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PEEFAOE.

The following Treatise was originally prepared to sup-

ply a want felt by the compiler, whilst engaged in teaching

Natural Philosophy to college classes. It is now proposed

to introduce into it, in a simplified form, the results of

many years' experience in its use as a text-book. To ac-

complish this, the entire book has been rewritten, the de-

scriptive matter condensed, the demonstrations simplified,

and the practical scope of the work extended ; but in no

instance has any essential principle been omitted. The

most important, if not the only, change in the plan of the

work is the omission of the Calculus. This change has

been made, to cause the work to conform more closely

to the original design, which was, to produce a book

that should form a suitable connecting link, between

purely popular works, on the one hand, and those of the

highest grade, on the other. In most of our Colleges,

the Calculus is either not taught at all, or else its study

is made optional, and pursued without reference to its

use as a tool for scientific investigation. The change

referred to, brings this edition of the work within the

range of the College Curriculum, and it is hoped does
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not impair its value as a text-book for Schools of Science.

As modified, it embraces all the elementary propositions

of Mechanics, arranged in logical order, rigidly demon-

strated and- fully illustrated by practical examples; its

scope, sufficiently extended to meet the wants of Colleges

and Schools of Science; its treatment, so simple that it

may be read with profit by those who have not the

leisure to make the mathematical sciences a specialty; and

its plan, such as to render it a suitable introduction to

those higher treatises on Mechanical Philosophy, that all

must read who would appreciate and keep pace with the

discoveries of modern science.

Columbia College,

June ITth, 1870.
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MECHANICS

CHAPTER I.

DEFINITIONS AND INTRODUCTORY REMARKS.

Definition of a Body.

1. A BODY is a collection of material particles. A body

whose dimensions are exceedingly small is called a material

point.

Rest and Motion.

2. A material point is at rest, when it retains a fixed

position in space ; it is in motion, when its position in space

is continually changing.

Rest and motion, with respect to surrounding objects,

are called relative rest and relative motion, to distinguish

them from absolute rest and absolute motion.

Rectilinear and Curvilinear Motion.

3. The path traced out by a moving point is called its

trajectory. When this is a straight line, the motion is

rectilinear ; when it is a curve, the motion is curvilinear.

When the motion of a body is spoken of as rectilinear or

curvilinear, it is understood that some particular point
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of the body is referred to, such as the centre of gravity, or

the centre of figujr^.

,

Motion of Translation and Rotation.

-4/'
A'

*'66t^'y' Imis a 'maiicm of iranslation when all its points

move in parallel straight lines; it has a motmi of rotation

when its points move in arcs of circles having their centres

in the same line : this line is the axis of rotation. All other

varieties of motion result from some combination of these

two.
Uniform and Varied Motion.

5. The VELOCITY of a point is its rate of motion. When
it moves over equal spaces in equal times, the velocity is

constant and the motion uniform; when it moves over

unequal spaces in equal times, the velocity is variable and

the motion varied. If the velocity continually increase,

the motion is accelerated ; if it continually decrease, the

motion is retarded.

In uniform motion, the space passed over in one second

is taken as the measure of the velocity. In varied motion,

the velocity at any instant is measured by the space that

would be passed over in a second were the velocity to

remain the same as at that instant.

Definition of a Force.

6. A FORCE is anything that tends to change the state

of a body with respect to rest or motion. If a body is at

rest, anything that tends to put it in motion is a force ; if

a body is in motion, anything that tends to change either

its direction or its rate of motion, is a force.

Classification of Forces,

7. Forces may be divided into two classes, extraneous

and molecular: extrancovs forces act on bodies from with-
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out; molecular forces are exerted between the neighboring

particles of bodies.

Extraneous Forces.

8. Extraneous forces are of two kinds, pressures and

moving forces : pressures simply tend to produce motion

;

moving forces actually produce motion. Thus, if gravity

act on a fixed body, it creates pressure ; if on a free body,

it produces motion.

Moving forces are either impulsive or incessant : cm im-

pulsive force, or an impulse, is one that acts for a moment

and then ceases; an incessant force is one that acts con-

tinuously. We may regard an incessant force as a suc-

cession of impulses, imparted at equal, but exceedingly

small intervals of time. When the elementary impulses

are equal, the force is constant; when they are unequal,

the force is variable. Thus, gravity, at any place, is a

constant force ; the effort of expanding steam is a variable

force.

Molecular Forces.

9. Molecular forces are of two kinds, attractive and

repellent : attractive forces tend to bind the particles of

a body together; repellent forces tend to thrust them

asunder. Both kinds of molecular forces are continually

exerted between the molecules of bodies, and on the pre-

dominance of one or the other depends the physical state

of a body.

Constitution and Classification of Bodies.

10. It is generally believed that matter, in its ultimate

form, consists of minute, indivisible, and indestructible

parts, called atoms. These are grouped in various ways,

under the action of molecular forces, to form molecules, or
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particles; and these again are united to form larger

bodies. The relations that exist between the molecular

forces, in different cases, form a basis for the classifi-

cation of bodies: they are divided into two classes, 5o/i^6'

and fluids; and fluids are again divided into liquids

and gases. In solids, the molecular forces of attraction

prevail over those of repulsion ; in liquids, they are

nearly balanced; in gases, the forces of repulsion pre-

vail over those of attraction. In solids, the particles ad-

here so as to require some force to separate them; in

fluids, the particles move freely amongst each other, yield-

ing to the slightest force. Solids tend to preserve both

their shape and volume: liquids tend to preserve their

volume, but take the shape of the containing vessel
;
gases

have no tendency to retain either their volume or their

shape. Many bodies are capable of existing in different

states, according to temperature. Thus, ice, loater, and

stea^n are the same body in different states.

Xissential Properties of Bodies.

11. There are certain properties common to all bodies,

and without which we could not conceive them to exist:

these are extension, impenetrahility, and inertia.

ExTEKSioj^ is that property by virtue of which a body

occupies a portion of space. Every body has length,

breadth, and thickness.

Impenetrability is that property by virtue of which no

two bodies can occupy the same space at the same time.

The particles of one body may be thrust aside by those of

another, as when a nail is driven into wood; but Avhere

one body is, no other body can be.

Inertia is that property of a body l)y virtue of which it
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tends to continue in the state of rest or motion in which it

may be placed, until acted on by some force.

Matter has no power to change its state with respect to

rest or motion ; if at rest, it cannot set itself in motion

;

or, if moving, it cannot change either the rate or the direc-

tion of its motion. If a force act on a body to change its

state of rest or motion, it develops a resistance that acts in

a contrary direction. This resistance is called the/orce of

inertia. The force that a moving body possesses and is

capable of giving out, when its motion is opposed, is called

living force.

Laws of Motion.

12. The laws of motion, commonly known as the New-

tonian Laws, depend on the principle of inertia. They

may be enunciated as follows

:

\st Law. If a body be at rest, it will remain at rest

;

or if in motion, it will move uniformly in a straight line,

till acted on by some force.

2d Lata. If a body be acted on by several forces, it will

obey each as though the others did 7iot exist, and this whether

the body be at rest or in motion.

dd Law. If a force act to change the state of a body with

respect to rest or motion, the body tvill offer a resistance

equal and directly opposed to the force.

These laws are deduced from universal experience, and

are accepted as axiomatic in treating of the motion of

bodies.

Secondary Properties of Bodies.

13. Besides the properties common to all bodies, there

are other properties possessed in a greater or less degree by

different bodies, that may be called secondary. Of these,

the most important, from a mechanical point of view, are
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porosity, compressibility, dilatability, and elasticity, all of

which arise from peculiarity of atomic constitution.

POKOSITY is that property by virtue of which the par-

ticles of a body are more or less separated. The interme-

diate spaces are called pores. When the pores are small,

the body is dense ; when they are large, it is rare. Gold is

a dense body, hydrogen a rare one. It is to be observed that

the interatomic spaces, which are properly called pores, are

regularly distributed throughout the body, and should not

be confounded with those irregular spaces that may be

called cavities or cells, examples of which may be seen when

a loaf of bread is cut across.

Compressibility is that property by virtue of which the

particles of a body may be made to approach each other,

so as to occupy less space.

DiLATABiLiTY is that property by virtue of which the

particles of a body may be separated to a greater distance,

so as to occupy more space.

Elasticity is that property by virtue of which a body

tends to resume its original form, or volume, after com-

pression or extension. The effort that a body exerts to

return to its original form or volume after distortion, is

called the force of restitution; and when this is very great

in comparison with the force of distortion, the body is

highly elastic. Ivory is an example of a highly elastic body

;

clay is very inelastic. Within certain limits most bodies

may be considered as elastic,—that is, if they be slightly

distorted, they will completely recover their original shape,

or volume, on the removal of the force of distortion.

Force of Gravity and Weight,

14. Observation shows that the earth exercises an at-

tractive force on bodies, tending to draw them toward its
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centre. This force is called the force of gi^avity. It acts

on every particle, and if the body be supported, it produces

a pressure proportional to the quantity of matter in it;

this pressure is called the lueight of the body.

Newton showed that terrestrial gravity is only a particu-

lar manifestation of a general law, which certainly prevails

throughout the solar system, and probably throughout the

physical universe. This law, sometimes called the New-

tonian law of imiversal gravitation, may be enuuciated as

follows

:

Every iMrtide of matter attracts every other particle,

with a force that varies directly as the mass of the attract-

ing particle, and inversely as the square of the distance

between the i)articles.

It has also been shown that the attraction of the earth

on bodies exterior to it, is very nearly the same as though

all its matter were concentrated at its centre. Because the

form of the earth is that of an oblate spheroid, having its

axis coincident with that of revolution, the force of gravity

increases slighty in passing from the equator toward the

pole. The weight of a body must therefore increase at the

same rate. That this increase of weight may be rendered

apparent, the weighing must be performed by a spring

balance, or some equivalent method, for, were the ordinary

balance used, the increased weight of the body would be

accompanied by a like increase in the weight of the coun-

terpoise.

Mass and Density.

15. The MASS of a body is the quantity of matter it con-

tains. We have seen that the weight of a body increases

at the same rate as the force of gravity ; hence the quo-

tient obtained by dividing the weight at any place by the
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force of gravity at that place is constant. This quotient is

always proportional to the quantity of matter in the body,

and for this reason is taken as the measure of its mass.

Denoting the mass of a body by M, its weight by W, and

the force of gravity by g, we have,

WM = —', whence, W= Mg (1)

The DENSITY of a body is the degree of compactness of

its particles. It is proportional to the quantity of matter

in a given volume. We may take, as the measure of a

body's density, the quotient of its mass by its volume;

or, denoting the density by D, the volume by F, and the

mass by M, we have,

Combining this with equation (1), we find,

D = ^', whence, W = DVg (2)

Formulas (1) and (2) are of frequent use in Mechanics.

The quantity of matter that weighs one pound is taken

as the unit of mass. The density of distilled water at 39"^

Fah. is taken as the U7iit of density.

Momentum or Quantity of Motion.

16. The MOMENTUM, or the quantity of motion of a

body, is the product of its mass by its velocity. If a force

act to impart motion, it is obvious that the force must in

the first place be proportional to the mass moved ; and in

the second place, to the velocity it can impart. It is in

accordance with this principle that momentum, or quantity

of motion, is used as a measure of force.
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Measure of Forces.

17. A force is measured by comparing it with some other

force of tlie same kind taken as a unit. There are two

kinds of forces—pressures and moving forces ; and conse-

quently two kinds of units.

The unit of pressure is one pound ; when we speak of a

pressure of n pounds, we mean a force that would, if di-

rected vertically upward, just sustain a weight of n pounds.

The unit of an impulsive force is an impulse capable of

imparting a unit of velocity to a unit of mass ; that is, an

impulse capable of generating a unit of momentum.

An impulsive force is measured by the quantity of mo-

tion it can generate. If an impulse / impart a velocity v

to a mass 7n, we have,

f=mv (3)

Impulses acting on the same or on equal masses, are pro-

portional to the velocities they impart.

The unit of a constant force is a constant force capable

of generating a unit of momentum in a unit of time.

A constant force is measured by the quantity of motion

it can generate in a unit of time. If a constant force /
generate a quantity of motion equal to 7nv in a unit of time,

we have,

f=mv (4)

Constant forces acting on equal masses are proportional

to the velocities they generate in the same time.

We have seen that an incessant force may be regarded

as a succession of impulses, imparted at equal intervals of

time (Art. 8) ; hence, constant forces are proportional to

their elementary impulses.

Variable forces have different values at different times.
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The measure of such a force, at any instant, is the quantity

of motion it could generate in a unit of time, if its intensity

were to remain unchanged for that time. The values of

variable forces at different times are proportional to their

elementary impulses at those times.

Acceleration due to a Force.

18. The velocity that a constant force can generate in a

body in a unit of time, is called the acceleration due to the

force. If we find the value of v, in equation (4) of the last

article, we have,

7)1
(5)

That is, the acceleration is equal to the moving force, divided

hy the mass moved.

If the acceleration is known, the moving force may be

found by multiplying the acceleration by the mass. In

some cases the force acts independently on each ]3article;

the acceleration is then independent of the mass. The

force of gravity is an example in which the acceleration is

independent of the mass.

Representation of Forces.

19. Forces may be represented geometrically by straight

lines, proportional to the forces. A force is given when we

know its intensity, its point of application, and the direction

in tuhicJi it acts. When a force is represented by a line,

the length of the line represents its in- ,^_____

tensity ; one extremity represents the P

point of application ; and an arrow-head

at the other extremity shows the direction of the force.

Thus, in Figure 1, OP is the intensity of the force ; 0, its
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point of application; and OP, the direction in which it

acts. If a force be applied to a solid body, the point of

application may be taken anywhere on its line of direc-

tion; and it is often found convenient to transfer it from

one point of this line to another. The line OP prolonged

indefinitely is called the line of action of the force OP.

A force may be represented, analytically, by a letter; thus

the force OP may be called the force P. In this case we

assume the usual algebraic rule for estimating quantities;

that is, if a quantity in one sense is i^ositive, a quantity

in an opposite sense must be negative.

Equilibrium.

20. Forces are in equilibrium when they balance each

other. If a system of forces in equilibrium be applied to a

body, they will not change its state with respect to rest

or motion : if the body be at rest, it will remain so ; if in

motion, its motion will remain unchanged, so far as these

forces are concerned.

When forces balance each other through the medium of

a body at rest, they are said to be in statical equilihrium ;

when they balance each other through tlie medium of a

moving body, they are in dyyiarnical equilihrium.

If a body be at rest, or if in uniform motion, we con-

clude that the forces acting on it are in equilibrium.

Definition of Mechanics.

21. Mechanics is the science that treats of the action

of forces on bodies.

It treats of the laws of equilibrium and motion, and is

sometimes divided into two branches, called Statics and

Dynamics. Statics treats of pressures ; Dynamics, of mov-
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ing forces: when the bodies acted on are liquids, these

branches are called hydrostatics and hydrodynamics

;

when the bodies acted on are gases, they are called aero-

statics and aerodynamics.

A better division of the subject is into mechanics of solids

and mechanics of fluids.



CHAPTER 11.

COMPOSITION^, RESOLUTIOIS^, AKD EQUILIBRIUM OF FORCES.

Definition.

22. Composition of forces, is the operation of finding a

single force whose effect is the same as that of two or more

given forces. The required force is called the resultant of

the given forces.

Resolution of forces, is the operation of finding two or

more forces whose combined effect is equivalent to that of

a given force. The required forces are called components

of the given force.

Composition of Forces whose directions coincide.

23. From the rules laid down for measuring forces, it

follows, that the resultant of two forces applied at a point,

and acting in the same direction, is equal to the sum of the

forces. If two forces act in opposite directions, their result-

ant is equal to their difference, and it acts in the direction

of the greater.

If any number of forces be applied at a point, some

in one direction, and others in a contrary direction, their

resultant is equal to the sum of those that act in one

direction, diminished by the sum of those that act in the

opposite direction ; or, if we regard the rule for signs, the

resultant is equal to the algebraic sum of the components ;

the sign of this sum indicates the direction in which the

resultant acts. Thus, if the forces P, P', &c., act on a point,
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and in a direction that we may assume as positive, whilst

the forces P", JP'", &c., act on the same point and in the

opposite direction, then will their resultant, denoted by E,

be given by the equation,

72 = (P + P' + &c,)— (P" + P'" + &c.)

If the first term of the second member is numerically

greater than the second, B is positive, and the resultant

acts in the direction that we assumed as positive ; if the

first term is numerically le^s than the second, R is negative,

and the resultant acts in the opposite direction ; if the two

terms are equal, the resultant is 0, and the forces are in

equilibrium.

All the forces of a system that act in the general direc-

tion of any straight line, are called homologous, and their

algebraic sum may be expressed by writing the expression

for single force, prefixing the symbol 2, which indicates

the algebraic siwi of homologotis quantities. We might, for

example, write the preceding equation under the form,

^ = 2 (^) (6)

This equation expresses the fact, that the resultant of a

system of homologous forces, is equal to their algebraic

sum.

Composition of concurrent Forces.

.

24. Concurrent forces are those whose lines of direction

intersect in a common point. The simplest case is that of

two forces applied at a common point, but not in the same

direction. After this, in order of simplicity, we have the

case of several forces applied at a common point and lying

in the same plane, and then the case of several forces ap-

plied st a common point and not in a single plane.
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Parallelogram of Forces.

25. Let be a material point, and suppose it acted on

by two simultaneous impulses, P and Q, represented in

direction and intensity by OP and q _ H
OQ; complete the parallelogram P$, / ^^i
and draw its diagonal OR, I ^^

If be taken as the unit of mass, i^^^ ^
OP and OQ will represent the veloci-

^

ties due to Pand Q, (Art. 17), and in-

asmuch as the point obeys each force, as though the other

did not exist, (Art. 12), it will be found at the end of one

second somewhere on PR, by virtue of the force P, and

somewhere on QR, by virtue of the force Q ; it will there-

fore be at R, and because it moves uniformly in the direc-

tion of each force, it must move uniformly in the direction

OR. Had O been acted on by an impulse represented

by OR, it would in like manner have moved uniformly

from to R in one second. Hence the impulse OR is

equivalent in effect to the two impulses OP and OQ ;

that is.

If kvo impulsive forces be represented hy adjacent sides

of a parallelogram, their resultant will he represented hy

that diagonal of the parallelograin ivhich passes through

their common point.

Because constant forces are proportional to their elemerd-

ary impulses, (Art. 17), the above principle holds true for

them ; and because variable forces are measured by sup-

posing them to become constant for a unit of time, (Art.

17), the principle must hold true for them: it is therefore

true for all kinds of moving forces. It is also true for

forces of pressure, for if we apply a force equal and directly

opposed to the resultant of two moving forces, it will hold
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them ill equilibrium, converting them into forces of pres-

sure, but it will in no manner change the relation between

them and their resultant. Hence, the principle is univer-

sal ; it may be enunciated as follows

:

If Uoo forces be represented in direction and inteyi.^itij

by adjacent sides of a parallelogravi, their resultant will

be represented by that diagonal of the parallelogram which

passes through their common point.

This principle is called the parallelogram of forces.

Geometrical Applications of the Parallelogram of Forces.

26. 1°. Given two forces; to find ^
their resultant. y ""^^

Let OP and OQho; the given forces. / ^^ /

Complete the parallelogram QP and 1^^
draw its diagonal OR ; this will be ^

the resultant required. ^^^' ^'

2°. Given, a force and one of its components ; to find

the other.

Let OR be a force and OP one of its components.

Draw PR and complete the parallelogram PQ ; OQ will

be the other component.

3°. Given, a force and the directions of its components

;

to find the components.

Let OR be a force and OP, OQ, the

directions of its components ; through

R draw RQ and RP parallel to PO ^<g^^- ^
and QO ; then will OP and OQhe the Fig. 4.

required components.

4°. Given, a force and the intensities of its com.po-

nents ; to find the directions of the components.

Let OR be a force, and let the intensities of its com-

ponents be represented by lines equal to 0/*and OQ ; with
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Fig. 5.

as a centre and OP as radius,

describe an arc, then with i? as a

centre and OQ as a radius, describe

a second arc, cutting the first at P ;

draw OP, and RP, and complete

the parallelogram PQ ; OP and OQ will be the required

components.

Polygon of Forces.

27. Let OQ, OP, OS, and OT, be

a system of forces applied at a point,

0, and lying in a single plane. To

construct their resultant ; on OQ
and OP construct the parallelogram

PQ, and draw its diagonal OR', this

will be the resultant of OP and OQ.

In like manner construct a parallel-

ogram on OjR' and OS; its diag- ^^s-^-

onal OR", will be the resultant of OP, OQ, and OS,

On OR" and OT construct a parallelogram, and draw

its diagonal OR ; then will OR be the resultant of all

the given forces. This method of construction may be

extended to any number of forces whatever.

If we examine the diagram, we see that QR' is parallel

and equal to OP, R'R" is parallel and equal to OS, R"

R

is parallel and equal to OT, and that OR is drawn from

the point of application, 0, to the extremity of R"R.

Hence, we have the following rule for constructing the

resultant of several concurrent forces

:

Through their common point draw a line parallel and
equal to the first force ; through the extremity of this draw

a line parallel and equal to the second force ; and so on,

throughout the system ; finally, draw a line from the start-
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ing point to the extremity of the last line drawn, and this

toill be the res2ilta7it required.

This application of the parallelogram of forces, is called

the polygon offorces.

The principle holds true, even when the forces are not

in one plane. In this case, the lines OQ, QR', R'R", &c.,

form a tivisted polygon, that is, a polygon whose sides are

not in one plane.

When the point R, in the construction, falls at 0, OR
reduces to 0, and the forces are in equilibrium.

Parallelopipedon of Forces.

28. Let OP, OQ, and OS, be three concurrent forces not

in the same plane. On these, as edges, construct the

parallelopipedon OR, and draw OR,

OM, and SR. From the principle of J.;- -,-,

Art. 25, OM is the resultant of OP ^i^___^^^'' \

and OQ J and OR is the resultant of |
tA^--^^"^ r y}.^

OM and OS; hence, Oi? is the result- |^/^ "l::::^!''''

ant of OP, OQ, and OS; that is, if
Q" " ^

three forces be represented by the con-
^'

current edges of a parallelopipedon, their resultant will be

represented by the diagonal of the parallelopipedon that

passes through their common point. This principle is

called the parallelopipedon of forces. It is easily shown

that it is a particular case.of the polygon of forces ; for, OP
is parallel and equal to the first, PM to the second, MR
to the third force, and OR is drawn from the origin, 0, to

the extremity of MR.

Components of a force in the direction of Rectangular Axes.

29. First. To find analytical expressions for the com-

ponents of a force in the direction of two axes.



COMPOSITION", ETC., OF FORCES. 29

Fijj. S.

Let AE he n force in the plane of

the rectangular axes OX and OY. On
it as a diagonal construct a parallelo-

gram ML, whose sides are parallel to

OX and OY. Denote AR hy E, AL
by X, AM, equal to LE, by Y, and

the angle LAE, equal to the angle

the force makes with OX, by a. From the figure, we

have,

X — E cos a, and F = 7? sin a (7)

In these expressions the angle a. is estimated from the

positive direction of the axis of X, around to the force, in

accordance with the rule laid down in Trigonometry. The

component X will have the same sign as cos a, and the

component Y the same sign as sin a.

Secondly. To find the components of a force in the direc-

tion of three rectangular axes.

Let OE, denoted by E, be the given force, and OX, OY,

and OZ, the given axes. On OE, as a diagonal, construct

a parallelopipedon whose edges

are parallel to the axes. Then

will OL, OM, and OiV^be the re-

quired components. Denote these

by X, Y, and Z, and the angles

they make with OE by a, (3, and

7. Join E with L, M, and X, by

straight lines. From the right-

angled triangles thus formed, we

have,

Fig. 9.

X = E cos a, Y = E cos (3, and Z = E cos y . . . (8)

The angles a, [3, and 7 are estimated from the positive
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directions of tlie corresponding axes, as in Trigonometry,

and eacli component has the same sign as the correspond-

ing cosine.

If a force be resolved in the direction of rectangular

axes, eacli component will represent the total effect of the

given force in that direction. For thij reason such com-

ponents are called effective components. It is plain, that

the component in the direction of each axis, is the same as

the proJectio7i of the force on that axis, the projection being

made by lines through the extremities of the force, and

perpendicular to the axis. Hence, we may find the effective

component of a force in the direction of a given line,

geometrically, by projecting the force on the line, or a?i-

alytically, by multiplying the force into the cosine of its

inclination to the line.

Analytical Composition of Rectangular Forces

30. First. When there are but two

forces.

Let AL and AM be rectangular

forces, denoted by X and Y, and let

AR, denoted by 7?, be their resultant. -

Denote the angle RAL by a. Then,

because LR = Y, we have, from the Fig. lo

triangle ALR,

.CL
1

X . . YR =v^X^ + i '; cos ct = — ; and sin a = ~ (9)

The first of these gives the intensity, the second and third

the direction of the resultant.

Secondly. When there are three forces not in one plane.

Let OL, OM, and ON, be rectangular forces denoted by

A", Y, and Z, and let OR, denoted 1)V /?, be their result-
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ant. Denote the angles which

R makes with OL, OM, and OJV

by a, 13, and 7. Then, from the

figure, we have,

E = ^X^ + Y
X

cos a = — ; COSK

COS 7 = Fig. n.

The first gives the intensity of the resultant, the others

its direction.

Examples.

1. Two pressures of 9 and 12 pounds act on a point, and at right

angles to each other. Required, the resultant pressure.

SOLUTION.
We have,

X=9, and F=:12;

9
Also, cos a = — = .6

;

15

That is, the resultant pressure is 15 lbs., and it makes an angle of

53° 7 47" with the first force.

2. Two rectangular forces are to each other as 3 to 4, and their

resuitant is 20 lbs. What are the intensities of the components ?

SOLUTION.

We have, 3F= 4 X, or Y- \ X, and i?= 20;

.-. i2=v/81 + 144= 15.

.-. a = 53° 7' 47".

Hence, X = 12, and Y= 16.

3. A boat fastened by a rope to a point on shore, is urged by the

wind perpendicular to the current, with a force of 18 pounds, and

down the current by a force of 22 pounds. What is the tension on

the rope, and what angle does it make with the cuiTent?

SOLUTION.
We have,

A'= 22, and F = 18

;

.: E=Vm = 28.425

;

Al 22
Also, eoS« =—-: a = 39° IT 20".
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Hence, the tension is 28.425 lbs., and the angle 39° 17' 20".

4. Required the intensity and direction of the resultant of three

forces at right angles to each other, having tlie intensities 4, 5, and 6

pounds, respectively.

SOLUTION.
We have,

X= 4, F = 5, andZ=6. .-. 22 = >/77 = 8.775.

Also, cos a =^_, cos /?= ^-A_, and cos y = -^.;

whence, a ~ 02° 52' 51", f5 = 55° 15' 50", and y = 46° 51' 43".

Hence the resultant pressure is 8.775 lbs., and it makes, with the

components taken in order, angles equal to 62° 52' 51", 55° 15' 50",

and 46° 51' 43 ".

5. Three forces at right angles are to each other as 2, 3, and 4, and
their resultant is 60 lbs. What are the intensities of the forces ?

Am. 22.284 lbs., 33.426 lbs., and 44.568 lbs.

Application to Groups of Concurrent Forces.

31. The principles explained in the preceding arti-

cles, enable us to find the resultant of any number of

concurrent forces. Let P, P', P", &c., be a group of con-

current forces. Call the angles they make with the axis

of JT, a, a', a", &c. ; the angles they make with the axis of

Y, (3, i3', ^", &c. ; and the angles they make with the axis

of Zy y, y, y", &c. Resolve each force into rectangular

components parallel to the axes, and denote the resultants

of the groups parallel to the axes by X, Y, and Z. We
have, (Art. 23),

X=I{P cos a), Y = I{P cos iS), Z= 1'{P cos 7).

If we denote the resultant by R, and the angles it

makes with the axes by a, h, and c, w^e have, as in Arti-

cle 30,

X Y Z
cos a = 1-, cos b = —, and cos c = —.

R R R
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These formulas determine the intensity and direction of

the resultant.

When the given forces lie in the plane Xl", Z reduces

to 0, cos (i becomes sin a, cos h becomes sin a, and the for-

mulas reduce to,

X = I {F cos a), and Y ~ ^ {F sin a).

X T
R — v/X^ 4- I^, and cos a = jy, and sin a = -jr.

Ji K

Examples.

1. Three concurrent forces, whose intensities are 50, 40, and 70, lie

in the same plane, and make with an axis, angles equal to 15°, 30°,

and 45°. Required the resultant.

SOLUTION.
We have.

X = 5p COS 15° + 40 COS 30° + 70 cos 45° := 133.435,

and

T=:50 sin 15°

R
+ 40 sin 30° + 70 sin 45°

:

= 156

;

= 82.44

;

whence (98 + 17539 =

132.4R5
and. COS a

1 .n ; •• « == 31° 54' 12".
156

The resultant is 156, and the angle it makes with the axis is 31°

54' 12".

2. Three forces 4, 5, and 0, lie in the same plane, and make equal

angles with each other. Required the intensity of their resultant

and the angle it makes with the least force.

SOLUTION.

Take the least force as the axis ofX Then the angle between it

and the second force is 120°, and that between it and the third force

is 240°. We have,

X= 4 + 5 cos 120° + 6 cos 240° = - 1.5

;

r= 5 sin 120° + 6 sin 240° = - .866

;

/o 1-5 . .866 ^,^„
.-. R =V3, cos a= - p^ , sm a= - ^^ ; .-. a = 210'.

3. Two forces, one of 5 lbs. and the other of 7 lbs., are applied at

the same point, and make with each other an angle of 120°. What
is the intensity of their resultant. Arts. 6.24 lbs.
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Formula for the Resultant of two Forces.

32. Let P and P\ be two forces in the same plane, and

let the axis of Xbe taken to coincide with P; a will then

be 0, and we shall have sin a = 0, and

cos a = 1. The value of X (Art. 31)

will be P -\- P' cos a', and the value

of J" will be P' sin a'. Squaring

these values, substituting in Equa-

tion (9), and reducing by the relation

sin" a! + cos' a' == 1, we have.

Pig. 12.

R=Vp' + P'^ + 2PP' cos a' (12)

The angle a' is the angle between the given forces.

Hence,

Tlie resultant of two concurrent forces is^ equal to the

square root of the sum of the squares of the forces, plus

twice the product of the forces into the cosine of their in-

cluded angle.

If a' is greater than 90°, and less than 270°, its cosine is

negative, and we have.

R =Vp^ + p'^ - 2PP' cos a'.

If a! = 0, its cosine is 1, and we have,

R = P + P',

If a = 90°, its cosine is 0, and we have,

R r= N/p« + P'\

If a' = 180°, its cosine is — 1, and we have,

R = P- P'.

Examples.

1. Two forces, P and Q, are equal to 24 and 30, and the angle "be-

tween them is 105°. What is the intensity of their resultant?

E= %/2i^ + 80' + 2 X 24 X 30 cob lOS** = 83.21.
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2. Two forces, P and Q, whose intensities are 5 and 13, have a

resultant whose intensity is 13. Required the angle between them.

13 =\/25 + 144 + 2 X 5 X 12 cos a.

.-. cos a = 0, or n: = 90°, An».

3. A boat is impelled by the current at the rate of 4 miles per hour,

and by the wind at the rate of 7 miles per hour. What will be her

rate per hour when the direction of the wind makes an angle of 45°

with that of the current?

R = \/l6 -f- 49 -f 2 X 4 X 7 cos 45° = 10.2m. Ans.

4. A w^eight of 50 lbs., suspended by a string, is drawn aside by a

horizontal force until the string makes an angle of 30° with the ver-

tical. Required the value of the horir^ontal force, and the tension

of the string. Am. 28.8675 lbs., and 67.735 lbs.

5. Two forces, and their resultant, are all equal. What is the

angle between the two forces ? Ans, 120°.

Relation between two Forces and their Resultant.

33. Let P and Q be two forces, and R their resultant.

Then because QP is a parallelogram,

the side PR is equal to Q. From

the triangle ORP, because the sides

are proportional to the sines of the

Opposite angles, we have, ^

P \ Q\ Rw^in ORP : sin ROP : sin OPR.

But, ORP = QOR, and OPR = 180°-^§OP; hence, we

have,

/^
: § : i? : : sin QOR : sin ROP : sin QOP ; . . . (13)

That is, of tivo forces and their resultant, each is propor-

tional to the sine of the angJs betioeen the other ttoo.

If we apply a force i?' equal and directly opposed to R,

the forces P, Q, and R' will be in equilibrium. The aoi-
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gles QOR and QOR' are supple-

ments of each other; hence,

Ein QOR = sin QOR'; tlie angles

ROF, and POR', are also sup-

plementary; hence, sm 7?OP =
sin POR'. We have also R = R'.

Making these substitutions in the

preceding proportion, we have,

P: Q: R' :: sin QOR' : sin POR' : sin QOP. . . . (14)

Hence, if three forces are in equilibriu7n, each is propor-

tional to the sine af the angle hetiueen the other two.

Fijj. 14.

Principle of Moments.

34. The moment of a force, with respect to a point,

is the product of the intensity of the force, by the

perpendicular from the point to the direction cf the

force.

The fixed point is the centre of moments ; the perpen-

dicular is the lever arm of the force; and the moment

itself measures the tendency of the force to produce rota-

tion about the centre of moments.

Let P and Q be two forces, and R their resultant;

assume a point C, in their plane,

as a centre of moments, and

from it, let fall on the forces,

perpendiculars, Cp, Cq, and Cr;

denote these perpendiculars by

p, q, and r. Then will Pp, Qq,
Fig. i5.

and Rr, be the moments of P, ft and R. Draw CO, and

from P let fall the perpendicular PS, on OR. Denote the

angle POP, by a, ROQ, or its equal, ORP, by /3, and

BOO by <p.
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Since PR = Q, we have from the right-angled triangles

OPS and PES, the equations,

E = Q cos (3 -\- P cos a.

= § sin ft — P sin a.

Multiplying botli members of the first by sin cp, and of

the second by cos y? and adding, we find,

R sin Q? = Q (sin 9 cos (i 4- sin /3 cos 9) -i-

P (sin 9 cos cc — sin a cos 9).

Whence, by reduction,

E sin 9 = (2 sin (9 + i3) -f P sin (9 — a).

From the figure, we have,

sin 9 = j^, sin (9 - a)= -^,, and sin (9 + /3) = -^,.

Substituting in the preceding equation, and reducing,

we have,

Er = Qq -\- Pp.

When C falls within the angle POE, 9 — a is negative,

and the equation just deduced becomes

Er = Qq - Pp-

Hence, in all cases, the moment of the resultant of two

forces is equal to the algebraic sum of the moments of the

forces taken separately.

If we regard the force Q as the resultant of two others,

aiul one of these in turn, as the resultant of two others,

and so on, the principle may be extended to any number

of concurrent forces in the same plane. This principle

may be expressed by the equation,

Rr = I(Pp) .... (15)

That is, the 7noment of the resultant of any number of

concurrent forces, in the same plane, is equal to the algebraic

sum of the moments of the forces taken separately.
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This is the principle of moments.

The moment of the resultant is the resultant moment;

the moments of the components are component 7noments

;

and the plane passing through the resultant and centre

of moments, is the plane of mometits.

When a force tends to turn its point of application about

the centre of moments, in the direction of the motion of

the hands of a watch, its moment is considered positive;

consequently, when it tends to produce rotation in a con-

trary direction, its moment must be negative. If the result-

ant moment is negative, the tendency of the system is to

produce rotation in a negative direction. If the resultant

moment is 0, there is no tendency to rotation. The result-

ant moment may become 0, in consequence of the lever

arm becoming 0, or in consequence of the resultant itself

being 0. In the former case, the centre of moments lies

on the direction of the resultant, and the sum of the mo-

ments of the forces that tend to produce rotation in one

direction, is equal to that of those tending to produce rota-

tion in a contrary direction. In the latter case, the system

is in equilibrium.

» Moment of a Force with respect to an Axis.

35. Let P be a force and OZ any axis. Draw a line,

AB, perpendicular to the force

and also co the axis. Let A be

taken as the point of applicatioii

of the force, and at this point

resolve it into two components

F" and F\ the former parallel,

and the latter perpendicular to

OZ. The component P" can Fig.ie.

have no tendency to produce rotation about the axis;
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hence, the moment of P' with respect to B, will be the

same as the moment of the given force with respect to the

axis. But, P' is the projection of P on a plane perpen-

dicular to the axis, and B is the point in which this plane

intersects the axis. Hence, to find the moment of a force

^vith respect to an axis, jjroject the force on a plane perpen-

dicular to the axis, and find the moment of the projection

ivith respect to the j^oint in which the perpendicular plane

cuts the axis.

The axis is an axis of rotation, and any plane perpendi-

cular to it, is Q, plane of rotation.

To find the resultant moment of a system of forces in

space, with respect to any line as an axis; assume a

plane perpendicular to the given line as a plane of rota-

tion, project the forces on it, and find the moments of the

projections with respect to the point in which the plane

cuts the axis ; these will be the component moments.

The resultant moment is the algebraic sum of the com-

ponent moments.

Principle of Virtual Moments.

36. Let P be a force applied to the material point O;

let be moved by an extraneous force to some position, C,

very near to 0; project the path OC on

the direction of the force : the projec- p^Omp _P
tion Op, or Op', is called the virtual f^^
velocity of the force, and is positive when Fig. n.

it falls on the direction of the force, as

Op, and negative when it falls on tlic prolongation of the

force, as Op'. The product of a force by its virtual velo-

city is called the virtual moment of the force.

Assume the figure of Article 34. Op, Oq, and Or are
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the virtual velocities of P, Q, and H,

virtual velocity of a force by the

symbol 6, followed by a small

letter of the same name as that

which designates the force.

We have from the figure, as in

Article 34,

li ~ P cos a + Q cos /3.

= P sin a — § sin /J.

Multiplying both members of the first, br nog 9, of the

second, by sin 9, and adding, we have,

B cos ip := P (cos a COS (p + siu a sin 9) -f-

Q (cos 9 cos fS — sin 9 sin /3).

Or, by reduction,

i? cos 9 = P cos (9 — a) + § cos (9 -f /3).

But, from the right-angled triangles COp, COq, and

COr, we have,

(5r

cos 9= yyv-,, cos (9 — a) = 6p
and cos (9 + /3) =

Substituting in the preceding equation, and reducing, we

have,

\R6r = P^p + Q^q.

Hence, the virtual tnoment of the resultant of two forcssy

is equal to the algebraic sum of the virtual moments of the

forces taken separately.

If we regard Q as the resultant of two forces, and one

of these as the resultant of two others, and so on, the

principle may be extended to any number of forces,

applied at the same point. This principle may be ex-

pressed by the following equation :

R6r = ^ (P6p) ; (16)
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Hence, the virtual momejit of the resultant of any mwi-

her of concurrent forces, is equal to the algebraic sum of

the virtual moments of the forces taken separately.

Resultant of Parallel Forces.

3T. Let P and Q be two forces in the same plane, and

applied at points invariably con-

nected—for example, at the points

M and N of a solid body. Their

lines of direction being prolonged,
'^

will meet at some point 0; and if

we suppose the points of applica-

tion to be transferred to 0, their

resultant may be determined by the parallelogram of forces.

Whether the forces be so transferred or not, the direction

of the resultant will always pass through 0, and will lie

between P and Q. Now, supposing the points of applica-

tion at M and N, let the force Q be turned about N as an

axis. As it approaches parallelism with P, recedes

from M and N, and the resultant also approaches parallel-

ism with P. Finally, when Q becomes parallel to P, is

at an infinite distance from M and N, and the resultant is

parallel to Panel Q.

Hence, if tioo forces are parallel and act in the same

direction, their resultant is parallel to both and lies between

them..

Whatever may be the position of P and Q, the value of

the resultant, (Art. 34), will be given by the equation,

7? = P cos a + § cos ^.

But when the forces are parallel and act in the same

direction, we have, a r= 0, and ^ = ; or, cos a = 1, and

cos j3 = 1. Hence,

Rr=. P ^ q. , . . . , (17)
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That is, (he intensity of the resultant is equal to the sum of

the i7ite7isities of the two forces.

Let Pand Q be parallel forces acting in the same direc-

tion, R their resultant, and S
the point in which the direc- is^ ,,^0

tion of R cuts the line ioininpf / ir.

the points of application of , ' j _^

P and Q. Through N draw I

NL, perpendicular to the Fi^. 20.

forces, and take (!, its inter-

section Avith R, as a centre of moments. The centre of

moments being on tlie direction of the resultant, the lever

arm of the resultant will be 0, and from the principle of

moments, (Art. 34), we have,

r X CL =: Q X ON;
or, R: Q:: ON : CL.

But, from the similar triangles (7iV^/Vand LNM, we have,

CN'. CL'.'. 8N'. SM.

Combining the two proportions, we have,

P: Q:: SN: SM. (18)

That is, t?ie resultant divides the line joining the poinfsi

of application of the compo7ie7ifs, imwrsely as the co i/po-

ne?its.

If a force R' be applied at S equal and directly opposed

to R, it will hold F and Q in equilibrium. The forces R',

P, and Q, being in equilibrium, Q must be equal and

directly opposed to the resultant of R' and P. But, R'

and P are parallel and act in opposite directions, R' being

the greater. Hence, the resultant of two parallel forces

acting in opposite directions, is parallel to hotli, lies without

both, on the side and in the direction of the greater, and its
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intensity is equal to the difference of the intensities of the

given forces.

If P and Q, Fig. 21, repre- y
sent two sucli forces, and R
their resultant ; it may be /

i'^

shown, as in the preceding g^^^
i—5.-B,

article, that. Fig. 21.

P: Q::;SJV:SM.....(19)

By composition, we find,

P: Q: P -{- Q:: SjV : SM: SJV 4- SM;

and by division,

P: Q: P - Q:: SN: SM : SN - SM.

When the forces act in the same direction, as in Fig. 20,

P + Q= R, and SN + .S'.^ = MN.
When they act in opposite directions, as in Fig. 21,

p - Q = R^ and SN - SM = MN.
Substituting in the preceding proportions, for P -\- Q,

P — Q, SN + SM, and SN — SM, their values, w^e have,

P: Q: R:: SN: SM : MN. (20)

That is, of any two parallel forces and their resultant,

each is proportional to the distance betiveen the other two.

We see, from the preceding proportion, that so long as

the intensities of P and Q and their points of applica-

tion remain unchanged, the values of SM and SN also

remain unchanged, no matter what direction the forces

may have. Hence, if two parallel forces be turned about

their points of application, their intensities remaining

unchanged, their resultant will turn about a fixed point

and continue parallel to the given forces. This fixed point

is called the centre of the parallel forces.

If P and Q be equal and act in opposite directions, R
will be 0, and *S' will be at an infinite distance. Two such
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forces constitute a couple. The tendency of a couple is to

produce rotation ; the measure of this tendency, called the

moment of the couple^ is the product of one of the forces,

by the distance between the twa

M' «T

Geometrical Composition and Resolution of Parallel Forces.

38. The preceding principles give the following geo-

metrical constructions. .p.

1. To find the resultant of two

parallel forces lying in the same direc-

tion:

Let P and § be the forces, M and N ""'
/Ts

their points of application. Make

MQ' = Q, and JVF' = P; draw F' Q',
*

cutting ^¥JV" in S; through S draw SR
parallel to MP, and make it equal to

P -\- Q J it will be the resultant.

For, from the triangles P'S^ and

Q'SM, we have,

P'N: Q'M: : SI^: 8M; or, P : Q :

2. To find the resultant of two parallel forces acting in

opposite directions

:

: Let P and Q be the forces, M and N
their points of application. Prolong QN'

till NA = P, and make 3IB == Q; draw

AB, and produce it till it cuts NM pro-

duced in S; draw SP parallel to MP, and [ b
equal to BP, it will be the resultant re-

quired.

For, from the triangles SNA and SMB, pjg. »?

we have,

AN' BM: : SN : SM ; or, P : Q : : SN: SM.

B
Fig. 22.

SN : SM.

M
-i

/B

A^
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Mc-

M^'

Fig. 24.

-;.-N

;q

3. To resolve a force into two parallel components in

the same direction, and applied at given points

:

Let E be the force, M and JV the

points of application. Through M and

/V draw lines parallel to E. Make

MA = E, and draw AN, cutting R in

B; make MP = SB and NQ = BE;
they will be the components.

For, from the triangles AMN and

BSN,

BS: AM'.'. SN: MN;

or, ^.S': E \:SN:MN,

But, from proportion (20), we have,

P'.E'.'.SN.MN;

.-. BS = P, and BE = Q.

4. To find the resultant of any number of parallel

forces.

Let P, P\ P", P'", be parallel forces,

ant of P and P, by the rule already

given, it will be i?' = P + P'; find

the resultant of E' and P", it will be

B" = P ^ P' + P" ; find the result- f
ant of R" and P"\ it will be 7? = P + p

P' + P" + P". If there be a greater

number of forces, the operation of com-

position may be continued; the final

result will be the resultant of the sys-

tem. If some of the forces act in con-

trary directions, combine all that act in one direction, as

just explained, and call their resultant R'; then combine

all that act in a contrarv direction, and call their resultant

Find the result-

-llf
I

i

B"

pn

E'

R
Fiff. 25.
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B"; finally, combine R' and R"; their resultant, i?, will

be the resultant of the system.

If the forces P, P \ &c., be turned about their points of

application, their intensities remaining unchanged, the

forces R', R", R, will also turn about fixed points, contin-

uing parallel to the given forces. The point through which

R always passes, is called the centre of parallel forces.

Oo-ordinates of the Centre of Parallel Forces.

39. Let P, P', P", &c., be paiallel forces, applied at

points that maintain fixed positions with respect to a sys-

tem of rectangular axes, and let R, equal to - (P), be their

resultant. Denote the co-ordinates of the points of appli-

cation of the forces by x, y, z ; x, y', z', &c. ; and those of

^ by ^. ' 2// J ^' •

Turn the forces about their points of application, till

they are parallel to the axis of Y, and in that position find

their moments with respect to the axis of Z. In this

position the lever arms of the forces are x, x', &c., and the

lever arm of R \^ x^. From the principle of moments,

(Art. 34), we have

Rx, = Px + P"x' +, &c.

or,

^/ = ~~lTP)
^^^^

By making the forces in like manner parallel to the axis

of Z, and taking their moments with respect to the axis

of X, we luive,

.v.= -;^f
(^2)

And in like manner, we find,

(23)
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From either of the above expressions we infer that the

lever arm of the residtant of a system of imrallel forces

ivith respect to any axis per2)endicular to the forces, is equal

to the algebraic sum of the moments of the forces with re-

spect to that axis, divided hy the algebraic sum of the forces.

Equations 21, 22, and 23, determine the position of the

centre of parallel of forces.

Composition of Forces in Space, applied at points invariably

connected.

40. Let P, P', P", &c., be forces in space, applied at

points of a solid body. Assume

a point 0, and through it draw S
three perpendicular axes. De- *^

note the angles that P, P', P",

&c., make with the axis of X,

by a, a', a.", &c. ; the angles

they make with the axis of Y,

by ft d', 13", &c.; the angles. :^-

—

^--y^
they make with the axis of Z, Fig. 26.

^y 7> r'j 7"> &c., and denote the co-ordinates of their points

of application by x, y, zj x', y, z'; x", y", z", &c.

Let each force be resolved into components parallel to

the axes.

"We have for the group parallel to the axis of JT,

Pcosa, P'cosa', P"cosx", &c.

;

for the group parallel to the axis of Y,

Pcosi3, P'cos/3', P"cos'3", &c.;

and, for the group parallel to the axis of Z,

Pcosy, P'cosy, P"cosy", &c.

Denoting the resultants of these several groups by JT, Y,

and Z, we have.

^
-f^^COStt
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X=z I{Pcom),Y= I{Fcos(3), and Z= I(Pcosy). . . . (24)

If the given forces have a single resultant, the forces

JT, Y, and Z, will be applied at a point, the co-ordinates of

which are the same as the lever arms of the forces, each

taken with respect to the axis whose name comes next in

order. Denoting these co-ordinates by x^, y^, and z^, we have,

as in Art. 39,

2*(Pcos/3 x)
^

y.
2'(Pcos7 y)

liPcosy)
(25)

_ 2'(Pcosa z)

^' ~ 2'(Pcosa)

These determine the point of application of the result-

ant. Denoting the resultant by R, and the angles it makes

with the axes by a, h, and c, we have, from preceding prin-

ciples,

R = Vx^ + Y' +Z^ (26)

and
X Y Z

cos a — ^, cos Z> = -75, cos c = ^ . . . . (27)
Ji Ji K

Hence, the resultant is completely determined.

If the forces are in a plane, that plane may be taken as

the plane XY. In this case the formulas for determining

the point of application of the resultant become,

' 2(i^cos<:^) • ' 2(Pcosa)

and the formulas for finding the intensity and direction of

the resultant reduce to,

R = ^Xn^T', cos « = ^, cos Z> = -^, . . . .(29)
Ji Ji

in which

X= H (Pcosa) and F = J (Pcosi3) ....
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Conditions of Equilibrium.

41. A system of forces applied at points of a solid body

will be in equilibrium when they have no tendency to pro-

duce motion, either of translation, or of rotation. We
have seen that any system of forces can be resolved into

three groups, parallel to three rectangular axes. The tend-

ency of each group is to produce motion parallel to the

corresponding axis, and the tendency of the groups taken

two and two is to produce rotation about the axis to which

they are both perpendicular. In order that there may be

no tendency to either kind of motion, we must have the

following relations, called conditions of equilibrium :

1st. TJie algebraic sum of the components of the forces in

the direction of any three rectangular axes must be separately

equal to 0.

2d. Tlie algebraic sum of the moments of the forces, with

respect to any three rectangular axes, must be separately

equal to 0.

If the forces lie in a plane, the conditions of equilibrium

reduce to these

:

•

1st. The algebraic sum of the components of the forces, in

the directio7i of any two rectangular axes, separately equal

too,

2d. Tlie algebraic sum of the moments of the forces, with

respect to any point in the plane, equal to 0.

If a body is restrained by a fixed axis, as in case of a

pulley, or wheel and axle, the forces will be in equilibrium

when the algebraic sum of the moments of the forces with

respect to the axis is equal to 0.

This case is one frequently met with in discussing

machines



CHAPTER III.

CIlinilE OF GKAVITY Al^D STABILITY.

Weight.

42. The force of gravity acts on all the particles of a

body, tending to draw them toward, the centre of the

earth. If this force be resisted it produces a pressure

called weight. The weight of a body is the resultant of

the weights of all its particles. The weights of the parti-

cles are sensibly directed toward the centre of the earth,

and if the body be small in comparison with the earth, they

may be regarded as parallel forces ; hence, the weight of a

body is parallel to the weights of its particles, and is equal

to their sum.

Centre of Gravity.

43. The centre Sf gravity of a body is the point through

which the direction of its weight always passes. The

weight being the resultant of parallel forces, the centre of

gravity is a centre of parallel forces, and so long as the

relative position of the particles remains unchanged, this

point retains a fixed position in the body. The position of

the centre of gravity is entirely independent of the value

of the intensity of gravity, provided we regard this force as

constant throughout the body, which we may do in most

cases. Hence, the centre of gravity is the same for the

same body, wherever it may be situated. The determina-

tion of the centre of gravity is, then, reduced to the deter-

mination of the centre of a system of parallel forces.



CENTRE OF GRAVITY AND STABILITY. 51

In what follows, the lines and snrfaces treated of, are

regarded as material, that is, made np of inaterial poi7its.

The volumes considered, are supposed to be homogeneous,

so that the weights of different parts are proportional to

their volumes. This supposition reduces the operation of

finding the centre of gravity, to the geometric one of find-

ing the centre of figure.

Preliminary Principles.

44. Let there be any number of parallel forces applied

at points of a straight line. If we apply the method of

finding the point of apjMcation of their resultant, as ex-

plained in Art. 39, it will be seen that it lies on the given

line. Hence, the centre of gravity of a material straight

line is on that line.

In like manner it may be shown that the centre ofgravity

of a plane curve, or of aplane area, is in that plane.

i\o. -uet m ana ^v oe two material pointa, ^.

equal in weight, and firmly connected by a |

line MN. The resultant of these weights \
«

B

Centre of Gravity of a Straight Line.

45. Let J/and A^ be two material points, ^ ^

I

will bisect the line MN in S (Art. 37)

;

fience, S is the centre of gravity of M
and K Pi^^ 2^_

Let MN be a material straight line, and S its middle

point. We may regard it as composed of material points

A, A'; B, B', &c., equal in weight, and

symmetrically disposed with respect to ab S B'-AL

S. From what precedes, the centre of

gravity of each pair of equidistant

points is at S; consequently the centre f

of gravity of the whole line is at S. Fig 28
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That is, the centre of gravity of a straight liiie is at its mid-

dle point.

Additional Principles.

46. A line of symmetry of a plane figure is a straight

line that bisects a system of parallel chords of the figure.

If the line is perpendicular to the chords it bisects, it is a

line of right symmetry, otherwise it is a line of ohliqiie sym-

metry. The axes of an ellipse are lines of right symmetry

;

other diameters are lines of oblique symmetry.

A jjlane of symmetry of a surface, or volume, is a plane

that bisects a system of parallel chords of the figure. It

may be a plane of right, or a plane of obliqne symmetry.

The intersection of two planes of symmetry is an axis

of symmetry.

Let A QBP be a curve, and AB o. line of symmetry,

bisecting the parallel chords PQ. The centre of gravity

of each pair of points P, ft is on AB
(Art. 45), hence, the centre of gravity

of the entire curve is on AB (Art. 44).

Again, the centre of gravity of each

chord PQ is on AB, hence the centre

of gravity of the entire area is on

AB. That is, if a i^lane curve, or a

plane area, has a line of symmetry, its centre of gravity is

on that line.

In like manner, if a surface or volume has a plane of

symmetry, its centre of gravity is in that plane.

Two lines of symmetry, or three planes of symmetry

intersecting in a point, are sufficient to determine the cen-

tre of gravity of the corresponding magnitude. Thus, all

diameters of the circle are lines of symmetry, and because

they intersect at the centre, it follows that the centre of
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gravity of both the circumference and area, is at the centre.

For a similar reason the centre of gravity of both circum-

ference and area of an ellipse is at its centre.

Any plane through the centre of a sphere, or of an

ellipsoid, is a plane of symmetry; hence the centre of

gravity of either is at its centre.

The centre of gravity of any surface or volume of revo-

lution is on its axis.

Centre of Gravity of a Triangle.

47. Let ABC be a plane triangle. Join the vertex A
v^^ith the middle point D, of the opposite side BC; then

will AD bisect all lines drawn in the

triangle parallel to BC, it is therefore A
a line of symmetry : hence, the centre /t\
of gravity of the triangle is on AD yy j \

(Art. 46) ; for a like reason it is on BE, / \ "f-.^ \
drawn from the vertex B to the middle ^

/i-.:::::.^^z-.-.zr:^i\^

of the side A C; it is, therefore, at G, Fig. so.

their point of intersection.

DrawjB'Z); then, since ED bisects AC and BC, it is

parallel to AB, and the triangles EGD and AGB are sim-

ilar. The side ED is one-half its homologous side AB,

consequently the side GD is one-half its homologous side

AG; that is, G is one-third of the distance from D
to A.

Hence, the centre of gravity of a plane triangle is on a

line draion from the vertex to the middle of the base, and at

one- third the distance from the base to the vertex.

Centre of Gravity of a Parallelogram.

48. Let ^ICbea parallelogram. Draw ^5'/^ bisecting AB
and CD; it will bisect all lines of the parallelogram
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parallel to these; hence, the centre of gravity is on it;

draw also OH bisecting AD and BC ; for a similar rea-

son, the centre of gravity is on it ; it is, d e C

therefore, at G, their point of intersec- / / /

tion. f f---k
Hence, the centre of gravity of a parol- ^ ^ ^

lelogram is at the intersection of tivo ^Jg- 3i.

straight lines joining the middle points of the opposite sides.

The diagonals of a parallelogram are also linos of sym-

metry, each bisecting the chords parallel to the other.

Hence, the centre of gravity is at their intersection.

Centre of Gravity of a Trapezoid.

49. Let ^ (7 be a trapezoid. Join the middle points,

and P, of the parallel sides, by a straight line ; this will

bisect all lines parallel to DC; hence,

it must contain the centre of gravity.

Draw BD, dividing the trapezoid into

two triangles. Draw also DO and

BP; take OQ=\OD, and Pi? =
\PB ; then will Q and R be the cen-

tres of gravity of these triangles (Art. 47). Join Q and R
by a straight line ; the centre of gravity of the trapezoid

must be on this line (Art. 44). Hence, it is at G where

QR cuts OP.

Centre of Gravity of a Polygon.

50. Let ABODE bo a polygon, and

a, hj c, d, G, the middle points of its

sides. The weights of the sides are pro-

portional to their lengths, and may be

represented by them.

Let it be required to find the centre
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of gravity of the perimeter
;
join a and h, and find a point

0, such that

ao : ob :: BC : BA;

then will o be the centre of gravity of AB and BC.

Join and c, and find a point o', such that

oo' : o'c : : CD : AB + BC;

then willo' be the centre of gravity of the three sides, AB,

BC, and CD. Join o' with d, and proceed as before, con-

tinuing the operation till the last point, G, is found ; this

v/ill be the centre of gravity of the perimeter.

To find the centre of gravity of the area, divide it into

triangles, and find the centre of gravity of each triangle.

The weights of these triangles are pro-

portional to their areas, and may be

represer^d by them. Let 0, 0', 0",

be the centres of gravity of the trian-

gles into which the polygon is divided.

Join and 0', and find a point 0'",

such that Fig. 34.

O'O'" :
00'" :: ABC : ACDj

then will 0'" be the centre of gravity of the triangles ABC
and A CD.

Join 0" and 0'", and find a point, G, such that

0"'G : 0"G : : ADB : ABC + ACD

j

then will G be the centre of gravity of the polygon.

To find the centre of gravity of a curvilinear area by

approximation, we draw a polygon whose perimeter shall

nearly coincide with that of the given area, and then find

its centre of gravity. The accuracy of this method will

depend on the closeness with which the polygon approaches

the curvilineal area.
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Centre of Gravity of a Pyramid.

51. A pyramid may be regarded as made up of infinitely

thin layers, parallel to either of its faces. If a line be

drawn from either vertex to the centre of gravity of the

opposite face, it will pass through the centres of gravity

of ail the layers parallel to that face. We may consider

the weight of each layer as applied at its centre of gravity,

that is, at a point of this line ; hence, the centre of gravity

of the pyramid is on this line, (Art. 44).

Let ABCD be a triangular pyramid, and K the middle

point of DC. Draw KB and KA ; lay off KO = ^KB,

and KO' = ^KA. Then will be the

centre of gravity of the face DBC, and

0' that of the face CAD. Draw AG
and BO' intersecting in G. Because

the centre of gravity of the pyramid is

on both AO and BO', it is at their

intersection G. Draw 00' ; then KO
and KO' being third parts of KB and

KA, 00' is parallel to AB, and the

triangles OGO' and AGB are similar, consequently their

homologous sides are proportional. But 00' is one-third

o{ AB, OG is therefore one-third of GA, or one-fourth

of^O.
Hence, the centre of gravity of a triaiigular pyramid i$

on a line drawn from its vertex to the centre of gravity of

its hase, and at one-fourth the distance from the lase to

the vertex.

Either face of a triangular pyramid may be taken as tlie

base, the opposite vertex being the vertex of the pyramid.

To find the centre of gravity of a polygonal pyramid

A'BCDEF, A being the vertex. Conceive it divided into
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triangular pyramids, having a common

vertex A, If an auxiliary plane be

passed parallel to the base, at one-fourth

of the distance from the base to the

vertex, it follows, from what has just

been shown, that the centres of gravity

of all the partial pyramids will lie in this

plane ; hence, the centre of gravity of

the entire pyramid must lie in this plane (Art. 44). But

it has been shown, that the centre of gravity is somewhere

on the line drawn from the vertex to tlie centre of gravity

of the base ; it must, therefore, be where this line pierces

the auxiliary plane :

Hence, the centre of gravity of any loyramid is on a line

drawn from its vertex to the centre of gravity of its hase,

and at onefourth the distance from the hase to the vertex.

A cone is a pyramid having an infinite number of faces

:

Hence, the centre of gravity of a cone is on a line drawn

from the vertex to the centre of gravity of the hase, arid at

onefourth the distance from the hase to the vertex.

Centre of Gravity of a Prism.

52. A prism is made up of layers parallel to the bases,

and if a straight line be draAvn between the centres of

gravity of the bases it will pass through the centres of

gravity of all the layers ; the centre of gravity of the

prism is, therefore, on this line, which Ave may call the

axis of the prism. The prism is also made up of filaments,

parallel to the lateral edges, and if a plane be passed paral-

lel to the bases of the prism and midway between them, it

will contain the centres of gravity of all the filaments

;

the centre of gravity of the prism is therefore in thia

plane. It must then be where this piano cuts the axis -

3*
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Hence, the centre of gravity of a 2^ris7}i is at the middle

of its axis.

A cylinder, is a prism whose bases have an infinite num-
ber of sides

:

Hence, the centre of gravity of a cylinder luhose bases are

parallel is at the niiddle of its axis.

Centre of Gravity of a Polyhedron.

53. If a point within a polyhedron be joined with eacli

vertex of the polyhedron, we shall form as many pyramids

as the solid has faces : the centre of gravity of each pyra-

mid may be found by the rule. If the centres of gravity

of the first and second pyramid be joined by a straight

line, the common centre of gravity of the two may be

found by a process similar to that used in finding the cen-

tre of gravity of a polygon, observing that the weights of

the pyramids are proportional to their volumes, and may

be represented by them. Having compounded the weights

of the first and second, and found its point of applica-

tion, we may, in like manner, compound the weight of

these two with that of the third, and so on ; the last point

of application will be the centre of gravity of the poly-

hedron.

The centre of gravity of a body bounded by a curved

surface may be found by approximation, as follows : Con-

struct a polyhedron whose faces are nearly coincident with

the surface of the given body and find its centre of gravity

by the method just explained ; this will be the point

sought.

The accuracy of the method will depend upon tlie clost-

ness between the given figure and the polyhedron. .

The methods of finding the centre of gravity, already

given, are sufficient for must purposes. Tlie most general
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method, however, depends on the Differential and Integral

Calculus.

Experimental determination of the Centre of Gravity.

54. The weight of a body always passes through its

centre of gravity, no matter Avhat may be the position of

the body. If we attach a flexible cord to a body at any

point and suspend it freely, it must ultimately come to a

state of rest. In this position, the body is acted upon by

two forces: its weight, tending to draw it toward the cen-

tre of the earth, and the tension of the cord, that resists

this force. In order that the body may be in equilibrium,

these forces must be equal and directly opposed. But the

direction of the weight passes through the centre of gravity

of the body ; hence, the tension of the string, which acts

in the direction of the string, must also pass through the

same point. This principle gives rise to the following

method of finding the centre of gravity :

Let ABC be a body of any form whatever. Attach a

string to any point, C, and suspend it freely; when the

body comes to rest, mark the direction

of the string ; then suspend the body by

a second point, B, and when it comes

to rest, mark the direction of the

string ; the point of intersection, G,

will be the centre of gravity of the

body. Fig. 37.

Instead of suspending the body by a string, it may be

balanced on a point. In this case, the weight acts verti-

cally downward, and is resisted by the reaction of the

point ; hence, the centre of gravity lies vertically over the

point.

If, therefore, a body be balanced at any two points of its
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surface, and verticals be drawn through the points, in these

positions, their intersection will be the centre of gravity of

the body.

If a body be suspended by an axis, it can only be at rest

when the centre of gravity is in a vertical plane through

the axis.

The centre of gravity may be above, below, or on the

axis.

In the first case, if the body be slightly deranged, it will

continue to revolve till the centre of gravity falls below the

axis ; in the second case, it will return to its primitive posi-

tion ; in the third case, it will remain in the position in

which it is placed.

Centre of Gravity of a System of Bodies.

55. When we have several bodies, and it is required to

find their common centre of gravity, it Avill often be found

convenient to employ the principle of moments. To do this,

we first find the centre of gravity of each body sei)arately,

by rules already given. The weight of each body is then

regarded as a force, applied at the centre of gravity of the

body. The weights being parallel, we have a system of

parallel forces, whose points of application are known. If

these points are all in the same plane, we find the lever

arms of the resultant of all the weights, with respect to

two lines, at riglit angles to each other in that plane; and

these will make known the point of application of the re-

sultant, or, what is the same thing, the centre of gravity of

the system. If the points are not in the same plane, the

lever arms of the resultant are found, with respect to three

axes, at right angles to each other ; these make known the

point of application of the resultant weight, or the position

of the centre of gravity.
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Examples.

1. Required the point of application of the resultant of three equal

weights, applied at the vertices of a plane triangle.

SOLUTION.

Let ABC (Fig. 30) represent the triangle. Tlie resultant of the

•weights at B and C will be applied at D, the middle of BC. The
weight acting at D being double that at A, the total resultant will be

applied at G, making OA = 2 OD ; hence, the required joint is the

centre of gravity of the triangle.

2. Required the point of application of the resultant of a system of

equal parallel forces, applied at the vertices of a regular polygon ?

Am. At the centre of the polygon.

3. Parallel forces of 3, 4, 5, and 6 lbs., are applied at the successive

vertices of a square, whose side is 12 inches. At what distance from

the first vertex is the point of application of their resultant?

SOLUTION.

Take the sides of the square through the first vertex as axes ; call

the side through the first and second vertex, the axis of X, and that

through the first and fourth, the axis of Y. We shall have, from

Formulas (21, 22),

4 X 12 + X12 = 6

fi X 12 -f- 5 X 12
and

18

6X12 + 5X12 22
^'-

18 3-

Denoting the lequired distance by d, we have,

d = Vx;' + y;' = 9.475 in. Ans.

4. Seven equal forces are applied at seven of the vertices of a cube.

What is the distance of the point of application of their resultant

from the eighth vertex ?

SOLUTION,

Take the eighth vertex as the orgin of co-ordinates, and the three

edges passing through it as axes. We shall have, from Equations

(21, 22, 23), denoting one edge of the cube by a,

.r, =1*7, ?/, = *«, and r, = ^a.

Denoting the required distance by d, we have,

d= Vijy + y;' + z,^ = ^a V'6. Ans.

5. Two isosceles triangles are constructed on opposite sides of the
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base Z>, having altitudes equal to li and 7i', h being greater than K

.

Where is the centre of gravity of the space within the two triangles ?

SOLUTION.

It must lie on the altitude of the greater triangle. Take the com-

mon base as an axis of moments ; then will the moments of the tri-

angles be \hh X \li, and \h1i X ^ti ; and from Fonnula (21), we have,

That is, the centre of gravity is on the altitude of the greater tri-

angle, at a distance from the base equal to one-third of the difference

of the two altitudes.

6. Where is the centre of gravity of the space between two circles

tangent to each other internally ?

SOLUTION.

Take their common tangent as an axis of moments. The centre

of gravity will lie on the common normal, and its distance from the

point of contact is given by the equation,

Trr' — Ttr'^
~

r-\- r* '

7. Let there be a square, divided by its diagonals into four equal

parts, one of which is removed. Required the distance of the centre

of gravity of the remaining figure from the opposite side of the

square. An%. fg of the side of the square.

8. To construct a triangle, having given its base and centre of

gravity.

SOLUTION.

Draw through the middle of the base, and the centre of gravity, a

straight line ; lay off beyond the centre of gravity a distance equal to

twice the distance from the middle of the base to the centre of grav-

ity. The point thus found is the vertex.

9. Three men carry a cylindrical bar, one taking hold of one end,

and the others at a common point. Required the position of this

point, in order that the three may sustain equal portions of the

weight.

Am. At three-fourths the length of the cylinder from the first.
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STABILITY AND EQUILIBRIUM.

Stable, Unstable, and Indifierent Equilibrium.

56. A body is in stable equilibrium Avhen, on being

slightly disturbed from a state of rest, it has a tendency to

return to that state. This will be the case when 0<j^ -IP

the centre of gravity of the body is at its lowest

point. Let ^ be a body suspended from an

axis 0, about which it is free to turn. When
the centre of gravity of A lies vertically below

the axis, it is in equilibrium, for the weight of Fig. 38.

the body is exactly counterbalanced by the resistance of

the axis. Moreover, the equilibrium is stable ; for if the

body be deflected to A', its weight acts with the lever arm

OF to restore it to its position of rest, A

.

A body is in mistable equilibrium when on being slightly

disturbed from its state of rest, it tends to depart still

farther from it. This will be the case when the centre of

gravity of the body occupies its highest position.

Let ^ be a sphere, connected by an inflexible rod with

the axis 0. When the centre of gravity of A is vertically

above 0, it is in unstable equilibrium ; for, if

the sphere be deflected to the position A', its M^ \a^

I

weight will act with the lever arm OP to

increase the deflection. The motion continues

till, after a few vibrations, it comes to rest w r

below the axis. In this last position, it is in Fig. 39.

stable equilibrium.

A body is in iiidiffereiit, or neutral, equilibrium when it

remains at rest, wherever it may be placed. This is the

case when the centre of gravity continues in the same hori-

zontal plane on being slightly disturbed.

Let A be a sphere, supported by a liorizontal axis OP
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through its centre of gravity. Then, in whatever position

it may be placed, it will have no tendency

to change this position; it is, therefore, q
in indifferent, or neutral equilibrium.

In the figure, A, B, and C, represent a

cone in positions of stable, unstable, and ^^s- ^o.

indifferent equilibrium.

Fig. 41.

If a Avheel be mounted on a horizontal axis, about which

it is free to turn, the centre of gravity not lying on the

axis, it will be in stable equilibrium, when the centre of

gravity is directly below the axis ; and in unstable equi-

librium when it is directly above the axis. When the axis

passes through the centre of gravity, it will, in every posi-

tion, be in neutral equilibrium.

We infer, from the preceding discussion, that when a

body at rest is so situated that it cannot be disturbed from

its position without raising its centre of gravity, it is in a

state of stable equilibrium; when a slight disturbance

depresses the centre of gravity, it is in a state of unstable

equilibritini ; when the centre of gravity remains con-

stantly in the same horizontal plane, it is in a state of

neutral equilibrium.

This principle holds tnie in the combinations of wheels

and other pieces used in machinery, and indicates the im-

portance of balancing these elements, so that their centres

of gravity may remain in the same horizontal planes.
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Stability of Bodies on a Horizontal Plane.

57. A body resting on a horizontal piano may touch it in

one, or in more than one point. In the latter case, the

salient polygon, formed by joining

the extreme points of contact, as /i\\

abed, is called xhe polygon of support. / i \\
When the direction of the weight / /AT"\'/ /

of the body, that is, the vertical / ^ ^ /
through its centre of gravity, pierces Fig. 42.

the plane within the polygon of support, the body is stable,

and will remain in equilibrium, unless acted upon by some

other force than the weight of the bod3\ In this case, the

body will be most easily overturned about that side of the

polygon of support which is nearest to the line of direction

of the weight. The moment of the weight, with respect to

this side, is called the moment of stability. Denoting the

weight of the body by W, the distance from its line of direc-

tion to the nearest side of the polygon of support by ?%

and the moment of stability by S, we have,

S= Wr.

The moment of stability is the moment of the least

extraneous force that is capable of overturning the body.

The weight of a body remaining the same, its stability

increases with r. If the polygon of support is a regular

polygon, the stability will be greatest, other things being

equal, when the direction of the weight passes through its

centre. The area of the polygon of support remaining

constant, the stability will be greater as the polygon

approaches a circle. The polygon of support being regu-

lar, but variable in area, tlie stability will increase as the

area increases : low bodies with extended bases, are more

stable than high bodies with narrow bases.
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When ilie direction of the weight passes without the

polygon of support, the body is unstable, and unless sup-

ported by some other force than the weight, it will turn

about the side nearest the direction of the weight. In this

case, the product of the weight into the distance from its

direction to the nearest side of the polygon, is called the

moment of instability. Denoting this moment by /, we

have, as before,

/= Wr,

The moment of instability is equal to the least moment

of a force that can prevent the body from overturning.

If the direction of the weight intersect any side of the

polygon of support, the body will be in a state of equilib-

riuin bordering on rotation about that side.

If the resultant of all the forces acting on a body,

including its weight, be oblique to the supporting plane, it

may be resolved into two components, one perpendicular

to the plane and the other parallel to it. The former is

counteracted by the reaction of the plane ; the latter tends

to make the body to slide along the plane. Hence the im-

portance of making the resultant as nearly normal to the

supporting plane as possible.

These principles find application in the arts, more espe-

cially in Engineering and Architecture. In structures

intended to be stable, the foundation should be as broad as

is consistent with the general design of the work, that the

polygon of support may be as large as possible. The

pieces for transmitting pressures should be so combined

that the pressures may be as nearly normal to the bearing

surfaces as possible, and their lines of direction should

pass as near the centres of the polygons of support as may

be. Hence, joints should be made as nearly normal to the

pressures as possible.
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In the construction of machinery the centres of gravity

of rotating pieces should be in their axes, otherwise there

will result an irregularity of motion, which, besides making

the machine work imperfectly, will ultimately destroy the

machine itself.

In loading cars, wagons, &c., we should throw the centre

of gravity of the load as near the track as possible. This

is partially effected by placing the heavier articles at the

bottom of the load.

Pressure ot one body on another.

58. Let A be a movable body pressed against a fixed

body B, and touching it at a single point. In order that

A may be in equilibrium, the result-

ant of all the forces acting on it, in-

cluding its weight, must pass through

the point of contact, P' ; otherwise

there would be a tendency to rotation

about P', which would be measured

by the moment of the resultant with

respect to this point. Furthermore,
Fig. 43.

the direction of the resultant must be normal to the sur-

face of B at the point P', else the body A would have a

tendency to slide along the body B, which tendency would

be measured by the tangential component. The pressure

on B develops a force of reaction, Vv-hich is equal and

directly opposed to it. The resultant of all the forces in-

cluding the reaction must be equal to zero (Art. 41). That

is, tvhen a body, resting un anotlicr and acted upon hy any

numhcr of forces, is in equilibrium, the resultant of all the

forces called i?ito play is equal to 0.

If all the forces called into play are taken into account,
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tlie algebraic sums of tlieir 7noments tvith respect to any

three rectangular axes loill he separately equal to 0.

If the bodies A and B touch in more than one point,

the polygonal figure formed by uniting the extreme points

of contact may be called the polygon of contact. In this

case, the resultant of all the forces must pass Avithin the

polygon of contact.

Practical Problems.

A horizontal beam AB, which sustains a load, is supported on
a pivot at A, and by a cord BE, the point E being vertically over A.

Required the tension of BE, and the ver- ^
tical pressure on .4.

SOLUTION.

Denote the weight of the beam and

load by W, and suppose its point of ap-

plication to be G. Denote GA by p, the

perpendicul.ir distance, AF, from A to

BE, by ;/, and the tension of the cord

by t. If we take J. as a centre of mo-

ments, we have, in case of equilibrium,

=.B

Wp = tp' ; wl
Or, denoting the angle EBA by a, and the distance AD by 5, we
have,

2^' —b^ma. t= Wr V
b sin a'

To find the vertical pressure on A, resolve t into components,

parallel and perpendicular to AB. We have for the latter compo-
nent, denoted by t\

b

The vertical pressure on A, plus the weight W, must be equal to t.

Denoting the vertical pressure by J*, we liavo,

P ^ -n. T,r/ P .\ TT^/P — b^P+ w= w or,P=Tr(-f

DG
)-^{^)

P=W
AD'
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O
Fig. 45.

When DC=0; or, when D and C coincide, the vertical pressure

isO.

2. A rope, AD, supports a pole, DO, one end

of which rests on a horizontal plane, and from

the otlier is suspended a weight W. Required

the tension of the rope, and the thrust, or pres-

sure, on the pole, its weight being neglected.

SOLUTION.

Denote the tension of the rope by t, the pressure on the pole by p,

the angle ADO by a, and the angle OD Why ft.
•

There are three forces acting at D, which hold each other in equi-

librium ; the weight W, acting downward, the tension of the rope,

acting from D, toward A, and the reaction of the pole, acting from

toward D. Lay off Dd, to represent the weight, and complete

the parallelogram doaD ; then will i)a represent the tension of the

rope, and Do the thrust on the pole.

From Art. 33, we have,

• /? • . / w si^ /^
sm /3 : sm a

;

. . t = W— .t: W
We have, also, from the same principle,

j9 : TT : : sin (<x -f /5) : sin <a:

;

P
^sin(a+_^

If the rope is horizontal, we have a = 90° — /?, which gives,

W
t= TFtany^, and p =

cos/i

'

3. A beam FB, is suspended by ropes attached at its extremities,

and fastened to pins A and H. Required the tensions of the ropes.

SOLUTION.

Denote the weight of the beam and its load by W, and let c be

its point of application. Denote the tension of the rope BH, by t,

and that of FA by t'. The forces in equilib-

rium, are W, t, and t'. The plane of these

forces must be vertical, and further, the

directions of the forces must intersect in a

point. Produce AF, and BR, till they inter-

sect in K, and draw Kc ; take Kc, to repre-

sent the weight of the beam and its load,

and complete the parallelogram KbCf; then
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will Kb represent t, and Kfyf'iW represent t'. Denote the angle cKB
by a, and cKF Xiy ft. We shall have, as in the last problem,

sin ft

And,

W: t: :sin(a: + ^) : sin/?;

W : t' : : sin(cY-f /?) : sin a

t=W
sin(a -f ft

'

r = TF-
sin(« + ft)

'

4. A gate AH, is supported at on a pivot, and at A by a hinge,

attached to a post AB. Required the pressure on the pivot, and the

tension of the hinge.

SOLUTION.

Denote the weight of the gate and its load, by TF, and let Cbe its

point of application. Produce the vertical through (7, till it intersects

the horizontal through A in D, and draw BO.
Then will AB and DO be the directions of the re-

quired components of W. Lay off Be, to represent

TF, and complete the parallelogram, Bcoa; then

will Bo represent the pressure on jO, and aB the

tension on the hinge, A. Denoting the angle oBc

by a, the pressure on the pivot by p, and on the

hinge by p', we have,

p =. ^^^^ , and j9 = ^ sm a.

"B

Fig. 47.

cosa

If we denote OE by h, and BE by h, w^e shall have,

Hence,

V

and sin a

and p' =
pb

Vb'' + ii'

5. Having two rafters, AG and

BC, abutting in notches of a tie-

beam AB, it is required to find the

pressure, or thrust, on the rafters,

and the direction and intensity of

the pressure on the joints at the

tie-beam.

I'r--i

Fig. 48.

SOLUTION.

Denote the weight of the rafters and tlieir load by 2id ; we may
regard this weight as made up of three parts—a weight w, applied at
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C, and two equal weights Iw, applied at A and B respectively. De-

note the half span AL by s, the rise CL by A, and the length of the

rafter ^ICor CB by I. Denote, also, the angle CBL by a, the thrust

on each rafter by t, and the resultant pressure at each of the joints

A and B by p.

Lay off Co to represent the weight w, and complete the parallelo-

gram Cboa ; then will Ca and Cb represent the thrust on the rafters

;

and, since Cboa is a rhombus, we have,

I
. w wl

is\no: = i^w .-. t = —-,— = ?n--
2 smo: 2h

Conceive t to be applied at A, and there resolve it into components

parallel to CL and LA ; we have, for these components,

t sm a = \w^ and t cos a =—

.

The latter component gives the strain on the tie-beam, AB.
To find the pressure on the joint, we have, acting downward,

the forces \w and ^w^ or the single force w, and, acting from L

toward A, the force ^ ; hence.

If we denote the angle DAEhy /j, we have from the right-angled

triangle DAE,
BE 1CS s

The joint should be perpendicular to the force p, that is, it should

make with the horizon an angle whose tanfjent is :^ .

G. In the last problem suppose the rafters to abut against the wall.

Required the least thickness that must be given to it to prevent it

from being overturned.

SOLUTION.

Denote the weight thrown on the wall by w, the length of wall

that sustains the pressure p by l', its height by 7i', its thickness by x,

and the weight of each cubic foot of the wall by w'; then will the

weight of this part be w'h'l'x.

The force —r acts with an arm of lever 7i' to overturn the wall
2/7.

about its lower and outer edge ; this force is resisted by the weight
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w + w'h'l'x, acting through the centre of gravity of the wall with a

lever arm equal to ^i:. If there be an equilibrium, the moments of

these two forces are equal, that is,

ins ^, , , ,, ,y, , X wsJl'— X7i' = {wi-w h'l'x) —
, or -j— = iox-i- w'h'l'x^.

Reducing, we have, x^ A -—
, x = —^-^

;

will' wl'h

I ws
".±x/.-^ +

2w'h'l' -^ V w'/W ' 4:W'Vi'H'-'

'

7. A sustaining wall has a cross section in the form of a trapezoid,

the face on which the pressure is thrown being vertical, and the

opposite ftice having a slope of «z^ perpendi- ^
cular to one horizontal. Required the least a

lliickness that must be given to the wall at /•

top, that it may not be overturned by a lior- / ,: ,<

izontal pressure, whose point of application / ; i i

is at a distance from the bottom of the wall / i
; ;

equal to one-third its height. D E F G- C
Fig. 49.

SOLUTION.

Pass a plane through the edge A parallel to BC, and consider a

portion of the wall whose length is one foot. Denote the pressure

on this by P, the height of the wall by C^h, its thickness at top by x,

and the weight of a cubic foot by w. Let fall from the centres of

gravity and 0' of the two portions, j^erpendiculars OG and O'E,

and take the edge D as an axis of moments. The weight of the por-

tion ABGF is equal to (Swhx, and its lever arm, ])0, is equal to

/i + \x. The weight of the portion ^i>i^ is ^wh"^, and its lever arm,

DE, is |7i. In case of equilibrium, the sum of the moments of their

weights must be equal to the moment of P, whose lever arm is 2h.

Hence
Qwlixiji + \x) + ^wK' xyi= Px 27i

;

or, ewJtx + Swx'' + 2w?t'' = 2P.

2(P — wJi')
Whence, x"" + 2hx= -^—^ '

;

-/^:^-\/-—T^— +^^^
'2{P-joh-')

dw

8. Required the conditions of stability of a square pillar acted on
by a force oblique to the axis, and applied at the centi-e of gravity

of the upper base.
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SOLUTION.

Denote the intensity of the force by P, its inclination to the verti-

cal by a, the breadth of the pillar by 2a, its height by x, and its

weight by W. Through the centre of gravity of

the pillar draw a vertical AC, and lay off ylC equal

to W; prolong PA and lay off AB equal to P;
complete the parallelogram ABDC, and prolong

the diagonal till it intersects IIG at F. IfF is be-

tween H and G, the pillar will be stable ; if at H,

it will be indifferent ; if without H, it will be un-

stable. To find an expression for FO, draw DE
perpendicular to AO. From the similar triangles

ADE and AFG, we have,

/jc

'M
.....JE

m
Fig. 50.

AE : AG : : DE : FG

;

:. FG =

P&ina, and AEBut AG = X, DE
have.

AGXDE
AE •

W-i- Pcosa, hence, we

FG= Px sin«

W -f Pcosa

'

And, since HG equals a, we have the following conditions for sta-

bility, indifference, and instability, respectively

:

Px sino:a>

a <

W -f Pcosa

'

Px sma
TF 4- Pcosa'

Px sina

IT -f Pcosa*

4



CHAPTER IV.

ELEMENTARY MACHINES.

Definitions and General Principles.

59. A MACHINE is a contrivance by means of which a

force applied at one point is made to produce an effect at

some other point.

The applied force is called the power, and the force to be

overcome the resistance; the source of the power is called

the motor.

Some of the more common motors are muscular effort,

as exhibited by man and beast in various kinds of work

;

the weight and living force of water, as shown in the

various kinds of water-mills; the expansive force of vapors

and gases, as displayed in steam and caloric engines ; the

force of air in motion, as exhibited in the windmill, and

in the propulsion of sailing vessels; the force of r.iagnetic

attraction and repulsion, as shown in the magnetic tele-

graph and various magnetic machines ; the elastic force of

springs, as shown in watches and various other machines.

Of these the most important are steam and water power.

Work.

60. Work is the effect produced by a force in overcoming

a resistance ; it implies the simultaneous existence of both

pressure and motion.

The measure of the work done by a force, is the product

of the effective pressure, by the distance through which it

is exerted.
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Machines simply transmit and modify the action of

forces. They add nothing to the work of the motor ; on

the contrary, they absorb and render inefficient much of

that which is impressed on them. For example, in a

Water-mill, only a portion of the work expended by the

motor is transmitted to the machine, on account of the

imj^erfect manner of applying it, and of this portion a

large part is absorbed and rendered practically useless by

resistances, so that only a small portion of the work ex-

pended by the motor becomes effective.

Of the ayiMed ivorh, a part is expended in overcoming

friction, stiffness of cords, lands, or chains, resistance of

the air, adhesion of the parts, &c. This goes to wear out

the machine. A second portion is expended in overcoming

shocks, arising from the nature of the work to be accom-

plished, as well as from imperfect connection of the parts,

and from want of hardness and elasticity in the connecting

pieces. This also goes to strain and wear out the machine,

and to increase the waste already mentioned. There is

often a waste of work arising from a greater supply of mo-

tive power than is required to attain the desired result.

Thus, in the movement of a train of cars, the excess of

work of the steam, above what is necessary to bring the

train to the station, is wasted, being consumed by the

application of brakes, an operation that not only wears out

the brakes, but also, by creating shocks, ultimately de-

stroys the cars themselves.

Such are some of the sources of loss of work. A part

of these may, by judicious combinations, be greatly dimin-

ished; but, under the most favorable circumstances, there

is a continued loss of work, which requires a continued

supply of power.

In a machine, the quotient obtained bv dividing the
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quantity of useful, or effective work, by the quantity of

ajypUcd v'ork, is called the modulus of the machine. As

the resistances are diminished, the modulus increases, and

the machine becomes more perfect. Could the modulus

become equal to 1, the machine would be perfect. Once

set in motion, it would continue to move forever, realizing

the idea ot perpetual motion. It is needless to say that,

until the laws of nature are changed, no such realization

can be looked for.

Trains of Mechanism.

61. A machine usually consists of an assemblage of

moving pieces called elements, kept in position by a con-

nected system called ^ frame. Of the moving pieces, that

which receives the power is called the recipient, that which

performs the work, is called the operator or tool, and the

connecting pieces constitute what is called a train of me-

chanism. Of two consecutive elements, that which imparts

motion is called a driver, and that which receives motion

is called a folloiver. Each piece, except the extremes, is a

follower, with respect to that which precedes, and a driver,

with respect to that which follows.

In studying a train of mechanism Ave find the relation

between the power and resistance for each element neglect-

ing hurtful resistances. We then modify these results so

as to take account of all these resistances, such as friction,

adhesion, stififhess of cords, &c. Having found the relation

between the power and resistance for each piece, we begin at

one extreme and combine them, recollecting, that the resist-

ance for each driver is equal to the poioer for its follower.

We might also find the modulus of each element, and

take the product of these partial moduli as the modulus

of the machine.
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We shall first show the relations between the power and

resistance in the difierent elements on the supposition that

there are no hurtful resistances.

The Mechanical Powers.

62. The elements to which all machines can be reduced,

are sometimes called mechanicalj^owers. They are seven in

number—viz., the cord, the lever, the inclined plane, the

pulley, tli3 wheel and axle, the screw, and the wedge. The

first three are simple elements ; the pulley, and the wheel

and axle are combinations of the cord and lever; the

screw is a combination of two inclined planes twisted round

an axle ; and the wedge is a simple combination of two

inclined planes.

The Cord.

63. Let AB be a cord solicited by two forces, P and II,

applied at its extremities, A and B. In order that the cord

may be in equilibrium, it is evi-
^

dent, in the first place, that the -^ ^

forces must act in the direction ^^' ^'

of the cord, and in such manner as to stretch it, otherwise

the cord would bend; and in the second place, the forces

must be equal, otherwise the greater would prevail, and

motion would ensue. Hence, if two forces applied at the

extremities of a cord are in equilibrium, the forces are equal

and directly opposed.

The tensio7i of a cord is the force hy tvhich any tivo of its

adjacent particles are urged to separate. If a cord be so-

licited in opposite directions by equal forces, its tension is

measured by either force. If the forces are unequal, the

tension is measured by the less.

Let AB be a cord solicited by groups of forces applied
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at its extremities. In order that these forces may be in

equilibrium, the resultants of the groups

at A and B must be equal and directly

opposed. Hence, if Ave suppose the x \

forces at each point resolved into com- ^'^s-
^'-•

ponents coinciding with, and at right angles to, AB, the

normal components at each point must he in equilibrium,

and the resultants of the remaining components at A and B
must be equal and directly opposed.

Let ABCD be a cord, at the points A, B, C, D, of which

groups of forces are applied. If these forces are in equi-

librium through the inter-

vention of the cord, there

must necessarily be an equi-

librium at each point, and

this whatever may be the

lengths of ^ ^, ^ C, and CD. ^'"- ^^•

If we make these infinitely small, the equilibrium will still

subsist. But in that case the points A, B, (7, and D, will

coincide, and all the forces will be applied at a single point.

Hence, we conclude, that a system of forces applied in

any manner at points of a cord tvill be in equilibinum,

luhen, if ajjplied at a siiigle point without change of in-

tensity or direction, they will maintain each other in equi-

librium.

Hence, cords in machinery simply transmit the action

of forces, without modifying their effects in any other

manner.

The Lever.

64. A lever is an inflexible bar, free to turn about an

axis, called the fulcrum.

Levers are divided into three classes, according to the
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Fis. 54.

2d Class.

Fig. 55.

3d Class.

relative positions of the points of application of the power

and resistance.

In the first class, the fulcrum is between the power

and resistance. The ordinary balance 1st class.

is an example of this class of levers. ^
The substance to be ^veighed is the re- I

sistance ; the counterpoising weight is 5

the power, and the axis of suspension is

the fulcrum.

In the second class, the resistance is

between the power and the fulcrum.

The ordinary nut-cracker is an example

of this class. The nut is the resistance

;

the power is applied at the ends of the

blades, and the fulcrum is at the hinge.

In the third class, the power is be-

tween the fulcrum and the resistance.

A pair of tongs furnishes an example

of this class. The resistance is the

substance seized between the blades;

the power is applied at the middle of

the blades; and the fulcrum is at the

hinge.

Levers may be curved, or straight; Jj

and the power and resistance may be Fig. 56.

either parallel or oblique to each other. We shall suppose

the power and resistance to be perpendicular to the ful-

crum ; for, if not so situated, we might conceive each to be

resolved into two components—one perpendicular, and

the other parallel, to the axis. The latter would bend the

lever laterally, or make it slide along the axis, developing

hurtful resistance, while the former alone would tend to

turn the lever about the fulcrum.



80 MECHANICS.

The perpendicular distances from the fulcrum to the

lines of direction of the power and resistance, are called

lever arms of these forces. In the bent lever MFN, the

perpendicular distances FA, and FB, are the lever arms

of P and R.

To determine the conditions of

equilibrium of the lever, let us

denote the power by P, the resist-

ance by R, and their lever arms

by p and r. We have the case of a

body restrained by an axis, and if Fig. 57.

we take this as the axis of mo-

ments, we shall have for the condition of equilibrium

(Art. 41),

Pp = Rr; or, P : R :: r : p (30)

That is, the p)otver is to the resistmice, as the lever arm of

the resistance, to the lever arm of the power.

This relation holds good for every kind of lever.

The ratio of the power to the resistance Avhen in equi-

librium, either statical or dynamical, is called the leverage,

or mechanical advantage.

When the power is less than the resistance, there is said

to be a gai)i of power, hut a loss of velocity ; the space

passed over by the power, in performing any work, is as

many times greater than that passed over by the resistance,

as the resistance is greater than the power. When the

power is greater than the resistance, there is said to be a

loss of power, hut a gain of velocity. When tlie power and

resistance are equal, there is neither gain nor loss of power,

but simply a change of direction.

In levers of the first class, there may be either gain or

loss of power; in those of the second class, there is always
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gain of i:)ower; in those of the third class, there is always

loss of power. A gain of power is always attended with a

corresponding loss of velocity, and the reverse.

If several forces act on a lever at different points, all

being perpendicular to the direction of the fulcrum, they

will be in equilibrium, when the algebraic sum of their

moments, iinth resjiect to the fulcriim, is equal to 0.

Among the forces must be included the weight of the

lever, which is to be regarded as vertical force, applied at

the centre of gravity.

The pressure on the fulcrum is the resultant of all the

forces, including the weight of the lever.

The Compound Lever.

65. A compound lever is a combination of simple levers

AB, BC, CD, so arranged that the resistance in one acts

as a power in the next, ji* -^^

throughout the combina- — ^

tion. Thus, a power P pro-

duces at ^ a resistance W,
which, in turn, produces at

C a resistance R", and so on.

Let us assume the notation

of the figure. From the principle of the simple lever, we

have the relations,

P2) = R'r", R'p' = R"r', R"p" = Rr.

Multiplying these equations, member by member, and

^riking out common factors, we have,

Ppp'jf = Rrr'r"; or, P : R : : q^r'r" : pp'p". . . . (31)

And similarly for any number of levers.

Hence, in the compound lever, the pmoer is to the resist-

4''

A -rJ
1"
T ic B

1 i
Ficr. 58.
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ance as the continuedproduct of the alternate arms of lever,

commencing at the resistance, is to the continued product of

the aUeimate arms of lever, coni'mencing at the potver.

By suitably adjusting the simple levers, any amount of

mechanical advantage may be obtained.

The Elbow-joint Press.

66. Let CA, BD, and BE represent bars, with hinge-

joints at B and D. The bar CA has its fulcrum at C, and

the bar DE works through a ^
guide between D and E. When 7^^^^^^^^::;^. ,?-^^

A is depressed, DE is forced / ^^^^^fecT '^

against the upright F, so as to |fij3~&^^^^-^^^^^^^^C

compress a body placed between

E and F. This machine is Fig. 59.

called the elboiu-joint press, and is used in printing, in

moulding bullets, in striking coins and medals, in punch-

ing holes, &c.

Let P denote the power applied at A, perpendicular to

AC, Q the resistance in the direction DB, and R the com-

ponent of Q, in the direction ED. Let C be taken as an

axis of moments, and then, because P and § are in equi-

librium, we have,

P X AC= Q XF'C, or,Q=Px~.

But, we have,

E= Qcos BDH.

Substituting and reducing, we have,

R AC cos BDH
(32)P F'C

When B is depressed, cos BDH approaches 1, and F'C

continually diminishes, that is, the mechanical advantage
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increases ; and finally, when B reaches ER, it becomes infi-

nite. There is no limit to the amount of compression that

can be obtained, except that fixed by the strength of the

material. It is to be observed that the space through

which the pressure is exerted varies inversely as the me-

chanical advantage.

Weighing Machines.

07. Nearly all Weighing machines depend on the princi-

ple of the lever; the resistance is the weight to be deter-

mined, and the power is a counterpoising weight of known

value.

There are two principal classes of weighing machines

:

in i\\Q first the lever arm of the power is constant, and the

power varies ; in the second, the power is constant, and its

lever arm varies. The ordinary balance is an example of

the first class, and the steelyard of the second.

The Common Balance.

68. The common balance consists of a lever, AB, called

the beam, having a knife-edge fulcrum, F, and two scale-

pans, D and E, suspended from its

extremities by means of knife-edge

joints at A and B. The beam is

supported by a standard, FK, rest-

ing on a foot-plate, L. The standard

is made vertical by levelling screws

passing through the foot-plate. The

knife-edges and their supports are

of hardened steel; and to prevent unnecessary wear, an ar-

rangement is made for throwing them from their bearings

when not in use. A needle, N, playing in front of a grad-

uated scale, GH, shows the amount of deflection of the

beam.

Fig. 60.
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In the finer balances employed in scientific investigation,

many additional contrivances are introduced, to render the

machine more perfect. For a complete description of

these balances the reader is referred to more extended

treatises.

A good balance should fulfil the following conditions

:

1", it should be true; 2", it should be stable—that is, when

the beam is deflected it should tend to return to a horizon-

tal position ; 3°, it should be sensitive—that is, it should be

deflected from the horizontal by a small force.

In order that a balance may be true, its lever arms must

be equal in length, and both the beam and scale-pans must

be symmetrical with respect to two planes through the cen-

tre of gravity of the beam, the first plane being perpen-

dicular to the beam, and the second perpendicular to the

fulcrum.

In order that it may be stable, the centre of gravity of

the beam must be below the fulcrum, and the line joining

the points of suspension of the scale-pans must not pass

above the fulcrum.

In order that it may be sensitive, the line joining the

points of suspension must not pass below the fulcrum, the

lever arms must be as long, and the beam as light as

is consistent with strength and stiffness, the knife-edges

must be horizontal and parallel to each other, and the fric-

tion at the joints must be as small as possible. The sensi-

tiveness of a balance diminishes as the load increases.

The true weight of a body may be found by a balance

whose lever arms are not equal, by means of the principle

demonstrated below.

Denote the length of the lever arms, by r and r', and

the weight of the body, by IF. When the weight W is

applied at the extremity of the arm r, denote the counter-
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poising weight by W ; and when it is at the extremity of

the arm r', denote the counterpoising weight by W". We
shall have, from the principle of the lever,

Wr = WY, and Wr' = W"r.

Multiplying these equations, member by member, we

have,

W^rr' = W'W'rr'; .: W= VW W";

that is, the true iceiglit is equal to the square root of the

'product of the apparent iveights.

A still better method, and one that is more free from the

effect of errors in construction, is to place the body to be

weighed in one. scale, and put weights in the other, till the

beam is horizontal ; then remove the body to be weighed,

and replace it by known weights, till the beam is again

horizontal; the sum of the replacing weights will be the

weight required. If, in changing the load, the positions

of the knife-edges be not changed, this method is almost

perfect; but this is a condition difficult to fulfil.

The Steelyard.

69. The steelyard is an instrument for weighing bodies.

It consists of a lever, AB, called the beam ; a fulcrum, F;
a scale-pan, D, attached at

the extremity of one arm

;

and a known weight, E, AR^7"[gJ]i.iiniMHii ';^:-'^i^^-^-^:7"^

movable along the other arm.

We shall suppose the weight

of ^ to be 1 lb. This instru-
^

Fig. gi.

ment is sometimes more convenient than the balance, but

it is not so accurate. Tlie conditions of sensibility are

essentially the same as for the balance. To graduate the

instrument, place a pound-weight in the pan, D, and move
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the counterpoise B till the beam rests horizontal—let that

point be marked 1 ; next place a 10 lb. weight in the pan,

and move the counterpoise B till the beam is again hori-

zontal, and let that point be marked 10 ; divide the inter-

mediate space into nine equal parts, and mark the points

of division as shown in the figure. These spaces may be

subdivided at pleasure, and the scale extended to any

desirable limits. We have supposed the centre of gravity

to coincide Avith the fulcrum ; when this is not the case,

the weight of the instrument must be taken into account

as a force applied at its centre of gravity. We may then

graduate the beam by experiment, or we may compute the

lever arms, corresponding to different weights, by the prin-

ciple of moments.

To weigh a body with the steelyard, place it in the scale-

pan, and move the counterpoise B along the beam till an

equilibrium is established; the mark on the beam will

indicate the weight.

The bent Lever Balance.

70. This balance consists of a bent lever, ACB ; a ful-

crum, (7; a scale-pan, D ; and a graduated arc, EF, whose

centre is the centre of motion, C.

When a weight is placed in the

scale-pan, the pan is depressed, the

weight B is raised, and its lever

arm increased. When the moments

of the two forces become equal, the

instrument comes to rest, and the

weight is indicated by a needle

projecting from B, and playing in front of the arc FE.

The zero of the arc BF is at the point indicated by the

needle when there is no load in the pan D.

Fig. 62.
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The instrument may be graduated experimentally by

placing weights of 1, 2, 3, &c., pounds in the pan, and

marking the points at which the needle comes to rest ; or

it may be graduated by the principle of moments.

To weigh a body with the bent lever balance, place it in

the scale-pan, and note the point at which the needle

comes to rest ; the reading will give the weight sought.

Compound Balances.

71. Compound balances are used in weighing heavy

articles, as merchandise, coal, freight for shipping, &c. A
great variety of combinations have been employed, one of

which is shown in the figure.

AB is a platform on which the object to be weighed is

placed; BC is a guard firmly attached to the platform;

the platform is supported

on the knife-edge ful-

crum E, and the piece D,

through the medium of a

brace CD ; GF is a lever

turning about the fulcrum

F, and suspended by a rod

from the point L ; LN is a lever having its fulcrum at M,
and sustaining the piece Z> by a rod KH ; is a scale-pan

suspended from the end N of the lever LN. The instru-

ment is so constructed, that

EF '.GF w KM : LM

;

and KM is generally made equal to ^V of MN. The parts

are so arranged that the beam LN shall rest horizontally

when no weight is placed on the platform.

If, now, a body Q be placed on the platform, a part of its

weight will be thrown on the piece Z>, and, acting down-
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ward, will produce an equal pressure at K. The remain-

ing part will be thrown on E, and, acting on the lever

FG^ will produce a downward pressure at G, which will

be transmitted to L ; but, on account of the relation given

by the above proportion, the effect of this pressure on the

lever XiV^will be the same as though the pressure thrown

on E had been applied directly at K. The final effect is,

therefore, the same as though the weight of Q had been

applied at K, and, to counterbalance it, a weight equal to

tV of Q must be placed in the scale-pan 0.

To w^eigh a body, place it on the platform, and add

weights to the scale-pan till LN is horizontal, then 10

times the sum of the weights added will be the weight

required. By applying the principle of the steelyard to

this balance, objects may be weighed by using a constant

counterpoise.

Examples.

1. In a lever of the first class, the lever arm of the resistance is 2|

inches, that of the power, 33^, and the resistance 100 lbs. What
power is necessary to hold the resistance in equilibrium ? Ans. 8 lbs.

3. Four weights of 1, 3, 5, and 7 lbs., are suspended from points of

a straight lever, eight inches apart. How f\ir from the point of ap-

plication of the first weight must the fulcrum be situated, that the

weights may be in equilibrium ?

SOLUTION.

Let X denote the required distance. Then, from Art. (34)

1 X a- -f 3(a; - 8) -f- 5(a; - 16) -f- 7(.r— 24) = 0;

.-. a; = 17 in. Ans.

3. A lever, of uniform thickness, and 18 feet long, is kept horizon-

tal by a weight of 100 lbs. applied at one extremity, and a force P
applied at the other extremit)^, so as to make an angle of 30° with

the horizon. The fulcrum is 20 inches from the point of application

of the weight, and the weight of the lever is 10 lbs. What is the

value of P, and what is the pressure on the fulcnim ?
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SOLUTION.

The lever arm of Pis equal to 124 in. X sin 30° = 62 in., and the

lover arm of the weight of the lever is 52 in. Hence,

20 X 100 = 10 X 52 -h P X 62

;

:. P = 24 lbs. nearly.

We have, also,

B = VX'' + Y' = V{1 10 + 24 sin 80")--' + (24 cos 'SOy.

.'. R= 123.8 lbs.

;

, X 20.785 __„
and, cos a = — =

,
.

,
- = .16789

;

.-. « = 80° 20' 02".

4. A heavy lever rests on a fulcrum 2 feet from one end, 8 feet from

the other, and is kept horizontal by a weight of 100 lbs., applied at

the first end, and a weight of 18 lbs., applied at the other end. What
is the weight of the lever, supposed of uniform thickness throughout ?

SOLUTION.

Denote the required weight by x ; its arai of lever is 3 feet. We
have, from the principle of the lever,

100 X 2 =.x' X 3 + 18 X 8

;

.-. a; = 18| lbs. Anfi.

5. Two weights keep a horizontal lever at rest ; the pressure on

the fulcrum is 10 lbs., the difference of the weights is 4 lbs., and the

difference of lever arms is 9 inches. What are the weights, and their

lever arms ?

Ans. The weights are 7 lbs. and 3 lbs. ; their lever arms are 15}

in., and 6} in.

6. Tlie apparent weight of a body weighed in one pan of a false

balance is 5^ lbs., and in the oth-er i)an it is 6,^i lbs. What is the

true weight ?

W = v^Y X if = 6 lbs. Ans.

The Inclined Plane.

72. An inclined plane is one that is inclined to the

horizon.

In tliis machine, tlie power may be a force applied to a

body eitlier to prevent motion down the plane, or to pro-

duce motion up the plane, and tlic resistance, the Aveight of

the body acting vertically downward. The power may be
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applied in any direction whatever ; but we shall suppose

it to be in a vertical plane, perpendicular to the inclined

plane.

Let ^^ be an inclined plane, a body on it, R its

weight, and P the force necessary to hold it in equilibrium.

In order that these two forces may 33

keep the body at rest, their result-

ant must be perpendicular to AB
(Art. 58).

If the direction of P is given, its ĵ ^ '^ b^

intensity may be found as follows : Fig. 64.

draw OR to represent the weight, and OQ perpendicular

to AB ; through R draw RQ parallel to OP, and through

Q draw ()P parallel to OR; then will OP represent the

required intensity, and OQ the pressure on the plane.

If the intensity of Pis given, its direction may be found

as follows: draw OR and 0(2 as before ; with P as a cen-

tre, and the given intensity as a radius, describe an arc

cutting OQ in Q; draw RQ, and through draw OP
parallel, and equal to RQ ; it will represent the direction

of the force P.

If we denote the angle between P and R by 9, and the

inclination of the plane by a, we have the angle ROQ
equal to a, since OQ i^ perpendicular to AB, and OR to

AC, and, consequently, QOP = cp — a. From Art. 33 we

have,

P : P : : sin a : sin(9 — a) . . . (33)

From which, if either P or 9 be

given, the other can be found.

When the power is parallel to the

plane, we have,
Fig. 65.
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(p-a z= 90°,

or, sin((p — a) = 1

;

1 . , BC
also, •sin a = -—p:.AB

Substituting these in the preceding proportion, and
reducing, we have,

P: R :: BC : AB (34)

That is, the poioer is to the resistance, as the height of the

'plane is to its length. When power is parallel to the base

of the plane, we have, 9 — a = 90° — a ; whence,

AC
sin((p — a) = cos a = -—

;

B
AJd

,

. BO ©^
also, sm a = -j^y ^^\ !

Substituting in (33), and reducing, Af^—^

"

"

we have. Fig. 66.

P \ R w BC \ AG . . . . (35)

That is, the potver is to the resistance, as the height of the

plane is to its base.

From the last proportion we have,

P = R^^= i2tana.AC
If a increase, the value of P will increase, and when a

becomes 90°, P becomes infinite ; that is, no finite horizon-

tal force can sustain a body against a vertical w^all, without

the aid of friction.

Examples.

1. A power of 1 lb., acting parallel to an inclined plane, supports

a weight of 2 lbs. What is the inclinafion of the plane ? Ans. 30°
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2. The power, resistance, and normal pressure, in the case of an
inclined plane, are, respectively, 9, 13, and 6 lbs. What is the incli-

nation of the plane, and what angle does the power make with the

plane ?

SOLUTION. •

If we denote the angle between the power and resistance by <p,

and the inclination of the plane by or, we have, from (Art. 32),

6 = VrS'' + 'r + 2 X y X 13 cos cp;

.-. cp = 156° S' 20"

.

Also, from (Art. 33), for the inclination of the plane,

G : 9 : : sin 156° 8' 20''
: sin n: ; .-. a = 37° 21' 26".

Inclination of power to plane = <p — 90° — a = 28° 46' 54". Ans.

3. A body is supported on an inclined plane by a force of 10 lbs.,

acting parallel to the plane ; but it requires a force of 12 lbs. to sup-

port it when the force acts parallel to the base. What is the weight
of the body, and the inclination of the plane ?

Am. The weight is 18.09 lbs., and the inclination 33° 33' 25".

The Pulley.

73. A pulley is a wheel having a groove around its cir-

cumference to receive a cord ; the Avheel turns on an axis

at right angles to its plane, and this axis is supported by a

frame called a block. The pulley is said to be fixed, when
the block is fixed, and movable, when the block is movable.

Pulleys are used singly, or in combinations.

Single Fixed Pulley.

74. In this machine the block is fixed. Denote the

power by P, the resistance by E, and the radius of the pul-

ley by r. It is plain that both the power and

resistance should be at right angles to the axis.

Hence, if we take the axis of the pulley as an

axis of moments, we have, (Art. 41), in case of

equilibrium,

Pr = Rr; or, P = R.
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That is, the poiuer is equal to the resistance.

The effect of this pulley is simply to change the direction

of a force.

Single Movable Pulley.

75. In this pulley the block is movable. The resistance

is applied by means of a hook attached to the block; one

end of a rope, enveloping the lower part of the

jjulley, is attached at a fixed point, C\ and the

power is applied at its other extremity. We
shall suppose, in the first place, that the two

branches of the rope are parallel.

Adopting the notation of the preceding arti-

cle, and taking A as a centre of movements,

we have, in case of equilibrium (Art. 41),

Fx2r-^Jir; .-. P =^ \R.

That is, when the power and resistance are parallel, the

power is one-half the resistance. The tension of the cord

CA is the same as that of BP. It is, therefore, equal to

one-half the resistance. If the resistance of the point C
be replaced by a force equal to P, the equilibrium will be

undisturbed.

Let the two branches of the enveloping cord be oblique

to each other. Suppose the resist-

ance C to be replaced by a force

equal to P, and denote the angle be-

tween the two branches of the rope

by 2(p. If there is an equilibrium

between P, P, and R, we must have

2 .Pcos(p = E.

Draw the chord AB, and denote Fig. 69.

its length by c ; draw, also, the radius OB. Then, because
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OR is perpendicular to AB and BP to OB, the angle Ahr)

is one-half A CB, or equal to (p. Hence,

C0S9 = ^c -H r =—

.

Substituting in the preceding equation, and reducing, we

have,

Pc=Rr; .-. P : R :: r \ c . . , . (36)

That is, the j^oiwr is to the resistance, as tJte radius of the

pulley, is to the chord of the arc enveloped by the rope.

When the chord is greater than the radius, there is again

of mechanical advantage ; Avhen less, there is a loss.

If the chord is equal to the diameter, we have, as before,

P = ^R.

Combination of Movable Pulleys.

76. The figure represents a combination of movable

pulleys, in which there are as many cords ^
as pulleys ; one end of each cord is attached

at a fixed point, the other end being fast-

ened to the hook of the next pulley in

order, up to the last cord, at the second ex-

tremity of which the power is applied.

Denote the tension of the cord between

the first and second jDulley by t, that of

the cord between tlie second and third

pulley by t'. From tlie preceding Article,

we have,

t = \R; t' = it; P=\t'.

Multiplying these equations together, member by mem-

ber, and reducing, we have,

Fig. 70.
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Had there been n pulleys in the combination, we should

have obtained, in a similar manner,

P = {\Y.R; .-. F : R :: 1 '. T (37)

That is, tJie power is to the resistance, as 1 is to 2", n de-

noting the number of pulleys.

Combinations of Pulleys in Blocks.

77. These combinations are effected in various ways.

In most cases, but one rope is employed, which, being

attached to a hook of one block, passes round a pulley in

the other block, then round one in the first, and so on,

from block to block, till it has passed round each pulley in

the system. The power is applied at the free end ,^
^^

of the rope. Sometimes the pulleys in each

block are placed side by side, sometimes one

above another, as in the figure, in which case

the inner ones are made smaller than the outer

ones. The conditions of equilibrium are the

same in both cases. To deduce the conditions

of equilibrium in the case represented, denote

the power by P, and the resistance by i?. i^'

"When there is an equilibrium, the tension of

each branch of the rope that aids in supporting ^
the resistance must be equal to P ; but, since U
the last pulley simply serves to change the Fig. 71.

direction of the force P, there will be four such branches

in the case considered ; hence, we shall have,

4P = R, or, P = IR.

Had there been 01 pulleys in the combination, there

would have been n supporting branches, and we ^should

have had,

nP = R, or, P : R :: 1 : n (38)
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That is, the ])oioer is to the resistance, as 1 is to the num-

her of branches of the rope that supimrt the resistance.

The principles already considered are sufficient to deter-

mine the relation between the power and resistance in any

combination whatever.

Examples.

1. In a system of six movable pulleys, of the kind described in

Art. 7G, what weight can be sustained by a power of 12 lbs. ?

Ans, 768 lbs.

2. In a combination of pulleys in two blocks, when there are six

pulleys in each block, what weight can a power of 12 lbs. sustain in

equilibrium ? Ans. 144 lbs.

3. In a combination of separate movable pulleys, the resistance is

576 lbs., and the power that keeps it in equilibrium is 9 lbs. How
many pulleys in the combination ? Ans. 6.

4. In a combination of pulleys in two blocks, with a single rope,

the power is 62 lbs., and the resistance 496 lbs. How many pulleys

in each block? Ans. 4.

5. In a combination of two movable pulleys, the inclinations of the

ropes at each pulley is 60°. What is the power required to support

a weight of 27 lbs. V Ans. 9 lbs.

The Wheel and Axle.

78. The wheel and axle consists of a wheel, A, mounted

on an axle, B. The power is applied

at one extremity of a rope wrapped

around the wheel, and the resistance

at one extremity of a second rope,

wrapped around the axle in a con-

trary direction. The whole is sup-

ported by pivots projecting from the pig, .^af

ends of the axle. In deducing the

conditions of equilibrium, we shall suppose the power and

resistance to be at right angles to the axis.
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Denote the power by P, the resistance by 7?, the radius

of the wheel by r, and the radius of the axle by r' . We
shall have, in case of equilibrium (Art. 41),

Pr = Rr', 0Y,P:E::r':r.... (39)

That is, the poiver is to the resistance, as the

radius of the axle, to the radius of the wheel.

By suitably varying the dimensions of the

wheel and axle, any amount of mechanical

advantage may be obtained.

If we draw a line from the point of contact of the first

rope with the wheel, to the point of contact of the second

rope with the axle, the power and resistance being parallel,

it will cut the axis of revolution at the point that divides

the line through the points of contact into parts, inversely

proportional to the power and resistance. Hence, this is

the point of application of the resultant of these forces.

The resultant is equal to the sum of the forces, and by the

principle of moments, the pressure on each pivot may be

computed. When the weight of the machine is taken into

account, we regard it as a vertical force applied at the

centre of gravity of the wheel and axle. The pressures

on each pivot due to this weight may be computed

separately, and the results combined with those already

found.

Combinations of Wheels and Axles.

79. If the rope of the first axle be passed around a

I

second wheel, and the rope of the second axle around a

third wheel, and so on, a combination will result, capable

of aflTording great mechanical advantage. The figure

represents a combination of two wheels and axles. To

deduce the conditions of equilibrium, denote the power by
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rr

P, the resistance by R, the radius of the first wheel by

r, that or the first axle by r', tliat of the second Avheel by

/', and that of the second axle by r'".

If we denote the tension of the con-

necting rope by t, this may be regarded

as a power applied to the second wheel.

From what was demonstrated for the

wheel and axle, we shall have,

Pr = tr', and tr" = Rr'".

Multiplying these equations member

by member, and reducing, we have,

Prr" = Rr'r"'; or, P : R : : r'r"'

In like manner, were there any number of wheels and

axles in the combination, we might deduce the relation,

Prr"r^''' . . . = Rr'r"'r^' . . .;

or, P : R :: r'r"'r' : ri'"r'' (40)

That is, the power is to the resistance, as the continued

prochict of the radii of the axles, to the continued jrroduct

of the radii of the wheels.

The principle just explained, is applicable to machinery

in which motion is transmitted from wheel to wheel by

bands, or belts. An endless band, called the driving belt,

passes around one drum mounted on the axle of the driving

wheel, and around another on that of the driven wheel.

The Crank and Axle, or Windlass.

80. This machine consists of an axle, AB, and a crank,

BCD. The power is applied to the crank-handle, DC,

and the resistance to a rope wrapped around the axle.

The distance, BC, from the handle to the axis, is the

crank-arm.
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The relation between the power and resistance is the same

as in the wheel and axle, except that we substitute the

crank-arm for the radius of -p^^

the wheel.

Hence, the poioer is to the

residance, as the radius of the

axle, to the crank-arm.

This machine is used in

Fi£ 75.

\

drawing water from wells, in

raising ore from mines, and

the like. It is also used in combination with other ma-

chines. Instead of the crank, as shown in the figure, two

holes are sometimes bored at right angles to each other

and to the axis, and levers inserted, at the extremities of

which the power is applied. The condition of equilibrium

remains unchanged, j^rovided we substitute for the crank-

arm, the distance from the point of application of the

power to the axis.

The Capstan.

81. The Capstan differs in no material respect from the

windlass, except in having its axis vertical. The capstan

consists of a vertical axle passing through guides, and hav-

ing holes at its upper end for the insertion of levers. It is

used on shipboard for raising anchors. The conditions of

equilibrium are the same as in the windlass.

The Differential Windlass.

82. This differs from the common windlass in having

its axle formed of two cylinders, A and B, of different

diameters. A rope is attached to the larger cylinder, and

wrapped several times around it, after which it passes

round the movable pulley, C, and, returning, is wrapped in
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a contrary direction about the smaller cylinder, to which

the second end of the rope is made fast. The power is

applied at the crank-handle, FE, j,

and the resistance to the hook

of the movable pulley. When
the crank is turned so as to

wind the rope on the larger

cylinder, it unwinds it from the

smaller one, but in a less de-

gree, and the total effect is to

raise the resistance, R. To de-

duce the conditions of equilib-

rium, denote the power by P, ^^^'

the resistance by R, the crank-arm by c, the radius of the

larger cylinder by r, and that of the smaller cylinder by r'

.

The resistance acts equally on the two branches of the rope

from which it is suspended, hence the tension of each

branch may be represented by \R, Suppose the power

acts to wind the rope on the larger cylinder. The moment
of the power will be Pc ; the moment of the tension of the

branch A will be \Rr\ this acts to assist the power ; the

moment of the tension of the branch B will be \Rr, this

acts to oppose the power. From the principle of moments,

we have.

Pc ^ \Rr' =z ^Rvy or, Pc = ^R{r - r');

whence,

P : R r - r' : 2c (41)

That is, the power is to the i-esistance, as the difference of

the radii of the cylinders, to twice the cranh-arm.

By increasing the crank-arm and diminishing the differ-

ence between the radii of the cylinders, any amount of

mechanical advantage may be obtained ; but the amount of
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rope required for a single turn is so great as to render ^h^

contrivance in the form described of little* jaradtical v^Uiei

This difficulty is avoided in a machiii* k,no\VRas>Ay5:sTQi?'s

pulley-block. In this combination,' tb^re ^r& two* ^Ai^leys

nearly equal in size, and turning together as one in the

upper block. An endless chain takes the place of the rope,

and is prevented from slipping by projecting pins. The

power is applied at the portion of the chain that leaves the

larger pulley, and the chain continues to run till the weight

is raised. To trace the course of the chain, let us com-

mence at the point where it leaves the lower pulley : from

this it ascends, passing around the larger pulley in the

upper block ; descending so as to leave a sufficient amount

of slack, it again rises to the upper block, passes around

the smaller pulley, and returns to the place of beginning.

Wheel-work.

83. The principle employed in finding the relation be-

tween the power and resistance in a train of wheel-work

is the same as that used in dis-

cussing the wheel and axle and

its modifications. To illus-

trate, we have taken a case in

which the powder is applied to

a crank-handle that is attached

to the axis of a toothed wheel,

A ; the teeth of this wheel

work into the spaces of the

toothed wheel, B, and the resistance is attached to a rope

wound round the arbor of the last wheel. In order that

A may communicate motion to B, the number of teeth in

their circumferences should be proportional to their radii,

and the spaces between the teeth in one wheel should be
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large enough to receive the teetli of tlie other, but not

large eno.ugh. to allow much play. The teetli should

alwa};s come in coirtact at the same distances from the

centres of the v/heels^ and those distances are taken as the

radii of the wheels.

Denote the power by P, the resistance by 11, the crank-

arm by c, the radius of the wheel A by r, that of B by r',

that of the arbor by r", and suppose the power and resist-

ance in equilibrium. The poAver tends to turn the wheels

in the direction of the arrow-heads. This tendency is

counteracted by the resistance which tends to produce mo-

tion in a contrary direction. If we denote the pressure at

C by R', Ave have, from Avhat has preceded,

Pc = Ji'r and E'r' = Br";

whence, by multiplication and reduction,

Per' = Err", or, P : P :: rr" : cr' .... (42)

That is, the j^oiver is to the resistance, as the coiitmued

product of the alternate arms of lever, beginning at the

resista7ice,tothe continued product of the alternate arms of

lever beginning at the power.

Had there been any number of Avheels in the train be-

tween the poAver and resistance, Ave should haA^e found

similar conditions of equilibrium.

Examples.

1. A power of 5 lbs., acting at the circumference of a wheel whose
radius is 5 feet, supports a resistance of 200 lbs., applied at the cir-

cumference of the axle. What is the radius of the axle ?

Ans. 1^ inches.

2. The radius of the axle of a Avindlass is 3 inches, and the crank-

arm 15 inches. What power must be applied to the crank-handle,

to support a resistance of 180 lbs., applied at the circumference of the

axle? ^ws. 36 1bs
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o. A power, P, acts on a rope 2 inches in diameter, passing over a

wheel whose radius is 3 feet, and supports a resistance of 320 lbs.,

applied by a rope of the same diameter, passing over an angle whose

radius is 4 inches. What is the value of P, the thickness of the rope

being taken into account? Ans. 43-^ lbs.

The Screw.

84. The screw is a combination of two inclined planes

twisted round an axis. It consists of a solid cylinder,

enveloped by a spiral projection called the

thread. The thread may be generated as fol-

lows : let an isosceles triangle be placed so that

its base shall coincide with an element of the

cylinder, and its plane pass through the axis.

Let the triangle be revolved uniformly about

the axis, and at the same time moved uniformly

in the direction of the axis, at such a rate that it shall pass

over a distance equal to the base of the triangle in one

revolution. The solid generated by the triangle is the

thread of the screw\ The sides of the triangle generate

helicoidal surfaces, which constitute the upper and lower

surfaces of the thread. Each point of these lines generates

a curve called a helix, wiiich is similar to an inclined plane

bent round a cylinder. The vertex generates the outer

helix, and the angular points of the base trace out the i7ine?^

helix. The screw just described has a triangular thread.

Had we used a rectangle, instead of a triangle, and imposed

the condition, that the motion in the direction of the axis

during one revolution, should be twice its base, we should

have had a screw with a rectangular thread, as in the figure.

The screw w^orks into a piece called a nut, generated in a

manner analogous to that just described, except that what

is solid in the screw is hollow^ in the nut ; it is, therefore,

exactly adapted to receive the thread of the screws Some-
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times, the screw is fast, and the nut turns on it ; in this

case, the nut has a motion of revolution, combined with a

longitudinal motion. Sometimes^ the nut is fast, and the

screw turns within it; in this case, the screw has a motion

in the direction of its axis, in connection with a motion

of rotation. The conditions of equilibrium are the same

for each. In both cases, the power is applied at the ex-

tremity of a lever. We shall suppose the nut to remain

fast, and the screw to be movable, and that the resistance

is parallel to the axis of the screw. If the axis is vertical,

and the resistance a weight, we may regard that weight as

resting on one of the helices, and sustained in equilibrium

by a horizontal force. If the supporting helix be developed

on a vertical plane, by unrolling the surface of the cylinder

on which it lies, it Avill form an inclined plane, whose base

is equal to the base of the cylinder on which it lies, and

whose altitude is the distance between the threads of the

screw.

Let AB be the development of the helix, and F the

force applied parallel to the base, and iynmediately to the

weight R, to sustain it on the plane. We have, (Art. 73),

F : R :: BC : AC.

But the power is actually applied through the medium

of a lever. Denoting the ra-

dius, OG, of the cylinder of the

supporting helix, by r, and the

arm of lever of the power, P, by

p, we have, from the principle

of the lever,

P : F \'. r : p;
or,

P \ F \\ %'Kr \ ^ftp. Fig. TO.
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Combining this proportion with the preceding one, and

recollecting that AC= 2'rr, we deduce the proportion,

P \ R -.'. BC :^trp (i3)

That is, the power is to the resistance, as the distance be-

tween the threads, to the circumference described by the point

of application of the power.

By diminishing the distance between the threads, other

things being equal, any amount of mechanical advantage

may be obtained.

The screw is used for producing great pressures through

small distances, as in pressing books for the binder, pack-

ing merchandise, expressing oils, and the like. On account

of the great amount of friction, and other hurtful resist-

ances developed, the modulus of the machine is small.

The Differential Screw.

85. The differential screw consists of an ordinary screw,

into the end of which works a smaller screw, having its

axis coincident with the first. The distance between the

threads of the second screw is less than that of the first,

and this difference maybe made as small as desirable. The

second screw is so arranged that it admits of longitudinal

motion, but not of rotation. By the action of the differ-

ential screw, the weight is raised vertically through a dis-

tance equal to the difference of the distances between the

threads on the two screws, for each revolution of the point

of application of the power.

Hence, the power is to tJie resistance, as the difference of

tlie distances between the threads of the two screws to the

circumference described by the point of application of the

power,

5*
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Fig. 80.

The Endless Screw.

86. The endless screw is ii screw secured by shoulders,

so that it cannot be moved longitudinally, and working

into a toothed wheel. The dis-

tance between the teeth is nearly

the same as the distance between

the threads of the screw. When
the screw is turned, it imparts a

rotary motion to the wheel, which

may bo utilized by any mechanical

device. The conditions of equilib-

rium are the same as for the

screw, the resistance in this case

being offered by the wheel, in the

direction of its circumference.

Machines of this kind are used for counting the number
of revolutions of an axis. An endless screw is arranged to

turn as many times as the axis, and being connected with

a train of light wheel-work, the last piece of which bears

an index, the number of revolutions can be ascertained at

any instant. For example, suppose the first wheel to have

100 teeth, and to bear on its arbor a pinion having 10

teeth ; suppose this to engage with another wheel having

100 teeth, and so on. When the endless screw has made

10,000 revolutions, the first wheel will have made 100 revo-

lutions, the second will have made 10 revolutions, and the

third 1 revolution. By a suitable arrangement of indices

and dials, the exact number of revolutions, at any instant,

may be read off.

Examples.

1. What must be the distance between the threads of a screw, that

a power of 28 lbs., acting at the extremity of a lever 25 inclics Ions:,

may sustain a weight of 10,000 lbs. ? Ans. .4896 inches.



ELEMENTARY MACHIlfES. 10?

2. The distance between tlie threads of a screw is ^ of an inch.

What resistance can be supported by a power of 60 lbs., acting at the

extremity of a lever 15 inches long? Ans. 16,964 lbs.

3. The distance from the axis of tlie trunions of a gun weigliing

2,016 lbs. to the elevating screw' is 3 feet, and the distance of the

centre of gravity of the gim from the same axis is 4 inches. If

the distance between the threads of the screw be | of an inch, and

the length of the lever 5 inches, what power must be applied to sus-

tain the gun in a horizontal position ? Ans. 4.754 lbs.

The Wedge.

87. The wedge is a combination of two inclined planes.

It is bounded by a rectangle, BD, called the back; two

rectangles, AF and I)F, cdlled faces ; and

two isosceles triangles, called e7ids. The

line, FF, in which the faces meet, is the edge.

The power is applied at the back, to which

it should be normal, and the resistance is

applied to the faces, and normal to them.

One half the resistance is applied to one

face, and the other half to the other face.

Let ABC he a section of a wedge by a plane Fig- si.

at right angles to the edge. Denote the power by P, the re-

sistance opposed to each face by ^R, and

the angle BA C by 2(p. Produce the direc-

tions of the resistances till they intersect

in 0. This point will be on the line of

the direction of the power. Because the

three forces P, ^R, and ^R are in equilib-

rium, we have, (Art. 33),

F : iR :: sinFOD : sinPOD ... (44)

But, DO and FO are perpendicular to

^Cand AB : hence.

sinFOD = sin2gp = 2sm:p cos?.
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In like manner, PO and DO are perpendicular to KG
and AC ; hence,

sinPOi> = sinJ CK = costp.

Substituting, and reducing, we have,

P : \R w 2sin:p : 1,

or, P : R :: KC '.AC (45)

That is, the poiver is to the resistance, as half the breadth

of the back, is to the length of the face.

The mechanical advantage of the wedge may be in-

creased by diminishing the breadth of the back, or, in

other words, by making the edge sharper. The principle

of the wedge finds an application in cutting instruments.

By diminishing the thickness of the back, the instrument

is weakened; hence the necessity of forming cutting instru-

ments of hard and tenacious material.

Application of the Principle of Virtual Moments.

88. The preceding conditions of equilibrium might have

been deduced from the principle of virtual moments. To

illustrate the mode of proceeding, let us take the case of a

single movable pulley, and suppose P and R to be in equi-

librium. Let the machine be set in motion until P has

acted through a very small distance, FG, in its
^

own direction ; the force, R, will have acted

in the same time through some distance, DE,

contrary to its own direction. From the prin-

ciple of virtual moments, we have,

P X FG - R X DE = 0.

In order that R may act through a dis-

y

"n
tance, DE, each branch of the rope must be ^
shortened by an equal amount; in other Fig. S3.
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words, tlie force, P, must act through twice the distance,

DE. Making FG = "ZDE, and reducing, we have,

P - ii2,

as already shown. In like manner, the conditions of equi-

librium for other machines may be deduced.

Hurtful Resistances.

89. The principal hurtful resistances that must be taken

into account in modifying the relations between the power

and resistance, are friction, adliesion, stiffness of cords,

and at^nospheric resistance.

Friction.

90. Friction is the resistance one body experiences in

moving on another, the two being pressed together by some

force. This resistance arises from inequalities in the sur-

faces, the projections of one sinking into the depressions

of the other. In order to overcome this resistance, suffi-

cient force must be applied to break off, or bend down, the

projecting points, or else to lift the moving body clear of

them. The force thus applied, is equal, and directly

opposed to the force of friction, which is tangential to the

two surfaces. The force that presses the surfaces together,

is normal to both at the point of contact.

Between certain bodies, friction is somewhat different

when motion is just beginning, from what it is when mo-

tion has been established. The friction developed when a

body is passing from a state of rest to a state of motion, is

called 'friction of quiescence; that between bodies in mo-

tion, is called friction of motion.

The following Iciws of friction have been established by

experiment, viz.:
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First, friction of quiescence hetwecn the same bodies, is

proportional to the nor7nal pressure, and independent of the

extent of the surfaces in contact.

Secondly, friction of motion between the same bodies, is

proportional to the normal pressure, and independent, both

of the extent of surface of contact, and of the velocity of the

moving body.

Thirdly, /or compressible bodies, friction of quiescence is

greater than friction of motion : for bodies which are in-

compressible, the difference is scarcely apjireciable.

Friction may be diminished by the interposition of

unguents, which fill up the cavities, and so diminish the

roughness of the rubbing surfaces. For slow motions and

great pressures, the more substantial unguents are used,

such as lard, tallow, and certain mixtures ; for rapid mo-

tions, and light pressures, oils are generally employed.

Methods of finding the Coefficient of Friction.

91. The quotient obtained by dividing the force of fric-

tion by the normal pressure, is called the coefficient of fric-

tion ; its value for any two substances, may be determined

as follows

:

Let ^5 be a horizontal plane formed of one of the sub-

stances, and a cubical block of the •ther. Attach a

string, OC, to the block, so that

its direction shall pass through

the centre of gravity, and be

"7^̂
zy

parallel to AB; let the string

pass over a fixed pulley, C, and ^
J»P

let a weight, F, be attached to its Fig. 84.

extremity.

Increase i^ till O just begins to slide along the plane,

then will F be the force of friction. Denote the normal
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pressure, by P, and the coefficient of friction, by/. From

the definition, we have,

J p-

In this manner, values for / may be found for different

substances, and arranged in tables.

The value of /, for any substance, is the uriit, or coeffi-

cient of friction. Hence, we may define the unit, or coeffi-

cient of friction, to be the friction due to a normal pressure

of one jponnd.

Having the normal pressure in pounds, and the coeffi-

cient of friction, the entire friction may be found by mul-

tiplying these quantities together.

There is a second method of finding the value of /, as

follows

:

Let ^^ be an inclined plane, formed of one of the sub-

stances, and a block, of the other. Elevate the plane till

the block just begins to slide down

by its own weight. Denote the incli-

nation, at this instant, by a, and the

weight of 0, by W. Resolve irinto

two components, one normal to the

plane, and the other parallel to it.

Denote the former by P, and the latter by Q. Since W
is perpendicular to A C, and OP to AB, the angle, WOP,
is equal to a. Hence,

P = Wcos%, aud Q = Wsina.

The normal pressure being equal to Ifcosa, and the force

of friction being Tfsina, we shall have, from the principle

already explained,

. Wsina
f= ^fj? ?

01"' f= tana.
^cosa'
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The angle a is called the angle of friction.

The values of /, in some of the more common cases, are

given in the following

TABLE.

Bodies between which friction takes jilace. Coefficient of friction.

Iron on oak 62

Cast-iron on oak 49

Oak on oak, fibres parallel 48

Do., do., greased 10

Cast-iron on cast-iron .15

Wrought-iron on wrought-iron 14

Brass on iron 16

Brass on brass 20

Wrought-iron on cast-iron 19

Cast-iron on elm 19

Soft limestone on the same. 64

Hard limestone on the same 38

Influence of Friction on an Inclined Plane.

92. To show the manner of taking account of friction,

let us consider the case of a body sliding on an inclined

plane. Let ^^ be the plane,

the body, P the power, situated

in a plane perpendicular both to

the horizon and to the given plane,

and suppose the body on the eve

of motion up the plane. Denote

the weight of the body by i?, the

inclination of the plane by a, ^^^- *•

and the angle between the power and the normal to the

plane by /3. Let }* and J^ be resolved into components

parallel and ])erpendicular to the plane. We have, for the

parallel components, i^sina and Psin,^, and for the perpen-
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clicuiar components, 7?cosa and FcosS. The resultant of

the normal components is Ecosol — Pcos.^^ ; and the force

of friction (Art. 91) is equal to

/(i^cosa — Fcos^).

Because the body is on the eve of motion up the plane,

the component Psin/3 must be equal and directly opposed

to the resultant of the force of friction and the component

i?sina ; hence, we must have,

Psin/3 = i^sina +/(i?cosa — PcosS).

Performing the multiplications indicated, and reducing,

we have,

P^H. ^'"«+/°^^ (46)
amis -\-fcosl3 ^ '

If an equilibrium exist, the body being on the eve of

motion down the plane, we have,

Psin3 -j- /(Rcosa — PcosiS) = i?sina.

AVhence, by reduction,

When a, /3, and/, are given, P may be found in terms

of P.
Example.

Let the plane be of oak, the sliding body of cast-iron, the inclina-

tion of the plane to the horizon 20°, and the angle between the power

and a normal to the given plane 64°. Required the relation between

P and i?, when the body is on the eve of motion.

We have, / = .49 ; sin a = .34; cos « = .94 ; sin /? = 90'; and

cos /3 = .44. Substituting, in (46) and (47), and reducing, we have, in

the former, P= .71 B, and in the latter, P = .38 R.

liimiting Angle of Resistance.

93. Let AB be a plane, and a body resting on it. Let

E be the resultant of all the forces acting on it, including
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its weight. Denote the angle between

R and the normal to AB, by a, and

suppose R to be resolved into two

components, P and Q, the former

parallel to AB, and the latter per-

pendicular to it ; we have,

P = i?sina, and Q = 7?cosa.

The friction due to the normal pressure is equal to

fRcosa.. When the tangential component i^sina is less

than /i?cosa, the body will remain at rest; w^hen it is

greater than fRcosa, the body will slide along the plane
;

and wiien the two are equal, tlie body will be in a state

bordering on motion along the plane. Placing the two

equal, we have,

fRcosa = i?sina ; .-. tana =/.

This value of a is called the limiting angle of resistance,

and is equal to the inclination of the plane, when the body

is about to slide down by its own weight.

If OR be revolved about the normal, it

will generate a conical surface, called the

limiting cone of resistance. If the re-

sultant of all the forces acting on 0, lie

within this cone, the body will remain at

rest ; if it lie without, the body will move along the plane

in the direction determined by a plane through the force

and the normal ; if it lie on the surface of the cone, the

body will be on the eve of motion along the plane in a

direction determined as before. Tlie last principle is appli-

cable in many cases, and may be enunciated as follows:

Wlien one body is on the eve of sliding along another, the

resultant of all the forces acting on the former, including

i*s weight, makes an angle with the normal to the surfaces
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at their point of contact equal to the angle of friction of the

two bodies.

Friction on an Axle.

94. The principle demonstrated in the last article enables

us to determine the position of equilibrium of a horizontal

axle revolving in a cylindrical box.

Let 0' be the centre of the cross section of the axle, and

that of the box, and let N be their point of contact

when the power is on the point of overcom-

ing friction. At N let NT be drawn tan-

gent to both circles. The axle may noAv

be regarded as a body resting on the inclined

plane, NT, and on the eve of sliding along

it. Hence, the resultant of all the forces

acting on the axle, except friction, must

pass through N, and make an angle with NO equal to the

angle of friction between the axle and box. If the axle be

rolled further up the side of the box, it will slide back to

iV^; if it be thrust down the box, it will roll back to N.

If all the forces acting on the axle, except friction, arc ver-

tical, NT will make with the horizon an angle equal to

that of friction. In this case the relation between the

power and resistance may be found, as in Art. 92.

Line of Least Traction.

95. The force employed to draw a body uniformly along

an inclined plane, is called the force of traction ; and the

direction of this force is the line of traction. In equation

(46), P is the force of traction, and /3 is the angle the line

of traction makes with the normal. AYhen /3 varies, other

things being equal, the value of P also varies; there is evi-

dently some value of /3 that will render P least possible

:
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the direction of P, in this case, is the line of least traction

;

it is along this line that a force can be applied with great-

est advantage, to draw a body up an inclined plane. If we

examine the expression for P, in equation (46), we see that

the numerator is constant; therefore, the expression for

P will be least possible when the denominator is greatest

possible. By a simple process of the Diflferential Calculus,

it may be shown that the denominator will be greatest

possible, or a maximum, when,

/ = cot/3, or, / = tan(90° - /3).

That is, the power will be applied most advantageously,

when it makes an angle with the inclined plane equal to

the angle of friction.

From the second value of P, it may be shown, in like

manner, that a force will be most advantageously applied,

to prevent a body from -sliding down a plane, when its

direction makes an angle with the plane equal to the sup-

plement of tlie angle of friction, the angle being estimated,

as before, from that part of the plane lying above the body.

Resistance to Rolling.

96. Resistance to rolling, sometimes called rolling fric-

tion, is the resistance experienced when one body rolls on

another, the two being pressed together by some force. It

arises from inequalities in the two surfaces, and also from

distortion caused by the force that presses the bodies to-

gether. The coefficient is the quotient obtained by dividing

the entire resistance by the normal pressure.

The following laws have been established, when a cylin-

drical body rolls on a plane

:

First, the friction is proportional to the normal pre^

sure.
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Secondly, it is inversely proportional to the diameter of

the cylinder or wheel.

Thirdly, it increases as the surface of contact and velocity

increase.

In many cases there is a comhination of both sliding

and rolling friction in the same machine. Thus, in a car

on a railroad track, the friction at the axle is sliding, and

that between the wheel and track is rolling.

Work of Friction.

97. The work of friction is equal to the work of the

force necessary to overcome it. It is therefore measured by

the product of the force of friction into the path through

which it is exerted. In case of an axle revolving in a box,

the work during one revolution is equal to the force of

friction multiplied by the circumference of the axle.

Adhesion.

98. Adhesion is the resistance one body experiences in

moving on another in consequence of cohesion between

the molecules of the surfaces in. contact. This resist-

ance increases when the surfaces are allowed to remain in

contact for some time, but is very slight when motion has

been established. Both theory and experiment show that

adhesion between the same surfaces, is proportional to the

extent of the surface of contact.

The coefficient of adhesion is obtained by dividing the

entire adhesion by the area of the surface of contact. De-

noting the entire adhesion by A, the area of the surface of

contact by S, and the coefficient of adhesion by a, we have,

a = —, or, A = aJ^.
o

To find the entire adhesion, multiply the unit of adhe-

sion bv the area of the surface of contact.
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Stiffness of Cords.

99. Let be a pulley, with a cord, AB , wrapped round

its circumference ; and suppose a force, P, applied at B,

to overcome a resistance, R. As the rope

winds on the pulley, at C, its rigidity acts to

increase the arm of lever of B, and to over-

come this rigidity an additional force is

required. This additional force may be re-

presented by the expression.

j/a + hB\

in which d depends on the character and size of the rope,

a on its natural rigidity, bB on the rigidity due to the load,

and D is the diameter of the wheel. The values of d, a,

and i have been found by experiment for different kinds

of rope, and tabulated.

Atmospheric Resistance.

100. The atmosphere offers a resistance to bodies moving

through it, in consequence of the inertia of its particles.

For the same extent of surface the resistance varies as the

square of the velocity. For, if the velocity be doubled, twice

as many particles will be met with in a given time, and each

particle will be impinged against by the moving body with

twice the force ; nence, the resistance will be quadrupled.

In a similar manr er it may be shown that if the velocity

be tripled, the resistance will be nine times as great, and so

on. If, therefore, the resistance on a square foot of surface

be determined for a given velocity, the resistance offered to

any surface, and for any volocity, may be computed.

For the detailed methods of taking hurtful resistances

into account, the reader is referred to more extended

treatises on practical mechanics.



CHAPTER V.

RECTILINEAR AND PERIODIC MOTIOK.

Motion.

101. A point is in motion when it continually changes

its position in space. When the path of the moving point

is a straight line, the motion is rectilineal' ; when it is a

curved line, the motion is curvilinear. When the motion

is curvilinear, we may regard the path as made up of infi-

nitely short straight lines ; that is, we may consider it as a

polygon, whose sides are infinitely small. If any side of this

polygon be prolonged in the direction of the motion, it will

be tangent to the curve. Hence, we say, that a point moves

in the direction of a tangent to its path.

Uniform Motion.

102. Uniform motion is that in which the moving point

describes equal spaces in any equal portions of time. If

we denote the space passed over in one second by v, and in

t seconds by s, we have, from the definition,

S z= Vtj .'. V — —
t

From the first of these equations, we see that the space

described in any time is equal to the product of the velocity

and time ; from the second, we see that the velocity is equal

to the space described in any time, divided hy that time.

If the moving point had passed over a space s, at the
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beginning of the time t, the relation between the spaces

and times would be given by the equation,

s = s' ]- vt (48)

In this equation, ^9' is called the initial space.

Uniformly Varied Motion.

103. IJiiiformly varied motion, is that in which the

^Telocity increases or diminishes uniformly. In the former

case, the motion is accelerated, in the latter, retarded. In

both the moving force is constant.

To find the relation between the spaces passed over, and

the- velocities generated, m any time, let the acceleration

due to the moving force, (Art. 18), be denoted by/, and the

velocity generated in t seconds by v. The acceleration is

the velocity generated in one second, and because the velo-

city generated is proportional to the time, we have, from

the definition,

V =ft (49)

Because the velocity increases uniformly, the space de-

scribed in any time is the same as though the body had

moved uniformly during that time, with its mean, or average

velocity. At the beginning of the time t, the velocity is 0,

at the end of that time it is//; hence, the average velocity

during the time t is ^ft ; multiplying this by the time /,

we have, for the space described, ^ft X t, or, denoting the

space by s, we have,

.^• = i//= (50)

Equations (49) and (50) express the circumstances of

motion of a body moving from a state of rest, under the

action of a constant force : from the former we see that

the velocities areproportional to the times, and from the lat-
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icr we see that the spaces are proportional to the squares of

the times.

If in equation (50) we make ^ = 1, we find,

= if; or,/=2s.

That is, if a body move from rest, under the action of a

constant force, the acceleration is measiired hy twice the

space passed over in the first second.

It follows, from the principle of inertia, that the velocity

generated in any time is entirely independent of the state

of the body at the beginning of that time. If, therefore,

the body has a velocity v' at the beginning of the time t,

equation (49) will become

v = v' +ft (51)

In this equation v' is called the initial velocity.

If we suppose the body to have passed over a space s',

called the i?iitial space, before the beginning of t, the final

space will be made up of three parts
; first, the initial space,

s'; second, the space due to the initial velocity v', and equal

to v't; third, the space due to the action of the constant

force/ during the time t, equal to ^ff. Hence,

s = s'-h v't + iff (52)

Equations (51), and (52), may be made to conform to any

case of uniformly varied motion, by giving suitable values

to s', v', and /; it is to be observed, that any one of these

quantities may be either plus or minus. When f is essen-

tially positive the motion is accelerated, when / is essen-

tially negative the motion is retarded.

Application to Falling Bodies.

104. The force of gravity is the force exerted by the

earth on all bodies exterior to it. It is found, by observa-

6
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tion, that this force is directed tmvard the centre of the

earth, and that its intensity varies inversely, as the square

of the distance from the centre.

Because the centre of the earth is so distant from the

surface, the variation in intensity for small elevations above

the surface is inappreciable. Hence, we may regard the

force of gravity at any place on, or near, the earth's surface,

as constant ; in which case, the equations of the preceding

article are applicable. The force of gravity acts equally

on all the particles of a body, and were there no resistance

offered, it would impart the same velocity, in the same

time, to any two bodies whatever. The . atmosphere, how-

ever, offers a resistance, which tends to retard the motion

of bodies falling through it ; and of two bodies of equal

mass, it retards that one most, which presents the greatest

surface to the direction of the motion. In discussing the

laws of falling bodies, it will be found convenient to re-

gard them as being in a vacuum, and in this case the

equations of the preceding article are immediately applica-

ble. The effects of atmospheric resistance maybe taken

into account, as corrections, or in certain cases the mo-

tions may be made so slow that their effects may be neg-

lected.

If we denote the acceleration due to gravity by g, and

the space fallen through by h, both being regarded as posi-

tive downward, we have, from (49) and (50),

v = gt (53)

h = yf (54)

That is, the velocities are proportional to the times, and

the spaces to the squares of the thnes.

The value of g in the latitude of New York is not far

from 32^ feet; making g = 32| feet, and giving to t the



RECTILINEAR AND PERIODIC MOTION. 123

values 1', 2", 3% &c., in equations (53) and (54), we have

the results given in the following

TABLE.

TIME ELAPSED. VELOCITIES ACQUIRED. SPACES DESCRIBED.

Seconds. Feet. Feet.

1 d2i 16tV
2 6^ 64J
3 96^ 144|

4 128| 257i
5 160|- 402,V

&c. &c. &c.

Solving equation (54) with respect to t, we have,

. . (55)
^ 9

That is, the number of seconds requiredfor a hody to fall

through any height is equal to the square root of the quotient

obtained by dividing twice the height in feet by 32|.

Substituting this value of t, in equation (53), we have,

v — gy—, or v" — 2gh ;

whence, by solving with respect to v, and h,

and h = (56)

In these equations, v, is called the velocity due to the

height h, and h, the height due to the velocity v.

If the body be projected downward with a velocity v',

the circumstances of motion will be made known by the

equations,

V =v' -\- gt,

h = v't + yt\



124 MECHANICS.

Ill these equations, the origin of spaces is at the point

from which the body is projected downward.

Motion of Bodies projected vertically upward.

105. Suppose a body projected vertically upward from

the origin of spaces, with a velocity v', and afterward acted

on by the force of gravity. In this case, the force of grav-

ity acts to retard the motion. Making, in (51) and (52),

s' = 0, f = — g, and s = h, they become,

v = v' -gt (57)

h = v't- \gf .... (58)

In these equations h is positive upward, and negative

downward.

From equation (57), we see that the velocity diminishes

as the time increases. The velocity is 0, when,

v'
v' — gt = 0, or, when t — —.

v'
When t is greater than —, v is negative, and the body

retraces its path : hence, the time required for the tody to

reach its highest elevation, is equal to the initial velocity,

divided hy the force of gravity.

Eliminating t, from (57) and (58), we have,

^ =T ''''

Making t; = 0, in the last equation, we have,

^=S ('">

Hence, the greatest height to ivhich the body will ascend,

is equal to the square of the initial velocity, divided hy twice

the force of gravity.
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This height is thafc due to the initial velocity, (Art. 104).

v'
If, in (57), we make t= ^', we find,

v = gt' (61)

v'
If, in the same equation, we make t = — + ^', we find,

v= -gt' (62)

Hence, the velocities at equal times before ayid after reacli-

imj the highest points are equal.

Tha difference of signs shows that the body is moving in

opposite directions at the times considered.

If we substitute these values of v successively, in (59),

we find in both cases,

7 v" - g"t"

^g

hence, the points at which the velocities are equal, in

ascending and descending, are equally distant from the

highest point ; that is, they are coincident. Hence, if a

body be ])rojected vertically upward, it ivill ascend to a cer-

tain point, and then return upon its jJ^th, in such manner,

.

that the velocities in ascending and descending are equal at

the same points.

Examples.

1. Through what distance will a body fall from rest in a vacuum,
in 10 seconds, and through what space will it fall during the last

second ? Am. 1608^? ft., and 305^ ft.

3. In what time will a body fall from rest through 1200 feet?

Ans. 8.63 sec.

3. A body was observed to fall through a height of 100 feet in the

last second. How long was the body falling, and through what dis-

tance did it descend ?
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SOLUTION.

If we denote the distance by h, and the time by t, we have,

h= ^gt"^ and ^ - 100 = ^^g{t - If •

.: t= 8.6 sec, and h= 203.44 ft. Ans.

4. A body falls through 300 feet. Through what distance does it

fall in the last two seconds ?

The entire time occupied, is 4.32 seconds. The distance fallen

through in 2.32 sec, is 86.57 ft. Hence, the distance required is

300 ft. - 86.57 ft. = 213.43 ft. Ans.

5. A body is projected upward, witli a velocity of 60 feet. To
what height will it rise? Ans. 55.9 ft.

6. A body is projected upward, with a velocity of 483 ft. In what
time will it rise 1610 feet?

We have, from equation (58),

1610 = 483^ - 16 hi' ; .'• t= V9¥ ± ¥^

;

or, t = 26.2 sec, and t= 3.82 sec.

The smaller value of t gives the time required ; the larger value

gives the time occupied in rising to its greatest height, and returning

to the point 1610 feet from tlie starting point.

7. A body is projected upward, with a velocity of 161 feet, from

a point 214| feet above the earth. In what time will it reach the

earth, and with what velocity will it strike?

SOLUTION.

The body will rise 402.9 ft. The time of rising will be 5 sec ; the

time of falling to the earth will be 6.2 sec. Hence, the required time

is 11.2 sec. The required velocity is 199 ft.

8. Suppose a body to have fallen through 50 feet, when a second

begins to fall just 100 feet below it. How far will the latter body fall

before it is overtaken by the former ? Ajis. 50 feet.

Restrained Vertical Motion.

106. We have seen, (Art. 18), that the acceleration dtte

to a moving force is equal to the moving force divided hy the

mass inoved. Hence, in the case of a body falling freely,

the moving force varies directly as the mass moved, and

the acceleration is constant. If, however, we increase the
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mass moved, without changing the moving force, we shall

correspondingly diminish the acceleration; and in this

manner we may render it as small as possible. This result

may be attained by the combination repre- ^—

^

sented in the figure. In it, ^ is a fixed pulley,

mounted on a horizontal axis, W and W are

unequal weights attached to the extremities of

a flexible cord passing over the pulley. If the ^^.
weight, W, be greater than W\ the former Li^

will descend, and draw the latter up.

In this case, the moving force is the difference of the

weights,W and Wj the mass moved is the sum of the

masses of TF and W\ together with that of the pulley and

connecting cord. The different parts of the pulley move

with different velocities, but the effect of its mass may be

replaced by that of some other mass at the circumference

of the pulley. Denoting this mass, together with the mass

of the cord, by r.i", and the masses ofW andW by m and

m', we have—to represent the entire mass moved—the ex-

pression m + m' + wi", and for the moving force we shall

have {m — m')g; hence, by the rule, the acceleration, de-

noted by g', is equal to,

m — m'

m + m + m ^

This force being constant, the motion produced by it is

uniformly varied, and the circumstances of that motion

will be made known by substituting the above expression

for/, in equation (49) and (50).

Atwood's Machine.

107. Atwood's machine is a contrivance to illustrate

the laws of falling bodies. It consists of a vertical post,
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AB, about 12 feet in height, supporting, at

ito upper extremity, a fixed pulley, A. To
obviate, as much as possible, the resistance of

friction, the axle is made to turn on friction

rollers. A silk string passes over the pulley,

and at its extremities are fastened two equal

weights, C and D. In order to impart motion

to the weights, a small weight, G, in the form

of a bar, is laid on C, and by diminishing its

mass, the acceleration may be rendered as

small as desirable. The rod, AB, graduated

to feet and decimals, is provided with sliding

stages, B and F; the upper one is in the form

of a ring, which will permit C to pass, but not

G; the lower one is in the form of a plate, which is

intended to intercept the weight 0. Connected with the

instrument is a seconds pendulum for measuring time.

Suppose the weights, C and D, each equal to 150 grains,

the weight of the bar 24 grains, and let a weight of 62

grains, placed at the circumference of the pulley, produce

the same resistance by its inertia as that actually pro-

duced by the pulley and cord. Then will the fraction

?/? — 7n'

in- + m + m
by 32J-, gives g
and (54), gives.

77 become equal to ^\; and this, multiplied

2. This value, substituted for g, in (53)

V = 2t, and h = T.

If, in these equations, we make t = 1 sec, we have h = 1,

and V = 2. If we make t = 2 sec, we, ni like manner,

have h = 4, and v = 4:. If we make t = 3 sec, we have

U = 9, and v = Q, and so on. To verify these results ex-

perimentally, commencing with the first:—The weight, T,

is drawn up till it comes opposite the of the graduated
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scale, and the bar, G, is placed on it. The weight thus set

is held in its place by a spring. The ring, E, is set at 1

foot, and the stage, F, at 3 feet from the 0. When the pen-

dulum reaches one of its extreme limits, the spring is

pressed back, the weight, CG, descends, and as the pendu-

lum completes its vibration, the bar, 6^, strikes the ring, and

is retained. The acceleration then becomes 0, and C moves

on uniformly, with the velocity acquired, in the first sec-

ond; and it will be observed that C strikes the second

stage just as the pendulum completes its second vibration.

Had F been set at 5 feet from the 0, C would have reached

it at the end of the third vibration of the pendulum. Had

it been 7 feet from the 0, it would have reached it at the

end of the fourth vibration, and so on.

To verify the next result, we set the ring, E, at four feet

from the 0, and the stage, F, at 8 feet from the 0, and pro-

ceed as before. The ring Avill intercept the bar at the end

of the second vibration, and the weight will strike the

stage at the end of the third vibration, and so on.

By making the weight of the bar less than 24 grains, the

acceleration is diminished, and, consequently, the spaces

and velocities, correspondingly diminished. The results

may be verified as before.

Motion of Bodies on Inclined Planes.

108. If a body be placed on an inclined plane, and

abandoned to the action of its own weight, it will either

slide or roll down the plane, provided there be no friction

between it and the plane. If the body is spherical, it

will roll, and in this case friction may be disregarded. Let

the weight of the body be resolved into two components,

one perpendicular to the plane, and the other parallel to

it: the plane of these components will be vertical, and
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also perpendicular to the given plane. The effect of the

first component will be counteracted by the resistance of

the plane, whilst the second will act as a constant force,

urging the body down the plane. The force being con-

stant, the body will have a uniformly varied motion, and

equations (53) and (54) will be applicable. The accelera-

tion may be found by projecting the acceleration due to

gravity on the inclined plane.

Let AB represent the inclined plane, and P the centre

of gravity of a body resting on it. Let PQ represent the

force of gravity, denoted by g, and

PE, its component, parallel to ^^, _ f^
PS being the normal component.

Denote FE by g', and the angle 3.
^^'^

ABC by a. Then, since FQ is per-

pendicular to BCy and QE to AB, the

angle, EQF, is equal to ABC, or to a. From the right-

angled triangle, FQE, we have,

g' = ^sina.

But the triangle, ABC, is right-angled, and, if we denote

its height, AC, by h, and its length, AB, by I, we shall

have sina =-, which, being substituted above, gives,

9' = '4 (63)

This value of g' is the acceleration due to the moving

force. Substituting it for /, in equations (51) and (52),

we have,

v = v' +
Y^,



RECTILINEAR AND PERIODIC MOTION. 131

If the body start from rest at A, taken as the origin of

spaces, then will v' = 0, and s' = 0, giving,

v =
^-ff (64)

To find the time required for a body to move from the

top to the bottom of the plane, make s = I, in (65) ; there

will result,

'='P^ ••'=VI (««)
gh

Hence, the time varies directly as the letigth, and inversely

as the square root of the height.

For planes having the same height, but different lengths,

the radical factor of the value of t remains constant.

Hence, tlie times required for a body to move down planes

having the same height, are to each other as their lengths.

To determine the velocity with which a body reaches

the bottom of the plane, substitute for t, in equation (64),

its value taken from equation (66). We have, after re-

duction,

V = ^"itgh.

But this is the velocity due to the height h, (Art. 104).

Hence, the velocity generated in a body whilst movi^ig

down an inclined plane, is equal to that generated in falling

through the height of the plane.

Examples.

1. An inclined plane is 10 feet long and 1 foot high. How long

will it take for a body to move from top to bottom, and what veloc-

ity will it acquire ?
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SOLUTION.

We have, from equation (66),

V gh'

substituting for ^, 10, and for 7i, 1, we have,

t = 24 seconds, nearly.

From the formula, v = V2gh, we have, by making A = 1,

2. How far will a body descend from rest in 4 seconds, on an in-

clined plane whose length is 400 feet, and whose height is 300 feet ?

Ans. 193 ft.

3. How long will it take a body to descend 100 feet on a plane

whose length is 150 feet, and whose height is 60 ? Ans. 3.9 sec.

4. There is a track, 2i miles in length, whose inclination is 1 in 35.

What velocity will a car attain, in running the length of the road, by
its own weight, hurtful resistances being neglected?

Ans. 155.75 ft., or, 106.2 m. per hour.

5. A railway train, having a velocity of 45 miles per hour, is de-

tached from the locomotive on an ascending grade of 1 in 200. How
far, and for what time, will the train continue to ascend the inclined

plane ?

SOLUTION.

We find the velocity 66 ft. Hence, 66 = V2gh ; or, h = 67.7 ft. for

the vertical height. Hence, 67.7 X 200= 13,540 ft., or, 2.5644 m.,

the distance the train will proceed. We have,

t = l\/ —- = 410.3 sec, or, 6 min. 50.3 sec,\ gk

the time required to come to rest.

0. A body weighing 5 lbs. descends vertically, and draws a weight

of 6 lbs. up an inclined plane of 45°. How far will the first body

descend in 10 seconds?

SOLUTION.

The moving force is 5 lbs. —6 lbs. x sin 45"
; consequently the

acceleration is, (Art. 106),

.-. » = jyr = lll/(., nearly.
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Motion of a Body do^vn a succession of Inclined Planes.

1C9. If a body start from the top of an inclined plane,

with an initial velocity, v', it will reach the bottom with a

velocity equal to the initial velocity, plus that acquired

whilst on the plane. This velocity, called the terminal

velocity, will be equal to that which the body would acquire

in falling through the height due to the initial velocity,

phis the height of the plane. Hence, if a body start from

rest at A, and, after having passed

over one plane, ^1J5, enter on a second,

BC, without loss of velocity, it will

reach the bottom of the second plane

with the same velocity that it would Fig. 94.

have acquired by falling through DC, the sum of the heights

of the two planes. Were there a succession of inclined

planes, so arranged that there would be no loss of velocity

in passing from one to another, it might be shown, by

similar reasoning, that the terminal velocity would be that

due to the vertical distance of the terminal point below the

point of starting.

By a course of reasoning analogous to that employed in

discussing the motion of bodies projected vertically up-

ward, it might be shown that, if a body Avere projected

upward, in the direction of the lower plane, with the ter-

minal velocity, it would ascend along the several planes to

the top of the highest one, where the velocity would be 0.

The body would then, under the action of its own weight,

retrace its path in such manner that the velocity at every

point in descending w^ould be the same as in ascending, but

in a contrary direction. The time occupied in passing over

any part of the path in descending, would be equal to that

occupied in passing over the same portion in ascending.
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In the preceding discussion, we have supposed that there

is no loss of velocity in passing from one plane to another.

To ascertain under what circumstances this condition will

be fulfilled, let us take two planes, AB and BC. Prolong

CB upward, and denote the angle, ABU, by <p. Denote

the velocity of the body on reaching B, by v'. Let v' be

resolved into two components, one in the direction of BC,

and the other at right angles to it. The effect of the latter

is destroyed by the resistance of the plane, and the former

is the effective velocity in the direction of the plane, BC.

From the rule for resolution of velocities, we have, the

effective component of v' equal to v' cos:p. Hence, the loss

of velocity is v'— v' cos?, or, v' (1 — cos?)). But when 9 is

infinitely small, its cosine is 1, and there is no loss of velo-

city. Hence, the loss of velocity due to change of direction

Avill be 0, when the path is a curved line. The principle is

general, and may be enunciated as follows

:

When a body is constrained to describe a curvilinear path,

there is no loss of velocity due to change of direction of the

body's motion.

Periodic Motion.

110. Periodic motion, is a species of variable motion, in

which the spaces described in certain equal periods, are

equal. An example of this kind of motion is found in

curvilinear vibration. Let ABC be a vertical curve, sym-

metrical with respect to DB. Let

AC he horizontal, and denote UB
by h. If a body were placed at ^,

and abandoned to the action of its c^-

own weight, being constrained to cN;;^

remain on the curve, it would, in

accordance with the principles of
^
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the last article, move toward B with an accelerated mo-

tion, and, on arriving at B, would possess a velocity due

to the height h. By virtue of its inertia, it would ascend

the branch, BC, with retarded motion, and would finally

reach C, where its velocity would be 0. The body would

then be in the same condition that it was at A, and

would, consequently, descend to B, and again ascend to

A, whence it would again descend, and so on. Were

there no retarding causes, the motion would continue for-

ever. From what precedes, it follows that the time occupied

by the body in passing from ^ to ^ is equal to that in

passing from B to C, and also the time in passing from C
to B is equal to that in passing from B to A. Further,

the velocities of the body when at G and H, two points on

the same horizontal, are equal, either one, being that due to

the height EK. These principles are used in discussing

the pendulum.

Angular Velocity, and Angular Acceleration.

111. When a body revolves about an axis, its points

being at different distances from the axis, will have differ-

ent velocities. The angular velocity is the velocity of a

point whose distance from the axis is 1. To obtain the

velocity of any other point, we multiply its distance from

the axis by the angular velocity. The force of gravity acts

uniformly on the different points of a body, and the m-
pressed acceleration is the same for all the particles. If the

body is constrained to turn about a horizontal axis, the

effective acceleration of different particles will depend on

their distance from the axis. The effective acceleration of

a point, at a unit's distance from the axis, is called the

angular acceleration of the body.
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The Simple Pendulum.

112. A pendulum is a heavy body suspended from a

horizontal axis, about which it is free to vibrate.

To investigate the circumstances of vibration, let us first

consider the hypothetical case of a material point, vibrat-

ing about an axis to which it is attached by a rod destitute

of weight. Such a pendulum is called a simple ienlu-

LU3I. The laws of vibration in this case will be identical

with those explained in Art. 110, the arc, ABC, being an

arc of a circle.

Let ABC be the arc through which vibration takes

place, and denote its radius, DA, by I. The angle, ADC,
is called the amplitude of vibration; half of this angle,

ADB, is called the angle of devia-

tion.

If the point start from rest at A,

it will, on reaching any point, H,

have a velocity ii, due to the height,

^Z, denoted by /i, (Art. 104). Hence,

V = v^A (67)

Let the angle of deviation be so

small, that the chords of the arcs,

AB and HB, may be considered

equal to the arcs themselves. We
shall have (Legendre, Bk. IV., Prop.

XXIIL, Oor.),

Pig. 96.

AB^ = 2lX EB, and HB^ = 2Z X KB,

whence, by subtraction,

W ~ ITS' = 21{EB - KB) = 2lX h.
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Denoting AB \)j a, HB by x, and solving the last equa-

tion, we have,

Substituting this value of h, in (67), it becomes,

v^\/^j{ce-x') (68)

Now let us develop the arc, ABC, into a straight line,

A'B'C, and suppose a point to start from A' at the same

time that the pendulum starts from yl, and to vibrate back

and forth upon A'B'C with the same velocities as the

pandulnm ; then, when the pendulum is at any point, H,

this point will be at a correspondhig point, H', and the

times of vibration of the two will be the same.

To find tlie time of vibration along A'B'C, describe on

it a semi-circle, A' 310', and suppose a third point to start

from A ' at tlie same time as the second, and to move uni-

formly around the arc with a velocity equal to ay ^. Then
c

will the time required for this particle to reach C be equal

to the space divided by the velocity, (Art. 102). Denoting

this time by t, and remembering that A'B' = a, we have,

' = .57"4/ f/

I

Make IT'B' = x, and draw H'M perpendicular to A'C,
and at M decompose the velocity of the third particle, MT,
into two components, MJV and MQ, parallel and perpen-

dicular to A'C.

We have, for the horizontal component,

MN = MTgo^ TMN (69)
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But, MT=ayy, and becauseMT and ifiV^are perpendic-

ular to ^'Jf and H'M, we have, cos TMN — cos B'MH' =

-dttt' But B'M — a, and H'M = /^/^^ _ ^2 ; hence,

cos TMN = —
. Substituting these values in equa-

ci

tion (69), we have, for the horizontal velocity,

which is the same value as that obtained for v, in equation

(68). Hence, we infer that the horizontal velocity of the

third point is always equal to that of the second point,

consequently the times required to pass from A' to C must

be equal ; that is, the time of vibration of the second point.

A.
noting this time by t, we have,

and consequently of the pendulum, must be it y —, De-

./^t = 'KV -
(70)

Hence, the time of vibration of a simple pendulum is

equal to the number 3.1416, multiplied into the square root

of the quotient obtained by dividing the length of the pen-

dulum, by the force of gravity.

For a pendulum, whose length is V, we shall have,

f = -^7j (71)

From equations (70) and (71), we have, by division,

7, = ^,;or, ^^: r :: vT:a/7' (72)
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That is, the twies of vibration of simple pendulums, are

to each other as the square roots of their lengths.

If we suppose the lengths of two pendulums to be the

same, but the force of gravity to vary, as it does in different

latitudes, and at different elevations, we shall have,

t — It \/ —, and t" = 'j^

g

Whence, by division,

i.,= * /f', or, if : if" : : V7' : V7 • (73)

That is, the times of vibration of the same pendulum, at

different places, are to each other inversely as the square

roots of the forces of gravity at the places.

If we suppose the times of vibration to be the same, and

the force of gravity to vary, the lengths will vary also, and

we shall have,

i5 = cr|/I and t=.'.\/^,.
9 9

Equating these values, and squaring, we have,

1 = 1; or, I : V :: g :
q' (74)

9 9

That is, the lengths of pendulums that vibrate in equal

times at different places, are to each other as the forces of

gravity at those places.

Vibrations of equal duration are called isochronal.

De I'Ambert's Principle. »

113. When several bodies are rigidly connected, it often

happens that they are constrained to move in a different

manner from what they would, if free. Some move faster

and some slotver than they would, were it not for the con-
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nection. In the former case there is a gain, and in the

latter a loss, of moving force, in consequence of the connec-

tion. It is obvious that the resultant of all the impressed

forces is equal to that of all the effective forces, for if the

latter were reversed, they would hold the former in equi-

librium. Hence, all the moving forces lost and gained in

consequence of the connection are in equilibrium.

This is de rAmberfs principle.

The Compound Pendulum.

114. A compound pendulum is a body free to vibrate

about a horizontal axis, called the axis of suspension. The

straight line drawn from the centre of gravity of the pen-

dulum perpendicular to the axis of suspension is called

the axis of the pendidum.

In practical applications, the pendulum is so shaped that

the plane through the axis of suspension and the centre of

gravity divides it symmetrically.

Were the particles of the pendulum entirely discon-

nected, but constrained to remain at invariable distances

from the axis of suspension, we should have a collection

of simple pendulums. Those at equal distances from the

axis would vibrate in equal times, and those unequally dis-

tant would vibrate in unequal times. The particles nearest

the jixis would vibrate more rapidly than the compound

pendulum, and those most remote would vibrate slower;

hence, there must be intermediate points that would vibrate

in the same time as the pendulum. These points lie on the

Surface of a circular cylinder whose axis is that of suspen-

sion ; the point in which this cylinder cuts the axis of the

pendulum is called the centre of oscillation. If the entire

mass of the pendulum wore concentrated at this point, the

time of its vibration would be unchanged. Hence, the
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centre of oscillation of a pendulum is a point of its axis, at

which, if the mass of the pendulum were concentrated, its

time of vibration would be unchanged. A line drawn

through this point, parallel to the axis of suspension, is

called the axis of oscillation. The distance between the

axis of oscillation and the axis of suspension is the length

of an equivalent simple pendulum—that is, of a simple pen-

dulum, whose time of vibration is the same as that of the

compound pendulum.

Angular Acceleration of a Compound Pendulum.

115. Let CK be a compound pendulum, C its axis of

suspension, G its centre of gravity, and suppose the plane

of the paper to pass through the centre of gravity, G, and

perpendicular to the axis, C. We may regard the pendulum

as made up of infinitely small filaments, parallel to the

axis of suspension, and consequently perpendicular to the

paper. The circumstances of vibration will be unchanged

if we suppose each element to be concentrated in the point

where it meets the plane of the paper. Denote the mass

ofany element, as S, by in, its distance from C, by r, and the

mass of the pendulum by M.

Through draw a horizontal line, CB, and draw SH,

GA, and OB perpendicular to it.

On HS prolonged, take SJ^ to rep-

resent the moving force impressed

on S. Then will 8E be equal to mg,

(Art. 18), and its moment with re-

spect to will be mg X HC. Denote

the angular acceleration by oo ; then

will the actual acceleration of >S',

in the direction perpendicular to

^'6', bo e<iual to rcj, and the effective
Fig. 97.
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moving force to mroo ; because this force acts at right angles

to SO, its moment is equal to 7nr^oo. Because 7ng is the

moving force impressed on S, and mroo the effective moving

force, the expression, mg — mroo, will be the moving force

lost or gained by S in consequence of its connection with

the other particles. There will be a loss when mg is greater

than mroo, and a gain when mg is less than fnrao. The

moment of this force with respect to C is equal to

mg X CH — mr^oo. Similar expressions may be found for

each of the elementary particles of the pendulum.

By de I'Ambert's principle, the moving forces lost and

gained, in consequence of the connection of the parts, are

in equilibrium ; hence, the algebraic sum of their moments

with respect to an axis, C, is equal to —that is,

I{mg X CH) - I{m7-'oo) = 0.

But GO and g are the same for each particle ; hence,

I{m X CH)
-9-

l\7nr')

From the principle of moments, we have,

I{m X CH) =31 X CA.

Substituting above, we have, finally,

MX CA .^„.

- = ^(m-n-^
^^'^

That is, the a^igular acceleration varies as, CA, the lever

arm of the weight of the pendulum.

The expression I{mr'') is called the moment of inertia of

the body with respect to the axis of suspension, Mg is the

weight of the body, and Mg X CA is the moment of the

weight, with respect to the same axis.

Hence, the angular acceleration is equal to the moment
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of the iveigJit^ divided by the moment of iJiertia, both loith

respect to the axis of susj)e7ision.

Length of an Equivalent Simple Pendulum.

116. To find the length of a simple pendulum that will

vibrate in the same time as the given compound pendulum,

let be the centre of oscillation, and draw OB perpen-

dicular to CB. Denote CO by I, and CG by k. Were the

entire mass concentrated at 0, we should have, for its

moment of inertia, Ml^, for the' moment of the mass,

M X GB, and for the angular acceleration,

MxGB

But the pendulum is to vibrate in the same time, whether

it exist as a compound pendulum, or as a simple pendulum,

its mass being concentrated at its centre of oscillation ; the

value of w must, therefore, be the same in both cases.

Placing the value just deduced equal to that in equation

(75), we have,

MxGB _ MxGA
Mr ^~ l\7nr')

^''

whence, by reduction.

From the similar triangles, GGA and GOB, we have,

GB _ I

GA ~ k'

Substituting, and reducing, we have,

^-^ Mk (^^^
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Reciprocity of Axes of Suspension and Oscillation.

117. Let C be the axis of suspension, the centre of

oscillation, and let a line be drawn through parallel to

the axis of suspension. This line is

called the axis of oscillation. Let

the plane of the paper be taken as

before, and suppose the elements

projected on it, as in the last article.

Let S be any element, and denote

its distance from the axis of suspen-

sion by r, and from the axis of os-

cillation by t ; denote OC by /, and

the angle CS by (p.

If the axis of oscillation be taken as an axis of suspen-

sion, and the length of the corresponding simple pendulum

denoted by I', we have, from the preceding article,

I(mf)

Fiff. 98.

V (77)M{l-k)

In the triangle, OSC, we have,

f = r* + r - 2Wcos(p

;

hence,

I{mf) = I(mr') + I{mP) - 2Z(mrcos(p)l

But, from equation (76), we have,

I{mr') = MM;
and because I is invariable, we have,

^ml") = I{m)r = m;
if we suppose CO horizontal, rcos?, the projection of r

on CO, will be the lever arm of m, and the expression,

J(w2rcos^), will be the algebraic sum of the moments of



RECTILINEAR AND PERIODIC MOTION. 145

the elementary masses with respect to C ; hence, we shall

have,

2'(wrcos(p)^ = Mkl,

Substituting for these expressions their values above, and

putting the value of ^{mf), thus found, in (77), we have,

^ Mkl + Mr- 2Mkl _ M{r-kl)^
M\l-k) ~ M(l-ky

or,

l' = l

Hence, the axes of susjyension and oscillation are con-

vertible ; that is, if either be taken as an axis of suspension,

the other ivill he the axis of oscillation.

This property of the compound pendulum is employed

to determine the length of the seconds' pendulum, and the

value of the force of gravity at different places on the sur-

face of the earth.

A straight bar of iron, CD, is provided with knife-edge

axes, A and B, of hardened steel, at right angles to the axis

of the bar, and having their edges turned toward c

each other. These axes are so placed that they are

not symmetrical with respect to the bar. The
pendulum thus constructed is suspended on hori-

zontal plates of polished agate, and allowed to

vibrate about each axis in turn till, by filing away
one end of the bar, the times of vibration about the

axes are made equal. The distance, ^^, is then

the length of a simple pendulum that will vibrate ^ig- ^
in the same time as the bar, about either axis. The adjust-

ment may also be made by using a sliding piece, that can
be made fast to the bar, by a clamp-screw.

To employ the pendulum thus adjusted to find the length

of a seconds' pendulum at any place, the pendulum is sus-

pended, and allowed to vibrate through a small angle, the
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number of vibrations counted, and the time noted by a

chronometer. The time divided by the number of vibra-

tions, gives the time of a single vibration. The distance

between the axes, measured by a scale of equal parts, gives

the length of the corresponding simple pendulum. To find

the length of the simple seconds' pendulum, we make use

of proportion (72), substituting in it for t' and V the values

just found, and for t, 1 second ; the remaining quantity /,

may be found by solving the proportion. This value is the

length of the seconds' pendulum at the place where the

observation is made. In making the observations, a variety

of precautions must be taken, and several corrections ap-

plied, the explanation of which does not fall within the

scope of this treatise. By a series of carefully conducted

experiments, it was found that the length of a seconds'

pendulum in the Tower of London is 3.2616 ft, or 39.13921

in. By a similar course of proceeding, the length of the

seconds' pendulum has been determined for a great number

of places on the earth's surface, at different latitudes, and

from these the corresponding values of the force of gravity

at those points have been determined, according to the fol-

lowing principle

:

From the equation, ^ = -ry -, we find, by solving with

respect to g, and making ^ = 1,

g = it-l

From this equation the value of g may be found at

different places, by substituting for I the length of the

seconds' pendulum at those places. By comparing the

values of g, it is found that they are everywhere the same

on the same parallel of latitude, and that they vary in pass-

ing from latitude to latitude.



RECTILINEAR AND PERIODIC MOTION. 147

The following formula for determining the value of ^, at

different places, is given by Prof. Airy. In it G represents

the value of gravity at the equator, g its value in any lati-

tude, I.

g= G(l + .005133 sin^O (78)

The value of G is 32.088 ft. ; this gives for gravity at the

pole, 32.2527 ft.

Practical Application of the Pendulum.

118. One of the most important uses of the pendulum is

to regulate the motion of clocks. A clock consists of a

train of wheelwork, the last wheel of the train connecting

with a pendulum-rod by a piece of mechanism called, an

escapement. The wheelwork is kept in motion by a descend-

ing weight, or by the elastic force of a spring, and the wheels

are so arranged that one tooth of the last wheel in the train

escapes from the pendulum-rod at each vibration of the

pendulum, or at each heat. The number of beats is ren-

dered visible on a dial-plate by indices, called hands.

On account of expansion and contraction, the length of

the pendulum is liable to variation, which gives rise to

irregularity in the times of vibration. To obviate this, and

to render the times of vibration uniform, several devices

have been resorted to, giving rise to what are called com-

pensatiyig pendulums. We shall indicate two of the most

important of these, observing that the remaining ones are

nearly the same in principle, differing only in mode of

application.

Graham's Mercurial Pendulum.

119. Graham's mercurial pendulum consists of a rod of

steel about 42 inches long, branched toward its lower end,

to embrace a cylindrical glass vessel 7 or 8 inches deep.



148 MECHANICS.

and having between 6 and 7 inches of this depth filled with

mercury. The exact quantity of mercury, being dependent

on the weight and expansibility of the other parts of

the pendulum, may be determined by experiment in each

case. When the temperature increases, the steel rod is

lengthened, and, at the same time, the mercury rises in the

cylinder. When the temperature decreases, the steel bar

is shortened, and the mercury falls in the cylinder. By a

proper adjustment of the quantity of mercury, the effect

of the lengthening, or shortening of the rod is exactly

counterbalanced by the rising or falling of the centre of

gravity of the mercury, and the axis of oscillation is kept

at an invariable distance from the axis of suspension.

Harrison's Gridiron Pendulum.

120. Harrison's gridiron pendulum consists of five rods

of steel and four of brass, placed alternately with each

other, the middle rod, or that from which the

doh is suspended, being of steel. These rods are

connected by cross-pieces in such a manner that,

whilst the expansion of the steel rods tends to

elongate the pendulum, or lower the bob, the

expansion of the brass rods tends to shorten the

pendulum, or raise the bob. By duly propor-

tioning the sizes and lengths of the bars, the

axis of oscillation may be maintained at an in-

variable distance from the axis of suspension.

From what has preceded, it follows that when- Pig." lOO.

ever the distance from the axis of oscillation to the axis of

suspension remains invariable, the times of vibration must

be absolutely equal at the same place. The pendulums

just described are principally used for astronomical clocks.

m

Q
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where great accuracy and uniformity in the measure of

time are indispensable.

Basis of a System of Weights and Measures.

121. The pendulum is of further importance, in a prac-

tical point of view, in furnishing the standard that has

been made the basis of the English system of weights and

measures.

It was enacted by Parliament, in 1824, that the distance

between the centres of two gold studs in a certain described

brass bar, the bar being at a temperature of 62° F., should

be an " imperial standard yard." To be able to restore it

in case of its destruction, it was enacted that the yard

should be considered as bearing to the length of the seconds'

pendulum in the latitude of London, in vacuum, and at

the level of the sea, the ratio of 3G to 39.1393. From the

yard, every other unit of linear measure may be derived,

and thence all measures of area and volume.

It was also enacted that a certain described brass weight,

made in 1758, and called 2 lbs. Troy, should be regarded

as authentic, and that a weight equal to one-half that

should be "the imperial standard Troy j^ound." The
^^jig^th part of the Troy pound was called a gram, of

which 7000 constituted a pound avoirdupois. To provide

for the contingency of a loss of the standard, it was con-

nected with the system of measures, by enacting, that if

lost, it should be restored by allowing 252.724 grains for

the weight of a cubic inch of distilled water, at 62° F., the

water being weighed in vacuum and by brass weights.

From the grain thus established, all other units of weight

may be derived.

Our own system of weights and measures is the same as

the English.
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Examples.

1. The length of a seconds' pendulum is 89.13921 in. If it be

shortened 0.130464 in., how many vibrations will be gained in a day

of 24 hours?

SOLUTION.

The times of vibration of pendulums at the same place, are as the

square roots of their lengths. Hence, the number of vibrations in

any given time, are inversely as the square roots of their lengths.

If, therefore, we denote the number of vibrations gained in 24 hours,

or 86400 seconds, by x, we have,

86400 : 86400 -\- x : : \/39.008747 : \/39. 13921.

Whence, x= 144, nearly. Ans.

2. A seconds' pendulum on being carried to the top of a mountain,

was observed to lose 5 vibrations per day of 86400 seconds. Re-

quired the height of the mountain, reckoning the radius of the earth

at 4000 miles.

SOLUTION.

The squares of the times of vibration, at two points, are inversely

as the forces of gravity at those points. But the forces of gravity at

the points are inversely as the squares of their distances from the

centre of the earth. Hence, the times of vibration are proportional

to the distances of the points from the centre of the earth ; and, con-

sequently, the number of vibrations in any given time, as 24 hours,

for example, will be inversely as those distances. If, therefore, we
denote the height of the mountain in miles by x, we have,

86400 : 86405 : : 4000 : 4000 -f x.

Whence, x= 1%^^ = 0.2315 miles, or, 1222 feet. Ans.

3. What is the time of vibration of a pendulum whose length is 60

inches, when the force of gravity is 32^ ft. ? Ans. 1.2387 sec.

4. How many vibrations will a pendulum 36 inches in length make

in one minute, the force of gravity being the same as before V

Ans. 62.53.

5. A pendulum makes 43170 vibrations in 12 hours. How much

must it be shortened that it may beat seconds ?

SOLUTION.

We shall have, as in example 1st,

43170 : 43200 : : \/39.13921 : v/39.13921 + x.

Whence, x= 0.0544 m, Ans.
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G. In a certain latitude, the length of a pendulum vibrating seconds

is 39 inches. What is the length of a pendulum vibrating seconds,

in the same latitude, at the height of 21000 feet above the first sta-

tion, the radius of the earth being 3960 miles? Ans. 38.9218 in.

7. If a pendulum make 40000 vibrations in 6 hours, at the level of

the sea, how many vibrations will it make in the same time, at an

elevation of 10560 feet, the radius of the earth being 3960 miles ?

Ans. 39979.8.

Centre of Percussion.

122. The centre of percussion of a suspended body, is

the point at which an impulse may be applied, perpen-

dicular to the plane through it and the axis, without shock

to the axis. This point is identical with the centre of oscil-

lation. For, suppose, whilst the body is vibrating about

the axis, an impulse to be applied at the centre of oscilla-

tion, capable of generating a quantity of motion equal and

directly opposed to the resultant of the quantities of motion

of all the particles ; the direction of this impulse will be

opposite to the motion of the centre of oscillation, that

is, perpendicular to the plane through it and the axis, and

it is obvious, from the property of the centre of oscillation,

that it will bring the body to rest without shock to the

axis. Were the same impulse applied to the body, at rest,

it would generate a quantity of motion equal to that de-

stroyed, but in a contrary direction, and without shock on

the axis. The direction of the impulse remaining the same,

no matter what may be its intensity, there will be no shock.

It is a matter of common observation, that if a rod held

in the hand be struck at a certain point, the hand will not

feel the blow, but if struck at any other point, a shock will

be felt, the intensity of which depends on the intensity of

the blow, and on its point of application.
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Moment of Inertia.

123. The moment of inertia of a body with respect to

an axis, is the algebraic sum of the products obtained by

multiplying the mass of each elementary particle by the

square of its distance from the axis. Denoting the moment

of inertia with respect to any axis, by K, the mass of anj

element of the body, by m, and its distance from the axis^

by r, we have, from the definition,

K = I{mr') (79)

The moment of inertia varies, in the same body, accord-

ing to the position of the axis. To investigate the law

of variation, let AB represent a section of

the body by a plane perpendicular to the

axis ; C, the point in which this plane cuts

the axis; and G, the point in which it

cuts a parallel axis through the centre of Fig. loi.

gravity. Let P be any element of the

body, whose mass is m, and denote PC by r, PG by s,

and CG by k.

From the triangle CPG, according to a principle of trig-

onometry, we have,

r' = s' + F - 2skcosCGP.

Substituting, in (79), and separating the terms, we have,

K = I{ms') + 2'(mF) - 2I(7nskcosCGP).

Or, since k is constant, and w(m) = if, the mass of the

body, we have,

K = I(7ns') + Mk' - 2kI(msGosCGP),

But scos CGP = GH, the lever arm of the mass in, with

respect to the axis through the centre of gravity. Hence,

I(m.ficosCGP), is the algebraic sum of the moments of all

the particles of the body with respect to the axis through
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the centre of gravity; but from the principle of moments,

this is 0. Hence,

K= I{ms^) +M¥ (80)

The first term of the second member is the moment

of inertia, with respect to the axis through the centre of

gravity.

Hence, the moment of iiiertia of a hody with respect to

any axis, is equal to the moment of inertia with respect to

a parallel axis through the centre of gravity, plus the mass

of the body into the square of the distance between the two

axes.

The moment of inertia is least possible when the axis

passes through the centre of gravity. If any number of

parallel axes be taken at equal distances from the centre

of gravity, the moment of inertia with respect to each, will

be the same.

The moment of inertia with respect to any axis, may be

determined experimentally as follows. Make the axis

horizontal, and allow the body to vibrate about it, as a com-

pound pendulum. Find the time of a single vibration, and

denote it by t. This value of t, in equation (70), makes

known the value of I Determine the centre of gravity,

and denote its distance from the axis, by k. Find the

mass of the body, and denote by M.

We have, from equation (76),

MM = I{mr') = K.

Substitute for M, I, and h, the values already found, and

the value ofK will be the moment of inertia, with respect

to the assumed axis. Subtract from this the value of Jf/Fr

and the remainder will be the moment of inertia with

respect to a parallel axis through the centre of gravity.

The moment of inertia of a homogeneous body of
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regular figure, is most readily found by means of the cal-

culus.

The results thus determined, in a few of the more com-
mon cases of practical mechanics, are appended.

1. The moment of inertia of a rod, or bar, of uniform

thickness, with respect to an axis perpendicular to the

length of the rod, is given by the formula,

A^=--M(^j + d'\ (81)

in which, K is the moment of inertia, M the mass of the

rod, 21 its length, and d the distance of the centre of

gravity from the axis.

2. The moment of inertia of a thin circular plate about

a line in its own plane, is given by the formula,

= M(^j + d'\ (82)

in which, II, M, and d, are the same as before, and r is the

radius of the circular plate.

3. The moment of inertia of a circular plate, with refer-

ence to an axis perpendicular to its plane, is given by the

formula,

K=M(^-hd'\ (83)

in which, the quantities are the same as before.

4. The moment of inertia of a circular ring, with refer-

ence to an axis perpendicular to its plane, is given by the

formula,

K=m(^'^— +d'\ (84)

in which, r and r' are the exterior and interior radii of the

ring.
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5. The inomenfc of inertia of a right cylinder with re-

spect to an axis perpendicular to the axis of the cylinder,

is given by the formula,

A'=.l/(J + ^ + ^) (85)

in which, r is the radius of the base, and "M the length of

the cylinder.

By making d= o in any of the above formulas, we find

the corresponding moment of inertia for a parallel axis

through the centre of gravity.

Centre and Radius of Gyration.

124. The centre of gyration with respect to an axis, is a

point at which, if the entire mass of a body be concen-

trated, its moment of inertia will remain unchanged. The

distance of this point from the axis is the radius of gyra-

tion.

Let M denote the mass of a body, and k' its radius Of

gyration ; then will the moment of inertia of the concen-

trated mass with respect to the axis, be equal to Mk'"^ ; but

this must, by definition, be equal to the moment of inertia

with respect to the same axis, or ^{mr"^)', hence.

Jf^" ^ I{r)ir^) ; or, k' = V^^^^ (86)

That is, the radius of gyration is eqioal to the square root

of the quotient obtained hy dividing the motnent of i?iertia

by the mass.

Since M is constant for the same body, the radius of

gyration will be least possible when the moment of inertia

is least possible, that is, when the axis passes through the

centre of gravity. This minimum radius is called the

p?Hn('ipal radius of gyration. If we denote the principal
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radius of gyration by k, we sliall have, from the examples

of article (123), the following results

:

Example l...k' = T ^ + ^/'; h = iVi.

Example 2 . . .
^•' = t/ - ^ d':

4
.=r

Example d...k'= y^- + (f; k = rV\.

Example 4. .
.^•' = |/

^'"

^
^''

+ ^: X' = |/^' "^
^"

^•' .v'-^
2

+ ^;

y-^i4 + <f;Example 5 . . .

^•' = y ^' +i- + ^'

;

^- = '/

^

4 o 4 + -3-

To find the relation between the length of an equivalent

simple pendulum and the principal radius of gyration of a

suspended body, let us replace the expression J(mr''), in

equation (76), by its value Mk'^ and reduce. We fiad,

1 =^ .'. k' = Vkf;

that is, the centre of gravity, the centre of oscillation, and

the centre of gyration, are on a common perpendicular to

the axis of suspension, and so situated that the distance of

the last from an axis is a mean proportional between the

distances of the other two from the same axis.



CHAPTER VI.

CURVILINEAR AND ROTARY MOTION.

Motion of Projectiles.

125. If a body be projected obliquely upward in a

vacuum, and then abandoned to the force of gravity, it

will be continually deflected from a rectilinear path, and,

after describing a curvilinear trajectory, will finally reach

the horizontal plane from which it started.

The starting-point is the ;^oi?^^ of projection ; the dis-

tance from the point of projection to the point at which

the projectile again reaches the same horizontal plane is

the range, and the time occupied is the time offlight. The
only forces to be considered, are

the initial impulse and the force

of gravity. Hence, the trajec-

tory will lie in a vertical plane

through the direction of the

initial impulse. Let CAB be

this plane, A the point of pro-

jection, AB the range, and AC o, vertical through A.

Take AB and AC as co-ordinate axes; denote the angle

of projection, DAB. by «, and the velocity due to the

initial impulse by v. Resolve v into two components,

one in the direction AC, and the other in tlie direction

AB. We have, for the former, v sina, and, for the latter.

V cosa.

The velocities, and. consequently, the spaces described

Fig. 102.
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in the direction of the co-ordinate axes, will (Art. 12) be

entirely independent of each other. Denote the space

described in the direction A C, in any time t, by y. The

circumstances of motion in this direction, are those of a

body projected vertically upward with an initial velocity,

V sina, and then continually acted on by the force of gravity.

Hence, equation (58) is applicable. Making, in that equa-

tion, h = y, and v' = y sina, we have,

y = V sina i ^ ^gf (87)

Denote the space described in the direction of the axis,

A By in the time /, by x. The only force acting in this

direction is the component of the initial impulse. Hence,

the motion will be uniform, and the first equation of Art.

102, is applicable. Making s = x, and v = v cosa, we have,

X = V COSa t (88)

If we suppose t to be the same in equations (87) and (88),

they will be simultaneous, and, taken together, will make

known the position of the projectile at any instant.

From (88), we have.

t =

which, substituted in (87), gives,

y==^a:--^— (89)

an equation which is independent of /. It, therefore,

expresses the relation between x and y for any value of /,

and is, consequently, the equation of the trajectory. But,

equation (89) is the equation of a parabola whose axis is

vertical. Hence, the tnijectory is a parabola.

To find the range, make y - 0, in (89), and deduce the
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corresponding value of x. Pliicing the value of y equal to 0,

we have,

sina (jx' _
COSa 2v cos a

, 2?;^sina cosa
.'. a; = 0, and x = .

The first value of x corresponds to the point of projec-

tion, and the second is the value of the range, AB,

From trigonometry, we have,

2sina cosa = sin2a.

If we denote the height due to the initial velocity, by /i,

we have,

v" = Igli,

Substituting these in the second value of x, and denoting

the range by r, we have,

r = 2h sin2a (90)

The greatest value of r will correspond to a = 45°, in

which case, 2* = 90°, and sin 2a = 1. Hence, we have,

for the greatest range,

r = 2h.

That is, it is equal to iiuice the heigJU due to the initial

velocity.

If, in (90), we replace a by 90° — a, we have,

r = 2h sin (180° — 2a) = 2h sin2a,

the same value as before. Hence, there are two angles of

prqiection, complements of each other, that give the same

range. The trajectories in the two cases are not the same,

as may be shown by substituting the values of a, and

90° — a, in equation (89). Tlie greater angle of projection

gives a higher elevation, and, consequently, the projectile
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descends more vertically. It is for this reason that tlie

gunner selects the greater of the two, when he desires to

crush an ohject, and the less when lie desires to batter, or

overturn the object. If a =: 90°, the value of r is 0.

That is, if a body be projected vertically upward, it will

return to the point of projection.

To find the time of flight, make x — r, in (88), and

deduce the corresponding value of t. This gives,

t =
V COSa

(91)

The range remaining the same, the time of flight will be

greatest when a is greatest. Equation (88) also gives the

time required for the body to describe any distance in the

direction of the horizontal line, AB.

In equation (91) there are four quantities, t, r, v, and a,

and from it, if any three are given, the remaining one may
be determined.

As an application of the principles just deduced, let it

be required to determine the angle of projection, that the

projectile may strike a point, //,

at a horizontal distance, AG — x'

from the point of projection, and

at a height, GH = y', above it.

Since H lies on the trajectory,

its co-ordinates must satisfy the

equation of the curve, giving, Fig. 102

y' = x' tana -

From trigonometry, we have,

1
cos a = 5- =

gx

Wgo&^cl

1

1 + tanV
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Substituting this in the preceding equation, we have,

after clearing of fractions,

'Zv^y' = 2i;Vtana — gx"^{l + tanV)

;

or, transposing and reducing.

tan a
J
tana = —^—

gx gx

Hence,

tana =—; =fc y —-^ j^
;

gx' g^x'^ gx""

or, making v^ = '2gh,

tana = —;- db y -— '-^ =
-,

^ .XX X X

This shoAvs that there are two angles of projection, under

either of wliich, the point may be struck.

If we suppose

x" = W - Ug' (92)

the quantity under the radical sign will be 0, and the two

angles of projection will become one.

If x' and y' be regarded as variables, equation (92) rep-

resents a parabola whose axis is a vertical, through the

point of projection. Its vertex is at a distance, /z, above

the point, A, its focus is at A, and its parameter is 4A, or

twice the range.

If we suppose

x" < 4/i' - 4:hy',

the point (x, ?/'), will lie within the parabola just described,

the quantity under the radical sign will be positive, and

there will be two real values of tana, and, consequently,

two angles of projection, under either of which the point

may be struck.
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If we suppose

x" > 4^» - AJiy\

the point {x\ y'), will be without this parabola, the values

of tana will both be imaginary, and there will be no angle

under which the point can be struck.

Let the parabola B'LB represent the curve whose equa-

tion is

x"" = W - Ahy'.

Conceive it to be revolved about AL^ as an axis, gener-

ating a paraboloid of revolution. Then, from what pre-

cedes, we conclude,^r5^, that every point within the surface

may be reached from A, under two different angles of pro-

jection ; secondly, that every point on the surface can be

reached, but only by a single angle of projection ; third-

ly, that no point without the surface can be reached

at all.

If a body be projected horizontally from an elevated

point. A, its trajectory will be made known by equation

(89), simply making a = ; whence,

sina = 0, and cosa = 1. Substituting and

reducing, we have,

(93)

For every value of x, y is negative,
Fig. 104.

which shows that the trajectory lies below the horizontal
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through the point of projection. If we suppose ordinates

to be positive downward, we have,

y=i (94)

To find the point at which the trajectory will reach any

horizontal plane, BC\ whose distance below A is h', make

y — h', in (94), whence,

x = BC = vy— (95)

On account of the resistance of the air, the results of

the preceding discussion must be greatly modified. They

approach more nearly to the observed phenomena, as the

velocity is diminished and the density of the projectile

increased. The atmospheric resistance increases as the

square of the velocity, and as the cross section of the pro-

jectile exposed to the action of the resistance. In the air,

it is found, under ordinary circumstar.ces, that the maxi-

mum range is obtained by an angle of projection, not far

from 34°.

Examples.

1. What is the time of flight of a projectile in vacuum, wheu the

angle of projection is 45°, and the range COOO feet?

SOLUTION.

When the angle of projection is 45°, the range is equal to twice the

height due to the velocity of projection. Denoting this velocity by

V, we have,

v'' = 2gh = 2 X 32^ X 3000 = 193000.

Whence,
V= 439.3 ft.

From equation (91), we have,

t= = -r—— —-^ = 19.3 sec. Ans.
vcosa 439.3 cos45
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2. What is the range of a projectile, when the angle of projection

is 30°, and the initial velocity 200 feet? Ans. 1076.9 ft.

3. The angle of projection under which a shell is thrown is 32°,

and the range 3250 feet. What is the time of flight?

Ans. 11.25 sec, nearly.

Centripetal and Centrifugal Forces.

126. Curvilinear motion can only result from the action

of an incessant force, whose direction differs from that of

the original impulse. This force may arise from one or

more active forces, or it may result from the resistance

offered by a rigid body, as when a ball is compelled to run

in a groove. Whatever may be the nature of the forces,

we can always conceive them to be replaced by a single

incessant force acting transversely to the path of the body.

Let this force be resolved into two components, one normal

to the path of the body, and the other tangential to it. The

latter force may act to accelerate, or to retard the motion

of the body, according to the direction of the resultant

force ; the former alone is effective in changing the direc-

tion of motion. The normal component is always directed

toward the concave side of the curve, and is called the

centripetal force. The body resists this force, by virtue of

its inertia, and, from the law of inertia, this resistance

must be equal and directly opposed to the centripetal force.

This resistance is called the centrifugal force. Hence, we

may define centrifugal force to be the resistance a body

offers to a force that tends to deflect it from a rectilineal

path. The centripetal and centrifugal forces together, are

called central forces.

Measiire of the Centrifugal Force.

127. To deduce an expression for the measure of the

centrifugal force, let us first consider the case of a material
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point, constrained to move in a circular path, by a force

constantly directed toward the centre, as when a body is

confined by a string and whirled around a fixed point. In

this case, the tangential component of the deflecting force

is ; there is no loss of velocity in consequence of a

change of direction in the motion, (Art. 109) ; hence, the

motion of the point is uniform.

Let ABD be the path of the body, and V its centre.

Suppose the circumference of the circle to be a regular

polygon, having an infinite number of

sides, of which AB is one; and denote

each side by s. When the body reaches

A, it tends, by virtue of its inertia, to

move in the direction of the tangent,

A T; but, in consequence of the action

of the centripetal force directed to-

ward V, it is constrained to describe

the side s in the time t. If we draw

BC parallel to A T, it will be perpendicular to the diameter

AD, and ^ C will represent the space through w^hich the

body has been drawn from the tangent, in the time t If

we denote the acceleration due to the centripetal force by

/, and suppose it to be constant during the time t, we

have, from Art. 103,

Ac=^fe (96)

From the right-angled triangle, ABD, we have, since

AB = s,

s' = ACx AD; or, s' = AC X 2r.

Whence,

2r
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Substituting this value of AC, in (96), and solving with

respect to/,

•^
t r

But TT = v" (Art. 102), in which v is the velocity of the

moving point. Substituting in the preceding equation,

we have,

/=! (97)

Here/ is the acceleration due to the centripetal force,

but this is equal to the centrifugal force, hence, the accel-

eration due to the centrifugal force, is equal to the square

of the velocity, divided by the radius of the circle.

If the mass of the body be denoted by M, and the entire

centrifugal force by F, we have, (Art. 18),

F=^ (98)

If we suppose the body moving on any curve, we may,

whilst it is passing over any two consecutive elements, re-

gard it as moving on the arc of the osculatory circle to the

curve; and, further, we may regard the velocity as uniform

during the infinitely small time required to describe these

elements. The direction of the centrifugal force being

normal to the curve, must pass through the centre of the

osculatory circle. Hence, all the circumstances of motion

are the same as before, and equations (97) and (98) will be

applicable, provided r be taken as the radius of the cun^a-

ture. Hence, Ave may enunciate the law of centrifugal

force as follows

:

The acceleration due to the centrifugal force is equal to

the square of the velocity of the body divided hy the radius

of curvature.
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The entire centrifugal force is equal to the acceleration,

multiplied hy the 7nass of the body.

Ill the case of a body whirled around a centre, and re-

strained by a string, the tension of the string is measured

by the centrifugal force. The radius remaining constant,

the tension increases as the square of the velocity.

Centrifugal Force at points of the Earth's Surface.

128. Let it be required to determine the centrifugal

force at different points of the earth's surface, due to rota-

tion on its axis.

Suppose the earth spherical. Let ^ be a point on the

surface, PQP' a meridian section through A, PP' the axis,

RQ the equator, and J^, per-

pendicular to PP', the radius

of the parallel of latitude

through A. Denote the radius

of the earth by r, the radius

of the parallel through A by

r', and the latitude of ^, or

the angle ACQ, by I. The

time of revolution being the

same for every point on the

earth's surface, the velocities of Q and A will be to each

other as their distances from the axis. Denoting these velo-

cities by V and v', we have,

whence,
V : V

V = vr

But from the right-angled triangle, CAB, since the

angle at A is equal to /, we have,

r' = r cosZ.
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Substituting this value of r' in the value of v', and re-

ducing, we have,

v' — V cos/.

If we denote the centrifugal force at the equator by/,

we have,

f=j (99)

In like manner, if we denote tlie centrifugal force at A^

by/', we have,

r

Substituting for v' and r' their values, previously de-

duced, we get,

/' =^' (100)

Combining equations (99) and (100), we find,

/ : /' : : 1 : cos/, .'. /' =/cos/ (101)

That is, the centrifugal force at any point on the earth's

surface, is equal to the centrifugal force at the equator,

multiplied hy the cosine of tlie latitude.

Let AE, perpendicular to PP', represent/', and resolve

it into two components, one tangential, and the other

normal to the meridian section. Prolong CA, and draw

AD perpendicular to it at ^. Complete the rectangle, FD
on AB, a.s a diagonal. Then will AD be the tangential,

and AF the normal component. In the right-angled

triangle, AFF, the angle at A is equal to L Hence,

FF=AD^f'sml = fco8lsml = ^^^— (102)

AF =f cost =fcos'l (103)

From (102), we see that the tangential component is

at the equator, goes on increasing till / = 45°, where it is a
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maximum, and then goes on decreasing till the latitude is

90°, when it again becomes 0.

The effect of the tangential component is to heap up the

particles of the earth about the equator, and, were the

earth in a fluid state, this process would go on till the effect

of the tangential component was counterbalanced by the

component of gravity acthig down the inclined plane

thusformed, when the particles would be in equilibrium.

The higher analysis shows that the form of equilibrium

is that of an oblate spheroid, differing but slightly from

that which our globe is found to possess by actual measure-

ment.

From equation (103), we see that the normal component

of the centrifugal force varies as the square of the cosine

of the latitude.

This component is directly opposed to gravity, and, con-

sequently, tends to diminish the apparent weight of all

bodies on the surface of the earth. The value of this com-

ponent is greatest at the equator, and diminishes toward

the poles, where it is 0. From the action of the normal

component of the centrifugal force, and because the flat-

tened form of the earth due to the tangential component

brings the polar regions nearer the centre of the earth, the

measured force of gravity ought to increase in passing from

the equator toward the poles. This is found to be the

case.

The radius of the earth at the equator is about 3962.8

miles, which, multiplied by S-tt, will give the entire circum-

ference of the equator. If this be divided by the number

of seconds in a day, 86400, we find the value of v. Substi-

tuting this value of v and that of r just given, in equation

(99), we find,

f= 0.1112 ft.,
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for the centrifugal force at the equator. If this be multi-

plied by the square of the cosine of the latitude of any

place, we have the value of the normal component of the

centrifugal force at that place.

Centrifugal Force of Extended Masses.

129. We have supposed, in what precedes, the dimen-

sions of the body under consideration to be extremely small

;

let us next examine the case of a body, of any dimensions

whatever, constrained to revolve about a fixed axis. If the

body be divided into infinitely small elements, whose di-

rections are parallel to the axis, the centrifugal force of

each element Avill be equal to the mass of the element into

the square of its velocity, divided by its distance from the

axis. If a plane be passed through the centre of gravity

of the body, perpendicular to the axis, we may, without

impairing the generality of tlie result, suppose the mass of

each element concentrated at the point in which this plane

cuts the line of direction of the element.

Let XCY be the plane through the centre of gravity

perpendicular to the axis of revolution, AB the projection

of the body on the plane, and C the —-^^

point in which it cuts the axis. Take

C as the origin of a system of rectan-

gular co-ordinates ; let OJC be the axis

of X, CY the axis of Y, and m be the

point at which the mass of one filament ^ ^

is concentrated, and denote that mass ^^^' ^^^'

by m. Denote the co-ordinates of w hjx and y, its dis-

tance from C by r, and its velocity by v. The centrifugal

force of the mass, m, is equal to

r
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If we denote the angular velocity of the body by V, the

velocity of m will be r V, which, in the expression just

deduced, gives,

mr V'\

Let this force be resolved into components parallel to

GX and CY. We have, for these components,

mr V"cosm OX, and, 7nr V'^simnCX,

But, from the figure,

G0S7nCX — —, and, smmCX=K
r r

Substituting these in the preceding expressions, and

reducing, we have, for the components,

mxV''\ and, myV"^.

Similar expressions may be deduced for each of the other

filaments. If we denote the resultant of the components

parallel to CX by X, and of those parallel to CY by Y,

we have,

X=i:{mx)V'\ and, Y:=^I(my)V'\

If we denote the mass of the body by if, and suppose it

concentrated at its centre of gravity, 0, whose co-ordi-

nates are x^, and y^, and whose distance from C is 7\, we

shall have, from the principle of the centre of gravity,

(Art. 55),

I{mx) = Mx^, and ^{my) = My^.

Substituting above, we have,

X^MV^'x^, and, F^rJfF'y.

If we denote the resultant centrifugal force by R, we
have.

R = VX' 4- Y' = MV'WK + y" = ^V'\^.



172 MECHANICS.

But if the vel()(;ity of the centre of gravity be denoted

by F, we have,

r= FV.; or, F" = ^ ;
' 1

which, in the preceding result, gives,

R =^ (104)

The direction of R is given by the equations,

cos a = -77 = -, and cos £> = -77- = —

;

hence, it passes through the centre of gravity, ; that is,

the centrifugal force of an extended mass, constramed to

revolve about a fixed axis, is the same as though the mass

luere concentrated at its centre of gravity.

Principal Axes.

130. Suppose the axis about which a body is revolving

to be free, so that the body can move in any manner. If

the body is homogeneous and the axis not one of symme-

try, the centrifugal forces of the elements of the body will

not balance each other, and unequal pressures will be

exerted on different parts of the axis. This inequality of

pressure will change the position of the axis of revolution

at each instant, and the change will go on, till an axis is

reached, that is pressed equally in all directions by the cen-

trifugal forces of the elements. Such an axis is called a

principal axis. It may be shown, by the higher analysis,

that a body has at least tliree principal axes, which pass

through its centre of gravity, and are at right angles to

each other. It may also be shown that the moment of

inertia with respect to one of these axes is greater, and
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with respect to another less, than with reference to any

other line through the centre of gravity. When the body

is revoh-iftg about the former, its rotation is stable; when

about the latter, it is unstable. The former may be called

an axis of stability, and the latter an axis of instability.

In tlie case of certain regular bodies, there may be an infi-

nite number of either kind. Thus, in an oblate spheroid,

the polar axis is an axis of stability, and the only one,

whilst any diameter of an equatorial section is an axis of

instability. In a prolate spheroid, the polar axis is an axis

of instability, and the only one, whilst any diameter of the

equatorial section is an axis of stability. In a right cone

with a circular base, the axis of the cone is an axis of

instability; but any line through the centre of gravity, and

perpendicular to the axis, is an axis of stability.

Experimental Illustrations.

131. The principles relating to centrifugal force admit

of experimental illustration. The instrument represented

in the figure may be employed to _
show the value of the centrifugal ^ u56^S^

force. A is a vertical axle, on

E D
C

which is mounted a wheel, F. com- a
lA

municating with a train of wheel-
|j||

work, by means of which the axle PJg- los.

may be made to revolve with any angular velocity. At

the upper end of the axle is a forked branch, BC, sustain-

ing a stretched wire. D and E are balls pierced by the

wire, and free to move along it. Between B and ^ is a

spiral spring, whose axis coincides with the wire.

Immediately below the spring, on the horizontal part of

the fork, is a scale for determining the distance of the ball,

E, from the axis, and for measuring the degree of compres-
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sion of the spring. Before using the instrument, the force

required to produce any degree of compression of the

spring is determined experimentally, and marked on tlie

scale.

If a motion of rotation be communicated to the axis,

the ball D will at once recede to C, but the ball E will be

restrained by the spring. As the velocity of rotation

increases, the spring is compressed more and more, and the

ball E approaches B. By a suitable ari-angement of wheel-

work, the angular velocity of the axis corresponding to

any compression may be ascertained. We have, therefore,

all the data necessary to verify the law of centrifugal

force.

If a vessel of water be made to revolve about a vertical

axis, the inner particles recede from the axis on account

of the centrifugal force, and are heaped up about the sides

of the vessel, imparting a concave form to the upper sur-

face. The concavity becomes greater as the angular velo-

city is increased.

If a circular hoop of flexible material be mounted on

one of its diameters, its lower point being fastened to the

horizontal beam, and a motion of rotation imparted, the

portions of the hoop farthest from the axis will be most

aff*ected by centrifugal force, and the hoop will assume an

elliptical form.

If a sponge, filled with water, be attached to one of the

arms of a whirling machine, and motion of rotation im-

parted, the water will be thrown from the sponge. This

principle has been used for drying clothes. An annular

trough of copper is mounted on an axis by radial arms,

and the axis connected with a train of wheelwork, by

means of which it may be put in motion. The outer wall

of the trough is pierced with holes for the escape of water,
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and a lid confines tlie articles to be dried. To use this

instrument, the linen, after being washed, is placed in

the annular space, and a rapid rotation imparted to the

machine. The linen is thrown against theouter wall of

the instrument, and the water, urged by the centrifugal

force, escapes through the holes. Sometimes as many as

1,500 revolutions per minute are given to the drying ma-

chine, in which case, the drying process is very rapid and

very perfect.

If a body revolve with sufficient velocity, it may happen

that the centrifugal force generated will be greater than

the force of cohesion that binds the particles together, and

the body be torn asunder. It is a common occurrence for

large grindstones, when put into rapid rotation, to burst,

the fragments being thrown away from the axis, and often

producing much destruction.

When a wagon, or carriage, is driven round a corner, or

is forced to run on a circular track, the centrifugal force is

often sufficient to throw loose articles from the vehicle, and

even to overthrow the vehicle itself When a car on a rail-

road track is forced to turn a sharp curve, the centrifugal

force throws the cars against the rail, producing a great

amount of friction. To obviate this difficulty, it is cus-

tomary to raise the outer rail, so that the resultant of the

centrifugal force, and the force of gravity, shall be perpen-

dicular to the plane of the rails.

Elevation of the Outer Rail of a Curved Track.

132. To find the elevation of the outer rail, so that

the resultant of the weight and centrifugal force shall

be perpendicular to the line joining the rails, assume

a cross section through the centre of gravity, O. Take
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the horizontal, GA, to represent

the centrifugal force, and GB to

represent gravity. Construct

their resultant,G C. Then must

DEhe perpendicular to GC
Denote the velocity of the car

by V, the radius of the curved

track by r, the force of gravity Fig. 109.

by g, and the angle, DEF, or its equal, BGC,hj a. From
the right-angled triangle, GBO, we have,

tana = BO
GB'

But, BC, or its equivalent, GA, is equal to —, and GB is

equal to g ; hence.

tana =
gr

Denoting the distance between the rails, by d, and the

elevation of the outer rail above the inner one, by h, we

have,

tana = — , very nearly.

Equating the two values of tana, we have,

d~ gr' '
' ^

~ gr'

Hence, the elevation of the outer rail varies as the square

of the velocity directly, and as the radius of the curve

inversely.

It is obvious tliat the elevation ought to be different for

different velocities, which, from the nature of the case, is

impossible. The correction is, therefore, made for some

assumed velocity, and then such a form is given to the
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tire of the wheels as will complete the correction for other

velocities.

The Conical Pendulum.

133. The conical pendulum consists of a ball attached

to one end of a rod, the other end of which is connected,

by a hinge-joint, with a vertical axle. When the axle is

put in motion, the centrifugal force causes the ball to

recede from the axis, until an equilibrium is established

between the weight of the ball, the centrifugal force, and

the resistance of the connecting rod. When the velocity is

constant, the centrifugal force is constant, and the centre of

the ball describes a horizontal circle, whose radius depends

on the velocity. To determine the time of revolution :

Let BD be the axis, A the ball, B the hinge-joint, and

AB the connecting rod, whose mass is so small, that it

may be neglected, in comparison with that -g

of the ball.

Denote the time of revolution, by t, the

length of the arm, by I, the centrifugal

force, by /, and the angle, ABC, by 9.

Draw A C perpendicular to BD, and denote

^(7, by r, and^(7, by7^.
<'''

From the triangle, ABC, we have,
'"'

r = h tancp; and since r is the radius of the circle described

by A, the distance passed over by A, in the time t, is equal

to 'Z'Ttr, or, 2'7r/itan9. Denoting the velocity of A, by v, we

have, from article (102),

S^r/^tana)

But the centrifugal force is equal to the square of the

velocity, divided by the radius ; hence,

/=^^ (105)
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The /orces that act on A, are the centrifugal force, in

the dir<;ction AF, the force of gravity, in the direction AG,
and the resistance of the connecting rod, in the direction

AB. In order that the ball may remain at an invariable

distance from the axis, these must be in equilibrium.

Hence, (Art. 33),

g : f :: sinBAF :: s'mBAG;

but, m\BAF= sin(90° + cp) = cos(p;

and, sin^^6^ = sin(180° — qp)
— s'mcp.

We have, therefore,

g • / • • cos(p : sin(p, .*. f= g tan^.

Equating these values of f, we have,

4'7rV^ tanqj = ^tan(p.

Solving with respect to /,

/ = 2^|/^ (106)

That is, the time of revolution, is equal to the time of

a double vibration of a pendulum whose length is h.

The Governor.

134. The principle of the conical pendulum is employed

in the governor, a machine attached to engines, to regulate

the supply of motive force.

^^ is a vertical axis connected

with the machine near its Avorking-

point, and revolving witli a velocity

proportional to tliat of the working-

point; i^^^and (W are arms turning

about AB, and bearing heavy balls,

D and E, at their extremities ; these

bars are united by hinge-joints with
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two other bars at G and F, and also to a ring at H, that

is free to slide up and down the shaft.

The ring, H, is connected with a lever, HK, that acts

on the valve in the pipe that admits steam to the cylinder.

When the shaft revolves, the centrifugal force causes

the balls to recede from the axis, and the ring, H, is

depressed ; and when the velocity has become sufficiently

great, the lever closes the valve. If the velocity slackens,

the balls approach the axis, and the ring, H, ascends, open-

ing the valve. In any given case, if Ave know the velocity

required at the working-point, we can compute the required

angular velocity of the shaft, and, consequently, the value

of t. This value of /, substituted in equation (106), gives

the value of h. We may, therefore, proDerly adjust the

ring, and the lever, HK.

Examples.

1. A ball weighing 10 lbs. is whirled round in a circle whose radius

is 10 feet, with a velocity of 30 feet. What is the acceleration due

to centrifugal force ? Ans. 90 ft.

2. In the preceding example, what is the tension on the cord that

restrains the ball ?

SOLUTION.

Denote the tension, in pounds, by t; then, since the pressures pro-

duced are proportional to the accelerations, we have,

10 : ^ : : 5' : 90, .'. ^= 28 lbs., nearly. Arm.

3. A body is whirled round in a circular path whose radius is 5

feet, and the centrifugal force is equal to the weight of the body.

What is the velocity of the moving body ?

SOLUTION.

Denoting the velocity by «, we have the centrifugal force equal

to —
; but, by the conditions of the problem, this is equal to gravity;

hence, — = 32^ ; or, v =12.7 ft. Ans.
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4. lu how many seconds must the earth revolve that tlie centrif-

ugal force at the equator may counterbalance the force of gravity,

the radius of the equator being 3962.8 miles V

SOLUTION.

Reducing miles to feet, and denoting the required velocity, by «,

we have.

V= v/82^ X 20928584,
20923584

But the time of revolution is equal to the circumference of the
equator, divided by the velocity. Denoting the time by t, we have,

^
_ 27r X 20923584

and, substituting for «, its value, taken from the preceding equation,

we have,

, _ 2;r \/20923584 27t X 4574 ,^,.,
'
= 7= = ^-;^ = 5068 sees. Ans.

v/321 0.67

5. A body is placed on a horizontal plane, which is made to re-

volve about a vertical axis, with an angular velocity of 2 feet. How
far must the body be situated from the axis tliat it may be on the

point of sliding outward, the coefficient of friction between the body
and plane being equal to .6 ?

SOLUTION.

Denote the required distance by r; then will the velocity of the

body be 2r, and the centrifugal force 4r. But the acceleration due

to the force of friction is equal to 0.6 X g= 19.3 ft. From the con-

ditions of the problem, these are equal, hence,

4/'= 19.3 ft., .-. r= 4.825 ft. Ans.

6. What must be the elevation of the outer rail of a track, the

radius being 3960 ft., the distance between the rails 5 feet, and the

velocity of the car 30 miles per hour, that there may be no latera\

thrust? Ans. 0.076 ft., or 0.9 in., nearly.

7. The distance between the rails is 5 feet, the radius of the curve

600 feet, and the height of the centre of gravity of the car 5 feet.

What velocity must the car have that it may be on the point of being

overturned by the centrifugal force, the rails being on the same level?

We have.

/5 X 32i X 600 ,^^ - ^^, . .

V = \/ r L = 98 ft., or 66| m., per hour. Ans.
V < X
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Definition and Measure of Work.

135. By the term tvork, in mechanics, is meant the effect

produced by a force in overcoming a resistance. It implit'S

that a force is exerted through a certain space ; thus, a

force exerted to raise a weight is said to work, and the

quantity of ivorh performed depends, first on the weight

raised, and secondly on the height through wliich it is

raised. Because other kinds of work may be assimilated to

that of raising a weight, it is customary to assume tlie work

necessary to raise a given weight, to a given height, as a

standard to which all kinds of work may be referred.

In this country, and in Great Britain, the unit generally

adopted is the work required to raise a weight of onepoiind

through a height of one foot. This unit is called ?i foot-

pound. In France, the assumed unit is the work required

to raise a kilogramme through a metre ; it is called a kilo-

grammetre.

If we denote the force exerted by P, the space through

which it is exerted by |?, and the quantity of work per-

formed by ft we shall have,

Q = Pv-

If the force is variable, we may conceive the path divided

into equal parts, so small that, for each part, the pressure

may be regarded as constant. If we denote the length of

one of these parts by jo, and the force exerted whilst de-

scribing it by jP, we shall have, for the corresponding quan-

tity of work, P;j, and for the entire quantity of work,

denoted by Q, we shall have the sum of the elementary

quantities of work ; or, since p is the same for each.

The quotient obtained by dividing the entire quantity of
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work by the entire path, is called the mean pressure, or the

mean resistance, and is evidently the force which, acting

uniformly through the same path, would accomplish the

same work.

In estimating work performed by engines and other

machines, a unit is adopted that involves the additional

idea of time. This unit is called a horse potver. A horse

power is a power capable of raising 33,000 lbs. through a

height of 1 foot in 1 minute. When we say that a machine

is one of 10 horse power, we mean that it is capable of per-

forming 330,000 units of work in a minute.

Work, when the Power acts Obliquely.

136. Let PD be a force, and AB the path that the body

D is constrained to follow. Denote the angle PDs by a,

and supposeP to be resolved into two

components, one perpendicular, and

the other parallel to AB. We have, a ^ i> B

for the former, Psina, and, for the lat- ^^^* ^^^'

ter, Pcosft.

The former can produce no work, since, from the nature

of the case, the point cannot move in the direction of the

normal ; hence, the latter is the only component that

works. Let sD be the space through which the body is

moved, and denote the quantity of work, by Q ; we have,

Q = Pcosa X sD.

Let fall the perpendicular ss' from s, on the direction of

the force, P. From the right-angled triangle, Dss', we have,

sD X cosa = s'D.

Substituting this in the preceding equation, we get,

Q = PX s'D,
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Tluit is, the quantity of work of a, force acting obliquely

to the path along which the point of application is con-

strained to move, is equal to the intensity of the force mul-

tiplied by the projection of the path on the direction of the

force.

If we take sD, infinitely small, s'JJ will be the virtual

velocity of D, and the expression for the quantity of work

of Pwill be its virtual moment, (Art. 36). Hence, we say

that the elementary quantity of work of a force is equal to

its virtual moment, and, from the principle of virtual mo-

ments, we conclude that the algebraic sum of the element-

ary quantities of work of any number of forces applied at

the same point, is equal to the elementary quantity of work

of their resultant. What is true for the elementary quan-

tities of work at any instant, must be equally true at any

other instant. Hence, the algebraic sum of all the element-

ary quantities of work of the components is equal to the

algebraic sum of the elementary quantities of work of

their resultant; that is, the work of the components is

equal to the work of their resultant.

This principle hardly seems to require demonstration,

for, from the definition of a resultant, it Avould seem to be

true of necessity. If the forces be in equilibrium, the

entire quantity of work is equal to 0.

This principle is used in computing the quantity of

work required to raise material for a wall or building ; for

raising material from a shaft ; for raising water from one

reservoir to another; and for a great variety of similar

operations. In this connection, the principle may be enun-

ciated as follows

:

The algebraic sum of the quantities of work required to

raise the parts of a system through any vertical spaces, is

equal to the quantity of work required to move the whole
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system through the height described hy the centre of gravity

of the system.

It also follows, that, if atl the pieces of a machine, ivhich

moves without friction, he in equilihrinm in all positions,

the centre of gravity of the system tvill neither ascend nor

€lescend lohilst the machine is in motion.

Rotation.

137. When a body, restrained by an axis, is acted on by

a force not passing through the axis, it takes up a motion

of rotation. In this variety of motion, each point describes

a circle whose plane is perpendicular to, and whose centre

is in, the axis. The velocity of any particle is equal to its

distance from the axis multiplied by the angular velocity

of the body. The time of revolution of all the particles

being the same, the velocities of different particles are pro-

portional to their distances from the axis.

Quantity of Work of a Force producing Rotatiom.

138. If a force be applied obliquely to the axis of rotation,

we may conceive it to be resolved into two components, one

parallel, and the other perpendicular to the axis. The

effect of the former will be counteracted by the resistance

of the axis; the effect of the latter will be exactly the

same as that of the applied force. We need, therefore,

consider those components only, whose directions are per-

pendicular to the axis.

Let P be a force whose direc- t> b

tion is perpendicular to the axis, •. tv—y'^^'A.
*^

but does not intersect it. Let \ //yf--^'^

be the point in which a plane r^/{^'^'

through P, perpendicular to the ^ ^^^

axis, intersects it. Let A and C
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be any two points on the direction of P. Suppose P to turn

the system through an infinitely small angle, and let B and

D he the new positions of A and C. Draw OE, Ba, and

Dc perpendicular to PE ; draw also, AO, BO, CO, and

DO. Denote OA by r, OC by r', OE by p, and the path

described by a point at a unit's distance from 0, by 6',

Since the angles A OB, and COD are equal, from the nature

of the motion, we liave,AB = H', and CD = r' d' ; and since

the angular displacement is infinitely small, these may be

regarded as straight lines perpendicular to OA and OC.

From the right-angled triangles ABa and CDc, we have,

Aa — rd'cosBAa, and Co = r'G'cosDCc.

In the right-angled triangles ABa, and OAE, AB is

perpendicular to OA, and Aa to OE ; hence, BAa, and

AOE, are equal; hence,

P
cosBAa = cos^ OE — -

.

r

In like manner,

cosDCc = cosCOEz=^,.
r

Substituting in the preceding equations, we have,

Aa = p&', and Cc=]y^'j -'. Aa=Coj
whence,

P.Aa= P.Cc= Pp&'.

The first member of the equation is this quantity of work

of P, Avhen its point of application is A ; the second is its

quantity of work, when the point of application is at C.

Hence, we conclude, that the ele^nenfary quantity of ivork

of a rotating force is always the same, ivherever its point of

application may 'be tahen, provided its line of direction re-

main unchanged.

We conclude, also, that the elementary quantity of work
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is equal to the intensity of the force multiplied by its lever

arm into the elementary space described by a point at a

unit's distance from the axis.

If we suppose the force to act for a unit of time, the

intensity and lever arm remaining the same, and denote

the angular velocity, by 4, we shall have,

Q' = Pp&.

For any number of forces similarly applied, we shall

have,

Q = I{Pp)& (107)

If the forces are in equilibrium, we have, (Art. 34),

^(Pp) = ; consequently, Q = 0.

Hence, if any number of forces tending to produce

rotation are in equilibrium, the entire quantity of work of

the forces is equal to 0.

Accumulation of Work.

139. When a force acts on a body, to impart motion, it

expends a certain quantity of work in overcoming the

body's inertia. This work is said to be stored up in the

body; and if a resistance be offered to its motion, the entire

quantity of work will be given out, and expended on the

resistance. A body in motion may, therefore, be regarded

as the representative of a quantity of work which, under

certain circumstances, is capable of being utilized. The

work stored up, or accumulated, depends on the mass of

the moving body, and also on the velocity with which it

moves. To find an expression for it, let us denote the

weight of the body by W, its velocity by v, and the

quantity of accumulated work by Q. If we suppose it to

be projected vertically upward, with the velocity, v, it will

rise to the height due to that velocity, that is, the work
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stored up in the body is sufficient to raise the weight, Wy

through a height, h. Hence,

Q = Wh.

But, h ~ |— ,
(Art. 105). Substituting this value of A,

we have,

W

Denoting the mass of the body by M, we have, (Art. 15),

W— = M, and this, in tlie preceding equation, gives,

Q = lMv\

Hence, the accumulated ivork in a moving hody is equal to

one-half the tody's mass into the square of its velocity.

The expression ^Mv"^ is called the living force of the

body. Hence, the living force of a hody is equal to half its

mass, inultipUed ly the square of its velocity. The living

force of a body is the measure of the quantity of work

expended in producing the velocity, or, of the quantity of

work the body is capable of giving out.

When forces tend to increase the velocity, their work is

positive ; when they tend to diminish it, their work is

negative. It is the aggregate of all the work expended,

both positive and negative, that is measured by the quan-

tity, ^mv"^.

If, at any instant, a body whose mass is m, has a velocity

V, and, at a subsequent instant, its velocity has become v',

we have for the accumulated work at these two instants

Q = ^7nv^, Q' = ^7nv'^;

and, for the aggregate quantity of work expended in the

interval,

Q" ^^iy'-'-v-") (108)
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When tlie motive forces, during the interval, perform

more work than the resistances, v' is greater than v, and

there is an accumulation of work. When .the work of the

resistances exceeds that of the motive forces, v exceeds i'',

Q", is negative, and there is a loss of work which is ex-

pended on the resistances.

Living Force of Revolving Bodies.

140. Denote the angular velocity of a revolving body by

&, the masses of its elementary particles by^«, 7n', &c., and

their distances from the axis of rotation, by r, r, &c. Their

velocities will be r&, r'&, &c., and their living forces, ^mr^^^,

^m'r"^^^, &c. Denoting the entire living force of the body

by X, we have, by summation, recollecting that & is the

same for all the terms,

L=^I{mry (109)

But I{m?'^) is the moment of inertia of the body with

respect to the axis of rotation. Denoting the entire mass

by M, and its radius of gyration, with respect to the axis of

rotation, by k, we have,

I(mr') = Mk'; :. L = ^^MFd' (110)

If, at any subsequent instant, the angular velocity has

become &', we have,

L' ^ iMk'r;

and, for the gain or loss of living force in the interval,

L" = iMk'{r-^') (Ill)

If, in equation (110), we make ^ = 1, we have,

L'" = i^(mr') ; or, 2'(mr') = 2Z.

That is, the moment of inertia of a body, with respect to

an axis, is equal to twice its living force when the angular
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velocity is equal to 1, or, to twice the quantity of work that

must be expended to generate a unit of angular velocity.

The principle of living force is applied in discussing the

motion of machines. When the power performs more work

than is necessary to overcome the resistances, the velocities

of the parts increase, and a quantity of Avork is stored up,

to he given out again when the resistances require more

work to overcome them than is furnished by the motor.

In many machines, pieces are introduced to equalize the

motion ; this is particularly the case when either the power

or the resistance is variable. Such pieces are called /y-

luheels.

Fly-Wheels.

141. A fly-wheel is a heavy wheel mounted on an axis,

near the point of application of the force it is designed to

regulate. It is generally composed

of a rim, connected with the axis by

radial arms. Sometimes it consists

of radial bars, carrying spheres of

metal at their outer extremities.

Let us denote the mass of the wheel

by M, its radius of gyration by k, the

quantity of work stored up in any ^^^' ^^^'

time by §, and the niitial and terminal angular velocities

by &' and &". We shall have, from equation (111),

Q = iMk\d"' - &") (112)

If ^">4', Q is positive and work is stored up ; if, ^" <&^,

Q is negative, and the wheel gives out work.

If the angular velocity increase from &' to ^", and then

decrease to &', and so on, alternately, the work accumulated

during the first part of each cycle is given out during the

second part, and any device that will make &' and d" more
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nearly equal, will contribute toward equalizing the motion

of the wheel. By suitably increasing the mass and radius

of gyration, their difference may be made as small as de-

sirable. Let the half-sum of the greatest and least angular

velocities be called the mean angular velocity, and denote

it by S"'. We shall have —— = d", and by factoring the

second member of (lli^), we have,

whence, by substituting the value of d" + a',

Q = Mk\d" - ^')a ''

(113)

Let us suppose the difference between the greatest and

least velocity, equal to the n^^ part of their mean, that is,

that

This, in (113), gives

From this equation the moment of inertia of the wheel

may be found, when we know m, Q, and &'". The value of

n may be assumed ; for most kinds of work a value of

from 6 to 10 will be found to give sufficient uniformity

;

the value of &'" depends on the character of the work to be

performed, and Q is made known by the character of the

motion to be regulated.

Composition of Rotations.

142. Let a body, ACBD, be acted on by an impulse that

would cause it to revolve about AB with an angular velo-

city V. and at the same instant let it be acted on by a second

impulse that would cause it to revolve about DC with an
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angular velocity v'. Suppose the axes to intersect at 0, and

from any assumed point in tlieir plane, draw perpendicu-

lars to AB and DC, denoting the former by x and the

Utter by y. Then will the velocity of the assumed point

due to the first force be vx, and

its velocity due to the second force ^ -^
will be v'y. Now, the point can /^ / N.

always be taken, so that rotation / a/ ~'^^fK\

about the first axis shall tend to [ /\^>^/
|

depress the point below the plane, A^^ ^ ^ -h

and about the second axis to elevate V /
it above the plane. In this case \ ^^/
the effective velocity of the point is

j,.^

v'y — vx.

If this velocity is equal to 0, the assumed point remains

fast, and, we have,

vx ~v'y ; OY, X : y : : v' : v (114)

To find the position of the point, in the case supposed,

lay off OH equal to v, and 01 equal to v', and on these as

sides, construct the parallelogram IH, and draw its diagonal

OK, Then will any point, F, of this diagonal satisfy pro-

portion (114). For, let OH and 01 for a moment be

regarded as forces, and OK their resultant, and supposePF
and FG to be perpendicular to OH and 01. Then if P
be taken as a centre of moments, we have, (Art. 34),

OHx FF= 01 X FG; or, ?; X FF= v' X FG.

From which we find,

FF '. FG \\ V \ v; or, FF -. FG w x \ y.

Hence, every point of OK remains at rest ; it is conse-

quently tlie resultant axis of rotation. We have, therefore,

the following principles:

If a body be acted on simultaneously by two impulses, each
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tending to impart rotation about a separate axis, the result-

ant motion will be one of rotation ahout a third axis lying

in the plane of the other ttvo, and passing through their

p)oint of intersection.

Tlie direction of the resultant axis coincides with the

diagonal of a parallelogram, whose sides are the component

axes, and whose lengths are proportional to the angular ve-

locities.

Let (9// and 0/ represent the angular velocities v and v',

and OK the diagonal of the parallelogram constructed on

these lines as sides. Take any point, /, on
^

the second axis, and let fall perpendiculars

onO^and OK; denote the former by r , and

the latter by r"; denote, also, the angular o ' H
velocity about OK, by v". Since the space ^^=- ^^^

passed over by /, in any time, t, depends only on the first

force, it will be the same whether we regard the revolution

as taking place about OH or OK. If Ave sujipose the

rotation to take place about OH, the space passed over in

the time, t, will be rvt ; if we suppose the rotation to take

place about OK, the space passed over in the same time

will be r''v"t. Placing these equal, we have, after reduc-

tion,

""=^,^' (115)

If we suppose, as before, that OH and 01 are forces, and

)K their resultant, and take / as a centre of moments,

we have,
rOK X r" = vr ; or, OK = —v.
r

By comparing this with equation (115), we have,

v" = OK.

Hence, the resultant aiigular velocity is equal to the
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diagonal of the parallelogram described on the component

angular velocities as sides.

By a course of reasoning similar to that employed in

demonstrating the parallelopipedon of forces, we might

show, that,

If a body be acted on by three simultaneous impulses,

each tending to 2^'^oduce rotation about axes intersecting,

the resultant motion will be one of rotation about the diag-

onal of the imrallelopipedon ivhose adjacent edges are the

component angular velocities, and the resultant angular

velocity will be equal to the length of this diagonal.

The principles just deduced are called the parallelogram

dnd the parallelopipedon of rotations.

Application to the Gyroscope.

143. The gyroscope is an instrument that may be used

to illustrate the laws of rotary motion. It consists of a

heavy wheel, A, mounted

on an axle, BC. This y'X-
axle is attached, by pivots, '^

to the inner edge of a cir-

cular hoop, DE, within

wiiich the wheel. A, can ^^^- ^^'^•

turn freely. On one side of the hoop, and in the prolongation

of the axle, BC, is a bar, EF, having a conical hole drilled

on its lower face to receive the point of a vertical standard,

O. If a string be wrapped round the axle, BC, and then

rapidly unwound, so as to impart a motion of rotation to

the wheel. A, in the direction indicated by the arrow-head,

it is observed that the machine, instead of sinking down-

ward under the action of gravity, takes up a retrograde

orbital motion about G, as indicated by the arrow-head, H.
For a time, the orbital motion increases, and, under certain

9
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oircamstances, the bar, EF, is observed to rise upward in

a retrograde spiral direction ; and, if the cavity for receiv-

ing the pivot is pretty shallow, the bar may even be thrown

utf the standard. Instead of a bar, EF, the instrument may
simply have an ear at E, and be suspended by a string.

The phenomena are the same as before.

Before explaining the phenomena, it will be necessary to

assume conventional rules for giving signs to the different

rotations.

Let OX, Y, and OZ, be three rectangular axes. It has

been agreed to call all distances, estimated from 0, toward

either X, F, or Z, positive ; con-

sequently, all distances estimated

in contrary directions must be n ) D'il
negative. If a body revolve J^

~~^

about either axis, in such a man- y" ^ \J

ner as to appear to an eye on the Fig. iis.

positive portion of the axis, and looking toward the origin,

to move in the same direction as the hands of a watch, that

rotation is called positive. If rotation take place in an

opposite direction, it is negative. The arrow-head. A, indi-

cates the direction of positive rotation about the axis of X,

the arrow-head, B, the direction of positive rotation about

the axis of Y, and the arrow-head, C, the direction of posi-

tive rotation about the axis of Z.

Suppose the axis of the wheel of the gyroscope to

coincide with the axis of X, taken horizontal ; let the

standard coincide with the axis of Z, the axis of Y being

perpendicular to both. Let positive rotation be communi-

cated to the wheel by a string, and then let the instru-

ment be abandoned to the action of gravity. During the

first instant, the force of gravity will impart to it a positive

rotation about the axis of Y, Denote the angular velocity
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about the axis of JT, by v, and about the axis of Y, by v';

lay off in a positive direction on the axis of JT, OB equal to

V, and on the positive direction of the axis of Y, OP equal

to v', and complete the parallelogram, OF. Then will

OF represent the resultant axis of revolution, and the

angular velocity. In moving from OD to OF, the axis

has a positive, or retrograde orbital motion about the axis

of Z. To construct the resultant axis for the second

instant, we must compound three angular velocities. Lay

off on a perpendicular to OF and OZ, the angular velocity

due to gravity, and on OZ the angular velocity in the

orbit ; construct a parallelopipedon on the three velocities,

and draw its diagonal through 0. This diagonal will

coincide with the axis for tne second instant, and will

represent the resultant angular velocity. For the next

instant, we proceed as before, and so on continually. Since,

in each case, the diagonal is greater than either edge of the

parallelopipedon, it follows that the angular velocity will

continually increase, and, were there no hurtful resistance,

this increase would go on indefinitely. The effect of gravity

is continually exerted to depress the centre of gravity

of the instrument, whilst the effect of the orbital rotation

is to elevate it. When the latter prevails, the axis of the

gyroscope rises; when the former prevails, the gyroscope

descends. Whether one or the other of these conditions

is fulfilled, depends on the angular velocity of the wheel,

and the position of the centre of gravity of the instrument.

Were the instrument counterpoised so as to place the centre

of gravity exactly over the pivot, there would be no orbital

motion, neither would the instrument rise or fall. Were

the centre of gravity thrown on the opposite side of the

pivot, the rotation due to gravity would be negative, and

the orbital motion would be direct.



CHAPTER VII.

MECHANICS OF LIQUIDS.

Classification of Fluids.

144. A FLUID is a body whose particles move freely

amongst each other, each particle yielding to the slightest

force.

Fluids are of two classes : liquids, of which water is a

type, and gases, or vapors, of which air and steam are types.

The distinctive property of the first class is, that they are

almost incompressible ; thus, water, on being pressed by a

force of 15 lbs. on each square incli of surface, suffers a

diminution of not more than the g-ooVoirth of its bulk.

Bodies of the second class are readily compressible; thus,

air and steam are easily compressed into smaller volumes,

and when the pressure is removed, they expand and occupy

larger volumes.

Most liquids are imperfect; that is, there is more or less

adherence between their particles, giving rise to viscosity.

In what follows, they will be regarded as destitute of vis-

cosity, and homogeneous. In certain cases fluids may also

be regarded as destitute of weight, without impairing the

validity of the conclusions.

Principle of Equal Pressures.

145. From the nature of a fluid, each of its particles is

perfectly movable in all directions. From this we deduce

the following fundamental law, viz. : If a fluid he in equi-

librium, under the action of any forces whatever, each ptar-
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tide of the mass is equally pressed in all directions ; for, if

any particle were more strongly pressed in one direction

than in the others, it would yield in that direction, and

motion would ensue, which is contrary to the hypothesis.

This is called the 'principle of equalpressures.

It follows from the principle of equal pressures, that if a

fluid, confined in a vessel, be pressed at any part of its sur-

face, the pressure will be transmitted without change of

intensity to every part of the inner surface of the vessel.

This may be illustrated as follows: let a vessel, AB, be

filled with water, and let two pistons, C and D, be fitted to

corresponding openings in the side of

the vessel, and suppose the fluid to be

in equilibrium. If any extraneous

force be applied to either piston, a / \

second force must be applied to the M JB

other to hold the first in equilibrium, \ /
and it will be found that these forces ^^

—

^
are proportional to the areas of the ^'^' ^^^*

pistons to which they are applied. This relation holds true,

no matter what the areas of the pistons, or at what portion

of the vessel they may be applied.

A pressure transmitted through a fluid in equilibrium,

to the surface of a containing vessel, is normal to that sur-

face; for if it were not, we might resolve it into two

components, one normal to the surface, and the other tan-

gential ; the effect of the former would be destroyed by the

resistance of the vessel, whilst the latter would impart

motion to the fluid, which is contrary to the supposition

of equilibrium. In like manner, it may be shown, that

the resultant of all the pressures, acting at any point of

the free surface of a fluid, is normal to the surface at that

point.
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When the only force acting is gravity, the surface is level.

For small areas, a level surface coincides sensibly with a

horizontal plane. For larger areas, as lakes and oceans, a

level surface coincides with the general surface of the earth.

AVere the earth at rest, the level surface of lakes and oceans

would be spherical ; but, on account of the centrifugal force

arising from the rotation of the earth, it is that of an ellip-

soid, whose axis of revolution is the axis of the earth.

Pressure due to Weight,

146. If an incompressible fluid be in equilibrium, the

pressure at any point arising from the weight of the fluid,

is proportional to the depth of that point below the free

surface.

Take an infinitely small surface, supposed horizontal, and

conceive it to be the base of a vertical prism whose altitude

is its distance from the free surface. Let this filament be

divided, by horizontal planes, into infinitely small, or ele-

mentary prisms. From the principle of equal pressures,

the pressure on the lower face of any one of these prisms

is greater than that on its upper face, by the weight of the

prism, whilst the lateral pressures counteract each other.

Hence, the pressure on the lower face of the first prism

from the top, is equal to its weight ; that on the lower face

of the second is equal to the weight of the first, plus the

weight of the second, and so on to the bottom. Hence,

the pressure on the assumed surface is equal to the weight

of the entire column of fluid above it. Had the assumed

elementary surface been oblique to the horizon, or perpen-

dicular to it, and at the same depth as before, the pressure

on it would have been the same, but its direction would

have been normal to the surface. We have, therefore, the

following law

:
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Tlie pressure on an elementary portion of the surface of a

vessel containing a heavy fluid, is equal to the iceight of a

prism of the fluid, ivhose lase is the surface pressed, and

whose altitude is its depth below the free surface of thefluid.

Denoting the area of the elementary surface, by 5, its

depth below the free surface, by z, the weight of a unit of

volume of the fluid, by w, and the pressure, by p, we shall

have,

p = wzs (116)

We have seen that the pressure on any element of a sur-

face is normal to the surface. Denote the angle this nor-

mal makes with the vertical, estimated from

above downward, by (p, and resolve the pres- . /I (0/
sure into two components, one vertical and gj^ F%
the other horizontal ; denoting the vertical /___/
component hj])', we have. Fig. 120.

2/ ~ wzscos:p (ll*^)

But scoscp is equal to the horizontal projection of the

element s, in other words, it is a horizontal section of a

vertical prism, of which that surface is the base.

Hence, the vertical component of the pressure on any

element of the surface is equal to the weight of a column of

the fluid, whose base is the horizontal projection of the

element, a7id whose altitude is the distance of the element

from the free surface of the fluid.

The distance, z, has been taken dispositive from the sur-

face of the fluid downward. If 9 < 90°, we have coscp posi-

tive ; hence p', will be positive, which shows that the ver-

tical pressure is exerted downward. If <p>90°, we have

cosip negative, hence p' is negative, which shows that the

vertical pressure is exerted upward (see Fig. 120).

Suppose the interior surface of a vessel containing a
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heavy fluid to be divided into elementary portions, whose

areas are denoted by s, s', s", &c.; denote the distances of

these elements from the free surface, by z, z', z", &c. From

the principle just demonstrated, the pressures on these sur-

faces will be tusz, ws'z\ ivs"z", &c., and the entire pressure

on the interior of the vessel will be equal to,

w{sz + s'z' + s"z" + &c.) ; or, w X ^sz).

Let Z denote the depth of a column of fluid, whose base

is the surface pressed, and whose weight is equal to the

entire pressure, then will this pressure be 2v{s -i- s' + s"

+ &c.)Z ; or, ivZ . Is. Equating these values, we have,

to . I(sz) = toZ . I(s), .-. Z= -^ (118)

The second member of (118) is the distance of the cen-

tre of gravity of the surface pressed, from the free surface

of the fluid. Hence,

The pressure of a heavy fluid on the interior of a vessel

is equal to the iceight of a cylinder of the fluid, tvhose base

is the area pressed, and luhose altitude is the distance of its

centre of gravity from the free surface of the fluid.

Examples.

1. A hollow sphere is filled with a liquid- How does the pressuie,

on the interior surface, compare with the weight of the liquid ?

SOLUTION.

Denote the radius of the surface, by r, and the weight of a unit of

the liquid, by w. The surface pressed is ^nr^ ; and, its centre of

gravity is at a distance r from the free surface of the liquid ; thence

the pressure on the interior surface is equal to,

w X Atij-^ X r = Anwi'^.

But the weight of the liquid is equal to

That is, the entire pressure is three times the weight of the liquid.
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2. A hollow cylinder, with a circular base, is filled with a liquid.

How does the pressure on the interior surface compare with the

weight ot the liquid ?

SOLUTION.

Denote the radius of the base, by r, and the altitude, by /t. The
centre of gravity of the lateral surface is at a distance from the upper

surface of the fluid equal to i/i. If we denote the weight of the unit

of volume of the liquid, by w, we have, for the pressure on the interior

surface,

wJiTcr'^ -\- 2w7tr . ^i"^ = W7trh{r + ^0-

But the weight of the liquid is equal to

r 4- a
Hence, the total pressure is —— times tJie weight of tJie liquid.

If h — r, the pressure is twice the weight.

If r = 2/i, the pressure is f of the weight.

If A, = 2r, the pressure is three times the weight, and so on.

In all cases, the pressure exceeds the weight of the liquid.

3. A right cone, with a circular base, stands on its base, and is

filled with a liquid. How does the pressure on the internal surface

compare with the weight of the liquid ?

SOLUTION.

Denote the radius of the base, by r, and the altitude, by 7i, then

will the slant height be equal to

y/h^ + r\

The distance of the centre of gravity of the lateral surface, below

the free surface of the liquid, is p. If we denote the weight of a unit

of volume of the liquid, by w, we have, for the total pressure on the

interior surface.

WTtrVi + IwTtrh s/h' + r' = WTtrh{r + % \/A^ -f ?•=').

But the weight of the liquid is

^witr'^h = WTtrh X ^r.

Hence, the total pressure is equal to times the weight.

4. Required the relation between the pressure and the weight in

the preceding case, when the cone stands on its vertex.

9*
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SOLUTION.

The total pressure is

and, consequently, it is equal to
"*"

times the weight of the liquid.

r

5. What is the pressure on the lateral faces of a cubical vessel filled

with water, the edge of the cube being 4 feet, and the weight of the

water 63^ lbs. per cubic foot ? Ans. 8000 lbs.

6. A cylindrical vessel is filled with water. The height of the

vessel is 4 feet, and the radius of the base 6 feet. What is the pres-

sure on the lateral surface ? Ans 18850 lbs., nearly.

Centre of Pressure on a Plane Surface.

147. The centre of pressure on a surface, is the point

at which the resultant pressure intersects the surface.

Let ABCD be a plane, pressed by a liuid on its upper

surface, AB its intersection with the free surface of the

fluid, G its centre of gravity, the ^ ^
centre of pressure, and s the area of j- — ./S^^.^^

an element of the surface at S. De- "^"-\/ i)s /
note the inclination of the plane to /^^/
the horizontal, by a, the distances from ^5.,^ /

to AB, by X, from O to AB, by ;;,

^^
and from S to AB, by r. Denote, ^'^' ^'^^^

also, the area A C, by A, and the weight of a unit of volume

of the fluid, by w. The distance from G to the free sur-

face of the fluid, is ;; sina, and that of any element of the

plane, is r sina.

From the preceding article, we see that the entire pres-

sure is ?6'^4^sina, and its moment, with respect to AB, is,

wA2)Bma. X X.

The elementary pressure on s, in like manner, is 7csr sina.
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its moment, with respect to AB, is tusr"^ sina, and the sum
of all the elementary moments is,

w^ivLOLS{sr'^).

But the resultant moment is equal to the algebraical

sum of the elementary moments. Hence,

w^j;sina X x = w sina 2'(5r')

;

and, by reduction.

The numerator, is the moment of inertia oiABCD, with

respect to AB, and the denominator is the moment of the

area with respect to the same line. Hence, the distance

from the centre of pressure to the intersection of the plaiie

with the surface, is equal to the moment of inertia of the

pla7ie, divided hy the moment of the jilane.

If we take AD, perpendicular to AB, as an axis of

moments, denoting the distance of from it, by y, and of

S from it, by I, we have,

toAp sinay =: toEiYLal^srl)
;

and, by reduction,

^=^ (-)

The values of x and y determine the centre of pressure.

It may be observed that x is the distance from AB io

the centre of percussion of the plane, and y is the distance

from AD to the centre of gravity of the jolane. Hence,

the centre of pressure is the same as the centre of per-

cussion.

Examples.

1. Where is the centre of pressure on a rectangular flood-gate, the

upper line of the gate coinciding with the surface of the water ?
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SOLUTION.

It will be on the line joining the middle points of the upper and

lower edges of the gate. Denote its distance from the upper edge,

by 2, the depth of the gate, by 21, and its mass, by M. The distance

of the centre of gravity from the upper edge is I.

From example 1, (Art, 123), we have, for the moment of inertia of

the rectangle,

i¥(^ + p)= .¥ii«.

But the moment of the rectangle is,

Ml;
hence, by division, we have,

2 = ^^ = K20.

That is, the centre of pressure is two-thirds of the distance from the

upper to the lower edge of the gate.

2. Let it be required to find the pressure on a sub- e (j r
merged gate, ABCB, the plane of the gate being verti-

cal ; also, the distance of the centre of pressure below

the surface of the water. j^

SOLUTION.

:C'

B

Let EFhe the intei-section of the plane with the sur- jy q
face of the water, and suppose the rectangle, AC, to be p-^„ ^^2

prolonged till it reaches EF. Let (7, C\ and 6^", be the

centres of pressure of the rectangles EC, EB, and AC respectively.

Denote GC", by z, ED, by a, and EA, by a'. Denote the breadth

of the gate, by h, and the weight of a unit of volume of the water,

by IB.

The pressure on EC will be \a^hw, and the pressure on EB will be

\a"^hw ; hence, the pressure on AC yv'iW be,

which is the pressure required ; from the principle of moments, the

moment of the pressure on AC, is equal to the moment of the pres-

sure on EC, minus the moment of the pressure on EB. Hence,

' a" - (r

which is the required distance from the surface of the water.
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3. To find the pressure on a gate, when both sides are pressed, the

water being at different levels on the sides. Also, to find the centre

of pressure.

SOLUTION.

Denote the depth of water on one side, by a,

and on the other, by «', the other elements be-

ing the same as before.

The total pressure will be, —

^

Fig. 123.

Estimating z from C upward.

4. A sluice-gate, 10 feet square, is placed vertically, its upper edge
coinciding with the surface of the water. What is the pressure on
the upper and lower halves of the gate, respectively, the weight of a

cubic foot of water being C2i lbs. ?

Am. 7812.5 lbs., and 23437.5 lbs.

5. What must be the thickness of a rectangular' dam of granite,

that it may neither rotate about its outer edge, nor slide along its

base, the weight of a cubic foot of granite being 160 lbs., and the

coefficient of friction between it and the soil being .G ?

SOLUTION.

First, to prevent rotation. Denote the height of the wall, by ^,

and suppose the water to extend from bottom to top. Denote the

thickness, by t, and the length, by I. The weight in pounds, will be,

Ihi X 160

;

and this being exerted through its centre of gravity, the moment of

the weight with respect to the outer edge, is,

\mi X 160 = miw.

The pressure of the water against the inner face, in pounds, is

equal to

\ni^ X 62.5 =: IW X 31.2o.

This pressure is applied at the centre of pressure, which is (exam-

ple 1) at a distance from the bottom of the wall equal to fjA; hence,

its moment with respect to the outer edge of the wall, is equal to

IK' X 10.4166.

The pressure of the water tends to produce rotation outward, and
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the weight of the wall acts to prevent it. In order that these forces

may be in equilibrium, their moments must be equal ; or,

QOUit^ = Ik^ X 10.4166.

Whence,

t= h v/.1802= .36 X h.

Next, to prevent sliding. The force of friction due to the weight

of the wall, is,

leO^A^X .Q = dmi;

and that the wall may not slide, this must be equal to the pressure

exerted horizontally against the wall. Hence,

96mt= dl.25lli:\

Whence,
t = .325/i.

If the wall is thick enough to prevent rotation, it is secure against

sliding.

6. What must be the thickness of a rectangular dam 15 feet high,

the weight of the material being 140 lbs. to the cubic foot, when the

water rises to the top, that the structure may be just on the point of

overturning ? Am. 5.7 ft.

7. The staves of a cylindrical cistern filled with water, are held

together by a single hoop. Where should the hoop be situated ?

Arts. At a distance from the bottom equal to one-third of the

height of the cistern.

8. Required the pressure of the sea on the cork of an empty bottle,

when sunk to the depth of 600 feet, the diameter of the cork being

I of an inch, and a cubic foot of sea-water weighing 64 lbs. ?

Am. 134 lbs.

Buoyant Sffort of Fluids.

148. Let ^ be a solid, suspended in a fluid. Conceive it

divided into vertical prisms, whose horizontal sections are

infinitely small. Each prism is pressed down by

a force equal to the weight of a column of fluid,

whose base, (Art. 146), is the horizontal section of

the filament, and whose altitude is the distance

Ag)

of its upper surface from the surface of the fluid; Fig. 124.

it is pressed up by a force equal to the weight of a column

of fluid having the same base, and an altitude equal to the
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distance of the lower base of the filament from the surface

of the fluid. The resultant of these pressures is exerted

vertically ujjward, and is equal to the weight of a column

of the fluid, equal in bulk to that of the filament, and

having its point of application at the centre of gravity of

the filament; the lateral pressures destroy each other's

effects ; hence, the resultant pressure on the body, is a ver-

tical force exerted upward, whose intensity is equal to the

weight of the displaced fluid, and whose point of applica-

tion is the centre of gravity of the displaced fluid. This

upward pressure is the buoyant effort of the fluid, and its

point of application is the centre of buoyancy. The direction

of the buoyant effort, in any position of the body, is a line

of support. That line of support which passes through the

centre of gravity, of the body is the line of rest.

Floating Bodies.

149. A body immersed in a fluid, is urged downward by

its weight applied at its centre of gravity, and upward, by

the buoyant effort of the fluid applied at the centre of

buoyancy.

The body can only be in equilibrium when the line

through the centre of gravity of the bod}^, and the centre

of buoyancy, is vertical ; in other words, when the line of

rest is vertical. When the weight of the body exceeds the

buoyant effort, the body sinks to the bottom ; when they

are equal, it remains in equilibrium, wherever placed.

When the buoyant effort is greater than the weight, it rises

to the surface, and, after a few oscillations, comes to rest,

in such a position, that the weight of the displaced fluid is

equal to that of the body, when it is said to float. The
upper surface of the fluid is then called the plane of flota-
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W

Fig. 125.

Fig. 126.

tion, and its intersection with the surface of the body, ^he

line offlotation.

If a floating body be slightly disturbed from its position

of equilibrium, the centres of

gravity and buoyancy are no longer

in the same vertical. Let DE re-

present the plane of flotation, G
the centre of gravity of the body,

(Fig. 126), GH its line of rest,

and C the centre of buoyancy.

If the line of support, CB, in-

tersect the line of rest in M, above

G^ as in Fig. 126, the buoyant

effort and the weight conspire to

restore the body to equilibrium

;

in this case, the equilibrium is ddble.

IfM is below G, as in Fig. 127, the buoyant effort and

the weight conspire to overturn the body; in this case the

body, before being disturbed, must

have been in unstable equilibrium.

If the centres of buoyancy and grav-

ity are always on the same vertical, M
coincides with G (Fig. 128), and the

body is in indifferent equilibrium. The

limiting position of J/, obtained by de-

flecting the body through an infinitely

small angle, is the metacentre of the

body. Hence,

If the metacentre is above the centre

of gravity, the body is in stable eqni

lihrium ; if below the centre of gravity

,

^^^" ^'*'

the body is in unstable cquiUbrimn; if tlie poirits coincide,

the body is in indifferent equilibrium.
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The stability of the floating body is greater, as the meta-

centre is liigher above the centre of gravity. This con^

dition is fulfilled in loading ships, by stowing the heavier

objects near the bottom of the vessel.

Specific Gravity.

150. The specific gravity of a body is its relative weight,

that is, it is the number of times the body is heavier than

an equivalent volume of some other body, taken as a

standard.

The specific gravity of a body is obtained by dividing

the weight of any volume of the body, by that of an equiv-

alent volume of the standard.

For solids and liquids, distilled water is taken as a

standard. Because this liquid is of different densities at

different temperatures, it becomes necessary to assume a

standard temperature for it : for a like reason, a standard

temperature must be taken for the body whose specific

gravity is to be found. Different standards of temperature

have been assumed by diff'erent writers; we shall adopt

those assumed by Jamin", who takes for the standard tem-

perature of water, 4° C, or about 39" F., and for the stand-

ard temperature of the body, 0° C, or 32° F. The former

is the temperature at which water has a maximum density,

and the latter is that of melting ice.

In finding the specific gravity of a body, we first deter-

mine it with respect to water at any temperature ; this we

may call the observed specific gravity. We then correct the

result for the temperature of the w^ater, by means of a

table of densities of water at different temperatures, that

at 39° being 1 ; this result we call the apparent specific

gravity. Finally, we correct this for the temperature of

the body, and thus find the true specific gravity.
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1st. Let d be the density of water at the temperature, /,

its density at 39° being 1 ; let s be the observed specific

gravity of a body referred to water at the temperature, /,

and let s' be its specific gravity referred to water at 39°.

Because the specific gravity of a body varies inversely as

the density of the water to whicli it is referred, we have,

s '. s' '.: 1 : d; .'. s' = ds.

That is, to find the a2:i2^arent sjjecific gravity of a body,

multiply its observed s^jecific gravity, at the temperature, t,

by the corresponding tabular density of water.

2dly. Suppose the body to have the same temperature, t,

as the water to which it is referred. Denote the volume

of the body at the temperature, t, by v', and at 32°, by v;

denote the corresponding specific gravities by s' and 5.

Because the specific gravity varies inversely as its vol-

ume, we have,

,v'
s : s : : V : v; .*. s =s -.

V

That is, tofi7id the true specific gravity of a body, multiply

its ap2mrent specific gravity by the quotient of its volume

at the temperature, t, by its volume at 32°.

This quotient may be found from the body's known rate

of expansion.

It is only in nice determinations that it is necessary to

take account of the latter correction.

Gases are usually referred to air as a standard ; but as air

is easily referred to water, we may take distilled water at

39° F. as a standard for all bodies.

Sometimes it is convenient to find the specific gravity

of a body with respect to some other body whose specific

gravity is already known. In this case the required spe-

cific gravity is equal to the product of that which is found,
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by that which is already known. Thus, if A is m times as

heavy as B, and if B is n times as heavy as C, then will A
be 71171 times as heavy as C.

Methods of finding Specific Gravity.

151. There are two principal methods of finding the spe-

cific gravity of a body
; first, by means of the balance, and

secondly, by means of the hydrometer. The former alone

can be used for nice determinations, such as are needed in

the operations of analytical chemistry ; the latter is of

easier application, and is sufficiently accurate for most prac-

tical purposes.

Hydrostatic Balance.

152. This balance is similar to that described in Arti-

cle 68 ; the scale-pans, however, are provided with hooks

for suspending bodies, as shown in

the figure.

In balances of modern construc-

tion the vessel containing water is

placed on a movable bench or shelf,

that strides one of the scale-pans, ~
Fig. 129.

without interfering with its move-

ments, and the body is then suspended from the beam by a

thread or wire. In both cases a body attached to the string

maybe weighed either in the air or in the water, at pleasure.

Specific Gravity of an Insoluble Body.

153. Fasten the suspending wire to one scale-pan, or to

one extremity of the beam, as the case may be, and coun-

terpoise it by weights in the opposite pan. Then attach

the body to the wire and counterpoise it by weights in the

other pan: these give the weight of the body in air: next

immerse the body in water, so as not to touch the contain-

A
1
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I'ng vessel ; the buoyant effort of the water will th rnst the

body up with a force equal to the weight of the displaced

water: restore the equilibrium by weights placed in the

first pan ; these will give the tveight of the disjylaced water

:

divide the weight of the body in air by the weight of the

.displaced water, and the quotient will be the observed spe-

cific gravity.

Thus, if a piece of copper weigh 2047 grains in air, and

lose 230 grains when weighed in water, its specific gravity

is VA^ or 8.9.

If the body will not sink in water, determine its weight

in air, as before; then attach to it a body so heavy that the

combination will sink ; find the weight of the water dis-

placed by the combination, and also the weight displaced

by the heavy body, take their difference, and the result will

be the weight of the water displaced by the body in ques-

tion ; then proceed as before.

Thus, a body weighs 600 grains in air ; when attached to

a piece of copper, the combination weighs 2647 grains in

air, and suff"ers a loss of 834 grains in water, the copper

alone losing 230 grains. The buoyant eff'ort of the fluid

exerted on the body is therefore 604 grains, and the specific

gravity of the body is JQf, or 0.993.

Specific Gravity of a Soluble Body.

154. Find its specific gravity with respect to some liquid

in which it is not soluble ; find also the specific gravity of

this liquid with respect to water; take the product of

these, and it will be the specific gravity sought, (Art. 150).

Thus, if the specific gravity of a body with respect to

oil be 3.7, and the specific gravity of the oil with respect

to water be 0.9, the specific gravity of the body is 3.7 X 0.9,

or 3.33.
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It is often convenient to use a saturated solution of the

substance in question as the auxiliary liquid.

Specific G-ravity of Liquids.

155. 16?^^ Method.—The most convenient method is by

the specific gravity bottle. This is a bottle constructed to

hold exactly 1000 grains of distilled water. Accompany-

ing it is a brass weight, just equal to the empty bottle.

To use it, let it be filled with the liquid in question, and

placed ill one scale-pan ; in the other pan place the brass

counterpoise, and weights enough to balance the liquid;

divide the number of grains in the weight of the liquid

by 1000, and the quotient will be the specific gravity.

Thus, if the bottle filled with a liquid weighs 945 grains,

beside the counterpoise, its specific gravity is 0.945.

2(1 Method.—Take u body, that Avill sink both in the

liquid and in water, and which is not acted upon by either;

determine its loss of weight, first in the liquid, then in

water; divide the former by the latter, and the quotient

will be the specific gravity sought. The reason is

evident.

Thus, if a glass ball lose 30 grains when weighed in

water, and 24 in alcohol, the specific gravity of the alcohol

is II, or 0.8.

Zd Method.—Let AB and CD be graduated glass tubes,

half an inch in diameter, open at both ends. Let their

upper ends communicate with the receiver

of an air-pump, and their lower ends dip

into two vessels, one containing distilled

water, and the other the liquid whose specific

gravity is to be determined. Let the air be "Jl IJE

partially exhausted from the receiver by an —^
'

'^'

air-pump ; the liquid will rise in the tubes ^^^' ^^'



214 MECHANICS.

to heights inversely as the specific gravities of the liquids.

If we divide the height of the column of water by that of

the other liquid, the quotient will be the specific gravity

sought. By producing different degrees of rarefaction,

the columns will rise to different heights, but their ratios

ought to be the same. "We are thus enabled to make a

series of observations, each corresponding to a different

degree of rarefaction, from which a more accurate result

can be had, than from a single observation.

Specific Gravity of Air.

156. Take a globe, fitted with a stop-cock, and, by means

of an air-pump, or condensing syringe, force in as much
air as is convenient, close the stop-cock, and weigh the

globe thus filled. Provide a glass tube, graduated to cubic

inches and decimals of a cubic inch,

and, having filled it with mercury,

invert it over a mercury bath. Open

the stop-cock, and allow the compressed

air to escape into the tube, taking care

to place the tube in such a position that

the mercury without the tube is at the

same level as within. The reading on the tube gives the

volume of escaped air. Weigh the globe again, and sub-

tract the weight thus found from the first weight; this

difference is the weight of the escaped air. Having

reduced the measured volume of air to what it would have

occupied at a standard temperature and pressure, by rules

yet to be deduced, compute the weight of an equivalent

volume of water ; divide the weight of the corrected volume

of air by that of an equivalent volume of distilled water,

and the quotient will be the specific gravity sought.

Fig. 131.
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Hydrometers.

157. A hydrometer is a floating body, used in finding

specific gravities. Its construction depends on the prin-

ciple of flotation. Hydrometers are of two kinds. 1°. Those

in which the submerged volume is constant. 2°. Those in

which the weight of the instrument is constant.

Nicholson's Hydrometer.

158. This instrument consists of a hollow cylinder, A,

at the lower extremity of which is a basket, B, and at the

upper extremity a wire, bearing a scale-pan, C.

At the bottom of the basket is a ball, F, con-

taining mercury, to cause the instrument to

float in an upright position. By means of this

ballast, the instrument is adjusted so that a

given weight, say 500 grains, placed in the pan,

C, will sink it in distilled water to a notch, D,

filed in the neck.

This instrument is in reality a weighing-

machine, and as such can be used for determin- F^g- 132.

ing the approximate weights of bodies Avithin certain limits;

in the instrument described, no body can be weighed whose

weight exceeds 500 grains.

To find the specific gravity of a solid, place it in the pan,

C, and add weights till the instrument sinks, in distilled

water, to the notch, D. The added weights, subtracted

from 500 grains, give the weight of the body in air. Place

the body in the basket, B, which generally has a reticu-

lated cover, to prevent the body from floating away, and

add other weights to the pan, until the instrument again

sinks to the notch, D. The weights last added give the

weight of water displaced by the body. Divide the first of
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these by the second, and the quotient will be the specific

gravity required.

To find the specific gravity of a liquid. Having weighed

the instrument, place it in the liquid, and add weights to

the scale-pan, till it sinks to D. The weight of the instru-

ment, plus the weights added, will be the weight of the

liquid displaced by the instrument. The weight of the in-

strument added to 500 grains gives the weight of an equal

volume of distilled water. The quotient of the first by the

second is the specific gravity required.

A modification of this instrument, in which the basket,

B, is omitted, is sometimes used for determining specific

gravities of liquids only. This kind of hydrometer, known

as Fahrenheit's hydrometer, is generally made of glass, that

it may not be acted on chemically by the liquids into which

it is plunged.

Scale Areometer.

159. The scale areometer is a hydrometer whose weight

is constant; the specific gravity of a liquid is made known

by the depth to which it sinks in it. The instru-

ment consists of a glass cylinder, J, with a stem, C,

of uniform diameter. At the bottom of the cylin-

der is a bulb, B, containing mercury, to make the

instrument float upright. By introducing a suit-

able quantity of mercury, the Instrument may be

adjusted so as to float at any desired point of the

stem.

When it is designed to determine the specific B'

gravity of liquids, both lighter and heavier than Fig. 133.

distilled water, it is called a universal hydrometer, and is

so ballasted as to float in distilled water at the middle of

the stem. This point is marked on the stem with a file,

H

t E

„y
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and is numbered 1 on the scale. A liquid is then formed,

by dissolving salt in water, whose specific gravity is 1.1,

and the instrument is allowed to float freely in it; the

pointj E, to which it sinks, is marked on the stem, and the

intermediate part of the scale, HE^ is divided into 10 equal

parts. In like manner a mixture of alcohol and water is

formed, whose specific gravity is 0.9, the corresponding

position of the plane of flotation is marked on the stem,

and the space between it and the division 1 is divided into

10 equal parts. The graduation is continued, both up and

down, through the whole length of the stem. The gradua-

tion is marked on a piece of paper within the stem. To

use this hydrometer, we put it into the liquid and allow it

to come to rest ; the division of the scale that correspords

to the surface of flotation shows the specific gravity of the

liquid. The hypothesis on which this instrument is gradu-

ated, is, that the increments of specific gravity are pro-

portional to the increments of the submerged portion of

the stem. This hypothesis is only approximately true, but

it approaches more nearly to the truth as the diameter of

the stem diminishes.

When it is only desired to use the instrument for liquids

heavier than water, the instrument is ballasted so that the

division 1 shall be near the top of the stem. If it is to be

used for liquids lighter than water, it is ballasted so that

the division 1 shall be near the bottom of the stem. In

this case we determine the point 0.9 by using a mixture of

alcohol and water, the j^rmciple of graduation being the

same as in the first instance.

Volumeter.

160. The volumeter is a modification of the scale areom-

eter, differing from it only in graduation. The gradua-

10
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tion is effected as follows: The instrument is placed in

distilled water, and allowed to come to rest, and the point

of the stem where the surface cuts it, is marked

with a file. The submerged volume is then accu-

rately determined, and the stem is graduated in

such manner that each division indicates a volume

equal to a hundredth part of the volume originally

submerged. The divisions are then numbered from

the first mark in both directions, as indicated in

the figure. To use the instrument, place it in the

liquid, and note the division to which it sinks: ^^
^ ' ' Fig. 134

divide 100 by the number indicated, and the quo-

tient will be the specific gravity sought. The principle

employed is, that the specific gravities of liquids are in-

versely as the volumes of equal weights. Suppose that

the instrument indicates x parts; then the weight of the

instrument displaces x parts of the liquid, whilst it dis-

places 100 parts of water. Denoting the specific gravity

of the liquid by 8, and that of water by 1, we have,

S : 1 '.: 100 '. X, .-. S ^—

.

X

A table may be computed to save performing the divi-

Bion.

Densimeter.

161. The densimeter admits of use when only a small

portion of the liquid can be had. Its construction differs

from that of the volumeter, in having a small cup at the

upper extremity of the stem, to receive the fluid whose

specific gravity is to be determined.

The instrument is so ballasted that when the cup is

empty, the densimeter sinks in distilled water to a point,
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B, near the bottom of the stem. This point is the of

the instrument. The cup is then filled with distilled water,

and the point, G, to which it sinks, is marked; the

space, BC, is divided into any number of equal ^
parts, say 10, and the graduation is continued to

the top of the tube.
^

To use the instrument, place it in distilled water,

and fill the cup with the liquid in question, and ^
note the division to which it sinks. Divide the

number of this division by 10, and the quotient

will be the specific gravity required. The principle

of the densimeter is, that the specific gravity of a

body of a constant volume is proportional to the ^^s- ^^s-

volume of water it causes the instrument to displace. •

Centesimal Alcoometer of Gay Lussac.

162. This instrument is similar in construction to the

scale areometer; the graduation, however, is made on a

different principle. Its object is, to determine the percent-

ao^e of alcohol in a mixture of alcohol and water. The

graduation is made as follows: the instrument is first

placed in absolute alcohol, and ballasted so that it will

sink nearly to the top of the stem. This point is marked

100. Next, a mixture of 95 parts of alcohol and 5 of

water, is made, and the point to which the instrument

sinks, is marked 95. The intermediate space is divided

into 5 equal parts. Next, a mixture of 90 parts of alcohol

and 10 of water is made ; the point to which the instru-

ment sinks, is marked 90, and the space between this and

95, is divided into 5 equal parts. In this manner, the

entire stem is graduated by successive operations. The

spaces on the scale are not equal at different points, but,
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for a space of five parts, they may be so regarded, without

sensible error.

To use the instrument, place it in the mixture of alcohol

and water, and read the division to which it sinks; this

will indicate the percentage of alcohol in the mixture.

In all the instruments, the temperature has to be taken

into account; this is effected by tables that accompany the

different instruments.

On the principle of the alcoometer, a great variety of

areometers are constructed, for determining the strength

of wines, syrups, and other liquids employed in the arts.

In some nicely constructed hydrometers, the mercury

used as ballast serves also to fill the bulb of a delicate

thermometer, whose stem rises into the cylinder of the

instrument, and thus enables us to note the temperature

of the fluid in which it is immersed.

Examples.

1. A cubic foot of water weighs 1000 ounces. Required the weight

of a cubical block of stone, whose edge is 4 feet, its specific gravity

being 2.5. Anf<. 10000 lbs.

2. Required the number of cubic feet in a body whose weight is

1000 lbs., its specific gravity being 1.25. Ans. 12.8.

3. Two lumps of metal weigh 3 lbs., and 1 lb., and their specific

gravities are 5 and 9. What will be the specific gravity of an alloy

formed by melting them together, supposing no ccmtraction of

volume to take place? Am. 5.625.

4. A body weighing 20 grains has a specific gravity of 2.5. Re-

quired Its loss of weight in water. Ans. 8 grains.

5. A body weighs 25 grains in water, and 40 grains in a liquid

whose specific gravity is .7. What is the weight of the body in

vacuum? Am. 75 grains.

6. A Nicholson's hydrometer weighs 250 grains, and it requires

an additional weight of 336 grains to sink it to the notch in the stem,

in a mixture of afcohol and water. What is the specific gravity of

the mixture? Am. .781.
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7. A block of wood sinks in distilled water till I of its volume is

submerged. What is its specific gravity? Ans. .875.

8. The weight of a piece of cork in air, is | oz. ; the weight of a

piece of lead in water, is 6^ oz. •, the weight of the cork and lead

together in water, is 4-ili, oz. What is the specific gravity of the

cork? Ans. 0.24.

9. A solid, whose weight is 250 grains, weighs in water, 147 grains,

and, in another fluid, 120 grains. What is the specific gravity of the

latter fluid? Ans. 1.262.

10. A solid weighs 60 grains in air, 40 in water, and 30 in an acid.

What is the specific gravity of the acid ? Ans. 1.5.

The following table is compiled from the Ordnance

Manual.

TABLE OP SPECIFIC GRAVITIES OF SOLIDS AND LIQUIDS.

SOI.IDS. SPKC. GllAV. SOLIDS. SPEC. GRAV.

3.180

2.686

2.130

1.800

2.612

2.520

0.945

0.912

0.596

0.715

1.333

0.854

1.170

660
1.217

1.841

0.792

0.715

1.026

0.915

0.870

Antimony, cast

Brass, cast

Copper, cast

Gold, hammered. .

.

Iron, bar
Iron, cast

Lead, cast

Mercury at 32° F.

.

at 60°....

Platina, rolled

cast

Silver, hammered.

.

Tin, cast

Zinc, cast

Bricks
Chalk
Coal, bituminous .

.

Diamond
Earth, common ...

Gypsum
Ivory

6.712

8.396

8.788

19.361

7.788

7.207

11.352

13.598

13.580

22.069

20.337

10 511

7.291

6.861

1.900

2.784

1.270

3.521

1.500

2.168

1.822

Limestone
Marble, comm(m . .

.

Salt, common
Sand
Slate

Stone, comn.on ....

Tallow
Boxwood
Cedar
Cherry
Lignum vitae

Mahoganv
Oak, heart

Pine, yellow
Nitric acid

Sulphuric acid

Alcohol, absolute. .

.

Ether, sulphuric. ..

Sea water
Olive oil

Oil of Turpentine.

.

Thermometer.

163. A THERMOMETER, is till instrument for measuring

the temperatures of bodies. All bodies expand when heated,
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and contract when cooled, and, other things being equal,

always occupy the same volumes at the same temperatures.

Different bodies expand and contract in different ratios

for equal increments of temperature. As a general rule,

liquids expand more rapidly than solids, and gases more

rapidly than liquids. The construction of the thermom-

eter depends on this principle of unequal expansibility of

bodies. A great variety of forms have been used, only one

of which will be described.

The mercurial thermometer consists of a bulb. A, at the

upper extremity of which is a tube of uniform bore,

hermetically sealed at its upper end. The bulb ^_^

and tube are nearly filled with mercury, and to

the whole is attached a frame, on which is a scale

for temperature.

A thermometer may be constructed as follows:

A tube of uniform bore is selected, and on one

extremity a bulb is blown, which may be cylin-

drical, or spherical ; the former shape is, on many

accounts, the preferable one. At the other ex-

tremity, a conical-shaped funnel is blown, open at

top. The funnel is filled with mercury, which

should be of the purest quality, and the whole p/'^

being held vertical, the heat of a spirit-lamp is

applied to the bulb, which expanding the air contained in

it, forces a portion in bubbles up througli the mercury in

the funnel. The instrument is next alloAved to cool, when

a portion of mercury is forced down the tube into the

bulb. By a repetition of this process, the entire bulb may

be filled with mercury, as well as the tube itself Heat is

then applied to the bulb, until the mercury is made to

boil; and, on being cooled down to a little above the

highest temperature that it is desired to measure, the

9
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top of the tube is melted off by a jet of flame, urged by a

blow-pipe, and the whole hermetically sealed. The instru-

ment, thus prepared, is attached to a frame, and graduated

as follows

:

The instrument is plunged into a bath of melting ice,

and, after remaining a sufficient time for the instrument to

take the temperature of the ice, the height of the mercury

in the tube is marked on the scale. This gives the freezing

point. The instrument is next plunged into a bath of

boiling water, and allowed to remain long enough to

acquire the temperature of the water and steam. The

height of the mercury is then marked on the scale. This

gives the boiling point. The freezing and boiling points

having been determined, the intermediate space is divided

into a certain number of equal parts, according to the

scale adopted, and the graduation is continued, both up

and down, to any desired extent.

Three principal scales are used. Fahrenheit's scale,

in which the space between the freezing and boiling point

is divided into 180 equal parts, called degrees, the freezing

point being marked 32°, and the boiling point 212°. In

this scale, the point is 3^ degrees below the freezing

point. Tlic Centigrade scale, in which the space between

the fixed points is divided into 100 equal parts, called

degrees. The of this scale is at the freezing point.

Reaumur's scale, in which the same space is divided into

80 equal parts, called degrees. The of this scale also is

at the freezing point.

If we denote the number of degrees on the Fahrenheit,

Centigrade, and Reaumur scales, by F, C, and R respect-

ively, the following formula will enable us to pass from

any one of these scales to any other

:

i(i^° - 32°) = iC'° = iR°
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The scale most in use in this country is Fahrenheit's.

The other two are used in Europe, particularly the Centi-

grade scale.

Velocity of a Liquid through a small Orifice.

164. Let ABD be a vessel, having a small orifice at its

bottom, and filled with a liquid.

Denote the cross section of the orifice, by a, and its

depth below the upper surface, by h. Let D be an infi-

nitely small layer of the liquid at the orifice, and

denote its height, by W. This layer is (Art. 146)

urged downward by a force equal to the weight of

a column of the liquid whose base is the orifice,

and whose height is h ; denoting this pressure, by

p, and the weight of a unit of volume of the

liquid, by w, we have,

p = wah.

Were the element pressed downward by its own weight

alone, the pressure being denoted by p', we should have,

p' ~ wah'.

Dividing the former by the latter, we have,

p _ h

that is, the pressures are as the heights h and h'.

Let us suppose, the element falls through the height, h\

first under the action of the force, p, and then under the

action of the force, p' . Denoting the velocities generated,

by V and v', we have, (Art. 104),

V = ^/2pli^ and, v — v2p'h'

;

whence, by reduction,

V : v' :: \/p : Vp', •'
. ^
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But, when the element falls under the action of v',or its

own weight, we have,

v' = V'igh'.

Substituting this volume, v', and replacing—,, by its value,

j-i,
we have, after reduction,

v= V^gh.

Hence, a liquid issues from an orifice in tlie bottom of a

vessel, with a velocity equal to that acquired hy a hody in

falling through a height equal to the distance of the orifice

below the free siirface.

We have seen that the pressure due to the weight of a

fluid on any point of the surface of a vessel, is normal to

the surface, and is proportional to the depth of the point

below the free surface. Hence, if an orifice be made at

any point, the liquid will flow out in a jet, normal to the

surface at that point, and with a velocity due to the dis-

tance of the orifice from the free surface of the fluid.

If the orifice is on a vertical side of a vessel, the initial

direction of the jet will be horizontal ; if it be at a point

where the tangent plane is oblique

to tlie horizon, the initial direc-

tion of the jet will be oblique ; if

the opening is on the upper side

of a portion of a vessel where the ^'^* ^^^•

tangent is horizontal, the jet will be directed upward, and

will rise to a height due to the velocity; that is, to the

height of the upper surface of the fluid.

Modification due to Extraneous Pressure.

165. If the upper surface of the liquid, in any of the

preceding cases, be pressed by a force, as when it is urged
10*

't^
Ij "nB
5 ,-—V-.-.

'V •,
1
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downward by a piston, we may denote the height of a col-

umn of the fluid whose weight is equal to the extraneous

pressure, by li. The velocity of efflux will then be given

by the equation,

v= ^/mii + h').

The pressure of the atmosphere acts equally on the

upper surface and the opening ; hence, in ordinary cases,

it may be neglected ; but were the liquid to flow into a

vacuum, or into rarefied air, the pressure must be taken

into account, and this may be done by means of the for-

mula just given.

Should the flow take place into condensed air, or into

any medium which opposes a greater resistance than the

atmospheric pressure, the extraneous pressure would act

upward, h' would be negative, and the preceding formula

would become.

Spouting of Liquids on a Horizontal Plane.

166. Let KL be a vessel filled with water, D an orifice

in its vertical side, and DB the path of the spouting fluid.

We may regard each drop as a projectile

shot fortli horizontally, and then acted ^b|"'""^>

on by gravity. Its path is, therefore, a ^m ^^^^\

parabola, and the circumstances of its ^Dp"i"—y\\
motion are made known by equations ^D—^~"y^5;^"v\

(89) and (94). ^^Iri"

Denote DK, by h', and DL, by h. We Fig. m
have, from equation (94), by making y equal to h', and

x=KB,
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But we have found v = ^/'^(jh ; hence, by substitution,

If we describe a semicircle on KL, and through Z>-draw

an ordinate, DH, we have, from a property of the circle,

DH = ^DK . DL =: Vhh\

Hence we have, by substitution,

JCB=2DH,

Since there are two points on ICL at which the ordinates

are equal, there must be two orifices through which the

fluid will spout to the same distance on the horizontal

plane ; one of these is as far above the centre, 0, as the

other is below it.

If the orifice be at 0, midway between K and L, the

ordinate, OS, will be greatest possible, and the range, KB',

will be a maximum. The range in this case will be equal

to the diameter of the circle, LHK, or to the distance from

the surface of the water in the vessel to the horizontal

plane.

If the jet is directed obliquely upward by a short pipe,

A, (Fig. 138), the path described by each particle will still

be the arc of a parabola, ABC. Since each particle of the

liquid may be regarded as a body projected obliquely up-

ward, the nature of the path and the circumstances of the

motion will be given by equation (89).

If a semi-parabola, LB', is described, having its axis ver-

tical, its vertex at L, and focus at K, then may every point,

P, within the curve, be reached by two separate jets issuing

from the side of the vessel ; every point on the curve can

be reached by one, and only one
;
points lying without the

curve cannot be reached by any jet whatever.

In like manner, the same equation will make known the
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nature of the p«ath and the circumstances of motion, when

the jet is directed obliquely downward by a short tube.

Coefficients of Efflux and Velocity.

167. When a vessel empties itself by a small orifice at the

bottom, it is observed that the particles of fluid near the top

descend in vertical lines ; when they approach the bottom

they incline toward the orifice, the converging lines of par-

ticles tending to cross each other as they emerge from the

vessel. The result is, the stream growls narrower, after

leaving the vessel, until it reaches a point at a distance

from the vessel equal to about the radius of the orifice,

when the contraction becomes a minimum, and below that

point the vein again spreads out. This phenomenon is

called, contraction of the vein. The cross section at the

most contracted part is not far from -^^ of the area of the

orifice, when the vessel is very thin. If we denote the area

of the orifice, by a, and the area of the least cross section

of the vein, by a, we have,

a' = ha,

in which h is a number to be determined by experiment.

This number is called the coefficient of contraction.

To find the quantity of water discharged through an

orifice at the bottom of the containing vessel, in one

second, we multiply the smallest section of the vein by the

velocity. Denoting the quantity discharged in one second,

by Q\ we have,

§' = ha ^/^gh.

This formula is only true on the supposition that the

actual velocity is the same as the theoretical velocity, which

is not the case, as has been shown by experiment. The
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theoretical velocity is equal to ^/^gli, and if we denote the

actual velocity, by v\ we have,

v' = I \/lgh,

in which I is to be determined by experiment; this value

of /is slightly less than 1, and is called the coefficient cf

velocity. In order to get the actual discharge, we must re-

place V2^A by l^'2gli, in the preceding equation. Doing

so, and denoting the actual discharge per second, by Q, we

have,

Q = Ma \/'2gh.

The product, M, is called the coefficient of efflux. It has

been shown by experiment, that this coefficient for orifices

in thin plates, is not quite constant. It decreases slightly,

as the area of the orifice and the velocity are increased

;

and it is further found to be greater for circular orifices

than for those of any other shape.

If we denote the coefficient of efflux, by in, we have,

Q = via \/2gh.

In this equation, h is called head of water. Hence, we

may define the head of water to be the distance from the

orifice to the plane of the upper surface of the fluid.

The mean value of m corresponding to orifices of from

^ to 6 inches in diameter, with from 4 to 20 feet head of

water, has been found to be about .615. If w^e take k = .64,

we have,

M _ ^615^ _^- k - .640 - ••^^•

That is, the actual velocity is only -j^^^ of the theoretical

velocity. This diminution is due to friction, viscosity, &c.
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Efflux through Short Tubes.

168. It is found that the discharge from a given orifice

increases, when the thickness of the plate through which

the flow takes place increases ; also, when a short tube is

introduced.

When a tube, AB, is employed not more than four times

as long as the diameter of the orifice, the value of m be-

comes, on an average, equal to .813 ; that

is, the discharge per second is 1.325 times

as great, when the tube is used, as without

it. In using the cylindrical tube, the con-

traction takes place at the outlet of the

vessel, and not at the outlet of the tube.

Compound mouth-pieces are sometimes I

[

formed of two conic frustums, as shown '^v.:!/^

in the figure, having the form of the vein. /ilT
It has been shown by Etelweiist, that the ';;;.'.•

most effective tubes of this form should ?ig. i4i.

have the diameter, CD, equal to .833 of AB. The angle

made by the sides, CF and DE, should be about 5°, and

the length of this portion should be three times that of the

other.

Examples.

1. With what theoretical velocity will water issue from a small

orifice 16 1\ feet below the surface of the fluid ? Ans. 32^ ft.

2. If the area of the orifice, in the last example, is -j^- of a square

foot, and the coefiicient of efflux .615, how many cubic feet of water

will be discharged per minute? Ans. 118.695 ft.

3. A vessel, constantly filled with water, is 4 feet high, with a

cross section of one square foot ; an orifice in the bottom has an area

of one square inch. In what time will three-fourths of the water be

drawn off, the coefficient of efflux being .6 ?

Ans. i minute, nearly.

4. A vessel is kept constantly full of water. How many cubic feet
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will be discharged per minute from an orifice 9 feet below the upper

surface, having an area of one square inch, the coefficient of efflux

being .6 V Ans. 6 cubic feet, about.

5. In the last example, what will be the discharge per minute, if

we suppose each square foot of the upper surface to be pressed by a

force of 645 lbs. ? Ans. S'i cubic feet, about.

6. The head of water is 16 feet, and the orifice is too of a square

foot. What quantity of water will be discharged per second, when
the orillce is through a thin plate?

SOLUTION.

In this ;ase, we have,

Q ^ .615 X .01 V2 X '62^ X 16 = .197 cubic feet

When a shori cylindrical tube is used, we have,

^= .197 X 1.325 = .261 cubic feet

Capillary Phenomena.

169. When a liqaid is in equilibrium, under the action

of its own weight, it has been shown that its upper surface

is level. It is observed, however, in the neighborhood of

solid bodies, such as the walls of a vessel, that the surface

is sometimes elevated, and sometimes depressed, according

to the nature of the liquid and solid in contact. These

elevations and depressions result from the action of mo-

lecular forces, exerted between the particles of the liquid

and solid in contact; from the fact that they are more

apparent in small tubes, of the diameter of a hair, they

have been called cainllary phenomena, and the forces giv-

ing rise to them, capillary forces.

The following are some of the observed effects of capil-

lary action : When a solid is plunged into a liquid capable

of moistening it, as when glass is plunged into water, the

surface of the liquid is heaped tip about the solid, taking

a concave form, as shown in Fig. 142.

When a solid is pitinged into a liquid not capable of
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moistening it, as when glass is plunged into mercury, the

surface of the liquid is depressed about the <

solid, taking a convex form, as shown in J

Fig. 143.
^"^

The surface of the liquid in the neighbor- Fig. 142.

hood of the surfaces of the containing ves-

sel takes the concave or convex form ac-

cording as the material of the vessel is

capable of being moistened, or not, by the -^

liquid.
Fig, 143

These phenomena become more a])parent

when we plunge a tube into a liquid; according as the tube

is, or is not, capable of being moistened by the liquid, the

liquid will rise in the tube, or be depressed in it. When
the liquid rises in the tube, its upper surface takes a con-

cave shape ; when it is depressed, it takes a convex form.

The elevations, or depressions, increase as the diameter of

the tube diminishes.

Elevation and Depression between Plates.

170. If two plates of any substance be placed parallel to

each other, it is found that the laws of ascent and descent

of the liquid into Avhich they are plunged, are the same as

for tubes. For example : if two plates of glass parallel to

each other, and pretty close together, are plunged into

water, it is found that the water Avill rise between them to

a height, inversely proportional to their distance apart;

and further, that this height is equal to about one-half

the height to which water would rise in a glass tube whose

internal diameter is equal to the distance between the

plates.

If the same plates be plunged into mercury, there will be

a depression according to a corresponding law.
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If two plates of glass, AB and AC, inclined to each

other, as shown in Fig. 144, be pliuiged into a liquid that

will moisten them, the liquid will rise

between tliem. It will rise higher near

the junction, the surface taking a

curved form, such that any section

made by a plane through AD, will be ^*^" ^^

an equilateral hyperbola.

If the line of junction of the two plates is horizontal, a

small quantity of a liquid that will moisten ^^^^^^-^

them, assumes the shape shown at A ; if it do

not moisten them, it takes the form shown

at^.

Attraction and Repulsion of Floating Bodies.

171. If two small balls of wood, both of which can be

moistened by water, or two small balls of wax, that cannot

be moistened, be placed in a vessel of water, and brought

so near each other that the surfaces of capillary elevation,

or depression interfere, the balls will attract each other

and come together. If one ball of wood and one of wax

be brought so near that the surfaces of capillary elevation

and depression interfere, the bodies will repel each other,

and S3parate. If two needles be carefully oiled and laid

on the surface of water, they will repel the water from

their neigliborhood, and float. If, whilst floating, they

are brought sufficiently near to each other to permit the

surfaces of capillary depression to interfere, the needles

will immediately rush together. The reason of the needles

floating IS, that they repel the water, heaping it up on each

side, thus forming a cavity in the surface; the needle is

buoyed up by a force equal to the weight of the displaced

flnid, and, when this exceeds the weight of the needle, it
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floats. On this principle certain insects move freely over

a sheet of water; their feet are lubricated with an oily sub-

stance which repels the water, producing a hollow around

each foot, and gives rise to a buoyant effort greater than

the weight of the insect.

The principle of mutual attraction between bodies, both

of which repel water, or both of which attract it, accounts

for the fact that small floating bodies have a tendency to

collect in groups about the borders of the containing ves-

sel. When the material of which the vessel is made, exer-

cises a different capillary action from that of the floating

particles, they will aggregate themselves at a distance from

the surface of the vessel.

.

Applications of the Principles of Capillarity.

nt. It is a consequence of capillary action that water

rises to fill the pores of a sponge, or lump of sugar. The

same principle causes oil to rise in the wick of a lamp,

which is but a bundle of fibres very nearly in contact,

leaving capillary interstices between them.

Tlie siphon filter is the same, in principle, as the wick of

a lamp. It consists of a bundle of fibres like a lamp-wick,

one end of which dips into the liquid to be filtered, whilst

the other hangs over the edge of the vessel. The liquid

ascends the fibrous mass by capillary attraction, and con-

tinues to advance till it reaches the overhanging end, when,

if this is lower than the upper surface of the liquid, it

will fall by drops from the end of the wick, the impurities

being left behind.

The principle of capillary attraction is used for splitting

rocks and raising weights. To employ this principle in

cleaving mill-stones, as is done in France, the stone is first

dressed to the form of a cylinder of the required diameter.
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Grooves are then cut around it where the divisions are to

take place, and into these grooves thoroughly dried wedges

of willow-wood are driven. On being exposed to the

action of moisture, the cells of the wood absorb water,

expand, and finally split the rock.

To raise a weight, a thoroughly dry cord is fastened to

the weight, and then stretched to a point above. If the

cord be moistened, the fibres absorb moisture, expand

laterally, the rope is diminished in length, and the weight

raised.

The principle of capillary action is also employed in

metallurgy, in purifying metals, by cupellation.

Endosmose and Exosmose.

173. The names e7iclosmose and exosmose have been

given to currents, flowing in contrary directions between

two liquids, when separated by a porous partition, either

organic or inorganic. The discovery of this phenomena is

due to M. DuTROCHET, who called the flowing in, endos-

mose, and the flowing out, exosmose. The existence of

the currents was established by an instrument, to which

he gave the name endosmometer. This instrument con-

sists of a tube of glass, at one end of which is attached a

membranous sack, secured by a ligature. If the sack be

filled with gum water, a solution of sugar, albumen, or

almost any solution denser than water, and then plunged

into water, it is observed, after a time, that the fluid rises

in the stem, and is depressed in the vessel, showing that

water has entered the sack by passing through the pores.

By applying suitable tests, it is also found that a portion

of the liquid in the sack has passed through the pores

into the vessel.

Two currents are thus established. If the operation be
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reversed, and tlie bladder and tube be filled with pure

water, the liquid in the vessel will rise, whilst that in the

tube falls. The phenomena of endosmose and exosmose

are extremely various, and serve to explain a great variety

of interesting facts in animal and vegetable physiology.

The cause of the currents, is the action of molecular forces

between the particles of the bodies employed.



CHAPTER VIII.

MECHANICS OF GASES AND VAPORS.

Gases and Vapors.

174. Gases and vapors are distinguished from other

fluids, by their great compressibility, and correspondingly

great elasticity. These fluids continually tend to occupy

a greater space ; this expansion goes on till counteracted

by some extraneous force, as that of gravity, or the resist-

ance offered by a containing vessel.

The force of expansion, common to gases and vapors, is

called their tension, or elastic force. We shall take for the

unit of this force, at any point, the pressure that would

be exerted on a square inch, were the pressure the same at

every point of the square inch as at the point in question.

If we denote this unit, by p, the area pressed, by a, and the

entire pressure, by P, we have,

r :=ap (121)

Most of the principles demonstrated for liquids hold

good for gases and vapors, but there are certain properties

arising from elasticity that are peculiar to aeriform fluids,

some of which it is now proposed to investigate.

Atmospheric Air.

175. The gaseous fluid that envelops our globe, and

extends on all sides to a distance of many miles, is called

the atmosjjhere. It consists principally of nitrogen and

oxygen, together with small but variable portions of Avatery
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vapor and carbonic acid, all in a state of mixture. On
an average, it is found that 1000 parts by volume of

atmospheric air, taken near the surface of the earth, con-

sist of about,

788 parts of nitrogen,

197 parts of oxygen,

14 parts of watery vapor,

1 part of carbonic acid.

The atmosphere may be taken as a type of gases, for it

is found that the laws regulating density, expansibility,

and elasticity, are the same for all gases and vapors, so

long as they maintain a purely gaseous form. It is found,

however, in the case of vapors, and of those gases which

have been reduced to a liquid form, that the law changes

just before actual liquefaction.

This change appears somewhat analogous to that

observed when water passes from the liquid to the solid

form. Although water does not actually freeze till

reduced to a temperature of 32° Fah., it is found that

it reaches its maximum density at about 39°, at which

temperature the particles seem to commence arranging

themselves according to new laws, preparatory to taking

the solid form.

Atmospheric Pressure.
(j

176. If a tube, 35 or 36 inches long, open at b
one end and closed at the other, be filled with

pure mercury, and inverted in a basin of the same,

the mercury will fall in the tube until the vertical

distance from the surface of the mercury in the

tube to that in the basin is about 30 inches. This

column of mercury is sustained by the pressure of

the atmosphere exerted on the surface of the mer-

i
Fig. 146.
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cury in the basin, and transmitted through the fluid, accord-

ing to the general law of transwhsiooi of pressures. The

column of mercury sustained by the elasticity of the

atmosphere is called the harometric cohimn, because it is

generally measured by an instrument called a barometer.

In fact, the instrument just described, when provided

with a suitable scale for measuring the height of the

column, is a complete barometer. The height of the baro-

metric column fluctuates somewhat, even at the same

place, on account of changes of temperature, and other

causes yet to be considered.

Observation has shown, that the average height of the

barometric column at the level of the sea, is a trifle less

than 30 inches.

The weight of a column of mercury 30 inches high,

having a cross section of one inch, is nearly 15 pounds.

Hence, the unit of atmospheric pressure is 15 pounds.

This unit is called an atmosphere, and is often employed

in estimating the pressure of elastic fluids, particularly

steam. Hence, to say that the pressure of steam in a boiler

is two atmospheres, is equivalent to saying, that there is a

pressure of 30 pounds on each square inch of the interior

of the boiler. In general, when we say that the tension of

a gas or vapor is 7i atmospheres, we mean that each square

inch is pressed by a force of 7i times 15 pounds.

Mariotte's Law.

177. When a given mass of gas or vapor is compressed

so as to occupy a smaller space, its elastic force is increased

;

if its volume is increased, its elastic force is diminished.

The law of increase and diminution of elastic force, dis-

covered by Mariotte, and bearing his name, may be

enunciated as follows

:
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The elastic force of a given mass of gas, whose tem-

perature rernains the same, varies inversely as the volume

it occupies.

As long as the mass remains the same, its density varies

inversely as its volume. Hence,

The elastic force of a gas, whose temperature remaiyis the

same, varies as its density ; and conversely, its density

varies as its elastic force.

Mariotte's law may be verified for atmospheric air, by

an instrument called Mariotte's Tube. This is a tube,

ABCD, of imiform bore, bent so that its two

branches are parallel to each other. The shorter

branch, AB, is closed at its upper extremity,

whilst the longer one is open. Between the two

branches, and attached to the frame, is a scale of

equal parts.

To use the instrument, place it in a vertical

position, and pour mercury into the tube, until

it just cuts off communication between the two

branches. The mercury will then stand at the

same level, EC, in both branches, and the tension '"" ^^^'

of the air in AB, will be exactly equal to that of the ex-

ternal atmosphere. If an additional quantity of mercury

be poured into the longer branch, the air in the shorter

branch will be compressed, and the mercury will rise in

both branches, but higher in the longer, than in the

shorter one. Suppose the mercury to have risen in the

shorter branch, to K, and in the longer one, to P. There

will be an equilibrium in the mercury lying below tiie

horizontal plane, KK ; there will also be an equilibrium

between the tension of the air in AK, and the forces which

give rise to that tension. These forces are, tlie pressure of

the external atmosphere, transmitted through the mercury,
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and the weight of a column of mercury whose base is the

cross section of the tube, and whose altitude is PK. If we

denote the height of the column of mercury sustained by

the pressure of the external atmosphere, by h, the tension

of the air in AK, will be measured by the weight of a

column of mercury, whose base is the cross section of the

tube, and whose height is h + PK. Since the weight is

proportional to the height, the tension of the confined air

is proportional to A + PK.

Now, whatever may be the value of PK, it is found that,

AK : AB :: h : h + PK;
whence,

.j._AB .h

^^"--hTPK-

If PK= h, we have, AK=iAB; \iPK= 2h, we have,

AK= ^AB ; if PK = nh, n being any positive number,

AB
entire or fractional, we have, AK= — . This formula,

deduced from Mariotte's law, was verified by Dulong and

Arago for all values of ?i, up to n = 27. The law may
also be verified when the pressure is less than an atmos-

phere, by the following apparatus : AK is a tube of uni-

form bore, closed at its upper and open at its lower

extremity; CD is a deep cistern of mercury. ^
The tube, AK, is either graduated into equal

parts, commencing at A, or has attached to it a

scale of brass or ivory.

To use the instrument, pour mercury into the

tube till it is nearly full
;
place the finger over the

open end, invert it in the cistern, and depress it

till the mercury stands at the same level without

and within the tube, and suppose the surface of

the mercury in this case to be at B. Then will Fig. i48.

11
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the tension of the air in AB, be equal to that of the ex-

ternal atmosphere. If the tube be raised vertically, the air

inAB will expand, its tension will diminish, and the mer-

cury will fall in the tube, to maintain the equilibrium.

Suppose the level of the mercury in the tube, to have

reached IC. In this position of the instrument the tension

of the air in AIT, added to the weight of the column of mer-

cury, J^B, will be equal to the tension of the external air.

Now, it is found, whatever may be the value of KB, that

AK : AB :: h : h -EK;
whence,

AB .hAK=
h - EK'

If EK^ \lu we have, AK^ 2AB j if EK=^h, we

have, AK= SAB; in general, if EK= -li, we have,

AK^ AB{n + 1).

This formula has been verified, for all values of n, up to

n = 111.

It is a law of Physics that, when a gas is suddenly com-

pressed, heat is evolved, and when a gas is suddenly

expanded, heat is absorbed ; hence, in making the experi-

ment, care must be taken that the temperature be kept

uniform.

More recent experiments have shown that Mariotte's law

is not strictly true, especially for high tensions, yet its vari-

ation is so small that the error committed in regarding it

as true is not appreciable in any practical case.

Gay liussac's Law.

178. If the volume of any gas or vapor remain the same,

and its temperature be increased, its tei sion is increased
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also. If the pressure remain the same, the volume of the

gas increases as the temperature is raised. The law of in-

crease and diminution, as deduced by Gay Lussac, whose

name it bears, may be enunciated as follows

:

In a given mass of gas, or vapor, if the volume remain

the same, the te7isio7i varies as the temperature ; if the ten-

sion remain the same, the volume varies as the temperature.

According to Eegnault, if a given mass of air be heated

from 32° Fahrenheit to 212°, the tension remaining con-

stant, its volume will be increased by the .3665th part of

its volume at 32°. Hence, the increase for each degree of

temperature is the .00204th part of its volume at 32°. If

we denote the volume at 32°, by v, and the volume at the

temperature, t', by v', we have,

v' = ?;[l + .00204(^-32)] (122)

Solving with reference to v, we have,

... (123)
1 + .00204(^' - 32) • '

•

Formula (123) enables us to compute the volume of a

mass of air at 32°, when we know its volume at the temper-

ature, t', the pressure remaining constant.

To find the volume at the temperature, t", we have sim-

ply to substitute t" for t' in (122). Denoting this volume

by v", we have,

v" = v[l + .00204(if" • - 32)].

Substituting for v its value, from (llA), we get,

, 1 4- .00204(r - 32) ,,,,.,

^ ^ ' 1 + .00204(V - 32)
^''^^

This formula enables us to compute the volume of a

mass of air, at a temperature, t", when we know its volume

at the temperature, t' ; and, since the density varies in-
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Tersely as the volume, we may also, by means of the same

formula, find the density of any mass of air, at the temper-

ature, /", when we have given its density at the temper-

ature, t'.

Manometers.

179. A manometer is an instrument for measuring the

tension of gases and vapors, particularly of steam. Two
principal varieties of manometers are used for measuring

the tension of steam, the open, and the closed manometer.

The open Manometer.

180. The open manometer consists of an open glass

tube, AB, terminating near the bottom of a cistern, EF.

The cistern is of w rough t-iron, steam tight,

and filled with mercury. Its dimensions

are such, that the upper surface of the mer-

cury will not be materially lowered, when a

portion of the mercury is forced up the tube.
'^

BD is a tube, by means of which, steam may
be admitted from the boiler to the surface

of the mercury in the cistern. This tube is

sometimes filled with water, through which

the pressure of the steam is transmitted to Fig. 149.

the mercury.

To graduate the instrument. All communication with

the boiler is cut oif, by closing the stop-cock, B^ and com-

munication with the external air is made by opening the

stop-cock, D. The point of the tube, AB, to which the

mercury rises, is noted, and a distance is laid off, upward,

from this point, equal to what the barometric column

wants of 30 inches, and the point, II, thus determined, is

marked 1. This point will be very near the surface of the
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mercury in the cistern. From the point, H, distances of

30, 60, 90, &c., inches are laid off upward, and the corre-

sponding points numbered 2, 3, 4, &c. These divisions

correspond to atmospheres, and may be subdivided into

tenths and hundredths.

To use the instrument, the stop-cock, />, is closed, and

communication made with the boiler, by opening the stop-

cock, E. The height to which the mercury rises in the

tube indicates the tension of the steam in the boiler, which

may l)e read from the scale in terms of atmospheres and

decimals of an atmosphere. If the pressure in pounds is

wished, it may at once be found by multiplying the read-

ing of the instrument by 15.

The principal objection to this kind of manometer is its

want of portability, and the great length of tube required,

when high tensions are to be measured.

The closed Manometer.

181. The general construction of the closed manometer

is the same as that of the open manometer, except that

the tube, AB, is closed at the top. The air confined in

the tube, is compressed in the same way as in Mariotte's

tube.

To graduate this instrument. We determine the divi-

sion, H, as before. The remaining divisions are found by

applying Mariotte's law.

Denote the distance in inches, from H to the top of the

tube, by I; the pressure on the mercury, in atmospheres,

by 72, and the distance in inches, from H to the upper

surface of the mercury in the tube, by x.

The tension of the air in the tube is equal to that on

the mercury in the cistern, diminished by the weight of a
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column of mercury whose altitude is x. Hence, in atmos-

pheres, it is

X

The bore of the tube being uniform, the volume of the

compressed air is proportional to its height. When the

pressure is 1 atmosphere, the height is I ; when the pres-

X
sure is n — — atmospheres, the height is I — x. Hence,

from Mariotte's law,

1 '. n — — :\ I — X : L
ijyj

Whence, by reduction,

x"" - (80?i + l)x=z - :m{n - 1).

Solving, with respect to :/:, we liave,

30n + /

2
|/-30^(«-i) + (?5!L±i):

The upper sign of the radical is not used, as it would

give a value for x, greater than I. Taking the lower sign,

and assuming I = 30 in., we have.

X = 1671 + 15 - V- 900(n - 1) + {I5n + 15)'.

Making 7i = 2, 3, 4, &c., in succession, we find for x, the

values, 11.46 in., 17.58 in., 20.92 in., &c. These distances

being set off from H, upward, and marked 2, 3, 4, &c.,

indicate atmospheres. The intermediate spaces may be

subdivided by the same formula.

In making the graduation, we have supposed the tem-

perature to remain the same. If, however, it does not

remain the same, the reading of the instrument must be

corrected by a table computed for the purpose.

The instrliment is used in the same manner as that
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already described. Neither can be used for measuring

tensions less than 1 atmosphere.

The Siphon Gauge.

182. The siphon gauge is used to measure tensions of

gases and vapors, less than an atmosphere. It consists of

a tnhe, ABC, bent so that its two branches are

parallel. The branch, BC, is closed at the top,

and filled with mercury, which is retained by the

pressure of the atmosphere; the branch, J ^, is

open at the top. If the air be rarefied in any

manner, or, if the mouth of the tube be exposed

to the action of a gas whose tension is sufficiently PJg-iso.

small, the mercury will no longer be supported in BC, but

will fall in it and rise in BA. The distance between the

surfaces of the mercury in the two branches, given by a

scale between them, indicates the tension of the gas. If

this distance is expressed in inches, the tension can be

found, in atmospheres, by dividing by 30, or, in pounds, by

dividing by 2.

The Diving-Bell.

183. The diving-bell is a bell-shaped vessel, open at the

bottom, used for descending into the water. The bell is

placed with its mouth horizontal, and let

down by a rope, AB, the whole apparatus

being sunk by weights properly adjusted.

The air contained in the bell is com-

pressed by the pressure of the water, but

its increased elasticity prevents the water

from rising to the top of the bell, which

is provided with seats for the accommodation of those

within the bell. The air, constantly contaminated bv
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breathing, is continually replaced by fresh air, pumped in

through a tube, FG. Were there no additional air intro-

duced, the volume of the compressed air, at any depth,

might be computed by Mariotte's law. The unit of the

compressing force, in this case, is the weight of a column

of water whose cross section is a square inch, and whose

height is the distance from DC to the surface of the water.

The Barometer.

184. The barometer is an instrument for measuring the

pressure of the atmosphere. It consists of a glass tube,

hermetically sealed at one extremity, filled with mercury,

and inverted in a basin of that fluid. The pressure of the

air is indicated by the height of mercury it supports.

A variety of forms of mercurial barometers have been

devised, all involving the same mechanical principle. The

most important of these are the sipho7i and the cUterii

iarmneters.

The Siphon Barometer.

185. The siphon barometer consists of a tube, CDE,

bent so that its two branches, CD and DE, are ^c
parallel to each other. A scale is placed between lltA

them, and attached to the same frame with the

tube. The longer branch, CD, is hermetically

sealed at the top, and filled with mercury; the

shorter one is open to the air. When the instru- ii

ment is placed vertic^ly, the mercury sinks in the j;:

longer branch and rises in the shorter one. The j)

distance between the surface of the mercury in fU'. 152,

the two branches indicates the pressure of the atmos-

phere.
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The Cistern Barometer.

i

OK

186. The cistern barometer consists of a glass tube, filled

and inverted in a cistern of mercury. The tube is sur-

rounded by a frame of metal, attached to the cistern. Two
longitudinal openings, near the upper part of the frame,

permit the upper surface of the mercury to be seen. A
slide, moved up and down by a rack and pinion, may be

brought exactly to the upper level of the mercury. The

height of the column is then read from a scale,

whose is at the surface of the mercury in the

cistern. The scale is graduated to inches and

tenths, and the smaller divisions are read by a

vernier.

The figure shows the parts of a complete

cistern barometer; KK represents the frame;

HH, the cistern, of glass, at the upper part,

that the mercury in the cistern may be seen

through it; L, a thermometer, to show the tem-

perature of the mercury; N^ the sliding-ring

bearing the vernier, and moved up and down by

the screw, M.

The cistern is shown on an enlarged scale in

Fig. 154 ; ^ is the barometer tube, terminating

in a small opening, to prevent sudden . shocks

when the instrument is moved from place to

place; H, the frame of the cistern; B, the

upper portion of the cistern, made of glass,

that the mercury may be seen ; E, a piece of

ivory, projecting from the upper surface of

the cistern, whose point corresponds to the

of the scale : CC, the lower part of the cistern,

made of leather, or other flexible material, and
11*

D
Ig. 153.

3

^
T
D

Fig. 154.
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attached to the glass part ; D, a screw, working through

the frame, and against the bottom of the bag, CC, by means

of a plate, P. The screw, D, serves to bring the surface

of the mercury to the point of ivory, E, and also to force

the mercury to the top of the tube, when it is desired to

transport the barometer from place to place.

To use this barometer, it is suspended vertically, and

the level of the mercury in the cistern brought to the point

of ivory, E, by the screw, i); a smart rap on the frame

will detach the mercury from the glass, to which it tends to

adhere. The ring, N, is run up or down till its lower edge

appears tangent to the surface of the mercury in the tube,

and the altitude is read from the scale. The height of the

attached thermometer should also be noted.

The requirements of a good barometer are, sufficient

width of tube, perfect purity of mercury, and a scale with

an accurately graduated vernier.

The bore of the tube should be as large as practicable, to

diminish the eftect of capillary action. On account of the

repulsion between the glass and mercury, the latter is de-

pressed in the tube, and this depression increases as the

diameter of the tube diminishes.

In all cases, this depression should be allowed for, and

the reading corrected by a table computed for the purpose.

To secure purity of the mercury, it should be carefully

distilled, and after the tube is filled, it should be boiled to

drive off any bubbles of air that might adhere to the tube.

Uses of the Barometer.

187. The primary object of the barometer is, to measure

the pressure of the atmosphere. It is used by mariners as

a weather-glass. It is also employed for determming the

heights of points on the earth's surface, above the level of
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the ocean. The principle on which it is employed for the

latter purpose is, that the pressure of the atmosphere at

any place depends on the weight of a column of air reach-

ing from the place to the upper limit of the atmosphere.

As we ascend above the level of the ocean, the weight of

the column diminishes; consequently, the pressure be-

comes less, a fact that is shown by the mercury falling in

the tube.

Difference of Level,

188. Let aB represent a vertical prism of air, whose

cross section is one square inch. Denote the pressure at

B, bj p, and at aa', by p'j denote the density of ^
the air at B, by d, and at aa' by d', and suppose

the temperature throughout the column to be

32° Fah.

Pass a horizontal plane, bb', infinitely near to

aa', and denote the weight of the air in ab, by w.

Conceive the entire column to be divided by hor- Fig. 155.

izontal planes into prisms, whose weights are each equal

to tv, and denote their heights, beginning at a, by s, s', s",

&c.

From Mariotte's law, we have,

p'~d'^
•'•

l!~~Jd^

The air throughout each elementary prism may be

regarded as homogeneous; the density of the air in

ab is therefore equal to its weight, divided by its vol-

ume into gravity (Art. 15). But its volume is equal to

1 X 1 X 5 = 5 ; hence,

,, 10 w 1

gs g d'
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Substituting for —,, its value in the preceding equation,

we have, s — -^ X% (125)
dg p'

From the formula for log. (1 + y), deduced in algebra, we

have, by substituting for y the fraction — , the equation.

(w \ w w , w

p / p 2p" 3p"

w . . .

But —: is infinitely small ; hence, all the terms in the second
p' J ^ '

member, after the first, may be neglected, giving,

/ V // P \ P I

w
or, finally, — = l{p' + to) — lp\

in which I denotes the Naperian logarithm.

In this equation, p' is the pressure on the prism, ah

;

hence, p^ + w is the pressure on the next prism below, that

is, on be.

w
If we substitute the value of — in equation (125), we

have, for the height of aby

Substituting in succession for j)', the values, p'-\- ic, p' 4- 2w,

p' + 3w, &c., we find the heights of be, cd, &c., to the nt\i

at the base, B, as follows

:
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'"=%\-^^P' + ^'')-^^P'^^'')^^

,(«-!)' ^\l{p' + n7v) — l{p' + {n — l)w)].

Adding the equations member to member, and denoting

the sum of the first members, which will be equal to A B,

by z, we have,

But 7iw is the weight of the air in aB ; hence, we have,

p' + niv = p, or,

z = ^l^ (126)
dg p

Denoting the modulus of the common system of loga-

rithms by i¥, and designating common logarithms by the

symbol log, we have,

P 1 P
Mdg ^ p'

The pressures, j5 andjf?', are measured by the heights of

the columns of mercury which they will support ; denoting

these heights by H and H\ we have,

p'~H''

whence, by substitution,

^-ik'^'w (1^^)

We supposed the temperature, of both air and mercury,

to be 32°. "J'o make the formula general, let T be the

temperature of the mercury at B, T' its temperature at a,

and denote the corresponding heights of the barometric
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column, by h and h' ; also, let t be the temperature of the

air at B, and t' its temperature at a.

PThe quantity^ is the ratio of the density of the air at

By to the corresponding pressure, the temperature being

32°. According to Mariotte's law, this ratio remains

constant, whatever may be the altitude of B above the

level of the ocean.

If we denote the latitude of the place, by /, we have,

(Art. 117),
g=G{l -{- .005133sin='0.

It has been shown, by experiment, that, a column of

mercury when heated, increases in length at the rate

of -j^oth of its length at 32°, for .each degree. Hence,

7. Tr(^ a
T-^2 \ ^ 9990 + ^-32

^ =^(^ + ^99^; = ^ 9990
'

h=H[l + -^^^J=H -— .

Dividing the first equation by the second, member by

member, we have,

A-j^ 9990+ r- 32

h'~ H' ' 9990 + r' - 32
•

IS

Dividing both terms of the coefficient of -jp by the de-

nominator, and neglecting T'— 32, in comparison with

9990, we have,

h- —d 4- ——]= ^ n + .0001 (T— T)]

Whence, by reduction,

H h 1

H'~ h''l -H .0001(7^- T')'
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The quantity z denotes, not only the height, but also the

volume of the column of air, aB, at 32°. When the tem-

perature is changed from 32°, the pressures remaining the

same, this volume will vary, according to the law of Gay
LUSSAC.

If we suppose the temperature of the entire column to

be a mean between the temperatures at B and a, which we

may do without sensible error, the height of the column

will become, equation (122),

z[l + .00204 ^^-^' - 32)] =41 + .00102(^5 ^t' - 64)].

Hence, to adapt equation (127) to the conditions pro-

posed, we must multiply the value of z by the factor,

1 + .00102(if -\-r - 64).

TT

Substituting in equation (127), for -yj-, and ^, the values

given above, and multiplying the resulting value of z, by

the factor 1 + .00102(^ -\- t' - 64), we have,

/; 1 + .00102(if + r - 64)
^^

h

Md' G{1 + .005133sin'Z) ^ h'[l + MOl{T- T')]

(128)

The factor ,-7^ is constant, and may be determined as
MdG ^

follows : Select two points, one considerably higher than

the other, and determine, by trigonometrical measurement,

their difference of level. At the lower point, take the

reading of the barometer, of its attached thermometer, and

of a detached thermometer exposed to the air. Make sim-

ilar observations at the upper station. These observations,

together with the latitude of the place, will give all the

quantities entering equation (128), except the factor in

question. Hence, this factor may be deduced. It is found
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to be 60345.51 ft. Hence, we have, finally, the barometric

formula,

z = 60345.51 ft X

1 4- .00102 it -\-t' - 64) ,
h— log

1 + .005133sin7 ^ h'[l + .0001(r - T')] . . (129)

To use this formula for determining the difference of level

between two stations, observe, simultaneously, if possible,

the heights of the barometer, and of the attached, and de-

tached thermometers, at the two stations. Substitute

these results for the corresponding quantities in the for-

mula; also substitute for / the latitude of the place, and

the resulting value of z will be the difference of level

required.

If the observations cannot be made simultaneously at

the two stations, make a set of observations at the lower

station ; after a certain interval, make a set at the upper

station; then, after an equal interval, make another set at

the lower station. Take a mean of the results of obser-

vation at the lower station, as a single set, and proceed as

before.

For the more convenient application of the formula,

tables have been computed, by which the arithmetical

operations are much facilitated.

Steam.

189. If water be exposed to the atmosphere, at ordinary

temperatures, a portion is converted into vapor, mixes with

the atmosphere, and constitutes one of the elements of the

aerial ocean. The tension of watery vapor thus formed, is

very slight, and the atmosphere soon ceases to absorb any

more. If the temperature of the water be raised, an addi-

tional amount of vapor is evolved, and of greater tension.
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When the temperature is raised to a point at which the ten-

sion of the vapor is equal to that of the atmosphere, ebulli-

tion commences, and vaporization goes on with great

rapidity. If heat be added beyond the point of ebullition,

neither the water, nor the vapor will increase in tempera-

ture till all the water is converted into steam. When
the barometer stands at 30 inches, the boiling-point of pure

water is 212° Fah.

If we take the quantity of heat that is necessary to raise

one pound of water from the temperature 32° F. to the

temperature 33° F., as a unit of heat, the total amount of

heat necessary to raise a pound of water from 32° F. to

212° F. will be 180 ^inits, and Regnault has shown that

the additional amount of heat necessary to convert the

entire pound of water into steam of the temperature 212°

F. is equal to 966.6 units. Hence, we say that it requires

180 + 966.6 or 1146.6 units of heat to convert a pound of

water at 32° F. into a pound of steam at 212° F. Of this

amount 966.6 units are said to become latent, that is, this

amount of heat is employed in converting the water at 212°

into steam of the same temperature. From this we see

that the amount of heat that becomes latent in converting

a quantity of water at 212° F. into steam at the same tem-

perature, is nearly 5^ times as much as is required to raise

it from the temperature 32° F. to the boiling point.

If steam is generated under a pressure greater or less

than one atmosphere, the boiling point of the water will

be either greater or less than 212° F. In this case,

Regnault has shown by experiment that the total num-

ber of units of heat required to convert a pound of

water at 32° F. into steam, will be given by the

formula,

Q = 1091.7 + .305(2^-32°),
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in which t is the boiling point of water under the given

pressure expressed in degrees of Fahrenheit's scale.

Thus, to convert 1 lb. of water at 32° F. into steam of

the temperature 250° F., would require 1158.2 units

of heat.

When water is converted into steam under a pressure of

one atmosphere, each cubic inch produces about 1700 cubic

inches of steam, of the temperature of 212°; or, since a

cubic foot contains 1728 cubic inches, we may say, in

round numbers, that a cubic inch of water gives a cubic

foot of steam.

If water be converted into steam under greater or less

pressure than an atmosphere, the density is increased or

diminished, and, consequently, the volume is diminished,

or increased. The temperature being also increased or

diminished, the increase of density, or decrease of volume

will not be exactly proportional to the increase of pressure

;

but, for purposes of approximation, we may consider the

densities as directly, and the volumes as inversely propor-

tional to the pressures under which the steam is generated.

On this hypothesis, if a cubic inch of water be evaporated

under a pressure of half an atmosphere, it will afford two

cubic feet of steam ; if generated under a pressure of two

atmospheres, it will only afford half a cubic foot of steam.

Work of Steam.

190. When water is converted into steam, a certain

amount of work is generated, and, from what has been

shown, this work is very nearly the same, whatever may be

the temperature at which the water is evaporated.

Suppose a cylinder, whose cross section is one square

inch, to contain a cubic inch of water, above which is an
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air-tight piston, that may be loaded with weiglits at

pleasure. In the first place, if the piston is pressed down

by a weight of 15 pounds, and the inch of water converted

into steam, the weight will be raised to the height of

1728 inches, or 144 feet. Hence, the quantity of work is

144 X 15, or, 2160 units. Again, if the piston be loaded

with a weight of 30 pounds, the conversion of water into

steam will give but 864 cubic inches, and the weight

will be raised through 72 feet. In this case, the quan-

tity of work will be 72 X 30, or, 2160 units, as before.

"We conclude, therefore, that the quantity of work is the

same, or nearly so, whatever may be the pressure under

which steam is generated. We also conclude, that the

quantity of work is nearly proportional to the amount of

fuel consumed.

Besides the quantity of work developed by simply con-

verting water into steam, a further quantity of work is

developed by allowing the steam to expand after entering

the cylinder. This principle is used in steam-engines

working expansively.

To find the quantity of work developed by steam acting

expansively : Let AB represent a cylinder, closed at A, and

having an air-tight piston, B. Suppose the steam

to enter at the bottom of the cylinder, and to push

the piston upward to (7, and then suppose the ^

opening at which the steam enters, to be closed

:

if the piston is not too heavily loaded, the steam

will continue to expand, and the piston will be

raised to some position, B. The expansive force
^^^' ^'^^'

of the steam will obey Mariotte's law, and the quantity

of work due to expansion may be computed by the formula

in the next article.

UJ
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Work due to the Expansion of a Gas or Vapor.

191. Let the gas, or vapor, be confined in a cylinder

closed at its lower end, and having a piston working air-

tight. When the gas occupies a por-

tion of the cylinder whose height is h,

denote the pressure on each square

inch of the piston, by p; when the

gas expands, so that the altitude of the

column becomes x, denote the pressure

on a square inch, by ^.
AC

Since the volumes of the gas, under ^'^'' ^^^'

these suppositions, are proportional to their altitudes we

shall have, from Mariotte's law,

p \ y '.'. X : h;

whence,

xy — ph.

If p and h are constant, and x and y vary, the above

equation will be that of an equilateral hyperbola referred

to its asymptotes.

Draw AC perpendicular to AM, and on these lines, as

asymptotes, construct the curve, NLH, from the equation,

xy —ph. Make AG = h, and draw GH parallel to AC;
it will represent the pressure, p. Make AM — x, and draw

MJV parallel to A C; it will represent the pressure, y. In

like manner, the pressure at any heio-ht of the piston may

be constructed.

Let JCL be drawn infinitely near to GH, and parallel

with it. The elementary area, GKLH, will not differ sen-

sibly from a rectangle whose base is p, and altitude is GK.

Hence, its area may be taken as »the measure of the Avork

whilst the piston is rising through the infinitely small
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space, GIC. In like manner, the area of any infinitely

small element, bounded by lines parallel to A C\ may be

taken to represent the work whilst the piston is rising

through the height of the element. If we take the sum
of all the elements between GH and JfjV, this sum, or the

area, GMNH, will represent the work of the force of

expansion whilst the piston is rising from G to M. But

the area included between an equilateral hyperbola and

one of its asymptotes, limited by lines parallel to the other

asymptote, is equal to the product of the co-ordinates of

any point, multiplied by the Naperian logarithm of the

quotient obtained by dividing one of the limiting ordinates

by the other ; or, in this particular case, it is equal to

2)h X MI- Hence, if we designate the quantity of work

performed by the expansive force whilst the piston is mov-

ing over GMy by q, we shall have.

This is the work exerted on each square inch of the piston

;

if we denote the area of the piston, by A, and the total

quantity of work, by Q, we shall have,

Q = Aph X
?(J)

= Aphxl{j^ (130)



CHAPTER IX.

HYDRAULIC AND PNEUMATIC MACHINES.

Definitions.

192. Hydraulic machines are machines for raising

and distributing water, as inimps, siphons, hydraulic ranis,

dec. The name is also applied to machines in which water

power is the motor, or in which water is employed to

transmit pressures, as water-wlieels, hydraulic presses, <^c.

Pneumatic machines are machines to rarefy and con-

dense air, or to impart motion to air, as air-pumps, venti-

lating-blowers, Sc. The name is also applied to those

machines in which the living force of air is the motive

power, such as windmills, &c.

Water Pumps.

193. A waterpump is a machine for raising water from

a lower to a higher level, by the aid of atmospheric pressure.

Three separate principles are employed in pumps : the

sucking, the lifting, and the forcing principle. Pumps

are named according to the principle employed.

Sucking and Lifting Pump.

194. This pump consists of a barrel. A, to the lower

extremity of which is attached a sucking-pipe, B, leading

to a reservoir. An air-tight piston, C, is worked up and

down in the barrel by a lever, E, attached to a piston-rod,

D ; P is a valve opening upward, which, when the pump is
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Fig. 158.

at rest, closes by its own weight. This valve is called the

pisfoti-valve. A second valve, G, also opening upward, is

placed at the junction of the pipe with

the barrel ; this is called the sleeping-

valve. The space, LM, through which

the piston moves up and down, is the

play of the pisto?i.

To explain the action of the pump

;

suppose the piston to be in its lowest

position, and everything in equilibrium.

If the extremity of the lever, U, be de-

pressed, and the piston raised, the air

in the lower part of the barrel is rarefied, and that in the

pipe, B, by virtue of its greater tension, opens the valve,

and a portion escapes into the barrel. The air in the pipe,

thus rarefied, exerts less pressure on the water in the

reservoir than the external air, and, consequently, the

water rises in the pipe, until the tension of the internal air,

plus the weight of the column of water raised, is equal to

the tension of the external air ; the valve, G, then closes

by its own weight.

If the piston be again depressed to the lowest limit, the

air in the lower part of the barrel is compressed, its tension

becomes greater than that of the external air, the valve, P
is forced open, and a portion of the air escapes. If the

piston be raised once more, the water, for the same reason

as before, rises still higher in the pipe, and after a few

double strokes of the piston, the air is completely exhausted

from beneath the piston, the water passes througli the

piston-valve, and finally escapes at the spout, F.

The water is raised to the piston by the pressure of the

air on the surface of the water in the reservoir ; hence, the

piston should not be placed at a greater distance above the
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water in the reservoir, than the height at whicli the pres^

sure of the air will sustain a column of water. In fact, it

should be placed a little lower than this limit. The specific

gravity of mercury being about 13.5, the height of a column

of water that will counterbalance the pressure of the atmos-

phere may be found by multiplying the height of the baro-

metric column by IS^.

At the level of the sea the average height of the baro-

metric column is 2^ feet ; hence, the theoretical height to

which water can be raised by the principle of suction

alone, is a little less than 34 feet.

The water having passed through the piston-valve, may
be raised to any height by the lifting principle, the only

limitation being the strength of the pump.

There are certain relations that must exist between the

play of the piston and its height above the water in the

reservoir, in order that the water may be raised to the

piston ; if the play is too small, it will happen after a few

strokes of the piston, that the air in the barrel is not suffi-

ciently compressed to open the piston-valve ; when this

state of affairs takes place, the water ceases to rise.

To investigate the relation that should exist between the

play and the height of the piston above the water: Denote

the play of the piston, by p, the distance from the surface

of the water in the reservoir to the highest position of the

piston, by a, and the height at which the Avater ceases to

rise, by x. The distance from the water in the pump to

the highest position of the piston will be « — x, and the

distance to the lowest position of the piston, a —p — x.

Denote the height at which the atmospheric pressure sus-

tains a column of water in vacuum, by li, and the weight

of a column of water, whose base is the cross section of

the pump, and altitude is 1, by w ; then will tvh denote the
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pressure of the atmosphere exerted upward through the

water in the reservoir and pump.

When the piston is at its lowest position, the pressure of

the confined air must be equal to that of the external

atmosphere; that is, to wh. When the piston is at its

highest position, the confined air will be rarefied, the vol-

ume occupied being proportional to its height. Denoting

the pressure of the rarefied air by ivh\ we shall have, from

Mariotte's law,

wli : wh' : : a — x : a —p — x.

a — p — X
h' = h-

a — X

If the water does not rise when the piston is in its high-

est position, the j^ressiire of the rarefied air, phis the

weight of the column already raised, will be equal to the

pressure of tlie external atmosphere ; or,

// ^ 'v

wh -— + wx = wh.a—x
Solving this with respect to x, we have,

_ ft ± V a* — 4:ph

a*
Ifj 4ph > a' ; or, P > -^^

the value of x is imaginary, and there is no point at which

the water ceases to rise. Hence, the above inequality

expresses the relation that must exist, in order that the

pump may be effective. This condition, expressed in

words, gives the following rule

:

Theplay of thepiston must he greater than the square of

the distance from the tvater in the reservoir, to the highest

position of the piston, divided by four times the height at

12
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which the atmosphere tvill support a column of water in a

vacuum.

Let it be required to find the least play of the piston,

when its highest position is 16 feet above the water in the

reservoir, and the barometer at 28 inches.

In this case,

a = 16 a, and h = 28 in. X ISJ = 378 in. = 31J ft.

Hence, i? > fM ft. ; or, p>2^ ft.

To find the quantity of work required to make a double

stroke of the piston, after the water reaches the spout.

In depressing the piston, no force is required, except

that necessary to overcome inertia and friction. Neglect-

ing these for the present, the quantity of work in the

downward stroke, may be regarded as 0. In raising the

piston, its upper surface is pressed downward, by the pres-

sure of the atmosphere, wh, plus the weight of the column

of water from the piston to the spout; and it is pressed

upward, by the pressure of the atmosphere, transmitted

through the pump, minus the weight of a column of water,

whose cross section is that of the barrel, and whose alti-

tude is the distance from the piston, to the water in the

reservoir. If we subtract the latter from the former, the

difierence will be the downward pressure. This difference

is equal to the weight of a column of water, whose base is

the cross section of the barrel, and whose height is the

distance of the spout above the reservoir. Denoting this

height by H, the pressure is equal to wIL The path

through which the pressure is exerted during the ascent

of the piston, is the play of the piston, ov p. Denoting

the quantity of work required, by Q, we shall have,

Q = wpH.
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But wp is the weight of a volume of water, whose base

is the cross section of the barrel, and whose altitude is the

play of the piston. Hence, Q is equal to the quantity of

work necessary to raise this volume of water from the level

of the reservoir to the spout. This volume is evidently

equal to that actually delivered at each double stroke of the

piston. Hence, the quantity of work expended in pump-

ing, with the sucking and lifting pump, hurtful resistances

being neglected, is equal to the quantity of work necessary

to lift the amount of water, actually delivered, from the

level of the reservoir to the spout. In addition to this, a

sufficient amount of power must be exerted to overcome

hurtful resistances. The disadvantage of this pump, is

the irregularity with which the force acts, being in de-

pressing the piston, and a maximum in raising it. This is

an important objection when machinery is employed in

pumping; but it may be partially overcome, by using two

pumps, so arranged, that one piston ascends as the other

descends. Another objection to the use of this pump, is

the irregularity of flow, the inertia of the column of water

having to be overcome at each upward stroke.

Sucking and Forcing Pump.

195. This pump consists of a barrel, A, with a sucking

pipe, B, and a sleeping-valve, G, as in the pump just dis-

cussed. The piston, (7, is solid, and is worked up and

down by a lever, E, and a piston-rod, D. At the bottom

of the barrel, a pipe leads to an air-vessel, K, through a

second sleeping-valve, F, which opens upward, and closes

by its own weight. A delivery-pipe, H, enters the air-

vessel at the top, and terminates near the bottom.

To explain the action of this pump, suppose the piston,

C, to be in its lowest position. If the piston be raised to
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P

K

Fig. 159.

its highest position, the air in the barrel is rarefied, its ten-

sion is diminished, the air in the tube, B, thrusts open the

valve, and a portion escapes into the ^
barrel. The pressure of the external

air then forces water up the pipe, B,

until the tension of the rarefied air,

plus the weight of the water raised,

is equal to the tension of the external

air. An equilibrium being produced,

the valve, G, closes by its own weight.

If the piston be depressed, the air in

the barrel is condensed, its tension

increases till it becomes greater than

that of the external air, when the

valve, F, is thrust open, and a portion escapes through the

delivery-pipe, 11. After a few double strokes of tlie piston,

the water rises through the valve, G, and, as the piston de-

scends, is forced into the air-vessel, the air is condensed in

the upper part of the A^essel, and, acting by its elastic force,

forces a portion of the water up the delivery-pipe and out

at the spout, P. The object of the air-vessel is, to keep up

a continued stream through the pipe, II, otherwise it would

be necessary to overcome the inertia of the entire column

of water in the pipe at every double stroke. The flow

having commenced, a volume of water is delivered from

the spout, at each double stroke, equal to that of a cylin-

der whose base is the area of the piston, and whose alti-

tude is the play of the piston.

The same relation between the parts should exist as in

the sucking and lifting pump.

To find the quantity of work consumed at each double

stroke, after the flow has become regular, hurtful resistance

being neglected

:
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AVhen the piston is descending, it is pressed downward

by the tension of the air on its upper surface, and upward

by the tension of the atmosphere, transmitted through the

delivery-pipe, j'j/?^^ the weight of a cohimn of w^ater whose

base is the area of the piston, and whose altitude is the

distance of the spout above the piston. This distance is

variable during the stroke, but its mean value is the dis-

tance of the middle of the play below the spout. The

diflferenc^ between these pressures is exerted upward, and

is equal to the weight of a column of w^ater whose base is

the area of tlie piston, and whose altitude is the distance

from the" middle of the play to the spout. The distance

through which the force is exerted, is the play of the piston.

Denoting the quantity of work during the descending

stroke, by^', the weight of a column of water, whose base

is the area of the piston, and altitude is 1, by w, and the

height of the spout above the middle of the play, by lb,

we have,

Q' = wh' X p.

When the piston is ascending, it is pressed downward

by the tension of the atmosphere on its upper surface, and

upward by the tension of the atmosphere, transmitted

through the water in the reservoir and pump, minvs the

weight of a column of water whose base is the area of the

piston, and whose altitude is the height of the piston above

the reservoir. This height is variable, but its mean value

is the height of the middle of the play above the reservoir.

The distance through which this force is exerted, is the

play of the piston. Denoting the quantity of work during

the ascending stroke, by Q", and the height of the middle

of the play above the reservoir, hyh", we have,

Q" = ivh" X i>.
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Denoting the entire quantity of work during a double

stroke, by Q, we have,

Q = q ^ Q" = wp{li' + h").

But wp is the weight of a volume of water, whose base is

the piston, and wiiose altitude is the play; that is, it is the

weight of the volume delivered at each double stroke.

The quantity, h' + h", is the height of the spout above

the reservoir. Hence, the work expended, is equal to that

required to raise the volume delivered from the level of

the reservoir to the spout. To this must be added the

work necessary to overcome hurtful resistances, as fric-

tion, &c.

If li — h", we have, Q' = Q"; that is, the quantity of

work during the ascending stroke, equal to that during

the descending stroke. Hence, the work of the motor is

more nearly uniform, Avhen the middle of the play is at

equal distances from the reservoir and spout.

Fire-Engine.

196. The fire-engine is a double sucking and forcing

pump, the piston-rods being so connected, that when one

piston ascends, the other descends. The sucking and de-

livery pipes are made of leather, and attached to the machine

by metallic screw-joints.

The figure exhibits a

cross section of the essen-

tial part of a fire-engine.

A, A', are the barrels,

the pistons are connect-

ed by rods, i), /), with

the lever, E, E'; B is the

si";king-pipe, terminating rig. leo.
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in a box from whicn the water may enter either barrel

through the valves, G, O '; K is the air-vessel, common

to both pumps, and communicating with them by valves,

Fy F'; H is the delivery-pipe.

It is mounted on wheels for convenience of locomotion.

The lever, E, E', is worked by rods at right angles to the

lever, so arranged that several men can apply their

strength at once. The action of the pump differs in no

respect from that of the forcing pump; but when the

instrument is worked vigorously, a large quantity of water

is forced into the air vessel, the tension of the air is much

augmented, and its elastic force, thus brought into play,

propels the water to a considerable distance from the

delivery-pipe. It is this capacity of throwing a jet of

water to a great distance, that gives to the engine its value

in extinguishing fires.

A pump similar to the fire-engine, is often used, under the

name of the double-action forcing jJump, for other purposes.

The Rotary Pump.

197. The rotary pump is a modification of the sucking

and forcing pump. Its construction will be understood

from the drawing, which repre-

sents a section through the axis

of the sucking-pipe, at right

angles to the axis of the rotating

portion.

A is a ring of metal, revolv-

ing about an axis; D, D, is a

second ring of metal, concentric

with the first, and forming with

it an intermediate annular space.

This space communicates with the sucking-pipe, K, and

Fig. 161.
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the delivery-pipe, L. Four radial paddles, C, are so dis-

posed as to slide backward and forward through suitable

openings in the ring, A, and are moved around with it.

6r is a guide, fastened to the end of the cylinder enclosing

the revolving apparatus, and cut as represented in the

figure; E, E, are springs, attached to the ring, D, and

acting, by their elastic force, to press the paddles firmly

against the guide. These springs do not impede the flow

of water from the pipe, K, and ifito the pipe, L.

When the axis, 0, revolves, each paddle, as it passes the

partition, is pressed against the guide, but is forced out

again, by the form of the guide, against the wall, D. Each

paddle drives the air in front of it in the direction of the

arrow-head, and finally expels it through the pipe, L. The

air behind the paddle is rarefied, and the pressure of the ex-

ternal air forces a column of water up the pipe. After a few

revolutions, the air is entirely exhausted from the pipe, K.

The water enters the channel, C, C, and is forced up the

pipe, L, from which it escapes by a spout. The work

expended in raising a volume of water to the spout, by

this pump, is equal to that required to lift it from the level

of the cistern to the spout. This may be shown in the same

manner as was explained under the head of tlie sucking and

forcing pump. To this quantity of w^ork, must be added

the work necessary to overcome hurtful resistances.

A machine, similar to the rotary pump, is constructed

for exhausting foul air from a mine; or, by reversing the

direction of rotation, to force fresh air to the bottom of the

mine.

The Hydrostatic Press.

198. The hydrostatic press is a machine for exerting a

great pressure through a small space. It is used in com-
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pressing seeds to obtain oil, in packing hay and other

goods, also in raising great weights. Its construction,

though requiring the use of a

sucking pump, depends upon the

principle of equal pressures, (Art.

145).

It consists of two cylinders, A
and B, each provided with a

solid piston. The cylinders com-

municate by a pipe, C, whose

entrance to the larger cylinder is ^'g- ^^2.

closed by a sleeping-valve, B. The smaller cylinder com-

municates with the reservoir, JC, by a sucking-pipe, IT,

whose upper extremity is closed by a sleeping- valve, B.

The piston, B, is worked by the lever, G^ By raising and

depressing the lever, G, the water is raised from the reser-

voir and forced into the cylinder, A ; and when the space

below the piston, F, is filled, a force is exerted upward, as

many times greater than that applied to B, as the area ofF
is greater than B, (Art. 145). This force may be utilized

in compressing a body, L, between the piston and the

frame of the press.

Denote the area of the larger piston, by F, of the smaller,

by
J??,

the pressure applied to B, by /, and that exerted at

F, by F; we shall have,

p
'

If we denote the longer arm of the lever, G, by L, tli^

shorter arm, by I, and the force applied at the extremity of

the longer arm, by IT, we have, from the principle of the

lever, (Art. 64),

'- K:f::l:L, .: f = -^-

F:f::P:p, F
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Substituting above, we have,

pi

To illustrate, let the area of the larger piston be 100

square inches, that of the smaller piston 1 square inch, the

longer arm of the lever 30 inches, the shorter arm 2 inches,

and let a force of 100 pounds be applied at the end of the

longer arm of the lever; to find the pressure on F.

From the conditions,

P = 100, K= 100, L = 30, jy r= 1, and / = 2.

Hence,

^=15^^f^ii-« = 150,000 lbs.

We have not taken into account the hurtful resistances,

hence the pressure of 150,000 pounds must be somewhat

diminished.

The volume of water forced from the smaller to the

larger cylinder, during a single descent of the piston, B
,

will occupy, in the two cylinders, spaces whose heights are

inversely as the areas of the pistons. Hence, the path,

over which / is exerted, is to the path over which F is

exerted, as P is to p. Or, denoting these paths by s and

S, we have,

s : S \\ P \ p;

or, since P : p : : F : f, we shall have,

s : S :: F:f, .-. fs = FS.

That is, the work of the potver and resistance are equal, a

principle that holds good in all machines.

Examples.

1. The cross section of a sucking and forcing pump is 6 square

feet, the play of the piston 3 feet, and the lieight of the spout, above

the reservoir, 50 feet. What must be the eftective horse-power of an
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engine to impart 30 double sti-okes per minute, hurtful resistances

being neglected ?

SOLUTION.

The number of units of work required to be performed eacu

minute, is equal to

6 X 3 X 50 X 62i X 30 = 1687500 lb. ft

Hence,
„ — 1687500 — K-14 A^o

2. In a hydrostatic press, the areas of the pistons are, 2 and 400

square inches, and the arms of the lever are, 1 and 20 inches. Re-

quired the pressure on the larger piston for each pound of pressure

on tlie longer arm of lever? Am. 4000 lbs.

3. The areas of the pistons of a hydrostatic press are, 3 and 300

square inches, and the shorter ^Jmi of the lever is one inch. What
must be the length of the longer ann, that a force of 1 lb. may pro-

duce a pressure of 1000 lbs. ? Ans. 10 inches.

The Siphon.

199. The siphon is a bent tube, for transferring a liquid

from a higher to a lower level, over an intermediate eleva-

tion. The siphon consists of two branches, J^
and BC\oi which the outer one is the longer. To

use the instrument, the tube is filled with the

liquid, the end of the longer branch being stop-

ped with the finger, or a stop-cock ; in which case,

the pressure of the atmosphere prevents the liquid

from escaping at the other end. The instrument

is then inverted, the end, C, being submerged in the liquid,

and the stop removed from A. The liquid will flow through

the tube, and the flow will continue till the level of the

liquid in the reservoir reaches the mouth of the tube, C.

To find the velocity with which water will issue from

the siphon, let us consider an infinitely small layer at the

orifice, ji. This layer is pressed downward, by the tension

of the atmosphere exerted on the surface of the reservoir,

minus the weight of the water in the branch, BD, plus the
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weight of the water in the branch, BA. It is pressed up-

ward by the tension of the atmosphere. The difference of

these forces, is the weight of the water in DA, and the velocity

of the stratum will be due to that depth. Denoting the ver-

tical height of DA, by 7i, we shall have, for the velocity,

This is the theoretical velocity, but it is never quite real-

ized in practice, on account of resistances, that have been

neglected in the preceding investigation.

The siphon may be filled by applying the mouth

to the end, A, and exhausting the air by suction.

The tension of the atmosphere, on the upper sur-

face of the reservoir, presses the water up the

tube, and fills it, after which the flow goes on as

before. Sometimes, a sucking-tube, AD, is inserted near

the opening, A, rising nearly to the bend of the siphon.

In this case, the opening, ^4, is closed, and the air exhausted

through the sucking-tube, AD, after which the flow goes on

as before.

The Wurtemburg Siphon.

200. In the Wurtemburg siphon, the ends of the tube

are bent twice, at right angles, as shown in the figure. The

advantage of this is, that the tube, once filled, re- ^
mains so, as long as tlie plane of its axis is kept

vertical. The siphon may be lifted out and re-

placed at pleasure, thereby stopping and repro- [^ jv^

ducing the flow at will. ,
Fig. i65.

It is to be observed that the siphon is only efi'ective when

the distance from the highest point of the tube to the level

of the water in the reservoir is less than the height at

which the atmospheric pressure sustains a column of water

in a vacuum. This will, generally, be less than S-i feet.
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The Intermitting Siphon

201. The intermitting siphon is represented in the figure.

AB is a curved tube issuing from the bottom of a reservoir.

The reservoir is supplied with water by

a tube, B, having a smaller bore than

the siphon.

To explain its action, suppose the

reservoir to be empty, and the tube, E,

to be open; as soon as the reservoir

is filled to the level, CD, the water be-

gins to flow from the opening, B, and

the flow once commenced, continues till the level of the

reservoir is reduced to CD', through the opening, A. The

flow then ceases till the cistern is again filled to CD, and

so on as before.

Intermitting Springs.

202. Let A represent a subterranean cavity, communi-

cating with the surface of the earth by a channel, ABC,

bent like a siplion. Suppose the reser-

voir to be fed })y percolation through

the crevices, or by a small channel, D.

When the water in the reservoir rises

to the horizontal plane, BD, the flow ^^*» ^^'•

commences at C, and, if the channel is sufficiently large,

tlie flow continues till the water is reduced to the level

plane through C. An intermission then occurs till the

reservoir is again filled; and so on, intermittingly.

Siphon of Constant Flow.

203. We have seen that the velocity of efilux depends on

the height of water in the reservoir above the external
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opening of the siphon. When the water is drawn from the

reservoir, the surface sinks, this height diminishes, and,

consequently, the velocity continually diminishes.

If, however, the shorter branch, CD, be passed through

a cork large enough to float the siphon, the instrument

will sink as the upper surface is depressed, the height of

DA will remain constant, and, consequently, the flow will

be uniform till the siphon comes in contact with the upper

edge of the reservoir. By suitably adjusting the siphon in

the cork, the velocity of efflux can be increased or de-

creased within certain limits. In this manner, any desired

quantity of the fluid can be drawn off in a given time.

The siphon is used in the arts, for decanting liquids. It

is also employed to draw a portion of a liquid from the

interior of a vessel when that liquid is overlaid by one of

less specific gravity.

The Hydraulic Ram.

204. The hydraulic ram is a machine for raising water by

means of shocks caused by the sudden stoppage of a stream

of water.

It consists of a reservoir, B, supplied by an inclined

pipe. A; at the upper surface of the reservoir, is an orifice

closed by a valve, D ; this valve is

kept in place by a metallic frame-

work immediately below the ori-

fice ; 6r is an air-vessel communi-

cating with the reservoir by an

opening, F, with a spherical valve,

B; this valve closes the orifice, F,

except when forced upward, in
^ -^ '

Fig. 168.

which case its motion is restrained

by a framework or cage ; ^ is a delivery-pipe entering the
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air-vessel at its upper part, and terminating near the bot-

tom. At P is a small valve, to supply the loss of air in

the air-vessel, arising from absorption.

To explain the action of the instrument, suppose it

empty, and the parts in equilibrium. If a current of

water be admitted to the reservoir, through the pipe. A,

the reservoir is soon fillecl, and the water commences

rushing out at D; the impulse cf tlie water forces the

valve, />, upward, and closes the opening; the velocity of

the water in the reservoir is checked ; the reaction forces

open the valve, E, and a portion of the water enters the

air-chamber, G; the force of the shock having been

expended, the waives both fall by their own weight; a

second shock takes place, as before ; an additional quan-

tity of water is forced into the air-vessel, and so on con-

tinuously. As the water is forced into the air-vessel, the air

becomes compressed; and acting by its elastic force, urges

a stream of water up the pipe, JT. The shocks occur in

rapid succession, and thus a constant stream is kept up.

To explain the use of the valve, P, it may be remarked

that water absorbs more air under a greater, than under a

smaller pressure. Hence, as it passes through the air-

chamber, a portion of the contained air is taken up by the

water and carried out through the pipe, H. But each time

that the valve, D, falls, there is a tendency to a vacuum in

the upper part of the reservoir, in consequence of the rush

of the fluid to escape through the opening. The pressure

of the external air then forces the valve, P, open, a portion

of air enters, and is afterward forced up with the water into

the vessel, G, to keep up the supply.

The hydraulic ram is only used to raise small quantities

of water, as for the supply of a house, or garden. Only a

small fraction of the fluid that enters the supply-pipe actu-
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ally passes out through the delivery-pipe ; but if the head

of water is pretty large, a column may be raised to a great

height. Water is often raised, in this manner, to the

highest parts of lofty buildings.

Sometimes, an additional air-vessel is introduced over

the valve, E, to deaden the shock of the valve in its play.

Archimedes' Screw.

205. This is a machine for raising water through small

heights, and, in its simplest form, it consists of a tube

wound spirally around a cylinder. The cylinder is

mounted so that its axis is oblique to the horizon, the

lower end dipping into the reservoir. When the cylinder

is turned on its axis, the lower end of the tube describes the

circumference of a circle, whose plane is perpendicular to

the axis. When the mouth of the tube comes to the level

of the axis and begins to ascend, there is a certain quantity

of water in the tube, which continues to occupy the lowest

part of the spire ; and, if the cylinder is properly inclined

to the horizon, this flow is toward the upper end of the

tube. At each revolution, a quantity of water enters the

tube, and that already in the tube is raised, higher and

higher, till, at last, it flows from the upper end of the tube.

The Chain Pump.

206. The chain pump is an instru-

ment for raising water through small

elevations.

It consists of an endless chain pass-

ing over wheels, A and B, having their

axes horizontal, one below the surface

of the water, and the other above

the spout of the pump. Attached Fig. 169.
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to tins chain, and at right angles to it, are circular disks,

fitting the tube, CD. If the cylinder. A, be turned in the

direction of the arrow-head, the buckets or disks rise

through the tube, CD, driving the water before them,

until it reaches the spout, C, and escapes. One great

objection to this machine is, the difficulty of making the

disks fit the tube. Hence, there is a constant leakage,

requiring great additional expenditure of force.

• Sometimes the body of the pump is inclined, in which

case it does not differ much in principle from a wheel with

flat buckets, that has also been used for raising water.

The Air Pump.

207. The air pump is a machine for rarefying air.

It consists of a barrel. A, in which a piston, B, is worked

up and down by a lever, C, attached to a piston-rod, D.

The barrel communicates with

a vessel, E, called a receiver,

by a narrow pipe. The re-

ceiver is usually of glass,

ground to fit air-tight on a

smooth bed-plate, KK. The

joint between the receiver

and plate may be rendered more perfectly air-tight by

interposing a layer of tallow. A stop-cock, H, permits

communication to be made at pleasure between the barrel

and receiver, or between the barrel and external air. When
the stop-cock is turned in a particular direction, the barrel

and receiver communicate ; but on turning it through 90

degrees, the communication with the receiver is cut off,

and a communication is opened between the barrel and

external air. Instead of the stop-cock, valves are often

used, that are opened and closed by the elastic force of the

Fig. 170.
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air, or by the force that works the pump. The commu-
nicating pipe should be exceedingly small, and the piston,

B, when at its lowest point, should fit accurately to the

bottom of the barrel.

To explain the action of the air pump, suppose the

piston to be at its lowest position. The stop-cock, H, is

turned so as to open a communication between the barrel

and receiver, and the piston is raised to its highest point

by a force applied to the lever, C. The air, which before

occupied the receiver and pipe, expands so as to fill the

barrel, receiver, and pipe. The stop-cock is then turned

to cut off communication between the barrel and receiver,

and open the barrel to the external air, and the piston

again depressed to its lowest position. The air in the

barrel is expelled by the depression of the piston. The air

in the receiver is now more rare than at the beginning, and

by a continued repetition of the process, any degree of rare-

faction may be attained.

To measure the rarefaction of the air in the receiver, a

siphon-gauge may be used, or a glass tube, 30 inches long,

may be made to communicate at its upper extremity with

the receiver, whilst its lower extremity dips into a cistern

of mercury. As the air is rarefied in the receiver, the pres-

sure on tlie mercury in the tube becomes less than on that

in the cistern, and the mercury rises in the tube. The

tension of the air in the receiver is indicated by the differ-

ence between the height of the barometric column and that

of the mercury in the tube.

To investigate a formula for the tension of the air in the

receiver, after any number of double strokes, let us denote

the capacity of the receiver, by r, that of the connecting-

pipe, by p, and that of the space between the bottom of

the barrel and the highest position of the piston, by b.
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Denote the original tension of the air, by t ; its tension

after the first upward stroke of the piston, by t' ; after the

second, third, . . .?^'^ upward strokes, by f, t'", ...T'.

The air which occupied the receiver and pipe, after the

first upward stroke, fills the receiver, pipe, and barrel : ac-

cording to Mariotte's law, its tension in the two cases

varies inversely as the volumes occupied ; hence,

t : t' :: p + r +i '. 2^ + r, ,'. t' = ^^—-^.
p + r -\- b

In like manner, we shall have, after the second upward

stroke,

p + r
t' : t" : : p }- r -\- b : p + r, .'. t" — f

p -\- b + r

Substituting for t' its value, deduced from the preceding

equation, we have,

\p -{- b -}- rj

In like manner, we find,

\p -\-b + rj
'

and, in general, after the n'" stroke,

\p + b + rJ

If the pipe is exceedingly small, its capacity may be neg-

lected in comparison with that of the receiver, and we then

have,

V^ + rJ

Let it be required, for example, to determine the tension

of the air after 5 upward strokes, when the capacity of the

barrel is one-third that of the receiver.
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T
In this case, ^ = j, and n = 5, whence,

10

Hence, the tension is less than a fourth part of that of

the external air.

Instead of the receiver, the pipe may be connected by a

screw-joint with any closed vessel, as a hollow globe, or glass

flask. In this case, by reversing the direction of the stop-

cock, in the up and down motion of the piston, the instru-

ment may be used as a condenser. When so used, the

tension, after n downward strokes of the piston, is giveiv

by the formula.

Taking the same case as that before considered, with the

exception that the instrument is used as a condenser

instead of a rarefier, we have, after 5 downward strokes,

r =: it.

That is, the tension is eight-thirds that of the external air.

external air.

Artificial Fountains.

208. An artificial fountain is an instrument by which a

liquid is forced upward in the form of a jet, by the tension

of condensed air. The simplest form of artificial fountain

is called Hero's ball.

Hero's Ball.

209. This consists of a globe. A, into the top

of which is inserted a tube, B, reaching nearly

to the bottom of the globe. This tube is pro-

vided with a stop-cock, 0, by which it may he

(closed, or opened at pleasure. A second tube, D, ^^^ ^^^'
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enters the globe near the top, which is also provided

with a stop-cock, E.

To use the instrument, close the stop-cock, C, and fill

the lower portion of the globe with water through D

;

then connect I) with a condenser, and pump air into the

upper part of the globe, and confine it there by closing

the stop-cock, E. If, now, the stop-cock, (7, be opened,

the pressure of the confined air on the surface of the

water in the globe forces a jet through the tube, B. This

jet rises to a greater or less height, according to the greater

or less quantity of air that was forced into the globe. The

water will continue to flow through the tube as long as the

tension of the confined air is greater than that of the

external atmosphere, or till the level of the water in the

globe reaches the lower end of the tube.

Instead of using the condenser, air may be introduced

by blowing with the mouth through the tube, D, and con-

fined by turning the stop-cock, E.

The principle of Hero's ball is the same as that of the

air-chamber in the forcing-pump and fire-engine, already

explained.

Hero's Fountain.

210. Hero's fountain is constructed on the

same principle as Hero's ball, except that the

compression of the air is effected by the weight

of a column of water, instead of by a condenser.

J is a cistern, similar to Hero's ball, with

a tube, B, extending nearly to the bottom of

the cistern. C is a second cistern placed at

some distance below A. This cistern is con-

nected with a basin, />, by a bent tube, E, and

also witli the upper part of the cistern. A, by g. 172.
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a tube, F. When the fountain is to be used, A is nearly

filled with water, C being empty. A quantity of water is

then poured into the basin, D, which, acting by its weight,

sinks into C, compressing the air in the upper portion of

it into a smaller space, thus increasing its tension. This

increase of tension acting on the surface of the water in A,

forces a jet through B, which rises to a greater or less

height according to tlie greater or less tension. The flow

will continue till the level of the water in A reaches the

bottom of the tube, B. The measure of the compressing

force on a unit of surface of the water in C\ is the weight

of a column of water, whose base is that unit, and whose

altitude is the difference of level between the water in D
and in C.

If Hero's ball be partially filled with water and placed

under the receiver of an air-pump, the water will be ob-

served to rise m the tube, forming a fountain, as the air in

the receiver is exhausted. The principle is the same as

before; the flow is due to an excess of pressure on the

water within the globe over that without. In both cases,

the flow is resisted by the tension of the air without, and

is urged on by the tension within.

Wine-Taster and Dropping-Bottle.

211. The wine-taster is used to bring up a small portion

of wine or other liquid from a cask. It consists of a tube,

open at the top, and terminating below in a nar-
y

row tube, also open. When it is to be used, it is

inserted to any depth in the liquid, which rises in

the tube to the level of the liquid without. The

finger is then placed so as to close the upper end

of the tube, and the instrument raised out of the

cask. The fluid escapes from the lower end, until "'
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the pressure of the rarefied air in the tube, jf^Z^^s the weight

of a column of liquid, whose cross section is that of the

tube, and whose altitude is that of the fluid retained, is

equal to the pressure of the external air. If the tube be

placed over a tumbler, and the finger removed from the

upper orifice, the fluid brought up flows into the tum-

bler.

If the lower orifice is very small, a few droj^s may be

allowed to escape, by taking off the finger and immediately

replacing it. The instrument then constitutes the drop-

ping-bottle.

The Atmospheric Inkstand.

212. The atmospheric inkstand consists of a cylinder, A,

which communicates by a tube with a second cylinder, B.

A piston, 0, is moved up and down in A, by

means of a screw, D. Suppose the spaces, A
and B, to be filled with ink. If the piston,

C, be raised, the pressure of the external air

forces the ink to follow it, and the part, B, is

emptied. If the operation be reversed, and Fig.174.

the piston, C, depressed, the ink is again 'forced into the

space, B. This operation may be repeated at nleasure.

Prime Movers.

Definition of a Prime Mover.

213. A PRIME MOVER is a contrivance, by means of which

tthe power furnished by a motor is made to impart motion

to a train of mechanism. The principal motors are, water-

power, wind-power, and steam. The corresponding prime

movers are, water-wJieeU, loindmills, and steam-engines^
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Water-Wheels.

214. A WATER-WHEEL is a wheel set in motion by the

action of water. Water-wheels are divided into two classes

—vertical and horizontal.

There are three principal varieties of vertical wheels :

—

oversJiot, undershot, and breast zvheels. The most important

horizontal wheel is the turbine.

The overshot wheel consists of a cylindrical drum, A,

terminated at its ends by projecting

rings, B, called croivns. The space

between the crowns is divided into

cells, by curved or angular parti-

tions ; these cells, called buckets, are

constructed so as to retain the water

as long as possible. The water is

delivered by a sluice-wa}^ C, near the

top of the wheel, and, acting by its

weight, it imparts motion to the wheel, which is com-

municated to the train by suitable transmitting pieces.

This wheel is employed where there is but a small volume

of water, with considerable fall.

The undershot wheel is similar, in its general construc-

tion, to the overshot wheel; the partitions between the

cells, which may be either

plane or curved, are called

floats. The water is de-

livered at the bottom of

the wheel, and impinging

against the floats, acts by

its living force to set the

wheel in motion. The fik- i^e

Fig. r.5.
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velocity of the water depends on its head, that is, its height

in the reservoir, A.

The breast wheel differs from the undershot wheel in

having the water delivered at a higher level, and also in

having a casing, or trough,

A, called a breast, which

nearly fits the periphery "=

of the wheel that revolves

mmm.
within it. In this wheel,

the water acts partly by its

weight and partly by its

living force.

The turbine turns on a

vertical axis, and its floats radiate from it, being curved

somewhat like the blades of a screw propeller. The water

enters at the centre of the wheel, flows downward and

outward, and acts, both by its weight and living, force, to

impart motion of rotation to the wheel.

Windmills.

215. A WINDMILL is a wheel set in motion by the living

force of a current of air. It consists of a horizontal axle,

always parallel to the direction of the wind, with pro-

jecting arms carrying sails, set obliquely to the axis, some-

what like the blades of a screw propeller. The force of

the wind, which acts on each sail at its centre of pressure,

may be resolved into tAVo components, one perpendicular,

and the other parallel to the sail. The former alone is

effective; this may be further resolved into two com-

ponents, one perpendicular, and the other parallel to the

axis of rotation. The first of these alone is concerned in

producing rotation, and the measure of its effect is the

13
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product of its intensity by its lever arm—that is, its dis-

tance from the axis.

The Steam-Engine.

216. A STEAM-EN'GIN'E is a contrivance for utilizing theo

expansive force of steam. The term is generally employed

to designate not only the engine proper, but also the

various appendages for generating and condensing steam.

The relation between the heat applied and the amount of

steam generated, as also its general mode of action, have

been explained in a previous chapter.

Varieties of Steam Engines.

217. Steam-engines may be condensing, or non-condens-

ing. In the former, the steam, after having acted on the

piston, is condensed, and the warm water returned to the

boiler ; in the latter, the steam is not condensed, but hav-

ing acted on the piston, is blown off, into the air. In a

condensing engine, steam may be used of a lower tension

than 15 lbs. to the inch; in which case it is called a loio-

pressure engine. In a non-condensing engine, the steam

must be of a greater tension than 15 lbs. to the inch, in

order that it may be blown off into the air. An engine in

which steam is used of a higher tension than 15 lbs., is

called a liigh-pressure engine. A condensing engine may
be either high or lotv pressure. A wo;i-condensing engine

must be high i)ressure.

Condensing engines are more economical of fuel, but

they are heavier and more complex in construction ; for

this reason they are necessarily statioiiary. Non-condens-

ing engines are used for locomotives ; where fuel is »ibun-

dant they are sometimes used as stationary engines.
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The Boiler and its Appendages.

218. The BOILER is a shell of metal, generally of

wrought iron, in which steam is generated. Boilers are of

various forms. One of the simplest is cylindrical, with

hemispherical ends. Sometimes two smaller cylinders,

called heaters, are placed below the main boiler, and con-

nected with it by suitable pipes. In the Cornish boiler,

the cylindrical shell has a large flue, and sometimes two

flues, passing through it, from end to end. The tubular

boiler has a great many small tubes, or flues, passing

through it for the transmission of flame and heated gases.

The object in all cases is to generate steam rapidly and

economically. To accomplish this, the boiler is set in the

furnace so as to give as large a heating surface, in propor-

tion to its capacity, as possible, and the flues and heat

passages are constructed to keep the currents of hot air

and gas in contact with the heating surface, as long as is

compatible with free combustion.

The following are some of the principal appendages to

the boiler : 1°, the furnace, or fireplace, with its flues and

dampers, for regulating the draft and keeping up combus-

tion ; 2°, the feed apparatus, for furnishing water, either

from the condenser or from a reservoir, to supply the place

of that converted into steam ; 3°, the safety-valve, a valve

opening into the boiler and secured in position by a spring

or weighted lever, until the tension of the steam reaches

the limit of safety ; 4°, the gauge, to indicate the height of

the water in the boiler; 5°, the manometer, for showing the

actual tension of the steam in the boiler ; 6°, the Mow-off

apparatus, consisting of a cock near the bottom of the

boiler, which, when opened, permits the pressure of the

steam to force out the sediment and impurities that collect
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there; and, 7°, the steam-pipe, that conducts the steam

from the boiler to the engine proper.

The Engine proper.

219. The essential parts of the engine proper are shown

in the cut. As the figure is only intended to illustrate the

general principles of the engine, the parts are arranged in

such manner as to exhibit them best at a single view.

Fig. 178.

The cylinder is shown on the left, with a portion broken

away. Its interior surface is smooth, and of uniform bore

throughout.
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The piston, P, receives the pressure of the steam, alter-

nately on its upper and lower faces, and is thus made to

move up and down in the cylinder, the joint between them

being made steam-tight by a suitable packing.

The piston-rody A, working through a stuffing-box, d, and

kept parallel to the axis by the parallel motion, D, D, E,

acts on one end of the working-beam, L, and imparts to it

an oscillatory motion.

The connecting-rod, I, transmits the oscillatory motion

to the crank, K, by means of which it is transformed into

rotary motion about the sliaft of the engine.

The steam-chest, b, receives the steam from the boiler

through the steam-pipe, c, and by means of the sliding-valve

connected with the rod, m, is permitted to pass through the

proper channels, or steam-ports, alternately to the upper

and lower faces of the piston. In the position of the

engine shown in the figure, the steam from the boiler

passes into the upper steam-passage, rises to the top of the

cylinder, enters it there, and acts to force the piston down;

the steam below the piston passes up through the lower

steam-passage, is prevented from entering the steam-chest

by the sliding-valve, passes out at the opening, a, and is

thence conveyed by the eduction pipe, U, to the condenser,

0; when the piston reaches the bottom of the cylinder

the motion imparted to the shaft operates on the eccentric,

e, to move the eccentric rod, Z, which, in turn, through the

bent lever, m, draws the sliding-valve up, so as to cover the

upper, and uncover the lower steam-passages ; the opening,

a, of the eduction pipe is then in communication with the

upper end of the cylinder, through the upper passage and

the sliding-valve. In this state of affairs, the steam from

the boiler enters the cylinder by the lower passage, the

piston is forced up, the steam above the piston is* driven
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into the eduction pipe, U, and thence to the condenser

;

when the piston reaches the upper limit of its play, the

position of the sliding-valve is again reversed, and so on

continually.

The cold-tuater pump, 72, worked by the rod, H, draws

cold water from a reservoir, and forces it through a pipe,

T, into the condenser. This pipe, terminating in a rose,

delivers the water in the form of a cold shower, which

acts to condense the steam that is continually forced

into it.

The air-pump, M, worked by a rod, F, draws the hot

water, and the air that is mixed with it, from the con-

denser, and forces it into the hot-ioell, N.

The feed-pump, Q, worked by the rod, G, draws the water

from the hot-well and forces it back to the boiler.

The Locomotive.

220. The Locomotive is represented in section by the

accompanying figure. The essential parts are the fol-

lowing :

The holler, B, B, with \i^ flues, p, p), and its safety-valve,

M. The dotted line shows the height of the water in the

boiler.

The fire-hox, A, communicating with the smohe-hox, C,

by means of the flues, p, p. The fire-box has a double

wall, the interval being filled with water, communicating

with that in the boiler. Fuel is supplied by the door, D,

and air enters the fire-box from beloAV, through the grate, E,

The steam-dome, B, is an elevated portion of the boiler,

whose object is to permit steam to enter the steam-pipe,

without any admixture of water, as might happen if it

were taken from a lower level.

The steam-pipe, S, S, conveys steam from the dome to
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Fig. 179.
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the steam-chest, where it is distributed in the manner

described in the last article.

The cylinder, the piston, P, and the piston-rod, R, are

similar to the corresponding parts of the engine described

in the last article.

The steam, after acting on the piston, is blown off

through the blast-pipe, L, which terminates in the smoke-

box, C. The current produced increases the draft, and

thus promotes the combustion of the fuel.

The connecting-rod, G, transmits the motion of the

piston to the crank, which converts it into rotary motion

about the axis of the driving-wheels, F.

The alternate back and forth motion of the sliding-

valve is effected by an eccentric, placed on the axle of the

driving-wheel. The supply of water is obtained by pumps

placed under the frame and worked by eccentrics. These

suck the water from a reservoir, mounted on the tender,

which is a car attached to the locomotive for the trans-

portation of water and fuel.
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