuration of equilibrium.

Hence, in the configuration of equilibrium, the potential

energy of the system is less than in the other configura-

tion. If therefore a system has a configuration in which
it is in wholly stable equilibrium, that configuration is

one of minimum potential energ37-. If, after a small dis-

placement from a configuration of equilibrium, the system,

when left to itself, deviates still more from the configura-

tion of equilibrium, the forces of the system on the whole
do work during the given small displacement, and hence
the potential energy of the system is less after the dis-

placement than in the configuration of equilibrium. If

therefore a system in a given configuration is in wholly
unstable equilibrium, the given configuration is one of

maximum potential energy. If, finally, after a small

displacement from a configuration of equilibrium a system
of particles is still in equilibrium, the forces of the system
have neither done work nor had work done against them
during the displacement, and hence the potential energy
after the displacement is the same as before it.

452. If the potential energy of a system of particles

depends wholly upon their weights, the increase of

potential energy in any change of configuration (443,

Ex. 2) is the product of the weight of the system into

the height through which its centre of mass has been
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raised. A conliguration in winch the value of the poten-

tial energ}^ is a maximum or minimum, therefore, is one

in which tlie centre of mass has a maximum or minimum
height respectively. Hence a configuration of wholly
stable or wholly uuvstable equilibrium is one in which the

centre of mass has a lower position or a higher position

respectively than in any other configuration into which
the system may be brought b}^ an indefinitely small

change of configuration. Thus a rod, one end of which
is fixed, is in stable equilibrium if the other end, and
therefore the centre of mass, is vertically below the fixed

end, and is in unstable equilibrium if the other end, and
therefore the centre of mass, is above the fixed end.
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CHAPTER VL

DYNAMICS OF RIGID BODIES.

453. A rigid body or system of particles is one whose
coDiiguration is invariable, the particles maintaining con-

stant relative positions. Such bodies are purely ideal.

But in many cases solid bodies are so slightly deformed
by the forces acting on them that for many purposes they
may be considered rigid.

It follows from the constancy of the configuration of a
rigid body that, if it is rotating about an axis lixed in

itself, all its particles must have the same angular

velocity, and consequently the same angular acceleration,

about that axis; and that the distance of an}^ particle from

the axis must be constant. Hence (420) the angular

momentum about the given axis, viz., Hniwr^, may be

written wSmr^ and ^2 becomes wr'-^. Hence (225) the

rate of change of angular momentum

if a denote the angular acceleration about the given

axis.

We found (428) that about an axis fixed in space,

'2FP = 2r/i(j^). Hence, if a is the angular acceleration

about any axis lixed both in space and in the body,
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By 430 the same formula applies if a be the angular

acceleration about an axis fixed in the body and passing

through its centre of mass, whether or not it be fixed also

in space.

454. We have thus two equations (414 and 453),

expressing, the one the linear acceleration of the centre

of mass, the other the angular acceleration about that

point. Hence (251) these equations completely deter-

mine the motion of the body.

455. From the second of these equations it follows

(27717'- being constant) that the rotating power of a force,

or of several forces, about a given axis is proportional to

its moment, or to the algebraic sum of their moments
respectively, about that axis. This result is frequently

assumed by writers on elementary statics.

456. From the two equations of 454 it follows that a
force produces in a rigid body the same kinetic effect at

whatever point of its line of action it may be applied.

For a has the same value, provided the magnitudes and
directions of the applied forces are the same ; and a has
the same value, provided the magnitudes of the applied

forces and the distances from the axis of their lines of

action are the same. This result is usually called the

''2)rinciple of the transmissibility offorce," and is usually

made a fundamental hypothesis by writers on Statics.

457. It follows, from the result of 453, that for the

complete specification of a force which is acting on a
rigid body, it is necessary to know not only its magnitude
and direction, as in the case of a particle, but its line of

action or some point in its line of action as well.
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458. It follows, from the second equation of 454, that

if a free rigid body be acted upon by a force whose line

of action passes through the centre of mass, it produces
in the body no angular acceleration about the centre of

mass, and therefore (as is evident from 244) no angular

acceleration whatever.

459. Comjjosition of Forces.—It is often convenient in

investigating the motion of a rigid body to replace the

forces acting on it by a simpler set of forces, which would
produce the same kinetic effect. Before applying the

equations of 454 to the solution of problems, there-

fore, we shall investigate the composition of forces acting

on a rigid body, i.e., the reduction of such forces to simpler

equivalent systems.

The resultant of the forces acting on a rigid body is

the single force or the simplest system of forces which
will produce in it the same accelerations as are produced
by the given forces.

460. Any coplanar forces acting on a rigid body are

reducible to a single force.—A force F, whose components
in rectangular directions in the plane of the forces are

Fx, Fy, will produce the same linear acceleration of the

centre of mass as the acting forces (components X^, F^,

X^, Y^, etc.), provided Fx = iX and Fy= ^Y ; and it will

produce the same angular acceleration about any point

in the plane of the component forces if its line of* action

is at such a distance (jp) from the point that Fp
is equal to the algebraic sum (N) of the moments of

the forces about it,* if therefore Fp = N. Hence, as

F={Fj^-\-Fy^)^, the forces are reducible to a single force

if

vV{^Xf+ (LYf]^=N.

* The moment of a force about a point is its moment about an
axis through the point perpendicular to the plane containing the

point and the line of action of the for(rce.
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A Unite value of 'p can always be found to satisfy this

equation, provided [(SZ)^+ (2F)2]^ is not equal to zero.

Hence, except in this case, a single resultant can always
be found.

461. Determination of the Single Resultant of Co-

planar Syster/is of Forces.—The forces may or may not
be parallel.

Case I.—Non-parallel Coplanar Forces—Analytical
Determination.—It follows, from 460, that the magnitude
of the single resultant is [(EXf-^-illYf]^, its direction

cosines (EJ)/F, (LY)IF, and its distance from the point

NjF. The magnitude and direction of the single force

is thus the same as if forces of the same magnitude and
direction as the given forces acted upon a particle (313
and 90).

462. Geometrical Determination.—The magnitude and
line of action of the resultant may also be found by the

aid of 456.—Let coplanar forces F^, F^, F^ act on a rigid

body at A, B, C respectively. Produce F^ and F^ till

they meet in D. Let both forces (456) act at D instead

of at A and B, and let B^, their resultant, be determined
by 313. Produce B^ to meet F^ in E. Let now B^ and
jPg act at E instead of C and D, and let B^, their resultant,

be determined. Then B^ is the resultant of the given
forces.
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By thus applying the parallelogram law the resultant

may be determined either by calculation or graphically

(382, Ex. 22).

463. The following is a more elegant graphical method:

—

Let forces F^, F.^, F^, F^ act as represented in the diagram

at the points A, B, C, D. From any point E draw EG,
from G draw GH, from H HK, and from K KL, repre-

senting in magnitude and direction the forces F^, F^, F.^,

F^ respectively. Then (461) EL represents their resul-

tant in magnitude and direction. To find a point in its

line of action, take any point and join it to E, G, H,
K, L. From any point in F^, say a, draw a line parallel

to OG and meeting F.2 in h. From b draw a line parallel

to OB, meeting F^ in c. From c draw a line parallel to

OK, meeting F^ in d. From d draw a line parallel to

OL, and from a a line parallel to OF, and let them meet
in M.

A force represented by EG may be resolved into two
represented by EO and OG. Hence F^ is equivalent to

forces proportional to EO and OG, with lines of action

Ma and ba. Similarly F.^ may be resolved into forces

proportional to GO and OH, with lines of action ab and
c6, F^ into forces proportional to HO and OK, with lines
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of action he and dc, and F^ into forces proportional to

KO and OZ, and with lines of action cd and dM. Hence
the given system of forces is equivalent to single forces

in the lines dM and Ma, and pairs of equal and opposite
forces in each of the lines ah, he, cd. The resultant of

this system is clearly a force through M. Hence the re-

quired resultant is a force represented by EL and acting

at M.

464. Case II. Parallel Coplanar Forces.— If the

given forces are parallel, the constructions of 462 and
463 fail. In any such case, however, a system equivalent

to the given system may be obtained by introducing two
equal and opposite forces in the same line, and with direc-

tions inclined to those of the given parallel forces ; and to

this equivalent system the above constructions may be
applied.

465. We may find the resultant of parallel forces more
readily, however, as follows :— .

First, let there be two such component forces. These

may be either codirectional or opposite in direction.

(a) The Forces Codirectional.—Let P and Q be forces

acting in the same direction on a rigid body of mass m.

Then, that the resultant R may produce in the centre of

mass of the body the same acceleration as P and Q, its
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line of action must be parallel to theirs, and we must
have

d = {P+Q)/m= E/m,

and hence R= P-\-Q. Also that It may produce about
any point 0, the same angular acceleration, as P and Q,
its moment about must be equal to the algebraic sum
of their moments. From draw OBA perpendicular to

P and Q, and therefore to R, and meeting P, Q, and R in

A, B, and C respectively. Then

P . AO+ Q .BO =R . CO = (P+Q)CO.

It follows that GO is intermediate in length between A
and BO, and that G is therefore between A and B. Sub-
stituting for AO and BO their values we have

P{AG+ GO) 4- Q(^0 - GB) = (P+ ©CO.

Hence P .AG=Q,GB,

i.e., R's line of action cuts the line AB (and, therefore,

any line intersecting P and Q), so that the products of

the forces into the segments adjacent to them are equal.

466. (b) The Forces Opposite in direction and Unequal.
—Let P and Q be the given forces. Then, as above, if

P be greater than Q, R =P— Q and is codirectional with
P. and

'P

P . AO-Q. BO =R . GO = (P-Q)GO.

Now BO is less than A 0. Hence

{P-Q)AO<P . AO-Q. BO;
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and therefore AO is less than CO, and is a point in

BA produced. Substituting in the above equation the
values of AO and BO, we have

P{CO-GA)- QiCO - CB) = (P- Q)CO,
and

P .GA = Q.CB;

i.e., R's line of action cuts the line BA produced, so that

the products of the component forces into the segments
adjacent to them are equal.

467. (c) The Forces Opposite and Equal.—A system of

two forces, equal and opposite, but not in the same straight

line, is called a couple.

In this case R = 0,

and P . AO-Q. BO =P . AB= 0xGO.
Now P . AB has a finite value. Hence GO must be in-

finitely great. The single resultant of two equal and
opposite parallel forces is therefore a force zero at an in-

finite distance. In other words, a couple can produce
rotational, but not translational, acceleration in the body
on which it acts.

As P . AB has the same value for all positions of 0,

the moment of a couple about all points in its plane, and
therefore about all axes perpendicular to its plane, is the

same, and is equal to the product of either force into the

distance between their lines of action. This distance is

called the arm of the couple.

A couple is therefore completely specified if its moment
and the direction of a line perpendicular to its plane are

given. It may therefore be represented by a straight

line, whose length is proportional to the magnitude of

the moment of the couple, whose direction is normal to

the plane of the couple, and which is so drawn, according

to a convention similar to that of 103, as to indicate
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the sign of the moment. Such a line is usually called

the axis of the couple.

468. It follows from the above that all couples which
have equal moments of the same sign, and are in the same
or in parallel planes, produce the same kinetic effect, or

are equivalent, whatever may be their length of arm or

the magnitudes or lines of action of their forces.

469. Goriiiposition of Couples.—The resultant of any
number of component couples is a couple, and is to be
determined by the parallelogram law.

Let the planes of two component couples intersect in

the line AB. At A and B let equal and opposite forces,

F, act in the plane of one of the component couples at

right angles to AB, and of such magnitude and direction

that the couple F . AB has the same moment and sign

as the component couple in its plane. At A and B let

equal and opposite forces F' act in the plane of the second
component couple, and at right angles to AB, F' being of
such magnitude and direction that the couple F' . AB has
the same moment and sign as the second component
couple. Then the couples F . AB and F' . AB are equiva-
lent to the two component couples. Let AF and BF,
AF' and BF, represent the forces F and F\ Then if the
parallelograms AFRF, BFRF, be completed, the diago-
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nals AR and BR will represent the resultants of jPand V
at A and B respectively. Since the angles FAF' and
FBF' are equal, the parallelograms FF are similar.

Hence the angles FAR and FBR are equal, and therefore

the equal resultants, R, are in the same plane. Since in

each case R is in the same plane as i^and F', AR and BR
are perpendicular to AB. Hence the two component
couples are equivalent to the couple R . AB.

From B draw Bf, Bf, and Br, the axes of the couples

F . AB, F' . AB, and R . AB respectively. Bf, Bf, and
Br are thus perpendicular to the planes FABF, FABF,
and RABR respectively ; and consequently the angles/Sr,
/"Br are equal to FBR, F'BR respectively. Also, since

the couples represented by Bf Bf, and Br have the same
arm, we have

Bf: BF=Bf : BF = Br : BR.

Hence, if r be joined to /' and /, rfBf will be a parallelo-

gram ; and consequently the axis of the resultant couple

is to be determined from the axes of the component
couples by the parallelogram law (78).

If there are more than two component couples, the

resultant of any two may be compounded with a third,

their resultant with a fourth, and so on until the resul-

tant of all has been found.

It follows that the laws of the resolution of couples are

the same as in the case of displacements, velocities, etc.

470. Secondly (465), let there be any number of com-
ponent parallel forces. In that case the resultant of any
two may first be determined, then the resultant of their

resultant, and a third, and so on, until the resultant of

all has been found.

471. Any system of parallel forces, whether coplanar

or not, may be reduced to a single force.—For, as any
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two parallel lines are necessarily in the same plane, the

resultant of any two of the given forces is coplanar with

a third, that of any three with a fourth, and so on. Thus
the single resultant of a non-coplanar system may be de-

termined as in 470.

472. From 471, 465, and 899 it is clear that the above
process is exactly that by which the centre of mass of

a system of particles was determined, the magnitudes of

the parallel forces taking the place of the masses of the

particles, and the positions of their points of application

that of the positions of the particles. Hence, as in 400,

it may be shown that if F^, F.^, etc., are the magnitudes
of the parallel forces, and d^, d.^, etc., the distances of their

points of application from any given plane, the distance

from it of the point of application of their resultant is

XFdj/^F. The point of application of the resultant is

called the centre of the system of parallel forces.

473. In the special case in which all the particles of a
body are acted upon by parallel forces proportional to

their masses, the centre of parallel forces is an important
point. If F^, i^2» 6tc-> ^^® ^^^^ parallel forces, and m^,

mg, etc., the masses of the particles on which they act,

F^= Jai\, F2= kni.2, etc., where h is a constant. Hence
the distance of the centre of the system of parallel forces

from any plane from which the distances of the particles

are d^, d^, etc., is

Xkmd _ JcETnd _ Hond

And this is the distance of the centre of mass. Hence
the centre of the above system of parallel forces coincides

with the centre of mass.

474. If a body be sufficiently small relatively to the
earth, the weights of its particles may be considered to

be parallel forces; and they are proportional to the masses
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of the particles, for they produce in the particles the same
acceleration, g. Hence the weights of the particles of a
sufficiently small body are reducible to a single force

equal to g times the mass of the body and acting verti-

cally downwards through the centre of mass, whatever
the position of the body may be. For this reason the

centre of mass is often called the centre of gravity.

The term centre of gravity has also the following

signification to which it should be restricted : If a body
attracts and is attracted by all external bodies, whatever
their distance and relative position, as though its mass
were concentrated in a point fixed relatively to it, that

point is called its centre of gravity, and the body is said

to be centrobaric or barycentric. In general, bodies are

not centrobaric. We have seen (31 G, Ex. 6) that a uniform
sphere or spherical shell has this property.

If a body has a centre of gravity it necessarily coincides

with the centre of mass. For, as we have seen (473), the

resultant attraction of an infinitely distant body, -whose

attractions on its particles would be parallel forces,

would pass through the centre of mass whatever the

position of the body.

475. Examples.

(1) Three forces act at the middle points of the sides of a rigitl

triangular plate, in its plane, each force being perpendicular and

proportional to the side at which it acts. If the forces are all

inwards or all outwards, the resultant is zero.

(2) If a rigid plane quadrilateral ABCD be acted upon h\ foui-

forces, represented in magnitude, direction, and line of action by

AB, CB, AD, CD respectively, the line of action of the resultant

will be the line joining the middle points of the diagonals ; and its

magnitude will be represented by four times the length of that

line.

(3) A system of any number of coplanar forces being represented

I
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by the several sides of a closed polygon, as described by the con-

tinued motion of a point in a plane, show that the sum of their

moments round any point in the plane is independent of the position

of the point.

(4) If six forces acting on a rigid body be completely represented,

three by the sides of a triangle taken the same way round, and

three by the sides of the triangle formed by joining the middle

points of the sides of the original triangle, and if the parallel forces

act in the same direction, and the scale on which the first three

forces are represented be four times as large as that on which the

last three are represented, the given six forces produce neither

translational nor rotational acceleration.

(5) Forces of 10, 20, 30, and 40 poundals act on a rigid body at

.1, Bj (7, D, the corners of a square whose side is 2 feet, and in its

plane. Their inclinations to AB, BC, CD, DA are 45°, 90°, 30°, 60°

respectively. Show that their resultant is a force of 35'65. . . poundals,

and that its line of action is distant 3 "OS... ft. from C.

(6) Parallel forces in the same direction, and of the magnitudes

10, 15, 20, 25, act at points A, B, C, D respectively of a straight

rod, the distances AB, BC, CD being 2, 3, and 4 respectively. Find

the distance of the point of application of the resultant from A.

Ans. 5-07....

(7) Two parallel forces in opposite directions, and of magnitudes

20 and 5, act at points A and B respectively of a rigid body 4 feet

apart. Find the distances from A and B of the point in which

their resultant line of action cuts AB.

Ans. 1^ and 5^ ft.

(8) At each end of each side of a uniform triangular plate a force

acts parallel and proportional to the line drawn from the opposite

vertex to bisect that side. Show that the resultant of the six

forces passes through the centre of mass of the triangle.

(9) A triangular lamina ABC at rest is moveable in its own
plane about a point in itself. Forces act on it along and propor-

tional to BC, CA, BA. Show that if they do not move the lamina,

Z
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the point must lie in the straight line bisecting BC and CA, and

that the reaction at the point is proportional to 2AB.

(10) Two parallel forces in the same direction and proportional

to two of the sides of a triangle, act at the angles of the triangle,

opposite the sides to which they are proportional respectively.

Show that their resultant passes through the point in the third

side in which it is cut by the Ihie bisecting the opposite angle.

(11) The numerical measures of the magnitude of a force which

acts at a point in a given direction, and of the distances of the

point from two straight lines at right angles to one another in the

same plane with it, are denoted by a, 6, c ; but it is not known
which is which. Find the centre of all the forces which may be

represented.

Ans. Distance from each line= -^

(12) Forces I, -3, -5, 7 act on a rigid rod at points J, B, C, D,

whose distances are such that AB=3, BC=2, CD=2. Find the

magnitude of the resultant couple.

Ans. 15.

(13) Three equal and codirectional forces (F) act at three corners

of a square (side= a) perpendicularly to the square. Find (a) the

magnitude of the force which, applied at the other corner of the

square, would with the given forces constitute a couple, and (6)

the moment of the couple.

Ans. {a)3F; (b) Fa2 v/2.

(14) ABC is a triangle right-angled at B. At A a force F is

applied in the plane of the triangle perpendicular to ^C; at C a

force 2F in the same direction ; and at ^ a force 3F in the opposite

direction. Find the moment of the resulting couple.

Ans. F{AB'-2BC^)lAC.

(15) The resultant of three forces represented by the sides of a

triangle taken the same way round is a couple whose moment is

proportional to the area of the triangle.

476. Any forces whatever acting on a rigid body are

reducible to a system of two forces.
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A force, F, whose components in the directions of rec-

tangular axes are F^, Fy, Fz, acting at any chosen point

whose distances from the centre of mass of the body in

the directions of the components are ^, >?, f,
will produce

the angular acceleration about the centre of mass pro-

duced by the acting forces, provided (427)

F,n-Fy^=L,F,^-F4=M,Fy^-F,rt = N,

where L, M, N are the algebraic sums of the moments of

the acting forces about axes through the centre of mass,

parallel to the x, y, z axes respectively. We may reduce

these equations to one by multiplying the first by Fy^, the

second by Fy, and the third by i^^, and adding, by which
process we find that

LF^^MFy+NF,= ()

is the condition which must be satisfied that the force F
may produce the required angular acceleration. It is

obvious that values of F^, Fy, Fz can always be found to

satisf}' this equation. These values will be different for

different chosen points of application.

The force F with another force F' , whose components
are FJ, Fy, F^, and which acts at the centre of mass, will

produce the linear acceleration produced by the acting

forces, provided

F^-{-Fj =i.x,Fy+F; =i:y,Fz+f; =^z,

where SX, S F, ^Z are the sums of the components of the

acting forces in the directions of the x, y, z axes respec-

tively. As F acts at the centre of mass it has (458) no
effect on the body's angular acceleration.

Now, whatever may be the values of F^, Fy, Fz which
satisfy the first condition, values of F^, Fy , Fz' may be
found to satisfy the last three equations. Hence any
forces acting on a rigid body are reducible to two forces.

As the point ^, tj, f chosen above was any point what-
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ever, the forces acting on a rigid body may be reduced to

any one of an infinite number of pairs of forces.

477. To determine the condition of the reducibility of

a system of forces acting on a rigid body to a single force.

As this force must produce both the linear and the

angular accelerations produced by the acting forces, we
have, if F^;, Fy, Fz are its rectangular components, and ^,

i;, ^ the co-ordinates, relative to the centre of mass, of its

point of application, and if Z, M, N are the moments of

the acting forces about axes, parallel to the axes of co-

ordinates, through the centre of mass,

F,= ^X,Fy= ^Y\Fz = ^Z',

and

These six equations may, as in 476, be reduced to the

single equation

which therefore is the condition which must be fulfilled

that the resultant of the given forces may be a single

force.

478. The magnitude of this resultant force is clearly

R = s/{^Xf 4- (XYf+ (Sip.

Its direction cosines are ^X/R, ^Y/R, HZ/R. If we
put ^=0 in the equations of 477, we obtain ^=M/Fx,
rj= —NjFx. These therefore are the co-ordinates of the

point in which the line of action of the force cuts the rj^

plane.

479. Any forces acting on a rigid body may be reduced
to a single force and a single couple.
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couple

If F^ be any one of the forces acting on a rigid body
there may be introduced at

any point 0, without any
change of the motion of the

body, a pair of equal and
opposite forces, F^, parallel

to the original F^-, and for

every force acting on the

body we thus obtain an equal

force in the same direction acting at 0, and
(called the couple of transference). The forces at give

a resultant force at 0, and the couples compound into a

resultant couple (469).

Whatever point may be chosen, the direction and
magnitude of the resultant force will clearly be the same.

The resultant couple will however be different for diffe-

rent positions of 0.

480. To determine the resultant force and couple for

any given system of forces and for any given position of 0.

Let Xj, Fj, Z^, X,, Y.,, Z,,, etc., be the components of the

forces of the system in the directions of rectangular axes
through 0, and let x^, y^, z^, x^, y.,, z^, etc., be the co-or-

dinates of their respective points of application. Then
as the resultant force R is the same for all positions of 0, it

must be the same as the force which at the centre of mass
would produce the linear acceleration produced by the

system of forces. Hence

i^ = >v/(2:Z)H(2F)2+ (2Z)^2

.

and its direction cosines are I^XjE, HY/R, y^Z/R. As
the component couples must produce about the chosen

axes the same angular accelerations as the forces of the

system, they must be equal to the moments of the forces

about these axes. Hence if Z, M, JSf are the component
couples whose axes have the directions of the x, y, z axes
respectively.



358 DYNAMICS [480

L = X(Zy- Yz), 3f=:^(Xz-Zx), N=:^{Yx-Xy).

Hence (469 and 88) the resultant couple

G=s/L^^±W±^
= s/[^{Zy-Yz)Y+ \_^{Xz-Zx)J+ [^{Yx-Xy)f,

and its direction cosines are LjG, M/G, N/G. Hence also

(8) the inclination of the axis of the resultant couple to
the resultant force is

cos
72X L yj M -EZ N\
Km ' G^ U 'G'^ E ' G)'

481. The resultant force being given, and the resultant

couple for a given point of application of the resultant

force, to hnd the resultant couple for any other point of
application.

Let OR and OG represent the resultant force and couple
when the resultant force acts at 0.

Let 0' be the other point of applica-

tion. At 0' introduce two opposite

forces R equal and parallel to the force

R at 0. They will not affect the
motion of the body. Now the forces

R Sit and 0' constitute a couple,

whose axis ON is perpendicular to the

plane of ROO'R, and is proportional

to the product of R into the perpen-
dicular distance of OR from OR. The
two couples OG and ON give (469) a
resultant couple OG' . Hence the given

system of forces is equivalent to a force R acting at 0'

and a couple OG'

.

If 0' is in the line of action of OR, it is evident that

ON is zero and that OG' is the same as OG. If 0' is any-
where else, ON will have a value and OG' will differ from
OG. It is obvious that any other line of action of the

resultant force than that through 0' must either be at a
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greater or smaller distance from OR than 0' R, or be so

placed that the plane through it and OR is inclined to

the plane ROO' R, and that therefore ON, and con-

sequently also 0G\ can have a given magnitude and
direction only for one line of action of the resultant

force. Hence in a given body, acted on by given forces,

there is but one line, such that, if the resultant force acts

in it, the resultant couple will have a given magnitude
and direction.

482. Any forces acting on a rigid body may be reduced

to a single force and a couple whose axis is parallel to the

line of action of the force.

Let R be the force (OR being its line of action) and
the couple {OG being its axis), which
together form the resultant of the

acting forces according to 479. The
couple OG may be resolved into two,

whose axes are OH and OJ, in and
perpendicular to the direction of OR
respectively. The couple OJ is in the

plane through OR perpendicular to

the plane of OR and OG. Let 00\ ^

drawn perpendicular to the plane of OR and OG, be the

length of arm of the component couple 0/ when its forces

are made equal to R, and let the forces R of this couple

act at and 0' in directions perpendicular to 00'. Then
we have two forces, R, acting at in opposite directions.

Hence the original force R, together with the component
couple OJ, are equivalent to a force R at 0', having the

same direction as the original R. Hence the given system,

viz., the force R acting at and the couple OG, is reduced

to the force R acting at 0' and a couple whose axis OH
is parallel to R.

When this reduction is made, the line of action of the

force is called the central axis of the sj^stem of forces,

and as this theorem is due to Poinsot, it is usually called
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Poinsot's central axis. It follows from 481 that a given

system of forces can have but one central axis.

Sir R, S. Ball has given the name wrench to the re-

sultant force and couple to which a given system of forces

may be reduced when the line of action of the resultant

force is the central axis.

483. If the angle ROG (482) is 0, the component couples

OH and OJ are G cos 6 and G sin respectively. Hence

oo' = (G^me)in.

If the direction cosines of OR and OG are I, m,
and Thy \, JUL, and v respectively, those of 00' will be (10)

(mi/— njui)Isin 0, (nX — lv)I sin 0, (l/uL— mX)/ sin 0. Now the

products of 00' into its direction cosines are the co-

ordinates of 0' relative to 0. Hence, employing the

values of I, m, n, \, jul, v found in 480, we obtain as co-

ordinates of 0'

{]^Y-M1.Z)IR\ {Ll.Z-Nl.X)lR\ (MI.X-L2Y)IR\

The direction of the central axis being thus known,
and the position of one point in it, the axis is completely
determined.

484. The magnitude of the resultant

couple is less when its direction is that of

the central axis than when it has any
other direction.

Let OA be the central axis of a given
system of forces, O'A' any parallel line,

and 00' a line perpendicular to both.

Let R, acting at 0, be the resultant force,

and OH the resultant couple. At 0' in-

troduce two opposite forces, equal and
parallel to R. Then the system is equi-

valent to a force R acting at 0' and the
couples OH and ON, ON being perpendicular to the plane
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ROO'R and therefore to OH, and proportional to the

product of R into 00'. The resultant of these couples is

one represented by OG, which is necessarily greater

than OH.

485. Exannples.

(1) The magnitudes, directions, and lines of action of four forces

acting on a rigid body are represented by four sides of a skew

quadrilateral taken the same way round. Show that the system is

equivalent to a couple whose axis is perpendicular to both diagonals.

(2) Show, by using the result of 477, that the resultant of any

system of parallel forces is a single force.

(3) ABCD is a tetrahedron, the angles BAC, CAD, DAB being

right angles. At the centres of mass of the faces BA C, CAD, DAB
forces act (all inwards or all outwards), with directions perpendicular

to the faces, and magnitudes proportional to the areas of the faces.

Show that their resultant is a single force.

(4) When a force is transferred to any point 0, the resolved part

of the couple of transference in any direction OZ is equal to the

moment of the given force about OZ.

(5) OA, OB, 00 are conterminous edges of a cube and CD, EF
are edges parallel to OB and OC respectively. Find the distance

from of the central axis of a system of three equal forces com-

pletely represented by OA , CD, and EF.
Ans. JC/3.

(6) OA, OB, OC are conterminous edges of a rectangular parallele-

piped, so related that a positive rotation of 90° about OA as axis

would bring OB to the initial position of OC. Forces proportional

to OA, OB, OC (whose lengths are a, h, c respectively) act at B, G,

and A in the directions OA, OB, OC respectively. Find the central

axis.

Ans. Its direction is that of the diagonal through 0, and it passes

through a point whose distances from the planes BC, AC, and AB
are respectively

ac^ — ab^ a% — bc^ b^c — a^c

a2+ 6*-' + c2' a'+ b'^+ c^' a^+ b'^+c^
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(7) A system of forces can always be reduced to two forces whose

lines of action are at right angles to one another. [Through a point

P in the central axis draw a straight line, 0P0\ perpendicular to

the central axis, bisected in P, and of such length that if F is the

magnitude of the resultant force when its line of action is the

centml axis, F , OP is equal to the resultant couple. Eesolve

the resultant force, F, into two equal and parallel forces, F\% at

and 0\ and let the forces of the resultant couple act at and
0' also.]

(8) The volume of the tetrahedron, opposite edges of which repre-

sent the forces of any one of the infinite number of pairs of forces

to which a given system of forces may be reduced, is constant.

Let F and F' be any such pair of forces, and let DF^ CF' repre-

sent them, DFCF' being therefore the tetrahedron referred to in

the problem. Let AB be a line perpendicular to both DF and CF'.

At A introduce two opposite forces F' equal and parallel to CF',

Let R be the resultant of F and the force F' which acts at A and is

codirectional with CF'. Draw AG perpendicular to the plane of

the forces F' and representing the couple whose arm is AB and

whose forces are the forces F' acting at C and A. Then the force

AR and the couple AG form the resultant of the given system.

DF, AF'j and AG being all perpendicular to AB are in the same

plane and AG is perpendicular to AF'. The resultant couple H
whose direction is that of the central axis is (482, 483) such that
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H=-AGco&RAG
=CF\AB. sin IIAF'

= CF'. AB.Bin FAF'. DFIR.
Hence H. R= CF'. DF . AB. sin FAF'.

Now (481) H .R is constant. And AB . CF' being equal to twice

the area of the triangle ACF\ and DFsin FAF' being the length

of the projection of DF on a line perpendicular to the plane of the

same triangle, CF'. DF. AB .sin FAF' is equal to six times the

volume of the tetrahedron FDCF'. Hence the volume of this

tetrahedron is constant.

486. Moments of Inertia.—The quantity Xmr^ (453),

the sum of the products of the masses of the particles of

a rigid body into the squares of their distances from a
fixed axis in it, is called the moment of inertia of the

body about the given axis.

IfM is the mass of the body, a quantity k can always
be found such that Ml<?- = ^mT^. The quantity k thus
found is called the radius of gyration of the body about
the given axis.

Moments of inertia may be determined either by ex-

periment or by calculation.

487. Determination by JExperiment.—Let the body
whose moment of inertia / about a given axis is to be
determined be so mounted that the given axis is fixed.

Let it then be acted upon by a known force i^ at a known
distance p from the axis, and in a plane perpendicular to

the axis, and let the angular acceleration a be observed.

We have then (453) aI=Fp 3,nd I=Fp/a.

It is practically impossible to apply a known force at a
known distance from a given axis in it and to observe

the angular acceleration. But it is generally easy to

apply the same force or set of forces at the same distance

or distances in successive experiments. Hence a moment
of inertia is more readily determined by two experiments
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than by one. Elrst, let the angular acceleration of the

body tinder investigation be observed when under the
action of forces whose moment ^Fp is constant from
experiment to experiment. We have as above aI=^Fp.
Next, let a body, whose moment of inertia (/') about a

given axis is known, be rigidly attached to the given body
so that the axis about which its moment of inertia is

known is in the same straight line with the fixed axis of

the given body ; and let the same forces be applied in

the same way as before. K the angular acceleration is

now found to be a, we have a'{I-\-I') = ^lFp. Hence
a/=aTi4-/'), and

i= aT

It is practically impossible to observe the angular acceler-

ation. But the forces employed may readily be so

applied (see 588) that the sum of their moments may
be directly proportional to the angular displacement (0)

of the body, and that they may tend always to bring the

body to a position in which its angular displacement is

zero. In that case the body will oscillate, the ratio of its

angular acceleration to its angular displacement will be
independent of its angular displacement, and every point

of the body will therefore execute simple harmonic
motions. Hence (163) the time of oscillation will be

f= 2Trs/6 a, and will be independent of the extent of the

oscillation. For any given value of therefore acxi /-.

Hence, the times of oscillation in the above experiments
having been observed to be f and f respectively, we have

t--t-

The best methods of applying the force and of observing

the times of oscillation will be found described in books
on Laboratory Practice.

488. DeterTnination by Calculation,—^To effect the
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summation indicated by the formula 2)7t/*- the Integral

Calculus is in general necessary. But in the case of

bodies of simple geometrical form and of uniform density

the summation may be effected b}' elementary mathe-
matical methods.

In the determination by calculation the following pro-

positions will be found useful

:

(1) The moment of inertia of a body about a given
axis is equal to the moment of inertia of the body about
a parallel axis through the centre of mass, together with
the product of the mass of the body into the square of
the distance between the two axes.

Let P be the position of any particle of the body of
mass m. Let the plane of the diagram intersect the

given axis and the parallel axis

through the centre of mass, nor-

mally in A and C respectively. Let
d be the distance between the axes,

.<« the distance from the axis C of

the foot M of the perpendicular PM
from P on CA or CA produced, i.e.,

the distance of P from a plane through the centre of mass
and perpendicular to CA. Let the length of PM be p.

The moment of inertia of the body about J.,

2m . AP'-=^m{{s-d)^-\-f^,

= ^m{^+ p^) + d^^m- 2dl.nw,

= Zm.CP^'i-d^m,

since (403) ^ms= 0. Now ^m . CP- is the moment of
inertia of the given body about an axis parallel to the

given axis, through the centre of mass : and dr^^m is the

product of the mass of the body into the square of the
distance of the axes.

If if is the mass of the body, and k its radios of gyra-
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tion about an axis in the given direction through the

centre of mass, the moment of inertia about the given

axis is M(k^ + d^).

489. (2) The moment of inertia of a plane lamina

about an axis perpendicular to it through a given point is

equal to the sum of its moments of inertia about axes in

its plane through the given point, and perpendicular to

one another.

Let xx' and yy' be perpendicular axes through the

point in the plane of the lamina B. Let P be the

position of any particle of mass m ; PM, PN, PO its dis-

tances from XX, yy\ and an axis through perpendicular

to xx' and yy'! Then the moments of inertia of m about
these axes are ifn . PM'^, m . PN^, m . PO^ respectively,

and those of the lamina are thus 2m . PM^, Z?7i . PN^,
2m . PO^ respectively. Now PO^ = PM^+PN\ Hence

and

m.PO'^^m, PM^+m . PN^
Y.mPO^ = i:m.PM^+ l.mPN\

490. Examples.

(1) Find the moment of inertia of a uniform thin straight rod

(length= ?, mass= J/) about an axis perpendicular to its length, (a)

through one end point, and (6) through its middle point.
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{a) Let the rod be divided into an indefinitely great number {n)

of equal parts (length= a). The distance of the middle ponit of

each of these parts may be taken to be the distance of the part

itself. Let p be the linear density. Then if I denote the moment
of inertia about the given axis,

/=p«(-) +pa(-) +pa[-^) +etc. +pa(^2-i-),

= p^[l + 3--^+ 52+ etc+ (271 - 1 )2],

^4 3V 4/'

^3 12/'

'

l^ . . . .= p - , since a is indefinitely small,
o

3

If k is the radius of gyration, k=lj >/3.

(6) The moment of inertia of each half about its end point is

by Ex. 1 (a),

2 \2 ' ^ 24

Hence the moment of inertia of the whole rod about its middle

point is i/^2/12, and ]c= ll s/12.

(2) The moment of inertia of a uniform straight thin rod

(mass= J/, length =?) about an axis inclined a to the rod and

through its end point is ^MP' sin^ a.

(3) Show that the moment of inertia of a uniform thin circular

wire (mass= 3/, radius =r) about an axis through its centre per-

pendicular to its plane is Mr^.

(4) Find the moment of inertia of a uniform thin rectangular

* See Todhunter's "Algebra," CHiapter on Arithmetical Pro-

gression.
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plate (mass: M, sides=a and h) about an axis through the centre

of figure parallel to the side of

length h.

The plate may be divided into

indefinitely thin strips by lines

parallel to the side AB of length a.

Then if m^, wig, etc., are the masses

of the strips, their moments of in-

ertia about the given axis yy' are

m^a^l\% m^a^ll^ etc. Hence the

moment of inertia of the plate is

(?«! + mg+ etc .)aVl 2= Ma-jl 2.

(5) Show that the moment of inertia of a uniform thin rect-

angular plate (mass= J/, sides= a and h) about an axis through its

centre of figure perpendicular to its plane is M{a?+ lr)l\2. (See

489.)

(6) Find the moment of inertia of a rectangular parallelopiped

(mass= J/) about an axis through the centre of figure perpendicular

to one of the faces. (Edges perpendicular to the axis= a and b.)

We may imagine the parallelopiped divided into thin plates by

planes perpendicular to the axis. If Wj, Wg, etc., are the masses of

these plates, their moments of inertia are (Ex. 5) W|(a2 + 62)/12,

7n2(a'^-l-6^)/12, etc. Hence the moment of inertia of the parallelo-

piped is (wi+m2-fetc.)(a2+ 62)/12= J/(a2+ ^,2)/i2.

(7) Find the moment of inertia of a uniform thin right-angled-

triangular plate (mass= il/, sides containing the right angle= a and

h) about an axis perpendicular to its plane and through the centre

of mass.—Let ABC be the triangular plate and

E its centre of mass. Complete the rectangle

ABCD. E is on the diagonal BD and at a dis-

tance from 0, the intersection of the diagonals,

equal to sJa^-\-b^\Q. Hence the moment of inertia

of the triangle about is (488), if Ie is its mo-

ment of inertia about E^ /^-f 3/(^2+ ^2^/36. Hence,

if 7o is the moment of inertia of the rectangle

ABCD about a normal axis through 0,
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But (Ex. 5) /o=2i/(a2+ 62)/i2.

Hence /^= M(a^+ b^)lU -M{a^+ b^p6

=J/(a2+ 62)/l8.

(8) Find the moment of inertia of a uniform thin right-angled-

triangular plate (mass= J/, sides containing the right angle= a and

b), about an axis perpendicular to its plane, and through one of the

acute angles (say C, fig. of Ex. 7).

The distance of B from C is |^Z 6H^, if BC ia the side of length

b. Hence, if / is the required moment of inertia,

= af(|%f),byEx.7.

(9) Find the moment of inertia of a uniform thin plate of the

shape of an isosceles triangle (mass=M) about an axis perpendicular

to its plane and through the vertex.

If a is the length of base and h the distance of the vertex from

the base, the triangle may be divided into two right-angled

triangles whose sides containing the right angle are h and a/2, h

being the side adjacent to the vertex of the isosceles triangle.

Hence

A2>'=<.<)24 2

(10.) Find the moment of inertia of a uniform thin plate (mass=
M) of a regular polygonal shape, about an axis through its

centre of figure and normal to its plane.

If there are n sides, each having the length a, and each distant r

from the centre of figure, as the polygon may be divided into 7i

isosceles triangles with vertices at the centre of figure, of basie a,

height r, and mass Mjn,

V24 2/24 2

(11) Find the moment of inertia of a uniform thin circular plate

2a
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(mass=i/, radius =r) about an axis through its centre and normal

to its plane.

As the circle may be considered to be a polygon with an inde-

finitely great number of indefinitely short sides, each distant r

from the centre of figure, we have I=Mr^/2.

(12) Find the moment of inertia of a uniform thin circular plate

(niass= l/, radius =r) about (a) a diameter, (6) a tangent.

Ans. (a) Mry4:
; (b) 6J/ir2/4.

(13) Find the moment of inertia of a uniform circular cylinder

(mass= J/, radius =r) (a) about its axis, (6) about a generatmg line.

Ans. (a) J/r2/2
; (6) 3Mr^l2.

(14) The moment of inertia of a uniform sphere (mass= J/,

radius =r) about a diameter being 2Mf^l5, find its radius of gyration

about a tangent line.

Ans. rslljb.

491. Measurement of Moment of Inertia.—The unit

of moment of inertia is that of a particle of unit mass at

unit distance from the axis of rotation. In specifying

moments of inertia, no mention is usually made of the

unit, but they are described as of such and such a value

when expressed in such and such units of mass and
length.

The dimensions of the unit of moment of inertia are

clearly [M] [Lf.

492. Examples.

(1) Express in oz.-in. units a moment of inertia of 20 ft.-lb.

units.

Ans. 46,080.

(2) A moment of inertia has the value 500 when expressed in

terms of the centimetre and the gramme. Find its value in terms

of the metre and the kilogramme.

ns. 0-00005.

(3) An author speaks of a rectangular parallelopiped (edges 1, 2,
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and 12 cm. respectively and density 4 grm. per cub. cm.) as having

a moment of inertia equal to 1'207 about an axis through its middle

point and perpendicular to the face of greatest area. He is known
to have employed the cm. as unit of length, and to have worked

where g has the value 980*94 cm.-sec. units. What must have been

his unit of mass ?

Ans. The unit of mass of the C.G.S. system of gravitational

units.

(4) By what number must we multiply the value of a moment of

inertia expressed in the units of the ft.-lb.-sec. absolute system in

order to determine its value in the unit of the C.G.S. absolute

system ?

Ans. 421390-7....

(5) At the end of a thin rod, of length 2 ft. and linear density 1

oz. per in., are particles of masses 1 and 2 lbs. respectively. Ex-

press its moment of inertia about an axis perpendicular to the rod

through a point distant .3 in. from the particle of smaller mass, in

the units of {a) the absolute, and (6) the gravitational in.-oz.-sec.

systems (,9^= 32 ft.-sec. units).

Ans. (a) 17,352; (6)45-18....

493. Equations of Motion.—The moment of inertia

being thus a quantity capable of determination, we can
apply at once, to cases of motion, the equations of 454.

If the motion be about an axis fixed both in the

body and in space, the angular acceleration about it

a= ^FP/Xonr^, where IIFP is the algebraic sum of the

moments of the external forces, and llmr^ the moment of

inertia, about the fixed axis.

If the body be quite free to move, the linear accelera-

tion of the centre of mass is given by the equation

d= ^F/^m ; and the angular acceleration about any axis

fixed in the body through the centre of mass, by the

equation a = 2FP/2?m'-, where IIFP is the algebraic sum
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of the moments of the external forces and 2mr^ the

moment of inertia, about this axis.

These accelerations being determined and the initial

velocities being given, the final velocities and the dis-

placement may be found (see 251). The above equations

are therefore called the equations of motion of a rigid

body. We can apply them only in simple cases of the

motion of rigid bodies (227), in cases, viz., in which one
line in the body has a fixed direction in space. More
complex cases require higher mathematical treatment
than the readers of this work are supposed able to

apply.

494. In many cases, especially when the forces act only

for a very short time, it is convenient to have the equa-

tions of motion expressed in terms of the impulses of the

acting forces rather than of the forces themselves. Let
V, CO and v\ w be the initial and final values of the com-
ponent linear velocity of the centre of mass in the direc-

tion of the impulse, and of the angular velocity of the

body about the fixed axis, respectively. Then (117, 225,

and 319),

-, - 2Ft 2$
zm z,7)i

^FPt 2$P
and ^-^=27^2 = 2mr^'

where $ is the impulse of the force F.

495. The laws of the conservation of linear and of

angular momentum, deduced from the equations of motion

of extended systems (416 and 429) apply necessarily to

rigid systems. The expression of the latter becomes

somewhat modified however. In the case of extended

systems, it is expressed by the equation 2mft)r^ = con-

stant. In the case of a rigid body, either about an axis
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fixed both in it and in space, or about an axis fixed in it

through the centre of mass, it is expressed by the equa-
tion wl^mr'^ = constant.

496. Motion about Fixed Axes.—We shall now discuss

some examples of the application of the equations of

motion to the determination of the motion of rigid

bodies. We take first cases in which the axis of rotation

is fixed both in the body and in space.

Examples.

(1) Find the angular acceleration of a uniform circular disc,

moveable about an axis through its centre, perpendicular to its

plane, under a force applied in the plane

of the disc by means of a string fixed at

a point of the rim of the disc and wrapped

round the rim.—Let the disc have a mass

M and a radius r, and let its radius of

gyration about the given axis be k. The

force F acts taugentially to the disc. If

it acts as in the diagram, its moment
about the fixed axis is (425) - Fr. Hence

(493)

The angular acceleration is therefore constant. Hence, if the

initial angular velocity be given, the final angular velocity and

the displacement after any time may be determined as in 225.

(2) A rigid rod, 12 ft. long, whose mass may be neglected, has at

one end a particle of 10 lbs. mass and at the other a particle of

5 lbs. mass. It is free to rotate in a horizontal plane about an axis

through the centre of mass of the system. Find the force which

must be applied to the smaller particle perpendicularly to the rod

that unit angular velocity may be produced in the rod in 1 sec.

Ans. 60 poundals.
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(3) Find the time of oscillation of a heavy body capable of rota-

tion about a fixed horizontal axis, which does not pass through its

centre of mass. [Such a body is called a compound or physical

pendulum.']—Let the plane of the diagram be a

plane through the centre of mass perpendicular

to the fixed axis. Let S be the point in which

that plane intersects the axis, C the centre of

mass, and SN a vertical line.

The external forces are the weight mg (if m is

the mass of the body) and the forces by which

the axis is fixed. The latter have no moment
about the axis. The moment of the weight

which (474) acts at the centre of mass is, if we
denote CS by h and the angle CSN by d,

-mgh sill 6. If k is the radius of gyration of

the body about an axis parallel to the fixed axis through the centre

of mass, the moment of inertia of the body about S is (488)

n}{Xr+h^). Hence, if a is the angular acceleration about S,

_ mgh sin 6

The angular acceleration therefore varies with the displacement

from the position in which SC is vertical, and the deter-

mination of the displacement produced in any time is therefore

difficult.

If however the body move, so that d is always small, we may
write 6 for sin d, in which case

In a similar way, or by reference to 187,* it may be shown that the

* In 187 we found the tangential acceleration of the bob of a
simple pendulum, moving under acceleration g^ to be gd. Now, as
the bob moves in a circle, it follows from 135, 130, and 120, that
the magnitude of its angular acceleration about the centre is the
quotient of its tangential acceleration by its distance from the
centre, or in this case gd/l.
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angular acceleration of a simple (or mathematical) pendulum of

length I oscillating in a plane is

Hence the motion of the physical pendulum will be the same as

that of a simple pendulum whose length

and the time of oscillation (187) will therefore be

= 27r^:
gh

A simple pendulum of the length I is usually spoken of as the

isochronous simple pendulum.

Produce SC to 0, and make *S'0 equal to I. The point is called

the centre of oscillation, the point *S^ being called the centre of

SKspension of the pendulum. Then

k^=:h(l-h) = SC.CO.

Let the point be now made the centre of suspension, i.e., let the

given body be made to oscillate about an axis through 0, parallel

to the original axis ; and let OC be produced to a point S' such that

OS' is equal to the length of the simple pendulum which is iso-

chronous with the physical pendulum about the new axis. Then
it may be shown as before that

P=OC.CS'.

Hence the points S and S' coincide, and the centres of suspension

and oscillation are convertible.

[Capt. Kater applied this property of the centres of oscillation

and suspension of the physical pendulum to the determination of

the value of g. He employed a uniform metallic bar, provided

with means of suspension at points A and B, known by calculation

to be very nearly in the relative positions of the centres of oscillation

and suspension, and provided with means of producing slight
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changes in the position of the centre of mass of the bar and in its

moment of inertia. He then adjusted the instrument so that its

time of oscillation was the same whether ^ or .B was the point of

suspension. The time of oscillation thus observed was that of a

simple pendulum whose length was the distance of A from B,

Hence, in the equation t=2irs/l/g, I and t being known, ^ could

be found. The construction of Capt. Kater's pendulum, the mode

of its adjustment, and the best methods of observing its time of

oscillation, will be found described in books on laboratory practice.]

(4) A uniform rod, 10 ft. long, is suspended from a point 2^ ft.

from one end. Find («) the position of the centre of oscillation,

and (6) the time of a small (double) oscillation.

Ans. (a) If ft. from the other end
;
(b) 2*67... sec.

(5) A uniform cube is free to turn about one edge which is

horizontal. Find the length of the edge that the cube may swing

to and fro in a second.

Ans. 0-865... ft.

(6) Compare the times of oscillation of a uniform thin circular

plate about a horizontal tangent with that about a horizontal axis

through the point of contact perpendicular to the plate.

Ans. s/^ : ^6.

(7) Determine the axis of suspension of a uniform rectangular

lamina for which the time of oscillation under gravity is a

minimum.

Ans. Its distance from the centre of mass is equal to the radius

of gyration about a parallel axis through that point.

(8) A uniform straight rod AB 18 freely moveable about its fixed

lower end A. The other end B is attached by a fine string to a

fixed point C. The system is slightly displaced, the string being

kept tense. Find the time of a small (double) oscillation.

Ans. ^=27r» /——?HLr where <p is the inclination of AC to theV Sq cos

horizon, and ^ is the inclination of ^IC to AB.—A C is the fixed axis-
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of the system. If mg is the weight of AB, its component in a plane

perpendicular to ^Cis mgcoscp, and the distance of the line of action

of this component from AC is, if 6 is the inclination of the plane

ABC to the vertical plane through AC, ^ABsin^sind.

(9) A plane lamina is moveable about a fixed point in its own
plane. To determine the line of action of a blow of impulse 4> which

will produce no jerk at the fixed point.—Let C be the centre of

mass of the lamina. The blow will produce in two component

accelerations, one due to the angular acceleration about C and

therefore perpendicular to OC, and the other the translational

acceleration common to it and to C and therefore codirectional with

the impulse. Since is fixed and these component accelerations

therefore equal and opposite, the line of action of the impulse must

be perpendicular to OC. Let OC=h, and let d be the distance of

*'s line of action from 0, and let k be the radius of gyration of the

lamina about C. Then (244), equating the values of the angular

acceleration about and C respectively, we have

Hence d={Ji:^-+ h^)ik.

The point in which ^'s line of action cuts OC is called the ceyitre

ofpercussion. By Ex. 3 it coincides with the centre of oscillation.

(10) A uniform rod AB \& capable of rotation about A. Show
that, if a blow (impulse =^) be applied perpendicularly to its

length at either the point jB or a point distant from B by the

amount 2ABI3, the jerk at A is ^/2, i.e., a blow of impulse 4>/2 must

be applied at A to keep that point at rest.

497. Motion of Free Rigid Bodies.—The following

problems illustrate the application of the equations of

motion to bodies which have no point fixed.

Examples.

(I) A uniform circular disc whose plane is vertical rolls (without

sliding) down an inclined plane. Determine its motion.
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upon by three forces, its weight W, the

normal reaction of the plane R, and

the friction F. All are in the plane

of the disc. Were there no friction

the disc would slide down the plane.

Since the friction prevents the sliding,

the direction of F is therefore up the

plane.

Let the radius of the disc be r, its mass

«i, and k its radius of gyration about an axis through C perpen-

dicular to its plane, and let i be the inclination of the plane. Then,

if a is the linear acceleration of the centre of mass down the plane,

d=g sin i— F/m.

The linear acceleration in a direction normal to the plane is zero.

Hence the above is the resultant linear acceleration. The resultant

angular acceleration about the centre of mass is

Now (254, Ex. 9)

Hence

Fr
mk

d+ ar— Qi.

H. and F='^^^'
my^ 7-2

Substituting in the first equation this value of F^ we find

-_flrr%in^

Hence
_^rsin i

Both linear and angular accelerations are therefore constant.

Hence the displacements and velocities after any given time may
readily be determined.

(2) Find the time a rigid cylinder will take to roll from rest down

a plane 20 ft. long and inclined 30° to the horizon, the axis of the

cylinder being horizontal.

Ans. 1'93... sec.

(3) A uniform circular disc whose plane is vertical moves in con-
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tact with a smooth inclined plane. From a point in the same

vertical plane as the disc and at a distance from the inclined plane

equal to the diameter of the disc, a string is carried parallel to

the inclined plane and is wrapped round the edge of the disc and

its end is fixed in the circumference. Find {a) the tension in the

string, (6) the linear acceleration of the centre of the disc, and

(c) its angular acceleration.

Ans. (a) m(/k^smi/{k^ + r^), (6) gi-^siniKk^+r^), (c) grsmi/{J^^+r^),

where m is the mass of the disc, r its radius, k its radius of gyration

about an axis through its centre perpendicular to its plane, and i

the inclination of the inclined plane.

(4) A flexible and inextensible ribbon is coiled on the circumfer-

ence of a uniform circular disc (radius= /-) and has its free end

attached at a fixed point. A part of the ribbon is unrolled and ver-

tical, and the disc is allowed to fall from rest by its own weight.

Find (a) the motion of the disc before the ribbon becomes wholly

unrolled, and (6) the time in which the centre of the disc will de-

scend g/S ft. from rest.

Ans. (a) Acceleration of centre of mass= 2g'/3 ; angular accelera-

tion= Ss^^Sr)
; (6) 1 sec.

(5) A homogeneous hemisphere performs small oscillations on a

perfectly rough horizontal plane. Find the periodic time.

Ans. If r is the radius, c the distance of the centre of mass from

the centre of the hemisphere, and k the radius of gyration about an

axis parallel to the instantaneous axis through the centre of mass,

the time of a small oscillation is

(6) A uniform circular hoop moving in a vertical plane in contact

with a rough horizontal surface has at a given instant an angular

velocity opposite in direction to that which would enable it to roll

in the direction of its translation at that instant. Determine its

subsequent motion.

Let // be the hoop, Ox the intersection of the given vertical and

horizontal planes. The forces acting on the hoop are its weight and
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the components of the reaction of the plane, viz., its normal compon-

ent R and the friction F. If we
suppose the translation of the hoop

to be in the direction Ox, the fric-

tion F which acts at A will have

the direction AO. R and the

weight mg act also through A. the

one vertically upwards, the other

vertically downwards. If m is the

mass of the hoop, r its radius, k

its radius of gyration about an

mg axis through its centre C perpen-

dicular to its plane, the acceleration of the centre of mass parallel

to Ox

a=-Flm,

and the angular acceleration about an axis through C perpendicular

to the plane of the hoop

a= - FrlimJc^).

Since the hoop remains in contact with Ox there is no acceleration

perpendicular to Ox ; and therefore

R-'ing= 0.

Hence, if m is the coefficient of kinetic friction,

F=iJimg.

Hence a=-ixg

and a= - fxgrjB.

The linear and angular accelerations are therefore constant, and

hence the initial linear and angular velocities, and the initial posi-

tion of the hoop being given, its position and velocities after any

time may be determined.

If at any instant there be no slipping we have (254, Ex. 9), if v'

and w' are the linear velocity of C and the angular velocity about C
respectively at that instant, F-f wV=0. If therefore it be required

to determine the time, t, after which slipping ceases, we have, de-
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noting by v and w the initial values of the linear and angular velo-

cities respectively,

v'= v-figt,

<a'= o} — jxgrtjk'^,

v' + w'r= 0.

Eliminating v' and w' from these equations we find

k\v + oy)')

At the instant at which v'+ w'r becomes zero, there is no tendency

to slip, and fi becomes zero. Hence a= a= 0. Hence after the

time t the linear and angular velocities are constant, and their

values are

_,__ F(y + (ar)_ r{rv — Pw)^~^"
F+r2^ F+72~

, rCv+ u)r) Jc^u — rv

F+r2 F + r2*

If TV — k^w is negative, v' is negative. Hence if w is positive and

greater than r'ajk'^, the translation of the hoop will, after the above

time t, be in the opposite direction to the initial translation.

The above results apply also of course to a ball spimiing about a

horizontal axi^ perpendicular to the direction of its translation.

The reader who in his youth has played with a hoop, or in more

advanced years has amused himself with a napkin ring or a billiard

ball, will recognise in the above results the mathematical expression

of a familiar experience.

(7) A uniform circular cylinder (radius = r, radius of gyration

about axis = k\ rotating about its axis with angular velocity, w, is

placed with its axis horizontal on a rough inclined plane (coefiicient

of friction =/i, inclination {i) to horizon= tan~V), the direction of the

rotation being that which it would have if the cylinder were rolling

without sliding up the plane. Show that the axis of the cylinder

will be stationary for a time k^wlXiJ-rg cos 2), at the end of which the

angular velocity will be zero.

(8) A uniform beam is supported horizontally on two props.

Where must one of them be placed that, when the other is removed,
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the instantaneous force exerted on the former may be equal to half

the weight of the beam ?

Let A be the required distance of the permanent prop from the

middle point of the beam, k the radius of gyration of the beam

about a normal axis through its middle point, m the mass of the

beam, a its angular acceleration, and R the force exerted on the per-

manent prop immediately after the removal of the other. Then

(496, Ex. 9, and 244).

_ mgli _ Rh _ \ingh

Hence k —L

(9) A uniform square is supported in a vertical plane with one

diagonal horizontal by two pegs, one at each extremity of the dia-

gonal. Show that the initial force on one peg, when the other is

^suddenly removed, is equal to one fourth of the weight of the square.

(10) A uniform horizontal bar, suspended from any two points in

its length by two parallel cords, is at rest. If one of the cords be

cut, find the initial tension in the other.

Ans. If I is the length of the bar, W its weight, and d the dis-

tance from its centre of mass of the point of attachment of the

uncut cord, the tension is Wiy{l^+ 12d''^).

(11) A uniform beam (weight= W) rests with one end against ai

smooth vertical wall, and the other on a smooth horizontal plane,

;

its inclination to the horizon being i. It is prevented from falling

by a string attached to its lower end and to the wall. Find the

instantaneous force between the upper end and the wall when the^

string is cut.

Ans. ^Wcoti.

(12) A sphere is laid upon a rough inclined plane (inclination= t).

Show that it will not slide, if the coefficient of friction is as great

as, or greater than (2/7) tan i.

(13) A sphere (radius= r) whose centre of mass is not at its centre

of figure, is placed on a rough table (coefficient of friction =/*) ;

find whether it will begin to slide or to roll.

Ans. If the initial distance of the centre of mass from a vertical

line through the centre of figure is greater than fj^k^/r, k being the
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radius of gyration of the sphere about the tangent line througli its

point of contact with the table and perpendicular to the plane con-

taining its centres of figure and of mass, it will begin to slide ; if

less, to roll.

(14) One end of a rigid rod which is moving in any way in a

vertical plane impinges upon a fixed smooth horizontal plane (a)

without, or (6) with, recoil. It is required to determine the initial

motion of the beam after impact.

Let A She the rod, CD the intersection of the plane in which the

rod is moving, with the horizontal plane. ^ ^B
Let 6 be the inclination of the rod to

the plane at the instant of impact, in

the mass of the rod, a the distance of

its centre of mass from A, k its radius c

of gyration about an axis through its centre of mass perpendicular

to the plane of its motion. Let 4> be the impulse experienced by
the rod at A on impact. Its direction is vertically upwards. Let

Vj v', be the components vertically upwards of the velocities of the

centre of mass before and after impact respectively. Let w and w'

be the angular velocities about the centre of mass before and after

impact respectively (the positive direction of rotation being counter-

clockwise). Then the integral linear and angular accelerations are

v' —V and w' - w respectively. Hence

and w' - w= - 4>a cos 6l{miP).

(a) If there is no recoil, A remains in contact with CD after the

impact. Hence the sum of its component velocities after impact

must be zero. These are v' upwards and w'acos^ downwards.

Hence
"' - (a'a cos ^ = 0.

These three equations are sufficient to detei-mine v', w', and $ in

terms of v, w, and 6.

(b) If there is recoil, let the coefficient of restitution be e. Then

if 4>' be the impulse on impact, and $ the value the impulse would

have were there no recoil, we have (379)

*'= (l + e)*.
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*' is therefore known in terms of v, w, 6, and e. If its value be sub-

stituted for * in the first two equations, v' and w' may then be

determined for this case also.

(15) A beam which is moving without rotation in a horizontal

plane impinges without recoil on a fixed rod at right angles to the

plane. Find (a) the impulse of the reaction of the rod, and (6) the

angular velocity of the beam immediately after impact.

Ans. (a) m^%sina/(c2+F); (b) cu sin a/(c^+ k^) ; where m=mass

of beam, ^= radius of gyration about normal axis through centre

of mass, ?i= velocity of centre of mass before impact, a= inclination

of direction of u to the beam, c= distance of centre of mass of beam
from fixed rod at instant of impact.

498. Motion ofSystems ofRigid Bodies.—If the motion
is to be determined of several bodies which act upon one
another, the equations of motion must be applied to each
of them. The following cases will serve as illustrations :

Examples.

(1) Two particles of masses m and m' are connected by an inex-

tensible string which hangs over a pulley moveable about a fixed

horizontal axis. The axle of the pulley is smooth, its rim so rough

that the string does not slip. Find the acceleration of the particles.

(Atwood's Machine. See 382, Ex. 1).

Let T and T' be the tensions in the portions of the string attached

to on and m' respectively. The moments of T'

and T about the axis of the pulley are, if r is the

radius of the pulley, T'r and - Tr respectively.

Hence, if a is the angular acceleration of the

pulley,

T'r- Tr

where Mis the mass of the pulley and k its radius

of gyration about its axis. As the string is in-

extensible, the acceleration a of m' is the same as

that of m; and we have as in 382, Ex. (1),

a= {m'g - T')lrn!= {T- mg)/m.
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We have also, since the string does not slip,

a= ar.

Hence we have four equations involving four unknown quantities,

a, a, T, T. Eliminating a, T, and T\ we find

_ m' —m

which diflFers from the'result of 382, Ex. 1, in which the string hanga

over a smooth peg by the introduction of the quantity MP/r^.

(2) A uniform cylinder weighing 100 lbs. turns without friction

on its axis which is horizontal. Motion s communicated by a body

of 10 lbs. mass, attached to an inextensible string without weight,

which is coiled rovmd the surface of the cylinder. Find the distance

through which the body will descend from rest in 10 sec.

Ans, 10^9^.

(3) To the string coiled round the wheel of the simple machine

called the Wheel and Axle (254, Ex. 5) a mass of 10 lbs. is attached
;

to the string around the axle a mass of 100 lbs. Given that the

radii are 3 ft, and 3 in. respectively, that the moment of inertia

about the axis expressed in terms of the pound and foot is 2400,

and that the machine is frictionless, find the number of revolutions

made in 1 minute from rest, taking ^ to be 32 ft.-sec. units.

Ans. GO/tt.

(4) Find the time of a small oscillation of a Balance with nearly

equal masses in its pans. [The Balance consists of a practically

rigid body called the beam, moveable about a horizontal axis fixed

in it, and symmetrical about a plane through this axis and the centre

of mass of the beam. It carries pans or scales to contain, one the

body to be " weighed," and the other standards of mass. The pans

are moveable about axes fixed in the beam, which are parallel to

the axis of the beam, and are equidistant both from it and from the

centre of mass. A plane through the centre of mass of the beam,

perpendicular to the three axes, intersects them in three points,

which are called the points of suspension of the beam and pans

respectively. The distances of the points of suspension of the pans

from that of the beam are called the arms of the balance. The
2b
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centre of mass of the beam is usually below its fixed axis, the beam
being provided with an adjustment by which the position of that

point may be varied. The line joining the points of suspension of

the pans passes in general below the axis of the beam. In some in-

struments it is made to pass as nearly as possible through the axis,

in others a little above it, when the pans are unloaded.]

Let OBC be the beam, being its point of suspension, G its

centre of mass, and B and C the points of suspension of the pans

F and Q. Let A be the point in which OG produced cuts CB. It

is obvious that OA is at right angles to BC. In the diagram the

angle OCA is for clearness made large. It is usually small.

The beam is acted upon by three forces, its weight and the

resultants T, T' of the tensions in the strings or rods supporting

P and Q respectively. The motion of the beam is usually slow and

through small angles. Hence, though P and § will oscillate about

G and B^ we may for an approximate result assume T and T to be

vertical. If, then, M be the mass of the beam and k its radius of

gyration about 0, m and m' the masses of the pans P and Q respec-

tively with their contents, /3 the angle OCA , and the inclination

of BC to the horizon at any insta]it, we have for the angular ac-

celeration (a) of the beam

_ T{AC cos e-OA sin B) - T\AB cos d-\-OA sin d)-Mg.OG. sin e ."
MlcK

For the reader will have no difficulty in proving by the aid of the
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second figure, (in which the dotted lines are all either horizontal or

vertical) that the numerator of this expression for a is the algebraic

sum of the moments of the forces about 0.

The pans P and Q are acted upon by two forces each, viz., their

weights and the resultants T and T' of the tensions in the strings

or rods supporting them. Hence the vertical linear acceleration

of P is {mg — T)jm ; and it is equal to the vertical component of the

linear acceleration of C, which is a . OC . cos (6+^). Hence

mg - T=maOC cos {6 + /S).

Similarly T' - m'g= m'aOC cos (d - /3),

Now OC cos (e±^) = OC{cos ^ cos /3+ sin 6 sin /3)

=ACcosd+ OA due.

Hence

aML^= mg{AC cos ^ - OA sin 6) - m'g(AC cos ^+ OA sin 0)

- MgOG sin d - maOCT- cos-(^ +^3) - m'a.OC^ (^o^\B - /3.)

For small values of d therefore

aMB=mg{AC- OA . d) - m'g{AC+ OA.e)-Mg. OG . d

- {m+ m')aOC'^ cos^^.

Hence, noting that AC=0C cos /3,

m{AC- OA.d)- m'{A C+ OA .6)-M. OG .

Mk'^+{m + m')AC^
^'

If the masses of P and Q are the same, viz. /«, we have

__2m.0A+M.0G

Hence (496, Ex. 3) the time of a small oscillation is

""^Z {2m.OA+M.0G)g'

If Bj Oj and Care in the same straight line, AC= OC Aud OA =0.

Quickness of motion is a desirable characteristic of a balance,

and it should therefore be so constructed that t may be as small as
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possible. Hence for this purpose the mass of the beam, its radius

of gyration, and the distance between the points of suspension of

the pans, should be as small as possible, and the distance from the

axis both of the centre of mass and of the line joining the points

of suspension of the pans should be as great as possible.

For conditions of sensitiveness, see 507, Ex. 11.

(5) A uniform sphere aS^ rolls without sliding down AB a. line of

greatest slope of the inclined plane surface of a wedge ACj which

lies upon a smooth horizontal table Ox, the centres of mass of the

sphere and wedge and the given line AB being in the same vertical

plane. It is required to determine the motion of the sphere and

wedge.

Let the vertical plane containing the line AB and the centres of

mass of sphere and wedge, I) and G, intersect the table in the line

Ox ; and let ^y be drawn in this plane, and perpendicular to Ox.

Let m be the mass of the sphere, r its radius, k its radius of gyra-

tion about any axis through its centre of mass, m' the mass of the

OB C

wedge, R the normal component, and F the frictional component of

the reaction between the sphere and wedge, and the angle ABC
of the wedge. As it is the frictional component of the reaction of

the wedge on the sphere which causes the sphere to roll, it must be

directed up the plane. Hence the same component of the reaction

of the sphere on the wedge is directed down the plane. (The forces

acting on the wedge are indicated by double arrow-heads.)

The equations determining the motion of the sphere are as fol-

lows. If dx is the linear acceleration of the centre J) of the sphere

in the direction Ox^
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djc=( — Il sin
<f>+F cos 4>)lm.

If d^ is its linear acceleration in the direction (?y,

cty—{R cos <p+F sin <p — mg)jm.

If a is the angular acceleration of the sphere about an axis through

B perpendicular to the plane of the diagram

a=Frl{mB).

The wedge obviously moves so that BC remains in contact with

the table. Hence the weight of the wedge and the normal reaction

of the smooth table do not affect its motion, and the acceleration

d'x of the centre of mass of the wedge is therefore

a\={Rsm^-Fcos <P)hn '.

In the above four equations we have six unknown quantities,

R, Fj a, dx, dyy d'x. But two more equations may be obtained by a

statement of the kinematic conditions of the problem. First, since

>S' rolls down the inclined plane, the change produced in any time

in Ifs vertical distance from any point B in the wedge divided by

the change in its horizontal distance from the same point is equal

to tan (p. Hence at every instant the ratio of Us vertical velocity

relative to B to its horizontal velocity relative to B has this

value ; and hence also the ratio of the vertical acceleration of D to

its horizontal acceleration relative to B has the value tan 0. Now,
the vertical accelerations of D relative to B and to are the same,

for B has no vertical acceleration relative to 0. And the horizontal

acceleration of B relative to is equal to that of B relative to (?,

together with that of B relative to B ; and therefore the horizontal

acceleration of B relative to B is equal to that of B relative to 0,

mimes that of B relative to 0. Hence the first kinematic condition

may be expressed by the equation

^^K^f'x - d'x) = tan 0.

Secondly, since there is no sliding of the sphere on the inclined

plane, the linear velocity in any direction of that point of the

sphere which is in contact with the wedge must at every instant be

equal to the velocity of the wedge in the same direction. Now,

this point of the sphere has in the direction Ox two component
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linear velocities, one v^, the horizontal velocity of /), and another

/'w cos due to the angular velocity w of the sphere about I).

Hence if v^ is the horizontal velocity of the wedge,

As this holds for every instant, it follows that

The six equations thus obtained are sufficient to determine the

values of all the unknown quantities they contain.

(6) A uniform cylinder (niass^m) rolls, without sliding, directly

down a rough inclined plane (inclination= i), while a string coils

round it which unwinds from an equal parallel cylinder, revolving

about its axis wliicli is fixed, the position of the latter cylinder

being such, that the string is parallel to the plane. Find {a) the

linear acceleration of the cylinder
; (6) the stress in the string ; and

(c) the friction of the inclined plane.

2 2 3
Ans. (a) -g sin i

; (6) ^mg sin i ; (c) "^gr sin i.

(7) Two rigid discs, of radii r and r' and masses m and w', can

rotate in their common plane about axes through their central

points. They nearly touch each other, and each has a small pro-

jecting tooth. The one whose mass is m' is at rest. The other has

an angular velocity Wq. Find their angular velocities after the

impact of the teeth, (a) if there is no recoil, {h) if the coefficient of

restitution is e.

(a) Let w be the common angular velocity after impact and

4> the magnitude of the impulse. Then (494 and 490, Ex. 11),

w — Wo= — ^rK^ir^),

and w=4>r7(W/-'2).

Hence w= ojQmr/{mr+ m'r').

(6) Let w and w' be the magnitudes of the respective angular

velocities after impact, and the impulse. Then

b) - wq= - <t>rj{^r\

and w'= (fyr'K^m'r'^).

Now (379) 0=^(1 + 6),
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and from the equations of (a)

2(?nr+ w'r')

/ wiV(l+e)\
Hence u=cjr\ 1 ^;— ,J j.

, ,
mril+e)

and w = Wft .
—

^"i

—

~rmr+mr

(8) A particle, of mass m, dropped from a height Z, strikes the

end of a horizontal uniform beam, of mass 3w and length 2l, which

can move freely about its centre of mass. Find the angular velocity

of the beam immediately after impact, (a) if there is no recoil, (6)

if the coefficient of restitution is 0'5.

Ans. {a) s/gl2l; (6) g V^/2l •

(9) A circular cylinder (mass=m, radius =r, radius of gyration

about its axis=^-) is revolving with angular velocity w about its

axis which is horizontal, when it suddenly begins to life a particle

(mass=w') by means of an inextensible string wound round the

cylinder. Find (a) the angular velocity of the cylinder immediately

after the particle begins to move, and (6) the impulse of the stress

transmitted by the string.

. . X wmP ,,v wnm'rk^
Ans. {a) —r^r,—To ;

(o) —r-^, To-
rn r^+ mk^ mr^-{- 7nk^

(10) Two uniform weightless spheres, either smooth or rough, and

moving without rotation, undergo impact. At the instant of im-

pact, their centres are moving in the direction of the line joining

them. Given their velocities before impact, find their velocities after

impact.

Since the spheres are either smooth or moving without rotation,

the direction of the stress during impact is normal to the surfaces

of the spheres. It therefore produces no angular acceleration. The

equations of motion are therefore the same as in the case of two

particles moving in the same straight line which so impinge, that

the stress during impact is in the line of motion. Hence the results

of 380, Ex. 1, apply also,to this problem.

When two spheres impinge whose centres at the instant of im-
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pact are moving in the direction of the line joining them, the

impact is said to be direct. From the above it is obvious that Exs.

1-8 of 380 may all be transformed, by changing a few words, into

examples of the direct impact of smooth or of non-rotating spheres.

(11) Two imiform smooth weightless spheres, moving without

rotation so that their centres remain in a given plane, impinge

with or without recoil. Given their velocities immediately before

impact to find them immediately after.—Let J , 5 be sections of

the spheres by the given plane, C, D their centres of figure and

therefore of mass. Let u^ v, inclined 0" and x" to CD respectively,

be their velocities before impact, u\ v\ inclined 0'", x'° respectively

to (7i>, their velocities after impact.

During impact a stress of impulse R acts between the spheres

in the line joining their centres. It therefore produces no

angular acceleration in either. As there are no external forces

acting on the spheres, the linear momentum (416) in the direction

of the line of impact {CD) is the same before and after impact.

Hence, if M and m are the masses of the respective spheres,

Mu cos <t>+mv cos x

=

Mu' cos <t>' + mv' cos x'-

As no forces act on either sphere in the direction perpendicular

to CD
wsin0=i*'sin0',

and 'ysinx= «''sinx'.

If there is no recoil the component velocities in the direction of CD
are simply equalized by the impact. Hence

u' cos <p> = v' cos x'-
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These four equations are sufficient to determine w', v', 0', x i*i terms

of II, V, 0, and x-

If there is recoil, and if e is the coefficient of restitution, we
have (379)

v' cos x' — u' cos 0'= e{u cos (p — v cos x)

;

and this equation, with the first three of those obtained above, are

sufficient to determine the four unknown quantities.

The impact of two splieres, whose centres at the instant of impact

are not moving in the same straight line, is said to be oblique.

(12) A smooth ball A, weighing 20 grm., strikes another ball B
which is at rest, the direction of ^'s motion being inclined 30° to

the line joining the centres of A and B at the instant of impact,

and glances off in a direction perpendicular to that of its motion

before impact. Find the mass of B, the coefficient of restitution

being 0*4.

Ans. 400 grm.

(13) A billiard ball A (mass=m) impinges upon another B (mass

= m') which is at rest, the direction of J's motion before impact

being inclined 45° to the line joining the centres at the instant of

impact. Find the direction of J's motion after impact, assuming

the coefficient of restitution equal to unity.

Ans. Inclination to the line joining the centres= tan~i— .

m -m

(14) Two billiard balls A and B are lying in contact on a table.

Find the direction in which B must be struck by a third ball C so

as to be driven off in a direction inclined at a given angle d to the

line joining the centres of A and B, all three balls being smooth

and of equal volume and mass. Show that the result is the same

whatever be the value of the coefficient of restitution.

Ans. The line joining the centres of C and B at the instant of

impact must be inclined to the line joining the centres of A and B
at the angle tan~^(|^tan 6).

(15) Two straight rods ACBd^wd CD, whose thickness and density

are equal, and whose coefficient of restitution is unity, lie on a

smooth horizontal plane at right angles to each other, the end ('
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of the latter being in contact with the former. Determine the

])oint at which ACB may be struck without consequent rotation.

Ans. If AC=a, CB= h, and CI)^(\ and if a>Z), the required

a^ — h^
])oint is in AC, and its distance from C is —.—

. , .
..

(16) A ball (mass= 7W, radius =r, radius of gyi^ation about its

centre= ^) sliding without rotation along a smooth horizontal

plane, with velocity u, strikes against a perfectly rough vertical

plane, its direction of motion before impact being inclined at the

angle 6 to the vertical plane. Show (1) that if there is no recoil

the imiHilse, during impact, of the frictional component of the

reaction of the vertical plane is

mlchc cos 6

r^+F '

and (2) that if the coefficient of restitution is e, the ball's direction

of motion after impact is inclined to the vertical plane at the angle

499. The Laiv of Energy.—The general law of energy,

deduced (437) from the equations of motion for extended
systems, including the law of the conservation of energy

(435), applies of course to those extended systems which
are rigid. Its application to the solution of problems is

simplified in the case of rigid bodies for two reasons.

First, as the particles of the system are at invariable

distances from one another, the internal forces do no
work in any displacement, and therefore the external

forces only appear in the equation. Secondly, the ex-

pression for the kinetic energy relative to the centre of

mass is very simple. If w is the angular velocity about
an axis fixed in the body, and r the distance of a particle

from the axis, wr is its linear velocity relative to points in

that axis. Hence the kinetic energy of the system rela-

tive to points in the given axis is
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if M and k are the mass of the body and its radius of

gyration about the given axis respectively. If the given

axis pass through the centre of mass, the above is the

expression for the kinetic energy relative to that point.

We shall illustrate the application of the law of energy
to the solution of problems by a few examples

:

Examples.

(1) A uniform rod moves in a vertical jDlane within a fixed smootli

hemisphere. To determine its angular velocity in any position, its

initial position being one of instantaneous rest.—Let ABB' be the

hemisphere, its centre. Ox and
i o o n'

Oy horizontal and vertical lines

respectively in the plane of the

lod's motion. Let A!B' be the

initial position of the rod, li

being the distance (G'D') of its

centre of mass (C) from Ooj.

Let AB be its position at the

instant under consideration, OD
and Z)(7, or x and y, being the co-ordinates of its centre of mass.

The component velocities of C will be x and y. Hence if w is the

angular velocity of the rod about (7, m its mass, and k its radius of

gyration about a normal axis through C, the kinetic energy of

the rod in the position AB and therefore the increase of kinetic

energy during the motion from the position A'B' to the position AB
is (442) \m{x^+y^+ Jiru)^). The external forces acting on the rod are

the reactions of the smooth sphere and the weight of the rod. As
the ends of the rod move in all jiositions in directions perpendicular

to the reactions exerted on them, no work is done by or against these

reactions. Work has been done by the weight of the rod, and, as

the centre of mass has fallen through the distance y-h verti-

cally, the potential energy has diminished by the amount mg(^-h).

Hence, by the law of conservation of energy,

\m{x^+y + Fw2) - mg{y - A) = 0.

Now the instantaneous centre of the motion (233) of ^4 B is 0. Hence
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the linear velocity of C is perpendicular to OC and has the magni-

tude OC . w, or, if c be the distance of the rod from the centre, cw.

Hence its components in the directions Ox^ Oy are, if the angle

COy be written ^,

x= -CO) cos ^,

y= CO) sin Q.

Also y— G cos ^,

and A= c cos 0,

if «^ is the initial value of Q. Hence, substituting in the above

equation these values of .r, y, y^ and A, we obtain

{<?+ /[•2)w2= 2C^(C0S e - COS 0).

If 2a is the length of the rod, ¥= d?lZ. Hence

w2=_4^L (cos ^ - cos 0).

(2) Two equal spheres starting at the same instant without

initial velocity move down two equally inclined planes, one of which

is smooth, the other perfectly rough. Find the ratio of the kinetic

energy of the former sphere to that of the latter at the end of any

time. (See 490, Ex. 14.)

Ans. 7/5.

(3) A solid cylinder is freely moveable about its axis which is

fixed horizontally, and masses w, w! are hung at the ends of a string

wound round it and attached to it at some point so as to prevent

slipping. After im! has descended from rest for t seconds it is sud-

denly cut off and the system comes to rest in t seconds more. Find

the mass of the cylinder.

Ans. 4:jn^j{m' — 2m).

(4) A uniform rod AB (length= 2a., mass= wi, radius of gyration

about a normal axis through the centre of mass = k) is capable of

moving freely about a hinge at a point A in a smooth horizontal

table. The other end B rests upon the smooth upper surface of a

wedge (angle = i, mass= m') which lies upon the table, the vertical

plane through AB being perpendicular to the edge of the wedge

and passing through its centre of mass. Find the angular velocity
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of the rod when inclined to the table at an angle d, given that its

value was zero when the inclination of the rod was /3.

2mag sin^2'(sin ^ - sin 6) v*
Ans. (——j^

k'^)smH+4m'a^cos^{i -e))

(5) A thin spherical shell rests upon a smooth horizontal plane

and a particle of the same mass as the shell is placed at the lowest

point of its internal surface, which is smooth. With what horizon-

tal velocity must the shell be projected in order that the particle

may ascend to the height of the centre of the shell.

Let C be the centre of the shell, S its section by a vertical plane

through C, and Ox the direction of

projection. The particle is to move

from F up to Q. At any position P'

it is acted upon by two forces, its

weight mg and the reaction R of the

shell. The forces acting on the shell

are its weight mg, the reaction R' of

the horizontal plane, and a force equal

and opposite to R. All pass through

its centre of mass, and therefore (495) the angular accelei^ation of

the shell being initially zero continues to be zero. When the

particle has risen to the height of the centre it is to be instan-

taneously at rest relatively to the shell. Hence it will have

the same velocity as the shell. Let v' be the velocity of shell

and particle at that instant, v the initial velocity of the shell,

m its mass, and a its radius. Tlien the initial kinetic energy

of the system is ^mv'- and the final kinetic energy is mv'\ The
increase of the potential energy of the particle is mga. The
potential energy of the shell undergoes no change. Hence, by the

law of the conservation of energy,

mv'- — hnv- + mga = 0.

Now the external forces acting on the system of shell and particle

are all vertical. Hence, by the law of the conservation of linear

momentum (416), the horizontal momentum is constant and we
have thus 'mv= 2mv'.

Eliminating i/ from these equations we find

v= 2 y/ga.
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(6) A uniform rod (length = 2«, radius of gyration about a normal

axis through the centre of mass= X) is at rest, hanging by a ring

attached to its upper end from a smooth fixed horizontal rod. An
angular velocity w is communicated to the hanging rod about an

axis perpendicular to the vertical plane through the fixed rod.

Find its angular velocity when inclined at an angle 6 to the ver-

tical.

r-12grsin-(^/2)y
a(l + 3sin=^^) /

Ans•0

(7) Compare the times of oscillation of two pendulums, each of

which consists of a massless rod ending in an indefinitely thin

massless spherical shell which contains a uniform rigid sphere of

the same diameter as the shell, the internal surface of the shell

being in one pendulum smooth, in the other perfectly rough, and

the dimensions of both pendulums being the same.

Let m be the mass of the sphere, r its radius, and k its radius of

gyration about a diameter. Let j3 be the greatest inclination of

the rod to the vertical during an oscillation, 6 the inclination at any

given instant; and let a be the distance from the centre of the.

sphere to the point of suspension.

When the rough pendulum falls from inclination ^ to inclina-

tion dj the potential energy increases by
the amount

mffa{cos /3 - cos d)
;

and, as the angular velocity of the sphere

about its centre of mass is the same as that

of the rod at any instant, which we may
denote by w, the kinetic energy increases

by the amount hma-co'^+ hnk^u^ (442).

Hence

hn(a^+ k-)u)^+ mga{cos /3 - cos d) = 0,

and '=^ A9(cos^-cos^).
a^+ k'-'

When the smooth pendulum falls from inclination /3 to d, the

potential energy changes by the same amount as in the case of the

rough pendulum. The change of kinetic energy however is differ-

ent. The forces exerted on the sphere by the smooth shell all j>ass
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through its centre. Hence, by the law of the conservation of

angular momentum (429), its angular velocity about its centre of

mass is constant, and as its value is zero at inclination ^ it is zero

also at inclination d. Hence, if we denote by w' the angular velocity

of the rod at inclination d, the kinetic energy of the smooth pen-

dulum increases during the given change of inclination by the

amount ^nia^u"^. We have therefore

hma^(a'^+ mga{cos /S - cos 6) = 0.

and w'2= ^(cos d - cos ^).

Now (352, Ex. 5) the angular velocity w" of a simple pendulum

of length I, acquired in falling from inclination ^ to inclination d is

such that

a,"2=:%(cos6/-COSi3).

Hence the lengths of the simple pendulums, which are isochronous

with the above rough and smooth pendulums, are {a^+ l:'^)/a and a

respectively ; and hence the times of oscillation through indefinitely

small angles are respectively

-/^--Vi-
(8) A pendulum has a bob consisting of a massive block of wood

and is at rest. A bullet is fired into the block of wood horizon-

tally, and in a direction perpendicular to the axis of the pendulum.

Express the velocity of the bullet in terms of the angle through

which the pendulum is deflected. [Such an arrangement is called

a Ballistic Pendulum and is used for determining the velocities of

cannon balls and rifle bullets.]

Let J/ be the mass of the pendulum with the bullet lodged in it

and k its radius of gyration about its fixed axis. Let m be the

mass of the bullet, v its velocity, and p the distance of the fixed

axis from the line of the bullet's motion. Then mvp is the angular

momentum of the system of pendulum and bullet before impact.

The block of wood being of great mass (it must be suflficiently mas-

sive for this purpose), the ball and block will have the same velocit^'

before the pendulum has been appreciably deflected. The only
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external forces acting on the system during the impact are the

weiglits of penduhim and bullet, and in an indefinitely short time

these finite forces can produce no change in the angular momentum
of the system. Hence the angular momentum immediately after

and immediately before impact are the same. Now, if w is the

angular velocity of the pendulum immediately after impact, its

aiig\ilar momentum is i/^-w. Hence (453 and 486)

Immediately after impact, as the pendulum is still practically at

its lowest position, its kinetic energy has the value \Mk-i>)''. When
its angular velocity becomes zero its energy is wholly potential. If

6 is the angle through which it has then been deflected, and if h is

the distance of the centre of mass from the axis, the increase in

potential energy is Mgh(l — cos 6). Hence

J/ffh{l - cos e)=hMkW.

Hence 2%A sin^^=i'^f',

and .;= 2^^^^^sinl
mjo 2

(9) A uniform spherical shell whose external radius is n times its

internal radius contains a sphere of the same substance, completely

filling it. Find the ratio of the space through which the shell

would roll from rest in a given time down a perfectly rough in-

clined plane, if its internal surface were smooth, with the space

through which it would roll in the same time if its internal surface

were perfectly rougli- (The radius of gyration of a sphere about

an axis through its centre is \^2I5 times its radius.)

Ans. 7#/(7?i^ - 2).

(10) A uniform rod (lengths 2a) can turn freely about one ex-

tremity. In its initial position it is horizontal, and it is projected

horizontally with a given angular velocity w. Show that the least

angle 6 which it will make with the vertical during its motion is

determined by the equation

2aw2cos 6 =
3ff sin^^.



501] OF KIGIU BODIES. 401

500. Equilihriiinn of a Rigid Body.—A rigid body is

said to be in equilibrium under the action of forces when
its linear and angular momenta are both constant, or, in

other words, when its centre of mass has no linear accel-

eration and the body has no angular acceleration about
that point. This state is what we called (-i44) one of

molar equilibrium. It admits of both translation and
rotation, but the linear and angular velocities must be
constant. If a rigid body be in what we called (444)

molecular equilibrium, it may be undergoing transla-

tion, but cannot be rotating, and its translational

velocity must be uniform.

The conditions of equilibrium (molar) may be obtained
from the equations of motion (493)

a = I^F/llm, a = ^FPl^mrK

That a and a may be zero we must have 2F=0 and
'EFP= 0. Also, if these conditions are fulfilled, a and a
must both be zero. Hence the following are both neces-

sary and sufficient conditions of equilibrium (molar), viz.,

(1) that the algebraic sum of the components in any
direction of the external forces be equal to zero, and (2)

that the algebraic sum of the moments of the external

forces about any axis through the centre of mass be zero.

501. Expressed analytically, these two conditions give

us six equations which (415 and 427), if ^, r], fare the

co-ordinates, relative to the centre of mass, of the point

at which the force acts whose components are X, V, Z,

are as follows :

EZ = 0, 2F=0, 2Z=0,
2(F^-Z^) = 0, 2(A7-Z^) = 0, Z(Zri-70 = 0.

If the forces are coplanar (in the xy plane, say), these

six reduce to three :

2^ = 0, 2F=0, I.(Yi-Xrj) = 0.

2c
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502. If a rigid body is in equilibrium, the algebraic

sum of the moments of the forces about parallel axes

through all points fixed either in or relatively to the

body is the same.

Let X, Y be the components of a force acting at P,
in the directions of rectangular axes Cx, Cy through the

centre of mass C. Let the co-ordinates of P relative to

/ p—V>x
y \

'r-'—

^

G he X, y ; and let those of C relative to parallel axes

through any point fixed relatively to the body be a, b.

Then the algebraic sum of the moments of X, Y about an
axis through perpendicular to the plane of Gx, Gy is

Y{x+a)-X{y + h) = Yx-Xy-\-aY-hX.

Hence the algebraic sum of the moments of all the forces

about this axis is

2(Yx- Xy), +aS Y- 62Z = ^(Yx- Xy),

since SX = SF=0. Hence the sum of the moments of

the forces about an axis through any point is equal to

that about a parallel axis through the centre of mass.

In the above, the system is supposed to be in one
plane. The result will obviously be the same, however,
if the force acting at P have a component Z in the

direction perpendicular to Cx and Cy, if the co-ordinates

ot P are x, y, z, and if those of C are a, 6, c.

503. Hence the following are necessary and sufficient
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conditions of equilibrium (molar) : (1) that the algebraic

sum of the components, in any direction, of the external

forces be equal to zero
; (2) that the algebraic sum of the

moments of the external forces about any axis through

any point fixed relatively to the body be zero.

504. In special cases the above conditions take special

forms :

(a) Body under two forces.—If the rigid body be in

equilibrium under two external forces only, they must
obviously be equal and opposite and have the same line

of action.

505. (h) Body under Parallel Forces.—One of them
must obviously be equal and opposite to the resultant of

all the rest and must have the same line of action.

Hence it must be equal to their sum, and its line of

action must pass through the point called their centre

(472).

506. (c) Bod^y under three Non-Parallel Forces.—If a

body be in equilibrium under three non-parallel forces,

their lines of action must be coplanar and must all

pass through one point.—For about a line intersecting

the lines of action of two of the forces, these two and
therefore the third force can have no moment. Hence
its line of action must either be parallel to the given line

or intersect it. Hence any line intersecting the lines of

action of two of the forces and not parallel to that of the

third must intersect it also. It follows that, if through
any point in the line of action of any one of the forces,

two straight lines be drawn, each of which intersects the

line of action of one of the remaining forces, and is not
parallel to that of the other, both straight lines must
intersect the lines of action of both forces ; and that these

two forces, which were any two of the three, must be in

the same plane. Hence the forces are co-planar. Again,
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about the point of intersection of the lines of action of

any two of these forces, these two can have no moment.
Hence also the third can have no moment about it, and
consequently the line of action of the third force must
pass through the intersection of the lines of action of the

other two. If therefore a body be in equilibrium under
three non-parallel forces, these forces must be coplanar

and must all pass through one point.

Hence the conditions of equilibrium of a rigid body
under three forces are exactly the same as those appli-

cable to a particle under three forces. Hence the results

of 325, (c), (d), and {e), deduced in the case of a particle,

apply also to the equilibrium of a rigid body.

507. Examples.

(1) A uniform right-angled-triangular plate is suspended by a

string from the right angle. Show that its sides make the same

angles with the vertical as they do with the base.

[The only forces acting are the stress in the string and the weight

of the triangle. Hence the stress and therefore the string must be

vertical, and their directions must pass through the centre of mass

of the triangle, and consequently through the centre of the base.]

(2) A hemisphere and a cone are fastened together by their bases

which are equal, and the body so formed rests in equilibrium on a

horizontal plane in whatever position it may be placed. Show that

its centre of mass coincides with the common centre of their bases,

(3) A mass m hangs from the edge of a homogeneous hemisphere

(mass= if, radius= 7", distance of centre of mass from centre =3r/8),

which rests with its concave surface on a smooth horizontal plane.

Find the inclination 6 of the axis of the hemisphere to the vertical.

Ans. 6 = taii~^ —^ ,.

3M

(4) Two men carry 3 cwt. by a pole 8 ft. long, which they sup-

port at the ends. If the body be hung 1 ft. from the middle of

the pole, what forces are exerted by the men ?

Ans. Forces equal to the weights of 1§ and 1^ cwt.
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(5) A£ is a hea^'y straight rod or lever of length I. When a

body of weight W is suspended from A , the rod balances about a

fulcrum (or fixed point) at a distance a from A , and when the same

body is suspended from B, it balances about a fulcrum at a distance

b from B. Find (1) the distance of the centre of mass of the rod

from A, and (2) the weight of the rod.

Ans. (1) 4, ; (2) (^±m.
a+ b L — a — b

(6) The mass of a window-sash, 3 ft. wide, is 5 lbs., and that of

each of the " weights " attached to the cords 2 lbs. If one of the

cords be broken, at what distance from the middle of the sash

should the hand be placed to raise it with the least effort ?

Ans. 1 ft.

(7) A rigid rod ABC, suspended by the point J, is composed of

two pieces rigidly connected at B^ and inclined at a right angle to

one another. Show that if a and c are the lengths of the arms AB
and BC respectively and 6 the inclination of ^5 to the vertical,

c2cot^= a2+2ac.

(8) A heavy uniform bar lies with two-thirds of its length on a

smooth horizontal table. Show that a body weighing more than

half as much as the bar would, if suspended at the free extremity,

pull it over.

(9) Two forces P and Q act at the ends of a straight weightless

lever AB^ their directions being inclined to J5 at the angles <t> and
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6 respectively. Find the position of the fulcrum F (i.e., what point

F must be fixed), that equilibrium may be maintained.

Ans.^F= «iM:^«.
Fsm^+ Q sin 6

(10) The radii of the wheel (W) and the axle (^1) of the simple

machine called the Wheel and Axle

(254, Ex. 5) are R and r respectively.

Find the force P exerted through a string

coiled round the wheel which will balance

a force Q exerted through a string coiled

round the axle (the axle being smooth).

Since the sum of the moments about

the fixed axis must be zero, PR — Qr=0
a.nd P=QrIR.

(11) Find the conditions that must be

fulfilled that a Balance may be stable and

sensitive. (See 498, Ex. 4.)

The beam without the pans will be in stable equilibrium

(450), if G (fig. of 498, Ex. 4) be vertically below 0, in which

case BC will be horizontal. If the centre of mass of the

beam be at 0, the beam without the pans will be in neutral

equilibrium. With pans of equal mass the beam will be in stable

equilibrium, with BC horizontal, provided (1) that G and BC are

both below 0, or (2) that if G be above 0, BC be sufficiently far

below it, or (3) that if BC be above 0, G be sufficiently far below it.

When the balance is in equilibrium, T and T' are vertical and

equal to mg and m'g respectively. As the sum of the moments of

the forces acting on the beam about must be zero, we have,

if m and m' are the masses of the pans, and 6 the inclination of BC
to the horizon,

7ng{ACCOB d - O^sin^) - m'g{AB cos e+ OA sin d)-Mg .OG. sin 6 = 0.

XT + /I
(m — m')AB

Hence tan 6 = -—
,,,. , ,, ^,, .-

{m-{-m')OA +M.OG

The greater the angle d for a given value of m - in' the greater is

the sensitiveness of the balance. Hence for sensitiveness the mass



507] OF RIGID BODIES. 407

of the beam, the load {i.e.^ the total mass in both pans) and the dis-

tance of the axis of the beam both from its centre of mass and from

the line joining the points of suspension of the pans must be as

small as possible, and the distance between the points of suspension

of the pans must be as great as possible. Except with regard to

the mass of the beam, the conditions for sensitiveness and for

quickness of motion (498, Ex, 4) are antagonistic. Hence in all

balances the mass of the beam is made as small as is consistent

with sufficient rigidity, and a compromise is struck between the

demands of sensitiveness and of quickness of motion with regard to

length of arm, etc.

If the line BC pass through 0, OA = 0. Hence

tan^=(^-^^^.
M.OG

In this case, therefore, the sensitiveness is independent of the

load.

(12) m^, m2, are the apparent values of the mass of a body when
weighed successively in both pans of a balance which has its three

suspension points in a straight line, {a) If its pans are equal and

its arms unequal, show that the real mass of the body is sfm^n^.

(b) If its arms are equal but the pans unequal, show that the

difference of the masses of the pans is ^{m^ — m^).

(13) The beam of a false balance {i.e., one having unequal arms)

is 3 ft. long. If a certain body is placed in one scale it weighs 4

lbs., if in the other 6 lbs. 4 oz. Find [a) the real mass of the body,

and (6) the lengths of the arms.

Ans. (a) 5 lbs.; (6) 1 ft. 4 in. and 1 ft. 8 in.

(14) The shaft of a steam engine carries a strong wheel (radius

: r) with a flat rim. An iron strap lined with blocks of wood is
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fitted round it, and presses the blocks against the flat rim of the

wheel. A rod is attached to the strap, and carries at its end (dis-

tant I from centre of shaft) a pan for standards of mass. When
the shaft is making n revolutions per second, and doing no work

except that of overcoming the friction of the strap, the rod is main-

tained in a horizontal position by putting standards, of weight IF,

into the pan. Find the rate at which the engine is working.

[This arrangement is called the Friction Drake Dynamometer, It

should be called an ergometer, as it is not force that we measure by

it, but rate of work done.]

The rigid system, consisting of strap, rod, and wooden blocks, is

in equilibrium under its own weight, the weight of the standards,

and the friction of the rotating wheel. The rod is always counter-

poised, so that its own weight passes through the shaft of the

engine, which is the fixed axis of the rigid system under considera-

tion. Hence if F is the friction of any small element of the surface

of the wheel, we have

^Fr- Wl=(y.

Hence Tf^=SFr=rS7^.

The work done against friction during n revolutions of the shaft at

each element of the surface of contact is 2irmF. Hence the whole

work done against friction per second is

27rnr2/^=27r;iTrZ.

Hence the rate at which the engine is working is expressed in

terms of n and W.

(15) A imiform thin triangular plate is supported in a horizontal

position by three props at its angular points. Show that the pres-

sures on the props will, be equal.

[As there is equilibrium, the moment of the force exerted by any

prop about an axis through the points at which the other props

touch the plate must be equal to the moment of the weight about

the same axis.]

(16) A triangular plate is hung wuth its plane horizontal by

three vertical chains, attached to the middle points of its sides.
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What must its mass be that a ton may be placed anywhere on it

without tilting it ?

Ans. 3 tons.

(17) A rod AB hinged at one end so that it can move in a ver-

tical plane rests with the other end on a smooth inclined plane,

whose line of intersection with the horizontal plane is perpendicular

to the plane of AB^s motion. Find the force exerted on it by the

hinge and the reaction of the plane.

Let ABhe the rod hinged at A and resting with the end B on the

inclined plane BC. Let ACB be the horizontal plane, and let the

angles BCD, BA C\ be d and respectively.

The rod is acted upon by three forces—its weight W acting

vertically through G its centre of mass, the normal reaction R of

the inclined plane, and the force F exerted by the hinge. Hence

(506) the force F must pass through the intersection E of W and R.

The direction of F is known if the angle EAB{xp) is known. Now,

AG^ BiTi AEG_ 8m {^ir-<p-
^f^)_ cos ( + ^)

GE sin V sin ^ sin ^ '

GB sin GEB sin 6 sin
and

Hence

and

GE~ sin GBE sin {^ir+ (p - 6) cos{d-(f>)

AG_ cos{6-<f)) cos (0 -f ^) .

GB sin^ ' sin^

;/,= COt"
(Al

\GjGB cos cos {6
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For the magnitude of F we have (506)

W sin WRF=smFR
= sm A EB : sin GEB
= sin{^ir - <p - *//+ 6) :smd
= cos(<p + ^p-0) isind.

sin 6

cos(0

+

i^ey

For the magnitude of R we have similarly

Tf :/?=sin A:sin WF;

Hence F=W-

and hence 21^ ^ cos(0 + T^)

cos(0+ ^ -'-
6

(18) A uniform rod AB rests over a smooth peg at P and with

its end A on a smooth horizontal plane, being acted on at C by a

horizontal force F in the vertical plane through the rod. For a

given value of F, find the position of the rod, and find the reactions

of the plane and peg in this position.

Four forces act on the rod, its weight W acting through its

middle point D, the reactions R and R' of the horizontal plane and

peg, normal to the plane and rod respectively, and the force /'.

B

^F

R, W, and i^are in a vertical plane through the rod. Hence R' is

in that plane also.

The position of the rod is determined if the angle (d) between it

and the horizontal plane is known. Let the distance of P from

that plane be A, the length of the rod I, and the distance of C from

B,c.
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For equilibrium : (1) The sum of the vertical components of the

external forces must be zero. Hence

R- W+W Qo^d= 0.

(2) The sum of the horizontal components of the external forces

must be zero. Hence

F-R's,\nd = 0.

(3) The sum of the moments of the exteraal forces about any point

A must be zero. Hence

R'h I sin d -F{1- c) sin ^ - 1 Wl cos ^ = 0.

These three equations involve only the three unknown quantities 0,

R, R', and are therefore sufficient to determine them.

For the resolution of the acting forces we select those directions,

and for the expression of their moments we select those points,

which will give the simplest equations. Thus in the above example

the equations obtained by resolving horizontally and vertically are

simpler than those which could be obtained by a resolution in and

normal to the direction of AB, because the forces R and IF have no

horizontal component, and F has no vertical component, while R' is

the only force with no component in the direction of AB, and all

the forces have components in the direction normal to it. Similarly

it is better to take moments about A, D, F, or C than about any

other point, because in each of these cases one of the acting forces

will have no moment. If the force F acted at Z>, that would be the

best point to take moments about, as in that case two forces would

be excluded from the equation of moments.

If we do not wish to determine all the unknown quantities, we
may select the directions and the point referred to above, with a

view to the exclusion from the equations, of the quantity or quan-

tities which we do not wish to determine. Thus if we wish in the

above example to find only R and d, we select the direction of AB
for resolution of forces, and we obtain

{R- Tf)sin e+ FcoB =
;

and, selecting the point P for the summation of moments, we
obtain

If cos e( .^ - U) -Rcose. -A- _ Fsin d(l-c-~ \= 0.
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These two equations are sufficient to determine the two unknown
quantities, R and 6.

(19) The horizontal plane and the peg of Ex. 18 being rough

and the force F being withdrawn, find the position of equilibrium

when the rod is on the point of slipping down.

The roughness of the plane and

peg introduces two new forces act-

ing at A and at the peg, in the direc-

tions of AE and A B, and equal to fiR

and fx'R' respectively (/^ being the co-

efficient of friction between the plane

and the rod, m' that between the peg

and the rod). Resolving horizontally

and vertically, and taking moments

about A as before, we obtain the three

equations :

—

fiR - R' sin d +fx'R ' cos ^= 0,

R- W+R' cos d+ fi'R' sin 6= 0^

R'h I sin d-^Wl cos e= 0,

which are sufficient to determine R, R', and 6.

(20) A uniform straight rod moveable about its lower extremity-

leans against a vertical wall and makes an angle of 45° with the

horizon. Show that the force exerted by the wall on the rod is

equal to half the weight of the rod.

(21) A uniform beam AB (weight= W) rests with one end A on

a smooth horizontal plane, and the other B against a smooth vertical

plane, the vertical plane through the beam intersecting at right

angles the former in the line AC and the latter in BC. Tlie beam

is attached to the point (7 by a string AC. Find (a) the tension in

AC, (b) the reaction of the horizontal plane, (c) the reaction of the

vertical plane.

Ans, (a) ^W cot BAC; (b) W
;

(c) ^W cot BAC.

(22) If the string in Ex. 21 is attached to a point E in the beam

between A and its middle point, show that the tension will be

cos BAC^W.
sin {BAC-ECA)
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Hence show that the length and point of attachment of the string-

must be such that the angle BAC is greater than UCA in order that

equilibrium may be possible.

(23) If in Ex. 21 the horizontal and vertical planes be rough

(co-efficient of friction in both cases= At), and if there be no string,

find the position of equilibrium.

Ans. Angle i?.4C=tan-i-~^'.

(24) A rod (weight= W, distance of centre of mass from lower

end= ^) rests upon a smooth prop, with the lower end pressing

against a smooth vertical wall (distance from prop= o?), the vertical

plane through the rod being at right angles to the wall. Find (a)

the position of equilibrium
; (6) the reaction of the prop

;
(c) the

reaction of the wall ; and show that equilibrium is impossible

unless I be greater than d.

Ans. (a) Inclination of rod to wB\l= sin~\dll)^ ; (6) W{lld)'s

;

(c) W{l^-d^)hldl.

(25) A uniform rod rests with one end pressing against the inner

surface of a fixed smooth hemispherical bowl (radius= r) whose rim

is horizontal, and with the other projecting beyond the rim. It is

inclined 30° to the horizon. Find its length.

Ans. 4r/ ^3.

(26) A sphere (weight= W) rests upon two inclined planes

(inclinations to the horizon= ^ and 0'). Find the reactions of the

planes.

Ans. W sin ti'/ sin {&+ &'), and W sin 6/ sin (6 + 6') respectively.

(27) One extremity A of a beam AB (length= ?, distance of

centre of mass from B=n times its distance from ^4) rests against

a rough vertical wall (angle of repose = e), and a cord tied to the

other extremity B is fastened at a point in the wall above xl, the

vertical plane through the rod being perpendicular to the wall.

Show that, if the rod is to be horizontal, the length of the cord

I
must be - Vw^+tan-e.

11

(28) A uniform heavj^ rod, 2 ft. long, is hung up to a peg by

means of two strings tied to its ends, the lengths of the strings
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being 1 ft. and ,^3 ft. respectively. Show that, when the rod is

in equilibrium, it will make an angle of 30" with the horizon, and

the tension of the shorter string will be equal to half the weight

of the rod.

(29) A uniform heavy rectangular trap-door is moveable about

one edge as a hinge-line. To the middle point A of the opposite

edge is attached a string which passes over a smooth pulley at the

point occupied by A when the door is horizontal, and sustains a

body of weight u\ If W be the weight of the door, show that the

inclination of the door to the horizon is given by the equation

cos^ie-
IF

cosi5-i= 0.

(30) A carriage wheel (weight= W, radius= r) tests upon a level

road. Show that the force necessary to draw it over an obstacle of

height h is Ws/k{2r-h)/{r - h).

(31) A heavy uniform sphere hangs from a peg by a string, the

length of which is equal to the radius, and rests against another

peg, vertically below the former, the distance between the two

being equal to the diameter. Show that the tension of the string

is equal to the weight, and the reaction of the peg to half the

weight, of the sphere.

(32) A beam or lever is moveable about a fixed rough cylindrical

R

axle (radius =r, angle of repose = e), which very nearly fills the

hole in the beam through which it passes. Find the relation
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between two forces P and Q acting on the beam at given points

A and B and in given directions in a plane perpendicular to the

axle, when the beam is on the point of moving.—Let d be the

inclination of P and Q, and let jo, q be their distances from C
the centre of the axle. Produce P and Q to meet in 0. Then R^

the reaction of the axle, must pass through 0. Since the axle only

nearly fills the socket there is contact, at any instant, only along a

single line. If this line is represented in the diagram by the point />,

DO will be the direction of R and will be inclined to CD produced

at the angle e. Hence the distance of R from C is rsine. For

equilibrium therefore we have

Qq=Pp 4- Rr sin e.

Hence Qq=Pp + r sin e \^P-+ Q'+ 2PQ cos 0,

which is the required relation between P and Q.

(33) A heavy homogeneous cubical block rests on a rough hori-

zontal plane, and a force is exerted on it by means of a string

attached to the middle point of one of the upper edges, the string

and the centre of mass being in the same vertical plane. The force

being gradually increased, find the nature of the initial motion of

the block,—Let ABC be the plane in which all the forces act, and

let F's line of action be above the centre of mass I). Then the

initial motion of the block will

clearly be either a sliding in the

direction of ^i5 or a turning about

the edge B. For F=0, the re-

action of the plane is normal to

AB -y but, as F is gradually in-

creased, the reaction (328) becomes

gradually more and more inclined

to the normal, passing, since there

is equilibrium, through the inter-

section oi F and W. If the cube turn about B, the reaction

must pass through B. If therefore it is on the point of turning

about B, the line of the reaction must be BO. Hence, if the fric-

tion is such that the angle CBO is less than the angle of repose,

the initial motion will be a turning about B. If however CBO is



416 DYNAMICS [507

greater than the angle of repose, slipping will be the initial motion

;

for the block will begin to slip when the reaction is inclined to the

normal at the angle of repose. Let 6 be the inclination of F to

A B, e the angle of repose, and a the edge of the cube, then the

condition for initial turning is

tan e > tan CBO

l/(

a

> 1/(2- tan ^).

Hence also the condition for initial sliding is

tane< 1/(2- tan ^).

If F's line of action is below /J, the possible initial motions are

sliding in the direction AB and turning about the edge A. Show

that the condition of initial turning about A is

tane > l/(tan^-2).

(34) A homogeneous right cone (vertical angle= 2^) is placed

with its base on a rough inclined plane (coefficient of friction =^t),

whose inclination is gradually increased. Show that, if /x > 4 tan 6,

the initial motion of the cone will be tumbling, and if At < 4 tan 0, its

initial motion will be sliding.

(35) A rectangular block is placed with one of its edges horizontal

on a rough inclined plane. Show that, if a is the length of the

edge of the block which is perpendicular to the plane, and b the

length of the other non-horizontal edge, and if /x is the coefficient

of friction, the initial motion will be one of tumbling, provided

fi > 6/a, and of sliding, provided ft < b/a.

(36) A rectangular block, weighing 20 lbs., with a square base

8 inches in side, is set up on a level table, and it is found that a

horizontal force equal to the weight of 5 lbs., if applied below a

certain point, is just able to make it slide, while, if it is applied

above that point, the block topples over. Find (a) the position of

this critical point, and (6) the coefficient of friction between the

block and the table.

Ans. («) 16 in. from the base
;

(b) O'S.').
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508. Equilihriu7)i of a System of Rigid Bodies.—If

two or more rigid bodies be connected by strings, rods,

joints, etc., the system is said to be in equilibrium pro-

vided (1) the system behave as a rigid body and be in

molar equilibrium, or (2) each body of the system be
in molar equilibrium.

(1) If the system behave as a rigid body, its parts not

moving relatively to one another, the necessary and
sufficient condition of equilibrium is (500) the satisfac-

tion of the equations XF = 0, XFP = 0, the forces in-

volved being those external to the system only.

(2) The necessary and sufficient condition for the

equilibrium of each body of the system is the satisfaction

for each body of the equations 2i^=0, 2i^P=0, the

forces involved in the equations including forces external

to the body to which they apply, and therefore in general

some forces which are internal to the system.

509. Examples.

(1) A body is to be supported by means of the system of smooth

pulleys represented in Fig. 1, p. 418. The weight of the body

being W, and that of the block (254, Ex. 6) iCy find the force F
which, must be applied at the end of the cord.

The pulleys being smooth, the stress throughout the whole

string is F (391). Hence, if there are n sheaves in each block,

the lower block is acted upon by 2n + 2 forces, 2?i having each

the magnitude F and an upward direction, and two the magnitudes

ir and w respectively and downward directions. If the directions

of all are taken to be vertical, we have therefore

2nF= W+w.

The ratio W/F is called the mechanical advantage of the system

of pulleys. It w=0, it has in this system the value 2/i.

(2) Find the mechanical advantage of the system of smooth

2d
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weightless pulleys represented in Fig. 2, there being n moveable

pulleys.

Ans. 2".

(3) Find the mechanical advantage of the system of smooth

weightless pulleys represented in Fig. 3, there being n pulleys, and

the ropes being so long that they may all be considered vertical.

Ans. 2«-l.
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(4) A system of smooth weightless pulleys, like that of Ex. 1,

but with only one moveable pulley, is in equilibrium. Show that

if the body supported by the moveable pulley have its mass

doubled, and the other its mass halved, the tension in the string

will be imaltered.

(5) Two smooth spheres rest on two smooth inclined planes and

press against each other. Determine their position and the magni-

tudes of the reactions.—Let A and B be the spheres, C and C their

centres, DE and EF the inclhied planes of inclinations <f> and e

A

respectively. Each sphere is acted upon by three forces—its weight

(IF, W), the normal reactions of the planes (R, R'), and the equal

normal reactions of the spheres on one another (>S', S'). As each

sphere is acted on by three forces only, these three must in each case

be in the same plane, but as the lines of action of S and S' coincide

with the line CC, If, W, iS and S' are in the same plane. Hence all

six forces are in the same plane, which is consequently a vertical

plane and perpendicular to both inclined planes. Let that be the

plane of the diagram. The positions of the spheres are determined

by the angle ^, the inclination of CC to the horizon.

For the equilibrium of A we have, resolving in the direction

of DE

IFsin - 6'cos(0 - ^)= 0,

and resolving in a perpendicular direction.

It- Wcos (f>-S sin {<p-\ly)= 0.
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For the equilibrium of B we have, similarly,

T'rsin^--*S'cos(^ + 'A)= 0,

and R - W cos d - S' sin (^ + ^)= 0.

As S=S', the above four equations are sufficient to determine all

the unknown quantities involved viz., i?, R', S, and i^. To deter-

mine i/ only, the first and third equations are sufficient.

If we regard the whole system as a rigid body, >S' and S' become

internal forces, and may be left out of account. Equating to zero

(1) the vertical and (2) the horizontal components of external forces,

we find

W+ W - It cos (l>- R' cos ^= 0,

and R sin (p — R' sin ^= 0.

Also equating to zero the sum of the moments of external forces

about Cj we have,

.

W cos ^-R' cos (d + 1/')= 0.

We have thus three equations for the determination of the three

unknown quantities 7t, R', and ^.

(6) Two smooth spheres of equal radius r and weight W are

placed inside a uniform thin hollow cylinder (radius=/ < 2r) which

is open at both ends and rests with one end on a horizontal table.

What must the weight of the cylinder be that it may not upset ?

Ans. 2Tf(/-r)//.

(7) A smooth sphere (weight= W) rests upon two equally in-

clined planes (inclination= a) which are placed on a smooth hori-

zontal table, and are prevented from sliding apart by a horizontal

string which binds them together. Find the tension in the string.

Ans. JW tan a.

(8) Of four equal smooth spheres (weight of each= W) three rest

in contact on a smooth horizontal plane, and the fourth is placed

upon them. Find the horizontal force which must be applied

to each of the three to preserve equilibrium.

Ans. Tf/3V2.

(9) A heavy uniform smooth beam {weight = w, length = 2a) is

moveable in a vertical plane about a smooth hinge at one end.
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A lieavy smooth sphere (weight= W, radius=r) is attached to the

hinge by a string (length= Z), and the two bodies rest in contact.

Obtain equations for determining the inclination 6 of the string to

the vertical, the inclination </> of the beam to the vertical, the

reaction S of the hinge on the beam, and the stress R between the

beam and the sphere.

Ans. W{1+ r) sin e = wa sin f/>,

{l+ r)sm{d + <p)=r,

Rcos{d + <p)= TTsin^,

(iS2 - w2) cos2(^ + <P)= Tf- sin2^ - 2w Fsin 6 sin <t> cos(^ + (p).

(10) A uniform heavy rod (weight= W^ length= 20 connects the

centres of two equal heavy wheels (radius =r), which rest on a

rough inclined plane (coefficient of friction =/i) in a vertical plane,

which is a plane of greatest slope of the inclined plane, the lower

wheel being locked. Find the greatest inclination of the plane

that will admit of equilibrium.

Ans. tan~^ -— .

21 -fir

(11) Three horizontal weightless levers, ABB, BFC\ COD, the

fulcrums of which are at E, F, G, act upon one another perpendi-

cularly, the first and second at B and the second and third at C.

They are kept in equilibrium by bodies hanging from the points

A , D, and M^eighing W and 2 FF respectively. AE, EB, BC, CG, GD
are 1, 2, 7, 2, 3 ft. respectively. Find (a) the position of F, and (6)

the reaction of the fulcrum at F.

Ans. {a) FC=l ft.; {h) 7 Wj2.

(12) Two beams whose weights are proportional to their lengths

(9 and 7 ft.) rest with their lower ends in contact on a smooth

horizontal plane, and their ujDper ends leaning against two smooth

vertical and parallel walls 10 ft. apart. Show that if and 6' are

the respective inclinations of the beams to the horizon,

7 tan 6* = 9 tan 6>',

and 9 cos ^ + 7 cos 6'= 10.

(13) Two uniform straight rods of equal length rest with their
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lower ends on a rough horizontal plane (coefficient of friction

=

/a)

and their upper ends in contact, and are on the point of slipping.

Find the common inclination to the horizon.

Ans. tan-i(l/2/i).

(14) Two bars which are connected by a smooth hinge or joint

are in equilibrium. Investigate generally its reactions on the bars.

{a) If the hinge pin is rigidly connected with one of the bars,

the reactions between the bars are obviously equal and opposite,

their magnitude and direction depending upon the external forces

acting upon the bars.

{h) If the hinge pin is distinct from both bars, and if no external

forces act on the pin (which condition requires either that the

weight of the pin should be negligible, or that it should be

neutralized by an equal and opposite external force), its reactions

on the bars must be equal and opposite. For the pin is in equili-

brium under the two forces exerted upon it by the bars at tlie

points or rather lines of contact, and as these forces must therefore

be equal and opposite, the reactions of the pin on the bars must

also be equal and opposite. If however the pin is acted vipon by

an external force, the forces exerted upon it by the bars will not

have the same line of action, and its reactions on the bars will

therefore also have different lines of action.

(15) In a system of jointed thin bars, in which the hinge-pins

are distinct from the bars, if the external forces act only on the

hinge-pins (this condition implies that the weights of the bars are

negligible), the reactions of the pins on the bars will be in the

directions of the bars.

For in that case any bar is acted upon by two forces only, the

reactions of the hinges at its ends. These forces must therefore be

equal and opposite, and their lines of action must consequently be

the direction of the bar.

(16) Two equal uniform rods, equally inclined to the horizon, and

comiected by a smooth hinge at their higher ends, pass through two
small fixed rings in a horizontal line. Find the inclination of

either rod, when the system is in equilibrium, and the reactions of

the hinge on the rods.
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Let AB, AC he the two rods hinged at ^ ; Z) and ^ the small

rings. The rods are acted upon by their weights ( W, W) and the

reactions of the rings (i?, R') and of the hinge {S\ S'). The reac-

tions at A must be in the same straight line, must pass through

the intersection of the lines of action of the weight and of the

reaction of the ring in the case of each rod, and must therefore be

horizontal. Hence the centres of mass of the rods must be be-

tween the rings and their lower end points.

Let I be the length of each rod, d the distance between the two

rings, and 6 the inclination of each rod to the horizon. Resolving

the forces acting on J^C in the direction of AC, we have,

TV sin ^-/S cos = 0,

and, taking moments about £J, we have

W cos d(l - d/cos e)-Sdtaine= 0.

From these equations we may obtain both S and d.

(17) Three rods jointed together at their extremities, are laid on

a smooth horizontal table, and horizontal forces are applied at their

middle points perpendicularly to them. Show that if these forces

produce equilibrium, the stresses at the joints will be equal and

their directions will touch the circle circumscribing the triangle

(See 475, Ex. 1.)

(18) Two uniform rods A C, BC (weights=w and W) are connected

by a smooth hinge at C, their other ends A and B being fastened to
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fixed hinges in a vertical line. Find the reactions of the hinges on

the bars.

Let A\, Y^ and A'g, T2 be the horizontal and vertical components

of the reactions on AC and BC at A and B respectively. (It does

not matter in what direction, up or down, we draw T^ Fg or

whether we draw X^, J'g to the right or left. If the actual re-

actions have components in directions opposite to those assumed in

the diagram, the values of X^, Y-^, etc., as the case may be, will be

found negative.) Let X^, F3 be the components of the reaction of

the hinge at C on the rod AC. Then, since the hinge-pin is not

acted on by external forces, its weight being negligible, its reaction

on BC will have components — X^, — Y^. As the four forces shown

in the diagram as acting at C act two on AC and two on BC, it is

often advisable to draw a special diagram for each bar. Such

diagrams are shown above. The equations of equilibrium may be

written down by their aid without danger of inserting BC's forces

in A C's equation. Thus for the equilibrium oi AC we have

X,+ X^=0,

Y^+Yy-2v=0,

and taking AC=2a, and calling its inclination to AB, o,
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2a(Xi cos a+ Yj sin a) — wa sin a= 0.

And for the equilibrium of BC, calling its length 26, and its inclina-

tion to A B, )8, we have

¥,-¥,- W=0,

2b{ }\ sin /3 - X., cos ^3) - Wb sin ^- 0.

We have thus six equations which are sufficient to determine the

six unknown components of the reactions.

(19) Two uniform beams A C'and CB (weights= W and W respec-

tively) connected at C by a smooth joint are placed in a vertical

plane, their extremities A , B being connected by a string and rest-

ing on a smooth horizontal plane (inclinations of AC, CB to the

horizon= a and a respectively). Find (a) the tension in the string,

and (b) the reaction at the joint.

Ans. (a) ;

2(tan a + tan a
)

(6) magnitudes
-'^'''+ "-);+ ("-' t^'" 7

>^tau.-)^
^ ^ 2(tano4-tana')

line of action inclined to horizon at tan"^— *^-^-^~-^-^^?L*'

Y

(20) Two rods AB, CD are connected by smooth hinges at A, D
to two fixed points in the same horizontal line, and at B, C, also by
smooth hinges to the ends of a rod BC. Show that if all three rods

are of equal length, and if either AB or CD is inclined a° to the

horizon, the inclination to the horizon of the reaction of the joint at

its lower end will be tan~i(| tan a).

(21) A plane polygonal frame, composed of a system of rigid

bars, moveable freely round their jointed extremities, is in stable

equilibrium under the action of a system of forces proportional to,

and bisecting perpendicularly, its several sides. Show that its

several vertices lie in a circle.

(22) If a system of thin jointed bars, in which external forces

act on the bars, be in equilibrium, and if the external forces acting

on each bar be resolved into components acting at the joints, the
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stress ill each bar is the resultant of the reaction of the joint on the

bar and tlie components at the joint of the external forces acting on

the bar.

Let A B be the bar, A and B being the points of contact with

the hinge-pin. Let i?i and R2, be the reactions of the hinge-pins on

the bar, and F the external force. Eesolve F into two components

F^ and F., acting at A and B. Then R^, R^, F^, F^ are equi-

valent to ^1, /^2j ^^^d ^- Now R^ and F^^ and R^ and /'g give in

each case a single resultant iS^ and S^ respectively ; and as the bar

is in equilibrium under these two resultants they must be equal

and opposite.

It will be noticed that S^ and ^2 ^^'^ i^^t the reactions of the

hinge-pins, but the resultant forces acting at the end points A
and B which are in contact with the pins. These forces, as repre-

sented in the diagram, tend to shorten the distance AB. In actual

bars a compression brings elastic forces into operation, and S^^ and

IS2, having changed the length of the bar somewhat, will thus be

equilibrated by the elastic stress in the rod. In dealing with rigid

rods, we imagine the stress produced in the rod, though the change

of length is supposed indefinitely small. The particles at A and B
are thus in equilibrium under the forces «S'i, S^ respectively, and the

stress in the bar. Hence that stress has the same value as S^ or S.,,
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and its directions at ^1 and B are opposite to the directions of

«S^i and *S'2 at A and B respectively.

It may be mentioned that in frame work a bar which is short-

ened by the forces acting on it is called a strut ; one which is-

lengthened is called a tie.

(23) If a system of thin jointed bars in which external forces act

on the bars be in equilibrium, the hinge-pins, supposed weightless,

may be considered as being in equilibrium under the stresses in

the bars they connect and the components at the joints of the

external forces acting on the bars.

Since >S\ (fig. of Ex. 22) is the resultant of R^ and F^, a force

equal and opposite to ^^ would equilibrate R^^ and F^. Hence a force

equal and opposite to S^ together with F^ would give as resultant a

force equal and opposite to R^. Now, if a hinge-pin connect two or

more bars, it is in equilibrium under any external forces acting on

it, together with forces equal and opposite to the reactions it exerts

on the bars. Hence it may be considered as being in equilibrium

under the stresses in the bars and the components at the hinge of

the external forces acting on the bars, with the external forces

acting on itself.

This result is of importance in engineering as enabling us to

determine the stresses in framework subjected to given external

forces.

(24) Three weightless bars AB, BC, CA, jointed at their ex-

tremities, are kept in equilibrium by three forces acting at the

joints

—

P acting at J
, ^ at ^, and R at C. Show that if Sa, /S^, S^

are the stresses in BO, CA, AB respectively, whose lengths are

a, 6, c respectively, and if is the point in which F, Q, and R
intersect,

o . c. . c, a.OA b.OB c.OC

(25) Four heavy bai-s AB, BC, CJ), DE (weights=
?«?i,

?r.2, w^ w^

respectively) are jointed each to the next at B, C, D and to fixed

points at A and E. The rod BC being horizontal, and 6 being the

inclination of CD to the horizon, show that the inclination of DE is

^^_i/2.,-f 22.3 + ^4 tanQ
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(26) Three beams, AB, BC, VA are connected at their ends by

smooth hinge-pins, so as to form a triangle. The ends of the beam

CA rest upon pillars of equal height. The other two are in a

vertical plane ; and at the joint which connects them hangs a body

whose weight W is so great that the weights of the beams may be

neglected. The lengths of the beams being given, show how to de-

termine the stresses in the beams and the reactions of the pillars.

Take any point 0, and from it draw Op vertically downwards,

making its length numerically equal to W. From diuw Oq parallel

to BC, from p,pq parallel to AB, and

from q, qr in a horizontal direction.

By Ex. 23 the pin at B is in

equilibrium under forces whose

directions are those of AB, CB,

and W, or of pq, qO, and Op ; and

as Op represents W in magnitude

it follows that pq represents the

stress in AB and qO that in CB.

Similarly it may be shown that qr

represents the stress in CA and

that pr and rO represent R^ and

R^, the reactions of the pillars,

respectively.

The diagram Opq constructed as

above is called a Force Diagram. It may be used to solve the

problem in two ways. (1) By its aid we may obtain formulae by

which the stresses may be calculated. Thus the sides of the

triangle ABC being known, we may express the angles CBD and

ABD and therefore the angles qOp and qpO, and therefore also

the angle Oqp in terms of them. Hence also since OqlOp^
sin Opq/sin Oqp, OqjOp may be expressed in terms of them. But if

S is the stress in BC, SIW=0q/0p. Hence the stress in BC may
be expressed in terms of W and the lengths of the beams. And
expressions for the other stresses may be obtained in the same way.

(2) The lengths of the beams being given, exact values of the angles

ABD, CBD may be obtained, and the force diagram may be care-

fully drawn to scale. Then Op having been drawn with a length

immerically equal to W, a careful measurement of the lengths of
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Op, pq, and qr determines the stresses. The stresses thus deter-

mined are said to be determined graphically ; and in complicated

framework the labour of calculation is much reduced by the graphic

method.

(27) A Warren girder consists of 19 rods AB, BC, etc., of equal

length, jointed together as in the diagram. Bodies of equal weight,

and so heavv that the weights of the rods may be neglected, are

hung at the joints J5, (7, D, E, and the girder is supported on piers

of equal height at A and F. Show that there is no stress in KC
or KB.

510. Conditions ofEquilibrium in terms of Work Done.
—If a rigid body is in equilibrium (i.e., molar equilibrium)

the algebraic sum of the amounts of work done by the

external forces during any indefinitely small displacement

consistent with rigidit}^ is equal to zero.

Any such displacement may (245) be resolved into a
translation, and a rotation about the direction of trans-

lation. Any point P of the body therefore will undergo
a linear displacement compounded of one S' in the direc-

tion of the translation, and another ^ in a plane perpen-
dicular to that direction, and due to the rotation about
the direction of the translation. Resolve the force F,
acting at this point, into two components, one F' in the
direction of translation, the other F" in the perpendicular
plane.

Since the body is in equilibrium, 2i^— 0. Multiplying
by S\ which is the same for all points of the body, we
have

S'^F = 'LFo=0:
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i.e., the algebraic sum of the amounts of work done by the
components of the external forces in the direction of the
translation is zero.

Let the plane of the diagram
be the plane perpendicular to

the axis of the rotation, the
intersection of the two being
at 0. Let PA perpendicular
to OP be the small linear dis-

placement S of P due to the

rotation w about 0. From
draw OM (length =^) at right

angles to F\ the component of F in the plane of the
diagram. Since there is equilibrium, Si^"jp = 0. If 6 is

the inclination of S to F",

p=OPcosO=^co80 = ^^
,

CO CO

if S'' denote the component of S in the direction of F'\

Hence

^F"~ = -I,F"S'' = 0.
ft) ft)

Hence also XF"S" = 0, i.e., the work done by the com-
ponents of the external forces perpendicular to the direc-

tion of the translation is zero.

If d is the component of the resultant linear displace-

ment of P in the direction of F, Fd is the work done by
F during the displacement. Hence (342)

Fd = FS'+ F"S"

and ^Fd= ^F6'+ ^F"^' = 0.

And ^Fd is the algebraic sum of the amounts of work
done by the external forces during the indefinitely small

displacement selected.

511. Conversely, if during any indefinitely small dis-
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placement of a rigid body, consistent with its rigidity,

the algebraic sum of the amounts of work done by the

external forces be zero, the body will be in equilibrium

(i.e., molar equilibrium).

For it may be shown by the steps of 510 in the reverse

order that

IFd = I^rS'+ I,F"S" = S'l^F' + coEi^> = 0.

Now S' and co are arbitrary and unrelated, the displace-

ment being any displacement whatever. Hence "EF' = 0,

and EF"-p = 0, i.e., the body is in equilibrium.

512. Hence it is a necessary and sufficient condition of

the equilibrium (molar) of a rigid body that the algebraic

sum of the amounts of work done by the external forces

during any indefinitely small displacement consistent

with rigidity, be equal to zero.

513. It follows from 449 that the necessary and suffi-

cient condition of the molecular equilibrium (444) of a
rigid body, which is obviously consistent with translation

but not with rotation of the body, is that the algebraic

sum of the amounts of work done by all forces, external

and internal, during any indefinitely small displacement,

be equal to zero. If the displacement be one consistent

with the rigidity of the body, the internal forces (499)
do no work. Hence the conditions of molar and of

molecular equilibrium for a rigid body are identical.

Thus the same conditions must be fulfilled, that a rigid

body acted upon by external forces may spin without
angular acceleration, as that it may move without angular
velocity about an axis fixed in itself.

514. In the case of a system of rigid bodies rigidly con-

nected [508 (1)], the necessary and sufficient condition of

equilibrium is obviously that expressed in 512, the ex-

ternal forces involved being these external to the system.
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515. In tlie case of a system of rigid bodies, not rigidly

connected [508 (2)], since the necessary and sufficient

condition of the equilibrium of each body is expressed by
the equation ^Fd = (510-512), the forces involved

being forces external to the body, that of the equilibrium

of the system is expressed by the same equation, the forces

appearing in it being both those external to the system
and such internal forces as stresses in strings and rods

and reactions of surfaces.

If these internal forces do no work during the small

displacement to which the equation applies, as will be the

case if they are tensions in inextensible strings, stresses

in rigid rods, or reactions of smooth surfaces, the equation

liFd = involves only forces external to the system.

516. If we wish to determine one of the internal forces

of a system of rigid bodies connected by rigid rods or in-

extensible strings, we may imagine a small displacement
in which the parts, between which the required force acts,

so move that the required force does work, in which case

the equation ^Fd = involves the external forces and the

required internal force.

517. Examples.

(1) A beam (weight= ir, length= ?, distance of centre of mass
from lower end= a) rests with one end on a smooth horizontal

plane and the other against a smooth vertical wall, in a vertical

plane normal to the wall, and is prevented from sliding by a force

F acting at the lower end of the beam towards the wall. Find (a)

its inclination 6 to the horizon, and {h) the reaction R of the vertical

plane.

(a) Let the beam undergo a small displacement by which the

inclination is changed from 6 to 6+ 6', where 6' is small, the

ends remaining in contact with the horizontal plane and vertical

wall. Then the lower end moves towards the wall through a
distance

lcos6-l cos (6 + 6'\
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which, since ^ is small, is equal to ^^'sin d. Also the centre of mass
falls through a distance

a sin d — a sin {6+ 6')^

which, since d' is small, is equal to - a^'cos 0. No work is done by
or against the reactions of the horizontal plane and vertical wall.

Hence, for equilibrium,

i^^^'sin d - Wad'aos. d = 0,

and 0=tan-i^y.
Fl

(6) Let the beam undergo a small translation in a horizontal

direction, the reactions being supposed to continue during the

displacement. Then the only forces by or against which work
is done are F and the required reaction, and their points of appli-

cation move through equal distances. Hence, if d is the translation,

Rd-Fd=0,SindR= F.

(2) A body A , of weight IF, is supported by a body £, of weight

w, by means of the system of smooth weightless pulleys of 509, Ex.

2. Find the relation of w to IF.

The only forces of the system by or against which work is done

during a displacement are w and W. When .1 rises through a

distance s, B falls through a distance 2"*, where n is the number

of moveable pulleys. Hence

w2"s- Ws=Q,

and ir/Tf=l/2«.

(3) Obtain the results of 509, Ex. 1 and 3, by the above method.

(4) A Wheel and Axle is used to raise a bucket from a well. The

i-adius of the wheel is 15 in., and while it makes seven revolutions

the bucket, which weighs 30 lbs., rises b\ feet. Find the smallest

force with which the wheel can be turned.

Ans. The weight of 3 lbs.

(5) Find the mechanical advantage of the Differential Wheel and

Axle. [In the Wheel and Axle the smaller the radius of the axle

with a given radius of wheel, the less the force required to support

a body of given weight hanging by a cord wrapped round the axle

(254, Ex. 5, and 507, Ex. 10\ To increase the mechanical advantage

2e



434 DYNAMICS [517

m^m
UAi

of the machine without weakening the axle unduly, the cord hanging

from the axle is passed round a pulley

supporting the body, and so wrapped

round a prolongation of the axle of

smaller radius that, when it unwinds

from the thicker portion of the axle,

it will wind on the thinner portion.

This machine is called the differential

wheel and axle.]

When the place of application of the

force F moves down a distance s, the

wheel turns through an angle sJR radians

(/i= radius of wheel). Hence, if r and

r' are the radii of the larger and smaller portions of the axle,

lengths rsJR and r's/R of cord are wound on the larger portion of the

axle and off the smaller portion respectively. The pulley therefore

rises through a distance s{r - r')/2R. Hence

Fs

and

2H'

W_ 2R
F r - 1-*

(6) A heavy beam presses upon the top of a smooth jack-screw

with a force F. The distance in the

direction of the axis of the screw

between successive windings of the

thread is d. Find the force P which

must be applied at the end of a

handle, of length ?, perpendicularly to

its length to maintain equilibrium.

For one turn of the handle the

beam would be raised a distance c?,

and P's point of application would

move in /^'s direction a distance equal

to '±Trl. Hence

2irlP-Fd=0,

and P=Fd
27rZ'
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(7) Find the mechanical advantage of the Differential Screw.

[The mechanical advantage of the screw (Ex. 6) increases as the

distance between successive windings of the same thread diminishes.

It is therefore limited by the necessity of giving the thread sufficient

strength. To increase the mechanical advantage without undue

diminution of strength, a combination of two screws is employed as

shown in the diagram. ^4 is a screw working in a nut cut in the

block B. Between A and the body to which force is to be applied

the screw C intei-venes. C works in a nut cut in the interior of

J, its upper end being fixed so that it cannot rotate. When A
advances by the amoijnt corresponding to one turn, viz., the dis-

tance between successive windings of J's thread, C screw^s into

A to a length equal to the distance between successive windings

of C"s thread, and thus C advances by an amount equal to the

difference of these distances. Such an arrangement is called a

differential screio.

Ans. 2'jrlld, where I is the length of the arm or handle, and d is

the difference of the distances between successive windings of the

threads of the respective screws.

(8) Show that the efficiency of a 'machine, i.e., the ratio of the

useful work done by it when it is moving uniformly (and therefore
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is ill equilibrium) to the whole amount of work done, is equal to the

ratio of the force which would drive the machine against the force

against which useful work is to be done, were there no friction or

other forms of non-conservative force, to the force which is actually

required to drive it.

If F is the force actually applied to the machine and s the dis-

placement of its point of application in its direction, W the useful

work done by the machine, and w the work done against friction

and other such resistances, we have Fs= W+w. If F' is the force

which would do the same useful work, if the friction and other

resistances did not act, then F's= W. Hence the efficiency

ir F'

\V+w~F'

(9) Find the efficiency of the rough lever of 507, Ex. 32.—Let ^
be the force against which the useful work is done and P the force

applied to the lever. Then (507, Ex. 32)

Pp= Qq+ r sin e JP^+Q^+^PQcosd.

Let P' be the value P would have were the lever smooth. Then

P'p=Qq.

Hence the efficiency

Pp Pp

If, in the above equation, we substitute for Q its value EPpjq^

we obtain

pq{l ~E)= r sin e s/p^t^+ 2pqE cos 6+ q\

an equation which determines the value of E.

(10) Determine the mechanical advantage of a rough screw.

Let F be the force against which work is done, and P the force

by which work is done on the handle of the screw. Let R be the

normal component of the reaction of any little element of the

thread. Then fxR\» the frictional component. In a rotation of the

screw tlirough a small angle 6, if i is the inclination of the thread

to a right section of the cylinder, r the radius of the cylinder, and I

the length of the arm, the work done against F is Frd tan i\ that
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done against friction is ^fiRrd sec i, that done by P is Pl6. Hence
for equilibrium

Pie - Fre tan i- ZfiRrd sec i

=

0,

and PI- t'r tan i - fir sec i . 2/2= 0.

Now the equilibrium of the screw also requires that the sum of the

component forces in the direction of the axis should be zero. Hence

F- SZ2 cos i+l^/xR sin i= 0,

and F= (cos i-fx sin i)Si2.

Substituting this value of '^Rin the former equation, we obtain

F
PI= Ft tan i+ ij.r sec i .— . ..

cos i — fism I

= i^rtan(i+ e),

where e is the angle of repose. Hence

F^ I

P r tan {i+ e)"

(11) Show that the efficiency of a rough screw is tan i'/tan (i + e),

i and e having the same meanings as in Ex. 10.

(12) Four rigid weightless bars, jointed at their extremities so as

to form a quadrilateral ABCD in one plane, and having the opposite

vertices comiected by tense strings AC, BD, are in equilibrium.

Compare the tensions in the strings.

£

The vertices A, B, C, D may (509, Ex. 23) be considered to be in

equilibrium under the tensions in the strings and the stresses in
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the bars. As we wish merely to compare the tensions in the

strings we choose a small displacement which will involve variation

in length of the strings only. Then the tensions will be the only

forces appearing in the equation. Let ABCD therefore undergo a

small displacement of that kind, taking the form ABed. The dis-

placements of D and C will be small arcs Bd^ Cc of circles about A
and B as centres respectively. The elongations of the strings BD
and AC will be the projections on their directions of Bd and Cc re-

spectively. Hence the elongation of A C is Cc cos CcA , which, since

BCc is a right angle and Ac ultimately coincides with AC, is equal

to CcsmACB. Similarly that of BD is -Dd sin BDA. Hence, if

T is the tension in ACj T that in BD, we have (515)

T. Cc. sin ACB- T. Dd.sinBDA =0,

, T _Dd. sin BDA
r~ Cc. sin ACB'

Now (233 and 254, Ex. 8) the instantaneous centre of the displace-

ment of CD is the point E in which AD and BC intersect. Hence

the angles DEd and CEc are equal ; and therefore

DdDE
Cc CE'

sinDBE
Also DE=BD.

and CE^AC.

sin BED'

sin CAE

Hence

sin^^C

T ^BD. sin BDA . sin DBE
T' ~ AC. sin CA E. sin ACB

JBD OA qc
AC OB' OB'

being the point of intersection of ^(7 and BD.

(13) The toggle-joint consists of two bars AB and CD of which

AB is moveable about a fixed joint at B, and CD is jointed to AB
at C while its end D is constrained to move in the line BD. Find

the relation of the force F acting on D in the direction BD, to the

force P acting at .1 perpendicularly to AB, when there is equili-

brium.
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Imagine a small displacement of the system whereby, while D
remains fixed, A moves through a small arc (length =5) of a circle

F^
about B as centre. Then C moves through Cc, whose length is

s . CBjAB. The elongation of the bar CD is thus

CB
Cc cos DcC=-j-f. s sin {d + d'\

if the angles GBD and CDB are 6 and 6' respectively, since the in-

clination of cD to cC is ultimately equal to that of CD to cC pro-

duced. Hence if S is the stress in CD

An

and S=F ^^
CB sin {d + e')

Now D is in equilibrium under S, F and the forces by which it is

constrained to remain in the line BD ; and if we neglect friction,

these forces are perpendicular to BD. Hence F=jS cos 6', and

F=P '

'
^ ^^^

^'

CB sin(^-f^')

Hence if both 6 and d' diminish to zero, F becomes infinitely great.

The reader should solve some of the examples of 507 and 509 by
this method.
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CHAPTER VII.

DYNAMICS OF ELASTIC SOLIDS AND FLUIDS.

518. Statics of Deformable Bodies.—We have seen

(256 and 268) that the motion of non-rigid bodies may
be compounded of translation, rotation, and strain. In
studying the effect of the exertion of force on such

bodies, we in the first instance restrict ourselves to the

consideration of its effect in producing strain. In other

words, we consider the equilibrium of strained bodies,

determining the forces necessary to maintain equilibrium

when they are strained in a given manner, and the strains

which will be maintained in them by given forces.

In discussing the effect of forces in producing change
of the linear and angular momentum of bodies (414 and
428), we found that the internal forces might be neglected.

In determining their effect in producing strain, however,

both internal and external forces must be taken into

account.

519. Stresses.—Across any surface which we may
imagine as drawn in the interior of a body, innumerable

forces act, the particles on the one side attracting or

repelling those on the other, and the latter reacting on
the former. We may regard all these forces as being a

single force whose place of application is not a point but

the given surface ; and when so considered we call the
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force a stress. Across any surface of a body then, or

between the two portions into which it divides the body,
we have in general a stress acting.

When the stress across a surface is one which opposes
the separation of the portions of the body on opposite

sides of the surface, the stress is called a pull, a tension,

a traction, or a negative pressure. When it is one which
opposes the approximation of these portions, it is called

a push, a thrust, or a pressure.

We speak of a stress as acting across a surface when
we wish to draw attention to its acting in opposite

directions on the two portions of the body on opposite

sides of the surface. When we wish to restrict attention

to its action on one of these portions, we speak of it as

acting on the bounding surface of that portion.

520. The forces acting between the particles on opposite

sides of any surface in a body may have any directions

and magnitudes. In general, therefore, the stress across a

surface cannot be said to have any one direction or mag-
nitude. In the important case of a continuous stress

however, the case, i.e., in which the resultant forces act-

ing on particles indefinitely near one another have inde-

finitely nearly the same magnitude and direction, if an
indefinitely small part of the surface be taken, the stress

across it may be considered as acting at a point, and as

having both a definite direction and a definite mag-
nitude.

521. Integral Stress over a Surface.—If any given sur-

face be divided into an indefinitely large number of inde-

finitely small portions, the sum of the forces on these

small portions may be called the integral stress over the

surface. If the surface is finite, it is obviously a quantity

having magnitude, but in general not direction.

The mean stress over a surface is the quotient of the
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integral stress over the surface by its area. For a finite

surface it is also a quantity in general without direction.

The stress at a point across a given surface through
the point has a magnitude which is the limiting value of

the mean stress over a portion of the given surface con-

taining the point, when the area of that portion is made
indefinitely small. By 520 it will have a definite direc-

tion in cases of continuous stress.

The magnitude of the mean stress over a surface or

the stress at a point is usually spoken of as its intensity.

The stress at a point is in general different for different

points of any given surface, both as to magnitude and
direction. If the stress has at all points the same magni-
tude and direction, it is said to be uniform over the

surface.

The stress at any point is in general different both as

to magnitude and direction for different surfaces through
the point.

522. Homogeneous Stress.—If the stresses at all points

of a body across parallel surfaces through them are the

same, the stress is said to be homogeneous throughout
the body. If not, the stress is said to be heterogeneous.

Heterogeneous stresses are in general continuous, i.e.,

the stresses across parallel surfaces at points indefinitely

near one another are indefinitely nearly the same. It is

obvious that if a body be subjected to a continuous
heterogeneous stress, the stress may be taken to be
homogeneous throughout indefinitely small portions of it.

523. Measurement of Stress.—The intensity of a mean
stress over a surface, or of the stress at a point of a sur-

face, being the quotient of a force by the area of a sur-

face, the derived unit of stress will be unit force per unit
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of area, e.g., one poundal per sq. foot, one dyne per sq.

centimetre, one pound-weight per sq. inch (usually ex-

pressed as one pound per sq. in.), etc.

The dimensions of the unit of stress are thus, if \F'\ and
[81 are the magnitudes of the units of force and area re-

spectively, [F] [S\-\ and therefore by 303 [3f
]
[X]-i [T]-\

The reduction of the numerical values of stresses from
one to another system of units is made after the same
manner as in the case of speed, rate of change of speed,

etc. (45-50, 56-59).

524. Examples.

(1) Show that a stress of 20 poundals per sq. foot is equivalent to

one of '2975 dynes per sq. centimetre approximately.

(2) One pound-weight per sq. inch is equivalent to 6'9 x 10^

dynes per sq. cm. nearly.

(3) Eeduce 40 dynes per sq. cm. to kilogrammes per sq. dcm.

Ans. 408 X 10"^ nearly.

(4) The unit of stress of a derived system being the poundal per

sq. in., the unit of mass a mass of 2,000 lbs., and the unit of time a

minute, find the unit of length.

Ans. 0-00386 ft. nearly.

525. Resultant of Stress on a Surface.—It is frequently

convenient to imagine the portion of any non-rigid body
under consideration to become rigid, and to treat it as

though acted upon by the forces, acting at points, which
in that case would produce in it the same effect as the

stresses on its boundinor surfaces. This course is admis-
sible, because, if a portion of a deformable body be in

equilibrium under stresses acting on it over its bounding
surfaces, it will still be in equilibrium, though it become
rigid ; and if it become rigid, it will still remain in equili-

brium, though one or more of the stresses acting on its

bounding surfaces be replaced by equivalent forces acting

at isolated points.
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526. It is therefore important to determine the single

force or the simplest system of forces to which a stress on
a given surface may be equivalent, or, as it may be called,

the resultant of the stress. In general such a stress will

not have a single force as resultant (476, 477). But in

the special case in which the stresses at all points of a
surface have the same direction, a single resultant may be

found (471).

To find it, divide the whole surface of area 8 into a

large number of small portions of areas s^, s^, etc. Then
8= 2s. If p^, po, etc., are the values of the mean stress

over the areas s^, s.„ etc. (when these areas are indefinitely

diminished, the mean stresses become stresses at a point),

the integral stresses over these areas will be p^s^, p^s^,

etc.; and as these stresses are parallel, we have (465, 470-1),

if P is the magnitude of the resultant stress,

P

=

2\h +P2^2+ etc. = I>ps.

The direction of P will be the common direction of the

stresses p^, p^, etc., or, in other words, the direction of the

stress at any point of the surface.

The magnitude of the integral stress over a surface,

when the stresses at its points have different directions,

is obviously equal to that of the resultant stress over the

same surface when the stresses at its points have the

same intensities and have also a common direction.

527. Examples.

(1) Find the resultant stress over a surface of area *S", the stress at

all points of the surface having the uniform intensity p, and a uni-

form direction.

Ans. pS. (For '2ps=p'S:'S=p-S.)

(2) Find the integral stress over a surface of area S, and consist-

ing of indefinitely small portions s^, Sg, etc., whose distances from a

given plane are h^, h.^^ etc., respectively, the stress at any point of
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the surface being proportional to the distance of the point from the

given plane.

If ^1, /'2, etc., are the intensities of the stress ow s^, s.2, etc., respec-

tively, we have p^= kh^, p.2= k/i2, etc., where k is a constant. Hence
the forces acting across s^, s.2, etc., are M^^j, kh.^.,, etc. Hence the

integral stress is

for »S=2s. Now ^hsj^s is obviously (400) the distance from the

given plane of the centre of mass of a uniform thin material

lamina of the same form and area as the given surface, and of sur-

face density unity (304), or, as it is called for shortness, the centre of

mass of the surface. Hence the integral stress is equal to the product

of the constant h, into the area of the surface, into the distance of its

centre of mass from the given plane.

(3) Find the resultant of a normal stress on a plane surface of

rectangular form (sides= a and 6), the stress at any point being pro-

portional to its distance from a given plane parallel to the sides of

length a and inclined 'to the sides of length h at the angle ^, and

that side of length a which is nearest the given plane being at a

distance h from it. (Use result of Ex. 2.)

Ans. kah (b sin ^4-2A)/2.

(4) Find the integral stress over a spherical surface of radius r,

the stress at any point being proportional to its distance from the

tangent plane at the highest point of the sphere and the stress at a

point at unit distance being k.

Ans. 4irkr^.

(5) Find the integral stress over the curved surface of a right

con6 of height k and semi-vertical angle 6, the stress at any point

of it being numerically equal to p times the distance of the point

from the base.

Ans. Trpkhin d/S cos'-^.

o'28. Centre of Stress.—If a single force can be found
which is equivalent to a given stress on a given surface,

its point of application is called the centre of the stress.
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In the case in which the stresses at all points of the

surface are parallel, the centre of the stress is the centre of

the system of parallel forces of which the stress may be
regarded as consisting. Hence, in this special case, if the

surface consist of small portions of areas 8^, s.^, etc., at

which the intensities of the stress are p^, p^, etc., if the

distances of s^, s^_, etc., from any plane are \, \, etc., and
if the distance from the same plane of the point of ap-

plication of the resultant (2j9S, by 526) is H, we have by
472

If the distances of the centre of stress be determined
from any three intersecting planes, its position is com-
pletely specified.

529. Examples.

(1) Show that the centre of stress for any plane surface subjected

to a uniform stress is the centre of mass of the surface.

H= Xpsh/^ps =pXsh/p^s

=

2sA/2«. [See 527, Ex. 2.]

(2) Find the centre of stress for a plane triangle, the stresses at

all points being uniform in direction and varying as the distances

of the points from a plane through one of the sides.

If the triangle be divided into narrow strips of equal width par-

allel to this side, the stress will be uniform over each strip. Hence
the centre of stress for each strip is its middle point, and that of

the whole triangle is on the line drawn from the middle point of

the above-mentioned side to the opposite angle. The resultant

stresses on strips equidistant from the middle point of this line

may easily be shown to be equal. Hence the middle point of this

line is the centre of stress for the triangle.

(3) Find the centre of stress on a parallelogram ABCD, the stress

at all points being uniform in direction and varying as their dis-

tance from a plane through AB.

If the parallelogram be divided into narrow strips of equal width

parallel to AB, the resultant stress on each will act at its middle

point and be proportional to its distance from the given plane, and
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therefore to its distance from AB. Hence the resultant stresses on

the strips are proportional to the lengths of the portions of the strips

intercepted between straight lines drawn from C and D to E, the

middle point of AB; and hence the centre of stress of the parallelo-

gram coincides with the centre of mass of the triangle BCD.

(4) Find the centre of stress for any plane surface, the stresses at

its various points being parallel and proportional to their distances

from any given plane.

With the symbols of 528 we havepi= Mi, p2= /ch2, etc. Hence

The determination of the value of ^sh^/lish in special cases requires

in general the application of the Integral Calculus.

(5) Find the centre of stress on a triangular plane ABC^ the

stresses at all points being uniform in direction and proportional to

the distances of the points from a plane through C parallel to AB.

Let the triangle be divided into n narrow strips of equal width

parallel to AB. These may be treated as rectangles if n be very

great. li AB have the length a, and if b be the distance of C from

it, the areas of these rectangles in the order in which they occur

from C towards AB are ahj'n?, 2abln-, Sab/n^, etc. As they are very

narrow the distances of their centres of mass from the given plane,

if h is the distance of AB from it, may be taken to be hln, 2/i/n,

^h/n, etc. Hence the distance of the centre of stress from the

given plane is (Ex. 4)

abhrln^ + ^^abK^jn^+ etc. + n^abK^jn'^^, iV+ 2^ + etc. -I- n^)/ii*

abhln^+ 'i^abh\rl?+ etc. + rv'abhln?
* (1^ + 2- + etc. -fw^V/i^

= 3A/4,

since n is indefinitely great. And it is obviously in the line joining

C with the middle point of A B.

(6) Find the distance from a given plane of the centre of stress

on a triangle ABC, the point A being in the given plane and the

points B and C at distances h^ and h^ from it, the stress at any

point being normal and proportional to the distance of the point

from the given plane. [Let BC meet the given plane in D. Then

the resultant stresses on ACD and ABD may be determined in

terms of the length of AD and the inclination of the plane of ABC
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to the given plane, and their centres of stress may be determined

by Ex. 2. Then the resultant stresses and the centres of stress on

the whole ABD and the part ACD being known, the centre of

stress of the part ABC may be readily determined.]

Ans. {h^^+h^h^+h^^)l%{h^-\-h.^.

(7) Find the centre of stress on a parallelogram A BCD, the

stress at any point being normal and proportional to its distance

from a given plane which is parallel to the sides AB and CD, and

distant h^ and K from them respectively.

Ans. i{h{'+ h^h.2+ h^)l'^{h^+ 1h^.

530. Resolution of Stress.—A stress being in general

oblique to the surface across which it acts, may be re-

solved into tangential and normal components. For each

of the forces acting at points, of which it may be con-

sidered to consist, may be so resolved.

A stress which is normal to the surface across which it

acts is often called a longitudinal stress. One which has

the inclination zero is called a tangential or shearing

stress.

531. Specification ofStress. — The magnitudes and direc-

tions of the stresses at a point across any three plane sur-

faces through the point being given, the stress across any
other plane through the point can be determined.

First, let the stress throughout the body be homoge-
neous, and let there be no external

forces. Let be the given point,

and Ox, Oy, and Oz the intersec-

tions of the three planes through

; and let any fourth plane in-

tersect these planes in AB, BC,
GA. Then the tetrahedron OABC
being in equilibrium under the re-

sultant stresses on its four faces,

and those on the three faces OAB, OBC, OCA being
known, the magnitude and direction of that on ABC may
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be determined by 500 ; and the area ABC being known,

the stress at any point of ABC, and consequently the

stress at 0, across a plane parallel to ABC becomes known.

532. It is usually convenient to take rectangular planes

as planes of reference.

Let OABC be a tetrahedron whose faces OAB, OBC,

OCA are at right angles to one another ; and let the

normal to the plane ABC have the direction cosines I, m,
n relative to the x, y, z axes respectively. Let the stress

at across OAB (the xy plane) have components T, /S,

jR in the directions of Ox, Oy, Oz respectively, that across

OBC (the yz plane) components P, U', T', and that across

OAC (the xz plane) components U, Q, 8', in the same
directions respectively. Also let Fg^, Fy, Fz be the com-
ponents in these directions of the stress F a,t across a
plane parallel to ABC, and therefore across ABC. Then
the tetrahedron is in equilibrium under forces equal to

the products of these various stresses into the areas of

the faces across which they act, and acting (529, Ex. 1)

at the centres of mass of the faces. Hence (500)

F^ . ABC=P . OBC+U. OAC+T . OAB,
2f
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ABC, OBG, etc., standing for the areas of the faces. Now
OBC, OAC, and OAB are the projections of ABC on the

yz, xz, and xy planes respectively. Hence (see 173)

OBC=ABG.l; OAC=ABC.m- Siud OAB =ABG .n.

Hence F^=Pl+Um+Tn.
Similarly Fy=U'l+ Qm+Sn,
and F,= T'l+S'm+Rn.

533. It is also necessary for equilibrium (500) that the

sum of the moments of the acting forces about Ox, Oy, Oz
should be equal to zero. The relations between the com-
ponents of the stresses, which are obtained by applying
this condition, however, may be more easily obtained by
considering the equilibrium of a cube of which Ox, Oy, Oz
are adjacent edges. Let OD, OE, OF be three faces of

such a cube. The component stresses at all points of

these faces are the same as at all points of the correspond-

ing faces of the tetrahedron ; and the component stresses

at all points of the faces opposite to OD, OE, OF are

equal and opposite to those on OD, OE, OF respectively.

Let the component stress equal and opposite to P on the



536] OF ELASTIC SOLIDS AND FLUIDS. 451

face opposite to OE be called p, and let the stresses simi-

larly related to Q, R, etc., be called q, r, etc. If the cube
be one of unit edge, the components of the resultant

stresses on its faces are P, Q, R, etc., p, q, r, etc., and
the points of application of these component forces are

the centres of the faces. Hence, equating to zero the sum
of the moments about Ox of all the forces acting on the

cube, and noting that P, T, U, p, t, u, which are parallel

to Ox, and S and S' which intersect it, have no moments
about it, that R and r^ Q and q, T and t', and U' and u'

have equal and opposite moments about Ox, and that s and
s' are equidistant from it and have moments of opposite

sign about it, we obtain s = s, and therefore

Similarly we find T=T',

and U=U'.

534. Substituting these values of S\ T, V, in the ex-

pressions of 532 for Pc, Fy, Fz, we have

F^=Pl+Um+Tn,
Fy=Ul+Qm+Sn,
Fz=Tl-{-Sm+ Rn.

535. Hence if P, Q, R, S, T, U are known, the stress

at across any surface through is known. The com-
plete specification of the stress at a point requires then
only these six numerical data. P, Q, and R are the com-
ponent stresses at 0, normal to the yz, xz, and xy planes

respectively. >Sf is the tangential or shearing stress either

on the xy plane parallel to the y axis, or on the xz plane

parallel to the z axis ; T, that on the xy plane parallel to

the X axis, or on the zy plane parallel to the z axis ; C7,

that on the xz plane parallel to the x axis, or on the yz
plane parallel to the y axis.

536. Secondly (531), if the stress is not homogeneous the

same result may be obtained, provided the tetrahedron
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and cube above be taken indefinitely small. For in that

case the stresses at across the planes of the faces may
be taken to be the stresses at all points of the faces.

537. The above conclusions (534-5) hold also if the body
is acted upon by external forces. Such forces must either

be forces acting on the outer surface of the body, or

forces, such as gravitational attraction, acting throughout
the mass. Forces acting at the outer surface of the body
act only on tetrahedra or cubes having faces in the bound-
ing surface, and they constitute the stresses on those

faces. Forces acting throughout the mass of the body
are proportional to the mass acted upon. Hence such of

these forces as act on the tetrahedron or cube are pro-

portional to its volume. The stresses on its faces are

proportional to the areas of these faces. The former are

therefore proportional to the cubes, and the latter to the

squares of any edge. Hence, if the tetrahedron or cube
be gradually diminished, the external forces diminish

more rapidly than the stresses ; and if it be made inde-

finitely small, the external forces become indefinitely small

relatively to the stresses, and may therefore be neglected.

538. Resolution of a Tangential Stress into Longi-
tudinal Stresses.—Let a body
be subjected to a tension

P in a given direction, and a
pressure of the same intensity

in a perpendicular direction,

the state of stress being homo-
geneous. And let ABDG be a
section of a cube of unit edge,

with its faces normal to the

directions of the tension and
the pressure, through their cen-

tral points. Then the resultants

f of these stresses on the faces of

the cube may be considered as acting at the middle points

p

A I B

P /// P

C ]
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of the sides of ABDG and as having the magnitudes P.
The triangle ACB, or rather the triangular prism of

which ACB is a section, being in equilibrium under the

two forces P, and the resultant stress on GB, this resul-

tant stress must be equal and opposite to the resultant of

the two forces P, on AB and AG. Now in a direction

normal to GB, these forces have equal and opposite com-
ponents, and in the direction of GB each has a component
P cos 45°. Hence the resultant stress on GB must be in

the direction BG, and of the magnitude 2P cos 45°. Now
the area of the section of the cube through GB perpen-

dicular to ABDG, which is the surface on which this

stress acts, has the area 1/cos 45°. Hence the intensity

of the stress on GB is 2P cos^ 45° or P.

Hence a tension parallel to one line, and an equal pres-

sure parallel to any line at right angles to it, are together

equivalent to a shearing stress of the same value on planes

cutting these directions at angles of 45°. (Compare 276.)

The directions of the pressure and tension may be called

the axes of the shearing stress.

539. It follows that since a stress at any point of a
body may be completely specified in terms of longitudinal

and shearing stresses, it may also be completely specified

in terms of longitudinal stresses alone.

540. Relation of Stress to Strain.—In considering the

determination of the strain produced in a body when sub-

jected to given stresses, we must restrict ourselves to the

simple case in which the body is homogeneous, isotropic,

and perfectly elastic.

541. A body is said to be homogeneous provided any
two equal, similar and similarly situated parts of it are

not distinguishable from one another by any difference

in quality. Probably no bodies perfectly fulfil this con-

dition without limit as to the smallness of the parts. But
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many bodies are so nearly homogeneous that their hetero-

geneity eludes observation.

542. A homogeneous body is said to be isotropic, when
any two equal and similar portions of it, whether simi-

larly situated or not, are not distinguishable from one

another, or, in other words, when it has the same qualities

in all directions. A body which exhibits differences of

quality in different directions is said to be ceolotropic.

A body may be isotropic with respect to some qualities,

and geolotropic with respect to others. We have to do
with isotropy only with respect to the relations of stress

to strain.

543. A body is said to be elastic, provided (1) the ap-

plication of force is required to produce a change in its

shape or its bulk ; and (2) a continued application of

force is necessary to maintain the change, in which case

it will return towards its initial shape or bulk when the

applied force is removed.

A body is said to be perfectly elastic for a strain of a

given kind, provided the same application of force is re-

quisite to maintain the given strain as to produce it, in

which case it will obviously return to its initial configu-

ration when the stress is removed.

544. Probably no natural bodies fulfil this condition of

perfect elasticity, unless in producing strains in them care

be taken to keep them at constant temperature. For in

all bodies the stress required to maintain a given strain

is found to vary with temperature ; and we know from
Thermodynamics that consequently a change of configu-

ration must be accompanied by a change of temperature.

545. In all bodies it is found that the amount by which
the stress required to produce a strain exceeds that re-
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quired to maintain it, is greater than the amount due
merely to this change of temperature ; and the difference

between these amounts is found to depend upon the

rapidity with which the change of configuration is pro-

duced. Thus the relative motion of the parts of a body
are resisted in the same way as the relative motion of

difierent bodies in contact ; and bodies are therefore said

to exhibit molecular friction, or as it is called viscosity.

Even a perfectly elastic body will not therefore appear
to be perfectly elastic unless its changes of configuration

are carried out with infinite slowness.

546. For most bodies, and for most kinds of strain,

there are limiting values of the stress by which a strain

of a given kind is produced, within which the elasticity

for that kind of strain is perfect, and beyond which the

elasticity is imperfect. Such limiting value of the stress

is called the limit of perfect elasticity for that kind of

strain.

547. All bodies exhibit some degree of elasticity of

volume. If a body possess any degree of elasticity of

shape, it is called a solid. If a body possess no degree of

elasticity of shape, it is called a fluid.

548. That a body may be elastically isotropic, i.e.,

isotropic so far as the relation of stress to strain is con-

cerned, it must obviously satisfy two conditions:—(1)

Any spherical portion of it must, if subjected to a uniform
normal pressure or tension over its whole surface, undergo
no deformation, the compression or dilatation produced
being the same in all directions

; (2) Any cubical portion

of it, subjected to shearing stresses on the planes of its

faces, must undergo distortion or shear ; and the amount
of the shear must be the same to whatever side of any face

the shearing stress is parallel.
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549. Hence the relation of stress to strain in a perfectly

elastic homogeneous isotropic body is completely defined

if we know (1) the ratio of the intensity of the stress,

uniform in all directions, to the dilatation or condensation

(266) which is produced by it; and (2) the ratio ofthe inten-

sity of the shearing stress to the amount of the shear pro-

duced by it. The former of these ratios is called the

resistance to compression or the elasticity of volume, the

latter the rigidity or the elasticity of figure or form.
The former may be denoted by the symbol k, the latter

by the symbol n.

550. Did we know the laws of the forces with which
the particles of bodies act upon one another when in close

proximity, and the distribution of the particles in the

body, it would be possible, by the aid of the laws of

motion, to determine the values of the elasticities of figure

and volume for strains of different magnitudes, in the case

of different bodies, and in the case of the same body in

different physical states. In our ignorance of the laws
of these forces, however, we find it necessary to have re-

course to experiment.

551. Statics of Elastic Solids.—Hookes Law gives us
the necessary experimental basis for the study of the

strains of elastic solids. Hooke expressed the law as

follows :
" (It tensio sic vis ; That is. The Power of any

Spring is in the same proportion with the tension there-

of: That is, if one power stretch or bend it one space,

two will bend it two, and three will bend it three, and
so forward." In modern phraseology it takes the follow-

ing form : Strain is proportional to stress. This law
has been subjected to the most minutely accurate experi-

mental tests, and the simple proportionality of stress to

strain is found to hold in the case of all solids for sufficiently

small strains, and in the case of metals and hard solids

{i.e., solids in which the stress applied, if maintained,



552] OF ELASTIC SOLIDS AND FLUIDS. 467

does not produce a continually increasing strain) for all

strains within the limits of perfect elasticity.

The strains, by the investigation of which Hooke's law
has been established, .viz., the stretching of wires by
appended weights, the compression of rods, the flexure

of beams, the extension of spiral springs, the torsion of

wires, etc., are all more or less complex strains, involving
in most cases both change of volume and change of form.

The constancy of the ratio of stress to strain, within the

limits of perfect elasticity, in strains involving both
change of form and change of volume, warrants us in

holding that within the same limits the elasticity of figure

and the elasticity of volume must be constant also.

552. Moduluses of Elasticity.—A modulus of elasticity

is the ratio of the intensity of a stress to the magnitude
of the strain which it produces. Thus the elasticity of

figure (n) and the elasticity of volume (k) are moduluses
of elasticity. The elasticity of figure is often called

therefore the modulus of rigidity (or of simple rigidity),

and the elasticity of volume the modulus of bulk elas-

ticity. The reciprocal of the latter is called the com.-

pressibility of the body.

Young's modulus, or the modulus of simple longi-

tudinal stress, is the ratio of the intensity of the stress

applied at the end of a wire or rod in the direction of its

length to the increase or diminution which each unit of

its length undergoes, the strain being one within the

limits of perfect elasticity. The extension of a wire or

rod by longitudinal stress involves change of both volume
and form. Hence Young's modulus may be expressed in

terms of k and n.

A modulus of elasticity, being the ratio of a stress to a
strain, has the same dimensions as a stress ; for a strain

is the ratio of two quantities of the same kind, two
lengths, for example, or two volumes, and has therefore



458 DYNAMICS [552

no dimensions. The dimensions of a modulus of elasticity

are thus [i/][X]-^[T]-2. The value of such a modulus
expressed in any one system of units may thus readily

be reduced to any other system of \inits. Moduluses
are usually expressed in gravitational measure, in pounds
(i.e., pounds-weight) per square inch, e.g., or in grammes
{i.e., grammes-weight) per square centimetre.

In the measurement of moduluses however a special

unit of force is frequently employed, viz., the weight of

unit of volume of the substance to which the modulus
applies. The value of the modulus thus expressed is to

be obtained from its value expressed as above in ordinary

units of stress by dividing by the weight of unit volume
of the substance, i.e. (304), by the product of the specific

gravity of the substance into the weight of the unit

volume of water at the standard temperature. Thus,
if a modulus be expressed in pounds per square inch, its

value in terms of the special unit of force is obtained b}^

dividing by the product of the specific gravity of the

substance into the weight of a cubic inch of water, which
in gravitational units is equal to the density of water in

pounds per cubic inch. If the modulus be expressed in

grammes per square centimetre, its value has to be

divided only by the specific gravity of the substance,

for the density of water in grammes per cubic centimetre

may be taken to be unity.

The dimensions of " weight of unit volume " being
[i^][Fj-i (where [F] and [V] are the magnitudes of the

units of force and volume respectively), and therefore

[3f][Z]--[T]-2, those of moduluses expressed in terms
of the weight of unit volume as unit of force are

[iH][X]-i[r]-2/[i¥][X]-2[T]-2 or [L]. The modulus thus

expressed is therefore a length, and its value is there-

fore usually called the "length of the modulus." Thus
the value of a modulus obtained by dividing its value

in pounds per square inch by the product of the specific
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gravity of the substance into the density of water in

pounds per cubic inch, is the length of the modulus in

inches.

The term modulus is also applied to the following
ratios, though they are not the ratios of stresses to

strains :

—

The modulus of torsion of a rod or wire is the ratio of
the couple applied at one end (the other end being fixed)

to the torsion produced per unit length of the wire.

The modulus of flexural rigidity, in any plane, of a
rod or beam, slightly bent in that plane, is the ratio of

the couple producing the curvature to the curvature
thereby produced.

The dimensions of the modulus of torsion are obviously

[ir|[Z]^[2']--; those of the modulus of flexural rigidity

the same.

553. Examples.

(1) The modulus of rigidity of a piece of glass is 245 x 10^ grammes
per sq. cm. Express it (a) in kilogrammes per sq. mm. ; (b) in

absolute C.G.S. units ; and (c) in pounds per sq. in.

Ans. (a) 2,450 ; (6) 240 x 10^
;

(c) 3-48 x lO^.

(2) The modulus of bulk-elasticity for steel is 1,841 x 10^ dynes

per sq. cm. Show that its value in grammes per sq. cm. is

1,876 X 10^, and in poundals per sq. ft. 1,237 x 10^.

(3) Young's modulus for lead (specific gravity= 11'215) being

177x10^ grammes per sq. cm., show that the length of the

modulus is 15 "78 x 10^ cm.

(4) The length of Young's modulus for iron (specific gravity= 7*5)

being 9x10^ feet, show that its value in grammes per sq. cm. is

2,057 X 10«, and in pounds per sq. ft. 4,218 x 10«. (A cubic foot of

water weighs 1000 oz. approximately.)

(5) The modulus of torsion of a certain wire has the value
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12 X 10* in the gravitational C.G.S. system. Find its value in

the absolute ft.-lb.-sec. system.

Ans. 9- 166.

554. Strain due to Longitudinal Stress.—As the stress

at any point of a body may (539) be completely specified

in terms of simple longitudinal stresses, the determination

of the strain produced by any given stress i-equires only

that we should determine the strain produced by a simple

longitudinal stress.—Let ^G be a unit cube of a body
p subjected to a simple longi-

tudinal stress, of intensity P,
normal to the faces ABCD and
EFGH. We may obviously

apply to each of the other

faces two equal and opposite

normal stresses of the inten-

sity P/3. (Each arrow-head
in the figure denotes a stress

of the intensity P/Z.) Then
it is evident that the simple

longitudinal stress P is equi-

valent to a uniform dilating

tension P/3, together with two
distorting stresses (538), each
equal to P/3 and having one
axis in the direction of the

simple longitudinal stress, their other axes being at right
angles to it and to one another. Hence (549) the effect

of the simple longitudinal stress P will be a uniform
cubical dilatation of the amount (per unit of volume)
P/3A:, together with two shears, each of the amount
P/^n and having one axis in the direction of P, their

other axes being perpendicular to it and to one another.
Each of these shears, if small, is (276) equivalent to a
positive elongation equal to P/Qn in the direction of P
and a negative elongation of the same magnitude in the
direction of the other axis. Also the cubical dilatation
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P/:37u is (266) equivalent to an elongation the same in all

directions and equal to P/9k. Hence the effect produced

by P is a positive elongation in its own direction equal

to

P/9k+P/Sn or P(Sk+n)/dkn,

and a positive elongation equal to

P/dk-P/Qn or P{2n-Sk)/18kn,

in each of two perpendicular directions at right angles to

one another, and therefore in all directions at right angles

to that of P.

555. Stress required for Longitudinal Strain.—Simi-

larly, as any strain may (279) be specified in terms of

simple longitudinal strains, the determination of the stress

required to produce a given strain requires only that we
should determine the stress required to produce a simple
longitudinal strain.

By 277 (Ex. 1) a small simple elongation e is equivalent

to a cubical dilatation e (due to elongations e/3 uniform
in all directions), together with two shears, each of the

amount 2e/3, having the direction of the given simple

elongation as major axis or axis of positive elongation,

and having as other axes lines perpendicular to the

direction of the elongation and to one another. For the

production of the cubical dilatation e a tension ke, uniform
in all directions, is necessary. For the production of

each of the shears (538) a tension in the direction of the

elongation, and of the intensity 2en/S, together with a
pressure of the same intensity in a perpendicular direction

is necessary, the pressures required for the two shears

being perpendicular to one another. Hence the elonga-

tion e requires altogether a tension in the direction of

the elongation of the intensity (k-\-4!n/S)e, and tensions

of the intensity {k— 2n/S)e in two directions perpen-

dicular to that of the elongation and to one another,
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and therefore in all directions perpendicular to that of

the elongation.

556, The above results are sufficient to enable us to

solve a few important problems on the strains produced
in elastic solids when subjected to given stresses, and
on the stresses required to produce or maintain in them
given strains.

Examples.

(1) A rod, bar, or wire is subjected to equal and opposite forces

acting at its ends in the direction of its length. Find the ratio

(called Foisson's ratio) of the linear contraction it undergoes

laterally to the elongation produced in the direction of its length.

Ans. Obviously from 554, (3^-2/i)/2(3^+ ;i).

(2) Find in Ex. (1) the diminution, per unit area, of the cross

section of the rod, P being the intensity of the stress applied at

the ends.

Ans. F{3k-2n)l9hi.

(3) Show that in Ex. (1) the dilatation per unit volume is /*/3/-,

P being the intensity of the stresses at the ends of the rod.

(4) Express Young's modulus in terms of the moduluses of bulk-

elasticity and of rigidity.

The stress P applied at the end of a rod or wire in the direction

of its length will (554) produce an elongation per unit of length of

P{3k+ 7i)l9kn. Hence Young's modulus, the ratio of this stress to

the elongation produced, is equal to 9knl{3l:+ n).

(5) Show that in the extension of a band of India-rubber, for

which k is large in comparison with n, the area of the cross-section

is diminished in nearly the same proportion as that in which the

band is lengthened, and that there is therefore but little change

of volume.

(6) Find (a) the stress produced at any point in a circular cylinder

of length I, one end of which is fixed while the other is twisted
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through an angle 6, and {b) the moment of the couple which must

be applied at the free end of the cylinder to maintain the torsion.

{a) By 277, Ex. (3), the cylinder is, at every point distant r

from the axis, subjected to a shear whose plane is perpendicular to

a plane through the point and the axis, and is parallel to the axis,

whose direction is normal to the plane containing the point and the

axis, and whose amount is dr/l. Hence the stress at any point is a

shearing stress of the intensity 7idrll, on a plane normal to the axis

and in a direction perpendicular to the plane through the axis and

the given point.

(b) If the normal section at the end of the cylinder be divided

into an indefinitely large number of indefinitely small portions of

areas 5^, Sgj etc., distant r^, rg, etc., from the axis, the resultant

shearing stresses on them will be ndr^Sxll, ndr^J^, etc. The

moments of these resultants about the axis will be ndr^^sjl,

ndr^S2ll, etc. Hence, if T is the moment of the couple which

must be applied at the free end to maintain the given torsion,

T= ndrj^sjl+ ndr2%ll+ etc. = ^ndrhll= {ndjl)^sr^.

Now 2sr^ is (486) the moment of inertia of a uniform thin lamina

of the shape and size of the section of the cylinder and (304) of sur-

face density unity (called for shortness the moment of inertia of the

section), about an axis through its centre perpendicular to its plane,

and (490, Ex. 11) if a is the radius of the cylinder, is equal to iraV2.

Hence T=ndira'^l2L

Hence also the torsion produced in a wire is directly proportional

to the twisting couple and to the length of the wire, and inversely

proportional to the rigidity and to the fourth power of the radius.

The proportionality of the angle of torsion to the twisting couple

was discovered experimentally by Coulomb, and is called Coulomb's

law.

(7) Express the modulus of torsion of a wire (552) in terms of its

dimensions and its rigidity.

Ans. mra*i2, a being the radius of the wire.

(8) A uniform straight beam, with one end fixed, is slightly bent

by a force F applied at the other end normally to its length and in
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the plane of bending, F being so great that the weight of the beam
may be neglected. Find the flexural rigidity (552) of the beam in

the plane of bending.

Since the beam is uniform, and is but slightly bent, the strain

produced may be taken to be that of 277, Ex. 4.—Let AEC£'he
any transverse section of the beam. Then the part of the beam

between this section and the free end is in

equilibrium under the force F, the normal

stress over AECE\ due to the longitudinal

strain, and the shearing stress over A ECE\
due to the shearing strain, to which the

beam is subjected. Let EE' be the inter-

section with AECE' of the neutral surface.

Then at any point G, distant d from EE\
there is a longitudinal strain in a direction

C normal to AECE', the elongation being

d/p, where p is the radius of curvature of longitudinal lines in the

neutral surface and therefore, since the bending is slight, of all

longitudinal lines. Hence, if >S' is the intensity of the longitudinal

stress at G, and M is Young's modulus for the beam (552),

M=SI{dlp), and therefore S= Mdjp. If s is an indefinitely small

area surrounding (?, the resultant stress on this area is Msdjp. The
moment of this resultant stress about EE' is therefore Msd^jp.

Now the whole area AECE' may be divided into an indefinitely

large number of indefinitely small portions. Hence the moment
about EE' of the normal stress over the whole surface AECE' is

^{Msdyp) = {Mlp)-Esd^,

the summation applying to all the small areas into which A ECE' is

divided. Now ^sd^ is (486 and 556, Ex. 6) the moment of inertia

of the surface AECE' about EE'. Calling this /, we find the

moment about EE' of the normal stress on AECE' equal to MI/p.

The shearing stress on xi ECE' being tangential has no moment
about EE'.

If the distance from AECE' of the free end of the beam be 5, the

moment of F about EE is Fs.

The portion of the beam between A ECE' and the free end is
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thus in equilibrium under the two moments F5 and Milp. Hence

(500)

F8= MIjp, and F8p= J//.

Now 1/p is the curvature of the beam, and therefore F5p is the

flexural rigidity of the beam in the plane of bending.

Hence the flexural rigidity of a beam in the plane of bending is

the product of Young's modulus for the beam into the moment of

inertia of a transverse section about the line in which this section

intersects the neutral surface.

We must therefore determine the position in the beam of the

neutral surface. We have seen that, s being any small portion of

a transverse section, the resultant stress on it normal to the trans-

verse section has the magnitude Msdjp. Hence the resultant normal

stress over the whole section is

ZMsdlp={Mlp)i:sd.

Now the bending being slight, the direction of this resultant longi-

tudinal stress is perpendicular to the directions of the other acting

forces. Hence for equilibrium this resultant stress must be zero,

and therefore 'Z,sd=0. Hence (403) the line FE', distant d from

the little area s, passes through a point which is the centre of mass

of the section AECE' (527, Ex. 2), and therefore the neutral surface

is the surface passing through the centres of mass of the transverse

sections of the beam, and normal to the plane of bending. (That

line of the neutral surface which passes through the centres of mass

of the sections of the beam is called the elastic central line.)

We can now calculate the flexural rigidity of a beam of given

section. Thus let the transverse section be rectangular, its sides

being a and h. Then (490, Ex. 4) the moment of inertia of a trans-

verse section about an axis parallel to the sides a, in its plane, and

through its centre of mass, is ah^jl^. Hence the flexural rigidity in

a plane normal to the sides a is Mab^ll2, where M is Young's

Modulus for the beam.

(9) A uniform straight horizontal beam of length L has one end

fixed, and is slightly bent in a vertical plane by the weight F oi a.

2G
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body attached to the other end. Fmd the distance through which

the free end will be lowered.

Let the unstrained beam be divided

into an indefinitely large number of

transverse slices of thickness ^, and let

ahdc be one of these slices in the

strained state. The bending being

slight the transverse sections will in-

tersect one another in a horizontal line

vertically below the fixed end of the

beam. Let this line intersect the plane

of the diagram in 0, and let 6 be the

inclination of ac to hd. Let ak and hi,

tangents at a and h respectively, inter-

sect a vertical line through Bink and I

respectively. Then kl is the lowering

of B due to the strain of ahdc. The
whole lowering of B will be the sum of the amounts of the lowering

due to the strains of the various slices. Hence, if kl be denoted by X,

the total lowering of B will be 2\. Now the angle between ak and

hi is 6. Hence, since the bending is slight, if the distance of the

slice ahdc from the free end be denoted by 5, we have

\= hd.

Now (277, Ex. 4) t=pd.

Hence \=mip.

Also (556, Ex. 8) MIIp= F5.

Hence \=Fth^jMl.

Hence also the total lowering of the free end

SX

=

^Ftd^lMI)= {FIMI)^U\

the summation extending to all the slices of thickness t into which

the beam of length L is divided. Now (486) 2i(52 is the moment of

inertia of a uniform thin rod of length L, and linear density unity,

about a normal axis through its end point, and is therefore (490,

Ex. 1) equal to Z^/3. Hence the whole lowering

SX= 7^X3/3J//.
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If the beam have a rectangular transverse section of breadth a

and depth 6, as in Ex. 8,

I=abyu.

Hence, in this case, the whole lowering

2\= 4FL^IMab^

(10) A uniform straight beam of length L is supported (not

fixed) at the ends horizontally, and weighted at its middle point

with a body of weight F. Find the amount of the lowering of the

middle point, the bending being slight.

Obviously this case is the same as if the middle point of the beam

were fixed and its ends acted upon by upward forces equal to F/2.

2

For the beam is in equilibrium under the force F and the equal re-

actions of the supports, which, since the bending is slight, may be

considered vertical. Hence the lowering will be obtained from the

result of Ex. 9 by putting Z/2 for L and Fl2 for F, Hence the

lowering
1=FL^I48MI.

If the beam be of rectangular section, breadth= a and depth= 6,

l=FLy4Mab^.

557. Kinetics of Mastic Solids.—The motion of the

parts of an elastic solid relative to one another is to be
determined by dividing it into small portions and apply-

ing the general equations of motion to these portions,

the forces acting on them at any instant beiDg the stresses

which must act across their bounding surfaces to produce
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the state of strain which they may have at that instant,

and the stresses due to viscosity, together with the ex-

ternal forces.

In general the investigation of the motion of elastic

solids which have been strained and then " let go " re-

quires more mathematical power than this book pre-

supposes. We may however solve one simple problem.

558. Example.

A uniform cylindrical body (moment of inertia about the

axis= /) is liung by means of a wire (length = ^, radius= a, rigid-

ity =7i) whose axis is in the same straight line with the axis of the

cylinder. The cylinder, after having been turned about its axis

through an angle involving a torsional strain in the wire, which is

within the limits of perfect elasticity, is let go. Find the time of

oscillation of the cylinder, (neglecting viscosity), and show how the

rigidity of the wire may be determined by observation of the time

of oscillation.

The cylinder may be considered to be a rigid body acted upon in

a horizontal plane by no forces except the shearing stresses on its

upper end where it is attached to the wire. We found (556, Ex. 6)

that the couple necessary to twist a wire of length I, radius a, and

rigidity n, through an angle d is mrda^j^l. Hence at the instant

at which the cylinder is turned 6 radians from the position in which

the wire is without torsion, the moment of the stresses exerted by

the lower end of the wire on the cylinder about its axis will have

this magnitude. Its direction will be such as to turn the cylinder

towards the position in which the wire is without torsion. If there-

fore a is the angular acceleration produced in the cylinder by these

stresses, we have (493)

a= Trnda^/21I.

Hence a cc $ ; and therefore for any point of the cylinder distant r

from the axis, ar x e?-, i.e., the component acceleration of the point

in the direction of its path varies as its displacement (measured

along its path) from its mean position, that occupied when the wire

is without torsion. The motion of each point of the cylinder is
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therefore (164) simple harmonic. Heuce the cylinder will oscillate

about the position in which the wire has no torsion, the rate of

change of speed of each of its points when at unit distance (meas-

ured along its path) from its mean position being

arldr= ald= 'irna*/2U.

Hence, if t be the time of a complete (double) oscillation.

Hence also n= 8TrlIlt^a^. If therefore t be obsei-x^ed, n may be

determined.

559. Work done during Strain.—The work done
during a strain can be best studied by considering a cube

of the body subjected to the strain, whose edges have the

directions of the rectangular axes by reference to which the

strain is specified. Let ODEF (Fig. of 533) be such a cube

subjected, to a stress (P, Q, R, S, T, U), and let it undergo
a small elongation e alone. (We use the symbols of 283

and 535 to specify strain and stress.) The only stresses

in the direction of e (that of the x axis) are P, T, and U,

and the equal and opposite stresses on the opposite sides

of the cube. The distance of the places of application of

the two opposite stresses P is changed by the elongation,

by the amount elj if I is the edge of the cube. Hence
work is done equal to PP . el or Pel^. The places of

application of the pair of stresses T, and of the pair U,

are not moved relatively to one another by the elonga-

tion. Hence no work is done by either. Hence the

whole work done during the elongation e is Pel^.

Similarly, if the body undergo small elongations f or g
alone, the whole work done will be QfP or BgP respec-

tively.

If now the body undergo the small shear a alone, seeing

that we may regard it as having the direction of the y or of

the z axis, i.e., as being a shifting of planes parallel to the xy
plane in the direction of the y axis, or of planes parallel
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to the xz plane in the direction of the axis, the pairs of

stresses R, T, S', S, Q and U' may be in the direction of

motion. Now the pair of stresses It, and the pair Q, are

longitudinal stresses, and the distances of their places of

application are not changed by the shear. Hence they

do no work. Also the places of application of the pair of

stresses T, and of the pair U', undergo no change of dis-

tance. Hence T' and U' do no work. If the shear be a

shifting of planes parallel to the xy plane in the direction

of the y axis, the places of application of the pair of stresses

S experience a relative displacement in the direction of S,

of the amount al, while the places of application of the

pair 8' undergo no change of distance. And if the shear

be a shifting of planes parallel to the xz plane in the direc-

tion of the z axis, the places of application of the pair S'

experience a relative displacement in the direction of 8'

of the amount al, while those of the pair S undergo no
change of distance. Hence, S being equal to S', the work
done in either case and therefore the whole work done
during the shear a, is SctP.

Similarly during small shears b or c, occurring alone,

the work done would be TbP or UcP respectively.

Now the translation or rotation which may accompany
any strain do not change the distances of the places of

application of any of the pairs of stresses P, Q, E, etc.,

and therefore they do not involve the performance of any
work by these stresses. Also the work done during a
small strain (e,

f, g, a, b, c) is the sum of the amounts
of work done during each component alone. Hence the

whole work done throughout a cube of edge I, subjected

to a homogeneous stress (P, Q, P, S, T, U) during a small

strain {e, /, g, a, b, c) is

{Fe+Qf+Rg-\-8a+Tb+ Uc)R

Hence also the work done throughout the body per unit

of volume is

Pe+Qf+Rg-\-Sa+ Tb+Uc;
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and the whole work done, if the body have the volume v,

is

(Fe-^Qf+Rg+Sa-hTb+ Uc)v.

560. This amount of work is equal to that done on the

body by the stresses on its bounding surface. For if the

body be divided into indefinitely small cubes, the work
done by the stress on any side of any cube is equal to

that done on the contiguous side of the neighbouring
cube and of opposite sign. Hence the sum of the amounts
of work done on all internal surfaces is zero ; and there

remains only the work done by the stresses on those faces

of cubes which are parts of the bounding surface of the

body.

561. Let a body subjected to a stress (P, Q, R, >Sf, T, U)
undergo a small strain (e, /, g, a, 6. c), and let its stress

after the strain be (P', Q', R\ B\ T, W). Then since, by
Hooke's law, the stress is proportional to the strain, the

mean stress is one half the sum of its initial and final

values. Hence the work done is equal to

/(P+p^)e+(Q+Qy+(P+ P')^+(^+^>

If initially the body is in a state of no strain, and there-

fore of no stress, the work done is thus

{Fe+ Q'f+R'g+8'a+rh+ U'c)v/2.

562. If the body be perfectly elastic, and if the strain

be conducted so slowly that no change of temperature

results, and no eflfect of viscosity is appreciable, then the

stresses called into play depend only on the configuration

of the body, and it thus constitutes a conservative system.

Hence the potential energy of the body in its final con-

figuration is equal to the work done in producing it.

563. If the body be perfectly elastic, and if the strain
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be not effected with infinite slowness, the stresses at the

various stages of the strain are not dependent wholly
upon the configuration, but depend also upon the varying
temperature and upon the viscosity. Hence in this case

the body does not behave as a conservative system, and
the final potential energy is less than the work done in

producing the change of configuration, the diflference

being the amount expended in the production of heat.

564. If the body be not perfectly elastic, then, even if

the change of configuration be effected with infinite slow-

ness, the stress required to produce a strain is not equal

to that required to maintain it. Hence in this case also

the body does not behave as a conservative system, and
the final pote;itial energy is less than the work done.

565. The potential energy of a body strained to the

extreme limit of perfect elasticity is called the resilience

of the body for that kind of strain. It is usually mea-
sured in gravitational units, and expressed per unit mass
of the body. It is obvious that the resilience of a body
thus expressed is equal to the height to which the body
would be lifted if an amount of work equal to the resi-

lience were done in lifting it. The term resilience is also

used by some writers as synonymous with elasticity.

566. Statics of Fluids (Hydrostatics).—A fluid is a
body which possesses no degree of elasticity of shape, i.e.,

its shape may be changed by a stress of any magnitude
however small, and no stress is required to maintain the

strain thus produced, the body exhibiting no tendency to.

return to its initial shape when the distorting stress is

removed. In consequence of the viscosity of fluids how-
ever, a finite stress is necessary to produce a change of

shape, if the change is to be eflfected with finite rapidity.

567. All fluids are perfectly elastic for condensation

strains. But they dififer greatly in compressibility.
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Liquids are fluids whose compressibility is small
;
gcises,

fluids whose compressibility is great.

The compressibility of most liquids is so small that the

properties of the ideal liquid, a liquid of constant density,

are approximately those of many real liquids. Hooke's
law applies to the condensation of liquids up to the

highest pressures to which they have been subjected. In

discussing liquids, however, we shall assume their density

to be invariable.

The relation of the pressure to the volume of a given

mass of gas kept at constant temperature is approximately
expressed in Boyle's law, which states that the pressure

is inversely proportional to the volume, and therefore

directly proportional to the density. All gases at suffi-

ciently high temperatures follow Boyle's law with con-

siderable accuracy through extensive ranges of pressure.

But the lower their temperature the greater their devia-

tion from it. We may take as the ideal gas one which
follows this law, and in dealing with gases we assume it

to hold.

568. The distinctive property of fluids, that the main-

tenance of a shearing strain requires no stress, may ob-

viously be expressed thus :—Provided the parts of a fluid

body are not moving relatively to one another, the shear-

ing stresses at all points of the fluid are zero, or the

stresses at all points on all surfaces through the points

are normal.

569. Stresses in Fluids.—The stresses of fluid bodies

are usually pressures, though in certain cases they may
be tensions. The centre of stress in the case of a fluid is

thus usually spoken of as a centre of pressure.

The stress throughout a fluid, which is in equilibrium

and is not acted upon by external forces throughout its

mass, is homogeneous (522). For (1) any hemispherical por-
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tion of it is in equilibrium ; and the pressures on the small

portions into which its curved surface may be divided
being all normal to these portions, and therefore passing

through the centre of the sphere, their resultant also

passes through that point. Hence also the resultant of

the pressure on the plane surface passes through its centre
;

and the pressure over it is therefore uniform. Also (2)

any cylindrical portion, with ends normal to the axis of

the cylinder, is in equilibrium, and the pressures on the

curved portion of its surface being normal to the axis,

the pressures on its ends must be equal and opposite.

Hence the pressures on parallel surfaces are equal.

570. Specification of Fluid Pressure.—The stress

throughout a fluid in equilibrium and not acted on by
external forces being homogeneous, the results of 531-535

apply to the case of a fluid in this state. In the case

of a fluid however the equations of 534 are much sim-

plified by the absence of shearing stresses (568), and
thus become

F^= Pl', Fy = Qm; F^= En,

whence F= (PH^ -{- Q^m^+RVy.

Now in the special case in which l =m = n, we have
since F is now a fluid pressure and therefore a normal
stress,

Fx= Fy= Fz;

and therefore in all cases,

P= Q = B.

Hence (7) F=P= Q=R
If therefore a fluid be in equilibrium and be not acted

upon by external forces, the pressures at all points across

all surfaces through these points are the same.

If it be acted upon by external forces (537) the pressures

at any one point across all surfaces through that point are
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the same, or, as it is usually put, the pressure at any
point is the same in all directions.

The pressure at any point of a fluid in equilibrium is

therefore specified by one numerical datum.

571. Equal Transmission of Pressure.—If P and P'
be the pressures on the ends (normal to the axis) of a
cylinder of unit section, and of any length and in any
direction, and if F be the sum of the components in the

direction of the axis of the external forces acting on the

cylinder, then for equilibrium

P'^P= F.

Hence, if P be increased by any amount, P' becomes
increased by the same amount. This result is often

called the " Principle " of the equal transmission of

pressure.

572. Surfaces of Equal Pressure in a fluid acted upon
by external forces and in equilibrium are surfaces at all

points of which the pressure is the same.

Lines of force in a fluid acted upon by external forces

are lines whose directions at all points coincide with the

directions of the resultant external force at those points.

573. Surfaces of equal pressure are at all points normal
to lines of force. For the resultant external force on a

small cylinder of the fluid with ends normal to its axis,

and so placed that the pressures on its ends are equal,

can have no component in the direction of the axis.

574. If the external forces are central forces (838), and
the various points of the fluid have therefore potentials

(355-6), the resultant force at a point must be normal to

the equipotential surface through the point (359). Hence
surfaces of equal pressure coincide with equipotential

surfaces.
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575. In that case also (356) the resultant external

force on unit mass of the fluid at any point is equal to

the rate of change of potential per unit of distance in its

direction. Now, if the fluid between two surfaces of

equal pressure, indefinitely near one another, be divided

by lines of force into columns of equal section, the differ-

ences of pressure on the ends being the same for all, and
all being in equilibrium, the resultant external forces

acting on all must be the same. Let F be the resultant

external force on any column, m its mass, I its length and
Fand V the potentials of its ends. Then F/m= {V' -V) jl.

Hence, the difference of potential between the ends being

the same for all, the ratio of the mass to the length and
therefore of the mass to the volume must be the same
for all. And therefore surfaces of equal pressure are also

surfaces of equal density.

576. In the case of heavy fluids, the attraction of the

earth is the external force. Hence in that case level or

horizontal surfaces are surfaces of equal pressure.

The free surface of a heavy liquid in equilibrium, being
exposed to the pressure of the atmosphere, is therefore a

horizontal surface throughout the region in which the

pressure of the atmosphere has the same value.

577. Variation of the Pressure of Fluids acted upon
by External Forces.—Let F be the resultant external

force acting on each unit of volume of the fluid, in one of

the columns of 575, s being the area of either of its ends,

I its length, and P and P' the intensities of the pressures

on its ends. Then

{P'-P)s = Fls,

and {P'-P)ll = F.

Hence the resultant force on unit volume of the fluid is

equal to the rate of change of pressure in its direction per

unit of distance.
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578. If the external forces are derivable from a
potential, we have also (356) V and Fbeing the potentials

at the ends of the column at which the pressures are P'
and P respectively, and p being the density,

{r-V)/i=F/p.
Hence {P'-P) = (r •-V)p.

If gravitational attraction is the only external force,

we have therefore, w^ith the convention of 361, since the

external force is directed from the end of smaUer to the
end of greater pressure,

Now in this case

r-v=gi
Hence P'-P= pgl;

and therefore the rate at which pressure increases per
unit of distance in a direction normal to surfaces of

equal pressure in a heavy fluid is equal to pg.

579. In the case of liquids p is a constant. Let P^, P^,

Pg, etc., P be the pressures at a series of surfaces of equal

pressure indefinitely near, let l^, l^, etc., be the inter-

cepts between these surfaces of a line of force, and let the

surfaces whose pressures are P^ and P be so near that g
may be considered constant, then

Hence, if L be the length of the line of force extending
from any point of the surface whose pressure is P to that

of which the pressure is P^, we have by addition

^- ^0= pgi^^ + h-^ etc.) = pgL.

Gravitational attraction being the only external force

acting thi-oughout the mass of the fluid, the surfaces of

equal pressure are horizontal surfaces and the lines of

force are vertical lines. Hence the difference of pressure
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between two points of a heavy liquid is equal to their

difference of level multiplied by pg, and therefore to the

weight of a column of the liquid whose length is the

difference of level and whose section is unity.

If n is the pressure of the atmosphere at the free sur-

face of a heavy liquid, the pressure at any point at depth
L is thus Yl-\-pgL, which may be written pg{L-\-L'), pro-

vided L'= Il/pg, i.e., provided L' is the length of a column
of the liquid of unit section whose weight is equal to 11.

The determination of the resultants and centres of the

pressures on the surfaces of bodies immersed in heavy
liquids is of great practical importance. The reader will

find, on looking back to 527, Exs. 2-5, and 529, Exs. 2-7,

that examples of such determinations have already been
given in considering resultants and centres of stress.

580. In the case of gases kept at a constant tempera-
ture we have (567) p = hP, where Z: is a constant and p
the density of a gas at the point at which its pressure is

P. Hence

P'-P= kP{T^y),
and P'= P[l-f-^(F'-F)].

Let Pq, Pj, P2, etc., P be the pressures at a series of 9^-f-l

surfaces of equal pressure indefinitely near, and so chosen
that the differences of potential of neighbouring surfaces

are the same, and let V, V^ be the potentials of the sur-

faces whose pressures are P, P^. Then

P,=Pll+k{V-V,)lnl
P=Pil+k{r-V,)lnl
= P,[\ + k{V-V,)lnY,

etc.,

P=P„[l+fc(F_F„)M]».
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Hence, if n be made indefinitely great, we have (392)

where e is the base of Napier's Logarithms.

Gravitational attraction being the only external force

acting throughout the mass of the gas, and the volume of

the gas under consideration being so small that g may be

considered constant, we have

r-r,= -gh,

where h is the height of the point whose potential is V
above that whose potential is Vq. Hence

P=P e~^^\

It is obvious that since P = p/k, 1/k is equal to g times the

length of a column of the given gas of uniform density p
and of section unity, whose weight is equal to P. It is

therefore equal to g times the height which an atmosphere
of the gas would have if its density were the same
throughout its whole extent as at the earth's surface. This

height is consequently often called the " height of a

homogeneous atmosphere" or the "pressure-height" of

the given gas for the temperature to which the given

value of k applies. If this height be denoted by H, since

1/k = gH, we have

The value of H for any gas depends only on its nature

and temperature and on the value of g. For dry
atmospheric air at 0° C. in the lati.tude of Paris it is

7-990 X 105 cm.

581. Archimedes' Principle.—If a body be wholly or

partially immersed in a heavy fluid, the resultant of the
pressure over its surface is a single force acting vertically

upwards through its centre of mass and equal to the
weight of the fluid displaced. For a portion of the fluid

having the same position, shape, and size as the given
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body or the part of it which displaces fluid, would be in

equilibrium under its own weight and the resultant

pressure on its surface, which, since the pressure at a
point of a heavy fluid varies only with its depth beneath
or height above any chosen level surface, must be the

same as the resultant pressure on the body.

582. EquilibriuTn of a Floating Body.—It follows,

from 581, that a body floating at the surface of a heavy
liquid will be in equilibrium provided (1) the centres of

mass of the body and of the displaced liquid are in a

vertical line, and (2) the weight of the body is equal to

that of the displaced liquid.

583. Stability of the Equilibrium of a Floating Body.
—The general discussion of the stability of the equilib-

rium of a floating body is beyond the scope of this book.

But in the important special case of a homogeneous rigid

cylinder, of any section, for angular displacements about
its axis, the condition of stability admits of simple ex-

pression.—Let ABC be a transverse section of such a

cylinder, through its centre of mass G ; and let E be the

centre of mass of the portion beneath the surface SS' of

the liquid, and therefore of the displaced liquid, in the

position of equilibrium, in which the line GE is obviously
vertical. Also let F be the centre of mass of the sub-

merged portion when the cylinder has been rotated

through a small angle about a longitudinal axis, M being

i
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the point in which a vertical line through F intersects

GE. Then the cylinder is acted upon by equal and
opposite vertical forces through G and F; and it is

obvious that if the point M be above G these forces will

tend to diminish the angular displacement and to bring
the cylinder back to the position of equilibrium ; where-
as, if M be below G, they will tend to increase the dis-

placement. In the former case therefore the equilibrium

is stable, in the latter unstable. The point M is called

the metacentre. The equilibrium is therefore stable,

provided the metacentre be above the centre of mass.

This result applies to the rolling of a ship so built and
laden that G, E, and F are in the same plane.

58-i. Kinetics of Fluids {Hydvokinetics).—When the

parts of a fluid move relatively to one another, shearing

stresses make themselves manifest. If, e.g., a cylindrical

vessel, with its axis vertical, and containing a liquid, be
made to rotate uniformly about its axis, the liquid will

be found after a time to be rotating with the vessel, and
if the vessel be now brought to rest the motion of the

liquid gradually subsides. Hence any cylinder of the

liquid coaxial with the vessel is acted upon by stresses

having tangential components when the liquid outside it

is in motion. For otherwise that cylinder must remain
at rest or in uniform motion.

In many important practical cases however the effect

of these shearing stresses is small and may be neglected

;

and as the consideration of the motion of fluids exhibiting

tangential stresses is attended with great difficulty, we
restrict our attention to these cases.

585. If the stresses at a point of a moving fluid on all

planes through the point are normal, they have also the

same intensity.

For if we consider a tetrahedron, such as that of 532,

2h
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we have, as the equation of its motion in the direction of

Oxy using the symbols of 532,

P . OBG-Fl . ABG-\-X = md,

where X is the component of the resultant external force,

m the mass, and a the component acceleration of the

centre of mass in the x axis. Now X is proportional to

the mass, and therefore to the volume, of the tetrahedron.

If therefore (537) the tetrahedron be indefinitely small,

both X and m may be neglected relatively to P and F.

Also we have OBC^ABC. I. Hence P= P.

586. Equations of Motion.—The motion of a fluid

under given forces may be determined by applying the

general equations of the motion of extended bodies and
expressing in equations the conditions imposed by the

distinctive peculiarities of fluids. Of these equations

there are two. The first expresses the relation which
holds between the pressure and the density of the fluid.

In the case of a gas at constant temperature it is p = kP ;

and in that of a liquid, p = const. The second is the

equation of continuity which expresses in mathematical
language the general law that a fluid in motion is always
a continuous mass. The employment of these equations

however in the solution of problems is beyond the scope
of this book.

587. Steady Motion.—In general the velocity of the

fluid particles passing through a given point in space

varies with time. When at each point in space through
which fluid is passing the velocity of the fluid is constant

both in magnitude and direction, the motion is said to be

steady.

The paths of the particles of a fluid which is moving
steadily, are lines of motion, i.e., lines whose directions at

all points are the directions of the motion of the fluid at

those points. They are therefore called stream lines.
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588. Equation of Energy.—We may obtain, as being
simple and important, the equation of energy applicable

to cases of the steady motion of liquids under external

forces which have a potential.

Consider a tube whose curved surface is bounded by
stream lines, and whose ends A and B are small and
normal to the stream lines. Let p be the pressure, v the

speed of the liquid, V the potential due to external forces,

and s the area of the section, at A ; and let^', v\ F', s'

be the values of the same quantities at B. The masses
of liquid entering the tube at A and leaving it at B in

unit of time are pvs and pv's respectively, and since the

liquid moves as a continuous mass and does not vary in

density, we have (the equation of continuity for this

case)

pv's = pvs
\

and hence vs= v's'.

Unit mass entering the tube at A has the kinetic energy

t'^/2, the same mass leaving it at B the kinetic energy

v'^l^. Hence the excess of the amount of the kinetic

energy entering the tube at A over that leaving it at B
in unit of time is pVs(v'^— v"'^)/2. The potential energy of

unit mass at J. is greater than that of unit mass at B
by V — V, if we adopt the definition of potential given

in 361. Hence the excess of the amount of the poten-

tial energy entering the tube at A over that leaving

it at B in unit of time is pvs(V—V). Also, the work
done by the pressure at A on the liquid entering in unit

of time is pvs, and that done by the liquid leaving at B
in unit time against the pressure at B is 2^''v's'. Hence
the energy gained by the tube in unit of time on account

of the work done by the pressures at the ends is

2WS —p'v's = (p'-p')vs.

Now as the motion is steady the energy of the tube is

constant. Hence
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pvs^^ - 1;'2)/2+ pvs{F- F)+ {p-p^s= ;

and p+ p{vy2 - F) = p'

+

p{vy2 - F)

;

or p+ p('^/2-V) = G,

where (7 is a constant for the same stream line.

589. We may apply the above result to one important
hydrokinetic problem. Problems on the motion of fluids,

even of liquids, in general require higher mathemati-
cal attainments than readers of this book are supposed to

Exa7)iple.

A vessel is kept filled to a constant level with liquid, which

escapes through a small orifice in its wall. Find the speed of

efflux.

In this case the flow of liquid soon becomes steady. Since the

upper surface is large relatively to the orifice, the speed of the

moving liquid there is small, and, if the orifice be sufficiently small,

may be neglected. The pressure at the upper surface is that of the

atmosphere 11. If that surface be taken as the level of zero poten-

tial, V—0. Hence the above equation of energy for a j)oint at the

upper surface on any chosen stream line reduces to

n=(7.

Let P be the pressure of the liquid at the orifice and v its speed.

Also, let the depth of the orifice below the upper surface of the

liquid be A. Then, at the orifice, V^gh. Hence, for a point of the

orifice on the above stream line

P + p{v'^l^-gh)=C.

If the pressure at this point be taken to be that of the atmosphere,

we have therefore

And if the pressures at all points of the orifice be taken to be equal

to that of the atmosphere, this equation would give us the speed
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with which all liquid particles leave the orifice. This result is

called TorricelWs Theorem.

Torricelli's Theorem cannot be applied to the calculation of the

rate of efflux, i.e.^ the amount of liquid escaping per unit of time,

for two reasons : (1) The stream lines at the orifice are for the

most part not normal to it, for the jet diminishes in diameter from

the orifice outwards. Hence the v of the above formula is not the

value of the normal velocity of the liquid particles. (2) The
assumption that the pressure at all points of the orifice is equal to

that of the atmosphere is not well grounded. For, as the jet con-

tracts from within outwards, the speed of the liquid particles must

be increasing, and therefore the pressure of the liquid must be

diminishing, in that direction. The pressure in the interior of the

jet at the orifice must therefore be somewhat greater than that of

the atmosphere.

At a short distance from the orifice the contraction of the jet

ceases, the section of the jet at which it ceases being called the

Vena Contracta. Here the stream lines are normal to the trans-

verse section of the jet, and the pressure may thus be taken to be

the same at all points of the section and therefore to be that of the

atmosphere. Hence the speed of the liquid particles in passing

through the Vena Contracta will be {2ghy, where h' is the depth of

the Vena Contracta beneath the upper surface. Also, the liquid

particles are here moving normally to the Vena Contracta. Hence,

if iS is the area of the Vena Contracta and p the density of the

liquid, the rate of efflux is pS{2gky.

590. Work done during Strain.—As tangential stresses

exist in a fluid during the relative motion of its parts,

the expressions obtained (559) for the work done in an
elastic solid during a change of configuration apply also

to fluids.

Since work is done during the straining of a fluid, in

overcoming its viscosity, a fluid, like a solid, will behave
during a strain as a conservative system only if the strain

be efiected with sufficient slowness.
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Since a fluid in equilibrium exhibits no shearing

stresses, the work done against shearing stresses during a
strain has no result in the form of production of potential

energy.

In the case of liquids, on account of their incompressi-

bility, a strain involves no change of volume. Hence the

work done in producing a strain in their case has no
result in the form of potential energy. It is wholly ex-

pended in overcoming molecular friction and results only

in the production of heat. Hence Joule employed the

agitation of water as a means of determining the me-
chanical equivalent of heat, the water employed having,

after its agitation, the same potential energy as it had
before.



MISCELLANEOUS EXAMPLES.

(1) A point moves in a plane curve so that its distance, s feet

measured along the curve from its starting point, is represented by
the formula 5= 25 + 6^^, where t is the time in seconds reckoned

from the instant of starting. Find (a) the mean speed between

the beginning of the 10th and the end of the 12th second
; (6)

the instantaneous speed at the end of the 10th second
;

(c) the

mean rate of change of speed between the instant of starting and

the end of the 10th second
;
(d) the instantaneous rate of change

of speed after any time.

Ans..i(a) 126 ft. per sec; (b) 120 ft. per sec; (c) 12 ft.-per-sec.

per sec; (d) 12 ft.-per-sec per sec

(2) The breadth between the rails of a certain railway is 4 ft. 8

in. Show that in a curve of 500 yds. radius the outer rail ought to

be raised about 2j inches for trains travelling 30 mis. an hour, that

there may be no horizontal pressure on the rails.

(3) The velocity of a point moving in a given elliptic orbit is the

same at a certain point, whether it describe the orbit in a time i

when its acceleration is directed towards one focus, or in a time t'

when its acceleration is directed towards the other focus. Show
that, if 2a is the length of the major axis, the focal distances will

be 2at'l{t+ i') and 2at/{t + 1').

(4) A large number of equal particles are fastened at unequal

intervals to a fine string and then collected into a heap at the edge

of a smooth horizontal table with the extreme one just hanging
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over the edge. The intervals are such that the times between

successive particles being carried over the edge are equal. Prove

that if Cn be the interval between the n^^ and (n+ 1)*^ particles, and

Vn the velocity just after the (n+ 1)^ particle is carried over,

(5) Reduce 20 cm. per sec. to yards per hour.

Ans. 787-38.

(6) If a particle move on any smooth curve under the action

of any force, and if, at any point, F be the component of this force

normal to the curve and towards the concavity of the curve, the

reaction of the curve on the particle towards the concavity is equal

to mv^/p - F, when p is the radius of curvature of the curve and v

the speed of the particle.

(7) A uniform rod hangs horizontally supported by two equal

vertical strings, of length I, attached to its ends. It is twisted

horizontally through a very small angle so that its centre of mass

remains in the same vertical line, and is then let go. Find the time

of a complete (double) oscillation, neglecting the inertia of the

strings.

Ans. 27r s/lJ'Sg.

(8) A point is moving with a simple harmonic motion of ampli-

tude a and period T. Show that, if d is its displacement from its

mean position after a time t, the epoch being e,

d=acos{27rtlT+e).

(9) A straight staircase consists of stairs each 1 ft. wide and 6

in. high, A smooth particle is projected from a point on one of

the stairs near its edge and in the vertical plane perpendicular to

the edge of each stair. Find the velocity of projection that the

particle may strike the different stairs in succession at the same

distance from the edge, the coefficient of restitution being 0'5.

Ans. s/2gl3 feet per second, inclined 45° to the horizon.

(10) The unit of rate of change of speed being a rate of change

of speed of 100 cm.-sec. units and the unit of time 1 min., show

that the unit of length is a length of 36 x 10* cm.
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(11) If a ball impinge successively against two adjacent sides of

a rectangle, its velocity will be diminished in the ratio of 1 : e, e

being the coefficient of restitution.

(12) Two uniform solid cylinders, of weights w and w\ descend

from rest directly down the two faces of two smooth inclined

planes, of inclinations a and a' respectively, over the common
summit of which passes a thin inextensible string which goes under

and round the central transverse sections of the cylinders, to which

the ends of the strings are fastened. Find (a) the tension of the

string, and (6) how much it will have slid along the planes at the

end of any time t.

Ans, {a) ww' (sin a+ sin a')/3(2^+ w'')
;

(6) gt\w sin a — id' sin a')l2{w+ w').

(13) A particle weighing yV lb. moves backwards and forwards

in a straight line 3 inches long with simple harmonic motion, 25

times per second. Find the force acting on it {a) at the end of the

i-ange, and (6) at a point at one half the maximum distance from

the centre.

Ans. (a) 616-8... p lis.; (6) 308-4... pdls.

(14) A particle of mass m is suspended from two points in the

same horizontal line by two strings of equal length I (inclination

= a). One of the strings is suddenly cut. Find the initial change

of tension of the other string.

Ans. *w^(2 cos^a - 1)/(2 cos a).

(15) A heavy smooth tetrahedron rests with three of its faces

against three fixed pegs and the fourth face horizontal. Prove

that the reactions of the pegs are as the areas of the faces on which

they are exerted.

(16) A point is moving with a uniform rate of change of speed

of 2 ft.-sec. units. Show that, if its initial speed is 3 ft. per sec,

the ratio of its final to its initial speed during the time required to

traverse 4 feet of its path is 5/3.

(17) If particles are dropped from given heights upon a fixed

horizontal plane, the heights being inversely as the squares of the

coefficients of restitution, they all rise to the same height after

reflection.
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(18) A uniform lever ACB, whose arras ulC and BC are at right

angles to each other, is in equilibrium when AC is inclined at an

angle /3 to the horizon. If AC be raised to a horizontal position, C
being fixed, find the angle through which it will fall.

Ans. 2/3.

(19) A particle of 0*1 grm. mass executes 512 simple harmonic

oscillations per second, the amplitude of the oscillations being 0*25

cm. Find the maximum value of the force exerted upon it.

Ans. 258,736-1... dynes.

(20) A rope hanging over a rough horizontal cylinder carries two

bodies. The mass of one is 20 lbs. ; that of the other is m lbs.

{m > 20). But the rope does not slip off the cylinder, on account of

friction. If the coefficient of friction, when the rope is just on the

point of slipping, is 0'4, what is the value of m ?

Ans. 70-269 lbs.

(21) ^s displacement relative to P is n times as great as F'a

relative to 0, and they are inclined at an angle 6. Show that

if ^ < 7r/2, Q^B displacement relative to increases with n, and that,

if ^ > 7r/2, it decreases as n increases until n= - cos 0, increasing

with n for greater values of n.

(22) A particle is projected from a point on an inclined plane and

after n rebounds returns to its point of projection. Prove that,

if a is the inclination of the plane, /3 the angle between the direc-

tion of projection and the plane, and e the coefiftcient of restitution,

1 _g«+i
cot a cot /3= .

l-e

(23) The time of descent of a heavy particle sliding freely from

rest down a smooth inclined plane of given height varies as the

cosecant of the inclination.

(24) A chain, whose weight per unit length is equal to that of 1

lb., is to be stretched between two points in a horizontal line 800

ft. apart, so that the tension at the lowest point may be equal to

the weight of 1,600 lbs. Find (a) the length of chain required,

and (6) the depth of its lowest point below the points of suspen-

sion.

Ans. (a) 808-32 ft.
;
(b) 50-24 ft.-
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(25) A point undergoes component displacements represented by

straight lines drawn from a point within a triangle to the angular

points. Show that its resultant displacement is the same as if it

had undergone component displacements represented by lines drawn

from the same point to the points of bisection of the sides.

(26) On the sides of a right-angled triangle squares are described,

the square BCDE on the hypothenuse being on the same side of

BC as the triangle, the squares CAFO, ABBK on CA, CB on the

opposite side of each to the triangle. Prove that if forces repre-

sented by AB, BC, CA, BJI, HK, KA, CD, BE, EB, AF, FG, GC,

act on a particle, it will be in equilibrium.

(27) A particle slides from rest down the whole length of a

smooth inclined plane. Prove that the distance between the foot

of the inclined plane and the focus of the parabola which the

particle describes after leaving the plane is equal to the height of

the plane.

(28) Trucks containing each a ton of ballast are sustained upon a

smooth plane of inclination a by an equal number of empty trucks

upon a smooth plane of inclination §. Find the mass of a truck.

Ans. sin a/(sin /S - sin a) tons.

(29) A right cylinder whose weight is to the diameter of its base

as 3 : 4, stands on a perfectly rough inclined plane whose inclination

is 45°. From the lowest point of its uppermost circular section a

body is suspended whose weight is a little greater than one-sixth of

the weight of the cylinder. Prove that it will overturn the

cylinder.

(30) A ship sails from A to B, x/3 miles N. 30° W., in 15

minutes; from ^ to C, 1 mile N. 60° E., in 7 minutes; from C to D,

4 miles N. 45° W., in 20 minutes ; and from Z) to ^,4 miles N. 45°

E., in 18 minutes. Show that her mean speed has been 9-f- sJZ

miles per hour, and that her mean velocity has been 2-}-4>/2 miles

per hour, N.

(31) ABCD and A'B'C'D' are two parallelograms. Show that if

a particle be acted upon by forces represented by AA\ B'B, CC\
and D'D, it will be in equilibrium.
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(32) A uniform straight plank (length= 2a) rests with its middle

point upon a rough horizontal cylinder (radius =r), their directions

being perpendicular to each other. Supposing the plank to be

slightly displaced so as to remain always in contact with the

cylinder without sliding, determine the period of an oscillation.

Ans. 2Tra/ s/Sgr.

(33) Two circles lie in the same plane, the lowest point of the

one being in contact with the highest point of the other. Show
that the time of descent from any point of the former to a point in

the latter down the chord passing through the point of contact, is

constant.

(34) Four pegs are fixed in a wall at the four highest vertices of

a regular hexagon, the two lowest being in a horizontal line. Over

the pegs a loop is thrown supporting a body of weight W, the loop

having such a length that the angles formed by it at the lowest

pegs are right angles. Find (a) the tension in the string, (b) the

reactions of the two highest pegs, and (c) those of the two lowest

pegs.

Ans. (a) If; (6) W, inclined 60° to the horizontal; (c) Tr^2,

inclined 15° to the horizontal.

(35) Two points, P and Q, move in straight lines (inclination= d)

with uniform accelerations a and a', and at a given instant have

velocities v and v' respectively. Show that their relative velocity

will be perpendicular to ^s line of motion after a time

{v cos d - v')/(a' - a cos 6),

and will have its least value after a time

{av' + a'v)cos d-av-a'v'

a?+ a'2 - 2aa' cos e

Show also that if vjv'= ala!^ the least value of their relative velocity

will be zero.

(36) A particle of weight W is supported on a smooth inclined

plane of inclination a, by means of two strings attached to fixed

points in the plane and inclined at angles Q and Q' to a line of
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gi'eatest slope. Find (a) the tensions in the strings, and (6) the

reaction of the plane.

A / X PTsin ^'
, TFsin^ n\ tt-Ans. (a) and . .^ ^ ; (b) Tl cos a.

(37) A given circle and a given straight line which does not cut

the circle are in the same vertical plane. Show that if a tangent

be drawn to the circle at its lowest point P, meeting the given line

in A, and if from the given line AQ be cut off equal to AF, and if

FQ intersect the circle in B, QR is the straight line of quickest

descent from the given straight line to the given circle.

(38) Two equal heavy particles slide along the arc of an ellipse

whose plane and major axis are vertical. They are connected hy a

string passing through a smooth ring at the focus. Prove that the

particles will be in equilibrium in all positions.

(39) A point has three component coplanar velocities, v^, Vg, ^3,

the angles between v^ and Vg? ^3 ^^^ '^d ^"2 ^^^^ ^\ being a, j3, 7 re-

spectively. Show that its resultant velocity is

{Vj^+ ^2^+ ^3^+ 2^v<?3 cos a + Svj^Vj cos ^+ 2z;iV2 cos y)k

(40) If the height of a rough inclined plane be to the length as

a is to ^a^+ b^j and a body of k»Ja^+ b^ lbs. mass can just be

supported by friction alone, required the least force acting along

the plane which will draw the body up the plane.

Ans.

(41) Two bodies of equal weight w are tied to the ends of a fine

string which passes over two puUies without mass in a horizontal

line (distance= a). Supposing a body of weight W (W> 2w) to be

fixed to the middle point of the horizontal portion of the string,

determine how far it will descend.

Ans. 2wWal{4w'^- W'^).

(42) A pendulum which would oscillate seconds at the equator

would gain 5 minutes a day at the pole. Show that the ratio of

the value of g at the equator to its value at the pole is 144 : 145.

(43) If there are n particles in a straight line, of masses m, 2m,

3m, etc., and at distances a, a/2, a/3, etc., respectively from a point

in the line, the distance of the centre of mass from it is 2a/{n-\-l).
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(44) A square board is hung flat against a wall by means of a

string attached to the extremities of its upper edge and passing

round a smooth nail. Prove that if the length of the string is less

than the diagonal of the board, there will be three positions of

equilibrium.

(45) A point moves in a circle of radius r ft. with a uniform

speed of 7rr/6 ft. per sec. Show that its mean acceleration during

6 seconds is -n-r/lS ft.-sec. units in a direction opposite to the initial

direction of the velocity, and that the mean acceleration is 2/7r times

the magnitude of the uniform instantaneous acceleration.

(46) A particle is just supported by a rough inclined plane of

variable inclination when its inclination is i. Find its acceleration

up the plane when moving upwards on a line of greatest slope

under the action of a force equal to twice its weight acting up the

plane.

Ans. r7[2 - tan i(3 cos-i - sin-i)].

(47) At a given instant a pendulum begins to oscillate in a

vertical plane at a place of latitude 60°. Find after what time it

will be apparently oscillating in a plane j^erpendicular to the

former.

Ans. 1/2 ^/3 day.

(48) ABCD is a square from which a corner AEF is cut off by

a straight line drawn parallel to BD and at a distance from A
equal to | of the diagonal. Show that the distance of the centre

of mass of AEF irom A is \ of the diameter.

(49) A and B are points in a horizontal line. A uniform and

smooth rod A C (weight= W) is fastened to a hinge at A and can

swing in a vertical plane through AB. A string passes over a

])ulley at B, supporting at one end a body of weight P, and at the

other being attached to a small smooth ring which slides on the

rod. Prove that there will be equilibrium in any position if

W.AC=^P.AB.

(50) If a conic section be described under the action of a force

tending to a focus, the hodograph will be a circle.

I
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(51) Show that 1 foot-grain is equivalent to 1'975 gi-anime-

centimetres. [1 grain= 0*064799 gramme].

(52) A rod (length= ?) is fixed at one end about which it can

move freely in any direction. When it is inclined to the horizon

without motion at the angle a, a horizontal velocity V is com-

municated to its other end. Determine the velocity of the free end

at the instant at which the rod becomes horizontal.

Ans. {V^+3lg sin a)i, inclined to the vertical at the angle

tan-^[ V cos a/( l^'^sin-a + 3lg sin a)h].

(53) A three-legged stool stands on the floor of an elevator

sliding in its frame-work with perfect freedom. Show that it has

four degrees of freedom.

(54) The distance of the centre of mass of half a hexag<jn

2r
inscribed in a circle from the centre is equal to -—

. where r is the
3 \/3

radius.

(55) Two uniform beams of given weight are in equilibrium in a

vertical plane, the lower end of each beam resting on a horizontal

floor and the upper ends being in contact. Show that the friction

between either beam and the floor varies inversely as the sum of

the tangents of the angles which the beams make with the floor.

(56) A particle moves in a parabola under the action of a constant

force parallel to the axis. Show that the hodograph of its path is

a sti-aight line parallel to the axis.

(57) Show that one horse-power is equivalent to about 746 watts.

(58) A cone is revolving round its axis with a given angular

velocity when the length of the axis begins to be diminished

uniformly, and the vertical angle to be increased so that the

volume of the cone remains unchanged. Show that if w is the

initial angular velocity of the cone, and h the initial length and r

the rate of decrease of its axis, its angular velocity after any time t

will be w(l - rtik).

(59) Show that a body has two degrees of freedom, wlien two of

its points are constrained to remain in given curves.
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(60) A body consists of two portions and one of them is moved

into a new position. Show that the line joining the two positions

of the centre of mass of the whole is parallel to, and bears a fixed

ratio to, the line joining tlie two positions of the centre of mass of

the part moved.

(61) A regular hexagon is formed of rods jointed at their ex-

tremities. Strings are stretched between every pair of alternate

angles of the hexagon so as to form two equilateral triangles.

Show that the tension of any string is equal to f of the sum of the

tensions of the strings which cross it, minus i of the tension of the

string which is parallel to it.

(62) The kinetic energy of a particle, which is constrained to

move in a circular path of radius r, varies as the square of its

distance s, measured along the path from a fixed point in the path.

Show that its tangential acceleration in any position is to its

normal acceleration as r : s.

(63) If an agent working at the rate of one horse-power, perform

the unit of work in the unit of time, and the acceleration of a falling

body be unit of acceleration, a pound being the unit of mass, find

the unit of (a) time and (6) length. [.9'= 32 ft.-sec. units.]

Anfi. (a) 17VV sec. ; (6) 9453^ ft.

(64) A rod is kept in a vertical position by means of two small

rings and its lower end is supported on an inclined plane

(inclination= i) which is freely moveable on a horizontal plane.

Show that if v is the velocity of the rod and v' that of the inclined

plane, v= v' tan i.

(65) Show that if G be the centre of mass of the triangle ABC
3{GA'-{-GB'' + GC'-) =AB'+BC'+CAK

(66) Two equal and similar rods AB, BC are freely hinged at B,

and rest in a plane of greatest slope of a rough inclined plane, in a

position of limiting equilibrium, with the end A hinged at a point

in the plane, and the end C resting on the plane. If a, 0, e are

respectively the angle of inclination of the plane to the horizon,

the angle of inclination of the rods to the plane, and the angle of

friction, show that

3 cos(0 -f e)cos(0 - a)= cos(0 - e)cos(0+ a).
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(67) A point is moving in a straight line with an acceleration

varying as its distance from a point in that line. Prove that the

corresponding point in the hodograph moves with a similar ac-

celeration.

(68) The mass of a railway train is 150 tons and the resistances

to its motion (from air, friction, etc.) amount to 16 pounds-weight

per ton. Find («) the horse-power of the engine which can just

keep it going at 60 miles an hour on a level plane, and (6) the

greatest speed which an engine working at 200 horse-power can

give it on a level plane.

Ans. (a) 384, (b) 31^ miles per hour.

(69) A uniform rod (length= 2c) moves in a vertical plane within

a hemisphere with angular velocity w. Show that if 6 be the

inclination of the rod to the horizon at any instant the horizontal

and vertical velocities of its middle point have the magnitudes
6'w cos 6 and ca> sin 6.

(70) The cornei-s of a pyramid are cut off by planes parallel to

the opposite faces. Show that if the portions cut off be of equal

mass, the centre of mass of the remainder will coincide with that

of the pyramid.

(71) Two uniform rods AB, AC oi lengths a, b respectively, are of

the same material and thickness and are smoothly jointed at ^. A
rigid weightless rod of length I is jointed at B to AB, and its other

end D is fastened to a smooth ring sliding on AC. The system is

hung over a smooth peg at A. Show that AC makes with the

vertical an angle tan-^[a^/(6'^-f a s/a^ - P)].

(72) If each unit involved in the measurement of g become m
times its former value, show that the new value of g will be rn

times its former value also.

(73) A particle of 10 lbs. mass, whose motion is simple harmonic,

has velocities 20 and 25 ft. per sec. at distances 10 and 8 ft. per sec.

respectively from the centre of force. Find the work done during

the motion from the distance 10 to the distance 8 feet.

Ans. 112'5 foot-poundals.

2l
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(74) A uniform rod in falling strikes, when in a horizontal

position, with one end against a stone. Show that the impulse of

the blow it receives is half that of the impulse of each of the blows

which it would have received had both ends struck simultaneously

against two stones, the blows being in all cases supposed to be at

right angles to the rod.

(75) Show that a force of 100 dynes is equivalent to the weight

of 1-019 X 10-* kilogrammes.

(76) Show that in the direct impact of elastic balls of masses m
and M and initial velocities v and F, and with coefficient of restitu-

tion e, an amount of kinetic energy equal to (1 - ef STITT—

\

{V-^Y

is lost.

(77) How much water will be pumped from a vertical cylindrical

shaft of 10 feet diameter by an engine working for 6 hours at 200

horse-power, the water being discharged at a point 10 feet above

the mouth of the shaft, and the surface of the water being initially

20 feet below the mouth of the shaft. [Density of water=1,000

oz. per cub. ft.]

Ans. 2,157'1... tons.

(78) Determine the unit of time in order that with the foot as

unit of length g (32 ft.-per-sec. per sec.) may have the value unity.

Ans. 1/4 sj'2, second.

(79) Find the work done on a body of 12 lbs. mass in falling to

the earth's surface from a point 1,000 miles above it. [Earth's

radius= 4,000 miles
; ^= 32 ft.-sec. units.]

Ans. 22,628-5... ft.-tons.

(80) A ball rolling on a horizontal plane strikes obliquely an

equal ball at rest. The direction of motion of each ball after

impact makes the same angle d with that of the striking ball before

mipact. Show that the coefficient of restitution is equal to tan^^.

(81) If the weight of one ounce be the unit of force, one second

the unit of time, and 162 the density in pounds per cubic foot of

the standard substance, find the unit of length, g being taken to be

32 ft.-sec. units.

Ans. 4 inches.
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(82) If from any point in the plane of a polygon perpendiculars

be drawn to its sides, and if forces act along these perpendiculars,

either all inwards or all outwards, each force being proportional to

the side to which it is perpendicular, the system is in equilibrium.

(83) A rough heavy body bounded by a curved surface rests

upon two others, which themselves rest upon a rough horizontal

plane. Show that the three centres of mass and the four points of

contact lie in one plane.

(84) Two points move in concentric circles of radii r and r'.

When their radii vectores from the common centre are inclined d

radians, their angular velocities about the centre are w and w'

respectively. Find the magnitude of their relative velocity.

Ans. {<ar^+ wV2 - 2ajwVr' cos 9)^,

(85) The ram of a pile-driver has a mass 1/, and a vertical fall h

before reaching the pile. The pile has a mass Mjn and is driven

by one stroke through a vertical distance hjn. Find the mean

resistance assuming that there is no recoil and that all work is

expended in forcing the pile through the ground.

Ans. Mg{n^+ n+ l)!n.

(86) Two equal balls of radius a are in contact and are struck

simultaneously by a ball of radius c moving in the direction of their

common tangent. All the balls are of the same material, the

coefficient of restitution being e. Prove that the impinging ball

will be reduced to rest if 2e= c-{a+ cyi{2a^ + ofic).

(87) If two forces acting on a particle be represented by m times

the line OA and n times the line OB, respectively, their resultant

will be represented by m+ ^ times the line OC, C being the point

on the line AB between A and B such that m. AC=n. BC.

(88). Prove that the centre of three parallel forces acting at the

angular points of a triangle and proportional respectively to the

opposite sides is at the centre of the inscribed circle when the forces

are codirectional and at the centre of one or other of the escribed

circles when they are not.
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(89) Prove that the attractions of homogeneous spheres of

different densities on a particle placed at the same distance from

the centre of each, are as the products of the cubes of the radii and

the densities of the spheres.

(90) The axle of a wheel (radius= r) is moving parallel to itself

in one plane with a velocity v, and the wheel is turning about its

axle with an angular velocity w. Find the magnitude of the

velocity of the end of a spoke whose inclination to the direction of

tlie axle's motion is 6.

Ans. (v'+ wV-+ 2vior sin 6)K

(91) A particle of 10 lbs. mass moves with a simple harmonic

motion of 2 inches amplitude and 0"04 seconds periodic time. Find

(a) the potential energy at the extremity of its swing and (b) the

kinetic energy at a distance of 1 inch from the mean position.

Ans. (a) 3426-9... ft.-pdls.
; (6) 2570-2... ft.-pdls.

(92) An arc of a parabola is cut off by the double ordinate

through the focus. Two bodies attached to the extremities of the

arc sustain it with the axis inclined to the vertical at the angle 7r/4.

The vertex being the point of suspension, show that the weight of

one of the bodies is 3 times that of the other.

(93) Forces F and Q act on a particle, and their resultant is B.

Li any transversal cut their directions in the points Z, 31, J\\

respectively, show that PI0L + Q10M= RjON.

(94) If a rigid body be acted upon by four forces represented by
the sides of a quadrilateral figure the axis of the resultant couple

is proportional to its area.

(95) In a system of smooth pulleys such as that of Fig. 2, p. 418,

if there are n moveable pulleys whose weights in order from the

lowest are ii\, w^, w^, etc., and if W is the weight of the body which

can be supported by a force F, and if the weight of the ropes be

neglected,

2^F= W+ w^+ Sw-'g+ a^MTg + etc. + 2"-%„.

(96) Two particles start together from rest and move in direc-

tions perpendicular to one another. One moves uniformly with a
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velocity of 3 ft. per sec, the other under the action of a constant

force of 20 poundals. Determine the mass of the particle on which

this force acts, if the particles at the end of 4 seconds are 20 feet

apart.

Ans. 10 lbs.

(97) A uniform spherical shell of gravitating matter has an

internal diameter of 4 feet, an external diameter of 6 feet and a

density of 4 lbs. per cubic foot. Find in lb. -ft. units the potential

at a point distant 10 ft. from the centre of the shell.

Ans. 10-137r.

(98) In a false balance a body of weight P appears to weigh Q,

and one of weight P' to weigh Q'. Prove that the real weight A'

of what appears to weigh Y is given by the equation

X{Q-Q')=Y{P-P')+FQ-PQ'.

(99) ABCDEF is a regular hexagon, and at A forces act repre-

sented by AB, 2AC, SAB, AAE, bAF. Show that the length of the

line representing their resultant is ^351 . AB.

(100) Two forces P and Q act upon a body along two given

straight lines. Prove that

l/P=(cos 6)1R -f (a sin 6)1Q,

1IQ

=

(cos 0)//2 -f (6 sin ^)!G,

6 and <t> being the angles made by the given straight lines with the

central axis, a and h the shortest distances between these lines and

the central axis, R the resultant force and G the. resultant couple.

(101) Show that a stress of 40 grammes-weight per square

centimetre is equivalent to one of 0"5689... pound's-weight per sq.

inch.

(102) If « and s' are the spaces traversed by a point moving with

uniform acceleration in a straight line in the times t and t' respec-

tively, reckoned from the same instant, show that the acceleration

and the initial velocity are, respectively,

2{8't-st!)^^^ 8t'^-s't^

tt'{t' - 1) ttif - 1)
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(103) A gun is suspended freely by two equal pai-allel cords and

a shot is fired from it. Prove that the range on a horizontal plane

is, for a given gun and shot, directly proportional both to the height

through which the gun rises in the recoil and to the tangent of its

initial inclination to the horizon.

(104) Find the force exerted by two equal uniform discs (radius

=a, distance= c, surface density= /?) placed perpendicularly to the

line joining their centres, on a particle of unit mass in that line at a

distance h from the nearer disc, it being given that the one disc

attracts, while the other repels, according to the gravitational law.

Ans. 27r/)[(6+ c)l s!d^-\-{b+ cf - 6/ n/oMT-].

(105) Find the moment of inertia of a fly-wheel (mass= if)

formed by cutting from a circular plate of radius r^ a circular

portion (concentric with the plate) of radius r^.

Ans. \M{7\^+n^).

(106) A hollow vessel has the form of a pyramid, four of whose

five faces are equilateral triangles (side= a). It is placed with its

square face on a horizontal plane and filled with a liquid of density

p through a small aperture in the vertex. Find the integral stress

on the four triangular faces.

Ans. a^pg ^/2I3.

(107) Two inclined planes intersect in a horizontal line, their

inclinations to the horizon being a and /S. If a particle be pro-

jected at right angles to the former from a point in it so as to

strike the other at right angles, the velocity of projection must be

sin /3[2^a/(sin a - sin /3 cos (a + /3))]5,

a being the distance of the point of projection from the intersection

of the planes.

(108) Two particles, of masses 9,820 and 1,964 grammes respec-

tively, attract one another. Find the acceleration of either relative

to the other, when the distance between them is 4 cm.

Ans. 0*75 cm.-sec. units.

(109) Find the acceleration produced by a mass of 1 kilogramme

in a particle at a distance of 1 metre. [Earth's mass= 6"14x lO'^''

grammes ; earth's radius =6*37 x 10^ cm.; ^= 981 cm.-sec. units.]

Ans. 6-48x10-9.
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(110) A moment of inertia is expressed in terms of the units of

the ft. -lb.-sec. gravitational system. By what number must its

value be multiplied that it may be expressed in terms of the metre-

kilogramme-second gravitational system.

Ans. 0-138....

(HI) Two particles are projected from two given points in the

same vertical line with the same velocities. Prove that lines

touching the path of the lower will cut off from the path of the

upper, arcs described in equal times.

(112) One bullet is fired towards another bullet which is let fall

at the same instant. Prove that if, on meeting (see 119, Ex. 4),

they coalesce, the latus rectum of their joint path will be one-fourth

• )f that of the original path of the first bullet.

(113) A uniform bar of length a rests suspended by two strings

of lengths I and V fastened to the ends of the bar and to two fixed

IX)ints in the same horizontal line at a distance c apart. Prove

that if the directions of the strings are perpendicular the ratio of

their tensions \s, al+ cV : aV \- cl.

(114) In the expression for the attraction of two particles,

F=km.m'ld^^ how does the value of k depend upon the units of

mass, length, and time.

Ans. Its dimensions are [i/]-^[Zp[7']~-.

(115) Show that the radius of gyration of a uniform square disc

(side

=

a) about one of its diagonals is «/ Vl2.

(116) A particle describes an ellipse under a force directed

towards its centre. Show that the time between the extremities

of conjugate diameters will be constant.

(117) A particle is dropped from a point A and a second equal

particle is simultaneously projected vertically upwards from a point

B so that the balls impinge, the stress during impact being in a line

inclined tan"^ ^e (e being the coefficient of restitution) to the verti-

cal. Prove that both balls will strike the horizontal plane through

B simultaneously, and that if the velocity of projection at B be
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that due to AB (i.e., that which the particle would have had had

it fallen through the vertical distance AB)j their distance there will

be AB side.

(118) If a body, attached at its centre of mass to one end of a

string of length r, the other end being attached to a fixed point in

a smooth horizontal plane, make 7i revolutions in one unit of time,

proA^e that the ratio of the tension in the string to the force exerted

on the plane is 4^27^2;' ; ^.

(119) Find the time of a small double oscillation under gravity

of a uniform one foot cube suspended by one edge as horizontal

axis.

Ans. l"-07....

(120) A particle describes a parabolic orbit under a force directed

towards the focus. Show that the sum of the squares of the

velocities at the extremities of a focal chord is constant.

(121) A body of mass F pulls one of mass Q over a smooth pulley,

and Q in ascending, as it passes a certain point A^ catches and car-

ries with it a third body B, which in its descent is again deposited

at A. Supposing no jerk to occur when B is caught up and that

Q oscillates through equal distances above and below A, prove that

the mass of B is (P^ - Q^)IQ.

(122) A uniform triangular lamina suspended from a fixed point

by three cords attached to its three vertices is in equilibrium.

Show that the tensions in the cords are proportional to their

lengths.

(123) Three inches of rain fell in a certain district
(ff
= 32 ft. -sec.

imits) in 12 hours. Assuming that the drops fell from a height of

a quarter of a mile and neglecting the resistance of the air, find the

pressure on the ground due to the rain during the storm. [The

mass of a cubic foot of rain water= 1,000 oz.]

Ans. 0'105... poundals per sq. foot.

(124) Show that in the case of a right-angled isosceles triangular

plate the times of small oscillations are the same about horizontal

axes perpendicular to its plane through its vertex and through the

middle point of its base.
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Abscissa, 4.

Absolute units, 301.

Acceleration, 110 ; angular, see An-
gular acceleration ; central, 156

;

change of point of reference, 115

;

planetary, hodograph and path of

point moving under, 161 ; moment
of, 123-4 ; motion under uniform,

140 ; normal, 120 ; of falling bodies

at the earth's surface, formula for,

140 (footnote) ; of momentum, mo-
ment of, 422; of point moving
subject to Kepler's Laws, 162 ; of

point moving uniformly in a circle,

121 ; relative, 115 ; tangential,

120 ; units of. 111.

Accelerations, composition and reso-

lution of, 116.

Activity, 333.

-^olotropic bodies, 542.

Amount of shear, 269.

Amplitude of simple harmonic motion,
165.

Angle, plane, units of, 21.

Angle, solid, unit of, 22.

Angular acceleration, of a point, 135
;

of a rigid system, 219 ; units of, 136.

Angular accelerations, composition
and resolution of, 221.

Angular and linear velocity, relation

between, 129.

Angulardisplacement of a point, 125-6.

Angular momentum, 420.

Angular velocities, composition of, 216.

Angular velocity, of a point, 127; of a
rigid system, 212 ; of rigid system,

and linear velocity of one of its

points, relation between, 214; mo-
ment of velocity, in terms of, 132

;

units of, 128.

Approach, velocity of, 321.

Archimedes' Principle, 581.
Area, units of, 17-19.

Areas, conservation of, 429.

Areal velocity, 133.

Arm of couple, 467.
Atmosphere, homogeneous, 580.

Attraction, integral normal, over a
siirface, 365; of infinite uniform
plate, 369 ; of thin circular disc,

316 (1) ; of thin uniform spherical
shell, 316 (5 and 6), 367 ; of uniform
circular cylinder, 368.

Attractions, 315 ; difference of, on
opposite sides of attracting plate,

370.

Atwood's machine, 382 (1), 498 (1).

Axes of co-ordinates, 4.

Axes, principal, of strain, 263.

Axis, of couple, 467 ; of rotational dis-

placement, 208 ; of rotation, in-

stantaneous, 213 ; Poinsot's central,

482.

Azimuth and Altitude, 3.

Balance, common, conditions of sta-

bility and sensitiveness, 507 (11)

;

quickness of motion, 498 (4) ; time
of oscillation, 498 (4).

Balance, spring, 320 (6).

Ballistic pendulum, 499 (8).

Barycentric bodies, 474.

Bending of a beam. 277 (4), 556 (8-10).

Blackburn's pendulum, 180.

Boyle's law, 567.

Bulk-elasticity, modulus of, 552.

Cartesian co-ordinates, 4.

Catenary, common, 396.

Central acceleration, 156.
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Central axis, 482.

Centre, instantaneous, 233 ; of

gravity, 474 ; of inertia, 399 ; of ;

mass, 399; do., acceleration of, I

411 ; do., acceleration of, in terms
j

of external forces, 414 ; do.,
i

distance of, from any plane, 400-401 ;
j

do., of a surface, 408 (13) ; do., of
!

circular arc, 408 (10) ; do., of com-
i

posite bodies, 407; do., of homo-
|

geneous symmetrical bodies, 406 ; I

do., of lune, 408 (19) ; do., of sector
of circle, 408 (20); do., of triangle,

408(12) ; do., of triangular pyramid,
408 (23); do., velocity of, 409; of
oscillation of physical pendulum,
496 (3) ; of percussion, 496 (9) ; of

pressure, 579 ; of stress, 528 ; of
suspension of physical pendulum,
496 (3) ; of system of parallel forces,

472.

Centrifugal force, 320 (14).

Centripetal force, 320 (14), 338.
Centrobaric bodies, 474.
Chain, sec String.
Clock, 32.

CoeflBcient, of elasticity, 321 ; of limit-

ing static friction, 328 ; of kinetic
friction, 328; of restitution, 321,
378.

Collision, of particles, 378 ; of spheres,
380 (1), 498 (10 and 11).

Component accelerations, etc., see
composition of accelerations, etc.

Components, 80-82 ; resultant equal to
algebraic sum of components of, in

its direction, 83, 84 ; trigonometrical
expressions for, 85, 86, 89.

Composition, of accelerations, 116; of
angular accelerations, 221 ; of an-
gular velocities, 216 ; of angular
velocities about parallel axes, 249

;

of couples, 469 ; of forces acting on
a particle, 312 ; of forces acting on
rigid body, 459 ; of linear and an-
gular accelerations, 250 ; of linear
and angular velocities, 247 ; of

simple harmonic motions, 168 ; of

simultaneous displacements, 78 ; of

simultaneous rotations, 203 ; of suc-

cessive displacements, 76 ; of suc-

cessive rotations, 200 ; of transla-

tions and rotations, 238 ; of veloci-

ties, 98.

Compound harmonic motion, 167.

Compound pendulum, 496 (3).

Compressibility, 552.

Configuration, 12.

Conical pendulum, 190, 320 (19).

Conservation, of angular momentum,
principle of, 429, 495 ; of areas, 429

;

of energy, law of, for single particle.

348 ; of energy, law of, for extended
bodies, 435 ; of linear momentum,
principle of, 416, 495.

Conservative forces, 348.

Conservative system, 435.

Constraint, of a point, 35 ; motion of
points under, 181 ; motion of rigid

systems under, 253 ; one degree of,

of most general kind, 246.

Continuity, equation of, 586.

Continuous stress, 522 ; strain, 284.

Co-ordinates, 2 ; Cartesian, 4 ; polar,

3 ; rectangular, 4-5.

Coplanar forces on rigid body, single

resultant of, 460-463.

Cord, see String.

Coulomb's law, 556 (6).

Couples, 467 ; composition of, 469.

Cubical dilatation, 260.

Curvature, centre, chord, circle, and
diameter of, 39 ; of a circle, ^ ; of

any path, 37 ; radius of, 39.

Curved path, motion in, under uniform
acceleration, 185.

Cycle of transformations, 436.

Cycloid, motion in, 192.

Cycloidal pendulum, 193.

D'Alembert's Principle, 417.

Day, sidereal, 29 ; sidereal, variation

of, 30 ; solar, 31.

Degree, 21.

Degrees of freedom, see Freedom.
Density, 304 ; surfaces of equal, 575.

Derived units, 18.

Differential screw, 517 (7) ; wheel and
axle, 517 (5).

Dilatation, cubical, 266.

Dimensions of space, 13 ; of units, 18.

Direction cosines, 7; inclination of

two straight lines in terms of, 8

;

of common perpendicular to two
given lines, 10 ; sum of squares of,

equal to unity, 7.

Direction of shear, 269.

Displacement of free rigid systems,
232-233.

Displacements, 69 ; angular, see An-
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gular displacement ; change of point
of reference, 71-74 ; composition of
simultaneous, 78 ; composition of

successive, 76 ; resolution of, 79

;

rotational, 208.

Dynamics, subject matter of, 285, 323.

Dynamometer, friction brake, 507(14).
Dyne, 302.

Efficiency of a machine, 517 (8).

Efflux of liquids, 589.

Elastic central line, 556 (8).

Elastic isotropy, conditions of, 548.

Elasticity, 543 ; of figure, 549 ; of vol-

ume, 549 ; perfect, 543 ; perfect,

limit of, 546.

Element, 310.

Elevation of a projectile, 145.

Elliptic harmonic motion, 173.

Elongation of strain, 257.

Energy, 343 ; equation of, for fluids,

588 ; law of, application to kinetic

problems, 441, 499 ; law of conser-

vation of, for extended bodies, 435
;

law of, for extended bodies, 437.

439 ; law of, for single particle, 348
;

law of, for single particle, applica-

tion to kinetic problems, 351 ; law
of, for single particle, application to

static problems, 353 ; loss of, on
impact, 443 (1 ) ; of a system of par-

ticles, 432; of position, 345.

Epoch of simple harmonic motion, 165.

Equation of continuity, .586.

Equations of motion, of a particle, 317

;

of extended bodies, 431 ; of fluids,

586 ; of rigid bodies, 493 ; of strings,

384, 387, 390, 391, 392, 394.

Equilibrium, of elastic solids, 551 ; of
extended systems, 444; of floating

body, 582 ; of floating body, stabi-

lity of, 583 ; of fluids, 569 ; of a par-
ticle, 323 ; of a particle, analytical
expression for condition of, 326

;

of a particle, condition of, 324 ; of

a particle, expressions for condition
of, 325 ; of a rigid body, 500 ; of a
rigid body, analytical conditions of,

501 ; of a rigid body, conditions of,

in terms of work done, 510 ; of a
rigid body, expressions for condi-
tions of, 504 ; of a system of rigid

bodies, 508; of strings, 385, 387,

390, 391, 392, 394 ; stability of, 450.

Equipotential surfaces, 358.

Erg, 331.

Ergometer, 507 (14).

Extended bodies, 398.

External forces, 376, 398.

Falling bodies, 140-141, 159 ; value of
acceleration of, 140 (footnote).

Field of force, 355 ; mapped out
by lines of force, 372 ; uniform,
373.

First Law of Motion, 286.

Fixed point, 24.

Flexural rigidity, modulus of, 552 ; of
bent beam, 556 (8).

Flexure of a beam, 277 (4), 556 (8-10).

Floating body, equilibrium of, 582

;

stability of equilibrium of, 583.

Flow of liquids, 589.

Fluent, 44.

Fluid, 547.

Fluid pressure, 569 ; centre of, 569

;

resultant, 569 ; specification of,

570.

Fluids, shearing stresses in, 584.

Flux, 44.

Fluxion, 44.

Foot-pound, .331.

Foot-poundal, 331.

Force, acting on particle, specification

of, 311 ; acting on rigid body, speci-

fication of, 457 ; centrifugal, 320

(14); centripetal, 320 (14), 338; de
cheval, 335 ; diagram, 382 (22), 509

(26) ; dimensions of derived unit of,

303 ; in terms of potential, 356

;

line of, 359, 572 ; moment of, 425

;

origin of idea of, 285 ; rotating

power proportional to moment,
455; tube of, 360; units of, 297-

302, 552.

Forces, conservative, .348 ; internal

and external, 376, 398 ; non-conser-

vative, 348 ; on particle, composi-
tion and resolution of, 312 ; on rigid

body, composition of, 459 ; on rigid

body, condition of reducibility to

single force, 477 ; on rigid body re-

ducible to a force and a couple, 479

;

on rigid body reducible to two forces,

476.

Foucault's i)endulum, 228 (5).
^

Freedom, degrees of, of a point, 35

;

of a rigid system with one point

fixed, 198, 211 ; of free rigid system,
231, 236.
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Friction, kinetic and limiting static,

328 ; molecular, 545.

Friction brake dynamometer, 507

(14).

Galileo's Law of Motion, 309.

Gas, real and ideal, 567.

Geometrical representation of motion
of rigid systems, 229, 252.

Graphic methods, 382 (22), 509 (26).

Gravitation, law of, 315.

Gravitational potential. 361.

Gravitational units, 298.

Gravity, force of, 140 (foot-note)

;

centre of, 474.

Gyration, radius of, 486,

Harmonic motion, 163; compound,
167 ; elliptic, 173 ; simple, 163.

Heterogeneous strains, 284.

Heterogeneous stress, 522.

Hinge, reactions of, on bars, 509 (14
and 15).

Hodograph, 113, 161.

Homogeneous atmosphere, 580 ;

bodies, 541 ; strains, 257 ; stress, 522.

Hooke's Law, 551, 567.

Horse-power, 335.

Hydrostatics, 566.

Hydrokinetics, 584.

Ideal gas, 567.

Impact, direct, of spheres, 380 (1), 498

(10) ; oblique, of spheres, 498 (11)

;

of particle on smooth surface, 321.

ImiJulse, 294 ; equations of motion of

a particle in terms of, 319 ; equa-
tions of motion of rigid body in

terms of, 494.

Impulsive forces, 319.

Inclination of two lines, 8 (footnote)

;

in terms of direction cosines, 8-9.

Inclined plane, equilibrium of body
on, 327 (1), 329 (7), 354 ; motion on,

under uniform acceleration, 181,

329 (1), 352 (4).

Inertia, 286 ; centre of, 399 ; moment
of, see Moment of inertia

;
quantity

of, 291.

Initial line of polar co-ordinates, 3.

Initial tensions, 382 (23).

Internal forces, 376, 398.

Instantaneous axis of rotation, 213.

Instantaneous centre, 233.

Intensity of stress, 523.

Isotropic bodies, 542.

Isotropy, elastic, conditions of, 548.

Joule's experiments on mechanical
equivalent of heat, 590.

Joule, the, 331.

Kater's pendulum, 496 (3).

Kepler's Laws, 162.

Kilogramme-metre, 331.

Kinematics of machinery, 253.

Kinematics, subject matter of, 1.

Kinetic energy, 344, 432 ; change of,

equivalent to work done, 344, 434

;

loss of, on impact, 443 (1).

Kinetics, subject matter of, 323; of

elastic solids, 557 ; of fluids, 584.

Law of energy, see Energy.
Laws of motion, 285.
Length, units of, 16.

Level surface, 576.

Lever, .507 (9) ; rough, 507 (32) ; rough,
efficiency of, 517 (9).

Limit of perfect elasticity, 546.

Linear and angular velocity, relation
between, 129.

Linear density, 304.

Linear displacement. 125.

Linear velocity, 127.

Lines, of force, 359, 572 ; of motion
(of fluids), 587 ; of quickest descent,
184 (11).

Liquid, 567.

Longitudinal stress, 530.

Machinery, kinematics of, 253.

Machines, simple, see Simple ma-
chines.

Mass, 289 ; astronomical unit of, 315 ;

centre of, see Centre of mass ; di-

mensions of derived unit of, 300 ;

to be distinguished from weight,
290 ; units of, 297-302, 304, 315.

Material point, 310.

Matter, quantity of, 291.

Measurement, 14 ; of length, area,

etc., see Length, Area, etc.

Mechanical advantage of simple ma-
chine, 327 (1 and 2).

Mechanical powers, see Simple ma-
chines.

Mechanics, 323.

Metacentre, 583.
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Moduluses of elasticity, 552 ; dimen-
sions of, 552.

Modulus, length of the, 552 ; of bulk
elasticity, 552 ; of flexural rigidity,

552 ; of rigidity, 552 ; of simple
longitudinal stress, 552; of torsion,

552 ; of torsion, in terms of rigidity,

556 (7) ; Young's, 552, 556 (4).

Molar equilibrium of extended sys-

tems, 444.

Molecular equilibrium of extended
systems, 444.

Molecular friction, 545.

Moment, of acceleration ofmomentum,
422 ; of a force, 425 ; of a force, ana-
lytical expression for, 427 ; of an
acceleration, 123-4 ; of a velocity,

103 ; of a velocity, analytical ex-

pression for, 106 ; of a velocity in

terms of angular velocity, 132 ; of
inertia, 486 ; of inertia, dimensions
of units of, 491 ; of inertia, deter-

mination by calculation, 488, by
experiment, 487 ; of inertia of an
area, 556 (6) ;of inertia, units of,

491 ; of momentum, 418.

Moments of inertia, 490.

^lomentum, 293 ; angular, 420 ; con-

servation of linear and angular, see

Conservation ; moment of, 418; mo-
ment of acceleration of, 422.

Motion, in cycloidal path, 192 ; of free

rigid bodies. 497 ; of pai-ticle,

equations of, 317 ; of particle, under
given rates of change of speed, 60 ;

of particle under uniform accelera-

tion, 140 ; of particle, under uniform
velocity, 138 ; of rigid body about
fixed axis, 496 ; of rigid system
under constraint, 253 ; of rigid

system under given accelerations,

251 ; of rigid system under given
angular accelerations, 224 ; of sys-

tems of rigid bodies, 498 ; rela-

tion of, to time, 25.

Neutral eqmlibrium, 450.

Neutral surface, 277 (4).

Newton's experiments on collision of

spheres, 378, 380 (12).

Newton's Laws of Motion, 285.

Non-conservative forces, 348.

Non-conservative system, 435.

Normal acceleration, 120.

Numeric, 14.

Numerical measure or value, 14 ; in-
versely proportional to magnitude
of unit, 15.

Oblique impact of spheres, 498 (11).
Ordinate, 4.

Origin of co-ordinates, 4.

Orthogonal projection, 8.

Oscillation, centre of, of physical
pendulum, 496 (3).

Osculating plane, 41.

Parallel forces, resultant of, 464-467,
470.

Parallelogram of accelerations, 116 ;

of displacements, 78 ; of forces,
313 ; of velocities, 98.

Particle, 310.

Particles, systems of, 374, 398.
Path, 36 ; of point under planetary

acceleration, 161 ; of point under
zero acceleration, 138 ; of point
with harmonic motion, 163, 164,
168, 170-180; of a projectile,
151-2.

Pendulum, ballistic, 499 (8); Black-
burn's,180; Captain Kater's,496 (3)

;

compound or physical, 496 (3)

;

conical, 190, 320 (19) ; cycloidal,

193; Foucault's, 228 (5); mathe-
matical or simple, 187, 352 (5).

Percussion, centre of, 496 (9).

Perfect elasticity, .543 ; limit of, 546.
Perfectly rough body, 328.

Period of simple harmonic motion, 165.
Perpetual motion, 436; impossibihty

of, as law of motion, 436.

Phase of simple harmonic motion, 165.
Physical pendulum, 496 (3).

Pitch of screw, 245, 254 (4).

Plane of shear, 269.

Planetary motion, 158.

Poinsot's central axis, 482.

Point of reference of displacements,
change of, 71-74.

Poisson's ratio, 556 (1).

Polar co-ordinates, 3.

Pole of polar co-ordinates, 3; of the
hodograph, 113.

Polygon, of accelerations, 116 ; of dis-

placements, 78; of forces, 313; of
velocities, 98.

Position, 2, 11.

Potential, 355; calculation of, 363;
central forces derivable from, 356

;
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force in terms of, 356 ; no maximum
or minimum value of, in free space,

371.

Potential energy, 345-347, 35G, 432.

Poundal, 302.

Power, 333.

Pressure, 306 ; centre of, 579 ; differ-

ence of, between two points of a
heavy fluid, 579, 580; equality of,

in all directions in fluids, 570, 585 ;

fluid, 569 ; of fluids acted on by
external forces, 577 ; resultant, 579

;

surfaces of equal, 572.

Pressure-height, 580.

Projectiles, 142 ; displacement of,

after given time, 144 ; displacement
of, in given direction, 145 ; elevation

of, 145 ;
path of, 151-2 ; range on

given plane, 145 ; range on hori-

zontal plane, 149 ; velocity of, after

given time, 143.

Projection, orthogonal, elementary
propositions on, 8 (foot-note) ; of

simple harmonic motion, 172.

Pulleys, 254 (6-7). 509 (1, 2, 3), 517 (2).

Pure strains, 267.

Quickening, 54.

Quickest descent, lines of, 184 (11).

Radian, 21 ; solid, 22.

Radius, of curvature, 39 ; of gyration,

486.

Radius vector, 3.

Range, of a projectile, 145, 149.

Rate of work, 333 ; dimensions of units

of, 335 ; units of, 335.

Ratio of strain, 257.

Recoil, velocity of, 321.

Rectangular components of a displace-

ment, 81.

Rectangular co-ordinates, 4.

Relative acceleration, 115.

Relative velocity, 96.

Repose, angle of, 328.

Resilience, 565.

Resistance to compression, 549.

Resolution, of accelerations, 116 ; of

angular accelerations, 221 ; of dis-

placements, 79 ; of forces, 312 ; of

rotation into translation and rota-

tion, 241 ; of rotations, 207 ; of

stress, 530 ; of velocities, 99.

Rest, 24.

Restitution, coefficient of, 321, 378.

Resultant displacement, 76 ; analy-
tical expression for, 90 ; trigonome-
trical expression for, 85.

Resultant iiressure, 579.
Resultant stress, 525.

Rigid bodies, 194.

Rigid bodies, motion about fixed axes,

496 ; motion of free, 497 ; motion
of systems of, 498.

Rigid dynamics, 453.

Rigidity, 549.

Rigidity, flexural, modulus of, .5.52.

Rigidity, modulus of, 552.
Rotation, 33, 194.

Rotational displacements, 208.

Rotational strains, 268.

Rotations, 199 ; composition of simul-
taneous, 203; composition of suc-

cessive, 200 ; resolution of, 207.
Rough bodies, 328.

Scalar quantity, 42.

Screw, 245, 254 (4), 517 (6) ; differ-

ential, 517 (7) ; rough, efficiency of,

517 (11) ; rough, mechanical advan-
tage of, 517 (10).

Second, 32.

Second Law of Motion, 287.
Shear, 269 ; amount of, 269 ; direction

of, 269 ; homogeneity of, 270 ;
plane

of, 269 ; reduction of, to a pure
strain and a rotation, 272. «

Shearing stress, 530.

Sidereal day, 29 ; variation of, 30. 1
Signs, convention of, for co-ordinates,

4, 5 ; for moments of forces, 425

;

for moment of velocity, 103.

Simple harmonic motion, 163 ; ampli-
tude of, 165 ; epoch of, 165 ;

period
of, 165 ;

phase of, 165 ;
projection

of, 172.

Simple harmonic motions, composition
of, 168.

Simple longitudinal strain, 264.

Simple machines, see Pulley, Inclined
Plane, Wheel and Axle, Lever,
Screw.

Simple pendulum, 187, 352 (5).

Simple rigidity, see Rigidity.

Smooth body, 320 (24).

Solar day, 31.

Solid, 547.

Solid radian, 22.

Si)ace, dimensions of, 1

Specific gi-avity, 304.

i
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Speed, 42 ; change of, 51 ; dimensions
of units of, 47 ; motion of a j)oint

witli uniform, 61 ; motion of a
point under given rates of change
of, 60; motion of a i^oint under
uniform rate of change of, 63 ; rate

of change of, 52, 53 ; rate of change
of, dimensions of, 57; rate of change
of, units of, 56 ; units of, 45.

Spring balance, 320 (6).

StabiUty of equilibrium, 450 ; of

floating body, 583 ; relation of

potential energy to, 451.

Stable equilibrium, 450.

Standard substance, 304.

Standards, 14; of length, etc., see

Length, etc.

Static energy, 345.

Statics, subject matter of, 323.

Steady motion, 587.

Strain, 33, 255 ; continuous, 284

;

due to longitudinal stress, 554

;

ellipsoid, 264 ; elongations of, 257 ;

heterogeneous, 284; homogeneous,
257 ;

principal axes of, 263 ;
princi-

pal elongations of, 263 ;
principal

ratios of, 263 ; pure, 267 ; ratio of,

257 ; rectangular specification of a

small, 283 ; relation of final to

initial volume, 266 ; relation of

stress to, 540 ; rotational, 268

;

simple longitudinal, 264 ; specifica-

tion of, 278.

Stream lines, .587.

Strings, flexible and inextensible, 383.

Stress, 306 ; centre of, 528 ; con-

tinuous, 522 ; dimensions of units

of, 523 ; homogeneous, 522 ; hetero-

geneous, 522 ; longitudinal, 530 ;

relation of, to strain, 540 ; required

for longitudinal strain, 555 ; resolu-

tion of, 530 ; resultant of, 525

;

specification of, 531 ; tangential or

shearing, 530 ; tangential, resolu-

tion of, into longitudinal stresses,

538 ; units of, 523.

Stresses, 519; in bars of framework,
509 (22 and 23).

Surface density, 304.

Surface integral of normal attraction,

365.

Surfaces of equal density, 575 ; of

equal pressure, 572.

Suspension, centre of, of physical
pendulum, 496 (3).

Systems of particles connected by
strings, 381.

Tangential acceleration, 120.

Tangential stress, 530 ; resolution of,

into longitudinal stresses, 538.

Tautochrone, the cycloid a, 192.

Tension, 306.

Thermal energy, 440.

Third Law of iMotion, 307.

Three-bar motion, 254 (8).

Time, description of mstants, 26

;

measurement of, 27; relation of

motion to, 25 ; units of, 29-32.

Toggle-joint, 517 (13).

Torricelli's Theorem, 589.

Torsion, 277 (3) ; modulus of, 5.52

;

stress required to maintain, 556 (6)

;

time of oscillation of a body sus-

pended by a twisted wire, .558.

Tortuosity, 41.

Transformations of energy, 349.

Translation, 33, 34.

Transmissibility of force, principle of,

456.

Transmission of pressure, principle of

the equal, 571.

Triangle of accelerations, 116 ; of dis-

placements, 78 ; of forces, 313 ; of
velocities, 98.

Tubes of force, 300.

Twist, 245.

Uniform acceleration, motion in curved
path under, 185 ; motion on in-

clined plane under, 181, 329 (1), 352
(4) ; motion \inder, 140.

Uniform velocity, motion under, 138.

Units, absolute, 301 ; derived, 19

;

i dimensions of, 18 ; gra\atational,

I

298 ; systems of, 46 ; of length, etc.,

j

see Length, etc.

I

Unstable equilibrium, 4nO.

I

Vectors, 70.

, Velocities, comi>osition of, 98 ; reso-

! lution of, 99 ; virtual, 353.

Velocity, 43, 92 ; angular, see Angular
velocity ; areal, see Areal velocity

;

change of, 109 ; change of point of

reference, 96 ; instantaneous, 93 ;

mean, 92 ; moment of, about a point,

103, about a line. 104; motion under
uniform, 138 ; relative, 96 ; units of,

94.
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Vena contracta, 589.

Virtual displacement, 353 ; moment,
353; velocities or work, principle

of, 353.

Viscosity, 545.

Volume, dimensions of units of, 20

;

units of, 17.

Warren girder, 509 (27).

Watt, the, 335.

Weight, 290 ; to be distinguished

from mass, 270 ;
proportional to

mass, 290.

Weights of particles of small body

reducible to single force acting at
centre of mass, 474.

Wheel and Axle, 254 (5), 498 (3), 507
(10) ; differential, 517 (5).

Work done, 330 ; by component forces
and resultant, relation between,
342 ; dimensions of units of, 3:^2

;

dimensions of units of rate of, 335 ;

during strain, 559, 590 ; under cen-
tral forces, 337; under uniform
force, 337; rate of, 333; units of,

331 ; units of rate of, 335.

Young's modulus, 552; in terms of
moduluses of elasticity, 556 (4).

END.
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