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PREFACE
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to the wants of those instructors who find the larger work
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THE

DIFFERENTIAL CALCULUS

CHAPTER I.

Functions, Rates, and Derivatives.

I.

Functions,

LA quantity whicn depends for its value upon another

quantity is said to be 2i function of the latter quantity. Thus
x", tan;r, \o^(a 4- x), and a"" are functions of x.

The quantity upon which the function depends must be

regarded as variable, and be represented in the analytical

expression for the function by an algebraic symbol. This

quantity is called the independent variable. It is essential

that variation of the independent variable should actually

produce variation of the function. Thus the quantities

;tr'', x"^ ^r{a \- x) {a — x), and (tan x + cot ;ir) sin 2x are not func-

tions of X, since each admits of expression in a form which
does not involve x,

2. The notation /{x) is employed to denote any function

of X, and, when several functions of x occur in the same in-
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vestigation, such expressions as F{x\ F' {x), (^ (;r), etc., are

employed, the enclosed letter always denoting- the indepen-

dent variable. When expressions like f{}),f{a\ f{2x), or

/(o) are employed, it must be understood that the enclosed

quantity is to be substituted for x in the expression which
defines f(x). Thus, if we have

f{x) = x' + X,

/(i) =z 2, /{2x) = 4x' + 2x, and /(o) = c.

Again, if F{x) = log„;t: {a> \)

F{i) = o, F{6) = — 00, and F{a) = i.

3. When x denotes the independent variable upon which

a function depends, any quantity independent of x is, in con-

tradistinction, called a constant ; both when it is an absolute

constant, like i, |/2, or tt, and when it is denoted by a symbol,

like a, ?/, or y^ to which any value can be assigned. Thus,

when a' is denoted by /(^), it is considered simply as a func-

tion of X, and a is regarded as a constant.

When it is desired to express that a quantity is a function

of two quantities, both the symbols denoting them are placed

between marks of parenthesis. Thus, since a^ is a function of

X and a, we may write

fixy d) = a^.

Accordingly we have

Ay.b) = b\ /(3, 2) = 8, and /(2, 3) = 9- •

4. It is often convenient to represent the value of a func-

tion of X by a single letter ; thus, for example, y = x^. When
this notation is used, if we represent the independent variable

X by the abscissa of a point, and the function y by the corre-
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spending ordinate, a curve may be constructed which will

graphically represent the function, and will serve to illustrate

its peculiarities.

Rectangular coordinates are usually employed for this

purpose. See diagram, Art. lo.

A function of the form

y z=^ mx -\- b^

m and b being constants, is represented by a straight line.

Functions of this form are, for this reason, called linear func-

tions,

l77tplicit Functions.

5. When an equation is given involving two variables x
and

J/,
either variable is obviously a function of the other

;

and the former variable, when its value is not directly ex-

pressed in terms of the other, is said to be an implicit func-

tion of the latter. Thus, if we have

ax"^ — "^axy + y' — ^' = o,

either variable is an implicit function of the other.

By solving the above equation for x, we obtain

/(--f-fl-,=f±/(.'.f
In this form of the equation, x is said to be an explicit func-

tion of y.

This example will serve to illustrate the fact, that from a

single equation involving two variables, there may be derived

two or more explicit functions of the same variable. In the

above case, x is said to be a two-valued function of y ; while,

since the equation is of the third degree in y, the latter is a

three-valued function of x.
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Inverse Functions.

6. \iy = f{^)y * is some function oi y ; we may therefore

write

y—f{x), whence x ±^ (t>{y).

Each of the functions /and </> is then said to be the inverse

function of the other. Thus, if

y = a"^, we have x = logay ;

hence each of these functions is the inverse of the other. So
also the square and the square root are inverse functions.

7. In the case of the trigonometric functions, a peculiar

notation for the inverse functions has been adopted. Thus,

if we have

X = sin 6, we write 6 = sin ~^x.

Whenever trigonometric functions are employed in the

Calculus, the symbol representing the angle always denotes

the circu/ar measure of the angle ; that is, the ratio of the arc

to the radius. Hence sin~*;ir maybe read either "the in-

verse sine of x'' or " the arc whose sine is ;r."

The inverse trigonometric functions are evidently many-

valued. See Art. 54.

The Classification of Functions,

8. With reference to its formy an explicit function is

either algebraic or transcendental.

An algebraic function is expressed by a definite combination

of algebraic symbols, in which the exponents do not involve

the independent variable.
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All functions not algebraic are classed as transcendental.

Under this head are included exponential functions ; that is,

those in which one or more exponents are functions of the

variable, as, for example, a^, xa^^, etc. : logarithmic func-

tions : the direct and inverse trigonometric functions, and
other forms which arise in the higher branches of mathematics.

9. With reference to its mode of variation, a function is

said to be an increasing fimction when it increases and de-

creases with X ; and a decreasing function when it decreases

as X increases, and increases as x decreases. Thus, it is evi-

dent that x^ is always an increasing function of x, while — is

always a decreasing function of x. Again, tan x is always an
increasing function, but sin;ir is sometimes an increasing and
sometimes a decreasing function of x,

10. The increase and decrease here considered are algc-

hraic. For example, x"^ is an increasing function when x is

positive, but when x is negative it becomes
a decreasing function ; for, when x is negative

and algebraically increasing, x"^ is decreasing.

The curve y ^= x"^ which illustrates this

function is constructed in Fig. i. Since alge-

braic increase in the value of x is represented

by motion from left to right, whether the

moving point is on the left or on the right of

the axis of y, the downward slope of the curve on the left

of the origin indicates that x"" is a decreasing function when x
is negative.

Expressions involving an Unknown Function.

11. An expression involving f{x\ as, for example, xf{x)
or F\^f{x)\, is generally a function of x\ but it may happen
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that such an expression has a value independent of x. Thus,

suppose that, in the course of an investigation, the following

equation presents itself :

—

xf{x) = zf{z\

in which/ denotes an unknown function, and x and z are en-

tirely independent arbitrary quantities. When this is the case,

we can make z a fixed quantity, and give to x any value what-

ever; that is, we can make x a variable and z a constant;

but if z is a constant, zf(z) is likewise a constant, v/e can,

therefore, write

xf{x) — c,

c being an unknown constant. Hence we have

The value of the constant c is readily found, if we know the

value of f{x) corresponding to any one value of x.

Examples I.

1. {pc) For what value of n does x^ cease to be a function of x}

(0) For what values of x does it cease to be a function of n?

(a) When n = o. (/3) When ^ = i, or ;ir = o.

2. Ifyfi '-—-^j=,r+ — ^—, show that V is a function of «, but
-^

\ a + xj a + X
not of X.

3. Show that sin,r tan ^x + cos;r is not a function of x.

4. U y = X + 4/(1 + X-), show that/" — 2xjy is not a function of x,

5. If /(^) = x\ find the value o( /{x + Ji)\ of/(2;r); of /(^'') ; of

f{x^-x)', of/(i);/(i2);/[/(^)].

fix + y^) = ;ir' + 2/^ ;r + h^.
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6. If /(^) = COS0, find the value of /(o) ; of /(^tt) ; o\ /(i^r) ; of

7. If F{x) — ax, give the value of F{d)\ of F{\)\ of /^(o). Also

show that in this case \jF{x)Y — F {7.x).

8. Given j^ — 7.ay + ;ir- = o, make_y an explicit function of x.

y — a± ^{0" — X-).

9. Given i + loga _y = 2 log^ {x + «), make ^y an explicit function of x.

{x-^ay

10. Given the equations

—

71 -\- \ —71 (cos^^' + cos Q' cos + cos'^^,

and n — I — n (sin'^^' + sin 6' sin 6 + sin^^)
;

eliminate n, and make ^'' an explicit function of 6. Also make n an ex-

plicit function of ^.
, i

e' =zd±^Tz, and ;2 = T
sin <^ cosO

11. Given sin — ' jr + sin'" 'y = a, makej/ an explicit function of x.

y = sin a 4/(1 — x^) — x cos or.

12. Given tan-';ir + tan~'/ = <ar, make^ an explicit function of jr.

tan a— X
y ~ I +^ tana'

13. Given xy — 2x +y = n, show thatj is not a function of x when
n = 2.

2X — I

14. l( y = -
, show that the inverse function is of the samejX — 2

form.
1 + X

15. Ity —f{x) = —3--, find z =f{^y), and express ^ as a function

of X. I

~ ^'

16. If both / and (p denote increasing functions, or, if both denote

decreasing functions, show that ^[/{x)] is an increasing function.

Also show that the inverse of an increasing function is an increasing

function.
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17. Find the inverse of the function,j = log^ [x + /^(i + x")].

. x= ^{ev-e-y).

18. lif{x) be an unknown function having the property

prove that /{i) = o.

Futy = I.

19. If/(^) has the property

f{x+y)=/{x)+f{y),

prove that/(o) = o. Also prove that the function has the property

f{Px)=p/{x),

in which/ is a positive or negative integer.

For positive integers, puty = x, ix, ^x, etc.^ in the given equation ; for
negative integers, puty = — x.

20. If /denotes the same function as in Example 19, prove that

/i?nx) = m/{x),

m denoting any fraction.

Solution

:

—
^ . P
Puttmg z = —x^ qz —px,

f{^^)=f{p^)\

hence, by Example 19, q/{^) =Pf {x)>

or /(^)=^/(-^),

/(H=,^/«.

21. Given, the property of the same function proved in Example 20;

f{mx) = mf{x)\
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by putting 2 for mx, show that

and thence deduce the form of the function. See Art. 11.

/(^) = ex.

22. Given, [^ {x)Y = [?> (2')> ,
and 9 (i) = s,

'

determine <}> {x).

23. Given (^) + ^ (j) = <j> {xy)

prove ^ {xf") = m <!> (x),

and thence prove (p (x) = c logo:.

Use the 7)iethods of Examples 19, 20, and 21.

9(^) = e^

II.

Rates,

12. In the Differential Calculus, variable quantities are

regarded as undergoing continuous variation in magnitude,

and the rates of variation, denoted by appropriate symbols,

are employed in connection with the values of the variables

themselves.

If a varying quantity be represented by the distance of a
point moving in a straight line from a fixed origin taken on
that line, the velocity of the moving point will represent the

rate of increase or decrease of the varying quantity.

Fig. 2.

Thus O (Fig. 2) being the fixed origin and (9/* a variable

denoted by x, P is the moving point whose velocity repre-

sents the rate of x. The velocity of P, or the rate of x, is

regarded as positive when P moves in the direction in which
X increases algebraically ; thus, taking the direction OX^ or
toward the right, as the positive direction in laying off x, the
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velocity is positive when P moves toward the right, whether
its position be on the right or on the left of the origin. Ac-
cordingly, a rate of algebraic decrease is considered as nega-

tive, and would be represented by a point moving toward the

left.

Constant Rates,

(3. The rate of a quantity like the velocity of a point may
be either constant or variable. A velocity is uniform or con-

stant, when the spaces passed over in any equal intervals of

time are equal, or, in other words, wJie7i the spaces passed oveis*

in any intervals of time are proportiojial to the intervals.

The numerical measure of a uniform velocity is the space

passed over in a unit of time ; then if t denote the time elapsed

from an assumed origin of time, and k the space passed over

by a moving point in a unit of time, kt will denote the space

passed over in the time /. Hence, whenever the velocity is

uniform, the quotient obtained by dividing the number of

units of space by the number of units of time occupied in

describing this space is constant, and serves as the numerical

measure of the velocity.

14. Now, if ;ir be a quantity having a uniform rate k, it

will be represented by the distance from the origin of a point

having the uniform velocity k, and if a denote the value of x
when / is zero, we shall have

X =^ a + kt (i)

This formula expresses a uniformly varying quantity as a

function of /. When ;r is a uniformly decreasing quantity,

k is, of course, negative.

Conversely, if x, when expressed as a function of /, is of the

form (i), involving the first power only of /, then ;r is a quan-

tity having a uniform rate, and the coefficient ^ is a measure

of this rate.
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Variable Velocities,

15. If the velocity of a point be not uniform, its numerical

measure at any instant is the number of units of space which

would be described in a unit of time^ were the velocity to remain

constantfrom and after the given instaiit.

Thus, when we speak of a body as having at a given in-

stant a velocity of 32 feet per second, we mean that should the

body continue to move during the whole of the next second,

with the same velocity which it had at the given instant, 32

feet would be described. The actual space described may be

greater or less, in consequence of the change in velocity which
takes place during the second ; it is, for instance, greater than

the measure of the velocity at the beginning of the second,

in the case of a falling body, because the velocity increases

throughout the second.

16. Attwood's machine for determining experimentally

the velocities acquired by falling bodies furnishes a familiar

example of the practical application of the principle em-
bodied in the above definition.

This apparatus consists essentially of a thread passing

over a fixed pulley, and sustaining equal weights at each ex-

tremity, the pulley being so constructed as to offer but slight

resistance to turning. On one of the weights a small bar of

metal is placed, which, destroying the equilibrium, causes the

weight to descend with an increasing velocity. To deter-

mine the value of this velocity at any point, a ring is so placed

as to intercept the bar at that point, and allow the weight to

pass. Thus, the sole cause of the variation of the velocity

having been removed, the weight moves on uniformly with
the required velocity, and the space described during the

next second becomes the measure of this velocity.
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Variable Rates.

17. When ;r is a function of /, but not of the form ex-

pressed by equation (i), Art. 14—that is, when the function is

not linear—the rate of x will be variable.' To obtain the

measure of this rate at any given instant, we employ the

same principle as in the case of a variable velocity. Thus,

let X be represented by O P\s> in Fig. 2, Art. 12, let the sym-
bol dt denote an assumed interval of time, and let dx denote

the space which would be described in the time dt, were P
to move with the velocity which it has at the given instant

unchanged throughout the interval of time dt. Then the

space which would be described in a unit of time is, evidently,

dx

. 'dt'

which is therefore the measure of the velocity of /*, or the

rate of x.

This ratio is in general variable, but, when x is of the form

a-\- kt/\\, has been shown in Art. 14 that k is the measure of

the rate ; we therefore have

= k, when X = a -{- kt.
dt

Differentials.

(8. The quantities dx and dt are called respectively "the

differential of ;r" and "the differential of /."

In accordance with the definition of dx given in the pre-

ceding article, the differential of a variable quantity at any

instant is the increment which would be received in the time

dt, were the quantity to continue to increase uniformly

during that interval of time with the rate it has at the given
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instant. The quotient obtained by dividing the differential of any

quantity by dt is tJierefore the measure of the rate of the quantity.

The differential of a quantity is denoted by prefixing d to

the symbol denoting the quantity ; when the symbol denot-

ing the quantity is not a single letter it is usually enclosed

by marks of parenthesis to avoid ambiguity. Thus, d{x'')y

d(xy), ^(tan;r), d{a^ + x^), etc.

T/ie Differentials of Polynomials,

19. Let X and y denote two variable quantities, and let a

and b denote particular simultaneous values of x and y^ while

k and k' denote corresponding values of the rates of x and y.

Now, if X and y should continue to vary with these rates,

their values would (see Art. 14) be expressed by

x = a^kt,

and y=b + k't,

whence x+y = a-\-b+{k^ k')t.

Thus the quantity ;r+J would become a uniformly varying
quantity, and, by Art. 14, its rate would be k-\-k\ which,

therefore, is the measure of the rate of x -\-y at the instant

when X and y have the rates k and k\ Consequently,

dt
-^+^ - dt^ dt'

Now, since k and k' denote any values of the rates, this equa-

tion is universally triie. We have, therefore,

d{x^y) = dx^dy (l)

This formula is easily extended to the sum of any number
of variables. Thus,

dix^y \z^r' ")^ dx\d{^y\2-\- * * ^)=^ dx-^-dy-irds-^^ (2)
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20. The differential of a constant is evidently zero, hence

d{x-\-h) = dx (3)

Again, if y z= — x, y-\-x = Oy

hence, by equation (i), since zero is a constant, we have

dy -\- dx =^ o, or dy =^ — dx
;

that is, d,{—x) = — dx (4)

The differential of a negative term is therefore the negative

of the differential of the term taken positively.

It appears, on combining the results expressed in equations

(2), (3), and (4), that t/ie differential of a polynomial is the alge-

braic sum of the differentials of its terms; and that constant

terms disappear from the result.

The Differential of a Term having a Constant

Coefficient.

21. Let the term be denoted by mxy m denoting a con-

stant.

Resuming equation (2), Art. 19 ; viz.,

d{x -vy^ z^- • • •) = dx \- dy -^ dz -\- • . •,

and denoting the number of terms by /, we put

x=y—z— ,

thus obtaining d{px)=pdx, (i)

p denoting an integer.
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5

To extend equation (i) to the case

fraction, let

in which m denotes a

s = - X, then qz=px.

By applying equation (i) we obtain

qd2=pdxj or d. = ^dx;

that is, ^[-A = ~^^'

Hence generally, when m is positive,

d{in x) — in dx (2)

Since d{— x) = — dx, this equation is true likewise when m
is negative.

It therefore follows that t/ie differential of a term having a

constant coefficient is equal to the product of the differential of the

variable factor by the constant coefficient.

Examples XL

I. Find the differential of — , and of
3«' w — 2

*

2dx , dx
, and

3<3: m — 2

2. Find the differential of 1^- , and of ^-
dx , dx—T, and 2'

^ , ,.«• . , , a + d + (a — b)x dx
3. Find the differential of 7, -r —ri'

4. Find the differential of —7, and of —,—-^ .^ a -{ a{a + o)

dx J b{dx+ dy)

a + b' a{a+b)
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dv
5. Given ay \- bx \- 2cx \- ab = o,\.q find -j-. , ,' ^ '

' ^x dy _ b + 2c

dx
~

a *

dy
6. Given y log a -^ x sin a —y cos a — « jir + tan a = o, to find ~.

dy' a — sin a

7. Given ay cos'* a ~2b{i — s\vi(x)x — b{a — x cos^ a), to find

^

dx log rt — cos oc
'

s^ a), to find ^.

</k <^ (i — sin a)

dx~ a (i + sin a)'

8. Given ^'^ + 2 (i + cos a)y = {x + y) sin'^ a, to find —--

dy
^

^a
~r = tan^—
dx 2

X y "

9. Given—h
-r + — = i, to express ds in terms of ^^ and dy.

dz =z dx — 7- dy.
a b -^

10. A man whose height is 6 feet walks directly away from a lamp-

post at the rate of 3 miles an hour. At what rate is the extremity

of his shadow travelling, supposing the light to be 10 feet above the

level pavement on which he is walking?

Draw a figure., a7id denote the variable distance of the man fro7n the

lamp-post by x, and the distance of the extremity of his shadowfrom the

post by y. 7i miles per hour.

11. At what rate does the man's shadow (Ex. 10) increase in length ?

III.

Differentials of Functions of aft Independent Va7'iable,

22« When the variables involved in any mathematical

investigation are functions of an independent variable x^ the

dx
latter may be assumed to have a rate denoted by -— , in which
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dx is arbitrary. So also the corresponding rate of y will be

denoted by — , and, if jj/ is a function of x, the value of dy will

depend in part upon the assumed value of dx.

To differentiate a function of x is to express its differential

in terms of x and dx.

It is to be understood, of course, that the differentials

involved in an equation are all taken with reference to the

same value of dt.

If two quantities are always equal, their simultaneous

rates are evidently equal; and hence their dift'erentials are

likewise equal. We can therefore differentiate an equation ;

that is, express the equality of the differentials of its mem-
bers; provided the equation is true for all values of the

variables involved. Thus, from the identical equation

{x-^h)^=.x''^2hx^h\

it follows that d\{x + Jif'\ = d{x') + 2/1 dx.

The Derivative.

23- Before proceeding to the differentiation of the vari-

ous functions of x, it is necessary to show that, it

^=/W. (I)

the ratio -f-dx

has a definite value for each value of x, independent of the assumed

value ^/dx.

Let a particular value of x be denoted by a, and let the

corresponding value of dx be an arbitrary quantity.

Now, although dx is arbitrary, since dt is likewise

arbitrary, the rate of x^ that is, the ratio

§ (^)
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may be assumed to have a certain fixed value at the instant

when X =^ a. The corresponding value of the rate of y,

denoted by

dt' ^^^

»

evidently depends solely upon the rate of x and upon the form

of the function /in equation (i). Hence, when the value of

the rate (2) is fixed, the value of (3) is also definitely fixed.

Denoting these fixed values by k and k' , we have, when
;r = ^,

dx J A dy J, . dy k'
—- z=. k, and -^ := k , whence -^ =^ --
dt ' dt

' dx k

Hence, corresponding to a particular value a of x, there

exists a determinate value -»of the ratio -f-» notwithstand-
k dx

ing the fact that dx has an arbitrary value; in other words,

the value of the ratio —^ is independent ofthe arbitrary value ^/dx.
dx

24- It is obvious that, in general, this ratio will have

different values corresponding to different values of x, and

hence that it may be expressed as a function of x^ and de-

noted by/X^) ; thus,—

•

£=^'(-) (')

The form of this new function/' will evidently depend upon
that of the given function/

The function /'(;r) is called the derivative of /(;r), and, since

equation (i) may be written in the form

dy = f'(pc) dxy

it is also called the differential coefficient of y regarded as a

function of x.
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When, however, the given function f{x) is of the hnear

form
jj/ = mx + b,

the derivative is no longer a function of Xy but is a constant,

since the value of y gives

dy =^ m dxy

dy
or -^^ = m.

The Geometrical Meaning of the Derivative,

25- Representing the corresponding values of x and/ by

the rectangular coordinates of a moving point, if this point

move in a uniform direction, so as to describe a straight line,

—

tliat is, if J/ be a linear function of Xy—the value of —r will be

constant, by the preceding article. Hence, in the general

case, when this ratio is variable, the point will move in a vari-

able direction.

If we denote the inclination of this direction to the axis of

X by <A, the value of </> will vary with the value of Xy and the

point will describe a curve.

The tangent line to a curve is defined as follows :

—

The tangent to a curve at any point is the straight line which

passes through thepointy and has the direction of the curve at that

point!^

Hence, for any point of the curve, denotes the inclina-

tion to the axis of x of the tangent line at that point.

* It will be shown hereafter (Art. 49) that, in the case of the circle, this

general definition of a tangent line agrees with that usually given in Plane

Geometry.



20 FUNCTIONS RA TES AND DERIVA TIVES. [Art. 26.

26. Now, if a point, at first moving in the curve, should,

after passing the point whose abscissa is a, so move that the

rates -7- and —r retain the values which they had at the in-
at at

stant of passing the given point, the direction of its motion

will become constant, and the point will describe a straight

line tangent to the curve at the given point.

The value of dx may be repre-

sented by an arbitrary increment of

X as in Fig. 3 ; the value of dy will

then be represented by the corre-

sponding increment which would be

received by y, were the point moving
in the tangent line, as indicated in

Fig. 3.

the diagram. Hence

dy
-y- = tan 0,ax

which is evidently independent of the assumed value oidx.^

It follows that the value of the derivative of f(x), for any
value of X, is represented by the trigonometric tangent of

the inclination to the axis of x of the curve y =/(;ir), at the

point corresponding to the given value of x,

27- The moving point, which is conceived to describe

the curve, may pass over it in either of two directions differ-

ing by 180°. The two corresponding values of give, how-

ever, the same value of tan <^, since tan (^ ± 180°) = tan ^.

Thus, in Fig. 3, the point P may be regarded as moving
so as to increase x and 7, in which case both dx and dy will

be positive, and ^ will be in the first quadrant ; or P may

* In other words, the value of the derivative is determined by the form of the function/" which
determines the curve, and the value ol x which fixes the position of/*.
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move in the opposite direction, making dx and d^ negative,

and placing in the third quadrant. In either case, ~ or

tan(/) is positive.

28. It is evident that when f{x) is an increasing func-

tion, as in Fig. 3, ~j~ is positive, and that when it is a de-

. . .
dy .

creasing function, -r- is negative.

Thus the sign of f {x) for any value of x is positive or

negative according as f(x) is, for that value ot x, an increas-

ing or a decreasing function. For example, it is evident that

the value of the derivative of sin;ir must be positive when x
is between o and ^tt, negative when x is between ^tt and |-t,

and so on.

When the notation —r- is used, the value of the derivative
dx

corresponding to a particular value ^ of ;ir is expressed by

dy~\~ which is equivalent to/' (^). See Art. 2.

Examples III.

1. If a point move in the straight line 2y — 7.r — 5 = o, so that fts

ordinate decreases at the rate of 3 units per second, at what rate is the

point moving in the direction of the axis of ^?
dx^_6_
dt 7'

2. If a point starting from (o, b) move so that the rates of its co-

ordinates are k and k', show that its path \s y= jnx -\- b, 7n being

k'
equal to 7-

Express x and y in terms of t {Art. 14), and eliminate t.

3. If a point moving in a curve passes through the point (5, 3)
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moving at equal rates upward and toward the left, find the value of

—^ , also the equation of the tangent line to the curve at the given

point. -^- = — I, and^ + ;f = 8.

4. If a point is moving in the straight line

;r cos a + J sin a = /,

its rate in the positive direction of the axis of x being / sin ex., what is its

rate of motion in the direction of the axis of ^?
— / cos oc,

5. Given ay sin« — a;ir+ajr cosa — ^^ sec a = o; show that is con-

stant and equal to \a.

6. U/{x) = tan;ir, show that/'(;r) must always be positive.

7. Show, by trac'ng the curve, that if j = x^, _Z can never be

negative.



CHAPTER 11.

The Differentiation of Algebraic Functions.

IV.

The Square,

29. In establishing- the formulas for the differentiation of

the simple algebraic functions of an independent variable, we
find it convenient to begin with the square. The object of

this article is, therefore, to express dix^) in terms of x and
dx.

We first deduce a relation between two values of the de-

rivative of the function and the corresponding values of the

independent variable ; for this purpose, we assume two values

of the variable having a constant ratio m. Thus, if

z^:^mxy ^' = m^ x^.

Differentiating by equation (2), Art. 21,

dz = m dxy and diz^) = n^ d{x^) ;

dividing, we obtain

d^z') d{x')—— = m ——

.

az ax

Whence, dividing hy z — m x\o eliminate m^ we have

_i d{^) _\_ d{x')

s' dz ^ X ' dx
(I)
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The derivatives -^- and -^ are, by Art. 23, functions

of z and of x respectively, independent of the values of dz

and dx\ moreover, equation (i) is true for all values of x
and z, these quantities being entirely independent of each

other, since the arbitrary ratio m has been eliminated. There-

fore, either of these quantities may be assumed to have a

fixed value, while the other is variable ; hence it follows

that the value of each member of this equation must be a

fixed quantity, independent of the value of x or of z. Denot-
ing this fixed value by <:, we therefore write

i ^(fl) _
x' dx

~^'

or dix") = cxdx (2)

30. To determine the unknown constant c, we apply this

result to the identity

{x-\-/if = x' + 2hx + h\

Differentiating each member (Art. 22) by equation (2), we have

c {x + h) d{x + h) =^ cxdx-h 2h dx
;

since d{x + h) = dx^ this equation reduces to

chdx =^ 2k dxy

or {c — 2) h dx = o.

Now, since k and dx are arbitrary quantities, this equation

gives
c = 2;

this value of c substituted in (2) gives

d{x'') = 2x dx (a)

That is, t/ie differential of the square of a variable equals

twice the product of the variable and its differential.
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31. Employing the derivative notation, this result may
also be expressed thus :

—

If /{^)=A f\x) = 2X,

This derivative is negative for negative values of x, there-

fore, for these values, x"^ is a decreasing function, as already

mentioned (Art. lo) in connection w^ith the curve illustrating

this function.

Since X and dx are arbitrary, we may substitute for them
any variable and its differential. Equation {a) therefore en-

ables us to differentiate the square of any variable whose
differential is known. Thus,

—

d{^x - if = 2(5^' - 3) sdx = io(5^ - 3) dx.

Again, d{a x^ + d xf = liax" ^bx) d(a x' -\-bx)

= 2{ax'' -f bx) {2ax + b) dx.

The Square Root

32> To derive the differential of the square root, we put

y = |/^,

whence y^ ^= x]

differentiating by {a), 2y dy = dx,

. dx
dy=^ 2y

y= ^x,.'. 41/-) =^ (*)

That is, tke differential of the square root of a variable is

equal to the quotient arisingfrom dividing the differential of the

variable by twice the given square root.
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Thus. 4^(.»_.=)3^_^-_^^,

or, using derivatives,

dx ^{a'-*x')

Examples IV.

'^

I. Differentiate {7.x + 3)*, and find the numerical value of its rate,

when X has the vahie 8, and is decreasing at the rate of 2 units per

second.

The differential required is denoted by d\{7.x -\- 3)^], and the rate by

7; : the rzven rate -j— = — 2.
dt ^ dt 152 units per second.

2. Find the numerical value of the rate of {x"^ — 2;r)% when x = y,

and is increasing at the rate of ^ of one unit per second.

Differentiate the given expression before siibstitutijig.

ii units per second.

V 3. Find the numerical value of the rate of 4/(7'' + x"^), whenj/ = 7

and ;r = — 7, if J is increasing at the rate of 12 units per second, and

X at the rate of 4 units per second.
4 |/2 units per second.

• 4. If f{x) = x — j^{x''- «'), find f'{x), and show that f{pc) is a

decreasing function. _ £
/ (^) - I - ^(^2_^2y

•J 5. Differentiate the identity {\/x + \/ay = x + a \- 2 ^dx, and

show that the result is an identity.

6. Differentiate y (fa _ 3^"^)'

77/*? co7tstant factor ,, ^ -r. should be separated from the variable
•' ^{a^ ~ 2ab) ^ -^

factor before differentiation. i x — a

j^ia^ — 2a b) \/{x^ — 2ax)
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^'
7. If fix) = (I + -r^)^ . f\x) = --^^-r.

(I + xy

X
y/lO. li fix) = ^^ -, /'(^) = I + ,^ ., ,.^

Rationalize the denominator before differentiating.

J x^ y* dy .^ \i. Given —i + -7^ = i. express -j— in terms of x, and give the values

r ^~l ^ dy-\ dy b X

\J\i. Given y = 4^.r, express -7— in terms of x, also in terms oiy, and

eive the values of -~ ^^a ^L
.

^_.4/— =— . ' ^

13. A man is walking on a straight path at the rate of 5 ft. per

second; how fast is he approaching a point 120 ft. from the path in

a perpendicular, when he is 50 ft. from the foot of the perpendicular.?

Solution :—
Let ;r denote the variable distance of the man from the foot of the

perpendicular, so that -rr may denote the known velocity of the man,

and let a denote the length of the perpendicular (120 ft.); then the

distance of the man from the point is y'(a' + jr'^), of which the rate of

change is denoted by

d\ i^ia'^ -V xy^ X dx
dt ~ ^{d' +^^) dt

'

At the instant considered, x = $0 ft., while a = 120 ft., and —j- = — 5 f

t
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per second. By substituting these values, we obtain — i||. Hence his

distance from the point is diminishing (that is, he is approaching it) at

the rate of i|f ft. per second.

^ 14. If the side of an equilateral triangle increase uniformly at the

rate of 3 ft. per second, at what rate per second is the area increasing,

when the side is 10 ft. .^

*

*
15 -^3 sq.ft.

15. A stone dropped into still water produces a series of continu-

ally enlarging concentric circles ; it is required to find the rate per

second at which the area of one of them is enlarging, when its diame-

ter is 12 inches, supposing the wave to be then receding from the

centre at the rate of 3 inches per second. ^(§ yj^ jLyrt^
"

y 16. If a circular disk of metal expand by heat so that the area A of

each of its faces increases at the rate of o.oi sq. ft. per second, at what
rate per second is its diameter increasing.? 1 . 1

,:r-sv.'''^*nr^;
^ 17. A man standing on the edge of a wharf is hauling in a rope

attached to a boat at the rate of 4 ft. per second. The man's hands

"being 9 ft. above the point of attachment of the rope, how fast is the

boat approaching the wharf when she is at a distance of 12 ft. from it.?

5 ft. per second.

" 18. A ladder 25 ft. long reclines against a wall ; a man begins to

pull the lower extremity, which is 7 ft. distant from the bottom of

the wall, along the ground at the rate of 2 ft. per second ; at what rate

per second does the other extremity begin to descend along the face

of the wall.? 7 inches.

19. One end of a ball of thread is fastened to the top of a pole 35 ft.

high ; a man holding the ball 5 ft. above the ground moves uniformly

from the bottom at the rate of five miles an hour, allowing the thread

to unwind as he advances. What is the man's distance from the pole

when the thread is unwinding at the rate of one mile per hour }

1^6 ft.

20. A vessel sailing due south at the uniform rate of 8 miles per hour

is 20 miles north of a vessel sailing due east at the rate of 10 miles an
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hour. At what rate are they separating—(or) at the end of i^ hours.?

(3) at the end of 2^ hours ?

Express the distances in terms of the time. {a) J-^V miles per hour.

21. When are the two ships mentioned in the preceding example

neither receding from nor approaching each other ?

Put the expressionfor their rate of separatioti equal to zero.

When / = |o of an hour.

22. Derive, by the method employed in Art. 29 to determine the

differential of the square, the result d\ — \
=

—

~,c being an unknown

constant.

V.

The Product,

33- Let X and y denote any two variables ; in order to

derive the differential of their product, we express xy by
means of squares, since we have already obtained a formula

for the differentiation of the square. From the identity

(x +j)' = x"" + 2xy +/'

,

we derive

xy^^ix^-yy-^x'-^^f.

Differentiating, d{x)') = {x + y) (dx + dy) — x dx — ydy,

therefore, d{xy) ^= y dx -V x dy {c)

Since x and j/ denote any variables whatever, and dx and
dy their differentials, we can substitute for x and y any
variable expressions, and for dx and dy the corresponding

differentials. Thus,

^[(l +x') 4/(«' - ^')] = 4/(^> - x')2xdx - ^~~^f^
2d — ;^x^ — I

X dx.
i/(d - x')
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34. Formula {c) is readily extended to products consist-

ing of any number of factors. Thus X^tx^ x^x^, . . . xp denote

the product of / variable factors, then

d(x^x^ x^ x^ — x^x^'"Xp dx^ + x^ d{x^ x\ • • -xj)
<

= x^x^' • -Xpdx^+XiX^' • 'Xpdx^ + XyX^d{x^' • -Xp)

= x^x^' ' 'XpdXi+x^x^' ' 'Xpdx^' • • +XiX^' • 'Xp_^dxp. . {d)

The Reciprocal,

35. The differential of the reciprocal may now be
obtained by means of the implicit form of this function.

Denoting the function by j/, we have

Differentiating the latter equation by formula {c), we obtain

ydx + xi

whence dy=^ —

ydx + xdy = o,

ydx
~x"'

substituting the value of /,

4)—^^ • •('^3X

Formula {d) enables us to differentiate any fraction of

which the denominator alone is variable ; thus,

Ja + b\ dx
\a-\-x/ ^ Ha'\-xY
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The Quotient,

36> By the term quotient, as used in this article, we mean

a fraction whose numerator and denominator are both

variable. In deriving its differential, the quotient is re-

garded as the product of its numerator by the reciprocal

of its denominator. Thus, applying formulas (c) and {d\

M^

ii)

dx X dy

-y-'J-'
ydx — xdy

yi y W

It will be noticed that the negative sign belongs to the

term which contains the differential of the denominator.

As an illustration of the application of this formula, we
have

I2X — a\ __ 2{x'-^B) — 2x(2x — a) __ b-vax — x^

Formula (e) is to De used only zvhen both terms of the

fraction are variable ; for, when the numerator is constant, the

fraction is equivalent to the product of a constant and the

reciprocal of a variable, and, when the denominator is

constant, it is equivalent to the product of a constant by a

variable factor. Thus, if it be required to differentiate the

fraction , the use of formula (e) may be avoided by first

making the transformation,

x^^-a^ X a=- + -;
ax a X
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since, in this form, one term of each fraction is constant

Hence,

dx adx
\ ax J

~~
a x^

'

The Power.

37- To obtain the differential of the power when the

exponent is a positive integer, suppose each of the variables

x^x^x^"'Xp in formula {c'\ Art. 34, to be replaced by x.

The first member contains/' factors, and the'second/ terms ;

the equation therefore reduces to

d{x^)=px^'' dx (i)

Next, when the exponent is a fraction, let

y = xif then f = x^
;

differentiating by (i), / and ^ being positive integers, we have

^y ^ dy=px^~^dx,

p x^~^
therefore, dy=-- ——j dx,

q f
Substituting the value of y.

-. dx — -x''
^ x^-\ ^

Again, when the exponent is negative, we have

d(xi)= — ' dx=:-x'' dx (2)

1 x^-\ 1

' -^
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Differentiating by formula {d), Art. 35, we obtain

d{x )=— -^,

and, since 7n is positive, we have, by (i) or (2),

_ inx"^' ^ dx _ , r
d{x '") = — -^, ——mx "• V/.r. . . . (3)

Equations (i), (2), and (3) show that, for all values of w,

d{xr) — nx''-^dx (/)

By giving to 71 the values 2, J, and — i, successively,

it is readily seen that this more general formula includes

formulas {a), (b) and {d).

38. It is frequently advantageous to transform a given

expression by the use of fractional or negative exponents,

and employ formula (/) instead of formulas {b) and {ci).

Thus,

^[(-^-2Py^] = ^(^' - ^^T' = S{a-- 2x')-'xdx,

and d —-, -3 \=^d{a-\-x^-^ = — %(a + x) -^dx.

When the derivative of a function is required, it may be

written at oiice instead of first writing t-he differential, since

the former differs from the latter only in the omission of

the factor dx^ which must necessarily occur in every term.

Thus, given

-- ^^—r^ = ;ir(l-h;r')-^

we derive ^ = (i +^')-^ - \x{\ -^x")-'^ . 2x = ^f-^g
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J
Examples V.

1. From the identity xy = \{x \-yY — \{x—yY derive the formula foi

differentiating the product.

^ . « + bx + cx"^
ifferentiate .> 2. D X

Put the expression in theform — + d + e x. ie rAdx.

\

3. Find the derivative of

J = ^^rzrp' See remark. Art. zi,
_ == (^» ^ ^.) ___^.

xj 4. J = Sf{x^ - «').

5-J^ =

dy 3.r'

dx ~ (a^ — .rO' *

n/ 6. J/
= (I + 2jr^)(i + 4jr»). -£ = ^{i + 3x+ io;r»).

^^r

^ 8. ^ = (1 + .if (I + xy. ^= 4(1 + ^y (I + -^')(i + *• + 2^').

9. J = (I + ;r"')" + (I + x")"*.

~- = mn[{l + ;r'»)*-'^-'«-^ + (l + jr^")-" -';»:«-»].

/ ^5 _ 2a^V 10. y = .

/
a —X

dy = I +
a^

dx {x-ar

±. a + X
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12. y dx x' ^{x"" — ay

y ab r^ y, o dy ab ix^ — a^

V
U. ^ = ^-^ +^—^•.

If = i[(i - -)-^ - (I 4- x)-ij.

^ l6. J = (« + -r)^ (^— ;ir)*.r'.

dv
-J-=x{a + xy {b — xY \ia b -{ {^b — 6d) x — gx""].

I ;r" 4- I dy 2nx'^-'^

i8. jj/ = (3^ + 2a,r)3 (^ ~ ax), '/' — — S^""-*" '^(3'^ + ^ax).

v/19.
{2a X— x'^y

Put in theform {a" — b'''){7.ax— ;r') -*. ~£, = sC^' — P^

yj 20. y =
V(^-' - -r')

bx
^^' ^~ ^{2ax — xy

/22.J=|/^.

/

— t/

'{2ax - ^')«
•

^J. a'

rt'^ {a^ _^')r

dy n^.r

dx- (2aX

I

-:r')a-

dx~ ii^x)^(i —xy

23. y =
^{a^ + x^) — X

r> . ,^ , , dy I r a"" + 2X''
"1

fiattonahze the deno?mnator. -y- = --r- —,, „ -

—

^ -r 2x \.

dx a^\_ \/{a^ + ^') J
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v 24. Two locomotives are moving along two straight lines of railway

which intersect at an angle of 60°
; one is approaching the intersection

at the rate of 25 miles an hour, and the other is receding from it at the

rate of 30 miles an hour ; find the rate per hour at which they are

separating from each other when each is 10 miles fro;ii the intersection.

2\ miles.

\ ; 25. A street-crossing is 10 ft. from a street-lamp situated directly

above the curbstone, which is 60 ft. from the vertical walls of the

opposite buildings. If a man is walking across to the opposite side of

the street at the rate of 4 miles an hour, at what rate per hour does

his shadow move upon the walls

—

{pi) when he is 5 ft. from the curb-

stone ? (/i) when he is 20 ft. from the curbstone ?

/ (a) 96 miles
; {p) 6 miles.

26. Assuming the volume of a tree to be proportional to the cube

of its diameter, and that the latter increases uniformly ; find the ratio

of the rate of its volume when the diameter is 6 inches to the rate

when the diameter is 3 ft. ^.

27. If an ingot of silver in the form of a parallelopiped expand

lo^oo P^-rt of each of its linear dimensions for each degree of tempera-

ture, at what rate per degree of temperature is its volume increasing

when the sides are respectively 2, 3, and 6 inches ?

If X denote a side, dx may be assumed to denote the rate per degree of
temperature. -^-^ of a cubic inch.

28. Prove generally that, if the coefficient of expansion of each

linear dimension of a solid is k, its coefficient of expansion in volume

is T,k.

Solution :
—

Let X denote any side ; then, if V denote the volume, we shall have

V= cx^', c being a constant dependent on the shape of the body.

Therefore dV = y x" dx
;

or, since dx — kx,

dV= zkcx^ = 3/^ V,



CHAPTER III.

The Differentiation of Transcendental Functions.

VI.

The Logarithmic Function.

39. In this chapter, the formulas for the difFerentiation of

the simple transcendental functions are to be established.

We begin by deducing the differential of the logarithmic

function, employing the method exemplified in Art. 29.

The symbol log;ir is used in this article to denote the loga-

rithm of X to any base, and log^;ir is used when we wish to

designate a particular base b.

Let z = in X,

differentiating by Art. 21

dz = vt dx,

whence

Multiplying hy z = mx, to eliminate m, we obtain

h d{\ogz) _ d{\ogx)

F^ dz -"" dx ^^^

r,>t 1 . . d(\o£[,z) ^diXoQ-x) , . .

The derivatives, , and , — , are, by Art. 23, func-

log z =z logm + log;ir,

t. 21,

and

d{\ogz)

dz -

d{\ogz) = d(}ogx)\

d(\ogx)

m dx
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tions of z and of x respectively, independent of the values of

dz and dx\ moreover, equation (i) is true for all values of

X and ^, these quantities being entirel}^ independent of each

other, since the arbitrary ratio m has been eliminated. Hence,

in equation (i), one of the quantities, x or z, may be assumed

to have a fixed value, while the other is variable ; whence it

follows that the members of this equation have a fixed value

independent of the values of x and z ; we therefore write

^(l02:;ir) , .

X T^
—- = a constant (2)dx ^

This constant, although independent oi x, may be dependent

on the value of the base of the system of logarithms under

consideration. Denoting the base of the system by b^ we
therefore denote the constant by B^ and write equation (2)

thus,

—

41og,^') = —T- (3)

4-0. To determine the value of B, we establish a relation

between two values of the base and the corresponding values

of this unknown quantity.

Denoting another value of the base by a, and the corre-

sponding value of the unknown constant by A^ we have

A^Oga^) = -^ (4)

The relation sought may now be obtained by differentiat-

ing, by means of (3) and (4), the identical equation

log^;f = log^^ log^;ir,* (5)

* This identity is most readily obtained thus,—by definition
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Adx , ,Bdx
thus obtaining —— = log^ b —— ,X X

or BXoZab^A,

hence ^^Za^^ ~ ^»

that is, A is the logarithm to the base a of h^ ; whence we
have

b^ ^ a^ (6)

Now, it is obvious that the value of a^ cannot depend

upon b, hence equation (6) shows that the value of b^ likewise

cannot depend upon b\ b^ must, therefore, have a value

entirely independent of b. Denoting this constant value by e,

wc write

3^ == £ (7)

Adopting this constant as a base, and taking the loga-

rithms of each member of equation (7), we have

Blo^^b = I,

I

whence B
\og,b'

Introducing this value of B in equation (3), we obtain

In this equation, the differential of a logarithm to any

given base is expressed by the aid of the unknown constant e,

41. The constant e is employed as the base of a system of

taking the logirilhra to the base a of each member, we have

logax = logbx loga<J.
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logarithms, sometimes called natural or hyperbolic, but more

commonly Napierian logarithms, from the name of the in-

ventor of logarithms. Hence e is known as the Napierian

base.

Putting /^ = e in formula {g) we derive

'/(log.^) = ^ (^')

The logarithms employed in analytical investigations are

almost exclusively Napierian. Whenever it is necessary, for

the purpose of obtaining numerical results, these logarithms

may be expressed in terms of the common tabular logarithms

by means of the formula,

which is derived from equation (5), Art. 40, by writing 10 for

a and e for b. The value of the constant log,^^ will be com-
puted in a subsequent chapter.

Hereafter, whenever the symbol log is employed without

the subscript, logg is to be understood.

The Logarithmic Ctirve.

4-2-. The curve, corresponding to the equation

y = loge-^ (l)

is called the logarithmic curve.

Y y The shape of this curve is indi-

cated in Fig. 4. It passes through
the point A whose coordinates are

^ ^ ^ (i, o), since
Fig. 4. log I = o.

Since we have, from formula {g'\
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1

dy \

the value of tan^ at the point A is unity, and therefore the

tangent line at this point cuts the axis oi x at an angle of 45°,

as in the diagram. We have from equation (2),

when -^ > I tan«/) < i,

and when ^ < i tan<?!> > i
;

the curve, therefore, lies below this tangent, as shown in

Fig. 4.

The point (e, i) is a point of the curve ; let j5. Fig. 4, be

this point, then OR will represent the Napierian base, and
BR = I. Since

OA =1, and AR> BR,

OR>2',

that is, the Napierian base e is somewhat greater than 2.

The quantity e is incommensurable : the method of com-
puting its value to any required degree of accuracy is given
in a subsequent chapter.

Logarithmic Differentiation.

43, The differential of the Napierian logarithm of the

variable ,r, that is the expression -^ , is called the loga-

rithmic differential of x.

When X has a negative value, the expression log;r has no
real value; in this case, however, log(— ;r)is real, and we
have

/ XT d{—x) dx
^[log (- ^)] = ^ = —-.
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This expression therefore, in the case of a negative quantity,

is identical with the logarithmic differential of the positive

quantity having the same numerical value.

44. The process of taking logarithms and differentiating

the result is called logarithmic differentiation. By means of

this method, all the formulas for the differentiation of alge-

braic functions may be derived^
*

In the following logarithmic equations, it is to be under-

stood that that sign is taken in each case which will render

the logarithm real.

By differentiating the formulas,

—

log {±xy) = log {±x) + log (± j),

log(±,r«) = ;/log(±;t'),

d(xv) dx dy
we obtam = — + -^,

• xy X y^-

X \yJ X y

d{x") dx—'^— ^^
—•

X"' X

These formulas are evidently equivalent to (r), (r), and (/), of

which we thus have an independent proof.

45. The method of logarithmic differentiation may fre-

quently be used with advantage in finding the derivatives of

complicated algebraic expressions. For example, let us take

71 = r (I)

Hence, we derive
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log- « = -J log {2X) + i log (l — ^') - I log {x — 2), . . (2)

differentiating,

du _ _j 3
x_

2 _J__
11 dx ~ 2x ^ I — y ^ X — 2 (3)

adding and reducing,

du — 8;r' + 24;tr' — .r

therefore

udx 6 (i — y') (^.r — 2)jir

du — 8,r' + 24jr" — x — 6

dx ^{2xf{i-x'f{x-2f'

For certain values of Xy one or more of the quantities whose

logarithms appear in equation (2) become negative. When
this is the case these logarithms should, strictly speaking, be

replaced by the logarithms of the numerical values of the

quantities in question ; this change however would not affect

the form of equation (3). See Art. 43.

Exponential Functions,

4-6. An exponential function is an expression in which an
exponent is a function of the independent variable. The
quantity affected by the exponent may be constant or vari-

able. In the first case, let the function be denoted by

J = ^-^ (i)

\i a is negative, a' cannot denote a continuously varying

quantity. We therefore exclude the case in which a has a

negative value, and regard a^ as a continuously varying pos-

itive quantity.

Taking Napierian logarithms of both members of equation

(i), we have

logJ = X log^

;

differentiating by (^0.
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— = loGT a . dx ;

y
^ ^

hence dy ^=z loga.ydjVj

or d^a"^) = loga.a'^dx {/t)

Exponential functions of the form e-*" are of frequent occur-

rence. Putting ^ = € in formula (//), we have
*

d{e^) = e^dx; (//)

hence the derivative of the function e^ is identical with the

function itself. This function is the inverse of the Napierian

logarithm ; it has been proposed to denote it by the symbol
exp X.

4-7. When both the exponent and the quantity affected by
it are variable, the method of logarithmic differentiation may
be employed. Thus, if the given function be

we shall have log-s" = x"^ log {nx)
;

differentiating, — = x""— + 2x log {n x) dx,

hence d\{n xy'\ = {nx^ x[i + 2 log (n x)] dx.

1^^, and

Examples VIl

-^ I. Given the function j/ — logj;r; show that —
dx

hence prove that the tangent to the corresponding curve, at the point

whose abscissa is e, passes through the origin.

Put a =. X ^=it in equation 5, Art. 40.
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^ 2. y = ;r" log X. -^ = jr" ~ ^ (I + « log x),
ax

/ . ., . dy \

3. j = log (log ^). -^ —
dx X log jr

4. jF = log[log(^ +<^^)]. - —
dx {a + <^^") log(^ + bx"")

'i
5. >/ = 4/.r-log(4/^+ I).

-^

dx 2 ( y'jf 4- i)

•^ ^
4/.^ — |/^ ^/.r (^? — x) j^x

Put in the form^ log ( 4/^ + ^/^r) — log (
y'<^ — |/.r).

^ 7.^ = logfV(.-.)4-V(--.)]. _^^ = _-__i___.

4 8.^ = log [.r + 4/(.r^ ± ^^)]. -^

V 9. J= log—-—

-

dx ^{x-' ± a^)

dy _ I

-/(I + x"") dx x{i + x"")

^io.y= iogyO+^)_+4/(i-^) ^ _
4/(1 4- ^') — |/v I — -^) ^-^^ X 4/(1 — jr'^)

^11. y = lot; r^ + i/Oi- — x')\ -4- = ., ..
----„-. ^

, „

y 12. ^= log

//or 4/(^'^ — x'') \_x + 4/(rt^ — A'^)]'

^/

l/C^'-* + d')—x dx X ^{x'' + «')'

dy

i 1 , , « (2Ji: — ^) ^ ^r*^ + <?'
^ 14. y = log (x — a) ^ —^. -^ = II .
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ax

y/ ^ A. dy I A-

Je^ —

23. j^ = log (e* + c-').

dx (I + ^)^

dx
17. jr = e'(i _ ;r»). ^- = ^'(i - 3-^' - ^').

18. V — (x — 'C^t'^^/LX^. 4L
:18. ^ = (^ — 3) e'* + 4^*'. -^= {2.x — 5) e^' + \{x + i)e*.

20. J = 3«^ -^ = log« . log/5 .
^"^

. a'.

^ 21. y =^=«'*. -4- — na^'^ .
^-'»-'

. \os:a.
dx

J X ^ f^ ( I — .r) — IV 22. _/ = -^ =—^ .

£*— I dx (t""— !)''

dy f^ — e"

dx e^ 4- £"

V 24. y = ^ '"ff*. — = — lojy^ fl! . rt ""s*.

^25.^ = log-_. ^^FTIT-

\ 26. J =;r^. -J-
= ^-' (i 4- log;r).

dx

^^
(^-2)*(jc-3)^' ^^ 12(^-2)^ (a:-3)^3^ '

6"^^ ^r/. 45.
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28. y

V (jc+i)'

(

x + 3)'

^9^y =—(^+,)^

47

^ _ i/t3;(ji:''— Sax -{-120^)

'(^+ 3)^

v/

VII.

77^^ Trigonometric or Circular Functions,

4-8- In deriving the differentials of the trigonometric

functions of a variable angle, we employ the circular measure

of the angle, and denote it by 0. Thus, let s denote the

length of the arc subtending the angle in the circle whose
radius is a, then

In Fig. 5, let OA be a fixed line, and OP an equal line

rotating about the origin O ; then P
will describe the circle whose equation

(the coordinates being rectangular) is

x'^-f

The velocity of the pointP is the rate of

ds
s, and (see Art. 17) is denoted by -j*

which has a positive value when P
moves so as to increase Q. Let PP

,

taken in the direction of the motion of P, represent ds\ then,

according to the definition given in Art. 25, PP' is a tangent

line, and PB and BP will represent dx and dy^ as in Art. 26,

Fig. 5.
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49. We have first to show that the line PP\ which is a

tangent to the curve according to the general definition (Art.

25), is perpendicular to the radius.

Differentiating the equation of the circle, we have

xdx^ ydy=
)

whence tdLXKp-
_dy _
~ dx"

X

y

«

Now (see Fig. 5), X
= tan(9,

therefore, tan</) = — cot = tan {e±i 'T).

or, =-.Q±\7t',

hence the tangent line is perpendicular to the radius.

Assuming to be the angle between the positive directions

of X and ds^ we have

The Sine and the Cosine,

60- From Fig. 5, it is evident that

sm = -, and cos B = -',

a a

therefore ^(sin^) = — , and ^(cos0) = --.
. . » (i)

In equations (i) we have to express dy and dx in terms of

Q and dd.
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Again, from the figure, we have

^ = sin 0. dsy and dx = cos 0. ds ;*

substituting in equations (i), we obtain

^(sin 0) = sin — , and ^(cos 0) = cos — . ... (2)

Since ^=:e + ^n, and - = ^f

, ds
sin (p = cos 0, cos </> = — sin 0, and — = dO,

Substituting these values in equations (2), we obtain

d{sind) = cosddd, (/)

and d{cosO) = — sinddd (y)

TAe Tangent and the Cotangent,

51. The differential of tan0 is found by applying formula

(e) to the equation

sin0
tan Q =

;cos Q '

.

,

r /. ^N cos <^(sin 0) — sin <^(cos &)
thus, ^(tan0) = ^ ^—^-^ ^^ ^,

^ ^ cos w

or ^(tan0) = ^^^z=sec'0^a {k)

*In Fig. 5, dx is negative ; but, being in the second quadrant, cos0 is

lil^ewise negative.
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The differential of cot is found by applying formula {k)

to the equation

COt0 = tan(i;r — Q)\

whence d{c,oX.Q) — — -^^^ = — costd'ddd, . . . (/)

The Secant and the Cosecant.

52. The differential of sec is found by applying formula
(^) to the equation

sec^ =
cos^

, ,, , sine do
whence d^sec d) = -^^-^ = sec d tan Odd. , . (m)

The differential of coseca is found by applying formula
(m) to the equation

cosec d = sec (i ^ — 6)

;

, 7/ ^N cos Odd
whence d {cosec d) = ^-^—- = — cosec cot 0^(?. . (n)

sin u ^ ^

The Versed-Sine.

S3. The versed-sine is defined by the equation

vers (9=1— cos Q
\

therefore ^(vers (9) = sin a ^0 f^)
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Examples VII.

1. The value of ^^(sin^) being given, derive that of d?(cosO) from
the formula

cosO = sin (^TT — 0) ;

also from the identity

cos^G = I — sin^Q.

2. From the identity sec'^= i + tan'0, derive the differential of

secO.

3. From the identity sin2 = 2 sin cos 0, derive another by taking

derivatives. cos 2 = cos' — sin' G.

4. From the identity sin (0 ± \t:) = i |/2 (sinG ± cosG), derive an-

other by taking derivatives. cos (G ± i tt) = i |/2 (cos G ^ sin G).

5. Prove the formulas :

—

^/(log sin G) = — ^(log cosec 0) = cot G d^ ;

//(log cos G) = — ^(log sec G) = — tan G d^
;

<f(log tan G) = — ^(log cot G) = (tan G + cot G) ^9.

6. Obtain an identity by taking derivatives of both members of the

equation

I — cos 9
tani0 =

sinG

, o , « I —cos
\ sec" i G =—^^-^* ^

sin' e

7. ^ = G + sin G cos G. -jz = 2 cos" 1

8. y = sin G — ^sin'G. -~ = cos''G.

_ sinG /^_i+cos'G
^* -^ ~ V(cos G)- 5"G - 7(^6)3

'
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j lo. y = \ tan^G — tan + 0.

•* II. _y = ^tan^e + tanQ.

^ 12. y = sine*.

J 13. y — X s\n x^,

^ 14. J = ^•"*.

>/ 1 5. J = tan^* + log (cos^ 9).

^ 16. _y = log (tan + sec 0).

17. J = logtan(i7r + i0).

^ 18. _>/ = ;(:+ log cos (iTT—x).

;

19. 7 = log yCsin x) + log ^/(cos ;ir).

20. J = sin n (sin 0)*.

J sin;r
^ 21. J =

I + tan X

\' 22. J = t^'^cosbx,

4 _ Mcosx — b^\nx
3- J — og

|/ ^cos^ + bsinx'

dy

^0
= sec* 0.

= e* cos e*.

J- = sin ;r'' + ^x"^ cos ;r'.

-^ = log a .
«""* COS JIT.

| = 2tan30.

^0
= sec 0.

dy _ I

^""cos0*

<^_ 2

~dx~ \ \- tan y

^;r
= cot 2X.

dv
jQ=n (sin 0)" - ' sin (?z + I) 0.

dy cos^x — sin'^r

dx~ (sin X + cos;*:)''*

dy
-^ = ef'' {a cos bX — bsmbx).

-abdy^
dx d^ cos^ X — b^ sin'

X*



§ VII.] EXAMPLES. 53

^ 2^. y ~ ^' (q.o's.x —s\T\x). -^= — 2fc^sinx

25. The crank of a small steam-engine is i foot in length, and
revolves uniformly at the rate of two turns per second, the connect-

ing rod being 5 ft. in length ; find the velocity per second of the

piston when the crank makes an angle of 45° with the line of motion
of the piston-rod ; also when the angle is 135°, and when it is 90°.

Solution

:

—
Let a, b, and x denote respectively the crank, the connecting-rod,

and the variable side of the triangle ; and let denote the angle be-

tween a ?Lnd X. ^. .

We easily deduce
*

^*^tf £^
;ir = «cos0 + i/(^' — rt'sin'»0); >tc^^'

(^--^•^^ etc

whence
dx I ^'sinOcosQ \d^

dO
In this case, -tj = ^n, a = i, and ^ = 5.

When 6 = 45°,
;^7
=

-f-
ft.

26. An elliptical cam revolves at the rate of two turns per second

about a horizontal axis passing through one of the foci, and gives a

reciprocating motion to a bar moving in vertical guides in a line with

the centre of rotation : denoting by 6 the angle between the vertical

and the major axis, find the velocity per second with which the bar is

moving when = 60°, the eccentricity of the ellipse being \, and the

semi-major axis 9 inches. Also find the velocity when 6 = 90°.

The relation between and the radius vector is expressed by the equation

a(i — e^) r^'-^'^
1 u

^cos9 9

When = 60°, -r- = — 12 4/3 TT inches.

27. Find an expression in terms of its azimuth for the rate at which
the altitude of a star is increasing.

Solution

:

—
Let // denote the altitude and A the azimuth of the star,/ its polar

distance, / the hour angle, and L the latitude of the observer ; the

formulas of spherica! trigonometry give
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sin ^ = sin Z COS /^ + cos Z sin/ cos /, . . . . (i)

and sin/ sin / = sin ^ cos h. ...... (2)

Differentiating (i),/ and Z being constant,

cos "--f.^
~ COS Z sm/ sm /,

(It

whence, substituting the value of sin/ sin /, from equation (2),

-— = — cos Z sin A.
at

It follows that — is greatest when sin^ is numerically greatest ; that

is, when the star is on the prime vertical. In the case of a star that

never reaches the prime vertical, the rate is greatest when A is greatest.

VIII.

The Inverse Circular Functions.

S^. It is shown in Trigonometry that, if

X = sin Qy

the expressions

2n7t-\-0 and (2;^+ i) tt — <9, . . (i)

in which n denotes zero or any integer, include all the arcs

of which the sine is x\ hence each of these arcs is a value

of the inverse function

Among these values, there is always one, and only one^

which falls between — \n and +i7r; since, while the arc
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passes from the former of these values to the latter, the sine

passes from — i to + 1 ; that is, it passes once through

all its possible values.

Let 0, in the expressions (i), denote this value, which we
shall call the primary value of the function.

65- In a similar manner, if

X = cos 9j

each of the arcs included in the expression

2n7r ±e (2)

is a value of the inverse function

cos
"

' ,v.

One of these values, and only one, falls between oand n
;

since, while the arc passes from the former of these values

to the latter, its cosine passes from + i to — i ; that is, once

through all its possible values. In expression (2), let d denote

this value, which we shall call the primary value of this

function.

56, In the case of the function

cosec ~ ^ x^

the definition of the primary value that was adopted in the

case of sin~*;ir, and the same general expressions (i) for the

values of the function, are applicable.

In the case of the function

sec~*;tr,

the definition of the primary value adopted in the case of
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cos-'-JT and expression (2) for the general value of the

function are applicable.

Finally, in the case of each of the functions

tan~';ir and cot~';i;

t\iQ primary value {d) is taken between —^7t and -\-^7t, and

the general expression for the value of the function is

njt + e (3)

The Inverse Sine and the Inverse Cosine,

67- To find the differential of the inverse sine, let

Q = sin-^;tr;

then x=sm8, and dx = cosOdd^

dx
or dQ= —^.

cos^

(I)

If B denotes the primary value of this function ; that is, the

value between — ^7rand+|-^, cos0 is positive. Hence the

upper sign in this ambiguous result belongs to the differential

of the primary value of the function ; it is therefore usual to

write

</(sin--^) = -^-^^^ {p)

Since we have, from expressions (i). Art. 54,

d(2n TT + 0) = dQ, and d\j^2n + i) tt — 0] = — dQ^

Now, COS0 = ± 4/(1 — sin'e) = ± 4/(1 .-n
Vifnpf* di-\n-^x\ — "^^^^.m X)-

j^^(, _^.y
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it is evident that the positive sign in equation (i) belongs not

only to the dillerential of the primary value of sin~';r, but

likewise to the differentials of all the values included in

2mT + d\ and that the negative sign belongs to the differen-

tials of the values of sin~'^ included in (2;/+ i)7t — 0.

58. Similarly, if

= COS~^Jtr, ;r = cos0;

_^ dx
whence '^^=-:zji^e'

or d{coB-'x) =—^^^^ (I)

If denote the primary value of the function which in

this case is between o and tt, sin is positive ; hence the up-

per sign in this ambiguous result belongs to the differential of

the primary value. It is therefore usual to write

_ dx

Since, from expression (2), Art. 55, we have

d{2n 7r±0) = ±d0;

it is evident that the upper and lower signs in equation (i)

correspond to the upper and lower signs, respectively, in the

general expression 2^1 tt ±0.

The Inverse Tangent and the Inverse Cotangent,

69. Let

— tan ~ * X, then x = tan d
;

differentiating, we derive,

dx

sec'O
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But sec''0=1+ tan^ = i + ;r', therefore,

dx

No ambiguity arises in the value of the differential of

this function; since, from expression (3), Art. ^56, we have

d{n TT + d) = do.

Similarly, putting

e = cot ~^ Xf

we derive ^(cot-'x) = ~j^~ (s)

The Inverse Secant and Inverse Cosecant,

60. Let

0=sec~*;i:, then ;tr = sec0;

differentiating, we derive

dx
do =

sec d tan '

But sec0 = X, and tan0 = ± ^/(sec'^ — i) = ± -y'{x' — i),

therefore,

jr -1 \ dx
d{sec x) = -^-^

If X is positive, and if denotes the primary value of the
function, tan0 is positive. Hence it is usual to write

dx
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When X is negative, if denotes the primary value of the

function, which in th:s case is in the second quadrant, tan Q is

negative ; consequently the radical must be taken with the

negative sign. Hence, since x is also negative, the value of

the differential is positive, when the arc is taken in the

second quadrant.

In like manner we derive

4cosec-^) = - ^^^^f_^^ («)

Similar remarks apply also to this differential when x is

negative.

The Inverse Versed-Sine,

6r. Let

= vers~*-r, then x = vers0 = I — cos^,

dx
and \ — X =^ cos Q, . •

.

^0 = -:

—

--,
* sm0

But sin0 = |/(i — cos'0) = 4/(2^— ^), therefore,

Illustrative Examples.

62- It is sometimes advantageous to transform a given

function before differentiating, by means of one of the

following formulas :

—

sm~ -;5 = cosec -, cos~ -;5 = sec -, tan 75 = cot -.
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Thus, let y — tan
~

'
—

e-^ sin ;ir

then 7= cot"' (e^^sec^tr + tan;!;).

By formula {s\

dy _ e--*sec;rtan;ir — e--»^secar-+ ^c';r

dx ~ sec'';ir + 2e--^sec;r tan ;ir4-«~ ^* sec^;r*

multiplying both terms by e^cos^^r,

dy £-^(cos X — sin x — e^)

dx ~ I + 2 e-^ sin ;ir + e^'^ '

63. Trigonometric substitutions may sometimes be

employed with advantage. Thus, let

y = tan
4/(l+;ir^)+ I

If in this example we put x = tan^, we have

_, tan^ , sin^
y = tan = tan ~ -

sec ^ + I I \- cos

= tan-*(tanJ0) = i-^ = ^tan-';r.

Examples VIII.

V I. Derive from (/), (r), and (/) the formulas:

—

^ftan-^)=^
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1

(;i:\ adx
a) X ^{x^ — a^)

2. Derive ^(sec ~^x) from the equation sec -^x = cos -^ —

3. Derive ^f cot-' — J from the equation cot"'— = tan-*—

•

' dy >4jr

4. J = sin - ' {2x^),
—

5. ^ = sin-* (cos;r),

6. y = sin (cos" *;r),

77"
7. ^ = sin-* (tan;r).

8. / = cos-* (2Cos;r).

9. j=;rsin-*;r+ 4/(1 — ^r").

10. _y = tan-*f*.

11. y={x^ + i) tan-*;r — ;r.

^ V 12. ^=«''sin-*|^ + ;r v'C^'^
- ^r'^). ^ = 2 |/(^^ - jr")

^ V 13. ^ = tan-*j^^;-^.

^+ I

dx- .^(1-4^*)-

dy

dx^" ^'

dy

dx~
X

v{i-^r

dy sec'jr

dx 4/(1[
— tan'^^r)*

^^ 2sin-r

^-r --^./(i.— 4COS='^)*

^J
//;»:

= sin-* jr.

dy

dx
I

-£-+£-"'

dy

dx- 2;rtan-*;ir.

[4. y = sin • 1 —

dy m{\ + -r^)

dx~- i^{m^--2);r» + ^*

dy I

4/2 ' dx ^{i—2x—x*y
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*>V — Lau
4/(1-^^)-

i6. ^ = sec-

V i/i7. y^ sin--1

v/.
18. y = sin-» 4/(sin r).

v/. 19. y = 4/(1 — x')sin->jr— jr.

, »2 4- ^
20. _y = tan-^- mx

I -x»

-^
,

/I — cosjtr
22. y = tan - ^ 4/ —;

.^
r I + cos;r

J

J

1/ jjrsin-';r ,
, ^

24. y—{x-\-d) tan-' |/ 4/(«;f).

dx~ 4/(1 — ^^)'

^ I

dx ^{cr-x'^y

dy a

dx~ a" Vx'''

-^= 1^(1 +cosec^).

dr
dx

;rsirl-i^ir

^(i -^^)

^̂
/;r I

I

^__ 2

^J
Tx-^'

^/ sin -';r

^x-~(.-x')«-

^7
dx- '^""'/l-

IX.

Differentials of Functions of Two Variables.

64. The formulas already deduced enable us to differen-

tiate any function of two variables, expressed by elementary

functional symbols ; the application of these formulas is, how-
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ever, sometimes facilitated by a general principle which will

now be shown to be applicable to such functions.

The formulas mentioned above involve differential factors

of the first degree only. It follows, therefore, that«the differ-

entials resulting from their application consist of terms each

of which contains the first power of the differential of one of

the variables. In other words, if

du =^<l>{x,y)dx-V\\){x,y)dy (l)

Now, if y were constant, we should have ^ = o, and the

value oi dii would reduce to that of the first term in the right-

hand member of (i); hence this term may be found by differ-

entiating u on the supposition that y is constant^ and in like

manner the second term can be found by differentiating u on
the supposition that x is constant. The sum of the results

thus obtained is therefore the required value of du,

65. As an example, let

u^.

Were v constant, we should have for the value of dz, by
formula (/), Art. 37,

vu'"—'^du\

and, were u constant, we should have, by formula (Z^), Art. 46,

log u . u"^ dv]

whence, adding these results,

ds ^ «"- \v du-\-u log ti dv\
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Although this result has been obtained on the supposition

that u and v are independent variables, it is evident that any

two functions of a single variable may be substituted for u

and V. Tiius, if

u = nx and z/= 4r',

we have z = {n x^y *

and, on substituting,

ds = {nxy -'^{x'^ndx+ n x log {n x) . 2x dx),

= x(nxy[i-\-2\og{nx)']dx,

which is identical with the expression obtained in Art. 47, for

the differential of this function.

Examples IX.

I. u = xy e* + «y. du=e'+^yly(i + x)^;r + x(l + 2y)dy].

2.u = log tan^. du=2^-^^^^Z^.
i/^sin2 —

y

3. « = logtan-':^. ^^_ ^^^-^- -^^J

y
C^'^+jOtan-^^

^^^*^-±^^y

^^^- b--y--2 4/(.r7)1 ^ydx ^\x-y-^2 ^/{xy)\ i/xdy

^V{.xy){x^yy

J J r ^^ ""y ^^_ y'^^
.
x{xdy-ydx)^
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y /

dy _
dx

X + 2

2(1 + -)'

dy (^' -b'')x

dx {a^-x\)'^(^*^-..')*

Va{Vx- Va)

/ /
' 9. Given x = r cos 9, and j = r sin Q; eliminate 6 and find dr ; also

eliminate r and find dB,

. X dx -{ y dy , .. xdy—ydx
dr = .. , ,

.;. , and dO = —
3 ,

-^

^

.

Miscellaneous Examples.

^' -^ V + Vx' dx 2 Vx V(a + x)(Va + Vx)"

'

, 4.,= (Vx-2Va)V{Va+Vx). |= ^^(^,%^,)
.

^ _ (o:- i)(g' 4- i)e' dy _ £' {x s""' - 2x s^ + 2s'— x)

^ 6. ^ = log-^^ fr + i tan ^x. -f-
= 7

—

TT—^—Tx •^ ^
(i + ^)« dx {i+x){i-^x)

/ 2sin~*^ , , I—

^

4^ 2Jtsin"^^
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^

V 1 1. JF = ^,log ^ -' — V [a — X

dy_ V (g" - x^)

dx~ ^ X

\ (i — :v'^)8sm~*
12. V = -'^ '-

X
X

dy 1— X 1 -{• 2x^ ., 2\ • -1~ = '

i
— Vii — X) sm ^x,

ax X X ^ ^

n) ., .-w./ ^-^Q^^ ^^
13. J log/f^

cos:^? dx sinjc*

4 I4.7 = tan-r^^.tanf].
dx~ 2{a + b cos jc)

'

J _t I /^ 2
^ 15.7= sec ^ —^ . -f = —— ^2^—1 d!'.;C 1/ (l — ^')

J 16. J = COS ^ -^ ^ _ 2nx''

X'" +1 ^- ;v'" + I

dy_ 3c_

'dx
~ V [b' -{a- xy^

•

Jo -1 i/i— -^ dy \/ (1 — x)
^ 18. y = cos^jt: — 2i/ . ^ — JL^ J.

^

^ i+x dx (^j^x)^

£/j^ logarithmic differentials.



CHAPTER IV.

Successive Differentiation.

X.

Velocity and Acceleration,

66. If the variable quantity x represent the distance of a

point, moving in a straight Hne, from a fixed origin taken on the

line, the rate of x will represent the velocity of the point.

Denoting this velocity by v^ we have, in accordance with the

definition given in Art. 17,

dx , .

"'^w ('>

In this expression the arbitrary interval of time dt is re-

garded as constant, while dx, and consequently Vj^, is in gen-

eral variable. Differentiating equation (i) we have, since dt

is constant,

dt

The differential of dx, denoted above by d{dx)y is called the

second differential o{ X ; it is usually .written in the abbreviated

form d^'x, and read " d-second xJ' The rate of Vx is therefore

expressed thus :

—

dvjc _d^x
It (dlf'
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The rate of the velocity of a point is called its acceleration^

and is usually denoted by a ; hence we write

the marks of parenthesis being usually omitted 4n the denomi-

nator of this expression.

67. When the space x described by a moving point is a

given function of the time /, the derivative of this function is,

by equation (i), an expression for the velocity in terms of /.

The derivative of the latter expression, which is called the

second derivative of x, is therefore, by equation (2), an expres-

sion for the acceleration in terms of /.

A positive value of the acceleration a mdicates an algebraic

increase of the velocity v, whether the latter be positive or

negative ; and, on the other hand, a negative value of a indi-

cates an algebraic decrease of the velocity.

68. As an illustration, let x denote the space which a body

falling freely describes in the time /. A well-known mechanical

formula gives

^ = W' 0)

dx
Hence we derive Vx—-r=gti (2)

ai

J dvx d'^x , X

^"'^ '^'=-^=^=^- ^3)

In this case, therefore, the acceleration is constant and posi-

tive, and accordingly v^^ which is likewise positive, is numeri-

cally increasing.

69. When the velocity is given in terms of x, the acceleration

can readily be expressed in terms of the same variable, as in

the following example.
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Given Vx—2^mx\

dvx dx
whence -7— = 2 cos x -j-

;

at at

that is, ^'^ = 2 cos x,Vx = ^ cos jr sin ;ir = 2 sin 2x,

The general expression for a^, when v^ is given in terms

of x^ is

_ dvx _ ^-2^^ ^^ _ dvx _ I ^(t^x) / \

^~~
dt dx dt ~ ^ dx ' 2 dx

Component Velocities and Accelerations,

70. When the motion of a point is not rectilinear but is

nevertheless confined to a plane, its position is referred to co-

ordinate axes ; the coordinates, x and y, are evidently functions

of /, and the derivatives —- and -—
, which denote the rates

dt dt

of these variables, are called the cojnponent or resolved velocities

in the directions of the axes. Denoting these component veloci-

ties by Vx^nd Vyy we have

dx . dy
t.. = ^, and v,=f^.

Again, denoting by s the actual space described, as measured
from some fixed point of the path, s will likewise be a function

ds
of /, and the derivative -y will denote the actual velocity of

at

the point. (Compare Art. 48.) Now, the axes being rectangu-

lar, and denoting the inclination of the direction of the mo-

tion to the axis of x, we have

dx = ds cos ^, and dy = ds sin 0.

-, dx ds . A dy ds , J.
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or Vx — V COS ^, and Vy =v sin ^.

Squaring and adding,

The last equation enables us to determine from the component
velocities the actual velocity in the curve.

71. If we represent the accelerations of the resolved mo-

tions in the directions of the axes by ajc and ofy, we shall have,

by Art. 66,

a.=^ and ., =^ .

These accelerations, a^ and a^^ will be positive when the re-

solved motions are accelerated in the positive directions of the

corresponding axes ; that is, when they increase a positive re-

solved velocity, or numerically decrease a negative resolved

velocity.

Examples X.

J I. The space in feet described in the time / by a point moving in

a straight line is expressed by the formula

^ = 48/ — 16/";

find the acceleration, and the velocity at the end of 2 J seconds ; also

iind the value of t for which z; = o.

Of = — 32 ; z; = o, when /= \\.

J 2. If the space described in / seconds be expressed by the formula

jf = 10 log
4 + i'

find the velocity and acceleration at the end of i second, and at the

end of 1 6 seconds. When t= i, v= — 2 and « = f

.
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, 3. If a point moves in a fixed path so that

s= Vt,

show that the acceleration is negative and proportional to the cube of

thp velocity. Find the value of the acceleration at the end of one

second, and at the end of nine seconds. —
:^, and — jj-^.

"^ 4. If a point move in a straight line so that

x = a cos ^Ttty

show that a= — ^Tt^x.

V 5. If x = a£' { d€-\

prove that a = x.

J 6. If a point referred to rectangular coordinate axes move so that

X = a cos / + <^ and y = a sin f } c,

show that its velocity will be uniform. Find the equation of the path

described.

Eliminate tfrom the given equations.

V 7. A projectile moves in the parabola whose equation is

y = x\.zxia —f—— x^,
2 V cos Of

(the axis of _y being vertical) with a uniform horizontal velocity

Vx^= V cos a
;

find the velocity in the curve, and the vertical acceleration.

v= V{V' — 2gy), and a, = —g,

8. A point moves in the curve, whose equation is

x^ + ^f = a^^
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SO that Vx is constant and equal to k ; find the acceleration in the di-

rection of the axis oiy. ^1^2

y 9. If a point move so that v — V{2gx); determine the acceleration.

C/se equation (i), Art. 6g. ^ = g-

\J 10. If a point move so that we have

v"^ = c — M log x,

n.

yj II. If a point move so that we have

determine the acceleration. a = — —
2X

2^

determine the acceleration. a — -.

{x' + b')^

12. The velocity of a point is inversely proportional to the square

of its distance from a fixed point of the straight line in which it moves,

the velocity being 2 feet per second when the distance is six inches
;

determine the acceleration at a given distance s from the fixed point.

- ~, feet.
2S

y ....
13. The velocity of a point moving in a straight Ime is m times its

distance from a fixed point at the perpendicular distance a from the

straight line ; determine the acceleration at the distance x from the

foot of the perpendicular. ol = m^x.

V 14. The relation between x and / being expressed by

f 1/ -^= \/{ax — x) —^ayeis "^—

;

find the acceleration in terms of x. oc= 5 •

X

\ 15. A point moves in the hyperbola

/ =P'^X' + q'

in such a manner that Vx has the constant value c
;
prove that
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and thence derive ay by equation (i), Art. 69.

7

<y = ——i—

16. A point describes the conic section

v^ having the constant value c ; determine the value of a^.

Express Vy in terms ofy^ andproceed as in Example 15.

-f

2 2m c
-.= -y

XI.

Successive Derivatives,

72. The derivative of f(x) is another function of x, which

we have denoted by f\x) ; if we take the derivative of the

latter, we obtain still another function of .r, which is called the

second derivative of the original function f(x\ and is denoted

by/"(^). Thus if

f{x) = x\ f'(x) = ix\ and f\x) = 6x,

Similarly the derivative of f'(x) is denoted by f"'{x), and

is called the third derivative of f{x) ; etc. When one of these

successive derivatives has a constant value, the next and all

succeeding derivatives evidently vanish. Thus, in the above

example, f"'{x) = 6, consequently, in this case, /^"(x) and all

higher derivatives vanish.

The Geometrical Meaning of the Second Derivative^

73. If the curve whose equation is
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be constructed, we have seen (Art. 26) that

^ being the inclination of the curve to the axis of x \ hence

/"W
_ ^(tan ^)

~dx

Fig. 6.

If now the value of this derivative be positive,

tan ^ will be an increasing function of x, as in

Fig. 6, in which, as we proceed toward the

right, tan ^ (at first negative) increases alge-

braically throughout. In this case, therefore,

the curve appears concave when viewed from
above. On the other hand, if f"{x) be negative, tan ^ will be

a decreasing function of x, as in Fig, 7, in

which, as we proceed toward the right, tan
<i>

decreases algebraically throughout, the curve

appearing convex when viewedfrom above.

Fig. 7.

74. A point which separates a concave from

a convex portion of a curve is called a point of

inflexion, or 2, point of contrary flexure.

It is obvious from the preceding article that, at a point of

inflexion, like P in Fig. 8, f"(x) must change

ugn ; hence at such a point, the value of this

derivative must become either zero or infinity.

75. When a curve is described by a moving

point, the character of the curvature is depen-

dent upon the component accelerations of the

motion. For, if we put

Vx = r, or dx •=€ dt^

c denoting a constant, we have

Fig. 8.
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and hence /"W = ?-^=f-

Whence it follows that, if Vx is constant, ay and f"{x) have

the same sign, and consequently that a portion of a curve

which is concave when viewed from above is one in which ciy is

positive when ax is zero.

Successive Differentials,

76. The successive differentials of a function of x involve

the successive differentials of x ; thus, if

we have dy = ^x^dx,

dy = 6x(dxy-\- 3;rW,

and dy = 6{dxy + iSx dxd'x + sx'd'x.

In general, if

dy=/Xx)dx,

dy=/"{x){dxy+/Xx)d''x,

and dy =/"'{x) {dxy+ s/"{x)dxd'x +/'{^)d'x.

Equicrescent Variables.

11, A variable is said to be equicrescent when its rate is con-

dx
stant ; since dt in the expression —- is assumed to be constant,

dt

dx is also constant, when x is equicrescent.

In expressing the differentials of a function, it is admissible
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to assume the independent variable to be equicrescent, since

the differential of this variable is arbitrary. This hypothesis

greatly simplifies the expressions for the second and higher dif-

ferentials of functions of x^ inasmuch as it is evidently equiva-

lent to making all differentials of x higher than the first vanish.

Thus, in the general expressions for d'^y and d^y given in the

preceding article, all the terms except the first disappear, and

it is easy to see that, in general, we shall have

when X is equicrescent.

78. From the above equation we derive

dx"" -^ ^
'

The expression in the first member of this equation is the usual

symbol for the n\h derivative of y regarded as a function of x.

The n\h. differential which occurs in this symbol is always un-

derstood to denote the value which this differential assumes

when the variable indicated in the denominator is equicrescent.

The symbol —- is frequently used to denote the operation
dx

of taking the derivative with reference to ;r, and similarly the

/ d\'' d"
symbol

(
^7- ) , or —-- , is used to denote the operation of tak-

ing the derivative with respect to x, n times in succession.

Examples XL

V I. Find the second derivative of sec x, and distinguish the concave

from the convex portions of the curve y ~ sec x. Also show that the

curve y = log x is everywhere convex.
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y 2. Find the points of inflexion in the curve j/ = sin x,

y 3. Find the point of inflexion of the curve

y =z 2X^ — ^^x"^ — I 2Jt: + 6.

The point is (J, — J).

^ 4. Show that the curve y = tan x is concave when y is positive, and

convex when y is negative.

V 5. Find the points of inflexion of the curve

y = X* — 2X^ — l2Jt:^ + 11^ + 24.

The points are (2, — 2) and (— i, 4).

/ 6. If/W=i±|,findrW. /V) = (7^^e.

yl 7. If/(^) =-, find/ (x). f {x)=-- ^^,
.

^ 8. If j^ is a function of x of the form

Ax"" -h Bx""^ + • • • + Mx + Ny

prove that -j^ = i. 2. 3 • • • ;2 ^.
UrX

^ 9. If/(^) = nfind/M^).

v/ 10. If/ [x) = x' log (w^), find/^^ (^).

/ II. If/ (x) = log sin jc, find/'" (:r).

1^ 12. If/ {x) = sec ^, find/" (x) and/'" (.:«:).

/" (^) = 2 sec^ ^ — sec x, and/"' (^) = sec x tan ^ (6 sec^:*: — i).

/ 13. If/ (x) = tan X, find/"' {x) and/'" (^).

/'" (jc) = 6 sec^jc — 4 sec-^, and/'" (;t) = 8 tan .a; sec^^i; (3 sec^^^c — i).

•'(*) = a'(losdri>".

ri^)=i.

/" , 2 cos X
^ ' sin' ^

*
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J 18.

SUCCESSIVE DIFFERENTIATION, [Ex. XI.

If/W = x% find/" (jc). /" (^) = ^' (i + log xf + :^-\

If^ = £^,findg.

If^=e-=^^,findg.

Ifj; = log(£^ + f-*),findg.

IfJ

dx'~ °(£-+f-y

I ^ .d'y .d'y

V 19.

V 20,

V 23.

If _y = sin ' jv, find -y^.
d''y _ gx + 6.v'

If^ =£"»', find g.
^3

-T=i = — £^^°* COS ^ sin X (sin jc + 3).
dx

li y = , find -^
d'^y __ I — logjc

^JC"* ^ (i + log^)^I + log X *
^/jJC^

Find the value of ^^(g""), when x is not equicrescent.

d\e') =z e'{dxy + 2,^' d'x dx + £' d'x.

73

Find the value of -z-^ (sin 6), Q being a function of /.

df'

, . . /doY . do d'o d^O
(sine) = - cose (^-j _ 3 sme- •^ + cose—..



CHAPTER V.

The Evaluation of Indeterminate Forms.

XII.

Indeterminate or Illusory Forms.

79. When a function is expressed in the form of a fraction

each of whose terms is variable, it may happen that, for a cer-

tain value of the independent variable, both terms reduce to

zero. The function then takes the form - , and is said to be
.o

indeterminate, since its value cannot be ascertained by the ordi-

nary process of dividing the value of the numerator by that

of the denominator. The function has, nevertheless, a value as

determinate for this as for any other value of the independent

variable. It is the object of this chapter to show that such defi-

nite values exist, and to explain the methods by which they

are determined.

The term illusory form-^s often used as synonymous with

indeterminate form, and these terms are applied indifferently,

not only to the form -
, but also to the forms — , co- o, co — oo,

O 00

and to certain others whose logarithms assume the form oo-o.

When a function of x takes an illusory form for x—a, the cor-

responding value of the function is sometimes called its limits

ing value as x approaches the value a.

80. The values of functions which assume illusory forms may
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sometimes be ascertained by making use of certain algebraic

transformations. Thus, for example, the function

a — V{a^ - bx
)

X

takes the form - when x = o.
o

Multiplying both terms by the complementary surd

a + V{a^ — bx\

bx b
we obtain

x\a + ^/{d' - bx)] a + V(«' - bx)
'

The last form is not illusory for the given value of x, since the

factor which becomes zero has been removed from both terms

of the fraction. The value of the fraction for x = o is evi-

dently —

.

2a

The following notation is used to indicate this and similar

results ; viz.,

a - V{a' - bx)-] _ b

']: 2a

the subscript denoting that value of the independent variable

for which the function is evaluated.

Evaluation by Differentiation,

81. Let - represent a function in which both u and v are
u

functions of ;tr, which vanish when x = a\ in other words, for

this value of x, we have u = Of and v = o.
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Let P be a moving point of which the abscissa and ordinate

are simultaneous values of u and v {x not

being represented in the figure) ; then, de-

noting the angle POU hy 6, and the inclina-

tion of the motion of P to the axis of u by ^,

we have

dv
Fig. 9.

tan (9 = and tan0 =
du

At the instant when x passes through the value a, u and v

being zero by the hypothesis, P passes through the origin ; the

corresponding value of 6 is evidently determined by the direc-

tion in which P is moving at that instant, and is therefore equal

to the value of (j) at that point.

Hence the values of tan 6 and tan (j) corresponding to ;ir = ^

are equal, or

therefore, to determine the value of - for ;ir = a: we substitute
21

for it the function -7— , whose value is the same as that of the
du

given function, when x = a.

82. This result may also be expressed in the following man-

ner : let f(x) and (l>{x) be two functions, such that f{d) = o,

and (l>(a) = o ; then

<l>{a) <l>\d)

(I)

As an illustration, let us take
log^ When x=i, this func-

tion takes the form — ; by the above process, we have
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log^n ^n
^-iJi I Ji

the required value.

dv fix)
83. Since the substituted function -^ or -^-rr—i frequently

du (p {x)

takes the indeterminate form, several repetitions of the process

are sometimes requisite before the value of the function can be

ascertained.

For example, the function — takes the form - when
tf o

6 = o\ employing the process for evaluating, we have

— cos _ sin 8~\

v/hich is likewise indeterminate ; but, by repeating the process,

we obtain
- cos ^"1 _ sin ff cos 6~

= h

84. If the given function, or any of the substituted func-

tions, contains a factor which does not take the indeterminate

form, this factor may be evaluated at once, as in the following

example.

The function

(l — ;ir) f^ — I

tan'' X

is indeterminate for x = O. By employing the usual process

once, we obtain

(l - X)8^ — l "| _ —X6^
"I

tan' X J o~ 2 sec';ir tan xj J

which is likewise indeterminate ; but, before repeating the pro-

cess, we may evaluate the factor -^— . The value of
2 sec X |q

this factor is — J ; hence we write
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a=-
(l — ;ir) f-^ — i-| _ _ x^^

tan' X

sec' X

85. When the given function can be decomposed into fac-

tors each of which takes the indeterminate form, these factors

may be evaluated separately. Thus, if the given function be

(f-^ — i) tan';t:

may be employed. We have

tan X
I

= I, and — !
I

= I

;

-Jo X _lo

hence the value of the given function is unity.

When this method is used, if one of the factors is found

to take the value zero while another is infinite, their product,

being of the form o • 00, must be treated by the usual method,

since o • 00 is itself an illusory form.

86. Another mode of decomposing a given function is that

of separating it into ^^arts, and substituting the values of such

parts as are found on evaluation to be finite.

As an illustration, we take the expression,

_ (g-^ - 8-^y- 2x\e^ + 8-^)

1-

Each of the fractions into which this function can be decom-

posed being obviously infinite, we 'first apply the usual process,

thus obtaining
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fi,Q — — - ^-

4^

Separating this expression into two fractions, thus,

—

(f-r 4. ^-r) (f.r __ g-r _ 2x)~\ 6^ — g-^n

Jo 2X Jo
'

Uo =
2X^

the latter is found on evaluation to have a finite value, and the

expression reduces to

e^ — 8-^ — 2x~]
"° =—p—J„- '•

Hence

"» ==—IP—1- '

= -6^1-
'
= - *•

Examples XI

L

/ ^ sin x~\ tan ^"1 , f' — i"l

V I. Prove = I, = I, and =
X _Jo X |o X |o

I.

These results are frequently useful in evaluating other functions.

Evaluate the following functions :

V 6* — f
2. -. ,

,

when x^^ o. 2.
log(i+^)

/ or - x""

log ^ — log a;

J y'-5-^'+ 7-^-3
4- ^»_>_5^_3 »

-^-3.
^

/ X* — d>x^ + 22:1:^ — 24JC + 9 _ I

^* ^* — 4^" — 2Jt:' + 12^ + 9
' -^ — 3-

-

/ « £f-r
>6**— I

:r = o. — I

.
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f sin ^ — cos X

is.

,
when X = In, I V2.

sin 2X — cos 2X — I

log JC

V(i — X)
o.

s/ 9- -^—

»

^ = °- log-.

V 10. —^ —-^ -, (See Art. 84), x = 1. —
.

\r V „. ?i^"-(x - cos
^),

X ^ o.

V' 12.
,

x^=a. wf"
.;c — ^

/ 13. :j
-.

,
r. — \7t. aloga.

/ I — COSX' I

V 14- ~i 7 r> .r; = o. —

.

* ^ X\0%{\ -\- XY 2

i/:r tan x
15. -^, x=o. I.

/•?// /« the form i/ •
. See Art. 2>< andEx-

ample i.

Vx — Va -V- |/(-^ —a) _ I

JC^/C^JC — 2JC*) — X^ 81
I 17.

^^^ r y
x=i, —

^ ' 1-x^ .20

/ ^ (d" + ax^- x"")^ - (a" - ax \- x^)^
^/ 18.^

,

\
-T ^, x = o. Va

{a + xy^ — {a — xY

Multiply both terms by the two complementary surds. See Art. 80.
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• \\ 10. -^ -, ^^ n , when x-=-a. —; -r .

Divide both terms by (a — x)^.

smx — X cos ^
^ 20.

V 24.

X — smx *

«* - €~' - 2X

Jt^— tanjc '

{x- 2)e' + X -\- 2

xia'-iy

x" — X
I — X -{- log X*

tan x — smx

Sin X 1 sec ^ "~~ i I

jPut in theform • 5 .

^ Jo X _\o

J (^ — i)^ + sin^(jc'' — i)^
^^'

(^ + i) (^ - i)* '

28.
^TT — tan~' ^
^n ^8in(logx) f

X = O. 2.

^= O.
V/

21.

;v = o.

^=1. '^2.

I — V(2X — X)

t sin^jc — log(6''cos^)
yj 27. -^

,

I
a: = 0.

2'

I

X — I.
2(l-«)-

x = o. (I 4-d!')sec'«.
i tan (^ + -y) ~ tan (d? — x)

V ^9' tan-' (a + x) — tan"' (a - ^)'

J xsinx — irr ^ — 1^>/ -o. , x = i7r. —I.
^ cos X
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fx c 8in a

\i %\. -.—

,

when ^ = o. i.

nf sin nx — if sin mx
J -12. , m = n.
^ ^ tan ?tx — tan mx

if~^{n cos nx — sin nx^ cos'' nx.

Ifi solving this and the follcnmng example, x and n inay be regarded

as co7istants, a?id m as a variable.

ytan nx — tan mx sec" nx
^^ sm {nx — mx) 2«

XIII.

TAe Form -^.

f(x)
87. Let ^;^ denote a function which assumes the form

(p(x)

-^ when x=. a, then we have
I

(I)

The second member of this equation takes the form - when
o

x = a\ we therefore have, by equation (i) Art. 82,

I ^'(^)

/w_.-K^)
4>{x) I

f{a) _ ({(^) _ [(^(^)]'_ <t>\a) \Ad) y

whence, if •^; / is neither zero nor infinity, we infer that
(pia)
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<t>{a)- 4>' ia)
^^^

This formula, it will be observed, is identical with that employed

when the function takes the form —

.

o

88. When the value of "44-^ is either zero or" infinity, equa-

tion (2), Art. 87, will be satisfied independently of the exist-

ence of equation (3) ; we are not justified therefore, when this

is the case, in deriving the latter from the former. The follow-

ing demonstration shows, however, that equation (3) holds in

these cases also.

First, when the value of 4; x
^^ zero, by adding a finite

quantity n to the given function, we have

a function which is by hypothesis finite. To this function there-

fore the demonstration given in Art. 87 applies ; hence

therefore -^ =-^tneretore
^^^^ ^.^^y

as before.

Again, if the value of v^-t is infinite, that of ^^r~ is zero,
<f>{a) /(a)

and, by the last result,

4{a) _ <l>'ia)

f{a)-f{a)'

hence, in this case, likewise
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.

89

f{d)_f\a)

Derivatives of Functions which assume an Infinite Value,

89. When f(x) becomes infinite, for a finite value a of the in-

dependent variable, f '(a) is likewise infinite. For, let b denote a

value of X so taken that fix) shall be finite iov x =^ b and for all

values of x between b and a : then, as x varies from b to a, the

rate of /(;ir) must assume an infinite value, otherwise /"(jtr) would
remain finite. The value of x for which the rate is infinite must
be a or some value of x between b and a ; that is, some value

of X nearer to a than b is. Now, since b may be taken as near

as we please to a, the value of x for which the rate is infinite

dx
cannot differ from a. The expression for this rate is/"(4r) —-, in

which -^ may be assumed finite, therefore f'{x) must be infinite

when X = a; in other words, f'(a) is infinite when f(a) is infinite.

90. It follows from the theorem proved in the preceding

article that when a is finite the function obtained by the appli-

cation of formula (3), Art. 87, takes the same form, — ,as that
00

assumed by the original function. Hence, except when the

given value of x is infinite, the application of some other process,

either to the original function or to one of the substituted func-

tions, is always requisite. Thus in the example,

log (sin 2xy^ _ 00
^

log sin ;r Jo 00
*

by using the above formula we obtain
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log sin 2x~\ _ 2 cot 2x'

Glog sin ^ Jo cot X

00
which takes the form — ; but the last expression is equivalent

00

sin X cos "Zx I

to 2 — , and is therefore easily shown to have the
sm 2x cos xAo

value unity.

The Form o . oo.

91. A function which takes this form may, by introducing

the reciprocal of one of the factors, be so transformed as to take

either of the forms - or _ , as may be found most convenient.
o 00

For example, let us take the function

which assumes the above form when x = ^^n being positive.

In this case it is necessary to reduce to the form — . Thus

—

x-n^ — -^\ = = _ ^ , etc.

By continuing this process, we finally obtain a fraction whose

denominator is finite while its numerator is still infinite. Hence
we have, for all finite values of n,

X-'^ £^1 = 00.
J 00

The Form oo — oo.

92. A function which assumes this form may be so trans-

formed as to take the form - . Let the given function be
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r J log (I +-^)"]

which takes the form oo—(x, since the second term is easily-

shown to be infinite. But

r I _ log (I +-^)1 _ ;ir~(i +.y)log(l 4-.r)"] ^ "

Lr(i + X) x' Jo ;rXi + x) Jo

_ ;r-(l +;r)log(l + .y)"
!

Jo 2

;i;'

I — log (i 4- x) — i

2X

Examples XIII.

Evaluate the following functions :

sec^

sec ^x

a'
\l 2.-

cosec (ma ')
*

V ^. i^^

when X = ^zr. — 3.

X = CO. m.

{n > o), x=. 00.

/. tan jc

log {x — \7t)
'

/ sec (JTTjc)
^ 5- log(i_^)'

/ g log cos (iTT jy)

^ • log(i-^) '

X = J;r. 00.

.ijf = I. 00.

JP = I. I.
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tan^

log(i +:r)
/ <>•

^^
» JC = 00. o.

^ 9- (^^' — ly^, a: =^00. log ^.

TtX

>!

X

I

13. £ -(l — logx),

log tan Jt
'

log cot —

JIC = o.
COtJt' + log^'

>) 17. SQCx{xsmx — ^rc), x = ^7i:.

X = a.A i8. log (2 - - ) tan—
,

\) 19. (i — ^) tan (^7rx)y x = 1

J 20. log {x — a) tan (^ — a). X =a.

y

4V 10. ^— tan — , X = a

II. x'*{\ogxY\ (m and Xi being positive)^ x = o. o.

^ 12. £^sin-, ^=00. 00.

/ TtX ^ 1 2
V 14. sec log-, x=i. —

.

2 ° X Tt

J logtan;zxV 15. _^_ ^
^ = 0. I.

— I.
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XIV.

Functions whose Logarithms take the Form oo . o.

93. In the case of a function of the form u"^ we have

log uy=v log u.

The expression v log u takes the illusory form o • oo in two
cases : first, when v — o and log u — on \ and secondly, when
v= CO and log u — O.

Log ?/ is infinite when u^o, and also when u= co] there-

fore the first case will arise when the original function takes

one of the forms 00° or 0°.

'Logu = o when u= i, therefore the second case will arise

when the original function takes the form i
°°.

Hence functions which take either of the three illusory forms.

00°, 0°, or 1%

may be evaluated by first evaluating their logarithms, which

take the form o • co.

It is to be noticed however that 0°° and 00°° are not illu-

sory forms, since their logarithms take the form 00 (ip 00).

The Forfn i
°".

94. As an illustration of this form, we take the function

which assumes the form i
°° when ;ir = 00. Denot-

ing this function by u, we have

(-1)

log2^ = ;irlog/^l -h -j

the last expression assuming the form - when x — (j^.
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In evaluating this logarithm, it is convenient to substitute

z ior — \ then

, log(i4-^^)"l

since, when ;tr = 00, z — o. Taking derivatives, we have

Z Jo I + ^^Jo

Hence u^=\\-\--\ = a*.

95. If <2: = I, we have

that is, as x increases indefinitely, the limiting value of the func-

tion
(

I H— j is f. The Napierian base is often defined as the

limiting value of this function, or, what is the same thing, by-

formula

f=(i ^x)i\^.

The Form o°.

96. The function jtr^j^, by the aid of which many functions

of similar form may be evaluated, will serve as an illustration

of the form 0°.

Let u = x^\

then logu = x\ogx,
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and logu] = -^-^ = — -^ = o;
_Jo -^ _lo -^ -Jo

therefore x^\ I.

The value of a function which takes the form o° is usually

found, as in the above example, to be unity. This is not, how-

ever, universally true, as the function

a + x

(one of those earliest adduced for this purpose *) will show.

This function takes the form o°, when x — 0\ but since its

logarithm reduces to a -\- x, its value when ;r = o is £^.

Examples XIV.

>/ I. (cos ^)'=°^'-^, when;t: = o. e~*

J /tan^Xja

/ --
^ 3. (cosa'Jtr)^oseca/j.r^ ^ = O. 6^^'.

— 5. (tan^m :^=-i7r. i. £,

nI 6. ('^„')"(^>o).
Kx""

o. I.

vl 7. (i-^)% * = o. ^.

4 8. (sinjc)««^'^ ar = j7r. £-*.

* See Crelles Journal, vol. xii, p. 293.
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Solution: (cot ^r^]^= [^-|&° = i. (5.. ^r/. 96.)

^' 10. (sin xf^', x = o. .1.

V 20. (i ± ^)^,

/21. ;r"(sin^)*^°Y
'^~^-^

V,
\2 Sm 2JC/

{m' — i) (asinx — sin dJJi;)

22.

_ ^
2

>1 II. (sinjt:)'^"',

a

v/l2. ^log^i^,

^ 13. (sinj^y^et^-^, ^=0. e'**.

x = o.

V 14. ^^ (^ > o),

V 15. (^')log(-^+ logcosjr)^

V —
16. :x:^ -^j when ^ = i.

V 17. •^'"S

:^ = o. I.

X = o. f2«'.

.^t: = o.

^ 18. (cos ^zj*;)-^", ^ = 0. f-i«^2

/:..('^)t ;r =: 00.

.:r = 00.

n
X = —

.

2
,m+3

^-^ sin ^ (cos X - cos ^^)» ' "" - °'
( 3 ] ^^S"^-

V /



CHAPTER VI.

Maxima and Minima of Functions of a Single

Variable.

XV.

Conditions Indicating the Existence of Maxima
and Minima,

97. If, while the independent variable increases continu-

ously> a function dependent on it increases up to a certain

value, and then decreases, this value of the function is said to

be a maximum value. In other words, a function f{x) has a

maximum value corresponding to ;r = ^, if, when x increases

through the value ^, the function changes from an increasing

to a decreasing function.

Since f'{x) is positive, when f{x) is an increasing function,

and negative when it is a decreasing function ; it is obvious

that li f(d) is a maximum value of f{x)yf'{x) must change sigUj

from + to — , as ;r increases through the value a.

On the other hand, a function is said to have a minhnum
value for x= a^ if it is a decreasing function before x reaches

this value and an increasing one afterward. In this case, f'(x)

changes sign from — to +.

98. The derivative f'{x) can only change sign on passing

through zero or infinity. Hence a value of x, for which f{x)
is a maximum or a minimum^ must satisfy one of the two follow-

ing equations :

f\x) = o and /'{x) = oo.
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The required values of x will therefore be found among the

roots of these equations.

The case which usually presents itself, and which will there-

fore be considered first, is that in which the required value of

;r is a root of the equation f\x) = o.

99. As an illustration, let it be required to divide a number

into two such parts that the square of one part multiplied by the

cube of the other shall give the greatest possible product.

Denote the given number by ^, and the part to be squared

by X ; then we have

f(x) = x\a-x)\

It is evident that a maximum value of this function exists

;

for when ;ir = o its value is zero, and when x = a its value is

again zero, while for intermediate values of x it is positive

;

hence the function must change from an increasing to a decreas-

ing function at least once, while x passes from the value zero to

the value a.

Taking the derivative of this function, the equation

is in this case 2x{a — xy — 34:^^ {a — x^ = o,

or x{a — xy {2a — $x) = o.

o and a are roots of this equation ; but, as we are in search of

a value of the function corresponding to an intermediate value

of Xy we put

2a — ^x = o,

and obtain x = ^a.

The corresponding value of the function is -^^a^y the maxi-

mum value sought.
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Maxima and Minima of Geometrical Magnitudes,

100. When the maximum or minimum value of a geometri-

cal magnitude limited by certain conditions is required, it is

necessary to obtain an expression for the magnitude in terms of

a single unknown quantity, such that the determination of the

value of this quantity will constitute the solution of the prob-

lem. For example : let it be required to deterinine the cone of

greatest convex surface among those which can be inscribed in a

sphere whose radius is a.

Any point A of the surface of the

sphere being taken as the apex of

the cone, let the diagram represent

a great circle of the sphere passing

through the fixed point A,

If we refer the position of the

point P to rectangular coordinates,

and take C as the origin, the required

cone will evidently be determined

when X is determined. We have

now to express the convex surface

vS in terms of x.

The expression for the convex surface of a cone gives

S=ny^/lf^{a^xy\ ..... (l)

in which the unknown quantities x and y are connected by the

equation of the circle

X-'^f^d^ (2)

Substituting the value ofj/, we have

5 = TT 4/(^' - ^0 4/(2^' + 2ax\

reducing, S=7t V{2a) {a + x)V{a—x) (3)

Fig. 10.
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Since the factor n V(2a) is constant, we are evidently re-

quired to find the value of x for which the function

/{x) =z{a -i- x) Via - x)

is a maximum. The equation /\x) = o is, in this case,

a -\- X
V{a - x)

whence

2 V{a — x)

x = \a.

= o;

The altitude of the required cone is therefore \a. Substi-

tuting this value of x in equation (3), we have

S=^Vy7ta\

the maximum value required.

fOI. As a further illustration, let it be required to determine

the greatest cylinder that can be in-

scribed in a given segment of a pa-

raboloid of revolution.

Let a denote the altitude, and b

the radius of the base of the seg-

ment. The equation of the gener-
^f x_

ating parabola is of the form

V = A^cx.

Since (^, b) is a point of the curve,

we have the condition

b"^ = 4ca
;

eliminating 4^, the equation of the curve is

b'

Fig II.

y = - ;ir.

a
(I)
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1

The volume V of the cylinder of which the maximum is re-

quired is expressed by

V — ny'ia — x)^

or, by equation (i), V — n— x{a — x).

Hence we put fix) — ax — x\

and the condition /'{x) = o gives

X = ^a.

Consequently a — Xy the altitude of the cylinder, is one half the

altitude of the segment.

Examples XV.

y I. Find the sides of the largest rectangle that can be inscribed in

a semicircle of radius a. The sides are a V2 and \a V2.

yj 2. Determine the maximum right cone inscribed in a given sphere.

The altitude is four thirds the radius of the sphere.

y 3. Determine the maximum rectangle inscribed in a given segment

of a parabola.

The altitude of the rectangle is two thirds that of the segment.

J 4. Find the maximum cone of given slant height a.

The radius of the base is \a V6.

\^ 5. A boatman 3 miles out at sea wishes to reach in the shortest

time possible a point on the beach 5 miles from the nearest point of

the shore ; he can pull at the rate of 4 miles an hour, but can walk at

the rate of 5 miles an hour ; find the point at which he must land.

Express the 7vhoh time hi terms of the distance of the required point

from the nearest point of the shore.

He must land one mile from the point to be reached.
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V 6. If a square piece of sheet-lead whose side is a have a square cut

out at each corner, find the side of the latter square in order that the

remainder may form a vessel of maximum capacity

The side of the square is \a.

%/ 7. A given weight is to be raised by means of a lever weighing n

pounds per linear inch, which has its fulcrum at one end, and at a

fixed distance a from the point of suspension of the weight w ; find the

length of the lever m order that the power required to raise the weight

may be a minimum. /2a'w

J .

^^
V 8. A rectangular court is to be built so as to contain a given area

<:', and a wall already constructed is available for one of the sides
;

find its dimensions so that the least expense may be incurred.

The side parallel to the wall is double each of the others.

^

J

9. Determine the maximum cylinder inscribed in a given cone.

The altitude of the cylinder is one third that of the cone.

10. Prove that the rectangle with given perimeter and maximum
area is a square , also that the rectangle with given area and minimum
perimeter is a square.

i II. Find the side of the smallest square that can be inscribed m a

square whose side is a.

Take as the independent variable the distance between the angles of the

two squares. ia ^2.

^

12 Inscribe the maximum cone in a given paraboloid, the apex of

the cone being at the middle point of the base of the paraboloid.

The altitude of the cone is half that of the paraboloid.

13. Find the maximum cylinder that can be inscribed in a sphere

whose radius is a. The altitude is ^a V3.

s^ 14. Through a point whose rectangular coordinates are a and b draw

a line such that the triangle formed by this line and the coordinate

axes shall be a minimum.

The intercepts on the axes are 2a and 2d,
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y

/

15. A high vertical wall is to be braced by a beam which must pass

over a parallel wall a feet high and b feet distant from the other

,

find, the length of the shortest beam that can be used for this purpose.

Take as the independent variable the inclination of the beam to the

horizon

{J^ + P) .

16. The illumination of a plane surface by a luminous point being

directly as the cosine of the angle of incidence of the rays, and in-

versely as the square of its distance from the point ; find the height

at which a bracket-burner must be placed, in order that a point on

the floor of a room ^t the horizontal distance a from the burner may

jeceive the greatest possible amount of illumination.

The height is —y.

XVI.

Methods of Discriminating between Maxima and ,

Minima,

102. When the existence of a maximum or a minimum cor-

responding to a particular root a of the equation f\x) = o is

not obvious from the nature of the problem, it is necessary to

determine whether f\x) changes sign as x passes through the

value a.

If a change of sign does take place we have, in accordance

with Art. 97, a maximum if, when x passes through the value

a, the change of sign is from -h to — ; that is, if fix) is a de-

creasing function, and a minimum if the change of sign is from
— to +, in which case f'{x) is an increasing function.

103. In many cases we are able to distinguish maxima from

minima by examining the expression for f'{x), as in the fol-

lowing examples.
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Given /W = l4^'

whence /'(^) = l^|£_-_i
,.

f\x) — O gives log X — \y or ;ir = f.

Since log;r is an increasing function, it is obvious that, as x in-

creases through the value ^yf'{x) increases ; it therefore changes

sign from — to +, and consequently f{e) is a minimum value

of/W.

104. If f\x) does not change sign we have neither a maxi-

mum nor a minimum ; thus, let

f{x) = ;i; — sin;i:,

whence f'{^) = i — cosjir.

In this case /'{x) becomes zero when x = 2nn^ n being zero

or any integer, but does not change sign, since i — cos;t- can

never be negative ; consequently fix) has neither maxima
nor minima values, but is an increasing function for all values

of X.

Alternate Maxima and Minima,

105. Let the curve

be constructed, and suppose it to take the form represented in

Fig. 12. There is a maximum value of

f(x) at B, another at D, and minima

values occur at ^, at C, and at E.

It is obvious that in a continuous por-

tion of the curve maxima and minima

ordinates must occur alternately, and
^

must separate the curve into segments

in which the ordinate is alternately an

increasing and a decreasing function ;
hence, if f(x) has maxi-

^ X
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ma and minima values, they must occur alternately unless infi-

nite values of the function iiitervene. It is also evident, with

the same restriction, that a maximum is greater in value than

either of the adjacent minima, but not necessarily greater than

any other minimum ; thus, in Fig. 12, the maximum at B is

greater than the minima at A and C, but not greater than

that at E.

106. As an illustration let us take the following function in

which it is easy to discriminate between the maxima and min-

ima values.

f{x) = x{x^df(x-ay.
Whence,

f\x)^{x + aj {x - ay + 2x{x ^ a)(x - af+ ix{x + a)' {x - a)\

=={x-\-a){x- ay {6x' + ax - a').

a and — a are evidently roots of f\x) = o ; the roots derived

by putting the last factor equal to zero and solving are — ^a

and ^a. Hence /'(x) can be written in the form

f'{x) = 6{x + a) {x + ia) {x - ia) {x - d)\

in which the factors are so arranged that the corresponding

roots are in order of magnitude.

When X < — a, f'{x) is negative, and, if we regard x as in-

creasing continuously, f\x) changes sign when x = — a, when
X = — ^a, and again when x = ^a, but not when x = a.

Since /'{x) is at first negative it changes sign from — to +
when it first passes through zero, that is when x = ~ a; the

corresponding value of /(x) is therefore a minimum. Accord-

ingly the value of /(x) corresponding to the next root x = — ia
is a maximum, and that corresponding to x = ^a is another

minimum ; but there is neither a maximum nor a minimum
corresponding to x := a.
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107. When the function is continuous as in the above ex-

ample, that is, does not become infinite for any finite value of

Xy it is always easy to determine by examining the function

itself whether the last, or greatest value of x in question, gives

a maximum or a minimum. Thus, in the above example, f{x)

evidently increases without limit as x increases without limit

;

therefore, the last value must be a minimum.

K The Employment of a Substituted Function,

108. Since an increasing function of a variable increases and

decreases with the variable, such a function will pass from a

state of increase to a state of decrease, or the reverse, simulta-

neously with the variable ; that is, it will reach a maximum or

a minimum value at the same time with the variable.

This fact often enables us to simplify the determination of

maxima and minima by substituting an increasing function of

the given function for the given function itself. For example,

if we have

f{x) = V{b' -f ax) + V{b^ - ax\

we may with advantage employ the square of the given func-

tion. The square is

2b'' ^2s/{b'-a'x%

which is obviously a maximum when x — o^ and, since the square

of a positive quantity is an increasing function, we infer that

f(x) is likewise a maximum for the same value of x,

109. A decreasing function of the given function may also

be employed ; but, in this case, since the substituted function

decreases with the increase of the given function and increases

v/ith its decrease, a maximum of the substituted function indi-
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cates a minimum, and a minimum indicates a maximum of the

given function.

Thus, if we have
X

f{x) =
x' — 3x -\- i'

the reciprocal may be employed. The reciprocal of this func-

tion is

x^ — 2,x -{- I I

X X

whence, taking the derivative, we obtain

^ _ ;ir2 — I

*^ :? ~x~ '

which vanishes when x = ± i.

Since x^ is an increasing function when x is positive, this deriv-

ative is evidently an increasing function when x = i. The re-

ciprocal is therefore a minimum for this value of x, and conse-

quently f(\) is a maximum value of fix). In a similar manner
it may be shown that /(— i) is a minimum.

Examples XVI.

Determine the maxima and minima of the following functions :

I- f \x) = ^. .A min. for jt = -

.

2. f\x) = —^ . A max. for x = f^.

3. /(x) — —_3-^^ . A min. for x = ^a.

/4./W^ /^^\^^^y * Amin. for^= - ^V-
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*/ 5- /W = sin 2x —x. A max. for x = nTr + ^tt
;

a min. for x = nTt ~ ^jt.

^ 6. /(^) = 2:v' + 3x' — 2>6x + 12. A max. for .^ = -
3 ;

a min. for x ^= 2.

J 7. f{x) = x' — sx' — gx + S' A max. for jt; = — i
;

a min. for x = z.

J
8. f{x) = 3^'— i25.jt' + 2i6ojc. A max. for ;»:=:—4 and x=:^

;

a min. for ^=—3 and .^=4,

v g. f(x) ^= b + c{x — a)^. Neither a max. nor a min.

yl 10. /(^) = (^ — i)* (jc + 2)'. A max. for ;<; = ~~ t 5

a min. for x = i.

y II. /(x) = {x — gY {x — 8)*. A max. for jc = 8
;

a min. for x = -8f

.

/ - . ^ I — :r + .;«?'

^ 12. fixf {oc) = —;

^

.

A min. for x = h
•^ ^ ^ 1 + X — x^ ^

/^ / N ax
c^ A ^ Max. for ;<: = i

;

j
Min. for ^ = ~ i (^ being positive).

V I5./(^) = (I+^I)(7_^)^

iSi?/z'(? by putting x =^ z^. For method of discriminating between max-
ima and minima, see Art. 107. Min. for ^ = o, and ^ = 7 ;Vmax. for .x=: i.

16. f{x) — 5^1?' + 12^' — 15^ — 4o:r' + \^x^ + 60^ + 27.

Min. for ^ = — 2.

J 17. f{pc) = jc" — 6^* 4- 4^^ + 9^' — ^2x + 3.

Min. for :r = — 2, and .^ = i;

max. for .%: = — i

.

^Q/ t
•

•
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y 18. The top of a pedestal which sustains a statue a feet in height is

b feet above the level of a man's eyes ; find his horizontal distance from

the pedestal when the statue subtends the greatest angle.

When the distance = \/\b[a + h)\.

19. It is required to construct from two circular iron plates of radius

a a buoy, composed of two equal cones having a common base, which

shall have the greatest possible volume.

The radius of the base = \a 4/6.

i/ 20. The lower corner of a leaf of a book is folded over so as just to

reach the inner edge of the page ; find when the crease thus formed is

a minimum.

Solution

:

—
Let J/ denote the length of the crease, x the distance of the corner

from the intersection of the crease with the lower edge, and a the

width of the page.

By means of the relations of similar right triangles, the following

expression is deduced :

_ X Vx
^~ V{x-lay

Whence we obtain

x=%a,

which gives a minimum value oi y.

yy ?i. Find when the area of the part folded over is a minimum.

When X ='^a.

XVII.

The Employment of Derivatives Higher than the First.

MO. To ascertain whether /'(;tr) is an increasing or a de-

creasing function, (and thence whether /(;r) is a minimum or a

maximum), it is frequently necessary to find the expression for

its derivative, /"(;ir). Now, \i f'\d) is found to have a positive

value, it follows that f\x) is an increasing function when x — cu
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and, as was shown in Art. 102, that/(rt) is a minimum. On the

other hand, if we find \.h^tf"(a) has a negative vakie, it follows

that/'(^) is a decreasing function, and that/"(^) is a maximum.

To illustrate, let

f{x) — ix' — iGx" — Gx" + 12,

then f\x) — \2x'' — ^Zx" — \2x.

The roots of fix) — o are x ~ o, and x — 2 ± VS-

In this case /"{x) = i^x"" — g6x — 12,

hence /"(o) = — 12
;

/{x) is therefore a maximum when ;ir = o.

It is unnecessary to find the values of y"(;ir) for the other

roots ; for, since the function does not admit of infinite values,

the maxima and minima occur alternately. The root 2 — V S

being negative and 2 + 4/5 positive, the root zero is intermediate

in value, and therefore both the remaining roots give minima.

[|(, If /'(x) contains a positive factor which cannot change

sign, this factor may be omitted ; since we can determine

whether /'{x) increases or decreases through zero by examin-

ing the sign of the derivative of the remaining factor. Thus, if

Since z- ^r^ is always positive, we have only to determine
(i 4- ^ )

whether the factor i — x"^ changes sign. Denoting this factor

by V, and putting v = o, wq have

x= ±1.

Now -r- = — 2X
ax

which is negative for ;if = i and positive for x——\. These
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roots, therefore, give respectively a maximum and a minimum
value o{ f{x).

(12. There may be roots of the equation f'{x) — o which

correspond to neither maxima nor minima, since it is a condi-

tion essential to the existence of such values that f\x) shall

change sign. When such cases arise, the form assumed by the

curve y — f(x) in the immediate vicinity of the point at which

X ^=^ a will be one of those represented

at A and B in Fig. 13-

At these points the value of tan ^ or

f\x) is zero, but at A it is positive on

both sides of the point, and fix) or y is

an increasing function, while at B fix)
is negative on both sides of the point, Fig. 13.

and f{x) is a decreasing function.

il3. It is important to notice that at A the value zero

assumed by f\x) constitutes a minimum value of this function,

thus a root of f'{x) — o for which /'{^) is a niinimuni corre-

sponds to a case in which f{x) is an increasing function. In

like manner a root of f\x) = o for which /'{x) is a maximum
is a case in which f{x) is a decreasing function.

H4-. It follows from the preceding article and from Art.

102 that, if/'(^) = O, then, of the two functions /(;ir) and/'(.r),

one will be a maximum and the other a decreasing function,

or else one will be a minimiun and the other an increasing

function. Hence, if we consider the case in which the given

function and several of its successive derivatives vanish for the

same value of x, it is evident that when these functions are

arranged in order they will be either alternately maxima and
decreasing functions^ or alternately minima and increasing func-

tions.

lis. Now suppose that ^{x) is the first of these successive
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derivatives that does not vanish when x = a^ then, writing the

series of functions

/W, /'W. /"W. /'-"W, /V),

let us assume first that f"{a) is positive. Then in the above

series of functions f"~\ci), f~\<^\ ^tc, will be increasing

functions while /"~X<^), f"~\a), etc., will be minima.

Now whenever 7t is odd, the original function will belong to

the first of these classes and will be an increasing function,

while if n is even the original function will belong to the second

class and will be a minimum.

On the other hand, if f'\d) has a negative value, the series

of functions will be alternately decreasing functions and maxi-

ma ; and when n is odd f{a) will be a decreasing function, but

when n is even f{d) will be a maximum.
Thus we shall have neither maxima nor minima unless the

first derivative, which does not vanish when x — a, is of an

even order ; but when this is the case we shall have a maximum
or a minimum according as the value of this derivative is nega-

tive or positive.

116. The following function presents a case in which the

above principle is advantageously employed.

f{x) = £-^ + £~"^ + 2 cos X,

f'{x) = £^ — e~^ — 2 sin x.

Zero is evidently a root of the equation /'{x) — o.* In this

case

* Zero is the only root of /'{x) = o in this example ; for

/ (x) = > '
.

f"{x) therefore cannot be negative, hence f'{x) cannot again assume the value

zero.
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f"{x) = f"^ + f""^ — 2 cos;ir .'. /"(o) = O,

f"\x) = €^ — a~^ 4- 2 sin ;ir .-. /'"(o) = O,

/''(x) = 6^ -{ €~^ + 2 COS ;ir .-. /'^ (o) = 4.

The fourth derivative being the first that does not vanish, and

having a positive value, we conclude that x = o gives a mini-

mum value of /{x).

Infinite Values of the Derivative,

(17. It was shown in Art. 98 that if we have, for x = a^

f\x) = «,

a maximum value will present itself \i f\x) changes sign from

+ to — , and a minimum if it changes sign from — to +. It

may, however, happen in these cases that the value of f (a) is

also infinite. When/(^) is finite, the form of the curve

in the vicinity of a maximum or a minimum ordinate of this

variety is represented at A and B in Fig. 14.

As an example, let

whence

/(;r)=(;r* - /^i)*

f\x) = %x'\x^-lyf)'^.

k

fix) is infinite when x =0 and when x = b.

When X = o fix) does not change sign,

since x~^ cannot be negative, but when x = b q

it changes sign from — to + ; hence fix) has

a minimum value when x =. b.

X
Fig. 14.

\/
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Examples XVII.

y I. Show that ae^' + bs~^' has a minimum value equal to 2 V{(ib).

Find the maxima and minima of the following functions :

2. f(x) = X sin X.

A maximum for a value of x in the second quadr^int satisfying the

equation tan x ^= — x.

J .. . a^ b^

3- /(^) = - + -
X a

The roots x = r and x = r give a min. and a max. if b is
« + /^ a — b^

positive, but a max. and min. if b is negative.

^ 4. /(jc) = 2 cos X + sin'^ .r.

Solution :
— f {.^^ =^ 2 sin jjc (cos^ — i)

J

rejecting the factor 2(1 — cos x\ which is always positive, we put

V — — sm X. Hence -^ = — cos x.

y

A max. for .;c = 2n7t
;

a min. for x = (2;? + i) rr.

5. /(jc) = sin x{i -\- cos ^). A max. for ^ = Jtt ;

a min. for x=^ — \7t
;

neither for x = 7t,

j 6. f {x) = sec X + log cos'' x.

Multiplying the derivative by cos^ x^ we obtain

,^ . z; = sinj[:(i — 2 cos^i;).

c^ A A max. for ^ = o, and x-=- n
\

n-ftw , ^ -H^ < a min. for ^ = ± J tt.

xf \ __ tan' ^ A min. for ^ = o, |7r, |;r, and n
;

' ""^ ^
tan 3JIC

*

a max. for Jt: = ^tt, \7t^ ^tt, etc.

J 8. /(x) = £" + f-* — .rl A min. for x = o.
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/ :

9. Find maxima and minima of the following functions :

f {pc) = {x^ — I^) ^. A min. for ^ = o.

/
10. f{pc) = {x- — l>^)-^. A max. iox x = o

\

a min. for x = ^l l^*

II. f{x) — {pc^ + 3^ + 2)^ + ^\

f\x) = 00 gives min. corresponding to ^= — 2, x— — i and jc=o.

f'{x) = o gives two intermediate maxima.

^12. /{x) = {x^ + 2^)^ — {x + 3)^. Max. for x=i{—^± 4/17) ;

min. for x ^= o and a= — 2.

I / 13. /(:*:) = (^ — ^)5 (^x — ^)^ + ^. A max. for x — ;

min. for x =^ a and x ^=^ b.

/ 14. /(^) =
{x-a){x-b) A mm. for x —

a + I

IS. f{x) = {x- a)i (x - b)\

Solutions iox X = a and x = l{2b + a) ; if b > a, the former gives

a max. and the latter a min.

t Miscellaneous Examples.

Max. for ^ = 4.

J^/ X -^'^ — Jc + I A max. for ^ = o
;

' x^ + X — I a mm. for .v — 2.



Il6 MAXIMA AND MINIMA. [Ex. XVII.

7 ~~
3- f{^) = ^'"" ^**- A min. for jc = ^ .

/ 4. The equation of the path of a projectile being

y = X tan a
4^ cos"^<^

'

find the value of x when j^^ is a maximum ; also the maximum value

of y. Max. when x =^ h'ivci2a^ and y = h sin^ a.

\ 5. In a given sphere inscribe the greatest rectangular parallel-

epiped.

Solution

:

—
Regarding any one edge as of fixed length, it is easy to show that

the other two edges are equal. Hence the three edges are equal.

^ 6. In a given cone inscribe the greatest rectangular parallelo-

piped.

Solution :
—

Regarding the parallelopiped as inscribed in a cylinder which is

itself inscribed in the cone, the base is evidently a square, and the

altitude is that of the maximum cylinder. See Ex. XV, 9.

V 7. A Norman window consists of a rectangle surmounted by a

semicircle. Given the perimeter, required the height and breadth of

the window when the quantity of light admitted is a maximum.

The radius of the semicircle is equal to the height of the rectangle.

>J 8. A tinsmith was ordered to make an open cylindrical vessel of

given volume, which should be as hght as possible ; find the ratio be-

tween the height and the radius of the base.

The height equals the radius of the base.

^ 9. What should be the ratio between the diameter of the base and

the height of cylindrical fruit-cans in order that the amount of tin used

in constructing them may be the least possible ?

The height should equal the diameter of the base.
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V lo. Determine the circle having its centre on the circumference of

a given circle so that the arc included in the given circle shall be a

maximum.

A max. for the value of which is in the first quadrant.

/„

/x

Given the vertical angle of a triangle and its area ; find when

its base is a minimum. The triangle is isosceles.

\/i2. Prove that, of all circular sectors of the same perimeter, the

sector of greatest area is that in which the circular arc is double the

radius.

13. Find the minimum isosceles triangle circumscribed about a par-

abolic segment.

The altitude of the triangle is four-thirds the altitude of the seg-

ment.

1/14. Find the least isosceles triangle that can be described about a

given ellipse, having its base parallel to the major axis.

The height is three times the minor semi-axis.

15. Inscribe the greatest parabolic segment in a given isosceles

triangle.

The altitude of the segment is three-fourths that of the triangle.

16. A steamer whose speed is 8 knots per hour and course due north

sights another steamer directly ahead, whose speed is 10 knots, and

whose course is due west. What must be the course of the first steamer

to cross the track of the second at the least possible distance from her ?

N. 53° 8' W,

17. Determine the angle which a rudder makes with the keel of a

ship when its turning effect is the greatest possible.

Solution

:

—
Let ^ denote the angle between the rudder and the prolongation

of the keel of the ship ; then if b is the area of the rudder that of the

stream of water intercepted will be /^ sin ^ : the resulting force being

decomposed, the component perpendicular to the rudder contains the

factor sin'' ^. Again decomposing this force, and taking the compo-

nent that is perpendicular to the keel of the ship, which is the only
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part of the original force that is effective in turnii.g cAc ship, the ex-

pression to be made a maximum is

sin" ^ cos ^.

Whence we obtahi

tan ^ — |/2.

1 8. The work of driving a steamer through the water being propor-

tional to the cube of her speed, find her most economical rate per hour

against a current running a knots per hour.

Solution :
—

Let z; denote the speed of the steamer in knots per hour. The
work per hour will then be denoted by kv^, k being a constant, and the

actual distance the steamer advances per hour hy v ^ a. The work
per knot made good is therefore expressed by

Whence we obtain the result

X^i^ h^



CHAPTER VII.

The Development of Functions in Series.

XVIII.

The Nature of an Infinite Series,

1(8. A FUNCTION which can be expressed by means of a

limited number of integral terms, involving powers of the inde-

pendent variable with positive integral exponents only, is called

a rational integralfunction.

When f(x) is not a rational integral function, it is usually

possible to derive an unlimited series of terms rational and in-

tegral with respect to x, which may be regarded as an algebraic

equivalent for the function. The process of deriving this series

is called the development of the function into an infinite series.

When the given function is in the form of a rational frac-

tion, the ordinary process of division (the dividend and divisor

being arranged according to ascending powers of x) suffices to

effect the development. Thus

—

-i-i-^ = I 4- 2;ir + 2;ir' + 2;tr' + • • • ,

a series of terms arranged according to ascending powers of Xy

each coefficient after the absolute term being 2.

It is to be observed, in the first place, that, owing to the

indefinite number of terms in the second member, the equa-

tion as written above cannot be verified numerically for an

assumed value of x» In this case, however, the process not
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only gives us the series, but the remainder after any number of

terms. Thus carrying the quotient to the term containing x^,

and writing the remainder, we have

— \ -^ 2X -^ 2X'^ ' ' ' -^ 2X'' -\ .

1 -- X

This equation may now be verified numerically for any assumed

value of X ; or algebraically by multiplying each member by

1 — X, thus obtaining an identity.

The ordinary process of extracting the square root of a

polynomial furnishes an example of a series which may be ex-

tended so as to include as many terms as we please ; but this

process gives us no expression for the remainder.

119. Assuming that /(x) admits of development into a

series involving ascending powers of x, and denoting the re-

mainder after 7i -\- i terms by R, we may write

f{x) =A + Bx+ Cx'+ . . . + Nx^' + i?, . . . (i)

in which A, By C, ... N denote coefficients independent of Xy

and as yet unknown ; the value of R is however not indepen-

dent of X. If the coefficients By C, . . . N admit of finite

values, it may be assumed that i? is a function of x which van-

ishes when X = O'y and in accordance wifh this assumption

equation (i) becomes, when x — o,

/iO) = Ay (2)

which determines the first term of the series. If in any case

the value of /(o) is found to be infinite, we infer that the pro-

posed development is impossible.

120. When the coefficients B, C, , . . N admit of finite

values, and the value of the function to be developed remains
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finite, R will have a finite value. If moreover the value of R
decreases as n increases, and can be made as small as we please,

by sufficiently increasing n^ the series is said to be convergent,

and may be employed in finding an approximate value of the

function f{x) ; the closeness of the approximation increasing

with the number of terms used. A series in which R does not

decrease as n increases is said to be divergent.

When the successive terms of a series decrease it does not

necessarily follow that the series is convergent ; for the value

of the equivalent function, and consequently that of R^ may be

infinite. To illustrate, if we put x — \ m the series

X + J^'^ ^\x' ^\x' ^' . .
,

we obtain the numerical series

it can be shown that, by taking a sufficient number of terms, the

sum of this series may be made to exceed any finite limit, the

value of the equivalent or generatingfunction of the above series

being in fact infinite when x = i.*

121. Since R vanishes with x, every series for which finite

coefficients can be determined is convergent for certain small

values of x. In som-e cases there are limiting values of x, both

positive and negative, within which the series is convergent,

while for values of x without these limits the series is diver-

gent. These values of x are called the limits of convergence.

* If we consider the first two terms separately, and regard the other terms as

arranged in groups of two, four, eight, sixteen, etc., the groups will end with the

terms \, \, -j^g, 3^, etc. The sum of the fractions in the first group exceeds f or ^,

the sum of those in the second exceeds \ or \, and so on ; hence the sum of 2iV such

groups exceeds the number N, and N may be taken as large as we choose.

The generating function in this case is log , and unity is the limit of con-

vergence.
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We shall now demonstrate a theorem by which a function

in the form f{xo + h) may be developed into a series involving

powers of h^ and in Section XIX we shall show how this

theorem is transformed so as to give the expansion of f{x) in

powers of x.

Taylor^s Theorem.

(22. A function of h of the form f{xo -\- Jt) in general admits

of development in a series involving ascending powers of h.

We therefore assume

/(;ro + >^) = ^o 4- BJt + a>^'+ • . . + NoU" + 7?o, . . (i)

in which Aoy Boj Co, . . . iVo are independent of /i, while Ro
is a function of /i which vanishes when /i is zero. Hence, mak-

ing ^ = o, we have

/(^o) = Ao.

We have now to find the values oi Bo, Co, - - - No, which

are evidently functions of Xo. For this purpose we put

^i = Xo-\- hj whence h ^^ x^— Xo ;

substituting, equation (i) takes the form

f{x;)^f{Xo)^Bo{x,-Xo)^Co{x,-Xoy ' • • -{-JVoix.-Xof-hRoy

in which we may regard Xj, as constant and Xo as variable. Re-

placing the latter by x^ and its functions, Bo, Cc, . . » iVo, and

Rn, by B, C, . . . Ny and R, we have

f{x:)=f{x)-^B{x.^x)+ C{x.-'xy-'^^N{x.^xT^R, . (2)

Taking derivatives with respect to x, we have
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- nN{x. - x)-^ + {X, -xy^ +g . . . . (3)

To render the development possible, B, Cj . . . JV, and R must

have such values as will make equation (3) identical, that is, true

for all values of x,

123 It is evident that B may be so taken as to cause the

first two terms of equation (3) to vanish, and that, this being

done, C can be so determined as to cause the coefficient of

(>! — x) to vanish, D so as to make the coefficient of {x^ — xj
vanish, and so on. The requisite conditions are

f{x)-B=o, g-2C=o, g-3Z) = o,etc.,

A a u I
.ndN dR

and finally ix^ — x) ——f- -7- = o.
' dx dx

From these conditions we derive

B=f{x\ C=i^=i/"{x),

and in general N— /"(x).

Putting Xo for x, and substituting in equation (i) the values of

Aoy Boy Coi . . . No, We obtain

/(^„+ A)=/(;r„)+/'(^o)/^+/"(^o)-^ -
. .+/«(;r„)—^- +je„.(4)
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This result is called Taylor's Theorem, from the name of its dis-

coverer, Dr. Brook Taylor, who first published it in 171 5.

It is evident from equation (4) that the proposed expansion is

impossible when the given function or any of its derived func-

tions is infinite for the value x^.

/ Lagrange s Expression for the Remainder,

124. i? denotes a function of x which takes the value ^o
when X — Xof and becomes zero when x — x^. It has been

shown in the preceding article that R must also satisfy the

equation

, .^dN dR

or, substituting the value of N determined above,

^ = - (-^^^^/-(^)
(5)

This equation shows that — cannot become infinite for any
ax

value of X between x^ and x^^ provided /''"^'(;tr) remains finite

and real while x varies between these limits. Since it follows

from the theorem proved in Art. 104 that all preceding deriva-

tives must be likewise finite, the above hypothesis is equivalent

to the assumption that/(;ir) and its successive derivatives to the

(n -f \)th inclusive remain finite and real while x varies from Xo

/^ Xc + h.

(25. Let P denote any assumed function of x which, like

R^ takes the value Ro when x — Xo and the value zero when

X = x^, and whose derivative —r- does not become infinite or
dx

imaginary for any value of x between these limits.
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Then, Ro being assumed to be finite^ P — R denotes a func-

tion of X which vanishes both when x — Xo and when x — Xt.

and whose derivative cannot become infinite for any interme-

diate value of X, It follows therefore that the value of this

function cannot become infinite for any intermediate value of x.

Since, as x varies from x^ to x^^ P — R starts from the value

zero and returns to zero again, without passing through infinity,

its numerical value must pass through a maximum ; hence its

derivative cannot retain the same sign throughout, and as it can-

not become infinite it must necessarily become zero for some

intermediate value of x. Since x-, =Xo + /i this intermediate

value of X can be expressed by Xo + O/i^ being 2. positiveproper

fraction. It is therefore evident that at least one value of x
of the form

x = Xo-^ Qh

will satisfy the equation

dP dR ,..

'dx-^x-"" ^^)

126. The value of P will fulfil the required conditions if we
assume

_{Xj—Xf^
'R.o»

for this function takes the value ^o when x = Xo and vanishes

when X =^ x^\ moreover its derivative with reference to ;r, viz.,

dP _ (« + iH-r,--i-y'

Tx- li^^
^°'

• • • • w
does not become infinite for any intermediate value of x. Sub-

stituting in equation (6) the values of the derivatives given in

equations (5) and (7), and solving for R^^ we obtain

Ro=^ ^^^.~—-,r^\xo^- eh). ... (8)
1.2- • •^2.(« + l)

^
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This expression for the remainder was first given by La-

grange.

The series may now be written thus

:

f(x.^ h) =f{x.) +f'{x:)h +f\Xo) -^ • •

It should be noticed that the above expression for the remain-

der after n + i terms differs from the next, or {?i + 2jth term

of the series, simply by the addition of 6h to Xo^

The Binomial Theorem,

127. We shall now apply Taylor's Theorem to the function

(a + by in order to obtain a series involving ascending powers

Qib,

In this case b takes the place of h, and a that of Xo ; hence

f{x)^x /. f{x^^Xo . =a

\x)=mx .,'. /\Xo)= 'mXo —ma

f'\x)=m{m — \)x'"'''' .'. /"{Xo)=m(m — i)x'"~^=m{m— i)a"~'

and

/"{xo)=m{m — i){m — 2) - . - (m - n + i)a'"-''.

Whence

(a + by"= a'"+ md'^-'b -f-
'"^^ILZ^ a!"-'b'

m{in - \){in - 2) . . (in - n \- i )^^^..^« 4. . , .

1.2.3 ' ' ' f^

This result is called the Binomial Theorem.

J
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^.

Examples XVIII.

To expand log {x^+ h) by Taylor's Theorem.

Solution

:

—

f(x) - log X :. /{x^} = log x^

/» = -^ .-. /V„) = -i5

/'»=^ .-. /"'(^») = -^

/"W=-^ ••• /^Vo)=-'-^

By substituting in equation (4), Art. 123, we obtain

log(^,+ ^)=log^,+^-— +_------... -(_i)» 4-^0.
^o ^^o Z^o 4-^0 ^^-^o

Employing Lagrange's expression for the remainder (Art. 126) we
derive

^ 2. Expand a=^° + \

{n + i)(^o+ ^^T''''

Solution

:

—
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f{x) = a'

fix) = log a-a' /'(^o) ^ log ^'^"^

f\x) = (log aY-a' .-. /»(^J - (log ay-a'^

Substituting in equation (4), Art. 123, we have

^..» == ,.. [, + log a-/> + (log aY^... + (Mflll + i?..

1/ 3. Find the expansion of /(jc^ 4-^), when /(^) = ^ log x — x^ writ'

ing the {n + i)''' term of the series.

/{x^ + A) = x^ log x^—x^-h log jc„./^ +
•^o

1-2
-^o

*2-3

"^
^ '^<-^ '(n- i)n

4. Expand sin"' (x^ + h) to the fourth term inclusive.

,/ ,\ • 1 h x^ h^
sm-'(-^o+ ^) - sm-^^,+ -3: + ^ •

—

^ I + 2:r^ /^^ ^

(i-OV^-2-3

y] 5. Prove that

j

I-2-3-4-5 J
^ 6. Prove that

tan (J;r + /^) = I + 2^ + 2/^= + P" + V"^' + • • •
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XIX.

Maclaurin s Theorem.

128. We shall now give a particular form of Taylor's Series^

which is usually more convenient, when numerical results are to

be obtained, than the general form given in the preceding sec-

tion.

This form of the series is obtained by putting x^=-0 and

replacing h by x in equation (4), Art. 123. Thus,

/(^)=/(o)+/'(o)^+/"(o) ^ • • +/"(o)
^ l]^ _ ^

+R^ . . (I)

and, the same substitutions bding made in equation (8), Art. 126,

we obtain

I -2 •••(«+ l)*

Equation (i) is called Maclaurin's Theorem: it maybe used

in developing any function to which Taylor's Theorem is ap-

plicable, by giving a different signification to the symbol /.

Thus, if log (i + /t) is to be developed by Taylor's Theorem,

/{x) = log Xf the value of x^ being unity; but, if log (i -\- x)

is to be developed by Maclaurin's Theorem, we must put

/{x) = log (i + x), (Compare Ex. XVIII., i, with Art. 130.)

The Exponential Series and the Value of e,

129. As an example of the application of the above theo-

rem, we shall deduce the development of the function «-^, which

is called the exponential series, and shall thence obtain a series

for computing the value of f.

The successive derivatives of e-^ being equal to the original

function, the coefficients, y(o),/"(o), etc., each reduce to unity;



130 THE DEVELOPMENT OF FUNCTIONS. [Art. 1 29.

we therefore derive, by substituting in equation (i) and in-

troducing the value of Ro,

f^= I +;ir+ — + . . • + + f^-''

2 1-2.3 1-2 n 1-2 •• . '{71 + I)

Putting X equal to unity, we obtain the following series, which

enables us to compute the value of the incommensurable quan-

tity f to any required degree of accuracy

:

III
f = I + I + — + + • • •

1-2 12-3 I-2-34

I-2-3 • • n I-2-3 . • (;2 + i)'

The computation may be arranged thus, each term being de-

rived from the preceding term by division

:

2.5

,16666666667

4166666667

833333333
138888889

1984 I 270

2480159

275573

27557

2505

209

16

I

2.71828182846

Since f* is less than e, the remainder (n being 14) is less than

j\ of the last term employed in the computation, and therefore

cannot affect the result. Inasmuch as each term may contain a

positive or negative error of one-half a unit in the last decimal
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place, we cannot, in general, rely upon the accuracy of the last

two places of decimals, in computations involving so large a

number of terms. Accordingly, this computation only justifies

us in writing

£=2.718281828.

Logarithmic Series.

130. The logarithmic series is deduced by applying Mac-

laurin's Theorem to the function log(i + x).

In this case

/w =:log(l + X) . •• /(o) = o

/w = I

I + X
•• /'(o)=i

/"W = I
•• /"(o) = -r

(l+^y

/'"W =
1-2

. /'"(O) = 1-2

f\x) =
I-2-3

. /-(o)=- 1.2.3,

X X X
hence loo^ (i -\- x) = x -H + . .

. . . . (i)
•
^^ ^ 234 ^ ^

Since this series is divergent for values of x greater than

unity (see Art. 120), we proceed to deduce a formula for the

difference of two logarithms, which may be employed in com-

puting successive logarithms; that is, denoting the numbers

corresponding to two logarithms by n and n + k, we derive a

series for

log {n \- h) — log n = log .
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A series which could be employed for this purpose might be

ft ~\~ Ii h
obtained from (i), by putting in the form i + -. We ob-

n n

tain, however, a much more rapidly converging series by the

process given below.

Substituting — ;ir for ;ir in (i), we have

234
log (l — ;r) = — ;ir ^ _ . . . . . (2)

Subtracting (2) from (i),

log = 2 ^ +
^'

3
^^^...]. .

.

«

a series involving only the positive terms of series (i).

\ '\~ X 7t ~f" ft h
Putting =

, we derive x = ; substituting
I X iz ^fl -\- tl

in (3), v/e have

The Computatio7i of Napierian Logarithfris.

131. The series given above enables us to compute Napierian

logarithms. We proceed to illustrate by computing loge 10.

The approximate numerical value of this logarithm could be

obtained by putting n — i and // = 9 in (4) ; but, since the series

thus obtained would converge very slowly, it is more convenient

first to compute log 2 by means of the series obtained by put-

ting n z=i I and >^ ~ i in (4) ; thus

:

1 fi
,

I I I I I I
"1



§ XIX.] LOGARITHMTC SERIES. 133

We then put n= S and ^ := 2 in (4) ; whence

loge 10 l0ge2 + 1+i
-3 3

1^
3^ s y 7

3""^"
J*

In making the computation, it is convenient first to obtain

the values of the powers of ^ which occur in the series for log 2,

by successive division by 9, and afterwards to derive the values

of the required terms of the series by dividing these auxiliary

numbers by i, 3, 5, /, etc. The same auxiliary numbers are

also used in the computation of loge 10. See the arrangement

of the numerical work below.

1

s 0.3333333333 I 0.3333333333

ar 370370370 3 123456790

ar 41 152263 5 3230453

ay 4572474 7 65321I

ar 508053 9 56450

ar 56450 II 5132

ar 6272 13 482

ar 697 15 46

ar 77 17 5

log. 2 =

0.3465735902
2

: 0.693 1 47 I 804

i 0.3333333333 : I 0.3333333333

ar 41 152263 : 3 I37I742I

ar 508053 : 5 ioi6ir

ar 6272 : 7 896

ihr 77 ' 9 9

0.3347153270

0.1115717757

0.2231435513

Slog\2 = 2.079441 5412

logejO = 2.30258509
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The tabular logarithms of the system of which lO is the

base, are derived from the corresponding Napierian logarithms

by means of the relation

loge;r = loge lo logio^,

whence log^o^ =
^i

log^-^ — M . loge^-
logeio **

The constant -. , denoted above by M. is called the modulus
logeio' ^

of common logarithms. Taking the reciprocal of loggio, com
puted above, we have

M — 0.43429448.

The Developments of the Sine and the Cosine,

132. Let f{x) = sin x,

then

f\x) — cos Xyf'\x) — — sin x,f"'{x) = — cos x,f''^{pc) = sin ;ir

;

f'^ being identical with/, it follows that these functions recur

in cycles of four ; their values when x — O are

o, 1,0, — I, etc.

Hence substituting in equation (i). Art. 128, we have

x"^ ^ x^ x'' , .

sm X = X + • • • . . (i)
I-2-3 1-2 • • • 5 I-2- • • 7

^ ^

In a similar manner, we obtain

x^ X* x'
cos ;ir = I + + . . . . . (2)

1.2 1-2 3-4 1-2 •• -6 ^ ^
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Examples XIX.

/ I. Expand (i + xY-

(i + xr= I + mx H ^ -X H ^ ^
-x^ -f . . .

1-2 I-2-3

It is evident that no coefficient will vanish if m is negative or frac-

tional. This is the form in which the binomial theorem is employed

in computation, x being less than unity.

\/ 2. Find three terms of the expansion of sin^ x.

sin^ X = x'^ f

J 3. Expand tan x to the term involving x'' inclusive.

/

tan x^^ X -\ 1 h
3 15

/

4. Expand sec x to the term involving x^ inclusive.

x^ <.x^ dix^
sec ^ = I + — + —^ + 7 +

1-2 I-2-3-4 1.2 • • • • 6

5. Expand log sec ^ to the term involving x^ inclusive.

X' X X
log sec .^ = 1

\ h
2 12 45

/̂
6. Find four terms of the expansion of £* sec x

J
o 2X^

f'sec^=i \- X { X -\ h

7. Derive the expansion of log (i — jc') from the logarithmic series,

and verify by adding the expansions of log {1 ^ x) and log (i — x)»

V 8. Derive the expansion of (i + ^)f* from that of f*.

(i + xY' ^\ ^ 2X ^^- • • -h
— -x'^,

^ ' \'2 1-2 ' n
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1/ 9 Find, by means of the exponential series, the expansion of xf?'^

including the /zth term.

/ ^
V 10. Expand ——— by division, making use of the exponential

I "T <^

series.

^ x^ X^ T.X^ I \x^y~^—= I + + V". + • •
•

I + ^ 2 3 8 ' 30

II. Find the expansion of f'log(i + x) to the term involving^*,

by multiplying together a sufficient number of the terms of the series

for e' and for log (i + x).

5 ..3 6

6Mog(i + ^) -^ + — + - + ^^- + . . .

2 3 40

v/
12. Expand log (i + ^').

log(i + f') = log2+- + -3--—

+

13. Expand (i + s')" to the term involving x^ inclusive.

(i +£*)«= 2"^! -h^-x +
n{n + i) o(^

/

j^-v^-ti) N*** , n(7^ + n + 2) x^
t. ^ ^j. i_ -J- . -

—

}
14. Find the expansion of V{i ± sin 2jc), employing the formula

4^(1 ± sin 2x) = cos X ± sin x.

V{i ± sin 2x) = I ±x - -— =F -^ + • • •

1-2 1.2.3

15. Find the expansion of cos" j^t: by means of the formula
cos'^.x: = J(i 4- cos 2x).

, 2
2'X* 2\x''

cos'^ = I — ^^ H f-
. . .

I-2-3-4 1-2 ... 6
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i/ 16. Find the expansion of cos' x^ by means of the formula

cos' X = J(cos sx + $ cos x).

1*2 4 I-2-3-4 4 1-2 • • • 2«

A''^ 17. Compute loge3, and find log;o3 by multiplying by the value of

il/ (Art. 166).

18. Find loge269.

J*uf n — 270 = 10 X 3", and /i = — i.

19. Find log, 7, and log. 13.

loge3 = 1.0986 1 23.

Iogio3 = 0.477 1 2 13.

loge269 =: 5.5947 1 14.

I0ge7 = I.9459IOI.

l0geI3 = 2.5649494.



CHAPTER VIII.

Curve Tracing.

XX.

Equations in the Form y = f(x).

133. When a curve given by its equation is to be traced,

it is necessary to determine its general form especially at such

points as present any peculiarity, and also the nature of those

branches of the curve, if there be any, which are unlimited in

extent.

The general mode of procedure, when the equation can be

put in either of the forms, y =f{x) ox x = #(/), is indicated in

the following examples.

Asymptotes Parallel to the Coordinate Axes,

(34. Example \. -ay — xy=a'' (i)

Solving for J/, we obtain

^ = ^:^' •
• • (2)

WhGnx = o,y = a. Numerically equal positive and nega-

tive values of x give the same values for jj/; the curve is there-

fore symmetrical with reference to the axis of y. As x increases
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from zero, y increases until the denominator, a^ — x^, becomes

zero, when y becomes mfinite ; this occurs when x = ± a.

Draw the straight Hnes x = ± a. These are hnes to which

the curve approaches indefinitely, for we may assign values to

X as near as we please to -\- a ov to — a, thus determining points

of the curve as near as we please to the straight lines x= a and

X = — a. Such lines are called asymptotes to the curve.

When X passes the value a,y becomes

negative and decreases numerically, ap-

proaching the value zero as x increases

indefinitely. Hence there is a branch

of the curve below the axis of x to

which the lines x = a and y =^ o are

asymptotes.

The general form of the curve is in-

dicated in Fig. 15.

The point (o, a) evidently corresponds to a minimum ordi-

nate.

Fig. 15.

135. Example 2. a^x =y {x — of (i)

Solving for^,

y = {X - a)^
(2)

When X is zero, y is zero
; y increases as x increases until

X = ay when y becomes infinite. Hence

X = a

is the equation of an asymptote. When x passes the value

<2, y does not change sign, but remains positive, and as x in-

creases y diminishes, approaching zero as x increases indefi-

nitely.
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Examining now the values of j which correspond to nega-

tive values of x^ we perceive that, y becoming

negative, the branch which passes through the

origin continues below the axis of x, and that

y approaches zero as the negative value of x
Fig. 17. increases indefinitely. Hence the general form

of the curve is that indicated in Fig. 17.

(36. To determine the direction of the curve at any point,

we have

, dy ^ a 4- X , .

The direction in which the curve passes through the origin

IS given by the value of tan (/> which corresponds to x = o.

From (3), we have

^^Jodx_

the inclination of the curve at the origin is therefore 45''

Minimum Ordinates and Points of Inflexion.

(37. To find the minimum ordinate which evidently exists

he left of the ax

to zero, and deduce

dy
on the left of the axis of j, we put the expression for -^ equal

x — — a.

The minimum ordinate is therefore found at the point whose

abscissa is — ^ ; its value, obtained from equation (2), is

d'^v
K point of inflexion is a point at which ^, changes sign (see
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Art. 74) ; in other words, it is a point at which tan ^ has a

maximum or a minimum value. In this case there is evidently

a point of inflexion on the left of the minimum ordinate. From
equation (3) we derive

dx' " {x-aY

putting this expression equal to zero to determine the abscissa,

and deducing the corresponding ordinate from (2), we obtain,

for the coordinates of the point of inflexion,

X = — 2a^ and y — —\a.

Oblique Asymptotes,

\ZZ, Example I. x' — 2A:y — 2x' —Sy = O, c .. . , (l)

Solving this equation for j, we have

^=J'x^-T4 •• — -•. (2)

It is obvious from the form of equation (2) that the curve

meets the axis of x at the two points (o, o) and (2, o). Since

y is positive only when ;r > 2, the curve lies below the axis of

X on the left of the origin, and also between the origin and the

point (2, o), but on the right of this point the curve lies above

the axis of x.

139 Developing the second member of equation (2) into

an expression involving a fraction whose numerator is lower in

degree than its denominator, we have

,= J^-I+2^,^. . . ... (3)
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The fraction in this expression decreases without limit as x in-

creases indefinitely ; hence the ordinate of the curve may, by

increasing jc, be made to differ as little as we please from that

of the straight line

This line is, therefore, an asymptote.

The fraction
2 — X
X' + 4

is positive for all values

of X less than 2, negative

for all values of x greater

than 2, and does not be-

come infinite. The curve,

therefore, lies above the
F^^" ^^' asymptote on the left of

the point (2, o), and below it on the right of this point, as

represented in Fig. 18.

14-0. There is evidently a minimum ordinate between the

origin and the point (2, o).

We obtain from equation (2)

and

df _
dx

~

d^ _
dx"

~

x^ ^ \2x 16

vi''4- (yx^-\- \2x —
(^' + 4)'

(4)

(5)

dy _Putting -j^ = o, we obtain x — O and x =^ 1.19 nearly, the only

real roots; the abscissa corresponding to the minimum ordinate

is therefore 1.19, the value of the ordinate being about — o.ii.

The root zero corresponds to a maximum ordinate at the

origin.



§XX.] OBLIQUE ASYMPTOTES. 143

Putting (Pi
O, we obtain the three roots ;ir = — 2, and

4r = 2 (2 ± V 3) ; the corresponding ordinates are obtained

from equation (3). There are, therefore, three points of in-

flexion, one situated at the point (— 2, — i), and the others

near the points (0.54, — 0.05), and (7.46, 2.55).

The inchnation of the curve is determined by means of

equation (4) to be tan- 'J at the point (2, o), and tan"'J at the

left-hand point of inflexion.

(41. Example 4. x" — xy ^

Solving for/

.r' + I^=—:::—

Curvilinear Asymptotes,

=- o. , ,

= x' -\-

(0

(2)

In this case, on developing jj/ in powers of x, the integral portion

of its value is found to contain the second power of x ; the

fraction approaches zero when x increases indefinitely ; hence

the ordinate of this curve may be made to differ as little as we
please from that of the curve

j^ = x' (3)

The parabola represented by this equation

is accordingly said to be a curvilinear asymp-

tote. It is indicated by the dotted line in

19.Fig

142. The sign of the fraction - is always

the same as that of x, and its value is infinite

when X is zero ; hence the curve lies below

the parabola on the left of the axis of 7, and
above it on the right, this axis being an

asymptote, as indicated in Fig. 19.
Fig. 19.
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Taking derivatives, we obtain

^ = ^^~^ (4)

and g=.(n.i,). ...... (5)

There is a point of inflexion at ( — i, o) ; the inclination of the

curve to the axis of x at this point is tan ~' (— 3).

There is a minimum ordinate at the point (^^4, \^2).
This cubic curve is an example of the species called by-

Newton the trident. The characteristic property of a trident

is the possession of a parabolic asymptote and a rectilinear

asymptote parallel to the axis of the parabola.

Examples XXVI.

J
I. Trace the curve j == x (^^ — i).

Since J is an odd function of x^ the curve is symmetrical with re-

ference to the origin as a centre. Find the point of inflexion, and

the minimum ordinate.

2. Trace the curvey (jr — i ) = ^'.

The curve has for an asymptote the line :r = i ; there is a mini-

mum ordinate at (2, 2), and a point of inflexion at (4, | i/3).

>l 3. Trace the curve y" — x" {x — a), determining its direction at

the points at which it meets the axis of x.

The asymptote is found by the method of development, thus

the equation of the asymptote is therefore
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4. Trace the curve x^ ^ xy ^- 2x —y = o.

5. Trace the curve y" = x" -\- x^^ and find its direction at the

origin.

The curve has a maximum ordinate at (— |, ± f 1/3). The
value ofy may be taken as the function whose maximum is required.

(See Art. 108.)

6. Trace the curve j; = ^' — xy. Find the point of inflexion, the

minimum ordinate, and the asymptotes.

The curve has a rectihnear asymptote x— — i, and a curvihnear

asymptote ji'
=^"^ — ^ 4- i. This curve is a trident. (See Art. 142.)

7. Trace the curve y^ = jc^ — x^.

Both branches of the curve are tangent to the axis of x at the

origin.

8. Trace the curve jv' —/^y = x* + y^.

Solving for^, we obtain

y^2 ± s/{x^ + ^' + 4) = 2 ± i/[(jc + 2) (x' - ^ + 2)].

The factor x^ — x -^ 2 being always positive, the curve is real on

the right of the line x = — 2.

Find the points at which the curve cuts the axis, and show that

the upper branch has a maximum ordinate for ::c = — f and a mini-

mum ordinate for x — o.

9. Trace the curve {x — 2a) xy = a(x — a) (x — 3^).

10. Trace the curve {x — 2a) xy- = a" {x — a) (x — ^a).

11. Trace the curve/ = ^* (i — jv*)' : find all the points at which

the tangent is parallel to the axis of x.

12. Trace the curve 6x (i — x) y = i + 3^.

This curve has a point of inflexion, determined by a cubic having

only one real root, which is between — i and — 2. Find the three

asymptotes, and the maximum and the minimum ordinate.
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13. Trace the curve ^y — {x -^ 2f {1 •\- x^).

Solving the equation for j', we have

y=± ^4/(i+^')=±(2+.r)(i+i^y.

The asymptotes are jj; = a; + 2, j = — .r — 2, and x =0. The
curve has a minimum ordinate corresponding to a = .y/2 ; the inclina-

tion at the point at which it cuts the axis of x is tan"' (±^1/5). There

is a point of inflexion corresponding to the abscissa x = — 6.1 nearly.

XXL

Curves Given by Polar Equations,

143. The following examples will illustrate some of the

methods employed when the curve is given by means of its

polar equation.

Example t^, r = acosd cos 26. . . . . , . . . (i)

When 6 = o^r — a^ the generating point P therefore starts

from A on the initial line. As B increases, r decreases and

becomes zero when ^ = 45°, /* describing the half-loop in the

first quadrant, and arriving at the pole in a direction having an

inclination of 45° to the initial line. When 8 passes 45°, r

becomes negative, and returns to zero again when 6 — 90°, P
describing the loop in the third quad-

rant. As 6 passes 90°, r again becomes

positive, but returns to zero when
0= 135°, P describing the loop in the

second quadrant. As Ovaries from 135''

to 180°, r again becomes negative, /^de-
^^*

scribing the half-loop in the fourth quad-

rant, and returning to ^,
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In this example if we suppose d to vary from 180° to 360°,

P will again describe the same curve, and, since d enters the

equation of the curve, by means of trigonometrical functions

only, it is unnecessary to consider values of 6 greater than 360°.

144, Putting equation (i) in the form

r — a{2 cos^O — cos 6),

we derive

^ = a{-6 cos^^ sin 6 + sin 6).
du

To determine the maxima values of r, we place this derivative

equal to zero, thus obtaining the roots

sin ^ = o and cos Q = ±\ V6',

the former gives the point A on the initial line, and the latter

gives the values of which determine the position of the maxi-

ma in the small loops. The corresponding values of r are =F - V6.

To determine the position of the maximum ordinate, we
have from (i)

y = rsln = ia sin 4^.

The maxima values occur when sin 4^9 =1, and the minima

when sin 4^ = — I ; that is, we have maxima when — Itt and

when 6 = ^7ty and minima when 6 = |7r and -}7t.

145. In the preceding example the substitution of ^ + tt

for 6 changes the sign but not the numerical value of r. When
this is the case, ^and 6 +7r evidently give the same point of

the curve, and the complete curve is described while varies

from o to 7t. If however this substitution changes neither the

numerical value nor the sign of r, ^and -h 7t will give points

symmetrically situated with reference to the pole ; that is, the

curve will be symmetrical in opposite quadrants.



148 CURVE TRACING. [Art. 145.

Again if the substitution of — ^ for Q does not change the

value of r, 6 and — B give points symmetrically situated with

reference to the initial line, hence in this case the curve is sym-

metrical to this line ; but, if the substitution of — ^ for 6

changes the sign of r without changing its numerical value, the

curve is symmetrical with reference to a perpendicular to the

initial line.

The Determination of Asymptotes by Means of Polar

Equations,

(46. When r becomes infinite for a particular value of d the

curve has an infinite branch, and, if there be a corresponding

asymptote, it may be determined by means of the expression

derived below.

Let By denote a value of d for which r is infinite, and let OB
be drawn through the pole, making this angle with

the initial line ; then, from the triangle OBP, Fig.

20, we have

PB^ rsm{d,-d).

Fig. 20. Now, if the curve has an asymptote parallel to

OB, it is plain that as 6 approaches 6^ the limiting value of PB
will be equal to OR, the perpendicular from the pole upon

the asymptote. Hence, if the curve has an asymptote in the

direction 6^, the expression

OR=\rsm{d, - e)\,

which takes the form o^ • o, will have a finite value, and this

value will determine the distance of the asymptote from the

pole. Fig. 20 shows that when the above expression is posi-

tive OR is to be laid off in the direction 6^ — 90°.

If upon evaluation the expression for OR is found to be in-
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finite we infer that the infinite branch of the curve is para-

bolic.

147. Example 6. r — aO"
(I)

Since r becomes infinite when 6 = i, we proceed to apply the

method established in the preceding article for determining the

existence of an asymptote. In this case we have

[r sin {e^ - 6)]
_ r aO' sin(i - <9)-j _

The angle = i corresponds to 57° 18', nearly, and since

the expression for the perpendicular on the asymptote is neg-

ative its direction is ^j + 90° = 147° 18'; consequently, the

asymptote is laid off as in Fig. 21.

Numerically equal positive and negative values of 6 give the

same values for r ; hence the curve is symmetrical with refer-

ence to the initial line.

While varies from o to i, r is negative and varies from o
to 00, giving the infinite branch in the third

quadrant.

As d passes the value unity, and increases

indefinitely, r becomes positive and decreases,

approaching indefinitely to the limiting value

a, which we obtain from (i) by making 6 in-

finite. Hence the curve describes an infinite

number of whorls approaching indefinitely to

the circle r — a^ which is therefore called an
asymptotic circle.

The points of inflexion in this curve are

determined in Art. 175.
Fig. ±i.
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i
Examples XXI.

I. Trace the curve r^=^ a cos" \ 0.

Show that, to describe the curve, must vary from o to 3 tt ; also

that the curve is symmetrical to the initial line. Find the values of

which correspond to the maxima and minima ordinate* and abscissas,

the initial line being taken as the axis of x.

\l 2. Trace the curve r = a {2 s'lnO — ^ sin'o).

Show that the entire curve is described while varies from o to tt^

and that the curve is symmetrical with reference to a perpendicular

to^the initial line.

7 3. Trace the curve r = 2 + sm 30.

A maximum value of r (equal to 3) occurs at = 30°
; a mini-

mum (equal to i) at = 90°. The curve is symmetrical with refer-

ence to lines inclined at the angles 30°, 90°, and 150° to the initial

line.

nI

J

4. Trace the curve r = i 4- sin 50.

The curve consists of five equal loops.

5. Trace the curve r" = a^ sin 30.

The curve consists of three equal loops.

/ 6. Trace the curve r cos = a cos 2O,

The curve has an asymptote perpendicular to the initial line at the

distance a on the left of the pole.

V 7. Trace the curve r = 2 + sin |0.

A m.aximum value of r occurs at = 60°, and a minimum at

= 180°. The curve has three double points, one being on the initial

line.

n 8. Trace the curve r cos 20 = a.

The curve is symmetrical with reference to the initial line and

with reference to a perpendicular to the initial line. There are four

asymptotes.
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9. Trace the curve r sin 40 = « sin t^^.

The curve is symmetrical to the initial line, and has three asymp-

totes ; the minimum value of r is \a.

10. Trace the curve r" = c^ cos 26.

The curve is symmetrical with respect to the pole since

r =. -^a *^ (cos 20) : r is imaginary for values of between \Tt and J^.

3. 3.

11. Trace the curve r* = a^ cos |9.

The curve consists of three equal loops, r being real for all values

of e.

12. Trace the curve r^ cos Q = ^'^ sin 2i^.

The curve consists of two loops and an infinite branch which has

an asymptote perpendicular to the initial line and passing through the

pole.

29
i^. Trace the curve r = ^ .^

20 — 1

Find the rectilinear and the circular asymptote, and also the point

of inflexion.

XXII.

The Parabola of thejwth Degree.

(48. The term parabola is frequently applied to any curve

in which one of the coordinates is proportional to the n\}ix

power of the other, n being greater than unity. The parabola

proper is thus distinguished as the parabola of the second

degree.

The general equation of the parabola of the ;^th degree is

usually written in the homogeneous form, {a being positive)

^n-ry — x""

,
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The curve passes through the origin and through the point

{a^ a), for all values of n. Since 7i >i, the curve is tangent to

the axis of x at the origin.

(49.' The following three diagrams represent forms which

the curve takes for different values of n. When n denotes a

fraction, it is supposed to be reduced to its lowest terms.

Fig. 22 represents the general shape of

the curve when n is an even integer, or a

fraction having an even numerator and an

odd denominator.

Fig. 23 represents the form of the curve

when 11 is an odd integer or a fraction with

an odd numerator and an odd denominator,
Fig. 22.

the origin being a point of inflexion.

Fig. 24 represents the form of the

curve when /^ is a fraction having an odd

numerator and an even denominator.

In this case y is regarded as a two-

valued function, and is imaginary when

Fig. 23.

Fig. 22 is constructed for the parabola

in which ;2 = 4.

Fig. 23 is the cubicalparabola in which

2 Fig. 24 is the semi-cubicalparabola in

which n = ^ ; the equation being

Fig. 24,
or

^2jJ/

ay

,
1

The curves corresponding to the general equation

y=A-^Bx+Cx'^ Dx'+ . . , Lx"

are sometimes cdiWed parabolic curves of the nih. degree.
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The Cissoid of Diodes,

ISO. Let ^ be a point on the circumference of a circle,

and BC a tangent at the opposite

extremity of the diameter AB\ let

AC be any straight line through A^

and take CP = AD ; then the locus

of P is the cissoid.

To find the polar equation, AB
being the initial line, let DB be

drawn, and denote the radius of the

circle by a\ then AC —2a ^ecO

\

and since ADB is a right angle,

AD — 2a cos 8. The polar equation

of the locus of P^ A being the pole,

is, therefore,

r = 2^ (sec ^— cos &)
cos 6

or 2a
sm'

cos
(I)

151. To obtain the rectangular equation, we employ the

equations of transformation

sin 6 =-.y cos c/ = —

,

r
r'' = x'-Vf\

whence, eliminating 6 we obtain

yr — 2a ^^,
rx

and thence the rectangular equation of the curve

xix" ^ f) = 2af, . . .

or / =
2a — X »!?••

(2)

(3)
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The Cardioid.

152. The curve defined by the polar equation

r = 2^(1 --cos d) . . (i)

is called the cardioid. In Fig.

26, A denotes the pole.

The polar equation can also

be written in the form

Fig. 26.

r = 4<2; sin^ \Q (2)

Transforming equation (i) to

rectangular coordinates, we have

for the rectangular equation of

the cardioid,

{x" + /)2 + A^x {p^ + /) - 4^y = o (3)

A point at which two branches of a curve have a common
tangent is called a cusp. This curve has a cusp at the origin.

The Lemniscata of Bernoulli,

153. The curve defined by the polar equation

^2 = ^2 cos 2^ . . . (i)

is called the lemniscata. In Fig. 27

O denotes the pole : a is the semi-

axis of the curve.

From (i), we have Fig. 27.

r^ = «2(cos2^-sin2 6^),
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or r'^a^—^ ;

whence we have

{x" ^ff^a\f-x')^o, (2)

the rectangular equation of the lemniscata, referred to its cen-

tre and axis of symmetry.

If we turn the initial line back through 45°, (i) becomes

7-2 = «2 gjj^ 2^, (3)

and the corresponding rectangular equation is

(;r2+// = 2^;rj/ (4)

When the equation has this form, the coordinate axes are the

tangents at the origin.

The Logarithmic or Equiangular Spiral,

(54. This spiral is defined by the

polar equation

1
... (I)

or log r — log a + nO^

the logarithm of the radius vector being
^lo, 28

a linear function of the vectorial angle.

It is proved in Art. 168 that this curve cuts its radius vector

at a constant angle whose cotangent is n ; hence it is sometimes

called the equiangular spiral.

The Loxodromic Curve.

(55. The track of a ship whose course is uniform is a curve

that cuts the meridians of the sphere at a constant angle, and

is called a loxodromic curve.
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If we project this curve stereographically upon the plane of

the equator the meridians will project into straight lines, and,

since in this projection angles are unchanged in magnitude, the

projection of the curve will make a constant angle with the

projections of the meridians and will therefore be an equiangu-

lar spiral.

Let d denote the longitude of the generating point mea-

sured from the point at which the curve cuts the equator, and

C the course ; that is, the constant acute angle at which the

curve cuts the meridians, the generating point being supposed

to approach the pole as 6 increases. Taking as the pole the

projection of the pole of the sphere, the polar equation of the

projected curve will be of the form

r = ^^«^ (i)

in which a is the radius of the sphere, since ^ = o gives r ^= a\

we also have

n = — cot C, (2)

since the angle whose cotangent is ;/ is the supplement of C
(see the preceding article).

Denoting by ^ the co-latitude of the projected point we

have, by the mode of projection,

- = tan i^ ; (3)
a

and, denoting the corresponding latitude by /,

Equation (i) is therefore equivalent to

tana7r-^/) = f-^-*^;

whence, solving for 6^ we have
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(9 = - tan (T loge tan (Itt - \l) = tan C loge tan (jTr + |/),

or, employing common logarithms and expressing (9 in degrees,

e° = 131.9284 tan C logxo tan (45° + 1/) • . . (4)

T/^e Cycloid,

156. The path de-

scribed by a point in

the circumference of a

circle which rolls upon

a straight line is called

a cycloid. The curve

consists of an unlimited

number of branches cor-

responding to successive revolutions of the generating circle ; a

single branch is, however, usually termed a cycloid.

Let O^ the point where the curve meets the straight line,

be taken as the origin, let P be the generating point of the

curve, and denote the angle PCR by ^. Since PR is equal to

the line OR over which it has rolled,

0R = PR = aip,

and, from Fig. 29, we readily derive

X = a(ip — sin f) 1

y = a {i — cos Jp) J
(0

157. These two equations express the values of x and f in

terms of the auxiliary variable «/?, and constitute the equations

of the cycloid. If desirable, ?/? is easily eliminated from equa-

tions (i) and an equation between ;i; and / obtained. Thus,

from the second equation, we have
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COS ^ = ^^y ^ whence sin th = n^^7~j)
a a

and hence from the first of equations (i)

;r=^cos-' ^ — ^{2ay — y"), , . . . (2)

or x= a vers-' - — 1/(2^7 — y)-

Equations (i) will in general be found more convenient than

equation (2). Thus we easily derive from (i)

dy ^ s'mtp dip _ sin tfj

dx (i — cos tp) dtp ~ I — costp*

whence

dy _ d fdy \ _ cos ^p — \ dip _ _ i

dx^
~~
dx \dx J (i — cos ipy dx~ a{\ — cos r^^y

'

. 158. The cycloid is frequently referred to the middle point

O' or vertex of the curve as an origin, the directions of the

axes being turned through 90°.

Denoting the coordinates referred to the axes O'X' and

O'Vy in Fig. 29, by x' and/', we have

y = X — art = a {ip — TT — sin tp),

x' = 2a — y — a{i + cos ^-?),

or, denoting ^ — tt by ip\

y = a (tp'' + sin tp')

x'= a{i — cos tp')
(3)

In these equations tp' = o gives the coordinates of the ver-

tex and tp' = ± Tt gives those of the cusps.
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The Epicycloid,

159. When a circle, tan-

gent to a fixed circle exter-

nally, rolls upon it, the path

described by a point in the

circumference of the rolling

circle is called an epicycloid.

Taking the origin at the

centre of the fixed circle,

and the axis of x passing

through A, (one of the posi-

tions of P when in contact

with the fixed circle,) a, by rp,

and Xy being defined by the

diagram, we have, evidently,
Fig. 30.

a^p = bx .'. X = -^ ^.

The inclination of CP to the axis of x is equal to ^ + j, or to

—7

—

ip
; the coordinates of /'are found by suotracting the pro-

jections of CP on the axes from the corresponding projections

of OC', hence

X = {a + b) cos ip - b cos —-—
?/?

y = {a + b) smip — b sin —-— ip

(0

These are the equations of an epicycloid referred to an axis

passing through one of the cusps.



i6o CURVE TRACING. [Art. 159.

Were the generating point taken at the opposite extremity

of a diameter passing through P in the figure, the projection of

6P would be added to that of 0C\ the axis of x would in this

case pass through one of the vertices of the curve, and the

second terms in the above values of x and y would have the

positive sign.

The Hypocycloid.

Fig. 31.

160. When the rolling

circle has internal contact

with the fixed circle, the

curve generated by a point

on the circumference is called

the hypocycloid^ whether the

radius of the rolling circle be

greater or less than that of

the fixed circle.

Adopting the notation

used in deducing the equa-

tion of the epicycloid we
have (see Fig. 31),

OC=a-b, and
^

I

X = ji^^

The inclination of CP to the negative direction of the axis of

X is

/
a — b.

hence the equations of the hypocycloid are

X = {a — b) cos f + b cos—^— ip

y — {a — b) simp — b sin—^— ^

(I)
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The Four-Cusped Hypocycloid.

Fig. 32.

161. In the case of the

hypocycloid when b = \a, the

circumference of the rolling

circle is one-fourth the circum-

ference of the fixed circle, and

the curve will have a cusp at

each of the four points where

the coordinate axes cut the

fixed circle, as represented in

Fig. 32.

On substituting \a for b

equations (2) Art. 160 become

x—\a cos + \a cos 3^

J = f^ sin ^ — \a sin 3?/?
(0

Substituting the values of co^yp and sin 3^ from the for-

mulas,

cos yp — ^ cos' //' — 3 cos //',

and sin 3^ = 3 sin ?/' — 4sin'*^;,

we have
X = a

y

a cos' ^)
_

a sin' ^)
' (2)

whence ;r^ — <3:^ cos^ ^, and y^^ — c^ ^\x^^.

Adding, we have x^-\-y^—a^, (3)

the rectangular equation of the curve.

y



CHAPTER IX.

Applications of the Differential Calculus to

Plane Curves.

XXIII.

The Equation of the Tangent,

(62. The equation of the curve being given in the form

y z=zf(x)^ the inclination of the tangent at any point is deter-

mined by the equation

Hence, if (;ir,, y^ be a point of the curve, the equation of a

tangent at (;i:„ y^ will be found by giving to the direction-

ratio m^ in the general equation

y —yx = m{x — X,),

dy
the value . ; thus

or y-y^=f\x^){x-X^) (2)

For example, in the case of the semi-cubical parabola

f^ax\
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dy „ 3 /^
we have -t~ — \\/ -

•

ax ^ X

The point {a, a) is a point of this curve ; the equation of

the tangent at this point is, therefore,

•^y — 2x = a.

The Equation of the NormaL

163. A perpendicular to the tangent at its point of contact

is called a normal to the curve.

The coordinate axes being rectangular, the direction-ratio

of the normal is the negative reciprocal of that of the tangent

;

for the inclination of the normal is \n + ^, and

tan(J;r + ^) = _ cot ^.

The equation of the normal may, therefore, be written thus

—

As an illustration, let us take the equation of the ellipse

x' f

- dy h^x
whence —-— r- .

dx ay

The equation of the normal at any point {x^, y^ of the ellipse

is, therefore.
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Subtangents and Subnormals,

(64. Denoting by s the length of the arc measured from some

ds
fixed point, — denotes the velocity of P^ the generating point

ttZ

of the curve ; let PT^ equal to ds, be measured on the tangent

at P^ then PQ and ^ 7" will represent dx and dy^ and the angle

TPQ will be (<>
; hence t

dx
^^

cos ^ =
ds

sm

and ^j: = 4/(^^t'' + df). (2) Fig. 33.

165. The distance PT (Fig. 34) on the tangent line inter-

cepted between the point .of contact

and the axis of x is sometimes called

the tangent, and in like manner the in-

tercept PN is called the normal.

From the triangles PTR and NPR,
we have

Fig. 34.

/^r^j/cosec^=^J-=;.|/[i +(^)],

PN — y sec ^ — y -j- — y ydx
I +

The projections of these lines on the axis of x, that is TR
and RN, are called the subtangent and the siibnormaL

From the same triangles, we have
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dx
the subtangent, TR = y cot <f)—y—^

and the subnormal, RN= y tan (p — y ~.
ax

The Perpendicularfrom the Origiit upon the Tangent,

\^^. If a perpendicular/ to the tangent Pi? be drawn from

the origin, we have, from the triangles in Fig.

P/ 35,

/ — ,1- sin (;5 — J/ cos <;5, . . . (i)

-^ ^ — 90° being taken as thepositive direction o/p.

Substituting the values of sin
(f)

and cos
(f>,

Fig. 35. equation (i) becomes

_ xdy — ydx _ xdy — ydx -
.

^ ~ ds ~
V{dx'-{-dy^)

'^^

For example, let us determine / in the case of the four-

cusped hypocycloid,

X— a cos* //?, yz=z a sin' 7/7.

Differentiating,

dx = — la cos- ^ sin ?/? dip, and dy — ^a sin'' ^ costpdrp
;

'ivhence ds = ^a sin ip cos ^' ^y^?.

Substituting in equation (2) we obtain

p = a cos' Jp simp -{- a sin' ip cos ?/? = ^ sin tp cos ?/? = ^(^;rj).

To ascertain the direction of / it is necessary to determine
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^. The ambiguity in the value of (f>
as determined from the

equation tan ^ = -^ may be removed by means of one of the

formula^ of Art. 164. Thus, in the present case, we have

tan ^ = — tan ^, whence ^ = — ^, or ^=: n ^ ip\

but, since cos ^ = —- = — cos ^,
as

we must take <j) = 7t — tp.

The direction of/ when positive is therefore ^rt — ip.

Examples XXIII.

I. In the case of the parabola of the nth. degree

find the equations of the tangent and the normal at the point («, a).

y 2. Find the subtangent and the subnormal of the parabola

V 3. Prove that the subtangent of the exponential curve

. r -J^

is constant, and find the ordinate of the point of contact when the

tangent passes through the origin. e.

•\/ 4. Find the subnormal of the ellipse whose equation is

a^ b'

V 5. Find the subtangent of the curve

an-^y — ^».
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V 6. In the case of the parabola

find/ in terms of x.

y^ = 4aXf

For the upper branch, / =
V{a-\-x)

7. Find, in terms of ^, the equation of the tangent to the four-

cusped hypocycloid (Art. 161), and thence show that the part inter-

cepted between the axes is of constant length.

8. In the case of the epicycloid, find the value of ds in terms of

the auxiliary angle ^\ See Art. 159.

ds — 2\a -\- b) sm —rdih.
20

9. Determine the value of / in the case of the epicycloid em-

ploying the value of ds determined in the preceding example.

/> = (^ + 2^) sm^ .

XXIV.

Polar Coordinates.

167. When the equation of a curve is given in polar co-

ordinates the vectorial angle 6 is usually taken as the inde-

pendent variable ; hence, denoting by s an arc of the curve, it

is usual to assume that ds and dd have the same sign ; that is,

, ds . . .

that -j^ is positive.
du

In Fig. 36 let PT, a portion of the tangent line, represent

ds ; then, producing /-, let the rectangle PT be completed, and
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let ^ denote the angle TPS\ that Is, the angle between the

positive directions of r and s. The re-

solved velocities of P along and perpen-

dr
s dicular to the radius vector are — and

-TT-, the latter being the velocity which P

would have if r were constant ; that is, if

P moved in a circle described with ?- as a

radius. Hence we have

PS = dr and PR = rdd.

From the triangle PST, we derive

. ,
rdS . , rdO

^
dr

, ,tan^. = ^, smy. = --, cosy. = -^^, . . (i)

Fig. 36.

J </5 , /r o fdr4-©'] «

168, The second of equations (i) shows that, in accordance

with the assumption that ds has the sign of dB, the value of ^
will always be either in the first or in the second quadrant.

The first of equations (i) is equivalent to

dr , .-

^°"/^ = ^^' • • (3)

which shows that cot ?/; is the logarithmic derivative of r re-

garded as afunction of Q. Thus in the case of the logarithmic

spiral

r = at^^

we have log r = log a + nd,

hence cot tp = «
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whence it follows that, in the case of this curve, ip is constant.

See Art. 154.

169. It is frequently convenient to employ in place of the

radius vector its reciprocal, which is usually denoted by u
;

then
I , , dur=-, and dr — — —^,
u u"

(4)

Making these substitutions in equations (2) and (3) we have

du

ds _ I

de~u'

and cot ip — —
ude (6)

Polar Subtangents and Subnormals,

170, Let a straight line perpendicular to

the radius vector be drawn through the pole,

and let the tangent and the normal meet
this line in T and N respectively ; then the

projections of PT and PN upon this line,

that '\^ OT and ON^ are called respectively

the po/ar siibtangent and t\\Q polar subnormal.

In Fig. 37, OPT= tp ; whence

OT= r tan ib = r^ — = ,

dr du

and

Fig. 37 shows that the value of OT is positive when its
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direction is ^ — 90°
; that of ON is, on the other hand, positive

when its direction is ^ + 90°.

The Perpendicularfrom the Pole upon the Tangent,

171. Let/ denote the perpendicular distance from the pole

to the tangent ; then, from Fig. 37 we obtain

These expressions give positive values for /, because -^ is

assumed to be positive, and Fig. 37 shows that/ has the direc-

tion (j) — 90°, ^ being the angle which the positive direction of

s makes with the initial line.

The relation between / and u is obtained thus :— from (i)

we have

/ ~
r'dB'

'

and, transforming by the formulas of Art. 169,

I „ fdiiy'

,ej
(^>

172. The expression deduced below for the function

+ im is frequently useful.
dtf

Differentiating (2), we have

, du d^'u 2dp
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hence («4-^)^«=^|,

, dr
or since du— — —^ y

d'^'u _T^ dp
^ ^ 'd&'~f"dr'

The Perpendicular upon an Asymptote,

173. When the point of contact P passes to infinity the

tangent at P becomes an asymptote, and the subtangent

OT coincides with the perpendicular upon the asymptote.

Hence {Q^ denoting a value of Q for which r is infinite) the length

of this perpendicular is given by the expression — -z- , and

like the polar subtangent is, when positive, to be laid off in the

direction 0, — 90°.

This expression for the perpendicular upon the asymptote

is also easily derived by evaluating that given in Art. 146.

Thus

—

Points of Inflexion,

174. When, as in Fig. 37, the curve lies between the tan-

gent and the pole, it is obvious that r and / will increase and

decrease together ; that is, -~ will be positive. When on the
dr

other hand the curve lies on the other side of the tangent,

~~- is negative. Hence at a point of inflexion -~ must change

sign.
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Now, since/ is always positive, it follows from the equation

deduced in Art. 172 that the sign of this expression is the same

as that of

hence at a point of inflexion this expression must change sign,

Mb. As an illustration, let us determine the point of in-

flexion of the curve traced in Art. 147 ; viz.,

ae"

e'-i

In this case u = -(i — 6 "")
;

therefore . ^J = i
(, _,- _6.-)

6' -e^-e
ad'

Putting this expression equal to zero, the real roots are

and it is evident that, as 6 passes through either of these values,

-
. d'^u .

the expression u + -^ cha

flexion are determined by

d^u
the expression u + -j^ changes sign. Hence the points of in

e= ± ^2 and r=^~.^
2
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Examples XXIV.

1. Prove that, in the case of the lemniscata r^ = a* cos 20,

^ = 2e + irt, and |^ =1

2. Find the subtangent of the lituus r" = — , and prove that the

perpendicular from the origin upon the tangent is

3. Find the polar subtangent of the spiral r {t^ + e-^) = a.

a
c-tfe" — e

4. Find the value of/ in the case of the curve r« = a"" sin nO.

I

J>
= a (sin «0) ' «" •

5. In the case of the parabola referred to the focus

r = ,
prove that /' = ar,

I + cos '
^ ^

6. In the case of the equilateral hyperbola

r* cos 20 = a'f prove that/ = —

.

7. In the case of the lemniscata

r^ = a^ cos 20, prove that/ = —7

•

CL

8. In the case of the elHpse r = — —
, the pole being at^

1 — e cos
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the focus, determine/.

9. In the case of the cardioid

r = « (i + cos 6), prove that r^ = 2ap*.

10. Show that the curve r6 sin = « has a point of inflexion at

which r = —

.

7t

XXV.

Curvature.

176. If, while a point P moves along a given curve at the

ds
rate -^, it be regarded as carrying with it the tangent and

normal lines, each of these lines will rotate about the moving

point P at the angular rate -—
- , ^ denoting the inclination of

the tangent line to the axis of x.

The point P is always moving in a direction perpendicular

to the normal with the velocity —^. Let us consider the
at

motion of a point A on the normal at a given dis-

tance k from P on the concave side of the arc.

While this point is carried forward by the motion

ds
X of P with the velocity -7; in a direction perpen-

^^' ^ ' dicular to the normal, it is at the same time car-

ried backward, by the rotation of this line about P, with the
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velocity --3—
; since this is the velocity with which A would

move if the point P occupied a fixed position in the plane

;

and the direction of this motion is evidently directly opposite

to that of P. Hence the actual velocity of A will be

ds
J

d<j)

'dt~ ~dt'

in a direction parallel to the tangent at P,

Let p denote the value of k which reduces this expression

to zero, and let C (Fig. 38) be the corresponding position of A ;

then,

ds d(i>

ds
whence PC = p~ -yj (i)

a<p
^

Ml. The value of p determined by this equation is, in

general, variable ; for, if the point Pmove along the curve with

a given linear velocity -p, the angular velocity
-J-

will gene-

rally be variable. If however we suppose the angular velocity

—z- to become constant, at the instant when P passes a given

position on the curve, -ry, the value of p. will likewise become
do

constant, and C will remain stationary. When this hypothesis

is made, the curvature of the path of P becomes constant, for

P describes a circle whose centre is C, and whose radius is p.

Hence this circle is called the circle of curvature corresponding

to the given position oi P\ C \s accordingly called the centre of
curvature, and p is called the radius of curvature.
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The Direction of the Radiics of Curvature,

178. If in Fig. 38 the arrow indicates the positive direction

of s ; the case represented is that in which ^ and s increase to-

gether, and therefore the value of p as determined'by equation

(i), Art. 176, is positive. Hence it is evident that when p is

positive its direction from P is that of PC in Fig. 38 ; namely,

^ + 90°. In other words, to a person looking along the curve

in the positive direction of ds^ p, when positive, is laid off on the

left-hand side of the curve.

For example, let the curve be the four-cusped hypocycloid,

X = a cos^ //;, y — a sin' i[\

It was shown in Art. 166 that for this curve

ds = 3^ sin tp cos ?/? dip, and ^ = n — tp
\

hence d(l) — — dipj

ds
and p = -— = — 3^: sin ?/? cos ^ (i)

a(p

When y; is in the first quadrant p is negative ; its direction

is therefore ^ - :^7r = ^n — tp, which is in the first quadrant.

When ip is in the second quadrant p is positive and its direction

is ^ + ^71= ^71 — 7pj which is in the second quadrant.

The Radius of Curvature in Rectangular Coordinates.

(79. To express p in terms of derivatives with reference to

x^ we have
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hence

'i [-(£)?
""I

''-tr —y <'

dx dx^

ds .

Since -y- is assumed to be positive, (j) should be so taken as
dx

to cause x to increase with s, and it must be remembered that

the direction of p is + 90° when p is positive, in accordance

with the remark in the preceding article.

180. To illustrate the application of the above formula, we
find the radius of curvature of the ellipse

y=±^^ V{a^-x^) (I)

Differentiating, :/- = =f —7-?

—

^^y (2)
dx aV[a—x)

. dy ab r ..

and ^^qp— -r (s;dx (a' — x-y

Putting b — aV(i — e") we obtain

^ "^ \dx) ~ a'- x'
'

whence, substituting in equation (i) of the preceding article,
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Expressions for 9 in which x ^i" not the Independent

Variable.

181. To express p in terms of derivatives with reference to

y^ we have

^';ir

[ * (!)•]
, d(4> df L V^j

whence ^ = ^„ and p= ^
In this case ds and ^ were assumed to have the same sign,

hence ^ must be taken so as to cause j/ to increase.

182. When x and y are expressed in terms of a third vari-

able we employ the formula deduced below.

Differentiating

both ^;ir and ^ being regarded as variable, we have

dx dy — dy d^x

dx' dxdy-dyd'x
,

^ *"
\dx)

ds {dx' -h dff^ (.
whence P = d^ = dx dy ^ dyd'^x

^'^
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Examples XXV.

1. Find the radius of curvature of the cycloid

:x: = ^ (^ — sin ^'), j; nz ^ (l — cOS ^).

ds
Prove that # = J (tt — ^), and use p= —;

.

p= — 2 V{2ay).

2. Find the radius of curvature of \h.t. parabola y^ = /\ax.

Va

3. Find the radius of curvature of the catenary

and show that its numerical value equals that of the normal at the

same point. See Art. 165.

4. Find the radius of curvature of the semi-cubicalparabola

af = x\

_ (4^? + ^x^x^"=
6a

5. Find the radius of curvature of the logarithmic curve

y = afr.

cy
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6. Find the radius of curvature of the cissoid

(2a — x)y

_ a Vx (Sa — 3^)^

7. Find the radius of curvature of Xk^Q parabola

Vx + Vy = 2 ^a.

(^+#
^ Va

8. Find the radius of curvature of the cubicalparabola

^ ~ 6a'x

9. Find the radius of curvature of the prolale cycloid

x = aip — bsinipj y = a — b cos ^\

_ {a^ + b"^ — 2ab cos tjS)^

' b(a cos ^ — b)

XXVI.

Envelopes,

183. The curves determined by an equation involving x
and y together with constants to which arbitrary values may
be assigned are said to constitute a system of curves. The
arbitrary constants are called parameters. When but one of
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the parameters is regarded as variable, denoting it by a^ the

general equation of the system of curves may be expressed thus :

f{x,y,a)=o (i)

When the curves of a system mutually intersect (the intersec-

tions not being fixed points), there usually exists a curve

which touches each curve of the system obtained by causing the

value of a to vary.

For example, the ellipses whose axes are fixed in position,

and whose semi-axes have a constant sum, constitute such a

system ; and, if we regard the ellipse as varying continuously

from the position in which one semi-axis is zero to that in which

the other is zero, it is evident that the boundary of that por-

tion of the plane which is swept over by the perimeter of the

varying ellipse is a curve to which the ellipse is tangent in all

its positions. A curve having this relation to a given system

of curves is called the envelope of the system.

Every point on an envelope may be regarded as the limit-

ing position of the point of intersection of two members of the

given system of curves, when the difference between the cor-

responding values of a is indefinitely diminished. For this

reason, the envelope is sometimes called the locus of the ultimate

intersections of the curves of the given system.

184. If we differentiate equation (i) of the preceding arti-

cle (regarding a: as a variable as well as x and y) the resulting

equation will be of the general form

/i (-^^ J> oc) dx + fj^x, y, a) dy -}- fl{x, y, a) da = o. . (2)

In this equation each term may be separately obtained by
differentiating the given equation on the supposition that the

quantity indicated by the subscript is alone variable. See

Art. 64,



1 82 APPLICATIONS TO PLANE CURVES. [Art. 1 84.

From equation (2) we derive

dy ^ _ /j {x, y, a) f^ {x, f, a) da
dx f'y {x, y, a)

f'^ {x, y, a) dx *
* * * ^3;

In Fig. 39 let PC be the curve corresponding to a particular

value of or, and let P be the point {x, y) ; then ^

the expression for -j- given in equation (3)

determines the direction in which the point P
is actually moving when x^ y, and a vary ^
simultaneously. This direction depends there- Fig. 39.

fore in part upon the arbitrary value given to the ratio -7- .

185. Now if a were constant da would vanish, and equa-

tion (3) would become

^ = _ /^(^>-^>^)
(.\

dx f;{x,y,ay
•••••• W

This expression for -~ determines the direction in which P

moves when PC is a fixed curve.

Let AB be an arc of the envelope, and let C be its point of

contact with PC, Now, if P be placed at the point C, it is

obvious that it can move only in the direction of the common
tangent at C^ whether a be fixed or variable. It follows there-

fore that, at every point at which a curve belonging to the

system touches the envelope, the expressions for -— given in

equations (3) and (4) must be identical in value.

Assuming that f'^ (x, y, a) and /' (x^ y, a) do not become in-

finite for any finite values of x andjj/, the above condition re-

quires that

/;(-^;/;«') = (5)
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Hence the coordinates of every point of the envelope must

satisfy simultaneously equations (5) and (i) ; the equation of

the envelope is therefore obtained by eliminating a between

these two equations.

186. Let it be required to find the envelope of the circles

havingfor diameters the double ordinates of the parabola

If we denote by a the abscissa of the centre of the variable

circle, its radius will be the ordinate of the point on the para-

bola of which a is the abscissa, the equation of the circle will

therefore be
y"^ + {x — a)- — ^aa — O (l)

Differentiating with reference to the variable parameter «', we
have

— 2 (,r — n') — 4^ = o,

or a = 2a -]r X
\ (2)

substituting in (i), and reducing, we obtain

/^4a{a + x). . (3)

The envelope is, therefore, a parabola equal to the given para-

bola and having its focus at the vertex of the given parabola.

Two Variable Parameters.

i87. When the equation of the given curve contains two
variable parameters connected by an equation, only one of

these parameters can be regarded as arbitrary, since, by means
of the equation connecting them, one of the parameters can

be eliminated. Instead, however, of eliminating one of the

parameters at once, it is often better to proceed as in the fol-

lowing example.
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Required, the envelope of a straight line of fixed length a,

which moves with its extremities on two rectangular axes.

Denoting the intercepts on the axes by a and yS, the equa-

tion of the line is

a and fi being two variable parameters which, by the condi-

tions of the problem, are connected by the relation

a''-^ §^ = c?. . (2)

Differentiating (i) and (2) with respect to a and § as vari-

ables, we have

xda ydfi

o? fi'

2-4-^ = 0, (3)

and ada + jSd^ = o . . (4)

We have now four equations from which we are to eliminate

dcx.
a^ y5, and the ratio — . Transposing and dividing (3) by (4),ap
we obtain

X _ y

Substituting in (i) the value of y derived from the I'ast

equation, we have

whence by equation (2)

a = x^a^.
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In like manner we find

Hence, substituting in (2) — -

The envelope is therefore a four-cusped hypocycloid.

Evolutes,

188. In Fig. 40 let C be the centre of curvature of the given

curve : this point is so determined (see Art. 176) as to have no
motion in a direction perpendicular to the normal

PC^ but since p is in general variable, it has a mo-

tion in the direction PC, Hence C describes a

curve to which the normal PC is always tangent

at the point C. Moreover, since P has no motion

in the direction PC^ if we regard P as a fixed p-j^ .^^

point on this line, the rate of C along this moving

line will be identical with its rate along the curve which it

describes. Hence the motion of PC is the same as that of a

tangent line rolling upon the curve described by (7, while P, a

fixed point of this tangent, describes the original curve.

The curve described by the centre of curvature C is there-

fore called the evolute of the curve described by P, and the

latter is called an involute of the former.

189. Since the evolute of a given curve is the curve to

which all the normals to the given curve are tangent, it is

evidently the envelope of these normals.
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The equation of the normal at the point (^, y) of a given

curve may be written in the form

x'-x + {y -y)£^=o, (i)

(jr',y) being any point of the normal. See Art. J63.

In this equation y and -^ are functions of x determined by
dX

the equation of the given curve, and x is to be regarded as the

arbitrary parameter. Hence, differentiating with reference to

;r, we have

The equation of the evolute is therefore the relation be-

tween x' and y which arises from the elimination of x between

equations (i) and (2).

190- As an illustration, let it be required to find the evolute

of the common parabola

y = 2a^x^
;

dy _ /a\^

dx~\^)'
whence -/=(-) , and

d^y

dx \x/ dx^ 2x\

Substituting, we obtain from equation (2) of the preceding

article

x^= — ia^y ;

whence, from equation (i) of the same article,

2yay^ = 4(x' — 2df,

the equation of the evolute, which is, therefore, a semi-cubical

parabola having its cusp at the point (2^, o).
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191. It is frequently desirable to express the equation of

the normal in terms of some parameter other than x before

differentiating. Thus, let us determine the evolute of the ellipse

by means of the equation of the normal in terms of the eccen-

tric angle.

The equations of the eUipse are

X — a cos ^', and jj/ = ^ sin ^

;

whence dx= — a sin tp dtp, and dy — b cos rp dtp.

Substitution in the equation of the normal,

{x — x)dx + (y — y) dy — o,

gives ax' sin ^ — by' cos ^ — (c^ — Ij^) sin ^ cos ^ = o.

Differentiating, we have

ax' cos tp + by sin tp — {0? — b^) (cos^ tp — sin^ tp) z= o;

eliminating y' and x^ successively, and dropping the accents,

ax = {d^ — IP) cos^ tp and by = — {c? — ^) sin* tp
;

whence {ax'f + {byf = (a^ - IPf,

Examples XXVI.

I. Find the envelope of the system of parabolas represented by the

equation

y =—{x-a\

in which a is an arbitrary parameter and c a fixed constant.
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2. Find the envelope of the circles described on the double or-

dinates of an ellipse as diameters.

'2 I
7,2

^'
a" + ^' b'

3. Find the envelope of the ellipses, the product of whose semi-

axes is equal to the constant ^^

The conjugate hyperbolas, 2xy = ± <^^

4. Find the envelope of a perpendicular to the normal to the para-

bola,y = 4aXy drawn through the intersection of the normal with the

axis.

y = 4a {2a — x).

5. Find the envelope of the ellipses whose axes are fixed in posi-

tion, and whose semi-axes have a constant sum c.

The four-cusped hypocycloid, x^ + y^ = fi,

6. Given the equation of the catenary

prove that

/ ^ ^\
y'= 27, and x'= x — — Is"^ — € «j,

and deduce the equation of the evolute.

^'= a log
-
>'' ± (y" - 4'^')^ ^ y (y. _ ^')i.

2a 4a

7. Derive the equation of the evolute to the hyperbola, its equa-

tions in terms of an auxiliary angle being

X = asectp and y = b tan tp.
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The equation of the normal is

ax sin ip ^ by= {(^ -\- b^^ tan ^,

and the equation of the evolute is

^!^l — b^y^ — {a" + ^')3.

8. Find the equation of the evolute of the cycloid.

The equation of the normal is

sin if)
,X -{ y —7 — atp — o.

I — cos ip

The equations of the evolute are .

:x: = ^ (^ + sin ^) and y = — a{i — cos^).

The evolute is therefore a cycloid situated below the axis of x,

having its vertex at the origin. See equations (3), Art. 158.



CHAPTER X.

Functions of Two or More Variables

XXVII.

The Derivative Regarded as the Limit of a Ratio,

192. The difference between two values of a variable is fre-

quently expressed by prefixing the symbol A to the symbol
denoting the variable, and the difference between correspond-

ing values of any function of the variable, by prefixing z/ to the

symbol denoting the function. Hence x and x + Ax denote

two values of the independent variable, and Af(x) denotes the

difference between the corresponding values oi f{x)\ that is,

Ay = /f{_x)=f{x-^ Ax>)-f{x). ... (I)

If we put Ax = o, we shall have Ay = o;

hence the ratio ^_ ^f{x ^ Ax) - /{x)
Ax Ax ^ '

takes the indeterminate form - when Ax = o. The value as-
o

sumed in this case is called ^/le limiting value of the ratio of the

increments, Ay and Ax, when the absolute values of these incre-

ments are diminished indefinitely.

193. To determine this limiting value, for a particular value

a of X, we put a for x and z for Ax in the second member of
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equation (2), and evaluate for ^ = o, by the ordinary process

(see Art. 82). Thus

Z Jo

Therefore when Ax is diminished indefinitely, the limiting value

of — corresponding to ;ir = ^
Ax

value of Xj we have in general

of — corresponding to ;ir = ^ is -j- , and, since <3: denotes any
Ax ax_\ a

limit of -J- — -j~.
Ax ax

A V
If we denote by e the difference between the values of -~ and^ Ax

—-. we shall have
ax

%'%*• w
and the result established in the preceding article may be ex-

pressed thus

—

^ = o when Ax — 6

;

in other words, e is a quantity that vanishes with Ax,

Partial Derivatives,

194. Let t^=^fix,y\

in which x and y are two independent variables. The deriva-

tive of u with reference to x, y being regarded as constant, is

denoted by ~-z- u, and the derivative of u with reference to r, x
ax

being constant, by ~j- u. These derivatives are called the par"
ay

tial derivatives of u with reference to x and y respectively.
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Adopting this notation, the result established in Art. 64 may
be expressed thus

;

du = —- u ' dx H—— U' dy'
dx dy

provided u denotes a function that can be expressed by means of the

elemejttary functions differentiated in Chapters II and III.

It is now to be proved that this result is universally true.

195. Let AxU denote the increment of ti corresponding to

Ax^ y being unchanged, AyU the increment corresponding to Ay,

X being unchanged, and Au the increment which u receives

when x and y receive the simultaneous increments Ax and Ay,

Let

u ~f{x + Ax,y)y

and m" =f{x + Ax, y + Ay)
;

then A.xU ^^ u ~ u,

AyU = u'' — u\

and Au = u" — u\

hence Au = AxU -k- Ayu' (i)

Denoting by At the interval of time in which x, y, and u re-

ceive the increments Ax, Ay, and Au, we have

Au __ AxU AyU' , .

Since Au Is the actual increment of u in the interval At, the

du
limit of the first member of equation (2) is, by Art. ig^,— , the

ai

A u
rate of u. The limit of -^r- is the rate which u would have

At



§ XXVII.] PARTIAL DERIVATIVES. I93

were x the only variable ; and, since -j-u- dx \s the value which

du assumes when this supposition is made, if we put

-r-u • dx = dj:U.
~~ ~

dx

d u
this rate will be denoted by

--J—
. Hence by equation (4), Art.

193, equation (2) becomes

du
,

dj^u
. , dyu' „

in which e, e\ and e" vanish with At ; but when At = o, Ax = o,

and therefore u' = u ; hence, putting At = o, we have

du

dt

dxU dyU
" dt ^ dt'

du =:d^u -\- dyU\Therefore

that is, du — -j-U'dx-\--r-U' dy,
dx dy

196. This result is usually written in the form

, du J du -du= -r-dx ^- -j-dy,
dx dy

but when written in this form it must be remembered that the

fractions in the second member represent partial derivatives^

the symbol du in the numerators standing for the quantities

denoted above \yy d^cU and dyU, which are sometimes Q.d\\^A par-

tial differentials. The du that appears in the first member is

called the total differential of u when x and y are both variable.

The above result is easily extended to functions of more
than two independent variables.
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Examples XXVII.

1. Given u — (x^ + J^*)^, prove that

du du _

XV
2. Given u = —=^-—

,
prove that v

X -\-

y

du du _
dx dy '

3. Given w = tan"' f

—

l~'i'> P^ove that

du
, du

x-j- +y-j- = 0.
dx dy

4. Given u = logyX^ to find md —

.

^ __ I ^ du _^ ^ logjp

^/^e ^ logj; * dy~~ y (log^')^

XXVIII.

The Second and Higher Derivatives regarded as Limits.

197. In Art. 193 it is shown that

Jy _ dy

Ax dx

In this equation ^ is a function of x and likewise of Ax-, hence
de

the derivative -j- is in general a function of x and of Ax. It is



§ XXVIIL] THE SECOND DERIVATIVE AS A LIMIT. I95

also proved in the same article that e becomes zero when Ax
vanishes; that is, e assu7ttes a constant value independent of the

value of X when Ax becomes zero ; hence, when Ax is zero, the

derivative of e with reference to x must take the value zero,

whatever be the value of ;r ; in other words,

—r- vanishes with Ax,
dx

In a similar manner it may be shown that each of the higher

derivatives of e with reference to x vanishes when Ax — O.

198. Since ~ is a function of ;r, A -f- will denote the incre-
Ax Ax

ment of this function corresponding to Ax, Employing the

symbol —— to denote the operation of taking this increment,

and dividing the result by Ax, we obtain, by applying to this

function the principle expressed in equation (4), Art. 193,

A Ay d Ay
,

, .

Ax Ax dx Ax ^ ^

-m-'Y^
d'y ...de^

dx^ ' dx

de
In this equation both e' and --j- vanish with Ax by the preced-

ing article ; hence the sum of these quantities likewise vanishes

with Ax^ and may be denoted by e. Thus we write

^.^=J> + ,. (2)Ax Ax dx^ ^ ^
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199. Since Ax is an arbitrary quantity it may be regarded

Ay
as constant, whence A -~ is the increment of a fraction whose

Ax
denominator is constant ; but this is evidently equivalent to the

result obtained by dividing the increment of the numerator by

the denominator ; that is,

J 4r^ A'Ay
^

Ax Ax

The numerator A - Ay is usually denoted by the symbol A^y\

hence equation (2) may be written thus

:

-^ = ^-^ + . . (3)
Ax' dx'^'' ^^^

and, since e vanishes with Ax^ it follows that the second deriva-

tive is the limit of the expression in the first member of equa-

tion (3).

In a similar manner it may be shown that each of the higher

derivatives is the limit of the expression obtained by substi-

tuting A for d in the symbol denoting the derivative.

Higher Partial Derivatives,

200. The partial derivatives of u with reference to x and y
are themselves functions of x and y. Their partial derivatives,

viz.,

d du d dti d du a ^ ^^^

dx dx"* dy dx'' dx dy^ dy dy^

are called partial derivatives of u of the second order.

It will now be shown that the second and third of these

derivatives, although results of different operations, are in fact

identical ; that is, that

d du _ d du

dy dx dx dy*
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Employing the notation introduced in Art. 195, we have

A^u=f{x + Ax,y)- f{x,y)',

if in this equation we replace y hy y + Ay, we obtain a new
value of Aj^u, and, denoting this value by A'ji, we have

A'ji =f{x+ Ax, y + Ay) - f {x, y + Ay).

Since this change in the value of A^u results from the increment

received by y, the expression for the increment received by
A^u will be Ay (A^^u) ; hence

Ay {Aj,u) = A'^u — Aj,u,

or

Ay {A^7c)=f{x+ Ax, y^Ay)-f{x,y + Ay)-f{x+ Ax, })-^f{x,y).

The value of A^^Ayu), obtained in a precisely similar manner,
is identical with that just given ; hence

Ay{A,u) = A^{AyU) (I)

Since Ax is constant, we have, as in Art. 199,

^y {^:cU) ^ ^ ^

A^
Ax ^ ' Ax'

Hence, dividing both members of equation (i) by Ax • Ay, we
have

Ay
^
A^u _ 4r AyU , .

Ay' Ax Ax' Ay' ^ '

or, employing the symbol — as in Art. 198,

A A A A
Ay Ax Ax Ay
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From this result, by a course of reasoning similar to that em-
ployed in Art. 198, we obtain

d du d du f .— =— . —- (3)
dy dx dx dy

201. The partial derivatives of the second order- are usually

denoted by

^u d\i dHc^

dx'* dxdy' dy''

the factors dx and dy in the denominator of the second being,

by virtue of formula (3), interchangeable, as in the case of an

ordinary product.

The numerators of the above fractions are of course not

identical. Compare Art. 196.

Formula (3) of the preceding article is readily verified in

any particular case. Thus, given

u=.y^y

. du . . du ^ ^whence -r- = y^^og-y, and — - = xy"^'^

;

dx ^ dy

d du , , . d du-.-=^^-(.l0g^+l):=^.^.

nxamples XXVIII.

1. Given u = sec {y + ax) + tan {y — ax), prove that

^""^ d/'

2. Verify the theorem , ,
= , ,

when u = sin (jc/).
^ dxdy dyax

3. Verify the theorem ^ = -j^ ^^^^ ^ ~ ^^^ ^^^ ^^^ "^ •^'^'
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4. Verify the theorem , „ . = ——r^ when u = tan —

.

ay ax ax ay y

5. Verify the theorem
^
=

^
when «^ = jj/ log (i •{- ^\

dy dx^ dx^ dy

6. Given 2^ = sinjc cosj, prove that

d^u d*u d*u

df dx^ dx^ dy^ dxdydxdy*

7. Given u = x^z* -\- s'y'^z^ + x^y^z^^ derive

d'u

dx^ dy dz
= ^y^z"" + 2>yz.

8. Given
i/(4^^-^)

,
prove that

//' d""

dadb

9. Given « = (^ + jj;)', prove that

d^'^?/ ^/V _ du

dx^ dx dy~ dx'

10. Given u j7, prove that

^^2^ ^2^ ^^ _
d^^lf^~d?~'^'
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PREFACE.

This work, as at present issued, is designed as a shorter

course in the Integral Calculus, to accompany the abridged

edition of the treatise on the Differential Calculus, by Pro-

fessor J. Minot Rice and the writer. It is intended hereafter

to publish a volume commensurate with the full edition of the

work above mentioned, of which the present shall form a part,

but which shall contain a fuller treatment of many of the sub-

jects here treated, including Definite Integrals, and the Me-

chanical Applications of the Calculus, as well as Elliptic Inte-

grals, Differential Equations, and the subjects of Probabilities

and Averages. The conception of Rates has been employed

as the foundation of the definitions, and of the whole subject

of the integration of known functions. The connection be-

tween integration, as thus defined, and the process of summa-

tion, is established in Section VII. Both of these views of an

integral—namely, as a quantity generated at a given rate, and

as the limit of a sum—have been freely used in expressing

geometrical and physical quantities in the integral fo^-fr.

HI
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The treatises of Bertrand, Frenet, Gregory, Todhunter, and

Williamson, have been freely consulted. My thanks are due

to Professor Rice for very many valuable suggestions in the

course of the work, and for performing much the larger share

:)f the work of revising the proof-sheets.

-W. W. J.

U. S. Naval Academy, July, i88i.
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THE

INTEGRAL CALCULUS

CHAPTER I.

Elementary Methods of Integration.

I.

Integrals,

I. In an important class of problems, the required quanti-

ties are magnitudes generated in given intervals of time with

rates which are either given in terms of the time /, or are

readily expressed in terms of the assumed rate of some other

independent variable.

For example, the velocity of a freely falling body is known
to be expressed by the equation

v=gt, ......... (i)

in which t is the number of seconds which have elapsed since

the instant of rest, and ^ is a constant which has been deter-

mined experimentally. If s denotes the distance of the body
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at the time /, from a fixed origin taken on the line of motion,

V is the rate of s ; that is,

ds
'' = di'

hence equation (i) is equivalent to

ds = gtdt, .

-
. ' (2)

which expresses the differential of s in terms of / and dt. Now
it is obvious that ^g^^ is a function^of / having a differential

equal to the value of ds in equation (2) ; and, moreover, since

two functions which have the same differential (and hence the

same rate) can differ only by a constant, the most general

expression for s is

s = iP'+C, . (3)

in which C denotes an undetermined constant.

2. A variable thus determined from its rate or differential

is called an integral, and is denoted by prefixing to the given

differential expression the symbol , which is called the integral

sign."'^ Thus, from equation (2) we have

-\^ dt.

which therefore expresses that i- is a variable whose differential

IS gtdt; and we have shown that

gtdt = ^gt^ + C.

The constant C is called the constant of integration ; its

occurrence in equation (3) is explained by the fact that we
have not determined the origin from which s is to be measured.

* The origin of this symbol, which is a modification of the long j, will be

explained hereafter. See Art. 100.
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If we take this origin at the point occupied by the body when

at rest, we shall have ^ = o when / = o, and therefore from

equation (3) 6^=0; whence the eqtiation becomes s — \gt^.

The Differential of a CurviUnear Area,

3. The area included between a curve, whose equation is

given, the axis of x and two ordinates affords an instance of

the second case mentioned in the first paragraph of Art. I ;

namely, that in which the rate of the generated quantity, al-

though not given in terms of /, can be readily expressed by means
of the assumed rate of some other

independent variable.

Let BPD in Fig. i be the curve

whose equation is supposed to be

given in the form

Supposing the variable ordinate

PR to move from the position AB
to the position CD^ the required

area ABDCis the final value of the Fig. i.

variable area ABPR, denoted by

^, which is generated by the motion of the ordinate. The rate

at which the area A is generated can be expressed in terms of

the rate of the independent variable x.

dA dx
assumed rates are denoted, respectively, by -—- and -—

dt dt

The required and the

and, to

express the former in terms of the latter, it is necessary to

express dA in terms of dx. Since x is an independent variable,

we may assume dx to be constant ; the rate at which A is gen-

erated is then a variable rate, because PR or y is of variable

length, while moving at a constant rate along the axis of x.

Now dA is the increment which A would receive in the time
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dt, were the rate of A to become constant (see Diff. Calc,

Art. 17). If, now, at the instant when the ordinate passes the

position PR in the figure, its length should become constant,

the rate of the area would become constant, and the increment

which would then be received in the time dt, namely, the

rectangle PQSRy represents dA. Since the base RS of this

rectangle is dx, we have

dA—ydx—f{x)dx (1)

Hence, by the definition given in Art. 2, A is an integral, and

is denoted by

A^\^f{x)dx . (2)

Definite Integrals.

4. Equation (2) expresses that y^ is a function of x^ whose
differential \^f{x)dx ; this function, like that considered in Art.

2, involves an undetermined constant. In fact, the expres-

sion f{x)dx is manifestly insufficient to represent precisely

the area ABPR, because OA, the initial value of x, is not indi-

cated. The indefinite character of this expression is removed
by writing this value as a subscript to the integral sign ; thus,

denoting the initial value by a^ we write

\^f{x)dx, (3)

in which the subscript is that value of x for which the integral

has the value zero.

If we denote th.Q final value of x (OC in the figure) by d, the

area. ABDC, which is a particular value of Aj is denoted by
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writing this value of x at the top of the integral sign,

thus,

ABDC \A^)dx (4)

This last expression is called a definite integral^ and ^ and
b are called its limits. In contradistinction, the expression

f(x)dx is called an indefinite integral,

5. As an application of the general expressions given in the

last two articles, let the given curve be the parabola

Equation (2) becomes in this case

A ={:t^dx.

Now, since ^x^ is a function whose differential is x^dx^ this

equation gives

A={x'dx = j^x^-h C, (I)

in which C is undetermined.

Now let us suppose the limiting ordinates of the required

area to be those corresponding to ;r = i and x = ;^. The vari-

able area of which we require a special value is now represented

by [ x^dxy which denotes that value of the indefinite integral

which vanishes when x = 1. If we put ;ir = i in the general

expression in equation (i), namely ^x^ + C, we have ^ + C;-

hence if we subtract this quantity from the general expression,

we shall have an expression which becomes zero when x = i.

We thus obtain

A={x^dx=ix'-i.
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Finally, putting, in this expression for the variable area, x = 3,

we have for the required area

6. It is evident that the definite integral obtained by this

process is simply the difference between the values ofthe indefinite

integral at the upper and lower limits. This difference may be

expressed by attaching the limits to the symbol ] affixed to the

value of the indefinite integral. Thus the process given in the

preceding article is written thus.

jydx = -i:^ + cj=9-i =

The essential part of this process is the determination of

the indefinite integral or function whose differential is equal to

the given expression. This is called the integration of the

given differential expression.

Elementary Theorems,

7. A constant factor may be transferredfrom one side of the

integral sign to the other. In other words, \{ m is a constant

and u a function of x^

mudx = m udx.

Since each member of this equation involves an arbitrary

constant, the equation only implies that the two members have

the same differential. The differential of an integral is by

definition the quantity under the integral sign. Now the

second member is the product of a constant by a variable

factor ; hence its differential \'=>md\ \udxV that is, m u dx, which

is also the differential of the first member.
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8. This theorem is useful not only in removing constant

factors from under the integral sign, but also in introducing

such factors when desired. Thus, given the integral

recollecting that

d{x''-^') - (it + \)x''dx,

we introduce the constant factor n + i under the integral sign

;

thus,

\x''dx — —— \{n + \)x"dx =—— x"-^ ' 4- C

9. If a differential expression be separated into parts^ its in-

tegral is the sum of the integrals of the several parts. That is,

if u^ 7', w, ' • ' are functions of x^

\{ii-\-v-\-w-\-''' ')dx = \ic dx -\- \v dx + \w dx + • • •

For, since the differential of a sum is the sum of the differ-

entials of the several parts, the differential of the second mem-
ber is identical with that of the first member, and each member
involves an arbitrary constant

Thus, for example,

(2 — Vx) dx = 2dx — \xdx = 2x — ^x^-\- Cy

the last term being integrated by means of the formula deduced
in Art. 8.

jFundamenla/ Integrals,

10. The integrals whose values are given below are called

the fimdamental integrals. The constants of integration are

generally omitted for convenience.
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Formula (a) is given in two forms, the first of which is de-

rived in Art. 8, while the second is simply the result of putting

n——m. It is to be noticed that this formula gives an indeter-

minate result when n— — \\ but in this case, formula {U) may
be employed.*

The remaining formulas are derived directly from the for-

mulas for differentiation; except that (y'), (^'), (/'), and {in')

X
are derived from (y), {k), (/), and {nt) by substituting - for x.

n-V\ ^ Jx'" {m — i) x'"-^ ^^ ^
^

= log(±^)t.-^.(^ . . w

i^< H-^^.< w

ax
X

a^'dx

cos6 de = sin 6* -<- L- . .

Sin^^^rrz _ COS ^ .4* .(L. .

(d)

* Applying fonnula {a) to the definite integral x^dx^ we have
]a

)b A« + 'f ^« + I

x'^dx^^- Hf
,

a n+ I

which takes the form - when « — — i ; but, evaluating in the usual manner,

= ^— ^^- =log3-loga;
n + 1 J« = — I I J« = — I

a result identical with that obtained by employing formula (d).

f That sign is to be employed which makes the logarithm real. See Diff. Calc,

Art. 43.
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,

I^^H^^^^'""^--^-^ (^^

—?-^-^ = cosec 6* cot<9^6' = — cosec <9.-V: C«^. . (/)

| y(j ^^)
= sin-i ;r + (7 = - cos-i x -r C . '. . (y)

\ y,
2^ ji\

= sin-^ - + 6^= - cos"^- + C . . . (/')
J -/(^^ — ;r) a a ^-^ '

{j^^^ = tRn-'x+ C=---cot-'x+ C, ..... (/^)

[-2^ = -tan-i-+ C= - -cot-i-+ (:". . . . (k')
}ar + ^ a a a a ^ '

fdx
x^i^ - I)

^sec"^^ + (7= - cosec-^;ir + C. . . (/)
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Examples I.

Find the values of the following integrals

[dx

i
[dx

, { dx
' h x^

r dx

/ 5. Vxdx,

^ 6. [ (x- ifdx,

a

yj 7.
I

(a — bxYdXy

\ 8.
J

{a + x^dx,

f^'dx

[~^dx

2Vx.

Vx'

X^ + X — ^.
3

a'^x — abx 4-

3 Jo ~ Zb'

2 log ^.

log ( - x) = log 2.
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./ II. --^dXy

J 12. t'dXy

-^13.
I

sin 6^9,
•' o

x/ 14. COSOT^X,

5-
J„ cos' 61'

Jo 4/(«'-.v')'

2 4/a:(d!^ + l^jc + ^x"") I
= 23!-^ • a'\

f^ — I.

I — cos c.

sin .r

tan/9

= o.

irr

X~]i-^ 7t
sin-^ -

1

= -
.

>/ 19. If a body is projected vertically upward, its velocity after t units

of time is expressed by

a denoting the initial velocity ; find the space .fi described in the time

U and the greatest height to which the body will rise.

\

^^ =\ 1) dt — at, — -kg^r^y

, .a a
when V — o ,f= ~~,s =—

i^ 2g

Kk- i^



12 ELEMENTARY METHODS OF INTEGRATION, [Ex. L

N 20. If the velocity of a pendulum is expressed by

nt
V =^ a cos —

the position corresponding to / = o being taken as origin, find an ex-

pression for its position s at the time t, and the extreme positive and

negative values of j.

2ra . 7tt
s = —— sm —

TT 2r

s = ± when f=T, ^r, ^t, etc.

I

21. Find the area included between the axis of x and a branch of

the curve

y — sin X. 2.

[ 22. Show that the area between the axis of x, the parabola

and any ordinate is two thirds of the rectangle whose sides are the

ordinate and the corresponding abscissa.

A 23. Find (a) the area included by the axes, the curve

and the ordinate corresponding to .^c = i, and (/3) the whole area be-

tween the curve and axes on the left of the axis oiy.

{a) 8 - I, (/?) I.

I 24. Find the area between the parabola of the nth degree,

and the coordinates of the point (a, a). ,

» + I
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^25. Show that the area between the axis of .r, the rectangular

hyperbola
xy—i,

the ordinate corresponding to :r == i, and any other ordinate is

equivalent to the Napierian logarithm of the abscissa of the latter

ordinate.

For this reason Napierian logarithms are often called hyperbolic

logarithms.

J 26. Find the whole area between the axes, the curve

and the ordinate for x =. a^m and n being positive.

li n> m.
na

n — m

if n^m^ C50.

/ 27. If the ordinate BR of any point B on the circle

x^^f^a'

be produced so that BR • RP = a"^, prove that the whole area between

the locus of R and its asymptotes is double the area of the circle.

J 28. Find the whole area between the axis of x and the curve

y (a' + x') = a\
7ta\

29. Find the area between the axis of x and one branch of the com-

panion to the cycloid, the equations of which are

xz=zaip y = a (i — costp).
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II.

Direct Integration.

II. In any one of the formulas of Art. lo, we may of course

substitute for x and dx any function of x and its differential.

For instance, if in formula (b) we put x — am. place of x^ we
have

J -^~a ^ ^^^ ^^' ~ ^^ ^^ ^^^ ^^ ~ ^^'

according as x is greater or less than a.

When a given integral is obviously the result of such a sub-

stitution in one of the fundamental integrals, or can be made
to take this form by the introduction of a constant factor, it is

said to be directly integrable. Thus, sin 7;^ ;r ^jr is directly in-

tegrable by formula {e) ; for, if in this formula we put mx for B,

we have

j
sin nix • 7ndx = — cos mx

,

hence

sin mx • mdj; = — — cos mx.
I
sin mx dx — —

J /// J

So also in
^

4/(^ 4- b^) x dx ,

m

the quantity x dx becomes the differential of the binomial

{a + bx^) when we introduce the constant factor 2/^, hence this

integral can be converted into the result obtained by putting

(a + b:^^ in place of ;i: in j^ xdx^ which is a case of formula {a),

lUS

['^{a^b:^)xdx = —-\{a-V b:^f 2bx dx = -~(a + bx'f

.

Thus
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12. A simple algebraic or trigonometric transformation

sometimes suffices to render an expression directly integrable,

or to separate it into directly integrable parts. Thus, since

— sin X dx is the differential of cos x, we have by formula ifi)

f , ( sin X dx ,

tan X dx = = — log cos x

.

J J cos ^

So also, by formula (/),
'

\x2.n^ ddS ^[{s^ee- I) ^^= tan (9 -6*;

by (e) and {a),

fsin^ Ode = j(i - cos2 6) sin 6'^6> = - cos ^ + j cos^ ^ :
"'

\^

by (j) and (a),

"^1
^(1 -;^) -^j^^ -4:^)-^(-2^^^) = sin-^r- 1/(1 -^.

Rational Fractions. "^ \ \/7--^

13. When the coefficient of dx in an integral is a fraction

whose terms are rational functions of x^ the integral may gen-

erally be separated into parts directly integrable. If the de-

nominator is of the first degree, we proceed as in the following

example.

Given the integral y — ^
^dx\^

J 2;ir + I

by division,

2x + 1 2 4 4 2^ -f i'
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hence

dx'^-'*id,=.'-\,d.^nd,*^^H--y2x + I 2J 4J 4 J 2;ir + I

4 4 o

When the denominator is of higher degree, it is evident that

we may, by division, make the integration depend upon that of

a fraction in which the degree of the numerator is lower than

that of the denominator by at least a unit. We shall consider

therefore fractions of this form only.

Denominators of the Second Degree.

14. If the denominator is of the second degree, it will (after

removing a constant, if necessary) either be the square of an

expression of the first degree, or else such a square increased

or diminished by a constant. As an example of the first case,

let us take

The fraction may be decomposed thus

:

X -V \ X — \ -\- 2 I 2

(x - if
~ (x -if - x-i^ (x- if

'

hence

[ X + I J [ dx ^ [ dx

= log {x - I)

(6. The integral
f

.
^ "^ ^ . dx
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affords an example of the second case, for the denominator

may be written in the form

x^ -V 2x -\- 6 = {x -^ \f 4- 5.

Decomposing the fraction as in the preceding article,

•^ + 3 _ X ^\ 2
^^X-^ij c^-

whence >.

'

[
^ + 3 ^^ ,f(^+ ^)dx

[

dx ^

The first of the integrals in the second member is directly

integrable by formula {b), since the differential of the denom-
inator is 2 (;r + \)dx^ and the second is a case of formula (k').

Therefore » I*"(X \- X 2 X •\- \ ^ '^

-2
. ^ . ^ ^-y = i log

V-^'^ + 2;ir + 6) + -— tan-^ —-— .

;r + 2;f + 6 ^ ^ \ / y^ yg
c

16. To illustrate the third case, let us take

f 2.r + I

\x'- X -6 dxy

in which the denominator is equivalent to (x — yf — 6^, and
can therefore be resolved into real factors of the first degree.

We can then decompose the fraction into fractions having these

factors for denominators. Thus, in the present example, as-

sume

2;ir + I A B
x^ — X —6 X— ^ X + 2

(0

in which A and B are numerical quantities to he determined*

Multiplying by {x — 3) (x ~\- 2),

2X+ I =A{x -{- 2) -{- B{x-^. (2)
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Since equation (2) is an algebraic identity, we may in it assign

any value we choose to x. Putting ;tr = 3, we find

7 = 5^, whence A=h
putting X — -2, '

- 3 = - 5^, whence B = \.'

Substituting' these values in (I).

2X + I

5(^-3)^ 5(^

3 .1

;,^_^_6-
• + 2)' /

whence

f 2X ^- \

^dx = I log (x - 3) + I log {x + 2).

17. If the denominator, in a case of the kind last considered,

is denoted by (x — a) (x — d), a and b are evidently the roots of

the equation formed by putting this denominator equal to zero.

The cases considered in Art. 14 and Art. 15 are respectively

those in which the roots of this equation are equal, and those

in which the roots are imaginary. When the roots are real and

unequal, if the numerator does not contain x^ the integral can

be reduced to the form

f dx

]{x-d){x-by

and by the method given in the preceding article we find

f dx T

\x — a) {x — b)
log {x - a) - log {x - b)\

'<-^y ^^y

* The formulas of this series are collected together at the end of Chapter II.,

for convenience of reference. See Art. loi.
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in which, when x < a, log {a — x) should be written in place of

log {x — a). [See note on formula (b), Art. lo.]

If ^ = — «, this formula becomes

f_^ = ±iog^:::f ^a')
}x^ — a^ 2a ^ X -{- a ^ ^

Integrals of the special forms given in (A) and (A') may be

evaluated by the direct application of these formulas. Thus,

given the integral

f
^^

}2x^ -{- ^x — 2'

if we place the denominator equal to zero, we have the roots

a = ^, d = — 2; whence by formula (A),

dx
2^ + 3.r — 2

dx _ I I - X — \ ^

(.tr— I) (JT2) ~ 2 2i °^ X ^ 2
'

or, since log {2x — i) differs from log {x — l) only by a con-

stant, we may write

f dx I - 2jr — I

log
2x^ -{- ^x — 2 5 ^ X + 2

Denominators of Higher Degree.

18. When the denominator is of a degree higher than the

second, we may in like manner suppose it resolved into factors

corresponding to the roots of the equation formed by placing it

equal to zero. The fraction (of which we suppose the numerator

to be lower in degree than the denominator) may now be decom-

posed into partial fractions. If the roots are all real and un-

equal, we assume these partial fractions as in Art. 16 ; there

being one assumed fraction for each factor.

li, however, a pair of imaginary roots occurs, the factor cor-
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responding to the pair is of the form {x — of -\- ^^, and the

partial fraction must be assumed in the form

Ax \- B
(x - of + fi

:2'

for we are only entitled to assume that the numerator of each

partial fraction is lower in degree than its denominator (other-

wise the given fraction which is the sum of the partial fractions

would not have this property).

19. For example, given

^
dx.

][:x^ ^ \){x - i)

Assume

jr + 3 Ax + B C , .

{:>^ •¥ \)(x —\) x^ + I X — 1

whence

X + 3 = (x - i){Ax + B) + {x^ + i) a
Putting X = ly

4 = 2Cy whence C=2;
putting X = Of

5 = — B -h Cy whence B = — i.

To determine A, any convenient third value may be given

to X ; for example, if we put x = — i, we have

2 = -2{-A + B) -h 2C .-. A=^2,

Substituting in (i),

;r+3 _ 2 2;ir+l

{x^ -\- i){x— i)
~ ^^^ ~

;r^ + I
'
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therefore

J;tr + 3 J _ [
dx {2xdx { dx

= 2 log {x — i) — log (ji:^ + I) — tan" ^ X.

20. If the denominator admits of factors which are func-

tions of jc^y and the numerator is also a function of or^, we may
with advantage first decompose into fractions having these

factors for denominators. Thus, given

f x^dx

]x*-a*'

Putting J/ for x^ in the fraction, we first find

hence

^ _ I I

f x^dx _ I
( dx C dx

therefore [see equation {A'), Art. 17],

x^dx _
4a

fx^dx I , X — a I . ;r
-T 1 =— log ——- + — tan- ^~ ,

XT — or Aa X -{• a 2a a

This method may sometimes be employed when the nume-
rator is not a function of x^ ; thus, since

xf'-a'- 2a\x^ - a") 20" {x" + a")'

we have

x^-a' 20" {x' - a") 2a^ {x^ + a^)

'
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hence

X dx I , x^ — c^
log

]x!'-(^ 4^ ^;r^ + ^2•

21. The fraction corresponding to a pair of equal roots, that

is, to a factor in the denominator of the form {x,^ dfy is (see

Art. 14) equivalent to a pair of fractions of the form

A B
+

X — a (x — a)
2 '

we may, therefore, at once assume the partial fractions in this

form. We proceed in like manner when a higher power of a

linear factor occurs. For example, given

we assume

X + 2 A B ^ C D
+ 7 ^, + r +

(x — if{x + 1) {x — if ' (x — if ' X — I ' X + I

whence

x-h2=lA-{-B{x- i) + C{x-if]{x+ i)^D{x-if. . (i)

Putting ;r = I, we have

3 = 2A .-. A=i.

The values of B and C may be determined as follows : if we
substitute the value just determined for Ay equation (i), is

identically satisfied by x = i, hence it may be divided by jr — i.

We thus obtain

^^=[B + C{x-i)-](x+ i)+D{x-if . . (2)
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in which we may again put x = \, whence B — — \. In like

manner from (2), we obtain

l^C{x-^ \)^D(x-\),

from which C —^^ and Z> = — J. Therefore

r x^2 J _?>[ d,x \ [ dx \[ dx \ { dx

J(;ir-lf(;r+i) 2j(;r-i)«~4J(;r- i)2'^8j;^^~8 J^TTl

^ I \ , X- \

X

A(x-\f \(x - i) ' 8 ^;ir+ I

22. In this example, after obtaining the values of A and D
from equation (i) by putting ;tr = i, and x = — \^ two equations

from which B and C might be obtained by elimination could

have been derived by giving to x any two other values. Con-

venient equations for determining B and C may also be obtained

by putting ;ir = i in two equations successively derived by
differentiation from the identical equation (i). In the first dif-

ferentiation we may reject all terms containing (x — if \ since

these terms, and also those derived from them by the second

differentiation, will vanish when x = \, Thus, from equation

(i), Art. 21, we obtain

\ — A ^ 2Bx + 2C (x^ —i) + terms containing {x — if.

Putting X = I, and ^ = | , we have B = —
I. Differentiating

again and substituting the value of B,

o = — ^ -\- 4Cx + terms containing {x — i),

and, putting x = i m this last equation, C = \ .

23. When the method of differentiation is applied to a case
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in which more than one multiple root occurs, it is best to pro-

ceed with each root separately. Thus given,

f -y + I .

](x- \f(x\2f'

(x — \f (x -^ 2f (x — if x—i {x + 2f X+2

whence

x+i={A+B{x-i)-]{x + 2f-^[C+D{x + 2)]{x-if . . (I)

Putting ;r = I, and ;r = — 2, we derive

A = '-^ C=-'-.
9 9

Differentiating (i), we have

I = 2A (x + 2) + B {x + 2y -^ terms containing {x — i),

2 I
whence, putting x = ly and A == - , we have B = .

Again, differentiating (i), we have

I = 2C {x — i) -i- D (x — if + terms containing (x + 2),

whence, putting x = — 2y and C = , we have D = —

.

Therefore

f X -\- I _ _ 2 I J_,
X + 2

]{x - if {x + 2f^ ~ g{x- l)"^ 9 (;ir + 2)
"^ 2y^^x- I

*

24. Instead of assuming the partial fractions with undeter-
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mined numerators, it is sometimes possible to proceed more

expeditiously as in the following examples

:

Given

U (I + ^)
dx\

putting the numerator in the form i + .r^ — ;i:^, we have

'dx_

,3 x{i + x^)

Treating the last integral in like manner,

X dx

1?

= -^-log^ + Jlog(i+^)=-^+log-ili^.

Again, given

putting the numerator in the form (i + xf — 2x — x^, we have

f
I , _ [dx r 2 + X ,

J;^(i ^xj'^'^-]l?-]x{Y +xf'^''

_ [dx r dx f dx

~J:?
" ^]x{i + xf^iii +xY'

Hence by equation {A), Art. 17,

dxC dx I
,

+ X I + X

X
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y,

Examples II. <=i^^'

/r.f^, -log(«-.).

J fdx
{a-xf'

7-

d - (a' - x')^^

3 ^a"--^"

(a — xf^ a — X

[ XdX I 1 / 2 , 2\

/ f jv' dx
. ,

I

,

8. (« + wj;)" dx^

9- Jsin"2^' '^^^

V lo. \ co^^ X ?,m.x dx, j'^^.w., ^j.v^' '

1 fcos dB
,

>i 12. sec' 3 A- tan 3^ <3^r, •^ - (^mTW^

(«^ + 3^y
24

(^ 4-;«a)'-«''

3»«

cot 2;«'

2

I — COS* X

I

2
cosec'' 0.

sec' 3-^- I

9
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/ 13. fd!'«-^^, (Km^ ^T •
"^

J
^ m\oga

>1 14.
I

(f-^ - \fdx, - -JfS-^ — |f=^ + 3£^ - ^.

/ f/ ,
• 8 \9 • ^ . ^

(i + 3 sin'J?)'
V 15. (i + 3 sm :r) ^\XiXQ.O'i>xax, \. -^-iL ) ^ ^.

J o '^yiax — x^) Jo

v| 17. Kos^'o^e, -^^«('---^^'^ ^^ -.

^ 18.
I

sec* Q ^9, 7'^^^^^^ A^'

^

tan0+-tan'O.

19. tan'^y^, — tan"^ + logcos^.

IT n

V 20. sec* X tan ^ ^jc, kJU,--*.*-^ - sec* ^ = —

.

Jo
. 4 Jo 4

. [4/^
~ ^

dx, ezsin"^- + 4/(^' — ^').
jy a + X ' a ^

J Z 2

4

|/ ^jf, i^{2ax — x"*) -\- a vers " ^ -

.

• f . / N ^ cos(«— 29)
24, sin {OL — 20) ^0, ^.SU^^e^y-

•

21.
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25
f CO!cos X dx

V
''

l:

^ sin ^ *

dx

tan.r *

7t>«^

— -7 log (/2 — ^ sin J^).

i log 2.

^'^'

J „ tan .r

'

i log 2.

r- log (- log.T)j' = -log

4

tan- ^f^.

^ 30. j^. r-^'

^33.}^, .^^i^V

^34. j;:,,,^,?^^, r%^^ ^
v/35. fprj^q- V3

tan"

3
tan - 'x\

I

2
sm ^^.

I

4^3
sin"

.1 -^4/3

i/5 *

I

4/10

r

tan" 1 ^Vs
4/2 •

4
'

2.Jk: + -11' TT

zVi

"
. w.v,^y^
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dx

v(s -4^- ^y I ^^y^
^/ 3.r

V"^ 29

cos"^ f

.

'V^v.

/ 38. P'-J^yr, J^^
J o H ~~" AT

V 39.
]

.,^ + I
^>

fJi:' +^ 4- I ^
I

4^-
J
^^ _^ 4- i

^'> -* + ^^g (-^^ - ^' + i) +

VC^'' — a'')— a sec ~ * -

.

a' (log 2 - t).

4^ — J log (a:' + i) — tan ^ ^'.

2 ,
2^1' — I

tan"'
Vs Vs

41. a: +^log—

—

4 ° Jt' + 2

i°g(r^-^--"-

/43. Ji^^^^. ^bXi^X' -- -^ + ^ log (^^ + 3).

^ 45-
J^., .^.,.^^

'^-^, ^ + Iog
X — I

46
rJ o

dx t,^..JrXC^

X — 2ax cos a -\r a

a sm
, .V — <3! COS or\ ^ 7C — a— tan ' ^

-. = -.

OL ^ Sin ^ 2a sm a—lo
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t' 47.

48.

49.

\/ 50.

1.^
dx

2ax sec « + «

y

51-

52.

53.

\y 54.

/
V 55-

^J
56.

/

M 57-

58.

f dx

J
2.v' —4^—7'

[• x" dx

\i-x'"

J x" — jt"" — 2J«; '

J (^ + 2) (^ + 3)"'

x^^ x" -^ x^ i'

J
^^ + ^« _ 2 »

f ^' — jr + 2 ,

J
:<:* - 5^' + 4

r ^^

]x' - x^ - X ^ y'

X — a sec «: — ^ tan or

2a tan a ° :f — « sec a -\- a tan a;
log

^2 , 2^ — 2 — 3 4/2

12 ^ 2Jt: — 2 + 3 4/2'

I , I + ^

2 log
:r + 2 ^ + 3

-[_tan ^^ + log ^^^ J.

7 log

—

— +-^— tan
6 ^ x-^- \ 3 1/2

•

log

2, ^+11- X— 2
-log ; + -log
3 ^X-V2 3 ^X-\

I . Jg + I I

4 °^ — I 2{x — l)

2(X^ + l)^

I
, (^ + l)' , I ^ _i2:t: — I

-log-^^ '-—

H

;— tan ' —

—

6 ^^ — ^ + I 4/3 4/3

1(^^#FT7)'
7iog(— i)-^iog(^' +x)-^).
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"^^

log « — - log (i + a;) log (i + a;') tan -
' x.

6'-
jJ^+^/_6:,

'^^' ilogx + ilog(^-2)+ilog(* + 3).

/ , f x^dx \ ^ X — 2 \/ X X
^ 62. \- T, , -log ; + "^ ^ —--

}x' — X' — 12'
J ^ X -h 2

tan-
7 ^ X -h 2 7 V3'

J
f xVjc I ^ — I ^

^- ](x'-iY' 4 ^^^r+7" 2(x'^- 1)*

i '64. f^4^^., Xtan-^^--i-log^.

^ ( xdx \ . X^ — 2

(/ [" ^^ 7t

V J^x'Ca" + xy ' 41

\l [ dx n \^ .11
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/ „ f
^^ \^v.

/ ,, f
^ ?A--

* "• ]x'{a^bx'y

J 74. Find the whole area enclosed by both loops of the curve

yj 75. Find the area enclosed between the asymptote corresponding

to X = a, and the curve

lr»rr _

X
1

I
log-i+X '

I +x'

i'°s«
x'

+ bx"

I
,

^ , d? + dx'

2ax^ ^^"'"^ x' '

J

\

2 2 • 2 2 2 2
x"y" + ax — ay.

76. Find the whole area enclosed by the curve

a'f = x' {a- - x').

77. Find the area enclosed by the catenary

the axes and any ordinate.

£^ -H £ ']

^[•-•-•}

78. Find the whole area between the witch

.ly = 4a'' {2a — x)

and its asymptote. See Ex. 23.

4;ra^
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III.

Trigonometric Integrals. ~ -

25. The transformation, tan'^^ = sec^ ^ — I, suffices to

separate all integrals of the form

Itan^ede, (I)

in which n is an integer, into directly integrable parts. Thus,

for example,

ftan« ede = [tanS 6 (sec^ 6 - i) dd

_ tan^ 6 i

~~4
J

^^"'^
't^n^Bde,

Transforming the last integral in like manner, we have

r. 'i n 7n tan* tan^ 6 r . , „

tan^<9^6>=: + tan OdO;

hence (see Art. 12)

L nn^n tan*<9 tan2(9 , .
tan^ Odd = log cos 6.

When the value of n in (i) is even, the value of the final inte-

gral will be 6, When n is negative, the integral takes the form

[cot"^^^',

which may be treated in a similar manner.
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26. Integrals of the form

[sec«(9^(9 (2)

are readily evaluated when n is an even number, thus

[s^eedB = [(tan^ + i)2 sec'ede

= [tan* ^ sec2 6 dS + 2 [tan^ ^ st^ddd + [sec^ ^ ^^

tan» 6* 2 tan^ (9= —r— +
;;

+ tan 6.

5 3

If ft in expression (2) is odd, the method to be explained in

Section VI is required.

Integrals of the form cosec*^6d6 are treated in like manner.

Cases in which sin'^ Q cos'' Q dd is directly integrable,

27. If n is 2. positive odd number, an integral of the form

I

sin'^ d cos« Q dB (3)

is directly integrable in terms of sin B, Thus,

[sin^ B cos^ BdB= [sin^ ^ (i - sin* 6')2cos Bdd

_ sin^ B 2 sin^ B sin^ B

~"T~ 5 "^ 7 '

This method is evidently applicable even when m is frac-

tional or negative. Thus, putting ;y for sin B,
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^m«-f^-\>-*"-V'r.
cos'^ j^_ f(i -J)dy

y\

hence

•cos^ e ^^ i2i 23 + sin^ efCOS^ ^ 1 2 i 2

Jsint6l
-^ r 'h

3-"
3 i/(sin^)-

When m in expression (3) is a positive odd number, the in-

tegral is evaluated in a similar manner.

28, An integral of the form (3) is also directly integrable

when m + n /j an even negative integer^ in other words, when it

can be written in the form

J cos'«+^^ d J

in which q is positive.

For example,

ddfad f

^-r^ r^ = (tan ^-^ sec* 6 dd
sma ^ COS8 ^ J

^ ^

= f(tan (9)-t (tan^ ^ + i) sec^ddd
;

hence

Jsma
= -tant^

^cos^^ 3 tan«^

It may be more convenient to express the integral in terms

of cot 6 and cosec 6, thus

i^^i^ = jcot* d (cot2 ^ + I) cosec'ede

cot"^ e cot« (9
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Integrals of the forms treated in Art. 25 and Art. 26 are in-

cluded in the general form (3), Art. 27. Except in the cases

already considered, and in the special cases given below, the

method of reduction given in Section VI is required in the

evaluation of integrals of this form.

The Integrals sln^ e dd, and cos^ d dd.

29. These integrals are readily evaluated by means of the

transformations

sin^ 6 = ^{i — cos 2d), and cos^ ^^ = i(^ + cos 26),

Thus

[
sm^Odd = ^{dd-'\ [cos 2ddd = ^d -ism 28,

or, since sin 26 = 2 sin 6 cos ^,

[sin2 dd6 = i(d - sin 8 cos d) {B)

In like manner

\cos^ d do = ^{6 + sm 6 cos 6) {C)

Since sin^ 6 + cos^ 6 = i, the sum of these integrals is \d6\ ac-

cordingly we find the sum of their values to be 6.

In the applications of the Integral Calculus, these integrals

frequently occur with the limits o and ^n ; from {B) and {C)

we derive

IT TI

f'sin2^^^=|'cos2^^^ = i;r.
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The Integrals \^^^^, j^^, and J^.
30. We have

f
de [speeds , , . ,^,^—

5

2) = —^—z~ = log tan 6. , . , (D)
J sin 6 cos 6 J tan ^ ^ ^ ^

Again, using the transformation,

sin ^ = 2 sin ^6 cos J^,

we have

Jsin6/~Jsini^cosi^~J tan J^ '

hence

|^,= logta„ift (E)

This integral may also be evaluated thus,

de [ smddd f sin6>^^f d6 _[• sm ddd [2

Jsin^~J sin^^ '"U cos^ 6
*

Since sin Odd = — d{cos 6), the value of the last integral is, by

formula {A'), Art. 17,

I , I — cos ^ , /I — cos BI , I — cos c/
I

/I —
cos^*

and, multiplying both terms of the fraction by I — cos 6, we
have

{ dS , I — cos 6 , r^,.
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31. Since cos 6 — sin {^n + ^), we derive from formula (E),

J cos<9 Jsm(i;r + <9j ^ L4 2J ^ ^

By employing a process similar to that used in deriving for-

mula {E), we have also

[ dS . I + sin <9

Miscellaneous Trigonometric Integrals,

32. A trigonometric integral may sometimes be reduced,

by means of the formulas for trigonometric transformation, to

one of the forms integrated in the preceding articles. For

example, let us take the integral

def ^
J ^ sin ^ + <^ cos d*

Putting a^kQosa, b — k 'saw a, , . . . (i)

we have

[• dS i_ f dB

J <a: sin ^ + ^ cos ^~ ^ J sin (l9 + ol)

Hence by formula (E)

J^sin^+ ^cos6> k ^ 2^ ^ "

or, since equations (i) give

;^=. V(^2 + ^), tan« = -,

f J^ , = - ,
'

,,
log tan i fe + tan- :*1

.

J a sin 6* + i^ cos 6* */(a^ ^ I?) ^ 2L «J



§ III.] MISCELLANEOUS TRIGONOMETRIC INTEGRALS. 39

33. The expression sin ntd sin nQ dd may be integrated by-

means of the formula *

cos {m — n) 6 — cos {m + n) 6 — 2 sm md sin nd
;

whence

\smmdsmnddd =—) { } f- . . (i)
J 2{m — n) 2 {in -{- n) ^

'

In like manner, from

cos (m — n) 6 -{ cos {m + n) 6 = 2 cos mO cos nO,

we derive

f X. /. //, sin (m — 71) 6 sin (m -V n)d , .

\cosmecosn6dd = \ ^+
)

(—. . (2)
J 2{m — 11) 2 {m + n)

When m = fty the first term of the second member of each

of these equations takes an indeterminate form. Evaluating

this term, we have

sm^nddd = , (3)

J f 2 /I -7/1 ^ sin 2nO f n

and \q.o%^ nddS = - { (4)
J 24/2

Using the limits o and n we have, from (i) and (2), zdlan. m
and n are unequal integers^

sin w^sin;^^^^ = cos mS cos 716 dd = O', .. . (5)
Jo Jo

but, when in and n are equal integers, we have from: (3;) and (4)

[ sm^ nddd = [cos'' ndde =- . . .. . ,. (6)
Jo Jo" 2

34. To integrate 4/(1 4- cos 6) dB; we use the formula

2 cos^ ^6 = L -h cos. 6,
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whence i^(i + cos ^) = ± V2cosi^,

in which the positive sign is to be taken, provided the value of

B is between o and n. Supposing this to be the case, we have

'

[ V (I + cos (9) dQ = ^/2 [cos \ede

= 24/2 sin \^.

For example, we have the definite integral

It

[^ 4/(1 + cos d)dQ — 24/2 sin- = 2.

Jo 4

Intezration of 7 -r.*^ -^ a + cos t/

35. By means of the formulas

I =cos2{,^ + sinH^ and cos ^ = cosH^ - sin^^^,

we have

f dd _ f de
Jrt + ^ cos ^ ~ J (^ + b) cos2 4/9 + {a - b) sin^ ^8'

Multiplying numerator and denominator by sec^^^, this be*

comes
f sec^idde

]a-h b + {a-b)t3in'ie'

and, putting for abbreviation

tan ^6 = y,

we have, since | sec^ 1-6 d6 = dy,

[_ de_^ ^ 2 [

dy

J^ + 1^ cos 6* ]a \- b ^{a - b)f'



§111.] MISCELLANEOUS TRIGONOMETRIC INTEGRALS. 4I

The form of this integral depends upon the relative values

of a and b. Assuming a to be positive, if b^ which may be

either positive or negative, is numerically less than a^ we may
put

a —

The integral may then be written in the form

2
f

dy

a-bjc" + f'

the value of which is, by formula {k')y

c{a — b) c

Hence, substituting their values for y and c, we have, in this

case,

f—4^=-7-^-^tan-4V'^t^^4^]- . (Q]a-^ b cos Q ^(a^ — 1^) \J a -V b ^ J

If, on the other hand, b is numerically greater than a, this

expression ior the integral involves imaginary quantities ; but

putting

b ^ a _ «

the integral becomes

dy_ f
dy

,
b

the value of which is, by formula .(^'), Art. 17,

c{b — d) ^c-y

)
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Therefore, in this case,

f de _ I sf(b^d)-^W{b-d) tan \Q

36. U e < I, formula (G) of the preceding article gives

f
23= -7^^—^tan-^r^/^^tanl /9 . . (i)

J I + ^ cos <9 V {i — e^) [_y 1 + e ^ J ^
^

Putting

|/^^-tani^=tani0, (2)

and noticing that # = o when ^ = o, we may write

Now, if in equation (i) we put ^ for 6 and change the sign of

Cf we obtain

f —J^ =—A^ tan- [^/'L±^ tan i ^1

;

J^ I — ^ cos ^ V{i - e^) [Jy I — e ^ ^J'

hence, by equation (2),

f
^^ - ^

/,^

J^i-^cos^~ i/(i-^^) ^^^

Equations (3) and (4) are equivalent to

de ^ d^

i+^cos^ |/(i-^)' ^5^

, d^ de .^.
and T = -77 2^

,

(o)



§ III.] . TRIGONOMETRIC INTEGRALS. 43

the product of which gives

(i + ^ cos ^) (i — ^ cos ^) = I — ^ . . . . (7)

By means of these relations any expression of the form

f dS

J(i + e zo^ey

where ;2 is a positive integer, may be reduced to an integrable

form. For

f dS f de I
.

J(i + ^ cos^)'^ ~ Ji + ^ cos6> (i + ^ cos(?)«-^
*

hence, by equations (5) and (7),

dd
e cos

Jji + ^cos^)«-(i-^)«-*J,^^

By expanding (\ — e cos ^)'*~% the last expression is reduced

to a series of integrals involving powers of cos ^ ; these may
be evaluated by the methods given in this section and Section

VI, and the results expressed in terms of d by means of equa-

tion (2) or of equation (7).

Examples III.

. , tan^ mx tan mx
tan mx ax, —

1- x.
^m m

tan' xdxj 1^ ~ i log 2.

y^. fsec* (6 + a) de,
*^'^" "^ "^ + tan (6 + a).



44 ELEMENTARY METHODS OF INTEGRATION. [Ex. III.

/ r- ^
Jo

vs. sin' 6 cos' ^9,

"/ 6. |/(sin e) cos' 9 ^0,

tr

\/7.
I

COS* sin' ^0,

, / f sin' dTo
5. i

/ f ^

2.3. 4.3: , 2 . il ^- sin^0 — - sin2 B -\ sm ^ 0.

^ 7 II

2

35

f dB
9. ^^ ^— , Multiply by sin' + cos' 0. tan — cot 0.

J sin cos

/ (sm X ,

T- aXy
cos X

10. —r-^/jtr. See Art. 2Z.
tan* jr

^'•IS^T^' i(tan'e-cot'e) + alogtane.

1 I.. (i^(!'^, Itante.
' J C0S2

J f sin'jc dx
^^'

J cos''^ '

J f sin'jv //jc

'4- J-WIT'

5 cos' ^ 3 cos' X

tan' a: tan' x

5 3

j 15. |sin'0cos'0A 3V [29 -sin 20 cos 20].
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n
2fn

v/ '^
J

sm e m
COS0 '

/ ,8. pS^t^,
Ji: sine '

3

•I Sin + cos 9

+ cos X '

log tan —I— — sin ^.

i(log3-i).

V/
20. j-

f ^JC
J 21. ,

^
J ^ I — COS X

tan \x.

I — cot \x.

^ - It

dx

± sin jc

'

Multiply both terms of the fraction ^ i =F sin x. tan x ± sec jp.

vi
^*^* JsecQ ± tan

9' log tan - + -
L4 2_

± log cos 9.

Nl 24. cos cos 39 ^9. See Art, 33. J sin 4S + i sin 29.

IT

\/ 25.
^ cos 9 COS 29 rtTs,

•'0

I

3*

J 26. rsin'9 sin 20 //9,

It

isin*9l'=i
—^0

\/ 27. ^ sin 39 sin 29 d% '

2

5'
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\\ 28. sin m{} cos «0 ^0,

I — cos (m -\- n)e I — cos (m — n) B

2 {m -\- n) 2 {m — n)

I 29. cos X cos 2x cos 3jr ^JC,

Reduceproducts to sums by means of equation (2), Art. 33.

I Fsin Q>x sin aa: sin 2x "1

4L 6 4 2 J

|/ (l — COS:r)^;xr, 2 V'2.

1 31. ^
-i

^
ri ' -2 >

— tan-M -tan^ .

\1 "^ } a cos^ X + i? sm X ab \_a J

\ f ^jt: I , tannic

4 ^2. i—

,

-r- tan"^ -^ J I + cos' X '

"'Z 2^-
J d' cos' ^ - ^' sin' x' 2ab

^^^

4/2 4/2

d; + ^ tan 9

sin X dx

V (3 cos' a: 4- 4 sin' ^)

sin x cos' ^ dJ^c

2 «/^ ^ a — b tan Q

COS"* J^ cos^^.

, fsm jg COS X di

>4 35-
J J _j_ ^2 CQs'^ X

r y^
Putting y /<?r cos x, //^^ integral becomes — ———j-^

COS ^ tan * {a cos :r)

a a
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36. f—

T

dB

b smQ

/'a/ sin 6 = cos (6 — |-7r), ^«^ use formulas (G) and (6^).

2 , r /^ — /^ 2Q — 7r~|

V (^ + «) + 4/ (<^ — «) tan (i-
— i Tt)

\ia<b,

( .. J-

V (b' - a')
^^^

Vib + a)- V {b - a) tan (iQ - i n)

dQ

3 + 5 cos
ilog

2 + tan^Q

^^>- b

\S 40.
J

5 + 3 COS

do

cos

2 COS G — I

2 — tan f B

i tan"*[Han J 6].

|-tan-*i3tan|Q{.

J_wL-^^3_tani^
^3 ^ I + 4/3 tan i

•

3 — cos

tan"* V2

COS 9

^0

2 4/3*

^ cosOj'
6V^ Arl. 36.

-; cos
, e + cos 9 sm 9

^- rfTT

(i _ ^2^^ ^ + ^cosQ I — r I + ^cos9

(2 + /) TT

(i + ^cos9)' 2(1 -.')i
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f p COS X -\- q^WiX .

45- \
7\-'— dx,

^
J a cos :v + /? sm jp

Solution

:

—
By adding and subtracting an undetermined constant, the fraction

may be written in the form

p cos X + ff sin X -h A (a cos ^ + /^ sin ^)
rj~-

—— ~ ^»
a cos :<[: + /? sm jc

we may now assume

/ cos X -^ q sin X + A {a cos :r + ^ sin .^t:) = ^ (<^ cos x — a sin x)

;

the expression is then readily integrated, and A and k so determined

as to make the equation last written an identity. The result is

f /» cos ^ + ^r sin Jic , ap -^ bq bp — aq . .
, ? \—^^— dx = ^.

. ,o X + 3 ,

,; log (a cos ^ + <^ sm x).
J a cos X -\- bsmx a^ ^- b' a^ + b' ° ^ '

46. —;

—

T— , See Ex. At^.

ax
^

b . f , 7 \

rr> + a
I

z2
log (a; cos ^ + ^ Sm X).

a' + b' ' a' -]- b'

47. Find the area of the ellipse

X = a cos ^ ji^ = (^ sin ^.

— 4ab\
o

sin^ dfdS = nab.

48. Find the area of the cycloid

jp = d! (^ — sin ^) jF = <^ (i — cos ^).

(27r

(i - COS tpY dip = 3a'7r.

o
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49. Find the area of the trochoid (b < a)

X = aip — dsintp y = a — d cos ^'.

50. Find the area of the loop, and also the area between the curve

and the asymptote, in the case of the strophoid whose polar equation is

r =^ a (sec ± tan 0).

Solution :
—

Using as an auxiliary variable, we have

/ .
• \ n ,

sin'^Q"!
ji- = ^ (i ± sin G) y = « tan Q ± L

^ '
"^

L cos Qj

the upper sign corresponding to the infinite branch, and the lower to

the loop. Hence, for the half areas we obtain

+ a" [ "sin BdB -^ a'[ sin' G ^0 = ^H i + -

and — «'
I

sin B dB + d^ f sin' B dB = a^\ i .

Ji. )^ L. 4J
.
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CHAPTER II.

Methods of Integration—Continued.

IV.

Integration by Change of Independent Variable,

37. If X is the independent variable used in expressing an

integral, and y is any function of x, the integral may be ex-

pressed in terms of j, by substituting for x and dx their values

in terms of y and dy. By properly assuming the function j,

the integral may frequently be made to take a directly integra-

ble form. For example, the integral

[ X dx
J {ax + bf

will obviously be simplified by assuming

y — ax + b

for the new independent variable. This assumption gives

X = -
, whence dx — —

a a

substituting, we have

X dx I

J {ax + b)^
~

a" J

\{y-b)dy

f
I

iog7 + ^^;
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1

or replacing/ by x in the result,

[ X dx I
1 / . A\ ,

^

38. Again, if in the integral

f dx

Jf'- I

we put y — e% whence

X = log 7, and dx = —
,

we have

f dx _ r dy

Jf"— I
"~

J j(j— I)*

Hence, by formula (A), Art. 17,

It is easily seen that, by this change of independent variable,

any integral in which the coefficient of dx is a rational func-

tion of £% may be transformed into one in which the coefficient

of ^ is a rational function of 7.

Transformation of Trigonoinetric Forms.

39. When in a trigonometric integral the coefficient of dB is

a rational function of tan ^, the integral will take a rational

algebraic form if we put

dx
tan 6 = Xy whence dd =

i+;r2
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For example, by this transformation, we have

f de _ f dx

Ji -4- tan6'~ J(i +;t^)(i +;ir)*

Decomposing the fraction in the latter integral, we have

f
^^ _ \{ dx If X dx ^\{ dx

J I -h tan d~~ 2)1 -^ x^ 2 J I + x^ ' 2JI + X

= ^ tan"\' — i log (i + x^) 4- i log(i + x)

'''
\ i + tan ^ = i C^ + ^^S (^°' ^ + ^^" ^)3-

40. The method given in the preceding article may be em-
ployed when the coefficient of d6 is a /lomogeneous rationalfunc-

tion of sin Q and cos 6, of a degree indicated by an even integer

;

for such a function is a rational function of tan Q. It may also

be noticed that, when the coefficient of dd is any rational func-

tion of sin S and cos l9, the integral becomes rational and alge-

braic if we put
e

for this gives

2Z
sin e

I + c^'

^ =:= tan
^ ;

cos ^ = ^^^3,

This transformation has in fact been already employed in

the integration of . See Art. x^,^ a + b Qos 6 ^^
.
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Limits of the Transformed Integral.

41. When a definite integral is transformed by a change of

independent variable, it is necessary to make a corresponding

change in the Hmits. If, for example, in the integral

r dx

we put X — a tan ^, whence dx — a sec^O dO,

we must at the same time replace the limits a and oo , which

are values of x, by ^Tt and^;r, the corresponding values of d.

Thus

L(^F^.=,-J-I:cos^^ dd

~ 2a^L
6 -h sin 6 cos 6

7t — 2

The Reciprocal of x taken as the New Independent

Variable.

42. In the case of fractional integrals, it is sometimes use-

ful to take the reciprocal of x as the new independent variable.

For example, let the given integral be

dx
}x^{x -h if

Putting ^ = -y whence dx = ^

,

y y
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we have

y
\ y.

Transforming again by putting z — y \- I, the integral be-

comes

= _ _ + 3^ _ 3 log ^ - -

Therefore, since ^ = r + i = - + i =
X X

dx_ _ _ (x^ \f 3(-^'+ f . 1 „^ X -^ I

(,r + 1)2
~

2x^ X X \- \ ^ ^ X

A Power of x taken as the New Independent Variable.

4-3. The transformation of an integral by the assumption,

y^x'^ (i)

is not generally useful, since the substitution

- I --

1

X = r«, whence dx — - y"" dy,
11

will usually introduce radicals. Exceptional cases, however,
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occur. For, since logarithmic differentiation of equation (i)

gives

— -= — , (2)X ny

it is evident that, if the expression to be integrated is the product

of — and a function of x^ , the transformed expression will be

the product of— and the like function ofy.

For example, the expression

{x!" - i) dx
x{x^ ^ I)

'

dx
which is the product of— and a rational function of ;r*, becomes

dy

,

Ay{y^ I)

a rational function of y. Hence, decomposing the fraction in

the latter expression, we have

J ^(^+ I) a) yiy^i) ^ 4 ^ y

V (x^ + i)

44. When this method is applied to an integral whose form

at the same time suggests the employment of the reciprocal,

as in Art. 42, we may at once assume y = x~'^, ^ Thus, given

the integral

[" dx
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putting y = x^, whence
dx _ dy
~^ ~ "

sy'

we obtain -

_ir ydy
3J12J/+ I

= -
y ,

log {2y +
6"^ 12

i)^ °_2-log3
12

45. The same mode of transforming may be employed to

dx
simplify the coefficient of — , when this coefficient is not a

rational function of x^. Thus, the integral

r dx

}xV{x^-a^)

will take the form of the fundamental integral (/'), if we put

09 . dx 2 dy
x^ — Ti whence — — _.^i-.

X I y

Making the substitutions, we have

dx 2[ dy 2 -X y 2 _i (x\ 5— '

-^ — sec -4- = —-, sec ' ^f
^^ — ? f

^y

]xV(^-ci^) " 3J yV{7~^~^) " ^J
^^^ J "

3^1 \a

Examples IV.

^ I-

j l^^^'^'>
log (2 + '^') +^I
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/ .

' xdx

J(i-^r'

^3. f^'--^+'^r
J(2^ + ir '

v/4.
r .v'<fe

J-xGr+2)"

/s.
r ^^

J I + f-^

'

6.
f ^
e-r _ ^-x >

p £2^^
7-

J -co f- + I '

8. f

'"+'
^X

Jl-6-'^-^'

' 2 + tan 6
9-

. 3 — tan e '

r ^6

J tan' 6 - i'

' tan' ^0

tan' 6 — I

'

cos d^

a cos 6 — ^ sin Q

'

2^—1
2(1- xf-

2A -f I _ log \2X +1) 7

8
"1

8(2;*:+ i)

log;/ + 4y — 2 ]-log.-i,

^— (log I -f f-*^).

2 °^ f^ + I

I — log 2,

€-»^ + 2 log (f-* — l).

e — log (3 COS — sin e)

I , tan 0—1
—log
4 ° tan + 1 2

I , tan — 1,0
- log + -

,

4 ^ tan + I 2

aB — b log (a cos — <^ sin 0)

a' + b'
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f COS 6 ^& r» ^ .'

•^ Jcos(a' + ''^'

(9 + oc) cos « — sin « log cos (9 + a).

[ sin (0 '+ a)

(6 + /5) cos {a— ft) + sin (or — /?) log sin (9 + )5).

5. tan (9 + «:) cos 9 ^/9, —cos 9 + sin <^ log tan
2B + 2a -\- 7t

, {'^ COS B dB , . . , .

'

Jo sin (a: + 9)
^

cos « log (2 cos Of) + Of sm^.

IT IT

rr cos j 9 ^^ I ^ 1^2+2 sin9n6 _ log (3 + 2 ^2)

Jo COS 9 ' 4/2 ° ^2 — 2 sin 9 Jo 4^2

_ fsin|9^/9
, ^

18. ^^-r—

,

log tan
J sin9 ^

TT +

fx' dx /z'

20.
l^'(l+-v')'

'°^

r* jtr'^jT I fs

Jo (l + -^T' 4 Jo

4/(1 + x") _I_^

a; 2ar''

21.
I 7-—T-—iTs, -

I

~ sin" 2B dB— —r
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nJdx L 4- £ _ 1

X -\- \

X

[
dx I I , ,

X

^^-
J x(^'-i) '

flog(^'-.)-logx.

o _ 2 --log 3

I 8

I

;'°s^
x'

4^ + ^.rV*

I
Inor —

Jt:^

^n &^« + ^a'

e/jf 2 _ /^

V.

Integrals Containing Radicals,

46. An integral containing a single radical, in which the

expression under the radical sign is of the first degree, is

rationalized, that is, transformed into a rational integral, by-

taking the radical as the value of the new independent vari-

able. Thus, given the integral

f dx
14- v{x-\-\y
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putting J = V(^ + I),

whence X —f — I, and dx = 27 cfy\

we have

f
^-

J I + 4/(;r +
-Ay^y = 2\dy 2f

'^y

i) Ji +7 J
"^ Ji +j/

= 2j-2log(l +/)

= 2^/(x + l) - 2log[l + »/{x + l)].

47. The same method evidently applies whenever all the

radicals which occur in the integral are powers of a single

radical, in which the expression under the radical sign is linear.

Thus, in the integral

dx

,(^-_i)5 + (^--i)
± »

the radicals are powers of (;ir — i)^ ; hence we put y = {x — i)K

and obtain

dx ^^f^ fdy

= 6\\y- i)dy + 6f -f^= -3 +6\og2,
Jo Jo J + I

48. An integral in which a binomial expression occurs

under the radical sign can sometimes be reduced to the form

considered above by the method of Art. 43. For example,

since

f dx

ix{x^-^ i)^
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fulfils the condition given in Art. 43, when n — 3, the quantity

under the radical sign may be reduced to the first degree.

Hence, in accordance with Art. 46, we may take the radical as

the value of the new independent variable. Thus, putting

whence ^ =^ ^ — i, and

we have

dx 4js'^ dz

X -3(^-1)'

{ dx _4 fj^ dz

ixix^ + i)i~3 J^-i*

Decomposing the fr^^ction in the latter integral as in Art. 20,

we have finally

_^ — _ tan'M (;i^ + I) + - log^- \—- .

Radicals of the Form V{ax^ + 3).

49. It is evident that the method given in the preceding

article is applicable to all integrals of the general form.

\x'^'''-^'{ax^ i- dy+^dx, (I)

in which m and 7i are positive or negative integers. These

integrals are therefore rationalized by putting

y = V[a^ + b)..
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Putting m = O, the form (i) includes the directly integrable

case

f(^,i^ + by + * xdx.

50. As an illustration let us take the integral

dx

f.7X V{x^ + a^)
'

putting J r= V{^ + a^),

, 2 5 2 1 ^^ y ^ywhence x^=t — ^ , and — = / ^
, ,X y — a'^

we have

dx _ r </j/

Hence, by equation (^') Art. 17,

dx _ i^ y ~ ^ _ ^
\

^(^'^ + ^^) — ^

Rationalizing the denominator of the fraction in this result,

we have

V{x^ -^ d') -a ^ r 1 (-^-^ 4- a') - df
Vix^ + a^) -{- a~ x^

Therefore
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In a similar manner we may prove that

51. Integrals of the form

\x^"'{ax^ -VbY^^dx (2)

are reducible to the form (i) Art. 49, by first putting j = -.
X

For example

:

t dx

{ax^ + bf

is of the form (2) ; but, putting x — -
, whence

^(^^ + ^):.i^(fL±i>3 and dx = -%,

we obtain

f dx _ r y dy

J (ax" + bf
~ ~

J '{a-\-bff

The resulting expression is in this case directly integrable.

Thus

[
^^ ^ ^ _ ^ /<vx

\a^-Vb\^ bV{a-^bf) b^{a^ -^r h)' •
•
U;
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Integration of

52. If we assume a new variable s connected with x by the

relation

z-x= t/(.t^±^), (I)

we have, by squaring,

^ — 2SX = ± a^, (2)

and, by differentiating this equation,

2{2 — x) dz — 2z dx =Q\
whence

dx dz

Z — X ~ z'

dx
(3)

or by equation (i),

X _ dz

Integrating equation (3), we obtain

63. Since the value of x in terms of z^ derived from equa-

tion (2) of the preceding article, is rational, it is obvious that

this transformation may be employed to rationalize any ex-

dx
pression which consists of the product of—^^^—-g. and a

rational function of x. For example, let us find the value of

\^V{^±a^)dx,
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which may be written in the form -w^ ^

dx
\{:^±a^ ^^- ^V' r A

By equation (2)

2Z

whence

S

^±^=(^!
4^

Therefore, by equations (3) and (5),

\^V{x'±d^dx = -^^^-^^dz

If , ^
€? [dz

^
a^ [dz ^^ ^'

4J 2 J^ 4 J-s* 1^ "T^

By equations (4) and (5), the first term of the last member
is equal to J jt V{^ ± d^). Hence

[Vix' ± d^)dx = ^^^'^ ^ ^ ± - log [x + V{x'±d')} . . (Z)

Transformation to Trigonometric Formes.

54. Integrals involving either of the radicals

^(c^-x"), Vid' + x^), or V(^-^
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can be transformed into rational trigonometric integrals. The
transformation is effected in the first case by putting

X ^ a sin ^, whence *^{c^ — x^^ = a cos 6
;

in the second case, by putting

X = a tan ^, whence \/{c? -\- x^") = a sec 6
;

and in the third case, by putting

X = a sec 6^, whence V{^ — c?) — a tan 6,

55- As an illustration, let us take the integral

f i/(^2 _ ^2^ ^^ .

putting X = asm 6, we have V{a^. — x^) = a cos 6,dx = a cos 6 dd\

hence

{v{^-^)dx=a^{cos^e dS

(T 6 c? sin 6 cos 6
=^+—5—

'

by formula (Q Art. 29. Replacing (9 by x in the result,

Regarding the radical as a positive quantity, the value

of ^ may be restricted to the primary value of the symbol

sin -
' — (see Diff. Calc, Art. 54) ; that is, as x passes from — a

to + ^, ^ passes from — \n \.q + J tt.
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J Radicals of the Form ^(a:x? + bx + c).

56. When a radical of the form V(a^ + bx + c) occurs in an

integral, a simple change of independent variable will cause the

radical to assume one of the forms considered in the preceding

articles. Thus, if the coefficient of x^ is positive,

in which, if we put;r4- — =jK, the radical takes the form

V{y^ + a^) or V{y^_ — cF)-, according as /i^c — b^ is positive or

negative. If ^ is negative, the radical can in like manner be

reduced to the form ^/{c^ — f) or |/(— a^—y^) ; but the latter will

never occur, since it is imaginary for all values of j/, and there-

fore imaginary for all values of x.

For example, by this transformation, the integral

f dx

J {a^ ^bx + f)t

can be reduced at once to the form {J), Art. 51. Thus

dx f dxfax f u^

2a A^x + 20

4^
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57. When the form of the integral suggests a further

change of independent variable, we may at once assume the

expression for the new variable in the required form. For

example, given the integral

V{2ax — x^^ X dx\

we have i/(2ax — x^) = \/[a^ — (^ — a)^]

hence (see Art. 54), if we put x — a = a sin 6, we have

V{2ax — x^) = a cos ^,

;ir = ^ (i + sin ^), dx= a cos 6 dO
;

,-.| V{2ax - x'')xdx = c^ [cos2 d{i + sin d) dd

= ^{d-\-sme cos 8)- — cos8 6

c^ . X — a a

,

. ,, ox I, «a.= — sm-^ + _(^ _ ^) ^(2ax -x^) — - (2ax - x^y

= — sin - ^ + ^ V{2ax — x^) \2x^ — ax — 3^].

The Integrals

f
dx^ , f dx

JV[(^--)(^-^)] JV[(^-«)(/^-^)]-

58. An integral of the form
J
—r—^—y

^ may by the

method of Art. 56, be reduced to the form {K\ Art. 52, or to

the form (7'), Art. 10, according as a is positive or negative.
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But when the quantity under the radical sign can be resolved

into linear factors, the formulas deduced below give the value

of the integral in forms which are sometimes more convenient.

If a and ^ are the roots of the equation

ax^ -V bx ^ c — Oy

the integral may be put in the form

dxI f dx^ I f

Ta]^\{x~aMx-b)\ ""' VT^^)]'Va J ^/\{x - a){x - fS)\ ^/{-d)] V[(x - a){p - x)]
'

according as a is positive or negative. Assuming

V{x — a) =2, whence x = j^ -h a and dx = 2zdz^

we have

by formula (K), Art. 52 ; hence

In like manner we have

f dx^ f dz _ . _ z

J V\_{x-a){fS -x)-]-^ ]^^-a-^) ~ ^ "'""
V{^ - a)

'

by formula (/') ; hence

f dx . ^ ./ X — a I ^^
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It can be shown that the values given in formulas (TV) and

{O) differ only by constants from the results derived by em-

ploying the process given in Art. 56.

Examples V.

V I. ^(a — x)'X dx^ [a — x)^ (3^ + 2d),

c ^

2. V{^ + d)'^^ dx^ - (« + a:) 2 _ 1- (^ + x)\ H {a -\- x)\,

(X dx 2 3

^-^-^, -x^ - .r + 2 ^^ - 2 log (i + ^x).

5-
J
^^"1

j
>

21/^ + 2 log (i - Vx),

J-a^ ^
7 4 Jo 2d>

(dx 2 _ /2^ — a—
T/ 2\ >

- tan ' 1/ -
jc V(2ax — a) a ^ a

Jo^ 9 7 5 Jy- 315

^ J2:xr? — ^* 4 4 8
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.10. r(.+ x)t.^., ^'_3/-|^=^3^^^
Jo o 5 Ji 10 40

^^-

1^(7-%
^-^^ 2 (1+ ^) V(l - at). _

Jxdx T, • ,.-7^
r\ » Rattonahze the denominator.

X' + f^'*
- a'Y

Za^

/ f dx^ 2 (.y + g)« - 2 (^ + 3)^
V 13.

J ^(^ + ^) + ^(^ + ^)

»

3 (« - ^)

/ [
V{x^-VT)dx V{x* + ^)

,
^ Inr

^^^^' +0-1
;

^'
J ^ ' 2 +4^°^ v(;t;^4-I)^-I•

"J.(?+^' J-"'-?], 'b"^'-

X
«^{x^—c^\ — CL sec

~
' - .

etc
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r x'dx

' ~ ^/ .a ,

—^d^\ See formulas (Z) and {K).

jXi/(x' -i-a')-- a' log [x + i/^ + a')]

20. —^^
^ dx^ a log ^^ + 4/(a — A^ ).

—, V(^r' + «') + -log \x + 4/(-a:' + «')] - ^
2^ 2 2^

log [ |/^:v' + a') + .rj ^
^

^
.

\ X

I C X dx T
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25. ^{ax" + b) dx, [a >o] Put V(ax^ { b) = z —x i/a.

-^ log \_x s/a + ^(ax" + ^)] + - ^ '^(ax^ ^b).

j
2 Va 2

-

I
Xq

^ + '*^(-^' + ^') 4- « - Via" + ^')

V{d'+b') ^x + V{^" + b')-^ a + V{d' + b')

27 f
dx Vii +x')

^^'
\ixWii-x') ' G;

cotH = Vs-

29
V{^'-a')

i dx

^V(^'-i)'

^^'
Jo (> + «']

I

2

P

2A;' 2

log tan \ \ .
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ZZ-
3^

(dx I
J

::c4/2

^ ' Jo 4/(^-^0 L Jo V(cix-x')_\

2

f ^.V

38. 3,4 V ^^^^

39. Y(2(ix ~ x^)'dx,

40. )/(2ax — x^)-x dx,

a^ ^ cos'' (i 4- sin 6) .'/Q = d;' .

2

41. ^{2ax — x'^)'X^ dx,

a' j° ^ cos' (i 4- sine)' ^0 = a' p^ - -~]

.

^ = 2r = sec

I 4 sine)VQ —
T6"

— X
X

2X^

dn
4
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j- dx_

J ^y2ax + x^)
42. ./ ,

.,:iv >

by Art. 56, log \x -\- a ^ */(2ax + .r')] + C;

^j; ^r/. 58, log [ »^x -r i/(2d; + a)] + C".

,J{2ax + .r')
'

^^'"'"^" "^ ^'^ ""^ '°^ [-t- + « + V(2ax + ^•')].

,,. [/_z_^.vr=[
'

---^-^-

. 1,^^
J

'^ 2^ — .r |_ J 1/(2^20: — .r')J

tf sin- V{2ax — Jt-').

45.
j ^(3+^l^_^^) ' ^i' ^-^- 56, sin- ^ :^^ + C;

^^ Art. 58, 2 sin-^ ^ "^4^ + ^'•

46. -77 3T, 2sin-H/- =.-;r.

47-
JV(3 + ,^_^')'3

49- £V^'^' logCs + ^l'^

sin- .
^~^ - (-^ + 3) ^(3 + 2-^ - ^'')

2 2
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J __-
^ 50. Find the area included by the rectangular hyperbola

y^ = 2ax + x^^

and the double ordinate of the point for which x = 2a.

al6V2 — log (3 + 2 V2)].

Find the area included between the cissoid

X {x^ + /) = 2ay^

I 51. Fi

and the coordinates of the point {a, a) ; also the whole area between

the curve and its asymptote.

J

(— 7t — 2 W^, and ^na^.

52. Find the area of the loop of the strophoid

x{x' +/) + a{x' -f) = o;

also the area between the curve and its asymptote.

, and 20^ ii -^ j

/jr -U jQ

For the loop put y z=z — x
^

-j-
, since x is negative between the limits

— a and o.

yj 53. Show that the area of the segment of an ellipse between the

X
minor axis and any double ordinate is ab ^\Vi.-^—V xy.
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VI.

Integration by Parts. __

59. Let u and v be any two functions of x ; then since

d (uv) = udv + V duy

udv -i-lv dUyuv

whence \udv=uv—\vdu (i)

By means of this formula, the integration of an expression

of the form udVy in which dv is the differential of a known
function v^ may be made to depend upon the integration of

the expression v du. For example, if

u -

we have

= cos-';ir and Iiv = dxy

du = dx

hence, by equatioi

Vii- ^y

COS" ' X'dx = ;r cos-^;i: + - xdx
'(I -A

in which the new integral is directly integrable ; therefore

cos-^;r-^;ir = x Q.o?>~^x ^ 4/(1 — x^').

The employment of this formula is called integration by parts.
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Geometrical Illustration,

60. The formula for integration by parts may be geomet-

rically illustrated as follows. Assum-

ing rectangular axes, let the curve be

constructed in which the abscissa and

ordinate of each point are correspond-

ing values of v and u^ and let this

curve cut one of the axes in B. From
any point P of this curve draw PR
and PS^ perpendicular to the axes.

Now the area PBOR is a value of the

indefinite integral u dv, and in like

manner the area PBS is a value of \vdu',

and we have

Area PBOR = Rectangle PSOR - Avesi PBS;

therefore

ludv = uv — \v du.

Applications,

61. In general there will be more than one possible method
of selecting the factors u and dv. The latter of course in-

cludes the factor dx, but it will generally be advisable to in-

clude in it any other factors which permit the direct integra-

tion of dv. After selecting the factors, it will be found con-

venient at once to write the product u-v, separating the factors

by a period ; this will serve as a guide in forming the product
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V duy which is to be written under the integral sign. Thus, let

the given integral be

Lir^ log X dx.

Taking :!i^ dx as the value of dv, since we can integrate this

expression directly, we have

, dx
x^—

3 3J -^

x'^ log X dx = log X' — x^

= —x^ lo£r X x^ dx
3

"^
3J

x^= -{3^ogx- I).

62. The form of the new integral may be such that a

second application of the formula is required before a directly

integrable form is produced. For example, let the given

mtegral be

jt^ cos X dx.

In this case we take cos x dx= dv; so that having x^ = u, the

new integral will contain a lower power of x: thus

x^ cos X dx = x^'s'm X — 2 Lr sin ;r dx.

Making a second application of the formula, we have

Lit* cos xdx = x^s'mx— 2 x{- cos x) + cos xdx

= jr'sin X + 2x cos x — 2s\x\ x.
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63. The method of integration by parts is sometimes

employed with advantage, even when the new integral is no

simpler than the given one ; for, in the process of successive

applications of the formula, the original integral may be repro-

duced, as in' the following example:

e''^^ sin (nx +a)dx

= ,,„. .
- c°s (^^ + a) ^^ U.^ ^^3 (^^ ^ „) ^^

n n] ^ '

— V L 4. _ e^^ V 1 ^„,x sin (fix + a) dx,
n n n ft ]

'

in which the integral in the second member is identical with

the given integral ; hence, transposing and dividing,(^mx
^mx

sii^ (ji^ ^ ^) ^^ _ —g——2
\in sin {nx + a) — n cos (nx + a)].

64. In some cases it is necessary to employ some other

mode of transformation, in connection with the method of

parts. For example, given the integral

[sec^^^^;

taking dv = sqc^ 6 dd, we have

jsec8^^^ = sec^.tan^- jsec^tan2 6'^6''. . . (l)
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1

If now we apply the method of parts to the new integral, by
putting

sec d tan 6 dS = dvy

the original integral will indeed be reproduced in the second

member ; but it will disappear from the equation, the result

being an identity. If, however, in equation (i), we transform

the final integral by means of the equation tan^ 6 = sec^ — i,

we have

[sec^ ddd = sec ^ tan ^ - jsec* d dO + [sec Odd.

Transposing,

f % a jn sin 6 f dd
2 sec^ d dd = —2-^ 4- -;

J cos^ J cos ^

hence, by formula {F), Art. 31,

fo a ,n sin ^ I , ^ Vn 6^~|

sec^ Odd = 2-^ + - log tan - + - .

2 cos^62^ L4 2 J

65. It frequently happens that the new integral introduced

by applying the method of parts differs from the given integral

only in the values of certain constants. If these constants are

expressed algebraically, the formula expressing the first trans-

formation is adapted to the successive transformations of the

new integrals introduced, and is called a formula of reduction.
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For example, applying the method of parts to the integral

we have

x"" e^"^ dx = x"" \x''-'€^^dx, . . . . (i)

in which the new integral is of the same form as the given

one, the exponent of x being decreased by unity. Equation

(i) is therefore a formula of reduction for this function. Sup-

posing /^ to be a positive integer, we shall finally arrive at the

8''-'^ dXf whose value is— . Thus, by successive appli-

cation of equation (i) we have

I X" £«^ dx =— n
- X"-
a

Reduction of Ism"' 6 dS and [cos'" d dO.

66. To obtain a formula of reduction, it is sometimes neces-

sary to make a further transformation of the equation obtained

by the method of parts. Thus, for the integral

[sin"'^^<9,

the method of parts gives

[
sin'«^^6'= sin'«-^(9(-cos^) + (;;^ — OJsin'^-^ ^cos^ <9^^.
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Substituting in the latter integral I — sin- 6 for cos^ 6,

jsin'« edd—— sin"'' -^ 6^ cos (9

+ {fn - i)
I

sin"'- == 6* ^6* - {pi - i) jsin'" 6'<^^;

transposing and dividing, we have

f
sin- ede=^ ^'""'- ^ '^"^ ^ + ^^^^ fsin"-^ ede, . . . (d

J m ml
a formula of reduction in which the exponent of sin B is dimin-

ished two units. By successive application of this formula, we
have, for example

:

[ • (, n in sin' B cos 6 ^ [ . » n msm^ddd= g + ^\ sm^Odd

sin'/9cos 5 sin^/9cos 6 5 3 f . o ^ ,/.— ::
— jr • + ^ - Sm^ 6 dd

b 64 64J

_ sin^ 6* cos <9 5sin^<9cos<9 5.3sin(9cos^ 5*3'^/?

6 6-4 6-4-2 6-4-2

67 By a process similar to that employed in deriving

equation (i), or simply by putting 6 = ^7t — 6' m that equa*

tion, we find

f „ ,^ cos"'-' ^ sin ^ m — I [ ^„ ^ n jn / \
cos'" 6 dd=. + cos''' -^6dd, , . (2)

J ;;/ ;;/ J

a formula of reduction, when in is positive.
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68. It should be noticed that, when m is negative, equation

(i) Art. 66 is not a formula of reduction, because the exponent

in the new integral is in that case numerically greater than the

exponent in the given integral. But, if we now regard the

integral in the second member as the given one, the equation

is readily converted into a formula of reduction. Thus, put-

ting — n for the negative exponent m — 2, whence

m = — n + 2y

transposing and dividing, equation (i) becomes

f dO cos^ n — 2 f dS , .

Jsin«(9 (/2— i)sin''-

Again, putting 6 — ^ n — 6' m this equation, we obtain

{do sm 6 n — 2 { dd

Jcos"<9 (n — i)cos''-'

Reduction of \sm"'e cos"" dd,

69. If we put dv = sin"' 6 cos 6 ddy we have

cos«-^^sin"'+^/9

n — 2{dd , .

"^^"^^Jcos^^ • • • • (4)

sin"" 6 cos"" 6 dd =
m + I

+ -^
^^-

fsin'«+^6'cos«-^6>^^; . . . (l)m + I }

but, if in the same integral we put dv = cos« 6 sin 6 dd, we
have

sin"'-^<9cos«+' B

j.sin"" 6 cos"" e dd
n + I

m L fsin— 6'cos«+=^^^^. ... (2)
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When m and n are both positive, equation (i) is not a

formula of reduction, since in the new integral the exponent

of sin 6 is increased, while that of cos B is diminished. We
therefore substitute in this integral

sin'«+^ 6 = sin''' d{\ — cos^ (9),

so that the last term of the equation becomes

^~ ^

fsin- e cos«-^ ddS- ^LZJL
\ sin- d cos« 6>^6'.

m + I ] m + I ]

Hence, by this transformation, the original integral is repro-

duced, and equation (i) becomes

fi + ^

1 f sin- d COS" ede:^ m + I

n — I (+ sin- dco^''-' Odd,m -h I J

Dividin by I -^ =
, we have" m + I m + I

sm- 6 cos'' 6 dd=z
m -{ n

!^ fsin-6>cos''-^^^^, ... (3)+ m

a formula of reduction by which the exponent of cos 6 is

diminished two units.
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By a similar process, from equation (2), or simply by put-

ting Q — \n — d' m equation (3), and interchanging m and n^

we obtain

f . ^ , ^ ,^ sin'«-^l9cos«+^/9
sm.*" d cos" ddd =

J
' m + n

+ ^~ ^

fsin'«-^ d cos« ^^^, . . . (4^

a formula by which the exponent of sin 6 is diminished two

units.

70. When 7t is positive and m negative, equation (i) of

the preceding article is itself a formula of reduction, for both

exponents are in that case numerically diminished. Putting

— mm place of m, the equation becomes

fcos« l9 _ cos«-^^ n — I fcQs^-^ r/) , >.

J
sin"' 6 ~ ~ {m— i)sm"'-^d m — i Jsin'«-^ • • • • i5;

Similarly, when m is positive and n negative, equation (2) gives

{'^de=^ '^r^ _^^£[giBn-%^. ... (6)
Jcos«6' (n- I) cos''-' 6 n-ilcos^'-^d ^^

7(. When m and ;2 are both negative, putting — m and — n

in place of m and ;^, equation (3) Art. 69 becomes

J sii

dd

sin''' ^ cos« 6 (m +n) sin'''- ^ (9 cos''+^ 6

n + I f de^

m-^ n] sin'« d cos«+^
^

'

in which the exponent of cos B is numerically increased. We
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may therefore regard the integral in the second member as the

integral to be reduced. Thus, putting n in place of » + 2, we
derive

f dO I

J sin"' 6 cos« d~ {n — i ) sin'« - ^ 6 cos'' - ^ 6

m + n — 2 c ddZJ
f

^^
(7)

I Jsin'«6'cos«-^^ ' ^^^

Putting 6 = ^7t — d\ and interchanging ;/^ and «, we have

[__d^__ _ I

J sin'" ^ COS" ^ ~ (;«— i)sin'''~'6'cos''"'6^

m + n-2 f dd

m—\ Jsin'«-^(9cos"^ ^ ^

A 72. The application of the formulas derived in the preced-

ing articles to definite integrals will be given in the next sec-

tion. When the value of the indefinite integral is required, it

should first be ascertained whether the given integral belongs

to one of the directly integrable cases mentioned in Arts. 27

and 28. If it does not, the formulas of reduction must be

used, and if m and n are integers, we shall finally arrive at a

directly integrable form.

As an illustration, let us take the integral

[sm^ecQ^^Bde.

Employing formula (4) Art. 69, by which the exponent of sin %

is diminished, we have

r • 2 /I X fx jn sin ^ cos" Q I f Asm^ Q cos* Odd = ^ + ^ cos* Odd.
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The last integral can be reduced by means of formula (2) Art.

6']^ which, when m ~
/\^^ gives

f X n jn COS^ ^ sin ^ 3 f ^ n in
cos* Qde=^ + - cos^ Bdd\

J 4 4J

therefore

r . 9 /, 6. n jQ sin ^ cos^ 6 cos^ d sin 6 sin 6 cos 6 .
^

I
sm^ e cos* 6* ^l9 = -. H + p + — .

J 6 24 10 16

73. Again, let the given integral be

fcos^^
J sin«6' *

By equation (5), Art. 70, we have

[
cos^ddd __ _ cos^/^ _ 5 fcos* d do

3 sin^ 6 ~ 2 sin^ 6 2 J sin 6' '

We cannot apply the same formula to the new integral, since

the denominatorm— i vanishes ; but putting n—4. and m — — i^

in equation (3) Art. 69, we have

cos^dde cos^^ [cos^edefcos* ede _ cos^^ r

J sin 6> ~ 2
"^

J3 J sin (9

cos«^

3 Jsin e J

sin ddO

cos^ I

+ log tan —6+ cos 6.

3 2

Hence

[cos^ Odd cos^ 5 cos^ 6* 5, i ^ S /.

I
—

. n n = ^^-n — -—
z log tan - ^ — ^ cos 0.

J sm^ 6 2 sm^ (^ 6 2^22
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Extension of the Formula,

74. Let

Y W dx =z ^, (x),

U^ {x)dx= <f>,,(x)y

etc., etc.

;

then, if the functions ^^ (x), (j),, {x), .... ^« (x), which may be

called the successive integrals of (l){x), are known, and also the

successive derivatives oi f{x), we shall have

J/W -!>W dx = fix) ^, (.r) - j/' (.r) ^,(^) ^^

= fix) <P, {x)-J'{x) I, (x) +
J/"

{x) </,„ (x) 'dx.

Continuing this process, and writing for shortness /", ^,, . . . for

f{x)y (j)^ {x) . . . we have

The application of this formula is equivalent to the use of a

formula of reduction. Thus the value of x** £^-^ given in Art. 65,

may be derived immediately from it.
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Taylor s Theore7n.

75. If, in the formula of the preceding article, we put

fi^x) ^F' {xo +/i- x), and (f>(^) = h

Xo and h being constants,

/' {x) = - F" {xo+ h - x), f" {x) =: F'" {Xo + h- x), etc. ;

and (l>^{x) = x, ^,X^)

Hence

x^ ;tr^

(j) (x) = , etc.
1-2' ^'"^ '

I-2-3

[f' {xo^h- x) dx =^F' {xo+ h- x)-x+ F" (xo -^ h- x)-
x'^

2

+ F''^' (Xo -^h- x) --

—

dx.

Now F' {xo + /i — x) dx = — F {xo -{- k — x);

hence, applying the limits o and /i, we have

F(x. 4- /i)= F{xo)+ F' (Xo) h + F" (xo)^ +
1 ^

Jo
+ k — x)

x"dx
1-2. • n

This formula is Taylor's Theorem, with the remainder expressed

in the form of a definite integral.
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/

/

/ y I. •svci-'^ X dxy
•' o

y 2. sec~^ji:^:r,

J o

/ F • .
i/ 5. Q sin Q^O,

•'o

V 6. cos mB t/B,

•'o

J o

9. Lcsec-^jpz/jf,

Examples VI.

[
/V-^-V^

X sin ~
^ jc + V{i — X

^ sec-^.v — log [x + |/(.r' — i)].

;r _ log 2

4 2

2»? ^"^

-I ( -

tan-^x .

2 2

;r^f-^ — 2a:f-^ + 2£-^

i [x"^ sec-^ A- — V{^^ — i)].

V 10.
J'

S sin - + L/0, —9 cos ( - + 6 j + sin ( -+ 6
j

7r//2
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/
. X sec" X dXy X tan x + log cos x

. Lctan'x^/r = \x (^qc^ x — i) dx L xtsinx + log

V II

12

J 13. Lv'sinx ^JC,

cos X X .

2

2X Sm X -\- 2 cos X — X COS jc.

4. x%m.~^xdxy -x'*sm-'^x\
I

sin'' 6 ^0 = —
.

Jo 2 J, 2j^ 8

^ / 15. Lr' tan- ^ ^ ^/jc,

x'tan-^.r x^ log (i + ^)

I 6
"^ ~6

7t 2
\l 16. x'^mr^xdx, -x'sin-^x-l ^(i — Jt:')

. Jo o 9

f^ (sin X — cos x)"!"" _ i

17. f-^COSJC^AT, T=2 2—lo

\ J 18.
I

f-'^
*^" ^ COS jc dx, cos /? f^ t^" ^ sin (/? + x)

19. e-"^ sm^ xdx\ = - e-^ (i — cos 2x) dx ,

— (cos 2x — 2 sin 2x — k).
10

^ ^^

V -I:
f^ sin 6 </(9,

e\ . n14 . I— (sin — cos 6) = -
2 ^ J. 2
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£^ sin X cos X dXf — (sin 2j«: — 2 cos 2x).

sin' fflQ cos ni^ 36 3 sin mh cos m^
22.

I
sin*/;z0^(9,

^
+ ^

J^
'

4;^ 8 Zm

23. Derive a formula of reduction for (log x)^ x^ dx^ and deduce

J(log:r)^from it the value of {Xoo^xY x^ dx.

24.

f x''"^^ n f
(log xY X'" dx = (log xy (log x)»-^ x"^ dx.

J 7/1' ~i~ I 7/1 ~r~ I J

|(log^)'^V.r = (logx)'^ - (log^)»
J'

+ HlM£ - ?f.\ !

X cos'' Jt' ^:v, 1^ X sin :v cos ^' —
:i sin* x + ^x^.

x^ sec - ^ :v X ^{x^— I ) log [^+ ^{x^— I )]/ 25. Ji:'' sec- ^ X dx^

26. Derive a formula of reduction for La;'^ sin (x + a) dx^ and de

duce from it the value of x^ cos x.

\x^ sin (^ + «) ^/;v = — :v« sin x -^ a {—

+ n \x^~'^ sin a: -f o' H— dx,

\x^ cos X dx =^ [x^ — 20jr' 4- 120^) sin x + ($x* — 6ar'' + 120) cos:;*;.
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!7. cos 6 sm d^^

ir

f8. COS* sin* 6 ^/9,

6 COS sin cos I r • . ^1
h -7 [0 — sin cos I.

6 24 16

32J0 512

IT

f4 4 . 7. sin0cDs''0
,
3sin0cos0

.

30 "14 8 + 3;r
29. cos* //0, + ^ ^ + ^ = ^ .

Jo 4 <> ^Jo 32

w

30. ^ COS* ^/0,

sin COS (8 COS* + 10 cos' + 15) + 150 "Is _ 94/3 4- i:>7r

48 Jo
~

96

31

32

33

f^os .

. -^-5- ^0,
J sin'

'

J cos' *

fsin" ^

IT

(2COS'0 .

^0,
7rSin''0

4

^5- j^(i + cos0r

.6 \-^—
^ ' Jsin0cos*0'

cos' _ 3 cos _ 3 log tan ^Q

2 sin^02 2

sm sm I

4 cos 8 cos G
log tan

.4 2 J

sm 5 sin" K ^ . -,

r— — r + - fS — sin cos 0j
3 cos 3 cos 02^ "

cos-'0

sin
cos*

48 - 15^

32

1 [7 do' ^
2 J„ cos* 0'

~

I 1,0
H r + log tan

-

3 cos cos
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[ d^ I 3 cos 6 , 3 , ^ Q
'?7. \— ^-s—

,

—^^-— c ' 2 h^ log tan-.
^'

J sm sm" 20

'

4 sm' cos 6 8 sin' 8^2
38. Prove that when n is odd

H H + log tan ;

J sin cos'' /^ — I n —
2>

and when « is even

f //0 sec«-^0 ,
sec'^-'Q

, . 1
9

-T— —^ = + H- 4- log tan -
.

J sm cos n — I n — $ 2

{ de I
. 5 fsec"© , ^ ,

, ^ e"1
39- -^-3 4- ^-1 3- + h sec + log tan -

.^^ Jsin'0cos'o* 2Sin'0cos'0 2 [_ s 2J

4°-
J y(.-,^_,) >

^«^^^--sec0.

^xVi^v' - i) + J log [:v: + V{x' - i)].

41.
J

(a' - xy dx, ^ '-^ -^ + ^ sm-^ - .

a 5
[

dx \ U . ^TT -^ Z
42. T^—, rTs »

• —T COS ^/0 = ^^
a- ,

(Jt:' ^/a: x^pc^ ~ ^)
I

tan~^ x
'{x' ^ i)" 8(x« + ir"^~~8 •
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, f cos's — sin'e ,^ r f/ ,
• . .\ cos — sine ,"1

46. \t-. \id^ = (i + sin cos 6) 7-r—-— ^d^
,^

J (sin e + cose)' L J ^(sme + cose)' J'

sin e cos

sine + cose

47. Derive a formula for the reduction of L%' sec** a: ^j<? ; and refer-

ring to Ex. II, thence show that this is an integrable form when n is

an even integer. Give the result when ;z = 4.

(j;sec«-2.rtanA: sec^-^x
X sec" X dx =^ ———

—

— —
, —^, r

n — 1 \n— \)\n— 2)

+ "-^^ i
n — I J

X sQC^-''x dx.

. - X sec^ X tan x sec'^ x 2 ^ 1 ^
X sec X dx = ' h - \^ tan x + log cos x\.

3 63"-

48. Derive a formula of reduction for x cos'* x dx, and deduce

from it the value of x cos' x dx.

J- ,;i:cos'*-^:i:sin,r cos**^ n — \ fX cos« ^ tf'.v = 1 T.
1 \xQ.cys?*-^x dx.

n n n ]

\ 8 ^ .^sin.r . ,
cosJ»r

Lr cos xdx z:^ (cos'' X \- 2) ^ (cos^ x + 6).

49. Find the area between the curve

y = sec " ^ .a;,
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the axis of x^ and the ordinate corresponding to x = 2.

— - log [2 + ^3] = 0.77744-
o

50. Find the area between the axis of x^ the curve

y — tan- ^ x,

7t loff 2
and the ordinate corresponding to .^ = i. —^— = 0.43882.

VII. VjQ/^-

Definite Integrals,

76. Before proceeding to transformations of definite inte-

grals involving the values of the limits, it is necessary to

resume the consideration of the relations between a definite

integral and its limits, as defined in the first section.

By definition, the symbol

^ a
dx

denotes the quantity generated at the rate

while X passes from the initial value a to the final value X.
The rate of x is arbitrary, and may be assumed constant ; but
in that case its sign must be the same as that of the mcrement
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received by x ; that is, the sign of dx is the same as that of

X- a.

These considerations often serve to determine the sign of

an integral. Thus

C sin xdx

denotes a positive quantity, because dx is positive, and —-^

is positive for all values of x between o and n,

11. Now let F ix) denote a value of the indefinite integral,

so that

d{F{x)]^f{x)dx',

thusy(;r) is the derivative of F{x). Then, supposing F (x) to

vary continuously as x passes from a to ^; that is, to have no

infinite or imaginary values for values of x between a and X,

the integral is the actual increment received by F {x)^ while x

passes from a to X. In this case, therefore

f/(x)dx = F{X)-F{a) (I).

J a

If, on the other hand, there is any value, a^ between a and X^

such that

F(pL) = ^^

equation (i) does not hold true. For example,

[dx _'dx I

X

and in the case of the definite integral

f' dx
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X passes through the value zero, for which F {x) is infinite ; we
cannot therefore write

C dx _ I" = — 2.

This result indeed is obviously false, since dx is here positive,

and x^ Is never negative for real values of x. The value of the

integral is in fact infinite, since the increments received by

, while X passes from — i to o, and while x passes from o

to I, are both infinite and positive.

78. Since the derivative of a function becomes infinite when
the function becomes infiniteJDiff. Calc, Art. 104; Abridged

Ed., Art. 89], v/e can have F (n) = 00 only when /"(^) = 00
;

but it is to be noticed that F(x) does not necessarily become
infinite when/(;i') becomes infinite. Thus, in

r^ dx

f{x) — x~\^ which becomes infinite for ;r = o, a value of x
between the limits ; but since

iv-^dx^ix^

the indefinite integral F(x) does not become infinite. There-

fore equation (i) holds true, and

J-X^3 2 J_,

79. We have, in the preceding articles, assumed that the

independent variable varies uniformly in passing from the

lower to the upper limit ; but when a change of independent

variable is made, the new variable does not generally vary
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uniformly between its limits. It is, however, obvious, that, in

equation (i). Art. 'JJ, x may vary in any manner whatever in

passing from a to X^ provided that F{x) remains throughout

a continuous one-valued function ; x may even pass through

infinity, provided F (x) is finite and one-valued when ;ir = 00 .

Multiple- Valued Integrals,

80. When the indefinite integral is a multiple-valued func-

tion, a particular value of this function must of course be

employed, and it is necessary to take care that this value varies

continuously while x passes from the lower to the upper limit.

In the fundamental formula (7) it is sufficient (provided the

radical V(i — x^') does not change sign), to limit the meaning of

the symbols sin-';i: and cos"^;r to the primary values of these

symbols (see Diff. Calc, Arts. 54 and 55), since these values

are so taken as to vary continuously while x passes through

all its possible values from — i to + i.

81. In the case of formula (k) the primary value of tan-' x
is so defined that, as x passes from — 00 to + 00 , the primary

value varies continuously from — ^-tt to + \n. We may there-

fore employ the primary value at both limits, unless x passes

through infinity, as in the following example. Given the inte-

gral

ff de ff SQC^edd[6 se<

Jo
'1 +J„ cos^i^ + gsm^e Jo I + gtdiVL^e'

if we put tan 6 = Xy this becomes

3 dx I
tan-^3;i; ^ = - [tan-^(— V3) — tan-^ o],

—lo 3Jo 1+9^ 3

But here it is to be noticed, that, as 6 passes from o to |-7r, x
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passes through infinity when 6 = \7i. Hence, if the value of

tan-'3;i' is taken as o at the lower limit, it is to be regarded as

increasing and passing through \n^ when ;ir = oo , so that its

value at the upper limit is |;r, and not — \n. Hence

f6 dd 27t

cos^ 6^ + 9 sin^ 8

82. When the symbol cot-^ x is employed, the primary

value, defined in the same manner as in 'the case of tan"':r,

cannot be taken at both limits when x passes through zero.

Thus, using the second fo'rm of (>^), Art. 10, we have

= cot"' I — cot"^ (— i),

Jx I +^

in which, if cot"' i is taken as J ;r, cot-'(— i) must be taken

as } n. Thus

f"' dx I

I I + ;r^ 2

Formulas of Reduction for Definite Integrals,

83. The limits of a definite integral are very often such as

to simplify materially the formula of reduction appropriate to

it. For example, to reduce

j:

x"" ^-""dx,

we have by the method of parts
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Now, supposing n positive, the quantity ;tr''
£--^ vanishes when

x = Oy and also when ;r = 00 [See Diff. Calc, Art. 107 ; Abridged

Ed., Art. 91]. Hence, applying the limits o and 00

,

x^'B-'' dx = n
I

x""-"- e-^'dx.

By successive application of this formula we have, when n is

an integer,

^n e—r ^^ _ ^ ^^ _ jj 2.1.
Jo

84. From equation (i) Art. 66^ supposing m > i, we have

n IT

[ sm^^ d dd = ^^^—^ [ sin-- ddO.
Jo ^ Jo

If m is an integer, we shall, by successive application of this

n IT

formula, finally arrive at V dd = - or j' sin ^^^ = i, according

as m is even or odd. Hence

if m is even, f sin" 6 dO = (^j)(>« - 3) • • •
i

. 5, . . (p)
Jq m{m — 2) 2 2 ^ ^

and if m is odd, f^ sin- d dO = {m - i){m - 3) > - - • 2 _ (p^
Jo m{7n-2) I / ^
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85. From equations (3) and (4) Art. 69, we derive

l sin"^ e cos« ede = ^ "" ^

f' sin''' 6 cos"-^edd,
Jo m + n io - _

IT JT

and f' sin'^ 6 cos'^ ^ ^<9 = ^-^LzJL y sm*"-^ d cos« dd,
Jo ^^ + n Jo

By successive application of these formulas, we shall have for

the final integral one of the four forms

\^
dd, Kin^^^, Kos^^^, or [' sin ^ cos ^^^.

Jo Jo Jo "O

The numerator of the final fraction ( or ) is in each

case either 2 or i. In the first case, the value of the final inte-

gral is J 7t, and the final denominator is 2 : in the second and

third cases, the value of the final integral is i, and the final

denominator is 3 : in the fourth case, the value of the final

integral is J, and the final d.enominator is 4. Therefore (since

the factors in the denominator proceed by intervals of 2), it is

readily seen that we may write

F sin'« 6 cos« 6 dO = (^^-i)(^- 3) •-> (^- 0(^:^3)^ ,, . (g)

provided that each series of factors is carried to 2 or i, and a is

taken equal to unity, except when m and n are both even, in which

case a = ^ Tt.
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Elementary Theorems Relating to Definite Integrals,

86. The following propositions are obvious consequences of

equation (i^, Art. T^j.

^f{x)dx=-^f{x)dx (I)

(f{x)dx=\f{x)dx+(f{x)dx. . . (2)
i a J a J c

Again, if we put x ^ a \- b — z^wq have

I"

f{x)dx = - { f(a -V b- z) ds =[ f{a + b-z)dz

by (i), or since it is indifferent whether we write ^ or ;i; for the

variable in a definite integral,

\f{x)dx= \/(a-hb-x)dx .... (3)

l{ a=c, we have the particular case

^'/{x)dx=^'/{b-x)dx .... (4)
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87. As an application of formula (4), we have

K It 1t_

V COS- ede=^ cos'«(^ -e\de= [" sin- ddO . . . . (i)

IT V

Hence the value of ^ cos'" 8 dO as well as that of ^ sin"' 6 dS

is given by formulas {P) and {P'). The values of these integrals

are readily found when the limits are any multiples of ^ n.

For, by equation (2) of the preceding article, we may sum the

values in the several quadrants. But, putting 6 =^ k—h ^', and

employing equation (i), we have

'sm-^ede=±\ ' cos-'dd0=±\ sin-^dde, . . (2)

in which the sign to be used is determined by that of sin'« 6

or cos'" 6 in the given quadrant.

In like manner the value of the integral in formula (Q) is

numerically the same in every quadrant, and its sign is the

same as that of sin'" ^cos'^ ^in the given quadrant.

Change of Independent Variable in a Definite Integral,

88. It is often useful to make such a change of independ-

ent variable as will leave unchanged, or simply interchange,

the values of the limits. As an illustration, let us take the

definite integral

f-Jo I +
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If we put X — — , whence log x = — log j, and dx — ^»
y r

•o

u =
. 00

logj

f+y + l

dy = -u;

whence we infer that

• 00

u =
, o

log;r
dx = 0.

89. Again, let

• 00

u = ^^'-

Putting ;ir = — , we have

_ r2iog^-
'°g-^^r- 1 !(->£..r. dy

Jo a^^f •" ^ )oa^-\-f

hence

f loglog X y _7t lOg^

;r* 2a

Differentiation of an Integral,

90. The integral f {x) dx is by definition a function of x.

whose derivative, with reference to jr, is f{x). Thus, putting

U= \f{x)dx,
i a

dU ,, ,
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This gives the derivative of an integral with reference to its

upper limit. By reversing the limits we have, in like manner,

when the lower limit is regarded as variable,

91. Now writing the integral in the form

U \ u dx
^

(i)

if u is a function of some other quantity, «', independent of x
and Uy U \s also a function of a^ and therefore admits of a de-

rivative with reference to a. From (i) we have

dJJ__
dx~^'

whence

d dU_ dn,

da dx da

By the principle of differentiation with respect to independent

variables [See Diff. Calc, Art. 401 ; Abridged Ed., Art. 200].

d^dU^d_ dU
dx da da dx

'

Therefore

and by integration

d dU_ du
^

dx da da '

dU {du J ^ / X

dx + C (2)
dU __ (du

da ~ ]da
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Now, in equation (i), C/ is a function of x and a which, when
;r = «, is equal to zero, independently of the value of a. In

other words, it is a constant with reference to a^ when x — a\

therefore -r- — o when x =^ a. If, then, we use ^ as a lower
da

limit in equation (2), we shall have (7 = 0. Therefore

dU
da

du J , .

Substituting for x any value b independent of a^ we have

---\ udx —
\
-j-u dx

,

(4)aai a ] a da

which expresses that an integral may be differentiated with

reference to a quantity of which the limits are independent^ by

differentiating the expression under the integral sign.

92. By means of this theorem, we may derive from an inte-

gral whose value is known, the values of certain other inte-

grals. Thus, from the first fundamental integral,

x»dx = - , (l)

we derive, by differentiating with reference to n,

_ (;2 + i)x''-^^\ogx —x""-^^

{n + 1/
X" log X dx =

/ .. , , \2

the result being the same as that which is obtained by the

method of parts.

93. The principal application of this method, however, is

to definite integrals, when the limits are such as materially to
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simplify the value of the original integral. Thus, equation (i)

of the preceding article gives

X'' dx ——^—
,

;2+ I1:

whence, by successive differentiation,

I
x^ loff X dx= — 7 ^

,

Jo (« + 0'

1-2
'^dx^ -, ^,

I
x^'ilogx)

[ x"(\ogxYdx= (- lY ^'^" "''

Integration under the Integral Sign,

94. Let u be a function of jt and a, and let a and ao be con-

stants ; then the integral

U=\ r[ udA^da, (i)

is a function of x and ^, which vanishes when a — 0.0^ inde-

pendently of the value of x^ and when x = a., independently of

the value of a. From (i)

dU [ , ^ d dU
whence -y- 3—

a ax eta

dU [ ,— -=1 \ u ax,
da Ja

therefore -—-— = «, whence -=- = \u da -^ C,
dadx dx J
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Now -%— must vanish when a = a^, since this supposition makes

^independent of x; therefore, if we use ^^^ for a lower limit

in the last equation, we must have C = 0; therefore

dx
— u da^

and since u vanishes when x = a,

U —
\ \

u da
ia VJ OL^

Comparing the values of 6^ in equations (i) and (2), we have

dx. (2)

tc dx da =
aja }a}a

It is evident that we may also write

2L dx da —
ot-Jci ]a]a

u da dx.

(3)

provided that the limits of each integration are independent

of the other variable.

96. By means of this formula, a new integral may be de-

rived from the value of a given integral, provided we can inte-

grate, with reference to the other variable, both the expres-

sions under the integral sign and also the value of the inte-

gral. Thus, from

x"" dx =
n + I
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by multiplying by dn, and integrating between the limits /

and 5, we derive

whence

—^ ax — lop^ .

J^ log A' ^7-+ I

96. When the derivative of a proposed integral with refer-

ence to rt' is a known integral, we can sometimes derive its

value by integrating the latter with reference to vc. Thus, let

u —
'— dx (I)

In this case

da io
"

«' Jo oc^

hence, integrating, u=— log ^^ + 6^ = log — . . . . (2)

since in (i) u vanishes when a—fi.

The Definite Integral Regm^ded as the Limiting Value

of a Sttm.

97. Let A denote the greatest, and B the least value as-

sumed by/(jt'), while x varies from a to b. Then it is evident

that

tf{x)dx< f Adx; (i)

J a J a

for, while x passes from a to b, the rate of the former integral
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is generally less, and never greater than the rate of the latter.

In like manner

fb fb

f{x)dx> \ Bdx (2)
J a J a

The values of the integrals in the second members of equations

(i) and (2) are A {b — a) and B {b — a) respectively. There-

fore, if we assume

(f{x)dx = M(b-d), (3)

we shall have A > M> B.

The quantity M in equation (3) is called the mean value of the

function /(jr) for the interval between a and b.

98. Let

b— a = n Ax\ (4)

then the n + i values of x,

a, a + AXy a-i-2Ax,--'' b,

define n equal intervals into which the whole interval b — a is

separated. Let x^^ x^, x„hG n values of x^ one com-

prised in each of these intervals; also let 2^/{Xr) Ax denote

the sum of the n terms formed by giving to r the n values

I • 2 • • • • n in the typical term/(;ir^) Ax; that is, let

2i/{xr) Ax=/{x,yAx -i-/{x^) AX""-{-/{x„) AX, . . (5)
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We shall now show that when n is indefinitely increased the

limiting value of ^f/(^r) A;r is fix) dx.

99. If we separate the integral into parts corresponding to

the terms above mentioned ; thus,

Jb
ta + AJtr /*« + 2 A J*

/{x) dx = f{x) dx + f{x)dx •
. .

.

+
f

/{x)dx,

and let J/j, M^, • • • • Mn denote the mean values of f (x)

in the several intervals, we have, in accordance with equation

(3), Art. 97,

I

f{x) dx = Af^Ax -^M^ AX -h M„ AX (6)
J a

Now, since /(-tv) and Mr are both intermediate in value

between the greatest and the least values of /{x) in the inter-

val to which they belong, their difference is less than the dif-

ference between these values of /(;t'). Therefore, if we put

/{Xr) = Mr + er, (7)

er is a quantity whose limit is zero when n, the number of

intervals, is indefinitely increased, and A;r in consequence

diminished indefinitely.

Comparing the terms in equations (5) and (6) we have, by
means of equation (7),

2l/{x) AX = f{x) dx + (e^-{- e^ + en) t.x. ... (8)
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Denote by e the arithmetical mean of the n quantities ^1,

^2» • • • • ^« ; that is, let

«£ = ^1 + ^2 + ^3 ^« ; (9)

then, since e is an intermediate value between the greatest and

the least value of ^^, it is also a quantity whose limit is zero

when n is indefinitely increased. By equations (9) and (4),

equation (8) becomes

b [^

2^ f{x,) t^x =
Y^

f{x) dx + e{b- a\

whence it follows that f(x) dx is the limit of ^^/ (^v) dx
J a

w^hen n is indefinitely increased, since the limit of c is zero.

100. It was shown in the Differential Calculus, Art. 390

[Abridged Ed., Art. 193], that, in an expression for the ratio

of finite differences, we may pass to the limit which the ex-

pression approaches, when the differences are diminished with-

out limit, by substituting the symbol d for the symbol A.

The theorem proved in the preceding articles shows that, in

like manner, in the summation of an expression involving

finite differences, we may pass to the limit approached when
the differences are indefinitely diminished, by changing the

symbols ^ and A into and d.

The term integral, and the use of the long s, the initial of

the word sum, as the sign of integration, have their origin in

this connection between the processes of integration and sum-

mation.
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Additional Formulas of Integration.

I0(. The formulas recapitulated below are useful in evalu-

ating other integrals. {A) and {A') are demonstrated in

Art. 17; {B) and {C) in Art. 29; {D) and {E) in Art. 30;

{F) in Art. 31 ; (6^) and {G') in Art. 35 ; (//) and (/) in Art. 50

;

{7) in Art. 51 ;
{K) in Art. 52 ;

{L) in Art. 53 ; {M) in Art. 55 ;

(N) and ((9) in Art. 58; {P) and (P') in Art. 84; and (0 in

Art. 85.

b) a-b log
X — a

dxf
<ar.r i , x — a

,^ 2a X -[- a

. (A)

. {A')

. . {B){sm^ectO = i{d -sin OcosO). ........

[cos2^^(9 = -|(^+ sin6>cos^). .,..,..... ((fl

J sin 6^ c(cos u
logtan^. . ^ ,,:.(/;)

C dd
, ^ . ^ , I — cos ^

-—7, = Iog: tan lu — log r—7^

—

^ == log tan - + -
J cos (9

^ L4 2

L + bcosd Via^~^)
r tan

log
I + sin ^

cos 6

a-b
J a ^ b

tan ,.]. .

.
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[
dB __ I \/{b^a) ^ V{b -d)t^n\d

—-— ^ — -\og-^ '-
. ....... {H]

- log ^~ \ o (/)
X V{d^ — x^) a

dx
'. (?)

\^s/(x^ ± d')dx= ^^^'^^
""'^

±
l'

log [x + V{^±a')-\ . . (L)

' (a^ — x^) dx = — sm-^- -\ — {M)

dx

dx
2sin"^/^^ (O)

Jo Jo mint — 2) 2 2 ^ ^
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Jo Jo m(ni-2) I ^ ^

(m + n){m + n — 2)
^"^^

in which a= i, unless m and n are both even, when a = ~,
2

Examples VII.

I- —T"! ;> [^ > ^> ^^^ ^ ^" integer] -——^^
r^.

p"^^±- do 2n7t±\7t
^*

Jo 2 + COS 9' V3

IT

3. r sin" ear©,

4. sin* fl?i9,

5.
J

„cos'0^e,

5^
32"

16

15'

6. I sin^ cos® 6 //G, 512
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7.
I

sin' cos' ^d% ^

' Jo 4/(1-^')'

'"

J.

35

sin'« Q dQ

,

8. ^ sin"^ e cos"' G ^9, —
I

si
Jo 2'«Jo

f x'^" dx

^

1*3*5 • • (2^ — 1) Ti"

Jo 4/(1 — ^"7* 2-4-6 • • • • 2« 2

2'4'6- ' ' 2n

4/(1--^')' 3.5.7. . . (2«+l)*

2tf^
^^'

' 63-

f {x'~a')'^ax , 3;r
1 ^ • I R » 7~

I0«

r x' dx 8
'^-

JoU^ + ;.')r

15. Prove that

o o

and derive a formula of reduction for this integral, supposing « >
and m '> 1.

o n Jo
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16. Deduce from the result of Ex. 15 the value of the integral

when m is an integer.

Jo n\n-\-i) ' ' '[n + m—i)

17. Wa+xY(a-xy ^x. See£x.i6.
2^V2>^

J -a

It

18. Tsin' Q (cos 6)^ do. Fut sin'^ G — x, and see Ex. 16.

4504s

5-7. II. 19

19. Show by a change of independent variable that

r x^ dx _ r a' dx

Jo (a" +x^Y -Jo {a' +xy '

^ ^ , r x' dx I r dx n
and therefore -7-^—

—

^vi — ~ t—.—i = — •

Jo (« + x^y 2 jo a + x"" 4a

(""xjogx^dx log dJ

Jo V^ +^ ) 2df

r tan-^v. dx 7t^

^^' ]^x' ^x-\- 1' '
'

6^3'

r . X xdx 7t*

22. tan"^ — 4,4 ,
-^-7-

Jo a x^ -\- a*' i6a'

23. Derive a series of integrals by successive differentiation of the

definite integral | f"^ dx.

r . 1-2' '-n
X^ E-*^ dx = ; .

Jo ««-^ '
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m

24. Derive from the result of Art. d"^ ^^ definite integrals

(°°
„ f

>

B - '"* sin nx dx = —. 5 , and f- '«^ cos nx dx =
o m -{ n '

Jo

and thence deri . e by differentiation the integrals

^xe- "-sin nxdx ^ -^-.—-^^^ and
J^

xe- --cos nx dx =
^^._^^.^

25. From the results of Ex. 24 derive

i:-
.«,,-• ^ 2n{sm — n)

2 1 „2\l» »

{m' + 7i')

1:

„ , 2m (m — 3n)
x^ £- '"^ cos nx dx = —7-H ^Ts" •

(m' + n)

26. From the fundamental formula (k') derive

(dx _ TT

and thence derive a series of formulas by differentiation with refer-

ence to a.

dx 71 1-3 •• • (2« — 3) I

27. Derive a series of integrals by differentiating with reference to

/5, the integral used in Ex. 26.

p x^'^-^dx _ 7t i'3-5 > • (2;^ — 3) I

Jo (a + l^x'V ~ 2«a:i i-2-3~- • • (« - i) 'yS«-*
*
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28. From the integral employed in examples 26 and 27, derive

the value of -.
;—Tr-arr •

Jo (n; + ^^ )
^

Differentiate tivice with reference to /?, ««^ ^«^^ a///^ reference to a.

f
x* dx __ i-3'i re

29. Derive an integral by differentiation, from the result of Ex, II., 67

Jo (^-^ + ^0 (^' + ay ~ ^a'b {a + bf
'

30. Derive an integral by integrating —, ^ = —

.

J o a ~T' X 2a

fTtan-.^-tan-.^l^ = ^log^.
JoL ^ xj X 2 ^ g

31. Derive a definite integral by integrating

1:- sin nx ax = —5 5

/« + n

with reference to n.

m^ +^'
(cos «:\: — cos bx) ax — — \oa^

]o X 2 m

32. Derive a definite integral from the integral employed in Ex. 3:

by integration with reference to m.
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T^2,' Derive an integral by integrating with respect to m

ffi
€- ^"^^ COS nx dx = —T,—

^ COS nx ax^= — log -^

34. Derive an integral by integrating with respect to n the integral

used in the preceding example.

re-'"^ . . . . X ^ m(a- b)
(sin ax — sin bx) dx = tan" ' —^

/
Jo ^^

^ m' + abm^ + ab
'

35. Show by means of the result of Ex. 32 that

(•00 •

sm nx . TT
ax = —

X 2

$6. Derive an integral by integration from the result of Ex. II., 67.

(CO 2 1 ' 2

log 2 ^dx by the method of Art. 96.

7t(a — b).

38. Evaluate log i + —, logxdx. ita (log^ ~ i).
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CHAPTER III.

Geometrical Applications.

VIII.

Plane Areas,

102. The first step in making an application of the Inte-

gral Calculus is to express the required magnitude in the form

of an integral. In the geometrical applications, the magni-

tude is regarded as generated while some selected independ-

ent variable undergoes a given change of value. The inde-

pendent variable is usually a straight line or an angle, varying

between known limits ; the required magnitude is either a

line regarded as generated by the motion of a point, an area

generated by the motion of a line, or a solid generated by the

motion of an area. A plane area may be generated by the

motion of a straight line, generally of variable length, the

method selected depending upon the mode in which the

boundaries of the area are defined.

An Area Generated by a Variable Line having a Fixed

Direction,

103. The differential of the area generated by the ordinate

of a curve, whose equation is given in rectangular coordinates,

has been derived in Art. 3. The same method may be em-

ployed in the case of any area generated by a straight line

whose direction is invariable.
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Let AB be the generating line, and let R be its intersection

with a fixed line CD^ to which it is always

perpendicular. Suppose R to move uni-

formly along CDy and let RS be the space

described by R in the interval of time, dt.

U D Then the value of the differential of the

! area, at the instant when the generating line

passes the position AB^ is the area which

would be generated in the time dt^ if the

rate of the area were constant. This rate

would evidently become constant if the generating line were

made constant in length
; and therefore the differential is the

rectangle, represented in the figure, whose base and altitude

are AB and RS ; that is, it is the product of the generating line^

and the differential of its motion in a direction perpendicular to

its length.

104. In the algebraic expression of this principle, the inde-

pendent variable is the distance of R from some fixed origin

upon CD, and the length of AB is to be expressed in terms

of this independent variable.

When the curve or curves defining the length of AB are

given in rectangular coordinates, CD is generally one of the

axes; thus, if the generating line is the ordinate of a curve,

the differential is y dx, as shown in Art. 3. It is often, how-

ever, convenient to regard the area as generated by some

other line.

For example, given the curve known as the witch, whose

equation is

^X — 2af' -\- ^X r=. o (i)

This curve passes through the origin, is symmetrical to the

axis of X, and has the line x = 2a for an asymptote, since

X = 2a makes y = ± 00 .

Let the area between the curve and its asymptote be re-

\
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quired. We may regard this area as generated by the line

PQ parallel to the axis of ;r, y being taken

as the independent variable. Now

PQ = 2a — Xy

hence the required area is

A =
\

{2a- x)dy . . . . (2)

From the equation (i) of the curve, we
have

_ 2a^

whence 2a — x
M Fig. 4.

and equation (2) becomes

^ = 8^r ^^^ - = 4/y^tan-^J^T =4;r^^
J_«,/+4^?2 ^ 2tf L«

Oblique Coordinates.

(05. When the coordinate axes are oblique, if a denotes

the angle between them, and the ordinate is the generating

line, the differential of its motion in a direction perpendicular

to its length is evidently sin a-dx ; therefore, the expression

for the area is

^ = sin «f M/ dx.
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As an illustration let the area between a parabola and a chord

passing through the focus be required. It is shown in treatises

on conic sections, the expression for a focal chord is

AB — \a(iosQ(?a ^ . . . (i)

X
where a is the inclination of the chord

to the axis of the curve, and a is the

distance from the focus to the vertex.

It is also shown that the equation of

the curve referred to the diameter

which bisects the chord, and the tan-

gent at its extremity which is parallel to the chord is

j^ — 4^ cosec^ a-x (2)

The required area may be generated by the double ordi-

nate in this equation; and since from (i) the final value of

J/ is ± 2^ cosec^ oc, equation (2) gives for the final value of x

OR = a cosec^ a.

Hence we have

Fig. 5.

(a cosec^a

y4 = 2 sin «f y dx^
J o

or by equation (2)

(a cosec^a

\/xdx =
o

Sa^ cosec^ a

3

Employment of an Auxiliary Variable,

106. We have hitherto assumed that, in the expression

A ydx,
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X is taken as the independent variable, so that dx may be

assumed constant ; and it is usual to take the limits in such a

manner that dx is positive. The resulting value of A will

then have the sign of j, and will change sign if y changes

sign.

It is frequently desirable, however, as in the illustration

given below, to express both y and dx in terms of some other

variable. When this is done, it is to be noticed that it is not

necessary that dx should retain the same sign throughout the

entire integral. The limits may often be so taken that the ex-

tremityof the generating ordinate must pass completely around

a closed curve, and in that case it is easily seen that the com-

plete integral, which represents the algebraic sum of the areas

generated positively and negatively, will be the whole area of

the closed curve.

107. As an illustration, let the whole area of the closed

curve

f
I,©' * (f)

represented in Fig. 6, be required. If in this equation we put

we shall have

©'= cos tp
;

whence ^ = ^ sin^ //', and y = b cos^ ip , . . (i

Therefore \y dx = ^ab cos^ ip sin^ ^ dip.
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Now if in this integral we use the Hmits o and 27r, the point

determined by equation (i) de-

scribes the whole curve in the

direction ABCDA. Hence we
have for the whole area

(277
cos^ ^ sin^ ^ di\)^

and by formula (0

3-I-I _ '^^nab

^ 6-4-2 8

The areas in this case are all generated with the positive

sign, since when j/ is negative dx is also negative. Had the

generating point moved about the curve in the opposite direc-

tion, the result would have been negative.

Area generated by a Rotating Line or Radius Vector.

(08. The radius vector of a curve given in polar coordinates is

a variable line rotating about a fixed extremity. The angular

rate is denoted by ^ and may
dt

be re-

garded as constant, although the rate at

which area is generated by the radius

vector OPy Fig. 7, is not constant, be-

cause the length of OP is not constant.

The differential of this area is the

area which would be generated in the

time dt, if the rate of the area were con-

stant ; that is to say, if the

Fig. 7.

radius vector were of constant
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length. It is therefore the circular sector OPR of which the

radius is r and the angle at the centre is dd.

Since arc PR = r dd,

sector OPR^-r" dd\
2

'

therefore the expression for the generated area is

(I)

109. As an illustration, let us

find the area of the right-hand loop

of the lemniscata

7^= a^ cos 26. Fig. 8.

The limits to be employed are those values of 6 which

make r = o ; that is and -.
4 4

Hence the area of the loop is

-=?/:=
9

COS 20 dd = - sin 26
4

110. When the radii vectores, r^ and r^ corresponding to the

same value of 6 in two curves, have the same sign, the area

generated by their difference is the difference of the polar areas

generated by r^ and r^. Hence the expression for this area is

\

=ii<'.'
ri') dd. (2)
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111. Let us apply this formula to find the whole area

between the cissoid

Tx = 2a (sec B — cos 6),

Fig. 9, and its asymptote BP2y whose

polar equation is

^2 = 2a sec 0.

One half of the required area is generated

by the line PtP2, while 6 varies from o to

I
TT. Hence by the formula

Fig. 9.

A =
2^2

J^' (2-cos2^) d6 = ^7ra\

Therefore the whole area required is ^Tta^.

Transformation of the Polar Formulas,

112. In the case of curves given in rectangular coordinates,

it is sometimes convenient to regard an area as generated by a

radius vector, and to use the transformations deduced below
in place of the polar formulas.

Put y = fnx
;

(I)

now taking the origin as pole and the initial line as the axis

of ,r, we have

X = r cos 6,

therefore

and

y — r ^\ViQ\ . . • (2)

==^=tan^,
X

dm = sec^ dd (3)

m
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1

From equations (2) and (3),

j(^ dm = r^ dO
;

therefore equation (i) of Art. 108 gives

A = — Li'^ dm. ...... (4)

In like manner, equation (2) Art. 1 10 becomes

A^\\{xi-x?)dm (5)

(13. As an illustration, let us take the folium ^

;r^ + y — 3«;rj/ = O (i)

Putting y = mx^ we have

:t^ ( I -\- if^) — lamx^ —o (2)

This equation gives three roots or values of ;r, of which two
are always equal zero, and the third is

;r = J^; <4)

whence _ ^am ,.

These are therefore the coordinates of the point P in Fig. 10. o
Since the values of x and y vanish when m = o, and when

/

m = c^ , the curve has a loop in the first quadrant. To find \
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the area of this loop we therefore have, by equation (4) of the

preceding article,

2

n^ dm
Jo(i +(i + n^f

3^
2 I + m^A^ 2

114. The area included between this curve and its asymp-

p tote may be found by means of equation

(5), Art. 112. The equation of a straight

line is of the form

D\

c
y = mx + by

Fig. 10.
and since this line is parallel to ^ = mx^

the value of m for the asymptote must be

that which makes x and y in equations (4) and (5) infinite

;

that is, //^ = — I ; hence the equation of the asymptote is

y Ar X — b, (6)

in which b is to be determined. Since when m= — i, the

point P of the curve approaches indefinitely near to the asymp-

tote, equation (6) must be satisfied by P when m= — i.

From (4) and (5) we derive

m^ 4- m xain
y -\- X = ^a— -„ = ^ r

;

whence, putting m = — i, and substituting in equation (6)

— a = by

the equation of the asymptote AB, Fig. 10, is

y -\- x= -a c (7)
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Now, as m varies from — oo to o, the difference between the

radii vectores of the asymptote and curve will generate the

areas OBC and ODA, hence the sum of these areas is repre-

sented by

A = -\ {xi — x^) dm,
lly--

in which Xc^ is taken from the equation of the asymptote (7),

and Xy_ from that of the curve.

Putting J = mx, in (7), we have

a
X2= -

I + m

and the value of x^ is given in equation (4). Hence

^ ^ r 3 L_T

1 + ;;r

m
2 I ~ 7n + mG

o 4f

^.

Adding the triangle OCD, whose area is \a^, we have for the

whole area required ^d^.

* This reduction is given to show that the integral is not infinite for the

value m= — I, which is between the limits. See Art. 77.
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Examples VIII.

I. Find the area included between the curve

/d the axis of x,

2. Find the whole area of the curve

a^y^ - x^ (a- — ^').

\J 3. Find the area of a loop of the curve

13

J
4. Find the area between the axes and the curve

y{x' ha'')=d'{a-x). ^^p - ^^1

5. Find the area between the curve

22. 22 22xy + ay — a x^ = o,

and one of its asymptotes.
'

2«*.

^ / 6. Find the area between the parabolay = ^ax and the straight

line y = X. ^, —

,

3

7. Find the area of the ellipse whose equation is

ax^ + 2bxy + cy' = i.
^,(J- i'y
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\y 8. Find the area of the loop of the curve

cy" = (x — d){x — by
J

in which ^ > o and b y a.
8 (^ - a )%

\/ 9. Find the area of the loop of the curve

ay = X* (b + x).

10. Find the area included between the axes and the curve

105^8

=i / V \ ^ ab
I.

—(:-)"-©•
20

\. II. If « is an integer, prove that the area included between the

axes and the curve

&-& =

. n(n— 1) ' ' ' 1 ,

IS A = — r-^

—

-—;—c ab.

12. If n'ls an odd integer, prove that the area included between

the axes and the curve

\n(n— 2) ''!]' nab
IS A — . .

271 \2n — 2) • • • 2 2
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13. In the case of the curtate cycloid

X = aip — b ?>m tj.^ y = a — b cos ^,

find the area between the axis of x and the arc below this axis.

(2a' + b") cos-^l - za Vib' - «").

14. li b— iaTTj show that the area of the loop of the curtate

cycloid is

15. Find the area of the segment of the hyperbola

^j^-^ > X = a sec ip, y = b tan t/j^

cut off by the double ordinate whose length is 2b.

ab V2

16. Find the whole area of the curve

r"" — a" cos' ¥ b"" sin" 9.

17. Find the area of a loop of the curve

r" = d' cos' — ^' sin'' 0.

log tan ^]

2
^

ab (a'-b') _,a— + ^^ ^ tan -22 b

\^ 18. Find the areas of the large and of each of the small loops of

the curve

r — a cos Q cos 2O :



§ VI 1 1.] EXAMPLES, 137

and show that the sum of the loops may be expressed by a single

integral.

s/.

nc^
. a . 7ta a

-J- + -
, and .

16 4
'

32 8

12

9. In the case of the spiral of Archimedes, ^ 3 ^ ^

find the area generated by the radius vector of the first whorl and

that generated by the difference between the radii vectores of the «th

and (n + i)th whorl.

^, and 8««V.-''^'«
6

20. Find the area of a loop of the curve

r = a sm 39.

21. Find the area of the cardioid

r = 4a sin' ^. 6;r«'.

22. Find the area of the loop of the curve

cos 29 a^ (4 — Tt)
r = a^^—-. -.

cos 9 2

23. In the case of the hyperbolic spiral,

rB = ay

show that the area generated by the radius vector is proportional to

the difference between its initial and its final value.
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L

24. Find the area of a loop of the curve

r^=^ a cos n 9. .

25. Find the area of a loop of the curve

„ _ . sin 38
•

d"
7 — u a fl • —

•

COS o 2

26. Find the area of a loop of the curve

r' sin = <3!* cos 28.

Notice that r z> ?ra/ andfinite from =^ to^ = — , and that ——
•^ •' 4 4

'

J sm Q

is negative in this interval. d\ ^2 ~ log (i + ^2) .

» / 27. Find the area of a loop of the curve X

(x'^yy^a^xy.

Transform to polar coordinates. —

.

28. In the case of the lima9on

r = 2a cos B + If,

find the whole area of the curve when b> 2a and show that the same

expression gives the sum of the loops when /' < 2a.

(2a^ + ^');r.
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29. Find separately the areas of the large and small loops of the

lima9on when b < 2a.

If o' = cos-M — —
)

,

large loop = (2^' + h') a -V ^ V(4«' - b'')
;

small loop = {^2d' + b"") {n — a) — ^ ^(4^^ - b'\

30. Find the area of a loop of the curve

/-' r= d^ cos n^ + /$^ sin « 9.

31. Find the area of the loop of the curve

2 cos 2 6' — I

\/{a' + b')

r = a
cos [5V3-|->.

32. Show that the sectorial area between the axis of x^ the equi-

lateral hyperbola

-r' -/ = I,

and the radius vector making the angle 6 at the centre is represented

by the formula

. I - I + tan^ = - log
;

4 ^ I — tan Q
'

and hence show that

f2A _|_ ^ - 2A g2A f-2A
.V =

,
and y = .

2 2

If A denotes the corresponding area in the case of the circle

x' +/ = I,

we have

X = cos 2^, and y = sin 2^.
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L

In accordance with the analogy thuspresented^ the values of x and y given

above are called the hyperbolic cosine and the hyperbolic sine of 2A. Thus

f2A ^_ ^-2A ^_2A f2A— := cosh (2^), — sinh (2A).

\^ 33. Find the area of the loop of the curve

JI-* ^" 3«^y + 2«y = o. ^^

34. Find the area of the oop .of the curve

. -^ s'^'

\ 38. Trace the curve

• y
AT= 2^ sin —

,

X

35"

lyfj -f- T
;»;2« + i4.jj,2« + i — (2«+ i) «Jt:«_y«. -

—

a^ ,

35. Find the area between the curve

jp2« + i _|_^2«+i — (^2n + i) axy*"

. . 2« + I „

and its asymptote. a .

36. Find the area of the loop of the curve

y^ + ax^ — axy = o.

37. Find the area of a loop of the curve

x^ 4- jj;* = c^xy.

60

and find the area of one loop.
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IX. J^'^~

Volumes of Geometric Solids.

x^

115. A geometric solid whose volume is required is fre-

quently defined in such a way that the area of the plane sec-

tion parallel to a fixed plane may be expressed in terms of

the perpendicular distance of the section from the fixed plane.

When this is the case, the solid is to be regarded as generated

by the motion of the plane section, and its differential, when
thus considered, is readily expressed.

116. For example, let us consider the solid whose surface is

formed by the revolution of the curve APB^ Fig. ii, about

the axis OX. The plane section per-

pendicular to the axis OX \s a circle;

and if APB be referred to rectangu-

lar coordinates, the distance of the

section from a parallel plane passing-

through the origin is jr, while the

radius of the circle \s y. Supposing

the centre of the section to move
uniformly along the axis, the rate at

which the volume is generated is not

uniform, but its differential is the vol-

ume which would be generated While the centre is describing

the distance dx, if the rate were made constant. This differen-

tial volume is therefore the cylinder whose altitude is dx, and

the radius of whose base isj^. Hence, if F denote the volume,

dV = Tty^ dx.

117. As an illustration, let it be required to find the volume

of the paraboloid, whose height is h^ and the radius of whose

base is b.
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The revolving curve is in this case a parabola, v/hose equa-

tion is of the form

and since y = b when x — h,

U^ — ^ky whence 4<^ =r -7 ;

ft

the equation of the parabola is therefore

, ^f = -^..

Hence the volume required is

y— TV \ y"^ dx = n —\ x dx
nb'h

2

1(8. It can obviously be shown, by the method used in

Art. 116, that whatever be the shape of the section parallel to

a fixed plane, the differential of the volume is the product of the

area of the generating section and the differential of its ^notion

perpendicular to its plane.

If the volume is completely enclosed by a surface whose

equation is given in the rectangular coordinates x, y, 2, and if

we denote the areas of the sections perpendicular to the axes

by Ajr, Ay, and A^., we may employ either of the formulas

V= \a^. dx, V^ [a,, dy, V=:\a, dz.

The equation of the section perpendicular to the axis of x
is determined by regarding x as constant in the equation of

the surface, and its area A^ is of course a function of x.
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For example, the equation of the surface of an ellipsoid is

The section perpendicular to the axis of x is the ellipse

f ^ __c? — x^

b c
whose semi-axes are- ^(c^ — x^) and - V{a^ — ^.

Since the area of an ellipse is the product of tt and its semi-

axes,

The limits for x are ±a, the values between which x must lie

to make the ellipse possible. Hence

nbc
f'' , 2 .Ji\ ^.. _^7tabc

x^) dx

119. The area A.r can frequently be determined by the con-

ditions of the problem without finding the equation of tbe

surface. For example, let it be required to find the volume of

the solid generated by so moving an ellipse with constant

major axis, that its center shall describe the major axis of a

fixed ellipse, to whose plane it is perpendicular, while the ex-

tremities of its minor axis describe the fixed ellipse. Let the

equation of the fixed ellipse be



144 GEOMETRICAL APPLICATIONS. [Art. 119.

and let c be the major semi-axis of the moving eUipse. The
minor semi-axis of this ellipse is y. Since the area of an

ellipse is equal to it multiplied by the product of its semi-axes,

we have

Ax= 71cy —— ^/ic^ — x^),
a

Ttbc r^
Therefore V=— V{c^ — j^)dx\

hence, see formula (^),

F = '^abc

The Solid of Revolution regarded as Generated by a

Cylindrical Surface,

120. A solid of revolution may be generated in another

manner, which is sometimes more
convenient than the employment
of a circular section, as in Art. 116.

For example, let the cissoid PORy
Fig. 12, whose equation is

1

1 \
J^.l^
— ^

A

—
~c

pv^__

\

V

Fig. 12.

pass from the value OA
will evidently generate the solid of revolution

y^ {2a — x) = A^f

revolve about its asymptote AB.
The Hne PR, parallel to AB and

terminated by the curve, describes

a cylindrical surface. If we con-

ceive the radius of this cylinder to

2a to zero, the cylindrical surface

Now every
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point of this cylindrical surface moves with a rate equal to

that of the radius; therefore the differential of the solid is

the product of the cylindrical surface, and the differential of

the radius. The radius and altitude in this case are

PC=2a

therefore

Putting

x, and

(•za
2ax fxdx..^\i

X — a = a sin 6,

PR=2y,

uV= 47ra^ ' (cos^ + cos^ 6 sin 6) dd = 2;rV.

Double Integration,

121. When rectangular coordinates are used, the expression

for the area generated by a line parallel

to the axis of y and terminated by two
curves is

A^\^^{y^-y^dx. (I)

Let AB, in Fig. 13, be the initial, o a c

and CD the final position of the gen- ^^^- ^3-

erating line, then the area is ABDC, which is enclosed by the

curves

and by the straight lines

a, x=b.
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If in equation (i) we substitute for y^ —ji the equivalent ex-

pression cfyf we have

(2)

which expresses the area in the form of a double integral. In

this double integral the limits ji and j/g forj/, are functions of

.r, while a and b^ the limits for x, are constants.

122. If the area is that of a closed curve y^ and y2 are two

values of J/ corresponding to the same value of x in the equa-

tion of the curve, and a and b are the values of x for which y^

andjj/g become equal, as represented by the dotted lines in Fig.

13. It is evident that the entire area may also be expressed in

the form

A-^\^^yxdy; (3)

and that when either of the forms (2) or (3) is applied to the

area of a closed curve the limits are completely determined by

the equation of the curve.

123. The limits in either of the expressions (i) or (2) define

a certain closed boundary, and since either of these integrals

represents the included area, it is evident that we may write

II
dy dx dxdy\

provided it is understood that the limits in the two expressions

are such as to represent the same boundary. It should however

be noticed that if the boundary is like that represented by the

full lines in Fig. 13, or if the arcs j/=j/i and y =/2 do not

belong to the same curve, we cannot make a practical application

of the form (3) without breaking up t'he integral into several

parts.
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124. Let ^ (-i',j) be any function of x and j. In the double

integral

f f

'

<i>{x,y)dy dx, (i)
J a J J2

X is considered as a constant or independent of y in the first

integration, but the limits of this integration are functions of x.

The double integration is then said to exte7id over the area

which is represented by the expression

f
^'' dyd,x or

J^
(72-^1) dx. (2)

125. Now let the surface, of which

z = ^ (x, y) (3)

is the equation in rectangular coordinates, be constructed ; and

let a cylindrical surface be formed by moving a line perpen-

dicular to the plane of xy about the boundary of the area (2)

over which the integration extends. Let us suppose the value

of z to be positive for all values of x and y which represent

points within this boundary. Then the cylindrical surface,

together with the plane of xy and the surface (3), encloses a

solid, of which the base is the area

(2) in the plane xy, or ASBR in Fig.

14, and the upper surface is CQDP a

2)ortion of the surface (3).

Let SRPQ be a section of this

solid perpendicular to the axis of x.

In this section x has a constant value,

and the ordinates of R and 5 are the

corresponding values of y^ and ja-

The area of this section, which denote Fig. 14.
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by A^^ as in Art. 1
1 7, may be regarded as generated by the line

z, hence

A

and therefore

iy\

(b rja

\ zdydx (i)

which is identical with expression (i) Art. 124.

126. Now it is evident that the same volume may be ex-

pressed by

= \zdxdy^

provided that the double integration extends over the same area.

Hence, with this understanding, we may write

# (jt,j) dy dx = (f) {x, y) dx dy.

In this formula x and y may be regarded as taking the

places of any two variables, the limits of integration being

determined by a given relation between the variables. Thus
we may write

(j) {u, v) dv du = \\(}) {u, v) du dv,

provided the limits of integration are determined in each case

by the same relation between u and v.

127. For example, if this relation is

U^ ->r V^ — c"^ =. Qj
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the range of values in the first integration is between

that is, we must have

or 1^ ¥ v^ — c^ <o (i)

But this condition also expresses the limits for u^ since v is

only possible when u^ < c^. Now, putting rectangular coordi-

nates, X and 7, in place of u and v, it is convenient to express

the restriction (i), by saying that the range of values of x and ^

y is such as to represent every point within the circle

Volumes by Double and Triple Integration.

128. As an application of formula (i). Art. 125, let us sup-
"

pose the curve ASBR to be the circle

{x-kf + {v-kf = c\ (I)

and the equation of the surface CQDP to be

xy^pz (2)

Then ^=M' r ^ydydx^^J\ {y^-yi)xdx,
p J a Jj^ ^P J a
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in which the limits y^ and y^ are derived from equation (i).

Hence

and ^= ^ f ' ^^^ - (-^ - ^)'] ^ ^^'
P ] a

The limits for x are the extreme values of x which make j»

possible ; that is,

a = h — c and b = h + c

To evaluate the integral, put

X — h = c sin 6
;

then V=^\\Qos^d{k-\-c sin 6) dd.

Since, by Art. 87,

TT

cos^ ^ sin ddd =G,

we have finally

~ / *

(29. A volume in general may be represented by the triple

integral

V=\\\dgdy,ix, (I)
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which is equivalent to

F=||(^2-^i)^J^^, (2)

for {zc^ — ^\) (iy — Axy the area of a section perpendicular to

the axis of x. We may regard this formula as expressing the

difference between two cylindrical solids of the form represented

in Fig. 14.

130. When the volume is that of a closed surface, z^ ^"<^ ^1

are two values of z in terms of x and j/ found from the equa-

tion of the surface. The area over which the integration

extends is in this case the projection of the solid upon the plane

of xy ; in other words, the base of a circumscribing cylinder.

Thus, if the volume is that of the sphere

x' + f-{-{z-cy=a\ (I)

^1 and ^2 ^^^ the two values of js derived from this equation*

that is c ± */(a^ — x^ — j^).

Hence ^2 — ^1 = 2 V{a^ — x^ — j/*),

and V= 2 [[ V (a^ - ^-f) dydx.. c . . . (2)

The integration here extends over the circle

x'^f-a^^Q.. . . (3}
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since z^ — z^ is real only when

c? — x^ —f > o.

From equation (3) we find the limits for j/ to be

hence, by formula {M), equation (2) becomes

V = n {c^ — j^) dx.

Finally the limits for x are ± a^ since y is real only when x is

between these limits
;

therefore V c^x x^
I

— - 7ta^

,

Elements of Area and Volume.

131. In accordance with Art. 100, the expression for an area,

J J

dydx, (i)

IS the limit of the sum

2li2',\i^y-\c.x.

Since each of the terms included in ^^"^ Ay is multiplied by

the common factor ax, this sum may be written in the form

Sl^^-jA/A^- (2)
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The sum (2) consists of terms of the form

A7 A;r
;

and this product is called the element of the sum ; in like man-
ner, the product

dy dx,

which takes the place of t\y Ax when we pass to the limit by
substituting integration for summation, is called the element of

the integral (i), or of the area represented by it.

132. We may now regard the process of double integration

as a process of double summation, as indicated by expression

(2), followed by the act of passing to the limiting value. In

the first summation indicated, the elemental rectangles corre-

sponding to the same value of x are combined into the term

(^2 ~ y'x) ^-^'j which may be called a linear element of area, since

its length is independent of the symbol A.

133. It is easy to see that, in a similar manner, when rec-

tangular coordinates are used, a volume may be regarded as

the limiting value of the sum of terms of the form

A,t' Ay Az\

and hence dx dy dz^

which takes its place when we pass to the limiting value by
substituting integration for summation, is called the element of
volume.

If the summation is effected in the order ^, 7, x, the first

operation combines the elements which have common values

of y and x into the linear element of volume,

(Z2- zi) AX Ay,
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The second operation combines the linear elements correspond-

ing to a common value of x^ over a certain range of values oi y,

into a term whose limiting value takes the form

A^ AX.

This last expression represents a lamina perpendicular to the

axis of X, whose area is A^, a section of the solid, and whose

thickness is A.r.

Polar Elements,

134. If in the formula for a polar area,

\rl-r^)de, (I)A = '-

2 J

[equation (2), Art. no], we substitute for -{r^— rf) the equiv-

r dr, we obtain

A=\^ [\drde, (2)

in which a and ^ are fixed limits for 6.

Now it follows, from Art. 126, that the limits being deter-

mined by a certain relation between r and 6, this integral may
also be put in the form

A=[ r\''de'dr=\\{e^-e^)dr, ... (3)
i a h^ J a
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in which a and b are the limiting values of r, between which 6

is possible.

The expression r dr dOy

in equation (2), is called th.^ polar element of area.*

135. The formula

A = \r{e,-e^dr-\r{e,-e,)

may also be derived geometrically ; for r (S^ — 6^ is the length

of an arc whose radius is r. As r increases, this arc generates

the surface, and it is plain that every point has a motion,

whose differential is dry in a direction perpendicular to the arc.

136. In determining the volume of a solid, it is sometimes
convenient to express ;? as a function of the polar coordinates

of its projection in the plane of xy. In this case we employ
the linear element of volume,

(<8'2 — ^1) r dr ddy

corresponding to the polar element of area.

* It is easily shown that the area included between the circles whose radii are

rand r + Ar, and the radii whose inclinations to the initial line are 6 and fl + A«
is

(r+ ^Ar) Ar Afl.

Since r 4- i A r is intermediate between r and r + A r, the limiting value of the

sum, of which this is the element, is, by Art. 99, the integral of the element

rdrde.

In the summation corresponding to equation (i), the elements are first combined

into the sectorial element

while in the summation corresponding to equation (3), they are first combined into

the arc-shaped element

(r+ iArX^a -0,) An
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As an illustration, let us determine the volume cut from a

sphere by a right cylinder, having a radius of the sphere for

one of its diameters. Taking the centre of the sphere as

the origin, the diameter of the cylinder as initial line, and the

axis of z parallel to the axis of the cylinder, we have for

every point on the surface of the sphere

(I)

where a is the radius of the sphere. Hence

•^2 — -S"! = 2 4/(^2 — r^).

and V-n> T^Yrdrde-^
L 3

(^2 - 7^)^ dd.

The circular base passes through the pole, and its equation is

r — a cos 6, (2)

hence the limits for r are o and a cos 6, and by substitution we
obtain

V^—Ui -sin'6)de.

The limits for are ± — , the values which make r vanish

in equation (2) ; but it is to be noticed that the expression

(d^ — r^)t, for which we have substituted <^ sin^ d, is always posi-

tive^ whereas sin^ S is negative in the fourth quadrant. Hence

the value of V is double the value of the integral in the first

quadrant ; that is,

V^^\' {i-^m^B) dd
27ta''

3

8^
9
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If a second cylinder whose diameter is the opposite radius of

the sphere be constructed, the whole volume removed from the

sphere is
^Ttar 1 6^3

, and the portion of the sphere which

[6^
remains is , a quantity commensurable with the cube of

9.

the diameter.

Polar Coordinates in Space,

137. A point in space may be determined by the polar

coordinates p, ^^ and ^, of which p de-

notes the radius vector OP, Fig. 15,

^ the inclination POR of p to a fixed

plane passing through the pole, and d

the angle ROA, which the projection

of p upon this plane makes with a

fixed line in the plane. The angles ^

and d thus correspond to the latitude

and longitude of the point P considered

as situated upon the surface of a sphere

whose radius is p. The radius of the

circle of latitude BP is

Fig. 15.

PC= p cos (j>.

The motions of P, when p, ^, and Q independently vary, are

in the directions of the radius vector OP and of the tangents at

P to the arcs /7? and PB, The differentials of these motions

are respectively

dp. p </^, and p cos <f>
dd

;
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and since these motions are mutually rectangular, the element

of volume is their product,

f^ cos ^ dp d<l> dQy

and F^fffp^cos^^p^^^^ (i)

(38a Performing the integration with respect to /o, the for-

mula becomes

V^-\\{9l- pl)zosii>d(i>de (2)

When the radius vector lies entirely within the solid, the lower

limit f\ must be taken equal zero, and we may write

V=-\\p'zo->^d<i>de (3)

The element of this double integral has the form of a pyramid

with vertex at the pole.

If, on the other hand, in formula (i) we perform first the

integration with respect to ^, we have

F=|j(sin4-sin#i)pVp^^. .... (4)

Taking the lower limit ^1 = o, so that the solid is bounded by
the plane ORA, we have the simpler formula

V--=Usm(f>fJ'dpdd (5)

139. The formulas of the preceding article take simpler
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forms when applied to solids of revolution. Let OZ, Fig. 15,

be the axis of revolution, then p and 6 are polar coordinates of

the revolving curve, OR being the initial line. Now 6 is in

this case independent of p and ^, and its limits are o and 27t.

The integration with reference to d may therefore be performed
at once. Thus from (3) we obtain

V=t)f? COS ^ d(l> ; (6)

and in each of the formulas the factor 27r may take the place

of the integration with reference to 6.

140, As an example of the use of equation (6), let us find

the volume generated by a circle revolving about one of its

tangents. The initial line, being perpendicular to the axis of

revolution, is a diameter ; hence if a is the radius of the circle

its equation is

ft — 2a cos ^,

and the limits for ^ are and -.22 Substituting in (6)

cos^ (j) dcj) — 27i^a^.

141. The following example of the use of

equation (4), Art. 138, is added to illustrate

the necessity of drawing a figure in, each

case to determine the limits to be employed.

Let it be required to find the volume
generated by the revolution of the cardioid

about its axis, the equation of the curve

being

p = a{i +sin^), . .

Fig. 16.

(I)
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when the initial line is perpendicular to the axis of the curve,

as in Fig. 16. The figure shows that the upper limit for ^

is — ;r, while the lower limit is the value of ^ given by equa-

tion (i) ; therefore

sin (^0 = I, and sin (j^.
= i.

a

The limits for ft are evidently o and 2a. Substituting in equa-

tion (4) Art. 138,

21.
,

3 4^Jc

Examples IX.

I. Find the volume of the spheroid produced by the revolution of

the ellipse,

about the axis of x. .

2. Find the volume of a right cone whose altitude is a, and the

radius of whose base is d. nab^

3. Find the volume of the solid produced by the revolution about

the axis of x of the area between this axis, the cissoid

y {2a — x) = x\

and the ordinate of the point («, a). S^'tt (log 2 — |).
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4. Find the volume generated by the revolution of the witch,

y^x — 2ay^ + ^d^x = o,

about its asymptote.

See Art. 104. dfTt^a^.

5. The equilateral hyperbola

x' — y^ — m

revolves about the axis of .v : show that the volume cut off by a plane

cutting the axis of x perpendicularly at a distance a from the vertex

is equal to a sphere whose radius is a.

6. An anchor ring is formed by the revolution of a circle whose

radius is b about a straight line in its plane at a distance a from its

centre: find its volume. i>. > 0- 2n'^aB\

7. Express the volume of a segment of a sphere in terms of the

altitude h and the radii a^ and a^ of the bases.

— {le + 3^r -I- 3«/).

8. Find the volume generated by the revolution of the cycloid,

x = a(ip — 'SAiiip), y = a {i — cos ^),

about its base. 57^''^^

9. The area included between the cycloid and tangents at the

cusp and at the vertex revolves about the latter ; find the volume gen-

erated.

10. Find the volume generated by the revolution of the part of the

curve

y=8-,

which is on the left of the origin, about the axis of x.

7t
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11. The axes of two equal right circular cylinders, whose common
radius is a, intersect at the angle a

; find the volume common to the

cylinders.

The section parallel to the axes is a rhombus. i6a^

3 sin «
*

12. Find the volume generated by the revolution of one branch of

the sinusoid,

V = ^ sin —

,

a
about the axis of x. n'^b

^

2a
'

13. Find the volume enclosed by the surface generated by the revo-

lution of an arc of a parabola about a chord, whose length is 2e, per-

pendicular to the axis, and at a distance b from the vertex.

i67r^V

15

14. Find the volume generated by the revolution of the tractrix,

whose differential equation is

dx -^ V{a-/)
about the axis of x.

Express ny^ dx in terms of y.

15. Find the volume cut from a right circular cylinder whose radius

is «, by a plane passing through the centre of the base, and making

the angle a with the plane of the base.

16. Find the volume generated by the curve

xy^ = ^a^ (2a — x)

revolving about its asymptote. 47rVJ ^8
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•J 17. Express the volume of a frustum of a cone in terms of its

height hy and the radii ax and a^. of its bases.

7th . ^ «x— (^1 + ^1^0 + a:),

3

18. Find the volume generated by the revolution of the cardioid,

r = ^ (i — cos 9),

about the initial line.

Expressy and dx in terms of B. 8 rra^

3

19. Find the volume of a barrel whose height is 2h, and diameter

2b, the longitudinal section through the centre being a segment of an

ellipse whose foci are in the ends of the barrel.

2h' + s^'^
27tb'^h

3 (^^ + ^0
•

20. Find the volume generated by the superior and by the inferior

branch of the conchoid each revolving about the directrix ; the

equation, when the axis oi y is the directrix, being

xy = (^ + xy {b' - x").

n'ab' ± ^

3

2 ,. ,
4^^'

Tt^ab ±

21. On two opposite lateral faces of a rectangular parallelopiped

whose base is ab, oblique lines are drawn, cutting off the distances

Ci, Ci, ^3, Ci on the lateral edges. A straight line intersecting each of

these lines moves across the parallelopiped, remaining always parallel

to the other lateral faces : find the volume cut off.

ab {ci + r. + ^8 + ^i)

4
*

.

22. Find the volume enclosed by the surface generated by an arc

of a circle whose radius is a, about a chord whose length is 2c.

3
"
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23. The area included between a quadrant of the ellipse

A — a cos ^, y = b sm (j),

and the tangents at its extremities revolves about the tangent at the

extremity of the minor axis ; find the volume generated.

Ttab"^ (10 — 3 tt)

24. An ellipse revolves about the tangent at the extremity of its

major axis ; express the entire volume in the form of an integral,

whose limits are o and 2 7r, and find its value. 211^d^b.

25. Show that the volume between the surface,

s« =:: a\x'' -^ b\y\

and any plane parallel to the plane of xy is equal to the circumscrib-

ing cylinder divided by n \- 1.

26. A straight line of fixed length 2c moves with its extremities in

two fixed perpendicular straight lines not in the same plane, and at a

distance 2b. Prove that every point in the moving line describes an

ellipse in a plane parallel to both the fixed lines, and find the volume

enclosed by the generated surface. ^n. {c^ — Ir) b

3

27. Find the volume enclosed by the surface whose equation is

x^ y^ s* Znabc

a b' c' 5

28. A moving straight line, which is always perpendicular to a fixed

straight line through which it passes, passes also through the circum-

ference of a circle whose radius is a, in a plane parallel to the fixed

straight line and at a distance b from it ; find the volume enclosed

by the surface generated and the circle. na^b
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29. Find the volume enclosed by the surface

oca
and the plane a .= a.

30. Find the volume enclosed by the surface

a. 2. s V
x-^ -f- V* 4- s^ = rt!-\

Ttabc

2

Find Az as in Art. 107, and then evaluate V by a similar method.

^Tta^

31. Find the volume between the coordinate planes and the surface

(^,(^U^=.
\a J \bj \c/ go

32. Find the volume cut from the paraboloid of revolution

J* -f s' = 4ax

by the right circular cylinder

^" +y = 2ax,

whose axis intersects the axis of the paraboloid perpendicularly at the

focus, and whose surface passes through the vertex. , i6a^
27ta^ + . •

3
7,2i-

The paraboloid of revolution

.v'^ + / = cz

is pierced by the right circular cylinder

x^ -^r y^ = ax^
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whose diameter is a, and whose surface contains the axis of the parab-

oloid ; find the volume between the plane of xy and the surfaces of

the paraboloid and of the cylinder. 2>'^a^

34. Find the volume cut from a sphere whose radius is ^ by a

right circular cylinder whose radius is h^ and whose axis passes through

the centre of the sphere. A'^V -^ , 1 zqx J~l_^,-_(^_^)
J.

35. Find the volume cut from a sphere whose radius is a by the

cylinder whose base is the curve

r = « cos 39. 2a^7t 8^^

3 9

-^d. Find the volume cut from a sphere whose radius is a by the

cylinder whose base is the curve

r = a cos B -\- sm G,

z ^ 47r^^ 16 , 2 72x4supposmg b < a. {a — y .

•J y

37. A right cone, the radius of whose base is a and whose alti-

tude is d, is pierced by a cylinder whose base is a circle having for

diameter a radius of the base of the cone ; find the volume common
to the cone and the cylinder. da^

,

^

,

-(9^-16).

38. The axis of a right cone whose semi- vertical angle is a coin-

cides with a diameter of the sphere whose radius is a, the vertex being

on the surface of the sphere ; find the volume of the portion of the

sphere which is outside of the cone. 4n'^^cos* a

3

39. Find the volume produced by the revolution of the lemniscata

about a perpendicular to the initial line. Tr^a^ \/2
8~
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40. Find the volumes generated by the revolution of the large loop

and by one of the small loops of the curve

r ^= a cos 6 cos 29

about a perpendicular to the initial line.

-\ , and
16 5 32 10

*

41. From the element

r dr dB dz

derive the formulas for determining the volume of a solid of revolution

whose axis is the axis of z.

V=- 2 7t \rdrdz^

V= Tt\(r^—rl)dz, and V= 27t\(Zi — Zy)r dr.

Interpret the elements in these integrals.

42. Find the volume generated by the revolution of the curve

in which a > b^ about the axis oiy.

Transform topolar coordinatesy and use the method of Art. 139.

Ttb{2b'' + 3^') na' _^ b_

6 "^2V(«"-^')''^^ a'

43. Find the volume generated by the curve given in the preceding

example, when revolving about the axis of x.

na (2a' + ^b') nb" a + VC^" - b^)
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44. Find the volume common to the sphere whose radius is p = «,

and to the solid formed by the revolution of the cardioid,

r = « (i + cos 0),

about the initial line.

See Art. 141. —7~ •

45. Find the whole volume enclosed by the surface

Transform to the coordinates p, <^, 0, and show that the solid consists

a'
offour equal detached parts. -7 •

X.

Rectification of Plane Curves.

(42. A curve is said to be rectified when Its length is deter-

mined, the unit of measure to which it is referred being a

right line.

It is shown in Diff. Calc, Art. 314 [Abridged Ed., Art. 164],

that, if s denotes the length of the arc of a curve given in

rectangular coordinates, we shall have

ds = ^/{dx' + df\

If the abscissas of the extremities of the arc are known, s is

found by substituting for dy in this expression its value in

terms of x and dx^ and integrating the result between the

given values of x as limits. Thus, to express the arc measured

from the vertex of the semi-cubical parabola
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in terms of the abscissa of its other extremity, we derive, from

the equation of the curve,

, 3 ^/x dxdy=-—
,

whence ds — —^^^
, dx.

2 Va

Integrating,

= \/(gx + 4a) dx
2 f'a Jo

{gx + 4ay - — .

2yVa^^ 27

(43. When x and y are given in terms of a third variable,

ds is generally expressed in terms of this variable. For exam-

ple, from the equations of the four-cusped hypocycloid,

x — acos^ipy y = asm^(/', . . . (i)

we derive

dx — — -i^a cos^ ^ sin ^ d^p, and dy — ^a sin^ ^ cos ^ dip\

whence . ds = 2>^ sin tp cos d^' (2)

The length of the arc between the point {a, o), corresponding

to ip — o, and (o, a) corresponding to ^ = |7r, is therefore

I
3^ • <i-- sm
2

']:=?
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Change of the Sign of ds.

I44-. We have hitherto assumed ds to be positive, but it is

to be remarked that an expression substituted for ds^ as in the

illustration given in the preceding article, may change sign.

Thus, in equation (2), ds, which is so written as to be positive

while ip passes from o to \7t, becomes negative while ?/; passes

from \n to n. Thus the integral gives a negative result for

the arc between the points (o, a) and (— ^, o), corresponding to

\n and n. This change of sign in ds indicates a cusp or sta-

iionary point of the curve ; and the existence of such points

must be considered before we can properly interpret the result-

ing values of s. For instance, if in this example we integrate

between the limits o and— , we get the result ^ = — , which is

4 4
the algebraic sum, but the numerical difference of the arcs

between the points corresponding to the limits.

Polar Coordinates.

146. It is proved in Diff. Calc, Art. 317 [Abridged Ed.,

Art. 167], that when the curve is given in polar coordinates

ds = Vidr" + r" dffi).

This is usually expressed in terms of d. For example, the

equation of the cardioid is

r = a {i — cos 6) = 2a sin^

1

;

whence dr = 2a sin ^0 cos ^0 ^^,

and by substitution

ds = 2a sin |-(9 d(^.
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The limits for the whole perimeter of the curve are o and 2;r,

and ds remains positive for the whole interval. Therefore

= 2a\ sin —aO = — Aa cos - =
Jo 2

^
2J0

8^.

Rectification of Curves of Double Curvature,

14-6. Let G denote the length of the arc of a curve of double

curvature ; that is, one which does not lie in a plane, and sup-

pose the curve to be referred to rectangular coordinates jir, j/

and^. If at any point of the curve the differentials of the

coordinates be drawn in the directions of their respective axes,

a rectangular parallelopiped will be formed, whose sides are

dx^ dy and dz^ and whose diagonal is da. Hence

da = V{d:^ +d/ ^ ds").

The curve is determined by means of two equations connect-

ing x^ y and ^, one of which usually expresses the value of y in

terms of x, and the other that of z in terms of x. We can

then express da in terms of x and dx.

If the given equations contain all the variables, equations

of the required form may be obtained by elimination.

147. An equation containing the two variables x and y
only is evidently the equation of the projection upon the plane

of xy of a curve traced upon the surface determined by the

other equation. Let s denote the length of this projection
;

then, since ds^ — dx^ -f- df,

da = Vids" + dz^,

in which ds may, if convenient, be expressed in polar coordin-

ates ; thus,

da = Vidr" ^r^de^ + dz%
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!48, As an illustration, let us use this formula to deter-

mine tiie length of the loxodromic curve from the equation of

the sphere,

x^ -V f \- ^^a", (i)

upon which it is traced, and its projection upon the plane of

the equator, of which the equation is

or in polar coordinates

2a — r (e^^ 4- £-"^) (2)

Equation (i) is equivalent to

r^ + ^ = a^;

and, denoting the latitude of the projected point by #, this

gives

js = asin (l>, r — a cos (j). . . . (3)

In order to express dd in terms of ^, we substitute the value

of r in (2) ; whence

£n6 _i_ g-n9 ~ 2 SCC (f>,
...... {4)

and by differentiation

gne __ ^-ne ^ ? sec <^ tan
(f> -f^ (5)

w au

Squaring and subtracting equation (5) from equation (4),

4 sec^ ^ r 2 . 2 JL ^^1

which reduces to

M^=?^^^ (gj
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From equations (3) and (6)

dr^ — c? sin^ ^ d<^^

d^ — a^ cos^ (j) d(p
;

whence substituting in the value of da (p. 171)

da = aV[i +-:^)d(!>.

Integrating,

ff = a -^ ' d6 = a -^—, ' (6 — a),
n ]a n ^'

"

where a and /? denote the latitudes of the extremities of

the ar^.

/ Examples X.

I. Find the length of an arc measured from the vertex of the

catenary

y-^U, -'

*
•'">

and show that the area between the coordinate axes and any arc is

proportional to the arc.

A — cs.

^ 2. Find the length of an arc measured from the vertex of the

K)arabola

y^ = 4ax.

^(aar f x^) -f a log -^ .
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3. Find the length of the curve

€^ + I
/^=-

£-^ - I
'

between the points whose abscissas are a and b.

1
f^'^ — I

leg V a — b,

4. Find the length, measured from the origin, of the curve

y=a\og
«*

, a ^- X
a log X,

° a — X

5. Given the differential equation of the tractrix.

and, assuming (o, a) to be a point of the curve, find the value of s as

measured from this point, and also the value of x in terms oiy ; that

is, find the rectangular equation of the curve.

y
s — a log — .

/
^ = tf log ^— -^-^ — V(a — y).

6. Find the length of one branch of the cycloid

X— a(ip — sin ^), y = a {i — cos tp).

Sa.

7. When the cycloid is referred to its vertex, the equations being

X — a {i — cosip)f ^ = « (^ + sin ?/?),

prove that s = \/{Sax).
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8. Find the length from the point (^, o) of the curve

X ^= 2a cos ip — a cos 2tp,

_y = 2asmtp — a sin 2tp.

4a(tp — sin tp).

9. Show that the curve,

X = ^a cos
'Z'
— 2a cos* ^, y= 2a sin' ^^,

has cusps at the points given by i/^ = o and tp = tt ; and find the

whole length of the curve. 12a.

10. Find the length of a quadrant of the curve

See Ftg. 6, Art. 107. -— - ,

a ^r o

II. Show that the curve

x=^ 2a cos* ^ (3 — 2 cos^ ^), j; = 4^ sin ^ cos^ ^

has three cusps, and that the length of each branch is— .

/J 12. Find the length of the arc between the points at which the

curve

A' = ^cos'^ ^cos2^, _;' =«sin^^sin 26^

2-i/2
cuts the axes. . a.

'—r~ ^^^
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N 13. 3how that the curve

\A*^ xJ^ ^ ^ — (^ cos ^ (i + sin" ^),^X y = a^xntp cos^* ^

is symmetrical to the axes, and find the length of the arcs between

the cusps. / , . I^
• a

[
\/2 — sm-^—

\ V3

a[ 4/2 '+ cos"^—-
J .

\ 4/3/

\ 14. Find the length of one branch of the epicycloid

/ 7v / 7
a -\r b

.X = [a -i- P) cos ip — o cos—7— ^,

^ = (^ + ^) sin ^ — ^ sin—-— ^.

U {a + b)

a

15. Show that the curve

X = ga sin tp — 4a sin' ^,

y = — 3<a! cos rp + 4a cos' ip

is symmetrical to the axes, and has double points and cusps : find the

lengths of the arcs, (a) between the double points, (/?) between a

double point and a cusp, and (y) the arc connecting two cusps, and not

passing through the double points.

\ 16. Find the whole length of the curve

X = $a sin if^
— a sin' ^,

y= a cos' t/j. ^Tta.
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17. Find the length, measured from the pole, of any arc of the

equiangular spiral

in which n = cot a. r sec a
r — aB^

,

18. Prove by integration that the arc subtending the angle 9 at the

circumference in a circle whose radius is «, is zafj.

19. Find the length, measured from the origin, of the curve defined

by the equations

2a' 6a"

6d'

20. Find the length, measured from the origin, of the intersection of

the surfaces

J'
= 4« sin Xy z =^ 271 {2x -\- sin 2x).

{4n^ + i):^:^ + 2^'* sin 2X.

21. Find the length, measured from the origin, of the intersection of

the cylindrical surfaces

[y — xY = 4aXf ga (z — xY = 4^•^

2x2
+ 2 V{ax)+x.

22. If upon the hyperboHc cylinder

c' b'
''

a curve whose projection upon the plane of xy is the catenary

X X

be traced, prove that any arc of the curve bears to the corresponding

arc of its projection the constant ratio V(b^ + /*)
: c.
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XI.

Surfaces of Solids ofRevolution,

149- The surface of a solid of revolution may be generated

by the circumference of the circular section made by a plane

perpendicular to !he axis of revolu-

tion. Thus in Fig. 17, the surface

produced by the revolution of the

curve AB about the axis of x is re-

garded as generated by the circum-

ference PQ. The radius of this cir-

cumference is J, and its plane has a

motion whose differential is dx, but

every point in the circumference itself

has a motion whose differential is ds,s

denoting an arc of the curve AB.
Hence, denoting the required surface by 5, we have

dS= 27ty ds= 27ty i/(dx^ + <^).

The value of dS must of course be expressed in terms of a single

variable before integration.

150. For example, let us determine the area of the zone of

spherical surface included between any two parallel planes.

The radius of the sphere being a, the equation of the revolv-

ing curve is

X^ + f^= a^;

whence y = V{d^ — -^'^),

_ xdx

adx

and dS = 27r^ dx

;
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therefore

S = 2na\dx =^ 27ta (xi — x^

Since x<i,
— Xi is the distance between the parallel planes,

the area of a zone is the product of its altitude by 27ta, the

circumference of a great circle, and the area of the whole sur-

face of the sphere is 47ra^.

151. When the curve is given in polar coordinates, it is con-

venient to transform the expression for vS" to polar coordinates.

Thus, if the curve revolves about the initial line,

S = 27t{fc/s= 2;r r sin ^ V{c^r^ + ^

For example, if the curve is the cardioid

we find, as in Art. 145,

r =:2^sin^— ^

,

Hence

ds = 2a sin — B dd.
2

("I I

sin*- ^cos-
2 2

dd

^_—_ sm^- f — ^

Areas of Surfaces in General,

162. Let a surface be referred to rectangular coordinates x^

y and z ; the projection of a given portion of the surface upon
the plane of xy is a plane area determined by a given relation

between x and y. We may take as the elements of the surface

the portions which are projected upon the corresponding
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elements of area in the plane of xy. If at a point within the

element of surface, which is projected upon a given element

i\x i\y^ a tangent plane be passed, and if y denote the inclina-

tion of this plane to the plane of xy,the area of the correspond-

ing element in the tangent plane is

sec y A X Ajj/.

The surface is evidently the limit of the sum of the elements

in the tangent planes when ax and Aj/ are indefinitely dimin-

ished. Now sec ;^ is a function of the coordinates of the point

of contact of the tangent plane ; and since these coordinates

are values of x and y which lie respectively between x and

X + AX and between j^ and y + A/, the theorem proved in Art.

99 shows that this limit is

5 = sec ;/ dx dy.

153. The value of sec y may be derived by the following

method. Through the point P of

the surface let planes be passed

parallel to the coordinate planes,

and let PD, and PE, Fig. 17, be the

intersections of the tangent plane

with the planes parallel to the

planes of xz andj^^. Then PD and

PE are tangents at P to the sec-

tions of the surface made by these

planes. The equations of these

sections are found by regarding y
and X in turn as constants in the equation of the surface ; there-

fore denoting the inclinations of these tangent lines to the plane

of xy by ^ and ^, we have

Fig. 18.

tan =
dx'

and tan '/' — dz

dy'
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/J'^ {123

in which —- and-r are partial derivatives derived from the equa-
dx ay

tion of the surface.

If the planes be intersected by a spherical surface whose

centre is P, ADE is a spherical triangle right angled at A,

whose sides are the complements of ^ and ^. Moreover, if a

plane perpendicular to the tangent plane PED be passed

through AP^ the angle FPG will be y, and the perpendicular

from the right angle to the base of the triangle the comple-

ment of y.

Denoting the angle EAF by (9, the formulas for solving

spherical right triangles give

^ tan ^ J . n tan i>
cos Q = , and sm a = .

tan y tdiVi y

Squaring and adding,

_ tan^ ip + tan^
(f>

~~
tan^ y

'

or tan^ y = tan*^ tf) + tan^ (p ;

whence sec' y=i+
(J^)'

+ (|)'.

Substituting in the formula derived in Art. (152), we have

154. It is sometimes more convenient to employ the polar
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element of the projected area. Thus the formula becomes

5 = sec yrdrdOy

where sec y has the same meaning as before.

For example, let it be required to find the area of the sur-

face of a hemisphere intercepted by a right cylinder having a

radius of the hemisphere for one of its diameters. From the

equation of the sphere,

x^+f + ^=d\ (i)

we derive

dz_ X dz _ y
dx z^ dy z

*

whence

--=^[^©•-(1)

therefore * 5 '

'

-«jf

the integration extending over the area of the circle

r = a cos 6 (2)

Since equation (i) is equivalent to

^ + r2 = ^,
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From (2) the limits for ; are ri = o, and r^ — a cos ^,

hence

5r=^|(i -sin6')^/9,

in which a sin Q is put for \.\\^ positive quantity s/(c? — r}). The
limits for Q are —\'n: and \7i^ but since sin /9 is in this case to

be regarded as invariable in sign, we must write

5 = 2^2
[ '(I _ sin B) dO = na^ - 2a\
Jo

If another cylinder be constructed, having the opposite radius

of the hemisphere for diameter, the surface removed is

27ta^ — 4a^, and the surface which remains is 4^?^ a quantity

commensurable with the square of the radius. This problem

was proposed in 1692, in the form of an enigma, by Vivian i, a

Florentine mathematician.

Examples XL

I. Find the surface of the paraboloid whose altitude is a-:, and the

radius of whose base is d.

2. Prove that the surface generated by the arc of the catenary given

in Ex. X., I, revolving about the axis of x, is equal to

7t{cx + sy).

3. Find the whole surface of the oblate spheroid produced by the
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revolution of an ellipse about its minor axis, a denoting the major,

b. the minor semi-axis, and e the excentricity, —^^
.

2 .
b\ 1 +e

27ta -i- TV - log -.

4. Find the whole surface of the prolate spheroid produced by the

revolution of the ellipse about its major axis, using the same notation

as in Ex. 3.

,2 ,
-sin"^^

2 7to -}- 2 7rab .

5. Find the surface generated by the cycloid

X z= a {(p — sin //?), y = a {i — cos //')

revolving about its base. — 7r«^

3

6. Find the surface generated when the cycloid revolves about the

tangent at its vertex.

7. Find the surface generated when the cycloid revolves about its

axis.

8. Find the surface generated by the revolution of one branch of

the tractrix (see Ex. X., 5) about its asymptote.
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9. Find the surface generated by the revolution about the axis of

X of the portion of the curve

y = f^

which is on the left of the axis of y.

7r[ |/2 + log (i + V2)].

10. Find the surface generated by the revolution about the axis of

X of the arc between the points for which x = a and :xr = ^ in the

hyperbola

xy = k^.

II. Show that the surface of a cylinder whose generating lines are

parallel to the axis of z is represented by the integral

5 = \z t/Sj

where s denotes the arc of the base in the plane of xy. Hence,

deduce the surface cut from a right circular cylinder whose radius is

a, by a plane passing through the centre and making the angle ^ with

the plane of the base. za^ tan a.

12. Find the surface of that portion of the cylinder in the problem

solved in Art. 154, which is within the hemisphere. 20^.

13. Find the surface of a circular spindle, a being the radius and

2c the chord.

47ra c- t/(a'^-^=^jsin--
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XII.

The Area generated by a Straight Line moving in any

Manner in a Plane,

155. If a straight line of indefinite length moves in any man-

ner whatever in a plane, there is at each instant a point of the

line about which it may be regarded as rotating. This point we
shall call the centre of rotation for the instant. The rate of

motion of every point of the line in a direction perpendic-

ular to the line itself is at the instant the same as it would

be if the line were rotating at the same angular rate about this

point as a fixed centre."^ Hence it follows that the area

generated by a definite portion of the line has at the instant

the same rate as if the line were rotating about a fixed instead

of a variable centre.

(56. Suppose at first that the centre of rotation is on the

generating line produced, p^ and p^ denoting the distances from

the centre of the extremities of the generating line, and let
<i>

denote its inclination to a fixed line. By substitution in the

general formula derived in Art. no, we have

dA =Yp}-p^)cU.

Compare Difif. Calc, Art. 332 [Abridged Ed., Art. 176J, where the moving

line is the normal to a given curve, and the centre of rotation is the centre of cur-

vature of the given curve. If the line is moving without change of direction, the

centre is of course at an infinite distance.

When the line is regarded as forming a part of a rigidly connected system in

motion, its centre of rotation is the foot of a perpendicular dropped upon it from

the instantaneous centre of the motion of the system. Thus, if the tangent and

normal in the illustration cited are rigidly connected, the centre of curvature, C, is

the instantaneous centre of the motion of the system, and the point of contact, P,

is the centre of rotation for the tangent line.
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Applications,

157. The area between a curve and its evolute may be

generated by the radius of curvature p, whose inclination to

the axis of ;ir is ^ + ^n^ in which (j) denotes the inclination

of the tangent line. Since the centre of rotation is one

extremity of the generating linep, the differential of this area

is found by substituting in the general expression Pi = o and

P2 = o. Hence when p is expressed in terms of ^,

^ = Mp2^0

expresses the area between an arc of a given curve, its evolute,

and the radii of curvature of its extremities, the limits being

the values of
(t>

at the ends of the given arc.

158. For example, in the case of the cardioid

r — a{i — cos 6),

it is readily shown, from the results obtained in Art. 145, that

the angle between the tangent and the radius vector is ^6\ and

therefore ^ = |(9, and

ds Aa . 6

To obtain the whole area between the curve and its evolute,

the limits for B are o and 27t ; hence the limits for ^ are o

and 37r. Therefore

A '%^d^=^J^r^r.^td^ = ^^,

159. As another application of the general formula of

Art. 156, let one end of a line of fixed length a be moved
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along a given line in a horizontal plane, while a weight at-

tached to the other extremity is drawn over the plane by the

line, and is therefore always moving in the direction of the

line itself. The line of fixed length in this case turns about

the weight as a moving centre of rotation. Hence the area

generated while the line turns through a given angle is the

same as that of the corresponding sector of a circle whose
radius is a.

The curve described by the weight is called a tractrix^ and

the line along which the other extremity is moved is the direc-

trix. When the axis of x is the directrix, and the weight

starts from the point (o, a), the common tractrix is described

;

hence the area between this curve and the axis is ^na^.

160. Again, in the generation of the cycloid, Diff. Calc,

Art. 288 [Abridged Ed., Art. 156], the variable chord RP may
be regarded as generating the area. The point R has a motion

in the direction of the tangent RX\ the point P partakes of

this motion, which is the motion of the centre Cj and also has

an equal motion, due to the rotation of the circle in the direc-

tion of the tangent to the circle at P. Since the tangents

at P and R are equally inclined to PRy the motion of P in a

direction perpendicular to PR is double the component, in this

direction, of the motion of R, Therefore the centre of rota-

tion of PR is beyond i? at a distance from it equal to PR,
Hence, denoting PRO by ^,

Pi — PR — 2a sin <^, pg = '2-PR = 4^ sin ^.

Substituting in the formula of Art. 156, we have for the area

of the cycloid, since PRO varies from o to n^

A = 6^^ sin^ ^ d<l> — -^nc?.
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Sign of the Generated Area.

(61. Let AB be the generating line, and ^ the centre ol

rotation. The expression,

dA = i {Pi - P?) d(l>, (0

Fig. ig.

for the differential of the area, was obtained upon the supposi-

tion that A and B were on the same side of C. Then suppos-

ing P2 > Pi, and that the line rotates in the positive direction^

as in figure 19, the differential of the area is

positive; and we notice that every point in the

area generated is swept over by the line

AB, the left hand side as we face in the

direction AB preceding.

162. We shall now show that in every

case, the formula requires that an area

swept over with the left side preceding, shall be considered

as positively generated, and one swept over in the opposite

direction as negatively generated.

In the first place, if C is between A and

B so that p, is negative, as in figure 20, p^

is still positive, and formula (i) still gives

the difference between the areas generated

hy AB and AC. Hence the latter area,

which is now generated by a part of the

line AB, must be regarded as generated

negatively, but the right hand side as we
face in the direction AB of this portion of the line is now
preceding, which agrees with the rule given in Art. 161.

Again, if C is beyond B, the formula gives the difference

of the generated areas ; but since pi is numerically greater

than p2^, in this case, dA is negative, and the area generated by
AB is the difference of the areas, and is negative by the rule.

Fig. 20.
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Finally, if the direction of rotation be reversed, d(l> and

therefore dA change sign, but the opposite side of each por-

tion of the line becomes in this case the preceding side.

163. We may now put the expression for the area in another

form. For

dA=~{pl-ri)d^ (Ps-pO^^V^;

whatever be the signs of Pg and Pi, the first factor is the length

of AB, which we shall denote by /, and the second factor is

the distance of the middle point of AB from the centre of

rotation, which we shall denote by p^„. Hence, putting

P2 - Pi = /,

we have

and

Ipm d(l>.

P2+ Px__

(2)

Since p^ d(j> is the differential of the motion of the middle point

in a direction perpendicular to AB, this expression shows that

the differential of the area is the product of this differential by
the length of the generating line.

Areas generated by Lines whose Extremities describe

Closed Circuits.

i-^

I64-. Let us now suppose the generating line AB to move
from a given position, and to return to the

same position, each of the extremities A and

B describing a closed curve in the positive

direction, as indicated by the arrows in figure

21. It is readily seen that every point which

is in the area described by B, and not in that

described by A^ will be swept over at least

once by the line AB^ the left side preceding,

Fig. 21. and if passed over more than once, there will be
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an excess of one passage, the left side preceding. Therefore

the area within the curve described by i?, and not within that

described hy A, will be generated positively. In like manner

the area within the curve described by A, and not within that

described by B, will be generated negatively. Furthermore, all

points within both or neither of these curves are passed over,

if at all, an equal number of times in each direction, so that the

area common to the two curves and exterior to both disap-

pears from the expression for the area generated by AB.

Hence it follows that, regarding a closed area whose perimeter

is described in the positive direction as positive^ the area generated

by a line returning to its original position is the difference of the

areas described by its extremities. This theorem is evidently

true generally, if areas described in the opposite direction are

regarded as negative.

Amslers Planimeter,

165. The theorem established in the preceding article may
be used to demonstrate the correctness of the method by
which an area is measured by means of the Polar Planimeter,

invented by Professor Amsler, of Schaffhausen.

This instrument consists of two bars, OA and AB, Fig. 22,

jointed together at A, The rod OA turns on

a fixed pivot at (9, while a tracer at B is carried

in the positive direction completely around

the perimeter of the area to be measured. At
some point C of the bar AB a small wheel is

fixed, having its axis parallel to AB, and its

circumference resting upon the paper. When
^is moved, this wheel has a sliding and a roll-

ing motion ; the latter motion is recorded by

an attachment by means of which the number Fig. 22.

of turns and parts of a turn of the wheel are registered.
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166. Let J/ be the middle point of AB, and let

OA =a, AB = b, MC^c.

Since b is constant, the area described hyAB is by equation (2),

Art. 163,

\9md(l> (l)Kx^2.AB — b

Denoting the linear distance registered on the circumference

of the wheel by s^ ds is the differential of the motion of the

point C, in a direction perpendicular to AB^ and since the dis-

tance of this point from the centre of rotation is Pni + ^,

ds = {p„t + c) d(f) :

substituting in (i) the value of pmd(l>y

ArGSiAB = b{ds-bAd^ (2)

167. Two cases arise in the use of the instrument. When,
as represented in Fig. 22, O is outside the area to be meas-

ured, the point A describes no area, and by the theorem of

Art. 164, equation (2) represents simply the area described

by B. In this case ^ returns to its original value, hence d(f>

vanishes, and denoting the area to be measured by^, equation

(2) becomes
A = 6s (3)

In the second case, when O is within the curve traced by By

the point A describes a circle whose area is Ttd^j and the limit-
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ing values of
<i>

differ by a complete revolution. Hence in this

case equation (2) becomes

A — ncP- — bs — 2 Ttbcy

or A= bs ^- 7c{c? — 2bc)!^ (4)

In another form of the planimeter the point A moves in a

straight line, and the same demonstration shows that the area

is always equal to bs.

Examples XII.

I. The involute of a circle whose radius is a is drawn, and a tangent

is drawn at the opposite end of the diameter which passes through the

cusp ; find the area between the tangent and the involute.

a'n (3 + n'')

2. Two radii vectoresof a closed oval are drawn from a fixed point

within, one of which is parallel to the tangent at the extremity of the

other ; if the parallelogram be completed, the area of the locus of its

vertex is double the area of the given oval.

3. Show that the area of the locus of the middle point of the chord

joining the extremities of the radii vectores in Ex. 2, is one half the

area of the given oval.

* The planimeter is usually so constructed that the positive direction of rotation

is with the hands of a watch. The bar b is adjustable, but the distance y^ C is fixed

so that c varies with b. Denoting AChy q, we have c = q — \b, and the constant

to be added becomes C =^ it {a^ — ibq -\- b'^) in which a and^ are fixed and b adjusta-

ble. In some instruments q is negative.

It is to be noticed that in the second case s may be negative ; the area is then

the numerical difiference between the constant and bs.
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4. Prove that the difference of the perimeters of two parallel ovals,

whose distance is 3, is 2 nb, and that the difference of their areas is the

product of b and the half sum of their perimeters.

5. A lima9on is formed by taking a fixed distance be on the radius

vector from a point on the circumference of a circle whose radius is a ;

show that the area generated by b when b'> 2« is the area of the lima-

9on diminished by twice the area of the circle, and thence determine

the area of the lima9on.

7r(2^^ + b''),

6. Verify equation (4), Art. 167, when the tracer describes the

circle whose radius \^ a -\- b.

7. Verify the value of the constant in equation (4), Art. 167, by

determining the circle which may be described by the tracer without

motion of the wheel.

8. If, in the motion of a crank and connecting rod (the line of motion

of the piston passing through the centre of the crank), Amsler's record-

ing wheel be attached to the connecting rod at the piston end, deter-

mine s geometrically, and verify by means of the area described by the

other end of the rod.

9. The length of the crank in Ex, 8 being a^ and that of the con-

necting rod b, find the area of the locus of a point on the connecting

rod at a distance c from the piston end.

10. If a line AB of fixed length move in a plane, returning to its

original position without making a complete revolution^ denoting the areas

of the curves described by its extremities by {A) and (^), determine

the area of the curve described by a point cutting AB in the ratio

m : n.

n{A) 4- m(B
)

m + n
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II. If the line in Ex. 10 return to its original position after making a

complete revolution^ prove Holditch's Theorem j namely, that the area of

the curve described by a point at the distance c and c from A and B is

c'{A) + c(B)

c {- c'

ncc

12. Show by means of Ex. 11 that, if a chord of fixed length move

around an oval, and a curve be described by a point at the distances

c and c from its ends, the area between the curves will be ttcc .

XIII.

Approximate Expressions for Areas and Volumes.

168. When the equation of a curve is unknown, the area

between the curve, the axis of x, and

two ordinates may be approximately ex-

pressed in terms of the base and a lim-

ited number of ordinates, which are sup-

posed to have been measured.

Let ABCDE be the area to be de-

termined ; denote the length of the base

by 2h ; and let the ordinates at the ex-

tremities and middle point of the base

be measured and denoted by y^.y^, and jj/g. Taking the base for

the axis of x, and the middle point as origin, let it be assumed

that the curve has an equation of the form

y^ A ^ Ex ^ C^-V D:^

;

(i)

Fig. 23.

then the area required is

^ V' ^ ^ Bj^ C^ DxT
A — ydx-Ax^- — H +

J-/ 2 3 4 _

in which which A and C are unknown

'' ^-{(yA^2Ch% . (2)
-h 3
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In order to express the area in terms of the measured

ordinates, we have from equation (i),

whence we derive

and substituting in (2),

A {yi + 4j2 + J/3).

It will be noticed that this formula gives a perfectly ac-

curate result when the curve is really a parabolic curve of the

third or a lower degree.

169. If the base be divided into three equal intervals, each

denoted by k, and the ordinates at the extremities and at the

points of division measured, we have, by assuming the same

equation,

A=\^\^jdx=^-^{AA + iOf) (I)

From the equation of the curve,

y,=A

Fig. 24.

3^^ gCh^ 27Dh^

, Bh Ch^ Dh^y,^A-^^----^-

, Bh Ch^ Dk^

^4 ^ 4. 3^ 4-
9^' + ?Z^'

;
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+ 9f^.whence ji + }\ = 2A

From these equations we obtain

i6

and a^=^^--'^^-^A^V
4

Substituting in equation (i),

A =^iyi+ 3J2+ 3/8 +J4).

Simpson s Rules.

!70. The formulas derived in Articles 168 and 169, although

they were first given by Cotes and Newton, are usually known
as Simpsons Rules, the following extensions of the formulas

having been published in 1743, in his Mathematical Disserta-

tions.

If the whole base be divided into an even number n of

parts, each equal to h, and the ordinates at the points of divis-

ion be numbered in order from end to end, then by applying

the first formula to the areas between the alternate ordinates,

we have

That is to say, the area is equal to the product of the sum of

the extreme ordinates, four times the sum of the even-num-
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bered ordinates, and twice the sum of the remaining odd-num-

bered ordinates, multipHed by one third of the common interval.

Again, if the base be divided into a number of parts divis-

ible by three, we have, by applying the formula derived in

Art. 169, to the areas between the ordinates ^^1:^4,^4/7, and so on,

^ "^ V ^^' "^ ^-^^ "^ ^^^ + 274 + 3J/5 . . . + 3J« + Jn+x).

Cotes Method of Approximation,

171. The method employed in Articles 168 and 169 is

known as Cotes Method. It consists in assuming the given

curve to be a parabolic curve of the highest order which can

be made to pass through the extremities of a series of equi-

distant measured ordinates.

The equation of the parabolic curve of the ;^th order con-

tains n \- \ unknown constants; hence, in order to eliminate

these constants from the expression for an area defined by the

curve, it is in general necessary to have n + i equations con-

necting them with the measured ordinates. Hence, if n de-

note the number of intervals between measured ordinates over

which the curve extends, the curve will in general be of the

n\\\ degree.*

* \i H denotes the whole base, the first factor is always equivalent to H
divided by the sum of the coefficients of the ordinates ; for if all the ordinates are

made equal, the expression must reduce to Hy^. Thus, each of the rules for an

approximate area, including those derived by repeated applications, as in Art. 170,

may be regarded as giving an expression for the mean ordinate. The coefficients

of the ordinates, according to Cotes' method, for all values of « up to w = 10, may
be found in Bertrand's Calcul Integral, pages 333 and 334. For example (using

detached coefficients for brevity), we have, when « = 4,

-4 = — [7, 32, 12, 32, 7]

;

and when « = 6,

TT

A = -— [41, 216, 27, 272, 27, 216, 41].
040
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172. For example, let it be required to determine the area

between the ordinates yi and j/2, in terms of the three equi-

distant ordinates/i, Jo and_)/3, the common interval being h.

We must assume

y= A ^- Bx -v C^\

then taking the origin at the foot of ji,

A=\yd.= hlA^-^-\^

from which A, B and C must be eliminated by means of the

equations

yQ = A + 2Bh + ^Cl^,

Solving these equations, we obtain

2

If we make a slight modification in the ratios of these last coefficients by sub*,

stituting for each the nearest multiple of 42, we have

A — -— [42, 210, 42, 252, 42, 210, 42],
840

(the denominator remaining unchanged, since the sum of the coefficients is still

840), which reduces to
IT

^ = — [i, 5, I, 6, I, 5, ij.

This result is known as Weddles Rule for six intervals. The vallie thus given to

the mean ordinate is evidently a very close approximation to that resulting, from

Cotes' method, the difference being

840 l^^i + ^" + ^5 {y-i + Jo) - 6 {yi + jKe) - 20^4].
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and substituting

h

173. It is, however, to be noticed, that when the ordinates

are symmetrically situated with respect to the area, if n is

everiy the parabolic curve may be assumed of the {n + i)th

degree. For example, in Art. 168, 71 — 2, but the curve was

assumed of the third degree. Inasmuch as A, B, C and D
cannot all be expressed in terms of j/j, y^, and y^, we see that a

variety of parabolic curves of the third degree can be passed

through the extremities of the measured ordinates, but all of

these curves have the same area."^

Application to Solids,

(74. \i y denotes the area of the section of a solid perpen-

dicular to the axis of x, the volume of the solid is \ydx, and

* This circumstance indicates a probable advantage in making n an even num-

ber when repeated applications of the rules are made. Thus, in the case of six

intervals, we can make three applications of Simpson's first rule, giving

TT

A = - - [i, 4, 2, 4, 2, 4, i], (i)
10

or two of Simpson's second rule, giving

'^ = ^ [i, 3, 3, 2, 3, 3, i] (2)

In the first case, we assume the curve to consist of three arcs of the third degree,

meeting at the extremities of the ordinates ^3 and jr, ; but, since each of these arcs

contains an undetermined constant, we can assume them to have common tangents

at the points of meeting. We have therefore a smooth, though not' a continuous

curve. In the second case, we have two arcs of the third degree containing no

arbitrary constants, and therefore making an angle at the extremity of jj/4. It is

probable, therefore, that the smooth curve of the first case will in most cases form a

better approximation than the broken curve of the second case.

In confirmation of this conclusion, it will be noticed that the ratios of the

coefficients in equation (i) are nearer to those of Cotes' coefficients for « = 6, given

in the preceding foot-note, than are those in equation (2).
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therefore the approximate rules deduced in the preceding arti-

cles apply to solids as well as to areas. Indeed, they may be

applied to the approximate computation of any integral, by

putting J/ equal to the coefficient of x under the integral sign.

The areas of the sections may of course be computed by
the approximate rules.

Woolley's Rule,

175. When the base of the solid is rectangular, and the

ordinates of the sections necessary to the application of Simp-

son's first rule are measured, we may, instead of applying that

rule, introduce the ordinates directly into the expression for

the area in the following manner.

Taking the plane of the base for the plane of xy^ and its

centre for the origin, let the equation of the upper surface be

assumed of the form

z=A ^Bx^Cy^D.^^Exy^Ff-vGj(^^Hx''y\-Ixf^Jf.

Let 2h and 2k be the dimensions of the base, and denote

the measured values of z as indicated in

Fig. 25. The required volume is '^

=
1

\
^dy

) -h i -k
dx.

This double integral vanishes for every

term containing an odd power of x or an

odd power oi y\ hence

hh= — [12^ + 4i;>^ + 4^>^]. (I)
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By substituting the values of x and y in the equation of the

surface, we readily obtain

b2 = A, (2)

^1 + <3:3 + ^1 + ^s = 4^ + 4Dh^ + aF]^, ... (3)

«2 + ^2 + '^i + <^3 = 4^ + '2'Dh^ + 2FB, ... (4)

From these equations two very simple expressions for the

volume may be derived ; for, employing (2) and (4), equation

(i) becomes

^=^(^ + ^1 + 2^2 + ^3+^2); . . . . (4)

and employing (2) and (3),

hkF= —- (^1 + ^ + 8/^2 + <^i + ^^s) (5)

Equation (4) is known as Woolleys Rule ; the ordinates employed

are those at the middles of the sides and at the centre ; in (5),

they are at the corners and at the centre.

Examples XI 11.

1. Apply Simpson's Rule to the sphere, the hemisphere, and the

cone, and explain why the results are perfectly accurate.

2. Apply Simpson's Second Rule to the larger segment of a sphere

made by a plane bisecting at right angles a radius of the sphere.

~8~'
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3. Find by Simpson's Rule the volume of a segment of a sphere, b

and c being the radii of the bases, and h the altitude.

4. Find by Simpson's Rule the volume of the frustum of a cone, b

and c being the radii of the bases, and h the altitude.

— {lfi^-bc-\- c").

5. Compute by Simpson's First and Second Rules, the value of

, the common interval being ^V in each case.
oi + ^ ^ ^''

The first rule gives 0.6931487, and the second rule gives 0.6931505.

The correct value is obviously loge2 = 0.6931472.

6. Find the volume considered in Art. 175, directly by Simpson's

Rule, and show that the result is consistent with equations (4) and (5).

hky= — [ai -{- as -h Ci + d -{- 4 {a<i -h bi +bi -\- c^) 4- 16^2].

7. Find, by elimination, from equations (4) and (5), Art. 175, a

formula which can be used when the centre ordinate is unknown.

V= — [4(^3 + b^ + bi -f (Ta) — {a^ + ai + Ci + Ct)\.

o
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CHAPTER IV.

Mechanical Applications.

XIV.

Definitions.

J76. We shall give in this chapter a few of the applications

of the Integral Calculus to mechanical questions.

The mass or quantity of matter contained in a body is pro-

portional to its weight. When the masses of all parts of equal

volume are equal, the body is said to be homogeneous. The
factor by which it is necessary to multiply the unit of volume

to produce the unit of mass is called the density^ and usually

denoted by y.

In the following articles it will be assumed, when not other-

wise stated, that the body is homogeneous, and that the density

is equal to unity, so that the unit of mass is identical with the

unit of volume. When the mass of an area is spoken of, it is

regarded as a lamina of uniform thickness and density, and the

unit of mass is taken to correspond with the unit of surface.

In like manner the unit of mass for a line is taken as identical

with the unit of length.

Statical Moments,

177. The moment of a force, with reference to a point, is the

measure of the effectiveness of the force in producing motion

about the point. It is shown in treatises on Mechanics, that

this is the product of the force and the perpendicular from the

point upon the li?ie of application of the force.
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The moment of the sum of a number of forces about a

given point is the sum of the moments of the forces.

The statical inornent of a body about a given point is the

moment of its gravity ; the force of gravity being supposed to

act upon every part of the body, and in parallel lines.

178. In order to find the statical moment of a continuous

body, we regard the body as generated geometrically in some
convenient manner, and determine the corresponding differen-

tial of the moment.
In the case of a plane area, let the body be referred to

rectangular axes, and let gravity be supposed to act in the

direction of the axis oi y. Then the abscissa of the point of

application is the arm of the force when we consider the

moment about the origin. Let us first suppose the area to be

generated by the motion of the ordinate y. The differential of

the area is then y dx. The corresponding element of the sum,

of which the integral y dx is the limiting value, see Art. 99, is
i a

yr^x, (l)

in which jjv is the ordinate corresponding to any value of x
intermediate between a -h (r — 1) ax, and a -\- r Ax. It is

evident that the arm of the weight of the element (i) is such

an intermediate value of x ; hence the moment of the ele-

ment is

x^yr Ax. (2)

The whole moment is therefore the limiting value of a sum
of the form

^\xryr ^x.

In other words, it is the integral

xy dx, (3)
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in which the differential of the moment is the product of the

differential of the area and the arm of the force, which in this

case is the same for every point of the element. In other

words, the moment of the differential is the differential of the

moment.

179. As an illustration, we find the moment of a semicircle

(Fig. 26) about its centre. The area may be

generated by the line 2r, moving from ;t' = o to

Y X = a. The equation of the circle being

x" ^f = d\

the differential of the area is

Fig. 26.

2 4/(<^- — .r^) dx.

The moment of this differential is

2 \/{c^ — :^\x dx
;

hence the whole moment is

2 r V(«2 - ^P^x dx = ^'^-
(a' - jt^fT = —

' o _lo ^

Centres of Gravity,

180. If a force equal to the whole weight of a body be

applied with an arm properly determined, its moment may be

made equivalent to the whole statical moment of the body.

If the force is in the direction of the axis of y, as in Fig. 26, we
have, denoting this arm by "x,

Ic • Area = Moment,

Moment
X —

Area
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In like manner, supposing the force to act in the direction

of the axis of x^ we may determine y for the same body.

It is shown in treatises on Mechanics that the point deter-

mined by the tWo coordinates x and y, is independent of the

position of the coordinate axis. This point is called the centre

ofgravity of the area. The centre of gravity of a volume is

defined in like manner.

181. The symmetry of the form of a body may determine

one oi more of the coordinates of its centre of gravity. Thus
the centre of gravity of a circle or a sphere coincides with the

geometrical centre, and the centre of gravity of a solid of revolu-

tion is on the axis of revolution. The centre of gravity of the

semicircle in Fig. 26, is on the axis of x\ hence to determine

its position we have only to find 'x. Dividing the moment
of the semicircle found in Art. 179 by the area \nc?^ we have

_ Aa

182. In finding the moment of the semicircle (Art. 179), we
regarded the area as generated by the double ordinate 27, and

the differential of the moment was found by multiplying the

differential of the area by x, which is the arm of the force for

every point of the generating line.

We may, however, derive the moment from the differential

of area,

^^7, (0

since the area may be generated by the motion of the abscissa

X from y= — a to y = a. But in this case to find the moment
of the differential we must multiply it by the distance of its

centre of gravity from the given axis. The centre of gravity of

the line x is evidently its middle point, hence the required arm

is Ix. Therefore the differential of the moment is

. ^; (2)
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and consequently the whole moment is

^ J ~a -- J -a O

This result is identical with that derived in Art. 179.

Polar Formulas,

183. When polar formulas are employed, r and B being

coordinates of the curved boundary of the area, the element is

\7^ dS. Since this element is ultimately a triangle, we employ
the well known property of triangles ; that the centre of gravity

is on a medial line at two-thirds the distance from the vertex

to the base.

The coordinates of the centre of gravity of the element are,

therefore,

2 2
-rsin6' and -rcosB.

Hence we have the formula

dOUr cos d^f^dO ^ [f^cosO

iir'de ^ [r^dO '

[7^ sine df^

and similarly y = - .
— •

^ jr^ dd
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(84-. To illustrate, let us find the centre of gravity of the

area enclosed by the lemniscata

7^ — a^ cos 20.

Whence x =z —
[ {cos 26f COS Odd z

^-^— =^y (COS 2d) COS dde.
r~ 3 Jo

I:
COS 26 do

Put COS 26 — cos^ ^, whence sin (j) = \/2 sin 6j

and V2 cos B dB — cos
<i>

d(j)y

- 2V2 f

2

., ,, ^ , ^ J . ..

X = a cos*(p d(f) — (7 = -TT- Tta.

3 •'o

24/2 3-1 TV _ V2

Solids of Revolution,

185. To find the centre of gravity of a solid of revolution,

we take the axis of revolution as the axis of x^ and the circle

whose area is nf' as the generating element. Replacing y in

equation (3), Art. 178, by this expression, we have for the stati-

cal moment

7t xf" dx,

and for the abscissa of the centre of gravity

_ xfdx
X — ^ "^

dx
i a
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186. To illustrate, we find the centre of gravity of a spheri-

cal segment whose height is //. In this case, taking the origin

at the vertex of the segment, and denoting the radius of the

sphere by a^ we have

f- — 2ax — :^.

fh 2 I "l'^
{2ax' — ^) dx -a^ - -x^

\ , ^

Hence x = h ^ 3 A ^q ^h ^a - ^h
^

f'
(2ax - x^) dx a^ - -^t-^T 4 3^-^*

Jo 3 Jo

If the centre of gravity of the surface of the segment be re-

quired, since the differential of the surface is 27ty ds, we easily

obtain the general formula

x =

and, in this case the curve being a circle, y ds = a dx] hence,

substituting, we have

X = ^h.

The Properties of Pappus,

187. Let a solid be generated by the revolution of any plane

figure about an exterior axis in its own plane. It is required

to determine the volume and the surface thus generated.

It is evident that this solid may also be generated by a

variable circular ring whose centre moves along the axis of

revolution
; denoting by jj and 72 corresponding ordinates of
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the outer and inner circles respectively, the area of this ring is

7i{yi — yi). Hence

But this integral is the statical moment of the given figure,

since /i — y^ is the generating element of its area, and ——^is

the, corresponding arm. Denoting the area of the figure by Ay
we may therefore write

V= 2nyA
;

that is, the volume is the product of the area of the figure and the

path described by its centre ofgravity.
The surface (5) of this solid is, by Art. 149,

S — 27t\yds =27t\dSf

if J denotes the ordinate of the centre of gravity of the arc s.

Hence we have S= ZTrj-arc
;

that is, the surface is the product of the length of the arc into

the path described by the centre ofgravity.

These theorems are frequently called the properties of Gul-

dinus ; they are, however, due to Pappus, who published them

1588.

It is obvious that both theorems are true for any part of

a revolution of the generating figure.
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Examples XIV.

1. Find the centre of gravity of the area enclosed between the

parabola y^ = ^mx and the double ordinate corresponding to the

abscissa a.

5

2. Find the centre of gravity of the area between the semi-cubical

parabola af = x^ and the double ordinate which corresponds to the

abscissa a.

7

3. Find the ordinate of the centre of gravity of the area between

the axis of x and the sinusoid y = sin .r, the limits being x = o and

x=7t. y=i7r.

4. Find the coordinates of the centre of gravity of the area be-

tween the axes and the parabola

ey-©*-
X = —

, and y = -

5 5

5. Find the centre of gravity of the area between the cissoid

f {a — x) — x^ and its asymptote.

Solution :
—

Denoting the statical moment by M and the area by A,

M = = — 2x-^ (a — xY +5 ^^"^ {^ — -^'f^ ^x
Jo {a — X)-'- Jo Jo

= z^a- A- sM;

,'.M-=^A, hence a=^.
o
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6. Find the centre of gravity of the area between the parabola

v' = ^ax and the straight line j ~ mx.

— %a . - 211
X = —

:,
, and y — —

.

5w m

7. Find the centre of gravity of the segment of an ellipse cut off

by a quadrantal chord.

— 2a , — 2 bX = - •
, and y

$ 7r — 2 -
s TT- 2

8. Given the cycloid,

y — a{i — cos ?/.'), X = a (ip — sin ip)
,

find the distance of its centre of gravity from the base.

^ = 6-

9. Find the centre of gravity of the area enclosed between the

positive directions of the coordinate axes and the four-cusped hypo-

cycloid

x^ -\- y^ = a^.

Put .\" = « cos^ 0, andy = a sin' 0.

- 3^^x=y

10. Find the centre of gravity of the area enclosed by the cardioid

. = a(i — cos 0).

^=-f

II. Find the centre of gravity of the sector of a circle whose radius

is a, the angle of the sector being 2 a.

— 2 a sin (X

Use the method of Art. i^2>- '*'

3 a
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12. Find the centre of gravity of the segment of a circle, the angle

subtended being 2 a and the radius of the circle a.

Solution

X J a cos a
2

1
\a —X ) xdx 3.3 3

2a sin a Chord

Area 3 Area 12 Area

13. Find the centre of gravity of a circular ring, the radii being a

and «i, and the angle subtended 2a.

- _ 2 d — a^ sin (y

3 d^ — a-c oc

14. Find the centre of gravity of a circular arc, whose length is 2s.

Soliction

:

—

We have in this case, taking the origin at the centre and the axis

of X bisecting the arc,

xds
X

ds

Put X — a cos 0, then ds — a dB, and denoting by a the

angle subtended by ^, we have

fOL

X =
COS do

^ sin « c

2s a a

2c being the chord.
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15. Find the coordinates of the centre of gravity of arc of the semi-

cycloid whose equations, referred to the vertex, are

;r = « (i — cos ^'), and j == « (^ + sin ^).

^^, andj^r^ [n-Yja-X

16. Find the centre of gravity of the arc between two successive

cusps of the four-cusped hypocycloid

x^ 4-7^ = a^\

_ _ _ _ 2d!

17. Find the position of the centre of gravity of the arc of the semi-

cardioid

r = « (i — cos 6).

x= , and y = — .

18. A semi-ellipsoid is formed by the revolution of a semi-ellipse

about its major axis ; find the distance of the centre of gravity of the

solid from the centre of the ellipse.

x-^

19. Find the centre of gravity of a frustum of a paraboloid of

revolution having a single base,, k denoting the height of the frustum.

'*^~
3

20. A paraboloid and a cone have a common base and vertices at

the same point ; find the centre of gravity of the solid enclosed

between them.

The centre of gravity is the middle point of the axis.



2l6 MECHANICAL APPLICATIONS, [Ex. XIV.

21. Find the centre of gravity of a hyperboloid whose height is hy

the generating curve being

y^ — m (2ax + ^').

— k Sa + s^x = V .

4 s^-\- k

22. Find the centre of gravity of the solid formed by the revolution

of the sector of a circle about one of its extreme radii.

The height of the cone being denoted by ^, and the radius of the

circle by «, we have

23. Find the centre of gravity of the solid formed by the revolution

about the axis of x of the curve

ay = ax^ — x^f

between the limits o and a.

x-^

24. A solid is formed by revolving about its axis the cardioid

r — a (i — cosG)
;

find the distance of the cusp from the centre of gravity.

— _ i6a

25. Determine the position of the centre of gravity of the volume

included between the surfaces generated by revolving about the axis

of .;*: the two parabolas

y = mxy and y^ = m' {a — x).

- a m + 2m'
X

3 m + m
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26. Find the centre of gravity of a rifle bullet consisting of a cylin-

der two calibers in length, and a paraboloid one and a half calibers in

length having a common base, the opposite end of the cylinder con-

taining a conical cavity one caliber in depth with a base equal in size

to that of the cylinder.

The distance of the centre of gravity from the base of

the bullet is ifI calibers.

27. A solid formed by the revolution of a circular segment about

its chord is cut in halves by a plane perpendicular to the chord
;

determine the centre of gravity of one of the halves. This solid is

called an ogival.

Denoting hy 2a the angle subtended by the chord, and by a the

radius of the circle, the distance of the centre of gravity from the

base is

- _ a 44 sin*^ a + sin' 2a + 32 (cos 201 — cos a)
X =

6 sin Of (2 -I- cos" a) — ^a cos a

28. Find the centre of gravity of the surface of the paraboloid

formed by the revolution about the axis of x of the parabola

/ = 4mx,

a denoting the height of the paraboloid.

- _ I (3^ ~ 2»2) {a + m)^ -t- 2fn^X — — • — — ,

5 {a -\- my — m^

29. Find the centre of gravity of the surface generated by the revo-

lution of a semi-cycloid about its axis, the equations of the curve

being

;i; = ^(i _ cos ^), and jj' = d! (^ + sin ^).

- 2a IKTT — 8
x = ^

.

15 3^-4
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30. Find the centre of gravity of the surface generated by the revo-

lution about its axis of one of the loops of the lemniscata

r^ =1 a^ cos 20.

- 2 + V2X := —-— a.

31. A cardioid revolves about its axis ; find the centre of gravity

of the surface generated, the equation of the cardioid being

r = a {1 — cos9)-

63

— f^oa

32. A ring is generated by the revolution of a circle about an axis

in its own plane ; c being the distance of the centre of the circle

from the axis, and a the radius, determine the volume and surface

generated.

V— 27t^cc^^ and S— ^n'^ca.

33. A triangle revolves about an axis in its plane ; ax, a^, and a^^

denoting the distances of its vertices from the axis, determine the vol-

ume generated.

271A , .

V — \ax + ^2 + ^3).

34. Find the Volume of a frustum of a cone, the radii of the bases

being ax and a^^, and the height h,

7th
{ux + axa^ + «/).

35. Find the volume and surface generated by the revolution of a

cycloid about its base.

647ra^V= 57rV, and S =
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XV.

Moments of Inertia,

188. When a body rotates about a fixed axis, the velocity

of a particle at a distance r from the axis is

in which go is the angle of rotation. The force which acting

for a unit of time would produce this motion in a mass m is

measured by the momentum

daa
mr —r- .

The moment of this force about the axis is therefore

o ddj
m'T —T"

dt

The sum of these moments for all the parts of a rigid system is

since the angular velocity, -5- , is constant. In the case of a
dt

continuous body this expression becomes

in which dm is the differential of the mass. The factor

\r^dm^
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which depends upon the shape of the body, is called its mo^

ment of inertia^ and is denoted by /.

189. When the body is homogeneous, dm is to be taken

equal to the differential of the line, area, or volume, as the case

may be. For example, in finding the moment of inertia of a

straight line whose length is 2a^ about an axis bisecting it at

right angles, we let x denote the distance of any point from

the axis; then dm = dx, hence we have

I^l' x^dx = ^-^=^^
J-. ^ 12

Again, in finding the moment of inertia of the semi-circle in

figure 25, about the axis of j^, let dm= 2ydx\ then, since every

point of the generating line is at the distance x from the axis,

the moment of inertia is

7=2 yx^ dx = 2\ V{a^ — ^) ^^ dx

,

Jo Jo

Putting X — a sin 6, we have

1= 20^
f'

cos^ e sin2 ede = ^\
Jo O

T/^e Radius of Gyration,

190. If the whole mass of the body were situated at the

distance k from the axis, its moment of inertia would be Bm.
Now, if k is so determined that tJns moment shall be equal to

the actual moment of inertia of the body, the value of k is the

radius of gyration of the body with reference to the given

axis. Hence

j^ __ Moment of inertia

Mass
*
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Thus, for the radius of gyration of the line 2a^ whose moment
of inertia is found in the preceding article, we have

>r=-

,

or k= —\
3 V3

and for the radius of gyration of the semi-circle, whose area

is \7ia^y

J^^""-, or k^""-.
4 2

It is evident that this expression is also the radius of gyra-

tion of the whole circle about a diameter, for the moment of

inertia of the circle is evidently double that of the semi-circle,

and its area is also double that of the semi-circle.

191. It is sometimes convenient to use modes of generating

the area or volume, other than those involving rectangular

coordinates. For example, let it be required to find the radius

of gyration of a circle whose radius is a^ about an axis passing

through its centre and perpendicular to its plane. This circle

may be generated by the circumference of a variable circle

whose radius is r, while r passes from o to a. The differential

of the area is then 2nr dr, and the moment is

I = 27t\ 7^ dr = — ,

'i:

Dividing by the area of the circle, we have

192. Again, to find the radius of gyration of a sphere

whose radius is a about a diameter. In order that all points

of the elements shall be at the same distance from the axis.
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we regard the sphere as generated by the surface of a cylinder

whose radius is Xy and whose altitude is 2y. The surface of

this cylinder is therefore A^rcxy. The differential of the volume

\s> ^Ttxy dx^ and the moment of inertia is

I — ^n \x^y dx = 47c ^{cp- — x) x^ dx.

Putting X = asAn 0^

I= 47ra'
f
' sin^ 6 cos^^ dO =^

.

Jo 15

Dividing by ~—
, the volume of the sphere, we have

^ = ^',

Radii of Gyration about Parallel Axes,

193. The moment of inertia of a body about any axis exceeds

its moment of inertia about a parallel axis passing through the

centre of gravity^ by the product of the mass and the square of

the distance between the axes.

Let h be the distance between the axes. Pass a plane

through the element dm perpendicular to the axes, and let r

and rx be the distances of the element from the axes. Then,

r, ^i, and // form a triangle ; let d be the angle at the axis

passing through the centre of gravity, then

,2 _ r{ + U^ — 2ri/f cos B (i)
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The moment of inertia is therefore

rl dm + l^m — 2h\r^ cos d dm . . . (2jT^dm =

Now Ti and 6 are the polar coordinates of dm^ in the plane

which is passed through the element; hence the last integral in

equation (2) is equivalent to

-2/l\ X dm.

But X dm is the statical moment of the body about the axis

passing through the centre of gravity. Now from the defini-

tion of the centre of gravity, this moment is zero ; hence^

equation (2) reduces to

7^ dm = r^ dm + Ihn ...... (3

Introducing the radii of gyration, we have also

J^ = ki^B (4)

194. As an application of this result, we shall now find the

moment of inertia of a cone whose height is h, and the radius

of whose base is a, about an axis passing through its vertex

perpendicular to its geometrical axis. Taking the origin at

the vertex of the cone, the axis of x coincident with the geo-

metrical axis, and a circle perpendicular to this axis as the

generating element, we have for the area of this element ny^^

and for its radius of gyration about a diameter parallel to

the given axis, —

.

4
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The distance between these axes being x, the proposition

proved in the preceding article gives an expression for the

radius of gyration of the element about the given axis ; viz.,

x^ + — . Replacing r^, in the general expression for / (Art.

4
188), by this expression, and substituting for dm the differen-

tial ny^ dx^ we have

I = n\{x^^t^fdx,

in which y —
ax

'

li
' Therefore

1= nd'

If
'!'(
Jo \

('

and since V- ^"'"'^

,

^=.A(,. + 4,.).

To find the square of the radius of gyration about a

parallel axis through the centre of gravity, we have

To find the moment of inertia of a right cone about its

geometrical axis we employ the same generating element as

before ; but in this case the square of the radius of gyration is

Hence
2

y

"l\'''"%i'""-
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therefore

1= , whence ^=^^—.
lO lO

Polar Moments of Inertia.

195. In the case of a plane area, when the axis of rotation

passes through the origin, we have

r^ = ^ -\- ^, hence r^ dm = (jv^ + j^) dm,

therefore /= \:t^ dm + ly^dm;

that is, tke sum of the moments of inertia of a plane area about

two axes in its own plane at right angles "to each other is equal to

the moment of inertia about an axis through the origin perpendicu-

lar to the plane. / in the above equation is called the polar

mome7tt of inertia.

In the case of the circle, since the moment is the same

about every diameter, the polar moment is twice the moment
about a diameter ; that is, denoting the former by // and the

latter by /«, we have

See Art. 191,

Examples XV.

I. Find the radius of gyration of a circular arc (2^) about a radius

passing through its vertex.
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Solution

:

—
Taking the origin at the centre, and the axis of x bisecting the arc,

' and denoting hy 2a the angle subtended by 2s, we have

mJk' = [' / ds = a' f" sin' B dQ.

^,^.V^_sin^\
2 \ 2a J

m = 2aa

2. Find the radius of gyration of the same arc about the axis of y^

and thence about a perpendicular axis through the centre of the

circle. k = a.

3. Find the radius of gyration of the same arc about an axis through

its vertex perpendicular to the plane of the circle.

See Ex. XIV., 14, and denote by c the subtending chord.

>e^^a\.-^-).

4. Find the moment of inertia of the chord of a circular arc, in

terms of the diameter parallel to it, and its angular distance from this

diameter.
73

See Arts. 189 and 193. / =— (3 cos a — cos ^a)

.

24

5. Find the radius of gyration of an ellipse about an axis through

its centre perpendicular to its plane.

Eind the radius of gyration about the major axis and about the minor

axisy and apply Art, 195.

k' = i{a' + b'),

6. Find the radius of gyration of an isosceles triangle about a per

pendicular let fall from its vertex upon the base (2b).

6-
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7. Find the radius of gyration about the axis of the curve, of the

area enclosed by the two loops of the lemniscata

r^ — a' cos 29.

^• = -3(3^^-8).

«. Find the radius of gyration of a right triangle, whose sides are a

and b, about an axis through its centre of gravity perpendicular to its

plan^

18

9. Find the radius of gyration of a portion of a parabola bounded

by a double ordinate perpendicular to the axis, about a perpendicular

to its plane passing through its vertex.

10. Find the radius of gyration of a cylinder about a perpendicular

that bisects its geometrical axis, 2/ being the length of the cylinder,

and a the radius of its base.

4 3

11. Find the radius of gyration of a concentric spherical shell about

a tangent to the external sphere, the radii being a and b.

12. Find the radius of gyration of a paraboloid of revolution about

its axis, in terms of the radius {h) of the base.

3

13. Find the moment of inertia of an eUipsoid about one of its

principal axes.

15
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14. Find the radius of gyration of a symmetrical double convex lens

about its axis, a being the radius of the circular intersection of tne

two surfaces, and b the semi-axis.

15. Find the radius of gyration of the same lens about a diameter

to the circle in which the spherical surfaces intersect.

2o{b' + 3«^)
'

THE END.
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