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AUTHOE'S PKEFACE.

The importance of the study of Physics is now generally acknowledged. Besides

the interest of curiosity which attaches to the observation of nature, the experi-

mental method furnishes one of the most salutary exercises for the mind

—

constituting in this respect a fitting supplement to the study of the mathematical

sciences. The method of deduction employed in these latter, while eminently

adapted to form the habit of strict reasoning, scarcely aflfords any exercise for

the critical faculty which plays so important a part in the physical sciences.

In Physics we are called upon, not to deduce rigorous consequences from an

absolute principle, but to ascend from the particular consequences which alone

are known to the general principle from which they flow. In this operation

there is no absolutely certain method of procedure, and even relative certainty

can only be attained by a discussion which calls into profitable exercise all the

faculties of the mind.

Be this as it may, physical science has now taken an important place in educa-

tion, and plays a prominent part in the examinations for the difi'erent university

degrees. The present treatise is intended for the assistance of young men
preparing for these degrees; but I trust that it may also be read with profit

by those persons who, merely for purposes of self-instruction, wish to acquire

accurate knowledge of natural phenomena. Having for- nearly twenty yeare

been charged with the duty of teaching from the chair of Physics in one of the

lyceums of Paris, I have been under the necessity of making continual efforts

to overcome the inherent difiiculties of this branch of study. I have endea-

voured to turn to account the experience thus acquired in the preparation of this

volume, and I shall be happy if I can thus contribute to advance the taste for

a science which is at once useful and interesting.

I have made very limited use of algebra. Though calculation is a precious

and often indispensable auxiliary of physical science, the extent to which it

can be advantageously employed varies greatly according to circumstances. There

are in fact some phenomena which cannot be really understood without having

recourse to measurement: but in a multitude of cases the explanation of

phenomena can be rendered evident without resorting to numerical expression.

The physical sciences have of late years received very extensive developments.

Facts have been multiplied indefinitely, and even theories have undergone great

modifications. Hence arises considerable difficulty in selecting the most essential

points and those which best represent the present state of science. I have done

my best to cope with this difficulty, and I trust that the reader who attentively

peruses my work, will be able to form a pretty accurate idea, of the present

position of physical science.





PREFACE TO THE THIRTEENTH EDITION OF

PAKT I.

In the first edition of this treatise the earlier portions consisted of a j^retty close

translation from the French; but as the work progressed I found the advantage

of introducing more considerable modifications ; and Parts III. and IV. were to

a great extent rewritten rather than translated. In the sixth edition Part I. was

in like manner rewritten, several additional subjects were introduced, and the

collection of " Problems " (translated fi-om the French), which appeared in the

third, fourth, and fifth editions, was replaced by a much larger number of

"Examples" with answers appended. By pruning redundancies, the Part was

kept within its original limits of size. No change beyond a few trifling verbal

connections was made in the seventh, eighth, ninth, tenth, eleverjth, and twelfth

editions. In the thirteen edition a new weather-chai't is given, and the informa-

tion respecting weather prediction is brought down to date.

Professor Deschanel's foot-notes are still distinguished by tlie initial " D ".

Belfast, June, 1894.
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FRENCH AND ENGLISH MEASURES.

A DECIMETRE DIVIDED INTO CENTIMETRES AND MILLIMETRES.
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INCHES AND TENTHi

REDUCTION OF FRENCH TO ENGLISH MEASURES.

Length.

inch.1 millimetre = "03937 inch, or about -^--^ >

1 centimetre= "3937 inch.
1 decimetre=3 -937 inch.

1 metre=39 -37 inch=3 -281 ft. = 1-0936 yd.
1 kilometre=1093-6 yds., or about | mile.

More accurately, 1 metre=39 -370432 in.

=3-2808693 ft. = 1-09362311 yd.

Area.

1 sq. millim. =-00155 sq. in.

1 sq. centim. = -155 sq. in.

1 sq. decim. =15-5 sq. in.

1 sq. metre = 1550 sq. in. = 10-764 sq. ft. =
1-196 sq. yd.

Volume.

1 cub. millim. = -000061 cub. in.

1 cub. centim. = -061025 cub. in.

1 cub. decim. =61-0254: cub. in.

cub. metre=61025 cub. in. =35-3156 cub.
ft. = 1-308 cub. yd.

The Litre (used for liquids) is the some as
the cubic decimetre, and is equal to 1-7617
pint, or -22021 gallon.

Mass and Weight.

1 milligramme= -01543 grain.

1 gramme =15-432 grain.

1 kilogramme= 15432 grains=2-205 lbs. avoir.
More accurately, the kilogramme is

2-20462125 lbs.

Miscellaneous.

1 gramme per sq. centim. ^2-0481 lbs. per
sq. ft.

1 kilogramme per sq. centim. =14-223 lbs, per
sq. in.

1 kilogrammetre=7'2331 foot-pounds.
1 force de cheval=75 kUogrammetres per

second, or 542| foot-pounds per second nearly,
whereas 1 horse-power (English)=550 foot-
pounds per second.

REDUCTION TO C.G.S. MEASURES. (See page 48.)

[cm. denotes centimetre(s) ; gm. denotes gramme(s).]

Length.

1 inch. =2-54 centimetres, nearly.
1 foot =30-48 centimetres, nearly.
1 yard =91-44 centimetres, nearly.
1 statute mile= 160933 centimetres, nearly.
More accurately, 1 iuch= 2-5399772 centi-

metres.

AREA.

1 sq. inch =6-45 sq. cm., nearly.
1 sq. foot = 929 sq. cm. , nearly.
1 sq. yard=8361 sq. cm., nearly.
1 sq. mile =2-59 x lO"* sq. cm., nearly.

Volume.

1 cub. inch =16-39 cub. cm., nearly.
1 cub. foot =28316 cub. cm., nearly.

gm.

1 cub. yard=764535 cub. cm., nearly.
1 gallon =4541 cub. cm., nearly.

Mass.

1 grain = -0648 gramme, nearly.
1 oz. avoir. = 28 -35 gramme, nearly,
1 lb. avoir. =453-6 gramme, nearly.
1 ton =1-016 X 10^ gramme, nearly.

More accurately, 1 lb. avoir. =453-59265 gi

Velocitt,

1 mile per hour =44-7.04 cm. per seo.

1 kilometre per hour=27-7 cm. per sec.

Density.

1 lb. per cub. foot = "016019 gm. per cub.
cm.

62-4 lbs. per cub. ft. =1 gm. per cub. cm.
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Force (assuming £f=981). (See p. 48.)

Weight of 1 grain =63 '57 dynes, nearly.

„ loz. avoir. =278 X 10*dynes,nearly.

,, 1 lb. avoir. = 4*45 x 10^ dynes,nearly.

,, 1 ton =9-97 X 108 dynes,nearly.

„ 1 gramme =981 dynes, nearly.

„ 1 kilogramme = 9'Sl x 10^ dynes,
nearly.

Work (assuming 5r= 981). (See p. 48.)

1 foot-pound =1-356 x 10^ ergs, nearly.

1 kilogrammetre =9"81 x 10^ ergs, nearly.

Work in a second "j

by one theoretical V =7*46 xlO^ ergs, nearly.
" horse," J

Stress (assuming 5r=981),

1 lb. per sq. ft. =479 dynes per sq. cm.,
nearly.

1 lb. per sq. inch =6*9 x 10'* dynes per sq.

cm., nearly.

1 kilog. per sq. cm. =9'81 x 10^ dynes per sq.

cm., nearly.

760 mm. of mercury at 0°C. = 1 '014 x 10^ dynes
per sq. cm. , nearly.

30 inches of mercury at 0° C.=l-0163xl0«
dynes per sq. cm. , nearly.

1 inch of mercury at 0° C. =3-388 x 10* dynes
per sq. cm., nearly.

TABLE OF DENSITIES, in Grammes per Cubic Centimetre.

Liquids.

Pure water at 4° C, 1-000

Sea water, ordinary, ------ 1 -026

Alcohol, pure, -------- "791

,, proof spirit, ------ -QIQ

Ether, '716

Mercury at 0° C, 13-596

Naphtha, '848

Solids.

Brass, cast, 7'8to8'4
,, wire, -.--•---- 8"54

Bronze, -.-.....-- 8"4

Copper, cast, ........ 8*6

,, sheet, -..-..-- 8-8

,, hammered,------- 8-9

Gold, 19 to 19-6

Iron, cast, 6 95 to 7 '3

,, wrought, - - - - - -7 '6 to 7-8

Lead, 11-4

Platinum, 21 to 22

Silver, 10-5

Steel, 7-8 to 7-9

Tin, 7-3 to 7-5

Zinc, 6-8 to 7-2

Ice, -92

Basalt, 3-00

Brick, . . - . 2 to 2-17

Brickwork, 1'8

Chalk, ------- - 1-8 to 2-8

Clay, 1-92

Glass, crown, -- 2'5

„ flint, 3-0

Quartz (rock-crystal), -.---. 2'65

Sand, 1-42

Fir, spruce, .------. '48 to '7

Oak, ELiropean, -69 to '99

Lignum-vitas, .-...- -65 to 1-33

Sulphur, octahedral, - - - - - - -2-05

,, prismatic, -1'98

Gases, at 0° C. and a pressure of a million
dynes per sq. cm. (see p. 142;.

Air, dry, "0012759

Oxygen, -0014107

Nitrogen, - - . - -0012393

Hydrogen, -00008837

Carbonic acid, -0019509



ELEMENTAEY TKEATISE

ON

NATURAL PHILOSOPHY.

CHAPTER I.

INTRODUCTORY.

1. Natural Science, in the widest sense of the term, comprises all

the phenomena of the material world. In so far as it merely

describes and classifies these phenomena, it may be called Natural

History; in so far as it furnishes accurate quantitative knowledge

of the relations between causes and effects it is called Natural

Philosophy. Many subjects of study pass through the natural

history stage before they attain the natural philosophy stage; the

phenomena being observed and compared for many years before the

quantitative laws which govern them are disclosed.

2. There are two extensive groups of phenomena which are con-

ventionally excluded from the domain of Natural Philosophy, and

regarded as constituting separate branches of science in themselves;

namely:

—

First, Those phenomena which depend on vital forces; such

phenomena, for example, as the growth of animals and plants.

These constitute the domain of Biology.

Secondly. Those which depend on elective attractions between

the atoms of particular substances, attractions which are known by
the name of chemical affinities. These phenomena are relegated to

the special science of Chemistry.

Again, Astronomy, which treats of the nature and movements of

the heavenly bodies, is, like Chemistry, so vast a subject, that it

forms a special science of itself; though certain general laws, which

its phenomena exemplify, are still included in the study of Natural

Philosophy.
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3. Those phenomena which specially belong to the domain of

Natural Philosophy are called physical; and Natural Philosophy

itself is called Physics. It may be divided into the following

branches.

I. Dynamics, or the general laws of force and or the relations

which exist between force, mass, and velocity. These laws may be

applied to solids, liquids, or gases. Thus we have the three

divisions. Mechanics, Hydrostatics, and Pneumatics.

IT. Thermics; the science of Heat.

III. The science of Electricity, with the closely related subject

of Magnetism.

IV. Acoustics; the science of Sound.

V. Optics; the science of Light.

The branches here numbered I. 11. III. are treated in Parts I. II.

III. respectively, of the present Work. The two branches numbered

IV. V. are treated in Part IV.



CHAPTER II.

FIRST PRINCIPLES OF DYNAMICS. STATICS.

4. Force.—Force may be defined as that which tends to produce

motion in a body at rest, or to produce change of motion in a body

which is moving. A particle is said to have uniform or unchanged

motion when it moves in a straight line with constant velocity; and

every deviation of material particles from uniform motion is due to

forces acting upon them.

5. Translation and Eotation,
—
"When a body moves so that all

lines in it remain constantly parallel to their original positions (or,

to use the ordinary technical phrase, move parallel to themselves),

its movement is called a pure translation. Since the lines joining

the extremities of equal and parallel straight lines are themselves

equal and parallel, it can easily be shown that, in such motion, all

points of the body have equal and parallel velocities, so that the

movement of the whole body is completely represented by the move-

ment of any one of its points.

On the other hand, if one point of a rigid body be fixed, the only

movement possible for the body is pure rotation, the axis of the

rotation at any moment being some straight line passing through

this point.

Every movement of a rigid body can be specified by specifying

the movement of one of its points (any point will do) together with

the rotation of the body about this point.

6. Force which acts uniformly on all the particles of a body, as

gravity does sensibly in the case of bodies of moderate size on the

earth's surface (equal particles being urged with equal forces and in

parallel directions), tends to give the body a movement of pure

translation.

In elementary statements of the laws of force, it is necessary, for
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tlie sake of simplicity, to confine attention to forces tending to

produce pure translation.

7. Instruments for Measuring Torce.—We obtain the idea of force

through our own conscious exercise of muscular force, and we can

approximately estimate the amount of a force (if not too great or

too small) by the ei'brt which we have to make to resist it; as when
we try the weight of a body by lifting it.

Dynamometers are instruments in which force is measured by

means of its effect in bending or otherwise distorting elastic springs,

and the spring-balance is a dynamometer applied to the measure-

ment of weights, the spring in this case being either a flat spiral

(like the mainspring of a watch), or a helix (resembling a cork-

screw).

A force may also be measured by causing it to act vertically

downwards upon one of the scale-pans of a balance and counter-

poising it by weights in the other pan.

8. Gravitation Units of Force.—In whatever way the measurement

of a force is effected, the result, that is, the magnitude of the force,

is usually stated in terms of weight; for example, in pounds or in

kilogrammes. Such units of force (called gravitation units) are to

a certain extent indefinite, inasmuch as gravity is not exactly the

same over the whole surface of the earth; but they are sufficiently

definite for ordinary commercial purposes.

9. Equilibrium, Statics, Kinetics.—When a body free to move is

acted on by forces which do not move it, these forces are said to be

in equilibrium, or to equilibrate each other. They may equally

well be described as balancing each other. Dynamics is usually

divided into two branches. The first branch, called Statics, treats

of the conditions of equilibrium. The second branch, called

Kinetics, treats of the movements produced by forces not in equili-

brium.

10. Action and Reaction.—Experiment shows that force is always

a mutual action between two portions of matter. When a body is

urged by a force, this force is exerted by some other body, which is

itself urged in the opposite direction with an equal force. When I

press the table downwards with my hand, the table presses my hand

upwards; when a weight hangs by a cord attached to a beam, the

cord serves to transmit force between the beam and the weight, so

that, by the instrumentality of the cord, the beam pulls the weight

upwards and the weight pulls the beam downwards. Electricity
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and magnetism ' furnish no exception to this universal law. "When

a magnet attracts a piece of h-on, the piece of iron attracts the

magnet with a precisely equal force.

11. Specification of a Force acting at a Point.—Force may be

applied over a finite area, as when I press the table with my hand;

or may be applied through the whole substance of a body, as in the

case of gTavity; but it is usual to begin by discussing the action of

forces applied to a single 'paHicle, in which case each force is

supposed to act along a mathematical straight line, and the particle

or material point to which it is applied is called its point of applica-

tion. A force is completely specified when its magnitiLdc, its iJoint

of application, and its line of action are all given.

12. Rigid Body. Fundamental Problem of Statics.—A force of

finite magnitude applied to a mathematical point of any actual

solid body would inevitably fracture the body. To avoid this

complication and other complications which would arise from the

bending and pelding of bodies under the action of forces, the fiction

of a perfectly rigid body is introduced, a body which cannot bend

or break under the action of any force however intense, but always

retains its size and shape unchanged.

The fundamental problem of Statics consists in determining the

conditions which forces must fulfil in order that they may be in

equilibrium when ajiiplied to a rigid body.

13. Conditions of Equilibrium for Two Forces.—In order that two

forces applied to a rigid body should be in equilibrium, it is

necessary and sufiicient that they fulfil the following conditions:

—

1st. Their lines of action must be one and the same.

2nd. The forces must act in opposite directions along this common
line.

3rd. They must be equal in magnitude.

It will be observed that nothing is said here about the points of

application of the forces. They may in fact be anywhere upon the

common line of action. Tlie effect of a force upon a rigid bodt/ is

not altered by changing its point of application to any other point

in its line of action. This is called the principle of the transmissi-

hility offorce.

It follows from this principle that the condition of equilibrium

for any number of forces with the same line of action is simply that

the sum of those Avhich act in one direction shall be equal to the

sum of those which act in the opposite direction.
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14. Three Forces Meeting in a Point. Triangle of Forces.—If

three forces, not having one and the same line of action, are in

equilibrium, their lines of action must lie in one plane, and must

either meet in a point or be parallel. We shall first discuss the case

in which they meet in a point.

From any point A (Fig. 1) draw a line AB parallel to one of the

two given forces, and so that in travelling from A to B we should

be travelling in the same direction in which the force acts (not in

the opposite direction). Also let it be

understood that the length of AB repre-

sents the mao-nitude of the force.

From the point B draw a line BC
representing the second force in direc-

tion, and on the same scale of magnitude

on which AB represents the first.

Then the line CA will represent both

in direction and magnitude the third

^- , n, . , r,:, force which would equilibrate the first
Fig. 1.—Triangle of Forces. i

two.

The principle embodied in this construction is called the triangle

of forces. It may be briefly stated as follows :

—

The condition of

equilihriuin for three forces acting at a point is, that they be repre-

sented in magnitude and direction by the three sides of a triangle,

taken one way round. The meaning of the words " taken one way
round" will be understood from an inspection of the arrows with

which the sides of the trianoie in Fio;. 1 are marked. If the

directions of all three arrows are reversed the forces represented

will still be in equilibrium. The arrows must be so directed that

it would be possible to travel completely round the triangle by

movino; alono- the sides in the directions indicated.

When a line is used to represent a force, it is always necessary to

employ an arrow or some other mark of direction, in order to avoid

ambiguity between the direction intended and its opj)Osite. In naming

such a line by means of two letters, one at each end of it, the order

of the letters should indicate the direction intended. The direction

of AB is from A to B; the direction of BA is from B to A.

15. Resultant and Components.—Since two forces acting at a point

can be balanced by a single force, it is obvious that they are equiv-

alent to a single force, namely, to a force equal and opposite to that

which would balance them. This force to which they are equivalent
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is called their resultant. Whenever one force actinsf on a rio-id

body is equivalent to two or more forces, it is called their resultant,

and they are called its coQnponents. When any number of forces

are in equilibrium, a force equal and opposite to any one of them is

the resultant of all the rest.

The " triangle of forces " gives us the resultant of any two forces

acting at a point. For example, in Fig. 1, AC (with the arrow in

the figure reversed) represents the resultant of the forces represented

by AB and BO.

16. Parallelogram of Forces.—The proposition called the " parallel-

ogTam of forces" is not essentially distinct from the "triangle of

forces," but merely expresses the same fact from a slightly different

point of view. It is as follows:

—

If two forces

acting upon the same rigid body in lines

which meet in a point, be represented by ttuo

lines drawn from the point, and a parallelo-

gram, be constructed on these lines, the diagonal

draiun from this point to the opposite corner fjs- 2. -Parallelogram of

of the parallelogram represents the resultant.

For example, if AB, AC, Fig. 2, represent the two forces, AD will

represent their resultant.

To show the identity of this proposition with the triangle of forces,

we have only to substitute BD for AC (which is equal and parallel

to it). We have then two forces represented by AB, BD (two sides

of a triangle) giving as their resultant a force represented by the

third side AD. We might equally well have employed the triangle

ACD, by substituting CD for AB.

17. Gravesande's Apparatus.—An apparatus for verifying the par-

allelogram of forces is represented in Fig. 3. ACDB is a light frame

in the form of a parallelogram. A weight P" can be hung at A, and

weights P, K can be attached, by means of cords passing over pulleys,

to the points B, C. When the weights P, P', P" are proportional to

AB, AC and AD respectively, the strings attached at B and C will

be observed to form prolongations of the sides, and the diagonal AD
will be vertical.

18. Resultant of any Number of Forces at a Point.—To find the

resultant of any number of forces whose lines of action meet in a

point, it is only necessary to draw a crooked line composed of

straight lines which represent the several forces. The resultant will

be represented by a straight line drawn from the beginning to the
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end of this crooked line. For by what precedes, if ABODE be a

crooked line such that the straight lines AB, BC, CD, DE represent

four forces acting at a point, we may substitute for AB and BC

Fig. 3.—Gravesaude's Apparatus.

the straight line AC, since this represents their resultant. We may
then substitute AD for AC and CD, and finally AE for AD and DE.

One of the most important applications of

this construction is to three forces not

lying in one plane. In this case the
^ ^ ' crooked line will consist of three edges of

"^
,-V--'"''/ a parallelepiped, and the line which repre-

'l"' _\/' sents the resultant will be the diagonal.
^ "

This is evident from Fig. 4, in which AB,
Fig. 4.—Parallelepiped of AC, AD represent three forces acting at

A. The resultant of AB and AC is Ar,

and the resultant of Ar and AD is Ar'. The crooked line whose

parts represent the forces, may be either ABrr', or ABGr', or ADGr',

&;c., the total number of alternatives being six, since three things

can be taken in six different orders. We have here an excellent

illustration of the fact that the same final resultant is obtained,

in whatever order the forces are combined
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19. Equilibrium of Three Parallel Forces.—If three parallel forces,

P, Q, R, applied to a rigid body, balance each other, the following

conditions must be fulfilled:

—

1. The three lines of action AP, BQ,

CR, Fig. 5, must be in one plane.

2. The two outside forces P, E,, must

act in the opposite direction to the

middle force Q, and their sum must be

equal to Q.

3. Each force must be proportional to

the distance between the lines of action of the other two; that is,

we must have

Z ^ _Q_ =^ (1)
BC AC AB'

The fio'ure shows that AO is the sum of AB and BC: hence it fol-

lows from these equations, that Q is equal to the sum of P and R,

as above stated.

20. Resultant of Two Parallel Forces.—Any two parallel forces

being given, a third parallel force which will balance them can be

found from the above equations; and a force equal and opposite to

this will be their resultant. We may distinguish two cases.

1. Let the two given forces be in the same direction. Then their

resultant is equal to their sum, and acts in the same direction, along

a line which cuts the line joining their points of application into

two parts which are inversely as the forces.

2. Let the two given forces be in opposite directions. Then their

resultant will be equal to their difference, and will act in the direc-

tion of the greater of the two forces, along a line which cuts the

production of the line joining their points of application on the side

of the greater force; and the distances of this point of section from

the two given points of application are inversely as the forces.

21. Centre of Two Parallel Forces.—In both cases, if the points of

application are not given, but only the magnitudes of the forces and

their lines of action, the magnitude and line of action of the resul-

tant are still completely determined; for all straight lines which are

drawn across three parallel straight lines are cut by them in the

same ratio; and we shall obtain the same result whatever points of

application we assume.

If the points of application are given, the resultant cuts the line
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joining them, or this line produced, in a definite point, whose posi-

tion depends only on the magnitudes of the given forces, and not at

all on the angle which their direction makes with the joining line.

This result is important in connection with centres of gravity. The

point so determined is called the centre of the two parallel forces.

If these two forces are the weights of two particles, the "centre"

thus found is their centre of gravity, and the resultant force is the

same as if the two particles were collected at this point.

22. Moments of Resultant and of Components Equal,—The follow-

ing proposition is often useful. Let any straight line be drawn

across the lines of action of two parallel forces P^, Pg (Fig. 6). Let

be any point on this line, and x^, x^

^ y- 7^2 the distances measured from O to the

y / points of section, distances measured
^ ^ in opposite directions being distin-

^'=- ^- guished by opposite signs, and forces

in opposite directions being also distinguished by opposite signs.

Also let E, denote the resultant of Pi and Pg, and x the distance

from to its intersection with the line; then we shall have

Pi cci + P2 a;2 = K X.

For, taking the standard case, as represented in Fig. 6, in which all

the quantities are positive, we have OA^ = x-^, OAg = i^o, OB = x,

and by § 19 or § 20 we have

Pi.AiB^Po.BAa,
that is.

Pi (a;-Xi)rrP2 {x^-x),

whence
(Pl + Po) X= PlXl + PoX2,

that is,

Esc^Piari + P^a;^. (2)

23. Any Number of Parallel Forces in One Plane.—Equation (2)

affords the readiest means of determining the line of action of the

resultant of several parallel forces lying in one plane. For let

Pj, Pg, P3, &c., be the forces, R^ the resultant of the first two forces

Pi, P2, and R2 the resultant of the first three forces P^, Po, P3. Let

a line be drawn across the lines of action, and let the distances of

the points of section from an arbitrary point on this line be

expressed according to the following scheme:

—

Force P^ P2 P3 E-i Rg

Distance x^ x.^ x^ x^ x^
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Then, by equation (2) we have

El 0,1= Pi Xi + To x.,.

Also since Rg is the resultant of E^ and Pg, we have

'R-2X.2='RiXi + FiXs,

and substituting for the term R^ ^^ we have

R2 Xi— Fi CC1+ P2 Xi + Vs X3.

This reasoning can evidently be extended to any number of forces,

so that we shall have finally

RS = sum of such terms as Pa;,

where R denotes the resultant of all the forces, and is equal to their

algebraic sum; while x denotes the value of x for the point where

the line of action of R cuts the fixed line. It is usual to employ the

Greek letter S to denote " the sum of such terms as." We may
therefore write

E= 2 (P)

Ex= 2 (Px)

whence
- s (Px)
x=- (3)

2(P)

24. Moment of a Force about a Point.—When the fixed line is at

right angles to the parallel forces, the product Vx is called the

moment of the force P about the point O. More generally, the

moment of a force about a point is the product of the force by the

length of the perpendicular dropped upon it from the point. The

above equations show that for parallel forces in one plane, the

'moment of the resultant about any point in the plane is the sum of

the TYioments of the forces about the same point.

If the resultant passes through O, the distance x is zero; whence

it follows from the equations that the algebraical sum of the

moments vanishes.

The moment of a force about a point measures the tendency of

the force to produce rotation about the point. If one point of a

body be fixed, the body will turn in one direction or the other

according as the resultant passes on one side or the other of this

point (the direction of the resultant being supposed given). If the

resultant passes through the fixed point, the body will be in equi-

librium.

The moment Px of any force about a point, changes sign with P

and also with x; thereby expressing (what is obvious in itself) that
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the direction in which the force tends to turn the body about the

point will be reversed if the direction of P is reversed while its

line of action remains unchanged, and will also be reversed if the

line of action be shifted to the other side of the point while the

direction of the force remains unchanged.

25. Experimental Illustration.—Fig. 7 represents a simple appar-

atus (called the arithmetical lever) for illustrating the laws of par-

pMiiiiiiiiiiiiiipiiiiiiijiiniiiiiiiiiiaiiiiiiiiiiiiiiiifiiiiiiiiiiiiii^^ iHiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Fig. T.^Composition of Parallel Forces.

allel forces. The lever AB is suspended at its middle point by a

cord, so that when no weights are attached it is horizontal. Equal

weights P, P are hung at points A and B equidistant from the centre,

and the suspending cord after being passed over a very freely mov-

ing pulley M, has a weight P' hung at its other end sufficient to pro-

duce equilibrium. It will be found that P' is equal to the sum

of the two weights P together with the weight required to counter-

poise the lever itself.

In the second figure, the two weights hung from the lever are not

equal, but one of them is double of the other, P being hung at B,

and 2 P at C; and it is necessary for equilibrium that the dis-

tance OB be double of the distance OC. The weight P' required
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to balance the system will now be 3 P together with the weight'

of the lever.

26. Couple.—There is one case of two parallel forces in opposite

directions which requires special attention; that in which the two

forces are equal.

To obtain some idea of the effect of two such forces, let us first

suppose them not exactly equal, but let their difference be very small

compared with either of the forces. In this case, the resultant will

be equal to this small difference, and its line of action will be at a

great distance from those of the given forces. For in § 19 if Q is

very little greater than P, so that Q-P, or E. is only a small fraction

of P, the equation ^=-ru shows that AB is only a small fraction

of BC, or in other words that BC is very large compared with AB.

If Q gradually diminishes until it becomes equal to P, R will

gradually diminish to zero; but while it diminishes, the product

R . BC will remain constant, being always equal to P . AB.

A very small force II at a very great distance would have

sensibly the same moment round all points between A and B or

anywhere in their neighbourhood, and the moment of R is always

equal to the algebraic sum of the moments of P and Q.

When Q is equal to P, they compose what is called a couple, and

the algebraic sum of their moments about any point in their plane

is constant, being always equal to P . AB, which is therefore called

the moment of the couple.

A couple consists of tivo equal and parallel forces in opposite

directions applied to the same body. The distance between their

lines of action is called the arm of the couple, and the product of

one of the two equal forces by this arm is called the moment of the

coupde.

27. Composition of Couples. Axis of Couple.—A couple cannot be

balanced by a single force; but it can be balanced by any couple of

equal moment, opposite in sign, if the plane of the second couple be

either the same as that of the first or parallel to it.

Any number of couples in the same or parallel planes are equiva-

lent to a single couple whose moment is the algebraic sum of theirs.

The laws of the composition of couples (like those of forces) can

be illustrated by geometry.

Let a couple be represented by a line perpendicular to its plane,

marked with an arrow accordinsx to the convention that if an
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ordinary screw were made to turn in the direction in which the

couple tends to turn, it would advance in the direction in which the

arrow points. Also let the length of the line represent the moment
of the couple. Then the same laws of composition and resolution

which hold for forces acting at a point will also hold for couples.

A line thus drawn to represent a couple is called the axis of the

couple.

Just as any number of forces acting at a point are either in

equilibrium or equivalent to a single force, so any number of couples

applied to the same rigid body (no matter to what parts of it) are

either in equilibrium or equivalent to a single couple.

28. Resultant of Force and Couple in Same Plane.—The resultant

of a force and a couple in the same plane is a single force. For the

couple may be replaced by another of equal

moment having its equal forces P, Q, each equal

to the given force F, and the latter couple may
then be turned about in its own plane and

^^' '

carried into such a position that one of its two

forces destroys the force F, as represented in Fig. 8. There will

then only remain the force P, which is equal and parallel to F.

By reversing this procedure, we can show that a force P which

does not pass through a given point A is equivalent to an equal and

parallel force F which does pass through it, together with a couple;

the moment of the couple being the same as the moment of the force

P about A.

29. General Resultant of any Number of Forces applied to a Rigid

Body.—Forces applied to a rigid body in lines which do not meet

in one point are not in general equivalent to a single force. By the

process indicated in the concluding sentence of the preceding

section, we can replace the forces by forces equal and parallel to

them, acting at any assumed point, together with a number of

couples. These couples can then be reduced (by the principles of

§ 27) to a single couple, and the forces at the point can be replaced

by a single force; so that we shall obtain, as the complete resultant,

a single force applied at any point we choose to select, and a

couple.

We can in general make the couple smaller by resolving it into

two components whose planes are respectively perpendicular and

parallel to the force, and then compounding one of these components

(the latter) with the force as explained in § 28, thus moving the
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force parallel to itself without altering its magnitude. This is the

greatest simplification that is possible. The result is that we have

a single force and a couple whose plane is perpendicular to the

force. Any combination of forces that can be applied to a rigid

body is reducible to a force acting along one definite line and a

couple in a plane perpendicular to this line. Such a combination

of a force and couple is called a wrench, and the " one definite line
"

is called the axis of the wrench. The point of application of the

force is not definite, but is any point of the axis.

30. Application to Action and Reaction.—Every action of force

that one body can exert upon another is reducible to a wrench, and

the law of reaction is that the second body will, in every case, exert

upon the first an equal and opposite wrench. The two wrenches

will have the same axis, equal and opposite forces along this axis,

and equal and opposite couples in planes perpendicular to it.

31. Resolution the Inverse of Composition.—The process of finding

the resultant of two or more forces is called covijMsition. The

inverse process of finding two or more forces which shall together

be equivalent to a given force, is called resolution, and the two or

more forces thus found are called comjjonents.

The problem to resolve a force into two components along two

given lines which meet it in one point and are in the same plane

with it, has a definite solution, which is obtained by drawing a

triangle whose sides are parallel respectively to the given force and

the required components. The given force and the required com-

ponents will be proportional to the sides of this triangle, each being

represented by the side parallel to it.

The problem to resolve a force into three components along three

given lines which meet it in one point and are not in one plane, also

admits of a definite solution.

32. Rectangular Resolution.—In the majority of cases which

occur in practice the required components are at right angles to each

other, and the resolution is then said to be rectangular. When "the

component of a force along a given line " is mentioned, without

anything in the context to indicate the direction of the other

component or components, it is always to be understood that the

resolution is rectangular. The process of finding the required

component in this case is illustrated by Fig. 9. Let AB represent

the given force F, and let AC be the line along which the com-

ponent of F is required. It is only necessary to drop from B a
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-Component along

Line.

perpendicular BC on this line; AC will represent the required

component. CB represents the other component, which, along with

,B AC, is equivalent to the given force. If

the total number of rectangular components,

of which AC represents one, is to be three,

then the other two will lie in a plane per-

pendicular to AC, and they can be found by

again resolving CB. The magnitude of AC
will be the same whether the number of components be two or three,

AC
and the component along AC will be F ^ or in trigonometrical

language,

F cos . BAC.

We have thus the following rule:

—

The component of a given force

along a given line is found by TnuUiplying the force by the cosime

of the angle between its own direction and that of the required

component.



CHAPTER III.

CENTRE OF GRAVITY.

33. Gravity is the force to which we owe the names "np" and
" down." The direction in which gravity acts at any place is called

the downward direction, and a line drawn accurately in this direc-

tion is called vertical; it is the direction assumed by a plumb-line.

A plane perpendicular to this direction is called horizontal, and is

parallel to the surface of a liquid at rest. The verticals at different

places are not parallel, but are inclined at an angle which is

approximately proportional to the distance between the places.

It amounts to 180° when the places are antipodal, and to about 1'

when their distance is one geographical mile, or to about 1" for

every hundred feet. Hence, when we are dealing with the action

of gravity on a body a few feet or a few hundred feet in length,

we may practically regard the action as consisting of parallel

forces.

34. Centre of Gravity.—Let A and B be any two particles of a

rigid body, let Wj be the weight of the particle A, and tv^ the weight

of B. These weights are parallel forces, and their resultant divides

the line AB in the inverse ratio of the forces. As the body is

turned about into different positions, the forces ^u-^ and ^V2 remain

unchanged in magnitude, and hence the resultant cuts AB always

in the same point. This point is called the centre of the parallel

forces w-^^ and w^, or the centre of gravity of the two particles A and
B. The magnitude of the resultant will be w-^ + W2, and we may
substitute it for the two forces themselves; in other words, we may
suppose the two particles A and B to be collected at their centre

of gravity. We can now combine this resultant with the weight

of a third particle of the body, and shall thus obtain a resultant

'Wy+W2-\-Wo, passing through a definite point in the line which joins
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the third particle to the centre of gravity of the first two. The first

three particles may now be supposed to be collected at this point,

and the same reasoning may be extended until all the particles have

been collected at one point. This point will be the centre of gravity

of the whole body. From the manner in which it has been ob-

tained, it possesses the property that the resultant of all the forces

of gravity on the body 'passes through it, in every position in which

the body can he 'placed. The resultant force of gravity upon a

rigid body is therefore a single force passing through its centre

of gravity.

35. Centres of Gravity of Volumes, Areas, and Lines.—If the body

is homogeneous (that is composed of uniform substance throughout),

the position of the centre of gravity depends only on the figure, and

in this sense it is usual to speak of the centre of gravity of a figure.

In like manner it is customary to speak of the centres of gravity

of areas and lines, an area being identified in thought with a thin

uniform plate, and a line with a thin uniform wire.

It is not necessary that a body should be rigid in order that it

may have a centre of gravity. We may speak of the centre of

gravity of a mass of fluid, or of the centre of gravity of a system

of bodies not connected in any way. The same point which would

be the centre of gravity if all the parts were rigidly connected, is

still called by this name whether they are connected or not.

36. Methods of Finding Centres of Gravity.—Whenever a homo-

geneous body contains a point which bisects all lines in the body

that can be drawn through it, this point must be the centre of

gravity. The centres of a sphere, a circle, a cube, a square, an

ellipse, an ellipsoid, a parallelogram, and a parallelepiped, are ex-

amples.

Again, when a body consists of a finite number of parts whose

weights and centres of gravity are known, we may regard each part

as collected at its own centre of gravity.

When the parts are at all numerous, the final result will most

readily be obtained by the use of the formula

--S(P^),
(3)

S (P) -

where P denotes the weight of any part, x the distance of its centre

of gravity from any plane, and 'x the distance of the centre of

gravity of the whole from that plane. We have already in § 23
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proved this formula for the case in which the centres of gravity lie

in one straight line and x denotes distance from a point in this line:

and it is not difficult, by the help of the properties of similar

triangles, to make the proof general.

37. Centre of Gravity of a Triangle.—To find the centre of gravity

of a triangle ABC (Fig. 10), we may begin by supposing it divided

into narrow strips by lines (such as he) parallel to EC. It can be

shown, by similar triangles, that each of these strips is bisected by
the line AD drawn from A to D the a.

middle point of BC. But each strip may y/\
be collected at its own centre of gravity, ^y^..l...\c

that is at its own middle point; hence the y / \e

whole triangle may be collected on the line /^ ^^iX \
AD; its centre of gravity must therefore /^l-^^^^ // \

be situated upon this line. Similar reason- "^
d

"^

ing shows that it must lie upon the line ^'"- ^'^•

BE drawn from B to the middle point of AC. It is therefore the

intersection of these two lines. If we join DE we can show that

the triangles AGB, DGE, are similar, and that

AG_ AB_
GD ~ DE

"

DG is therefore one third of DA. The centre of gravity of a

triangle therefore lies upon the line joining any corner to the middle

point of the opposite side, and is at one-third of the length of this

line from the end where it meets that side.

It is worthy of remark that if three equal particles are placed at

the corners of any triangle, they have the same centre of gravity as

the triangle. For the two particles at B and C may be collected at

the middle point D, and this double particle at D, together with the

single particle at A, will have their centre of gravity at G, since G
divides DA in the ratio of 1 to 2.

38. Centre of Gravity of a Pyramid.—If a pyramid or a cone be

divided into thin slices by planes parallel to its base, and a straight

line be drawn from the vertex to the centre of gTavity of the base,

this line will pass through the centres of gravity of all the slices,

since all the slices are similar to the base, and are similarly cut by
this line.

In a tetrahedron or triangular pyramid, if D (Fig. 11) be the

centre of gravity of one face, and A be the corner opposite to this
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face, the centre of gravity of the pyramid must lie upon the line

AD. In like manner, if E be the

centre of gravity of one face, the centre

of gravity of the pyramid must lie

upon the line joining E with the oppo-

site corner B. It must therefore be

the intersection G of these two lines.

That they do intersect is otherwise

obvious, for the lines AE, BD meet in

C, the middle point of one edge of the

pyramid, E being found by taking CE
one third of CA, and D by taking CD

Fig. H.—Centre of Gravity of TetraLedron. qtiq third of OB
If D, E be joined, we can show that the joining line is parallel to

BA, and that the triangles AGB, DGE are similar. Hence

AG _ AB _ EC _
GD ~ DE ~ DC

~

That is, the line AD joining any corner to the centre of gravity of

the opposite face, is cut in the ratio of 3 to 1 by the centre of gravity

G of the triangle. DG is therefore one-fourth of DA, and the dis-

tance of the centre of gravity from any face is one-fourth of the

distance of the opposite corner.

A pyramid standing on a polygonal base can be cut up into tri-

angular pyramids standing on the triangular bases into which the

polygon can be divided, and having

the same vertex as the whole pyramid.

The centres of gravity of these trian-

gular pyramids are all at the same

perpendicular distance from the base,

namely at one-fourth of the distance

of the vertex, which is therefore the

distance of the centre of gravity of

the whole from the base. The centre

of gravity of any pyramid is there-

fore found by joining the vertex to

Fig. i2.-centre of Gravity of Pyramid, ^j^g centre of gravity of the basc, and

cutting off one-fourth of the joining line from the end where it meets

the base. The same rule applies to a cone, since a cone may be

regarded as a polygonal pyramid with a very large number of sides.
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39. If four equal particles are placed at the corners of a triangular

pyramid, they will have the same centre of gravity as the pyramid.

For three of them may, as we have seen (§ 37) be collected at th«

centre of gravity of one face; and the centre of gravity of the four

particles will di\'ide the line which joins this point to the fourth, in

the ratio of 1 to 3.

40. Condition of Standing or Falling.—When a hea\y body stands

on a base of finite area,

and remains in equili-

brium under the action

of its own weight and the

reaction of this base, the

vertical through its centre

of gravity must fall with-

in the base. If the body ^
is supported on three or ^: :^^. :

more points, as in Fig. 13, "^sg--
"

:^#
we are to understand by ~""""^^

,

-"^

the base the convex^ Polj" ^Ig. is—Equilibrium of a Body supported on a Horizontal

gon whose corners are the ^'^"^ "* '"''"' °' "°''^ ^°"^*"

points of support; for if a body so supported turns over, it must

turn about the line joining two of these points.

41. Body supported at one Point.—When a heavy body supported

at one point remains at rest, the reaction of th-e point of support

equilibrates the force of gravity. But two forces cannot be in

equilibrium unless they have the same line of action; hence the ver-

tical through the centre of gravity of the body must pass through

the point of support. If instead of being supported at a point,

the heavy body is supported by an axis about which it is free to

turn, the vertical through the centre of gravity must pass through

this axis.

42. Stability and Instability.—When the point of support, or axis

of support, is vertically below the centre of gravity, it is easily seen

that, if the body were displaced a little to either side, the forces act-

ing upon it would turn it still further away from the position

of equilibrium. On the other hand, when the point or axis of sup-

port is vertically ahove the centre of gravity, the forces which would

^ The word convex is inserted to indicate that there must be no re-entrant angles.

Any points of support which lie within the polygon formed by joining the rest, must be

left out of account.
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act upon it if it were slightly displaced would tcsnd to restore it.

In the latter case the equilibrium is said to be stable, in the former

unstable.

When the centre of gravity coincides with the point of support,

or lies upon the axis of support, the body

will still be in equilibrium when turned

about this point or axis into any other

position. In this case the equilibrium is

neither stable nor unstable but is called

neutral.

43. Experimental determination of Cen-

tre of Gravity.—In general, if we suspend

a body by any point, in such a manner

that it is free to turn about this point, it

will come to rest in a position of stable

equilibrium. The centre of gravity will

then be vertically beneath the point of

Fig. 14.—Experimental Determination SUppOrt. If WC UOW SUSpCud the body
of Centre of Gravity.

from another poiut, the centre of gravity

will come vertically beneath this. The intersection of these two

verticals will therefore be the centre of gravity (Fig. 14).

44. To find the centre of gravity of a fiat plate or board (Fig. 15),

we may suspend it from a point near its circumfer-

ence, in such a manner that it sets itself in a ver-

tical plane. Let a plumb-line be at the same time

suspended from the same point, and made to leave

its trace upon the board by chalking and " snap-

ping" it. Let the board now be suspended from

another point, and the operation be repeated. The

two chalk lines will intersect each other at that

point of the face which is opposite to the centre

of gravity; the centre of gravity itself being of

course in the substance of the board.

45. Work done against Gravity.—When a heavy

body is raised, work is said to be done against gravity, and the

amount of this work is reckoned by multiplying together the weight

of the body and the height through which it is raised. Horizontal

movement does not count, and when a body is raised obliquely, only

the vertical component of the motion is to be reckoned.

Suppose, now, that we have a number of particles whose weights

Fig. 15.—Centre of

Gravity of Board.
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are tUi, w^, w.^ Szc, and let their heights above a given horizontal

plane be respectively 7^^, h2, A3 &c. We know by equation (3),

§ 23, that if h denote the height of their centre of gravity we
have

(Wi + Wi + kc.) h— u\ hi + zc-2 Aj + &c. (4)

Let the particles now be raised into new positions in which their

heights above the same plane of reference are respectively Hj, H,,

H3 &,c. The height H of their centre of gravity will now be snch

that

(wi + W2 + &c. ) H = Wi Hi + io> Hj + &c. (5)

From these two equations, we find, by subtraction

(wi + w,+ &c.) (H - h) =wi (Hi - hi) + IV. (H2 - /t.2) + &c. (6)

Now" Hj— 7ij is the height through which the particle of weight %Vi

has been raised; hence the work done against gravity in raising it is

w^ (H-^— Aj) and the second member of equation (6) therefore

expresses the whole amount of work done against gravity. But the

first member expresses the work which would be done in raising all

the particles through a uniform height H— 7i, which is the height

of the new position of the centre of gravity above the old. The

work done against gravity in raising any system of bodies will

therefore be correctly computed by supposing all the system to be

collected at its centre of gravity. For example, the work done in

raising bricks and mortar from the ground to build a chimney, is

equal to the total weight of the chimney multiplied by the height

of its centre of gravity above the ground.

46. The Centre of Gravity tends to Descend.—When the forces

which tend to move a system are simply the weights of its parts, we
can determine whether it is in equilibrium by observing the path in

which its centre of gravity would travel if movement took place.

If we suppose this path to represent a hard frictionless surface, and

the centre of gravity to represent a hca^^ particle placed upon it,

the conditions of equilibrium will be the same as in the actual case.

The centre of gravity tends to run down hill, just as a heavy particle

does. There will be stable equilibrium if the centre of gravity is at

the bottom of a valley in its path, and unstable equilibrium if it is

at the top of a hill. When a rigid body turns about a horizontal

axis, the path of its centre of gravity is a circle in a vertical plane.

The highest and lowest points of this circle are the positions of the

centre of gravity in unstable and stable equilibrium respectively;



24 CENTRE OF GRAVITY.

except when the axis traverses the centre of gravity itself, in which
case the centre of gravity can neither rise nor fall, and the equili-

brium is neutral,

A uniform sphere or cylinder lying on a horizontal plane is in

neutral equilibrium, because its centre of gravity will neither be

raised nor lowered by rolling. An egg balanced on its end as in

Fig. IG, is in unstable equilibrium, because its centre of gravity is at

the top of a hill which it will descend when the egg rolls to one side.

The position of equilibrium shown in Fig, 17 is stable as regards

rolling to left or right, because the path of its centre of gravity in

Fig. 16.—Unstable Equilibrium. Fig. 17.—Stable Equilibrium,

such rolling would be a curve whose lowest point is that now occu-

pied by the centre of gravity. As regards rolling in the direction at

right angles to this, if the egg is a true solid of resolution, the equili-

brium is neutral.

47. Work done by Gravity.—When a heavy body is lifted, the

lifting force does work against gravity. When it descends gravity

does work upon it; and if it descends to the same position from
which it was lifted, the work done by gravity in the descent is

equal to the work done against gravity in the lifting; each being

equal to the weight of the body multiplied by the vertical displace-

ment of its centre of gravity. The tendency of the centre of gravity

to descend is a manifestation of the tendency of gravity to do work;
and this tendency is not peculiar to gravity.

48. Work done by any Force.—A force is said to do work when its

point of application moves in the direction of the force, or in any
direction making an acute angle with this, so as to give a component
displacement in the direction of the force; and the amount of work
done is the product of the force by this comjponent. If F denote
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the force, a the displacement^ and d the angle between the two, the

work done by F is

r a cos 6.

which is what we obtain either by the above rule or by multiplying

the whole displacement by the effective component of F, that is the

component of F in the direction of the displacement. If the angle

6 is obtuse, cos 9 is negative and the force F does negative work. If

is a right angle F does no work. In this case F neither assists

nor resists the displacement. When is acute, F assists the dis-

placement, and would produce it if the body were constrained by

guides which left it free to take this displacement and the directly

opposite one, while preventing all others.

If 6 is obtuse, F resists the displacement, and would produce the

opposite displacement if the body were constrained in the manner
just supposed.

49. Principle of Work.—If any number of forces act upon a body

which is only free to move in a particular direction and its opposite,

we can tell in w^hich of these two directions it will move by calcu-

lating the work which each force would do. » Each force would do

positive work when the displacement is in one direction, and nega-

tive work when it is in the opposite direction, the absolute amounts

of work being the same in both cases if the displacements are equal.

The body will upon the whole be urged in that direction which gives

an excess of positive work over negative. If no such excess exists,

but the amounts of positive and negative work are exactly equal,

the body is in equilibrium. This principle (which has been called

the principle of virtual velocities, but is better called the pi'-inciple

of work) is often of great use in enabling us to calculate the ratio

which two forces applied in given ways to the same body must have

in order to equilibrate each other. It applies not only to the-

"mechanical powers" and all combinations of solid machinery, but

also to hydrostatic arrangements; for example to the hydraulic

press. The condition of equilibrium between two forces applied to

any frictionless machine and tending to drive it opposite ways, is

that in a small movement of the machine they would do equal and

opposite amounts of work. Thus in the screw-press (Fig. 80) the

force applied to one of the handles, multiplied by the distance

through which this handle moves, will be equal to the pressure

which this force produces at the foot of the screw, multiplied by the

distance that the screw travels.
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This is on the supposition of no friction. A frictionless machiije

gives out the same amount of work which is spent in driving it.

The effect of friction is to make the work given out less than the

work put in. Much fruitless ingenuity has been expended upon

contrivances for circumventing this law of nature and producing a

machine which shall give out more work than is put into it. Such

contrivances are called " perpetual motions."

50. General Criterion of Stability.—If the forces which act upon

a body and produce equilibrium remain unchanged in magnitude

and direction when the body moves away from its position, and

if the velocities of their points of application also remain unchanged

in direction and in their ratio to each other, it is obvious that the

equality of positive and negative work which subsists at the

beoinnino- of the motion will continue to subsist throughout the

entire motion. The body will therefore remain in equilibrium

when displaced. Its equilibrium is in this case said to be neutral.

If the forces which are in equilibrium in a given position of the

body, gradually change in direction or magnitude as the body moves

away from this position, the equality of positive and negative

work will not in general continue to subsist, and the inequality will

increase with the displacement. If the body be displaced Vv^ith a

constant velocity and in a uniform manner, the rate of doing work,

which is zero at first, will not continue to be zero, but will have a

value, whether positive or negative, increasing in simple proportion

to the displacement. Hence it can be shown that the whole work

done in a small movement is proportional to the square of the dis-

placement, for when we double the displacement we, at the same

time, double the mean working force.

If this work is positive, the forces assist the displacement and tend

to increase it; the equilibrium must therefore have been unstable.

On the other hand, if the work is negative in all possible displace-

ments from the position of equilibrium, the forces oppose the

displacements and the equilibrium is stable.

51. Illustration of Stability.—A good example of stable equili-

brium of this kind is furnished by Gravesande's apparatus (Fig. 3)

simplified by removing the parallelogram and employing a string

to support the three weights, one of them P" being fastened to it at

a point A near its middle, and the others P, P' to its ends. The
point A will take the same position as in the figure, and will return

to it again when displaced. If we take hold of the point A and
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move it in any direction whether in the plane of the string or out

of it, we feel that at first there is hardly any resistance and the

smallest force we can apply produces a sensible disturbance; but

that as the displacement increases the resistance becomes greater.

If we release the point A when displaced, it will execute oscillations,

which will become gradually smaller, owing to friction, and it will

finally come to rest in its original position of equilibrium.

The centre of gTavity of the three weights is in its lowest

position when the system is in equilibrium, and when a small dis-

placement is produced the centre of gravity rises by an amount

proportional to its square, so that a double displacement produces

a quadruple rise of the centre of gravity.

In this illustration the three forces remain unchanged, and the

directions of two of them change gTadually as the point A is moved.

Whenever the circumstances of stable equilibrium are such that the

forces make no abrupt changes either in direction or magnitude for

small displacements, the resistance will, as in this case, be propor-

tional to the displacement (when small), and the work to the square

of the displacement, and the system will oscillate if displaced and

then left to itself.

52. Stability where Torces vary abruptly with Position.—There

are other cases of stable equilibrium which may be illustrated by
the example of a book lying on a table. If we displace it by lifting-

one edge, the force which we must exert does not increase with the

displacement, but is sensibly constant when the displacement is

small, and as a consequence the work will be simply proportional

to the displacement. The reason is, that one of the forces concerned

in producing equilibrium, namely, the upward pressure of the table,

changes jper saltum at the moment when the displa,cement begins.

In applying the principle of work to such a case as this, we must

employ, instead of the actual work done by the force which changes

abruptly, the work which it would do if its magnitude and direction

remained unchanged, or only changed gradually,

53. Illustrations from Toys.—The stability of the "balancer"

(Fig. 18) depends on the fact that, owing to the weight of the two
leaden balls, which are rigidly attached to the figure by stiff" wires,

the centre of gravity of the whole is below the point of support.

If the figure be disturbed it oscillates, and finally comes to rest in a

position in which the centre of gravity is vertically under the toe

on which the fi2:ure stands.
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The "tumbler" (Fig. 19) consists of a light figure attached to a

hemisphere of lead, the centre of gravity of the whole being

between the centre of gravity of

the hemisphere and the centre of

the sphere to which it belongs.

When placed upon a level table,

the lowest position of the centre

of gravity is that in which the

figure is upright, and it accord-

ingly returns to this position when
displaced.

54. Limits of Stability.—In the

forescoino^ discussion we have em-

ployed the term "stability" in

its strict mathematical sense. But

there are cases in which, though

small displacements would merely

produce small oscillations, larger

displacements would cause the

body, when left to itself, to fall

entirely away from the given

position of equilibrium. This may
be expressed by saying that the

equilibrium is stable for displacements lying within certain limits,

but unstable for displacements beyond these limits. The equilibrium

Fig. 18.—Balancer.

Fi?. 19.—Tumblei-s.

of a system is practically unstable when the displacements which

it is likely to receive from accidental disturbances lie beyond its

limits of stability.



CHAPTER IV.

THE MECHANICAL POWERS.

55. We now proceed to a few practical applications of the fore-

going principles; and we shall begin with the so-called "mechanical

powers," namely, the lever, the luheel and axle, the 'pulley, the

inclined j^lane, the wedge, and the screiv.

56. Lever.—Problems relating to the lever are usually most con-

veniently solved by taking moments round the fulcrum. The

general condition of equilibrium is, that the moments of the power

and the weight about the fulcrum must be in opposite directions,

and must be equal. When the power and weight act in parallel

directions, the conditions of equilibrium are precisely those of three

parallel forces (§ 19), the third force being the reaction of the

fulcrum.

It is usual to distinguish three " orders " of lever. In levers of

the lirst order (Fig. 20) the fulcrum is between the power and the

Fig. 20, Fig. 21. Fig. 22,

Three Ordei-s of Lever.

weight. In those of the second order (Fig. 21) the weight is

between the power and the fulcrum. In those of the third order

(Fig. 22) the power is between the weight and the fulcrum.

In levers of the second order (supposing the forces parallel), the

weight is equal to the sum of the power and the pressure on the

fulcrum; and in levers of the third order, the power is equal to

the sum of the weight and the pressure on the fulcrum; since

the middle one of three parallel forces in equilibrium must always

be equal to the sum of the other two.
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57. Arms.—The arms of a lever are the two portions of it inter-

mediate, respectively, between the fulcrum and the power, and

between the fulcrum and the weight. If the lever is bent, or if,

though straight, it is not at right angles to the lines of action of the

power and weight, it is necessary to distinguish between the arms

of the lever as above defined (which are parts of the lever), and the

arms of the poiver and weight regarded as forces which have

moments round the fulcrum. In this latter sense (which is alway^

to be understood unless the contrary is evidently intended), the

arms are- the perpendiculars dropped from the fulcrum upon the

lines of action of the power and weight.

58. Weight of Lever.—In the above statements of the conditions

of equilibrium, we have neglected the weight of the lever itself.

To take this into account, we have only to suppose the whole

weight of the lever collected at its centre of gravity, and then take

its moment round the fulcrum. We shall thus have three moments

to take account of, and the sum of the two that tend to turn the

lever one way, must be equal to the one that tends to turn it the

opposite way.

59. Mechanical Advantage.—Every machine when in action serves

to transmit work without altering its amount; but the force which

the machine gives out (equal and opposite to what is commonly

called the weight) may be much greater or much less than that by

which it is driven (commonly called the poiuer). When it is

greater, the machine is said to confer mechanical advantage, and

the mechanical advantage is measured by the ratio of the weight to

the power for equilibrium. In the lever, when the power has a

longer arm than the weight, the mechanical advantage is equal to

the quotient of the longer arm by the shorter.

60. Wheel and Axle.—The wheel and axle (Fig. 23) may be

regarded as an endless lever. The condition of equili-

brium is at once given by taking moments round the

common axis of the wheel and axle (§ 24). If we
neglect the thickness of the ropes, the condition is that

the power multiplied by the radius of the wheel must

equal the weight multiplied by the radius of the axle;

but it is more exact to regard the lines of action of the

^'S- 23. ^y^Q forces as coinciding with the axes of the two ropes,

so that each of the two radii should be increased by half the thick-

ness of its own rope. If we neglect the thickness of the ropes, the
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mechanical advantage is the quotient of the radius of the wheel by

the radius of the axle,

61. Pulley.—A pulley, when fixed in such a way that it can only

turn about a fixed axis (Fig. 24), confers no mechanical advantage.

It may be regarded as an endless lever of the first order with its

two arms equal.

The arrangement represented in Fig. 25 gives a mechanical

advantage of 2 ; for the lower or movable pulley m.ay be regarded

as an endless lever of i\^e second order, in which the arm of the

power is the diameter of the pulley, and the arm of the weight is

Fig. 24.

u

Fis. 25. Fig. 26.

half the diameter. The same result is obtained by employing the

principle of work; for if the weight rises 1 inch, 2 inches of slack

are given over, and therefore the power descends 2 inches.

62. In Fig. 26 there are six pulleys, three at the upper and three

at the lower block, and one cord passes round them all. All por-

tions of this cord (neglecting friction) are stretched with the same

force, which is equal to the power; and six of these portions, parallel

to one another, support the weight. The power is therefore one-

sixth of the weioht, or the mechanical advantao;e is 6.

63. In the arrangement represented in Fig. 27, there are three

movable pulleys, each hanging by a separate cord. The cord which

supports the lowest pulley is stretched with a force equal to half

the weight, since its two parallel portions jointly support the weight.

The cord which supports the next pulley is stretched with a force

half of this, or a quarter of the weight; and the next cord with a

force half of this, or an eighth of the weight; but this cord is

directly attached to the power. Thus the power is an eighth of the
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weight, or the mechanical advantage is 8. If the weight and the

block^ to which it is attached rise 1 inch, the next block rises 2

inches, the next 4, and the power moves through 8 inches. Thus, the

work done by the power is equal to the work done upon the weight.

In all this reasoning we neglect the weights of the blocks them-

selves; but it is not difficult to take them into account when
necessary.

64. Inclined Plane.—We now come to the inclined plane. Let

AB (Fig. 28) be any portion of such a plane, and let AC and BC be

drawn vertically and horizontally. Then AB
is called the length, AC the height, and CB
the hase of the inclined plane. The force of

gravity upon a heavy body M resting on the

plane, may be represented by a vertical line

Fig. 28. WP, and may be resolved by the parallelogram

of forces (§ 16) into two components, MT, MN, the former parallel

and the latter perpendicular to the plane. A force equal and oppo-

site to the component MT will suffice to prevent the body from slip-

ping down the plane. Hence, if the power act parallel to the plane,

and the weight be that of a heavy body resting on the plane, the

power is to the weight as MT to MP; but the two triangles MTP
and ACB are similar, since the angles at M and A are equal, and the

angles at T and C are right angles; hence MT is to MP as AC to

AB, that is, as the height to the length of the plane.

65. The investigation is rather easier by the principle of work

(§ 49). The work done by the power in drawing the heavy

body up the plane, is equal to the power multiplied by the

length of the plane. But the work done upon the weight is equal

to the weight multiplied by the height through which it is raised,

that is, by the height of the plane. Hence we have

Power X length of plane = weight X height of plane; or

power : weight : : height of plane : length of plane.

66. If, instead of acting parallel to the plane, the power acted

parallel to the base, the work done by the power would be the

product of the power by the base; and this must be equal to the

product of the weight by the height; so that in this case the con-

dition of equilibrium would be

—

^ The " pulley " is the revolving wheel. The pulley, together with the frame in which

it is inclosed, constitute the "block."
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Power : ^Yeight : : height of plane : base of plane.

67. Wedge.—In these investigations we have neglected friction.

The wedge may be regarded as a case of the inclined plane; but its

practical action depends to such a large extent upon friction and

impact^ that we cannot profitably discuss it here.

68. Screw.—The screw (Fig. 29) is also a case of the inclined

plane. The length of one convolution of the thread is the length

of the corresponding inclined plane, the step of the screw, or distance

between two successive convolutions (measured parallel to the axis

of the screw), is the height of the plane, and the circumference of

Fig. 29. Fig. 30.

the screw is the base of the plane. This is easily shown by cutting

out a right-angled triangle in paper, and bending it in cylindrical

fashion so that its base forms a circle.

69. Screw Press.—In the screw press (Fig. 30) the screw is turned

by means of a lever, which gives a great increase of mechanical

advantage. In one complete revolution, the pressures applied to the

two handles of the lever to turn it, do work equal to their sum
multiplied by the circumference of the circle described (approxi-

mately) by either handle (we suppose the two handles to be equi-

distant from" the axis of revolution) ; and the work given out by the

machine, supposing the resistance at its lower end to be constant, is

equal to this resistance multiplied by the distance between the

threads. These two products must be equal, friction being neglected.

^ An impact (for example a blow of a hammer) may be regarded as a very great (and

variable) force acting for a very short time. The magnitude of an impact is measured

by the momentum which it generates in the body struck.
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THE BALANCE.

70. General Description of the Balance.—In the common balance

(Fig. 31) there is a stiff piece of metal, A B, called the beam, which

turns about the sharp edge

O of a steel wedge form-

ing part of the beam and

resting upon two hard and

smooth supports. There are

two other steel wedges at

A and B, with their edges

upwards, and upon these

edges rest the hooks for

supporting the scale pans.

The three edges (called

knife-edges) are parallel to

one another and perpen-

dicular to the length of the

beam, and are very nearly

in one plane,

qualities requisite in a balance

Fig. 31.— Balance.

71. Qualities Requisite.—The

are:

1. That it be consistent with itself; that is, that it shall give the

same result in successive weighings of the same body. This depends

chiefly on the trueness of the knife-edges.

2. That it be just. This requires that the distances A O, OB, be

equal, and also that the beam remain horizontal when the pans are

empty. Any inequality in the distances A O, O B, can be detected

by putting equal (and tolerably heavy) weights into the two pans.

This adds equal moments if the distances are equal, but unequal
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moments if they are unequal, and the greater moment will prepon-

derate.

3. Delicacy or sensibility (that is, the power of indicating in-

equality between two weights even when their ditTerence is very

small).

This requires a minimum of friction, and a very near approach to

neutral equilibrium (§ 40). In absolutely neutral equilibrium, the

smallest conceivable force is sufficient to produce a displacement to

the full limit of neutrality; and in barely stable equilibrium a small

force produces a large displacement. The condition of stability is

that if the weights supported at A and B be supposed collected at

these edges, the centre of gravity of the system composed of the

beam and these two weights shall be below the middle edge O. The

equilibrium would be neutral if this centre of gravity exactly coin-

cided with 0; and it is necessary as a condition of delicacy that its

distance below O be very small.

4. Facility for weighing quickly is desirable, but must sometimes

be sacrificed when extreme accuracy is required.

The delicate balances used in chemical analysis are provided with

a long pointer attached to the beam. The end of this pointer moves

along a graduated arc as the beam vibrates; and if the weights in the

two pans are equal, the excursions of the pointer on opposite sides

of the zero point of this arc will also be equal. Much time is 'con-

sumed in watching these vibrations, as they are very slow; and the

more nearly the equilibrium approaches to neutrality, the slower they

are. Hence quick weighing and exact weighing are to a certain ex-

tent incompatible.

72. Double Weighing^.—Even if a balance be not just, yet if it be

consistent with itself, a correct weighing can be made with it in the

following manner:—Put the body to be weighed in one pan, and

counterbalance it with sand or other suitable material in the other.

Then remove the body and put in its place such weights as are just

sufficient to counterpoise the sand. These weights are evidently

equal to the weight of the body. This process is called double

weighing, and is often employed (even with the best balances) when
the greatest possible accuracy is desired.

73. Investigation of Sensibility.—Let A and B (Fig. 32) be the

points from which the scale-pans are suspended, O the axis about

which the beam turns, and G the centre of gravity of the beam. If

when the scale-pans are loaded with equal weights, we put into one
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of them an excess of weight p, the beam will become inclined, and

will take a position such as A'B', turning through an angle which

we will call a, and which is easily calculated.

In fact let the two forces P and P + j9 act at A' and B' respec-

tively, where P denotes the less of the two weights, including the

weight of the pan. Then the two

forces P destroy each other in conse-

quence of the resistance of the axis

0; there is left only the force jp

applied at B', and the weight tt of

the beam applied at G', the new
position of the centre of gravity.

These two forces are parallel, and are

in equilibrium about the axis 0, that

is, their resultant passes through the

point 0. The distances of the points

of application of the forces from a vertical through are therefore

inversely proportional to the forces themselves, which gives the

I'+p

Fig. 32.

relation

TT. G'E=;>. B'L.

But if we call half the length of the beam I, and the distance OG r

we have •

G'E = r sin a, B'L = I cos a.

whence ttt sin a = pi cos a, and consequently

tan a- (a)

The formula {a) contains the entire theory of the sensibility of the

balance when properly constructed. We see, in the first place, that

tan a increases with the excess of weight p, which was evident be-

forehand. We see also that the sensibility increases as I increases

and as tt diminishes, or, in other words, as the beam becomes longer

and lighter. At the same time it is obviously desirable that, under

the action of the weights employed, the beam should be stiff enough

to undergo no sensible change of shape. The problem of the balance

then consists in constructing a beam of the greatest possible length

and lightness, which shall be capable of supporting the action of

CTiven forces without bendino-.

Fortin, whose balances are justly esteemed, employed for his beams
bars of steel placed edgewise; he thus obtained great rigidity, but
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certainly not all the lightness possible. At present the makers of

balances employ in preference beams of copper or steel made in the

form of a frame, as shown in Fig 33. They generally give them the

shape of a very elongated lozenge, the sides of which are connected

by bars variously arranged. The determination of the best shape is,

in fact, a special problem, and is an application on a small scale of

that principle of applied mechanics which teaches us that hollow

pieces have greater resisting power in proportion to their weight

than solid pieces, and consequently, for equal resisting power, the

former are lighter than the latter. Aluminium, which with a rigidity

nearly equal to that of copper, has less than one-fourth of its density,

seems naturally marked out as adapted to the construction of beams.

It has as yet, however, been little used.

The formula {a) shows us, in the second place, that the sensibility

increases as r diminishes; that is, as the centre of gravity approaches

the centre of suspension. These two points, however, must not coin-

cide, for in that case for any excess of weight, however small, the

beam would deviate from the horizontal as far as the mechanism

would permit, and would afford no indication of approach to equality

in the weights. With equal weights it would remain in equilibrium

in any position. In virtue of possessing this last property, such a

balance is called indifferent. Practically the distance between the

centre of gravity and the point of suspension must not be less than

a certain amount depending on the use for which the balance is

designed. The proper distance is determined by observing what

difference of weights corresponds to a division of the graduated arc

along which the needle moves. If, for example, there are 20 divi-

sions on each side of zero, and if 2 milligrammes are necessary for

the total displacement of the needle, each division will correspond to

an excess of weight of ^ or ^V of a milligramme. That this may
be the case we must evidently have a suitable value of r, and the

maker is enabled to regulate this value with precision by means of

the screw which is shown in the figure above the beam, and which

enables him slightly to vary the position of the centre of gravity.

74. Weighing with Constant Load.—In the above analysis we have

supposed that the three points of suspension of the beam and of the

two scale-pans are in one straight line; in which case the value of

tan a does not include P, that is, the sensibility is independent of the

weight in the pans. This follows from the fact that the resultant

of the two forces P passes through 0, and is thus destroyed, because



38 THE BALANCE.

the axis is fixed. This would not be the case if, for examj)le, the

points of suspension of the pans were above that of the beam; in

this case the point of application of the common load is above the

point 0, and, when the beam is inclined, acts in the same direction

as the excess of weight; whence the sensibility increases with the

load up to a certain limit, beyond which the equilibrium becomes

unstable.^ On the other hand, when the points of suspension of the

pans are bplow that of the beam, the sensibility increases as the load

diminishes, and, as the centre of gravity of the beam may in this

case be above the axis, equilibrium may become unstable when the

load is less than a certain amount. This variation of the sensibility

with the load is a serious disadvantage; for, as we have just shown,

the displacement of the needle is used as the means of estimating

weights, and for this purpose we must have the same displacement

corresponding to the same excess of weight. If we wish to employ

Fig. 33.—Beam of Balance.

either of the two above arrangements, we should weigh with a con-

stant load. The method of doing so, which constitutes a kind

of double weighing, consists in retaining in one of the pans a weight

equal to this constant load. In the other pan is placed the same

load subdivided into a number of marked weights. When the body

1 This is an illustration of the general principle, applicable to a great variety of philo-

sophical apparatus, that a maximum of sensibility involves a minimum of stability ; that

is, a very near approach to instability. This near approach is usually indicated by exces-

sive slowness in the oscillations which take place about the position of equilibrium.
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to be weighed is placed in this latter pan, we must, in order to main-

tain equilibrium, remove a certain number of weights, which evi-

dently represent the weight o£ the body.

We may also remark that, strictly speaking, the sensibility always

depends upon the load, which necessarily produces a variation in the

friction of the axis of suspension. Besides, it follows from the nature

Fig. 34.—Balance for Purijoses of Accuracy.

of bodies that there is no system that does not yield somewhat even

to the most feeble action. For these reasons, there is a decided

advantage in operating with constant load.

75. Details of Construction.—A fundamental condition of the cor-

rectness of the balance is, that the weight of each pan and of the

load which it contains should always act exactly at the same point,

and therefore at the same distance from the axis of suspension.

This important result is attained by different methods. The arrange-

ment represented in Fig. 88 is one of the most effectual. At the



40 THE BALANCE.

extremities of the beam are two knife-edges, parallel to the axis of

rotation, and facing upwards. On these knife-edges rests, by a

hard plane surface of agate or steel, a stirrup, the front of which

has been taken away in the figure. On the lower part of the stirrup

rests another knife-edge, at right angles to the former, the two being

together equivalent to a universal joint supporting the scale-pan and

its contents. By this arrangement, whatever may be the position

of the weights, their action is always reduced to a vertical force act-

ing on the upper knife-edge.

Fig. 34 represents a balance of great delicacy, with the glass

case that contains it. At the bottom is seen the extremity of a

lever, which enables us to raise the beam, and thus avoid wearing

the knife-edge when not in use. At the top may be remarked an

arrangement employed by some makers, consisting of a horizontal

graduated circle, on which a small metallic index can be made to

travel; its different displacements, whose value can be determined

once for all, are used for the final adjustment to produce exact

equilibrium.

76. Steelyard.—The steelyard (Fig. 35) is an instrument for

weighing bodies by means of a single weight, P, which can be hung

at any point of a

graduated arm B.

As P is moved further

from the fulcrum O,

its moment round O
increases, and there-

fore the weight which

must be hung from

the fixed point A to

counterbalance it in-

creases. ' Moreover,

equal movements of

P along the arm pro-

duce equal additions

to its moment, and equal additions to the weight at A produce

equal additions to the opposing moment. Hence the divisions

on the arm (which indicate the weight in the pan at A) must be

equidistant.

Fig. 35.



CHAPTER VI.

FIRST PRINCIPLES OF KINETICS.

77. Principle of Inertia.-—A body not acted on by any forces, or

only acted on by forces which are in equilibrium, will not commence

to move; and if it be already in motion with a movement of pure

translation, it will continue its velocity of translation unchanged, so

that each of its points will move in a straight line with uniform

velocity. This is Newton's first law of motion, and is stated by him

in the following terms:

—

" Every body continues in its state of rest or of uniform motion

in a straight line, except in so far as it is compelled by impressed

forces to change that state."

The tendency to continue in a state of rest is manifest to the most

superficial observation. The tendency to continue in a state of

uniform motion can be clearly understood from an attentive study of

facts. If, for example, we make a pendulum oscillate, the amplitude

of the oscillations slowly decreases and at last vanishes altogether.

This is because the pendulum experiences resistance from the air

which it continually displaces; and because the axis of suspension

rubs on its supports. These two circumstances combine to produce

a diminution in the velocity of the apparatus until it is completely

annihilated. If the friction at the point of suspension is diminished

by suitable means, and the apparatus is made to oscillate in vacuo,

the duration of the motion will be immensely increased.

Analogy evidently indicates that if it were possible to suppress

entirely these two causes of the destruction of the pendulum's velo-

city, its motion would continue for an indefinite time unchanged. •

This tendency to continue in motion is the cause of the effects

which are produced when a carriage or railway train is suddenly

stopped. The passengers are thrown in the direction of the motion,
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in virtue of the velocity which they possessed at the moment when

the stoppage occurred. If it were possible to find a brake sufiiciently

powerful to stop a train suddenly at full speed, the effects of such a

stoppage would be similar to the effects of a collision.

Inertia is also the cause of the severe falls which are often received

in alighting incautiously from a carriage in motion; all the particles

of the body have a forward motion, and the feet alone being reduced

to rest, the upper portion of the body continues to move, and is thus

thrown forward.

When we fix the head of a hammer on the handle by striking the

end of the handle on the ground, we utilize the inertia of matter.

The handle is suddenly stopped by the collision, and the head con-

tinues to move for a short distance in spite of the powerful resist-

ances which oppose it.

78. Second Law of Motion.—Newton's second law of motion is

that " Change of motion is proportional to the impressed force and

is in the direction of that force."

Change of motion is here spoken of as a quantity, and as a directed

quantity. In order to understand how to estimate change of motion,

we must in the first place understand how to compound motions.

When a boat is sailing on a river, the motion of the boat relative

to the shore is compounded of its motion relative to the water and

the motion of the water relative to the shore. If a person is walk-

ing along the deck of the boat in any direction, his motion relative

to the shore is compounded of three motions, namely the two above

mentioned and his motion relative to the boat.

Let X, Y and Z be any three bodies or systems. The motion of

X relative to Y, compounded with the motion of Y relative to Z, is

the motion of X relative to Z. This is to be taken as the definition

of what is meant

by compounding

two motions; and it

leads very directly
Fig. 36.-Compo3ition of Motions. ^^ ^|^q result tjiat

two rectilinear motions are compounded by the parallelog.-'am law.

For if a body moves along the deck of a ship from O to A (Fig. 36),

and the ship in the meantime advances through the distance OB, it

is obvious that, if we complete the parallelogram OBCA, the point

A of the ship will be brought to C, and the movement of the body

in space will be from to C. If the motion along OA is uniform.
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and the motion of the ship is also uniform, the motion of the

body through space will be a uniform motion along the diagonal

OC. Hence, if two component velocities be represented by two lines

drawn from a point, and a parallelogram be constructed on these

lines, its diagonal will represent the resultant velocity.

It is obvious that if OA in the figure represented the velocity of

the ship and OB the velocity of the body relative to the ship, we
should obtain the same resultant velocity 00. This is a general

law; the interchanging of velocities which are to be compounded

does not affect their resultant.

Now suppose the velocity OB to be changed into the velocity OC,

what are we to regard as the change of velocity? The change of

velocity is that velocity which compounded with OB would give OC
It is therefore OA. The same force which, in a given time, acting

always parallel to itself, changes the velocity of a body from OB to

OC, would give the body the velocity OA if applied to it for the same

time commencing from rest. Chano;e of motion, estimated in this

way, depends only on the acting force and the body acted on by the

force; it is entirely independent of any previous motion which the

body may possess. No experiments on forces and motions inside a

carriage or steamboat which is travelling with perfect smoothness in

a straight course, will enable us to detect that it is travelling at all.

We cannot even assert that there is any such thing as absolute rest,

or that there is any difference between absolute rest and uniform

straight movement of translation.

As change of motion is independent of the initial condition of rest

or motion, so also is the change of motion produced by one force act-

ing on a body independent of the change produced by any other

force acting on the body, provided that each force remains constant

in magnitude and direction. The actual motion will be that which

is compounded of the initial motion and the motions due to the two

forces considered separately. If AB represent one of these motions,

BC another, and CD the third, the actual or resultant motion will be

AD.
The change produced in the motion of a body by two forces act-

ing jointly can therefore be found by comj30unding the changes

which would be produced by each force separately. This leads at

once to the " parallelogram of forces," since the changes of motion

produced in one and the same body are proportional to the forces

which produce them, and are in the directions of these forces.
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In case any student should be troubled by doubt as to whether

the " changes of motion" which are proportional to the forces, are to

be understood as distances, or as velocities, we may remark that the

law is equally true for both, and its truth for one implies its truth

for the other, as will appear hereafter from comparing the formula

for the distance s = hff, with the formula for the velocity v = ft,

since both of these expressions are proportional to /.

79. Explanation of Second Law continued.—It is convenient to

distinguish between the intensity of a force and the magnitude or

amount of a force. The intensity of a force is measured by the

change of velocity which the force produces during the unit of time

;

and can be computed from knowing the motion of the body acted

on, without knowing anything as to its mass. Two bodies are said

to be of equal TYiass when the same change of motion (whether as

regards velocity or distance) which is produced by applying a given

force to one of them for a given time, would also be produced by

applying this force to the other for an equal time. If we join two

such bodies, we obtain a body of double the mass of either; and if we

apply the same force as before for the same time to this double mass,

we shall obtain only half the change of velocity or distance that we

obtained before. Masses can therefore be compared by taking the in-

verse ratio of the changes produced in their velocities by equal forces.

The velocity of a body multiplied by its mass is called the momen-

tum, of the body, and is to be regarded as a directed magnitude hav-

ing the same direction as the velocity. The change of velocity, when

multiplied by the mass of the body, gives the change of momentum;

and the second law of motion may be thus stated:

—

The change of m,omentum 'produced in a given time is inropor-

tional to the force which produces it, and is in the direction of this

force. It is independent of the mass; the change of velocity in a

given time being inversely as the mass.

80. Proper Selection of Unit of Force.—If we make a proper selec-

tion of units, the change of momentum produced in unit time will

be not only proportional but numerically equal to the force which

produces it; and the change of momentum produced in any time will

be the product of the force by the time. Suppose any units of

length, time, and mass respectively to have been selected. Then the

unit velocity will naturally be defined as the velocity with which

unit length would be passed over in unit time; the unit momentum

will be the momentum of the unit mass moving with this velocity;
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and the unit force will be that force which j)roduces this momentum
in unit time. We define the unit force, then, as that force tuhich

acting for unit time upon unit mass produces unit velocity.

81. Relation between Mass and Weight.—The ^ueight of a body,

strictly speaking, is the force with which the body tends towards

the earth. This force depends partly on the body and partly on the

earth. It is not exactly the same for one and the same body at all

parts of the earth's surface, but is decidedly greater in the polar than

in the equatorial regions. Bodies which, when weighed in a balance

in vacuo, counterbalance each other, or counterbalance one and the

same third body, have equal weights at that place, and will also be

found to have equal weights at any other place. Experiments which

we shall hereafter describe (§ 89) show that such bodies have equal

masses; and this fact having been established, the most convenient

mode of comparing masses is by weighing them. A pound of iron has

the same mass as a pound of brass or of any other substance. A
pound of any kind of matter tends to the earth with different forces

at different places. The weight of a pound of matter is therefore

not a definite standard of force. But the pound of matter itself is a

perfectly definite standard of mass. If we weigh one and the same
portion of matter in different states; for instance water in the states

of ice, snow, liquid water, or steam; or compare the weight of a

chemical compound with the weights of its components; we find an
exact equality; hence it has been stated that the mass of a body is a

measure of the quantity of matter which it contains; but though
this statement expresses a simple fact when applied tc the compari-

son of different quantities of one and the same substance, it expresses

no known fact of nature when applied to the comparison of different

substances. A pound of iron and a pound of lead tend to the earth

with equal forces ; and if equal forces are applied to them both their

velocities are equally affected. We may if we please agree to mea-
sure "quantity of matter" by these tests; but we must beware of

assuming that two things which are essentially different in kind can

be equal in themselves.

82. Third Law of Motion. Action and Reaction.—Forces always

occur in pairs, every exertion of force being a mutual action between

two bodies. Whenever a body is acted on by a force, the body
from which this force proceeds is acted on by an equal and opposite

force. The earth attracts the moon, and the moon attracts the

earth. A magnet attracts iron and is attracted by iron. When two
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boats are floating freely, a rope attached to one and hauled in by

a person in the other, makes each boat move towards the other.

Every exertion of force generates equal and opposite momenta in

the two bodies affected by it, since these two bodies are acted on by

equal forces for equal times.

If the forces exerted by one body upon the other are equivalent

to a single force, the forces of reaction will also be equivalent to a

single force, and these two equal and opposite resultants will have

the same line of action. We have seen in § 29 that the general

resultant of any set of forces applied to a body is a wrench; that is

to say it consists of a force with a definite line of action (called the

axis), accompanied by a couple in a perpendicular plane. The reac-

tion upon the body which exerts these forces will always be an equal

and opposite wrench ; the two wrenches having the same axis, equal

and opposite forces along this axis, and equal and opposite couples

in the perpendicular plane.

83. Motion of Centre of Gravity Unaffected.—A consequence of the

equality of the mutual forces between two bodies is, that these

forces produce no movement of the common centre of gravity of the

two bodies. For if A be the centre of gravity of a mass m^, and B
the centre of gravity of a mass wio, their common centre of gravity

C will divide AB inversely as the masses. Let the masses be

originally at rest, and let them be acted on only by their mutual

attraction or replusion. The distances through which they are

moved by these equal forces will be inversely as the masses, that is,

will be directly as AC and BC; hence if A' B' are their new positions

after any time, we have

AC _ AA' _ AC ± KM _ MG
BC ~ BB' ~ BC ± BB' " B'O'

The line A'B' is therefore divided at C in the same ratio in which

the line AB was divided; hence C is still the centre of gravity.

84. Velocity of Centre of Gravity.—If any number of masses are

moving with any velocities, and in any directions, but so that each

of them moves uniformly in a straight line, their common centre

of gravity will move uniformly in a straight line.

To prove this, we shall consider their component velocities in any

one direction,

let these component velocities be Ui u^ u^ &c.,

the masses being m^ rtio r)i^ &c.,

and the distances of the bodies (strictly speaking the distances of
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their respective centres of gravity) from a fixed plane to which the

given direction is normal, be x^ x^ x^ &c.

The formula for the distance of their common centre of gravity

from this plane is

— wii a;, + TOj :ti + &c. z-i %

X — 5:
\'-)

mj. + JW2 + &c.

In the time t, x^ is increased by the amount Uit, x^ by il.-^, and so on;

hence the numerator of the above expression is increased by

mi Ml < + m^ ^2 ^ + &c.,

and the value of x is increased in each unit of time by

mi ux -V vii Un + &c. /o\

mi + m2 + &c.

which is therefore the component velocity of the centre of gravity

in the given direction. As this expression contains only given

constant quantities, its value is constant; and as this reasoning

applies to all directions, the velocity of the centre of gravity must

itself be constant both in magnitude and direction.

We may remark that the above formula (2) correctly expresses

the component velocity of the centre of gravity at the instant con-

sidered, even when u-^, u.2, &c., are not constant.

85. Centre of Mass.—The point which we have thus far been

speaking of under the name of " centre of gravity," is more appro-

priately called the " centre of mass," a name which is at once

suggested by formula (1) § 84. When gravity acts in parallel lines

upon all the particles of a body, the resultant force of gravity upon

the body is a single force passing through this point; but this is no

longer the case when the forces of gravity upon the different parts

of the body (or system of bodies) are not parallel.

86. Units of Measurement.—It is a matter of importance, in

scientific calculations, to express the various magnitudes with which

we have to deal in terms of units which have a simple relation to

each other. The British weights and measures are completely at

fault in this respect, for the following reasons:

—

1. They are not a decimal system; and the reduction of a

measurement (say) from inches and decimals of an inch to feet and

decimals of a foot, cannot be effected by inspection.

2. It is still more troublesome to reduce gallons to cubic feet orinches.

3. The weight (properly the mass) of a cubic foot of a substance

in lbs., cannot be written down by inspection, when the specific

gravity of the substance (as compared with water) is given.
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87. The C.G-.S. System.—A committee of the British Association,

specially appointed to recommend a system of units for general

adoption in scientific calculation, have recommended that the

centimetre be adopted as the unit of length, the grarawie as the unit

of mass, and the second as the unit of time. We shall first give the

rough and afterwards the more exact definitions of these quantities.

The centimetre is approximately j^^ of the distance of either

pole of the earth from the equator; that is to say 1 followed by 9

zeros expresses this distance in centimetres.

The gramme is approximately the mass of a cubic centimetre

of cold water. Hence the same number which expresses the speci-

fic gravity of a substance referred to water, expresses also the mass

of a cubic centimetre of the substance, in grammes.

The second is ^Ti
—

ok—i^ of a mean solar day.
24 X 60 X 60 ''

More accurately, the centimetre is defined as one hundredth part

of the length, at the temperature 0° Centigrade, of a certain stand-

ard bar, preserved in Paris, carefully executed copies of which

are preserved in several other places; and the gramme is defined as

one thousandth part of the mass of a certain standard which is

preserved at Paris, and of which also there are numerous copies

preserved elsewhere.

For brevity of reference, the committee have recommended that

the system of units based on the Centimetre, Gramme, and Second,

be called the C.G.S. system.

The unit of area in this system is the square centimetre.

The unit of volume is the cubic centimetre.

The unit of velocity is a velocity of a centimetre per second.

The unit of momentum is the momentum of a gramme moving

with a velocity of a centimetre per second.

The unit force is that force which generates this momentum in

one second. It is therefore that force which, acting on a gramme

for one second, generates a velocity of a centimetre per second.

This force is called the dyne, an abbreviated derivative from the

Greek cvvaniQ (force).

The unit of work is the work done by a force of a dyne working

through a distance of a centimetre. It might be called the dyne-

centimetre, but a shorter name has been provided and it is called

the erg, from the Greek ipyov (work).



CHAPTER yil.

LAWS OF FALLING BODIES.

88. Effect of the Resistance of the Air.—In air, bodies fall with

unequal velocities; a sovereign or a ball of lead falls rapidly, a piece

of down or thin paper slowly. It was formerly thought that this

difference was inherent in the nature of the materials; but it is

easy to show that this is not the case, for if we compress a mass

of down or a piece of paper by rolling it into a ball, and compare it

with a piece of gold-leaf, we shall find that the latter body falls

more slowly than the former. The inequality of the velocities

which we observe is due to the resistance of the air, which increases

with the extent of surface exposed by the body.

It was Galileo who first discovered the cause of the unequal

rapidity of fall of different bodies. To put the matter to the test,

he prepared small balls of different substances, and let them fall at

the same time from the top of the tower of Pisa; they struck the

ground almost at the same instant. On changing their forms, so as

to give them very different extents of surface, he observed that they

fell with very unequal velocities. He was thus led to the conclusion

that gravity acts on all substances with the same intensity, and that

in a vacuum all bodies would fall with the same velocity.

This last proposition could not be put to the test of experiment

in the time of Galileo, the air-pump not having yet been invented.

The experiment was performed by Newton, and is now well known
as the " guinea and feather " experiment. For this purpose a tube

from a yard and a half to two yards long is used, which can be

exhausted of air, and which contains bodies of various densities, such

as a coin, pieces of paper, and feathers. When the tube is full of

air and is inverted, these different bodies are seen to fall with very

unequal velocities; but if the experiment is repeated after the tube

4
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has been exhausted of air, no difference can be perceived between

the times of their descent.

89. Mass and Gravitation Proportional.—This experiment proves

that bodies which have equal weights are equal in mass. For equal

masses are defined to be those which, when acted on by equal forces,

receive equal accelerations; and the forces, in this experiment, are

the weio;hts of the fallino; bodies.

Newton tested this point still more severely by experiments with

pendulums {Principia, book III. prop. vi.). He procured two

round wooden boxes of the same size and w^eight, and suspended

them by threads eleven feet long. One of them he filled with wood,

and he placed very accurately in the centre of oscillation of the

other the same weight of gold. The boxes hung side by side, and,

when set swinging in equal oscillations, went and returned together

for a very long time. Here the forces concerned in producing and

checking the motion, namely, the force of gravity and the resistance

of the air, were the same for the two pendulums, and as the move-

ments produced were the same, it follows that the masses were

equal. Newton remarks that a difference of mass amounting to a

thousandth part of the whole could not have escaped detection. He
experimented in the same way with silver, lead, glass, sand, salt,

water, and wheat, and with the same result. He therefore infers

that universally bodies of equal mass gravitate equally towards the

earth at the same place. He further extends the same law to gravi-

tation generally, and establishes the conclusion that the mutual

gravitating force between any two bodies depends only on their

masses and distances, and is independent of their materials.

The time of revolution of the moon round the earth, considered in

conjunction with her distance from the earth, shows that the relation

between mass and gravitation is the same for the material of which

the moon is composed as for terrestrial matter; and the same con-

clusion is proved for the planets by the relation which exists between

their distances from the sun and their times of revolution in their

orbits.

90. Uniform Acceleration.-—The fall of a heavy body furnishes an

illustration of the second law of motion, which asserts that the

change of momentum in a body in a given time is a measure of the

force which acts on the body. It follows from this law that if the

same force continues to act upon a body the changes of momentum
in successive equal intervals of time will be equal. When a heavy
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body originally at rest is allowed to fall, it is acted on during the

time of its descent by its own weight and by no other force, if we
neglect the resistance of the air. As its own weight is a constant

force, the body receives equal changes of momentum, and therefore

of velocity, in equal intervals of time. Let g denote its velocity

in centimetres per second, at the end of the first second. Then at

the end of the next second its velocity will be g -{- g, that is 2g; at

the end of the next it will be 2g-i-g, that is Sg, and so on, the gain

of velocity in each second being equal to the velocity generated in

the first second. At the end of t seconds the velocity will therefore

be tg. Such motion as this is said to be uniformly accelerated, and

the constant quantity g is the measure of the acceleration. Accelera-

tion is defined as the gain of velocity per unit of time.

91. Weight of a G-ramme in Dynes. Value of g.—Let m denote

the mass of the falling body in grammes. Then the change of

momentum in each second is mg, which is therefore the measure of

the force acting on the body. The weight of a body of m grammes

is therefore mg dynes, and the weight of 1 gramme is g dynes. The

value of g varies from 978*1 at the equator to 983"1 at the poles;

and 981 may be adopted as its average value in temperate latitudes.

Its value at any part of the earth's surface is approximately given

by the formula
g = 980-6056 - 2-5028 cos 2\ - -000,003A,

in which \ denotes the latitude, and h the height (in centimetres)

above sea-level.^

In § 79 we distinguished between the intensity and the amount

of a force. The amount of the force of gravity upon a mass of m
grammes is 7ng dynes. The intensity of this force is g dynes per

gramme. The intensity of a force, in dynes per gramme of the body

acted on, is always equal to the change of velocity which the force

produces per second, this change being expressed in centimetres per

second. In other words the intensity of a force is equal to the

acceleration which it produces. The best designation for g is the

intensity of gravity.

92. Distance fallen in a Given Time.—The distance described in a

given time by a body moving with uniform velocity is calculated

by multiplying the velocity by the time; just as the area of a rect-

angle is calculated by multiplying its length by its breadth. Hence

if we draw a line such that its ordinates AA', BB', &c., represent the

^ For the method of determination see § 120.
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velocities with which a body is moving at the times represented by

OA, OB (time being reckoned from the beginning of the motion), it

can be shown that the whole distance

described is represented by the area

OB'B bounded by the curve, the last

ordinate, and the base line. In fact this

area can be divided into narrow strips

(one of which is shown at AA', Fig. 37)

each of which may practically be re-

garded as a rectangle, whose height represents the velocity with

which the body is moving during the very small interval of time

represented by its base, and whose area therefore represents the

distance described in this time.

This would be true for the distance described by a body moving

from rest with any law of velocity. In the case of falling bodies

the law is that the velocity is simply proportional to the time; hence

the ordinates AA', BB', &c., must be directly as the abscissae OA,

OB; this proves that the line OA' B' must be straight; and the figure

OB' B is therefore a triangle. Its area will be half the product of

OB and BB'. But OB represents the time t occupied by the motion,

and BB' the velocity gt at the end of this time. The area of the

triangle therefore represents half the product of t and gt, that is,

represents ^gf^, which is accordingly the distance described in the

time t. Denoting this distance by s, and the velocity at the end of

time t by v, we have thus the two formulae

V = yt, (1)

5 = \gt\ (2)

from which we easily deduce
gs = {v\ (3)

93. Work spent in Producing Motion.—We may remark, in pass-

ing, that the third of these formulae enables us to calculate the work
required to produce a given motion in a given mass. When a body

whose mass is 1 gramme falls through a distance s, the force which

acts upon it is its own weight, which is g dynes, and the work done

upon it is gs ergs. Formula (3) shows that this is the same as \v^

ergs. For a mass of m grammes falling through a distance s, the

work is |mf^ ergs. The work required to 'produce a velocity v (cen-

timetres per second) in a body of viass m (grammes) originally at

rest is hmv^ (ergs).

94. Body thrown Upwards.—When a heavy body is projected ver-
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tically upwards, the formiilse (1) (2) (3) of § 92 Avill still apply to

its motion, with the following interpretations:

—

V denotes the velocity of projection.

t denotes the whole time occupied in the ascent.

s denotes the height to which the body will ascend.

When the body has reached the highest point, it will fall back, and

its velocity at any point through which it passes twice will be the

same in going up as in coming' down.

95. Resistance of the Air.—The foregoing results are rigorously

applicable to motion in vacuo, and are sensibly correct for motion

in air as long as the resistance of the air is insignificant in compari-

son with the force of gravity. The force of gravity upon a body is

the same at all velocities ; but the resistance of the air increases with

the velocity, and increases more and more rapidly as the velocity

becomes greater; so that while at very slow velocities an increase of

1 per cent, iii velocity would give an increase of 1 per cent, in the

resistance, at a higher velocity it would give an increase of 2 per

cent., and at the velocity of a cannon-ball an increase of 3 per cent.^

The formulae are therefore sensibly in error for high velocities.

They are also in error for bodies which, Uke feathers or gold-leaf,

have a large surface in proportion to their weight.

96. Projectiles.—If, instead of being simply let fall, a body is pro-

jected in any direction, its motion will be compounded of the motion

of a falling body and a uniform motion in

the direction of projection. Thus if OP
(Fig. 38) is the direction of projection, and

OQ the vertical through the point of pro-

jection, the body would move along OP
keeping its original velocity unchanged, if

it were not disturbed by gravity. To find Q Fig. ss.

where the body will be at any time t, we must

lay off a length OP equal to V^, V denoting the velocity of projec-

tion, and must then draw from P the vertical line PR downwards

equal to Igf^, which is the distance that the body would have fallen

in the time if simply dropped. The point R thus determined, will

be the actual position of the body. The velocity of the body at

any time will in like manner be found by compounding the initial

' This is only another way of saying that the resistance varies approximately as the

velocity when very small, and approximately as the cube of the velocity for velocities like

that of a cannon-ball.
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velocity with the velocity which a falling body would have acquired

in the time.

The path of the body will be a curve, as represented in the

figure, OP being a tangent to it at 0, and its concavity being down-

wards. The equations above given, namely

show that PR varies as the square of OP, and hence that the path

(or trajectory as it is technically called) is a parabola, whose axis is

vertical.

97. Time of Flight, and Range.—If the body is projected from a

point at the surface of the ground (supposed level) we can calculate

the time of flight and the range in the following way.

Let a be the angle which the direction of projection makes with the

horizontal. Then the velocity of projection can be resolved into

two components, V cos a and Y sin a, the former being horizontal,

and the latter vertically upward. The horizontal component of the

velocity of the body is unaffected by gravity and remains constant.

The vertical velocity after time t will be compounded of V sin a up-

wards and gt downwards. It will therefore be an upward velocity

y sin a — gt, or a downward velocity gt — Y sin a. At the highest

point of its path, the body will be moving horizontally and the ver-

tical component of its velocity will be zero; that is, we shall have

\7- • * A 1 J V sin a
V sm a-gt = 0; whence t= .

y

This is the time of attaining the highest point; and the time of

flight will be double of this, that is, will be ~ -•
a . > >

g

As the horizontal component of the velocity has the constant

value V cos a, the horizontal displacement in any time t is V cos a

multiplied by t. The range is therefore

2V- sin a cos a V" sin 2a
or .

9 9

The range (for a given velocity of projection) will therefore be

greatest when sin 2a is greatest, that is when 2a = 90° and a=4o°.

We shall now describe two forms of apparatus for illustrating the

laws of falling bodies.

98. Morin's Apparatus.—Morin's apparatus consists of a wooden

cylinder covered with ^aper, which can be set in uniform rotation

about its axis by the fall of a heavy weight. The cord which sup-
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ports the weight is wound upon a drum, furnished with a toothed

wheel which works on one ,side with an endless screw on the axis

of the cylinder, and on the other drives an axis carrying fans which

serve to regulate the motion.

In front of the turning cylinder is a cylindro-conical weight of

cast-iron carrying a pen-

cil whose point presses

against the paper, and

having ears which slide

on vertical threads, serv-

ing to guide it in its fall.

By pressing a lever, the

weioht can be made to

fall at a chosen moment.

The proper time for this

is when the motion of

the cylinder has become

sensibly uniform. It fol-

lows from this arrange-

ment that during its

vertical motion the pencil

will meet in succession

the different generating

lines^ of the revolving

cylinder, and will conse-

quently describe on its

surface a certain curve,

from the study of which

we shall be able to gather

the law of the fall of the

body which has traced =

it. With this view, we
describe (by turning the

cylinder while the pencil

is stationary) a circle passing through the commencement of the

curve, and also draw a vertical line through this point. We cut

the paper along this latter line and develop it (that is, flatten

1 A cylindric siirface could be swept out or "generated" by a straight line moving

round the axis and remaining always parallel to it. The successive positions of this

generating line are called the " generating lines of the cylinder."

Fig. S9.
—

'Morin's Apparatua.
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it out into a plane). It then presents the appearance shown in

Fig. 40.

I£ we take on the horizontal line equal distances at 1, 2, 3, 4, 5

. . . , and draw perpendiculars at their extremities to meet the

curve, it is evident that the points thus found are those which were

traced by the pencil when the cylinder had turned through the dis-

tances 1, 2, 3, 4, 5. . . . The corresponding verticals represent

the spaces traversed in the times 1, 2, 3,

4, 5. . . . Now we find, as the figure

shows, that these spaces are represented

by the numbers 1, 4, 9, 16, 25 . . .
,

thus verifying the principle that the spaces

described are proportional to the squares

of the times employed in their description.

We may remark that the proportionality

of the vertical lines to the squares of the

horizontal lines shows that the curve is a

parabola. The parabolic trace is thus the

consequence of the law of fall, and from

the fact of the trace being parabolic

we can infer the proportionality of the

spaces to the squares of the times.

The law of velocities might also be verified separately by Morin's

apparatus; we shall not describe the method which it would be

necessary to employ, but shall content ourselves with remarking

that the law of velocities is a logical consequence of the law of

spaces.-^

99. Atwood's Machine.—Atwood's machine, which affords great

facilities for illustrating the effects of force in producing motion,

consists essentially of a very freely moving pulley over which a fine

cord passes, from the ends of which two equal weights can be sus-

pended. A small additional weight of flat and elongated form is

laid upon one of them, which is thus caused to descend with uni-

form acceleration, and means are provided for suddenly removing

^ Consider, in fact, the space traversed in any time t ; this space is given by the formula,

s = K«^; dm-ing the time t + d the space traversed will he'K{t + ef = 'Kt'^ + 2'Kte + Ke'^,

whence it foUows that the space traversed during the time after the time t is 2K< d +

K.d'^. The average velocity during this time 6 is obtained by dividing the space by B,

and is 2K< + K0, which, by making d very small, can be made to agree as accurately as

we please with the value 2K«. This limiting value 2K< must therefore be the velocity at

the end of time t.—D.
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this additional weight at any point of the descent, so as to allow the

motion to continue from

this point onward with

uniform velocity.

The machine is re-

presented in Fig. 41.

The pulley over which

the string passes is the

largest of the wheels

shown at the top of the

apparatus. In order to

give it greater freedom

of movement, the ends

of its axis are made

to rest, not on fixed

supports, but on the

circumferences of four

wheels (two at each

end of the axis) called

friction-wheels,because

their office is to dim-

inish friction. Two
small equal weights are

shown, suspended from

this pulley by a string

passing over it. One of

them P' is represented

as near the bottom of

the supporting pillar,

and the other P as near

the top. The latter is ^
resting upon a small ^p
platform, which can be JB
suddenlydropped when Wt-

it is desired that the ^
motion shall commence. H^
A little lower down and ^^^

vertically beneath the ^^

platform, is seen a ring, ^'s- 4i.-Atwood'8 Madnno.

large enough to let the weight pass through it without danger of
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contact. This ring can be shifted up or down, and clamped at any

height by a screw; it is represented on a larger scale in the margin.

At a considerable distance beneath the ring, is seen the stop, which

is also represented in the margin, and can like the ring be clamped

at any height. The oiSce of the ring is to intercept the additional

weight, and the office of the stop is to arrest the descent. The up-

right to which they are both clamped is marked with a scale of equal

parts, to show the distances moved over. A clock with a pendulum

beating seconds, is provided for measuring the time; and there is an

arrangement by which the movable platform can be dropped by the

action of the clock precisely at one of the ticks. To measure the

distance fallen in one or more seconds, the ring is removed, and the

stop is placed by trial at such heights that the descending weight

strikes it precisely at another tick. To measure the velocity

acquired in one or more seconds, the ring must be fixed at such a

height as to intercept the additional weight at one of the ticks, and

the stop must be placed so as to be struck by the descending weight

at another tick.

100. Theory of Atwood's Macliine.—If M denote each of the two

equal masses, in grammes, and tyi the additional mass, the whole

moving mass (neglecting the mass of the pulley and string) is

2M+ W1, but the moving force is only the weight of mn. The accel-

eration produced, instead of being g, is accordingly only ^^— g.

In order to allow for the inertia of the pulley and string, a con-

stant quantity must be added to the denominator in the above for-

mula, and the value of this constant can be determined by observ-

ing the movements obtained with different values of M and iti.

Denoting it by C, we have

,0 (A)'
HI + 2M + C

as the expression for the acceleration. As m is usually small in

comparison with M, the acceleration is very small in comparison with

that of a freely falling body, and is brought within the limits o£

convenient observation. Denoting the acceleration by a, and using

V and s, as in § 92, to denote the velocity acquired and space

described in time t, we shall have

v= at, (1)

s=.hat\ (2)

as= 4f2, (3)
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and each of these formulse can be directly verified by experiments

with the machine.

101. Uniform Motion in a Circle.—

A body cannot move in a curved path

unless there be a force urging it ^^°- ^-•

towards the concave side of the curve. We shall proceed to in-

vestigate the intensity of this force when
the path is circular and the velocity uniform.

We shall denote the velocity by v, the radius

of the circle by r, and the intensity of the

force by /. Let AB (Figs. 42, 43) be a small

portion of the path, and BD a perpendicular

upon AD the tangent at A. Then, since

the arc AB is small in comparison with

the whole circumference, it is sensibly equal

to AD, and the body would have been found

at D instead of at B if no force had acted ^'° ^^

upon it since leaving A. DB is accordingly the distance due to the

force; and if t denote the time from A to B, we have

AD = vt (1)

DB = hfc\ (2)

The second of these equations gives

2DE

and substituting for t from the first equation, this becomes

^ 2DB 2 ,q.

But if An (Fig. 43) be the diameter at A, and Bm the perpendicular

upon it from B, we have, by Euclid, AD'^=:7nB^=Am.mn=^2r .Am
sensibly, =^ 2r . DB.

Therefore -rfyi-p and hence by (3)

Hence the force necessary for keeping a body in a circular path

without change of velocity, is a force of intensity - directed towards

the centre of the circle. If m denote the mass of the body, the

amount of the force will be ~r- This will be in dynes, if m be in

grammes, r in centimetres, and v in centimetres per second.

If the time of revolution be denoted by T, and tt as usual denote

the ratio of circumference to diameter, the distance moved in time
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T is 27rr; hence v = ~, and another expression for the intensity of

the force will be

.= (-)•.

102. Deflecting Force in General.—In general, when a body is

moving in any path, and with velocity either constant or varying,

the force acting upon it at any instant can be resolved into two

components, one along the tangent and the other along the normal.

The intensity of the tangential component is measured by the rate

at which the velocity increases or diminishes, and the intensity of

the normal component is given by formula (4) of last article, if we
make r denote the radius of curvature.

103. Illustrations of Deflecting Force.—When a stone is swung
round by a string in a vertical circle, the tension of the string in

the lowest position consists of two parts:

—

(1) The weight of the stone, which is mg if -j?! be the mass of the

stone.

(2) The force m - which is necessary for deflecting the stone from

a horizontal tangent into its actual path in the neighbourhood of the

lowest point.

When the stone is at the highest point of its path, the tension of

the string is the difference of these tvyro forces, that is to say it is

"»(,:- 5')'

and the motion is not possible unless the velocity at the highest

point is sufficient to make - greater than g.

The tendency of the stone to persevere in rectilinear motion and

to resist deflection into a curve, causes it to exert a force upon the

string, of amount m -, and this is called centrifugal force. It is

not a force acting upon the stone, but a force exerted by the stone

upon the string. Its direction is from the centre of curvature,

whereas the deflecting force which acts upon the stone is towards

the centre of curvature.

104. Centrifugal Force at the Equator.—Bodies on the earth's

surface are carried round in circles by the diurnal rotation of the

earth upon its axis. The velocity of this motion at the equator is

about 46,500 centimetres per second, and the earth's equatorial

radius is about 6"38 x 10^ centimetres. Hence the value of - is
r

found to be about o"39. The case is analo2:ous to that of the stone
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at the highest point of its path in the preceding article, if instead

of a string Avhich can only exert a pnll we suppose a stiiF rod which

can exert a push upon the stone. The rod will be called upon to

exert a pull or a push at the highest point according as - is greater

or less than g. The force of the push in the latter case will be

and this is accordingly the force with which the surface of the earth

at the equator pushes a body lying upon it. The push, of course,

is mutual, and this formula therefore gives the apparent weight or

apparent gravitating force of a body at the equator, mg denoting its

true gravitating force (due to attraction alone). A body falling in

vacuo at the equator has an acceleration 978-10 relative to the

surface of the earth in its neighbourhood; but this portion of the

surface has itself an acceleration of 3"39, directed towards the earth's

centre, and therefore in the same direction as the acceleration of the

body. The absolute acceleration of the body is therefore the sum of

these two, that is 981 '49, which is accordingly the intensity of true

gravity at the equator.

The apparent weight of bodies at the equator would be nil if -

were equal to g. Dividing S*39 into 981'49, the quotient is approxi-

mately 289, which is (17)'^. Hence this state of things would exist

if the velocity of rotation were about 17 times as fast as at present.

Since the movements and forces which we actually observe depend

upon relative acceleration, it is usual to understand, by the value of

g or the intensity of gravity at a place, the apparent values, unless

the contrary be expressed. Thus the value of g at the equator is

usually stated to be 978"10.

105. Direction of Apparent Gravity.—The total amount of centri-

fugal force at different places on the earth's surfacfe, varies directly

as their distance from the earth's axis; for this is the value of r in

the formula (5) of § 101, and the value of T in that formula is the

same for the whole earth. The direction of this force, being per-

pendicular to the earth's axis, is not vertical except at the equator;

and hence, when we compound it with the force of true gravity, we
obtain a resultant force of apparent gravity differing in direction as

well as in magnitude from true gravity. What is always understood

by a vertical, is the direction of apparent gravity; and a plane per-

pendicular to it is what is meant by a horizontal plane.



CHAPTER VIII.

THE PENDULUM.

106. The Pendulum.—When a body is suspended so that it can turn

about a horizontal axis which does not pass through

its centre of gravity, its only position of stable equi-

librium is that in which its centre of gravity is in

the same vertical plane with the axis and below it

(§ 42). If the body be turned into any other position,

and left to itself, it will oscillate from one side to the

other of the position of equilibrium, until the resistance

t)f the air and the friction of the axis gi-adually bring

it to rest. A body thus suspended, whatever be its

form, is called a pendulum. It frequently consists

of a rod which can turn about an axis (Fig. 44) at

its upper end, and which carries at its lower end a

heavy lens-shaped piece of metal M called the bob; this

latter can be raised or lowered by means of the screw

V. The applications of the pendulum are very impor-

tant: it regulates our clocks, and it has enabled us to

measure the intensity of gravity in different parts of

the world; it is important then to know at least the

fundamental points in its theory. For explaining

these, we shall begin with the consideration of an

ideal body called the simple pendulwrn.

107. Simple Pendulum.—This is the name given to a

pendulum consisting of a heavy particle M (Fig. 45)

attached to one end of an inextensible thread without

weight, the other end of the thread being fixed at A.

When the thread is vertical, the weight of the particle

Fig. 44. -Pendulum, acts in the direction of its length, and there is equilib-
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Fig. 45.—T.rotion of Simi^le
reudulum.

rium. But suppose it is drawn aside into another position, as AM.
In this case, the weight MG of the particle can be resolved into tw^o

forces MC and MH. The former, acting along the prolongation of

the thread, is destroyed by the resistance of the thread; the other,

acting along the tangent MH, produces the

motion of the particle. This effective com-

ponent is evidently so much the gTeater as

the angle of displacement from the vertical

position is greater. The particle will there-

fore move along an arc of a circle described

from A as centre, and the force which

urges it forw^ard will continually diminish

till it arrives at the low^est point M'.

At M' this force is zero, but, in virtue

of the velocity acquired, the particle wdll

ascend on the opposite side, the effective

component of gTavity being now opposed

to the direction of its motion; and, inas-

much as the magnitude of this component

goes through the same series of values in this part of the motion

as in the former part, but in reversed order, the velocity will, in like

manner, retrace its former values, and will become zero when the

particle has risen to a point M" at the same height as M. It then

descends again and performs an oscillation from M" to M precisely

similar to the first, but in the reverse direction. It will thus

continue to vibrate between the two points M, M" (friction being

supposed excluded), for an indefinite number of times, all the vibra-

tions being of equal extent and performed in equal periods.

The distance through which a simple pendulum travels in moving

from its lowest position to its furthest position on either side, is

called its amplitude. It is evidently equal to half the complete arc

of vibration, and is commonly expressed, not in linear measure, but

in degrees of arc. Its numerical value is of course equal to that of

the angle MAM', which it subtends at the centre of the circle.

The complete period of the pendulum's motion is the time which

it occupies in moving from M to M" and back to M, or more generally,

is the time from its passing through any given position to its next

passing through the same position in the same direction.

What is commonly called the time of vibration, or the time of a

single vibration, is the half of a complete period, being the time of
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passing from one of the two extreme positions to the other. Hence

what we have above defined as a complete period is often called a

double vibration.

When the amplitude changes, the time of vibration changes also,

being greater as the amplitude is greater; but the connection between

the two elements is very far from being one of simple proportion.

The change of time (as measured by a ratio) is much less than the

change of amplitude, especially when the amplitude is small; and

when the amplitude is less than about 5°, any further diminution

of it has little or no sensible effect in diminishing the time. For

small vibrations, then, the time of vibration is independent of the

amplitude. This is called the law of isochronism.

108. Law of Acceleration for Small Vibrations.—Denoting the

length of a simple pendulum by I, and its inclination to the vertical

at any moment by d, we see f^om Fig. 45 that the ratio of the effective

component of gravity to the whole force of gravity is j^, that

is sin d; a'nd when 6 is small this is sensibly equal to d itself as

measured by ^^^^- Let s denote the length of the arc MM' inter-

vening between the lower end of the pendulum and the lowest point

of its swing, at any time; then 6 is equal to -^, and the intensity

of the effective force of gravity when is small is sensibly equal to

gd, that is to ^^. Since g and I are the

same in all positions of the pendulum, this

effective force varies as s. Its direction

is always towards the position of equilib-

rium, so that it accelerates the motion

during the approach to this position, and

retards it during the recess ; the acceleration

or retardation being always in direct pro-

portion to the distance from the position of

equilibrium. This species of motion is of

extremely common occurrence. It is illus-

trated by the vibration of either prong

of a tuning-fork, and in general by the

motion of any body vibrating in one plane

in such a manner as to yield a simple musical tone.

109. General Law for Period.—Suppose a point P to travel with

uniform velocity round a circle (Fig. 46), and from its successive

-Piojection of Cii^cular

Motion.
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positions P^, P2, &c., let perpendiculars Pij:>i, P2P2) &c., be drawn to a

fixed straight line in the plane of the circle. Then while P travels

once round the circle, its projection p executes a complete vibration.

The acceleration of P is always directed towards the centre of the

circle, and is equal to (%)''(§ l^^)- '^^^ component of this acceler-

ation parallel to the line of motion of p, is the fraction - of the v\^hoie

acceleration {x denoting the distance of p from the middle point of

its path), and is therefore ( y")^- This is accordingly the accelera-

tion of p, and as it is simply proportional to x we shall denote it for

brevity by ^x. To compute the periodic time T of a complete

vibration, we have the equation ^1= ( y) > which gives

T=-?f.. (1)

110. Application to the Pendulum.—For the motion of a pendulum

in a small arc, we have

acceleration =
f

«>

where s denotes the displacement in linear measure. We must

therefore put /* = p and we then have

T = 2.yi, (2)

which is the expression for the time of a complete (or double) vibra-

tion. It is more usual to understand by the " time of vibration " of

a pendulum the half of this, that is the time from one extreme

position to the other, and to denote this time by T. In this sense

we have

(3)-VI
To find the length of the seconds' pendulum we must put T=:l.

This gives

If g were 987 we should have ^==100 centimetres or 1 metre. The
actual value of g is everywhere a little less than this. The length

of the seconds' pendulum is therefore everj^where rather less than a

metre.

111. Simple Harmonic Motion.—Rectilinear motion consisting of

vibration about a point with acceleration ^x, where x denotes

5
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distance from this point, is called Simijple Harmonic Motion, or

Simple Harmonic Vibration. The above investigation shows that
271-

such vibration is isochronous, its period being 77^ whatever the

amplitude may be.

To understand the reason of this isochronism we have only to

remark that, if the amplitude be changed, the velocity at correspond-

ing points (that is, points whose distances from the middle point are

the same fractions of the amplitudes) will be changed in the same

ratio. For example, compare two simple vibrations in which the

values of /x are the same, but let the amplitude of one be double that

of the other. Then if we divide the paths of both into the same

number of small equal parts, these parts will be twice as great for

the one as for the other; but if we suppose the two points to start

simultaneously from their extreme positions, the one will constantly

be moving twice as fast as the other. The number of parts described

in any given time will therefore be the- same for both.

In the case of vibrations which are not simple, it is easy to see

(from comparison with simple vibration) that if the acceleration in-

creases in a greater ratio than the distance from the mean position,

the period of vibration will be shortened by increasing the amplitude;

but if the acceleration increases in a less ratio than the distance, as

in the case of the common pendulum vibrating in an arc of moderate

extent, the period is increased by increasing the amplitude.

112. Experimental Investigation of the Motion of Pendulums.—The

preceding investigation applies to the simple pendulum; that is to

say to a purely imaginary existence; but it can be theoretically

demonstrated that every rigid body vibrating about a horizontal

axis under the action of gravity (friction and the resistance of the

air being neglected), moves in the same manner as a simple pendu-

lum of determinate length called the equivalent sirtiple ^pendulum.

Hence the above results can be verified by experiments on actual

pendulums.

The discovery of the experimental laws of the motion of pendu-

lums was in fact long anterior to the theoretical investigation.

It was the earliest and one of the most important discoveries of

Galileo, and dates from the year 1582, when he was about twenty

years of age. It is related that on one occasion, when in the

cathedral of Pisa, he was struck with the regularity of the oscilla-

tions of a lamp suspended from the roof, and it appeared to him
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that these oscillations, though diminishing in extent, preserved the

same duration. He tested the fact by repeated trials, which con-

firmed him in the belief of its perfect exactness. This law of

isochronism can be easily verified. It is only necessary to count

the vibrations which take place in a given time with dififerent

amplitudes. The numbers will be found to be exactly the same.

This will be found to hold good even when some of the vibrations

compared are so small that they can only be observed with a

telescope.

By employing balls suspended by threads of different lengths,

Galileo discovered the influence of length on the time of vibration.

He ascertained that when the length of the thread increases, the

time of vibration increases also; not, however, in proportion to the

length simply, but to its square root.

113. Cycloidal Pendulum.—It is obvious from § 64 that the effective

component of gravity upon a particle resting on a smooth inclined

plane is proportional to the sine of the inclination. The accelera-

tion of a particle so situated is in fact g sin a, if a denote the inclina-

tion of the plane. When a particle is guided along a smooth curve

its acceleration is expressed by the same formula, a now denoting the

inclination of the curve at any point to the horizon. This inclina-

tion varies from point to point of the curve, so that the acceleration

g sin a is no longer a constant quantity. The motion of a common
pendulum corresponds to the motion of a particle which is guided to

move in a circular arc; and if x denote distance from the lowest

point, measured along the arc, and r the radius of the circle (or

the length of the pendulum), the acceleration at any point is g sin -. •

This is sensibly proportional to x so long as a? is a small fraction

of r; but in general it is not proportional to x, and hence the vibra-

tions are not in general isochronous.

To obtain strictly isochronous vibrations we must substitute for

the circular arc a curve which possesses the property of having an

inclination whose sine is simply proportional to distance measured

along the curve from the lowest point. The curve which possesses

this property is the cycloid. It is the curve which is traced by a

point in the circumference of a circle which rolls along a straight

line. The cycloidal pendulum is constructed by suspending an ivory

ball or some other small heavy body by a thread between two

cheeks (Fig. 47), on which the thread winds as the ball swings to
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d

Fig 47.—Cycloidal Pendulum.

either side. The cheeks must themselves be the two halves of a

cycloid whose length is double that of the thread, so that each

cheek has the same length as the

thread. It can be demonstrated'-

that under these circumstances

the path of the ball will be a

cycloid identical with that to

which the cheeks belong. Ne-

glecting friction and the rigidity

of the thread, the acceleration in

this case is proportional to dis-

tance measured along the cycloid

from its lowest point, and hence

the time of vibration will be

strictly the same for large as for small amplitudes. It will, in fact,

be the same as that of a simple pendulum having the same length

as the cycloidal pendulum and vibrating in a small arc.

Attempts have been made to adapt the cycloidal pendulum to

clocks, but it has been found that, owing to the greater amount

of friction, its rate was less regular than that of the common pendu-

lum. It may be remarked, that the spring by which pendulums are

often suspended has the effect of guiding the pendulum bob in a

curve which is approximately cycloidal, and thus of diminishing the

irregularity of rate resulting from diflferences of amplitude.*

114. Moment of Inertia.—Just as the mass of a body is the

measure of the force requisite for producing unit acceleration when
the movement is one of pure translation; so the "moment of inertia

of a rigid body turning about a fixed axis is the measure of the

couple requisite for producing unit acceleration of angnilar velocity.

We suppose angle to be measured by ,. , so that the angle turned

by the body is equal to the arc described by any point of it divided

by the distance of this point from the axis; and the angular velocity

of the body will be the velocity of any point divided by its distance

from the axis. The moment of inertia of the body round the axis

is numerically equal to the couple which would produce unit change

of angular velocity in the body in unit time. We shall now show

how to express the moment of inertia in terms of the masses of the

particles of the body and their distances from the axis.

Since the evolute of the cycloid is an equal cycloid.
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Let m denote the mass of any particle, r its distance from, the

axis, and ^ the angular acceleration. Then r^ is the acceleration of

the particle in, and the force which would produce this acceleration

by acting directly on the particle along the line of its motion is

mr(^. The moment of this force round the axis would be mr'^<p since

its arm is r. The aofOTeoate of all such moments as this for all the

particles of the body is evidently equal to the couple which actually

produces the acceleration of the body. Using the sign 2 to denote

" the sum of such terms as," and observing that <p is the same for the

whole body, we have

Applied couple = S (mr'^<p) = ^ S (»i?-^). (1)

When ^ is unity, the applied couple will be equal to S {nir-), which

is therefore, by the foregoing definition, the moment of inertia of

the body round the axis.

115. Moments of Inertia Round Parallel Axes.—The moment of

inertia round an axis through the centre of mass is always less than

that round any parallel axis.

For if r denote the distance of the particle n% from an axis not

passing through the centre of mass, and x and y its distances from two

mutually rectangular planes through this axis, we have r'^^x^+ y'^.

Now let two planes parallel to these be drawn through the centre

of mass; let I and rj be the distances of m from them, and p its

distance from their line of intersection, which will clearly be parallel

to the given axis. Also let a and h be the distances respectively

between the two pairs of parallel planes, so that a^-\-lr will be the

square of the distance between the two parallel axes, which distance

we will denote by h. Then we have

a; = ^ ± a

y --q^h
a;2 = a= + ^ ± 2a ^, y^ = W + yf^.i. 2bn.

2 imr^) = S /m (a2 + 62) j. + 2 |m (^ + „')j.

± 2a 2 (m^) ± 26 2 (m-n)

= h- Z7n + 2 (mp") ± 2a ^ 2m J= 2b rj 2m.

where ^ and 77 are the values of ^ and v for the centre of mass. But
thes^ values are both zero, since the centre of mass lies on both the

planes from' which 4 and v are measured. We have therefore

2 [mr") - h? 2»ft + 2 [mp"), (2)

that is to say, the moment of inertia round the given axis exceeds

the moment of inertia round the parallel axis through the centre of
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mass by the product of the whole mass into the square of the dis-

tance between the axes.

116. Application to Compound Pendulum,—The application of this

principle to the compound pendulum leads to some results of great

interest and importance.

Let M be the mass of a compound pendulum, that is, a rigid body

free to oscillate about a fixed horizontal axis. Let h, as in the

preceding section, denote the distance of the centre of mass from

this axis; let Q denote the inclination of h to the vertical, and the

angular acceleration.

Then, since the forces of gTavity on the body are equivalent to a

single force M^, acting vertically downwards at the centre of mass,

and therefore having an arm h sin with respect to the axis, the

moment of the applied forces round the axis is M.gh sin 9; and this

must, by § 114, be equal to ^S (mr-). We have therefore

S (m}-°) _ ff sin 6 ,„>

Mh " 4> ' ^
'

If the whole mass were collected at one point at distance I from the

axis, this equation would become

Ml' _ ff sin e, - ,.

and the angular motion would be the same as in the actual case if

I had the value

I is evidently the length of the equivalent simple

pendulum.

117. Convertibility of Centres.—Again, if we introduce

a length k such that Mk^ is equal to S {mp^), that is, to

the moment of inertia round a parallel axis through the

centre of mass, we have

Fig. 48. S (7ftr2) = S (mp2) + /jS -^m - MP + Wi^,

and equation (5) becomes

or P = (Z - A) h. (7)

In the annexed figure (Fig. 48) which represents a vertical section

through the centre of mass, let G be the centre of mass, A the "centre
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of suspension," that is, the point in which the axis cuts the plane

of the figure, and O the " centre of oscillation," that is, the point at

which the mass might be collected without altering the movement.

Then, by definition, we have

I = AO, h - AG, therefore Z - /i = GO,

SO that equation (7) signifies

F = AG . GO. (8)

Since ^' is the same for all parallel axes, this equation shows that

when the body is made to vibrate about a parallel axis through O,

the centre of oscillation will be the point A. That is to say; the

centres of suspension and oscillation are interchangeable, and the

pi'oduct of their distances from the centre of mass is k^.

118. If we take a new centre of suspension A' in the plane of the

figure, the new centre of oscillation 0' will lie in the production of

A'G, and we must have

A'G . GO' = P = AG . GO.

If A'G be equal to AG, GO' will be equal to GO, and A'O' to AO,

so that the length of the equivalent simple pendulum will be un-

changed. A compound pendulum will therefore vibrate in the

same tims about all parallel axes which are equidistant from the

centre of mass.

When the product of two quantities is given, their sum is least

when they are equal, and becomes continually greater as they

depart further from equality. Hence the length of the equivalent

simple pendulum AO or AG + GO is least when

AG = GO = k,

and increases continually as the distance of the centre of suspen-

sion from G is either increased from k to infinity or diminished from

k to zero. Hence, when a body vibrates about an axis which passes

very nearly through its centre of gravity, its oscillations are exceed-

ingly slow.

119. Kater's Pendulum.—The principle of the convertibility of

centres, established in § 117, was discovered by Huygens, and

afibrds the most convenient practical method of constructing a

pendulum of known length. In Kater's pendulum there are two

parallel knife-edges about either of which the pendulum can be

made to vibrate, and one of them can be adjusted to any distance
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from the other. The pendulum is swung first upon one of these

edges and then upon the other, and, if any difference is detected in

the times of vibration, it is corrected by moving the adjustable edge.

When the difference has been completely destroyed, the distance

between the two edges is the length of the equivalent simple pendu-

lum. It is necessary, in any arrangement of this kind, that the two
knife-edges should be in a plane passing through the centre of gravity;

also that they should be on opposite sides of the centre of gravity,

and at unequal distances from it.

120. Determination of the Value of g.—Returning to the formula for
/ / 27

the simple pendulum T^tta /-> we easily deduce from it g^^,
whence it follows that the value of g can be determined by making
a pendulum vibrate and measuring T and I. T is determined by
counting the number of vibrations that take place in a given time;

I can be calculated, when the pendulum is of regular form, by the

aid of formulae which are given in treatises on rigid dynamics, but

its value is more easily obtained by Kater's method, described above,

founded on the principle of the convertibility of the centres of

suspension and oscillation.

It is from pendulum observations, taken in great numbers at

different parts of the earth, that the approximate formula for the

intensity of gravity which we have given at § 91 has been deduced.

Local peculiarities prevent the possibility of laying down any general

formula with precision; and the exact value of g for any place can

only be ascertained by observations on the spot.



CHAPTER IX.

CONSERVATION OF ENERGY.

121. Definition of Kinetic Energy.—We have seen in § 93 that the

work which must be done upon a mass of m grammes to give it a

velocity of v centimetres per second is ^^mv^ ergs. Though we have

proved' this only for the case of falling bodies, with gravity as the

working force, the result is true universally, as is shown in advanced

treatises on mathematical physics. It is true whether the motion

be rectilinear or curvilinear, and whether the working force act in

the line of motion or at an angle with it.

If the velocity of a mass increases from ^i to v^, the work done

upon it in the interval is |m {v-i-—v^); in other words, is the

increase of ^'mv^.

On the other hand, if a force acts in such a manner as to oppose

the motion of a moving mass, the force will do neo-ative work, the

amount of which will be equal to the decrease in the value of ^mv^.

For example, during any portion of the ascent of a projectile, the

diminution in the value of ^mv^ is equal to gm multiplied by the

increase of height ; and during any portion of its descent the increase

in ^Tnv^ is equal to gm multiplied by the decrease of height.

The work which must have been done upon a body to give it its

actual motion, supposing it to have been initially at rest, is called

the energy of motion or the kinetic energy of the body. It can be

computed by multiplying half the mass by the square of the velocity.

122. Definition of Static or Potential Energy.—When a body of

mass m is at a height s above the ground, which we will suppose

level, gravity is ready to do the amount of work gms upon it by
making it fall to the ground. A body in an elevated position may
therefore be regarded as a reservoir of work. In like manner a

wound-up clock, whether driven by weights or by a spring, has
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work stored up in it. In all these cases there is force between parts

of a system tending to produce relative motion, and there is room

for such relative motion to take place. There is force ready to act,

and space for it to act through. Also the force is always the same

in the same relative position of the parts. Such a system possesses

energy, which is usually called potential. We prefer to call it

statical, inasmuch as its amount is computed on statical principles

alone.^ Statical energy depends jointly on mutual force and relative

position. Its amount in any given position is the amount of work

which would be done by the forces of the system in passing from

this position to the standard position. When we are speaking of

the energy of a heavy body in an elevated position above level

ground, we naturally adopt as the standard position that in which

the body is lying on the ground. When we speak of the energy of

a wound-up clock, we adopt as the standard position that in which

the clock has completely run down. Even when the standard

position is not indicated, we can still speak definitely of the differ-

ence between the energies of two given positions of a system; just

as we can speak definitely of the difference of level of two given

points without any agreement as to the datum from which levels

are to be reckoned.

123. Conservation of Mechanical Energy.—When a frictionless

system is so constituted that its forces are always the same in the

same positions of the system, the amount of work done by these

forces during the passage from one position A to another position B
will be independent of the path pursued, and will be equal to minus

the work done by them in the passage from B to A. The earth and

any heavy body at its surface constitute such a system; the force of the

system is the mutual gravitation of these two bodies; and the work

done by this mutual gravitation, when the body is moved by any

path from a point A to a point B, is equal to the weight of the body

multiplied by the height of A above B. When the system passes

through any series of movements beginning with a given position

and ending with the same position again, the algebraic total of work

done by the forces of the system in this series of movements is zero.

For instance, if a heavy body be carried by a roundabout path back

to the point from whence it started, no work is done upon it by

gravity upon the whole.

Every position of such a system has therefore a definite amount

^ That is to say, the computation involves no reference to the laws of motion.
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of statical energy, reckoned with respect to an arbitrary standard

position. The work done by the forces of the system in passing

from one position to another is (by definition) equal to the loss of

static energy; but this loss is made up by an equal gain of kinetic

energy. Conversely if kinetic energy is lost in passing from one

position to another, the forces do negative work equal to this loss,

and an equal amount of static energy is gained. The total energy

of the system (including both static and kinetic) therefore remains

unaltered.

An approximation to such a state of things is exhibited by a

pendulum. In the two extreme positions it is at rest, and has there-

fore no kinetic energy; but its statical energy is then a maximum.

In the lowest position its motion is most rapid; its kinetic energy is

therefore a maximum, but its statical energy is zero. The difference

of the statical energies of any two positions, will be the weight of

the pendulum multiplied by the difference of levels of its centre of

gravity, and this will also be the difference (in inverse order) between

the kinetic energies of the pendulum in these two positions.

As the pendulum is continually setting the air in motion and thus

doing external work, it gradually loses energy and at last comes to

rest, unless it be supplied with energy from a clock or some other

source. If a pendulum could be swung in a perfect vacuum, with

an entire absence of friction, it would lose no energy, and would

vibrate for an indefinite time without decrease of amplitude.

124. Illustration from Pile-driving.—An excellent illustration of

transformations of energy is furnished by pile-driving. A large

mass of iron called a ram is slowly hauled up to a height of several

yards above the pile, and is then allowed to fall upon it. During

the ascent, work must be supplied to overcome the force of gravity;

and this work is represented by the statical energy of the ram in its

highest position. While falling, it continually loses statical and

gains kinetic energy; the amount of the latter which it possesses

immediately before the blow being equal to the work which has

been done in raising it. The eflfect of the blow is to drive the pile

through a small distance against a resistance very much greater than

the weight of the ram ; the work thus done being nearly equal to

the total energy which the ram possessed at any point of its descent.

We say nearly equal, because a portion of the energy of the blow is

spent in producing vibrations.

125. Hindrances to Availability of Energy.—There is almost
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always some waste in utilizing energy. When water turns a mill-

wheel, it runs away from the wheel with a velocity, the square of

which multiplied by half the mass of the water represents energy

which has run to waste.

Friction again often consumes a large amount of energy; and in

this case we cannot (as in the preceding one) point to any palpable

motion of a mass as representing the loss. Heat, however, is pro-

duced, and the energy which has disappeared as regarded from a

gross mechanical point of view, has taken a molecular form. Heat

is a form of molecular energy; and we know, from modern re-

searches, what quantity of heat is equivalent to a given amount of

mechanical work. In the steam-engine we have the converse

process; mechanical work is done by means of heat, and heat is

destroyed in the doing of it, so that the amount of heat given out

by the engine is less than the amount supplied to it.

The sciences of electricity and magnetism reveal the existence of

other forms of molecular energy; and it is possible in many ways to

produce one form of energy at the expense of another; but in every

case there is an exact equivalence between the quantity of one kind

which comes into existence and the quantity of another kind which

simultaneously disappears. Hence the problem of constructing a

self-driven engine, which we have seen to be impossible in mechanics,

is equally impossible when molecular forms of energy are called to

the inventor's aid.

Energy may be transformed, and may be communicated from one

system to another; but it cannot be increased or diminished in total

amount. This great natural law is called the princi2de of the con-

servation of energy.



CHAPTER X.

ELASTICITY.

126. Elasticity and its Limits.—There is no such thing in nature

as an absolutely rigid body. All bodies yield more or less to the

action of force; and the property in virtue of which they tend to

recover their original form and dimensions when these are forcibly

changed, is called elasticity. Most solid bodies possess almost per-

fect elasticity for small deformations ; that is to say, when distorted,

extended, or compressed, within certain small limits, they will, on

the removal of the constraint to which they have been subjected,

instantly regain almost completely their original form and dimen-

sions. These limits (which are called the limits of elasticity) are

different for different substances; and when a body is distoited

beyond these limits, it takes a set, the form to which it returns

being intermediate between its original form and that into which it

was distorted.

When a body is distorted within the limits of its elasticity, the

force with which it reacts is directly proportional to the amount of

distortion. For example, the force required to make the prongs of

a tuning-fork approach each other by a tenth of an inch, is double

of that required to produce an approach of a twentieth of an inch;

and if a chain is lengthened a twentieth of an inch by a weight of

1 cwt., it will be lengthened a tenth of an inch by a weight of 2

cwt., the chain being supposed to be strong enough to experience no

permanent set from this greater weight. Also, within the limits of

elasticity, equal and opposite distortions, if small, are resisted by

equal reactions. For example, the same force which suffices to

make the prongs of a tuning-fork approach by a twentieth of an

inch, will, if applied in the opposite direction, make them separate

by the same amount.
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127. Isochronism of Small Vibrations.—An important consequence

o£ these laws is, that when a body receives a slight distortion

within the limits o£ its elasticity, the vibrations which ensue when

the constraint is removed are isochronous. This follows from § 111,

inasmuch as the accelerations are proportional to the forces, and are

therefore proportional at each instant to the deformation at that

instant.

128. Stress, Strain, and Coefficients of Elasticity.—A body which,

like indian-rubber, can be subjected to large deformations without

receiving a permanent set, is said to have wide limits of elasticity.

A body which, like steel, opposes great resistance to deformation,

is said to have large coefficients of elasticity.

Any change in the shape or size of a body produced by the appli-

cation of force to the body is called a strain; and an action of force

tending to produce a strain is called a stress.

When a wire of cross-section A is stretched with a force F, the

longitudinal stress is -r; this being the intensity of force per unit

area with which the two portions of the wire separated by any

cross-section are pulling each other. If the length of the wire when

unstressed is L and when stressed h-j-l, the longitudinal strain is

j^. A stress is always expressed in units of force per unit of area.

A strain is always expressed as the ratio of two magnitudes of the

same kind (in the above example, two lengths), and is therefore

independent of the units employed.

The quotient of a stress by the strain (of a given kind) which it

produces, is called a coeficient or modulus of elasticity. In the above

example, the quotient -^^ is called Young's modulus of elasticity.

As the wire, while it extends lengthwise, contracts laterally, there

will be another coefficient of elasticity obtained by dividing the

longitudinal stress by the lateral strain.

It is shown, in special treatises, that a solid substance may have

21 independent coefficients of elasticity; but that when the substance

is isotropic, that is, has the same properties in all directions, the

number reduces to 2.

129. Volume-elasticity.—The only coefficient of elasticity possessed

by liquids and gases is elasticity of volume. When a body of volume

V is reduced by the application of uniform normal pressure over its

whole surface to volume Y —v, the volume-strain is ^, and if this
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effect is produced by a pressure of jp units of force per unit of area,

the elasticity of volume is the quotient of the stress jp by the strain

^, or is — . This is also called the resistance to compression;

and its reciprocal^ is called the compressibility of the substance.

In dealing with gases, p must be understood as a pressure super-

added to the original pressure of the gas.

Since a strain is a mere numerical quantity, independent of units,

a coefficient of elasticity must be expressed, like a stress, in units of

force per unit of area. In the C.G.S. system, stresses and coefficients

of elasticity are expressed in dynes per square centimetre. The
following are approximate values (thus expressed) of the two co-

efficients of elasticity above defined:

—

Glass (flint),

Steel,

Iron (\VTOUght),

Iron (cast),

Copper,

Mercury,

Water,

Alcolwl,

Young's

Modulus.

60 X IQi"

210 X IQi"

190 X IQi"

130 X 1010

120 X 10^°

Elasticity of

Volume.

40x101"

180 X 101"

140 X IQi"

96 X 10'"

leOxlQi"

64 X 101"

2 X 101"

1-2 X IQi"

130. (Ersted's Piezometer.—The

compression of liquids has been

observed by means of GErsted's

piezometer, which is represented

in Fig. 49. The liquid whose

compression is to be observed is

contained in a glass vessel b,

resembling a thermometer with

a very large bulb and short tube.

The tube is open above, and a

globule of mercury at the top

of the liquid column serves as an

index. This apparatus is placed

in a very strong glass vessel a full

of water. When pressure is exerted by means of the piston Wi,

the index of mercury is seen to descend, showing a diminution of

volume of the liquid, and showing moreover that this diminution of

volume exceeds that of the containing: vessel b. It mi^ht at first

Fig. 49.—CEreted's Piezometer.
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sight appear that since this vessel is subjected to equal pressure

within and without, its volume is unchanged; but in fact, its

volume is altered to the same extent as that of a solid vessel of the

same material; for the interior shells would react with a force

precisely equivalent to that which is exerted by the contained

liquid.



CHAPTER XL

FEICTION.

131. Friction, Kinetical and Statical.—When two bodies are pressed

together in such a manner that the direction of their mutual pressure

is not normal to the surface of contact, the pressure can be resolved

into iiwo parts, one normal and the other tangential. The tangential

component is called the force of friction between the two bodies.

The friction is called Jcinetical or statical according as the bodies

are or are not sliding one upon the other.

As regards kinetical friction, experiment shows that if the normal

pressure between two given surfaces be changed, the tangential force

changes almost exactly in the same proportion; in other words, the

ratio of the force of friction to the normal pressure is nearly constant

for two given surfaces. This ratio is called the coefficient of kinetical

friction between the two surfaces, and is nearly independent of the

velocity.

132. Statical Friction. Limiting Angle.—It is obvious that the

statical friction between two given surfaces is zero when their mutual

pressure is normal, and increases with the obliquity of the pressure

if the normal component be preserved constant. The obliquity,

however, cannot increase beyond a certain limit, depending on the

nature of the bodies, and seldom amounting to so much as 45°. Be-

yond this limit sliding takes place. The limiting obliquity, that is,

the greatest angle that the mutual force can make with the normal,

is called the limiting angle of friction for the two surfaces; and

the ratio of the tangential to the normal component when the

mutual force acts at the limiting angle, is called the coefficient of

statical friction for the two surfaces. The coefficient and limiting-

angle remain nearly constant when the normal force is varied.

The coefficient of statical friction is in almost every case greater

6



82 FRICTION.

than the coefficient of kinetical friction; in other words, friction

offers more resistance to the commencement of sliding than to the

continuance of it.

A body which has small coefficients of friction with other bodies

is called slippery.

133. Coefficient= tan d. Inclined Plane.—If d be the inclination

of the mutual force P to the common normal, the tangential com-

ponent will be P sin d, the normal component P cos d, and the ratio

of the former to the latter will be tan d. Hence the coefficient of

statical friction is equal to the tangent of the limiting angle of

friction.

When a heavy body rests on an inclined plane, the mutual pressure

is vertical, and the angle Q is the same as the inclination of the

plane. Hence if an inclined plane is gradually tilted till a body

lying on it slides under the action of gravity, the inclination of the

plane at which sliding begins is the limiting angle of friction

between the body and the plane, and the tangent of this angle is the

coefficient of statical friction.

Again, if the inclination of a plane be such that the motion of a

body sliding down it under the action of gravity is neither accelerated

nor retarded, the tangent of this inclination will be the coefficient

of kinetical friction.



CHAPTEE XII.

HYDEOSTATICS.

134. Hydrodynamics.—We shall now treat of the laws of force as

applied to fluids. This branch of the general science of dynamics is

called hydrodynamics {vdo}p, water), and is divided into hydrostatics

and hydrokinetics. Our discussions will be almost entirely confined

to hydrostatics.

FLUIDS.—TRANSMISSION OF PRESSURE.

The name fluid comprehends both liquids and gases.

135. No Statical Friction in Fluids.—A fluid at rest cannot exert

any tangential force against a surface in contact with it; its pressure

at every point of such a surface is entirely normal. A slight tangen-

tial force is exerted by fluids in motion; and this fact is expressed

by saying that all fluids are more or less viscous. An imaginary

perfect fluid would be perfectly free from viscosity; its pressure

against any surface would be entirely normal, whether the fluid

were in motion or at rest.

136. Intensity of Pressure.—When pressure is uniform over an

area, the total amount of the pressure, divided by the area, is called

the intensity of the pressure. The C.G.S. unit of intensity of

pressure is a pressure of a dyne on each square centimetre of sur-

face. A rough unit of intensity frequently used is the pressure of

a pound per square inch. This unit varies with the intensity of

gravity, and has an average value of about 69,000 C.G.S. units.

Another rough unit of intensity of pressure frequently employed is

" an atmosphere "—that is to say, the average intensity of pressure

of the atmosphere at the surface of the earth. This is about

1,000,000 C.G.S. units.
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The single word " pressure " is used sometimes to denote " amount

of pressure" (which can be expressed in dynes) and sometimes

" intensity of pressure" (which can be expressed in dynes per square

centimetre). The context usually serves to show which of these

two meanings is intended.

137. Pressure the Same in all Directions.—The intensity of pressure

at any point of a fluid is the same in all directions; it is the same

whether the surface which receives the pressure faces upwards,

downwards, horizontally, or obliquely.

This equality is a direct consequence of the absence of tangential

force between two contiguous portions of a fluid.

For in order that a small triangular prism of the fluid (its ends

being right sections) may be in equilibrium, the pressures on its

three faces must balance each other. But when three forces balance

each other, they are proportional to the sides of a triangle to which

they are perpendicular;^ hence the artiounts of pressure on the

three faces are proportional to the faces, in other words the inten-

sities of these three pressures are equal. As we can take two of

the faces perpendicular to any two given directions, this proves that

the pressures in all directions at a point are of equal intensity.

138. Pressure the Same at the Same Level.

—

In a fluid at rest, the pressure is the same

at all points in the same horizontal plane.

This appears from considering the equilibrium

of a horizontal cylinder AB (Fig. 50), of small

sectional area, its ends being right sections.

The pressures on the sides are normal, and

therefore give no component in the direction

^'=- ^^- of the length ; hence the pressures on the

ends must be equal in amount ; but they act on equal areas; there-

fore their intensities are equal.

A horizontal surface in a liquid at rest may therefore be called a
" surface of equal pressure."

139. Difference of Pressure at Different Levels.—The increase of

pressure with depth, in a fluid of uniform density, can be investi-

gated as follows:—Consider the equilibrium of a vertical cylinder

mm' (Fig. 51), its ends being right sections. The pressures on its

^ This is an obvious consequence of the triangle of forces (art. 14) ; for if the sides of

a triangle are parallel to three foi'ces, we have only to turn the triangle through a right

angle, and its sides will then be perpendicular to the forces.
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Fig. 51.

sides are normal, and therefore horizontal. The only vertical forces

acting upon it are its own weight and the pressures on its ends, of

which it is to be observed that the pressure

on the upper end acts downwards and that

on the lower end upwards. The pressure on

the lower end therefore exceeds that on the

upper end by an amount equal to the weight

of the cylinder. If a be the sectional area, w
the weight of unit volume of the liquid, and

h the length of the cylinder, the volume of

the cylinder is ha, and its weight ^v]la, which

must be equal to {p—p) a if p,p' are the intensities of pressure on

the lower and upper ends respectively. We have therefore

p-p' — wh,

that is, the increase of pressure in descending through a depth h

is wh.

The principles of this and the preceding section remain appli-

cable whatever be the shape of the containing vessel, even if it be

such as to render a circuitous route necessary in passing from one

of two points compared to the other; for this route can always be

made to consist of a succession of vertical and horizontal lines, and

the preceding principles when applied to each of these lines separ-

ately, will give as the final result a difference of pressure wh for a

difference of heights h.

If d denote the density of the liquid, in grammes per cub. cm., the

weight of a cubic cm. will be gd dynes. The increase of pressure

for an increase of depth h cm. is therefore ghd dynes per sq. cm.

If there be no pressure at the surface of the liquid, this will be the

actual pressure at the deptli h.

140. Free Surface.—It follows from these principles that the free

surface of a liquid at rest—that is, the

surface in contact with the atmosphere

—must be horizontal; since all points in

this surface are at the same pressure. If

the surface were not horizontal, but were

higher at n than at n (Fig. 52), the pres-

sures at the two points m, m' vertically

beneath them in any horizontal plane

AB would be unequal, for they would be due to the weights

Fig. 52.
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Fig 53.

of unequal columns ninn, n'm, and motion would ensue from m
towards m'.

The same conclusion can be deduced from considering the equili-

brium of a particle at the surface, as M (Fig. 53). If the tangent

plane at M were not horizontal there would be a component of

gravity tending to make the particle

slide down; and this tendency would

produce motion, since there is no fric-

tion to oppose it.

141. Transmissibility of Pressure in

Fluids.—Since the difference of the

pressures at two points in a fluid can

be determined by the foregoing prin-

ciples, independently of any knowledge of the absolute intensity

of either, it follows that when increase or diminution of pres-

sure ocours at one point, an equal increase or diminution must

occur throughout the whole fluid. A fluid in a closed vessel

'perfectly transmits through its whole substance whatever pressure

lue apply to any part. The changes in amount of pressure will be

equal for all equal areas. For unequal areas they will be propor-

tional to the areas.

Thus if the two vertical tubes in Fig. 54 have sectional areas

which are as 1 to 16, a weight of 1 kilo-

gram acting on the surface of the liquid

in the smaller tube will be balanced by

16 kiloRTams actino- on the surface of the

liquid in the larger.

This principle of the perfect transmis-

sion of pressure by fluids appears to have

been first discovered and published by

Stevinus; but it was rediscovered by

Pascal a few years later, and having been

made generally known by his writings is

often called " Pascal's principle." In his

celebrated treatise on the Equilibrium of

Liquids, he says, " If a vessel full of water, closed on all sides, has

two openings, the one a hundred times as large as the other, and if

each be supplied with a piston which fits exactly, a man pushing

the small piston will exert a force which will equilibrate that of a

hundred men pushing the piston which is a hundred times as large,

16 K

Fig. 64.—Principle of the Hydraulic
Press.
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and will overcome that of ninety-nine. And whatever may be the

proportion of these openings, if the forces applied to the pistons are

to each other as the openings, they will be in equilibrium."

142. Hydraulic Press.—This mode of multiplying force remained

for a long time practically unavailable on account of the difficulty

of making the pistons water-tight. The hydraulic press was first

successfully made by Bramah, who invented the cupped leather collar

illustrated in Fig. 1G6, § 2G4. Fig. 165 shows the arrangements of

the press as a whole. Instead of pistons, plungers are employed;

that is to say, solid cylinders of metal which can be pushed down
into the liquid, or can be pushed up by the pressure of the liquid

against their bases. The volume of liquid displaced by the advance

of a plunger is evidently equal to that displaced by a piston of the

same sectional area, end the above calculations for pistons apply to

plungers as well. The plungers work through openings which are

kept practically water-tight by means of the cup-leather arrange-

ment. The cup-leather, which is shown both in plan and section

in Figf. 166, consists of a leather ring bent so as to have a semi-

circular section. It is fitted into a hollow in the interior of the

sides of the opening, so that water leaking ap along the circumfer-

ence of the plunger will fill the concavity ol the leather, and, by

pressing on it, will produce 8 packing which fits more tightly as the

pressure on the plunger increase.--.

143. Principle of Work Applicable.—In Fig. 54, when the smaller

piston advances and forces the other back, the volume of liquid

driven out of the smaller tube is equal to the sectional area multi-

plied by the distance through which the piston advances. In like

manner, the volume of liquid driven into the larger tube is equal to

its sectional area multiplied by the distance that its piston is forced

back. But these two volumes are equal, since the same volume of

liquid that leaves one tube enters the other. The distances through

which the two pistons move are therefore inversely as their sectional

areas, and hence are inversely as the amounts of pressure applied

to them. The work done in pushing forward the smaller piston is

therefore equal to the work done by the liquid in pushing back the

larger. This was remarked by Pascal, who says

—

''It is, besides, worthy of admiration that in this new machine

we find that constant rule which is met with in all the old ones

such as the lever, wheel and axle, screw, &;c., which is that the

distance is increased in proportion to the force ; for it is evident that
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144. Experiment on Upward

as one of these openings is a hundred times as large as the other, if

the man who pushes the small piston drives it forward one inch, he

will drive the large piston backward only one-hundredth part of

that length."

Pressure.—The upward pressure

exerted by a liquid against a

horizontal surface facing down-

wards can be exhibited by the

following experiment. Take a tube

open at both ends (Fig. 55), and

keeping the lower end covered

with a piece of card, plunge it into

water. The liquid will press the

card against the bottom of the

tube with a force which increases

as it is plunged deeper. If water

be now poured into the tube, the

card will remain in its place as

long as the level of the liquid is

lower within the tube than with-

out; but at the moment when

equality of levels is attained it

will become detached.

145. Liquids in Superposition.—When one liquid rests on the top

of another of different density, the foregoing principles lead to the

result that the surface of demarcation must be horizontal. For the

free surface of the upper liquid must, as we have seen, be horizontal.

If now we take two small equal areas n and n' (Fig. 56) in a

horizontal layer of the lower liquid, they must be subjected to

equal pressures. But these pressures are

measured by the weights of the liquid

cylinders nrs, n'tl; and these latter cannot

be equal unless the points r and t at the

junction of the two liquids are at the same

level. All points in the surface of demarca-

tion are therefore in the same horizontal

plane.

The same reasoning can be extended downwards to any number of

liquids of unequal densities, which rest one upon another, and shows

that all the surfaces of demarcation between them must be horizontal.

Fig. 55.—Upward Pressure.
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Fig. 57.

Filial of the Four Elements.

An experiment in illustration of this result is represented in Fig.

57. Mercury, water, and oil are poured into a glass jar. The
mercury, being the heaviest, goes to

the bottom; the oil, being the lightest,

floats at the top; and the surfaces of

contact of the liquids are seen to be

horizontal.

Even when liquids are employed which

gradually mix with one another, as

water and alcohol, or fresh water and

salt water, so that there is no definite

surface of demarcation, but a gradual

increase of density with depth, it still

remains true that the density at all

points in a horizontal plane is the same.

146. Two Liquids in Bent Tube.

—

If we pour mercury into a bent tube

open at both ends (Fig. 58), and then pour water into one of

the arms, the heights of the two liquids above the surface of junction

will be very unequal,

as shown in the figure.

The general rule for the

equilibrium of any two

liquids in these circum-

stances is that their

heights above the surface

of junction must he in-

versely as their densities,

since they correspond to

equal pressures.

147. Experiment of

Pascal's Vases.—Since __
the amount of pressure ^m-

on a horizontal area A ^g
at the depth ^ in a liquid ^^.,:_-^

is whA., where w denotes

the weight of unit volume

of the liquid, it follows

that the pressure on the bottom of a vessel containing liquid is not

affected by the breadth or narrowness of the upper part of the

Fig. 58.—EcLitilibrium of Two F.uids in Coiuimmicatiiig
Vessels.
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vessel, provided the height of the free surface of the liquid be given,

Pascal verified this fact by an experiment which is frequently ex-

hibited in courses of physics. The apparatus employed (Fig, 59) is

a tripod supporting a ring, into which can be screwed three vessels

of different shapes, one widened upwards, another cylindrical, and

the third tapering upwards. Beneath the ring is a movable disc

Fig. 59.—Experiment of Pascal's Vases,

supported by a string attached to one of the scales of a balance.

Weights are placed in the other scale in order to keep the disc

pressed against the ring. Let the cylindrical vase be mounted on

the tripod, and filled up with water to such a level that the pressure

is just suflicient to detach the disc from the ring. An indicator,

shown in the fiffure, is used to mark the level at which this takes

place. Let the experiment be now repeated with the two other

vases, and the disc will be detached when the water has reached the

same level as before.

In the case of the cylindrical vessel, the pressure on the bottom

is evidently equal to the weight of the liquid. Hence in all three
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Fig. 60.—Total Pressure.

cases the pressure on the bottom of the vessel is equal to the weight

of a cylindrical column of the liquid, having the bottom as its base,

and ha\'ing the same height as the liquid in the vessel.

148. Resultant Pressure on Vessel.—The pressure exerted by the

bottom of the vessel upon the stand on which it rests, consists of the

weight of the vessel itself, together with the resultant pressure of

the contained liquid against it. The actual pressure of the liquid

against any portion of the vessel is normal

to this portion, and if we resolve it into two

components, one vertical and the other hori-

zontal, only the vertical component need be

attended to, in computing the resultant;

for the horizontal components will always

destroy one another. At such points as

n, n (Fig. 60) the vertical component is

downwards; at s and s it is upwards; at

r and r there is no vertical component;

and at AB the whole pressure is vertical.

It can be demonstrated mathematically that

the resultant pressure is always equal to the total weight of the

contained liquid; a conclusion which can also be deduced from the

consideration that the pressure exerted by the vessel upon the stand

on which it rests must be equal to its own weight together with

that of its contents.

Some cases in which the proof above indicated becomes especially

obvious, are represented in

Fig. 61. In the cylindrical

vessel ABDC, it is evident

that the only pressure trans-

mitted to the stand is that

exerted upon the bottom,

which is equal to the weight

of the liquid. In the case

of the vessel which is wider

at the top, the stand is subjected to the weight of the liquid column

ABSK, which presses on the bottom AB, together with the columns

GHKC, RLDS, pressing on GH and BL; the sum of which weights

composes th^ total weight of liquid contained in the vessel. Finally,

in the third case, the pressure on the bottom AB, which is equal to

the weight of a liquid column ABSK, must be diminished by the

D C

H-

D tC

H

D S

GRK̂

B A B
Fig. 61.—Hydrostatic Paradox.
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upward pressures on HG and RL. These last being represented by-

liquid columns HGCK, RLSD, there is only left to be transmitted to

the stand a pressure equal to the weight of the water in the vessel.

149. Back Pressure in Discharging Vessel.—The same analysis

which shows that the resultant vertical pressure of a liquid against

the containing vessel is equal to the weight of the liquid, shows also

that the horizontal components of the pressures destroy one another.

This conclusion is in accordance with everyday experience. How-

ever susceptible a vessel may be of horizontal displacement, it is

not found to acquire any tendency to horizontal motion by being

filled with a liquid.

When a system of forces are in equilibrium, the removal of one

of them destroys the equilibrium, and causes the resultant of the

system to be a force equal and opposite to the force removed.

Accordingly if we remove an element of one side of the containing

vessel, leaving a hole through which the liquid can flow out, the

remaining pressure against this side will be insufficient to preserve

equilibrium, and there will be an excess of pressure in the opposite

direction.

This conclusion can be directly verified by the experiment repre-

sented in Fig. 62. A tall floating

vessel of water is fitted with a hori-

zontal discharge-pipe on one side near

its base. The vessel is to be filled

with water, and the discharge-pipe

opened while the vessel is at rest. As

the water flows out, the vessel will be

observed to acquire a velocity, at first

very slow, but continually increasing,

in the opposite direction to that of

the issuing stream.

This experiment may also be re-

garded as an illustration of the law

of action and reaction, which asserts

that momentum cannot be imparted

to any body without equal and opposite momentum being imparted

to some other body. The water in escaping from the vessel

acquires horizontal momentum in one direction, and the vessel with

its remaining contents acquires horizontal momentum in the opposite

direction.

HHL

J--

Fig. 62. — Backward Jlovement of
Discharging Vessel.
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The movements of the vessel in this experiment are slow. More
marked effects o£ the same kind can be obtained by means of the

hydraulic tourn-

iquet ( Fig. 63 ),

which when made
on a larger scale

is called Barker's

mill. It consists of

a vessel of water

free to rotate

about a vertical

axis, and having

at its lower end

bent armsthrough

which the water

is discharged hori-

zontally, the
direction of dis-

charge being
nearly at right

angles to a line

joining the dis-

charoino- orifice to

the axis. The unbalanced pressures at the bends of the tube,

opposite to the openings, cause the apparatus to revolve in the

opposite direction to the issuing liquid.

150. Total and Resultant Pressures. Centre of Pressure.—The

intensity of pressure on an area which is not horizontal is greatest

on those parts which are deepest, and the average intensity can be

shown to be equal to the actual intensity at the centre of gravity

of the area. Hence if A denote the area, h the depth of its centre

of gravity, and w the weight of unit volume of the liquid, the total

pressure will be rv Ah. Strictly speaking, this is the pressure due

to the weight of the liquid, the transmitted atmospheric pressure

being left out of account.

In attaching numerical values to w, A, and Ji, the same unit of

length must be used throughout. For example, if h be expressed

in feet, A must be expressed in square feet, and w must stand for

the weight of a cubic foot of the liquid.

When we employ the centimetre as the unit of length, the value

Fig. 63.—Hydraulic Tourniquet.
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of w will be sensibly 1 gramme if the liquid be water, so that the

amount of pressure in grammes will be simply the product of the

depth of the centre of gravity in centimetres by the area in square

centimetres. For any other liquid, the pressure will be found by

multiplying this product by the specific gravity of the liquid.

These rules for computing total pressure hold for areas of all

forms, whether plane or curved; but the investigation of the total

pressure on an area which is not plane is a mere mathematical

exercise of no practical importance; for as the elementary pressures

in this case are not parallel, their sum (which is the total pressure)

is not the same thing as their resultant.

For a plane area, in whatever position, ^the elementary pressures,

being everywhere normal to its plane, are parallel and give a resul-

tant equal to their sum; and it is often a matter of interest to

determine that point in the area through which the resultant passes.

This point is called the Centre of Pressure. It is not coincident

with the centre of gravity of the area unless the pressure be of

equal intensity over the whole area. When the area is not hori-

zontal, the pressure is most intense at those parts of it which are

deepest, and the centre of pressure is accordingly lower down than

the centre of gravity. For a horizontal area the two centres are

coincident, and they are also sensibly coincident for any plane area

whose dimensions are very small in comparison with its depth in

the liquid, for the pressure over such an area is sensibly uniform.

151. Construction for Centre of Pressure.—If at every point of a

plane area immersed in a liquid, a normal be drawn, equal to the

depth of the point, the normals will represent the intensity of

pressure at the respective points, and the volume of the solid con-

stituted by all the normals will represent the total pressure. That

normal which passes through the centre

^^^^^_^ of gravity of this solid will be the line

= of action of the resultant, and will there-

= fore pass through the centre of pressure.

— Thus, if RB (Fig. 64) be a rectangular—
Ei^ surface (which we may suppose to be

—^r the surface of a flood-gate or of the side

of a dam), its lower side B beino' at the
Fig. 64.—Centre of Pressure.

.

'^
.

bottom of the water and its upper side

R at the top, the pressure is zero at E, and goes on increasing uni-

formly to B. The normals B6, T)d, Wi, 12, equal to the depths of a
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series of points in the line BR will have their extremities h, d, h, I,

in one straight line. To find the centre of pressure, we mnst find

the centre of gravity of the triangle RB6 and draw a normal through

it. As the centre of gTavity of a triangle is at one-third of its

height, the centre of pressure will be at one-third of the height of

BR. It will lie on the line joining the middle points of the upper

and lower sides of the rectangle, and will be at one-third of the

leno-th of this line from its lower end.

The total pressure will be equal to the weight of a quantity of

the liquid whose volume is equal to that of the triangular prism

constituted by the aggregate of the normals, of which prism the

triano-le RB6 is a rio-ht section. It is not difiicult to show that the

volume of this prism is equal to the product of the area of the

rectangle by the depth of the centre of gravity of the rectangle, in

accordance with the rule above given.

152. Whirling Vessel. D'Alembert's Principle.—If an open vessel

of liquid is rapidly rotated round a vertical axis, the surface of the

liquid assumes a concave form, as represented in
;

Fiff. 65, where the dotted line is the axis of rota- i

tion. When the rotation has been going on at a

uniform rate for a sufficient time, the liquid mass

rotates bodily as if its particles were rigidly

connected together, and when this state of things

has been attained the form of the surface is that

of a paraboloid of revolution, so that the section

represented in the figure is a parabola.

We have seen in § 101 that a particle moving

uniformly in a circle is acted on by a force directed

towards the centre. In the present case, therefore,

there must be a force acting upon each particle of

the liquid urging it towards the axis. This force

is supplied by the pressure of the liquid, which

follows the usual law of increase with depth /or all

points in the same vertical. If we draw a horizon-

tal plane in the liquid, the pressure at each point of

it is that due to the height of the point of the surface vertically over

it. The pressure is therefore least at the point where the plane is cut

by the axis, and increases as we recede from this centre. Consequently

each particle of liquid receives unequal pressures on two opposite

sides, being more strongly pressed towards the axis than from it.

Fig. 65. -Eotating Vessel
of Liquid.
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Another mode o£ discussing the case, is to treat it as one of

statical equilibrium under the joint action of gravity and a fictitious

force called centrifugal force, the latter force being, for each par-

ticle, equal and opposite to that which would produce the actual

acceleration of the particle. This so-called centrifugal force is

therefore to be regarded as a force directed radially outwards from

the. axis ; and by compounding the centrifugal force of each particle

with its weight we shall obtain what we are to treat as the resul-

tant force on that particle. The form of the surface will then be

determined by the condition that at every 'point of the surface the

normal must coincide with this resultant force; just as in a liquid

at rest, the normals must coincide with the direction of gravity.

The plan here adopted of introducing fictitious forces equal and

opposite to those which if directly applied to each particle of a

system would produce the actual accelerations, and then applying

the conditions of statical equilibrium, is one of very frequent appli-

cation, and will always lead to correct results. This principle was

first introduced, or at least systematically expounded, by D'Alem-

bert, and is known as D'Alembert's Principle.



CHAPTEE XIII.

PEINCIPLE OF ARCHIMEDES.

153. Pressure of Liquids on Bodies Immersed.—"When a body is

immersed in a liquid, the different points of its surface are sub-

jected to pressures which obey the rules laid down in the preceding

chapter. As these pressures increase with the depth, those which

tend to raise the body exceed those which tend to sink it, so that

the resultant effect is a force in the direction opposite to that of

gravity.

By resolving the pressure on each element into horizonta] and
vertical components, it can be shown that this resultant upward
force is exactly equal to the weight of the liquid displaced by the

body.

The reasoning is particularly simple in the case of a right cylinder

(Fig. 66) plunged vertically in a liquid. It is evident, in the

first place, that if we consider any point on the

sides of the cylinder, the normal pressure on

that point is horizontal and is destroyed by the

equal and contrary pressure at the point dia-

metrically opposite; hence, the horizontal pres-

sures destroy each other. As regards the

vertical pressures on the ends, one of them,

that on the upper end AB, is in a downward
direction, and equal to the weight of the liquid

column ABNN; the other, that on the lower end CD, is in an

upward direction, and equal to the weight of the liquid column
CNND; this latter pressure exceeds the former by the weight of the

liquid cylinder ABDO, so that the resultant effect of the pressure

is to raise the body with a force equal to the weight of the liquid

displaced.

Fig. 66.— Piinciplo of
Archill] edes.
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By a synthetic process of reasoning, we may, without having

recourse to the analysis of the different pressures, show that this

conclusion is perfectly general. Suppose we have a liquid mass in

equilibrium, and that we consider specially the portion M (Fig. 67);

this portion is likewise in equilibrium. If we
suppose it to become solid, without any change

in its weight or volume, equilibrium will still

subsist. Now this is a heavy mass, and as it

does not fall, we must conclude that the effect

of the pressures on its surface is to produce

a resultant upward pressure exactly equal to

Fig. 67.—Principle of ifcs Weight, and acting in a line which passes
Aichiinedes. . •

,

t n
through its centre oi gravity, it we now

suppose M replaced by a body exactly occupying its place, the

exterior pressures will remain the same, and their resultant eflect

will therefore be the same.

The name centre of buoyancy is given to the centre of gravity of

the liquid displaced,—that is, if the liquid be uniform, to the centre

of gravity of the space occupied by the immersed body; and the

above reasoning shows that the resultant pressure acts vertically

upwards in a line which passes through this point. The results of

the above explanations may thus be included in the following pro-

position: Every body immersed in a liquid is subjected to a resul-

tant pressure equal to the weight of the liquid displaced, and acting

vertically upwards through the centre of buoyancy.

This proposition constitutes the celebrated principle of Archimedes.

The first part of it is often enunciated in the following form : Every

body immersed in a liquid loses a portion of its weight equal to the

tueight of the liquid displaced; for when a body is immersed in a

liquid, the force required to sustain it will evidently be diminished

by a quantity equal to the upward pressure.

154. Experimental Demonstration of the Principle of Archimedes.—
The following experimental demonstration of the principle of Archi-

medes is commonly exhibited in courses of physics :

—

From one of the scales of a hydrostatic balance (Fig. 68) is sus-

pended a hollow cylinder of brass, and below this a solid cylinder,

whose volume ia equal to the interior volume of the hollow cylinder;

these are balanced by weights in the other scale. A vessel of water

is then placed below the cylinders, in such a position that the lower

cylinder shall be i)aimersed in it. The equilibrium is immediately
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destroyed, and the upward pres.sure of the water causes the scale

with the weights to descend. I£ we now pour water into the hollow

cylinder, equilibrium will gradually be re-established; and the beam

Fig. CS.—Experimental Verification of Principle of Archimedes.

will be observed to resume its horizontal position when the hollow

cylinder is full of water, the other cylinder being at the same time

completely immersed. The upward pressure upon this latter is thus

equal to the weight of the water added, that is, to the weight of the

liquid displaced.

155. Body Immersed in a Liquid.—It follows from the principle of

Archimedes that when a body is immersed in a liquid, it is subjected

to two forces: one equal to its weight and applied at its centre of

gravity, tending to make the body descend; the other equal to the

weight of the displaced liquid, applied at the centre of buoyancy, and

tending to make it rise. There are thus three different cases to be

considered

:

(1.) The weight of the body may exceed the weight of the liquid

displaced, or, in other words, the mean density of the body may be
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greater than that of the liquid; in this case, the body sinks in the

liquid, as, for instance, a piece of lead dropped into water.

(2.) The weight of the body may be less than that of the liquid

displaced; in this case the body will not remain submerged unless

forcibly held down, but will rise partly out of the liquid, until the

weight of the liquid displaced is equal to its own weight. This is

what happens, for instance, if we immerse a piece of cork in water

and leave it to itself.

(3.) The weight of the body may be equal to the weight of the

liquid displaced; in this case, the two opposite forces being equal,

the body takes a suitable position and remains in equilibrium.

These three cases are exemplified in the three following experi-

ments (Fig. 69):

—

(1.) An egg is placed in a vessel of water; it sinks to the bottom

llililililillllllllilllllliiiiilllllillllllllllilil!

Fig. 09.—Egg Plunged in I'resh and Salt Water.

of the vessel, its mean density being a little gTeater than that of the

liquid.

(2.) Instead of fresh water, salt water is employed; the egg floats

at the surface of the liquid, which is a little denser than it.

(3.) Fresh water is carefully poured on the salt water; a mixture

of the two liquids takes place where they are in contact; and if the

egg is put in the upper part, it will be seen to descend, and, after a few

oscillations, remain at rest at such a depth that it displaces its own
weight of the liquid. In speaking of the liquid displaced in this

case, we must imagine each horizontal layer of liquid surrounding

the egg to be produced through the space which the egg occupies;

and by the centre of buoyancy we must understand the centre of
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gravity of the portion of liquid which would thus take the place

of the egg. We may remark that, in this position the egg is in

stable equilibrium; for, if it rises, the upward pressure diminish-

ing, its weight tends to make it descend again; if, on the contrary,

it sinks, the pressure increases and tends to make it reascend.

156. Cartesian Diver.—The experiment of the Cartesian diver,

which is described in old treatises on physics, shows each of the

different cases that can present themselves when a body is immersed.

The diver (Fig. 70) consists of a hollow ball, at the bottom of which

is a small opening

O; a little porcelain

figure is attached to

the ball, and the

whole floats upon

water contained in

a glass vessel, the

mouth of which is

closed by a strip of

caoutchouc or a blad-

der. If we press

with the hand on

the bladder, the air

is compressed, and

the pressure, trans-

mitted through the

diflferent horizontal

layers, condenses the

air in the ball, and

causes the entrance

of a portion of the

liquid by the open-

ing O; the 'floating

body becomes heavier, and in consequence of this increase of weight

the diver descends. When we cease to press upon the bladder, the

pressure becomes what it was before, some water flows out and the

diver ascends. It must be observed, however, that as the diver

continues to descend, more and more water enters the ball, in conse-

quence of the increase of pressure, so that if the depth of the water

exceeded a certain limit, the diver would not be able to rise again

from the bottom.

Fig. 70.— Cartesian Diver.
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If we suppose that at a certain moment the weight of the diver

becomes exactly equal to the weight of an equal volume of the liquid,

there will be equilibrium ; but, unlike the equilibrium in the experi-

ment (3) of last section, this will evidently be unstable, for a slight

movement either upwards or downwards will alter the resultant

force so as to produce further movement in the same direction. As
a consequence of this instability, if the diver is sent down below a

certain depth he will not be able to rise again.

157. Relative Positions of the Centre of Gravity and Centre of

Buoyancy.—In order that a floating body either wholly or partially

immersed in a liquid, may be in equilibrium, it is necessary that its

weight be equal to the weight of the liquid displaced.

This condition is however not sufficient; we require, in addition,

that the action of the upward pressure should be exactly opposite

to that of the weight; that is, that the centre of gravity and the

centre of buoyancy be in the same vertical line; for if this were not

the case, the two contrary forces would compose a couple, the effect

of which would evidently be to cause the body to turn.

In the case of a body completely immersed, it is further necessary

for stable equilibrium that the centre of gravity should he helow the

centre of buoyancy; in fact we see, by Fig. 71, that in any other

Fig. 71. Pig. 72.

Relative Positions of Centre of Gravity and Centre of Pressure.

position than that of equilibrium, the effect of the two forces

applied at the two points G and O would be to turn the body, so as

to bring the centre of gravity lower, relatively to the centre of

buoyancy. But this is not the case when the body is only partially

immersed, as most frequently happens. In this case it may indeed

happen that, with stable equilibrium, the centre of gravity is below

the centre of pressure; but this is not necessary, and in the majority

of instances is not the case. Let Fig. 72 represent the lower part

of a floating body—a boat, for instance. The centre of pressure

is at 0, the centre of gravity at G, considerably above; if the body
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is displaced, and takes the position shown in the figure, it will be

seen that the effect of the two forces acting at O and at G is to

restore the body to its former position. This difference from what

takes place when the body is completely immersed, depends upon

the fact that, in the case of the floating body, the figure of the

liquid displaced changes with the position of the body, and the

centre of buoyancy moves towards the side on which the body is

more deeply immersed. It will depend upon the form of the body

whether this lateral movement of the centre of buoyancy is sufficient

to carry it beyond the vertical through the centre of gravity. The
two equal forces which act on the body will evidently turn it to or

from the original position of equilibrium, according as the new centre

of buoyancy lies beyond or falls short of this vertical.-'-

158. Advantage of Lowering the Centre of Gravity.—Although

stable equilibrium may subsist with the centre of gravity above the

centre of buoyancy, yet for a body of given external form the

stability is always increased by lowering the centre of gravity; as

we thus lengthen the arm of the couple which tends to right the

body when displaced. It is on this

principle that the use of ballast

depends.

159. Phenomena in Apparent

Contradiction to the Principle of

Archimedes,—The principle of £
Archimedes seems at first sight to W:
be contradicted by some well- ^i

known facts. Thus, for instance, if

smaU needles are placed carefully
pj„ ,3 _g^^^i ^.^^,„^^ p,^^,,;„„ „„ ^.^^^^

on the surface of water, they will

remain there in equilibrium (Fig. 73). It is on a similar principle

* If a vertical through the ne-w centre of buoyancy he drawn upwards to meet that

line in the body which in the position of equilibrium was a vertical through the centre

of gravity, the point of intersection is called the mctacentre. Evidently when the forces

tend to restore the body to the position of equilibrium, the metacentre is above the centre

of gravity; when they tend to increase the displacement, it is below. In ships the dis-

tance between these two points is usually nearly the same for all amounts of heeling, and

this distance is a measure of the stability of the ship.

We have defined the metacentre as the intersection of two lines. When these lines

lie in different planes, and do not intersect each other, there is no metacentre. This

indeed is the case for most of the displacements to which a floating body of irregular

shape can be subjected. There are in general only two directions of heeling to which

metacentres correspond, and these two. directions are at right angles to each other.
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that several insects walk on water (Fig. 74), and that a great

number of bodies of various natures, provided they be very minute,

can, if we may so say, be placed

on the surface of a liquid with-

out penetrating into its interior.

These curious facts depend on the

circumstance that the small bodies

Fig. 74. -Insect Walking on Water. in qucstiou are uot wcttcd by the

liquid, and hence, in virtue of

principles which will be explained in connection with capillarity

(Chap, xvi.), depressions are formed around them on the liquid

surface, as represented in Fig. 75. The curvature of the liquid

surface in the neighbourhood of the body is very distinctly shown

by observing the shadow cast by the floating body, when it is

illumined by the sun; it is seen to be bordered by luminous bands,

which are owing to the refraction of the rays of light in the portion

of the liquid bounded by a curved surface.

The existence of the depression about the floating body enables

us to bring the condition of equilibrium in this

J,

M ^ special case under the general enunciation of the

^^^=|^ss^^=e:e^e^ principle of Archimedes. Let M (Fig. 75) be

-^s^|^=5|^EB:j the body, CD the region of the depression, and
"_j=^'^^-— AB the corresponding portion of any horizontal

Fig.' 75. layer; since the pressure at each point of AB
must be the same as in other parts of the same

horizontal layer, the total weight above AB is the same as if M
did not exist and the cavity were filled with the liquid itself.

We may thus say in this case also that the weight of the floating

body is equal to the weight of the liquid displaced, understanding

by these words the liquid which Avould occupy the whole of the

depression due to the presence of the body.
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DENSITY AND ITS DETERMINATION.

160. Definitions.—By the absolute density of a substance is meant

the mass of unit volume of it. By the relative density is meant the

ratio of its absolute density to that of some standard substance, or,

what amounts to the same thing, the ratio of the mass of any volume

of the substance in question to the mass of an equal volume of the

standard substance. Since equal masses gravitate equally, the com-

parison of masses can be effected by weighing, and the relative den-

sity of a substance is the ratio of its weight to that of an equal

volume of the standard substance. Water at a specified tempera-

ture and under atmospheric pressure is usually taken as the standard

substance, and the density of a substance relative to water is usually

called the specific gravity of the substance.

Let V denote the volume of a substance, M its mass, and D its

absolute density; then by definition, we have M=YD.
If s denote the specific gravity of a substance, and d the absolute

density of water in the standard condition, then 'D=^sd and Mrr
Nsd. .

When masses are expressed in lbs. and volumes in cubic feet, the

value of d is about 62*4, since a cubic foot of cold water weighs

about 62-4 Ibs.^

In the C.G.S. system, the value of d is sensibly unity, since a

cubic centimetre of water, at a temperature which is nearly that of

the maximum density of water, weighs exactly a gramme.^

The gramme is defined, not by reference to water, but by a

standard kilogramme of platinum, which is preserved in Paris, and

* In round numbers, a cubic foot of water weighs 1000 oz., which is 62'5 lbs.

' According to the best determination yet published, the mass of a cubic centimetre of

pure water at 4° is 1-000013, at 3° is 1-000004, and at 2° is -999982.
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of which several very carefully made copies are preserved in other

places. In the above statements (as in all very accurate statements

of weights), the weighings are supposed to be made in vacuo; for

the masses of two bodies are not accurately proportional to their

apparent gravitations in air, unless the two bodies happen to have

the same density.

161. Ambiguity of the word " Weight."—Properly speaking, " the

weight of a body " means the force with which the body gravitates

towards the earth. This force, as we have seen, differs slightly

according to the place of observation. If m denote the mass of the

body, and g the intensity of gravity at the place, the weight of the

body is m^. When the body is carried from one place to another

without gain or loss of material, m will remain constant and g will

vary; hence the weight mig will vary, and in the same ratio as g.

But the employment of gravitation units of force instead of

absolute units, obscures this fact. The unit of measurement varies

in the same ratio as the thing to be measured, and hence the

numerical value remains unaltered. A body weighs the same

number of pounds or grammes at one place as at another, because

the weights of the pound and gramme are themselves proportional

to g. Expressed in absolute units, the weight of unit mass is g, and

the weight of a mass m is mg. The latter is m times the former;

hence when the weight of unit mass is employed as the unit of

weight, the same number m which denotes the mass of a body also

denotes its weight. What are usually called standard weights

—

that is, standard pieces of metal used for weighing—are really

standards of mass; and when the result of a weighing is stated in

terms of these standards, (as it usually is,) the " weight," as thus

stated, is really the mass of the body weighed. The standard
" weights " which we use in our balances are really standard masses.

In discussions relating to density, weights are most conveniently

expressed in gravitation measure, and hence the words mass and

weight can be used almost indiscriminately.

162. Determination of Density from Weight and Volume.—The

absolute density of a substance can be directly determined by
weighing a measured volume of it. Thus if v cubic centimetres of

it weigh m grammes, its density (in grammes per cubic centimetre)

is —. This method can be easily applied to solids of regular

geometrical forms; since their volumes can be computed from their
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linear measurements. It can also be applied to liquids, by employ-

ing a vessel of known content. The bottle usually employed for

this purpose is a bottle of thin glass fitted with a perforated stopper,

so that it can be filled and stoppered without leaving a space for

air. The difierence between its weights when full and empty is the

weight of the liquid which fills it; and the quotient of this by the

volume occupied (which can be determined once for all by weighing

the bottle when filled with water) is the density of the liquid.

The advantage of employing a perforated stopper is that it enables

us to ensure constancy of volume. If a wide-mouthed flask were

employed, without a stopper, it would be difficult to pronounce

when the flask was exactly full. This source of inaccuracy would

be diminished by making the mouth narrower: but when it is very

narrow, the filling and emptying of the flask are difficult, and there

is danger of forcing in bubbles of air with the liquid. When a per-

forated stopper is employed, the flask is first filled, then the stopper

is inserted and some of the liquid is thus forced up through the

perforation, overflowing at the top. When the stopper has been

pushed home, all the liquid outside is carefully wiped off", and the

liquid which remains is as much as just fills the stoppered flask

including the perforation in the stopper.

In accurate work, the temperature must be observed, and due

allowance made for its eflect uj)on volume.

163. Specific Gravity Flask for Solids.—The volume and density of

a solid body of irregular shape, or consisting of a quantity of small

pieces, can be de-

termined by put-

ting it into such

a bottle (Fig. 76),

and weighing
the water which

it displaces. The
most convenient

way of doing

this is to observe

(1) the weight of

the solid; (2) the

weight of the

bottle full of water; (3) the weight of the bottle when it contains

the solid, together with as much water as will fill it up. If the

6.— Specific Gravity Flask for Solids.
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third of these results be subtracted from the sum of the first two,

the remainder will be the weight of the water displaced; which,

when expressed in grammes, is the same as the volume of the body

expressed in cubic centimetres. The weight of the body, divided by

this remainder, is the density of the body.

164. Method by Weighing in Water.—The methods of determining

density which we are now about to describe depend upon the prin-

ciple of Archimedes.

One of the commonest ways of determining the density of a solid

body is to weigh it first in air and then in water (Fig. 77) the

Fig. 77.— Specific Gravity of Solids. Fig. 78.—Specific Gravity of Liq\iids.

counterpoising weights being in air. Since the loss of weight due

to its immersion in water is equal to the weight of the same volume

of water, we have only to divide the weight in air by this loss of

weight. We shall thus obtain the relative density of the body

as compared with water—in other words, the specific gravity of the

body.
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Thus, from the observations

Weight in air, 125 gm.

Weight in water, 100 „

Loss of weight, 25 „

we deduce

— = 5 = density.

A very fine and strong thread or fibre should be employed for sus-

pending the body, so that the volume of liquid displaced by this

thread may be as small as possible.

165. Weighing in Water, with a Sinker.—If the body is lighter

than water, we may employ a sinker—that is, a piece of some heavy

material attached to it, and heavy enough to make it sink. It is

not necessary to know the weight of the sinker in air, but we must

observe its weight in water. Call this s. Let w be the weight of

the body in air, and w the weight of the body and sinker together

in water. Then w will be less than s. The body has an apparent

upward gravitation in water equal to s—^v', showing that the

resultant pressure upon it exceeds its weight by this amount.

Hence the weight of the liquid displaced is w-\-s— w', and the specific

gravity of the body is ^^J,^, -

If any other liquid than water be employed in the methods

described in this and the preceding section, the result obtained will

be the relative density as compared with that liquid. The result

must therefore be multiplied by the density of the liquid, in order

to obtain the absolute density.

166, Density of Liquid Inferred from Loss of Weight.—The densities

of liquids are often determined by observing the loss of weight of a

solid immersed in them, and dividing by the known volume of the

solid or by its loss of weight in water.

Thas, from the observations

Weight in air, 200 r/m

Weight in liquid, 120 „

Weight in water, 110 „

we deduce
Loss in liquid, 80. Loss in water, 90.

Density of liquid, — — -,

A glass ball (sometimes weighted with mercury, as in Fig. 78) is

the solid most frequently employed for such observations.
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167. Measurement of Volumes of Solids by Loss of Weight.—The

volume of a solid body, especially if of irregular shape, can usually

be determined with more accuracy by weighing it in a liquid than by

any other method. If it weigh tu grammes in air,, and w' grammes

in water, its volume is iv— iu cubic centimetres, since it displaces

w—w' grammes of water. The mean diameter of a wire can be

very accurately determined by an observation of this kind for

volume, combined with a direct measurement of length. The

volume divided by the length will be the mean sectional area,

which is equal to ir/-, where r is the radius.

168. Hydrometers.—The name hydrometer is given to a class of

instruments used for determining the densities of liquids by observ-

ing either the depths to which they sink in the liquids or the

Fig. 79.—Nicholson's Hydrometer.

weights required to be attached to them to make them sink to a

'given depth. According as they are to be used in the latter or the

former of these two ways, they are called hydrometers of constant

or of variable immersion. The name areometer (from apaiog, rare)

is used as synonymous with hydrometer, being probably borrowed

from the French name of these instruments, areometre. The hydro-
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meters of constant immersion most generally known are those of

Nicholson and Fahrenheit.

169. Nicholson's Hydrometer.—This instrument, which is repre-

sented in Fig. 79, consists of a hollow cylinder of metal with conical

ends, terminated above by a very thin rod bearing a small dish, and

carrying at its lower end a kind of basket. This latter is of such

weio-ht that when the instrument is immersed in water a weight of

100 grammes must be placed in the dish above in order to sink the

apparatus as far as a certain mark on the rod. By the principle of

Archimedes, the weight of the instrument, together with the 100

grammes which it carries, is equal to the weight of the water dis-

placed. Now, let the instrument be placed in another liquid, and

the weights in the dish above be altered until they are just sufficient

to make the instrument sink to the mark on the rod. If the weights

in the dish be called w, and the weight of the instrument itself W,

the weight of liquid displaced is now W -{- w, whereas the weight

of the same volume of water was W -f 100; hence the specific

gravity of the liquid is ^^^^q-

This instrument can also be used either for weighing small solid

bodies or for finding their specific gravities. To find the weight of

a body (which we shall suppose to weigh less than 100 grammes), it

must be placed in the dish at the top, together with weights just

sufficient to make the instrument sink in water as far as the mark.

Obviously these weights are the difference between the weight of

the body and 100 grammes.

To find the specific gTavity of a solid, we first ascertain its

weight by the method just described; we then transfer it from

the dish above to the basket below, so that it shall be under

water during the observation, and observe what additional weights

must now be placed in the dish. These additional weights

represent the weight of the water displaced by the solid; and

the weight of the solid itself divided by this weight is the specific

gTavity required.

170. rahrenheit's Hydrometer.—This instrument, which is repre-

sented in Fig. 80, is generally constructed of glass, and differs from

Nicholson's in having at its lower extremity a ball weighted with

mercury instead of the basket. It resembles it in having a dish at

the top, in which weights are to be placed sufficient to sink the

instrument to a definite mark on the stem.
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Hydrometers of constant immersion, though still described in

text-books, have quite gone out of use for practical work.

171. Hydrometers of Variable Immersion.—These instruments are

usually of the forms represented at A, B, C, Fig. 81. The lower end

is weighted with mercury in order to make the instrument sink to

a convenient depth and preserve an upright position. The stem is

cylindrical, and is graduated, the divisions being frequently marked

Fig. SO.^^Fahrenheit's Hydrometer. Fig. SI.—Forms of Hydrometers.

upon a piece of paper inclosed within the stem, which must in this

case be of glass. It is evident that the instrument will sink the

deeper the less is the specific gravity of the liquid, since the weight

of the liquid displaced must be equal to that of the instrument.

Hence if any uniform system of graduation be adopted, so that all

the instruments give the same readings in liquids of the same densi-

ties, the density of a liquid can be obtained by a mere immersion

of the hydrometer—an operation not indeed very precise, but very

easy of execution. These instruments have thus come into general

use for commercial purposes and in the excise.

172. General Theory of Hydrometers of Variable Immersion,—Let

V be the volume of a hydrometer which is immersed when the in-

strument floats freely in a liquid whose density is d, then Yd repre-
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sents the weight of liquid displaced, which by the principle of Archi-

medes is the same as the weight of the hydrometer itself. If V, d'

be the corresponding values for another liquid, we have therefore

yd=-Y'd',0T:cl:d' -.-.Y' xY,

that is, the density varies inversely as the volume immersed. Let

c^i, dr,, cZ^-.-be a series of densities, and V^ V2, Vg.-.the corresponding

volumes immersed, then we have

du d-^, d,... proportional to , —

,

and Yi, V.., V3... proportional to , ,

di cZj di

Hence, if we wish the divisions to indicate equal differences of den-

sity, we must place them so that the corresponding volumes im-

mersed form a harmonical progression. This implies that the dis-

tances between the divisions must diminish as the densities increase.

The following investigation shows how the density of a liquid

may be computed from observations made with a hydrometer gradu-

ated with equal divisions. It is necessary first to know the divisions

to which the instrument sinks in two liquids of known densities.

Let these divisions be numbered n^, n.^, reckoning from the top

downwards, and let the corresponding densities be d^, d^^. Now if

we take for our unit of volume one of the equal parts on the stem,

and if we take c to denote the volume which is immersed when the

instrument sinks to the division marked zero, it is obvious that when
the instrument sinks to the wth division (reckoned downwards on

the stem from zero) the volume immersed is c— n, and if the corre-

sponding density be called d, then (c — n) d is the weight of the

hydrometer. We have therefore

/ \ 7 / \ 7 t,
' "if'^i - " <^>

(c - Ki) rtj = (c - n.>) d-i, whence c = —!—i --—^.

d-^-d-i

This value of c can be computed once for all.

Then the density D corresponding to any other division N can be

found from the equation

(c - N) D = (c - Ki) di which gives D =: ^^ ' d^.
c- N

173. Beaume's Hydrometers.—In these instruments the divisions

are equidistant. There are two distinct modes of graduation, accord-

ing as the instrument is to be used for determining densities greater

or less than that of water. In the former case the instrument is
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called a salimeter, and is so constructed that when immersed in pure

water of the temperature 12° Cent, it sinks nearly to the top of the

stem, and the point thus determined is the zero of the scale. It is

^r\ then immersed in a solution of 15 parts of salt to 85 of
'^

water, the density of which is about 1'116, and the point

to which it sinks is marked 15. The interval is divided

into 15 equal parts, and the graduation is continued to

the bottom of the stem, the length of which varies accord

ing to circumstances; it generally terminates at the

degree 66, which corresponds to sulphuric acid, whose

density is commonly the greatest that it is required

to determine. Referring to the formulge of last section,

we have here

^1 = 0, cZi = l, 71^ — 15, d^ = l'11G;

whence
15x1-116 , ,, _ 144

Fig. S2.

Baiime's Sali-

meter. •116
= 144, D =

144-N

When the instrument is intended for liquids lighter than water, it

is called an alcoholimeter. In this case the point to which it sinks

in water is near the bottom of the stem, and is

marked 10; the zero of the scale is the point to

which it sinks in a solution of 10 parts of salt to

90 of water, the density of which is about 1*085,

the divisions in this case being numbered upward

from zero.

In order to adapt the formulge of last section to

the case of graduations numbered upwards, it is

merely necessary to reverse the signs of %, no, and

N; that is we must put

n cL - riidj ^ c + Ui ,^— ~^ J >
iJ'~—

TVT "1

'

di^-di ' c + N

and as we have now -^^= 10, d-^= l, n.2= 0, ^2=1 '085

Fig. S3. Fig 84. the formulge give^
Baiimj's Alooholi-

meters. 10 ,,01^ 128

174. Twaddell's Hydrometer.—In this instrument the divisions are

^ On comparing the two formulae for D in this section with the tables in the Appendix
to Miller's Chemical Physics, I find that as regards the salimeter they agree to two places

of decimals and very nearly to three. As regards the alcoholimeter, the table in Miller

implies that c is about 136, which would make the density corresponding to the zero of

the scale about 1'074.
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placed not as in Beaume's, at equal distances, but at distances

corresponding to equal differences of density. In fact the specific

gra^aty of a liquid is found by multiplying the reading by 5, cutting

off three decimal places, and prefixing unity. Thus the degree 1

indicates specific gravity I'OOo, 2 indicates I'OIO, &c.

175. Gay-Lussac's Centesimal Alcoholimeter.—When a hydrometer

is to be used for a special purpose, it may be convenient to adopt a

mode of graduation different in principle from any that we have

described above, and adapted to give a direct indication of

the proportion in which two ingredients are mixed in the

fluid to be examined. It may indicate, for example, the

quantity of salt in sea-water, or the quantity of alcohol in a

spirit consisting of alcohol and water. Where there are

three or more ingredients of different specific gravities

the method fails. Gay-Lussac's alcoholimeter is graduated

to indicate, at the temperature of 15° Cent., the percentage

of pure alcohol in a specimen of spirit. At the top of the

stem is 100, the point to which the instrument sinks in

pure alcohol, and at the bottom is 0, to which it sinks in

water. The position of the intermediate degrees must be

determined empirically, by placing the instrument in mix- ^
tures of alcohol and water in known proportions, at the Fig ss.

temperature of 15°. The law of density, as depending on AJcohoii-

the proportion of alcohol present, is complicated by the fact

that, when alcohol is mixed with water, a diminution of volume

(accompanied by rise of temperature) takes place.

176. Specific Gravity of Mixtures.—When two or more substances

are mixed without either shrinkage or expansion (that is, when the

volume of the mixture is equal to the sum of the volumes of the

components), the density of the mixture can easily be expressed in

terms of the quantities and densities of the components.

First, let the volumes Vi, v^, Vg . . . of the components be given,

together with their densities d^, d^, d^ . . .

Then their masses (or weights) are v^d^, v<fi^, v./l^ . . .

The mass of the mixture is the sum of these masses, and its volume

is the sum of the volumes v^, V2, % . . . ; hence its density is

i\di + v-d-i + . . .

Secondly, let the weights or masses m^, trio, Wg ... of the com-

ponents be given, together with their densities d^, d^, d^ . . .
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Ml m-i ms
Then their volumes are ^', ^^ -J

The volume of the mixture is the sum of these volumes, and its mass

is mj + '?7i2 + ""^3 + • • • ;
hence its density is

wit + TO.2 + . -

m. rrio

-J+-J + • •

177. Graphical Method of Graduation.—When the points on the

stem which correspond to some five or six known densities, nearly

equidifferent, have been determined, the intermediate graduations

can be inserted with tolerable accuracy by the graphical method of

interpolation, a method which has many applications in physics

besides that which we are now considering. Suppose A and B
(Fig. 86) to represent the extreme points, and I, K, L, R intermediate

points, all of which correspond

to known densities. Erect

ordinates (that is to say, per-

pendiculars) at these points,

proportional to the respective

densities, or (which will serve

Dur purpose equally well)

erect ordinates II', KK', LL',

RR', BC proportional to the

excesses of the densities at

I, K, L, R, B above the den-

sity at A. Any scale of equal

parts can be employed for

laying off the ordinates, but it is convenient to adopt a scale which

will make the greatest ordinate BO not much greater nor much

less than the base-line AB. In the figure, the density at B is

supposed to be 1'80, the density at A being 1. The difference

of density is therefore '80, as indicated by the fig-ures 80 on the

scale of equal parts. Having erected the ordinates, we must

draw through their extremities the curve AI'K'L'R'C, making it

as free from sudden bends as possible, as it is upon the regu-

larity of this curve that the accuracy of the interpolation depends.

Then to find the point on the stem AB at which any other

density is to be marked—say 1*60, we must draw through the

60th division, on the line of equal parts, a horizontal line to

meet the curve, and, through the point thus found on the curve,

I K L 1.4 R 1.6

S6.—Graphical Method of Graduation.
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draw an ordinate. This ordinate will meet the base-line AB in the

required point, which is accordingly marked 1'6 in the figure. The
curve also affords the means of solving the converse problem, that

is, of finding the density corresponding to any given point on the

stem. At the given point in AB, which represents the stem, we
must di-aw an ordinate, and through the point where this meets the

curve we must draw a horizontal line to meet the scale of equal

parts. The point thus determined on the scale of equal parts indi-

cates the density required, or rather the excess of this density above

the density of A.



CHAPTER XY.

VESSELS IN COMMUNICATION—LEVELS.

178. Liquids tend to Find their own Level.—When a liquid is

contained in vessels communicating with each other, and is in

equilibrium, it stands at the same height in the different parts of

the system, so that the free surfaces all lie in the same horizontal

plane. This is obvious from the considerations pointed out in

§§ 138, 139, being merely a particular case of the more general law

that points of a liquid at rest which are at the same pressure are at

the same level.

In the apparatus represented in Fig. 87, the liquid is seen to stand

at the same height in

the principal vessel

and in the variously

shaped tubes com-

municating with it.

If one of these tubes is

cut off at a height less

than that of theliquid

inthe principal vessel,

and is made totermin-

i ate ina narrowmouth,

^ the liquid will be seen

to spout up nearly to

the level of that in

the principal vessel.

This tendency of liquids to find their own level is utilized for the

water-supply of towns. Water will find its way from a reservoir

through pipes of any length, provided that all parts of them are

below the level of the water in the reservoir. It is necessary how-

Fig. ST.—Vessels in Comirmiiication.
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ever to distinguish between the conditions of statical equilibrium

and the conditions of flow. If no water were allowed to escape

from the pipes in a town, their extremities might be carried to the

height of the reservoir and they would still be kept full. But in

practice there is a continual abstraction of energy, partly in the

shape of the kinetic energy of the water which issues from taps,

often with considerable velocity, and partly in the shape of work

done against friction in the pipes. When there is a continual draw-

ing off from various points of a main, the height to which the water

will rise in the houses which it supplies is least in those which are

most distant from the reservoir.

179. Water-level.—The instrument called the water-level is another

illustration of the same principle. It consists of a metal tube bh,

bent at right angles at its extremities. These carry two glass tubes

Fig. 88.—Water-leveL

aa, very narrow at the top, and of the same diameter. The tube

rests on a tripod stand, at the top of which is a joint that enables

the observer to turn the apparatus and set it in any direction. The

tube is placed in a position nearly horizontal, and water, generally

coloured a little, is poured in until it stands at about three-fourths of

the height of each of the glass tubes.

By the principle of equilibrium in vessels communicating with

each other, the surfaces of the liquid in the two branches are in the

same horizontal plane, so that if the line of the observer's sight just

grazes the two surfaces it will be horizontal.

This is the principle of the operation called levelling, the object of

which is to determine the difference of vertical height, or difference

of level, between two given points. Suppose A and B to be the two

points (Fig. 89). At each of these points is fixed a levelling-staff,
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89.—Levelling.

that is, an upright rod divided into parts of equal length, on which

slides a small square board whose centre serves as a mark for the

observer.

The level being placed at an intermediate station, the observer

directs the line of sight towards each levelling-staff, and the mark

is raised or lowered till the line of sight passes through its centre.

The marks on the two staves are in this way brought to the same

level. The staff in the rear is then carried in advance of the other^

the level is again

placed between
the two, and an-

other observation

taken. In this

way, by noting

the division of

the staff at which

the sliding mark

stands in each

case, the difference of levels of two distant stations can be deduced

from observations at a number of intermediate points.

For more accurate work, a telescope with attached s.pirit-level

(§ 181) is used, and the level-

|sa^^^feas^^^3ia ling staff has divisions upon

it which are read off through

the telescope.

180. Spirit-level.— The
spirit-level is composed of

a glass tube slightly curved,

containing a liquid, which is generally alcohol, and which fills the

whole extent of the tube, except a small space occupied by an air-

bubble. This tube is inclosed in a mounting which is firmly sup-

ported on a stand.

Suppose the tube to have been so constructed that a vertical

section of its upper surface is

an arc of a circle, and suppose

the instrument placed upon a

horizontal plane (Fig. 91).

The air-bubble will take up
a position MN at the highest part of the tube, such that the

arcs MA and NB are equal. Hence it follows that if the level

Fig. 90.— Spirit-level.
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Fig. 92.

be rev^ersed end for end, the bubble will occupy the same position

in the tube, the point N coming to M, and vice versa. This will not

be the case if AB is inclined to the horizon (Fig. 92), for then the

bubble will always stand

nearest to that end of the >L F

tube which is highest, and

will therefore change its

place in the tube when the

latter is reversed. The test,

then, of the horizontality of the line on which the spirit-level rests

is, that after this operation of reversal the bubble should remain

between the same marks on the tube. The maker marks upon

the tube two points equidistant from the centre, the distance

between them being equal to the usual length of the bubble; and

the instrument ought to be so adjusted that when the line on

which it stands is horizontal, the ends of the bubble are at these

marks.

In order that a plane surface may be horizontal, we must liave

two lines in it horizontal. This result may be attained in the

Fig. 93.—Testing the Horizontality of a Surface.

following manner:—The body whose surface is to be levelled is

made to rest on three levelling-screws which form the three vertices

of an isosceles triangle; the level is first placed parallel to the base

of the triangle, and, by means of one of the screws, the bubble is

brought between the reference-marks. The instrument is then

placed perpendicularly to its first position, and the bubble is brought

between the marks by means of the third screw; this second opera-

tion cannot disturb the result of the first, since the plane has only

been turned about a horizontal line as hino-e.

181. Telescope with Attached Level.—In order to apply the spirit-

level to land-surveying, an apparatus such as that represented in
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Fio-. 94 is employed. Upon a frame AA, movable about a vertical

axis B, are placed a spirit-level nn, and a telescope LL, in positions

parallel to each other. The

telescope is furnished at its

focus with two fine wires

crossings one another, whose

point of intersection deter-

mines the line of sight with

great precision. The appar-

atus, which is provided with

levelling-screws H, rests on a

tripod stand, and the observer

is able, by turning it about

its axis, to command the dif-

ferent points of the horizon. By a process of adjustment which

need not here be described, it is known that when the bubble

is between the marks the line of sight is horizontal. By furnishing

the instrument with a graduated horizontal circle P, we may obtain

the azimuths of the points observed, and thus map out contour lines.

Divisions are sometimes placed on each side of the reference-

marks of the bubble, for measuring small deviations from horizon-

tality. It is, in fact, easy to see, by reference to Fig. 91, that by

tilting the level through any small angle, the bubble is displaced by

a quantity proportional to this angle, at least when the curvature

of the instrument is that of a circle.

For determining the angular value corresponding to each division

Fig. 94.—Spirit-level with Telescope.

Fig. 95.—Graduation of Spii'it-leveL

of the tube, it is usual to employ an apparatus opening like a pair

of compasses by a hinge C (Fig. 95), on one of the legs of which

rests, by two V-shaped supports, the tube T of the level. The com-
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pass is opened by means of a micrometer screw V, of very regular

action; and as the distance of the screw from the hinge is known,

as well as the distance between the threads of the screw, it is easy

to calculate beforehand the value of the divisions on the micrometer

head. The levelling-screws of the instrument serve to bring the

bubble between its reference-marks, so that the micrometer screw is

only used to determine the value of the divisions on the tube.



CHAPTEE XVI.

CAPILLARITY.

182. Capillarity—General Phenomena.—The laws which we have

thus far stated respecting the levels of liquid surfaces are subject to

remarkable exceptions when the vessels in which the liquids are

contained are very narrow, or, as they are called, capillary {capillus,

a hair) ; and also in the case of vessels of any size, when we consider

the portion of the liquid which is in close proximity to the sides,

1. Free Surface.—The surface of a liquid is not horizontal in the

neighbourhood of the sides of the vessel, but presents a very decided

curvature. When the liquid wets the vessel, as in the case of water

in a glass vessel (Fig. 96), the surface is concave; on the contrary

Fig. 96. Fig. 97. Fig. 98.

when the liquid does not wet the vessel, as in the case of mercury in

a glass vessel (Fig. 97), the surface is, generally speaking, convex.

2. Capillary Elevation and Depression.—If a very narrow tube

of glass be plunged in water, or any other liquid that will wet it

(Fig. 98), it will be observed that the level of the liquid, instead of

remaining at the same height inside and outside of the tube, stands

perceptibly higher in the tube; a capillary ascension takes place,

which varies in amount according to the nature of the liquid and
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t^%:
Fig. 100.

the diameter of the tube. It will also be seen that the liquid

column thus raised terminates in a concave surface. If a glass tube

be dipped in mercury, which does not wet it, it will be seen, by
bringing the tube to the side of the vessel, that the mercury is

depressed in its interior, and that it terminates in a convex surface

(Fig. 99>

o. Ga'pillary Vessels in Communicatioii tuitk Others.—If we take

two bent tubes (Fig. 100), each having

one branch of a considerable diameter and

the other extremely narrow, and pour into

one of them a liquid which wets it, and

into the other mercury, the liquid will

be observed in the former case to stand

higher in the capillary than in the prin-

cipal branch, and in the latter case to

stand lower; the free surfaces being at

the same time concave in the case of the

liquid which wets the tubes, and convex

in the case of the mercury.

183. Circumstances which influence Capillary Elevation and Depres-

sion.—In wetted tubes the elevation depends upon the nature of the

liquid; thus, at the temperature of 18° Cent., water rises 29"79""^ in

a tube 1 millimetre in diameter, alcohol rises 12*18™™, nitric acid

22'57™™, essence of lavender 4'28™™, &c. The nature of the tube is

almost entirely immaterial, provided the precaution be first taken

of wetting it with the liquid to be employed in the experiment, so

as to leave a film of the liquid adhering to the sides of the tube.

Capillary depression, on the other hand, depends both on the

nature of the liquid and on that of the tube. Both ascension and

depression diminish as the temperature increases; for example, the

elevation of water, which in a tube of a certain diameter is equal to

132™™ at 0° Cent., is only 106™™ at 100°.

184. Law of Diameters.

—

Capillary elevations and depressions,

when all other circumstances are the same, are inversely propor-

tional to the diameters of the tubes. As this law is a consequence

of the mathematical theories which are generally accepted as ex-

plaining capillary phenomena, its verification has been regarded -as

of great importance.

The experiments of Gay-Lussac, which confirmed this law, have

been repeated, with slight modifications, by several observers. The
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method employed consists essentially in measuring the capillary

elevation of a liquid by means of a cathetometer (Fig. 101). The

telescope II is directed first to the top n of the column in the tube,

and then to the end of a pointer h, which touches the surface of the

h

Fig. 101.—Veiifiualiou of Law of Diameters.

liquid at a point where it is horizontal. In observing the depression

of mercury, since the opacity of the metal prevents us from seeing

the tube, we must bring the tube close to the side of the vessel e.

The diameter of the tube can be measured directly by observing

its section through a microscope, or we may proceed by the method

employed by Gay-Lussac. He weighed the quantity of mercury

which filled a known length I of the tube; this weight w is that

of a cylinder of mercury whose radius x is determined by the

equation 13'59 TrxH=iv, where x and I are in centimetres, and w in

grammes.

The result of these different experiments is, that in the case of

wetted tubes the law is exactly fulfilled, provided that they be pre-

viously washed with the greatest care, so as to remove all foreign

matters, and that the liquid on which the experiment is to be per-

formed be first passed through them. When the liquid does not wet

the tube, various causes combine to affect the form of the surface in

which the liquid column terminates; and we cannot infer the depres-

sion from knowing the diameter, unless we also take into considera-

tion some element connected with the form of the terminal surface,

such as the lenoth of the sagitta, or the angle made with the sides
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of the tube by the extremities o£ the curved surface, which is called

the angle of contact

185. Fundamental Laws of Capillary Phenomena.—Capillary phe-

nomena, as they take place alike in air and in vacuo, cannot be attri-

buted to the action of the atmosphere. They depend upon molecular

actions which take place between the particles of the liquid itself,

and between the liquid and the solid containing it, the actions in

question being purely superficial—that is to say, being confined to

an extremely thin layer forming the external boundary of the liquid,

and to an extremely thin superficial layer of the solid in contact

with the liquid. For example, it is found in the case of glass tubes,

that the amount of capillary elevation or depression is not at all

afiected by the thickness of the sides of the tube. The following

are some of the principles which govern capillary phenomena.

1. For a given liquid in contact with a given solid, with a definite

intimateness of contact (this last element being dependent upon the

cleanness of the surface, upon whether the surface of the solid has

been recently washed by the liquid, and perhaps upon some other

particulars), there is (at any specified temperature) a definite angle

of contact, which is independent of the directions of the surfaces

with regard to the vertical.

2. Every liquid behaves as if a thin film, forming its external

layer, were in a state of tension, and exerting a constant effort to

contract. This tension, or contractile force, is exhibited over the

whole of the free surface (that is, the surface which is exposed to air);

but wherever the liquid is in contact with a solid, its existence is

masked by other molecular actions. It is uniform in all directions

in the free surface, and at all points in this surface, being dependent

only on the nature and temperature of the liquid. Its intensity for

several specified liquids is given in tabular form further on (§ 192)

upon the authority of Van der Mensbrugghe. Tension of this kind

must of course be stated in units of force per linear unit, because by

doubling the width of a band we double the force required to keep

it stretched. Mensbrugghe considers that such tension really exists

in the superficial layer; but the majority of authors (and we think

with more justice) regard it rather as a convenient fiction, which

accurately represents the eflfects of the real cause. Two of the most

eminent writers on the cause of capillary phenomena are Laplace

and Dr. Thomas Young. The subject presents difiiculties which

have not yet been fully surmounted
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186. Application to Elevation in Tubes.—The law of diameters is

a direct consequence of the two preceding principles; for if a denote

the external angle of contact (which is acute in the case of mercury

against glass), T the tension per unit length, and r the radius of

the tube, then 27rrT will be the whole amount of force exerted at

the margin of the surface: and as this force is exerted in a direction

making an angle a with the vertical, its vertical component will be

27rrT cos a, which is exerted in pulling the tube upwards and the

liquid downwards.

If w be the weight of unit volume of the liquid, then kv'^w is the

weight of as much as would occupy unit length of the tube; and if h

denote the height of a column whose weight is equal to the force

tending to depress the liquid, we have

Trr%w — 27r)'T cos a

;

whence h= '^^^°^°'
, which, when the other elements are given, varies

r . ^y

inversely as r, the radius of the tube.

Having resfard to the fact that the surface is not of the same

height in the centre as at the edges, it is obvious that h denotes the

mean height.

If a be obtuse, h will be negative—that is to say, there will be

elevation instead of depression. In the case of water against a tube

which has been well wetted with that liquid, a is 180°—that is to

say, the tube is tangential to the surface. For this case the formula

for h gives
2T

elevation = .

rw

Again, for two parallel vertical plates at distance u, the vertical force

of capillarity for a unit of length is 2Tcosa, which must be equal to

ivhu, being the weight of a sheet of liquid of height h, thickness u,

and length unity. We have therefore

7 2Tcosa

uw

which agrees with the expression for the depression or elevation in

a circular tube whose radius is equal to the distance between these

parallel plates.

The surface tension always tends to reduce the surface to the

smallest area which can be inclosed by its actual boundary; and

therefore always produces a normal force directed from the convex

to the concave side of the superficial film. Hence, wherever there is
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capillary elevation the free surface must be concave; wherever there

is depression it must be convex.

187. It follows from a well-known proposition in statics (Tod-

hunter's Statics, § 194), that if a cylindrical film be stretched with a

uniform tension T (so that the force tending to pull the film asunder

across any short line drawn on the film, is T times the length of the

line), the resultant normal pressure (which the film exerts, for ex-

ample, against the surface of a solid internal cylinder over which it

is stretched) is T divided by the radius of the cylinder.

It can be proved that a film of any form, stretched with uniform

tension T, exerts at each point a normal pressure equal to the sum

of the pressures which would be exerted by two overlapping cylin-

drical films, whose axes are at right angles to one another, and

whose cross sections are circles of curvature of normal sections at

the point. That is to say, if P be the normal force per unit area,

and r, r' the radii of curvature in two mutually perpendicular normal

sections at the point, then

At any point on a curved surface, the normal sections of greatest and

least curvature are mutually perpendicular, and are called the prin-

cipal normal sections at the point. If the corresponding radii of

curvature be R, R', we have

or the normal force per unit area is equal to the tension per unit

length multiplied by the sum of the principal curvatures.

In the case of capillary depressions and elevations, the superficial

film at the free surface is to be regarded as pressing the liquid in-

wards, or pulling it outwards, according as this surface is convex or

concave, with a force P given by the above formula. The value of

P at any point of the free surface is equal to the pressure due to the

height of a column of liquid extending from that point to the level

of the general horizontal surface. It is therefore greatest at the

edges of the elevated or depressed column in a tube, and least in the

centre; and the curvature, as measured by :5- + g-„ must vary in the

same proportion. If the tube is so large that there is no sensible

elevation or depression in the centre of the column, the centre of the

free surface must be sensibly plane.

188. Another consequence of the formula is, that in circumstances
9
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where there can be ao normal pressure towards either side of the

surface,

which implies that either the surface is plane, in which case each of

the two terms is separately equal to zero, or else

R = - E'; (3)

that is, the principal radii of curvature are equal, and lie on opposite

sides of the surface. The formulae (2), (3) apply to a film of soapy

water attached to a loop of wire. If the loop be in one plane, the

film will be in the same plane. If the loop be not in one plane, the

film cannot be in one plane, and will in fact assume that form which

gives the least area consistent with having the loop for its boundary.

At every point it will be observed to be, if we may so say, concave

towards both sides, and convex towards both sides, the concavity

being precisely equal to the convexity—that is to say, equation (3)

is satisfied at every point of the film.

In this case both sides of the film are exposed to atmospheric

pressure. In the case of a common soap-bubble the outside is ex-

posed to atmospheric pressure, and the inside to a pressure somewhat

greater, the difference of the pressures being balanced by the ten-

dency of the film to contract. Formula (1) becomes for either the

outer or inner surface of a spherical bubble

but this result must be doubled, because there are two free surfaces;

hence the excess of pressure of the inclosed above the external air is

^, E. denoting the radius of the bubble.

The value of T for soapy water is about 1 grain per linear inch;

hence, if we divide 4 by the radius of the bubble expressed in inches,

we shall obtain the excess of internal over external pressure in grains

per square inch.

The value of T for any liquid may be obtained by observing the

amount of elevation or depression in a tube of given diameter, and

employing the formula

T^-^., (4)
2 cos a

which follows immediately from the formula for ^ in § 186.

189. It is this uniform surface tension, of which we have been
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speaking, which causes a drop of a liquid falling through the air

either to assume the spherical form, or to oscillate about the spheri-

cal form. The phenomena of drops can be imitated on an enlarged

scale, under circumstances which permit us to observe the actual

motions, by a method devised by Professor Plateau of Ghent. Olive-

oil is intermediate in density between water and alcohol. Let a

mixture of alcohol and water be prepared, having precisely the

density of olive-oil, and let about a cubic inch of the latter be gently

introduced into it with the aid of a funnel or pipette. It will as-

sume a spherical form, and if forced out of this form and then left

free, will slowly oscillate about it; for example, if it has been com-

pelled to assume the form of a prolate spheroid, it will pass to the

oblate form, will then become prolate again, and so on alternately,

becoming however more nearly spherical every time, because its

movements are hindered by friction, until at last it comes to rest as

a sphere.

190. Capillarity furnishes no exception to the principle that the

pressure in a liquid is the same at all points at the same depth.

When the free surface within a tube is convex, and is consequently

depressed below the plane surface of the external liquid, the pres-

sure becomes suddenly greater on passing downwards through the

superficial layer, by the amount due to the curvature. Below this

it increases regularly by the amount due to the depth of liquid

passed through. The pressure at any point vertically under the con-

vex meniscus^ may be computed, either by taking the depth of the

point below the general free surface, and adding atmospheric pres-

sure to the pressure due to this depth, according to the ordinary

principles of hydrostatics, or by taking the depth of the point below

that point of the meniscus which is vertically over it, adding the

pressure due to the curvature at this point, and also adding atmo-

spheric jDressure.

When the free surface of the liquid within a tube is concave, the

pressure suddenly diminishes on passing downwards through the

superficial layer, by the amount due to the curvature as given by

formula (1); that is to say, the pressure at a very small depth is less

than atmospheric pressure by this amount. Below this depth it

goes on increasing according to the usual law, and becomes equal to

' The convex or concave surface of the liquid in a tube is usuallj' denoted by the name
meniscus {/j.7jviffKos, a crescent), which denotes a form approximately resembling that of a

watch-glass.
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atmospheric pressure at that depth which corresponds with the level

of the plane external surface. The pressure at any point in the

liquid within the tube can therefore be obtained either by subtract-

ing from atmospheric pressure the pressure due to the elevation of

the point above the general surface, or by adding to atmospheric

pressure the pressure due to the depth below that point of the

meniscus which is on the same vertical, and subtracting the pressure

due to the curvature at this point.

These rules imply, as has been already remarked, that the curva-

ture is different at different points of the meniscus, being gTeatest

where the elevation or depression is greatest, namely at the edges

of the meniscus; and least at the point of least elevation or depres-

sion, which in a cylindrical tube is the middle point.

The principles just stated apply to all cases of capillary elevation

and depression.

They enable us to calculate the force with which two parallel ver-

tical plates, partially immersed in a liquid which wets them, are

urged towards each other by capillary action. The pressure in the

portion of liquid elevated between them is less than atmospheric,

and therefore is insufficient to balance the atmospheric pressure

which is exerted on the outer faces of the plates. The average pres-

sure in the elevated portion of liquid is equal to the actual pressure

at the centre of gravity of the elevated area, and is less than atmo-

spheric pressure by the pressure of a column of liquid whose height

is the elevation of this centre of gravity.

Even if the liquid be one which does not wet the plates, they will

still be urged towards each other by capillary action; for the inner

faces of the plates are exposed to merely atmospheric pressure over

the area of depression, while the corresponding portions of the ex-

ternal faces are exposed to atmospheric pressure increased by the

weight of a portion of the liquid.

These principles explain the apparent attraction exhibited by
bodies floating on a liquid which either wets them both or wets

neither of them. When the two bodies are near each other they

behave somewhat like parallel plates, the elevation or depression of

the liquid between them being greater than on their remote sides.

If two floating bodies, one of which is wetted and the other un-

wetted by the liquid, come near together, the elevation and depres-

sion of the liquid will be less on the near than on the remote sides,

and apparent repulsion will be exhibited.
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In all cases of capillary elevation or depression, the solid is pulled

downwards or upwards with a force equal to that by which the

liquid is raised or depressed. In applying the principle of Archi-

medes to a solid partially immersed in a liquid, it is therefore neces-

sary (as we have seen in § 159), when the solid produces capillary

depression, to reckon the void space thus created as part of the dis-

placement; and when the solid produces capillary elevation, the fluid

raised above the general level must be reckoned as negative displace-

ment, tending to increase the apparent weight of the solid.

191. Thus far all the effects of capillary action which we have

mentioned are connected with the curvature of the superficial film,

and depend upon the principle that a convex surface increases and a

concave surface diminishes the pressure in the interior of the liquid.

But there is good reason for maintainino; that whatever be the form

of the free surface there is always pressure in the interior due to

the molecular action at this surface, and that the pressure due to the

curvature of the surface is to be added to or subtracted from a

definite amount of pressure which is independent of the curvature

and depends only on the nature and condition of the liquid. This

indeed follows at once from the fact that capillary elevation can

take place in vacuo. As far as the principles of the preceding-

paragraphs are concerned, we should have, at points within the

elevated column, a pressure less than that existing in the vacuum.

This, however, cannot be; we cannot conceive of negative pressure

existing in the interior of a liquid, and we are driven to conclude

that the elevation is owing to the excess of the pressure caused by
the plane surface in the containing vessel above the pressure caused

by the concave surface in the capillary tube.

There are some other facts which seem only explicable on the same

general principle of interior pressure due to surface action,—facts

which attracted the notice of some of the earliest writers on

pneumatics, namely, that siphons will work in vacuo, and that a

column of mercury at least 75 inches in length can be sustained—as

if by atmospheric pressure—in a barometer tube, the mercury being

boiled and completely filling the tube.

192. We have now to notice certain phenomena which depend on

the difference in the surface tensions of different liquids, or of the

same liquid in different states.

Let a thin layer of oil be spread over the upper surface of a thin

sheet of brass, and let a lamp be placed underneath. The oil will be
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observed to run away from the spot directly over the flame, even

though this spot be somewhat lower than the rest of the sheet.

This effect is attributable to the excess of surface tension in the cold

oil above the hot.

In like manner, if a drop of alcohol be introduced into a thin

layer of water spread over a nearly horizontal surface, it will be

drawn away in all directions by the surrounding water, leaving a

nearly dry spot in the space which it occupied. In this experiment

the water should be coloured in order to distinguish it from the

alcohol.

Again, let a very small fragment of camphor be placed on the sur-

face of hot water. It will be observed to rush to and fro, with

frequent rotations on its own axis, sometimes in one direction and

sometimes in the opposite. These effects, which have been a frequent

subject of discussion, are now known to be due to the diminution of

the surface tension of the water by the camphor which it takes up.

Superficial currents are thus created, radiating from the fragment of

camphor in all directions; and as the camphor dissolves more quickly

in some parts than in others, the currents which are formed are not

equal in all directions, and those which are most powerful prevail

over the others and otvc motion to the frasfment.

The values of T, the apparent surface tension, for several liquids,

are given in the following table, on the authority of Van der Mens-

brugghe, in milligrammes (or thousandth parts of a gramme) per

millimetre of length. They can be reduced to grains per inch of

length by multiplying them by •892; for example, the surface ten-

sion of distilled water is 7"3 X "SOS= 2-86 grains per inch.

Distilled water at 20° Cent.,

Sulphuric ether, ....
Absolute alcohol, . . . ,

Olive-oil, , ^

Mercury, „ „

Bisulphide of carbon, . .

7-3

1-88

2-5

3-5

49-1

3-57

Solution of Marseilles soap, 1 part of

soap to 40 of water, 2"83

Solution of saponine, 4 '67

Saturated solution of carbonate of

soda, 4-28

Water impregnated with camphor, . 4 "5

193. Endosmose,—Capillary phenomena have undoubtedly some

connection with a very important property discovered by Dutrochet,

and called by him endosmose.

The endosTnometer invented by him to illustrate this phenomenon

consists of a reservoir v (Fig. 102) closed below by a membrane ba,

and terminatino- above in a tube of considerable leno-th. This reser-

voir is filled, suppose, with a solution of gum in water, and is kept
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immersed in water. At the end of some time the level of the liquid

in the tube will be observed to have risen to n, suppose, and at the

same time traces of gum will be found in the water in which the

reservoir is immersed. Hence we conclude that the two liquids

have penetrated through the membrane, but in different proportions

;

and this is what is called endosmose.

If instead of a solution of gum we employed water containing

albumen, sugar, or gelatine in solution, a similar result would ensue.

The membrane may be replaced by a slab of wood or of porous clay.

Physiologists have justly attached very great importance to this

discovery of Dutrochet. It explains, in fact, the interchange of

liquids which is continually taking place in the tissues and vessels

of the animal system, as well as the absorption of water by the

spongioles of roots, and several similar phe;iomena.

As regards the power of passing through porous diaphragms,

Graham has divided substances into two classes

—

crystalloids and

colloids {KoKXr), glue). The former are sus-

ceptible of crystallization, form solutions free

from viscosity, are sapid, and possess great

powers of diffusion through porous septa.

The latter, including gum, starch, albumen,

&c., are characterized by a remarkable slug-

gishness and indisposition both to diffusion

and to crystallization, and when pure are

nearly tasteless.

Diffusion also takes place through col-

loidal diaphragms which are not porous,

the diaphragm in this case acting as a

solvent, and giving out the dissolved mate-

rial on the other side. In the important

process of modern chemistry called dialysis,

saline ingredients are separated from or-

ganic substances with which they are

blended, by interposing a colloidal dia-

phragin (De La Hue's parchment paper) ^ ~~ ~~""^

between the mixture and pure water. Mg. io2.-Endosmonieter.

The organic matters, being colloidal, remain

behind, while the salts pass through, and can be obtained in a

nearly pure state by evaporating the water.

Gases are also capable of diffusion through diaphragms, whether
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porous or colloidal, the rate of diffusion being in the former case

inversely as the square root of the density of the gas. Hydrogen

diffuses so rapidly through unglazed earthenware as to afford oppor-

tunity for very striking experiments; and it shows its power of

traversing colloids by rapidly escaping through the sides of india-

rubber tubes, or through films of soapy water.



CHAPTEE XVII.

THE BAROMETEK,

194. Expansibility of Gases.—Gaseous bodies possess a number ot

properties in common with liquids; like them, they transmit pres-

sures entire and in all directions, according to the principle of

Pascal; but they differ essentially from liquids in the permanent

repulsive force exerted between their molecules, in virtue of which

a mass of gas always tends to expand.

This property, called the expansibility of gases, is commonly illus-

trated by the following experiment:

—

A bladder, nearly empty of air, and tied at the neck, is placed

under the receiver of an

air-pump. At first the

air which it contains

and the external air

oppose each other by

their mutual pressure,

and are in equilibrium.

But if we proceed to

exhaust the receiver,

and thus diminish the

external pressure, the

bladder gradually be-

comes inflated, and thus

manifests the tendency

of the gas which it con-

tains to occupy a gTeater

volume.

However large a vessel may be, it can always be filled by any

quantity whatever of a gas, which will always exert pressure against

rig. 103.—Expansibility of Gases.
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the sides. In consequence of this property, the name of elastic

fluids is often given to gases.

195. Air has Weight.—The opinion was long held that the air was

without weight; or, to speak more precisely, it never occurred to

any of the philosophers who preceded Galileo to attribute any

influence in natural phenomena to the weight of the air. And as

this influence is really of the first importance, and comes into play

in many of the commonest phenomena, it very naturally happened

that the discovery of the weight of air formed the commencement

of the modern revival of physical science.

It appears, however, that Aristotle conceived the idea of the

possibility of air having weight, and, in order to convince himself

on this point, he weighed a skin inflated and collapsed. As he

obtained the same weight in both cases, he relinquished the idea

which he had for the moment entertained. In fact, the experiment,

as he performed it, could only give a negative result; for if the

weight of the skin was increased, on the one hand, by the intro-

duction of a fresh quantity of air, it was diminished, on the other,

by the corresponding increase in the upward pressure of the air

displaced. In order to draw a certain conclusion, the experiment

should be performed with a vessel which could receive within it

air of diflerent degrees of density, without changing its own
volume.

Galileo is said to have devised the experiment of weighing a

globe filled alternately with ordinary air and with compressed air.

As the weight is greater in the latter case, Galileo should have

drawn the inference that air is heavy. It does not appear, however,

that the importance of this conclusion made much impression on

him, for he did not give it any of those developments which might

have been expected to present themselves to a mind like his.

Otto Guericke, the illustrious inventor of the air-pump, in 1650

performed the following experiment, which is decisive:

—

A globe of glass (Fig. 104), furnished with a stop-cock, and of

a sufficient capacity (about twelve litres), is exhausted of air. It is

then suspended from one of the scales of a balance, and a weight

sufficient to produce equilibrium is placed in the other scale. The

stop-cock is then opened, the air rushes into the globe, and the beam

is observed gradually to incline, so that an additional weight is

required in the other scale, in order to re-establish equilibrium. If

the capacity of the globe is 12 litres, about 15*5 grammes will be
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needed, whicli gives 1*3 gramme as the approximate weight of

a litre (or 1000 cubic centimetres)

of air.-^

If, in performing this experiment,

we take particular precautions to

insure its precision, as we shall

explain in the book on Heat, it will

be found that, at the temperature

of freezing water, and under the

pressure of one atmosphere, a litre

of perfectly dry air weighs 1*2 9

3

gramme.^ Under these circum-

stances, the ratio of the weio-ht of

a volume of air to that of an equal

volume of water is 7^0^ = 7=3' -A-ir

is thus 773 times lighter than water.

By repeating this experiment

with other gases, we may determine

their weight as compared with that

of air, and the absolute weight of a

litre of each of them. Thus it is

found that a litre of oxygen weighs

1'43 gramme, a litre of carbonic acid 1*97 gramme, a litre of

hydrogen 0*089 gramme, &c.

Fig. 104.—Weight of Air.

* A cubic foot of air in ordinary circumstances weighs about an ounce and a quarter.

^ In strictness, the weight in grammes of a litre of air under the pressure of 760

millimetres of mercury is different in different localities, being proportional to the inten-

sity of gravity—not because the force of gravity on the litre of air is different, for

though this is true, it does not affect the numerical value of the weight when stated in

grammes, but because the pressure of 760 millimetres of mercury varies as the intensity

of gravity, so that more air is compressed into the space of a litre as gravity increases.

(§ 201, 6.)

The vxight in grammes is another name for the mass. The force of gravity on a litre

of air under the pressure of 760 millimetres is proportional to the square of the intensity

of gravity.

This is an excellent example of the ambiguity of the word weight, which sometimes

denotes a mass, sometimes a force ; and though the distinction is of no practical imj^ortance

so long as we confine our attention to one locality, it cannot be neglected when different

localities are compared.

Regnault's determination of the weight of a litre of dry air at 0" Cent, under the

pressure of 760 millimetres at Paris is 1 •29.3187 gramme. Gravity at Paris is to gravity

at Greenwich as 3456 to 3457. The corresponding number for Greenwich is therefore

1-293561.
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196. Atmospheric Pressure.—The atmosphere encircles the earth

with a layer some 50 or 100 miles in thickness; this heavy fluid

mass exerts on the surface of all bodies a pressure entirely analogous

both in nature and origin to that sustained by a body wholly

immersed in a liquid. It is subject to the fundamental laws men-

tioned in §§ 137-139. The pressure should therefore diminish as

we ascend from the surface of the earth, but should have the same

value for all points in the same horizontal layer, provided that the

air is in a state of equilibrium. On account of the great compressi-

bility of gas, the lower layers are much more dense than the upper

ones; but the density, like the pressure, is constant in value for the

Fig. 105.—Torricellian Experiment.

same horizontal layer, throughout any portion of air in a state of

equilibrium. Whenever there is an inequality either of density or

pressure at a given level, wind must ensue.
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We owe to Torricelli an experiment which plainly shows the

pressure of the atmosphere, and enables us to estimate its intensity

with great precision. This experiment, which was performed in

1643, one year after the death of Galileo, at a time when the weight

and pressure of the air were scarcely even suspected, has immor-

talized the name of its author, and has exercised a most important

influence upon the progress of natural philosophy.

197. Torricellian Experiment.—A glass tube {Fig. 105) about a

quarter or a third of an inch in diameter, and about a yard in length,

is completely filled with mercury; the extremity is then stopped

with the finger, and the tube is inverted in a vessel containing

mercury. If the finger is now removed, the mercury will descend

in the tube, and after a few oscillations will remain stationary at a

height which varies according to circumstances, but which is gen-

erally about 76 centimetres, or nearly SO inches.^

The column of mercury is maintained at this height by the pres-

sure of the atmosphere upon the surface of the mercury

in the vessel. In fact, the pressure at the level ABCD
(Fig. 106) must be the same within as without the tube;

so that the column of mercury BE exerts a pressure equal

to that of the atmosphere.

Accordingly, we conclude from this experiment of

Torricelli that every surface exposed to the atmosphere

sustains a normal pressure equal, on an average, to the

weight of a column of rnercury tvhose base is this surface,

and whose height is SO inches.

It is evident that if we performed a similar experi-

ment with water, whose density is to that of mercury as

1 : lo*o9, the height of the column sustained would be

13'59 times as much; that is, 80xlo*59 inches, or about

34 feet. This is the maximum height to which water

can be raised in a pump; as was observed by Galileo.

In general the heights of columns of different liquids

equal in weight to a column of air on the same base, are

inversely proportional to their densities.

198. Pressure of one Atmosphere.—What is usually adopted in

accurate physical discussions as the standard " atmosphere " of pres-

sure is the pressure due to a height of 76 centimetres of pure mercury

at the temperature zero Centigrade, gravity being supposed to have

* 76 centimetres are 29*922 inches.

Fig. 106.
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the same intensity which it has at Paris. The density of mercury at

this temperature is 13"o96; hence, when expressed in gravitation

measure, this pressure is 76 X 13-596= 1033-o grammes per square

centimetre.^ To reduce this to absolute measure, we must multiply

by the value o£ g (the intensity of gxavity) at Paris, which is 980-94;

and the result is 1013600, which is the intensity of pressure in

dynes per square centimetre. In some recent works, the round

number a million dynes per square centimetre has been adopted as

the standard atmosphere.

199. Pascal's Experiments.—It is supposed, though without any

decisive proof, that Torricelli derived from Galileo the definite

conception of atmospheric pressure." However this may be, when
the experiment of the Italian philosopher became known in France

in 1644, no one was capable of giving the correct explanation of it,

and the famous doctrine that " nature abhors a vacuum," by which

the rising of water in a pump was accounted for, was generally

accepted. Pascal was the first to prove incontestably the falsity of

this old doctrine, and to introduce a more rational belief. For this

purpose, he proposed or executed a series of ingenious experiments,

and discussed minutely all the phenomena which were attributed to

nature's abhorrence of a vacuum, showing that they were necessary

consequences of the pressure of the atmosphere.

We may cite in particular the observation, made at his suggestion,

that the height of the mercurial column decreases in proportion as

we ascend. This beautiful and decisive experiment, which is repeated

as often as heights are measured by the barometer, and which leaves

no doubt as to the nature of the force which sustains the mercurial

column, was perfprmed for the first time at Clermont, and on the

top of the mountain Puy-de-D6me, on the 19th September, 1648.

200. The Barometer.—By fijcing the Torricellian tube in a perman-

^ This is about 147 pounds per square inch.

"^ In the fountains of the Grand-duke of Tuscany some pumps were required to raise

water from a depth of from 40 to 50 feet. When these were worked, it was found that

they would not draw. Galileo determined the height to which the water, rose in their

tubes, and found it to be about 32 feet; and as he had observed and proved that air has

weight, he readily conceived that it was the weight of a column of the atmosphere which

maintained the water at this height in the pumps. No very useful results, however, were

expected from this discovery, until, at a later date, Torricelli adopted and greatly extended

it. Desiring to repeat the experiment in a more convenient form, he conceived the idea

of substituting for water a liquid that is 14 times as heavy, namely, mercury, rightly

imagining that a column of one-fourteenth of the length would balance the force which

sustained 32 feet of water (Biot, Biographie Universelle, article " Torricelli ").

—

D.
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ent position, we obtain a means of measuring the amount of the

atmospheric pressure at any moment; and this pressure may be ex-

pressed by the height of the column of mercury which it supports.

Such an instrument is called a barometer. In order that its indica-

tions may be accurate, several precautions must be observed. In the

first place, the liquid used in different barometers

must be identical; for the height of the column

supported naturally depends upon the density of

the liquid employed, and if this varies, the obser-

vations made with different instruments will not

be comparable.

The mercury employed is chemically pure,

being generally made so by washing with a dilute

acid and by subsequent distillation. The baro-

metric tube is filled nearly full, and is then placed

upon a sloping furnace, and heated till the mer-

cury boils. The object of this process is to expel

the air and moisture which may be contained in

the mercurial column, and which, without this pre-

caution, would gradually ascend into the vacuum

above, and cause a downward pressure of un-

certain amount, which would prevent the mercury

from rising to the proper height.

The next step is to fill up the tube with pure

mercury, taking care not to introduce any bubble

of air. The tube is then inverted in a cistern

likewise containing pure mercury recently boiled,

and is firmly fixed in a vertical position, as shown

in Fig. 107.

We have thus a fixed barometer; and in order

to ascertain the atmospheric pressure at any

moment, it is only necessary to measure the

height of the top of the column of mercury above

the surface of the mercury in the cistern. One

method of doing this is to employ an iron rod,

working in a screw, and fixed vertically above the

surface of the mercury in the dish. The extremities of this rod are

pointed, and the lower extremity being brought down to touch the

surface of the liquid below, the distance of the upper extremity from

the top of the column of mercury is measured. Adding to this the

Fig. 107.— Barometer in

its simplest form.
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length of the rod, which has previously been determined once for

all, we have the barometric height. . This measurement may be

effected with great precision by means of the cathetometer.

201. Cathetometer.—This instrument, which is so frequently em-

ployed in physics to measure the

vertical distance between two points,

was invented by Dulong and Petit.

It consists essentially (Fig. 108) of

a vertical scale divided usually into

half millimetres. This scale forms

part of a brass cylinder capable of

turning very easily about a strong

steel axis. This axis is fixed on a

pedestal provided with three levelling

screws, and with two spirit-levels at

right angles to each other. Along

the scale moves a sliding frame carry-

ing a telescope furnished with cross-

wires, that is, with two very fine

threads, usually spider lines, in the

focus of the eye-piece, whose point of

intersection serves to determine the

line of vision. By means of a clamp

and slow-motion screw, the telescope

can be fixed with great precision at

any required height. The telescope

is also provided with a spirit-level

and adjusting screw. When the

apparatus is in correct adjustment,

the line of vision of the telescope is

horizontal, and the graduated scale is

vertical. If then we wish to measure

the difference of level between two

points, we have only to sight them

successively, and measure the distance

passed over on the scale, which is done by means of a vernier

attached to the sliding frame.

202. Fortin's Barometer.—The barometer just described is intended

to be fixed; when portability is required, the construction devised by
Fortin (Fig. 109) is usually employed. It is also frequently em-

Fig. lOS.— Cathetometer.
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ployed for fixed barometers. The cistern, which is formed of a tube

of boxwood, surmounted by a tube of glass, is closed below by a

piece of leather, which can be raised or lowered by means of a screw.

This screw works in the bottom of a brass case, which incloses the

cistern except at the middle, where it is cut

away in front and at the back, so as to leave

the surface of the mercury open to view. The

barometric tube is encased in a tube of brass

with two slits at opposite sides (Fig, 110); and

it is on this tube that the divisions are engraved,

the zero point from which they are reckoned

being the lower extremity of an ivory point

fixed in the covering of the cistern. The tem-

perature of the mercury, which is required for

one of the corrections mentioned in next section,

is given by a thermometer with its bulb resting

against the tube. A cylindrical

sliding piece (shown in Fig. 110)

furnished with a vernier,^ moves

along the tube and enables us to

determine the height with great

precision. Its lower edge is the

zero of the vernier. The way in

which the barometric tube is

fixed upon the cistern is worth

notice. In the centre of the

upper surface of the copper casing-

there is an opening, from which

rises a short tube of the same

metal, lined with a tube of box-

wood. The barometric tube is

pushed inside, and fitted in with

a piece of chamois leather, which

prevents the mercury from issuing, but does not exclude the air,

which, passing through the pores of the leather, penetrates into the

cistern, and so transmits its pressure.

Before taking an observation, the surface of the mercury is ad-

Fig. 110.

Upper iioition of
Baiometer.

Fig. 109.

Cistern of Fortin's
Baiometer.

^ The vernier is an instrument very largely employed for measuring the fractions of a

unit of length on any scale. Suppose we have a scale divided into inches, and another

scale containing nine inches divided into ten equal parts. If now we make the end of tbia

30
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justed, by means of the lower screw, to touch the ivory point. The

observer knows when this condition is fulfilled by seeing the

extremity of the point touch its image in the mercury. The sliding

piece which carries the vernier is then raised or lowered, until its

base is seen to be tangential to the upper surface of the mercurial

column, as'shown in Fig. 110. In making this adjustment, the back

of the instrument should be turned towards a good light, in order

that the observer may be certain of the position in which the light

is just cut off at the summit of the convexity.

When the, instrument is to be carried from place to place, precau-

tions must be taken to prevent the mercury from bumping against

the top of the tube and breaking it. The screw at the bottom is to

be turned until the mercury reaches the top of the tube, and the

instrument is then to be inverted and carried upside down.

We may here remark that the goodness of the vacuum in a bar-

ometer, can be tested by the sound of the mercury when it strikes

the top of the tube, which it can be made to do either by screwing

latter scale, which is called the vernier, coincide with one of the divisions in the scale of

inches, as each division of the vernier is -^ of an inch, it is evident that the first division

on the scale will be -^ of an inch beyond the first division on the vernier, the second on

the scale y-j- beyond the second on the vernier, and so on until the ninth on the scale, which

012J4 56 78il|l2.34fe!
n 1 2 ,•! 4 :> 6 7 fi 9 10

}tl234SS789 11^3*5
r 1 1 1 1 1 1 1 1 1 t 1 1 1

! 1 1 i

Fig. 111.—Vernier.

wiU exactly coincide with the tenth on the vernier. Suppose next that in measuring any

length we find that its extremity lies between the degrees 5 and 6 on the scale; we bring

the zero of the vernier opposite the extremity of the length to be measured, and observe

what division on the vernier coincides with one of the divisions on the scale. We see in

the figure that it is the seventh, and thus we conclude that the fraction required is -^ of

an inch.

If the vernier consisted of 19 inches divided into 20 equal parts, it would read to the .^V

of an inch ; but there is a limit to the precision that can thus be obtained. An exact coin-

cidence of a division on the vernier with one on the scale seldom or never takes place, and

we merely take the division which approaches nearest to this coincidence; so that when

the difference between the degrees on the vernier and those on the scale is very small,

there may be so much uncertainty in this selection as to nullify the theoretical precision

of the instrument. Verniers are also employed to measure angles ; when a circle is divided

into half degrees, a vernier is used which gives -^^ of a division on the circle, that is, ^^

of a half degree, or one minute.-

—

D.
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"up or by inclining the instrument to one side. If the vacuum is

good, a metallic clink will be h^ard, and unless the contact be made
very gently, the tube

will be broken by the

sharpness of the col-

lision. If any air be

present, it acts as a

cushion.

In making observa-

tions in the field, a

barometer is usually

suspended from a tri-

pod stand (Fig. 112)

by gimbals-^, so that it

always takes a vertical

position,

203. Float Adjust-

ment.—In some barom-

eters the ivory point for

indicating the proper

level of the mercury in

the cistern is replaced

by a float. F (Fig. 113)

is a small ivory piston,

having the float at-

tached to its foot, and

moving freely up and

down between the two

ivory guides I. A hori-

zontal line (interrupted

by the piston) is en-

graved on the two

guides, and another is

engraved on the piston,

at such a height that the three lines form one straight line when the

surface of the mercury in the cistern stands at the zero point of the

scale.

204. Barometric Corrections.—In order that barometric heights

' A kind of universal joint, in common use on board ship for the suspension of com-

passes, lamps, &c. It is seen in Fig. 112, at the top of the tripod stand.

Fig. 112.—Barometer with Tripod Stand.
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may be comparable as measures of atmospheric pressure, certain cor-

rections must be applied,

1. Connection for Temperature. As mercury expands with heat,

it follows that a column of warm mercury exerts less

pressure than a column of the same height at a lower

temperature; and it is usual to reduce the actual

height of the column to the height of a column at the

temperature of freezing water which would exert the

same pressure.

Let h be the observed height at temperature t"

Centigrade, and h^ the height reduced to freezing-

point. Then, if ni be the coefficient of expansion of

mercury per degree Cent., we have

ha {l+m t)= h, whence h^ = h -hmt nearly.

Fig. 113.

Float Adjustment,

The value of m is ^^^

Fahrenheit, we have

A„ ^1 + m (t

1

: -00018018. For temperatures

32)
}

•32),

where m denotes ^^^z

h, h^ — li-h m (t-

0001001.

But temperature also affects the length of the

divisions on the scale by which the height of the mercurial column

is measured. If these divisions be true inches at 0° Cent., then at

r the length of n divisions will he n {l + l t) inches, I denoting the

coefficient of linear expansion of the scale, the value of which for

brass, the usual material, is •00001878. If then the observed height

h amounts to n divisions of the scale, we have

h^ {l+mt)^h=^n (l + It);

whence'
n (l + lt)h=-

1 + mt
= n - nt (m - I), nearly

;

that is to say, if n be the height read off on the scale, it must be

diminished by the correction nt (m— l), t denoting the temperature

of the mercury in degrees Centigrade. The value of m— l is

•0001614.

For temperatures Fahrenheit, assuming the scale to be of the

correct length at 32° Fahr., the formula for the correction (which is

still subtractive), is n {t— o2) {m— l), where 7)i— l has the value

•00008967.^

^ The correction for temperature is usually made by the help of tables, which give its

amount for all ordinary temperatures and heights. These tables, when intended for
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2. Correction for Capillarity.—In the preceding chapter we have

seen that mercury in a glass tube undergoes a capillary depression:

whence it follows that the observed barometric height is too small,

and that we must add to it the amount of this depression. In all

tubes of internal diameter less than about f of an inch this correction

is sensible; and its amount, for which no simple formula can be given,

has been computed, from theoretical considerations, for various sizes

of tube, by several eminent mathematicians, and recorded in tables,

from which that given below is abridged. These values are appli-

cable on the assumption that the meniscus which forms the summit
of the mercurial column is decidedly convex, as it always is when
the mercury is rising. When the meniscus is too flat, the mercury

must be lowered by the foot-screw, and then screwed up again.

It is found by experiment, that the amount of capillary depression

is only half as gxeat when the mercury has been boiled in the tube

as when this precaution has been neglected.

For purposes of special accuracy, tables have been computed,

giving the amount of capillary depression for different degrees of

convexity, as determined by the sagitta (or height) of the meniscus,

taken in conjunction with the diameter of the tube. Such tables,

however, are seldom used in this country.^

English barometers, are generally constructed on the assumption that the scale is of the

correct length not at 32° Fahr., but at 62° Fahr., which is (by act of Parliament) the

temperature at which the British standard yard (preserved in the office of the Exchequer)

is correct. On this supposition, the length of n divisions of the scale at temperature t"

Fahr., is

»|H-Z («- 62)|-;

and by equating this expression to

A,„|l +m («-32)|-

we find

h^ = n\^l - m {t - Z2) + I [t - 62) \

= w 1 1 - {m-l) t+ (32m - 62Z)
|

= n\l - -00008967 t + -00255654 ]•

;

which, omitting superfluous decimals, may conveniently be put in the firm

—

' «-i^oC«^*-2-^^>-
The correction vanishes when

09 t - 2-56 = 0;

that is, when <=?^ = 28-5.
9

For all temperatures higher than this the correction is subtractive.

^ The most complete collection of meteorological and physical tables, is that edited by
Professor Guyot, and published under the auspices of the Smithsonian Institution, Wash-
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Table op Capillary Depressions in Unboiled Tubes.

{To he halved for Boiled Tubes.)

Diameter of Dep
tube in inches. i

res^ion iu
iiclies.

Diameter. Depression. Diameter. Depression.

10 140 •20 •058 •40 •015

11 126 •22 •050 •42 •013

12 114 •24 •044 •44 •Oil

13 104 •26 •038 •46 •009

14 094 •28 •033 •48 •008

1.5 086 •30 •029 •50 •007

16 079 •32 •026 •55 •005

17 073 •34 •023 •60 •004

18 068 •36 •020 •65 •003

•19
1 063 •38 •017 •70 •002

3. Correction for Capacity.—When there is no provision for ad-

justing the level of the mercury in the cistern to the zero point of

the scale, another correction must be applied. It is called the cor-

rection for capacity. In barometers of this construction, which were

formerly much more common than they are at present, there is a

certain point in the scale at which the mercurial column stands when
the mercury in the cistern is at the correct level. This is called the

neutral point. If A be the interior area of the tube, and C the area

of the cistern (exclusive of the space occupied by the tube and its

contents), when the mercury in the tube rises by the amount x, the

mercury in the cistern falls by an amount y=:-—x; for the volume of

the mercury which has passed from the cistern into the tube is

C y = Ax. The change of atmospheric pressure is correctly measured

hy x+ y=:il + ^\x; and if we now take x to denote the distance of

the summit of the mercurial column from the neutral point, the cor-

rected distance will be f l-f-T?) «, and the correction to be applied to

the observed reading will be ^ x, which is additive if the observed

reading be above the neutral point, subtractive if below.

It is worthy of remark that the neutral point depends upon the

volume of mercury. It will be altered if any mercury be lost or

added; and as temperature affects the volume, a special temperature-

correction must be applied to barometers of this class. The investi-

gation will be found in a paper by Professor Swan in the Philo-

sophical Magazine for 1861.

In some modern instruments the correction for capacity is avoided,

by making the divisions on the scale less than true inches, in the
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C
ratio -T—p, and the effect of capillarity is at the same time compen-

sated by lowering the zero point of the scale. Such instruments, if

correctly made, simply require to be corrected for temperature,

4. Judex ^rrors.-^Under this name are included errors of gradua-

tion, and errors in the position of the zero of the graduations. An
error of zero makes all readings too high or too low by the same

amount. Errors of gTaduation (which are generally exceedingly

small) are different for different parts of the scale.

Barometers intended for accurate observation are now usually

examined at Kew Observatory before being sent out; and a table is

furnished with each, showing its index error at every half inch of

the scale, errors of capillarity and capacity (if any) being included

as part of the index error. We may make a remark here once for

all respecting the signs attached to errors and corrections. The

sign of an error is always opposite to that of its correction. When
a reading is too high the index error is one of excess, and is there-

fore positive; whereas the correction needed to make the reading-

true is subtractive, and is therefore negative.

5. Reduction to Sea-level.—In comparing barometric observations

taken over an extensive district for meteorological purposes, it is

usual to apply a correction for difference of level. Atmospheric

pressure, as we have seen, diminishes as we ascend; and it is usual

to add to the observed height the difference of pressure due to the

elevation of the place above sea-level. The amount of this correc-

tion is proportional to the observed pressure. The law according to

which it increases with the height will be discussed in the next

chapter.

6. Correction for Unequal Intensity of Gravity.—When two

barometers indicate the same height, at places where the intensity

of gravity is different (for example, at the pole and the equator),

the same mass of air is superincumbent over both ; but the pressures

are unequal, being proportional to the intensity of gravity as

measured by the values of ^ (§ 91) at the two places.

If h be the height, in centimetres, of the mercurial column at the

temperature 0° Cent., the absolute pressure, in dynes per square

centimetre, will be gh x 13"59G; since 13'59G is the density of

mercury at this temperature.

205. Other kinds of Mercurial Barometer.—The Siphon Barometer,

which is represented in Fig. 114, consists of a bent tube, generally
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of uniform bore, luiving- two unequal legs. The longer leg, which

must be more than 30 inches long, is closed, while the shorter leg is

open. A sufficient quantity of mercury having been introduced to

fill the longer leg, the instrument is set upright (after boiling to

expel air), and the mercury takes such a position that the

difference of levels in the two legs represents the pressure

of the atmosphere.

Supposing the tube to be of uniform section, the mer-

cury will always fall as much in one leg as it rises in the

otlier. Each end of the mercurial column therefore rises

or falls through only half the height corresponding to

the change of atmospheric pressure.

In the best siphon barometers there are two scales, one

for each leg, as indicated in the figure, the divisions on

one being reckoned upwards, and on the other down-

wards, from an intermediate zero point, so that the sum
of the two readings is the difference of levels of the

mercury in the two branches.

Inasmuch as capillarity tends to depress both extrem-

ities of the mercurial column, its effect is generally

neglected in siphon barometers; but practically it causes

great difficulty in obtaining accurate observations, for

according as the mercury is rising or falling its ex-

tremity is more or less convex, and a great deal of tapping is

usually required to make both ends of the column assume the same

form, which is the condition necessary for annihilating the effect of

capillary action.

Wheel Barometer.—The wheel barometer, which is in more gen-

eral use than its merits deserve, consists of a siphon barometer,

the two branches of which have usually the same diameter. On
the surface of the mercury of the open branch floats a small piece

of iron or glass suspended by a thread, the other extremity of which

is fixed to a pulley, on which the thread is partly rolled. Another

thread, rolled parallel to the first, supports a weight which balances

the float. To the axis of the pulley is fixed a needle which moves on

a dial. When the level of the mercury varies in either direction,

the float follows its movement through the same distance; by the

action of the counterpoise the pulley turns, and with it the needle,

the extremity of which points to the figures on the dial, marking

the barometric heights. The mounting of the dial is usually placed

Fig. 114.

Sijihoii

Barometer.
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in front of the tube, so as to conceal its presence. The wheel

barometer is a very old invention, and was introduced by the

celebrated Hooke in 1683. The pulley and strings are sometimes

replaced by a rack and pinion, as represented in the figure

(Fig. 115).

Besides the faults incidental to the siphon barometer, the wheel

Fig. 115.—Wheel Barometer.

barometer is encumbered in its movements by the friction of the

additional apparatus. It is quite unsuitable for measuring the

exact amount of atmospheric pressure, and is slow in indicating

changes.

Marine Barometer.—The ordinary mercurial barometer cannot be

used at sea on account of the violent oscillations which the mercury

would experience from the motion of the vessel. In order to meet

this difficulty, the tube is contracted in its middle portion nearly to
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capillary dimensions, so that the motion of the mercury in either

direction is hindered. An instrument thus constructed is called a

marine barometer. When such an instrument is used on land it

is always too slow in its indications.

206. Aneroid Barometer (a, v-qpoq).—This barometer depends upon

the changes in the form of a thin metallic vessel partially exhausted

Fig. 116.—Aneroid Barometer.

of air, as the atmospheric pressure varies. M. Vidie was the first to

overcome the numerous difficulties which were presented in the con-

struction of these instruments. We subjoin a figure of the model

which he finally adopted.

The essential part is a cylindrical box partially exhausted of air,

the upper surface of which is corrugated in order to make it yield

more easily to external pressure. At the centre of the top of the

box is a small metallic pillar M, connected with a powerful steel

spring R. As the pressure varies, the top of the box rises or falls,

transmitting its movement by two levers I and 7)%, to a metallic axis

r. This latter carries a third lever t, the extremity of which is

attached to a chain s which turns a drum, the axis of which bears

the index needle. A spiral spring keeps the chain constantly

stretched, and thus makes the needle always take a position corre-
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spending to the shape of the box at the time. The graduation is

performed empirically by comparison with a mercurial barometer.

The aneroid barometer is very quick in indicating changes, and is

much more portable than any form of mercurial barometer, being

both lighter and less liable to injury. It is sometimes made small

enough for the waistcoat pocket. It has the drawback of being

attected by temperature to an extent which must be determined for

each instrument separately, and of being liable to gradual changes

which can only be checked by occasional comparison with a good

mercurial barometer.

In the metallic barometer, which is a modification of the aneroid,

the exhausted box is crescent-shaped, and the horns of the crescent

separate or approach according as the external pressure diminishes

or increases.

207. Old Forms Revived.—There are two ingenious modifications

of the form of the barometer, which, after long neglect, have recently

been revived for special purposes.

Counterpoised Barometer.—The invention of this instrument is

attributed to Samuel Morland, who constructed it about the vear

1G80. It depends upon the following principle:—If the barometric

tube is suspended from one of the scales of a balance, there will be

required to balance it in the other scale a weight equal to the weight

of the tube and the mercury contained in it, minus the upward

pressure due to the liquid displaced in the cistern.-^ If the atmo-

spheric pressure increases, the mercury will rise in the tube, and

consequently the weight of the floating body will increase, while

the sinking of the mercury in the cistern will diminish the upward
pressure due to the displacement. The beam will thus incline to

^ A complete investigation based on the assumption of a constant upward pull at the

top of the suspended tube shows that the sensitiveness of the instrument depends only on

the internal section of the upper part of the tube and the external section of its lower

part. Calling the former A and the latter B, it is necessary for stability that B be

greater than A (which is not the case in the figure in the text) and the movement of the

tube will be to that of the mercury in a standard barometer as A is to B- A. Tlie

directions of these movements will be opposite. If B - A is very small compared with A,

the instrument will be exceedingly sensitive ; and as B - A changes sign, by passing

through zero, the equilibrium becomes unstable.

A curious result of the investigation is that the level of the mercury in the cistern re-

mains constant.

In the instrument represented in the figure, stability is probably obtained by the weight

of the arm which carries the pencil.

In King's barograph, B is made greater than A by fixing a hollow iron drum roimd

the lower end of the tube.
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the side of the barometric tube, and the reverse movement would

occur if the pressure diminished. For the balance may be substi-

tuted, as in Fig. 117, a lever carrying a counterpoise; the variations

of pressure will be indicated by the movements of this lever.

Such an instrument may very well be used as a barograph or re-

cording barometer; for

this purpose we have •

only to attach to the

lever an arm with a

pencil, which is con-

stantly in contact with

a sheet of paper moved
uniformlyby clock-work.

The result will be a

continuous trace, whose

form corresponds to the

variations of pressure.

It is very easy to deter-

mine, either by calcula-

tion or by comparison

with a standard baro-

meter, the pressure cor-

responding to a given

position of the pencil on

the paper; and thus, if

the paper is ruled with

twenty-four equidistant

lines, corresponding to

the twenty-four hours of the day, we can see at a glance what was the

pressure at any given time. An arrangement of this kind has been

adopted by the Abbe Secchi for the meteorograph of the observatory

at Eome. The first successful employment of this kind of barograph

appears to be due to Mr. Alfred King, a gas engineer of Liverpool,

who invented and constructed such an instrument in 1853, for the

use of the Liverpool Observatory, and subsequently designed a larger

one, which is still in use, furnishing a very perfect record, magnified

five-and-a-half times.

Fahrenheit's Baromeier.—Fahrenheit's barometer consists of a tube

bent several times, the lower portions of which contain mercury; the

upper portions are filled with water, or any other liquid, usually

117.—Counterpoised Barometer,
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Fig. 118.—Fahrenheit's Barometer.

coloured. It is evident that the atmospheric pressure is balanced by
the sum of the differences of level of the columns of mercury, dimin-

ished by the sum of the corresponding differences for the columns

of water; whence it follows that, by

employing a considerable number of

tubes, we may greatly reduce the height

of the barometric column. This circum-

stance renders the instrument interesting

as a scientific curiosity, but at the same

time diminishes its sensitiveness, and

renders it unfit for purposes of precision.

It is therefore never used for the

measurement of atmospheric pressure;

but an instrument upon the same prin-

ciple has recently been employed for the

measurement of very high pressures, as

will be explained in Chap. xix.

208. Photographic Registration.—Since the year 1847 various

meteorological instruments at the Royal Observatory, Greenwich,

liave been made to yield continuous traces of their indications by the

aid of photography, and the method is now generally employed at

meteorological observatories in this country. The Greenwich system

is fully described in the Greenwich Magnetical and Meteorological

Observations for 1847, pp. Ixiii.-xc. (published in 1849).

The general principle adopted for all the instruments is the same.

The photographic paper is wrapped round a glass cylinder, and the

axis of the cylinder is made parallel to the direction of the move-

ment which is to be registered. The cylinder is turned by clock-

work, with uniform velocity. The spot of light (for the magnets

and barometer), or the boundary of the line of light (for the ther-

mometers), moves, with the movements which are to be registered,

backwards and forwards in the direction of the axis of the cylinder,

while the cylinder itself is turned round. Consequently (as in

Morin's machine, Chap, vii.), when the paper is unwrapped from its

cylindrical form, there is traced upon it a curve of which the abscissa

is proportional to the time, while the ordinate is proportional to the

movement which is the subject of measure.

The barometer employed in connection with this system is a large

siphon barometer, the bore of the upper and lower extremities of its

arms being about I'l inch. A glass float in the quicksilver of the
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lower extremity is partially supported by a counterpoise acting on a

light lever (which turns on delicate pivots), so that the wire support-

ing the float is constantly stretched, leaving a definite part of the

weight of the float to be supported by the quicksilver. This lever is

lengthened to carry a vertical plate of opaque mica with a small aper-

ture, whose distance from the fulcrum is eight times the distance of

the point of attachment of the float-wire, and whose movement,

therefore (§ 205), is four times the movement of the column of a cis-

tern barometer. Through this hole the light of a lamp, collected by

a cylindrical lens, shines upon the photographic paper.

Every part of the cylinder, except that on which the spot of light

falls, is covered with a case of blackened zinc, having a slit parallel

to the axis of the cylinder; and by means of a second lamp shining

through a small fixed aperture, and a second cylindrical lens, a base

line is traced upon the paper, which serves for reference in subsequent

measurements.

The whole apparatus, or any other apparatus which serves to give

a continuous trace of barometric indications, is called a barograph;

^and the names thermograph, magnetograph, anemograph, &,c., are

similarly applied to other instruments for automatic registration.

Such registration is now employed at a great number of observa-

tories; and curves thus obtained are regularly published in the

Quarterly Reports of the Meteorological Oflace.



CHAPTER XVIII.

VARIATIONS OF THE BAROMETER,

209. Measurement of Heights by the Barometer.-—As the height of

the barometric column diminishes when we ascend in the atmo-

sphere, it is natural to seek in this phenomenon a means of measuring

heights. The problem would be extremely simple, if the air had

everywhere the same density as at the surface of the earth. In

fact, the density of the air at sea-level being about 10,500 times less

than that of mercury, it follows that, on the hypothesis of uniform

density, the mercurial column would fall an inch for every 10,500

inches, or 875 feet that we ascend. This result, however, is far from

being in exact accordance with fact, inasmuch as the density of the

air diminishes very rapidly as we ascend, on account of its great

compressibility.

210. Imaginary Homogeneous Atmosphere.—If the atmosphere

were of uniform and constant density, its height would be approxi-

mately obtained by multiplying 30 inches by 10,500, which gives

26,250 feet, or about 5 miles.

More accurately, if we denote by H the height (in centimetres) of

the atmosphere at a given time and place, on the assumption that

the density throughout is the same as the observed density D (in

grammes per cubic centimetre) at the base, and if we denote by P
the observed pressure at the base (in dynes per square centimetre),

we must employ the general formula for liquid pressure (§ 139)

T-g HD, which gives H = ^r- (1)

The height H, computed on this imaginary assumption, is usually

called the height of the homogeneous atmosphere, corresponding to

the pressure P, density D, and intensity of gravity g. It is some-

times called the pressure-height. The pressure-height at any point
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in a liquid or gas is the height of a cokimn of fluid, having the same

density as at the point, which would produce, by its weight, the

actual pressure at the point. This element frequently makes its

appearance in physical and engineering problems.

The expression for H contains P in the numerator and D in the

denominator; and by Boyle's law, which we shall discuss in the ensu-

ing chapter, these two elements vary in the same proportion, when

the temperature is constant. Hence H is not affected by changes of

pressure, but has the same value at all points in the air at which the

temperature and the value of g are the same.

211. Geometric Law of Decrease.—The change of pressure as we

ascend or descend for a short distance in the actual atmosphere, is

sensibly the same as it would be in this imaginary " homogeneous

atmosphere;" hence an ascent of 1 centimetre takes off g of the total

pressure, just as an ascent of one foot from the bottom of an ocean

00,000 feet deep takes off e o o o o o^ the pressure.

Since H is the same at all heights in any portion of the air which

is at uniform temperature, it follows that in ascending by successive

steps of 1 centimetre in air at uniform temperature, each step takes

off. the same fraction ^ of the current pressure. The pressures there-

fore form a geometrical progression whose ratio is 1 — j|. Iri an at-

mosphere of uniform temperature, neglecting the variation of g with

height, the densities and pressures diminish in geometrical progres-

sion as the heights increase in arithmetical progression.

212. Computation of Pressure-height.—For perfectly dry air at 0°

Cent., we have the data (§§ 195, 198),

D = -0012932 when P = 1013600

;

which give

p
^ = 783800000 nearly.

Taking g as 981, we have

H = XS3SQ nooo ^ 799000 centimetres nearly.

This is very nearly 8 kilometres, or about 5 miles. At the temper-

ature t° Cent., we shall have

H = 799000 (1 + -00366 t). (2)

Hence in air at the the temperature 0° Cent., the pressure diminishes

by 1 per cent, for an ascent of about 7990 centimetres or, say, 80

metres. At 20° Cent., the number will be 86 instead of 80
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213. Formula for determining Heights by the Barometer.—To

obtain an accurate rule for computing the difference of levels of two

stations from observations of the barometer, we must employ the

integral calculus.

Denote height above a fixed level by x, and pressure by p. Then

we have
dx, _ dp^

H ~ ~ p
'

and if p-^, jp^ are the pressures at the heights x^, x^, we deduce by in-

tegration
X2-X1 — B. (loge Pi - loge ^52)-

Adopting the value of H from (2), and remembering that Napierian

logarithms are equal to common logarithms multiplied by 2'3026, we
finally obtain

X2 - a;i= 1840000 (1 + -00366 t) {log pi - log ^2)

as the expression for the difference of levels, in centimetres. It is

usual to put for t the arithmetical mean of the temperatures at the

two stations.

The determination of heights by means of atmospheric pressure,

whether the pressure be observed directly by the barometer, or in-

directly by the boiling-point thermometer (which will be described

in Part II.), is called hypsometry {v\po£, height).

As a rough rule, it may be stated that, in ordinary circumstances,

the barometer falls an inch in ascending 900 feet.

214. Diurnal Oscillation of the Barometer.—In these latitudes, the

mercurial column is in a continual state of irregular oscillation; but

in the tropics it rises and falls with great regularity according to the

hour of the day, attaining two maxima in the twenty-four hours.

It generally rises from 4 a.m. to 10 a.m., when it attains its first

maximum; it then falls till 4, P.M., when it attains its first minimum;

a second maximum is observed at 10 p.m., and a second minimum at

4 a.m. The hours of maxima and minima are called the tropical

hours (rpETTw, to turn), and vary a little with the season of the year.

The difference between the highest maximum and lowest minimum
is called the diurnaP range, and the half of this is called the am^M-

' The epithets annual and diurnal, when prefixed to the words rariatior), range, ampli-

tude, denote the period of the variation in question ; that is, the time of a complete oscilla-

tion. Diurnal variation does not denote variation from one day to another, but the varia-

tion which goes through its cycle of values in one day of twenty-four hours. Annual

11
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Fig. 119.

Curves of l»iiu-ual Variation.

tude of the diurnal oscillation. The amount of the former does not

exceed about a tenth of an inch.

The character of this diurnal oscillation is represented in Fig. 119.

The vertical lines correspond to the hours of the day; lengths have

been measured upwards upon them proportional to the barometric

heights at the respective hours, diminished by a constant quantity;

and the points thus determined have been connected by a continuous

curve. It will be observed that the two lower curves, one of which

relates to Cumana, a town of Venezuela, situated in about 10° north

latitude, show strongly marked oscillations

corresponding to the maxima and minima. In

our own country, the regular diurnal oscilla-

tion is masked by irregular fluctuations, so

that a single day's observations give no clue

to its existence. Nevertheless, on taking

observations at regular hours for a number of

consecutive days, and comparing the mean
12 15 18 21 24 heights for the different hours, some indications

of the law will be found. A month's observa-

tions will be sufiicient for an approximate

indication of the law; but observations extending over some years

will be required, to establish with anything like precision the hours

of maxima and the amplitude of the oscillation.

The two upper curves represent the diurnal variation of the baro-

meter at Padua (lat. 45° 24') and Abo (lat. 60° 56'), the data having

been extracted from Kaemtz's Meteorology. We see, by inspection

of the figure, that the oscillation in question becomes less strongly

marked as the latitude increases. The range at Abo is less than

half a millimetre. At about the 70th degree of north latitude it

becomes insensible; and in approaching still nearer to the pole, it

appears from observations, which however need further confirmation,

that the oscillation is reversed; that is to say, that the maxima here

are contemporaneous with the minima in lower latitudes.

There can be little doubt that the diurnal oscillation of the

barometer is in some way attributable to the heat received from the

sun, which produces expansion of the air, both directly, as a mere

range denotes the range that occurs within a year. This rule is universally obserred by

writers of high scientific authority.

A table, exhibiting the values of an element for each month in the year, is a table of

annual (not monthly) variation ; or it may be more particularly described as a table of

variations from month to month.
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consequence of heating, and indirectly, by promoting evaporation;

but the precise nature of the connection between this cause and the

diurnal barometric oscillation has not as yet been satisfactorily

established,

215. Irregular Variations of the Barometer.—The height of the

barometer, at least in the temperate zones, depends on the state of

the atmosphere ; and its variations often serve to predict the changes

of weather with more or less certainty. In this country the baro-

meter generally falls for rain or S.W. wind, and rises for fine weather

or N.E. wind.

Barometers for popular use have generally the words

—

Set fair. Fair. Change. Rain. Much rain. Stormy.

marked at the respective heights

30-5 30 29-5 29 28-5 28 inches.

These words must not, however, be understood as absolute predic-

tions. A low barometer rising is generally a sign of fine, and a high

barometer falling of wet weather. Moreover, it is to be borne in

mind that the barometer stands about a tenth of an inch lower for

every hundred feet that we ascend above sea-level.

The connection between a low or falling barometer and wet

weather is to be found in the fact that moist air is specifically

lighter than dry, even at the same temperature, and still more when,

as usually happens, moist air is warmer than dry.

Change of wind usually begins in the upper regions of the air

and gradually extends downwards to the ground; hence the baro-

meter, being affected by the weight of the whole superincumbent

atmosphere, gives early warning.

216. Weather Charts. Isobaric Lines.—The probable weather can

be predicted with much greater certainty if the height of the

barometer at surrounding places is also known. The weather

forecasts issued daily from the Meteorological Office in London
are based on reports received twice a day from about sixty stations

scattered over the west of Europe, from the north of Norway to

Lisbon, and from the west of Ireland to Berlin. The reading of the

barometer reduced to sea-level at each place is recorded on a chart,

and curves called isobaric lines or isobars are drawn through places

at which the pressure has given values, proceeding usually by steps
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of a tenth of an inch. Curves called isothermal lines or isotherms

are also drawn through places of equal temperature. The strength

and direction of wind, and the state of weather and of sea are also

entered. The charts are compared with those of the previous day>

and from the changes in progress the ensuing weather can be inferred

with a fair probability of success.

The isobars furnish the most important aid in these forecasts;

for from their form and distribution the direction and strength of

the wind in each district can be inferred, and to a certain extent

the state of the weather generally. As a rule the wind blows from

places of higher to places of lower pressure, but not in the most

direct line. It deviates more than 45° to the right of the direct line

in the northern hemisphere, and to the left in the southern. This is

known as Buys Ballot's law, and is a consequence of the earth's

rotation.^

Very frequently a number of isobars lorm closed curves, encircling

an area of low pressure, to which, in accordance with the above law,

the wind blows spirally inwards, in the direction of watch-hands in

the southern hemisphere, and against watch-hands in the northern.

This state of things is called a cyclone. Cyclones usually approach

the British Islands from the Atlantic, travelling in a north-easterly

direction with a velocity of from ten to twenty miles an hour; some-

times disappearing within a day of their formation, and sometimes

lasting for several days. They are the commonest type of distri-

bution of pressure in western Europe, and are usually accompanied

by unsettled weather.

The opposite state of things,— that is, a centre of maximum
pressure from which the wind blows out spirally with watch-hands

in the northern and against watch-hands in the southern hemi-

sphere is called an anticyclone. It is usually associated with light

winds and fine weather, and is favourable to frost in winter. Anti-

cyclones usually move and change slowly.

The names cyclone and anticyclone are frequently applied to the

distributions of pressure above indicated without taking account of

the wind.

The strength of wind generally bears some proportion to the

^ The influence of the earth's rotation in modifying the direction of winds is discussed

in a paper "On the General Circulation and Distribution of the Atmosphere," by the

editor of this work, in the Philosophical Magazine for September, 1871. Some of the

results ar-e stated in the last chapter of Part II, of the present work.
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steepness of the barometric gradient, in other words to the close-

ness of the isobars. Violent storms of wind are usually cyclones,

and it was to these that the name was first applied. The phenomenon

reaches its extreme form in the tornadoes of tropical regions. The

persistence of a cyclone can be explained by the fact that the

centrifugal force of the spirally moving air tends to increase the

original central depression.

The frontispiece of this volume is a chart of pressure and wind

for the United States of America at 4"35 p.m. Washington time on

the 15th of January, 1877, when a great storm was raging. The

figures marked against the isobars are the pressures to tenths of an

inch. They exhibit a very steep gradient on the north-west side of

the central depression—a tenth of an inch for about forty-three

nautical miles. The direction of the wind is shown by arrows,

and the number of feathers on each arrow multiplied by five gives

the velocity of the wind in miles per hour. It will be seen that the

strongest winds are in or near the region of steepest gradient, and

that the directions of the winds are for the most part in accordance

with Buys Ballot's law.



CHAPTER XIX.

boyle's (or mariotte's) law.^

217. Boyle's Law.—All gases exhibit a continual tendency to ex-

pand, and thus exert pressure against the vessels in which they are

confined. The intensity of this pressure depends upon the volume

which they occupy, increasing as this volume diminishes. By a

number of careful experiments upon this point, Boyle and Mariotte

independently established the law that this pressure varies inversely

as the volume, provided that the temperature remain constant. As

the density also varies inversely as the volume, we may express the

law in other words by saying that at the same temperature the

density varies directly as the pressure.

If y and V be the volumes of the same quantity of gas, P and F,

D and D', the corresponding pressures and densities, Boyle's law will

be expressed by either of the equations

P _ V' P _ D
P' - V ' P' ~ D'"

218. Boyle's Tube.—The correctness of this law may be verified

by means of the following apparatus, which was employed by both

the experimenters above named. It consists (Fig. 120) of a bent

tube with branches of unequal length; the long branch is open,

and the short branch closed. The tube is fastened to a board

provided with two scales, one by the side of each branch. The

^ Boyle, in his Defence of the Doctrine touchiny the Spring and Weight of the Air against

the Objections of Franciscus Linus, appended to New Experiments, Physico-mechanical, &c.

(second edition, 4to, Oxford, 1662), describes the two kinds of apparatus represented in

Figs. 120, 121 as having been employed by him, and gives in tabular form the lengths of

tube occupied by a <body of air at various pressures. These observed lengths he compares

Yfith. the theoretical lengths computed on the assumption that volume varies reciprocally

as pressure, and points out that they agree within the limits of experimental error.

Mariotte's treatise, De la Nature de I'Air, is stated in the Biographic Uniierselle to have

been published in 1679. (See Preface to Tait's Thermodynamics, p. iv.)
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graduation of both scales begins from the same horizontal line

through 0, 0. Mercmy is first poured in at the extremity of the

long branch, and by inclining the apparatus to either side, and

cautiously adding more of the liquid if required, the mercury

can be made to stand at the same level in both

branches, and at the zero of both scales. Thus

we have, in the short branch, a quantity of air

separated from the external air, and at the same

pressure. Mercury is then poured into the long

branch, so as to reduce the volume of this inclosed

air by one-half; it will then be found that the

difference of level of the mercury in the two

branches is equal to the height of the barometer

at the time of the experiment; the compressed air

therefore exerts a pressure equal to that of two

atmospheres. If mor6 mercury be poured in so as

to reduce the volume of the air to one-third or one-

fourth of the original volume, it will be found that

the difference of level is respectively two or three

times the height of the barometer; that is, that the

compressed air exerts a pressure equal respectively

to that of three or four atmospheres. This ex-

periment therefore shows that if the volume of the

gas becomes two, three, or four times as small, the

pressure becomes two, three, or four times as great.

This is the principle expressed in Boyle's law.

The law may also be verified in the case where

the gas expands, and where its pressure conse-

quently diminishes. For this purpose a barometric

tube (Fig. 121), partially filled with mercury, is

inverted in a tall vessel, containing mercury also,

and is held in such a position that the level of the

liquid is the same in the tube and in the vessel.

The volume occupied by the gas is marked, and the tube is raised;

the gas expands, its pressure diminishes, and, in virtue of the excess

of the atmospheric pressure, a column of mercury ab rises in the

tube, such that its height, added to the pressure of the expanded air,

is equal to the atmospheric pressure. It will then be seen that if

the volume of air becomes double what it was before, the height of

the column raised is one-half that of the barometer; that is, the

iiiiiiii
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expanded air exerts a pressure equal to half that of the atmosphere.

If the volume is trebled, the height of the column is two-thirds that

of the barometer; that is, the pressure of the

expanded air is one-third that of the atmosphere,

a result in accordance with Boyle's law.

219. Despretz's Experiments.—The simplicity of

Boyle's law, taken in conjunction with its apparent

agreement with facts, led to its general acceptance

as a rigorous truth of nature, until in 1825

Despretz published an account of experiments,

showing that different gases are unequally com-

pressible. He inverted in a cistern of mercury

several cylindrical tubes of equal height, and

filled them with different gases. The. whole

apparatus was then inclosed in a strong glass

vessel filled with water, and having a screw piston

as in Qj]rsted's piesometer (§ 130). On pressure

being applied, the mercury rose to unequal heights

in the different tubes, carbonic acid for example

being more reduced in volume than air. These

experiments proved that even supposing Boyle's

law to be true for one of the gases employed,

^j^'
^^^^"^^'"°°^?^^°A^?®'^ it could not be rigorously true for more than

Law for Expauuing Air. O J

one.

In 1829 Dulong and Arago undertook a laborious series of experi-

ments with the view of testing the accuracy of the law as applied to

air; and the results which they obtained, even when the pressure was

increased to twenty-seven atmospheres, agreed so nearly with it as

to confirm them in the conviction that, for air at least, it was rigor-

ously true. When re-examined, in the light of later researches, the

results obtained by Dulong and Arago seem to point to a different

conclusion.

220. Unequal Compressibility of Different Gases.—The unequal

compressibility of different gases, which was first established by

Despretz's experiments above described, is now usually exhibited by

the aid of an apparatus designed by Pouillet (Fig. 122). A is a cast-

iron reservoir, containing mercury surmounted by oil. In this latter

liquid dips a bronze plunger P, the upper part of which has a thread

cut upon it, and works in a nut, so that the plunger can be screwed

up or down by means of the lever L. The reservoir A communicates
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by an iron tube ^Yith another cast-iron vessel, into which are firmly-

fastened two tubes TT about six feet in length and xV^J^ of ^^'^ iiich

in internal diameter, very carefully calibrated. Equal

volumes of two gases, perfectly dry, are introduced into

these tubes through their upper ends, which are then

hermetically sealed. The plunger is then made to

descend, and a gradually increasing pressure is exerted,

the volumes occupied by the gases are measured, and it

is ascertained that no two gases follow precisely the

same law of compression. The difference, however, is

almost insensible when the gases employed are those

which are very difficult to liquefy, as air, oxygen,

hydrogen, nitrogen, nitric oxide, and marsh-gas. But

when we compare any one of these with one of the

more liquefiable gases, such as carbonic acid, cyanogen,

or ammonia, the difference is rapidly and distinctly

manifested. Thus, under a pressure of twenty-five

atmospheres, carbonic acid occupies a volume which is

only 4ths of that occupied by air.

221, Regnault's Experiments.—Boyle's law, therefore,

is not to be considered as rigorously exact; but it is so

nearly exact that to demon-

strate its inaccuracy for one

of the more permanent gases,

and still more to determine

the law of deviation for each

gas, very precise methods of

measurement are necessary.

In ordinary experiments on

compression, and even in the

elaborate investigations of

Dulong and Arago, a definite

portion of gas is taken and

successively diminished in

volume by the application of

continually increasing pres-

sure. In experiments of

this kind, as the pressure

increases, the volume under measurement becomes smaller, and the

precision with wlxich it can be measured consequently diminishes.

Fig. 122.— Puirjlet''! .\].ii:iratus for sliowiiic; Uut
Coinjjresoibility of Liiifeient Gases.

iual
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Eegnault adopted the plan of operating in all cases upon the same

volume of gas, which being initially at different pressures,

was always reduced to one-half. The pressure was

observed before and after this operation, and, if Boyle's

law were true, its value should be found to be doubled.

In this way the same precision of measurement is obtained

at high as at low pressures.

A general view of Kegnault's apparatus is given in

Fig. 123. There is an iron reservoir containing mercury,

furnished at the top with a force-pump for water. The

lower part of this reservoir communicates with a cylinder

which is also of iron, and in which are two openings to

admit tubes. Communication between the reservoir and

the cylinder can be established or interrupted by means

of a stop-cock R, of very exact workmanship. Into one

of the openings is fitted the

lowest of a series of glass tubes

A, which are placed end to end,

and firmly joined to each other

by metal fittings, so as to

form a vertical column of

about twenty-five metres in

height.

The height of the mercurial

column in this long mano-

metric tube could be exactly

Fig. 123.—Regnault's Apparatus for Testing Boyle's Law.
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determined by means of reference marks placed at distances of

about 'OS of a metre, and by the graduation on the tubes forming

the upper part of the column. The mean temperature of the

mercurial column was given by thermometers placed at different

heights. Into the second opening in the cylinder fits the lower

extremity of the tube B, which is divided into millimetres, and also

gauged with great accuracy. This tube has at its upper end a stop-

cock r which can open communication with the reservoir Y, into

which the gas to be operated on is forced and compressed by means

of the pump P.

An outer tube, which is not shown in the figure, envelops the

tube B, and, being kept full of water, which is continually renewed,

enables the operator to maintain the tube at a temperature sensibly

constant, which is indicated by a very delicate thermometer. Before

fixing the tube in its place, the point corresponding to the middle of

its volume is carefully ascertained, and after the tube has been per-

manently fixed, the distance of this point from the nearest of the

reference marks is observed.^

After these explanatory remarks we may describe the mode of

conducting the experiments. The gas to be operated on, after being

first thoroughly dried, was introduced at the upper part of the tube B,

the stop-cock of the pump being kept open, so as to enable the gas

to expel the mercury and occupy the entire length of the tube. The

force-pump was then brought into play, and the gas was reduced to

about half of its former volume; the pressure in both cases being

ascertained by observing the height of the mercury in the long tube

above the nearest mark. It is important to remark that it is not at

all necessary to operate always upon exactly the same initial volume,

and reduce it exactly to one-half, which would be a very tedious

operation; these two conditions are approximately fulfilled, and the

graduation of the tube enables the observer always to ascertain the

actual volumes.

222. Results.—The general result of the investigations of Regnault

* Kegnault's apparatus was fixed in a small square tower of about fifteen metres in

height, forming part of the buildings of the College de France, and which had formerly

been built by Savart for experiments in hydraulics. The tower could therefore contain

only the lower part of the manometric column ; the upper part rose above the platform at

the top of the tower, resting against a sort of mast which could be ascended by the ob-

server. The readings inside the tower could be made by means of a cathetometer, but this

was impossible in the upper portion of the column, and for this reason the tubes forming

this portion were graduated.

—

D.
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is, that Boyle's law does not exactly represent the compressibility

even of air, hydrogen, or nitrogen, which, with carbonic acid, were

the gases operated on by him. He found that for all the gases on

which he operated, except hydrogen, the product VP of the volume

and pressure, instead of remaining constant, as it would if Boyle's

law w^ere exact, diminished as the compression was increased. This

diminution is particularly rapid in the cases of the more liquefiable

gases, such as carbonic acid, at least when the experiments are con-

ducted at ordinary atmospheric temperatures. The lower the tem-

perature, the greater is the departure from Boyle's law in the case

of these gases. For hydrogen, he found the departure from Boyle's

law to be in the opposite direction;—the product VP increased as

the gas was more compressed.

223. Manometers or Pressure-gauges.—Manometers or pressure-

gauges are instruments for measuring the elastic force of a gas or

vapour contained in the interior of a closed space. This elastic force

is generally expressed in units called atmospheres (§ 198), and is often

measured by means of a column of mercury.

When one end of the column of mercury is open to the air, as in

Regnault's experiments above described, the gauge is called an open

mercurial gauge.

The open mercurial pressure-gauge is often used in the arts to

measure pressures which are not very considerable. Fig. 124 repre-

sents one of its simplest forms. The apparatus consists of a box,

generally of iron, at the top of which is an opening closed by a screw

stopper, which is traversed by the tube b, open at both ends, and

dipping into the mercury in the box. The air or vapour whose

elastic force is to be measured enters by the tube a, and presses upon

the mercury. It is evident that if the level of the liquid in the box

is the same as in the tube, the pressure in the box must be exactly

equal to that of the atmosphere. If the mercury in the tube rises

above that in the box, the pressure of the air in the box must exceed

that of the atmosphere by a pressure corresponding to the height of

the column raised. The pressures are generally marked in atmo-

spheres upon a scale beside the tube.

224. Multiple Branch Manometer.—When the pressures to bemea-
- sured are considerable, as in the boiler of a high-pressure steam-

engine, the above instrument, if employed at all, must be of a length

corresponding to the pressure. If, for instance, the pressure in ques-

tion is eight atmospheres, the length of the tube must be at least
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8 X 30 inches= 20 feet. Such an arrangement is inconvenient even for

stationary machines, and is entirely inapplicable to movable machines.

Without departing from the principle of the open mercurial pres-

sure-gauge, namely, the balancing of the pressure to be observed

against the weight of a liquid increased by one atmosphere, we may
reduce the leng-th of the instrument by an artifice already employed

by Fahrenlieit in his barometer (§ 207).

The apparatus for this purpose consists of an iron tube ABCD

e^r-^J:^

Fig 124 —Open
Mercurial Manometer.

ii;, llj —Multiple LiauLh Mau nueter.

(Fig. 125) bent back upon itself several times. The extremity A
communicates with the boiler by a stop-cock, and the last branch

CD is of glass, with a scale by its side.

The first step is to fill the tube with mercury as far as the level

MN. At this height are holes by which the mercury escapes when
it 1 caches them, and which are afterwards hermetically sealed. The

upper portions are filled with water through openings which are also

stopped after the tube has been filled. If the mercury in the first

tube, which is in communication with the reservoir of gas, falls

through a distance h, it will alternately rise and fall through the same

distance in the other tubes. The diflference of pressure between

the two ends of the gauge is represented by the weight of a column

of mercury of height 10/i diminished by the weight of a column of

water of height 8/i. Reduced to mercury, the difierence of pressure

is therefore 10^ — ^^^ = 9*4^.
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225. Compressed-air Manometer.—This instrument, which may as-

sume different forms, sometimes consists, as in Fig. 126, of a bent

tube AB closed at one end a, and containing within the space Aa a

quantity of air, which is cut off from external communication by a

column of mercury. The apparatus has been so constructed, that

when the pressure on B is equal to that of the atmosphere, the mer-

cury stands at the same height in both branches; so that, under

these circumstances, the inclosed air is exactly at atmospheric pres-

sure. But if the pressure increases, the mercury is forced into the

left branch, so that the air in that branch is compressed, until equi-

librium is established. The pressure exerted by

the gas at B is then equal to the pressure of the

compressed air, together with that of a column of

mercury equal to the difference of level of the liquid

in the two branches. This pressure is usually

expressed in atmospheres on the scale ah.

The graduation of this scale is effected empiri-

cally in practice, by placing the manometer in

communication with a reservoir of compressed air

^'^' .126. -Compressed- ^l^Qse pressure is given by an open mercurial gauge,
air Manometer. -l r> J r Ci o '

or by a standard manometer of any kind.

If the tube AB be supposed cylindrical, the gTaduation can be

calculated by an application of Boyle's law.

Let I be the length of the tube occupied by the inclosed air when
its pressure is equal to that of one atmosphere; at the point to which

the level of the mercury rises is marked the number 1. It is required

to find what point the end of the liquid column should reach when
a pressure of n atmospheres is exerted at B. Let x be the height of

this point above 1; then the volume of the air, which was originally I,

has become l — x, and its pressure is therefore equal to H v^—, H being

the mean height of the barometer. This pressure, together with that

due to the difference of level 2^, is equivalent to n atmospheres.

We have thus the equation

—

H ,-^ + 2 a; = »iH,
I - X

whence
2«2 _ (nH + 2l)x+ {n- 1) m-0.

_ nB. + 2l:i= V (nH + 21)^ - 8 {n - 1) HIX- -

We thus find two values of x; but that given by taking the positive
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sign of the radical is inadmissible; for if we put %=!, we ought to

have cc=o, which will not be the case unless the sign of the radical

is negative.

By giving n the successive values 1|-, 2, 2-J-, 3, &c., in this

expression for x, we find the points on the scale corresponding to

pressures of one atmosphere and a half, two atmospheres, &c.

As the pressure increases, the distance traversed by the mercury

for an increment of pressure equal to one atmosphere becomes

continually less, and the sensibility of the instrument accordingly

decreases. This inconvenience is partly avoided by the arrange-

ment shown in Fig. 127. The branch containing the air is made
tapering so that, as the mercury rises, equal changes of volume

correspond to increasing lengths.

226. Metallic Manometers.-—The fragility of glass tubes, and the

fact that they are liable to become opaque by the mercury clinging

Fig. 127.—Compressed air
Manometer. Fig. 128.—Bourdon's Pressure L'au^e.

to their sides, are serious draAvbacks to their use, especially in

machines in motion. Accordingly, metallic manometers are often

employed, their indications depending upon changes of form effected

by the pressure of gas on its containing vessel. We shall here men-
tion only Bourdon's gauge (Fig. 128). It consists essentially of a

copper tube of elliptic section, which is bent through about 540°, as

represented in the figure. One of the extremities communicates by
a stop-cock with the reservoir of steam or compressed gas; to the

other extremity is attached a steel needle which traverses a scale.

When the pressure is the same within and without the tube the end

of the needle stands at the mark 1 ; but if the pressure within the
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tube increases, the curvature diminishes, the free extremity of the

tube moves away from the fixed extremity, and the needle traverses

the scale.

227. Mixture of Gases.—When gases of different densities are

inclosed in the same space, experiment shows that, even under the

most unfavourable circumstances, an

intimate mixture takes place, so that

each gas becomes uniformly diffused

through the entire space. This fact

has been shown by a decisive ex-

periment due to Berthollet. He took

two globes (Fig. 129) which could

be screwed together, and placed them

in a cellar. The lower globe was

filled with carbonic acid, the upper

globe with hydrogen. Communication

was established between them, and

after some time it was ascertained

that the gases had become uniformly

mixed; the proportions being the

same in both globes. Gaseous diffu-

sion is a comparatively rapid process.

The diffusion of liquids, when not assisted by gravity, is, on the

other hand, exceedingly slow.

If several gases are inclosed in the same space, each of them

exerts the same pressure as if the others were absent, in other

words, the pressure exerted by the mixture is equal to the sum of

the pressures which each would exert separately. This is known
as " Dalton's law for gaseous mixtures." The separate pressures

can easily be calculated by Boyle's law, when the original pressure

and volume of each gas are known.

For example, let V and P, V and P', V" and P" be the volumes

and pressures of the gases which are made to pass into a vessel of

volume U. The first gas exerts, when in this vessel, a pressure

VP V'P'
equal to -^j , the second a pressure equal to -j^, the third a pressure

Alivt lie t G I es

equal to U ' and so on, so that the total pressure M is equal to

VP
u

VT'
^
v^'^

whence MU = YP -f V'F + V'T".u u
This law can easily be verified by passing different volumes of
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gas into a graduated glass jar inverted over mercury, after having

first measured their volumes and pressures. It may be oLserved that

Boyle's law is merely a particular case of this. It is what this law

becomes when applied to a mixture of two portions of the same

gas.

228. Absorption of Gases by Liquids and Solids.—All gases are to

a greater or less extent soluble in water. This property is of con-

siderable importance in the economy of nature; thus the life of

aquatic animals and plants is sustained by the oxygen of the air

which the water holds in solution. The volume of a given gas that

can be dissolved in water at a given temperature is generally found

to be approximately the same at all pressures/ and the ratio of this

volume to that of the water which dissolves it is called the co-

efficient of solubility, or of ahsorption. At the temperature 0°

Cent., the coefficient of solubility for carbonic acid is 1, for oxygen
•04, and for ammonia 1150.

If a mixture of two or more gases be placed in contact with w^ater,

each gas will be dissolved to the same extent as if it were the only

gas present.

Other liquids as well as water possess the power of absorbing

gases, according to the same laws, but with coefficients of solubility

which are diiferent for each liquid.

Increase of temperature diminishes the coefficient of solubility,

which is reduced to zero when the liquid boils.

Some solids, especially charcoal, possess the power of absorbing-

gases. Boxwood charcoal absorbs about nine times its volume of

oxygen, and about ninety times its volume of ammonia. When
saturated with one gas, if put into a different gas, it gives up a por-

tion of that w^hich it first absorbed, and takes up in its place a

quantity of the second. Finely-divided platinum condenses on the

surface of its particles a large quantity of many gases, amounting

in the case of oxygen to many times its own volume. If a jet of

hydrogen gas be allowed to fall, in air, upon a ball of sjDongy

platinum, the gas combines rapidly, in the pores of the metal,

with the oxygen of the air, giving out an amount of heat w^hich

renders the platinum incandescent and usually sets fire to the jet

of hydrogen.

Most solids have in ordinary circumstances a film of air adhering

^ Hence the mass of gas absorbed is directly as the pressure.

12
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to their surfaces. Hence iron filings, if carefully sprinkled on water,

will not be wetted, but will float on the surface, and hence also the

power which many insects have of running on the surface of water

without wetting their feet. The film of air in these cases prevents

wettings and hence, by the principles of capillarity, produces in-

creased buoyancy.
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Am-PUMR

229. Air-pump.—The air-pump was invented by Otto Guericke

about 1G50, and has since undergone some improvements in detail

which have not altered the essential parts of its construction.

Fig. 1.30 represents the pattern most commonly adopted in France.

It contains a glass or metal cylinder called the barrel, in which

a piston works. This piston has an opening through it which is

closed at the lower end by a valve S opening upwards. The barrel

Fig. 130.—Air-pump

communicates with a passage leading to the centre of a brass surface

carefully polished, which is called the plate of the air-pump. The
entrance to the passage is closed by a conical stopper S', at the ex-

tremity of a metal rod which passes through the piston-head and

works in it tightly, so as to be carried up and down with the motion

of the piston. A catch at the upper part of the rod confines its

motion within very narrow limits, and only permits the stopper to

rise a small distance above the opening.
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Suppose now that the piston is at the bottom o£ the cylinder, and

is raised. The valve S' is opened, and air from the receiver E rushes

into the cylinder. On lowering the piston, the valve S' closes its

opening, the air which has entered the cylinder cannot return into

the receiver, and, on being compressed, raises the valve S in the

piston, and escapes into the air outside. On raising the piston

again, a portion of the air remaining in the receiver will pass into

the cylinder, whence it will escape on pushing down the piston, and

so on.

We see, then, that if this motion be continued, a fresh portion of

the air in the receiver will be removed at each successive stroke.

But as the quantity of air removed at each stroke is only a fraction

of the quantity which was in the receiver at the beginning of the

stroke, we can never produce a perfect vacuum, though we might

approach as near to it as we pleased if this were the only obstacle.

230. Theoretical Rate of Exhaustion.—It is easy to calculate the

quantity of air left in the receiver after a given number of strokes

of the piston. Let V be the volume of the barrel, Y' that of the

receiver, and M the mass of air in the receiver at first. On raising

the piston, the air which occupied the volume V occupies a volume

V + V; of the air thus expanded the volume V is removed, and the

volume V left, being y' + y ^^ *^^ whole quantity or mass M. The

quantity remaining after the second stroke is .^^ -^ of that after the

first, or is ( :^,—^ j
M; and after n strokes ( ^, j M. Hence the

density and (by Boyle's law) the pressure are each reduced by n

strokes to (^,-^ j of their original values.

This calculation gives the theoretical rate of exhaustion for a

perfect pump. Ordinary pumps come nearly up to this standard

during the earlier part of the process of exhaustion; but as further

progress is made, the imperfections of the apparatus become more

sensible, and set a limit to the exhaustion attainable.

231. Mercurial Gauges.—To enable the operator to observe the

progress of the exhaustion, the instrument is usually provided with

a mercurial gauge. Sometimes, as in Fig. 130, this consists of a

short siphon-barometer, the difference of levels between its two
columns being the measure of the pressure in the receiver. Another

plan is to have a straight tube open at both ends, and more than 80



EATE OF EXHAUSTION. 181

inches long; its upper end being connected with the receiver, while

its lower end dips into a cistern of mercury. As exhaustion pro-

ceeds, the mercury rises in this tube, and its height above the

mercury in the cistern measures the diiference between the pressure

in the receiver and that in the external air.

232. Admission Stop-cock.—After the receiver has been exhausted

of air, if it were required to raise it from the plate, a very consider-

able force would be necessary, amounting to as many times fifteen

po^^nds as the base of the receiver contained square inches. This

difficulty is obviated by having an admission stop-cock E., which is

shown in section above. It is perforated by a straight channel,

which, when the machine is being worked, forms part of the com-

municating passage. At 90° from the extremities of this channel is

another opening O, forming the mouth of a bent passage, leading to

the external air. When we wish to admit the air into the receiver,

we have only to turn the stop-cock so as to bring the opening to

the side next the receiver; if, on the contrary, we turn it towards

the pump-barrel, all communication between the pump and the

receiver is stopped, the risk of air entering is diminished, and the

vacuum remains good for a greater length of time. This precaution

is taken when we wish to leave bodies in a vacuum for a consider-

able time. Another method is to employ a separate plate, which

can be detached so as to leave the machine available for other pur-

poses.

233. Double-barrelled Air-pump.^The machine just described has

only a single pump-barrel; air-pumps of this kind are sometimes

employed, and are usually worked by a lever like a pump-handle.

With this arrangement, it is evident that no air is expelled in the

down-stroke; and that the piston, after having expelled the air from

the barrel in the up-stroke, must descend idle in order to prepare

for the next stroke.

Double-barrelled pumps are more frequently used. An idea of

their general arrangement may be formed from Figs. 131, 132, and

133. Fig. 133 gives the machine in perspective. Fig. I3l is a section

through the axes of the pump-barrels, and Fig. 132 shows the manner
in which communication is established between the receiver and the

two barrels. It will be observed that the two passages from the

barrels unite in a single passage to the centre of the plate jp.

Two racks carrying the pistons CC work with the pinion P. This

pinion is turned by a double-handed lever, which is moved alter-
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nately in opposite directions. In this arrangement, when one piston

ascends the other descends, and consequently in each single stroke

the air of the receiver passes into one or other pump-barrel. A
vacuum is thus produced by half the number of strokes which would

be required with a single-barrelled pump. It has besides another

advantage, as compared with the single-barrelled pump above

described. In that pump the force required to raise the piston

increases as the exhaus-

tion proceeds, and when
it is nearly completed

there is the resistance of

almost an atmosphere to

be overcome. In the

Fig. 131. Double-barrelled Air-pump. Fis. 132.

double-barrelled pump, with the same construction of barrel, the

force opposing the ascent of one piston is precisely equal, at the

beofinnino- of each stroke, to that which assists the descent of

the other. This equality, however, exists only at the beginning

of the stroke; for the air below the descending piston is compressed,

and its tension increases till it becomes equal to that of the atmo-

sphere and raises the piston valve. During the remainder of the

stroke, the resistance to the ascent of the other piston is entirely

uncompensated, and up to this point the compensation has been

gTadually diminishing. But the more nearly we approach to a

perfect vacuum, the later in the stroke does this compensation occur.
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The pump, accordingly, becomes easier to work as the exhaustion

proceeds.

234. Single-barrelled Pumps with Double Action.—We do not,

however, require two pump-barrels in order to obtain double action,

Fig. 133.—Air-pump.

as the same effect may be obtained with a single barrel. An arrange-

ment for this purpose was long ago suggested by Delahire for water-

pumps; but the principle has only lately been applied to the con-

struction of air-pumps.

Fig. 134 represents the single barrel of the double-acting pump of

Bianchi. It will be seen that the piston-valve opens into the hollow

piston-rod; a second valve, also opening upwards, is placed at the

top of the pump-barrel. Two other openings, one above, the other

below, serve to establish communication, by means of a bent vertical

tube, between the pump-barrel and the passage to the plate. These

openings are closed alternately by two conical stoppers at the two

extremities of a metal rod passing through the piston, and carried

with it in its vertical movement by means of friction. When the
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j)iston ascends, as in the figure, the upper opening is closed and the

lower one is open; when the piston begins to descend, the opposite

effect is immediately produced. Accordingly we see that, whichever

be the direction in which the piston is moving, the receiver is being

exhausted of air. In fact, when the pis-

ton ascends, air from the receiver will

enter by the lower opening, and the air

above the piston will be gradually com-

pressed, and will finally escape by the

valve above. In the descending move-

ment, air will enter by the upper opening,

and the compressed air beneath the piston

will escape by the piston-valve. The

movement of the piston is produced by a

peculiar arrangement shown in Fig. 135,

which gives a general view of the ap-

paratus.

The pump-barrel, which is composed

entirely of cast-iron, oscillates about an

axis passing through its base. On the

top are guides in which the end of a

crank travels. The pump is worked by turning a heavy fly-

wheel of cast-iron, on the axis of which is a pinion which drives

a toothed wheel on the axis of the

crank. The end of the crank is attached

to the extremity of the piston-rod. It

is evident that on turning the fly-wheel

the pump-barrel will oscillate from side

to side, following the motions of the

crank, and the piston will alternately

ascend and descend in the barrel, the

length of which should be equal to the

diameter of the circle described by the

end of the crank.

235. English forms of Air-pump.—
Some of the drawbacks to the single-

barrelled pump are obviated by inserting

a valve, opening upwards, in the top of the barrel as at U, Fig. 136.

The top of the piston is thus relieved from atmospheric pressure,

and the operation of pumping does not become more laborious as

Fi^' l.U.

Earrel of Biaiiclii's Air pump.

J
Fig. 136





186 AIR-PUMP.

the exhaustion proceeds, but less laborious, the diiference being most

marked when tho receiver is small.

In the up-stroke, the piston-valve V keeps shut, and the air above

the piston is pushed out of the barrel through the valve U. In the

down-stroke, U is kept closed by the preponderance of atmospheric

pressure outside, and V opens, allowing the air to pass up through

it as the piston descends to the bottom of the barrel. When the

exhaustion is far advanced, U does not open till the piston has

nearly reached the top. This is a simple and good form of pump.

Another form very much in use in this country is the double-act-

ing pump of Professor T. Tate, the working parts of which are

shown in Fig. 137. CD is the barrel; A and B are two

solid pistons rigidly connected by a rod, and moved by

the piston-rod AH, which passes through a stuffing-

box S. VV are valves in the two ends of the barrel,

both opening outwards, and R is a passage leading

from the middle of the cylinder to the receiver. The

distance between the extreme faces of the pistons is

about fths of an inch less than half the length of the

cylinder. The volume of air expelled at each single

stroke is thus about half the volume of the cylinder.

Tatll'pump
T^^is figure and description are in accordance with

the original account of the pump given by the inventor

in the Philosophical Magazine. It is now usual to replace the two
pistons by a single piston of great thickness, its two faces being as

far apart as the extreme faces of the two pistons in the figure. It

is also usual to make the barrel horizontal.

The valves of these pumps, and of most English pumps are " silk

valves." They consist of a short and narrow slit in a thin plate of

brass, with a flap of oiled silk secured at both ends to the plate, in

such a position that its central portion covers the slit. When the

pressure of the air is greater on the further side of the plate than

on the side where the silk is, the flap is slightly lifted and the air

gets through ; but excess of pressure on the near side presses the flap

down over the slit and makes it air-tight.

236. Various Experiments with the Air-pump.—At the time when
the air-pump was invented, several experiments were devised to

show the eflects of a vacuum, some of which have become classical,

and are usually repeated in courses of experimental physics.

Burst Bladder.—On the plate of an air-pump (Fig. 138) is
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placed a glass cylinder open at the bottom, and having a piece ot*

bladder or thin indian-rubber tightly stretched over the to]3. As

the exhaustion proceeds, this bends inwards in consequence of the

atmospheric pressure above it, and finally bursts with a loud report.

Magdeburg Hemispheres.—We take two hemispheres (Fig. 139),

which can be exactly fitted on -each other; their exact adjustment

is further assisted by a

projecting internal rim,

which is smeared with

lard. The apparatus is

exhausted of air through

the medium of the stop-

cock attached to one of the

hemispheres ; and when

a vacuum has been pro-

duced, it will be found

that a considerable force

is required to separate

the two parts, this force

increasing with the size

of the hemispheres.

This resistance to sep-

aration is due to the normal exterior pressure of the air on every

point of the surface, a pressure which is counterbalanced by only

a very feeble pressure from the interior. In order to estimate

the resultant effect of these difterent pressures, let us suppose

that one hemisphere is vertically over the other, and that the

external surface is cut into a series of steps,—that is to say, of

alternate vertical and horizontal elements. It is evident that the

pressure urging either hemisphere towards the other will be simply

the sum of the pressures upon its horizontal elements; and this sum

is identical with the pressure which would be exerted upon a cir-

cular area equal to the common base of the hemispheres. For

example, if this area is 10 square inches, and the external pressure

exceeds the internal by 14 lbs. to the inch, the hemispheres will bo

pressed together with a force of 140 lbs.

Fountain in Vacuo.—The apparatus for this experiment consists

of a bell-shaped vessel of glass (Fig. 140), the base of which is pierced

by a tube fitted with a stop-cock which enables us to exhaust the

vessel of air. If, after a vacuum has been produced, we place tlie

Fig. 138.

Burst Bladder.
Fig. 139.

Magdebuig Hemispliere.
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lower end of the tube in a vessel of water, and open the stop-cock,

the liquid, being pressed externally by the atmosphere, mounts wp

the tube and ascends in a jet into the interior of the vessel. This

experiment is often made in the opposite manner. Under the

receiver of the air-pump is placed a vial partly filled with water,

and having its cork

pierced by a tube

open at both ends,

the lower end being

beneath the surface

of the water. As the

exhaustion proceeds,

the air in the vial,

by its excess of pres-

sure, acts upon the

liquid and makes it

issue in a jet.

237. Limit to the

Action of the Air-

pump,—We have said

above (§ 230) that the

air-pump does not

continue the process

of rarefaction indefi-

nitely, but that at a

certain stage its effect

ceases, and the pressure of the air in the receiver undergoes no

further diminution. If the pump is very badly made, this pres-

sure is considerable; but even with the most perfect machines it is

always sensible. A pump such as we have described may be con-

sidered good if it reduces the pressure of the air in the receiver to

a tenth of an inch of mercury. A fiftieth of an inch is perhaps the

lowest limit.

Leakage.—This limit to the action of the machine is due to vari-

ous causes. In the first place, there is frequently leakage at different

parts of the apparatus; and although at the beginning of the opera-

tion the quantity of air which thus enters is small in comparison

with that which is pumped out, still, as the exhaustion proceeds, the

air enters faster, on account of the diminished internal pressure, and

at the same time the quantity expelled at each stroke becomes less,

Fig. 140. —Fountain in Vacuo.
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SO that at length a point is reached at which the inflow and outJQow

are equal.

In order to prevent leakage as far as possible, the plate of the

pump and the base of the receiver must be truly plane so as to fit

accurately; the base of the receiver must be ground (that is rough-

ened) and must be well greased before pressing it down on the plate.

The piston must also be well lubricated with oil.

Space untkaversed by Pistox.—Another reason of imperfect

exhaustion is that, after all possible precautions, a space is still left

between the bottom of the pump-barrel and the lower surface of the

piston when the latter is at the end of its downward stroke. It is

evident that at this moment the air contained in this untraversed

space is of the same tension as the atmosphere. On raising the

piston, this air is indeed rarefied; but it still preserves a certain

tension, and it is evident that when the air in the receiver has been

brought to this stage of rarefaction, the machine will cease to pro-

duce any effect.

If V is the volume of this space, and V the volume of the pump-

barrel, the air, which at volume v has a pressure H equal to that of

the atmosphere, will have, at volume V, a pressure H :^- This gives

the limit to the action of the machine as deduced from the consider-

ation of the untraversed space.

Air GIVEN out by Oil.—Finally, perhaps the most important

cause, and the most difiicult to remedy, is the absorption of air by

the oil used for lubricating the pistons. This oil is poured on the

top of the piston, but the pressure of the external air forces it be-

tween the piston and the barrel, whence it falls in greater or less

quantity to the bottom of the barrel, where it absorbs air, and par-

tially yields it up at the moment when the piston begins to rise,

thus evidently tending to derange the working of the machine. It

has been attempted to get rid of untraversed space by employing a

kind of piston of mercury. This has also the advantage of fitting

the barrel more accurately, and thus preventing the entrance of air.

The use of oil is at the same time avoided, and we thus escape the

injurious effects mentioned above. We proceed to describe two

machines founded upon this principle.

238. Kravogl's Air-pump.—This contains a hollow glass cylinder

AB (Fig. 141) tapering at the upper end, and surmounted by a kind

of funnel. The piston is of the same shape as the cylinder, and is
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covered with a layer of mercury, whose depth over the point of the

piston is about -V^h of an inch when the piston is at the bottom of its

stroke, but is nearly an inch when the piston rises and fills the

4^

Fig. 111.—Kiavogl's Air-pump.

funnel-shaped cavity in which the pump-barrel terminates. A
small interval, filled by the liquid, is left between the barrel and the

piston; but at the bottom of the barrel the piston passes through

a leather box carefully made, so as to be perfectly air-tight.

The air from the receiver enters through the lateral opening e, and
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is driven, before the mercury into the funnel above. With the air

passes a certain quantity of mercury, which is detained by a steel

valve c at the narrowest part of the funnel. This valve rises auto-

matically when the surface of the mercury is at a distance of about

half an inch from the funnel, and falls back into its former position

when the piston is at the end of its upward stroke. In the down-

ward stroke, when the mercury is again half an inch from the funnel,

the valve opens again and allows a portion of the mercury to pass.

The effect of this arrangement is easily understood; there is no
" untraversed space," the presence of the mercury above and around

the piston causes a very complete fit, and excludes the external air;

and hence the machine, when well made, is very effective.

When this is the case, and when the mercury used in the apparatus

is perfectly dry, a vacuum of about a^^J^i of ^i^ iiich can be obtained.

The dryness of the mercury is a very important condition, for at

ordinary temperatures the elastic force of the vapour of v,"ater has a

very sensible value. If we wish to employ the full powers of the

machine, we must have, between the vessel to be exhausted of air

and the pump-barrel, a desiccating apparatus.

The arrangement of the valve e is peculiar. It is of a conical

form, so as, in its lowest position, to permit the passage of air coming

from the receiver. Its ascent is produced by the pressure of the

mercury, which forces it against the conical extremity of the passage,

and the liquid is thus prevented from escaping.

The figure represents a double-barrelled machine analogous to the

ordinary air-pump. Besides the pinion working with the racks of

the pistons, there is a second smaller pinion, not shown in the figure,

which governs the movements of the valves c. All the parts of this

machine, as the stop-cocks, valves, pipes, &c., must be of steel, to

avoid the action which the mercury would have upon any other

metal.

239. Geissler's Machine.—Geissler, of Bonn, invented a mercurial

air-pump, in which the vacuum is produced by communication

of the receiver with a Torricellian vacuum. Fig. 142 represents

this machine as constructed by Alvergniat. It consists of a vertical

tube, serving as a barometric tube, and communicating at the bottom,

by means of a caoutchouc tube, with a globe which serves as the

cistern.

At the top of the tube is a three-way stop-cock, by which com-

munication can be established either with the receiver to the left, or
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with a funnel to the right, which latter has an ordinary stop-cock

at the bottom. By means of another stop-cock on the left, com-

munication with the receiver can be opened or closed. These stop-

cocks are made entirely

of glass. The machine

works in the following

manner; communication

being established with

the funnel, the globe

which serves as cistern

is raised, and placed, as

shown in the figure, at

a higher level than the

stop-cock of the funnel..

By the law of equili-

brium in communicat-

ing vessels, the mercury

fills the barometric tube,

the neck of the funnel,

and part of the funnel

itself. If the communi-

cation between the fun-

nel and tube be now
stopped, and the globe

lowered, a Torricellian

vacuum is produced in

the upper part of the

vertical tube.

Communication is now
opened with the re-

ceiver; the air rushes

into the vacuum,and the

column of mercury falls

a little. Communication

is now stopped between

the tube and receiver, and opened between the tube and the funnel,

the simple stop-cock of the funnel being, however, left shut. If at

this moment the globe is replaced in the position shown in the

figure, the air tends to escape by the funnel, and it is easy to allow

it to do so. Thus, a part of the air of the receiver has been removed,

Fig. 142.— Geissler's Machine.
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and the apparatus is in the same position as at the beginning. The

operation described is equivalent to a stroke of the piston in the

ordinary machine, and this process mu^t be repeated till the receiver

is exhausted.

As the only mechanical parts of this machine are glass stop-cocks,

which are now executed with great perfection, it is capable of giving

very good results. With dry mercury a vacuum of xlTrth of an inch

may very easily be obtained. The working of the machine, how-

ever, is inconvenient, and becomes exceedingly laborious when the

receiver is large. It is therefore employed directly only for pro-

ducing a vacuum in very small vessels; when the spaces to be

exhausted of air are at all large, the operation is begun with the

ordinary machine, and the mercurial air-pump is only employed to

render the vacuum thus obtained more perfect.

240. Spreng-el's Air-pump.—This instrument, which may be re-

garded as an improvement upon Geissler's, is represented in its

simplest form in Fig. 143. cd is a glass tube longer than a baro-

meter tube, down which mercury is allowed to fall from the funnel

A. Its lower end dips into the glass vessel B, into which it is fixed

by means of a cork. This vessel has a spout at its side, a few milli-

metres higher than the lower end of the tube. The first portions

of mercury which run down will consequently close the tube, and

j)revent the possibility of air entering it from below. The upper

part of cd branches off at x into a lateral tube communicating with

the receiver R, which it is required to exhaust. A convenient

height for the whole instrument is 6 feet. The funnel A is

supported by a ring as shown in the figure, or by a board with a

hole cut in it. The tube cd consists of two parts, connected by a

j)iece of india-rubber tubing, which can be compressed by a clamp

so as to keep the tube closed when desired. As soon as the mercury

is allowed to run down, the exhaustion begins, and the whole length

of the tube, from x to d, is seen to be filled with cylinders of mercury

separated by cylinders of air, all moving downwards. Air and

mercury escape through the spout of the bulb B, which is above the

basin H, where the mercury is collected. This has to be poured

back from time to time into the funnel A, to pass through the tube

again and again until the exhaustion is completed.

As the exhaustion is progressing, it will be noticed that the inclosed

air between the mercury cylinders becomes less and less, until the

lower part of cd presents the aspect of a continuous column of mer-
13
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cury about 30 inches high. Towards this stage of the operation a

considerable noise begins to be heard, similar to that of a shaken

water-hammer, and common to all liquids shaken in a vacuum. The

operation may be considered completed when the column of mercury

does not inclose any air, and when a drop of mercury falls upon the

top of this column without inclosing the slightest air-bubble. The

height of this column now
corresponds exactly with the

height of the column of mer-

cury in a barometer; or, what

is the same, it represents a

barometer whose vacuum is

the receiver R and connecting-

tube.

Dr. Sprengel recommends the

employment of an auxiliary

air-pump of the ordinary kind,

to commence the exhaustioil,

when time is an object, as with-

out this from 20 to 30 minutes

are required to exhaust a

receiver of the capacity of half

a litre. As, however, the em-

ployment of the auxiliarypumj)

involves additional connections

and increased leakage, it should

be avoided when the best pos-

sible exhaustion is desired. The

fall tube must not exceed about

a tenth of an inch in diameter,

and special precautions must

be employed to make the india-

rubber connections air-tight. (See Chemical Journal for 1805, p. 9.)

By this instrument air has been reduced to 1300000 ^^^ oi atmo-

spheric density, and the average exhaustion attainable by its use is

about one-millionth, which is equivalent to "00003 of an inch of

mercury.

241. Double Exhaustion.—In the mercurial machines just described

there is no " untraversed space," as the liquid completely expels all

the air from the pump-barrel. These machines are of very recent

Fig. 143.— SprengeVs Air-pump.
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invention. Babinet long before introduced an arrangement for the

purpose, not of getting rid of this space, but of exhausting it of air.

For this purpose, when the machine ceases to work with the ordi-

nary arrangement, the communication of the receiver with one of

the pump-barrels is shut off, and this barrel is employed to exhaust

the air from the other. This change is effected by means of a stop-

cock at the point of junction of the passages leading from the two

barrels (Fig. 144). The stop-cock has a T-shaped aperture, the point

of intersection of the two branches being in constant communication

with the receiver. In a dif-

ferent plane from that of the

T-shaped aperture is another

aperture mn, which, by means

of the tube I, establishes

communication between the

pump-barrel B and the com-

municating passage of the

pump-barrel A. From this

explanation it will be seen that

if the stop-cock be turned as

shown in the first figure, the

two pump-barrels both com-

municate with the receiver,

and the operation proceeds in

the ordinary manner. But if

the stop-cock be turned through

a quarter of a revolution, as shown in the second figure, the pump-

barrel B alone communicates with the receiver, while it is itself

exhausted of air by the barrel A.

It is easy to express by a formula the effect of this double exhaus-

tion. Suppose the pump to have ceased, under the ordinary method

of working, to produce any farther exhaustion, the air in the receiver

has therefore reached a tension nearly equal to H;^ (§ 237). At this

moment the stop-cock is turned into its second position. When the

piston B descends, the piston A rises, and the air of the "untraversed

space " in B is drawn into A and rarefied. During the inverse

operation, the air in A is prevented from returning to B, and thus

the rarefied air from B, becoming still further rarefied, will draw a

fresh quantity of air from the receiver. This air will then be driven

Fig. 144.—Babinet's Doubly-exliausting Stop-ccck.
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into A, where it will be compressed by the descending movement of

the piston, and will find its way into the air outside.-^

This double exhaustion will itself cease to work when air ceases to

pass from the pump-barrel B into the pump-barrel A. Now when

the piston in this latter is raised, the elastic force of the air which

was contained in its " untraversed space " is equal to Hy, for, on the

last opening of the valve, the air in this space escaped into the atmo-

sphere. On the other hand, when the piston in B is at the end of

its upward stroke, the tension of the air is the same as in the receiver.

Let this be denoted by x. When the piston in B descends, the air is

compressed into the " untraversed space " and the passage leading to

A. Let the volume of this passage be I. Then the tension will

increase, and become x 7. When the machine ceases to produce

any farther effect, this tension cannot be greater than that in the

pump-barrel A, which is H.^; we have thus, to determine the limit

to the action of llie pump, the equation

X i =H '' whence

V V + I

^ — ^'Y'TTi'

242. Air-pump with Free Piston.—We shall describe one more

air-pump (Fig. 145), constructed by Deleuil, and founded ujDon an

interesting principle. We know that gases possess a remarkable

power of adhesion for solids, so that a body placed in the atmo-

sphere may be considered as covered with a very thin coat of air,

forming, so to speak, a permanent envelope. On account of this cir-

cumstance, gases find very great difficulty in moving in very narrow

spaces. This is the principle of the " air-pump with free piston."

The piston P (Fig. 14G), which is composed entirely of metal, is of

considerable length; and on its outer surface is a series of parallel

circular grooves very close together. It does not touch the pump-

barrel at any point; but the distance between the two is very small,

about "001 of an inch. This free piston is surrounded by a cushion

of air, which forms its only stuffing, and is sufficient to enable the

machine to work in the ordinary manner, notwithstanding the per-

' It will be observed that during the process of double exhaustion the piston of B be-

haves like a solid piston; its valve never opens, because the pressure below it is always

less than atmospheric.
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manent communication between the upper and lower surfaces of the

piston. This machine gives a vacuum about as good as is obtainable

by ordinary pumps, and it has the important advantages of not

requiring oil, and of having less

friction. It consequently wears

better, and is less liable to the

development of heat, which is a

frequent source of annoyance in

air-pumps. It is single-barrelled

with double action, like Bianchi's.

The two openings S and S' are

to admit air from the receiver;

they are closed and opened alter-

nately by conical stoppers at the

end of the rod T, wliich passes

through the piston, and is carried

with it by friction in its move-

ment. They communicate with

tubes which unite, at R', with a

tube leading from the receiver.

A and A' are valves for the expul-

sion of the air, which escapes by

tubes uniting at R. The alternate

movement of the piston is produced

by what is called Delahire's gearing.

This depends on the principle, that

^vlien a circle rolls without sliding

in the interior of another circle of

double the diameter, any point on

the circumference of the rolling

circle describes a diameter of the fixed circle. In order to utilize

this property, the end of the piston-rod is jointed to the extremity

of a piece of metal which is rigidly attached to the pinion P, the

joint being exactly opposite the circumference of the pinion. This

latter is driven by a fly-wheel with suitable gearing, and works

with the fixed wheel E, which is toothed on the inside. Thus the

piston will freely, and without any lateral effort, describe a vertical

line, the length of the stroke being equal to the diameter of the fixed

wheel.

243. Compressing Pump.—It can easily be seen from the descrip-

Piston and Barrel of Deleuil's Air-pump.
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3£
Fig. 147 Pump.

tion of the air-pump, that if the expulsion-valves were connected

with a tube communicating with a reservoir, the air removed by the

pump would be forced

into this reservoir. This
'l i.ii||iiJ|!iJli

communication is estab-

lished in the instrument

jiLst described. If, there-

fore, R' be made to com-

municate with the exter-

nal air, this air will be

continually drawn in at

that point and forced out

into the reservoir con-

nected with R, so that the

instrument will act as a compress-

ing pump. The compressing-pump

is thus seen to be the same instru-

ment as the air-pump, the only

difference being that the receiver

is connected with the expulsion valves, instead of

with the exhaustion-valves; ^it is thus, so to speak,

the air-pump reversed. This fact can be very well

seen in the structure of a small pump frequently

employed in the laboratory, and represented in

Fig. 147.

At the bottom of the pump-barrel are two valves,

communicating with two separate reservoirs, that

on the left being an admission-valve, and that on

the right an expulsion-valve.

When the piston is raised, rarefaction is produced in the reservoir

to the left; and when it is pushed down, the air in the reservoir

to the right is compressed.

In Fig. 148 is represented a compressing-pump often employed.

At the bottom of the pump-barrel is a valve b opening downward;

in a lateral tube is an admission-valve a opening inward. The

position of these valves is shown in the figure. They are conical

metal stoppers, fitted with a rod passing through a hole in a small

plate behind, an arrangement which prevents the valve from over-

turning. The rod is surrounded by a small spiral spring, which keeps

the valve pressed against the opening. If the lower part of the

Fig. l-tS.

Condeusiiig Pump.
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pump-barrel be screwed upon a reservoir, at each upward stroke of

the piston the barrel will be filled with air through the valve a,

and at every downward stroke this air will be forced into the

reservoir.

If the lateral tube be made to communicate with a bladder or

gas-holder filled with any gas, this gas will be forced into the

reservoir, and compressed.

244. Calculation of the Effect of the Instrument.—The density of

the compressed air after a given number of strokes of the piston

may easily be calculated. If v be the volume of the pump-barrel,

and Y that of the reservoir; at each stroke of the piston there is

forced into the reservoir a volume of air equal to that of the pump-

barrel; which gives a volume nv at the end of n strokes. The air

in the reservoir, accordingly, which when at atmospheric pressure

had density D, and occupied a volume V -f nv, will, when the volume

is reduced to V, have the density D —^-^ and the pressure will, by

Boyle's law, be -y^ atmospheres.

If this formula were rigorously applicable in all cases, there

would be no limits to the pressure attainable, except those depend-

ing on the strength of the reservoir and the motive power available.

But, in fact, the untraversed space left below the piston, when

at the end of its downward stroke, sets a limit to the action of the

instrument, just as in the common air-pump. For when the air in

the barrel is reduced from the volume of the barrel v to that of the

untraversed space v, its tension becomes H-; and this air cannot

pass into the reservoir unless the tension of the air in the reservoir

is less than this quantity. This is accordingly the utmost limit of

compression that can be attained.

We must, however, carefully distinguish between the effects of

untraversed space in the air-pump and in the compression-pump.

In the first of these instruments the object aimed at is to rarefy

the air to as great a degree as possible, and untraversed space

must consequently be regarded as a defect of the most serious

importance.

The object of the condensing-pump, on the contrary, is to com-

press the air, not indefinitely, but up to a certain point. Thus, for

instance, one pump is intended to give a compression of five atmo-

spheres, another of ten, &c. In each of these cases the maker
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provides that this limit shall be reached, and the untraversed

space has no injurious effect beyond increasing the number of

strokes required to produce the desired amount of condensation.

245. Various Contrivances for producing Compression.—In order to

expedite the process of compression, several pumps such as we have

Fig. 14y.—Couuected Pumps.

described are combined, which may be done in various ways. Fig.

149 represents the system employed by Regnault in his investiga-

tions connected with Boyle's law and the elastic force of vapour. It

consists of three pumps, the piston-rods of which are jointed to three

cranks on a horizontal axle, by means of three connecting-rods. This

axle, which carries a fly-wheel, is turned by means of one or two

handles. The different admission-valves are in communication with

a single reservoir in connection with the external air, and the com-
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pressed gas is forced into another reservoir which is in communication

with the experimental apparatus.

A serious obstacle to the working of these instruments is the heat

generated by the compression of the air, which expands the difierent

parts of the instrument unequally, and often renders the piston so

tight that it can scarcely be driven. In some of these instruments

which are employed in the arts, this inconvenience is lessened by
keeping the lower valves covered with water, which has the addi-

tional advantage of getting rid of " untraversed space." In this

way a pressure of forty atmospheres may easily be obtained with

air. Air may also be compressed directly, without the intervention

of pumps, when a sufficient height of water can be obtained. It is

only necessary to lead the liquid in a tube to the bottom of a

reservoir containing air. This air will be compressed until its

pressure exceeds that of the atmosphere by the amount due to the

height of the summit of the tube. It is by a contrivance of this

kind that compressed air has been obtained for driving the boring-

machines employed in the great Alpine tunnels.

246. Practical Applications of the Air-pump and of Compressed Air.

—Besides the use made of the air-pump and the compression-pump

in the laboratory, these instruments are variously employed in the

arts.

The air-pump is employed by sugar-refiners to lower the boiling

point of the syrup. Compression-pumps are used by soda-water

manufacturers to force the carbonic acid into the reservoirs contain-

ing the water which is to be aerated. The small apparatus described

above (Fig. 148) is sufficient for this purpose; it is only necessary

to fill the side-vessel with carbonic acid, and to pour a certain

quantity of water into the reservoir below'. Compressed air has for

several years been employed to assist in laying the foundations of

bridges in rivers where the sandy nature of the soil requires very

deep excavations. Large tubes called caissons, in connection with

a condensing pump, are gradually let down into the river; the air by

its pressure keeps out the water, and the workmen, who are admitted

into the apparatus by a sort of lock, are thus enabled to walk on

dry ground.

In pneumatic despatch tubes, which have recently been established

in many places, a kind of train is employed, consisting of a piston

preceded by boxes containing the despatches. By exhausting the

air at the forward end of the tube, or forcing in compressed air at
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the other end, the train is blown through the tube with great

velocity.

The atmospheric railway, which was for a few years in existence,

was worked upon the sa,me principle: an air-tight piston travelled

through a fixed tube, and was connected by an ingenious arrange-

ment with a train above.

Excavating machines driven by compressed air are coming into

extensive use in mining operations. They have the advantage of

assisting ventilation, inasmuch as the compressed air, which at each

stroke of the machine escapes into the air of the mine, cools as it

expands.

In the air-gun, the bullet is projected by a portion of compressed

air which, on pulling the trigger, escapes into the barrel from a

reservoir in which it has been artificially compressed.

We may add that the large machines employed in iron-works for

supplying air to the furnaces, are really compression-pumps.
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UPWARD PRESSUEE OF THE AIR.

247. The Baroscope.—The principle of Archimedes, explained in

Chap. XIII., applies to all fluids, whether liquid or gaseous. Hence

the resultant of the whole pressure of the atmosphere on the surface

of a body is equal to the weight of the air displaced. The force

required to support a body in air, is less than the force required to

support it in vacuo, by this amount. This principle is illustrated

by the baroscope (Fig. 1-50).

This is a kind of balance, the beam of which supports two balls of

very unequal sizes, which balance each other in the air. If the ap-

paratus is placed under the receiver

of an air-pump, after a few strokes

of the piston the beam will be seen

to incline towards the larger ball,

and the inclination will increase as

the exhaustion proceeds. The reason

is that the air, before it was pumped
out, produced an upward pressure,

which was greater for the large

than for the small ball, on account

of its greater displacement; and this

disturbing force is now removed.

If after exhausting the air, car-

bonic acid, which is heavier than air, were admitted at atmospheric

pressure, the large ball would be subjected to a greater increase of

upward pressure than the small one, and the beam would incline to

the side of the latter.

248. Balloons.—Suppose a body to be lighter than an equal volume

of air, then this body will rise in the atmosphere. For example, if

Fig. 150.—Baroscope.
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we fill soap-bubbles with hydrogen (Fig. 151), and shake them off

from the end of the tube at which they are formed, they will be seen,

if sufficiently large, to ascend in the air. This curious experiment

is due to the philosopher Cavallo, who amiounced it in 1782.^

The same principle applies to balloons, which essentially con-

sist of an envelope inclosing a gas lighter than air. In conse-

Fig. 161.

quence of this difference of density, we can always, by taking a

sufficiently large volume, make the weight of the gas and containing

envelope less than that of the air displaced. In this case the balloon

will ascend.

The invention of balloons is dae to the brothers Joseph and Ste-

phen Montgolfier. The balloons made by them were globe-shaped,

and constructed of paper, or of paper covered with cloth, the air in-

side being rarefied by the action of heat. It is curious to remark

^ The first idea of a balloon must be attributed to Francisco de Lana, who, about

1670, proposed to exhaust the air in globes of copper of sufficient size and thinness to weigh

less, under these conditions, than the air displaced. The experiment was not tried, and
would certainly not have succeeded, for the pressure of the atmosphere would have caused

the globes to collapse. The theory, however, was thoroughly understood by the author,

who made an exact calculation of tlie amount of force tending to make the globes ascend.

—D.
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that in their first attempts they employed hydrogen gas, and showed

that balloons filled with this gas could ascend. But as the hydrogen

readily escaped through the paper, the flight of the balloons was

short, and thus the use of hydrogen was abandoned, and hot air was

alone employed.

The name montgolfieres is still often applied to fire-balloons. They

generally consist of a paper envelope with a wide opening below,

Fig. 152.—Fire balloon of Pilatre de Rozier.

in the centre of which is a sponge held in a wire frame. The sponge

is dipped in spirit and ignited, when the balloon is to be sent up.

The first public experiment of the ascent of a balloon was per-

formed at Annonay on the 5th June, 1783. On October 21st of the

same year, Pilatre de Rozier and the Marquis d'Arlandes achieved

the first aerial voyage in a fire-balloon, represented in our figure.

Charles proposed to reintroduce the use of hydrogen by employing

an envelope less permeable to the gas. This is usually made of silk

varnished on both sides, or of two sheets of silk with a sheet of

india-rubber between. Instead of hydrogen, coal-gas is now gener-

ally employed, on account of its cheapness and of the facility with

which it can be procured.
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249.—The lifting power of a balloon is the difference between its

weight and that of the air displaced. It is easy to compare the

three modes of inflation in this respect.

A cubic metre of air weighs about I'SOO kilogramme.

A cubic metre of hydrogen "OSQ „

A cubic metre of coal-gas about '750 „

A cubic metre of air heated to 200" Cent '750 „

We thus see that the lifting power per cubic metre with hydrogen

is 1*211, and with coal-gas or hot air about "500 kilogramme.

If, for instance, the total weight to be raised is estimated at 1500

kilogrammes, the volume of a balloon filled with hydrogen capable

of raisinof the weidit will be z-VrA = 1239 cubic metres. If coal-gaso o 1"210 °

were employed, the required volume would be ;^^= 2727 cubic

metres.

The car in which the aeronauts sit is usually made of wicker-work

or whalebone. It is sustained by cords attached to a net-work

(Fig. 153) covering the entire upper half of the balloon, so as to

distribute the weight as evenly as possible. The balloon terminates

below in a kind of neck opening freely into the air. At the top

there is another opening in the inside, which is closed by a valve

held to by a spring. Attached to the valve is a cord which passes

through the interior of the balloon, and hangs above the car within

reach of the hand of the aeronaut.

When the aeronaut wishes to descend, he opens the valve for a

few moments and allows some of the gas to escape. An important

part of the equipment consists of sand-bags for ballast, which are

gradually emptied to check too rapid descent. In the figure is

represented a contrivance called a parachute, by means of which the

descent is sometimes effected. This is a kind of large umbrella with

a hole at the top, from the circumference of which hang cords sup-

porting a small car. When the parachute is left to itself, it opens

out, and the resistance of the air, acting upon a large surface,

moderates the rate of descent. The hole at the top is essential to

safety, as it affords a regular passage for air which would otherwise

escape from time to time from under the edge of the parachute, thus

producing oscillations which might prove fatal to the aeronaut.

Balloons are not fully inflated at the commencement of the

ascent; but the inclosed gas expands as the pressure diminishes

outside. The lifting power thus remains nearly constant until
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the balloon has risen so high as to be fully inflated. Suppose, for

instance, that the atmospheric pressure is reduced by one-half,

the volume of the balloon Avill then be doubled; it will thus dis-

place a volume of air twice

as great as before, but of

only half the density, so tliat

the buoyaucy will remain

the same. TMs conclusion,

however, is not quite exact,

because the solid parts of

the balloon do not expand

like the gas, and the weight

of air displaced by them

accordingly diminishes as the

balloon rises. If the balloon

continues to ascend after it

is completely inflated, its lift-

ing power diminishes rapidly,

becoming zero when a stra-

tum of air is reached in

which the weight of the

volume displaced is equal to

that of the balloon itself.

It is carried past this stratum

in the first instance in vir-

tue of the velocity which it

has acquired, and finally

comes to rest in it after a

number of oscillations.

250. Height Attainable.—The pressure of the air in the stratum of

equilibrium can be calculated as follows:

Let V be the volume of gas which the balloon can contain when
fully inflated.

V the volume, and w the weight, of the solid parts, including

the aeronauts themselves.

h the density of the gas at the standard pressure and tem-

perature, and D the density of air under the same condi-

tions.

Then if P denote the standard pressure, and "p the pressure in the

stratum of equilibrium, the density of the gas when this stratum

Fig. 153.—Balloon with Car aud Paiacliute.
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has been reached will be ^3, and the density of the air will be ^D.

Equating the weight of the air displaced to that of the floating body,

we have

whence p can be determined.

251. Effect of the Air upon the Weight of Bodies.—The upward

pressure of the air impairs the exactness of weighings obtained even

with a perfectly true balance, tending, by the principle of the baro-

scope, to make the denser of two equal masses preponderate. The
stamped weights used in weighing are, strictly speaking, standards of

mass, and will equilibrate any equal masses in vacuo; but in air the

equilibrium will be destroyed by the greater upward pressure of the

air upon the larger and less dense body. When the specific gravities

of the weights and of the body weighed are known, it is easy from

the apparent weight to deduce the true weight (that is to say, the

mass) of the body.

Let X be the real weight (or mass) of a body which balances a

standard weight of w grammes when the weighing is made in air.

Let d be the density of the body, I that of the standard weight, and

a the density of the air. Then the weight of air displaced by the

body is %x, and the weight of air displaced by the standard weight

is Iw. Hence we have

a . a
X - -,x — w - -^w,

CL

1 - "^

«; = «,—| = ^jl + aQ-^)jnearly.

d

Let us take, for instance, a piece of sulphur whose weight has been

found to be 100 grammes, the weights being of copper, the density

of which is 8*8. The density of sulphur is 2.

We have, by applying the formula,

x = 100
j
1 + J^ (1 - 2

^
j

=:: 100-05 grammes.

We see then that the diiference is not altogether insensible. It

varies in sign, as the formula shows, according as c? or 5 is the

greater. When the density of the body to be weighed is less than
14
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that of the weights used, the real weight is greater than the

apparent weight; if the contrary, the case is reversed. If the body

to be weighed were of the same density as the weights used, the real

and apparent weights would be equal. We may remark, that in

determining the ratio of the weights of two bodies of the same

density, by means of standard weights which are all of one material,

we need not concern ourselves with the effect of the upward pressure

of the air; as the correcting factor, which has the same value for

both cases, will disappear in the quotient.



CHAPTER XXII.

PUMPS FOR LIQUIDS.

252. Machines for raising water have been known from very early

ages, and the invention of the common pump is pretty generally

ascribed to Ctesibius, teacher of the celebrated Hero of Alexandria;

but the true theory of its action was not understood till the time of

Galileo and Torricelli.

253. Reason of the Rising of Water in Pumps.—Suppose we take a

tube with a piston at the bottom (Fig. 154),and immerse the lower

end of it in water. The raising of the

piston tends to produce a vacuum below it,

and the atmospheric pressure, acting upon

the external surface of the liquid, compels

it to rise in the tube and follow the upward

motion of the piston. This upward move-

ment of the water would take place even

if some air were interposed between the

piston and the water; for on raising the

piston, this air would be rarefied, and its

pressure no longer balancing that of the

atmosphere, this latter pressure would cause

the liquid to ascend in a column whose

weight, added to the pressure of the air

below the piston, would be equal to the

atmospheric pressure. This is the principle

on which water rises in pumps. These in-

struments have a considerable variety of "^^^H-

forms, of which we shall describe the most Fig. i54.-Piincipie of suction-pump.

important types.

254. Suction-pump.—The suction-pump (Fig. 155) consists of a
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cylindiical pump-barrel traversed by a piston, and communicating

by means of a smaller tube, called the suction-tube, with the water

in the pump-well. At the junction of the pump-barrel and the tube

is a valve opening upward, called the suction-valve, and in the

piston is an opening closed by another valve, also opening upward.

Suppose now the suction-tube to be filled with air at the atmo-

spheric pressure, and the water consequently to be at the same level

inside the tube and in the well. Suppose

the piston to be at the end of its downward
stroke, and to be now raised. This motion

tends to produce a vacuum below the pis-

ton, hence the air contained in the suc-

tion-tube will open the suction-valve, and

rush into the pump-barrel. The elastic

force of this air being thus diminished, the

atmospheric pressure will cause the water

to rise in the tube to a height such that

the pressure due to this height, increased

by the pressure of the air inside, will ex-

actly counterbalance the pressure of the

atmosphere. If the piston now descends,

the suction-valve closes, the water remains

at the level to which it has been raised,

and the air, being compressed in the barrel,

opens the piston-valve and escapes. At

the next stroke of the piston, the water

will rise still further, and a fresh portion

of air will escape.

If, then, the length of the suction-tube

is less than about 30 feet, the water will, after a certain number

of strokes of the piston, be able to reach the suction-valve and rise

into the pump-barrel. When this point has been reached the

action changes. The piston in its downward stroke compresses

the air, which escapes through it, but the water also passes

through, so that the piston when at the bottom of the pump-barrel

will have above it all the water which has previously risen

into the barrel. If the piston be now raised, supposing the

total height to which it is raised to be not more than 34 feet above

the level of the water in the well, as should always be the case,

the water will follow it in its upward movement, and will fill the

Fig. 155.—Sactiou-pump.
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pump-barrel. In the downward stroke this water will pass up
through the piston-valve, and in the following upward stroke it

will be discharged at the spout. A fresh quantity of water will by
this time have risen into the pump-barrel, and the same operations

will be repeated.

We thus see that from the time when the water has entered the

pump-barrel, at each upward stroke of the piston a volume of water

is ejected equal to the contents of the pump-barrel.

In order that the water may be able to rise into the pump-barrel,

the suction-valve must not be more than 84 feet above the level of

the water in the well, otherwise the water would stop at a certain

point of the tube, and could not be raised higher by any farther

motion of the piston.

Moreover, in order that the working of the pump may be such

as we have described, that is, that at each upward stroke of the

piston a quantity of water may be removed equal to the vc'ume of

the pump-barrel, it is necessary that the piston when at the top of

its stroke should not be more than 34 feet above the water in the

well.

255. Effect of untraversed space.—If the piston does not descend

to the bottom of the barrel, it is possible that the water may
fall short . of rising to the suction-valve, even though the total

height reached by the piston be less than 34 feet. When the

piston is at the end of its downward stroke, the air below it in

the barrel is at atmospheric pressure; and when the limit of

working has been reached, this air will expand during the upward
stroke until it fills the barrel. Its pressure will now be the same as

that of the air in the top of the suction-tube; and if this pressure

be equivalent to h feet of water, the height to which water can be

drawn up will be only 34— /i feet.

Example. The suction-valve of a pump is at a height of 27 feet

above the surface of the water, and the piston, the entire length of

whose stroke is 7'8 inches, when at the lowest point is 3*1 inches

from the fixed valve; find whether the water will be able to rise

into the pump-barrel.

When the piston is at the end of its downward stroke, the air

below it in the barrel is at the atmospheric pressure; when the

piston is raised this air becomes rarefied, and its -pressure, by Boyle's

law, becomes j^.q that of the atmosphere; this pressure can therefore
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3'1

balance a column of water whose height is 34 x j^g feet, or 9-67

feet. Hence, the maximum height to which the water can attain is

34 _ 9-67 feet = 24-33 feet; and consequently, as the suction-tube

is 27 feet long, the water will not rise into the pump-barrel, even

supposing the pump to be perfectly free from leakage.

Practically, the pump-barrel should not be more than about 25

feet above the surface of the water in the well; but the spout may
be more than 34 feet above the barrel, as the water after rising

above the piston is simply pushed up by the latter, an operation

which is independent of atmospheric pressure. Pumps in which

the spout is at a great height above the barrel are commonly called

lift-pumiJS, but they are not essentially different from the suction-

pump.

253. Force necessary to raise the Piston.—The force which must

be expended in order to raise the piston, is equal to the weight of a

column of water, whose base is the section of the piston, and whose

height is that to which the water is raised. Let S be the section of

the piston, P the atmospheric pressure upon this area, h the height

of the column of water which is above the piston in its present

position, and h' the height of the column of water below it; then

the upper surface of the piston is subjected to a pressure equal to

P -f S /i; the lower face is subjected to a pressure in the opposite

direction equal to P — S/t', and the entire downward pressure is

represented by the difference LcLween these two, that is, by S

{h -f- h').

The same conclusion would be arrived at even if the water had

not yet reached the piston. In this case, let I be the height of the

column of water raised; then the pressure below the piston is

P — S Z; the pressure above is simply the atmospheric pressure P,

and, consequently, the difference of these pressures acts downward,

and its value is S I.

257. Efficiency of Pumps.—From the results of last section it

follows that the force required to raise the piston, multiplied by

the height through which it is raised, is equal to the weight of

^vater discharged multiplied by the height of the spout above the

water in the well. This is an illustration of the principle of work

(§ 49). As this result has been obtained from merely statical con-

siderations, and on the hypothesis of no friction, it presents too

favourable a view of the actual efficiency of the pump.
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Besides the friction of the solid parts of the mechanism, there is

work wasted in generating the velocity with which the fluid, as a

whole, is discharged at the spout, and also in producing eddies and

other internal motions of the fluid. These eddies are especially pro-

duced at the sudden enlargements and contractions of the passages

through which the fluid flows. To these drawbacks must be added

loss from leakage of water, and at the commencement of the opera-

tion from leakage of air, through the valves and at the circum-

ference of the piston. In com-

mon household pumps, which are

generally roughly made, the effi-

ciency may be as small as •25 or

•3; that is to say, the product of

the weight of water raised, and

Fig. 156.

Suction-pump.
Fig. 157.

the height through which it is raised, may be only "25 or '3 of the

work done in driving the pump.

In Figs. 156 and 157 are shown the means usually employed for

working the piston. In the first figure the upward and downward
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movement of the piston is efFeeted by means of a lever. The second

figure represents an arrangement often employed, in which the

alternate motion of the piston is effected by means of a rotatory

motion. For this purpose the piston-rod T is joined by means of

the connecting-rod B to the crank C of an axle turned by a handle

attached to the fly-wheel V.

258. Forcing-pump.—The forcing-pump consists of a pump-barrel

dipping into water, and having at the bottom a valve opening up-

ward. In communication with

the pump-barrel is a side-

tube, with a valve at the point

of junction, opening from the

barrel into the tube. A solid

piston moves up and down the

pump-barrel, and it is evident

that when this piston is raised,

water enters the barrel by the

lower valve, and that when
the piston descends, this water

is forced into the side-tube.

The greater the height of

this tube, the greater will be

the force required to push the piston down, for the resistance to be

overcome is the pressure due to the column of water raised.

The forcing-pump most frequently has a short suction-pipe leading

from the reservoir, as represented in Fig. 159. In this case the

water is raised from the reservoir into the barrel by atmospheric

pressure during the up-stroke, and is forced from the barrel into the

ascending pipe in the down-stroke.

259. Plunger.—When the height to which the water is to be forced

is very considerable, the different parts of the pump must be very

strongly made and fitted together, in order to resist the enormous

pressure produced by the column of water, and to prevent leakage.

In this case the ordinary piston stuffed with tow or leather washers

cannot be used, but is replaced by a solid cylinder of metal called a

plunger. Fig. 160 represents a section of a pump thus constructed.

The plunger is of smaller section than the barrel, and passes through

a stuffing-box in which it fits air-tio;ht. The volume of water which

enters the barrel at each up-stroke, and is expelled in the down-

stroke, is the same as the volume of a length of the plunger equal

Fig. 158.—Forcing-pump.
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to the length of stroke; and the hydrostatic pressure to be overcome

is proportional to the section of the plunger, not to that of the

barrel. As the operation

proceeds, air is set free

from the water, and would

eventually impede the

working of the pump were

it not permitted to escape.

For this purposetheplunger

is pierced with a narrow

passage, which is opened

from time to time to blow

out the air.

The drainage of deep

mines is usually effected

by a series of pumps. The

water is first raised by

one pump to a reservoir,

into which dips the suction-

tube of a second pump,

which sends the water up Fig. 159. Fig. leo.

Suction and Force Pump.
to a second reservoir, and

so on. The piston-rods of the different pumps are all joined to a

Fig. 101.—Fire-engine.

single rod called the spear, which receives its motion from a steam-

encjine. ,
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260. Fire-engine.—The ordinary fire-engine is formed by the union

of two forcing-pumps which play into a common reservoir, contain-

ing in its upper portion (called the air-chamber) air compressed by
the working of the engine. A tube dips into the water in this

reservoir, and to the upper end of this tube is screwed the leather

hose through which the water is discharged. The piston-rods are

jointed to a lever, the ends of which are raised and depressed alter-

nately, so that one piston is ascending while the other is descending.

Water is thus continually being forced into the common reservoir

except at the instant of reversing stroke, and as the compressed air

in the air-chamber performs the part of a reser-

voir of work (nearly analogous to the fly-wheel),

the discharge of water from the nozzle of the

hose is very steady.

The engine is sometimes supplied with water

by means of an attached cistern (as in Fig. 162)

into which water is poured; but it is more

usually furnished with a suction-pipe which

renders it self-feeding.

261. Double-acting Pumps.—These pumps, the

invention of which is due to Delahire, are often

employed for household purposes. They consist

of a pump-barrel VY (Fig. 162), with four open-

ings in it. A, A', B, B'. The openings A and B'

are in communication with the suction-tube C;

A' and B are in communication with the ejec-

tion-tube C. The four openings are fitted with

four valves opening all in the same direction,

that is, from right t'o left, whence it follows

that A and B' act as suction-valves, and A' and

B as ejection-valves, and, consequently, in whichever direction the

piston may be moving, the suction and ejection of water are taking

place at the same time.

262. Centrifugal Pumps.—Centrifugal pumps, which have long

been used as blowers for air, and have recently come into extensive

use for purposes of drainage and irrigation, consist mainly of a flat

casing or box of approximately circular outline, in which the fluid

is made to revolve by a rotating propeller furnished with fans or

blades. These extend from near the centre outwards to the circum-

ference of the propeller, and are usually curved backwards. The

Fig. 162.

Double-action Pump.
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fluid between them, in virtue of the centrifugal force generated by-

its rotation, tends to move outwards, and is allowed to pass off

through a large conduit which leaves the case tangentially.

Fig. 163.— Ceiitril'ugdl Pump.

The first part of Fig. 163 is a section of the propeller and casing,

C being a central opening at which the fluid enters, and D the

conduit through which it escapes. The second part of the figure

represents a small pump as mounted for use. The largest class of

Fig. 164.—Jet Pump.

centrifugal pumps are usually immersed in the water to be pumped,

and revolve horizontally.

263. Jet-pump.—The jet-pump is a contrivance by Professor



220 PUMPS FOR LIQUIDS,

James Thomson for raising water by means of the descent of other

water from above, the common outfall being at an intermediate level.

Its action somewhat resembles that of the blast-pipe of the locomo-

tive. The pipe corresponding to the locomotive chimney must have

a narrow throat at the place where the jet enters, and must thence

widen very gradually towards its outlet, which is immersed in the

outfall water so as to prevent any admission of air during the

pumping. The water is drawn up from the low level through a

suction-pipe, terminating in a chamber surrounding the jet-nozzle.

Fig. 164 represents the pump in position, the jet-nozzle with its

surroundings being also shown separately on a larger scale.

The action of the jet-pump is explained by the following consider-

ations.

Suppose we have a horizontal pipe varying gradually in sectional

area from one point to another, and completely -filled by a liquid

flowing steadily through it. Since the same quantity of liquid passes

all cross-sections of the pipe, the velocity will vary inversely as the

sectional area. Those portions of the liquid which are passing at

any moment from the larger to the smaller parts of the pipe are

being accelerated, and are therefore more strongly pushed behind

than in front; while the opposite is the case with those which are

passing from smaller to larger. Places of large sectional area are

therefore places of small velocity and high pressure, and on the other

hand, places of small area have high velocity and low pressure.

Pressure, in such discussions as this, is most conveniently expressed

by pressure-height, that is, by the height of an equivalent column

of the liquid. Neglecting friction, it can be shown that if Vi, v^ be

the velocities at two points in the pipe, and h-^, h^ the pressure-

heights at these points,

g denoting the intensity of gravity. The change m pressure-height

is therefore equal and opposite to the change in ^- This is for a

horizontal pipe.

In an ascending or descending pipe, there is a further change of

pressure-height, equal and opposite to the change of actual height.

Let H be the pressure-height at the free surfaces, that is, the

height of a column of water which would balance atmospheric pres-

sure;
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k the ditference of level between the jet-nozzle and the free

surface above it.

I the difference of level between the jet-nozzle and the free

surface of the water which is to be raised.

V the velocity with which the liquid rushes through the jet-

nozzle,

then the pressure-height at the jet-nozzle may be taken as

H + A; — ^; and if this be less than H — Z the water will be sucked

up. The condition of working is therefore that

H - Z be greater than H + i - r—, or

jr- greater than h + 1,

^9

w^here it will be observed that k + lh the difference of levels of the

highest and lowest free surfaces.

284. Hydraulic Press.—The hydraulic press (Fig. 165) consists of a

suction and force pump aa worked by means of a lever turning about

an axis O. The water drawn from the reservoir BB is forced alono;

Fis. 105.—Bramah Press.

the tube CC into the cistern V. In the top of the cistern is an open-

ing through which moves a heavy metal plunger AA. This carries

on its upper end a large plate B'B', upon which are placed the objects

to be pressed. Suppose the plunger A to be in its lowest position

when the pump begins to work. The cistern first begins to fill with

v/ater; then the pressure exerted by the plunger of the pump is

transmitted, according to the principles laid down in § 141, to the

bottom of the plunger A; which accordingly rises, and the objects to



222 PUMPS FOll LIQUIDS.

be pressed, being intercepted between the plate and the top of a fixed

frame, are subjected to the transmitted pressure. The amount of

this pressure depends both on the ratio of the sections of the pistons,

and on the length of the lever used to work the force-pump. Sup-

pose, for instance, that the distance of the point m, where the hand

is applied, from the point O, is equal to twelve times the distance

10, and suppose the force exerted to be equal to fifty pounds. By

the principle of the lever this is equivalent to a force of 50 x 12 at

the point I; and if the section of the piston

A be at the same time 100 times that of the

piston of the pump, the pressure trans-

mitted to A will be 50 x 12 x 100 = 60,000

pounds. These are the ordinary conditions

of the press usually employed in workshops.

By drawing out the pin which serves as an

axis at 0, and introducing it at O', we can

increase the mechanical advantage of the

lever.

Two parts essential to the working of the

hydraulic press are not represented in the

figure. These are a safety-valve, which

opens when the pressure attains the limit

which is not to be exceeded; and, secondly,

a tap in the tube C, which is opened when

we wish to put an end to the action of the

press. The water then runs off", and the piston A descends again to

the bottom of the cistern.

The hydraulic press was clearly described by Pascal, and at a still

earlier date by Stevinus, but for a long time remained practically

useless; because as soon as the pressure began to be at all strong,

the water escaped at the surface of the piston A. Bramah invented

the cupped leather collar, which prevents the liquid from escaping,

and thus enables us to utilize all the power of the machine. It con-

sists of a leather ring AA (Fig. 166), bent so as to have a semicir-

cular section. This is fitted into a hollow in the interior of the sides

of the cistern, so that water passing between the piston and cylinder

will fill the concavity of the cupped leather collar, and by pressing

on it will produce a packing which fits more tightly as the pressure

on the piston increases.

The hydraulic press is very extensively employed in the arts.

Fig. 166.— Cup-leather.
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It is of great power, and may loe constructed to give pressures of
two or tliree hundred tons. It is the instrument generally employed
in cases where very great force is required, as in testing anchors or
raising very heavy weights. It was used for raising the sections of
the Britannia tubular bridge, and for launching the Great Eastern.



CHAPTEE XXIII.

EFFLUX OF LIQUIDS.—TOKRICELLI S THEOEEM.

265. If an opening is made in the side of a vessel containing

water, the liquid escapes with a velocity which is greater as the

surface of the liquid in the vessel is higher above the orifice, or to

employ the usual phrase, as the head of liquid is greater. This point

in the dynamics of liquids was made the subject of experiments by

Torricelli, and the result arrived at by him was that the velocity of

efilux is equal to that which would be acquired by a body falling

freely from the upper surface of the liquid to the centre of the

orifice. If li be this height, the velocity of efflux is given by the

formula
» - yJ 2yh-

This is called" Torricelli's theorem. It supposes the orifice to be

small compared with the horizontal section of the vessel, and to be

exposed to the same atmospheric pressure as the upper surface of the

liquid in the vessel.

It may be deduced from the principle of conservation of energy;

for the escape of a mass tyi of liquid involves a loss mgh of energy

of position, and must involve an equal gain of energy of motion.

But the gain of energy of motion is ^mf^; hence we have

^mv^ = mgh, v^ — 2gh.

The form of the issuing jet will depend, to some extent, on the

form of the orifice. If the orifice be a round hole with sharp edges,

in a thin plate, the flow through it will not be in parallel lines, but

the outer portions will converge towards the axis, producing a rapid

narrowing of the jet. The section of the jet at which this conver-

gence ceases and the flow becomes sensibly parallel, is called the

contracted vein or vena contracta. The pressure within the jet at

this part is atmospheric, whereas in the converging part it is greater
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than atmospheric; and it is to the contracted vein that Torricelli's

formula properly applies, v denoting the velocity at the contracted

vein, and h the depth of its central point below the free surface of

the liquid in the vessel.

266. Area of Contracted Vein. Fronde's Case.—A force is equal to

the momentum which it generates in the unit of time. Let A
denote the area of an oi'ifice through which a liquid issues horizon-

tally, and a the area of the contracted vein. From the equality of

action and reaction it follows that the resultant force which ejects

the issuing stream is equal and opposite to the resultant horizontal

force exerted on the vessel. The latter may be taken as a first

approximation to be equal to the pressure which would be exerted

on a plug closing the orifice, that is ^^ y*

to ghA if the density of the liquid be
~ ~^

taken as unity.

The horizontal momentum gener-

ated in the water in one second is

the product of the velocity v and the

mass ejected in one second. The

volume ejected in one second is va.

This is equal to the mass, since the

density is unity, and hence the

momentum is V"a, that is, 2gha.

Equating this last expression for the

momentum to the foregoing expres-

sion for the force, we have

2gha — ghA.

that is, the area of the contracted

vein is half the area of the orifice.

Mr. Froude has pointed out that this reasoning is strictly correct

when the liquid is discharged through a cylindrical pipe projecting

inwards into the vessel and terminating with a sharp edge (Fig. 167);

and he has verified the result by accurate experiments in which the

jet was discharged vertically downwards. The direction of flow in

different parts of the jet is approximately indicated by the arrows

and dotted lines in the figure; and, on a larger, scale by those in

Ficf. 168, in which the sections of the orifice and of the contracted

vein are also indicated by the lines marked D and d. We may
remark that since liquids press equally in all directions, there can

15

Fig. 167.
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7

d-

be no material difference between the velocities of a vertical and

of a horizontal jet at the same depth below the free surface.

267. Contracted Vein for Orifice in Thin Plate.—When the liquid

is simply discharged through a hole

cut in the side of the vessel and

bounded by a sharp edge, the direc-

tion of flow in different parts of the

/ / z'*^ stream is shown by the arrows and

dotted lines in Fig. 169. The pres-

sure on the sides, in the neighbour-

hood of the orifice, is less than that

due to the depth, because the curved

form of the lines of flow implies (on

the principles of centrifugal force)

a smaller pressure on their concave

The pressure around the orifice is

therefore less than it would be if the hole were plugged. The

unbalanced horizontal pressure on the vessel (if we suppose the

side containing the jet to be vertical) will therefore exceed the

statical pressure on the plug ghK, since the removal of the plug not

only removes the pressure on the plug but also a portion of the

pressure on neighbouring parts. This unbalanced force,

which is greater than glik., is necessarily equal to the

momentum generated per second in the liquid, which is

still represented by the expression v'-'a or '2glia; hence

2gha is greater than gliA., or a is greater than |A.

Fig. 168.

than on their convex side,

.. Reasoning similar to this applies to all ordinary forms of

orifice. The peculiarity of the case investigated by Mr.

Froude consists in the circumstance that the pressure on

the parts of the vessel in the neighbourhood of the orifice

Fig. 169. jg normal to the direction of the jet, and any changes in

its amount which may be produced by unplugging the orifice have

therefore no influence upon the pressures on the vessel in or opposite

to the direction of the jet.^

268. Apparatus for Illustration.—In the preceding investigations.

^ This section and the preceding one are based on two communications read before

the Philosophical Society of Glasgow, February 23d and March 31st, 1876; one being

an extract from a letter from Mr. Froude to Sir William Thomson, and the other a com-

munication from Professor James Thomson, to whom we are indebted for the accompany-

ing illustrations.
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no account is taken of friction. When experiments are conducted

on too small a scale, friction may materially diminish the velocity;

and further, if the velocity te tested by the height or distance to

which the jet will spout, the resistance of the air will diminish this

height or distance, and thus make the velocity appear less than it

really is.

Fig. 170 represents an apparatus frequently employed for illustrat-

Fig. 170.—Apparatus for verifying Tonicelli's Theorem.

ing some of the consequences of Torricelli's theorem. An upright

cylindrical vessel is pierced on one side with a number of orifices in

the same vertical line, which can be opened or closed at pleasure.

A tap placed above the vessel supplies it with water, and, with the

help of an overflow pipe, maintains the surface at a constant level,

which is as much above the highest orifice as each orifice is above

that next below it. The liquid which escapes is received in a trough,

the edge of which is graduated. A travelling piece with an index
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line eno-raved on it slides aloncr the trouo-h; it carries, as shown in

one of the separate figures, a disc pierced with a circular hole, and

caj)able of being turned in any direction about a horizontal axis pass-

ing through its centre. In this way the disc can always be placed

in such a position that its plane shall be at right angles to the liquid

jet, and that the jet shall pass freely and exactly through its centre..

The index line then indicates the range of the jet with considerable

precision. This range is reckoned from the vertical plane containing

the orifices, and is measured on the horizontal plane passing through

the centre of the disc. The distance of this latter plane below the

lowest orifice is equal to that between any two consecutive orifices.

The jet, consisting as it does of a series of projectiles travelling in

the same path, has 'the form of a parabola.

Let a be the range of the jet, h the height of the orifice above the

centre of the ring, and v the velocity of discharge, which we assume

to be horizontal. Then if t be the time occupied by a particle of

the liquid in passing from the orifice to the ring, we have to express

that a is the distance due to the horizontal velocity v in the time t,

and that h is the vertical distance due to gravity acting for the same

time. We have therefore

a = vt

b = Igf

whence f —--., = ~
, •t? — -—-.

V g 26

But according to Torricelli's theorem, if h be the height of the sur-

face of the water above the orifice, we have v^ — ^gh\ and comparing

this with the above value of v^- we deduce

~ = 2h, w" = 4hh.
lb

One consequence of this last formula is, that if the values of h and

h be interchanged, the value of a will remain unaltered. This

amounts to saying that the highest orifice will give the same range

as the lowest, the highest but one the same as the lowest but one,

and so on; a result which can be very accurately verified.

If we describe a semicircle on the line h-\-h, the length of an ordi-

nate erected at the point of junction of h and h is ^^Uh, and since

<* ^=^Jih]i ^^'^Jhh, it follows that the range is double of this ordinate.

This is on the hypothesis of no friction. Practically it is less than

double. The greatest ordinate of the semicircle is the central one,

and accordingly the greatest range is given by the central orifice.



EFFLUX FEOM AIR-TIGHT SPACES. 229

269. Efflux from Air-tight Space.—When the air at the free sur-

face of the liquid in a vessel is at a diiferent pressure from the

air into which the liquid is discharged, we must express this differ-

ence of pressures by an equivalent column of the

liquid, and the velocity of efflux will be that due

to the height of the surface above the orifice

increased or diminished by this column. Efflux

will cease altogether when the pressure on the

free surface, together with that due to the height

of the free surface above the orifice, is equal to

the pressure outside the orifice; or if efflux continue

under such circumstances it can only do so by the

admission of bubbles of air. This explains the

action of vent-pegs.

Pipette.—This is a glass tube (Fig. 171) open at

both ends, and terminating below in a small taper-

ing spout. If water be introduced into the tube,

either by aspiration or by direct immersion in

water, and if the upper end be closed with the

finger, the efflux of the liquid will cease almost

instantly. On admitting the air above, the

efflux will begin again, and can again be stopped at pleasure.

The Magic Funnel.—This funnel is double, as is shown in Fig.

172. Near the handle is a

small opening by which the

space between the two fun-

nels communicates with the

external air. Another open-

ing connects this same space

with the tube of the inner

funnel. If the interval be-

tween the two funnels be

filled with any liquid, this

liquid will run out or will

cease to flow according as

the upper hole is open or

closed. The opening and

closing of the hole can be easily effected with the thumb of the hand

holding the funnel without the knowledge of the spectator. This

device has been known from very early times.

Pijiette.

Fig. 172.—Magic Funnel.
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The instrument may be used in a still more curious manner. For

this purpose the space inside is secretly filled with highly-coloured

wine, which is prevented from escaping by closing the opening above.

Water is then poured into the central funnel, and escapes either

by itself or mixed with wine, according as the thumb closes or opens

the orifice for the admission of air. In the second case, the water

being coloured with the wine, it will appear that wine alone is

issuing from the funnel; thus the operator will appear to have the

power of making either water or wine flow from the vessel at his

pleasure.

The Inexhaustible Bottle.—The inexhaustible bottle (Fig. 173) is

a toy of the same kind. It is an opaque bottle of sheet-iron or

Fig. 173.—Inexhaustible Bottle.

gutta-percha, containing within it five small vials. These communi-

cate with the exterior by five small holes, which can be closed by the

five fingers of the hand. Each vial has also a small neck which

passes up the large neck of the bottle. The five vials are filled with

five different liquids, any one of which can be poured out at pleasure

by uncovering the corresponding hole.

270. Intermittent Fountain.—The intermittent fountain is an

apparatus analogous to the preceding, except that the interruptions

in the efflux are produced automatically by the action of the instru-
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ment, without the intervention o£ the operator. It consists of a globe

y (Fig. 174), which can be closed air-tight by means of a stopper, and
is in communication with efflux tubes a, which discharge into a basin

B, having a small hole o in its bottom for permitting the water to

escape into a lower basin C
A central tube t, open at both

ends, extends nearly to the top

of the globe, and nearly to the

bottom of the basin B.

Suppose the globe to be filled

with water, the basins being

empty. Then the water will

flow from the efflux tubes a,

while air will pass up through

the central tube. As the water

issues from the efflux tubes

much faster than it escapes

through the opening o, the level

rises in the basin B till the

lower end of the tube t is

covered. The pressure of the

air in the upper part of the

globe then rapidly diminishes,

and the efflux from the tubes

a is stopped. But as the water

continues to escape from the

basin B through the opening o, the bottom of the tube i is again

uncovered, the liquid again issues from the efflux tubes, and the

same changes are repeated.

271. Siphon.—The siphon is an instrument in which a liquid,

under the combined action of its own weight and atmospheric pres-

sure, flows first up-hill and then down-hill, but always in such a way
as to bring about a lowering of the centre of gravity of the whole

liquid mass.

In its simplest form, it consists of a bent tube, one end of which

is immersed in the liquid to be removed, while the other end either

discharges into the air, at a lower level than the surface of the liquid

in the vessel, as in Fig. 175, or dips into the liquid of a receiving

vessel, the surface of this liquid being lower than that of the liquid

in the discharg-ini^ vessel.

Pig. 174.—lutermittent Fountain.
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We shall discuss the latter case, and shall denote the difference of

levels of the two surfaces by h, while the height of a column of the

liquid equivalent to atmospheric pressure will be denoted by H.

Let the siphon be full of liquid, and imagine a diaphragm to be

drawn across it at any point, so as to prevent flow. Let this dia-

Fig. 175.—Siphon.

phragm be at a height x above the higher of the two free surfaces,

and at a height y above the lower, so that we have

y — X — h.

The pressure on the side of the diaphragm next the higher free sur-

face will be T3l — x, (pressure being expressed in terms of the equiva-

lent liquid column,) and the pressure on the other side of the dia-

phragm will be H —
2/, which is less than the former hj y — x, that

is by h. The diaphragm therefore experiences a resultant force due

to a depth h of the liquid, urging it from the higher to the lower free

surface, and if the diaphragm be removed, the liquid will be pro-

pelled in this direction.

In practice, the two legs of the siphon are usually of unequal

length, and the flow is from the shorter to the longer; but this is by
no means essential, for by a sufliciently deep immersion of the long
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leg, the direction of flow may be reversed. The direction of flow

depends not on the lengths of the legs, but on the levels of the two
free surfaces.

If the liquid in the discharging vessel falls below the end of the

siphon, or if the siphon is lifted out of it, air enters, and the siphon

is immediately emptied of liquid. If the liquid in the receiving-

vessel is removed, so that the discharging end of the siphon is sur-

rounded by air, as in the figure, the flow will continue, unless air

bubbles up the tube and breaks the liquid column. This interrup-

tion is especially liable to occur in large tubes. It can be prevented

by bending the end of the siphon round, so as to discharge the

liquid in an ascending direction. To adapt the foregoing investi-

gation to the case of a siphon discharging into air, we have only to

substitute the level of the discharging end for the level of the lower

free surface, so that y will denote the depth of the discharging end

below the diaphragm, and h its depth below the surface of the liquid

which is to be drawn ofl".

As the ascent of the liquid in the siphon is due to atmospheric

pressure on the upper free sur-

face, it is necessary that the

highest point of the siphon (if

intended for water) should not

be more than about 33 feet

above this surface.

272. Starting the Siphon.—In

order to make a siphon begin

working, we must employ means

to fill it with the liquid. This

can sometimes be done by dip-

ping it in the liquid, and then

placing it in position while the

ends are kept closed; or by in-

serting one end in the liquid

which we wish to remove, and

sucking at the other. It is usu-

ally more convenient to apply suction by means of a side tube,

as in Fig. 176, this tube being sometimes provided with an

enlargement to prevent the liquid from entering the mouth. One

end of the siphon is inserted in the liquid which is to be removed,

while the other end is stopped, and the operator applies suction at

176.—starting the Siphon.
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the side tube till the liquid flows over. In siphons for commercial

purposes, the suction is usually produced by a pump.

273. Siphon for Sulphuric Acid.—Fig. 177 represents a siphon used

for transferring sulphuric acid from one vessel to another. The

long branch is first filled with sulphuric acid. This is effected by

-means of two funnels (which can be plugged at pleasure) at the

bend of the tube. One of these admits the liquid, and the other

suffers the air to escape. The two funnels are then closed, and

the tap at the lower end

of the tube is opened so as to

allow the liquid to escape.

The air in the short branch

follows the acid, and becomes

rarefied; the acid behind it

rises, and if it passes the bend,

the siphon will be started, for

each portion of the liquid

which issues from the tube will

draw an equal portion from
Fig. lT7.-Siphon for Sulphuric Acid.

^j^^ ^-^^^^ ^^ ^j^^ j^^^. ^^.^^^Yl.

To insure the working of the sulphuric acid siphon, it is not suffi-

cient to have the vertical height of the long branch greater than that

of the short branch; it is farther necessary that it should exceed a

certain limit, which depends upon the dimensions of the siphon in

each particular case. In order to calculate this limit, we must

remark that when the liquid begins to flow, its height diminishes in

the long and increases in the short branch; if these two heights

should become equal, there would be equilibrium. We see, then,

that in order that the siphon may work, it is necessary that when
the liquid rises to the bend of the tube, there should be in the long

branch a column of liquid whose vertical height is at least equal to

that of the short branch, which we shall denote by h, and the actual

length of the short branch from the surface of the liquid in which

it dips to the summit of the bend by h'. Then if a be the inclina-

tion of the long branch to the vertical, and L the length of the long

branch, which we suppose barely sufficient, the length of the column

of liquid remaining in the long branch will be. h sec a. The air

which at atmospheric pressure H occupied the length Ii, now under

the pressure H — h occupies a length L — /i sec a ; hence by Boyle's

law, we have
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HA' = (H - A) (L - A sec a), whence L = A sec a +
HA^

H-A*

Fig. ITS.—Yase of Tantalus.

In this formula H denotes the height of a column of sulphuric acid

whose pressure equals that of the atmosphere.

274. Cup of Tantalus.—The siphon may be employed to produce

the intermittent flow of a liquid. Suppose, for instance, that we
have a cup (Fig. 178) in which is

a bent tube risins^ to a heia^ht n,

and with the short branch termi-

nating near the bottom of the

cup, while the long branch passes

through the bottom. If liquid be

poured into the cup, the level will

gradually rise in the short branch

of the bent tube, till it reaches

the summit of the bend, when the

siphon will begin to discharge the

liquid. If the liquid then escapes

by the siphon faster than it is

poured into the vessel, the level of the liquid in the cup will gradu-

ally fall below the termination of the shorter branch. The siphon

will then empty itself, and will not recommence its action till the

liquid has again risen to the level of the bend.

The siphon may be concealed in the interior of the figure of a

man whose mouth is just above the top of the siphon. If water be

poured in very slowly, it will continually rise nearly to his lips and

then descend ao-ain. . Hence the name. Instead of a bent tube we

may employ, as in the first figure, a straight tube covered by a bell-

glass left open below; in this case the space between the tube and

the bell takes the place of the shorter leg of the siphon.

It is to an action of this kind that natural intermittent springs are

generally attributed. Suppose a reservoir (Fig. 179) to communicate

with an outlet by a bent tube forming a siphon, and suppose it to

be fed by a stream of water at a slower rate than the siphon is able

to discharge it. When the water has reached the bend, the siphon

will become charged, and the reservoir will be emptied; flow will

then cease until it becomes charged again.

275. Mariotte's Bottle.—This is an apparatus often employed to ob-

tain a uniform flow of water. Through the cork at the top of the

bottle (Fig. 180) passes a straight vertical tube open at both ends, and
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in one side of the bottle near the bottom is a second opening furnished

with a horizontal efiiux tube 6 at a lower level than the lower

end of the vertical tube. Suppose that both the bottle and the

vertical tube are in the first instance full of water, and that the

eflS^ux tube is then opened. The liquid flows out, and the vertical

tube is rapidly emptied. Air then enters the bottle through the

vertical tube, and bubbles up from its lower end a through the

liquid to the upper part of the bottle. As soon as this process

begins, the velocity of efilux, which up to this point has been

rapidly diminishing (as is shown by the diminished range of the

Fig. 179.—Intermittent Spring.

jet), becomes constant, and continues so till the level of the liquid

has fallen to a, after which it again diminishes. During the time

of constant flow, the velocity of eflflux is that due to the height of

a above 6, and the air in the upper part of the bottle is at less than

atmospheric pressure, the diflerence being measured by the height

of the surface of the liquid. above a. Strictly speaking, since the

air enters not in a continuous stream but in bubbles, there must be

slight oscillations of velocity, keeping time with the bubbles, but

they are scarcely perceptible.

Instead of the vertical tube, we may have a second opening in the
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side of the bottle, at a higher level than the first; as shown in Fig.

180. Air will enter through the pipe a, which is fitted in this upper

opening, and the liquid will issue at the lower pipe 6, with a constant

velocity due to the height of a above b.

Alariotte's bottle is sometimes used in the laboratory to produce

Fig. ISO.—Mariotte's Bottle.

the uniform flow of a gas by employing the water which escapes to

expel the gas. We may also draw in gas through the tube of

Mariotte's bottle; in this case, the flow of the water is uniform, but

the flow of the gas is continually accelerated, since the space occupied

by it in the bottle increases uniformly, but the density of the gas in

this space continually increases.





EXAMPLES.

Parallelogram of Yelocities, and Parallelogram op Forces.

1. A ship sails through the water at the rate of 10 miles per hour, and a ball

rolls across the deck in a direction perpendicular to the course, at the same rate.

Find the velocity of the ball relative to the water.

2. The wind blows from a point intermediate between N. and E. The nor-

therly component of its velocity is 5 miles per hour, and the easterly component

is 12 miles per hour. Find the total velocity.

3. The wind is blowing due N.E. with a velocity of 10 miles an hour. Find

the northerly and easterly components.

4. Two forces of 6 and 8 units act upon a body in lines which meet in a point

and are at right angles. Find the magnitude of their resultant.

5. Two equal forces of 100 units act upon a body in lines which meet in a

point and are at right angles. Find the magnitude of their resultant.

6. A force of 100 units acts at an inclination of 45° to the horizon. Resolve

it into a horizontal and a vertical component.

7. Two equal forces act in lines which meet in a point, and the angle between

their directions is 120°. Show that the resultant is equal to either of the forces.

8. A body is pulled north, south, east, and west by four strings whose direc-

tions meet in a point, and the forces of tension in the strings are equal to 10, 15,

20, and 32 lbs. weight respectively. Show that the resultant is equal to 13 lbs.

weight.

9. Five equal forces act at a point, in one place. The angles between the first

and second, between the second and third, between the third and fourth, and

between the fourth and fifth, are each 60°. Find their resultant.

10. If 6 be the angle between the directions of two forces P and Q acting at a

point, and R be their resultant, show that

E^ = P2 + Q2 + 2PQ cos d.

11. Show that the resultant of two equal forces P, acting at an angle 6, is

2PC03|^.

Parallel Forces, and Centre op Gravity.

10*. A straight rod 10 ft. long is supported at a point 3 ft. from one end.

What weight hung from this end will be supported by 12 lbs. hung from the

other, the weight of the rod being neglected 1

11*. Weights of 15 and 20 lbs. are hung from the two ends of a straight rod

70 in. long. Find the point about which the rod will balance, its own weight

being neglected.
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12. A weight of 100 lbs. is slung from a pole which rests on the shoulders of

two men, A aud B. The distance between the points where the pole presses their

shoulders is 10 ft., and the point where the weight is slung is 4 ft. from the point

where the pole presses on A's shoulder. Find the weight borne by each, the

weight of the pole being neglected.

13. A uniform straight lever 10 ft. long balances at a point 3 ft. from one end,

when 12 lbs. are hung from this end and an unknown weight from the other.

The lever itself weighs 8 lbs. Find the unknown weight.

14. A straight lever 6 ft. long weighs 10 lbs., and its centre of gravity is 4 ft.

from one end. What weight at this end will support 20 lbs. at the other, when

the lever is supported at 1 ft. distance from the latter?

15. Two equal weights of 10 lbs. each are hung one at each end of a straight

lever 6 ft. long, which weighs 5 lbs.; and the lever, thus weighted, balances about

a point 3 in, distant from the centre of its length. Find its centre of gravity.

16. A uniform lever 10 ft. long balances about a point 1 ft. from one end,

when loaded at that end with 50 lbs. Find the weight of the lever.

17. A straight lever 10 ft. long, when unweighted, balances about a point 4 ft.

from one end ; but when loaded with ^0 lbs. at this end and 4 lbs. at the other,

it balances about a point 3 ft. from the end. Find the weight of the lever.

18. A lever is to be cut from a bar weighing 3 lbs. per ft. What must be its

length that it may balance about a point 2 ft. from one end, when weighted at

this end with 50 lbs.? (The solution of this question involves a quadratic equa-

tion.)

19. A lever is supported at its centre of gravity, which is nearer to one end

than to the other. A weight P at the shorter arm is balanced by 2 lbs. at the

loiiger ; and the same weight P at the longer arm is balanced by 18 lbs. at the

shorter. Find P.

20. Weights of 2, 3, 4 and 5 lbs. are hung at points distant respectively 1, 2,

3 and 4 ft. from one end of a lever whose weight may be neglected. Find the

point about which the lever thus weighted will balance. (This and the following

questions are best solved by taking moments round the end of the lever. The

sum of the moments of the four weights is equal to the moment of their resul-

tant.)

21. Solve the preceding question, supposing the lever to be 5 ft. long, uniform,

<ind weighing 2 lbs.

22. Find, in position and magnitude, the resultant of two parallel and oppo-

sitely directed forces of 10 and 12 units, their lines of action being 1 yard apart.

23. A straight lever without weight is acted on by four parallel forces at the

following distances from one end :

—

At 1 ft., a force of 2 units, acting upwards.

At 2 ft., „ 3 „ „ downwards.

At 3 ft., „ 4 „ „ ui^wards.

At 4 ft., „ 5 „ „ downwards.

Where must the fulcrum be placed that the lever may be in equilibrium, and

wliat will be the pressure against the fulcrum?

24. A straight lever, turning freely about an axis at one end, is acted on by
four parallel forces, namely

—



A downward force of 3 lbs. at 1 ft. from axis.

A do'vvnward force of 5 „ 3 ft.

An upward force of 4 „ 2 ft.

An upward force of tJ „ 4 ft.
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What must be the weight of the lever that it may be in equilibrium, its centre of

gravity being 3 ft. from the axis'?

25. In a pair of nut-crackers, the nut is placed one inch from the hinge, and

the hand is applied at a distance of six inches from the hinge. How much
pressure must be applied by the hand, if the nut requires a pressure of 13 lbs. to

break it, and what will be the amount of the pressure on the hinges?

26. In the steelyai'd, if the horizontal distance between the fulcrum and the

knife-edge which supports the body weighed be 3 in., and the movable weight be

7 lbs., how far must the latter be shifted for a difference of 1 lb. in the body

weighed ?

27. The head of a hammer weighs 20 lbs. and the handle 2 lbs. The distance

between their respective centres of gravity is 24 inches. Find the distance of the

centre of gravity of the hammer from that of the head.

28. One of the four triangles into which a square is divided by its diagonals is

removed. Find the distance of the centre of gravity of the remainder from the

intersection of the diagonals.

29. A square is divided into four equal squares and one of these is removed.

Find the distance of the centre of gravity of the remaining portion from the

centre of the original square.

30. Find the centre of gravity of a sphere 1 decimetre in radius, having in its

interior a spherical excavation whose centre is at a distance of 5 centimetres from

the centre of the lai'ge sphere and whose radius is 4 centimetres.

31. "Weights P, Q, B,, S are hung from the corners A, B, C, D of a uniform

square plate whose weight is "W. Find the distances from the sides AB, AD of

the point about which the plate will balance.

32. An isosceles triangle stands upon one side of a square as base, the altitude

of the triangle being equal to a side of the square. Show that the distance of the

centre of the whole figure from the opposite side of the square is |- of a side of the

square.

33. A right cone stands upon one end of a right cylinder as base, the altitude

of the cone being equal to the height of the cylinder. Show that the distance of

the centre of the whole volume fx'om the opposite end of the cylinder is \^ of the

height of the cylinder.

Work and Stability.

34. A body consists of three pieces, whose masses are as the numbers 1, 3, 9;

and the centres of these masses are at heights of 2, 3, and 5 cm. above a certain

level. Find the height of the centre of the whole mass above this level.

35. The body above-mentioned is moved into a new position, in which tlie

heights of the centres of the three masses are 1, 3, and 7 cm. Find the new
height of the centre of the whole mass.

36. Find the work done against gravity in moving the body from the first

position into the second ; employing as the unit of woi'k the work done in raising

the smallest of the three pieces through 1 cm.

16
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37. Find the portions of this woi'k done in moving each of the three pieces.

38. The dimensions of a rectangular block of stone of weight W are AB = a,

AC = b, AD = c, and the edges AB, AC are initially horizontal. How much

work is done against gravity in tilting the stone round the edge AB until it

balances.

39. A chain of weight W and length I hangs freely by its upper end which is

attached to a drum upon which the chain can be wound, the diameter of the drum

being small compared with I. Compute the work done against gravity in winding

up two-thirds of the chain.

40. Two equal and similar cylindrical vessels with their bases at the same

level contain water to the respective heights h and H centimetres, the area of

either base being a sq. cm. Find, in gramme-centimetres, the work done by

gravity in equalizing the levels when the two vessels are connected.

41. Two forces acting at the ends of a rigid rod without weight equilibrate

each other. Show that the equilibrium is stable if the forces are pulling outwards

and unstable if they are pushing inwards.

42. Two equal weights hanging from the two ends of a string, which passes

over a fixed pulley without friction, balance one another. Show that the equili-

brium is neutral if the string is without weight, and is unstable if the string is

heavy.

43. Show that a uniform hemisphere resting on a horizontal plane has two

positions of stable equilibrium. Has it any positions of unstable equilibrium 1

Inclined Plane, &c.

44. On an inclined plane whose height is \ of its length, what power acting

parallel to the plane will sustain a weight of 112 lbs. resting on the plane without

friction 1

45. The height, base, and length of an inclined plane are as the mimbers 3,

4, 5. What weight will be sustained on the plane without friction by a power of

100 lbs. acting (a) parallel to the base, (h) parallel to the plane?

46. Find the ratio of the power applied to the pressure produced in a screw-

press without friction, the power being applied at the distance of 1 ft. from the

axis of the screw, and the distance between the threads being \ in.

47. In the system of pulleys in which one cord joasses round all the pulleys,

its different portions being parallel, what power will sustain a weight of 2240 lbs.

without friction, if the number of cords at the lower block be 6?

48. A balance has unequal arms, but the beam assumes the horizontal position

when both scale-pans are empty. Show that if the two apparent weights of a

liody are observed when it is placed first in one pan and then in the other, the

true weight will be found by multiplying these together and taking the square

root.

Force, Mass, and Velocity.

The motion is supposed to he rectilinear,

49. A force of 1000 dynes acting on a certain mass for one second gives it a

velocity of 20 cm. per sec. Find the mass in grammes.

50. A constant force acting on a mass of 12 gm. for one sec. gives it a velocity

of 6 cm. per sec. Find the force in dynes.
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51. A force of 490 dynes acts on a mass of 70 gm. for one sec. Find the

velocity generated.

52. In the preceding example, if the time of action be increased to 5 sec, what
will be the velocity generated?

In, thefolloioing examples the unit of momentum referred to is the momentum of a gramme moving
u-ith a velocity of a centimetre per second.

53. What is the momentum of a mass of 15 gm. moving with a velocity of

translation of 4 cm. per sec?

54. What force, acting upon the mass for 1 sec, would produce this velocity?

55. What force, acting upon the mass for 10 sec, would produce the same
velocity ?

56. Find the force which, acting on an unknown mass for 12 sec, would pro-

duce a momentum of 84.

57. Two bodies initially at rest move towards each other in obedience to

mutual attraction. Their masses are respectively 1 gm. and 100 gm. If the force

of attraction be ^oir of a dyne, find the velocity acquired by each mass in 1 sec.

58. A gun is suspended by strings so that it can swing freely. Compare the

velocity of discharge of the bullet with the velocity of recoil of the gun; the

masses of the gun and bullet being given, and the mass of the powder being

neglected.

59. A bullet fired vertically iipwards, enters and becomes imbedded in a block

of wood falling vertically overhead ; and the block is brought to rest by the ixa-

pact. If the velocities of the bullet and block immediately before collision were

respectively 1500 and 100 ft. per sec, compare their masses.

Falling Bodies and Projectiles.

Assuming that a falling body acquires a velocity of 980 cm. per sec. by falling

for 1 sec, find :

—

60. The velocity acquired in y^ of a second.

61. The distance passed over in ^^ sec.

62. The distance that a body must fall to acquire a velocity of 980 cm. per sec.

63. The time of rising to the highest point, when a body is thrown vertically

upwards with a velocity of 6860 cm. per sec.

64. The height to which a body will rise, if thrown vertically upwards with a

velocity of 490 cm. per sec.

65. The velocity with which a body must be thrown vertically upwards that

it may rise to a height of 200 cm.

66. The velocity that a body will have after ^ sec, if thrown vertically ujd-

wards with a velocity of 300 cm. per sec.

67. The point that the body in last question will have attained.

68. The velocity that a body will have after 2-^ sees., if thrown vertically up-

wards with a velocity of 800 cm. per sec.

69. The point that the body in last question will have reached.

Assuming that a falling body acquires a velocity of 32 ft. j^er sec by falling for

1 sec, find :

—

70. The velocity acquired in 12 sec

71. The distance fallen in 12 sec
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72. The distance that a body must fall to acquire a velocity of 10 ft. per sec.

73. The time of rising to the highest point, when a body is thrown vertically

upwards with a velocity of 160 ft. jDer sec.

74. The height to which a body will rise, if thrown vei'tically upwards with a

velocity of 32 ft. per sec.

75. The velocity with which a body must be thrown vertically upwards that

it may rise to a height of 25 ft.

76. The velocity that a body will have after 3 sec, if thrown vertically up-

wards with a velocity of 100 ft. per sec.

77. The height that the body in last question will have ascended.

78. The velocity that a body will have after 1^ sec, if thrown vertically down-

wards with a velocity of 30 ft. per sec.

79. The distance that the body in last question will have described.

80. A body is thrown horizcntally from the top of a tower 100 m. high with

a velocity of 30 metres jDer sec. When and where will it strike the ground?

81. Two bodies ai'C successively dropped from the same point, with an intei'val

of i of a second. When will the distance between them be one metre?

82. Show that if x and y are the horizontal and vertical co-ordinates of a pro-

jectile refeiTcd to the point of projection as origin, their values after time t are

x = Yt cos a, y — \t sin a - \ gt^.

83. Show that the equation to the trajectory is

y — X tan a - -^r^fn g-i" 2V^ cos^a

and that if V and a can be varied at pleasure, the projectile can in genei-al be

made to traverse any two given points in the same vertical plane with the point

of projection.

Atwood's Machine,

Two weights are connected by a cord passing over a pulley as in Atwood's

machine, friction being neglected, and also the masses of the pulley and cord;

find :—

84. The acceleration when one weight is double of the other.

85. The acceleration when one weight is to the other as 20 to 21.

Taking g as 980, in terms cf the cm. and sec, find :

—

86. The velocity acquired in 10 sec, when one weight is to the other as 39

to 41.

87. The velocity acquired in moving through 50 cm., when the weights are as

19 to 21.

88. The distance through which the same weights must move that the velocity

acquired may be double that in last question.

89. The distance through which two weights which are as 49 to 51 must move

that they may acquire a velocity of 98 cm. per sec.
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Energy and Work.

90. Express in ergs the kinetic energy of a mass of 50 gm. moving with a

velocity of 6U cm. per sec.

91. Express in ergs the work done in raising a kilogram through a height of

1 metre, at a ])lace where y is 981.

92. A mass of 123 gm. is at a height of 2000 cm. above a level floor. Find its

energy of position estimated with respect to the floor as the standard level {g

being 981).

93. A body is thrown vertically upwards at a place where g is 980. If the

velocity of projection is 9800 cm. per sec. and the mass of the body is 22 gm.,

find the energy of the body's motion when it has ascended half way to its maximum
height. Also find the work done against gravity in this part of the ascent.

94. The height of an inclined plane is 12 cm., and the length 24 cm. Find

the work done by gravity upon a mass of 1 gm. in sliding down this plane {g

being 980), and the velocity with which the body will reach the bottom if there

be no friction.

95. If the jolane in last question be not frictionless, and the velocity on

reaching the bottom be 20 cm. per sec, find how much energy is consumed in

friction.

96. Find the work expended in discharging a bullet whose mass is 30 gm.

with a velocity of 40,000 cm. per sec; and the number of such bullets that will

be discharged with this velocity in a minute if the rate of working is 7460

million ergs per sec. (one horse-power).

97. One horse-power being defined as 550 foot-pounds per sec. ; show that it

is nearly equivalent to 8"8 cubic ft. of water lifted 1 ft. high per sec. (A cubic

foot of water weighs 62|^ lbs. nearly. A foot-pound is the work done against

gravity in lifting a pound through a height of 1 ft.)

98. How many cubic feet of water will be raised in one hour from a mine

200 ft. deep, if the rate of pumping be 15 horse-power?

Centrifugal Force.

99. What must be the radius of curvature, that the centrifugal force of a

body travelling at 30 miles an hour may be one-tenth of the weight of the body

;

g being 981, and a mile an hour being 44*7 cm. per sec?

100. A heavy particle moves freely along a frictionless tube which forms a

vertical circle of radius a. Find the velocity which the particle will have at the

lowest point, if it all but comes to rest at the highest. Also find its velocity at

the lowest point if in passing the highest point it exerts no pressure against the

tube. [Use the principle that what is lost in energy of position is gained in

energy of motion.]

101. Show that the total intensity of centrifugal force due to the earth's

27r
rotation, at a place in latitude ?i, is uP' R cos X, w denoting ^p, and E, the

earth's radius ; that the vertical component (tending to diminish gravity) is w^

R cos^ "h, and that the horizontal component (directed from the pole towards the

equator) is w^ p, cos x sin A.
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Pendulum, and Moment of Inertia.

101*. The length of the seconds pendulum at Greenwich is 99*413 cm.; find

the length of a pendulum which makes a single vibration in 1^ sec.

102. The weight of a fly-wheel is M grammes, and the distance of the inside

of the rim from the axis of revolution is E centims. Supposing this distance to

be identical with k (§ 117), find the moment of inertia.

If a force of F dynes acts steadily upon the wheel at an arm of a centims.,

what will be the value of the angular velocity 7=; after the lapse of t seconds from

the commencement of motion?

103. For a uniform thin rod of length a, swinging about a point of suspension

at one end, the moment of inertia is the mass of the rod multiplied by ^a^.

Find the length of the equivalent simple pendulum ; also the moment of inertia

round a pax'allel axis through the centre of the rod.

104. At what point in its length must the rod in last question be suspended

to give a minimum time of vibration : and at what point must it be suspended to

give the same time of vibration as if suspended at one end?

105. Show that if P be the mass of the pulley in Atwood's machine, r its

radius, and P^^ its moment of inertia, the value of C in § 100 will be P
2

plus the mass of the string. [The mass of the friction-wheels is neglected.]

106. A body moves with constant velocity in a vertical circle, going once

round per second ; and its shadow is cast upon level ground by a vertical sun.

Find the value of ft, (§ 111) for the shadow, using the centimetre and second as

units.

107. What is the value of ft for one of the prongs of a C tuning-fork which

makes 512 complete vibrations per second?

Pressure of Liquids.

Find, in gravitation measure (grammes per sq. cm.), atmospheric pressure

being neglected :

—

108. The pressure at the depth of a kilometre in sea-water of density 1'025.

109. The pressure at the depth of 65 cm. in mercury of density 13 "59,

110. The pressure at the depth of 2 cm. in mercury of density 13*59 sur-

mounted by 3 cm. of water of unit density, and this again by 1| cm. of oil of

density '9.

Find, in centimetres of mercury of density 13"6, atmospheric pressure being

included, and the barometer being supposed to stand at 76 cm. :

—

111. The pressure at the depth of 10 metres in water of unit density.

112. The pressure at the de2Dth of a mile in sea-water of density 1*026, a mile

being 160933 cm.

Find, in dynes per square centimetre, taking g as 981 :
—

113. The pressure due to 1 cm. of mercury of density 13'596.
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114. T]ie pressure due to a foot of water of unit density, a foot being

30-48 cm.

115. The pressure due to the weight of a layer a metre thick, of air of density

•00129.

116. At what depth, in brine of density 1*1, is the pressure the same as at a

depth of 33 feet in water of unit density?

117. At what dejDth, in oil of density *9, is the pressure the same as at the

depth of 10 inches in mercury of density 13*596 1

118. With what value of g will the pressure of 3 cm. of mercury of density

13-596 be 4 X 10^?

Find, in grammes weight, the amount of pressure (atmospheric pressure being

neglected) :

—

119. On a triangular ai-ea of 9 sq. cm. immersed in naphtha of density •848;

the centre of gravity of the triangle being at tlie depth of 6 cm.

120. On a rectangular area 12 cm. long, and 9 cm. broad, immersed in mercury

of density 13*596 ; its highest and lowest corners being at depths of 3 cm. and 7

cm. respectively.

121. On a circular ai^ea of 10 cm. radius, immei'sed in alcohol of density ^791,

the centre of the circle being at the depth of 4 cm.

122. On a triangle whose base is 5 cm. and altitude 6 cm., the base being at

the uniform depth of 9 cm., and the vertex at the depth of 7 cm., in water of unit

density.

123. On a sphere of radius r centimetres, completely immersed in a liquid of

density d ; the centre of the sphere being at the dejath of k centimetres. [The

amount of pressure in this case is not the resultant jaressure.]

Density, and Principle of Archimedes.

Densities are to he expressed in grammes per cubic centimetre.

124. A rectangular block of stone measures 86 x 37 x 16 cm., and weighs

120 kilogrammes. Eind its density.

125. A specific-gravity bottle holds 100 gm. of water, and 180 gm. of sulphuric

acid. Find the density of the acid. »

126. A certain volume of mercurj' of density 13'6 weighs 216 gm., and the

same volume of another liquid weighs 14^8 gm. Find the density of this liquid.

127. Find the mean section of a tube 16 cm. long, which holds 1 gm. of mercury

of density 13'6.

128. A bottle filled with water, weighs 212 gm. Fifty grammes of filings are

thrown in, and the water which flows over is removed, still leaving the bottle

just filled. The bottle then weighs 254 gm. Find the density of the filings.

129. Find the density of a body which weighs 58 gm. in air, and 46 gm. in

water of unit density.

130. Find the density of a body which weighs 63 gm. in air, and 35 gm. in a
liquid of density •85.
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131. A glass ball loses 33 gin. when weighed in water, and loses 6 gm. more

when weighed in a saline solution. Find the density of the solution.

132. A body, lighter than water, weighs 102 gm. in air ; and when it is im-

mersed in water by the aid of a sinker, the joint weight is 23 gm. The sinker

alone weighs 50 gm. in water. Find the density of the body.

133. A piece of iron, when plunged in a vessel fuU.of water, makes 10 grammes

run over. When placed in a vessel full of mercury it floats, displacing 78

grammes of mercury. Eequired the weight, volume, and specific gravity of

the iron.

134. Find the volume of a solid which weighs 357 gm. in air, and 253 gm. in

water of unit density.

135. Find the volume of a solid which weighs 458 gm. in air, and 409 gm. in

brine of density 1*2.

136. How much weight will a body whose volume is 47 cubic cm. lose, by

weighing in a liquid whose density is 2-5?

137. Find the weights in air, in water, and in mercury, of a cubic cm. of gold

of density 19'3.

138. A wire 1293 cm. long loses 508 gm. by weighing in water. Find its

mean section, and mean radius.

139. A copper wire 2156 cm. long weighs 158 gm. in air, and 140 gm. in

water. Find its volume, density, mean section, and mean radius.

140. "What will be the weights, in air and in water, of an iron wire 1000 cm.

long and a millimetre in diameter, its density being 77

1

141. How much water will be displaced by 1000 c.c. of oak of density '9,

floating in equilibrium?

142. A ball, of density 20 and volume 3 c.c, is surmounted by a cylindrical

stem, of density 2'5, of length 12 cm., and of cross section | sq. cm. What length

of the stem will be in air when the body floats in equilibrium in mercury of

density 13-6?

143. A hollow closed cylinder, of mean density "4 (including the hollow space),

is weighted with a ball of volume 5, and mean density 2. What must be the

volume of the cylinder, that exactly half of it may be immersed, when the body

is left to itself in water?

144. A long cylindrical tube, constructed of flint glass of density 3, is closed

at both ends, and is found to haA^e the property of remaining at whatever depth

it is placed in water. If the mass of the ends can be neglected, show that the

ratio of the internal to the external radius is^ -^

145. A glass bottle provided with a stopper of the same material weighs 120

gm. when empty. When it is immersed in watei', its apparent weight is 10 gm.,

but when the stopper is loosened and the water let in, its apparent weight is 80

gm. Find the density of the glass and the capacity of the bottle.

146. A hydrometer sinks to a certain depth in a fluid of density '8; and if

100 gm. be placed upon it, it sinks to the same depth in water. Find the weight

of the hydrometer.

147. Find the mean density of a combination of 8 parts by volume of a sub-

stance of density 7, with 19 of a substance of density 3.
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148. Find the mean deusity of a combination of 8 parts by weight of a sub-

stance of density 7, with 19 of a substance of density 3.

149. What volume of fir, of density '5, must be jbined to 3 c.c. of iron, of

density 7'1, that the mean density of the whole may be unity?

150. What mass of fir, of density "5, must be joined to 300 gm. of iron, of

density 7'1, that the mean density of the whole may be unity?

151. Two parts by volume of a liquid of density '8, are mixed with 7 of water,

and the mixture shrinks in the ratio of 21 to 20. Find its density.

152. A piece of iron of density 7'5 floats in mercury of density 13'5, and is

completely covered with water which rests on the top of the mercury. How much
of the iron is immersed in the mercury?

153. Two liquids are mixed. The total volume is 3 litres, with a sp. gr. of

0'9. The sp. gr. of the first liquid is 1"3, of the second 0'7. Find their volumes.

154. What volume of platinum of density 21 '5 must be attached to a litre of

iron of density 7"5 that the system may float freely at all depths in mercury of

density 13-51

155. What must be the thickness of a hollow sphere of platinum with an ex-

ternal radius of 1 decim., that it may barely float in water?

156. A sphere of cork of density '24, 3 cm. in radius, is weighted with a

sphere of gold of density 19"3. What must be the radius of the latter that the

system may barely float in alcohol of density '8?

157. An alloy of gold and silver has density D. The density of gold is d, that

of silver d'. Find the proportions by weight of the two metals in the alloy, sup-

posing that neither expansion nor contraction occurs in its formation.

158. A mixture of gold, of density 19'3, with silver, of density 10"5, has the

density 18. Assuming that the volume of the alloy is the sum of the volumes of

its components, find how many parts of gold it contains for one of silver— (a) by
volume; (6) by weight.

159. A body weighs gM. dynes in air of density A, gm in water, and gx in

vacuo. Find x in terms of M, m, and A.

Capillarity.

160. A horizontal disc of glass is held up by means of a film of water between

it and a similar disc of the same or a larger size above it.

If R denote the radius of the lower disc,

d the distance between the discs, which is very small compared with R,

T the surface tension of water,

show that the weight of the lower disc together with that of the water

2T TT 'K?
between the discs is approximately equal to —-^

[The disc of water will be concave at the edge, and the radius of curvature of

the concavity may be taken as kd.'\

161. The surface-tension of water at 20° C. is 81 dynes per linear centim.

How high will water be elevated by capillary action in a wetted tube whose dia-

meter is half a millimetre? y
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162. IIow much will mercury be depressed by capillai^y action in a glass tube

of half a millimeti-e diameter, the surface-tension of mercury at 20° C. being 418

dynes per cm., its density 13'54, and the cosine of the angle of contact 'lOS'l

163. Show by the method of § 186 that the capillary elevation or depression

will be the same in a square tube as in a circular tube whose diameter is equal to

a side of the square.

164. Two equal discs in a vertical position have a film of water between

them sustained by capillary action. Show that if the water at the lowest point

is at atmospheric pressure, the water at the centre of the discs is at a pressure less

than atmospheric by rff dynes per sq. cm., r being the common radius of the

discs in cm.; and that the discs are pressed together with a force of 3- r^g dynes.

Barometer, and Boyle's Law.

165. A bent tube, having one end open and the other closed, contains mercury

which stands 20 cm. higher in the open than in the closed branch. Compare the

pressure of the air in the closed branch with that of the external air ; the baro-

meter at the time standing at 75 cm.

166. The cross sections of the open and closed branches of a siphon barometer

are as 6 to 1. "What distance will the mercury move in the closed branch, when

a normal barometer alters its reading by 1 inch?

167. If the section of the closed limb of a siphon barometer is to that of the

open limb as a to b, show that a rise of 1 cm. in the mercury in the closed limb

corresponds to a rise of —t— cm. of the theoretical barometer.

168. Compute, in dynes per sq. cm., the pressure due to the weight of a column

of mercury 76 cm. high at the equator, where
ff

is 978, and at the pole, where g
is 983.

169. The volimes of a given quantity of mercury at 0° C. and 100° C. are as

1 to 1'0182. Compute the height of a column of mercury at 100°, which will

produce the same pressure as 76 cm. of mercury at 0°.

170. The volumes of a given mass of mercury, at 0° and 20°, are as 1 to 1"0036.

Find the height reduced to 0°, when the actual height (in true centimetres), at a

temperature of 20°, is 76"2.

171. In performing the Torricellian experiment a little air is left above the

mercury. If this air expands a thousandfold, what difference will it make in the

height of the column of mercury sustained when a normal barometer reads

76 cm.?

172. In performing the Torricellian experiment, an inch in length of the tube

is occupied with air at atmospheric pressure, before the tube is inverted. After

the inversion, this air expands till it occupies 15 inches, while a column of

mercury 28 inches high is sustained below it. Find the true barometric height.

173. The mercury stands at the same level in the open and in the closed branch

of a bent tube of uniform section, when the air confined at the closed end is at

the pressure of 30 inches of mercury, which is the same as the pressure of the

external air. Express, in atniosplieres, the jaressure which, acting on the surface

of the mercury in Ihe open branch, compresses the confined air to half its original
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volume, and at the same time maintains a difference of 5 inches in the levels of

the two mercurial columns.

174. At what pressure (expressed in atmospheres) will common air have the

same density which hydrogen has at one atmosphere ; their densities when com-

pared at the same pressure being as 1276 to 88"4?

175. Two volumes of oxygen, of density •00141, are mixed with three of

nitrogen, of density "00124. Find the density of the mixture

—

(a) if it occupies

five volumes
;

(b) if it is reduced to four volumes.

176. The mass of a cub. cm. of air, at the temperature 0° C, and at the pressure

of a million dynes to the square cm., is "0012759 gramme. Find the mass of a

cubic cm. of air at 0° C, under the pressure of 76 cm. of mercury—(a) at the pole,

where^ is 983"1; (6) at the equator, where g is 978"!
;

(c) at a place where g is

981.

177. Show that the density of air at a given temperature, and under the

pressure of a given column of mercury, is greater at the pole than at the equator

by about 1 part in 196; and that the gravitating force of a given volume of it

is greater at the pole than at the equator by about 1 part in 98.

178. A cylindrical test-tube, 1 decim. long, is plunged, mouth downwai-ds,

into mercury. How deep must it be plunged that the volume of the inclosed air

may be diminished by one-half 1

179. The pressure indicated by a siphon barometer whose vacuum is defective

is 750 mm., and when mercury is poured into the open branch till the barometric

chamber is reduced to half its former volume, the pressure indicated is 740 mm.
Deduce the true pressure.

180. An open manometer, formed of a bent tube of iron whose two branches

are parallel and vertical, and of a glass tube of larger size, contains mercury at

the same level in both branches, this level being higher than the junction of the

iron with the glass tube. What must be the ratio of the sections of the two

tubes, that the mercury may ascend half a metre in the glass tube when a pres-

sure of 6 atmospheres is exerted in the opposite branch?

181. A curved tube has two vertical legs, one having a section of 1 sq. cm., tie

other of 10 sq. cm. Water is poured in, and stands at the same height in both

legs. A piston, weighing 5 kilogrammes, is then allowed to descend, and press

with its own weight upon the surface of the liquid in the larger leg. Find the

elevation thus produced in the surface of the liquid in the smaller leg.

Pumps, &c.

182. The sectional area of the small plunger in a Bramah press is 1 sq. cm.,

and that of the larger 100 sq. cm. The lever handle gives a mechanical advan-

tage of 6. What weight will the large plunger sustain when 1 cwt. is hung from

the handle?

183. The diameter of the small plunger is half an inch; that of the larger

1 foot. The arms of the lever handle are 3 in. and 2 ft. Find the total mechan-

ical advantage.

184. Find, in grammes weight, the force required to sustain the piston of a

suction-pump without friction, if the radius of the piston be 15 cm., the depth



252 EXAMPLES.

from it to the surface of the water in the well 600 cm., and the height of the

column of water above it 50 cm. Show that the answer does not depend on the

size of the pipe which leads down to the well.

185. Two vessels of water are connected by a siphon. A certain point P in

its interior is 10 cm. and 30 cm. respectively above the levels of the liquid in the

two vessels. The pressure of the atmosphere is 1000 grammes weight per sq. cm.

Find the pressure which will exist at P—(a) if the end which dijDS in the upper

vessel be plugged
;
(b) if the end which dips in the lower vessel be plugged.

186. If the receiver has double the volume of the barrel, find the density of

the air remaining after 10 strokes, neglecting leakage, &c.

187. Air is forced into a vessel by a compression pump whose barrel has j'jjth

of the volume of the vessel. Compute the density of the air in the vessel after

20 strokes.

188. In the pump of Fig. 136 show that the excess of the pressure on the upper

above that on the lower side of the piston, at the end of the first up-stroke, is

V
y ^,

of an atmosphere [in the notation of § 230j; and hence that the first

stroke is more laborious with a small than with a large receiver.

189. In Tate's pump show that the pressure to be overcome in the first stroke

is nearly equal to an atmosphere during the greater part of the stroke ; and that,

when half the air has been expelled from the receiver, the pressure to be over-

come varies, in diiferent parts of the stroke, from half an atmosphere to an atmo-
sphere.

ANSWERS TO EXAMPLES.

Ex. 1. 14-14. Ex. 2. 13. Ex. 3. 7'07 each. Ex. 4. 10. Ex. 5. 141-4.

Ex. 6. 70-7 each. Ex. 7. Introduce a force equal and opposite to the resultant.

Then we have three forces making angles of 120° with each other. Ex. 9. Equal
to one of the forces.

Ex. 10*. 28. Ex. 11*. 40 in. from smaller weight. Ex. 12. 60 lbs. by A,
40 lbs. by B. Ex. 13. 2f lbs. Ex. 14. 2 lbs. Ex. 15. 15 in. from centre.

Ex. 16. 121 lbs. Ex. 17. 32 lbs. Ex. 18. 10-4 ft. nearly. Ex. 19. 6 lbs. Ex.
20. 2f ft. from end. Ex. 21. 2}f. Ex. 22. 2 units acting at distance of 5 yards
from the greater force. Ex. 23. 6 ft. from the end

;
pressure 2 units. Ex. 24.

4f lbs. Ex. 25. 2^ lbs., lOf lbs. Ex. 26. f in. Ex. 27. 2r\ in. Ex. 28. I of

side of square. Ex. 29. jV of diagonal of large square. Ex. 30. -/^ cm. from
centre of large sphere. Ex. 31. Denoting side of square by a, distance from AB

|W + R + S JW + Q + R
'^ W + P + Q + R + S ^' distance from AD is ^^fTplTQ^R «•

Ex. 34. 4,^ cm. Ex. 35. 5^^ cm. Ex. 36. 17. Ex.37. -1,0, + 18. Ex.

38. iW(V(62 + c2)-c). Ex. 39. fW^. Ex. 40.
" (H-A)^.
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Ex. 44. 14 lbs. Ex. 45. (a) 133i lbs.; (6) 166| lbs. Ex. 46. 1 to 603 nearly.

Ex. 47. 373-^-.

Ex. 49. 50. Ex. 50. 72. Ex. 51. 7 cm. per sec. Ex. 52. 35. Ex. 53. 60.

Ex. 54. 60 dynes. Ex. 55. 6 dynes. Ex. 56. 7 dynes. Ex. 57. Smaller mass

^, larger yoooo- cm. per sec. Ex. 58. Invei-sely as masses of buUet and gun.

Ex. 59. Mass of bullet is ^ of mass of block.

Ex. 60. 98 cm. per sec. Ex. 61. 4-9 cm. Ex. 62. 490 cm. Ex. 63. 7 sec.

Ex. 64. 122| cm. Ex. 65. 626 cm. per sec. Ex. 66. 6 cm. per sec. upwards.

Ex. 67. 45-9 cm. above point of projection. Ex. 68. 1650 cm. per sec. downwards.

Ex. 69. 1062J cm. below starting point. Ex. 70. 384 ft. per sec. Ex. 71. 2304 ft.

Ex. 72. Ij^ ft. Ex. 73. 5 sec. Ex. 74. 16 ft. Ex. 75. 40 ft. per sec. Ex. 76.

4 ft. per sec. upwards. Ex. 77. 156 ft. Ex. 78. 78 ft. per sec. Ex. 79. 81 ft.

Ex. 80. After 4-52 sec. At 135-6 m. from tower. Ex. 81. After -41 sec. from

dropping of second body.

Ex. 84. -} g. Ex. 85. ^ g. Ex. 86. 245 cm. per sec. Ex. 87. 70 cm. per

sec. Ex. 88. 200 cm. Ex. 89. 245 cm.

Ex. 90. 90,000 ergs. Ex. 91. 98,100,000 ergs. Ex. 92. 241,326,000 ergs.

Ex. 93. 528,220,000 ergs each. Ex. 94. 11,760 ergs ; V 23520 = 153*4 cm. per sec.

Ex. 95. 11,560 ergs. Ex. 96. 24 x 10^ ergs in each discharge. Not quite 19

discharges per min. Ex. 98. 2376 nearly.

Ex. 99. 18330 cm. or about 600 ft. Ex. 100. 2 V^, V5^
Ex. 101*. 223-679 cm. Ex. 102. ME^, ^.. Ex. 103. |a; mass of rod multi-

plied by Y^a^- Ex. 104. At either of the two points distant -^-p^ from centre; at

either of the two poi

(10247r)2 = 10350000.

either of the two points distant | from centre. Ex. 106. (2^)2 = 39-48. Ex. 107,

t

Ex. 108. 102.500. Ex. 109. 883-35. Ex. 110. 31-53. Ex. 111. 149*5. Ex.

112. 12217. Ex. 113. 13338. Ex. 114. 29901. Ex. 115. 126-5. Ex. 116. 30.

Ex. 117. 12 ft. 7 in. Ex. 118. 980-68. Ex. 119. 45-79. Ex. 120. 7342. Ex.

121. 994. Ex. 122. 125. Ex. 123. A-^r^d.

Ex. 124. 2-357. Ex. 125. 1-8. Ex. 126. -932. Ex. 127. -0046 sq. cm. Ex.

128. 6-25. Ex. 129. 4|. Ex. 130. 1-9125. Ex. 131. l-fj. Ex. 132. ||. Ex.

133. 10 cub. cm., 78 gra., 7-8. Ex. 134. 104. Ex. 135. 40-83. Ex. 136. 117-5.

Ex. 137. 19-3, 18-3, 5-7. Ex. 138. '393 sq. cm., -354 cm. Ex. 139. 18, 8-777,

-00835 sq. cm., -0516 cm. Ex. 140. 60-48, 52-62. Ex. 141. 900 c.c. Ex. 142.

5-56 cm. Ex. 143. 50 c.c. Ex. 145. 3, 70 c.c. Ex. 146. 400 gm. Ex. 147.

4^ = 4-185. Ex. 148. 3j«5''7 = 3-6115. Ex. 149. 36-6 c.c. Ex. 150. 257*7 gm.

Ex. 151. 1*0033. Ex. 152. if of the ii'on. Ex. 153. 1 lit. of first, 2 lit. of second.

Ex. 154. f of a litre. Ex. 155. 1-^^ decim. = *158 cm. Ex. 156. \/-jg:^
=

•935 cm. Ex. 157. Gold: silver :: ^-,
-

J^
: ^ - ^* Ex. 158. (a) 5*77, (b) 10-6.

Ex. 159. ^^-
1-

A
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Ex. 161. 6-6 cm. nearly. Ex. 162. 1-77 cm.

Ex 165 14 Ex. 166. f in. Ex. 168. 1010564, 1015730. Ex. 169. 77-3832.

Ex 170. 75-93. Ex. 171. "076. Ex. 172. 30 in. Ex. 173. 2J. Ex. 174. -0693.

Ex 175 (a) -001308, (^>) "001635. Ex. 176. (a) '0012961, (b) -0012895, (c) -0012933.

Ex. 177. d varies as g, and therefore gd varies as g\ Ex. 178. Its top must be

76-5 = 71 cm. deep. Ex. 179. 760 m. Ex. 180. 33 to 5. Ex. 181. 454r«T cm.

Ex. 182. 30 tons. Ex. 183. 4608. Ex. 184. 459500 nearly. Ex. 185. (a) 970.

(6) 990 gm. wt. per sq. cm. Ex. 186. ig of an atmosphere, nearly. Ex. 187. 3

atmospheres.
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Absorption of gases, 177.

Acceleration defined, 51.

Air, weight of, 138, 139.

— pump, 179.

— chamber, 218.

— film, adherent, 177.

Alcoholimeters, 114, 115.

Arr^litude of vibration, 63.

Aneroid, 154.

Annual and diurnal variations, 161.

Archimedes' principle, 97.

Aristotle's experiment, 138.

Arithmetical lever, 12.

Ascent in capillary tubes, 124,

125, 128.

Atmosphere, 140.

— standard of pressure, 141.

Attractions, apparent, 133.

Atwood's machine, 57.

Axis of couple, 14.

— of wrench, 15.

Babinet's air-pump, 196.

Back-pressure on discharging ves-

sel, 92, 225, 226.

Balance, 34-40.

Balloons, 204-208.

Barker's mill, 93.

Barographs, 156, 158.

Barometer, 142.

— , corrections of, 148-151.

Barometric measurement of

heights, 159-161.
— prediction, 163.

Baroscope, 204.

Beaume's hydrometers, 113.

Bianchi's air-pump, 183.

Bladder, burst, 187.

Bourdon's gauge, 175.

Boyle's law, 166.

— tube, 166.

Bramah press, 222.

Bubbles filled with hydrogen, 205.

—, tension and pressure in, 130.

Buoyancy, centre of, 98, 100.

Buys Ballot's law, 164.

Caissons, 202.

Camphor, movements of, 134.

Capillarity, 12.^-134.

Cartesian diver, loi.

Cathetometer, 144.

Centre of buoyancy, 98, 100.

— of gravity, 17-21.

— by experiment, 22.

—
, velocity of, 46.

— of mass, 47.

— of oscillation, 71.

— of parallel forces, 10, 17.

— of pressure, 93.

Centrifugal force, 60, 95,— pump, 219.

C.G. S. system, 48.

Change of momentum, 42.

— of motion, 42.

Charts of weather, 163.

Circular motion, 59.

Clearance, see untraversed space,

189, 213.

Coefficients of elasticity, 79.
— of friction, 81.

Colloids, 135.

Communicating vessels, 118, 125.

Component along a line, 16.

Components, 7.

Compressed-air machines, 202.

Compressibilit)', 79.

Compressing pump, 199.

Conservation of energy, 74-76.

Constant load, weighing with, 37.

Contracted vein, 225.

Contractile film, 127-130, 133, 134.

Convertibility of centres, 70.

Corrections of barometer, 148-151.

Counterpoised barometer, 155.

Couple, 13.

Crystalloids, 135.

Cupped-leather collar, 222.

Cycloidal pendulum, 67.

Cyclones, 165.

D'Alembert's principle, 96.

Deflecting force, 60.

Deleuil's air-pump, 196.

Density, absolute and relative, 105.

— , determination of, 106-112.

— , table of, xii.

Depression, capillary, 124, 125,

128.

Despretz's experiments on Boyle'?

law, 168.

Dialysis, 135.

Di-imeters, law of, 125.

Diffusion, 135.

Displaced liquid defined, 100.

Diurnal barometric curve, 161.

Diver, Cartesian, loi.

Double-acting pumps, 183, 218.

Double-barrelled air-pump, 181.

Double exhaustion, 194.

— weighing, 35.

Drops, 131.

Dynamics, 2.

Dynamometer, 4.

Dyne, 48.

Efficiency of pumps, 214.

Efflu.f of liquids, 224.

from air-tight spaces, 229.

Egg in water, 100.

Elasticity, 77-80.

Elevation, capillary, 124-128.

Endosmose, 134.

Energy, conservation of, 74-761

Energy, kinetic, 73.'

— , static or potential, 73.

English air-pumps, 184.

Equilibrium, 4.

Equivalent simple pendulum, 66.

Erg, 48.

Errors and corrections, signs of,

151-.

E.xhaustion, limit of, 188.

— , rate of, 180.

Expansibility of gases, 137.

Fahrenheit's barometer, 156.

— hydrometer, in.
Fall in vacuo, 49.

Falling bodies, 52.

Film of air on solids, 177.

Films, tension in, 127-130, 133, 134.

Fire-engine, 218.

Float-adjustment of barometer,

147.

Floatation, 102.

Floating needles, 103.

Fluid, perfect, 83.

P'orce, 3.

—, amount of, 44.

—, intensity of, 44.

— , unit of, 44, 48.

Forcing-pump, 216.

Fortin's barometer, 144.

Fountain in vacuo, 187.

— , intermittent, 230.

Free-piston air-pump, 196.

Friction, 81, 82.

— in connection with conservation

of energy, 76.

Froude on contracted vein, 225.

Galileo on falling bodies, 49.

— on suction by pumps, 142.

Gases, e.xpansibility of, 137.

Geissler's air-pump, 191.

Geometric decrease of pressure

upwards, 160.

Gimbals, 147.

Gradient, barometric, 164.

Gramme, 105.

Graphical interpolation, 116.

Gravesande's apparatus, 7.

Gravitation units of force, 4, 106.

Gravity, apparent and true, 61.

— , centre of, 17-21.

, its velocity, 46.

—, formula for its intensity, 51.

— measured by pendulums, 72.

— - proportional to mass, 50.

Guinea-and-feather experiment,

49.

Head of liquid, 224.

Heights measured by barometer,

159-161.

Hemispheres, Magdeburg, 187.

Homogeneous atmosphere, 159,

160.

" Horizontal " defined, 17.

Horse-power, xi.

Hydraulic press, 87, 221.

— tourniquet, 93.

Hydrodynamics, 83.

Hydrogen, bubbles filled with, 205.
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Hydrokinetics, 83.

Hydrometers, no-117.
Hydrostatics, S3.

Hypsometric formula, i6i.

Immersed bodies, 98.

Inclined plane, 32.

Index errors and corrections, 151.

Inertia, 41.

— , moment of, 68.

Inexhaustible bottle, 230.

Insects walking on water, 104.

Intermittent fountain, 230.

Isobars, 163.

Isochronous vibrations, 66, 78.

Jet-pump, 219.

Jets, liguid, 224.

Kate.r's pendulum, 71.

Kinetic energy, 73.

Kinetics, 4.

King's barograph, 155, 156.

Kravogl's air-pump, 190.

Laws of motion, 41-45.

Levels, iig-123.

Lever, 29.

Limit to action of air-pump, iSS.

Liquids find their own level, 118.

— in superposition, 88.

Magdeburg hemispheres, 187.

Magic funnel, 229.

Manometers, 172-175.

Marine barometer, 153.

Mariotte's bottle, 235.
— law, 166.

— tube, 166.

Mass, 44, 45.

— and gravitation proportional,

50-

—, centre of, 47.

Mechanical advantage, 30.

— powers, 29-33.

Mechanics, 2.

Meniscus, 131.

Metacentre, 103,

Metallic barometer, 155.

Mi.xtures, density of, 115.

— of gases, 176.

Moduli of elasticity, 78.

Moment of couple, 13.

— of force about point, 11.

— of inertia, 68.

Momentum, 44.

Morin's apparatus, 55.

Motion, laws of, 41-45.

Motions, composition of, 42.

Mountain-barometer, theory of,

159-161.

Multiple-tube barometer, 157.

manometer, 172.

Natural history and natural phi-

losophy, I.

Needles floating, 103.

Newton's experiments with pen-

dulums, 50.

— laws of motion, 41-45.

Nicholson's hydrometer, in.

CErsted's piezometer, 79.

Oscillation, centre of, 71.

Parachute, 207.

Paradox, hydrostatic, 91.

Parallel forces, 9-14.

Parallelogram of forces, 7, 43.— of velocities, 43.

Parallelepiped of forces, 8.

Pascal's mountain experiment, 142.— principle, 86.

— vases, 89.

Pendulum, 62.

— , compound, 70.

— , cycloidal, 67.

— , isochronism of, 64.

—, simple, 62.

— , time of vibration of, 65.

Period of vibration, 63.
" Perpetual motion," 26.

Phial of four elements, 89.

Photographic registration, 157.

Piezometer, 79.

Pile-driving, 75
Pipette, 229.

Plateau's experiments, 131.

Platinum causing ignition of

hydrogen, 177.

Plunger, 216.

Pneumatic despatch, 202.

Potential energy, 73.

Pressure, centre of, 93.

— , hydrostatic, 84.

— , intensity of, 83.

— on immersed surfaces, 93.—
, reduction of, to absolute mea-

sure, 151.

Pressure-gauges, 172-175.

Pressure-height defined, 159, 220.

Pressure in air computed, 160.

— least where velocity is greatest,

220.

Principle of Archimedes, 97.

Projectiles, 53.

Pulleys, 31.

Pump, forcing, 216.

— , suction, 211.

Pumps, efficiency of, 214.

Quantity of matter, 45.

Range and amplitude, i6t.

Rarefaction, limit of, 188.

— , rate of, 180.

Reaction, 4, 15, 45.
— of issuing jet, 92, 225, 226.

Rectangular components, 15.

Regnault's experiments on Boyle's

law, 169-172.

Resistance of the air, 49, 53.

Resolution, 15.

Resultant, 7.

Rigid body, 5.

Rotating vessel of liquid, 95.

Screw, and screw-press, 33.

Second law of motion, 42.

Sensibility and instability, 38.

Sensibility of balance, 35.

Simple-harmonic motion, 65.

Simple pendulum, 62.

Siphon, 231.

— for sulphuric acid, 234.

Siphon-barometer, 151.

Specific gravity, 105.

by weighing in water, 108.

flask, 107.

, table of, xii.

Spirit-levels, 120-123.

Sprengel's air-pump, 193.

Spring-balance, 4.

Stability, 21-28, 38.

Standard kilogramme, 105.

Statics, 4.

Steelyard, 40.

Suction, 211.

— pump, 211.

Sugar-boiling, 202.

Superposed liquids, 88.

Surface of liquids level, 85.

Surface-tension, 127-130, 133, 134,

, table of, 134.

Tantalus' cup, 285.

Tate's air-pump, i85.

Torricellian experiment, 141.

Torricelli's theorem on efflux, 224.

Tourniquet, hydraulic, 93.

Trajectory, 54.

Translation and rotation, 3.

Transmission of pressure in fluids,

86.

Triangle of forces, 6.

Twaddell's hydrometer, 114.

Uniform acceleration, 50.

Unit of force, 44, 48.

— of work, 48.

Units of measurement, 47.

—, C.G.S., 48.

Unstable equilibrium, 21-28, 38.

Untraversed space, 189, 213.

Upward pressure in liquids, 88.

Vena contracta, 225.

Vernier, 145.
" Vertical " defined, 17.

Vessels in communication, 118,

125-

Vibrations, 66.

—, when small, isochronous, 78.

Volumes measured by weighing in

water, no.

Water, compressibility of, 79.— level, 119.

— supply of towns, 118.

Wedge, 33.

Weighing, double, 35.— in water, 108.

— with constant load, 37.

Weight affected by air, 209.

"Weight" ambiguous, 106.

Wheel and axle, 30.

Wheel-barometer, 152.

Whirling vessel of liquid, 95.

Work, 22-25.

— in producing motion, 52.

—
,
principle of, 25,

Wrench, 15.

Young's modulus, 78.

Zero, errors of, 151.
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