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DESCHANEL'S NATURAL PHILOSOPHY.

By Professor J. D. EVEEETT, d.c.l.

LITERARY OPINIONS.

"Mr. Everett has done great service to the cause of natural science in England by

undertaking, and so faithfully carrying out, a translation of the work of M. Deschanel."

—

Educational Reporter.

" "We have no work in our own scientific literature to be compared with it, and we are

glad that the translation has fallen into such good hands as those of Professor Everett.

. . . The book is a valuable contribution to our scientific literature; it will form

an admirable text-book for special science classes in schools ; and we look forward with

pleasure to the appearance of the remaining portions of the work."

—

Quarterly Jownal

of Science.

" The clearness of Deschanel's explanations is admirably preserved in the translation,

while the value of the treatise is considerably enhanced by some important additions."

—

Nature.

" The treatise is remarkable for the vigour of its style, which specially commends it as

a book for private reading ; but its leading excellence, as compared with the best works at

present in use, is the thorouglily rational character of the information which it presents.

. . . As an example of the concise style in which the book is written, it may be

mentioned that the explanation of the composition of parallel forces occupies less than

three pages
;
yet we have no hesitation in saying that the information given within that

small space will give the student a more thorough and useful insight of the subject than

could be acquired from the study of ten times the quantity in many of our best works on

Mechanics."

—

Scientific Review.

" It differs principally from other works of the same class in its experimental treat-

ment of the subjects with which it deals ; a style which is coming more and more into use

in our best elementary class-books. It may be called the common-sense method, as

opposed to the theoretical ... Of course, there have been popular books on

mechanical science before, but they have been mostly too popular—too light and superficial

for any valuable purpose in instruction. The present work does not fall under this cate-

gory ; it seems just to hit the mean between a dry school-book and a popular treatise.

. . . Altogether this promises, when finished, to be a most complete and really valu-

able work, of a kind of which we possess but few."— Educational Times.

" In addition to being a good class-book, it is well adapted for private reading, as the

style is good and the examples remarkably well chosen."

—

Student.

" All who are familiar with the treatise in its original form will admit that Dr. Everett

deserves the thanks of English teachers and students generally, for having furnished them

with an admirable translation of three sections of a work which is characterized by those

good qualities that are summed up in the old English word 'thoroughness.'"—/owrwaZ of

the London Institution.

"That so much can be compressed into so small a space is the natural wonder of the

student of this Uttle work; and were it not for the admirable manner in which the author

writes, and has been translated, not one fourth part of the information could have been

brought within the space."

—

Engineering.





AUTHOK'S PREFACE

The importance of the study of Physics is now generally acknow-

ledged. Besides the interest of curiosity which attaches to the obser-

vation of nature, the experimental method furnishes one of the most

salutary exercises for the mind—constituting in this respect a fitting

supplement to the study of the mathematical sciences. The method

of deduction employed in these latter, while eminently adapted to

form the habit of strict reasoning, scarcely affords any exercise for

the critical faculty which plays so important a part in the physical

sciences. In Physics we are called upon, not to deduce rigorous con-

sequences from an absolute principle, but to ascend from the parti-

cular consequences which alone are known to the general principle

from which they flow. In this operation there is no absolutely cer-

tain method of procedure, and even relative certainty can only be

attained by a discussion which calls into profitable exercise all the

faculties of the mind.

Be this as it may, physical science has now taken an important

place in education, and plays a prominent part in the examinations

for the different university degrees. The present treatise is intended

for the assistance of young men preparing for these degrees; but 1

trust that it may also be read with profit by those persons who,

merely for purposes of self-instruction, wish to acquire accurate

knowledge of natural phenomena. Having for nearly twenty years

been charged with the duty of teaching from the chair of Physics in

one of the lyceums of Paris, I have been under the necessity of

making continual efforts to overcome the inherent difficulties of this

branch of study. I have endeavoured to turn to account the expe-

rience thus acquired in the preparation of this volume, and I shall

h
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be happy if I can thus contribute to advance the taste for a science

which is at once useful and interesting.

For the convenience of candidates for the Bachelor's degree, I

have appended to this treatise a number of problems, most of which

have been taken from the examinations of the Faculty of Sciences of

Paris or of the departments. With the same view I have made it

my object to omit from the work none of the formulae which are

usually required for the solution of such questions. Beyond this

point I have made very limited use of algebra. Though calculation

is a precious and often indispensable auxiliary of physical science,

the extent to which it can be advantageously employed varies greatly

according to circumstances. There are in fact some phenomena which

cannot be really understood without having recourse to measurement;

but in a multitude of cases the explanation of phenomena can be

rendered evident without resorting to numerical expression. In

such cases calculation is of secondary importance, and may be said

to be merely practical.

The physical sciences have of late years received very extensive

developments. Facts have been multiplied indefinitely, and even

theories have undergone great modifications. Hence arises consider-

able difficulty in selecting the most essential points and those whidi

best represent the present state of science. I have done my best to

cope with this difficulty, and I trust that the reader who attentively

peruses my work, will be able to form a pretty accurate idea of the

present position of physical science. I shall be happy in a second

edition to avail myself of any observations which may be communi-

cated to me on this or any other point.
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I

The ''Teaite Elementaire de Physique" of Professor Deschanel,

though only published in 1868, has already obtained a high reputa-

tion in France, and has been adopted by the Minister of Instruction

as the text-book for Government Schools.

I did not consent to undertake the labour of translating and

editing it till a careful examination had convinced me that it

was better adapted to the requirements of my own class of

Experimental Physics than any other work with which I was

acquainted ; and in executing the translation I have steadily kept

this use in view, believing that I was thus adopting the surest

means of meeting the wants of teachers generally.

The treatise of Professor Deschanel is remarkable for the visfour

of its style, which specially commends it as a book for private read-

ing. But its leading excellence, as compared with the best works at

present in use, is the thoroughly rational character of the information

which it presents. There is great danger in the present day lest

science-teaching should deg^enerate into the accumulation of discon-

nected facts and unexplained formulae, which burden the memory

without cultivating the understanding. Professor Deschanel has

been eminently successful in exhibiting facts in their mutual connec-

tion; and his applications of algebra are always judicious.

The peculiarly vigorous and idiomatic style of the original would

be altogether unpresentable in English; and I have not hesitated in

numerous instances to sacrifice exactness of translation to effective

rendering, my object being to make the book as useful as possible to

English readers. For the same reason I have not scrupled to suppress

or modify any statement, whether historical or philosophical, which

I deemed erroneous or defective. In some instances I have endea-
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voured to simplify the reasonings by which propositions are estab-

lished or formulae deduced.

As regards weights and measures, rough statements of quantity

have generally been expressed in British units; but in many cases

the numerical values given in the original, and belonging to the

metrical system, have been retained, with or without their English

equivalents; as it is desirable that all students of science should

fomiliarize themselves with a system of weights and measures which

affords peculiar facilities for scientific calculation, and is extensively

employed by scientific men of all countries. For convenience of

reference, a complete table of metrical and British equivalents has

been annexed.

The additions, which have been very extensive, relate either to

subjects generally considered essential in this country to a treatise

on Natural Philosophy, or to topics which have in recent years

occupied an important place in physical discussions, though as yet

but little known to the general public.

The sections distinguished by a letter appended to a number are

all new; as also are all foot-notes, except those which are signed with

the Author's initial "D."

In many instances the new matter is so interwoven with the old

that it could not conveniently be indicated; and I have aimed at

giving unity to the book rather than at preserving careful distinctions

of authorship.

Comparison with the original will however be easy, as the num-
bering of the original sections has been almost invariably followed.

,The chief additions in Part I. (Chap, i.-xviii.) have been under

the heads of Dynamics, Capillarity, and the Barometer. The chapter

on Hydrometers has also been recast.

ADVERTISEMENT TO REPBINT OF PART I.

The first impression of Part I. having been exhausted, opportunity has been

taken, in the present reprint, to extend the Table of Contents, and to make a few

unimportant corrections and additions in the body of the work.
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ELEMENTARY TREATISE

NATUEAL PHILOSOPHY,

I

CHAPTER I.

PRELIMINARY NOTIONS.

1. Origin of Natural Philosophy.—The object of Natural Philo-

sophy or Physics ((^vaig, nature) is the study of the material world,

including the phenomena which it presents to us, the laws which

govern them, and the applications which can be made of them to our

various wants.

In its widest sense, the study of physics must be traced back to

the origin of the human race ; for ever since man came into being,

he must necessarily have been struck by the spectacle of the heavens

and the continually changing aspect of terrestrial phenomena. But

isolated and vague observations, and the barren admiration of pheno-

mena which provoke attention or excite curiosity, do not constitute

science ; this can only exist where there is a mass of accurate know-

ledo:e in which the facts are related to each other and studied in con-

nection with the causes which produce them. This process of co-

ordination is only possible after a considerable collection of facts has

been accumulated ; but it then becomes inevitable, from the very con-

stitution of the human mind. Thus, in examining the history of

the nations among whom we place the cradle of our civilization, we

find constant efforts of philosophers to explain the mechanism of the

external world,—to bring all the facts which nature presents to us

under one theory—one system. The Greek philosophers, especially,

who appear to have borrowed the greater part of their physical know-

ledge from the Egyptian priests, have left us different systems, by

the aid of which they profess to explain all natural phenomena.

Thus Thales, the most celebrated of the seven wise men of Greece
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(640 B.C.), made water a universal principle, which nourishes

at once the sun, the earth, and the planets. Plato (398 B.C.)

assumed two distinct principles, matter and form, which by their

combination give birth to five elements—earth, water, fire, air, and

ether. According to Anaximander, there is but one principle, the

infinite, which gives birth to all bodies. According to Anaxagoras,

air is the sovereign of nature. We need not stay to examine the

exact meaning of these propositions, which, taken in their literal

sense, appear at the present da}^ sufficiently unintelligible. While

acknowledging that these illustrious philosophers knew and taught

some important facts of general physics, we are bound to remark

that in the elaboration of their systems experiment played no part

;

that observation itself only held a secondary place; and that their

theories were veritable a priori conceptions, to which facts had to

be accommodated. Hence there is nothing in their works approaching

the experimental method which serves as the foundation of modern

physics. Some faint foreshadowings of this method may be traced

in the works of Aristotle (383 B.C.), who was a disciple of Plato, but

far superior to his master in scientific genius, besides being an emi-

nent naturalist, and author of a history of animals, which alone would

constitute an imperishable monument to his memory. Thus, to inves-

tigate the weight of air, he had recourse to a direct experiment, which

consisted in weighing a skin empty and inflated. Finding no dif-

ference in the weights, he concluded wrongly that air is destitute of

weight, and was thus led in his attempts at the explanation of certain

phenomena to the famous principle that nature abhors a vacuum,

which was universally admitted down to the time of Galileo.

It was especially in the hands of Archimedes (287 B.C.), and the

philosophers of the school of Alexandria, who may be regarded as

his successors, that the method of scientific observation took a

distinct form, and led to important results. Every one has heard

of the admirable discoveries of Archimedes respecting the theory

of the lever, the determination of centres of gravity, and the mea-

surement of specific gravities by means of the principle which bears

his name; discoveries founded upon experiments which were doubt-

less not very accurate, but were regarded by him as necessary in

order to furnish a solid basis for his investigations. After him

Hipparchus (140 B.C.), by means of persevering observations, meth-

odically directed, changed the face of astronomy, and arrived at

brilliant discoveries, among which the most notable was that of the
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recession of the equinoxes. At a later period, Ctesibius, Hero,

Posidonius, fee, following in the traces of their illustrious prede-

cessors, advanced the boundaries of the exact knowledge already

acquired, and originated several inventions displaying more or less

ingenuity. To the first of these philosophers the invention of pumps

appears to be due, and the fountain of Hero still finds a place in

all collections of physical apparatus.

Among philosophers belonging more or less directly to the school

of Alexandria, who have enriched science by important discoveries,

we will only mention Plutarch, who is said to have discovered the

refraction of hght in its passage from air into water ; and Ptolem}^

the author of various works on optics and celestial physics, which

constitute a better title to glory than the astronomical system

which bears his name, a system which only served to retard the

progress of science.

We will carry this historical review no further, but will content

ourselves with remarking that, starting from the seventh century,

the period of the conquest of Alexandria by the Arabs, and the

burning of its celebrated library, until the time of Galileo (1564),

science may be said to have been stationary. Still, some discov-

eries of importance belong to this period; for example, that of the

mariner's compass, which was known from the thirteenth century.

Shortly before Galileo, the thermometer, the microscope, and tele-

scope were invented; but it is unquestionably to this distinguished

philosopher that we owe the true scientific method—the method

of experiment. His treatises upon falling bodies, the pendulum, &c.,

furnish admirable examples of the manner in which the physical

investigator should interrogate Nature by the aid of experiment.

It was by the introduction of this method that physical science

became finally disentangled from the prejudices and a priori assump-

tions which had hitherto impeded its progress.

At the present day, after numberless discoveries which have

introduced most material changes in our social condition, physical

science has attained a very high degree of perfection. It is to the

experimental method that we owe this result, and it is by remain-

ing true to this method that we must hope to achieve fresh progress.

2. The Experimental Method.—The experimental method can

easily be described in general terms: it consists in observing facts

instead of trying to divine them; in carefully examining what

really happens, and not in reasoning as to what ought to happen.
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It is therefore entirely independent of metaphysics, which has always

proved, a false ally ; in fact, as long as the dominion of metaphysics

lasted, science continued to run in the old ruts, which it did not

leave till, thanks to the teaching of Bacon and Galileo, the convic-

tion became established that there is no way of arriving at physical

truths but by the help of observation and experiment.

The experimental method is usually called by logicians the method

of observation and induction. From the observation of particular

facts it ascends to the general law which embraces them ; being very

different in this respect from the method of deduction employed in

mathematics, in which we always descend from a certain and abso-

lute principle to the different consequences which flow from it. Let

us enter into some details upon this point.

3. Phenomena—Physical Law.—A phenomenon is any change that

takes place in the condition of a body; the fall of a stone, the

flowing of water, the melting of lead, the combustion of wood, for

example, a.re phenomena. When we study the characteristics which

belong to phenomena of the same class, we soon perceive that the

various circumstances of their production have a mutual dependence,

so that if one of them varies, the others undergo a corresponding

variation. The expression of this connection constitutes a physical

law.

Sometimes the law appears of itself and without difficulty, by

means of observation alone. Such, for example, is the following:

All bodies left to themselves fall to the surface of the earth. But

more frequently the law is disguised by disturbing causes, whose

influence should, as far as possible, be eliminated. This elimination

is the object of experiment. Experiment differs from observation in

this respect,—that the phenomenon is produced under conditions

previously determined and regulated by the experimenter. If we
wish to know, for example, what are the velocities which gravity

produces in different bodies falling freely, we must not let them fall

in air, because this fluid retards their movement, and that in unequal

degrees for different bodies ; we must operate in vacuo, and thus we
arrive at the law, which observation alone could never have dis-

covered, that gravity produces the samie velocity in all bodies. It

will be readily understood then that the art of experimenting, that

is, of regulating the special conditions under which phenomena shall

take place, and of measuring their constituent elements, is absolutely

necessary to the physical investigator; and that a genius for physical
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science mainly consists in the possession of this aptitude in a more

or less eminent degree.

We may remark that when the general law of a class of pheno-

mena is known, the expression of this law is often called the physical

cause of the particular phenomena which it includes. A phenomenon
is said to be explained or accounted for, or traced to its cause, when
we show that it is contained in the enunciation of a known law.

Thus, when we have once laid down the principle that the volumes

of gases under different pressures vary inversely as these pressures,

we are in a position to explain a crowd of facts depending on the

action of a gas whose volume and pressure vary simultaneously.

When the law of observed phenomena admits of numerical state-

ment, calculation becomes a valuable instrument for making known
all its consequences, and the experimental verification of these conse-

quences constitutes a confirmation of the physical law itself In this

way mathematical methods become powerful auxiliaries to physical

science.

4. Physical Theory.—The enunciation of any one physical law,

and the rational development of its consequences, constitute a partial

physical theory. The assemblage of all the laws which belong to one

class of phenomena, forms a more general physical theory; but it will

be readily understood that these difierent laws may be merely corol-

laries of a sin2:le law.

The discovery of this single law, when it exists, marks a decided

step in the progress of physical science. Thus Newton traced to

the single law of gravitation all the movements of our planetary

system, as well as those of bodies which fall to the surface of the

earth.

In like manner the different partial theories of optics are rigorous

consequences of the properties attributed to a fluid called ether, with

which we suppose space to be fiUed, and whose vibrations serve for

the propagation of light and heat.

This work of synthesis, however, has as yet made little progress,

though these last few years have been marked by very successful

efforts in this direction; but it should be considered as the true object

of physical science in general, and the highest generalization will

have been attained when it has been demonstrated that all the phy-

sical agents which have hitherto been regarded as distinct, are merely

transformations of one and the same primordial agent.

5. Divisions of Physical Science.—Physical or natural science in
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general comprises the aggregate of all the phenomena of the ex-

ternal world; but the accumulation of discoveries in different parts

of this mighty whole has necessitated the division of it into several

branches, which at present constitute distinct sciences.

Natural History comprises all those facts which have reference to

the different beings, organic or inorganic, which are found upon the

surface of the globe; it is further subdivided into several parts.

Zoology is occupied with the organization and habits of animals, with

their regular classification, and with all the phenomena connected

with their development and reproduction. Botany treats of the

same questions with respect to vegetables. Mineralogy has for its

object the description and methodical classification of the different

inorganic bodies (minerals) which nature presents to us ; the know-

ledge of the peculiar characteristics which serve to distinguish them

from one another; and the enumeration of their principal properties

as well as of the various applications that can be made of them.

Geology is the history of the earth; it recounts the different

revolutions which have modified the surface of the globe and finally

brought about its present configuration, the arrangement and nature

of the rocks that enter into its composition, and the description of

those ancient animals and vegetables whose fossil remains are still in

existence, belonging in many cases to types which have since become

extinct. It is the basis of the art of the mining engineer, and enables

him to follow a regular method in searching for the various metals

or combustible substances which are hid in the depths of the earth,

and which we employ to satisfy our various requirements.

Astronomy is occupied with the laws of the movements of the

heavenly bodies ; thanks to the perfection to which our measuring

instruments have been brought, to the progress of mathematical

science, and to the discovery of the universal law of gravitation,

astronomy has arrived at such a degree of perfection that it may be

classed among the exact sciences.

Besides natural history and astronomy, there is room further for

distinguishing physics from chemistry. This latter science, in fact,

has for its object the study of phenomena in which the essential

character of materials seems to be c])anged; phenomena in which

matter seems to be destroyed, or at least metamorphosed. If we
take a piece of sulphur and heat it, it will melt; if we rub it with a

piece of wool, it will acquire the power of attracting light bodies,

and will present the peculiar and curious properties which are chaiac-
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teristic of electrical excitation; but the sulphur will not have lost its

proper nature, and when the different influences to which it has been

submitted cease to act, it will resume all its original characteristics.

The sulphur under these circumstances has displayed physical pheno-

mena. If, on the other hand, we place this same body in a fire,

we shall see it burn with a blue flame; at the end of some time it

will have entirely disappeared, or at least will have been transformed

into a gaseous substance which is dissipated with the other products

of combustion. In this case the sulphur has ceased to exist as sul-

phur; a chemical phenomenon has taken place.

In a more restricted sense, then, physics or natural philosophy is

understood as embracing the study of all the phenomena of the

material w^orld except those which consist in the action of vital forces

or of chemical affinities. It is in this restricted sense that physics forms

the subject of the present treatise. We may remark, however, that

the two kinds of phenomena are often produced by the same causes,

and that each is frequently the necessary consequence of tlie other.

Thus in heating a body we render it better adapted to undergo

chemical transformations; and, on the other hand, such transforma-

tions often produce a great quantity of heat. Physics and che-

mistry, though pursuing different ends, should yet afford each other

mutual assistance. For example, our ideas of electricity would be

very imperfect without a knowledge of the curious and often useful

chemical phenomena which it is capable of producing.

A similar remark may also be made with regard to all the other

branches of natural science. How, for example, can we separate

mineralogy and chemistry, when it so often happens that the only

means of recognizing a mineral is by making a chemical analysis

of it? and when, on the other hand, a complete description of the

substances which the chemist produces in his laboratory, must neces-

sarily include an account of their external characteristics, such as

their crystalline form, which specially belongs to the province ol

mineralogy?

To take another instance. Can we draw a sharp line of demar-

cation between zoology and botany on the one side, and physical

science and chemistry on the other? Does not the tissue of organic

beings undergo various chemical reactions which are a necessary

accompaniment of vital phenomena? Do not physical agents in

their turn produce phenomena of such a nature as completely to

embarrass the physiologist and the physician, unless they are armed
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with a knowledge of the laws which regulate the action of these

agents upon inorganic bodies?

Finally, though astronomy may seem to form a totally distinct

science, consisting of the geometry and mechanics of the movements

of the heavenly bodies, must it not avail itself of all the resources

of physical science if it would arrive at any rational conjectures

respecting their constitution ? We may say, then, that all the parts

of natural science are interwoven together ; they form one connected

whole, and the division into distinct sciences has simply arisen from

the vastness of the subject, which renders it impossible for any one

mind adequately to follow the development of its various branches.



CHAPTEE II.

MECHANICS.

6. Principle of Inertia.—The fundamental principle of physics is

the inertia of matter. Inertia does not consist in the inactivity

of material particles, nor in the impossibility of changes being pro-

duced in their states of rest or motion by their mutual action ; for

a glance at nature is sufficient to show that repose nowhere exists,

and that motion changes in an endless variety of ways. The prin-

ciple of inertia is an abstract principle which must be considered as

applicable to a single isolated particle. It may be enounced in the

following terms :

—

An isolated material point cannot change its state, whether of

rest or motion. That is to say, if it he at rest it will remain at rest;

if it he in motion it will continue to move in the same direction

and with the same velocity.

If, then, we see a material point which was at rest begin to move,

or if we observe any change in the motion of a point, we say that

it has been acted on by a force.

Without entering upon the very obscure subject of the intimate

nature of forces—without seeking to know whether they form an

essential part of bodies or have a separate existence, but only re-

garding them in the effects which they produce, we may define

them in the following manner:

—

A force is any cause which tends to urge a material point in a

definite direction with a definite velocity.^

7. Manifestations of Inertia.—The principle of inertia, as above

enounced, does not admit of direct experimental verification; for

we cannot observe a material point, which is a mere abstraction

;

^ The words with a definite velocity only imperfectly express the idea intended to be

conveyed. The correct phrase would be with a definite acceleration. See Chap. v.
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still less an isolated material point. The principle of inertia is one

of those ultimate and abstract principles which presented themselves

to the minds of the founders of the science of mechanics—of Newton

especially—as the key and reason of the manifold and complex

characters of external phenomena. But if it is impossible to verify

the principle of inertia directly, it is easy to show its influence in

external phenomena, this influence reducing itself evidently to the

tendency of bodies to continue in their state of rest or motion.

The tendency to continue in a state of rest is manifest to the most

superficial observation. The tendency to continue in a state of

uniform motion can be clearly understood from an attentive study

of facts. If, for example, we make a pendulum oscillate, the ampli-

tude of the oscillations decreases more and more ; and ends, after a

longer or shorter time, by becoming nothing. This is because the

pendulum experiences resistance from the air, due to the successive

displacement of the particles of this fluid ; and because the axis of

suspension rubs on its supports. These two circumstances combine

to produce a diminution in the velocity of the apparatus until it is

completely annihilated. If the friction at the point of suspension is

diminished by suitable means, and the apparatus is made to oscillate

in vacuo, the duration of the motion will be immensely increased.

Analogy evidently indicates that if it were possible to suppress

entirely these two causes of the destruction of the pendulum's velo-

city, its motion would continue for an indefinite time unchanged.

This tendency to continue in motion is the cause of the effects

which are produced when a carriage or railway train is suddenly

stopped. The passengers are thrown in the direction of the motion,

in virtue of the velocity which they possessed at the moment when
the stoppage occurred. If it were possible to find a brake sufficiently

powerful to stop a train suddenly at full speed, the effects of such a

stoppage would be identical with those which would result from

collision with another train of the same weight coming in a contrary

direction with equal velocity.

Inertia is also the cause of the severe falls which are often received

in alighting incautiously from a carriage in motion ; all the particles

of the body have, in fact, a forward motion, and the feet alone being

reduced to rest, the upper portion of the body continues to move,

and is thus thrown forward.

When we fix the head of a hammer on the handle by striking the

end of the handle on the ground, we utilize the inertia of matter.
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In fact, at the moment of the shock, and of the stoppage which re-

sults, the head continues to move, and ends after some blows by
becoming firmly fixed.

8. Mechanics.—All physical phenomena fundamentally consist in

motions ; but these motions are in many cases too minute to admit

of direct observation, and are only inferred from their efiects. Thus

when a solid body is heated and melted, it is certain that the liquid

state results from a particular displacement of the molecules, and per-

haps also from a change of their form—that is to say, from circum-

stances which are reducible to motions; but the liquid body thus

formed has acquired peculiar properties, which form a subject of

study in themselves apart from the motions to which they are due.

When motions are considered in themselves, accordins: to their

geometrical relations, and in connection with the forces which pro-

duce them, they form the subject of the science of mechanics, which

must be regarded as an indispensable introduction to physics. We
shall give in this chapter enunciations and illustrations of some

fundamental propositions, referring the reader to special treatises on

this subject for fuller information.

9. Elements required to specify a Force.—The material point sub-

mitted to the action of force is called the point of application of

the force. It tends, in virtue of this action, to move in a certain

direction, which is called the direction of the force, and which can

be represented geometrically by a straight line drawn from the

material point. It is obvious also that the force must act with some

definite intensity, which is different in different cases. This intensity

may manifest itself, for example, by a greater or less velocity of the

point, a greater velocity corresponding to a greater force.

When two forces separately applied to the same point at rest give

it the same motion, they may be called equal. The union of a num-

ber of equal forces gives a force which is a corresponding multiple of

one of them, and thus the intensities of forces can be numerically com-

pared. Forces then can be represented

either by numbers or by lines ; in the i S t

latter case a certain length (as an inch) „. ,^ ^
^

^ Fig. 1.

being taken to represent a certain force

(as the weight of a pound). It is usual to indicate the direction of

a force by a line AF with which the direction of the force coincides,

and to lay off" on this a length AB representing (on the scale chosen)

the intensity of the force.
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For accuracy, it is to be observed that the pound, ounce, and other

units of weight are essentially units of mass, not of force. In order

to render them available as accurate units of force, the locality must

be specified, inasmuch as the force requisite to support a pound of

matter is different in different localities, being for example greater

at the poles of the earth than at the equator by about 1 part

in 190.

10. Resultant.—When a material point or a system of points is

urged by a certain number of forces, it will be readily understood

that a single force of determinate magnitude, and applied at a suit-

able point, may be capable of producing the same effect as all the

given forces acting together. This single force is called the resultant

of the given forces, and they are called its components.

Thus, for example, a vessel descending a river, whether propelled

by steam or wind, provided its motion be rectilinear, is really urged

forward by a great number of forces applied at different points ; but

it is evident that a single force of proper magnitude and line of

action would produce the same effect.

It is not every system of forces that has a resultant; but, in the

case of those which have, it is very important to determine its

magnitude and position, for the study of the body's motion will thus

be evidently simplified. The following is an important case in which

this determination is easily made.

11. Parallelogram of Forces.

—

If a material point A is acted

on by two forces represented in magnitude and direction by AB
and AC, there is a resultant, which is exactly

represented by the diagonal AD of the paral-

lelogram of ivhich AB and AC are sides.

This proposition can be verified experiment-

^ ally by the aid of the following apparatus due

Fig. 2-Paraiieiogram of to Gravcsaude. ABDC (Fig. 3) is a parallelo-

gram jointed at its four corners. To the points

B and C cords are fixed, which, passing over the pulleys M and N.

support at their extremities weights P and P', of 90 and 60 ounces

respectively.

The lengths of the sides AB and AC are themselves proportional

to the numbers 90 and 60. To the corner A is attached a

weight F' of 120 ounces. In these circumstances, the parallelogram

will take a position of equilibrium, in which the cords attached to

B and C will be found to form prolongations of the sides AB, AC,
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and the diagonal AD will be vertical. But the forces P and F have
a resultant acting vertically at A, since their resultant must be equal

and opposite to the weight P'' which balances them. The diagonal

Fig. 3.—Gravesande's Apparatus.

AD therefore agrees with the resultant in direction; and if this

diagonal is measured, its length will be found to be 1 20 on the same

scale on which the lengths of AB and AC are 90 and 60.

Fig. 4.—Composition of any Number
of Forces.

Fig. 5.—Parallelepiped of

Forces.

12. Composition of Forces.—Knowing how to find the resultant of

two forces, that is to say, to compound two forces, applied to the

same point, it is easy to compound any number.

Let there be, for example (Fig. 4), four forces applied to the

A
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material point A. We may compound first the force AB with AC,

which gives the resultant At; this, compounded with AD, gives a

second partial resultant A/, which, compounded with the fourth force,

gives the complete resultant AR.

In the particular case of three forces (Fig. 5), it is easily seen that

the resultant Ar is the same thing as the diagonal of the parallele-

piped constructed on the lines AB, AC, AD which represent the

three forces. In the figure, the parallelopiped has been completed to

render this evident, but the construction

amounts, as in the preceding case, to com-

pounding AB with AC, and their resultant

Ar with AD.

13. Composition of Parallel Forces.— When
two parallel forces F and F' are applied

at the two extremities of a straight line,

they have a resultant R equal to their sum,

and acting at a point C which divides the

straight line AB into parts inversely proportional to the forces.

Fig. -Parallel Forcea.

A C O „

S
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Fig. 7.—Composition of Parallel Forces.

If, for example, the two forces F and F' are equal, the point C will
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be at the middle of AB ; if the force F is double of F', the segment

CA will be equal to half of CB.

This proposition can be verified by the aid of the following appar-

atus called the aritkmetical lever (Fig. 7).

The lever AB supports two equal weights P at its extremities ; it

is suspended at its middle by a cord which, passing over the pulley

M, sustains a weight P'. It will be found that, when the weight

F has a certain value, the lever is in equilibrium ; whence it follows

that the two weights P and the weights of the different parts of the

lever, which we may suppose distributed two and two at equal

distances from the middle point, have a resultant acting at this

point, equal and opposite to the force P'. It will also be found that

P' is equal to the sum of the two weights P together with the weight

of the lever.

In the case of the second figure, a single weight P is placed at one

of the extremities B, whilst two equal weights are suspended at the

middle point C of the second half of the lever. It will be found that

there is still equilibrium, provided that the weight P' is the sum of

the three weights P and the weight of the lever.

To interpret this result, we may remark that the lever being

balanced directly by an equal portion of P', we may neglect its

weight; there remain then only two forces, of which one, that on the

left, is double of the other. Now the resultant evidently passes

through the point of suspension 0, which is exactly twice as far from

B as from C.

14. When the parallel forces F and F' act

in opposite directions, there is still a result-

ant parallel to the components, acting in the

same direction as the greater, and equal to

their difference F— F'. Moreover its point ''f-f'

of application C is so placed that the distances

CA and CB are inversely proportional to
^^'

the forces, a result analogous to that which p^g s.—Parallel forces in

holds when the forces act in the same direc- opposite Diiections.

tion.

We see, as a consequence of this proposition, that if the two

parallel and opposite forces differ little . from one another, their

resultant has a very small value, but its point of application is very

remote. In the particular case in which the two forces are equal,

the rule of composition is absolutely inapplicable. Such a system,
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consisting of two equal and parallel forces acting in opposite direc-

tions, is called a couple. It cannot be equilibrated or replaced by

a single force, but obviously tends to produce a motion of rotation.

Now in nature we frequently see bodies possessing at once a motion

of translation and a motion of rotation. We may assume that the

translation has been produced by a force and the rotation by a

couple ; this latter then presents itself as a sort of natural element

in mechanics. The idea of couples originated with the geometrician

Poinsot, and has greatly simplified many mechanical problems.

The perpendicular distance between the lines of action of the two

equal forces which constitute a couple is called the arm of the couple.

The product of one of the two equal forces by the arm is called the

TYioment of the couple, and is the measure of the power of the couple

to produce rotation. It is proved in treatises on mechanics that

two couples acting on a body and tending to turn it in opposite

directions will equilibrate each other if their moments are equal,

even though they be applied at different parts of the body. Two or

more couples acting on a body and tending to turn it in the same

direction, may be replaced by a single couple whose moment is the

sum of their moments ; and any number of couples acting on a body

and tending to turn it in any directions whatever, are always, except

when they are in equilibrium, equivalent to

a single couple.

15. Composition of any Number of Parallel

Forces. To compound a given number of

parallel forces, F, F', F", F"', we may first

compound the first with the second, which

gives a partial resultant r; this compounded

with the third force F", gives a second result-

ant r', which combined with Y", gives the

complete resultant R It is clear that this

procedure is applicable to any number of

Fig. 9.— Composition of any forccs, and that the resultant is always equal
Nun^ber of Parallel Forces. ^^ ^^^ ^^^ ^^ ^j^ ^^^ ^^^^^^ ^^ ^^ .^^ ^^.^^ ^^

application, we may remark, that the point of application of the

first partial resultant is obtained by dividing AB into two parts

AI and BI inversely proportional to F and F'. In like manner
the point of application K of r' is obtained by dividing IC into parts

IK and KC, inversely proportional to r and F''; and lastly, the point

of application L of the complete resultant is obtained by performing
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an analogous operation on the line KD. Now it will be remarked

that this series of constructions is independent of the absolute direc-

tion of the forces, and only supposes that they are parallel ; if then

the forces were turned about their points of application in such a

manner as still to remain parallel to one another, their resultant

would still pass through the same point L. This point is on this

account called the centre of 'parallel forces.

16. Resolution of Forces.—As any number of forces can be com-

pounded into a single force, so a given force can be (decompounded

or) resolved into two or any number of forces which would pro-

duce the same eifect. Thus, for example, the force AD (Fig. 2) can

be replaced by the two forces AB and AC, inasmuch as it is their

resultant. It is obvious that, to resolve a force applied to a, material

point into two others having given directions, it is necessary to draw,

through the extremity D of the line which represents the given force,

lines parallel to the given directions. They determine by their

intersections the points B and C, and consequently the magnitudes

AB and AC of the two forces which can be substituted for the given

force.

The composition of several forces into a single force constitutes an

obvious simplification. As to resolution (or decomposition), its utility

is not so obvious. It may appear at first sight to be a complication.

Such however is not always the case, and in the course of this trea-

tise we shall find it of continual use. It will be readily conceived,

in fact, that when a force is applied to a point whose movements are

constrained by guides or physical connections, the efiect whioh the

force can produce is not easily perceived. But it is sometimes pos-

sible, by resolution, to replace it by components, of which some are

destroyed by the conditions of constraint, and the others can act in

a manner directly appreciable.

We will confine ourselves to a single example of this, namely, the

explanation of the opposite courses which can be taken by two

sailing boats with the same wind.

Consider, for example, the case of the first figure. The wind,

blowing in the direction Vm, tends to exert a force which can be

resolved at the point m into two components, one of them W tan-

gential to the sail, which has no eff*ect, the other mn perpendicular

to the sail. This latter tends to urge the boat obliquely towards

the left of the figure. But as the boat can be moved much more

easily in the direction of its length than in any other direction, we
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may resolve this latter force into two components : one perpendicular

to the length, which has little effect; the other in the direction of

the length, which produces the forward movement of the boat in the

direction of the arrow placed below the figure.

Fig. 10.—Resohition of Pressure of Wind on Sails.

In the second figure it will be seen that the same methods of

resolution lead to an opposite result, and that the direction of motion

is opposite, though the direction of the wind is the same. In i-eality,

the two motions are not directly opposite, because the action of the

component perpendicular to the length of the boat cannot be alto-

gether neglected, but produces what is called leeway.

17. Work done by a Force.—In the different operations to which

forces are applied, such as the raising of burdens, the compressing,

piercing, and pulverizing of solid bodies, it is clear that it is always

necessary to overcome a certain resistance and produce a certain

displacement. Hence we are led to a special mechanical element,

involving the joint consideration of force and the displacement of

its point of application. This element is called worh

The work done by a force is the product of the force into the

displacement which it produces in its point of application.

In this definition the force is supposed to be constant, and the

motion of the point of application is supposed to coincide with the

direction of the force.

In stating the work done by a machine it is usual to take as unit

of work the foot-pound; that is to say, the work done in raising a

pound through a height of a foot.
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The notion of work is itself independent of time; but it is evident

that in practice it is advantageous for a machine to employ little

time in producing a given amount of work.

The unit employed for expressing the rate of working of a

machine is the horse-power, and denotes 33,000 foot-pounds of

work done per minute or 550 foot-pounds per second. Thus a

machine which can raise 12 tons through a height of 10 feet in

2 minutes is a machine of rather more than 4 horse-power; since

it does 12 x 2240 x 10 = 268,800 foot-pounds in 2 minutes, or

134,400 in 1 minute; and 134,400 is rather more than 4 times

33,000.

17 a. The above definition of ivorh is only applicable to the case

in which the displacement of the point of application of the force

is in a direction precisely coincident with the direction of the

force. It is often necessary to consider cases where (owing perhaps

to circumstances of constraint, or to the action of other forces besides

the one considered, or to previous motion) the point of application

of a force moves in a direction oblique to that of the force. In this

case the force may be resolved into two components, of which one

is perpendicular and the other either coincident with or directly

opposite to the direction of displacement. The former of these

components is to be neglected in estimating the work done by the

force ; and the product of the latter component by the displacement

is the work done hy or against the force according as the direction

of this component coincides with or is opposite to that of the dis-

placement.^

The necessity of having a name to denote the idea thus defined

is obvious from the following proposition, which is called the prin-

ciple of work
Every machine may be regarded as an instrument for transmitting

work ; and if we neglect friction, we may assert that the work thus

transmitted is unaltered in amount. If, for example, the machine

is driven by forces applied at points Ai, A2, &c., and if the machine

overcomes resistances at points Bi, Bg, <fec., then the whole work

done by the forces at Ai, A2, &c., estimated according to the fore-

^ Or the work done by a force is the product of the force by the projection of the dis-

placement of its point of application on the direction of the force, or is the continued

product of force, displacement, and cosine of included angle. The three definitions are

obviously equivalent. Work done against a force is to be regarded as negative work done

hy the force.



20 MECUANICS.

going definition, will be precisely equal to the whole work done

against the resistances at Bi, B2, similarly estimated.

The numerous vain schemes for producing perpetual motion are

founded on ignorance of this law. They are attempts to make work

increase in its transmission through a machine.

Practically, work is always diminished in its transmission through

a machine, owing to friction. The work thus lost leaves an equiva-

lent in the shape of heat (see Chap, xxxii.)



APTEE II

CONSTITUTION OF BODIES.

18. Different States of Matter.—As the object of physics is the

study of the general properties of bodies, it is necessary for us

to form some idea of the constitution of the different kinds of

matter. Matter presents itself in three different states: the solid,

liquid, and gaseous. Solid bodies are characterized by a kind of

invariability of form ; that is to say, their form cannot be changed

without an effort, more or less considerable. Hence a solid body

forms a firmly connected whole, so that the movement of one of its

parts produces motion in the rest.

Liquids, on the contrary, appear to be formed of particles which

are independent of each other and can obey individually the action

of the forces which urge them, being able to slide past each other

with the greatest facility. From this property the name fluids, by

which, in common with gases, they are often designated, is derived

{fluere, to flow). This also is the reason why a liquid moulds itself

to the form of the containing vessel. Liquidity, consisting essen-

tially in the perfect mobility of the constituent parts of a body, may
evidently be met with in different degrees of perfection. Thus sul-

phuric ether and alcohol are more perfectly liquid than water ; water

itself is more liquid than oil, and so on. Viscosity is a name used

to denote the want of independence between the particles of a

liquid, which establishes a kind of intermediate state between these

bodies and solids. Thus we may say that there is an insensible

passage from liquids more or less perfect to viscous liquids, from

these to plastic substances such as putty or moist clay, and from

these last to solid bodies.

Gaseous bodies, of which the atmosphere offers us an example,

are formed, like liquids, of independent particles : but these particles
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appear to be in a continual state of repulsion, so that a gaseous

mass has a continual tendency to expand to a greater and greater

volume. This propert}^, called the expansibility of gases, is commonly

illustrated by the following experiment:

—

A bladder, nearly empty of air, and tied at the neck, is placed

under the receiver of an. air-pump. At first the air which it con-

tains and the external air oppose each other by their mutual pressure,

Fig. 11.—Expausibility of Gases.

and are in equilibrium. But if we proceed to exhaust the receiver,

and thus diminish the external pressure, the bladder gradually

becomes inflated, and thus manifests the tendency of the gas which

it contains to occupy a greater volume.

It follows from this property that, however large a vessel may be,

it can always be filled by any quantity whatever of a gas, which

will always exert pressure against the sides. It is in consequence of

the existence of this pressure, which is itself a result of expansi-

bility, that the name of elastic fluids is often given to gases.

It is necessary to remark that the same substance may, according

to its temperature, assume any one of the three states. Thus water

in the cold of winter assumes the solid state and becomes ice ; and,

on the other hand, there is always more or less water diffused

through the air in the gaseous state, called aqueous vapour. If the

thermal conditions existing at the surface of the earth were to receive

a notable change in either direction, some of the bodies which we
habitually see in the liquid state would become either solids or vapours.



MOLECULAR CONSTITUTION. 23

19. Molecular Constitution.—Whatever be the state under which
a body presents itself, it is the general opinion of physicists that

it is not composed of continuous matter, but is an aggregation

of distinct parts held at a distance from each other. These con-

stituent parts are called particles or molecules. They must be

regarded as exercising two kinds of mutual actions, the one attractive,

the other repulsive, which balance each other in the case of solids and

liquids. In the case of gases this equilibrium does not subsist;

there is a permanent repulsive force between the particles, which

gives rise to expansibility or elastic force.

The molecules^ of solids and of liquids ought not to be considered

as similar. In the latter, in fact, each molecule can turn on its axis

without producing any modification in the equilibrium; in other

words, equilibrium depends only on the molecular distances and not

at all on the form or relative disposition of the molecules. An
approximate idea of this physical constitution will be obtained by
assuming that the molecules of liquids are spherical, and hence that

molecular equilibrium depends only on the distances between the

centres of the spheres.

In solids, much depends upon the form and relative disposition of

the molecules. It would seem as if these molecules (according to

the ideas of some ancient philosophers) were formed with hooked

projections which become locked together and so give a determinate

figure to the mass. It is not, however, necessary to fall back upon

such a gross image as this for the explanation of rigidity. It is

sufficient to conceive that when an effort is exerted against any part

of a solid body, its molecules turn on their axes, assume new direc-

tions, and take up a new position of equilibrium. Such a supposition

corresponds with that invariability of form which we are accustomed

to connect with the solid state. In reality this invariability is not

absolute. The smallest force applied to a solid body produces some

change of form, but frequently this change is only appreciable when

the force is very intense.

20. Divisibility.—This hypothesis regarding the constitution of

bodies amounts to assuming that matter is not infinitely divisible,

but that, whatever be the means employed to produce division,

there is for each body a limit below which it never descends. These

^ The hypotheses broached in the remainder of this section must be received with

caution, as being merely conjectural explanations of the distinction between solids and

liquids.
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parts which always remain undivided are called atoms (a, privative,

re'/xi'w, to cut) ; and we are to understand by this designation not

elements which it is impossible to divide in an absolute or meta-

physical sense, but elements which are not susceptible of division by

any known forces.

It is in chemistry especially that reasons are found for assuming

a limit to the division of matter. In fact in chemical phenomena

we see this division attain limits which, though doubtless very

remote, are yet fixed. The composition of compound bodies is

invariable, whatever may be the circumstances of their production;^

their properties, which could hardly fail to be altered by a change in

the size of the constituent particles, are also the same; whence it

seems necessary to conclude that the elements between which chemical

affinity is exerted are absolutely alike and unchangeable—have a

definite existence. They are the veritable individuals of the mineral

kingdom. These are what we mean by atoms.

The notion of an atom does not involve the idea of size; but

experience teaches us that their size must be excessively minute;

for we can in several diflferent waj^s divide matter into extremely

small parts, without finding any reason to think that we have

attain(^d or even approached the limit of division. We will cite

some examples which prove the extreme divisibility of matter.

WoUaston succeeded in obtaining threads of platinum of a diame-

ter not exceeding •^Tj-xr^TnrTr of an inch. The method which he

employed for preparing them consisted in drawing a silver wire

with a platinum core, and dissolving the shell of silver in nitric acid.

In this way threads can be obtained so fine that they are actually

invisible to direct view, and that their existence can only be detected

by the aid of certain special optical phenomena. In the art of beating

gold, leaves are obtained whose thickness cannot exceed -g-g-o'ooo

of an inch. A square inch of this leaf would weigh less than the

uxrwir of ^^ ounce, and as a square whose side is -ji-g- of an inch is

visible to the naked eye, it follows that this square inch of leaf

contains more than 60,000 visible parts.

The diflfusion of colouring matters and perfumes affords a notable

instance of the extreme divisibility of matter. A cubic millimetre

of indigo (about T-g^^^nr of a cubic inch) dissolved in sulphuric acid,

'This is called the law of "definite proportions." The laws of "multiple proportions"

and "e(]iiivalent proportions" furnish perhaps a etill stronger argument for the atomic

hypothesis.
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can colour to an appreciable extent more than 10 litres (about 2

gallons) of water. Now, a litre contains a million cubic millimetres;

the cubic millimetre of indigo, therefore, in this experiment is divided

into ten million visible parts.

The diffusion of odoriferous substances is still more astonishing. lb

is well known that a grain of musk will continue for years to supply

the air, which is continually being renewed around it, with a suffi-

cient number of particles to communicate to it its odour. The mind

can hardly form an idea of the degree of tenuity which such par-

ticles must have.

21. Porosity.— Porosity is an immediate consequence of the

hypothesis of molecular constitution. It consists in the existence,

in the interior of all bodies, of intervals or pores between their

material particles. This porosity is often so marked as to permit

the passage of liquids or gases through the substance of solids. It

then receives the name oi permeability. Permeability is the property

which is utilized in the employment of stone filters; the pores are

large enough to allow the water to pass, and small enough to prevent

the passage of the small solid bodies held in suspension in the water.

It is by means of permeability that the communication and con-

tact of liquids takes place in organized bodies ; for the vessels which

contain them are nowhere open, and it is always through the sub-

stance of their walls that the final changes of elements are made

which are necessary to vital action.

By using great pressure, liquids can be made to pass through

metals. These latter, or at least some of them, iron and platinum

for example, when raised to a high temperature, allow ready passage

to different gases. Thus it is that cast-iron stoves, when red-hot,

allow some of the deleterious products of combustion to pass out,

and sometimes occasion serious accidents.

But even when no permeability can be detected, pores must stiU

be assumed to exist; and the proof is found in the fact that all

bodies can have their volumes increased or diminished,—that they

are dilatable and compressible. The dilatation of bodies by the

action of heat is a general phenomenon which will be studied further

on. We will here confine ourselves to compressibility.

22. Compressibility.—Compressibility consists in the reduction of

volume which bodies experience under the action of external pressure.

The compressibility of solids is extremely small ; that is to say, a very

considerable pressure is required to produce any sensible diminution
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of volume. The existence of such an effect has, however, been well

established, and it is found necessary to allow for it in structures.

The compressibility of liquids, though greater than that of solids,

is still very small. Hence, in comparison with gases, they have

often been called incompressible fluids. It is easy with the aid of

OErsted's apparatus, represented

in section in Fig. 12, to show

that liquids are more compres-

sible than solids, and to measure

approximately the degree of their

compressibility. The liquid to

be compressed is contained in a

kind of large thermometer b,

called a piezometer, whose tube

has been carefully divided, and

its reservoir gauged so as to de-

termine how many divisions of

the tube its volume is equal to.

The tube is open at the top, and

a globule of mercury, placed

above the liquid column, serves

for index. The apparatus is

placed in a vessel of water a,

having very thick sides.

When pressure is exerted by

means of the screw-piston Jclh,

the index of mercury is seen to

descend, showing a diminution of

the volume of the liquid. The
amount of the pressure is known from the volume of air contained

in the tube c, which serves as a manometer. In this experiment

the number of divisions through which the extremity of the liquid

column moves indicates the apparent diminution of volume; that

is to say, the excess of the diminution of volume of the liquid

above that of the envelope. It is easy, in fact, to understand that

the piezometer itself must, under the pressure to which it is sub-

jected, undergo a diminution of capacity, which must be taken into

account. (Ersted supposed that this diminution was insensible, or

nothing, since the pressure is exerted on the interior as well as the

exterior of the piezometer. But this conclusion is erroneous; for

Fig. 12.—CErsted's Piezometer.
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if the piezometer were solid and submitted to compression, the

interior shells would react with a force precisely equivalent to that

which is produced when the instrument is hollow and the liquid

occupies its interior. The piezometer then, in CErsted's experi-

ment, undergoes a diminution of volume equal to that which a

solid piezometer would undergo in the same circumstances. In

order, then, to find the true diminution of volume of the liquid, it is

necessary to increase the apparent contraction by the contraction of

the envelope. This latter element varies according to the

quality of the glass of which the envelope is composed, but

may be estimated at about '0000029 per atmosphere of pres-

sure. The true compressibility of water, according to recent

experiments conducted under the direction of M. Jamin by

Messrs. Amaury and Descamps, is, at the temperature of

15° centigrade, 0000457 per atmosphere. It diminishes

when the temperature increases. Alcohol and ether are

rather more compressible, and their compressibility (unlike

that of water) increases with the temperature. Mercury is

much less compressible than water. Its variations of volume

may therefore, in ordinary experiments, be neglected.

Gases are enormously more compressible than solids and

liquids. This is easily shown by the pneumatic syringe.

Fig. 13. It is a cylinder of very thick glass, closed at one

end. A piston, which exactly fits the tube, is made to enter

the other end, and can be forced in until the air is reduced

to a half, a third, or a tenth of its original volume.

Hence it would seem to follow that in gases the spaces

between the particles are much greater than in liquids and

solids, and consequently that there is much less matter in

the same volume. The same conclusion is established by

the comparison of specific gravities. To give an idea of the

difference, it may suffice to mention that water, when con-

verted into steam, at the ordinary atmospheric pressure,

and at the ordinary temperature of boiling water, expands

1700 times, so that a cubic inch of water gives about a

cubic foot of steam.

23. Elasticity.— This term, when applied to solids, is

modern physics to denote the property in virtue of which a body

tends to recover its form and dimensions when these are forcibly

changed. The great majority of solid bodies possess almost perfect

ii;

Sill

Fig. 13.—
Pneumatic
Syringe.

used in
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elasticity for small deformations ; that is to say, when distorted, ex-

tended, or compressed within certain small limits, they will, on the

removal of the constraint to which they have been subjected, return

instantly to their original form and dimensions. These limits (which

are called the limits of elasticity) are different for different sub-

stances; and when a body is distorted to an extent exceeding these

limits, it takes a set, the form to which it returns being intermediate

between its original form and that into which it was distorted.

When a body is distorted (using this word to include extension or

compression as well as change of shape) within the limits of its

elasticity, the force with which it reacts is simply proportional to

the amount of distortion. For example, the force required to make

the prongs of a tuning-fork approach each other by a tenth of an

inch, is precisely double of that required to produce an approach of

a twentieth of an inch ; and if a chain is lengthened a twentieth of

an inch by a weight of 1 cwt., it will be lengthened Jg-^h of an inch

by a weight of 2 cwt., the chain being supposed to be sufficiently

elastic to experience no permanent set from this greater weight.

Also (within the limits of elasticity) equal and opposite distortions

are resisted by equal reactions; for example, the same force that

suffices to make the prongs of a tuning-fork approach by -^jyth. of an

inch, will suffice, if applied in the opposite direction, to make them

separate by the same amount.

An important consequence which can be mathematically deduced

from the laws just stated, is that when a body is distorted within

its limits of elasticity, the vibrations which ensue when the constraint

is removed have periods which are independent of the magnitude

of the distortion. For example, a common C tuning-fork makes
about 528 vibrations in a second whether vibrating strongly or

feebly ; by whatever amount the prongs are made to approach each

other, the time which elapses from their being released to the

attainment of their greatest separation is txjVt ^^ ^ second, and

the same time elapses from their greatest separation to their nearest

approach. The sum of these two intervals, -g-J^ of a second, is the

period of a complete vibration; and during the whole time that

the vibrations are dying away until the fork finally comes to rest,

this period remains unaltered, the diminution of distance moved
being exactly compensated by the increasing slowness of the motion.

India-rubber has very wide limits of elasticity. Glass has

sensibly perfect elasticity up to the limit at which it breaks.
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Putty and wet clay are instances of bodies which are almost

entirely destitute of elasticity.

The resistance of a cylindrical or prismatic bar to elongation

or flexure is measured by a number called "Young's modulus of

elasticity." The following are examples of its value for different

substances, in kilogrammes per square millimetre:

—

Flint-glass, 5,851

Brass, 10,948

Steel, 21,793

Iron (wrought), 19,994

Do. (cast), 13,741

Copper, 12,558

To illustrate the meaning of this table by the case of steel ; a steel

wire whose section is a square millimetre will be elongated by ^xTv^g-

of its length by a weight of one kilogramme. The elongation

is inversely proportional to the section and directly proportional

to the stretching weight ; so that a steel wire whose section is half

a millimetre will, when stretched by a weight of six kilogrammes,

receive twelve times the elongation above specified.

The resistance of a cylindrical or prismatic bar or beam to bending

(called its flexural rigidity) is proportional to the value of Young's

modulus of elasticity for the material of the bar or beam ; so that

from the dimensions of the bar, the value of this modulus, and the

magnitudes and directions of the externally applied forces, the

amount of bending could be calculated.

The resistance of a cylindrical rod to twisting (called torsional

rigidity) does not depend upon the value of Young's modulus, but

upon an entirely distinct element, an element which is sometimes

called simply "rigidity," and which expresses the resistance which

a square of given thickness would oppose to being changed by

external forces into a rhombus of the same area, having angles

differing by a given small amount from right angles.

Elasticity being a molecular phenomenon, it is to be expected

that all circumstances which modify the molecular constitution

of a body will alter its elasticity ; but in the present state of science

it is impossible to predict a iDriori the nature and direction of the

change, the effects being sometimes opposite for different substances.

Thus tempering (that is to say heating followed by sudden cooling),

which, as is well known, augments in a high degree the hardness

and elasticity of steel, produces a reverse effect on the bronze

of which gongs are made. This alloy, in fact, when cooled slowly,

possesses the fragility of glass; whilst, when cooled suddenly, it can

be wrought with the hammer.
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The elasticity of springs furnishes a simple means of comparino-

forces. Fig. 14 represents an apparatus designed for this purpose

and called a dynamometer. It is formed of two plates of steel, AB
and A'B', jointed at their extremities to two metallic bridles which
connect them. To the middle of the upper plate is attached a ring,

by means of which the apparatus can be suspended from a fixed

Fig. 14.—Dynamometer.

point. To the middle of the lower plate is attached a hook, which

can either receive a weight or serve as a point of application for

the force which is to be tested. Under the action of the force thus

applied the spring plates bend, the distance of the middle points

increases, and this increase serves to measure the force itself; or

the force may be measured by observing what weight must be

suspended from the hook to produce the same effect.

The spring-balance is another apparatus of the same kind. In its

most common form it contains a spiral spring which is elongated by

the application of the force which is to be measured. The equality

of the graduations illustrates the law above stated of the proportion-

ality of distortions to the forces producing them. The resistance

of a spiral spring to elongation depends chiefly (as shown by Pro-

fessor James Thomson) on the torsional rigidity of the wire which

composes it.

It is important to remark, that whereas a pair of scales is essen-

tially a measure of mass, a spring-balance is essentially a measure

of force. Hence if a spring-balance be graduated so as to show

weights correctly at a medium latitude, it will indicate too little if

carried to the equator (where the force of gravity is feebler), and

too much at the poles (where gravity is more intense).
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GRAVITY.

24. Terrestrial gravity is the force in virtue of wliich all bodies

fall to the surface of the earth. This force is general ; its effects are

observed in all places and for all bodies. If some of these latter, as

smoke and hydrogen gas, appear to be exceptions, it is because they

are sustained by the air in the same manner as cork is sustained by

water. In space deprived of air, not only do all bodies fall, but, as

we shall see later, they fall with equal velocities,

25. Direction of Gravity.—The direction of

gravity is called the vertical. It is easily

determined by the aid of the simple ap-

paratus called a plumb-line, which consists

of a thread fixed at one end and carrying a

heavy body at the other. When the system

is in equilibrium it is clear that the result-

ant of the actions of gravity on all the parts

of the heavy body has exactly the same

direction as the thread, since it is this which

prevents the faU. But it can be shown that

this direction does not change when the form

and volume of the heavy body are altered,

it must therefore be the same as the direc-

tion of the force which would act upon one

of the elementary particles if suspended

alone at the extremity of the thread.

It can be shown by experiment that the

direction of gravity is perpendicular to the surface of a liquid in

equilibrium, or to use the common expression, to the surface of still

water. For this purpose a plumb-line OA is suspended over the

Fig. 15.—Plumb-line.
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surface of a fluid in equilibrium (which should be slightly opaque,

as blackened water), and the

plummet is allowed to plunge

in the liquid. The image AB
of the thread produced by re-

flection at the surface of the

liquid will be seen with

great distinctness, and will

be observed to be exactly in

a line with the thread itself

Now we shall see in a sub-

sequent part of this trea-

tise, that whenever reflec-

tion takes place at a plane

mirror, each point of the ob-

ject and the corresponding

point in the image are on

the same perpendicular to

the mirror and at equal dis-

tances from the mirror on op-

posite sides. Since, then, in

the experiment here described

the thread and its image are

in one straight line, this line must be perpendicular to the surface.

The surface of still water de-

fines in each locality what is

called the surface of the earth.

This expression denotes the sur-

face of an imaginary ocean of

calm water supposed to cover

the whole earth. This surface

is known to be sensibly spheri-

cal. It follows that the diffe-

rent verticals will nearly meet

in the centre of the earth. The

figure shows the relative posi-

tion of some verticals CZ, CZ',

CZ"; it is evident that they

contain angles equal to the an-

gular distance which separates the corresponding places.

Fig. 16.—Experiment for showing that the Plumb-line is

perpendicular to the surface of a fluid at rest.

Fig. 17.—Vei-ticals at different places.
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At any one locality all verticals may be treated as parallel, on

account of the immense distance of the centre of the earth. Let us

calculate, for example, the angle contained between two verticals a

metre (39 "37 inches) apart. Ten millions of metres correspond to a

quarter of the earth's circumference, that is to say, to 90°. A length

of a metre, therefore, represents 90° divided by ten millions, that is

to say, about y^ of a second, a quantity quite inappreciable even

with our most perfect instruments. It should be remarked, how-

ever, that the parallelism of the verticals at any one place is a

physical fact, completely independent of all previous knowledge of

the figure of the earth, and can be established by direct observation.

We may remark in passing, that the latitudes of places on the

earth's surface are determined by the directions of the verticals.

What is commonly called the latitude of a place is the angle which

a vertical at the place makes with a plane perpendicular to the

earth's axis of rotation. As distinguished from this, the geocentric

latitude (which is required in a few astronomical problems) is the

angle which a line drawn from the place to the earth's centre makes

with a plane perpendicular to the axis of rotation. The difference

between common and geocentric latitude generally amounts to some

minutes, and attains its greatest value (IT 29'') at latitude 45°.

26. Point of Application of Gravity—Centre of Gravity.— Gravity

being a property of matter, its points

of application must evidently be the dif-

ferent material particles which compose

each body. Though a body be divided

into as many parts as we please, and

even reduced to the state of impalpable

powder, each of the grains thus obtained

will be subject to the action of gravity.

The total force which urges a body to

fall is the sum, or more strictly, the re-

sultant of all the forces which are thus

actually applied to its several elements.

Now these forces are parallel, as has just

been stated, and act in the same direc-

tion; their resultant is therefore equal to

their sum, and it constitutes what is called the weight of the body

;

that is to say, the force with which it presses the obstacle which pre-

vents it from falling. The point of application G of this resultant

3

I

t

£

Fig. 18.— Parallelism of the Forces of

Gravity on the different Points of a

Body.
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(Fig. 18) is called the centre of gravity. It follows from the pro-

perty indicated in section 15, that the position of this point does

not vary when the direction of the components is made to vary.

The body can therefore be turned about in any manner without the

centre of gravity changing its position in the body. It is a fixed

point depending only on the form of the body and the distribution

of the matter which composes it.

If the body has the same density throughout, the position of the

centre of gravity depends only on the figure, so that in this case

bodies of similar form have their centres of gravity similarly situated.

The determination of the position of the centre of gravity is a

problem of mechanics which is solved by appropriate methods of

general application, founded on the principle (to which we can here

barely allude), that if a body be divided into a great number of

equal elements, the sum of their distances from any one plane,

divided by the number of elements, is equal to the distance of the

centre of gravity from the same plane.

Whenever a body of uniform density contains a point which is a

centre of symmetry (that is, a point which bisects all straight lines

drawn through it), this point must be the centre of gravity. Hence

:

1. The centre of gravity of a straight line is its middle point;

2. The centre of gravity of a circle, or of the circumference of a

circle, is the centre

;

3. The centre of gravity of a parallelogram is the intersection of

the diagonals;

4. The centre of gravity of a sphere is its centre

;

5. The centre of gravity of a cylinder is the middle point of its axis;

6. The centre of gravity of a parallelopiped is the common inter-

section of the diagonals, &c.

It ma}?- naturally be asked how we can speak of centres of gravity

of lines and surfaces, which, being only of one or two dimensions,

cannot possess weight. The answer is, that in so speaking we make

an abstraction analogous to that which gives us the idea of a material

point. We suppose lines or surfaces composed of elements possess-

ing weight; and the results thus obtained can be utilized in investi-

gating the centres of gravity of real bodies. Consider, for example,

a triangular prism. It can be conceived as decomposed into elements

which would be, so to speak, heavy triangles. The centre of gravity

of the solid would therefore be in the line which joins the centres of

gravity of all these triangles, and would be its middle point. We
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may say then that the centre of gravity of a triangular prism, and
in general of any prism, if composed of homogeneous material, is the

middle point of the line which joins the centres of gravity of the

two ends.

We must guard against the error of supposing that the force of

gi-avity on a body acts at the centre of gravity. Gravity really acts

equally on all the particles of the body; but its effect is in manj?-

respects the same as that of a single imaginary force supposed to act

at the centre of gravity.

The centre of gravity sometimes lies outside the body, as in the

case of a ring or a hollow sphere. When this is the case, it must be

regarded as rigidl}^ connected to the body.

27. Physical Definition of the Centre of Gravity.—The centre of

gravity, regarded from the mechanical point of view, is in reality

merely the centre of parallel forces distributed in a determinate

manner. Its position can therefore be found by a purely geo-

metrical investigation, and apart from any physical idea of the

nature of bodies. Nevertheless, it is certain that the discovery of

the existence of centres of gravity had its origin in the consideration

of the phenomena of equilibrium, which are exhibited by bodies

under the influence of gravity. Experiment, in fact, shows that in

most bodies there is a point such that, if it be supported, the body

will be in equilibrium, and if it be not supported, the body will

move under the action of gravity. This point is the centre of

gravity, and the property in question is an obvious consequence of

the mechanical definition already given. But this property may
itself be used as the definition of the centre of gravity (though

with some want of precision). We shall thus use it in the examina-

tion of some important cases of equilibrium.

28. Equilibrium of a Body capable of turning about an Axis or a

Fixed Point.—Consider, for example, a triangular plate movable about

an axis of rotation O, and let G be the position of the centre

of gravity. In order that there may be equilibrium, the centre of

gravity must be supported ; that is to say, the vertical drawn through

it must meet the axis. This condition may be fulfilled by two very

difierent positions of the body: the centre of gravity may be either

above or below the axis. In the former case (Fig. 20) it is evident

that if the body be ever so little displaced from its position of equi-

librium, the effect of gravity will be to make it fall still further

away. In the second case, on the contrary (Fig. 19), the action of
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gravity tends to restore the body to the position of equilibrium. In

the former case the equilibrium is unstable; in the latter it is stable.

m
Fig. 19.—Stable Eq[iiilibrium. Fig. 2u. Ati Ec^uilibrimn.

We see then that the condition of stable equilibrium is that the

centre of gravity be below the axis

or point of suspension.

The toy called the balancer is an

application of this principle. It

consists of an ivory figure resting

by one point on a small horizontal

stand. Two stiff wires fixed to the

figure terminate below in leaden

balls. The centre of gravity of the

system is thus brought below the

point of support; the equilibrium

is consequently stable. If we draw

the figure to one side and then re-

lease it, it wiU perform a series of

oscillations, and will end by taking

a position of equilibrium such that

the vertical through the centre of

gravity passes through the point of

support.

If a body were traversed by an

axis through its centre of gravity,

its equilibrium would be neutral, and the body would remain in

Fig. 21.—Balancer.
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equilibrium in all positions. This condition ought to be rigorously

fulfilled by the wheels of pieces of mechanism which only serve to

transmit motion.

29. Equilibrium of a Body resting on a Horizontal Plane which

touches it in one Point.—Consider (Figs. 22 and 23) a body of

Fig. 22.—Unstable Equilibrium. Fig. 23.—Stable Equilibrium.

ellipsoidal form resting on a horizontal plane. In order that there

may be equilibrium it is evidently necessary and sufficient that the

vertical through the centre of gravity G should meet the horizontal

plane at the point of contact. We see by the figure that this condi-

tion may be realized in two ways.

The first figure corresponds to unstable, the second to stable

equilibrium. The figure shows that in the latter case the centre of

gravity occupies its lowest possible position.

Fig. 24.—Tumblers

The tumbler (Fig. 24) is founded on this principle. The centre of

gravity being near the lower side in consequence of the accumulation

of matter in this region, the apparatus is in stable equilibrium. If
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it be removed from its position and subjected even to very wide

displacements, it always rises again and returns to its position of

equilibrium after a number of oscillations.

If the centre of gravity were always at the same distance from

the plane—if, for example, the body were spherical, there would be

equilibrium in all positions,—the equilibrium would be neutral.

We may remark in general that a position of unstable equilibrium

is only mathematically possible ; it never can have a physical exist-

ence; for the smallest derangement destroys it, and in nature a

multitude of causes, such as the movement of the air, the flexibility

of supports, &c., introduce displacements which violate the conditions

of equilibrium. If there be any actual cases of such equilibrium

—

if, for example, it is possible to make an egg stand on its end, it is by

the help of friction, which constitutes a new force tending to prevent

displacement.

30. Equilibrium of a Body resting on a Horizontal Plane at several

Points.—AVhen a body rests on a horizontal plane at several points,

Fig. 25.—Eqmlibrium of a Body supported on a Horizontal Plane at three or more Points.

it is necessary for equilibrium that the vertical through the centre

of gravity fall within the convex polygon which can be formed

by joining the points of support. It is clear that in this case

gravity will have no effect but to press the body against the

plane. It is also obvious that the equilibrium will be the more
stable as the centre of gravity is lower, and the distance of the

vertical through it from the nearest side of the polygon greater.

If this vertical is very near one side, a small force will be sufficient

to overturn the body on that side, although a very great force may
be required to overturn it in the opposite direction.
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31. Practical Method of finding the Centre of Gravity.—The dif-

ferent methods which are employed in practice for the experi-

mental determination of the centre of gravity are dependent on the

principles above explained. Whatever be the particular nature of

the proceeding, it always consists in placing the body in a position

of equilibrium from which it can be inferred that the centre of gravity

lies in a certain line or surface.

Thus, for example, if we suspend a body by one point, it is clear

that the centre of gravity must lie in the

prolongation of the suspending thread.

If we then suspend the body by another

point, a similar inference follows. Con-

sequently, the centre of gravity must be

the intersection G of the two directions

thus indicated.

If we wish, for example, to pierce a

plate or board by an axis which is to

pass through its centre of gravity, we
may begin by balancing it in a horizontal

position upon two points near its circum-

ference. The line joining them will pass

vertically under the centre of gravity.

By repeating the operation we may find a

second line which possesses the same property, and the required axis

must pass through their intersection and be perpendicular to the plate.

Instead of balancing the plate upon two points, an operation which

may require repeated trials, it is more expeditious, when practicable,

to suspend it freely in a vertical position by a point near its circum-

ference, and to suspend a plumb-line from the same point. The

course of this line must be marked on the plate, and the operation

must then be repeated, using a different point of suspension. The

intersection of the two lines thus obtained will, as before, be opposite

to the centre of gravity of the plate. Both the methods described

in this paragraph are applicable even to plates which are not homo-

geneous.

Fig —Experimental Determination
of Centre of Gravity.



CHAPTEE V.

LAWS OF FALLING BODIES.

32. In air, bodies fall with unequal velocities; a sovereign or a

ball of lead falls rapidly, a piece of down or thin paper slowly. It

was formerly thought that this difference was inherent in the nature

of the materials; but it is easy to show that this is not the case, for

if we compress a mass of down or a piece of paper by rolling it into

a ball, and compare it with a piece of gold-leaf, we shall find that

the latter body falls more slowly than the former. The inequality

of the velocities which we observe is due to the resistance of the

air, which increases with the extent of surface exposed by the

body.

It was Galileo who first discovered the cause of the unequal

rapidity of fall of different bodies. To put the matter to the test,

he prepared small balls of different substances, and let them fall at

the same time from the top of the tower of Pisa ; they struck the

ground almost at the same instant. On changing their forms, so as

to give them very different extents of surface, he observed that they

fell with very unequal velocities. He was thus led to the conclusion

that gravity acts on all substances with the same intensity, and that

in a vacuum all bodies would fall with the same velocity.

This last proposition could not be put to the test of experiment

in the time of Galileo, the air-pump not having yet been invented.

The experiment was performed by Newton, and is now commonly

exhibited in courses of experimental physics. For this purpose a

tube from a yard and a half to two yards long is used, which can be

exhausted of air, and which contains bodies of various densities, such

as grains of lead, pieces of paper, and feathers. When the tube is

full of air and is inverted, these different bodies are seen to fall with

very unequal velocities ; but if the experiment is repeated after the
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tube has been exhausted of air, no difference can be perceived between

the times of their descent.

33. Laws of Falling Bodies.— Having found that the effect of

gravity is the same on all bodies, Galileo proposed

to himself the problem of determining, by experi-

ments on one body, the law which regulates their

descent ; and, inasmuch as the observation of a body

falling freely is very difficult, on account of the

rapidity of its motion, he adopted a method of

diminishing this rapidity without in other respects

altering the law of motion. This method consisted

in the use of the inclined plane.

Consider, in fact, a heavy body M, free to move
along the inclined plane ABC. The weight of the

body M being represented by MP, it can, (by § 16),

be decomposed into two other forces, viz. MN per-

pendicular to the plane, which is destroyed by the

resistance of the plane itself, and MT parallel to

the plane, which alone produces the motion. Now
this latter force is less than MP, but is a constant

fraction of it, for at all points in the plane the paral-

lelogram of forces will have the same form, and the
||i||

;
^^$ /

ratio of MT to MP will be constant. This ratio is

in fact the same as that of the height AC of the ||||iy f^

plane to its length AB, or in other words is the sine

of the inclination of the plane to the horizon. The

motion will therefore be less rapid, but will follow

the same law as that of a body falling freely, and

will be much easier to observe. The diminution of

velocity has the further advantage of • diminishing

the relative importance of the resistance of the air,

which increases

very rapidly with

every augmenta-

tion of velocity.

The inclined plane employed by

Galileo consisted of a long ruler,

with a longitudinal groove, along

which he caused a small hesiVj ball to roll. Having thus observed

the spaces traversed in 1, 2, and 3 units of time, he found that these

Fig. 27.—Fall of Bodies

in Vacuo.

Fig. 28.—Inclined Plane.
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spaces were in the ratio of the numbers 1 4, and 9 ; that is to say,

when the time of de-

scent was doubled or

tripled the space tra-

versed became 4 or 9

times greater. This law

can be expressed by say-

ing that the spaces tra-

versed are proportional

to the squares of the

times of descent.

34. Attwood's Machine.

— Attwood, a fellow

and tutor of Trinity

College, Cambridge, in-

vented, towards the

end of last century, a

machine which affords

great facilities for veri-

fying the laws of falling

bodies. It involves, like

Galileo's inclined plane,

a method of diminishinof

the velocity of descent

;

but this result is ob-

tained by very different

means.

The machine consists

of a column, having at

its top a very freely

moving pulley, which

forms the essential part

of the apparatus. In

order to obtain great

g freedom for the move-

ments of the pulley, the

ends of its axis are made
to rest, not on fixed

supports, but on the
circumferences of wheels (two at each end of the axis) called friction-

Fig. 29.—Attwood's Machine.
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^ '̂^^^

wheels, because this arrangement produces a great diminution of

friction. Over the pulley passes a fine thread, carrying at its

extremities two equal weights P. Neglecting the weight of the

thread, it is obvious that these weights will be in equilibrium in

every position. If however one of them be loaded with an additional

weight p, the system will be put in motion, and all parts of it will

move with the same velocity. We may therefore regard the moving

force as distributed uniformly through it. But this force is simply

the weight of p. If then, for example, the movable system 2 P + _p

has 20 times the weight of p, each portion of the system is urged

with a force equal to -^^j- of its own weight. The force which pro-

duces motion is in general diminished, as compared with a body

falling freely, in the ratio expressed by the fraction op^ ; and as

this ratio continues constant through the whole

motion, the law of the motion will be the same as

that for free descent.

The following are the arrangements for observ-

ing the motion:—One of the weights moves in

front of a graduated scale, and a plane stop for

intercepting the descending weight can be fixed at

pleasure at any part of this scale. A clock with a

pendulum beating seconds serves for the measure-

ment of time. To measure the space traversed in

a second, the weight is raised to the commence-

ment of the graduation, is then loaded with the

additional weight, and is dropped precisely at one

of the beats of the pendulum. The stop is placed

by trial at such a point of the scale that the

blow of the weight against it precisely coincides

with another beat of the pendulum,—a coincidence

which can be obtained with great accuracy, inas-

much as the ear easily detects the smallest interval

between the two sounds. In order to insure a ^^^

similar coincidence at the commencement of the

fall, the weight is supported by a movable platform M (Fig. SO),

which is prevented from falling by tlie upper end of the lever aob,

whose lower end is guided by a cam^ fixed to the escapement wheel

^A cam is a rotating piece which, by means of projections or indentations in its out-

line, guides the movements of another piece which presses against it.

,aUi^.

30.—Detent in Att-

wood's Machine.
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of the clock, and is kept constantly pressed against the cam by

means of a spring not shown in the figure. Suppose the wheel to

be turning in the direction indicated by the arrow. It is obvious

that as soon as the tooth of tlie cam has passed the end of the lever

the latter will fly to the left, and therefore the upper end will fly to

the right, since the lever turns about an axis at O. The platform M
is thus suddenly dropped, and the fall commences. The position of

the cam must be so adjusted that this movement shall take place

exactly at the instant of the escapement of one of the teeth.

It is thus easy to measure the spaces traversed by the movable

system of weights in 1, 2, and 3 seconds, and the result obtained

will be as follows:—Suppose that in the first second the space

traversed is 11 divisions, then we shall find:

Space traversed in 2 seconds = 44 = 11x2'
Space traversed in 3 seconds = 99 = 11x3*
Space traversed in 4 seconds =176 = 11 x i'^

We see, then, that the spaces vary as the squares of the times

employed in describing them. If we use the indefinite symbol K
to denote the space described in the first unit of time, the space

described in the time t will be given by the formula

s = -K.t\ (1)

35. Velocities.—Attwood's machine also affords the means of

studying the successive velocities which gravity imparts to the

system. Before describing the means employed for attaining this

end, it will be desirable to make a few remarks respecting velocity.

When a material point .moves uniformly; that is to say, when it

traverses equal spaces in equal times, the meaning of velocity is per-

fectly clear : it is the space traversed in unit time. Thus, if a point

moving uniformly describes 2 feet in each second, we say that the

velocity is 2 feet per second ; or if it is understood that the foot and

second are to be our units of space and time, we simpl}^ say that the

velocity is 2. If a point moving uniformly describes 5 feet in 2

seconds, its velocity is 2i, since the space described in one second

must be half that described in two; and in general, in any case of

uniform motion of a point, the velocity (in feet per second) will be

obtained by dividing the whole space (in feet) by the whole time

occupied in its description (in seconds).

But uniform motion is in nature the exception rather than the

rule. In fact, it can only occur when the moving body is acted on
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either by no forces at all, or by forces in equilibrium. This, in fact,

is merely a statement of the principle of inertia. When a body is

constantly acted on by a force, this force must evidently have the

efiect of continually modifying the motion, and consequently the

above mode of computing velocity is not directly applicable. If,

however, we suppose the action of the force suddenly to cease, the

motion will become uniform, and the velocity during this uniform

motion will serve as a measure of the velocity which existed at the

instant when the action of the force ceased.

Attwood's machine contains an arrangement for thus suddenly

arresting the action of gravity at a given instant. For this purpose,

a ring large enough to allow either of the two equal weights to pass

through it, is to be fixed at the point of the scale at which the

moving weight arrives at the end of one second. The additional

weight, which for this purpose is made long and flat, is intercepted

by the ring, and the subsequent motion, being due merely to the

momentum already acquired, will be uniform. The stop is to be

placed at the point at which the w^eight arrives a second later. The
distance between the ring and the stop will then represent the velo-

city acquired during the first second. Making this experiment

under the same conditions as the foregoing experiments on spaces,

we find that the velocity acquired during the first second is repre-

sented b}^ 22 divisions. We then place the ring at the point at

which the system arrives after 2, 3, &c., seconds, and the stop at the

point at which it arrives a second later; we thus measure the velocities

acquired in 2, 3, &c., seconds, and find them equal to 44, Q6, &lg. We
see, then, that the velocities acquired in different times are ^projpor-

tional to the times. Further, the velocity acquired in one second, 22

(divisions per second), is double of the space, 11 (divisions), described

in the first second.

In formula (1), K denotes the space described in the first unit of

time ; the velocity acquired is then 2K, and consequently the velo-

city acquired in time t is given by the formula

V= 2K«. (2)

36. Attwood's machine, when fitted with the appliances above

described, leaves little to be desired in point of accuracy, but its

complication renders it expensive. We subjoin a figure representing

Bourbouze's modification of Attwood's machine, which is much
simpler. AB is the pulley, on the axis of which is a cylinder P,
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surrounded with smoked paper. One of the iron weights, M, is held

at the bottom of the apparatus by an electro-magnet, which is mag-

netized by means of the gal-

vanic cell 0. The weight

M', loaded with the additional

weight N, is thus prevented

from obeying the force of

gravity. Again, the vibrating

plate L, carrying a very light

style for tracing a mark on

the smoked cylinder, is held

by the electro -magnet, E',

which is magnetized by the

same cell. If at any moment
the current is interrupted, the

weight M' falls, and the plate

vibrates, describing an undu-

lated curve on the surface of

the cylinder. The undulations

of this curve correspond to the

vibrations of an elastic body,

and, consequently, to equal

times; w^hile the distance of

any undulation from the be-

ginning of the curve is equal

to the distance turned by the

cylinder P, and is consequently

proportional to the distance

travelled by the weights.

These distances are found to be exactly proportional to the series of

numbers 1, 4, 9, &c. The ring D serves to intercept, at a given

instant dming the descent, the additional weight N ; from this time

onward the motion is uniform and the undulations of the curve are

equidistant.

Attwood's machine, however modified, gives only indirect evidence

regarding the motion of bodies falling freely. Although this cir-

cumstance cannot affect the legitimacy or accuracy of the conclusions

to which it leads, it would be interesting, if possible, to observe the

phenomenon of free fall, and show that the laws just obtained are

verified. This is the object of Morin's apparatus.

Fig. 31. -Bourbouze's Modification of Attwood's

Machine.
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37. Morin's Apparatus.—Morin's apparatus consists of a wooden
cylinder covered with paper, which can be set in uniform rotation

about its axis by the fall of a heavy weight. The cord which sup-

ports the weight is wound upon a drum, furnished with a toothed
wheel which works on

one side with an endless

screw on the axis of the

cylinder, and on the other

drives an axis carrying-

fans which serve to regu-

late the motion.

In front of the turn-

ing cylinder is a cylin-

dro- conical weight ofo
cast-iron carrying a pen-

cil whose point presses

against the paper, and

having ears which slide

on vertical threads, serv-

ing to guide it in its fall.

By pressing a lever, the

weight can be made to

fall at a chosen moment.

The proper time for this

is when the motion of

the cylinder has become r

sensibly uniform. It fol- >

lows from this arrange- ;,

ment that during its ver- ;

tical motion the pencil

will meet in succession

the different generating

lines ^ of the revolving cylinder, and will consequently describe on

its surface a certain curve, from the study of which we shall be

^ That is, lines drawn on the surface of the cylinder parallel to its axis. A cylindric

surface could obviously be described by the motion of a straight line in space. The line

so moving is said to generate the cylindric surface, and the different positions which it

successively occupies in its supposed motion are called generating lines of the cyhnder.

If a cylindric surface is cut open along a generating line and flattened out so as to become

plane, its form wiU be rectangular, and its generating lines will be parallel to two sides of

the rectangle.

Fig. 32.—Morin's Apparatus.
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able to gather the law of the fall of the body which has traced it.

With this view, we describe (by turning the cylinder while the

pencil is stationary) a circle passing through the commencement of

the curve, and also draw a vertical line through this point. We cut

the paper along this latter line and develop it (that is, flatten it out

into a plane). It then presents the appearance shown in Fig. 33.

If we take on the horizontal line equal distances at 1, 2, 3, 4, 5 . . .
,

^ ^ 3 .,
^

^ and draw perpendiculars at their extremi-

ties to meet the curve, it is evident that

the points thus found are those which were

traced by the pencil when the cylinder

had turned through the distances 1, 2, 3,

4, 5. . . . The corresponding verticals re-

present the spaces traversed in the times

1, 2, 3, 4, 5. . . . Now we find, as the

figure shows, that these spaces are repre-

sented by the numbers 1, 4, 9, Ki, 25 . . .
,

thus verifying the principle that the spaces

described are proportional to the squares of

the times employed in their description.

We may remark that the proportionality

of the vertical lines to the squares of the

horizontal lines shows that the curve is a parabola. The parabolic

trace is thus the consequence of the law of fall, and from the fact

of the trace being parabolic we can infer the proportionality of the

spaces to the squares of the times.

The law of velocities might also be verified separately by Morin's

apparatus; we shall not describe the method which it would be

necessary to employ, but shall content ourselves with remarking

that the law of velocities is a logical consequence of the law of

spaces.^

38. Formulae relating to Falling Bodies.—The formulae (1) and (2),

§§ 34, 35', will enable us to obtain numerical solutions of questions

relating to the fall of bodies, if we can ascertain the space traversed

Fig. 33.—Parabolic Trace.

^ Consider, in fact, the space traversed in any time t, this space is given by the formula

s = K«2; during the time < + the space traversed will be K (< + ^)2 =K«2 +2K<^ + K^-,

whence it follows that the space traversed during the time 6 after the time t is 2K <^ +
'K.d'^. The average velocity during this time 6 is obtained by dividing the space by 6,

and is 2K< + 'Kd, which, by making d very small, can be made to agree as accurately as

we please with the value 2K^ This limiting value 2K« must therefore be the velocity at

the end of time t.—D.
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by a falling body in one second, or (which will be numerically double

of this) the velocity acquired in one second.

The several forms of apparatus which we have been describing

furnish the means of making this determination, but not with much

precision. A much better method of determination is furnished by

the pendulum, and will be described in the next chapter.

The result obtained is that in Great Britain the velocity acquired

by a body falling in vacuo for one second is 32 '2 feet per second, or

9*81 metres per second. The velocity in question is usually denoted

by the letter g, and is sometimes called the intensity of gravity,

because its value for different localities varies in the same ratio as

the force exerted by gravity on one and the same mass, and may
therefore be taken as the numerical representative of the force of

gravity on unit mass.^

The space traversed during the first second of fall is equal to \ g,

that is, to 16"1 feet.

Introducing g into the formulae (1), (2), they become

:

V =gt
(a)

(&)

Eliminating t from the equations (a), (h), we obtain a third formula,

which gives the velocity acquired in falling through a given space

:

V = \/ 2, g s. (c)

39. Applications.—I. To calculate the space traversed by a body

which falls during a given number of seconds. This will be found

from formula [a) by putting for t the given number of seconds.

Performing the calculation as far as 10 seconds, we obtain the fol-

lowing table :

—

TIME OF FALL,
in Seconds.

SPACE FALLEN,
in Feet.

TIME OF FALL,
in Seconds.

SPACE FALLEN,
in Feet.

1 . . . .

2 . . . .

3 . . . .

4 . . . .

5 . . . .

16-1

64-4

144-9

257-6

402-5

6 . . . .

7 . . . .

8 . . . .

9 . . . .

10 ....

579-6

788-9

1030-4

1304-1

1610-0

II. What is the time occupied by a body in falling from a height of

of 750 feet, and what is the velocity with which it strikes the ground?

^If we adopt the "absolute" unit of force defined in § 42, the force of gravity on unit

mass will be numerically equal to g.



50 LAWS OF FALLING BODIES.

Formulse (a) and (c) give:

V = y/2 g s = V64-4 x 750 = 219-8 feet per second.

III. From what height must a body fall to acquire a velocity of

1500 feet per second?

Formula (c) gives:

2 g 64-4

The velocity of 1 500 feet per second is about that of a cannon-ball

on leaving the muzzle of the gun. We see that it would be obtained

by falling from a height of about 6^ miles. The duration of the

fall would be about 47 seconds. It must be borne in mind that the

formulae (a), (b), (c) are only strictly applicable to fall in vacuo. In

air they furnish results more and more remote from the truth, as the

velocity increases.

In vacuo, a body thrown upwards from the earth would, on its

return, strike the ground with a velocity equal to that with which

it was thrown, and the velocity at any given point which it traverses

both in its upward and downward course, would be the same in. the

descent as in the ascent. We see then from above that a cannon-

ball would ascend to a height of about 6^ miles. In air, the velocity

is slower in the descent than in the ascent, both because the height

attained by the projectile is less than it would be in vacuo, and be-

cause the velocity acquired in falling from this diminished height is

stiU further diminished by friction in the descent.

One notable difference between fall in vacuo and in air is, that in

the latter case the velocity, instead of increasing indefinitely, only

increases towards a certain limit which it can never exceed; and if

a body be projected downwards with a velocity greater than this,

its motion will be retarded. The resistance of the air, in fact, in-

creases with the velocity, and the limit in question is that velocity

at which the resistance encountered from the air is exactly equal to

the weight of the body. The limiting velocity is not the same for

all bodies, but depends on their sizes, densities, and forms.

39a. Motion of Projectiles.—When a body is projected in any direc-

tion, its subsequent motion (neglecting the resistance of the air)

can be determined by means of the following principles :

—

1. The horizontal component of motion will remain unchanged.
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2. The vertical component of motion will be the sum or difference

(according as the body was projected below or above the horizontal

direction) of the motion of a body falling freely, and the vertical

component of the initial motion.

These principles are sufficient to determine the position, the

velocity, and the direction of motion of the body, after the lapse of

any given interval, until it strikes an obstacle.

By reference to Fig. 33, it will easily be understood that, if the

direction of projection be horizontal, the curve described will be a

parabola; for, in virtue of the first principle, the body describes

equal horizontal distances in equal times ; and in virtue of the

second principle (since the vertical component of initial motion is in

this case zero), the vertical spaces described are those of a body fall-

ing freely ; hence the construction of Fig. 33 is precisely applicable

to this case.

If the direction of projection be oblique (that is, neither horizontal

nor vertical), the path will still be parabolic. For example, if the

body be projected obliquely upwards, we may divide its path into

two parts, one described in its ascent, the other in its descent. These

two parts will be precisely similar, and at the highest point of the

path, where they join, the motion is horizontal. We may regard the

curve in Fig. 33 as representing one of the two parts, say the descend-

ing part; for the motion, after passing the highest point, must evi-

dently be the same as if the body had been projected horizontally

from the highest point with the velocity which it actually has at

that point. This velocity is, in fact, the horizontal component of the

actual velocity of projection.

If a body be projected vertically downwards, its motion will be

the same as if it had fallen from a certain height above. If it be

projected vertically upwards, the times of ascent and descent will be

equal, and the velocity at any one point will be the same in the de-

scent as in the ascent. At the highest point the body is for an instant

stationary ; its descent is therefore the motion of a body falling freely.

Formulae (a), (b), (c) of § 38 will apply to the ascent as well as the

descent, if in the former case we understand that the time denoted

by t is the time reckoned backwards from the instant of attaining

the highest point.

Whether the motion be in a vertical line, or in a parabola, the fol-

lowing principle will be found to apply, being in fact the mathe-

matical consequence of the two principles already enunciated, viz. :

—
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The velocity is the same in the ascent and descent at any two

points which are on the same level ; and the velocities at any two

points, not on the same level, are connected by the law that the dif-

ference of their squares is equal to the difference of levels multiplied

by 2^.

40. Composition of Motions.—Principle 2 of last section is a par

ticular case of the following general law:

—

When a force acts upon a body already in motion, the subsequent

motion will be obtained by compounding (in the same manner as

forces are compounded by the parallelogram of forces) the motion

which the force would have imparted to the body if initially at rest,

with the motion which the body would have had in the absence of

the force. The law, as thus stated, is applicable without qualification

as long as the force continues to act parallel to a definite direction.

In the case of forces which do not fulfil this condition, but gradually

change their direction in space, the motion may be approximately

determined by dividing the time into intervals so short, that the

direction of the force does not change by a sensible amount during

any one interval. The motion in each interval can then be deter-

mined by the above law. It is frequently possible, by the aid of the

higher mathematics, to foresee the exact result to which this tedious

method would only approximately lead, but the physical principles

on which the investigation is conducted are in all cases those which

we have above indicated.

41. Uniform Acceleration.—The general law above stated is ex-

emplified in the case of gravity. In fact, if a denote the space

traversed in the first second of a falling body's descent, the space in

two seconds is 4a, and consequently the space traversed in the

second second is 3(X. Now the velocity at the end of the first second

is 2a, and this velocity, if it remained unchanged, would cause the

space 2a to be traversed in the next second. Hence the space 3a

actually described may be divided into two parts, 2a and a, of which

the latter is due to the continued action of the force of gravity during

the second second.

In like manner the space described in the third second is 9a— 4a,

that is, 5a, which may be divided into two parts, 4a and a, of which

the latter alone is due to the action of gravity during the third

second, the former being due to the velocity 4a, which the body

possessed at the end of the preceding second.

So, again, the velocity acquired by the body in the first second
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being 2a, the velocity at the end of any subsequent second will be

found to be the sum of two parts, one of which is the velocity at the

beginning of the second, and the other is 2a.

Motion possessing these properties is said to be uniformly accele-

rated; and the force which produces it is a uniformly accelerating

force, that is to say, a constant force.

The force of gravity, however, is sensibly constant only within

moderate limits of distance from the earth's surface ; as we ascend

from the earth its intensity continually diminishes, being nearly pro-

portional inversely to the square of the distance from the earth's

centre. Hence a body falling in vacuo from a great height towards

the earth, would not be uniformly accelerated, but would experience

continually greater acceleration as it descended. On the other hand,

if there were a vacuous shaft down which a body could fall to the

centre of the earth, it would fall with continually diminishing accele-

ration, because the force of gravity in the interior of a solid sphere

diminishes as we approach the centre, and becomes zero at the centre

itself, where the attractions, being equal in all directions, destroy one

another. A body so falling would have its velocity continually in-

creased, but the rate of increase as measured by the difference be-

tween the velocity at the beginning of a second and that at the end

of it, would continually become less. The words italicized in last

sentence constitute the definition of acceleration. It denotes the rate

of increase of velocity, just as velocity itself denotes the rate of increase

of distance measured along the path described from a fixed point.

42. Proportionality of Acceleration to Force directly and to Mass

inversely.—The general law of motion enunciated in § 40 may be

extended to the case of several forces acting simultaneously. The

actual motion will be obtained by compounding (on the parallelo-

gram principle) the motions due to the separate forces together with

the motion (if any) due to the initial velocity. Just as two forces

acting on a point in the same direction are equivalent to a single

force equal to their sum ; so two motions in the same direction con-

stitute, when compounded, a motion equal to their sum ; and this is

true, both as regards velocity and space described. Two equal forces

acting on a body in the same direction, will therefore produce in any

given time double the velocity that one of them would have pro-

duced alone. We are thus led to the general principle, that the

velocities produced in equal bodies by different forces are simply

proportional to the forces.
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The above reasoning is not offered as an a priori proof of the

general principle in question, but as a logical deduction of it from the

law of composition of motions due to several forces. The propor-

tionality of velocity to the force which produces it can be proved

experimentally by Attwood's machine, and in other ways ; and the

law of composition in question must be regarded as established by
the experimental verification of these and other consequences to

which it leads.

From the direct proportionality of velocity to the force by which

it is generated, when the mass is given, we may infer the inverse

proportionality of velocity to the mass which is set in motion, when
the force is given. For instance, if we double the mass, leaving the

force unchanged, we may resolve the force into two equal parts,

acting one on each half of the mass. Doubling the mass has, there-

fore, the same effect on the motion as halving the force.

The velocity generated in a given time is thus proportional to the

moving force divided by the mass moved ; from which it follows that

force is proportional to the product of mass by velocity generated in

a given time.

When force is expressed in terms of the "absolute" or "invariable"

unit, first proposed by Gauss, we can assert that the moving force is

equal to the product of the mass moved, and the velocity generated

in a unit of time.^ For example, since the force of gravity on a body

weighing M pounds causes it to acquire a velocity of g feet in a

second, this force is numerically equal to M^, it being understood

that the pound is the unit of mass, and the foot and second the units

of space and time.

That the pound is really and strictly a standard of mass is obvious

from the consideration that the standard pound is a certain piece of

platinum, preserved at the ofiice of the Exchequer in London, and

that this piece of platinum would remain a true pound if carried to

any part of the earth.

At any one place, since g has a given value, the masses of bodies

are proportional simply to their weights, but this proportion obviously

does not hold in the comparison of masses at places whiere the values

of g are different. When a body is carried about to different parts of

space, its mass, or quantity of matter, remains of course the same,

^ The absolute unit of force may be defined as that force which, acting on unit mass for

unit time, would generate unit velocity. The force of gravity on unit mass contains g such

units.
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but its weight alters in proportion to the greater or less intensity of

gravity;—for instance, at the centre of the earth, regarded as a

uniform sphere, its weight would be nothing, This annihilation of

its weight would in no way affect its resistance to acceleration. The

difference between the mass of a ball of cork, and that of a ball of

lead of the same diameter, could in such circumstances be readily

detected by the different resistances which they would oppose to

attempts to set them in rapid motion, or to check their motion when

commenced.

It must be regarded as a remarkable fact, and one which could

only have been established by experiment, that the two modes of

comparing masses perfectly coincide ; that is to say, two bodies, even

though composed of different materials, if their sizes are so propor-

tioned that they oppose equal resistances to acceleration, will also

gravitate with equal forces, as tested by their balancing each other

in a pair of scales. This principle is established experimentally by

the equal velocities of fall of all bodies in vacuo, and, with much

greater accuracy, by the equality of the number of vibrations made

in the same time by pendulums of the same size and form, but ot

different materials.



CHAPTER VI.

THE PENDULUM.

43. The Pendulum.—When a body is suspended so that it can

Oi turn about a horizontal axis which does not pass

through its centre of gravity, its only position of

stable equilibrium is that in which its centre of

gravity is in the same vertical plane with the axis

and below it (§ 28). If the body be turned into any

other position, and left to itself, it will oscillate from

one side to the other of the position of equilibrium,

until the resistance of the air and the friction of the

axis gradually bring it to rest. A body thus sus-

pended, whatever be its form, is called a pendulum.

It frequently consists of a rod which can turn about

an axis at its upper end, and which carries at its

lower end a heavy lens-shaped piece of metal M called

the bob ; this latter can be raised or lowered by means
of the screw Y. The applications of the pendulum are

very important: it regulates our clocks, and it has

enabled us to measure the intensity of gravity and
ascertain the differences in its amount at different parts

of the world ; it is important then to know at least the

fundamental points in its theory. For explaining these

we shall begin with the consideration of an ideal body
called the simple pendulum.

44. Simple Pendulum.—This is the name given to a

pendulum consisting of a heavy particle M attached to

one end of an inextensible thread without weight, the

other end of the thread being fixed at A- When the

Fig. 34.-Pendiiium. thread is vertical the weight of the particle acts in
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Fig. 35.—Motion of Simple
Pendulum.

the direction of its length, and there is equilibrium. But suppose

it is drawn aside into another position, as AM. In this case the

weight MG of the particle can be resolved into two forces MC and
MH. The former, acting along the prolongation of the thread, is

destroyed by the resistance of the thread

;

the other, acting along the tangent MH,
produces the motion of the particle. This

effective component is evidently so much
the greater as the angle of displacement

from the vertical position is greater. The
particle will therefore move along an arc

of a circle described from A as centre, and

the force which urges it forward will con-

tinually diminish till it arrives at the

lowest point M'. At M' this force is zero,

but, in virtue of the velocity acquired, the

particle will ascend on the opposite side,

the effective component of gravity being

now opposed to the direction of its motion

;

and, inasmuch as the magnitude of this component goes through the

same series of values in this part of the motion as in the former part,

but in reversed order, the velocity will, in like manner, retrace its

former values, and will become zero when the particle has risen to a

point M'' at the same height as M. It then descends again and

performs an oscillation from M" to M precisely similar to the first,

but in the reverse direction. It will thus continue to vibrate be-

tween the two points M, M" (friction being supposed excluded), for

an indefinite number of times, all the vibrations being of equal

extent and performed in equal periods.

The distance through which a simple pendulum travels in moving

from its lowest position to its furthest position on either side,

is called its amplitude. It is evidently equal to half the complete

arc of vibration, and is commonly expressed, not in linear measure,

but in degrees of arc. Its numerical value is of course equal to that

of the angle MAM', which it subtends at the centre of the circle.

The complete period of the pendulum's motion is the time which

it occupies in moving from M to M" and back to M, or more

generally, is the time from its passing through any given position

to its next passing through the same position in the same direction.

What is commonly called the time of vibration, or the time of
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a single vibration, is the half of a complete period, being the time

of passing from one of the two extreme positions to the other.

Hence what we have above defined as a complete period is often

called a double vibration.

When the amplitude changes, the time of vibration changes also,

being greater as the amplitude is greater; but the connection between

the two elements is very far from being one of simple proportion.

The change of time (as measured by a ratio) is much less than the

change of amplitude, especially when the amplitude is small; and

when the amplitude is less than about 5°, any further diminution

of it has little or no sensible efiect in diminishing the time. For

small vibrations, then, the time of vibration is indei^endent of the

amplitude. This is called the law of isochronism,.

The time of a single vibration when the amplitude is small is

expressed by the formula:

-Vp
I denoting the length of the pendulum, g the intensity of gravity,

and TT the ratio of the circumference of a circle to the diameter.

As regards the units in which T, l, and g are expressed, it must

be remarked that if g is expressed in the usual way, as in § 38,

I must be expressed in feet, and the value obtained for T will be

in seconds.

The formula shows that the time of vibration is proportional

to the square root of the length of the pendulum, so that if the

pendulum be lengthened four, nine, or sixteen fold, the time will

be doubled, trebled, or quadrupled.

45. Experimental Laws of the Motion of the Pendulum.—The pre-

ceding laws apply to the simple pendulum; that is to say, to a

purely imaginary existence ; but they are approximately true for

ordinary pendulums, which in contradistinction to the simple pendu-

lum are called compound pendulums. The discovery of the experi-

mental laws of the motion of pendulums was in fixct long anterior

to the theoretical investigation. It was the earliest and one of

the most important discoveries of Galileo, and dates from the year

1582, when he was about twenty years of age. It is related that on

one occasion, when in the cathedral of Pisa, he was struck with

the regularity of the oscillations of a lamp suspended from the roof,

and it appeared to him that these oscillations, though diminishing

in extent, preserved the same duration. He tested the fact by



MOTION OF THE PENDULUM. 59

repeated trials, which confirmed him in the belief of its perfect

exactness. This law of isochronism can be easily verified. It is

only necessary to count the vibrations which take place in a given

time with difierent amplitudes. The numbers will be found to be

exactly the same. This will be found to hold good even when some

of the vibrations compared are so small that they can only be

observed with a telescope.

The time of vibration, then, does not depend on the amplitude,

and neither does it depend on the material of which the pendulum

is composed. From this last fact it follows that gravity acts in

precisely the same manner on all substances. It is found, in fact,

that balls of the same size, of lead, copper, ivory, &c., suspended by

threads of equal length, vibrate in the same time, provided they

are large enough to escape sensible retardation from the resistance

of the air. This result is virtually identical with that of Galileo's

experiment on the fall of bodies (§ 32), and enables us to con-

clude with certainty that in a vacuum these different pendulums

would vibrate in rigorously equal times.

By employing balls suspended by threads of different lengths,

Galileo discovered the influence of length on the time of vibration.

He ascertained that when the length of the thread increases, the

time of vibration increases also ; not, however, in proportion to the

length simply, but to its square root.

Knowing, then^ that the length of the pendulum which beats

seconds at Paris is about one metre (0'".994), we see that a pendu-

lum 64 metres long would make a single vibration in eight seconds.

This is about the length of the pendulum employed by Foucault

at the Pantheon in his celebrated experiments on the rotation of

the earth.

This law of lengths experimentally discovered by Galileo, is pre-

cisely that which the formula for the simple pendulum gives; an

agreement which it was natural to expect, seeing that a small ball

suspended by a long string is a practical approximation to the idea

of a simple pendulum. When, however, the form of the pendulum

departs widely from , this, the meaning to be attached to the word

length ceases to be obvious. It becomes necessary to resort to

theoretical investigations, and we shall briefly indicate the results

thus obtained.

46. Equivalent Simple Pendulum.—It is demonstrated in treatises

on dynamics that a compound pendulum, whatever be its form,
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always keeps time with a simple pendulum of some determinate

length—called the equivalent simple pendulum;^ and whenever the

length of a pendulum is mentioned, it is the length of the equivalent

simple pendulum that is to be understood.

An}^ rigid body, oscillating about a fixed horizontal axis, may be

regarded as a compound pendulum. That point of the axis which,

in the position of equilibrium, is vertically over the centre of gravity

of the body, is called the centre of suspension; and if we join this

point to the centre of gravity, and produce the joining line down-

wards till its whole length is equal to that of the equivalent simple

pendulum, its lower extremity is called the centre of oscillation.

The body therefore vibrates in the same manner as if its whole

mass were collected at the centre of oscillation. This point is

always further from the axis than the centre of gravity, and it

possesses the following remarkable property:—that if the body were

made to vibrate about an axis passing through the centre of oscilla-

tion and parallel to the original axis, the time of vibration v^^ould

be the same as in vibratinor about the orio:inal axis. In this inverted

position, the original centre of suspension becomes the new centre

of oscillation, and the original centre of oscillation becomes the new
centre of suspension ; hence the property in question is commonly

called the convertibility of the centres of oscillation and sus-

pension.^

This important property, which was discovered by Huyghens,

furnishes an accurate method of determining the length of the

simple pendulum equivalent to a given compound pendulum. This

is the principle of Kater's pendulum, which can be made to vibrate

about either of two parallel knife-edges, one of which can be adjusted

to any distance from the other. The pendulum is swung first upon

one of these edges and then upon the other, and, if any difference

is detected in the times of vibration, it is corrected by moving the

adjustable edge. When the difference has been completely destroyed,

^ Sometimes the isochronous simple pendulum ; but it seems better to reserve this

adjective and the corresponding noun isochronism for the use in which the latter has

been employed in § 44.

^ The names centre of suspension and centre of oscillation are not very appropriate,

inasmuch as the properties mentioned in the text are properties of two lines rather than

of two points : one of the lines being the axis about which the pendulum swings, and the

other being a parallel to this axis in the plane containing it and the centre of gravity,

and at a distance from it equal to the length of the equivalent simple pendulum. If

we call the former the axis of suspension and the latter the axis of oscillation, we may
assert that the axes of suspension and oscillation are convertible.
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tne distance between the two edges is the length of the equivalent

simple pendulum. It is necessary, in any arrangement of this kind,

that the two knife-edges should be in a plane passing through the

centre of gravity ; also that they should be on opposite sides of the

centre of gravity and at unequal distances from it.

We see, by what precedes, that the laws of the simple pendulum

are applicable to any pendulum, if we understand by its length

the length of the equivalent simple pendulum, or, in other words,

the distance between the axis and the centre of oscillation.

47. Determination of the Value of g.—Returning to the formula for

/I ttH
the simple pendulum Tr=:T^— we easily deduce from it g=^y^'

whence it follows that the value of g can be determined by making

a pendulum vibrate and measuring T and I. T is determined by

counting the number of vibrations that take place in a given time

;

I can be calculated, when the pendulum is of regular form, by the

aid of formulae which are given in treatises on rigid dynamics, but

its value is more easily obtained by Kater's method, described above,

founded on the principle of the convertibility of the centres of

suspension and oscillation.

48. Variations in the Intensity of Gravity.—Pendulum observations,

which have been taken in great numbers in various places, have

established the result that the intensity of gravity varies over the

surface of the earth. At London the value of ^ is 32- 1 82; it increases

in approaching the pole, and diminishes in going towards the equator.

These variations, however, are not very considerable, as the following

table of the values of ^ shows:

—

Value at the equator 32-088.

Value in latitude 45° 32-171.

Value at the poles 32-253.

Its value for any place is approximately given by the formula:

—

^ = 32-088 (1 + -005133 sin^X) (l—^ ),

\ denoting the latitude of the place, h the height above the level of

the sea,^ and E. the earth's radius, which is 20,900,000 feet. Local

^ The correcting factor for elevation ( 1—^5-
J

is proper to be used in determining the

value of g in mid- air; for example, in the positions reached by balloons. On the summit

of a mountain, or of an elevated plateau in the interior of a continent, the value of g is

greater than at the same level in mid- air above the ocean, owing to the attraction of the

excess of land which projects above sea- level. See a paper by Dr. Young in the Phil.

Trans, for 1819.
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peculiarities prevent the possibility of laying down any general

formula with precision, and the exact value of g for any place can

only be ascertained by observations on the spot.

49. Centrifugal Force.—There are two distinct causes of these differ-

ences in the intensity of gravity: the first is what is called centrifugal

force. Consider a material point M attached to

the extremity of a thread OM, and suppose an

impulse to be given it in a direction perpen-

dicular to the thread. At each instant, in virtue

of inertia, the point tends to move along a tan-

gent to the circle; but the thread prevents this

movement from taking place, by drawing the

point, which in its turn reacts on the thread and
Fig. 36 .—Centrifugal stretchcs it wifch a certain force w^hich has re-

Force.

ceived the name of centrifugal force. It is clear

that we may dispense with the thread, if we suppose an attractive

force equal to that which the thread would exert directed towards

0. This force, which, by combining its effect with that of the

initial impulse, would produce circular motion, is called centripetal

force. It is evidently equal and opposite to centrifugal force.

The amount of the centripetal force in any given case of circular

motion can be easily calculated. Let MP represent the space which

the material point would describe in a certain small time t under

the action of the centripetal force alone. This motion, combined

with the motion due to the velocity which the particle possessed

at M, gives the actual motion in the arc MM', provided that the

time considered and the distance moved in that time are so small

that the directions of the centripetal forces at M and M' are sensibly

parallel—in other words, provided the arc MM' is very small in com-

parison with the radius OM. In this case, by § 40, PM', or rather

a line equal and parallel to it drawn through M, represents the space

due to the velocity which the point had at M, and is therefore equal

to vtj V denoting the velocity. Now if w^e denote by the accelera-

tion due to the centripetal force, this acceleration may be regarded

as uniform during the time t, and we have by § 38, MP=j0^^

whence 0= —j-. But PM'^, that is vW^, is (by Euclid, iii. ^6) equal

to 2r.MP, r denoting the radius of the circle; therefore —^ is equal

to --. Consequently 0=-; that is, the centripetal force upon a
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particle revolving with velocity v (feet per second) in a circle of

radius r (feet) is equal to a force which, acting continuously upon

the same particle initially at rest, would in one second give it a

velocity of -. The centripetal force upon a mass of m pounds is

^^ Gaussian pound units (42), and is equal to the weight of

pounds.

When the circular movement is uniform, we can give the formula

for a more convenient form. In fact if we denote by T the time

of revolution, and by tt the ratio of circumference to diameter, we

1 2irr J v'^ 47rV
have^'=-^, and ^= -= rj,2--

Suppose, for example, a weight of 50 pounds attached to one end

of a string 3 feet long, and revolving uniformly in a circle about

the other end of the string, at the rate of 40 revolutions per minute.

The time of revolution is here f of a second, and the force required

to be exerted by the string is equal to the weight of

£ X 47r^ X i X 3=81-7 pounds

;

and if the string be not strong enough to bear this weight it will

break, and the body wdll fly off at a tangent.

50. Different Effects of Centrifugal Force.—Several experiments on

centrifugal force are exhibited in courses of physics. For example,

a rod AB (Fig. 37), passing through two ivory balls M, M', is set in

rotation in a horizontal plane by means of the mechanism shown in

the fiofure. The balls are then seen to move towards the extremities

of the rod. If a spring is placed beside one of the balls M', as shown

in the figure, it will be pressed with a force which is precisely equal

to the centrifugal force of the ball.

The centrifugal railway (Fig. 38) shows a curious effect of this

force. A carriage, starting from A, descends the inclined rails,

and by following the course of the rails, which here forms a spiral

convolution, to B, rises to 0, and descending again on the side next

A, passes on the further side of B and finally arrives at D. There

is therefore an instant in the motion when the carriage is bottom

upwards at the top of the convolution, and remains in contact with

the rails in opposition to the force of gravity. The explanation

is easy. The carriage attains a certain velocity in descending

the incline which forms the first portion of its path. In virtue of

its inertia it tends to move with this velocity in a tangential direc-
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tion, but being compelled to follow the curved rails which lie in

its way, it reacts upon them with a force whose amount is given

m^^

Fig. 37.—Centrifugal-force Apparatus.

by the formulae of last section. If the point A is sufficiently elevated

above C, this force will prevail over the weight of the carriage

Fig. 38.—Centrifugal Railway.

and keep it pressed against the rails. It may be easily shown that

to secure this result the height of A above B must be to the height

of C above B in a greater ratio than 5 to 4.



le apparatus shown in Fig. 39, consisting of a kind of sphere

formed of four flexible springs, be mounted on the whirling table

and made to revolve, it will be

seen to become flattened, the effect

being more decided as the rota-

tion is more rapid. This result is

due to centrifugal force, which

gives all parts of the springs a

tendency to recede from the axis

of rotation, and especially those

parts which are already most dis-

tant from it. This experiment may
be regarded as illustratingtheman-

ner in which the earth, when in a

fluid state, acquired its present

form, bulging at the equator and

flattened at the poles.

51. The influence of centrifu-

gal force in modifying the eff*ect

of gravity is easily deduced from

what precedes. The various bodies

which are on the surface of the

earth are retained upon it by

gravity, and a certain portion of

the force of gravity is expended, m constraining them to move in

circular paths. The modification thus produced in the apparent force

and direction of gravity is the same as if a force equal and opposite

to the force thus expended were compounded with the force of

gravity proper ; that is to say, apparent gravity is the resultant of

gravity proper and centrifugal force.

At the equator, centrifugal force is directly opposed to gravity

proper, and is therefore to be simply subtracted from it. Let r

be the earth's radius, T the length of a sidereal day (or the time of

the earth's revolution), then the intensity of centrifugal force at

89. Oblateness of the Earth.

the equator is -j^^ = Putting for Sxr, or the earth's circum-

ference, its value in metres, viz. 40,000,000, and for T its value

in seconds, 86,164, we obtain for the intensity in question the value

•033. Now the intensity of gravity, expressed with reference to the

metre and second as units, is about 9 "8. Hence centrifugal force at
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the equator is -g-ff^ or about -^^ of the force of gravity, and apparent

gravity is less than gravity proper at the equator by this amount.

The exact amount of diminution is more nearly
-^-J-g-

of gravity

proper; and since 289 is the square of 1 7, and centrifugal force varies

as the square of the velocity, we see that if the rate of the earth's

revolution were increased seventeenfold, bodies at the equator would

lose their weight.

As we recede from the equator, the intensity of centrifugal force

diminishes because the distance from the earth's axis diminishes;

and, at the same time, the direction of centrifugal force, being always

perpendicular to this axis, becomes less directly opposed to gravity,

so that only one of its two components is subtractive. For this

double reason, the effect of centrifugal force in diminishing the

apparent force of gravity becomes continually less as we recede

from the equator. As far then as the disturbing effect of cen-

trifugal force is concerned, the apparent intensity of gravity should

be least at the equator, and should continually increase towards

the poles.

We may add that centrifugal force (except at the equator) affects

not only the amount, but also the direction, of apparent gravity,

since the resultant of two forces which are not directly opposed does

not coincide in direction with either of them. The angle which the

actual vertical (indicating the direction of apparent gravity), makes

with the direction which the vertical would have if the earth were

at rest, varies with the latitude ; at Paris, where its value is nearly a

maximum, it is between 5 and 6 minutes.

52. Universal Gravitation, Earth's Mean Density.—Terrestrial gravi-

tation is only a particular case of universal gravitation. Newton

established, by researches extending over more than twenty-five

years, that the movements of the planets around the sun, and of

the satellites around the planets, could be explained by assuming

the existence of a mutual attraction, which, taken in conjunction

with an initial impulse, determines the paths which these bodies

describe. This attraction is jointly proportional to the masses of

the mutually attracting bodies, and varies inversely as the square

of their mutual distance. By the aid of this assumption, astronomers

have succeeded not only in explaining all the diversities of motion

which the solar system exhibits, but in calculating the positions of

the celestial bodies at distant times, both past and future, with mar-

vellous accuracy. The study of the movements of the heavenly
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bodies, which has thus been reduced to a branch of applied mathe-

matics, is called Physical Astronomy.

It is therefore natural to look upon terrestrial gravity as a par-

ticular case of universal gravitation, and to regard the fall of a bod}^

as a consequence of the attraction exerted on it by the different parts

of the terrestrial globe. This identity is in fact established by
numerous proofs. Now it is obvious from the symmetry of the

component attractions, that the resultant attraction of a sphere ex-

erted at any point of its surface must be in the direction of the

radius, and must therefore be perpendicular to the surface—a result

which our every-day experience confirms in the case of the earth's

gravitation. Theory also shows that the attraction of an oblate

spheroid is greater at the poles than at the equator. In fact,

taking into account both the oblateness of the earth and centri-

fugal force, theory agrees with observation in indicating that

apparent gravity increases in going from the equator towards the

poles by an amount proportional to the square of the sine of the

latitude.

The hypothesis of attraction then explains all the phenomena of

gravity : we may add that the existence of attraction at the surface

of the earth has been experimentally demonstrated. Maskelyne,

Hutton, and Playfair, in the celebrated Schiehallien experiment,

proved that the plumb-line experienced, on either side of the mountain

of that name, a deviation towards the mountain ; and a similar result

was established by Sir Henry James at Arthur's Seat, near Edinburgh.

Cavendish, by means of a very sensitive torsion-balance, showed

that two large spheres of lead exercised a sensible attraction upon

two small spheres, and was able to measure the amount of this

attraction so precisely as to deduce, from the comparison of it with

the earth's attraction, that the mean specific gravity of the earth is

0-5. Cavendish's experiment has been repeated by Reich in Germany

and by Baily in this country, with nearly coincident results. The

Schiehallien experiment, which was the earliest attempt to determine

the earth's mean density, gave 5 for the result, and Mr. Airy's ex-

periment at Harton Colliery gave a result exceeding 6. Baily's

result, obtained by Cavendish's method, with some improvements in

the details, is generally accepted as the best determination; it is

5-67.

53. Variation of Gravity with Height.—It follows from the identity

of attraction and gra^^^ity that this force diminishes as we rise above
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the earth's surface, but the heights with which we commonly have to

do in ouii experiments are so small in comparison with the earth's

radius that the resulting differences of force are quite inappreciable.

In the case, however, of large differences of height, the variation of

force can be detected ; for instance, it is easy to establish experiment-

ally that the intensity of gravity is less on the summit of a mountain

than at its base. Theory shows that the attraction of a sphere upon

external points is the same as if its mass were collected at the centre.

Presuming this to be true in the case of the earth, it may be shown

that, in ascending to any height above the earth's surface which

is small in comparison with the earth's radius, the diminution in the

force of gravity is twice as great in comparison with the whole force

of gravity as that height is in comparison with the earth's radius.

This explains the origin of the factor 1 - -^ in the formula of § 48.

In penetrating into the interior of the earth, the law of the varia-

tion of gravity is more complex. If the earth were homogeneous,

its attraction would continually diminish in penetrating towards the

centre, and would, if the earth were also truly spherical, be simply

proportional to the distance from the centre. But in fact the density

is greater in the central than in the superficial parts of the earth, the

mean density being, as we have seen, about 5*7, while the density

of the superficial beds is only about 3. This augmentation of density

tends to increase the attractive force as we descend; and it will

depend upon the law according to which the density varies which of

these two opposite tendencies will prevail. Mr. Airy, in his experi-

ment at Harton Colliery, found the intensity of gravity at the

bottom of the mine, 1256 feet below the surface, to be greater than

at the surface by about one part in 19,000. Supposing that similar

results would be obtained in other places, it follows that, in penetrat-

ing the earth, gravity must go on increasing from the surface down
to a certain depth, where it becomes a maximum, and from which it

decreases down to the earth's centre, where it becomes zero, the

equal and opposite attractions there destroying one another.

53 a. Simple Vibrations.—The motion of a pendulum vibrating

in a small arc, may be taken as the type of a class of motions

which very extensive^ prevail in nature, and are of great import-

ance in many departments of physical science. They have been

called by different writers simple vibrations, pendulum-like vibra-

tions, sine-like vibrations, and simple harmonic motions. We shall
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employ the first of these designations, and define a simple vibration

to be the movement of a point to and fro along one line (not neces-

sarily straight), with acceleration simply proportional to the distance

of the point from the bisection of this line. If the line of motion be

curved, the distance is to be measured along the curve, and in this

case the acceleration referred to is the tangential acceleration

along this curve. In every case, and in all parts of the motion,

the acceleration of the moving point urges it towards the middle

point of its path, becoming zero only at the instant of passing this

middle point. In the majority of cases that require to be considered,

the line of motion is straight, or approximately straight.

As examples of simple vibrations, we may instance, in addition to

that of a pendulum above quoted, the motion of a point on either

prong of a tuning-fork, or of a point in a musical string, when vibrat-

ing so as to produce a pure note. In these cases, the force urging

any point of the fork or string towards the position of equilibrium,

varies directly as the distance of the point at any time from this

position, and by the second law of motion acceleration is proportional

to force.

In the case of the simple pendulum (§ 43), the acceleration of the

heavy particle when the thread makes an angle Q with the vertical

is g sin d (see § 53d), which when the arc of vibration is small may

be taken as equal to gd, that is, g j, x denoting the length of arc

measured from lowest point, and I the

length of the string. It is therefore pro-

portional to X, the distance of the particle

from the position of equilibrium.

53 B. When simple vibration is executed

in a straight line, it corresponds to the

projection of uniform circular motion (Fig.

39a); that is to say, if a point P move

with uniform velocity round the circum-

ference of a circle^ and if Pp be the perpen-

dicular let fall from P upon a fixed straight

line in the plane of the circle, then p, the

foot of this perpendicular, wiU execute

simple vibration.

To prove this proposition, remark that by § 49 the point P is to be

regarded as constantly falling away from a tangent in obedience to

pS Z>6

Fig. 39a.. Projection of Circular
Motiou.
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acceleration directed towards the centre of the circle, the amount of

the acceleration being -7^ .r, where r denotes the radius of the circle.

This acceleration, being directed from P towards the centre of the

circle, may be resolved into two components, one parallel to the line

of motion of p, and the other perpendicular to it. The former of

these, which is obviously the acceleration of p, is — of the whole

acceleration, x denoting the distance of p from its mean position,

that is, from the foot of a perpendicular let fall from the centre of

the circle. The acceleration of p is therefore -7^ x, and is propor-

tional to X.

53 c. We may hence prove that simple vibrations are isochronous.

For if the acceleration be expressed by fiX, x denoting displacement

from mean position, and
fj.
any constant, we see, by the preceding

paragraph, that the vibration keeps time with an imaginary point

moving uniformly round a circle, a complete vibration being per-

formed in the same period as a complete revolution ; and if T denote

this period, we have fx=~; whence T== ^, an expression which is

independent of the amplitude of vibration.

Applying this result to a pendulum vibrating in a small arc, we

have/^= y (see§ 53a); hence T= -7^= 27rV-, which is the time of

a complete (or double) vibration.^

To understand the reason of the isochronism of simple vibrations,

we have only to remark that, if the amplitude be changed, the velo-

city at corresponding points (that is, points whose distances from the

middle point are the same fractions of the amplitudes) will be

changed in the same ratio. For example, compare two simple vibra-

tions in which the values of fi are the same, but let the amplitude of

^ The mathematical reader will remark that our definition of simple vibration corresponds

to the diflFerential equ^-tion -ri =

—

f^, and that the property proved in § 53b corresponds

to the solution of this equation, which is 05= a cos {t\/fi—e), a and e being arbitrary con-

stants, the former called the amplitude and the latter the epoch of the motion. The quan-

tity [t \/ix—e) is called the argument, and it is obvious that x and its successive diflFerential

coeflBcients will all remain unaltered if the argument be increased by 27r, that is, if t be

27r.
increased by any multiple of "T^:' Hence the motion always repeats itself after the inter

-

val -,—> which is therefore the period of a complete vibration.
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one be double that of the other. Then if we divide the paths of

both into the same number of small equal parts, these parts will be

twice as great for the one as for the other; but if we suppose the two
points to start simultaneously from their extreme positions, the one

will constantly be moving twice as fast as the other. The number
of parts described in any given time will therefore be the same for

both.

In the case of vibrations which are not simple, it is easy to see

(from comparison with simple vibration) that if the acceleration in-

creases in a greater ratio than the distance from the mean position,

the period of vibration will be shortened by increasing the amplitude

;

but if the acceleration increases in a less ratio than the distance, as

in the case of the common pendulum vibrating in an arc of moderate

extent, the period is increased by increasing the amplitude.

53 D. Cycloidal Pendulum.—We saw in § 33 that the eflfective com-

ponent of gravity upon a particle resting on a smooth inclined plane

was proportional to the sine of the inclination. The acceleration

of a particle so situated is in fact g sin a, if a denote the inclination

of the plane. When a particle is guided along a smooth curve its

acceleration is expressed by the same formula, a now denoting the

inclination of the curve at any point to the horizon. This inclina-

tion varies from point to point of the curve, so that the acceleration

g sin a is no longer a constant quantity. The motion of a common
pendulum corresponds to the motion of a particle which is guided to

move in a circular arc; and if x denote distance from the lowest

point, measured along the arc, and r the radius of the circle (or

the length of the pendulum), the acceleration at any point is g sin -.

This is sensibly proportional to x so long as a? is a small fraction

of r ; but in general it is not proportional to x, and hence the vibra-

tions are not in general isochronous.

To obtain strictly isochronous vibrations we must substitute for

the circular arc a curve which possesses the property of having an

inclination whose sine is simply proportional to distance measured

along the curve from the lowest point. The curve which possesses

this property is the cycloid. It is the curve which is traced by

a point in the circumference of a circle which rolls along a straight

line. The cycloidal pendulum is constructed by suspending an ivory

ball or some other small heavy body by a thread between two

cheeks (Fig. 39b), on which the thread winds as the ball swings to
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Fig. 39b.—Cycloidal Pendxilum.

either side. The cheeks must themselves be the two halves of a

cycloid whose length is double that of the thread, so that each

cheek has the same length as the

thread. It can be demonstrated^

that under these circumstances

the path of the ball will be a

cycloid identical with that to

which the cheeks belong. Ne-

glecting friction and the rigidity

of the thread, the acceleration in

this case is proportional to dis-

tance measured along the cycloid

from its lowest point, and hence,

by last section, the time of vibra-

ation will be strictly the same for large as for small amplitudes.

It will, in fact, be the same as that of a simple pendulum having the

same length as the cycloidal pendulum and vibrating in a small arc.

Attempts have been made to adapt the cycloidal pendulum to

clocks, but it has been found that, owing to the greater amount

of friction, its rate was less regular than that of the common pendu-

lum. It may be remarked, that the spring by which pendulums

are often suspended has the effect of guiding the pendulum bob

in a curve which is approximately cycloidal, and thus of diminishing

the irregularity of rate resulting from differences of amplitude.

53 E. Centre of Mass, or Centre of Inertia.—The point which has

been mentioned in Chapter iv., under the name of centre of gravity,

possesses important properties besides those which depend upon its

being the point through which the resultant force of gravity

passes.

It may be demonstrated by geometry that if a body be divided

into a number of equal elements (equal in mass, not necessarily in

size), each of them being so small in all its dimensions that it may
be treated as a material point, there is a certain point in the body

such that its distance from any plane whatever is equal to the mean

distance of all the elements from the same plane—that is, to the sum
of all the distances divided by the number of elements.^ This point

is called the centre of mass.

^ Since the evolute of the cycloid is an equal cycloid.

^ If the plane cuts the body, distances on one side of the plane must be reckoned positive

and on the other negative, and the sum in question must be the algebraical sum.
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If a set of equal and parallel forces act one on each element in the

same direction, their resultant will pass through the centre of mass.

Inasmuch then as the force of gravity upon a body is made up of

such a set of equal and parallel forces, the centre of mass is also the

centre of gravity.

Again, if a body at rest be set in motion in such a manner that aU

its points move in parallel straight lines with equal velocities, the

resistance which inertia opposes is composed of a set of such equal

and parallel resistances; its resultant therefore passes through the

centre of mass, which is hence called the centre of inertia. It is

evident that the force requisite for producing such motion in a body

must be equivalent to a single force applied at this point, and the

same remark applies to the force necessary for destroying such motion

and bringing the body to rest.

Conversely, if a force be applied to a body at its centre of mass,

or in a line passing through the centre of mass, the body will be set

in motion in such a way that all its points will have equal and

parallel velocities, their common direction being parallel to the line

of action of the force.

A force applied to a free body in a direction not passing through

the centre of mass will produce movement of the centre of mass

combined with rotation of the body about the centre of mass. Of

these two components of motion, the former will be the same as

would be produced by the given force if it acted in a direction

passing through the centre of mass ; and the latter—the rotation

—

will be the same as if the centre of mass were fixed.

A couple applied to a free body will produce rotation of the body

about the centre of mass, but will not produce any motion of the

centre of mass.

When a body moves so that all its points are at every instant

travelling in the same direction (that is in parallel directions and

towards the same parts) and with equal velocities, it is said to have

a movement of translation. All straight lines in a body so moving

remain always parallel to their original positions, and conversely;

hence this property may be taken as the definition of movement of

translation. Every possible motion of a rigid body can be resolved

into motion of translation accompanied by motion of rotation, and

the resolution can always be so effected that the axis of rotation at

any instant shall be parallel to the direction of the movement of

translation. It is always possible, and is generall}?" convenient, to
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regard the motion of a rigid body under the action of any forces as

compounded of a motion of translation of the body as a whole, and
a rotation of the body about an axis passing through its centre of

mass.

53 F. When two or more bodies, or parts of the same body, are

free to move, it is impossible for any action exerted between them
to alter the motion of their common centre of mass. It is also im-

possible for such action to alter the total angular momentum about

the centre of mass. For example, when an animal is either jumping
or falling, no movement that it can make in mid-air without touching

other bodies can either alter the motion of its centre of gravity, or

cause part of its body to rotate in one direction wdthout causing the

remainder to rotate in the opposite direction.

The recoil of fire-arms depends on the same principle. Whatever
force the gases which are produced by the explosion of the powder
exert in propelling themselves and the ball forwards, they must
always exert the same force for the same time in urging the gun
backwards. If a shell explodes at an elevation in the air, then,

neglecting the effect of the wind, the common centre of gravity of the

fragments of the shell and the products of explosion will describe

the same path and with the same velocity which the centre of gravity

of the shell would have had if there had been no explosion.

This principle is of great importance in the movement of the

heavenly bodies. For example, neglecting any general movement
which the solar system as a whole may have in space, we are

entitled to assert that in whatever direction the common centre of

gravity of the planets may be moving at any time, the centre of

gravity of the sun must be moving in a parallel and opposite direc-

tion ; inasmuch as the centre of gravity of the whole system, consist-

ing of sun and planets, remains always at rest.

53 G. Moment of Inertia.—When a body is capable of turning about

a definite axis, its inertia opposes resistance to any force which may
be applied to set it in rotation, and, if it has once been set in rota-

tion, its inertia gives it a tendency to continue rotating with constant

velocity, so that it can only be brought to rest by the action of

opposing force.

The power of a force as regards its tendency to produce rotation

about an axis is called the Tnoment of the force about the axis, and

is measured by the product of the force and the arm at which it

acts. If the body is acted on by more forces than one, the sum of
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the moments of the several forces about the axis is the measure of

the total tendency to produce rotation, and is called the total moment

of all the forces. It is to be understood that if some of the forces tend

to make the body turn in one direction and others in the opposite di-

rection, the moments of the one set must be reckoned positive and ot

the other negative, and the sum in question must be the algebraical sum.

On the other hand, the resistance which the inertia of the rotating

body opposes to the action of forces tending to accelerate or retard

its rotation is called its moment of inertia. The rate at which the

angular velocity changes is equal to the total moment of the forces

divided by the moment of inertia of the body.

The moment of inertia of a body about an axis is the sum of all

the terms which are obtained by multiplying each element by the

square of its distance from the axis.

The angular momentum, of a rotating body is a name given to

the product of the moment of inertia and the angular velocity.

Equal forces acting at equal arms for the same time upon different

bodies produce equal angular momenta.

The energy of rotation of a rotating body is half the product of

its moment of inertia and the square of its angular velocity. Equal

amounts of work spent upon different bodies in producing rotation

yield equal amounts of energy of rotation.

These ideas may be illustrated by a reference to the use of fly-

wheels in machinery. A fly-wheel is a wheel which, by means* of

its inertia, acts as an equalizer of the motion of the machine to

which it is attached, resisting, to an extent measured by its moment
of inertia, all sudden changes of velocity. It is chiefly employed in

cases where either the driving power or the resistance to be over-

come is liable to rapid alternations of magnitude. When the power

is in excess of the resistance the motion of the fly-wheel is acceler-

ated, and the energy thus accumulated is given out again when the

resistance is in excess of the power, the inertia of the fly-wheel then

assisting to overcome the resistance, while at the same time the

velocity of the wheel is diminished.

Fly-wheels are always made with heavy rims, the rest of the

wheel being usually as light as is compatible with the requisite

strength. This arrangement is adopted with the view of obtaining

the greatest possible moment of inertia ; for if all the matter of the

wheel were collected at its rim, the moment of inertia would be

equal to the mass multiplied by the square of the radius.
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53 H. Centre of Percussion.—We have already seen that when a

force acts upon a rigid body in a direction not passing through the

centre of mass, it tends to produce a motion consisting partly of

translation and partly of rotation of the body about the centre of

mass. This principle remains true when the force is applied in the

shape of a blow, and may easily be tested experimentally in a rough

way by suspending a straight rod by a long string attached to one

end and striking it with a hammer in different points. If the rod

be struck in a horizontal direction near its top, its bottom will at

the instant of the blow move in the opposite direction, and if it be

struck near the bottom the top will fly back. In each case there is

some intermediate line at right angles to the direction of the blow,

which neither moves forwards nor backwards at the instant of the

blow, while points on opposite sides of it move in opposite directions.

With reference to this line, regarded as an instantaneous axis of

rotation, the point at which the body was struck is called the centre

of percussion. It admits of proof that the centre of percussion with

respect to any axis is the same as the centre of oscillation.

When a body is suspended so that it can rotate about an axis, if

we desire to strike it without jarring the axis, it is necessary that

the blow should be administered at the centre of percussion, and this

remark is equally true if the body in question be the striking instead

of the struck body. For example, the proper point of a bat for

striking a ball so as not to jar the hands is the centre of percussion of

the bat with respect to an axis passing through the hands.

53 1. Momentum, Energy of Motion.—The product of the mass

and velocity of a body is called the momentum of the body. If

equal forces act upon unequal masses /or the same time, the momenta
generated are equal. This principle applies to the recoil of fire-arms,

supposing the gun to be free to move.

On the other hand, if equal forces act upon unequal masses origin-

ally at rest, through equal distances (and therefore do equal amounts

of work upon them), the momenta generated will be unequal; the

greater mass will receive the greater momentum. Equal products

will however be obtained in this case, if we multiply each mass by
the square of its velocity. In the case of a falling body, we have

seen that the velocity acquired in falling through a height s is

v=:^/2gs, whence ^v^=gs, and if the mass of the body (in lbs.)

is m, we have ^mv^^^gms. Now, the force which produces the

descent is the weight of m lbs., which is equiv^alent to ^m Gaussian
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units of force, and as the space through which the force works is

s, the work done is gms, which is the second member of the above

equation, and is equal to ^mv^. We see, then, that in this case the

work done, expressed in Gaussian units of work (of which a foot-

pound contains g), is equal to half the product of the mass (in

pounds) and the square of the velocity. This principle is perfectly

general, and may be extended to bodies already in motion as well as

to bodies initially at rest by substituting for "^mv^" "the change

produced in the value of ^rnvV Conversely, since the height to

which a body will rise when thrown upwards with a given velocity

is the same as the height from which it must fall to acquire that

velocity, it follows from the foregoing equations that the value of

^TYiv'^ at the commencement of the ascent is equal to the work which

gravity would do upon the body during its descent from the height

to which it rises to the point from which its ascent commenced ; and

if we denote the product of force and distance moved in the case

when the direction of the motion is opposite to that of the force,

by the name negative work, we may assert that the diminution which

occurs in the value of ^mv'^ during the whole ascent or during any

part of it is equal to the negative work done upon the body by
gravity during that part of the motion.

It is in this sense that work and motion are said to be convertible,

and the product ^mv\ whose changes of value are always equal

to the work done upon the body, is called the energy of motion, or

the kinetic energy of the body. This equality subsists not only for

the case of gravity, but for all forces whatever: we may assert uni-

versally (neglecting for the present the effects of friction and mole-

cular changes), that when a body of mass rri moves at one time with

a velocity v^, and at a subsequent time with velocity v^, the whole

amount of work done upon the body during the interval (the alge-

braic sum being taken if any of the work is negative) is equal to

\mv^ —\mv^.
The product \7nv^ has sometimes been called the accumulated

work in a body, or the work stored up in the body, inasmuch as a

moving body is able in virtue of its motion to overcome resistance

through such a distance that the work done (or product of resistance

and distance through which it is overcome) will be equal to \mv^.

We have seen one example of this in the case of a body thrown

upwards, which overcomes the resistance Trig of gravity through a

height s such that mgsz=\mv\
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53 J. Energy of Position, or Potential Energy.—We have now to

introduce a new idea, which is of comparatively recent origin, and

plays an important part in modern dynamics. When a body of mass

m is at the height s above the ground, which we will suppose level,

we can cause it to acquire a certain velocity v such that i7nv^=
mg 8 by simply allowing it to fall to the earth. The position of a

body in this instance confers the power to obtain motion, and there-

fore kinetic energy; and as we have just seen, kinetic energy can be

made to yield work. A body in an elevated position may therefore

be regarded as a reservoir of work : the water in a mill-dam is, in

fact, a case in point ; and for this reason such a body is said to pos-

sess energy of "position, or, as it is more commonly called, potential

energy. In contradistinction from this latter name, the energy which

a moving body possesses in virtue of its motion is sometimes called

actual energy.

It should be remarked that energy of position is essentially relative,

depending on the position of one body with reference to one or more

others. In the case just considered the other body is the earth. In

order to be philosophically correct in our language, we should speak

not of the potential energy of a body, but rather of the potential

energy of two or more bodies with reference to each other in a given

relative position; or more briefly, of the potential energy of a cer-

tain relative position of the bodies.

It must also be remarked that while we can speak with precision of

the difference between the potential energies of two specified posi-

tions, we cannot in strictness assign a definite value to the potential

energy of one specified position unless we know the limits to the

possible motion of the bodies in obedience to their mutual forces.

For example, in the case just considered—that of a body at a certain

height above level ground—the present position of the hody is com-

pared with that which it will occupy when it lies upon the ground.

But a shaft might be sunk in the ground, and with reference to the

bottom of this shaft a body lying on the surface of the ground would

possess a certain amount of potential energy, which must be added

to that above considered to obtain the potential energy of the body

in its first position as compared with the position which it would

occupy when lying at the bottom of the shaft.

Whenever motion takes place in obedience to natural forces, the

increase or diminution of potential energy which takes place in

passing from one position to another is always exactly compensated
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by an opposite change in the total amount of kinetic energy; from

which it follows that the sum of potential and kinetic energies

remains unchanged. Whenever kinetic energy is increased at the

expense of potential energy, the forces concerned do an amount of

positive work equal to the amount by which the former is increased

or the latter diminished. On the other hand, whenever potential

energy is increased at the expense of kinetic energy, the forces do

negative work equal in absolute value to the energy thus transferred.

Instances of the former kind of transfer are furnished by the motion

of a falling body and the motion of a planet from aphelion to peri-

helion; instances of tlie latter kind are furnished by the motion of

a body thrown upwards, and the motion of a planet from perihelion

to aphelion.

53 k. Effect of Friction upon Transformation of Energy.— Thus far

we have been supposing that frictional resistances are neglected.

Friction, in fact, causes an apparent loss of energy, but this loss is

accompanied by a generation of heat which is itself a form of energy,

and a definite amount of heat is produced by each unit of work thus

apparently wasted. Conversely, whenever heat is employed as a

motive power (in the steam-engine, for example), a quantity of heat

is destroyed equivalent, on the same scale, to the work produced.

Another kind of energy is developed when friction is employed

as a means of generating electricity. In this case the potential

energy of electrical attraction which is called into existence is the

precise equivalent of the work spent in producing it.

Similar principles apply to all other cases in which energy is

apparently destroyed. Any particular form of energy may he

destroyed, hut only on condition of an equivalent amount of energy

in some other shape coming into existence. The whole amount of

energy in the universe cannot undergo either increase or diminution.

This great natural law is called the principle of the conservation of

energy.

The exact nature of the various forms of molecular energy, such

as heat, light, electricity, magnetism, and chemical affinity, is not

at present known, but we run little risk of error in afiirming that

they all consist either of peculiar kinds of molecular motion or of

peculiar arrangements of molecules as regards relative position.

They must therefore fall under one or other of the two heads "energy

of position" and "energy of motion."



CHAPTER VII.

THE BALANCK

54. The object of the balance is the measurement of the weights

of bodies. It consists essentially of a rigid lever AB called the beam,

movable about an axis at the centre of its length. This axis rests

, Fig. 40.—Balance

upon two planes, and as it is a little above the centre of gravity, the

beam takes a position of stable equilibrium. An index needle at-

tached to the beam traverses a graduated arc, and indicates the

position of equilibrium of the beam by pointing to zero.

This equilibrium will not be disturbed if we suspend from the

extremities of the beam two scale-pans of the same substance, form,

and dimensions. Neither will it be disturbed if in these scale-pans

we place bodies of equal weight. And conversely, if two bodies

placed in the two scale-pans equilibrate each other, their weights are
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equal. This, then, is the principle of the well-known use of the

balance.

65. Correctness of the Balance.—It is necessary to the validity of the

preceding reasoning that the scale-pans should be suspended at

exactly the same distance from the axis, or, in other words, that the

arms of the balance should be rigorously equal in length. This is

known to be the case if the needle points to zero both when the

scale- pans are empty and when they are loaded with two bodies of

equal weight. If we have not two weights exactly equal, it is suffi-

cient to place any body whatever in one of the scale-pans, and

equilibrate it by placing so much matter in the other scale as will

bring the index to zero; if we then interchange the contents of the

two scale-pans, the needle should still point to zero. If it does not,

the reason is that the arms are not of equal length. Easy as it is,

however, to make the arms of approximately equal length, it is

exceedingly difficult to make them rigorously equal ; and accordingly,

whenever great accuracy is required, the method of double weighing

is employed, which enables us to obtain the exact weight, even when
the arms of the balance are slightly unequal. This method consists

in first counterpoising the body to be weighed with any substance

—

as, for example, shot or sand—and then replacing the body by weights

sufficient to produce equilibrium. It is evident that these latter, as

they produce the same effect as the body under the same circum-

stances, must have the same weight.

56. Sensibility of the Balance.—A balance is said to be more or less

sensitive when the beam, supposed to be originally horizontal, is

more or less inclined for a given difference of weights. The sensi-

bility depends, in the first place, on the friction of the axis against

its supports. In carefully constructed balances this axis is formed

by the edge of a triangular prism of very hard steel, called a knife-

edge, which rests upon a plane of steel or agate. In this way, as

rotation takes place about a very fine axis, . and as, besides, the

materials employed are very hard, the friction is rendered exceedingly

small. •

Supposing friction to be eliminated, the sensibility of the balance

depends upon the weight of the beam, its length, and the distance

between its centre of gravity and the axis of suspension. We shall

proceed to investigate the influence of these different elements.

Let A and B be the points from which the scale-pans are sus-

pended, the axis about which the beam turns, and G the centre of
6
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P+P

gravity of the beam. If when the scale-pans are loaded with equal

weights, we put into one of them an excess of weight p, the beam

will become inclined, and will take

a position such as A'B', turning

through an anoxic which we will call

a, and which is easily calculated.

In fact, let the two forces P and

P + 2> act at A' and B' respectively,

where P denotes the less of the two

weights, including the weight of the

pan. Then the two forces P destroy

each other in consequence of the re-

sistance of the axis ; there is left

only the force p applied at B', and the weight ir of the beam applied

at G', the new position of the centre of gravity. These two forces

are parallel, and are in equilibrium about the axis 0, that is, their

resultant passes through the point 0. The distances of the points of

application of the forces from a vertical through are therefore

inversely proportional to the forces themselves, which gives the

relation

But if we call half the length of the beam I, and the distance OG r,

we have

G'R= r sin a, B'L := I cos a,

whence w sin a = pi cos a, and consequently

. tan a =r P-{
(a)

The formula (a) contains the entire theory of the sensibility of the

balance when properly constructed. We see, in the first place, that

tan a increases with the excess of weight p, which was evident

beforehand. We see also that the sensibility increases as I increases

and as tt diminishes, or, in other words, as the beam becomes longer

and lighter. At the same time it is obviously desirable that, under

the action of the weights employed, the beam should be stiff enough

to undergo no sensible change of shape. The problem of the balance

then consists in constructing a beam of the greatest possible length

and lightness, which shall be capable of supporting the action of

given forces without bending.
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Fortin, whose balances are justly esteemed, employed for his beams
bars of steel placed edgewise; he thus obtained great rigidity, but

certainly not all the lightness possible. At present the makers of

balances employ in preference beams of copper or steel made in the

form of a frame, as shown in Fig. 42. They generally give them the

shape of a very elongated lozenge, the sides of which are connected

by bars variously arranged. The determination of the best shape is,

in fact, a specia.1 problem, and is an application on a small scale of

that principle of applied mechanics which teaches us that hollow

pieces have greater resisting power in proportion to their weight

than solid pieces, and consequently, for equal resisting power, the

former are lighter than the latter. Aluminium, which with a rigidity

nearly equal to that of copper, has less than one-fourth of its density,

seems naturally marked out as adapted to the construction of beams.

It has as yet, however, been little used.

The formula (a) shows us, in the second place, that the sensibility

increases as r diminishes; that is, as the centre of gravity approaches

the centre of suspension. These two points, however, must not coin-

cide, for in that case for any excess of weight, however small, the

beam would deviate from the horizontal as far as the mechanism

would permit, and would afford no indication of approach to equality

in the weights. With equal weights it would remain in equilibrium

in any position. In virtue of possessing this last property, such a

balance is called indifferent. Practically the distance between the

centre of gravity and the point of suspension must not be less than

a certain amount depending on the use for which the balance is

designed. The proper distance is determined by observing what

difference of weights corresponds to a division of the graduated arc

along which the needle moves. If, for example, there are 20 divi-

sions on each side of zero, and if 2 milligrammes are necessary for

the total displacement of the needle, each division will correspond to

an excess of weight of -^V oi^ tV ^^ ^ milligramme. That this may
be the case we must evidently have a suitable value of r, and the

maker is enabled to regulate this value with precision by means of

the screw which is shown in the figure above the beam, and which

enables him slightly to vary the position of the centre of gravity.

In the above analysis we have supposed that the three points of

suspension of the beam and of the two scale-pans are in one straight

line ; in which case the value of tan a does not include P, that is, the

sensibility is independent of the weight in the pans. This follows



84 THE BALANCE.

from the fact that the resultant of the two forces P passes through

O, and is thus destroyed, because the axis is fixed. This would not

be the case if, for example, the points of suspension of the pans were

above that of the beam; in this case the point of application of the

common load is above the point O, and, when the beam is inclined,

acts in the same direction as the excess of weight; whence the

sensibility increases with the load up to a certain limit, beyond

which the equilibrium becomes unstable.^ On the other hand, when

the points of suspension of the pans are below that of the beam, the

sensibility increases as the load diminishes, and, as the centre of

gravity of the beam may in this case be above the axis, equilibrium

may become unstable when the load is less than a certain amount.

This variation of the sensibility with the load is a serious disadvan-

tage ; for, as we have just shown, the displacement of the needle is

used as the means of estimating weights, and for this purpose we

must have the same displacement corresponding to the same excess

of weight. If we wish to employ either of the two above arrange-

ments, we should weigh with a constant load. The method of doing

so, which constitutes a kind of double weighing, consists in retaining

in one of the pans a weight equal to the maximum load. In the

other pan is placed the same load subdivided into a number of

marked weights. When the body to be weighed is placed in this

latter pan, we must, in order to maintain equilibrium, remove a

certain number of weights, which evidently represent the weight of

the body.

We may also remark that, strictly speaking, the sensibility always

depends upon the load, which necessarily produces a variation in the

friction of the axis of suspension. Besides, it follows from the nature

of bodies that there is no system that does not yield somewhat even

to the most feeble action. For these reasons, there is a decided

advantage in operating with constant load.

67. Suspension of the Scale-pans.—A fundamental condition of the

correctness of the balance is, that the weight of each pan and of

the load which it contains should always act exactly at the same

point, and therefore at the same distance from the axis of suspension.

This important result is attained by different methods. The arrange-

^ This is an illustration of the general principle, applicable to a great variety of philo-

sophical apparatus, that a maximum of sensibility involves a minimum of stability ; that

is, a very near approach to instability. This near approach is usually indicated by exces-

sive slowness in the oscillations which take place about the position of equilibrium.



CONSTRUCTION OF BALANCES. 85

ment represented in Fig. 42 is one of the most effectual. At the

extremities of the beam are two knife-edges, parallel to the axis of

rotation, and facing upwards. On these knife-edges rests, by a

hard plane surface of agate or steel, a stirrup, the front of which

has been taken away in the figure. On the lower part of the

stirrup rests another knife-edge, at right angles to the former, the

C.LAPLANTE..

Fig. 42.—Beam of Balance.

two being together equivalent to a universal joint supporting the

scale-pan and its contents. By this arrangement, whatever may be

the position of the weights, their action is always reduced to a vertical

force acting on the upper knife-edge.

Fig. 43 represents a balance of great delicacy, with the glass

case that contains it. At the bottom is seen the extremity of a

lever, which enables us to raise the beam, and thus avoid wearing

the knife-edge when not in use. At the top may be remarked an

arrangement employed by some makers, consisting of a horizontal

graduated circle, on which a small metallic index can be made to

travel; its different displacements, whose value can be determined

once for all, are used for the final adjustment to produce exact

equilibrium.

58. Densities.—If we weigh equal volumes of different bodies in

nature, we find that they have different weights. Thus, a litre of

water weighs 1 kilogramme, a litre of mercury weighs ISG kilos.,

a litre of alcohol 079 kilos. This we express by saying that differ-

ent bodies have different densities. It is evidently important to
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know the density of the different substances with which we have to

deal; for this is, in fact, a fundamental element of their physical

constitution. Attempts have therefore been made to form a list

containing the weight of a given volume of each of the substances

BONUhfu

^ij^^ 43.—Balance for Purposes of Accuracy.

known in nature. The simplest way of determining the density

of a substance is to weigh a certain known volume of it, and to

divide the weight obtained by the volume ; we shall thus obtain the

weight of unit volume.

The same object is attained indirectly by determining the specific

gravity of the substance; that is to say, the ratio of its density to

that of some standard substance whose density is known. The

standard substance commonly employed for this comparison is

distilled water at the temperature of maximum density (about 39°*1

Fahrenheit). The weight of a cubic foot of such water is 62'425

lbs. avoirdupois ; hence the specific gravity of a substance multiplied
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by 62*425 is the weight of a cubic foot of the substance in lbs.,

which may be called the denisity of the substance in lbs. 'per cubic

foot.

In the metrical system the conversion of specific gravities into

densities is much simpler; for since the gramme, kilogramme, and

tonne are the weights respectively of a cubic centimetre, cubic

decimetre, and cubic metre of distilled water at the temperature of

maximum density, it follows that the same number which denotes

the specific gravity of a substance, also denotes the weight of a cubic

centimetre of the substance in grammes, the weight of a cubic

decimetre in kilogrammes, or the weight of a cubic metre in tonnes.

In other words, the specific gravity is equal to the density, whether

the latter be expressed in grammes per cubic centimetre, in kilo-

grammes per cubic decimetre, or in tonnes per cubic metre.

If Y denote the volume of a body, P its weight, and D its density,

or weight per unit volume, we have

D=
|,

P=VD, V= g5

so that if any two of these three elements are given, the third can

be computed.

Example I.—What is the weight of a mass of granite of 84 cubic

metres, the density of granite being 275? The formula gives

P = 84 X 2-75 = 231 tonnes.

Example II.—What is the volume of 1000 kilos, of mercury, the

density of mercury being 13-6?

Y = ^g = 73-5 litres, since the litre is equal to the cubic deci-

metre.

59. Experimental Determination of Densities.—The following is one

of the simplest methods for the practical determination of densities.

We begin by weighing the body. Suppose, for example, its weight

to be 10 grammes. It is then placed upon one of the scale-pans of a

balance, along with a flask with a wide neck, of a form such as is

shown in Fig. 44, and exactly full of water; these are balanced in

the other scale by weights of any kind. The body is then introduced

into the flask, and evidently displaces a volume of water equal to

its own volume. If now we close the flask, taking care that it is

filled to the same level as before, wipe it, and put it back on the

scale-pan, there will not be equilibrium. In order to re-establish

equilibrium we must add, suppose, 2*5 grammes; this is the weight
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of a volume of water equal to that of the body ; the specific gravity of

the latter then is ^ = 4. When we wish to determine the density

of a liquid, we employ a flask (Fig. 45), the upper extremity of

which terminates in a narrow tube on which there is a mark. After

J-

Fig. 44.—Specific Gravity Flask for Solids.

Fig. 45.—Specific Gravity
Flask for Liquids.

having weighed the flask empty, we fill it successively with the

liquid and with water, as far as the mark. This gives us the weights

of equal volumes of water and of the liquid whose density is to be

determined ; and the quotient obtained by dividing the former by

the latter is the specific gravity of the liquid.

There is generally some difficulty in filling the flask, on account of

the very small diameter of the tube. The usual way is to put a

little liquid into the cup at the upper extremity of the tube, and

press it with the stopper ; this pressure is generally sufficient to make

the liquid pass into the flask. These two methods for determining

densities are susceptible of great precision.

Other methods will be described in Chapter x.

In the following table we give the specific gravities of some liquids

and solids.

Liquids, at Temperature of Freezing Water.

Water, sea, ordinary, 1'026

Alcohol, pure, '791

„ proof spirit, '916

Ether, 716
Mercury, 13596
Naphtha, -848

Oil, linseed, -940

„ olive, '915

„ whale, -923

,, of tiupentine, '870

Blood, human, 1*055

Milk, of cow, 1-03
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Solids.

3, cast, 7-8 to 8-4

„ wire, 8*54

Bronze, 8"4

Copper, cast, 8*6

„ sheet, 8'8

,, hammered, 8"9

Gold, 19 to 19-6

Iron, cast, 6-95 to 7'3

,, wrought, 7*6 to 7'8

Lead, 11-4

Platinum, 21 to 22

SUver, 10-5

Steel, 7-8 to 7-9

Tin, 7-3 to 7-5

Zinc, 6-8 to 7-2

Ice, -92

Basalt, 3-00

Brick, 2 to 217
Brickwork, 1'8

Chalk, 1-8 to 2-8

Clay, 1-92

Glass, crown, 2 '5

„ flint, 30
Quartz (rock-crystal), 2'65

Sand, 1-42

Fir, spruce, ' 48 to "7

Oak, European, '69 to '99

Lignum-vitse, "65 to 1 '33

Sulphur, octahedral, 2 '05

,, prismatic, 1*98

The unit of specific gravity is the specific gravity of pure water at the temperature of

maximum density (39°*1 Fahr.)

The weight of a cubic foot of any substance is equal to 62 "425 lbs. avoirdupois, multi-

plied by its specific gravity.

The weight of a cubic centimetre of any substance, in grammes, is equal to its specific

gravity.

The weight of a litre (or cubic decimetre) of any substance, in kilogrammes, is equal to

its specific gravity.

The weight of a gallon of any liquid, in lbs. avoirdupois, is equal to its specific gravity

multiplied by 10.
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HYDROSTATICS.

Fig, 46.—Transmission of

Pressures.

60. Transmission of Pressure.—The peculiar constitution of liquids

(§ 19) involves some important properties as regards pressure and the

transmission of pressure. If we suppose that in a vessel A (Fig. 46),

full of liquid, an opening is made at P, and a certain pressure applied

there by means of a piston, the effect of this

pressure will be to bring the molecules closer

together, and, consequently, to create a repul-

sive action between them. As this result

takes place throughout the whole extent of

the mass, it is evident that each point in the

sides of the vessel will be pressed, and that

thus the effect of the single pressure will be

transmitted in an infinite number of different

directions. This kind of irradiation of pres-

sure in fluids is a distinctive characteristic,

and has most important applications.

The pressure exerted at P takes effect not only upon the sides of

the vessel, but also at every point in the liquid. Thus a small plane

lamina, which we will suppose placed at M, will be subjected to two

equal and opposite pressures upon its two faces. It is also very

important to remark, that on account of the uniform nature of the

liqmd, these pressures will not change in magnitude if we suppose

the lamina turned round so as to take different directions in the

liquid mass, for there is evidently no reason why the pressure should

be greater in one direction than in another.

61. Direction of Pressure.—The same reason of symmetry shows us

that, at each of their points of application, these pressures are normal

or perpendicular to the surface; for if any reason were assigned for
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Fig. 47.

Jir inclination in a certain direction, a similar reason could also

be assigned for their inclination in any other direction. This im-

portant truth may also be inferred from observing that if at any

point M in the side of a vessel (Fig. 47) the pressure PM was not

normal, it could be decomposed into two : one,

MN, along the normal to the surface, which

would be destroyed by the resistance of the

surface ; the other, MA, along the surface itself,

which latter force would cause a sliding motion

in the liquid molecule at M, which serves as

the medium of transmitting the pressure.

Experiment enables us, if not rigorously to

demonstrate this principle, at least to show that the direction of

transmitted pressure is sensibly normal. For example, if a sphere

is taken, pierced with several holes, and con-

taining a liquid, which is compressed by

means of a piston in a tube communicating

with the sphere, the liquid is seen to spout

out in jets which take a curvilinear form

under the action of gravity, but which at

their origin appear perpendicular to the

spherical surface. The effect is the more

striking the greater the pressure exerted on

the piston.

62. Pascal's Principle, or the Equal Trans-

mission of Pressure in all Directions.—If we
have a vessel A full of a liquid (Fig. 49), and

if at a certain point P a certain pressure be

exerted by means of a piston of the area of

a square inch, suppose, each square inch of

the sides of the vessel will be subjected to an equal pressure. If

then at any point an opening is made of the area of a square inch,

and closed with a piston, it will be necessary, in order to prevent

the piston from moving, to apply to it from outside a pressure equal

to that which is directly applied to the piston P. A lamina of the

same area placed in any direction in the liquid will also be subjected

to an equal pressure on each of its two faces.

Hence it foUows that if we suppose a piston of the area of two

square inches closing a corresponding opening, since each of these

•two inches of area receives a pressure equal to that which acts upon

Fig. 48.
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P, the whole piston will receive a double pressure ; whence we see

that in general the transmitted pressure should vary as the area of

the surface pressed.

This is the form in which Pascal enunciated the principle in his

celebrated treatise on the Equilihriwin of

Liquids. "If a vessel full of water, closed

on all sides, has two openings, the one a

hundred times as large as the other, and

if each be supplied with a piston which

fits exactly, a man pushing the small

piston will exert a force which will equili-

brate that of a hundred men pushing the

Fig. 49.-Pascur8 Principle. pistou which is a huudrcd times as large,

and will overcome that of ninety-nine.

And whatever may be the proportion of these openings, if the forces

applied to the pistons are to each other as the openings, they will

be in equilibrium."

In general, let P be the pressure exerted upon a liquid by the aid

of a piston of superficial extent S, each unit of surface of this piston

P
will be subjected to a pressure ^, and, as a consequence, on each

o

unit of surface of the sides of the vessel a similar pressure will be

produced. If then openings of areas S', S" . . . . are made at different

points, and closed with pistons, we must, in order to prevent the

pistons from moving, apply to them forces P', Y' . . . . equal respec-

/ P // P
tively to S' -^, S" - . . . . which gives the following equations:

—

p p p p/ p"

63. Pascal's principle leads to a consequence which we may verify

by experiment. If into a system of two tubes in communication

with each other, and of unequal sectional area, we introduce a liquid,

it will stand at the same height in both branches. If then we place

a piston on the liquid in the narrow tube, and subject it to a certain

pressure P, this pressure will be transmitted to the liquid, which will

be forced back into the large tube ; to hinder this motion we must

place a piston in the large tube, and apply to it a force which has

the same ratio to the force P as the area of the larger piston to that

of the smaller. If, for example, the former has an area 16 times

that of the latter, a pressure of 1 pound exerted at one of the
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IKil. 16 E.

Fig. 50. Principle of the Hydraulic
Press.

extremities of the liquid column will produce a pressure of 16 pounds

at the other extremity. We thus see that a small force may be

made to produce a very great one. This

is the principle of the hydraulic press, a

machine which we shall describe further on.

We must remark, however, that if work

is to be done, the one piston must displace

the other; and it is very evident that, on

account of the difference of section, if the

small piston moves through a certain

length, the large piston will move through

one-sixteenth of that length ; so that in

this apparatus we have a direct verifica-

tion of this general principle of mechanics,

that what is gained in force is lost in

velocity.

This twofold observation has been clearly enunciated by Pascal,

who expresses himself in the following manner at the end of the

passage which we have already quoted :
—

" Whence it appears that

a vessel full of water is a new principle of mechanics, and a new
machine for the multiplication of force to any required degree, since

one man will by this means be able to raise any given weight.

*' It is, besides, worthy of admiration that in this new machine

we find that constant rule which is met with in all the old ones,

such as the lever, wheel and axle, screw, &c., which is that the

distance is increased in proportion to the force; for it is evident that

as one of these openings is a hundred times as large as the other,

if the man who pushes the small piston drives it forward one inch,

he will drive the large piston backward only one-hundredth part of

that length."

If we endeavoured to perform the preceding experiment in order

to demonstrate experimentally the principle of Pascal, we should

arrive at only an approximate verification; for to obtain an accurate

experiment it would be necessary that the pistons should fit their

openings with great exactness, and this would involve a large amount

of friction.

The verification would be still more difficult if we endeavoured to

perform the experiment described in § 62, for in this case, besides

the cause of error which we have just mentioned, the phenomena

would be complicated by the action of gravity, which of itself pro-
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duces variable pressures on the different openings, according to their

depth below the surface of the liquid.^ In fact, the principle of

Pascal is an abstract principle, a kind of general synthesis of pheno-

mena which cannot be made the subject of direct demonstration.

It is by the constant agreement of its consequences with our observa-

tion that the authority and legitimacy of the principle are estab-

lished ; we shall see from all that follows how complete and invariable

is that agreement.

64. Fundamental Principle of Equilibrium in Heavy Liquids. Surfaces

of Equal Pressure.—Pascal's principle is a general consequence of the

constitution of liquids, and is independent of the action of gravity.

By introducing this latter force we arrive at special results, which

we shall describe in succession. The most important, which may be

considered as the fundamental rule in hydrostatics, consists in the

fact that the different points in a horizontal layer of a heavy liquid

are subject to the same pressure. Let us con-

sider two points, A and B (Fig. 51), situated in

the same horizontal plane in a heavy liquid.

If we suppose that A and B are the centres of

two small plane surfaces which are vertical and

parallel, we may consider these surfaces as the

bases of a very narrow horizontal cylinder of

liquid. As this cylinder is in separate equi-

librium in the general mass, we may conclude

that its bases A and B are subject to equal and contrary pressures

in the direction of the arrows shown in the figure; for the re-

maining pressures due to the surrounding liquid act in directions

perpendicular to the axis of the cylinder, and thus cannot influence

the equilibrium in the direction of the axis. The two elements A
and B are therefore subject to the same pressure in one direction;,

but the pressure at a point is equal in all directions (§ 60) ; and as A
and B are any points in the same horizontal layer, it follows that the

pressures at all points in the same horizontal layer are equal. We
may add, as a consequence of this, that the density is also the same

at aU points of a horizontal layer. On account of the slight com-

pressibility of liquids, the variation of their density with the depth

^ The pressures on the different pistons (supposed equal in area) would differ from each

other by constant amounts, depending on their differences of level ; but, on account of this

constancy, any increase of pressure on one piston would require an equal increase of

•pressure on every other in order to the maintenance of equilibrium.
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is scarcely sensible ; but the above result is true for all heavy fluids,

whether compressible or incompressible.

In proceeding from one surface of equal pressure to another, the

pressure increases or diminishes according as the depth increases or

diminishes. Thus, for example, if we consider a small horizontal

element m of a horizontal layer AB, and con-

ceive the vertical cylinder Tnm' reaching to

the horizontal layer CD, it is quite clear that,

independently of the pressure at m', which

is transmitted undiminished to m, this latter

element is subject to a pressure equal to the

weight of the liquid contained in the cylinder

inirri.

If we call s the area of the element m, h

the distance between the two horizontal layers,

and d the weight of unit volume of the liquid, the volume of the

cylinder is expressed by sh, and its weight by shd. This last ex-

pression, therefore, represents the variation of pressure for an element

of area s, when its depth below the surface varies by a quantity

equal to h ; and dividing by the area s we see that hd is the ex-

pression for the difference of pressure per unit area, corresponding

to a difference of depth h.

65. Free Surface.—It follows from the foregoing principles that

the free surface of a heavy liquid must be horizontal. We have

already given an experimental demonstration of this important fact.

Fig. 52.
_,

Fig. 53. Fig. 54.

It could also have been predicted from a prion considerations. Let

CD (Fig. 53) be the free surface, and m, wf two small equal elements

of surface, in the horizontal layer AB. These two elements must be

subject to equal pressures, which are evidently represented by the

weights of the cylinders mn, m'n' \ these cylinders must, therefore,

have the same height, or the points n and n' must be in the same

horizontal plane.
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The same conclusion is arrived at by observing that if at any point

whatever of the surface M (Fig. 54) the liquid did not assume a

horizontal position, the weight of the liquid molecule at M could be

decomposed into two forces, one perpendicular to and one along the

surface of the liquid. The effect of the first would merely be to

compress the liquid, and it would be destroyed by the reaction of

the liquid; but the second would produce a displacement of the

molecule. Equilibrium, therefore, can only exist on condition of the

annihilation of this second component; that is, the surface must be

horizontal at all points.

This mode of reasoning shows us that, in general, when the liquid

;
mass is subjected to the action of any number of

i

forces, it is necessary for equilibrium that the free

surface be, at all points, perpendicular to the re-

sultant of the acting forces. If, for instance, we
place upon the whirling table a glass containing

a liquid (Fig. 55), and give it a rotatory motion,

we shall see the surface become hollowed, and

assume a curvilinear form. In fact, each of the

molecules is subjected simultaneously to the action

of gravity and of centrifugal force ; and it is the

resultant of these two forces which must be every-

where perpendicular to the free surface. It is

easily shown that this surface must be a para-

boloid of revolution, so that the section repre-

sented in the figure is a parabola.

66. Pressure upon the Bottom of Vessels.—If we
Fig. 55.—Rotating Vessel cousidcr a heavy Uquid placed in a vessel the

bottom of which is formed by a playie horizontal

surface, it is easy to determine the pressure exerted by the liquid

upon this plane. Let ABMN (Fig. 66) be a vessel filled with

liquid to the level MN, and m an element of surface on the bottom

AB. On m suppose a small vertical cylinder to stand, meeting

the horizontal layer LU in m'. On the element n, equal to m,

and in the horizontal layer LL', suppose a vertical cylinder to

stand, cutting the horizontal layer RR' in n'. Suppose another

similar vertical cylinder on r, an element equal to m, and let this

cylinder meet SS' in /; it is evident that, by continuing this con-

struction, we shall finally arrive, whatever be the shape of the vessel,

at a cylinder SS', which will extend upwards to the free surface
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Fig. 66.—Pressure on the Bottom of

Vessels.

MN. Now, the element m is subject to a pressure greater than that

at TYi by a quantity equal to the weight of the cylinder mtim'. Simi-

rally m' is subject to a pressure which

is equal to that at n, and greater than

that at n' by a quantity equal to the

weight of the cylinder nn' ; whence

it is evident, by pursuing this reason-

ing, that the element m supports a

pressure equal to the sum of the

weights of the cylinders rtim', nn\

rr, ss \ that is, to the weight of a

cylinder of liquid standing on the

base 7n, and extending vertically

upwards to the free surface. As all

points in the bottom AB are subject to

the same pressure, it follows that the entire pressure on the bottom

of the vessel is equal to the weight of a liquid column whose base

is the bottom of the vessel, and height the vertical distance between

the bottom and the free surface, or what is called the height of the

liquid in the vessel.^

Let B be the area of the bottom of the vessel, H the height of

the liquid, and D its weight per unit volume, then the pressure is

expressed by the formula BHD.
If, for instance, in a vessel whose bottom is two square decimetres

in area, there is a .column of mercury of the height of 5 J decimetres,

the volume of this column, which measures the pressure, is 2x5^
= 11 cubic decimetres, and its weight^ is 11 X 13-59=149-49 kilo-

grammes.

67. Experiment of PascaFs Vases.—The preceding proposition shows

that the pressure on the bottom of a vessel depends only upon the

area of the bottom and the height of the liquid, the form of the

vessel being quite immaterial. In order to verify this fact, Pascal,

contrived an experiment which, with some modifications, is now

commonly introduced in courses of physics. The apparatus employed

is a tripod (Fig. 57) supporting a ring, into which can successively

^ In these remarks we neglect the atmospheric pressure which is exerted upon the free

surface and transmitted to the bottom of the vessel.

2 This example illustrates the convenience of the metrical system. The weight of a cubic

decim. of water is 1 kilo., and the sp. gr. of mercury is 13-59 ; hence the weight of a cubic

decim, of mercury is 13*59 kilos.
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be screwed three vessels of different shapes, one widened upwards,

another cylindrical, and the third tapering upwards. At the lower

part of the ring is a disc, supported by a thread fixed to one of the

scales of a balance. Weights placed in the other scale keep the

disc pressed against the ring with a certain force. Let the cylin-

drical vase be placed upon the tripod, and filled with water until the

Wkm

<i.LAFLjWT£..

Fig. 57.—Experiment of Pascal's Vases.

pressure exerted on the disc detaches it from the ring. An indicator

marks the level of the liquid when this takes place. Let the experi-

ment be repeated with the two other vases, and the disc will be

detached when the water has reached the same height; showing

plainly that the pressure on the bottom of a vessel is independent of

the shape of the vessel.

But we may go further; for in the case of the cylindrical vessel

it is evident that the pressure on the bottom is equal to the weight

of the contained liquid. Now this weight is necessarily equal to

that which counterpoised it in the other scale of the balance; hence

in all three cases the pressure on the bottom of the vessel is equal to
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the weight of a liquid column with the bottom as base and of the

same height as the liquid in the vessel.

68. Upward Pressure.—The pressure exerted at any point of a liquid

mass being the same in all directions, a horizontal surface facing

downwards should be subjected to

an upward pressure equal to the

downward pressure which would

be exerted if the liquid were acting

in the other direction. Suppose

we take a tube open at both ends

(Fig. 58), and apply to the lower

end a flat cover. If we plunge the

tube into a liquid, the liquid will

press up the cover against the bot-

tom of the tube with a force which

increases as the tube is plunged

deeper in the liquid. If we then

pour liquid into the tube, this will

produce a downward pressure upon

the cover, and when the level of

the liquid is the same inside the

tube as outside the cover wall be

detached, the upward pressure being destroyed by the pressure

exerted by the liquid inside the tube in the contrary direction.

69. Total Pressure. Resultant Pressure on Vessel. Hydrostatic Paradox.

—When a vessel of any shape is filled with a liquid, normal pres-

sures are exerted against all points of its sides, increasing with the

depth, and equal in each case to the pressure

in the corresponding horizontal layer of the

liquid. We may suppose a summation of all

the pressures thus exerted upon the different

superficial elements of the sides; this gives

what is called the total 'pressure exerted by

the liquid (see § 72).

This total pressure must not be confounded

with the resultant pressure which is trans-

mitted to the stand on which the vessel rests.

In fact we see that, of the elements of pres-

sure, some are transmitted entire to the stand

;

these are the vertical pressures exerted upon the bottom AB; others,

Upward Pressure.

Fig. 59.—Total Pressure.
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those for instance at n and n\ are only transmitted in part, because

their direction is oblique ; the horizontal pressures at r and r are

evidently without influence ; and the pressures exerted at a and .s'

tend to raise the vessel. It is by the combination and composition

of these pressures of different intensity and direction that the re-

sultant pressure upon the stand on which the vessel rests is obtained.

Hydrostatic Paradox.—It has been thought paradoxical that

vessels whose bottoms were subjected to equal pressures did not

transmit equal pressures to the stand on which they were placed.

In reality, nothing is less paradoxical; the pressure on the bottom

of the vessel is only one of the elements which combine to produce

the resultant pressure transmitted to the stand.

70. Composition of Pressures.—It may be regarded as quite evident

that this latter pressure is in all cases equal to the weight of the

liquid ; which amounts to saying that if we place a vessel containing

liquid in one scale of a balance, we must, in order to equilibrate it,

place in the other scale weights equal to the sum of the weights of

the liquid and the vessel. This result is also easily shown from

a priori considerations in some simple cases.

Thus in the case of a cylindrical vessel ABDC (Fig. 60) it is evi-

dent that the only pressure

transmitted to the stand is

that exerted upon the bot-

tom, which is equal to the

weight of the liquid. In the

case of the vessel which is

wider at the top, the stand

is subjected to the w^eight

of the liquid column ABSK,
which presses on the bottom AB, together with the columns GHKC,
RLDS, pressing on GH and RL ; the sum of which weights composes

the total weight of liquid contained in the vessel. Finally, in the

third case, the pressure on the bottom AB, which is equal to the

weight of a liquid column ABSK, must be diminished by the pres-

sures in the opposite direction on HG and RL. These last being

represented by liquid columns HGCK, RLSD, there is only left to be

transmitted to the stand a piressure equal to the weight of the water

in the vessel. By the application of the ordinary rules for the com-

position of forces, it can easily be shown that this result is perfectly

general Here, then, we have Pascal's principle leading to a conclu-

c K ?
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B A
-Hydrostatic Paradox.
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Fig. 61.—Backv,,'
Dischari'illii Vessel.

sioii which is obviously true, and which therefore furnishes a con-

firmation of the principle itself

71. Motion produced by the riowing

of a Liquid.—The demonstration to

which we have just referred amounts

to showing, by the analysis of the dif-

ferent pressures, that the horizontal

components of these pressures equili-

brate each other, and that the vertical

components are equivalent to a single

force equal to the weight of the liquid.

The evidence of experiment is as strong

for the first part of this proposition

as for the second. If we place a vessel

(Fig. 61) in such a position as to be

very susceptible of motion in a hori-

zontal direction, whether by suspending it by a thread, or by floating

it in water, and under these circumstances fill it with liquid, however

great may be the

mobility of the ap-

paratus, not the

slightest displace-

ment is observed.

This proves that

the horizontal com-

ponents of pres-

sure equilibrate

one another. This

equilibrium is ef-

fected through the

medium ofthe ves-

sel ; but if we sup-

pose an opening-

made at any point

of the vessel, the

liquid will run out,

and the pressure

exerted at the

point diametrical-

ly opposite will propel the vessel in the opposite direction to that in

which the liquid is escaping.

Fig. 62.—Hydraulic Tourniquet.
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This observation explains the motion of the apparatus called the

hydraulic tourniquet It consists (Fig. 62) of a vessel capable of

rotation about a vertical axis, having at its lower extremity a tube,

the two portions of which are bent in opposite directions, and left

open at the ends to allow the liquid to escape. The reaction at the

points opposite to the openings causes the rotatory motion of the

apparatus.

When the velocity of efflux is sufficiently great, the motion can

be employed for practical purposes, and hydraulic engines based

on this principle have frequently been proposed and tried ; Barker's

mill is one of the best known.

72. Centre of Pressure.—When we consider the particular case of

the pressure exerted by a liquid upon a ])lane surface, the different

elements of pressure being all parallel, it may be required to deter-

mine the point of application of the resultant pressure. This point

is called the centre of "pressure. The centre of pressure does not

coincide with the centre of gravity; it is always situated below

this latter, since the elementary forces which must be combined in

order to obtain it, instead of being uniformly distributed over the

surface, increase with the depth.

The investigation of the centre of pressure constitutes a separate

chapter of mathematical physics, and we shall not enter upon it here;

we shall simply examine a particular case, fitted to give accurate

ideas with regard to this point.

Let a rectangular surface RB be immersed in a liquid, which extends

as far as B; we may suppose it, for in-

stance, a flood-gate or the side of a dam

for holding water. The pressure goes on

increasing from the point B, where it is

zero, to the point B, where it attains its

maximum value; it has the same value

iv— ==r for all points in the same horizontal line,

and is at each point proportional to the

distance from the surface of the water.

If, then, at the point B we draw a perpendicular B6 equal to BB,

and join B?>, the different parallel lines J)d, HA, 12, in the triangle

BB6 wiU be proportional to the pressures at the points D, H, L. The

composition of these pressures, then, amounts to finding the centre of

gravity of the triangle B6 B ; but the height of this from the base is

one-third of the height of the triangle; the centre of pressure thus

Fig. 63 —Centre of Pressure.
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lies at one-third of the height RB. It is further evident by sjrmmetry

that it will lie on the line joining the middle points of the upper

and lower sides of the rectangle.

As for the total pressure on EB, it may be obtained in the specjal

ease under consideration by observing, that since the pressure in-

creases uniformly from R to B, its average intensity is equal to the

pressure at the middle point. The total pressure is therefore the same

in amount (though not in distribution) as if the surface were pressed

at all points by a body of water of half the height of RB.

Suppose the height of RB= 3 metres, and its breadth= 5 metres,

the total pressure will be equal to the weight of 5 x 1-5= 7*5 cubic

metres of water, that is, to 7500 kilos., and will have for its resultant

a single force of this amount applied not at the centre of gravity,

but at the centre of pressure.

We may remark that the middle point of the height of the rectangle

exactly corresponds to the centre of gravity of the figure, and it may
be demonstrated in general that the total 'pressure on any surface,

whether plane or curved, is equal to the weight of a liquid column

having that surface for base, and for height the distance of the centre

of gravity from the surface of the water.



CHAPTEE IX.

PRINCIPLE OF ARCHIMEDES.

73. Pressure ofLiquids on Bodies immersed.—When a body isimmersed

in a liquid, the different points of its surface are subjected to pres-

sures wliicli obey the rules laid down in the preceding chapter.

As these pressures increase with the depth, it is evident that those

which tend to raise the body overcome those which tend to sink it,

so that the resultant effect is a force in the direction opposite to that

of gravity.

By means of an analysis, similar to that in § 70, it may be shown

that this resultant upward force is exactly equal to the weight of the

liquid displaced by the body.

This conclusion can very readily be verified in some simple cases

:

suppose, for example (Fig. 64), a right cylinder plunged vertically in

a liquid, and let us examine the effect of the different pressures exerted

by the liquid upon its surface. It is evident, in the first place, that

if we consider any point on the sides of the cylinder, the normal and

horizontal pressure on that point is destroyed by the equal and

contrary pressure at the point diametrically opposite; and, as the

same is the case for all similar points, we see that the horizontal

pressures destroy each other. As regards the vertical pressures on

the ends, one of them, that on the upper end AB, is in a downward

direction, and equal to the weight of the liquid column ABNN;
the other, that on the lower end CD, is in an upward direction, and

equal to the weight of the liquid column CNND ; this latter pressure

exceeds the former bj?- the weight of the liquid cylinder ABCD, so

that the resultant effect of the pressure is to raise the body with a

force equal to the weight of the liquid displaced.

By a synthetic process of reasoning, we may, without having

recourse to the analysis of the different pressures, show that this
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conclusion is perfectly general. Suppose we have a liquid mass in

equilibrium, and that we consider specially the portion M (Fig. 65)

;

this portion is likewise in equilibrium. If we suppose it to become

solid, without any change in its weight or volume, equilibrium will

Fig. 64. Principle of Archimedes. Fig. Go.

still subsist. Now this is a heavy mass, and as it does not fall, we
must conclude that the effect of the pressures on its surface is to

produce a resultant upward pressure exactly equal to its weight,

and acting in a line which passes through its centre of gravity.

If we now suppose M replaced by a body exactly occupying its place,

the exterior pressures remaining the same their resultant effect will

also be the same.

The name centre of buoyancy, or centre of displacement, is given

to the centre of gravity of the liquid displaced by a body immersed,

and we see that we may always suppose that it is in this point that

the upward pressure of the liquid is applied. The results of the

above explanations may thus be included in the following proposi-

tion : Every body immersed in a liquid is subjected to an upward
vertical pressure equal to the weight of the liquid displaced, and

applied at the centre of displacement.

This proposition constitutes the celebrated principle of Archimedes.

It is often enunciated in the following form: Every body immersed

in a liquid loses a portion of its weight equal to the weight of the

liquid displaced. This enunciation, though perhaps less correct

than the former, is fundamentally identical with it; for if we weigh

a body immersed in a liquid, the weight will evidently be diminished

by a quantity equal to the upward pressure.

74. Experimental Demonstration of the Principle of Archimedes.—The

following experimental demonstration of the principle of Archimedes

is commonly exhibited in courses of physics :

—

From one of the scales of a hydrostatic balance is suspended a

hollow cylinder of copper, and below this a solid cylinder, whose
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volume is equal to the interior volume of the hollow cylinder; these

are balanced by weights in the other scale. A vessel of water is

then placed below the cylinders, in such a position that the lower

cylinder shall be immersed in it. The equilibrium is immediately

destroyed, and the upward pressure of the water causes the scale

with the weights to descend. If we now pour water into the hollow

cylinder, equilibrium will gradually be re-established; and the beam

Fig. 66.—Experimental Verification of Principle of Archimedes.

will be observed to resume its horizontal position when the hollow

cylinder is full of water, the other cylinder being at the same time

completely immersed. The upward pressure upon this latter is thus

equal to the weight of the water added, that is, to the weight of the

liquid displaced.

75. Body immersed in a Liquid.—It follows from the principle of

Archimedes that when a body is immersed in a liquid, it is subjected

to two forces: one equal to its weight and applied at its centre of

gravity, tending to make the body descend ; the other equal to the

weight of the displaced liquid, applied at the centre of buoyancy, and
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!;ending to make it rise. There are thus three difierent cases to be

considered

:

(1.) The weight of the body may exceed the weight of the liquid

displaced, or, in other words, the mean density of the body may be

greater than that of the liquid; in this case, the body sinks in

the liquid, as, for instance, a piece of lead dropped into water.

(2.) The weight of the body may be less than that of the liquid

displaced ; in this case the body rises partly out of the liquid, until

the weight of the liquid displaced is equal to its own weight. This

is what happens, for instance, if we immerse a piece of cork in water

and leave it to itself

(3.) The weight of the body may be equal to the weight of the

liquid displaced; in this case, the two opposite forces being equal,

the body takes a suitable position (§ 77) and remains in equilibrium.

These three cases are exemplified in the three following experi-

ments (Fig. 67) :

—

Ilk:
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Fig. 67.—Egg Plunged in Fresh and Salt "Water.

(1.) An egg is placed in a vessel of water; it sinks to the bottom

of the vessel, its mean density being a little greater than that of the

liquid.

(2.) Instead of fresh water, salt water is employed ; the egg floats

at the surface of the liquid, which is a little denser than it.

(3.) Fresh water is carefully poured on the salt water ; a mixture

of the two liquids takes place where they are in contact ; and if the

egg is put in the upper part, it will be seen to descend, and, after a

few oscillations, remain at rest in a layer of liquid of which it dis-
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places a volume whose weight is equal to its own. We may remark

that, in this position the egg is in stable equilibrium ; for, if it rises,

the upward pressure diminishing, its weight tends to make it descend

again ; if, on the contrary, it sinks, the pressure increases and tends

to make it reascend. Vr' j

76. Cartesian Diver.—The experiment of the Cartesian diver, which

is described in old treatises on physics, shows each of the different

cases that can present themselves when a body is immersed. The

diver (Fig. 68) consists of a hollow ball, at the bottom of which is a

small opening 0; a

little porcelain figure

is attached to the ball,

and the whole floats

upon water contained

in a glass vessel, the

mouth of which is

closed by a strip of

caoutchouc or a blad-

der. If we press with

the hand on the blad-

der, the air is com-

pressed, and the pres-

sure, transmitted

through the different

horizontal layers,

condenses the air in

the ball, and causes

the entrance of a por-

tion of the liquid by

the opening ; the

floating body be-

comes heavier, and in

consequence of this increase of weight the diver descends. When
we cease to press upon the bladder, the pressure becomes what it was

before, some water flows out and the diver ascends. It must be

observed, however, that as the diver continues to descend more and

more water enters the ball, in consequence of the increase of pressure,

so that if the depth of the water exceeded a certain limit, the diver

would not be able to rise again from the bottom.

If we suppose that at a certain moment the weight of the diver

Fig. OS.—Cartesian Diver.
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)ecomes exactly equal to the weight of an equal volume of the liquid,

there will be equilibrium ; but," unlike the equilibrium in the experi-

ment in § 75, this will evidently be unstable^ for a slight movement

either upwards or downwards will alter the resultant force so as to

produce further movement in the same direction.

77. Relative Positions of the Centre of G-ravity and Centre of Buoyancy.

—In order that a floating body, wholly or partially immersed in a

liquid, may be in equilibrium, it is evidently necessary that its

weight be equal to the weight of the liquid displaced.

This condition, which is absolutely necessary, is, however, not

sufficient; we require, in addition, that the action of the upward

pressure should be exactly opposite to that of the weight; that is,

that the centre of gravity and the centre of buoyancy be in the same

vertical line ; for if this were not the case, the two contrary forces

w^ould compose a couple, the effect of which would evidently be to

cause the body to turn.

In the case of a body completely immersed, it is further necessary

for stable equilibrium that the ceiitre of gravity should he helow the

centre of buoyancy; in fact we see, by Fig. 69, that in any other

Fig. 70.

Relative Positions of Centre of Gravity and Centre of Pressure.

position than that of equilibrium, the effect of the two forces applied

at the two points G and would be to turn the body, so as to bring

the centre of gravity lower. But this is not the case when the body

is only partially immersed, as most frequently happens. In this case

it may indeed happen that, with stable equilibrium, the centre of

gravity is below the centre of pressure; but this is not necessary,

and in the majority of instances is not the case. Let Fig. 70 represent

the lower part of a floating body—a boat, for instance. The centre

of pressure is at O, the centre of gravity at G, considerably above;

if the body is displaced, and takes the position shown in the figure,

it will be seen that the effect of the two forces acting at O and at G
is to restore the body to its former position. This diflfereuce from
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what takes place when the body is completely immersed, depends

upon the fact that, in the case of the floating body, the figure of the

liquid displaced changes with the motions of the bod}^, and the

centre of buoyancy moves towards the side on which the body is

more deeply immersed. It will depend upon the form of the body

whether this lateral movement of the centre of buoyancy is sufficient

to carry it beyond the vertical through the centre of gravity. The

two equal forces which act on the body will evidently turn it to or

from the original position of equilibrium, according as the new centre

of buoyancy lies beyond or falls short of this vertical.^

78. Advantage of Lowering the Centre of Gravity.—Although stable

equilibrium may subsist with the centre of gravity above the centre

of buoyancy, yet for a body of given form the stability is always

increased by lowering the centre of gravity; as we thus lengthen

the arm of the couple which tends to right the body when displaced.

It is on this principle that the use of ballast depends.

79. Phenomena in apparent Contradiction to the Principle of Archi-

medes.—A body cannot float in a

liquid unless it have a density less

than that of the liquid. This natu-

ral consequence of the principle of

Archimedes seems at first sight to

be contradicted by some well-

known facts. Thus, for instance,

if small needles are placed care-

fully on the surface of water, they

will remain there in equilibrium

(Fig. 71). It is on a similar prin-

ciple that several insects walk on

water (Fig. 72), that a great number of bodies of various natures,

provided they be very minute, can, if we may so say, be placed on

the surface of a liquid without penetrating into its interior. These

curious facts depend on the circumstance that the small bodies in

Fig 71.—Steel Needles Floating on
Water.

^ If a vertical through the new centre of buoyancy be drawn upwards to meet that line

in the body which in the position of equilibrium was a vertical through the centre of

gravity, the point of intersection is called the inetacentre. Evidently when the forces tend

to restore the body to the position of equilibrium, the metacentre is above the centre of

gravity ; when they tend to increase the displacement, it is below. In ships the distance

between these two points is usually nearly the same for all amounts of heeling, and this

distance is a measure of the stability of the ship.

We have defined the metacentre as the intersection of two lines. When these lines lie
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LIQUIDS IN SUPERPOSITION. HI

question are not wetted by the liquid, and hence, in virtue of prin-

ciples which will be explained in connection with capillarity (Chap,

xi.), depressions are formed around

them on the liquid surface, as re-

presented in Fig. 73. The curva-

ture of the liquid surface in the

neighbourhood of the body is very

distinctly shown by observing tlie
^.^ .^.-insect walking on water.

shadow cast by the floating body,

when it is illumined by the sun ; it is seen to be bordered by lumi-

nous bands, which are owing to the refraction of the rays of light in

the portion of the liquid bounded by a curvilinear surface.

The existence of the depression about the floating body enables us

to bring the condition of equilibrium in this special case under the

general enunciation of the principle of Archimedes.

Let M be a section of the body, CD the distance

to which the depression extends, and AB the cor-

responding portion of any horizontal layer ; since

the pressure at each of the points of AB must be
,

• Fig. 73.

the same as in the other parts of the layer, the

liquid acts in exactly the same way as if M did not exist, and the

cavity were filled by the liquid itself

We may thus say in this case also that the weight of the floating

body is equal to the weight of the liquid disiolaced, understanding

by these words the liquid which would occupy the whole extent of

the depression due to the presence of the body.

80. Liquids in Superposition.—When liquids of different densities,

which do not readily mix, are placed in the same vessel, the particles

of the denser liquids unite and fall to the bottom, just as a solid body

sinks in a liquid of less density; finally, the liquids arrange them-

selves in the order of their respective densities, the surfaces of separa-

tion being horizontal. This fact is verified by means of the phial

called the 'phial of the four elements. It is a flask (Fig. 74) contain-

ing mercury, water, and oil. In the state of equilibrium the mercury

is at the bottom, the oil at the top, and the water in the middle; if the

in different planes, and do not intersect each other, there is no metacentre. This indeed

is the case for most of the displacements to which a floating body of irregular shape can be

subjected. There are in general only two directions of heeling to which metacentres cor-

respond, and these two directions are at right angles to each other. For an investigation

of the conditions of stability in floating bodies, see Thomson and Tait's Natural Philosophy,

§§ 763-768.
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I

Fig. 74.

Phial of the Four Elements.

flask is shaken, the liquids are for the moment mixed, but in return-

ing to repose do not fail to resume their former positions.

It is easily seen from the ordinary rules

of hydrostatics, that the surface of sepa-

^iTj ration of two different liquids must be

I horizontal. Let there be two liquids in

1 a vessel (Fig. 75) ; the free surface is

.^MM^l necessarily horizontal. If now we take

IJ^^^^I ^^^ equal superficial elements n and 7i

^^^^^^ in a horizontal layer of the lower liquid,

theymust be subjected to equal pressures;

these pressures are measured by the

weights of the liquid cylinders nrs n'tl
;

and these latter cannot be equal unless

there be the same height of the lower

liquid above the elements n and n'. This

reasoning holds for all points in the hori-

zontal layer, which must therefore be at

a constant distance from the surface of separation; in other words,

this surface must be horizontal.

This property is liable to considerable modification in the case of

liquids which can dissolve each other or

act chemically upon each other. Thus, if

alcohol be carefully poured upon water in

a glass, the two liquids will be seen to have

for their surface of junction a horizontal

plane; but on agitation a single liquid will

be formed by their mutual action, and the

separation will not again take place.

If the agitation is not sufficiently great, this intimate mixture will

only partially ensue, and will be confined to the neighbourhood of the

surface of contact. Two uniform layers of liquid will thus be formed,

separated by an intermediate zone of unequal density. This is the

case at the mouth of a river, where the fresh water forms on the

surface of the sea a layer, the base of which is a compound of fresh

and salt water.



CHAPTER X.

APPLICATION OF THE PRINCIPLE OF ARCHIMEDES TO THE

DETERMINATION OF DENSITIES.—HYDROMETERS.

81. Determination of Densities.—We have seen in Chap. vii. that

in order to determine the density of a body it is only necessary to

measure the ratio existing between the weight of a certain volume

of the body and the weight of an equal volume of water. The

principle of Archimedes enables us to effect this measurement very

easily, and the process which it suggests is sometimes more con-

venient than that which has been described in the chapter mentioned

above.

(1.) Solid bodies.—Suppose that the object whose density we wish

to determine is a piece of cop])er. It is suspended by a very fine

thread to one of the scales of a balance (Fig. 76), its weight is deter-

mined, and found to be, say 125-35g'^- The body is then immersed

in water; the equilibrium is destroyed on account of the upward

pressure of the water, and in order to re-establish it, we must add

a weight of 14-24s^- to the scale supporting the body. This addi-

tional weight, according to the principle of Archimedes, represents

the weight of a volume of water equal to the volume of the body.

The density of copper is thus -. .

' =8-8.

(2.) Liquid bodies.—From one of the scales of the balance is sus-

pended (Fig. 77) any body whatever, which must, however, not be

capable of being attacked by the liquids in which it is to be im-

mersed ; a ball of glass weighted inside with mercury is very well

adapted to this purpose. The exact weight of this is obtained ; it is

then immersed in the liquid whose density is sought—alcohol, for

example ; an upward pressure is thus produced, and in order to re-

establish equilibrium, a weight of 35 ^S^^- must be added to the scale.
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The experiment is repeated by immersing the ball in water, in which

case the upward pressure is stronger, and a weight of 44'28=^- is

Fig. 76.—Specific Gravity of

Solids.

Fig. 77.—Specific Gravity of

Liquids.

necessary to re-establish equilibrium. The weights 44-28^- and

S5'4iS^^- are the weights of equal volumes of water and alcohol; the

density of the latter liquid is therefore ^5^?—OS.•^ ^ 44-28~

82. Hydrometers.—The name hydrometer is given to a class of

instruments used for determining the densities of liquids by observ-

ing either the depths to which they sink in the liquids or the

weights required to be attached to them to make them sink to a

given depth. According as they are to be used in the latter or the

former of these two ways, they are called hydrometers of constant

or of variable immersion. The name areometer (from apawg, rare) is

used as synonymous with hydrometer, being probably borrowed

from the French name of these instruments, ar^omUre. The
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hydrometers of constant immersion most generally known are those

of Nicholson and Fahrenheit.

83. Nicholson's Hydrometer.—This instrument, which is repre-

sented in Fig. 78, consists of a hollow cylinder of metal with conical

ends, terminated above by a very thin rod bearing a small dish, and

Fig. 78.—Nicholson's Hydrometer.

I

carrying at its lower end a kind of basket. This latter is of such

weight that when the instrument is immersed in water a weight of

1000 grains must be placed in the dish above in order to sink the

apparatus as far as a certain mark on the rod. By the principle of

Archimedes the weight of the instrument, together with the 1000

grains which it carries, is equal to the weight of the water displaced.

Now, let the instrument be placed in another liquid, and the weights

in the dish above be altered until they are just sufficient to make

the instrument sink to the mark on the rod. If the weights in the

dish be called w, and the weight of the instrument itself W, the

weight of liquid displaced is now W-^w, whereas the weight of the

same volume of water was TT+IOOO; hence the specific gravity of

W+w
the liquid IS

jiq: , OQQ

This instrument can also be used either for weighing small solid
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bodies or for finding their specific gravities. To find the weight of

a body (which we shall suppose to weigh less than 1000 grains), it

must be placed in the dish at the top, together with weights just

sufficient to make the instrument sink in water as far as the mark.

Obviously these weights are the difference between the weight of

the body and 1000 grains.

To find the specific gravity of a solid, we first ascertain its weight

by the method just described ; we then transfer it from the dish above

to the basket below, so that it shall be under water during the ob-

servation, and observe what additional weights must now be placed

in the dish. These additional weights represent the weight of the

water displaced by the solid ; and the weight of the solid itself divided

by this weight is the specific gravity required.

Fig. 79.—Fahrenheit's Hydrometer. Fig. 80.—Forms of Hydrometers.

84. Fahrenheit's Hydrometer.—This instrument, which is repre-

sented in Fig. 79, is generally constructed of glass, and differs from

Nicholson's in having at its lower extremity a ball weighted with

mercury instead of the basket. It resembles it in having a dish at

the top, in which weights are to be placed sufficient to sink the

instrument to a definite mark on the stem.

85. Hydrometers of Variable Immersion.—These instruments are usu-
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ally of the forms represented at A, B, C, Fig. 80. The lower end is

weighted with mercury in order to make the instrument sink to a

convenient depth and preserve an upright position. The stem is

cylindrical, and is graduated, the divisions being frequently marked

upon a piece of paper inclosed within the stem, which must in this

case be of glass. It is evident that the instrument will sink the

deeper the less is the specific gravity of the liquid, since the weight

of the liquid displaced must be equal to that of the instrument.

Hence if any uniform system of graduation be adopted, so that all

the instruments give the same readings in liquids of the same den-

sities, the density of a liquid can be obtained by a mere immersion

of the hydrometer—an operation not indeed very precise, but very

easy of execution. These instruments have thus come into general

use for commercial purposes.

86. General Theory of Hydrometers of Variable Immersion.—Let V be

the volume of a hydrometer which is immersed when the instrument

floats freely in a liquid whose density (that is, weight per unit

volume) is d, then Nd represents the w^eight of liquid displaced,

which by the principle of Archimedes is the same as the weight of

the hydrometer itself If V, d' be the corresponding values for

another liquid, we have therefore

that is, the density varies inversely as the volume immersed. Let

di, di, cZs.-.be a series of densities in diminishing order, and Vi, V2,

Vs.-.the corresponding volumes immersed, which will be in ascend-

ing order ; then we have

di, di, c?3... proportional to =rr- .r=r ;^...
vij V2, V3

and Vi, V2, Vs... proportional to — — — ...

Hence, if we wish the divisions to indicate equal differences of den-

sity, we must place them so that the corresponding volumes im-

mersed form a harmonical progression. This implies that the di-

visions must approach nearer together for increasing densities. This

is of course on the assumption that the stem is of equal sectional area

in all parts as far as the divisions extend.

The following investigation shows how the density of a liquid

may be computed from observations made with a hydrometer gradu-

ated with equal divisions. It is necessary first to know the divisions

to which the instrument sinks in two liquids of known density. Let
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these divisions be numbered tii, 712, reckoning from the top down-

wards, and let the corresponding densities be di, d^. Now if w^e

take for our unit of volume one of the equal parts on the stem,

and if we take c to denote the volume which is immersed when the

instrument sinks to the division marked zero, it is obvious that when

the instrument sinks to the nih division (reckoned downwards on

the stem from zero) the volume immersed is c - 7i, and if the corre-

sponding density be called d, then (c-n) d\& the weight of the hydro-

meter. We have therefore

(c - Wi) c?i = (c - W2) 0^2 , whence c=-^— /-^

•

This value of c can be computed once for all.

Then the density D corresponding to any other division N can be

found from the equation

(c - N) D = (c - Wi) di which gives D= ^,

if (ii, which we may suppose to be the density of water, be called

unity.

87. Beaum^'s Hydrometers.—In these instruments the divisions

^^ are equidistant. There are two distinct modes of gradua-

tion, according as the instrument is to be used for deter-

mining densities greater or less than that of water. In

the former case the instrument is called a salimeter, and

is so constructed that when immersed in pure water of the

temperature 12° Cent, it sinks nearly to the top of the

stem, and the point thus determined is the zero of the

scale. It is then immersed in a solution of 15 parts of

salt to 85 of water, the density of which is about I'll 6,

and the point to which it sinks is marked 15. The inter-

val is divided into 15 equal parts, and the graduation is

continued to the bottom of the stem, the length of which

BcaumVs Saii- varics according to circumstances ; it generally terminates
™^^^''

at the degree Q^y which corresponds to sulphuric acid,

whose density is commonly the greatest that it is required to deter-

mine. Referring to the formulae of last section, we have here

ni = o, c?i = l, ^2 = 15, (?2 = 1"116;

whence

15x1116 ,., ^ 144
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When the instrument is intended for liquids lighter than water, it

is called an alcoholimeter. In this case the point to which it sinks

in water is near the bottom of the stem, and is marked

10 ; the zero of the scale is the point to which it sinks

in a solution of 10 parts of salt to 90 of water, the

density of which is about 1 '085, the divisions in this

case being numbered upward from zero.

In order to adapt the formulae of last section to the

case of graduations numbered upwards, it is merely

necessary to reverse the signs of ^i, n2, and N; that

is we must put

'^~
d^-d., ' ^^Tn'

and as we have now 7ii=10, di=.\, n2=0, (^2=1 085

the formulae give^

10 ,,_ ^ 128
Fig. 82. Fig. 83.

Beaum^'s Alcoholi

meters.

87a. Twaddell's Hydrometer.—In this instrument the divisions are

placed not as in Beaume's, at equal distances, but at dis-

tances corresponding to equal differences of density. In fact

the specific gravity of a liquid is found by multiplying the

reading by 5, cutting off three decimal places, and pre-

fixing unity. Thus the degree 1 indicates specific gravity

1-005, 2 indicates 1-010, &c.

88. Gay Lussac's Centesimal Alcoholimeter.—When a hydro-

meter is to be used for a special purpose it may be con-

venient to adopt a mode of graduation different in principle

from any that we have described above, and adapted to

give a direct indication of the proportion in which two

ingredients are mixed in the fluid to be examined. It may
indicate, for example, the quantity of salt in sea-water, or

the quantity of alcohol in a spirit consisting of alcohol and

water. Where there are three or more ingredients of dif-

ferent specific gravities the method fails. Gay-Lussac's alco-

holimeter is graduated to indicate, at the temperature of 15° Cent.,

Fig. 87.

Centesimal

Alcoholi-

meter.

^ On comparing the two formulae for D in this section with the tables in the Appendix

to Miller's Chemical Physics, I find that as regards the salimeter they agree to two places

of decimals and very nearly to three. As regards the alcoholimeter, the table in Miller

implies that c is about 136, which would make the density corresponding to the zero of

the scale about 1*074.
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the percentage of pure alcohol in a specimen of spirit. At the top

of the stem is 100, the point to which the instrument sinks in pure

alcohol, and at the bottom is 0, to whicli it sinks in water. The posi-

tion of the intermediate degrees must be determined empirically, by

placing the instrument in mixtures of alcohol and water in known
proportions, at the temperature of 15°. The law of density, as de-

pending on the proportion of alcohol present, is complicated by the

fact that, when alcohol is mixed with water, a diminution of volume

(accompanied by rise of temperature) takes place.

88 a. Specific Gravity of Mixtures.—When two or more substances

are mixed without either shrinkage or expansion (that is, when

the volume of the mixture is equal to the sum of the volumes of the

components), the density of the mixture can easily be expressed in

terms of the quantities and densities of the components.

First, let the volumes Vi, V2, ^3 ... of the components be given,

together with their densities (ii, c?2, d^ - . •

Then their masses (or weights) are Vidi, Vid^, v^d^ . . .

The mass of the mixture is the sum of these masses, and its volume

is the sum of the volumes Vi, -^2, ^3 • • • ; hence its density is

Vidi + v^dj + . . .

^'1 + ^2 + . . .

Secondly, let the weights or masses m^ m2, ms . . . of the compo-

nents be given, together with their densities di, d^, d^ . . .

Then their volumes are ^' ?' ? . . .

cLi a^ CL3

The volume of the mixture is the sum of these volumes, and its mass

is mi+?7i.2+^3+ • • • ; hence its density is

di d.2

88 b. Graphical Method of Graduation.—When the points on the

stem which correspond to some five or six known densities, nearly

equidifferent, have been determined, the intermediate graduations

can be inserted with tolerable accuracy by the graphical method of

interpolation, a method which has many applications in physics

besides that which we are now considering. Suppose A and B
(Fig. 85) to represent the extreme points, and I, K, L, E, intermediate

points, all of which correspond to known densities. Erect ordinates

(that is to say, perpendiculars) at these points, proportional to the

respective densities, or (which will serve our purpose equally well)
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Fig. 85.—Graphical Method of Graduation.

erect ordinates II', KK', LL', RR', BC proportional to the excesses of

the densities at I, K, L, R, B above the density at A. Any scale of

equal parts can be employed

for laying off the ordinates,

but it is convenient to adopt

a scale which will make the

greatest ordinate BC not

much greater nor much less

than the base line AB. In

the figure, the density at B is

supposed to be I'SO, the den-

sity at A being 1. The differ-

ence of density is therefore

•80, as indicated by the fig-

ures 80 on the scale of equal

parts. Having erected the ordinates, we must draw through their

extremities the curve AI'KX'R'C, making it as free from sudden

turns as possible, as it is upon the regularity of this curve that the

accuracy of the interpolation depends. Then to find the point on the

stem AB at which any other density is to be marked—say 1*60, we
must draw through the 60th division, on the line of equal parts, a

horizontal line to meet the curve, and, through the point thus found

on the curve, draw an ordinate. This ordinate will meet the base

line AB in the required point, which is accordingly marked 16 in

the figure. The curve also affords the means of solving the converse

problem, that is, of finding the density corresponding to any given

point on the stem. At the given point in AB, which represents the

stem, we must draw an ordinate, and through the point where this

meets the curve we must draw a horizontal line to meet the scale of

equal parts. The point thus determined on the scale of equal parts

indicates the density required, or rather the excess of this density

above the density of A.



CHAPTEK XI.

VESSELS IN COMMUNICATION.—CAPILLARITY.

89. Equilibrium in Vessels in Communication.—When a liquid is

contained in vessels communicating with each other, and is in equi-

librium, it stands at the same height in the different parts of the

system, so that the free surfaces all lie in the same horizontal plane.

This is an immediate consequence of the fact that layers of equal

pressure in a liquid are always horizontal (§ 64) ; for if we take any

such layer at the bottom of the system, we must proceed upwards

through the same vertical height in all parts of the system in order

to reach the free surface which corresponds to the pressure. Tlius,

in the system represented by Fig. 89, the liquid is seen to stand at

the same height in the principal vessel and in the variously shaped

tubes communicating with it. If one of these tubes is cut off at a

height less than that of the liquid in the principal vessel, and if it
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be made to terminate in a narrow moutli, the liquid will be seen to

spout up nearly to the level of that in the principal vessel.

This tendency of liquids to find their own level is very important,

and of continual application. Thus, a reservoir of water may have

different pipes issuing from it and spreading out in all possible direc-

tions with any number of turns and windings
;
provided that the ends

of these pipes lie below the level of the reservoir, the water will flow

through the pipes and run out at their extremities. The velocity of

exit, however, will depend on the form and arrangement of the pipes,

as well as on the difference of level. This velocity must of course

be taken into account in calculating the quantity of water that will

flow in a given time ; and in forming plans for the proper distribution

of public supplies of water. It also determines the height to which

a jet of water can be discharged from an opening at the end of the

pipe.

90. Water-level.—The well-known instrument called the water-

level depends upon the property just mentioned. It consists of a

11

wmm^ummiH^^^^^^^^S^^^^SSS^iM b

Fig, 90.—Water-level.

metal tube bb, bent at right angles at its extremities. These carry

two glass tubes aa, very narrow at the top, and of the same diameter.

The tube rests on a tripod stand, at the top of which is a joint that

enables the observer to turn the apparatus and set it in any direction.

The tube is placed in a position nearly horizontal, and water, gener-

ally coloured a little, is poured in until it stands at about three-

fourths of the height of each of the glass tubes.

By the principle of equilibrium in vessels communicating with

each other, the surfaces of the liquid in the two branches are in the

same horizontal plane, so that if the line of the observer's sight just

grazes the two surfaces, it will be horizontal.
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Tliis is the principle of the operation called levelling, the object of

which is to determine the difference of vertical height, or difference

of level, between two given points. Suppose A and B to be the two

points (Fig. 91). At each of these points is fixed a levelling-staff,

Fig. 91.—Levelling.

that is, an upright rod divided into parts of equal length, on which

slides a small square board whose centre serves as a mark for the

observer.

The level being placed at an intermediate station, the observer

directs the line of sight towards each levelling-staff, and the mark
is raised or lowered till the line of sight passes through its centre.

The marks on the two staves are in this way brought to the same

level. The staff in the rear is then carried in advance of the other,

the level is again placed between the twb, and another observation

taken. In this way, by noting the division of the staff at which

the sliding mark stands in each case, the difference of levels of two

distant stations can be deduced from observations at a number of

intermediate points

91. Spirit-level.—These observations can be made in a much more

exact and convenient manner by means of the spirit-level. This

instrument is composed of a

glass tube slightly curved,

containing a liquid, which is

generally alcohol, and which

fills the whole extent of the

tube, except a small space

occupied by an air-bubble.

This tube is inclosed in a mounting which is firmly supported on

a stand.

Suppose the tube to have been so constructed that a vertical

section of its upper surface is an arc of a circle, and suppose the

Spirit-level.
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instrument placed upon a horizontal plane (Fig. 93). The air-bubble

will take up a position MN at the highest part of the tube, such that

the arcs MA and NB are

equal. Hence it follows that ^^:^^^^=p=^^s^
if the level be reversed end ^ ^-^i—^^^-^^^ ^^^ y_'l--^._

for end, the bubble will oc- Fig. 93.

cupy the same position, the

point N coming to M, and vice versa. This will not be the case

if AB is inclined to the horizon (Fig. 94), for then the distance MA
being different from NB,

after the apparatus has . -m̂ jw-

been turned, the bubble

will assume a symmetrical

position at the opposite end

of the tube. The condition,

therefore, that the line on which the spirit-level rests should be

horizontal is, that after this operation of reversal the bubble should

remain within the same limits. *In order to avoid the trouble of

turning the instrument, the maker marks these limits by reference-

marks on the tube or its mounting, and in order to determine that

a line is horizontal it is only necessary to make sure that, when the

level is placed upon it, the bubble lies exactly between these reference-

marks.

In order that a plane surface may be horizontal, we must have

two lines in it horizontal. This result is practically attained in the

Fig. 94.

Fig. 95.—Testing tlie Horizontality of a Surface.

following manner:—The surface is made to rest on three levelling

screws which form the three vertices of an isosceles triangle; the

level is first placed parallel to the base of the triangle, and, by means

of one of the screws, the bubble is brought between the reference-

marks. The instrument is then placed perpendicularly to its first

position, and the bubble is brought between the marks by means of
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Fig. 96.—Spirit-level with Telescope.

the third screw; this second operation cannot disturb the result of

the first, since the plane has only been turned about a horizontal line

as hinge.

92. Level furnished with Telescope.—In order to apply the spirit-

level to land-surveying, an apparatus such as that represented

in the figure is employed.

Upon a frame AA, movable

about a vertical axis B, are

placed a spirit-level nn, and

a telescope LL, in positions

parallel to each other. The

telescope is furnished at its

focus with two fine wires

crossing one another, whose

])oint of intersection deter-

mines the line of sight with

great precision. The appara-

tus, which is provided with levelling screws H, rests on a tripod

stand, and the observer is able, by turning it about its axis, to com-

mand the different points of the horizon. By a process of adjust-

ment which need not here be described, it is known that when the

bubble is between the marks the line of sight is horizontal ; so that

we may proceed to find the difference of level between two points in

the same way as with the water-level; but the operation is much
more precise, and the range of vision much more extensive. By
furnishing the instrument with a graduated horizontal circle P, we
may obtain the azimuths of the points observed, and thus map out

contour lines.

Oneach side of the reference-marks of the bubble are divisions for

measuring small deviations from horizontalit}^ It is, in fact, easy

to see, by reference to Fig. 93, that by tilting the level through any

small angle, the bubble is displaced by a quantity proportional to

this angle, at least when the curvature of the instrument is that of

a circle.

For determining the angular value corresponding to each division

of the tube, it is usual to employ an apparatus opening like a pair

of compasses by a hinge C, on one of the legs of which rests, by two

V-shaped supports, the tube T of the level. The compass is opened

by means of a micrometer screw V, of very regular action ; and as

the distance of the screw from the hinge is known, as well as the

i
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distance between the threads of the screw, it is easy to calculate

beforehand the value of the divisions on the micrometer head. The
levelling screws of the instrument serve to bring the bubble between

Fig. 97.—Graduation of Spirit-level.

its reference-marks, so that the micrometer screw is only used to

determine the value of the divisions on the tube.

93. Equilibrium of Two Different Liquids in Communicating Vessels.

—If into one of two tubes in communication we pour a liquid, say

mercury, this liquid will

rise to the same height

in both branches. If we
now pour water into one

of them, the mercury will

be pushed back in the

other branch ; and when
equilibrium has been es-

tablished, the heights of

the two liquids above

the surface of separation

will be very unequal, as

shown in the fiojure. In

general, these heights,

since they correspond to

the same pressure upon

the surface of separation,

lulll he inversely propor-

tional to the densities.

94. Capillarity—General Phenomena.— The different principles of

equilibrium which have been explained in the preceding para-

graphs, are subject to remarkable exceptions when the vessels in

Fig. 98.—Equilibrium of Two Fluids in Comnmnicatiug
Vessels.
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which the liquids are contained are very narrow, or, as they are

called, capillary (capillus, a hair) ; and also in the case of vessels of

any size, when we consider the portion of the liquid which is in

close proximity to the sides.

1. Free Surface.—The surface of a liquid is not horizontal in the

neighbourhood of the sides of the vessel, but presents a very decided

curvature. When the liquid wets the vessel, as in the case of water

in a glass vessel (Fig. 99), the surface is concave; on the contrary

when the liquid does not wet the vessel, as in the case of mercury in

a glass vessel (Fig. 100), the surface is, generally speaking, convex.

2. Capillary Elevation and Depression.—If a very narrow tube

of glass be plunged in water, or any other liquid that will wet it

^^

Fig. 99. Fig. 100. Fig. 101.

Ill
Fig. 102,

(Fig. 101), it will be observed that the level of the liquid, instead of

remaining at the same height inside and outside of the tube, stands

perceptibly higher in the tube; a. capillary ascension takes place,

which varies in amount according to the

nature of the liquid and the diameter of

the tube. It will also be seen that the

liquid column thus raised terminates in

lliiilBIWPMBS^ a concave surface. If a glass tube be

dipped in mercury, which does not wet

it, it will be seen, by bringing the tube

to the side of the vessel, that the mercury

is depressed in its interior, and that it

terminates in a convex surface (Fig. 102).

3. Capillary Vessels in Communica-
tion with Others.—If we take two bent

tubes, each having one branch of a considerable diameter and the

other extremely narrow, and pour into one of them a liquid which

Fig. 103.
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wets it, and into the other mercury, the liquid will be observed in

the former case to stand higher in the capillary than in the prin-

cipal branch, and in the latter case to stand lower ; the free surfaces

being at the same time concave in the case of the liquid which

wets the tubes, and convex in the case of the mercury.

95. Circumstances which influence Capillary Elevation and Depression.

—In wetted tubes the elevation depends upon the nature of the liquid;

thus, at the temperature of 18° Cent., water rises 29-79°""' (12 inch)

in a tube 1 millimetre (2V inch) in diameter, alcohol rises 12-18°'°',

nitric acid 22-57'°°', essence of lavender 428°'°', &c. The nature of

the tube is almost entirely immaterial, provided the precaution be first

taken of wetting it with the liquid to be employed in the experiment,

so as to leave a film of the liquid adhering to the sides of the tube.

Capillary depression, on the other hand, depends both on the

nature of the liquid and on that of the tube. Both ascension and

depression diminish as the temperature increases; for example, the

elevation of water, which in a tube of a certain diameter is equal to

132°'°'. at 0° Cent., is only 106°'°' at 100°.

96. Law of Diameters.— Capillary elevations and depressions,

when all other circumstances are the same, are inversely propor-

tional to the diameters of the tubes. As this law is a consequence

of the mathematical theories which are generally accepted as ex-

plaining capillary phenomena, its verification has been regarded as

of great importance.

The experiments of Gay-Lussac, which confirmed this law, have

been repeated, with slight modifications, by several observers. The

method employed consists essentially in measuring the capillary

elevation of a liquid by means of a cathetometer (Fig. 104). The

telescope II is directed first to the top n of the column in the tube,

and then to the end of a pointer h, which touches the surface of the

liquid at a point where it is horizontal. In observing the depression

of mercury, since the opacity of the metal prevents us from seeing

the tube, we must bring the tube close to the side of the vessel e.

The diameter of the tube can be measured directly by observing

its section through a microscope, or we may proceed by tlie method

employed by Gay-Lussac. He weighed the quantity of mercury

which filled a known length I of the tube ; this weight w is that of

a cylinder of mercury whose radius x is determined by the equation

VS'59 7rxH = w*
* This formula is only true for the metrical system, 13*59 being the specific gravity of

mercury. If x and I are in centimetres, w will he in grammes.
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The result of these different experiments is, that in the case of

wetted tubes the law is exactly fulfilled, provided that they be pre-

viously washed with the greatest care, so as to remove all foreign

matters, and that the liquid on which the experiment is to be per-

Fig. 104.—Verification of Law of Diameters.

formed be first passed through them. When the liquid does not wet

the tube, various causes combine to aff"ect the form of the surface in

which the liquid column terminates ; and we cannot infer the depres-

sion from knowing the diameter, unless we also take into considera-

tion some element connected with the form of the terminal surface,

such as the length of the sagitta, or the angle made with the sides

of the tube by the extremities of the curved surface, which is called

the angle of contact

97. Cause of Capillary Phenomena.—Capillary phenomena, as they

take place alike in air and in vacuo, cannot be attributed to the

action of the atmosphere. They depend upon molecular actions

which take place between the particles of the liquid itself, and be-

tween the liquid and the solid containing it, the actions in question

being purely superficial—that is to say, being confined to an extremely

thin layer forming the external boundary of the liquid, and to an

extremely thin superficial layer of the solid in contact with the

liquid. For example, it is found in the case of glass tubes, that the

amount of capillary elevation or depression is not at all affected by

the thickness of the sides of the tube. The following are some of

the principles which govern capillary phenomena.
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1. For a given liquid in contact with a given solid, with a definite

intimateness of contact (this last element being dependent upon the

cleanness of the surface, upon whether the surface of the solid has

been recently washed by the liquid, and perhaps upon some other

particulars), there is (at any specified temperature) a definite angle

of contact, which is independent of the directions of the surfaces

with regard to the vertical.

2. Every liquid behaves as if a thin film, forming its external

layer, were in a state of tension, and exerting a constant effort to

contract. This tension, or contractile force, is exhibited over the

whole of the free surface (that is, the surface which is exposed to air),

but wherever the liquid is in contact with a solid, its existence is

masked by other molecular actions. It is uniform in all directions

in the free surface, and at all points in this surface, being dependent

only on the nature and temperature of the liquid. Its intensity for

several specified liquids is given in tabular form further on (§ 97f)

upon the authority of Yan der Mensbrugghe. Tension of this kind

must of course be stated iu units of force per linear unit, because by
doubling the width of a band we double the force required to keep

it stretched. Mensbrugghe considers that such tension really exists

in the superficial layer; but the majority of authors (and we think

with more justice) regard it rather as a convenient fiction, which

accurately represents the effects of the real cause. Two of the most

eminent writers on the cause of capillary phenomena are Laplace

and Dr. Thomas Young. The subject presents difficulties which

have not yet been fully surmounted.

The law of diameters is a direct consequence of the two preceding

principles; for if a denote the external angle of contact (which is

acute in the case of mercury against glass), T the tension per unit

length, and r the radius of the tube, then 27rrT will be the whole

amount of force exerted at the margin of the surface; and as this

force is exerted in a direction making an angle a with the vertical,

its vertical component will be 27rrTcosa, which is exerted in pulling

the tube upwards and the liquid downwards.

If w be the weight of unit volume of the liquid, then irr^w is

the weight of as much as would occupy unit length of the tube ; and

if h denote the height of a column whose weight is equal to the

force tending to depress the liquid, we have

Trr^hw = 27rrTcosa;
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whence h = , which, when the other elements are given,
r.w ^

varies inversely as r, the radius of the tube.

Having regard to the fact that the surface is not of the same

height in the centre as at the edges, it is obvious that h denotes the

mean height.

If a be obtuse, h will be negative—that is to say, there will be

elevation instead of depression. In the case of water against a tube

which has been well wetted with that liquid, a is 180°—that is to

say, the tube is tangential to the surface. For this case the formula

for h gives

elevation = —

.

rw

Again, for two parallel vertical plates at distance u, the vertical force

of capillarity for a unit of length is 2 T cos a, which must be equal to

whu, being the weight of a sheet of liquid of height h, thickness u,

and length unity. We have therefore

2Tcosa
h =

,

which agrees with the expression for the depression or elevation in

a circular tube whose radius is equal to the distance between these

parallel plates.

The surface tension always tends to reduce the surface to the

smallest area which can be inclosed by its actual boundary; and

therefore always produces a normal force directed towards the con-

cave side of the superficial film. Hence, wherever there is capillary

elevation the free surface must be concave; wherever there is depres-

sion it must be convex.

97 a. It follows from a well-known proposition in statics (Tod-

hunter's Statics, § 194), that if a cylindrical film be stretched with a

uniform tension T (so that the force tending to pull the film asunder

across any short line drawn on the film, is T times the length of the

line), the resultant normal pressure (which the film exerts, for ex-

ample, against the surface of a solid internal cylinder over which it

is stretched) is T divided by the radius of the cylinder.

It can be proved that a film of any form, stretched with uniform

tension T, exerts at each point a normal pressure equal to the sum
of the pressures which would be exerted by two overlapping cylin-

drical films, whose axes are at right angles to one another, and

whose cross sections are circles of curvature of normal sections at the
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point. That is to say, if P be the normal force per unit area, and
rr' the radii of curvature in two mutually perpendicular normal

sections at the point, then

P = T (i + i).
\r r J

At any point on a curved surface, the normal sectioiLS of greatest and

least curvature are mutually perpendicular, and are called the prin-

cipal normal sections at the point. If the corresponding radii of

curvature be R, R', we have

or the noTTYial force "per unit area is equal to the tension 'per unit

length multi'plied by the sum of the principal curvatures.

In the case of capillary depressions and elevations, the superficial

film at the free surface is to be regarded as pressing the liquid in-

wards, or pulling it outwards, according as this surface is convex or

concave, with a force P given by. the above formula. The value of

P at any point of the free surface is equal to the pressure due to the

height of a column of liquid extending from that point to the level

of the general horizontal surface. It is therefore greatest at the

edges of the elevated or depressed column in a tube, and least in the

centre; and the curvature, as measured by - + — , must vary in

the same proportion. If the tube is so large that there is no sensible

elevation or depression in the centre of the column, the centre of the

free surface must be sensibly plane.

97b. Another consequence of the formula is, that in circumstances

where there can be no normal pressure towards either side of the

surface,

which implies that either the surface is plane, in which case each of

the two terms is separately equal to zero, or else

R = - -R'; (3)

that is, the principal radii of curvature are equal, and lie on opposite

sides of the surface. The formulae (2), (3) apply to a film of soapy

water attached to a loop of wire. If the loop be in one plane, the

film will be in the same plane. If the loop be not in one plane, the

film cannot be in one plane, and will in fact assume that form which
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gives the least area consistent with having the loop for its boundary.

At every point it will be observed to be, if we may so say, concave

towards both sides, and convex towards both sides, the concavity

being precisely equal to the convexity—that is to say, equation (3)

is satisfied at every point of the film.

In this case both sides of the film are exposed to atmospheric

pressure. In the case of a common soap-bubble the outside is ex-

posed to atmospheric pressure, and the inside to a pressure some-

what greater, the diflference of the pressures being compensated by
the tendency of the film to contract. Formula (1) becomes for

either the outer or inner surface of a spherical bubble

P _2T.

but this result must be doubled, because there are two free surfaces

;

hence the excess of pressure of the inclosed above the external air is

4T— , R denoting the radius of the bubble.
R
The value of T for soapy water is about ] grain per linear inch

;

hence, if we divide 4 by the radius of the bubble expressed in inches,

we shall obtain the excess of internal over external pressure in grains

'per square inch.

The value of T for any liquid may be obtained by observing the

amount of elevation or depression in a tube of given diameter, and

employing the formula

T = ^, H)
2 cos a'

which follows immediately from the formula for h in § 97.

97 c. It is this uniform surface tension, of which we have been

speaking, which causes a drop of a liquid falling through the air

either to assume the spherical form, or to oscillate about the spheri-

cal form. The phenomena of drops can be imitated on an enlarged

scale, under circumstances which permit us to observe the actual

motions, by a method devised by Professor Plateau of Ghent. Olive-

oil is intermediate in density between water and alcohol. Let a

mixture of alcohol and water be prepared, having precisely the

density of olive-oil, and let about a cubic inch of the latter be gently

introduced into it with the aid of a funnel or pipette. It will as-

sume a spherical form, and if forced out of this form and then left

free, will slowly oscillate about it ; for example, if it has been com-

pelled to assume the form of a prolate spheroid, it will pass to the



CAUSE OF CAPILLARY PHENOMENA. 135

oblate form, will then become prolate again, and so on alternately, be-

coming however more nearly spherical every time, because its move-

ments are hindered by friction, until at last it comes to rest as a sphere.

97 D. Capillarity furnishes no exception to the principle that the

pressure in a liquid is the same at all points at the same depth.

When the free surface within a tube is convex, and is consequently

depressed below the general level of the external surface, the pres-

sure becomes suddenly greater on passing downwards through the

superficial layer, by the amount due to the curvature. Below this

it increases regularly by the amount due to the depth of liquid

passed through. The pressure at any point vertically under the con-

vex meniscus^ may be computed, either by taking the depth of the

point below the general free surface, and adding atmospheric pressure

to the pressure due to this depth, according to the ordinary prin-

ciples of hydrostatics, or by taking the depth of the point below

that point of the meniscus which is vertically over it, adding the

pressure due to the curvature at this point, and also adding atmo-

spheric pressure.

When the free surface of the liquid within a tube is concave,

the pressure suddenly diminishes on passing downwards through

the superficial layer, by the amount due to the curvature as given

by formula (1) ; that is to say, the pressure at a very small depth

is less than atmospheric pressure by this amount. Below this

depth it goes on increasing according to the usual law, and becomes

equal to atmospheric pressure at that depth which corresponds with

the level of the general external surface. The pressure at any point

in the liquid within the tube can therefore be obtained either by

subtracting from atmospheric pressure the pressure due to the

elevation of the point above the general surface, or by adding to

atmospheric pressure the pressure due to the depth below that point

of the meniscus which is on the same vertical, and subtracting the

pressure due to the curvature at this point.

These rules imply, as has been already remarked, that the curva-

ture is different at different points of the meniscus, being greatest

where the elevation or depression is greatest, namely at the edges

of the meniscus; and least at the point of least elevation or depression,

which in a cylindrical tube is the middle point.

^ The convex or concave surface of the liquid in a tube is usually denoted by the name

meniscus (fnjdaKos, a crescent), which denotes a form approximately resembling that of a

watch-glass.
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The priDcii)les just stated apply to all cases of capillary elevation

and depression.

They enable us to calculate the force with which two parallel ver-

tical plates, partially immersed in a liquid which wets them, are

urged towards each other by capillary action. The portion of liquid

elevated between them is at less than atmospheric pressure, and

therefore is insufficient to resist the atmospheric pressure which is

exerted on the outer faces of the plates. The average pressure in

the elevated portion of liquid is that which exists half-way up it,

and is less than atmospheric pressure by the pressure of a column of

liquid whose height is half the elevation.

Even if the liquid be one which does not wet the plates, they will

still be urged towards each other by capillary action ; for the inner

faces of the plates are exposed to merely atmospheric pressure over

that portion of their areas which corresponds to the depression, while

the corresponding portions of the external faces are exposed to

atmospheric pressure increased by the weight of a portion of the

liquid.

These principles explain the apparent attraction exhibited by

bodies floating on a liquid which either wets them both or wets

neither of them. When the two bodies are near each other they

behave somewhat like parallel plates, the elevation or depression of

the liquid between them being greater than on their remote sides.

If two floating bodies, one of which is wetted and the other un-

wetted by the liquid, come near together, the elevation and depression

of the liquid will be less on the near than on the remote sides, and

apparent repulsion will be exhibited.

In all cases of capillary elevation or depression, the solid is puUed

downwards or upwards with a force equal to that by which the

liquid is raised or depressed. In applying the principle of Archi-

medes to a solid partially immersed in a liquid, it is therefore neces-

sary (as we have seen in § 79), when the solid produces capillary

depression, to reckon the void space thus created as part of the dis-

placement; and when the solid produces capillary elevation, the fluid

raised above the general level must be reckoned as negative displace-

ment, tending to increase the apparent weight of the solid.

97 E. Thus far all the effects of capillary action which we have

mentioned are connected with the curvature of the superficial film,

and depend upon the principle that a convex surface increases and a

concave surface diminishes the pressure in the interior of the liquid.
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But there is good reason for maintaining that whatever be the form

of the free surface there is always a certain amount of pressure in

the interior due to the molecular action at this surface, and that the

pressure due to the curvature of the surface is to be added to or

subtracted from a definite amount of pressure which is independent

of the curvature and depends only on the nature and condition of

the liquid. This indeed follows at once from the fact that capillary

elevation can take place in vacuo. As far as the principles of the

preceding paragraphs are concerned, we should have, at points within

the elevated column, a pressure less than that existing in the

vacuum. This, however, cannot be ; we cannot conceive of negative

pressure existing in the interior of a liquid, and we are driven to

conclude that the elevation is owing to the excess of the pressure

caused by the plane surface in the containing vessel above the pres-

sure caused by the concave surface in the capillar}^ tube.

There are some other facts which seem only explicable on the same

general principle of interior pressure due to surface action,—facts

which attracted the notice of some of the earliest writers on

pneumatics, namely, that siphons will work in vacuo, and that a

column of mercury at least 75 inches in length can be sustained—as

if by atmospheric pressure—in a barometer tube, the mercury being

boiled and completely filling the tube.

97f. We have now to notice certain phenomena which depend on

the diffei-ence in the surface tensions of different liquids, or of the

same liquid in different states.

Let a thin layer of oil be spread over the upper surface of a thin

sheet of brass, and let a lamp be placed underneath. The oil will be

observed to run away from the spot directly over the flame, even

though this spot be somewhat lower than the rest of the sheet.

This effect is attributable to the excess of surface tension in the cold

oil above the hot.

In like manner, if a drop of alcohol be introduced into a thin

layer of water spread over a nearly horizontal surface, it will be

drawn away in all directions by the surrounding water, leaving a

nearly dry spot in the space which it occupied. In this experiment

the water should be coloured in order to distinguish it from the

alcohol.

Again, let a very small fragment of camphor be placed on the sur-

face of hot water. It will be observed to rush to and fro with

frequent rotations on its own axis, sometimes in one direction and
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sometimes in the opposite. These effects, which have been a frequent

subject of discussion, are now known to be due to the diminution of

the surface tension of the water bj'' the camphor which it takes up.

Superficial currents are thus created, radiating from the fragment of

camphor in all directions ; and as the camphor dissolves more quickly

in some parts than in others, the currents which are formed are not

equal in all directions, and those which are most powerful prevail

over the others and give motion to the fraorment.

The values of T, the apparent surface tension, for several liquids,

are given in the following table, on the authority of Van der Mens-

brugghe, in milligrammes (or thousandth parts of a gramme) per milli-

metre of length. They can be reduced to grains per inch of length

by multiplying them by "392; for example, the surface tension of

distilled water is 73 X '392 = 2-86 grains per inch.

Solution of Marseilles soap, 1 part ofDistilled water at 20° Cent.,

Sulphuric ether, ....
Absolute alcohol, ....
Olive- oil,

Mercury,

7-3

1-8 J

2-5

3-5

49-1

soap to 40 of water, 2*83

Solution of saponine, 4 "67

Saturated solution of carbonate of

soda, . . . • 4-28

Water impregnated with camphor, .
4*5Bisulphide of carbon, 3 '5 7

98. Endosmose.—Capillary phenomena have

undoubtedl}^ some connection with a very

important property discovered by Dutrochet,

and called by him endosmose.

The endosmometer invented by him to

illustrate this phenomenon consists of a reser-

voir V closed below by a membrane ba, and

terminating above in a tube of considerable

length. This reservoir is filled, suppose, with

a solution of gum in water, and is kept im-

mersed in water. At the end of some time

the level of the liquid in the tube will be

observed to have risen to n, suppose, and at

the same time traces of gum will be found in

the water in which the reservoir is immersed.

Hence we conclude that the two liquids have

penetrated through the membrane, but in dif-

ferent proportions ; and this is what is called

endosmose.
Fig. io5.-Endosmometer.

jf -^^^^^^ ^^ ^ solution of gum wc em-

ployed water containing albumen, sugar, or gelatine in solution, a
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similar result would ensue. The membrane may be replaced by a

slab of wood or of porous clay. Physiologists have justly attached

very great importance to this discover}^ of Dutrochet. It explains,

in fact, the interchange of liquids which is continually taking place

in the tissues and vessels of the animal system, as well as the

absorption of water by the spongioles of roots, and several similar

phenomena.

As regards the power of passing through porous diaphragms,

Graham has divided substances into two classes

—

crystalloids and

colloids (koWt], glue). The former are susceptible of crystallization,

form solutions free from viscosity, are sapid, and possess great powers

of diffusion through porous septa. The latter, including gum, starch,

albumen, &c., are characterized by a remarkable sluggishness and

indisposition both to diffusion and to crystallization, and when pure

are nearly tasteless.
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THE BAROMETER.

99. Weight of the Air and of Gases.—Gaseous bodies possess a num-
ber of properties in common with liquids ; like them, they transmit

pressures entire and in all directions, according to the principle of

Pascal; but they differ essentially from liquids in the permanent

repulsive force exerted between their molecules, in virtue of which

a mass of gas always tends to expand.

The opinion was long held that the air was without weight ; or,

to speak more precisely, it never occurred to any of the philosophers

who preceded Galileo to attribute any influence in natural phe-

nomena to the weight of the air. And as this influence is really of

the first importance, and comes into play in many of the commonest

phenomena, it very naturally happened that the discovery of the

weight of air formed the commencement of the modern revival of

physical science.

It appears, however, that Aristotle conceived the idea of the

possibility of air having weight, and, in order to convince himself on

this point, he weighed a skin inflated and collapsed. As he obtained

the same weight in both cases, he relinquished the idea which he had

for the moment entertained. In fact, the experiment, as he per-

formed it, could only give a negative result ; for if the weight of the

skin was increased, on the one hand, by the introduction of a fresh

quantity of air, it was diminished, on the other, by the corresponding

increase in the upward pressure of the air displaced. In order to

draw a certain conclusion, the experiment should be performed" with

a vessel which could receive within it air of different degrees of

density, without changing its own volume.

Galileo is said to have devised the experiment of weighing a

globe filled alternately with ordinary air and with compressed air.
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As the weight is greater in the latter case, Galileo should have drawn

the inference that air is heavy. It does not appear, however, that

the importance of this conclusion made much impression on him, for

he did not give it any of those developments which might have been

expected to present themselves to a mind like his.

100. Experiment of Otto Guericke.—Otto Guericke, the illustrious

inventor of the air-pump, in 1G50 performed the following experi-

ment, which is decisive :

—

A globe of glass, furnished with a stop-cock, and of a sufficient

capacity (about twelve litres), is exhausted of air. It is then sus-

pended from one of the scales of a

balance, and a weight sufficient to

produce equilibrium is placed in the

other scale. The stop-cock is then

opened, the air rushes into the

globe, and the beam is observed

gradually to incline, so that an addi-

tional weight is required in tbe

other scale, in order to re-establish

equilibrium. If the capacity of

the globe is 12 litres, about 15 5

grammes will be needed, which

gives 1"3 gramme as the approxi-

mate weight of a litre of air.^

If, in performing this experiment,

we take particular precautions to

insure its precision, as we shall ex-

plain in the book on heat, it will

bp found that, at the temperature

of freezing water, and under the

pressure of one atmosphere, a litre

of air weighs 1 -293 gramme.^ Under
these circumstances, the ratio of the weight of a volume of air to that

of an equal volume of water is jq^ = ^- Air is thus 773 times

lighter than water.

By repeating this experiment with other gases, we may determine

^ A cubic foot of air in ordinary circumstances weighs about an ounce and a quarter.

^ In strictness, the weight in grammes of a litre of air under the pressure of 760

millimetres of mercury is different in different localities, being proportional to the intensity

of gravity—not because the force of gravity on the litre of air is, different, for though this

Fig. 106.— Weight of Air.
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their weight as compared with that of air, and the absolute weight

of a litre of each of them. Thus it is found that a litre of oxygen

weighs 143 gramme, a litre of carbonic acid 197 gramme, a litre of

hydrogen 0'089 gramme, &c.

101. Atmospheric Pressure.—The atmosphere cd circles the earth

with a layer some 50 or 100 miles in thickness; this heavy fluid

mass exerts on the surface of all bodies a pressure entirely analogous

both in nature and origin to that sustained by a body wholly

immersed in a liquid. It is subject to the fundamental law men-

tioned in § 64. The pressure should therefore diminish as we
ascend from the surface of the earth, but should have the same value

for all points in the same horizontal layer, provided that the air is in

a state of equilibrium. On account of the great compressibility of

gas, the lower layers are much more dense than the upper ones ; but

the density, like the pressure, is constant in value for the same

horizontal layer, throughout any portion of air in a state of

equilibrium. Whenever there is an inequality either of density or

pressure at a given level, wind must ensue.

We owe to Torricelli an experiment which plainly shows the

pressure of the atmosphere, and enables us to estimate its intensity

with great precision. This experiment, which was performed in

1643, one year after the death of Galileo, at a time when the weight

and pressure of the air were scarcely even suspected, has immortalized

the name of its author, and has exercised a most important influence

upon the progress of natural philosophy.

102. Torricelli's Experiment.—A tube of about a quarter or a third of

an inch in diameter, and about a yard in length, is completely filled

with mercury; the extremity is then stopped with the finger, and

the tube is inverted in a vessel containing mercury. If the finger is

now removed, the mercury will descend in the tube, and after a few

is true, it does not aflfect the numerical value of the weight when stated in grammes, but

because the pressure of 760 millimetres of mercury varies as the intensity of gravity, so

that more air is compressed into the space of a litre as gravity increases. (§ 107, 6.)

The weight in grammes is another name for the mass. The force of gravity on a litre of

air under the pressure of 760 millimetres is proportional to the square of the intensity of

gravity.

This is an excellent example of the ambiguity of the word weight, which sometimes

denotes a mass, sometimes a force; and though the distinction is of no practical importance

80 long as we confine our attention to one locality, it cannot be neglected when different

localities are compared.

Regnault's determination of the weight of a litre of dry air at 0° Cent, under the pressure

of 760 millimetres at Paris is 1-293187 gramme. Gravity at Paris is to gravity at Green-

wich as 3456 to 3457. The corresponding number for Greenwich is therefore 1*293561.
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oscillations will remain stationary at a height which varies according

to circumstances, but which is generally about 30 inches.

The column of mercury is maintained at this height by the

pressure of the atmosphere upon the surfac* of the mercury in the

Fig. 108.—Torricellian Experiment.

vessel. In fact, the pressure at the level ABCD must be the same

within as without the tube; so that the column of mercury BE
exerts a pressure equal to that of the atmosphere.

Accordingly, we conclude from this experiment of TorriceUi that

every surface exposed to the atmosphere sustains a normal pressure

equal, on an average, to the weight of a column of mercury whose

base is this surface, and whose height is 30 inches.

It is evident that if we performed a similar experiment with

water, whose density is to that of mercury as 1 : 1359, the height

of the column sustained would be 13*59 times as much; that is,
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30 X 13 59 inches, or about 34 feet. This is the maximum heiglit

to which water can be raised in a pump; as was observed by Galileo.

In general the heights of columns of different liquids

equal in weight to a column of air on the same base, are

inv^ersely proportional to their densities.

103. Pressure of One Atmosphere.—We can easily calcu-

late the amount of this pressure for a given surface, for

example, a square inch. It is the weight of a column of

mercury whose base is a square inch and height 30 inches,

that is, the weight of 30 cubic inches of mercury; and as

a cubic inch of mercury weighs about half a pound, the

atmospheric pressure on a square inch is about 1 5 pounds.

This pressure of 15 pounds^ to the square inch is called

the pressure of one atviosphere; it is exerted in a normal

direction at all points on the surface of a body, and in

consequence, as in the case of a body wholly immersed in

a liquid, the resultant of the different elementary pres-

sures is a vertical upward pressure equal to the weight of

Fig 109
^^^^ ^^^ displaced. The effect of the air, therefore, is not,

as was formerly supposed, to press bodies to the surface

of the earth ; on the contrary, it tends to raise them, as in a liquid,

but with comparatively small force, owing to its small density. It

is upon this principle that the ascent of balloons depends, as we shall

see hereafter.

104. Pascal's Experiments.—It is supposed, though without any de-

cisive proof, that Torricelli derived from Galileo the definite conception

of atmospheric pressure.^ However this may be, when the experiment

of the Italian philosopher became known in France in 1644, no one

was capable of giving the correct explanation of it, and the famous

^ As the weight of a cubic centimetre of mercury at zero is 13*596 grammes, the pres-

sure of 760 millimetres is 13"596 x 76 = 1033"3 grammes per square centimetre = 14'70

pounds per square inch. 760 millimetres are 29*922 inches.

^ In the fountains of the Grand-duke of Tuscany some pumps were required to raise

water from a depth of from 40 to 50 feet. When these were worked, it was found that they

would not draw. Galileo determined the height to which the water rose in their tubes,

and found it to be about 32 feet ; and as he had observed and proved that air has weight,

he readily conceived that it was the weight of a column of the atmosphere which maintained

the water at this height in the pumps. No very useful results, however, were expected

from this discovery, until, at a later date, TorricelU adopted and greatly extended it.

Desiring to repeat the experiment in a more convenient form, he conceived the idea of sub-

stituting for water a liquid that is 14 times as heavy, namely, mercury, rightly imagining

that a column of one-fourteenth of the length would balance the force which sustained 32

feet of water (Biot, Biographic Universelle, article "Torricelli").

—

D.



PASCALS EXPERIMENTS. 145

doctrine that "nature abhors a vacuum," by which the rising of

water in a pump was accounted for, was generally accepted. Pascal

was the first to prove incontestably the falsity of this old doctrine,

and to introduce a more rational belief. For this purpose he pro-

posed or executed a series of ingenious experiments, and discussed

minutely all the phenomena which were attributed t c

to nature's abhorrence of a vacuum, showing that g^j'^^-'^'^Sf
they were necessary consequences of the pressure V '

of the atmosphere.

We may cite in particular the observation, made
at his suggestion, that the height of the mercurial

column decreases in proportion as we ascend.

This beautiful and decisive experiment, which is

repeated as often as heights are measured by the

barometer, and which leaves no doubt as to the

nature of the force which sustains the mercurial

column, was performed for the first time at Cler-

mont, and on the top of the Puy-de-D6me, on the

19th September, 1648.

106. The Barometer.—By fixing the Torricellian

tube in a permanent position, we have a means

of measuring the amount of the atmospheric pres-

sure at any moment ; and this pressure may be

expressed by the height of the column of mercury

which it supports. Such an instrument is called

a harometer. In order that its indications may
be accurate, several precautions must be observed.

In the first place, the liquid used in different

barometers must be identical, for the height of

the column supported naturally depends upon the

density of the liquid employed, and if this varies,

the observations made with different instruments

will not be comparable.

The mercury employed is chemically pure, being

generally made so by washing with a dilute acid

and by subsequent distillation. The barometric

tube is filled nearly full, and is then placed upon a sloping furnace,

and heated till the mercury boils. The object of this process is to

expel the air and moisture which may be contained in the mercurial

column, and which, without this precaution, would gradually ascend
10

Fig. 110.—Barometer in

its simplest form.
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into the vacuum above, and cause a downward pressure of unknown
amount, which would prevent the mercury from rising to the proper

height.

The next step is to fill up the tube with pure mercury, taking

care not to introduce any bubble of air. The tube is then inverted

in a cistern likewise containing pure

mercury recently boiled, and is firmly

fixed in a vertical position, as shown

in Fig. 110.

We have thus a fixed barometer;

and in order to ascertain the atmo-

spheric pressure at any moment, it is

only necessary to measure the height

of the top of the column of mercury

above the surface of the mercury in

the cistern. For this purpose an iron

rod, working in a screw, is fixed ver-

tically above the surface of the mer-

cury in the dish. The extremities of

this rod are pointed, and the lower

extremity being brought down to

touch the surface of the liquid below,

the distance of the upper extremity

from the top of the column of mer-

cury is measured. Adding to this the

length of the rod, which has previ-

ously been determined once for all,

we have the barometric height. This

measurement may be effected with

great precision by means of the cathe-

tometer.

105 a. Cathetometer.—This instru-

5 ment, which is so frequently em-

ployed in physics to measure the ver-

tical distance between two points,

was invented by Dulong and Petit.

It consists essentially (Fig. Ill) of a vertical scale divided usually

into half millimetres. This scale forms part of a brass cylinder capable

of turning very easily about a strong steel axis. This axis is fixed on
a pedestal provided with three levelling screws, and with two spirit-

1-

Fig. 111.—Cathetometer.
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levels at right angles to each other. Along the scale moves a slidino-

frame carrying a telescope furnished with crosswires, that is, with two
very fine threads, usually spider lines, in the focus of the eye-piece,

whose point of intersection serves to determine the line of vision. By
means of a clamp and slow-motion screw, the telescope can be fixed

with great precision at any required height. The telescope is also

provided with a spirit-level arid adjusting screw.

When the apparatus is in correct adjustment,

the line of vision of the telescope is horizontal,

and the graduated scale is vertical. If then we
wish to measure the difference of level between

two points, we have only to sight them succes-

sively, and measure the distance passed over on

the scale, which is done by means of a vernier

attached to the sliding frame.

106. Fortin's Barometer.—The barometer just

described is intended to be fixed ; when porta-

bility is required the barometer invented by
Fortin is employed. It is also

perfectly adapted to general use.

The cistern, which is formed of a

tube of boxwood, surmounted by

a tube of glass, is closed below by
a piece of leather, which can be

raised or lowered by means of a

screw. This screw works in the

bottom of a copper case, which

incloses the cistern except at the

middle, where it is cut away in

front and at the back, so as to

leave the surface of the mercury

open to view. The barometric

tube is encased in a tube of copper,

with two slits at opposite sides

(Fig. 113); and it is on this tube

that the divisions are engraved, the zero point from which they are

reckoned being the lower extremity of an ivory point fixed in the

covering of the cistern. The temperature of the mercury, which is

required for one of the corrections mentioned in next section, is given

by a thermometer with its bulb resting against the tube. A sliding

Fig. 113. Fig. 112.

Upper poi-tion of Cistern of Fortin's

Barometer. Barometer.
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piece, furnished with a vernier,^ moves along the tube by means of

the screw B, and enables us to determine the height with great pre-

cision. Its lower edge is the zero of the vernier. The way in which

the barometric tube is fixed upon the cistern is worth notice. In the

centre of the upper surface of the copper casing there is an opening,

from which rises a short tube of the same metal, lined with a tube of

boxwood. The barometric tube is pushed inside, and fitted in with

a piece of chamois leather, which prevents the mercury from issuing;

but does not exclude the air, which, passing through the pores of the

leather, penetrates into the cistern, and so transmits its pressure.

Before taking an observation, the surface of the mercury is adjusted,

by means of the lower screw, to touch the ivory point. The observer

knows when this condition is fulfilled by seeing the extremity of the

point touch its image in the mercury. The vernier is then raised or

lowered, until the horizontal plane in which its zero lies is tangential

^ The vernier is an instrument very largely employed for measuring tlie fractions of a

unit of length on any scale. Suppose we have a scale divided into inches, and another

scale containing nine inches divided into ten equal parts. If now we make the end of this

latter scale, which is called the vernier, coincide with one of the divisions in the scale of

inches, as each division of the vernier is -^^ of an inch, it is evident that the first division

on the scale will be -^^ of an inch beyond the first division on the vernier, the second on the

scale j2g beyond the second on the vernier, and so on until the ninth on the scale, which

012J<r6678.> 1 1 i 3 * 5 6

1 1 1 1 1 1 1 1 10123456789 10

|123*SS789T123*5
'

1 1 1 1 1
'

1 1 1 1

1 2 .1 4 S 6 7 8 9 jO

Fig. 114.—Vernier.

will exactly coincide with the tenth on the vernier. Suppose next that in measuring

any length we find that its extremity lies between the degrees 5 and 6 on the scale; we
bring the zero of the vernier opposite the extremity of the length to be measured, and

observe what division on the vernier coincides with one of the divisions on the scale. We
see in the figure that it is the seventh, and thus we conclude that the fraction required is

^Q of an inch.

If the vernier consisted of 19 inches divided into 20 equal parts, it would read to the -^^

of an inch; but there is a limit to the precision that can thus be obtained. An exact coin-

cidence of a division on the vernier with one on the scale seldom or never takes place, and

we merely take the division which approaches nearest to this coincidence; so that when

the difference between the degrees on the vernier and those on the scale is very small, there

may be so much uncertainty in this selection as to nullify the theoretical precision of the

instrument. Verniers are also employed to measure angles ; when a circle is divided into

half degrees, a vernier is used which gives jg of a division on the circle, that is, -^^ of a

half degree, or one minute.

—

J).
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to the upper surface of the mercurial column, as shown in Fig. 113.
In making this adjustment, the back of the instrument should be
turned towards a good light, in order that the observer may be cer-
tain of the position in

which the light is just

cut off at the summit of

the convexity.

When the instrument

is to be moved, the

screw at the bottom is

turned until the tube is

filled. The cistern will

then be full also, and
the barometer should be

inverted, as an addi-

tional safeguard both

against the introduction

of air and the escape of

mercury. In making
observations upon the

surface of the ground,

the instrument is sus-

pended from a tripod

stand by gimbals,^ so

that it always takes a

vertical position; or it

may be fixed perman-

ently against a wall.

106a. Float Adjust-

ment.—In some baro-

meters the ivory point

forindicating the proper ^|

level of the mercury in

the cistern is replaced

by a float. F (Fig. 107)

is a small ivory piston, having the float attached to its foot, and

moving freely up and down between the two ivory guides I. A
horizontal line (interrupted by the piston) is engraved on the two

^ A kind of universal joint, in common use on board ship for the suspension of com-

passes, lamps, &c. It is seen in Fig. 115, at the top of the tripod stand.

Fig. 115.—Barometer with Tripod Stand.
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guides, and another is engraved on tlie piston, at such a height that

the three lines form one straight line when the surface of the mer-

cury in the cistern stands at the zero point of the scale.

107. Barometric Corrections.— In order that baro-

metric heights may be comparable as measures of

atmospheric pressure, certain corrections must be ap-

plied.

1. Correction for Tew^^erature. As mercury expands

with heat, it follows that a column of warm mercury

exerts less pressure than a column of the same height

at a lower temperature; and it is usual to reduce the

actual heiojht of the column to the heio^ht of a column

at the temperature of freezing water, which would

exert the same pressure.

Let h be the observed height at temperature f Centi-

grade, and h^ the height reduced to freezing-point.

Then, if m be the coefficient of expansion of mercury

per degree Cent., we have

h^ {1-^mt)— Ji, whence h^ =h-hmt nearly.

The value of m (Chap, xxii.) is —^ =-00018018. For temperatures

Fahrenheit, we have

where m denotes ——=0001001.

But temperature also affects the length of the divisions on the

scale by which the height of the mercurial column is measured. If

these divisions be true inches at 0° Cent., then at t° the length of n
divisions will he n (1-^lf) inches, I denoting the coefficient of linear

expansion of the scale, the value of which for brass, the usual

material, is -00001878. If then the observed height h amounts to

n divisions of the scale, we have

h^ {l+mt) = h='n (l + lt);

whence
, n{l + lt)

Fig. 107.

Float Adjustments

1+mt n-nt {m-l), nearly

;

that is to say, if n be the height read off on the scale, it must be

diminished by the correction nt (m—l), t denoting the temperature

of the mercury in degrees Centigrade. The value of m— l is

•0001614.
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For temperatures Fahrenheit, assuming the scale to be of the

correct length at 32° Fahr., the formula for the correction (which is

still subtract!ve), is n (^—32) (m—l), where m— l has the value

•00008967.^

2. Correction for Capillarity.—In the preceding chapter we have

seen that mercury in a glass tube undergoes a capillary depression,

whence it follows that the observed barometric height is too small,

and that we must add to it the amount of this depression. In all

tubes of internal diameter less than about f of an inch this correction

is sensible; and its amount, for which no simple formula can be given,

has been computed, from theoretical considerations, for various sizes

of tube, by several eminent mathematicians, and recorded in tables,

from which that given below is abridged. These values are applicable

on the assumption that the meniscus which forms the summit of the

mercurial column is decidedly convex, as it always is when the mer-

cury is rising. When the meniscus is too flat, the mercury must be

lowered by the foot-screw, and then screwed up again.

It is found by experiment, that the amount of capillary depression

is only half as great when the mercury has been boiled in the tube,

as when this precaution has been neglected.

For purposes of special accuracy, tables have been computed,

^ The correction for temperature is usually made by the help of tables, which give its

amount for all ordinary temperatures and heights. These tables, when intended for

English barometers, are generally constructed on the assumption that the scale is of the

correct length not at 32° Fahr., but at 62° Fahr,, which is (by act of Parhament) the

temperature at which the British standard yard (preserved in the office of the Exchequer)

is correct. On this supposition, the length of n divisions of the scale at temperature t°

Fahr., is

n{l + l {t-62)};

and by equating this expression to

K{l+m(t-Z2)}
we find

h^ = n{i-m{t-Z2) + l{t-62)}

=n{l- (m-T) t + {Z2m-62l)}

=n{l- -00008967 «+ -00255654} ;

which, omitting superfluous decimals, may conveniently be put in the form—

•

n--I!— (-09 «- 2-56).

1000

The correction vanishes when
•09^-2-56 = 0;

that is, when t = fri = 2S-5.
9

For all temperatures higher than this the correction is subtractive.
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giving the amount of capillary depression for different degrees of

convexity, as determined by the sagitta (or height) of the meniscus,

taken in conjunction with the diameter of the tube. Such tables,

however, are seldom used in this country.^

Table of Capillary Depressions in Unboiled Tubes.

{To he halved for Boiled Tubes.)

Diar
tube]

neter of
in inches.

Depression. Diameter. Depression. Diameter. Depression.

10 •140 •20 •058 •40 •015

11 •126 •22 •050 •42 •013

12 •114 •24 •044 •44 •Oil

13 •104 •26 •038 •46 •009

14 •094 •28 •033 •48 •008

15 •086 •30 •029 •50 •007

16 •079 •32 •026 •55 •005

17 •073 •34 •023 •60 •004

18 •068 •36 •020 •65 •003

•19 •063 •38 •017 •70 •002

3. Correction for Capacity.—When there is no provision for ad-

justing the level of the mercury in the cistern to the zero point of

the scale, another correction must be applied. It is called the cor-

rection for capacity. In barometers of this construction, which were

formerly much more common than they are at present, there is a

certain point in the scale at which the mercurial column stands when
the mercury in the cistern is at the correct level. This is called the

neutral point. If A be the interior area of the tube, and C the area

of the cistern (exclusive of the space occupied by the tube and its

contents), when the mercury in the tube rises by the amount x, the

mercury in the cistern falls by an amount yzz^x, for the volume of

the mercury which has passed from the cistern into the tube is

Cy= Ax. The change of atmospheric pressure is correctly measured

hy x+y= {\ -{- ^) X, and if we now take x to denote the distance of

the summit of the mercurial column from the neutral point, the cor-

rected distance will be (l +q) x, and the correction to be applied to

the observed reading will be ^ x, which is additive if the observed

reading be above the neutral point, subtractive if below.

It is worthy of remark that the neutral point depends upon the

' The most complete collection of meteorological and physical tables, is that edited by
Professor Guyot, and published under the auspices of the Smithsonian Institution, Wash-
ington.
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volume of mercury. It will be altered if any mercnry be lost or

added; and as temperature affects the volume, a special temperature-

correction must be applied to barometers of this class. The investi-

gation will be found in a paper by Professor Swan in the Philosophical

Magazine for 1861.

In some modern instruments the correction for capacity is avoided,

by making the divisions on the scale less than true inches, in the

c
ratio j^.Q , and the effect of capillarity is at the same time compen-

sated by lowering the zero point of the scale. Such instruments, if

correctly made, simply require to be corrected for temperature.

4. Index Errors.—Under this name are included errors of gradua-

tion, and errors in the position of the zero of the graduations. An
error of zero makes all readings too high or too low by the same

amount. Errors of graduation (which are generally exceedingly

small) are different for different parts of the scale.

Barometers intended for accurate observation are now usually

examined at Kew Observatory before being sent out; and a table is

furnished with each, showing its index error at every half inch of

the scale, errors of capillarity and capacity (if any) being included as

part of the index error. We may make a remark here once for all

respecting the signs attached to errors and corrections. The sign of

an error is always opposite to that of its correction. When a reading

is too high the index error is one of excess, and is therefore positive;

whereas the correction needed to make the reading true is subtrac-

tive, and is therefore negative.

5. Reduction to Sea-level.—In comparing barometric observations

taken over an extensive district for meteorological purposes, it is

usual to apply a correction for difference of level. Atmospheric pres-

sure, as we have seen, diminishes as we ascend; and it is usual to add

to the observed height the difference of pressure due to the elevation

of the place above sea-level. The amount of this correction is pro-

portional to the observed pressure. The law according to which it

increases with the height will be discussed in the next chapter.

6. Correction for Unequal Intensity of Gravity.—When two

barometers indicate the same height, at places where the intensity of

gravity is different (for example, at the pole and the equator), the

same mass of air is superincumbent over both ; but the pressures are

unequal, being proportional to the intensity of gravity as measured

by the values of g (Chaps, v. vi.) at the two places. When intensity
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of pressure is to be expressed in absolute measure, it should be stated

in absolute units of force (§ 42) per unit area. If we adopt as our ab-

solute unit of force, that force which, acting on a pound of matter for

a second, would generate a velocity of a foot per second, it is neces-

sary that the square foot should be made the unit of area.

Since the force of gravity on a pound contains g absolute units of

force, and the weight of 144 cubic inches of mercury at 0° Centigrade

is 707275 lbs., we have the following rules for reducing pressure per

unit area to absolute measure:

—

To reduce lbs. per sq. foot to absolute measure, multiply by g.

,, lbs. per sq. inch „ ,, 144 r/.

„ inches of mercury ,, „ grx 70*7275.

108. Other kinds of Mercurial Barometer.—The Siphon Barometer,

which is represented in Fig. 1 1 6, consists of a bent tube, generally

of uniform bore, having two unequal legs. The longer

leg, which must be more than .30 inches long, is closed,

while the shorter leg is open. A sufficient quantity of

mercury having been introduced to fill the longer leg, the

instrument is set upright (after boiling to expel air), and

the mercury takes such a position, that the difference of

levels in the two legs represents the pressure of the atmo-

sphere.

Supposing the tube to be of uniform section, the mercury

will always fall as much in one leg as it rises in the other.

Each end of the mercurial column therefore rises or falls

through only half the height corresponding to the change

of atmospheric pressure.

In the best siphon barometers there are two scales, one

for each leg, as indicated in the figure, the divisions on

one being reckoned upwards, and on the other downwards,

Fig. 116. from an intermediate zero point, so that the sum of the

Barometer ^^^ readings is the difference of levels of the mercury in

the two branches.

Inasmuch as capillarity tends to depress both extremities of the

mercurial column, its effect is generally neglected in siphon baro-

meters; but practically it causes great difficulty in obtaining accurate

observations, for according as the mercury is rising or falling its

extremity is more or less convex, and a great deal of tapping is

usually required to make both ends of the column assume the same

f
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form, which is the condition necessary for annihilating the effect of

capillary action.

Wheel Barometer.—The wheel barometer, which is in more gen-

eral use than its merits deserve, consists of a siphon barometer,

the two branches of which have usually the same diameter. On
the surface of the mercury of the open branch floats a small piece

Fig. 118.—Wheel Barometer.

of iron or glass suspended by a thread, the other extremity of which

is fixed to a pulley, on which the thread is partly rolled. Another

thread, rolled parallel to the first, supports a weight which balances

the float. To the axis of the pulley is fixed a needle which moves on

a dial. When the level of the mercury varies in either direction, the

float follows its movement through the same distance; by the action

of the counterpoise the pulley turns, and with it the needle, the ex-

tremity of which points to the figures on the dial, marking the baro-
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a

metric heights. The mounting of the dial is usually placed in front

of the tube, so as to conceal its presence. The wheel barometer is a

very old invention, and was introduced by the celebrated Hooke in

1683. The pulley and strings are sometimes replaced by a rack and

pinion, as represented in the figure (Fig. 118).

Besides the faults incidental to the siphon barometer, the wheel

barometer is encumbered in its movements by the friction of the

additional apparatus. It is quite unsuitable for measuring the exact

amount of atmospheric pressure, and is slow in indicating changes.

Marine. Barometer.—The ordinary mercurial barometer cannot be

used at sea, on account of the violent oscillations which the mercury

would experience from the motion of the vessel. In order to meet

this difficulty, the tube is contracted in its middle

portion nearly to capillary dimensions, so that the

motion of the mercury in either direction is hindered.

An instrument thus constructed is called a marine

barometer. When such an instrument is used on land

it is always too slow in its indications.

Adies Barometer.—A very convenient form of

barometer, which is extensively used under the direc-

tion of the Board of Trade, is constructed by Adie

of London. The error of capillarity is allowed for

in fixing the zero point of the scale. The error of

capacity is obviated by making the divisions of the

scale less than true inches, in such a ratio as exactly

to correct for capacity. The observer, therefore, has

merely to read the height of the top of the mercurial

column, and correct for temperature. The tube is

generally contracted in its middle part, to diminish

the "pumping" (i.e. oscillation), which occurs when
it is carried from place to place ; but the contraction

is much less than in the marine barometer.

108 a. Sympiesometer (o-vj', 7r<f<^w).—Adie's sympie-

someter (Fig. 117) consists of a glass tube 18 inches

in length and f inch in diameter, with a small

chamber at the top, and an open cistern below. In

the original construction the upper part of the tube

was filled with hydrogen, and the lower part and

cistern with oil of almonds. In the construction now employed these

materials are replaced by common air and glycerine.

/ i

V

Fig. 117

Sympiesometftr.
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'hen the pressure of the atmosphere increases, the air in the upper

part of the tube is compressed, and the fluid rises ; when it diminishes,

the fluid falls. The instrument is graduated by comparison with a

mercurial barometer. The intervals corresponding to inches of mer-

curial pressure are much longer than inches, and are of unequal

length, becoming shorter as we ascend on the tube. To obviate error

from the increased pressure of the inclosed air when its temperature

is raised, a thermometer and sliding scale are added to the instru-

ment, so that it may be adjusted for temperature at each observation.

The sympiesometer is very quick in its indications, and from its

portability is well adapted for being used at sea, but it is not suited

for exact observation.

As originally made it was liable to gradual change, from absorption

of the hydrogen by the oil of almonds. In the present construction

absorption is less liable to occur, at least if the glycerine be of the

proper consistency.

109. Aneroid Barometer (a, vrjpog).—This barometer depends upon

Fig. 119.—Aneroid Barometer.

the changes in the form of a thin metallic vessel, partially exhausted

of air, as the atmospheric pressure varies. M. Vidie was the flrst to

overcome the numerous difficulties which were presented in the con-
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struction of these instruments.
,
We subjoin a figure of the model

which he finally adopted.

The essential part is a cylindrical box partially exhausted of air,

the upper surface of which is corrugated in order to make it yield

more easily to external pressure. At the centre of the top of the

box is a small metallic pillar M, which acts upon a powerful steel

spring E,. As the pressure varies, the top of the box rises or falls,

transmitting its movement to the spring, and thence, by means of

two levers I and m, to a metallic axis r. This latter carries a third

lever t, the extremity of which is attached to a chain s which turns

a drum, the axis of which bears the index needle. A spiral spring

keeps the chain constantly stretched, and thus makes the needle

always take a position corresponding to the shape of the box at the

time. The graduation is performed empirically by comparison with

a mercurial barometer. The aneroid barometer is very sensitive, and

is much more portable than any form of mercurial barometer, being

both lighter and less liable to injury. It is sometimes made small

enough for the waistcoat pocket. It has the drawback of being

affected by temperature to an extent which must be determined for

each instrument separately, and of being liable to gradual changes

which can only be checked by occasional comparison with a good

mercurial barometer.

In the Tnetallic harometer, which is a modification of the aneroid,

the exhausted box is crescent-shaped, and the horns of the crescent

separate or approach according as the external pressure diminishes

or increases.

110. Old Forms Revived.—There are two ingenious modifications of

the form of the barometer, which, after long neglect, have recently

been revived for special purposes.

Counterpoised Barometer.—The invention of this instrument is

attributed to Samuel Morland, who constructed it about the year

1680. It depends upon the following principle:—If the barometric

tube is suspended from one of the scales of a balance, there will be

required to balance it in the other scale a weight equal to the weight

of the tube and the mercury contained in it, minus the upward

pressure of the liquid against the bottom of the tube and its contents.^

^ It may be shown that if a be the (annular) area of a section of the tube itself, and A
the area of the inclosed space (which is filled with mercury), the resultant force to which

the tube is subjected from atmospheric and liquid pressure combined is a downward force

FA -pa,
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If the atmospheric pressure increases, the mercury will rise in the
tube, and consequently the weight of the floating body will increase,
while the upward pressure will be slightly diminished on account of
the sinking of the mer-

cury in the cistern. The
beam will thus incline

to the side of the baro

metric tube, and the

reverse would be the

case if the pressure dim-

inished. For the balance

may be substituted, as

in the figure, a lever

carrying a counterpoise

;

the variations of pres-

sure will be indicated

by the movements of

this lever.

Such an instrument

may very well be used

as a barograph or re-

cording barometer; for

this purpose we have ^
only to attach to the

lever an arm with a

pencil, which is con-

stantly in contact with a sheet of paper moved uniformly by clock-

work. The result will be a continuous trace, whose form corresponds

to the variations of pressure. It is very easy to determine, either by

calculation or by comparison with a standard barometer, the pres-

sure corresponding to a given position of the pencil on the paper;

P denoting atmospheric pressure, and p the fluid pressure due to the depth of immersion

(exclusive of the transmitted atmospheric pressure). This resultant force together with the

weight of the tube must be equal to the supporting force at the point of suspension. If the

latter be constant, PA -pa must be constant, and the changes in P and p must be inversely

as the areas A and a. If these areas are equal P and p will be equal; that is, the tube wiU

descend through the same distance as the mercury in a common barometer would rise; and

if A is greater than a, the movement will be proportionately magnified. For great sensi-

tiveness, therefore, the tube should be large and thin.

We have here neglected the changes of level in the mercury in which the tube is im-

mersed. These changes tend to increase the distance moved by the tube, and must be

added to the movements as above calculated.

Fig. 120.—Counterpoised Barometer.
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thus, if the paper is ruled with twenty-four equidistant lines, corre-

sponding to the twenty-four hours of the day, we can see at a glance

what was the pressure at any given time. An arrangement of this

kind has been adopted by the Abb^ Secchi for the meteorograph of

the observatory at Rome. The first successful employment of this

kind of barograph appears to be due to Mr. Alfred King, a gas

engineer of Liverpool, who invented and constructed such an instru-

ment in 1853, for the use of the Liverpool Observatory, and subse-

quently designed a larger one, which is still in use, furnishing a very

perfect record, magnified five-and-a-half times.

Fahrenheit s Barometer.—Fahrenheit's barometer consists of a tube

bent several times, the lower portions of

which contain mercury; the upper por-

tions are filled with water, or any other

liquid, usually coloured. It is evident

that the atmospheric pressure is balanced

by the sum of the differences of level of

the columns of mercury, diminished by

the sum of the corresponding differences

for the columns of water ; whence it fol-

lows that, by employing a considerable

number of tubes, we may greatly reduce

the height of the barometric column.

This circumstance renders the instru-

ment interesting as a scientific curiosity,

but at the same time diminishes its sensitiveness, and renders it unfit

for purposes of precision. It is therefore never used for the measure-

ment of atmospheric pressure; but an instrument upon the same

principle has recently been employed for the measurement of very

high pressures, as will be explained in Chap. xiv.

110a. Photographic Registration.— Since the year 1847 various

meteorological instruments at the Royal Observatory, Greenwich,

have been made to yield continuous traces of their indications by the

aid of photography, and the method is now generally employed at

meteorological observatories in this country. The Greenwich system

is fully described in the Greenwich Magnetical and Meteorological

Observations for 1847, pp. Ixiii.-xc. (published in 1849).

The general principle adopted for all the instruments is the same.

The photographic paper is wrapped round a glass cylinder, and the

axis of the cylinder is made parallel to the direction of the move-

Fig. 121.—Fahrenheit's Barometer.
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ment which is to be registered. The cylinder is turned by clockwork,

with uniform velocity. The spot of light (for the magnets and

barometer), or the boundary of the line of light (for the thermometers),

moves, with the movements which are to be registered, backwards

and forwai;ds in the direction of the axis of the cylinder, while the

cylinder itself is turned round. Consequently (as in Morin's machine,

Chap, v.), when the paper is unwrapped from its cylindrical form,

there is traced upon it a curve of which the abscissa is proportional

to the time, while tlie ordinate is proportional to the movement which

is the subject of measure.

The barometer employed in connection with this system is a large

siphon barometer, the bore of the upper and lower extremities of its

arms being about 1*1 inch. A glass float in the quicksilver of the

lower extremity is partially supported by a counterpoise acting on a

light lever (which turns on delicate pivots), so that the wire support-

ing the float is constantly stretched, leaving a definite part of the

weight of the float to be supported by the quicksilver. This lever is

lengthened to carry a vertical plate of opaque mica with a small aper-

ture, whose distance from the fulcrum is eight times the distance of

the point of attachment of the float-wire, and whose movement,

therefore (§ 108), is four times the movement of the column of a cistern

barometer. Through this hole the light of a lamp, collected by a

cylindrical lens, shines upon the photographic paper.

Eveiy part of the cylinder, except that on which the spot of light

falls, is covered with a case of blackened zinc, having a slit parallel

to the axis of the cylinder; and by means of a second lamp shining

through a small flxed aperture, and a second cylindrical lens, a base

line is traced upon the paper, which serves for reference in subsequent

measurements.

The whole apparatus, or any other apparatus which serves to give

a continuous trace of barometric indications, is called a barograph;

and the names thermograph, magnetograph, anemograph, &c., are

similarly applied to other instruments for automatic registration.

11



CHAPTER XIII.

VARIATIONS OF THE BAROMETER.

111. Measurement of Heights by the Barometer.—As the height of

the barometric column diminishes when we ascend in the atmosphere,

it is natural to seek in this phenomenon a means of measuring heights.

The problem would be extremely simple, if the air had everywhere

the same density as at the surface of the earth. In fact, the density

of the air at sea-level being about 10,500 times less than that of

mercury, it follows that, on the hypothesis of uniform density, the

mercurial column would fall an inch for every 10,500 inches, or 875

feet, that we ascend. This result, however, is far from being in

exact accordance with fact, inasmuch as the density of the air

diminishes very rapidly as we ascend, on account of its great com-

pressibility.

Ill A. Height of Homogeneous Atmosphere.—If the atmosphere were

of uniform and constant density, its height would be approximately

obtained by multiplying 30 inches by 10,500, which gives 26,250

feet, or about 5 miles.

More accurately, if we denote by H the height of the atmosphere

at a given time and place, on the assumption that the density

throughout is the same as the observed density D at the base, and if

we denote by P the observed pressure at the base, expressed in

absolute units of force per unit area (§ 107, 6), then since the

pressure P must be equal to the weight of a column of volume H and

of mass HD, we have

P = gr HD H = ^ (1)

The height H, computed on this imaginary assumption, is called the

height of the homogeneous atmosjjhere, corresponding to the pressure

P, density D, and intensity of gravity g, and is frequently introduced

in physical formulae.
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The expression for H shows that its value is not affected if P and

D vary in the same ratio, as is the case in barometric fluctuations

when the temperature is constant ; but that increase of temperature

and increase of moisture increase H, since warm air and moist air are

less dense than cold and dry air at the same pressure.

It is not necessary that.the height H should be reckoned" from the

surface of the earth. It may be reckoned upwards from any point in

the atmosphere, and denotes the height which the air above this point

would have, if reduced to the density D which exists at the point.

Neglecting difierences of temperature and moisture, and the trifling

diminution of gravity as we ascend, the value of H is the same for

all points in the same vertical column, because, as we ascend, P and D
diminish in the same ratio.

112. Principles of Hypsometry.—Supposing the temperature, mois-

ture, and intensity of gravity to be uniform in

a vertical column of air, it is easy to state the

law according to which the pressure would d"

diminish as we ascend. Consider, for example,
^'

three layers of equal thickness, which is so

small that we may regard the density as con-

stant within the limits of each layer, though

varying from each layer to the next. Let

D, D', D'' be their densities, and P, F, P'' the

pressures at their lower faces, the weights of

the two lower layers are P—F and P'— P",
'^'

and these must be proportional to their densities ; hence we have

P' _ p" D''

DP P — P' P
but by Boyle's law p'=p>; consequently we have p,"p„ =p>, whence

it easily follows that p?=^> ^^^^ ^s to say, the ratio of the density of

the flrst layer to that jf the second, is the same as of the second to

the third. Applying this principle to any number of consecutive

layers of equal thickness, we see that the ratio of the density of each

to that of the next will be the same for the whole series. It follows

that, as the heights increase in arithmetical progression, the pres-

sures diminish in geometrical progression.

This proposition may be put into the algebraical form:

p
a;2-a;i=Hlog—5_,
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where iCi, x^ are the heights of two stations above a fixed level,

Pi, P2 the pressures at the two stations, and H some constant. The

proof given in the note^ shows, that if the logarithms are Napierian,

H is equal to the height of the homogeneous atmosphere. If the

logarithms be of the common kind, H is equal to the height of the

homogeneous atmosphere multiplied by 2 "3026, the value of which

product for the latitude of Great Britain, and for the temperature of

freezing water, is about 60,360 feet.

This formula has been deduced on the supposition that the tem-

perature and the intensity of gravity are uniform through the whole

extent of the air between the two stations. If these two elements

vary, they cause the value of H to vary ; and it would be necessary

for accuracy to employ in the formula the mean value of H for the

stratum of air which intervenes between the two stations. The

variation in the intensity of gravity is usually insignificant, and it is

customary to assume as the mean temperature, the arithmetical mean
of the temperatures tj^ and t^ of the two stations. On these assump-

tions the value of H, if the temperatures be expressed in degrees

Fahrenheit, will (by the law of expansion of air. Chap, xxiii.) be

60,360 (l+ '^''g^86^^
)-

It is proved in treatises on logarithms that if -p-^ be but little

greater than unity.

Nap. log ^' = 2 '"J' nearly;

and since the height of the homogeneous atmosphere at freezing

temperature in these latitudes is about 26,214 feet, we obtain the

formula

—

Diflference of level in feet= 52428 ^^^^ (l +
^
' '^h^

^^
)*

which may be used for differences of level not exceeding about 3000

feet.

^ Let X denote distance measured upwards from a fixed level, then, using the notation

of § 111a, the pressure due to the weight.of a layer of thickness dx ia gD dx; but this is the

amount by which the pressure diminishes as x is increased by the amount dx; we have

therefore

p
-rfP = g D dx = ^^dx,

p
since by§lllA, g D — —. We have therefore

H
p- =

jj,
whence log Pi - log Pg = —^1^^
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The determination of heights by means of atmospheric pressure,

whether the pressure be observed directly by the barometer or in

directly by the boiling-point thermometer (see Chap, xxvi.), is

called hypsometry (v^pog, height).

As a rough rule, it may be stated that, in ordinary circumstances,

the barometer falls an inch in ascending 900 feet.

113. Diurnal Oscillation of the Barometer.—In these latitudes, the

mercurial column is in a continual state of irregular oscillation ; but in

the tropics it rises and falls with great regularity according to the

hour of the day, attaining two maxima in the twenty-four hours.

It generally rises from 4 A.M. to 10 A.M., when it attains its first

maximum; it then falls till 4 P.M., when it attains its first minimum;
a second maximum is observed at 10 P.M., and a second minimum at

4 A.M. The hours of maxima and minima are called the tropical

hours {rpeirb), to turn), and vary a little with the season of the year.

The diflference between the highest maximum and lowest minimum
is called the diurnaP range, and the half of this is called the ampli-

tude of the diurnal oscillation. The amount of the former does not

exceed about a tenth of an inch.

The character of this diurnal oscillation is represented in Fig. 123.

The vertical lines correspond to the hours of the day ; lengths have

been measured upwards upon them proportional to the barometric

heights at the respective hours, diminished by a constant quantity;

and the points thus determined have been connected by a continuous

curve. It will be observed that the two lower curves, one of which

relates to Cumana, a town of Venezuela, situated in about 10° north

latitude, show strongly marked oscillations corresponding to the

maxima and minima. In our own country the regular diurnal oscil-

lation is marked by irregular fluctuations, so that a single day's

observations give no clue to its existence. Nevertheless, on taking

observations at regular hours for a number of consecutive days, and

comparing the mean heights for the different hours, some indications

of the law will be found. A month's observations will be sufiacient

^ The epithets annual and diurnal, when prefixed to the words variation, range, ampli-

tude, denote the period of the variation in question; that is, the time of a complete oscilla-

tion. Diurnal variation does not denote variation frpm one day to another, but the varia-

tion which goes through its cycle of values in one day of twenty- four hours. Annual
range denotes the range that occurs within a year. This rule is universally observed by
writers of high scientific authority.

A table, exhibiting the values of an element for each month in the year, is a table of

annual (not monthly) variation ; or it may be more particularly described as a table of

variations from month to month.
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Fig. 123.

Curves of Diurnal Variation.

for an approximate indication of the law ; biit observations, extend-

ing over some years, will be required to establish with anything like

precision the hours of maxima and the ampli-

tude of the oscillation.

The two upper curves represent the diurnal

variation of the barometer at Padua (lat. 45° 24')

and Abo (lat. 60° 56'), the data having been

extracted from Kaemtz's Meteorology. We
see, by inspection of the figure, that the oscil-

lation in question becomes less strongly marked
as the latitude increases. The range at Abo iso
less than half a millimetre. At about the 70th

degree of north latitude it becomes insensible;

and in approaching still nearer to the pole, it appears from observa-

tions, which however need further confirmation, that the oscillation

is reversed ; that is to say, that the maxima here are contemporane-

ous with the minima in lower latitudes.

There can be little doubt that the diurnal oscillation of the

barometer is in some way attributable to the heat received from the

sun, which produces expansion of the air, both directly, as a mere

consequence of heating, and, indirectly, by promoting evaporation,

and thus increasing the volume of the air (as well as diminishing its

sp. gravity) by the addition of aqueous vapour. The precise nature

of the connection between this cause and the diurnal barometric

oscillation has not, however, as yet been satisfactorily established.

114. Irregular Variations of the Barometer.—The height of the baro-

meter, at least in the temperate zones, depends on the state of the

atmosphere, and its variations often serve to predict the changes of

weather with more or less certainty. In this country the barometer

generally falls for rain or S.W. wind, and rises for fine weather or

N.E. wind.

Barometers for popular use have generally the words

—

Set fair. Fair. Change. Rain. Much rain. Stormy.

30-5 30 29-5 29 28-5 28 inches.

marked at the respective heights. These words must not, however,

be understood as absolute predictions. A low barometer rising is

generally a sign of fine, and a high barometer falling of wet weather.

Moreover, it is to be borne in mind that the barometer stands about

a tenth of an inch lower for every hundred feet that we ascend above

sea-level.
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The connection between a low or falling barometer and wet wea-

ther is to be found in the fact that moist air is specifically lighter

than dry, even at the same temperature, and still more when, as

usually happens, moist air is warmer than dry.

115. Inverse March of Barometer and Thermometer.—It is impossible

to laydown universal rules for the connectionbetween the indications of

the barometer and the state of the weather, since rules which would

usually hold true in one place might be quite inapplicable at another.

We may, however, state a principle which is of very extensive applica-

tion, namely, that warm winds, especially when they have passed over

considerable masses of water, are likely to be accompanied by rain

;

for they are charged with vapour which is liable to be condensed as

its temperature falls. Cold winds, on the contrary, contain vapour

which was taken up at a lower temperature than it now has, and is

therefore far from a state of saturation. They are therefore unlikely

to produce rain unless it be when they first begin to blow, when they

may condense vapour previously existing in the air.

These characteristics are very marked in our own country, where

the warm winds from the south-west have passed over the Atlantic,

while the cold winds from the north-east have for the most part

traversed dry land.

Again, the march of the barometer is in general opposite to that

of the thermometer; that is to say, the barometer usually falls when

the thermometer rises, and vice versa. This law is one of the most

general in meteorology, and is easily explained; in fact, when the

temperature rises at any place, it pro-

duces a dilatation of the air, and conse-

quently an overflow into neighbouring

regions ; the weight of air over the place

is thus diminished. On the contrary, a

fall of temperature produces an inflow

of air and an increase of pressure.

It is therefore to be expected that

the mean barometric height should be

lower during warm and rainy winds

than during cold and dry winds ; and

that this is the case is rendered ex-

tremely evident by the annexed figure, which represents the mean

barometric rose of the winds at Paris. Upon each of the eight lines

which represent the principal directions of the wind, have been laid

Fig. 124.

Barometric Eose of Winds at Paris.
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off lengths proportional to the corresponding barometric pressures

diminished by a constant. The figure shows a very sudden increase

in passing from S.W. to W. It is, in fact, during the change of the

wind from one of these quarters to the other, that the greatest atmo-

spheric perturbations occur.

116. Synoptic Weather Charts. Isobaric Lines.—The extension of

telegraphic communication over Europe has led to the establishment

of a system of correspondence by which the barometric pressures, at a

oriven moment, at a number of stations which have been selected for

meteorological observation, are known at one or more stations ap-

pointed for receiving the reports. From the information thus fur-

nished, curves (called isobaric lines) are drawn upon a chart through

those places at which the pressure is the same. The barometric

condition of an extensive region is thus rendered intelligible at a

glance. Plate I. is a specimen of these synoptic charts,^ which are

prepared every day at the observatory of Paris ; it refers to the 22d

of January, 1868. Besides the isobaric lines, these charts indicate,

by the system of notation explained at the left of the figure, the

general state of the weather, the strength of wind, and state of the

sea. The isobaric curves correspond to diflferences of five millimetres

(about 0*2 inch) of pressure, and according as they are near together,

or far apart, the variation of pressure in passing from one to another

is more or less sudden (or to use a very expressive modern phrase,

the barometric gradient is more or less steep), just as the contour

lines on a map of hilly ground approach each other most nearl}^

where the ground is steepest. Generally speaking, the wind blows

from regions of high to regions of low barometer, and with greater

force as the barometric gradient is steeper.

The isobaric lines frequently, as in the example here selected, form

closed curves encircling a region of barometric depression. Two such

centres are here exhibited—one in the south of England and the

other in the west of Russia. Such centres of depression always

accompany great atmospheric disturbances. The air, in fact, rushes

^ The curves drawn upon this chart are isobaric lines, each corresponding to a particular

barometric pressure, which is indicated by the numerals marked against it. These denote

the pressure in millimetres diminished by 700. For example, the line which passes through

the south of Spain corresponds to the pressure 770 millimetres ; that through the north of

Spain to 765 millimetres. The curves are drawn for every fifth millimetre. The smaller

numerals, which are given to one place of decimals, indicate the pressures actually observed

at the different stations, from which the isobaric lines are drawn by estimation.

The other symbols refer to cloud, wind, and sea, and are explained at the left of the

chart.
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in from all sides, usually with a spiral motion, towards these centres

of depression, the direction of rotation in the spiral being, for the

northern hemisphere, opposite to the motion of the hands of a watch

with its face upwards. The centrifugal force due to this rotation

tends to increase the central depression, and thus protracts the dura-

tion of the phenomenon.

These revolving storms are called cyclones. They attain their

greatest violence in tropical regions, the West Indies being especially

noted for their destructive effect. They frequently proceed from the

Gulf of Mexico in a north-easterly direction, increasing in diameter

as they proceed, but diminishing in violence. Their velocity of

translation is usually from ten to twenty miles an hour.

The storm-warnings inaugurated by the late Admiral Fitzroy are

based partly upon information received by telegraph of storms that

have actually commenced at some distant locality, and partly upon
a comparison of barometric pressures at different localities.^

^ For fuller information respecting the Istws of storms, which is a purely modem subject,

and is continually receiving fresh developments, we would refer to Mr. Buchan's Bandy
Book of Meteorology. See also § 406 a in Part II. of the present Work.

It will be observed, by the arrows in the annexed chart, that the direction of the wind,

instead of being coincident with the line of steepest descent from each isobaric curve to

the next below it, generally makes a large angle (considerably exceeding 45°) to the right

of it. This law (known as Buys Ballot's) is general for the northern hemisphere, and is

dependent on the earth's rotation (§ 406 a). The influence of the earth's rotation in

modifying the direction of winds, is discussed in a paper "On the General Circulation and

Distribution of the Atmosphere," by the Editor of this Work, in the Philosophical

Magazine for September, 1871.



CHAPTER XIV.

BOYLE'S (or MARIOTTE's) LAW.^

117. Boyle's Law.—As gases are composed of molecules in a state

of permanent repulsion, they may be compared to springs constantly

bent, and making constant efforts to free themselves. The amount

of pressure which they exert against the sides of the vessels which

contain them, depends upon the volume which they occupy, increasing

as this volume diminishes. By a number of careful experiments

upon this point, Boyle and Mariotte independently established the

law that this volume varies inversely as the pressure, provided that

the temperature remain constant. As the density evidently varies

inversely as the volume, we may express the law in other words by

saying that at the same temperature the density varies directly as

the pressure.

If V and V be the volumes of the same quantity of gas, P and P',

D and D', the corresponding pressures and densities, Boyle's law will

be expressed by the equations

V'-p -D*

118. Mariotte's Tube.—The correctness of this law may be verified

by means of the following apparatus, which was employed by both

the experimenters above named. It consists (Fig. 125) of a bent

tube with branches of unequal length; the long branch is open, and the

^ Boyle, in his Defence of the Doctrine touching the Spring and Weight of the Air against

the Objections of Franciscus Linus, appended to New Experiments, Physico-mechanical, &c.

(second edition, 4to, Oxford, 1662), describes the two kinds of apparatus represented in

Figs. 125, 126 as having been employed by him, and gives in tabular form the lengths of

tube occupied by a body of air at various pressures. These observed lengths he compares

with the theoretical lengths computed on the assumption that volume varies reciprocally

as pressure, and points out that they agree within the Umits of experimental error.

Mariotte's treatise, De la Nature de VA ir, is stated in the Biographic Universelle to have

been published in 1679. (See Preface to Tait's Thermodynamics, p. iv.)
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short branch closed. The tube is fastened to a board provided with

two scales ; one by the side of the long branch, divided into parts of

equal length; the other by the side of the short

branch, having divisions which correspond to parts

of equal volume. The graduation of both scales

begins from the same horizontal line through 0, 0.

Mercury is first poured in at the extremity of the

long branch, and by inclining the apparatus to either

side, and cautiously adding more of the liquid if re-

quired, the mercury can be made to stand at the

same level in both branches, and at the zero of both

scales. Thus we have, in the short branch, a quan-

tity of air separated from the external air, and at

the same pressure. Mercury is then poured into the

long branch, so as to reduce the volume of this in-

closed air by one-half; it will then be found that

the difference of level of the mercury in the two

branches is equal to the height of the barometer at

the time of the experiment; the compressed air

therefore exerts a pressure equal to that of two

atmospheres. If more mercury be poured in so as

to reduce the volume of the air to one-third or one-

fourth of the original volume, it will be found that

the difference of level is respectively two or three

times the height of the barometer ; that is, that the

compressed air exerts a pressure equal respectively

to that of three or four atmospheres. This experi-

ment therefore shows that if the volume of the gas

becomes two, three, four times as small, the pressure

becomes two, three, four times as great. This is the

principle expressed in Boyle's law.

The law may also be verified in the case where the gas expands,

and where its pressure consequently diminishes. For this purpose a

barometric tube (Fig. 126), partially filled with mercury, is inverted in

a tall vessel, containing mercury also, and is held in such a position

that the level of the liquid is the same in the tube and in the vessel.

The volume occupied by the gas is marked, and the tube is raised;

the gas expands, its pressure diminishes, and, in virtue of the excess

of the atmospheric pressure, a column of mercury ah rises in the

tube, so that its height, added to the pressure of the expanded air, is

Fig. 125.

Mariotte's Tube.
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equal to the atmospheric pressure. It will then be seen that if the

volume of air becomes double what it was before, the height of the

column raised is one-half that of the barometer;

that is, the expanded air exerts a pressure equal

to half that of the atmosphere. If the volume is

trebled, the height of the column is two-thirds

that of the barometer ; that is, the pressure of the

expanded air is one-third that of the atmosphere,

a result which is in accordance with Boyle's law.

119. Despretz's Experiments.—The simplicity of

Boyle's law, taken in conjunction with its appar-

ent agreement with facts, led to its general accep-

tance as a rigorous truth of nature, until in 1825

Despretz published an account of experiments,

showing that different gases are unequally com-

pressible. He inverted in a cistern of mercurj'^

several cylindrical tubes of equal height, and filled

them with different gases. The w^hole apparatus

was then inclosed in a strong glass vessel filled

with water, and having a screw -piston as in

(Ersted's piesometer (§ 22). On pressure being

applied, the mercury rose to unequal heights in

the different tubes, carbonic acid for example

being more reduced in volume than air. These

experiments proved that though Boyle's law might possibly be true

for one of the gases employed, it could not be rigorously true for

more than one.

In 1829 Dulong and Arago undertook a laborious series of experi-

ments with the view of testing the accuracy of the law as applied to

air; and the results which the}'' obtained, even when the pressure was

increased to twenty-seven atmospheres, agreed so nearly with it as

to confirm them in the conviction that, for air at least, it was rigor-

ously true. When re-examined, in the light of later researches, the

results obtained by Dulong and Arago seem to point to a different

conclusion.

120. Unequal Compressibility of Different Gases.—The unequal com-

pressibility of different gases, which was first established by Despretz's

experiments above described, is now usually exhibited by the aid of the

following apparatus designed by Pouillet. A is a cast-iron reservoir,

containing mercury surmounted by oil. In this latter liquid dips a

Fig. 126.—Proof of Boyle's

Law for Expanding Air.
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bronze plunger P, the upper part of which has a thread cut upon it,

and works in a nut, so that the plunger can be screwed up or down
by means of the lever L. The reservoir A communicates

by an iron tube with another cast-iron vessel, into which

are firmly fastened two tubes T T about six feet in length

and ^V^^^ of an inch in internal diameter, very carefully

calibrated (§ 180). Equal volumes of two gases, perfectly

dry, are introduced into these tubes through their upper

ends, which are then hermetically sealed. The plunger is

then made to descend, and a gradually increasing pressure

is exerted, the volumes occupied by the gases are mea-

sured, and it is ascertained that no two gases follow pre-

cisely the same law of compression. The difference,

however, is almost insensible when the gases employed

are non-liquefiable, as air, oxygen, hydrogen, nitrogen,

nitric oxide, and marsh-gas. But when we compare any

one of these with a liquefiable gas, such as carbonic acid,

cyanogen, or ammonia, the difference is rapidly and dis-

•tinctly manifested. Thus, under a pressure of twenty-

five atmospheres, carbonic acid occupies a volume which

is only -f-ths of that occupied by air.

121. Regnault's Experi-

ments.—Boyle's law, there-

fore, is not to be considered

as rigorously exact ; but it is

certainly a very close ap-

proximation to the truth,

except for gases near their

point of liquefaction. In

order to demonstrate the in-

accuracy of the law for air,

or any gas that is not lique-

fiable, and more especially if

it is required to determine

the law of deviation for each

particular gas, it is necessary

to employ very precise me-

thods of measurement. In
ordinary experiments on compression, and even in the elaborate

investigations of Dulong and Arago, a definite portion of gas is taken

Fig. 127.—Pouillet's Apparatus for showiijg Unequal
Compressibility of Different Gases.
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and successively diminished in volume by the application of con-

. 'f1 tinually increasing pressure. Now it is evident that, in

experiments of this kind, in proportion as the pressure

increases, the variations in volume become smaller, and

the precision with which they can be determined con-

sequently diniinishes. Regnault adopted the plan of

operating in all cases upon the same volume of gas,

which, being initially at different pressures, was always

reduced to one-half The pressure was observed before

and after this operation, and, if Boyle's law were true, its

value should be found to be doubled. In this way the

same precision of measurement is obtained at high as at

low pressures.

A general view of Regnault's apparatus is given in Fig.

128. It consists of an iron reservoir containing mercury,

furnished at the top with a

force-pump for water. The

lower part of this reservoir com-

municates with a cylinderwhich

is also of iron, and in which are

two openings to admit tubes.

Communication between the

reservoir and the cylinder can

be established or interrupted by
means of a stop-cock R, of very

exact workmanship. Into one

Fig. 128.—Regnaiilt's Apparatiis for Testing Boyle's Law.
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of the openings is fitted the lowest of a series of glass tubes A, which

are placed end to end, and firmly joined to each other by metal

fittings, so as to form a vertical column of about twenty-five metres

in height.

The height of the mercurial column in this long manometric tube

could be exactly determined by means of reference marks placed at

distances of about '95 of a metre, and by the graduation on the tubes

forming the upper part of the column. The mean temperature of the

mercurial column was given by thermometers placed at difierent

heights. Into the second opening in the cylinder fits the lower

extremity of the tube B, which is divided into millimetres, and also

gauged with great accuracy. This tube has at its upper end a stop-

cock T which can open communication with the reservoir V, into

which the gas to be operated on is forced and compressed by means
of the pump P.

An outer tube, which is not shown in the figure, envelops the

tube B, and, being kept full of water, which is continually renewed,

enables the operator to maintain the tube at a temperature sensibly

constant, which is indicated by a very delicate thermometer. Before

fixing the tube in its place, the point corresponding to the middle of

its volume is carefully ascertained, and after the tube has been per-

manently fixed, the distance of this point from the nearest of the

reference marks is observed.^

After these explanatory remarks we may describe the mode of

conducting the experiments. The gas to be operated on, after being

first thoroughly dried, is introduced at the upper part of the tube B,

the stop-cock of the pump being kept open, so as to enable the gas

to expel the mercury and occupy the entire length of the tube. The

force-pump is then brought into play, and the gas is reduced to about

half of its former volume; the pressure in both cases being ascertained

by observing the height of the mercury in the long tube above the

nearest mark. It is important to remark that it is not at all neces-

sary to operate always upon exactly the same initial volume, and

reduce it exactly to one-half, which would be a very tedious opera-

^ Regnault's apparatus was fixed in a small square tower of about fifteen metres in height,

forming part of the buildings of the College de France, and which had formerly been built

by Savart for experiments in hydraulics. The tower could therefore contain only the lower

part of the manometric column ; the upper part rose above the platform at the top of the

tower, resting against a sort of mast which could be ascended by the observer. The read-

ings inside the tower could be made by means of a cathetometer, but this was impossible

in the upper portion of the column, and for this reason the tubes forming this portion were

graduated.

—

D.
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tion ; these two conditions are approximately fulfilled, and the gra-

duation of the tube enables the observer always to ascertain the actual

volumes.

122. Results.—The general result of the investigations of E-egnault

is, that Boyle's law does not exactly represent the compressibility of

even non-liquefiable gases, such as air, hydrogen, nitrogen, which,

with carbonic acid, were the gases operated on by him. But the re-

sulting differences are so small that they would not be detected by

a mere inspection of the numbers which represent volumes and pres-

sures. They may, however, be clearly exhibited by submitting the

results to the following test:—Suppose we take a certain quantity

of gas which, under the pressure P, occupies the volume V, and that

we reduce it to a volume V, when the pressure becomes P', and, if

Boyle's law were accurate, we should have the equation

V P'

VP
Or, in another form, yTp - l = o.

Now it is found that for all gases except hydrogen this difference,

instead of being always zero, is constantly positive, and has not only

a sensible value, but, which is of especial importance, it increases re-

gularly with the pressure, which shows that it cannot be attributed

to the inevitable errors of observation.

If we measure off upon any line lengths proportional to the dif-

ferent pressures, and raise perpendiculars proportional to the differ-

vp
ences yTp,— 1, by joining the extremities of these perpendiculars by a

continuous line an uninterrupted curve is obtained, which evidently

is a graphic representation of the departure of the gas in question

from Boyle's law. These curves have been very carefully traced by

Regnault; and their algebraic equations can be found by the ordinary

methods of interpolation. These equations are employed when it is

required to calculate rigorously the change of volume corresponding

to a very high pressure.

Since the difference .^^, — 1 is positive, V'P' must be less than VP,

and consequently the volume V corresponding to the pressure F is

less than that given by Boyle's law. We thus see that, in general,

gases are more compressible than Boyle's law would indicate; and in

the case of gases that are liquefiable, this difference of compressibility

is, as we have said, considerable.
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In this respect hydrogen is a remarkable exception, as was origi-

nally shown by Despretz in the experiments wliich we have men-

tioned ; it is less compressible than it should be by Boyle's law, the

difference ^~ _ l being negative.

This singular peculiarity of hydrogen is quite in harmony with

the views which are entertained as to the nature of this gas. It

has been observed, from several comparative experiments per-

formed upon carbonic acid, that at the temperature of 100° Cent, the

law of compressibility of this gas differs from Boyle's law much
less than at ordinary temperatures. We may thus fairly suppose

that if we were to operate at a still higher temperature, we should

approach still more nearly to the law, which would doubtless be

verified at a particular temperature, beyond which the error would

be in the opposite direction. It would thus appear that for each gas

there is a sort of normal temperature, at which the compressibility is

exactly represented by Boyle's law.

The compressibility of a gaa should also increase as the tempera-

ture decreases, as is proved by the experiment on carbonic acid. With
the exception of hydrogen, all gases under ordinary conditions are

below this normal temperature. But if, as chemical phenomena

tend to prove, hydrogen is a kind of metal, we must suppose it to

be relatively in a high state of rarefaction, which accounts for the

peculiarity presented by its compressibility.

123. Manometers or Pressure-gauges.—Manometers are instruments

for measuring the elastic force of a gas or vapour contained in the in-

terior of a closed space. This elastic force is generally expressed in

units called atmospheres (§ 103), and is often measured by means of a

column of mercury.

When the column of mercury moves freely in an open tube, the

manometer is said to be open [d air libre]; it was a manometer of

this kind that Regnault employed to measure the successive pres-

sures to which the volume of gas was subjected.

The open mercurial pressure-gauge is often used in the arts to

measure pressures that are not very considerable. The figure re-

presents one of the simplest forms. The apparatus consists of a box,

generally of iron, at the top of which is an opening closed by a screw

stopper, which is traversed by the tube 6, open at both ends, and

dipping into the mercury in the box. The air or vapour whose

elastic force is to be measured enters by the tube a, and presses upon
12
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the mercury. It is evident that if the level of the liquid in the box

is the same as in the tube, the pressure in the box must be exactly

equal to that of the atmosphere. If the mercury in the tube rises

above that in the box, the pressure of the air in the box must exceed

that of the atmosphere by a pressure corresponding to the height of

the column raised. The pressures are generally marked in atmo-

spheres upon a scale beside the tube.

124. Multiple Branch Manometer.—When the pressures to be measured

are considerable, as in the boiler of a high-pressure steam-engine, the

•i

Fig. 129.—Open
Mercmial Manometer. Fig. 130.—Multiple Branch Manometer.

above instrument, if employed at all, must be of a lengtli correspond-

ing to the pressure. If, for instance, the pressure in question is eight

atmospheres, the length of the tube must be at least 8 X 30 inches

=

20 feet. Such an arrangement is inconvenient even for stationary

machines, and is entirely inapplicable to movable machines.

Without departing from the principle of the open jnercurial pres-

sure-gauge, namely, the balancing of the pressure to be observed

against the weight of a liquid increased by one atmosphere, w^e may
reduce the length of the instrument by an artifice already employed

by Fahrenheit in his barometer (§110).

The apparatus for this purpose consists of an iron tube ABCD bent

back upon itself a certain number of times. The extremity A com-

municates with the boiler by a stop- cock, and the last branch CD is

of glass, and has a scale by its side.
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The first step is to fill the tube with mercury as far as the level

MN. At this height are holes by which the mercury escapes when
it reaches them, and which are afterwards hermetically sealed. The

upper portions are filled with water through openings which are also

stopped after the tube has been filled. If the mercury in the first

tube, which is in communication with the reservoir of gas, falls through

a certain distance h, it will alternately fall and rise through the same

distance in each of the tubes, and will consequently rise through the

same distance in the last tube; now this distance corresponds to an

eflfective pressure represented by a column of mercury of height 10^-,

diminished by ten times the same height of water; that is, to a height

of mercury equal to lOh (1 — tttk^- I^ will thus be seen that a very

considerable pressure will be indicated by a comparatively small

variation of the mercurial column. If, for instance, beginninor with

the atmospheric pressure, an additional pressure of five atmospheres

is exerted, that is, an effective pressure of six atmospheres, the quan-

tity h will be given in metres by the equation

5x-76 = 10a(i-^),

whence
5 X •76 X 13-59 = 10^ X 12-59,

125. Compressed-air Manometer.—This instrument, which may as-

sume different forms, sometimes consists, as in Fig. 131, of a bent tube

AB closed at one end a, and containing within the

space Ka a quantity of air, which is cut off from

external communication by a column of mercury.

The apparatus has been so constructed, that when

the pressure on B is equal to that of the atmosphere,

the mercury stands at the same height in both

branches; so that, under these circumstances, the

inclosed air is exactly at atmospheric pressure. But

if the pressure increases, the mercury is forced into

the left branch, so that the air in that branch is

compressed, and its tension gradually increases until

equilibrium is established. The pressure of the gas exerted at B is

then equal to the pressure of the compressed air, together with that

of a column of mercury equal to the difference of level of the liquid

in the two branches. This pressure is expressed in atmospheres on

the scale ah.

air Manometer.
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The graduation of tliis scale is effected directly in practice, by

placing the manometer in communication with a reservoir of com-

presse.d air whose pressure is given by an open mercurial gauge, or

by a standard manometer of any kind.

If the tube AB be supposed cylindrical, the graduation can be

previously effected by an application of Boyle's law.

Let I be the length of the tube occupied by the inclosed air when
its pressure is equal to that of one atmosphere; at the point to which

the level of the mercury rises is marked the number 1. It is required

to find to what point the end of the liquid column should reach when

a pressure of n atmospheres is exerted at B. Let x be the height of

this point above 1; then the volume of the air, which was originally I,

has become l—Xy and its pressure is therefore equal to H j—, H being

the mean height of the barometer. This pressure, together with that

due to the difference of level 2i», is equivalent to n atmospheres.

We have thus the equation

—

IH
-J
— + 2 « = wH,

whence
2x2- (nH + 2Z)x+ (w-l)HZ = 0.

X
nH + 2Z ± V(nH + 20^ - 8(»-l)HZ.

We thus find two values of a;; but that given by taking the positive

sign of the radical is inadmissible; for if we put n= A, we ought to

have £C=:o, which cannot be the case unless the

sign of the radical is negative.

By giving n the successive values of \\, 2,

2\, 3, &c., in this expression for x, we have

the points on the scale corresponding to pres-

sures of one atmosphere and a half, two atmo-

spheres, &c.

As we have before remarked, the sensibility

of the instrument decreases as the pressure

increases, and the distance traversed by the

mercury for an increment of pressure equal to

one atmosphere becomes less and less. This
Fig. 132. inconvenience is partly avoided by the ar-

Compressed-axr Manometer.
.

rangement shown in Fig. 132. The branch

containing the air is of a conical form ; in this way, as the mercury

rises, equal changes of volume correspond to increasing lengths. The
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effect of this arrangement is seen by an inspection of the scale, on

which the numbers corresponding to successive atmospheres of pres-

sure are nearly equidistant, whereas when the tube is cylindrical

they rapidly approach each other.

126. Metallic Manometers.—The fragility of glass tubes, and the

fact that they are liable to become opaque by the mercury clinging

to their sides, are serious drawbacks to their use, especially in

machines in motion. Accordingly, metallic manometers are often

employed, depending upon the changes of form effected by the pres-

sure of gas on its containing vessel, when suitably constructed. We
shall here mention only Bourdon's gauge (Fig. 183). It consists essen-

tially of a copper tube of elliptic section, which is bent through about

540° as represented in Fig. 133. One of the extremities communicates

by a stop-cock with the reservoir of steam or compressed gas ; to the

other extremity is attached a steel needle which traverses a scale.

When the stop-cock permits communication with the atmosphere, the

end of the needle stands at the mark 1 ; but if the pressure increases

the curvature diminishes, the free extremity of the tube moves away
from the fixed extremity, and the needle traverses the scale.

Fig. 133.—Bourdon's Pressure guage. Fig. 134.—Mixture of Gases.

127. Mixture of Gases.—When gases of different densities are in-

closed in the same space, experiment shows that, even under the most

unfavourable circumstances, an intimate mixture takes place, so that

each gas becomes uniformly diffused through the entire space. This
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fact has been shown by a decisive experiment due to Berthollet.

He took two globes (Fig. 134) which could be screwed together, and

placed them in a cellar. The lower globe was filled with carbonic

acid, the upper globe with hydrogen. Communication was estab-

lished between them, and at the end of a certain time it was ascer-

tained that the gases had become intimately mixed; in fact, the

proportion of carbonic acid and of hydrogen was exactly the same in

both globes. The fact that the composition of the air is the same at

all heights is another striking proof

If several gases are inclosed in the same space, each of them exerts

the same pressure as if the others were absent, and consequently the

pressure exerted by the mixture is equal to the sum of the pressures

due to each gas separately. These separate pressures can easily be

calculated by Boyle's law, when the original pressure and volume of

each gas are known.

For example, let Y and P, Y' and P', V" and P" be the volumes

and pressures of the gases which are^nade to pass into a vessel of

volume U. The first gas exerts, when in this vessel, a pressure

equal to -ry-, the second a pressure equal to -^ , the third a pressure

equal to -tj , and so on, so that the total pressure M is equal to

^ + ^' + ^^, whence MU =VP + V'F + V"P".

This formula expresses the law of pressure for a mixture of gases;

it may easily be verified by passing different volumes of gas into a

graduated glass jar inverted over mercury, after having first mea-

sured their volumes and pressures.

128. Absorption of Gases by Liquids and Solids.—All gases are to a

greater or less extent soluble in water. This property is of consider-

able importance in the economy of nature ; thus the life of aquatic

animals and plants is sustained by the oxygen of the air which the

water holds in solution. The volume of a given gas that can be

dissolved in water at a given temperature is found to be in general

the same at all pressures,^ and the ratio of this volume to that of

the water which dissolves it is called the coefficient of solubility

or of absorption. At the temperature 0° Cent, tlie coefficient of

solubility for carbonic acid is 1, for oxygen '04, and for ammonia

1150.

If a mixture of two or more gases be placed in contact with water,

' Hence the weight of gas absorbed is directly as the pressure.
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each gas will be dissolved to the same extent as if it were the only

gas present.

Other liquids as well as water possess the power of absorbing gases,

according to the same laws, but with coefficients of solubility which

are different for each liquid.

Increase of temperature diminishes the coefficient of solubility,

which is reduced to zero when the liquid boils.

Some solids, especially charcoal, possess the power of absorbing

gases. Boxwood charcoal absorbs about nine times its volume of

oxygen, and about ninety times its volume of ammonia. When
saturated with one gas, if put into a different gas, it gives up a por-

tion of that which it first absorbed, and takes up in its place a quan-

tity of the second. Finely-divided platinum condenses on the sur-

face of its particles a large quantity of many gases, amounting in the

case of oxygen to many times its own volume. If a jet of hydrogen

gas be allowed to fall, in air, upon a ball of spongy platinum, the gas

combines rapidly, in the pores of the metal, with the oxygen of the

air, giving out an amount of heat which renders the platinum in-

candescent and usually sets fire to the jet of hydrogen.

Most solids have in ordinary circumstances a film of air adhering

to their surfaces. Hence iron filings, if carefully sprinkled on water,

will not be wetted, but will float on the surface, and hence also the

power which many insects have of running on the surface of water

without wetting their feet. The film of air in these cases prevents

wetting, and hence, by the principles of capillarity, produces in-

creased buoyancy.



CHAPTER XV.

AIR-PUMP.

129. Air-pump.—The air-pump was invented by Otto Guericke

about 1650, and has since undergone some improvements in detail

which have not altered the essential parts of its construction.

It consists of a glass or metal cylinder called the barrel, in which

a piston works. This piston has an opening through it which is

closed at the lower end by a valve S opening upwards. The barrel

communicates with a passage leading to the centre of a brass surface

carefully polished, which is called the plate of the air-pump. The

entrance to the passage is closed by a conical stopper S', at the ex-

tremity of a metal rod which passes through the piston-head, and

works in it tightly, so as to be carried up and down with the motion

Fig. 135.—Air-puinp.

of the piston. A catch at the upper part of the rod confines its

motion within very narrow limits, and only permits the stopper to

rise a small distance above the opening.

Suppose now that the piston is at the bottom of the cylinder, and
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is raised. The valve S' is opened, and the air of the receiver E rushes

into the cylinder. On lowering the piston, the valve S' closes its

opening, the air which has entered the cylinder cannot return into

the receiver, and, on being compressed, raises the valve in the piston,

and escapes into the air outside. On raising the piston again, a por-

tion of the air remaining in the receiver will pass into the cylinder,

whence it will escape on pushing down the piston, and so on.

We see, then, that if this motion be continued, a fresh portion of

the air in the receiver will be removed at each successive stroke.

But as the quantity of air removed at each stroke is only a fraction

of the quantity remaining, we can never produce a perfect vacuum,

though we might approach as near to it as we pleased if this were

the only obstacle.

130. Calculation of the Degree of Exhaustion.—It is easy to cal-

culate the quantity of air left in the receiver after a given number
of strokes of the piston. Let V be the volume of the cylinder, V
that of the receiver, and M the mass of air in the receiver at first.

On raising the piston, the air which occupied the volume V occupies

a volume V'+ V; of the air thus expanded the volume Vis removed,

and the volume V left, being y. y of the whole quantity or mass M.

The quantity remaining after the second stroke is yTTy ^^ ^^^^ after

the first, or is
(y/ , y) M; and after n strokes Cy^.y ) M. Hence the

density and (by Boyle's law) the pressure are each reduced by n

strokes to'fy, y j of their original values.

We see, then, that the pressure goes on decreasing indefinitely, and

that, consequently, the elasticity of the air may, theoretically at least,

be rendered less than any assigned quantity.

131. Mercurial G-auge.—In order to follow the steps of the opera-

tion, and to observe at each instant the elastic force of the air in the

receiver, the instrument is provided with a siphon-barometer, called

the mercurial gauge, inclosed in a bell-shaped vessel of glass F, and

communicating by a stop-cock with the receiver. This barometer

consists of a bent tube, the branches of which are about a foot in

length ; one of these is closed and filled with mercury, the other is

open. When the pressure of the air in the receiver becomes less than

that represented by a column of mercury equal in length to the

closed branch of the gauge, the mercury falls, and the elastic force of

the air at any moment is given by the difference of level of the
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mercury in the two branches ; this difference can be measured on a

graduated scale. The mercurial gauge serves to show whether the

instrument is working properly; for instance, in the case of air

getting in anywhere, this would be shown by the fluctuations of the

mercurial column. It also shows when the greatest possible effect

has been attained, by the level of the mercury remaining stationary

notwithstanding the motion of the piston. In theory, as we have

said above, there is no limit to the action of the machine, and at each

stroke of the piston the elastic force of the air should decrease; but

in reality this is not the case, on account of the inevitable imperfec-

tions of the apparatus ; there is always a limit, extending further in

proportion to the excellence of the machine, and the barometer shows

the moment when this limit is reached. Instead of a siphon-baro-

meter, we might have an ordinary barometer in connection with

the receiver, and thus observe the progress of the vacuum from the

first strokes of the piston.

132. Admission Stop-cock.—After the receiver has been exhausted

of air, if it was required to raise it from the plate, a very considerable

force would be necessary, amounting to as many times fifteen pounds

as the area of the plate contained square inches. It would, therefore,

be in general impossible to raise the receiver. This is, however, ren-

dered possible by means of the stop-cock R, which is shown in section

above. It is perforated by a straight channel, which, when the

maehine is being worked, forms part of the communicating passage.

At 90° from the extremities of this channel is another opening 0, form-

ing the mouth of a bent passage, leading to the external air. When we
wish to admit the air into the receiver, we have only to turn the stop-

cock so as to bring the opening O to the side next the receiver; if,

on the contrary, we turn it towards the pump-barrel, all communica-

tion between the pump and the receiver is stopped, the risk of air

entering is diminished, and the vacuum remains good for a greater

length of time. This precaution is taken when we wish to leave

bodies in a vacuum for a considerable time. Another method is to

employ a separate plate, which can be detached so as to leave the

machine available for other purposes.

133. Double-barrelled Air-pump.—The machine just described has

only a single pump-barrel ; air-pumps of this kind are sometimes

employed, and are usually worked by a lever like a pump-handle.

With this arrangement, it is evidently necessary that the piston, after

having ascended, should descend again to expel the air from the
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pump-barrel, and it is only after this double stroke that the operation

can begin anew.

Double-barrelled pumps are more frequently used. An idea of

their general arrangement may be formed from Figs. 136, 137, and

138. Fig. 138 gives the machine in perspective, Fig. 136 is a

section through the axes of the pump-barrels, and Fig. 137 shows

the manner in which communication is established between the

receiver and the two bar-

rels. It will be observed

that the two passages from

the barrels unite in a single

passage to the centre of the

plate p.

Fig. 136. Double-barrelled Air-pump. Fig. 137.

The piston-rods C are two racks working with the pinion P. This

pinion is turned by a double-handed lever, which is worked alter-

Inately

in opposite directions. In this arrangement, when one piston

ascends the other descends, and consequently in each single stroke

the air of the receiver passes into one or other pump-barrel. A
vacuum is thus produced by half the number of strokes which would

be required with a single-barrelled pump. It has besides another

advantage. In the single-barrelled pump the force required to raise

the piston increases as the exhaustion proceeds, and when it is nearly

completed there is the resistance of almost an atmosphere to be over-
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barrelled pump, at the moment when one piston is at the top, and

the other at the bottom, the force opposing the ascent of the one is

precisely equal to that assisting the descent of the other. We must

Fig. 138 —Air pump.

observe, however, that this equality exists only at the beginning of

the stroke ; for when one of the pistons descends, the air below it is

compressed, its tension becoming greater and greater, until it reaches

that of the atmosphere and raises the piston-valve. At this moment
the resistance to the ascent of the other piston is entirely uncompen-

sated, and up to this point the compensation has been gradually

diminishing. But the more nearly we approach to a perfect vacuum,

the more slowly does the tension of the air compressed beneath the

piston increase, so that, unlike the single-barrelled pump, it becomes

easier to work as the exhaustion proceeds.

134. Single-barrelled Pumps with Double Action.— We do not,

however, require two pump-barrels in order to obtain double action,

as the same effect may be obtained with a single barrel. An arrange-

ment for this purpose was long ago suggested by Delahire for water-
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pumps ; but the principle has only lately been applied to the con-

struction of air-pumps.

Fig. 139 represents the single barrel of the double-acting pump of

Bianchi. It will be seen that the piston-valve opens into the hollow

piston-rod; a second valve, also opening upward, is placed at the

top of the pump-barrel. Two other open-

ings, one above, the other below, serve to

establish communication by means of a

bent vertical tube between the pump-barrel

and the passage to the plate. These open-

ings are closed alternately by two conical

stoppers at the two extremities of a metal

rod passing through the piston, and carried

with it in its vertical movement by means

of friction. When the piston ascends, as

in the figure, the upper opening is closed

and the lower one is open; when the piston

begins to descend, the opposite effect is

immediately produced Accordingly we
see that, whichever be the direction in

which the piston is moving, the receiver

is being exhausted of air. In fact, when
the piston ascends, air from the receiver will enter by the lower

opening, and the air above the piston will be gradually compressed,

and will finally escape by the valve above. In the descending move-

ment, air will enter by the upper opening, and the compressed air

beneath the piston will escape by the piston-valve. The movement
of the piston is produced by a peculiar arrangement shown in Fig.

140, which gives a general view of the apparatus.

The pump-barrel, which is composed entirely of cast-iron, oscillates

about an axis passing through its base. On the top are guides in

which the end of a crank travels. The pump is worked by turning

a heavy fly-wheel of cast-iron, on the axis of which is a pinion which

drives a toothed wheel on the axis of the crank. The end of the

crank is attached to tlie extremity of the piston-rod. It is evident

that on turning the fly-wheel the pump-barrel will oscillate from side

to side, following the motions of the crank, and the piston will alter-

nately ascend and descend in the barrel, the length of which should

be equal to the diameter of the circle described by the end of the

crank.

Fig. 139.

Barrel of Biaiichi's Air-pump,
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135. Various Experiments with the Air-pump.—At the time when
the air-pump was invented, several experiments were devised to

show the effects of a vacuum, some of which have become classical,

and are usually repeated in courses of experimental physics.

Experiment of the Burst Bladder.—On the plate of an air-pump is

placed a glass cylinder open at the bottom, and having a piece of

bladder tightly stretched over the top. As the exhaustion proceeds,

the bladder bends inwards in consequence of the atmospheric pressure

above it, and finally bursts with a loud report.

It often happens that, notwithstanding the strong exterior pressure,

the bladder does not give way, its molecules preserving their equi-

librium of cohesion. But

this equilibrium is, so to

speak, unstable, and a few

taps are sufficient to de-

stroy it and cause the

bladder to burst.

Magdeburg Hemispheres.
—We take two hemi-

spheres (Fig 142), which

can be exactly fitted on

each other; their exact

adjustment is further as-

sisted by a projecting in-

ternal rim, which is smear-

ed with lard. The appa-

ratus is exhausted of air

through the medium of the stop-cock attached to one of the hemi-

spheres, and when a vacuum has been produced, it will be found

that a considerable force is required to separate the two parts, and

this force increases with the size of the hemispheres.

This resistance to a force of separation is due to the normal ex-

terior pressure of the air on every point of the surface, a pressure which

is counterbalanced by only a very feeble pressure from the interior.

In order to estimate the resultant effect of these different pressures,

let us suppose that the external surface, instead of being spherical, is

formed of a series of steps ; that is to say, of alternate vertical and

horizontal elements. It is evident that the pressures exerted upon

these latter will have no influence upon the adhesion of the hemi-

spheres; the first alone produce this effect, and the sum of these is

Fig. 141.

Buist Bladder.

Fig. 142.

Magdeburg Hemispheres.
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evidently equal to the pressure of the atmosphere upon the circular

area forming the common base of the hemispheres. For example, if

this area is ten square inches, the hemispheres will be pressed against

each other with a force of 150 pounds.

Fountain in Vacuo.—Tlie apparatus for this experiment consists

of a bell-shaped vessel of glass (Fig. 143), the base of which is pierced

by a tube fitted with

a stop - cock which

enables us to exhaust

the vessel of air. If,

after a vacuum has

been produced, we
place the lower end

of the tube in a vessel

of water, and open the

stop-cock, the liquid,

being pressed exter-

nally by the atmo-

sphere, mounts up the

tube and ascends in a

jet into the interior

^ of the vessel. This

M experiment is often

^ made in the opposite

manner. Under the

receiver of the air-

pump is placed a vial

partly filled with water, and having its cork pierced by a tube open

at both ends, the lower end being beneath the surface of the water.

As the exhaustion proceeds, the air in the vial, by its excess of pres-

sure, acts upon the liquid and makes it issue in a jet.

136. Limit to the Action of the Air-pump.—We have said above

(§ 1 31) that the air-pump does not continue the process of rarefaction

indefinitely, but that at a certain stage its eflfect ceases, and the

tension of the air in the receiver undergoes no further diminution.

If the pump is very badly made, this tension is considerable ; but

even with the most perfect machines it is always sensible. A pump
such as we have described may be considered as very good if it

reduces the tension of the air in the receiver to one-fiftieth of an inch

of mercury : it is very rarely that a lower limit is reached.

Fig. 143.—Fountain in Vacuo.
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Leakage.—This limit to the action of the machine is due to various

causes. One of these is evidently the leakage at different parts of

the apparatus. It is impossible to prevent the air from getting in at

several points ; and although at the beginning of the operation the

quantity of air which thus enters is small in comparison with that

which is.pumped out, still, as the exhaustion proceeds, the air enters

faster, on account of the diminished internal pressure, and at the

same time the quantity expelled at each stroke becomes less, so that

at length a point is reached at which the inflow and outflow are

equal.

Space unteaversed by Piston.—Another reason of imperfect

exhaustion is that, after all possible precautions, a space is still left

between the bottom of the pump-barrel and the lower surface of the

piston when the latter is at the end of its downward stroke. It is

evident that at this moment the air contained in this untraversed

space is of the same tension as the atmosphere. On raising the

piston, this air is indeed rarefied; but it still preserves a certain

tension, and it is evident that when the air in Mie receiver has been

brought to this stage of rarefaction, the machine will cease to produce

any effect.

If V is the volume of this space, V the volume of the pump-barrel,

the air, which at volume v has a tension H equal to that of the

atmosphere, will have, at volume V, a tension equal to Hy. This

gives the limit to the action of the machine as deduced from the con-

sideration of the untraversed space.

Air given out by Oil.—Finally, perhaps the most important cause,

and the most difficult to remedy, is the absorption of air by the oil

used for lubricating the pistons. This oil is poured on the top of the

piston, but the pressure of the external air forces it between the

piston and the barrel, whence it falls in greater or less quantity to

the bottom of the barrel, where it absorbs air, and partially yields it

up at the moment when the piston begins to rise, thus evidently

tending to derange the working of the machine. It has been

attempted to get rid of untraversed space by employing a kind of

piston of mercury. This has also the advantage of fitting the barrel

more accurately, and thus preventing the entrance of air. The use

of oil is at the same time avoided, and we thus escape the injurious

effects mentioned above. We proceed to describe two machines

founded upon this principle.

13
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137. Kravogl's Air-pump.—This contains a hollow glass cylinder

AB tapering at the upper end, and surmounted by a kind of funnel.

The piston is of the same shape as the cylinder, and is covered with

a layer of mercury, whose depth over the point of the piston is about

Fig. 145.—Kravogl's Air-pump.

5\j-th of an inch when the piston is at the bottom of its stroke, but is

nearly an inch when the piston rises and fills the funnel-shaped

cavity in which the pump-barrel terminates. A small interval, filled

by the liquid, is left between the barrel and the piston ; but at the
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bottom of the barrel the piston passes through a leather box care-

fully made, so as to be perfectly air tight.

The air from the receiver passes through the lateral opening e ; it

is driven before the mercury into the funnel above. With the air

passes a certain quantity of mercury, which is detained by a steel

valve c at the narrowest part of the funnel. This valve rises auto-

matically when the surface of the mercury is at a distance of about

half an inch from the funnel, and falls back into its former position

when the piston is at the end of its upward stroke. In the down-
ward stroke, when the mercury is again half an inch from the funnel,

the valve opens again and allows a portion of the mercury to pass.

The effect of this arrangement is easily understood; there is no

"untraversed space," the presence of the mercury above and around

the piston causes a very complete fit, and excludes the external air;

and hence the machine, when well made, is very efiective.

When this is the case, and when the mercury used in the apparatus

is perfectly dry, a vacuum of about ^i^th of an inch can be obtained.

The dryness of the mercury is a very important condition, for at

ordinary temperatures the elastic force of the vapour of water has a

very sensible value. If we wish to employ the full powers of the

machine, we must have, between the vessel to be exhausted of air

and the pump-barrel, a desiccating apparatus.

The arrangement of the valve e is peculiar. It is of a conical form,

so as, in its lowest position, to permit the passage of air coming from

the receiver. Its ascent is produced by the pressure of the mercury,

which forces it against the conical extremity of the passage, and the

liquid is thus prevented from escaping.

The figure represents a double-barrelled machine analogous to the

ordinary air-pump. Besides the pinion working with the racks of

the pistons, there is a second smaller pinion, not shown in the figure,

which governs the movements of the valves e. All the parts of this

machine, as the stop-cocks, valves, pipes, &c., must be of steel, to avoid

the action which the mercury would have upon any other metal.

138. Geissler's Machine.—Geissler, of Bonn, has invented a mer-

curial air-pump, in which the vacuum is produced by communication

of the receiver with the Torricellian vacuum. Fig. 146 represents

this machine as constructed by Alvergniat. It consists of a vertical

tube, which serves as a barometric tube, and communicates at the

bottom, by means of a caoutchouc tube, with a globe which serves as

the cistern.
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At the top of the tube is a three way stop- cock, by which com-

munication can be established either with the receiver to the left, or

with a funnel to the right, which latter has an ordinar}^ stop-cock

at the bottom. By
means of another stop-

cock on the left, com-

munication with the

receiver can be opened

or closed. These stop-

cocks are made entirely

of glass. The machine

works in the following

manner: communication

being established with

the funnel, the globe

which serves as cistern

is raised, and placed, as

shown in the figure, at

a higher level than the

stop-cock of the funnel.

By the law of equili-

brium in communicat-

ing vessels, the mercury

fills the barometric tube,

the neck of the funnel,

and part of the funnel

itself If the communi-

cation between the fun-

nel and tube be now
stopped, and the globe

lowered, a Torricellian

vacuum is produced in

the upper part of the

vertical tube.

Communication is

rushes into the vacuum,

Communication is now

Fig. 146.— Geissler's Machine.

now opened with the receiver; the air

and the column of mercury falls a little,

stopped between the tube and receiver, and opened between the

tube and the funnel, the simple stop-cock of the funnel being, how-

ever, left shut. If at this moment the globe is replaced in the posi-
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tion shown in the figure, the air endeavours to escape by the funnel,

and it is easy to allow it to do so. Thus, a part of the air of the

receiver has been removed, and the apparatus is in the same position

as at the beginning. The operation described is equivalent to a

stroke of the piston in the ordinary machine, and this process must

be repeated till the receiver is exhausted.

As the only mechanical y)arts of this machine are glass stop-cocks,

which are now executed with great perfection, it is capable of giving

very good results. With dry mercury a vacuum of
2^1x5"^^^

^^ ^^ inch

may very easily be obtained. The working of the machine, how-

ever, is inconvenient, and becomes exceedingly laborious when the

receiver is large. It is therefore

employed directly only for pro-

ducing a vacuum in very small

vessels ; when the spaces to be

exhausted of air are at all large,

the operation is begun with the

ordinary machine, and the mer- .

curial air-pump is only em-

ployed to render the vacuum

thus obtained more perfect.

138 a. Sprengel's Air-pump.

—

This instrument, which may be

regarded as an improvement

upon Geissler's, is represented

in its simplest form in Fig.

146 A. cd is a glass tube longer

than a barometer tube, down
which mercury is allowed to

fall from the funnel A. Its

lower end dips into the glass

vessel B, into which it is fixed

by means of a cork. This vessel

has a spout at its side, a few

millimetres higher than the

lower end of the tube. The

first portions of mercury which

run down will consequently close the tube, and prevent the pos-

sibility of air entering it from below. The upper part of cd

branches off at x into a lateral tube communicating with the re-

Fig. 146 a.—Sprengel's Air-pump.
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ceiver R, which it is required to exhaust. A convenient height for

the whole instrument is six feet. The funnel A is supported by a

ring as shown in the figure, or by a board with a hole cut in it. The

tube cd consists of two parts, connected by a piece of india-rubber

tubing, which can be compressed by a clamp so as to keep the tube

closed when desired. As soon as the mercury is allowed to run

down the exhaustion begins, and the whole length of the tube, from

X to d, is seen to be filled with cylinders of mercury separated by

cylinders of air, all moving downwards. Air and mercury escape

through the spout of the bulb B, which is above the basin H, where

the mercury is collected. This has to be poured back from time to

time into the funnel A, to pass through the tube again and again

until the exhaustion is completed.

As the exhaustion is progressing, it will be noticed that the inclosed

air between the mercury cylinders becomes less and less, until the

lower part of cd presents the aspect of a continuous column of mer-

cury about 30 inches high. Towards this stage of the operation a

considerable noise begins to be heard, similar to that of a shaken

water-hammer, and common to all liquids shaken in a vacuum. The

operation may be considered completed when the column of mercury

does not inclose any air, and when a drop of mercury falls upon the

top of this column without inclosing the slightest air-bubble. The

height of this column now corresponds exactly with the height of the

column of mercury in a barometer; or, what is the same, it represents

a barometer whose vacuum is the receiver E. and connecting tube.

Dr. Sprengel recommends the employment of an auxiliary air-pump

of the ordinary kind, to commence the exhaustion when time is an

object, as without this from 20 to 30 minutes are required to exhaust

a receiver of the capacity of half a litre. As, however, the employ-

ment of the auxiliary pump involves additional connections and in-

creased leakage, it should be avoided when the best possible exhaus-

tion is desired. The fall tube must not exceed about a tenth of an

inch in diameter, and special precautions must be employed to make
the india-rubber connections air-tight. (See Chemical Journal for

1865, p. 9.)

By this instrument air has been reduced to T-su-JFTRT^b ofatmospheric

density, and the average exhaustion attainable by its use is about

one-millionth, which is equivalent to 'OOOOS of an inch of mercury.

139. Double Exhaustion.—In the mercurial machines just described

there is no "untraversed space,'' as the liquid completely expels all
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the air from the pump-barrel. These machines are of very recent

invention. Babinet long before introduced an arrangement for the

purpose, not of getting rid of this space, but of exhausting it of air.

For this purpose, when the machine ceases to work with the ordi-

nary arrangement, the communication of the receiver with one of

the pump-barrels is shut off, and this barrel is employed to exhaust

the air from the other. This change is effected by means of a stop-

cock at the point of junction of the passages leading from the two
barrels (Fig. 147). The stop-cock has a T-shaped aperture, the point

of intersection of the two branches being in constant communication
with the receiver. In a differ-

ent plane from that of the T-

shaped aperture is another

aperture rtin, which, by means

of the tube I, establishes com-

munication between the pump-

barrel B and the communicat-

ing passage of the pump-barrel

A. From this explanation it

will be seen that if the stop-

cock be turned as shown in the

first figure, the two pump-bar-

rels both communicate with the

receiver, and the operation pro-

ceeds in the ordinary manner.

But if the stop-cock be turned

through a quarter of a revolu-

tion, as shown in the second figure, the pump-barrel B alone com-

municates with the receiver, while it is itself exhausted of air by the

barrel A.

It is easy to express by a formula the effect of this double

exhaustion. Suppose the pump to have ceased, under the ordinary

method of working, to produce any farther exhaustion, the air in

the receiver has therefore reached a tension nearly equal to H^^

(§ 136). At this moment the stop-cock is turned into its second

position. When the piston B descends, the piston A rises, and the

air of the "untraversed space '^ in B is drawn into A and rarefied.

During the inverse operation the air in A is prevented from returning

to B, and thus the rarefied air from B, becoming still further rarefied.

Fig. 147.—Babinet's Doubly-exhausting Stop-cock.
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will draw a fresh quantity of air from the receiver. This air will

then be driven into A, where it will be compressed by the descending

movement of the piston, and will find its way into the air outside.^

This double exhaustion will itself cease to work when air ceases to

pass from the pump-barrel B into the pump-barrel A. Now when
the piston in this latter is raised, the elastic force of the air which

was contained in its "untraversed space" is equal to H=^, for on the

last opening of the valve, the air in this space escaped into the atmo-

sphere. On the other hand, when the piston in B is at the end of its

upward stroke, the tension of the air is the same as in the receiver.

Let this be denoted by x. When the piston in B descends the air is

compressed into the "untraversed space" and the passage leading to

A. Let the volume of this passage be I. Then the tension will

increase, and become x —^ When the machine ceases to produce

any farther effect, this tension cannot be greater than that in the

pump-barrel A, which is H=^; we have thus, to determine the limit

to the action of the pump, the equation

X -,=H,^, whence

_ r V + Z

140. Air-pump with Free Piston.—We shall describe one more

air-pump, constructed by Deleuil, and founded upon an interesting

principle. We know that gases possess a remarkable power of ad-

hesion for solids, so that a body placed in the atmosphere may be

considered as covered with a very thin coat of air, forming, so to

speak, a permanent envelope. On account of this circumstance, gases

find very great difficulty in moving in very narrow spaces. On these

facts depends the principle of what is called the air-pump with free

piston.

The piston P (Fig. 149), which is composed entirely of metal, is of

a considerable length, and on its outer surface is a series of parallel

circular grooves very close together. It does not touch the pump-

barrel at any point ; but the distance between the two is very small,

about 001 of an inch. This free piston is surrounded by a cushion

of gas, which forms its only stuffing, and is sufficient to enable the

^ It will be observed that during the process of double exhaustion the piston of B behaves

like a solid piston ; its valve never opens, because the pressure below it is always less than

atmospheric.

d
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machine to work in the ordinary manner, notwithstanding the per-

manent communication between the upper and lower surfaces of the

piston. This machine gives a vacuum about as good as is obtainable

by ordinary pumps, and it has the

important advantages of not requir-

/fy\ I /f\i i'^g <^il> ^^^ ^^ having less friction.

I I^vll I

It consequently wears better, and is

ill^Ml JtI pF T I ^^Blfc ^^^^ liable to the development of

^^B|^,J^^ -^^-^PIHr heat, which is a frequent source of

annoyance in air-pumps. It is

single-barrelled with double action,

like Bianchi's. The two openings S

and S' are to admit air from the

receiver ; they are closed and opened

alternately by conical stoppers at

the ends of the rod T, which passes

tilrough the piston, and is carried

with it by friction in its movement.

They communicate with tubes which

unite at R' with a tube leading from

the receiver. A and A' are valves

for the expulsion of the air, which

escapes by tubes uniting at R The

alternate movement of the piston

is produced by what is called Dela-

hire's gearing. This depends on

the principle, that when a circle

rolls without sliding in the interior

of another circle of double the dia-

meter, any point on the circuTn-

ference of the rolling circle describes a diameter of the fixed circle.

In order to utilize this property, the end of the piston-rod is jointed

to the extremity of a piece of metal which is rigidly attached to the

pinion P, the joint being exactly opposite the circumference of the

pinion. This latter is driven by a fly-wheel with suitable gearing,

and works with the fixed wheel E, which is toothed on the inside.

Thus the piston will freely, and without any lateral effort, describe

a vertical line, the length of the stroke being equal to the diameter

of the fixed wheel.

141. Condensing Pump.—It can easily be seen from the description

Fig, 149.

Piston aud Barrel of Deleuil's Air-pump.
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Fig. 150.—Barrel of Condensing Pump.

it

of the air-pump, that if the expulsion-valves were connected with a

tube communicating with a reservoir, the air removed by the pump
would be forced into this

reservoir. This communi-

cation is established in the

instrument just described.

If, therefore, R' be made

to communicate with the

external air, this air will

be continually drawn in at

that point and forced back

into the reservoir con-

nected with E, so that the

instrument will act as a

condensing pump. The condensing

pump is thus seen to be the same

instrument as the air-pump, the

only difference being that the re-

ceiver is connected with the expul-

sion-valves, instead of with the exhaustion-valves;

is thus, so to speak, the air-pump reversed.

This fact can be very well seen in the structure of

a small pump frequently employed in the laboratory,

and represented in Fig. 150.

At the bottom of the pump-barrel are two valves,

communicating with two separate reservoirs, that

on the left being an admission-valve, and that on

the right an expulsion-valve.

When the piston is now raised, rarefaction is produced in the re-

servoir to the left; and when it is pushed down, the air in the re-

servoir to the right is compressed.

142. In Fig. 151 is represented a condensing pump often employed.

At the bottom of the pump-barrel is a valve h opening downward;

in a lateral tube is an admission-valve a opening inward. The

position of these valves is shown in the figure. They are conical

metal stoppers, fitted with a rod passing through a hole in a small

plate behind, an arrangement which prevents the valve from over-

turning. The rod is surrounded by a small spiral spring, which keeps

the valve pressed against the opening. If now the lower part of the

pump-barrel be screwed upon a reservoir, at each upward stroke of

u.

Fig. 151.

Condensing Pump.
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the piston the barrel will be filled with air through the valve a, and

at every downward stroke this air will be forced into the reservoir.

If the lateral tube be made to communicate with a bladder or gas-

holder filled with any gas, this gas will be forced into the reservoir,

and compressed.

143. Calculation of the Effect of the Instrument.—The density of

the compressed air after a given number of strokes of the piston may
easily be calculated. If v be the volume of the pump-barrel, and V
that of the reservoir; at each stroke of the piston there is forced into

the reservoir a volume of air equal to that of the pump barrel, which

gives a volume nv at the end of n strokes. The air in the re-

servoir, accordingly, which when at atmospheric pressure had den-

sity D, and occupied a volume V \-nv, will, when the volume is

reduced to V, have the density D~y— ^ and the pressure will, by

Boyle's law, be y atmospheres.

If this formula were rigorously applicable in all cases, there would

be no limits to the pressure attainable, except those depending on

the strength of the reservoir and the motive power available.

But, in fact, the untraversed space left below the piston when at

the end of its downward stroke, sets a limit to the action of the

instrument, just as in the common air-purjap. For when the air in

the barrel is reduced from the volume of the barrel v to that of the

untraversed space v\ its tension becomes H-,, and this air cannot

pass into the reservoir unless the tension of the air in tlie reservoir

is less than this quantity. This is accordingly the utmost limit of

compression that can be attained.

We must, however, carefully distinguish between the effects of

untraversed space in the air-pump and in the compression-pump.

In the first of these instruments the object aimed at is to rarefy the

air to as great a degree as possible, and untraversed space must con-

sequently be regarded as a defect of the most serious importance.

The object of the condensing pump, on the contrary, is to com-

press the air, not indefinitely, but up to a certain point. Thus, for

instance, one pump is intended to give a compression of five atmo-

spheres, another of ten, «Sz;c. In each of these cases the maker pro-

vides that this limit shall be reached, and accordingly the untraversed

space can have no injurious effect beyond increasing the number of

strokes required to produce the desired amount of condensation.
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144. Various Contrivances for producing Compression.—In order to

expedite the process of compression, several pumps such as we have

described are combined, which may be done in various ways. Fig.

152 represents the system employed by Regnault in his investi-

gations connected with Boyle's law and the elastic force of vapour.

It consists of three pumps, the piston-rods of which are jointed to

Fig. 152.—Connected Pumps.

three cranks on a horizontal axle, by means of three connecting-rods.

This axle, which carries a fly-wheel, is turned by means of one or

two handles. The different admission-valves are in communication

with a single reservoir in connection with the external air, and the

compressed gas is forced into another reservoir which is in communi-

cation with the experimental apparatus.

A serious obstacle to the working of these instruments is the heat
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generated by the compression of the air, which expands the different

parts of the instrument unequally, and often renders the piston so

tight that it can scarcely be driven. In some of these instruments

which are employed in the arts, tliis inconvenience is lessened by
keeping the lower valves covered with water, which' has the addi-

tional advantage of getting rid of ''untraversed space." In this way
a pressure of forty atmospheres may easily be obtained with air.

Air may also be compressed directly, without the intervention of

pumps, when a sufficient height of water can be obtained. It is only

necessary to lead the liquid in a tube to the bottom of a reservoir

containing air. This air will be compressed until its tension exceeds

that of the atmosphere by the amount due to the height of the sum-

mit of the tube. It is by a contrivance of this kind that the com-

pressed air is obtained which drives the boring-machines employed

in the tunnel through Mont Cenis.

145. Practical Applications of the Air-pump and of Compressed Air.

—Besides the use made of the air-pump and the compression-pump

in the laboratory, these instruments are variously employed in the

arts.

The air-pump is employed by sugar-refiners to lower the boiling

point of the syrup. Compression-pumps are used by soda-water

manufacturers to force the carbonic acid into the reservoirs contain-

ing the water which is to be aerated. The small apparatus described

above (Fig. 151) is sufficient for this purpose: it is only necessary to

fill the side-vessel with carbonic acid, aha to pour a certain quantity

of water into the reservoir below. Compressed air has for several

years been employed to assist in laying the foundations of bridges in

rivers where the sandy nature of the soil requires very deep excava-

tions. Large tubes called caissons, in connection with a condensing

pump, are gradually let down into the rivei ; the air by its pressure

keeps out the water, and the workmen, who are admitted into the

apparatus by a sort of lock, are thus enabled to walk on dry ground.

In pneumatic despatch tubes, which have recently been established

in many places, a kind of train is employed, consisting of a piston

preceded by boxes containing the despatches. By exhausting the

air at the forward end of the tube, or forcing in compressed air at

the other end, the train is blown through the tube with great velo-

city.

The atmospheric railway, which was for a few years in existence,

was worked upon the same principle : an air-tight piston travelled



APPLICATIONS OF COMPRESSED AIR. 207

through a fixed tube, and was connected by an ingenious arrange-

ment with the train above.

Excavating machines diiven by compressed air are coming into

extensive use in mining operations. They have the advantage of

assisting ventilation, inasmuch as the compressed air, which at each

stroke of the machine escapes into the air of the mine, cools as it

expands.

In the air-gun the bullet is projected by a portion of compressed

air which, on pulling the trigger, escapes into the barrel from a re-

servoir in which it has been artificially compressed.

We may add that the large machines employed in iron-works for

supplying air to the furnaces, are really compression-pumps.



CHAPTER XVI.

UPWARD PRESSURE OF THE AIR.

146. The Baroscope.—Atmospheric air exerts, as we have already-

mentioned (§ 101), an upward pressure on bodies surrounded by it.

This pressure, according to the principle of Archimedes, which applies

to gases as well as to liquids, is equal to the weight of th^ air dis-

placed. Hence it follows that the weight of a body in the air is not its

actual weight, but differs from it by a quantity equal to the upward

pressure on the body. This principle is illustrated by the baroscope.

This is a kind of balance, the beam of which supports two balls of

very unequal sizes, w^iich balance each other in the air. If the

apparatus is placed under the re-

ceiver of an air-pump, after a few

strokes of the piston, the beam will

be seen to incline towards the larger

ball, and the inclination will in-

crease as the exhaustion proceeds.

The reason is that the air, before it

was pumped out, produced an up-

ward pressure, which is now re-

moved. The weighty of each ball is

thus increased by that of an equal

volume of air, whose density is the
Fig. 153.- Baroscope.

difference between the densities at

the beginning and end of the experiment. This addition is greater

for the larger ball, which therefore preponderates.

If after exhausting the air, carbonic acid, which is heavier than air,

were allowed to enter the receiver, the large ball would be subjected

to a greater increase of upward pressure than the small one, and the

beam would incline to the side of the latter.
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147. Balloons.—Suppose a body to be lighter than an equal volume

of ah', then this body will rise in the atmosphere. For example, if

we fill soap-bubbles with hydrogen, and shake them off from the end

of the tube at which they are formed, they will be seen, if sufficiently

large, to ascend in the air. This curious experiment is due to the

philosopher Cavallo, who announced it in 1782.^

The same principle applies to balloons, which may essentially be

reduced to an envelope inclosing a gas lighter than air. In conse-

quence of this difference ,of density, we can always, by taking a

Fig. 154.—Ascent of Soap-bubbles filled with Hydrogen.

sufficiently large volume, make the weight of the gas and containing

envelope less than that of the air displaced. In this case the balloon

will ascend.

The invention of balloons is due to the brothers Joseph and Stephen

Montgolfier. The balloons made by them were globe-shaped, and

^ The first idea of a balloon must be attributed to Francisco de Lana, who, about

1670, proposed to exhaust the air in globes of copper of sufficient size and thinness to weigh

less, under these conditions, than the air displaced. The experiment was not tried, and

would certainly not have succeeded, for the pressure of the atmosphere would have caused

the globes to collapse. The theory, however, was thoroughly understood by the author,

who made an exact calculation of the amount of force tending to make the globes ascend.

— Z).

14
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constructed of paper, or of paper covered with cloth, the air inside

being rarefied by the action of heat. It is curious to remark that in

their first attempts they employed hydrogen gas, and showed that

balloons filled with this gas could ascend. But as the hydrogen

readily escaped through the paper, the flight of the balloons was

short, and thus the use of hydrogen was abandoned, and hot air was

alone employed.

The name montgolfieres is still applied in France to fire-balloons.

They generally consist of an envelope with a wide opening below.

^<

Fig. 155.—Fire-balloon of Pilatre de Rozier.

under which is hung a brazier,^ in which, at the moment of ascent,

combustibles are placed, and the ascending power of the balloon is

thus kept up for some time.

The first public experiment of the ascent of a balloon was per-

formed at Annonay on the 5th June, 1783. On October 21st of the

same year, Pilatre de Rozier and the Marquis d'Arlandes achieved

the first aerial voyage in a fire-balloon, represented in our figure.

Charles proposed to reintroduce the use of hydrogen by employing

* A sponge, dipped in spirits of wine, and ignited, is frequently employed as the source

of heat, and is fixed in its place by a light wire-frame.

d
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an envelope impermeable to the gas. This is usually made of silk

varnished on both sides, or of two sheets of silk with a sheet of india-

rubber between. Instead of hydrogen, coal-gas is now generally

employed, on account of its cheapness and of the facility with which

it can be procured.

148. Buoyancy.—The buoyancy or lifting power of a balloon is the

difterence between its weight and that of the air displaced. It is

easy to compare the three modes of inflation with respect to the

buoyancy which they respectively afford.

A cubic metre of air weighs I'SOO grammes.

A cubic metre of hydrogen "089 ,,

A cubic metre of coal-gas about '750 ,,

A cubic metre of air heated to 200° Cent "800 ,,

We thus see that the buoyancy per cubic metre with hydrogen is

1*211, with coal-gas *550, and with hot air about "500 grammes. If,

for instance, the total weight to be raised is estimated at 1500

grammes, the volume of a balloon filled with hydrogen capable of

raising the weight will be ^^^^1239 cubic metres. If coal-gas were

employed the required volume would be :^^ = 2727 cubic metres.

The car in which the aeronauts sit is usually made of wicker-work

or whalebone. It is sustained by cords attached to a net-work

covering the entire upper half of the balloon, so as to distribute the

weight as evenly as possible. The balloon terminates below in a

kind of neck opening freely into the air. At the top there is another

opening in the inside, which is closed by a valve held to by a spring.

Attached to the valve is a cord which passes through the interior of

the balloon, and hangs above the car within reach of the hand of the

aeronaut.

When the aeronaut wishes to descend, he opens the valve for a

few moments and allows some of the gas to escape. An important

part of the equipment consists of sand-bags for ballast, which are

gradually emptied to check too rapid descent. In the figure is

represented a contrivance called a parachute, by means of which the

descent is sometimes eflfected. This is a kind of large umbrella with

a hole at the top, from the circumference of which hang cords sup-

porting a small car. When the parachute is left to itself, it opens

out, and the resistance of the air, acting upon a large surface,

moderates the rate of descent. The hole at the top is essential to

safety, as it affords a regular passage for air which would otherwise
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escape from time to time from under the edge of tlie parachute, thus

producing oscillations which might prove fatal to the aeronaut.

One very important precaution to be observed is not to inflate the

balloon completely at the

commencement of the ascent.

The reason is, that the at-

mospheric pressure diminish-

ing as the balloon ascends,

the expansive power of the

gas contained produces an

increasing effect, as in the ex-

periment described in § 38,

and the result would pro-

bably be the bursting of the

balloon. As the balloon as-

cends, it increases in volume

;

but until it is completely

inflated, the buoyancy re-

mains constant. Suppose,

for instance, that the atmo-

spheric pressure is reduced

by one- half, the volume of

the balloon will be doubled;

it will thus displace a volume

of air twice as great as before,

but the density of this air

will only be half as much,

so that the buoyancy remains

the same. This conclusion,

however, is not quite exact, because part of the balloon, as the cords,

the car, &c., are of invariable volume ; the density of the air displaced

by them is constantly diminishing, and consequently the buoyancy

diminishes also. If the balloon continues to rise after it' is com-

pletely inflated, its buoyancy diminishes rapidly, becoming zero when
a stratum of air is reached in which the weight of the volume dis-

placed is equal to that of the balloon itself It is carried past this

stratum in the first instance in virtue of the velocity which it has

acquired, and finally comes to rest in it after a number of oscillations.

149. Theory of the Balloon.—The tension of the air in this stratum,

the radius of the balloon, and the weight of the different pai-ts, are

Fig. 156.—Balloon with Gar and Parachute.
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connected by a relation which can be very easily established, if we
neglect variations of temperature, and which may serve as a guide in

the construction of the balloon. If V be the volume of the balloon

in litres, the weight of air displaced in grammes is-^

1-293 Vg,

h being the pressure in the stratum of equilibrium, and H that at the

surface of the earth. If w and v be the weight and volume of the

solid parts, including the aeronauts themselves, I the density of the

gas in the balloon, the equation of equilibrium will be (Y -\-v) 1-293 ^r

In this equation iv and v include the weight and volume of the

substance composing the balloon and net-work, and therefore are not

altogether independent of V, the volume of the balloon. The equa-

tion is thus in reality rather complicated, but it may be solved approxi-

mately by trial, or by known algebraic methods, and we may find

from it the size of balloon necessary for reaching a stratum of a given

pressure; and hy ^ 112 we can find the height corresponding to this

pressure.

150. Effect of the Air upon the Weight of Bodies.—The upward

pressure of the air impairs the exactness of weights obtained even

with a perfectly true balance, tending, by the principle of the baro-

scope, to make the denser of two equal masses preponderate. The

stamped weights used in weighing are, strictly speaking, standards of

mass, and will equilibrate any equal masses in vacuo ; but in air the

equilibrium will be destroyed by the greater upward pressure of the

air upon the larger and less dense body. When the specific gravities

of the weights and of the body weighed are known, it is easj^^ from

the apparent weight to deduce the true weight (that is to say, the

mass) of the body.

Let X be the real weight of a body which balances a weight marked

P pounds.

The apparent weight of the body is x—^ az=x (l —
^J,

D being

the density of the body, and a that of air.^ The body marked as

^ The weight of a litre (or cubic decimetre = 61 -027 cubic inches) of dry air at tempera-

ture 0° Cent., and pressure of 760 millimetres of mercury, is 1-293 grammes. Reduced to

British measure, this gives 32-7 grains as the weight of 100 cubic inches.

^ The value of a varies according to the temperature and pressure (see Chap, xxiii.) Its

ordinary value is about -— . (See § 100.)
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weighing P pounds has in air the apparent weight P—^a=P

(l — ^), M denoting the density of the substance of which it is com-

posed. These two apparent weights balance one another; hence we
have the equation

whence

Let us take, for instance, a piece of sulphur whose weight has been

found to be 100 grains, the weights being of copper, the density of

which is 8'8. The density of sulphur is 2.

We have, by applying the formula.

'"''h + 74o(¥-M)i=l<"'-«5 8^«"'»-

We see then that the difference is not altogether insensible. It

varies in sign, as the formula shows, according as M or D is the

greater. When the density of the body to be weighed is less than

that of the weights used, the real weight is greater than the apparent

weight; if the contrary, the case is reversed. If the body to be

weighed were of the same density as the weights used, the real and

apparent weights would be equal. We may remark, that in deter-

mining the ratio of the weights of two bodies of the same density, we
need not concern ourselves with the effect of the upward pressure of

the air, as the correcting factor, which has the same value for both

cases, will disappear in the quotient.



CHAPTEE XVIL

PUMPS FOR LIQUIDS.

151. Machines for raising water have been known from very early

ages, and the invention of the common pump is pretty generally

ascribed to Ctesibius, teacher of the celebrated Hero of Alexandria;

but the true theory of its action was not understood till the time of

Galileo and Torricelli.

152. Reason of the Rising of Water in Pumps.—Suppose we take a

tube with a piston at the bottom, and immerse the lower end of it

in water. The raising of the piston tends

to produce a vacuum below it, and the

atmospheric pressure, acting upon the ex-

ternal surface of the liquid, compels it to

rise in the tube and follow the upward

motion of the piston. This upward move-

ment of the water would take place even

if some air were interposed between the

piston and the water; for on raising the

piston this air would be rarefied, and its

pressure no longer balancing that of the

atmosphere, this latter pressure would cause

the liquid to ascend in a column, whose

weight, added to the pressure of the air

below the piston, would be equal to the

atmospheric pressure. This is the principle

on which water rises in pumps. These in-

struments have a considerable variety of

forms, of which we shall describe the most

important types.

153. Suction-pump.—The suction-pump consists of a cylindrical

Fig. 157.—Principle of Suction-pump.
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jjump-barrel traversed by a piston, and communicating by means of

a smaller tube, called the suction-tube, witli the water in the pump-

well. At the junction of the pump-barrel and the tube is a valve

opening upward, called the suction-valve, and in the piston is an

opening closed by another valve, also opening upward.

Suppose now the suction-tube to be filled with air at the atmo-

spheric pressure, and the water consequently to be at the same level

inside the tube and in the well. Suppose

the piston to be at the end of its downward

stroke, and to be now raised. This motion

tends to produce a vacuum below the pis-

ton, hence the air contained in the suction-

tube will open the suction-valve, and rush

into the pump -barrel. Its elastic force

being thus diminished, the atmospheric

pressure will cause the water to rise in the

tube to a height such that the pressure due

to this height, increased by the pressure

of the air inside, will exactly counter-

balance the pressure of the atmosphere. If

the piston now descends, the suction-valve

closes, the water remains at the level to

which it has been raised, and the air, being

compressed in the barrel, opens the piston-

valve and escapes. At the next stroke

of the piston the water will rise still further,

and a fresh portion of air will escape.

If, then, the length of the suction-tube

is less than about 30 feet, the water will,

after a certain number of strokes of the piston, be able to reach the

suction-valve and rise into the pump-barrel. When this point has

been reached the action changes. The piston in its downw^ard stroke

compresses the air, which escapes through it, but the water also

passes through, so that the piston when at the bottom of the pump-

barrel will have above it all the water which has previously risen into

the barrel. If the piston be now raised, supposing the total height to

which it is raised to be not more than 34 feet above the level of the

water in the well, as should always be the case, the water will follow

it in its upward movement, and will fill the pump-barrel. In the

downward stroke this water will be forced through the piston-valve

Fig. 158.—Suction-pump.

J
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and in the following upward stroke will be discharged at the spout.

A fresh quantity of water will by this time have risen into the pump-

barrel, and the same operations will be repeated.

We thus see that from the time when the water has entered the

pump-barrel, at each upward stroke of the piston a volume of water

is ejected equal to the contents of the pump-barrel.

In order that the water may be able to rise into the pump-barrel,

the suction-valve must not be more than 34 feet above the level of

the water in the well, otherwise the water would stop at a certain

point of the tube, and could not be raised higher by any farther

motion of the piston.

Moreover, in order that the working of the pump may be such as

we have described, that is, that at each upward stroke of the piston

a quantity of water may be removed equal to the volume of the

pump-barrel, it is necessary that the piston when at the top of its

stroke should not be more than 34 feet above the water in the well.

154. Condition that the Water may reach the Pump-barrel.—If the

piston does not descend to the bottom of the barrel, the water may
fall short of rising to the suction-valve, even though the total height

reached by the piston be less than 34 feet. For, if the piston when
at the end of its downward stroke leaves below it a space containing

air, the tension which this air possesses when the piston is raised

diminishes by a corresponding quantity the height to which the water

can attain. If, for instance, the length of the suction-tube is 33*5 feet,

and the tension of the air remaining above it is, when at its least

value, equal to the pressure of 1 foot of water, it is evident that the

total height to which the water can rise will be less than 33 feet, and

it will, in consequence, be unable to reach the pump-barrel.

Example. The suction-valve of a pump is at a height of 27 feet

above the surface of the water, and the piston, the entire length of

whose stroke is 7 8 inches, when at the lowest point is 3*1 inches from

the fixed valve; find whether the water will be able to rise into the

pump-barrel.

When the piston is at the end of its downward stroke, the air

which it leaves below it is at the atmospheric pressure ; when the

piston is raised this air becomes rarefied, and its pressure, b}^ Boyle's

law, becomes j^ that of the atmosphere; this pressure can therefore

3'1

balance a column of water whose height is 34 x ^g feet, or 9*67 feet.

Hence, the maximum height to which the water can attain is 34 —
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9 67 feet= 24-33 feet ; and consequently, as the suction-tube is 27 feet

long, the water will not rise into the pump-barrel, even supposing

the pump to be perfectly free from leakage.

Practically, the pump-barrel should not be more than about 25 feet

above the surface of the water in the well ; but the spout may be

more than 34; feet above the barrel, as the water after rising above

the piston is simply pushed up by the latter, an operation which is

independent of atmospheric pressure. Pumps in which the spout is

at a great height above the barrel are commonly called lift-pumpSy

but they are not essentially different from the suction-pump.

165. Force necessary to raise the Piston.—The force which must be

expended in order to raise the piston, is equal to the weight of a

column of water, whose base is the section of the piston, and whose

height is that to which the water is raised. Let S be the section of

the piston, P the atmospheric pressure upon this area, h the height of

the column of water which is above the piston in its present position,

and h' the height of the column of water below it ; then the upper

surface of the piston is subjected to a pressure equal to P-f-S/t; the

lower face is subjected to a pressure in the opposite direction equal

to P— S//, and the entire downward pressure is represented by the

difference between these two, that is, by S (h-\-h').

The same conclusion would be arrived at even if the water had not

yet reached the piston. In this case, let I be the height of the column

of water raised; then the pressure below the piston is P— SZ; the

pressure above is simply the atmospheric pressure P, and, conse-

quently, the difference of these pressures acts downward, and its value

isS?.

156. Efficiency of Pumps.—From the results of last section it would

appear that the force required to raise the piston, multiplied by the

height through which it is raised, is equal to the weight of water

discharged multiplied by the height of the spout above the water in

the well. This is an illustration of the principle of work (§ 1 7a).

As this result has been obtained from merely statical considerations,

and on the hypothesis of no friction, it presents too favourable a view

of the actual efficiency of the pump.

Besides the friction of the solid parts of the mechanism, there is

work wasted in generating the velocity with which the fluid, as a

whole, is discharged at the spout, and also in producing eddies and

other internal motions of the fluid. These eddies are especially pro-

duced at the sudden enlargements and contractions of the passages
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through which the fluid flows. To these drawbacks must be added

loss from leakage of water, and at the commencement of the opera-

tion from leakage of air, through the valves and at'the circumference

of the piston. In common household pumps, which are generally

roughl}^ made, the efficiency may be as small as -25 or 3 ; that is to

say, the product of the weight of water raised, and the height

through which it is raised, may be less than the work done in driving

the pump in the ratio of one of these numbers to unity.

In Figs. 159 and 160 are shown the means usually employed for

working the piston. The first figure needs no explanation ; it wiU

be seen that the upward and

downward movement of the pis-

ton is effected by means of a lever.

The second figure represents an

arrangement often employed, in

which the alternate motion of

Fig. 159.
Suction-pump.

Fig. 160.

the piston is effected by means of a rotatory motion. For this

purpose the piston-rod T is joined by means of the connecting-rod
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Fig. 161.- Forcing-pump.

B to the cft-ank C of an axle turned by a handle attached to the fly-

wheel V.

157. Forcing-pump.—The forcing-pump consists of a pump-barrel

dipping into water, and having at the bottom a valve opening up-

ward. In communication with

the pump-barrel is a side-tube

with a valve at the point of

junction opening from the

barrel into the tube. A solid

piston moves up and down the

pump-barrel, and it is evident

that when this piston is raised,

water enters the barrel by the

lower valve, and that when
the piston descends, this water

is forced into the side-tube.

The greater the height of this

tube, the greater will be the

force required to push the piston down, for the resistance to be over-

come is the pressure due to the column of water raised.

The forcing-pump most frequently has a short suction-pipe leading

from the reservoir, as represented in Fig. 163. In this case the

water is raised from the reservoir into the barrel by atmospheric

pressure during the up-stroke, and is forced fi'om the barrel into the

ascending pipe in the down -stroke.

158. Plunger.—When the height to which the water is to be forced

is very considerable, the different parts of the pump must be very

strongly made and fitted together, in order to resist the enormous

pressure produced by the column of water, and to prevent leakage.

In this case the ordinary piston stuffed with tow or leather washers

cannot be used, but is replaced by a solid cylinder of metal called a

plunger. Fig. 164 represents a section of a pump thus constructed.

The plunger is of smaller section than the barrel, and passes through

a stuffing-box in which it fits air-tight. The volume of water which

enters the barrel at each up-stroke, and is expelled at the down-stroke,

is the same as the volume of a length of the plunger equal to the

length of stroke ; and the hydrostatic pressure to be overcome is pro-

portional to the section of the plunger, not to that of the barrel. As the

operation proceeds, air is set free from the water, and would even-

tually impede the working ofthe pump were it not permitted to escape.
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For this purpose the plunger is pierced with a narrow passage, which
is opened from time to time to blow out the air.

The drainage of deep

mines is usually effected by

a series ofpumps. The water

is first raised by one pump
to a reservoir, into which

dips the suction-tube of a

second pump, which sends

the water up to a second

reservoir, and so on. The

piston-rods of the different

pumps are all joined to a

single rod called the spear,

which receives its motion

from a steam-enmne.o
159. Fire -engine.— The

ordinary fire-engine is form-

ed by the union of two forc-

ing-pumps which play into

a common reservoir, con- ^^°' ^^^' ^''°' '"^'

... . .

,

, . Suction and Force Pump.
taming in its upper portion

(called the air-chamber) air compressed by the working of the engine.

Fig. 162.—Fire-engine.

A tube dips into the water in this reservoir, and to the upper end

of this tube is screwed the leather hose through which the water is
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discharged. The piston-rods are jointed to a lever, the ends of which

are raised and depressed alternately, so that one piston is ascending

while the other is descending. Water is thus continually being forced

into the common reservoir except at the instant of reversing stroke,

and as the compressed air in the air-chamber performs the part of a

reservoir of work (nearly analogous to the fly-wheel), the discharge

of water from the nozzle of the hose is very steady.

The engine is sometimes supplied with water by means of an

attached cistern (as in Fig. 1 62) into which water is poured ; but it

is more usually furnished with a suction-pipe which renders it self-

feeding.

160. Double-acting Pumps.—These pumps, the invention of which

is due to Delahire, are often employed for household purposes. They

consist of a pump-barrel VV (Fig. 165), with four openings in it, A, A',

B,B'. The openingsA and B' are in communication with the suction-

tube C; A' and B are in communication with

the ejection -tube C The four openings are

fitted with four valves opening all in the same

direction, that is, from right to left, whence it

follows that A and B' act as suction-valves, and

A' and B as ejection-valves, and, consequently,

in whichever direction the piston may be moving,

the suction and ejection of water are taking place

at the same time.

161. Rotatory Pump.—Double-acting pumps

produce a continuous suction of water. The

same end may be attained by means of rotatory

pumps, which are largely used in some countries.

The figure represents one of these pumps as con-

structed by Dietz.

The pump-barrel consists of a cylindrical drum
B (Fig. 166), containing within it a second cylin-

der A, of less diameter, and of nearly the same

length, open at the ends, which can be turned

about its axis by means of a handle; around this

axis is a cam or guide Tnn mn\ rigidly fixed to one of the ends of

the drum B. In the box A are four slits, into which fit four blades

p; these latter are constantly guided by the movement of one of

their ends upon the cam, while the other ends move- along the inte-

rior surface of the drum B, and the broad iron plate h'a' ah, whose

Fig. 165.

Double-action Pump.
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distance from the cam is everywhere equal to the length of one of

the blades. By means of two holes in this plate, communication is

established between the pump-barrel

and the suction-tube C, and between

the pump-barrel and the ejection-tube

C. From this arrangement it follows,

that on causing the box A to rotate in

the direction shown by the arrow, a

partial vacuum will be produced be-

hind the tongues, and the water will

be drawn in at this side, and ejected

at the opposite side.

162. Hydraulic Press.—The hydrau-

lic press (Fig. 1 67) consists of a suction

and force pump aa worked by means

of a lever turning about an axis O.

The water drawn from the reservoir

BB' is forced along the tube CG into

the cistern V. In the top of the cistern is an opening through

which moves a heavy metal plunger AA. This carries on its

Fig. 166.—Rotatory Pump.

Fig. 167.—Bramah Press.

upper end a large plate BB, upon which are placed the objects to

be pressed. Suppose the cistern Y to be at first empty, and the

piston A to be carried by its own weight to the bottom of the

cistern ; under these circumstances, suppose the pump to begin to

work. The cistern first begins to fill with water; then the pressure

exerted by the piston of the pump is transmitted, according to the

principles laid down in §63, to the bottom of the piston A; this piston
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accordingly rises, and the objects to be pressed, being intercepted

between the plate and the top of a fixed frame, are subjected to the

transmitted pressure. The amount of this pressure depends both on

the ratio of the sections of the pistons and on the length of the lever

used to work the force-pump. Suppose, for instance, that the dis-

tance of the point m, where the hand is apphed, from the point O, is

equal to twelve times the distance 10, and suppose the force exerted

to be equal to fifty pounds. By the principle of the lever this is

equivalent to a force of 50 X 12 at the point I; and if the section of

the piston A be at the same time 100 times that of the piston of the

pump, the pressure transmitted to A will be 50 X 12 x 100= 60,000

pounds. These are the ordinary conditions of the press usually em-

ployed in workshops. By drawing out the pin which serves as an

axis at O, and introducing it at O', we can increase the mechanical

advantage of the lever.

Two parts essential to the working of the hydraulic press are not

represented in the figure. These are a safety-valve, which opens

when the pressure attains the limit which is not to be exceeded; and,

secondly, a tap in the tube C, which is opened when we wish to put

an end to the action of the press. The water then runs ofij and the

piston A descends again to the bottom of the cistern.

The hydraulic press was clearly described

by Pascal, and at a still earlier date by

Stevinus, but for a long time remained prac-

tically useless ; because as soon as the pres-

sure began to be at all strong, the water

escaped at the surface of the piston A.

Bramah invented the cupped leather collar,

which prevents the liquid from escaping,

and thus enables us to utilize all the power

of the machine. It consists of a leather rino-

AA (Fig. 168), bent so as to have a semi-

circular section. This is fitted into a hollow

in the interior of the sides of the cistern, so

that water passing between the piston and

cylinder will fill the concavity of the cupped

leather collar, and by pressing on it will

produce a packing that fits more tightly as
Fig. 16S.—Cup—Leather.

the pressure on the piston increases.

The hydraulic press is very extensively employed in the arts. It
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is of great power, and may be constructed, to give pressures of two

or three hundred tons. It is the instrument generally employed

in cases where very great force is required, as in testing anchors

or raising very heavy weights. It w^as used for raising the sec-

tions of the Britannia tubular bridge, and for launching the Great

Eastern.
15



CHAPTER XVIII.

EFFLUX OF LIQUIDS.—TORRICELLI S THEOREM.

163. If an opening is made in the side of a vessel containing

water, the liquid escapes with a velocity which is greater as the

surface of the liquid in the vessel is higher above the orifice, or to

employ the usual phrase, as the head of liquid is greater. This point

in the dynamics of liquids was made the subject of experiments by
Torricelli, and the result arrived at b}^ him was that the velocity of

efflux is equal to that which would be acquired by a body falling

freely from the upper surface of the liquid to the centre of the orifice.

If h be this height, the velocity of efflux is given by the formula

This is called Torricelli's theorem ; it supposes the sides of the vessel

to be thin, and the diameter of the orifice to be very small com-

pared with that of the vessel. It is further assumed that the orifice

and the upper surface are under the same conditions as regards

atmospheric pressure.

Torricelli's theorem has been regarded as an immediate consequence

of the theory of gravitation; according to which, whatever be the

path of a heavy body, its velocity depends only on the height of

the point of starting above the point finally reached. If this height

be h, the velocity is always \l l(jh.

But it is not evident that the molecules of a liquid which is

escaping are subjected to no force but that of gravity. Besides, the

first portions which escape from the vessel do not come from the free

surface, and their velocity is due solely to the pressure exerted by

the liquid column. It will thus be seen that the velocity of efflux,

owing to the complex nature of the phenomenon, can be rigorously

established only by the experimental method. It is very easy to

d
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perform a simple experiment upon this point. In fact, the molecules

issuing from the orifice are ejected with a certain velocity, and should

therefore, by the theory of projectiles, describe parabolic paths. The

jet issuing from the vessel should accordingly be parabolic, and by

measuring its range, we can calculate the velocity of efflux.

The experiment may easily be made by means of the apparatus

represented in Fig. 169. It consists of a cylinder in which are a

Fig. 169.—Apparatus for verifying TorricellL's- Theorem.

number of equidistant orifices in the same vertical line. A tap

placed above the cylinder supplies the vessel with water, and with

the help of an overflow-pipe, maintains the liquid at a constant level,

which is as ipuch above the highest orifice as each orifice is above that

next below it.

The liquid which escapes is received in a trough, the edge of

which is graduated. A travelling piece with an index line engraved

on it slides along the trough; it carries, as shown in one of the
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separate figures, a disc pierced with a circular hole, and capable of

being turned in any direction about a horizontal axis passing through

its centre. In this way the disc can always be placed in such a

position that its plane shall be at right angles to the liquid jet, and

that the jet shall pass freely and exactly through its centre. The

index line then indicates the range of the parabolic jet with con-

siderable precision. This range is reckoned from the vertical plane

containing the orifices, and is measured on the horizontal plane

passing through the centre of the disc. The distance of this latter

plane below the lowest orifice is equal to that between any two con-

secutive orifices.

The following is the way in which the result of an experiment is

estimated. Let b be the height of the orifice above the horizontal

plane through the centre of the ring, and let a be the range of the

jet. If the 'liquid molecules were simply falling from a height, b,

they would traverse this space in a time given by the formula

2

On the other hand, if they were simply obeying the force of ejection

at the orifice, they would, by virtue of their initial velocity x, ivd-

verse the distance a in the same time t, whence we have

a — xt.

Eliminating t between these two equations, we have

whence

=V/6
On comparing this velocity with that given by Torricelli's theorem,

there is generally found to be a small ditference between them, as is

shown in the subjoined table:

—

Head.

Jet. Velocity.
Ratio of actual

to theoretical

velocity. j

a. 6. Actual. Theoretical.

metres.

2-29

3-93

7-17

metres.

6-28

4-66

1-41

metres.

7-53

8-45

6-25

6-65

8-67

11-67

6-70

8-70

11-88

•993

-988

•983

164. Intersection of Jets.—If Torricelli's theorem is correct, th

J
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value of a; just found ought to be equal to ^'lgh\ thus, we have the

equation
/ n

\J2 gh, whence a^ = 4 bh. (3)V 26~

From this a curious result may be deduced : it will be seen that if h

and b vary in such a manner that their produce remains constant, the

value of a will remain unchanged. This law may easily be verified

experimentally. It is only necessary to open at the same time the

top and bottom orifices, or the second and fourth ; the result will

be two jets which will intersect one another at the centre of the

rino'.o
We may remark, however, that the verification of this law does not

prove Torricelli's theorem, for the result would be the same, if in (3)

the constant 4 were replaced by any other constant ; it proves, how-

ever, that the velocity is proportional to the square root of the head

of water, and not to the head itself, as was formerly believed.

165. Quantity of Liquid Discharged.—It would appear at first sight

that Torricelli's theorem could be tested by a very siniple and decisive

experiment. Suppose the level of the liquid in a vessel to be main-

tained constant, and the volume of the liquid which escapes through

an orifice during a certain time to be measured. This can be com-

pared with the volume calculated a priori, by assuming that the

quantity discharged in a unit of time is equal to a cylinder whose

base is the section of the orifice and height the velocity; so that the

quantity which escapes in time t will be given by the formula

q=ts\/2gh;

s being the section of the orifice. Now, in all the experiments which

have been performed, when the orifice is a simple perforation in a thin

plate, the actual discharge has been found to be less than this, being

generally about -6 of it.

This discrepancy arises from neglecting the fact, that the particles

of liquid at the margin of the jet have a converging motion, in con-

sequence of which the jet contracts rapidly for a small distance after

issuing from the orifice. Beyond this small distance the contraction

is very gradual, depending only on tlie continued action of gravity.

The portion which forms the termination of the rapid contraction, is

called the contracted vein, or vena contracta, and its section appears

to be about -6 of that of the orifice. If, then, in the above formula

we make s denote the section of the contracted vein, we shall obtain

results agreeing with experiment.
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166. Efflux-tubes.—This explanation is confirmed by the effect of

efflux-tubes. These are pipes not exceeding a few inches in length,

which are fitted to the holes in the side of the vessel. If, for instance,

a tube of cylindrical form is employed, the contraction will be pre-

vented by the adherence of the liquid to the sides of the tube ; the

section of the jet is then the same as that of the tube. In this case,

if the velocity be measured, it will be found to be less than when the

orifice is a hole in a thin plate; but, on multiplying the velocity thus

obtained by the section of the tube, we shall obtain a result agreeing

with the actual discharge.

The apparatus above described enables us to estimate the differences

in velocity caused by efflux-tubes. For this purpose a sliding plate

is used, with one orifice and two efllux-tubes, one cylindrical, the

other conical; by sliding the plate the liquid can be made to flow out

of either of these tubes.

167. Efflux through Pipes.—When the liquid, instead of escaping

through a short spout, flows through a long tube, the velocity is con-

siderabl}^ reduced by the friction of the molecules against each other,

and against the sides of the tube. This velocity is also not the same

at all points in the same section; it is least where the liquid is in

contact with the tube, and is greatest in the centre of the liquid

column. When a uniform delivery has been established, the quantity

of water which passes in each unit of time is constant, and is the same

for all sections ; and the average velocity across any section will be

obtained by dividing the volume discharged in a second by the sec-

tional area. Many experiments have been performed with the view

of determining this velocity in a certain number of particular cases,

and certain empirical rules have thus been arrived at. It is difficult

to treat the subject rationally, or to establish results that shall be

perfectly general.

168. Fountains.—If the lower end of a water-pipe be connected

with a mouth-piece pointing vertically upwards, the liquid on issuing

from the opening will rise in a vertical jet to a height depending on

the velocity of efflux. If there were no resistance, this height would
2

be that due to the velocity, namely ^, according to the formulae of

§ 38 ; but this is not actually the case. The friction of the liquid

against itself, and the weight of the particles which fall back upon

the rest, counteract the tendency to ascend. The effect of this last

cause can be somewhat diminished by slightly inclining the jet.
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169. Efflux of a Liquid in contact with Confined Air.—When the

surface of the liquid is in contact with a volume of air whose pressure

varies, the velocity of efflux is affected by this variation. Let A B C D
be a closed vessel filled with a liquid as far as M N, and let the space

above contain air at the atmospheric pressure.

If a small orifice be opened below, the liquid

will begin to flow out ; but the air above will

become gradually rarefied, until at length its

pressure, together with that due to the depth of

liquid, will be equal to that of the atmosphere

;

when this happens the liquid will cease to flow,

unless the circumstances are such that air-bubbles can enter. Let us

see what will be the height of the liquid column in the vessel when
the flow ceases. Let A C= ^, AM=h, and let p be the height of a

column of the liquid which will balance the pressure of the atmo-

sphere. The air, which at the beginning of the experiment had a

volume l— h, and a pressure p, will now have a volume l— x, and

consequently a pressure p 1— ;
" we have then

h

X

l-h

whe;ice

p + i±^{p+l)^-iph
2

The — sign alone can be taken with the radical,

since x must be less than I. This case of equili-

brium occurs in several well-known experiments.

Pipette.—This is a glass tube (Fig. 171) open at

both ends, and terminating below in a small taper-

ing spout. If a certain quantity of water be intro-

duced into the tube, either by aspiration or by
direct immersion in water, and if the upper end be

closed with the finger, the efflux of the liquid will

cease after a few seconds. On admitting the air

above, the efflux will begin again, and can again be

stopped at pleasure.

The Magic Funnel—This funnel is double, as is shown in Fig.

172. Near the handle is a small opening by which the space between

the two funnels communicates with the external air. Another

opening connects this same space with the tube of the inner funnel.

If the interval between the two funnels be filled with any liquid,

Fig. 171.—Pipette.
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this liquid will run out or will cease to flow according as the upper

liole is open or closed. The opening and closing of the hole can be

easily effected with thethumb

of tlie hand holding the fun-

nel without the knowledge of

the spectator. This device

has been known from very

early times.

The instrument may be

used in a still more curious

manner. For this purpose

the space inside is secretly

filled with highly- coloured

wine, which is prevented

from escaping by closing the

opening above.

Water is then poured into the central funnel, and escapes either

by itself or mixed with wine, according as the thumb closes or opens

Fig. 172.—Magic Funnel.

V\^. 173.—Inexlmnstible Bottle.

the orifice for the admission of air. In the second case, the water

being coloured with the wine, it will appear that wine alone is

issuing from the funnel; thus the operator will appear to have the
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power of making either water or wine flow from the vessel at his

pleasure.

The Inexhaustible Bottle.—The inexhaustible bottle is a toy of the

same kind. It is an opaque bottle of sheet-iron or gutta-percha,

containing within it five small vials. These communicate with the

exterior by five small holes, which can be closed. by the five fingers

of the hand. Each vial has also a small neck which passes up the

larofe neck of the bottle. The five vials are filled with five different

liquids, any one of which can be poured out at pleasure by uncovering

the corresponding hole.

170. Intermittent Fountain. — The intermittent fountain is an

apparatus analogous to the preceding, except that the interruptions

in the efflux are produced auto-

matically by the action of the

instrument, without the inter-

vention of the operator. It

consists of a globe V, which can

be hermetically closed by means

of a stopper, and can be put

in communication with efflux-

tubes a, by which the water

contained in it can escape. A
vertical tube t rises nearly to

the top of the globe, and ter-

minates below at a short dis-

tance from the bottom of the

basin B. This basin is pierced

with a small opening o, by

which the water contained in

it escapes into the lower basin

C. Suppose the globe to be

filled with water, and com-

munication with the efflux-

tubes to be established, then

the liquid will flow into the basin B, and thence into C. But the

size of the opening o is such that it suffers less water to escape than

passes out by the efflux-tubes ; the liquid will therefore accumulate

in B, and will finally cover the bottom of the tube t Communication

between the external air and the upper part of the globe will then

be cut oflT, and the liquid will after a few moments cease to flow.

Fig. 174.—Intermittent Fountain.
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But as the basin B continues to be emptied by the opening o, the

liquid in the basin will sink below the end of the tube ; air will then

enter the globe, the liquid will again begin to issue from the efflux-

tubes, and so on.

171. Siphon.—The object of the siphon is the transference of liquid

from one vessel to another. It essentially consists of a bent tube

(Fig. 175) with branches of unequal length. The short branch dips

<<S^^^Y^^y- ^S^^^^^^^— c.LAPim^

Fig. 175.—Siphon.

into the liquid to be transferred, the other opens directly into the

air. If we suppose the siphon full of liquid, it is easy to see that the

liquid will flow from the short to the long branch.

For if we consider (Fig. 176j a layer of liquid M, at the highest

point of the siphon, this layer will be subjected to a pressui-e from

left to right equal to the atmospheric pressure diminished by the

height DC, or MI.

Let this latter height be )i, and let H be the external pressure

expressed as the height of an equivalent column of the liquid, then

the pressure from left to right will be H— h. The pressure

from right to left will be H — EF = H — h!. Now as h' is greater

than Ifh^ the first pressure will overcome the second, and the layer M
will consequently move from left to right. But if the height of
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the smaller branch be less than H, the liquid cannot separate,

for the pressure of the atmosphere would immediately fill up the

vacuum which would be formed. Thus the n m e

liquid will continue to flow uninterruptedly

until the liquid in the vessel AB has fallen

below the level of the end of the shorter branch

of the siphon.

The force causing the liquid to flow is the pres-

sure represented b}?- a column of liquid h'— h,

the velocity of efflux is thus equal to V2^ {h'-h),

friction being neglected.

In the above reasoning we have supposed the

external pressure H to be the same at C and at

F. This is evidently the case when the pres-

sure is that of the atmosphere. Ifwe suppose the

surrounding medium to be of a density such that the variation of pres-

sure for the levels AB and KF cannot be neglected, the expression for

the velocity must be modified. Let d be the density of the liquid, d'

that of the surrounding medium, the excess of pressure from left to

right is represented by the weight of a liquid column of density d, and

of height h'—h, diminished by the weight of a column of the same
height of density d' ; that is, it is given by the expression (h'— h) d—
Qi'—h) d' = (h'—h) {d—dy Now the height m of the liquid which

would produce the same pressure is given by the equation md—
(h'—h) {d—d'). Thus, the velocity of efflux will be

KL.

Fig. 176.

V2" gm: ./'- 2, g {h- h') [d - d')

In the case (which could scarcely occur in practice), where d' is

greater than d, the pressure from left to right will be negative ; that

is, the excess of pressure will be from right to left. The liquid will

then flow from right to left, and with a velocity given by the above

formula \i d—d' is replaced by d'— d.

172. Starting the Siphon.—In order that the siphon should work,

it must first be charged with liquid. This is eff*ected in various ways.

When the liquid can be taken into the mouth without danger, the

charging can be effected (Fig. 177) by sucking at a side-tube attached

to the long branch.

This method is inapplicable to liquids which would have an

injurious effect upon the mouth. The following method is often

employed in the transfer of sulphuric acid from one vessel to another.
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Fig. 177.—Starting the Siplion.

The long branch of the siphon (Fig. 178) is first filled with sul-

phuric acid. This is eff*ected by means of two funnels (which can be

plugged at pleasure) at the bend

of the tube. One of these ad-

mits the liquid, and the other

suffers the air to escape. The

two funnels above are then clos-

ed, and the tap at the lower end

of the tube is opened so as to

allow the liquid to escape. The

air in the short branch follows

the acid, and becomes rarefied

;

the acid behind it rises, and if it

passes the bend, the siphon will

be charged ; for each portion of

the liquid which issues from the

tube will draw a corresponding

portion from the short to the

long branch.

To insure the working of the sulphuric acid siphon, it is not suffi-

cient to have the vertical height of the long branch greater than that

of the short branch; it is

farther necessary that it should

exceed a certain limit, which

depends upon the dimensions

of the siphon in each particu-

lar case. In order to calculate

this limit, we must remark

that when the liquid begins to

flow, its height diminishes in

the long and increases in the

short branch ; if these two

heights should become equal,

there would be equilibrium.

We see, then, that in order that the siphon may work, it is necessar}'

that when the liquid rises to the bend of the tube, there should be in

the long branch a column of liquid whose vertical height is at least

equal to that of the short branch, which we shall denote by h, and

the actual length of the short branch from the surface of the liquid

ill which it dips to the summit of the bend by It. Then if a be the

Siphon for Suljihuric Acid.
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inclination of the long branch to the vertical, and L the length of the

long branch, which we suppose barely sufficient, the length of the

column of liquid remaining in the long branch will be h sec a. The
air which at atmospheric pressure H occupied the length h'

under the pressure H— h occupies a length L
Boyle's law, we have

now
/i sec a; hence, by

HA' = (H - h) {h-h sec a), whence L = A sec a '+

H-A"

-Vase of Tantalus.

In this formula H denotes the height of a column of sulphuric acid

whose pressure equals that of the atmosphere.

173. Vase of Tantalus.—The siphon may be employed to produce

the intermittent flow of a liquid. Suppose, for instance, that we
have a vase in which is a bent tube

rising to a height n, and with the

short branch terminating near the

bottom of the vase, while the long

branch passes through the bottom.

If liquid be poured into the vase,

the level will gradually rise in the

short branch of the bent tube, and

will finally reach and pass the point

n, when the siphon will begin to

discharge the liquid. If, then, we
suppose the liquid to escape by the

siphon faster than it is poured into

the vessel, the level of the liquid will gradually fall below the ter-

mination of the shorter branch. The siphon will then empty itself,

and will not recommence its action till the liquid has again risen to

the level of the bend.

If the cup is made of metal with the siphon concealed in the thick-

ness of the sides, when a person in lifting it to his lips inclines it to

the side in which the siphon is, the siphon will become charged, and

will empty the vessel. Hence the name vase of Tantalus given to

this cup in old treatises on physics. Instead of a bent tube we may
employ, as in the first figure, a straight tube covered by a beU-glass

left open below; in this case the space betw^een the tube and the bell

takes the place of the shorter leg of the siphon.

It is to an action of this kind that natural intermittent springs are

generally attributed. Suppose a reservoir (Fig. 180) to communicate

with an outlet by a bent tube forming a siphon, and suppose it to

Fig. 1^
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be fed by a stream of water at a slower rate than the siphon is able

to discharge it. When the water has reached the bend, the siphon

will become charged, and the reservoir will be emptied; it will then

be filled again as far as the bend, and so on.

174. Mariotte's Bottle.—This is an apparatus often employed to

obtain a continuous flow of water. It consists of a flask whose cork

is pierced by a straight tube open at both ends, and with the lowei-

Fig. 180.—Intermittent Spring.

extremity descending to a. An efilux-tube is placed at h near the

bottom of the flask. Suppose that the flask is full of water, and that

the tube is also full to the upper end. If the tube h be now opened,

the liquid molecules at the orifice will be pressed inwards with a

force equal to the atmospheric pressure, but will be pressed outwards

with a force exceeding this pressure by the height of the column of

water as far as the upper end of the tube. The liquid will therefore

flow out; but no vacuum will be produced in the upper part of the

flask, for the pressure of the atmosphere will compel the liquid in the

tube to replace that which escapes. The level of the liquid in the

tube will thus rapidly fall, and the velocity will gradually decrease,

as will be seen by the diminished range of the. jet. When the liquid

reaches the point a, the efflux will continue ; but then air will enter
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the vase in successive bubbles, and will rise to the upper part of the

vase, in such quantity that its pressure, together with that of the

height of water above the horizontal plane through a, will maintain

a pressure on this plane equal to that of the atmosphere. From this

time the liquid will flow with a constant velocity due to the height

of a above h. Strictly speaking, inasmuch as the air enters, not in

a continuous manner, but in successive bubbles, that is, in jerks, the

velocity of discharge oscillates about a constant mean value, but the

oscillations are in general almost imperceptible. Instead of the ver-

euiciirT-i A

Fig. 181.—Mariotte's Bottle.

tical tube, we may use a vase with two openings at different levels

;

the liquid escapes by the lower orifice 6, while air enters by the upper

orifice a. Mariotte's vase is sometimes used in the laboratory to

produce the uniform flow of a gas by employing the water which

escapes to expel the gas. We may also draw in gas through the tube

of Mariotte's bottle ; in this case, the flow of the water is uniform,

but the flow of the gas is continually accelerated, since the space

occupied by it in the bottle increases uniformly, but the density of

the gas in this space continually increases.
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