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PREFACE

In this treatise, the author has attempted to bring together

all the well-known theorems and examples connected with

Harmonics, Anharmonics, Involution, Projection (including

Homology), and Eeciprocation. In order to avoid the

difficulty of framing a general geometrical theory of Ima-

ginary Points and Lines, the Principle of Continuity is

appealed to. The properties of Circular Points and Circular

Lines are then discussed, and applied to the theory of the

Foci of Conies.

The examples at the ends of the articles are intended

to be solved by the help of the article to which they are

appended. Among these examples will be found many
interesting theorems which were not considered important

enough to be included in the text. At the end of the book

there is, besides, a large number of Miscellaneous Examples.

Of these, the first part is taken mainly from examination

papers of the University of Oxford. Scattered throughout

the book will be found examples taken from that admirable

collection of problems called Mathematical Questions and

Solutions from the 'Educational Times.' For permission to

make use of these, I am indebted to the kindness of the able

editor, Mr. W. J. C. Miller, B.A., Registrar of the General

Medical Council.



vi Preface.

The book has been read both in MS. and in proof by my
old pupil, Mr. A. E. Jolliffe, B.A., Fellow of Corpus Christi

College, and formerly Scholar of Balliol College, Oxford,

whose valuable suggestions I have made free use of. To

him I am also indebted for the second part of the Miscella-

neous Examples. I am glad of this opportunity of ac-

knowledging my great obligations to my former tutor, the

late Professor H. J. S. Smith. My first lessons in Pure

Geometry were learnt from his lectures ; and many of the

proofs in this book are derived from the same source.

I have assumed that the reader has passed through the

ordinary curriculum in Geometry before attempting to read

the present subject ; viz. Euclid, some Appendix to Euclid,

and Geometrical Conies.

I have not found it convenient to keep rigidly to any

single notation. But, ordinarily, points have been denoted

by J., JB, 0,..., lines by a, 6, c,..., and planes and conies by

a, A y,--.

The following abbreviations have been used

—

A straight line has been called a ?me, and a curved line

has been called a mrve.

The point of intersection of two lines has been called the

meet of the lines.

The line joining two points has been called the join of the

points.

The meet of the lines AB and CD has been denoted by

{AB ; 0J>).

To avoid the frequent use of the phrase ' with respect to

'

or 'with regard to,' the word 'for ' has been substituted.

The abbreviation ' r. h.' has sometimes been used for

'rectangular hyperbola.'

The single word ' director ' has been used to include the

' director circle ' of a central conic and the ' directrix ' of

a parabola.



Preface. vii

The angle between the lines a and 5 has been denoted by

Z ab and the sine of this angle by sin a&.

The length of the perpendicular from the point A on the

line & has been denoted by (^, V).

I have ventured to use the word ' mate ' to mean ' the

point (or line) corresponding.' I have avoided using the

word * conjugate ' except in its legitimate sense in connection

with the theory of polars.

I shall be glad to receive, from any of my readers, correc-

tions, , or suggestions for the improvement of the book

;

interesting theorems and examples which are not already

included will also be welcomed.

J. W. KUSSELL.

February^ 1893.
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TEXT-BOOK OF PURE GEOMETRY.

CHAPTER I.

FOEMULAE CONNECTING SEGMENTS OF THE SAME LINE.

1. One of the differences between Modern Geometry and

the Geometiy of Euclid is that a length in Modern Geometry-

has a sign as well as a magnitude. Lengths measured on a

line in one direction are considered positive and those

measured in the opposite direction are considered negative.

Thus if AB, i.e. the segment extending from A to B, be

considered positive, then BA, i.e. the segment extending

from B to A, must be considered negative. Also AB and

BA differ only in sign. Hence we obtain the first formula,

viz. AB = ~BA.
Notice that by allowing lengths to have a sign as well

as a magnitude, we are enabled to utilise the formulae

of Algebra in geometrical investigations. In making use of

Algebra it is generally best to reduce all the segments we

employ to the same origin. This is done in the following

way. 2 ^ -^

Take any segment AB on a line and also any origin 0.

Then AB = OB—OA. This is obviously true in the above

figure, and it is true for any figure. For

OB~OA = OB-\-AO = AO + OB = AB;
for AO+OB means that the point travels from ^ to and

then from to B, and thus the point has gone from A to B,

B



2 Formulae connecting Segments [ch.

The fundamental formulae then are

(i) AB = -BA
; (2) AB = OB-OA.

In the above discussion the lengths have been taken on a

line. But this is not necessary; the lengths might have

been taken on any curve.

It is generally convenient to use an abridged form of the

formula AB = OB—OA, viz. AB = h— a, where a = OA
and h=OB.

2. A, B, C, B are any four colUnear points ; show that

AB.CD+AC.DB+AD.BG=o.
Take A as origin, then CD = AD-AC=d—c, and so on.

Hence

AB.Cn+ AC.DB-hAD.BC=h{d-c)^c{h-d)-\-d(c-h)
^hd — hc + ch — cd+ dc—db^o.

Ex. 1. A, B, C, D, are any five points in a plane ; sJiow that

AOB . COB + AOC. BOB + AOB . BOG = o,

where AOB denotes the area of the triangle AOB.

Let a line meet OA, OB, OC, OD in A\ B', C, £/. Then
AOB = i.OA.OB sin AOB.

Hence the given relation is true if

2 {sin AOB . sin COD} ^ o,

i. e. if 2 { sin A^OB'. sin COI/ } = o.

But p . A'B' ^ OA'. OB' sin A'OB', where p is the perpendicular from 6
on A'B'cyjy. Hence the given relation is true if

A'B'. Cjy + A'C. D'B' + A'I/. B'C = o.

Ex. 2. If OA, OB, OC, OD he any four lines meeting in a point, show that

sin AOB . sin COD + sin AOC . sin DOB + sin AOD . sin BOC = o.

Ex. 3. Shoio aUo that

cos AOB . sin COD + cos AOC. sin DOB + cos AOD . sin BOC = o,

and
cos AOB . cos COD -cos AOC . cos DOB -sin AOD . sin BOC = o.

For Ex. 2 is true for OA' where A'OA is a right angle, and also for

OA' and OD' where A'OA and D'OD are right angles.

Ex. 4. Fro7n Ex. 2 deduce Ptolemy's Theorem connecting four points on a
circle.

Take also on the circle. Then AB = 2. R. sin AOB.

Ex. 5. Show also that the relation of Ex. 2 holds if each angle involved be

tnultiplied by the same quantity.

For AOB=rOB-VOA, if OV be the initial line. Now take
VOB' = h . VOB, roc = h . VOC, and so on. Then A'OB' = h . AOB, &c. ;

and the theorem is true for A'OB', &c.
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Ex. 6. If A^ B, C be the angles of a triangle and A' ^ B% (/ be the angles

which the sides BC, CA, AB make with any line, then

sin A . sin A^ + sin B . sin JB' + sin C. sin C = o.

Draw parallels through any point.

Ex. 7. OL, OM, ON are any three lines through and PL, PM, PN make

equal angles with OL, OM, ON in the same way, show that

PL . sin MON + PM . sin NOL + PN . sin LOM = o.

3. A, B, C are any three colUnear points, and P is any other

point ; shoiv that

PA\ BG+PB\ GA^PC\ AB+ BG. GA . AB = o.

Drop the perpendicular PO from P on ABG.

Then PA\ BG = {OA' + OP') BG = {a'+/) {c- h).

Hence ^{PA\ BG)= ^a' {c-h)+p'''2{c-h)=^a' (c-h)

= a^ c-an + ya-y c+ cn-e"a= -{c-h) (a-c){b-a)

= -BG.GA.AB.
Ex. 1. If A, B, C be three collinear points and a, b, c be the tangentsfrom

A, B, C to a given circle, then

a^. BC+ b\ GA + c\ AB + BC. CA.AB = o.

Ex. 2. If Pbe any point on the base AB of the triangle ABC, then

AP. CEf^-BP. CA''= AB. (CP^-AP.BP).

Ex. 3. If A, B, C, D be four points on a circle and P any point whateverj

show that

A BCD . AP^- A CDA .BP'^+A DAB . CP^- A ABC . DP^= o,

disregarding signs.

Let AC, BD meet in inside the circle.

Then A BCD ccBD.CO and BO.OD = CO. OA.

Ex. 4. IfVA, VB, VC, VD be any four lines through V, then

sin BVD . sin CVD sin CVD . sin AVD sin AVD . sin BVD _
sin BVA . sin CVA

"*"

sin CF5 . sin ^ F£ "*"

sin ^FC. sin £FC'

Draw a parallel to VD.

Ex. 5. If A, B, C be the a'ngles of a triangle and A', B', Cf the angles which

the sides BC, CA, AB make with any line, then

sin B'. sin C sin C. sin A' sin A'. sinJB''
4- 4- = I.

sin B . sin C sin C . sin A sin A . sin B
Draw parallels through any point.

Ex. 6. If OA, OB, OC be any three lines through and PA, PB, PC be the

three perpendicularsfrom any point P on OA, OB, OC, then

:${PB.PC sin BOC} = -PO'^ sin BOC. sin COA . sin AOB.

Ex. 7. Through the veiiices A, B, Cofa triangle are draum the parallels AX,
BY, CZ to meet the sides BC, CA, AB in X, Y, Z, show that

BX . CX CY.AY AZ. BZ _
AX""

"*" BY^ "^ ~'C^~ ~ ^'

B 2
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4. Ex. 1. If 0, A, B he any three collinear points, then

OA"" + 0B^= AB^ + 2 . OA . OB.

Ex. 2. If from any point P there be drawn the perpendicular PQ on the

line AB, then

PA''-PB^= AB^ + 2.AB.BQ.

Ex. 3. IfABODE

.

. . XF be any number of coUinear points, show that

AB +BC+CD+ ...+^Y+TA = o.

Ex. 4:.If\ denote the ratio OA : OB and A.' the ratio OA' : 0B% OABA'B'
being coUinear points, show that

BB\\.y + A'B . \ + B'^ . X' + AA' = o.

Ex. 5. IfO,A,B, C, D be any five points on a line, then

AC BC^ _ /OB _ 0D\ ^ /OB^ 0C\
AD'^ Bn~ \AB ~ ad) "^ \AB ~ Ac)

'

Ex. 6. If A, B, C, D, 0, (/ be ayiy six points on a line, and if

OA'.O^A = a, 0B:aB = /3, OC : O'C = y, ODiO^D = 5,

Scioto Viat -^ ^^ - 7-g ^ y-0
AD ' BD~ 5-a ' 5-/3'

Ex. 7. If VA, VB, VC, VD, VO be any five lines meeting in a point,

show that

sin AVC ^ sin BVC _ /sin OVB _ sin OVD\ ^ /sin OVB _ sin OVC\
ain AVD ' sin BVD ~ \sin^FB ~ sin AVD/ "^

Vsin^F5 ~
sin AVC/'

Ex. 8. If VA, VB, VC, VD be any four lines meeting in a point, show that

sin^rc _^ sin .BFg _ cot AVB- cot AVD
sin XFD ~ sinSFD ~ cot AVB- cot AVC

'

Let FX be the initial line and in Ex. 7 take VO 90° behind VA.

Then sin OVB - sin {XVB-XVO) = sin {XVB-XVA-\-^o°)
= sin {go° + AVB) = cos^FS; and so on.

Ex. 9. If VA, VB, VC, VD, VO, VC/ be any six lines meeting in a point,

and if a = sin OVA -7- sin CVA, and so on, show that

sin AVC sin.BFC _ 7-0 y-0
sinAVD ~ sin BVD ~ 5-a ~ 6-/3

Ex. 10. If VA, VB, VC, VD, VO be any five lines meeting in a point,

show that

sin AVC sin BVC tan OF^ -tan OVC tan 0F5- tan OVC
sinAVD sinBVD tan OF^- tan OFD tan 0F5- tan OFZ>

In Ex. 9 take VO and F(/ at right angles.

Ex. 11. Three lines OAA', OBB% OCC are cut by tuv lines ABC, A'B'Cf,
show that OA ^ AB OA' A'B'

OC^ BC ^ W^ W^
^ AA'.BC BB'.CA CC.AB

Ex. 12. If the polygon abed . . .be inscribed in the polygon ABCD . .
.

, so

that a is on AB, b on BC, and so on, and be any point in the plane, then tlie

continued product of such ratios as

sin A a/sin aOB-i-A a/a B is unity.
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Ex. 13. If D, E, F he any three points on the sides BC, CA, AB of

a triangle^ show that

DB.EC.FA _ sin DAB . sin EBC , sin FCA
DC.EA. FB~ sin DAC . sin EBA . sin FCB

'

Ex. 14. If the sides DE, EF, FD of one triangle pass through the vertices

C, A, B of another tnangle, shmo that

AF.BD.CE _ sin FAC . sin DBA . sin ECB
FB .DC.EA ~ sTn FAB . sin DBC . sin EGA

'

5. If Che the middle point of AB, then whatever origin be

chosen, we have 0C= 1{0A + OB).

For 0C= OA +AG= OA + \AB = OA-\-\{OB-OA)
= \{qA + OB).

As we have used general formulae throughout this proof,

the formula holds for every relative position of the points

0, A and B.

Ex. 1. If C he the middle point of AB, and he any point on the line ACB,
show that

(i) OA.OB = OC^-AC^ ;

(ii) OA-" + OB"" = CA"" + CjS^ + 2 . OC^
;

(iii) OA^-OB'' = 2.AB.C0.

Ex. 2. IfAA', BB' , Q(f he coUinear segments whose middle points are a, /3, 7,

and ifPhe a variable point on the line, show that

PA . PA^ .0y + PB. PB^ .ya + PC. PC. aj3 is constant.

Take as origin. Then 2. ^87 = 2 . O7— 2. OiS = c + c' — 6— 6'. Twice
the given expression is

(a-p) {a'—p) yc + cf— h — h')+ ... + ...,

which is equal to aa' (c + (/ — 6 — ?/)+... +

Ex. 3. If P he the middle point of the segment AA' and Q he the middle point

of the segment BB^ {on the same line as AA'), show that

2.PQ = AB' + A'B = AB + A'B'

and 2.PQ. AA' = AB . AB'-A'B . A'B'.

Ex. 4. If AX .AY = BX .BY and A and B do not %incide, show that

AB and XY have the same hisector.

Ex. 5. If on the line AB the point G he taken such that a .GA + b .GB = o,

a and h being any numbers, positive or negative, then, being also on AB,

a.OA +h.OB = (a + b).OG
and a.OA'^ + b .0B^= a. GA^ + b . GB'^ + {a + h) . G0\

Ex. 6. If on the line ABCD ... a point G he taken such that

GA + GB + GC+ ... = 0,

and he any other point on the line, then,

OA +0B +0C + ... = n.OG
OA'' + OB^ + 0(^ + . . . = GA^ + GB' + GC^ + . . . +n . GO',

n being the number of the points ABCD ....
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Ex. 7. If GABC . . . and G/A'BfCf. . . be points so situated on the same line

that GA + GB+ GC+ . .. = o, and also &A' -t- &B' + G'(f + . . . = o, then

n.G&= AA' + BB' + C(/+ ...,

xcliere n is the number of the points ABC. . . and also of the points A'B'Cf. . .

.

Ex. 8. If there be n of the points ABC . . . and n' of the points A'B'C . . .
,

then

n . n'. GG' = 2 (AA'+AB'+AC + ...)•

6. The following is an interesting application of Algebra

to Geometry.

If A, B, C, D, P, Q he any six collinear points, then

AP.AQ JBP.BQ CP.CQ BP.BQ ^
AB.AC.AB "^ BC.BB.BA "^ CB.CA.CB "^ ~BA.BB.BC

°*

Put X for Ay and reduce the resulting equation to any

origin, after getting rid of the denominators. We shall have

an equation of the second order in x to determine X,

Put X =1), i.e. X = B, and we get an identity.

Hence ic = & is one solution of this equation.

Similarly x = c, and x = d are solutions.

Hence the equation of the second order has three solu-

tions ; and hence is an identity.

If A, B, C, P, Q he any five collinear points, then

AP.AQ BP.BQ CP. CQ _
AB.AC'^ BC.BA ^ CA.CB"^'

Multiply the identity just proved by AB throughout and

let B be at infinity.

Then AB = AB+ BB, .*. AB/BB = AB/BB+

u

But when B is at infinity AB/BB = o.

Hence AB/BB = i. Similarly AB/CB = i.

So BP/BB=i and BQ/BC=i.
Hence we obtain the result enunciated.

If A, B, C, B, P he any five collinear points, then

AP BP CP BP
AB.AC.AB ' BC.BB.BA ' CB.CA.CB ' BA.BB.BC

In the first identity take Q at infinity, then since

BQ'AQ=i, CQ/AQ=i, BQ/AQ=i,
the required result follows.
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Ex. 1. Show that the first result is true for n points A, B, . . . and (n— 2)
points P, Q

Ex. 2. Slww that the second result is true for n points A, B,. . . and (n— i)

points P, Q

Ex. 3. Show that the third result is true for n points A, B, . . . and (n— 2 — m)
points P, Q, . .

.
, where m may beo, i, 2, 3, . . . (n— 2).

Ex. 4. Enunciate the theorems obtained from Ex. 2 and Ex. 3 hy taking the

points P, Q, . . . aU coincident ; and show that the theorems still hold when P is

outside the line, provided the index ofAP is even.

Use AP'^ = Ap"^ +pF^, and the Binomial Theorem,

Menelaus's Theorem.

7. If any transversal meet the sides BC, CA, AB of a triangle

in Z), E, F; then

AF.BB.CE= -FB.BC.EA.

The transversal must cut all the sides externally, or two

sides internally and one externally ; for as a point proceeds

along the transversal from infinity, at a point where the trans-

versal cuts a side internally, the point enters the triangle

and at the point where the point leaves the triangle, the trans-

versal must cut another side internally. Hence of the ratios

AF : FB, BB : BC, CE : EA, one is negative and the other

two are either both positive or both negative. Hence the

sign of the formula is correct.

To prove that the formula is numerically correct, drop the

perpendiculars p, q, r from A, B, C on the transversal.

Then AF/FB =p/q, and BB/BC = q/r, and CE/EA = r/p.
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Hence, multiplying, we see that the formula is true

numerically.

Conversely, if three points D, E, F, taken on the sides BC,

CA, ABofa triangle, satisfy the relation

AF.BD.CE= -FB.DC.EA,
then D, E, F are collinear.

For, if not, let DE cut AB in F\ Then since D, E, F'

are collinear, we have

AF\ BjD.CE= -F'B,J)C. EA,

But by hypothesis we have

AF,BD.CE= -FB.BC.EA.
Dividing we get AF': F'B ::AF:FB; hence

AF'+ F'B : AF-^FB : : AF': AF,

i.e. AF^= AF, ie. F' coincides with F, Hence D, E, F are

collinear.

Ex. 1. Shmo that the above relation is equivalent to

sin ACF . sin BAD . sin CBE = - sin FCB . sin BAC. sin HBA.
For AF'.FB ^ £^ACF : A FCB

= \AC.CF sin ACF '.\FC.CB sin FCB.

Ex. 2. The tangents to a circle at tJie vertices of an inscribed triangle meet the

opposite sides in collinear points.

Ex. 3. A line meets BC, CA, AB in D, E, F. P, Q, R bisect EF, FD, BE.
AP, BQ, CR meet BC, CA, AB in X, Y, Z. Show that X, Y, Z are coUinear.

For BX:CX ::BA sin FAP : CA sin PAE ::BA.EA :CA. FA.

Ex. 4. A line meets BC, CA, AB in X, Y, Z, and is any point ; show that

sin BOX . sin COY . sin AOZ = sin COX. sin AOY . sin BOZ.

Ex. 5. If any transversal cut the sides AB. BC, CD, DE, . . . of any polygon

in the points a, b, c, d, . . ., show that ttie continued product of the ratios

Aa/Ba, Bb/Cb, Cc/Dc, Dd/Ed, ...is unity.

Let AC cut the transversal in 7, AD in 8, and so on,

then Aa/Ba x Bb/Cb x Cy/Ay - i

and Ay/Cyx Cc/Dc xD5/Ad == i, and so on.

Multiplying up and cancelling, we get the theorem.

Ex. 6. A transversal meets the sides of a polygon ABCD . . . in a, 0, y, . .

.

and meets any lines through the vertices A, B, C, . . . in a, b,c, . .
. ; show that

the continued product of such ratios as

sin a £?^/sin bB0-i-a b/b is unity.

Ex. 7. If on the four lines AB, BC, CD, DA there be taken four points

a, b, c, d such that ^a. Bb . Cc. Dd = aB . bC. cD . dA,

show that ab and cd meet on AC and ad and be meet on BD.
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Apply Menelaus's Theorem to ABB and ad and to BCB and he
;

multiply, and divide by the given relation ; and we see that ad and he

meet BJ) in the same point ; similarly for AC.

Ex. S.Ifad and he meet on BD, then ab and cd meet on AC, and the abore

relation holds.

Ex. 9. IfAB and CD meet in E and AD and BC in F, and if Edh cut AB
in d and BC in b, and if Fac cut AB in a and CD in c, then

Aa.Bb.Cc.Dd = aB.bC.cD.dA.
Use the theorem sin A/sin B = a/b.

Ex, 10. Between ABCB, abed there holds also the following relation

sin ab B . sin be C . sin ed B . sin daA^ sin B be , sin Ccd . sin B da . sin A ab.

Ex, 11. If the lines AB, BC, CB, BA, which are not in the same plane, be

met by any plane in a, b, c, d ; then the relation of Ex. 7 holds ; and if this

relation hold, thefour points are in one plane.

For the planes ABB, CBB, abed meet in a point, i. e. ad and be

meet on BB.

Ex. 12. If the sides of the triangle ABC which is inscribed in a circle be cut

by any transxersal in B, E, F, show that the product of the tangentsfrom B, E, F
to the circle is numerically equal to AF. BB . CE.

Ex. 13. Construct geometrically the ratio a/b -i- c/d.

Ex. 14. The bisectors of the supplements of the angles of a triangle meet
the opposite sides in coUinear points.

Ex. 15. The bisectors of two angles of a triangle and the bisector of the sup-

plement of the third angle meet tlie opposite sides in eollinear points.

Ceva's Theorem.

8. If the lines joining any point to the vertices Ay B, C of a

triangle meet the opposite sides in D, E, F; then

AF, BD.CE= FB.DC. EA.

To verify the sign of the formula. the point in which
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AD^ BE, CF meet must be either inside the triangle, in which

case each of the ratios AFiFB and BD : DC and CE : EA
is positive, or as at Oj or Og, in which cases two of the ratios

are negative and one positive. Hence the sign of the

formula is correct.

To prove the formula numerically, we have

AFiFB:: /\ ACF : l^ FCB : : AAOFiAFOB
::AACF-AAOF:AFCB-/\FOB
:: AAOCiABOa

Similarly BDiBC:: A BOA lAAOC
and CE:EA::ACOB:AAOB.

Hence, multiplying, we see that the formula is true

numerically.

Conversely, if three points D, E, F, taken on the sides BC,

CA, AB of a triangle, satisfy the relation

AF. BD. CE = FB.BC, EA,

then AB, BE, CF are concurrent.

For, if not, let AD, BE cut in ; and let CO cut AB in

F'. Then since AD, BE, CF' are concurrent, we have

AF\ BD.CE = F'B . DC. EA.

But by hypothesis we have

AF. BD.CEz= FB.DC. EA.

Dividing, we get AF': F'B ::AF: FB. Hence F and F'
coincide, i.e. AD, BE, CF are concurrent.

Ex. 1. In the figure, show that

^ OE OF _
AD '*' BE '*' CF ~ ^'

Ex. 2. AO meets BC in D, BO meets CA in E, CO meets AB in F. GH is

equal and parallel to BC and passes through A. BC meets GO in L and HO in

K. Similarly segments like KL areformed on CA and AB. Show that the pro-

duct of these S€gm,ents is .-r,
J.jy f,^

Ex. 3. Show thai the necessary and sufficient condition that Aa, Bb, Cc should

meet in a point is

sin aAB . sin h BC . sin c CA ^ sin CA a . sin AB b . sin BC c.

Ex. 4. If the lines Aa, Bb, Cc, Dd, . . , drawn through the vertices of a plane

polygon ABCD . . . in the same ])lane meet in a point, then the continued product of
suA:h ratios as sin a AB : sin AB b is unity.
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Ex. 5. If the lines joining a fixed point to the opposite vertices ofa polygoyi

of an odd number of sides meet the sides AB, BC, CD, DE, ... in the points

a, b, c, d, . . ., shoxo that the continued product of such ratios as Aa/aB is unity.

For Aa/aB =- AO.aO sin AOa/aO . BO sin aOB.

Ex. 6. The lines joining tlie centres of the escribed circles of a triangle to the

middle points of the coiresponding sides of the triangle are concurrent.

Ex. 7. AO meets BC in P, BO meets CA in Q, CO meets AB in R ; PU meets

QR in X, QU meets RP in F, RU meets PQ in Z ; shoxo that AX, BY, CZ are

concurrent.

Ex. 8. Through the vertices of a triangle are draum parallels to the reflexions

of the opposite sides in any line ; shoic that these parallels meet in a point.

For the angle between the reflexions of two lines is equal to the
angle between the lines.

Ex. 9. A\ B' , C are the reflexions of A, B, C in a given line through 0.

0A\ OB', OCf meet BC, CA, AB in D, E, F. Show that D, E, F are coUinear.

For BD:DC::BO sin BOA' : CO sin A'OC.

Ex. 10. A cirde meets BC in D, I/, CA in E, E', and AB in F, F'.

Show that if AD, BE. CF meet in a point, so do AD', BE', CF'.

Ex. 11. A line meets BC, CA, AB in P, Q, R and AO, BO, CO in

X, Y, Z, being any point. Show that

QX.RY.PZ ^ RX.PY. QZ.

Ex. 12. AA', BB', CC meet in a point, show thai tlie meets ofBC. B'C, of
CA, CA' and of AB, A'B' are coUinear ; and conversely, if the meets are

collinear, the joins are concurrent. (See also IV. ii.)

Let p. p' be the perpendiculars from A on A'B', A'C and q, q' those
from B on B'C, B'A' and r, / those from C on CA', CB'. Then

sin B'A'A : sin AA'C : : p : p' and p' : r : :AY :CY,

if AC meet A'C in Y.

Ex. 13. The linesfrom the vertices of a triangle to the points of contact of any
circle touching the sides of the triangle are concurrent.



CHAPTER n.

HARMONIC RANGES AND PENCILS.

1. A range or rmo is a set of points on the same line,

called the axis or base of the range.

A pencil is a set of lines, called rays, passing through the

same point, called the vertex or centre of the pencil.

If -4, By A\ B^ are collinear points such that

AB',BA'',',AB'\A'B^

or (which is the same thing) such that

ABjBA'^ -AB'/B'A',

then {ABA'B^} is called a hartnonic range. A, A' and B,

B^ are called harmonic pairs of points ; and A, A' are said to

correspond and B, B' are said to correspond. Also A is said

to be the fomih harmonic of A' (and A' of J.) for B and B^;

so 5 is said to be the fourth harmonic of B' (and B' of B)

for A and A\ Also AA' and BB" are called harmonic

segments and are said to divide one another harmonically.

The briefest and clearest way of stating the harmonic rela-

tion is to say that {AA\ BB') is harmonic. The relation

may be stated in words thus—each pair of harmonic points

divides the segment joining the other pair in the same ratio

internally and externally.

A B A' B^

For BA : AB'= -BA': A'B\

Ex. 1. The centres of similitude of two circles divide the segment joinitig the

centres of the circles harmonically.

Ex. 2. TJie internal and external bisectors of the vertical angle of a triangle

cut the base harmonically^
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Ex. 3. (5C, XX'\ (CA, YY^), (AB, ZZ') are harmonic ranges ; show

that if AXJ
BY, CZ are concurrent, then X'Y'Z' are coUinear, and that if

X'Y'Z' are cdlinear, then AX, BY, CZ are concurrent.

Use the theorems of Ceva and Menelaus.

2. If{AA, BB') he harmonky then

2_I I ^_^ ^

AA'~AB^ AW' bWbI^BAJ'
I I

+ AfT>f^ -Df-D ly A "f"

A'A ~ A'B "^ A'B" B'B ~ B'A^ B'A'

Taking any one of these formulae, say211
A'A A'B ' A'B'

choose A' as origin in the defining relation

ABiBA'i'.AB'-.A'B'

and use abridged notation. Then AB . A^B^= BA\ AB^
gives us

{b-a)V={-l){l)-a) or W-aV -\-lU-ah = o,

211
or 2W= db + aV or - = - + r^»

a h h

Conversely, if any one of these relations is true, then

(AA% BB') is harmonic.

For retracing our steps we see that

ABiBA^iiAB'-.A^B".

Ex. 1. J//3 Used BB', then AB . AB' = AA\ A0.

Ex. 2. AD, BE, CF are the perpendiculars on BC, CA, AB, and {BC, DP\
(CA, EQ^ and (AB, FR) are harmonic ; show that PQR is the radical axis of the

circum-circle and the nine-point circle of ABC.

Ex. 3. If {AA', BB') be harmonic, and P be any point on the line AB',
show that

P^ __PB_ PB^
^ ' AA' ~ AB'^ AB'

'

Put PA'= PA+AA', &c.

Ex. 4. IfEF divide both AA' and BB' harmonically, then

AB . B'E . EA' = -A'B' . BE . EA.
For we have i/EA-i/EB = i/EB'-i/EA'.

If we call AA' the harmonic mean between AB and AB' and so on,
Ex. I shows us that the G. M. between two lengths is equal to the G. M. between
the A.M. and the H. M.

For A0 is the A. M. between AB and AB'.
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3. If {AA\ BB') te harmonic, then aJ.^= aB. aB'-, and

conversely, if aJ.^= aB . aB\ then (AA\ BB^) is harmonic,

a 'being the middle point ofAA\
For taking a as the origin in the defining relation

ABiBA^iiAB'-.A^B',

we have (& - a) (ft'

—

a) = (a'— h) {V— a).

But a'= —a, hence (h-a){h'+ a) = {-a— h){V—a)j

i.e. W+la—aV—a^ + aV—a^+W—ha^ o,

i.e. hV= a\ i.e. aA''=aB, aB'.

The converse follows by retracing our steps.

Ex. 1. Show that the middle point of either oftwo harmonic segments is ovUside

the other segment.

Ex. 2. The chord of contact of tangentsfrom A to any circle cuts the diameter

BB' through A in the fourth harmonic ofA with respect to BB'.

For OB^ = OP"^ = OA . OA' by similar triangles, P being one of the

points of contact and the centre.

Ex. 3. Deduce a construction for the fourth harmonic of A' with respect to BB'
when A' is between B and JB'.

Ex. 4. Deditce the connexion between the A.M., G.M., and H.M. of AB
and ABf.

Ex. 5. Beduce the formula ^/AA'=^ i/AB+i/AB'.
We have A . AA^= AI^=- AB. AB\

Hence the result follows from a . AO = AB + AB^.

Ex. 6. Do Ex. 4 and Ex. 5, interchanging A and A'.

Ex. 7. Show that if \AA' , BB') be harmonic and a bisect AA' and bisect

BB%then
2 . a5 = (VI^± VI^)'.

Ex. 8. Also AB^ : A'B"" : : fiA : 0A'

For 0A : 0A^ = 0A^ : PA . PA' = PA" : pB\

Ex. 9. Given two segments AB, CD upon the same line, construct a segment

XY which sliaU divide both AB and CD harmonically.

Take any point P not on the given line. Through ABP and CDP
construct circles cutting again in Q. Let PQ cut ABCD in 0. From
draw tangents to the circles. With as centre and any one of these

tangents as radius, describe a circle. This circle will cut the given line

in the required points X and Y. For

0X^= Or*= OP.OQ = OA.OB = OC. OD.

4. To find the relation between four harmonic points and a

fifth point on the same line.

Let {AA', BB') be harmonic, and take the fifth point P
as origin. Then by definition AB/BA'= -AB'/B'A\
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But AB = PB-PA = h-a, &c. Hence

(J)-a) {a'-V) + {a'-V: {V-a) = o

or 2aa'+2W=(a-\-a'){h + h'),

i.e. 2.PA.FA'+2.PB, PB'= {PA + PA') {PB 4- PB').

Conversely, if this relation hold, {AA\ BB') is harmoniv.

For reasoning backwards we deduce the relation

AB/BA'= -AB'/B'A\

If (AA', BB') he harmonic, and a Used AA' and /3 Msect

BB', then PA . PA'+ PB.PB'=2.Pa. P/3.

For PA + PA'^ 2.Pa and PB+ PB'= 2 . P;3.

Note that every relation of the second order connecting

harmonic points must be identical with the relation of this

article. Hence the following relations can be proved.

Ex. 1. 2 . AB\ BA'= 2.AB. A'B' = AA\ BB'.

Ex. 2. AB . AB' + A'B . A'B' = A'A K

Ex. 3. A'A'^ + B'B''= {AB + A'B'y = 4.a&\

Ex. 4. PA . A'B' + PA'. AB + PB. B'A + PB'. BA' = o.

Ex. 5. AB-= 2.aB.A0.

Ex. 6. BA iBA'-.-.m-. A'0.

Ex. 7. PA . PA'-P& + 2.aB.P0.

Ex. 8. IfP and Qbe arbitrary points, then

PA . QB'. A'B + PA'. QB. AB' + PB . QA . B'A' + PB'. QA'. BA = o.

Take P as origin and put QB' = V -x, &c.

Ex. 9. PB . PB'. AA' + PA"^. A'0 + A'P\ PA - o.

This is a relation of the third order, which vanishes when A
coincides with A'. Hence we guess that it is the product of (a — a')

into the harmonic relation.

5. If B, B' divide AA' in the same ratio internally and

externally, then by definition (AA', BB') is a harmonic

range. Now suppose this ratio is one of equality, then B
becomes the internal bisector of the segment AA\ i.e. B is

the middle point of AA'; also B" becomes the external

bisector of the segment AA', i.e. a point such that

AB'= A'B', B' being outside AA'. But

AB'!A'B'= {AA'+ A'B')/A'B'= AA' A'B'+ i
;

and this can only be i when AA'= o or A'B'= co. Hence,
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assuming that A and A' do not coincide, we must have

A^B'= 00 , i.e. B' must be at infinity. Also if B' is at

infinity, then ABflA'B^— i as above. Hence AB^:= A'B\
i.e. B! at infinity bisects AA' externally. Hence the two

theorems

—

The point at infinity on any line bisects externally every

segment on this line.

Every segment is divided harmonically hy its middle point and

the point at infinity on the line, or, in other words, hy its internal

and external bisectors,

6. If any two points of a harmonic range coincide, then a

third point coincides with them and the fourth may he anywhere

on the line.

Suppose AA' coincide. Then B lying between A and A'

must coincide with them. So for BB\
Suppose AB coincide. Then AB = o ; hence, from the

defining relation AB . A'B'= BA\ AB', we conclude that

BA'= o or AB^= o, i.e. ABA' coincide or ABB'. So for

AB', A'B, A'B'.

Again, if ABA' coincide, then AB = o and BA'= o
;

hence the relation AB.A'B'= BA'. AB' is satisfied wherever

B' is. So for BA'B', &c.

7. A pencil of four concurrent rays is called a harmonic

pencil if every transversal cuts it in a harmonic range.

Harmonic pencils exist for

—

If a pencil he obtained hy joining any point to the points of a

harmonic range, then every transversal cuts this pencil in a har-

monic range.

Let (AA^, BB') be a harmonic range and V any point.

Join Y to AA'BB', and let any transversal cut the joining

lines in aa'hb'.

Then ah:ha'= AaVh: AhVa'
= Va.Vh sin aVh : Vh . Ya' sin hYa\

ah ah' _ sin aYh sin aYb'
Hence ^,^^,- ^^ ^y^.

"^
^^^ yy^^

'
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Now aVh'= AYB'-, but for the transversal a/3' we should

have a 7/5'= 180°-^ YB',

So in all cases aYV is either equal to or supplemental to

A VB"; hence in all cases sin aVh'= sin A VB\ So for the

other angles.

Hence =—. -r- ^. = sinAVB sin^F^
ha'

ay
hV~ sin BVA'
AB AB'

' sinJ5'F^'

T^A/ Ti/Af hy similar reasoning

= — I by definition.

Hence ah/ha'-i- ah^/h'a^= — i ; hence {aa', hV) is a har-

monic range.

We denote the pencil subtended by ABA^B' at V by

y{ABA'B') ; and we may briefly state the above theorem

thus—if {AA\ BB') is a harmonic range, then F(J.^', BB')

is a harmonic pencil (or more briefly still—is harmonic).

Ex. \. If B bisect AA^ and VO. be drawn parallel to AA^, then the pencil

V{AA\ Bn) is hatmonic.

For {AA\ B H) is harmonic, H being the point at infinity on AA\
Ex. 2. If a transversal be draicn parallel to the ray VB of the harmonic

pencil V {AA^, BB') meeting the other rays in ab'a' ^ then U bisects aa'

.

For 6 is at infinity.

C
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Ex. 3. The internal and external bisectors of an angle foi-m with the rays

of the angle a harmonic pencil.

Draw a parallel to one of the bisectors ; or use Eu. VI. 3 and A.

Ex. 4. If a pair of corresponding rays of a hannonic pencil be perpendicular

,

they are the bisectors of the angles between the other pair of rays.

Ex. 5. If V (AA^, BB') be harmonic, prove that

2 cot AVA^ = cot AVB + cot AVB^.

Take a transversal perpendicular to VA.

Ex. 6. Also if Va bisect the angle AVA% then

tan^ aVA = tan a VB . tan o VB'.

Take a transversal perpendicular to Va.

Ex. 7. 2 sin A VB'. sin BVA' = 2 sin AVB . sin A' VB'

= sinAVA'.^\uBVB'.

^ « sin PVA' sin PVB sin PVB'
Ex. 8. 2. = +

sin^F^' sin AVB sinAVB'
where VP is an arbitrary line through V.

Also deduce Ex. 5.

8. TJte polar of a point for two lines BA and BC is the

fourth harmonic of BO for BA and BG.

TJie pole of a line LM for two points A, B is the fourth

harmonic of the meet of LM and AB for A and B.

If through there he drawn the transversal OPQ cutting BA
in P and BC in Q, then the locus of B, the fourth harmonic of

for P and Q, is tJie polar of for BA and BC.

For the pencil B {OPBQ) is harmonic.

If the two lines BA, BC be parallel, i.e. if ^ be at infinity,

the theory still holds, if we consider B to be the limit of a

finite point.

To construct the polar of for 12 J., 120 where 12 is at

infinity, draw any transversal OPQ meeting Q.A in P and

120 in Q, and take B so that {OPQB) is harmonic, and

through B draw a parallel 12JR to 12 J. and 120 ; then 12i^ is

the polar of for the parallels HA, 120.

Ex. 1. The polars of any point for the three pairs of sides of a triangle meet

the opposite sides in three collinear points.

Let AO, BO, CO meet the opposite sides in P, Q, R, and let the polars

of meet these sides in P', Q', R'.

Then BP/PC = -BP'/P'C, and so on

Now use the theorems of Menelaus and Ceva.

Ex. 2. The poles of any line for the pairs of vertices of a triangle connect con-

currently with tlie opposite vertices.
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Ex. 3. The poles of any line for the pairs of points BC and CA are coUinear

with the meet of the line and AB.

Ex. 4. The polars of Ofor BA, BC and for CB, CA meet on AO.

9. Through a given point is drmvn a line meeting tivo fixed

lines in P and Q, and on OPQ is taken the point B such that

i/OR = 1/OP+ i/OQ
; find the locus ofB.

Take the polar w of for the two given lines, and let OPQ
meet this line in B. Then we know that

2/OB = 1/OP+ i/OQ.

Now draw parallel to n and

half-way between and n the

line n' cutting OPQ in JR'.

Then 0B'= OB/2,

i.e. 2/OB = i/OB'.

Hence i/OB'= i/OP+i/OQ;
hence n^ is the required locus.

Ex. 1. A transversal through the fixed point meets fixed lines in A,B,C,...
and on OA is taken a point P such thai i/OP = i/OA + 1/OB+1/OC+ ...;

find the locus of P.

Keplace i/OA + i/OB by i/OL, and so on.

Ex. 2. A transversal through the fixed point meetsfixed lines in A, B, C,. . .

;

find the direction of the transversal when 2 i/OA is (i) a maximum (ii) a

minimum.

Perpendicular and parallel to the locus of P.

Ex. 3. A transversal through the fixed point meets fixed lines in A, B, C, ..

.

and on OA is taken a point P such that i/OP = a/OA + b/OB + c/OC+ . . .

,

where a, b, c, . . . are any multipliers ; find the locus of P. Also find the direction

of the transversal when 5 a/OA is (i) a max., (ii) a min.

Whatever a,h,c,... are, we can, by taking the integer A large enough,
make ka, kh, kc, ... all integers. Hence

k/OP = a'/OA + V/OB + <f/OC + . . .

where k, a\ h% c% . . . are all integers. Now by Ex. i find the locus of

Q such that i/OQ = {i/OA + ... a' times) + {1/OB + . . . b^ times) + . .

.

and draw a parallel through P to the locus of Q such that OP = k. OQ.

This parallel is the required locus.

10. A complete quadrilateral is formed by four lines called

the sides which meet in six points called the vertices of the

quadrilateral. These six points can be joined by three other

lines called the diagonals. The diagonals are also called the

harmmiic lines of the quadrilateral and the harmonic linesform

the sides of the harmonic triangle. These names are derived

c 2
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from the following property—called fhe harmonic property of

a complete quadrilateral.

Each diagonal of a complete quadrilateral is divided har-

monically hy the other two diagonals.

Let the four sides

of the complete
~-^

---5,tt
quadrilateral meet

in the three pairs

of opposite vertices

AA', BB', CC\
Then AA\BB',CC\
or /37, ya, a(3 are the

harmonic lines. We
have to show that the ranges (AA', fiy), {BB% ya), (CC, a/3)

are harmonic.

To prove that {AA\ /3y) is harmonic consider the triangle

whose vertices are AA^ and any other of the vertices, say

AA^C. Since ByB' are collinear, we have

CB . A'y . AB^ = CB\ Ay . A'B.

Also since AB, A'B\ C^ are concurrent, we have

CB,A'l3,AB'= -CB\A/3.A'B.

Dividing we get A'y/Ay= —A^^/A^; hence (AA^, ^y)

is harmonic. Similarly {BB^, ya) and {CC\ a^) are har-

monic.

11. Using a ruler only, construct the fourth harmonic of a

given point for two given points.

To construct the fourth harmonic of y for B and B'. On
any line through y take two points A and A\ Let A^B^

AB' cut in C and AB. A'B' in C\ Then CC cuts BB' in

the required point a. For BB' is a diagonal of the complete

quadrilateral formed by AB, AB\ A^B, A'B'-, hence

(^J?', ya) is harmonic.

Ex. 1. AO, BO, CO meet BC, CA, AB in P, Q, R ; QR, RP, PQ meet BC,
CA, AB in X, Y, Z. Shoic that {BC, PX\ (CA, QY), {AB, RZ) are harmmic
ranges, and that XYZ are collinear.

Ex. ^. If a transversal meet BC, CA, AB in X, Y, Z, and the join of A to

the meet ofBY and CZ cut BC in P ; shoic tMt {BC, PX) is harmonic, and that

the three linesformed like AP are concurrent.
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12. A complete quadrangle is formed by four points called

the vertices which are joined by six lines called the sides of

the quadrangle. These six lines meet in three other points

called the harmonic points of the quadrangle ; and the har-

monic points are the vei-tices of the harmonic triangle. Some
writers give the name diagonal-points to the harmonic

points.

The following is the harmonic property of a complete

quadrangle.

The angle at each harmonic point is divided harmonically by

the joins to the other harmonic points.

v-^Let ABCD be the

four points form- \ ^^^^^^^^^^^-^^^CT
"" ~"—7^ ^-

ing the quadrangle. \ '""j>^-^^^^'^
Then TJ, F, W are

V-^^^'^''^/^/^
the harmonic points ^\ / /
of the quadrangle

;

\ //
and we have to show \ //
that the pencils c

Z7(^D, YW\ F(5^, WTJ\ WifiB, UV)
are harmonic.

To show that the pencil W{CD, UV) is harmonic, it is

sufficient to show that the range (LM, UV) is harmonic, L
being the meet of AC and UV, and M of BB and UV. Con-

sider the triangle formed by UV and any vertex, say UVC.

Then because BBM are collinear, we have

CB.VM. UD = CB. UM.VB.
Also because UB, VBy CL are concurrent, we have

CB.VL.UB= -CB.UL.VB.
Hence dividing we get VM / UM = —VL/UL. Hence

(UV, LM) is harmonic, i. *e. W{CB, UV) is harmonic.

Similarly U{AB, VW) and V(BA, WU) are harmonic.

13. Using a ruler only, construct the fourth harmonic of a

given line for two given lines.

To construct the fourth harmonic of VU for VA and VB.
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Through any point TJ on YJJ draw any two lines YAB and

FDC, cutting YA in A and D, and YB in 5 and C. Then if

J. (7 and i?Z) meet in W, FW is the required line. For Z7,

F, W are the harmonic points of the quadrangle A, By C, 2).

Hence Y(BA, WU) is harmonic.

Ex. L Through one of the harmonic points ofa complete quadrangle is drawn
the line parallel to the join of the other two harmonic points ; show that two of the

segments cut off between opposite sides of the quadrangle are bisected at ilie

harmonic point.

Ex. 2. Through F, one of the harmonic points ofa quadrangle, is drawn a line

paraUd to one side and meeting the opposite side in P and the join of the other

fiarmonic points in Q, show that VP = PQ.

Ex. 3. In the figure of the quadrilateral in § lo, show that Aa, A^a, B0,
B'fi, Cy, (fyform the six sides of a quadrangle.

We have to show that the six lines pass three by three through four
points. Consider aA. fiB^, y(/. Since A'B'(f are collinear and (^87, AA')
is harmonic, aA, &B'

,
y(f are concurrent. Similarly aj., ^B, yC are

concurrent, also aA% &B, y(f, and also aA', PB\ yC.

Ex. 4. In the figure oftJie quadrangle in § 12, the sides of the triangle UVW
meet the sides in six new points which are the vertices of a quadrilateraL



CHAPTER III.

HARMONIC PEOPERTIES OF A CIRCLE.

1. Every line meets a circle in two points, real, coincident or

imaginary.

For take any line I cutting a circle in the points A and B.

Now move I parallel to itself away from the centre of the

circle. Then A and B approach, and ultimately coincide

when I touches the circle. But when I moves still further

from the centre, the points A and B become invisible
;
yet,

for the sake of continuity, we say that they still exist, but

are invisible or imaginary. (See also XXVII.)

2. From every point can he drawn to a circle two tangents,

real, coincident or imaginary.

For take any point T outside the circle, and let TP and

TQ be the tangents from T to the circle. Now let T
approach the centre of the circle along OT. Then TP and

TQ approach, and ultimately coincide when T reaches the

circumference. But when T moves still further towards 0,

the tangents TP and TQ become invisible
;
yet, for the sake

of continuity, we say that they still exist, but are invisible

or imaginary. (See also XXVII.)

3. Two points which divide any diameter of a circle har-

monically are said to be inverse points for this circle.

If be the centre and r the radius of the circle, then

inverse points B, B' must lie on the same radius of the circle

and be such that OB . 0B'= r\
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Ex. 1. The inverse of any point at infinity for a circle is the centre of

the cirde ; and conversely, tJie inverse of the centre is any point at infinity.

Ex. 2. Every two points and their inverses for a cirde lie on a circle.

Ex. 3. Given a pair of inverse points for a circle, the circle musi he one

of a certain system of coaxal circles.

Ex. 4. Iffour poinU {AA', BB') he harmonic, so are thefour inverse points

{aa'j &&0 for any circle.

For Oa--, 06 = -;fte»«a6=-5^1-^.

Ex. 5. If BB' he a pair of inverse points on the diameter AA' of a circle, and
ifP he any point on the cirde ; then PA, PA' hisect the angle BPB'j and the ratio

PB : PB' is independent of the position of P.

Ex. 6. Also if perpendiculars to AA' at AA' BB' meet any tangent to the

circle in aa' hi/, show that Oa and Oa' hisect the angle hOb', heing the centre,

and that the ratio Oh : Oh' is independent of the position of the tangent.

4. Two circles are said to be orthogonal when the tangents

to the circles at each point of intersection are at right angles.

Ex. 1. If two circles are orthogonal, at one of their meets, they are orthogonal

at the, other.

Ex. 2. If the orthogonal circles a and whose centres are A and B meet in P,

show that AP touches j8 and BP touches a.

Ex. 3. The radii of two circles are a and h and the diatance hetween their

centres is S ; show that the necessary and sufficient condition that the circles should

be orthogonal is d^ + h^= 5\

5. Every circle which passes through a pair ofpoints inverse

for a circle is orthogonal to this circle ; and conversely, every circle

orthogonal to a circle cuts every diameter of this circle in a pair

ofinverse points.

First, let the circle y
pass through the inverse

points BB^ of the circle

CO. Let P be one of the

meets of (o and y. Then

OB.OB'=OF\ Hence

OF touches y. Hence

OFG is a right angle.

Hence CP touches co.

Hence the tangents OP and CP are at right angles, i.e. the

two circles are orthogonal.

Second, let the two circles a> and y be orthogonal.
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Through the centre of co draw the diameter AA' cutting y

in BB'. Then since the circles are orthogonal, OBG is a

right angle ; hence OV touches y. Hence OB . OB'— OP'^,

Hence B and B' are inverse points for co.

Ex. \. If a circle a divide one diameter of the circle )8 harmonically, it divides

every diameter of fi harmonically.

Ex. 2. On the diagonals of a complete quadrilateral as diameters are draum
three circles ; show that each of these cuts orthogonally the circle about the harmonic

triangle.

Ex. 3. Through two given points draw a circle to cut a given segment

harmonically.

The circle cuts the circle on the segment as diameter orthogonally.

6. A line cuts two circles in the points PP' and QQ\ so that

(PP\ QQ') is harmonic ; show that the product of the perpen-

diculars from the centres of the circles on the line is constant.

Let A be the centre

and a the radius of one

circle, and B and b

those of the other

circle. Let AX = p
and BY=q be the per-

pendiculars from J. and

^ on the line. Then

X bisects PP', Y bi-

sects QQ', and since (PP', QQ') is harmonic, we have

XP'=XQ.XQ\
Draw BJSf perpendicular to AX. Denote AB by 8.

Now 2pq=p'' + q^-{p-qy=:a''-PX'-hJ)''-QY'-A]Sn

= a'' + h'''-PX^-QY'-d'' +XY'=a' + J)'~bK
For

XY'-PX''-QY'= (XY+QY) {XY-QY)-XP'
= XQ\XQ-XP''=o.

Hence pq is constant.

Ex. 1. If a line cut two orthogonal circles harmcmically, it must pass
through one of the centres.

For p = o or q == o.

Ex. 2. If a line I cut one circle in the points PP^ and another circle in the
points QQ^, which are such that (PP^, QC/) is harmonic ; show that the envelope

of I is a conic whose foci are the centres of the circles. Show also that if the
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circles meet in C and D, the envelope touches the four tangents of the circles

at C and D.
Since pq is constant, the first follows by Geometrical Conies. Also

if I become the tangent at C, then PP' and Q coincide at C ; hence
{PF, QQ') is harmonic.

Ex, 3. The locus of the middle points of PP' and QQ' is the coaxal circle

whose centre bisects AB.
For the locus ofX and Y is the auxiliary circle. Also each meet of

the circles is on the locus ; for the tangent to either circle at a meet
is divided harmonically.

Ex. 4. IfRbe any point on a circle, A and B fixed points on a diameter and
equidistantfrom tlie centre, the envelope of a line ichich cuts harmonically the two
circles with A, B as centres and AR, BR as radii is independent of the position of
R on the circle.

Its foci are A and B. Also

2b'^=AR^ + BR''-AB^ = i2 0R''- + 2 0A^-^0A\
Hence fe* = OR^— OA^, which is constant.

7. TJirough a point U is drawn a variable chord PP' of a

circle and on PP' is taken the point B such that (UB, PP'} is

harmonic ; to show that the locus ofB is a line.

Take the centre of

the given circle to. Let

OU cut o) in AA\ From
any position of B drop a

perpendicular BU' to

TJO. On i?Z7 as diameter

describe the circle /3 pas-

sing through U\ Now
since {BTJ, PP') is har-

monic, PP' are inverse points for /3. Hence m and ^ are

orthogonal. Hence UTJ' are inverse for o). Hence Z7' is a

fixed point. Hence the locus of JK is a fixed line, viz. the

perpendicular to 0Z7 through the inverse of U iov the given

circle.

The locus of B is called the polar of TJ for the circle. We
may briefly define the polar of a point for a circle as the

locus of the fourth harmonics of the point for the circle.

Also if BU' is given, ?7is called its pole for the circle, and

U and BU' are said to he pole and polar for the circle.

8. IfUhe outside the circle^ the polar of TJfor the circle is

tJie chord of contact of tangents from U to the circle.
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For take the chord JJPP' very near the tangent TIT.

Then when PP' coincide, B, being between them, coincides

with them ; i.e. one posi-

tion of B is at T. So

another position of B is

at T'. Hence TT'isthe

polar.

Tlie polar of the centre

of the circle is the line at

infinity. (See IV. 3.)

For if U coincide with

0, then PP' is bisected at Z7. Hence B is at infinity.

The pole of the line at infinity for a circle is the centre of the

circle.

For if B be always at infinity, PP' is always bisected at

U, i.e. ?7is the centre of the circle.

The polar of a point on the circle is the tangent at the point.

For suppose Z7 to approach A, then since OU.OU^= 0-4',

we see that Z7' also approaches A. Hence when Z7is at A,

U' is Bi A; and the polar of Z7, being the perpendicular to

0Z7 through TJ\ is the tangent at U.

Similarly, the pole of a tangent to a circle is the point of

contact.

9. Salmon's theo-

rem.

—

If P and Q he

any tico points and if \p'

PM be theperpendicular

from P on the polar ofQ
for any circle, and if

QN he the perpendicular

from Q on the polar ofP
for the same circle, then

OP/PM = Oq/QN,
being the centre of the

circle.

From P drop PX perpendicular to OQ and from Q drop

QY perpendicular to OP. Then P' being the inverse point
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of P, and Qi the inverse point of §, we have

OF . OP' =^ OQ . 0Q\
Also since the angles at X and Y are right, we have

OY.OP= OX.OQ,
. •. OP/OQ= OQ'/OP'=OX/OY^{Oq -OX)-^{OP'-OY)

=XQyYP'=PM/QK
Hence OP/PM = OQ/QK
We may enunciate this theorem more briefly thus

—

If Py

q he thepolars ofP, Qfor a circle whose centre is 0, then

OP/(P,q) = OQ/(Q,p).

Ex. 1/ a, h, p he the polars of the points A, B, P for a circle whose
centre is 0, show that

(fi«) . (Ap) ^ (0^) ^ (A_a)

(P, 6)'"(J5,p) (0,6) (^,6)*

For OA . (0, a) = OB. (0, b) = r*.

10. If the polar of P pass through Q, then the polar of Q
passes through P.

If the polar of P pass

through Q, then, P' being

the inverse of P, P'Q is per-

pendicular to OP. Take Q'

the inverse of Q. Then

OP. OP' =0(^.0(3'.

Hence PP'QQ' are coneyclic.

Hence OQ'P = OP'Q is a

right angle. Hence PQ' is

the polar of Q, i.e. the polar

of Q passes through P.

The points P and Q are called conjugate points for the circle.

We may define two conjugate points for a circle to be such

that the polar of each for the circle passes through the other.

Note that if PQ cut the circle in real points BR', then,

since the polar of P passes through Q, we see that (PQ, BB')

is harmonic ; and hence the polar of Q passes through P.

The pole of the join of P and Q is the meet of the polars of

P and Q.
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For if the polars of P and Q meet in i?, then, since the

polars of P and Q, pass through i?, therefore the polar of B
passes through P and Q.

11. On every line there is an infinite number of pairs of con-

jugate points for a given circle ; and each of these pairs is har-

monic tvith the pair ofpoints in which the line meets the circle.

On the line take any point P, and let the polar of'P meet

the line in P\ Then P and P' are conjugate points ; for the

polar of P passes through P'. Also if PP' meet the circle in

BBf, then (PP", BU') is harmonic ; for P' is on the polar

of P.

Conversely, every two points which are harmonic with a pair

ofpoints on a circle are conjugate for the circle.

12. If the line p contain the pole of the line q, then q con-

tains the pole ofp.

Let P be the pole of p and Q of q. We are given that p
contains Q, i.e. that the polar of P passes through Q. Hence

the polar of Q passes through P, i.e. q passes through P, i.e.

q contains the pole of p.

The lines p and q are called conjugate lines for the circle.

We may define two conjugate lines for a circle to be such

that each contains the pole of the other.

TJirough every point can he drawn an infinite number ofpairs

oflines which are conjugate

for the circle, and each of

these is harmonic with the

pair of tangents from the

point.

For take any line p
through the given point

U and join U to the pole

Pofi9. Then i9 and UP
are conjugate lines, for

UP contains the pole of^.

Draw the tangents UT and UT' from U, and let the polar

TT' of Umeet p in P\ TI' meets UP in P since U is on the
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polar of P. Now the range {PV^ TT') is harmonic, for P'

is on the polar of P; hence the pencil TJ{JPP', TT) is har-

monic, i.e. the conjugate lines p and UP are harmonic with

the tangents from U.

Conversely, every pair of lines which are harmonic with the

pair of tangents from a point to a circle arc conjugate for the

circle.

For let UQ and TJQ' be harmonic with the tangents UT,

Ur from U. Let UQ and UQ' cut the polar TT of Z7in P
and P'. Since U{QQ\ TT') is harmonic, hence {PP\ TT')

is harmonic. Hence UP' is the polar of P ; for the polar of

P passes through P' since {PP', TT') is harmonic, and passes

through U since P is on the polar of U. Hence since the

pole of UP' lies on Z7P, we see that UP and UP' are conju-

gate lines.

Ex. 1. Find the locus of all the points conjugate to a given point.

Ex. 2. All the lines conjugate to a given line are concurrent.

Ex. 3. When two points are conjugate, so are their polars ; and when two

lines are conjugate, so are their poles.

Ex. 4. A point can be found conjugate to each of two given points ; and a line

can be found conjugate to each of two given lines.

Ex. 5. If the circle a be orthogonal to the circle /3, the7i the ends of any
diameter of a are conjugatefor /3.

Ex. 6. The circle on the segment PQ joining any pair of conjugate points

for a circle as diameter is orthogonal to the given circle.

For PO cuts the new circle in the inverse of P.

Ex. 7. IfB'Cy be the polar of A, CfA' ofB and A'B' of C ; then BC is the

polar of A', CA of Bf and AB ofCf.

Ex. 8. Reciprocal triangles are homologous.

That is, if A is the pole of B'CT, B of (/A', C of A'B', then AA% BB\
(Xy meet in a point. This follows from

sin BAA' : sin A'AC : : {A', (/) : {A', V)

and OA' : {A', (/) : : 0(r : {C, a'). (See also XIV. 3.)

Ex. Q.IfP and Q be a pair of conjugate points for a circle to which they are

exterrwd, then

(i) P(^ is equal to the sum of the squares of the tangentsfrom P and Q ;

(ii) PQ is tmce the tangentfrom the middle point of PQ;

(iii) PU . UQ is equal to the square of the tangent from U, U being the foot of
the perpendicular from the centre of the circle on PQ;

(iv) the circle on PQ as diameter is orthogonal to the given circle.

Take C the middle point of PQ and R the pole of PQ.
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Then UQ meets OT perpendicularly in F, say. Hence

Pg^ = OI^^-OQ^-^OY . OP - 0P2+ 0Q'^-2r2 (i)

= 2C02 + 2CQ2_2»-2 (ii)

and PU. UQ = UB.UO =^ UO'-r^ (iii).

(iv) follows at once from (ii), or because the circle on PQ as

diameter passes through Y.

Ex, 10. M and N are the projections of a point P on a circle on two perpen'

dicidar diameters, Q is thepole o/MN/or the circle, and U and V are the projections

of Q on the diameters. Show that XJV touches the circle.

UV is the polar of P.

13. Pairs of conjugate lines at the centre of a circle are

called pairs of conjugate diameters of the circle.

Every pair of conjugate diameters of a circle is orthogonal.

Take any diameter AA^ of a circle whose centre is 0. The
diameter conjugate to AA^ is the lino through conjugate

to AA^, i.e. is the join of to the pole of AA\ But the

tangents at J. and A^ meet at infinity in 12, say. Hence 012

is the conjugate diameter ; hence the diameter conjugate to

AA' is parallel to the tangent at A, i.e. is perpendicular to

AA\

Ex. 1. The pole of a diameter is the point at infinity on any line perpendicular

to the diameter ; and the polar of any point SI at infinity is the diameter perpen-

dicular to any line through D,.

Ex, 2. Any two points at infinity which subtend a right angle at the centre are

conjugate.

14. A triangle is said to be self-conjugate for a circle when
every two vertices and every two sides are conjugate for the

circle.

Such a triangle is clearly such that each side is the polar

of the opposite vertex. Hence the other names—self-recipro-

cal or self-polar.

Self-conjugate triangles exist.

For on the polar of any point A take any point B. Then
the polar of B passes through A and meets the polar of A in

C say. Then ABC is a self-conjugate triangle. For BG is

the polar of A, CA is the polar of B ; hence C, the meet of

BC and CA, is the pole of AB. Hence AB are conjugate

points, and BC, AC are conjugate lines. So for other pairs.
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Ex. The triangle formed by the line at infinity and any two perpendicular

diameters of a circle is self-conjugate for the circle.

15. Tliere is only one circle for which a given triangle is self-

conjugate; and this is real only when the triangle is ohtuse-

angled.

Suppose the triangle ABC is self-conjugate for the circle

whose centre is 0. Then since A is the pole of BC, it fol-

lows that OA is perpendicular to BC; so OB is perpendicular

to CA, and OC to AB. Hence is the orthocentre of ABC.
Let OA meet BC in A\ OB meet CA in B' and OC meet

AB in C\ Then the square of the radius of the circle must
be equal to OA . OA' and to OB . OB' and to OC . OC; and

this is possible if is the orthocentre, for then these pro-

ducts are equal.

Now describe a circle (called the polar circle of the triangle)

with the orthocentre as centre and with radius p, such that

p'=OA. OA'^ OB . OB'=OC . 0C\ Then the triangle ABC
is self-conjugate for this circle. For BC, being drawn through

the inverse point A' of A perpendicular to OA, is the polar

of A ; so for CA and AB.
Also this circle is imaginary if the triangle is acute-angled

;

for then is inside the triangle and hence p^{= OA . OA') is

negative.

Ex. 1. Describe a circle to cut tfie three sides of a given triangle harmonically.

When is this circle real ?

Ex. 2. In any triangle the circles on the sides as diameters are orthogonal to

the polar circle.

Ex. 3. If any three points X, Y, Z he taken on the sides BC, CA, AB
of a triangle, the circles on AX, BY, CZ as diameters are orthogotial to the polar

circle.

Ex. 4. TJie circle on each of the diagonals of a quadrilateral as diameter

is orthogonal to the polar circle of each of the four triangles formed by the sides

of the quadrilateral.

Ex. 5. Hence the two sets of circles are coaxal. Hence the middle

points of the three diagonals of a quadrilateral are collinear ; and the four ortho-

centres qf the four triangles formed by the sides of a quadrilateral are collinear.

Ex. 6. Every circle cutting two of the circles on the three diagonals of a quadri-

lateral orthogonally, cuts the third also orthogonally.
_

For it cuts two circles of a coaxal system orthogonally.
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16. Tlie harmonic triangle of a quadrangle inscribed in a

circle is self-conjugate for the circle.

Let UVW be the harmonic triangle of the quadrangle

ABCB inscribed in a circle. Then UVW is self-conjugate

for the circle.

Let UV meet AC in L and BD in M. Then since

V(TVU, BA) is harmonic, hence {WL, AG) and {WM, BB)
are harmonic. Hence L and M lie on the polar of TF, i.e.

UV is the polar of W. Similarly FW is the polar of Uy

andTFCTofF.

17. With the ruler only, to construct the polar of a given point

for a given circle.

To construct the polar of Y for the given circle, draw

through V any two chords AD and BC of the circle. Let

BA, CD meet in U, and AC, BD meet in W. Then by the

above theorem WU is the polar of Y.

Ex. Through U one of the harmonic points of a quadrangle inscribed in

a circle is draum a chord cutting the circle in aa% and the pairs of opposite sides

in hi/ , ccf; show that if one of the segments aa' , W , ccf is bisected at U, the others

are also bisected at U.

Let the transversal cut the opposite side of the harmonic triangle in
X, then U^ divides each segment harmonically.

18. Tfie three diagonals of a quadrilateral circumscribing a

circle form a triangle self-conjugate for the circle.

Let the three diagonals AA\ BB\ CC^ of the quadrilateral
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BA^ AB^, B^A\ A'B circumscribing the circle form the tri-

angle a/3y. Then a^y (the harmonic triangle of the quadri-

lateral) is self-conju-

^^^ ^ gate for the circle.

\ ^^^^^v^'A^-^-^^
" " "~^ -~ - harmonic, hence G (ji3y,

\^..^2^\f^<^
~^

^^') and C (/3y, AA')

^\f ^^\l^ ^^^ harmonic, i.e. CyMIL is the fourth harmonic

\^ I yy of a/3 for the tangents

\ I / from C, and O'y is the

\
J

/ fourth harmonic of ajB

\ 1/ ,
for the tangents from

Jl
. C\ Hence a/3 is con-

jugate to Cy and to

C^y, i.e. the pole of aj3 lies on Cy and on Cy. Hence y is

the pole of a/3. Similarly a is the pole of /3y, and /3 of ya.

19. TF?"^7i ^/«e ruler only, to construct the pole of a given Ime

for a given circle.

This may be done by the above theorem ; but better by

finding by § 1 7 the meet of the polars of two points on the

given line.

Ex. The two lines joining tJie opposite meets of common tangents of two

circles which are not centres of similitude cut the line of centres in the limiting

points.

For these points are two vertices of a self-conjugate triangle
with respect to both circles.

20. TJie harmonic tnangle of a quadrilateral circumscribed

to a circle coincides with the harmonic triangle of the inscribed

quadrangle formed by the points of contact.

In the figure of § 18, let B'A, AB, BA\ A'B" touch the

circle in a, 6, c, d. Comparing with the figure of § 16, we
see that we have to prove that ac and bd meet in y, that ba

and cd meet in a, and that cb and da meet in y3. Now ba is

the polar of A and cd is the polar of A^; hence ba and cd

meet in the pole of AA', i.e. in the pole of /3y, i.e. ba and cd

pass through a. Similarly ac and bd pass through y, and cb

and da pass through /3.
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The theorem is sometimes erroneously stated thus

—

Oftlfie

two quadrilaterals formed hy four tangents to a circle and the

points of contact, the four internal diagonals are concurrent and

fomi a harmonic pencil, and the two external diagonals are col-

linear and divide one another harmonically.

The former part follows from y being a harmonic point of

the quadrangle. The latter part follows from /3a being a

harmonic line of the quadrilateral.

Ex. 1. If the whole figure he symmetrical for AA' and if the angle ABA' be .

right, show that ac, bd bisect tJie angles between AA' and BB'.

By elementary geometry each of the angles at 7 is 45°.

Ex. 2. AA' meets ab in P and cd in P', and so on. Show that the six points

PP'QQfRR' lie three by three onfour lines.

D 2



CHAPTER IV.

PROJECTION.

1. Given a figure </) in one plane tt consisting of points

A, B, C, ... and lines Z, m, n, ..., we can construct another

figure (/)' consisting of corresponding points A\ B\ C',...

and lines 1% mf, n\... in the following way. Take any

point V (called the vertex of projection) and any plane ti^

(called the plane of projection). Then A\ B% C, . . and

r, m', n\ ... are the points and lines in which the plane

of projection meets the lines and planes joining the vertex

of projection to A, B, C, .. and I, m, n,.... Each of the

figures (j) and </)' is called the projection of the other ; and

they are said to be in projection.

Also each of the points A and A^ is said to be the projec-

tion of the other ; so for the points B and ^', G and (f, &c.,

and for the lines I and V, m and m', n and n^, &c. The line

in which the planes of the figures (j) and
(f)^

meet may be

called the axis ofprojection.

When the vertex of projection is at infinity we get what

is called parallel projection ; in this case all the lines AA\
BBf, CCy, . . . are parallel. A particular case of parallel pro-

jection is orthogonal projection.

The lines AA\ BB'. CC\ ... are called the rays of the

projection ; and projection is sometimes called radial projec-

tion to distinguish it from orthogonal projection.

Figures in projection are also said to be in perspective

in different planes ; and then the vertex of projection is

called the centre of perspective^ and the axis of projection

is called the axis of perspective, and each figure is called
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the perspective or picture of the other. Note that figures

may also be in perspective in the same plane. (See XXXI.)
Some writers use the term conical projection or central

projection or central perspective for radial projection.

2. TJie projection of the join of two points A, B is the join of

the projections A\ B' of the points A, B.

The projection of the meet of the two lines I, m is the meet

of the projections l\ m' of the lines I, m.

The projection of any point on the axis of projection is th$

point itself

Every line and its projection meet on the axis ofprojection.

The proofs of these four theorems are obvious.

TJie projection of a tangent to a curve y at a point A is

the tangent at A' {the projection of A) to the curve -/ {the pro-

jection ofy).

For when the chord AB of y becomes the tangent at A to

yhjB moving up to A, the chord A'B^ of / becomes the

tangent at A^ to / by B' moving up to A\
TJie projection of a meet {i.e. a common point) of two curves is

a meet of the projections of the curves.

The projection of a common tangent to ttvo curves is a common
tangent to the projections of the curves.

The proofs of these theorems are obvious.

3. The plane through the vertex of projection parallel to

the plane of one of two figures in projection meets the plane

of the other figure in a line called the vanishing line of this

plane.

Each vanishing line is parallel to the aods of projection.

For the axis of projection and the vanishing line in the

plane tt are the meets of tt with 7/ and with the plane

through V parallel to tt'.

Every point at infinity in a plane lies on a single line {called

the line at infinity).

Let A be the point at infinity on any line I in the plane tt.

Through any point V not in the plane draw a plane p

parallel to the given plane. Then p passes through A ; for
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p, being parallel to the plane of Z, meets I at infinity.

Similarly p passes through every point at infinity in tt.

Also every point of intersection of tt and p is at infinity on

TT. Hence the points at infinity on tt are the points of inter-

section of the two planes tt and p. And as two planes when
not parallel meet in a line, we may say for the sake of con-

tinuity that two parallel planes also meet in a line. Hence

the points at infinity in a plane lie on a line.

The vanishing Urn in one plane is the projection of the line at

infinity in the other plane.

For the plane joining V to the vanishing line is parallel

to the other plane.

To project a given line to infinity.

With any vertex of projection, project on to any plane

parallel to the plane containing the given line and the

vertex of projection. Then the projection of the given line

will be the intersection of these two parallel planes and will

therefore be entirely at infinity.

4. The vanishing point of a line is the point in which the

line meets the vanishing line of its own plane.

The angle between tlie projections of any two lines I and m is

the angle which the vanishing points of I and m subtend at the

vertex ofprojection.

Let I and m meet in A, and

let I meet the vanishing line i

in B and let m meet i in C.

We have to show that the pro-

jection of the angle BAG is

equal to BVC, V being the

vertex of projection. Now the

plane of projection tt' is parallel

to the plane BVC. Also A'B'

is the meet of the plane A VB and n. Hence A'B^ and VB
(being the meets of the plane A VB with the two parallel

planes tt' and BVC) are parallel. Similarly A'C^ and VC
are parallel. Hence Z B'AX'= L BVC.

^>v
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Ex. AU angles whose hounding lines have the same vanishing points are

projected into equal atigles.

5. To project any two given angles into angles of given mag-

nitudes and at the same time any given line to infinity.

Let the given angles ABC, DEF meet the line vrhich is to

be projected to infinity in AC, DF. Then since A, C are

the vanishing points of the lines BA, BC, hence the angle

A'B'C is equal to ^ FC ; so Z B'E'F'= Z DVF, Hence to

construct V draw on ^C a segment of a circle containing an

angle equal to the given angle A'B'C, and on DF and on the

same side of it as before describe a segment of a circle con-

taining an angle equal to the given angle D'F'F'. Let these

segments meet in F. Kotate F about ^ODi^out of the

plane of the paper. Then if we project with vertex F on to

a plane parallel to the plane YACDF, the problem is solved.

For the line ABCF will go to infinity. Also ABC will be

projected into an angle equal to AVC, i.e. into an angle of

the required size. So for DEF.
The segments may meet in two real points or in one or

in none. Hence there may be two real solutions of the

problem or one or none.

Ex. In the exceptional case when the vanishing line is parallel to one of the

lines of one of the angles, give a constructionfor the vertex ofprojection.

Let A be at infinity. Through C draw a line making with CF
the supplement of A'B'C^. This \vill meet the segment on DF in V.

6. Given a line I and a triangle ABC, to project I to infinity

and each of the angles A, B, C into an angle ofgiven size.

Suppose we have to project A, B, C into angles equal to

a, /3, y, where of course a + ^ + y=i8o°. Let I cut BC, CA,

AB in P, Q, JR. Of the points P, Q, B let Q be the point

which lies between the other two. On BQ describe a seg-

ment of a circle containing an angle equal to a. On QP and

on the same side of I describe a segment of a circle contain-

ing an angle equal to y. These two segments meet in Q

;

hence they meet again in another point, F say. For if the

supplements of the segments meet in V, then BVQ + QVP=
180° — a -f 180° — y = 180°

-f- /3 > 180°, which is impossible.
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Now rotate Y about I out of the plane of the paper. With
Y as vertex of projection, project on to any plane parallel to

YVq ; and let A'B'C be the projection of ABC,
We have to prove that A'=a, B'=IB, C'—y. Through B

draw a parallel to YB meeting YQ in X. Then BYX=a,
YXB=y, and XBY=^. Also A'B" is parallel to YB, B'C
is parallel to YB and therefore to BX, and CA^ is parallel to

YQ. Hence the sides of the triangles A'B'C and YBX are

parallel. Hence the angles are equal ; i.e. J['=a, B'=^,

C=y.
7. To project any triangle into a triangle with given angles

and sides and any line to infinity.

Project as above the given triangle ABC into A'B'C in

which lA'=la', IB'=^Z.V, lC'=lc', a'h'c' being the

triangle into which ABC is to be projected. On YA' take

a point P such that YB'.YA'i : b'c': B'C Through B draw

a plane parallel to A'B'C cutting YB' in Q and YC in B.

Then by similar triangles YB : YA': : QB : B'C; hence

QB = Vc'. So BB = c'a', BQ = a'h'. Hence BQB is super-

posable to a'h'c' and in projection with ABC.
Hence we can project any triangle into an equilateral triangle

of any size and any line to infinity.

Ex. 1, Project anyfour given points into the angular points of a square of given

size.

lietABCD (II. 12) be the given points. Project UFto infinity and
the angles VAU, LWM into right angles. Then in the projected figure

AB and CD are parallel, and also AD and BC. Also BAD is a right
angle and also AWD. Hence the figure is a square. We can change
its size as before. The construction is always real since the semicircles
on LM and UV must meet since LM and TJV overlap.

Ex. 2. Project any two homologous triangles {see § 11) simultaneously into

equilateral triangles. Is the construction always real ?

Ex. 3. Project any three angles into right angles.

Let the legs of the angles A and B meet in L and M, and let LM cut
the legs of C in DE ; then on LM and DE describe semicircles.

Ex. 4. If two quadrangles have the same harmonic points, then the eight

vertices lie on a conic ; as a particular case, if any three of the points are

collinear, the eight vertices lie on two lines.

Project one of the sides UV of the harmonic triangle to infinity, and
the angles UAV and t7^''Finto right angles, and the angle LWM into a
right angle. The quadrangles are now a square and a rectangle with
parallel sides and the same centre ; hence the vertices by symmetry
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lie on a conic whose axes are parallel to the sides. If however B' is on
jBD, clearly this conic degenerates into the common diagonals ; so if B'

is on BA, the conic degenerates into BA and CJ)^ and if B' is on BG into

BC and AD. (See also XII. 7.)

8. In projecting from one plane to another, there are in each

plane two points such that every angle at either of tliem is pro-

jected into an equal angle.

Let the given planes be tt and tt'. Draw the planes a and

/3 bisecting the angles between the planes tt and tt'. Through

the vertex of projection F draw a line perpendicular to a

cutting the planes -n and -n' in E, E\ and a line through V
perpendicular to /3 cutting the planes it and 77' in F, F\
Then every angle at E will be projected into an equal angle

at E% and every angle at F will be projected into an equal

angle at F\
The figure is a section of the solid figure by a plane through

V perpendicular to the planes it and -n'. Let this plane

meet the axis of pro-

jection in K, and let

the legs of any angle

Sii E ia 77 meet the

axis of projection in

L, M. Then the

angle LEM projects

into the angle

LE'M,
But EK=E'K

by construction and

IEKL = lE'KL =go°. Hence the figure EKLM is

superposable to the figure E'KLM. Hence the angle LEM
is equal to the angle LE'M, i.e. any angle at E is projected

into an equal angle at E\ So any angle at F is projected

into an equal angle at F\
9. Tfie projection of a harmonic range is a harmonic range.

For if A'B'C'D' be the projection of the harmonic range

ABCD, then V and the lines AB, A'B' lie in one plane.

Hence by II. 7.

Tlie projection of a harmonic pencil is a harmonic pencil.
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Draw any line cutting the rays of the harmonic pencil

U{ABCD) in a, 6, c, d. Let U' (A'BX'I/) be the projection

of the pencil U (ABCJD), and a', &', c', (i' the projections of

a, 6, c, d Then a being on UA, a is on U^A^, and so on
;

hence U' (A^B'C'I/) is harmonic, if {a'h'c'd') is harmonic.

And {afVc'd') is harmonic, since {abed) is harmonic.

10. To ^rM;e &y Projection the harmonic property of a com-

plete quadrangle.

In the figure of II. 12, suppose we wish to prove that

V{BA,WU) is harmonic. Project CB to infinity. Then

VAWB is a parallelogram and TJ is the point at infinity on

BA. Let YW cut BA in 0. Then in the new figure

y(BA, WTJ) is harmonic, for {BA, OU) is harmonic since

BO = OA and 27 is at infinity. It follows that V(BA, WU)
is harmonic in the given figure. So U{AD,VW) and

W{CI>, UV) can be proved to be harmonic.

Ex. Prove by Projection the harmonic property of a complete quadrilateral.

Homologous Triangles.

11. Two triangles ABC, A'B'C are said to be Iwmologous

(or in perspective) when AA% BB\ CC meet in a point

(called the centre of homology or centre of perspective) and

also {BG; B'C), (CA ; C'A% {AB; A'B') lie on a line (caUed

the axis of homology or the axis of perspective).
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If two triangles in the same plane he copolar, they are coaxal

;

and if coaxal, they are copolar.

(i) Let the two triangles ABC, A'B'C be copolar, i.e. let

AA', BE', CC meet in the point ; then they are coaxal,

i.e. (BG] B'C), {CA ; CA% {AB; A'B") lie on a line.

Call these three points X, F, Z. Then we have to show

that YZ passes through X. Project YZ to infinity. Then

in the new figure AA\ BB\ CC meet in a point ; also AB

is parallel to A'B' and AC to A'C\ Hence

OB:OB'::OA:OA'::OC:OC\
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And since OB :OB''.'.OC: OC, BC is parallel to B'C, i.e.

X is at infinity, i.e. X lies on YZ, i.e. XYZ are collinear.

Hence in the original figure XYZ are collinear, i.e. the tri-

angles are coaxal.

(ii) Let the triangles be coaxal, i. e. let {BC; B'C),

{CA ; C^A'), (AB ; A'B^) be collinear ; then they are copolar,

i.e. AA% BB", CC^ meet in a point.

Project XYZ to infinity. Then in the new figure BC is

paraUel to J5'C", CA to CA', and AB to A'B\ Let AA' and

BB' meet in 0. Then OB :OB'::AB: A'B' ::BC: B'C]
and Z O^C = Z O^'C Hence the triangles OBC and 0J5'C'

are similar. Hence Z ^00 = Z B'OG\ Hence CC passes

through 0. Hence AA\ BB\ CC meet in a point. Hence

AA', BB', CC meet in a point in the original figure.

12. If the triangles are not in one plane, the proofs are

simpler.

If two triangles he copolar, they are coaxal,

(Use the same figure as before, but remember that now
the triangles are in different planes.) Since AB, A'B' lie in

the plane OAA'BB', hence AB, A'B meet in a point on the

meet of the planes ABC, A'B'C, Similarly {CA ; C'A\
{AB ; A'B^) lie on this line, i.e. the triangles are coaxal.

If two triangles le coaxal, they are copolar.

The three planes BCXB'C, CAYC'A', ABZA'B' meet in

a point ; hence their meets AA', BB', CC pass through this

point, i.e. the triangles are copolar.

Ex. 1. Hence (by taking the angle between the planes evanescent) deduce

that coaxal triangles in the same plane are copolar ; and (by a ' reductio ad ;

absurdum' proof) that copolar triangles are coaxal.

Ex. 2. If two triangles ABC, A'B'(y in the same plane be such that AA'^
BB', C<y meet in a point ; atui if on any line through not in the plane

be taken two points V, V ; show that VA,VA' meet in a point A", and VB,
V'B' in a point B", and VC, V'Cf in a point (f' ; and that the three triangles

ABC, A'B'Cf, A"B"Qf' are such that corresponding sides meet in threes at three

points on the same line, viz. the meet of the given plane and the plane of the

tnangle A''B''C'.

For the triangles AA'A", BB'B" are coaxal (and not in the same
plane) ; hence they are copolar.

This gives us another proof that triangles in the same plane which
are copolar are also coaxal.
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Ex. 3. Tlie sides BC, B'Cf of two triangles in the same plane meet in X, and
CA, CfA' meet in Y, and AB, A'B' meet in Z ; and X, Y,Z are collinear. The

lines joining A, B, C to any vertex V not in the plane ABC cut any plane through

X, r, Z hut not through V in A'% B^% G'\ Show that A^A'% B'B'^, (/(/' meet

in a point V mch that AA\ BB'j CCf meet in the point where VV^ cuts the

plane of the triangles.

For B"A" passes through Z.

This gives us another proof that triangles in the same plane which
are coaxal are also copolar.

Ex. 4. If three triangles ABC, A'B'<y, A"B"Cf', which are homologous

in pairs, he such that BC, B'C^, B"(f' are concurrent and CA, C^A% C^'A" and
ABf A'B', A"B" ; then the three centres of homology of the triangles taken

in pairs are collinear.

For the triangles AA'A'', BB'B'^ are copolar and therefore coaxal.

Ex. 5. If three triangles ABC, A'B'C', A"B"Cf' he such that AA^A'%
BB'B'-, CCfCf' are concurrent lines ; then the axes of homology of the triangles

taken in pairs are concurrent.

For the triangles whose sides are AB, A'B% A"B" and AC, A'C, A"Q"
are coaxal and therefore copolar.

Ex. 6. If the points A% B% C lie on the lines BC, CA, AB, and if AA%
BB', CC meet m a point, show that the meets of BC, B^Cf , of CA, C'A' and of
AB, A'B' lie on a line which hisects the lines drawn from A, B, C to BC, CA,
AB parallel to B'C, CA', A'B^.

The line is the axis of homology of the two triangles. Let AB, A'Bf
meet in Z, and BC, B^Cf in X. Bisect AL (parallel to B'C^) in 0. It is

sufiBcient to prove that AZ.BX. LO = -ZB. XL. OA. But LO = OA ;

and AZ :BZ = AC^ : CB = LX : XB.

Ex. 7. The tnangles ABC, A'B'C' are coaxal; if {BC ; B'Cf) he X,
{CA; CA') he Y, {AB ; A'B') he Z, {BC ; B'C) be X', {CA' ; CA) he Y',

{AB', A'B) he Z' ; then XY'Z', X'YZ', X'Y'Z are lines.



CHAPTEE V.

HAEMONIC PKOPEETIES OF A CONIC.

1. We define a conic section or briefly a conic as the pro-

jection of a circle, or in other words, as the plane section of

a cone on a circular base. The plane of projection may be

called the plane of section.

From the definition of a conic it immediately follows

that

—

Every line meets a conic in two points, real, coincident, or

imaginary.

From every point can he draton to a conic two tangents, real,

coincident, or imaginary.

For these properties are true for a circle, and therefore for

a conic by projection.

2. There are three kinds of conies according as the vanish-

ing line meets the circle, touches the circle, or does not meet

the circle, or more properly according as the vanishing line

meets the circle in real, coincident, or imaginary points.

If the vanishing line meet the circle in two points P and

Q, then, V being the vertex of projection, the plane of

section is parallel to the plane VPQ, and therefore cuts the

cone on both sides of V. Hence we get a conic consisting

of two detached portions, extending to infinity in opposite

directions, called a hyperbola.

If the vanishing line touch the circle, and TT^ be the

tangent, then the plane of section, being parallel to the plane

VTT^ which touches the cone, cuts the cone on one side only
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of Y. Hence we get a conic consisting of one portion ex-

tending to infinity, called a parabola.

If the vanishing line does not meet the circle, the plane

of section is parallel to a plane through V which does not

meet the cone except at the vertex, and therefore cuts the

cone in a single closed oval curve, called an ellipse.

Since the line at infinity is the projection of the vanishing

line, it follows that the line at infinity meets a hyperbola in

two points, touches a parabola and does not meet an ellipse,

in other words, the line at infinity meets a hyperbola in two real

points, a parabola in tivo coincident points, and an ellipse in two

imaginary points, or, again, a hyperbola has two real points at

infinity, a parabola two coincident points, and an ellipse two

imaginary points.

3. A pair of straight lines is a conic.

For let the cutting plane be taken through the vertex, so

as to cut the cone in two lines. Then these lines are a

section of the cone, i.e. a conic.

But properties of a pair of lines cannot be directly obtained

by projection from a circle. For let the cutting plane meet

the circle in the points P and Q. Then the projection of

every point on the circle except P and Q is at the vertex,

whilst the projection of P is any point on the line YP and

the projection of Q is any point on the line YQ. Now if we
take any point R' on one of the lines YP and YQ, its pro-

jection is P or § unless B! is at the vertex and then its pro-

jection is some point on the rest of the circle.

To get over this difficulty we take a section of the cone

parallel to the section through the vertex. Then however

near the vertex this plane is, the theorem is true for the

hyperbolic section ; hence the theorem is true in the limit

•when the section passes through the vertex and the hyper-

bola becomes a pair of lines.

4. A pair ofpoints is a conic.

This follows by Reciprocation. (See VIII.) For the re-
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ciprocal of two lines is two points and the reciprocal of a

conic is a conic. Hence two points is a conic.

Clearly however we cannot obtain two points by the

section of a circular cone.

5. As in the case of the circle we define tlie polar of a

point for a conic as the locus of the fourth harmonics of the

point for the conic.

The polar of a point for a come is a line.

Through the given point U draw a chord PP' of the conic

and on this chord take the point B, such that {PP', UR) is

harmonic. We have to show that the locus of i? is a line.

Now by hypothesis the conic is the projection of a circle.

Suppose the range {PP\ TIB) is the projection of (pp\ ur) in

the figure of the circle. Then since (PP', UB) is harmonic,

so is {pp\ ur). Hence r is on the locus of the fourth har-

monics of u for the circle ; hence the locus of r is a line.

Hence by projection the locus of jR is a line.

As in the case of the circle, if the line u is the polar of U
for a conic, then U is defined to be the pole of u for the

conic ; and U and u are said to be pole and polar for the

conic.

We have proved above implicitly that- The projection of a

pole and polar for a circle is a pole and polar for the conic which

is the projection of the circle.

The following theorems now follow at once by projection.

IfPhe outside the conic, the polar ofP is the chord of contact

of tangents from P.

IfP he on the conic, the polar of P is the tangent at P, and

the pole of a tangent is the point of contact.

Note that a point is said to be inside or outside a conic

according as the tangents from the point are imaginary or

real, i.e. according as the polar of the point meets the curve

in imaginary or real points. When the point is on the

conic, its polar, viz. the tangent, meets the curve in coincident

points and the tangents from the point coincide with the

tangent at the point.

i
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Ex. 1. PQ is a chord of a conic through the fixed point U, and u is the polar of

U ; show that (P, w)-' + (Q, t<)-^ is constant.

viz. — 2. (U, m)~* by similar triangles.

Ex. 2. Iffurther a he any line, shoic that

JP, a) (Q, «)^^ (U, a)

{P,u) (Q,«) '{U,u)'

Take the meet of PQ and a as origin.

Ex. 3. From any point on the line u, tangents p and q are drawn to a conic,

and U is the pole of u, and A is any point ; show that

(A,p) U,Q) ^ {A,u)

{U,p)^{U,q) '{U,u)'

Take U on the range UA as origin.

6. Since a pole and polar project into a pole and polar,

the whole theory of conjugate points and conjugate lines for

a conic follows at once by projection from the theory of

conjugate points and conjugate lines for a circle. Hence all

the theorems enunciated in III. 10-12 for a circle follow for

a conic by projection.

Ex. I. If a series of conies he drawn touching tivo given lines ai given points,

the polar of every point on the chord of contact is the same for all

Let the conies touch TL and TM at i and M. The polar of P on LM
passes through T the pole of LM and passes through the fourth har-
monic of P for LM.

Ex. 2. Tlie pole of any line through T is the same for all.

Ex. 3. TP, TQ touch a conic at P and Q, and on PQ is taken the point U such

Viat TU bisects the angle PTQ, and through U is drawn any chord RUR^ of the

conic ; show that TU also bisects the angle RUR^.

Draw TV' perpendicular to TU ; then TU' is the polar of U. Hence
{ZU, RR') is harmonic, Z being on TU\

Ex. 4. A is a fixed point, P is a point on the polar of A for a given conic.

The tangentsfrmn P meet a fixed line in Q, R. AR, PQ meet in X; and AQ,
PR in Y. Show that XY is a fixed line.

Viz. the fourth harmonic of BR for BP and BA, B being the meet of
QR with the polar of A,

Ex. 5. The polar of any point taken on either of two conjugate linesfor a conic

meets the lines and the conic in pairs of hannonic points.

For if P be the point, its polar meets the other line in the pole
of the line on which P is.

Ex. 6. A, B, C arO' three points on a conic and CT is the tangent at C ; if

C(TD, AB) be harmonic, show that CD passes through the pole ofAB.

Ex. 7. TP, TQ touch a conic at P, Q ; the tangent at R meets PQ in N, PT in

L, QT in M ; show that {LM, RN) is harmonio,

Ex. 8. A and B are two fixed points ; a line through A cuts a fixed conic^

E



50 Harmonic Properties of a Conic, [ch.

in C and D, BD cuts the polar ofA in JP, and BC cuts the polar in E ; show that :

DE and CF meet in a fixed point.

Viz. the fourth harmonic of B for A and the meet of AB with the
polar of A.

Ex. 9. Through U, tlie mid-point of a chord AB of a conic is drawn any
chord PQ. The tangents at P and Q cut AB in L and M. Prove that AL = BM.

If R be the pole of PQ, then RCl is the polar of U, H being the point
at infinity upon AB, Hence UL = UM.

Ex. 10. The tangents TP, TP^ to a conic are cut by the tangent at Q (which is

parallel to the chord of contact PP^) in L, L^; sJiOW that LQ = QTf.

Ex. 11. Through the point U is drawn the chord PQ of a conic and UT
is drawn perpendicular to the polar of U ; show that UY bisects the angle PYQ
or its supplement.

7. The theory of self-conjugate triangles for a conic follows

at once by projection from a circle, since the theory involves

only the theory of poles and polars.

Of the three vertices of a self-conjugate triangle two are outside

and one inside the conic.

Let UVW be the vertices of the given triangle. Then if

U is outside, VW, being the polar of U, cuts the conic.

Also V, W form a harmonic pair with the meets of VW
with the conic ; hence F or TT is outside the conic.

If U is inside, VW does not cut the conic, and hence V
and W are both outside the conic.

Ex. 1. Of the three sides of a self-conjugate ti'iangle two meet the conic ami
one does not.

Ex. 2. The joins of n points on a conic meet again in three times as many
points as there are combinations ofn things taketifour together, and of these meets

one-third lie within and two-thirds without the conic.

Ex. 3. Show that one veriex of a triangle self-conjugate for a given conic

is arbitrary, that the second vertex may be taken anywhere on the polar of tJie

first, and that the third vertex is tJien known.

Ex. 4. Show that one side may be taken arbitrarily and complete the construc-

tion.

8. TJie harmonic points of a quadrangle inscribed in a conic

form a triangle which is self-conjugate for the conic.

Tlie harmonic lines of a quadrilateral circumscribed to a conic

form a triangle which is self-conjugate for the conic.

If a quadrilateral be circumscribed to a conic, the harmonic

triangle of this quadrilateral coincides with the harmonic triangle

of the inscribed quadrangle formed by the points of contact.
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1

For these propositions are true for the circle, and they

follow for the conic by projection. So also

—

the quadrangle

construction for the polar of a point applies to a conic.

Through a given point F dratv a pair of tangents to a conic.

By the quadrangle construction obtain the polar of P for

the conic, and join P to the points where this polar cuts the

conic. The joining lines are the tangents from P to the

conic.

Ex. 1. A, B, C, D are four points on a conic ; AB, CD meet in E, and AC
BD meet in H, and the tangents at A and D meet in G ; show that E, G, H are

coUinear.

Ex. 2. A system of conies touch AB and AC at B and C. D is a fixed point

and BD, CD meet one of the conies in P, Q. Show that PQ meets BC in a fixed
point.

Viz. tlie pole of AD.

Ex. 3. Through the fixed point A is drawn the variable chord PQ of a conic,

and the chords PU, QV pass through the fixed point B. Show that UV passes
through a fixed point.

Viz. the fourth harmonic of A, for B and the polar of B.

Ex. 4. PP^, QQ^ are chords of a conic through C, and A and B are the points

of contact of tangentsfrom C. Show that a conic which touches the four lines PQ,
P'Q', P'Q, Pqf and passes through B, touches BC at B.

For AB is the polar of C for the new conic.

Ex. 5. The lines AB, BC, CD, DA touch a conic at a, 6, c, d, and AB and
CD are parallel. If ac, bd meet at E, and AD, BC meet at F, show that

FE bisects AB and CD.

For it AB and CD meet at CI, then FE and FQ. are conjugate lines.

Ex. 6. TJirough one of the vertices U of a triangle UVW selfconjugate

for a conic are drawn a pair of chords of the conic harmonic unth UV and UW.
Shoto that the lines joining the ends of these chords all pass through V or W.
Through JJ draw the chord PQ, and join Q to V.

9. If 07ie point on a conic he

given and also a triangle self-

conjugate for the conic, then

three other points are Mown.
Let A be the given point

and UVW the given self-con-

jugate triangle. Let UA cut

WV in L. Then the other

point D in which UA cuts the

conic is known since (UALD) is harmonic. Similarly the

points C and B where VA and WA cut the conic are known.

E 2
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Tliefour points A, B, C, D form an inscribed quadrangle of

which UVW is the harmonic triangle^

By construction {TJALJD) is harmonic ; hence WiJJAYB)
is harmonic. Similarly WCUAVC) is harmonic. Hence

WD and WC coincide, i.e. WD passes through C. Similarly

UB passes through C. Hence the pole of UW is the meet

oi AC and BD. But the pole of UW is F. Hence BD
passes through F.

Ex. 1. Show that if one tangent of a conic he given and also a self-conjugate

triangle^ then three other tangents are known; and that the four tange^its together

form a circumscribed quadrilateral of which tlie given triangle is the harmonic

triangle.

Ex. 2. If two sides of a triangle inscribed in a conic pass through two vertices

of a triangle self-conjugate for the conic, then the third side wiU pass through

the third vertex.

10. Properties peculiar to the parabola follow from the

fact that the line at infinity touches the parabola.

TJie lines TQ, TQf touch a parabola at Q, Q\ and TV bisects

QQf in V and meets the curve in P; sJww that TF = PV*

Take the point at infinity co on QQ\ Then since w lies"

on the polar of T, hence the polar of o) passes through T.

Since {coV, QQ') is harmonic, hence the polar of w passes

through F. Hence TV is the polay of o). T^ow suppose

the line at infinity to touch the parabola in X2. Then co is

i
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on the polar of 12, viz. the line at infinity ; hence TY passes

through 12. Also P and X2 being points on the curve, there-

fore {TV, Pn) is harmonic; hence TP = FY.

For clearness the figure is drawn of which the above

figure is the projection. In this case, as in other cases, the

theorem might have been proved directly by projection,

.

Ex. 1. The line half-way between a point and its polar for a parabola touches

the parabola.

Ex. 2. The lines joining the middle points of the sides of a triangle self'

conjugate for a parabola'touth the parabola.

Ex. 3. The nine-point circle of a triangle self-conjugate for a parabola passes

through the focus.

Ex. 4. Through the vertices of a triangle circumscribing a parabola are draicn

lines parallel to the opposite sides; show that these lines form a triangle self-

conjugate for the parabola.

Being the harmonic triangle of the circumscribing quadrilateral
formed by the sides of the triangle and the line at infinity.

Ex. 5. No two tangents ofa parabola can be parallel.

For if possible let them meet at cy on the line at infinity ; then three
tangents are drawn from oj to the conic, viz. the two tangents and the
line at infinity.

11. We define the pole of the line at infinity for a conic

as th© centre of the conic. Hence t?ie centre of a parabola is

at infinity. For since the line at infinity touches the para-

bola, the centre is the point of contact and therefore is on

the line at infinity, i.e. is at infinity. The centre of a hyper-

bola is outside th6 curve since the polar of the centre cuts

the hyperbola in real points ; and the cen.tre of an ellipse

is inside the curve since the polar of the centre cuts the

ellipse in imaginary points. The hyperbola and ellipse are

QSiWQ^ central conies.

The centre of a central conic bisects every chord through it.

Let the chord PP^ pass through the centre of a conic
;

then PC = CP\ For let PP^ meet the line at infinity in w.

Then since o) is on the polar of 0, hence (Ceo, PP') is har-

monic. Hence PC = CP\
A conic is its oivn reflexion in its centre.

For if we join any point P on the conic to the centre G
and produce PC backwards to P', so that CP'=PC; then P'

is another point on the conic.
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Ex. 1. All conies circumscribing a parallelogram have their centres at the

centre of the parallelogram.

For by the quadrangle construction for a polar, the polar of the in-

tersection of diagonals is the line at infinity.

Ex. 2. ABC is a triangle circumscribed to a conic, and the point P of contact

of BC bisects BC ; show that the centre of the conic is on AP.

For AP is the polar of the point at infinity upon BC.

Ex. 3. Q(y is the chord of contact of tangents from T to a conic, and CT cuts

Q(/ in V and the conic in P; show that CV. CT = CF^.

For {PP^, TV) is harmonic.

Ex. 4. Given the centre of a conic and a self-conjugate triangle ABC,
construct six points on the conic.

12. TJie locus of the middle points of parallel chords of a

conic is a line (called a diameter).

Let QQ' be one of the parallel chords bisected in V. The

system of chords parallel to QQ' passes through a point co at

infinity. Also since (coF, QQ') is harmonic, V is on the

polar of CO. Hence the locus required is the polar of co.

All diameters of a central conic pass through the centre.

All diameters of a parabola are parallel.

For since a diameter is the polar of a point on the line at

infinity, it passes through the pole of the line at infinity.

Hence in a central conic it passes through the centre, and in

a parabola it passes through a fixed point at infinity, viz. the

point of contact of the line at infinity.

Ex. 1, The tangents at the ends of a diameter are parallel to the chords which

the diameter bisects.

Being the tangents from ai.

Ex. 2. A diameter contains the poles of all the chords it bisects.

Viz. the poles of lines through «.

Ex. 3. If the tatigents at the ends of a chord are "parallel, the chord is a

diameter.

Ex. 4. Two chords of a conic which bisect one arwther are diameters.

13. Conjugate lines at the centre of a conic are called

conjugate diameters.

Each of two conjugate diameters bisects chords parallel to the

other.

Let PCP^ and DCB' be conjugate diameters. Then by

definition the pole of CP is on CD. But CP passes through
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the centre ; hence the pole of CV is at infinity. Hence the

pole of CP is the point o) at infinity on CI). Through co, i.e.

parallel to DD\ draw the

chord Q(^ meeting CP in

F. Then since V:P' is

the polar of to, hence

{Wi ^^) is harmonic,

i.e. qY=Yq\ Hence

FF' bisects every chord

parallel to BB'. So DI/
bisects every chord par-

allel to PP'.

Ex. 1. A pair of conjugate diameters form with the line at infinity a self-

conjugate triangle.

Ex. 2. In tJie hyperbola one and only one of a pair of conjugate diameters

cuts tJie curve in real points.

Ex. 3. The polar of a point is parallel to the diameter conjugate to the

diameter contaimng the point.

Ex. 4. The tangents at the end of a diameter are parallel to the conjugate

diameter.

Ex. 5. The line joining any point to the middle point of its chord of contact

passes through the centre.

Ex. 6. The sides of a parallelogram inscribed in a conic are parallel to a pair
of conjugate diameters ; and the diagonals meet at tJie centre.

Ex. 7. The diagonals of a parallelogram circumscribing a conic are conjugate

diameters; and the points of contact are the vertices of a parallelogram whose sides

are parallel to tJie above diagonals.

Ex. 8. A tangent cuts two parallel tangents in P and Q, show iJmt CP and
CQ are conjugate diameters.

For, reflecting the figure in the centre C, this reduces to Ex. 7.

14. If each diameter of a conic 'be perpendicular to its con-

jugate diameter, the conic is a circle.

Take any two points P, Q on the conic. Bisect P§ in V
and join CV. Then CV is the diameter bisecting chords

parallel to PQ, i. e. CV and FQ are parallel to conjugate

diameters. Hence CV and FQ are perpendicular. Also

FY = YQ. Hence CF= CQ. Hence all radii of the conic

are equal, i.e. the conic is a circle.

15. The asymptotes of a conic are the tangents from the

centre. They are clearly the joins of the centre to the
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points at infinity on the conic. In the hyperbola they are

real and distinct, in the parabola they coincide with the line

at infinity, and in the ellipse they are imaginary. The

asymptotes are harmonic with every pair of conjugate diameters.

For the tangents from any point are harmonic with any pair

of conjugate lines through the point.

Any line cuts off equal lengths between a hyperbola and its

asymptotes.

Let a line cut the hy-

perbola in Q, Q^ and its

asymptotes in i?, B^; then

BQ = qB\
On BB^ take the point

at infinity o) and bisect

QQ' in V. Then since

{QQ\ y^) is harmonic,

the polar of co passes

through V. Since co is

its polar passes through C. Hence CY is the

Hence CV and Con are conjugate lines. And
CB, CB' are the tangents from C. Hence G{BB\ Fw) is

harmonic. Hence (7^72', Foo) is harmonic. Hence i2F=Ti2'.

But qY=Yq\ Hence BQ^Q'B'. The proof applies

whether we take QQ' to cut the same branch in two points

or (as in the case of qq) to cut different branches of the

hyperbola.

The intercept made hy any tangent between the asymptotes is

bisected at the point of contact.

For let Q and Q' coincide ; then BQ = QB'.

Ex. 1. Given the asymptotes and one point on a hyperbola, construct any
number ofpoints on the curve.

Ex. 2. Given the asymptotes and one tangent of a hyperbola, construct any
number ofpoints and tangents of the curve.

Ex. 3. Two of the diagonals of a quadrilateral formed by two tangents

of a hyperbola and the asymptotes are parallel to the chord joining the points

of contact of the tangents.

Consider the harmonic triangle of the quadrangle formed by the
points of contact and the points at infinity on the hyperbola.

Ex. 4. J/" a hyperbola be drawn through two opposite ve)iices of a parallelogram

at infinity,

polar of o).
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Vjith Us asymptotes parallel to the sides, show that the centre lies on tfie join of the

other vertices.

16. A rectangular hyper'bola is defined to be a hyperbola

whose asymptotes are perpendicular.

Conjugate diameters of a rectangular hyperbola are equally

inclined to the asymptotes.

For they form a harmonic pencil with the asymptotes,

which are perpendicular.

Ex. The lin^s joining the ends of any diameter of a rectangular hyperbola to

any point on the curve are equally inclined to the asymptotes.

17. A principal axis of a conic is a diameter which bisects

chords perpendicular to itself.

All conies have a pair of principal axes; hut one of the prin-

cipal axes of a parabola is at infinity.

Consider first the hyperbola. Then the asymptotes are

real and distinct. Now the bisectors of the angles between

the asymptotes are harmonic with the asymptotes and are

therefore conjugate diameters. But the bisectors are also

perpendicular. Hence they are a pair of conjugate diameteis

at right angles. Each of the bisectors is therefore a prin-

cipal axis ; for each bisects chords parallel to the other, i.e.

perpendicular to itself.

Consider next the parabola. We might say that here the

asymptotes are coincident with the line at infinity ; and the

bisectors of the angles between a pair of coincident lines are

the line with which they coincide and a perpendicular to it.

Hence the principal axes of a parabola are the line at in-

finity and another line called the axis of the parabola.

Or thus—All the diameters of a parabola are parallel.

Draw chords perpendicular to a diameter, then the diameter

bisecting these chords is perpendicular to them and is called

the axis of the parabola. The other principal axis (like the

diameter conjugate to any of the other parallel diameters) is

the line at infinity.

Consider last the ellipse. Here the asymptotes are ima-

ginary and this method fails. But it will be proved under
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Involution that there is always a pair of conjugate diameters

of any conic at right angles. Hence the ellipse also has a

pair of principal axes. (See XIX 4.)

An axis cuts the conic at right angles.

For the tangent at the end of an axis is the limit of a

bisected chord.

A central conic is symmetrical for each axis.

For the principal axis AL bisects

chords perpendicular to itself.

Let P3IP' be such a chord. Then

P' is clearly the reflexion ofP in AL,
i.e. the conic is symmetrical for^X.

The same proof shows that

A parabola is symmetrical for its

axis.

Ex. 1. The tangent at P meets the axis CA in T and PN is the perpendicular

on CA ; show that CN . CT = CA\
For PN is the polar of T.

Ex. 2. PQ, PR touch a conic at Q, R. PM is drawn perpendicular to either

axis. Show that PM bisects the angle QMR.



CHAPTER VI.

CAENOTS THEOREM.

1. The sides BC, CA, AB of a triangle cut a conic in the

points A^A^, B^B,, C^ C^, show that

AC,. AC,. BA,. BA,. CB,, CB^

= AB^.AB^. BC^.BC^. CA, . CA^.

By definition a conio

is the projection of a

circle. Let the points

ABCA^A^... be the pro-

jections of^'^'0'^/^/. . .

in the figure of the circle.

Now in the circle we
have

A'C,\ A'C,\ B'A^. B'A/. CB/. C'B,'

= A'B/. A'B/. B'C^.B'C^. CA^. CA.;

for A'G^. A'C;= A'B^, A'B,\ and so on.

Let V be the vertex of pro-

jection.

Then
BC, ABVC^

^ AV. 0,7. sin ^70,

jB7. 0^7. sin ^70,

_AV sin ^70,
~-B7'sin57a2

and so for each ratio.
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AC,. AC, ... _ sin Ave, . sin AVC^...
"^^ AB,. AB,... ~ sin^F^i.sin^FJ?^...

where each segment is replaced by the sine of the corre-

sponding angle. Also the last expression

sin A'VC' sinA'VC/...
, ,, . , A'C' A'C! ...

= sin^-7^/.sin^-F^/... -
^^^ ^^'^ ^^""^^

A'B^.A'B^...

by exactly the same reasoning as before, and this has been

proved equal to unity. Hence

AC,. AC,. BA, . BA^ . CB,, CB,_

= AB, . AB^ . BC, . BC^ . CA, . CA,.

Ex. 1. Tfie sides AB, BC, CD, . . . of apohjgon meet a come in A^A^. B^B.,,

Cj C2, . . . ; show that

AA, . AA^ . BBi . BB2 .CCi.CCi... ^ BA^ . BA^ . CBy . CB^. DC^ .DC^...

Ex. 2. By taking the conic to he a line and the line at infinity, deduce

Menelaus's theofremfrom Camot's theorem.

Ex. 3. If a conic touch the sides of the triangle ABC in A^, B^, C^; then

AAi , BBi, CCi are concurrent.

For AB^\ CAi\ BC^^ = ACi". BA^. CB^^
;

and we cannot have ABi . CAy . BC, = +ACi. BA^ . CB, , for then A^ B^ C,

would cut the conic in three points.

Ex. 4. If the vertex A in Camot's theorem be on the conic, show that the ratio

AC2 : ABj^ must be replaced by sin TAC : sin TAB, AT being the tangent

at A.

For By C2 is ultimately the tangent at A.

Ex. 5. What does Carnot's theorem reduce to when A, B, and C are on

Vie curve '?

Ex. 6. If through fixed points A, B ice draw the chords AB^B^, BA^A^ of

a conic meeting in the variable point C, then the ratio

BAi . BA^ . CBi . CB2 -^ AB^ . AB^ . CA^. CA2 is constant.

Ex. 7. Deduce the corresponding theorem when B is at infinity.

Ex. 8. A, B, C are three points on a conic ; the tangents at ABC meet in

GHK; points DEF are taken on BC, CA, AB such that AD, BE, CF are

concurrent : show that GD, HE, KF are concurrent.

For sin DGB/sin DGC = DB/DC^BG/CG. Now use two forms of

Ceva's theorem.

Ex. 9. AC touches a conic at A, AB meets it again in C,, and BC meets it in

A.2, Ai ; if the circle of curvature at A meet AB in (f , show that

AC". CAi . CA^ . BCi . BA = AC^ . BAy . BA.^ . CA\
Consider the circle of curvature as the limit of the circle through

5i B^ C2 .

Ex. 10. IfAyAi be parallel to the tangent at A, this reduces to

ACf. BC^ .BA = ACi . BA,_ . BA.^ .

Ex. 11. Deduce the expression 2 CD^ -V CPfoi- the central chord of curvature.
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Ex. 12. A conic cuts the sides BC, CA, AB of a triangle in P^ P^ , Q1Q2,

Bi R-i ; BQ2 and CR^ meet in X, AP^ and CR^ in F, and AP2 and BQ^ in Z ;

show that AXj BY, CZ are concurrent.

2. If, on the sides BC, CA, AB of a triangle, the pairs

ofpoints A^A^, B^B^, Gfi^ he taken, such that

AC,.AC,.BA,.BA,.CB,.CB,
= AB,.AB^.BC,.BC,. CA,.CA^,

then the six points A^,A^, B^, B.^, G^, C^ lie on a conic.

Through the five points (XXIV. 2) A^, A^, B„ B^, C,

draw a conic. If this conic does not pass through C2, let

AB cut the conic again in y.^. Then we have

AC, . Ay,.BA^. BA,. CB, . CB^

= AB, . AB, .BC^.By^. CA, . CA^.

Dividing the given relation by this relation we have

ACJAy, = BCJBy,.
Hence C, and y^ coincide. Hence the six points A,, A^,

B„ B.^, C„ Go lie on a conic.

Ex. 1. If from any two points the vertices of a triangle te projected upon the

opposite sides, the six projections lie on a conic.

Ex. 2. The parallels through any point to the sides of a triangle meet the

sides in six points on a conic.

Ex. 3. If a conic which has two sides of a triangle as asymptotes touch the

third side, the point of contact bisects the side.

Ex. 4. A conic can he drawn to touch the three sides of a triangle at their

middle points.

3. Newton's theotem

—

If two chords of a conic UPQ, ULM
he draivn in given directions through a variable point U, show

that the ratio of UP. UQ to JJL . TIM is independent of the

position of U.

Let U'P'Q', WM' be an-

other position of the chords

UPQ, ULM. Then PQ is par-

allel to P'q and LM to L'M'.

Let PQ, P^Q' meet at infinity

in o)', and LM, L'M' at infinity

in CO. Apply Carnot's theorem

to thfe triangle oi'U'Y. Then

co'Q'. w'P'. U'L'. U'M\ TQ. YP
=a)'e. coT. VL'. VM'. U'Q\ U'P'.
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From Q drop the perpendicular QX. on Q'co'.

Then co'QVco'Q = (co'X+ XQ')^'^ = i +XQ'/a)'X = i.

So a)'P'= a)'P. Hence

V'L', V'M\ Yq,YV= YV, YM\ Vq. V'V
i. e. Vr. U'Q'^U'L'. U'M'= YP. YQ---YL\ YM'

In exactly the same way the triangle wCrF gives us

7P. YQ-^YL'. YM'= UP. UQ^UL. U3I.

Hence UP. UQ-^UL. UM = U'P\ U'Q'-r-U'L\ U'M',

i.«. UP. UQ-^ UL . UM is independent of the position of U.

Ex. If the tangentsfrom T to the conic touch at P and Q, show that

TP:TQ::CP' : CQ",

where CP^, C</ are the semi-diameters parallel to TP, TQ.

Take U" at T and C successively.

4. In a parabola QY''= 4 . SP. PY.

Besides QYQ' draw a second

double ordinate qvq' of the dia-

meter PY. Now PY meets the

parabola again at 12, a point

at infinity. Also by Newton's

theorem we have

YP.Ya vP.v£l'

But Ya = vD.. Hence

VQ . FQ'h- YP=vq. vq^-r-vP,

i. e. QY^ -r- PY is constant. To obtain the value of this

constant take qq' through the focus S. Then by Geometrical

Conies qq'= 4.SP and Pv = SP. Hence QY^^PY=4.SP.
Note that the theorem also follows directly from Carnot's

theorem by using the triangle contained by QYj Yv, vq.

5. In an ellipse QY^ iPY.YP'i: CD" : CP\

In the figure of V. 13, we have by Newton's theorem,

VQ . YQ' lYP.YP'i'.CD. CD' : CP. CP\

i. e. QY' : PY. YP' : : CD^ : CP\
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6. In a hyperbola QV : PV. YP' : : CD' : CP\
Besides QVQ' draw a

second double ordinate

qvq^ of the diameter PCP'.

Then by Newton's theo-

rem 7Q. FC'iFP. VP'

::vq. vq' :vP. vP\

i.e. QY^iPV. 7P' is con-

stant.

To obtain the value of this constant, take Y at C, and let

D be the position of Q.

Then QY'=:CI)'' and PY.YP'= PC. CP'= CP\

Hence QY^ : PY. YP' ::CD'': CP\

the formula required.

But this is not the formula given in books on Geometrical

Conies ; for in the above formula either P or J) is imaginary,

since, of two conjugate diameters of a hjrperbola, one only

meets the curve in real points. Take P real and D imagin-

ary. Then OD^ is negative, otherwise D would be real. On
CD take the point d, such that Cd'^= —CD'^. Then d is real,

for Cd'^ is positive.

Then QF^ : PY. YP' w- Cd^ : CP%

i.e. QY^:PY.P'Y'.i Cd'-.CP^

which is the formula given in books on Geometrical Conies,

the d here replacing the D of the books.

We may call CD the true and Cd the conventional semi-

diameter conjugate to CP.

It is sometimes convenient to employ the symbol D for

the conventional point d when the meaning is clear from the

context.

Note that the locus of d is the so-called conjugate hyper-

bola.

The theorems of § 5 and § 6 may also be obtained directly

from Camot's theorem by using the triangle contained by
DC, YC, YQ.

7. If the diameter conjugate to PCP' meet the curve in
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t}\£, imaginary points B and B\ and if t}i& tangent at P meet an
asymptote in T, then CD'^=-PT% i. e. PT is equal to the

conventional CD and parallel to it

In the figure of § 6 let BQQ' be parallel to the tangent at

P, and let il be the point at infinity on the asymptote CB.

Then by Ne\vton's theorem BQ . BQ'-t-BD}= rq . rq'^ r^^,

rgg;' being parallel to i?QQ'. But i?I2 = rH. Hence

BQ.BQ'=rq.rq\

Now take B at T, then BQ . BQ' = TP\ Again, take r at C,

then rq.rq'=-rq^=-CD\ Hence TP"" = - CD'- = Cd\
Hence TP= Cd, i. e. TP represents Cd in magnitude and

direction.

Notice that we have incidentally proved the theorem

—

If
a chord QQ' of a hyperbola drawn in a fixed direction cut one

of the asymptotes in B, then BQ . BQ' is constant and the same

whichever asymptote is taken.

For BQ. BQ'= TP'= rP''= B'Q. B'Q'.

It follows that BQ . QB' and BQ'. Q'B' are constant and

equal. For BQ'=QB'.
Also BQ.BQ'=B'Q.B'Q' -Cd\ Cd being parallel to

BQQ'B'.

Ex. 1. Pd is parallel to an asymptote.

For by reflexion in C we get the complete parallelogram TTttf, and
clearly Pel is parallel to VT^.

Ex. 2. Given in magnitude and position a pair of conjugate diameters of a
hyperbola, constru/:t the asymptotes.

Ex. 3. Through any point R on an asymptote of a hijperhola is drawn a line

parallel to the real diameter P^CP cutting the curve in Q(/, show that

RQ.RQ' = -CF^.

Ex. 4. If the same line cut the other asymptote in R', show that

QR.QR'^ Q'R.Q'R'= CP«.

Ex. 5. Given a pair of conjugate diameters of a hyperbola in magnitude and
position, construct the axes in magnitude and position.

Use Ex. 2 and Ex. 4.

Ex. 6. The tangent at Q to a hyperbola meets a diameter CD or Cd (which

meets the curve in imaginary points) in T, and the parallel through Q to the

conjugate diameter CP meets CD in V, show that CV.CT == CL^ = —C^.
For (DZ/, TV) is harmonic, and C bisects DD'. Since CV. CT is nega-J

tive, V and T are on opposite sides of C. Of the above harmonic range

notice that DD' are imaginary points and TV real points.
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Ex. 7. Gitm a pair of conjugate diameters of a hyperbola in position and

a tangent and its point of contact, construct the axes in magnitude and position.

CV. CT = CP^ gives the lengths of the diameters.

Ex. 8. The polar of d is d'T'.

Consider the chords intercepted on dT and dP.

Ex. 9. If through a variable point U a chord PUQ be^drawn in a fixed

direction, and also a chord UR parallel to one of the asymptotes in the case of the

hyperbola, or parallel to the axis in the case of the parabola, then UP .UQ -^ UK
is constant.

8. In a rectangular Jipperhola, conjugate diameters are equal

and equally inclined to the asymptotes. Also diameters which

are perpendicular are equal

Since conjugate diameters are

harmonic with the asymptotes

which are perpendicular, they are

equally inclined to the asymptotes.

Again CD = PT. But in the r. h.

TCT' is a right angle and

TP = PT'.

Hence CP = PT, hence CP= CD.

Draw CQ perpendicular to CP.

Then

IBCQ = 90'-IBCP=IACP = IBCD, since IPCT=IDCT;
hence CQ is the reflexion of CD in CB. Hence CQ = CD.

Hence CQ = CP. Similarly CD is equal to the semidiameter

perpendicular to it.

Notice that the true formulae are GP^ = -CDf'=-C(^ ; so

that if a diameter meet a r. h. in real points, the perpendi-

cular diameter meets the curve in imaginary points.

Ex. The perpendicular chords LM, L'M.' of a r. h. meet in U, show that

UL.UM = - UV. UM.'.

For UL . UM : UL\ UM' as the squares of the parallel diameters,

i. e. as CP : - CQ"^.

9. Every rectangular hypertola which circumscribes a triangle

passes through the orthocentre.

Let ABC be the triangle and P its orthocentre. Suppose

a r. h. through ABC cuts the perpendicular AD in Q. Then
from the r. h. we have DQ.DA =—DB DC. And from
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Elementary Geometry we haveDV . DA= —DB . DC. Hence
DQ=DP, i.e. Q coincides with P, i. e. the r. h. passes through

the orthocentre.

For the converse see XXI. 9.

Ex. 1. I/a triangle PQR which is light angled at Q be inscribed in a r. h.,

the tangent at Q is tJie perpendicularfrom Q on PR.

Ex. 2. If a r. h. circumscribe a triangle, the triangle formed by the feet

of the petpendicidars from tfie vertices on the opposite sides is self-conjugate

for the r. h.

Being the harmonic triangle of ABCP.



CHAPTEE VII.

FGCI OP A CONIC.

1. A focus of a conic is a point at which every two conju-

gate lines are perpendicular.

A directrix of a conic is the polar of one of the foci. The

polar of a focus is called the corresponding directrix.

From the definition of a focus it at once follows that every

two perpendicular lines through a focus are conjugate.

The theory of the foci of a conic is given in Chapter

XXVIII. It is there shown that

—

JEvery conic has four foci.

All the foci are inside the curve.

TJie foci lie, two ly ttvo, on the principal axes ; the pair SS' on

one axis (caUed the focal axis) are real, and those FF' on the

otlier axis are imaginary ; also SS' are equidistant from the

centre on opposite sides, and so are FF'.

One real focus of a parabola is at infinity on the axis of the

parabola.

All the foci of a circle coincide with the centre.

Note that the focal axis is the major axis in an ellipse, the

transverse axis in a hyperbola, and the axis in a parabola.

Ex. 1. Tangents at the ends of a focal chord meet on the directrix.

Ex. 2. If CT meet the directrix in Z, then SZ is perpendicular to the

polar of T.

• Being perpendicular to the polar of Z.

Ex. 3. PSQ is a focal chord of a conic. UOV is any chord of the conic

through the middle point of PQ. Parallels through U, V to PQ meet the

directrix corresponding to S in M, N. Show that PQ bisects the angle MSN.
Let the polar of (which is parallel to PQ) meet the directrix in R

;

then SR and SP are conjugate lines.

F 2
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2. Iffrom any point P on a conic, a perpendicular PM he

drawn to the directiix which corresponds to a focus S, then

SP -i- PM is constant.

Take any two points

P and P' on the conic.

Let the tangents at P
and P' meet in T. Let

PP' meet the correspond-

ing directrix in K, and

STmB. From P and P'

drop the perpendiculars

PM and P'M' on the

directrix.

Now SK and ST are

conjugate lines at the focus ; for the polar of K, which lies on

PP' and on the directrix, is TS. Hence SK is perpendicular

to ST. Also {KPBP') is harmonic, since K is the pole of

ST. Hence S(KPIIP') is harmonic. Hence SK and ST.

being perpendicular, are the bisectoi*s of the angle PSP'.

Now since SK bisects the angle PSP' (externally in the

figure), we have SP : SP': : PK : P'K : : PM : P'M'. Hence

SP : PM : : SP': P'M'; in other words, SP : PM is constant.

In the parabola, SP = PM.
For let SA be the axis. Then SA meets the parabola again

at infinity, at 12, say. Hence (XASQ^) is harmonic, since

XZ is the polar of S. Hence SA = AX.
But SP : PM ::SA: AX, for A is on the parabola.

Hence SP = PM.
In the ellipse, SP < PM.
Since a focus is an internal point, S must lie between A

and A'. Jr A s £
Let A be the vertex bet^veen S and X. Then since ^4.' is a

point on the ellipse, we have SP : PM :: SA':A'X.

But SA'< A'X, hence SP < PM.
In the hyperbola, SP > PM.
Since the focus is an internal point, S must lie outside the

segment AA'. s a z a^
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As before SF : PJf : : SA'-. A'X > i.

The correspanding property in the circle is that the radim is

constant.

For the focus is the centre. Hence the directrix is the

line at infinity. Hence PM=P'M\ Hence SP = SP%
i.e. CP=CP\
Ex. 1. Any two tangents to a conic subtend od a focus angles which are either

equM or supplementary.

Ex. 2. Show that it is not true conversely that * if any two tangents to a conic

subtend at a point on an axis angles which are equal or supplementary, then this

point is a focus.'

The foot of the perpendicular from T on the axis is such a point.

3. Assuming from Chapter XXVIII that a conic has a

real focus, we have just shown that this focus possesses the

SP : PM property by which a focus is defined in books on

Geometrical Conies. This opens up to us all the proofs

given in such books. It will be assumed that these proofs

are known to the reader ; and the results will be quoted

when convenient. Properties of Conies which can be best

treated by the methods of Geometrical Conies will be usually

omitted from this treatise.

4. In any conic, the semi-latus rectum is equal to the harmonic

mean between the segments of any focal chord.

Let the focal chord P'SP cut the

directrix in K.

Then (KPSP') is harmonic since S
is the pole of XK. Hence

2 {KS)-^ = (KPy + iKP')-'.

But

KPiKS: KP' ::PM:SX: P'M'

I'.SP-.SLiSP',

for SP:PM::SL:LU::SL:SX.
Hence

2{sL)-' = (SP)-'+{Spy\
Ex. 1. If T be the pole of the focal chord PQ of a parabola, show that

PQ oc ST\
Ex. 2. A focal chord of a central conic is proportional to the square of

the parallel diameter.
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5. If the tangent at P meet the tangents at the vertices AA'
of the focal axis in UU\ then JJU' subtends a right angle at S
and S'. Also if US, U'S' cut in E, and US', U'S cut in F,

then EF is the normal at P.

For since AU and PU subtend equal angles at S and since

A'U' and PU^ subtend equal angles at S, it follows that

USU' is a right angle. Similarly UU' subtends a right angle

at^'.

Again, F is the orthocentre of the triangle UEU'. Hence

EF is at right angles to UU\ Let PU cut the axis in T
and draw the ordinate PN, Then {TUPU') = {TANA') is

harmonic. Also if EF cut UU' in P', then since UU' is a

harmonic side of the quadrilateral SF, FS', S'E, ES, we have

{TUP'U') harmonic. Hence P' and P coincide, i. e. EF
passes through P. Hence EF is the normal at P.

Ex. "Llfa circle through the foci cut the tangent at the vertex A in U, V and
the tangent at the vertex A' in If, F', show that the diagonals of the rectangle

UTJ'V'V touch the conic.

Ex. 2. Given tlie focal axis AA' in magnitude and position and one tangent,

construct the foci.

6. Iftlie tangent at a point Pofa central conic cut the focal

axis in T, and if tJie normal at P cut the same axis in G, then

CG.CT=CS\
For since the tangent and normal bisect the angle SPS', it

follows that P {SS'j TG) is harmonic ; hence

CG.CT=CS\
Ex. 1. Given the axes in position and one tangent and its point of contact,

construct the foci.

Ex. 2. In the parabola, S bisects GT.

For S' is at infinity.

Ex. 3. Given the axis of a parabola in position and one tangent and its point

of contact, construct the focus.

Confocal Conies.

7. Confocal conies (or briefly confocals) are conies which

have the same foci. If one of the given foci is at infinity,

we have confocal parabolas, which may also be defined

as parabolas having the same focus and the same axis.
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Two confocals can he drawn through any pointy one an ellipse

and one a hypcrholaj and these cut at right angles.

Join the given point P to the foci S, S% and draw the

bisectors PL and PL' of the angle SPS\ Since both foci are

finite, the conic must be an ellipse or a hyperbola. If it be

an ellipse, then Q being any point on the ellipse,

SQ + S'Q = SP+S'P;

so that one and only one ellipse can be drawn through P
with S and S' as foci. Similarly one and only one hyperbola

can be drawn. And the two conies cut at right angles, for

PL and PL' are theii* tangents at P.

If one focus is at infinity, the ellipses and hyperbolas

become parabolas, and we get the theorem

—

Of the system ofparabolas which have the same focus and the

same axis, two pass through any point and these are orthogonal.

This can be easily proved directly.

8. One confocal and one only can he drawn to touch a given

line.

Take o-, the reflexion of S, in the given tangent. Then aS'

cuts the given line in the point of contact P of the given line.

If the given line cuts SS' internally, the required conic is a

hyperbola, viz. the locus of Q where S'Q-SQ=S'P-SP.
If the given line cuts SS' externally, the required conic is an

eUipse, viz. the locus of Q where S'Q+ SQ = S'P+SP.
If one focus is at infinity we get the theorem

—

Of a system of confocal parabolas, one and one only touches a

given line.

This can be easily proved directly.

9. Tiie locus of the poles of a given line for a system of con-

focals is a line.

Let the given line be LM, and let V be the point of con-

tact of the confocal which touches LM. Draw VL' perpen-

dicular to YL. Then VL' contains the pole of LM for any

confocal.

Since V is the pole of LM for the confocal which toucTies

LM, the pole of LM for this confocal is on YL'. From V
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draw the tangents YT and YT' to any other confocal. Now
YL and YL' bisect SYS\ for they are the tangent and

normal to the confocal touching LM. Also Z TYS= Z T'Y^'

by Geometrical Conies. Hence YL and YL' are the bisectors

of TYT, i.e. FL and Fi' are harmonic with YT and YT.
Hence FX, FL' are conjugate for this confocal, i.e. for any

confocal of the system. Hence the pole of YL for any

confocal lies on YL'.

The theorem follows for the confocals to which real

tangents cannot be drawn from F by the principle of con-

tinuity.

We have incidentally proved the proposition

—

IfYhe any point in the plane of a conic whose foci are S and

S% then the bisectors of the angle SYS' are conjugate for the

conic.

If one focus is at infinity, we get the theorem

—

The locus of the poles of a given line for a system of confocal

parabolas is a line.

IfYhe any point in the plane of a parabola whose focus is Sj

and if YM be parallel to the axis, the bisectors of the angle SYM
are conjugate for the parabola.

Ex. 'L.Ifa triangle be inscribed in one conic and circumscribed to a confocal,

the points of contact are the points of contact of the escribed circles.

Let ABC be the triangle. Let the tangents at A and B meet in R.

Then the locus of the poles of AB is the normal at the point of contact
N of AB^ i.e. RN is perpendicular to AB. And R is the centre of the
escribed circle because the external angles at A and B are bisected.

Ex. 2. From T are draicn the tangents TP, TP' to a conic and the tangents

TQ, TQf to a confocal ; show that the angle QPQ^ is bisected by the normal at P.

For the normal at P meets Q^ in the pole of TP for the other conic.

Focal Projection.

10. To project a given conic into a circle so that a focus of

the conic may be projected into the centre of the circle ; and to

show that angles at the focus are projected into equal angles at

the centre.

Let S be the focus to be projected into the centre of the

circle ; and let XZ be the corresponding directrix. Since S
is to be projected into the centre, its polar XZ must be pro-

jected to infinity. Rotate S about XZ into any position out
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of the plane of the conic, and take this position as the position

of the vertex of projection Y. With
V as vertex project the conic on to a

plane parallel to VXZ. Now the

projection of a conic is a conic. Also

G, the projection of S, is the centre of

the new conic ; for the polar of S is

projected to infinity, hence C is the

pole of the line at infinity. Again,

the angle LSM at S is superposable

to the angle LVM ; and the projec-

tion of SL is parallel to YL, and the

projection of SM to YM. Hence

LSM is projected into an equal angle

at (7 ; so every angle at S is projected

into an equal angle at C. Also con-

jugate lines at S are projected into

conjugate lines at C Hence the perpendicular conjugate

lines at S are projected into perpendicular conjugate lines at

C, i.e. every two conjugate lines through the centre C are

perpendicular. Hence the new conic is a circle.

Ex. 1, Project a conic into a conic so that one focus of the one shall project into

one focus of the other.

Ex. 2. Project a circle into a conic so that the centre of the circle shall project

into a focus of the canic.

Take any line as vanishing line, and to get V rotate C about the
vanishing line.

11. Find the envelope of a chord of a conic which subtends a

constant angle at a focus of the conic.

Project the conic a into a circle /3 so that the focus S may
project into the centre C of the circle. Then if the chord PQ
of the conic subtend a constant angle at S, its projection P'Q'

will subtend the same angle and therefore a constant angle

at C. Hence the envelope of P'Q' is a concentric circle ft\

The required envelope is therefore the conic a' of which /3' is

the projection.

Now S is the focus of a'; for the perpendicular conjugate



74 Foci of a Conic.

lines of ^' at C are the projections of perpendicular conjugate

lines of a! at S^ since angles at S project into equal angles at

C. Also the line at infinity is the polar of C for /j'; hence the

vanishing line, i.e. the directrix corresponding to >S in the

given conic a, is the polar of S for a'. Hence the envelope

o! of PQ is a conic having the given focus as focus and having

as corresponding directrix the directrix corresponding to the

focus in the given conic.

Sx. In the above, find the locus of the pole of PQ.

Note that these and all other examples of this method can

be more easily dealt with by Reciprocation.
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Reciprocation.

1. If we have any figure determined by points A, B, C, ...

and lines I, m, n, ..., we can form another figure called a

reciprocal figure in the following way. Choose any conic F
called the base conic. Take the polar a of A for this conic,

the polar J) of B, the polar c of C, ... ; also take the pole L
of I for this conic, the pole M of m, the pole N of n, . . .

;

then the figure determined by the lines a, h, c, ... and the

points L, 31, N, ... is said to be reciprocal to the figure

determined by the points A,B,C,... and the lines l,m,n,.. ;

also the point A and the line a are said to be reciprocal, so

also B and h, C and c, ..., I and L, m and 31, n and N, —
The name reciprocal arises from the following property

—

If the reciprocal of the figure a 1)6 the figure a', then the

reciprocal of a' is a.

For let A he a point of the figure a. The reciprocal of A
is the polar a of A for the base conic F. Hence a is one of

the lines of a^ the reciprocal of a. Again, in obtaining a", the

reciprocal of a', we should obtain the pole of a (a line of a')

for F ; but the pole of a is A. Hence j1 is a point in a".

Hence every point belonging to a belongs also to a''. So
every line belonging to a belongs also to a". Hence a and
.a" coincide.

The reciprocal of the join of two points A, B is the meet of the

reciprocal lines a, h ; and the reciprocal of the meet of two lines

I, m is the join of the reciprocal points L, 31.

By definition the reciprocal of AB is the pole of AB for
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the base conic F. But the pole of AB is the meet of the

polars of A and J5 for F, i.e. is the meet of the reciprocal

lines a and 6. Similarly the second part follows.

2. A curv^e may be considered either as the locus of points

on it or as the envelope of tangents to it. Hence the recipro-

cal of a curve may be defined either as the envelope of the

polars for the base conic F of points on the given curve or as

the locus of the poles for F of the tangents to the given

curve. These definitions determine the same curve.

For take two points P and § on the given curve a and the

polars i? and q^ of Pand Q for the base conic F. Then by the

first definition p and 3 touch the reciprocal curve a' of a.

Now the reciprocal of Z, the join of P and Q in a, is the meet
L ofp and q in a'. Also when P and Q coincide, PQ becomes

a tangent to a. At the same time p and q coincide and L
becomes a point on a'. Hence the reciprocal of a tangent to

a is a point on a'. Which agrees with the second definition.

From the above we see that

—

the reciprocals of a point P
on a curve and the tangent I to the curve at P are a tangent p
to the reciprocal curve and the point of contact L ofp.

The reciprocal of a point of intersection of two curves is a

common tangent to the reciprocal curves.

For let I and m be the tangents to the curves a and /3 at

their meet P. In the reciprocal figure we shall have two

curves a' and /3' which have one tangent p with different

points of contact L and M. ^

The reciprocal of two curves touching is two curves touching, f
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For the reciprocal of I touching both a and /:J at P is L, the

point of contact of^ with both a' and (6'.

Ex. 1. The reciprocal of a conic, taking the conic itself as base conic, is the

conic itself.

Ex. 2. The reciprocal of a circle, taking a concentric circle as base conic,

is a circle concentric with both.

3. WJiatever 'base conic is taken, the reciprocal of a conic is a

conic.

From any point can be drawn two tangents real or

imaginary to the given conic. Hence every line meets the

reciprocal curve in two points real or imaginary ; hence the

reciprocal curve is a conic. (For another proof see XIII. 2.)

More generally. If the degree of a curve is m and its class n,

then the class of the reciprocal curve is m and its degree is n.

For a line cuts the given curve in m points ; hence from

any point can be drawn m tangents to the reciprocal curve.

Also from any point can be drawn n tangents to the given

curve ; hence any line cuts the reciprocal curve in n points.

Ex. 1. The reciprocal of two conies having double contact is two conies having

double contact.

Ex. 2. ITie reciprocal of a common chord of two conies is a meet of common
tangents of the reciprocal conies.

4. If the point P he the pole of the line I for the conic a and

if p, L, a' he the reciprocals of P, I, a for any hase conic, then

the line p is the polar of the pointL for the conic a'; or briefly

—

the reciprocal of a pole and polar for any conic is a polar and

pole for the reciprocal conic.

From P draw the real or imaginary tangents m, n io a

touching in Q, R. Then QB is I, the polar of P for a. The
reciprocals of Q and m in a are a tangent q to a and its point
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of contact M ; so for r and N. The reciprocal of the meet P
of the tangents m and ** at Q and B is the join ^ of the points

of contact M andN of the tangents q^ and r. Again, the reci-

procal of Z, the join of Q and i?, is the meet of q and r, i.e. is

L. Hence the reciprocals of P and I which are pole and

polar for a are p and L which are polar and pole for of. (For

another proof see XIII. 3.)

The reciprocals of conjugate points are conjugate lines.

For if the point P is conjugate to the point Q, then the

polar I of Q passes through P. Hence in the reciprocal figure

the pole L oi q lies on p, i.e. the reciprocals p and q oi P
and Q are conjugate lines. Similarly

—

TJie reciprocals of conjugate lines are conjugate points.

Ex. T?ie reciprocal of a triangle sdf-conjugate for a conic is a triangle

self-conjugate for tfie reciprocal conic.

5. It will be found that all geometrical theorems occur in

pairs called reciprocal theorems. Thus the theorems (i) ' TJie

harmonic points of a quadrangle inscribed in a circle are the

vertices of a triangle self-conjugate for the circle,' and (ii) ^ The

hamionic lines of a quadrilateral circumscribed to a circle are

the sides of a triangle self-conjugate for the circle,'' are reciprocal

theorems. The reason of the name is that each can be

derived from the other by reciprocation. Hence we need

only have proved half the theorems in the former part of the

book ; the other half might have been deduced by recipro-

cation. This method will be often used in future to dupli-

cate a theorem.

For example, to deduce the second of the above theorems

from the first, reciprocate, taking the given circle as base

conic. The reciprocals of four points on the circle are the

polars of these points for the circle, ie. are the tangents at

these points, and so on step by step ; and the triangle ob-

tained is self-conjugate because the reciprocal of a self-conju-

gate triangle is a self-conjugate triangle.

6. If one conic only is involved it is best to reciprocate for

this conic itself, as then a theorem about a circle gives a
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theorem about a circle, a theorem about a parabola gives a

theorem about a parabola, and so on. In this way we get a

theorem as general as the given one.

7. Write dmvn the Bedprocdls of the foUmving propositions—
in other words—oUain the corresponding new propositions hy

Eeciprocation.

1. If two vertices of a triangle move along fixed lines

while the sides pass each through a fixed point, the locus of

the third vertex is a conic section.

If however the points lie on a line, the locus is a line.

In what other case will the locus be a line ?

2. If a triangle be inscribed in a conic, two of whose sides

pass through fixed points, the envelope of the third side is a

conic, having double contact with the given conic.

3. Given two points on a conic and two tangents, the line

joining the points of contact of these tangents passes through

one or other of two fixed points.

4. Given four tangents to a conic, the locus of the poles of

a fixed line is a line.

5. Given four points on a conic, the locus of the poles of a

given line is a conic.

6. Inscribe in a conic a triangle whose sides shall pass

through three given points.

7. If three conies have two points common or if they have

each double contact with a fourth, the six meets of common
tangents lie three by three on the same lines.

8. The meets of each side of a triangle with the cor-

responding side of the triangle formed by the polars of the

vertices for any conic lie on a line.

9. If through the point of contact of two conies which

touch, any chord be drawn, the tangents at its ends will

meet on the common chord of the two conies.

10. If on a common chord of two conies, any two points

be taken, and from these, tangents be drawn to the conies,
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the diagonals of the quadrilateral so formed "svill pass through

one or other of the meets of the common tangents of the

conies.

11. If a and j3 be two conies having each double contact

with the conic y, the chords of contact of a and ^ with y

and their common chords with each other meet in a point.

12. If a, ^, y be three conies, having each double contact

with the conic cr, and if a and /3 both touch y, the line join-

ing the points of contact will pass through a meet of the

common tangents of a and ^.

Point Reciprocation.

8. If the base conic is a circle (the most common case),

the reciprocation is generally called 'point reciprocation, the

centre of the base circle is called the origin of reciprocation,

and the radius k of the base circle is called the radius of re-

ciprocation. The reason of the name point reciprocation is

that the value of Iz is usually of no importance. By recipro-

cation is meant point reciprocation unless the contraiy is

stated or implied in the context.

In point reciprocation, the angle between two lines is equal to

the angle subtended by the reciprocal points at the origin of re-

ciprocation.

V

Let p and g be the lines, and P and Q the reciprocals of p
and q. Let be the origin of reciprocation. Then P being

<

i
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' the pole of p for a circle whose centre is 0, OP is perpen-

dicular to ^. So OQ is perpendicular to q. Hence FOQ, is

equal to the angle between p and ^.

^ In point reciprocation^ the angle between a line p and the line

•joining the origin of reciprocation to a point Q, is equal to the

angle hettveen the line q and OP, P and q heing the reciprocals

I

ofp and Q.

This follows at once, as before, from the above figure.

In point reciprocation, ifP he the reciprocal ofp and if he

the origin of reciprocation, then OP is inversely proportional to

' the perpendicular from on p.

For OP. OP, = OP. (0, p) = h\

9. The reciprocal of a figure for a given point and a

i given radius li, may be obtained without considering a circle

. at all. To obtain the reciprocal ofP—on OP take a point P,,

• such that OP . OP, = ¥, and through P, draw a perpendicular

ip to OP. To obtain the reciprocal of p—drop the perpen-

« dicular OP, from top, and on OP, take the point P, such that

I OP. OP, = k\

Instead of taking OP. OP, = Jc^, we may take

OP.OP,= -Tc',

ii.e. we may take P and P, on opposite sides of 0. This is

called negative reciprocation, and is equivalent to reciprocating

ifor an imaginary circle whose radius is h V —i.

Ex. 1. Tlie reciprocal of the origin of reciprocation is the line at infinity ; and
conversely, the reciprocal of the line at infinity is the origin.

For the polar of the centre of the base circle is the line at infinity

;

and conversely.

Ex. 2. The reciprocal of a line through the origin is a point at infinity ; and

Ex. 3. Reciprocate a qiuidrangle into a parallelogram.

Take at one of the harmonic points.

• Ex. 4. TJte reciprocal of the meet of OP and m is the line through M parallel

top.

Ex. 5. If P and Q bepoints on a curve such that PQ passes through 0, then in

the reciprocal for 0, p and q are parallel tangents.

Ex. 6. The reciprocal for of the foot of the perpendicularfrom on p is the

line through F perpendicular to OP.

Q
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Ex. 7. The reciprocal of a triangle for its orthocentre is a triangle having the

same orthocentre.

Ex. 8. On the sides, BC, CA, AB of a triangle are taken points P, Q, R such

that the angles POA, QOB, ROC are right, being a fixed point ; show that PQR
are coUinear.

Keciprocating for 0, we have to prove that the three perpendiculars

from the vertices on the opposite sides meet in a point.

Ex. 9. Tlie reciprocal of the curve p =f(r)for the origin is k^/r = fik'''/p).

Let h be the tangent at A to the given curve. " Then B is on the

reciprocal curve and a touches it. Hence.

p ^. (0, &) = kyOB = WJr", and r =^ OA = k^ (0, a) = l^Jp'.

Beciprocation of a conic into a circle.

10. The reciprocal of a circle, taking a circle with centre

as base conic, is a conic having a focus at 0.

Let TJhe the centre of the given circle a. Take u the re-

ciprocal of TJ, i. e. the polar of TJ for the base circle T whose

centre is 0. Let p be any tangent to a touching at T, Take

P the reciprocal of p. Draw the perpendicular PM from P
to u.

Then since p is the polar of P and u the polar of TJ for T,

we have by Salmon's theorem (III. 9)

OP/{P, u) = OU/{U, p), i.e. OP/PM = OU/UT,



VIII.] Reciprocation. 83

Hence OP/PM is constant, i. e. the locus of P is a conic

with as focus. But the reciprocal of a for T is the locus

- of the poles for T of the tangents to a, i. e. is the locus of P.

Hence the reciprocal of a circle a for the circle F whose

£ centre is is a conic a' having a focus at 0.

•- - Briefly, the reciprocal ofa circle for a point is a conic having

a focus at 0.

Since e — OP/PM = OU/UT, we see that the reciprocal of

a circle for a circle whose centre is 0, is an ellipse, parabola

or hyperbola according as 0U< = > UT, i.e. according as Ois

inside, on or outside the given circle. This is a particular

case of a general theorem. (See § 21.)

Let 0U= S, UT = R, and let Jc be the radius of the base

circle. Then e = h/B. Also OX.OU=Jc\
Hence r/d = OX = a/e - ae. Hence a = lc'B/{IC'- 5').

Ex. Sh(m that the semi-latus rectum I = k'^/R.

This follows from I = a (i — e"^) ; or directly by noticing that an
end of the latus rectum through reciprocates into a tangent of

, a parallel to OU.

f'
Notice that I is independent of 5, i. e. of the relative positions of the

- circles.

11. Conversely, the reciprocal of a conic, taJcing any circle

whose centre is at a focus as 'base conic, is a circle.

Let be the given focus, and XZ or u the corresponding

directrix. Take any point P on the conic a', and let p be

its reciprocal, i. e. the polar of P for the base circle T whose

centre is at 0. Draw the perpendicular PM from P to w.

Take the reciprocal U of u. Draw the perpendicular UT from

Utop.

Then since p is the polar of P and u the polar of U for the

conic r, we have by Salmon's theorem

OU/UT= OP/PM=e.

Hence OU/ UT is constant. Also Uis a fixed point ; hence

UT is of constant length. Hence the perpendicular from U
on p is constant, i. e. p envelopes a fixed circle a. But the

reciprocal of a' for T is the envelope of the polars for F
G 2
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of the points on a!. Hence the reciprocal of the conic a' for

a circle F whose centre is at one of the foci of the conic is

a circle a.

Briefly, the reciprocal of a conic for one of its fod is a

circle.

Ex. L The envelope of the polar for a of the centre of a cirde which touches

two given circles a and ^ is a circle.

Ex. 2. Deduce a construx:fion for the centre of a circle touching three given

circles.

Ex. 3. Given four points A, B, C, D, show that, vnth D as focus, one conic

can be draum touching BC, CA, AB, and four conies through ABC. Show also

tluU, ifABB he a right angle, a conic, loith focus at D, can be found to tou/:h the

five conies.

In a right-angled triangle the nine-point circle touches the circum-
circle.

Ex. ^. Of the above four conies, the sum of the latera recta of three is equal

to the lotus rectum of the fourth.

Ex. 5. The reciprocals of equal circles are conies liaving equal parameters.

Ex. 6. Reciprocate for the orthocentre of ABC the theorem— ' IfDEF be the

feet of the perpendiculars from A, B, C on BC, CA, AB, then the radius of

the circle about ABC is double the radius of the circle about DEF.'

Ex. 7. Four conies a, 0, 7, a have one focus and one tangent t in common.
A second common tangent to a and a meets the corresponding directrix of a
at a point ont ; similarly for 0a and 7<r. Show thai the other common tangents

ofa0, By, ya are concurrent.

Ex. 8. Three conies a, j8, 7 which have a focus in common are such that

a touches in R, touches 7 in P, and 7 tou/:hes a in Q. Show that the

tangents at P, Q, R meet the corresponding directrices of a, 0, y in three coUinear

points.

Ex. 9. Reciprocate the centres of similitude of two circles.

The two circles reciprocate into conies having a common focus S.

Let u, u' be the directrices corresponding to S. Then two common
chords pass through the meet of u and u' \ and these chords are the
reciprocals of the centres of similitude.

Ex. 10. The reciprocal of two circles for either centre of similitude is

two similar and similarly situated conies with a common focus as centre of
similitude.

Reciprocate a pair of parallel tangents.

12. The figures of the reciprocals of an ellipse, a parabola

and a hyperbola are given below. In the first figure in each

case the curves are in their proper relative positions ; the

second figure represents the circle separately and the third

figure represents the conic separately, so that if one figure
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be slid on to the other, so that in one comes on in the

other, we get the proper figure as in the first figure. To

avoid complication the figures will generally be separated as

I in the second and third figures.

13. We already know that the reciprocal of is the line at

infinity and the reciprocal of the line at infinity is 0. Also

that the reciprocal of the directrix u corresponding to

is the centre JJ of the circle.

The centre C of the conic is the pole of the line at infinity

for the conic. Hence the reciprocal of the centre is the polar

c of for the circle.

The asymptotes y, y^ are the tangents from C to the conic.

Hence the reciprocals of the asymptotes are the points in

which c meets the circle ; i. e. the points in which the polar

of for the circle meets the circle.

The reciprocals of the vertices A, A' are clearly the tangents

at the points where OU meets the circle. In the parabola A'

is at infinity ; hence its reciprocal is the tangent at 0.

The reciprocals of the vertices B, B' are clearly the tangents

to the circle at E, E\ the points where the perpendicular

through to OU meets the circle.

The reciprocals of L, L', the ends of the lotus rectum LOL\
are clearly the tangents I, V of the circle parallel to OU.

Ex. 1. The reciprocal of the second focus S is the line half-way between and
its polar for the circle.

For OS = 2. OC ; hence OCy = 2 . OSi , where C^ and Si are the points
where the reciprocals of C and S meet OU.

Ex. 2. ACB is the diameter of a circle whose centre is C. Two equal

parabolas are drawn with foci at C and vertices at A and B. A hyperbola

is drawn having a focus at C, and a vertex at D one of the ends of the diameter

perpendicidar to AB, and touching the parabolas. The corresponding directrix of
this hyperbola meets DC in E, and the hyperbola meets DC again in F. Show that

CF= 2.CE = s.CD.
Reciprocate for the circle ABD, and notice that CF^ = ^ . CE^ = | . CD.

Ex. 3. If EE^ be the chord of the given circle which passes through and is

perpendicular to OU, then the minor axis of the reciprocal conic is 2}^ ~ OE.

Ex. 4. The reciprocals of coaxal circles for any point on the radical axis are

conies having equal minor axes.

14. If the polar of a point Tfor a conic meet the conic in P, Q
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and a directrix in K, then, being the corrcspmding focus, the

bisectors of the angle POQ are OT and OK.

Let the two tangents I and m of the conic touch in P and

Q and meet in T, and let n be the chord of contact. Let be

a focus of the conic and u the corresponding directrix, and

let PQ meet u in K. Then we have to prove that OT and OK
are the internal and external bisectors of POQ.

Reciprocate the conic for a circle with centre at 0. Then

in the reciprocal figure p and q touch the circle at L and M
and meet in N, and t is the chord of contact. Also the

reciprocal of K, the meet of n and u, is NU.
Now IPOT = Itp : so ITOQ = Itq. But Itp = Itq.

Hence IPOT = ITOQ. Again

ZPOiT = Ipk = iSo°-lqJc = iSo'^-lQOK = IKOQ,

if we produce QO to Q'. Hence OT bisects ZPOQ, and 0^
bisects the supplement APOQ'.

Note that if TP and T^ had been drawn to touch different

branches of a hyperbola, OT would have been the external

bisector and OK the internal, instead of as above.

Ex. 1. Reciprocate for any point the theorem— ' The tangent to a circle is p^

pendicular to the radius through the point of contact'

If the tangent at P meet u in K, then ZPOK = 90°.

Ex. 2. Reciprocate for any point the theorem— ' The angle between the tangent

to any cirde and a chord through the point of contact is equal to the angle in the

aMernate segment.*

i
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Ex. 3. Two conies which have a common focus S touch at P. From any point

Q on one of the conies, tangents are drawn to the other, meeting the tangent at P in

UV. The tangent at Q meets the tangent at P in T. Show that TU and TV
stibtend equal angles at S.

Ex. 4, The common tangent of an ellipse and its circle of curvature at

P meets the tangent at P in a point T, such that SPand ST are equity inclined to

the join of the focus S to the centre of curvature.

Reciprocating for S we get a circle and an ellipse having three-point

contact.

Ex. 5. TJie polar of Tfor a conic meets in Q a conic which has the same focus

S and corresponding directrix. The perpendicular to SQ through S meets the

directrix in Z, and SQ and TZ meet in P. Show that the locus of P is a conic

having the same focus and directrix. Show also that the eccentricity of the locus is

a third proportional to those of the two given conies.

Reciprocate for S and notice that the envelope reduces to a locus.

Ex. 6. If the chord PQ of a conic subtend at the focus a constant angle, the

envelope of PQ is a conic having as a focus ; and the directrices corresponding

to in the two conies coincide.

For if Z POQ is constant, then Zpq is constant ; hence the locus of N
is a circle having U as centre. Hence the envelope of n is a conic

having as focus and u as corresponding directrix.

Ex. 7. Find the locus of T when I POQ is constant.

Ex. 8. From two conjugate points on the directrix of a conic are drawn four

tangents to the conic. Show thai the locus of each of the other meets of the tangents

is a single conic ; and that the given directrix is a directrix of this conic, and
that the corresponding foci of the two conies coincide.

Ex. 9. The parameter of any conic is a harmonic mean between the segments

qf any focal chord of the conic.

For if perpendiculars OPi and OQi he drawn from any point to two
parallel tangents of a circle, then the radius = ^ {OP^ + OQi). If

is outside, OQi must be considered negative.

Ex. 10. A pair of parallel tangents to a conic meet a perpendicular to them
through a focus in Y and Z and the corresponding directrix in M and N. Show
that MZ and NY touch the conic.

For the angle in a semicircle is a right angle.

Ex. 11. On the tangent at P to a conic is taken a point Q, such thatPQ subtends

at a focus S a given angle ; show that the locus of Q is a conic having a focus at

S. Show also that its eccentricity is to the eccentricity of the given conic as its

parameter is to the parameter of the given conic.

For e :^::Iif:R :: I :V::sece : I.

Ex. 12. Reciprocate for any point the theorem—'IfPP^, QQf be two pairs of
inverse points for a circle, then PP^QQ^ are coneydie.

Notice that inverse points are conjugate points whose join passes
through the centre.

Ex. 13. 'If two circles touch one another at C and be touched by a common
tangent in A and B, then ACB is a right angle.' Reciprocate this theorem (i) for
any point, (ii) /or A, {Hi) for C, and (iv)/or the centre of one of the circles.

Ex. 14. Reciprocate for any point the theorem—^The locus of the points of
corUact of tangents from a fixed point to a system of concentric circles is a circle

through the fixed point and through the common centre.'
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Ex. 15. Bedprocate for the centre of the given circle—"The joins of two fixed

points on a given circle with the ends of a variable diameter meet at P on a fixed

circle through the fixed points and orthogonal to the given circle. Also the tangent

at P to the locus is parallel to the diameter.'

Ex. 16. Reciprocate for any point—* The bisectors of the angles of a triangle

meet, three by three, in the centres of thefour circles touching the sides'

Ex. 17. Also— ' The chord of a circle which suhtends a right angle at a fixed

point on the circle passes through the centre.'

Ex. 18. If a circle be reciprocated into a hyperbola, taking a circle with centre

as base conic, then BC = Ic^/OT, OT being the tangentfrom to the circle.

15. The triangles subtended at the focus of a parabola by any

two tangents are similar.

The reciprocal of the parabola for its focus is a circle

through 0.

We have to prove that

IFTO = ITQO and IFOT = ITOQ.

Now /.PTO, the angle between the line I and the radius

OT, is equal to the angle between the radius OL and the Hne

t, i. e. equals /.OLM. So /.TQO is equal to the angle between

OM and q, i. e. equals /.OMN'. But lOLM = lOMN'.
Hence IPTO = ITQO. As before, APOT=lTOQ follows

from INLM = INML.
Ex. 1. Obtain a property of a circle from the theorem— ' The orthocentre of a

triangle circumscribing a parabola is on the directrix.'

Ex. 2. Reciprocate the pr&perty of a circle obtained in Ex. i {i)for the circle

itself, (ii) for any circle.

Ex. 3. Reciprocate for the theorem—' If from any point on a circle per-

pe^idiculars be drawn to the sides of an inscribed triangle, the feet Uq on a line.'

We get—'If be the focus of a parabola and PQR the vertices of a



_ VIII.

J

Reciprocation. 91

circumscribed triangle, then the perpendiculars through P, Q, J? to OF^

OQ, OR meet in a point.' Calling this point Z>, we have proved that the
points A, B, C, lie on the circle on OD as diameter. Hence ^The
circle about a triangle circumscribing a parabola passes through the
focus.'

Ex. 4. Reciprocate the same theorem for any point.

Ex. 5. Find by reciprocation the locus of the meet of tangents to a parabola

which meet (i) at a given angle, (ii) at right angles.

16. Find the envelope of a chord ofa circle which is bisected lyy

a given line.

Let the chord p of the circle be bisected by the fixed line I

in the point Q. Take the centre of the circle ; then OQ is

perpendicular to p. Reciprocate for the circle itself. Then

P is the foot of the perpendicular from on the variable line

q through the fixed point L. Hence the locus of P is a circle

on OL as diameter, i. e. a circle through and having the

opposite point at L. Hence the required envelope is a para-

bola vsdth focus at and having its vertex at L^ the foot of

the perpendicular from on I. Hence the envelope is

completely determined.

Ex. 1. A, B,C, D are four points on a circle, and AC, BD are perpendicular ;

shoiv that AB, BC, CD, DA envelope one and the same conic.

Let AC, BD meet in 0. Reciprocate for and we obtain the property
of the director circle.

Ex. 2. T7te envelope of the base BC of a triangle ABC whose vertex A and
vertical angle BAC are given and whose base angles move on fixed lines is a conic

one of whose foci is A.

Reciprocate for A.

Ex. 3. Find the envelope of the asymptotes of a system of hyperbolas having
the same focus and corresponding directrix.

17. is a fixed point, and Q is a variable point on a fixed

circle. QU is drawn such that the angle OQB is constant. Find

the envelope of QB.

Let QR be called p. Eeciprocate for 0. Then we have to

find the locus of a point P taken on a tangent q to sl conic

one of vsrhose foci is 0, given that the angle between OP and

q is constant. Draw OY the perpendicular from on q.

Then since the locus of Y is a circle and since OY: OP
is constant and /.YOP is constant, hence the locus of P is a
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circle. Hence the envelope of ^ is a conic with as one

focus.

Ex. Jfthe locus of Q be a line instead of a cirde,find the envelope of QR.

18. To investigate bifocal properties of a conic by recipro-

cation we reflect the figure in the centre of the conic. For

example

—

In any central conic the pair of tangents from a point make

equal a/ngles mth the focal radii to the point.

Let the tangents from T to a conic touch in P and Q. We
have to prove that PTS = QTS'. Eeflect the whole figure in

the centre C. The tangents at P and Q mth their reflexions

form a parallelogram BTB'T. Then T is the reflexion of T,

or of Q, Tq of Tq, rS of TS\ Hence the angle QTS'

is equal to its reflexion, the angle Q'TS. Hence we have to

prove that LSTP and /.STQ' are equal. Keciprocating for S
this reduces to * angles in the same segment of a circle are

equal.

'

Prove by reciprocation that—
Ex. L The focal radii to a point on a conic make equal angles loith the

tangent at the point.

Ex. 2. The product of the perpendiculars from the foci of a conic on amj
tangent is equal to the square of the semi-axis minor.

Ex. 3. If two opposite vertices of a parallelogram circumscribed to a conic

move on the directrices, the other two vertices move on the auxiliary circle.

That is, if tangents a, b be drawn from any point on a directrix of a
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conic and a', h' be the parallel tangents ; then, S being the correspond-

ing focus, S (a'6) is perpendicular to a' and S {aV) to h' . Now recipro-

cate for S.

Ex. 4. The sum of the reciprocals of the perpendiculars from any point

mthin a circle to the tangentsfrom any point on the polar of is constant.

19. To reciprocate a system of coaxal circles into a system of

confocal conies.

Ifwe reciprocate the system of coaxal circles for any point

0, we get a system of conies having one focus in common.

In order that the other focus may be common to all, the

conies must have the same centre, i. e. the line at infinity

must have the same pole for each conic. Hence in the

figure of the circles, must have the same polar for each

circle, i. e. must be one of the limiting points of the

coaxal system. Now reciprocate the coaxal system for the

limiting point L. Then the reciprocal conies have a focus

and centre in common, and hence are confocal.

20. To reciprocate a system of confocal conies into a system of

coaxal circles.

Since each conic is to be reciprocated into a circle, we
must reciprocate for one of the common foci. Keciprocate

for the focus 0. Then since the conies have the same centre,

the reciprocal circles have the same polar of 0. We have to

show that a system of circles each of which has the same polar

of is coaxal. Drop the perpendicular 00' on the polar of

0. Bisect 00' in X. Let 00' cut one of the circles in

A, A'. Then since (00'^ AA') is harmonic, and X bisects

00', hence XA . XA'— X0% a constant. Hence X has the

same power for all the circles. And the centres all lie

on the line 00'. Hence the circles are coaxal, X being the

foot of the radical axis.

Note that 0, 0' are the limiting points of the coaxal

system.

Tfie reciprocal of the other focus S is the radical axis.

For 0S= 2.0C; hence OS^ = i. OC,. But C, is the
0' of the above proof. Hence S^ is the X of the above

proof.
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Ex. L The reciprocal of the minor a^cis is the other limiting point.

Ex. 2. S and H are the foci of a system of confocal conies. A parabola with

S a^ focus touches the minor axis. Show that its directrix passes through H

;

and that if P, Q be the points of contact of a tangent to one of the confocals and
the parabda, then PSQ is a right angle.

Ex. 3. Prove by reciprocation that the circle of similitude of two circles is

coaxal with them.

The circle of similitude is symmetrical for the line of centres and
passes through the meets on this line of the common tangents. Now
reciprocate for a limiting point 0. The circles become an ellipse and
hyperbola with the same foci and S, which have a pair of common
chords I and V perpendicular to OS. We have to show that a conic

which is symmetrical for OS, which has as a focus and which touches
I and Z', has S as its other focus. This is obvious.

Ex. 4. Deduce properties of coajcal circles from— (i) * Confocal conies meet at

right angles,' (ii) * Tangents from any point to two confocals are equally inclined

to each other.'

Ex. 5. Deduce aproperty of confocal c<micsfrom—'Thepolars of a fixed point

for a system of coaxed circles meet at another fixed point ; and the two points

subtend a right angle at either limiting point.'

Ex. 6. If the sides of a polygon touch a conic, and all but one of the vertices

lie on confocal conies, the last vertex, also lies on a confocal conic.

Reciprocate Poncelet's theorem respecting coaxal circles.

Reciprocation for any conic.

21. Having discussed the particular case of two reciprocal

conies, one of which is a circle, we return to the general case

of the reciprocal of a conic, taking any base conic.

The reciprocal of a conic, taking a conic toith centre as hose

conic, is a hyperbola^ parabola, or ellipse, according as is outside,

on or inside the given conic.

Let a be the given conic and T the base conic, and a' the

reciprocal conic. Then a' is a hyperbola, parabola, or ellipse,

according as the line at infinity cuts a' in real, coincident or

imaginary points. Now the reciprocal of the line at infinity

is the pole of the line at infinity for F, i. e. is 0. Hence

the reciprocals of the points in which a' meets the line

at infinity are the tangents to a from 0. And the tangents

from are real if be outside, coincident if be on, and

imaginary if be inside a.

The reciprocal of tJw centre of the given conic, i.e. of the

pole of the line at infinity for a, is the polar of for a\ The

reciprocal of the asymptotes of the given conic, i. e. of the
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tangents to a from the pole of the line at infinity for a,

are the points of meet with a' of the polar of for a\

< i. e. are the points of contact of tangents from to of.

Ex. 1. The axes of the reciprocal of a conic for a point are parallel to the

bisectors of the angles between the tangentsfrom to the conic.

y Ex. 2. If aO be the angle between these tangents, show that cosec 6 is the

;

eccentricity of the reciprocal conic, and deduce the formula e = OU -i- UT of

§ lO.

Ex. 3, The reciprocal of a parabola for any point on the directrix is a rect-

angular hyperbola.

For since the points of contact of tangents from to a subtend a
right angle at 0, hence the asymptotes of a' are pei*pendicular.

Ex. 4. From * The orthocentre of a triangle circumscribed to a parabola lies

<m the directrix,' deduce by reciprocation • The orthocentre of a triangle inscribed

in a rectangular hyperbola is on the curve.'

Reciprocate for the orthocentre.

Ex. 6. Tfie reciprocal of a rectangular hyperbola for any point is a conic

whose director passes through 0.

Ex. 6. Reciprocate for any point—' A diameter of a rectangular hyperbola

and the tangent at either end are equally inclined to either asymptote.'

Let CP = r be the diameter, g the tangent at P, and y the asymptote.
Then we have to reciprocate that Lry = L qy. We get— ' If c be the
poJar of any point on the director of a conic, and if from the point R
on c a tangent be drawn touching in Q ; then Y being either of the
points in which c cuts the conic, RY and QY subtend equal angles
at o:

Ex. 7. Reciprocate for any point —a focus of a conic.

A line such that every pair of conjugate points upon it subtend a
right angle at a given point 0. Hence given a conic and a point 0,

there are four such lines.

Ex. 8. Reciprocate for any point—a directrix of a conic.

The pole of such a line.

Ex. 9. If the chord PQ of a conic subtend a right angle at a fixed point on
the conic, then PQ passes through a fixed point (called the Fregier point of
for the conic).

Reciprocate for the fixed point ; and we have to prove that the locus
of the meet of perpendicular tangents of a parabola is a line (the
directrix.

Ex. 10. Obtain by reciprocating Ex. g a property of a circle.

Ex. 11. The reciprocal for of the focu^ of a parabola is the polar of the

Fregier point of for the reciprocal conic.

Ex. 12. 0, D, E are fixed points on a conic, and P a variable point. PD,
' PE meet the polar of the point in which chords which subtend a right angle at

meet, in B and C; show that I BOG = Z DOE.

Ex. 13. TJie envelope of a chord of a conic which subtends a right angle at a
fixed point 0, not on the conic, is a conic having a focus at 0.

Ex. 14. A system of four-point conies or four-tangent conies can be recipro-

cated into concentric conies.
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Take as origin one of the vertices of the common self-conjugate
triangle.

Ex. 15. The reciprocal of a central conic, taking a concentric circle as base

conic, is a similar conic.

For OA . OAi = OB . OBi = Jc^ ; hence OAi :OBi^::OB: OA.

Ex. 16. Reciprocate for any point—a system of coaxal cirdes.

That is, a system of circles passing through the same two points,
real or imaginary.

Ex. 17. Reciprocate for any point 0—* The directors of a system of conies

touching the same four lines are coaxal.'

Ex. 18. Also—* The locus of the centres of a system of rectangular hyperbolas

passing through the same three points is a cirde.'

22. Reciprocate Camofs theorem, taking any circle as base

conic.

Let be the origin of reciprocation. Then, as in VI. i,

Carnot's theorem gives

sin AOC,. sin AOC^... = sinAOB^.sinAOB^ ...

Now Z J.OCj = Zoc,, and so on. Hence the reciprocal

theorem is
—

' The sides a, fe, c of a triangle meet in the

points P, Qy R; and from P, Q, R are drawn the pairs of

tangents Oj ttg, W, c^ c^ to any conic ] then

sin a/i^ . sin ac.^ . sin l)a^ . sin ta.^ . sin cb^ . sin ch^

= sin a&i . sin a\ . sin hc^ . sin hc^ . sin ca^ . sin ca^,

where ac^ denotes the angle between the lines a and c^ , and

so on. And conversely if this relation hold, then the six

lines a^ a^ h^ \ c^ c^ touch the same conic'

Ex. 1. If the sides of a triangle ABC meet a conic in A^ A^ , BiB^, C^ Cj

,

then the six lines AA^ , AA^ , BB^ , BB^ , CC^ , CC^ touch a conic ; and con-

versely, if the latter touch a conic, the former are on a conic.

Ex. 2. Reciprocate the eodension of Camofs theorem given in Ex. i of VI. i.

Ex. 3. Reciprocate the theorem—* The lines joining the vertices of a triangle to

any two points meet the opposite sides in six points which lie on a conic'

NOTE.

23. The following theory would have been preferable in some ways

to that employed in the text.

Prove by § 3 or XIII. 2 that the reciprocal of a conic for a point (i.e.

for a circle with centre at this point) is a conic.

The reciprocal of a circle for any point is a conic one of whose foci is 0.

For in the circle, every pair of conjugate points on the line at
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infinity subtends a right angle at the centre of the circle and therefore

at 0. Hence in the reciprocal conic every pair of conjugate lines at

is orthogonal, i.e. is a focus of the reciprocal conic.

Also since the centre of the circle is the pole of the line at infinity,

the reciprocal of the centre of the circle is the polar of the origin, i.e.

is the corresponding directrix.

The reciprocal of a conic for one of its foci is a circle.

Every pair of conjugate points on the corresponding directrix sub-

tends a right angle at the focus. Hence in the reciprocal conic, every

pair of conjugate lines at the pole of the line at infinity, i.e. at the

centre, is orthogonal. Hence every pair of conjugate diameters of the

reciprocal conic is orthogonal ; hence the reciprocal conic is a circle.

In any conic SP : PM is constant.

For as in § lo, OP:PM::OU: UT. Hence OP : PM is constant.

Hence the eccentricity of the reciprocal conic is 5 4- i?, for

e = SP: PM.

Notice that we have here given by Reciprocation an independent

proof of the SP : PM property of a conic,



CHAPTER IX.

ANHARMONIC OR CROSS RATIO.

1. One of the anharmonic or cross ratios of the four col-

AB AD
linear points A^ B, C, D is ^-^ -r- -=— . This is denoted by

{AC, BD). So every other order of writing the letters gives

us a cross i*atio of the points, e.g. another cross ratio is

(BA OD)-^^^.
Ex. 1. If {AB, CD) = {AB, (Ti/), then {AB, CCf) = {AB, DI/).

Ex. 2. If {AC, A'B) = {A'C, AB'), then (AC, CB) = (>4'Cr, CB').

Ex. 3. If (AB, CD) = (A'B", CI/), and {AB, CE) = {A'B', Cl/),

show that {AB, DE) = (A'B', I/E").

Ex. 4. IfOA, OB, OC cut BC, CA, AB in P, Q, R, and if any line cut BC.
CA, AB in P', Q', R', then

{BC, PP") X {CA, QQ^) X {AB, RR') = - 1 ;

and conversely, if this relation hold, and if PA, QB, RC be concurrent, then P',

(/, Rf are cdlinear, and if P' , Q^, R' be cdlinear, then PA, QB, RC are con-

current.

Ex. 5. If OA, OB, OC cut the sides of the triangle ABC in P, Q, R, and
CfA, C/B. C/C cut the sides in P'

,
Q', R', or if two transversals cut the sides in

P, Q, RandP',qf,Rf, then

{BC, PP') X {CA, qqf) X {AB, RR') = I ;

and conversely, if this relation hold, and if PA, QB, RC be concurrent, then

P'A, Q'B, R'C are concurrent, and if P, Q, R be collinear, then P'
, Q^, R' are

coUinear.

Ex. 6. A cross ratio is not altered by inversion for a point on the line.

For given OA.OA' = OB.OB' --=.-. = k%

we have AB = OB-OA = l^/OBT -le-jOA'

^-l^.A'B'/OA'.OBT.

Ex. 7. The tangent at to a conic meets the sides of a circumscribed triangle

in A, B, C and the sides of the triangle formed by the points of contact in A', £',

C; show that {OA, BC) = (0-4', B'C').
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Since {pA',BC) is harmonic, we have a' = 2bc~ (b + c). So for 6'

and (/. Now substitute in {OA', B^Cf), viz. in

OB" CA' _ V a'-(f

and we get {OA, BC).

2. A cross ratio is equal to any other, in which any two points

being interchanged, the other two are also interchanged.

Let (AC, BD) be the cross ratio. We may interchange A
with B, C or D. Hence we have to prove that

[AC, BD) = (BB, AC) = {CA, DB) = {DB, CA\

or that

AB DC_BA CD_CD^ BA^BC AB
BC ' AB~AD ' BC~BA ' CB ~CB ' BA

'

3. There are 24 cross ratios of four points ; and these can he

divided into 3 groups of S, such that every cross ratio in a group

is equal to or the reciprocal of every other in the group.

Let the points be ABCB. Take the three cross ratios

{AB, CB), {AC, BB) and {AB, BC). Now

{AB, CB) = {BA, BC) = {CB, AB) = {BC, BA)

by IX. 2. Also it is easy to prove that {AB, CB) is the

reciprocal of {AB, BC), {BA, CB), {CB, BA), {BC, AB).

Hence we get a group of 8 connected with {AB, CB). Simi-

larly there is a group of 8 connected with {AC, BB) and with

{AB, BC). And no ratio can belong to two groups ; for in

the first group AB are together and CB, so in the second

group AC are together and BB, and in the third group AB
and BC.

4. IfK= (AB, CB), ii = (AC, BB), v = {AB, BC),

N I I I X

then AH— = a + - =z;+ - =— Aaz/ = i.
\x '^ V A.

,1 AC BB BC AB
.

^^^ ^^];--' = CB'AB^AB'BG-'
_ AC. BB-BC . AB-CB . AB~

CB.AB

^ {c-a){h-d)-{c-d){b-a)-(b-c)(d-a)

CB.AB
H 2



I
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_ ch— cd—db-had—cb + ca + dh—da—hd-{-ba-\-cd—ac_
CB.AB

= o.

AC BB AB BC AB CB
Also ^'t^'-^cB-AB'BC'AB'BB'AG^-'^
We have now shown that the three fundamental cross

ratios A, /ix, z; are connected by the above four relations.

Two of these are independent and give }i, v in terms of A.

The other two can be derived from these. Hence given any

one cross ratio of four points, the other 23 can be cal-

culated.

Ex. 2. Given \ +

Ex. 3. If (AB, CD) = I, show that either A and B coincide, or C and B ;

and conversdy, ifA and B coincide, or C and D, then {AB, CD) = i.

Ex. 4. If two points of a range offour points coincide, each of the cross ratios

is equal to o, 1, or co ; and no cross ratio can equal o or i or 00 unless two

points coincide.

Ex. 5. Show that no real range can he found of which all the cross ratios are

equal.

Ex. 6. Of the three \, /*, v, two are positive and one negative.

Ex. 7. If any cross ratio of the range ABCD is equal to the corresponding

cross ratio of the range A'B'C^I/, then every tux) corresponding cross ratios of the

ranges are equal.

For if \ = \', then 1* = fi^ and j/ = j/.

Two such ranges are said to be homographic, and we denote the fact by
the equation (ABCD) = {A'B'C'If).

Ex. 8. If {ABB^G) = {A^B^BCf) and (ABB^D) = {A'BfBI/), show that

{BB'CD) = {BfBCfD').

Divide (BB^, AC) = {B'B, A'C) by {BB", AD) = (B'B, A'D").

5. If {AC, BB) he harmonic, then (AC, BB) = — i.

^ AB AB ^ AB AB

If (AC, BB) he harmonic, then (AC, BB) = (AC, BB) ; and

conversely, if (AC, BB) = (AC, BB), then either (AC, BB) is

harmonic or two points coificide.
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For if {AC, BD) = (AC, DB),

AB DC AB BC ^ UB DC.'
*^"^ BC'AD= nC'AB^^^'''<BC'AB)=''

hence ^ * j^ = ± ^^ i- ^- (^^' ^^) = ±^-

If (AC, BD) = + I, then A and C, or B and D coincide
;

and if (AC, BD) = - r, then (AC, BD) is harmonic.

Ex. If a range of four points he harmonic, each of its 24 cross ratios is

equal to — i, ^, or 2; and if any one of the cross ratios offour points be equal to

— I (yr ^ or 2, then the four pointsform a harmonic range.

6. If A, B, C, D, D' he collinear points, such that

(AC,BD) = (AC, BD'),

tlien D and D' coincide.

AB DC AB D'C , DC D'C
^"^ BC'AD=BC' AD- ^'""''aD^AD''

i. e. AC is divided in the same ratio at D and D' ; hence D
and D' coincide.

7. Iffour lines a, h, c, d passing through the same point V
he cut hy ttvo transversals in ABCD and A'B'C'D', then

(ABCD) = (A'B'C'D').
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It is sufficient to prove that

{AC, BD) = (A'C, B'lY),

AB DC _ AAVB ADVC
BC ' AD" ABVC ' AAVD
VA.VB. sinAVB VI). VC. sin DVC
VB. VC.sinBVC' VA.VD.sinAVD

sin^75 sin DVC

Now (AC,BD) =

sin BVC sinAVn
Similarly,

(AT' p>n» _ sin ^'yS' sin D'VC

Now A VB is equal to either A' VB' or its supplement. In

either case, sin ^ KB = sin A'VB^. And so on. Hence

(AG, BD) = (A'C, B'D'\ i.e. (ABCD) = (A'D'C'D").

We may enunciate the above theorem in the form

—

Every

transversal cuts a pencil offour lines in the same cross ratio.

The cross ratio (AC, BD) of the pencil is written

V (AC, BD) or (a^, hd).

Also, by the above,

, , ,, sin ab sin ad
(oc, M) = . , -i- -—— •

sm DC sm dc

Ex. 1. Show that the fundamental cross ratios \, /x, v of the range {ABCB)
are equal to cosec^ <p, — tan^ </> a^id cos^

<f>,
where 2 (p is the angle at which the

circles on AC and BD as diameters intersect.

^ AC DB sin ^PC sin DP^
For \ — — . — = .

,

CB AD sin CPB smAPD

and I APC = -
, Z DPB = --, I CPB =-<!>, I APD = ir-<p.

2 2

Ex. 2. Exjn-ess (ac, hd) as a ratio of two segments of a line.

Draw a transversal parallel to d. Then {ac, hd) = AB : CB, for

AD = CD, D being at infinity.

Ex. 3. Given the three points A, B, C; find D so that {AB, CD) may Jiave a

given value \.

Take any line AB^, and divide it in C so that —AC^-i- CB' = A. Let
BB', CCf meet in V. Through V draw VD parallel to AB'. Then
[AB, CD) = {AB', CCl'), [where Cl' is the point at infinity upon AB',']

= -AC-^ G'B'= A.

Ex. 4. Through a given point draw a transversal to cut the sides of a given

triangle ABC in points A\ Pf , C, such that {OA' , B'C) may have a given value.
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Let OA cut BC in (/. Then {0A\ BfCf) = A {0A\ B'C) = {(/A', CB).

Hence A^ is known. .

Ex. 5. I/AA', BB^, CC nieet in a point and if {AC, BD) = {A'C, B^I/),

tiken DJ/ passes through 0.

8. A cross ratio of a rcmge of four points is umaltered by

projection.

Let the range ABCD be joined to the vertex V, and let

the joining plane cut the plane of projection in A'B'C'D'.

Then since A'B'C'B' is a section of the pencil Y {ABCD), it

follows that (ABCD) = A'B'C'B'),

Ex. If the points a, h, c, ... he taken on the sides AB, BC, CD, ... of a
polygon ; shoio that the continued product of such ratios cis Aa/aB is unaltered by

projection.

Let any transversal cut the sides AB, BC, CD, ... in a, 0, y, ...; then
the continued product of Aa/aB is numerically unity. Hence, divid-
ing, we have to prove that the continued product of Aa/ aB -^ A a/a B
is unaltered by projection, i.e. the continued product of certain cross

ratios.

9. A cross ratio of a pencil of four lines is unaltered by

ptvjcction.

Join the pencil (ABCD) to the vertex V, and let the

joining planes cut the plane of projection in the pencil

0' (A'B'C'D'). Through V draw any plane cutting the

pencils in ahcd and a'h'c'd'. Then

0(ABCD) = (ahcd) = V(ahcd) = V (a'h'c'd')

= (a'h'c'd') = 0' (A'B'C'D').

Hence the pencils (ABCD) and 0' (A'B'C'D') have the

same cross ratios.

Ex. 1. If through the vertices A, B, C, ... of a polygon there he drawn any
lines Aa, Eh, Cc, ..., then the continued product of the ratios sin ^jB6/sin hBC
is unaltered by projection.

Take any point and consider the cross ratio

sin ABh/sin hBC ^ sin ABO/sin OBC.

Ex. 2. The figure ABCD consisting offour points joined by four lines can he

projected into any figure A^B^C'If of the same kind.

Let AC, BD meet in U, and A^G^, Bflf meet in V. Take X on AC so
that iXAVC) = [Cl^A'U'C), and Yon BD so that (YBUD) = {ClB^U'I/),
where fl and fl' are at infinity. Now project JlY to infinity, and the
angles AUB, BAU into angles of magnitude A'U'B', B^A^U\ Let the
projections of ABCDUXY be a'b'(fd'uWcu, where a) and cu' are at infinity.
Then {o/a'u'c") = {XAUC) = {0.'A'U'(f). Hence aV: u'c': : A'TJ': TJ'Cf', so
b'u''.u'd''.\B'TJ':V'I/\ also lafu'lf = lA'V'Bf and Lt/a'u' ^IB'A'U'

.
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Hence the figures a'h'c'd'itf and A^B'Cfl/TJ^ are similar. If they are
not equal, we proceed as in IV. 7.

Note that this construction fails if JiY as constructed be at infinity
;

in other cases, by IV. 6, the construction is real.

Cross ratio offour planes meeting in a line.

10. Any transversal cuts four planes which pass throngJ

i

the same line in four points whose cross ratio is constant.

Let two transversals cut the planes in ABCB and A'B'C'D'.

Join ABCB to any point on the meet of the planes, and

A^B'C'jy to any other point (f on this meet. Then the

meet of the planes OABCD and 0'A'B'C'D' is a line which

cuts the four given planes in the points a, /3, y, b, say.

Then (ABCB) = 0{ABCB) = 0(a^y5) = (a/3y8)

= 0'(a/3y8) = 0' {A'B'C'B') = {A'B'C'B').

Hence (ABCB) is constant.

Ex. Any plane cuts four planes which meet in a line in four lines whose

cross ratio is constant.

Nomographic ranges and pencils.

11. Two ranges of points ABCB ... and A'B'C'B' ... on

the same or different lines, in which to each point {A say) of

one range corresponds a point (A') of the other, are said to be

homographic if the range formed by every four points (ABCB)

of one range is homographic with the range formed by the

corresponding four points (A'B'C'B') of the other. (See

Ex. 7 of § 4.)

Two pencils of rays at the same or different vertices are

said to be hmnographic when any two sections of them are

homographic.

It is convenient to use the notation

(ABCB. ..) = (A'B'C'B'...),

to denote that the ranges (ABCB ...) and (A'B'C'B'...) are

homographic; and thenotation V(ABCB...)= V (A'B'C'B'...)

to denote that the pencHs V(ABCB...) and V (A'B'C'B'...)

are homographic.

A range is said to be homographic with a pencil when

the range is homographic with a section of the pencil. This

is denoted by (ABCB. •)=¥' (A'B'C'B'.

.

.).
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Ex. 1. Two ranges {or pencils) which are homographic with the same range

(or pencil) are homographic.

Ex. 2. If TJX : V^X^ he given, U being a fixed point and X a variable point

on one line, and V\ X^ on another line ; then X and X' generate homographic

ranges on these lines.

Let A, B, C, D be four positions of X, and A', B% (/, 2/ the corre-

sponding four positions of X'.

Then AC = UC- UA = \{ V'(f - V'A') = A . A'(f.

Hence {AB, CD) = {A'B', Cl/).

Ex. 3. The same is true if TJX . VX' be given.

For AC = UC- UA = \/V'C' - \/ V'A'

= -X.A'C^ V'C. V'A\
Ex. 4. A variable circle passes through a fixed point and cuts a given line at

a given angle ; show that it determines on the line two homographic ranges.

For the pencils at the point are superposable.

12. To form Uvo homographic ranges on different lines.

Take any range ABODE ... on one of the lines, and take

any three points A% B\ C arbitrarily on the other line to

correspond to ABC.
Let AB^ and A'B meet in /3, AC and A'C in y ; let /3y

meet AA' in a and A'D in 8 ; let -^8 meet A'B' in B\
Similarly construct the points 6, E', &c. Then the range

A^B'C'D'E'... is homographic with the range ABODE....
For take any four points of the first range, viz. LMNR,

and the corresponding four points of the other, viz. L'M'N'R'.

Then

(L'M'ITR') = A {L'M'N'R') = {Ky.vp)=A' {\fJivp)= {LMNR}.

Hence every range of four points of one range is homo-
graphic with the range of the corresponding four points

of the other range, i.e. the ranges are homographic.
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13. To form tivo homographic ranges mi the same line.

Take the range ABODE ... on one line. Take any section

A"B"C"I)"E"... of the pencH joining any point Y to

ABODE.... Then with any three points A'B'O' on the

given line to correspond to A"B''0", construct a range

A'B'O'D'E'. . . homographic with A"B"0"D"E". ... Then

{A'B'0'D'E'...)= (A"B"0"D"E"...\ by construction

= {ABODE. . .) by projection. Hence the

rangeA'B'O'D'E'.

.

. is homographicwith the TsmgeABODE.

.

.

on the same line. Also the three points A'B'O' which cor-

respond to ABO are taken arbitrarily.

To form two homographic pencils at the same or different

vertices.

Join the vertices to any two homographic ranges.

Notice that in this case also, if one pencil be given, the

rays in the other pencil coiTesponding to three rays in the

given pencil may be taken arbitrarily.

14. Two ranges ABO... and A'B'O'... on different lines

are said to be in perspective when the lines AA\ BB\ 00% . .

.

joining corresponding points meet in a point (called the

centre ofperspective).

Two pencils V{ABO...) and V (A'B'O'...) at different

vertices are said to be in perspective when the meets of

corresponding rays lie on a line (called the axis of per-

spective.

)

Two ranges in perspective are homographic.

For let the centre of perspective be 0. Then

{LMNR) = (LMNM) = {L'M'N'R') = (L'MN'B').

Two pencils in perspective are homographic.

For let YA, Y'A' meet in a, and so on. Then

Y{L3INR) = (\[xvp) = Y'iL'M'ITR').

15. If two homographic ranges on different lines have the m^et

of the lilies as a point corrcsp>onding to itself in tJie two ranges,

then the ranges are in perspective.

Let the ranges be (ABOD...) = {AB'O'D' ...).
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Let BB\ CC meet in 0, and let OB meet AB' in B".

Then {AB'C'B') = (ABCB) by hypothesis = {AB'C'B") by

projection. Hence {AB'C'B') = {AB'C'B"), i.e. D' and B"
coincide, i.e. the join BB' of any pair of corresponding

points passes through 0.

Ex. 1. IfA he the meet of two correspondiTig rays of two homographic pmc&s,
then any two transversals through A will cut the pencils in ranges in perspective.

Ex. 2. J/" a cross ratio of the range ABCB he equal to the corresponding cross

ratio of the range A'^Cfl/, show that every two corresponding cross ratios are

equal. (See also § 4, Ex. 7.)

Place the two ranges so that A and A^ coincide and that the lines

AB and A'B' do not coincide. Then, as above, the ranges are in per-
spective ; and hence every cross ratio is equal to the corresponding
cross ratio.

Ex. 3. If (ABCD) = (A'B'Ciy) and (ABCE) = (A'B'C/E') and so on,

then {ABODE...) and {A'B^Cl/E'...) are homographic ranges.

Ex. 4. If {UV, AA') = {UV, BB') = {UV, C(/) =...,

show that (ABC.) = (A^B'Cf...).

For {UV, AB) = {UV, A'B^).

Ex. 5. If P he a variable point on the line joining two fixed points A, B, and
P^ a variable point on the line joining the fixed points A' , B! , such that

AP/BP -^ A'P'/B'P'

is constant, then P and P' generate homographic ranges.

For if C be a position of P and C of P^, we have

AC/BC 4- AP/BP = A'C/BfOf 4- A'P'/BfP',

i.e. {ABCP) = {A'B'CP').

Ex. 6. If VA, VB, VP and V'A\ V'B", V'P" be such tfiat

sin ^rP/sin BVP ~ sin A'V^P'/sin BfV'P"

is constant, then VP and V'P' generate homographic pencils.

. Ex. 7. Also if tan^FP/tan^'F'P' he constant.

Take AVB and A'V'B" right angles.

Ex. 8. If AP. B'P^~ BP be constant, then P and P' generate homographic
ranges.

For AP.B'P'- BP.CL'P'= AC.B'Cf-^BC.Ci'C,
hence {AB, CP) = (H'jB', CP').
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Ex. 9. If the trimigle ABC he circumscribed to the triangle LMN ; show that

an infinite number of triangles can he drawn which are inscribed in the triangle

LMN and at the same time circumscribed to the triangle ABC.
Take any point R on LM ; let AR cut NL in Q, and let BR cut NM in

P. It will be sufficient to prove that PQ passes through C. Let BC
cut NM in X, let CA cut LN in Y, and let AB cut ML in Z.

Then (NMPX) = B {NMPX) = {ZMRL) = A (ZMRL) = (NYQL).

Hence the ranges (NMPX) and {NYQL) are in perspective. Hence
MY, PQ. XL meet in a point, i.e. PQ passes through C. Hence PQR is

inscribed in LMN and circumscribed to ABC.

Ex. 10. Six points A, B, C, D. E, F are taken, such that AB, FC, ED meet

in a point G, and also FA, EB, BC in H ; show that BC, AD, FE also meet in

a point.

Let BE and CF meet in P, CF and AD in R, and AD and BE in Q. Then
(BPQE) = G{BPQE) = (ARQD) = H{ARQD) = {FRPC) = (CPRF).

Ex. 11. ^0 meets BC in D, BO m^ets AC in E, CO meets AB in F. X, Y, Z
are taken such that (AD, OX) = {BE, OY) = {CF, OZ) = — i ; shew that the

triangle XYZ circumscribes the triangle ABC.
For {AD, OX) = (EB, OY).

Ex. 12. Tfie points A and B move on fixed lines through 0, and U and V are

fixed points collinear with ; if UA and VB meet on a fixed line, show that AB
passes through a fixed point.

Take several positions of the point A, viz. AiA^As.... Join A^ U
cutting the given line in Ci , and join C^V cutting OB in B^ . Similarly
construct Cj C3 . . . and B.JB3... . Then
iA,A,As...)^U{AiA^A,...) = {C,C^C3...) = V{C^C^C,...) = {B,B,B,...).

Hence the ranges (AiA^A^ ...) and (BiB^Bj ...) are homographic. Also
when A is at 0, B is also at 0. Hence the ranges are in perspective.

Hence AiB^, A^B^, A^B.^, ... meet in a point, i.e. AB passes through a

fixed point.

Ex, 13. If the points A,B,C move on fixed lines through 0, and AB turn about

afbcedpoint P, and BC turn about a fixed point Q, show that CA turns about a

fixed point.

Ex. 14. If the vertices of a polygon move on fixed concurrent lines, and all but

one of the sides pass through fixed points, this side and every diagonal will pass

through a fixed point.

16. If ttvo JioniogmpJik pencils at different vertices have the

ray joining tJie vertices as a ray corresponding to itself in the two

pencils, then the pencils are in perspective.

Let the two homographic pencils be V (V'ABC...) and

F' iJA'BX'...). Let VA cut TA' in a. Let VB cut VB'
in ^. Let a^ cut VV in v. If a/3 does not cut VC and TC
in the same point, let a^ cut FO in y and V^C^ in y'.

Now F
(
V'ABC. -.)=¥'{VA'BT'. .

.
). Hence
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by considering the sections of these pencils by a^. Hence

y and •/ coincide. Hence FC, Y'C meet on a^. So eveiy

pair of corresponding rays meet on a/3. Hence the pencils

are in perspective.

Ex. 1. If (ABCD...) and (A^B'Cfl/...) he two homographic ranges, and any
two points V, F' be taken o'n AA\ show that the meets of VB and V'B^, of VC
and V'Cf, of VD and V'lf, Sfc, all lie on a line.

Ex. 2. If AB pass through a fixed point U, and A and B more on fixed

lines meeting in 0, and if V, W he fixed points collinear with 0, show that the

locus of the meet ofAV and BTV is a line.

Let AV and BW cut in P. Take several positions AiA^... of A,
fii Ba ... of £, Pi P2 ... of P. Then
r(OPiP2...) = (0^iJ2...) = C7(OA^a...) = (0-BiJ52...) = Tr(OPiP2...).

Now the pencils F(0PiP2...) and Tr(0PiP2...) have a common ray;
hence they are in perspective. Hence all the meets (, VP^ ; TTPi),

,FP2 ; TFP2), ... lie on a line.

Ex. 3. Shcm that the meet of UV and OB, and the meet of TJW and OA lie

on the loctis.

Ex. 4:. IfA and B move on fixed lines throitgh 0, and AB, BP, and APpass
through fixed collinear points U, V, W, show that tJie locus of P is a line

throiigh 0.

Ex. 5. If each side of a polygon pass through one of a set of collinear points

whilst all hut one of its vertices slide on fixed lines, then will the remaining vertex

and every meet of twa sides describe a line.

17. If{ABC.) and {A^B'C^...) he two iKnnograpJiic ranges

on different lines, then the meet of AB' and A'B, of BC and

B'C, and gemrally ofPQ' and P'Q, where PP\ QQ are any two

pairs of corresponding points, all lie on a line (called the homo-

graphic axis).

Let the two lines meet in a point which we shall call
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X or Y\ according as we consider it to belong to the range

(^J5C...) or to {A'B'C.,.). Take the points X and T cor-

responding to the point X (= Y') in the two ranges. Then
every cross meet such as (PQ'; P'Q) lies on X'Y". (See figure

of § 12.) For by hypothesis {XYABC-..^ = (XT'^'^'C...).

Hence A' (XYABC.) = A (X'TA'B'C...) ; and these two

pencils have the common ray AA'; hence they are in per-

spective ; hence (A'X; AT), (A'Y ; AT), (A'B ; AB'\ ...

all lie on aline. But {A'X ; AT) is X\ and {A'Y; AY) is

Y. Hence {A'B ; AB) lies on the fixed line X'Y] i.e. every

cross meet lies on a fixed line, for AA\ BB' are any two

pairs of corresponding points.

18. By Reciprocation, or by a similar proof, we show that

if V {ABCB...) and V^ {A'B'C'D'...) he homograpJm pencils,

then all the cross joins Sfuch as the join of (VB ; V'C) with

(V'B' ; VC) pass through a faced point (called the Jiomographic

pole).

Ex. 1. 1/ A, B, C be any three points on a line, and A', B% (f he any three

points on another line, show that the meets of AB' and A'B, of ACf and A'C, and

HfBCf and B'C, are cdlinear.

Consider X ( = F') as above.

Ex. 2. When two ranges are in perspective, the axis of homography is the

polar of the centre ofperspective for the lines of the ranges.

Projective ranges and pencils.

19. If range a is in perspective with range /3, and range ^
with range y, and range y with range 6, and so on ; then

each of the ranges a,^,y,h... is said to be projective with every

other.

If pencil a is in perspective with pencil ^, and pencil ^

with pencil y, and pencil y with pencil 5, and so on ; then

each of the pencils a, /?, y, 6... is said to be projective with

every other.

Projective ranges are homographic.

For the range a is homographic with the range (3, being in

perspective with it ; so /3 with y, y with 8, and so on
;

hence each is homographic with every other.

Projective pencils are homographic.
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For the pencil a is homographic with the pencil /3, being

in perspective with it ; and so on.

Homograpliic ranges areprojective.

For they can be put in pei*spective with the same range

on the homographic axis.

Honiographic pencils are projective.

For they can be put in perspective with the same pencil

at the homographic pole.

A range and a pencil are said to be projective, when the

range is projective with a section of the pencil.

Hence a range a/nd a pencil tvhich are projective are homo-

graphic ; and a range and a pencil which are homographic arc

lirojective.



CHAPTER X.

VANISHING POINTS OF TWO HOMOGRAPHIC RANGES.

1. The points corresponding to the two points at infinity

in two homographic ranges are called the vanishing points.

To construci the vunishing points.

Let the ranges be {![IIABC...)=^ (J'^'A'B'C ...), where

12 and 12' are the points at infinity, and I and J' are the

vanishing points.

First, suppose the ranges to be on different lines.

Through A' draw A'co parallel to AB (and therefore

passing through 12) cutting the homographic axis in w.

Then A cd will cut A^B" in the vanishing point /'. Similarly

I can be constructed.

Second, suppose the ranges to be on the same line.

Join ^ABC... to any point F, not on the line ; and let the

joining lines cut any other line in odbc... Then Vo is

parallel to AA\ By using the homographic axis of the two

homographic ranges dbc... and A'B'C ..., find the point J'

in A'B^C... corresponding to o in ahc... Then J"' is the

vanishing point belonging to the range A'B'C^— For

(aABC.) = (odbc...) = {rA'B'C'...).

Similarly I can be constructed.

2. In ttco homographic ranges {ABCP...) and [A'B'C'P'...),

on the same or different lines, if I correspond to the point 12' at

infinity in the range {A'B'...\ and J' correspond to the point i2

at infinity in the range (AB.

.

.), then IF . J'P' is the same what-

ever corresponding points P and P' are taJxn.
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For we have (laABCP...) = (n'J'A'B'C'P'.,.)
;

hence (AP, IQ) = (A'P', a'J'),

i.e. AHIP ^ A ii/ap = A'nya'p'-r- a'J'/j'p',

But An/ap = - 1 and A'ayn,'p'= - 1.

.-. Ai/ip = j'P'/A'r,

. \ IP. J'P'= IA . rA\ which is constant.

Conversely, if IP. J'P' he constant, then P and P' generate

ranges tchkh are homograpMc, and I and J' are the points cor-

responding to the points at infinity in the ranges.

For let A and A' be any two positions of P and P\ then

IP .J'P'=IA.J'A\ Hence retracing the above steps, we
get (AP, ID) = (A'P', a'J'). Hence P and P' are cor-

responding points in the ranges determined by AID and

A'D^J', and I and J"' correspond to X2' and D in these ranges.

Ex. 1. If through the centre of perspective of the two ranges (ABC...) and
{AB'Cf...), there be drawn a parallel to AB^ meeting AB in I and a paraMel to

AB meeting AB! in J', prove geometrically that

lA.J^A = IB.J^B' = ... -=10.^0.

Deduce theformula IP. J'B' for any two homographic ranges.

Ex. 2. If OP . OP^ he constant, being the meet of the lines on which P and
P^ He, show that P and P' generate homographic ranges.

Ex. 3. If I and J' be the vanishing points of the homographic ranges

(ABCP...) = (A'B'CP'...)^

show that (a) AP:AI :: A'P": J'P';

ib) AP/BP
-i-

A'P'/BfP' = AIJBI.

Ex. 4. Sh(m also that AP. J^P'-t- A'P' is independent of the position of P.

For {A CI, PQ) = {A'J", P'Qf).

Ex. 5. If 0, A, B be fixed points on the fixed line OAB, and 0, A', B' be

fixed points on the line OA'Bf which may have any direction in space, show that
the meet ofAA' and BB' describes a sphere.

Through the meet V of AA' and BB^ draw VI parallel to A'B\
Then / is a fixed point, for {lOAB) =V{IOAB) ={£l'OA'B'). Again,
through Fdraw VJ' parallel to AB. Then J^ is a fixed point on OA',
i.e. OJ' is known, i.e. IV is known.

Ex. 6. If one of tico copolar triangles be rotated about the axis of homology,
show that the centre of homology describes a circle, whose centre is on the axis.

Viz. the meet of the spheres determined by AB, A'^ and by AG^
A'Cf, whose centres are on the axis.

3. Take any two origins U and F' on the lines of the

ranges. Then IP=UP—UI = x—a, say
;

and J'P'= V'P'- Y'J' = s!- a', say.

I
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Hence we get {x—d) [x'—a') = constant,

or xx'— a'x— ax' + aa' = constant,

a relation of the form Izxx' \-lx-^ mx'+ w = o.

Hence the distances x and xf of corresponding points in two

Jiomographic ranges from any fixed points on the lines of the

ranges are connected hy a relation of the form

hcxf+ lx-\-mxf + n = o,

where k, I, m, n are constants.

Conversely, if the distances he connected hy this relation,

the points generate homographic ranges.

For if kxxf-^lx+ mx'-\-n = o,

ii , / fyt\ / , l\ Im
then Tc(x + -){x+-) = --n,

or IP . rP' = constant, where m/k = lU and l/k = J'V\

The above relation assumes a neat form if we take V
to coincide with U'. For then

IP . rrP'= lU.r U\ .'. xx'-a'x-ax = o,

or a/x+a'/x'= i, or Ul/UP+U'jy1/1^=1.

^.IfP and P' he connected hy the relation Ix+mx' + n = o,

P and P' generate homographic ranges in which the vanishing

points are at infinity ; and conversely, the corresponding points of

two homographic ranges whose vanishing points are at infinity,

are connected hy a relation of the form Ix+ mx' + w = o.

(The reasoning employed in the general case does not

apply here because I and J' are at infinity, and hence

we cannot start with the equation IP . J'P'= constant.)

If lx-\-mxf -\-n= o, then x'= {3x + y (say).

Hence P'Q'=V'Q'-V'P'=y'-x' {ssij)= I3(y-x)=:l3 . PQ.

Hence the two lines are divided proportionally by the two

sets of points, which therefore form homographic ranges.

Also putting ic = 00
, we get x'=x ; hence i2 and i2' are

corresponding points, i. e. I and J' are at infinity.

Conversely, if I and J' are at infinity, then

(AB, pa) = {A'B', P'ay
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AP A'V x-a of -a'
Hence ^^= __ or ^-^ = y-^

.-. x(Jb'— a')-{-x'{a-'b)-\-ah—aV=o,

which is of the form lx-\-mx' -\-n = o.

Or, we may consider the equation Ix+ mx^+ n = o as the

limit of the relation Jcxx^ ^- Ix -{ mx^ -\- n = o when k decreases

indefinitely. Since the latter equation determines two homo-

graphic ranges however small Ic is, we may assume this to be

true in the limit when Jc = o.

Two homographic ranges in which the vanishing points

are at infinity may be called similar homographic ranges,

Ex. 1. If {aiAB...) = {J'Cl'A'BT...), and AB = A'BT; show thai

AB = AI + A'J', and AI = -B^J'.

Ex. 2. Through the vertex V of the parallelogram VIOJ^ is draicn a line

cutting 01 in A and OJ^ in A\ show that 01/OA + OJ'JOA' = i.

Ex. 3. Find the values of the constants in the relation

xxf + lx + mxf + n = o.

The relation is i + l/xf + m/x + nfxod = o.

Put X = 00 ;
.-. I = -0^ = -V'J'\ 80 m = -UI.

Again, put x = o and a/= F'Z7'; .*. n= V'U\ UI.

Hence UP . VP" -V'J*.UP-UI. V'F' + V U\ UI = o.

Another value of n is UV . V^J^.

These values come also at once from

IP.J'P'^'IU.J'U^ or ir.j*r^.

Ex. 4. Deduce the formula when the vanishing points are at infinity.

Dividing by UI and putting UI = oo , we get c.UP+P^P'= V'U'
(where c is the limit of V^J^/UI), or Ix + mxf +n = o.

Ex. 5. Show that the formula lx+ mocf + n = o can be written

UP/UV+V'P'/V'U^= I.

Put P = U and P^ = V^ successively.

Ex. 6. Show that by properly choosing V' , the general relation can he thrown
into theform xocf + l{x—xf) +n = o.

Ex. 7. Show that corresponding points PP' of two homographic ranges on the

lajne line are connected by a relation of the form

UP.r^P^ + y.PP'+S = o,

provided UV =u'V'. Show also that y = lU = V'J' and

d = UI.UU' = V'JWV.

5. The following are geometrical applications.

Ex. 1. If 0, (/, A, A', U, V be fixed points of which OAA'Q^ are collineaTj

and ifpoints P and P' be taken on AU and A'V such that

a . UP/AP + P . rP'JA'P'= 7,

I 2
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where a, i8, 7 are constants, show that the locus of the meet of OP and (/P^ is a
line.

Reducing the given relation to any origins on -4^" and A'V, it is

clearly of the form X3(f + Ix + mx^ + n = o. Hence P and P' generate
homogi-aphic ranges. Also putting P = A, we get P^= A'. Hence
in the two homographic pencils 0{P...) and 0' (P'...)> 0(/ is a common
ray. Hence the locus is a line.

Ex. 2. The same is true if any one of the following relations hold—
(i) a . UPJAP + ^/A^P' =. 7, F' Uing at infinity ;

(ii) a/AP + ^/A'P' =7, TJ and F" "being at infinity

;

(iii) a . UP/AP+fi . VP^ = 7, A' being at infinity ;

(iv) a.UP + 0. V^P' =^y, A and A' being at infinity.

Ex. 3. If y = o in any of these relations, the locus passes through the meet

of ou and (yr\

Ex. 4. Obtain the Cartesian equation of a line, vis. Ax + By+C = o.

Consider the pencils at the points at infinity on the axes.

Ex. 5. If PM, PM^ draicn in given directions from P meet given lines OM
and OM* in M and 3f' so that a . PM + . PM* = 7, show that P moves on a line.

For PM* and PM are proportional to the x and y of Ex. 4.

Ex. 6. If 0, U, V* be fixed points, and if points P and P' be taken on OU
and OV^ such that a . UP/OP + j8 . V'P'/OP'= 7,

then PP* passes through a fixed point.

Ex. 7. The same is true if any one of the following relations hold—
a/OP+ fi . V'P'/OP^ =7, U being at infinity ;

a/OP + $/0P^ =-.y, U and V* being at infinity ;

a.UP + 0.VP* = 7, being at infinity.

Ex. 8. If y = 0, the point is on UV'.

Ex. 9. If p, q, r, the perpendiculars from A, B, Con a line, be connected by

the relation \.p + fx.q + v .r = o, then the line passes through a fixed point.

Divide by p and use Ex. 6.

6. If P and P' be connected by a relation which can

be reduced to the form Tcxx^ + lx+ msf-}-n = o, we have

proved that P and P' generate homographic ranges. The

following converse is very important, viz.

Anj/ relation which can be reduced to the form

Jcxsf+ lx^+ mx'+ n = o

is true of every pair of corresponding points of ttco homographic

ranges, provided it is true of three pairs of corresponding points.

Let the two homographic ranges be {ABCD...) and

(A'B'C'D'...). Suppose the above relation (in which x = UP
and a/= F'P') is satisfied when P is at J. and P' at J.', and



X.] Homograpkic Ranges. 117

when P is at 5 and P' at ^, and whenP is at C and P' at C\
Then it will be satisfied when P is at D and P' Sii If, B and

D' being any other two corresponding points of the ranges.

For if not, suppose that when P is at D, the above relation

gives E' as the position of P'. Then since the given relation

determines two homographic ranges, we have

{ABCD) = {A'B'CE')

;

but {ABCD) = (A'B'C'D') by hypothesis. Hence D' and

E^ coincide, i.e. the given relation is true for every pair of

corresponding points of the two ranges.

Ex. 1. 1/ the point P on the line AB and the point P' on the line B'Qf be

connected by the relation

\ . AP/BP + II . C'P'jB'P' = I,

show that P and P' generate homographic ranges, and that B and B' are cor-

responding points in these ranges. Find, also the values of A and fx. Prove also

conversely, that if (ABCP) = (A^B^C'P^) then the relation holds.

Taking any origins we get

\(x-a) {x'-b') +11 {%'-(/) (x-b) = (x-b) (x'-y),

which is of the form kxx' + lx + mx! + n = o.

Hence P and P* generate homogi'aphic ranges.

Take P at B, then x = b, .-. \ (b-a) {x^ -b') = o, .*. a/= b'.

Hence P* is at B', i.e. B and B' correspond.

Again, let P be at (7 when P' is at C.

Put a/= (/. .-. \ (c-a) = (C-&), ... \ = BC/AC.

Let P' be at A' when P is at A.

Put x = a. .-. /i (a'-(/) - a'-b', .'. ft = B'A'/C'A'.

Conversely, if {ABCP) = {A'B'C'P'), the relation

BC AP B^ C'P' _
AC' BP '^ CU' ' WP ~ ^

is true ; for it is of the form xs/ + lx + nvxf + w = o, and it is satisfied by
{A, A'), {B, B') and (C, C).

Ex. 2. Treat the following relations in the same way—
(a) \/BP + fi . CP'/B'P' = I ;

(&) X . AP/IP + iM . CP'^ I ;

(c) \/IP + n.C'P'= i;

Id) AP.B'P' + K.CP + n.aP' =AC.B'C

;

(e) JP.J5'P' + A.CP + /x = o.

Results— (a) \ = BC, /jl = B'J'/CfJ';

(6) \ = IC/AC, n = i/C'A';

(c) X = JC, /x = l/CJ';

{d) \ ^. -BfJ', fi = -AI;
(e) X = -BV, /x = -IC.B'C.
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Ex. 3. Show that the following equations are satisfied by every two homo-
graphic ranges.

, , AF BfP' AP B'pf

,^, AP B'P' ^ AP B'P^
^'^ AC-^W'^-AC-''"Wl?^''=''-

Each equation is of the required form, and X, /i, v can be determined
so that the equation shall be satisfied by any three pairs of points,

Ex. 4. Deduce in Ex. 3 definite formulae for {ABCP) = {A'B'C'P'), i.e.

determine the values of A, /x, v.

Ex. 5. If {ABCD) = {A'BfCl/), prme that

, . AB.CD AC.BB AB . BC
^"^ -^^W-^-^^r^-^-A^'^'''
,^^ AB.CD ^, , AC.DB ^,^, AD . BC ^,^

(/ being an arbitrary point on the line A'Bf.

Take D and 2/ as variable points.

Ex.6. IfthepencU V{ABCD) be homographic toith the range {A'B'C'D'),

show that

sinAVB.&uiCVD Bva. AVC . sva DVB sin AVD . %in BVC _
A^ "^

AJ^
*

AfD^ ~ °'

Use Ex. 5 (a).

Ex. 7. Show that VP, V'P' generate homographic pencils if

sin ^FP sin .BFC sin C'VP^ s,inB'V'A' _
^^^ sin BVP ' sin^FC

"*"

sin 5' F'P' *

sin C'V'A' ~ ^'

or (b) X cot £FP + n cot P'F'P'= 1,

or (c) KtaLuAVP + n tan CVpf = i.

Ex. 8. If VP ayid V'P* generate two homographic pencils, and AVP = 6

and BfV'P' = 0', VA and V'B' being any initial lines, show that

tan 9 . tan 0' + X tan e + n tan 6' -vv = o\

and conversely, if this relation be satisfied, then VP and V'P' generate homo-

graphic pencils.

Take transversals perpendicular to the initial lines, then

tan 6 ex X and tan^'oc x'.

Common points of two homographic ranges on

the same line.

7. Suppose corresponding points in two ranges on the

same line to be connected by the relation

k. UP. V'P' + l. UP+m,TP'-\-n = o.

For the origins TI and V^ we can take the same point

on the line, called TJ or V^ according as it is considered

to belong to one or the other range. The equation becomes

Jc.UP.UP'-{-l.UP+m. UP'+ n = o.
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Now if P correspond to itself, P must coincide with P'.

Hence the equation giving the self-corresponding or commcm

points of the two ranges is

k. C/p2+ (2+ m) UP+n = o.

Hence every two homographic ranges on the same line

have two common points, real, coincident, or imaginaiy.

A graphic construction of the common points will be

found in XVI. 6.

Ex. l.I/E and F be the common points of the homographic ranges (ABC.

.

.)

and {A'B'Cf.

.

.), show that

{EFAA') = (EFBBf) = {FFCC^) = • • •

.

For {EF, AB) = {EF, A'B^), .: (EF, AA') = {EF, BW).

Ex. 2. If {EFABC.

.

.) = {EFA'B'C.

.

.) = {EFA"Bl'Cf'. . .) = • • •

,

thm {EFAA'A".

.

.) = {EFBB'B".

.

.) = (EFCaC'. ..) = •••.

Ex. 3. If {EF, PP') he constant, then PP' generate homographic ranges of

Vfhich EF are the common points.

Ex. 4. If ABC..., A'B'C ... he homographic ranges on the same line, and
if P', Q be the points corresponding to the point P(= Q') according as it is con-

sidered to belong to the first range or the second, show that P'
, Q generate homo-

graphic ranges whose common points are the same as those of the given ranges.

The range generated by P' is homographic with the range generated
by P, i.e. by Q', and this is homographic with the range generated by
Q. Hence range P' = range Q.

Again, suppose P is a common point of the given ranges ; then P'
coincides with P, i.e. P' coincides with Q^; hence P coincides with Q,

i.e. P' coincides with Q, i.e. P is a common point of the derived
ranges.

Ex. 5. If ^ be the fourth hai-monic of P for P' and Q, then PX is divided

harmonically by the common points.

Let the given homography be defined by

PA . PA' + l.PA + m. PA' + w = o.

Put ^ = P and A'= P', .'. PP' = -n/m. Put ^ - Q, A'= </ = P,

.'. PQ = -n/l, .-. 2/PX= i/PP' + i/PQ = -(? + w)/w.

Now E and F are given by x^ + (Z + m) x + n — o,

.-. t/PE + i/PP =--(« + m)ln = 2/PX,

.*. (PX, EF) is harmonic.

Ex. 6. Construct the fourth harmonic of a given point for the (unknoum)
common points of two given homographic ranges.

Ex. 7. Show thai {EF, QP') = {EF, AA'Y in Ex. 4.

For {EF, AA'f= {EF, PP') . {EF, QQ') where P^-Q'.

This gives us another proof of Ex. 4, using Ex. 3.

Ex. 8. If ABA'B' he given collinear points, find a point X in the same
line, such that the compound ratio AX . A'X ~- BX . B'X may he a given

quantity.
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X is one of the common points of the homographic ranges deter-

mined by AFJBF -^ B'P'/A'P' = the given quantity.

Ex. 9. Determine the point X, given the value of AX . A'X -f- BX.

8. If one of the common points of two homographic ranges

(ABC.) and (A^B^C\..) on the same line he at infinity, then

the points ABC. . . divide the line in the same ratios as the points

A'B^C ; and conversely.

For if {AB, 0X2) = (A'B\ Ca).

AG aB_A'(r OB^
^^^"^

CB' Aa~ C'B' ' A'il'

But aB-T-A 12 = - 1 = aB'-^A'a
;

.-. AC:CB::AV':C'B';

and similarly for any other pair of segments ; i.e. the line is

divided similarly by the two sets of points.

Conversely, if the line be divided similarly by the two sets

of points.

Since ACiCBiiA'C'iC'B',

we have, retracing our steps, (AB, 0X2) = (A^B\ 0''X2).

So (DB, 0X2) = (D'B\ 0'X2), and so on.

Hence (nABC.) = (X2^'^0'...),

i.e. (ABC.) and (A'B'C..) are two homographic ranges

with a common point at infinity.

Or thus—Let the homography be given by

Tcxocf+ lx+moif-\-n = o.

The common points are given by Jcx^-\-(l-\-m)x-\-n = o. If

one of the common points be at infinity, then k = o, i.e. the

homography is given by Ix+ mx' + n = o, i.e. the ranges are

similar.

Conversely, if the ranges are similar, then

Ix+rmxf+n = o,

i.e. A; = o, i.e. one of the common points is at infinity.

Ex. 1. If in two homographic ranges on different lines the points at infinity

correspond, the ranges are similar ; and conversely.

Ex. 2. If one of the common points of two homographic ranges on the same
line be at infinity, the other, E, is given by EA : EA' : : BA : B'A',
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Ex. 3. Sh(m also that E is the meet with AA' of the radical axis of any

tico circles through AB' and A'B.

Ex. 4. If AB/A'B' = BC/B'd— ••• = — i, show that one common point

is at infinity, and that the other bisects all the segments AA% BB', CCf, ....

Ex. 5. If each of the common points be at infinity, then all segments joining

corresponding points are equal ; and conversely.

For if J^ be at infinity, the ranges are divided proportionally, hence
ABjA'B' ='EB/EB' = i, for £ is also at infinity. Conversely, if

AB = A'B', BC = B'C, ..., the ranges are divided proportionally

;

hence F is at infinity. And E is given by EB/EB' = i, hence E is

also at infinity.

Or thus. In this case the quadratic kx^ + (l + m)x + n = o has both
roots infinite. Hence A; = o and l + m = o. Hence the homography
is given by I {x—xf) + n = o, i.e. x—xf= constant, i.e. AA' is constant.

And conversely, if AA' is constant, then k — o and l-k-m = o. Hence
both common points are at infinity.

Common rays of two homographic pencils having
the same vertex.

9. In any two homographic pencils having the same vertex, two

rays exist, each of which corresponds to itself.

Let the pencils be Y{ABG...)= V{A'B^G\..). Suppose

a line to cut the pencils in the ranges {abc.) = {(ih'cf...\

a being on VA, and so on. Then if VA and YA^ coincide,

a and a' will coincide. Hence if e and / be the self-corre-

sponding points of the ranges {abc ...) and (a'6V...), Ve and

Tyare the self-corresponding or common rays of the pencils

F(^^a..)and V{A'B'C'...).

Ex. 1. If VP and VP' be a pair of corresponding lines in two homographic
pencils whose common lines are VE and VF, show that

sin J5;FP/sin FVP -r sin EVP'/sin FVP'
is constant.

Ex. 2. Find a point on a given line through which shall pass a pair oj

corresponding lines of two given homographic pencils.

Either of the common points of the homographic ranges determined
on the line by the pencils.

Ex. 3. If VA, V'A' generate homographic pencils at V and V', show that in

two positions VA is parallel to V'A'; and that any transversal in either of these

directions is cut by the two pencils proportionally.

. For without altering the directions of the rays, superpose V' on F.

Ex.4. Two given homographic pencils V{abc...) and V' (a'b'c^ ...) meet a
line in the points ABC. . . and A'B'C ... ; determine the position of the line so that

AB = A'B', BC = B'C, CD = Clf, &c.

Suppose the line drawn. Since (n^BC.) = (n^'B'C...), the line
must be parallel to one or other of the pairs of corresponding parallel
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rays. Let it meet the other two corresponding parallel rays in 0, (/.

Draw V'S> parallel to the line to meet VO in S. Then
SO = F'(/, OA = aA', and l&OA = LV'(yA'.

Hence S>A is parallel to VA'

.

Hence the cohstruction—Take the corresponding rays Vy, V'-^ which
are parallel, and also the corresponding rays Fs, V's! which are parallel.

Let Vz meet V'xf in S, and through S draw QA parallel to V'a! to meet
Va in A. Through A draw ABC... A'B'C... parallel to V'S. This
line satisfies the required condition.

For Vy, V'yf meet the line in the same point n at infinity. Hence
(SiOAB) = (SK/A'Bf). Hence OAxOB:: (/A': C/B'. But OA = (yA' by
construction. Hence OB = (/£'. Hence AB ^ A'B'^ and so on.

Hence there are two such lines, one parallel to each of the lines

Vy, Vz.

Ex. 6. Given any two homographic pencils, one can be tnoved parallel to itself

so as to be in perspective with the other.

10. If I, J"' correspond to the points at infinity in ttvo

Jwmographic ranges on the same line, and bisect IJ% and

0' he the point corresponding to 0, then the common points

Ey F are given by

oip= OF' = or. ocy.

For (Oa, IF) = {fl'r, a'E:,

where 12 or X2' is the point at infinity upon the line.

07 ^_0^ FT
*'•

lil' OE^Wj'' We'
But E^-r-ia = I and 0'Q.'-^n'r=-i,

.'. OI.O'F-\-OF.Fr=o.

Take as origin, .-. 01 {OF- 00') + OF(OJ' - OF) = o,

hut oi=-or,.'. -or {OF-00')-^ OF {or-OF) = o,

.'. 0F'= or. 00') so 0F''= or. oo\

Hence tlie two common points are equidistant from, 0; there-

fore one is as far from I as the other is from J'.

Notice that (FFy O^J') is harmonic.

Ex. 1. I/E and F coincide, they both coincide with 0.

For bisects EF.

Ex. 2. Show that the relation connecting two homographic ranges on the same

line can be thrown into theform EP. FP + IP. PP' — o.

For this relation is of the required form, and it is satisfied by {E, E)

and {F, F). Also putting the relation in the form

EP.FP/PP' + IP = o,

we see that it is satisfied by (I, n').
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Ex. 3. Trwe the same for the relations

(a) EP.FP'=EI.PP*;

(6) 0P.0P'-0I.PP'^-0I.0(y=Oi
(c) OP^ + IP.PP' + OI.O(y=o.

Ex. ^ IfE and F coincide, P and P' are connected hy the relation

UP, UP'- uj'. UP- ui.up' + ua^= o.

For putting P = P' in the general relation

UP . UP* - UJ'. UP- Ul . UP* + UU'. UI = o,

and noticing that 2. UO = UI+ UJ', we get

Z7P--2 . UO . UP+ UU. UI = 0.

And this is a perfect square, hence UU'. UI = UO^.

Ex. 5. If E and F coincide, show that P and P' are connected hy the

relation OP. OP' = 01. PP'.

It is of the required form, and is satisfied by (J, n' ), and by {E, E)

and (P, F) since E and F coincide with 0.

Ex. Q. IfE and F coincide, show also that

(a) {OP) -1 + iOP') -^ = {0A)-^ + {OA') -\'

(&) OP. OA/AP = OP'. OA'/A'P';

(c) OP'^ = PI. PP'.

Ex. 7. Any two ranges whose common points coincide, can be placed in

perspective with two ranges whose corresponding segments are equal.

For join the two ranges to any point V and consider the ranges on
any line parallel to VO.

11. If the common points 5e imaginary, then the ranges

(ABC.) and {A'B'C^..) subtend at two points in the plane

of the paper superposahle pencils.

For if E and F are imaginary, since OE^ = 0J\ 00', we
see that OJ' and 0(/ have different signs, i. e. lies between

0' and J\ On a perpendicular to the line AA' through

take OU, such that 0X1''= OJ'. OfO. Two such points can

be taken one on each side of the line AA'.

Then the pencils subtended at ?7are superposahle.

Since I corresponds to the point 12' at infinity, the ray
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U"X2^ is parallel to AA' ; so the ray Z7«12 corresponding to

VJ' is parallel to AA\ Now since JJO^^J'O. OXf it follows

that J'JJCy is a right angle.

Hence Z 12^7/'= Z C7/'0 = LOVO'

= Z Z/J/; since J'O = 01

Hence the pencil U(^OI) can be superposed to the pencil

U{J'0'n.') by turning it through the angle aUJ\ After the

rotation three rays of the pencils U(^OIABC...) and

U{J'0'^' A'B'C.) coincide ; hence every ray of one pencil

coincides with the corresponding ray of the other pencil, i. e.

the pencUs are superposed.

Notice that the points U give solutions of the problem

—

Given, on one line, two homographic ranges (ABC.) and

{A'B'C'...) of which the common points are imaginary, find a

point at which the segments AA\ BB', CC\ ... subtend equal

Ex. Determine a point at which three given collinear segments subtend equal

angles.

12. Two homographic pencils with the same vertex whose

common rays are imaginary can he placed in perspective with two

superposdble pencils.

For let any line cut the given pencils in ABC... and

A'B'C... In a plane not that of the pencils construct the

point CT at which AA, BB\... subtend equal angles. Take

the vertex of projection on the line joining Uio the vertex V
of the given pencils ; and take the plane of projection

parallel to TJAA'. Then the projection of VA is parallel to

UA, and of YA' to TJA\ Hence the projection of the angle

AVA' is equal to the angle AUA'\ so for the other angles.

Hence the angles AYA', BYB\ CYC\... project into equal

angles.



CHAPTEE XL

ANHAEMONIC PROPERTIES OF POINTS ON A CONIC.

1. We have already shown in IX. 8 that the projection

of a range of four points is homographic with the range,

and in IX. 9 that the projection of a pencil of four lines

is homographic with the pencil. We shall now proceed

to investigate certain properties of a conic by proving the

corresponding properties of the circle of which the conic

is by definition the projection.

2. Four fixed points on a conic subtend at a variable fifth point

on the conk a constant cross ratio.

Let the four fixed points on

the conic be ABCD and the

variable point P. Let A,B, C,

Z), P be the projections of the

points a, b, c, d, p on the circle

of which the conic is the pro-

jection. Now, in the circle, abed

subtend the same cross ratio at

every point on the circle. For

take any two points p and p^ on the circle. Then

p (ah, cd) = sin ape sm sin ap^c sin ap^d
=p\ah, cd).

sin cpb ' sin dpb sin cp'b sin dp b

For in all cases the angle apb is equal to the angle ap'b

or its supplement ; and so for the other angles. Hence

P {ABCD) = p {abed) by projection = p' {abed) = P' {ABCD)
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by projection. Hence ABCD subtend the same cross ratio

at every point P on the conic.

The cross ratio subtended by the points (AB, CD) on

a conic at any point on the conic is called the cross ratio of

the points (AB, CD) on the conic.

Notice that, making P coincide with A, the cross ratio of

{AB, CD) is equal to A (AB, CD) = A [TB, CD), where AT
is the tangent to the conic at A.

Ex. 1. Show that in a circle the pencils p {abed) and p' (abed) are super-

posable in aU cases.

This gives anotlier proof of § 2.

Ex. 2. A tangent to an ellipse meets the auxiliary circle in ZZ'; show that the

cross ratio of thefour points {AA' , ZZ') on the circle is (i— e) -7- (i +e).

Consider the pencil at the point opposite to Z'.

Ex. 3. Prore that the cross ratio (AB, CD) of thefour points A, B, C, D cm a

circle is AC/CB -7- AD/DB, AC being the le^igth of the line joining A to C.

For sin APC = AC -i- 2 R.

Ex. 4. Conjugate lines for a conic meet the conic in four points which subtend

a harmonic pencil at every point on the conic.

Consider the pencil at one of the four points.

Such points are called harmonic points on the conic.

Ex. 5. If AA', BB' be pairs of harmonic points on a conic, show tfiat AA'
and BB' are conjugate lines for the conic.

Ex. 6. The chords AB, CD of a conic are conjugate, and ACB is a right

angle ; through D is draum the chord DP meeting AB in Q ; show that CA, CB
are the bisectors of the angle PCQ.

For -I = P(,AB, CD) = P(AB, CQ) = C(AB, PQ).

Ex. 7. Two conies a and /3 touch at B and C. Through A, the meet of the

common tangents, is drawn a line meeting a in P, Q. BQ, BP meet in F, U.

Show that VU passes through A.

(BC, UV) = B{BC, UV) = B(AC, PQ) = -i.

Ex. 8. If a variable cirde cut a given arc of a given circle harmonically, it is

orthogonal to the circle, which passes through the ends of the given arc and is

orthogonal to the given circle.

Ex. 9. If AA', BB' be pairs of harmonic points on a circle, show that

AA'. BB' :=2.AB. A'B' = 2 . AB'. BA'.

By Ex. 3 we have AB . A'B' = AB'. BA'.

By Ptolemy's theorem we have

AA'. BB' = AB . A'B' + AB'. BA'=2.AB. A'B'.

Ex. 10. Obtain the equation of a hyperbola referred to its asymptotes.

Let P, Q be any two points on the hyperbola, and H, Vi' the points at

infinity on the hyperbola. Then fl (pQClD.') = CI' (PQnn'). Through
P and Q draw PL. QM parallel to one asymptote, and PN, QR parallel to

the other. Then (LMCCl') = (NRCIC) where C is the centre of the
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Ex. 11. ^ny diameter of a parabola meets the tangent at Q in I", the curve m
P, ayid any chord Q(/ in R ; shmo that TP : PR : : QR : RQ'.

For Q {QPQ'n) = CI {QPQ'^X

Ex. 12. A variable point P on a conic is joined to the fixed points L, M cm

the conic; show that the angle LPM is divided in a constant cross ratio by

parallels through P to the asymptotes.

Ex. 13. Through four fixed points A, B, C, D is drawn a system of conies ;

show that the tangents at A, the tangents at B, the tangents at C, and the tangents

at J)form four homographic pencils.

For A (ABCD) =-- B (ABCD) = B (BADC).

3. Pappus's theorem. If from any point P on a conic

perpendiculars a, /3, y, b he drawn on the lines AB, BC, CD, DA
joinmg fixed points ABCD on the conic, then a.y = k. (3. b^

where h is independent of the position of P.

For P(AC, BD) = sin APB. sinDPC^sin BPC sin APD.
But PA . PB sinAPB = a . AB, and so on.

Hence a .y . AB . DG-^13 .b,BC , AD = P(ACy BD) is

constant, i.e. ay = k. IS . b.

Ex. 1. If the perpendiculars let fall from any point on a conic on the sides of
an inscribed polygon of an even number of sides be called i, 2, 3, .,., aw, show
that i.3.5....(2n— 1)-^2.4.6 an is constant.

Suppose the theorem holds for 2n— 2 sides. Then
1.3.5 (aw- 3) = /c. 2. 4.6 (2W-4)a;.

And by the above theorem (2 w— i ) x = A/ (2 w— 2) (2 n). Multiplying^

1.3. 5 . . . . (2 n— i) = A/'. 2.4.6 2 w.

Hence by Induction.

Ex. 2. The product of the perpendiculars from any point on a conic on the

sides of any inscribed polygon varies as the product of the perpendiculars on the

tangents at the vertices.

Make the alternate sides in Ex. i of zero length.

Ex. 3. If the conic be a circle, the produ^cts are equal, in the theorem and in

Ex. I and Ex. 2. {See Ex. 3, § 2.)

Ex. 4. The product of the perpendiculars from any point on a conic on two

fixed tangents is proportional to the square of the perpendicular on the chord of
contact.

Ex. 5. The product of the perpendiculars from any point on a hyperbola on
two fixed lines parallel to the asymptotes is proportional to the perpendicular on
the intercept on the curve.

For 0.7-r /3.8 = a', y-^ iS'. S' and o= a'.

Ex. 6. The product of the perpendiculars from any point on a parabola on two
fixed diameters is proportional to the perpendicular on the intercept on the curve.
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4. Any number offixed points on a conic subtend homograpMc

pencils at vanable points on the conic.

Let the fixed points he A, B, C, D,... and take two other

points P, Q on the conic ; we have to prove that

P{ABCD ...) = Q{ABCD ...).

This follows at once from the fact that

P(ABCD) = Q{ABCD\

where ABCD are any four of the fixed points.

Ex. 1. P, U, V are points on a hyperbola, P being variable ; show that the

lines PU and PV intercept on either asymptote a constant length.

Instead of the asymptote consider at first a chord LM of the conic,

and let PU", PV cut LM in p and p'. Then (p) = U" (P) = F(P ) = {p').

And the common points of the homographic ranges {p) and {p') are

seen, by taking P at L and M, to bo L and M. Hence in the given case

the common points coincide at infinity ; hence pj/ is constant.

Ex. 2. Through a fixed point are drawn lines parallel to the rays of the

pencils subtended at two points on a parabola by the other points on the parabola

;

show that corresponding lines cut off on a fixed diameter a constant length.

Join the ranges determined on the line at infinity to the fixed point
and proceed as above.

Ex. 3. The fixed line BA meets a fixed conic in A, and EB touches at a fixed

point B. A point is taken on the conic. Through A is drawn a variable line

meeting the conic again in P and EB in Q. OP meets DA in U and OQ meets

DA in V. Find the position of when UV is of constant length.

First take EB to be a chord BC. Then
(U) = 0{U) = OiP) =A (P) = (Q) = 0{Q) =-- (F).

And the common points are where OB and OC meet DA. In the given
case therefore these coincide. And they must be at infinity. Hence
OB is parallel to DA.

5. TJie locus of the meets of corresponding rays of two homo-

graphic pencils, at different vertices and not in perspective, is a

conic which passes through the vertices.

Let the pencils be {PQR . . .) and F(PQR ...). Then we

have to prove that the locus of the points PQR ... is a conic

through and V. Since the pencils are not in perspective,

corresponding to the ray VO in the V pencil, we shall have

some ray OU, say, in the pencil which does not coincide

with VO. Draw any circle touching OU at 0. Let this

circle cut OF in V^, OP in P', and so on.

Now 7 (OPQ . . .) = by hypothesis {UPQ . .
.)

= 0{UP'Q\..) = 0{OP'Q\..) = nOP'Q'...)
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from the circle. Hence the two pencils 7(0PQ...) and

F'(OPV-) are homographic. And they have a common

ray, viz. YY'O. Hence they are in perspective. Hence

sail the points (7P; Y'V'\ (FQ; rQ'),... lie on a line, viz.

tthe axis of perspective. Let (FP ; W') be called -tt ; and let

ithe axis meet OFin i; and 0^ in tt' ; so for Q, i?,....

Now rotate the figure of the circle out of the original

plane about the axis ttti'...; and let 0' be the new position

of 0. Then the triangles OPF and O'P'F' are coaxal; for

OV and 0'^' meet in tt', and OY and O'Y' meet in r, and

iVY and VY^ meet in tt. Hence these triangles are copolar,

.e. OCf^ W\ YY' meet in a point. Hence V^' passes

hrough a fixed point, viz. the meet of 00'^ YY'. Hence the

agure OYVqR. . . is the projection of the figure aTP'Q'It'. .

.

.

But the latter figure is a circle ; hence the locus of P is the

Drojection of a circle, i. e. is a conic. Also, since the circle

>Dasses through Y' and 0', the conic passes through Y
l^d 0.

Notice that if the pencils are in perspective, the locus

Regenerates into a conic consisting of the axis of perspective

ind the join of the vertices.

K



130 Ankarmonic Properties of [ch.

6. Owe, (md only onCy conic can he draivn through five given

points.

Let the five points be J., 5, (7, Z>, E. Take A and B as

vertices. Through A draw any ray AP, and let ^Q be such

that A(CDEP) = B{CDEQ). Then the rays AF and BQ
generate homographic ranges of which AC and BC, AB and

BDy AE and BE are corresponding rays. Hence the locus

of the meet B of the rays AP and BQ is a conic through

ABODE. Hence a conic can be drawn through ABODE.
Also only one conic can be drawn through ABODE. For

the other point B, in which any ray AP cuts a conic through

ABODE, is given by the relation A (ODER) = B{ODER).
Hence every ray through A cuts all conies through ABODE
in the same pomt, i.e. all the conies coincide.

The locus of points at which four given points subtend a

constant cross ratio is a conic through the given points.

Let the points ABOD subtend the same cross ratio at

E, Py Q, B... . Then, taking E and P as vertices, since

E(ABOD) = P{ABOD\

we know that ABODEP lie on a conic. Hence the locus ofP
is the conic drawn through the five fixed points A,BjO,D,E.

7. Every two conies cut in four points.

Two conies cannot cut in more than four points ; for

if they have five points in common, they must coincide.

Also we see that two equal ellipses laid across one another

cut in four points. Hence we conclude that if two conies do

not apparently cut in four points, some of the meets are

imaginary or coincident. (See also XXVII. 4.)

Through four given points can he drawn an infinite number of

conies.

For we can draw a conic through the four given points

and any fifth point.

All conies thrcmgh four given points have a common self-

conjugate triangle ; viz. the harmonic triangle of the quadrangle

formed by the points.
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Ex. 1. Any four points -4, B, C, D are taken, and M is the middle point of

AC; BQ a parallel to AC cuts DM in Q, and DP a parallel to AC cuts BM in P;
show that ABCDPQ lie on a conic

For P{AC, BD) = Q{AC, BD) = - i on AC.

Ex. 2. TJirough four given points can he drawn one and only one rectangular

hyperbola.

For a fifth point is the orthocentre of any of the other three. An
exception is when this orthocentre coincides with the fourth point,

when an infinite number of rectangular hyperbolas can be drawn
through the four points.

Ex, 3. Given in position two pairs of conjugate diameters of a conic and a
point P on the conic, to construct it.

Through P draw parallels to a pair of conjugate diameters ; this
gives two more points on the conic. Proceeding similarly with the
other pair, we have five points on the conic.

Ex. 4. If P, Q, A, B, C, D he six points on a conic ; show that the meets of
PA and QB, of PB and QA, of PC and QD, and of PD and QC lie on a conic

through PQ. For p (^bCAD) = Q (BCAD) = Q {ADBC).

Ex. 5. TJie sides PQ, QR, RP of a triangle inscribed in a conic meet a
diameter in Z, X, Y, and W, U, V are the reflexions of these points in tfte centre ;

s?iow that PU, QV, RW meet on the conic.

Let the diameter be LM. Let PU, QV meet in N. Then
P(LMRN) = Q{LMRN),

for (LMYU) = (LMXV), since (LMYU) and {MLVX) are superposable.

Ex. Q. If a conic coincide with its reciprocal, it must coincide also with the

i

base conic, or have double contact with it.

I For let the conic a and the base conic r meet in the point P. Then
\ the reciprocal of P touches T, and therefore a at P. Hence a and T

touch at P; so they touch at every common point.

Ex. 7. In the case of Ex. 6 when a and T have double contact, ifR be the

point where the reciprocal of any point Q on a touches a, then QR passes through
the pole of the chord of contact of a and F.

Let the tangent at R meet the chord of contact BC in L. Let A be
the pole of BC. Let AR cut a in Q'. Then Q' is the reciprocal of RL.

Let AR cut BC in M. Then since AR ia the polar of L for a, hence
/, CB) = — I. Hence AR is the polar of L for T. Hence AR,RL
conjugate for V. Hence the reciprocal of RL lies on RA ; and also

!iy hypothesis on a. Hence Q' is the reciprocal of RL. Hence QR
passes through A.

8. A,B,C,D are fioced points. CB meets AP in M and BP
in N; find the locus of P, given that the ratio CM :BN is

constant. Biscuss the locus when AB and CB areparallel.

Since CM = h . BN, M and N generate homographic
ranges on CB (see X. 8). Hence

A (P,P,...) = A (M,3I,...) = B {N,N,...) = B {P,P,...).

Hence the locus of P is a conic through A and B.

ic 2
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If AB and CD be parallel, it follows from elementary

geometry that the locus is the line dividing CD and AB
is the given ratio.

Ex. 1. The locus of the vertex of a triangle, whose base is fixed, and whose

sides cut off a constant length from a given line, is a conic, which is a rectangular

hyperbola, when the constant length is equxil to the length of the base.

For in this case AM and BN are parallel when AM is parallel to

either of the bisectors of the angles between the given lines.

Ex. 2. A triangle ABC is such that B and C move on fixed lines OL and OM,
whilst its sides BC, CA, AB pass through fixed points P, Q, E ; show that the

loais ofA is a conic passing through R, Q, and through the meet of PQ and OL
and through the meet of PR and OM.

Ex. 3. All but one of the vertices of a polygon move on fixed lines and each

side passes through a fixed point ; find the locus of the remaining vertex.

Ex. 4. The locus of Q is a line. The angles QOP and QO'P are given, and
<y being fixed points. Show that the locus ofP is a conic.

Ex. 5. A, A' are fixed points on a circle and the arc PP' moves round the

circle ; show that the locus of the intersection of AP, A'P^ is a conic.

For A{P...) = Ai^P'...) since I PAP' is given

= A'{P'...).

Ex. 6. A and M are fixed points, P is a variable point m^ng on a fixed

line I, QM at right angles to PM meets PA in Q ; show that the locus of Q is a

conic. If I meet the circle on AM as diameter in B and C, show that the

asymptotes of the conic are parallel to AB, AC.

Ex. 7. A and B are fixed points, and P and Q are points such that the angles

PAQ and PBQ are constant ; if P describe a conic through A and B, so unll Q.

Ex. 8. (PQR...) and {P'Q'R'...) are two homographic ranges on the lines

OA, OB } if the parcdMogratn POP'V be constructed, show that the locus of V is a

conic.

Viz. a conic through the points at infinity on OA and OA'.

Ex. 9. All but one of the vertices of a polygon move on fixed lines, and each

side subtends a fixed angle at a fixed point ; find the locus of the remaining

vertex.

Ex. 10. POP' and BCD' are fixed conjugate diameters of an ellipse. On CP
and CD are taken X and Y such that PJC. DY =^ zCP. CD. Show that DX
and PY meet on the giveti ellipse.

For X and Y generate homographic ranges of which P and D are the

vanishing points. To get the constant, take X at P'; then Y is at C.

Ex, 11. EF, FD, BE pass through the fixed points A, B, C. The centroid of

DEF is fixed at G. AG is produced to H, so that GH := 2 . AG. Show that

the locus of D is a conic through BCGH.

For Z> {GH, BC) = ~i on EF.

Ex. 12. Q moves on a fixed line, PQ passes through a fixed point, the angle

QAP is constant, and A is a fixed point. Find the locus of P.

Ex. 13. A variable line PQ passes through a fixed point L and meets the fixed
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lines AB and AC in P and Q. Throiigh P and Q are drawn PR and QR in given

directions. S?iow that the locus ofR is a hyperbola with asymptotes in the given

directions; and find where the locus meets AB and AC.

9. The locus of the meets of corresponding rays of two

pencils whose corresponding angles are equal Imt measured in

opposite directions is a rectangular hyperbola mth the vertices

of the pencils at the ends of a diameter.

The locus is clearly the locus of the meets of corresponding

rays of two homographic pencils, i.e. is a conic through the

vertices of the pencils.

Let OP be one of the rays of the pencil at and O'P' the

corresponding ray of the pencil at 0\ Through draw

Qp' parallel to O'P'. Then clearly all the angles POp^ have

the same bisector. Now draw this bisector OL and its

perpendicular OM, and the parallels O'L' and 0^M\ Then

OL and O'L' correspond and are parallel, hence their meet

is at infinity ; hence OL is parallel to an asymptote of

the conic. Similarly OM is parallel to an asymptote of the

conic. Hence the conic is a rectangular hyperbola.

Again, the ray corresponding to 00', viz. the tangent at O',

is parallel to the reflexion in Oi of 00' ; and the ray corre-

sponding to O'O, viz. the tangent at 0, is tjie reflexion in OL
of O'O. Hence the tangents at and 0' are parallel, i. e. 00^

is a diameter.

Ex. 1. I'he point of trisection of a given arc of a circle may be constructed as
one of the meets of the arc with a rectangular hyperbola.

Let AB be the arc and BT the tangent at B. Let C be the centre of
the circle. Make the angle ACP equal to the angle TBP. Then if P is

on the arc we have IBCP = 2 I ACP. If P is not on the arc, the locus
of P is a rectangular hyperbola ; and if Q be that meet of the circle

and the rectangular hyperbola which lies between A and B, Q trisects

the arc AB.
The other meets trisect the other arc AB and the arc supplementary

to AB.

Ex. 2. The locus of the points of contact of parallel tangents to a system of
confocal conies is a rectangular hyperbola through the foci. Prove this, and obtain

the reciprocal property of coaxal circles.

10. Converse of Pappus's theorem. If a point move so

that its perpendicular distances a, (3, y, b from four fixed lines

AB, BC, CD, DA are connected hy the relation a . y = A; . y3 . 8,

then the locus ofP is a conic through ABCD.
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^ a.y AB DC.
. . -rrFor -—^ • ^-^—J— IS constant. Hence, reasoning as m

§ 3, we see that P(AC, BD) is constant.

Ex. 1. Given two pairs of lines which are conjugate for a cirde, tJie locus of

Vie centre of the cirde is a rectangular hyperbola.

Let AB, CD be conjugate, and also BC, AD. Assume to be a position

of the centre. From drop OP perpendicular to DC to meet AB in F\
Then P' is the pole of CD, hence OP . OP^ = (radius^^ So if OQ, per-

pendicular to AD, meet BC in (/, we have OP.OP'= OQ.OQf. Also

OP = 7, OP'cca, OQ = 5, O(/az0. Hence a .7 oc/3 . 8. Hence the locus

of is a conic through ABCD. Also the orthocentre of ADC gives

OP.OP' -^ OQ. OQ^. Hence the conic is a r. h.

Ex. 2. The locus of the foci of conies inscribed in a paraUdogram is a r. h.

circumscribing the parallelogram.

Here o . 7 = )3 . 8.

11. Tite projection of a conic is a conic.

We have to prove that any projection of a conic can be

placed in perspective with a circle. Now every projection of

a conic is such that all the points on it subtend homographic

pencils at two points on it ; for this is true in the conic which

was projected and is a projective property. Hence the projec-

tion is the locus of the meets of two homographic pencils

and is therefore a conic.



CHAPTER XII.

ANHAEMONIC PEOPEETIES OF TANGENTS OF A CONIC.

1. Four fixed tangents of a conic cut any variable fifth

tangent of the conic in a constant cross ratio.

Consider first the circle of which the conic is the projec-

tion. Let the j&xed tangents of the conic be the projections

of the tangents at ABCD
of the circle, and let the

variable tangent of the

conic be the projection

of the variable tangent

at P of the circle. Let

the tangent at A cut the

tangent at P in a, and

so on.

Then if be the centre

of the circle, Oa is per-

pendiculartoPJ.. Hence
the pencils (ahcd) and

JP{ABCI)) are superposable and therefore homographic.

But P{ABCD) is independent of the position of P on the

circle. Hence (ahcd), i. e. (ahcd), is independent of the

position of the variable tangent of the circle. Hence the

proposition is true for a circle; and being a projective

theorem, it follows at once for the conic by projection.

The constant cross ratio {ah, cd) determined on a variable

tangent by four fixed tangents is called a cross ratio of the

four tangents.
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Notice that the point where a tangent cuts itself is its

point of contact ; for as two tangents approach, their meet

approaches the point of contact of each.

Similarly any number of tangents of a conic determine on two

otJier tangents of the conic two ranges which are homographic.

Notice that we have in the above proof incidentally shown

that tJie range determined on any tangent of a conic by several

other tangents of the conic is homographic with the pencil sub-

tended at any point on the conic by the points of contact of the

other tangents.

Ex. L Show that the angle aOb is the same for every position of the variable

tangent.

This gives us another proof of the proposition of § i.

Ex. 2. A variable tangent of a conic meets at Q and (/ the tangents at the ends

P, F of a fixed diameter of the conic ; show that PQ . FQf = CD'\ CD being the

semi-diameter conjugate to CP.

For P and P' are the vanishing points of the ranges determined
by Q and Qf on the tangents at P and P'. Hence PQ . P'Q' is constant.

To get the constant in the ellipse, take Q(^ parallel to PP'. To get the
constant in the hyperbola, take an asymptote as QQ'. Then

PQ = p^Q^ = CD.

Ex. 3. If the joins of the ends PP' of a diameter to a point on the conic cut the

tangents at P and F in Q and Q^, show that PQ . fV == 4 • CD^-

Ex. 4. IfR and R' be the meets of these joins and DD^, then CR. CR^ ^ CD\
and R and R' are conjugate points.

Ex. 5. A variable tangent to a conic meets the adjacent sides AB, BC of the

parallelogram ABCD circumscribed to the conic in P and Q ; show that AP . CQ is

constant.

Ex. 6. A variable tangent cuts the asymptotes of a hyperbola in T and V

;

show that CT . CT^ is constant, C being the centre.

Ex. 7. Deduce the equation of a hyperbola referred to its asymptotes, viz.

xy = constant.

Ex. 8. B and C are the points of contact of tangents from A to a conic.

A variable tangent meets AB in P and AC in Q. Show that the locus of (BQ ; CP)

is a conic touching the given conic at B and C.

For B {R) = (Q) = (P) = C{R). Also when P approaches B, R ap-

proaches B.

Ex. 0. The two pairs of tangents from a pair of conjugate points meet any
tangent in two pairs of harmonic points.

Such pairs of tangents are called harmonic pairs of tangents.

Ex. 10. IfAA% BB' be pairs of harmonic points on a conic, show that the

four tangents at ABA'B' cut any fifth tangent in a harmonic range.

Ex. 11. On a fixed tangent of a conic are taken two fixed points AB and also

two variable points QR, such that {AB, QR) = — i ; show that the locus of

the meet of the other tangentsfrom Q and R is the join ofthe points of contact of the

otJier tangentsfrom A and B.
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2. If AB, BC, CD, DA touch a conic, and p, q, r, s be the

perpendiculars from A, B, C, B on a variable tangent of the

conic, then p .r = k. q.s.

Let two variable tangents cut BC in P, P' and AB in Q, Q\

Then (BC, PF') = (AB, QQ').

BP P^_AQ qD^
•'• PC ' BP'" QB ' AQ''

.-. BP.QB-^PC.AQ is constant.

^ . BP q . AQ pBut j^= - and -^ = ^

,

PC r QB s

.
•

. p .r -T- q. s is constant.

Ex. 1. Extend the theorem to a 2 n-sided circumscribed polygon.

Ex. 2. BedtLce a theorem concerning a n-sided circumscribed polygon.

Ex. 3. If the conic be a circle, show that p.r -i- q. s is equal to

OA.OC^ OB. OD,

being the centre.

. For sin AOQ = sin BOP.

Ex. 4. If the conic be a parabola, then p . r = q . s.

For taking the line at infinity as tangent, k = p\r^ -r- q^. s^= i.

Ex. 5. Show thatfor any conic the k ofp . r = k . q . s is the cross ratio of the

four tangents divided by the cross ratio of the pencil formed byfour lines drawn
parallel to them through any vertex.
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Let PQ meet AB in M and CI> in N. Then
3fQ 4- sin MAQ = AQ -^ sin ^ilfQ ; and so on.

Hence the ratio of cross ratios corresponding to {MN, QP) is

AQ.PC -^ QD. BP^ p.r -^ q . s.

Ex. 6. The lines AB BC, CD, DA touch a conic ; one tangent meets AB, CD
in M, N and another tangent meets AD, BC in P, Q ; show that

AM . BQ . CN. DP= AP.BM.CQ. DN.

Ex. 7. The sides BC, CA, AB of a triangle touch a conic at P, Q, R ; show

that if t be any tangent

(i) iP,t).{A,t)<x(B,t).iC,t);

(ii) iB,t).{Q,t)cc{A,ty.

3. Deduce, from the theorem a.y = h. (3,b of XL 3, the

tJieorem p.r = 7c.q.s hy Reciprocation.

Call the sides of the inscribed figure in XI. 3 a, h, c, d;

and let the reciprocals of a, h, c, d be the points A, B, C, D
of a four-sided figure circumscribing a conic ; then p, the

reciprocal of P, touches this conic.

The given theorem a.y = k. fi.b asserts that

(P,a).(P,e)^(P,b).(P,d)
is constant.

But by Salmon's theorem OP/{P, a) = OA/{A, p), and

so on.

Hence, dividing by OP^, we see that

OA * 00 ' OB ' OB
is constant.

Now is a fixed point, hence

(A,p).{C,p)-^{B,p).{D,p)

is constant, i.e. p.r-i- q.s is constant.

Ex, 1. Given any fixed point and any conic, two lines s and h can be found

such that OF^ -7- {P, s) . (P, h) is constant, P being a variable point on the

conic.

Viz. the lines corresponding to the foci of a reciprocal of the

conic for 0.

Ex. 2. AA^, BB^ C(f are the three pairs of opposite vertices ofa quadrilateral

circumscribed to a parabola whose focus is S ; show that

SA . SA' = SB . SB' = SC . SC.

Take the four-sided figure whose vertices are AB'A'B. Then
p .r = q.s. Hence in the reciprocal circle we have

SA . SA'. a.y = SB. SB\ & . S.

But k= lin the circle. Hence SA . SA' = SB . SB', =SC.SC similarly.
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Ex. 3. If the tangents at ABCD ... to a circle meet in LMN ,.., then, t being

any tangent and the centre of the circle^

II {A, t) : II (i, : : II 0^ : II OL,

II denoting a proditct.

For II (T, a) = II (T, I) in a circle.

4. 27*6 lines joining corresponding points of two Jiomographic

ranges which are on different axes and not in perspective touch a

conic which touches the axes.

Let the ranges be (PQB...) and {JP'Q'B' ...) on the axes OP
and 0F\ Since they are not in perspective, the point which
corresponds in the range {P'Q'B'..) to will be some point

(y not coinciding with 0.

Draw any circle touching

OF' at O; and from and

P' draw the second tangents

to this circle, meeting in p.

Then the range (P) =
range (P') by hypothesis =
range {p) from the circle.

Hence the ranges (P) and

(p) are homographic. Also when P' coincides with 0\ both

P and p coincide with 0. Hence the ranges are in per-

spective.

Now rotate the figure of the circle out of the original

plane about the axis 00\ Then the ranges (P) and (p) are

still in perspective. Hence all the lines Pp, Qq, Br, . . . meet
in a point, say F. Hence, taking V as vertex of projection, p
projects into P, and therefore the line P'p into the line P'P.

Hence, since P'p in all positions touches a circle, P'P in all

positions touches the projection of a circle, i. e. a conic.

Also, since the circle touches Op and 0P\ the conic touches

the projections of these lines, viz. OP and OP'.

Notice that if the ranges be in perspective the envelope of

'PP' degenerates into the centre of perspective and the meet
of the axes.

5. One, and only one, conic can he drawn touching five given
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Tim envelope of a line which cuts four given lines i/n a given

cross ratio is a conic touching the given lines.

These propositions can be proved like the reciprocal pro-

positions in XI. 6 or they may be deduced from these by

Keciprocation.

6. Every two conies have four common tangents.

Two conies cannot have more than four common tangents
;

for if they had five, they would coincide. Also we see that

two equal ellipses laid across one another have four common
tangents. Hence we conclude that if two conies have not

apparently four common tangents, some of the tangents are

imaginary, or coincident. (See also XXVII. 4.)

Touching four given lines can he drawn an infinite number of

conies.

For we can draw a conic touching the four given lines and

any fifth line.

All the conies which touch four given lines have a common

self-conjugate triangle, viz. the harmonic triangle of the

quadrilateral formed by the common tangents.

Ex. 1. Given two homographic ranges ABC... and A'B'Cf ...on different

lines; show that two points can be found at each 0/ which the segments AA% BB',

C(/, ... subtend the same angle.

Viz. the foci of the touching conic.

Ex. 2. There are also two points at which AA\ BB', CC... subtend angles

having the same bisectors.

Let the enveloped conic touch the lines in P and Q. The required
points are the meets of PQ with the director ; as may be shown by
reciprocating for one of these meets.

Ex. 3. The vertices A, B, C of a triangle lie on the fixed lines MN, NL, LM.
and the sides BA, AC pass through the fixed points W and V ; show that Die

envelope of BC is a conic touching the five lines LM, LN, VW, NV, MW.
Ex. 4. All but one of the sides of a polygon pass through fixed points and each

vertex moves on a fixed line ; find the envelope of the remaining side.

Ex. 5. From the variable point situated on a fixed line are drawn the lines

OA, OB, OC to the fixed points ABC, meeting BC, CA, AB in X, Y, Z ; BC, YZ
meet in X', CA, ZX meet in Y' , and AB, XY meet in Z' . Show that the line

X'Y^Z' envelopes a conic which touches each side of tlie triangle at the fouiih

Juirmonic of the fixed line for the side.

By a previous example X'Y'Z' are coUinear. Also

(0) = ^ (OJ = (X) = (X') since {BC, XX') is harmonic
= {Y') similarly.
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Hence X'y envelopes a conic. Let the locus of meet BC in P.

Then when coincides with P, X coincides with P, X' coincides

with P' where {PF' , BC) = - i, Y and Y^ coincide with C, and Z and Z'

coincide with B. Hence BC touches at P'.

Ex. 6. Reciprocate the previous example.

Ex. 7. The vertices BC of a triangle lie on given lines and the vertex A lies on

a conic on which also lie fixed points VW through which the sides CA, AB pass.

Show that the envelope of BC is a conic touching the given lines.

Ex. 8. The side BC of a triangle touches a conic, and the vertices B and C
move on fixed tangents of this conic, whilst the sides AB, AC pass through fixed

points ; show that the locus ofA is a conic through the fixed points.

Ex. Q. If e {ah, cd) mean the cross ratio determined on the line e by the lines

a, b, c, d ; show that

e (ab, cd) . c {ab, de) . d {ab, ec) = i,

where a, b, c, d, e are any five lines.

Estimate the cross ratios on any tangent to the conic touching abcde.

Ex. 10. Show that the problem— ' To find a line on which five given lines, no
three of which are concurrent, shall determine a range homographic with a given
range '—hasfour solutions.

Ex. 11. Given in position two pairs of conjugate diameters of a conic and a
tangent, construct the conic.

Construct the parallel tangent (which is equidistant from the
centre). Let these tangents cut a pair of conjugate diameters in LL'
and MM\ Then LM and L^M^ also touch the conic. Proceeding simi-
larly with the other pair, we have seven tangents.

Ex. 12. Given in position a pair of conjugate diameters and two tangents,
construct the conic.

Ex. 13. Prove the converse o/ § a.

7. If two quadrangles have the same harmonic points, then

their eight vertices lie on a conic ; as a particular case, if any three

of the vertices are collinear, the eight vertices lie on two lines.

Let ABCD, A'B'C'D' be the two given quadrangles, and
UVW the common harmonic triangle.

If no three of the eight vertices lie on a line, we can draw
a conic through any five, say A^, B', C, D' and A. Then
from the inscribed quadrangle A'BX'D' we see that UVW
is a self-conjugate triangle for this conic. Also by hypo-

thesis UVW is the harmonic triangle of the quadrangle

ABCD. Hence (see figure of V. 9) B is such that {WANB)
is harmonic

; hence B is on the conic, for A is on the conic,

and W is the pole of UV', similarly C and D are on the

conic.
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Hence ABCDA'B'C'jy lie on a conic.

If three of the vertices lie on a line, say ACD\ then

since B'B' passes through F we see that B' also lies on AC.
Again, BI) and also A'G' form with AG ox B'l)' a pair har-

monic with YTJ and YW. Hence BB and A'C coincide.

Hence the eight vertices lie on two lines, i.e. on a conic.

Ex. 1. Frofce that two quadrilateraJs which have the same harmonic triangle

are such that the eight sides touch a conic {which may be two points).

Ex. 2. A conic can be drawn through the eight points of contact of two conies

inscribed in the same quadrilateral.

Ex. 3. The eight tangents at the four meets of any two conies touch the

same conic.

8. Any number of tangents of a parabola determine on two

other tangents of the parabola two ranges which are similar.

Let the two ranges be (FQB...) and (B'Q'E'...). Let X2

and 12' be the two points at infinity upon the lines JPQ and

F'Q'. Then since the line at infinity touches the parabola,

the line 1212' is a tangent. Hence the two ranges {Q.PQR...)

and {QfP'Q'R'...) are homographic ; also the points at infinity

Q£l' correspond. Hence the ranges are similar.

Conversely, the lines joining corresponding points of two

similar ranges ivhich are on different axes and not in perspective

touch a parabola which touches the axes.

For if the ranges {PQR...) and {P'Q'R'...) are similar, the

ranges (12FQR ...) and (l^'F'Q'R' ...) are homographic. Hence

the lines 1212', PB\ QQ\ ... all touch a conic which touches

PQ and B'Qf, And this conic is a parabola since 1212'

touches it.

Ex. L One and only oneparabda can be drawn touchingfour given lines.

Ex. 2. The envelope of a line which cuts three given lines in a constant ratio is

a parabola.

Ex. 3. Every two parabolas have three finite common tangents.

Ex. 4. Touching three given lines can be drawn an infinite number of

parabolas.

Ex. 5. TP, TP^ touch a parabola at P and P', and cut a third tangent in

Q, (/ ; show that QP : TP : : TQ" : TP'.

For {QT, PQ.) = {Q^P', TD.'), considering the ranges determined on
the two tangents TP, TP" by the four tangents QQ', TP^, PT, nn'.

Ex. 6. IfgO" touch at B, then PQ/QT = QB/E</.
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Ex. 7. Through the fixed points A„ B is drawn a variable circle meeting fixed

lines through A in P, Q ; show that PQ envelopes a parabola.

Ex. 8. The envelope of the axes of conies which touch two given lines at given

points is a parabola.

Let TP, TP' be the fixed tangents. Then
PG'.P'G' = Pg: P'^ = CD -. CI/ = TP -. TP', which is constant

Ex. 9. The normals at the points P and P' on a conic, the chord PP' and t?ie

axes of the conic touch a parabola.

Ex. 10. Determine a line which shall meet given lines AA', BB', CCf in points

P, Q, R mch that AP = BQ = CR.

On AA% BB' take X, Y such that A^=BY, and construct a parabola
a touching AA', BB', AB, XY. On Cff take Z such that BY = CZ, and
construct a parabola /3 touching BB\ CC, BC, YZ. Let PQR be either of

the remaining two common tangents of the parabolas. Then PQR is one
position of the required line. For {A n, XP) = (PH, YQ) - (Cn, ZR)
(the Hs being dififerent). Hence

AX-r-AP = BY^BQ = CZ-^CR, i.e. AP = BQ = CR.

Ex. 11. The ends PQ of a segment move on fixed lines, and the orthogonal

projection of PQ on a fixed line is of constant length; show that the envelope ofPQ
is a parabola whose axis is in the direction of the projecting lines.

Let pq be the projection of PQ. Then range (P) is similar to range (p),

which is equal to range (q), which is similar to range (Q). Also when
pq approaches infinity, PQ approaches being perpendicular to pq.

Ex. 12. From points P on one line are drawn perpendiculars PQ, PR on two

other lines, show that QR touches a parabola.

Ex. 13. Ifthrough any point parallels be dravm to the tangents of a parabola

y

a pencil is constructed homographic with the range determined by the tangents on
any tangent.

Ex. 14. If through points of a range on a given line there be drawn lines

parallel to the corresponding rays of a pencil, which is homographic with the given

range, tJiese lines will touch a parabola.

Ex. 15. If all the tangents of a parabola be turned through the same angle and
in the same direction about the points where they meet a tangent, they will stiU

touch a parabola.

Ex. 16. If the angle OPQ be constant, being a fixed point and P moving on

a fixed line, show thai PQ envelopes a parabola.



CHAPTER XIII.

POLES AND POLARS. EECIPROCATION.

1. A RANGE formed by any numher of points on a given line

is homographic with the pencil formed hy the polars of these

points for a conic.

Consider the circle of which the conic is the projection.

Let -4, B, ... on the line^ be the points in the figure of the

circle which project into

the points on the given

line in the figure of the

conic.

Now since A^ B, .. lie

on _p, the polars PJ.', VB^,

... all pass through P, the

pole of p. Also BA' is

perpendicular to OJ.,

being the centre of the

circle. Hence the pencil

B{A!B' ...^ is superposable

to and therefore homographic with the pencil {AB...)^ and

is therefore homographic with the range {AB. .
.
). Hence the

proposition is true for a circle ; and being a projective

theorem, it is true for the conic by projection.

Taking the base conic as the given conic, the theorem

becomes

—

The reciprocal of a range ofpoints is a pencil of lines which is

homographic with the given range.
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" Ex. 1. TfLTough a fixed point is drawn a variable line cutting a fixed line

in Q' and a fixed conic in PP'. If {PP'
, QQ^) he harmonic, show that the locus

of Q is a conic passing through 0, through the pole of the fixed line, through the

meets of this line with the conic, and through the feet of the tangentsfrom 0.

For (g) = ((/) = F (Q), V being the pole of the locus of q\

Ex. 2. Obtain the reciprocal theorem to that of example i.

Ex. 3. If on fixed lines OL and OV points PP' be taken which are conjugate

for a fixed conic, show that PP' envelopes a conic which touches OL, OL' and also

thefour tangents to the fixed conic at its meets with OL and OL'.

The join of P' to the pole of OL is the polar of P.

Ex. 4. If OL, OL' be conjugate lines, then the envelope degenerates into

two points ; also if he on the conic.

Ex. 5. Two vertices of a triangle self-conjugate for a given conic move on fixed

lines ; show that the locus of the third vertex ts a conic passing through the inter-

sections of the given lines with the given conic and through the poles of the given

linesfor the given conic.

Ex. 6. AA' are a pair of opposite ve>'tices of a quadrilateral whose sides touch

a conic at L. M. N, R. Through A and A' are drawn conjugate lines meeting in

P. Show that the locus of P is the conic AA'LMNR.

Ex. 7. AP, AQ, harmonic with two fixed lines through A, meet a conic

in P. Q ; show that the envelope of PQ is a conic touching the fixed lines at points

on the polar of A, and touching the tangents to the conic at the points where the

fixed lines meet it.

Eor PQ meets the fixed lines in conjugate points.

Ex. 8. Tlirough a fixed point is drawn a variable line, and PY is the

i perpendicular on this liroefrom its pole Pfor a fixed conic ; show thatPY envelopes

a parabola, which totiches the polar of 0, and also touches the tangents at the feet

of the normalsfrom 0.

Let PY cut the line at infinity in Q. Through any point V draw Vq
parallel to PY ; then Vq passes through Q. Hence

(Q1Q2...)- F(g,5,...) = 0{Y,Y,...)

[corresponding rays being perpendicular] = (PiP^...). Hence PQ, i.e.

PY, envelopes a conic touching P^ P2 and Q^ Q21 ie- ^^^ polar of and
(lie line at infinity. This parabola touches the tangent at R, a foot
>r a normal from ; for if OY be OR, then PY is the tangent at R.

Ex. 9. If instead of being perpendicular to the variable line, PY make a given
!'f- with it ; show that PY envelopes a parabola, which touches the polar of 0,

also touches the tangents at the points where the tangents make the above angle

'I the radiifrom 0.

Ex. 10. If the given angle be the angle between the polar of and the conjugate

liameter, the envelope reduces to a point; and the locus of Y is a circle.

For when P is at infinity, Q coincides with it.

Ex. 1].. If through every point on a line, there be drawn the chord of a conic

I'liich is bisected at this point, the envelope of these chords is a parabola which
.
iHches the line.

Consider the pencil of diameters.

Ex. 12. TJirough points PQ ... on the line I are drawn the lines PP', QQ', ...

ir<nhl to the polars of P, Q,... for a conic; show that PP', QQ',... touch,

"aiabola which touches l.
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Ex. 13. The reciprocals of the four points A, B, P, Q are the four lines

O) ^) P) 2 ; show that

iP,a)
_^ U,P) ^ (Q,a) ^ (A,g)

(P, 6)
• {B,p) (Q, hj • {B,q)

'

Let PQ cut a in Z and b in M ; also let AB cut p in iV and q in {7.

Then we have to prove that (PQLM) = {ABNU) ; and this is true, for the

polars of P, Q, L, M are ON, OU, OA, OB, if be the meet of p and q.

Ex. 14. Show that

{P, a) ^ (A,p) _ (Jg, g) _ (C, g)

Take Q successively at B and at the centre C.

2. TJie reciprocal of a conic for a conic is a conic.

We may define the original conic as the locus of a point

P such that P(ABCn) = E{ABCD), where A, B, C, I), E
are fixed points on the conic. Let the reciprocals of the

points A, B, C, B, E, P he the lines a, h, c, d, e, p. Now
the reciprocal of the pencil P{ABCD) is the range of points

determined on the line p by the lines a, h, c, d. Hence this

range is homographic with P(ABCD). So the range of

points determined on e by a, t, c, d is homographic with

E{ABCD), ie. with P(ABCB), i.e. with the range of points

determined on p by a, h, c, d. Hence the reciprocal of the

given conic, viz. the envelope oip, the reciprocal of P, is the

envelope of a line which cuts four given lines a, J), c, c^ in a

constant cross ratio. Hence the reciprocal is a conic touch-

ing a, h, c, d, e.

3. TJie reciprocal of a pole and polar for a conic is a polar and

pole for the reciprocal conic.

Let P be the pole and e its polar. Through P draw any

line r cutting e in P' and the conic in Q, Q\ Then

(PP% QQ) is harmonic. Let the reciprocals of P, e, r,

^\ ft Q' ^^ Pi ^j ^) P'j 0.1 ^' Then on a fixed line p is

taken a variable point B, and from B are drawn the tangents

q^, c[ to the reciprocal conic, and the line p' is taken such that

{pp\ qq) is harmonic. We are given that p^ always passes

through E, and we have to prove that E is the pole of p.

But this is obvious, for^ and ^' are conjugate in all positions

oip% since [pp\ qq^) = — i. Hence p' always passes through

the pole of ^, i.e. E is the pole oip.
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Ex. 1. The reciprocal of a triangle self-conjugate for a conic is a triangle self-

conjugate for the reciprocal conic.

Ex. 2. A triangle self-cmijugate for the hose conic reciprocates into itself.

Ex. 3. A conic, its reciprocal, and the base cotiic have a common self-conjugate

triangle.

Viz. the common self-conjugate triangle of the given conic and the

base conic.

4. Given any two conies, a base conk can he found for which

they are redproeal.

Of the two given conies a and ^3, let P be a common
point, q a common tangent, and UVW the common self-con-

jugate triangle. Describe by XXV. 1 2 the conic F for which

UVW is a self-conjugate triangle and P is the pole of q.

Then F is the required base conic.

For let a' be the reciprocal of a for F. Then since P is on

a, its reciprocal q touches a. Again, since q touches a, its

reciprocal P is on a'. Also since UVW is self-conjugate for

a and F, it is self-conjugate for a\ Hence a, a' and /3 pass

through P, touch q, and have UVW as a self-conjugate

triangle.

Now by V. 9 to be given a point and a self-conjugate

triangle is equivalent to being given four points. Hence

a, a' and /S pass through the same four points and touch the

same Hne. But by XXL 3, Ex. 4, two, and only two, conies

can satisfy these conditions. Hence a! coincides with a or ^.

Now if the meets of the conies are distinct, o! cannot coin-

cide with a. For let q touch a at i?. Then, by XI. 7, Ex.

6 and 7, a and F have double contact, and FH passes through

the common pole A of the chord of contact BG. Now A is

the pole of BG for a and F. Hence A must be Z7 or F or TF.

Hence VB passes through CT or F or W. Hence BB is a

common chord of a and /3, i.e. J2 is a common point ; which
is impossible imless a and /3 touch.

. Hence a' does not coincide with a. Hence a! coincides

with /3. Hence a and /3 are reciprocal for F.

If two or more of the common points of a and /3 coincide,

this may be taken as the limit of a case when no two coin-

cide
; and the proposition still holds.

L 2
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Note that there are four base conies. For we may take

any one of the four common tangents as the reciprocal of P.

Then as the conies are reciprocal, each of the common points

will have, as polar, one of the common tangents.

The above construction is imaginary unless the conies

have a real common point and also a real common tangent.

Ex. The cross ratio of the four common points of two conies for one of the

conies is equal to the cross ratio of the four common tangents for tfie other

conic.

5. Beciprocate—a segment dmded in a given ratio.

Let AC he divided in B. Let I be the line AB and i the

line at infinity, and let X2 be the meet of I and i. The reci-

procals of the points ABCH on the line I are the lines abcm

through the point L. Also the reciprocal of i is the centre

of the base conic. Hence AB -i- BC = —(ACf BQ) of the

given range of points = —(ac, bco) of the reciprocal pencil,

where w is the join of L to 0.

As a particular case the middle point of a segment AC reci-

procates into the fourth harmonic for a and c of the join of ac to

tJie centre of the base conic,

Ex. Reciprocate the theorem—
* The tocits of the centres of conies inscribed in a given quadrilateral is a line

which bisects each of the three diagonals.'



CHAPTEE XIV.

PROPERTIES OF TWO TRIANGLES.

1. If fhe vertices of two triangles lie on a conic, the sides touch

a conic ; and conversely/.

Let the vertices ABC, A'B'G^ of the two triangles lie on a

conic. Let AB, AG meet B'C in

L, M ; let A'B\ A'G' meet BG in

L% M\ Then

{G'LMB') = A (G'BGB^
= A' {G'BGB") = {M'BGZy

Hence the six lines G^M% LB,

MC, B'L', B'G', BG touch a conic

;

i.e. G'A', AB, AG, B'A', BX', BG
touch a conic ; i.e. the sides of the

triangles touch a conic.

Let the sides touch a conic. Then

A {G'BCB^) = (G'LMB') = {M'BGL') = A\G'BGB').

Hence the six points G', B, G, B\ A, A' lie on a conic ; i.e.

the vertices lie on a conic.

Ex, 1. If two triangles circumscribe the same conic, then a conic dravon

through five of the vertices will pass through the sixth also.

Ex. 2, If two triangles be inscribed in the same conic, then a conic drawn to

"h five of the sides will touch the sixth also.

Ex. 3. Iftwo conies be such thai one triangle can be drawn which is circum-

'bed to one conic and inscribed in the other, then an infinite number of
'li triangles can be drawn.

For suppose ABC to be circumscribed to ^ and inscribed in 7. Draw
'/ tangent to /S cutting 7 in B' and Cf. From B' and C draw the other

umgents to j8 meeting in A'. Then, since ABC, A'BlCf are circumscribed
to &, the vertices ABCA'B'C^ lie on one conic; hence A' lies on 7.

rience A'B'Cf satisfies the required conditions.
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Ex. 4. If BC be the points of contact of tangents from A, and B'(y he the

points of contact of tangents from A' to a conic ; show that the triangles ABC,
A'Bf(y are inscriptible in a conic, and circumscripiible to a conic.

Let AB, AC cut B'C in L, M ; let A'B', A'C cut BC in i', M'. Then
{LB'CM) of poles = A\BUM'C) of polars. Hence {LB'CM) = {BVM'C).
Hence the triangles are circumscriptible, and therefore inscriptible.

Ex. 5. If Obe the centre of the conic circumscribing ABC, A'B'Cf {of Ex. 4),
and if BC and B'Cf meet in D, show that DO bisects AA'

.

For D is the pole of AA' for the new conic as well as for the given
conic.

Ex. 6. A conic is draivn through a fixed point A and through the points

of contact B, C of tangentsfrom A to a circle, so as to touch the circle at a variable

point P. Show that the curvatures of all the conies at the points P are equal.

In Ex. 4 let A'B'Cf coincide in P. Then the circle of curvature
of the conic at P is the circum-circle of A'B'(f , whose radius is one-

half of that of the given circle.

Ex. 7. Through a point Oona conic is drawn a line cutting the conic in p and
the sides of an inscribed triangle in a, b, c; show that {abcp) is constant.

Draw another line a'b'cfpf and consider the triangles ABC^ Opj/,

2. If two triangles he self-conjugate for a conic, the six

vertices lie on a conic, and the six sides touch a conic ; conversely^

if the six vertices lie on a conic, or if the six sides touch a conic,

the triangles are sdf-conjugate for a conic.

In the figure of § i, let ABC, A'B'C be self-conjugate for

a conic. Then the polar of C is A^B', the polar of L where

B'C and AB meet is A'C, the polar of M where B^C and

AG meet is A'B, and the polar of B' is A'C\ Hence

{C'LMB^ = A' (B'CBC) = (L'CBM') = {M'BCr).

Hence the six sides CM', LB, MC, B'V, B'C, BC touch a

conic ; and hence the six vertices lie on a conic.

If the two triangles are inscriptible in a conic y, describe

by XXV. 12 a conic a such that ABC is self-conjugate for a,

and that A' is the pole of B'C^ for a. Let the polar of B'

for a cut B'C in 0". Then ABC and A'B'C" are self-con-

jugate for a ; hence ABCA'B^C lie on a conic. But this

conic is y, for the points ABCA'B' lie on both conies.

Hence B'C cuts y in three points unless C and C" coincide.

Hence C and C" coincide. Hence ABC, A'BX' are self-

conjugate for a conic, viz. for the conic a.

If the two triangles are circumscribed to a conic, they are

also inscribed in a conic, and the above proof applies.
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Ex. 1. If two triangles be self-conjugate for a conic a, then a conic P dravm to

touch Jive of the sides will touch the sixth also, and a conic 7 drawn to pass

through five of the vertices loill pass through the sixth also; and 7 and &
are reciprocal for a.

Ex. 2. Through the centre of a conic and the vertices of a triangle self-conjiujate

for the conic can be draum a hyperbola with its asymptotes parallel to any pair of

conjugate diameters of the conic.

For, adding the line at infinity, we have two self-conjugate

triangles.

Ex. 3. If two conies he such that one triangle can be circumscribed to one conic \^
which is self-conjugate for the other conic, then ati infinite number ofsu^h triangles )

can be draum.

Let ABC be the given triangle touching conic /3 and self-conjugate for

conic a. Take any tangent B^C^ of /3, and take its pole A^ for a ; draw
from A^ one tangent A^B' to 0, and take (f, the pole of A^B^ for a. Then,
since ABC, A'B'Cf are self-conjugate for a, the sides touch a conic.

But five sides touch i3 ; hence the sixth side CfA' touches j3. Hence
A'B'C' satisfies the required conditions.

Ex. 4. If two conies be such that one triangle can he inscribed in one conic \

which is self-conjugatefor the other conic, then an infinite number of such triangles \-^

can be draum.

Ex. t5. An infinite number of triangles can he described having the same cir-

cumscribing, nine-point, and polar circles as a given triangle.

For the nine-point circle is given when the circum-circle and the
polar circle are given, being half the circum-circle, taking the ortho-

centre as centre of similitude.

Ex. 6, Gaskin's theorem. The ciraim-circle of any triatigle self-conjugate

for a conic is orthogonal to the director circle of the conic. (See also XXIII. 5,
Ex.^)

Let \he two circles meet in T. Let the polar PP^ of T for the conic meet
the circum-circle in QQ'. Then, as in Ex. 4, since T is the pole of QQ^,

it follows that TQQ' is a self-conjugate triangle for the conic. Hence
Q(/ are conjugate points for the conic ; hence if CT meet PP^ in F, we
have VQ. V(/=^VP^, for V bisects PF. Also PTI^ is a right angle.

Hence VQ . VQ^ = VT^ ; i.e. CT touches the circum-circle. Hence the
circles are orthogonal.

Ex. 7. Two conies /3 and a are such that triangles can be circumscribed to

irhich are self-conjugate for a ; find the locus of the pointfrom which the pairs of

tangents to a and are harmonic.

From P, any point on the locus, draw tangents PT and PT' to j8.

These tangents are conjugate for a, for they are harmonic for the
tangents to a. Hence the pole of PT, viz. Q, lies on PT^, and the pole of
IT, viz. R, lies on PT. Hence the triangle PQR is self-conjugate for a.

Let ABC be a triangle self-conjugate for a and circumscribed to j8. Then
since the two triangles ABC, PQR are self-conjugate for the same conic,

their sides touch a conic, i. e. QR always touches /3. Hence P, the pole
of QR for a, always lies on the reciprocal of for o.

Ex. 8, If two conies 7 and a are such that triangles can he inscribed in 7
uhich are self-conjugate fw a, find the envelope of a line which cuts a and 7
in pairs of harmonic points.
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Ex. Q. If Q and R be the points of contact of the tangentsfrom P to any conic

a, and any conic 7 he drawn to pass through P and to touch QR at Q, then

triangles can be inscribed in 7 which are self-conjugate for a.

For PQQ is such a triangle, QQ being QR.

Ex. 10. If Q and R be the points of contact of the tangents from P to any
conic a, and any conic fi be draivn to touch PQ at P and to touch QR, tlien

triangles can be circumscribed to /3 which are self-conjugatefor a.

For PQQ is such a triangle, QQ being QR.

Ex. 11. If triangles can be circumscribed to $ which are self-conjugate for a,

then triangles can be inscribed in a which are self-conjugate for /3 ; and con-

versely.

For we can reciprocate o into B,

Ex. 12. The triangle ABC is inscribed in the conic a, and the triangle DBF is

I self-conjugate for a. Show that a conic /3 can befound su^h that DEF is circum-

scribed to /3 and ABC is self-conjugate for /3.

Viz. that conic inscribed in DEF for which A is the pole of BC.

Ex. 13. The centre of the circle circumscribing a triangle which is sdf-conjugate

for a parabola is on the directrix.

Consider the triangle Oflfl' where OH, OH' are the tangents to

the parabola from the centre of the circle.

Ex. 14. The conic a is dravm touching the lines PQ, PR at Q, R ; the coyiic /3

is drawn touching the lines QP, QR at P, R; show that (i) triangles can

he inscribed in a which are self-conjugate for /3, (ii) triangles can be inscribed in

/3 which are self-conjugate for a, (iii) triangles can be circumscribed to a ichich

are self-conjugate for fi, (iv) triangles can be circumscribed to which are self-

conjugate for a, (v) triangles can be inscribed in o. and circumscribed to 0,

(vi) triangles can be insaibed in /3 and circumscribed to a.

On RP and RQ take L, V consecutive to i? ; on PR, QR take iJf, W
consecutive to P, Q ; on QP, PQ take N, N^ consecutive to Q, P. Then
consider the triangles (i) QRL, (ii) PRU, (iii) QPM, (iv) PQM% (v) RQN,
(vi) RPN'.

Ex. 15. If a triangle can be drawn inscribed in a and circumscribed to $ and
also a triangle self-conjugate for a and circumscribed to /3, then the conies a and0
are related as in Ex. 14.

At R, one of the meets of a and 0, draw RQ touching /3 and meeting a

again in Q ; draw the tangent at Q, and on it take N consecutive to Q
Then by the first datum QN touches /3, at P say. Then by the second
datum QR is the polar of P for a, i. e. PR touches a at R.

Similarly many other converses of Ex. 14 can be proved.

Ex. 16. The centre of a circle touching the sides of a triangle self-conjugate for

a rectangular hyperbola is on the r. h.

For triangles can be inscribed in the r. h. which are self-conjugate

for the circle. Now one triangle self-conjugate for the circle is Ofin',

and two of its vertices fifl' lie (at infi^nity) on the r. h. ; hence 0, the

centre of the circle, lies on the r. h.

Ex. 17. Given a triangle self-conjugate for a r.h., we know four points

on the r, h.

Viz. the centres of the touching circles.
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Ex. 18. Given a self-conjugate triangle of a conic and a point on the director,

shoic thatfour tangents are known, viz. the directrices of thefour conies which can

he drawn to circumscribe the triangle and to have the point as corresponding

focus.

Reciprocate for the point,

Ex. 19. The necessary and sufficient condition that triangles can he circum-

scribed to a circle which are self-conjugate for a r. h. is that the centre of the circle

shall be on the r. h.

Ex. 20. An instance of Ex. 14 is a rectangular hyperbola which passes

through the vertices of a triangle atid also through the centre of a circle touching

the sides.

This follo-ws from Ex. 15 and Ex. 19.

Ex. 21. If two conies /3 and 7 be so situated that one triangle can be circum- ,

scribed to $ so as' to be inscribed in 7, then an infinite number of such triangles
j

can be drauni, and all of these unll be self-conjugate for a third conic a ; also the i

two conies p and y are reciprocal for a.

The first part has been proved. To prove the third pai-t, notice that
ABC, A'B'ty are self-conjugate for a conic o. Define 7 by ABCA'B'

;

then since the polars of these points for a, viz. BC, CA, AB, BfCf, (fA'
touch i3, it follows that & is the reciprocal of 7 for a.

Again, take any point A" on 7, and let B" be one of the points in
which the polar of A" for a (which touches &) cuts 7. Let the polar of
B" for a (which touches iS and passes through A"') cut the polar of A''
in (f' . Then the triangle A"B''(y' is self-conjugate for a. Hence, since

two sides touch /S and two vertices are on 7, it is circumscribed to /3

and inscribed in 7.

Ex. 22. Frove by this article that ' The orthocentre of a triangle inscribed in a
rectangidar hyperbola lies on the r. h.'

The given triangle and the triangle formed by the orthocentre and
the points at infinity on the r. h. are self-conjugate for the polar circle.

3. The hvo triangles ABC, A'B'C are said to be reciprocal

for a conic if A be the pole of B'C, B of C'A\ C of A'B", A'
of BC, B' of CA and 0' of AB for the conic.

Tico triangles which are reciprocal for a conic are homologous ; i

(Old conversely, if two triangles he homologous they are reciprocal
I

for a conic.

Let the triangles ABC, A'B^C be reciprocal for a conic

;

then they are homologous. For let BG and B'C meet in TJ,

and let AA' meet BC inL and B'C" in L\ Then the polar

.of B is A^C^, the polar of C is A^B', the polar of U where
BC and B'C meet is A'A, the polar of L where BC and A'

A

meet is A'U. Hence {LBCU) of ^o\q^ = A' (UCB'V).
Hence (LBCU) = {L'B'C'U) ; hence the ranges (LBCU)
and iL'B'C'U) are in perspective. Hence LL', BB', CC
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meet in a point, i. e. the triangles ABG^ A'B^C are homo-
logous.

Let the triangles ABC^ A'B'C be homologous, then they

are reciprocal for a conic. For let BC and A'C meet in M.

By XXV. 1 2 describe a conic such that the triangle A'BM is

self-conjugate for it, and that A is the pole of B'C\
Then A^ is the pole of BC, B is the pole of A'C\ and A is

the pole of B'C^ Hence C is the pole of AB. Now let the

polar of C cut C'B' in B"', Then the triangles ABC and

A'B"G' are reciprocal and therefore homologous. Hence

AA', BB^', CC meet in a point. But AA\ BB\ CC meet

in a point. Hence B' and B" coincide, i. e. the triangles

ABC, A'BfC are reciprocal for the above conic.

Given a triangle ABC and a conic a, we can describe the

reciprocal triangle A'B'C', and then determine the centre

and axis s of perspective of the triangles ABC, A'B'C\ It

is convenient to call the pole and s the polar of the triangle

ABCfor the conic a.

Ex. 1. If two triangles be reciprocal for a conic, show that the centre of homology

of the triatigles is the pole of the axis of homology for this conic.

Ex. 2. BC, CA, AB meet any conic in XX', YY' , ZZ' , and the conic meets

AX again in L, AX' in L', BY in M, BY' in M', CZ in N, CZ' in N'. Show
Umt LU, MM', NN', meet BC, CA, AB on a line:

Viz. on the axis of homology oiABC and its reciprocal for the conic.
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Ex. 3. Amj triangle inscribed in a conic and the triangle formed by tJie

iatigents at the vertices are homologous.

Ex. 4. Hesse's theorem. If the opposite veiiices AA' and the opposite

vertices BB' of a complete quadrilateral be conjugate for the same conic, then the

opposite vertices CC are also conjugatefor this conic. {See also XX. i, Ex. ii.)

Let the triangle reciprocal to the triangle ABC for the conic be PQR.
Then QR passes through A% since A and A^ are conjugate. So RP
passes through B\ Hence PQ passes through C ; for the triangles ABC
and PQR are homologous. Hence C and C are conjugate.

Ex. 5. If two pairs of opposite sides of a complete quadrangle be conjugate for
the same conic, then the third pair is also conjugate for this conic.

Ex. 6. The points PP', Qq^,RR' divide harmonically the diagonals AA', BB^,
C(/ of a quadrilateral ; show that the six points P, P', Q, Q', R, R' lie on a conic.



CHAPTER XV.

pascal's theorem and brianchon's theorem.

Pascal's Theorem.

1. The meets ofopposite sides ofa hexagon {six-point) inscribed

in a conic are collinear.

Let the six points he A, B, C, D, E, F. Let the opposite

sides AB, BE meet in Jf, and the opposite sides BC, EF

^i
meet in N. Let AF meet 3ID in G, and let CB meet NF
in H. Then we have to show that MN, FG, HB are con-

current. This is true if {EMGB) = (ENFH), for the ranges,

having a common point, will be in perspective ; i.e. if

A {EBFB) = C{EBFB\
which is true. Hence the meet M of AB, BE, the meet N
of BC, EF, and the meet L of CB, FA are collinear.
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Conversely, if the meets of opposite sides of a hexagon {six-

point) are colUnear, the six vertices lie on a conic.

For if LMN are coUinear, we have (EMGD) = (ENFH).

Hence A (EBFD) = G(EBFD). Hence ^, JB, C, JD, E, F\ie

on the same conic.

The line LMN is called the Pascal line of the six-point

ABCDEF. Observe that for every different order of the

points A, B, C, D, E, F we get a different Pascal line.

Notice that if two consecutive points, e.g. B and G, coincide,

the side BC becomes the tangent at B or C.

Ex. 1. If AD, BE, CF meet in a point, the Pascal line is the polar of this

point.

Ex. 2. The triangles ABC, A'B'C^ are homologous. BC meets A'B' in Y
and A'C^ in Zf, CA meets B^C^ in Z and B'A' in X', and AB meets C'A^
in X and (fBf in F'. Show thai

BY . BZ'. CZ . ex. AX.AY^=CY. CZ' . AZ . AX\ BX . BY\

For XY'ZXYZ' lie on a conic.

Ex. 3. In every hexagon inscribed in a conic, the two triangles formed by

taking alternate sides are homologous.

Ex. 4. Six points on a conic determine 60 hexagons inscribed in the conic.

Ex. 5. The 60 Pascal lines belonging to six given points on a conic intersect

three by three.

Let the homologous triangles of any one hexagon be XYZ, X'Y^Z'.
Then XX', YY' , ZZ' meet in a point. Also XX' is the Pascal line of
CDEBAF, YY' of ABCFED, ZZ' of BCDAFE.

Ex. 6. Two triangles are inscribed in a conic. The sides of the one meet the

sides of the other in nine points. Show that any join of two of these nine points

is a Pascal line of the six vertices of the triangles^ unless it is one of the sides of
the triangles.

Ex. 7. ABC is a triangle inscribed in a circle. P is any point on this circle.

A perpendicular at P to PA meets BC in B, to PB meets CA in E, and to PC
meets AB in F. Show that LEF is a line parsing through the centre of the

circle.

Call the centre of the circle 0. Let PD, PE meet the circle in A', JS'.

Then AA'PB'BC proves that ODE are concurrent.

Ex. 8. Reciprocate Ex. 7, (i) for the circle itself, (ii) for any circle.

Ex. 9. IfAOA', BOB', COC, POP' be chords of a conic, show that the meets

qf PA, B'C, ofPB, CA', of PC, A'B', of P'A', BC, of P'B', CA and ofpfC,
AB all lie on the same line through 0.

Use {BCCP'A'A), {B'CCPAA'), {BAPP'CB').

Ex. 10. Taking the conic as a circle and as its centre, dedu^ by recipro-

cating for P the theorem—The orthocentre of a triangle ai)out a parabola is on the

directrix.
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Ex. 11. A, B,C, D, Fare any five points. EA, BCmeet in A' ; AB, CD meet

in B' ; BC, BE meet in (X ; CD, EA meet in 1/ ; BE, AB meet in E' ; and
AD, BC meet in F. Show that FB' touches the conic through A'B'CfD^E'.

Ex. 12. AA', BB', CCf are the diagonals of a complete quadrilateral, A'WC
heitig coUinear points. AO meets BC in M, CO meets AB in L, LM meets B'C
in N and AC in P. If PB and ON meet in R, show that R is the remaining

intersection of the conies 0BB!AA' and OBB'CC , and that OR is the tangeyit at

to the conic OCCAA'.

Consider the hexagons ORBA'BfA, ORBCB'C, and OOCA'C'A.

Ex. 13. ABC, A'B'Cf are coaxal triangles; AC and A'B' meet in P, AB and
A'C meet in Q ; show that BCB'C/PQ are on a conic.

Ex. 14. The chord QQ' qf a conic is parallel to the tangent at P, and the chord

PP' is parallel to the tangent at Q; show that PQ and P'Qf are parallel.

Consider PPP'qTQQ.

Ex. 15. TJie tangents at the vertices of a triangle inscribed in a conic meet the

opposite sides in three coUinear points.

Ex. 16. PQ, PR are chords of a parabola. PR meets the diameter through Q
in V, and PQ meets the diameter through R in U ; show tfiat UV is parallel to

the tangent at P.

Consider PPRCICIQ, where H is the point at infinity on the parabola.

Ex. 17. Deduce by Reciprocation a property of a cirde.

2. Since Pascal's theorem is true for a hyperbola however

near the hyperbola approaches two lines, it is true for two

lines, the six points being situated in any manner on the

two lines.

But each case may be proved as in § i.

Ex. 1. If any four-sided figure be divided into two others by a line, the three

meets of the internal diagonals are coUinear.

Let the four-sided figure ABCD be divided into two others ABFE,
EFCD. Now apply Pascal's theorem to ACEBDF.

Ex. 2. P, Q, R are fixed points on the sides MN, NL, LM of a triangle. A
is taken on MN, AQ meets LM in B, BP meets NL in C, CR meets MN in A',

A'Q meets LM in B', B'P meets NL in C' ; show that CA passes through R.

Consider the hexagon BQCA'PB'.

Ex. 3. On the fixed lines LM, MN, NL are taken the fixed points C, A, B.

On BC is taken the variable point P ; NP meets CA in Q, and MP meets BA in R.

Show thai RLQ are coUinear.

Consider ACMPNB.

3. IfOQand OR he the tangents of a conic at Q and M, and

ifP he any point on the conic, then PQ and PR cut any line

through in points which are conjugate for the conic.

Let PQ and PR cut any line through in i^ and G. Let

FR and GQ meet in U. Consider the six-point PQQURR.
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Then since the meets of opposite sides are collinear, the

six points lie on a conic. But five points lie on the given

conic ; hence the sixth point TJ also lies on the given conic.

Hence F and G are two harmonic points of the inscribed

quadrangle FQUR. Hence F and G are conjugate points.

Conversely, ifany two conjugate points lying on a line through

he joined to the points of contact of the tangents from 0, then

the joining lines meet on the conic.

Let F and G be conjugate points on a line through 0.

Join FQ cutting the conic again in P, and join PE cutting FG
in G'. Then F and G' are conjugate, and also F and G.

Hence G' coincides with G ; i. e. FQ and GR meet on the

conic. So FB and GQ meet on the conic.

Ex. 1. If PP' he conjiigate points for a central conic, and QQ^ he the ends of

the diameter which bisects chords parallel to PP' ; show that PQ, P'(^ cut on the

conic, and so do PQ', P'Q.

Ex. 2. IfR and R' he conjugate points lying on a diameter of a hyperhola,

sJiow that parallels to the asymptotes through R and R' cut again on the curve.

Ex. 3. TJie diameter hisecting the chord QQf of a parabola cuts the curve in P,

•I RR' are points on this diameter equidistant from P ; show that the other

twes joining QQfRR' meet on the curve.

Ex. 4k. IfF and G be conjugate points on PQ and PR, then FG and QR are

nmjugafe lines.

Ex. 5. The lines BC, CA, AB touch a conic at A', B', C. Show that an
finite number of triangles can be drawn which are inscribed in A'B'Cf and
'umscribed to ABC. Show also that each of these triangles is self-conjugate

j',i- the conic.

Through B draw any line meeting A'B^ in 7, and B'C in a. Let A y
meet (/A' in j8. Then 7 and a are conjugate, and a lies on B'Cf ; hence
a is the pole of ^y. So P is the pole of ya. Hence a$y is self- conjugate.
Hence a, fi are conjugate. Hence aj3 passes through C.

Brianchon's Theorem.

4. Hie joins of opposite vertices ofa hexagon (six-side) circum-

scribing a conic are concurrent.

Let the six sides be AB, BC, CD, BE, EF, FA. Let the

four tangents AB, CD, DE, EF meet the tangents FA, BC
in ASPF and BCQT. Then (ASPF) = (BCQT). Hence
D (ASPF) ^ E (BCQT). But the rays DP, EQ coincide.

Hence {DA ; EB) and {DS ; EC) and {DF ; ET) are collinear
;

i.e. {DA ; EB), and C and F are collinear ; i.e. DA, EB, CF
are concurrent.
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Conversely, \ftlie joins of opposite vertices of a hexagon (six-

side) are concurrent, the six sides touch a conic.

For if BA, EB, CF are concurrent, we have

d(aspf) = e(bcqt),

hence (ASPF) = (BCQT) ; hence the six lines AB, BG, CD,

BE, EF, FA touch the same conic.

The point is called the Brianchon point of the hexagon

ABCBEFA,
Notice that when two of the sides, e. g. CD and DE, coin-

cide, the point D becomes the point of contact of either CB
or BE,

Ex. 1. In every hexagon circufnscrihed to a conic, the two triangles formed by

taking alternate vertices are homologous.

Ex. 2. Six tangents to a conic determine 6o hexagons circumscribed to the

conic.

Ex. 3. The 6o Brianchon points belonging to six given tangents to a conic are

collinear three by three.

Reciprocate.

Ex. 4. The hexagon formed by the six lines in order obtained by joining

alternate pairs of vertices of a Brianchon hexagon is a Pascal hexagon.

For the triangles are coaxal.
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Ex. 5. Reciprocate Ex. 4.

Ex. 6. Three angles have colHnear vertices. Show that their six legs intersect

in twelve other points which can be divided in four ways into a Pascal hexagon

and a Brianchon hexagon.

Ex. 7. If two triangles he the reciprocals of one another for a conic a, the

meets of non-corresponding sides lie on a conic /3, and the joins of non-correspond-

ing vertices touch a conic 7 ; and j8 and 7 are reciprocals for a. If one triangle

be inscribed in the other, the three conies coincide.

Ex. 8. Steiner's theorem. The orthocentre of a triangle circumscribing a
parabola is on the directrix.

Let ABC be the triangle. Through Z, the meet of BC and the direc-

trix, draw the other tangent Zn where n is at infinity. Through Z',

the meet of CA and the directrix, draw the other tangent Z' D.' where
a' is at infinity. From the circumscribing six-side ABZD.n'Z'A we
conclude that ZZ', BCi' and ACi meet in a point. Now ZZ' is the
directrix ; BCi' \b & parallel through B to Z'r/, i.e. BCf is the perpen-
dicular from B on CA; so ^4. fl is the perpendicular from A on BC.
Hence these two perpendiculars meet on the directrix ; i.e. the ortho-
centre is on the directrix.

Ex. 9. The orthocentres of the four trianglesformed by taking three out offour
given lines are coUinear.

Ex. 10. ABCDEA is a pentagon circumscribing a parabola; show that the

prirallel through A to CD, and the parallel through B to BE meet on CE.

Ex. 11. ABCDA is a quadrilateral circumscribing a parabola; show that

fhe parallel through A to CD and the parallel through C to DA meet on the

'h'ameter through B.

Ex. 12. The lines AB, BC, CD, DA touch a conic in L, M, N, R ; show that

AC, BD, LN, MR are concurrent.

Consider ALBCNDA and ABMCDRA.

Ex 13. The lines BC, CA, AB touch a conic at L, M, N; show that AL,
BM, CN are concurrent

Ex. 14. The line C^B'A tmches a conic in P, ACB touches in P', BfCA' tmches
in Q and CBA' in Q". Show that A'P* , AQ meet on CC, and so do A'P, A(/.

Ex. 15. If two triangles be inscribed in a conic, their sides touch a conic.

Consider the Pascal hexagon ^^C^.^'E'C, and the Brianchon hexagon
BC, CA, A'C, CB', B'A', AB.

Ex. 16. If two triangles be circumscribed to a conic, their vertices lie on a
conic.

Ex. 17. IfAB and AC touch a conic at B and C, and A'B' and A'(f touch
(he same conic at B* and C, then ABCA'B'C' lie on a conic and the six sides

'ch a conic.

The proof is like that of Ex. 15.

5. If OQ and OR he the tangents of a conic at Q and R, and

f any tangent meet OQ, OR in K, L ; then the joins ofK and
L to any point E on QR are conjugate lines.

Let LE cut OQ in M, and let KE cut OR inK Consider

the six-side KL, LR, RN, NM, MQ, QK. Since ML, QR,

M
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KN meet in a point, the six sides touch a conic. But five

sides touch the given conic ; hence the sixth side MN also

touches the given conic. Hence ML, KN, being two har-

monic lines of the circumscribed quadrilateral KLNM, are

conjugate lines.

Conversely, if through any point E on QR any two conjugate

lines he drawn cutting OQ in M, K and OR in i, N, then MN
and KL touch the conic.

For if KL does not touch, let KL' touch. Then EL and

EL' are both conjugate to EK. Hence L and L' coincide.

Hence KL touches ; so MN touches.

Ex. L PardUd to a diameter of a conic are draum a pair of conjugate lines ;

show that the diagonals of the parallelogram formed by these lines and the

tangents at the ends of the diameter touch the conic.

Ex. 2. Tuxi parallel lines which are conjugate for a hyperbola meet the

asymptotes in points such that the other lines joining them touch the curve.

Ex. 3. If the tangents of a parabola at P and Q cut in T. and on the diameter

through P there be taken any point R ; show that RT is conjugate to the parallel

through R to the tangent at Q.

Ex. 4. TJirough a point on the chord of contact PQ of the tangentsfrom T to a
parabola are draum parallels to TP and TQ meeting TQ and TP in R and TJ

;

show that RU touches the parabola.
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HOMOGRAPHIC RANGES ON A CONIC.

1. Two systems of points ABC... and A'B'C... on a

conic are said to be homographic ranges on the conic when the

pencils P{ABC...) and Q(A'B'C'...) are homographic, P
and Q being points on the conic. Hence two ranges on

a conic which are homographic subtend, at any points on the

conic, pencils which are homographic.

To construct homographic ranges on a conic, take two

homographic pencils at points P and Q on the conic ; the

rays of these pencils will determine on the conic two homo-
graphic ranges. Given one of these pencils, three rays of

the other pencil may be taken arbitrarily. Hence given

a range of points on a conic, in constructing a homographic

range on the conic, three points may be taken arbitrarily.

2. If (ABC. .
.
) and (A'B 'G'...)'be two homographic ranges on

a conic, then the meet ofAB' and A'B, ofBC and B'C, and

generally ofPQ' and P'Q, where PP', QQ' are any two pairs of

corresponding points, all lie on a

line (called the homographic axis).

First consider all the meets

which belong to A and A\
These all lie on a line. For

A{A'B'C'...) = A\ABC..).
Hence all the meets (AB' ; A'B),

(AC; A'C), {AD'; A'D), ... lie

on an axis. So all the meets

which belong to B and B' lie on an axis. So for CC, BB',

M 2
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We have now to prove that all these axes are the same.

The inscribed six-point AB'CA'BC shows that the^meets

{AB'-, A'B\ (B'C; BC), {CA'; C'A) are collinear. Now
(AB'; A'B) and (CA'; C'A) determine the axis oi AA' ; so

{AB'] A'B) and (B'C] BC) determine the axis of BB'.

Hence the axes of AA' and BB' coincide ; i.e. every two

axes, and therefore all the axes, coincide. Hence all the

cross meets {PQ' ; P'Q) lie on the same line.

3. &iven three pairs of corresponding points ABC, A'B'C of

two homographic ranges on a conic, to construct the point D'
corresponding to D.

The meets {AB'; A'B) and (AC; A'C) give the homo-

graphic axis ; and we know that (AB' ; A'B) is on the homo-

graphic axis. Hence the construction—Let A'D cut the

homographic axis in 8, join J. 5, cutting the conic again in

the required point D\

4. Two homographic ranges on a conic have two common

points, viz. the points where the homographic axis cuts the

conic.

Let the homographic axis cut the conic in X and Y. To

get the point X ' corresponding to X, we join A' to X cutting

XY in X and then join AX cutting the conic again in X'.

Hence X' is X So Y' is Y.

And there can be no common point other than X and Y.

For if B and D' coincide, then each coincides with 5. Hence

2>, D' and 8 must be at X or Y.

5. Keciprocally, two homographic sets of tangents to a conic

can he formed hy dividing two tangents homographically in

ABC... and A'B'C'...; then the second tangents from ABC.
will form a set of tangents homographic with the second tangents

from A'B'C...

For any tangent will cut the two sets in homographic

ranges.

Again, all the cross joins will pass through a point called the

homographic pole ; and the tangents from the homographic pole
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wiU he the self-corresponding lines in the two sets of homographic

tangents.

This follows by Eeciprocation from the previous articles.

Ex. 1. 77?^ points of contact of two homogi-aphic sets of tangents are homo-
graphic ranges ; and conversely, the tangents at points of two homographic ranges

on a conicform homographic sets of tangents.

Ex. 2. If 00/ he fixed points on a conic and AA' variable points on the

conic, such that {OC/, AA') is constant ; show that A and A' generate homo-
'jraphic ranges on the conic of which and 0' are the common points.

Ex. 3. If the lines joining a fixed point P on a conic to the correspondiiig

points AA' of two homographic ranges on the conic cut the homographic axis

in aa', show that aa' generate homographic ranges, and that the ranges obtained

by varying P are identical.

For {XY, aa') is constant and independent of the position of P on
the conic.

Ex. 4. A conic is draion through the common points of two homographic
ranges AB..., A'B' ... on the same line. P is any point on the conic, and
PA, PA' cut the conic again in a, a' . Show that aa' generate homographic
ranges on the conic, and thai the ranges obtained by varying P are identical.

Ex. 5. Reciprocate Examples 3 and 4.

Ex. 6. The pencils A {PQR. . .) and A' (PQR...) are homographic. A line

meets AP in p, A'P in p', and so on. Show that there are two positions of the

line such that pp' = q^ = rr^ =
Viz. the asymptotes of the conic through AA'PQR... .

Ex. 7. The joins of corresponding points of two homographic ranges on a conic

touch a conic having double contact with the given conic at the common points of
the given ranges.

Let AA' cut XF in L, the tangent at X in a, and the tangent at Y
in a' ; let BB' cut XF in M, the tangent at X in b, and the tangent at
Y in b'. Let AB', A'B cut XF in K. Then

{ALA'a) = X{ALA'a) = {AYA'JC) == (BF^'X)
[since X, F are the common points]

= Y{BYB'X) = (Bb'B'M) = {B'MBb').

Now AB', LM and A'B meet in K. Hence ab' passes through K. So
a'b passes through K. Hence XF, ab', a'b are concurrent. Hence, by
Brianchon, a conic touching the conic at X and at F and touching -4^'

will also touch BB', and similarly CC, etc. (See also XXIX. 10.)

6. Given a conic and a ruler, construct the common points of

two homographic ranges on the same line.

Let the ranges be ABC... and A'B'C'-... Take any point

p on the conic, and let pA, pA\ pB, pB\ ... cut the conic

again in a, a', h, h\ .... The ranges abc... and a'Vc ... on the

conic are homographic ; for

{fihc.) =p{abc...) = {ABC.) = (A'B'C...)

= p(A'B'C'...) = (a'b'c'...).
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Now determine the homographic axis of the ranges (a?)C...)

and (a'feV...) by connecting the cross meets (a6'; a'6), etc.
;

and let this axis cut the conic in x and y. Then \ipx and py
cut AB in X and Y, X and Y are the common points of the

ranges ^5(7.. .and A'B^O'.,.,

For

{^KYABC.) =i? (XnJ5(7...) = (xydbc.) = {xya'h'c'...)

= p{xyaVc...) = (XYA'B'C...);

i,e. XY correspond to themselves in the ranges ABC... and

A'B'C'...,

Given a conic and a ruler, construct the common rays of two

homographic pencils having the same vertex.

Join the vertex to the common points of the ranges deter-

mined by the pencils on any line.



CHAPTER XVII

RANGES IN INVOLUTION.

1. If we take pairs of corresponding points, viz. AA\ BB\
CC\ DI)\ EE\ ... on a line, such that a cross ratio of any

four of these points (say AD\ C'E) is equal to the corre-

sponding cross ratio of the corresponding points (viz. A'D^

CE'), then the pairs of points AA\ BB', CC, ... are said to

be in involution or to form an involution range.

Or more briefly— If the ranges {AA'BB'CC'...) and

{A'AB'BC'C.-.) are homographic, then the pairs of points

AA\ BB', CC, ... are in involution.

To avoid the use of the vague word ' conjugate ' let us call

each of a pair of corresponding points, AA' say, the mate of

the other, so that A is the mate of A' and A' is the mate of

A. Let us call AA' together a pair of the involution.

There is no good notation for involution. The notation

we have used above implies that A and B are related to one

another in a way in which A and B' are not related ; and

this is not true. If we use the notation AB, CD, EF, ... for

pairs of points in involution, this objection disappears ; but

there is now nothing to tell us that A and B are corre-

sponding points.

2. The following is the fundamental proposition in the

subject and enables us to recognise a range in involution.

If two homographic ranges, viz.

(AA'BCD...) and (A'AB'C'D'...),

he such that to one point A corresponds the same point, viz. A',
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whichever range A is supposed to belong to, the same is true of

every other point, and the pairs of corresponding pointsAA\ BB',

CC, DD', . . . are in involution.

We have to prove that

{AA'BB'GC'BD'. . .) = (A'AB'BC'CD'B

.

.
.),

given that {AA'BCB ...) = (A'ABX'D'. . .).

Now if P be considered to belong to the first range, its

mate P' in the second range is determined by the equation

(AA'BP) = {A'AB'P').

Let P be B^, then the mate P' of B' is given by the

equation {AA'BB') = {A'AB'P'). Now we have identically

{AA'BB") = (A'AB'B). Hence P' is B. Hence B has the

same mate, viz. B\ whichever range it is considered to

belong to. Again, we may consider the homography to be

determined by the equation (AA'CP) = (A'AC'P') ; hence,

as before, Chas the same mate in both ranges. Similarly

every point has the same mate in both ranges, i.e.

{AA'BB'CC.) = {A'AB'BC'C...).

The commonest case of this proposition is

—

// {AA'BG) = (A'AB'C)

;

then AA', BB', CC are in involution.

Two pairs ofpoints determine an involution.

For the pairs of points PP' which satisfy the relation

(AA'BP) - {JlAB^P') are in involution.

Ex. 1. //(CB, AA') and ((fBf, AA') he harmonic, then {AA', BB', CCf)

are in involution.

Ex. 2. If {CA, A'B") = (AB, A'C) = - 1, then {AA% BBf, CCf) is an
involution.

Ex. 3. 1/ {AA', BC) --= {BBT, CA) = {CC, AB) = -i,

show that {A'A, B'C) = {BfB, CA") = {CfC, A'Bf) = -i,

and that {AA' , BC, B'C), {BB\ AC, A'C) and {CCf, AB', A'B) are involu-

tions.

Project the range so that A goes to infinity.

Ex. 4. If (AB, XX') = (CD, XX'), where A, B, C, D are fixed points on

the same line, then X and X' generate homographic ranges.

For (AB, XX') = {BC, X'X), hence {AB, BC, XX') is an involution.

Hence {ADBX) = {DACX').

C^t \Ex. 5, ABC a7id A'B'Cf are homologous triangles. BC and BfCf meet in X,
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CA and (fA' meet in Y, and AB and A^Bf meet in Z. OAA\ OBB', OC(f
meet the line XYZ in JC,Y\ Z\ Show that {XX', YY', ZZ') is an involuti(m.

For {XX'Y'Z') = 0{XABC!) = A (XOBCf) = {XX^ZY) = (X'XFZ).

3. To construct with the ruler only the mate ofa given point

in a given involution.

Let the involution be determined by the two pairs AA',

BB". Take any vertex F,

and let VA, VA\ VB,

VB', &c. cut any line in

a, a', h, b', &c. Then the

ranges AA'BB'... and

a'ab'h... are homographic

;

ioT{a'ah'h...)={A'AB'B...)

by projection through

F=(^^'^^...) by invo-

lution. Construct the homographic axis Afx of these ranges.

We observe that Y is on Afx, being the cross meet {Aa
;

A'a'). Take any point X on AA\ Let Xa' cut X\x in f.

Let A^ cut m' in x\ Let Yx' cut AA' in X\ Then X' is

the mate of X in the given involution. For

{XAA'BB'...) = (x'a'ab'h...) by the homographic axis

= {X'A'AB'B...) by projection through F.

Hence {XAA'BB'...) = (X'A'AB'B...), Hence X' is the

mate of X in the involution.

4. IfAA'y BB'j CC be three pairs of points in involution,

tJie following relations are true, viz.

AB'. BC. CA' = -A'B. B'C. CA,
AB'. BC. C'A'= - A'B. B'C. CA,

AB . B'C. CA'= - A'B'. BC . CA,
AB . B'C. C'A'= - A'B'. BC. CA.

Take any one of the relations, viz.

AB.B'C. CA'= - A'B'. BC. CA.
This is true if AB/BC-^AC/i = -A'B'/B'C-^A'C/i,
i.e. if AB^ BC^AC/CC = A'B'jB^C-^A'C/CC,

i.e. if {AG, BC) = (A'C, B'C).

And this is true ; hence the relation in question is true.
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Similarly the other relations can be proved.

Convei-sely, if any one of these relations be true, then AA\
BB', CC are in involution.

For suppose AB , B'C, CA'= - A'B', BC , G'A ; then as

above {AC, BC')= (A'C\ B'C) ; hence AA;, BB\ CC are m
involution.

Remark that, given one of these relations, the others

follow at once. For in the definition of involution, there is

no distinction made between two corresponding points.

Hence in any relation connecting the points, we may inter-

change A and A',ov B and B\ or C and C, or we may make
any of these interchanges simultaneously.

To obtain the second relation from the first, we inter-

change C and C, to obtain the third we interchange B and

jB', to obtain the fourth we interchange B and B' and C and

C simultaneously.

Ex. 1. If {AA\ BB^, CC) he in involuHon, then

{A'A, BC) . {B'B,CA) . (CC, AB) = -i.

Ex. 2. Circles of a coaxal system whose centres are A, B, C touch the sides

of a triangle LMN in P, Q, R, and circles of the same system whose centres are

A' , B', C pass through the vertices of the triangle; if PQR he a line, then

(AA% BB^, CCf) isan involution.

For LR^ : LQ^ :: A'C : A'B,

5. IfAA\ BB\ CC\ ...he in involution, and if any fixed

pair of corresponding points TJU' he taken as origins, and ifPF^

be any variable pair of corresponding points, then

UP, UP'-^U'P, U'P'
is constant.

It will be sufficient to prove that

UP, UP'-^ U'P, U'P'= UA , UA'-r- U'A . U'A\

where AA' is a fixed pair of corresponding points. This is

iTMQ^iPU/UA^PU'/U'A = P'U'/U'A'-^P'U/UA', i.e. if

{PA, UU') = {P'A\ U'U), And this is true; hence the

relation in question is true.

Particular cases of this theorem are

—

AB,AB-^A'B,A'B'= AC, AC'-r-A'C, AX',

CA . CA'h- CA , CA'= CB .CD'-^ CD . C'D\
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Conversely, if TJTJ' he fixed points, and if PP' he variable

points such that UP, UP'-^ U'P, U'P' is constant; then PP'
generate an involution in which UU^ are corresponding points.

For take any point vl and let A' be the position of P' when
P is at A. Then

UP. UP'--- U'P. U'P'= UA . UA'-^ U'A . U'A';

hence (PA, UU') = {P'A', U'U), i.e. P and P' are corre-

sponding points in the involution determined by the two

pairs AA', UU\

6. In an involution range, if any two of the segments AA\
BB', .

.

. hounded hy corresponding points overlap, then every two

overlap ; and if any two do not overlap, then no two overlap.

For suppose AA' and BB" overlap, then any two others

CC and DB' overlap.

A B A^ B'

AB.AB' AG. AC
For

A'B.A'B' A'CA'C
But since AA' and BB^ overlap, the sign of

AB.AB'-^ A'B.A'B'

is -. Hence the sign of AG . AO'-^ A'C . A'C is -.
Hence AA' and GG' overlap ; for if AA' and GG' do not

overlap, the sign of this expression is + , as we see from the

figures

—

A A' Q' A Q C A'

We have shown that if AA^ and BB' overlap, then AA' and
GG' overlap. Hence, since GG' and AA' overlap, it follows

that GG' and J)J)' overlap, i.e. that every two such segments

overlap.

Conversely, suppose AA^ and BB' do not overlap, then GG'

and J)T>' do not overlap ; for if they do overlap, by the first

part of the proof it follows that AA' and BB' overlap.

7. The centre ofan involution range is the point correspond-

ing to the point at infinity.

If Ohe the centre of the involution of which P and P' are a
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yair of corresponding points, then OP . OP^ is constcmt ; and,

conversely, if a pair ofpoints P and P' he taJcen on a line, such

that OP . OP' is constant, then P and P' generate an involution

range of which is the centre.

Let be the centre of the involution range (AA', BB',

PP', ...). Then X2' being the point at infinity upon the

line, we have by definition

{OQfAA'BB'PP') = ia'OA'AB'BP'P)
;

.-. {Oa\AP) = {a'0,A'P')',

.-. OA/A^'-r- OPIPQI= ^'A'lA'O-^^'P'IP'O,

and ^i2'=P12' and Q!A'= QfP'
;

.-. OP, 0P'= OA . 0A\ which is constant.

Conversely, if OP, OP^ be constant, let A' be the position

of P' when P is at A, Then we have OP . 0P'= OA , 0A\
Hence by writing the above steps backward we get

(0^'AP) = {il'OA'P'),

where Q/ is the point at infinity on the line. Hence P and

P' are a pair of corresponding points in the involution

determined by (Oil', AA^), i.e. P and P' generate an involu-

tion of which is the centre.

Ex. 1. JfObe the centre of the invduiion {AA, BB', C(f, .,,), shoic that

AB . AB"^ A^B . A'B" = AO ~ A'O.

To prove this, make the relation projective by introducing infinite

segments in such a manner that the same letters occur on each side

of the relation. We get

AB . AB' ~ A'B . A'B' = AO .A n'^ A'O . A'n^,

and this is a particular case of the theorem

AB.AB'-i-A'B.A'B" = AC . AC-^ A'C . A'Cf.

Ex. 2. Show that OA :0B :: AB^ : BA' ; and deduce three other rdatimu
hy interchanging corresponding points.

Ex. 3. If a bisect AA' and /3 bisect BB', show that

(a) a.AO.afi ^ AB . AB' ;

(b) 4 . a . aiS =^ AB . AB' + A'B . A'B' ;

(c) 2 . AA' .a0 = AB. AB'-A'B . A'B'.

For if be origin, then oaf = bV.

Ex. 4i.IfR bisect CC and R' be the mate of R, then RC^ = RR'. RO.

Ex. 5. Any two homographic ranges, whether on the same line or not, can

be placed in two ways so as to be in involution.

Viz. by placing I on J' and placing A and A' on the same or opposite

sides of I.
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Ex. 6. Of the two involutions one is overlapping and the other not.

Ex. 7. Any line through the radical centre of three circles cuts them in a
range in involution.

8. A point on the line of an involution range which

coincides with its mate is called a double point (or focus) of

the involution.

An involution range has two, and only two, doublepoints ; and

the segment joining the double points is bisected by the centre and

divides the segment joining any pair of corresponding points

harmonically.

If AA', PF' be two pairs of corresponding points of an

involution whose centre is 0, we have seen that

OP. 0P'= OA. 0A\

Suppose P and P' coincide in E. Then 0E^= OA . 0A\
hence OE = ± ^OA . OA'. Hence there are two double

points, i/and Fsaj, which are equidistant from 0. Also, since

0E^= 0F''= OA . OA' and bisects EF, it follows that

(AA', EF) is harmonic, i.e. EF divides the segment joining

any two corresponding points harmonically.

Notice that the centre is always real, being the mate of the

point at infinity. But the double points will be imaginaiy

when OA . OA' is negative, i.e. when lies between A and

A'. TJie double points cannot coincide, for then each coincides

with 0, in which case OA . 0A'= 0E^= o ; i e. A or A'

coincides with 0, and ^' or J. is anyAvhere, i. e. half the

points are at and half are indeterminate, i. e. the involu-

tion is nugatory.

9. Hie doublepoints ofan overlapping involution are imaginary

and those of a non-overlapping involution are real.

Take the centre of the involution. Then

OA . 0A'= 0B.0B'='"= OE'=OF\

Now in an overlapping involution 012'' and AA^ over-

lap, i. e. lies between A and A'. Hence OA . OA' is nega-

tive, i. e. OE^- and OF' are negative, i.e. E and F are

imaginary.
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Similarly in a non-overlapping involution, O'E} and OF'^

are positive. i.e. Tl and JPare real.

An overlapping involution is sometimes called a negative

involution and a non-overlapping involution is called apositive

involution.

Ex. 1. If E and F divide harmonically the segments AA\ BB', CC, ... ,

show that {AA\ BBf , CCf,...) is an involution.

Bisect the segment EF at 0. Then
OA . OA' = OB.OB'=^ .>' = OFT:

Ex. 2. IfE and F be the double points of{AA', BB", CC,...), show that

AB . AB'-^ A'B . A'B' = AE^-^A'FP.

_ „ ,, AB.AB' AE.AF

Ex. 4. Also AB'. BE . EA'= -A'B . B'E . EA.

Ex. 5. Also EF^. a/3' = AB . AB'. A'B . A'B".

For EF = 2 . OE = se if aa'= e^.

Ex. 6. Also ^.aP.aE = {^>s/AB . ABf + 's/A'B . A'B!^.

"ifs Ex. 7. If the segments AA^, BB',... joining corresponding points have the

same middle point, show that AA', BB^,... form an involution; and find the

centre and double points.

Cf the point at infinity and E the middle point are harmonic with
every segment AA\ Hence fl', E are the double points and n' is the
centre.

Ex. 8. If AA', BB' be pairs ofpoints in an involution, one of whose double

points is at infinity, then AB — —A'B!.

For E the other double point must bisect AA' and BB!

.

^ Ex. 9. If any two segments AA', BB' joining corresponding points in an
involution have the same middle point, then all such segments have the same
middle point.

For the other double point must be n'.

Ex. 10. IfAP.AP'= A'P.A'P'. show that the points P and P' form an
involution in which A and A' are corresponding points ; and find the centre

and double points.

Ex. 11. If any transversal through V {the internal vertex of the harmonic

triangle of a quadrilateral circumscribing a conic) cut the sides in AA' , BPf
and the conic in PP' ; show that yAA', BB', PP') is an involution, the double

points being V and tfie meet of UW with the transversal.

Ex. 12. Through a given point draw a line meeting two conies {or two

pairs of lines) in points AA', BB' such that {OAA'BB') = {OA'AB'B).

Join to the meet of the polars of 0.

Ex. 13. If ABC... ^ A'B'Cf... be two homographic ranges on the same line,

and if the mates ofP (= Q') be P' and Q, we knoiv that Hie ranges A and A'
and the ranges P' and Q have the same common points {E, F say) ; show that

P has the same fourth hannonicfor P'Q and for EF. (See X. 7. Ex. 4.)
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We have only to prove that P (= Q') is one of the double points of
the involution determined by P'Q, EF.

Now {PQEF) = {P'OfEF) from the first homography
= (P'PEF) = iPFFE).

Hence P'Q, EFy PP are in involution, i.e. P is a double point of the
involution.

Ex. 14. With the same data, P and the fourth harmonic of P far P'Q

generate an involution.

10.-4 system of coaxal circles is cut hy any transversal m
pairs ofpoints in involution.

For if the transversal cut the circles in AA% BB\ CC\ ...

and the radical axis in 0, then

OA,OA'= OB,OB'= OC. 0C'=....

Hence AA', BB\ CC, ... form an involution of which is

the centre.

Ex. 1. Give a geometrical construction for the double points of the involution

determined on a line by a system of coaxal circles.

Ex. 2. A line touches two circles in A and A' and cuts a coaxal circle in

B and B' ; show that {AA' , BJ^) is harmonic.

Ex. 3. Of the involution determined by a system of coaxal circles on the line

of centres, the limiting points are the double points.

Ex. 4:. If a line meet three circles in three pairs of points in involution, then

either the circles are coaxal or the line passes through their radical centre.

Ex. 5. If each of the sides of a triangle meet three circles in pairs of points

in involution, the circles are coaxal.

Ex. 6. The three circles drawn through a given point F, one coaxal with the

circles a and 0, one coaxal with the circles /3 and 7, and one coaxal with the

circles 7 and a, are coaxal.

Let two of the circles cut again in F', and consider the involution
on vr.

Ex, 7. Two circles a and $ are dravm having the radical axis p with the

circle 7, and S and e are dravm having the radical axis q with 7 ; show that th«

meets of ad and of fie are concyclic.

Consider the involution on the radical axis of a and 5.

11. IfEF he the double points of an involution of whichAA^
and BB' are any two pairs of corresponding points, then {AB%
A^B, EF) are in involution, and so are {AB, A'Bf, EF),

For (AB', A'B, EF) are in involution if

[ABEF) = {B'A'FE), i.e. = (A'B'EF)
;

and this is true, for E corresponds to itself and so does J^.

Similarly {AB, A'B^, EF) are in involution.
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Ex. 1. Prore the following construction for the double 2)oints of the involution

AA\ BB'^ CC,... viz.— Take any point P and let the circles through PAB' and
PA'B cut in Q ; so let the circles through PAB and PA'Bf cut in R ; then the

circle through PQR cuts AA' in tJie reqiiired double points.

For if the circle through PQR cut AA' in EF, then from the radical

axis PQ we see that {AB', A'B, EF) are in involution ; hence

(ABEF) = {B'A'FE) = {A'B'EF).

So from the radical axis PR, we get {AB'EF^ = {A'BEI^.

Hence {ABEFB') = {A'B'EFB).

Hence EF are the double points of the involution determined by AA'
and BB'.

Ex. 2. J/" E and F be the limiting points of the circles on the colUnear

segments AA' , BB' as diameters, show that the circles on AB, A'B', and EF
n,s diameters are coaxal.

Ex. 3. IfE,F he the common points oftlis two homographic ranges {ABC...)

and {A'B'Cf...), then AB', A'B, EF are in involution.

Ex. 4. Prove the follounng construction for the common points of the two

homographic ranges (ABC.) and (A^B'C.,.)—Take any point P and let the

circles PAB' and PA'B cut in Q, and let the circles PAC and PA'C cut in R;
then the circle PQR wiU cut AA' in the required points.

Ex. 5. Given two pairs of points AA', BB' of two homographic ranges and
one common point, construct the other.

12. IfAA\ BB', CC he pairs ofpoints in involution, and if

P, Qf R he tJie middle points ofAA', BB', CC, show that

A'A\ QB+ B'B". JRP+ CC. PQ+4PQ' QB-BB = o
;

and if U he any point on the same line, then

(AlP + A'W) QB+(BTP + B'IP) BP+iCW-hCU'jPQ
= -4PQ. QB.BP.

Take the centre of the involution as origin and use

abridged notation ; then if OA'=ai, and so on,

A'A^= (a— aif= a^ \- a^— 2aa^= {a-\-a^Y-Aaa^.

But «+ «!= 2p and QB = r—q,

and ««!= &6i= cc^= A, say;

.-. A'A\QB = {AP'-A^){r-q)',
.', I.(A'A\ QB) = 4 :^p'(r-q)-4^^(r-q)

= -4(q~p){r-q) ip-i)

^-4PQ. QB.BP.
Again, if x be the distance of U from the origin

ATP= ix-ay.
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Hence ^{{AV^ A'V) QB]
= 2{[2^2-2a;(a+ aJ + a^ + a/] (r-g)}

= 2x^ 2{r—q)—x^p(r~q)
+ 2 [a^ + af— 2 aaj+ 2 A} (r—q)

= 2A'A\ QB
= - 4PQ,QB,BP by the former part.

Ex. 1. With the same notation, show that

AB . AB'/A C. AC= PQ/PR.

Ex. 2. Also ifE he a double point, then

A'A^/PE-B'B^/QE = 4PQ.

Ex. 3. Also, X being any point on the same line,

XA . XA'. QR + XB. XBf . RP + XC. X(f. PQ = o.

Ex. 4. Also XA . XA' . EF-¥XE^. FP + XI^ . PE = o.

Ex. 5. Also XA . XA' -XB . XBf + ^PQ . XO = o.

Ex. 6. Also RCf^.PQ = RA. RA\ QR + RB. RB' . RP.

Ex. 7. Given two coUinear segments AA' , BB', determine a point C swh
that CA.CA' -.CB.CB' '.:K:i.

Determine the point R from the relation RP : RQ : : A. : i.

Through any point V draw the two circles VAA', VBB' cutting again
in V . Draw the circle through VV, having its centre on the perpen-
dicular to AA' through R. This circle will cut AA' in the required
points (see Ex. i).

13. Take any point Y on the line of the involution.

Then OA=yA-YO = x-r, say ; so OA'— ocf-r.

. '. OA . 0A^= constant gives (x-r) (x' —r) = constant.

Hence the distances of pairs ofpoints in an involution from
any point on the line satisfy the relation Tcxxf -\- 1 {x->t xf)-\- n = o,

where h, I and n are constants.

Conversely, if this relation he satisfied, the pairs of points

form an involution.

For 7cxx'-^l{x+ x') + n = o can be thrown into the fomi

(x—r) {x' — r) = constant ; which is the same as

OA . 0A'= constant.

Or thus. If {AA% BB\ CC, ...) be in involution, then

{AA'BB'CC, .,.) is homographic with {A'AB'BC'C, ...).

Hence corresponding points in the two ranges are connected

by a relation of the form xx' -\-lx-\- mx' -\-n = o. Also, as there

is no distinction in an involution between J. and J.', we must
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have I = m. Conversely, if a?a/+ ? (a?+ a?') + w = o, A and A'

generate homographic ranges in which A and A^ are inter-

changeable. Hence A and A' generate an involution.

Ex. 1. Blwu) that P, P' determine an involution if

AP . B'F' +\.AP+fi. B'P' + 1/ = o,

provided X— /* = AB'.

Ex. 2. Show that P, P' determine an involution if

z.AP.BP' = AB.PP' ;

and that A and B are the double points.

Ex. 3. Show that P, P' determine an involution ifAP + B'P^ = v ; and that

on^ double point is at infinity. Find also the second double point.

14. If {AA\ BB'y CC^) le pairs ofpoints of an involution,

CA ^^, CB ^,, CB' .^
then -^^,,BB'^~^,~..BA,.-^.AB^o,

We have to prove that

CA . BB\ C'B^. C'B+ CB.B'A, CA\ C'B

+ GB'.AB, G'A'.C'B'=o.

This relation is of the first order in A and in A'. Consider

the points X, X! connected by the relation

CX . BB'. C'B', C'B+CB . B'X . C'X\ C'B

\-CB',XB.C'X\G'B'=zo.

Reducing to any origin, this relation assumes the form

xxf + lx-\-mx'+n = o.

Hence X and X' generate homographic ranges.

Now the relation is satisfied by X = C and X^= C, and

by Z = J5 and X'= B', and hy X = B' and X'= B. Hence

the homography is that determined by (CBB') — {C'B'B)j

ie. is the given involution. Hence the above relation be-

tween X and X' is satisfied by any corresponding pair of

points of the involution. Hence the relation is satisfied if

we replace X, X' by J., A'.

-n. 1 o. ., . . ., AB.A'C AB'.A'(y
Ex. 1. Show that AA' =

^^ + ~Wa~ '

_ „ ^, AB.A'C AA'.B'Cf
^^•^'^^0 ac7a^^ab^7a^ = ''

Ex.3, ^teo ^^,B(r+-^.C'A^AB.
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c- = ., ,„ AC. AC BC.BCf
^.5. Also AB = -^ ^^.
Ex. 6. Also, P being any point on the same line,

§^.BB'.PA'^§^.B'A.PB'^^.AB.PB^O.

C.A CTi
Ex. 7. Also —- . BC. PA' + —-r . CA . PB' = AB . PC.

(JA' CfB'

N 2



CHAPTEE XVIII.

PENCILS IN INVOLUTION.

1. The pencil of lines VA, VA\ VB, YB", VC, VC, ... is

said to form a pencil in involution if

Y{AA'BB'CG\..) = V(A'AB'BeC...y

Any transversal cuts an involution pencil in an involution

range ; and, conversely, the pencil joining any involution range

to any point is in involution.

Let a transversal cut an involution pencil in the pairs of

points AA', BB', CC% .... Then, since

V(AA'BB'CG'...)= V{A'AB'BC^C...),

we have Y{AA'BC) = ViA'AB'C) ; hence

(AA'BC) = (A'AB'C).

Hence (7, C are a pair in the involution determined by the

pairs AA', BB'. Similarly for any other pair of points in

which the transversal is cut by a pair of lines of the invo-

lution pencil.

Conversely, ii {AA'BB'CC...)-={A'AB'BCC...\ we have

[AA'BC) = {A'AB'C) ; hence Y(AA'BC) = V{A'AB'C').

Hence VC, YC are a pair of rays in the involution pencil

determined by V{AA\ BB'). So for any other pair of

corresponding rays.

Ex. 1. If V he any point on the homographic axis of the two homographic

ranges {ABC ...) = {A/B'C ...) on different lines ; show that

ViAA',BB',C(/,...)
is an involution pencil.

Let J:^Y be the mates of the point X(= F') where AB and A'B*

meet. Then F is on XT. Hence

ViZX'ABC.) = V{XYABC...)
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= ViX'Y'A'B'Cf...) by homography -= V{X'XA'B'a ...).

Hence V{XX', AA% BB", ...) is an involution.

Ex. 2. Reciprocate Ex. i.

Ex. 3. Two homographic pencils have their vertices at infinity. Show that

any line through their homographic pole determines an involution of which the pole

is the centre.

Ex. 4. Any two homographic pencils can he placed in two ways so as to be in

inrolution.
.

Let the pencils be V(ABC...) = F' (A^B^ (/...). First, superpose the

pencils so that V is on F' and VA on V^A^. This can be done in two
ways. Let VX ( = F'X') be the other common line of the two pencils

V{ABC...) = V(AB^C'...). Then in the original figure AVJr=^ A'V^Z'.
Second, place F on V and VA on F'X' and VX on V'A'. The two
pencils are now in involution ; for VA ( = V'X') has the same mate,
viz. V^A' ( = VX) whichever pencil it is supposed to belong to.

If the vertices are at infinity, place the pencils so that all the rays

are parallel. Let any line now cut them in the homographic ranges
{ahc...) = (a'ftV...). Now slide (a'&V...) along (a&c ...) until the two
ranges are in involution (either by Ex. 5. of XVII. 7, or by a construc-

tion similar to the above).

2. A pencil of rays in involution has two double rays (i.e. rays

each of which coincides mth its corresponding ray), and the

double rays divide harmonically the angle between every pair of

rays.

Let any transversal cut the pencil in the involution

(AA\ BB% CO', ...), and let E, F be the double points of

this involution. Then the ray corresponding to VE in the

pencil is clearly VE itself. Hence VE is a double ray. So

VF is a double ray. Also (AEA'F) is a harmonic range
;

hence V(AEA'F) is a harmonic pencil. Similarly VE, VF
divide each of the angles BVB\ CVC% ... harmonically.

There is nothing in an involution pencil which is analo-

gous to the centre of an involution range. In fact the point

at infinity in the range AA', BB\ CC, ... will project into

a finite point on another transversal, and will project into

the mate of this finite point.

If, however, V is at infinity, i.e. if the rays of the pencil

are parallel, then all sections of the pencil are similar, and

there is a central ray which is the locus of the centres of all

the involution ranges determined on transversals.

Ex. 1. If the angles AVA% BVB% CVC^,... he divided harmonically hy the

^ame pair 0/ lines, the pencil V {AA', B&, CC,...) is in involution.
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Ex. 2. If the angles be bisected by the same line, then the pencil is in

involution.

Ex. 3. If the doiMe rays of a pencil in involution be perpendicular, tJiey

bisect all the angles bounded by corresponding rays.

< Ex. 4. If two angles AVA', BVB' bounded by corresponding rays of a pencil

j in involution have the same bisectors, then all such angles have the sanu

] bisectors.

Ex. 5. Find the locus of a point at which every segment (AB) of an in-

volution subtends the same angle as tlie corresponding segment {A'B').

The circle on EF as diameter.

Ex. 6. Through any point are drawn chords AA^, BB', CCf, ... of a

conic ; show tluit AA' , BB' , CC subtend an involution pencil at any point oftht

polar of 0.

Ex. 7. Reciprocate Ex. 6.

Ex. 8. IfABA'B' be four points on a conic, and if through any point on

the external side UW of the harmonic triangle of ABA'B' there be drawn two

tangents OT and OT to the conic ; show that {AA', BB', TT') is a pencil in

involuMon, the double lines being OU and OV.

Ex. 9. Through a fixed point is drawn a variable line to cut the sides q/" a

given triangle in A'B'Cf ; find the locus of the point P such that

{PB', A'a) =-i.
Now B (AC, B'P) = -

1 , . *. BB' and BP generate an involution

.-. B{P) = B{B') = 0{B') = 0{P),

. *. the locus is a conic through B and 0.

3. If AYA\BVB^, CYC, ... U all right angles, then the

pencil y(AA', BB\ CC\ ...) is in involution.

Wg have to show that

V{AA'BB'CC'...) = V{A'AB'BC'C...).

Produce AVto a, BVto h, and so on.

Then if we place VA on VA^, VA' will fall on Va, and

60 on. Hence the two pencils

V{AA'BB\..) and V{A'aB'b...)

are superposable and therefore homographic. But

V{A'aB'b...)

is homographic with V{A'AB'B...) ; hence V(AA'BB\..)

and V(A'AB^B...) are homographic.

Otherwise

:

—From the vertex V drop the perpendicular VO
on any transversal AA'BB\... Then, since AVA' is a right

angle, we have VO' = AO . 0A\
Hence OA . 0A'= OB. 0B'= 0C.0C'= - •
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Hence {AA\ BB% CC\ ...) is an involution range.

Hence Y{AA\ BB\ CG\ ...) is an involution pencil.

Ex. If through the centre of an overlapping invohition {AA' ^ BB^, ,,.), there

. drawn VO perpendicular to AA' and such that ¥0"^= AO , OA' , then any four
points of the involution subtend at V a pencil superposable to that subtended

by their mates.

4. In every involution pencil, there is one pair of correspond-

ing rays which is orthogonal ; and if more than one pair he

orthogonal, then every pair is orthogonal: (See also XX. 6.)

Take any transversal cutting the pencil in the involution

(AA', BB", CC\ ...). Through the vertex Fdraw the circles

VAA', VBB' cutting again in V. Let VV cut AA' in 0.

Then OA . 0A'= OV. 0Y'= OB . 0B\ Hence is the

centre of the involution. Hence

OG, 0C'= OA . 0A'= OV. 0Y\
Hence the four points V, Y% C, C are concyclic.

In this way, we prove that all the cii'cles YAA% VBB%
VCC\ ... pass through V\ Also every circle through W^
cuts AA' in a, pair of points JPP' of the involution ; for

OP. 0B'= OV. 0V'= OA . 0A\

Let the line bisecting VV^ at right angles cut AA' in Q.

Describe a circle with Q as centre and with QF as radius,

cutting AA' in BP\ Then P, P' are a pair in the involution,

and FVP' is a right angle.

This construction fails in only one case, viz. when VV is

perpendicular to AA\ In this case, the orthogonal pair are

VV and the perpendicular to VV^ through V.

Also if two pairs are orthogonal, every pair is orthogonal.

For suppose AVA\ BVB' are right angles. Then the

centres of the circles AVA' and BVB' are on AA\ Hence

AA' bisects FF' orthogonally. Hence the centres of all the

circles AVA\ BVB\ CVG% ... are on AA\ Hence all the

angles AVA', BVB", GVG', ... are right angles.

Ex. 1. Show that a given line VX through the vertex always bisects one of the

angles AVA' , BVB' , ...of an involution ; and if it bisect two of the angles, it

I'isects all. Discuss the case when VX is perpendicidar to one of the double rays.

Take AA' perpendicular to VX, and take the centre of the circle

on VX.
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Ex. 2. Show that the pencils

V {AA', BB', CC, ...) and V {A'A, B'B, CC, ...) of § 4

are superposable.

For ZAVB' is equal to LA'V'B or its supplement.

Ex. 3. Qitefn two homographic pencils, we can always find in the first pencil

rays VA, VB^ and in the second pencil corresponding rays VA' , V'B' ^ such thai

both AVB and A'VB' are right angles. Can more than one such pair exist ?

Ex. 4. {AA',BB' , C(/,...) is an involution. Show that the circles

PAA', PBB', PCC, ...,

where P is any point, are coaxal.

Ex. 5. Deduce a construction for the mate of a given point in tlie involution.

Ex. 6. Also given AA' and BB\ and the middle point of C(/, construct

C and Cf.

Ex. 7. Given two segments AA', BB' of an involution, construct geometrically

the centre 0.

Ex. 8. Given a segment AA' of an involution and the centre 0, construct the

mate of C.

Ex. 9. Given two involutions {AA', BB', .,.) and {aa', W, ...) on the same
line : find two points which correspond to one another in both involutions.

Ex. 10. If any two circles be draum through AA' and BB', their radical

axis passes through 0.

Ex. 11. If A, A' generate an involuiion range, and QA be perpendicular to

PA and QA' ie PA'j show that if P be a fixed point, then Q generates

a line.

For the locus of the centres of the coaxal circles PAA' is a line,

5. Every overlapping pencil in involution can he projected

into an orthogonal involution.

Let any transversal cut the pencil in the overlapping

involution of points (AA', BB", CG% ...). On AA\ BB' as

diametei-s describe circles. Since AA', BB' overlap, the

circles will cut in two real points U and U', Now, since in

the pencil in involution U(AA', BB', CC, ...) two pairs of

rays, viz. UA, TJA' and JJB, TJB', are orthogonal, hence

every pair is orthogonal.

Eotate U about AA' out of the plane of the paper. With
any vertex W on the line joining U to the vertex V of the

given pencil, project the given pencil on to any plane

parallel to the plane JJAA'. Then YA projects into a line

parallel to UA, and VA' projects into a line parallel to UA';

hence AVA' projects into a right angle; similarly BVB',

CVC'j ... project into right angles.
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Ex. 1. {AA',BB\ CCf, ...) is an involution. Show that the circles on

AA' , Biff, C'C, ... as diameters are coaxal.

Ex. 2. Show also that AA', BB', €(/, ... subtend right angles at two points

in the platie. When are these points real ?

6. IfP, Q, B, he the fourth harmonics of the point Xfor the

segments AA\ BB\ CC of an involution range, then

PA^ QR^ Q^ BP BC^ PQ PQ.QB. BP ^
XA' ' XP'^ XB"' XQ'^ XC ' XB "^ XP.Xq.XB °*

Join the points to any vertex V ; and cut the pencil so

formed by a transversal aa\ hb\ cc\ p, q, r, x. Then since

the given relation is homogeneous in each point, as in

proving Carnot's Theorem, we see that the relation is also

true of the projections aa\ &c. of the given points. Now
take aa' parallel to VX. Then x is at infinity. Hence

" xp __ xa'^.xp_ xa^.xp

xh.xq xc^.xr xp .xq.xr

Hence the given relation is true if

pa^. qr-\-qW. rp + rc^.pq+pq .qr.rp = o.

But now p, q, r bisect aa^, W, cc') hence this relation is

true by XVII. 12.

If in addition to the above notation Pj, Q^, B^ bisect AA\
BB\ CC^, show that in Examples 1-6

^ , AB.AB' AC. AC/ PQ XQ
Ex. 1. -. = —^ — —— •

XB.XB' XC.XCr PR XE
Ex. 2. AB . AB'-^ AC . AC' = PQ . XQt_ f PR . XR^.

For XQ . XQ^ = XB . XB% &c.

YA YA' YB YB'

ychere Y is any point on the same line.

Ex. 4. YA . YA\ ^+YB. YB\^ + TC. YC. -~- = o.
XPy XQi XHi

Ex.5 ^^1^^ ^^-^^ ^^g-1^^0.
XA.XA' XB . XB' XCXCf

Take Y at infinity.

^ ^ QR BP PQ
Ex. 6. -^— + — + —^ = o.

• XPi XQi ^ XRi
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Ex. 7. If {CP, AA') = {CQ, BB') = {PP", BB') = (QQ', AA')

then (AA% BB', C(/) are in involution.

Project C to infinity, and use the relation

2 (pp' + bb') = (p +y) (& + 6'), taking (7 as origin.

Ex. 8. lf{AA',BB') = UC,AA') = {X(y,BB') = -i,
«^en (-4J.', 5^, C&) are in involution.

Project JT to infinity, and take the centre of the involution {AA' , BB')
as origin.

Ex. 9. IfAA', BBf, CCf, DI/ hefour segments in involution, and if

{LP, AA') = {LQ, BB") = {LR, CC) = {LS, Dlf) ;

shofw that {PQRS) is ind^endent of the position of L.

For {Pq, RS) = {AB, CD) x {A'B', CD).

Ex. 10. Deduce by Reciprocation a property of four pairs of rays in

involution,

Ex. 11. If {AA', BB') and (AA', QQf) be harmonic, then

QA .QA'
• vv -r

^^ . jj V T ^^, V

Take A' at infinity.

Ex. 12. Deduce the relation
,

BB'.QQ' Bfqf ^B _
QA.QA'

"*"

QB '^ QB' ~ °'

Take P at infinity.

7. Bp considering sections of the involution pencil

V(AA', BJB', CC, ...)

show that in Examples 1-4

.„ , sin^FB.sin^FJ5' sin ^FC . sin ^FC< sin^^Fi;
* sin A'VB . sin A'VB' sin A'VC . sin A'VC sin^^'Fi;

Ex. 2. sin AVB. sin B'VC. sin CVA' = -sin A'VB'. sin BVC. sin CVA.

Ex. 3. If VR be either of the orthogonal rays, then

tan RVA . tan RVA' is constant.

Draw the transversal perpendicular to VR.

Ex. 4. If VX be any line, then any pair VP, VP' satisfies a relation

of the form
tan XVP . tan A'VP" + Z . tan JTVP + Z . tan A'VP' + n = o,

where I and n are constants.

Ex. 5. IfVA', VB', VC be three bisectors of the angles BVC, CVA, AVB
{either three external, or one external and two internal), then

V{AA',BB',CC,...)
is an involution.

Ex. 6. If VX and VY be fixed lines, and VP, VP' be variable line>^

satisfying the condition

sin XVP -i- sin YVP = -sin XFP'-^ sin YVP',

then VP, VP' generate an involution.
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INVOLUTION OP CONJUGATE POINTS AND LINES.

1. The pairs ofpoints on a line which are conjugatefor a conic

form an involution.

Let I be the line and L its pole. Let AA% BB', CC\ ...

be the pairs of conjugate points on I Then the polar of A
which lies on I passes through L. Also the polar of A by

hypothesis passes through A\ Hence LA^ is the polar of A.

So LA is the polar of A', and so on. Hence (AA'BB'CC...)

df poles = L{A'AB'BC'C...) of polars = {A'AB'BC'C..),

Hence {AA^, BB', CC, ...) form an involution.

The double points of the involution of conjugate points on a

line are the meets of the line and the conic.

For these meets are harmonic with every pair of conjugate

points on the line.

This affords another proof that conjugate points on a line

generate an involution.

2. The pairs of lines through a point which are conjugate for

a conic form an involution.

Let L be the point and I its polar. Let LA, LA^; LB, LB';

LC, LC] ... be the pairs of conjugate lines, the points AA',

BB^, CC, ... being on I. Then the pole of LA which passes

through L is on I. But the pole of LA by hypothesis lies

on LA'. Hence the pole of LA is A'] so the pole of LA' is

A, and so on. Hence L{AA'BB'CC' ...) of polars =
(A'AB'BC'C...) of poles = L{A'AB'BC'C...). Hence
L(AA', BB', CC, ...) form an involution.
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The douUe lines of the involution of conjugate lines through a

point are the tangents from the point

For these tangents are harmonic with every pair of con-

jugate lines through the point.

This affords another proof that conjugate lines through a

point generate an involution.

Ex. 1. Through every point can he drawn a pair of lines which are conjugate

for a given conic and also perpendicular.

Ex. 2. If two pairs of conjugate lines at a point are perpendicular, all pairs

are perpendicular.

Ex. 3. Given that I is the polar of L, and given that ABC is a self-conjugate

triangle, construct the tangentsfrom L.

3. An important case of conjugate lines is conjugate

diameters, i. e. conjugate lines at the centre. The double

lines of the involution of conjugate diameters are the tan-

gents from the centre, i.e. the asymptotes.

Ex. 1. Conjugate diameters of a hyperbola do not overlap, and conjugate

diameters qf an ellipse do overlap.

Ex. 2. Through the ends P and D of conjugate semi-diameters CP, CD
ofa conic are draum parallels, meeting the conic again in Q and E ; show that

CQ, CE are also conjugate diameters.

For if CX bisect PQ and DE, and CT be the diameter conjugate
to CX, then CX, CY are the double lines of the involution C ^PQ, DE).
Hence C {XY, PD, QE) is an involution.

Ex. 3. Thejoiyis of the ends of two pairs of conjugate diameters PP', Dlf
and QQ^, EE' are parallel four by four.

Ex. 4. Two of the chords joining the ends of diameters parallel to a pair

of tangents are parallel to the chord of contact.

Ex. 5. The conjugate diameters CQ, CE cut the tangent at P in R, R'; show
that RP . PR' = CD\

For P is the centre of the involution determined by the variable
conjugate diameters CQ, CE on the tangent at P. Also in the hyperbola
the double points are on the asymptotes. Hence

RP.PR' = -PT^ = CD\

In the ellipse the diagonals of the quadrilateral of tangents at

P, P', D, D' give a case of CQ, CE. Hence RP . PR' = CD\

Ex. 6. Parallel tangents of a conic cut the tangent at Pin R, R'; show that

RP. PR' = CD^.

Ex. 7. The conjugate diameters CQ, CE cut the tangents at the end of

the diameter PP' in R, R'; show that PR . P'R' =CD\
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4. Defining the principal axes of a central conic as a pair

of conjugate diameters which are at right angles, we can

prove that

—

TJie principal axes of a conic are always real.

For by XVIII. 4, one real pair of rays of an involution

pencil is always orthogonal.

A central conic {unless it he a circle) has only one pair of

principal axes.

For by XVIII. 4, if two pairs of rays of the involution

pencil are orthogonal, then every pair is orthogonal, i.e. the

conic is a circle.

Ex. Given the centre of a conic and a self-conjugate triangle, construct the

axes and asymptotes.

Let be the centre and ABC the triangle. Through draw
OA^, 0B% OCf parallel to BC, CA, AB. The asymptotes are the double
lines, and the axes the orthogonal pair of the involution

{AA% BB'j C(f).

5. The feet of the normals which can he drawn from any

point to a central conic are the meets of the given conic, and a

certain rectangular hyperbola which has its asymptotes parallel

to the axes of the given conic, and which passes through the centre

of the given conic, and through the given point

Let be the given point. Take any diameter CP, and let

the perpendicular OF on CP cut the conjugate diameter CD
in Q. Then, taking several positions of P, &c.,

C{Q,Q,...) = C(J),D,...)=C(AP,...)

= c(r,r,...)=o(r,r,...) = o(ftQ,...).

Hence the locus of Q is a conic through C and 0.

This conic is a rectangular hyperbola with its asymptotes

parallel to the axes, as we see by making CP coincide with

CA and CB in succession. Now let M be the foot of a

normal from to the given conic, then B is on the above

rectangular hyperbola ; for, drawing CP perpendicular to OB^

or meets CD, i.e. CB, in B.

Ex. 1. The same conic is the locus of points Q such that the perpendicidar
from Q on the polar of Q passes through 0.

For QO, being perpendicular to the polar, is perpendicular to the
diameter conjugate to CQ.
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Ex. 2. 'Die normals at the four points where a conic is cut by a rectangular

hyperbola which passes through the centre ami has its asymptotes parallel to the

axes, are concurrent at a point on the rectangular hyperbola.

For let the normal at one of the meets R cut the hyperbola
again in 0.

Ex. 3. Eight lines can be drawn from a given point to meet a given central

conic at a given angle.

Ex. 4. Bedu^ the corresponding theorems in the case of a parabola.

Here the centre n is on the curve ; hence one of the meets is the
point n. Eejecting this, we see that three normals and six obliques
can be drawn from any point to a parabola.

Ex. 5. If OL, OM, ON, OR *e concurrent normals to a conic, the tangents at

L, M, N, R touch a parabola which also touches the axes oftfie conic and the polar

of for the conic.

Reciprocate for the given conic.

Ex. 6. is on the directrix of the parabola.

Reciprocate for 0.

6. A common chord of two conies is the line joining two

common points of the conies.

On a common chord of two conies the involution of conjugate

points is the same for each conic, the double points heing the

common points.

Conversely, if two conies have on a line the same involution of

conjugate points, this line is a common chord, the double points of

the involution being tlie common points of the ttvo conies.

Two common chords of two conies which do not cut on

the conies may be called a pair ofcommon chords. We know
that a pair of common chords meet in a vertex of a common
self-conjugate triangle of the two conies. Conversely, every

point which has the sams polar for two conies is the meet of a

pair of common chords.

Let E be the point. Join E to any common point A of

the two conies. Let EA cut the polar of J5J in P and the

conies again in B and B\ Then (EF, AB) is harmonic, and

also {EP, AB^). Hence B and B' coincide, ie. EA passes

through a second common point. So EC passes through D.

Hence two conies have only one common self-conjugate tri-

angle; for if ITV^W be a self-conjugate triangle, and UVW
the harmonic triangle belonging to the meets of the conies,

then U^ coincides with U, V, or W, and so on. (See also

XXV. 12.)



XIX.] Conjugate Points and Lines. 191

If^ however, the two conies touch at two points the above

proof breaks down, and tJiere is an infinite number of common

self-conjugate triangles.

Let the conies touch the lines OP and OQ at P and Q.

On PQ take any two points VW such that {PQ, VW) = - 1.

Then OVW is clearly a common self-conjugate triangle.

Notice that if two conies have three-point or four-point con-

tact, the common self-conjugate triangle coincides with the point

ofco^itact.

Ex. 1. The common chords which pass through one of the vertices of the

common self-conjugate triangle of two conies are a pair in the involution deter-

mined by the pairs of tangents from this point.

UV, VW being the double lines.

Ex. 2. Reciprocate Ex. i.

Ex, 3. The conic y touches the conic a at the two points L and M, and touches

the conic at the two points N and R. Show that two common chords of a and
$ meet at the intersection ofLM and NR.

7. A comxnon apex of two conies is the meet of two com-

mon tangents of the conies.

^ At a common apex of two conies the involution of conjugate

lines is the same for each conic, the double lines being the com-

mon tangents.

Conversely, if two conies have at a point the same involution

of conjugate lines, the point is a common apex, the double lines

of the involution being the common tangents of the tivo conies.

The join of a pair of common apexes of two conies has the

same pole for both conies.

Conversely, if a line have the same pole for two conies^ this

line is the join of a pair of common apexes of the conies.

These results follow by Reciprocation.

8. Since two conies have only one common self-conjugate

triangle, it follows that the harmonic triangle of the quadrangle

of common points coincides mth the harmonic triangle of tJie

quadrilateral of common tangents.

Let UVW be the harmonic triangle of the quadrangle

formed by the common points a, b, c, d, and let AA\ BB', CO'
be the opposite vertices of the quadrilateral formed by the

common tangents of the two conies. Then AA^ being a side
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of the common self-conjugate triangle, must coincide with

VY, VW, or WU, say with VW, as in the figure. So BB'
coincides with WU, and CC with UV.

The polars of any common apex of two conies for the two

conks pass through the meet of two common chords of the conies.

Take the common apex B, Now B is on WU, the polar

of V. Hence the polar of B for either conic passes through

Vj the meet of the common chords ad, he.

The common chords ad, he are said to belong to the com-

mon apex B. So to every common apex belong two common
chords.

Similarly, the poles of any common chord of ttvo conies for the

two conies lie on the join of two common apexes of the conies

;

and these apexes are said to belong to the chord.

Hornothetic figures.

9. Given any figure of points P, Q, B, ..., and any point

(called the centre of similitude), and any ratio A. (called the

ratio of similitude), we can generate another figure of points
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P', Q\ B!^ ... thus~In OV take the point P', which is such

that 0P'= A . OF, and similarly construct §', B\ .... The

figures PQE... and P'Q'R'... are called similar and similarly-

situated figures, or homothetic figures.

The following properties of homothetic figures follow from

the definition by elementary geometry

—

Corresponding sides of the two figures (e. g. PQ and P'Q') are

parallel and in the ratio A. (i.e. P^Q^=X . PQ).

Corresponding angles of the two figures are equal

{e.g. /.PQR=IP'Q'B\)

Ex. The triangles ABC, A'B'Cf are coaxal. P, Q, R are three points on the

axis. Show that if AP, BQ, CR concur, so do A^P, B'Q, CR.
Project the axis to infinity.

10. If two conies are homothetic, the diameters conjugate to

parallel diameters are themselves parallel.

Consider the point corresponding to the centre of the

first conic ; it will be a point in the second conic, all chords

through which are bisected at the point, i.e. it will be the

centre of the second conic. Take any pair of conjugate

diameters PCP' and DCD' of the first conic ; and let pep' be

the diameter of the second conic parallel to PCP\ Then,

corresponding to DCD' in the first conic, we shall have dcd'

in the second conic which bisects chords parallel to pcp\ i.e.

dcd' is the diameter conjugate to pcp\ Hence, to a pair of

conjugate diameters of the first conic correspond a parallel

pair of conjugate diameters of the second conic.

11. Two conies mil he homothetic, if two pairs of conjugate

diameters of the one are parallel to two pairs of conjugate dia-

meters of the other.

For then every pair is parallel to some pair. Take any

diameter PCP' of the first conic, and through P and P'

draw lines parallel to a pair of conjugate diameters ; these

lines meet in a point Q on the conic. Let pep' be the

diameter in the second conic parallel to PCP', and through

p and p' draw lines parallel to PQ and P'Q. These will meet
in a point q on the second conic ; for they are parallel to a

o
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pair of conjugate diameters of the first conic, and therefore

parallel to a pair of conjugate diameters of the second conic.

And clearly the points Q and q generate homothetic figures,

the centre of similitude being the intersection of Pp and Cc.

Homothetic conies are conies which meet the line at infinity in

the same points.

If the conies are homothetic, their conjugate diameters are

parallel. Hence the asymptotes, being the double lines of

the involutions of conjugate diameters, are parallel, i.e. meet

the line at infinity in the same points. And both conies

pass through these points.

Conversely, if two conies pass through the same two

points at infinity, they are homothetic. For since the conies

pass through the same two points at infinity, the asymptotes

of the two conies are parallel. Hence the conjugate

diameters, being harmonic with the asymptotes, are parallel.

Hence the conies are homothetic.

Ex. 1. Throicgh three given points, draw a conic homothetic to a given conic.

To draw through ABC a conic homothetic to a. Through the middle
point of AB draw a line parallel to the diameter bisecting chords of a

parallel to AB. This line passes through the centre of the required
conic. Similarly BC gives us another line through 0. Hence the

centre of the required conic and three points upon it are known.

Ex. 2. Touching three given lines, draw a conic homothetic to a given conic.

Draw tangents of the conic parallel to the sides of the given triangle.

It will be found that we thus have four triangles komothetic to the

given triangle. Taking any one of these triangles, and dividing the

sides of the given triangle similarly, we get the points of contact of a

homothetic conic.
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INVOLUTION RANGE ON A CONIC

1. The pairs of points AA\ BB\ CC, ... on a conic are

said to form an involution range on a conic, or briefly, to be in

involution when the pencil V{AA', BB', CC, ...) subtended

by them at a point F on the conic is in involution.

Ifpairs ofpoints AA', BB', CC% ... he taken on a conic, such

that (AA'BC.) = {A'AB'C..:}, then {AA', BB', CC, ...) are

in involution.

For V being any point on the conic, we have

V(AA'BC...)={AA'BG...)={A'AB'C'...)=V(A'AB'C'...).

Hence V{AA\ BB', CC\ ...) is an involution pencil. Hence
{AA', BB', CC\ ...) is an involution on the conic.

An involution range on a conic has tivo double points, which

form with any pair of points of the involution, two pairs of

harmonic points on the conic.

The double points X, Y are the points in which the

double lines of the involution pencil V{AA', BB', CO',...)

cut the conic.

2. If the pairs ofpoints AA', BB', CC, ... on a conic he in

involution, then the chords AA', BB', CC, ... are concurrent;

and conversely, if the chords AA', BB', CC, ... of a conic he

concuirent, then the pairs of points AA', BB', CC, ... on the

conic are in involution.

If (AA', BB', CC, ...) form an involution on the conic,

we have {AA'BB'CC. .) = (A'AB'BCC. . .). Hence

{AB;A'B'), (AC;A'C), and (BC; B'C\

O 2

Bb
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being cross meets, lie on the homographic axis of these two
ranges on the conic. Hence the triangles ABG^ A'B^C'

are coaxal and therefore copolar. Hence AA'\, BB\ CC
meet in a point, i.e. CC passes through the point 0, where

AA' and BB^ meet. So aU the lines CG\ BB\ ... pass

through 0.

Conversely, if AA\ BB\ CC, ... be concurrent in 0, then

{AA', BB\ CC% ...) is an involution. For if not, let C" be

the mate of C in the involution determined by (AA', BB"),

Then by the first part (AA\ BB', CC^') meet in a point, i.e.

CC" passes through 0. But CC passes through ; and 00
cannot cut the conic in three points. Hence C coincides

with C, i.e. C is the mate of C in the involution (AA^, BB').

So B' is the mate of D, and so on.

Or thus, assuming the properties of poles and polars.

If {AA', BB^, CC\ ...) be an involution on the conic, then

{AA'BB'Ce,..) and (A'AB'BG'C...) are homographic ranges

on the conic ; hence the meets {A'B ) AB'), {A'B'] AB), &c.

lie on a fixed line, viz. the axis of homography. Hence

AA^ and BB' pass through the pole of this line ; so for

CC\ &c.

Again, if the chords AA', BB^, CG% ... of the conic meet

in 0, then the meets {A'B ; AB'), {A'B'; AB\ &c. lie on

the polar of 0. Hence (AA'BB^CC . .) and {A'AB^BC'C.)
are homographic ranges on the conic. Hence

{AA\ BB\ CC, ...)

are in involution.

The point where AA% BB\ CC, ... meet is called the

pole of the involution {AA', BB^, CC, ...), and the line on

which {AB ; A'B'), &c. lie, i.e. the homographic axis of the

two ranges {AA'BB^...) and {A'AB'B...), is called the axis

of the involution. Note that the axis of the involution is the

polar for the conic of the pole of the involution. For (AB; A'B')

and {AB'; A'B), being cross meets, lie on the homographic

axis of the ranges {AA'BB\..) and {A'AB'B...). Hence

is the pole of the axis of involution. Tlie double points of the

involution are the points X, Y where tJie axis of involution cuts
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ihe conic. For these are the common points of the homo-

graphic ranges (AA^BB'...) and (A^AB'B...). Hence, the

double points ofan involution on a conic are real if the pole of the

involution is outside the conic.

3. If two segments hounded hy corresponding points {such as

AA\ BB') of an involution on a conic overlap, every two of such

segments overlap, and the double points are imaginary, i.e. the

pole of the involution is inside the conic. So in a non-overlapping

involution on a conic, the double points are real and the pole is

outside.

For consider the pencil subtended at any point on the

conic by the points in involution.

K is on the conic, the involution is nugatory.

4. Eeciprocally, a set ofpairs of tangents to a conic are said

to be in involution when they cut any tangent to the conic in pairs

ofpoints in involution.

Again, the meets of corresponding tangents lie on a line ; and

conversely, pairs of tangents from points on a line form an in-

volution of tangents.

The double lines of the involution of tangents are the tangents

at the meets of the above line with the conic.

Notice that if a set of pairs of tangents be in involution, the

set ofpairs ofpoints of contact is in involution, and conversely.

These propositions follow at once by Reciprocation.

Ex. 1. A bundle of parallel lines cuts a conic in pairs of points in invo-

lution.

Ex. 2. A system of coaxal circles cuts a given circle in pairs of points in

involution.

Ex. 3. Two chords AA', BB' of a conic cut in U, and OT is the tangent

at ; show that 0{AA\ BB' , TU) is an involution.

Ex. 4. Reciprocate Ex. 3.

Ex. 5. Three concurrent chords AA' , BB', CCf of a circle are draum, show
that

sin ^ AB . sin ^ B'C . sin ^ C'A' = - sin ^ A'B'. sin ^ BC. sin ^ CA,

where AB denotes the angle subtended by AB at the centre.

Ex. 6. A, B, C are points on a conic. A', B', C are points taken on the

eanicsuch that {AA', BC) = (BB', CA) = {CC, AB) = —1. Show thai

{AA', BB', CC), {AA', BC, B'C), {BB', AC, A'C), and {CC , AB' , A'B)
are involutions on the conic.
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Let the tangents at A^ B, C meet in P, Q, R. Then AA' passes
through P, BB' through Q, and CC through R. But PA, QB, RC meet
in a point ; hence AA% BB', CC meet in a point ; i.e. {AA', BB\ CC)
form an involution. Hence {A'A, B'C') = {AA\ BC) = — i. Hence
(A'A, B'C) = {AA% CB). Hence {AA' , CB% BC) is an involution.
And so on.

Ex. 7. Through a given point draw the chord XX' of a conic, such that

{AA', XX') = {BB', XX') where A, A', B, B' are any four points on the

conic.

Join to the meet of AB' and A'B

Ex. 8. BE is a fixed diameter of a conic. PQ is a variable chord of the

conic. The tangent at E meets DP in A and DQ in B. IfA,B generate an
involution, PQ passes through a fixed point. If EA . EB be constant, the fixed

point lies on BE. If i/EA + i/EB be constant, the fixed point lies on EA.
One position of PQ is in the first case DE, and in the second case,

the tangent at E.

Ex. 9. From a fixed point perpendiculars are dratcn to the pairs of lines

of a pencil in involution, meeting them in AA', BB', ... ; show tliat the lines

AA' , BPf , ... are concurrent.

Consider the circle on OF" as diameter.

Ex. 10. An involution of points on a conic subtends an involution pencil at

every point on the axis of the involution.

Ex. 11. AA', BB', CC, ... are concurrent chords of a conic; show thai

{ABC.) = {A'B'C'...). Also reciprocate the preposition.

Ex. 12. Tlirotigh fixed points U, V are drawn the variable chords RP and
RQ of a conic ; show that P and Q generate homographic ranges on the conic, and
that Uie common points lie on the line UV.

Ex. 13. Through a fixed point is drawn the variable chord PP' of a conic.

A and B are fixed points on the conic. PB, P'A meet in Q, and PA, P'B meet in

R. Show that Q and R move on the same fixed conic.

For A {QR) = A {P'P) = B {PP') = B {QR).

Ex. 14. Given two points P, Q on the line of an involution, determine a
segment of the involution which shall divide PQ harmonically.

Project the involution on to any conic through PQ, and join the pole

of the involution to the pole of PQ.

Ex. 15. Through a centre of similitude of two circles are drawn four lines

meeting otie circle in ABCD, A'B'Cfl/, and the other circle in abed, a'b'c/d'.

Show that {ABCD) = {A'B'C'I/) = (abed) = (a'b'c'd'),

For {ABCD) = {abed) by similarity.

Ex. 16. A range on a circle and its inverse are homographic.

Ex. 17. A range in involution, whetlier on a circle or a line, inverts into a
range in involution, whether on a circle or a line.

Ex. 18. A variable circle passes through a fixed point, and cuts a given circle

at a given angle ; show that it determines on the circle two homographic ranges.

Invert for the fixed point.

Ex. 19. A variable cirde cuts two given circles orthogoruxUy ; show that it

determines on each circle a range in involution.

Invert for a meet of the given circles.
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Ex. 20. A variaUe circle cuts a given circle and a given line orthogonally

;

show that it determines both on the circle and on the line a range in invo-

hition.

Ex. 21. The pole of the involution (AA'BB^ ...') on a conic is the same as

the homographic pole of the pencils subtended by AA'BBf ... and A'ABfB...
at any two points on the conic.

For AA^ is one of the cross joins.

Ex. 22. Givm two pencils V(ABC) and V (A'B'C), draw through V and
V' a circle meeting the pencils in the points abc, a'b'd , suxh that (aa', bb', cc^) is

an involution on the circle.

By Ex. 21 aa' passes through a given point, and it is easy to see that
its direction is given.

Ex. 23. Two homographic ranges on the same circle or on equal circles can,

in two ways, be placed so as to be in involution on the same circle.

Ex. 24. The pairs of tangents drawn to a parabola from points on a line are

parallels to the rays of an involution pencil.

Ex. 25. On a fixed iayigent of a conic are taken two fixed points A, B, and
also two variable points Q, R, such that {AB, QR) = — i ; find the locus of the

meet of the other tangents from Q and R.

Ex. 26. A variable tangent to a conic cuts two fixed lines in A, A'. Show
that the points of contact a, a' of the other tangerUs from A, A' generate homo-
graphic ranges on the conic.

Let AA' touch in o. Then the ranges a and a are in involution, and
the ranges a and a'. Hence {a...) = (a...) — (a'...).

Ex. 27. Hie fixed tangent OA of a conic meets a variable tangent in X, and
the fixed tangent OB meets the parallel tangent in Y. Show that OJi . OY is

constant.

Let the parallel tangent meet OA in X'. Then (X, X') generate an
involution. Hence (X) = (X') = (r). And is the vanishing point
of both ranges.

Ex. 28. AA' is a fixed diameter of a conic ; on a fixed line through A' is

taken a variable point P, and the tangents from P meet the tangent at A in Q, Qf

.

Show that AQ + AQ' is constant.

Q, Q' generate an involution, of which one double point (correspond-
ing to P being at A') is at infinity. Hence the other double point
bisects QQ". Hence AQ + A(/= 2AO.

Ex. 29. IfP lie 071 a chord through A instead of A', then 1/AQ+ i/AC/
is coyistant.

5. Given hco involution ranges on a conic or on a line, or

hvo involution pencils at a point; find the pair of points or lines

belonging to both involutions.

The line joining the two poles 0^ 0^ of the involutions on

the conic evidently cuts the conic in the required pair of

points.

If the ranges are on a line, project the ranges on to a
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conic by joining to a point on the conic, and project back on

to the line the common points on the conic.

In the case of two involution pencils at a point, consider

the involutions determined on any conic through the com-

mon vertex.

If either of the pairs of double points (or lines) of the given

involutions he imaginary, the common pair of points are real

;

and they are also real when hoth pairs of double points are real

and do not overlap.

For if the involution on the conic, of which 0^ is the pole,

has imaginary double points, 0, is inside the conic ; hence

Oj O2 cuts the conic whether 0.^ is inside or outside the conic.

Also, if the double points are real and do not overlap, the

points sought, being harmonic with both pairs, are the double

points of a non-overlapping involution on the conic, and are

therefore reaL

The cases of involution on the same line or at the same

point may be discussed as above.

6. In a pencil in involution, one pair of rays is always ortJio-

gotial ; and if two pairs of rays are orthogonal, then every pair is

orthogonal.

Let the rays of the involution pencil V(AA'BB^CC\..)

cut a circle through V in the points AA\ BB\ CC\ ....

Then AA\ BB', CC\ ..., being chords joining pairs of points

in involution on the circle, meet in a point 0. Take K, the

centre of the circle, and let OK cut the circle again in ZZ\
Then VZ, VZ^ is an orthogonal pair in the involution

pencil. For, since ZZ^ passes through K, ZYZ' is a right

angle. And since ZZ' passes through 0, ZZ' belong to the

involution {AA', BB\ ...), i.e. VZ, YZ' belong to the given

involution pencil Y{AA', BB', ...).

Again, if two pairs of orthogonal rays exist, viz. VX., Y'K!

and YY, YT, since XX' and YY' both pass through K, we

see that coincides with K. Hence AA\ BB', ... all pass

through K. Hence all the angles A YA', BYB', ... are right

angles..



XX.] Involution Range on a Conic, 201

7. Chords of a conic which subtend a right angle at a fixed

point on the conic meet in a point on the normal at the fixed

point.

Let the chords QQ\ BR', ... of a conic subtend right angles

at the point P on the conic. Then P(QQ', BB\ ...) is an

orthogonal involution pencil. Hence (QQ\ BB\ ...) is an

involution on the conic. Hence QQ\ BB\ ... all pass through

a point F. Now suppose VQ to coincide with the tangent at

P ; then PQ' coincides with the normal, Q coincides with P,

and hence QQ' coincides with the normal. Hence the

normal is one such chord, and therefore F lies on the

normal at P.

The point F is called the Fregier point of the point P.

Ex. 1. Show that the theorem also follows by reciprocating for the point P.

Ex. 2. P and U are fixed points on a conic. Through U are drawn two lines

meeting the conic in L, M, and the polar of the Fregier point ofP in X, F. Show
that LM and A'Y subtend equal angles at P.

Note—the polar of the Fregier point of P is called the Fregier line

of P.

Ex. 3. In a parabola, PF is bisected by the axis.

Take PQ parallel to the axis.
,

Ex. 4. In a parabola, the locus ofF as P varies is an equal parabola.

Ex. 5. In a central conic, the angle PCF is bisected by the axes.

Take PQ parallel to the minor axis, then F is on CQ.

Ex. 6. In a central conic, the locus ofF is a homothetic and concentric conic.

For CQ :CF ::CP:CF ::PG : GF.

Now PG = bb'/a, and Pg = ab'/b. Hence, since (PF, Gg) is harmonic,
PF can be found. Hence, CQ : CF : : a^ + b^ : a^- 6^

Ex. l.Ifa triangle QPQf , right-angled at P, be inscribed in a rectangular

hyperbola, the tangent at P is the perpendicularfrom P on QQf

.

For, taking PQ, PQ' parallel to the asymptotes, we see that the
Fregier point of P is at infinity.

Ex. 8. If the chords PQ, PQ' of a conic be drawn equally inclined to the

tangent at the fixed point P, then QQf passes through a fixed point on the tangent

at P.

8. To construct the double points of an involution range on a

line or the double lines ofan involution pencil.

In the case of an involution range on a line, project the

range on to any conic through a vertex on the conic ; deter-

mine the double points of the involution on the conic ; then
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the projections of these double points on the line are the

double points of the involution on the line.

In the case of an involution pencil, draw any conic through

the vertex, and join the vertex to the double points of the

involution which the pencil determines on the conic. These

joins are the double lines.



CHAPTER XXI.

INVOLUTION OF A QUADEANQLE.

1. The three pairs ofpoints in which any transversal cuts the

opposite sides of a quadrangle are in involution.

Let the transversal meet the sides of the quadrangle

ABCD in aa', W, cc\ Then

A (BWBb') = CiJDWBV),

Hence {dbcV) = {cbaV).

Hence {abcV) = {aVcb),

Hence {aa\ W, c'c) is an in-

volution, i.e. {aa, hV, cc') is an
involution.

To determine the mate c' of c in

the involution determined l)y

{aa', Uy
Take any point V. On Ya

take any point A. Let I)A cut

Va' in C. Let Cc cut YA in D. Let BV cut YC in B. Then
AB cuts aa' in the required point c\

Ex. 1. Show that each diagonal of a qtmdrilateral is divided harmonically.

Consider CC as the transversal of the quadrangle ABA'Bf . Then
CC are the double points.

Ex. 2. If through any point parallels he dravm to the three pairs of opposite

sides of a quadrangle, a pencil in involution is obtained.

Ex. 3. The same is true if the lines be drawn perpendicular to the sides.

Hence show that if four circles be cut orthogonally by the same circle, the six

radical axesform an involution.

Ex. 4. U, F, W are the harmonic points of the quadrangle ABCD. If
U{PQ, BC) = -I = V{PQ, CA), show that wIpQ^AB) = -i.
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Ex. 5. If a meet of opposite sides of a quadrangle be joined to the middle
point of the segment cut off from a given transversal by these opposite sides, the

three lines sofofrmed are concurrent.

Ex. 6. A transversal cuts the sides of a triangle in P, Q, B, and the lines

joining the veiiices to any point in P', Q', R' ; show that PP', Q(^, BR' are in

involution.

Ex. 7. The three meets of any line with the sides of a triangle and the three

projections of the vertices on this line form an involution.

Ex. 8. If from any point three lines be draum to the vertices of a triangle,

and three other lines parctUel to the sides ; these six lines form an involution.

Ex. 9. A transversal cuts the sides of a triangle ABC in P, Q, R, and PP',

QQ', RR'form an invdtUion on the transversal; show that AP', BQ^, CR' are

concurrent.

Ex. 10. Six points, A,B,Cj -4', B', C' are taken, and through any point

are drawn Oa, Oa\ Ob, Ob', Oc, Od parallel to AA', BC, BB\ CA, CC\ AB. If
the angles aOa', bOl/, cOcf have the same bisectors, then AA', BB', CC are con-

current.

Ex. 11. Hesse's theorem. If two opposite pairs of vertices ofa quadrilateral

are conjugate for a conic, then the third pair are conjugate for the same conic.

Let AA', BB', CC be the opposite pairs of vertices. Take P the pole

of the side ABC. Let ABC cut PA' in X, PB' in Y, PC in Z. Then
{A^, BY, CZ) are in involution (from quadrangle PA'B'C). Also the

polar of A is A'P, ifAA' are conjugate ; hence AJ^ are conjugate points.

So BY are conjugate, if BB' are conjugate. Hence CZ are conjugate.

Hence PZ, i.e. PC, is the polar of C ; i.e. CC are conjugate.

Involution of four-point conies.

2. Desargues's theorem.

—

Any transversal cuts a conic and

the opposite sides of any quadrangle inscribed in the conic in four

pairs ofpoints in involution.

Let ABCB be the inscribed quadrangle. Let the trans-

versal cut the conic in pp',

ACinh, BD in 1)', CD in c,

and AB in c. Then

{pp%c) = C{pp'AD)
= B{pp'AD) = {ppYb').

Hence {pp'lc) = {p'ph'c').

Hence {pp\ W, cc') is an

involution. Hence cc' be-

long to the involution {pp', W). Similarly, aa' belong to

this involution. Hence [pp, W, cc', aa') is an involution.

3. T}ie system of conies which can he draim through four given

points are cut by any transversal in pair's ofpoints in involution.
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For fp belong to the involution {aa\ hh', cc') deter-

mined by the opposite sides of the given quadrangle. And
similarly for any other conic of the system.

Note that we have above given an independent proof that

{aa\ bb', cc') is an involution. For through ABCD and any
point p on the transversal we can draw a conic.

Note also that we should expect aa', hb\ cc' to belong to

the involution {pp', qq\ ...) determined by the conies through

the four points. For each pair of opposite sides of the

quadrangle is a conic through the four points.

Ex. 1. Any transversal cuts a conic in PQ and the successive sides of a four-
sided inscribed figure in i, 2, 3, 4 ; show that

Pi .P3 _ P2.P4_
Q1.Q3 ~ Q2.Q4'

and extend the theorem to any inscribed polygon of an even number of sides.

Ex. 2. On every line, there is a pair of points which are conjugate fcflr every

me of a system of conies through four given points.

Viz. the double points of the invohition.

Ex. 3. Through the centres of a system offour-point conies can be drawnpairs

qf'parallel conjugate diameters.

Take the line in Ex. 2 at infinity.

Ex. 4. Two conies can be drawn to pass through four given points and to

touch a given line.

Draw a conic a through the four given points A, B, C, D, and through
e, one of the double points of the involution of the quadrangle ABCD
on the given line I. Let I cut a again in e'. Then e, e' are a pair in
the involution of which e is a double point. Hence e' coincides with e.

Hence I touches a.

Ex. 5. A fixed conic passes through one pair AA' of an involution range^

and UU^ are fixed points on the conic. PP' is another pair of the involution.

The conic meets UP again in p, and V'P' again in p' . Show that pp' passes
through the mate of the meet of UU' and AA'.

Ex. 6. The segment between the points of contact of a common tangent of two
eonics is divided harmonically by any opposite pair of common chords. Also the

polars of a common apex of two conies form a harmonic pencil mth a pair of
common chords.

For each point of contact, being a coincident pair of points in the
involution, is a double point.

Ex. 7. A conic passes through three out offour vertices of a qumlrangle, and
a line meets the s^ix sides and the conic in an involution. Show that the conic also

passes through the fourth.

Ex. 8. On the side BC of the triangle ABC inscribed in a circle {centre 0) is

taken a point P. The line through P perpendicular to OP meets AB in Q, and
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wi QP produced is taken a point R, such that RP = PQ. Show that CR, AP
meet on the circle.

P is one of the double points on RQ.

Ex. 9. A is the middle point of a chord of a conic ; B, C are points on the

chord equidistantfrom A ; BDE and CFG are chords of the conic ; show that EF
arid GL cut BC in points equidistantfrom A.

Ex. 10. A transversal parallel to a side of a quadrangle inscribed in a conic

cuts the opposite side in 0, and the conic and a pair of opposite sides in AA^, BB';
show that OA . OA' = OB . OB'.

Ex. 11. Jliree sides ofa four-sidedfigure inscribed in a conic pass through three

fixed points on a line ; sho/w that the fourth side passes through a fourth fixed

point on tlie same line.

Ex. 12. Extend ffie theorem to any 2 n-sided figure.

Ex. 13. By taking the two vertices coincident which lie on the 2 nth side,

deduce a simple solution cf the problem— ^ hisa-ibe in a given conic a polygon of

a n— I sides, each side to pass through one of a set of 2 n— i fixed collinear

points.'

Draw tangents from the an*'' fixed point.

Ex. 14. Show that the problem— * To inscribe in a given conic a polygon ofzn
sides, each side to pass through one of a set of 2 n fixed coUinear points

'

—is either

indeterminate or impossible.

Ex. 15. To deduce Carnot's theoremfrom Desargues's theorem.

Let BC cut BiCi in Lj and B-jC^ in L^. Then
AC^ . BLi . CBi = ABy . CL^ . BC^ from 5i C^ Lj

,

and AC2 . BL2 . CB^ = AB^ . CL^ . BC^ from B^C^L^.

Also CLi . CL2 . BAi . BA^ = BL^ . BL^ . CA^ . CAo

,

since L^L-i, A^A^^ CB are in involution. Now multiply up.

Ex. 16. A conic is described through the points A, B, C, 0, where is the

pole of fhe triangle ABCfor the conic a. Show that a and are so situated that

triangles can be inscribed in /3 which are self'conjugate for a.

For let the polar of A for a cut fi in PP', AC in b, AB in c, OB in B',

OC in C; then (PP^, b^, cC) is an involution. Also bB' are conjugate

for a, and so are cC; hence so are PP'. Hence APP' is such a

triangle.

Ex. 17. If two conies a and are so situated that triangles can be inscribed

in /3 which are self^conjugate for a, then the pole for a of any triangle insaibed in

/3 lies on fi.

Ex. 18. Reciprocate Ex. 16 and Ex. 17.

4. If A and B become coincident, AD becomes the tan-

gent at Ay h and c coincide, and 6' and c' coincide. Hence,

ifABC he a triangle inscribed in a conic, and if any transversal

cut BC, CA, AB in a', 1), h', fhe tangent at A in a, and the conic

in pp\ flien pp^ is a pair ofpoints in the involution determined ly

{aa\ hV),
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Ex. \. A^ B are the ends of a diameter of a conic, and C, D are fixed points

on. the conic ; find a point P on the conic, such that PC, PD intercept on AB a
segment bisected by the centre of the conies.

The tangent at P and CD must meet AB in points equidistant from
the centre.

Ex. 2. Through the fixed point B on a hyperbola are drawn the lines BP, BQ
parallel to the asymptotes. Through the fixed point on the hyperbola is drawn
the rariable chord OQPB cutting the curve again in R. Show that the ratio

PR : QR is constant.

This is a particular case of the theorem— ^ ABCO are fixed points on
a conic. A line through meets BC in P, BA in Q, the conic in R, and
CA in U. Show that (QPRU) is constant.'

Now (QPRU) = {PQOT) = B(CAOT\ T being on the tangent at B.

5. liA and B coincide, and also C and B, then aa%h^

all lie on AC, at the point E, say ; i.e. JE7 is a double point of

the involution. Hence, if any transversal cut a conic in pp',

the tangents at A and C in cc\ and AC in E, then E is a double

point of the involution determined hy cc\ pp\

Ex. 1. Prove the following construction for the double points of the involution

determined by AA', BB'—Through BBf describe any conic. Let the tangentsfrom
A touch at L, M and the tangents from A' at N, R ; then LN, RM cut in one
double point, and LR, MN cut in the other.

" Consider first the quadrangle LLNN ; then we see that LN passes
through a double point.

Ex. 2. The tangents of a conic at P and Q meet in T. A transversal meets
the conic inAA\ the tangents in BB', and PQ in C ; show that

CA . CB". BA' = CA'. BC . B'A.

Ex. 3. The tangents at the points PQR on a conic meet in P'Q'R', and the
corresponding opposite sides of the triangles PQR, P'Q'R' meet in P"(^'R!';
show that (PP",(/Rf), W,R'P'), {RR",P'</)
are harmonic ranges.

Ex. 4. The tangents of a conic at P and Q meet in T. A transversal parallel
to PQ cuts the conic in AA' and the tangents in BB'; show that AB = A'B'.
For one double point is at infinity.

Ex. 5. Any transversal cuts a hyperbola and its asymptotes in AA', BB';
show that AB = A'B'.

Ex. 6. The tangents of a conic at P and Q meet in T. A line parallel to QT
cuts PT in L, PQ in N, and the conic in M and R. Show that LN^ = LM . LR.

Ex. 7. Two parabolas with parallel axes touch at P. A transversal is drawn
cutting the tangent at P in 0, the diameter through P in E, and the curves in QQ',
PR'. Show thai OE^ = OQ . OQ' = OR . ORf

.

6. li A, B and C coincide, then a', c' and 6 coincide, and
a, V and c coincide. Hence, if a system of conies he drawn
having three-point contact at Aj and passing thrmigh Z), then any
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transversal cuts the conies in pairs of points in involution, one

pair being the points on AD and on the tangent at A.

Ex. The common tangent of a conic and its circle of curvature at P is divided

harmonically by the tangent at P and the common chord.

7. If A, By C and D coincide, then a, a', b, b\ c, c' all

coincide in the point iJ, where the tangent at A cuts the

transversal. Hence, a system of conies having four-point

contact at a point is cut by any transversal in pairs ofpoints in

involution, of which one double point is on the tangent at the

point.

Ex. 1. The tangent at the point R to the circle of curvature at the vertex of a

conic cuts the conic in P, Q, and the tangent at the vertex in T. Show that

{TR,PQ) = -I.

For R is the other double point.

Ex, 2. If two conies have four-point contact at a point, the polars of any point

on the tangent at this point coincide.

Ex. 3. If two conies touch, and if the polars of every point on the tangent at

the point of contact coincide, the two conies have four-point contact at this point.

For the opposite common chord coincides with the tangent.

Ex. 4. Two equal parabolas which have the same axis have four-point contact

at infinity.

8. If a transversal cut two pairs
. of opposite sides of the

quadrangle ABCD in aa', bV, and any tivo corresponding points

p, p' be taken in the involution (aa\ bV) ; then the six points

A, B, C, D, p, p' lie on a conic.

For draw a conic through ABCDp ; then the conic passes

also through p' by 'reductio ad absurdum.'

Ex. 1. ABCD, abed are two quadrangles inscribed in a conic; ab, cd meet

AD, BC in E, F, G, H; ad, be meet AB, CD in E% F', G' , H'; show that

E, F, G, H, E' , F' , G',R' are eight points on a conic.

Let F'daE' meet AD, BC in K, L. Then {ad, E'F', KL) are in invo-

lution. Hence EFGHE'F' lie on a conic. And so on.

Ex. 2. A line cuts two conies in AB, A'B' , and E, F are the double points of

ttie involution AA', BB' (or AB', A'B) ; show that a conic through the meets of

the given conies can be drawn through E, F.

Ex. 3. AB, BC, CD, DA touch a conic. Through U (the meet of AC, BD) is

drawn any chord PQ of the conic ; show that the six points A, B, C, D, P, Q lie

on a conic.

Ex. 4. Four points A, B, C, D are taken on a circle ; AB cuts another circle

in A'B', and CD cuts this circle in C'lf ; BD cuts A'l/, B'CUn E, F; and AC
cuts A'l/, B'C in H, G; show that EFGH lie on a coaxal circle.
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9. Fjvery rectangular hyperbola which circumscribes a triangle

passes through its orihocentre ; and, conversely, every conic which

circumscribes a triangle and passes through its orthocentre is a

rectangular hyperbola.

Let D be the orthocentre of the triangle ABC. Let be

the centre of a r. h. through ABC. Let the line at infinity

cut the r. h. in pp^, and the sides of the quadrangle ABCD
in aa^, bb', cc\ Join these points to 0. Then Op and Op%

being the asymptotes of the r. h., are orthogonal. Also Oa

and Oa', being parallel to AD and BC, are orthogonal ; so

Ob and OV are orthogonal, and Oc and Oc' are orthogonal.

Hence 0(pp\ aa', bV, cc') is an involution. Hence

{pp\ aa, bV, cc') is an involution.

Hence the conic ABCpp' passes through Z). Hence any

r. h. through ABC passes through the orthocentre of ABC.
Conversely, let be the centre of a conic through ABCD.

Let the line at infinity cut this conic in pp\ and the sides of

the quadrangle ABCD in aa\ bb\ cc' . Then {pp', aa', bV, cc')

is an involution. But aOa', bOV, cOc' are right angles.

Hence jpOp' is a right angle. But Op, Op' are the asymptotes

of the conic. Hence the conic is a r. h.

Ex. 1. Every conic thrcnigh the meets of two r. h.s is a r. h.

For let the meets be ABCD. Then if D is not the orthocentre of ABC,
let 1/ be. Then the two r. h.s pass through ABCDJ/, which is impos-
sible. Hence D is the orthocentre.

Ex. 2. Every r. h. which passes through the middle points of the sides of a
triangle passes through the circum-centre.
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POLE-LOCUS AND CENTEE-LOCUS.

1. The polars of a given point for a system offour-point conies

are concurrent.

Let X be the given point. Let the polars of X for two

conies a, (3 of the system meet in X'. Consider the involu-

tion (pp', qg[\ rr'^...) determined by the conies a, ^, y, ... of

the system on the line XX'. Since

{XX', pp') and {XX, qq[)

are harmonic, XX' are the double points of the involution.

Hence {XX', rr'), &c., are harmonic. Hence XX' are con-

jugate points for every conic of the system. Hence the

polars of X for the system are concurrent in X'.

Clearly the polars of X' for the system pass through X
Hence X, X' are called conjugate points for the system offour-

point conies.

Ex. 1. 0/a system offour-point conies, the diameters bisecting chords in a

fixed direction are concurrent.

Ex. 2. The polars of a given point for the three pairs of opposite sides of a

quadrangle are concurrent.

For each pair is a conic of the system.

Ex. 3. The polars of a given point for a system of conies touching two given

lines at given points meet in a point on the chord of contact.

For the chord of contact, considered as two coincident lines, is one of

the four-point conies.

2. Given a system offour-point conies and a line I, the locus

of the poles of I for conies of the system, is a conic, which coin-

cides with the locus ofpoints which are conjugate to points on I

for conies of the system.
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Let the poles of I for conies a, /3, y, ... of the system be

L, M, N, ... ] and let X', Y\ ... be the conjugate points of

the points Z, T, ... on Z for the system. Then the polars

of X, r, ... for a are LX% LT, .... Hence

(zr...) = i(X'r...).

So (XY...) =M{X'Y'...). YLence L{X'T...) =M{X'T ...).

Hence LMX'Y'... lie on a conic. Hence all the points

X'Y'... lie on a conic which passes through L and M. Simi-

larly the locus passes through N... . Hence all the points

LMN... and all the points X'Y'... lie on a single conic,

called tJie pole-locus of the line I for the system of four-point

conies.

The pole-locus is also called the eleven-point conic because

it passes through eleven points which can be constructed

at once from the given line and the given quadrangle.

Three of these points are the harmonic points of the

quadrangle. For U is conjugate to the point in which YW
cuts I ; and so on.

Six more of these points are the fourth harmonics of

a for AD, b for AC, c for DC, a' for BC, V for BI), c' for

BA, taking the transversal of the figure of XXI. i as Z. For

the polar of a for every conic of the system passes through

the fourth harmonic of a for AD, since A and D are on the

conic.

The last two points are the double points of the involution

determined by the conies on Z. For these are clearly con-

jugate for each conic of the system.

Ex. 1. If I vary, all the eleven-point conies pass fhroibgh three fixed points.

Ex. 2. If the quadrangle he a square, the pole-locus is a rectangular hyper-
- 'la.

Ex, 3. If I pass through one of the harmonic points of the given quadrangle,
*he pole-locus breaks up into a pair of lines.

Let I pass through W. Then UV contains four of the eleven points,
viz. UV and the fourth harmonics of W for AC and BD. Hence the
locus cannot be a curved conic ; hence it is two lines. It is easy to
>liow that UV contains five points, and that the other six (W counting
twice) lie on the fourth harmonic oil for WA, WD.

Ex. 4. If I pass through A, then the pole-locus touches I at A.

For the conjugate points on I coincide at A.

P 2
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Ex. 5. If I pass through A and C, the pole-locus is I and another line.

Ex. 6. TJie polars of any two points for conies of a four-point system form
two homographic pencils.

For J:* {LMN...) = Y^ (LMN...).

Ex. 7. The pencil of tangents at one of the four common points of a system

qffour-point conies is homographic with that at any other of the four points.

3. Taking I at infinity we deduce the following theorem

—

TJie locus of the centres of a system of conies circumscribing a

given quadrangle is a conic which passes through the harmonic

points of the quadrangle, through tlie middle points of the six

sides of the quadrangle, and through the common conjugate

points for the system on the line at infinity.

The following is a direct proof of this proposition.

Let ABCD be the given quadrangle, and the centre of

one of the circumscribing conies. Join to the middle

points m, n, r, s of the sides AB, BC, CD, DA ; and draw

Om', On', 0/, Os' parallel to AB, BC, CD, DA.
Then since Om bisects a chord parallel to Om\ Om and

Om' are conjugate diameters. So On, On', and Or, 0/, and

Os, Os' are conjugate diameters. Hence {mm', nn', r/, ss')

is an involution. Hence (mnrs) = (m'n'r's'). But the

rays of {m'n'r's') are ia fixed directions. Hence {mnrs)

is constant. Hence the locus of is a conic through the

four points m, n, r, s.

Now define this locus by five of the centres, then the

locus passes through the middle point of the side AB.

Similarly the locus passes through the middle point of

every side.

The locus also passes through the harmonic points of the

quadrangles ; for these are the centres of the three pairs of

lines which can be drawn through the four points.

The locus also passes through the common conjugate

points on the line at infinity ; for these, being the double

points of the involution in which the line at infinity cuts

the conies, are the points of contact of the conies which can

be drawn through the four points to touch the line at in-
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finity, i. e. are the centres of the two parabolas which can

be drawn through the four points.

Notice that the centre-locus by the former proof also

passes through the conjugate point for the system of every

point at infinity.

If the quadrangle is re-entrant, it is easy to see that the

sides of the quadrangle cut the line at infinity in an over-

lapping involution. Hence the common conjugate points

at infinity are imaginary, and the centre-locus is an ellipse.

So if the quadrangle is not re-entrant, the centre-locus is a

hyperbola.

Ex. 1. Given four points on a conic, and a given point on the centre-locus as

centre, construct the asymptotes.

Ex. 2. Five points ABCBE are taken. Show that the five conies which

bisect the sides of the five quadrangles BCBE, ACBE, ABDE, ABCE and ABCD
meet in a point.

Ex. 3. If a pair of opposite sides of the quadrangle be parallel, the centre-

locus is a pair of lines.

Ex. ^. If a pair of sides, not opposite, be parallel, the centre-locus is a
parabola.

Ex. 5. If two pairs of sides, not opposite, be parallel, the centre-locus is a
line {and the line at infinity).

Ex. 6. A variable line cuts off from two given conies lengths which are

bisected at the same point P. Show that the locus ofP is the centre-locus belonging

to the meets of the conies.

Ex. 7. The polars of any point on the centre-locus for conies of the system are

parallel.

Ex, 8. The asymptotes of any conic of the system are parallel to a pair of
conjugate diameters of the centre-locus.

Let be the centre of that conic of the system which meets the line
at infinity in pp'. Now the centre-locus meets the line at infinity in
the double points e, /of the involution {pp', ...). Hence (pp\ ef) = — i.

Hence Z {pp', ef)= — i where Z is the centre of the centre-locus.

But Ze, Zf are the asymptotes of the centre-locus, Hence Zp, Zp' are
conjugate diameters of the centre-locus. And Zp, Zp' are parallel to
Op, Op', which are the asymptotes of the conic whose centre is 0.

Ex. 9. If one of the four-point conies be a circle, the centre-locus is a rect-

angular hyperbola.

For the common conjugate points at infinity, being conjugate for
a circle, subtend a right angle at any finite point, i.e. the asymptotes
of the centre-locus are perpendicular.

Ex. 10. The axes of every conic circumscribed to a cyclic quadrangle are in
the same directions.
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Ex. 11. The locus of the centres of rectangular hyperbolas circumscribing a

given triangle is the nine-point circle.

Ex. 12. If two of the four-point conies be rectangular hyperbolas, the centre-

locus is a circle.

Ex. 13. The nine-point circles of the four triangles formed by four points

meet in a point.

Ex. 14. Given three points A, B, C on a circle, and the ends P, Q of a dia-

meter ; show that the centres of the rectangular hyperbolas BCPQ, CAPQ, ABPQ
lie on the nine-point circle of ABC.

The centre of the r. h. BCPQ is the middle point of BC, for the tan-

gents at B and C are perpendicular to PQ.

Ex. 15. Ttie locus of the centres of aM conies through the vertices of a triangle

and its centroid is the maximum inscribed ellipse.

4. To find the centre of the centre-locus.

Since ms and nr are parallel to BD, and since mn and sr

are parallel to AC, hence mnrs is a parallelogram. Also

the centre of any conic cii-cumscribing a parallelogram is

the meet of the diagonals. Hence the required centre is

the meet Z of mr and sn. Similarly Z is on the join of the

middle points oi AC and BD.
Note that Z is the centre of mass of equal masses at

A, B, C, D.

Ex. 1. Several conies have three-point contact at A and pass through B.

Show that the centres of the conies lie on a conic whose centre is such that

S.AO= OB.

Ex. 2. The six fourth harmonics of the ends of the six sides of a quadrangle

for the meets with any transversal lie on a conic ; and the lines joining opposite

pairs of these points meet in a point.

Project the transversal to infinity.
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INVOLUTION OF A QUADKILATEEAL.

1. The three pairs of lines which join anypoint to the opposite

rertices of a quadrilateral are in involution.

Let be the point, and

AA', BB\ CC the opposite

vertices of the quadrilateral.

Let OA cut A'B' in G and

A'B in H. Then (AA'BC)
= {HA'BG) = A {HA'BC)
= (aA'C'B')= 0{AAX'B'),

Hence

0{AA'BG) = 0{A'AB'Cy
Hence (AA', BB\ CC) is an

involution.

Ex. 1. Prove the theorem by considering the section of the quadrangle OABC
by A'B\

Ex. 2. Deduce a construction for the mate OC of OC in the involution

determined by {AA\ BB').

Ex. 3. Deduce the property of the harmonic points of a quadrangle.

Ex. 4. If any point be joined to the vertices of a triangle and to the meets of
any line with the sides of the triangle, the pencil so formed is in involution.

Ex. 5. If any point be joined to the vertices ABC of a triangle, and if OA'
OB", oof be drawn paraMd to BC, CA, AB, then {AA\ BBf, C(f) is an invo-

lution.

Ex. 6. If any point be joined to the vertices ABC of a triangle, and A'WCf
he points on the sides of tJie triangle, such that {AA\ BB', CC) is an involu-

tion ; then A'B'(f are collinear.

Ex. 7. The perpendiculars through to OA, OB, OC meet BC, CA, AB in
coUiyiear points.

Ex. 8. I'he six radical axes of four circles through the same point form an
"volution.
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Ex. 9. The orthogonal projections of the vertices of a quadrUaterdl on any line

are in involution.

Ex. 10. IfAA', BB', C(f be the vertices themselves,

then AB.AB' -^-AC. AC' = A'B . A'B' -^ A'C . A'C\
For the ratios AB' -r- AC, &c., are not altered by orthogonal projec-

tion.

Ex. 11. Also ifP, Q, R bisect AA% BB', CCT,

thenAB.AB'-^AC.AC = PQ-^PR.
For PQR are collinear.

Ex. 12. An infinite number of pairs of lines can be found which divide the

diagonals of a quadrilaterM harmonically.

The pair of lines through any point are the double lines of the

involution {AA', BB% CC^).

Involution of four-tangent Conies.

2. The pair of tangents from any point to a conic and the

pairs of lines joining this point to the opposite vertices of any

quadrilateral circumscribing the conic are four pairs of lines in

involution,

c

Let AA', BB', CC be the vertices of the quadrilateral. Let

OP^ OB' be the tangents from the point 0. Let the meets

(OB-, AB), {OB'; AB\ {OB] A'B'\ {OB'; A'B') be called

i, M, N, E,

Then 0{BB'AB) = {LMAB) = {NBB'A') = 0{BB'B'A').

Hence {BB'AB) = {B'BA'B'). Hence {BB\AA', BB') is

an involution. Hence OB, OB' belong to the involution deter-

mined by 0{BB', AA'). Similarly OC, OC belong to this

involution. Hence {BB', AA', BB', CC) is an involution.
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3. The system of conies wMeh can he drmvn to touch four

given lines is such that the pairs of tangents from any point to

conies of the system form an involution.

For the tangents OPj OP' to any conic of the system

belong to the invohition (AA, BB', CC), determined by

the opposite vertices of the given quadrilateral of tangents.

Note that we have above given an independent proof that

{AA\ BB\ CC) is an involution. For touching the four

given lines and any other line OP we can draw a conic.

Note also that we should expect OA, OA' ; OB, OB' ; OC, OC
to belong to the involution {PP', QQ', . . .) of tangents. For

each pair of opposite vertices may be considered to be a conic

which touches the four lines ; and OA, OA' are the tangents

from to the conic (A, A').

4. If two sides BA and AB' coincide, we get the

theorem—J/" a triangle BA'B' he circumscrihed to a conic, and

ifA he the point of contact of BB'; then the tangents from

are a pair in the involution 0{AA', BB').

If the sides CB and C'B coincide and also the sides CB'

and C'B', we get the theorem

—

If a conic touch the lines CB,

CB' at B and B', then the tangents from are a pair in the

involution {CC, BB') of which OC is a douhle line.

If the sides BA, AB' and B'A^ coincide, we get the

theorem—If a system of conies have three-point contact with the

line BB' at B' and totich a line through B, then the tangents

from form an involution of which OB, OB' are a pair.

For three-point contact and three-tangent contact are

equivalent.

If all four sides coincide, we get the theorem

—

The tangents

from Oto a system of conies having four-point contact at a point

B^ form an involution of which OB' is a douhle line.

Ex. 1. The pencil formed hy the pairs of tangents from any point to two
circles and the joins of the point to the centres of similitude is in involution.

Ex. 2. If the line joining the centres of similitude SS' of two circles cut the

circles in AA', BB^ ; then AA', BB^, SS^ are in involution.

Ex. 3. If VP, VQ be the tangents from any point V to a conic, and if i, 2,
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3, 4 6e ihe successive vertices of a four-point figure circumscriled to the conic,

show that sinPFi . sin PF 3 _ sin PV 2 . sin PF4
sin QF I .sin QF3 ~ sin QF 2 .sin QF

4

Ex. 4. Extend the theorem to any zn-point circumscribed polygon.

Sx. 5. Through every point can be drawn a pair of lines which are conjugate

for every conic of a four-tangent system.

Viz. the double lines of the involution of tangents.

Ex. 6. Through every point can be drawn a pair of lines to divide the

diagonals of a given quadrilateral harmonically ; and these meet any inscribed

conic in harmonic points.

For they are the common conjugate lines through the point.

Ex. 7. Through every point can be draum two conies of a four-tangent

system ; and the tangents to these conies at the point are the common conjugate

lines at the point.

Draw a conic a of the system to touch OE, one of the double lines

of the involution of tangents at 0. Then, since OE is a double line, OE
is the other tangent from to a. Hence a passes through 0.

Ex. 8. The tangents at one of the intersections of two conies inscribed in the

satne quadrilateral are harmonic with the lines joining the point to any two

opposite vertices of the quadrilateral.

Ex. 9. ABC is a triangle and a given point. TJirough 0, and parallel to

the sides BC, CA, AB, are drauni the lines OX, OT, OZ ; show that the double

lines of the involution (-ZL4, YB, ZC) are the tangents at to the two parabolas

which can he inscribed in ABC so as to pass through 0.

Ex. 10. P, Q, R are the points of contact of the lines BC, CA, AB with a
conic, and OT, OT' are the tangentsfrom any point ; show that (BC, PA, TT')

and {RQ, AA, TT') are involutions.

Ex. 11. If OP, OQ be a pair in the involution obtained by joining to the

three pairs of opposite vertices of a quadrilateral, the lines OP, OQ and the sides of

the quadrilateral touch a conic.

Ex. 12. Three vertices of a four-point figure circmnscribed to a conic lie on

three fixed lines through a point; show that the fourth vertex lies on a fourth fixed

line through the same point.

Ex. 13. Extend the theorem to any zn-point figure.

Ex. 14. By taking the two sides coincident which pass through the znth vertex,

deduce a simple solution of the problem— ' Circumscribe to a given conic a polygon

ofzn-i vertices, each vertex to lie on one of a set of zn-i fixed concurrent lines.'

Ex. 15. Show that the problem— ' To circumscribe to a given conic a polygon

of zn vertices, each vetiex to lie on one of a set of an fixed concurrent lines

'

—is

either indeterminate or impossible.

5. The three circles on the diagonals of any quadrilateral as

diameters are coaxal.

The three middle points of the diagonals of a quadrilateral lie

on a line (called the diameter of the quadrilateral).
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The directors of a system of conies touching the sides of a

quadrilateral are coaxal, and three circles of the coaxal system are

the three circles on the diagonals as diameters.

The centres of a system of conies touching the sides of a quad-

rilateral lie on a line which also contains the middle points of the

diagonals of the quadrilateral.

Let AA^, BB\ CC be the opposite vertices of the quadri-

lateral. Let the circles on AA' and BBf as diameters meet

in Oand 0'. Then in the involution pencil (AA\ BB\ CC%
since AOA' and BOB^ are right angles, COG' is a right angle.

Hence the circle on CG^ as diameter passes through ; and

similarly through (/. Hence the circles on AA\ BB\ GG^

as diameters are coaxal. Hence their centres, viz. the middle

points of AA\ BB\ GG\ are coUinear.

Again, the tangents OP, OP' from to any conic touching

the sides of the quadrilateral belong to the involution

0(AA', BB", CG'). Hence POP' is a right angle. Hence
the director of this conic passes through 0; and similarly

through 0\ Hence this director, and similarly all the

directors, belong to the above coaxal system. But the centre

of a conic is the same as the centre of its director. Hence
the centres of the conies lie on a line, viz. the line of centres

of the coaxal system of circles.

The locus of centres is the diameter of the quadrilateral

;

for three circles of the system are the circles on AA', BB\ GG'
as diameters.

The radical axis of the coaxal system of directors is the

directrix of the parabola of the system of conies.

For the directrix is the limit of a director, and the radical

axis is the limit of a coaxal, when each becomes a line.

The limiting points of the coaxal system of directors are the

centres of the rectangular hyperbolas of the system of conies.

For when the coaxal becomes a point, the director becomes
a point, and the conic becomes a rectangular hyperbola, the

director being the centre of the r. h.

Note that the director of a conic which consists of two
points is the circle on the segment joining the points as
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diameter, and the centre of the conic is the point half-way

between the points.

Ex. 1. The directors of all conies touching two given lines OP, OQ at P, Q are

coaxal, the axis being the radical axis of the point atid the circle on PQ as

diameter.

Ex. 2. The polar circle of a triangle circumscrihing a conic is orthogonal to

the director cirde.

Let ABC be the triangle. Take any fourth tangent A'B'C. Then
the circle on AA' as diameter passes through the foot D of the perpen-
dicular from A on EC. Now A and D are inverse for the polar circle.

Hence the polar circle is orthogonal to the circle on AA' , and similarly
to the circles on BBf, CC'\ and hence to the director, for this belongs
to the same coaxal system.

Ex. 3. The loais of t?ie centre of a rectangular hyperbola which touches a given

triangle is the pdar circle of tlie triangle.

For the polar circle cuts orthogonally the director circle which is the
centre in a r. h.

Ex. 4. If the nine-point cirde of a triangle circumscribing a r. h. pass

through the centre of the r. h. ; show that the centre also lies on the circum-circle,

and tJiat the centre of the circum-circle lies on the r. h.

The centre lies on the nine-point circle and on the polar circle and
therefore on the circum-circle, as the three circles are coaxal. Let the
asymptotes meet the circum-circle in P, Q. Then ABC, OPQ are inscribed
in the same conic, hence PQ touches, the r. h. Hence the point of

contact is the centre of the circle.

Ex. 5. The diameters of the five quadrilaterals which can be formed by five

given lines are concurrent. Prove this, and deduce a construction for the centre of

a conic, given five tangents.

Ex. 6. The axis of the parabola inscribed in a quadrilateral is parallel to tlie

diameter of the quadrilateral.

Ex. 7. The diameter of a quadrilateral circumscribing a conic touches the

centre-locus of the quadrangle formed by the points of contact.

Otherwise the conic would have two centres.

Ex. 8. Steiner's theorem. The orthocentre of a triangle circumscribing a

parabola is on the directrix.

For the involution subtended at the orthocentre by the quadrilateral

formed by the sides of the triangle and the line at infinity is or-

thogonal.

Ex. 9. The directrices of all parabolas touching a given triangle are con-

current.

Ex. 10. Gaskin's theorem. The cirde circumscribing a triangle which is

setf-conjugafe for a conic is orthogonal to the director cirde of the conic.

Take any tangent to the conic. Then from this tangent and the

given self-conjugate triangle WW, we can construct three other

tangents such that WW is the harmonic triangle of the quadrilateral

so formed. Let AA', BB', C(f be the opposite vertices of this quadri-

lateral.

Then the circle about TJVW is clearly orthogonal to the circles on
AA', BB', CC as diameters, for it cuts these diameters in inverse points.
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Hence the circle about WW being orthogonal to three circles of a
coaxal system is orthogonal to the director which belongs to the coaxal

system.

Ex. 11. Tlie centre of a circle circumscribing a triangle self-conjugate for a

nurabola is on the directrix.

Ex. 12. The circle circumscribing a triangle self-conjugate for a rectangular

.. ijperbola passes through the centre.

Ex. 13. Given five points-on a conic, five self-conjugate triangles can be found,

viz. the harmonic triangles of the inscribed quadrangles obtained by omitting one

point ; show that the ten radical axes of the circles circumscribing these triangles

pass through the centre of the conic.

Ex. 14. Show that two, and only two, rectangular hyperbolas can be drawn to

touchfour given lines.

Let the lines be a, &, c, d. Let the circle about the harmonic triangle

of the quadrilateral meet the diameter of the quadrilateral in L
and L' . Then L and L' are the limiting points of the directors.

First take L, and let a' be the reflexion of a in L. Construct the

conic touching a, b, c, d, a' . Then the centre of the conic, being the

meet of the diameter of the quadrilateral and the line half-way between
a and a', is L. Hence L is the centre of the director. But the coaxal

with centre at i has zero radius. Hence the conic is a r. h.

So y gives another r. h. And there are only two ; for the centre

must be at L or at L'.

Ex. 15. Arvy transversal cuts the diagonals AA' , BB', CCf of a quadrilUteral

circumscribed to a conic in the points P, Q, R, and points P^, Q', R^ are taken

such that (AA\ PP'), {BB\ QQf), (C(f, RR') are harmonic; show that P^QfR'

and the pole of the transversal for the conic are collinear.

Project PQR to infinity.

6. The locus of the poles of a given line for a system of four-

tangent conies is a line.

Let P and Q be the poles of the given line LM for two of

the conies ; and let LM,
PQ cut in U. Then UL and

UP are conjugate lines for

two conies of the system, i. e.

UL and UP are harmonic

with two of the pairs of

tangents from U. Hence
UL and UP are the double

lines of the involution of tangents from U to the system of

conies. Hence UL and UP are harmonic with every pair of

tangents from U, i.e. are conjugate for every conic of the

system. Hence the pole of LM for every conic of the

system lies on PQ, i. e. PQ is the locus of the poles of LM.
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Taking LM at infinity, we again see that

—

The locus of the centres of a system of four-tangent conies is a

line.

Ex. The three poles of a line for the three opposite pairs of vertices ofa quadri-

lateral are coUinear.

7. By reciprocating the properties of the pole-locus (or

directly) we can investigate the properties of the polar-

envelope of a point for a system offour-tangent conies.

Ex. From the fixed point 0, tangents OP and OQ are drawn to one of a system

of conies inscribed in the same quadrilateral. If AA' he a pair of opposite vertices

of the quadrilateral, and if PP', Q(/ be such that PiOP", AA'), Q{OQ\ AA')
are harmonic^ then the envelope of the chords PQ, PP', Q(^ is a single conic.



CHAPTEE XXIY.

CONSTEUCTIONS OF THE FIRST DEGREE.

1. Examples of constructions in which the ruler only is to

he used.

Ex. 1. Given the segment AC bisected in B ; prove the following construction

for aparaUd to AC through P—Through B draio any line, cutting PA in E and
PC in D; then if CE, DA meet in Q, PQ is the required line.

For B bisects AC, hence PQ cuts AC at infinity, since P{AC, BQ) is

harmonic.

Ex. 2. Given two parallel segments AB and CD, prove the following construc-

tion for bisecting each—Let CB, AD meet in W, and AC, BD in V, then VW
bisects both segments.

For U is at infinity.

Ex. 3. Given a pair ofparallel lines, draw through a given point a parallel

to both.

Use Ex. 2 and then Ex. i.

Ex. 4. Given a parallelogram, bisect a given segment.

Let AB lie the segment. Through A and B di-aw parallels to the
sides of the parallelogram meeting again in C and D. Then CD
bisects AB.

Ex. 5. Given two lines AB and CD which meet in an inaccessible point U,

construct any number ofpoints on the line joining U to a given point 0.

Through draw LOM' and MOL^ meeting AB in LM and CD in L^M\
Let LL', MM' meet in W. Then U{AC, OW) is harmonic; hence the
required line is the polar of W for AB and CD. To construct any
other point on the line, draw any two lines WNN' and WRR' meeting
AB in N, R, and CD in N', R'. Then a point on the required line is

the meet of NR' and N'R.

Ex. 6. Construct lines which shall pass through the meet of a given line with

the line joining two given points, when this last line cannot be drawn.

Ex. 7. Given a segment AC bisected at B, join any point P^ to ABC, on P^B
take any point Q, join CQ cutting AP^ in Li ,

join AQ cutting CP^ in Lg , join

L1L3 cutting BPi in i.j, then L^L.^ = L^L^, and L^^L^ is parallel to AC. Again,
let AL2, BL3 cut in Pj, and let CP^ cut L^L-^ in L^, then LjL^ — L^Li. Again,
let AL^, BLi cut in P3, and let CP^ cut L^L^ in L5, then L^Li = L^L^. And
so on.

The first part comes from the quadrilateral PyL^QL-^Pi. The rest

follows by Elementary Geometry.
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This enables us to divide a bisected segment into any number of
equal parts. To divide AC into n equal parts, construct the points
Xii/2...i„4.i. Let ALi and CLn^^ meet in V. With Fas vertex project

LiL2...Ln+i on to AC.

2. To construct a five-point conic

Let A, B, C, D, E be the five given points on the conic.

We shall construct the conic by finding the point in which

any line AG through A meets the conic again. (See figure

of XV. I.) Let AG and CD meet in X, and AB and DE in

M. Let LM cut BC in N. Then, by Pascal's theorem, NE
cuts ^6r in the required point F on AG. And since ^6r is

any line through A, we shall thus construct every point on

the conic.

If any two of the points are coincident, the necessary

modification of this construction is obvious, remembering

that to be given two coincident points is to be given a point

and the tangent at the point, and that the two coincident

points lie on the tangent.

The case of three points being coincident is discussed in

XXV. 17.

Ex. Construct the polar of a given point for afive-point conic.

3. As an example of coincident points, let us construct a

conic to touch two given lines at given points, and topass through

a given point.

Suppose the conic is to touch OP and OQ at P and Q, and

to pass through A. Here B and C coincide with P, and

the line BC coincides with OP. So D and E coincide with

Q, and BE coincides with OQ. Hence the construction is

—

To find where any line AG through A cuts the conic again,

let AG and PQ meet in L, and AP and OQ in M ; let L3£

cut OP in N ; then NQ cuts AG in the required point F.

Ex. L Given four points and the tangent at one of them, cotistrud the conic.

Ex. 2. Find a paint P at which the five points A, B, C, D, E, no three of

which are collinear, subtend a pencil homographic with a given pencil.

Take DJ/ and DE' so that D{ABCI/E') shall be homographic with
the given pencil. Draw a conic through ABC to touch DI/ at D. Con-
struct the point F in which BE' cuts this conic, and construct the

point P in which FE cuts this conic. P is the required point.
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4. As an example of cases in which some of the given

points are at infinity, let us construct a conic, given one

asymptote, the direction of the other asymptote, and two other

points.

Let / be the given asymptote, and m any line in the

direction of the other asymptote, and A and B the two

given points. We may take G and D to be the points at

infinity on I, and E to be the point at infinity on m. Then
M is the point at infinity on AB.
Hence the construction is—To find where any line AG

through A cuts the conic again, let AG and I meet in L,

and let a parallel through L to AB cut a parallel through

Bioliii N. Then a parallel through N to m cuts AG in

the required point F.

Ex. 1. Given four points and the direction of an asymptote, construct the

conic.

Ex. 2. Given three points on a conic and a tangent at one of them, and the

Erection of one asymptote ; construct the conic.

Ex. 3. Given three points and the directions of both asymptotes, construct the

conic.

Ex. 4. Given one point and both asymptotes, construct the conic.

Ex. 5. Given four points on a conic and the direction of one asymptote

;

tonstruct the tneet of the conic with a given line drawn parallel to the asymptote.

Ex. 6. Given three points on a conic and the directions of both asymptotes

;

find the meet of the conic with a given line parallel to one of the asymptotes.

Ex. 7. Given four points on a conic and the direction of one asymptote; find
Oie direction of the other.

5. As an example of drawing a parabola to satisfy given

conditions, let us construct a parabola, given three points and

the direction of the axis.

Let ABC be the given points, and I any line in the direc-

tion of the axis. We may consider D and E to coincide

at the point at infinity upon I, so that the line DE is the

line at infinity. Then M is the point at infinity on AB.
Hence the construction is—To find where any line AG

through A cuts the conic again, let AG cut a parallel

through C to Hn Z ; let a parallel through L to AB cut BC
in N ; then a parallel through N to I cuts AG in the re-

t[uired point F.
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Ex. Construct a parabola, given two points and the tangent at one of them,

and the direction of the axis.

6. Given five points on a conic, to construct tfie tatigent at

one of them.

Let A, B, C, B, E be the five given points, and suppose F
to coincide with A ; then AF is the tangent at A. Hence

the construction— Let AB and DE meet in M, and BG and

AE in N, and letMN cut CD in L ; then LA is the tangent

at A
Ex. 1. Given four points on a conic, and the tangmt at one of them ; construct

the tangent at another oftfiem.

Ex. 2, Given three points on a conic, and the tangents at two of them; con-

struct the tangent at the third.

Ex. 3. Given both asymptotes of a hyperbola, and one point; construct the

tangent at this point.

Ex. 4. Giren three points on a parabola, and the direction of the axis ; con-

struct the tangent at one of the giren points.

Ex. 5. Given two points on a parabola, the direction of tfie axis, and the

tangent at one of the points ; construct the tangent at the other point.

Ex. 6. Given four points on a conic, and the direction of one asymptote; con-

struct that asymptote.

Ex. 7. Given three points on a conic, and the directions of both asymptotes

:

construct the asymptotes.

Ex. 8. Given two points on a conic, and one asymptote, and the direction of

the other ; construct the other asymptote.

7. Given five tangents of a conic, to construct the points of

contact.

Let AB, BC, CE, EF, FA be the five given tangents.

Then in the figure of XV. 4, if I) is the point of contact of

CE, we may consider CD, DE to be consecutive tangents

of the conic. Hence the construction—Let BE and CF
meet in 0; then AO cuts CE in its point of contact. So

the other points of contact can be constructed.

Hence given five tangents, we can at once construct five

points ; so that every construction which requires five points

to be given, is available if we are given five tangents.

Ex. 1. Given four tangents and the point of contact of one of them, construct

the points of contact of the others.

Ex. 2. Given three tangents of a conic, and the points of contact of tuu of

them s construct the point of contact of the third.
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Ex. 3. Given both asymptotes of a hyperbola, and one tangent, ccmstrud the

point of contact of the tangent.

Ex. 4. Given four tangents of a parabola, construct the points of contact, and

the direction of the axis.

Ex. 5. Given two tangents of a parabola, and their points of contact, construct

the direction of the axis.

8. Given five tangents of a conic, to construct the conic hy

tangents.

Let GB, BC, CD, DE, EH be the given tangents. Now
every tangent cuts GB. Hence if we construct every other

tangent from points on GB, we shall have constructed every

tangent of the conic. On GB take any point A. Let AD
and BE meet in 0. Let CO meet EH in F. Then, by

Brianchon's theorem, FA touches the conic, i.e. AF is the

other tangent from any point A on GB.

Ex. 1. Given four tangents of a conic, and the point of contact of one of them;

c(mstruct the conic by tangents,

Ex. 2. Given four tangents of a parabola, construct the conic.

Ex. 3. Given three tangents of a conic, and the points of contact of two of

them ; construct the conic.

Ex. 4. Given the asymptotes of a conic, and one tangent ; construct the conic.

Ex. 5. Given two tangents of a parabola, the point of contact of one of them,

and the direction of the axis ; construct the parabola.

Ex. 6. Given five tangents of a conic, construct the tangent parallel to one

them.

Ex. 7. Given four tangents of a parabola, construct the tangent in a given

'Ureciion.

Ex. 8. Construct the pole of a given line for a five-tangent conic.
•

JiiX. 9. Dittofor a five-point conic.

9. Given three points on a conic and a pole and polar, to

construct the conic.

Let A, B, C be the three given points, and the pole.

Let OA cut the polar in a, and take A' such that [fia, AA') is

harmonic. Similarly construct /3 and B\ Through ABCA'B'
construct a conic. This will be the required conic ; for

since {Oa, AA^) and (0/3, BB') are harmonic, we see that

a/3 is the polar of 0.

A reciprocal construction enables us to solve the problem

—

<J2
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Given three tangents of a coniCf and a pole and polar, to con-

struct the conic.

A simple case of each problem is

—

Given three points (or

three tangents) and the centre, to construct the conic.

We obtain two more points (or tangents) by reflexion in

the centre.
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CONSTRUCTIONS OF THE SECOND DEGREE.

1. Construct the points in which a given line cuts a conic

given ty five points.

Let A, B, C, D, E be the five given points. Let the given

line cut DA, DB, DC in a, h, c, and cut EA, EB, EC in

o', b\ c\ and cut the conic in x, y. Then

{xydhS) = D (xyABC) = E{xyABC) = (xya'h'cf).

Hence x, y are the common points of the two homographic

lunges determined by {dbc) and {a'h'c'). Hence the two

required points x, y can be constructed by XVI. 6.

2. Given five tangents to a conic, to construct the tangentsfrom

any point to the conic.

Let three of the given tangents cut the other two in ABC
and A'B'C If a tangent from the given point P cut these

tangents in X and X\ then (ABCX) = {A'BC'X') ; hence

P{ABCX) = P{A'B'C'X'). But PX and PX coincide;

hence one of the tangents from P is one of the common
Unes of the pencils P(ABC) and P{A'B'C'). Hence the re-

quired tangents are the common lines of the homographic

pencUs determined by P{ABC) and P{A'B'C).

3. Given five tangents to a conic, to construct the points i/n

which any line cuts the conic.

Construct first by XXTV. 7 the points of contact, and then

proceed by § i.

Given five points on a conic, to construct the tangents from any

point



230 Constructions of the Second Degree. [ch.

Construct first by XXIV. 6 the tangents at the points,

and then proceed by § 2.

4. If instead of five points, we are given four points and

the tangent at one, or three points and the tangents at two

of them ; or if, instead of five tangents, we are given four

tangents and the point of contact of one, or three tangents

and the points of contact of two of them, the necessary

modifications of the above constructions are obvious.

Ex. 1. Construct a line to cut four given lines in a given cross ratio and to

pass through a given point.

Let three of the lines cut the fourth in BCD. Take A such that
(ABCD)j is equal to the given cross ratio. Draw a conic to touch the
three given lines and also to touch the fourth at A. Through the
given point draw a tangent to this conic. This is the required line.

There are therefore two solutions.

Ex. 2. Give the reciprocal construction.

Ex. 3. Through a given point draw a line to ciU three given lines in A, B, C,

so that AB : BC is a given ratio.

5. Given five points on a conic, to construct the centre, the

axes, and the asymptotes.

Let A, B, C, B, E be the five given points. Through A draw

AG parallel to BC, and construct the point A' in which AG
cuts the conic again. Let AC and BA' cut in H, and AB
and A'C cut in K. Then HK bisects both BC and AA'.

Hence UK is a diameter. Similarly construct another

diameter. Then these diameters meet in the centre.

To construct the axes and asymptotes, we must first con-

struct the involution of conjugate diameters. To do this

—

Through the centre draw Oa parallel to BC, and let Oa' be

the diameter bisecting AA' and BC. Then Oa, Oa' are a pair

of conjugate diameters. In the same way determine another

pair Oh, OV. Then the rectangular pair of the involution

determined by (aa', 1)V) are the axes ; and the double lines

of the same involution are the asymptotes.

If the diameters are parallel, the conic is a parabola ; and

the direction of the diameters is the direction of the axis of

the parabola.
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Ex. 1. Given, five points on a conic, construct a pair of conjugate diameters

which shall make a given angle ivith one another.

Let CP and CD be a pair of conjugate diameters. Take CI/ such that

LPCiy is equal to the given angle. Then the required lines are the

ommon rays of the homographic pencils generated by CD and CD^.

Ex. 2. Through a given point draw a line meetingfour given lines a, a', 6,

'/ in points A, A% B, B' , such that OA . OA' = OB . 0B\

Through draw a parallel to either asymptote of the conic through
the five points ah, ah', a'h, a'h' , and 0.

Ex. 3. Through a given point C draw a line meeting five given lines a, a', b, h' , cf

in five points A, A' , B, B' , Cf such that {AA', BB\ CC) may be an involution.

6. If we are given five points on a conic, the conic can be

constructed by Pascal's theorem (see XXIV. 2). If we are

given five tangents of the conic, the conic can be constructed

by points (see XXIV. 7) or by tangents (see XXIV. 8).

Given four points and one tangent, to construct the conic.

Let ABCD be the given points and t the given tangent.

Let t cut- the opposite sides of the quadrangle ABCD in aa',

lib', cc. Take e, f, the double points of the involution

{aa', W, cc). Then the two conies satisfying the required

conditions are the conies through ABCBe and through

ABCDf. For let the conic through ABCBe cut t again in

e'. Then ee' belong to the involution (aa', hh', cc'), and e is

a double point of this involution ; hence e' coincides with e,

i.e. t touches the conic through ABCBe. So it touches the

conic through ABCBf.

7. Given four tangents and one point, to construct the conic.

Let OJE, OF be the double lines of the involution sub-

tended by the given quadrilateral at the given point 0. Then

it is proved, as above, that the required conies are those

touching the given lines and also touching OE or OF,

Ex. 1. Shoic that when four points are given and one tangent, the soluiion is

unique if the line pass through one of the harmonic points.

The other conic degenerates into a pair of opposite sides.

Ex 2. Show that there is no curved solution if the line pass through two
harmonic points.

Ex. 3. Reciprocate Ex. i and Ex. a.

Ex. 4. Describe a parabola through four given points.

Ex. 5. Construct a parabola, given three tangents and one point.
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8. Gnmn three pohits and two tangents, to construct the conk.

Let the thi*ee points be J., B, C, and the two tangents

TL and TV. Let

AB cut TL and

TL' in c and c',

and let^Ccut Ti
and TL' in h and

?>'. Take 0, /,

the double points

of the involution

(AB, cd), and y, y

the double points

of the involution

[AC, W). Let any

one, y^y of the four lines y^, yz\ y'z, y'z' cut TL and TL' in

P and V.

Then one conic satisfying the required conditions is the

conic which passes through A and touches OL and OL' at P
and P'. For let this conic cut AB again in J5'. Then ^^ is a

double point of the involution (AB, cc') and also of the in-

volution (AB', cc). Hence B and B' coincide, i. e. the conic

passes through B. Similarly the conic passes through C.

So by taking any of the lines yz', y'z, y'z' instead of yz, we
obtain another solution. Hence the problem has four solu-

tions.

Note that since there are only four possible positions of the

polar PP' of T, we have proved that

—

If the sides BC, CA,

AB of a triangle cut two lines TL and TL' in aa', W, cc', and

if the double points xx', yy', z^ of the involutions (BC, aa'),

{CA, hh'), (AB, cc') he taken, then the six points xx'yy'zz' lie

three by three mi four lines.

9. Given two points and three tangents, to construct the conic.

Let A and B be the given points, and LM, MN, NL
the given tangents. Take MY, MY' the double lines of

the involution M (AB, LN), and take JSfZ, JSfZ' the double

points of the involution N(AB, LM). Let T be the meet

of one of the lines MY, MY' with one of the lines NZ,
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JVZ'. Describe a conic to touch TA and TB at A and B
and to touch MN.

This is a conic satis- L

fying the required con- /\ \ y
ditions. For let ML'
be the second tangent

from ilf to this conic.

Then MY is a double

line of both the invo-

lutions M{AB, NL)
and M{AB, NL').

Hence ML' coincides

with MIj, i.e. the conic touches ML. So the conic touches

NL.

By taking one of the other four meets instead of the meet

of MY and NZ, we obtain three other solutions.

10. Given a triangle self-conjugate for a conic^ and either two

points on the conic, or one point on the conic and one tangent to the

c6nic, or two tangents to the conic, to construct the conic,

-^y ^' 9y if we are given a self-conjugate triangle and

one point, we are given three other points ; and if we are

given a self-conjugate triangle and one tangent, we are given

three other tangents. In any of the above cases therefore

the conic can now be constructed.

11. If we are given a focus, by XXVIII. 8 we are given

two tangents. Hence the following problems belong to this

chapter, but in each case a simpler solution can be given.

Given a focus and three points, to construct the conic.

Take the reciprocals of the given points for any circle w4th

centre at the given focus, and draw a circle to touch these

lines. The reciprocal of this circle is the required conic.

Since four circles can be drawn, there are four solutions.

Given a focus and two points and one tangent.

Reciprocation gives four solutions, two of which are

imaginary.

Given a focus and one point and two tangents.

Reciprocation gives two solutions.
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Griven a focus and three tangents.

Reciprocation gives one solution. In this case we can

also solve the problem by determining the second focus by

means of the theorem that two tangents to a conic arc-

equally inclined to the focal radii to their meet.

12. To construct a conic, given a self-conjugate triangle and

a pole and polar.

LetABC be the self-conjugate triangle, and let L be the pole

of I. Let LA meet BC
AC B in A', and I in D ; let

LB meet CA in B\ and

linE; let LC meet AB
in C, and I in F.

Now A and J.' are

conjugate points for the

required conic, and so are

L and D. Hence the re-

quired conic must pass

through XX\ the double

points of the involution

(AA', LB). So the conic

must pass through the double points YY' of the involution

{BB% LE), and through the double points ZZ^ of the invo-

lution (CC, LF).

Also the six points XX'YYZZ' lie on a conic. For draw

a conic through XX'YY'Z. Then since LB are harmonic

with XX\ and LE with YT, I is the polar of L ; also

(LF, ZZ') = — I, and the conic passes through Z ; hence the

conic passes through Z'

.

Again, the conic through XX'YYZZ' satisfies the required

conditions. We have proved that I is the polar of L.

Let BC and B'C meet in H. Then the opposite vertices of

the quadrilateral BC, CB\ B'C, C'B are BB\ CC, and AH.
Now BB' are conjugate for the conic, and so are CC ; hence

so are AH. Hence the polar of A passes through H ;
and

also through A\ Hence BC is the polar of ^ ; so CA is the
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polar of B^ and AB is the polar of C. Hence ABC is a self-

conjugate triangle for the conic.

This completes the theoretical solution of the problem
;

and we have shown that one, and only one, conic can be

drawn satisfying the given conditions. Practically the above

solution is worthless ; for any pair of the points XX', YY\
ZZ' may be imaginary. The following is the practical con-

struction when the conic is real.

We have already found two points upon CL, To find two

points on CA. Let AC cut I in Q. Then AC are conju-

gate points ; and so are jB'Q, for Q is the pole of JLB. Hence

the two points upon CA are the double points of the involu-

tion (J. 0, B'Q). So two points can be found on CB. Hence six

points on the conic are known, viz. those on CA, CB, and

CL. Now if the conic is real, one of the points ABC { say C)

is inside the conic, and hence CA, CB, CL all cut the conic

in real points. Hence, by tryingABC in succession, we get

six real points on the conic.

^If on trial we find that neither A nor B nor C gives six

real points, we conclude that the conic is imaginary.

We see again that two conies cannot have two common self-

conjugate triangles ; for since two such triangles more than

determine a conic, the two conies would be coincident.

Ex. 1. Given a pentagon ABODE, construct a conic for which each vertex is

the pole of the opposite side.

Let AB and CD meet in F. Tlie required conic is the one for which
ADF is self-conjugate, and E is the pole of BC.

Ex. 2. For this conic, the inscribed conic and the circumscribed conic are

reciprocal.

Ex. 3. Given the centre of a conic and a self-conjugate triangle, construct the

asymptotes.

Draw OX, OY, OZ parallel to BC, CA, AB ; then the asymptotes are
the double lines of {AX, BY, CZ).

Ex. 4. Given a pole and polar and a self-conjugate triangle, construct the

tangentsfrom the pole.

• Ex. 5. Givenfour points A, B,C, D and a line I. With A as pole of I and with

BCD as a self-conjugate triangle, a conic is drawn; similarly the conies {B, CDA),
(C, DAB), {D, ABC) are drawn. Show that these four conies meet I in the same
two points.

13. Given five points on each of two conies, to construct the
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conic which passes through the meets of these conies and also

through a given point.

Through the given point L draw any line I ; and construct

the points pp', qq' in which ? cuts the two conies. Then if

M be the other point in which the required conic cuts I, we
know that pp', qq\ LM are pairs in an involution. Hence

Mia known, i.e. a point on the conic is known on every

line through L.

Given five points on each of two conies, to construct the conic

which passes through the four meets of these conies and also

touches a given line.

Construct the points in which the given line cuts the

given conies, viz. pp', qq'. Then the points of contact of the

required conies are the double points e, / of the involution

determined by pp\ qq\ Then, taking either e or f we con-

tinue as above.

Ex. Give Vie reciprocal constructions.

14. Given three points on a conic and an involution of con-

jugate points on a line, to construct the conic.

If the given involution has real double points, draw a

conic through the three given points and the two double

points. This conic clearly satisfies the required conditions.

If the given involution is overlapping, proceed thus—Let

A, B, C he the given points, and I the line on which the

involution of conjugate points lies. Let BC cut Z in P, and

take P', the mate of P, in the involution. Also take P'' such

that (BC, FF") = - 1. Let PJL cut P'P" in a, and take A'

such that {AA\ Pa) = — i. So, using CA and QQ', B' can

be constructed.

Then the conic ABCA'B' is the required conic. For since

{BC, PP") = - 1 = (AA', Pa), P"a is the polar of P.

Hence PP' are conjugate points. So QQ' are conjugate

points. Hence the involution (PP', QQ') (which is the given

involution) is an involution of conjugate points for thi.'^

conic.

If the given involution is overlapping, we have solved
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the problem

—

To draw a conic through five given points, two

of which are imaginary,

15. Construct a conic to pass through four given points and

to divide a given segment harmonically.

Let LM be the given segment. Let E, F be the double

points of the involution determined by the given quadrangle

ABGD on LM, Let the double points P, Q of the involu-

tion {LM, EF) be constructed. Then the conic through

ABCDP is the required conic. For let LM cut this conic

again in (^. Then PQ' belong to the involution of the

quadrangle on LM, Hence (PQ\ EF)= — i. Hence Q'

coincides with Q. And {LM, PQ) = — i. Hence the conic

cuts LM harmonically.

If the double points E, F are imaginary, construct the

involution of vrhich L, M are the double points, and let

P, Q be the common points of this involution and that of

the quadrangle on LM. Then the required conic is ABCDP.
For, as before, LM cuts the conic again in Q, and

Also, since E, F are imaginary, this construction is real.

Ex. Construct a conic which shall pass through four given points and through

a pair (not given) ofpoints of a given involution on a line.

16. The follovring proposition will be used in the suc-

ceeding constructions

—

If a variable conic through four fixed points A, B, C, L meet

fixed lines through A and B in P and Q, then PQ passes through

a fixed point upon CD.

For consider the in- a

volution in which CD
cuts the conic and the

four sides AP, BQ, AB,
PQ of the quadrangle

ABPQ. Five of these

points are fixed, viz.

the meets w^ith the

fixed lines AB, AP, BQ, and the meets C, D with the conic.
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Hence the sixth meet is fixed, i.e. PQ passes through a fixed

point on CD,

The theorem may also be stated thus

—

A system of conks pass through ABCJD. A fixed line

through A cuts these conies in PP\.., and a fixed line through

B cuts them in QQ'.-.. Then all the lines PQ, P'Q',... are

concurrent in a point on CD.

If A and B coincide, the theorem is—

A system of conies touch at A and pass through CD. A
fixed line through A cuts these conies in P, P', . .

.
, and another

fixed line through A cuts them in Q, Q\... Then all the lines

PQj P'Q', .

.

. are concurrent in a point on CD.

If A, B and C coincide, the theorem is —
A system of conies have threepoint contact at A and pass

through D. A ficced line through A cuts these conies in P, P\...,

and another fixed line through A cuts them in Q, Q', .... Then

all the lines PQ, P'Q\ . • . are concurrent in a point on AD.

Ex. 1. Reciprocate all these theorems.

Ex. 2. Given three meets ABC of two five-point conies, prove the following

construction for the fourth meet D—Take any two points L, M on either conic, and
construct the points L' , M' in which AL, BM cut the other conic. Join the meet of

LM, L'M' to C. Then D is the meet of this line with either conic.

Ex. 3. Given two meets A, B of two five-point conies, prove the following con-

struction for the other meets C and D—Take any two points L, M on either conic,

and construct tiie points L' , M' in which AL, BM cut the other conic. LM, L'M'

meet in one point on CD. Similarly construct another point on CD. Now cmi-

struct the points in which the joining line cuts either conic.

Ex. 4. Reciprocate the two preceding constructions.

Ex. 5. Prove the following construction for the directions of the axes of a conic

given by five points—Draw a circle through three A, B, C of the given points

;

now construct the fourth meet P of tlie conic and the drde ; then the directions of

the axes bisect the arcgles between AB and CP.

17. Given five points on a conic, three ofwhich are coincident,

to construct the conic.

Let ABC be the three given coincident points, and DE
the other given points. Then to be given ABCis equivalent

to being given the point A, the tangent at A, and the circle

of curvature at A. Let AD, AE cut this given circle in

D', E'. Then DE, D'E^ meet on the common cliord of the
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circle and the conic. Hence the point P where this chord

cuts the circle can be constructed. Now P is on the conic.

Hence we know four points A, D, E, P on the conic and the

tangent at one of them. Hence the conic can be con-

structed.

Ex. Obtain, by %ising the reciprocal theorem, a solution of the problem—
i-ivenfive tangents ofa conic, three of which are coincident, construct the conic.

Notice that the circle of curvature has three-tangent contact with
the conic as well as three-point contact.



CHAPTER XXVI.

METHOD OF TRIAL AND EREOB.

L Given two homographic ranges {ABC ...) and {abc ...) on

different lines, and given two points V and u, find two points

XY of the first range, such that the angles XVY and xvy

may have given values, x and y being tJie points corresponding to

X and Y in the. homographic ranges.

Try any point P on AB as a position of X. To do this,

take Q on AB, so that the angle PVQ is equal to the given

value of XVY. Take^ and q, the points corresponding to P
and Q, in the homographic ranges. Also take r on ab, so that

the angle pvr may be equal to the given angle xvy. Then if

r coincides with q, the problem is solved.

If not, try several points P^, P^.- . Then

(r^r,...) = v{r,r,...)

— '^(PiPz"-) since the pencils are superposable

= (Pii?2 •••) = (-PiA •••) since the ranges are homographic

= r{P, p, ...) = r(ft «,...) = («, Q, ...) = (q, a, ...).

Hence the ranges (g'lg'a-") ^^^ {^i^2'--) ^^^ homographic.

Now if q and r coincide, q will be a position of y. Hence y is

either of the common points of the homographic ranges

(q^ q.2 •'•) and (rj r^ ...). Hence Y and X are known.

The problem has four solutions. Two are obtained above,

and two more are obtained by taking the angles PVQ and

pvq in relatively opposite directions.

Notice that we need only make three attempts ; for the

common points of two homographic ranges can be deter-

mined if three pairs of corresponding points are known.
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The above process may be abbreviated by writing (r) for

the range (r, r^ . . ), and so on.

The method is called by some writers the method of

False Positions.

Ex. 1. Find corresponding segments XF, XT' of two given homographic

ranges which shall be of given lengths.

Ex. 2. Given two homographic ranges on the same line, find a segment XX'
bounded by corresponding points, {i) which is bisected by a given point, or

(ii) which divides a given segment harmonically.

If XX^ satisfies either condition, X and X' generate ranges which
are in involution and therefore homographic.

Ex. 3. Find also XX'
,
given that (i) AX : BX' is a given ratio, or (ii) that

XX' is of given length, or (iii) that XX' divides a given segment in a given

cross ratio.

Ex, 4. If A, A' generate homographic ranges on two lines, show that through

any given point two of the lines AA' pass.

Ex. 5. Find corresponding points X, X' of two homographic ranges on

different lines, such that XO and X'C/ meet at a given angle, and (/ being

given points.

The pencils at and 0' are homographic.

Ex. 6 . Given on the same line the homographic ranges {ABC . .
.
) = (A'B'C ...),

and the homographic ranges (LMN,..) — {L"M"N" ...') ; find a point X which

haJs the same mate in both ranges.

Ex. l.IfA and A! generate homographic ranges cm two lines, and B and B'

generate homographic ranges on two other lines, find the positions of A, B, A', Bf

that both AB and A'B' may pass through a given point.

2. Between two given lines place a segment whose projections

on two given lines shall he ofgiven lengths.

Let the projections lie on the lines AB and CD. On AB
take a length LM equal to the given projection on AB

;

through L and M erect perpendiculars to AB to meet the

given lines in X and Y. Let the projection of XY on CD
be PQ. If PQ is of the required length, then the problem

is solved.

If not, make PQ' of the required length. Then the ranges

generated by Q^ and P are homographic, being superposable.

Again, the ranges P and X are homographic, by considering

a vertex at infinity. Similarly

range X = range L = range M = range Y = range Q.

Hence the ranges Q' and Q are homographic. Either of
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the common points of these ranges gives a true position

of q.

Ex. 1. On two given lines find points A and B, such tJiat AB subtends given

angles at two given points.

Ex. 2. Through a given point draw two lines, to cut off segments of given

lengthsfrom two given lines.

Ex. 3. Given two fix^ points and Of on two fixed lines, through a fixed

point V draw a line cutting the fixed lines in points A, A', such that (i) OA . (/A^

is constant, or (ii) OA : 0'A' is constant.

Ex. 4. Through a given point draw a line to include icith two given lines a

given area.

Ex. 5. Two sides of a triangle are given in position and the area is given

;

show that the base in two posiHo7is subtends a given angle at a given point.

Ex. 6. Given four points A, B, C, D on the same line, find two points X, Y
on this line, such that {AB, XY) and {CD, XY) may have given values.

Ex. 7. Given two fixed points A and B, find two points P, Q on the line AB,
such that (AB, PQ) is given and also the length PQ.

Ex. 8. Given three rays OA, OB, OC, find three other rays OX, OT, OZ, such

that the cross raUos 0(AB, XF), 0(BC, YZ}, 0{CA, ZX) may have given

values.

Ex. 9. Find the lines OX, OX' such that (AA% XX') may be a given cross

ratio and XOX' a given angle, OA and OA' being given lines.

Ex. 10. Solve the equation ox? + bx + c = o by a geometrical construction.

The roots are the values of x at the common points of the homo-
graphic ranges determined by axx' + bx + c ^ o.

Ex. U. Solve geometrically the equations

y ~ Ix + a, z = my + b, x = nz + c.

Obtain the common points of the homographic ranges (x, x') deter-

mined hy y = Ix + a, z = my + b, x' = nz + c.

Ex. 12. Solve geometrically the equations

xy + lx + my + n = o, xy+px + qy + r-o.

3. Given two points L, M on a conic, find a point P on the

conic, stick that PL, PM shall divide a given segment UV in

a given cross ratio.

Take any position of P, and let PL, PM meet UV in A, B,

and take J5' such that
(
UV, AB') is equal to the given cross

ratio. Then {A) = L(A) = L(P) = M{P) = M (B) = {B).

Also, since
(
UV, AB') is constant, we have {A) = (B'). Hence

(J5) = {B'). Hence the required position of B is either of

the common points of the homographic ranges generated by

BandB'.
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Ex. Give two points L, M on a conic, find a point P on the conic such that the

bisectors of the angle LPM may have given directions.

Draw parallels to PL, PM through a fixed point.

4. Inscribe in a given conic a polygon of a given number of

sides, so that each side shall pass through a fixed point.

Consider for brevity a four-sided figure. It will be found

that thei same solution applies to any polygon.

Suppose we have to inscribe in a conic a four-sided figure

ABCD, so that AB passes through the fixed point U, BC
through V, CD through W, and BA through X On the

conic take any point A. Let A JJ cut the conic again in B.

Let BV cut the conic again in C. Let CW cut the conic

again in D. Let DX cut the conic again in A\ So take

several positions of A.

Then the range on the conic generated by A is in involu-

tion with the range generated by B, since AB passes

through a fixed point JJ. Hence {A) = {B). So

(B) = (C) = (J)) = {A').

Hence the ranges {A) and (A') on the conic are homographic.

A true position of A is either of the common points of these

homographic ranges.

Note that in the exceptional case of XXI. 3. Ex. 14, the

common points lie on the line ; and the above solution

becomes nugatory.

Ex. 1. Describe about a given conic a polygon such that each vertex shall lie

on a given line.

Inscribe in the conic a polygon whose sides pass through the poles
of the given lines, and draw the tangents at its vertices.

Ex. 2. Inscribe in a given conic a polygon of a given number of sides, such
that each pair of consecutive vertices determine with two given points on the conic

a given cross ratio.

Ex. 3. In the given figure ABCD inscribe the figure NPQR, so that RN, PQ
meet in the fixed point U, and NP, RQ in the ficmd point V.

Ex. 4. Construct a polygon, whose sides shall pass through given points

and whose vertices shall lie on given lines.

Ex. 5. Construct a polygon, whose vertices shall lie on given lines and whose
sides shall subtend given angles at given points.

Ex. 6. Construct a triangle ABC, such that A and B shall lie on given lines,

and that the angle C shall be equal to a given angle, whilst the sides AB, BC, CA
pass through fixed points.

R 2



244 Method of Trial and Error.

Ex. 7. A ray of light starts from a given point, and is reflected successively

from n given lines ; find the initial direction that the final direction may make a
given angle with the initial direction.

Ex. 8. Given two homographic ranges (ABC...) = {A'^Cf .,.)<m a conic,

find the corresponding points JT, J^', such that XX' may pass through a given

point.

Ex. 9, Given two points AA' on a conic, find two points XX' also on the

ccmic, such that (AA', XX') has a given value and XX' passes through a given

point.

Ex. 10. Through a given point A is draum a chord PQofa conic ; BC are

fixed points on the conic ; find the position ofPQ when PB and QC meet at a given

angle.

Ex. 11. Through two given points describe a circle which shall cut a given are

of a circle in a given cross ratio.

Ex. 12. Through four given points draw a conic which shall cut offfrmn a
given line a length which is either given or subtends a given angle at a given

point.



CHAPTEE XXVII.

IMAGINARY POINTS AND LINES.

1. The Principle of Continuity enables us to combine the

elegance of geometrical methods with the generality of

algebraical methods. For instance, if we wish to determine

the points in which a line meets a circle, the neatest

method is afforded by Pure Geometry. But in certain

relative positions of the line and circle, the line does not

cut the circle in visible points.

Here Algebraical Geometry comes to our help. For if

we solve the same problem by Algebraical Geometry, we
shall ultimately have to solve a quadratic equation ; and

this quadratic equation will have two solutions, real, coin-

cident and imaginary. Hence we conclude that a line always

meets a circle in two points, real, coincident or imaginary.

Another instance is afforded by XXIII. 5. Here we
prove the proposition by using the points and 0' in which

the circles on AA^ and BB^ as diameters meet. But these

circles in certain cases do not meet in visible points. But

we might have proved the same proposition by Algebraical

Geometry, following the same method. Then it would

have been immaterial whether the coordinates of the points

and 0' had been real or imaginary, and the proof would

have held good. Hence we conclude that we may use the

imaginary points and 0' as if they were real.

In all solutions by Algebraical Geometry, points and

lines will be determined by algebraical equations. Hence
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imaginary points and lines will occur in pairs. Hence we
shall expect that in Pure Geometry, imaginary points and

lines will occur in pairs.

2. The best way of defining the position of a pair of

imaginary points is as the double points of a given over-

lapping involution ; and the best way of defining the position

of a pair of imaginary lines is as the double lines of a given

overlapping involution.

Thus the points in which a line cuts a conic are the

double points of the involution of conjugate points deter-

mined by the conic on the line ; and these double points, ie.

the meets of the conic and line, are imaginary if the involu-

tion is an overlapping one.

So the tangents from any point to a conic are the double

lines (real, coincident, or imaginary) of the involution of

conjugate lines which the conic determines at the point.

Note that a pair of imaginary points is not the same as

two imaginary points. For if AA' are a pair of imaginary

points and BB' another pair of imaginary points, then AB
are two imaginary points but are not a pair.

3. The middle point of the segment joining a pair ofimaginary

points is real.

For it is the centre of the involution defining the imaginary'

points.

A pair of imaginary points AA' is determined when we know

the centre and the square (a negative quanity) OA^,

For the involution defining the points is given by

OP. OP'=OA\

The fourth harmonic of a real point for a pair of imaginary

points is real.

For it is the corresponding point in the defining in-

volution.

The product of the distances of a pair of imaginary points from

any real point on the same litie is real and positive.

Let AA' he the pair, and P any risal point on the line
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AA\ Take the middle point of the segment AA\ Then

VA . P^'= {OA - OP) (OA'- OP)

= (OA - OP) (- OA - OP) = OP"" - 0A\

Now OA'^ is negative, or the involution would have real

double points. Hence PA . PA' is real and positive.

4. Ttvo conks cut in four real points, or in two real and two

imaginary points, or in four imaginary points.

Since a conic is determined by five points, two conies

cannot cut in more than four points, unless they are

coincident.

Also we can draw two conies cutting in four points, e. g.

two equal ellipses laid across one another.

Now if we were solving the problem by Algebraical

Geometry, and were given that the problem could not have

more than four solutions, and that it had four solutions in

certain cases, we should be sure that the problem had in all

cases four solutions, the apparent deficiencies, if any, being

accounted for by coincident or imaginary points.

Hence it follows by the Principle of Continuity, that

two conies always cut in four points, real, coincident, or

imaginary.

Also imaginary points occur in pairs. Hence two or four

of the points may be imaginary.

5. If two conies cut in two real points, the line joining the

other common points is real, even if the latter points are

imaginary.

For, by the principle of continuity, Desargues's theorem

holds, even if two or four of the points on the conic are

imaginary. Let any line cut the conies in pp^ and q^g[ and

the given real common chord in a. Then the real point a,

taken such that {aa',pp', qcl) is an involution, lies on the

opposite common chord. Hence the opposite common chord

is real, being the locus of the real point a'.

If two conies cut in two real and two imaginary points, one

pair ofcommon chords is real and two imaginary.
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For if a second pair were real, the four common points

would be real, being the meets of real lines.

6. One vertex of the common self-conjugate triangle of two

e&nks is altoays real

Take any line I ; then the locus of the conjugate points

of points on I for both conies is a conic. Take any other

line m ; the locus of the conjugate points of points on m for

both conies is a second conic. These conies have one real

point in common, viz. the conjugate point of the meet of I

and m. Hence they have another real point in common,

say U.

Take the conjugate point Q on I of U for both conies and

the conjugate point B on m oi Ufor both conies. Then QR
is clearly the polar of U for both conies ; for the polar of U
for both conies passes through Q and R. Hence Z7 is a real

vertex of the common self-conjugate triangle of the two conies.

Similarly, the other two points, real or imaginary, in

which the conies cut, are the other two vei*tices of the

common self-conjugate triangle.

7. The other two veHkes of the common selfconjugate triangle

of two conies are real if the conies cut in four real points or four

imaginary points ; hut if the conies cut in two real and two

imaginary points^ the other two vertices are imaginary.

If the four intersections are real, the proposition is

obviously true.

If the four intersections are imaginary, one conic must be

entirely inside or entirely outside the other. Hence the

polar of the real vertex U cuts the conies in either two non-

overlapping segments AA^, BB% or in one real segment and

one imaginary, or in two imaginary segments. Now the other

two vertices YW are the points on the polar which are eon-

jugate for both conies, i.e. are the common pair of the two

involutions of conjugate points on the polar. And the double

points AA\ BB' of these involutions are either real and non-

overlapping, or one paii* (at least) is imaginary. Hence by

XX. 5, Fil^ are real.
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If two intersections are real and two imaginary, the meets

of the given real common chord and of the opposite common

chord (which is known to be real) gives a real position of XJ.

But the opposite chord does not cut either conic ; hence U is

outside both conies. Hence the polar of U, passing through

the fourth harmonic of U for the two real points, cuts the

two conies in overlapping real segments. Hence YW, being

the double points of the involution determined by these

segments, are imaginary.

8. One pair of common chords of two conks is always real.

If all four intersections are real, it is clear that the six

common chords are all real.

If all four intersections are imaginary, then UVW are real.

Take any point P and its conjugate point P' for the two

conies. Then the common chords through U are the double

lines of the involution U{VW, PF) ; for the polar of P for

these common chords passes through P', and the polar of V
passes through W. Hence the common chords through U
are both real or both imaginary.

Also the common chords through two of the three points

UVW must be imaginary ; for otherwise the four real com-

mon chords would intersect in four real common points of the

conies. Let the chords through F and W be imaginary.

Then taking P inside the triangle UVW, we see that since

V{UW, PP') overlap, P' must lie in the external angle 7;
so P' must lie in the external angle W. Hence P' lies in the

internal angle Z7. Hence U{VW,PP') does not overlap;

hence the double lines of the involution are real, i.e. the

common chords through U are real.

If two intersections are real and two imaginary, we have

already proved that two common chords are real.

9. Two conies have four common tangents, of which either two

orfour may he imaginary.

Iftwo conies have two real common tangents and two imaginary,

the intersection of the real and also of the imaginary tangents

is real; and the other fcrur common apexes are imaginary.
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One side of the common self-conjugate triangle of ttvo conks

is always real ; the other two sides are real if the four comtnon

tangents are all real or all imaginary; otherwise tJie other two

sides are imaginary.

One pair ofcommon apexes of two conies is always real.

These propositions can be proved similarly to the corre-

sponding propositions respecting common points and common
chords (or by Keciprocation).

Ex. If two conies have three-point contact at a point, they have a fourth real

common point, and a fourth real common tangent.



CHAPTER XXVIII.

CIRCULAR POINTS AND CIRCULAR LINES.

1. The circular lines through any point are the double

lines of the orthogonal involution at the point.

Every pair of circular lines cuts the line at infinity in the

same two points (called the circular points).

Take any two points P and Q. Then to every ray in the

orthogonal involution at P there is a parallel ray in the

orthogonal involution at Q, or briefly, the involutions are

parallel. Hence the double lines are parallel. Hence the

circular lines through P and Q meet the line at infinity in

the same two points.

The notation 00,00' will be reserved for the circular points.

Any two perpendicular lines are harmonic with the circular

lines through their meet.

For by definition the circular lines are the double lines of

an involution of which the perpendicular lines are a pair.

The points in which any two perpendicular lines meet the line

at infinity are harmonic ivith the circular points.

For the circular lines through the meet of the lines are

harmonic with the given lines.

2. Tlie triangle whose vertices are amy point C and the circular

points, is self-conjugate for any rectangular hyperbola whose centre

is at C.

For 00 , C 00 ' being circular lines are harmonic with every

orthogonal pair of lines through C, and are therefore har-

monic with the asymptotes, i.e. with the tangents from C
to the r. h., and are therefore conjugate lines for the r. h.
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Also C is the pole of 00 00 '. Hence Coo 00 ' is self-conjugate

for the r. h.

Ex. 1. All rectangvlar hyperbolas Jiave a common pair of conjugate points.

Ex. 2. Every conic for which the circular points are conjugate is a r. h.

3. All circles pass through the cirmlar points.

Let C be the centre of any circle. Then Coo , Coo ' are the

asymptotes of the circle. For Coo , Coo ' are the double lines

of the orthogonal involution at C, i. e. are the double lines of

the involution of conjugate diameters of the circle. Now a

conic passes through the points in which the line at infinity

meets its asymptotes. Hence the circle passes through 00

and 00 '.

Notice that we have proved that Coo , Coo ' touch at 00 , 00
'

any circle whose centre is at C.

4. Every conic which passes through the circular points is a

circle.

Let C be the centre of a conic through oo , 00 '. Then

since the lines joining the centre of a conic to the points

where the conic meets the line at infinity are the asymptotes

of the conic, we see that Coo , Coo ' are the asymptotes of the

conic. Hence the involution of conjugate diameters ofwhich

the asymptotes are the double lines must be an orthogonal

involution. Hence every pair of conjugate diameters is

orthogonal. Hence the conic is a circle.

We now see the origin of the names circular points and

circular lines. The circular points are the points through

which all circles pass. A pair of circular lines is the limit

of a circle when the radius is zero ; the circle degenerating

into a real point through which pass imaginary Imes to the

circular points. So that a pair of circular lines is both a

circle and a pair of lines.

5. Concentric circles have double contact, the line at infinity

being the chord of contact.

For all circles which have C as centre, touch Coo at 00

and Coo' at 00^
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Ex. 1. Every semicircle is divided harmonicaUy by the circular points.

Ex. 2. The circle which circumscribes a triangle which is sdf-conjttgate for a
rectangular hyperbola passes through the centre.

For five of the vertices of the two triangles consisting of the given
triangle and Coo oo ' lie on the circle.

Ex. 3. Gaskin's theorem. The cirde about a triangle self-conjugate for a
conic is orthogonal to the director.

Let F be a common point of the circle and the director. Let the
polar of V for the conic meet the circum-circle in a, a^ ; Foo , Foo ' in

/3, jB' ; and the tangent at F to the circum-circle, and oo oo '' in 7, 7'.

Then Vaa^ is a self-conjugate triangle. Hence aa' are conjugate points

for the conic. Again, Foo , Foo ' are conjugate lines, for the tangents
from F are orthogonal ; hence ^3/3' are conjugate points. And (aa', Pfi',

yY) is an involution. Hence 77' are conjugate points. Hence the polar
of y passes through 7. Now Y is at infinity, hence its polar F7 passes

through C; i.e. the tangent to the circum-circle at F coincides witli

the radius of the director circle.

Ex. 4. The axes of any one of the system of conies through four given points

on a circle are in fixed directions.

Take any point F and join F to the points at infinity AA^, BB%...
on the conies. Then V {AA', BB^,...) is an involution pencil parallel

to the asymptotes. But Foo, Foo' is one pair, corresponding to the
circle. Hence the double lines are at right angles, and therefore bisect

the angles AVA', BVB^, .... Hence the axes are parallel to these double
lines, and therefore are in fixed directions.

Ex. 5. Two conies are placed with their axes parallel; show that their four
meets are concyclic.

Ex. 6. Give a descriptive proof of the property of the director circle of a
conic.

Let A and B be any fixed points, and let PA and PB be any two
lines through A and B which are conjugate for a conic. Draw the
polar & of B cutting PA in Q. Then Q is the pole of PB. Hence

AiP) =A{Q) = (Q)-B(P).

Hence the locus of P is a conic through A and B.

Now let R be any point on the director circle. Then Rco , Rco ' are
conjugate for the conic, since the tangents from i?, being perpen-
dicular, are harmonic with R<Xi , iJoo '. Hence the locus of i? is a conic
through 00 and 00 '', i. e. is a circle.

6. If the pencil V{ABC . ) he turned bodily through any

migle about V into the position V{A'B'G' ...), then the common

lines of the two homographicpencils V{ABC. . .) and YiA'B'C ..
.

)

' are the circular lines through V.

The pencils, being superposable, are homographic. Hence
if they cut any circle through Fin ahc ... and a'h^c ..., the

two ranges {ahc...) and {a'h'c^ ...) on the circle are homo-
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graphic. One point on the homographic axis of these ranges

is the meet of ab' and a'h. But these lines are parallel.

Hence this point is at infinity. So every point on the axis

is at infinity. Hence the common points of the ranges

{dbc ...) and (a'&V ...) are the meets of the circle with the

line at infinity, i. e. are oo oo '. Hence the common lines of

the pencils Y{ABC...) and Y{A!B'G' ...) are Foo , Foo'.

Hence

—

The legs of a constant angle divide the segment joining

the circular points in a constant cross ratio.

Let the constant angles be ALA', BMB\ CNC, ....

Through any point F draw a circle and let parallels through F
to LA, MB, NO, ..., LA\ MB', NO... cut this circle in

a,h,c,..., a', h', c'. . . . Then, as above, oo oo ' are the common
points of the homographic ranges {dbc ...) and (a'fcV...) on

the circle. Hence

(oo 00
', aa') = (oo 00 ', hV) = (oo 00

', cc) = ....

Hence F(oo oo ' aa') is constant. But the parallel lines LA
and Va cut oo oo ' in the same point ; so LA' and Va' cut

00 00 ' in the same point. Hence X (oo oo ', AA') is constant.

Hence LA and LA' divide the segment oo oo ' in a constant

cross ratio.

7. Coaxal circles are a system offour-point conies.

For two circles meet in two points (real or imaginary)

on the radical axis and also in the circular points. The

adjoining ideal figure explains the relation of coaxal circles
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to the circular points. A and B are the common finite

points on the radical axis, and X2 is the point at infinity on

the radical axis.

L and V are the limiting points. For since LA and LB
are circular lines through A and 5, i is a point-circle of the

system. So for L'. Also LL'Q. is the common self-conjugate

triangle of the coaxal system.

Foci of a Conic.

8. Every conic has four foci, whkh are inside the conic and

lie two on each axis, those on either axis being equidistant from

the centre.

The tangents from a focus of a conic to the conic are the

double lines of the involution of conjugate lines at the focus,

i. e. are the double lines of an orthogonal involution, i. e. are

circular lines, i. e. pass through 00 , 00 '. Hence a focus is an

internal point, since the tangents from it are imaginary.

Also every intersection S of the four tangents from 00 , 00
'

to the conic is a focus of the conic. For Soo , Soo ' being the

tangents from 8 and also circular lines, the involution of

conjugate lines at S is orthogonal, i. e. 6^ is a focus. Hence

the foci of a conic are the other four meets of tangents to the

conic from oc and 00 '.

Consider the adjoin-

ing ideal figure. Here

SS'FF' are the foci.

Also G is the centre

;

for the lines SB' , Fr,
00 00 ' form a self-conju-

gate triangle, hence G
is the pole of 00 00 ^

Again, SS' and FF" are

the axes. For

is a harmonic pencil

(from the quadrangle

SFS'F") ; hence SS' and FF* are orthogonal. Hence SS'



256 Circular Points and Circular Lines, [ch.

•^F

and FF\ being orthogonal conjugate lines at the centre,

are the axes. Hence the foci lie two by two on the

axes.

Again, FF' cuts 00 00 ' in a point O, such that [C 12, FF')

is harmonic; hence C bisects FF\ So C bisects SS',

Hence the foci on each

axis are equidistantfrom

the centre.

It will be instructive

to draw an ideal pic-

ture showing the rela-

tion of a parabola and

of a circle to its foci.

In the case of a para-

bola 00 00 ' touches the

conic. Hence F' coin-

cides with 00' and F
with 00 . Also C and

S' coincide at the point

of contact of 00 00 '.

In the case of a

circle, 00 and 00 ' are on

the conic ; and all the

foci coincide with the

centre C.

Ex. 1. The sides of a triangle ABC touch a conic a and meet a fourth tangent

to a in A'Bf(f ; show that the double lines of the involution subtended by {AA',
BB', CCf ) at a fociis are perpendicular.

Being conjugate lines at a focus.

Ex. 2. The circle described about a triangle which circumscribes a parabola,

passes through the focus.

For five of the vertices of the two triangles consisting of the given
triangle and Soo 00 ' lie on the circle.

Ex. 3. A circle is draum with centre on the directrix of a parabola to pass

through the focus. At E, one of the meets of the parabola and the circle, are

drawn the tangents to the circle and parabola, meeting the parabola atid circle

again in P and Q. Show that PQ is a common tangent to the two curves.

Let be the centre on the directrix, and let the tangents from
to the parabola meet the line at infinity in CI and n\ Then con-
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sidering the triangles Ofin' and Soooo', we see that the conies are

related as in Ex. 14 of XIV. 2.

9. The foci on one axis (called the focal axis) are real, and

the foci on the other axis (called the non-focal axis) are

imaginary.

Take any point P, and through P draw the orthogonal

pair of the involution of conjugate lines at P, cutting one

axis in G and H and the other axis in g and h. Then FG
and PH are harmonic with Poo and Poo ' since GJPH is a

right angle, and with the tangents from P since FG and

PH are conjugate. Hence PG and PU are the double lines

of the involution P(oo 00
', SS\ FF') to which the tangents

belong.

Hence P{SS', GH) and P{FF', gh) are harmonic. And
C bisects SS' and FF'. Hence CS" = CG . CH and

CF'= Cg.Ch,

But on drawing the figure, we see that if CG and CH are

of the same sign, Cg and Ch are of opposite signs. Hence,

taking CG . CH positive, CS^ is positive and CF^ is nega-

tive. Hence S and S^ are real and F and F^ are imaginary.

Ex. 1. Show that gh subtends a right angle at S and at S'.

Now Cg.Gi = —CG.CH by elementary geometry =—C^= CS . CS\
Hence SS^gh lie on the circle whose diameter is gh.

Ex. 2. Any line through G is conjugate to the perpendicular line through H;
and the same is true of g and h.

Ex. 3. In a parabola, S bisects GH.

10. Confocal conies are a system offour-tangent conies.

For if S and S' be the real foci, the conies all touch the

lines Sao , S^co , Soo ', and S^cc '.

Hence, the tangents from any point to a system of confocals

•form an involution, to which belong the pairs {PS, PS'),

(PF, PF') and (Poo , Poo '), P being the given point.

Through every point can be draum a pair of lines which are

conjugate for every one of a system of confocals.

s
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Viz. the double lines P(t, PjE? of the above involution.

PG^ and PH are perpendicular.

For they are harmonic with Poo , Poo '.

The pairs of tangents from any point to a system of con-

focals and the focal radii to the point have a common pair of

bisectors.

For the double lines PG and PH of the involution are

perpendicular.

Ex. 1. In a parabola, PQ and PH are the bisector's of the angles between PS
and a parallel through P to the axis.

Ex. 2. From a given point 0, lines are drawn to touch one of a system of

confocal conies in P and Q ; show that PQ and the normals at P and Q touch a
fixed parabola which touches the axes of the confocals.

Viz. the polar-envelope of the point for the system of four-tangent
conies. The normal PO at P touches the polar-envelope, because it is

conjugate to OP for every conic of the system. Also 00 00 ' and the
axes touch, since they are the harmonic lines of the quadrilateral.

Ex. 3. The directrix of the parabola is CO, C being the common centre.

For the tangents at to the two confocals through are tvsro positions

ofPQ.

Ex. 4. The circle about OPQ passes through a second fixed point.

Let the normals at P and Q meet in R. Then the circle about OPQ
is the circle about PQR, which passes through the focus of the para-

bola.

Ex. 5. The locus of the orthocentre ofPQR is a line.

Viz. the directrix of the parabola.

Ex. 6. The conic through OPQ and the foci passes through a fourth fixed

point.

Let the perpendiculars at S, S' to OS, OS' meet in U. Then

S {UO, PQ) = S' (UO, PQ) = - 1.

11. TJie locus of the poles of a given line for a system of con-

focals is the normal at the point of contact of the given line with

a confocal.

For let the given line I touch a confocal at P, and let PG
be the normal, and PH{= I) the tangent to this confocal.

Then PG and PH are perpendicular. Hence P{GH, 00 00
')

is harmonic. But PH is one of the double lines of the

involution of tangents from P to the confocals, being the

pair of coincident tangents from P to the confocal which
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VH touches. And Poo , Pcx) ' is a pair of this involution.

Hence TG is the other double line. Hence VGr and P^,
being harmonic with every pair of tangents, are conjugate

for every confocal. Hence the locus of the poles of I

is PG.

Reciprocation of circular points and lines.

12. Circular lines are the double lines of the orthogonal

involution at a point P. Hence, the reciprocal of a pair of

circular lines is a pair of points on a line p which are the

double points of the involution on the line which subtends

an orthogonal involution at the origin of reciprocation,

in other words, are the meets of p with the circular lines

through the origin of reciprocation.

Cii'cular points are the points on the line at infinity which

are the double points of the involution on the line at infinity

which subtends an orthogonal involution at 0. Hence the

reciprocals of the circular points are the double lines of the

orthogonal involution at 0, i. e. are the circular lines through

the origin of reciprocation.

The reciprocal of a circle for the point is a conic with focus

atO.

For since the circle passes through the circular points,

the reciprocal touches the circular lines through 0, i. e. is

a focus of the reciprocal.

To reciprocate confocal conies into coaxal circles.

Confocal conies are conies inscribed in the quadrilateral

5^00 , S'ao , Sco ', /S"oo '. Eeciprocate for S. Then since Sx>
,

iSioo ' touch the given conies, the circular points lie on the

i-eciprocal conies, i. e. the reciprocal conies are circles. Also

the given conies have two other common tangents ; hence

the reciprocal conies have two other common points, i. e. are

'coaxal circles.

To reciprocate coaxal circles into confocal conies.

Coaxal circles are conies circumscribed to the quadrangle

(See figure of § 7.) Reciprocate for L. Then
s 2
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the given conies pass through four fixed points, two on each

circular line through the origin of reciprocation. Hence the

reciprocal conies touch four fixed lines, two through each

of the circular points ; i. e. the tangents to all the reciprocal

conies from 00,00' are the same, i. e. the reciprocal conies are

confocal.



CHAPTER XXIX.

PEOJECTION, REAL AND IMAGINARY.

1. To project a given conic into a circle cmd at the same time a

given line to infinity.

Take K, the pole of the given line I which is to be projected

to infinity. Through K draw two pairs of conjugate lines

cutting I in AA', BB'.

On AA' and BB' as diameters describe circles cutting in

V and V\ About AA' rotate

y out of the plane of the paper.

With Fas vertex project the

given figure on to any plane

parallel to the plane VAA\
Then KA will be projected

into a line parallel to VA, and

KA' into a line parallel to VA\
Hence AKA' will be projected

into a right angle. So BKB'
will be projected into a light

angle. Again, since KA and

KA' are conjugate for the given

conic, their projections will be

conjugate for the conic which is the projection of the given

conic. So KB and KB' will be conjugate in the figure

obtained by projection. Again, K is the pole for the given

conic of the given line I which is projected to infinity.

Hence in the second figure, K is the pole of the line at

infinity, i. e. is the centre of the conic.
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Hence in the second figure KA, KA' and KB, KB' are

two pairs of orthogonal conjugate lines at the centre, i.e. the

second conic has two pairs of orthogonal conjugate diameters.

Hence the second conic is a circle.

2. The above construction fails when the line to be

projected to infinity is the line at infinity itself. The

problem then becomes

—

To project a given conic into a circle, so that the centre of the

conic may he projected into the centre of the circle.

If the conic is an ellipse, this can be done at once by

Orthogonal Projection. If the conic is a hyperbola, we must

use an imaginary Orthogonal Projection. If the conic is

a parabola, the projection is impossible.

Ex. Project a system of homothetic conies into circles.

3. To project a given conic into a circle and a given point into

its centre.

Take K to be the given point and I its polar.

To project a given conic, so that one given point may he pro-

jected into the centre and another given point into afocus.

To project L into the centre and K into a focus, take I in

the above construction to be the polar of L instead of the

polar of K, using K and I as before. Then L is projected

into the pole of the line at infinity, i. e. into the centre, and

K is projected into a point at which two pairs of conjugate

lines are orthogonal, i. e. into a focus.

To project a given conic, so that two given points may he pro-

jected into its foci.

To project K, K' into the foci. Take i and L' , the double

points of the involution i^PB', KK'), B and B' being the

points in which KK' cuts the conic. Now project K into a

focus and L into the centre. Then {KK', LL') is harmonic

;

also L' is at infinity, for since (BB', LL') is harmonic, L' is

on the polar of L. Hence KK' is bisected at L, i. e. K'

is the other focus.

Ex. 1. Project a given conic in a given plane into a circle in another

given plaiie.

Take the line AA' parallel to the intersection of the two planes, and
take V in the plane through AA' parallel to the second plane.
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Ex. 2. Project a given conic into a parabola, and a given point into its focus,

aurl a given point on the conic into the vertex of the parabola.

Suppose we want to project S into the focus, and P into the vertex

of a parabola. Let SP cut the conic again in P'. Take the tangent at

P' as vanishing line.

Ex. 3. Project a given conic into a rectangular hyperbola, and a given point

into a focus.

Let two conjugate lines at S cut the conic in P and P. Take PP as

vanishing line.

4. In the fundamental construction of § i, if the point K
be outside the conic, the pencil of conjugate lines at JT is not

overlapping ; hence the segments AA', BB' do not overlap
;

hence the points V and V are imaginary. In this case we
say that the vertex of projection is imaginary, and that we
can by an imaginary projection still project the conic into a

circle and I to infinity. Also by the Principle of Continuity

proofs which require an imaginary projection are valid ; in

fact we need not pause to inquire whether the projection

is real or whether it is imaginary.

Prove Pascal's theorem hp projection.

See figure of XV. i. Project MN to infinity and the

conic into a circle. Then in a circle we have AB parallel to

DE, and BC parallel to EF. It follows by elementary

geometry that AF is parallel to CD. Hence in the original

figure L is on MN.

Ex. 1. Prove by Projection that the harmonic triangle (i) of an inscribed

quadrangle, (ii) of a circumscribed quadrilateral are self-conjugate fm- the

conic.

Project in each case into a parallelogram. Notice that a parallelo-

gram inscribed in a circle must be a rectangle.

Ex. 2. A, B, C, D are four points on a conic. Show that the harrtvmic

triangle of the quadrilateral AB, BC, CD, DA is generally not self-conjugate.

Ex. 3. Show that the harmonic triangles of a quadrangle inscribed in

a conic and of the quadrilateral of tangents at the vertices of the quadrangle are

coincident.

Ex. 4. A, B, C, D, A', B', (f, 1/ are eight points on a conic. AB, CD, A'B',
CZ/ are concurrent, and so are BC, DA, B'C^, D^A' ; show that CA, DB, (fA'

,

D^B' meet in a point, and that a conic can be drawn touching A'A, B'B,
CfC, D'D atA,B, C, D.

Ex. 5. The chords PP^, QQ^ RR% SS^ of a conic meet in 0. Show that the

two conies OPQRS and OP'(^R'S' touch at 0.

Project the conic into a circle and into its centre. Then the two
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conies are the reflexions of one another in 0. Hence the tangents at
coincide.

Ex. 6. Iftico homologous triafigles be inscribed in (or circumscribed to) a
conic, the c. ofh. is the pole of the a. o/h.

Project the polar of the c. of h. to infinity and the conic into a circle.

Then in the new figure each triangle is the reflexion of the other in the
centre. Hence the sides are parallel. Hence the a. of h. is at

infinity ; i. e. the a. of h. is the polar of the c. of h. Hence the same
is true in the original figure.

Ex. 7. Tioo homologous triangles are inscribed in (or circumscribed to)

a conic ; show that any transversal through the centre of homology cuts the sides in

pairs ofpoints in involution.

Ex. 8. Reciprocate Ex. 7.

Ex. Q. A is a fixed point ; P is any point on its polar for a given conic ;

Die tangents from P meet a given line in Q, R. Show that the meets of AR, PQ
and of AQ, PR lie on a fixed line.

Project the conic into a circle and A into its centre.

Ex. 10. The lines joining the vertices of a triangle ABC inscribed in a conic to

a point meet the conic again in a, b, c; and Ab, Be, Ca meet the polar of in

R, P, Q. Show that the lines joining any poirU on the conic to P, Q, R meet BC,

CA, AS in coUinear points.

Ex. 11. Tlie lines AB and AC touch a conic at B and C. The lines PQ and
PR touch the conic at Q and R. Show by Projection that the six points

A, B, C, P, Q, R lie on a conic. Through A is drawn a line cutting the conic in

L and M and cutting QR in N, and a point U is taken such that {LM, NU) = — i.

Show that U lies on the conic ABCPQR.

Ex. 12. If from three coUinear points X, Y, Z pairs of tangents be drawn to

a conic, and ifABC be the triangle formed by one tangent from each pair, and
DEF the points in which the remaining three tangents meet any seventh tangent,

the lines AD, BE, CF meet at a point on XYZ.
Reciprocating, we have to prove the theorem— ' If AOA' , BOA' , CO(f

be chords of a conic, and P any point on the conic, then the meets of

AB, PC, of BC, PA', and of CA, PB' lie on a line through 0.' Project

to infinity the line joining to the meet of AB, PCf , and at the same
time the conic into a circle. The theorem becomes— ' If AA', BB', C(f

be parallel chords of a circle and P a point on the circle such that PC
is parallel to AB, then PBf is parallel to CA and PA' to BC This
theorem follows by elementary geometry.

Ex. 13. ABC is a triangle inscribed in a conic of which is the centre. OA',

OBf , OCf bisect BC, CA, AB. Through P, any point on the conic, are drawn lines

parallel to OA', OB'^ OC meeting BC, CA, AB in X, Y, Z; show that X, Y, Z
are coUinear.

By an Orthogonal Projection, real or imaginaiy, project the given
conic into a circle with as centre. Then in the circle, OA' is perpen-
dicular to BC, OB' to CA, and OC to AB. Hence the theorem becomes

—

' The feet of the perpendiculars drawn from any point situated on a

circle upon the sides of a triangle inscribed in the circle are coUinear.'

Ex. 14. Reciprocate Ex. 13.

Ex. 15. Through a fixed point is draum a chord PP' of a conic ; show that

the locus of the middle point of PP' is a homothetic conic through and through

the points of contact of tangentsfrom 0,
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5. To project any two given imaginary points into the circular

points.

Let the two imaginary points E, F be given as the double

points of the overlapping involution {AA', BB'). Take any

point K in the given plane and proceed as in § i to project

the angles AKA^ and BKB' into right angles and AA^ to

infinity. Then KE and KF are the double points of the

oi-thogonal involution K{AA^, BB'), and E and F are at

infinity ; hence E and F are the circular points.

If E and F are real points, we can project them into the

circular points by an imaginary projection; and proofs in

which imaginary projection is employed are valid by the

Principle of Continuity.

To project any two imaginary lines into a pair of circular

lines.

Let the given lines KE, KF be defined as the double lines

of the involution K(AA', BB). Draw any transversal

AA'BB'. Then proceed as in § i to project the angles AKA^
and BKB' into right angles. Then KE and KF, being

the double lines of an orthogonal involution, are circular

lines.

To project any conic into a rectangular hyperbola.

Project any two conjugate points into the circular points.

To project a system of angles which cut a given line in two

homograpMc ranges, into equal angles.

Project the common points into the circular points.

Ex. 1. Deduce the construction for draioing a conic to touch three lines and to

pass through two points from the construction for drawing a circle to touch

three lines.

Ex. 2. The pole-loaus offour given points A, B, C, D and a given line I,

touches the sixteen conies which can he drawn through the common conjugate

points on I to touch the sides of one of the triangles ABC, ACD, ABB, BCD.

Project these conjugate points into the circular .points ; then I goes
to infinity. Also AD, BC meet the line at infinity in points harmonic
with the circular points ; hence AD, BC are perpendicular. Similarly
BD, AC are perpendicular, and also CD, AB. Also the pole-locus
becomes the nine-point circle of each of the four triangles ; and this is

known to touch any circle which touches the sides of any one of the
four triangles.
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6. To 'project any two conks into circles.

Project any two common points into the circular points,

or project one conic into a circle and a common chord to

infinity.

There are six solutions, as there are six common chords.

But the projection is only real if we take a real common
chord which meets the conies in imaginary points, for the

line at infinity satisfies these conditions.

To project a system offour-point conies into a system ofcocLxal

circles.

Proceed as above.

Ex. 1. Points P, Q, R are taken on BC, CA, AB, and conies are described

through AQRLM, BRPLM, CPQLM, where L, M are any two points. Show that

these conies meet in a point.

Project LM into the circular points.

Ex. 2. Given two tangents and two points on a conic, tlie locus of the meet of

the tangents at these points is two lines.

Ex. 3. Two conies pass through ABCD. AEF, BGH cut the conies in

EG, FH ; show that CD, EG, FH are concurrent.

Ex. 4. A variable conic passing through four fixed points A, B, C, D
meets a fixed conic through AB in PQ ; show that PQ passes through a

fixed point.

Ex. 5. A, B, C, D are four fixed points on a fixed conic. BC, DA meet in F,

and AB, CD meet in G. A variable conic through ACFG cuts the fixed conic

again in PQ. Show iliat PQ passes through the pole of BD for the fixed

conic,

Ex. Q.Ifa conic pass through two given points and touch a given conic at a

given point, its chord of intersection with the given conic passes through a

fixedpoint.

Ex. 7. On each side (UW) of the common self-cotijugate triangle of two conies

lie two common apexes {BB') and the two poles (PP^ and QQ') of two common
chords (be and ad) of the conies. Also {PP", BB') and {QQ', BB') are

harmonic.

See figure of XIX. 8. B, B' lie on UW because BB^ and UW are both

sides of the self-conjugate triangle. P, P' lie on UW because be passes

through V ; so Q, C/ lie on UW. Now project be into the circular points.

Then P and P' are the centres of the circles, and B and B' are the

centres of similitude. Hence {PP', BB')= —i. So by projecting ad

into the circular points, we prove that {Q(^, BB') = — i.

Ex. 8. Reciprocate Ex. 7.

Ex. 9. Of two circles, the poles of the radical axis and the centres of similitude

form a harmonic range.

Ex. 10. If tangents be drawn from any point on any common chord of

tico conies, touching one conic in AB and the other in CD ; show that the lines

AC, AD, BC, BD meet two by two in the common apexes corresponding to

the common chord.
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Ex. 11. If thrmgh any common apex of two conies a line he drawn cutting

the conies in the points AB and CD, at which the tangents are ah and cd ; show

that the points ac, ad, he, hd lie two by two on the corresponding common
chords.

Ex. 12. If the joins of any point on any common chord of two conies to

the poles of this chord cut the comes in AB and CD; show that the lines

AC, AD, BC, BD meet two hy two in the common apexes corresponding to the

unmon chords.

Ex. 13. If three conies have two points in common, the opposite common
chords of the conies taken in pairs, are concurrent.

Ex. 14. If three conies have two points in common, the three pairs of common
apexes corresponding to the chord lie three hy three on four lines.

Ex. 15. Reciprocate Ex. 13 and Ex, 14.

Ex. 16. Two conies a and meet at B, C, and touch at A. DEG touches a
at E and at G. DFH touches a at F and at H. Show that EF, BC, Gil
meet {at K say) on the tangent at A, and that the poles of BC for a and /3

lie 071 DA and divide it harmonically. Show also that

A {KD, BC) = D {AK, EF) = K (FH, AC)=-i.

Ex. 17. The envelope of a line which meets two given conies in pairs

of harmonic points is a conic which touches the eight tangents to the conies

at their meets.

Let the conies meet in ABCD. Project AB into the circular points.

Then by Ex. 2 of III. 6, the envelope of the line is a conic which
touches the four tangents at C and D. So by projecting CD into the
circular points, we prove that the envelope touches the tangents
at A and B.

Ex. 18. Pi-ove Ex. IT by one projection.

Ex, 19. Ifth£ given conies he two parabolas with axes parallel, the envelope

is a parabola with axis parallel to these axes.

Ex. 20. The locu^ of a point the tangentsfrom which to two given conies are

pairs of a harmonic pencil is a conic on which lie the eight points in which the

given conies touch their common tangents.

Ex. 21. Two equal circles touch. Show that the locus of a point, the pairs of
tangentsfrom which to the circles are harmonic, is a pair of lines.

For if the circles touch at A and the common tangents touch
them at BC, DE, the lines BAE, CAD contain the eight points, four
being at A.

Ex. 22. If SA, SA', S'A, S'A' he the common tangents of two circles, S and
S' being the centres of similitude, and if the angles at A and A' he right, show
that the above locus breaks up into a pair of lines.

For the four polars of the other two common apexes bisect the
angles between SS' and AA'.

Ex. 23. The tangents to a system offour-point conies at their meets formfour
homographic pencils.

Ex. 24. Reciprocate Ex. 23.

Ex. 25. If two conies be so situated tliat two of their meets AB subtend
'if another meet C an angle which divides harmonically the tangents at C, the

tme is true for AB at D, for CD at A, and for CD at B.
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Apply Ex. 23 to the four conies consisting of the two given conies
and the pair of lines AC^ BD and the pair AD, BC.

Ex. 26. In such conies, the envelope of the lines which divide the two conies

harmonically degenerates into two points.

Ex. 27. Reciprocate Ex. 25 and Ex. 26.

Ex. 28. Four parabolas are draion with their axes in the same direction

to touch the four triangles formed by four points ; show that they have a common
tangent.

A particular case of the more general theorem—* Four conies are

drawn to touch two given lines and to touch, &c.'

Reciprocate, and project the given points into the circular points.

Ex. 29. A polygon is inscribed in one of a system of four-point conies, and
each side but one touches a conic of the system ; show that the retnaining side

also toucfies a conic of the system.

For the theorem is true for coaxal circles by Poncelet's theorem.

Ex. 30. Reciprocate Ex. 29 ; and deduce a property of confocal conies.

7. To project any tivo conks into confocal conks.

Let the opposite vertices of the quadrilateral circumscribed

to both conies be AA', BB', CC\ Project AA' into the

circular points ; then the conies have the foci BB', CC in

common, i.e. are confocal.

To project a system of conks inscribed in the same quadrilateral

into confocal conies.

Project a pair of opposite vertices of the circumscribing

quadrilateral into the circular points.

Ex. 1. A variable conic touches four fixed lines ; from the fixed points B, C
taken on two of these lines the other tangents are drawn ; find the locus of their

meet.

Project BC into the circular points.

Ex. 2. The line PQ touches a conic. Find the locus of the meet of tangents of

the conic which divide PQ (i) harmonically, (ii) in a constant cross ratio.

Ex. 3. If a series of conies be inscribed in the same quadrilateral of which

AA' is a pair of opposite vertices, and from a fixed point 0, tangents OP, OQ be

drawn to one of the conies, the conic drawn through OPQAA' will pass through a

fourth fixed point.

Project AA' into the circular points, and see Ex. 4. of XXVIII. 10.

Ex. 4. Reciprocate Ex. 3.

Ex. 5. If two conies be inscribed in the same quadrilateral, the two tangents

at any of their meets cut any diagonal of the quadrilateral harmonically.

Ex. 6. Given the cross ratio of a pencil, three of whose rays pass through fixed

points and whose vertex moves along a fixed line, the envelope of the fourth ray is a

conic touching the three sides of the triangleformed by the given points.
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Ex. 7. T)ie locus of the point where the intercept of a variable tangent of a
central conic between tico fixed tangents is divided in a given ratio is a hyperbola

whose asymptotes are parallel to the fixed tangents.

This is a particular case of the theorem— ' If a tangent of a conic

meet two fixed tangents AB, AC in P, Q and a fixed line I in U, and if

R be taken such that (PQ, EU) is constant ; then the locus of i? is a

conic through the meets B, C of I with the fixed tangents.' To prove
this project BC into oo oo '. Then we have to prove that— ' If through
the focus S of a conic, a line SB be drawn making a given angle with
a variable tangent QR, then the locus of J2 is a circle.' This can be
proved by Geometrical Conies.

8. To project any two conies into Tiomothetic conies.

Project any common chord to infinity. The new conies

will pass through the same two points at infinity, and hence

are homothetic. (See XIX. ii, end.)

To project any two conies which have double contact into homo-

thetic and concentric conies.

Project the chord of contact to infinity. The pole of the

chord of contact projects into the common centre.

Ex. The point V on a conic is connected with two fixed points L and M. Show
that chords of the conic which are divided harmonically by VL and VM pass
through a fixed point 0. Also as V varies, the locus of is a conic touching the

given conic at two points on the join of the fixed points L and M.

9. To project any two conies having double contact into con-

centric circles.

Project the two points of contact into the cii-cular points.

Then the conies will both pass through the circular points,

i.e. will both be circles. Also they will both have the same

pole of the line at infinity, i.e. they will be concentric.

Ex. 1. Conies having the same focus and corresponding directrix can be pro-

jected into concentric circles.

For the focus S has the same polar, and the tangents from S are the
same. Hence the conies have double contact.

Ex. 2. Through the fixed point is drawn a chord OAB of a conic, and on
OAB is taken the point P such that (jOABP) is constant. Find the locus of P.

10. TJie lines which join pairs of corresponding points of two

homographic ranges on a conic, touch a conic having double

contact with the given conic at the common points of the ranges.

Let {ABC.) and {A'B'G'...) be the two homographic

ranges, and E, F their common points. Project the conic

into a circle and the homographic axis EF to infinity. Then
E, F are projected into the circular points.
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Now in the second figure, AB' and A'B meet on the

homographic axis. Hence AB' and A'B are parallel. So

AC and A'C are parallel, and so on. Hence the arcs AA\
BB\ CC% ... are all equal. Hence the envelope of AA' is

a concentric circle, i.e. a circle having double contact with

the circle which is the projection of the given conic at

the circular points E, F. Hence in the original figure the

envelope of AA' is a conic having double contact with the

given conic at the double points of the two homographic

ranges.

Ex. 1. Two conks have double contact, and a tangent to one conic meets the

other conic in A and A' . Show that A and' A' generate hxnyiographic ranges, and

find the common points of these ranges.

Ex. 2. If {ABC ..) and {A'B'C\..') he two homographic ranges on a conic,

show that the locus of the poles of AA' , BBf, ... is a conic having double contact

with the given conic.

Ex. 3. T}ie points of contact of the tangents AA', BB' . CC, ... form a range

on the envelope homographic vnth the ranges ABC... and A'B'C

Ex. 4. Show that the tangents at ABC... and A'B'C ... cut the homographic

axis in homographic ranges.

For equal angles cut the line at infinity in homographic ranges.

Ex. b. If be the pole of the homographic axis of the two homog^-aphic ranges

on a conic, then 0{ABC...) = (A'B'C...).

Ex. 6. If aUhut one oftlie sides of a polygon pass through fixed points and
all the vertices lie on a conic, then the envelope of the retnaining side is a conic

having double contact with the given conic.

For the last side determines homographic ranges on the conic.

Ex. 7. If all but one of the vertices of a polygon move on fixed lines and all

the sides touch a conic, the locus of the remaining vertex is a conic having double

contact vnth the given conic.

Ex. 8. Two sides of a triangle inscribed in a conic pass through fixed points

;

show that the envelope of the third is a conic touching the given conic at the meets

of the given conic with the join of the given points.

Ex. 9. A triangle PQR is inscribed in a conic ; PQ, PR are in given direc-

tion; show that QR envelopes a conic.

Ex. 10. The envelope of chords of a conic which subtend a given angle at a
given point on the conic is a conic having double contctct with the given conic.

Ex. U. A, B are two fixed points on a conic, and P, Q two variable points

on the conic such that {AB, PQ) is constant; show thatPQ envelopes a conic which

touches tJie given conic at A and B.

Ex. 12. Show also that the locus of tJie meet of AQ and BP, and the locus of

the meet ofAP and BQ, are both conies having double contact with the given conic

at A and B.

For A (ABQ. ..) =B (ABP.

.

. ) and A {ABP. ..) = B {ABQ. .
.
).
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Ex. 13. I)iscribe in a given conic a polygon of any given number of sides, each

side of which shall touch some fixed conic having double contact with the given

conic.

'

Ex. 14. If tangents be draum from points on a conic to a conic having double

, I tact with it. the points of contact generate homographic ranges on the conic.

Ex. 15. A conic is drawn through the common points E, F of two homographic

lijes A, B, C, ... and A', B', C, ... on the same line. A pair of tangents

7noies so as to pass through a pair ofpoints of these ranges. Show that the points

of contact generate homographic ranges on the conic, whose common points are E
and F.

Ex. 16. Also if P be any point, and PA cut the conic in aa, and A'a cut

the conic in a'; show that aa' generate homographic ranges on the conic.

Ex. 17. Through a point P is drawn a chord cutting a cotiic in a a, and a
point a' is taken on the cotiic such that the angle a a a' is constant; show that aa'

generate homographic ranges.

Here AB...A'B'... is at infinity.

Ex. 18. Reciprocate examples 15, 16 and 17.

Ex. 19. If two conies a and /3 have double contact at the points L and M

;

ayid through LM be described any conic 7, then the opposite two comynon chords of

07 and ^y meet on LM.

Ex. 20. Any angle whose legs pass through L and M respectively, intercepts

chords on a and /3 which meet cm, LM.

A particular case of Ex. 19.

Ex. 21. If two hyperbolas have the same asymptotes, any two lines parallel to

the asymptotes intercept parallel chords of the hyperbola.

Ex. 22. Any two lines parallel to the asymptotes of a hyperbola intercept

parallel chords on the hyperbola and its asymptotes.

Ex. 23. Reciprocate Ex. 22.

Ex. 24. If tangents at the two points P, Q on one of two conies having double

contact at L and M meet the other in AB and CD, show that two of the chords AC,
AD, BC, BD meet PQ on LM, and the other two meet PQ in points UV such that

a conic can be draum touching these chords at U and V and touching the conies at

L and M.

Ex. 25. Reciprocate Ex. 24.

Ex. 26. Ifct tangent to a conic meet a homotheiic and concentric conic in P
and P', show that CP and CP' generate homographic pencils whose common lines

are the common asymptotes, C being the common centre.



CHAPTER XXX.

GENEEALISATION BY PEOJECTION.

1. In the previous chapter we have investigated theorems

by projecting the given figure into the simplest possible

figure. In this chapter we shall deal with the converse

process, viz. of deriving from a given theorem the most

general theorem which can be deduced by a projection, real

and imaginary. This process is called Generalmng hy Pro-

jection.

In our present advanced state of knowledge of Pure

Geometry, Generalisation by Projection is not a very valuable

instrument of research. In fact the student will often find

that it is more easy to prove the generalised theorem than

the given theorem.

Many things are as general already as they can be. For

instance, if we generalise by projection a point, a line, a conic,

a harmonic range, a range having a given cross ratio, two

conies having double contact, and so on, we obtain the same

thing.

2. The properties of any figure have an intimate relation

with the circular points 00,00'. Hence the generalised figure

will have an intimate relation with the projections of the

circular points. But in the second figure there will also be

a pair of circular points. Hence, to avoid confusion, we

shall call the projections of the circular points -sj and sy^

3. Since any two points can be projected into the circular

points, tJie circular points generalise into any two points ^
and ot', real or imaginary.
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Since a pair of circular lines pass through the circular

points, a pair of circular lines generalise into a pair of lines,

one through tsr and one through -oj'.

Since all circles pass through the circular points, a circle

generalises into a conic which passes through ot and -57', where

OT and 's/ are any two points.

Since concentric circles touch one another at the circular

points, concentric circles generalise into conies touching one

another at ot and at ot'.

Since the line at infinity touches a parabola, a parabola

generalises into a conic touching the line -ctct'.

Notice that we cannot generalise the distinction between

a hyperhola and an ellipse ; for by an imaginary projection a

pair of real points may be projected into a pair of imaginaiy

points and vice versa.

Since a rectangular hyperbola is a conic for which the

circular points are conjugate, a rectangular hyperhola gene-

ralises into a conic for which ot, ot' are a pair of conjugate

points.

Since the centre of a conic is the pole of the line at

infinity, the centre of a conic generalises into the pole of the

line 'cjrs'.

Hence a circle on AB as diameter generalises into a conic

passing through AB'st'st^, and such that the pole of the line

otct' is on AB.
Since parallel lines meet on the line at infinity, parallel

lines generalise into lines which meet at a point on the line

Note that throughout this chapter, cr and txy' are any two
points, real or imaginary.

4. If B bisects the segment AC, then the range {AG, BU)
is harmonic; hence ^B bisects AC generalises into ^If AC
,meet otot' in J, then B is such that {AC, BI) is harmonic, w
and -57' being any two points.'

Generalise by Projection the theorem— ' Given two concentric

circles, any chord of one which touches the other is bisected at the.

point of contact.'
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The result is
—

* Given two conies touching one another at

any two points ^ and txr', if any chord VT' of one, touch the

other at Q and meet tsTtsr' in 7, then (PP', QJ) is harmonic.

'

Or, without mentioning -or and -c/,
—'Given two conies

having double contact, if any chordW of one, touch the

other at Q and meet the chord of contact in 7, then (PP', QJ)
is harmonic'

The student should convince himself by trial that the

second theorem can be projected into the first, and that the

second theorem is the most general theorem which can be

projected into the first.

Generalise by Projection the following theorems

—

Ex. 1. Given three concentric circles, any tangent to one is cut by the other two

in four points whose cross ratio is constant.

Ex. 2. JTic middle points of parallel chords of a circle lie on a line which

passes through the centre of the circle.

Ex. 3. If the directions of two sides of a triangle inscribed in a circle

are given, then the envelope of the third is a concentric circle.

Ex. 4. Given four points on a conic, the locus of the centre is the conk

through the middle points qf the six sides of the quadrangle formed by the four given

points.

5. If A YA' is a right angle, then YA and YA' divide the

segment joining the circular points harmonically ; hence a

right angle A YA' generalises into an angle A YA\ such that

YA and YA' divide the segment joining any two points txr,

ts' harmonically.

Generalise hy Projection the theorem— * The perpendiculars to

the sides of a triangle at the middle points of the sides meet at the

centre of the circumrcircle.*

The result is
— 'If the sides BC, CA, AB of a triangle

meet the segment joining any two points -sr and is-' in X, M,

N ; and if Z, T, Z be taken such that (otz:/, XL\ (ctct', YM),

(cT-c/, ZN) are harmonic ; and i£ D, E, F be taken such that

{BC, DL\ (CA, EM), (AB, FN) are harmonic ; then DX,

FY, FZ meet at the pole of otct' for the conic which passes

through ABC'UT-G!':

Generalise by Projection the following theorems

—

Ex. 1. A tangent of a circle is perpendicular to the radius to the point

of contact.
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Ex. 2, The feet of the perpendiculars from any point on a circle on the sides

of an inscribed triangle are collinear.

Ex. 3. The locus of the meet ofperpendicular tangents of a conic is a concentric

circle.

Ex. 4. The circle about any triangle self-conjitgate for a conic is oiihogonal to

its director circle.

Ex. 5. The chords of a conic which subtend a right angle at a fixed point on

the conic pass through a fixed point on the normal at the point.

Ex. Q. If a triangle PQR, right-angled at P, be inscribed in a rectangular

hyperbola, the tangent at P is the perpendicularfrom P on QR.

6. Since all circles pass through the circular points, a

system of circles generalises into a system of conies passing-

through the same two points ('sr and zj^).

Since coaxal circles pass through the same four points of

which two are the circular points, coaxal circles generalise

into a system of conies which pass through the same four

points (of which two are 'cr and -zct').

Since the limiting points of a system of coaxal circles are

the two vertices of the common self-conjugate triangle which
lie on the line joining the poles of 00 00

', the limiting points

generalise into the two vertices of the common self-conjugate

triangle of a system of four-point conies which lie on the

line joining the poles of any common chord {'^'^'), i.e. they

generalise into any two vertices of the common self-conjugate

triangle.

Since the centres of similitude of two circles are the two

intersections of common tangents which lie on the line

joining the poles of c» 00 ' for the circles, the centres of simi-

litude of two circles generalise into the two intersections of

common tangents of two conies (through -sr and isr') which

lie on the line joining the poles of any common chord (wcr')

for the conies, i.e. they generalise into any pair of opposite

common apexes of two conies.

7. Generalise by Projection the tJieorem—^Any common tan-

gent of two circles subtends a right angle at either limiting

point.

The result is — * If ct and ot' be any two common points

of two conies, and if L and L' be the two vertices of the

T 2
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common self-conjugate triangle which are collinear with the

poles of otct', then any common tangent of the conies sub-

tends at i (and at L') an angle whose rays divide the

segment ctsj' harmonically.'

In other words,— ' Any common tangent of two conies sub-

tends at any vertex of the common self-conjugate triangle

an angle which divides harmonically every common chord

which does not pass through this vertex/

Generalise by Projection the theorems

—

Ex. L Any transversal meets a system of coaxed circles in pairs of points in

involution.

Ex. 2. The drde of simMitude of two circles is coaxal with them.

8. Since a focus of a conic is one of the four meets of the

tangents from the circular points to the conic, a focus of a

conic generalises into one of the meets of the tangents from

any two points (zzr and -cr') to the conic.

The two foci of a conic generalise into a pair of opposite

vertices of the quadrilateral of tangents from any two points

(ct and ot').

Since the line joining the circular points touches a para-

bola, the focus of a parabola generalises into the meet of tan-

gents from any two points (ct and ot') lying on any tangent

of a conic.

Since confocal conies touch the same four tangents from

the circular points (viz. 6^00 , S^cc , S 00% S"oo ')> confocal

ronics generalise into conies inscribed in the same quadri-

lateral (of which tir and tn-'' are a pair of opposite vertices).

Since conies which have the same focus S and the

same corresponding directrix I touch S qo , S cc^, where I

meets these lines, conies which have the same focus S and tJie

same corresponding directrix I generalise into conies having

double contact, the common tangents passing through S

(and through ot and -sx''), and touching the conies at points

on I.

A conic having S as focus generalises into a conic touching

any two lines {S-sr and 6^ot') through S.
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9. Generalise hy Projection the theorem— ^TJie circle which

nrcumscnhes a triangle whose sides toicch a parabola passes

through the focus of the parabola.'

The result is
—

' The conic which passes through the points

Af B, C, t3-, ^, where ^ and -bj' are any two points, and A,

B, C are the vertices of a triangle whose sides touch a conic

which touches the line 'sj'sj^ passes through the meet of

tangents to the latter conic from ot and w\*

In other words—'The conic, which passes through five

out of the six vertices of two triangles which circumscribe

a given conic, passes through the sixth also'.

Ex. 1. Given two points on a conic, find the locus of the pole of their join,

given also eithe>- (i) two tangenis, or (ii) a tangent and a point.

Generalise by Projeotion the following theorems

—

Ex. 2. Any line through a focus of a conicis perpendicular to the line joining

its pole to the focus.

Ex. 3. Given a focus and two tangenis of a conic, the locus of the other focus

is a line.

Ex. 4. The locus of the centre of a circle which touches two given circles

is a conic having the centres of the circles as foci.

Ex. 5. The locus of the centre of a circle which passes through a fixed point

and touches a fixed line is a parabola of which the point is the focus.

Ex. 6. Confocal conies cut at right angles.

Ex. 7. The envelope of the polar of a given point for a system of confocals

is a parabola touching the axes of the confocals and having tJie given point on its

directnx.

10. Since iiie rays of an angle of given size divide the

segment joining the circular points in a given cross ratio,

a constant angle generalises into an angle whose rays divide

the segment joining any two points (ot and «/) in a constant

cross ratio.

Generalise by Projection tMe theorem— * The envelope of a chord

of a conic which subtends a/ constant angle at a focus S is another

conic having S as focus; and the two conies have the same

directrix corresponding to S.'

The result is
—'The envelope of a chord of a conic which

subtends at S, one of the meets of a tangent from any point

C7 with a tangent from any point -or', an angle whose rays

divide -ctot' in a constant cross ratio, is another conic.
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touching Sts and Stz'^ and the two conies have the same

polar of /S.*

In other words— ' If SQ and SB. be the tangents from any

point /S to a conic, the envelope of a chordW of the conic

such that S{QBPP') is constant, is a conic having double

contact vrith the given conic at the points of contact of

SQ and SB/

Ex. 1. Generalise— * a regular polygon.'

A regular polygon may be defined as a polygon which can be
inscribed in a circle so that each side subtends the same angle at the

centre of the circle.

Generalise by Projection the following theorems

—

Ex. 2. The encelope of a chord of a circle which subtends a given angle at any
point of the circle is a concentric circle.

Ex. 3. If from a fixed point 0, OP be drawn to a given circle, and TP
he drawn making Vie angle TPO constant, the envelope of TP is a conic with as

focus.

Ex. 4. Iffrom a focus of a conic a line he drawn making a given angle ivith

a tangent, the locus of the point of intersection is a circle.

Ex. 5. T?ie locu3 of the intersection of tomgents to a parabola which meet

at a given angle is a hyperbola having the same focus and corresponding

directrix.

11. Generdlm— ' The bisectors of an angle.*

If AD, AE are the bisectors of the angk BAG, then

A (BC, BE) is harmonic, and also J. (00 00 ', BE) since EAB
is a right angle. Hence the bisectors of the angle BAG
generalise into the double lines of the involution

A (BG, t!7CT0,

where -cr and ot' are any two points.

Ex. Generalise by Projection— ' The pairs of tangents from any point to

a system of confocals have the same bisectors.'

12. Generalise— ' a segment divided 'in a given ratio.*

Let AB be divided at (7 in a given ratio. Then AG: CB
is constant ; hence {AB, GO) is constant, where 12 is the

point at infinity upon AB. Hence a segment AB divided in

a gi/ven ratio at G generalises into a segment AB divided at G
so that {AB, CI) is constant, I being the meet of AB and

the segment joining any two points {^fT and ot').
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Ex. 1. Generalise the equation AB + BC+CA = o connecting three collinear

points.

The given equation may be written

-(AC, BCl) + i-{AB,CCl) = o.

This generalises into — (AC, BI) + i — (AB, CI) = o, i. e. into

AB.CI+ AI.BC + AC.IB = o.

Hence the generalised theorem is—'If A, B, C, D be any four
• •ollinear points, then

AB.CD + AG.DB + AD.BC = 0:

Ex. 2, If ABCD he collinear, show that the ratio AB-i-CD generalises into

-^BC,AE)^ (DA, CE).

Ex. 3. If AB and CD he parallel and if AC, BD meet in M, show that

fhe ratio AB-r-CD generalises into (AC, ME), E being the meet ofAB and CD.

13. Two fixed points A and B on a conic are joined to a

variaNe point P on the conic, and the intercept QB cut offfrom

a given line I hy PA and PB is divided at M in a given ratio ;

show that the envelope of PM is a conic touching parallels to I

through A and B.

Let X2 be the point at infinity on I. Then (QB, MQ.) is a

given cross ratio. Hence P (AB, M£l) is given. Project A
and B into the circular points and let I be the projection of

il. Then P(co 00 ', MI) is given, i.e. IPM is a given angle.

Hence the theorem becomes— *A fixed point I is joined

to a variable point P on a circle, and PM is drawn making

a given angle with IP : show that the envelope of PM is a

conic touching lao and J 00', i.e. is a conic having I as

focus.' And this is true (see VIII. 1 7). Hence the original

theorem is true.

Generalisation by Reciprocation.

14. If we first generalise a given theorem by projection

and then reciprocate the generalised theorem, we obtain

another general theorem. This process is called Generalising

by Projection and Beciprocation, or briefly Generalising hy Be-

ciprocation.

Generalise hy Beciprocation the theorem— ^All normals to a

circle pass through the centre of the circle.'

Generalising by Projection we get— 'If t be the tangent

at any point P of a conic which passes through any two
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points CT, c/, and if the line n be taken such that t and n

are harmonic with Pot and Pot', then n passes through the

pole of otot'' for the conic'

Eeciprocating this theorem we get— ' If on the tangent at

any point T of a conic, a point JV be taken such that the

segment T^ is divided harmonically by the tangents from

the fixed point 0, then N lies on the polar of for the conic'

This is the required theorem.

Ex. Generalise by Projection and Reciprocation the theorem— ' Hie envelope of

a chord of a circle which subtends a constant angle at the centre is a concentric

circle,'



CHAPTEE XXXI.

HOMOLOaY.

1. Two figures in the same plane are said to be in

homology which possess the following properties. To every

point in one figure corresponds a point in the other figure,

and to every line in one figure corresponds a line in the

other figure. Every two corresponding points are collinear

with a fixed point called the centre of homology, and every

two corresponding lines are concurrent with a fixed line

called the axis of homology. The Kne joining any two

points of one figure corresponds to the line joining the two

corresponding points of the other figure. The point of

intersection of any two lines of one figure corresponds to the

point of intersection of the two corresponding lines of the

other figure.

The two figures are said to be homologous, and each is

called the homologue of the other. The figures may be said

to be in plane perspective ; and the centre of homology is

then called the centre of perspective, and the axis of homo-

logy is called the axis of perspective.

2. Homologous figures exist for

—

If we take two figures in different planes, each of which is the

projection of the other, and if we rotate one of the figures about

the meet of the two planes until the planes coincide, then the

figures will he homologous.

For let ABC be the projections of A'B'C from the vertex

7. Then AA', BB', CC meet in V. That is, the triangles

ABC, A'B'C (in different planes) are copolar. Hence they
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are coaxal ; i.e. BC^ 5'C'meet in a, and CJL, C'^'meet in /5,

and AB^ A'B' meet in y on the meet of the two planes.

Similarly every two lines which are the projections, each of

the other, meet on the intersection of the two planes.

Now rotate one figure about the line a/3y until the two

figures are in the same plane. Then the two triangles are

still coaxal (for BC^ B'C still meet at a, and so for the rest).

Hence the two triangles are also copolar ; i.e. AA'^ BB', CC^

meet in a point. Call this point 0. Then may be defined

as the meet oi AA' and BB', and we have proved that every

other line such as CC passes through 0.

Now the two figures are in the same plane. Also to every

point in one figure corresponds a point in the other figure,

viz. the point which was its projection ; and to every line

corresponds a line, viz. its former projection. Also, cor-

responding points are concurrent with a fixed point 0,

and corresponding lines are coUinear with a fixed line al^y.

Also, the join of two points corresponds to the join of the

corresponding points ; for in the former figure the one is

the projection of the other. For the same reason, the meet of

two lines corresponds to the meet of the corresponding lines.

Hence the two figures are homologous.
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3. If two figures are homologous, and we turn one of them

about the axis of homology, the figures mil he the projections,

each of the other.

For suppose the three lines BC, CA, AB in one figure to

be homologous to B'C, G'A', A'B' in the other figure. Let

BC, B'C meet in a, let CA, C'A' meet in /3, and let AB,
A'j^ meet in 7. Rotate one of the figures about the axis of

homology a^y, so that the figures may be in different planes.

The figures will now be each the projection of the other.

For the triangles ABC, A'B^C (in different planes) are

coaxal ; hence they are copolar. Hence AA', BB', CC meet

in a point Y. This point Y may be defined as the meet of

AA' and BB'
-,
and we have proved that in the displaced

position the join CC^ of any two homologous points passes

through a fixed point Y. Hence the homologous figures in

the displaced position are projections, each of the other.

A homologue of a conic is a conic.

For after rotating one figure about the axis of homology,

the figures are each the projection of the other ; and the pro-

. jection of a conic is a conic.

A homologue of a figure has all the properties of a projection of

the figure.

For it can be placed so as to be a projection of the figure.

Hence a range and the homologous range are homographic

;

also a pencil and the homologous pencil are homographic.

4. If one of two figures in perspective {i.e. either homologous

or each the projection of the other), he rotated ahout the axis of

perspective, the figures will he in perspective in every position

;

and the locus of the centre ofperspective is a circle.

For take any two corresponding triangles ABC and A'B'C*
Then in every position these triangles will remain coaxal

;

hence in any position they will be copolar, i.e. CC will pass

through the fixed point Y determined as the meet oi AA' and
BB'. Hence the figures will be in perspective in any position

obtained by rotating one figure about the axis of perspective.

To find the locus of Y. Take any position of Y, and
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through Y draw a plane P'LP at right angles to the planes

of the figures, cutting them in LP' and LP.

Let a parallel to LP' through V cut LP in J, and a parallel

to LP through F cut LP' in /'. Let the point at infinity

on LP be called 7, and the point at infinity on LP' be

called J'.

Then, since J'Fand LJaxe parallel, we see that I'V passes

through J, i.e. 7' is the projection of 7 for this position of V;

and so J is the projection of J'.

Now rotate the moving plane about the axis of perspective

into any other position. The new position of the centre of

perspective (or vertex of projection) is got by joining any

two pairs AA', BB' of corresponding points. Hence in the

new position 77' and JJ' will cut in V. Also LJ is still

parallel to 7^F, for 7 is at infinity; so JV is parallel to LI'.

Also if LJ is the tmce on the fixed plane, then LJ is con-

stant in magnitude and position. Also LI^ is constant in

magnitude, although it changes its position by rotation about

the axis of perspective. It follows that LJVI' is a parallel-

ogram, in which J is fixed, and JV is given in magnitude.

Hence the locus of F is a circle in a plane perpendicular to

the planes of the figures, with centre J and radius 7^7''.

To form a clear conception of figures in homology, imagine

that they are the projections, each of the other, the vertex of

projection very nearly coinciding with the centre of homo-

logy, and the planes of the figures very nearly coinciding

with one another.
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5. Coaxal figures are copolar, and copolar figures are coaxal

;

that is to say, if twofigures, (in the same plane or not,) correspond,

point to point, line to line, meet of two lines to meet of correspond-

ing lines, and join of two points to join ofcorresponding points

;

tlien, if corresponding lines cut on a fixed line, the joins of cor-

responding points will pass through a fixed point, and if the joins

of corresponding points pass through a fixed point, corresponding

lines will CMt on a fixed line.

Coaxal figures are copolar. Take two fixed points A, B m
one figure, and let A', B^ be the corresponding points in the

other figure. Take any variable point P in one figure, and

let F' be the corresponding point in the other figure. Then,

by definition, AP, A'F' are corresponding lines, for they join

corresponding points ; hence AP and A'P' meet on the axis.

Similarly BP, B'P' meet on the axis ; and AB, A'B^ meet on

the axis. Hence the triangles ABP, A'B^P' are coaxal, and

therefore copolar. Hence AA', BB', PP' meet in a point,

i.e. PP' passes through a fixed point, viz. the meet of AA'
and BB".

Copolar figures are coaxal. Take two fixed lines, viz. AP
and AQ, and a variable line PQ in one figure, and let A'P',

A'Q', P'Qi be the corresponding lines in the other figure.

Then the points A, P, Q correspond to A\ P', Q'. Hence
the triangles APQ, A'P'Q' are copolar, and therefore coaxal.

Hence PQ, P^Q' meet on a fixed line, viz. the join of the

meets of AP, A'P' and of AQ, A'Q^. Hence the figures are

coaxal.

Ex. 1. If one of two figures in homology he turned through two right angles

about the axis of homology, the figures will again he in homology.

Ex. 2, If one of two figures in homology he turned through two right atigles

about an axis which passes through the centre of homology and is perpendicular to

the plane of the figures, the figures will again he in homology.

Ex. 3. Given two homologous figures ABC..., A^B'Cf... ; let A"B''(f\.. be

a projection of ABC. . . on any plane through the axis of homology ; then will

A"B"C/' ... he also a projection of A'^if ... , and the vertices of projection and
the centre of homology will he coUinear.

For VO is one of the lines A^A^^, &c.

This construction enables us to place any two homologous figures in
projection with the same figure.
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Ex. 4. Show that the two complete quadrangles determined by ABCD and
A'B^(/iy will be homologous provided the Jive points of intersection of AB with

A'&, ofBC with B'Cf^ of CA with CA', ofAD with A'D', and ofBD with B'D"
are cdlinear.

Ex. 5. Show that the two complete quadrilaterals whose vertices are ABCDEF
arul A'B'CD^E'F' will he homologous if AA', BB", CC , DD^ , EE' meet in

a point.

Ex. 6. The sides PQ, QR, RP of a variable triangle pass through fixed points

CAB in a line. Q moves on a fixed line. Show that P and R describe homologous

curves.

For PR and P'R' pass through B, and RR', PP' meet on QQ^,

P'(^R' being a second position ofPQR.

Ex. 7. If the axis of homology be at infinity, show (i) tJiat corresponding

lines are parallel, (ii) tfiat corresponding sides of the figures are proportional,

(iii) that corresponding angles of the figures are equal.

Such figures are called homothetic figures, and the centre of homology
in this case is called the centre of similitude, and the constant ratio

of corresponding sides is called the ratio of similitude.

Ex. 8. If voith any vertex of projection, we project homologous figures on to

any plane, we obtain homologous figures ; and if the plane of pj-ojection be taken

parallel to the plane containing the vertex of projection and the axis of homology,

we obtain homothetic figures.

Hence homologous figures might have been defined as the projections

of homothetic figures.

Ex. 9. If the centre of homology be at infinity, show that the joins of corre-

sponding points are all parallel ; and that if one figure be rotated about the axis of

homology, the vertex ofprojection will always be at infinity.

This may be called parallel homology.

Ex. 10. In parallel homology, show that to a point at infinity corresponds

a point at infinity, and that the line at infinity corresponds to itself.

Ex. 11. In parallel homology, show that a parallelogram corresponds to

a parallelogram.

Ex. 12. In parallel homology, show that, when rotated about the axis of

homology info different planes, the figures have the same orthogonal projection

;

and that the ratios of two areas is the same as that of the corresponding areas.

6. The abbreviation c. of h. will be used for centre of

homology, and a. of h. for axis of homology.

Given the c. ofli. and the a. ofh. and a pair of corresponding

points^ construct the homologue of a given point.

Let be the c. of h., and let A^ be the given homologue

oi A. To find the homologue of X ; let ^X cut the a. of h,

in L, then LA' cuts OX in the required point X\
With the same data, construct the homologue of a given line.

Draw through any transversal cutting the given line in

X ; construct the homologue X^ of X,. then the join of X^ to
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the point M^ where the given line cuts the a. of h., is the

homologue of the given line.

Given the c. ofh. and the a. ofh. and a pair of cotresponding

lines, construct the homologue (i) of a given point, (ii) ofa given

line.

Let any transversal through cut the given lines in A
and A'. Then A, A' are corresponding points, and we
may proceed as above.

Given the c. ofh. and the a. ofh. and a pair of corresponding

points, one of which is at infinite/, construct the homologue of a

given point.

LX' is parallel to AA\ if A' is at infinity.

7. The homologue of the c. ofh. is the c. ofh. ; the homologue

of any point on the a. ofh. is the point itself; if the homologue of

any other point le itself then the homologue of every point is

itself.

For let us construct the homologue of 0. We draw AG
cutting the a. of h. in iV; we draw NA' cutting GG in the

required point. Now GG is indeterminate, but NA' cuts

every line through in 0, and hence cuts GG in 0. Hence

the homologue of is 0.

Next, let us construct the homologue of any point L on the

A. of h. We draw AL cutting the a. of h. in i ; we draw

A'L cutting GL in the required point. Hence the homologue

of L is L.

Lastly, suppose a point (which is not at the c. of h. nor on

the a. of h.) to coincide with its homologue. Take these as
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the points -4, -4' in the above construction. To construct

the homologue of X, we draw AX. cutting the a. of h. in i
;

then A'L cuts OX in the required point X!. Hence X!

coincides with X, for A'L coincides with J.X, i.e. with AX.

Ex. 1. Show that the only lines which coincide with their homologues are the

a. ofh. and lines through the c. ofh.

Ex. 2. Given the homohgues A' ^ B', C of threepoints A, B, C; construct the

homohgue of a given point D.

The triangles give the centre and axis of homology.

8. The homologue of a point at infinity of one figure is

called a vanishing point of the homologous figure.

The homologue of the line at infinity considered as belong-

ing to one of the figures is called the vanishing line of the

homologous figure.

All the vanishing points of either figure lie on the vanishing

line of that figure.

For a vanishing point is the homologue of a point on the

line at infinity of the other figure, and hence lies on the

homologue of the line at infinity.

Each vanishing line is parallel to the a. ofh.

For corresponding lines meet on the a. of h. Hence a

vanishing line meets the a. of h. at a point on the Kne at

infinity, i.e. a vanishing line is parallel to the a. of h.

Ex. 1. If any transversal throtigh cut the axis in N, and the vanishing lines

in land J', then 01 = J'N, and 01 . OJ' = J'N . IN.

For {Ni, on) = (ivn', or).

Ex. 2. The product of the perpendiculars from any two homologous points,

each on the vanishing line of its figure, is constant.

For (PQ, in) = {P'Q', n'J').

Ex. 3. Given a parallelogram ABCD, prove the following construction for

drawing through a given point E a parallel to a given line I—Let AB, CD, AC,
BC, AD cut I in K, L, M, N, R. Through M draw any line cutting EK, EL in

A', Cf. Let B.A' and NCf cut in F. Then EF is parallel to I.

For EF is the vanishing line.

9. Given tlie c. ofh., the a. ofh., and a pair of corresponding

points ; construct the vanishing lines.

Let AA^ be the pair of corresponding points. Let us first

construct the homologue of the line at infinity, considered

to belong to the same figure as A. In the construction of



A X I .

]
Homology. 289

§ 6, X and M are both at infinity. Hence the construction

is—Through the c. of h. 0, draw any line OX (X being at

infinity). Through A draw AL parallel to OX, cutting the

a of h. in i ; then LA' cuts OX in X' ; and the required

line is X'Jf, i.e. a parallel through X' to the a. of h.

Similarly we construct the vanishing line of the other

figure.

Griven the c. ofh., the a. ofh., and one vanishing line, to con-

struct the homologue of a given point.

Let any transversal through the c. of h. cut the vanishing

line in A. Then the homologue of the point A is the point

at infinity A' on OA.

Two cases arise, (i) The given point X belongs to the

same figure as the finite point A. Let AX cut the a. of h.

in L ; draw through L a parallel to OA to cut OX in X\
Then X' is the homologue of X. (ii) The given point X'

belongs to the same figure as the point at infinity A'.

Through X' draw a parallel to OA cutting the a. of h. in L.

Then AL cuts OX' in the required point X.

Ex. Given the c. ofh. and the a. ofh. and one vanishing line, construct

the other vanishing line.

10. Tlie angle between two lines in one figure is equal to the

angle subtended at the c. of h. by the vanishing points of tlie

homologous lines.

Let AP and AQ he the given lines, P and Q being at

infinity. Then P' and Q' are the vanishing points of the

homologous lines A'P' and A'Q\ Also OP' is parallel to

AP, and OQ' to AQ. Hence the angles P'OQ' and PAQ are

equal.

11. Construct the homologue of a given conic, so that the

homologue of a given point S shall be a focus.

Take any line as a. of h., and any parallel line as vanish-

ing line ; and let two conjugate lines at /Smeet the vanishing

line in P and Q, and let two other conjugate lines at S meet

it in U and V. On PQ and UV as diameters describe

u
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circles, and take either of the intersections of these circles

as c. of h.

Then since the vanishing points P and Q of the lines SV
and SQ subtend a right angle at the c. of h., the homologues

S'V, S'Q! will be at right angles. So S'JJ\ S'Y' will be at

right angles. Hence at S' we shall have two pairs of con-

jugate lines at right angles. Hence S' is a focus of the

homologous conic.

12. T}\£, homologue of a conic, taking a focus as c. of h. and

tJic corresponding directrix as vanishing line and any parallel as

a. ofh., is a circle, of which the focus is the centre.

Let S be the given focus and XM the corresponding

directrix. With S as c. of h. and XM as vanishing line,

and any parallel line as a. of h., describe a homologue of the

given conic. The homologue of S is S, and of XM is the

line at infinity ; hence in the homologous conic, S is the pole

of the line at infinity, i.e. S is the centre of the homologous

conic.

Let SP, SP^ be a pair of conjugate diameters of the homo-

logous conic. The homologue of SP is SP, the homologue

of SP' is SP' ; and the homologues of conjugate lines are

conjugate lines. Hence in the given figure, SP and SP^ are

conjugate lines ; and S is the focus, hence SP and SP' are

perpendicular. Hence every pair SP, SP^ of conjugate

diameters of the homologous conic is orthogonal. Hence

the homologous conic is a circle. And we have already

proved that the focus is the centre of the circle.

Note that the homologue of an angle at 5 is an equal (in

fact, coincident) angle at S.

This case of homology is the limit of Focal Projection

when the two figures are in the same plane.

Ex. 1. Any homologue of a conic, taking a focus S cis c. ofh., is a C07iicwith S
as focus ; and the homologue is a circle only if the vanishing line is the corre'

sponding directrix.

Ex. 2. Any homologue of a conic, taking the polar of a given point P as

vanishing line, is a conic with P as centre ; and the homologue is a circle only ifP
ts a focus of the given conic.
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13. If two curves he in homology, the c. of h. must he a meet

of common tangents, and the a. of h. must he a join of common

points.

For let OT be a tangent from the c. of h. to one of the

curves. Let OPQ be a chord of the curve very near OT.

Then OPQ meets the homologous curve in the homologous

points P', Q\ Now let P and Q coincide in T ; then P' and

Q' also coincide, in T' the homologue of T. Hence OT
touches the homologous curve.

Again, let L be one of the points where one of the curves

cuts the a. of h. Then L, being on the a. of h., is its own
homologue. Hence the homologous curve passes through L.

Hence if two curves are in homology, the c. of h. must be

looked for among the meets of common tangents ; and the

a. of h. must be looked for among the joins of common
points.

14. Any two circles are homologous in four real ways.

Let S be either of the centres of similitude of the two

circles. Take any point P on one circle, and let SP cut the

other circle in P' and P'\ Then one of these points, and

only one (viz. P' in the figure), possesses the property that

SP : SP' is the ratio of the radii. We may call P, P^ similar

points, and P, P" non-similar points.

Ifwe take, either centre of similitude as centre ofhomology and

the straight line at infinity as axis of homology, then the circles

are homologous, each point heing homologous to its similar

point,

u 2
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For take any two pairs of similar points, viz. P, P' and Q,

q\ Then /SP : SV'\ : SQ : SQ'; hence PQ is parallel to P'Q',

i.e. every chord joining two points on one circle is parallel

to the chord joining the similar points on the other circle.

Hence the two circles are homologous, the straight line at

infinity being the axis of homology, and similar points being

homologous points.

I/we take either centre of similitude as centre of homology and

the radical axis as the axis of homology, then the circles are

homologous, each point being homologous to its non-similar

point.

For take any two pairs of non-similar points, viz. P, P"
and ft Q\ Then SP : SP': : SQ : SQ', and

SP'.SP^^SQ'.SQ''.

Hence SP. SP''= SQ . SQ"'. Hence PP''QQ'' are concyclic
;

hence, if PQ, P"Ql' meet in X, we have

XP.XQ^XP^.Xq',
i.e. X has the same power for both circles, i.e. X is on the

radical axis of the circles. Hence we have proved that the

chord joining any two points on one circle and the chord

joining the non-similar points on the other circle meet on

the radical axis of the circles, which is therefore the axis of

homology.

Hence, since with either centre of similitude we may take

the straight line at infinity or the radical axis, the circles are

in homology in four real ways.

15. Two conies which have double contact are homologous in

two ivays, the c. ofh. being the common pole and the a. ofh. the

common polar in both cases.

Let be the common pole and 3IN the common polar,

the points M and N being on both conies. Let any line

through cut one conic a in ^, D and the other conic /^ in

B, C. Then a is determined by the five points AMMNN, the

points 3I3I being on OM and the points NN being on ON.

Now form the homologue of a, taking as c. of h., MN as
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a. of h., and B as the homologue of A, The homologue of a

conic is a conic. The homologues of the points AJfiUfiVTV^are

the points BMMNN.
Hence the homologue

of a is the conic through

BMMNN, i.e. is the

conic /3.

Again, with the same

c. of h. and a. of h., but

with Cas the homologue

of A, form the homo-

logue of a. The homologue is now the conic through

CMMNN, i.e. is the conic (3.

Now in the first case C and D are homologous, and in the

second case B and D are homologous. So there are not four

ways, but two ways, in which the conies are homologous.

In the first way, every point P on a is homologous with

the point P' in which OP cuts /3 on the same side of MN as

P ; and in the second way, every point P on a is homologous

with the point P'' in which OP cuts /3 on the opposite side

ofiIfi\rtoP.

Ex. 1. Prove the theorem directly by showing that the figures are coaxal.

Ex. 2. In the above figure, show that (OD, AB) is a constant cross ratio as

the chord OABD moves round 0.

For taking another chord OA'B'iy, then AA^j BB% DI/ meet on MN.

Ex. 3. Through 0, the common pole of two conies having double contact,

are draum four chords cutting one conic in ABCD and the other in A'B'Cfl/ ;

show that {ABCD) = (A'B'&I/), if all the points lie on the same side of the

common polar.

Ex. 4. A conic is its own homologue, any point and its polar being c. of h.

and a. of h.

Ex. 5. Give a direct proof of Ex. 4 by means of the quadrangle construction

for the polar of a given point.

Ex. Q. If a conic be its own homologue, show that if the c. of h. be given, the

a. of h. must be the polar of the c. of h.

Ex. 7. Throicgh any point are draum the four chords OAA' , OBB', OCCf

,

OBI/ of a conic ; show that the conies OABCD and OA'B'Cflf touch at 0.

The given conic is its own homologue, being the c. of h. ; also is

its own homologue. Hence the five points 0, A, B, C, D are homolo-
gous to the five points 0, A',B' , C', 2/ ; hence the conies through them
are homologous.
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Take a chord of these conies through 0, viz. O'PV . Then when
P coincides with 0, so does P'. Hence OFF* ultimately touches both
conies at 0, i.e. the conies touch at 0.

Ex. 8. Tangents from P to a conic meet any line I in L, M, and the other

tangents from L, M meet in P'; show that P, P' generate homologous figures,

I being the a. ofh.

16. Any two conies are in homology.

Take any meet of common tangents TT', UU^ as c. of h.

Let TU and T'U', the

polars of 0, cut in L.

Let A be one of the four

common points of the

two conies. Take LA as

a. of h. Also take UU'
as a pair of corresponding

points.

The homologue of the

conic TUA can now be

found. Suppose the conic

TUA to be given by the

five points TTUUA,
where TT are the coin-

cident points in which

OT touches the conic, and UU are the coincident points in

which OU touches the conic. The homologue of A is A, for

A is on the a. of h. The homologues of UU are U^U' by

hypothesis. Again, since TT' passes through 0, and TU,

T^U' meet on the a. of h., hence T' is the homologue of T,

i.e. T'T' are the homologues of TT. Hence the homologues

o^TTUUA are TTU'U'A. Hence the homologue of the

conic TUA is a conic passing through A and touching OT'

at T' and touching OU' at U^; i.e. the homologue of one

given conic is the other given conic.

Hence two conies are homologous in twelve ways.

For we may take as c. of h. any one of the six meets

of common tangents of the two conies. We may then take

as A any one of the four common points of the two conies.

But this will only give us two possible axes of h. For the
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point where LA^ the a. of h., meets either conic again will

be another common point. Hence there are only two

positions of iJ., when the position of has been chosen.

Ex. 1. Shcno hy using the reciprocal solution to the above that we may take

any common chord of the conies as a. of h.

Ex. 2. Tivo conies in different planes may be placed in projection by tico

rotations, viz. (i) about the meet of the planes until the planes coincide, and
(ii) about any common chord of the conies [when placed in one plane).

Ex. 3. Show that two homothetic conies have two centres of similitude.

Viz. the common apexes belonging to the line at infinity.

Ex. 4. Show by using the circular points that any two conies which have

a common focus are in homology, tfie common focus being the c. ofh.

Ex. 5. Any conic is homologous unth any circle whose centre is at a focus of

Pie conic, the focus being the c. ofh.

17. If two conies touch, they are homologous, taking the point

of contact as c. ofh.

This follows as a limiting case of the general theorem ; or

thus directly. Through 0, the point of contact, draw any

chord cutting one conic in P and the other in P'. Take

as c. of h., and the common chord AB, which does not pass

through 0, as a. of h. Also take P, P' as homologous points.

Consider the homologue of the conic determined by OOPAB.
It is a conic through OOP^AB, i.e. it is the other conic.

Ex. 1. Find the envelope of a chord of a conic subtending a given angle

at a given point on the conic.

Draw any circle touching the given conic at the given point and
passing through any other point on the conic. This circle is homolo-
gous to the given conic ; and the homologous chord clearly envelopes
a concentric circle. Hence the given chord envelopes the homologue
of a concentric circle, i.e. a conic having imaginary double contact
with the given conic.

Ex. 2. Obtain by homology the theorem

:

—The envelope of a chord of a conic

which subtends a right angle at a given point on the conic is a point on the noimal
at the given point.

18. If the join XX' of any two homologous points cut the a.

ofh. in TJ, then (OXUX') is constant, being the c. ofh.

For take any fixed pair of homologous points AA'. Then
AX, A'X' meet on the a. of h., say at L. Hence if AA' cut

the a. of h. in N, we have

ipXUX') = {OANA') = constant.
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This proof fails if AA'X.^' all lie on the same line through

0, In this case take any paii* of homologous points BB'

which do not lie on AA'XX\ and let OBB' cut the a. of h.

ini?.

Then {OXUX'} = (OBRB') = {OANA") = constant.

Conversely, if a point X! he taken stich that {OXXJX^) is

constant, being a fixed point and U the meet of OX with a

fixed line, then the figures generated by X and X' will be homo-

logous, being the c, ofh. and the fixed line the a. ofh.

For if AA', XX^ be two pairs of points thus obtained,

since {OANA') = {OXUX% it follows that AX, NU, A'X'

meet in a point. Hence the join of any two points meets

the join of the corresponding points on a fixed line. Hence

the figures are homologous.

(OU, XX') is called the parameter of the homology.

Ex. 1. If two homologous lines LX and LX' cut the a. of h. in L, show that

L V
OXMX') is constant, M being any other point on the a. of h. ; and conversely,

if LA' he determined as the coi'responding line to LA by this definition, show that

the figures generated by LA and LA' are homologous.

Ex. 2. If {OU, XX') = — I, show that the figure made up of a figure and
its homology^ is its own homologue.

This is called harmonic homology.

Notice that harmonic homology bears the same relation to ordinary
homology as an involution range bears to two homographic ranges on
the same line. In fact the figure (ABC.A'B'G' ...) is homologous to

the figure {A'B'C ...ABC ...), if the two figures {ABC.) and (A'B'C...)

are in harmonic homology.

Ex 3. In harmonic homology, if the c. of h. be at infinity in a direction

perpendicular to the a. ofh., then each figure is the refiexion of the other in

the a. ofh.

Ex. 4. In harmonic homology, if the a. of h. be at infinity, then each figure

is the reflexion of the other in the c. of h.

Ex. 5. If a conic be its own homologue, show that the homology is harmonic,

and that the homologue of the line at infinity is halfway between the c. of h. and
its polar. Also show that a conic is an ellipse, parabola, or hyperbola, according as

the line halfway between any point and its polar cuts the conic in imaginary,

coincident, or real points.

Ex. 6. AA', BB', CC are the three pairs of opposite vertices of a quaclrilatercU.

Through any point D on CC are drawn DA meeting BA'C in E', and DA'
meeting AB'C in E. Show Uiat EE', AA', BB' are concurrent, and also B'E',

BE and CC.

By harmonic homology, taking the meet of AA', BB' as c. of h. and
CC as a. of h.
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Ex. 7. Show that two figures in homology reciprocate into two figures in

hitmology, and that the parameters of homology are numerically equal.

Ex. 8. The parameter of homology of two homothelic figures is the reciprocal

if the ratio of similitude.

Ex. 9. The parameter of homology of two figures in parallel homology is tht

constant ratio of the ordinates.

Ex. 10. Keeping the same c. of h. , show that the two parameters of homology

of two circles are equal but of opposite signs.

Ex. 11. Keeping the radical axis as a. of h., show that the two parameters of

homology of two circles are equal but of opposite signs.

Ex. 12. The poles of the radical axis of two circles divide the join of the two

rentres of similitude harmonically.

For the poles X and X' are homologous if the radical axis be the
a. of h., whichever centre of similitude we take as the c. of h. Hence
^SN, XZ') = - {S'N, XX').

Ex. 13. If the radical axis of two circles be taken as the a. ofh., and if the

vanishing lines and the radical axis cut the line of centres in IJ'N ; show that

SI:IN::r:r', and SJ' : J'N: :r^:r.

Ex. 14. OX is the perpendicular to the line Ifrom 0, and A is any point on

OX. From a variable point P the perpendicular PM is drawn to I, and MA, PO
meet in P'. Show that P and P' generate homologous figures.

Ex. 15. If A, B, C be fijxed points and P, P' variable points such that

B {APP'C) = A {BPP'C) = constant ; show that P and P* generate homologous

figures, of which C is the c.ofh. and AB is the a. ofh.

19. If PP' be any homologous points, and PM the perpen-

dicular from P on the vanishing line of the figure generated hy

P, then OP/PM oc OP', being the c ofh.

Let OP cut the vanish-

ing line in I and the a. of

h. in L. Then, since I
corresponds to the point

Qf at infinity upon OP,

we have

(07, PL) = {Oa', P'L).

Hence

OP ^0L_ op^^ OL^ _ qp^
PI ' LI ~ P'iV ' LiV ~ OL '

ie. OP : OP': : PI: LI::PM:h,

where h is the perpendicular distance between the vanishing

line and the a. of h.
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Hence OP:PM:: OP': h.

Ex. Prove the SP : PM property of a focus.

Form a homologue of the conic, taking S as the c. of h. and the cor-

responding directi'ix as vanishing line. Then SP -f- PM oc SP'. But
by § 12 the locus of P' is a circle with centre S. Hence SP -j- PM
is constant.

20. In two Jiotnologous figures, if {X, p) and (X, q) denote

the perpendiculars from the variable point X on two given lines

p and q, and if (X', p') and (X', q) denote the perpendiculars

from the corresponding point X^ in the homologous figure on the

corresponding lines p' and (f, then p^\ -5- r^r" 4 i^ constant
(A, q) \^, q)

For take another point Z, and let XY cut the lines p and

qin A and J5. Then X'Y' will cut p' and c[ in the homo-

logous points A' and B'. Hence, since homologous figures

ai'e projective, we have

{AB, XY) = {A'B\ XT'),

Le. AX/AY -^ XB/YB = A'X'/A'T-^ X'B'/Y'B",

i.e. {X,p)/{Y,p)-^{X,q)/{Y,q)

= {x\py{Y\p')-^{x\qy{r,q').

Hence (X, p)/(X, q) h- (X', i?')/(X; q') is constant.

Ex. 1. IfX and Y be fixed and p vary, then

(X, p)/{Y, p) -r (X', p')/{Y\ p') is constant.

Ex. 2. If i be the vanishing line of the unaccented figure, tlien

{JT, p)/{X, i) -^ {X', p') is constant.

Take g' at infinity ; then (X', q') = {Y\ q').

Ex. 3. Ifi andf be the vanishing lines, then

(X, i) . {X',j') is constant.

Take i? and g' at infinity.

Ex. 4. OX/(X, p) -^ OX'/iXf, p') is constant.

Take q and q' as the axis of homology a, and notice that

OX/[X, a) -r- OX'/{X\ a) is constant,

since {OU, XX') is constant.

Ex. 5. OX/{X, i)-T-OX' is constant.



MISCELLANEOUS EXAMPLES.

1

.

Generalise by projection and reciprocation the theorems—(i) * The
director circles of all conies inscribed in the same quadrilateral are

coaxal,' (2) ' The locus of the centre of an equilateral hyperbola which
passes through three given points is a circle.'

2. The portion of a common tangent to two circles a and between

the points of contact is the diameter of the circle 7. If the common
chord of 7 and a meets that of 7 and in R, show that R is the pole

for 7 of the line of centres of a and 0.

3. Generalise by projection the theorem—'The straight lines which

connect either directly or transversely the extremities of parallel

diameters of two circles intersect on their line of centres.'

4. A pair of right lines through a fixed point meet a conic in PQ,

P'Q' ; show that if PP' passes through a fixed point, then QQf also passes

through a fixed point.

5. Generalise by projection and reciprocation the theorem—'A dia-

meter of a rectangular hyperbola and the tangent at either of its ex-

tremities are equally inclined to either asymptote.*

6. If P, Q denote any pair of diametrically opposite points on the

circumference of a given circle, and QY the perpendicular from Q upon
the polar of P with respect to another given circle whose centre is C,

show that QY. CP is constant.

What does the theorem become when the circles are orthogonal ?

7. Through a given point draw a line cutting the sides BC, CA, AB
of a triangle ABC in points A', B\ C, such that {OA' , B'C) shall be

harmonic.

8. Given the centre of a conic and three tangents, find the point of

contact of any one of them.

9. Two similar and similarly situated conies have a common focus

which is not a centre of similitude. Prove that a parabola can be

described touching the common chord and the common tangents of

the conies, and having its focus at their common focus.
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10. Generalise by projection the theorem— ' One circle can be de-

scribed so as to pass through the four vertices of a square and another

so as to touch its four sides, the centre of each circle being the inter*

section of diagonals.'

11. Two conies touch at A^ and intersect at B and C. Through 0,

the point where BC meets the tangent at A^ is drawn a chord OVP' of

the one conic, and -4P, AB' produced if necessaiy meet the second

conic in Q and Qf . Prove that Q, (/ and are coUinear.

12. ABCD is a rectangle, and {AC, PQ), (BD, XY) are harmonic

ranges ; show that the points P, Q, X, T lie on a circle.

13. Through 0, one of the points of intersection of two circles, the

chords BOQ and OP'Qf are drawn (P and P' being on one circle and Q
and qf on the other). Show that if PO : OQ : : OP' : OQf, then OP and

OP' generate a pencil in involution.

14. is the orthocentre of the acute-angled triangle ABC. Prove

that the polar circles of the triangles OBC, OCA, OAB are orthogonal,

each to each.

15. A number of conies are inscribed in a given triangle so as to

touch one of its sides at a given point. Show that their points of con-

tact with the other two sides form two homographic divisions which
are in i)erspective.

16. AC, BD are conjugate diameters of a central conic, and P is any

point on the arc AB. PA, PB meet CD in Q, R respectively. Prove

that the range {QC, DR) is harmonic.

17. €reneralise by projection and reciprocation the proposition— ' The
locus of the foot of the perpendicular upon any tangent to an ellipse

from a focus is a circle.'

18. P is the pole of a chord which subtends a constant angle at the

focus S of a conic, and SP intersects the chord in Q ; find the locus of

the point R such that {SR, PQ) is harmonic.

19. A straight line AD is trisected in P, C; the connectors of A, B,

C, D, and the point at infinity on AD with any point S meet another

straight line in A', B', C, D', E' respectively ; show that

E'Bf : E'D^ = 3 . A'B' : A'D^.

20. From any point Q on a fixed tangent BQ to a circle AA'B, straight

lines are drawn to A, A', the extremities of a fixed diameter parallel

to BQ, meeting the circle again in P, P' respectively ; show that the

locus of the intersection of A'P, AP' is a parabola of which B is the

vertex.

21. Two conies a and j3 intersect in the points A, B, C, D; show that

if the pole of AB with regard to a lies on /3, then the pole of CD with

regard to a lies on fi.

If the vertex of a parabola is the pole of one of its chords of inter-
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section with a circle, then another common chord is a diameter of the

circle.

22. 'If a circle be drawn through the foci S, H of two confocal

ellipses, cutting the ellipses in P and Q, the tangents to the ellipses

at P and Q will intersect on the circumference of the circle.'

Generalise this theorem (i) by projection, (2) by reciprocation with

respect to the point S, (3) by reciprocation with respect to any point

in the plane.

23. ' If two circles of varying magnitude intersect on the side BC of

a given triangle ABC and touch AB, AC 2XB and C respectively ; then

the locus of 0, their other point of intersection, is the circum-circle of

the triangle ; and the circle on which their centres and the point

lie, always passes through a fixed point.'

Obtain by projection the corresponding theorem when the two

circles are replaced (i) by conies, (2) by similar and similarly situated

conies.

24. Two ranges are in perspective, and the centre of perspective S is

equidistant from the axes of the ranges. The axes are turned about

their meet until they coincide. Show that if S does not coincide

with 0, an involution is produced ; and find the centre and double

points.

25. ' If a circle touches two given circles, the connector of its points

of contact passes through a centre of similitude of the given circles.'

Reciprocate this proposition with respect to a limiting point.

26. The pairs of points AB^ CD form a harmonic range. Prove that,

if X is any other point on the same axis, then the anharmonic ratios

(-4P, CX) and (^P, PX) are equal and of opposite sign.

27. The connectors of a point P in the plane of the triangle ABC
with P, C meet the opposite sides in P, F respectively ; show that the

triangles BBC, EBF have the same ratio as the triangles ABC, AEF.

28. A, B, C are three points on a straight line ; Ay is the harmonic
conjugate of A with respect to PC, P^ of P with respect to CA, and Q
of C with respect to AB ; show that AAi , BBi, CC^ are three pairs of a

range in involution.

29. A conic is reciprocated into a circle. Find the reciprocals of a

pair of conjugate diameters.

30. Generalise by projection the theorem—* If a straight line touch

a circle and from the point of contact a straight line be drawn cutting

the circle, the angles which this line makes with the line touching the

circle shall be equal to the angles which are in the alternate segments
of the circle.'

31. The locus of the pole of a chord of a conic which subtends a right

angle at a fixed point is a conic.
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32. A quadrilateral ABCD is circumscribed to a conic, and a fifth

tangent is drawn at the point P ; the diagonals AC, BD meet the

tangent at P in o and /3, and the points a', /3^ are taken the harmonic

conjugates of a and ^ with respect to A, C and B, D respectively ; show
that a' )3', P are on a straight line.

33. Through the vertex ^ of a square ABCD a straight line is drawn
meeting the sides BC, CD in E, F. If ED, FB intersect at G, show that

CG is at right angles to EF.

34. Determine the envelope of a straight line which meets the sides

of a triangle in A, B, C, so that the ratio AB : AC is constant.

35. Generalise by projection the theorem— ' If OP, OQ, tangents to

a parabola whose focus is S, are cut by the circle on OS as diameter

in M and JV, then MN will be perpendicular to the axis.'

36. Reciprocate with regard to the focus of the parabola the theorem
—

' The circle described on a focal radius of a parabola as diameter

touches the tangent at the vertex.'

37. Two given straight lines AB and CD intersect in D, and a variable

point P on CD is joined to the fixed points A, B on AB. If a point Qbe

taken such that the angles between AP and AQ, and between BQ and

PB produced are each equal to CDA, show that the locus of Q is a

straight line.

38. M and N are a pair of inverse points with regard to a given circle

whose centre is C. Prove that (i) if P is any point on the circle

PM^ : PiY^ ::CM: CN;

(2) if any chord of the circle is drawn through M or N, the product

of the distances of its extremities from the straight line bisecting MN
at right angles is constant.

39. Points P, Q are taken on the sides AB, AC of a. triangle respectively,

such that AP= CQ ; show that the line joining PQ will envelope a

parabola.

Through a given point draw a straight line to cut the equal sides AB,

AC of an isosceles triangle BAC in P, Q respectively, so that AP is equal

to CQ.

40. Given the proposition * any point P of an ellipse, the two foci, and

the points of intersection of the tangent and normal at P with the

minor axis are concyclic,' (i) generalise it by projection, (2) recipro-

cate it with regard to one of the foci.

41. Generalise the following proposition (i) by reciprocating it with

respect to A, and (2) by projection— ^ A fixed circle whose centre is

touches a given straight line at a point A ; the locus of the centre

of a circle which moves so that it always touches the fixed circle

and the fixed straight line is a parabola whose focus is 0, and whose

vertex is A.'
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42. Two circles a and )3 intersect a conic 7 ; show that the chords of

intersection of a and 7 meet the chords of intersection of /3 and 7
in four points which lie on a circle having the same radical axis with

(I and /3.

43. Through any point in the plane of a triangle ABC are drawn
OA', OB', OC bisecting the supplements of the angles BOC, COA, AOB
and meeting BC, CA, AB in A', B^, (7 respectively ; show that the six

lines OA, OB, OC, OA', OB', OC form a pencil in involution.

44. Two conies a and have double contact at B and C, A being the

pole of BC. Tangents from a point X upon AB are drawn to a and
meeting ^C in Fand Y'. Show that Y and F' generate homographic

ranges, the double points of which are A and C.

45. A quadrangle ABCD is inscribed in a parabola ; through two of

its vertices C and D straight lines are drawn parallel to the axis, meeting

DA, BC in P and Q ; show that PQ is parallel to AB.

46. Prove that the polar reciprocal with regai'd to a parabola of the

circle of curvature at its vertex is a rectangular hyperbola of which the

circle is also the circle of curvature at a vertex.

47. The opposite verticesAA% BB', CGf of a quadrilateral circumscrib"

ing a conic are joined to a given point ; OA cuts the polar of A in a,

OB cuts the polar of B in &, and so on ; show that a conic can be drawn
through the seven points Oaa'Wccf

.

48. A range on a line is projected from two different vertices on to

another line. Find the double points of the projected ranges.

49. If four points A, B, C, D be taken on the circumference of a circle,

prove that the centres of the nine-point circles of the four triangles

ABC, BCD, CDA, DAB will lie on the circumference of another circle,

whose radius is one-half that of the first.

50. If the orthocentre of a triangle inscribed in a parabola be on
the directrix, then the polar circle of the triangle passes through the

focus.

51. A and BC are a given pole and polar with regard to a conic ; DE
is a given chord through A; P,Q, R, ... are any number of points on the

conic, and F', Q', R%... are the points where EP, EQ, ER, . . . meet BC.

Prove that D {PP', Q(/, RR\ ...) is an involution ; and determine its

double lines.

52. ABCD is a quadrilateral circumscribing a conic a. AB, DC meet
in E, and BC, AD in F, and a conic /3 is drawn through the points B, D,

F, E. Prove that the four tangents to a at the points where the conies

intersect pass two and two through the pair of points where AC cuts /3.

53. Two conies a, /3 intersect in the points A, B, C, D. If the pole of

AB with respect to o coincides with the pole of CD with respect to 0,

prove that the pole of CD with respect to a will coincide with the pole

of AB with respect to fi.
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54. Three conies all pass through the same two points ^,J5. The
first and second conies intersect one another in two other points C, B

;

and the pole of AB with regard to the second conic lies on the first

conic. The third conic touches the line joining C, D ; and the pole of

^5 with regard to it lies on the second conic. Show that the tangents,

other than Ci), drawn from the points C, B to the third conic meet on

the circumference of the first conic.

55. Given the asymptotes of a conic and another tangent, show how
to construct the pair of tangents from a given point to the conic.

Given the three middle points of the sides of a given triangle, draw

a straight line through a given point to bisect the triangle.

56. A conic cuts the sides of a triangle ABQ in the pairs of points

a, a^, 5| &^, q c^ respectively ; if Bh.^^ Cc^ intersect in a„ and B6„ Cc^ in a^,

and so on, and if ^j /Sj 183 /S,, 7^ 7^ 73 y^ be similarly constructed ; show
that the straight lines obtained by putting in various suffixes in Aa,

B0, Cy meet, three by three, in eight points.

57. Reciprocate the proposition that the nine-point circle of a triangle

touches the inscribed circle (i) with regard to one of the angular

points of the triangle, (2) with regard to the middle point of one of its

sides.

58. * If, from a point within a circle, more than two equal straight

lines can be drawn to the circumference, that point is the centre of

the circle.*

Generalise the above proposition (i) by reciprocation, (2) by pro-

jection.

59. TP and TQ are tangents of a conic and PQ is bisected in V ; also

7'r is bisected by the curve. Show that the conic is a parabola.

60. A conic of constant eccentricity is drawn with one focus at

the centre of a given circle and circumscribing a triangle self-conjugate

with respect to the given circle ; show that the corresponding directrices

for different positions of the triangle will envelope a circle.

6r. A straight line moves so as to make upon two fixed straight

lines intercepts whose difference is constant
;
prove that it will always

touch a fixed parabola, and determine the focus and directrix of the

parabola.

62. By reciprocation deduce a proposition relating to the circle from

the following— ' The locus of a point dividing in a given ratio the

ordinate PN of a parabola is another parabola having the same vertex

and axis.'

63. The envelope of a straight line which moves so that two fixed

circles intercept on it chords of equal length is a parabola.

64. Given a conic and a pair of straight lines conjugate with regard

to it, project the conic into a parabola of which the projections of the

given lines shall be latus rectum and directrix.
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65. An ellipse has the focus of a parabola for centre and has with it

contact of the third order at its vertex. Tangents are drawn to the

two conies from any point on their common tangent, and the harmonic

conjugate of this latter with regard to them is taken. Prove that its

envelope is the common circle of curvature of the two conies at the

common vertex.

66. ABC^ BEF are two triangles inscribed in a conic. BC, CA, AB
are parallel respectively to EF, FD, BE. Prove that AB, BE, CF are

diameters of the conic.

67. Find the double rays of the pencils 0{ABC...) and 0{A^B'(/...\

each of which is in perspective with the pencil V {A"^'(^' ...').

68. BJJ is a fixed diameter of a conic and TV is a double ordinate of

this diameter. A parallel through 1/ to DP meets BF' in X. Find the

locus of X.

69. Through a point is drawn a straight line cutting a conic in AB^

and on AB are taken points CD, such that

(i -^ OC) + (i -^ OB) = (i -^ OA) + (I -^ OB).

Then if WN be the points of contact of tangents from D, and LB those

of tangents from C, show that either LM and Bli, or LN and Elf, meet

in 0.

70. Construct the conic which passes through the four points ABCB
and is such that AB and CB are conjugate lines with regard to it.

71. AOB and COB are two diameters of a circle and QR is a chord

parallel to AB ; if P be the intersection of CQ and BR, or of BQ and
CR, and if from P be drawn PM parallel to AB to meet CB in 3f»

then OM^= OB^ + PM''.

72. AB, AC are two chords of an ellipse equally inclined to the

tangent at A ; show that the ratio of the chords is the duplicate of the

ratio of the diameters parallel to them.

73. Construct, by means of the ruler only, a conic which shall pass

through two given points and have a given self-conjugate triangle.

Also construct the pole of the connector of the given points with

respect to the conic.

74. Through a fixed point A any two straight lines are drawn meet-

ing a conic in B, B' and C, C respectively
;
parallels through A to BC^,

B'C meet JB'C, BC respectively in D, ^ ; find the locus of D and of E.

75. Two equal tangents TP and TQ of a parabola are cut in M and N
by a third tangent ; show that TM=QN.

76. The tangents at two points of an ellipse, whose foci are S, H, meet

•in T, and the normals at the same points meet in
;
prove that the

perpendiculars through S, H to ST, HT respectively divide OT har-

monically.

Deduce a construction for the centre of curvature at any point of the

ellipse.

X
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77. An ellipse may be regarded as the polar reciprocal of the

auxiliary circle with respect to an imaginary circle of which a focus is

centre. Prove this, and find the lines which correspond to the centre

and the other focus of the ellipse.

78. Two conies w, v intersect in A^ B, C, D ; E, F are the poles of CD
with regard to the conies u, v respectively, and AE, AF meet CD in

G, H respectively ; a straight line is drawn through A meeting u, v in

P, Q respectively ; show that the locus of the intersection oiPH, QGis a

straight line passing through B and through the intersection of EF, CD.

79. Two triangles, one inscribed in and the other escribed to a given

triangle, and both in perspective with it, are in perspective.

Each of the triangles determined by the common tangents of two
conies is in perspective with each of the triangles determined by the

common points of the conies.

80. Two circles cut each other orthogonally ; show that the distances

of any point from their centres are in the same ratio as the distances of

the centre of each circle from the polar of the point with respect to the

other.

The directrix of a fixed conic is the polar of the corresponding focus

with respect to a fixed circle ; with any point on the conic as centre a

variable circle is described cutting the fixed circle orthogonally ; find

the envelope of the polar of the focus with respect to the variable

circle.

81. Obtain a construction for projecting a conic and a point within

it into a parabola and its focus.

82. A conic circumscribes a triangle ABC, the tangents at the angular

points meeting the opposite sides on the straight line DEF. The lines

joining any point P on DEF to A, B, C meet the conic again in A% B'^ C.

Show that the triangle A'B'(y envelopes a fixed conic inscribed in ABC,

and having double contact with the given conic at the points where

it is met by DEF. Show also that the tangents at A', B', Cf to the

original conic meet B'C, CA% A^B' in points lying on DEF.

83. ABCD is a quadrilateral whose sides AB, CD meet in E, and AD,

BC in i^ ; -4 is a fixed point, EF a fixed straight line, and B, C lie each

upon one of two fixed straight lines concurrent with EF; find the

locus of D.

84. All the tangents of a conic are inverted from any point. Show
that the locus of the centres of all the circles into which they invert is

a conic.

85. If A, B, C, D be four coUinear points, and any point whatever,

prove that , ,

2 { 0^2 -J- {AB . AC . AD)} = o.

Also show that if A', B', C, i/ be four concyclic points, then

3 {i -^ (A^B' . A'Cf . A'ly)} = o, the sign of any rectilinear segment

being the same as in the preceding identity.
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86. If be the intersection of the common tangents to two conies

having double contact, and if a straight line through meet the two
conies in P, P' and Q, Q' respectively, prove that

PQ .P'Q/ . (PO + P'O) = PO" . P'Q'+P^O^ . PQ,

and that PQ . PC/ : P'Q . P'Q' :: PO- : P'0\

87. Describe a conic to touch a given straight line at a given point

and to osculate a given circle at a given point.

88. If a system of conies have a common self-conjugate triangle, any

line through one of the vertices of this triangle is cut by the system in

involution.

Two conies, U and Z7', touch their common tangents in ABCD and

A'B'Cfl/ ; show that AB cuts Z7, Jf and the other sides of the quadri-

lateral of tangents in six points in involution.

89. Four points A^ B, C, D are taken on a conic such that AB, BC, CD
touch a conic having double contact with it ; show that A and I)

generate homographic ranges on the conic, and find the common
points of the ranges.

90. The angular points ABC of a triangle are joined to a point

and the bisectors of the angles BOC, COA, AOB meet the corresponding

sides of the triangle in a^ a^, P^ fi^j 7i 72 ; show that these points lie

three by three on four straight lines ; and that if lie on the circle

circumscribing the triangle, each of the lines o^ P^ Ta* &c. passes

through the centre of a circle touching the three sides of the triangle.

91. * If from a point T on the directrix of a parabola whose vertex is

A tangents TP, TQ are drawn to the curve, and PA, QA joined and pro-

duced to cut the directrix in M, N, then will T be the middle point

ofMN.'

Obtain from the above theorem by reciprocation a property of (i) a

circle, (2) a rectangular hyperbola.

92. In two figures in homologyM and M* are homologous points and
is the centre of perspective. Show that OM is to MM^ as the per-

pendicular from M on its vanishing line is to the perpendicular from M
on the axis of perspective.

93. Given two points A, B on a. rectangular hyperbola and the pplar

of a given point in the lineAB ; determine the points of intersection

of the curve with the straight line drawn through perpendicular

to AB.

94. Show how to project a given quadrilateral into a quadrilateral

ABCD such that AB is equal to AC, and that D is the centre of gravity

of the triangle ABC.

95. A circle has double contact with an ellipse, and lies within it.

A chord of the ellipse is drawn touching the circle, and through its

middle point is drawn a chord of the ellipse parallel to the minor axis.

Show that the rectangle contained by the segments of this chord is

X 2
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equal to the rectangle contained by the segments into which the first

is divided by the point of contact.

96. ABCDEF is a hexagon inscribed in one conic and circumscribing

another. The connectors of its vertices with any point in its

plane meet the former conic again in the vertices of a second hexagon
A'B'CflyIfI* . Prove that it is possible in this to inscribe another

conic.

97. ABCD, AB'Cfiy are two parallelograms having a common vertex

A and the sides AB, AD of the one along the same straight lines as the

sides AB^, Alf respectively of the other. Show that the lines BD\
BfD, CCf are concurrent.

98. Three conies a, /3, 7 are inscribed in the same quadrilateral.

From any point, tangents a, 6 are drawn to a, and tangents a', h' to /3.

Show that if a, a' are conjugate lines with respect to 7, so are &, V.

99. If three tangents to a conic can be found such that the circle

circumscribing the triangle formed by them passes through a focus,

the conic must be a parabola.

100. From each point on a straight line parallel to an axis of a conic

is drawn a straight line perpendicular to the polar of the point ; show
that the locus of the foot of the perpendicular is a circle.

loi. AB is a diameter of a circle, and C and D are points on the

circle. ACy BD meet in E. Show that the circle about CDE is ortho-

gonal to the given circle.

102. Find the locus of the centre of a circle which divides two given

segments of lines harmonically.

103. The sides AB, AD of a parallelogram ABCD are fixed in posi-

tion, and C moves on a fixed line ; show that the diagonal BD envelopes

a parabola.

104. A tangent of a hyperbola whose centre is C meets the asymp-
totes in P and Q ; show that the locus of the orthocentre of the triangle

CPQ is another hyperbola.

105. Through fixed points A and B are drawn conjugate lines for a

given conic. Show that the locus of their meet is the conic through

A, B and the points of contact of tangents from A and B.

106. A, B, C, D are four points on a conic, and is the pole of AB.

Show that {AB, CD) is the square of {AB, CD).

107. A, By C, D are four points on a conic. The tangent at A meets

BC, CD in a„ 03 ; the tangent at B meets CD, DA in &i, &2 ; and so on.

Show that the eight points a^, a.2, &i, &2) <^ij ^2, di, 6,2 lie on a conic.

108. The centre of a conic lies on the directrix of a parabola, and

a triangle can be drawn circumscribed to the parabola and self-conju-

gate for the conic. Show that the tangents from to the parabola are

the axes of the conic.
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109. Two sides -4Q, AR of a triangle A<^B, circumscribed to a given

circle are given in position ; the circles escribed to -4Q and AB, touch

A(^ and AR in V and V ; show that the locus of the meet of QD" and RV
is a hyperbola with -4Q and AR as asymptotes.

1 10. If the chords OP^ OQ of a conic are equally inclined to a fixed

line ; then, if be a fixed point, PQ passes through a fixed point.

111. A fixed line I meets one of the system of conies through the

four points A, B, C, 2) in P and Q ; show that the conic touching AB,

CD, PQ and the tangents at P and Q touches a fourth fixed line.

112. Triangles can be inscribed in a which are self-conjugate for ;

ABC is a triangle inscribed in a and A'BfC is its reciprocal for & ; show
that the centre of homology of ABC and A'B'C is on a.

113. Six circles of a coaxal system touch the sides of a triangle ABC
inscribed in any coaxal in the points aa! , W, cd ; show that these

points are the opposite vertices of a quadrilateral.

114. A^ B, C, D are four points on a circle, and A', B' , C, 1/ are the

orthocentres of the triangles BCB^ CDA, DAB, ABC. Show that the

figures ABCD, A'l^C'D^ are superposable.

115. Any conic a which divides harmonically two of the diagonals

of a quadrilateral is related to any conic /3 inscribed in the quadri-

lateral in such a way that triangles can be inscribed in a which are

self-conjugate for &.

116. The envelope of the axes of all conies touching four tangents of

a circle is a parabola.

117. If {AA', BB^) = - I = {AA', PQ) = {BB', PQ^) ; show that

{AA% BB', QQ/) is an involution.

118. If two conies can be drawn to divide four given segments har-

monically, then an infinite number of such conies can be drawn.

119. If {AA^, BB', CC) be an involution, show that

{A'A, BC) + {BfB, CA') + {C'C, AB') = i.

120. r is a point on the directors of the conies o and 0. The reci-

procal of o for fi meets the polar of T for fi in Q, R. Show that the

angle QTR is right.

121. Through the centre of a circle is drawn a conic, and A and A'

are a pair of opposite meets of common tangents of the circle and conic

;

show that the bisectors of the angle AOA' are the tangent and the

normal at 0.

122. A given line meets one of a series of coaxal circles in P, Q. The
parabola which touches the line, the tangents at P, Q, and the radical

axis has a third fixed tangent.

123. If a series of conies be inscribed in the same quadrilateral of

which A, A' is a pair of opposite vertices, and if from a fixed point

tangents OP, OQ be drawn to one of the conies, the conic through

OPQAA' will pass through a fourth fixed point.
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124. On a tangent to a circle inscribed in a triangle ABC are taken

points a, b, c, such that the angles subtended by Aa, Bb, Cc at the

centre are equal ; show that Aa, Bb, Cc are concurrent.

125. Through two given points, four conies can be drawn for which
three given pairs of lines are conjugate ; and the common chord is

divided harmonically by every conic through its four poles for the

conies.

126. The locus of the pole of a common chord of two conies for

a variable conic having double contact with the two given conies

consists of a conic through the two common points on the given chord

together with the join of the poles of the chord for the two conies.

127. Find the locus of the centre of a conic which passes through

two given points and divides two given segments harmonically.

128. A variable conic passes through three fixed points and is such

that triangles can be inscribed in it which are self-polar for a given

conic. Show that it passes through a fourth fixed point.

129. If a variable conic touch three fixed lines, and be such that

triangles can be drawn circumscribing it which are self-polar for a

given conic, then the variable conic will have a fourth fixed tangent,

and the chords of contact of the variable conic with the fixed lines

pass through fixed points.

130. The directrix of a parabola which has a fixed focus and is such

that triangles can be described about it which are self-polar for a given

conic, passes through a fixed point.

131. A conic U passes through two given points and is such that two
sets of triangles can be inscribed in it, one self-polar for a fixed conic

V and the other self-polar for a fixed conic W. Show that U has a

fixed self-polar triangle.

132. A variable conic U cuts a given conic V in two given points

and also touches it and is such that triangles can be inscribed in it

self-polar for a given conic W. Show that U touches another fixed

conic.

133. Three parabolas are drawn, two of which pass through the

four points common to two conies and the third touches their common
tangents. Show that their directrices are concurrent.

134. If a system of rectangular hyperbolas have two points common,
any line perpendicular to the common chord meets them in an invo-

lution.

135. The reciprocal of a circle through the centre of a rectangular

hyperbola, taking the r. h. itself as base conic, is a parabola whose
focus is at the centre of the r. h.

136. The reciprocal of any circle, taking any r.h. as base conic, is a

conic, one of whose foci is at the centre of the r. h. ; and the centre of

the circle reciprocates into the corresponding directrix.
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137. The chords AB and A'Bf of a conic o meet in F. j8 is the conic

touching AB, A'Bf and the tangents at A^ B, A% B'. VL and FL'

divide AVA' harmonically and cut the conic a in LM and L'M^. Show
that the other joins of the points L, M, i', M' touch 0. Also any-

tangent of /3 meets AB and A'B' in points which are conjugate for a.

138. The director circle of a conic is the conic through the circular

points and the points of contact of tangents from these points to the

conic.

139. Tangents to a circle at P and Q meet another circle in AB and
CD ; show that a conic can be drawn with a focus at either limiting

point of the two circles and with PQ as corresponding directrix which
shall pass through ABCD.

140. Tangents to a conic from two points PP' on a confocal meet
again in the opposite points QQf and RR'. Show that QQf lie on one

confocal and RR' on another ; and that the tangents to the confocals at

PP'qqfRRf are concurrent.

141. The centroid of the meets of a parabola and a circle is on the

axis of the parabola.

142. A variable tangent of a circle meets two fixed parallel tangents

in P and Q, and a fixed line through the centre in. R. JT is taken so

that {PQ, RX) = — I. Show that the locus ofX is a concentric circle.

143. A triangle is reciprocated for its polar circle. Show that the

reciprocal of the centroid is the radical axis of the circum-circle and
the nine-point circle.

144. The reciprocal of a triangle for its centroid is a triangle having

the same centroid.

145. Triangles can be circumscribed to a which are self-conjugate

for iS. A tangent of a cuts iS in P and Q ; and a conic 7 is drawn
touching i8 at P and at Q. Show that triangles can be circmnscribed to

o which are self-conjugate for 7.

146. PP' is a chord of a parabola. Any tangent of the parabola cuts

the tangent parallel to PP' inX and the tangents at P and P' in R and

R^ ; show that RZ = XR'

.

147. If the conic a be its own reciprocal for the conic iS, then )3 is its

own reciprocal for a.

148. Given a conic a and a chord BC of a, a conic & can be found

having double contact with a at S and C, such that o is its own reci-

procal for j8.

149. A conic cannot be its own reciprocal for a conic having four-

point contact with it.

150. If the conic a be its own reciprocal for the conic iS, then o and
/3 can be projected into concentric circles, the squares of whose radii

are numerically equal.
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151. Any point P on a conic and the pole of the normal at P are

conjugate points for the director circle.

152. The pole of the normal at any point P of a conic is the centre

of curvature of P for the confocal through P.

153. ABO is a triangle, and AL^ BM^ CN meet in a point, LMN being

points on BC, CA, AB. Three conies are described, one touching

BM, CN at M, N and passing through A ; so the others. Prove that at

A, B, C respectively they are touched by the same conic.

154. The lines joining four fixed points in a plane intersect in pairs

in points OjOaOo, and P is a variable point. Prove that the harmonic

conjugates of OiP, O2P, O3P for the pairs of lines meeting in OiO^Os

respectively, intersect in a point.

155. If a parabola touch the sides of a fixed triangle, the chords of

contact will each pass through a fixed point.

156. The six intersections of the sides of two similar and similarly

situated triangles lie on a conic, which is a circle if the perpendicular

distances between the pairs of parallel sides are proportional to the

sides of the triangle.

157. Two conies have double contact, being the intersection of the

common tangents. From P and Q on the outer conic pairs of tangents

are drawn to the inner, forming a quadrilateral, and R is the pole of

PQ with respect to the inner conic. Prove that two diagonals of the

quadrilateral pass through R, and that one of these diagonals passes

through 0.

158. A conic is drawn through the middle points of the lines

joining the vertices of a fixed triangle to a variable point in its plane,

and through the points in which these joining lines cut the sides of

the triangle. Determine the locus of the variable point when the

conic is a rectangular hyperbola ; and prove that the locus of the

centre of the rectangular hyperbola is a circle.

159. The feet of the normals from any point to a rectangular hyper-

bola form a triangle and its orthocentre.

160. ABC is a triangle and A'B'C' are the middle points of its sides.

is the orthocentre. AO, BO, CO meet the opposite sides in DBF.

EF, FD, BE meet the sides in LMN. Prove that OL is perpendicular to

AA', OM to BB', and ON to C(f.

161. A variable conic touches the sides AB, AC of a triangle ABC at

B and C. Prove that the points of contact of tangents from a fixed

point P to the conic lie on a fixed conic though PABC.

162. Given two tangents to a parabola and a fixed point on the chord

of contact, show that a third tangent is known.

163. Tangents to a conic from two points on a confocal form a quad-

rilateral in which a circle can be inscribed.
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164. AA!^ BB!^ CC are opposite vertices of a quadrilateral formed by
four tangents to a conic. Three conies pass respectively through

AA', BB', CC and have three-point contact with the given conic at the

same point P. Show that the poles of AA', BBf, C(/ with respect to

the conies through AA', BB', €(/ respectively coincide, and the four

conies have another common tangent.

165. If two conies, one inscribed in and the other circumscribed to

a triangle, have the orthocentre as their common centre, they are

similar, and their corresponding axes are at right angles.

166. A fixed tangent is drawn to an ellipse meeting the major axis

in T. QQ' are two points on the tangent equidistant from T. Show
that the other tangents from Q and Q' to the ellipse meet on a fixed

straight line parallel to the major axis.

167. With a fixed point P as focus a parabola is drawn touching a

variable pair of conjugate diameters of a fixed conic. Prove that it has

a fixed tangent parallel to the polar of P.

168. A conic is described having one side of a triangle for directrix,

the opposite vertex for centre, and the orthocentre for focus
;
prove

that the sides of the triangle which meet in the centre are conjugate

diameters.

169. The radius of curvature in a rectangular hyperbola is equal to

half the normal chord.

170. The radius of curvature in a parabola is equal to twice the in-

tercept on the normal between the directrix and the point of inter-

section of the normal and the parabola.

171. Two ellipses touch at A and cut at P and C. Their common
tangents, not at A, meet that at J. in Q and E and intersect in P.

Prove that BQ and CR meet on AP, and so do BR and CQ.

172. A transversal is drawn across a quadrangle so that the locus

of one double point of the involution determined on it is a straight

line. Show that the locus of the other is a conic circumscribing the

harmonic triangle of the quadrangle.

173. PQ is a chord of one conic a and touches another conic 0.

Prove that P, Q are conjugate for a third conic 7.

1 74. XFZ is a triangle self-conjugate for a circle. The lines joining

JCYZ to a point D on the circle meet the circle again in A, B, C

respectively. Show that as D varies, the centre of mean position of

ABCD describes the nine-point circle of ^YZ.

175. Two conies are described touching a pair of opposite sides of a

quadrilateral, having the remaining sides as chords of contact and
passing through the intersection of its diagonals ; show that they

touch at this point.
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176. With a given point as focus, four conies can be drawn having
three given pairs of points conjugate ; and the directrices of these

conies form a quadrilateral such that the director circles of all the

inscribed conies pass through 0.

177. The line joining two points A and J5 meets two lines 0(^^ OP in

Q and P. A conic is described so that OP and OQ are the polars of A
and B with regard to it. Show that the locus of its centre is the line

OR where R divides AB so that AR :RB ::QR: RP.

178. A chord of a conic passes through a fixed point. Prove that

the other chord of intersection of the conic and the circle on this

chord as diameter passes through a fixed point.

179. One of the chords of intersection of a circle and a r. h. is a

diameter of the circle. Prove that the opposite chord is a diameter of

the r. h.

i8o. Tangents are drawn to a conic a parallel to conjugate

diameters of a conic /3. Prove that they will cut on a conic 7, con-

centric with a and homothetic with /3. Also 7 will meet o in points

at which the tangents to o are parallel to the asymptotes of /3.

181. Four coneyclic points are taken on a parabola. Prove that its

axis bisects the diagonals of the quadrilateral formed by the tangents

to the parabola at these points.

182. If four points be taken on a circle, the axes of the two parabolas

through them are the asymptotes of the centre-locus of conies through

them.

183. The locus of the middle point of the intercept on a variable

tangent to a conic by two fixed tangents is a conic having double con-

tact with the given one where it is met by the diameter through the

intersection of the fixed tangents.

184. On two parallel straight lines fixed points A, B are taken and

lengths AP, BQ are measured along the lines, such that AP + BQ is

constant. Show that AQ and BP cut on a fixed parabola.

185. Chords AP, AQ of a conic are drawn through the fixed point A
on the conic, such that their intercept on a fixed line is bisected by a

fixed point. Show that PQ passes through a fixed point.

186. Three tangents are drawn to a fixed conic, so that the ortho-

centre of the triangle formed by them is at one of the foci
;
prove

that the polar circle and circum-cirele are fixed.

187. Given four straight lines, show that two conies can be con-

structed such that an assigned straight line of the four is directrix

and the other three form a self-polar triangle ; and that, whichever

straight line be taken as directrix, the corresponding focus is one of

two fixed points.

188. Parallel tangents are drawn to a given conic, and the point

where one meets a given tangent is joined to the point where the

i
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other meets another given tangent. Prove that the envelope of the

joining line is a conic to which the two tangents are asymptotes.

189. With a point on the circum-circle of a triangle as focus, four

conies are described circumscribing the triangle : prove that the corre-

sponding directrices will pass each through a centre of one of the four

circles touching the sides.

190. Three conies are drawn touching each pair of the sides of a

triangle at the angular points where they meet the third side and

passing through a common point. Show that the tangents at this

common point meet the corresponding sides in three points on a

straight line, and the other common tangents to each pair of conies

pass respectively through these three points.

191. ABCT) is a quadrilateral circxunscribing a conic, and through the

pole of ^C a line is drawn meeting CB^ DA, DB, BC, and CA in PQRST
respectively. Show that PQ, RS subtend equal angles at any point on

the circle whose diameter is OT.

192. The normal at a fixed point P of an ellipse meets the curve again

in Q, and any other chord PP^ is drawn
;
QP^ and the straight line

through P perpendicular to PP' meet in R
;
prove that the locus of R is

a straight line parallel to the chord of curvature of P and passing

through the pole of the normal at P.

193. Two tangents of a hyperbola a are asymptotes of another conic $.

Prove that if touch one asymptote of a, it touches both.

194. A conic is drawn through four fixed points ABCD. BC, AB
meet in A^ ; CA, BD in B' ; AB, CD in C ; and is the centre of the conic.

Prove that \^ABCD] on the conic = [A^B^CO] on the conic which is

the locus of 0.

195. Tangents drawn to a conic at the four points ABCD form a

quadrilateral whose diagonals are aa^, hi/, a/ (the tangents at ABC
forming the triangle ahc and being met by the tangent at D in a'6V).

The middle points of the diagonals are A'B!C' and the centre is 0.

Prove that {A'PfCfO} = ^^ABCD] at any point of the conic.

196. If a right line move in a plane in any manner, the centres of

curvature at any instant of the paths of all the points on it lie on a

conic.

197. Defining a bicireular quartic as the envelope of a circle which
moves with its centre on a fixed conic so as to cut orthogonally a fixed

circle, show that it is its own inverse with respect to any one of the

vertices of the common self-conjugate triangle of the fixed circle and
conic, if the radius of inversion be so chosen that the fixed circle

inverts into itself.

198. A quadrilateral is formed by the tangents drawn from two
fixed points on the radical axis of a system of coaxal circles to any
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circle of the system. Prove that the locus of one pair of opposite

vertices is one conic, and of the remaining pair is another conic, and

the two fixed points are the foci of both these conies.

199. Two fixed straight lines through one of the foci of a system of

confocal conies meet any one of the conies in FV^ QQ^. Prove that the

envelope of PQ and P^Qf is one parabola, and of PQ', P'Q is another

parabola. Also the points of contact of PQ, P'Q', P'Q, PQ' with their

respective envelopes lie on a straight line parallel to the conjugate

axis of the system, which axis touches both parabolas.

200. A parallelogram with its sides in fixed directions circumscribes

a circle of a coaxal system. Prove that the locus of one pair of

opposite vertices is one conic and of the remaining pair is another

conic, and the common tangents of these two conies are the parallels

through the common points of the system to the sides of the parallelo-

gram. Prove also that the tangents at the vertices of any such

parallelogram to their respective loci meet in a point on the line of

centres of the system.

201. is the centre of a conic circumscribing a triangle, and (X is

the pole of the triangle for this conic. Show that is the pole of the

triangle for that conic which circumscribes the triangle and has its

centre at (/.

20a. AA', BPf, CC are the three pairs of opposite vertices of a quadri-

lateral. A conic through BB', CCf and any fifth point P meets AA' in

X and Y. Prove that PX, PY are the double lines of the involution

p{aa', BBT, CC}.

203. If tangents be drawn to a system of conies having four common
tangents, from a fixed point {X) on a side {AA^) of the self-conjugate

triangle of the system, the points of contact will lie on a conic (viz.

XBBfCCf).

204. AA^ BB^, CCf are the three pairs of opposite vertices of a quadri-

lateral. A straight line meets AA' , BB', CCf in i3fA^. Prove that the

conies LJ5B'C(y, MCCfAA', If^AA'BBf, and the conic touching the sides of

the quadrilateral and also LM.N, have a common point.

205. Three conies have double contact at the same two points, and

-4, B, C are their centres. A straight line parallel to ABC meets them
in PP', QQf, RR' respectively, and is any point on this straight line.

Prove that OP.OP' .BC + OQ.OQ' .CA + OR.ORf .AB = o.

206. In XXVIII. § 10. Ex. 4, prove that if Of be this fixed point, then

CO, CC/ are equally inclined to the axes, and CO . CC = CS^.

207. If triangles can be inscribed in a conic a and circumscribed to

a conic 0, the locus of the centroid of such a triangle is a conic homo-

thetie with a.

208. If the conic ;8 be a parabola, this locus is a straight line.
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209. This straight line is parallel to the line joining points on the

parabola where the tangents are parallel to the asymptotes of ct.

210. The tangents at three points of a rectangular hyi)erbola form a

triangle, of which the circum-circle has its centre at a vertex and passes

through the centre of the hyperbola. Show that the centroid of the

three points lies on the conjugate axis.

an. Show that the orthocentre of the three points in Ex. 210 is the

vertex which is the centre of the circle.

212. If in Ex. 207 the conies o and /3 are homothetic, the centroid of

the three points of contact with iS of such a triangle is a fixed point.

213. If the conies a and /3 are coaxial, then the normals to o at the

vertices of any such triangle are concurrent and also the normals to /3

at the points of contact of the sides ; and conversely, if FQR be three

points on a conic such that the normals there are concurrent, a coaxial

conic can be inscribed in the triangle P(^B,.

214. If the conies o and j8 are both parabolas, the locus of the

centroid is parallel to the axis of a.

215. If a and )3 are parabolas with the same axis, whose latera recta

are I and Z', then Z' = 4 Z.

216. Given a triangle self-conjugate for a conic, if a directrix touch

a conic & inscribed in the triangle, then the corresponding focus lies

on the director circle of /3.

217. A conic is inscribed in a triangle self-conjugate for a rectangular

hyperbola, with one focus on the hyi)erbola. Show that its major axis

touches the hyperbola.

218. A triangle is inscribed in a conic and circumscribed to a para-

bola. Prove that the locus of the centre of its circumscribing circle

is a straight line.

219. The following pairs of conies are related to one another as in

XIV. § 2. Ex. 14—
(i) A rectangular hyperbola, and a parabola whose focus is at the

centre of the r. h, and whose directrix touches the r. h.

(ii) Two rectangular hyperbolas, each passing through the centre of

the other and having the asymptotes of one parallel to the axes of the

other.

220. If the polar circle of three tangents to a conic passes through a

focus, the orthocentre lies on the corresponding directrix.

221. If a triangle inscribed in a parabola has its orthoceutre on the

directrix, its polar circle passes through the focus.

222. A circle has its centre on the directrix and touches the sides of

a triangle self-conjugate for a parabola. Show that it passes through
the focus.
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223. Triangles can be inscribed in a conic a so as to be self-conjugate

for a conic ;3. A circle has double contact with a along a tangent

to /3. Show that it cuts orthogonally the director of iS.

224. Two conies, in either of which triangles can be inscribed self-

conjugate for a third conic, have double contact. Show that their

chord of contact touches this conic.

225. From any point P two tangents PQ, FR are drawn to an ellipse :

if G is the centre of the ellipse, then all hyperbolas drawn through

P and C and having their asymptotes parallel to the axes of the ellipse

cut QiJ harmonically.

226. A conic circumscribes a triangle self-conjugate for a parabola

and has its centre on the parabola. Show that an asymptote touches

the parabola.

227. A circle through the centre of a rectangular hyperbola cuts it

in ABCD. Show that the circle circumscribing the triangle formed

by the tangents to the r. h. at ABC passes through the centre of the

hyperbola, and has its centre on the hyperbola at the extremity 1/ of

the diameter through D ; and D' is the orthocentre of ABC.

228. Show that if D be the pole of the triangle ABC for a conic, then

A, B, C are the poles of the triangles BCD, ACD, ABB respectively.

Such a quadrangle may be said to he self-conjugate for the conic.

229. If triangles can be inscribed in /3 which are self-conjugate for a,

then quadrangles can be inscribed in /3 which are self-conjugate for a
;

and conversely.

230. If triangles can be circumscribed to which are self-conjugate

for o, then quadrilaterals can be circumscribed to /3 which are self-

conjugate for a ; and conversely.

231. If we can describe triangles to touch a conic o and to be self-

polar for each of two conies and 7, then the four intersections of /3

and 7 form a self-polar quadrangle for a.

232. If triangles can be inscribed in each of two conies /8, 7 so as

to be self-polar for a conic a, then triangles self-polar for a can be

inscribed in any conic through the intersections of and 7.

233. If triangles can be circumscribed to each of two conies /3, 7
self-polar for a conic a, then triangles self-polar for a can be circum-

scribed to any conic touching the common tangents of /3 and 7.

234. The polai-s of a fixed triangle for a system of four-point conies

envelope a conic touching the sides of the triangle.

235. The poles of a fixed triangle for a system of conies having four

common tangents lie on a conic circumscribing the triangle.

236. If the system of four-tangent conies is a system of confocals,

the locus of the poles is a rectangular hyperbola.
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237. If two conies are related as in XIV. § 2, Ex, 14, and the first

passes through the centre of the second, then the second passes through

the centre of the first.

238. Three tangents to a conic o form a triangle. A conic /3 circum-

scribes the triangle and passes through the centre of o and the pole of

the triangle with respect to a. Prove that its centre lies on a.

239. A rectangular hyperbola circumscribes a triangle and passes

through the centre of one of the circles touching the sides. Show that

its centre lies on this circle.

240. Hence prove Feuerbach's theorem, viz.—the nine-point circle

of any triangle touches the inscribed and escribed circles.

241. Show that in Ex. 239 the poles of the triangle for these circles

lie on the respective hyperbolas ; and the polars of the triangle for the

hyperbolas are tangents to the respective circles.

242. The nine-point circle of a triangle inscribed in a rectangular

hyperbola touches the polar-circle of the triangle formed by the

tangents at the vertices, at the centre of the conic.

243. The pole with respect to a parabola of the triangle formed by
three tangents to it lies on the minimum ellipse circumscribing the

triangle.

244. The polar in this case passes through the centre of gravity of

the triangle.

245. The pole with respect to a parabola of an inscribed triangle

lies on the maximum ellipse inscribed in the triangle.

246. The two conies in the last example are reciprocal with respect

to a conic with its centre at this pole and having the triangle as a

self-conjugate triangle.

247. Show that the polar of a triangle for a rectangular hyperbola

which circumscribes it, touches the conic which touches the three

sides at the vertices of the pedal triangle ; and the pole of the triangle

lies on the radical axis of the circum-circle and nine-point circle of

the triangle.

248. A conic passes through the vertices and centroid of a fixed

triangle. Show that the pole of the triangle for the conic lies on the

line at infinity, and the polar touches the maximum inscribed ellipse.

249. A conic touches the sides of a triangle and passes through its

centroid. Show that the polar of the triangle for this conic is a

tangent to the minimum ellipse circumscribing the triangle.

250. The foci of a conic inscribed in a triangle self-conjugate for a
rectangular hyperbola are conjugate points for the r. h.

251. A parabola touches the sides of a triangle ABC^ and S is its

focus. The axis meets the circum-circle again in 0. With as centre



320 Miscellaneous Examples.

the rectangular hyperbola is described for which the triangle is self-

conjugate. Show that the axis of the parabola is an asymptote of

the r. h.

252. Two parabolas touch the sides of a triangle and have their foci

at the extremities of a diameter of its circum-circle. Show that their

axes are the asymptotes of a rectangular hyperbola for which the

triangle is self-conjugate.

253. Triangles can be inscribed in a parabola (whose latus-rectum

is V) so as to be self-conjugate for a coaxial parabola (whose latus-rectum

is V\ Prove that V = 2I.

254. The locus of the centre of a circle of constant radius circum-

scribed to a triangle self-conjugate for a fixed conic is a circle con-

centric with the conic.

255. Given three tangents and the sum of the squares of the axes,

the locus of the centre of a conic is a circle.

256. A circle of given radius is inscribed in a triangle self-conjugate

for a fixed conic. Prove that the locus of its centre is a concentric

homothetic conic.

257. A circle a touches the sides of a triangle self-conjugate for a

conic /3. Show that a rectangular hyperbola having double contact

with iS along a tangent to a passes through the centre of the circle.

258. A circle touches a fixed straight line, and triangles can be cir-

cumscribed to it which are self-conjugate for a fixed conic. Prove that

the locus of its centre is a rectangular hyperbola.

259. The orthocentre of a triangle of tangents to a rectangular

hyperbola and the centre of the circle through the points of contact

are conjugate points for the r. h.

260. If the centroid of a triangle inscribed in a conic lies on a

concentric homothetic conic, prove that the nine-point circle cuts

orthogonally a fixed circle.

261. If two circles touch respectively the sides of two triangles self-

conjugate for a conic, then their centres of similitude are conjugate

points for the conic.

262. If a rectangular hyperbola has double contact with a conic a,

its centre and the pole of the chord of contact are inverse points for

the director circle of a.

263. A circle circimascribes triangles self-conjugate for a given conic

and passes through a fixed point. Prove that its centre lies on the

directrix of the parabola which has double contact with the conic at

the points of contact of tangents from the fixed point.

264. Triangles are circumscribed to a central conic so as to have the

same orthocentre. Prove that they have the same polar circle.
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265. Two triangles are inscribed in a conic (which is not a rectangular

hyperbola) so as to have the same orthocentre. Prove that they have

the same polar circle.

266. Two triangles are inscribed in a conic (which is not a circle)

so that their circum-circles are concentric. Prove that they are self-

conjugate for a parabola.

267. Two triangles are circumscribed to a conic, so that their circiun-

circles are concentric. Prove that they either have the same circum-

circle or are self-conjugate for a parabola.

268. A conic which is inscribed in a triangle self-conjugate for a

rectangular hyperbola and has a focus at the centre of the r. h. is

a parabola.

269. A conic with a focus at the centre of a rectangular hyper-

bola circumscribes triangles self-conjugate for the r. h. Prove that

the corresponding directrix touches the r. h.

270. Triangles can be inscribed in each of two conies a and ^, self-

conjugate for the other. Prove that the reciprocal of a for ^ and of

^ for a is the same conic 7 ; and a, /3, 7 are so related that each is the

envelope of lines divided harmonically by the other two and also the

locus of points from which tangents to the other two form a harmonic

pencil. Also any two of these conies are reciprocals for the third.

271. Two hyperbolas pass each through the centre of the other and
determine a harmonic range on the line at infinity. Prove that the

reciprocal of either for the other is the parabola inscribed in the

quadrilateral formed by parallels through each centre to the asymp-

totes of the hyperbola passing through it.

272. A conic is inscribed in a given triangle and passes through its

circum-centre. Show that its director circle touches the circum-circle

and the nine-point circle of the triangle.

273. Find the locus of the centre of the conic in the last example.

274. The locus of the centre of a conic touching three given straight

lines and passing through a given point is the conic touching the

triangle formed by the middle points of the sides of the fixed triangle

and such that if D be the fixed point, G the centroid of the triangle and
the centre of the locus, then OBGt are coUinear, and BO = f BG.

275. If the fixed point be the centroid of the triangle, the locus is

the maximum ellipse inscribed in the triangle formed by joining the

middle points of the sides.

276. A circle inscribed in a triangle self-conjugate for a hyperbola

cuts the hyperbola orthogonally at a point P. Show that the normal

at P is parallel to an asymptote.

277. A circle is inscribed in a triangle self-conjugate for a conic

and has its centre on its director circle. Prove that it touches the

reciprocal of the director circle for the conic.

Y
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278. A circle a with centre is inscribed in a triangle self-conjugate

for a conic /3. If P and Q be the points of contact of tangents to )3 from

0, then the tangents from P and Q to the conic which is the reciprocal

for /3 of its director, are also tangents to the circle o.

279. The six tangents to a conic from the vertices of a triangle cut

again in twelve points which lie by sixes on four conies.

280. The six points in which a conic cuts the sides of a triangle can

be joined in pairs by twelve other lines which are tangents by sixes

to four conies.

281. If tangents are drawn to a parabola from two points A and S,

the asymptotes of the conic through AB and the points of contact of

the tangents from A and B, are parallel to the tangents to the para-

bola from the middle point of AB.

282. If tangents are drawn to a parabola from A and 5, the conic

through AB and the points of contact will be a circle, rectangular

hyperbola or parabola as AB is bisected by the focus, directrix, or

parabola respectively.

283. Tangents are drawn to a circle from two points on a diameter.

Show that the foci of the conic touching the tangents and their chords

of contact lie on the circle.

284. If tangents are drawn to a central conic from P and Q, and C

be the centre and S a focus, then the conic through P, Q, and the

points of contact of tangents from P, Q will be a circle if the angle BC(i

is bisected internally by CS, and if CP . CQ = CS^

285. The conic in the previous example will be a rectangular hyper-

bola if P and Q are conjugate for the director circle.

286. A point and the orthocentre of the triangle formed by tangents

from it to a conic and their chord of contact are conjugate points for

the director circle of the conic.

287. If a conic a pass through two points -4, B and the points of

contact of tangents from them to a given conic, and if ^ be the

similarly constructed conic for two points A'^ B^ ; then if AB are con-

jugate for $, A'B' are conjugate for a.

288. The reciprocal of the director circle of a conic a for a is

confocal with a.

289. Along the normal to a conic at a point are taken pairs of

points B(^ such that OF. OQ is equal to the square of the semi-diameter

parallel to the tangent at 0. Show that tangents to the conic from

P and Q intersect on the circle of which a diameter is the intercept on

the tangent at by the director circle.

290. The orthocentre of a triangle formed by two tangents to a

conic and their chord of contact lies on the conic. Prove that the

locus of the vertex of the triangle is the reciprocal of the conic for

its director circle or the reciprocal for the conic of its evolute.

1
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291. The centre of the circle inscribed in a triangle formed by two
tangents to an ellipse and their chord of contact lies on the conic.

Proye that the locus of the vertex of the triangle is a hyperbola con-

focal with the ellipse, and having the equi-conjugate diameters of the

ellipse for its asymptotes.

292. The centre of gravity of a triangle formed by two tangents to

a conic and their chord of contact lies on the conic. Prove that the

locus of the vertex of the triangle is a concentric homothetic conic.

293. From two points BG^ tangents are drawn to a fixed conic, and
the sides of the two triangles formed by these two pairs of tangents

and their chords of contact touch the conic a. Similarly the pairs of

points CA^ AB determine the conies & and 7 respectively. Prove that

if A lies on a, then B lies on i3, and G on 7.

294. A'B'G^ are the middle points of the sides of a triangle ABG.

Prove that the conic which is concentric with the nine-point circle of

A'B'G^ 2iVL^ inscribed in A'B'O! has double contact with the polar circle

of ABG at the points where the circum-circle of ABG meets the polar

circle, and also has double contact with the nine-point circle of A'B'Gf'

295. A triangle is self-conjugate for a conic. Prove that the sides of

the pedal triangle touch a confocal.

296. A triangle is self-polar for a conic ; show that an infinite

number of triangles can be at once inscribed in the conic and circum-

scribed to the triangle, and vice versa.

297. If two conies a and /3 are related so that the poles for a of two
opposite common chords lie on fi^ then the polars for yS of two opposite

common apexes touch a.

298. Of all conies inscribed in a given triangle, that for which the

sum of the squares of the axes is least has its centre at the orthocentre

of the triangle.

299. ^, F are a pair of inverse points with respect to a circle

whose centre is ^ ; B is the harmonic conjugate of A with respect

to ^, F ; AP, BP and the tangent at P, any point on the circle, meet
the polar of E in L, M, T respectively ; show that LT, TM subtend equal

angles at A.

300. The connector of a pair of conjugate points with respect to

a given conic passes through a fixed point and one of the pair lies

on a given straight line ; show that the locus of the other is a conic,

and determine six points upon the locus.
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