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ADVERTISEMENT.

As Utility is the great object aimed at in this Publication,

I have spared no pains to make a careful selection of materi-

als, from the most approved sources, which may tend to eluci-

date, in a full and clear manner, the Elements of Algebra, both

in theory and practice.

Those authors of whose labours I have principally availed

myself, are Euler, Clairaut, Lacroix, Gamier, Bczout, La'

grange, Newton, Simson, Emerson, Wood, Bonnycastlc, Bridge^

and Bland.

To Bland's Algebraical Problems, (a work compiled for the

use of Students in one of the first Universities in Europe), I

am chiefly indebted for the problems in Simple, Pure, and

Quadratic Equations.

By permission of the learned Dr. Adrain, I have added, as an

Appendix, his method of demonstrating algebraically the pro-

positions in the fifth book of Euclid's Elements.

JAMES RYAN.

New YorTc, July 1, 1824.



ADVERTISEMENT

TO

THE FOURTH EDITION.

The author has endeavoured to accommodate his Algebra

to the present state of science in the United States. Consider-

able alterations and improvements have been made in the dif-

ferent sections of the original work. There are also intro-

duced two new chapters, containing Figurate and Polygonal

Numbers, Vanishing Fractions, Indeterminate Coefficients, In-

determinate and Diophantine Analysis. The chapters upon

these subjects have chiefly been derived from Euler, Bonny-

castle, Young, and Bourdon.

JAMES RYAN.

New York, July 4, 1838.
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AN

ELEMENTARY TREATISE

ON

ALGEBRA.

INTRODUCTION.

EXPLANATION OF THE ALGEBRAIC METHOD OF NOTATION :—
DEFINITIONS AND AXIOMS.

1. Algebra is a general method of computation, in which
abstract quantities and their several relations are made the

subject of calculation, by means of alphabetical letters and

other signs.

2. The letters of the alphabet may be employed at plea-

sure for denoting any quantities, as algebraical symbols or ab-

breviations ; but, in general, quantities whose values are

known or determined, are expressed hyihe first letters, a, b, c,

&c. ; and unknown or undetermined quantities are denoted by
the last or final ones, m, t?, ly, a?, &c.

3. Quantities are equal when they are of the same magni-
tude. The abbreviation a= b implies that the quantity de-

noted by a is equal to the quantity denoted by b, and is read

a equal to b ; a^-b, or a greater than 6, that the quantity a is

greater than the quantity b ; and a<^b, or a less than b, that

the quantity a is less than the quantity b.

4. Addition is the joining of magnitudes into one sum. The
sign of addition is an erect cross ; thus, a-\-b implies the sum
of a and 6, and is called a plus b, if a represent 8 and b, 4 ;

then, a-\-b represents 12, or a-|-^= 8"f-4:=l2.
5. Subtraction is the taking as much from one quantity as

is equal to another. Subtraction is denoted by a single line
;

as a— b, or a ?muus b, which is the part of a remaining, when
a part equal to b has been taken from it ; if a= 9, and bz=5 ;

a—b expresses 9 diminished by 5, which is equal to 4, or

a~6=9-5=4.
2



3 II^TRODUCTION.

6. Also, the difference of two quantities a and h ; when it

is not known which of them is the greater, is represented by
the sign -w; thus, a-»-6 is a— ^, or h— a\ and a-\-h signifies

the sum or difference of a and h.
"*'

7. Multiplication is the adding together so many numbers
or quantities equal to the multiplicand as there are units in the

multiplier, into one sum called the product. Multiplication is

expressed by an oblique cross, by a point, or by simple appo-

sition ; thus, axh, a . b, on ab, signifies the quantity denoted

by a, is to be multiplied by the quantity denoted by ^ ; if a—

5

and b= 7; then axb=5x7=z35, or a . i=i5 . 7= 35, or

ab=5x7— 35.

Scholium. The multiplication of numbers cannot be ex-

pressed by simple apposition. A unit is a magnitude consi-

dered as a whole complete within itself. And a whole num-
ber is composed of units by continued additions ; thus, one
plus one composes two, 2-f-l=3, S+l =4, &c.

8. Division is the subtraction of one quantity from another

as often as it is contained in it ; or the finding of that quo-

tient, which, when multiplied by a given divisor, produces a

given dividend.

Division is denoted by placing the dividend before the sign

-f-, and the divisor after it ; thus a-^b, implies that the quan-

tity a is to be divided by the quantity b. Also, it is frequently

denoted by placing one of the two quantities over the other,

in the form of a fraction ; thus, y =z a-^b ; if a = 12, 6 = 4 ;
b

a 12
then a~b=z-z=\2'^A=z-——3.

4

9. A simple fraction is a number vf\\\c\\ by continual addition

composes a unit, and the number of such fractions contained

in a unit, is denoted by the denominator, or the number belovtr

the line ; thus, i-f-i-f i=l. A number composed of such sim-

ple fractions, by continual addition, may properly be termed a

multiple fraction ; the number of simple fractions composing it,

is denoted by the upper figure or numerator. In this sense,

I", J, |, are multiple fractions ; and f rz:l,|-=|+ J=:l 4--g-=lJ.

10. When any quantities are enclosed in a parentheses, or

have a line drawn over them, they are considered as one

quantity with respect to other symbols ; thus a— {b+ c), or

a—b-{-c ; implies the excess of a above the sum of b and c.

Let a= 9, 6= 3, and c= 2 ; then a— (6+c)= 9— (3-h2)=9
—5=4, or a—&+c=9-3-f2=9-5=4. Also, (a+b)x
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(c-frf), or a-\-b X.c-\-d, denotes that the sum of a and b is to be

multiplied by the sum of c and d ; thus, let az=4, b= 2, c= 3,

and d=5; then {a-\-b)X {c-^d)^{i-\-2)x{'Si-5)=6x8=
48, or a+6xc+(/=4T2x 3+ 5=6x8= 48. And(a-^)-T-

(c+rf), or ——7 ; implies the excess of a above i, is to be di-
c-\-d

vided by the sum of c and d ; if a=l2, J=2, c=4, and J= 1 ;

then, (a-&)4-(c-f c/) =(12-2)+(4+ l)=zl0-^5=2,or^
12-2_10_2
4-fl 5

The line drawn over the quantities is sometimes called a

vinculum.

11. Factors are the numbers or quantities, from the multi-

plication of which, the proposed numbers or quantities are

produced ; thus, the factors of 35 are 7 and 5, because 7x5
= 35 ; also, a and b are the factors of ab ; 3, a^, b and c^, are

the factors of Sa^ic^ ; and «+ 6and a— b are the factors of the

product (a-\-b)x{a— b).

When a number or quantity is produced by the multiplica-

tion of two or more factors, it is called a composite number
or quantity ; thus, 35 is a composite number, being produced

by the product of 7 and 5 ; also, 5acx is a composite quantity,

the factors of which are 5, a, c, and x.

12. When the factors are all eqiial to each other, the pro-

duct is called a power of one of the factors, and the factor is

called the root of the product or the power. When there are

two equal factors, the product is called the second power or

square of either factor, and the factor is called the second root

or square root of the power. When there are three equal fac-

tors, the product is called the third poioer or cube of either

factor, and the factor is called the third root or cube root of the

power. And so on for any number of equal factors.

1 3. Instead of setting down in the manner of other products,

the equal factors which multiplied together constitute a power,

it is evidently more convenient to set down only one of the

equal factors, (or, in other words, the root of the power,) and
to designate their number by small figures or letters placed
near the root. These figures or letters are always placed at

the upper and right side of the root, and are called the indices

or exponents of the power.

For example :

aXaXaXa or aaaa is denoted thus, a*

;

yxyxyxyxy ox yyyyy, thus, y^

\
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where a^ and j/^ are the powers ; a and y the roots, and 4 and
5 the indices or exponents of the powers. Again : 4ax^X
4aa;2x4aa:2, is thus abridged, (4aa;2)3 ; where [iax'^Y is the

power, 4ax'^ the root, an*d 3 the index or exponent of the

power. The same method is adopted, whatever be the form
of the root: thus, {a^—x^'-f)x{a'^-x^—f)x(a'^—x^—y-)
is written briefly thus, (a^

—

x'^—y'^)^, where (a^— x^— y'^Y is

the power, a'^—x^—y"^ the root of the power, and 3 its index

or exponent.

N. B. Care must always be taken, to embrace the root in

parentheses, except where it is expressed by a single charac-

ter.

14. The coefficient of a quantity is the number or letter pre-

fixed to it ; being that which shows how often the quantity is

to be taken ; thus, in the quantities 36 and Sa:^, 3 and 5 are

the coefficients of h and x"^. Also, in the quantities 3ay and
ba^x, 3a and ba? are the coefficients of y and x.

15. When a quantity has no number prefixed to it, the

quantity has unity for its coefficient, or it is supposed to be

taken only once ; thus, x is the same as la; ; and when a

quantity has no sign before it, the sign + is always under-

stood ; thus, ^arb is the same as -{-'ifj^b, and 5a— 36 is the

same as 4-5a— 36.

16. Quantities which can be expressed in finite terms, or

the roots of which can be accurately expressed, are rational

quantities ; thus, 3a, fa, and the square root of 4a-, are ra-

tional quantities ; for if a=: 10 ; then, 3a=:3 X 10= 30
;
}a=

'^X\0= '^-^=4\ and the square root of Aa^= the square root

of 4 X 10^= the square root of 4x10x10= the square root

of 400=20.
17. An irrational quantity, or surd, is that of which the

value cannot be accurately expressed in numbers, as the

square root of 3, 5, 7, &c. ; the cube root of 7, 9, &lc.

18. The roots of quantities are expressed by means of the

radical sign -y/, with the proper index annexed, or by fraction-

al indices placed at the right-hand of the quantity ; thus, -/a,

i X
or a^, expresses the square root of a

; ^ [a-\-x), or (a+ a;)^,'

the cube root of {a-\-x)\ {^ {a-\-x), or (a+ a?)*, the fourth

root of (a-i-a?). When the roots of quantities are expressed
1 1. X

by fractional indices; thus, a^, (a-fa;)^, (a-f a;)* ; they are

generally read a in the power (i), or a with (i) for an index

;

(a^x) in the power (|), or {a-\-x) with (J) for an index; and

(a+a-) in the power (i), or \a-\-x) with {\) for an index.

19. Like quantities are such as consist of the same letters q>x



INTRODUCTION. 9

the same combination of letters, or that differ only in their

numeral coefficients ; tbns, ba and la ; Aax and Qax ; •\-2ac

and 9ac ; -—bca \ Sic, are called like quantities ; and vnlike

quantities are such as consist of different letters, or of differ-

ent combination of letters ; thus, 4a, 3b, lax, 5ay^, 6lc. are

unlike quantities.

20. Algebraic quantities have also different denominations,

according to the sign -f, or— .

Positive, or affirmative quantities, are those that are addi-

tive, or such as have the sign -f- prefixed to them ; as, -fa,

•{•6ab, or 9ax.

21. Negative quantities are those that are subtractive, or

such as have the sign — prefixed to them ; as, —x, —Sa^,
— 4ab, Slc. a negative quantity is of an opposite nature to a

positive one, with respect to addition and subtraction : the

condition of its determination being such, that it must be sub-

tracted when a positive quantity would be added, and the re-

verse.

22. Also quantities have different denominations, according

to the number of terms (connected by the signs -f or — ) of

which they consist ; thus, a, 3b, —4ad, &c., quantities con-

sisting of one term, are called simple quantities, or monomi-

als ; a-{-x, a quantity consisting of two terms, a binomial;

o— .-r is sometimes called a residual quantity. A trinomial is

a quantity consisting of three terms ; as, a+ 2af— 3y ; a quad-

rinomial o( four; as, a— b-{-3x— Ay; and a polynomial, or

multinomial, consists of an indefinite number of terms. Quan-

tities consisting of more than one terra may be called compound

quantities.

23. Quantities the signs of which are all positive or all

negative, are said to have like signs ; thus, 4-3a, H-4jp,

•{•bab, have like signs ; also, —4a, —3b, —4ac. When some
• are positive, and others negative, they have unlike signs

;

thus, the quantities +3a and —bab have unlike signs ; also,

the quantities -3ax, -{-3a'^x : and the quantities —b, -{-b.

24. If the quotients of two pairs of numbers are equal, the

%pumbers are proportional, and the first is to the second, as the

third to the fourth ; and any quantities, expressed by such

numbers, are also proportional; thus, if -7-= -j; then a is to

i as c to d. The abbreviation of the proportion ; a : b :: c :

d; and it is sometimes written a : b=zc : d; if a =8, 6=4,
8 12

c=12, and d =6 ; then, -= -^=2, and 8 : 4 :: 12 : 6.

4
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25. A term, is any part or member of a compound quanti-

ty, which is separated from the rest by the signs 4- and —

;

thus, a and b are the terms of a-f-& ; and 3a, — 2Z>, and 4-5«(i,

are the terms of the compound quantity 3a

—

2b -f-5a<i. In
like manner, the terms of a product, fraction, or proportion,

are the several parts or quantities of whicli they are compos-

ed ; thus, a and b are the terms of ah, or o{ - ; and a, b, c, d,
b

are the terms of the proportion a : b :: c : d.

26. A measure, or divisor, of any quantity, is that which is

contained in it some exact number of times ; thus, 4 is a

measure of 12, and 7 is a measure of 35a, because -~-=:5a.

27. A prime number, is that which has no exact divisor,

except itself, or unity; 2, 3, 5, 7, 11, &c. and the interven-

ing numbers ; 4, 6, 8, &c. are composite numbers. (Art. 11.)

28. Commensurable numbers, or quantities, are such as

have a common measure ; thus, 6 and 8, Saa;, and 4b, are

commensurable quantities ; the common divisors being 2 and
4 ; also, Aax"^ and 5ax are commensurable, the common divi-

sor being ax.

29. Also, two or more numbers are said to be prime to

each other, when they have no common measure or divisor,

except unity ; as 3 and 5, 7 and 9, 11 and 13, &c.
30. A multiple of any quantity, is that which is some ex-

act number of times that quantity ; thus, 12 is a multiple of

15o
4 ; and 15a is a multiple of 3a, because =:5.

31. The reciprocal o( a quantify is that quantity inverted or

unity divided by it. Thus, the reciprocal of a, or of - is -, the

reciprocal of 7- is - and the reciprocal of r is r.^ a a-\-b a—
32. The reciprocal of the powers and roots of quantities,

is frequently written with a negative index or exponent;

thus, the reciprocal of 0^=:—, may be written a ^; the re-#

ciprocal of {a-\-xY=:-—j—-, may be written, {a-\-x) ^; but
[a+ x]

this method of notation requires some farther explanation,

which will be given in a subsequent part of the work.

33. A function of one or more quantities, is an expression

into which those quantities enter in any manner whatever,
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either combined, or not, with known quantities ; thus, a-\'2x,
.1.

ax-\-3a!ic^, 5ax^—Sa^, See. are functions of a:; and 3ax^-{-xy^f

2 {x'^-\-5xj/)'^, <tc. are functions of x and y.

34. When quantities are connected by the sign of equali-

ty, the expression itself is called an equation; thus, a-h^=c
4-^, means that the quantities a and b, are equal to the quan-

tities c and d ; and this is called an equation ; it is divided into

two members by the sign of equality, a-f-6 is the first, and

c-\-d the second member of the equation.

35. In algebraical operations the word therefore, or conse-

quently, often occurs. To express this word, the sign .-. is

generally made use of: thus, a— h, therefore, a4-c=6-f-c; is

expressed .-. a-\-cz=:b-\-c.

Also 00 is the sign of infinity; signifying that the quantity

standing before it is of an unlimited value, or greater than any

quantity that can be assigned.

36. The signs -f- and —
,
give a kind o^ quality or affection

to the quantities to which they are annexed. As all those

terms which have the sign -f prefixed to them, are to be

added (Art. 4), and those quantities which have the sign —
prefixed to them, are to be subtracted, (Art. 5), from the terms

which precede them ; the former has a tendency to increase,

and the latter to diminish, the quantities with which they are

combined ; thus, the compound quantity, a—x, will therefore

be positive or negative, according to the effect which it pro-

duces upon some third quantity b ; if a be greater than x, then,

(since a is added, and b subtracted) b-\-a— a: is >^ ; but if a be

less than x ; then, b-\-a—x is <6.
In the first place, let a=z 10, a:=:6, and J— 8 ; then b+a—x

=8+ 10— 6, which is >8 ; since 10— 6= 4, a positive quan-

tity ; therefore, a

—

x is positive. Next, let a= l2, j:=rl4, and

b— 20; then 6+a—j;=20H- 12—14, which is <20 ; since

12— 14=1—2, a negative quantify ; therefore a—x is negative.

In like manner, it may be shown that the expression a—b-^c—d is positive or negative according as a-\-c is > or <^b-{-d;

and so of all compound quantities whatever.

37. 'i'he use of these several signs, symbols, and abbrevia-

tions, may be exemplified in the following manner

:

EXAMPLES.

Example. 1. In the algebraic expression a-j-J+c— c?, let

a=8, 6=7, c=:4, and c?=6 ; then

a+6-fc—(f=8+ 7+4—6= 19—6= 13.

Ex. 2. In the expression ab-^-ax—Z>y, let a=5, &=:4
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a=8, and ^=12; then, to find its value, we have ab^ax—
Z>y=5x 4+5x8—4x12

-20+40—48
=60—48=rrl2.

Ex. 3. What is the value of t-^,where a=4, x=5, v
a-\~o

=10, and J =6?
Here 3aa;+2y=3x4x5+2X 10= 60+20=80, and a+

6=4+ 6= 10;
3cfa:+2y__80_

''
a+ 6 ^io"" '

Ex. 4. What is the value of a^-\-2ab—c-{-d, when a=6,
5=5, c=4, and (f=l ? Ans. 93.

Ex. 5. What is the value of ab-\-ce—bdf when a=8, 6=7,
c=6, c?=5, and c= l ? Ans. 27.

(ix~\~ bii
Ex. 6. In the expression — -^ let a=5, 6=3, ir=7,

o-\-x

and y=5 ; what is its numerical value ? Ans. 5.

ax^-\-b^
Ex. 7. In the expression -. — , let a=3, 6=5, c=2,

x=^Q ; What is its numerical value ? Ans. 7.

Ex. 8. What is the value of a^x (<z+6)—2a6c, where a=6,
6= 5, and c=4 ^ Ans. 156.

Ex. 9. There is a certain algebraic expression consisting

of three terms connected together by the sign plus ; the first

term of it arises from multiplying three times the square of a

by the quantity 6 ; the second is the product of a, 6 and c ; and

the third is two thirds of the product of a and 6. Required

the expression in algebraic writing, and its numerical value,

where a=4, 6= 3, and c=2 ? Ans. 176.

DEFINITIONS.

38. A proposition, is some truth advanced, which is to be de-

monstrated, or proved ; or something proposed to be done or

performed ; and is either a problem or theorem.

39. A problem, is a proposition or question, stated, in order to

the investigation of some unknown truth ; and which requires

the truth of the discovery to be demonstrated.

40. A theorem, is a proposition, wherein something is advanc-

ed or asserted, the truth of which is proposed to be demon-

strated or proved.

41. A corollary, or consectary, is a truth derived from some
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proposition already demonstrated, without the aid of any other

proposition.

42. A lemma, signifies a proposition previously laid down,
in order to render more easy the demonstration of some theo-

rem, or the solution of some problem that is to follow.

43. A scholium, is a note, or remark, occasiimally made on
some preceding proposition, either to show how it might be

otherwise effected ; or to point out its application and use.

44. An axiom, is a self-evident truth, or proposition univer-

sally assented to, or which requires no formal proof

45. As axioms are the first principles upon which all ma-
thematical demonstrations are founded, I will point out those

that are necessary to be observed in the study of Algebra, as

there will be frequent occasion to advert to them.

AXIOMS.

46. When no difference can be shown or imagined between
two quantities, they are equal.

47. Quantities equal to the same quantity, are equal to each

other.

48. If to equal quantities equal quantities be added, the

wholes will be equal. Thus, if a= i, then a-f c= 6-)-c ; if

a—b=^c, then adding b, a— b-{-h=c-\-b, or a= c-\-b.

49. If from equal quantities equal quantities be subtracted,

the remainders will be equal.

If a=Z>, then, a—2=b— 2 ; if b-]-c= a-\-c, then b= a.

50. If equal quantities be multiplied by equal numbers or

quantities, the products will be equal.

Thus, ifa= &, 3az=3b; if a= -, 3a=6; if a=b, ca—cb\
o

and if a= 5, aXci=b xb, or a'^z=b^.

51

.

If equal quantities be divided by equal numbers or quan-

tities, the quotients will be equal.

rr.L -re i/M ^^ 10^ OIL r i ^^ ^*
Thus, if 5a=10o, -—=—z-, or a=2b ; if ca=:cbf —= ,

5 a c c
2 1 I

or a=b ; and if a'^=ba, then —=— , or a=5.
a a

Scholium. Articles (49), (50), (51), might have been de-

duced from Art. (48) ; but they are all easily admitted as

axioms.

52. If the same quantity be added to and subtracted from

another, the value of the latter will not be altered. Thus, if

fl=c, then a-\-b=c-\-bj and a-\-b— b=:c-{-b^b, or a=e.
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This might be inferred from Art. (48).

53. If a quantity be both muUiplied and divided by another,

its value will not be altered. Thus, ifa= &; then 3a=36,
,,..,. , ^ 3a 3b -

and dividing by 3, —=z—, qr a=o.



CHAPTER I.

ON THK

ADDITION, SUBTRACTION, MULTIPLICATION,

AND

DIVISION OF ALGEBRAIC QUANTITIES.

^ I. Addition of Algebraic Quantities.

54. The addition of algebraic quantities is performed by
connecting those that are unlike with their proper signs, and
collecting those that are like into one sum ; for the more
ready effecting of which, it may not be improper to premise
a (ew propositions, from which all the necessary rules may be
derived.

55. If two or more quantities are like, and have like signs, the

sum of their coefficents prefixed to the same letter, or letters^

with the same sign, will express the sum of these quantities.

Thus, 5a added to la is= 12a
;

And—5a added to— 3a is=:— 8a.

For, if the symbol a be made to represent any quantity or

thing, which is the object of calculation, 5a will represent

five times that thing, and 7a seven times the same thing, what-
ever may be the denomination or numeral value of a ; and
consequently, if the quantities 5a and la are to be incorpo-

rated, or added together, their sum will be twelve times the

thing denoted by a, or 12a.

Moreover, since a negative quantity is denoted by the sign

of subtraction: thus, '\{ a-\-bz=a—c, b=—c, and c=—b. A
debt is a negative kind of property, a loss a negative gain, and
a gain a negative loss.

Therefore it is plain that the quantities,— 5a and— 3a
will produce, in any mixed operation, a contrary effect to that

of the positive quantities with which they are connected
;

and consequently, after incorporating them in the same man-
ner as the latter, the sign — must be prefixed to the result

;

go that if A be greater than a, it is evident that 5 (a— a) -f-

3(a— a), or (5a—5a)-|-(3A— 3a)=8A— 8a ; and therefore the

sum of the quantities— 5a and— 3a, when taken in their iso-

lated state, will, by a necessary extension of the proposition,

be =— 8a.
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56. If two quantities are like, hut have unlike signs, the difference

of their cocMcif.nts, prefixed to the same letter, or letters, with

the sign of^that which hath the greater coefficient, will express

the sum of those quantities.

Thus -j-6a added to—4a is=+2a
;

And —6a added to -{-4a is~—2a.
Since, An, (36), the compound quantity a—b-\-c—d, <fcc.

is positive or negative, according as the sum of the positive

terms is greater or less than the sum of the negative ones, the

aggregate or sum of the quantities 4a—2a+ 2a— 2a, or 6a— 4a,

will be -f 2a: since the sum of the positive terms is greater

than the sum of the negative ones. And the sum of the quan-
tities a— 4a-}- 3a— 2a, or 4a— 6a, will be—2a ; since the sum
of the negative terms is greater than the sum of the positive

ones.

Corollary. Hence it appears, that if the sum of the posi-

tive terms be equal to the sum of the negative ones, their ag-

gregate or sum will be nothing. Thus 5a— 5a= ; and 5a
— 3a-f-4a— 6a=-9a--9a= 0.

57. The preceding proposition is demonstrated in the fol-

lowing manner by Bonnycastle in his Algebra. Vol. II.

8vo.

Where the quantities are supposed to be like, but to have
unlike signs, the reason of the operation will readily appear,

from considering, that the addition of algebraic quantities,

taken in a general sense, or without any regard to their par-

ticular values, means only the uniting of them together, by
means of the arithmetical operations denoted by the signs -}-

and — ; and as these are of contrary, or opposite natures,

the less quantity must be takei» from the greater, in order to

obtain the incorporated mass, and the sign of the greater pre-

fixed to the result. So that if 6a is to be added to 4 (a— a), or

to 4a— 4a, the result will evidently be 4a -f- 6a— 4a, or 4a-|-

2a ; and if 4a is to be added to 6 (a— a), or to 6a— 6a, the

result will be 6A-l-4a

—

6a, or 6a— 2a ; whence, by making this

proposition general, as in the last, the sum of the isolated quan-

tities 6a and —4a will be H-2a, and that of 4a and —6a will

be —2a.

58. If two or more quantities he unlike, their sum can only be

expressed by writing them after each other, with their proper

signs.

Thus, the sum of 2a and 2b, can only be expressed, with

the sign -|- between them, which denotes that the operation of

addition is to be performed when We assign values to a and h.
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For, i( a— 10, and i= 5 ; then the sum of 2a and 2b can be

neither 4a nor 4b, that is, neither 4 x 10=40, nor 4x5=20 ;

but 2x10+2x5=20+10= 30. In like manner, the sum of

3a, —56, 2c, and —8d, can no otherwise be incorporated, or

added together, than by means of the signs + and — ; thus,

3a—5b-^2c—Sd.
These propositions being well understood, the following

practical rules, for performing the addition of algebraic quan-

tities, which is generally divided into three cases, are readily

deduced from them.

CASE I.

When the quantities are like^ and have like signs.

RULE.

59. Add all the numeral coefficients together, to their sum
prefix the common sign when necessary, and subjoin the

common quantities, or letters.

EXAMPLE 1.

2x-\-3a—4b
3a;+4a— b

7a;+ a— 7b

x-\-9a—9b
9x-\- a— b

x-\-Sa— 36

23a;+26a-256

In this example, in adding up the first column, we say, 1+
9+1+ 7+ 3+ 2= 23, to which the common letter a; is sub-

joined. It is not necessary to prefix the sign + to the result,

since the sign of the leading term of any compound algebraic

expression, when it is positive, is seldom expressed ; for (14)
when a quantity has no sign before it, the sign + is always
understood. And it may be observed when it has no numeral
coefficient, unity or 1 is always understood.

Also, the sum of the second column is found thus, 8+1 + 9

+ 1+4+ 3=26, to which the sign + is prefixed, and the

common letter a annexed.

Again, the sum of the third column is found thus ; 3-f-l+
9+7+1+4=25, to which the sign — is prefixed, and the

3
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common letter h subjoined. So that the sum of all the quan-
tities is expressed by 23 times x plus 26 times a minus 25
times h.

Ex. 2. Ex. 3.

9a;y_4^,c+7a?2 5^3—3a:2+3y— 19
Axy— fec-{-3ae^ 40^— a:2-f-4y— 17
rry—75c+4a;2 a^—lx'^+ly-^\4.

8xy—4bc-\- a?2 7a^— aj^-j- y— l

7a:y— bc-\-9x^ Sa^—9a;2+9y—20
iry— 36c+ a'^ 7a3_lla?2+ y— 8

30xy—20bc+25x^ 32a3-32a;2+25y—79

Ex. 4. Add together 2a;-|-3a, 4x-\-a, 5x-\-Sa, 7x-{-2a, and
x-\-a. Ans. 19a?+15a.

Ex. 5. Add together 7x^—5bc, 3x^—bc, x^—4bc, bx'^-^-bc,

and 4x2—46c. Ans- 20a;2— 15Z>c.

Ex 6. Required the sum of 3a;3-f-4a;2— a:, 2a?3+ a;2— 3a?,

7a;3+2a;2— 2a:, and 4a;-^H-2a:2— 3a?. Ans. 16a:H 9a?2— 9a?.

Ex. 7. What is the sum of la'^-'dd^b-^2ab'^— 2¥, ab^—
0^—^+40^, -^5P-^5ab^ — 4a'^b+6a3, and —a^-{-4ab^'-
4634.^3? Ans. 18a3_9a2J+12a^>2_l3R

Ex. 8. Add together 2a;2y— a?4-2, ac2y— 4a;H-3, 4x2y— 3a?

4-1, and 5a?2y— 7a?4-7. Ans. 12a!2y— 15a?+13.

Ex. 9. Required the sum of 30— 13a?^— 3ajy, 23— lOa?^—
i

1 1
2 or.^ 1 0<v,24a?y, — 14a?^—7a?y+14, —5a;y+ 10— 16a? , and l—2a;^—a!:y.

Ans. 78— 55a?^—20a?y.

Ex. 10. Add 3(a? + y)2 - 4{a—bY, (a? + yf - {a-b)\
^<7f^a—by+ 5(x-^i/Y, and 2{x-\-t/f— {a—bY together.

Ans. ll(a?+y)2-13(a-5)3.

CASE II.

When the quantities are like, but have unlike signs.

RULE.

60. Add all the positive coefficients into one sum, and those

that are negative into another ; subtract the lesser of these

sums from the greater ; to this difference, annex the common
letter or letters, prefixing the sign of the greater, and the re-

sult will be the sum required.
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EXAMPLE 1.

7a;3— 3a:2+3a;
— 4a;'' -I- a;2— 4a?

— x^—2x^+7X
9x^+ 6x^—9x
3a;3-5a;2-f6a;

—5x^-\-3x^-6x

9ar3 * —3x

In adding up the first column, we say 3+ 9-f-7 =+ 19,

and — (5-hl4-4)=— 10; then, +19— 10=+ 9=: the ag-

gregate sum of the coefficients, to which the common quantity

x^ is annexed.

In the second column, the sum of the positive coefficients

is 3+ 6-f- 1 = 10, and the sum of the negative ones is —(5+2
+ 3) = — 10; then, 10—10z=0 ; consequently, (by Cor. Art,

56), the aggregate sum of the second column is nothing. And
in the third column, the sum of the positive coefficients is

6+7+ 3= 16, and the sum of the negative one is—(6+ 9+
4)= -— 19 ; then +16—19=— 3 ; to which the common let-

ter is annexed.

Ex. 2 Ex. 3.

5x^—6a-\-4x—

3

4ab-\-3xy—2ax-}- c

-^2a;2+ a— 9a;+7 — ab— a?y+ ax—5c

7x2+7a+7a:—

1

5ab—2xi/—7ax-\-7c
— x^— 3a—2a;+3 — 4ab-\- xy-\- ax-\- c

+ 3a:2+ a— 4aj-i-4 7ab— 3xy-\-4ax— c

— 7x'^—4a+3ar—

5

— ab— xy— aa;-{-4c

5a;2—4a— a;+5 10a5— 3j:y—4ax+7c

Ex. 4.

3(a+6)i- 5{x^+y^f-\-3{a^+c^Yi-9xy

— (a+^'F+ (a:2+y2)2_5(a3+c2)3_4a.y

+8(a+A)^- 6(x2+y2)2^8(a3+ c2)3-f. xy

^2(a+bf- (x2+y2)2_7(a3_|_c2)3«3a,y

+ 5(a+6)^- 7(ar2+y2)2— (a3+c2)3— ccy

13(a+5P-18(a;2+y2)2_2(a3+ c2)3+2a;y
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Ex. 5. Required the sum of 4a% — 5^2, a^, — Ga^, 9a^, and
— a\ Ans. 2a2.

Ex. 6. Required the sum of 4a;2— 3a:+4, a:—2a:2— 5, 1+
3a:2_5a;, 2a:— 4+ 7x2, 13— a;2_4a:. Ans. lla:2_9a:+ 9.

Ex. 7. Required the sum o( 4x^—2x-\-y, 4x— i/-—x^,9i/-\-

7x^—x, 21a:—2y-f 9a;^. Ans. 19a;34-22a:+7y.

Ex. 8. Required the sum of 5a^'-2ab+b^, ab—^b'^—a^,
62— 3a64-4a3, 4ff6+2a3— 4Z>2, Ans. lOa^—W^.

Ex. 9. What is the sum of 2a— 3x2, 5a;2_7a^_3rt-|_a;2^

and a— 3^2? Ans. — 7a.

Ex. 10. What is the sum of 4— 3a;, x— 5, 2a;— 4, —4a;+
13,and— 5a;+l ? Ans. 9— 9a;.

CASE III.

When the quantities are unlikej or when like and unlike

are mixed together.

61. When the quantities are unHke, write them down, one

after another, with their signs and coefficients prefixed ; but

when some are like, and others unlike, collect all the like

quantities together, by taking their sums or differences, as in

the foregoing cases, and set down those that are unlike as

before.

Example 1. Add together the quantities 7a^, —bb, +4c?,

— 9a, and 8c2.

Here, the quantities are all unlike ;
.*. (Art. 58), their sum

must be written thus
;

la^— bb+ Ad—9a-[ Sc^.

When several quantities are to be added together, in what-

ever order they are placed, their values remain the same.

Thus, 7a2-56-l-4(i-9a + 8c2, 8c2-56-h 4(f-9a + 7a2, or

4<f__55_9flr-j-8c2+7a2, are equivalent expressions: though

it is usual, in such cases, to take them so that the leading term

shall be positive.

Ex.2.
3a;— y+ d
4a— a;—3y

5a;y+7aa;+ y"^

3ax—2xy-\-4x^

5y+ 2d-\-5x

7a;+y+3(i+3a;y+10aa;+4a-}-3/2_f_4a.2,
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Ex. 3.

4a;3—3a:y+3y —3 — 3a;«

5y2 4-5a;3_3^2^3a,y_|_5y

30 4-6a;2+2x -3y2_2a;3
2a;2—8 —bxy—ly —2y2

7a:3_ 5a:y+y+ 1 9+ 2a:2+ 2a:.

In Ex. 2. Collecting together like quantities, and beginning
with 3a?, we have 3a:-|-5ar—a;=:8a!— a?=(8— 1) a:=7a: ; by—
y~3y=r(5-l~3)y=(5-4)y=y; d-^2d={l -\-2)d=U;
5xy—2xy={5~2)xy= 3xy; and 3ax-f 7aa;= (34-7)aa?= 10aa;;

besides which there are three quantities +4a, +y2, 4-4a;2;

which are unlike, and do not coalesce with any of the others ;

the sum required therefore is,

7x-{-y-\-3d-\-3xy-{- 10aa;-f4a4-yH4a:2,
In Ex. 3. Beginning with 4x^, we have,

4a;3-f5a?3—2a;3=(4+5— 2)a.3= (9-2)a;3=:7a;3;
~3a:y+3a:y— 5a;y= (3— 5— 3)a:y=(3—8)j;y=— 5a:y;

+3y+5y~7y= (3+5)y-7y= (8-7)y=:-fy;
~3H-30-8=30-(8+ 3)=30-ll=z'4.19

;

2a;2-.3a;'^-3a:24-6a:2= 8a;2~.(3-|-3)a;2= (8-6)a:2=:-f2a;2;

5y2_3y2_2y2_5^2_(3_j_2)y2^(5_5)y2:^0xy2=0; +2a;
=2a:.

"When quantities with literal coefficients are to be added
together

; such as mx, ny, px"^, qy^, &c. (where m, n,p, q, &c.,
may be considered as the coefficients of x, y, a:2, y2, &c.) it may
be done by placing the coefficients of like quantities one after

another (with their proper signs), under a vinculum, or in a
parentheses, and then annexing the common quantity to the
sum or difference.

Ex. 4.

aX'^by-{- b

bx-i'dy-{-2b

(a+b)x+(b-^d)y-{-3b

Ex. 5.

ax^-\-bx^-^cx

ex^—dx^—fx

(a+e)x^-h(b-d)x^+{c-f)x

In Ex. 4. The sum of aa; and bx, or ax-{-bXf is expressed by
{a+b)x

; the sum of -i-by and -f-<^y, or -}-^y+%, is = +
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In Ex. 5. The sum of aa;^ and ea;^, or ax'^-^ex^is ={a+e)x^;
the sum of 4-^^^ and —dx^, OT-\-bx^ —dx^, is z=z[b— d)x^ ; and
the sum of -\-ex and —fx, or -\-ex—fx, is =z-\-(c—f)x. Any
multinomial may be expressed in like manner, thus ; the multi-

nomial mx^-jrnx^—px^—qx^ may be expressed by {m-\-n—p—q)
x^ ; and the mixed multinomial ^jxy-j-^y^

—

rxi/-{-my'^—nxy, by
[p—r—n)xy-\-[q-\-m)y'^ \ (fee.

Ex. 6. Add 2ic2-fy24_9^ Ixy-^Zah—x"^, ^xy—y—9, and
x'^y— xy'\-3x^ together.

Ans. 4x'^^y^-\-l0xy— 3ab—y-\-x'^y.

Ex. 7. Add together 72^2, 246c, 70xy, — ISa^, and— 126c.

Ans. 54a--^12bc-^70xy.

Ex. 8. What is the sum of 43a:y, 7x'^, —I2ay, —4ab, —3x^^
md

—

4ayl Ans. 43xy-^4x'^— \6ay—4ab.
Ex. 9. What is the sum of 7xy, —166c, — 12a;y ; 186c, and

6xy ? Ans. 26c.

Ex. 10. Add together 5ax,— 6(^bc, 7ax,—4xy, —6ax, and
^126c. Ans. 6aa;— 726c— 4apy.

Ex. 11. Add 8a'^x'^— 3ax, 7ax— 5a:y, 9a:y— 5aa;, and xy-\-

Id^x^ together. Ans. \Qa^x^—ax-\-bxy.

Ex. 12. Add 2a;2— 3y2+6, 9xy—3ax—x^, \yi^y—^^ and
tip-y— 3xy-^3x'^ together. Ans. 4x'^-\-y'^-\-%xy— 3ax—y-\-xhj.

I 1 i
Ex. 13. Add2a;2— 4x^4-^2, 5a:2y—a64-a:3, 4x^ — x^, and

1 i
2a:3— 34-2a;2 together.

Ans. 4:ifl —:i^ \-'bx'^-\-fyx''"y—ab—x'^— 3.

Ex. 14. Requiredthesumof4a;2+7(a+6)2,4y2—5(a+*)^
and a?—4x^—3y'^'-{a^bf. Ans. a^^y'^^-[a-\-bf.

Ex. 15. Required the sum of a!x'^—bx^-\-cx^, bcx^—acx^—
c^x, and ax'^-{-c— 6a?.

Ans. aa:*— (64-«c)a73+(c+6c4-«)a;2— (c2-|-6)a:-fc.

Ex. 16. Required the sum of 5a+36— 4c, 2a— 56-f-6c-|-

2(f, a—46—2c+3c, and 7a+46—3c— 6e.

Ans. 15a—26—3c+2(/— 3e.

§ II. Subtraction of Algebraic Quantities.

62. Subtraction in Algebra, is finding the difference be-

tween two algebraic quantities, and connecting those quanti-

fies together with their proper signs ; the practical rule for

performing the operation is deduced from the following propo-

sition.

63. To subtract one quantity from another, is the same thing as

to add it with a contrary sign. Or, that to subtract a posi-



SUBTRACTION. 19

tive quantity, is the same as to add a negative ; and to sub'

tract a negative, is the same as to add a positive.

Thus, if 3a is to be subtracted from 8a, the result will be

8a— 3a, which is 5a ; and if ^ — c is to be subtracted from a,

the result will be a—(h— c), which is equal to a— b-\-c : For

since, in this case, it is the difference between b and c that is

to be taken from a, it is plain, from the quantity b—c, which

is to be subtracted, being less than b by c, that if b be only

taken away, too much will have been deducted by the quan-

tity c ; and therefore c must be added to the result to make it

correct.

This will appear more evident from the following conside-

ration ; Thus, if it were required to substract 6 from 9, the dif-

ference is properly 9— 6, which is 3 ; and if 6—2 were sub-

tracted from 9, it is plain that the remainder would be greater

by 2, than if 6 only were subtracted ; that is, 9—(6—2)=:9
— 6+ 2=:3+ 2=:5, or 9—6+2=9—4= 5.

Also, if in the above demonstration, 6— c were supposed ne-

gative, or b—c=—d ; then, because c is greater than b by d,

reciprocally c—b=d, so that to subtract —d from a, it is ne-

cessary to write a-{-d.

64. The preceding proposition demonstrated after the man-

ner of Gamier.
Thus, i( b—c is to be subtracted from the quantity a ; we

will determine the remainder in quantity and sign, according

to the condition which every remainder must fulfil ; that is, if

one quantity be subtracted from another, the remainder added

to the quantity that is subtracted, the sum will be the other

quantity. Therefore, the result will be a—b-\-c, because a—b
-\-c-\-b—c=a.

This method of reasoning applies with equal facility to com-

pound quantities : in order to give an example
;

suppose that from 6a— 3b-\-4cy

we are to subtract, 5a— 5b-\-6c
;

designating the remainder by R, we have the equality,

R+ 5a_56+6c= 6a-364-4c:
which will not be altered (Art. 49.) by subtracting 5a, adding

5b, and subtracting 6c, from each member of the equality

;

therefore the result will be,

R=6a-364"4c—5a-h56-6c,
or, by making the proper reductions,

R=a+25—2c.

65. Another demonstration of the same proposition in La-
place^s manner.
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Thus we can write,

a=a-\-b— b .... (1),

a—c=a—c-[-b— b .... (2);
so that if from a we are to subtract -f5 or —b, or, which is

the same, if in a we suppress +6, or — Z>, the remainder, from
transformation (1), must be a— b in the first case, and a-\-b in

the second. Also, if from a— c we take away +5 or — b, the

remainder, from (2), will be a—c—b, or a—c-\-b.

66. Hence, we have the following general rule for the sub-

traction of algebraic quantities.

RULE.

Change the signs of all the quantities to be subtracted into

the contrary signs, or conceive them to be so changed, and

then add, or connect them together, as in the several cases of

addition.

Example 1. From 18ab subtract I4ab.

Here, changing the sign of 14a6, it becomes — 14aJ, which
being connected to I8ab with its proper sign, we have I8ab
— Uab= {\8— l4)ab— 4ab. Ans.

Ex. 2. From lox^ subtract — lOa:^.

Changing the sign of — lOa;^, it becomes +10a:^, which
being connected to ISa;^ with its proper sign, we have l5x^-{-

10a:2zzi25a:2. Ans.

fix. 3. From 24a5+7cc/ subtract 18ai+7c(i.

Changing the signs of l8ab-{-7cd, we have — 18a6— 7crf,

therefore, 24ab-{-7cd-^l8ab^7cd=6ab. Ans.

Or, 24ab+7cd
'^I8ab—7cd

Gab Ans.

Ex. 4. Subtract7a--564-3aa;froml2aH-10J-l-13aa;— 3a&,

l2a+l0b-\-13ax— 3ab\
Changing the signs of

J
>

all the terms of 7a— 56 > —7a-^5b—Sax j

•f 3aa; ; it becomes
.*. by addition, 5a-{-l5b-\-l0ax— Sab.

Ex. 5. From Sab—7ax-\-7ab-\-Sax, take 4ab— Sax—4ary,

Sab—7ax ^

7ab-\-Sax

Changing the signs of all > _^„i+3^^+i
the terms oi 4aoSax—4xy, >

^

.*. by addition, 6ab^ax'\-4xy. Ans.
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Ex.6.
From 36a— 1264- 7c

Take 14a- 4+7c-8

Rem. 22a— 86+ 8 Ans.

In the above example, one row is set under the other, that

is, the quantities to be subtracted in the lower line ; then,

beginning with 14a, and conceiving its sign to be changed, it

becomes — 14a, which being added to 36a, we have 36a—
14a==22a ; also, — 4b, with its sign changed, added to — 126,

will give 46— 126=(4— 12)6=:— 86 ; in like manner, 7c— 7c

=0, and — 8, with its sign changed, =+ 8. The following

examples are performed in the same manner as the last.

Ex. 7. Ex. 8.

From 3x—4a-{- h a-f- 6

Take 2a;-|-3a-76 a— h

Rem. a:-7a+ 86 *-\-2h

Ex. 9. Ex. 10.

From 3a6— 4ca;-f y 7x^-\-3x'^—x

Take 4ax+2x'^ —^y"^ 6a?3-2x2-l-8x

Rem. 3a6—4aa;+y

—

4cx—2x^-\''iy'^ x'^-\-bx'^— 9a:

Ex.11. Ex.12.
From 5a:2_ 4a;y -f. 5 7x'^— 8

Take 4x'^—4xy+9 9a:2+5a6— Sa:^

Rem. x^ * —4 Sx^—2a:2— 5a6 -8

Ex. 13.

From ax^—hx'^-\- x
Take px^— cx'^-\-ex

(a—p)x'^— (b—c)x'^-\-(\—e)x

Ex. 14.

From hx^-^-qx^— rx-\-py'^

Take ax"^— cx^-\-mx— sy"^

(h—a)x'^-\-(q-\-c)x'^—(r-\-m)x-{-(p-\-s)y'^

67. As quantities in a parentheses, or under a vinculum, are



22 MULTIPLICATION.

considered as one quantity with respect to other symbols
(Art. 10,) the sign prefixed to quantities in a parentheses af-

fects them all ; when this sign is negative, the signs of all

those quantities must be changed in putting them into the pa-

rentheses.

Thus, in (Ex. 13), when — cx^ is subtracted from —bx^, the

result is —bx'^-\-cx'^, or — [b— c)x^ : because the sign — pre-

fixed to {b— c) changes the signs of b and c ; or it may be writ-

ten -{-(c~b)x^.

Again, in (Ex. 14), when -\-7nx is subtracted from —rx,

the result is — rx—mx ; and, as this means that the sum of rx

and mx is to be subtracted, that negative sum is to be express-

ed by — {rx-\-mx)=z—{r-\-m)x. For the same reason, the

multinomial quantity

—

my'^-\-n^y'^ — aby"^ —ry^4"6y^, when put

into a parentheses, with a negative sign prefixed, becomes
— (m

—

n'^-\-ab-\-r— 6)y^.

Ex. 15. From a— b, subtract a'\-b. Ans. —2b.

Ex. 16. From T^y— 5y4-3a;, subtract 3a;y+3y+3a;.
Ans. 4xy— Sy

Ex. 17. What is the difference between 7aa?2-}-5a:y— 12ay
-\-5bc, and 4ax'^-^5xy— 8ay— 4c(i.

Ans. Sax"^— 4ay-{-5bc-\-Acd.

Ex. 18. From 8x'^— 3ax-\-5, take 5x"--\-2ax-\-5.

Ans. 3x^— 5ax.

Ex. 19. From a-\-b-\-c, take —a— b—c.
Ans. 2a+25-f2c.

Ex. 20. From the sum of Sx^—iax-^-Sy'^, 4y^-{-5ax—x^,

y^-^ax-\-5x^, and 3ax— 2x'^— y^
; take the sum of by^— x'^

-{-x^, ax—x^-^Ax"^, 3x^— aac— 3y^, and ly"^— ax-\r7.

Ans. 4:X^-\-4ax—2y'^~ 5x^—7.
Ex. 21. From the sum of x^y'^—x^y — 3xy^, 9xy'^— l5—

3a;2y2, ^nd 704-2a;2y2— 3a;2y, subtract the sum of 5x^y^—20
-f-ity^, 3x'^y— x'^y'^-{-ax, and 3xy'^— 4x^y'^— 9-\-a'^x'^.

Ans. 2xy'^— 7x'^y— ax—a^x^-\-8i.

Ex. 22. From a^x^y"^ — m^x^ -{- 3cx—4x^— 9 : take a'^x^y^

—n^x^-i-c'^x+bx^-^3.

Ans. (a^—a^)xY— {m'^-n^)x^+(3c—c^)x-{4+b.)
a;2-12.

§ III. Multiplication of Algebraic Quantities.

In the multiplication of algebraic quantities, the following

propositions are necessary to be observed.

68. When several quantities are multiplied continually together^

the product will be the same, in whatever order they are mul-

tiplied.
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Thus, aXh=bXa=db.
For it is evident, from the nature of multiplication, that the

product contains either of the factors as many times as the

other contains an unit. Therefore, the product ah contains

a as many times as b contains an unit, that is, b times.

And the same quantity ab, contains b as many times as a

contains an unit, that is, a times. Consequently, axb— ba=:

ab ; so that, for instance, if the numeral value of a be 12, and

of b, 8, the product ab will be 12x8, or 8 X 12, which, in

either case, is 96.

In like manner it will appear that abc=zcab= bca, &c.

69. If any number of quantities be multiplied continually to-

gether, and any other number of quantities be also multiplied

continually together^ and then those two products he multiplied

together ; the whole product thence arising will he equal to

that arising from the continual multiplication of all the single

quantities.

Thus, ab x cd=a xhXcX d=abcd.
For ahz=axb, and cd—cxd ; if x be iput=cd, then ab x

cd=abXx=axhXx ; but x is =cd=cXdj .'. ahxxz=abxc
Xd=aXbXcd=ahcd.

70. If two quantities he multiplied together, the product will be

expressed by the product of their numeral coefficients with the

several letters subjoined.

T\ms,7ax5b=:35ah.
For 7a is=7xa, and 5h=5xb, .\7ax5b=7 XaX5xh

= 7 x5xaxb=35x ah— 3oab.

71. The powers of the same quantity are multiplied together by
adding the indices.

Thus, to multiply a^ by a^, it is necessary to write the let-

ter a only once, and to give it for an exponent the sum 2+ 3,

the exponents of the factors; that is, a'^Xa^= a^^^= a^
;

because a'^=zaXa, and a^=a X « X a ; therefore d^Xa^=aXa
XaXaXa— a^. In general, the product of a*" by o" , tw and w
being always entire positive numbers, is a^ +"

. In fact, a^ is

the abbreviation of aXaXa, &c., continued to m factors, and
a" is a X a X «, &c., continued to n factors ; therefore «"» X a"

=aXaXaXaXa, &c., continued to m-{-n factors; which
(Art. 12) isa'»+'» .

Reciprocally a^ +" can be replaced by a^ Xa^ . The quan-
tity a"" is sometimes called an exponential.
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72. If two quantities having like signs are multiplied together,

the sign of the product will he -\- ; if their signs are unlike,

the sign of the product will he—

.

1. A positive quantity being multiplied by a positive one,

the product is positive ; thus +«X +i=: + a^, because -f-a

is to be added to itself as often as there are units in h, and
consequently the product will be -\-ab.

2. A negative quantity being multiplied by a positive one,

the product is negative ; thus, —aX +b=—ah ; because—

a

is to be added to itself as often as there are units in b, and
therefore the product is —ab. Or, since adding a negative

quantity is equivalent to subtracting a positive one, the more
of such quantities that are added, the greater will the whole
diminution be, and the sum of the whole, or the product, must
be negative.

3. A positive quantity being multiplied by a negative one,

the product is negative; thus, -\-aX —bri=i~ab \ because

-\-a is to be subtracted as often as there are units in b, and
consequently the product is — ab.

4. A negative quantity being multiplied by a negative one,

the product is positive ; thus, —aX—b=^-^ab. For, aX—h
=:—ab, that is, when the positive quantity a is multiplied by
the negative quantity b, the product indicates that a must be

subtracted as often as there are units in b ; but when a is ne-

gative, its subtraction is equivalent to the addition of an equal

positive quantity ; therefore, in this case, an equal positive

quantity must be added as often as there are units in b.

73. If all the terms of'a compound quantity be multiplied sepa-

rately by a simple one, the sum of all the products taken to-

gether, will he equal to the product of the whole compound quan-

tity by the simple one.

For, in the first place, \i a-\-b be multiplied by c, the pro-

duct will be ca-]rbc : Since a 4-^ is to be repeated as many
times as there are units in b ; the product of a by c, that is,

ca, is too little by the product of b by c, that is, cb ; it is ne-

cessary then to augment ca by cb, which will give for the pro-

duct sought ca-\-cb, where the term +c& arises from multiply-

ing + J by c. It would be found by reasoning in like manner,

that the product of c by a-]-b must be ca-{-cb, where -\-cb is

cX 4-^. If, in the second place, a— b be multiplied (where a

is greater than b) by c, the product will be ca—cb. Since

a—b is to be repeated as many times as there are units in c

;

the product of a by c will give too great a result by the pro-
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duct cb ; it is necessary then to diminish the product ca by cb,

so that the true product is ca—cb.
Let, for example, 7—2 be multiplied by 4 ; the product will

be28— 8, or 20;
For, 7 X 4, or 28, is too great by 2 X 4, or by 8 ; therefore,

the true product will be the first diminished by the second, or

28— 8, that is 20. In fact, 7— 2, or 5x4=20. The term
— cb of the product y is the product of — b by c.

It would be found, by reasoning in like manner, that the

product of c by a— 6, must be ac— bc, the same as in the pre-

ceding, and in which the term —be is the product of chy —b.
If, in the third place, a-\-b-\-d be multiplied by c, the pro-

duct will be ca-{-cb-\-cd.

For, let a-\-b be designated by e ; then, e-\-d multiplied by
c is equal to ce-fc<^; but ce is equal to cX{a-\-b)z=zca-\-cby

because e is equal to a-\-b ; therefore (a-\-b-{-d)xcz=:ca-\-eb

-^rcd. Also, if [a-k-b)^d be multiplied by c, the product will

he ca-\-cb—cd\ for let (a-f 6)=e, then (e—J)Xc=cc

—

cdz=.

c{a-{-b)— cd=.ca-\-cb— cd.

Finally, it may be demonstrated in like manner, that if any
polynomial, a-\-b— d-\-e—f, (fee, be multiplied by c, the pro-

duct will be ca-{-cb—cd-^-ce—cf &lc. Also, if a quantity e

be multiplied by any polynomial a-\-b— d-\-e^ Sic, the pro-

duct will be ac-^-bc—dc-^-ec, &c.

75. If a compound quantity be multiplied by a compound quan^

tity^ the product will be equal to every term ofone factor, mul-

tiplied by every term of the other factor, and the products

added together.

Let, in the first place, a-\-b be multiplied by c-\-d: a-^b
taken c times is ca-{-cb, as we have already proved ; but this

product is too little by the binomial a-\-b repeated d times, it

is necessary then to add to it da-\-db, and we will have ca-{-eb

-}-da-{-db %r the product sought; in which the term -{-db

arises from the multiplication of + 6 by -\-d.

Suppose, in the second place, that a-^b is multiplied by
c— d, the product will be ca^cb—da—db.

Because the product of a-\-b by c, that is, ca-\-cb, is too

great by that of a-\-b by d, which is da-\-db ; we will have
therefore the true product equal to ca-{-cb— da— db, where the

term —db is the product of +6 by —d ; in multiplying c—d
by a-\-b, we will find that —bd is the product of —d by -f-5.

Let, in the third place, a—b be multiplied by c—d ; the

product will be ca—cb^da-\-db.
For, the product of a— i by c, that is, ca—cb, is too little by

4
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that of a— 5 by d, which is da—dh\ because the multiplier c

is too great hy d \ it is necessary then to subtract the second

product from the first, and the difference will be (66) ca—cb
— da-{-db.

Here the term +W results from —hhy — d.

Finally, ii a^b-\-e be multiplied by c-{-d the product will

be ca-\-cb-\'Ce-\-ad-\-bd-\-de.

For, in designating a-{-b by h ; then, {h-\-e)x(c-\-d)-=.hc-\-

ec-\- dh-\-ed, which is equal to hx(c'\-d)-^cc'\-ed=z{a-j-b)x

(c-]-d)-i-ec-\~ed=ca-{-cb-\-ce-\-ad-^bd-\-de.

The same mode of reasoning may be extended to compound
quantities composed of any number of terms whatever.

76. Cor. Hence, in general, if any two terms which are

multiplied have different signs, their product must be preceded

by the sign — , and if they have the same sign, the product

is affected with the sign -f- ; agreeably to what has been de-

monstrated (Art. 72.) where simple quantities, or isolated fac-

tors, such as, +a, +&, —a, —b, were only considered.

From the division of algebraic quantities into simple and

compound, there arises three cases of Multiplication : the

practical rules for performing the operation are easily deduced

from the preceding propositions.

CASE I.

When the factors are both simple quantities,

RULE.

77. Multiply the coefficients together, to the product sub-

join the letters belonging to both the factors, and the result,

with the proper sign prefixed, will be the product required.

Ex. 1. Ex. 2. Ex. 3. Ex. 4.

Multiply 3ab 5x —6y —4a^
By 4c — 3a -fSx —6x^

Product I2abc — ISao; — 18a:y

Ex.7.

xY
-7xy

-ixY

-f24a2a;2

Mul.

By

Ex.5.
2ax

Sax

Ex. 6.

-3a2c
4-5ac2

Ex. 8.

~5a2J2^
—4aW-x

Pro. --16a2a;2 — 15a3c3 +20a'^¥cx
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Ex. 9. Required the product of 4abc and Sa^c.

Ans. i2a^bc\

Ex. 10. Required the product of —laxy and —2acx.
Ans. •{LAahx^y.

Ex. II. Required the product of 7a;y and —3yV.
Ans. --21ic*y*.

Ex. 12. Required the product of a^ and —a*. Ans. —a®.
Ex. 13. Required the product of ao;^ and hx'^z.

Ans. abx^z^.

Ex. 14. Required the product of -^xyz and aic.

Ans. — ahcxyz.

Ex. 15. Required the product of —^h^cd:^ and —2aHc^d.
Ans. Sa^i^c'cfs.

Ex. 16. Required the product of — Sa^ and 4a.

Ans. —12a*.
Ex. 1 7. Required the product of a^b^c by a^JcZc?.

Ans. a^¥cH.

CASE II.

WAcn one factor is Compound and the other Simple.

RULE.

78. Multiply each term of the compound factor by the sim-
ple factor, as in the last case ; then these products placed
one after another with their proper signs, will be the product
required.

Ex. 1.

Multiply 4xy— 3ax-\-2y

by 4aj;

Product 16aa;2y— 12a2a:2 ^ Saxy

Ex.2.
MuL 4a:3—3x2-8
by —2ax

Pro. — 8aa;*+6aa;3+16aa;

Ex. 3.

Mul. 8a3-762+3a_]
by 2^

Pro. l6a^'-'l4aH+6ab—2b
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Ex. 4.

Mul. 3x^yz^—xy^z—2a^i/
by —x^i/z

Pro. — 3a;^3/%3+a;3y3^2^2a2d:2y2;?

- Ex. 5. Multiply Sa^x'^—3b-\-c by 2ac.

Ans. \6ahx^— eabc-\-2ac^.

Ex. 6. Multiply —3x^-4a'^+5 by —4ax.
Ans. I2ax^+iea^x—20aa;.

Ex. 7. Multiply a^-\-ax-^x^ by ax.

Ans. a^x-{-a-x^-jrax^'

Ex. 8. Multiply a:^— xy+jy^ by —x^y.

Ans. —^''y+acy+apy.
Ex. 9. Multiply 3a^-2ab+3b^hy a^b"^.

Ans. 3a^b'^—2a^¥+3a%K
Ex. 10. Multiply a2ip2_ajj_|_9 by 5. Ans. 5a2ar2_5Q^_|_45

Ex. 11. Multiply 2cd—3a6— 3 by 4ac.

Ans. 8ac2f/— 12a2ic— 12cc.

Ex. 12. Multiply lxz-\-3ab^by'^ by — j-y.

Ans.— Ix'^yz— 3abxy-\-bxy'^.

Ex. 13. Multiply a+&— c—<i by aicc?.

Ans. a^bcd-\-ab'^cd~abc'^d—abc(P.

CASE in.

"When both factors are compound quantities.

RULE. ^

79. Multiply every term of the multiplicand by each term of

the multiplier successively, as in the last case ; then, add or

connect all the partial products together, and the sum will be

the product required.

Note. It is necessary to observe that like quantities are ge-

nerally placed under each other^ in order to facilitate their addi-

tion. And if several compound quantities are to be multiplied

continually together ; thus,

(a+6) X {a-b) X («2-)_a6+52) >< (^a^_ab+b^).

Multiply the first factor by the second, and then that product

by thcthird, and so on to the last factor ; but it is sometimes

more concise not to observe the order in which the compound
quantities, or factors, are placed, as can be readily seen from

the following examples.
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EXAMPLK 1.

Multiplicand 2a*-3Ja3-5i2a3

Multiplier a^-2ha^-{-3b^a

Ist partial pro. 2a''-3ba^— 5b^a^

second -4ba^+ 6/>V+ 1 Ob^a*

third -f 6^^%^- 9Z>3a*- 156^

Total prod. =2a'-7ba^+7b^a'-\^ b^a*-l5b*a^

Ex.2.
Multiply a+J
by a—b

1st partial prod. a^-\-ab

second —ab—b^

Total product a^ * —62

Ex.3.
Multiply 024.06+52

by a2-62

1st partial product a^+a^b+a^b^

second -a262_a63_64

Total prod. a^+a^i * —ab^—b*

Ex. 4.

Multiply a^-^-a^-ab^-b^
by a2-a6 +6^

1st partial prod. a^-^-a^b—a^^—aH^

second -a56-a*62+ a2M+a65

third ^a^b^+a^^-ab^-b^

Total product ^e * • • * -66

Ex.5.
Multiply a2-|-a6+63

by a^—ab \-b^
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1st partial prod, a'^+a^+a'^b^
second —a^b—cfib'^^ab'^

third \-aW-\-ab^-{-¥

Total prod. a* * +0,2^,2 * ^j4

Ex. 6.

Multiply af'+aW+ b^

by a2_^,2

1st partial product a^-\-a'^b'^-\-a%^

second _a4^2_a2^4_j6

Total product a^ * • — &6

Ex.7.

Multiply a2 4. aj^j2
by a —b

1st partial prod. a^-[-a'^b-{-ab'^

second _fl-2i—a^^2_J3

Total product a^ * ^53

Ex.8.

Multiply a2—a5+i2
by a 4"^

first a3_a25_j_a52

second +«2^,_a624.i^

Product a? * * -^b^

Mul.

by

Ex. 9. Ex. 10.

03--63 a2„flJ^J2

1st.

2nd.

a6~a363 a3__ ^254. «^,2

^aW--b^ — a25+ a62_53

Prod. a« * —i« a3__2a2j+2a62-.i3
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Ex. 11.

Multiply a^-^-ab+b^

by a -\-b

first a^-^aH+ab^
second -{a^b+ab^-j-b^

Product a^-^2a^b+2ab^+b^

Ex. 12.

Mult. a?+2aH+2ab^-^b^
by a^—2a^b-{-2ab^-'b^

Ist. a^+2a^b-{-2a^b^+ a?b^

2nd. —2a^b—^a^b'^—Aa^b^—2a'^¥
3d. +2a462+4a3Z»3+4a2i44-2afe5

4th. — aW-2a^b^^2ab^-~¥

prod. a6 * » • • * _J6

When the quantities to be multiplied together have literal

coefficients, proceed as before, putting the sum or difference

of the coefficients of the resulting terms into a parentheses, or

under a vinculum, as in Addition.

Ex. 13.

Mult. x^—ax-\-p
hy x^-\-bx-\-^

1st. x^—ax'^-\-px'^

2nd. \-bx'^'^abx'^-\-bpx

3d. -f 3x2— 3aa:+3p

prod. ar*-(a-6)x3+(p—a6+3)a;2+(Z>p-3a)x+3/?

Ex. 14.

Mult, ax"^-- ix +c
by x"^— ex 4-1

1st. ax*— hx^-{- cx2

2nd. —acx3-f-^cx2—c^x
3d. 4- ax'^—bx-\'C

piod. ax*-(6+ ac)x34-(c+&c+a)x2-(c24-*)+c

Ex. 15. Required the continual product of a+2af, o—2*,
and 024.43,2.
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Multiply a-\'2x

• by a— 2a;

a^+2ax
—2ax--4a;2

Multiply

by
a^-4x^
a2+4a;2

a*— 4a2a;2

-\-4a^x^--I6ic4

Total product a* * -16x^

It may be necessary to observe, that it is usual, in some
cases, to write down the quantities that are to be multiplied

together, in a parentheses, or under a vinculum, without per-

forming the whole operation ; thus, {a-]-2x)x{a^2x)x{a'^-{-

4x'^). This method of representing the multiplication of com-
pound quantities by barely indicating the operation that is to

be performed on them, is preferable to that of executing the

entire process
;
particularly when the product of two or more

factors is to be divided by some other quantity ; because, in

this case, any term that is common to both the divisor and
dividend may be more readily suppressed ; as will be evident,

from various instances, in the following part of the work.

Ex. 16. Required the product of a-)- Z>+ c by a— 6 4- c.

Ans. a2_|_2ac— 6^+c2.
Ex. 17. Required the product of a;+y+^ by a;

—

y—z.
Ans. x^—t/^—27/z-^z^.

Ex. 18. Required the product of 1— o^+a?^— a;^ by l-{-x.

Ans. 1— a;'^.

Ex. 19. Multiply a^+3a^+SaP-hP by a^-j-2ab-\-b^.

Ans. a^-{-5a^b-{-l0aW-{-10a^3+ 5ab'^+b^.

Ex. 20. Multiply 4a;2y-l-3a:y—l by 2a;2_a;.

Ans. 8a:4y4-2a;3y—2a;2— 3a:2y4.a;.

Ex. 21. Multiply x^-\-x^i/-{-xi/^-\-y^ by x—y. Ans. x'^—y*.

Ex. 22. Multiply 3x^--2a^x^-\-3a^ by 2x^—3a^x^-{-5a^.

Ans. 6a;6— 13a2a:6+6a4a:*+21a3a:3— 19rtV+15a«.
Ex. 23. Multiply 2a^~3ax-{-4x^ by 5a2_6aa;— 2j;2.

Ans. 10a*-27a3a:+34aV— 18aa:3— 8a;*.

Ex. 24. Required the continual product of a-\-x, a— x, c?

+ 2aa;-f-a'2, and a^—2ax-\-x'^. Ans.- a^-~3d^x'^-\-3a^x''—x^.

Ex. 25. Required the product of x'^—ax^-\-bx—c^ and ^
—2X-I-3.
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Ans. a;»-(a-f2)a:*-f-(6+2a+3)a;3-(c+2i+3a)a:«4-(2c+36)

x—3c.
Ex. 26. Required the product, of ma?2—n«—r and naf—r.

Ans. mnx^—{n^-\-mr)x^-\-r^.

Ex. 27. Required the product of px'^^rx-\-q and x^—rx

—q. Ans. px'^—{r+pr)x^-]-{q-\-r^—pq)x^—q^.

Ex. 28. Multiply 3x^—2xi/-\-5 by x^-\-2xi/-3.

Ans. 3x^-\-4x^i/-4x^ X (l+y^)+ iexy—l5.

Ex. 29. Multiply a^ + So^^ + 3a62 + &3 by a3_3a2^, 4.

3ab^--P. Ans. a«— Sa^i^ +3a2M— ft^.

Ex. 30. Multiply 5a3—4a25+5ai2_3^,3 by 4a2-5a&+2&2.
Ans. 20a5—41a^6+50a3^>2_45a2^,34_25a^i_6Z»5.

Ex. 31. Required the continual product of o+^j a'^+ 2ax

+a;2, and a^+3a'^x+3ax'^+x\
Ans. a6+6a-'^a;+ 15a4a.'2 4, 20a%3_f.i 5^20^4 _^6aa,5_j_a;6.

Ex. 32. Required the continual product of a—ar, a^—2ax-\-

x^, and a^—3a^x-\-3ax'^—x^.

Ans. a^—Qa^x-{-i5a*x'^—20a?x^-^\5a^x^—eax^+a^.

§ IV. Division of Algebraic Quantities.

80. In the Det;mon of algebraic quantities, the same circum-

stances are to be taken into consideration as in their multipli-

cation, and consequently the following propositions must be

observed.

81

.

If the sign of the divisor and dividend be Hlie, the sign of the

quotient will be + ; if unlike, the sign ofthe quotient will be—

.

The reason of this proposition follows immediately from mul-

tiplication.

Thus, if +aX-\'b=z-{-ab ; therefore i^=+* *

-}-aX—b=—ab; .-. -;-

—

=i—b:
-ra
—ab

—ax+b=z—ab; .-. =+ 5:—a

-^ab
—aX~b=:-\-ab \

.*. =— 6:—a

82. If the given quantities have coefficients, the coefficient of the

quotient will be equal to the coefficient ofthe dividend divided by

that of the divisor.

Thus, Aab-T-2b, or ^z=2a.

For, by the nature of division, the product of the quotient,

multiplied by the divisor, is equal to the dividend ; but the co-
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efficient of a product is equal to the product of the coefficients of

the factors (Art. 70). Therefore, 4ab'r'2b='^x~=2a.

83. That the letters of the quotient are those ofthe dividend not

common to the divisor, when all the letters of the divisor are com-

mon to he dividend : for example, the product abc, divided by ab,

gives c for the quotient, because the product of ab by c is abc.

84. But when the divisor comprehends other letters, not common
to the dividend, then the division can only be indicated and the quo-

tient written in theform ofafraction, ofwhich the numerator is the

product of all the letters ofthe dividend, not common to the divisor,

and the denominator all those of the divisor not common to the divi-

dend : thus, abc divided by amb, gives for the quotient — , in ob-

serving that we suppress the common factor ab, in the divisor

and dividend without altering the quotient, and the division is

reduced to that of — , which admits of no farther reduction
m

without assigning numeral values to c and m-

85. Ifall the terms ofa compound quantity be divided by a simple

one, the sum of the quotients will be equal to the quotient of the

whole compound quantity

^, ab
^

ac . ad ab-{-ac-\-ad ,

Thus, 1
= =5+ c+c/.

a a a a

For, {b-\-c-\-d) Xa=ab-{-aC'\-ad.

86. If any power of a quantity be divided by any other power of

the same quantity, the exponent ofthe quotient will be that ofthe

dividend, diminished by the exponent of the divisor.

Let us occupy ourselves, in the first place, with the division

of two exponentials of the same letter ; for instance,— , m and

n being any positive whole numbers, so that we can have,

m^n, m=n, m<^n.

It may be necessary to observe that, according to what has

been demonstrated (71), with regard to exponentials of the

same letter, the letter of the quotient must also be a, and if the

unknown exponent of a be designated by x, then a* will be the

quotient, and from the nature of division,

a"^ =a" Xa'==a^^x
;

from which there necessarily results the following equality

between the exponents,
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m=n+a?

;

And as, subtracting n from each of these equal quantities, the

two remainders are equal (Art. 49), we shall have,

m—n=ix .... (1).

Therefore, in the first case, where m is >n, the exponent of

the quotient is m— n\ thus,

a«_i.a3=a5-3_flf3^ and a^-^a-=a^~'^=^a^.

Also, it may be demonstrated in like manner, that (a+*)*-T-

(a + xf=(a + x)^^=(a+xf ; ^r,^^^^-(2x+y)''-^^

(2x+yf.
In the second case, where m=n, we shall have,

From which there results between the exponents the equality,

7n=zm^x,
and subtracting m from each of these equals (Art. 49),

m—m-=x, ^r x^zzO .... (2) ;

therefore, the exponent of the quotient will be equal to 0, or

ax=ia°i a result which it is necessary to explain. For this

purpose, let us resume the division of a" by a'", which gives

unity for the quotient, or—= 1 ; and as two quotients, aris-

ing from the same division, are necessarily equal ; therefore,

Hence, as a may be any quantity whatever, we may conclude
that ; any quantity raised to the power zero, must be equal to

unity, or 1 , and that reciprocally unity can he translated into

a°. This conclusion takes place whatever may be the value

of a ; which may also be demonstrated in the following man-
ner.

Thus, let a<'=y; then, by squaring each member, 00x0*=
yXy, ora«=ry2;

therefore, (47), y'^—y^

and (51),-^=^,
y y

oryznl;
but 0"=^ ; consequently 0°=!.

In the third case, where m is less than n ; let n-=m-\-d^ d
being the excess of n above m ; we shall always have,

and equalising the exponents, because the preceding equality

cannot have place, but under this consideration,

mz=m-\-d-\-x,

subtracting m-\-d from both sides, the final result will be
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^=-d (3);
then the quotient is a~^

.

In order to explain this, let us resume the division of a"" by
a", or by a"»+<^=a'" X a*^ ; by suppressing the factor a^, which
is common to the dividend and divisor, according to what has
been demoiistrated with regard to the division of letters (Art.

84), we have for the quotient -^ : therefore,

'^=i (*);

This transformation is very useful in various analytical

operations ; in order to see more clearly the meaning of it,

we may recollect that a*^ is the same as ax ax a, &,c., con-

tinued to d factors ; therefore, according to the acceptation

and opposition of the signs, a-'^ must represent aXaXa &c.,

continued to d factors in the divisor.

Hence, according to the resull|^ (1), (2), and (3), the pro-

position is general, when m and n are any whole numbers

whatever ; thus, a^-^a^=:a^-^=a-^, or -r : because the di-
a^

visor multiplied by the quotient is equal to the dividend, a^ X
1 a^<j-2=^5-2—q3_ the dividend, and-^Xa^= --=a^-^=a^=,
a^ a^

the dividend, therefore, a-2=—-. In like manner it may be
a^

shown that, -—=a-3 —- = a-*, &c. But, according to the
a"^ a*

result (4), in general, — =a-<^, where d may be any whole

number whatever ; hence the method of notation pointed out,

(Art. 32), is evident.

87. If a compound quantity is to be divided by a compound
quantity, it frequently occurs that the division cannot be per-

formed, in which case, the division can be only indicated, in

representing the quotient by a fraction, in the manner that has

been already described (Art. 8).

88. But if any of the terms of the dividend can he produced by
multiplying the divisor by any simple quantity, that simple

quantity will be the quotient of all those terms. Then the re-

maining terms of the dividend may be divided in the same

manner^ if they can be produced by multiplying the divisor

by any other simple quantity ; and by continuing the same



DIVISION. Zf^

method, until the whole dividend is exhausted ; the sum of all

those simple quantities will be the quotient of the whole com'

pound quantity.

The reason of this is, that as the whole dividend is made up

of all its parts, the divisor is contained in the whole as often as

it is contained in all its parts. Thus, (ab-\-cb-{-ad-{-cd)-r'

{a-}-c) is equal to b-\-d:

For bx{a+c)=ab-\-cb; and dx{a+c)z=ad+cd; but the

sum of ab-^cb and ad-\-cd is equal to ab-\-cb-\-ad-\-cd, which
is equal to the dividend ; therefore b-^d is the quotient re-

quired.

Also, {a^-\-3ab'{-2b'^)-r-{a-\-b) is equal to a-f 26.

For, it is evident in the first place, that the quotient will

include the term a, since otherwise we should not obtain a*.

Now, from the multiplication of the divisor a-\-b by a, arises

a^-f-aft; which quantity being subtracted from the dividend,

leaves a remainder 2ab-\-2b^ ; and this remainder must also

be divided by a-{-b, where it is evident that the quotient of

this division must contain the term 2b : again, 2b, multiplied

by a-f b, produces 2ab-{'2b'^ ; consequently a-\-2b is the quo-

tient required ; which, multiplied by the divisor a-\-b, ought

to produce the dividend a'^-\-3ab-{-2b^. See the operation at

length

:

a-\'b)aHSab+2b^a-\-2b
02+ ab

2ab+2b'^

89. Scholium. If the divisor be not exactly contained in

the dividend ; that is, if by continuing the operation as above,

there be a remainder which cannot be produced by the mul-

tiplication of the divisor by any simple quantity whatever

;

then place this remainder over the divisor, in the form of a

fraction, and annex it to the part of the quotient already de-

termined ; the result will be the complete quotient.

But in those cases where the operation will not terminate

without a remainder ; it is commonly most convenient to ex-

press the quotient, as in (Art. 87).

90. Division being the converse of multiplication, it also ad-

mits of three cases.
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CASE I.

When the divisor and dividend are both simple quantities.

RULE.

91. Divide, at first, the coefficient of the dividend by that of

the divisor ; next, to the quotient annex those letters or factors

of the dividend that are not found in the divisor ; finally, pre-

fix the proper sign to the result, and it will be the quotient re-

quired.

Note. Those letters in the dividend, that are common to it

with the divisor, are expunged, when they have the same ex-

ponent ; but when the exponerits are not the same, the expo-

nent of the divisor is subtracted from the exponent of the

dividend, and the remainder is the exponent of that letter in the

quotient.

Example 1. Divide ISax"^ by 3ax.

3ax Sax
Or, —^-=— Xa^-^Xar2-i=:6xa«Xx=6a?. See (Art.

Sax 3 ^

86.)

Ex. 2. Divide —4802^,2^2 by Wahc.
In the first place, 48-^ 1 6=:3= the coefficient of the quo-

tient, j\ext, a-b^c'^-r-ahc— a-—
^ Xb^'~^ Xc^~^rzzabc ; now, an-

nexing a6c to 3, we have Sabc, and, prefixing the sign — ; be-

cause the signs of the dividend and divisor are unlike ; the re-

sult is —Sabc, which is the quotient required.

Or, the operation may be performed thus,

— 48fl2i2^2 48 a^ ^2 c2———^ =—— X—Xx-X—= —3XaX^Xc=— 3a^c.
loaoc 16 a b c

Ex. 3. Divide —IXx^yh.^ by -Ix^y^z^.

-21a:y^* , 21 , „ , „ ^ , , ^
ZIt^^^= +ya:3-2 X y3-2 x z^^= + Sxyz.

Ex. 4. Divide 28a^&V by —la^bHK
28 fl* h^ c'

2%a^b^c^-^ -la^b'^c^^: - ^ X^ X 1- X -,=~ 4 X a*-2 X J*-»
7 a^ b^ c^

X c"'-^— __ 4 X a2 X ^3 X c2=r _4o2iV.
In order that the division could be effected according to the

above rule ; it is necessary, in the first place, that the divisor

contains no letter that is not to be found in the dividend : in

the second place, that the exponent of the letters, in the divi-
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8or, do not surpass at all that which they have in the dividend
;

finally, that the coefficient of the divisor, divides exactly that

of the dividend.

When these conditions do not take place, then, after can-

celling the letters, or factors, that are common to the dividend

and divisor ; the quotient is expressed in the manner of a frac-

tion, as in (Art. 84).

Ex. 5. Divide ^8a^d-'c^d by 64a^bh^(j.

The quotient can be only indicated under a fractional form,

thus,

48a?b^c^d

64tt^6"^c^e*

But the coefficients 48 and 64 are both divisible by 16, sup-

pressing this common factor, the coefficient of the numerator

will become 3, and that of the denominator 4. The letter a

having the same exponent 3 in both terms of the fraction, it

follows that a^ is a common factor to the dividend and divisor,

and that we can also suppress it. The exponent of the letter

b is greater in the dividend than in the divisor ; it is ne-

cessary to divide b^ by ^^, and the quotient will be 6^, or

b^
Yz-=b^—^=:b^f which factor will remain in the numerator.

With respect to the letter c, the greater power of it is in

I the denominator ; dividing c* by c^, we have c^, or —=c*—

^

=c2, therefore the factor c^ will remain in the denominator.

Finally, the letters d and c remain in their respective places
;

because, in the present state, they cannot indicate any factor

that is common to either of them.

By these different operations, the quotient, in its most simple

. Sb'^d
form, IS——

.

Note. The division of such quantities belongs, properly

speaking, to the reduction of algebraic fractions.

Ex. 6. Divide 36i.2y2 ^y g^,^^ Ans. 4xy,

Ex. 7. Divide SOa^T/^ by —Qaby. Ans. —bay.
Ex. 8. Divide — 42c'x*^y by Ic'^x^. Ans. —6cxy.
Ex. 9 Divide —4ax^y^ by —axy^. Ans. -f 4xy.

4(z'^b^cx
Ex. 10. Divide I6a^b^cx by —Aa^bdn. Ans. r—

.

dy
3c*

Ex. 11. Divide -18a3/iV by 12a-'^63a?. Ans. --^r--
•^

2a^bx

Ex. 12. Divide ITrysw)^ by a:^yio. Ans. 17w.

Ex. 13. Divide —1203^3^3 by -Qahc. Ans. 2a^b'^c^.
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Ex. 14. Divide —9x^fz^ by x^^*.

Ex. 15. Divide 39a9 by ISa^.

9

Ans. 3a*.

CASE II.

When the divisor is a simple quantity, and the dividend a com-

pound one.

RULE.

92. Divide each term of the dividend separately by the

simple divisor, as in the preceding case ; and the sum of the

resulting quantities will be the quotient required.

Example 1. Divide ISa^+Sa^i+eai^ by 3a.

„ 18a=^ ^ o ^a% , - 6a62
Here, -—--.=^Qa^^ -^^^ah, and —-=262 .

oa 3a pa

therefore, — —Qa^-\-ah-{'2b^.
3a

llx. 2. Divide 20a2.r^— 12a-a;2-f-8a3a?2—2a*a;2 by 2aa;2.

20/72 r3
Here, Zl±^-=:\Qax, - I2a^x'^-r'2ax^= - 6a, 8a3a;2-i.2aa;2

2aa:''

:=-f- 4a2, and ^2a^x--^2ax'^=— a^ ;

hence ~—
;,

=10aaf—6a+4a2— a^.

2aa;2

Ex. 3. Divide 20a2jf_15ax2 4-30aa:y2_5oa; by 5aa?.

Here 20a2x-^5ffa;= 4a, —I5ax'^-^5axz= —3x, 30axy2-^

5ax=6y2j ^nd — 5ax-^5aa:=: — 1
;

20a2j;-15aa:2 4-30aa?y2— 5aa? , o . o o -,

therefore, =i4a—3a;+6y^— 1-
5ax ^

Ex. 4. Divide ^aH— 2ba^x'^-{-b0a^x^ — 50aV+25o2a;5—
bax^ by ^ax.

Here -^rra^^ — = — 5a*a:, — = + lOa^a?^,
bax oax oax

-bOa^x^ ,_ „ , +25a2a:5 -Saa:^— 10a2a;3, —^- =; + 5aa;^ and — =— ac* ;

5aaj bax bax

therefore, a^— 5a*a;-f 10a^a;2— 10a2a;3-f-5aa;*

—

x^ is the quo-

tient required.

Ex. 5. Divide 3a*a?2— 3a2a:* by —3a'^x^. Ans. a'2— a^.

Ex. 6, Divide21a3a;3— 7a2a;2— 14aa?by 7aj;.

Ans, 3a2a?2— aa?— 2,
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Ex. 7. Divide I2abc — 48ax2y2 + G4a^'''C^ — \6aH^ by

~16ai. Ans. ai h—r^ 4a6c2.
4 6>

Ex. 8. Divide 72x^1/^2^— l2axi/z-\-24bcxr/z by \2xyz.

Alls. Qxyz~a-\-2be,

Ex. 9. Divide 4«y-a:y +3aa:3y3 by a;3y3.

4
Ans. a:y-f-3a.

Ex. 10. Divide ba—7h-\-Qc—2ac^+9c'^ bv 3c.

5a 'lb
Ans. —+2—ac-|-3ca.

6c oc

Ex. 11. Divide—60a:''y+50a;y—40a;y+ 30a;y—20a;3y»

-flOxy— 5ary' by —bxy.
Ans. y6__2a:y5-f-4a:V—6a:y+8x^—1 Oa:'''y-j- 12a:«.

CASE III.

T'FAc/i iAc dividend and divisor are both compound quantities.

RULE.

93. Arrange both the dividend and divisor according to the

exponents of the same letter, beginning with the highest, and
place the divisor at ihe right hand of the dividend ; then di-

vide the first term of the dividend by the first term of the di-

visor, as in Case 1., and place the result under the divisor.

Multiply the whole divisor by this partial quotient, and sub-

tract the product from the dividend, and the remainder will be

a new dividend.

Again, divide thnt term of the new dividend, which has the

highest exponent, by the first term of the divisor, and the re-

sult will be the second term of the quotient. Proceed in the

same manner as before, repeating the operation till the divi-

dend is exhausted, and nothing remains, as in common arith-

metic. This rule is evident from {Ait. 88).

Example 1. Divide \2a''b'^—Qa''b^-\-Qa^b^'-Aa^^^22a%-\'

5a'' by 4aH^-2a^+ 5a\
It can be readily perceived that the letter a is the one to be

chosen, in order to arrange the terms of the dividend and divi-

sor according to its powers, beginning with the dividend, 5a'

is the term which contains the highest power of a ; placing

5a' for the first term. —22a^h, for the second, and so on ; the

terms of the dividend, arranged according to the powers of a,

are written thus
;

5*
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5a^—22a^+l2a^P—6a'^b^—4x^^-\-8a^^.
And the terms of the divisor, arranged according to the powers
of a, are written thus

;

5a*—2a^br\-4a^b^.

1 1

^^ too o
a a
oi yi

O- <»-

+ +
00 00
a a
y. a.

Cj- O
+ + ') j

1—' t—

I

{ 1o o 1— 05
a a 05 a

''^ I**

^4. ctCr- C&-w -^ •^ i"
1 1

"
rfi. rf^

1

a a ?^
to OJ

<>. Or- «>^ rf^

+ + -+
00 00 00
a a aM M to

•=S^ ^

a a
-1 ->

I I

to
to to
a a
<T> at

c>. Cm

+ +
a 60 tJ

^ ^y" I'

a

00
a

a

r
a .p
<;52 5

1

T^ «
lO s
o- ^
GO

a

-f :^

The sign of the first term 5a" of the dividend being the

same as that of 5a*, the first term of the divisor, the sign of

the first term of the quotient is +, which is omitted (Art. 14).

Dividing 5a' by oa^, the qu<)t.i<mt is o", which is written under

the divisor. Muhiplying successively the three terms of the

divisor by the first term a^ of the quotient, and writing the

product under the corresponding terms of the dividend ; sub-

tracting 5a^—2a^b-i-Aa^b^ from the dividend, the remainder

is

—20a%+ 8a^b^—Sa^P—Aa^^ -f 8a^^.

Dividing —20a% the first term of this new dividend by 5a*,
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the result will be —iarb, this quotient having the sign —

,

because the dividend and divisor have different signs.

Multiplying nil the terms of the divisor by —4^aH ; we have

—20a^b-\-8a''b-—\6a*P ; subtracting this result from the par-

tial dividend, the remainder will be 1 0a'^b^—4a^*-{- Sa^b^, divid-

ing the first term of this new partial dividend, 1 Oa^b"^, by the first

term 5a* of the divisor, multiplying all the divisor by the result

+ 2/>^, and subtracting the product from the last partial dividend,

nothinur remains ; therefore the last term of the quotient sought

is +26^, and the entire quotient is a^— 4a'^b-{-2b^.

94. It is very proper to observe that in division, the multi-

plications of different terms of the quotient by the divisor,

produce frequently terms which are not found in the dividend,

and which it is necessary to divide afterward by the first term

of the divisor. These terms are such as are destroyed when
the dividend is formed by the multiplication of the quotient

and divisor.

See a remarkable example of these reductions :

Ex. 2. Divide a^—b^ by a—b.
Division.

Dividend.

a^b^ P
a-6

—

ab^

ab'^-b^

aP-b^

Divisor,

a-b

Quotient.

a^+ab+ b^

Multiplication,
Mul. a — b

hy a'^-\-ab-\-b^

a^-a^b
'\-(]?b— ab"^

+ab^-P

a3 * * —P

The first term a^ of the dividend divided by the first term

a of the divisor, jiives a^ for the first term of the quotient

;

multiplying the divisor a— ^ by a^, the first term of the quotient,

the result is a-^— arb ; subtracting a^— ti^b from the dividend,

the term a^ destroys the first term of the dividend ; but there

remains the term —a^b, which is not found at first in the divi-

dend ; therefore the remainder is a^b— b^. Because the term

a^b contains the letter a, we can divide it by the first term of

the divisor, and we obtain -\-ab, which is the second term of

the quotient. Multiplying the divisor by +«/>>, the product is

a^b—ab-, which being subtracted from a^b—b^ ; the first term

a^b destroys the term a^b which arose from the preceding

operation ; but there remains the term —ab^, which being

not yet in the dividend ; the remainder is therefore ab^—b^.
Dividing ab"^ by a, the result is 6^, which is the third term
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of the quotient ; multiplying the divisor by Z»2, we have
ab^—b^; and subtracting this result from the last remain-
der, the terms of both destroy one another ; so that nothing

remains.

In order to comprehend well the mechanism of the division,

it is only necessary to take a glance at the multiplication of

the quotient a'^-\-ab-{-b^ by the divisor a—b, and it will be rea-

dily seen that all the terms reproduced in the partial divisions

are those which destroy one another in the result of the mul-

tiplication.

Ex.3. Divide y3_i by
Dividend.

3,3-1

y-\.
Divisor,

y-\

Quotient.

f-y

y-1

»

Ex.4.

/i6

Divide a^—x^ by

Dividend,

x^

a— X.

Divisor.

a—x

Quotient,

a^-^a'x-^-a^x^-i-a^aa^x-x^
a'x—a^x^

a'x^-x^
a'^x'^—a^x^

aV-a?6
aH^-a'x^

a^x^-x^
a^x*--ax^

ax^—a
ax^-a

.0

Ex. 5. Divide x^+a^ by ac+a.



Dividend,

x^-^ax*

ISION

Divisor

a: -fa

Quotient,

cc^-ax'^+a~ax*-^a^
—ax*-a^x^

a^x^+a^
a^x^+a^x^

-a^x^+ a'^

-a^x^-a^x

a^x+a^

95. When we apply the rule, (x\rt. 93), to the division of

algebraic quantities of which one is not a factor of the other,

we know it is impossible to effect the division ; because that

we arrive, in the course of the operation, at a remainder, of

which the first term cannot be divided by that of the divisor.

In this case, the remainder is made the numerator of a frac-

tion whose denominator is the divisor ; and the fraction thus

arising, with its proper sign, is annexed to the other part of

the quotient, in order to render its value complete.

Ex. 6. Divide 03+^2^4.263 by a-+b^.
Dividend. Divisor.

1st rem.

03+ 02^+ 263

03+ 0^2

o2+ 62

Quotient.

+ 6+
•ab^

a-'+b^

2d rem. —ab'^+ b^

The first term — 0J2 Qp tj^e remainder, cannot be divided by
a2, the first term of the divisor; thus the division terminates

— 0^2+ 63
at this point. The fraction—-—r-— , having the remainder

for its numerator, and the divisor for its denominator, is an-

nexed to the partial quotient a-\-b', and the complete quotient

. b^^ab^
IS a+b+ .

O^-f-02

96. It is necessary to remark, that the operation of divi-
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sion may be considered as terminated, when the highest pow-
er of the letter, in the first or leading term of the remainder,

by which the process is regulated, is less than the first term

of the divisor; as the succeeding part of the quotient, after

this, would necessarily become fractional ; and which may be

carried on, ad infinitum, like a decimal fraction.

This subject belongs to algebraic fractions, and as it is of

considerable importance in analysis, we will treat of it with a

near attention in the ne.vt Chapter.

97. In the preceding examples, the product of the first term

of the quotient by the divisor, is placed under the dividend
;

then the reduction is made by subtraction ; and every succeed-

ing product is managed in like manner. In the following ex-

amples, the signs of all the terms of the product are changed
in placing it under the dividend ; and then the reduction is

performed by the rules of addition ; which is the method
adopted by some of the most refined Analysts.

Ex. 7. Divide a4-f-2a25'^+M~c* by aH^'^+ c^.

1st. rem.

2d. rem.

Dividend.

a*-\-2a^•'+b'-c^

Divisor.

Quotient.

c2^^2_ca

—a'^c^—b'^c^— c*

+ aV4-Z>2c2+c4

Ex. 8. Divide 6x^— 96 by 3a;— 6.

Dividend. Divisor.

6a;*-96
— 6a;*+12a;3

+ 12a;3_96
— 12a:3-}-24a;2

3a:—

6

Quotient.

2a:3-|-4a;2-|-8a;+16

-i-24a;2—96
—24a;2+48x

48ar— 96
48a;~96
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Ex. 9. Divide Sa^ -^ia^^-\-40^+20^—1^+ 1 hy 2a3-i»+l.

Dividend. Divisor.

8a6— 4a2Z>2-f 4a3-f 2a3-62-|-

1

•8a6+ 4a362—4a3

2a3-624-l
—2a3+62-l

Quotient.

4a3+l

98. The division of algebraic quantities can be sometimes
facilitated by decomposing, at sight, a quantity into its fac-

tors ; thus, in the above example, the divisor forms the last

three terms of the dividend, it i^ only necessary to seek if it

be a factor of the first three ; but those have visibly for a

common ffictor 4a^, for Sa^—4a^b^-\-4a^= 4a^x(2a^'-b^-^l).

By this observation, the dividend will become

or (2a3-62+l)x(4a3+ l):

therefore the division is immediately effected, by suppressing

the factor 2a^—P-i-l equal to the divisor, and the quotient

wilibe4a3+l.

Experience, in algebraic calculations, will suggest a great

many remarks of this kind, by which the operations can be
frequently abridged.

99. It sometimes happens that, in arranging the dividend

and the divisor accordmg to the same letter, there occur seve-

ral terms in which this letter has the same exponent : In this

case, it is necessary to range in the same column those terms,

observing to order them according to another letter, common
to the two quantities.

Ex. 10. Divide —a*b^^h^c*—a'^c*-a^+ 2a^c^-\-b^-^2b*c*

-f-a2M by a2__^2_c2.
Ordering the dividend according to the letter a, we will

place in the same column the terms —a^b^ and -f-2a''c2, in

another the terms -i-a^b^ and —ah* ; finally, in the last

column the three terms +&«, +26*c2, -f-Z>2c4, ordering them
according to the exponents of the letter b ; then the quanti-

ties, so arranged, will stand thus :
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Dividend.

-f2a4c2—a2c*+2Mc2

1st rem. —2a »62^02^*4.^6

4- a*c2—a2c4^26*c2
4- i^c*

42a*62_2a2M
—2a262c2

Divisor.

Quotient.

~«*^2a262-&*
4- a2c2-62c»

2d rem. + a*c2— 0254 4.J6

— 2a262c2-|-2i4c2

— a2c* + 62c*

—aV-j- a2^,2c2

4. a2c*

3d rem.

4th rem.

_a2^4 ^J6
-a262c2426*c2

462c*

-64c2

—a2^2c2^^4c2

+ 62c*

4 (22^2^2_ ^4^2

~62c*

Ex. 11. Divide flx* — (64ac)a;34(c46c4a)a:2— (c24.6)i,

4-c by ax^—bx-^c.
Dividend. Divisor.

aac*—{64«c)a?34(c46c4«)^^~(c^+6)a:4c
— flJC* + bx^ — cx^

—acx'^-\-(bc-\-a)x'^-~(c'^-\-b)x-{-c

-\-acx^ — 6ca:2 4^^*

ax^— 6a?4"*

Quotient.

a;2—ex4-1

ax^—bx-\-c

ax^-^-bx—c
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100. The following practical examples may be wrought ac-

cording to either oC the methods pointed out, (Art. 93, 97)

;

but in complicated cases, the latter should be preferred. See

Example 10.

\/ Ex. 12. Divide x^—x^'\-x^-x^^2x-'l by x'2+x-l.
— Ans. x'^— x•^-{^x'^'—x-\'\'

Ex. 13. Divide a^y^5a*x + I0a^x^-i0a'^x^-^5ax*-x^ by

a^-3a^x-\-3ax'^—x\
Ans. a'^—2ax-\-x^.

Ex. 14. Divide 2a:3— 19x2+26x-16 by x—8.
Ans. 2x"^— 3a:-f 2.

Ex. 15. Divide 48y3_76ay2_64a2y-{-i05a3 by 2y— 3a.

Ans. 24y2_2ay— 35a2.

Ex. 16. Divide a^—b'^ by a—h. Ans. a-\-b.

Ex. 17. Divide a*— a;* by a^.—x'^. Ans. a^-{-x^.

^ Ex. 18. Divide a^-b^ by a^-{-2a^+ 2ab''+ b\

Ans. a^-2a^+ 2ab^^b^.

Ex. 19. Divide a'^+a'^b'^-}-M by a2_a^,-}_p.

Ans. a2_j_aJ_|_j2

, Ex. 20. Divide 25a;6— a;*—2jj3— Sa:^ by 5x^— 4x'^.

Ans. 5a:34-4a;2-f.3x+3.

Ex. 21. Divide a^-\'4ab-h4b^"+c'^ by a+26.

Ans. a-\-2b-{-~^

Ex. 22. Divide 8a*-2«36-13a26'i_3a^>3 by 4o2-|-5a6+62.

Ans. 2a2_.3a6.

V Ex. 23. Divide 20a5_41a'*^>+50o3^»2—45a263_f.25a^»4_66*

by 4a2_5a6+262.
Ans. 5a^—4a^-{-5ab'^—3P.

Ex. 24. Divide a*-i-8a3a;+24a2a;2-|-32ax3 4-16a:*bya-f2jr.

Ans. a^-{-6a^x-\-\2ax^-{-8x^.
,' Ex. 25. Divide a;4-(a-Z>)a:3_}-(p_a^,4_ 3)^2 _|.(^,^_3a)a.

4-3/? by a?2— aa;+;?. Ans. a?24-^a;+3.

^ Ex. 26. Divide aa;^— (a2-f-Z»)ic24-62 by aa:— ^.

Ans. a;2— aa?— 5.

,/ Ex. 27. DivideyS4-aV4-^Y'^-«®—2%*—ay—2a462_
a^¥ by y^-\-2aY^\a^—bY^^orb'^^

kx\s. 3/2—a2— ^2.

Ex. 28. Divide 9a;6— 46a;5+ 95a:24-150a; by a:2—4a:~5.

Ans. 9a;4— 1 0a;3-{- 5a;2— 30a:.

Ex. 29. Divide 6a4+9a2_15a by 3a2— 3a.

(3 Ans. 2a2-}-2a+5.
Ex. 30. Divide 2a*— 16a36+31a262_38a^,3^2464 by 2a2—

3a6-|-462. Ans. a^^bab-\-U\
6
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Ex. 31. Divide a^ + Sa''x + 28a«a:2 4. ^Qa^x^ + lOaf^oc* +
hQa^x^^2Sa^x^-\-Sax'^-\-x^ by a'^-\-Aa^x-\-^a:^x'^-^Aax^-\-x*.

Alls. a^-^4a^x-\-Qa^x'^-^Aax^-\-x^.

Ex. 32. Divide a^— 6a'^a;4-15a*a;2--20o^a:3+15aV— 6ca;*

+af6 by a3_3a2a:4-3aa:2— a;3. Ans. a^—3a2a:+3ax2— a:^.

^ V. jSowie General Theorems, Observations , &c.

101. Newton calls Algebra Universal Arithmetie. This
denomination, says Lagrange, in his Traite de la Resolution

des Equations numeriques, is exact in some respects ; but it

does not make sufficiently known the real difference between
Arithmetic and Algebra.

Algebra differs from Arithmetic chiefly in this ; that in the

latter, every figure has a determinate and individual value

peculiar to itself; whereas the algebraic characters being ge-

neral, or independent of any particular or partial signification,

represent all sorts of numbers, or quantities according to the

nature of the question to which they are applied.

Hence, when any of the operations of addition, subtraction,

&c., are to be made upon numbers, or other magnitudes, which
are represented by the letters, a, b, c, <fec., it is obvious that the

results so obtained will be general ; and that any particular

case, of a similar kind, may be readily derived from them, by
barely substituting for every letter its real numeral value, and
then computing the amount accordingly.

Another advantage, also, which arises from this general

mode of notation, is, that while the figures emph)yed in Arith-

metic disappear in the course of the operation, the characters

used in Algebra always retain their original form, so as to

show the dependence they have upon each other in every
part of the process ; which circumstance, together with that

of representing the operations of addition, subtraction, &c., by
means of certain signs, renders both the language and algorithm

of this science extremely simple and commodious.
Besides the advantages which the algebraic method of no-

tation possesses over that of numbers, it may be observed, that

even in this early part of the science we are furnished with
the means of obtaining several general theorems that could
not be well established by the principles of Arithmetic.

102. The greater ofany two numbers is equal to half their sum
added to half their difference, and the less is equal to half their

sum minus half their difference.

Let a and b be any two numbers, of which a is the greater; let

their sum be represented by s ; and their difference by d. Then,
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a-\-b=:s )

a-b=dS

.-. by addition, 2a=:s+d (Art. 48)

;

and a=-+- (Art.

By subtraction, 2b=:s—d (Art. 49)

;

d

48);^

51);$

and .-. &=--- (Art. 51)

Cor. 1. Hence if the sum and difference of any two num-
bers be given, we can readily find each of the numbers ; thus,

if s be equal to the sum of two numbers, and d equal to the

s-^d
difference ; then the general expression for the first, is ——

,

and for the second
2

Whatever may be the numeral values that we assign to s

and (/, or whatever values these letters must represent in a
particular question, we have but to substitute them in the above
expressions, in order to ascertain the numbers required : For
example,

Given the sura of two numbers equal to 36, and the diffe-

rence equal to 8 :

s-^d
Then, by substituting 36 for s, and 8 for d, in ——- and

s—d , s-\-d 36+ 8 44 „„ , s—d 36—8__, „e have _^=-_-=_=22, and -^=-^=
28
—-=14. So that, 22 and 14 are the numbers required.

Cor. 2. Also, if it were required to divide the number s

into two such parts, that the jlrst will exceed the second by d.

It appears evident, that the general expression for the first

part is —-— , and for the second —-— ; s and d representing
2 2

any numbers whatever.

s-\-d
103. The general expression —-— maybe found afterlhe

2
manner of Gamier. Thus, let x represent the first part ; then
according to the enunciation of the question, x~d will be the

second ; and, as any quantity is equal to the sum of all its

parts, we have therefore,'

x-\-x—d=Si or 2*—J=5.
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This equality will not be altered, by adding the number d
to each member, and then it becomes,

2x'-d-\-d=s-{-d, or 2x—s-^d
;

s4-d
dividing each member by 2, we have the equality, a:= ;

in which we read that the number sought is equal to half the

sum of the two numbers s and d ; thus the relation between
the unknown and known numbers remaining the same, the

question is resolved in general for all numbers s and d.

104. We have not here the numerical value of the unknown
quantity ; but the system of operations that is to be performed

upon the given quantities ; in order to deduce from them, ac-

cording to the conditions of the problem, the value of the quan-

tity sought ; and the expression that indicates these opera-

tions, is called a formula.

It is thus, for example, that if we denote by a the tens of a

number, and the units by 6, we have this constant composi-

tion of a square, or thisformula,

a"+2ab-\-b^;

this algebraic expression is a brief enunciation of the rules to

be pursued in order to pass from a number to its square.

105. From whence we infer that, if a number be divided into

any two parts, the snnare of the mimbtr is equal to the square of
the two parts, together with twice the product of those parts.

Which may be demonstrated thus ; let the number n be di-

vided into any two parts a and b
;

Then n— a-{-b,

and n:=a-\-b;

.-.by Multiplication, n'^=za'^-\-2ab-\-b'^ (Art. 50).

106. If the sum and difference of any two numbers or quan-

tities be multiplied together, their product gives the difference

of their squares, observing to take with the sign — that of
the two squares whose root is subtracted.

Let M and n represent any two quantities, or polynomials

whatever, of which m is the greater; then (m+ n) X (m— n)
is equal to m^— n^

; for the operation stands thus
;

(m-I-n)X(m— N)= M'-i+MN > -m2— n2
—MN— n2 J '

107. When we put Mnra"^, and n= Z>^; then,

(«3_^53)x(a3_53)^o6_^,6 . (See Ex. 9. page 30).

Where a^ is the square of ar^, and b^ that of P, and this last

square is subtracted from the first.

Reciprocally, the difference of two squares M^— n^, can he

put under the form (m+ n ) X (m—N )

.
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This result is ^formula that should be remembered.

108. The difference ofany two equal powers of different quanti-

ties is always divisible by the difference of their roots, whether
the exponent of the power be even or odd. For since

=x-i-a;x—a
aP—a^

=x^-\-ax-\-a'^
;

a?

—

a

=x^'\-ax^-\'a^x-^a^

;

x~a
^ ~""

=x*+ ax"-+a'^x^-{-a^x+a*
;x—a

x^-a^
=x^-\- ax* -|- a'^x^ 4- a^x^ -f a''a; -j- a*

X— a

We may conclude that in general, a:'" —a'" is divisible by a;— a,

m being an entire positive number ; that is,

109. The difference of any two equal powers of different quanti'

ties, is also divisible by the sum of their roots, when the expo-

nent of the power is an even number. For since

x^—a^—;

—

=x—ai

x*— a*
=:x^—ax^-^a^x— a**

;

x-^a
&c. &c

Hence we may conclude that, in general,
«.2m /,2m

I l_-:a:2«-i— aa:2'»-2.f . . -|-a2m-2a;_a2m-i . p).
x^a

110. And the sum of any two equal powers of different quanti-

ties, is also divisible by the sum of their roots, when the expo-

nent of the power is an odd number. For since

zzzx^—ax-Yx^;
x+a

^ = a;*

—

ax"^+ a^x^y^a^x -|- a*

;

x-\-a

Hence we may conclude that, in general,

a;2«f 1 -f a2m4i _^^_^2^,i^ .^a^^x+a^. (3).
x-\r<i

6*
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111. In the formulae (1), (2), (3), as well as in all others of

a similar kind, it is to be observed, that if m be any whole num-
ber whatever, '2m will always be an even number, and 2m-{-l

an odd number ; so that 2m is a general formula for even num-
bers, and 2m4-l f*>r odd numbers.

112. Also, if a in each of the above formulae, be taken =1,
and X being always considered greater than a ; they will stand

as follows

:

x^ 1

=a;'«-i-f-a;'"-2-f a:"»-3-h -hx+1 . . . (4).
X—

1

g,2m 1

i
— a;2'n-i— a:2'" 2_^^2m-3_

, ^ , -f-a:— 1 . . . (5).
x-\-l

-I—=,X^rn_^2m-1^^2m-2_^
^ .-0:4-1 • • • (6).

x-^l
113. And if any two unequal powers of the same root be

taken, it is plain, from what is here shown, that
* x^—xn, or a;"(a:'"-"— 1) (7),

is divisible by a:— 1, whether m— n be even or odd; and that

x'^—x'*, or a:"(a'"-"— 1) (8),

is divisible by x-\-\, where m—n is an even number ; as also

that

a'n-f-a:", or a;"(a;'»-«+ 1) (9),

is divisible by x-^\, when m—n is an odd number.

114. It is very proper to remark, that the number of all

the factors, both equal and unequal, which enter in the for-

mation of any product whatever, is called the degree of that

product. The product a^b^c, for example, which comprehends
six simple factors, is of the sixth degree ; this, a'^^c is of the

tenth degree ; and so on.

Also, that if all the terms of a polynomial, or compound
quantity, be of the same degree, it is said to be homogeneous.

And it is evident from the rules established in Multiplication,

that if two polynomials be homogeneous ; their product will be

also homogeneous ; and of the degree marked by the sum of the

numbers which designate the degree of those factors.

Thus, in Ex. 1, page 29, the multiplicand is of the fourth

degree, the multiplier of the third, and the product of the de-

gree 4+ 3, or of the seventh degree.

In Ex, 12, page 31, the multiplicand is of the third degree,

the multiplier of the third, and the product of the degree 3+ 3,

or of the sixth degree.

Hence, we can readily discover, by inspection only, the er-

rors of a product, which might be committed by forgetting

Bome one of the factors in the partial multiplications.



CHAPTER II.

ON

ALGEBRAIC FRACTIONS.

115. We have seen in the division of two simple quantities

(Art. 84,) that vk'hen certain letters, factors in the divisor, are not

common to the dividend, and reciprocally, the division can only

be indicated, and then the quotient is represented by a fraction

whose numerator is the product of all the letters of the dividend,

not common to the divisor, and denominator, all those letters of

the divisor, not common to the dividend.

Let, for example, abmn be divided by cdmn ; then,

abmn ab

cdmn cd

It may be observed, that the fraction —z may be a whole

number for certain numeral values of the letters a, b, c, and d
;

thus, if we had = 4, ^= 6, crr2, c?— 3 ; but that, generally

speaking, it will be a numerical fraction which can be reduced

to a more simple expression.

§ I. Theory of Algebraic Fractions.

116. It is evident (Art. 1 03,) that ifwe perform the same opera-

tion on each of the two members of an equality, that is, upon

two equivalent quantities or numbers, the results shall always

be equal.

It is by passing thus from the fractional notation to the al-

gorithm of equality, that the process to be pursued in the

researches of properties and rules, becomes simple and uni-

form.

117. Let therefore the equality be

a=bxv (1).

when we divide both sides by b which has no factor common
with a, we shall have

!=«.......(2).

Thus V will represent the value of the fraction t. or the quo-

tient of the division of a by h.

b'
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118. If the nujnerator and denominator ofa fraction be both mul-

tiplied, or both divided by the same quantity, its value will not

be altered.

For, if we multiply by m the two members of the equality

(1), we will have these equivalent results,

ma=.mb x w (3)

;

dividing both by mb^ we shall have

ma

but Y^'' > therefore

ma a
-^=v=^ (4),mb b ^ '

m being any whole or fractional number whatever.

119. If thefraction is to be multiplied by m, it is the same whether

the numerator be mulliplied by it, or the denominator divided

by it.

For, if we divide by b, the two members of the equality (3),

we obtain the following,

ma . .~=mXv (5).

The equality (1) may also be put under the form

a=- bxmv (6),m ^ '

whence we derive, dividing each side by -b,
m

f^-^X« (7).

m

120. If afraction is to be divided by m, it is the same whether the

numerator be divided by m, or the denominator multiplied by it.

For, from the equality (1), we deduce these

^ mm m ^ '

dividing the first by b and the second by mb^ in order to have

V
, ihey become

V a V

m ' mb~~m
(io)....^^;£,=£....(n).

It is to be observed, that in t, the numerator is — and tlie
* 6' m
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denominator b, and that we employ the greater line for se-

parating the numerator from the denominator.

121. If two fractions have a common denominator^ their sum
will be equal to the sum of their numerators divided by the

common denominator.

For, let now the two equalities be

(12) a=bxv; a'= bxv' (13),

corresponding to the fractions

a a'

which have the same denominator ; adding the two equalities

(12) and (13), we shall have

a4-a'= ^t;H-Z>t;'=Z^(v+ «^)
;

and dividing both members by ^, in order to have the sum
sought v\-v\ it becomes

^^^
I ' ^^A\• —^znu+u . . . • (14).

Note. In adding the above equalities, the corresponding

members are added ; that is, the two members on the left-

hand side of the sign =, are added together, and likewise

those on the right. The same thing is to be understood when
two equalities are subtracted, multiplied, &c.

122. If two fractions have a common denominator, their differ-

ence is equal to the difference of their numerators divided by
the common denominator.

For, if we subtract the equality (13) from (12), we shall have
a— a'-=bv— bv'' =zb{v— v^) ;

dividing each side by i, and we will obtain

"-i^=«-"' (15).

123. Let us suppose that the fractions have different de-
nominators, or that we have the equalities

a= b . V, a=zb' . v'
;

we will multiply the two members of the first by b\ and those
of the second by b, an operation which will give

ab'= bb^v, a'b^zzbb'v
;

then adding and subtracting, we have

ab'^a'b-bb'{v^v'),
the double sign -[- which we read plus or minus, indicating at

the same time both addition and subtraction ; dividing each
side by bb\ in order to find the sum and difference sought

vdb^'j we will have
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ab' :^a''h
, , .,^.-±^=„±„'......(16);

from whence we might readily derive the rule for the addi-

tion and subtraction of fractions not reduced to the same de-

nominator.

124. It would be without doubt more simple to have re-

course to property (4) in order to reduce to the same denomi-
nator the fractions

a a! ,

but our object is to show, that the principle of equality is suf-

ficient to establish all the doctrine of fractions.

125. We have given the rule for multiplying a fraction by
a whole number, which will also answer for the multiplication

of a whole number by a fraction.

Now, let us suppose that two fractions are to be multiplied

by one another.

Let the two equalities be

az^ib . V, a' =:b' . v^

;

multiplying one by the other, the two products will be equal

;

thus,

aa'=bb^ . vv\

and dividing each side by bb\ in order to have the product

sought vv\ we will obtain

g-' 0^)-

Therefore the product of two fractions, is a fraction having

for its numerator the product of the numerators, and for its de-

nominator that of the denominators.

126. It now remains to shov/ how a whole number is to be

divided by a fraction ; and also, how one fraction is to be di-

vided by another.

Let, in the first case, the two equalities be

m=/« ; (2= 6 . V
;

if we divide one by the other, the two quotients will be equal,

that is,

m m
a bv

'

and multiplying both sides by b, in order to have the expres-

(18).

8ion
m
7* we shall find

mb

a
""
m
V
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Therefore, to divide a whole number by a fraction^ we must

multiply the whole number by the reciprocal of the fraction^ or

which is the same^ by the fraction inverted

Let, in the second case, the two equalities b^
a=b . u, a^—b' . v

;

if the first equality be divided by the second, we shall have

a _b . V

multiplying each side by b^ and dividing by 6, for the purpose

of obtaining the expression — , we will arrive at

"^=1 -x*:" (19).
ab V b a ^ '

Therefore, to divide one fraction by another, we must multiply

thefractional dividend by the reciprocal of the fractional divisor^

or which is the same, by the fractional divisor inverted.

127. These properties and rules should still take place in

case that a and b would represent any polynomials whatever.

According to the transformation a-^=^-j, demonstrated

(Art. 86), we can change a quantity from a fractional form to

that of an integral one, and reciprocally. So that, we have

-z=zbx-=bXar^=ba-^,-j-:=bx~-r=b X a-^ :=.ba-^, and
a a a^ a'^

a-^b-^d-^= -^ X -r^ X -j5= -ttttj- I" hke manner any quan-
a^ b^ d^ a^h^d^

tity may be transferred from the numerator to the denominator,

and reciprocally, by changing the sign of its index

:

a^b b bc~^ __ c-2 a-^x-'^z-^ ^ c^y^
Thus, ^= ^i^=-^3^=^Z2pi' *"^

'c-mb^y-n
" aWx^z '

128. If the signs of both the numerator and denominator of a

fraction be changed, its value will not be altered.

_, —a +a , a a a— b b—a
Thus, —-=—x-= +-=-=

.b~-\-b~' ' 6"~6' c-d d-c

Which appears evident from the Division of algebraic quan-

tities having like or unlike signs. Also, if a fraction have the

negative sign before it, the value ofthe fraction will not be altered

by making the numerator only negative, or by changing the signs

of all its terms.
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Thus, —T='\—r-, and =+——-= -.

And. in like manner, the value of a fraction having a negative

sign before it, will not be altered by making the denominator
only negative : Thus,

a— b a— b a— b

c— d d— c d— c
'

129. Note. It may be observed, that if the numerator be
equal to the denominator, the fraction is equal to unity ; thus,

if ai=^>, thenT=r:-=l : Also, if a is >5, the fraction is great-

er than unity ; and in each of those two cases it is called an
improper fraction : But if a is <6, then the fraction is less than
unity, and in this case, it is called a proper fraction.

§ II. Method offinding the Greatest Common Divisor of two or

more Quantities.

130. The greatest common divisor of two or more quanti-

ties, is the greatest quantity which divides each of them ex-

actly. Thus, the greatest common divisor of the quantities

IGa^i^^ \2a^hc and Aabc"^, is Aah.

131. If one quantity measure two others, it will also mea-
sure their sum or difference. Let c measure a by the units in

m, and b by the units in n, then a — mc, and b= nc ; therefore,

a-i-b=zmc-i-ncz=[m-\-n)c ; and a—bz=mc— nc=z{m—n)c ; or

a±b= {m±n)c ; consequently c measures a-{-b (their sum)
by the units in m-\-n, and a— b (their difference) by the units

in m— n.

132. Let a and b be any two numbers or quantities, where-
of a is the greater ; and let p= quo'ient of a divided by b, and
c=z remainder

;
y= quotient of b divided by c, and d= re-

mainder ; r= quotient of c divided by d, and the remainder —0
;

thus,

b) a{p

pb

c)b{q
qc

d)c{r
rd

Then, since in each case the divisor multi-

plied by the quotient j!?/m^ the remainder is equal

to be dividend ; we have

c=rd, hence qc—qrd (Art. 50)

;

bz=iqc-\-d:=:iqrd-{-d— [qr-\-\)d ; and pb=pqrd
-\-pd={pqr+p)d(An.6\.),
a=zpb-{- c=zpqrd-\-pd-\-rd=(pqr-\-p-^r)d.
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Hence, since p, q, and r, are whole numhers or integral

quantities, d is contained in b as many times as tliere are

units in yr-Hl, and in a as many times as there are units in

pqr-\-p-{-r \ consequently the last divisor </ is a common
measure of a and b ; and this is evidently the case, whatever
be the length of the operation, provided that it be carried on
till the remainder is nothing.

This last divisor d is also the greatest common measure of

a and b. For let a? be a common measure of a and h ; such
that a=mx, and br=nx, ihen pb=^pnx ; and c— a

—

pb=mx—
pnx=i{Tn—pn)xy also d=zb~qc=?ix— {qmx—qpnx)=-na—qmx
-\-pqnx=[n— qm-\-pqn)x

;
(because qc=q7nx—qpnx) therefore

ar measures d by the units in n— qm-\-pqn, n.ud as it also

measures a, and b, the numbers, or quantities «, b, and d have
a common measure. Now the greatest common measure of c?

is itself; consequently d is the greatest common measure of

a and b.

133. To find the greatest common measure of three num-
bers, or quantities, a, b, c \ let d be the greatest common
measure of a and b, and x the greatest common measure of d
and c ; then x is the greatest common measure of a, i, and c.

For, as a, b, and d have a common measure ; if d and c have

also a common measure, that same number or quantity will

measure a, 6, and c ; and if x be the greatest common measure

of d and c, it will also be the greatest common measure of a,

b, and c.

And, in like manner, if there be any number of quantities
;

«, i, c, rf, &.C. ; and that a; is the greatest common measure

of a and b
; y the greatest common measure of x and c ; z the

greatest common measure of y and c? ; &c. &;c. ; then will y
be the greatest common measure of a, b, and c ; 2^ the great-

est common measure of a, b, c, and c^ ; &c. &c.

134. The preceding method of demonstration is similar to

that given by Bridge in his Treatise on the Elements of Alge-

bra. The following is according to the manner of Garnier.
Thus, to find the greatest common divisor of any number of

quantities A, B, C, &;c., it is sufficient to know the method of

finding the greatest common divisor of two numbers or quan-

tities. For this purpose, we will at first seek the greatest com-

mon divisor I) of the quantities A and B, then the greatest

common divisor D' of D and C, and so on, and finally the last

greatest common divisor will be that which was required.

Let, in order to demonstrate it, the three quantities be A,

B, C ; we will have

7
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,^ (A^wD, ^

whence

m and n are necessarily prime to one another, otherwise D
would not be the greatest common divisor of A and B ; r and
q are also prime to one another, in order that D^ may be the
greatest common divisor of D and C. Now rY)\ the greatest

common divisor of A and B, cannot be the greatest common
divisor of A, B, and C, unless that r be equal to q, or a factor

of q ; but r and q being prime to one another ; D^ remains the

greatest common divisor of A, B, and C.

1 35. As the problem of finding the greatest common divisor

of any two quantities A and B, is the same as to reduce a
A

fraction — to its most simple expression ; because that in di-

viding A and B by their greatest common divisor, we have
the two least quotients possible ; admitting this enunciation,

and supposing A>B.
The greatest common divisor of A and B, cannot exceed

B ; it could be B itself, which we can readily know, if we
perform the division of A by B, which gives

-^^+g-....(l),

q being the integral quotient, and R the remainder, if A is not

A
exactly divisible by B, The fraction — being changed into q

-}-—-, cannot be reduced unless that .^ or its reciprocal -rr- is
B D H

reducible, because q is an integral quantity which is always
irreducible ; or B being >R, the quantity which ought to re-

r)

duce — , cannot exceed R, it might be R itself, which we will

know in performing the division of B by R, which gives

-=,^+ -....(2),

q^ being the integral part of the quotient, and R' the remain-
p

der <R ; we say still that the reduction of -j^ depends on that

p'

of
-J7-,

or its reciprocal, because that / is an irreducible quan-

tity ; so that by continuing in this manner we shall have the

following decompositions

:
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^=g +-^^ .... (3).

We see very clearly that the quantity which ought to reduce
A R R
^ is that which must reduce — or ~, which must reduce

R' R . . , ^ . R" R'
TT ^^ T57» which must reduce jj-/ or —-.

If, for example, R'" = 0, this quantity cannot be greater

than R" ; R" is therefore the greatest quantity which can re-

duce the fraction — ; consequently it is the greatest common

divisor of A and B.

136. Let R"r:zO and R'^rl: unity will be, according to

what has been above demonstrated, the greatest common di-

visor of A and B ; the fraction jr- will therefore itself be the

most simple expression, that is, it will be irreducible. Re-
ciprocally', (he last divisor being unity, we may conclude that the

fraction proposed is irreducible, or in its lowest terms.

137. It may also be shown, that the greatest common mea-
sure of two quantities will, in no respect, be altered, by mul-

tiplying or dividing either of them by any quantity which is

not a divisor of the other, or that contains no factor which is

common to both of them ; thus, let the quantities ab and ac

be taken, of which the common measure is a ; then, if ab be

multiplied by d, they will become abd^ and ac ; where it is

evident that a is the common measure, as before. And, con-

versely, if the first of the two quantities abd, ac, be divided

by d, they will become ab, ac, where a is still the common
measure.

138. But it will not be the same if one or two of the quan-

tities be multiplied or divided by a quantity which is a divisor

of the other, or has a common factor with it ; for if the first

of the two quantities ab, ac, be multiplied bj'^ c, they will be-

come abc, ac, of which the common divisor is ac, instead of

a ; and, conversely, if the first of the two quantities abc and

ac, be divided by c, they will become ab and ac ; of which
the common divisor is a, instead of ar.

139. Hence, if the numbers or quantities be TwncN, pqcW
;

the common factor c, to simplify the operation, may be sup-

pressed, observing, in the meamime, after having found the
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greatest common divisor a, of the two quotients N and N', to

multiply it by this factor c, and the product will be the great-

est common divisor sought. Also, if a factor d is introduced

into the two quantities, it is necessary to divide the greatest

common divisor by this factor.

140. As the foregoing demonstration may be extended to

any algebraic quantities whatever, we are therefore conducted
to this practical rule.

To fmd the greatest common divisor of two or more compound
algebraic quantities.

RULE.

141. Arrange the two quantities according to the order of

their powers, and divide that which is of the highest dimen-
sions by the other, having first expunged -any factor that may
be contained in all the terms of the divisor without being

common to those of the dividend ; then divide this divisor by
the remainder, simplified, if necessary, as before ; and so on,

for each remainder and its preceding divisor, till nothing re-

mains : then the divisor last used will be the greatest com-
mon divisor required. And the greatest common divisor, of

more than two compound quantities, is found in like manner
;

by finding in the first place the greatest common divisor of

two of them, as above, and then of that common divisor and
the third, and so on. The last divisor, thus found, will be the

greatest common divisor of all the quantities.

Example 1. The greatest common divisor of the compound
quantities Sa^ — 3a'^b-\- ab^— P and 4a'^b-^5ab'^-\-b^,is required.

Dividend. Divisor.

3a3.

4
3a^-{- ab-^—b'^

I2a^-~l2a^+ 4ab^—4b^
l2a^~15a^j-3ab^

(4a'^b—5ab^-\-b^)-r-b=z

4fl2 —5ab -\-P

Partial quot. 3o

3a2 -f ab —4^2
4

12a2+ 4a.b—\W^
12a2— 15a^-h 3Z»2

19a6— 19^>2

Divisor.

4a^—5ab+b^

Partial quot. 3.
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Dividend. Divisor.

4a2— 4ab

ab+ b^

ixb-\-b'^

(\^ab-\W")-r-\^h:
a--b

Quot, 4a—

b

Here the quantities are already arranged according to the

powers of the letter a ; the first is taken for a dividend, and

ihe second for a divisor. In the first place, the factor b is

found in every term of the divisor, and not in every term of

the dividend ; therefore, the divisor is divided by the factor 6,

and the result is 4a^~5ab-{-b'^ \ but the first term of this re-

sult will not divide exactly that of the dividend, on account of

the factor 4, which is not in the dividend ; the dividend is

therefore multiplied by 4 in order to render the division of their

first terms complete. Now, the dividend \2a^— \2a'^b-\-4ab^—
4b^ is divided by the divisor 4a^ —dab-^-b"^, and the partial quo-

tient is 3a. Multiplying the divisor by this quotient, and sub-

tracting the product from tho dividend, the remainder is 3a^b

^alj2_4P^ a quantity which, according to (Art. 135), must

still have with 4a^-^5ab^b^ the same greatest common divisor

as the first.

Suppressing the factor b, common to all the terms of the

remainder, or, which is thasame, dividing the remainder by 6,

and multiplying the result by 4, to render possible the division

of its first term by that of the divisor, we have then for the

dividend the quantity

l2a'^-{-4ab-ieb\

and for the divisor the quantity

4<z2_5aJ4-i2

.

the partial quotient is 3.

Multiplying the divisor by the quotient, and subtracting the

product from the dividend, the remainder is

19«/>— 19^2,

and the question is now reduced to finding the greatest common
divisor of I9ab— I9b'^ and 4a'^— 5ab-\-b^.

But the letter a, according to which the division has been
performed, being of the second degree in the divisor, and only

of the first in the remainder ; it is necessary therefore to take

the last divisor for a new dividend, and the remainder for a new
divisor.

Having, at the commencement of this new division, divided

the divisor Idab—lW by the factor I9b, common to all ita
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terms, and which is not at all common to those of the dividend

;

therefore the dividend is 4a2

—

5ab-\-b^, the divisor a—b, and
the quotient 4a— b

;

The operation is completed, because nothing remains ; and
consequently, (Art. 135), a— b is the greatest common divisor

sought.

If we divide the two proposed quantities by a—b, the quo-

tients will be

3a2+^2 and 4ab-b'^

:

Whence, the two given quantities are thus decomposed as

follows :

(3a2-f ^,2)x(a_^,)^ f^4ab-b^)x{a'-b).
Ex. 2. Required the greatest common divisorof Sa^—2o—

1

»nd4o3—2a2—3a+l.
Dividend. Divisor.

4a3_2a2_3a_|_l 3a^-2a-l
3

12a"^--6a2-9a+ 3

I2a^— 8a^— 4a

2a2_ 5a+3
3

6a2_ 4a-2

Partial quot. 4a

Divisor.

3a2_2a_i

Partial quot. 2

(-lla^ll)^ 11 =
Dividend.

3a2-2a-l
3a2— 3a

«—

1

a—\ Complete quot. 3a+l

In the above operation, the remainder — lla-f-H is divid-

ed by —11, (its greatest simple divisor with a negative sign),

so as to make the leading term positive : or, which is the same,

if any of the divisors, in the course of the operation, become
negative, they may have their signs changed, or be taken

affirmatively, without altering the truth of the result ; thus, in

the above operation, changing the signs of — lla-f-H, it be-

comes 11a— 11, and dividing 11a— 11 by its greatest simple

divisor 11, we have a— l,as before.
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Therefore a— \ is the greatest common divisor sought,

and the two given quantities may be readily decomposed,

thus;

(3(7+l)x(a-l), (4a24.2a-l)x(a-l).

Ex. 3. Required the greatest common divisor of a^—P,
a^-]-2a'^b-\-2ab^-\-P, and a^-\-aH''^-\-b\

In the first place, the greatest common divisor of a^—b^

and a^+2a^-{-2ab'^-\-b^, is a'^-j-ab-\-b-, which is found thus ;

Dividend. Divisor.

a^+2aH-]-2ab^-\-b^

a3 -b^
a?-b^

{2a'^b+ 2ab^-{-2b^)-:r2b:

Dividend.

ParHal quot. 1

a3- h'

-aH-ab^-b^
^a'^b^ab'^-¥

a^-^ab-^b"^

Complete quot. a—b

Hence, the greatest commondivisorof a^— J^and a^-\-2a^h

-\-2ab^-^b^, is a'^-{-ab-^b^ ; and the greatest common divi-

sor of a'^-\-ab-^b'^ and a^-{-a^b'^-{-b*, is found to be a^—ab-{-b^t,

thus;

Dividend. Divisor.

a*-{-a^ +a262

—a^ -\-b*

—a'^b — a2^2. ab^

a^-{-ab+b^

Quotient,

a'^—ab-^b^

a%'^-\-a¥+b^

a^b^-i-ab^+b*

Consequently a'^-\-ab-^b'^ is the greatest common divisor

which was required ; and dividing each of the given quanti-

ties by this divisor, we will thus decompose them as follows

:

(a-b) (a^+ ab-^-b^ {a+ b) (a-'+ ab+b^), (a^^ab+ b^) (a2-f.

ab-^b^)

142. It has been remarked (Art. 136), that if the last divi-

sor be unity, and the remainder nothing ; then the fractiojn is,
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already in its lowest terms ; this observation is applicable to

numbers, and as in algebraic quantities, the greatest simple

divisor may be readily found by inspection.

Now, it only remains to discover, if compound algebraic

quantities can admit of a compound divisor.

If, by proceeding according to the Rule (Art. 141), no
compound divisor can be found, that is, if the last remainder

be only a simple quantity ; we may conclude the case pro-

posed does not admit of any, but is already in its lowest terms.

Ex. 4. Required the greatest common divisor of a'^-\-ax-{-

x^ a.nAa^-{-2a'^x-\-3ax^-{-4x^. It is plain by inspection that

they do not admit of any simple divisor ; then the operation

according to the rule will stand thus

;

Dividend. Divisor.

a3+2a2a;-|-3aa;2+4a:3 a^ -\- ax -\-
x"^

a^-f- a^x-\- ax^

(jp-x-\'2ax^-\-\x?

c?x-\- ax^-\- x^ Partial quot. a-\-x

(<2a;2+3a:3)-i-a:2:

Dividend.

a2+ ax-{- x"^ a+3a?
a^-^-^ax

2ax-\- x^

-2ax—^x^ Partial quot. a—2x

* +7a;2

Here, the last remainder is found to be the simple quantity

7x^ ; we may therefore conclude that the given quantities do

not admit of any divisor whatever.

143. When tiie quantity which is taken for the divisor con-

tains many terms where the letter, according to which we
have arranged, has the same exponent ; then every succes-

sive remainder becomes more complicated than the preceding

one ; in this case. Analysts make use of variou.s artifices^

which can only be learned by experience,

Ex. 5. Required the greatest common divisor of a^J-f-ac^

— </^ and ab— ac-^-dr.

Dividend. Divisor.

aH4^ac'^-d^

rem. a'^c-{-ac'^—a(P'—d^

ab—ac-\-d^

Partial quot. a

Dividing at first a^b by ab^ we find for the quotient, a

;
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multiplying the divisor by this quotient, and subtracting the

product from the dividend, the remainder contains a new term,

d}c, arising from the product of —ar. by a.

By proceeding after this manner there will be no progress

made in the operation ; for, taking a^-c-\-ac^— ud?-— d^ i'or a

dividend, and multiplying it by 6, to render possible the divi-

sor by aft, we will have

Dividend. Divisor.

a'^bc-\-ahc'^—-ah(P'— hd^ ab—ac-\-d^

'^bc- '+ acd^

Partial quot.

acrem. a^c'^+abc'^— acd^— abd'^— bd'^

and the term —ac will still reproduce a term a-c"^, in which the

exponent of a is 2.

To avoid this inconveniency, we must observe that the di-

visor ab— ac-\-d^=:a{b— c)-{-d'^, reuniting the terms ab—ac
into one, and putting, to abridge the calculations, b— c=:wi

;

we will have for the divisor a7n-\-d'^ ; it is necessary to mul-

tiply all the dividend aV)'\-ac'^^d^ by the factor rn, for the pur-

pose of finding a new dividend whose first term would be divi-

sible by the quantity am forming the first term of the divisor

;

the operation will become,
Dividend. Divisor.

a^bm-^-ac^m—d^m am-{-d^

a^bm-^-abd^

1st rem. + ac^m— abd^—d^m
-^ac'^m-{-c^d^

Partial quot.

aZ»+ c2

2d rem. —abd'^—c'^d?—d'^m

By the first operation, the terms involving a^ are taken away
from the dividend, and there remain no terms involving a ex-
cept in the first power. In order to make them disappear, we
will at first divide the term ac^m by am, and it gives for the

quotient c^ ; multiplying the divisor by the quotient, and sub-
tracting the product from the dividend, we will have the second
remainder ; taking this second remainder for a new dividend,
and cancelling in it the factor c?"^, which is not a factor of the
divisor, it will become

—ah— c^

—

dm
;

multiplying by m, we shall have
Dividend. Divisor.

—abm--c'^m~dm'^

—abm—bd^

rem. +bd^—c^m—dm^

am+cP

Partial quot. — h.
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The remainder, bd'^—c'^m— dm-, o( this last division does not

contain the letter a ; it follows, then, that if there exist between

the proposed quantities a common divisor, it must be indepen-

dent of the letter a.

Having arrived at this point, we cannot continue the divi-

sion with respect to the letter a ; but observing that if there be

a common divisor, independent of a, of the two quantities

hd^— c^m— dm'^ and am-\-d^, it may divide separately the two

parts am and d^ of the divisor ; for, in general, if a quantity be

arranged according to the powers of the letter a, every term

of this quantity, independent of a, must divide separately the

quantities by which the dillerent powers of this letter are

multiplied.

In order to be convinced of what has just been said, it is

sufficient to observe, that in this case each of the proposed

quantities should be the product of a quantity dependent on.

a, and of a common divisor which does not at all depend on it.

Now, if we have, for example, the expression

Aa-^+ BaM- Ca^+ Da-f E,

in which the letters A, B, C, D, E, designate any quantities

whatever, independent of a, and if we multiply it by a quantity

M, also independent of a, the product,

MAa++MBa^4-MC«24-MDa-hMR,
arranged according to a, will still contain the same powers of

a as before ; but the coefficient of each of these powers will be

a multiple of M"
This being admitted, if we substitute for m the quantity

(h— c), which this letter represents, we shall have the quan-

tities

hd-^-c'^{h-c)-c[h-cf,
a{h-c)-\-d^;

now it is plain that h— c and d"^ have no common jfactor what-

ever : therefore the two proposed quantities have not a com-
mon divisor.

144. The greatest common divisor of two quantities may
sometimes be obtained without having recourse to the general

Rule. Some of the methods that are used by Analysts for this

purpose, will be exemplified by the followino^ Examples.

Ex. 6. Required the greatest common divisor of a^i^-f-a^i^

'\'¥c'^—a^c'^—a%c'^—h'^c\ and a^b+ ah'^^-¥-a''-c—ahc—¥c.

After having arranged these quantities according to the

powers of the letter «, we shall have

(^>2_c2)a4_J_(^,3_^,c2)a3_|_J4c2_52c4

(J_c)a2^-(62_^,c)a-|-63-&2c;
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It may at first be observed, that if they admit of a common di-

visor, which should be independent of the letter a, it must di-

vide separately each of the quantities by which the diflerent

powers of a are multiplied, (Art. 143), as well as the quanti-

ties b^c'^— b'^c^ and b^— b'^c^ which comprehend not at all this

letter.

The question is therefore reduced to finding the common
divisors of the quantities b'^—c^ and b— c, and, to verify af-

terward, if, among these divisors, there be found some that

would also divide P— bc^ and b"^— be, b^c^— b'^c^ and b'^— b'^c.

Dividing b'^— c^ by b— c, we find an exact quotient b-\-c :

h—c is therefore a commim divisor of the quantities b'^— c^

and h—c, and it appears that they cannot have any other di-

visor, because the quantity b— c is divisible but by itself and

unity. We must therefore try if it would divide the other

quantities referred to above, or, which is equally as well, if

it would divide the two proposed quantities ; but it will be

found to succeed, the quotients coming out exactly,

(6+ c)a*+ (Z/2 4- 6c)a3 4- 63^2
_f_

^2^3 .

and a^-fba-\-b'^.

In order to bring these last expressions to the greatest pos-

sible degree of simplicity, it is expedient to try if the first be

not divisible by b-\-c ; this division being effected, it succeeds,

and we have now oidy to seek the greatest common divisor of

these very simple quantities
;

ai-l-6a^-|-6V, and aH^a+ i-.

Operating on these, according to the Rule, (Art. 141), we
will arrive, after the second division, at a remainder contain-

ing the letter a in the first power only ; and as this remainder

is not the common divisor, hence we may conclude that the

letter a does not make a part of the common divisor sought,

which is consequently composed but of the factor b—c.

Ex. 7. Required the greatest common divisor of (d?— c^)

Xa^-f '^*— f?-c2 and Ada^—{2c'^-\-Acd)a-{-2c^.

Arranging these quantities according to d, we have

(a2_c2)<Z24.c4_aV, or [a^-c'^)d:^—{u?—c'^)c'^,

and (4a2—4ac)Xf/— (a—c)x2c2 ;

it is evident, by inspection only, that a^

—

c^ is a divisor of the

first, and a— c of the second. But a?'— c'^ is divisible by a—c ;

therefore a—c is a divisor of the two proposed quantities : Di-

viding both the one and the other by a—Cy the quotients will

he
(a+c)x(ti2— c2), and Aad—2c^\
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which, by inspection, are found to have no common divisor,

consequently a— c is the greatest common divisor of the pro-

posed quantities.

Ex. 8. Required the greatest commoiv divisor of y*— a;* and
y^—y^x—yx^-rx?. Ans. y'^—x'^.

Ex. 9. Required the greatest common divisor of a^— 6* and
a^—b^. Ans. a2-62.

Ex. 10. Required the greatest common divisor of a^-f-a^^—
ah^—b^Q.x\^a^^a%'^-{-bK Ans. d^+ ab^-b'^.

Ex. 11. Required the greatest common divisor of d^— 2ax
-\-x^ and c^— cP-x— ax^-{-x'^. Ans. d^— 2ax-\-;]^.

Ex. 12. Find the greatest common divisor of 6x^— Sya;^-}-

2y2a; and \2x!"—\byx-\-2>}f'. Ans. a;—y.
Ex. 13. Find the greatest common divisor of 366-a^— ISA^a^

—2762a4-}-962a3 and 2lW-'a^— \W^a''— '^b''-dK

Ans. 952a4- 952^3.

Ex. 14. Find the greatest common divisor of (c—c/)a2 -|-

(25c-2M)a+(62c-^2^) and [bc—bd^c^-cd^a^-^bH-^bc^—
b'^c—bcd). Ans. c— d.

Ex. 15. Find the greatest common divisor of x^-\-9x'^-\'

27a:— 98 and a;2-f-12x— 28. Ans. ar— 2.

§ III. METHOD OF FINDING THE LEAST COMMON JIULTIPLE OF
TWO OR MORE QUANTITIES.

145. The least common multiple of two or more quantities

is the least quantity in which each of them is contained with-

out a remainder. Thus, 20abc is the least common multiple

of 5«, Aac, and 2b.

146. The least common multiple of any number of quanti-

ties, literal or numeral, monomial or polynomial, may be easily

found thus :

Resolve each quantity into its simplest factors, putting

the product of equal factors when there are any in the form of
powers, then multiply all together the highest powers of every

root concerned, and the product will be the least common multi-

ple required.

Ex. 1. Required the least common multiple of aWx, acbx^,

abc^d.

H^re the quantities are already exhibited in the form re-

quired. Therefore the least common multiple is d^b'^c-dx'^.

Ex. 2. Required the least common multiple of 2a2a:, Aax^y

and 6x^.
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Here the literal quantities are already in the form requir-

ed. The coefficients resolved into their simplest factors be-

come 2, 22, 2x3. The least common multiple is therefore

Ex. 3. Required the least common multiple of 12a2y(a-j- ft),

6a3y2+12a2 by^j-eab^f, and 4a^y^.

These quantities resolved into their simplest factors become
2^x3xa^y{a+ b)

2 X3xaf{a+b)^
22xa2y2

Hence the least common multiple required is 2^ x 3 X a^y^

{a+by-=i2ay{a-^b)\
Ex. 3. Required the least common multiple of 8a, 4a^^ and

I2ab. Ans. 24a26.

Ex. 4. Required the least common multiple of a2—ft2^^_j_j^

and a2+ft2 ^^js a*— 6*.

Ex. 5. Required the least common multiple of 72a, 15ft,

9aft, and 3a2. Ans. 135a2ft.

Ex. 6. Required the least common multiple of a^+3a2ft-|-

3ab^-{-b\ a2_|_2aft+ ft2^ a2_ft2, Ans. a*-\-2a-'b-2ah^—b*.

Ex. 7. Required the least common multiple of a+^j a— ft,

a2+aft+ft2, and a2-aft+ft2. Ans. a^—b^

^ IV. REDUCTION OF ALGEBRAIC FRACTIONS.

CASE I.

To reduce a mixed quantity to an improper fraction.

RULE.

147. Multiply the integral part by the denominator of the
fraction, and to the product annex the numerator with its pro-

per sign : under this sum place the former denominator, and
the result is the improper fraction required.

Ex. 1. Reduce 3a; 4"^ to an improper fraction.

The integral part 3x, multiplied by the denominator 5a of
the fraction plus the numerator (2ft), is equal to 3xx5a-\-2b
= 15ax+2ft;

Hence, is the fraction required.

3a?
Ex. 2. Reduce 5a to an improper fraction.

8
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Here baxy=^^ay \ to this add the numerator with its pro-
per sign, viz. —3a; ; and we shall have bay—^x.

Hence,— is the fraction required.
y

fjpi /tpi

Ex. 3. Reduce x^ ^ to an improper fraction.

Here, x^ X xz=ix^ ; adding the numerator c^—y"^ with its pro-

per sign : It is to be recollected that the sign — affixed to the
Q[2 J.2

fraction means that the whole of that fraction is to be
X

subtracted, and consequently that the sign of each term of the

numerator must be changed, when it is combined with a;^,

hence the improper fraction required is ~. Or, as

q2 ««2 __ q2
_J_

j/2 y2 __^2
^—= ^=-^

; (Art. 67), the proposed mixedXXX
qI y2 y2 ^2

quantity a;2 ^, may be put under the from x^-\-- ,

X X

which is reduced as Ex. 1. Thus,x2xa;+y2_a2_j;3^y2_o2.
, - , "f—a^ , x^-fy2_a2
hence, x^-\-' =

.

X X

Ex. 4. Reduce Sa^-j _ to an improper fraction.

Here, bo?y.1ax=\^a^x ; adding the numerator 'ix^—a-\'l

to this, and we have \^a^x-\-2x^-—a-\-l.

10a3x-h3a;2-a4-7 . , ,. .

Hence, is the traction required.
\tax

^

Ex. 5. Reduce 40:^ to an improper fraction.

Here, 4a'2x2ac=8aca:2, in adding the numerator with its

proper sign ; the sign — prefixed to the fraction signi-
<ii(tC

fies that it is to be taken negatively, or that the whole of that

fraction is to be subtracted ; and consequently that the sign

of each term of the numerator must be changed when it is

, . , . 1 ^ o 1 ^acx^— ^ah— c . , -

combined with ^acx^ ; hence, is the traction re-
2ac

. , ^ 3a6-fc .
— 3a6— c —3a6— c .,

quired. Or, as = -| = (x\rt.^ '

lac ^ 2ac 2ac ^

108) ; hence the reason of changing the signs of the numera-

tor is evident.
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q2 -p2

Ex. 6. Reduce x to an improper fraction.

Ans. .

X

Ex. 7. Reduce ab to an improper fraction.
5x

. 5ahx—a^—c
Ans. -.

ox

Ex. 8. Reduce ax^ to an improper fraction.

a^x^-3b
Ans. .

a

Ex. 9. Reduce a—x-{ to an improper fraction.
X

Ans. ',

X

Ex. 10. Reduce 3x^ — to an improper fraction.

2\ax^—ix-{-9
Ans.

7a

2x 5
Ex. II. Reduce 5a; — to an improper fraction.

13a;+5
Ans. —3—.

Ex. 12. Reduce l+2« — to an improper fraction.

a; -f 10x24.4
Ans. .

-t ox

CASE II.

To reduce an improper fraction to a whole or mixed quantity.

RULK.

148. Observe which terms of the numerator are divisible

by the denominator without a remainder, the quotient will give

the integral part ; and put the remaining terms of the nume-
rator, if any, over the denominator for the fractional part

;

then the two joined together with the proper sign between
them, will give the mixed quantity required.
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hx. 1. Reduce to a mixed quantity.

Here, ^ =zx+2a is the integral part, and —r is the
X flt*

fractional part

;

therefore x-\-2a-\—- is the mixed quantity required.

Ex. 2. Reduce —-

—

^,~— to a whole quantity.
x'^'\'X^y^-\-y^

^ ^

Dividend. Divisor.

~6„2opy-i-y
-—a^y2 __ 3j4y4 <j,2y6

a;*y4-f-x2y6+y8

a:*y*-f a:y4-y^

Quotient.

a;*— a;2y2_|-y4

#

Here the operation is performed according to the rule

(Art. 93), and the quotient x^—x'^y^+i/'^ is the whole quantity

required.

Ex. 3. Reduce — to a mixed quantity.

Here, —=a is the integral, and the fractional part ;

X X

therefore a is the mixed quantity required.

Ex. 4. Reduce i— to a mixed quantity.
x-\-a

x-\'a)x^—ar-^b(x^a-\ the mixed quantity required.

x^-^-ax

—ax—d^
—ax—a^

* +*
Here the remainder b is placed over the denominator x-^-a^

and annexed to the quotient as in (Art. 89).

T. r. Ti J 3a^-^-h6ab-2x+2c ^
. .

Ex. 5. Reduce —^-, • to a mixed quantity,
3a6
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Here —7 =ab+2 is the integral part,
OCIO

, —2a;+2c 2a?— 2c 2c— 2a; ,, ,«„x • ^ r

tional part

;

,

, ,
^ 2a;—2c ,

. „ .
2c—2x . , . ,

. • .ao+2 r—,—, or ao+2H r— is the mixed quantity
3ao 3ao

required.

2lax^ 4x4-9
Ex. 6. Reduce to a mixed quantity.

4a;-9
Ans. 3a;^-

7a

Ex. 7. Reduce—^—r-o to a mixed quantity.
4aj

* « o 3aa;-f 66

'|.4 /T>4

Ex. 8. Reduce
^

- to a whole quantity.

Ans. x'^—a\

Ex. 9. Reduce — to a mixed quantity.

Ans.3a-1+-^-.
a; 3aj 2/'^-4- ^cix

Ex. 10. Reduce ~~ to a mixed quantity.
a?2— 3y2

^ -^

Ans. ^2+ ^'"^

a;'-^— 3y»

a;64-3aa;2 q6 J
Ex. 11. Reduce —

—

to a mixed quantity.
x^-\-a^

Ans. x^— a^-h- 3 I ,,3x'^-^-a

r^ ,« n J 3a:2— 12aj;4-y— 9a?
Ex. 12. Reduce —^ to a mixed quantity.

iiX

Ans. a:—4o—3-f ^.

%•
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CASE III.

To reduce a fraction to its lowest terms ^ or most simple

expression.

149. Observe what quantity will divide all the terms both
of the numerator and denominator without a remainder : Di-
vide them by this quantity, and the fraction is reduced to its

lowest terms. Or, find their greatest common divisor, accord-

ing to the method laid down in (Art. 141) ; by which divide

both the numerator and denominator, and it will give the frac-

tion required.

Example 1.

^ , Ux^-\-7ax^-\-28x . ,

Keduce —

—

to its lowest terms.
21a;2

The coefficient of every term of the numerator and deno-

minator of the fraction is divisible by 7, and the letter x also

enters into every term ; therefore 7x will divide both the nu-

merator and denominator without a remainder.

l4x^-^7ax^-{-28x ^ , ,
,2\x'^ „ ,Now =2a:2-f-aa;+4, and——=3ar; hence

7x 7x

^ ^ . . . , . 2x'^^-ax-\-4:
the fraction in its lowest term is .

ox

Ex. 2. Reduce —-, to its lowest terms.
Soabcx

Here the quantity which divides both the numerator and

denominator without a remainder is evidently 6abc ; then

30a262c -6aZ>c2— 12aV6 , , „ , 36abcx .

; =^5ab—c—2ac ; and -—^— = oa;

;

6abc oabc

Hence is the fraction in its lowest terms.
t>x

a^— lfi

Ex. 3. Reduce ——:- to its lowest terms,
a*— A*

Here, a* - ^»* = (a^ 4 &^) x (a^ - b''), (Art. 107.) ; and,

consequently, a^—b"^ will divide both the numerator and de-

a^— b"^

nominator without a remainder ; that is, 2_}^ = 1 = new
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numerator, and

tor; hence,

(024.^2) x(a2_J2)
:a-+^^= new denomina-

a2+62
is the fraction in its lowest terms.

Ex. 4. Reduce ^ —
^r-r.
——^r-^ to Its lowest

j;3_a^a_g^2-p_^6^3

terms.

Here, by proceeding according to the method of (Art. 141),

we find the greatest common measure of the numerator and
denominator to be x'^-\-1ax^2oP- ; thus.

a;4_3aa;3_-8a2j;2-|. ISa^a:— 8a*

ar*— aa;^— Sa^x^-j- 6a%

—2aa;3+12a3x _ 8a*

j;3_aa,2_8a2a:+6a3

Partial quot. x—^a

remaind. .2a2a;2— 4a3j:+4a*;

then.
-2a2a;2_4a3^-f_4a4

-2a2
visor

;

a;2-f2aa?—2a'^)a;3— a.r2_ 8a2a; -f 6a3(a;

a:3+2aa;2_2a2a;

=a;2 -j- 2aa: — 2a2 — the next di-

3a

— 3aa;2— 6a2a:4 60^

— 3aa:2— 6a2a;+6a''

And, dividing both terms by the greatest common measure,

thus found, we have the fraction in its lowest terms ; but the

numerator, divided by the greatest common measure, gives x
— 3a, as above, equal to the new numerator ; and the denomi-
nator, divided by the same, gives a;2— 5aa:H-4a2 ; thus,

x^—Sax^- 8a2a;24.i8a3a,_8a*

a;*4-2aa;3— 2a2a;2

—5ax^— 6a'^x'^-\-l8a^x

— 5aa;3— 10a2a;2+10a3a;

4a2a:2+ 8a3j;— 8a*

4a2a;2+ Sa-^a:— 8a*

a:2 4-2aa:—2a2

Quotient.

x^—5ax-{-4a'^

Hence, the fraction in its lowest terms is
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0?— 3a

x^— 5ax+4a^
' 150. In addition to the methods pointed out in (Art. 144),

for finding the greatest common divisor of two algebraic quan-

tities, it may not -be improper to take notice here of another

method, given by Simpson, in his Algebra, which may be used

to great advantage, and is very expeditious in reducing frac-

tions, which become laborious by ordinary methods, to the

lowest expression possible. Thus, fractions that have in

them more than two different letters, and one of the letters

rises only to a single dimension, either in the numerator or in

the denominator, it will be best to divide the numerator or de-

nominator (whichever it is) into two parts, so that the said

letter may be found in every term of the one part, and be to-

tally excluded out of the other : this being done, let the

greatest common divisor of these two parts be found, which
will evidently be a divisor to the whole, and by which the

division of the other quantity is to be tried ; as in the follow-

ing example.

r. ^ -r. 1 x^-\-ax'^-\-bx'^—2a^x-{-bax— 2ba'^ . .

1l.x. 5. Reduce l—

;

-—

;

toitslow-
x^—bx-{- Zax—2ab

est terms.

Here the denominator being the least compounded, and b

rising therein to a single dimension only ; I divide the same
into the parts ic2-}-2a.T, and —bx—2ab\ which, by inspec-

tion, appear to be equal to {x-{-2a)x, and (a;-f2a)x — b.

Therefore x-{-2a is a divisor to both the parts, and likewise

to the whole, expressed by {x-\-2a)x{x—b); so that one of

these two factors, if the fraction given can be reduced to lower

terms, must also measure the numerator : but the former is

found to succeed, the quotient coming out x"^— ax-\-bx—aby
/y>2 n.y) —^ uOT.—-do

exactly : whence the fraction is reduced to -,- ,

x—b
which is not reducible farther by x—b, since the division

does not terminate without a remainder, as upon trial will be
found.

^ ^ „ , 5a''^+10a*i2_|_5a3^3 _

Ex. 6. Reduce — ——to its lowest terms.
«-^6

+

2a^b^+ 2a^b'+ d^b^

Here, the greatest simple divisor of the numerator and de-

nommator is evidently, a^b ; Now, -, =ba^

. ,.x o. . . TO J a^b^-2a'^b'^+ 2a'^b'^+d^b^ o . „ oz+ 10a26+5a62 ; and— ^ = a^-\'2d^b —



ALGEBRAIC FRACTIONS. 81

„ ,, TT t^ 1 • 5a^+\0a'^b-{-5ab'' ^ ^
ab^i-P. Hence the result is

^ . » 9l . » iv . i? J ^"" '*i®

greatest common measure of this result is a 4-*, which is found

thus;

a^^2a^+2aP+b^) 5a^-\-l0a^-]-5ab^{5

5a^-\-l0aH+l0ab^-\-ob^

remainder .... ~5ab^~5b^

And -TT =a-\-bj which by another operation is

found to divide the numerator without a remainder ; and con-

sequently dividing both the numerator and denominator of the

fraction o
. » o,

. ^ l9 . IT ^7 ^+^' w® *^*v® ^»e fraction

. . , , . 5^3+ 10^25 4-50^2
m Its lowest terras; that is, —r zzzOa^-f-dab;

. a^±2fb+2ab^^-^-b^ „ .
,

, ,2.
and ; z=a^'\'ab+ b^:

a-\-b

5a^+5ab . , , . . • ,

Hence -r-

—

r-r-r; is the fraction m its lowest terms.
a^-^ab-{-b^

Ex. 7. Reduce ^—-^ to its lowest terms.
7x^y

X

^ „ „ , 51a^— 17a2+34a? . ,

Ex. 8. Reduce — to its lowest terms.
17a;

3a:2_a._|_2
Ans. : .

Ex. 9. Reduce , . ,, to its lowest terms.

Ans.
a^+ab-^-b^

X^ I (t^X^ I /T^

Ex. 10. Reduce -— ^ r ~ to its lowest terms.
X* -f" ''^ — a *— fit

ar^— ax-fa'
Ans. 2

—

Ex. 11. Reduce ^^—-,^3p^^,--g-^3^

7a-26
5a2-3a6+26»*



ALGEBRAIC FRACTIONS.

a*—

M

Ex. 12. Reduce ——z^ to its lowest terms.

Ans.
"'+''

V^~ X^
Ex. 13. Reduce — ^ —

—

- to its lowest terms.IS.

Ans.
y-x

Ex. 14. Reduce —
^,^ . ,, to its lowest terms.

n— h
Ans.

Ex. 15. Reduce
;; to its lowest terms.

Ans.

T. ,^ r» J a34-26a24_ 362^2 .

Ex. 16. Reduce -——-j--—-—— to its lowest terms.

Ans.

a24-a64-62

jst terms.

q2_2aj:4- ar^

a4-«

jrms.

04-264-362

2a2—36a—562*

T^ ,« T> 1 o2—-2aa:4-vK^ . ,

Ex. 17. Reduce — ——r to its lowest terms.
aJ

—

a^x— ax^ -\- x-*

Ans. .

a4-«
fl '^b ct

Ex. 18, Reduce ^ . ^ , , m to its lowest terms.
o2 "1-206 4- 62

o4-6

CASE IV.

To reduce fractions to other equivalent ones, that shall

have a common denominator.

RULE L

151. Multiply each of the numerators separately, into all

the denominators, except its own, for the new numerators, and

all the denominators togethei for the common denominator.

It is necessary to remark, that, if there are whole or mixed
quantities, they must be reduced to improper fractions, and then

proceed according to the rule.
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Ex. 1. Reduce —-, — and - to a common denominator.
4 c a

3aXcXa=3a^c
5bX4x a=20ab

J^
new numerators

;

x:

Xcxa=3a^c \

X4xa=20abi
XcX4= 4cx )

4XcXa=i4ac common denominator;

, - . . , 3a^c 20ab . 4c.t
Hence the fractions required are -:— ,

—— , and -—

.

4ac 4ac 4ac

„ , 2x+\ , 2a2 ^ .

Ex. 2. Reduce ——r—, and to a common denominator.
ob X

(^^^^]^^^^|
new numerators,

3b X af=r36rr common denominator
;

2x'^-\-x Sa^b
Hence the fractions required are —-r , and -^—

.

oox Sox

3 5x 3x'^
Ex. 3. Reduce -, —-, and a-\——- to a common denomina-

4 3 5

tor.

.
3x^ 5a+ 3a;2

Here «+--=—^—.
3x3x5=45 \

5xx4x5=zl OOx > new numerator

;

(5(i+3x'^)x4x3= 60a-|-36a?2>

4 X 3 X 5=60 common denominator ;... . ^ 45 100a: , 60a4-36x«
Hence the tractions required are ^-r, -- , and -— .

oO oU oO

RULE n.

152. Find the least common multiple of all the denomina-

tors of the given fractions, (Art. 147), and it will be the com-

mon denominator required.

Divide the common denominator by the denominator of

each fraction, separately, and multiply the quotient by the re-

spective numerators, and the products will be the numerators

of the fractions required.

Ex. 4. Reduce —z- and -

—

•„ to the least common denomi-

nator.
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Here ^ax^ is the least common multiple of x^ and 4aa?*
;

4fl3j
then —— X3a2i=4ax3a26= 12a3i

4^^2 > new numerators.

and -

—

—x5ab=LDab
4ax^

„ 12«3A , 5ab
, r '

Jience ——— and are the fractions required.
4ax^ 4ax^

Or, as 4ax^ (the least common multiple) is the denomina-
tor of one of the fractions, it is only necessary to reduce the

fraction —— to an equivalent one, whose denominator shall

, ^ o ,
4/.')2 Sa'^b 4^ 3a^x4a

be 4ax" ; hence, ——- =; 4a, and —r— X-—

=

a;2 a:^ 4<z x"^ X 4a
12a2i . ^ , .-——2 ^s ^"6 fraction required.

'J'hese rules appear evident from (Art. 118). For, let

ace..
, ^ . , odf cbf edb .

T» 7? f
be the proposed fractions ; then j-r^, 7-^^, ry>, are frac-

tions of the same value with the former, having the common

denominator bdf. Since ||=^ ; ^="^ ; and ^=1.

Ex. 5. Reduce r-, —, and r—^ to the least common de-
4cx^ 2x 8ac^

nominator.

Here, the least common multiple of 4ca;2, 2x, and 6a(^,

(Art, 147), is 8ac2a;2; then,

Sac^x^
-J^X3a^=t2acX3a^=z6a^c

Sac^x'^
Xy=^ac^xXy=4ac"xy >new numerators

;

2x

--—-X5x2=a:2x5a:2^5a:*

_, 6a^5c 400^X11 _ .5a;* , i. • .1
Hence -—r-17, -

—

—, and 7;—^-^ are the fractions required.

Ex. 6. Reduce —;—,
, and 7^ to a common denomi-

a+x' 3 ' 2x
nator.

6ax-F6^' 6ax+6a;2
'

6aa;-f 6r»*
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Ex. 7. Reduce , and to a common denomi-
X oab

nator.

Ans. ——-

r

, and
^abx * 3abx

3' 4 ' 1-fa:'

X »r'*4* 1 X 1

Ex. 8. Reduce -, , and to a common denomi

nator.

4«H-4a; 3x^+6x-\-3 12a:^12
^'''*

12a:+T2' 12x+12 '

^""^
12a.+ 12'

Ex. 9. Reduce y, —r-> *^d a:H to a common deno-
o a X

minator.

adx 2bc^x 3abd

bdx ' bdx
'

bdx
'

JtiX. 10. Reduce —-, a —, and 7-\ — to a com-
5y 3a? ^

mon denominator.

6x^ 30axy—-\0x'^i/-\-50y , GOaxy— 1 5x1/

30xy' 30xt/
'

30acy

Ex. 11. Reduce ——-, -— , and -—— toother equiva-
a'^— x^ Aa— 4a; a-\-x

lent fractions having the least common denominator.

4a 3ab-{-3bx ' 20ax—20x^
-^"8. --T—-—r, -—-r—--r, and

4a2— 4x^' 4a2— 4a;2' 4a'^—4x'^11 5v
Ex. 12. Reduce -^—-^ r-?, -^—^, and -r-^-r to the

a^+2aa;-|-x'^ a-*— x^ a*— a;*

least common denominator.

a^-\-ax^—a^x—x^ a^-\-ax^-[-a'^x-\-x^

a^—ax^-\-a'^x—x^*a^—ax*-\-a^x-^x^*

and
5ay+5xi/

a^—ax*-{-a'^x—x^'

) V. ADDITION AND SUBTRACTION OF ALGEBRAIC FRACTIONS.

To add fractional quantities together.

RULE.

153» Reduce the fractions, if necessary, to a common deno-
minator, by the rules in the last case, then add all the nume-

9
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rators together, and under their sum put the common denomi-
nator ; bring the resuhing fraction to its lowest terms, and it

will be the sum required.

Ex. 1. Add —-, — , and - together.

2a;x7x9= 126a:

5a:X3x9= 135a?

a?x7x3= 21a;

3X7X9= 189

126a?+135a;4-21a: 282j?
=a:

189 189
93a;

+ r-^ is the sum required.

Ex. 2. Add -, — , and -— together.
60 Aa

12a2&+ 8a25-f-15J3

12a62

aX3ix4a= 12a2i-] 20a2J4-l5^>3
2aXhxAa= Ba^b I T^-fo = (dividing by b)

*; -:r—^ IS the sum required.
bx3bx4a=l2ab^] 12a6 ^

Or, the least common multiple of the denominators may be
found, and then proceed, as in (Art. 152).

It is generally understood that mixed quantities are reduced
to improper fractions, before we perform any of the operations

of Addition and Subtraction. But it is best to bring the frac-

tional parts only to a common denominator, and to affix their

sum or difference to the sum or difference of the integral parts,

interposing the proper sign.

Ex. 3. It is required to find the sum of c ^-, and b-^

2ax.

c

„ 3a?2 ab— Sx^
, , , 2aa; bc4-2ax

Here, a r—=—r— , and b-\ =

—

b b '
' c c

(bc'{-2ax) X b= bh-{-2abx

T:i[ien,(ab— 3x'^)Xc=zabc—3cx^}
' > ' - S numerators.

bXc=zbc= denominator.

^
abc— 3cx'^-\-b^c-^2abx_abc-\-b^c

be be
+

2abx— 3cx^
, , , 2abx—3cx^

Fc ="+''+—Tc
is the sum required.
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Or, bringing the fractional parts only to a common deno-

minator,

Thus, 3x^xc=3ex^ \ , ,^ „
o V, I. o ; } numerators,

And bxc=bc common denominator.

„,, 3cx^
, .

2abx
. , ,

2abx—3cx'^ .

Whence a ; (-*H

—

i
—=a+b-\ r the sum.

be be be

re—

2

Ex. 4. It is required to find the sum of bx-{—-— and Am

2a:-

3

bx
Here, ( x^2)xbx:=bx'^-\0x > ^u^^ators

(2x-3) X 3 =6a: -9 \
numerators,

And 3xbx=\bx common denominator.

«ri. . ,
5x2— lOx

. , 6a;— 9 ^ ,
5a;2 — 10a?

,Whence 5«+-^^+4.- -f3^=9»+ —5— +
9—6x ^ .

5y2_l6a:-j-9 , . ,———=9a:H — the sum required.
Lox Ida:

5/p 9 9 6ic
Here, —— is evidently = -—— (Art. 128) ; but we

1 ox 1 oa?

might change the fractions into other equivalent forms before
we begin to add or subtract ; thus, the fractional part of the

2a; 3
proposed quantity Ax maybe transformed by chang-

oX
ing the signs of the numerator, (Art. 128), and the quantity

q o,.

itself can be written thus, 4:X-\ —
: It is well to keep thi«

oa;

transformation in mind, as it is often necessary to make use of
it in performing several algebraical operations.

^ ^ , - , 3a2 2a ^b
iiX. 5 Add— , — and - together.

105a2-j_28a5-{-10P
Ans.

10b

Ex. 6. Add and together. Ans.
a;— 3 a?+3 ^

*

' a;^—
9*

Ti M .11 0'-\-b , a— b
Ex. 7. Add ~ and r- together.a~b a-^rb ^

2a2 4-2J2
^'^^'

2 A2 *
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Ex. 8. Add and — ^^—^ together.a— jc a+x ^

. 4ax
Ans. -—-.

Ex. 9. Add 2aH-^ and 3«-f?^ together.

Ans. 5a: H ——

.

Ex. 10. Add 4a?, — and 2+^ together.

Ans. 4aj+2+— -.
45

2ic 5x •

Ex. 11. Add 5x — and — 4x together

Ans. x-^—.

Ex. 12. It is required to find the sum of 2a, -, and
a—X

a~^x
. . oc^

Ans. 2a+24-— .

«• a^—ax

To subtract one fractional quantity from another.

RULE.

154. Reduce the fractions to a common denominator, if ne-

cessary, and then subtract the numerators from each other,

and under the difference write the common denominator, and
it will give the difference of the fractions required.

Or, enclose the fractional quantity to be subtracted in a

parentheses ; then, prefixing the negative sign, and perform-

ing the operation, observing the same remarks and rules as in

addition, the result vtrill be the difference required.

The reason of this is evident ; because, adding a negative

quantity is equivalent to subtracting a positive one (Art. 63)

;

dius, prefixing the negative sign to the fractional quantity

a—h . . /a— b\ a—h h—a
,

-, It becomes -- { -) =s — = —-— ; to the
\ c / c cc

fractional quantity — , it becomes -* (— ) =

+ (Art. 128); to the fractional quantity —, it
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becomes ~ (— ^^^-)= —^^ ; to the mixed quantity

ox , It becomes — (5a: ) = —ox -\ ;

y * \ y / y
2—x

and to the mixed quantity —3a-\- , it becomes —
2~x\ ^ 2—x „ . x—2

(-3a+ ~\ =3«-^ =3a+

Ex. 1. Subtract—, from—-.

/

Here 3a:X7=:21a: ) „„„,,,,„,„
5^X5=250: r""'''^'^'''

25a;—21x 4a?. ,

difference required.5x7=35 com. denom.

r. « o. 1
2a— 4ar . x—y

Ex. 2. Subtract— from -ry^.
5c 36

Here (2a— 4a:) X 36=6a6— 126a; >

{x—y) X 5c= 5ca;— 5cy S

5c X 36= 156c common denominator.

.^_., 5cx— 5cy 6a6— 126a; 5ca'— 5cy 126a;— 6a6_^
^^®"'^®'

~T56^ 1567" = 156c +"~156^

5ca;—5cy+126a;—6a6 . , ..^ . _

=^ -^7 IS the difference required.

^ Or, by prefixing the negative sign to the quantity —^—

,

-•' OC
2<2 4a? 4a?— 2<i

it becomes = —
; then it only remains to add

5c 5c -^

4a:—2a , x—y .— and together, as in addition, and the result will

be the same as above.

Ex. 3. From 2a6+ ~— subtract 2a6—
^""^^.

a^x a-^x
Here prefixing the inegative sign to the quantity 2a6—

-—-, we have — f2a6— ^^\ =—2a6+ ^^^; hence the

difference of the proposed fractions is equivalent to the sum

of 2a6+ ——^, and —2a6+ ^-^
; but the sum of the frac-a+x a—x
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,
a—X . a-j-x . 2a^-{-2x^ _,. . , ,,_,

tional parts —;— and , is — r- : 1 nerelore the diffe-
a-\-x a—X a'^— x-^

• J . o z o 1 .
2a^+ 2x^ 2a^+2x^

rence required is 2ao—2a6H —=— r-.
a^~x^ a^—x^

^ ^ ^ iaj;--9 , 3a?—

5

Ex. 4. From — subtract—-—

.

Here (1 Ox-9) X
J=70.-63

)
„„„,,,.„,3.

. (3a;— 5) X 15= 450?—75 J

15x7= 105 common denominator.

^, ^ 70a;-63 45.r-75
Therefore,—^3 ^^ =

70a?-63-45a;+75 25a:4-12. , - .

• --— =———— IS the fraction required.
105 105

Ex. 5. From r subtract . , . Ans.
a— b a-\-l>'

'
(P"—h^

Ex. 6. From subtract—^

—

Ans.
a-\-x '

oP"—x^

Ex. 7. From—-— subtract -——

.

Ans. —

•

3 3a; 3*

Ex. 8. From 3a!-{- y subtract ar—
h c

A ^ .
cx4-hx— ah

Ans. 2x-\ r .

DC

Ex. 9. Subtract—^ from
36

24x^+8a^-ebx—2lh
Ans.

24b

Ex. 10. Subtract 4a? — from 5a;

H

-—

.
lla^-19

__ a-\rx . a—X
Ex. 11. Subtract-; rfroma-f

a{a— a?) a(a-|-a?)

4x
Ans. a—

a^—x^'

Ex. 12. Required the difference of 3a? and r
D

3a?—3a
Ans.—z .
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Ex. 13. From 2x-^~— subtract 3a: ^^.

16^+23Ans.-^-

§ VI. MULTIPLICATION AND DIVISION OF ALGEBRAIC FRAC-

TIONS.

To multiply fractional quantities together.

RULE.

155. Multiply their numerators together for a new nume-
rator, and their denominators together for a new denominator

;

reduce the resulting fraction to its lowest terms, and it will be

the product of the fractions required.

It has been already observed, (Art. 119), that when a frac-

tion is to be multiplied by a whole quantity, the numerator

is multiplied by that quantity, and the denominator is retain-

ed :

my. ^ <^c .2x ^ \0x i . , . 1

Thus, j-Xc=-7-, and-r-x5=-7— ; or, which is the same,

making an improper fraction of the integral quantity, and

then proceeding according to the rule, we have tXt-=-t-,

, 2x 5 \0x

Hence, if a fraction be multiplied by its denominator, the

product is the numerator ; thus, ^ x i = -r- = S. In like

manner, the result being the same, whether the numerator
be multiplied by a whole quantity, or the denominator divid-

ed by it, the latter method is to be preferred, when the de-

nominator is some multiple of the multiplier : Thus, let

T— be the fraction, and c the multiplier; then-r— Xc=-r—

=

be ^
be be

ad ad ad ad , .

-T- ; and-j-Xc=r =-t-j as before.
be bc—-c b

Also, when the numerator of one of the fractions to be mul-
tiplied, and the denominator of the other, can be divided by
some quantity which is common to each of them, the quo-
tients may be used instead of the fractions themselves ; thus,
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a-^h X X
rX

—

—i— J ; cancelling x-\-h in the numerator of the
a— a-f-o a— b °

one, and denominator of the other.

Ex. 1. Multiply— by —

.

3aX4a=12a2= numerator, > *i, r *• • j •

5X7=35= denominator
; I

''-
^^^ ^'^'^^°^ '^"^""''^^ '^

12a2

35
•

Ex. 2. Multiply ?^±^ by—

.

Here, (3a;4-2)x8a;=24a;2-|-l6a;= numerator,

and 4x7=28= denominator

;

Therefore, — = (dividing the numerator and de-

nominator by 4) — , the product required.

Ex. 3. Multiply^- by
3a a— X

Here, {a^—x^) X 7x^=z{a-^x) x (a—a;)x 7x^= numerator
(Art. 106), and 3ax(a—x)= denominator ; see Ex. 15, (Art.

79.)

TT .1 J . • («+^) X la—x) X 7a;2
Hence, the product is ^^ —\ ^ =(dividmff'^ 3aX{a—x) ^ ^

the numerator and denominator by a—x,) =
7ax^-{-7x^

3a

Ex. 4. Multiply ci-[--hy a—

-

o O

TT ,
X 5a-^x , X 3a—

X

Here, «-}--=—-— , and a—-
5 5' 33

Then, {5a-{-x)x(3a—x)=:\5d^—2ax—x'^=: new numerator,

and 5x3= 15— denominator: Therefore, =
15

O /ty^ -i- QQ^

a^ 7T— is the product required.
io

156. But, when mixed quantities are to be multiplied to-

gether, it is sometimes more convenient to proceed, as in the

multiplication of integral quantities, without reducing them to

improper fractions.
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Ex. 5. Multiply x^-lx-\-i by i«+2.

Jj:3--|jc2_|. |a.

Ex. 6. Multiply 5^^^ by "^^

14 -^ 3aHJ-3«

, 3aa;— 5a
Ans. -—-——

,

6x2-6

Ex. 7. Multiply ^—^ by ~^^. Ans. -,.

Ex. 8. Muluply _^- by 3^^-. Ans. -^.

Ex. 9. It is required to find the continual product of
3a 2a;2 a-fi 2aa^-f 26x
-r-i -IT' ^"^ • ^"s. 3 .

o 3 ax 5

Ex. 10. It is required to find the continued product of
a*—x* a-\ry , a—y
"2 2' "TT'^I' ^"" ^- Ans. a+x.

Ex. 11. It is required to find the continued product of
a2-a;2 d^-}p- a , a^-ah
-—rv-' —i— '

*"^ T' -^"s. .

a+o a-f-a: ax~x^ x

Ex. 12. Multiply a?2-|a:+l by a;2—^x.

Ans. a;*—5a;3+V*^—i**

To cftvitfe one fractional quantity by another.

RULE.

157. Multiply the dividend by the reciprocal of the divisor,

or which is the same, invert the divisor, and proceed, in every
respt^ct, as in multiplication of algebraic fractions ; and the

product thus found will be the quotient required.

When a fraction is to be divided by an integral quantity

;

the process is the reverse of that in multiplication ; or, which
is the same, multiply the denominator by the integral, (Art.

120), or divide the numerator by it. The latter mode is to be

preferred, when the numerator is a multiple of the divisor.
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Ex. 1. Divide — by-.
a "^ c

The divisor - inverted, becomes 7-1 hence — X t= —7- is
c b a ah

the fraction required.

Ex. 2. Divide — by ;—

.

a+b ^ a-\-b

The divisor (
——r— ) inverted^ becomes ;

\ a-^b I 5a— 5x

, 3a— 3a? a-\-b 3a— 3a; 3(a— a;) 3 . ,

hence

—

-rf-><K r-=^ ^-^7 s=J is the quo-
a-f-b oa—ox 5a

—

ox 5(a

—

x) 5
tient required.

Ex. 3. Divide ^
~

-by a+h.
X "^

1 a^—h^ "*

The reciprocal of the divisor is 7 ; hence Xa+6 X a^b
{a+b)(a~b) a-^b . ^

=:.- —--—= IS the quotient required.
a:X(a-|-^) x ^ ^

. a^^h^
^ ^ a-b . ^ ^ .

Ur,—-7-=a— 6 ; hence is the fraction required.a+o X
Sl^— ft^ ff^ I /7

«

Ex. 4. Divide —.— by a-\ .

a-j-c
-^ a

TT ,
x^^a^ a'^-\-x^—a^ a:^ 1 r • x^—a^

Here, a-\ = =— : then, the fraction—;—
a a a a-\-c

divided by — becomes —;— ><—5=—;; 0= the quotient
a a-\-c x^ ax^-\-cx^

required.

158. But it is, however, frequently more simple in prac-

tice to divide mixed quantities by one another, without re-

ducing them to improper fractions, as in division of integral

quantities, especially when the division would terminate.

Ex. 5. Divide x^— ^x^-h^-ix'^—^x by x^—^x.
x"^—Ja;)a;*— |^a;3-J- ^aj^

—

^x^oc^—^x-^-l

X^-—}jX^

«_ 3.^34-1 1^2 3 .

-fa?3+ 3^2

x'^—^x
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Ex. 6. Divide^ by ^.
3 5

T7 ^ -n- M 'la:+2, 2x4-1
Ex. 7. Divide —~ by -—^—

.

5 '' 5x

Ex. 8. Divide by—

.

5 5

Ex. 9. Divide ^^2^^^, by ^^^-.

Ex. 10. Divide ^j-—^by —-—

.

Ans. „ , „

a^-i-x^ x+a x^—ax-\-a*

Ex. 11. Divide—-— by-.-— —r.

Ans. d34.2a2a;+2aa!2+«'.

Ex. 12. Divide x*— —a;3+a;2+-x—2 by ^a;-2.
O u O

Ans. -x^— -aj2-}-l.
4 *

Ans.
20
9'

Ans. 2x.

A
9x-3

Ans. .

X

Ans. x-f
i2

X

2x

CHAPTER III.

ON

'Simple equations,

INVOLVING ONLY ONE UNKNOWN aUANTITY.
f^

159. In addition to what has been already said, (Art. 34),

it may be here observed, that the expression, in algebraic

symbols, of two equivalent phrases contained in the enuncia-

tion of a question, is called an equation^ w^hich, as has been
remarked by Garnier, differs from an fquality, in this, that

the first comprehends an unknown quantity combined with

certain known quantities ; whereas the second takes place

but between quantities that are known. Thus, the expression

s d
a=.--\r-, (Art. 102), according to the above remark, is called

an equality ; because the quantities a, s, and d, are supposed
to be known. And the expression x-\-x— d-=s, (Art. 103), is

called an equation, because the unknown quantity x, is com-
bined with the given quantities d and s. Also, x—a=0 is au
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equation which asserts that x--ais equal to nothing, and there-

fore, that the positive part of the expression is equal to the ne-

gative part.

160. A simple equation is that which contains only the first

power of the unknown quantity, or the unknown quantity

merely in its simplest form, after the terms of the equation have

been properly arranged

:

Thus, x+a=b ; ax-\-bx=c] or, --|-o=«?, &c. where a; de-
4 o

notes the unknown quantity, and the other letters, or numbers,

the known quantities.

^ I. REDUCTION OF SIMPLE EQUATIONS.

1 6

1

. ^ny quantity may be transposed from one side ofan equa-

tion to the other, by changing its sign.

Because, in this transposition, the same quantity is merely

added to or subtracted from each side of the equation; and,

(Art. 48, 49,) if equals be added to or subtracted from equal

quantities, the sums or remainders will be equal*. Thus, if x
-|-5= 12 ; by subtracting 5 from each side, we shall have

0:4.5-5-12-5;
butS— 5= 0, and 12— 5= 7; hence a?=7.

Also, if x-{-a=b—2x ; by subtracting a from each side, we
shall have ,;w^

x-\-a—a=b—2x—a; ^
and by adding 2a; to each side, we shall have

x-\-a—a-^2x=b—2x—a-\-2x ;

but a^a=0, and —2a;-|'2a;=i0 : therefore

x-{-2x=b—a, or 3x=b—'a.
Again, if ax—c=zdj and c be added to each side, ox—c+c

=^d-\-c, or ax=zd-\-c.

Also, if 5a;— 7=2a:-|-12 ; by subtracting 2a: from each side,

we shall have

5a-7-2a:=:2a;-f-12-2a;, or 3a;—7= 12 ;

subtracting —7, or, which is the same thing, adding+7 to each

side of this last equation, and we shall have

3^_7+7::^12+ 7;
but 7-7=0, .•.3a:=19.

Finally, if x—ai-bz=c—2x-\-d, then, by subtracting b from

each side, we shall have
x—a-\-b—b=c—2x-\-d—b

;

wid adding a+2 a; to each side, it becomes
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x—a-\-b—b+a-\-2x=c—2x-{-d—b-\'a+ 2x;
but a—a=0, b— b= 0, and —2a:-|-2x=0 ;

therefore, x-{-2x=zc-{-a—b-{-d, or 3x=c-\-a— b-\-d.

Cor. 1 . Hence, if the signs of the terms on each side of

an equation be changed, the two sides still remain equal ; be-

cause in this change every term is transposed : Thus, if —x
-{b—c=a—9-{-x; then, x— b-\-c— 9—a—x ; or, which is the

same thing, by transposing the right-hand side to the left, and
the reverse, we shall have 9—a—x=:x—b-\-c.

Cor. 2. Hence, when the known and unknown quantities

are connected in an equation by the signs -f- or — , they may
be separated by transposing the known quantities to one side,

and the unknown to the other.

Thus,if3a;—9-a=124-*-4a;2;then,4ar2 4-3a!=a+6-f21.
Also, if 3x^—2+ x=b-4x^—3x* ; then, 3ar*+4a;H 3x2+

x=:b-^2.

Hence also, if any quantity be found on both sides of an
equation, it may be taken away from each ; thus, if a:-j-a=a

-f 5, then x=:5 ; i{ x— b=c-\-d— b, then x=zc-{-d ; because,

by adding b to each side, we shall have x—b-\-b=c-\-d—b-}-b;

but 6—6=:0, .•.x=c-{-d.

162. If every term on each side of an equation be multiplied by

the same quantity y the results will be equal : because, in multi-

plying every term on each side by any quantity, the value of

the whole side is multiplied by that quantity ; and, (Art. 50),

if equals be multiplied by the same quantity, the products will

be equal.

Thus, if ar=5-|-o, then 6x=30-f 6a, by multiplying every

term by 6. And,if -=4, then, multiplying each side by 2,
2

X X
we have -X2=4x2, or x=8, because, (Art. 155), - x2=«.

z z

Also, if - —3=a— i, then, by multiplying every term by 4,

we shall have a;—12=4a— 45.

3
Again, if 2x— -'\-\=iX ; then, 4a;— 3-f 2=2af ; and 4a;—

2

2a?=::3-2, or 2x=:l.
Cor. 1 . Hence, an equation of which any part is fraction-

al, may be reduced to an equation expressed in integers, by
multiplying every term by the denominator of the fraction

;

but if there be more fractions than one in the given equation,

it may be so reduced by multiplying every term by the pro-

duct of the denominators, or by the least common multiple of

10
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them ; and it will be of more advantage, to multiply by the
least common multiple, as then the equation will be in its

lowest terms.

Let --f --I- -=11 ; then, if every term be multiplied by

24, which is the product of all the denominators ; we have

^X24+^X24+^X24= 11X24; and 12a:+8a;+6a:=264
;« o 4

or, if every term of the proposed equation be multiplied by
12, which is the least common multiple of 2, 3, 4, (Art. 146)

;

we shall have 6a;+4a;4-3af=132, an equation in its lowest
terms.

Cor. 2. Hence also, if every term on both sides have a
common divisor, that common divisor may be taken away

;

, ..3a;
.
a+6 2a;+ 7 , , . , . , ,

tnus, u — -|—r—=—r— , then, multiplymg every term by 5,
o o 5

we shall have 3x-\-a-\-6=2x-\-7, or a;=:l—a.

Also, if 1—

=

, then multiplying by c, we shall

have ax—'b-\-3=z7—x, or ax-\rx=b-{-4.

163. If every term on each side of an equation be divided by

the sa?ne quantity, the results will be equal : Because, by divid-

ing every term on each side by any quantity, the value of the

whole side is divided by that quantity ; and, (Art. 51), if

equals be divided by the same quantity, the products will be
equal.

Thus, if 6a'^+3xz=9 ; then, dividing by 3, 2a'^-\-x=3.

Also, if ax'^^bx=acxj then, dividing every term by the

(inc hoc dccc
common multiplier x. we shall have +—=— , or ax-{-h^ X ' X X

=ac.
Cor. 1. Hence, if every term on both sides have a common

multiplier, that common multiplier may be taken away.

Thus, if ax-\-ad=ab, then, dividing every term by the com-
mon multiplier a, we shall have x-{-d=zb.

nor (tu 4fl iK

Also, if 1—=
; then dividing by the common multi-

c c c

plier -, or (which is the same thing) multiplying by -, we shall

have x-\-b=zAax.

Cor. 2. Also, if each member of the equation have a com-

mon divisor, the equation may be reduced by dividing both

Bides, by that common divisor.
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T\iViS,\(ax^— a'^x= abx^a^, or {ax— a^)x={ax—a^)b; then

it is evident that each side is divisible by ax—a^, whence x=b.

Again, if x^ — d^=x+a; then, becanse x"^ — a^= (x-\-a)

. {x—a)j it is evident that each side is divisible by x-\-a ; and

hence we have =—;— , or a;—a=l, and a?=a-|-l.
x-j-a x-f-a

164. The unknown quantity may be disengaged from a divi-

sor or a cocjicient, by multiplying or dividing all the terms of
the equation by that divisor or coefficient.

Thus, if 2x+4=6, then x-\-2= and x=- -2.

Also, let -4-9=17 ; then, multiplying by 2, we shall have
Z

~X2+ 18= 17X2,
z

or x+18=^34, .•.a;= 34— 18.

Again, let ax-\-bx'=:zc—d^ or, which is the same, let {a-\-b)x

=c—d ; then, dividing both sides by a-{-b, the coefficient of

X, and we shall have

X=: r-.

a-\-b

Finally, let -z-=c-\-d ; then, the equation may be put

under this form,

and dividing each side by v^, we shall have x={c-{-d)-i'

(—" x) '
^'^^^^ ^^y ^® ^'^^^ farther reduced, because - — t

r=:-^^ ; therefore

or x=(c+d)Xi ,— a

abc-\-abd
.*. a:=-

165. Any proportion may be converted into an equation ; for
the product of the extremes is equal to the product of the means.
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Because, i( a : b : : x : d ; then t=;j> (Art. 24), and .*.

(Art. 162), ad=:bxj by clearing of fractions.

Let 3ar : 5a; : : 2a: : 7 ; then 7 X 3a;=2a;X5af,

or 21a;— 10a;2 : and .-.21 = 10a;.

Again, let 5a;4-20 : 4a:4-4 : : 5 : x-\-] ; then,

(5a-f 20) X (a;-f- 1)= 5 X (4^+4)

;

or, 5a;24-25a;+20=20a;+20
;

and (Art. 161), 5a;24-25a;=20a;

;

.-.(Art. 163), 5a:-f25=20.

166. When an unknown quantity enters into, or forms a

part of an equation ; and if the equation can be so ordered,

that the unknown quantity may stand by itself on one side,

with its simple or first power, and only known quantities on
the other, the quantity that was before unknown, will then

become known.
Thus, suppose 3a;-|-18= 5a;—2 ; then, by transposing Sat

and — 2, we shall have

18H-2=5a;— 3a;, or 20=2a;

;

20 ,^
therefore, a;=—= 10.

Here, in the above equation, the value of the unknown
quantity a;, becomes known, and 10 is the value of a; that ful-

fils the condition required, which we can readily see verified,

by substituting this value of x in the given equation ; thus,

3a;= 3 X 10= 30, and 5a;= 5 X 10= 50
;

hence, 3a;+ 18=30+ 18 = 48, and 5a:— 2 = 50 — 2 = 48
;

therefore 10 is the true value of a?, which answers the condi-

tion required, and this value of x is called the root of the equa-

tion.

167. Hence the root of an equation is such a number or

quantity, as, being substituted for the unknown quantity, will

make both sides of the equation vanish or equal to each other

:

Thus, in the simple equation

3a;-9+ 6=0;
the value of x must be such, that if substituted for it, both

sides must vanish, because the right-hand side is ; but this

Talue is found to be 1, for by transposition

3a;= 9—6=3,
and dividing by 3, we shall have

3a; 3
y-3,ora:=l;

therefore 1 is the root of the given equation, which can be

easily verified by substituting it for x ; thus,
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3a;-9+ 6=3x 1-9+ 61=3-9+ 6=9-9=0.
Hence, the value of the unknown quantity being substitu-

ted in the equation, will always reduce it to 0=0.

§ II. RESOLUTION OF SIMPLE EQUATIONS,

Involving only one unknown Quantity.

168. The resolution of simple equations is the disengaging

of the unknown quantity, in all such expressions, from the

other quantities with which it is connected ; and making it

stand alone, on one side of the equation, so as to be equal to

such as are known on the other side, or, which is the same
thing, the value of the unknown quantity cannot be ascertain-

ed till we transform the given equation, by the addition, sub-

traction, multiplication, or division of equal quantities, so that

we may fully arrive at the conclusion,

a;=n,

n being a number, or a formula, which indicates the opera-

tions to be performed upon known numbers. This number
n being substituted for x in the primitive equation, has the pro-

perty of rendering the first member equal to the second. And
this value of the unknown quantity, as has been already ob-

served, is called the root of the equation, this word has not

here the same acceptation as in (Art. 15.)

169. In the resolution of simple equations, involving only

one unknown quantity, the following rules, which are dedu-
ced from the Articles in the preceding Section, are to be ob-

served.

RULE I.

When the unknown quantity is only connected toith known quan-
tities by the signs plus or minus.

170. Transpose the known quantities to one side of the

equation, so that the unknown may stand by itself on the

other ; and then the unknown quantity becomes known.
Ex. 1. Given ar+8=:9, to find the value of a;.

By transposition, a:=:9— 8, .-. jn=zl.

Ex. 2. Given Sx— 4=:2ar+ 5, to find the value of af.

By transposition, 3a;—2a;=:5+4, /. x=9.
Ex. 3. Given a;+a=«+ 5, to find the value of a.

By taking a from botb sides, we have
a:=:5 ; or by transposition,

x=a—a-\-5
J
but a— a=0 .•.x=5.

10*



102 SIMPLE EQUATIONS-

Ex. 4. Given 9—a;=2, to find the value of a;.

By changing the signs of all the terms, we have
—9-f-a:=—2,

by transposition, a:=9— 2, /. x=7.
It may be remarked, that it is the general practice of Ana-

lysts, to make the unknown quantity appear on the left-hand

side of the equation, vi^hich is principally the reason for

changing the signs.

Ex. 5. Given •—b—x=a—c to find x in terms of a, b, and c.

(161. Cor. 1), by changing the signs of all the terms, we
have b-\-x=rc—a ;

.-. by transposition, x^c—b— a.

Ex. 6. Given 2j:—4+ 7= 3^:— 2, to find the value of x.

(161.) by transposition, 2a:— 3ar= 4— 7— 2, and (161. Cor.

1), by changing the signs, 3a;—2a:=74-2— 4 ; but 3a;—2:r=
a;, and 7+2—4= 5 ; .. x= 5.

Ex. 7. Given 7ar+3—5= 6a;— 2-{-7, to find the value of a:.

Ans. a:=r7.

Ex. 8. Given 3a;+5—2—2a:—7=0, to find the value of x.

Ans. a:=4.

Ex. 9. Given x—3-f4—6=0, to find the value of a:.

Ans. a:=5.

Ex. 10. Given 7-fa:=2a;+12, to find the value of a:.

Ans. a:=— 5.

Ex. 11. Given 12—3x=9— 2a:, to find the value of a;.

Ans. a:=:3.

Ex. 12. Given x—a-\-b— cz=zO, to find the value of x in

terms of a, b, and c. Ans. x= a— b-\-c.

Ex. 13. Given X'—a-\-h=2x—2a-^b, to find the value of x

in terms of a and b. Ans. x=a.
Ex. 14. Given 2x-\-a=x-\-bf to find x in terms of a and b.

Ans. x^=b— a.

RULE II.

171. Transpose the known quantities to one side of the

equation, and the unknown to the other, as in the last Rule
;

then, if the unknown quantity has a coefficient, its value may
be found by dividing each side of the equation by the coeffi-

cient, or by the sum of the coefficients.

Ex. 1. Given 3a:+9= 18, to find the value of a?.

By transposition, 3a;=18— 9, or 3a:=9 ; dividing both sides

3a: 9
of the equation by 3, the coeflScient of x, we have—=-, .*. x

o o

=3.
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Ex. 2. Given 2ar— 3= 9— ar, to find the value of*.

By transposition, 2a: -|- a:=9 4- 3,

by collecting the terms, 3a:= 12,

, ,. . . 3a: 12 .

by division, —=— ;
.*. a;=4.

Ex. 3. Given 7— 43*= 3a;— 7, to find the value of «.

By transposition, — 4x— 3a;= — 7— 7,

by collecting the terms, — 7a'= — 14,

by changing the signs, 7a:=il4,

. ,. . . 7a: 14 _
by division, -Tr-=-rr ; .•.a:=2.J '77

Ex. 4. Given 6j:-f 10=r3a:+22, to find the value of*.

By transposition, 6a;— 3a: =r 22— 10,

by collecting the terms, 3a:=:l2,

u A' ' • 3a: 12 .

by division, —=— ; /. a:=4.
O iS

Ex. 5. Given ax-\-b— c to find the value of a: in terms of a,

by and c.

By transposition, ax—c—h^
, ,. . . ax c—b c— b
by division, — z=

; .\x=z .

a a a

The value of x is equal to c—b divided by a, which may
be positive or negative, according as c is greater or less than

9 5
h\ thus, ifc=9, ft=5, a=2, then ag= =2; if c=12, i=

til

,^ J o 1 12-16 -4
16, and a=2, then, —-—=-—=—2.

z z

Ex. 6. Given 3a:—4=7ar— 16, to find the value of x.

Ans. x=3.
Ex. 7. Given 9—2a:=3a;— 6, to find the value of a:.

Ans. x=3.
Ex. 8. Given aa:2-f Jr=9a:2+ca?, to find the value of x in

c—

i

terms of a, b, &c. Ans. ir= -.

a— 9

Ex. 9. Given a*— 9=4jc, to find the value of a:.

Ans. a:=— 3.

Ex. 10. Given 5ax—c=i— 3aa;, to find the value of x in

terms of a, 6, and c. Ans- x— ~——

.

oa
Ex. 11. Given 3j:—1+9— 5a:=0, to find the value of a:.

Ans. a:= 4.

Ex. 12. Given ax—ab—ac^ to find the value of x.

Ans. x^b^e.
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Ex. 13. Given x^-^2x=:(x-\-a)'^y to find the value of x.

Ans. x: '2—2a
Ex. 14. Given (x—\)'^=:x-\-l, to find the value o( x.

Ans. x=3.
Ex. 15. Given a;3-f2j;2+x= (a;2+3a;)x(x-l)+16, to find

the value of x. Ans. x=4.

RULE III.

172. If in the equation there be any irreducible fractions, in

which the unknown quantity is concerned, multiply every term

of the equation by the denominators of the fractions in succes-

sion, or by their least common multiple ; and then proceed ac-

cording to Rules I, and II.

2x
Ex. 1. Given •~-\-l=x—9. to find the value of x.

4

Multiplying by 4, 2a;H-4=:4a;— 36,

by transposition, 2a;— 4a; = —36— 4,

by collecting the terms, —2a= —40,
by changing the signs, 2a:=40,

u J • . ^x 40
by division, ^=-^ ;

•*• a?z=20.

XX X
Ex. 2. Given -—-4-3= 5—-, to find the value of ar.

2a; 2x
Multiplying by 2, x——4-6= 10——

,

'o 4

6x
by 3, 3a;— 2j:4- 18=30—-,

4

by division, -77^=777 ; .•.x=4f

.... by 4, 12a;— 8a;-|-72= 120-6a;.

by transposing, and collecting, 10a;=48,

10a;_48

Or, it is more concise and simple to multiply the equation by
the least common multiple of the denominators ; because, then

the equation is reduced to its lowest terms ; thus,

Multiplying by 12, the least common multiple of 2, 3, and 4,

we have, 6a;— 4a; 4- 36= 60— 3a;,

by transposition, 5a;=24,

by division, -—=-— ; .•.a>=44.
5 5

X XX
Ex. 3. Given «—-— 1=-4--, to find the value of ar.

O DO
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Here 30 is the least common multiple of 3, 5, and 6 ;

30a; 30x . 30a;
Multiplying by 30, 30x 30=—-+-g-,

.-. 30a;— lOx—30= 6j:-l-5a;,

t by transposition, 9x=:30,

..... 9x 30 10
by division,—=y=y; .•.a;=3J.

Ex. 4. Given—a= 3, to find the value of ar.

4 5

Here 20, the product of 4 and 5, being their least common
multiple,

20a; 20a;
Multiplying by 20,-^

^^^—~l
^^'

.-. 5a;—20a=4a;— 60,

by transposition, 5x—4a;=20a— 60,

/. a;=20a— 60.

Ex. 5. Given =— , to find the value of a;.

5 5 5

,,,.,. , ^ 5aa; 5bx 5x2a
Multiplying by 5, — ^=—j--,

.*. aa;— 5a;=:2a,

by collecting the coeflicients, (a—i)a:=2a,

.-.by division, x= r.

a— o

Ex. 6. Given 1—--=—h3, to find the value of x.
c 2 a

Here 2ac, the product of 2, a, and c, being the least common
multiple,

Multiplying by 2ffr, 4a'^x-^3abcx=l0cx-\-6aCf

by transposition, and collecting the coefficients, we shall have

(4a2-f3ak— 10c)a;=6ac,

.-.by division, x=^^^i-y3^.

« 4 5a;-4-14
Ex.7. Given 3a; 4=—^ 3^, to find the va-

lue of X.

Multiplying by 12, the least common multiple,

we have 36a;—3a;+12- 48= 20a;-|-56— 1,

by transposition, 36a;—3a;—20a;=56— 1+48— 12,

or 13a;=91,

..... 13a; 91
by division, ^=^3 ;

••• *=7.
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Ex. 8. Given-

—

—:=tz ^» to find the value of a;.

5a;-|-3 14u;—

5

Ans. a:=l.
/pXl x-\-2 x-\-3

Ex.9. Given--—|—^ = 16 ^, to find the value
ti o 4

of «. Ans. ir=13.

Ex. 10. Given ^^+^=20—^^^^—, to find the value of x.
ti O til

Ans. a:=23j.
11 ^ 19 /p

Ex. 11. Given x-\ —=—-—, to find the value of x,
O i

Ans. a;=5.

T« ,« ^. «— 5 , ^ 284— a; ^ , , , -
Ex. 12. Given -——|-6a;=—-—, to find the value of a?.

4 5

Ans. x—%.
2a;4-6 11a: 37

Ex. 13. Given 3a:H ^=54 , to find the value
5 2

of ar. Ans. a;=7.
5^^ 4 ig 4-j.

Ex. 14. Given — 2=

—

|-a;, to find the value of

«. Ans. a;=4.

^ ,^ ^. ax—'i 6a: 4-2 2a;— 9 a:— 1 ^ , ,

Ex. 15. Given —
{
—=— ^-, to find the

d O « O

value of X. Ans. x
106-f20-6a

to find the va-

lue of X* Ans. a:=— 9|.

„ ^ ^. a;— 1 a:-h3 2af-hl a:— 3 ^ , ,

Ex. 16. Given — -—=—-i —-,to find the va-
7 2 14 4

RULE IV.

173. If the unknown quantity be involved in a proportion,

the proportion must be converted into an equation (Art 165);

and then proceed to resolve this equation according to the

foregoing Rules.

Ex. 1. Given 3a;—2 : 4 ; : 5a;— 9 : 2, to find the value of op.

Multiplying extremes and means, we have

2(3a:-2)= 4(5a;-9),

or 6a:— 4= 20a;— 36,

by transposition, 6a;— 20a;=—36 -f- 4 ;
»

or — ]4a;=— 32,

by changing the signs, 14a'=32,
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..... 14a: 32 ..
by division, tT^TI 'f^=H'

Ex. 2. Given 3a : x : : b-\-5 : x—9yto find the value of x.

Multiplying extremes and means, we have

3a . {x-9)=x . (i-f-5),

or 3ax—27a= bx-{-bx,

by transposition, 3ax—bx—5x=z27aj
collecting the coeff's, (3a—i— 5)a:=27fir,

27a
.-. by division, x=- r—r-.

oa— —

Ex. 3. Given —-— : x—5 : : ;r : 7, to find the value of x.
4 34

Multiplying extremes and means, we have

3a;— 15 2a;-10

by clearing of fractions, 9a;—45= 32a;— 160,

by transposition, 9a;— 32a;=45— 160,

collecting and changing signs, 23a:= 115,

..... 23a; 115
by division,—=_-

; .•.x=5.

Ex. 4. Given 2a;— 3 : a;— 1 : : 4a; : 2a;+2, to find the value

of aj.

Multiplying extremes and means, we shall have
(2x— 3) . (2a;+2)=4x(a— 1),

or 4a;2—2a;—6= 4a;2— 4a;,

by transposition, <fec., 2a;=6,
.*. by division, a;=3.

Ex. 5. Given a-{-x : b : : c^x : d, to find the value of a; in

terms of a, 6, c, and d.

Multiplying extremes and means, ad-{-dx—bc—bx^
by transposition, bx-\-dx= bc—ady

or (b-{-d)x=bc—ad,

, .... be— ad
/. by division, x=-

b+d

id

a;— 1 3a;-f6

/p ] 3
Ex. 6. Given ——- : a;+2 : : - : 1, to find the value of «.

3 4

Multiplying extremes, &c..
3 - 4 '

clearing of fractions, 4a;—4 =9a?-f-18f
by transposition, 4a;— 9a:=18-1- 4,
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changing the signs, &c., 5a;=—22,
22

.'.by division, x= =—
4f.D

Ex. 7. Given 2a:— 1 : ac+l : : -r- : -,tofindthe valueof a?.

2 4

Ans. x= — l^.

Ex. 8. Given a;-|-3 : a : : b : - to find the value of x.
X

Ans. jc

ab-l
1 3a?

Ex. 9. Given -:—-:: 5 : 2a;—2, to find the value of x.
2 4

Ans. x=—^.
Ex. 10. Given ^zi-:: x—l :

—-—, to find the value of x,
7 4 4

Ans. a:=ly^.

Ex. 1 1 . Given —-— : -;r— : : 6 : 3, to find the value of x.

Ans. a;=3.

3a 3a

§ III. EXAMPLES IN SIMPLE EQUATIONS,

Involving only one unknown Quantity.

174. It is necessary to observe that an equation express-

ing but a relation between abstract numbers or quantities, may
agree with many questions whose enunciations would differ

from that of the one proposed : but the principles of the reso-

lution of equations being independent of any hypothesis upon

the nature and magnitude of quantities ; it follows, therefore,

that the value of the unknown quantity substituted in the

equation, will always reduce it to Or:rO, although it may not

agree with the particular question. This is what will hap-

pen, when the value of the unknown quantity shall be nega-

tive ; for it is evident that when a concrete question is the

subject of inquiry, it is not a negative quantity which ought

to be the value of the unknown, or which could satisfy the

question in the direct sense of the enunciation.

The negative root can only verify the primitive equation

of a problem, by changing in it the sign of the unknown ; this

equation will therefore agree then with a question in which
the relation of the unknown to the known quantities shall be

different from that which we had supposed in the first enuncia-
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tion. We see therefore that the negative roots indicate not an

absolute impossibility, but only relative to the actual enuncia-

tion of the question.

The rules of Algebra^ therefore, make not only known certain

contradictions
J
which may hefound in enunciations ofproblems of

thefirst degree ; but they still indicate their rectification, in ren-

dering subtractive certain quantities which we had regarded as

additive, or additive certain quantities which we had regarded as

subtractive, or in givingfor the unknown quantities, values affect-

ed with the sign— .

Hence, it follows, that we may regard as forming, properly

speaking, but one question, those whose enunciations are not

connected to one another in such a manner, that the solution

which satisfies one of the enunciations, can, by a simple

change of the sign, satisfy the other.

We must nevertheless observe that we can make upon the

signs and values of the terms of an equation, hypotheses which

do not agree with the enunciation of a concrete question, whereas

the change which we will make in this enunciation might be

always represented by the equation.

These principles, which will be illustrated by examples, are

applicable to equations of all degrees, and to determinate equa-

tions containing many unknown quantities.

The question which conducts to the equation,

ax-\'b=^cx-\-d,

is not well enunciated for a>c, and by-d, since the first mem-
ber is greater than the second.

Thus the formula

_d~h
a—c^

gives for x a negative value ; but by rendering the unknown
X negative, the equation is changed into the following,

b— axr=^d— cx,

which is possible under the above relations between a and c,

b and t/, and which gives then for j; an absolute value.

If we have b^d and c>a, the two subtractions become im-
possible in the formula

d-h
x= ;

a— c

but in order to resolve the equation, let us subtract cx-\-h

from both members, which would be impossible, because th^t

cx-\-b is greater than each of the two members : we mus(
11
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therefore, on the contrary, take away ax-\-d from both sides,

and it becomes
b—d=:cx—ax

i

from whence we deduce

_b-d
~ c—a

This formula compared to the preceding, differs from it in this,

that the signs of both terms of the fraction are changed.
We may therefore conclude, that we can operate on negative

isolated quantities, as we would do if they had been positive.

These principles will be clearly elucidated, when we come
to treat of the solutions of Problems producing simple Equa-
tions : we shall now proceed to illuvstrate the Rules in the pre-

ceding Section, by a varie^ty of practical examples.

Ex. 1. Given 21 H r?—=—3
1 ^ » to find the

lb o Z

value of X.

Multiplying both sides of the equation by 16, the least com-
mon multiple of 16, 8, and 2, we shall have

3364-3a:— ll = 10x-10+ 776-56a:;
/.by transposition,

3a;-i0a;+56a;=.ll -10+ 776—336,
or 49a;=441

;

441
by division, x=—-. .-. a;=9.

49
3^ 5 2a; 4

Ex. 2. Given a;-| ——= 12 —, to find the value of r.

Multiplying both sides of the equation by 6, the product of

2 and 3, which is the least common multiple, we have

6a:+ 9a;— 15=72— 4a:-f-8 ;

.'.by transposition, 6a;-h9a:+ 4x— 72-|-8-f-15,

or 19a:=95
;

95
by division, a?=TQ. •'• x=zb.

2x 4
In this example, when the fraction —, is multiplied

o

12a; 24
by 6, the result is = — (4a?—8)=— 4a;-f8, or,

o

which is the same thing, when the sign — stands before a

fraction, it may be transformed, so that the sign + "lay stand

before it, by changing the sign of every term in the numerator ;

therefore, we make the above step — 4a;+8, and not 4a;— 8.

J
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*P I 2x 2
Ex. 3. Given 4x :t——^-\ 7 1-24, to find the value

« o

of X.

Multiplying by 10, the least common multiple, and we have,

40x-5j:+5= 10i:+4a:—4+240,
by transposition, 40a:—5a?— lOx—4a?=240—4—-5,

or, 40a;— 19aJ=r231 ;

and21a?=:231,

231
by division, x=—~, .-. a?=ll.

Ex. 4. Given 2a;— --f l=5a;— 2, to find the value of «.

Multiplying by 2, we have,

4a:—a;4-2= 10a;—4,
..by transposition, 4a;—«— 10a;=—4— 2,

or —7a;=— 6,
by changing the signs, 7a;=6,

/. by division, cc^-.

Ex. 5. Given 3ax—2bx=3b— a, to find the value of a;.

Here, 3aa;—26x=(3a— 26)a;, by collecting the coefficients

of X, Therefore,

{3a~2b)x—3b—a,
..... 3b=a
by division, x=^—^.

Ex. 6. Given bx-\'X=2x+3a, to find the value of a;.

by transposition, ^a;+a;— 2a;=3a,

or (6— l)x=3a,

/. by division, a;=7

—

~.

3x X 2a;
Ex. 7. Given c-\-y=4x-\—j-, to find the value of ar.

a a

Multiplying by abd, we have,

3bdx— abcd-{-adx=4abdx-\-2ahx,

by transposition, 3bdx-\-adx—4abdx—2abx= abcd,

or (3bd-^ad—4abd—2ab)x=abcd,
. J. . . abed

'. by division, x=z——-—-—-—3—--7.
•^ 3bd-\-ad—4Qbd-'2ab

Ex. 8. Given t—^-f-^=^+ c, to find the value of ar.000
Multiplying by 30, the product of 5 and 6, the product be-

comes
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6a:— 5a;+ 5a=30J+ 30c
;

by transposition, 6x—5x=:30b-\-i^0c—5a,

and .-. a;=30^>+30c—5a.

12 X 14+ a;

Ex. 9. Given—-— : 5a; — : : 1 : 8, to find the value
y %j

of X.

Multiplying extremes and means, we have
96— 8a; , 14+ a;—-— =:5a; —

,

9 3 *

Multiplying by 9, the least common multiple,

96—8a;=45a;—42— 3*,

by transposition, —45a;— 8a;-|-3a;=:—96— 42,

by changing the signs, 45a:-f8x— 3a;=96-f42,
or 50j;=138,

, ,. . . 138 „19
/.by division, :r=--=2-.

^ ^ ^- 03;

—

b
,
a bx bx—a /. , , ,

Ex. 10. Given — ho— "7i
5—> to ""^ ^^ value

of a;.

Multiplying by 12, the least common multiple of the deno-

minators, and the equation will become,

3aa;— 3i+ 4a=r65a;— 4Ja;4-4a, . . (1),

by taking away 4a from each member, we shall have
^ax—'^b= Ux—Ux=z2bx,

by transposing —36 and 2bx, it becomes
3ax—26x=35,

by collecting the coefficients of x, we shall have
(3a-2Z>)a;=36,

by division, a;=- r.
^ ' 3a—26

Ex. 11. Given 2aa;+6=3ca;+4a, to find the value of a:.

by transposition, 2aa;— 3ca;=:4a— 6,

by collecting the coefficients, (2a— 3c)a;=4a— 6,

.-. by division, x=- —.
2a— 3c

Ex. 12. Given 19a;+13=59— 4a;, to find the value of a;.

by transposition, 19a;+4x=59— 13,

or, 23a;=46

;

." by division, a;=:2.

Ex. 13. Given 3a;+4— ^=46 --2a;, to find the value of «.

Multiplying both sides by 3,

9a;+12—a;=138— 6jp,
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by transposition, 9a:+6a:—j;=138— 12,

or 14a:=126;

u J- • . 126
by division, a?=—-—, .*. «=9.

Ex. 14. Given a?24-15x=35a:

—

3x\ to find the value of «.

Dividing every term by x,

a:4-15=35— 3«,

by transposition, a:-f3^=35—-15,
or 4ic=20

;

.•.X=:5.

Ex. 15. Given^—^+10=—^+11, to find the value of a;,

o 4 o 2

Here 12 is the least common multiple of 6, 4, 3, and 2 ;

.'. multiplying both sides of the equation by 12,

2a;—3a;+120=4a;—6a;+132

;

by transposition, 2a;—3x— 4a;-|-6a;=rl32— 120,

or 8j?—7a;=12
;

.-. a;=12.

Ex. 16. Given——-+——^=7 -— , to find the value
7 5 4

of a?. Ans. a;=8.

Ex. 17. Given— f6=:—^— , to find the

value of ar. Ans. a:=l.

17 .o r^- 17-3a: 4a;+2 . ^ 7a:4-14^ .,
Ex. 18. Given =5— 6a;H , to find

5 3 o

the value of x. Ans. a;=4.

T. .r. r>- 3a;— 3 , 20-a; 6a;-8 4x—

4

. Ex. 19. Given a; -_+4 = — =r—+-^—

,

5 2 7 5

to find the value of a*. Ans. x= 6.

T. ^^ r.- 4a;—21 „, 57— 3a: „,, 5a; — 96
Ex. 20. Given

^
+3j+—^—=241

11a;, to find the value of x. Ans. a;=21.

T? oi n- 6^+18 ^, ll-3a; _ .^ 13-a;
Ex. 21. Given -^^ 4f ^^=5a;-48 ^^

-, to find the value of a;. Ans. a;=10.
18

T, oo n a^-Sbx .. . ,
6^'a;-5a2

Ex. 22. Given ax ab^ = bx -\

a -ici

bx-\-4a ^ , . , . .
Aab^-lOa—

2— » to find the value of x. Ans. «= __ . .
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Ex. 23. Given —— rr=o» to find the value of sc.

^1 4x— 11 3

Ans. a;=8.

Ex. 24. Given—- f--_-_^ —— —, to find the value
y K3X-\-6 6

of X. Ans. x=4.

Ex. 25. Given—- [-7 tt:=—r^—,to find the value
9 Dx— 12 18

of 07. Ans. x=6.

Ex. 26. Given 12-a: : ^ : : 4 : 1, to find the value of x.

Ans. x=4.
5x4-4 18— a;

Ex. 27. Given—i— : : : 7 : 4, to find the value
2 4

of ac. Ans. x=2.
Ex. 28. Given (2a:4-8)2=4a:2-|-14a:+172, to find the value

of a?. Ans. x=6.

Ex. 29. Given 2^-+2j:=z?^^+ 16, to find the value
5 5

of a?. Ans. a;=7.

c^ on r.- 7— a?
. ^ Sa'— 11

,
8a:+15 ^ , ,Ex. 30. Given —-—[-4=—7—f—i— ,to find the va-

2 4 6

lue of a;. Ans. a:= 3.

x"^ X Sax"^
Ex. 31. Given —+-=--—, to find the value of x.

ti <i ,i

. I

Ans. ar=
3a—

1

Ex. 32. Given 2x— -^--4-15=—^i— , to find the value
3 5

of a?. Ans. a;=:12.

Ex. 33. Given 5ax—2b-\-4bx=2x+Dc, to find the value

f A
^^ + 26

oi X. Ans, x= -^—~.
5a-^4b— 2

T? OA f^
2a;-5

,
19-a: lOa^-7 5 ^ ...

Ex. 34. Given ——

—

\

—=—5- -, to find the
18 9 2i

value of a:. Ans. a;= 7.

Ex. 35. Given x— —-

—

:=-——, to find the value of x.

Ans. a?=:13.

nd the value

of X. Ans. x=9.

Ex. 36. Given 2^- _ ?l±f=39-5x, to find the value
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Ex. 37. Given 4x- i^±?^=15-—±11, to find the va-
5 4

lueofa;. Ans. af=3.

Ex. 38. Given— ~—Q 7—, to find the
3 6 4

value of X. Ans. a?=3.

T^ 00 r.- ^5 ,
3x-l 7a;+3 8x-|-19

, - . .,
Ex. 39. Given 7 -H ri—=—^;

—

j^ fi"d tt»e
o 4 lb o

value of a:. Ans. x=7.
« ^. 6a:-f-8 5x4-3 27-4a? 3^+9 , ,

Ex. 40. Given -—^ ^-=— ^, to find

the value of x. Ans. a:=6.

T. ., ^. . 27-9a; 5a;4-2 61 2x4-5 294-4x
Ex.41.Givenx4—^ ^=j^ 3 ^^,

to find the value of x. Ans. x=5.
7x—8 , 15x4-8 ^ 31 —

X

^ , ,

Ex. 42. Given——--I r?—=3x —-, to find the
11 Id 2

value of X. Ans. x=z9.

Ex. 43. Given — —-~=6f— -, to find the value
z 10 <©

ofx. Ans. x=3.
104-a; 4x 9

Ex. 44. Given—-— :
—-— : : 14 : 5, to find the value

5 7

ofx. Ans. x=:4.

^, . ^. 17-4x 154-2X ^ , ,

Ex. 45. Given —-— : —^ 2x : : 5 : 4, to find
4 3

the value of x. Ans. x=3.
4x4-14

Ex. 46. Given 16x4-5 : —--^ : : 36x4-10 : 1, to find
9x-f-31

the value ofx. Ans. x=5.

Ex. 47. Given -—^ : 1 :: 2x4-19 : 3x- 19, to find
ox—43

the value ofx. Ans. x=8.
7x4-9 10x^— 18

Ex. 48. Given 5x4--—r-o=9+ t:—rrr— . to find the va-
4x-|-3 2x4-3

lue ofx. Ans. x=:3.
9^_i_20 4x 12 X

Ex. 49. Given——7

—

=- r-4-T> to find the value of x.
3b 5x— 4 4

Ans. x=:8.

x' r;A n 20x4-36
,
5x4-20 4x

,
86 ^ . . ,

Ex. 50. Given-^^4-9^3jg=y4-25,tofindtheva.

lue of ft. Ans. x=4.
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^ _ ^. 10a:4-17 12a;H-2 5a;—

4

^ , ,

Ex. 51. Given -^^ ___^__, to find the

value of a:. Ans. x=4.

^ _ ^. 18a;-19
,
lla-+2I 9a;+15

^ . . ,

Ex. 52. Given—— }-————=——— , to find the va-
28 6a:+14 14

lue of a?. Ans. x=z7.

Ex. 53. Given -^^-^^ -i=ac4—j-, to find the value of a?.

ox b
,

Ans. xz=z-.
c

Ex. 54. Given r-= -——7:-, to find the value of x.
a-\-ox e-\-Jx

. ad— ce
Ans. x=—^—--.

cf-bd

Ex. 55. Given -Y—1--^—|-774--f-=^,
to find the value of x.

Ox (tX jX fix

adfh+ bcfh -{bdeh-\- bdfg
Ans. X- -j^^ .

Ex. 56. Given (6+a:).(i+a;)—a.(i+c)=^+a;2, to find

the value of x. Ans. x=-r-.

T. .» r>- 3^—3 3a;—4 ^, 27+4a;
^ ^ j *uEx. 57. Given— —=5^ — , to find the

4 <j y

value of a;. Ans. a;=9.

^ .0 ^- 4a;— 34 258-5a: GQ-a;
, ^ , ,

Ex. 58. Given—— =

—

-—, to find the va-
IV o Z

lue of a;. Ans. a;z=51.

. 4a;-2 2a:+ll 7— 8a; ^ , ^
Ex. 59. Given 2a; 7T"~—5 7~' ^°

value of X. Ans. a?=7.

T. .^ ^. 2a;+l 402-3a? . 471-6a;^ ...
Ex. 60. Given --^7 ——=9 — , to find the

^y iz - z

value of X. Ans. a;=72.

3a+a; 6
Ex. 61. Given 5=-, to find the value of x.

X so

3a-6
Ans. x=—:—

.

I
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CHAPTER IV.

ON

THE SOLUTION OF PROBLEMS,

PRODUCING SIMPLE EaUATIONS.

175. The solution of a problem is the method of discover-

ing, by analysis, quantities which will answer its several con-

ditions ; for this purpose, there are four things to be distin-

guished :

I. The given, that is to say, the known quantities, enunci-

ated in the problem, and the quantities that are to be found.

II. The translation of the problem into algebraic language,

which is composed of the translation of every distinct condi-

tion that it contains into an algebraic equation.

III. The resolution of the equations, that is, the series of

transformations which the immediate translation must under-

go, in order to arrive at an equation containing in the first

member one unknown quantity alone in its simple state, and
in the other a formula of operations to be performed upon the

representations of given numbers.

IV. Finally, the numerical valuation, or the geometrical

construction of this formula.

176. Algebraic problems and their solutions may be con-

sidered as of two kinds, that is, numerical and literal, or par-

ticular and general. In the numerical, or particular method
of solution, unknown quantities are represented by letters, and
the known ones by numbers, as in arithmetic. In the literal,

or general solution, all quantities, known and unknown, are

represented by letters, and the answers given in general terms.

A problem solved in this way, furnishes a theorem, which may
be applied to the solution of all questions of the same kind.

^ I. SOLUTION OF PROBLEMS PRODUCING SIMPLE EQUATIONS,

Involving only one unknown Quantity.

177. If from certain quantities which are known, another

quantity be required which has a given relation to them, let

the unknown quantity be represented by x ; then, the condi-

tion enunciated in the problem being clearly understood, it can

be easily translated into an algebraic equation, by means of the
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signs pointed out in the Introduction. Having now brought

the question into an algebraic form, the value of the unknown
quantity can be readily found by the application of the rules

delivered Chap. III.

Or, if there be more than one unknown quantity required,

and that they bear given relations to one another, instead of

assuming a symbol to represent each of them, it is more con-

venient to assume one only, and from the conditions of the

problem to deduce expressions for the others in terms of that

one and known quantities. And as the number of conditions

ought to be one more than the number of quantities thus ex-

pressed, there will remain one to be translated into an equa-

tion ; from which the value of the unknown quantity may be
determined as above ; and this being substituted in the other

expressions, their values also may be discavered.

Problem I. ,

What number is that, to which 17 being added, the sum
will be 48 ?

Let the required number be represented by x :

Then by the problem, a:-|-17^,48
;

by transposition, a;=48— 17 :

.•.a;=31.

Prob. 2. What number is that, from which a being sub-

tracted, the remainder is b 1

Let X represent the number required.

Then by the problem x—az=:b;
by transposition, x= a-{-b.

Here, if fl!=rl6, and 5= 14 ; then a:= 16-1-1 4= 30 ; that is,

30 is a number, from which 16 being subtracted, the remain-

der is 14.

Prob. 3. To find a number which, being subtracted from

c, leaves b for a remainder.

Designating the unknown number by Xj we shall have this

translation,

a—x=b, .'. x=a— b.

178. If we suppose a=lO, 6=4, we shall have x=6 ; then

the subtraction is arithmetically performed. But if we had
a=lO, 6= 14, we must subtract 14 from 10, which cannot be

done except in part, or that with respect to the portion of 14

equal to 10.

The excess, in as much as it exists subtract!vely, will indi-

cate that the number x of which it is the representation must
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enter negatively in the enunciation where it is already sub-

tracted from the number a, so that the enunciation of the pro-

blem is corrected and brought to these terms : to find a nuni'

ber which being added to 10, the siim will be 14; a problem

whose translation is, designating the unknown quantity by a?,

10-^a:=14; .-. a:=14— 10=4
;

whereas, the translation in the former case would be
10— a:= 14; .-. a:= 10— 14, or rrrr— 4.

The negative root —4, satisfies the equation of the problem,

besides it announces a rectification in the enunciation ; this is

what appears evident, since the subtraction of a negative

quantity is equivalent to the addition of a positive, (Art. 63).

In fact, as has been already observed, (Art. 174), it makes
known that the enunciation ought to be taken in an opposite

sense to that which we first proposed in the problem.

Prob. 4. A person lends at interest for one year a certain

capital at 5 per cent ; at the end of the year, according to

agreement, he is to receive a sum b, besides the principal and
interest, and the whole sum he receives must be equal to the

capital. I demand what is the capital ?

Let the capital be designated by x :

Since 100 dollars becomes at the end of the year 105 dollars,

we shall have the capital at the same time by this proportion,

100 : 105 : : a; : -7^= the capital.

105a:
The sum -f 6, by the problem, must be equal to x, we

have therefore the equation

105a:
——--^b-x] .-. 105a;+1005= 100a:;

by transposition, 5a:= — 100ft;

.-. by division, x=—20b.
179, Thus the capital shall be -—20ft. This answer does

not agree with the problem, and still if this value —20ft, be
substituted for x in the equation found, we obtain

and, performing the operations indicated in the first member, it

becomes
—20ft=-20ft,

which is true. This value of x, although it is negative, satis-

fies the pquHtion of the problem, as has been already observed
(Art. 174), since its two members become identicallt/ equal by
making the proper substitution.
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If we return again to the enunciation, we discover that it is

imposeible that a capital augmented by the interest would re-

main equal to itself, and that much more this impossibility

takes place, if, besides the interest, we add to it a sum b ; it

is necessary therefore that one of these two parts, namely,

the interest at 5 per cent, and i, be subtracted.

In fact, if we carry into the first equation this circumstance

—a?, which is but x=z — a number, we find

105 - 105a: ,

-roV+*=~^''''Too-"^=^'
a translation of the enunciation, by supposing the interest ad-

ditive to the capital, in which case, the sum b ought to be

subtracted.

This equation, treated as the preceding, shall give

x= 20b.

If the interest at 5 per cent be subtracted from 100, in which
case 100 reduces itself to 95, we have the capital x at the

end of the year, by the proportion

95a:
100 : 95 : : a; : j^x^ the capital,

consequently, T7\7\-\-f>=^ ;

multiplying by 100, and transposing, we shall have
1006z=5x, .\x=:2Qb.

The negative isolated result, that is, the negative value of

ap, would announce a rectification or a correction in the terms

of the enunciation, and the problem proposed could be re-es-

tablished in two ways.

Prob. 5. What number is that, the double of which exceeds

its half by 6 ?

Let a:= the number
;

Then by the problem, 2x— ^=6,

.-.multiplying by 2, 4a:— a;=12,
or3a:=12,

.'. by division, a:=4.

pROB. 6. From two towns which are 187 miles distant, two
travellers set out at the same time, with an intention of meet-

ing. One of them goes 8 miles, and the other 9 miles a day.

In how many days will they meet ?

Let xz=z the number of days required
;

then 8x1= the number of miles vne travelled,

and 9a:= the number the other travelled

;
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and since they meet, they must have travelled together the

whole distance,

consequently, Sx-}- 9a:=: 1 87,

or 17a:=187,
.*. by division, a:= ll.

Prob. 7. What number is that, from which 6 being sub-

tracted, and the remainder multiplied by 11, the product will

be 121 ?

Let x= the number required
;

Then by the problem (a;— 6) x 11 = 121,

by transposition, lla:=121-}-66,

or lla:=187,
.-.by division, a;= 17.

Prob. 8. A Gentleman meeting 4 poor persons, distributed

five shillings amongst them : to the second he gave twice, the

third thrice, and to the fourth four times as much as to the first.

What did he give to each ?

Let x= the pence he gave to the first,

.'.2x= the pence given to the second,

and 3a;= to the third,

4x= to the fourth.

.-.by the problem, a;+2a;4-3a:+4a:=5x 12=60,
or 10a: =--60,

by division, x=z6y

and therefore he gave 6, 1 2, 18, 24 pence respectively to them.

Prob. 9. A Bookseller sold 10 books at a certain price ; and
afterwards 15 more at the same rate. Now at the latter time

he received 35 shillings more than at the former. What did

he receive for each book ^

Let x= the price of a book.

then 10ar= the price of the first set,

and 15a;= the price of the second set

but by the problem, 15a;= 10a:4-35

.-.by transposition, 5a;= 35
and by division, a;=7.

Prob. 10. A Gentleman dying bequeathed a legacy of 1400
dollars to three servants. A was to have twice as much as

B ; and B three times as much as C. What were their re-

spective shares ?

Let a;=C's share,

.-. 3a;=B's share,

and 6a:=A's share
;

12
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thiem by the problem, a!+3a?-}-6j?=1400,

orl0ic=1400,
.-.by division, a?=140= C's share.

.-. A received 840 dollars ; B, 420 dollars ; and C, 140 dol-

lars.

Prob. 11. There are two numbers whose difference is 15,

and their sum 59. What are the numbers ?

As their difference is 15, it is evident that the greater num-
ber must exceed the lesser by 15.

Let, therefore, xz=z the lesser number;
then will a;-|-15= the greater

;

.-.by the problem, a;-}-a?-|- 15=59,
or 2a:-f 15= 59,

by transposition , 2x=59— 15=44,
.'.by division, j?=22 the lesser number,

and a? 4- 1 5=22+ 1 5= 37 the greater.

Prob. 12. What two numbers are those whose difference

is 9 ; and if three times the greater be added to iive times the

lesser, the sum shall be 35 ?

Let a;= the lesser number

;

then a;4-9= the greater number.

And 3 times the greater =3(a;-|-9)= 3a;4-27,

5 times the lesser =.bx.

.-. by the problem, (3a;+27)-f-5a:=35 ;

by transposition, 3af+5a:=35—27,

or8a:= 8;
.-.by division, a?=l the Ze^^crnumber,

and x+9= 1+9= 10 the greater number.

Prob. 13. "What number is that, to which 10 being added,

|ths of the sum will be 66 ?

Let a;= the number required
;

then a;+10= the number, with 10 added to it.

Now fths or(^+10)=j(a+10)=?i^°i=?^.

But, by the problem, |ths of (a:-f 10)=66 ;

3^^+30
.*. =66;

5

by multiplication, 3a;+30= 330

;

by transposition, 3a?=300;
.-.by division, a:= 100.

Prob. 14. What number is that, which being multiplied by
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6j the product increased by 18, and that sum divided by 9, the

product shall be 20 ?

Let x= the number required
;

then 6x= the number multiplied by 6
;

6x4-18= the product increased by 18 ;

and—-—ss that sum divided by 9,

, t ,, 6ar+18 „^
.-. by the problem,—-—=20

by multiplication, 6x4-18=20x9 ;

by transposition, 6a:=180— 18

or 6x=162
.-. by division, a:=27.

Prob. 15. a post is Jth in the earth, fths in the water, and

13 feet out of the water. What is the length of the post ?

Let 0?= the length of the post

;

then -= the part of it in the earth,
o

3x , /.. . 1-—-= the part of it m the water,

and 13= the part of it out of the water.

But by the problem, part in the earth 4" part in water 4*

part out of water = whole part

;

- (!)+(¥)+-=-
X 3x

and-x35+—-X 35+13 X35= 35a:;
5 7

or 7x4- 15x4- 455= 35a;

;

by transposition, 455= 35x—7x— 15x=13x,
or 13x=455

;

.*. by division, x=35, length of the post.

Prob. 16. After paying away ith and ith of my money, I

had 850 dollars left. What money had 1 at first ?

Let X— the money in my purse at first

;

X X
then"4-;z= money paid away.

But money at first — money paid away = money remaining

;

.'. by the problem ^— (t+«) =850,

or X— ^—-=850.
4 7
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Multiplying by 28, the product of 4 and 7 , which is the
least common multiple,

and 28a;-- ^X28-^X 28=850X28,
4 7

or 28j;—7a;—4a?=23800,
.-. 17a?=23800 ; and by division, a;=1400 dollars.

Prob. 17. What number is that, whose one half and one
third, plus 12, shall be equal to itself?

Let x= the number required
;

then, by the problem, a;=:-4--+12
;

•o o

Now to clear this of fractions, multiply by 6,

and 6x=3a;+2a;+72
;

by transposition, 6a;— 5x=r72
;

.•.a;=72.

It can be readily proved that 72 is the number required
;

72 72
thus, —+-—+12=36+24-1-12=72.

* d

All other problems in this Section may be proved in like

manner.

Prob. 18. To find a number, whose half, minus 6, shall be
equal to its third part, plus 10.

Let x= the number required
;

then by the problem, -—6=-+ 10,
•i O

.-. clearing of fractions, 3a;—36=2a:+60,
by transposition, 3a:—2a:=60+ 36,

.-. a;=96.

Prob. 19. Two persons, A and B, set out from one place,

and both go the same road, but A goes a hours before B, and
travels n miles an hour ; B follows, and travels m miles an
hour. In how many hours, and in how many miles travel,

will B overtake A ?

Let x= the hours that B travelled
;

then ir+a= the hours that A travelled.

Also mx= the number of miles travelled by B
;

and n(x-\-a)=nx-\-na=z the miles travelled by A
;

.-. by the problem, mx=nx-\-na
;

by transposition, mx—nx=na,
or {m—n)x=zna

;
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,. . . lm—n)x na
.'. by division, -^ =

,

.'.x= , the hours that B travelled.
m—

n

_-
,

na , na-{-ma—na ma , ,

Then x4-a = [-a=: = , the hours
m—n m—n m—n

that A travelled ; and mx= = the miles travelled.
m—

n

180. This is a general or literal solution, because m^ n, a^

may be any numbers or quantities taken at pleasure ; for ex-

ample,

Let a=9, n=:5, and m=:l ;

Then, A travels 9 hours at the rate of 5 miles an hour, be-

fore B sets out ; and B follows after at the rate of 7 miles an

hour.

Now, by putting these values of a, n, and m, in the formula,

found above ; we have,

x=z = =

—

=z22l, the hours that B travelled ;m—n 7—5 2 ^

and x= =-—-=-—=31i, the hours travelled by A.m—n 7— 5 2 "^ ^

And ma;=7x22^=157J, the miles travelled by each.

Prob. 20. Four merchants entered into a speculation, for

which they subscribed 4755 dollars ; of which B paid three

times as much as A ; C paid as much as A and B ; and D
paid as much as C and B. What did each pay ?

Here, if we knew how much A paid, the sum paid by each
of the rest could be easily ascertained

;

Let, therefore, x=z number of dollars A paid ;

3a:= number B paid
;

4x= number C paid
;

and 7x= number D paid

;

,-. (a;+ 3a:4-4a:-}-7a:=)I5ar=4755,

and a;=r317.

.-.they contributed 317, 951, 1268, and 2219 dollars re-

spectively.

Prob. 21. Let it be required to divide 890 dollars between
three persons, in such a manner, that the first may have 180
more than the second, and the second 115 more than the third.

Here, it is manifest that if the least or third part were
known, the remaining parts could be easily ascertained i

therefore,

12*
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Let the least or third part . . =:ar.

Then the ^econc? part . . . =^4-115.
.-. ihe greatest ox first ^^ri . . =1x4-115+180.
But the sum of the three parts . —890.

.•.3a;+ 115+ 1154-180=890,
or 3a:+41O=:890;

.-.by transposition, 3j?=890— 410,

or 3a;=:480,
.'. x= l60z= least part.

.. a?+ 1 15= 1 60+ 1 1 5=275= seeond part.

and a;+115+ 180= 160+115+ 180— 455:= greatest pan.

pROB. 22. A prize of 2329 dollars was divided between two
persons A and B, whose shares therein were in proportion of
6 to 12. What was the share of each I

Let 5a;=A's share
;

then 12af=B's share;
.-. 5a.'+12a;= 2329, or 17a!=2329

;

and ar=137
;

.'.their shares were 685 and 1644 dollars respectively.

Prob. 23. A fish was caught, whose tail weighed 91bs..;

his head weighed as much as his tail, and half his body ; and
his body weighed as much as his head and tail. Whafdid the

fish weigh ?

Let 2x= the number of lbs. the body weighed ; then 9+ a:

= the weight of the tail

;

.-. 9+ 9+ a;rr2ar;

by transposition, a?= 1 8 ;

.-. the fish weighed 36+ 27 + 9= 72lbs.

Prob. 24. A hare, 50 of her leaps before a greyhound,
takes 4 leaps to the greyhound's three ; but two of the grey-

hound's leaps are as much as three of the hare's. How many
leaps must the greyhound take to catch the hare ?

Let 3xz= the number of leaps the greyhound must take
;

.*. 4xz=: the number the hare takes in the same time,

.*. 4flc+50= the whole number she takes,

and 2 : 3 : : 3a; : 4a;+50
;

.-. 9x= 8a;+100;
by transposition, ir=100,

and the greyhound must take 300 leaps.

Prob. 25. The number of soldiers of an army is such, that

its triple diminished by 1000, is equal to its quadruple aug-

mented by 2000. What is this number ?



PRODUCING SIMPLE EQUATIONS. 127

Let X designate the number required ;

then, we are conducted to tliis equation,

3a;-1000=4.r4-2000, whence a:=—3000,
which gives an absurd answer with respect to the terms of the

question, since that a number of soldiers cannot be negative.

181. We shall render this impossibility very plain, by ob-

serving that the triple of a number being less than the quadru-

ple of the same number, the triple diminished by 1000 is much
less than the quadruple augmented by 2000. But by writing

—X in the place of -f-a: in the equation of the problem, then

changing the signs of both sides, we find

3a?+ 1000=: 4a:—2000; .-. a;=:3000.

We can from the equation

3x+1000rr4a;—2000,
re-establish the enunciation of the problem in such a manner
that there results from the solution an absolute number, that is,

a:=3000.
If in place of taking x for the representation of the unknown

number, we had taken

3a:— 6000, or a;=a:''— 6000
we should find for the equation

*'— 19000= 4jf'—22000;
/. by transposition, 22000— 19000= 4a:'— 3a:',

and .'. a:'= 3000 as before.

J L_
A

I
M

I

A'

Thus the value a:=: — 3000 being represented, on a line, by

the length A^M, counted from A' towards M, or to the left of

A\ we pass by the substitution a;=a:'—6000 from the origin

A^ to the origin A, to the left of A', and distant from A' by

6000=2A'M ; then the length AM^a;' is positive.

Prob. 26. A Courier sets out from Trenton for Washington,

and travels at the rate of 8 miles an hour ; two hours after his

departure another Courier sets out after him from New-York,
supposed to be 68 miles distant from Trenton, and travels at

the rate of 12 miles an hour. How far must the second Cou-
rier travel before he overtakes the first ?

N W
'i' R M

Let X represent the number of miles which the second Cou-

rier travels before he overtakes the first ; then, by a little at-

tention, we discover that this distance should be equal to the

distance from iVcw-YorA to Trenton, ox NT=68 miles, plus
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the distance travelled by the first Courier in two hours which
his departure preceded that of the second, together with the

number of miles which the first travels whilst the second

Courier is on route ; that is, NM, or a;=NT+TR+RM.
Let us translate the two last distances, that is, TR and RM ;

in the first place,2x8=:16='rR=: the number of miles which

the first Courier travels before the second sets out ; then, in

order to find an expression for MR ; we shall say, since the

distances passed over in an hour are as 8 : 12, or 2 : 3 ; as, 2 :

2x
3 : : MR : x ; and consequentlyMR=— . So that we obtain

for a translation of the enunciation,

2^ 2a;
ar=68+16+y=84+y;

by multiplication, 3a;r=252+ 2a; ; .-. a;=252,

that is to say, the two Couriers would meet when the second

shall have travelled 252 miles. In fact, while the second

2x
travelled 252 miles, the first travelled 168 miles ; since — is

the expression for the number of miles which the first travelled

while the second was on route ; that is, substituting 252 for x,

2x 2X252 504 _^ ..-=-^—:.--.= 168 miles.

Now, the place from whence the first Courier departed, be-

ing 68 miles distant from New-York, besides he has the ad-

vantage of having travelled 16 miles before the other set out.

Consequently 68-|- 164-168 must be equal to the number of

miles which the secoud Courier travels before they meet

;

that is, 68-f 16+ 168= 252.

We see here an example of verification of the value of the

unknown ; it is a proof which the student can, and should al-

ways make.

182. In order to have a general solution of this problem,

let us therefore represent in general, by a the distance between

the two places of departure, which was 68 miles in the preced-

ing question, by b the number of hours which the departure of

the first precedes that of the second, by c the number of miles

that the first Courier travels per hour, and by d the number
which the second travels in the same time. Let x= the dis-

tance which the second Courier must travel before they meet

;

then, we shall have the distance travelled by the first Courier

during the time that the second has been travelling, by calcu-

lating the fourth term of a proportion that commences thus ;
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, cXx ex
a : c : : X : —p-or —

.

a a

The first Courier travelling c miles an hour, he will have tra-

velled cxb miles before the second set out.

Therefore by the condition of the problem, we shall have

ex , . , , d{cb-\-a)
x= —-+*c-f a ; whence x=-^ -,

d d—c
which gives the solution of all questions of the same kind.

In order to show the use of this formula, let us resume again

the preceding enunciation, and by recollecting that we must
replace a by 68, & by 2, c by 8, and d by 12.

Then the value of x becomes

12(16+ 68) ,^^ ., , .
x=z —

^

—^=252 miles as before.
12—

6

Prob. 27. What two numbers are those, whose difference

is 10, and if 15 be added to their sum, the whole will be 43 ?

Ans 9 and 19.

Prob. 28. What two numbers are those, whose difference

is 14, and if 9 limes the lesser be subtracted from six times the

greater, the remainder will be 33 ? Ans. 17 and 31.

Prob. 29. What number is that, which being divided by 6,

and 2 subtracted from the quotient, the remainder will be 2 ?

Ans. 24.

Prob. 30 What two numbers are those, whose difference

is 14, and the quotient of the greater divided by the lesser 3 ?

Ans. 31 and 7.

Prob. 31. What two numbers are those, whose sum is 60,

and the greater is to the lesser as 9 to 3 ? Ans. 45 and 15.

Prob. 32. What number is that, wliich being added to 5,

and also multiplied by 5, the product shall be 4 times the sum ?

Ans. 20.

Prob. 33. What number is that, which being multiplied by
12, and 48 added to the product, the sum shall be 18 times the

number required ? Ans. 8.

Prob. 34 What number is that, whose \ part exceeds its \
part by 32 1 Ans. 640.

Prob. 35. A Captain sends out ^ of his men, plus 10 ; and
there remained \, minus 15 ; how many had he ? Ans. 150.

Prob. 36. What number is that, from which if 8 be sub-

tracted, three-fourths of the remainder will be 60 ? Ans. 88.

Prob. 37. What number is that, the treble of which is as

much above 40, as its half is below 51 ? Ans 26.

Prob, 38. What number is that, the double of which ex-

ceeds four-fifths of its half by 40 ? Ans 25.
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Prob. 39. At a certain election, 946 men voted, and the
candidate chosen had a majority of 558. How many men voted
for each ? Ans. 194 for one, and 752 for the other.

Prob. 40. After paying away A of my money, and then J of
the remainder, I had 140 dollars left : what had I at first ? -

Ans. 180 dollars.

Prob. 41. One being asked how old he was, answered, that

the product of -^^ of the years he had lived, being multiplied

by f of the same, would be his age. What was his age ?

Ans. 30.
Prob. 42. After A had lent 10 dollars to B, he wanted 8

dollars in order to have as much money as B ; and together
they had 60 dollars. What money had each at first ?

Ans. A 36 and B 24.
Prob. 43. Upon measuring the corn produced by a field,

being 48 bushels ; it appeared that it yielded only one third

part more than was sown. How much was that ?

Ans. 36 bushels.

Prob. 44. A Farmer sold 96 loads of hay to two persons.

To the first one half, and to the second one fourth of what his

stack contained. How many loads did that stack contain ?

Ans. 128 loads.

Prob. 45. A Draper bought three pieces of cloth, which
together measured 159 yards. The second piece was 15 yards
longer than the first, and the third 24 yards longer than the

second. What was the length of each ?

Ans. 35, 50 and 74 yards respectively.

Prob. 46. A cask which held 146 gallons, was filled with
a mixture of brandy, wine, and water. In it there were 15
gallons of wine more than there were of brandy, and as much
water as both wine and brandy. What quantity was there of

each 1 Ans. 29, 44, and 73 gallons respectively.

Prob. 47. A person employed 4 workmen, to the first of

whom he gave 2 shillings more than to the second ; to the se-

cond 3 shillings more than to the third ; and to the third 4
shillings more than to the fourth. Their wages amounted to

32 shillings. What did each receive ?

Ans. 12, 10, 7, and 3 shillings respectively.

Prob. 48. A Father taking his four sons to school, divided

a certain sum among them. Now the third had 9 shillings

more than the youngest ; the second 12 shillings more than

the third ; and the eldest 18 shillings more than the second;
and the whole sum was 6 shillings more than 7 times the sum
which the youngest received. How much had each ?

Ans. 21, 30, 43, and 60 shillings respectively.
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Prob. 49. It is required to divide the number 99 into five

such parts, that the first may exceed the second by 3 ; be less

than the third by 10
;

greater than the fourth by 9 ; and less

tlian the fifth by 16. Ans. 17, 14, 27, 8, and 33.

Prc^b. 50. Two persons began to play with equal sums of

money ; the first lost 14 shillings, the other won 24 shillings,

and then the second had twice as many shillings as the first.

What sum had each at first ? Ans. 52 shillings.

Prob. 51. A Mercer having cut 19 yards from each of

three equal pieces of silk, and 17 from another of the same
length, found that the remnants together were 142 yards.

What was the length of each piece 1 Ans. 54 yards.

Prob. 52. A Farmer had two flocks of sheep, each con-

taining the same number. From one of these he sells 39, and
from the other 93 ; and finds just twice as many remaining in

one as in the other. How many did each flock originally

contain? Ans. 147

Prob. 53. A Courier, who travels 60 miles a day, has been
dispatched five days, when a second is sent to overtake him,

in order to do which he must travel 75 miles a day. In what
time will he overtake the former ? Ans. 20 days.

Prob. 54. A and B trade with equal stocks. In the first

year A tripled his stock, and had $27 to spare ; B doubled

his stock, and had $153 to spare. Now the amount of both

their gains was five times the stock of either. What was
that ? Ans. 90 dollars.

Prob. 55. A and B began to trade with equal sums of mo-
ney. In the first year A gained 40 dollars, and B lost 40

;

but in the second A lost one-third of what he then had, and B
gained a sum less by 40 dollars, than twice the sum that A
had lost; when it appeared that B had twice as much money
as A. What money did (jach begin with ? Ans. 320 dollars.

Prob. 56. A and B being at play, severally cut packs of

cards, so as to take oflf more than they left. Now it happened
that A cut oflf twice as many as B left, and B cut off seven
times as many as A left. How were the cards cut by each ?

Ans. A cutoff 48, and B cut off 28 cards.

Prob. 57. What two numbers are as 2 to 3 ; to each of

which if 4 be added, the sums will be as 5 to 7 ?

Ans. 16 and 24.

Prob. 58. A sum of money was divided between two per-

sons, A and B, so that the share of A was to that of B as 5 to

3 ; and exceeded five-ninths of the whole sum by 50 dollars.

What was the share of each person ?

Ans. 450, and 270 dollars.
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Prob. 59. The joint stock of two partners, whose particu-

lar shares differed by 40 dollars, was to the share of the les-

ser as 14 to 5. Required the shares,

Ans. the shares are 90 and 50 dollars respectively.

Prob. 60. A Bankrupt owed to two creditors 1400 dollars
;

the difference of the debts was to the greater as 4 to 9. What
were the debts ? Ans. 900, and 500 dollars.

Prob. 61. Four places are situated in the order of the four

letters A, B, C, D. The distance from A to D is 34 miles,

the distance from A to B : distance from C to D : : 2 : 3, and
one-fourth of the distance from A to B added to half the dis-

tance from C to D, is three times the distance from B to C.

What are the respective distances ?

Ans. ABz=12, BC=rr4, and CD= 18 miles.

Prob. 62. A General having lost a battle, found that he had
only half his army plus 3600 men left, fit for action ; one-eighth

of his men plus 600 being wounded, and the rest, which were
one-fifth of the whole army, either slain, taken prisoners, or

missing. Of how many meq did his army consist ?

Ans. 24000.

Prob. 63. It is required to divide the number 91 into two
such parts that the greater being divided by their difference,

the quotient may be 7. Ans. 49 and 42.

Prob. 64. A person being asked the hour, answered that it

was between five and six ; and the hour and minute hands

were together. What was the time ?

Ans. 5 hours 27 minutes 16yy seconds.

Prob. 65. Divide the number 49 into two such parts, that

the greater increased by 6 may be to the less diminished by

11 as 9 to 2. Ans. 30 and 19.

Prob. 66. It is required to divide the number 34 into two
such parts that the difference between the greater and 18,

shall be to the difference between 18 and the less : : 2 : 3.

Ans. 22 and 12.

Prob. 67. What number is that to which if 1, 5, and 13, be

severally added, the first sum shall be to the second, as the

second is to the third. Ans. 3.

Prob. 68. It is required to divide the number 36 into three

such parts, that one-half of the first, one-third of the second,

and one-fourth of the third, shall be equal to each other.

Ans. 8, 12, and 16.

Prob. 69. Divide the number 1 1 6 into four such parts,

that if the first be increased by 5, the second diminished by

4, the third multiplied by 3, and the fourth divided by 2, the

result in each case shall be the same. Ans. 22, 31, 9, and 54.
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Pros. 70. A Shepherd, in time of war, was phindered by a

party of soldiers who took } of his flock, and ^ of a sheep

;

another party took from him J of what he had left, and J of a
sheep ; then a third party took I of what now remained, and

J of a sheep. After which he had but 25 sheep left. How
many had he at first ? Ans. 103.

Prob. 71. A Trader maintained himself for 3 years at the

expense of 50/. a year ; and in each of those years augmented
that part of his stock which was not so expended by J thereof.

At the end of the third year his original stock was doubled.

What was that stock ? Ans. 740/.

Prob. 72. In a naval engagement, the number of ships ta-

ken was 7 more, and the number burnt 2 fewer, than the num-
ber sunk. Fifteen escaped, and the fleet consisted of 8 times

the number sunk. Of how many did the fleet consist ?

Ans. 32.

Prob. 73. A cistern is filled in twenty minutes by three

pipes, one of which conveys 10 gallons more, and the other 5

gallons less, than the third, per minute. The cistern holds 820
gallons. How much flows through each pipe in a minute ?

Ans. 22, 7, and 12 gallons.

Prob. 74. A sets out from a certain place, and travels at

the rate of 7 miles in five hours ; and eight hours afterwards

B sets out from the same place, and travels the same road at

the rate of 5 miles in three hours. How long, and how far,

nmst A travel before he is overtaken by B ?

Ans. 50 hours, and 70 milea

Prob. 75. There are two places, 154 miles distant, from

which two persons set out at the same time to meet, one tra-

velling at the rate of % 3 miles in two hours, anc! the other at

the rate of 5 miles in four hours. How long, and how far, did

each travel before they met ?

Ans, 56 hours ; and 84, and 70 miles.

b
13
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CHAPTER V.

ON

SIMPLE EQUATIONS,

INVOLVING TWO OR MORE UNKNOWN aUANTITIES.

183. It has been observed (Art. 159), that an equation was
the translation into algebraic language of two equivalent

phrases comprised in the enunciation of a question ; but this

question may comprehend in it a greater number, and if they

are well distinguished two by two, and independent of one an-

other, they furnish a certain number of equations.

Thus, for example, let us propose to find two numbers, such

that douhle the first added to the second, gives 24, and that five

times the first, plus three times the second, make i\b. We find

here two phrases, which express the same thing in different

terms ; 1st, the double of an unknown number, plus another un-

known number, then the equivalent 24 ; 2d, five times the first un-

known number, plus three times the second, then the equivalent 65.

The translation is eas}^ and it gives these two determinate

equations :

2x+y= 24: ; 5x-\-3i/= 65.

When two or more equations, involving as many unknown
quantities, are independent of one another, they are called de-

terminate. But if for the second of these two conditions we
had substituted this : and such that six times the first number,

plus three times the second, make 72 ; these two phrases ex-

press nothing more than the first two, since that we have only

tripled two equal results ; we should have but one translation,

and consequently a single equation. It can therefore happen
that we may have less equations than unknown quantities,

and then the question is said to be indeterminate ; because the

number of conditions would be insufficient for the determina-

tion of the unknown quantities, as we shall see clearly illus-

trated in the following section.

^ I. ELIMINATION OF UNKNOWN QUANTITIES FROM ANY NUM-
BER OF SIMPLE EQUATIONS.

184. Elimination is the method of exterminating all the un-

known quantities, except one, from two, three, or more given
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equations, in order to reduce them to a single, or final equa-

tion, which shall contain only the remaining unknown, and
certain known quantities.

185. In order to simplify the calculations, by avoiding frac-

tions, we shall here make use of literal equations, which will

modify the process of elimination : And also, to avoid the in-

convenience arising from the multitude of letters which must
be employed in order to represent the given quantities, whea
the number of equations involving as many unknown quanti-

ties surpasses two, we shall represent by the same letter all

the coefficients of the same unknown quantity ; but we shall

affect them with one or more accents, in order to distinguish

them, according to the number of equations.

186. In the first place, any two simple equations, each in-

volving the same two unknown quantities, may, in general, be
written thus :

aa:-{-bt/=c (A),

a'x-hb'y= c' (B).

The coefficients of the unknown quantity x are represent-

ed both by a ; those of y by i ; but the accent, by which the

letters of the second equation are affected, shows that we do
not regard them as having the same value as their correspond-

ents in the first. Thus a' is a quantity different from a, 6' a
quantity different from b.

187. We can readily see, by a few examples, how any two
simple equations, each involving the same two unknown quan-

tities, may be reduced to the above form.

Ex. 1. Let the two simple equations,

5x-f-3y—5_:y—2a;H-7,

9x—2i/-\-3z=x—7i/-\-l6,

be reduced to the form of equations (A) and (B).

By transposition, these equations become
5.r+3y—y-f2a:=7+ 5,

9x—2i/—x-^7t/=l6— 3;
by reduction, we shall have

7x-f2y=12,
8x+5i/=\3;

equations which are reduced to the form of (A) and (B), and
which may be expressed under the form of the same literal

equations, by substituting a, b, and c, for 7, 2, and 12 ; and
a' J b', and c% for 8, 5, and 13.

Ex. 2. Let the two simple equations,

mx-\-6i/— 7=zpx—2y-\-3^
ra^—9y4-6 = 3y — 3a;-fl2,

be reduced to the form of equations (A) and (B).
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By transposition, these equations become
wia; 4- 6y—/?a;+ 2y =: 3+ 7,

ra:— 9y— 3y-|-3a;:izl2—6 ;

by reduction, we shall have

{m—p)v-{- 8y=10,
(r-f3)a;-12y=:6;

which are reduced to the form required, and which may be

expressed under the form of the same literal equations, by
substituting a for m—j7, b for 8, c for 10, a^ for /•+3, b' for

— 12, and c' for 6.

In like manner any two simple equations may be reduced to

the form of equations (A) and (B) ; hence we may conclude

that a, b, c, a/ b', and c', may be any given numbers or quan-

tities whsLieveTj positive or negative, integral ox fractional.

It is to be always understood, that when we make use of

the same letters, marked with different accents, they express

different quantities. Thus, in the following equations, a, a\

a", are three different quantities ; and the same of others.

188. Any three simple equations, each involving the same
three unknown quantities, may be expressed thus

;

ax-\-by-\-cz=.d .... (C),

a'x-\-b'y'\'c'z= d' . . . (D),

a"x+b"y^c''z=d" ..(E);
where a, i, c, d, a\ b\ c' d\ a'\ b'\ c'', d'\ are known quanti-

ties ; and x, y, z, unknown quantities whose values may be
found in terms of the known quantities.

In like manner, any four simple equations maybe expressed

thus

;

ax-\-bi/-\-cz-{-du= e .... (F),

a'x-{-b'y-{-c'z-\-d'u=:e' . . . (G),

a''x-\-b"y-\-c"x-^d"u= e'' . . (H),

a'''x+b'y-^c"'z^d'"u= e"' . . (I)
;

And so on for five, or more simple equations.

189. Analysts make use of various methods of eliminating

unknown quantities from any number of equations, so as to

have a final equation containing only one of the unknown
quantities; some of which are only applicable in particular

cases ; but the most general methods of exterminating un-

known quantities in simple equations, are the following.

FIRST METHOD.

190. Let us consider, in the first place, the equations,

ax-\-byz=c . . . (A),

a*x-{-by=c\ . . (B).
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It is evident that if one of the unknown quantities, ar, for

example, had the same coefficient in the two equations, it

would be sufficient to subtract one from the other, in order

to exterminate this unknown : Let, for example, the equa-

tions be

10T-|-lly=27,

lOx-h 9y=15;
if the second be subtracted from the first, we shall have

lly-93/=27— 15, or 2y=12.
It is very plain, that.we can immediately render the coeffi-

cients of a: equal, in the equations (A) and (B)
;

By multiplying the two members of the first by a\ the co-

efficient of X in the second ; and the two members of the se-

cond by a, the coefficient of x in the first ; we shall thus ob-

tain,

a'ax-\-a'hy= a''c
;

aa'x-\-ab'y=.ac'.

Subtracting the first of these from the second, the unknowa
X will disappear, we shall have only

(ab'—ab)7/=ac^— a^c,

an equation which contains no more than the unknawu quan-

tity y, and we will deduce from it

ac'— a'c , .

y=w:z-^b w-
By eliminating in the same manner the unknown quantity

jr, from the proposed equations ; we would arrive at the equa-

tion

{ab^—a'b)x=b'c—bc'

;

from which we will deduce
b'c— hc'

^=^yWA • • • (*)•

191. The process which we have just employed, may be
applied to all simple equations, Cor exterminating any number
whatever of unknown quantities.

If we apply this process to three equations, involving a:, y,
and z, we will at first eliminate x between the first and se-

cond ; then between the second and third ; and we shall

thus arrive at two equations, which involve only y and z^ and
between which we will afterward eliminate y, as in the preced-

ing article.

If welWfect the equation in z, at which we will arrive, we
shall have a factor too much in all its terms ; and consequent-

ly it will not be the most simple which might be obtained.

13*
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SECOND METHOD.

1 92. Let us resume again the equations,

(A) . . ax-\-byz=zc \ ax-\-h'y^=c' . . . (B) ;

If we find the vaUie of x in terms of y and the known quan-
titles in each of these equations, we shall have

c— by c'— b'y
x=:. ^, x= -^;

a a'

the equality of the second members, furnishes the equation

c— by c"

—

by

a a'

which, by making proper reductions, gives

acf— a'c

^~ ab'—a'b^

by substituting this value for y, in one of the values of x, we
shall, after the reductions, have

b'c—bc

ab'— a'b
'

These values of x and y are the same as before.

Now, it is evident, that by proceeding in the same manner,
with three equations containing x, y, and z, we will find the

value of x in each of them, then by comparing these values,

we shall arrive at two equations, involving only y and z, from

which we can eliminate y, as in equations (A) and (B). And,

we can proceed, in a similar manner, when there are four equa-

tions with four unknown quantities ; and so on, for five, or more
equations.

THIRD METHOD.

193. Now, if in the equation (A), we find the value of x, in

terms of y and the given quantities, we shall have

c— by
X=:z -^

;

a

by substituting this value in equation (B), wo shall have

, c—hy
a'X ^-^b'yzzzc',

which, by reduction, becomes
ac'—a'c

{aV^ab)y=ac'-ac, •'•y^^^TTT^ '

this value being substituted for y in the above value of ic, after

making the proper reductions, we shall obtain

b'c— be'

ab —a
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These values of x and y are the same as in the two former

instances.

194. We might eliminate in like manner, when any num-

ber of simple equations are concerned ; thus, for example :

Let it be required to deduce from the three equations, (C), (D),

and(E), (Art. 188), a single equation involving only the un-

known quantity z.

By finding the value of x in each of these equations, in

terms of y, z, and the given quantities, we shall have

^J.^=S1 ... (1)
a

^Jl^^'ll. . . (2)

.Jl^-J^l . . (3)
a

Putting the first value of x equal to the second, and also

equal to the third, we shall have these two equations,

d— byf— cz d'— h'y— c'z

a ~ a

d-.by-cz _d"^h''y—c"z

a ~ a''
'

From which we deduce, by reduction and proceeding as in

equations (A) and (B),

{a'c—ac')z-[-ad^—ad ..
y=—w:^b— • • • (')'

[a"c.-ac')z+ ad"-a"d
y=

ab''~=r^h •
•

^^^-

The equality of the second members furnishes the equation

(ac— oc')z-\-ad'—ad {a"c— ar/')z-\-ad"~a'^d

ab' —a'b
~

ab"— a'b

which, by proper reductions, will give the value o{ z : having

obtained the value of z, substitute it in equation (4) or (5),

and the value of y can be readily found.

Now, the values of y and z being known, by substituting

ihem in the equation (I), (2), or (3) ; we shall easily obtain

the value of x.

FOURTH METHOD.

195. Let, as before, the two equations be

(A) . . . ax-^bij= c; a'x-\-b'y=c' . . . (B).

Multiplying equation (.A) by some indeterminate quantity

m, it will become
amx'\-bmy=ii^;
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and subtracting from this result equation (B), we shall have
{am— a)x-i-{bm—b')j/ = cm—c' . . . (6).

And since the value of m, in this equation, is indeterminate,

we can take bm—b^=0, or m——; in which case the second
o

term will disappear, we shall have

b' .

cm—c CO'— be
X=:

b' , ttb''—a'bax-— a'

which is the same value of x, as before.

Also, as the value of x, thus found, is independent of that

of m, we can now take am:=za or m=z— ; according to which

supposition the term involving x will vanish, and the result

will give

ca'—acf

^^ba'—aV
By changing the signs of the numerator and denominator

(Art. 128) of this value, its denominator will be the same as

that of a;, since we shall have,

ac'— a'c

^~ab'-ba''
which is the same value of y as in each of the preceding

methods.

This method, given by Bezout, is very simple for elimi-

nating all the unknown quantities, except one ; besides, it has

the advaiitagt! of greater brevity above the preceding methods,

as we can deduce the values of each of the unknown quanti-

ties from the same equation.

§ II. RESOLUTION OF SIMPLE EQUATIONS,

Involving two unknown Quantities.

196. When there arc two independent simple equations, in-

volving two unknown quantities, the value of each of them

may be found by any of the following practical rules, which

are easily deduced from the Articles in the preceding Section.

RULE I.

197. Multiply the first equation by the coefficient of one of

the unknown quantities, in the second equation, and the se-
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cond equation by the coefficient of the same unknown quan-
tity in the first. If the signs of the term involving the un-

known quantity be ahke in both, subtract one equation from
the other

; if unlike, add thorn together, and an equation arises

in which only one unknown quantity is found.

Having obtained the value of the unknown quantity from
this equation, the other may be determined by substituting in

either equation the value of the quantity found, and thus re-

ducing the equation to one which contains only the other un-
known quantity.

Or, multiply or divide the given equations by such numbers,
or quantities, as will make the term that contains one of the un-
known quantities the same in each equation, and then proceed
as before.

Ex. 1. Given <^ _2^ ,^' > to find the values of a; and y.

Multiply the 1 st equation by 5, then 1 Ox-\- 1 5y =: 1 1 5
;

2nd .... 2, . . 10a:— 4y= 20;

.*. by subtraction, I9y=z95,

95
by division, y=:—, .. y=5.

1 y

Now. from the first of the preceding equations, we shall have

23-3y , . 23— 15 8 ,x=—^=(sincey=5)—^—=2= '^-

The values of x and y might be found in a similar manner,
thus:

Multiply the 1st equation by 2, then 4a;4-6y=46
;

2nd 3, . 15a;—6y=i30;

.-. by addition, 19a?=76,

by division, a:=—= 4.

Now, from the first of the preceding equations, we shall

23-2a; , . .v23-8 15 ^
have y=z— =:(smce a:= 4)—-—=—=5.

d do
Ex. 2. Given

| 5^4112^^48' ^ 1° fi"^ t^e values of x

and y.

Multiply the 1st equation by 6, then 24a:+ 54y= 210

,

2nd .... 4, . 24a;-f48y=192;

.'. by subtraction, 6y=: 18,
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by division, y=— =3»

Now, from the first of the preceding equations, we shall

35— 9y ,. „, 35-9x3 35-27
have x=—-—-=(since y=3) =—:

,4 "^
' 4 4

8
or x=-j .'.x=2

4

The values of a? and y may be found thus
;

Multiply the 1st equation by 3, then 12a;+27y=105
;

2nd . . . 2, . 12a;+24y= 96;

.*. by subtraction, 3y=9,

, J- • . 9 o
by division, y=-=3.

o

And • x=?^—=?=2
The numbers 3 and 2, by which we multiplied the given

equations, are found thus
;

The product of two numbers or quantities, divided by their

greatest common measure, will give their least common mul-

tiple.

6x4
.•• -——=12 the least common multiple,

lO

12
Then —= 3, the number by which the first equation is

4
12

multiplied ; and —-=2, the number by which the second equa-
6

tion is multiplied.

By proceeding in a similar manner with other equations,

the final equation will be always reduced to its lowest terms.

Ex. 3. Given \ o^'tt^^a^' I w find the values of x

andy.

Multiply the 2nd equation by 5, then 15x+35y=335
;

1st . . . 3, . 15a;+12y=174;

.-. by subtraction, 23y=:161,

161 ^andy^--=7;

whence, 5a:=58—4y=58-28=:30,

and .•.a;=-^=o.
5
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If the second equation had been multiplied by 4, and sub-

tracted from the first when multiplied by 7, an equation would

have arisen involving only x, the value of which might be de-

termined, and thence, by substitution, the value of y.

Ex. 4. Given \ l^Ze^=^lO \
^ ^"^ ^^® ^^^"®^ °^ '

and y.

Multiply the first equation by 3,

18j:— 6y= 42
;

but Sx—6y= — 10;

.-.by subtraction, I3.r=52, and a:=4,

5a:+10 20+10 30 ^
whence y=—^-=-^-=-=5.

198. These values being substituted in the place of x and

y in each of the equations, shall render both members iden-

tically equal, or, what is the same thing, each of the equations

will reduce to 0=0.
Thus, by substituting 4 for a;, and 5 for y, in the above

equations, they become
6x4-2x5z= 14, ) ^^ 5 14= 14;)
5X4-6X5=-I0;r °^ ^ -10=:-10. J

Therefore, by transposition,

14— 14=0, or = 0;
and —10+10= 0, or = 0.

Since (Art. 56) 14— 14= 0, and 10— 10=0.

If these conditions do not take place, it is evident that there

must be an error in the calculation : therefore, the student,

whenever he has any doubt respecting the answer, should al-

ways make similar substitutions.

Ex. 5. Given \ 11^+^^= 100, } ^ ^^^ ^^^ ^.^j^^^ ^^ ^
\ 4x-'7t/= 4, S

and y.

Mult, the 1st equation by 7, then 77a;+21y=700,
2d ... 3, . 12a—21y-= 12;

.-. by addition, 89a:=712,
712

by division, x=-Qg'y

and .'. a;=8 ;

whence 3y=100-lla;=100-llx8=100-88=12;
12 A
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C|+7y=99,
Ex. 6. Given ^ \ to find the values of x and y.

Multiply each equation by 7,

.-. a:+49y=693,
and 3/4-49aF=357;

/. by addition 50a:4-50y= 1050,

and by division, x-\-i/= =21
;

but since a!;+49y=:693,

subtracting the upper equation from the lower,

we have 48y=693—21=672,

.•.y=^=i4,

whence a;rir21—yrr21 — 14=7.

I

I Q Q 1 J

-, r» ^- 7 3
^~ '

f to find the values of

«

Ex. 7. Given <
, ^ V „.

7/4 5 I and y.
^^^I-4-10a:=192,\ ^
4 y

Clearing the first equation of fractions,

x+ 2 + 24y=z93
;

.•. by transpositioH, ir4-24y=:91 . . . (1)

Clearing the second eq'jation of fractions,

y4.5_{_40x=768;
.-. by transposition, 403?+y=763 . . . (2).

Multiplying equation (1) by 40, and subtracting equation

(2) from it,

40x+960y=3640;
40a:- y= 763

;

/. 959y=.2877,
and by division, y=3 ;

From equation (1), a!:=91—24y,
.-. by substitution, j:= 9 1—24x3,

or a;= 91-72, /. a:=19.

If from equation (2), multiplied by 24, equation (1) had
been subtracted, an equation would have arisen involving only

X, the value of which might be determined, and this being sub*

stituted in either of the equations, the value of y might also

be found.
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Ex. 8. Given j^_^^i'Jto find the values of x and y.

By addition, 2x=a-\-b ; .•.x= .

By subtraction, 2y=a—h, .-. y=—r

—

Z

Ex.9. Given | f^+g^^^^' ^ to find the values of x and y

Multiply the 1st equation by 2, then a;+4y=24
;

2nd .... 2, . a:—4y= 8
;

by addition, 2a;=32,

32
.-. by division, a?=—-=16.

By subtraction, 8y=16

;

.-. by division, y= 2.

Or, the values of x and y may be found thus :

From the first equation subtract the second, and we have

4y=8, .•.y=3.
Add the first equation to the second,

and .-. x=l6.
Ex. 10, Given 4a;4-3y=31, and 3a:+2y=22 ; to find the

values of a: and y. Ans. a;=4, y=5.
Ex. 11. Given 5a;—4y=19, and 4a:-|-2y=36, to find the

values of x and y. Ans. a:=7, y=4.

Ex. 12. Given ^-.2y=2, and ^^Ili^+y^?? ; to find
3 5 5

the values of a; and y. Ans. a;=ll, y=l.

Ex.13. Given ^^4-14=18,)^ c a .x.' ^ ^2 f to find the values of x

Ans. a;=5, and y=2.

Ex. 14. Given ?^±^
•^i=^')to find the values of «

. 7y-3ar
, ,

(and y.
tnd-i-^ y=Il.)

Ans. xz=6t and y=:8.

14



149 SIMPLE EQUATIONS.

Ex. 15. Given 3a;-|-^=22,

2x "t
'° ^°^ ^^® values of x andy.

and lly—r=20,

Ans. a;=:5, and y=2,

2x 5—-y_41 2a:— 1 J to find the values

of X and y.

Ex. 16. Given ar+l : y : : 5 : 3, )
, 2a; 5-y 41 2a:-l Jand -t: r-^=— ^—.

J

Ans. a:=4, and y=3.
N

} J

2y+4 2x+y ^^^ 3, > to find the values

v 1^ n- *-2 io-« y-^0
Ex. 17. Given -— —=^—:

—

5 3 4

""**
3 8

of X and y.

Ans. ar=7, and y=10.
Ex. 18. Given a:H-15y= 53, ) ,^ ^ j .u 1 r j

and yT 3x=27; J
'° ^"^ '^^ ^^^"^" °^ * ^"^ y-

Ans. a:=8, and y=3.
^^''-

""'Z t:ti%=l: \
'»«><' the values ofxandy.

Ans. ac=6, and y=3.

Ex. 20. Given ^"1-7=6,
o 4

to find the values of x and y.

4 ' 6

Ans. »=12, and y=16.

»"dl+l=5f.

RULE II.

199. Find the value of one of the unknovirn quantities in

terms of the other and known quantities, in the more simple

of the two equations ; and substitute this value instead of the

quantity itself in the other equation ; thus an equation is ob-

tained, in which there is only one unknown quantity ; the va-

lue of which may be found as in the last Rule.

Ex. 1. Given j "^j^^^-^M to find the values of ar andy.

From the first equation, a?=:17—2y;
" Substituting therefore this value of x in the second equation,

3.(17-2y)-y=2,
or 5i—6y—y=:2 ;

by changing the signs, and transposing

;
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7y= 5I-2= 49,

.-. by division, y—7 ;

whence a:=17— 2y=zl7— 14=3.
Here a value of y might be determined from either equa-

tion, and substituted in the other ; from which would arise an
equation involving only x, the value of which might be found

;

and therefore the value of y also might be obtained by sub-

stitution, thus

;

From tbs secoad equation, y=:3jc— 2 ; substituting there-

fore this value of y in the first equation ; we have,

x-{-2 . (3a:—2)z=17,

or a;-}-6x— 4= 17;
.-. by transposition, 7x=17-f4=21

by division, a:=-;z-i /. Jf=3
;

and .•.y=3a:— 2=3x3— 2=9—2=7.
Ex. 2. Given

j ll'^\^^%^ \
to find the values of «

and y.

From the first equation, y=60— 3jc ;

Let the value of y be substituted in the second equation,

and it becomes,

5a;-fl0=78-j-(60-3«).

Then, by transposition, 8af=78+60— 10
;

and by division, «=-—-= 16.
8

Whence, y=60—3«=60— 3 X 16=60—48 ;

^+y=66.
y=i3.

Ex. 3. Given < ^
S

^ojind the values of or

i x—y ^^ ^ I and y.

Mult, the 1st equation by 3, then

a:4-y= 198-6y ... (1)
2nd by 3, then jc—y=186— 6ar . . . (2)
From equation (I), we have ar=198—7y

„ ^ . . ^ (2), 7x-y=186.
By substituting the above value of x, in the last equation, it

becomes

7(198- 7y)-y=186,
or, 1386—49y—y= 186;

by transposition, —50y=186— 1386=— 1200,
by changing the signs, 50y=1200,
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..... 1200 „^
. . by division, y=-——=24.

Whence, a;=198-7y=198—7x24= 198—168,
.-. a;=30.

Ex. 4. Given <
J] Haq' I

^ ^"^ the values of xandy.

From the second equation, a:=60

—

y :

By substituting this v^ue of x in the Ist equation, we have,

60—y-f-2y=80,
by transposition, y=80— 60,

.•.y=20.
And ar=60—y=: (by substitution) 60—20,

.\x=40.

Ex. 5. Given
J
3*_ ^Z o'( ^^^"^^^^^^^"^''O^^^'^^y-

From the 1st equation, a;=17— 2y.

And this value substituted in the second,

3(17-2y)-y=2,
or 51— 6y — y=2,

by transposition, &c., 7y=49,
/. by division, y=7,

whence, a-=17—2y=17—2x7= 17— 14,

.•.y=3.

Ex. 6. Given < '^2'I.^2~k ( ^° ^"^ ^^® values of x and y.

From the first equation, x=z5 -y,
squaring both sides, a^=(5—yY.

And by substituting this value for x^ in the second equa-

tion, it becomes,

by reduction, 25—10y=5,
by transposition J 10y=20,

.-. by division, y=2.
Whence, a:=5—y=5-2= 3.

„ 78 ^~" 'f to find the values of x
Ex. 7. Given < > ^nd y.

^|4-8a;=131,)
^

Multiplying the first equation by 8,

a;-}-64y= 1552,
••. by transposition, a;=1552—64y.

And substituting this value for Xf in the second equation, il

becomes,
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^+8(1552-64y)=:131,
8

by reduction, y-H99328— 4096y=1048,
by transposition, 4095yz= 98280,

^ ^. . . 98280
by division, y-

4095
.•.y=24.

Whence ic=I552—64y= 1552 -64x24,
or a;= 1552- 1536;

.•.a:=16.

The value of y might be found from the second equation, in

terms of x and the known quantities ; which value of y substi-

tuted for it in the first, an equation would arise involving only

x, the value of which might be found ; and therefore the value

of y also may be obtained by substitution.

Ex. 8. Given ^"""^^^=27, and ^5^=6, to find the va-

lues of X and y.

Ans. a;=9, and y^=^^.

Ex. 9. Given 15y4-45a;=300, and a:+ 15y=:36, to find the

values of x and y.

Ans. a;=6, and y=2.
Ex. 10. Given 3a?+y=60, and 5x4- 10=78H-y, to find the

values of a: and y. Ans. a:=16, and y=12.
Ex. 11. Given 10a;—3y=38, and 3a?—y=ll, to find the

the values of x and y. Ans. a:— 5, and y=4.
Ex. 12. Givena;+y=198— 6y,anda:—y=186— 6a:, tofind

the values of x and y. Ans. a;=30, and y=24.

Ex. 13. Given 3+y=26, and ^+8a?=131, to find the va-

lues of a? and y. Ans. a;=16, and y^24,

Ex. 14. Given ^+|=:7, and ^+|=8, to find the values of
2 o o «

a: and y. Ans. ar=6, and yz= 13.

Ex. 15. Given 4a:+y=34, and 4y-i-a;=16, to find the va-

lues of X and y. Ans. ar— 8, and y=2.
Ex. 16. Given 3a;+2y=54, and a; : y : ; 4 : 3, to find the

values of x and y. Ans. a:=12, and y=9»

Ex. 17. Given ^^+6y=21, and ?^+5a;=23, to find
4 . o

the values of x and y. Ans. «=4, and y=3.

U*
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RULE III.

200. Find the value of the same unknown quantity in tenns of
the other and known quantities, in each of the equations ; then,

let the two values, thus found, be put equal to each other ; an
equation arises involving only one unknown quantity ; the va-

lue of which may be found, and therefore, that of the other un-
known quantity, as in the preceding rules.

This rule depends upon the well-known axiom, (.Art. 47) ;

and the two preceding methods are founded on principles which
are equally simple and obvious.

Ex. 1. Given
J o^T — ioo'('^ ^^^ *^® values of x

and y.

From the first equation, «= 100— 3y,

and from the second , x=—-

—

~
;

.•.i^=100-3y.

Multiplying by 2, 100—y=200— 6y,
by transposition, 6y—y=200— 100,

or, 5y=100;
.*. by division, y=20,

whence, 0:= 100—3y= 100—3X20,

•

.•.a:=40.

Here, two values of y might have been found, which would
have given an equation involving only x ; and from the solu-

tion of this new equation, a value of a;, and therefore of y,
might be found.

Ex. 2. Given \x-\-\y=-*l^ and ^ac-f^y=8, to find the values

of X and y.

Multiplying both equations by 6, and we shall have
3x-\-2y=z42, and 2a;-f 3y=48,

42—2v
From the first of these equations, x=—^—

f

and from the second, x=—7r-^y
tit

42^2y_48-^3y^
''

3 ~ 2 '

Multiplying each member by 6, we shall have

84—4y= 114— 9y;
by transposition, 9y—4y=144— 84,

or5y=60; .•.y=12.
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And, by substituting this value of y, in one of the values of

9f the first, for instance, we shall have

42—24 18 ^x= =r— =6.
3 3

Ex. 3. Given 8a:+18y=94, and 8a:— 13^=1, to find the

values of x and y.

47 9|/
From the first equation, x= ^

;

4

and from the second, x=———

;

o

47--yy__H-i3y

And multiplying both sides of this equation by 8,

94-18y=l + 13y;
.-.by transposition, — 18y—13y=—94+1 ;,

Changing the signs, or what amounts to the same thing,

multiplying both sidea by — 1 , and we shall have

18y+13y= 94-l,or31y=:93;
93 ^

.•.y=3y=3;

, l.+ 13y 1+ 39 40 ^
whence a?=—_-il=:_:L_=:-_-:5.

From the first equation, x=a—y
;

and from the second, a:=—^^—^
;

and multiplying by b, we shall have

ab— bi/=zde~cy
;

by transposition, cy—by=de—ab;
by collecting the coefficients, (c—b)y=de—ab

;

, J. . . de—ab
.'. by division, y= -—

;

c— b

, de—ab
whence x=a—y=a —;^ c—b

ca— ab— de-\-ab ca— de

e— b c— b
that is, x=

Ex. 5. Given 3x+7y=79, and 2y— Jx=9, to find the va-

lues of X and y. Ans. «=10, and y=7.
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Ex. 6. Given-^+l=6, and-—^+3=4, to find the

values of x and y. Ans. a;=ll, and y=4.
2a; 3 67

Ex. 7. Given — |-y=7, and 5a;— 13y=—-,to find the

values of a; and y. Ans. a;=8, and y=-^

Ex. 8. Given ''±^^±j!^p-\ a„d 8 -^ = 6. to
o O O

find the values of x and y. Ans. a;= 13, and y=3.

Ex. 9. Given a;+y=10, and 2x--3y= 5, to find the values

of a? and y. Ans. a?=7, and yrz 3.

Ex. 10. Given 3a;— 5y=13, and 2a:+7y= 81, to find the

values of x and y. Ans. a:= 16, and y=7.

Ex. 11. Given ^±2+8y=31, and ?^ 4- 10a;=192, to
3 "^ 4

find the values of x and y. Ans. a;=19, and y=3.

Ex. 12. Given ?^^+ 14=18, and ^^^=3, to find the

values of x and y. Ans. a;r=5, and y=:2.

Ex. 13. Given -^-^=8-^, ) , ^ , ,, , -
6 d f to find the values of a-

. 7y-3a; ,,
, ( and y.

and-^——=114-y,>

Ans. a;=6, and y=8.

201. Examples in which the preceding Rules are applied, in

the Solution of Simple Equations, Involving two unknown

Quantities.

^ ^. . a;+3 „ .
3a;—2y .

Ex. 1. Given 2y ^-=7+—--^, i
, ^ , ,

^ 4 5 f to find the va-^ 5 ' f to find tl

J
2a;H-l ( lues of a;

2-~-2~')
8— V , 2a;H-l ( lues of a; and y.

and 4a; ^=24^— ^ ^ ^

Multiplying the first equation by 20,

40y—5a;-15= 140+12a;-8y;
.-.by transposition, 48y— 17a;=155.

Multiplying the second equation by 6,

24a;— 16+2y=147-6a;-3 ;

.-.by transposition, 2y-t-30a;=160 . . . (A).

Multiplying this by 24, we have
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48y+720ar=3840;
but 48y— I7xz=z 155

;

.*. by subtraction, 737x=:3685,
and by division, x=5.

From equation (A), 2y=160— 30a:;

.-. by substitution, 2y= 160— 150.

by division, y=-—- ; .-. y=5.

The values of x and y might be found by any of the methods

given in the preceding part of this Section ; but in solving this

example, it appears that Rule I, is the most expeditious method
which we could apply.

„ ^. 2v 8a;—2 , 44-V .
a:—y "i

and a; : 3y : : 4 : 7, 3

to find the values of x and y.

Reducing the first equation to lower terms,

y 4jc~1 _ 4+y a;—

y

9 18 " 3 "^ 6 *

and therefore, multiplying by 18,

2y-4x-f 1 = 18—24-6y-|-3x-3y;
.-. by transposition, 7=7«— lly

But from the second equation 7a;=12y.
Substituting therefore this value in the preceding equation.

it becomes
12y— lly=7, ory=7,

, 12y 84 ,„
and .-.:£= ^i=y=rl2*

4y

Ex. 3. Given :.-?^^I^=l+^^^
3ar+2y y—

5

_ llj-f 152 3y+l
^'^^ ~6 4"- 12 2~'

to find the values of x and y.

Multiplying the first equation by 33,

33a;-9y+6-3ar=33-|-15«4-y;

multiplying again by 3, and transposing, we shall have 45x—
31y=81.

Multiplying the second equation by 12,

6a;4-4y—3y4-15=--llar4-152-18y-6 ;

.-. by transposition, 19y— 5jc=131.
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Multiplying this by 9, 171y—45a:=1179
;

but 45a;—31y= 81;

.-.by addition, 140y=1260

;

and by division, y=9.
Now, 5a:=19y-131=171-131=40

;

.-.by division, a?=8.

Ex. 4. Given—-^=18J ^^ ,i ^ , ^15 3 7 'f to find the va-

, ,- 6a?— 35 __
, ,^ i luesofocandy.

and lOyH —=55+ 10a:, \ ^
^

Multiplying the first equation by 105, the least common
multiple of 3, 7, and 15.

560+21jr= 1925—60a?-45y+120;
.-. by transposition, 8Ia:+45y=1485

;

and dividing by 9, 9a:-f-5y=165
From the second equation,

50y+6j;—35z=275+50a?,
.-. by transposition, 50y—44a:=310

;

and dividing by 2, 25y—22a:=155 ;

but multiplying the equation i
25i/4-45a:-825 •

found above, by 5, J
.J5y-H45a;_825 .

.*. by subtraction, 67x=670,
and by division, x=10.

Now 5y=165-9a;=165-90=75, .-.yrslS.

Ex.5. Given ^+5l^_ *,.,.,.
,to find the values of x

and y.

liven If+5£=?_i,)
«^ y* y f to

X v a: 2 yy
Reducing the first equation to lower terms,

a; y y
4 4

.'. by transposition, =— 1

;

r !.«•. ., .• 2.43
from the 2nd equation, by transposition, 1—=-

;

.*. by addition, -=-.
a: 2

and, consequently, a:=4.
4 4

Now -=-+ 1=2 ;
.-. 2y=4, and a?=2.

y X y *
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Ex. 6. Given -4--
"* * find the values of x and y.

Multiplying the first equation by c, and the second by a, we
shall have

ae .
be

1 =mCf
X y

. ac ad
and—I— =na,

X y

by subtraction, {^c—ad) . -=zmc^na ;

be—ad
.\y= .

me—na

. , a b mbc—nab
And -=:m =m—

X y be—ad
mbc—mad—mbc-\-nab nab—mad

be—ad be-—ad
\ _nb-^md , __bc—ad

x~bc—ad ' ~~nb—md'

2x

Ex. 7. Given3-!5=5-5i±^.
5 Sy

_107
, 4+ 15y

'^^
8

to find the values

of x and y.

I

Multiplying the first equation by 15y,
.-. 45y—2ly—6a:=75y—25x—45 ;

and by transposition, 51y--19a?=45.
Multiplying the second equation by 2a:H-5,

o _L^ Sx+20-{-30xy-\~75y „ 107

^ ,
107 8a;+20-h30a:y+75y

and multiplying by 6x— 2, we shall have

30«y-10y-f ^^^^f^=8a:+20+30ay+75y

;
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321T-107 ^
, ^, , „^

.-. =8jr4-85y+20,

and 321a:— 107= 32x4-340y+80

;

.-. by transposition, 340y—289ac=: — 187.

The coefficients of y in this case, having aliquot parts ;

multiplying the first by 20, and the last by 3,

1020y— 380a;=: 900,

and 1020y—867a:=-561 ;

.*. by subtraction, 487a;=1461,
and a:=3 ;

consequently, 51y=45+19a;=45H-57=102 ;

.•.y=2.

-nor.- o 16+ 60a: 16a:y-107 \
Ex. 8. Given 8a;

~^
.
= /. , ,i ^ , ,,3y—

1

5+ 2y f to find the va-

27x2— 12y2+ 38 1 luesofojandy.

Multiplying the first equation by 54-2y,

.^ . ,^ 80+300x-h32y4-120j:y ,^ ,^„40x+16xy —
Y~Z\ ^^=16xy-107;

•• Af^ Ju^c^^ 80+ 300x4- 32y+120xy
.-.by transposition 40x+107= Q~ni

and multiplying by 3y— 1, we shall have

120xy—40x+321y— ]07=80+ 300x+32y4-120xy;
.-.by transposition, 289y—340x= 187.

And from the second equation,

27x2-12y2-f 15x4-2y4-2=27x2-12y2+38 ;

.*. by transposition, 15x+ 2y=:36 ;

whence, the coefficients of x having aliquot parts, multiplying

the first equation by 3, and the second by 68,

867y-1020x=i561,
and 136y+l020x=2448;

.-.by addition, 1003y=:3009,

and y=3

;

consequently, 15x=:36—2y=36— 6z=30
;

and .-. by division, xi=2.

« ^ ^. 2y—X „^ 59—2x \
Ex. 9. Given x_J-^=20 —,Y

g„^ ^^^ ^^.

Ans. ar=21,andy=20.
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E3C. 10. Given-^+3y-4= 15,)
^^^^^^^ ^^^^^^ ^^

%-5
. o« Q_'72 i^andy.

and .^-^2x^8= 74,

o

f

Ans. x=7, and y=5.

Ex. 11. Gi^ren 9a:+^=70,
> to find the values of x and y.

13 J?

and 7y --=44,

Ans. a;=6, and y=10.

^ ^. 7H-a? 2j:—y ^ ^
Ex. 12. Given -J _^=3y-5,

5 4

, 5y-7 4a:-3 .. _

and -^4 1 —— 18— 5j;,

2

to find the vahies of x and y. Ans. ac=:3, and y=2.

3y-f4a: ^ 9y4-33
Ex. 13. Given a:4-1 ^—=7 ^y^"

'

„ 5.x—4y lly— 19
and y-3 2"^=^

i
'

to find the values of x and y. Ans. x=6, and y=5.

Ex. 14. Given 4a:+i^-=2y+5+^-,

and 3y —^=:2x+———

,

o o

to find the values of x and y. Ans. a;= 3, and y=4.

T? ir, n- 3.r4-5y
, ,^ . ,

4a;-h7
Ex. 15. Given a:

—-^-f-17=5yH —

,

17 o

, 22-6tf 5a--7 a:+l 8k+5
a„d^-j^—n

—

^--Tt'
to find the values of x and y. Ans. a:=:8, and y=2.

Ex. 16. Given—^—4--^—=4+—^—

,

2a?-fy 9a;-7 3y+ 9 4a:-f-5y""^^ 8—4 16^'

to find the values of x and y. Ans. a;=9, and y=4.

x^ ,^ o- 7a:+ 6
.
4y-9 ^ 13-a; 3y— a; ,

Ex. 17. Given —-^ f- ^^ =3a? ^-

—

,and
11 3 2 5

3a;-f-4 : 2y— 3 : : 5 : 3, to find the values of x and y.

Ans. 0^=7, and y=9.
15
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Ex. 18. Given—^ ^—^ =9+ ^ ,and2d 3

-JL__ :
_ii ^4a; : : 4 : 21, to find the values of x and y.

Ans. a;=:5, and y=4.

Ex. 19. Given 2^?Lt2_ 5^1^?^ = 5+1^, and
10 15 5

-^ =——-, to find the values of x and y.
]2 4 11 '

^

Ans. a:=7, and y=9.
Ex. 20. Given 3x—2y= 15, > , ^ i ,, . r j

, , ,rt IK ^ „ S- to find the values of a; and V-and y+iO : a;— 15 : : 7 : 3, 5
^

Ans. a:=:45, and y= 60.

.Ex. 21. Given a:+ 150 : y— 50 : : 3 : 2, > to find the va-

and x— 50 : y-}-100 : : 5 : 9, ^ lues of x and y.

Ans. a:=300, and y= 350.

Ex. 22. Given (x+5) . (y4-7)= (a:+l){y-9)4-112,
and 2a;+10= 3y+l, to find the values of x and y.

Ans. x=3, and y=5.

Ex..3.0.en3.^e,+l = -g±--r|..;

151-16J: ga-y-llO
and 3a: ; r~ = -| r"»4y—

1

3y—

4

to find the values of a: and y. Ans. a:=:9, and y=2.

x> OA r- ^r -a i
128^18yH-217

Ex. 24. Given 16a:+6y— 1=
.^ , ^ ,^ So;—3y+2

1 0.r+10y-35_ 54
^" ~2a:+2y+ 3

""" 3^2^P
to find the values of x and y. Ans. x=6j and y=5.

§ III. RESOLUTION OF SIMPLE EQUATIONS,

Involving three or more unknown Quantities.

202. When there are three independent simple equations

involving three unknown quantities.

RULE.

From two of the equations, find a third, which involves only-

two of the unknown quantities, by any of the rules in the pre-

ceding Section ; and in like manner from the remaining equa-

tion, and one of the others, another equation which contains the
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same two unknown quantities may be deduced. Having
therefore two equations, which involve only two unknown
quantities, these may be determined ; and, by substituting

their values in any of the original equations, that of the third

quantity will be obtained.

203. If there be four unknown quantities, their values may
be found from four independent equations. For from the four

given equations, by the rules in the last Section, three may be

deduced which involve only three unknown quantities, the va-

lues of which may be found by the last Article ; and hence the

fourth may be found by substituting in any of the four given

equations, the values of the three quantities determined.

If there be n unknown quantities, and n independent equa-

tions, the values of those quantities may be found in a similar

manner. Fcr from the n given equations, n— \ may be de-

duced, involving only n— 1 unknown quantities ; and from
these w— 1, n—2 may be obtained, involving only n—2 un-

known quantities ; and so on, till. only one equation remains,

involving one unknown quantity ; which being found, the va-

lues of all the rest may be determined by substitution.

Ex. 1. Given x+y-\-z—29, \

a:+2y+3^=:62, f to find the values of a?, y,

Subtracting the first equation from the second,

y-f2;?-33 . . . (A).

Multiplying the third equation by 12, the least common
multiple of 2, 3, and 4,

6.r-f4y4-3z=120
multiplying the 1st equation by 6, 6a;4-6y+ 6^=il74

;

.*. by subtraction, 2^+3^=54
;

but, multiplying equation (A) by 2, 2i/-{-4z=66
;

.-. by subtraction, ^=12.
From equation (A), by transposition, y=33— 2^

;

.-. by substitution, y=33— 24, or y= 9.

From the first equation, by transposition,

x=29— i/—z',

.'. by substitution, a?=29— 9— 12,

and rr=29— 21, .\x=8.
In like manner, had the first equation been multiplied by 2,

and subtracted from the second, an equation would have re-

sulted, involving only x and z ; and had it been multiplied by
4, and subtracted from the third when cleared of fractions,
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another equation would have been obtained, involving also x
and z ; whence by the preceding rules, the values of x and z

could be found, and consequently the value of y also, by sub-

stitution.

Or if the firs^, equation be multiplied by 3, and the second

subtracted from it, an equation would arise, involving only x

and y ; and if the first when multiplied by 3, be subtracted

from the third when cleared of fractions, another would arise

involving only x and y ; whence the values of x and y might be

determined. And hence the third, that of z^ might be found.

SECOND METHOD.

From the first equation, a;=:29—y—^;

substituting this value of x in the second equation,

29—y—2-\-2y+ 3z=^62 ;.

.-. by transposition, y=33—2z.
Also substituting, in the third equation, the value of x found

from the first,

multiplying this equation by 12, the least common multiple of

2, 3, and 4,

l7i-6y^6z-^4y-\-3z= \20,

and by transposition, 2y+ 3^=54 ;

in which, substituting the value of y found above,

2(33-2^)4-30=54;
or 66— 42+ 30=.-54;

,*. by transposition, 2^=12 ;

whence y=33--2:2=::33— 24= 9,

and .r=i29—3/—0=29-9—12= 8.

It may be observed, that there will be the same variety of

solution, as in the last case, according as x, y, or z, is exter-

minated.

THIRD METHOD.

The values of x, found in each of the equations, being

compared, will furnish two equations each involving only y
and z ; from which the values of y and z may be deduced by

any of the rules in the preceding Section, and hence, the va^

lue of X can be readily ascertained.
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The same observation applies to this method of solution, as

did to the last.

In some particular equations, two unknown quantities may
be eliminated at once.

Ex.2. Given a;4y+^=3M
ar+y—2=25 > to find the values of ar,y, fLz.

x—y—2=9 )y

Adding the first and third equations, 2jc=40

Subtracting the second from the first, 1^2=6
;

and subtracting the third from the second,

.-. a;=20.

.•.2=3
;

2y=16; .-.^= 8.

Ex. 3. Given < a;—2=3, > to find x, y, and z.

iy—z=l, }

Here subtracting the first equation from the second, wc
have y— 2= 1 ; which is identically the third.

Therefore, the third equation furnishes no new condition
;

but what is already contained in the other two; and, conse-

quently, the proposed equations are indeterminate ; or, what
is the same, we may obtain an infinite number of values which
will satisfy the conditions proposed.

204. It is proper to remark, that in particular cases. Ana-
lysts make use of various other methods besides those pointed

out in the practical rules ; in the resolution of equations,

which greatly facilitate the calculation, and by means of

which, some equations of a degree superior to the first, may
be easily resolved, after the same manner as simple equations.

We shall illustrate a few of those artifices by the following

examples.

Ex. 4. Given -4—=-,
X y 8

—
I
—=-, ^to find the values of *, y, and g.

SC Z u

and —f-=—

,

y 2 10

15»
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By adding the three equations, we i

Or, dividing by 2,

x^y^z 720

shall have

121

~360'

From this subtracting each of the three first equations, and
we shall have

1 31 720 ^„7
;=720'°^^=Tr'-'-^==2^3T^
1 41

y~720'
720

ory^--;..""I:
1 49

a?~720*

720
or .=--;.•—

'S-
Ex. 5. Given 2a; =zy+;^-|-w, ^

3y=a;4-^4-w,f to find the values of a:, y, Zf

Az=:x-^y-\-u^l and w.

and M= a;— 14, 3

By adding x to each member of the first equation, y to the

second, and z to the third, we shall get

a;+y4-^+ w=:3a:=4y= 52^

;

3a; 3a;
and from thence, z—-^, and y=r—-

;

which values being substituted in the first equation, we have
« ,3a; , 3a;

,
13a;

4^5^ ' 20
'

but, by the fourth equation, M=a;— 14 ;

13a;
.-. a;~14i=— -, or 20a;—280=13a?

;

3a;
whence a;=40 : consequently y=--~= 30, ;?= 24, and w=a:

— 14=26.

Ex. 6. Given 4a:-4y-4^=24,.^^^^^^^j^^^^l^^^^f
6y-2..-2.=24,S ^^^

^

and Iz— y— a'=24, J

By putting a;+y4-;?~S, the proposed equations become

8a;—4S=24, 8y—2S=24, 8;?-S=24
;

.-. a;=3+ JS, y=3H-iS, ;^=3+iS.
By adding these three equations, we have

«+y+^=9+|S ; whence S=72.
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Substituting this value for S, in x, y, and z, we shall find

a= 39, y=::21, andi?=12.

and 2a;—4;s+40=:10, j

Ans. a;=35, y=30, and z=25.

Ex.8. Given «+a=y+^, ^
^ g„j ^^^ ^^,„^^ ^^

,y+''=2^+f'Candz.
and ^+ a=:3a;+3y, j

a 5a . 7a
Ans. xz=—, y=—, and ;?=—

.

Ex. 9. It is required to find the values of x, y, and z, in

the following equations
;

a;+y=:13, x-{-z=:\4, and i/-^z=l5.

Ans. x—6, y=7, and z=:B.

Ex. 10. In the following it is required to find the values of

X, ij, and z.

i+|+|=m,
X 1/ z ra:=4».

4+5+6= 76' j

•^
^ f to find the values of x, y.x—y = 4, > ,

' ^'

and a:— jsr = 6, J

Ans. a;= 12, y=8, and j^=6.

Ex. 12. Given x4- y4- z= 9, i, ^ , , , ^

^.io'^ . Q^_i A ( to find the values of a;,y,
x-t- y-h ;s-= y,

J
.T-+-2y4-32^=16, > 1

Ans. aj=:4, y=3, and z=2.

Ex.13. Given a:+ y-f z=\2, \ , /. , ,, , -

a,+2y+3^=20, i ^^
f
"^ ^^^ ^^^"^^ °f ^' y»

and Ja;+iy-f ;^= 6, )
^""^ ^•

Ans. a:=:6, y=4, and ^=2.

Ex. 14. Given a:+y—^=8, x-{-z—y= ^, and y+ ;?—a?=
10 ; to find the values of a?, y, and ;^.

Ans. a:=8^, y=:9, and z=^9\.

Ex.15. Given a:+ly=rlOO, y-{.^z=\00, and :^+Ja;=
100 ; to find the values of a;, y, and ;?.

Ans. a:=64, y=72, and ;8r=84.
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Ex. 16. Given a:-f|y=357,y+j0=476,;?-i-jM=:595, and
u-\-^x=:7l4 ; to find the values of x, y, z, and w.

Ans. a:=190, i/=334, z= 426, and w=:676.

^ IV. SOLUTION OF PROBLEMS PRODUCING SIMPLE EQUATIONS,

Involving more than one unknoum Quantity.

205. The usual method of solving determinate problems of

the first degree, is, to assume as many unknown letters, name-

ly, a:, y, z, <fcc., as there are unknown numbers to be found

;

then, having properly examined the meaning and conditions of

the problem, translate the several conditions into as many
distinct algebraic equations ; and, finally, by the resolution of

these equations according to the rules laid down in Chapter

IV, the quantities sought will be determined. It is proper to

observe that, in certain cases, other methods of proceeding

may be used, which practice and observation alone can sug-

gest.

Problem I.

There are two numbers, such, that three times the greater

added to one-third the lesser is equal 36 ; and if twice the

greater be subtracted from 6 times the lesser, and the remain-

der divided by 8, the quotient will be 4. What are the num-
bers ?

Let X designate the greater number, and y the lesser num-
ber.

Then 3a?4-|=36, ) ^^ , ,no/AN^3 '

( . (9a:-f y=108 (A),

6y-2a; i " \Qy-2x=^ 32(B);
and -^-g—=4

;

J

Multiplying equation (A) by 6, ey^ 54a;=648 ;

but 6y— 2a;= 32;

.-. by subtraction, 56a;=616,

and by division, x=ll.
From equation (A), y=108— 9a;

;

.-. by substitution, y=108—99, or y=-9.
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pROB. 2. After A had won four shillings of B, he had only-

half as many shillings as B had left. But had B won six shil-

lings of A, then he would have three times as many as A
would have had left. How many had each ?

Let x= designate the number of shillings A had, and y=
the number B had

;

then y—4=2a;+8>
and y+ 6=3a7— 18;

.-. by subtraction, 10= ar— 26,
and by transposition, 36=x, or x= 36

by substitution, y-f 6=3x36— 18

and by transposition, y— 84
.-. A had 36, and B 84.

Prob. 3. What fraction is that, to the numerator of which
if 4 be added, the value is one-half, but if 7 be added to the

denominator, its value is one-fifth ?

Let a:= its numerator, )
^^^^ ^^^ ^^^^.^^

x

y= denommator,
) y

Add 4 to the numerator, then
^- =^, .'. 2a!;+8=y ;

y

Add 7 to the denominator, then ——-=i, .-. 5a:=y-|-7
;

by subtraction, 3.x— 8= 7 ;

by transposition, 3a:= 15 ;
.•. x=.b ;

and y=2ir-|-8 ; .-.by substitution, y=10-|-8=18,
5

and the fraction is-—.
18

Prob. 4. A and B have certain sums of money, says A to

B, give me 15/ of your money, and I shall have 5 times as

much as you have left : says B to A, give me 5/ of your

money, and I shall have exactly as much as you will have

left. What sum of money had each ?

Let x=. A's money, > then x-\-\^=. what A would have,

y= B's, 5 after receiving 15Z from B.

y— 15= what B would have left.

Again,y-f5= what B would have after receiving 5Zfrom A.

a:—5= what A would have left.

Hence, by the problem, ac4-15=5 x(y— 15)=5y— 75,

and y+5=a?— 5.
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by transposition, 5y—a?=90,
and y— xii: — 10 ;

/. by subtraction, 4y= 1 00,

and by division, y=25 B's money.

From the second equation, x=y-{ 10
;

.-. by substitution, a;=25-f 10=35 A's money.

Prob. 6. A person was desirous of relieving a certain num-
ber of beggars by giving them 2s. 6d. each, but found that he

had not money enough in his pocket by 3 shillings ; he then

gave them 2 shillings each, and had four shillings to spare.

What money had he in his pocket ; and how many beggars

did he relieve ?

Let x= money in his pocket (in shillings)
;

y=: the number of beggars.

5v
Then 2^ Xy, or -^= number oi shillings which would have

been given at 2s. 6d. each

;

and 2Xy, or 2y=: .... at 2s. each.

Hence, by the problem, -^=:a;-l-3(A),

and 2y= a:— 4(B).

.-. by subtraction, 5^= 7,

or y=14, the number of beggars.

From equation (B), a?=2y+4z=2 x 144-4, by substitution,

/. a;=:32, the shillings in his pocket.

Prob. 6. There is a certain number, consisting of two digits.

The sum of those digits is 5 ; and if 9 be added to the number

itself, the digits will be inverted. What is the number ?

Here it may be observed, that every number consisting of

two digits is equal to 10 times the digit in the tens place, plus

that in the units ; thus, 24=2 X 10+4=20+ 4.

Let x= digit in the units place ;

y= that in the tens.

Then 10a;+y= the number itself,

and 10y+ a;= the number with its digits inverted.

Hence, by the problem, a:+y=5(A),
and 10a:+y+9= 10y+ a;, or by transposition, 90?—9y=—9 ;

.-.by division, a?—y=— 1(B).

Subtracting equation (B) from (A), 2y=6 ;
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.•.y=:3, and a;=5—y=5—3=2 ;

.*. the number is (10j:+y)=r23.

Add 9 to this number, and it becomes 32, which is the num-
ber with the digits inverted.

Prob. 7. A sum of money was divided equally amongst a

certain number of persons ; had there been four more, each
would have received one shilling less, and had there been four

fewer, each would have received two shillings more than he
did : required the number of persons, and what each received.

Let X designate the number of persons,

y the sum each received in shilllings
;

then xy is the sum divided
;

.•.(x+4)x(y-l)=xy, > , ,
Question •

and (a:-4)

x

(y^2)=^xy, ] ^ question
,

.\xy-\-Ay— a:—4= a:y, or 4y— x=4,
and ary— 4y4- 2a?— 8= a:y, or — 4y-|-2a;=8 ;

.-. by addition, a;= 12 ;

and4y=4+ a:=4+ 12; .•.y=4.

Prob. 8. A man, his wife, and son's years make 96, of
which the father and son's equal the wife's and 15 years over,

and the wife and son's equal the man's and two years over.

What was the age of each 1

Suppose a?, y, and z = their respective ages.

1st condition ar+y-|-;?= 96, \

2nd . . . X'{-z=y-{-l5,> by the problem.

3d . . . yi-z= x-{- 2,)
Subtracting the 2nd from the 1st, y=96—y— 15

;

.•.2y= 81, and y—40^ by division.

Subtracting the 3d from the Ist, a;=:96—a?—2 ;

.-.by transposition and division, a:=47,
And from the 1st, z=96—y—x ;

.-. ^=8^.
And their ages are 47, 40J, and 8^ respectively.

Prob. 9. A labourer working for a gentleman during 12
days, and having had with him, the first seven days, his wife
and son, received 74 shillings ; he wrought afterwards 8 other

days, during 5 of which he had with him his wife and son, and
he received 50 shillings. Required the gain of the labourer
per day, and also that of his wife and son.

Let x=z the daily gain of the husband,

y=: that of the wife and son
;

12 days work of the husband would produce 12«,
7 of the wife and son would be 7y

;



168 SOLUTION OF PROBLEMS

/.by the first condition, 12a!r-|- 7y= 74
and by the second, 8a:+ 5y=r 50

Multiplying the 1st equation by 2, 24a:-{-14y=148

2nd . . by 3, 24a:+15y=150

.'.by subtraction, y=:2.
And from the 2nd, 8a;=50—5y=50— 10

;

/. by division x=5.
Consequently the husband would have gained alone bs.per

day, and the wife and son 2 shillings in the same time.

206. Let us now suppose that the first sum received by the

workman was 46s, and the second 30s, the other circumstances

remaining the same as before
;

The equations of the question would be

12a;+ 7yz=46, and 8a.-f 5y=30.
From whence we find, by proceeding as above,

x— 5, and i/= — 2.

By putting in the place of x its value 5, in the above equa-

tions, they become

60-f- 7^= 46, and 40+ 5y= 30.

The inspection alone of these equations show an absurdity.

In fact, it is impossible to form 46 by adding an absolute num-
ber to 60, which is already greater than it, and in like man-
ner it is impossible to form 30 by adding an absolute number
to 40.

Consequently what we attributed as a gain to the labour of

the wife and son, must be an expense to the husband, which

is also verified by the result y— —2.

207. The negative value of y makes known therefore a

rectification in the enunciation of the problem ; since that, in-

stead of adding 7y to 12a: in the first equation, and 5y to Sac in

the second, y being considered a positive or an absolute num-

ber, we must subtract them in order to have the sum given for

the common wages of these three persons ; or, what is the

same thing, if, in place of considering the money attributed to

the wife and son as a gain, we would regard it as an expense

made by them to the charge of the workman ; then we must

subtract this money from what the man would have gained

alone, and there would be no contradiction in the equations,

since they would become
60— 7y=46, and 40—5y=30 ;

from either of which we would derive y=2 ; and we should

therefore conclude that if the workman gained 5s. per day, his

wife and son's expense is 2s., which can be otherwise verified

thus

:
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For 12 days work, he receives 5 x 12 or 6O3. ; the expense

of his wife and son for 7 days, is 2 X 7 or 1 48. ; and there re-

mains 46 shillings.

Again, he receives for 8 days work 5x8 or 40s. ; the ex-

pense of his wife and son during 5 days, is 2x5 or 10s.;

therefore his clear gain is 30 shillings.

208. It is very evident that, in place of the enunciation of

(Prob- 9), we must substitute the following, in order that the

problem proposed may be possible, with the above given

quantities :

A labourer working for a gentleman during 12 days, having

had with him^ the Jirst 7 days, his wife and son, who occasion an
expense to him, received 46 shillings ; he has ivrought, after-

wards, for 8 other days, on 5 of which he had with him his wife

and son, whose expenses he must still defray, and he received

30 shillings. Required the salary of the workman per day, and

also the expense of his wife and son in the same time.

Designating by x the daily wages of the workman, and by

y the expense of his wife and son, for the same time ; the

equations of the problem shall be

\2x—ly— A.Q, and 8a;—5yi=30
;

which, being resolved, will give

a:=5s., and y=2s.
209. Although negative values do not answer the enuncia-

tion of a concrete question, as has been observed (Art. 174),

yet they satisfy the equations of the problem, as may be rea-

dily verified, by substituting 5 for x, and —2 for y, in the

equations (Art. 206), since they would then become identi-

cally equal.

Prob. 10. Two pipes, the water flowing in each uniformly,

filled a cistern containing 330 gallons, the one running during

5 hours, and the other during 4 ; the same two pipes, the first

running during two hours, and the second three, filled another

cistern containing 195 gallons. The discharge of each pipe

is required.

Let x represent the discharge of the first in an hour
; y that

of the second in the same time.

And in order to have a general solution, put a= 5, i=4,
c=330, a'=2, 6'= 3, c'= 195 ; then by the conditions of the

problem we shall have these two equations,

a^-\-hy=zc, and a^x-\-b'y=.c'
;

which, being resolved (Art. 190), will give

h'c— he' . ac'—a'c

^=^D TT, and y=-7>—n.'

16
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Now, by restoring the values o( a, b, c, &;c., we have

990—780 210 „^x= = = 30 :

15-8 7

975-660 ,^
^"^ y= 15-8

=^^'

Thus, the first pipe discharges 30 gallons per hour, and the

second 45,

210. Let us now suppose that the first pipe running during

3 hours, and the second during 7, filled a cistern containing

190 gallons ; that afterwards, the first running 4 hours, and
the second 6, filled a cistern containing 120 gallons.

In this case, a=3, ^= 7, c=190, a'—\, b'= 6, c'=120;
and, consequently, ^'c—6c'=l 140— 840= 300, ab'—a'b=lS
—28=: — 10, ac'— a'c= 360—760=— 400, which will give x
= —30, and y=40.

In order to understand the meaning of these results, we
must return again to the conditions of the problem, or, what
amounts to the same, we must try how these values of x and

y satisfy the equations of the problem :

Thus, if we substitute —30 for x, and 40 for y, in the

equations 3x4-7y= 190 and 4a;-|-6y=l20, resulting from the

above problem, we find first, that 3a-=— 90, and 7y= 280,

consequently 3.T+7y=— 90-f 280' which in effect is equal

to 190. In like manner 4a:-[-6y is found to be— 120-|-240,

which is equal to 120.

Having, therefore, discovered how the values —30 and -f 40

of a: and y answer the equations 3ir-H7y= 190 and 4x-{-6yz=

120, we perceive at the same time how they would answer the

conditions of the problem ; for since the use that has been

made of the quantities 3x and 4x, which express the quanti-

ties of water discharged by the first pipe in the first and se-

cond operation, was to subtract them from 7y and from dy^

which express the quantities furnished in the same operations

by the second pipe. The first pipe must be considered in

this case as depriving the cisterns of water instead of fur-

nishing any, as it did in the preceding problem, and as it was
supposed in expressing the conditions of this problem.

211. Hence, in almost every question solved after a gene-

ral manner, we may always conclude that when the value of

the unknown quantity becomes negative, the quantity ex-

pressed by it should be considered as being of an opposite

kind from what it was supposed in expressing the conditions

of the problem.

What has been said with respect to unknown quantities, is
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equally applicable to known quantities, that is, when a gene-

ral solution is applied to any particular case, if any of the gi-

ven quaiitities a, A, c, Sic. in the problem, are negative.

212. Let it be proposed, for example, to find what should

be, in the foregoing problem, the discharges of two pipes,

that the first furnishing water during 3 hours, and the second

4, may fill a cistern containitig 320 gallons, and that the se-

cond pipe afterwards furnishing water during G hours, whilst

the first discharges it during 3 hours, may fill a cistern con-

taining 180 gallons.

We have only to put in the general solution (Art. 209),

a=3, b= 4., c=J320, a'=z—3, i'= 6, c'=:180, and there will

result a:— 40, and yz=:^0.

From whence it appears that the discharge of the first ])ipe

is 40 gallons per hour, either to carry away the water as in

the second operation, or to furnish it as in the first, and the

discharge of the second, 50 gallons an hour, which it furnishes

in both operations.

Prob. 11. A certain sum of money put out to interest,

amounts in 8 months to 297/. 12.S'. ; and in 15 months its

amount is 306/. at simple interest. What is the sum and the

rate per cent ? Ans. 288/. at 5 per cent.

Prob. 12. There is a number consisting of two digits, the

second of which is greater than the first, and if the number
be divided by the sum of its digits, the quotient is 4 ; but if

the digits be inverted, and that number divided by a number
greater by 2 than the difl^erence of the digits, the quotient be-

comes 14. Required the number. Ans. 48.

Prob. 13. What fraction is that,. whose numerator being

doubled, and denominator increased by 7, the value becomes

|; but the denominator being doubled, and the numerator
increased by 2, the value becomes f ? Ans. |-.

Prob. 14. A farmer parting with his stock, sells to one
person 9 horses ar>d 7 cows for 300 dollars : and to another,

at the same prices, 6 horses and 13 cows for the same sum.
What was the price of each ?

Ans. the price of a cow was 12 dollars, and of a horse 24
dollars.

Prob. 15. A Vintner has two casks of wine, from the great-

er of which he draws 15 gallons, and from the less 11 ; and
finds the quantities remaining in the proportion of 8 to 3. Af-

ter they became half em[)ty, he puts 10 gallons of water into

each, and finds that the quantities of liquor now in them are

as 9 to 5. How many gallons will each hold ?

Ans. the larger 79, and the smaller 35 gallons.
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Prob. 1G. a person having laid out a rectangular bowling-
green, observed that if each side had been 4 yards longer, the
adjacent sides would have been in the ratio of 5 to 4 ; but if

each had been 4 yards shorter, the ratio would have been 4
to 3. What are the lengths of the sides ?

Ans. 36, and 28 yards.
pROB. 17. A sets out express from C towards D, and three

hours afterwards B sets out from D towards C, traveUing 2
miles an hour more than A. When they meet it appears that

the distances they have travelled are in the proportion of 13
to 15 ; but had A travelled live hours less, and B had gone 2
miles an hour more, they would have been in the proportion
of 2 : 5. How many miles did each go per hour, and how
many hours did they travel before they met ?

Ans. A went 4, and B 6 miles an hour, and they travelled

10 hours after B set out.

Pror. is. k Farmer hires a farm for 245/. per annum, the
arable land being valued at 2/. an acre, and the pasture at 28
shillings : now the number of acres of arable is to half the
excess of the arable above the pasture as 28 ; 9. How many
acres were there of each ^

Ans. 98 acres of arable, and 35 of pasture.

Prob. 19. A and B playing at backgammon, A bets 3s. to

2s. on every game, and after a certain number of games found
that he had lost 17 shillings. Now had A won 3 more from
B, the number he would then have won, would be to the num-
ber B had won* as 5 to 4. How many games did they play ?

Ans. 9.

Prob. 20. Two persons, A and B, can perform a piece of

work in 16 days. They work together for 4 days, when A
being called off, B is left to finish it, which he does in 36 days
more. In what time would each do it separately ?

Ans. A in 24 days, and B in 48 days.

Prob. 21. Some hours after a courier had been sent from
A to B, which are 147 miles distant, a second was sent, who
wished to overtake him just as he entered 3 ; in order to

which he found he must perform the journey in 28 hours less

than the first did. Now the time in which the first travels 17
miles added to the time in which the second travels 56 miles,

is 13 hours and 40 minutes. How many miles does each go
per hour ?

Ans. the first goes 3, and the second 7 miles an hour.

Prob. 22. Two loaded wagons were weighed, and their

weights were found to be in the ratio of 4 to 5. Parts of their

loads, which were in the proportion of 6 to 7, being taken out,
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their weights were then found to be in the ratio of 2 to 3 ; and

the sum of their weights was then ten tons. What were the

weiglits at (irst ? Ans, 16, and 20 tons.

Prob. 23. A and B severally cut packs of cards ;
so as to

cut oiY less than they left. Now the number of cards left by

A added to the number cut off by B, make 50 ; also the num-
ber of cards left by both exceed the number cut off, by 64.

How many did each cut off? Ans. A cut off 11, and B 9.

Prob. 24. A and B speculate with different sums ; A gains

150/, B loses 50/, and now A's stock is to B's as 3 to 2. But

had A lost 50/, and B gained 100/, then A's stock would have

been to B's as 5 to 9. What was the stock of each ?

Ans. A's was 300/, and B's 350/.

Prob. 25. A Vintner bought 6 dozen of port wine and 3

dozen of white, for 12/. 12^. ; but the price of each after-

wards falling a shilling per bottle, he had 20 bottles of port,

and 3 dozen and 8 bottles of white more, for the same sum.

What was the price of each at first ?

Ans. the price of port was 2s. and of white 3s. per bottle.

Prob. 26. Find two numbers, in the proportion of 5 to 7,

to which two other required numbers in the proportion of 3 to^

5 being respectively added, the sums shall be in the propor-

tion of 9 to 13 : and the difference of those sums =16.
Ans. the two first numbers are 30 and 42 ; the two others,

6 and 10.

Prob. 27. A Merchant finds that if he mixes sherry and
brandy ir> quantities which are in the proportion of 2 to 1, he

can sell the mixture at 78s. per dozen ; but if the proportion

be as 7 to 2, he must sell it at 79 shillings a dozen. Required
the price of each liquor.

Ans. the price of sherry was 81s., and of brandy 72s. per

dozen.

Prob. 28. A number consisting of two digits when divided

by 4, gives a certain quotient and a remainder of 3 ; when di-

vided by 9 gives another quotient and a remainder of 8. Now
the value of the digit on the left-hand is equal the quotient

which was got when the number was divided by 9 ; and the

- other digit is equal Jyth of the quotient got when the number
was divided by 4. Required the number. Ans. 71.

Prob. 29. To find three numbers, such, that the first with

^ the sum of the second and third shnll be 120 ; the second
with ith the difference of the third (iud first shall be 70 ; and

{ the sum of the three numbers shall be 95.

Ans. 50, 65, and 75.

Prob. 30. There are two numbers, such, that ^ the great'-

16*I
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added to A the lesser is 13 ; and if i the lesser be taken from
J-

the greater, the remainder is nothing. What are the nnmbers ]

Ans. 18, and 12,

Prob. 31. There is a certain number, to the snm of whose
digits if you add 7, the resuh will be three times the left-hand

digit ; and if from the number itself you subtract 18, the digits

will be inverted. What is the number ? Ans. 53.

Prob. 32. A person has two horses, and a saddle worth

lOl ; if the saddle be put on the first horse, his value becomes
double that of the second ; but if the saddle be put on the se-

cond horse, his value will not amount to that of i\ie first horse

by 13/. What is the value of each horse ?

Ans. 56 and 33.

Prob. 33. A gentleman being asked the age of his two sons,

answered, that if to the sum of their ages 18 be added, the re-

sult will be double the age of the elder ; but if 6 be taken

from the difference of their ages, the remainder will be equal

to the age of the younger. What then were their ages ?

Ans. 30 and 12.

Prob, 31. To find four numbers, such, that the sum of the

1st, 2d, and 3d, shall be 13 ; the sum of the 1st, 2d, and 4th,

15 ; the sum of the 1st, 3d, and 4th, 18 ; and lastly the sum
of the 2d, 3d, and 4th, 20. Ans. 2, 4, 7, 9.

Prob. 35. A son asked his father how old he was. His

father answered him thus. If you take away 5 from my
years, and divide the remainder by 8, the quotient will be ^-

of your age ; but if you add 2, to your age, and multiply the

whole by 3, and then subtract 7 from the product, you will

have the number of the years of my age. What was the age

of the father and son ? Ans. 53, and 18.

Prob. 36. Two persons, A and B,had a mind to purchase

a house rated at 1200 dollars ; says A to B, if you give me f
of your money, I can purchase the house alone ; but says B
to A, if you will give me |th of yours, I shall be able to pur-

chase the house. How much money had each of them?

Ans. A had 800 and B 600 dollars.

Prob. 37. There is a cistern into which water is admitted

by three cocks, two of which are exactly of the same dimen-

sions. When they are all open, five-twelfths of the cistern is

filled in 4 hours ; and if one of the equal cocks be stopped,

seven-ninths of the cistern is fdled in 10 hours and 40 minutes.

In how many hours would each cock fill the cistern ?

Ans. Each of the equal ones in 32 hours, and the other in 24.

Prob. 38. Two sliepherds, A and B, are intrusted with the

charge of two flocks of sheep. A's consisting chiefly of ewes.
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many of which produced lambs, is at the end of the year in-

creased by 80 ; but B finds his stock diminished by 20 : when
their numbers are in the proportion of 8 : 3. Now had A lost

20 of his sheep, and B had an increase of 90, the numbers

would have been in the proportion of 7 to 10. What were
the numbers ? Ans. A's 160, and B's 110.

Prob. 39. At an election for two members of congress, three

men offer themselves as candidates ; the number of voters for

the two successful ones are in the ratio of 9 to 8 ; and if the

first had had 7 more, his majority over the second would have

been to the majority of the second over the third as 12 : 7.

Now if the first and third had formed a coalition, and had one
more voter, they would each have succeeded by a majority of

7. How many voted for each ?

Ans. 3G9, 328, and 300, respectively.

CHAPTER VI.

ON

INVOLUTION AND EVOLUTION

OF NUMBERS, AND OF ALGEBRAIC aUANTITIES.

213. The powers of any quantity, are the successive products^

arising from unity, continually muUiplicd by that quantity. Or,

the power of the order m of a quantity, m being a whole pos-

itive number, is the product of that quantity continually mul-

tiplied m— \ times into itself, or till the number of factors

amounts to the number of units in that given power.

214. Involution' is the method of raising any quantity to

a given power ; Evolutfon, or the extraction of roots, being

just the reverse of Involution, is the method of determining a

quantity which, raised to a proposed power, will produce a

given quantity.

Note.—The term root has been already defined, (Art. 12).

§1. INVOLUTION OF ALGEBRAIC QUANTITIES.

215. It has been observed, (Art. 13), that the powers of al-

gebraic quantities are expressed by placing the index or expo*

nent of the power over the quantity.
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Hence, if a proposed root he a single letter, and without a co-

efficient^ any required power of it wilt be expressed by the same
letter with the index of the power written over it. Thus, the

nth power of a is =a", n beirig any positive number whatever.

216. If the proposed root he itself a pov^er^ the required power
will he obtained by multiplying tht index of the given power into

that of the required pov^er. Thus the m\\\ power of a'', or

(aPy'^a"'"
; for since, (Art. 213), (a'')"'=aPxa''Xa^ &c. =

^p^p\p^txc. — ^pm
(1)

where the number of factors a'' is equal to m.

2 1 7. Also, if a simple quantity be composed of several factors,
it can be raised to any power by multiplying the index ofeveryfac-
tor in the quantity by the exponent of the power. Thus the rn\]x

power of (a''Z»V), or {a'^b'c'Y'is = a'""b'""c"" ; for since (Art.

274), (u'l/cy = {a''b''c') X {a''b''(q, Slc. = a'a" . . . b'>b'> . . .

cV . . . = («")" X (h")'" X {cT ;
• . • . (2 )

;

by observing that in each of these products, such as a''a'', &;c.,

or h''b'^, &c., there enter m equal factors.

Cor. Hence, if the proposed quantity has a numerical coeffi-

cient, it must also be involved to the required power. Thus the

fourth power of 3a^^ is z^'3'a:-''^b''''=z3x3x3x3xa%^=
81 a^b^. For the numerical coefficient is in this case the

same as any other factor.

ROOTS AND POWERS OF NUMBERS.

1st. 2d 3d. 4th. 5th. 6th.
Square

7th. Root.

Cube
Root.

1 1 1 1 il 1 ll |1 1

2 4 8 16 32 64 128 1.414213 1.26

3 9 27 81 243 729 ,2187 |1.732 1.44-^

4 16 64 256 1024 4096 Il6384 .2. 1.587

5 25 125 625 3125 15625 ,78125 2.236 1.71

6 36 216,1296 7776 4S656 279936 2.449 1.817

7 49 3432401 16807 117649823543 2.646 1.913

8 64 51214096 32768 26214412097152 2.828 2.

9 81 729,6561 59049 53144114782969 3. 2.08

218. Any pqwer of a fraction is equal to the same power of
ike numerator divided by the like pouter of the denominator.

Thus the mth power <^f T» or fT^V=7r„ ; ^^^ (l)'"—r^|

a - /. ,^^ aXaXa, etc. a*" . ,

Xt> &c. = (Art. 156), -;—;—7 =~ ; where the num-
b

^ bxbxb, etc. b""

ber of factors j- is equal to m.
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taPbi
\

or I ]mcz=z

(3).

And in like manner the mth power of

(ai»)'"(A?)'" aP^hi"^

219. Afiij evenpower of a positive or negative quantity ^ is ne-

cessarily positive. In fact, 2m being the formula of even num-
bers, we have v±a)"-''"=[(±a)'^]'" =(+a'^)"* — +«^'"

• . . (4).

220. Any odd pouter of a quantity will have the same sign as

the quantity itself For, the general formula of odd numbers,

(Art. HI), being 2'"-fl,we have {±af^^^=z{±af"'x{±a)
=a-!"X ia-ia^m+i (5).

The involution of algebraic quantities is generally divided

into two cases.

CASE I.

To involve a simple algebraic Quantity.

RULE.

221. Raise the coefficient, if any, to the required power,
then multiply the index of each factor, or letter, by the index
of the required power, and write their several products over

their respective factors ; Let the quantities thus arising be an-

nexed to each other and to the same power of the coefficient,

prefixing the power sign, and it will be the power required.

Or, multiply the quantity into itself as many times less one as

is denoted by the index of the power, and the last product, with
the proper sign prefixed, will be the answer.
Ex 1. Required the square, or second power of 2a5.

Here, (2abf= 4.Xa'Xb''-= iaW. Ans.
Ex. 2. What is the cube of —Sa'^b'^l

Here, {-3a^^y^= (Art. 220), -(3aH^Y=-27Xa^-^ Xb^-^
= -27a%^\ Ans.

Ex. 3. What is the 4th power of —2a^x^ ?

Here, (-.2a^x^-y= (Art. 219), +{2a^x^Y=l6xa^-'^x'^'*=
Ida^^x^. Ans.

Ex. 4. What is the cube, or third power of aba 1

Here, abc XabcXabc— a XaX a X bxbx bXcXcXc=z
a^b^c^. Ans.

222. When the quantity to be involved is afraction, raise both
the numerator and denominator to the power proposed.

Ex. 5. Required the 4th power of .

2a
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Here,

h

\ %i) \2a/ 2a 2a 2a

i-i) '^(2^*~2* X a*~T6^'

Ex. 6. What is the 4th power of 1

3x
Ex. 7. What is the 8th power of 2a'^ 1

Ex. 8. What is the 7th power of — x ?

a^
Ex. 9. What is the 6th power of ?

2a 16a*

16a*

81a;*

Ans. 256ai6,

Ans. — x'^.

Ans. —-.

Ex. 10. What is the 5th power of -?

5x
Ex. 1 1 . What is the 4th power of — ?

2ax^
Ex. 12. Required the cube of -j- ?

Ex. 13. Required the square of -^a^i^?

Ex. 14. Required the 9th power of —xi/
Ex. 15. Required the 0th power of ary ?

Ex. 16. Required the 4lh power of a-2 ?

Ans.

Ans.

Ans.

3125
625a:*

2401
8a^x^

27^3-

Ans. a*6*.

Ans. -xY-
Ans. 1.

Ans, ar^j or

CASE II.

To involve a compound algebraic Quantity.

RULE I.

223. Multiply the given quantity continually into itself as

many times minus one as is denoted by the index of the power,

as in the multiplication of compound algebraic quantities (Art.

79), and the last product will be the power required.

Ex. 1. What is the square of a -j- 26?

ai-2b
a+ 2b

a2+2a5
+2ai+462

Square =:a2+4a6+ 462
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Ex. 2. Whatisthecubeof a2— a;2?

c*-2aV4-a:*
ai— x^

— a*x^+2a^x^—x^

Cube =a6-3a^a:2+ 3a2a:*— a;6

Ex. 3. Required the fourth power of a+ 3b.

Ans. a^-{-[2a^-{-54a^^^-{-l08aP-^Slb*.

Ex. 4. Required the square of 3a;2 4-2jc-f 5.

Ans. 9x*+ 12a;3+34a;2+20a;+25.

Ex. 5. Required the cube of 3a;— 5.

Ans. 27x3— 135a:2-f225ar— 125.

Ex. 6. Required the cube of a;^— 2a:+l.

Ans. x^—6x^-\-l5x*^20x^+l5x^—6x+l.

Ex. 7. Required the fourth power of 24- 3a:.

Ans. 164- 96a:+216a:^4-216a3+81a:*.

Ex. 8. Required the fifth power of 1 —2a:.

Ans. l-:10x4-40a;2— 80a;34-80ar*— 32ac5.

Ex. 9. Required the square of a4-64-c4-<^•

Ans. a'^-{-b'^-\-c'^-^(P+ 2(ab-^aci-ad-{-bc-\-bd+cd),

224. In the involution of a binomial or residual quantity of

the form a-{-b, or a—b ; the several terms in each successive

power are found to bear a certain relation to each other, and

observe a certain law, which the following Table is intended

to explain.
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TABLE OF THE POWERS OF a-\-b.

Powers.
Mode of ex-

pressing them.
Powers expanded.

Square. (a+ bf. a'^-\-2ab-{-b^.

Cube. {a+by. a^-\-3aH-\-3ab''+ b\

4th power. {a+b)\ a*+4a3i,+ 6a2^2^4a63+M.

5th power. [a+by.
a'-{-5a'b-\-l0a^b^+l0aH^+5ab*

-^b\

6th power. (a+by.
a^^6a^b-\-l5a'b'^i-20a^^

-\-l5a^^-]-6ab'-\'b^

The successive powers o( a—b are precisely the same as

those of a+ 6, except that the signs of the terms will be al-

ternately 4- and ^—. Thus, the fflh power of a—b is a^—
5a'^b-\-\0aW-\0a'^b'^Jfbah^-¥.

225. In reviewing that column of the above Table which
contains the powers of o-|-^ expanded^ we may observe,

i. That i\\ each case, the first, term is raised to the given

power^ and the last term is b raised to the same power ; thus,

in the square, the first term is a^, and the last b"^ ; in the cube,

the first term is a^, and the last b^ ; and so on of the rest.

II. That, with respect to the intermediate terms, the pow-

ers of a decrease, and the powers of b increase, by unity in

each successive term. Thus, in the fifth power, we have

In the second term, a^b
;

third, a^b"^ ;

fourth, , a^b^ ;

fifth, a &*
;

and so on in other powers.

III. That in each case, the coefficient of the second term is

the same with the ind(^x of the given power. Thus, in the

square, it is 2 ; in the cube, it is 3 ; in the fourth power, it is

4 ; and so on of the rest.

IV. That if the coefficient of a in any term be multiplied by

its index, and the product divided by the number of terms to that

place, this quotient will give the coefficient of the next term.

Thus, in the fifth power, the coefficient of a in the second



INVOLUTION. 181

term multiplied by its index, and divided by the number of terms

4X5 20
to that place =-——= --= 10= coefficient o^ the third term.

T« tl.^ . ;^*U ^^.,r^y. Coeff. of a in the 4th term . itt indea: 20 X 3
In the sixth power,

number of terms to that pl.ce. =-^-=

—=15= coefficient of the fifth term.

Hence, we are furnished with the following general rule for

raising a binomial or residual quantity to any power, without

the process of actual multiplication.

RULE II.

226. Find the terms without the coefficients, by observing

that the index of the first, or leading quantity, begins with that

of the given power, and decreases continually by 1, in every

term to the last ; and that, in the following quantity, its indices

are 1, 2, 3, &c. Then, find the coefficients, by observing that

those of the first and last terms are always 1 ; and that the

coefficient of the second term is the index of the power of the

first ; and, for the rest, if the coefficient of any term be mul-

tiplied by the index of the leading quantity in it, and the pro-

duct be divided by the number of terms to that place, it will

give the coefficient of the term next following.

Ex. 1. Required the 8M /)owcr of a+ ^-

Here the terms, without the coefficients, are

flS, a'L a%-\ a^b\ a^b\ a?b^, a^b^ ab\ b^.

And the coefficients, according to the rule, will be 1, 8,

8X7 28X6 56X5 70x4 56x3
:28,—^—=56,

^
=70,——=56,

^
= 28,

8x1

Then, the terms are thus :

The^r*^ term is a^.

second^ Qd'h,

third, .... ?^Xa6ft2=28a6J2.

fourth, .... 5?|i-Xa5&3= 56a563.

fifth, .... ^?xa*M=70a*6*.

70 V 4
sixth, .... -^Ixa36s=56a365.

5
17
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seventh, .... —-

—

X a^b^—2%a^h^
o

28 X 3
eightfi^ .... —-

—

XalP =. SaW.

8x1
ninth, .... —-— X h^=z h^.

o

And thus we have, (a-\-hf=a^-^Qa'h-\-2%a%'^-\-bQa^h^+

227. From this example and the foregoing Table the whole
number of terms will evidently be one more than the index of

the given power; after having calculated therefore as many
terms as there are units in the index, of the given power, we
may immediately proceed to the last term. And in like man-
ner it may be observed, that when the number of terms in the

resulting quantity is even, the coefficients of the two middle
terms is the same ; and that in all cases the coefficients in-

crease as far as the middle term, and then decrease precisely in

the same manner until we come to the last term. By attend-

ing to this laio of the copfficients, it will be necessary to cal-

culate them only as far as the middle term, and then set down
the rest in an inverted order.

Thus in the above example, the middle term is lOa^b^, and
we have,

The ^>5i four coefficients, 1, 8,28,56.
The last four .... 56, 28, 8, 1.

228. But we are not yet arrived at the most general form in

which this Rule may be exhibited. Suppose it was required

to raise the binomial a+ Z» to any power denoted by the num-
ber («). Proceeding with n as we have done with the several

indices in the preceding examples, it appears that,

'T\ie first term would be c".

The second, . . . na^~'^b.

rro 7-7 n{n— \) ,The third, . . . -^^ -an-^.
2

The/o..^A, . . . ±=}l^!p^ar^^hK

The //.A, .

.M^-l)><(n-2)x(^--3)^„.,^,^
•^•^ 2x3x4

The si.lk,
n(>»-l)x(.-2)x(.-3)x(»-4

)_^._.^.

2x3x4x5

i:\iQlast, 6"
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Or, (a+ bY= a''-{-na'^'b+ '^!^^!:^a''~^^+
lit

n(n-l)x(n-2) „._,,,. n(n-l) x(/^-2) X (n -3)

~l~i
^ '^^

2.3.4

€r^h\ &.C +6-.

By the same process, (a—6)"=a"— nff"~'6-|-

2 . «. t)

n(n-l)x(n— 2)x(«— 3) .—

^

L-l L—

i

'-dr~''h^—&c. ; the signs of the terms

being ahernately + and —I ; and the sign of the last term is

-f- or — 1 , according as n is even or odd ; we have the last

term in the former case., H-^", and in the hitter — i".

This general and compendious method of raising a binomial

quantity to any given power, is called from the name of its ce-

lebrated inventor. Sir Isaac Newton's " Binomial 'I'heorem."

The demonstration of this Theorem, with its application to the

finding the powers and roots of compound quantities, forms

the subject of another Chapter. Its present use will appear

from the following Example.
Ex. 2. Required the fifth power of ac^+Sy^,

Substituting these quantities for a, h, n, in the foregoing

general formula, it appears that

''tt:'U^") (^-y =-'"•

2nd,. . {nar-^b) . is 5 X (a;^)* X 3y2 . . . =15a:y.

3d, .
/^(^-n^n_2^2\

^ 5x^x(a;Tx(3y2)2=90ic6y4.

4th, . {±^^^±1^ . is5X^x|x(.2)^X

(3y2)3 =270a;4y6.

/7i(n-l)(n—2)(n-3) ,,A • ^432
5th,

. {^-^ 234 -«""^
)
ls5X-X-X-xa:2x

(3y2)4 =405a?V.
Last, . (A") is (3y2)5 .

-243yio.

So that (x2+ 3y2)5 - x^'^ + 15a:Y + SOa^y + 270a:y +
405x2y8-|-243yio.

229. By means of this Theorem, we are enabled to raise a

trinomial, or quadrinomial quantity to any power, without the

process of actual multiplication.

Ex. 3 Required the square of a-\-b-\-c.

Here, including a-\-b in a parentheses {a-\-b), and consider-

ing it as one quantity, we should have (a-f />+ c)-=:[(a-f i)

-{-c]2 ; and comparing them with the general formula ;
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we have (a'')= (a+ i)2=«H2a64-*^
{na''-^bY=2(a-\-h) xc=:2ac+2bc

{b")=:c'2 =c2
Hence, {a-\-b+ cY=(a-{-bY-\-2(a-\-b)xc+c''=a''+2ab -h

b^-\-2ac+2bc^c^.

Ex. 4. Required the seventh power of a—b.
Ans. a'—la% + 2\a^b'^—2ba^b'^ + 'iba'^¥ —2\a^b^ + 7a6«

Ex. 5. Required the sixth power of 3a:+2y.

Ans. 729a:«+2916x53/-f4860a;4y2+4320a;y+2160acV-h
576xy5-f.64ys.

Ex. 6. Required the square o{ x-\-y-^3z.

Ans. x'^-{-2x(/-\-f-{-6xz+6yz-{'0z^.

Ex. 7. Required the fifth power of l+2a:.

Ans. \-j-l0x-\-i0x^-\-80x^+ 80x*-}-32x^.

Ex. 8. Required the cube of x'^—2xy-\-y'^.

Ans. a;6— 6a;5y 4-15a;y—20j;y+15irV—6^y^+y®-

§ II. EVOLUTION OF ALGEBRAIC QUANTITIES.

230. The quantity which has been raised to any power is call-

ed the root of that power ; thus the mth root of a power, is that

quantity which we must continually multiply into itself, till

the number of factors be equal to m, m being a positive whole

number, in order to produce the power proposed. We may
conclude from this definition, and from the Articles in the pre-

ceding section.

231. That the mth root of a quantity such as a""*, pm being a

multiple of p, is obtained by dividing the exponent pm of this

quantity, by the index of the required root. Thus the wth root of
pm Q

a^"'=a"' =a^ \ the square root of a^-=a^= a^, and the cube
6.

root of a^— a'^=a^.

232. Also that the mth root of a product such as a'^"'b'^"*, is

equal to the mth root of each of its factors multiplied together.

Thus, the mth root of a^'^b^'" is = the mih. root of a'^'" X the with
8m 3m

root of 53'"=a'^ X b "'=a%^,

233. And that the mth root of a fraction such as -j-j is equal

to the mih root of the numerator divided by the mth. root of it&

denominator.

a'" a"* a
Thus the mih. root of ^ =—= -.
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234. The square, thef(mrth root, or any even root of an affir-

mative quantity may be either -\- or — 1. Thus the square root

of a2_a or —a ; for -|-a X -fa= -|-a2, and —a X —a= '}ra'^.

In fact, the 2ml\\ root of a^'^is equal to + a or — a ; for (io)^
= ( f afXa"*=a'^"'.

235. Any odd root ofa quantity, will have the same^ign as the

quantity itself Thus the (2w+ 1 )th root of ^ta^*" +^ is equal to

:^a\ for (±a)"'"+^ is equal to -{-a'^'^+i.

236. Evolution, or the rule for extracting the root of any

algebraic Quantity whatever, is divided into the four following

Cases.

CASE I.

To find any root of a simple algebraic Quantity.

RUIE.

237. Extract the root of the coefficient for the numeral part,

and the root of the quantity subjoined to it for the literal part,

by the methods pointed out in the above propositions ; then,

these, joined together, will be the root required.

Ex. 1. It is required to find the square root of x*.

4

Here, the square root of tx:^=: ^-^yx"^ ^^ -^x"^= -^x"^.

Ex. 2. Required the cube root of —21x'a^.

Here, the cube root of --27.rV=—^ 21x^a^=z—'^ 27

X

^ x^X^ a^=—'iXxXa'^=—2aH.

Ex. 3. Required the square root of rr--

.

b^c^

Here, the square root of a'^x^=^\/a'^X'\/x'^=ax, and the

ax
square root of b'^c'^

= -[/b^ x \/c^=bc ;
.*. ±r- is the root re-

bc

quired.

Ex. 5. It is required to find the square root of Sia'^x'^.

Ans. 8aa:2, qj. — 8ax^.

Ex. 6. It is required to find the cube root of 729a^a;^2

Ans. Oa^x*.

Ex. 7. Required the fourth root of 2560*6^.

Ans. Aab^y or —4ab^.
Ex. 8. Required the fifth root of 32«5a:'o. Ans. 2ax^.

r A T3 • J . . 1. r 729a^^ , .
Sab

JtiiX. 9. Required the sixth root o( -r—^-^. Ans. rtj-g-

17*
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Ex. 10. Required the ninth root of „, -. Ans. ——.
a^o^ ah

^ , r> . 1 , n
36a6ari ^ ea^a;^

Ex. 11. Required the square root of --. Ans. -^ .

Ax^y^ 2xy

Ex. 12. Required the cube root of ——-—-. Ans. —-vn-

CASE II.

To extract the square root of a compound Quantity.

RULE

238. Observe in what manner the terms of the root may be

derived from those of the power ; and arrange the terms ac-

cordingly : then set the root of the first term in the quotient

;

subtract the square of the root, thus found, from the first

term, and bring down the next two terms to the remainder for

a dividend.

Divide the dividend, thus found, by double that part of the

root aheady determined, and set down the result both in the

quotient and divisor.

Multiply the divisor, so increased, by the term of the root

last placed in the quotient, and subtract the product from the

dividend, and to the remainder bring down as many terms as

are necessary for a dividend, and continue the operation as be-

fore.

Ex. 1. Required the square root o{ a'^-\-2ab-\-b'^j

a^+2ah-\-b'^

a2 (a-j-6

2a -hi 2ff6+ &2

2ai+i2

On comparing a-{-h with a'^-\-2ah-\-b'^, we observe that the

first term of the power [n-] is the square of the first term of

the root (a). Put a therefore for the first term of the root,

square it, and subtract that square from the first term of the

power. Bring down the other two terms 2ab-\-b'^, and double

the first term (a) of the root ; set down 2a, and having divi-

ded the first term of the remainder {2ab) by it, we have b, the

other term of the root; and since 2ab-\-b''z={2a-{-b) xb, if to

2a the term b is added, and this sum multiplied by b, the re-

sult is 2ai-fZ>2 ; which being subtracted from the terms brought

down, nothing remains.
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Ex. 2. Required the square root of a2-|-2a5+^^+2ac-f2ic

a^-{-2ab+b^-{-2ac-{-2bc+c^{a-\-b+c

a2

2a+b 2ab+b^
2ab+b^

2a'\-2b+ c 2ac+2ic+c2
2ac+2bc-\-c^

On comparing the root a+b-\-c, thus found with its power,

the reason of the rule for deriving the root from the power
is evident. And the method of operation is the same as in the

last example. Thus, having found the first two terms of the

root as before, we bring down the remaining three terms 2ac
4-2ic+c2 of the power, and dividing 2ac by 2a, it gives c, the

third term of the root. Next, let the last term (b) of the pre-

ceding divisor be doubled, and add c to the divisor thus in-

creased, and it becomes 2a-\-2b-{-c ; multiply this new divisor

by c, and it gives 2ac-{-2bc-\-c'^, which being subtracted from
the terms last brought down, leaves no remainder. In like

manner the following Examples are solved.

89
Ex. 3. Required the square root of 4a;*-|-6a;3-J x^-{- 15af

4

+25.
89 / 3

4a:44.6a:3+—a:2-f-15a;-|-25f2jc24--x+5

4«*

4a;2+-a:j6a:3H x'

6x'^-^-x'^
4

4a;2+3a;+5)20.r2-f l5a;+25
20x2+ 15a;4-25

Ex. 4. Required the square root of a;6+4a:^+2a;'^4-9a:2— 4a:

+ 4. Ans. a;3+ 2a;2_a:+2.
Ex. 5. Required the square root of a;* +4fla;3 4- 6o2ar2-}-4a3a;

+ a'^. Ans. a:24.2aa:+a2.

Ex. 6. Requiredthe squarerootbfa*—2a3+|a2— Ja-|--i.

Ans. a^—a-^-^'
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Ex. 7. Required the square root of 4a*4-12a*a:^T^a2jp2_|.

Ex. 8. Required the square YOoto( 9x^-\-\2x^-\-3ix^-\-20x

+ 25. Ans. 3x2+2a:+ 5.

Ex. 9. Required the square root of a'^-\-2ab-{-b'^-\-2ac-^

2bc-\-c^-{-2ad-{ 2hd-\-2cd-\-cf^. Ans. a-{-b-\-c+ d.

Ex. 10. Required the square root of a*-f- I2a36-|-54a262-|-

l08ab^-\-8lb*. Ans. a'^-^6ab+ 9b\
Ex. 11. Required the square root of a^— 6a^x-\-\5a'^x^—

20fl'3j;3+15aV— 6tta:S+ a:6. Ans. a^— 3a^x-\-3ax'^—x^.

Ex. 12. Required the square root of a^—2a"x'^'-\-x*.

Ans. a^—x^.

CASE in.

To extract the cube root of a compound Quantity/.

RULE.

239. Arranofe the terms as in the last case ; and set the

root of the first terms in the quotient ; subtract the cube of the

root, thus found, from the first term, and bring down three

terms for a dividend.

Next, divide the first term of the dividend by 3 times the

square of that part of the root already determined, and set the

result in the quotient ; then, to 3 times the square of that part

of the root, annex 3 times the product of the same part and the

last result, and also the square of the last result, with their pro-

per signs ; and it will give the divisor, multiply the divisor by
the term of the root last placed in the quotient, and subtract

the product from the dividend, bring down three terms or as

many as may be necessary for a dividend, and proceed as be-

fore.

Ex. 1. Requiredthe cube root of o3+3a2^+ 30^24.^,3.

a^-\-3aH+3ab^i-b^
a3 (ai-b

3a^-\-3ab-{-b'^)3a'^b-\-3ab"+ b^

3«25+ 3a62+P

The reason of the rule may be made evident from a com-

parison of tne roots with its cube.

Or, thus, if the quantity whose root is to be extracted, has

an exact root, the root of the leading term must be one term
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of its root ; that is, the cube root of a^, which is a, is one

term of the root, and the remaining terms being brought

down, the root of the last term b'-^ is consequently another term

of the root ; but as the root may consist of more terms than

two ; the next term [b) of tho root is always found by dividing

(-^=M the first term of the dividend by three times the
3a2 / /

square of the divisor, and the two remaining terms of the di-

vidend 3ab^-\-b^={3ab-i-b^)b ; hence 3ab-^b^ must be added

to 3a^ for a divisor ; and so on.

Ex. 2. Required the cube root of a:^+ 6a:*— 40x^4 96ac~64.

a:6+ 6x»— 40a;3-f-96a:—64 (x^-\-2a:—4:

x^

3x*+ 6x^+ 4a;2)6r'^- 40a:3

6a;»+12a;4+8a;3

3a;^+12a;3—24a;+16)— i2a:'t—48a;3+96a;-64
— l2x*—4Sx^-\-96x—64:

Ex. 3. Required the cube root of {a-\-by-\-3{a-{-bYc+

d(a+ by-{-c^ Ans. a+ b+c.
Ex. 4. Required the cube root of x^—6x^+1 5x*—20x'^-i'

15x2—6x+l. Ans. a;2_2j:-hl.

Ex. 5. Required the cube root of a;®-|-6a;5y4- 15x^+20^^
4-15ic2y*-f6xy^+y^ Ans. a:2+2ary+ y2.

Ex. 6. Required the cube root of 1 —6x4- 12x2—8x3.

Ans. 1—2x.

CASE IV.

To find any root of a compound Quantity,

RULE.

240. Find the root of the first term, which place in the quo-

tient ; and having subtracted its corresponding power from
that term, bring down the second term for a dividend. Divide
this by twice the part of the root above determined, for the

square root ; by ihree times the square of it, for the cube root

;

by four times the cube of it, for the fourth root, &c. and the

quotient will be the next term of the root.

Involve the whole of the root, thus found, to its proper
power, which subtract from the given quantity, and divide

the first term of the remainder by the same divisor as before.
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Proceed in the same manner for the next following term of the

root ; and so on, till the whole is finished.

241. This rule may be detnorjstrated thus; {a-\-h)"=a''

•^na"-^b-\-, &c. Here the wth root of a" is a, and the next

term na"-^b contains b, (the other term of the root) na"-^

times ; hence, if we divide na"-'^b by na"-\ we have 6, or

.—^"Y
=0 ; and so on, tor any compound quantity, the root

of which consists of more than two terms.

Now, if n=2 ; then, the divisor na"-^=2a, for the square

root;

ifn= 3; then, .... na'-^^^Sa^, for the cube
root

;

if/i=:4; then, .... na"-''^= 4:a^, for the 4th

root;

ifw=5; then, .... 7ia"--^z=5a^, for the 5th

root.

And so on for any other root, that is, involve the first term

of the root, to the next lowest power, and multiply it by the

index of the given power for a divisor.

Ex. 1. Required the square rootof a^—2a^x-\-3a'^cc'^—2ax-^

a*—2a^x-{-3a?x'^—2ax^-\-x'^(a^— ax-\-x'^.

a*

2a^)^2a^x

(a2—aa^)2—a4_2a3^+ a2a,2

2a2)4-2a2a;2

(a'^-ax-{-x'^Y=ia'^—2a^x+3a'^x'^^—2ax^-\-x*.

Ex. 2. Required the 4th root of l6a*— 9ea^x-}-2l6a^!x^^

2l6ax^-\-8\x\

l6a^^96a^x-\-2\6a'^x'^-2ieax^+ 8lx^(2a^3x
16a^

4x(2ay= 32a^)-96a^x

(2a—3xY= \6a^~96a^x-]-2l6a'^x^—'2\6ax^-{-8lx\

242. As this rule, in high powers, is often found to be very
^ horious, it may be proper to observe, that the roots of cer-

kin compound quantities may sometimes be easily discovered

:
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tlius, in the last example, the root is 2a— 3a;, which is the
difference of the roots of the first and last terms ; and so on,
for other compound quantities.

Hence, the following method in such cases ; extract the
roots of all the simple terms, and connect them together by
the signs + or — , as may be judged most suitable for the
purpose

; then involve the compound root thus found, to its

proper power, and if it be the same with the given quantity,
It is the root required. But if it be found to differ only in
some of the signs, change them from -}- to — , or from — to

-f ,
till its power agrees with the given one throughout. How-

ever, such artifices are not to be used by learners, because
the regular mode of proceeding is more advantageous to them ;
besides, a knowledge of those artifices which are used by ex-
perienced Algebraists, can only be acquired from frequent
practice.

Ex. 3. Required the square root of a^-^2ab-\-b'^'\-2ac-\-2hc

Here, the square root o{ a^z^a-, the square root of &2— i^
j

and the square root of c'^=:c. Hence, a-\-b+ c, is the root re-
quired, because (a-\-h-\-cY= a'^^2ab^b'^-\-2ac-\-2bc-\-c'^.

Ex. 4. Required the fifth root of 32a:5— 80a;*-|-80a;3— 40a;2
-f-lOa;— 1. Ans. 2a:— 1.

Ex. 5. Required the cube root of a:6_6x5-|-15a:4— 20a;3-f
15j-2_5j.+ i. ^j^g ^•2-2a;-|-l.

Ex. 6. Required th^ fourth root of a4_.4a3^_j_6^2^2_4^^3
~^^' Ans. a—x.
Ex. 7. Required the square root oi x^-\-2x^y^-{-y^.

.
Ans. ar*-f y*.

Ex. 8. Required the square root o^ x^—2x'^y^-\-y^.

Ans. a;*— y*.

Ex. 9. Required the cube root of a3—6a2a;-^12aa;2—8a:3.

Ans. a— 2x.
Ex. 10. Required the sixth root of x^—Qx^-X-\bx^~.20x^-\*

15x2-60.-1-1. Ans. 0.-1
Ex. 11. Required the fifth root of a:^''+15a;V+90a:V+

270a:^y6+ 405a:y+243yo. ^^^ ^o_^^3y2.

Ex. 12. Required the square root of x'^-\-2xy-^y'^-\-Qxz-{'
^y^+^^'- Ans. x-\-y+ ^z.

§ HI. INVESTIG.\TION OF THE RULES FOR THE EXTRACTION
OF THE SQUARE AND CUBE ROOTS OF NUMBERS.

243 It has been observed, (Art. 104), that, a denoting the
tens of a number, and b the units, the formula a24.2a6-f.51-
would represent the square of any number consisting of tw*-
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figures or digits ; thus, for example, if we had to square 25
put = 20 and b=.5, and we shall find

2ah=200
b'^z= 25

(a+ J)2= (25)2= 625.

244. Before we proceed to the investigation of these Rules,

it will be necessary to explain the nature of the common
arithmetical notation. It is very well known that the value

of the figures in the common arithmetical scale increases in a

tenfold proportion from the right to the left ; a number, there-

fore, may be expressed by the addition of the iinits, tens, hun-

dreds, &c. of which it consists ; thus the number 4371 may be

expressed in the following manner, viz. 4000+ 300+ 70+ 1,

or by 4x1000+ 3x100+7x10+1; also, in decimal arith-

metic, each figure is supposed to be multiplied by that power
of 10, positive or negative, which is expressed by its distance

from the figure before the point : thus, 672.53= 6 X 10*'^+7x
10^+2 X 100+5x10-1+3x10-2 = 6X100+7X10+2X1

of a number be represented by a, b, c, d, e, &c. beginning

from the left-hand ; then,

A number of 2 figures may bo expressed by lOa-\-b.

3 fiorures . . . by lOOa+106+c.
4 figures . by 1000a+100^>+ lOc+rf.

&;c. &c. &c.
By the digits of a number are meant the figures which com-

pose it, considered independently of the value which they

possess in the arithmetical scale.

Thus the digits of the number 537 are simply the numbers

5, 3 and 7 ; whereas the 5, considered with respect to its

place, in the numeration scale, means 500, and the 3 means 30.

245. Let a number of three figures, (viz. lOOa+lO^+ c)

be squared, and its root extracted according to the rule in (Art.

288), and the operation stands thus
;

I. 1000002+20000^*+ 1006H200ffc+20ic+c2
10000a2 (lOOa+106+ c

200a+

1

0b)2000ab+ 1 00J2
2000a5+1006

200a+205+c)200ac+20k+c2
200ac+206c+c2
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^^
A— -^ V ^"^ ^^® operation is transformed into the
~, I following one

;

400004-12000+900+400+60+1(2004-304-1
40000

400+30)12000+ 900

400+60+1)400+ 60+1
400+60+ 1

III. But it is evident that this operation would not be af-

fected by collecting the several numbers which stand in the

same line into one sum, and leaving out the ciphers which are

to be subtracted in the operation.

53361(231

43 I 133

129

461 461

461

Let this be done ; and let two figures be brought down at a

lime, after the square of the first figure in the root has been sub-

tracted ; then the operation may be exhibited in the manner
annexed ; from which it appears, that the square root of 53361
is 231.

246. To explain the division of the given number into pe-

riods consisting of two figures each, by placing a dot over

every second figure beginning with the units, as exhibited in

the foregoing operation. It must be observed, that, since the

square root of 1 00 is 1 ; of 1 0000 is 1 00 ; of 1 000000 is 1 000

;

ifec. &LC. it follows, that the square root of a number less than

100 must consist oi one figure ; of a number between 100 and
10000, of two figures ; of a number between 10000 and
1000000, of three figures ; &c. &c., and consequently the num-
ber of these dots will show the number of figures contained

in the square root of the given number. From hence it fol-

lows, that the frst figure of the root will be the greatest square

root contained in the first of those periods reckoning from the

left.

Thus, in the case of 53361 (whose square root is a num*
18
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ber consisting of three figures) ; since the square of the figure

standing in the hundred's place cannot be found either in the

last period (61), or in the last hut one (33), it must be found

in the first period (5) ; consequently the first figure of the root

will be the square root of the greatest square number contained

in 5 ; and this number is 4, the first figure of the root will be

2. The remainder of the operation will be readily understood

by comparing the steps of it with the several steps of the pro-

cess for finding the square root of [a-\'h-\-cY (An. 238) ; for,

having subtracted 4 from (5), there remains 1 ; bring down
the next two figures (33), and the dividend is 133 ; double the

first figure of the root (2), and place the result 4 in the divisor

;

4 is contained in 13 three times; 3 is therefore the second
figure of the root

;
place this both in the divisor and quotient,

and the former is 43 ; multiply by 3, and subtract 129, the re-

mainder is 4 ; to which bring down the next two figures (61),

which gives 461 for a dividend. Lastly, double the last figure

of the former divisor, and it becomes 46
;
place this in the next

divisor, and since 4 is contained in 4 once, 1 is the third figure

of the root
;
place 1 therefore both in the divisor and quotient

;

multiply and subtract as before, and nothing remains.

247. The method of extracting the cube root of nombers
may be understood by comparing the process for extracting

the cube root of (a-j-^+c)^, (Art. 239), with the following

operations, in which is deduced the cube root of the number
13997521.
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1399752 1(200-}- 40 4-

1

<|3=(200)3= 8000000

1st remainder 5997521

3a2=:3 X (200)2= divisor,

•.• 3a26=:3(200)2 x 40^4800000
3ai2= 3x200x(40)'^= 960000

*3=40x40x40=z 64000

5824000

2nd remainder 173521

3(a-|-&)2c=3(200+ 40)2x 1= 172800
3(a-|-A)c2=:3(2004-40)xl= 720

c3= lXlXl-= 1

173521

3d remainder 000000

Omitting the superfluous ciphers, and bringing down three

%ures at a time, the operation will stand thus
;

13997521)241
23= 8

5997

300x22x4= 4800
30X2X42= 960

43= 64

5824

173521

300 X (24)2x1 = 172800

30x24x12= 720
13= 1

173521
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248. These operations may be explained in the following

manner
;

I. Since the cube root of iOOO is 10, of 1000000 is 100,

&c. ; it follows, that the cube root of a number less than 1000
will consist of one figure; of a number between 1000 and
1000000 o[ two figures, &c. &c. ; if, therefore, the given num-
ber be divided into periods, each consisting of three figures^

by placing a dot over every third figure , beginning with the

units, the number of those dots will show the number of

figures of which the cube root consists ; and for the reason

assigned in the preceding Article, (respecting the first figure

of the square root), the first figure of the root will be the

cube root of the greatest cube number contained in the first

period.

II. Having pointed the number, we find that its cube root

consists of three figures. The first figure is the cube root of

the greatest cube number contained in 1 3 ; this being 2, the

value of this figure is 200, or a= 200, consequently a^=
8000000 ; subtract this number from 13997521, and the re-

mainder is 5997521. Find the value of 3x^, and divide this

latter number by it, and it gives 40 for the value of a, the se-

cond number of the root
;
put this in the quotient, and then

calculate the value of 'ia-b+ 'iah'^-\-b'^, and subtract it, and
there remains 173521. Find now the value of 3x(a-|-^)^,

and divide 173521 by it, and it gives 1 for the value of c, the

third member of the root
;
put this in the quotient, and then

calculate the amount of 2{a~\-bYc-\-^[a-\-b)c'^-\-c^, which sub-

tract, and nothing remains.

III. In reviewing the first of these two operations, it is

evident that six ciphers might have been rejected in the va-

lue of a^, and three in the value of 3a2^4-3a6^4-&^, without af-

fecting the substance of the operation ; having therefore sim-

plified the process as in the seco?id operation, we are fur-

nished with the following rule, for extracting the cube root of

numbers.

RULE.

249. Point off every third figure, beginning with the units ;

find the greatest cube number contained in the first period,

and place the cube root of it in the quotient. Subtract its

cube from the first period, and bring down the next three

figures ; divide the number thus brought down by 300 times

the square of the first figure of the root, and it will give the

second figure ; add 300 times the square of the first figure,
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30 times the product of the first and second figures, and the

square of the second figure together, for a divisor ; then mul-

tiply this divisor by the second figure, and subtract the result

from the dividend, and then bring down the next period, and

80 proceed till all the periods are brought down.

The rules for extracting the higher powers of numbers, and

of compound algebraic quantities, are very tedious, and of no

great practical utility.

Examples for practice in the Square and Cube Roots of
Numbers.

Ex. 1. Required the square root of 106929.

106929(327
9

'
62 169

124

647 4529
4529

Ex. 2. Required the cubeJ root of 48228544.

48228544(364
27

3276(21228
19656

Divide by 300X32=2700
30x3x6= 540

393136) 1572544
1572544 1st Divisor =3276

Divide by, (3

30
6)^X300=388800
X36x4= 4320

4x4= 16

2d Divisor 393135
Ex. 3. Required^he square root of 152399025.

Ans. 12345.

Ex. 4. Required the square root of 5499025.

Ans. 2345.

Ex. 5. Required the cube root of 389017. Ans. 73.

Ex. 6. Required the cube root of 1092727. Ans. 103.

18«
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CHAPTER VII.

ON

IRRATIONAL AND IMAGINARY QUANTITIES,

^ I. THEORY OF IRRATIONAL QUANTITIES.

250. It has been demonstrated (Art. 231), that the mth root

of a^, the exponent p of the power being exactly divisible by

the index m of the root, is a'". Now in case that the expo-
nent p of the power is not divisible by the index m of the root

to be extra( ted, it appears very natural to employ still the same
method of notation, since that it only indicates a division which
cannot be performed : then the root cannot be obtained, but

its approximate value may be determined to any degree of ex-

actness. These fractional exponents will therefore denote im-

perfect powers with respect to the roots to be extracted ; and
quantities, having fractional exponents, are called irrational

quantities, or surds.

It may be observed that the numerator of the exponent

shows the power to which the quantity is to be raised, and the
m

denominator its root. Thus, a" is the 7tth root of the mth

power of a, and is usually read a in the power (— j.

251. In order to indicate any root to be extracted, the ra-

dical sign -y/ is used, which is nothing else but the initial of

the word root, deformed, it is placed over the power, and in the

opening of which the index m of the root to be extracted is

written.
v_

We have therefore y/ a^ z=a"'. For the square root, the

sign }/ is used without the index 2 ; thus, the square root of

a^ is written ^/a^, as has been already observed, (Art. 18).

Quantities having the radical sign y prefixed to ihem, are

called radical quantities: thus, J/ a, -y/b^^/ c"^,^ x'" ,6lc, ?iXe

radical quantities ; they are, also, commonly called Surds
252. From the two preceding articles, and the rules given

in the second section of the foregoing Chapter, we shall, iit

general, have,
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L i- ^
y (a^.b*.(f)=y a'xy b^xy c'=a'- X^'Xc- ;

Therefore, ^ a^=y a^X^ b=axy b=:a^ b ;

^M^c^_y a%^c'^_^ a^xyb^xyc^
ye'^x^z '^ t^xy x^y^y xz

~^ ex\ xzexy xz

253. Two or more radical quantities, having the same in-

dex, are said to be of the same denomination, or kind ; and they

are of different denominations, when they have different indices.

In this last case, we can sometimes bring them to the same

denomination ; this is what takes place with respect to the

6 4 3 2.

twofollowing,y«-^ft2andy a66*=a^Xi^= a^ . b'^^^a^^b'^

= ^aW, In like manner, the radical quantities y 2a^b and

y I6a^b, may be reduced to other equivalent ones, having the

same radical quantity ; thus, y 2a^b=y a^xy 26=a^ y 26,

and y \6a^:^y 8a^ . 2b=y S.ya^.y 2b=2ay 2b ; where

the radical factor y 2b is common to both.

254. The addition and subtraction of radical quantities can

in general be only indicated :

Thus, y a^ added to, or subtracted from yjb, is written y/b

^y a^, and no farther reduction can be made, unless we as-

sign numeral values to a and b. But the sum of -y/c^b, -yoP-b,

and y\a% is =a/6+ a/6+2a-v/^=4av'6 ; ?>y ab-y ab

=2ya6; and ^ab'^^-y a^¥— byfa-^ahy a^—bya^rab^/

a

— {h-^ab)ya.

255. Hence we may conclude, that the addition and sub-

traction of radical quantities, having the same radical part, are

performed like rational quantities.

Radical quantities are said to have the same radical part,

when like quantities are placed under the same radical sign
;

in which case radical quantities are similar or like. It is some-

times necessary to simplify the radical quantities, (Art. 252),

in order to discover this similitude, and it is independent of

the coefficients.

Thus, for example, the radical quantities 36^ 2a^b'^, 8aJ/
2aW^, and —laby 2a-/>^, become, by reduction, "iaby 2aV)^f

Baby 2a^b'^, and ^laby 2aW ; which are similar quantities,

and their sura is —\aby 2d^b'^.
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256. We have demonstrated, (Art. 252), this formula,

y aFhe—y a''X y 6* xy c' ; from which the rule for the

multiplication of radical quantities, under the same radical

sign, may be easily deduced.

257. Let us pass to radical quantities with different indices,

and suppose that we had to find, for instance, the product of

1 ±
Y oP^y '\/^ ^'j or that of a"» by 6 "•'

: we can bring this case to

the preceding, by reducing to the same denominator, (Art.

152), the fractions— and^ ; and we shall have y a^X^^/ H*
' mm' Y V

P L fJUL JUL
=z arn>b'"' =z ar^-' X b'^' =•*"(/ af^ X"V ^"*—"V a^'^'".

258. The rule for dividing two radical quantities of the

same kind, may be read in this formula (Art. 233).

and it only^ remains to extend it to two radical quantities of

different denominations.

Let therefore y a^ be divided by "•{/ 5'
: by passing from

tadical signs to fractional exponents, we have

We may likewise suppose, under the radical signs, any
number of factors whatever, and it shall be easy to assign the

quotient, (Art. 252).

Let now arr^ in the formula

y a" xy b" =:y aP . b";

it becomes, by passing from radical signs to fractional expo-

nents,

a"' X a"* =y a^^^—a '"=«"' "•

.

Therefore the rule demonstrated (Art. 71), with regard to

whole positive exponents, extends to fractional exponents.

259. In the same hypotheses i= a, the quotient |j^be-

comes

a"'

another extension of the rule given (Art. 86), to fractional

positive exponents.



IRRATIONAL QUANTITIES. 201

260. We may, in the preceding formula, suppose /)=o ; and

11. 1 -I-

it becomes, (since a"'=a'"=a''=l)—=a "*, a transformation

a"

demonstrated, (Art. 86) in the case of whole exponents, and

which still lakes place when the exponents are fractional.

261. If we now admit the two equalities,

1 _-?. 1 -L

a" or

and if we multiply them member by member, we shall have

the equal products,111 I i i_L

a "•
a'" oT ""

It appear::; therefore evident, that exponentials with frac-

tional negative exponents, follow the same rule in their mul-

tiplication, as those with whole positive exponents.

-1 _-?
262. The division of oT by a", gives for the quotient,

1 A
-W m _OT *m •

Now the exponent of the qnotient, namely-^+^, is the expo-

nent of the dividend, minus that of the divisor, which is still

a generality of the rule (Art. 86), relative to the division of

exponentials.

263. The rules that have been demonstrated in the pre-

ceding articles may be extended to radical quantities having

trraiiona/ exponents : For instance, —7— j—t-t, &c. since that
ay 2, oy

3

the roots of ^/2 and y'S might be obtained with a sufficient

degree of approximation, and such that the error may be ne-

glected ; so that these exponents shall be terminated decimal

fractions, which can be always replaced by ordinary fractions.

264. The formation of the powers of radical quantities, is

nothing else but the multiplication of a number of radical

quantities of the same denomination, marked by the degree

of the power ; so that it is sufficient to raise the quantity

under the radical sign to the proposed power, and afterwards
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to affect this power with the common radical sign. If the in-

dex of the radical sign is divisible by the exponent of the

power in question, the operation then is performed by dividing

that index by the exponent of the power. Let us give iwo
examples for these two cases, {y a''b''Y=y a!"V"

; (y aPh'^)'

=y a^bi.

265. If the exponent of the power is equal to the index of

the radical sign, the power is the quantity under the radical

sign. In fact, the indication y aJ'^ shows that aP is the wth
power of a certain number y aP^ which we can always assign,

either rigorously, or by an approximation, so that the mth
power of y oF is dP. In like manner, the square of -yja is

a ; the cube of ^ a is a ; the 5th power of %/ (

—

a^) is — a"-*

;

and so on.

266. A rational quantity may he reduced to the form ofa given

surd, by raising it to the power whose root the surd expresses, and

prefixing the radical sign. Thus a'^z=z^ a^^=y a^=y/ a^, &c.
m

and a-\-x— (a-\-x)'". In the same manner, the form of any

radical quantity may be altered ; thus, y/{a-^x)=:iy (a-|-^)^=12 3.

y{a+xY,&.c.or{a-{-x)^={a-^xY={a+ x)^,SLc. Since the

quantities are here raised to certain powers, and the roots of

those powers are again taken ; therefore the values of the

quantities are not altered. Also, the coefficient of a surd may be

introduced under the radical sign, by first reducing it to theform

of the surd, and then multiplying as in (Art. 257). Thus, a^x
— ^/d^X^/x—y|d^x^, 6V2=V36X-/2= V"72; and a;(2a

—a;)^=(a;2)ix(2a-xP= y/{^ax^-x^).

267. Conversely, any quantity may be made the coefficient ofa

surd, if every part under the sign be divided by this quantity,

raised to the power whose root the sign expresses. Thus, ^/{a^

— a'^x)= Vfl^xVl^—^)=«V(«—^)' ^60= -v/(4xl5)=
'V/4X V15=2-v/15 ; and y {a'""—a'"aP) =y [a"'X{a"—x'')]

z=y a"'xy {a"—x")=ay (a"— a;").

268. Let us pass to the extraction of roots of radical quan-

tities, and let the with root of y a* be required, which we in-

dicate thus, y y a'. We shall put y -yjdz^x, or y a'=x, by
making y a^=^a'. Involving both sides to the power 7n, we
find a or y a'=j;"', raising again to the power n, we obtain

a'=ic"'". If the wjnth root of both sides be extracted, we have

another enunciation of x ; namely,

^y a*z=zx—y y aP.
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We shall find, by a like calculation,

mini ""•'•7

And, in fact, we make lst,y(/{/ a'=a\ whence y a'=x, and
a'=y{/{/a'=ra:"'; 2d, by putting (/{/ a'= a", whence y a"
= x"', and a"=zx'^ ; 3d, making {/ a'= a'", whence {/ a'"=a:"-,

and a'"=:{/ a'= x'""'' ; and finally a'= x'^f^, .-, ic= V«'-
Thus, for example, the 1 2th root of the number a can be trans-

formed into y/i/y a,

169. It is to be observed, that radical quantities or surds,

when properly reduced, are subject to all the ordinary rules

of arithmetic. This is what appears evident from the preced-

ing considerations. It may be likewise remarked, that, in the

calculations of surds, fractional exponents are frequently more
convenient than radical signs.

\ II. REDUCTION OF RADICAL QUANTITIES OR SURDS.

CASE I.

To reduce a rational quantity to the form of a given Surd.

RULE.

270. Involve the given quantity to the power whose root

the surd expresses ; and over this power place the radical sign,

or proper exponent, and it will be of the form required.

Ex. 1. Reduce a to the form of the cube root.

Here, the given quantity a raised to the third power is a^,

and prefixing the sign y , or placing the fractional exponent

(J) over it, we have a=y a^={a^)'^ (Art. 251).

271. A rational coeflicient may, in like manner, be reduced
to the form of the surd to which it is joined ; by raising it to

the power denoted by the index of the radical sign.

Ex. 2. Let 5'/a=:-v/25X'/a= V25a.
Ex. 3. Reduce — Sa'^b to the form of the cube root.

Here, (-3aHY= -27a%^ ;
.-. ~y 27a%^ is the surd re-

quired.

Ex. 4. Reduce —4xy to the form of the square root.

Here, {-4ay)^= ]6xY '
•'• —4a:y=—yiGxy.

Ex. 5. Reduce ^x to the form of the cube root.

Ans. (ia;3)i
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Ex. 6. Reduce a-\-z io the form of the square root.

Ans. {a^-\-2az-\-z'^Y.

Ex. 7. Reduce 4a? ^ to the form of the cube root,
^ 3 3 1

Ans. (^/ 64a:^) or (64a;* )^.

1 1

Ex. 8. Reduce —x^y^ to the form of the square root,

Ans. —V^y*
Ex. 9. Reduce —ab to the form of the square root.

Ans. — -v/a2i2.

CASE II.

To reduce Surds of different indices to other equivalent

oneSj having a common index.

RULE.

272. Reduce the indices of the given quantities to fractions

having a common denominator, and involve each of them to

the power denoted by its numerator ; then 1 set over the com-

mon denominator will form the common index.

Or, if the common index be given, divide the indices of the

quantities by the given index, and the quotients will be the

new indices for those quantities. Then over the said quantities,

with their new indices, set the given index, and they will make
the equivalent quantities sought.

Ex. 1. Reduce -y/a and ^ J to surds of the same radical

sign.

Here, -/arra^, and y b=b^. Now, the fractions J and J
reduced to the least common denominator, are f and |

;

/. a^=a^=:{a^f=ya^ and b'^=b^={b^f=^ b^.

Consequently ^ a^ and ^ b^ are the surds required

Ex. 2. Reduce -/a and |/ a? to surds of the same radical

sign y , or to the common index ^.

(Art. 251), y/a=za^, a.i\A y x=x'^ \ then i-rl=lx 6= 3
;

3 JL " 3 1

and i4-J=ix 6r=f ;
.-.6/ ^3 and:^ a;^, or (a^)^ and (x^f, are

the quantities required.
1

Ex. 3. Reduce a^ and b^ to the same radical sign f/ .

Ans. ^ o«, and ^ h^.
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/ Ex. 4. Reduce a* and x^ to surds of the same radical sign

Ans. i2/a,3and '\/ x\
/ Ex. 5. Reduce y a and y y to surds of the same radical

sign. Ans. "Y ^'" *"^ "V !/"'

, Ex. 6. Reduce a^ and b^ to surds of the same radical sign.

Ans. ^\/ a^ and ^^R
. Ex. 7. Reduce 3^ 2 and 2-v/5 to the same radical sign.

Ans. 36/4 and 2V 125.

, Ex. 8. Reduce ^ a;y and y ax to the same radical sign.

Ans ^^ ar'»y* and ^^ a^a:^.

CASE III.

To reduce radical Quantities or Surds^ to their most simple

forms.

RULE.

273. Resolve the given number, or quantity, under the ra-

dical sign, if possible, into two factors, so that one of them
may be a perfect power ; then extract the root of that power,

and prefix it, as a coefficient to the irrational part.

Ex I. Reduce -/a^j to its most simple form.

Here ^Ja^h—^/a^-K y/h—ay^^h^ay/h.
Ex. 2. Reduce '^Z a^'x to its most simple form.

Here y a'^x=y a'"xy x=a'"X'y x=axy x.

Ex. 3. Reduce -^/I'Z to its most simple form.

Here ^72= ^{36x2)=:-x/36xV'^=^V^'
274. When the radical quantity has a rational coefficient

prefixed to it ; that coefficient must be multiplied by the root

of the factor above met>tioned ; and then proceed as before.

Ex. 4. Reduce 5^ 24 to its simplest form.

Here 5^/ 24 = 5y (8 X 3) = 5^/ 8 X V 3 "= 5 X 2 X 3/ 3=
103/3.

Ex. 5. Reduce yja'^hc and y/^^aP-x to their most simple

form. Ans. a'^y/bc and 7«y2x.
, Ex. 6. Reduce \/ 243 and ^ 96 to their most simple form.

Ans. 3^3 and 2^3.
/ Ex. 7. Reduce ^ (a^-^-a^b"^) to its most simple form.

Ans. aV(l+*^).
T. o -n J l/a^b-Aa%'^-[-Aab\

^' Ex. 8. Reduce /(
j to its most simple

form. Ans. -y/ah^

19
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Ex. 9. Reduce {a+b)y [(a-'hfxcc'^] to its most simple

form. Ans. (a^-^^jS/ x^.

275. If the quantity under the radical sign he a fraction^ it

may he reduced to a whole quantity^ thus :

Multiply both the numerator and denominator by such a

quantity as will make the denominator a complete power cor-

responding to the root ; then extract the root of the fraction

whose numerator and denominator are complete powers, and

take it from under the radical sign.

Ex. 1. Reduce - X a/t- to an integral surd in its most
d * b

simple form.

Ex. 2. Reduce y^/ \\ to an integral surd in its simplest form.

Here, J»/if=iV (.^3) = i'/ iV
X
»/ | =JxJV?^'

=r/(TVx 18)=|XF/ 18=A'/ 18.

Ex. 3. Reduce f-v/y to an integral surd in its most simple

form. Ans. ^\-v/14.

h cP-

' Ex. 4. Reduce x^J - and a?/ — to integral surds in their

y «

most simple form. Ans. -y/hy and ^ c^a^

Ex. 5. Reduce ^ l and J-y/J to integral surds in their most

simple form. Ans. Jy/ 27 and \^2.
54 a^

Ex. 6. Reduce ?/ -—- and n/ —-- to their most simple form.
^ 125 *^ 8ar*

^

Ans. ?V 2 and -^'/2a.

276. The utility of reducing surds to their most simple forms,

especially when the surd part is fractional, will be readily per-

ceived from the 3d example above given, where it is found that

f -y/f =2%^y'14, in which case it is only necessary to extract

the square root of the whole number 14, (or to find it in some of

the tables that have been calculated for that purpose), and then

multiply it by ^^\ whereas we must, otherwise, have first divid-

ed the numerator by the denominator, and then have found the

oot of the quotient, for the surd part ; or else have determined

the root of both the numerator and denominator, and then divide

the one by the other ; which are each of them troublesome pro-
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cesses ; and the labour would be much greater for the cube

and other higher roots.

277. There are other cases o( reducing algebraic Surds to

simpler forms, that are practised on several occasions ; for in-

stance, to reduce a fraction whose denominator is irrational, to

another that shall have a rational denominator. But, as this

kind of reduction requires some farther elucidation, it shall be

treated of in one of the following sections.

^ III. APPLICATION OF THE FUNDAMENTAL RULES OF ARITH-

METIC TO SURD QUANTITIES.

CASE 1.

To add or subtract Surd Quantities.

RULE.

• 278. Reduce the radical parts to their simplest terms, as in

the last case of the preceding section ; then, if they are similar,

annex the common surd part to the sum, or difference of the

rational parts, and it will give the sum, or difference required.

Ex. 1. Add 4 -/x, y/x, and 5^x together.

Here the radical parts are already in their simplest terms,

and the surd part the same in each of them; .*. 4 /x+y'a:
-|-5-Y/a:=(4-fl+5)x -Y/xrrlOyj? the sum required.

Ex. 2. Find the sum and difference of -^/IQa^x and y/Aa^x.

'\/ IQa^x^^. ^/ \Qa} X -y^x=:\a-\/x,
and ylAoP'Xzz^ yJ^a^X^/x:=.1ay/x\

.'. the sum =(4a-|-2a) X -y/x:=z^a-y/x
;

and the difference =(la—2a)X 'Jx=.2a\/x.
Ex. 3. Find the sum and difference of ^ 108 and 9^ 32.

Here ^108=5/27X^4^:3x^4= 3J/ 4,

and 9y32=9y8x^4= 18x-t/ 4= 18^4,
the sum =:(18-|-3) X/ 4=21^ 4 ;

and \\i^ difference =(18— 3)X V 4= 153/ 4.

279. If the surd part be not the same in each of the quan-
tities, after having reduced the radical parts to their simplest

terms, it is evident that the addition or subtraction of such
quantities can only be indicated by placing the signs + or '*'

between them.

Ex. 4. Find the sum and diffcrencp, of 3^ a^h and h^/c'^d.

Here 3J/
^3^=3^ a^ x^/ 6=3aX^ 6:=3a^ ^

and b^/c'^d= h^/c'^xVd= hcX\/d=hc^/d\
the sum =3(/y b-\-bcx/d'

and the difference =3a^ b^bc^d.
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^ Ex. 5. Find the sum and difference of -y/^^y and -y/J.
Ans. The sum =j^jy/6, and difference =^-y/6.

yEx. 6. Find the ^wm and difference of \/27a^x and ySa^x.
Ans. The sum ^^AaP'-y/'dx^ and differeiice =2a2^3x.

Ex. 7. Find the ^w»i and difference of Jy^a^^ and ^^/bx^.

/2a:2+ 3«\ .. , ,.„ /2aj2-3a\
Ans. Ihe sum =1 —— jyo, and difference ( ——

I

Ex. 8. Required the surn and difference of 3^/ 625 and

2^ 135.

Ans. The sum =2\^ 5, and difference =9^ 5.

Ex. 9. Required the sum and difference of {/ a^^^ ^^d ^ a:y.
Ans. The sum z=za^ab-^x^ oc'^y'^^ and difference z=a^/ab^

xy a;2y2.

CASE II.

To multiply or divide Surd Quantities.

RULE.

280. Reduce them to equivalent ones of the same deno-

mination, and then multiply or divide both the rational and the

irrational parts by eacli other respectively.

The product or quotient of the irrational parts may be re-

duced to the most simple form, by the last case in the preced-

ing section.

1 X
Ex. 1. Multiply ^aby ^5, or a^ byiJ^.

The fractions ^ and J, reduced to a common denominator,

are f and J.

.-. a^=zJ=y a? ; and h^=^=f^ h\
Hence ^ay.^ h=y a? y.\f V^^^ aW

.

Ex. 2. Multiply 2^/3 by 3^ 4.

1.

By reduction, 2/3=2 x 3« =2 X 6/ 3^=2^ 27 ;

and 3^ 4=3x4^=3^ 42^3^ 16.

.-. 2/3x3:;/ 4z=2V 27 X 3^ 16=6^ 432.

Ex. 3. Divide S'J/ 512 by 4^ 2.

Here 8-4=2, and / 512-1--/ 2=^ 256=:4|/ 4.

.-. Sy 5124-4^ 2=2 X 4-y 4=8^ 4.

Ex. 4. Divide 2^ be by 3 /ac.

Now 2^ 6c=2 X (^>c)^=2 X (bcf=2^y bh\
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1 3

and 3 y/ac=2 X (ac)^ = 3 X (ac)« =3^ a^c^
;

281. //"/tco wr(f^ Aawc /Ac ^ame rational quantity under the

radical signs, their product, or quotient, is obtained by making

the sum, or differertce, of the indices, the index of that quantity.

^ Ex. 5. Multiply 5/ a^ by ^ a^ or a^ by a^
4 .2 4 + 2 6

Here, a X a'

before.

:a^=a2. Or^a*X^a2^^(a*Xa»)

Ex. 6. Divide V a^ by ^ a^ or a^ by <z^
3 4 l_jl 9 16 7 1 12/1

Here, a*^a^=a* '=.a^^-^^=a'^^=^^ J\.
J2 V a^

282. If compound surds are to be multiplied, or divided, by

each other, the operation is usually performed as in the multi*

plication, or division of compound algebraic quantities. It fre-

quently happens that the division of compound surds can only

be indicated.

Ex. 7. Multiply V^—^ a^ by 3/ S+ J/ a.

.3/ ^2 1 Q;««« /Qv^3/ 0_q6 v^QO^

^3-1-^ a 1^(33X32)^6/(27X9)=
'/3-^a^) Since V3X^3=:3«x3<

-^243
«/243-^(3a2)

4V (27a2)-a

Product =«/ 243-^ (3a2)+ «/ 27a2~a.
Ex. 8. Divide y/b'^ca-\-^a'^b—bc—y/ahc\iy'\/hc-\")/tL

'y/b'^ca -\- ^Ja^b— be— -^abc

y/bHa-\-^/a'^b

—be— -y/abc

'^bc—y/abc

^/bc-\- y/a

Ex. 9. Multiply ^ 15 by -/lO.

Ex. 10. xMultiply \^ 6 by |^ 18.

Ex. 11. Multiply 3/ 18 by ^4.
Ex. 12. Multiply ^y 6 by ^^y 9.

Ex. 13. Divide 4 -/SO by 2^5.
Ex. 14. Divide \\/\ by \y/\.
Ex. 15. Divide h aHW by W.

19*

Ans. y 225000
Ans. |/ 4

Ans. 2y 9

Ans.TV^2
Ans. 2V'10
Ans IVlO
Ans. -^06
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^ Ex. 16. Multiply a^ x^ by a* cc^. Ans. a^ x^.

,. Ex. 17. Multiply y a^^c^ by ^ aZftSc*. Ans. a^^c*.

, Ex. 18. Divide (a*+i^)Hy (a*+63)^

Ans.^(a*+i3).
Ex. 19. Multiply 4+2 V2 by 2-'/2. Ans. 4.

Ex. 20. Multiply V(« — Vi^^ — \/3)) by -/(« + V(b—
V3)). Ans. v'(a'^-6-f VS).
, ' Ex. 21. Divide a^b—ah-c by a^[-a^hc.

Ans. ah—b^/bc.

J Ex. 22. Divide a*+a;* by a2+aa;-/2+ a:2

Ans. c?—ax^/2^\'x'^.

283. It is proper to observe, since the powers and roots of

quantities may be expressed by negative exponents, that any
quantity may be removedfrom the denominator ofa fraction into

the numerator ; and the contrary, by changing the sign ofits index

or exponent ; which transformation is of frequent occurrence ia

several analytical calculations.

1 a^
Ex. 1. Thus, (since -—==6-3), — may be expressed by

1 a^ \
a2j—3 . and (since 0^=—-^, we have 7: =

a~'^ b^ b^(r~'^

a^^
Ex. 2. The quantity —^ may be expressed by a^b^c—^e—^,

C 6

Ex. 3. Let the denominator of—t- be removed into the
c b^

numerator. Ans. a^x^cr-^b-K

Ex. 4. Let the numerator of -y— be removed into the deno-
o

minator. Ans
a-^x-^b

Ex. 5. Let x^y^c? be expressed with a negative exponent.

Ans.-

«—2y—2fl
^
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CASE HI.

To involve or raise Surd Quantities to any power.

RULE.

284. Involve the rational part into the proposed power, then

multiply the fractional exponents of the surd part by the index

of that power, and annex it to the power of the rational part,

and the result will be the power required.

Compound surds are involved as integers, observing the

rule of multiplication of simple radical quantities.

Ex. 1. What is the square of 2^0 ?

The square of 2^a=(2a^f=2'^ X a^ =4a.
Ex. 2. What is the cube of ^ (fl2-J2_^y3) ?

The cube of "^y (a^-b'^+^2)= {a^-h'^+^'if^ =0^—1^

+ V3.
285. Cor. Hence, if the quantities are to be involved to a

power denoted by the index of the surd root, the power re-

quired is formed by taking away the radical sign, as has been
already observed.

Ex. 3. What is the cuhe of i ^2ax ?
" 13 3

Here (\Y=^, and (yJ2axY= {2ax)'^' =^(2ax)^

z=z(2ax)x(2ax)'^ \ .•.\x2axX(2ax)'^=
\ax^2ax is the power required.

Ex. 4. It is required to find the square of -y/a— ^/b.

y/a-y/h
y/a^\/h

a—^ah

— \/ah-\-h

The square a—2^ah-\-h.

/ Ex. 5. It is required to find the square of 3y^ 3.

Ans. 9^9.
Ex. 6. Find the cube of ^Ja. Ans. a-y/a.

Ex. 7. Find the 4th power of —^ a^. Ans. a^y o'.

Ex. 8. Find the 5th power of —^ ah. Ans. —aft,
Ex. 9. Required the cube of a— ^/h.

Aus. a3—3aV^+3a6-6-/^



212 IRRATIONAL QUANTITIES.

Ex. 10. Required the square of 3-{- -y/S.

Ans. 14+6-/5.
Ex. 11. Required the cube of —^ W°'~ V^^)-

Ans. -yjhc— -yja.

CASE IV.

To evolve or extract the Roots of Surd Quantities.

RULE.

286. Divide the index of the irrational part by the index of

the root to be extracted ; then annex the result to the proper

root of the rational part, and they will give the root required.

If it be a compound surd quantity, its root, if it admits of

any, may be found, as in Evolutitm. And if no such root can

be found, prefix the radical sign, which indicates the root to

be extracted.

Ex. 1. What is the square root of 81 -/a ?

1 1

Here -v/Sl^Q, and the square root of \^a or a^=a^-^2=:

a^X^=ai=z*/a ;
.-. -/(SI -/a)= 9*/ a, or 9a*.

Ex. 2. What is the square root of a^—6a^b-[-9b.

a^-6a^b'\-9b(a'-'3y/b

2a-3'^b)-6a^b-\'9b
~6a^bi-9b

Ex. 3. Find the square root of 9^ 3- Ans. 3?/ 3,

Ex. 4. Find the 4th root of ^f^ a^. Ans. Jy a.

Ex. 5. Find the cube root of Ida^—Sx^)^.
Ans. V(5a2-3a;2).

Ex. 6. Required the cube root of ^a^. Ans. ^a\/ b.

Ex. 7. What is (he fifth root of 32V aJ* ? Ans. 2V x.

Ex. 8. What is the 4th root of Ida^ x ? Ans. 2^ a^x,

Ex. 9. What is the nth root of 'y a"x^ ?

11-
Ans. a'"af^-

Ex. 10. It is required to find the cube root of a^—3a^^x+
^ax—x-^x. Ans. a-^^x.



IRRATIONAL QUANTITIES. 213

§ IV. METHOD OF REDUCING A FRACTION, WHOSE DENOMI-

NATOR IS A. SIMPLE OR A BINOMIAL SURD, TO ANOTHER THAT
SHALL HAVE A RATIONAL DENOMINATOR.

287. A fraction, whose denominator is a simple surd, is of

the form —— ; where a? may represent any rational quantities

whatever, either simple or compound ; thus,

be a c—d .^^_^_ &c

are fractions, whose denominators are simple surd quantities.

288. It is evident that, if a surd of the form ^ a; be multi-

plied by y a:"—^ the product shall be rational ; since y xX
\^ x'*-'^z=y {^xXx'^—'^)—y x"= x \ in like manner, if^ (a+a:)

be multiplied by J/ (a-\-xy, the product will be a-f a;.

289. Hence, if the numerator and denominator of a fraction

of theform —— be multiplied byy/x'^~^, the result will be a
"w X

fraction y whose denominator shall be rational.

Thus, let both the numerator and denominator of the frac-

tion —— be multiplied by -y/x^ and it becomes ; and by

multiplying the numerator and denominator of the fraction

' V^ K V / _L. N2 w K V Wa-\-xf] b\a+x^
377—7—N> by V (a+^)^ It becomes ^^^777-——To- =—

h

'

Or, in general, if both the numerator and denominator of a

* a
fraction of the form —— be multiplied by y a;""^, it becomes

yr X

(i*\/ a?"
—

^

—^-
, a fraction whose denominator is a rational quan-

X
tity.

290. Compound surd quantities are such as consist of two
or more terms, some or all of which are irrational ; and if a
quantity of this kind consist only of two terms, it is called a
binomial surd ; and a fraction whose denominator is a binomial

surd, is, in general, of the form r-.^a^^b
291. If a multiplier be required, that shall render any bi-

nomial surd, whether it consist o{ even oi odd Toois, rational, it

may be found by substituting the given numbers, or letters, of
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which it is composed, in the places of their equals, in the fol-

lowing general formula

:

Binomial, y a:^y b.

Multiplier, 7 a'»-i=f7 a^-'^b -f- 7 a'^^^ ^ y a»-4P+, &c.,
where the upper sign of the multiplier must be taken with the

upper sign of the binomial, and the lower with the lower ;

and the series continued to n terms. This multiplier is de-

rived from observing the quotient which arises from the actual

division of the numerator by the denominator of the following

fractions : thus,

I. —=o[:'*—^ + cc"—^y + a;"—y +, <fec. .
-j-yn—i to n

terms, whether n be even or odd, (Art. 108).

x''—v"
II. ^-=a:'»—^— a;"—2y-j-a;'»—3y2_ ^q^ ^ ^ —yn— J to

n terms, when n is an even number, (Art. 109).

III. --i^=a;»-i—a;«-2y-hx'»—y— , &c. . . +y« -^

to n terms, when n is an odd number, (Art. 110).

292. Now let x"=a, i/"= b ; then, (Art. 116), x=y a,

y=y b, and these fractions severally become ,-; ;—1,
y' a—y^ b

—--, and ; ; and bv the application of the rules
Yo-\-yb' ya-\-yb' " ^^

in the preceding section we have a;"—^=^ a"—^; a;»~2r=:y a'*—2,

x^—^=y a«— 3, (fee. also, y'^=y b^ ; y^=V ^^
i
^^- ' hence,

a;n-2y=y a»-2 x^ b=y an-^b
; x''-Y=V «"-^XV ^^=V ^

n—^3
; &c. By substituting these values of a;"— ^a?'*—^^^ a^n— 3^2^

&c., in the several quotients, we have —--=y a —^-f

y a''—^^{y a^—3524., &c -fy 6»—^ to n terms ; where

n may be any whole number whatever. And --—r-m =

y a^-^—y a»-^-\-y ar^-%'^— , &,c. . . . ^y 5«-i to n terms ;

where the terms b and y 5'*—^ have the sign -j- , when n is an

0{ZcZ number : and the sign — , when n is an even number.

293. Since the divisor multiplied by the quotient gives the

dividend, it appears from the foregoing operations that, if a

binomial surd of the form y a—y b be multi-plied by y a"—^4-

J/
an—%-\-, &LC. . -\-y 5«— 1 {n being any whole number what-

ever), the product will be a— b, a rational quantity ; and if a

binomial surd of the form y a-\-y b be multiplied by y a"—

^

--y o»-26+y/ »-3^>2_^ ^Q ^y jn_i^ the product will be
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fl-f-^ ot <t—b, according as the index n is an odd or an even

number.

294. Hence it follows, that, if the numerator and denomina-

tor of the fraction (Art. 290), he multiplied hy the multiplier

^

(Art. 291), it becomes another equivalent fraction^ whose deno-

minator shall be rational.

There are some instances, in which the reduction may be

performed without the formal application of the rule, which
will be illustrated in the following examples.

Ex. 1. Reduce ^^—rz—-^tt" to a fraction with a rational
y 5—y 3

denominator.

To find the multiplier which shall make ^5— y'S rational^

we have n=2, a= 5, 6z=3 ;
.-. (Art. 291), y a"-^-{- {/ a''-H

=(since a"-2= a2-2=a''=l) -v/5 + -/S
;

•*• "^^VF^

295. This multiplier, \/5-\- \/3, could be readily ascertain*

ed, without the application of the formula, by inspection only ;

since the sum into the difference of two quantities gives the

difference of their squares ; also the multiplier that shall render

\/a-\-^b rational, is evidently -^/a— -\/6. In like manner, a

trinomial surd may also be rendered rational, by changing the

sign of one of its terms for a multiplier ; and a quadrinomial

surd by changing the signs of two of its terms, &c.
2

Ex. 2. Reduce .
.

—
-7; 7- to a fraction with a rational

V5+ V3— -v/2

denominator.

In the first place, ^,^^3,^, X-^-^^_=
2(\/5+ \/3+v/2) V5+A/ 3+V2 -3+ -/15_

6+2^15 '
'•

3+ V15 ^—3+Vl5~
^-^——^ ^'—^^ — ' IS the fraction required.

Ex. 3. Reduce ^—-

—

;^—- to a fraction with a rational de-^3—^2
nominator.

To find the multiplier which shall make ^3—^2 rational,

we have n= 3, a=3, b=2 ;
.-. "/ a"-^-^ U a^'-^b-^- V 5"-'=

V9+V6+ V4-
Now (V 3 - V 2)(V 9+V 6-hV 4) = a-6=3-2= l

;
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/. the denominator is 1, and the fraction is reduced to ?/ 94-

296. Hence for the sum, or difference, of two cube roots,

which is one of the most useful cases, the multiplier will be
a trinomial surd consisting of the squares of the two given
terms, and their product, with its sign changed.

Ex. 4. Reduce . ^ .

-;-- to a fraction with a rational
y i5-|-y 5

denominator. Ans. ——7-^.
3

Ex. 5. Reduce —7- — to a fraction with a rational de-yo—yx
nommator. Ans. —^ —

5—x
o

Ex. 6. Reduce -7--—7-—- to a fraction whose denomi
V3H-y2H-l

nator shall be rational. Ans. 4-|-2-/2— 2'/6.

Ex. 7. Reduce =-—r~^-— to a fraction whose denominator

shall be rational.

^"^^ ^iV ^'-V ^!/+'" f)-

2
Ex. 8. Reduce t-——yttt ^o ^ fraction whose denominator

v/5-j-y 3

shall be rational. Ans. ^125— */ 75+^ 45—^ 27.

297. It may not be improper to take notice here of another

transformation which binomial surd quantities may undergo
by equal involution, and evolution.

Ex. 1. To transform -Z^+ l/S to a universal surd.

Its square =5+2^6 ; .-.the root =^/{5-\-2^6).
Ex. 2. To reduce -^27+ -y/48 to a universal surd.

Here
( ^27+ V'48)2z:r27H-2-/l296+ 48= 147 ; .-. ^27

+ V'48==-v/147= 749x3= 7^/3.
Ex. 3. To transform ^ 320—^ 40 to a general surd.

Here (»/ 320-^/ 40)3=320-3^ 4096000+ 3 »/ 512000
-40= 40; .-.^ 320-3/ 40=23/ 5.

298. This transformation is very useful, since, by means
of it, we can always reduce the sum or difference of any two
surd quantities, if they admit of the same irrational part, to a

single surd. This may be proved, in general, thus ; if / a and

y b admit of the same irrational part, they must be of the

form y a"'m and y b'"m ; and
(
^ a'"m+ ^ b'''mY=:a'"m-i-n
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[a'"m-^nma''^W*-^&,c 6'"m)= the nth root of a rational

quantity. Hence the product of y/a by \/h is rational if

^a and y/b admit of the same irrational part ; also, ^ a^X

y b, or 1/ aXy/ b^, is rational, if^ a and ^ b admit of the

same irrational part ; and, in general, y a -^ xy b, or y ax
y b'*~\ is rational, i(y a and y b admit of the same irrational

part.

299, It is propel to observe, that, for the addition or sub-

traction of two quadratic surds, the following method is given

in the Bija Ganita, or the A /^e6ra of the Hindoos, translated

by Strachey. Thus, tofind the sum or difference of two surds,

y/a and -y/b^for instance.

RULE.

Call a-\-b the greater surd ; and, if ax6 is rational, (that

is, a squar€)^cdX\ 2 y/ab the less surd, the sum will be ^/(a+b
'\-2y/ab), (—{-y/a^y/bf), and the difference y/(a-\-b—

2-y/ab). \{ axb is irrational, the addition and subtraction are

impossible ; that is, they can only be indicated.

Example. Required the sum and difference of y/2 and -^8.

Here2+ 8= 10=:> surd; 2 x8= 16, .-.
-v/16= 4, and2V'l6

=2x4=r8=<surd. Then 10 + 8 = 18, and 10— 8=2
i

.-. '/18= sum, and -/2= difference.

ANOTHER RULE.

Divide a by b, and write j-f in two places. In the first

place add 1, and in the second subtract 1 ; then we shall have

V[(Vf+0'^*]= V«+-/*. and^[(^^-l)« X i]=V
-/*

If ^- is irrational, (that is, not a square), the addition or

subtraction can be only made by connecting the surds by the
signs 4- or — 1, as they are.

Sturmius, in his Mathesis EnucleatafYi&a also given a me-
thod similar to the above.

Ex. 4. To transform y 2+'v/3 to a general surd.

Ans.v/(5+2/6).
20
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Ex. 5. To transform -y/a—l-y/x to a universal surd. j

Ans. -yj[a-\-\x—\'^ax), I

Ex. 6. To transform 3^/ \-\-y 72 to a universal surd.

Ans. 33/ 9.

^ V. METHOD OF EXTRACTING THE SQUARE ROOT OF BINOMIAL
SURDS.

300. The square root ofa quantity cannot he partly rational and
partly a quadratic surd. If possible, let yfn=:a-^ i/w ; then by
8quaringbothsides,n= a2-|-2ay»i+ 7»,and2a-/»i=:n—a^—Tw;

therefore, -^/m^z , a rational quantity, which is con-

trary to the supposition.

A quantity of the form y'a is called a quadratic surd.

301

.

Ifany equation x-}- ^y:=a-\-'\/b, consisting of rational

quantities and quadratic surds, the rational parts on each side are

equal, and also the irrational parts.

If X be not equal to a, let x=::ia-\-m ; then a-j-m-f-y^yura
-\--y/b, or m-\--\/y^=z's/h ; that is, -y/h is partly rational, and \

partly a quadratic surd, which is impossible, (Art. 300) ; :.x^:za, J

and y/ y= ^Jh.
'

302. Iftwo quadratic surds -y/x and ^Jy, caniiot he reduced to

others which have the same irrational part, their product is irra-

tional.

If possible, let -y/xy^rx, where r is a whole number or a

fraction. Then xy^r'^x'^-, and y=^r'^x ; .\ -^y^zzr^/x ; that is,

\/y and -y/x may be so reduced as to have the same irrational

part, which is contrary to the supposition.

303. One quadratic surd, y/x, cannot he made up oftwo others,

yjm and -y/w, which have not the same irrational part.

If possible, let -y/x^=i^m-\-y/ n\ then by squaring both

sides, xz^m-\-2y/ mn-{-n, and x—m—n=2ymn, a rational

quantity equal to ati irrational, which is absurd.
1

304. Let {a-\-h)c =x-\-y, where c is an even number, a a ra-

tioTtal quantity, b a quadratic surd, x and y, one or both of them,
1

quadratic surds, then (a—b)c=x—y.

c— l
By involution, a-\-b=x'-\-cx''-'^y-]-c.—-—x''-'^y'^'\- &c., and

2

since c is even, the odd terms of the series are rational, and

c— l

the even terms irrational ; .'.a= x''-i-c. x'-'^y'^ -f &c., and

f. Y f. 2
b=zco(f-'^y-\-c.---.-—-x'-^y^-\- &c., (Art. 301); hence, a—b

2 3
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=ax—cxc—*y-f-c ,
—^^jc«—y— , &c. ; and consequently, by

«_

evolution, {a—hy =zx—y.
305. If c he an odd number^ a and i, one or both quadratic

surds^ and x and y involve the same surds that a and b do rt-

\_ L
spectively^ and alse {a-\-b)'= =ar-fy, then (a— 6)*^ =x—y.

c— l

By involution, a+b=:x^-\-c3ii^-^y-\-c . -r—a:<^~y+ » <fec.,

where the odd terms involve the same surd that x does, be-

cause c is an odd number, and the even terms, the same surd

that y does ; and since no part of a can consist of y and its

parts, (Art. 301), a=j;'4-C' —77-*^"^+, <fec.,andi=cac«—*y«

^c .
—-— .

—— . a;<^—^y^-f-j &c-i hence, a— 6= a:^—ca^—'y

-f-c . —7—a;'^—y__^ Slc. ; /.by evolution, [a'—b)'^=x—y.

306. TAc square root of a binomial., one of whose terms is a
quadratic surd., and the other rational, may sometimes be ex-

pressed by a binomial, one or both of whose terms are quadratic

surds.

Let a-^-^b be the given binomial, and suppose ^/{a-{'\/b)

=3:+y ; where x and y are one or both quadratic surds ; then

'\/{a— ^/b)::^x—y•, .'. by multiplication, \/{a^—b)=zx'^—y^,

*also, by squaring both sides of the first equation,

a-\^^/b=x'^-\-2xy-]^y'^, and a=^x'^-\-y'^
\

.-.by addition, a-{^^/[a'^— b)=2x'^, and by subtraction, a—
y(a2_^,)=2y2

; and the root a;+y= -/K^+i'/Ca'^— *)] +
^/[¥-\VV-b)l
From this conclusion it appears, that the square root of

a-\-'\/b can only be expressed by a binomial of the form a;-f-y,

one or both of which are quadratic surds, when d^~b is a per-

fect square.

By a similar process it might by shown that the square root

of a-^b is V[ia+WK— *)]- V[-2«-iV(«'-^)], sub-
ject to the same limitation.

Ex. 1. Required the square root of 3-1-2^2.
Let V(3-f-2-/2)=:a;4-y; then ^('i—2^/2)=x—y; by

multiplication, -/(O— 8)=a:2—y2 ; that is, a;^—y2=:i.
Also, by squaring both sides of the first equation, 3+ 2-/2

=a:24-2a:y—y2^ and x'^-\ry'^='i ;
.*. by addition, 2x2=4, and

x=^2.
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Again, by subtraction, 2y2— 2 ; .•.y=l, anda;+y=y'2-fl
= the root required.

Or, the root may be found by substituting 3 for a, 2-^2=
y/8 for V^' ^^ ^ ^^^ ^' ^"^ ^^® above formula

;
thus,

;r+y:=V[|+JV(9-8)]+ V[!-iV(9-8) = V(H-i)4-
V(f-4)= /2+ l.

Ex. 2. Required the square root of IQ+S-ZS.
Ans. 44-^3

Ex. 3. What is the square root of 12— -/HO ?

Ans. -y/?— v^S

Ex. 4. Find the square root of 7-^4^3.
Ans. 2+ '/3

Ex. 5. Find the square root of 7— 2-^/10.

Ans. x/5-^/2
Ex. 6. Find the square root of 31 -f 12-v/— 5.

Ans. 6+V—

5

. Ex. 7. Find the square root of 18— 10 v'—7.

Ans. 5— y^—

7

Ex. 8. Find the square root of —1+4-/— 5.

Ans. 2+ -/—

5

307. TAc cth root of a binomial, one or both of whose terms

are possible quadratic surds, may sometimes be expressed by a

binomial of that description.

Let A-f B be the given binomial surd, in which both terms

are possible ; the quantities under the radical signs whole
numbers ; and A is greater than B.

Let {/ [(A+B) X VQ]=ar+y

;

then ^[(A-B)xVQ]=a:-y;
.-.by multiplication, ^ [(A2- B2)xQ]=a;2—y2. ^q^ \qi

Q be so assumed, that (A^— B*^)xQ may be a perfect cth

power =71", then x^—y'^zzzn.

Again, by squaring both sides of the first two equations, we
have
{/[(A+ B)2xQ]=:r2+2xy4-y2

^ [(A-B)2xQ]:=x2-2a:y+ y2;

/. Y [ (A4-B)2xQ]+{/ [(A-B)2xQ]=2a;24-2y2; which is

always a whole number when the root is a binomial surd ; take

therefore s and t, the nearest integer values ofy^ [(x'\.4-B)2x

Q] and{/ [(A— B)2x Q], one of which is greater and the

other less than the true value of the corresponding quantity

;

then since the sum of these surds is an integer, the fractional

parts must destroy each other, and 2x'^-\-2y'^^^s-\-t, exactly,

when the root of the proposed quantity can be obtained. We
have therefore these two equations, x^—y'^-z:zn, and aj^-j-y^—.^^
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-f-J^; .-. by addition, 2x^= n-\-ls-\-lt, and a:z= J-/(2n4-^+0 J

and by subtraction, 2/-^=^^+ J/— n, and t/=^ y/{s-\-t—2n).

Consequently, if the root of the binomial y [(A+ B) X VQl
be of the form x+y, it is ^\/{2n~^s-j-t)-{-^^{s-{-t— 2n) ; and

the cth root of A+B is 02^;^ '

Ex. I. Required the cube root of 10 4--/ 1 08.

In this case, -/lOS is >10; .•.A=V'108, B= 10, A2-B«
= 108— 100=8, and 8Q=:n^. Now, since 8 is a cube number,

Q may be taken equal to 1 ; then8Q= 8= n3; .-. n=2. Also,

3/[(A+ B)2]=7+/; ^[(A-B)-^]= l~/, where /is some

fraction less than unity ;
,-. ^=7, ^=1 ; and a;-|-y=-^—^

If therefore the cube of 10+-/ 108 can be expressed in the

proposed form, it is -v/3+1 ; which on trial is found to suc-

ceed.

Ex. 2. Find the cube root of 26 -f 15 -/3.

Ans. 2-f--/3.
Ex. 3. Find the cube root of 9 -v/3— ll'/2.

Ans. 'v/3— y'2.

Ex. 4. Find the cube root of 4^5+8.

^"" T2-
308. In the operation, it is required to find a number Q, such

that (A^—B)2xQ may be a perfect cth power ; this will be

the case, if Q be taken equal to (A^

—

B"^)'-^ \ but to find

a less number which will answer this condition, let A^— B^ be

divisible by a, a, ... (m) ; b, b, . . . {n) ; d, d, ... (r) ; &c.
in succession, that is, let A^— B^= a'"6"</'", <fec ; also, let Q=:
(fb^d^ &c. Then {A'^^B^).Q=ar*' xb"*" X d'*\ &c. which
is a perfect cth power, if x, y, z, &c., be so assumed that m-^x,

n-f-y, r-^z, &c. are respectively equal to c, or some multiple

of c. Thus, to find a number which multiplied by 2250 will

produce a perfect cube, divide 2250 as often as possible by
the prime numbers 2, 3, 5, &c. and it appears that 2x3x3
X5 x5x 5=2 X 32 X 53^:2250 ; if, therefore, it be multiplied

by 22 X 3, it becomes 2^ X 3^ x 5^, or (2.3.5)^ ; a perfect cube.

See Wood's Algebra

§ VI. calculation of imaginary quantities.

309. In the Involution of negative quantities, it was ob-

served, that the even powers were all affected with the sign -f,
and the odd powers, with — ; there is consequently no quan-

20*
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tity which, multiplied into itself in such a manner that the num-
ber of factors shall be even, can generate a negative quantity.

Hence quantities of the form ^—-a^ {/ —16,^ —cfi,^/ —aS
and in general y/ — a, have no real roots ; and are therefore

usually called impossible or imaginary.

It is to be observed that all quantities, either positive or ne-

gative, or even irrational, are considered to be real.

310. x\Ithough the values of imaginary quantities are un-

assignable in numbers, they are yet of great use in some of

the higher branches of analysis, as well as in showing when
a result of this kind occurs, that the question, under the pro-

posed conditions, is impossible.

Thus, if it should be required to find a number whose square

subtracted from 3, gives 7 for a remainder. We have for a

translation

3-a;2=7; .-. rc2=3—7==— 4.

The unknown quantity x is therefore the square root of the

number — 4, a root which is imaginary ; and in fact, the

enunciation comprehends an impossibility. If we had thus

proposed the question, to find a number whose square added to

3, gives 7 for a sum, we should have had for the translation

a;2--f-3=7 ;
.-. x^zzz'i and x=z2, which is a real root.

Thus negative isolated results arise from the subtraction of

a greater number from a lesser, and imaginary quantities are

given by a new operation to be performed upon these kind of

remainders.

311. This being premised, it is only necessary farther to

observe, that the method of adding and subtracting imaginary

radicals, is the same as for real quantities.

Thus, {/ —a+2y —a^3^ — rt ; 6+-/— 4+6—^-4
= 12; and 3 /—aa:+y —y— ( ^—aj?—^ —y)= 2 y/— aop

+2t/ -y.

312. Every imaginary radical quantity of the form -/--«»

can be reduced to the form -y/aX -y/— 1, or a^^ — \.

In order to demonstrate this, let the identical equality be,

(c

—

b)a=.{c— b)a ; by extracting the root of both sides, we
shall have ^{c—b)x^a=^[(c— b)a'\; which under the

relation ^>c, or in the hypotheses, for instance, b=^c-\-\, be-

comes }/— \X^a=.^/—a ; and, in general,y —a—'^yaX
v-\.

It may be demonstrated, in a similar manner, that /
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313. Hence, in the calculation of imaginary radicals, it is

sufficient to demonstrate the rules for multiplying and involving

the imaginary radical -/— 1 ; since imaginary quantities can

be always resolved into factors ; so that —1 only shall remain

under the radical sign.

314. In the first place, then it may be observed, when aP-

is considered abstractedly, or without any regard to its gene-

ration, then ^/a^ may be either -^a ox -—a there being no-

thing in the nature of the quantity so taken, to denote from

which of these two expressions it was derived.

315. But this ambiguity, which, in the above mentioned case,

arises from our being unacquainted with the origin of the

quantity whose root is to be extracted, will not take place when
the sign of the quantity from which it was produced is known

;

as there can, then, be only one root, which must evidently be

taken in ftlus or minus, according to the state it existed in be-

fore it was involved.

316. Thus, V[(-f«) X(«)], or y/[(-\-a?)] cannot be of the

ambiguous form -f: a, as it would have been if a^ had been un-

conditionally assumed, but it is simply a ; and, for a like rea-

son, y/[{—a)x{— a)\, or \/{— aY is = —a, and not ^a
;

since the value of the equivalent expression H-y^a-^, or —^/a'^

in these cases, is determined, from the circumstance of its be-

ing known how a^ is derived.

317. Hence the product of -y/—l by -y/— 1, or which is the

same, ( -/— 1 )2 is = — -/ 1 = — 1 . This is what appears evi-

dent from, since that in squaring a quantity with the radical

sign -yji y/e. have only to take it away, that is, to pass the

quantity from under the radical sign.

318. Also, if the factors, in this case, be both negative, the

result will be the same as before ; since—(^— 1)X—(V— 1)

= + ( / — 1)^= — 1 ; but if one of the factors be positive and
the other negative, we shall have -f(\/— l)x— (-/— 1)=—
(V-iy-^^+i.

3 1 9. All whole positive numbers are comprised in one of these

four formulan

;

4n, 4n+l,4n-f2, 4n-f3,

n being a tvhole positive number ; since that, if any whole num-
ber be divided by 4, the remainder must be 0, 1, 2, or 3.
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If we designate ^/ —\ by ar, the several powers ofy' —

1

shall be therefore represented bv one of these four formulae :

(y_l)*''=a;4«= (a;*)"=:(+ ir= + l
;

(^_l)4"+i=:a;4"+i= a:4«.a;— a: == + -/— 1
;

( ^ _ 1
)4''+2_ a;4«+2= a,4n 3,2_ a;2—_ 1 .

(
y^_ 1

)4''+3_ a;4"+3_ a,4n a,3
__ 1 a; =:_ y^_ 1

.

Thus^ in order to know any given power of^ ~\,it is suffi-

cient to divide the exponent of the power proposed by 4, and the

power of 'sf
— 1 indicated hy the remainder shall be that which

is required.

320. When one imaginary quantity is to be multiplied by an-

other, the result whether they be both positive or both negative,

is equal to minus the square root of the product, taking them as

real quantities.

Thus, ( +/ —a)x(+-/ —h)= —^ab; since, (4-/ —a)
X(+/ — 6)=-/fl!X/ — IX/ix/ — 1 =y/ aX^/bX
(^ _ 1 )2__ 1 x^ ab=—/ ab. And, in a similar manner, it

may be proved that (—/ —«)x(— -/ —b)——/ ab.

32 1 . And if one ofthe imaginary radicals be positive, and the

other negative, the result arising from their multiplication will

be plus the square root of their product, taking them as before.

Thus, (+V—a)x(—V— *=+ -/^^i since +^—a=
+ V«X-v/— 1, and —^—^»- (--/-Ijx V^; -'-{V^X
V-i)x(- v'-i)x V^)= [(+V-1) . (-V~l)]Va6=
4-1 X -/«*=+ V«*-

322. When one imaginary radical is to be divided by another,

the result, whether they be both positive or both negative, will be

equal to plus the square root of their quotient, taking them as

real quantities.

Thus,J^ or
-J--^

=+ V^ ;
and^- or

— }/ —a
323. And ifone of the imaginary radicals be positive and the

other negative, the result arising from division, will be minus

the square root of their quotient, taking them as before.

„ + J —a — J —a .a + -y/ —

a

Thu«^ Z-7--, -^ +7—5- - V-, ;
and -^- or

+V-«
324. Ifan imaginary radical is to be divided by a real radi'

cal, or a real radical by an imaginary one, the result will be equal

to plus or minus the square root of their quotient, according as

the radical is affirmative or negative.
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Thus, -^^--or-^^^=+/ — -r; and ^^- or --^-=

-/-I.
The several powers of imaginary radicals can be readily-

derived from the formulae (Art. 319); it only now remains to

illustrate the preceding rules by a few practical examples.

Ex. 1. It is required to multiply a—y/ —& by a—/ —^, or

to find the square of a—^ —6.
a-~^—h
a—^—b

cP"—a^/— h

— a-;/— h— h

a^—1a{^—h)—h Ans
Ex. 2. It is required to find the quotient of 1 + -v/— 1 divid-

ed by 1--/-!.

Here ^±^^-\±^ly}±^-=±-l^l-^-X
Ans.

Ex. 3. It is required to multiply l-f-/— 1 by l+ V""! J

or to find the square of \-\-^/— \. Ans. 2 -y/— 1

.

Ex. 4. It is required to find the product arising from mul-

tiplying 1+ V—l ^y 1— V—1 Ans. 2.

Ex. 5. It is required to find the square, or second power of
' a^^/— h'^. Ans. a2_j2_^2fir6y — 1.

^ Ex. 6. It is required to multiply 5+2^— 3 by 2— -/— 3.

Ans. 16—/ —3.
Ex. 7. It is required to find the cube, or third power, of

' a_/ -yi, Ans. a3-3aA2+(^>^-3a26)/ -1.
Ex. 8. It is required to find the quotient of 3+/ —4 di-

vided by 3-2/ -1. Ans. ^3(5 +12/ -1).
^' Ex. 9. It is required to find the square of/ (a-f5/ — l)-f

^ (a-6/ -1). • Ans. 2a+2/ (aH ^^).
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CHAPTER VIII.

ON

PURE EQUATIONS.

325. Equations are considered as of two kinds, called sim-
ple or pure, and adfected ; each of which are differently de-
nominated according to the dimensions of the unknown quan-
tity.

326. If the equation, when cleared of fractions and radical

signs or fractional exponents, contain only \^efirst power o{ i)iQ

unknown quantity, it is called a simple equation.

327. If the unknown quantity rises to the second power or

square, it is called a quadratic equation.

328. If the unknown quantity rises to the third power or cuhe^

it is called a cubic equation, &lc.

329. Pure equations, in general, are those wherein only one
complete power of the unknown quantity is concerned. These are

^called pure equations of the first degree, pure quadratics, pure
cubics,pure biquadratics, &c., according to the dimension of the

unknown quantity.

Thus, x=a-\-b is b. pure equation of the first degree;
x^z=za'^-{-ah is a pure quadratic ;

x^-=a'^-\-a'^b-\-c is a pure cubic ;

x^=a*-{-a^b-j-ac'^-{-d is di pure biquadratic; &c.
330. Adfected equations are those wherein different powers of

the unknown quantity are concerned, or are found in the same
equation. These are called adfected quadratics, adfected cubicSy

adfected biquadratics, &c., according to the highest dimension
or power of the unknown quantity.

Thus, x'^-\'axz^b, is an adfected quadratic

x'^-\-ax^-\-bx=^c, an adfected cubic
;

x'^-\-ax'^-\-bx'^-\-cx=zd, an adfected biquadratic.

In like manner other adfected equations are denominated ac-

cording to the highest power of the unknown quantities.

^ I. SOLUTION OF PURE EQUATIONS OF THE FIRST DEGREE
BY INVOLUTION.

331. We have already delivered, under the denomination of

Simple Equations, the methods oixGSoWmgpure equations oiilkQ
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first degree, in all cases, except when the quantity is affected

with radical signs or fractional exponents, in which case the

following rule is to be observed.

RULE.

332. If the equation contains a single radical quantity,

transpose all the other terms to the contrary side ; then in-

volve each side into the power denominated by the index of

the surd ; from whence an equation will arise free from radi-

cal quantities, which may be resolved by the rules pointed out

in Chap. III.

If there are more than one radical sign over the quantity,

the operation must be repeated ; and if there are more than

one surd quantity in the equation, let the most complex of

those surds be brought by itself on one side, and then proceed

as before.

Ex. 1. Given / (4a;-f 16)=12, to find the value of a:.

Squaring both sides of the equation, 405+16= 144
;

by transposition, 4a;= 144— 16 ;
.-. a:=32.

Ex. 2. Given ^ (2a;+3)+ 4= 7, to find the value of x.

By transposition, ^ (2a;-|-3)=:7— 4= 3 ;

cubing both sides, 2a;+3=27;
by transposition, 2ar=27— 3 ;

.-. a:=:12.

Ex. 3. Given ^/(\2^\-x)—2^\-^x, to find the value of x.

By squaring, 12+a;=:4H-4y'a?+ a?

;

by transposition, 8=4 ^x, or \jx^=^
;

.-. by squaring, a:= 4.

Ex. 4. Given •v/(^+40)= 10— -y/o?, to find the value of x.

By squaring, a?-|-40= 100—20-v/a:-f a:

;

by transposition, 20^a:=60, or -Y/a;=3 ;

.-.by squaring, a;= 9.

Ex. 5. Given -v/(a:— 16)=8— -/a;, to find the value of a;.

By squaring both sides of the equation,

a;— 16=64— 16^1^+^; •• 1 6-/a:=64+ 16= 80 ;

by division, ^a;=5 ;
.*. a;=25.

Ex. 6. Given -/(a:—a)= ^x^\y/a, to find the value of a?.

Squaring both sides of the equation,

x—a^=x—^{ax^-\-\a
;

.-. by transposition, \/\ax)— \a\

25a2 25a
by squaring, aa;=-j^; .-. ^=-^^'

of

Ex. 7. Given -y/SX -v/(a:+2)= 'v/5a;+2, to find the value
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By squaring, 5x-\-\0= 5x-^4\/^5x-\r^ ;

by transposition, 6= 4-v/5x ;
.-. y^oxz=— 2»

by squaring again, So-^iJ ;
.-. x=z-^.

Ex. 8. Given —7—=—-, to find the value of x. ,.yx X •

'

Multiplying both sides of the equation by -^x,

X—ax=-=:l, or (1— a)a;=l ; .•.x=- .

X 1—

a

T, « r^. -1/^+28 Vaj+SS - , ,

Ex. 9. Given ^

,

—=. ^
,

'

, to find the value of x.

Multiplying both sides by
(
y/x-{-4) X ( V^+S),

we have x+34ya:+168=a;H-42'/a;+ 152;
by transposition, 16=8-/ a;, or 2= -/a?;

.-. by squaring, x=z4.

•r, ,* o.. \/nx^h 'iJax—'Zh ^ , , ,

Ex. 10. Given -^^7 —r=—^7 -7, to find the value of a:.

yax-\-o Syax-{-Do

Multiplying both sides by ('/aa:+ J)x(3y'aa;-{-5A),

3ax-\-2b^ax—5b^— 3axi-b^ax—2b\
.-. by transposition, b\/ax=3b^

;

by division, y'flaj^rS^;

•.• by squaring, ax=9b'^j and x=— .

a

Ex. 11. Given V{x+ y/x)~^(x—^x)—

I, / I r-rl. to find the value of x.

Multiply both sides of the equation by '\/{x-\- -/a;), x-^

.-. by transposition, x— ^ == y (a;^— a:)

;

<^

and dividing by -^x^ -/a:—J= -/(a:—!) ;

.-.by squaring, x— ^x-\-\—x—\ ;
.-. y'a;=:-J,

25
and by squaring, xz=i—.

Ex. 12. Given / (a;—24)=y'a;—2, to find the value of x.

Ans. a;=49.

Ex. 13. Given / (4a-fa:)=2/ {^^x)— ^/x, to find the va-

lueofa;. Ans. a;=-- r-.
2a

—

Ex. 14. Given x+a+^Z (2<za;+a;2)=J, to find the value of x.

A
(^-^)'

i
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» Ex. 15. Given ~, -z=X-——— , to find the value of x.

Ans
ah \*

-=(£f)

J, K Ex. 16. Given ————-=1+^—- , to find the value

^ y/ 0X4" 1 2

of X. Ans. a;=3.

^ Ex. 17. Givena;=-v/[a24.«V(*^+«^)]— a, to find the va-

lueofo?. Ans. a;=

—

.

4a
' 4
V Ex.18. Given V(2+a;)4-v/aJ=—77- :, to find the va-

y(2H-a;)

lue of*. Ans. x=-.

'•'^ Ex. 19. Given y (10a;+35)— 1=4, to find the value of x.

Ans. ar=9.

/ Ex. 20. Given f/ (9a;~4)+6=8, to find the value of x.

Ans. a?=4.

^ Ex. 21. Given yJ{x-^\^)z=.2^\'^Jx, to find the value of a.

Ans. ar=9.

, Ex. 22. Given V(x— 32)=16— ya;, to find the value of ac.

Ans. a?=81.

,
Ex. 23. Given ^/{\x-\-1\)=.2^Jx^\, to find the value of

X. Ans. a;=25.

y Ex.24. Given V[lH-a:V'(^'^4-12)]= H-x, to find the va-

lue of X. Ans. a;=:2.

;
Ex. 25. Given 'v/a:-}-V'(^~"^)= ~7 m' ^o find the va-

y (a?— 9)
lue of a?. Ans. a?=25.

Ex. 26. Given 7 (a+a;)=V («2+5aa;+52),to find the va-

lue of a?. Ans. x——^—

.

ia

. Ex. 27. Given V?^i:l^l^_±V^ to find the value of «.

-v/a:+2 Va;4-40

'

Ans. ar=4.

.,
Ex. 28. Given ^^—t-x-^-^—;. ;;» to find the value of x.

/6ar+2 4/ 6a;+6'

Ans. ap=6.

, Ex. 29. Given -||=^--1=^^^-^|^, to find the value
/5a?+3 2

of ». Ans. 05=5.

21
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Ex. 30. Given —:=e+- , to find the value of ar.

/ax-fo c

^-H(*+;i)'-
^ II. SOLUTION OF PURE EQUATIONS OF THE SECOND, AND

OTHER HIGHER DEGREES, BY EVOLUTION.

RULE.

333. Transpose the terms of the equation in such a man-
ner, that the given power of the unknown quantity may be

on one side of the equation, and the known quantities on the

other ; then extract the root, denoted by the exponent of the

power, on each side of the equation, and the value of the un-

known quantity will be determined. In the same way any
adfected equation, having that side which contains the un-

known quantity, a complete power, may be reduced to a sim-

ple equation, from which the value of the unknown quantity

will be ascertained, by the rules in Chap. III.

Ex. 1. Given a;2— 17=130— 2a;2, to find the values of ar.

By transposition, 3a;2=147

;

.'. by division, ir2=49,

and by evolution, x=:^7.
334. It has been already observed, that ^^ a may be either

-f- or — . where n is any whole number whatever ; and, con-

sequently, all pure equations of the second degree admit of

two solutions. Thus, +7 X +7, and — 7 x —7, are both

equal to 49 ; and both, when substituted for x in the original

equation, answer the condition required.

Ex. 2. Given x'^-j-ab=z5x'^i to find the values of x.

By transposition, 4x^—ab
;

.-. 2x=4zV^^i ^^^ x=izt^^ab.
Ex. 3. Given x'^— 6x-\-9=za^, to find the values of a?.

By evolution, a:— 3= -]^ a ;
.*. a?=r3J;a.

Ex. 4. Given 4x^—4ax-\-a^=x^-\-i2x-{-36, to find the va-

lue of X.

By extracting the square root on both sides, we have 2a?—
a=x-i-6 ;

.'. by transposition, x=za-^6.
Ex.5. Given a;2+y2=13,), ^ , ,n , c j

and x^-y^=5, S
^ ^'

By addition, 2a;2= 18; .-. a?=i-v/9=i3.
By subtraction, 2y2— 8 ;

.-. y= ±-y/4=i:i2.
Ex. 6. Given 81a;*=256, to find the values of a?.
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By extracting the square root, 9a;2=_}_i6
;

By extracting again, 3a;= i'v/±16=i4, or ±4-v/— Ij

.'.x=±i, orxi^i^V— 1-

Ex. 7. Givenx®— 3a;*4-3a?2--l =27, to find the values of X.

By evolution, x^— 1=3 ;
.'. x^=4, and «= ^2.

. Ex. 8. Given 36x'^=d^, to find the values of x.

Ans. arr^i^a.

Ex. 9. Given x^=:27, to find the value of*. Ans. j;=3.

Ex. 10. Given a;2+6x-f9=25, to find the values of a:.

Ans. x=2, or —8.

Ex. 11. Given 3a;2—9=21+ 3, to find the values of ar.

Ans. a;= + -/ll.

Ex. 12. Given a:^— x^-f- Jar— 2*y=a^, to find the values of x.

Ans. x=a-{-^.

Ex. 13. Given a:2-ffx+J =0^52^ to find the values of a:.

Ans. xz=-^ab-~'^,

Ex. 14. Given x^-{-bx-\-\b^=a^, to find the values of a:.

Ans. x=:i-a—^b.
Ex. 15. Given a;*—2x2-f-l=9, to find the values of x.

Ans. ar=i2, or +-/—2.

Ex. 16. Given a:*— 4a;2-|-4=4, to find the values of x.

Ans. x=:^2, or ^ -y/O.

Ex. 17. Given 5a;2—27=3a;2+215,tofindthe valuesofaj.

Ans. a!=j;ll
Ex. 18. Given 5a;2— 1=244, to find the values of a?.

Ans. x=:^ .

Ex. 19. Given 9a;2+ 9= 3a;24-63, to find the values of a:.

Ans. a:= Jt3.
^' Ex. 20, Given 2aa;2-h&— 4= ca;2— 5+ (/— aa:2, to find the

values of x. Ans. a;= + ^ /— .

V oa— c

Ex. 21. Given a:*4-y*=a and x*—y^=b, to find the values

of X and y.

Ans. a:= ± V(iiV(2a + 25)) and y = ±-/(±W(2a -
2b)).

§ III. EXAMPLES IN WHICH THE PRECEDING RULES ARE AP-

PLIED IN THE SOLUTIO.V OF PURE EQUATIONS.

335. When the terms of an equation involve powers of the

unknown quantity placed under radical signs.

Let the equation be cleared of radical signs, as in Sect. I

;

then, the value of the unknown quantity will be determined
by extracting the root, as in Sect. II.

And by a similar process, any equation containing the pow
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ers of a function of the unknown quantity, or containing the

powers of two unknown quantities, may frequently be reduced

to lower dimensions.

Ex. 1. Given ^ a;2=|/ {a-^b), to find the values of x.

Cubing both sides, x'^=a-\-b
;

Ex. 2. Given4/(a:2_9)= Vl-^— 3); tofindthevaluesofar.

Here, the given quantity may be exhibited under the form
J- 1

'

— X2
{x^'-9)* = {x'-3)^ ; then, by squaring both sides, (x^—9)*

_(a;_3)^^^' or (x^-9f=x-3 ;

by squaring again, x^—9=x^—6x-^9;
.-. by transposition, 6a;=18 ; and x= 3.

Ex. 3. Given x^—y'^=:9j and a:—y= l ; to find the values

of X and y.

Dividing the corresponding members of the first equation

by those of the second, we have a:+y=9 ;

adding this equation to the second, 2a:=10 ;

.'.x=5, and yz=z9-—x ;
.*. y=z4.

Ex. 4. Given Vx+Vy^5 )
,^ ^^^ ^^^ ^^,^^^ ^^ ^ ^^^

and yrr— -/y=l, ^
^

Adding the two equations, 2'^x=:6, .*. ^'^=3,
and by involution, a:i=9.

Subtracting the two equations, 2'v/y=4, and \/y=2 ;

.-. by involution, y=4.
Ex. 5. Given a'2-t-a:y=12, ) ^ r j .x. i r j

, 24- —24 \
values ot ar and y.

By addition, a!;2+2xy-f y^— sg .

.'. extracting the square root, x+ y=:i^6.
Now a;'^-|-a;y=a' . (a!;+y)=:4^6a;

;

.-. -i-6a:=12, anda:=±2;
.•.y=i6T2= ±4.

Ex. 6. Givenir+V(a2+a?2)=_-_-—-^ to find the values
^ ^ y{a^-\-x^)

Of«.
Multiplying by -[/(a^+x^), we have ir'/(a2-j-a:2)-f-a24-a:2=

2a2;

by transposition, a;-Y/(a2 4-ar2)= a2— ^2^

and squaring both sides, a'^x'''-\-x'^—a'^—2a'^x''^-^x* ;

.'
. 3a2a;2= a*, and a;= i -To-ys

Ex. 7. Given a;2+y2:=^L^
^
g
^ > to find the values of x and y.

and acy=: \
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From the 1st equation subtracting twice the 2d.

and x—y=l ; .'.tx!^-\-y'^=-\Z
\

and 2xy=:l2 ;

.-.by addition, x^-\-2xy+y'^=25f
.'. by extracting the square root, a;+y=:-t5 ;

but x—y= l ;

.-. by addition, 2a;=6, or— 4 ; and a?=3, or —2 ;

by subtraction, 2y=4, or—6 ; and y=2, or —3.

Ex. 8. Given J+y*=13, ) ^ g„^ ^j,^ ^^j^^^ ^ ^ ^„j y_ I

and a;^+y^= 5, )
2 1 J. 2

Squaring the second equation, x^'\-2x^y^-^y^=z25

butj:^ +y^=13

1 1

.'. by subtraction, 2a;^y^ = 12.

Subtracting this from the 1st equation,

x^—2x^y^+y^=zl
1 1

.'. extracting the square root, a;^—y3= J-1

but a?^+y^=5

1

.'. by addition, 2x3 =6, qj 4 .

and a;^=3, or2; .•.a?=27, or 8;

.-.by subtraction, 2y3^=4, or 6,

and y^=2, or 3 ; .'.y=8, or 27.

Ex. 9. Given a;S4-a?*y*H-y8=273, > to find the values of x

and X*+ x'^y^ -j-y*=2 1 , > and y

.

Dividing the first equation by the second, x*—x^y^-^y*

= 13;
subtracting this from the second equation, 2x^y^=^8 ;

.-. a;y=4 ;

by adding this equation to the second, x*-^2x^y^-^y*

=25; .•.a:24-y2=±5.

Subtracting the equation x^y^=4j from oj*—a:y-f-y*=13,
a:*—2a;y+y*=9 ; .'.x^—y'*=i3,

21*
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.-.by addition, 2a;2=-j-8, and a?r=i2, or iS-yZ+l > ^"^ by
subtraction, 2y2— ±2, and y=:dbl, or iV"!-

Ex. 10. Given ^l^+^j^-b, to find the value

Multiply the numerator and denominator by V(^+^)+

V

.-. ^(a^— a;2)= 5a;— o, and squaring both sides, a^—x'^=zh'^x^

~.2a6a;+a2,

/. Z>2a;2+ aj2=r2aicr, and a?= .-
. , .

Ex. 11. Given (a?2—y2W(a;—y)= 3jt:y, > , ^ , ,, ,

of « and y.

Dividing the second equation by the first,

(x^+y^) . {x-\-y)= l5xy ;
.-. x^-^x'^y-\-xy'^-{-y^=zl6xy

;

but from the first, x^—x'^y'-xy^-\-y^= 3xy

;

.'. by addition, 2x^+2y^=l8xy, and a?3+y3=9a?y.

But by subtraction, 2x'^y-\-2xy'^=l2xy, and a:4-y= 6 ;

.-. by cubing, a;3+3a;2y-|-3iry2-|-y3=:2I6 ,

x^ '\-y^=.9xy ;

.-. by subtraction, 3x2y+ 3a;y2=216— 9a;y,

or 3 . (x+y) . iry=3 X 6 . a:y=216— 9a:y ;
.-. 27a;y=216, and

jpy=8.

Now a;2-|-2a:y+y2=36,

and 4xy =32
;

/. by subtraction, a:^.—2a:y4-y2=4,

and by extracting the square root, x—y=4r.^i
hyx-{-y= 6,

.-. by addition, 2a;=:8, or 4 ; and x=4, or 2 ;

and by subtraction. 2y=4, or 8 ; .•.yr=2, or 4.

Ex. 12. Given—|

—

^ -=t, to find the values of x.
X X o

Ans. x=:^-^(2ab-b^).
1 8

Ex. 13. Given ac^-l-Sa;—7=a:+2H , to find the values
X

of a. Ans. a;=3, or —3.
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V (^)' ^ ^"^ ^^® ''^^"^' °^ ''' ^"^*
""^(WT?'

Ex. 15. Given x+y : a; : : 5 : 3, and xyz=zQ^ to find the va-

lues of a: and y. Ans. a:=r J^3, and y=: ^2.

^ Ex. 16. Given x—y : x : : 5 : 6, and xy'^='^M, to find the

values of x and y. Ans. a;=24, and y=:4.

Ex. 17. Given a^+y : a: : : 7 : 5, and a:y+ y2=i26, to find

the values of x and y. Ans. x-=i i I^j ^i"^ y=i^'
/ Ex. 18. Given a:y2+y=21, and x-y+y^^SSS, to find the

values of x and y. Ans. a:=2, or j^ ; and y= 3, or 18.

Ex. 19. Given a;2y+a:y2=180, and a:^^-fy3=189, to find the

values of x and y. Ans. a;=5, or 4 ; and yiz:4, or 5.

. Ex. 20. Given a:4- Va:y4-y=19, and a;2+iry+ y2=rl33, to

find the values of x and y. Ans. a;=9, or 4 ; and y=4, or 9.

Ex. 21. Given a;2y4-a:y2=6, mdiX^y'^-\-x'^y^=\2, to find the

values of a; and y. Ans. a;=:2, or I ; and y=l, or 2.

Ex. 22. Given (x'^-k-y'^) X (a:+y) = 2336, and (a;2-y2) .

(x—y) =576, to find the values of x and y.

Ans. xz=z\\, or 5 ; and y=5, or 11.

Ex. 23. Given x^-\-y^=:(x-\-y) . xy, and a;2y-|-a;y2=4a:y, to

find the values of a? and y. Ans. a:=i2, and y=2.
*- Ex. 24. Given 2 . (x2_|_y2) , (a:+y)=:15a:y, and 4 (a;*—y*).

(a;24-y2)=75a;2y2, to find the values of x and y.

Ans. a;zi:2, and y=l.
Ex. 25. Given x—y : y : : 4 : 5, and x'^-\-Ay'^—iS\, to find

the values of a: and y. Ans. a:=±9, and y=:-t;5.

Ex. 26.. Given a;2+y2 : a:2-y2 : : 17 : 8, and a:y2=45, to find

the values of x and y. Ans. a:r=:5, and y= 3.

Ex. 27. Given {/a;—yy= 3, and {/a:+yy=7; to find

the values of a? and y. Ans. a;=:625, and y= 16.

Ex. 28. Given '\/x-\-'\/y : ^^oc—^y : : 4 : 1, and x—y=
16, to find the values of x and y. Ans. a;=:25, and y= 9.

Ex. 29. Given x^-\-y^ : a;3-y3 : : 559 : 127, and a:2y=294 ;

to find the values of x and y. Ans. a;=:7, and y=6.

. Ex. 30. Given a;^+y^=20, and ac3 4-y^=6 ; to find the

y values of x and y.

Ans. x=^S, or i V^. and y=32, or 1024
Ex. 31. Given a:*4-2x2y24-y4 = 1296— 4a;y(a:2+a:y+y2),

and a?—y=4 ; to find the values of x and y.

Ans. 5, or —1, and y=l, or —5.

^
Ex. 32. Given 4^i^i±:^=9, to find the value of x.

\ y(4a;4-l)— y4a?
Ans. «=},
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Ex. 33. Given xy— oi^, and x^-^-y^^s^ ; to find the valuer
of a; and y. Ans. x^ ±\\^^{s^ -\-1a^)-\- ^'(52—202)]

and y=±i[v/(^2_^2a2)_y(52_2«2)]:
Ex. 34. Given x^-\-x\^ a;y2=:208, and yHy ^^ a;2y= 1053, to

find the values of x and y. Ans. a;=i8, and v=-l-27.3333 ~^

Ex. 35. Givenac2+a;4y4-f-y2_ io09,

and a:3H-a;^y^4-y3=:582193,
to find the values of x and y.

Ans. a:=81, or 16 ; and y=16, or 81.

CHAPTER IX.

ON

THE SOLUTION OF PROBLEMS,

PRODUCING PURE EaUATIONS.

336. In addition to what has been already said, with re-

spect to the translation of problems into algebraic equations,

it is very proper to observe, that, when two quantities are re-

quired which are in the given proportion of m to n, the un-

known quantities are represented by mx and nx ; then the

values of x, found from the equation of the problem by the

methods in the preceding chapter, being multiplied by m and
n respectively, will give the numbers required.

If three quantities are required, which have given ratios to

one another, assume mx, nx, and px, m to n being the ratio of

the first to the second, and n to p being that of the second to

the third ; then proceed as before.

Problem 1. There are two numbers in the proportion of 4
to 5, the difference of whose square is 81. What are those

numbers ?

Let 4x and 5a;= the numbers
;

then(25ar2— i6a;2=)9a;2=81 ;
.-. a;2=9, andir=i3> Conse-

quently the numbers are Jtl2 and ^15.
Prob. 2. It is required to divide 18 into two such parts,

that the squares of those parts may be in the proportion of 25
to 16.

Let «= the greater part ; then 18— a;= the less ;

/, x^ I (18— a;)2 : : 25 : 16, and 16x2=25(18-a:)* ;
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.*. extracting the square root, 4a;=i5(18— a:), and

9a:=90 ; /. ar:^10, and the parts are 10 and 8.

pROB. 3. What two numbers are those whose difference,

multiplied by the greater, produces 40, and by the less 15 ?

Let x= the greater, and y= the less
;

.'.x^—xi/= 40, and xy—y^—\b
;

.-. by subtraction, a;^—2a:y4-y2z=25,

and x—y=^^b.
,'. from the first equation, x(x—i/)= :^5x=40,

and x=:^8.
From the 2d, y(ar—y)= ±5y=±15 ; .'.y=±3.

Prob. 4. What two numbers are those whose difference,

multiplied by the less, produces 42, and by their sum 133 ?

Let x= the greater, and y= the less
;

/. {x-y) . y=42, and (x-y) . (a:-f-y)=:133 ;

.*. by subtracting twice the first from the second,

a;2

—

2xy+y^—i9 ; /. x—y=-l-7 ;

whence -^7^= 42, and y=±6 ;

buta;=yi7; .-.0;= JL6i7= ±13.

Prob. 5. What two numbers are those, which being both

multiplied by 27, the first product is a square, and the second

the root of that square ; but being both multiplied by 3, the

first product is a cube, and the second the root of the cube ?

Let X and y be the numbers
;

then ^27x—27y, and .-. x=27y^
,

also \/ 3x= 3y ; and .•. x~9y^
;

whence 9y^= 27y^-, and y=3 ; .-.ar^ig X 27=243 ;

.-.the numbers are 243, and 3.

Prob, 6. Two travellers, A and B, set out to meet each

other ; A leaving the town C at the same time that B left D.

They travelled the direct road, CD : and, on meeting, it ap-

peared that A had travelled 18 miles more than B : and that

A could have gone B's journey in 15f days, but B would have

been 28 days in performing A's journey. What was the dis-

tance between C and D ?

Let x= the number of miles A has travelled
;

.'.a;— 18= the number B has travelled
;

and a;— 18 : X : : 15j : the number of days A travelled, =
63a?— r—r ; also X : a?— 18 : : 28 : to the number of days B tra-

vene^=^^(--^^); ..^-^^^^^1^=-^-- or 16.(x-
X

'

X 4(a?— 18)' ^

18)2=9a;2; .-. 4.(a:— 18)= i3a?, and a;=72, or 1 Of ; whence
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A travelled 72, and B 54 miles ; and, the whole distance, CD
126 miles.

Prob. 7. Two partners, A and B, dividing their gain (60/),

B took 201. A's money continued in trade 4 months ; and if

the number 50 be divided by A's money, the quotient will give

the number of months that B's money, which was 100/., con-

tinued in trade. What was A's money, and how long did B's

money continue in trade ?

50
Suppose A's money was x pounds ;

.-.—= the number of
X

months B's money was in trade ; and since B gained 20/., A
gained 40/.

, 50X100 „
, ^ , 10000

.*. Ax : : : 2 : 1, and 4x=z ;

X X
.'. 4^2=10000, and a;2z=2500 ; .-. j:=i50.
.*. A's money was 50/., and B's money was one month in

trade.

Prob. 8. A detachment from an army was marching in re-

gular column, with 5 men more in depth than in front ; but

upon the enemy coming in sight, the front was increased by
845 men ; and by this movement the detachment was drawn
up in five lines. Required the number of men.

Let x= the number in front

;

.'. x-\-5= the number in depth,

and x{x-}-5)= the whole number of men ;

also, (a;+ 845)x5=: the whole number of men j

.-. a:2+ 5a:=5a;+4225, and 0:2= 4225 ;
.-. a;=±65.

And, consequently, 5a:4-4225 == 325+4225 = 4550, the

number of men. Here, although the negative value of x will

not answer the conditions of the problem, yet it will satisfy

the above equation ; for, if we substitute — 65 for x, we shall

have (—65)2+ 5(—65)=5(— 65)4-4225 ; that is, or 4225—
325=—325+ 4225 ;

.-. 4225=4225, or 4225-4225=0, that

is, 0—0.

Prob. 9. It is required to divide the number a into two such

parts, that the squares of those parts may be in the proportion

of m to n.

liCt x-= one of these parts ; then q—x=. the other ; and ac-

cording to the enunciation of the problem, we shall have the

equation,

x^ m X ,1m
, ., m

7o=-y ••• ^=+-./— , or (puttmg— =:77i),«; = ±
(a-r-x)^ n a—x \ n ^*^ ° n
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By resolving separately the two equations of the first de-

gree comprised in the above formula, namely,

x=-\-{a—x)'^m', and a;=—(a— acjy'm',

we shall have, from the first,

a\/m' , - , 1
""<' V^'

3:=;—;—7—7, and from the second x= 7-7.1+ym 1— ym

By the first solution, the second part of the proposed num-

ber IS a— / , ,
=—;—7—

; and the two parts, ——7—

and ---, are, as was required in the enunciation of the
1+ y/mf

question, both less than the number proposed-

By the second solution, we have

(—a'Jm'\
.
a^m^ x j .1 .—ri=aH ;= 7—7 j and the two parts

\—^m I \—y/m! l—y/mf
ayJm , a

are — —-^'—.—
-, and

Their signs being contrary, the number a is noty properly

speaking, their sum, but their difference.

Now, if a=18, m=25, and n=16 ; then substituting these

values in the formula , . , . and -—;—;—;, we shall find 10
1+Vm' \'\•^Jm

and 8 equal to the two parts required, the same as in Ex. 2.,

which is a particular case of this general problem.

Prob. 10. What two numbers are those, whose sum is to

the greater as 10 to 7 ; and whose sum, multiplied by the

less, produces 270? Ans. ^21 and ^9.

Prob. 11. What two numbers are those, whose difference

is to the greater as 2 to 9, and the difference of whose squares

is 128 ? Ans. ^18 and ^14.

Prob. 12. A mercer bought a piece of silk for 16Z. 4^.

;

and the number of shillings which he paid for a yard was to

the number of yards as 4 : 9. How many yards did he buy,

and what was the price of a yard ?

Ans. 27 yards, at 12^. per yard.

Prob. 13. Find three numbers in the proportion of J, f,

and J : the sum of whose squares is 724. '

Ans. -tl2, il6,and ±18.
Prob. 14. It is required to divide the number 14 into two
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such parts, that the quotient of the greater part, divided by
the less, may be to the quotient of the less divided by the

greater as 16 : 9. Ans. The parts are 8 and 6.

Prob. 15. What two numbers, are those whose difference

is to the less, as 4 to 3 ; and their product, multiplied by the

less, is equal to 504 ? Ans. 14 and 6.

Prob. 16. Find two numbers, which are in the proportion

of 8 to 5, and whose product is equal to 360.

Ans. ±24, and dbl5.

Prob. 17. A person bought two pieces of linen, which,
together, measured 36 yards. Each of them cost as many
shillings per yard, as there were yards in the piece ; and their

whole prices were in the proportion of 4 to 1. What were
the lengths of the pieces ? Ans. 24 and 12 yards.

Prob. 18. There is a number consisting of two digits, which
being multiplied by the digit on the left hand, the product is

46 ; but if the sum of the digits be multiplied by the same
digit, the product is only 10. Required the number.

Ans. 23.

Prob. 19. From two towns, C and D, which were at the

distance of 396 miles, two persons, A and B, set out at the

same time, and met each other, after travelling as many days
as are equal to the difference of the number of miles they tra-

velled joer day; when it appears that A has travelled 216
miles. How many miles did each travel per day ?

Ans. A went 36, and B 30.

Prob. 20. There are two numbers, whose sum is to the-

greater as 40 is to the less, and whose sum is to the less as 90
is to the greater. What are the numbers ?

Ans. 36, and 24.

Prob. 21. There are two numbers, whose sum is to the

less as 5 to 2 ; and whose difference, multiplied by the dif-

ference of their squares, is 135. Required the numbers.

Ans. 9, and 6.

Prob. 22. There are two numbers, which are in the pro-

portion of 3 to 2 ; the difference of whose fourth powers is to

the sum- of their cubes as 26 to 7. Required the numbers.

Ans. 6, and 4.

Prob. 23. A number of boys set out to rob an orchard,

each carrying as many bags as there were boys in all, and

each bag capable of containing 4 times as many apples as
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there were boys. They filled their bags, and found the num-
ber of apples was 2916. How many boys were there ?

Ans. 9 boys.

Prob. 21. It is required to find two numbers, such that the

product of the greater, and square of the less, may be equal

to 36 ; and the product of the less, and square of the greater,

may be 48. Ans. 4, and 3.

Prob. 25. There are two numbers, which are in the pro-

portion of 3 to 2 ; the difli'erence of whose fourth powers is to

the difference of their squares as 52 to 1. Required the num-
bers. Ans. 6, and 4.

Prob. 26. Some gentlemen made an excursion, and every
one took the same sum. Each gentleman had as many ser-

vants attending him as there were gentlemen ; and the num-
ber of dollars which each had was double the number of all

the servants ; and the whole sum of money taken out was
$3456. How many gentlemen were there ? Ans. 12.

Prob. 27. A detachment of soldiers from a regiment, be-
ing ordered to march on a particular service, each company
furnished four times as many men as there were companies
in. the regiment ; but those becoming insufficient, each com-
pany furnished 3 more men ; when their number was found
to be increased in the ratio of 17 to 16. How many compa-
nies were there in the regiment ? Ans. 12.

Prob. 28. A charitable person distributed a certain sum
among some poor men and women, the numbers of whom
were in the proportion of 4 to 5. Each man received one-
third of as many shillings as there were persons relieved

;

and each woman received twice as many shillings as there

were women more than men. Now the men received all to-

gether \8s. more than the women. How many were there

of each ? Ans. 12 men, and 15 women.

Prob. 29. Bought two square carpets for 62/. 1^. ; for each
of which I paid as many shillings per yard as there were yards
in its side. Now had each of them cost as many shillings

per yard as there were yards in a side of the other, I should

have paid 17.y. less. What was the size of each ?

Ans. One contained 81, and the other 64 square yards.

Prob. 30. A and B carried 100 eggs between them to mar-
ket, and each received the same sum. If A had carried as

many as B, he would have received 18 pence for them ; and
if B had only taken as many as A, he would have received 8

pence. How many had each ? Ans. A 40, and B 60.

22
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Prob. 31. The sum of two numbers is 5 (s), and their pro-

duct 6 {p) : What is the sum of their 5th powers ?

Ans. 275=(^—5j)53+5p^^).

CHAPTER X.

ON

QUADRATIC EQUATIONS.

337. Quadratic equations, as has been already observed,

are divided into pure and adfected. All pure equations of

the second degree are comprehended in the formula x^=:n,

where n may be any number whatever, positive or negative,

integral or fractional. And the value of x is obtained by ex-

tracting the square root of the number n ; this value is dou-

ble, for we have, x=:-^^n, and in fact, {^-^nY^zzn. This
may be otherwise explained, by observing, (Art. 106), that

x^— n=:{x-\--\/n).{x— y^n)= o, and that any product consist-

ing of two factors becomes nought, when there is no restric-

tion in the equality to zero of that product, by making each

of its factors equal to zero.

We have, therefore, x=— -y/w, x=-\--\/n, or x=i-i-^/n.

338. Now, since the square root is taken on both sides of

the equation, x^=n, in order to arrive at a;=i -y/w ; it is very

natural to suppose that, x being the square root of x^, we
should also affect x with the double sign j^ '> and, therefore, in

resolving the equation x'^= n, we should write i^taizznt-y/n ;

but by arranging these signs in every possible manner, namely

;

-{-x=z-\- -^n, -^xzzz— -y/n,

-'X= — ^n, '—x—-\-^n^
we would still have no more than the two first equations, that

is, •\-x—^^^Jn ; for if we change the signs of the equations

—0?=— "v/n and —x=.-\- -y/n, they become +^= + >/'* ^"^^

-|-a;=: — -y/n, or a;= J- y/71.

339. If, in the formula x'^=n, n be negative, or, which is the

same thing, if we have x'^=L—n, where n is positive ;
then,

3^=^-/—»==tV'^>< V— l.andinfact(i-/n)2x('/-l)2
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=nx — 1 = —n ; therefore, the two roots of a pure equation

are either both real or both imaginary.

340. All adfected quadratic equations, after being properly

reduced according to the rules pointed out in the reduction of

simple equations, may be exhibited under the following general

forms; Tiu.me\y,x'^-\-nxz=:o,a.ndix^-\-nx= n-y where n and n'

may be any numbers whatever, positive j or negative, integral

01 fractional.

341. The solution of adfected quadratic equations of the

form x^+nx= Oj is attended with no difficulty ; for the equation

j;2_^^^_o^ being divided by x, becomes x-\-n=o, from which

we tind x=—n, though we find only one value of x, according

to this mode of solution, still there may be two values of x,

which will satisfy the proposed equation.

In the equation, x^=3x, for example, in which it is required

to assign such a value of x, that x^ may become equal to 3a;,

this is done by supposing 05= 3, a value which is found by di-

viding the equation by x ; but besides this value, there is also

another which is equally satisfactory ; namely, x=o ; for then

x^=o, and 3x=:o.

342. An adfected quadratic equation is said to be complete,

when it is of the form x'^+ nx= n' ; that is, when three terms

are found in it ; namely, that which contains the square of

the unknown quantity, as x ; that in which the unknown quan-

tity is found only in the first power, as nx ; and lastly, the term

which is composed only of known quantities ; and, as there

is no difiliculty attending the reduction of adfected quadratic

equations to the above form by the known rules : the whole

is at present reduced to determining the true value of x from

the equation x'^-\-nx=:n\

We shall begin with remarking, that i( x'^-\-nx were a real

square, the resolution would be attended with no difficulty, be-

cause that it would be only required to extract the square root

on both sides, in order to reduce it to a simple equation.

343. But it is evident that x^-{-nx cannot be a square ; since

we have already seen, that if a root consists of two terms, for

example, x-{-a, its square always contains three terms, namely,

twice the product of the two parts, besides the square of each
part, that is to say, the square o( x-\-a is x'^-{-2ax-{-a'^.

344. Now, we have already on one side x'^-{-nx ; we may,
therefore consider x"^ as the square of the first part of the root,

and in this case nx must represent twice the product of x, the

first part of the root, by the second part : consequently, this

second part must be ^/t, and in fact the square of a;-|- Jn is found

to be x^-^nx-{-^n^.
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345. Now cc'^-\-nx-\--ln^, being a real square, which has for

its root x-{-^n, if we resume our equation x^-j-nx=n', we have
only to add Jn^, to both sides, which gives us x^-{-nx-{- ^71^= 11'

4-Jn^, the first side being actually a square, and the other

containing only known quantities. If, therefore, we lake the

square root of both sides, we find x-\-^n— y^{^n^-{-n) ; and
as every square root may be taken either affirmatively or ne-
gatively, we shall have for x two values expressed thus

;

346. This formula contains the rule by which all quadratic

equations may be resolved, and it will be proper, as Euler
justly observes, to commit it to memory, that it may not be
necessary to repeat, every time, the whole operation which we
have gone through. We may always arrarige the equation in

such a manner, that the pure square x" may be found on one
side, and the above equation have the form x^=^ — ?ix-{-n'f

where we see immediately that x = —hn±^ {in"-\-n').

347 The general rule, therefore, which may be deduced
from that, in order to resolve x^= —nx-{-n\ is founded on this

consideration. That the unknown x is equal to half the co-

efficient or multiplier of x on the other side of the equation,

plus or minus the root of the square of this number, and the

known quantity, which forms the third term of the equation.

Thus, if we had the equation a?'^=6j;+ '7, we should imme-
diately say, that a;= 3±'/(9-l-7)=3±4 ; whence we have

these two values of a; ; namely, x=.l, and a:=— 1.

348. The method of resolving adfected quadratic equations

will be still better understood by the four following forms ; in

which n and n' may be any positive numbers whatever, integral

or fractional.

I. In the case x'^-\-nx=i?i', where x=:—^n-\- '^(^n'^-\-n'),oi

>—Jn— VCi'*^"^"')' ^^® ^^^^ value of x must be positive, be-

cause y{^n'^-\-n') is >'v/jn2, or its equal ^n ; and its second

value will evidently be negative, because each of the terms of

which it is composed is negative.

II. In the case x^— nx=zn', from which we find x=^n-\-'\/

(\n^-\-n'), or ^n—^(^n'^-\-n'), the first value of x, is manifest-

ly positive, being the sum of two positive terms ; and the se-

cond value will be negative, because ^/{jn^-\-n') is ^--v/CJw^),

or its equal ^n.

III. In the case x^-^nx= —n\ we have xz=.^n-\-^J{^Tl^—n%

or \n— ^/[\n^—n') ; both the values of x will be positive,

when \n^ is >n' ; for its first value is then evidently positive,

being composed of two positive terms ; and its second value

will also be positive, because ^(1^^"^') ^^ ^^^^ thany/ (lw^)>
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or its equal Jn. But if Jn^, in this case, be less than n% both

the values of x will be imaginary ; because the quantity, \n^

^n' under the radical sign, is then negative ; and consequently

y(i«2— w') will be imaginary, or of no assignable value.

IV. Also, in the fourth case, a:2-fna:=— n', where x =—
\n+ >/0^— «'). or —\n— y/{]^n'^—n% the two values of x

will be both negative, or both imaginary, according as \n'^ is

greater or less than n\

349. Hence we may conclude, from the constant occur-

rence of the double sign before the radical part of the preced-

ing expressions, that every quadratic equation must have two

roots ; which are both real, or both imaginary ; and though

the latter of these cannot be considered as real quantities, but

merely as pure algebraic symbols, of no determinate value,

yet when they are submitted to the operations indicated by the

equation, the two members of that equation will be always

identical, or which is the same, it shall be always reduced to

the form 0^=0
350. It may here also be further observed, that, in some

equations involving, radical quantities of the form ^/{ax-\-h)

both values of x, found by the ordinary process, will not an-

swer the proposed equation, except that we take the radical

quantity with the double sign ^ . Let, for example, the values

of a; be found in the equation x+^{5x-\-\0)= 8.

Here, by transposition, Y/(5a:4-10)=8— ^5
therefore by squaring, 5a?+10= 64— ISx-^-x"^,

or a;2—21ic=— 54 ; and .•.a;=18, or 3.

Now, since these two values of x are found from the reso-

lution of the equation x'^—2\x=—54 ; it necessarily follows,

that each of them, when substituted for x, must satisfy that

equation ; which may be verified thus ; in the first place, by

substituting 18 for x, in the equation a;^—21a?=— 54, we have

(18)2-21x18= — 54, or 324—378=—54; that is, -54=
—54, or = 0.

Again, substituting, 3 for ar, we have (3)^—21 X3= — 54,

or9-63= -54; —54= -54, or 54—54=0; .-.0= 0.

351. And as the equation a;2__21a?=— 54, may be deduced

from the equation 4-^ (5a;+10)=8— a?, or —/(5a:+10)=
8— a; ; it is evident that the radical quantity y/ (5a;-l-10), must

be taken, with the double sign J:;, in the primitive equation,

in order that it would be satisfied by the values, 18 and 3, of

ar, above found ; that is, 18 answers to the sign — , and 3 to

the sign + • But if one of these signs be excluded by the

nature of the question ; then only one of the values will sa-

22*
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tisfy the original equation ; for instance, if in the equation x
4--/ (So;+10)= 8, the sign — be excluded from the radical

quantity, then the square root of 5a;+10 must be considered

as a positive quantity ; and because it is equal to 8— a; ; the

value of X, since both are positive, which will answer the pro-

posed equation, must be less than 8 ; therefore, 3 is the value

of X, which vv^ill satisfy the equation x-\-^/ (5j;-j-10)=:8, which
can be readily verified thus ; substituting 3 for x, we have 34-

'v/(15-|-10)= 8, or 3+ 5— 8. And for a similar reason, 18 is

the value of x, which will answer the equation x—-^{bx-\-\0)
= 8; for 18-V(90+10)=:18-10= 8; /. 8rr8, or 0=^0.

352. It is proper to take notice here of the following me-
thod of resolving quadratic equations, the principle of which
is given in the Bija Ganita, before mentioned : thus, if a

quadratic equation be of the form 4a"a;2+ 4a6:):;=+4ac, it is

evident that, by adding i^ to both sides, the left-hand member
will be a complete square, since it is the square of 2ax^h ;

and, therefore, by extracting the square root of both sides, there

will arise a simple equation, from which the values of x may
be determined.

353. Now, any quadratic equation of the form ax!^±bx=.

+ c, (to which every quadratic may be reduced by the known
rules), by multiplying both sides by 4a, will become Ad^x'^:^

Aabx=z^Aac. From which we infer, that if each side of the

equation be multiplied by four times tlie coefficient of x^, and to

each side there be added the square of the coejfficient of x^ the quan-

tity on the left-hand side of the resulting equation will always be

a complete square ; from vihich, by extracting the square root, the

values of X will be determined. If the coefficient a =:1, then

both sides ofthe equation is multiplied by 4, and the square of the

coefficient of x is added, as before.

§ I. SOLUTION OF ADFECTED QUADRATIC EQUATIONS, INVOLV-

ING ONLY ONE UNKNOWN QUANTITY.

354. Rule I. Let the terms be arranged on one side of

the equation, according to the dimensions of the unknown
quantity, beginning with the highest ; and the known quanti-

ties be transposed to the other ; then, if the square of the un-

known quantity has any coefficient, either positive or negative,

let all the terms be divided by this coefficient. If the square

of half the coefficient of the second term be now added to both

sides of the equation, that side which involves the unknown
quantity will become a complete square ; and extracting the
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square root on both sides of the equation, a simple equation

will be obtained, from which the values of the unknown quan-

tity may be determined.

355. Rule IL The terms of the equation being arranged

as above, let each side be multiplied by four times the coeffi-

cient of x^, and to each side add the square of the coefficient

of X ; then the left-hand member, being a complete power, ex-

tract the square root on each side of the equation, and there

arises a simple equation, from which the values of x may be

determined.

356. It may be observed, that all equations maybe solved

as quadratics, by completing the square, in which there are

two terms involving the unknown quantity, or any function of

it, and the exponent of one is double that of the other.

Thus, x^-{-px^=q, x^''—px''=zq, x^-{-x*=a, a^x^-{-ax=b, x

-^ax^^= b, p^x^''--px^''==d, {x'^-^px-JrqY-^-ioc^+px + q)=r,

x.{x+axy-{-bx.{x^-j- ax)=d,2LTe of the same form as quadratics,

and the values of the unknown quantity may be determined

in the same manner.

357. Many equations also, in which more than one unknown
quantity are involved, may, in a similar manner, be reduced to

lower dimensions by completing the square, as x'^y'^-\-pxy=q,

(x3-f-y3)2-j-p.(cc3-fy3)— r. Instances of this kind will occur

in the next section.

358. And many adfected equations of the third, and other

higher degrees, may be exhibited under the form of a quad-

ratic, from which, by completing the square, the value of the

unknown quantity will be determined. The biquadratic equa-

tion x^— 8ax^-}-8a^x'^-\-32a^x= d, for instance, may be reduced

to the form {x^— 4axf— 8a'^(x'^— 4ax)= d. Thus the two first

terms {x^—iax) of the square root of the left-hand member
being found according to the rule (Art. 299), and the remain-

der — Sa^x^ 4-320^0:, being evidently equal to —8a^(x'^—Aax)
;

therefore a;*— 8aa?3 4- Sa^x^H- 32a%=(a;^—4aa;)2— 8a2(a;2—4ax)

=:d. Hence it follows, that if the remainder, after having

found the first two terms of the square root (Art. 238), can be

resolved into two factors, so that the factor containing the un-

known quantity, shall be equal to the terms of the root thus

found ; the proposed biquadratic may always be reduced to a

quadratic form.

359. In a similar manner, the cubic equation x"^ -^2ax'^ -\~

ba^x-\-\a?^=o, may be reduced to the ^oxm [x"^ -{- axY X 4a^

{x'^-\- ax)=o \ thus, multiplying every term of the proposed
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equation by x, it becomes x^-{-2ax^-{-5a'^x^-^4a^x=^0, which
can be reduced to the above form, as in the preceding article.

There are a variety of other artifices for reducing equations

to lovirer dimensions, which will be illustrated in the following

examples.

Ex. 1. Given a:2-f-8a;=r20, to find the values of x.

Completing the square, a:2-|-8a:+ 16— 36
;

and extracting the root, x-{-4:=i^6
;

Whence, by transposition, x=2, or —10.

Ex. 2. Given x^—8a;+5= 14, to find the values of a?.

By transposition, x"^—8a:=9 ;

and completing the square, a;^—8a?+ 16=25

;

.'.extracting the root, a?—4=^5,
and x=9f or —1.

Ex. 3. Given ^-±:^^z3-(cc-2Y, to find the values
x—y{x^—9)

o( X.

Multiplying the numerator and the denominator of the fraction

= -t(a;—2) : Taking the positive sign, x-\- -/(a^^— 9)= 3a;— 6,

or ^(x'^—9)z=2x—6 ; r. x^—9= 4x^—24:X-{-36 ; by transpo-

sition and division, x^—8x=— 15 ;
.-. completing the square,

&c. x=5, or 3.

But, by taking the negative sign, x-{~ '^{x^—9)= —3x-\-6 ;

.-. by transposing and squaring, a;^— 9= 16a:2—48x+ 36, and

by transposition and division, x^——x=—3 ; completing the
o

J
/» ni

1 1

squaring, a;2——^r-f—^—— ; .-. taking the root and trans-
5 25 *o

posmg, x= -*^ .

17
Ex. 4. Given a:*4-—a;^—34a;=16, to find the values of *.

Z

17
By transposition, a:*+—-a;^ =34a; + 16 ; completing the

square, x^-\---x^+(—xy=z(--xy-\-3ix+ie; .-.extracting

17 /17 \
the root, a;2+—-a;=±(-—a;-f 4j.

Let the positive root be taken ; then, by transposition, x^=4;
.-. a;=:2, or —2.
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17 17
But if the negative value be taken, a;2+—ac=

—

—x — 4

;

,17 , , , 17 .289 289 ^ 225
.•.^3+2-a:=~4; and a:^+ 2-^+yg-=yg -4=—j.-.ex-

^ tracting the root, «+— =zt-T-> and by transposition, a:= —8,

or-f
Ex. 5. Given 4a;2— 3a:=85, to find the values of a?.

Multiplying by 16, 64a;2— 48a:=1360, and, adding the

square of 3, 64a:2—48a;+9= 1369 ;

.•.extracting the square root, 8x— 3= ^37 ;

by transposition, 8a?=40, or —34, .-• x=5, or — 4^.

35— 3x
Ex. 6. Given Q>x-\ =44, to find the values of a:.

X

Multiplying by x, 6ic2+35— 3a:=:44x ;

.-. by transposition, 6x^—47x=z —35
;

47 35
and by division, x^ c'^— F J

therefore completing the

, 47 , /47\, 2209 35 1369
square, x^- -x+ {^y=-^ - -^=-^44- J

.'. extracting

47_ 37
12~'*'12'

3^ 3 3j. 5
Ex. 7. Given 5a? —=2x-\ — , to find the values

a;—

3

2
of ac.

Multiplying by 2a;— 6, we have 10a;2— 36a;+6= 4a:2— 12ar

+ 3a?2— 15a;+18;
.-.by transposition, 3a;2—9a:=12

;

and by division, x^— 3a;= 4 :

.-. completing the square, aj^—3a;+f=4-|-f=25,
and extracting the root, x— ^=Jt:^;

.-. a;= 4, or —1.

T^ o ^. « 3a?— 10 ^ 6:c2-40 ^ , ,Ex. 8. Given 3a;— -—---=2+— — , to find the ra-
9— 2a? 2a;—

1

lues of x.

Multiplying by 2a;— 1,

_ „ _ 6a.'^—23a;+10 , . , ^ , .^ex^— Sx 77—— =:4a;—2+6a;2— 40,9— 2a;

^ ,
6a;2-23a;+10 _

"'''+ 9-2X
='^'

.-. 63a;-14a:2-h6a;2-23a;+10= 378-84a;;
by transposition, 124a?— 8^^2=368,

the root, x— 7^=^777, and a;=7, or ^.
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and x~-y^x:=—46 ; .'.by completing the square,

2_?1 ,961_961 .g_225
^ 2"*""^ 16~ 16 ~ 16

*

31 . 15
.•. extracting the root, x = Jtz—

;

23 *

and therefore x=-—, or 4.

Ex. 9. Given '^x^-\-'^x^=6^Xj to find the values of af.

Dividing by -y/o:, x'^-\-x=6 :

.*. completing the square, x^-{-x-\-\=z6-\-^=:^-^
;

and extracting the root, x-\-^=:^^
;

.'.x=2jOT —3.

Ex. 10. Given x"—2ax'^ =b, to find the values of a?.

Completing the square, ac" —2ax^-\-a^=a^-{-b
;

n

.'. extracting the root, a;«^—a= J:; •v/(«^+^),
»l 3

and x^=a± ^(a'^+b) ; .-. x=(a:Jtz -/K+^))"'.

Ex. 11. Given a:2_2a;+6'v/(a?^-2a;+5)=ll, to find the

values of x.

Adding 5 to each side of the equation,

(a;2—2a;-f 5)+6v'(a;2-2a;4-5)= 16
;

.*. by completing the square,

(a;2_2a;-|-5)+ 6'v/(a;2—2a;H-5)4-9=25 ;

and extracting the root, 'y/{x'^—2x-\-5)-\-3= ^5;
.-. 'v/(^2_2a:+5)=2, or -8

;

.*. squaring both sides, x^—2x-\-5=4, or 64
;

whence aj-^—2x+l=0, or 60;
and extracting the root, a?— 1=0, or i-v/^^J
.\x=i,oT i±^eo.

ScHOL. It is proper to observe, that the equation, x^—2x
+ 1, has two equal roots, although x appears to have only one
value ; but it is because x is twice found =1, as the common
method of resolution shows ; for we have x= l±-\/0, that is

to say, X is in two ways =1.
Ex. 12. Given x'^-{-4x^+l2x^-\-l6x—a, to find the values

of a;.

Here the two first terms of the square root of the left-hand

member (Art. 238), is found to be a;2-f2a;, and the remainder

is 8x^-\-l6x, which can be readily resolved into the factors 8

and x^-{-2x, since (8a;24-16a;)-~(a;2-}-2a;) gives 8 for the quo-

tient. Consequently the proposed equation may be exhibited

under the quadratic form (x^-\-2x)'^-\-8{x^+2x)=za
;
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.*. by completing the square, {x^-{-2xy-\-S(x^-^2x)-\-\6=:a-{-

16; and extracting the root, a;2+ 2a:-f-4=i'/(a4-16).
Now by taking the positive sign,

3,24.2x4-4= + -/(«+ 16);
by transposition, x'^-{-2x=—4-\-'\/(a-\-l6)

;

.'. completing the square, a;2-f2a?-f 1 = — 3+ \/(a+16)

;

and extracting the root, af+l=:4;-v/(— 34- -v/a-flG))

;

/.a:=:-l±V(-34-V(«+16)).
Again, by taking the negative sign,

a;2_j_2a;4-4r=— V(«+16);
.•.a:2-f-2j?=—4— -v/(a4-16); and

completing the square, a7-|-2a:4-l =— 3— ^^(04- 16);
.-. extracting the root, x-{- 1 = i -/(—3— \/{a-\- 16))

;

and a:=-14:'/(— 3— V(a-f 16)).

Ex. 13. Given 3a:2—12a?4- 12= 16—4, to find the values

of JC.

By transposition, 3a;2—12a:= 16—4— 12=0
and by division, x^—4x=z0

.-.by completing the square, a?^—4x4-4=4
and extracting the root, rr—2= 4::2

.'.x=4y or 0.

Ex. 14. Given a;^—4a?24-6a?=4, to find the values of x.

Multipl)dng both sides by x, x*^4x^-\-6x^'-4x=:0j
.-. (x2-2a:)24-2(a:2—2x)=0.

•.a:2—2x4-1 = rtl, andx=l±-v/il ;

.-. the three roots of the proposed equation, are 1, 14--/— !,

and 1 — -y/— 1 . The other value of x, w^hich is equal to 1 —1

,

or 0, belongs to the equation (x2—2x)24-2(x2—2x)=0 ; hence
there are four roots, or four values of x, which will satisfy this

last equation.

841 17 2^2 1

Ex. 15. Given 27x2- -—H-~=:^--i-4-5, to find the
3x2 3 3^ 3^2

values of x.

Multiplying every term by 3,

.'.by transposition, 81x24-174—2"'~"~2~"'—T"^^^*XXX
Adding unity to each side, in order to complete the square ;

X^ X^ X

1 29
and extracting the root, 9x4—=i(—f"4).

X X
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Let the positive value bo taken ; then by transposition, 9x
28—4=— , and .-. 9a;2— 4a;=28 ; by completing the square, &c.,
oc

14
we shall have x=2, or —~. But if the negative value be

taken, 9x''^+4a;=—30 and completing the square, &c., x=:

-2rt:V(-266)
9

Ex. 16. Given 3a;2-}-2x—9=76, to find the walues of ar.

Ans. x=5, or ——

.

o

•r« i« /-.• 8— a: 2a;— 11 a?—

2

^ , , ,

Ex. 17. Given = to find the values
2 x—S 6

oi X. Ans. aj=6, or, ^.

T7 nor.- 3a:+4 30-2a; 7a;-14 ^ ^ ^
•

Ex. 18. Given — ;:—=

—

tt:— , to find the values
5 x—6 10

of a?. Ans. a;=z36, or 12.

-^3 10a;2-|-l
Ex. 19. Given —-—-

—

-—-=xS, to find the values of x.
x^~ox-t-^

Ans. a;=:l, or —28.
Ex. 20. Given-v/(a;+5)X'v/(a?+12)=12, to find the values

of a; Ans. a?==4, or — 21.

Ex. 21. Given2a;2+3a:— 5'/(2a;2+ 3x-h9)+ 3= 0, to find

9 —SiV-SS
the values of x. Ans. a:=3, or — -, or 7 .

2 4
Ex. 22. Given 9x-\- ^{iex^+36x^)= l5x'^—A, to find the

, , ,41 9iV481
values of x. Ans. x=-, or —- ; or

3' 3

'

50

4 x^ x'
Ex. 23. Given +——49= 9+-, to find the values

T^ X

8 -3+ V93
of a?. Ans. a;=2, or— -, or —^ .

7 7

Ex. 24. Given a;'^—2jt;3+a;=132, to find the values of x.

Ans. a:=4, or— 3, or ^
^

-.

Ex. 25. Given a;*+a:^=756, to find the values of x.

5.

Ans. a:=243, or (—28^.
3

Ex. 26. Given a;^— a;^= 56, to find the values of ar.

2
Ans. a;=4,or (— 7)^.
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Ex. 27. Given ai-f5=-/(«+5)+6, to find the values of a.

Ans. a;=4, or — L
Ex. 28. Given a;+16—7 V(«+16)= 10-4V(a;+16), to

find the values of a:. Ans. a;=9, or —12.
7a;—

8

Ex. 29. Given x-^-iA =13, to find the values of x.

Ans. a;=4, or —2.
x4-7 9-l-4a;

Ex. 30. Given 14+4a; ^^Sx-^-—^, to find the
a:-—

7

S

values of x. Ans. a;=28, or 9.

Ex. 31. Given^-^=^^-1, to find the va-
3 a?— 3 9

lues of X. Ans. ir=21, or 5.

Ex. 32. Given 2a:+18-~ ^ft!f =27- i|^\tofind
4a;4-7 2a:—

3

the values of x. Ans. a?=8, or 6.

Ex. 33. Given—f X^ =a;2+«4-8, to find the values
x'^-^x—

6

of ar. Ans. a?=4, or — 4§.

Ex. 34. Given -/(4a;+5)xV(7a:+l)=30, tofind the va-

lues of a:. Ans. a;=5, or — 6J^.
x4-\2 X 78

Ex. 35. Given 1

—

r-r^r =r-r, to find the values of ».
X a;-i-12 15

Ans. a;=3, or —15.
4 2

Ex. 36. Given a:^H-7a;^=44, to find the values of x.
9

Ans. a?=±8, or ±(— llf-

Ex. 37. Given 4j:^+a:^= 39, to find the values of x.

Ans. a:=729, or (—V.

Ex. 38. Given3a;«-f-42a?3=3321, tofind thevalues ofa?.

Ans. a:=3, or —^41.
8 17

Ex, 39. Given -^-1-2=—», to find the values of x.

X
Ans. a;=4, or ^^ 2.

Ex. 40. Given a:24.114.y(a:24.1l)=42, to find the va-

lues of a:. Ans. x=:]^5, or ± ^38.
Ex. 41. Givena;2— 12a:4- 50= 0, to find the values of ;r.

Ans. a:=6±v'(— 14).

Ex. 42. Given 3a;— Jx2=10, to find the values of x.

Ans. a;=6iv'-4.
23
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Ex. 43. Given a^—2x^= 48, to find the values of a?,

Ans. x= 2, or ^ —6.
Ex. 44. Given ix!^-\-2sc^—7x^-'8x=— l2, to find the va-

lues of X. Ans. 2, or —3, or 1, or —2,
Ex. 45. Given a;*— 10a;^+35a;2— 50ar-|-24= 0, to find the

values of x. Ans. x=l, 2, 3, or 4.

Ex. 46. Given a;3_8a:24.19a;—12=0, to find the values

of X. Ans. x=l, 3, or 4.

Ex. 47. Given ^-= ^, to find the values of x.x—yx 4

Ans. x=4, or 1, or iJ-^-y/—7.

Ex. 48. Given 4x4-f ^=4a;3+ 33, to find the values of st.

Ans. a:=2, or — -
; or *^ ^

^.

^ II. SOLUTION OF ADFECTED QUADRATIC EQUATIONS, IN-

VOLVING TWO UNKNOWN QUANTITIES.

360. "When there are two equations containing two un-

known quantities, a single equation, involving only one of the

unknown quantities, may sometimes be obtained, by the rules

laid down for the solution of simple equations ; from which
equation the values of the unknown quantity may be found,

as in the preceding Section. Whence, by substitution, the

values of the other may also be determined. In many cases,

however, it may be more convenient to solve one or both of

the equations first ; that is, to find the values of one of the un-

known quantities, in terms of the other and known quantities,

as before ; when the rules for eliminating unknown quantities,

(§ I. Chap. IV), may be more easily applied.

The solution will sometimes be rendered more simple by
particular artifices ; the proper application of which shall be

illustrated in the following examples.

Ex. 1 Given »^+3y=7, >
^^ g^^ ^^^ ^^,^^^ ^f ^ ^^^

and a;2-|-3a?y—y2=:23, S

From the 1st equation a?=7— 2y ;

...j:2_49_28y-f4y2;
Substituting these values for x and x^ in the 2d equation,

then 49—28y+4y24-21y—6y2—y2_23,
or 3/4-7^=49-23=26.

36yH84y+ 49==312+ 49= 361
;

.-.extracting the square root, 6y+7= 19,

and 6y= 19—7=12; y=2,
and a:=7—2y=:7—4= 3.
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Ex. 2. Given 4ry=96—a:y, and x-{-i/=6, to find the va-

lues of X and y.

From the first equation x^y^-\-4xy-{-4=il00f

and extracting the root, xi/-\-2= ^\0;
.•.ary=8, or —12.

Now squaring the second equation,

a;2^2j:y4-y2=36 ;

but 4x1/ =32, or —48.

.-. by subtraction, a?^—2a:y-|-y^=4, or 84 ;

and extracting the root, *—y=:±2, or::t'v/^'^ »

but a:+y= 6;

.-.by addition, 2x=8, or 4, or 6± -v/84

whence, a:= 4, or 2, or 3 J^-/2

1

and by subtraction, 2y=4, or 8, or 6^y'84
.•.y= 2, or 4, or 3^V21.

Ex. 3. Givenx2-f a;+y=:18—y2, and a:y=6, to find the va-

lues of X and y.

By transposition, j:2+y2-j-a;+y=18;
and from the second equation, 2xy =12 ;

.-. by addition, x^-\-2xi/-^i/^-\-x-{-y=30 ;

and completing the square,

(x+yY-^{x-{-y)+i=30+i~;

.•.extracting the root, a;+y-f J=r:l: V»
and a?+yr=:5, or — 6 ;

whence, from the first equation, x^-\-i/'^=l3, or 24 ;

but 2a:y=12 ;

.'.by subtraction, x^—2x7/-^7/^=[, or 12
.*. extracting the root, x—i/= ±\, or ±2^/3

Now xH-y=5, or —6
.-. by addition, 2r=6, or 4, or — 6±2'/3

.-. x=3, or 2, or — 3 JL-/3
and by subtraction, 2y=4, or 6, or— 6^2^/3

.-. y=2, or 3, or — 3iF -/2.

Ex. 4. Givena:—2-/a'y-fy— '/a:-f-'/y=:0, and y/x-^-s/y
=5, to find the values of a? and y.

Completing the square in the first equation,

(^x-^yf-{y/x^-^y)^\=\',
and extracting the root, ^Jx— \/y—J=±i ;
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.-. y/x— y/y, =1 or 0,

but from the second equation, -\/ac-f \/y=:.5 ;

.-. by addition, 2-/a;=6, or 5,

5 25^
and -/oj^Sj or -, .-. a:= 9, or —

^

2 4
25

By subtraction, 2 -y/y=4, or 5 ^ .•.y=4, or —-.

a 4
2. 3 11

Ex. 5. Given x^ y^=2y'^, and 8x^ —i/^=zl4, to find the va-

lues of X and y.
2 1 2 1

From the 1st equation, x^=i2y^ ; and .\^x^=y'^ ; substi-

tuting this value in the second equation,

8a?3— ^a;3= 14 ; and .-. 16a?^—a^=28
|

or> by changing the signs, a:^— 16a:^=—28^
2 1

completing the square, x^— ISx^ + 64=^36 ;

1
and extracting the root, a;^—8=-l-6 ;

1
.•.a;3= 14, or 2, and a;=:2744, or 8.

3 2 1 i
Ex. 6. Given x^-\-i/^=:3x, and x^-\-y^=Xy to find the va-

lues of X and y.
11- 2

By squaring the second equation, x-\-2x^y'^-\-y'^=:x^ i
3 2

but 0:2 -j-y3 = 3a;;

3 11
.-.by subtraction, x—x^-^2x^y^=x^^3x

;

1 1

but from the second equation, y3— a-_ 3.7.

Let this value be substituted in the preceding equation
;

3 3

then a;—a;^-f2a;2—2a;=a52— 3a^;
3

.*. by transposition, 2x=x^—x^ •

1

and dividir»g by a;, 2=:ar— a?'^'"

;

1
completing the square, x—x^ -\-l=2-\-\=^ ;

and extracting the root x^—^=^^
;

.'. x^—2, or — 1 ; and a;= 4, or 1.

1 1
By taking the former value of x, we have y^=x—x^

=,A-2=:2\ r.y^S. 11
and by taking the latter value, y^=x—x^ = l-[-l—2j

(since a;^= — 1, — a:2= -f 1) ; .'. ^=8.
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Ex. 7. Given y^SA= Sx^y, and y—4 =2y^x^j to find the

values of x and y.

From the first equation, y'^—Sx^y=64
;

completing the square, y-— Sar^y-f l6a:=16a;+64 ;

extracting the root, y— 4ac- = J;4-/(a:+4)

;

1

and .'
.

y =z4x^ ^4'^(x-\-4).

Also, from the second equation, y— 2y^a;2=4
;

1 1
.-. completing the square, &c., y^=x^ ± 'v/(a?+4)

;

1 1

multiplying by 4, 4y2=ac^_t.4-y/(a;+4)

;

.-. y=4y^, and y=16.
r. A 1. , . * y— 4 12 3
But, from the second equation, x^=-—1-=-—r=j-

;

2yi ^ ^

,*. by involution, «=j.

361. When the equations are homogeneous, that is, when v-^^

a;2, y2, or ary, is found in every term of the two equations, they
'--'-

assume the form of

ax^+ bxy+ cy"^= d,

a'x'^-\-h'xy-\-c'y'^=zd' ; and their solution may be effected

in the following manner :

Assume xz=zvy, then x'^=zv^y^ ; by substituting these values

for x^ and x in both equations, we have

avY-{-hvy^+cy^=d ;
/.y2=__i__

. . . (1),

„-vY+l>'vf+c'f=d'; ,.f=--^,-^ . . . (2).

Hence
av^+bv+ c a'v^-\-b'v+ c'

'

.'.{a''d—ad')v^-}-{b'd—bd')v=:cd'—c'd; which is a quadratic

equation, from whence the value of v may be determined.

Having the value of v^ the value of y may be found from ei-

ther of the equations (1) or (2) ; and then the value of x, from
the equation x=vy.

Ex. 8. Given 2a;2+3a:y4-y2=20, and 5aj2-|-4y2=41, to find

the values of x and y.

Let x=vy, then 2v^y^-\-3vy^-\-y^=20
;

23*
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20

9 41 „ 20 41
•*-y =FTTT' Hence

, a
=

^ 9 , . ^
or 6v^—ilv=z

-13;
.-.by division, completing the square, &;c. v='^^ or J.

. 1. o 41 369
Leti;=i, then/=:^-^-p^=—-=9; .-.^=3, or-3,

and x=vy=l, or — t.

AT* 13 ,
,

.164 , ,
13 ,164

Again, let «=—; then y=i -/—-, and a:=± —-/-—.

Consequently there are four values, both of x and y, which
satisfy the proposed equations.

362. When the unknown quantities in each equation are
similarly involved, the operation may sometimes be shortened,

by substituting for the unknown quantities the sum and differ-

ence of two others.
,2

Ex. 9. Given—-. ---,:... , r jnnd the values of x and y.

and x-\-y:

Assume Xz=z-\'V, and y=^z— v ; .•.x-\-y=2z=il2
;

or2:=6; .•.a;= 6 + f, and y=:6— u.

y X > to

da:4-y=12, )

Also, since ]r—=lS, x^+y^=l8xy
;

...(6-f t,)3 4.(6-t))3=18(6+v)x(6-v)

;

or 432 -f-36i;2z= 648 -18^2 .

and by transposition, 54i;2=216
;

.•.t;2=4; andt;=:±2; .-. rr=6 J-2= 8, or 4
;

and y=6±2=:4, or 8.

363. In all quadratics of this kind, in which x may be
changed for y, and y for a% in the original equations, without

altering theif form, the two values of one of the quantities may
be taken for the values of the two quantities sought.

Ex. 10. Given a;-|-y=:2a, and a?^4-y'^=5, to find the values

of X and y.

Let X—y=^2z ; then x=^a-\-z, and y==a—z
;

.-. by substitution, {a-\-zY-\-{a—zY=b, or, by involution and
addition, 2a^+ 20a^z^+l0az^= b

;

•
^+'~'''^'='-^' --1 ^= ± V[-a'±V(^^)].

.•.ar=a±-/[-o2±-v/{-^p^)], and y=aTV[-«^±

4
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Now, let x-\-y= 6, and a;'*4-y^=1056 ; then by substituting

3 for a, and 1056 for b, in the formula of roots, the values of

Of and y will be found ; that is, a:— 3 ^1, or Si-y/— 19 ; and

y=z3^1,or 3^-v/-"I9. Or, by substituting the above va-

lues of a and b in the equation iOaz* —20a^z^-\-2a^— b, it be-

comes 30-2* +540^^-1- 486= 1056 ; from which the values of z

may be found ; whence, by substitution, the values of x andy
will be determined, as before.

Ex. 11. Given ar-f-4y=14, and y^-|-4a?=2y-|-ll, to find

the values of x and y.

Ans. ac=— 46, or 2 ; and y=15, or 3.

Ex. 12. Given 2a:H-3y=118, and 5a;2—7y2=4333, to find

the values of x and y.

A oc 3899 , ,^ 3268
Ans. ir=35, or —— ; and y=16, or——-.

17 ^ 17
Ex. 13. Given a:2-|-4y2=:256— 4a:y, and 3y2—x2= 39, to

find the values of x and y.

Ans. a;=i6, or il02 ; and y=i5, or ±59.
Ex. 14. Given ac''4-y''=2a", and x2/=c^, to find the values

of X and y.

1^

«=[a''±\/(«'"-c"')]'';

Ans. ;„^ ,

^

[a''±V(«'"-c'")]''~

Ex. 15. Given a:2-f2a:y+y2-f2a;=:i 120— 2y, and a:y—y2=
8, to find the values of x and y.

Ans. x=:6j or 9, or — 9=f -y/5 ; andy=4, or 1, or —3^
V5.

Ex. 16. Given a;2-f-y2—a:—y= 78, and a:y-fa:+y=39, to

find the values of x and y.

Ans. a;— 9, or 3; or —6^^^-/— 39 ; and y=3, or 9, or

^ ,^ ^. x^
,
4j: 85

Ex. 17. Given --\ = - )
9 '> to find the values of x and y.

2 )

y2 y
• and «—y=2,

17 3
Ans. x=5y or — ; and y=3, or — —

.

Ex. 18. Given a:*—2a:2y+y2=49, ) to find the values of a:

and a;*—2a;2y2-f y4_a;2-fy2=20, > and y.

Ans. ar=i3, or i V^, or rtJ-ZC^OiS-ZS) ;

andy=2, or — 1, or ^(1^3 v'S).*

* There are four other values, both of x and y, which are all imaginary.
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i 1

Ex. 19. Given <— a;^=3—y, and 4—a;=y—y^jtofindthe

values of a: and y. Ans. a;=4, or \\ and y=l, or 1\.
3. i

Ex. 20. Given a^^+ a:—4a;^=y2-j_y-^-2, and a:y=y2_^3y,

to find the values of x and y.

Ans. a;=r4, or 1 ; and y= l, or --2.

Ex. 21. Given a;24-icy=56, and a:y-f-2y2= 60, to find the

values of a; and y. Ans. x^^^^/1, or ^ 1 4
;

andy=i3V2, or ^10-
Ex. 22. Given a;—y=:15, and xy—2y^, to find the values

of a; and y. Ans. a:= 18, or 12^ ; andy=r3, or — 2J.
Ex. 23. Given 10a:+y=:3a:y, and 9y— 9a;=18, to find the

values of a; and y. Ans. a:= 2, or —\ ; and y=r4, or f

.

Ex. 24. Given .r+y • ^—y -
' 13 : 5, > to find the values

and y'-^+a:— 25, J of a; and y.

Ans. a:=9, or — H^Jg
; and y=4, or —6^.

Ex. 25. Given a-^y^—Ta-y^^ 1710, and a:y—y=: 12, to find

the values of x and y.

— 19
Ans. a:=5, or J, or —- ; and y=3, or —15, or —

Ex. 26. Given xy+xy^=\2, and a;+a?y3=rl8, to find the

values of x and y. Ans. a:=2, or 16 ; and. y=r2, or ^.

Ex. 27. Given a:+y+'/(a^+y)=6, and a;2+y2.-=10, tofind

the values of x and y.

Ans. x—3, or 1 ; or 4i-|^^^—61 ; and y= l, or, 3, or

Ex. 28. Given a;24-4V(a^2_|.3y_|_5)_55__3y^ and 6a;-7y

^16, to find the values of x and y.

_53 -9±V5072
L a;=5, or —— ; or

Ans
430 -1664-6^5072y=2,or-— ;or .

Ex. 29. Givena;2-|-2a;^y=441~a;*y2,anda;y=3+ a;, lofind

the values of a; and y.

5 a:=3, or — 7; or —2i V— 17,
^"'-

^ y=:2, or I ; or|=F|V-17.
Ex. 30. Given (a:+y)2-3y=:28+ 3a;, and 2a:y+3a;=35, to

find the values of x and y.

J
a:=5, or J, or -H}V(-255),

^"'-
} y-2,or|, or -U:f ^^(-255,)

Ex. 31. Given a^2_^3a;+y=73—2a:y, and y2+3y+«=r44,
to find the values of a; and y.

5a:=4, or 16; or — 12=F'/58,
^^^^•{^=5, or -7; or -liV^S.
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Ex. 32. Given—4-^=136^—2a?y,anda;4-yr=10,tofind
y a:

the values of x and y.

. <a:=6,or4;or5i5V(-U,)
^"*- Jy=4.or6; or S^fS^HiD-

Ex. 33. Given y*-432= 12a;y2, and y2=;12-f 2jy, to find

the values of x and y.

Ans. x=2, or 3 ; and y=6, 01^(21)4-3.

CHAPTER XI.

ON

THE SOLUTION OF PROBLEMS,

PRODUCING aUADRATIC EaUATIONS.

^ I. SOLUTION OF PROBLEMS PRODUCING QUADRATIC EQUA-
TIONS, INVOLVING ONLY ONE UNKNOWN QUANTITY.

364. It may be observed, that, in the solution of problema
which involve quadratic equations, we sometimes deduce,

from the algebraical process, answers which do not correspond

with the conditions. The reason seems to be, that the alge-

braical expression is more general than the common language,

and the equation, which is a proper representation of the con-

ditions, will express other conditions, and answer other suppo-
sitions.

Prob. 1. A person bought a certain number of oxen for 80
guineas, and if he had bought four more for the same sum,
they would have cost a guinea a piece less. Required the

number of oxen and price of each.

80
Let x= the number ; then —= the price of each

;

X

80 80 , ^ , ,

.

•. —-—= -1, by the problem,
x-\-4 X

and by reduction, a:24-4a?=320 ;

.-. a?2-|.4ar_j_4~324, and rr4-2= il8;
.-. ir=16, or —20.
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A J 80 80 ^ . ^ . ^ ^And—=—= 5 guineas, the price of each.

The negative value (—20) of x, will not answer the con-

dition of the problem.

Prob. 2. There are two numbers whose difference is 9, and
their sum multiplied by the greater produces 266. What are

those numbers 1

Let x= the greater; .*. a?—y= the less.

9 268
and x.(2x - 9)=266 ;

.-. x^- o^^^-it'

9 47
completing the square, &c. a:—-= db-r »

.*. a;=14, or — 9J; and x—9= 5, or — 18J.
Here both values answer the conditions of the problem.

Prob. 3. A set out from C towards D, and travelled 7 miles

a day. After he had gone 32 miles, B set out from D to-

wards C, and went every day one-nineteenth of the whole

journey ; and after he had travelled as many days as he went

miles in one day, he met A. Required the distance of the places

C and D.

Suppose the distance was x miles.

.. —= the number of miles B travelled /?cr day ; and also

= the number of days he travelled before he met A.
j;2 7a!

.-. h32H =«:
361^ ^19 *

by transposition and completing the square,

X
extracting the root, ——6=^2 ;

.-. -5=8, or 4 ; and ir=152, or 76, both which values an-

swer the conditions of the problem. The distance therefore

of C from D was 152, or 76 miles.

Prob. 4. To divide the number 30 into two such parts, that

their product may be equal to eight times their difference.

Let a;= the lesser ^^^xi', .-.30— a;r=: the greater part, and

30—a;— a', or 30—2.x= their difference.

Hence, by the problem, a;(30— a:)=:8(30— 2a;), or 30a?—»»

=240-16a?; .•.a;^—46a:=—240.
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.'.completing the square, a:2—46a:4- 529=289
;

.-. a?=23i 17=40, or 6= lesser part;

and 30— 0?= 30—6=24= greater part.

In this case, the solution of the equation gives 40 and 6

for the lesser part. Now as 40 cannot possibly be a part of

30, we take 6 for the lesser part, which gives 24 for the

greater part ; and the two numbers, 24 and 6, answer the

conditions required.

Prob. 5. Some bees had alighted upon a tree ; at one flight

the square root of half of them went away ; at another eight-

ninths of them ; two bees then remained. How many then

alighted on the tree ?

16x2
Let 2*2= the number of bees ; x-\—-—\-2-=2x^,

or 9x+16a;2+18= 18a:2; .-. 2a:2— 9a:=18 ;

Multiplying by 8, 16x2— 72a:=144 .

adding 81 to both sides, 16x2—72x4-81=225 ;

.. 4x=9i 15=24, or —6 ; and x=6, or — H-
.-.2x2= 72, or 4i.

But the negative value —1^ of x, is excluded by the na-

ture of the problem ; therefore, 72= number of bees.

365. If, in a problem proposed to be solved, there are two
quantities sought, whose sum, or difference, is equal to a

given quantity, for instance, 2a ; let half their difference, or

half their sum, be denoted by x ; then x-\-a will represent

the greater, and x—a the lesser, (Art. 102). According to

this method of notation, the calculation will be greatly abridg-

ed, and the solution of the problem will often be rendered very

simple.

Prob. 6. The sum of two numbers is 6, and the sum of

their 4th power is 272. What are the numbers ?

Let x= half the difference of the two numbers ; then 3+
x= the greater number, and 3—x= the lesser.

.-. by the problem, (3+ x)*+(3—x)4=272,
or 162+ 108x2+2x*=272 ; from which, by transposition and
division, x*-f 54x2=55

:

.-. completing the square, x*-|- 54x2+ 729 =784,
and extracting the root, x2-{-27=4:28 ;

... x2=—27^28, and x=il, or ^,^-55.

Now, by taking the positive value, -flj for J^* (since in this

case, it is the only value of x which will answer the problem);

we shall have 3-f 1- 4= the greater, and 3—1=2= the

lesser.
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Prob. 7. To divide the number 56 into two such parts, that

their product shall be 640. Ans. 40, and 16.

Prob. 8. There are two numbers whose difference is 7,

and half their product plus 30, is equal to the square of the

lesser number. What are the numbers ?

Ans. 12, and 19.

Prob. 9. A and B set out at the same time to a place at the

distance of 150 miles. A travelled 3 miles an hour faster than

B, and arrives at his journey's end 8 hours and 20 minutes

before him. At what rate did each person travel per hour 1

Ans. A 9, and B 6 miles an hour.

Prob. 10. The difference of two numbers is 6 ; and if 47
be added to twice the square of the lesser^ it will be equal to the

square of the greater. What are the numbers ?

Ans. 17, and 11.-

Prob. 11. There are two numbers whose product is 120,

if 2 be added to the lesser, and 3 subtracted from the greater,

the product of the sum and remainder will also be 120. What
are the numbers ? Ans. 15, and 8.

Prob. 12. A person bought a certain number of sheep for

120Z. If there had have been 8 more, each would have cost

him ten shillings less. How many sheep were there ?

Ans. 40.

Prob. 13. A Merchant sold a quantity of brandy for 39/.

and gained as much per cent as the brandy cost him. What
was the price of the brandy ? Ans. 30Z.

Prob. 14. Two partners, A and B, gained 18/. by trade.

A's money was in trade 12 months, and he received for his

principal and gain 26/. Also, B's money, which was 30/. was
in trade 16 months. What money did A put into trade 1

Ans. 20/.

Prob. 15. A and B set out from two towns which were at

the distance of 247 miles, and travelled the direct road till

they met. A went 9 miles a day ; and the number of days,

at the end of which they met, was greater by 3 than the

number of miles which B went in a day. How many miles

did each go ?

Ans. A 117, and B 130 miles.

Prob. 16. A man playing at hazard won at the first throw,

as much money as he had in his pocket ; at the second throw,

he won 5 shillings more than the square root of what he then

had ; at the third throw, he won the square of all he then had ;

and then he had 112/. 16^. What had he at first ?

Ans. 18 shillings.
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Prob. 17. If the square of a certain number be taken from

40, and the square root of this difference be increased by 10,

and the sum multiplied by 2, and the product divided by the

number itself, the quotient will be 4. Required the number.

Ans. 6.

Prob. 18. There is a field in the form of a rectangular

parallelogram, whose length exceeds the breadth by 16 yards ;

and it contains 960 square yards. Required the length and

breadth. Ans. 40 and 24 yards.

Prob. 19. A person being asked his age, answered, if you
add the square root of it to half of it, and subtract 12, there

will remain nothing. Required his age. Ans. 16.

Prob. 20. To find a number from the cube of which, if

19 be subtracted, and the remainder multiplied by that cube,

the product shall be 216. Ans. 3, or —2.

Prob. 21. To find a number, from the double of which if

you subtract 12, the square of the remainder, minus 1, will be

9 times the number sought. Ans. 11, or 3|.

Prob. 22. It is required to divide 20 into two such parts,

that the product of the whole and one of the parts, shall be

equal to the square of the other.

Ans. 10|/5— 10, and 30— lOys.
Prob. 23. A labourer dug two trenches, one of which was

6 yards longer than the other, for 17/. 16^., and the digging

of each of them cost as many shillings per yard as there were
yards in its length. What was the length of each ?

Ans. 10, and 16 yards.

Prob. 24. A company at a tavern had 8/. 15^. to pay, but

before the bill was paid, two of them sneaked off, when those

who remained had each 10^. more to pay. How many were
there in the company at first ? • Ans. 7.

Prob. 25. There are two square buildings, that are paved
with stones, a foot square each. The side of one building ex-

ceeds that of the other by 12 feet, and both their pavements
taken together contain 2120 stones. What are the lengths

of them separately ? Ans. 26, and 38 feet.

Prob. 26. In a parcel which contains 24 coins of silver

and copper, each silver coin is worth as many pence as there

are copper coins, and each copper coin is worth as many
pence as there are silver coins, and the whole is worth 18
shillings. How many are there of each ?

Ans. 6 of one, and 18 of the other.

Prob. 27. Two messengers, A and B, were despatched at

24
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the same time to a place 90 miles distant ; the former of whcwn
riding one mile an hour more than the other, arrived at the
end of his journey an hour before him. At what rate did
each travel per hour ?

Ans. A vv^ent 10, and B 9 miles per hour.

Prob. 28. A man travelled 105 miles, and then found that

if he had not travelled so fast by 2 miles an hour, he should
have been 6 hours longer in performing the journey. How
many miles did he go per hour ? Ans. 7 miles.

Prob. 29. Bought two flocks of sheep for 65Z. 135., one
containing 5 more than the other. Each sheep cost as many
shillings as there were sheep in the flock. Required the

number in each flock. Ans. 23, and 28.

Prob. 30. A regiment of soldiers, consisting of 1066 men,
is formed into two squares, one of which has 4 men more in

a side than the other. What number of men are in a side of

each of the squares ? Ans. 21, and 25,

Prob. 31. What number is that, to which if 24 be added,

and the square root of the sum extracted, this root shall be

less than the original quantity by 18 ? Ans. 25.

Prob. 32. A Poulterer going to market to buy turkeys, met
with four flocks. In the second were 6 more than three times

the square root of double the number in the first. The third

contained three times as many as the first and second ; and
the fourth contained 6 more than the square of one-third the

number in the third ; and the whole number was 1938. How
many were there in each flock ?

Ans. The numbers were 18,24, 126, and 1770, respectively.

Prob. 33. The sum of two numbers is 6, and the sum of

their 5th powers is 1056. What are the numbers ?

• Ans. 4, and 2.

§11. SOLUTION OF PROBLEMS PRODUCING QUADRATIC EQUA-

TIONS, INVOLVING MORE THAN ONE UNKNOWN QUANTITY.

366. It is very proper to observe, that the solution of a

problem, producing quadratic equations, involving two un-

known quantities, will sometimes be very much facilitated by

assuming x equal to their half sum, and y equal to their half

diff'erence ; then, (Art. 102), x-{-y will denote the greater,

and x—y the lesser. The solution, according to this method
of notation, will, in general, be more simple than that which
would have been found, if the two unknown quantities were
represented by x and y respectively.
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Problem I. Required two numbers, such, that their sum,

their product, and the difference of iheir squares, may be all

equal.

Let x-^y= the greater ; and x— r/z=z the lesser
;

• 2x= (a:+y) {x-y)=x^-y\ )
^ ^^^ ^lem.

and 2x= {x-\-i/y—(x—i/f = 4xy, S ^

From the 2d equation, y= j ;
.'. y^=-4 :

Now, by substituting this value of y^, in the first we have

1xz=LX^-\\ .•.a;2-2a:=i and a:=l±W^-
367. The preceding problem leads also to the solution of

the following.

Prob. 2. To find two numbers, such, that their sum, their

product, and the sum of their squares, may be all equal.

Let, as in the last problem, x-j-y = the greater, and x—yz=,

the lesser ; then, by the problem,

2x=a;2-y2, and 2x-[x-^y)'^^{^x—yf-2x^-\-'Zy'^ ;

.•.aj=:a;2-f y2 .

but 2x=x'^—y'^
;

.-. by addition, 3a;=2a;2, and x=^
;

.-. by substitution, |=| -f-y^ j and y= ii\/— 3 ;

.-. a?+y=:|i^-v/— 3, and jc—y=: J^J-/— 3.

Hence it follows, that no two numbers can be found to answer
the conditions ; and therefore the problem is impossible : Al-

though the above values of x and y are imaginary, still they

will satisfy the equations, 2x=zx'^~y'^^ and 2x^i2x'^-\-2y^^

which may be readily verified by substitution.

368. It is sometimes more expedient to represent one of

the unknown quantities by ar, and the other by xy. The
utility of this method of notation for eliminating one of the

unknown quantities, will appear evident, from the solution of

the following problem.

Prob. 3. What two numbers are those, whose sum multi-

plied by the greater is 77 ; and whose difference, multiplied

by the lesser, is equal to 12 ?

Let xy= the greater, and x=z the hsser ; then by the pro-

blem, a;2y2^.a;y_77^ and x'^y— x'^=\2
\

2 77 12 12 77
. x^:^—^— , and x^= -

y'+y y-1 ' "'y-i yHy
and clearing effractions, 12^24. i2y=77y—77

by transposition and division, y2_ —y= ;
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.'.completing the square, and extracting the root, y=y, or

J. Either value of y will answer the conditions of the prob-

12
lem ; Let 3/=: J; then a;

= --=16; .'.x—^\^ and a?y=

±7. Hence the numbers, by taking the positive values, are

4 and 7. Let also y=V 5 ^^^®" x'^—%\ .-. a;=: -j-|^2, and
xy=:^^ X J::|-v/2=: J:: y y 2. Hence the irrational numbers,

^^/'Z and y •y/2, will also answer the conditions of the prob-

lem.

369. When a problem expresses more than two distinct

conditions, which require to be translated into as many equa-

tions ; the solution cannot be obtained by means of quadra-

tics, unless that some of the equations are of the first degree
;

for the final equation resulting from the elimination of the

unknown quantities will, in general, be of a higher degree than

the second. There are, however, some particular cases in

which the unknown quantities may be eliminated by certain

artifices, (which are best learned by experience), so as to leave

the final equation of a quadratic form.

Prob. 4. It is required to find three numbers, such, that

the product of the first and second, added to the sum of their

squares, shall be equal to 37 ; the product of the first and third

added to the sum of their squares, shall be equal to 49 ; and
the product of the second and third added to the sum of their

squares, shall be equal to 61.

Let x= the first number, y-=z the second, and z=. the third.

Then, x'^-\-y'^^xy='il \^
x'^-{-z^-\-xz=z49 ; > by the problem.

and y2_j_2r2_|_y2= 61 ; )

By subtracting the first equation from the second, x^—y^-i-
12

(z-^y)x=l2; .'.z-hyi-x=^— (a).

By subtracting the second equation from the third, y'^—x'^-{-

12
(y-x)z=l2 ;

.-. y-^x+z=—-— (b)
;

12 12
, „ .

.*. = , and V— x^=z— y; .'.2y=:x-\-z.
z—y y—x ^ y y I

By substituting 2y for x-{-z, in equations (a) and {b), we

^ ^o 12 . 12
nnd Sy= , and 3y= ;

z—y ^ y— x

.'.zy—y^= 4:, and y'^—yx=4:;

,. ,=y!±i, and .=tr± , ,. ,^^t:Z±)\
y y ^ y >
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Now, by substituting these values of x and x^ in the first of

ihe original equations, it becomes

) +y^+y-- =37; .-.by reduction,

49
y*—^y^=— 16 ; and, by completing the square,

^ 49 , ,
/49\» 2401-192 , 49,47

and, by taking the positive sign, y= J::4 ;

y2_4 16—4
,'. by taking y=4, x—- =

—

-—=3, and
y 4

_y2-f4__16+4_20_
~ y 4 "~ 4

*^ *

Hence the three numbers sought are 3, 4, and 5, which are

in arithmetical progression. This relation appears also evi-

dent from the result 2i/=x-\-z, found in the beginning of the

solution.

Prob. 5. There are three numbers, the difference of whose
differences is 8 ; their sum is 41 ; and the sum of their squares

669. What are the numbers ?

Let x= the second number,

and y= the difference of the second and least

;

.'.x— r/y Xj and x-\-y-\-S are the numbers,

and their sum z^3a;4-8= 41 ;
.-. 3a;=r:33, and a;=:ll

;

/.(ll-y)2+ 1214-(19-hy)2=:669, or y24.8^=48
;

.*. completing the square, and extracting the root,

y-j-4=:i:8, and yr=4, or —12, both which values answer
the conditions ; and the numbers are 7, 11, and 23.

Prob. 6. What number is that, which being divided by the

product of its two digits, the quotient is 2 ; and if 27 be added
to it, the digits will be inverted ? Ans. 36.

Prob. 7. There are three numbers, the difference of whose
differences is 5 ; their sum is 44 ; and continual product is

1950. What are the numbers ? Ans. 6, 13, and 25.

Prob. 8. A farmer received 71. 4s. for a certain quantity

of wheat, and an equal sum at a price less by Is. 6d. per

bushel, for a quantity of barley, which exceeded the quantity

of wheat by 16 bushels. How many bushels were there of

each ? Ans. 32 bushels of wheat, and 48 of barley.

Prob. 9. A poulterer bought 15 ducks and 12 turkeys for

five guineas. He had two ducks more for 18 shillings, than
24*
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he had of turkeys for 20 shillings. What was the price of

each ? Ans. the price of a duck was 3^. and of a turkey 5s.

Prob. 10. There are three numbers, the difference of whose
differences is 3 ; their sunn is 21 ; and the sum of the squares

of the greatest and least is 137. Required the numbers.

Ans. 4, 6, and 11.

Prob. 1 1. There is a number consisting of 2 digits, which,
when divided by the sum of its digits, gives a quotient greater

by 2 than the first digit. But if the digiis be inverted, and
then divided by a number greater by unity than the sum of the

digits, the quotient is greater by 2 than the preceding quotient.

Required the number. Ans. 24.

Prob. 12. What two numbers are those, whose product is

24, and whose sum added to the sum of their squares is 62 ?

Ans. 4, and 6,

Prob. 13. A grocer sold 80 pounds of mace, and 100
pounds of cloves, for Q5L ; but he sold 60 pounds more of

cloves for 20/. than he did of mace for 10/, What was the

price of a pound of each ?

Ans. the mace cost 10^. and the cloves 5^. per pound.

Prob. 14. To divide the number 134 into three such parts,

that once the first, twice the second, and three times the third,

added together, may be equal to 278 ; and that the sum of the

squares of the three parts may be equal to 6036.

Ans. 40, 44, and 50, respectively.

Prob. 15. Find two numbers, such, that the square of the

greater minus the square of the lesser, may be 56 ; and the

square of the lesser plus one third, their product may be 40.

Ans. 9, and 5.

Prob. 16, There are two numbers, such, that three times

the square of the greater plus twice the square of the less is

110 ; and half their product, plus the square of the lesser, is

4. What are the numbers? Ans. 6, and 1.

Prob. 17. What number is that, the sum of whose digits is

15 ; and if 31 be added to their product, the digits will be in-

verted ? Ans. 78.

Prob. 18. There are two numbers, such, that if the lesser

be taken from three times the greater, the remainder will be

S5 ; and if four times the greater be divided by three times the

lesser plus one, the quotient will be equal to the lesser number.

What are the numbers ? Ans. 13, and 4.

Prob. 19. To find two numbers, the first of which, plus

2, multiplied into the second, minus 3, may produce 110 ; and
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the first minus 3, multiplied by the second plus 2, may pro-

duce 80. . Ans. 8, and 14.

Prob. 20. Two persons, A and B, comparing their wages,
observe, that if A had received per day, in addition to what
he does receive, a sum equal to one-fourth of what B receiv-

ed per week, and had worked as many days as B received
shillings per day, he would have received 48^. ; and had B
received 2 shillings a day more than A did, and worked for a
number of days equal to half the number of shillings he re-

ceived per week, he would have received 41. I8s. What were
their daily wages ? Ans. A's 5 shillings, and B's 4.

Prob. 21. Bacchus caught Silenus asleep by the side of a
full cask, and seized the opportunity of drinking, which he
continued for two-thirds of the time that Silenus would have
taken to empty the whole cask. After that Silenus awoke,
and drank what Bacchus had left. Had they drunk both
together, it would have been emptied two hours sooner, and
Bacchus would have drunk only half what he left Silenus. Re-
quired the time in which they could have emptied the cask
separately. Ans. Silenus in 3 hours, and Bacchus in 6.

Prob. 22. Two persons, A and B, talking of their money,
A says to B, if I had as many dollars at 5^. 6d. each, as I

have shillings, I should have as much money as you ; but, if

the number of my shillings were squared, I should have twice

as much as you, and 12 shillings more. What had each ?

Ans. A had 12, and B 66 shillings.

Prob. 23. It is required to find two numbers, such, that if

their product be added to their sum it shall make 62 ; and if

their sum be taken from the sum of their squares, it shall leave

86. Ans. 8, and 6.

Prob 24. It is required to find two numbers, such, that

their difference shall be 98, and the difTerence of their cube

roots 2. Ans. 125, and 27.

Prob. 25. There is a number consisting of two digits. The
left-hand digit is equal to 3 times the right-hand digit ; and if

*

12 be subtracted from the number itself, the remainder will

be equal to the square of the left-hand digit. What is the

number ? Ans. 93.

Prob. 26. A person bought a quantity of cloth of two sorts

for 71. 18 shillings. For every yard of the better sort he gave

as many shillings as he had yards in all ; and for every yard

of the worse as many shillings as there were yards of the bet-
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ter sort more than of the worse. And the whole price of

the better sort was to the whole price of the worse as 72 to 7,

How many yards had he of each ?

Ans. 9 yards of the better, and 7 of the worse.

Prob. 27. There are four towns in the order of the let-

ters, A, B, C, D. The difference between the distances, from
A to B, and from B to C, is greater by four miles than the dis-

tance from B to D. Also the number of miles between B
and D is equal to two-thirds of the number between A to C.
And the number between A and B is to the number between.

C and D as seven times the number between A and C : 26.

Required the respective distances.

Ans. AB=42, BC=6, and CD=:26 miles.

CHAPTER XII.

ON

THE EXPANSION OF INFINITE SERIES.

§ I. RESOLUTIONS OF ALGEBRAIC FRACTIONS.

370. An infinite series is a continued rank, or progression of

quantities, connected together by the signs + or — ; and usu-

ally proceeds according to some regular, or determined law.

Thus, i-l-i + i-fi+J.-|-3-V+ , &c.

In the first of which, the several terms arc the reciprocals

of the odd numbers, 1, 3, 5, 7, &c. ; and in the latter the recipro-

cals of the even numbers, 2, 4, 6, 8, &c., with alternate signs.

371. We have already observed (Art. 96), that if the first

or leading term of the remainder, in the division of algebraic

quantities, be not divisible by the divisor, the operation might

be considered as terminated ; or, which is the same, that the

integral part of the quotient has been obtained. And it has

also bee'n remarked, (Art. 89), that the division of the remain-

der by the divisor can be only indicated, or expressed, by a

fraction: thus, for example, if we have to divide a" by a-fl,
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we write for the quotient —;— : This, however, does not pre-
a-f-1

vent us from attempting the division according to the rules that

have been given, nor from continuing it as far as we please, and

we shall thus not fail to find the true quotient, though under

different forms.

372. To prove this, let us actually divide a* or 1, by 1— a,

thus

;

1

1-a

remainder a
Quot. 1

1+ a

Therefore—!—=l+--^; but -^=a+ ^

1—

a

1—

a

I—

a

l—a \—a

\—a l—a l—a' 1—

o

l—a

This shows that the fraction may be exhibited under
l—a ^

all the following forms :

1 =1+^; =!+«+ ^'

1-a-^^l-a' -^^^^l-a'

=l+a+a^4-7^; =l + a+a2+a^+
""^

1-a' .... i_^'

= l + a+a2+a3+a4+ - &c.
1 —a

Now, by considering the first of these formulae, which is

14--
, and observing that 1 =- , we have 1-f- =

1 —a i —

a

1 — a

l—a a 1—a4-a_ 1

l-a''"l—a~ l—a "^1—
a"

If we follow the same process with regard to the second ex-

pression, that is to say, if we reduce the integral part 14-« to

the same denominator, 1 —a, we shall have the fraction ,l—a
^2 \ a2_^^2 \

to which if we add , we shall have —; =:; .

1

—

a l—a l—a
In the third formula of the quotierit, the integers l+a-fa'

l_a3
reduced to the denominator l—a make , and if we add

l—a
a"* 1

to it the fraction the sum will be
l—a l—a
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Therefore each of these formula is in fact the value of the

proposed fraction .'^ I—

a

273r This being the case, we may continue the series as far

as we please, without being under the necessity of performing
any more calculations ; by observing, in the first place, that

each of these formulae is composed of an integral part which
is the sum of the successive powers of a, beginning with a^=l
inclusively

;

Secondly, of a fraction which has always for the denomi-
nator 1— a, and for the numerator the letter a, with an ex-

ponent greater, by unity, than that of the same letter in the

last term of the integral part.

This constant formation of the successive formulae, is what
Analysts call a law. And the manner of deducing general

laws by the consideration of certain particular cases, is usu-

ally called induction ; which, though not a strict method of

proof, says Laplace, has been the source of almost all the

discoveries that have hitherto been made, both in analysis and
physics, of which all the phenomena are the mathematical re-

sults of a small number of invariable laws. It is thus that

Newton, by following the law of the numeral coefficients, in

the square, the cube, the fourth power, &c. of a binomial,

arrived soon at the general law, that is to say, at the general

formula that bears his name, and which will be demonstrated

in one of the following Sections : This Geometer has carefully

added, that in following this mode of investigation, we must
not generalize too hastily ; as it often happens, that a law,

which appears to take place in the first part of a process, is

not found to hold good throughout. Thus, in the simple in-

, , . 531251 , . , .

stance of reducing to a decimal, its equivalent value
OUJyO / OU

is 17174949, &:c., of which the real, repeating period is 49,

and not 17, as might, at first, be imagined.

374. From what has been observed with regard to the suc-

cessive quotients, we can, in general, put

= l+a+ a2-fa3^a4 0"+^
J.

I
1*^1* |U.|l* ""Ill*

1

—

a id^a

n being a whole positive number, which augmented by unity,

gives the place of the term. In fact, making /iz=:3, a" becomes
«^, which is the fourth term of the quotient, for n=i 4, of" becomes
a*, which is the fifth term. But as nothing hinders us from

removing indefinitely the fractional term which terminates the

faeries, that is, of adding always a term to the integral part

;
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80 that we might still go on without end ; for which reason it

may be said that the proposed fraction has been resolved into

an infinite series ; which is, 1 H-a-j-a^-f a3-f-*4-«'+«*^+«'+ a®

+ a9+ a^°-fa^^+ a^^-f-> &c. to infinity: and there are sufli-

cient grounds to maintain that the value of this infinite series

is the same as that of the fraction .

I—

a

Or that, =l+a+a'^+a^+a*+ ; <fec.

1—

a

375. What has been just observed may at first appear

strange ; but the consideration of some particular cases will

make it easily understood.

Let us suppose, in the first place, az=l ; the general quo-

tient above will become a particular quotient corresponding

to the fraction . The series taken indefinitely, shall be

^=1 + 1+ 1+ 1+ 1 + 1+, &c.

In order to see clearly the meaning of this result, let us

suppose that we have to divide unity or 1 successively by the

numbers 1, i, ^, -±^, ^, &c.. we will have the

quotient, 1, 10, 100, 1000, 10000, &c., continually and inde-

finitely increasing ; because the divisors are continually and

indefinitely decreasing ; but these divisors tend towards zero,

which they cannot attain, although they approach to it con-

tinually, or that the difference becomes less and less ; and at

the same time the value of the fraction increases continually,

and tends to that which corresponds to the divisor zero or ;

and it is as much impossible that the fraction in its successive

augmentations, attains -, as it is that the denominator in its

successive diminutions arrives at zero. Thus - is the last

term or limit of the increasing values of the fraction : at this

period, it has received all its augmentations : - is not therefore

a number, it is the superior limit of numbers ; such is the no-

tion that we must have of this result -, which the analysts call,

for abbreviation, infinitjj, and which is denoted by the character

00, (Art. 35). It is frequently given as an answer to an im-



276 EXPANSION OF INFINITE SERIES.

possible question, (which will be noticed in a subsequent part

of the Work) ; and in fact, it is very proper to announce this

circumstance, since that we cannot assign the number denoted

by this sign.

It may still be remarked, that if we would take but the first

six terms of the series, we must close the development by the

corresponding remainder divided by this divisor, which gives,

^4=1 + 1+ 1 + 1 + 1 + 1+1;

this equality, absurd in appearance, proves that six terms at

least do not hinder the series from being indefinitely conti-

nued. And in fact, if after having taken away six terms from

this series, it would cease to be infinite, or become terminat-

ed, in restoring to it these six terms, it should be composed of

a definite or assignable number of terms, which it is not.

Therefore the surplus of the series must have the same sum

as the total. We can yet say that -, inasmuch as it is not

a magnitude, can receive no augmentation, so that 1+ 1 + 1+ >

.
i •

1
A

&c. +- must remain equal to -.

Hence, we might conclude that a finite quantity added to,

or subtracted from infinity, makes no alteration.

Thus, oq4z^=^ 00-

However, it may be necessary in this place to observe, that,

although an infinity cannot be increased, or decreased, by the

addition, or subtraction, of finite quantities ; still, it may be in-

creased or decreased, by multiplication or division, in the same

manner ^Btty other quantity ; Thus, if- be equal to infinity,

2 3
- will be the double of it, - thrice, and so on. See Euler's

Algebra, Vol. I.

Note. , -j-, -^-, —j— , &c. are considered to be frac-
I I'D TOU 1000

tions, in which the denominators are 1, ~j-, -j— , —j— , &c.
To To 0" Tooo"

Now, as 1 divided by any assignable quantity, however
great it may be, can never arrive completely at 0, consequent-

ly the fractions in their successive augmentations can never

arrive at infinity, except that unity or 1, be divided by a

quantity infinitely great ; that is to say, it must be divided by
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infinity ; hence we may conclude that -^ is in reality equal to

nothing, or qo-=0.

360. It may not be improper to take notice in this place of

other properties of nought and infinity.

I. That nought added to or subtracted from any quantity,

makes it neither greater nor less ; that is,

a-{-0= flt, and a—0=0.
II. Also, if nought be multiplied or divided by any quantity,

both the product and quotient will be nought ; because any

number of times 0, or any part of 0, is : that is,

Ox a, or ax 0=0, and -=rO.
a

III. From the last property, it likewise follows, that nought

divided by nought, is a finite quantity, of some kind or other.

For since x a=0, or Or^O x a, it is evident from the ordinary

rules of division, that

IV. Farther, if nought be multiplied by infinity, the pro-

1 a
duct will be some infinite quantity. For smce - or - =cx)

;

therefore, x oo =a.
361. It may be also remarked, that nought multiplied by

produces ; that is,

0x0= 0.

For, since x a=0, whatever quantity a may be, then, sup-

posing «= 0, 0x0= 0.

From this we might infer, according to the rules of division,

that the value of-=0, or that nought divided by nought is

nought, in this particular case.

Also, that 0, raised to any power, is ; that is, O*" =0 ; it

0"» a"*
follows that -— =- ; but if in a*"—'"=— (Art. 86), we suppose

a=0, which may be allowed, since a designates any number,

we have O^^t:-

If we really effect the division of by 0, we could put for

the quotient any number whatever, since any number, multi-

plied by zero, gives for the product zero, which is here the

dividend.

25
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This expression, 0", appears therefore to admit of an infi-

nity of numerical values ; and yet such a result as - can, in

many cases, admit of a finite and determined value. It is thus,

for example, that the fraction , in the hypothesis of <z=0,

, KxO
becomes —-—=-.

But, if at first we write this fraction under the form Ka*"—",
and that we put a= 0, we find that it becomes KxO"*—",

which is for m>« ; in case of m<w,or m=:n—d, we shall

K K
have (Art. 86), ^=77 ; which is equal to infinity, as has been

already observed ; finally, for 7n=7i, we can divide above and

below by a"», and the fraction is reduced to K, which is a finite

quantity.

362. If we suppose, in the fraction (Art. 358), a=2, we
find

,
-i-=l+2+ 4+ 8+164-324-64-f-, &c.,
1 -^Z

which at first sight it will appear absurd. But it must be re-

marked, that if we wish to stop at any term of the above se-

ries, we cannot do so without joining the fraction which re-

mains. Suppose, for example, we were to stop at 64 ; after

having written l4-2+4-f8-l-16-|- 32+ 64; we must join the

128 1^8
fraction -

—

-, or—-, or —128 ; we shall therefore have for
i — -o -— 1

the complete quotient 127— 128, than is in fact —1.

Here, however far the fractional term may be extended, its

numerical value, which is negative, will always surpass, by a

unit, that of the integral part, so that this is totally destroyed ;

and as in the hypotheses of a>l , we shall always subtract

more than what we will add, we shall never meet with the

result -.

363. These are the considerations which are necessary

when we assume for a numbers greater than unity ; but if

we now suppose a less than 1, the whole becomes more in-

telligible ; for example, let a=J, and we shall have =

--—r^=Y=2> which will also be equal to the following se-
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lies, l+Hi+i+rV+FS+A+Tk' &c., to infinity (Art.

358). Now, if we take only two terms of the series, we
shall have 1+^, and it wants J of being equal to 2 ; if we
take three terms, it wants J, for the sum is

1 J ; if we take

four terms, we have 1 J, and the deficiency is only J ; There-
fore, we see very clearly that the more terms of the quotient

we take, the less the diflerence becomes ; and that, conse-

quently, if we continue to take successive portions of this

series, the differences between those consecutive sums and
1 '

the fraction -

—

t=2, decrease, and end by becoming less than

any given number, however small it may be. The number
2 is therefore still a limits according to the acceptation of this

word.

Now, it may be observed, that if the preceding series be
continued to infinity, there will be no difference at all between

its sum and the value of the fraction -—j-, or 2.

364. A limit, according to the notion of the ancients, is some

fixed quantity, to which another of variable magnitude can never

become equal, though, in the course of its variation, it may ap-

proach nearer to it than any difference that can be assigned ;

always supposing that the change, which the variable quantity

undergoes, is one of continued increase, or continued diminution.

Such, for example, is the area of a circle, with regard to the

areas of the circumscribed and inscribed polygons, for, by in-

creasing the number of sides of these figures, their difference

may be made less than any assigned area, however small

;

and since the circle is necessarily less than the first, and
greater than the second, it must differ from either of them by
a quantity less than that by which they differ from each other.

The circle will thus answer all the conditions of a limit,

which is included in the above definition.

365. The preceding considerations are very proper to de-

fine the nature of the word limit ; but as algebra, which is

the subject we are treating of here, needs no foreign aid to

demonstrate its principles, it is necessary, therefore, to explain

the nature of the word limit, by the consideration of algebraic

expressions. For this purpose, let, in the first place, the

ax
very simple fraction be , in which we suppose that x may

be positive, and augmented indefinitely ; in dividing both terms

of this fraction by x, the result -

—

-, evidently shows that
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the function remains always less than a, but that it approaches
continually to a, since that the part j, of its denominator, di-

minishes more and more, and can be reduced to such a degree
of smallness as we would wish.

366. The difference between a and the proposed fraction be-

ing in general expressed by a ;—=—;— , becomes so much
x-ta x-^-a

smaller, according as x is larger, and can be rendered less

than any given magnitude, however small it may be ; so that

the proposed fraction can approach to a as near as we would
cix

wish : a is therefore the limit ofthe fraction —— , relatively to
x-\-a

the indefinite augmentation which x can receive. It is in the

characters which we have just expressed, that the true accep-

tation, which we must give to the word limit, consists, in order

to comprehend every thing which can relate to it.

367. If we had remarked in the preceding example, that by
carrying on, as far as we would wish, the augmentation of a?, we

could never regard, as nothing, the fraction —;— ; therefore
x-\-a

(IX

we would reasonably conclude, that the fraction —— ,though

it would approach indefinitely to the limit a, could never at-

tain a, and, consequently, cannot surpass it ; but it would be

wrong to insert this circumstance as a condition in the gene-

ral definition of the word limit ; we would thereby exclude

the ratios of vanishing quantities, ratios whose existence is

incontestable, and from which we derive much in analysis.

368. In fact, when we compare the functions ax and ax-\-

ac^y we find that their ratio, reduced to its most simple ex-

pression, is , and that it approaches nearer and nearer to
a-{-x

unity, according as x diminishes. It becomes exactly 1 , when
x=:0 ; but the quantities ax and ax-^-x"^, which are then rigor-

ously nothing, can they have a determinate ratio ? This is

what appears difficult to conceive ; and we cannot give a clear

idea of it but by presenting the quantity 1 as a limit to which

the ratio of the functions ax and ax-\-x^ can approach as near

a X
as we would wish, since the diflference, 1 -—=—;— , can

be. rendered less than any assignable magnitude, howeyey

small this magnitude may be.
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On the other hand, the ratio —-— , of the quantities ax and
a-\-x

ax-^-x"^ can not only attain unity when we make jf=0, but

surpass it when we suppose x negative, since it becomes then

a quantity which is greater than 1, when x<^a. This
a— x

circumstance appears not at all contrary to the idea of limit

;

for we can regard the value 1, which answers to a:=0, as a

term towards which the ratio of the functions ax and ax-^-x"^

tends, by the diminutions of the values of x, whether positive

or negative. For further illustrations of the world limit, and

what is meant by infinity, and infinitely small quantities or in-

finitesimals, the intelligent reader is referred to Lacroix's

Introduction to the Traite du Calcul Differentiel et du Calcul /n-

tegral, 4to. where these subjects are clearly elucidated.

369. Now, let a=^, in the fraction , and we shall
1 — fl

have J-^=3^l+J+^+^+^+^^+, &c. If we take

two terms, we find l+j, and the difference =^; three terms

give l-fl^, the error =iV '•> ^^^ f'O"^ terms the error is no more

than 3^4- Since, therefore, the error always becomes three

times less, it tends towards zero, which it cannot attain, and

the sum tends toward f, which is the limit.

370. Again, let us take a=}, and we shall have-—j =3

= 14-f+d+ 2T+¥r+^+&c. ; here, in the first place,

the sum of two terms, which is 1 +§ > is less than 3 by 1 +J ;

taking three terms, which make 2^, the error is f ; for four

terms, whose sum is 2^^ the error is ^.

371.Finally,fora=l wefind-i-j-=l+^=l+HT5+A

+ 25 6+ J &;c. ; the first two terms are equal to Ij, which gives

^^ for the error ; and taking one term more, we shall have

only an error of ^.
372. From the preceding considerations we may readily

conclude, that any fraction having a compound denominator

may be converted into an infinite series by the following rule :

and if the denominator be a simple quantity, it may be divided

into two or more parts.

25*
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RULE.

Divide the numerator by the denominator, as in the division

of integral quantities, and the operation continued as far as may
be thought necessary, will give the series required.

CiX
Ex. 1 . It is required to reduce into an infinite series.

a—X

1st rem.

ax
ax— x"^

x^
a

a—x

Quotient.

a;2 x^ 'X^ a
x-{^—h-i+-3. &c.

a:*

2d rem.

*/t3

4- &<:•
a^

The terms in the quotient are found thus ; dividing the

first remainder a;^, by a, the first term of the divisor a—x,
x^

we shall have — for the second term of the quotient, because
a

the division can be only indicated ; multiplying the divisor by

— , and subtracting the product from x^, the remainder is

—
^ again, dividing this remainder by a, the result Mdll be -^,

which is the third term in the quotient ; and, in like manner,

we might continue the operation as far as we please : But the

law of continuation is evident, because the powers of x increase

by unity in each successive term of the quotient, and the powers
of a increase by unity in the denominator of each of the terms

after the first.
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And the sum of the terms infinitely continued is said to be

equal to the original fraction . Thus we say that the

numerical fraction §, when reduced to a decimal, is equal to

.6666, (Sic, continued to infinity.

Ex. 2. It is required to convert into an infinite se-
a—x

ries.

a

a—X

X

a

a—x

Quotient.
net ftfuSf /m3

a

a a

^,&c.

In this example, if x be less than a, the series is convergent^

or the value of the terms continually diminishes ; but, when
X is greater than a, it is said to diverge : Thus, let a= 3 and

x=2, then l+^+^+^4., &c. =1 + f+f-h^4 , &c.

;

where the fractions or terms of the series grow less and less,

and the farther they are extended the more they converge or

approximate to 0, which is supposed to be the last term or limit.

Butifa=2, and x=3, then 1+-+^+^+, &c. =1 +
a a^ a^

?®f+f+V + « ^^•' ^" which the terms become larger and
arger. This is called a diverging series.

Ex. 3. It is required to convert -—;— into an infinite series.
1+a
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1

—a
—a— a^

1-fa

Quotient.

1—a+a^—«^+a*— a^-f-a®— , &c.

a*

— a^, &c.

Whence it follows, that the fraction —-— is equal to the
1 + a

series, l—a-\-a^—a^-{-a^— a^'\-a^— a'^-{'j &c.
372. If we make a=l, we have this remarkable compari-

son : = 1 — l + l — 1-fl — 1+ 1— J &c. to infinity ; which
1 + a

appears rather contradictory; for if we stop at -— 1, the se-

ries gives ; and if we finish at +1, it gives -f-l- The real

question, however, results from the fractional parts, which
(by division) is always +^ when the sum of the terms is 0,

and —^ when the sum is -|- 1 : because the complete quotient

is found by placing the remainder over the divisor, in the form

of a fraction, and annexing it to the terms in the quotient with

its proper sign ; but the remainder in the present case is +1,
or — 1 ; hence the fraction to be added is +^, or —^ ; and,

consequently,^ is the true quotient in the former case, and
1 —J, or i in the other. This will appear evident by taking

successive portions of the series ; thus, for six terms, we shall.... . ^1+1=1, and for seven terms, 1have l-l+ l — l-i-l

+ l-l + l-l+ l-i=i.
Scholium. Here we might infer, by conversion, that the

sum of an infinite series is found, when we know tlie fraction

which would produce such a series by actual division ; but,

although it is a fact that the fraction is a value of the series,

still it may not be the only one which would produce the same

series : Thus, the above series, 1 — 1 + 1—1+ 1— 1 + 1 — 1+ »

^i-c, to infinity, can be produced by several other fractions

besides the fraction ^.
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Let, for example, J be converted into an infinite series by

actual division : Now, it is plain that j^= — , and the

operation will stand thus :

1

1 + 1 + 1

—1-1
-1-1-1

1 + 1 + 1

Quotient.

1-141-1+ 1-1+, &c.

+ 1

+1+1+1

-1-1
-1-1—1

+ l,<fec.

In like manner, ^ will produce the above series, and so on.

374. Let us now make a=z^; and the preceding develop-

ment shall be

^=f=l-Hi-l+^-A+, &c.

:

The sum of two terms is J, which is too small by ^ ; three

terms give
-J,

which is too much by ^ ; for the sum of four

terms, we have f , which is too small by ^j, &;c.

We see here that the successive portions of the series are

alternately greater and less than the fraction f , which repre-

sent it ; but that the difference, whether it be in excess or

deficiency, becomes less and less.

375. Suppose again a=^, and we shall have

Now, by considering only two terms, we have f , which is

too small by ^ ; three terms make J, which is too much by

^ ; four terms give |^, which is too small by yj^, and so on.

376. The fraction -—.— may also be resolved into an infi-
I+a

nite series another way ; namely, by dividing 1 by a+1, as

follows :
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1+-
Qaot.

^ 111 1 L 1 ^f
AT /»« /7J /i4 /»5

a

1 1

a a2

1

a2

i+
1

a3

3, &C.

It is however unnecessary to carry the actual division any
farther, as we are enabled already to continue the series to

any length, from the law which may be observed in those

terms we have obtained ; the signs are alternately plus and mi-

nuSf and each term is equal to the preceding one multiplied by-.

It is thus by changing the order of the terms of the deno-

minator, we obtain the quotient under different forms, and that

we pass from a diverging series, for certain values of a, to a

converging series for the same values.

It may also be here observed, that in the division of the two
polynomials, if we deviate from the established rule (Art. 93),

we arrive at quotients which do not terminate :

Thus, for example, a'^—b^, divided by a-{-b, according to the

rule above quoted, gives for the quotient a— b', but if we divide

flZ— j2 by b-{-a, we shall arrive at a quotient which does not

terminate : thus,

b^

a^-\-

•T--

b Z»2

b-\-a
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-^2
52

&C.

Here, we can clearly see that the quotient will not termi-

nate, however far we may continue the operation, because we
have always a remainder.

In this case, by taking 6+ a for a divisor, we must, in order

to find the quotient a—b, divide the whole dividend by all the

divisor, that is to say, a^—b^ or (a+b)x{a—b) by a-f-^.

377. When there are more than two terms in the divisor,

we may also continue the division to infinity in the same man-

ner.

Ex. 4. It is required to convert :; ;—;,
into an infinite

series.

1

n— «2

!— a^+ a^

-a?

—O^+ flS— fl6

l~a+a2

Quot.

\-[-a— d^—a'^-\-a^-{-a'i &c.

a'—a^-\-a^

&c.

We have therefore
l-a+a2

l+a—a^'-a'^-\-a^-{-a''f SiG.
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to infinity: where, if we make <z=:l, we have
l-l+ I

1 = 1+ 1 — 1— 1+ 1+ 1, &c., which series contains twice the

series found, (Art. 372), 1 — 1 + 1— 1 + 1, &c. Now, as we
have found this to be equal to i, it is not extraordinary that

we should find J, or 1, for the value of that which we have
just determined.

By making a=rj, we shall have 3= ^ = 1+^—.i—^-f-Jj

+T-k-5T2' <^c.

If a=^, we shall have

9

And if we take the four leading terms of this series, we
have ^*, which is only ^\j less than f

.

Let us suppose again a=:f , and we shall have y = f=1 +f
9

'~2y~if"^T%V+' ^^- ^^^^ series is therefore equal to the

preceding one, and by subtracting one from the other, we ob-

tain ^—^—if "^tVq^' ^^••> which is necessarily =0.

378. The method which has been here explained, serves

to resolve, generally, all fractions into infinite series ; which
is often found, as has been observed by Euler in his Algebra,

to be of the greatest utility ; it is also remarkable, that an in-

finite series, though it never ceases, may have a determiate

value. It should likewise be observed, that from this branch

of Mathematics, inventions of the utmost importance have

been derived, on which account the subject deserves to be

studied with the greatest attention.

Ex. 5. It is required to convert into an infinite series.
a-\-x

Ans. l--+^-^+,&c.
a a^ «•*

c
Ex. 6. It is required to convert r into an infinite series.

a+ b

c be . b'^c Pc , .

Ans. ^+-T r+ '
^^'

a a/' a-^ a*

Ex. 7. It is required to convert into an infinite series.
a-\-x

Ans. -(1 H-r-—r+' ^^
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Ex. 8. It is required to convert into an infinite series.
a—x
O X X X

1 -I- a;

Ex. 9. It is required to convert into an infinite series.
1 —X

Ans. H-2a;+2a;3+2ar*+ 2a;5+, &c.

Ex. 10. Ii is required to convert into an infinite se-
(a4-a:)2

nes. Ans. 1 —r -+, &c.

Ex. 11. It is required to convert into an infinite series.

. a ax . ax^ , ax^
, «

Ans. -+_+_+_+. &c.

Ex. 12. It is required to convert into an infinite se-
a^-\-x^

1 x^ x^ a?'2 x^^
lies. Ans.-r ^4-— --f—— , &c.

a* a" a'" a^* a^°

Ex. 13. It is required to convert-, or——-, into an infi-

fi fi fi fi

nite series. Ans. -+-_+—+_+, &c.

Ex. 14. It is required to convert -or-—- into an infinite
4 5— 1

series.

^ II. INVESTIGATION OF THE BINOMIAL THEOREM.

379. Previous to the investigation of the Binomial Theorem^
it is necessary to observe, that any two algebraic expressions

are said to he identical, when they are of the same value, for all

values of the letters of which they are composed. Thus, x— \

z=x—\, is an identical equation : and shows that x is indeter-

minate ; or that the equation will be satisfied by substituting,

for or, any quantity whatever.

Also, (r-j-a) X {^—a) and x^—(P-, are identical expressions
;

that is, (a;+a) X (x— a)= a;2— a^
j whatever numeral values

may be given to the quantities represented by x and a.

26
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380. When the two members of any identity consist of the

same successive powers of some indefinite quantity x, the coej^-

cient of all the like powers of x, in that identity^ will be equal

to each other.

For, let the proposed identity consist of an indefinite num-
ber of terms ; as,

a+i.x4-ca;2+rfa;3-h&c. =a'-[-b'x-i-c'x'^-hd'x^-{-&,c.

Then since it will hold good, whatever may be the value of

X, let x=:0, and we shall have, from the vanishing of the rest

of the terms, a=a'.
Whence, suppressing these two terms, as being equal to

each other, there will arise the new identity bx-^-cx^-^-dx^-i^

&c. =b'x-}-c'x^-\-d'x^-\-SLc. which, by dividing each of its

ternas by x, becomes
b-\-cx-{'dx'^-^&c. =:b^-]-c'x-\-d'x^-\-&c.

And, consequently, if this be treated in the same manner as

the former, by taking a:— 0, we shall have b-=b\ and so on
;

the same mode of reasoning giving cz:zc\ d=d\ &c., as was
to be shown.

381. Newton, as is well known, left no demonstration of

this celebrated theorem, but appears, as has already been ob-

served, to have deduced it merely from an induction of parti-

cular cases, and though no doubt can be entertained of its truth

from its having been found to succeed in all the instances in

which it has been applied, yet, agreeably to the rigour that

ought to be observed in the establishment of every mathemati-

cal theory, and especially in a fundamental proposition of such

general use and application, it is necessary that as regular and

strict a proof should be given of it as the nature of the subject

and the state of analysis will admit.

382. In order to avoid entering into a too prolix investiga-

tion of the simple and well-known elements, upon which the

general formulae depends, it will be sufficient to observe, that it

can be easily shown, from some of the first and most common
rules of Algebra, that whatever may be the operations which
the index (m) directs to be performed upon the expression

{a-\-x)"', whether of elevation, division, or extraction of roots,

the terms of the resulting series will necessarily arise, by the

regular integral powers of x ; and that the first two terms of

this series will always be a'"-\-ma"'-'^x ; so that the entire ex-

pansion of it may be represented under the form

a"'+ TTifl'"- la?4 Ba'"-2a:2 4- Cffl'" -3+ Da'"-%3 4- & c.

Where B, C, D, &c. are certain numerical coefficients,

that are independent of the values of a and x ; which two lat-

ter may be considered as denoting any quantities whatever.
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383. For supposing the index m to be an integer, and taking

a=l, which will render the following part of the investigatioa

more simple, and equally answer the purpose intended; it is

plain that we shall have, according to what has been shown,

{l+x)"-i+mx-{-bx^-\-ccc^+dx^+, &c (1)

384. And if the index m, of the given binomial, be negative,

it will be found by division, that (l + x)—^, or the equivalent

expression

1 = =z\—mx—b'x'^—c'x^— , &c.
(l-fx)" l-{-mx-\-bx^±cx^, Slc.

where the law of the terms, in each of these cases is similar,

to that above mentioned.
m

385. Again, let there be taken the binomial (l-fac)'^, hav-

ing the fractional index — ; where m and n are whole positive

numbers.
m

Then, since (1 4-j;)'" is the nth power of (1 -j-a?)" ; and, as

above shown, {l-{-x)"'=i-{-ax-{-b'^-{-cx^-\-dx^-\-, <fec., such a

series must be assumed for (1 + a:)" , that, when raised to the

nth power, will give a series of the form l-\-ax-^bx^"\-cx^'{'

dx*-\-, &c.

But the nth or any other integral power of the series 14-

px-^qx'^^-{-rx^-\-sx^-\-, &c. will be found, by actual multiplica-

tion, to give a series of the form here mentioned ; whence, in

this case, also, it necessarily follows, that

m

(l-fa;)" =l-\-px-^qx'^-\-rx^-\-sx^-\-, <fec.

And if each side of this last expression be raised to the nth

power, we shall have {l-}-x)"'= [l-\-(px-{-qx^-{-rx^-{-sx*'^,

Slc.)]" ; or, by actual involution,

l-\-7nx-{-hx^-\-cx^-^, &c. =l-{-n(px-}-qx'^-\-, &c.)+, &c.

Whence, by comparing the coefficients of x, on each side

of this last equation, we shall have, according to (Art. 380),

np=m, or p=— ; so that, in this case,
n

(i+xf = l+%-{-qx^^rx^-\-sx^-\-, 6lc (2);

where the coefficient of the second term, and the several

powers of jf, follow the same law as in the case of integral

powers
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771

386. Lastly, if the index — be negative, it will be found
n

by division as above, that (1 + a;)
"^ or the equivalent expres-

sions,

-J—^=.^—J— =i_^^_jV-, &c. (3),

(l-\-xY 1-1

—

x-\-qx^, &c.
* n
where the series still follows the same law as before.

387. And as the several cases, (1,2, 3), here given, are of

the same kind with those that are designed to be expressed in

universal terms, by the general formula ; it is in vain, as far

as regards the first two terms, and the general form of the se-

ries, to look for any other origin of them than what may be
derived from these, or other similar operations.

388. Hence, because {a-\-x)"'=(f (l-j—V, if there be as-

sumed {a+ x)"'= a"' -\-ma'"-^x -f Bx^ + Cx^ -f- Dt*, &c. ; or

which will be more commodious, and equally answer the de-

sign proposed,

0+3-=»+^Q+M5>+M^h"^<= W'

it will only remain to determine the values of the coefficients

Aj , Ag, A3, &c. and to show the law of their dependence on

the index (m) of the operation by which they are produced.

389. For this purpose, let m denote any number whatever

X
whole or fractional, positive or negative ; and for -, in the

above formula, puty+a^; then, there will arise ll-\—j'"=[l

+ (y+^)]'"=[(l+y)+^]'"» w^ich being all identical expres-

sions, when taken according to the above form, will evidently

be equal to each other.

390. Whence, as the numeral coefficients, A^, Ag, A3, &c.

of the developed formulae, will not change for any value that

can be given to a and a?, provided the index (m), remains the

same, the two latter may be exhibited under the forms

[l4-(y+^)]'"= 14-A, {y-^z)-}-A, (3/+^)2+, &c.

[(H-y)+^]'"=(l+yr+A,^(l+y)—i+ A^2(i4.y).-2^&c.
And, consequently, by raising the several terms of the first

of these series to their proper powers, and putting l-{-i/=pin.

the latter, we shall have

&c. =p"'+A^p'^-^z+ A^p'^'-^z^-{-A^P"'-^z^'\-, <&C.
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1-fA,
Ajy-f2A,v
A^-^-f-3A^2
A3y3_|_4A^y^

;2+A2

-f-3A3y

+ 10Ay

;j3+&C. (5).

391 . Or, by ordering the terms, so that those which are af-

fected with the same power of z may be all brought together,

and arranged under the same head, this last expression will

stand thus :

^24. A3

+ 4A,y
4-10A55/2

+ 30A^3
&c.

=/) -f Ajp"'- 1;? 4- A2p«-222 4. Agpm-S^S 4. <fe c

.

In which equation it is evident, that both y and z are inde-

terminate, and independent of the values Ap A2, A3, &c.
;

since the result here obtained arises solely from the substitu-

tion of the sum of these quantities for - in equation (4).

392. Hence, as the first terms and the coefficients, or mul-

tipliers of the like powers of z, in these two expressions, are,

in this case, identical, we shall have, by comparing the first

column of the left-hand member with the first term of that on

the right,

1 + A,y4-A2y^+A3y3+A4y*+ <fec. =;)^
which is an identity that verifies itself; since, by hypothesis,

{\-\-yY~p^% and, according to the general formula, (14-y)'"

= l+ A,y+A,y24.A3y34. &c.

393. Also, if the second of these columns be compared in

like manner, with the second on the right, there will arise the

new identity,

Aj4-2A2y4-3A3y2-|-4A4y3=A,p'"-M which will be suffi-

cient, independently of the rest of the terms for determining the

values of the coefficients Ap Ag, A3, &c.

For since A^p" :A/-: (H-Ajy4-A^24.A3y3+
JO 1+y

&c.), the equating this series with the last, and multiplying

the left-hand side by l+y, will give

[A,+ 2A,y+3A3y24.&c.](l-f-y)=A^-fAAy+A^A^24.A,
A33/3 -f&c.

And, therefore, by actually performing the operation, and

arranging the terms accordingly, we shall l\,ave

A,+2A,
+ A,

y+3A3
+2A, + 3A3I

= A^4-A,A,y-l-A,A,yHA,A3y34. &c.

394. From which last identity, there will obviously arise,

by equating the homologous terms of its two members, the fol-

iowinor relations of the coefficients :

26- . .
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2A3=A,Aj-Aj

3A3 AjAg 2A2

4A^=AjA3-3A.

nA :AjA _ -("-DA

or

A,=

A.=A.
A.(A.-l)

2
A,(A,-2)

A3(A,-3)

A_.-[A,-(»-l)]

And, consequently, as the coefficient A^ of the second term

of the expanded binomial, has been shown to be equal, in all

cases, to the index (m) of the proposed binomial, the last of

these expressions will become of the form

Alburn

m(m-l)
^'-—2
_m{m— l).{m^2)

^'
2:a

. _m(m— l).(m-2).(m— 3)^*~ 2X4
m(m-^l).(m-2).(m~3) .... [m~(n-~l)

]
-""

2.3.4.5 n
~'

where the law of the continuation of the terms, from A^ to the

general term A„, is sufficiently evident.

395. Whence it follows, that, whether the index m be in-

tegral or fractional, positive or negative, the proposed binomial

(a+a?)"*, when expanded, may always be exhibited under the

form

••-f[l+m(-^)+
m(m^l) fx\^m{m — l).(m--2)/ rcX^

2 \a/ "^ 2.3 \a/
"^

or ia-^xY=
. , «_i .

»i(»»— 1) ^2 I
M»w-1) (»i— 2) „ , 3 -

t^-^fnd!^^x-\- -^ a'^^x-\—^^ -^- 'a'^—^x^ &c.

And if— be substituted in the place of -\—, the same for-
a a

mula will, in that case, be expressed as follows ;
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, ,
m(m— 1) _ _

or (a—x)"'=ar*—ma'^—^x-\--^—-—la''^^*'—

'"<'"-')
• ^"-^\''-V, &c.

2.4

Where it is to be observed, that the series, in each of these

cases, will terminate at the (m-}-l)th term, when m is a whole
positive number ; but if m be fractional or negative, it will

proceed ad infinitum ; as neither the factors m~ 1, m—2, m—
3, &c. can then become =0.

396. To this we may add, that in the two last instances

here mentioned, the second term (- ) of the binomial must be

less than 1, or otherwise the series, after a certain number of

terms, will diverge, instead of converging.

397. It may also be farther remarked, that when a and x
in these formulae, are each equal to 1, we shall have, agree-

ably to such a substitution, (a+ w)'" =(1 + 1)'"=2'"= 1 +wi-h

7n{m-~\) m{m—l) . (m—2) m(m— 1) . {m—2) . (m— 3)

2 ' 2l '

2.3.4
*

&c., and

(a-a:)'"=i(l--l)'»=0'»=0=l-m4-
m{m— l) _ m(m— l) . (m—2) m{m— l) . (m—2) . (m—3)

2 2^3
*"

2.3.4

— , &c.

From which it appears, that the sum of the coefficients

arising out of the development of the mth power, or root of

any binomial, is equal to 2'"
; and that the sum of the coeffi-

cients of the odd terms of the mth power, or root of a resi-

dual quantity, is equal to the sum of the coefficients of the

even terms.
m 0—1

398. Finally, let m=0 ; then (a+x) =za -\- o x a x +
?i2z-_LV"V+, &c., =a\o . --fO . ^4-, &c.

z a a*"

where it is evident that the series terminates at the first term

(a°) ; since the coefficient of every successive term involves

for one of its factors ; therefore (a-\-xf=aP=\y (Art. 86).

And, if a=a; ; then (a—a;)o=aO=l, that is, 00=1. Hence, it
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follows, that any quantity, either simple or compound, raised

to the power 0, is equal to unity or 1 ; and also that 0^ is in.

all cases equal to unity or 1

.

399. Although it has been observed, that 0° appears to

admit of an infinity of numerical values ; because it is equal

to §, which is the mark of indetermination
;
yet it is plain,

from what is above shown, that 0*^ is only one of the values of
0"*

J,
which, in that particular case, where —=0^=-, is equal

to unity. The intelligent reader is referred to Bonnycastle's
Algebra, 8vo. vol. ii. Also, Lagrange's Theorie des FonC'

tions Analytiques, and Lecons sur le Calcul des Fonctions.

§ III. APPLICATION OF THE BINOMIAL THEOREM TO THE
EXPANSION OF SERIES.

400. The method of expanding any binomial of the form

(aj^ir)'", when m is any whole number whatever, has been

already pointed out, and it has also been observed, that the

series will always terminate, when m is a whole number :

But when m is a negative number, or a. fraction, then the se-

ries expressing the value of {a-^-xY does not terminate.

Let m='^, and substitute
''

for m in the series then

(a+xY =a^-f ^ a"'\-{- ' ^'^ ^a\ V+, &c.

flirt ri/x^\
H- -^-

—

^( -2-) 4-> &c., which is a general expression for find-

ing the approximate value of any binomial surd quantity, *

being either positive or negative, n and r any whole numbers

whatever.

Ex. 1. Find the approximate value of ^-^ (P-\-c^) or (^^-f c^)^.

Here a=b^

r=3

.-. a^=^ b^=b
;

n/x\ __ 1 /c\ __ c^

7W~3VPJ~"3^3'
n{n-\)(x\ l(-3)/c6

2r2 W) 2.32 UV"" 326«
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n(n-r).{n-2r)/x^\ _ l(l~3).(l-6) /a:9 \ _5c»
^

2'.3r^ ~w)~ 2.3.33 U9/~3469'*
<fec. = <fcc.
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Ex. 2. Find the value of
(i+c)

or (6-|-c)—2in a series.

Here a=b'

c=x

n=—

2

r=l

1
.•.a7=i-=-^;

n{m—r)/x\_ —2{—

2

— 1) fc^W~ 2

&c.= &c.

3c2

J 2r

_. 1 1 /, 2<r
,
3c2 4c3 V

Hence -^__^=--(l--^+---_3 +&c.
j

- i
401. Nowlet n=l,(a+ic)'-=(a+a:)'=7(a+a;); and a

/ =Y a ; hence the series (Art. 398) is transformed into y

+ &C) (A)-
,

Let <.= l..= l; then ^.2=1+^+1^^+0^^
+ &C (B).

Thus, if r=2, then V2 = l+^-^a+^-l+r.-lr^
+&C. Andifr=3,

3 32^3*

By means of the series marked A, the rth root of many other

numbers may be found ; if a and x be so assumed, that a? is a

small number with respect to a, and^ a, a whole number.

Ex. 3. It is required to convert y 5, or its equal y'(4+l),

into an infinite series.

Here a=4, a;=l, r=2 ; then{/ a=i'/4=2, and we have

V{4+l)=2{l+ i^-i^+ii-245+&c.)

Ex. 4. It is required to convert ^ 9, or its equal 3/ (8+ 1)
into an infinite series.

25 211 2711
then^3=l+5-^,+ii-^,-+-3^+-3^+ &c
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Here a— 8, x=l, r=3 ; theny a=y 8=2, and we obtain

3/ .8+1)=^ 9=2
I

l +3L__L_+_i__|l+&,.

402. The several terms of these series are found by sub-

stituting for a, X, and r, their values in the general series mark-

ed (A) or (B), and then rejecting the factors common to both

the numerators and denominators of the fractions.

Thus, for instance, to find the 5th term of the series express-

ing the approximate value of
-J/ 9, we take the 5th term of the

general series marked (A), which is

(l-r).(l-2r).(l-3r)/a:n , ^ i j o

.. the value of the fraction is -^^^^i \,)= --^^^s
2 5 2 5=— ' =— '

. In this manner each term of the

series is calculated ; and the law which they observe is, that

the numerators of the fractions, consist of certain combinations

of prime numbers, and the denominators of combinations of cer-

tain powers of a and r.

3

Ex. 5. Find the value of (c^— a;^)^ in a series.

. ./ 3a:2 3a:* 5x^ - \
Ans. Vc3(l-—-—-^—-&c.)

Ex. 6. It is required to convert ^ 6, or its equal ^/ (8—2),

into an infinite series.

Ans.2(l-l-3l,-3^-&c.)

Ex. 7. It is required to extract the square root of 10, in an

1 2 13
infinite series. Ans. 3+ ^-^ _-— +^^^^5-&c.

Ex. 8. To expand a'^(a^—x) ^ in a series.

Ex. 9. To find the value of^ (a'^+ x^) in a series.

. x^ 2a:io
.

6a;i5

^"^- «+ 5^r-25al+ l25^r- ^''

Ex. 10. Fnd the cube root of l^x^, in a series.

a;3 a;6 5x^ 10x^2



CHAPTER XIII.

ON ^^ ^^

•^ PROPORTION AND PROGRESSION.

^ I. ARITHMETICAL PROPORTION AND PROGRESSION.

403. Arithmetical Proportion is the relation which two
numbers, or quantities, of the same kind, have to two others,

when the difierence of the first pair is equal to that of the se-

cond.

404. Hence, three quantities are in arithmetical proportion,

when the difference of the first and second is equal to the dif-

ference of the second and third. Thus, 2, 4, 6 ; and a, a-\-b,

a-\-2b, are quantities in arithmetical proportion.

405. And four quantities are in arithmetical proportion,

when the difference of the first and second is equal to the

difference of the third and fourth. Thus, 3, 7, 12, 16 ; and
a, a-\-b, c, c-\-b, are quantities in arithmetical proportion.

406. Arithmetical Progression is, when a series of

numbers or quantities increase or decrease by the same com-
mon difference. Thus 1 , 3, 5, 7, 9, <fcc. and a, a-{-d, a-{-2dy

a-}-3tf, &LC. are an increasing series in arithmetical progres-

sion, the common differences of which are 2 and d. And 15,

12, 9, 6, ^&.c. and a, a—d, a— 2d, a— 3d, &c. are decreasing

series in arithmetical progression, the common differences of

which are 3 and d.

407. It may be observed, that Garnier, and other Euro-

pean writers on Algebra, at psesent, treat of arithmetical pro-

portion and progression under the denomination of equi-differ-

ences, which they consider, as Bonnycastle justly observes,

not without reason, as a more appropriate appellation than the

former, as the term arithmetical conveys no idea of the nature

- of the subject to which it is applied.

408. They also represent the relations of these quantities

under the form of an equation, instead of by points, as is usu-

ally done ; so that if a, b, c, d, taken in the order in which
they stand, be four quantities in arithmetical proportion, this
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relation will be expressed by a—6=rc

—

d\ where it is evi-

dent that all the properties of this kind of proportion can be
obtained by the mere transposition of the terms of the equa-

tion.

JS^9^^us, by transposition, a-\-d:=.h-\'C. From which it

aj^ear^roat the sum of the two extremes is equal to the sum of
the two means : And if the third term in this case be the same
as the second, or c—b, the equi-difference is said to be con-

tinued, and we have

a-\-d—2b ; or h=l{a-\-d)
;

where it is evident, that the sum of the extremes is double the

mean ; or the mean equal to half the sum of the extremes.

410. In like manner, by transposing all the terms of the

original equation, a—b=ic— d, we shall have b—a= d-^c;

which shows that the consequents b, d, can be put in the

places of the antecedents a, c ; or, conversely, a and c in the

places of b and d.

411. Also, from the same equality a—b=ic—d, there will

arise, by adding m—-w to each of its sides,

{a-\-m)-{b-\-n)= {c+ m)--{d-\-n)
;

where it appears that the proportion is not altered, by aug-

menting the antecedents a and c by the same quantity m, and

the consequents b and d by another quantity n. In short,

every operation by way of addition, subtraction, multiplica-

tion, and division, made upon each member of the equation,

a— bz=c—d, gives a new property of this kind of proportion,

without changing its nature.

412. The same principles are also equally applicable to

any continued set of equi-differences of the form a—b=^b—
c=c—d=:d—e, &c. which denote the relations of a series of

terms in what has been usually called arithmetical progres-

sion.

413. But these relations will be more commodiously shown,

by taking a, b, c, d, &-c. so that each of them shall be greater

or less than that which precedes it by some quantity d^ ; in

which case the terms of the series will become
a,a^d\ a^2d\ a±3d', a^4d', <&c.

Where, if I be put for that term in the progression of which

the rank is n, its value, according to the law here pointed out,

will evidently be

l=a±{n—l)d'
]

which expression is usually called |he general term of the se-
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ries ; because, if 1, 2, 3, 4, &;c, be successively substituted

for n, the results will give the rest of the terms.

Hence the last term of any arithmetical series is equal to the

first term plus or minus, the product of the common difference^

by the number of terms less one.

414. Also, if s be put equal to the sum of any number of

terms of this progression, we shall have

s=^a-{-{a:^d')+ {a±2d)-h .... 4-[«±(n-lK].
And by reversinsj the order of the terms of the series,

;yz=[a-l-(;i-l)ri']-f-[a-l-{n—2K]4- • • • {a±d')+ a.

Whence, by adding the corresponding terms of these two
equations together, there will arise

2^=:[2a±(/t— l)c/']-h[2«4-(n— 1)^/'], (fee. to n terms.

And, consequently, as all the « terms of this series are equal

to each other, we shall have

2s=:n[2aJtz{Ti-l)d'], or sz=:l[2a:^{n-l)d'] . . (1).

415. Or, by substituting / for the last term a±(n— l)(i', as

found above, this expression (1) will become
s^l-{a-{-l) .... (2).

Hence, the sum of any series of quantities in arithmetical

progression is equal to the sum of the two extremes multiplied

by half th^ number of terms.

It may l>e observed, that from equations (1) and (2), if any
three of the five quantities, cr, (/', w, /, s, be given, the rest may
be found.

416. Let /, as before, be the last term of an arithmetic se-

ries, whose ^r^i term is (a), common difference {d')^ and n«»i-

her of terms (n) ; then l=a-\-{n-~\)d' ;
.*. d^= -. Now

n— 1

the intermediate terms between the first and the last is n—2

;

let n— 2= m,then n— l=m-|-l. Hence, rf'=——, which
m-\- 1

gives the following rule for finding any number of arithmetic

means between two numbers. Divide the difference of the two
numbers by the given number of means increased by unity, and
the quotient will be the common difference. Having the com-
mon difference, the means themselves will be known.

Example 1. Find the sum of the series 1, 3, 5, 7, 9, 11,
&c. continued to 120 terms.

"''';cM-.^-[2a-|-(n-lK];-=4opxl-f(120-

«=120'i 1)2] = 14400.

27
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Ex. 2. The sum of an arithmetic series is 567, ihafirst term
7, and the common difference 2. What are the number ofterms ?

Here 5=z567, \ .•.2s= n[2a+{n — l)^] = n[I4+ (n — 1)2]
a= 7, > =:14n-f2n2— 2/1=: 1134 ;

.-. n2-|-6n+9=
d':=z2 ; )576, and n=:21.

Ex. 3. The sum of an arithmetic series is 1455, x\\e first

term 5, and the number of terms 30. What is the common dif-

ference? Ans. 3.

Ex. 4. The sum of an arithmetic series is 1240, common
difference 4, and number of terms 20. What is the j^r^f term ?

Ans. 100.

Ex. 5. Find the sum of 36 terms of the series, 40, 38, 36,^
34, &c. Ans. 108: "/So

Ex. 6. The sum of an arithmetic series is AAO, first term 3,

and common difference 2. What are the number of terms ?

Ans. 20.

Ex. 7. A person bought 47 sheep, and gave 1 shilling for

the^tr.?^ sheep, 3 for the second, 5 for the third, and so on.

What did all the sheep cost him ? Ans. 110/. 9^.

Ex. 8. Find six arithmetic means between 1 and 43.

Ans. 7, 13, 19, 25, 31, 37.

§ II. GEOMETRICAL PROPORTION AND PROGRESSION.

417. Geometrical Proportion, is the relation which two
numbers, or quantities, of the same kind, have to two others,

"when the antecedents or leading terms of each pair, are the

same parts of their consequents, or the consequents of their

antecedents.

418. And if two quantities only are to be compared together,

the part, or parts, which the antecedent is of the consequent,

or the consequent of the antecedent, is called the ratio ; ob-

serving, in both cases, to follow the same method.

419. Direct proportion, is when the same relation subsists

between the first of four quantities, and the second, as between
the third and fourth.

Thus, a, ar, b, br, as in direct proportion.

420. Inverse, or reciprocal proportion, is when the first and
second of four quantities are directly proportional to the re-

ciprocals of the third and fourth.

Thus, a, ar, br, b, are inversely proportional ; because a, ar,

V-, J,
are directly proportional.

421. The same reason that induced the writers mentioned
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in (Art. 407), to give the name of equi-differences to arithmeti-

cal proportioriHls, aliso led ihem to apply that of equi-quotients

to geometrical proportionals, and to express their relations in

a similar way by means of equations.

Thus, if there be taken any four proportionals, a, b, c, rf,

which it has been usual to express by means of points, as

below,

a : b : : c : d.

This relation, according to the method above-mentioned,

ci c
will be denoted by the equation 7=^, (Art. 24); where the

equal ratios are represented by fractions, the numerators of

which are the antecedents, and the denominators the conse-

quents. Hence, ad=zbc.

422. And if the third term c, in this case, be the same as

the second, or cz=b^ the proportion is said to be continued,

and we have ad=b^, b=\/ad ; where it is evident, that the

product of the extremes of three proportionals, is equal to the

square of the mean : or, tAat the mean is equal to the square root

of the product of the two extremes.

423. Also, from the equality, -=-, there will result
a

cA-d=
—J- : for, by adding or subtracting I from each side of the

equation
; then T:tl = T=tI ;

•'• -t^=-^> and a^t^ :b : :

a a
C:^d : d.

Hence, when four quantities are proportionals, the sum or dif-

ference of the first and second is td the second as the sum or dif-

ference of the third and fourth^ is to the fourth.

424. In like manner, if a : b : : c : d\ then, ma : mb : : ^c :

\d. FoT~=j ; .-.(Art. 118), ^=f^ ; and, ma : mb : : ^c i

b d ^ ' mh id
•y.

Hence, whenfour quantities are proportionals, if the first and
second be multiplied, or divided by any quantity, and also the

second and fourth, the resulting quantities will still be propor-
tionals.

a c a" c"
425. Also, i( a : b : : c : d; then y=- ;

.-. --=__ and a"

:

b d b" d"

b" : : c^ : d" ; where n may be any number either integral or
fractional.
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Hence, iffour quantities he proportionals, any power or root

of those quantities will be proportionals.

And, by proceeding in a similar manner, all the properties

and transformations of ratios and proportion, can be easily ob-

a c
tained from the equality -=-, or ad=zbc.

a

426. In addition to what is here said, it may be observ-

ed, that the ratio of two squares is frequently called duplicate

ratio ; of two square roots, suhduplicate ratio ; of two cubes,

triplicate ratio ; and of two cube roots, suhtriplicate ratio.

See the Appendix at the end of this Treatise, where the doc-

trine of ratios and proportion is fully explained and clearly

illustrated.

427. Geometrical Progression, is when a series of num-
bers, or quantities, have the same constant ratio, or which in-

crease, or decrease, by a common multiplier, or divisor. Thus,
the numbers 1, 2, 4, 8, 16, &c. (which increase by the continual

multiplication of 2), and the numbers 1, i, i, Jy, &c. (which
decrease by the continued division of 3, or multiplication of ^),
are in Geometrical Progression.

428. In general, if a represents \\\e first term of such a

series, and r the common multiplier or ratio ; then may the

series itself be represented by a, ar, ar"^, ar^, ar'^, &c., which
will evidently be an increasing or decreasing series, according

as r is a whole number, or a proper fraction. In the foregoing

series, the index of r in any term is less by unity than the num-
ber which denotes the place of that term in the series. Hence,
if the number of terms in the series be denoted by (n), the last

term will be ar'-^

429. Let I be the last term of a geometric series, then /=
I '^^ll

af-'^ and r"-^=-; .'. r= ^ /- The number of interme-
a \ a

diate terms between the first and last is n—2 ; let n—2=»»,
"•+1 //

then n— l=m-|-l, and r=: /-, which gives the following

rule for finding any number of geometric means between two
numbers ; viz. Divide one number by the other, and take that

root of the quotient which is denoted by m+1 ; the result will

be the common ratio. Having the common ratiOf the means are

found by multiplication.

430. Let S be made to denote the sum of n terms of the

series, including the first, then

a+ ar-\-ar^+ ar^+ -{-a7^-H«r"-^=^S,
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Multiply the equation by r, and it becomes
ar -i- ar'^ -\- ar^ -{- -\-ar'*—^=ar'*~'^-\-af=zrS.

Whence, subtracting the first of these equations from the

second, observing that all the terras except a and ar^ destroy

each other, we shall have

ar''-a.=rS~S=(r-l)S; and .-. S=^^^- . . . (1).

Or, by substhuting I for the last terra ar'^-^j as above found,

this expression will become S= ; from which two

equations, if any three of the quantities a, r, n, /, S, be given,

the rest may be found. Thus, from the second equation,

a^rl-{r-l)S ; r=|=^, and iJlrJ)^':
o— I T

In the formula (1), when r=l, we have 8=-—r=7»-

Now, the value of the symbol ., in this particular case, shall

be equal to na ; because the series a-\-ar-{-ar'^-\- ....
^y-n—2_|_Qy.n—

1^ for r=:l, bccomcs a-}-a+a+a+> &c., and the

sum of n terms of this series, is evidently equal to na ; there-

fore S=-— na. Or, since -—=a .
- — «x—— =

r~\ r-^l \—r
a.[r'»-'4-r'»-2+r''-3. . +r4-l]=:o X [l+r+r2-f-r3 . . r"—^],

which, in the case of 7=1, becomes a . [l-j-l+ l-f*? &c.],and
the sum of n terms of the series 1-f 1-f 1+ , <Sfc. is evidently

1— r"

equal to n ; therefore S=a . =a .- = a . (1 + 1 + 1+,
1 — r

&c.) =:aXn=an, as before.

431. When the common factor r, in the above series, is a

whole number, the terms a, ar, ar"^, ar"—^ form an increasing

progression ; in which case n may be so taken, that the value

of the sum (S) shall be greater than any assignable quantity.

432. But if r be a proper fraction, as -„ the series a, „ -t^-,

—, will be a decreasing one, and the expression (Art. 430),

by substituting -> for r, and changing the signs of the numera-

7*
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tor and denominator, will become —^—-

—

-
; where it is

r —

1

plain, that the term -— will be indefinitely small when n is

indefinitely great ; and consequently, by prolonging the se-

qt'
Ties, S may be made to differ from ——- by less than any as-

signable quantity.

433. Whence, supposing the series to be continued indefi-

nitely, or without end, we shall have in that case, S=——- ;

r —

1

which last expression is what some call the radix, and others

the limit of the series ; as being of such a value, that the sum
of any number of its terms, however great, can never exceed

it, and yet may be made to approach nearer to it than by any
given difference.

434. If the ratio, or multiplier, r, be negative, in which
case the series will be of the form

a— ar-f ar'— ar^-j- -J- ar''"^ where fhe terma

are -|- and •— alternately, we shall have S= ^—XT~*

And if r be a proper fraction, -7, as before, we shall have,
r

for the sum of an indefinite number of terms of the series a—

r' ' r'^ .r'^ ' r'+l

Ex. 1. Find the sum of the series, 1, 3, 9, 27, &c. to 12

terms.

Herea=l,>v af-a \X^^'^-\ _ S\^-'\

/•=3, / •'•

^-7::ir ~ 3-1 " 2

'^^ 12
; > _5_3H£-J_53H40 ^265720.
; " 2 2

Ex. 2. Find three geometric means between 2 and 32.

7n=3 : )

and the means required are 4, 8, \().

Ex. 3. The first term of a geometrical progression is 1,

the ratio 2, and the number of terms 10. What is the sum oi

the series?
Ans. 1023
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Ex. 4. In a geometrical progression is given the greatest

term =1458, the ratio =3, and the number of terms =7, to

find the least term. Ans. 2.

Ex. 5. It is required to find two geometrical proportionals

between 3 and 24, and four geometrical means between 3 and

96. Ans. 6 and 12 ; and 6, 12, 24, and 48.

Ex. 6. Find two geometric means between 4 and 256.

Ans. 16, and 64.

Ex. 7. Find three geometric means between ^ and 9.

Ans. J, 1, 3.

Ex. 8. A gentleman who had a daughter married on New-
year's day, gave the husband towards her portion 4 dollars,

promising to triple that sum the first day o. every month, for

nine months after the marriage ; the sum paid on the first day
of the ninth month was 26244 dollars. What was the lady's

fortune ? Ans. 39364 dollars.

Ex. 9. Find the value of l+^+ J+f+ <Stc. ad infinitum.

Ans. 2.

Ex. 10. Find the value of l+J-fT\+tJ+ <^c. ad infini-

Ans. 4.

^ III. HARMONICAL PROPORTION AND PROGRESSION.

435. Three quantities are said to be in harmonical propor-

tion, when the first is to the third, as the difference between
the first and second is to the diff'erence between the second
and third.

Thus, a, b, c, are harmonically proportional, when
a : c : : a— b : b— c, or a : c : : b—a : c— b.

And c, [since a{b—c)=c(a-~b) or ab=(2a—b)c], is a third

harmonical proportion to a and b, when c=- -r.

436. Four quantities are in harmonical proportion, when the

first is to the fourth, as the difference between the first and
second is to the diff'erence between the third and fourth.

Thus, a, b, c, d, are in harmonical proportion, when
aid:: a— b : c— d, or a : d : : b—a : d— c.

And d, [since a(c—d)— d(a—b) or ac=r:(2a— ^)c?], is a

fourth harmonical proportional to a, 6, c, when d=z -.

In each of which cases, it is obvious, that twice the first

term must be greater than the second, or otherwise the pro-

portionality will not subsist.
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437. Any number of quantities, a, 5, c, d, c, &c. are in har-

ttionical progression, if a : c :: a— b : b—c; b : d : : b—c :

c—d ; c : e : : c—d : d— e, &c.

438. The reciprocal of quantities in harmonica! progression^

are in arithmetical progression. For, if a, b, c, d, e, &c. are

in harmonica! progression ; then, from the preceding Article,

we shall have bc-jrab=2ac ; dc-\-bc=2db ; ed-\-cd—2eCf

&*c. Now, by dividing the first of these equalities by aba
;

the second by bdc; the third by cde ; &c., we have, —1--=

2 1,12 1,12. rru f 1 1 1 ^ 1
je

T J T+:j=- 5 -+-=:; 5 &c. Therefore, -, j-, -, -, -, &c.
a c c e a a o c a e

are in arithmetical progression.

439. An harmonical mean between any two quantities, is equal

to twice their product divided by their sum. For, if a, x, b,

are three quantities in harmonical proportion, then, a : b : :

a—x:x—b : .•.ax—ab=ab—bXj2Lndx=——7.

Ex. 1. Find a third harmonical proportional to 6 and 4.

Let 0;= the required number, then 6 : x : : 6—4 : 4—x;
.-. 24— 6a:=2a:, and x=2.

/ Ex. 2. Find an harmonical mean between 12 and 6.

Ans. 8.

Ex. 3. Find a third harmonical proportional to 234 and

144. Ans. 104.

Ex. 4. Find a fourth harmonical proportional to 16, 8, and

3. Ans. 2.

^ IV. PROBLEMS IN PROPORTION AND PROGRESSION.

Prob. 1. There are two numbers whose product is 24, and

the difference of their cubes : cube of their difference ; : 19 : 1.

What are the numbers ^

Let x= the greater number, and y= the lesser.

Then, a;y=24, and x^—y^ : (oc—yY
By expansion, x^—y^ : x^—3x^y-{-3xy^—y^

.'. 3x^y—3xy^ : {x—yY
and, dividing by x—y, 3xy : {x—yY

buta:y=24; .-.72 : (x—y)^

19

19

18

18

18



PROPORTIOxN: AND PROGRESSION. 309

Hence, 18 (ar—y)2=72, or (x—i/Y= 4 ;

.•.a;~y=2.
Again, x^—2xi/+y'^= 4,

and 4x1/ =96,

.•.a:2+2xy+y2_ioo, and a:-}-y=10,

but a?—v= 2,

.'. a:=:::6, and y= 4.

Prob. 2. Before noon, a clock which is too fast, and points

to afternoon time, is put back five hours and forty minutes
;

and it is observed that the time before shown is to the true time

as 29 to 105. Required the true lime.

An.s. 8 hours, 45 minutes

Prob. 3. Find two numbers, the greater of which shall be

to the less as their sum to 42, and as their difl'erence to 6.

Ans. 32, and 24.

Prob. 4. What two numbers are those, whose difference,

sum, and product, are as the numbers 2, 3, and 5, respectively ?

Ans. 10, and 2.

Prob. 5. In a court there are two square grass-plots ; a side

of one of which is 10 yards longer than the other ; and their

areas are as 25 to 9. What are the lengths of the sides ?

Ans. 25, and 15 yards.

Prob. 6. There are three numbers in arithmetical progfres-

sion, whose sum is 21 ; and the sum of the first and second
is to the sum of the second and third as 3 to 4. Required the

numbers.

Ans. 5, 7, 9.

Prob. 7. The arithmetical mean of two numbers exceeds
the geometrical mean by 13, and the geometrical mean ex-

ceeds the harmonical mean by 12. What are the numbers ?

Ans. 234, and 104.

Prob. 8. Given the sum of three numbers, in harmonical
proportion, equal to 26, and their continual product =576 ; to

find the numbers.

Ans. 12, 8 and 6.

Prob. 9. It is required to find six numbers in geometrical

progression, such, that their sum shall be 315, and the sum of

the two extremes 165.

Ans. 5, 10, 20, 40, 80, and 160,

Prob. 10. A number consisting of three digits which are iu



310 PROPORTION AND PROGRESSION.

arithmetical progression, being divided by the sum of its di-

gits, gives a quotient 48 ; and if 198 be subtracted from it, the

digits will be inverted. Required the number.

Ans. 432.

Prob. 11. The difference between the first and second of

four numbers in geometrical progression is 36, and the diffe-

rence between the third and fourth is 4 ; What are the num-
bers ?

Ans. 54, 18, 6, and 2.

Prob. 12. There are three numbers in geometrical pro-

gression ; the sum of the first and second of which is 9, and
the sum of the first and third is 15. Required the numbers.

Ans. 3, 6, 12.

Prob. 13. There are three numbers in geometrical pro-

gression, whose continued product is 64, and the sum of their

cubes is 584. What are the numbers ?

Ans. 2, 4, 8.

Prob. 14. There are four numbers in geometrical progres-

sion, the second of which is less than the fourth by 24 ; and

the sum of the extremes is to the sum of the means as 7 to 3.

Required the numbers.

Ans 1, 3, 9, 27.

Prob. 15. There are four numbers in arithmetical progres-

sion, whose sum is 28 ; and their continued product is 585.

Required the numbers.

Ans. 1, 5, 9, 13.

Prob. 16. There are four numbers in arithmetical progres-

sion ; the sum of the squares of the first and second is 34
;

and the sum of the squares of the third and fourth is 130.

Required the numbers.

Ans. 3, 5, 7, 9.



CHAPTER XIV.

ON LOGARITHMS.

440. Previous to the investigation of Logarithms, it may
not be improper to premise the two following propositions.

441. Any quantity which from positive becomes negative, and
reciprocally, passes through zero, or infinity. In fact, in order

that m, which is supposed to be the greater of the two quantities

m and n, becomes n, it must pass through n \ that is to say,

the difference m— n becomes nothing ; therefore p, being this

difference, must necessarily pass through zero, in order to

become negative, or —p. But if p becomes —p, the fraction

f will become —J ; and therefore it passes through ^, or in-

finity.

442. It may be observed, that in Logarithms, and in some
trigonometrical lines, the passage from positive to negative is

made through zero ; for others of these lines, the transition

takes place through infinity : It is only in the first case that

we may regard negative numbers as less than zero ; whence
there results, that the greater any number or quantity a is,

when taken positively, the less is —a ; and also, that any ne-

gative number is, afortiori, less than any absolute or positive

number whatever. ^

443. If we add successively different negative quantities to

the same positive magnitude, the results shall be so much less

according as the negative quantity becomes greater, abstract-

ing from its sign. For instance, 8— 1 >8—2>8-— 3, &c.

It is in this sense, that 0>—1>—2>— 3, <kc. ; and 3>
0>-l>-2>-3>-4, &c.

444. Any quantity, which from real becomes imaginary, or

reciprocally, passes through zero, or infinity. This is what may
easily be concluded from these expressions,

considered in these three relations,
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^ I. THEORY OF LOGARITHMS.

445. Logarithms are a set of numbers, which have been
compnted and formed into tables, for the purpose of facilitat-

ing arithmetical calculations ; being so contrived, that the ad-

dition and subtraction of them answer to tbe multiplicalioa

and division of the natural numbers, with which they are made
to correspond.

446. Or, when taken in a similar, but more general sense,

logarithms may be considered as the exponents of the pow-
ers, to which a given, or invariable number, must be raised,

in order to produce all the common, or natural numbers.
Thus, if a'=y, a''=y', a'"=z}/\ &c. ; thc^n will the indices

X. x\ x'\ &c. of the several powers of a, be the logarithms of
the numbers y, y% y", &;c. in the scale or system, of which a
is the base.

447. So that, from either of these formulae, it appears, that

the logarithm of any number, taken separately, is the index
of that power of some other number, which, when it is involved

in the usual way, is equal to the given number. And since

the base a, in the above expressions, can be assumed of any
value, greater or less than 1, it is plain that there may be an
endless variety of systems of logarithms, answering to the

same natural numbers.

448. Let us suppose, in the equation (f=^y^ at first, .r^O,

we shall have 3/= l, since a"=l ; to ar— 1, corresponds yz=za.

Therefore, in every system^ the logarithm of unity is zero ; and
also, the hase is the number whose properdogarithm^ in the sys-

tem to which it belongs, is unity. These properties belong es-

sentially to all systems of logarithms.

449. Let -f-^ be changed into —x in the above equation,

and we shall have

1

Now, the exponent x augmenting continually, the fraction

— , if the base a be greater than unity, will diminish, and may

be made to approach continually towards 0, as its limit ; to

this limit corresponds a value of x greater than any assignable

number whatever. Hence it follows, that, when the base a is

greater than unity, the logarithm of zero is infinitely negative.

450. Let y and y' be the representatives of two numbers,

X and x^ the corresponding logarithms for the same base : we
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shall have these two eqiiations, (f=^y, and a"—y\ whose pro-

duct is a'.a''-=y.y\ or af^''' =zyy\ and consequently, by the de-

finition of logarithms, a:+a:'=:log. yy\ or log. yy'=log. y-}-

log. y'.

And, for a like reason, if any number of the equations

d'=y, a"-=zy\ (f"=:y'\ &c. be multiplied together, we shall

have a:^+^^+'^'+"*=-=yyy, &c. ; and, consequently, a;+a;'4-^'^

&c. = log. yyy'\ <Stc. ; or log. yy'y'\ <Sic.=z:log. y-{-\og.y' -^
log. y'\ &c.

The logarithm of the product of any number of factors is,

therefore, equal to the sum ofthe logarithms of those factors.

451. Hence, if all the factors y, y', y^', &c. are equal to

each other, and the number of them be denoted by m, the pre-

ceding property will then become log. (y"')=::m, log. y.

Therefore, the logarithm of the mth power of any number is

equal to m times the logarithm of that number.

452. In like manner, if the equation af^zy, be divided by

a^=y\ we shall have, from the nature of powers, — , or

a =—
, ; and by the definition of logarithms, a:— a;'=log.

Hence the logarithm of a fraction^ or of the quotient arising

from dividing one number by another, is equal to the logarithm

of the numerator minus the logarithm of the denominator.

453. And if each member of the equation, a'=:y, be rais-

ed to the fractional power ^, we shall have a" =:y" ; and
n "*

consequently, as before, —a?=log. (y")=log. y y"* ; or, log.

y-=— log. y.

Therefore, the logarithm of a mixed root, or power, of any
number, is found by multiplying the logarithm of the given
number, by the numerator of the index of that power, and divi'

ding the result by the denominator.

454. And if the numerator m of the fractional index of the

number y, be, in this case, taken equal to 1, the preceding
formula will then become

log. y"=\\og. y.

From which it follows, that the logarithm of the nth root of
28
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any number, is equal to the nth part of the logarithm of that

number.

455. Hence, besides the use of logarithms in abridging the

operations of multiplication and division, they are equally ap-

plicable to the raising of powers and extracting of roots
;

which are performed by simply multiplying the given loga-

rithm by the index of the power, or dividing it by the number
denoting the root.

456. But, although the properties here mentioned are com-

mon to every system of logarithms, it was necessary for

practical purposes to select some one of these systems from

the rest, and to adapt the logarithms of all the natural num-
bers to that particular scale. And as 10 is the base of our

present system of arithmetic, the same number has accord-

ingly been chosen for the base of the logarithmic system now
generally used.

457. So that, according to this scale, which is that of the

common logarithmic tables, the numbers,—4—3—2—10 1 2 3 4

etc. 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 ,

etc. ; or,

etc. —i— -^ — ^, 1, 10, 100, 1000, 10000,
10000' 1000' 100' 10' ' ' '

etc., have for their logarithms,

etc. —4, —3, —2, —1, 0, 1, 2, 3, 4, etc.

which are evidently a set of numbers in arithmetical progres-

sion, answering to another set in geometrical progression ; as

is the case in every system of logarithms.

458. And, therefore, since the common or tabular logarithm

of any number (w) is the index of that power of 10, which,

when involved, is equal to the given number, it is plain, from

the equation 10^= n, or 10-^=^, that the logarithms of all the

intermediate numbers, in the above series, may be assigned

by approximation, and made to occupy their proper places in

the general scale.

459. It is also evident that the logarithms of 1,10, 100,

1000, etc., being 0, 1,2, 3, respectively, the logarithm of any

number, falling between 1 and 10, will be 0, and some deci-

mal parts ; that of a number between 10 and 100, 1 and some

decimal parts ; of a number between 100 and 1000, 2 and some

decimal parts ; and so on.

460. And, for a like reason, the logarithms of j^, r^^.
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—-, etc. or of their equals, .1, .01, .001, etc. in the de-
1000'

scendino part of the scale, being —1, —2, —3, etc. the loga-

rithm of any number, falling between and .1, will be —1 and

some positive decimal parts ; that of a number between .1 and

.01, —2 and some positive decimal parts ; and so on.

461. Hence, as the multiplying or dividing of any number

by 10, 100, 1000, etc. is performed by barely increasing or

diminishing the integral part of its logarithm by 1,2, 3, &c.

it is obvious that all numbers which consist of the same

figures, whether they be integral, fractional, or mixed, will

have the same quantity for the decimal part of their loga-

rithms. Thus, for instance, id be made to denote the index,

or integral part of the logarithm of any number N, and d its

decimal part, wc shall have log. N=i+d; log. 10"XN=
N

(i-hm)-H</; log. -^=(t—w»)H-^ ; where it is plain that the

decimal part of the logarithm, in each of these cases, remains

the same.

462. So that in this system, tne integral part of any loga-

rithm, which is usually called its index, or characteristic, is

always less by 1 than the number of integers which the natu-

ral number consists of ; and for decimals, it is the number
which denotes the distance of the first significant figure from

the place of units. Thus, according to the logarithmic tables

in common use, we have

lumbers.

1.36820

335.260

Logarithms.

0. 1361 496
2.5253817

.46521 1.6676490

.06154

6lc.

2.7891575
&c.

where the sign — is put over the index, instead of before it,

when that part of the logarithm is negative, in order to distin-

guish it from the decimal part, which is always to be consi-

dered as +> or aflirmative.

463. Also, agreeably to what has been before observed, the
logarithm of 38540 being 4.5859117, the logarithms of any-

other numbers, consisting of the same figures, will be as fol-

lows :



316 ON LOGARITHMS.

Numbers.

3854
385.4

38.54

3.854

Logarithms

3.5859117
2.5859117
1.5859117
0.5859117

.3854 1.5859117

.03854 2.5859117

.003854 3.5859117

which logarithms, in this case, differ only in their indices, the

decimal or positive part, being the same in them all.

464. And as the indices, or the integral parts of the loga-

rithms of any numbers whatever, in this system, can always
be thus readily found, from the simple consideration of the

rule above-mentioned, they are generally omitted in the ta-

bles, being left to be supplied by the operator, as occasion re-

quires.

465. It may here, also, be farther added, that, when the

logarithm of a given number, in any particular system, is

known, it will be easy to find the logarithm of the same num-
ber in any other system, by means of the equations, o'=n,
e'^zrzn^ which give

(1) . . . . a;= log. n, x'=z \. n (2).

Where log. denotes the logarithm of n, in the system of which
a is the base, and 1. its logarithm in the system of which e is

the base.

— "1

466. Whence a'=c'', or a''=:e, and e* zzia^ we shall have,

for the base a, —f-z= log. e, and for the base e,— =:La ; or
X X

(3) . . . . x= x' log. e, x':=zx.l.a (4).

Whence, if the values of x and x\ in equations (1), (2),

be substituted for x and x in equations (3), (4), we shall have,

log. n= log. exl.n, and l.n=, X loff. n ; or l.n=La X
log. e

log. n, and log. n= ~xl.n. where log. e, or its equal j- ex-
l.Cl I'd

presses the constant ratio which the logarithms of n have to

each other in the systems to which they belong.

467. But the only system of these numbers, deserving of

notice, except that above described, is the one that furnishes

what have been usually called hyperbolic or Neperian loga-

rithms, the base of which is 2.718281828459 ....
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468. Hence, in comparing this with the common or tabular

logarithms, we shall have, by putting a in the latter of the

above formulaj =10, the expression

log. n= Xl.n, or /.n= /.10xlog. n

Where log., in this case, denotes the common logarithm of

the number n, and /. its Neperian logarithm ; the constant

factor -jig-h-h '=
2:3025i5092-9'

°' •«''2944819
. . be-

ing what is usually called the modulus of the common or ta-

bular system of logarithms.

469. It may not be improper to observe, that the logarithms

of negative quantities, are imaginary ; as has been clearly

proved, by Lacroix, after the manner of Euler, in his TraitS

du Calcut Differentiel et Integral ; and also, by Suremain-Mis-
SERV in his Theorie Purement Algebrique des Quantites Ima-
ginaires. See, for farther details upon the properties and cal-

culation of logarithms, Garnier's d'Algebre, or Bonnycastle's
Treatise on Algebra in two vols. 8vo.

§ II. APPLICATION OF LOGARITHMS TO THE SOLUTION OF EXPO-
NENTIAL EQUATIONS.

470. Exponential equations are such as contain quanti-

ties with unknown or variable indices : Thus, a^— h^ a?'=c,

y—=rf, <fec. are exponential equations

471. An equation involving quantities of the form a;*, where
the root and the index are both variable, or unknown, seldom
occur in practice, we shall only point out the method of solv-

ing equations involving quantities of the form a^, a*', where
the base a is constant or invariable.

472. It is proper to observe that an exponential of the

form a , means, a to the power of b', and not ab to the power

ofx.
Ex. 1. Find the value of x in the equation a*:=b.

Taking the logarithm of the equation a'=b, we have xX

log. a=log. b ;
.-. a:=.^^ ; thus, let a=5, b=zlOO ; then in

log. a

the equation 5^=100,

__ log. 100 _2.0000000 _*"
logr5~'~0.698970"0"~

28*
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Ex. 2. It is required to find the value of x in the equation

Assume bx=i/, then ay=^c, and yxlog. a=:log. c; .'. y=:

,—^. Hence h^z=z^^^ (which \e)i)=d. Take the loga-
log. a log. a ^ °

rithm of the equation b'=zd, then, by (Ex. 1), x= °'
,

Thus, let a=9, 6=3, c=1000 ; then in the equation 93=

,/^«/^ 1«S- c lopr. 1000 „,,, ,, , log. (/

'"''• 4rb^-k^r =3-i^(='^
'

"""^ "=1-0-174=

log. 3.14_.4969296 _
log. 3 ^.4771213 ~ •

Ex. 3. Make such a separation of the quantities in the equa"

Hon (a«-62)'=fl+6, as to show, that _^^|.Qg- («+&)

. l—x log. (a—b)
Taking the logarithm, we have

ofXlog. \a^— b'^) = log. (a-\-b), or acxlog. (a-\-b) X (a—6)=:
log.(a+6);
that is, a:Xlog. (a+ 6)-f-a;Xlog. (a— 6)=log. (a-fb).

Hence a;Xlog. (a — 6)=log. (a + 6) -'a;Xlog. (a+ 6)=

• Ex. 4. Given o*+6*=i'c, and o^—i^^d, required the va-

lues of a; and y.

c-\-d
By addition, 2a*=c4-<i» or 0*=———, which put =3m ; then

log. m
log. a

Again, by subtraction, we hare 26y=:c— rf, or 6^=——,

log. n
(which let —n) ;

.*. y:

Ex. 5. Find the value of x in the equation —^— =«,

log.
6*

n the equal

An8..=i^-::4pl?iii.
log. 6

Ex. 6. Find the value of x in the equation a'=

—

—-—"

Ans 3:->g- (^+^)+i ^Qg- (^-^)-f ^Qg- ^—
1
^»g- ^

log. a
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Ex. 7. Find the value of x in the equation \(^•\-\=^Yi<f

4-1. Ans. «=, .

log. a

Ex.8. Given log. a; -|- log- y= 3 Mo find the values of x

and log. a;—log. y=\ S and y.

Ans. a:=10v'10, and y=10.
Ex. 9. In the equation 2'=: 10, it is required to find the va-

lue of m. Ans. a:= 3.32 1928, &c.
Ex. 10. Given^ 729=3, to find the value of x.

Ans. a:=6.

Ex. 11. Given (/ 57862= 8, to find the value of x.

Ans. a:=5.2735, &c.

Ex. 12. Given (216)^=64, to find the value of x.

Ans. a!=3.8774, &c.

Ex. 13. Given 43=4096, to find the value of x.

Ans. a:=r^^= 1.6309, <fec.
log. 3

Ex. 14. Given c^^^zzic^ andi'-*=(i, to find the values of

X and y.

log<^

log. h'

. m-\-n . m—n . log. c ,
Ans. =——-, and y=—-— : where «i=r-^— , and n-

2 ' ^ 2 log. a



CHAPTER XV.

ON

THE RESOLUTION OF EQUATIONS

OF THE THIRD AND HIGHER DEGREES.

§ I. THEORY AND TRANSFORMATION OF EQUATIONS.

473. In addition to what has been already said (Art. 168),

it may here be observed, that the roots of any equation are

the numbers, which, when substituted for the unknown quan-

tity, will make both sides of the equation identically equal. Or,

which is the same, the roots of any equation are the numbers,

which, substituted for the unknown quantity, reduce the first

member to zero, or the proposed equation to the form of = ;

because every equation may, designating the highest power of

the unknown quantity by a:™, be exhibited under the form

a;'"+Aa:'--*4-Ba;'»-2+Ca:'"-3+ . . . Ta;-fV= 0. (1),

A, B, C, ... T, V, being known quantities. And the resolu-

tion of an equation is the method of finding all the roots, which
will answer the required condition.

474. This being premised, it may now be shown, that if a

he a root of the equation
(
1 ), the left-hand member of that equa^

tion will be exactly divisible by x— a.

For if a be substituted for x, agreeably to the above defini*

nition, we shall necessarily have

a"'+ Aa''-i+ Ba'"-2+Ca"'-34- • • • Ta+Y= 0.

And consequently, by transposition,

V= -a'"—Aa-^-i-Ba^-z—Ca^-s- . . . —To.

Whence, if this expression be substituted for V in the first

equation, we shall have, by uniting the corresponding terms,

and placing them all in a line,

(a:'»-.a'")+ A(a;'"-i-a'"-i)-hB(a:'"-2-a'"-3)+ T(a;-fl)=:0.

Where, since the difference of any two equal powers of

two different quantities is divisible by the difference of their
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roots (Art. 108), each of the quantities (a?""— a"), (ar"*- — a"*—
^),

(a;'*—2— a"*—
2j^ &;c. will be divisible by x—a. And, therefore,

the whole compound expression

(a:"'—a'")-j-A(.T'"-^— a'"-i)-f B(a:'"-2— a'"-2)4. &c. =0,
which is equivalent to the equation first proposed, is also di-

visible by x—a\ as was to be shown.

But if a be a quantity greater or less than the root, this

conclusion will not take place ; because, in that case, we shall

not have

V= —a-—Afl"-!— Ba'"-2—Ca"-^— —To;
which is an equality obviously essential to the division in

question.

475. The preceding proposition may be demonstrated, af-

ter the manner of D'Alembert, as follows : In fact, desig-

nating by X, the polynomial, which forms the first member of

the equation (1) ; then we shall always carry on the division

of X by a— a, till we arrive at a remainder R, independent of

a?, since x is only of the first degree in the divisor ; so that,

representing by Q the corresponding quotient, we shall have
this identity,

X= Q(ir-a)4-R.

Now, by hypothesis, a substituted for x reduces the poly-

nomial X to zero ; and it is evident that the same substitution

gives Q,{x—a)=.0 ; therefore we shall necessarily have 0=:R :

Hence x—a divides the equation (1), without a remainder.

Reciprocally, if the first member of any equation of theform
X=:0 be divisible by x— a, b. is a root. In fact we have, accord-

ing to this hypothesis, the identity X= Q(a;— a), which, for

x=a, gives X= ; therefore, (Art. 473), a is a root of the

proposed equation.

Cor. 1. Hence we may easily conclude, that if a be not a
root of the equation (1), the first member will not be divisible

by x—a.
Cor. 2. And if the first member of the equation (1), be

not divisible by a:— a, a is not a root of the proposed equa-
tion.

476. Supposing every equation to have one root, or value of

the unknown quantity, it can then be shown, that any proposed
equation will have as many roots as there are units in the index

of its highest term, and no more. For let a, according to the

assumption here mentioned, be a root of the equation (1),

a'«H Xa!^-^4-Bx -2-f Caj^-s-f . . . -t-Ta;+V=0.
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Then, since by the last proposition this is divisible by x—a,
it will necessarily be reduced, by actually performing the ope-
ration, to an equation of the next inferior degree, or one of the

former

And as this equation, by the same hypothesis, has also a root,

which may be represented by a', it will likewise be reduced,
when divided by x—a'^ to another equation one degree lower
than the last ; and so on.

Whence, as this process can be continued regularly in the

same manner, till we arrive at a simple equation, which has
only one root, it follows that the proposed equation will have
m roots

a, a', «^a% a(—i)'

;

and that its successive divisors, or the factors of which it is

composed, will be

x—a, X— a% X— a", x—a''\ .... a;— a('"—^)',

being equal in number to the units contained in the index m
of the highest term of the equation.

CoR. If the last term of an equation vanishes, as in the

form x"*-\-Ax'^~'^-\-Bx'^~'^-\- .... -j-Tx=0, it is evident that

x= will satisfy the proposed equation ; and consequently

is one of its roots. And if the two last terms vanish, or the

equation be of the form x^-\-Ax'^~^-^Bx"*-^-\- . . . +Sa:2=:0,

two of its roots are ; and so on. See, for another demon-
stration of the preceding proposition, Bonnycostless Algebra^

vol. ii. 8vo.

477. Since it appears (Art. 474), that every equation,

when all its terms are brought to one side, is exactly divi-

sible by the unknown quantity in that equation minus either of

its roots, and by no other simple factor, it is evident that the

equation

x'^-\-Ax^ i+Baj^-^-f Ca:'»-3-f . . Ta;-hV=:0 . (1),

of which a, b, c, d^ . . . Z, are supposed to be its several roots,

is composed of as many factors

(a:_a) (x-b) {x-c) {x-d) . . (x-l) . (2),

as the equation has roots ; and that it can have no other factor

whatever of that form.

478. Whence, as these two expressions are, by hypothe-

sis, identical, the proposed equation, by actually multiplying
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tlie above factors, and arranging the terms according to the

powers of a;, will become
x'^^{abc.l)=zOx"'—a af'-^+ ab a;"*—2— aic

-b 4-ac -abd
— c + ad —acd
-d + bc -bed
&c. &c. &c.

which form is general, whatever may be the different signs of

the roots, or of the terms of the equation ; taking a, b, c, &c.
as well as A, B, C, &c. in -}- or — as they may happen to be.

479. Hence, since the two equations (1), (3), are identical,

the coefficients of the like powers of x, are equal ; and con-

sequently, the following relations between the coefficients and
roots will be sufficiently obvious.

I. The sum of all the roots of any equation, having its terms

arranged according to the order of the powers of the unknown
quantity, is equal to the coefficient of the second term of that

equation, with its sign changed.

II. The sum of the products of all the roots, taken two and

twOf is equal to the coefficient of the third term, with its proper

sign ; and so on.

III. The continued product of all the roots, is equal to the

last term, taken with the same or a contrary sign, according as

the equation is even or odd.

480. It is very proper to observe, that we cannot have all

at once x= a, x=b, x:=c, &c. for the roots of any equation as

in the formula (2) ; except when a= 6=rc=(f, &;c., that is,

when all the roots are equal. The factors x— a, x—b, x— c,

&c. exist in the same equation : because algebra gives, by one
and the same formula, not only the solution of the particular

problem from which that formula may have originated ; but

also the solution of all problems which have similar condi-

tions. The different roots of the equation satisfy the respect-

ive conditions ; and those roots may differ from one another

by their quantity, and by their mode of existence.

481. To this we may likewise add, that, if the roots of any
equation be all positive, as in formula (2), where the factors

are of the form

(x— a) {x—b) (x—c) (x—d) .... (x— l)= 0,

the signs of the terms will be alternately -|- and — ; as will

readily appear from performing the operation required.
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482. But if the roots be all negative, in which case the

factors will be of the form

{x+ a) (x-^b) {x-hc) {x+d) . . (x4-Z)= 0,

the signs of all the terras will be positive ; because the equa-

tion arises wholly from the multiplication of positive quanti-

ties.

Some equations have their roots in part positive, and in part

negative: Thus, in the cubic equation, {x—a) x {x—b)x
(x-{-c)= 0, or x^-\-{c—a—b)x'^-^{ab—ac—'bc) X x-^-abc— Oy

there are two positive and one negative root ; because, when
X—a=:0, x=a ; x—b=:0, x=b ; aj+c=0, xz=—c.

483. Any equation^ having fractional coefficients, may be

transformed into another^ that shall have the coejfficient of its

frst term unity, and those of the rest, as well as the absolute

terms, whole numbers.

For let there be taken, instead, of a general equation of this

kind, the following partial example,

which will be sufficient to show the method that should be

followed in other cases.

Then if each of the terms be multiplied by the product of

the denominators, or by their least common multiple, we shall

have 12a;^+ 6a:2 -4-8x4-9= 0, where the coefficients and abso-

lute term are all whole numbers.

And if 12a:, in this case, be put =y, or x=^, there will

arise by substitution,Luiion,

lation. when all its tftrms are mWhich last equation, when all its terms are multiplied by 12^,

gives y^+ 6y^4"96y-f- 1296=0 ; where the coefficient of the

first term is unity, and those of the rest whole numbers, as

was required.

So that when the value of y in this equation is known, we

shall have for the proposed equation x=~.

484. Any equation may be transformed into another, the roots

of which shall be greater or less than those of the former by a

given quantity.

Thus, let there be taken, as before, the following general

equation,
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.r^+Aaj^-i-f Ba:'"-24-Ca?'»-3-f . . Ta:+V=0.

And suppose it were required to transform it into another,

whose roots shall be greater than those of the given equation

by e.

Then, if y be made to represent one of these roots, we shall

have, by the nature of the question,

T/=x-{-e, or x=:y—e.

And, consequently, by substituting y—e for x, in the proposed

equation, there will arise

y'^—me _i ,

'"^'"'"^^2
JT^"^ ^^ =0

+ A *""
''

—(m-\)ke
H-B (4),

which equation will evidently fulfil the conditions required,

y being here greater than x by e. And if y be taken z=zx— tf,

or x=y^e, we shall obtain, by a similar substitution, an

equation whose roots are less than those of the given equation

bye.

485. Whence, also, as c, in the above case, is indeterminate,

this mode of substitution may be used for destroying one of the

terms of the proposed equation. For putting in the above ex-

pression the coefficient —me4-A=o, we shall have

A A
e=—, and x-=y—e=y ;

where it is plain, that the second term of any equation may he

taken away, by substituting for the unknown quantity some other

unknown quantity, together with such a part of the coefficient of
the second term, taken with a contrary sign, as is denoted by the

index of the highest power of the equation.

Thus, for example, to transform the equation x"^— 9x'^-\-lx

4-12= into one which shall want the second term. Assume
a=y-j"3 ; then

a:3=y3-|-9y2+27y4-27'\
— 9a;2= _9y2_54y_8x f _
-f-7a: = +7y+21(-~"'
+ 12 = +12)

that is, y^— 20y—21 =0 ; and if the values of y be a, b, c, the

values of ar are a+ 3,64-3, and c+3.
The third term of the proposed equation may also be taken

away by means of the coefficient, or formula,

29
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where the determination of c requires the solution of an equa-
tion of the second degree ; and so on.

486. Any proposed equation may he transformed into another,

the roots of which shall be any multiples or parts of those of the

former.

Thus, let there be taken, as in the former propositions, the

general equation

a;m_j_Aa?'"-i^-Ba;'"-2-f-Ca^-34- . . Ta;+V=0. (1).

And, in order to convert it into another, whose roots shall

be some multiple of those of the given equation ; let there be

V
put y=ex, or «=-.

e

Then, by substituting this value for a? in the proposed equa-
tion, there will arise

yl+Ari\+^r^+ .... tI!+v=o.

And, consequently, if this be multiplied by c*, we shall have

which equation will evidently fulfil the conditions required, y
being equal to ex.

And if y be put =-, or x=ey, we shall obtain, by a similar

substitution of this value for a?, and then dividing by e*", the

equation

A B 1^ V
r+-r-'+;rr'-'+ -^^^+^=0:

where the roots are equal to those of the proposed equation,

divided by e.

And it may easily be proved, that if the alternate terms,

beginning with the second, be changed, the signs of all the roots

are changed.

487. For a more particular account of the general Theory
and Doctrine of Equations, see Bonnycastle's Algebra, vol.

ii. 8vo. Bridge's Equations, and Lagrange's Traitede la Re-
solution des Equations Numeriques ; where the intelligent

reader will find a full investigation of this part of analysis.

§ ii. resolution of cubic equations by the rule op
Cardan, or of Scipio Ferreo.

488. Cubic equations, as has already been observed in
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Chap. VIII., are of two kinds ; that is, pure and adfected. All

pure equations of the third degree are comprehended in the

formula a;^:=:n, where n may be any number whatever, jaonr

tive or negative, integral or fractional. And the value of x is

obtained by extracting the cube root of the number n.

489. But in this manner, we obtain only one value for x
;

whereas every equation of the third degree has three values.

In order to show how the two remaining values of x may be

determined in equations of the above form, let us, for example,

consider the equation a;^— 8— ; where a; is readily found

=2. And as 2 is a root of the proposed equations, it is plain

that jc^— 8 must be divisible by x—2 : therefore, this division

being actually performed, the quotient will be a.2-j-2aj-i-4.

Hence it follows, that the equation a;^— 8=:0, may be re-

presented by these factors
;

(a:-2)x(a:2+ 2x+ 4)= 0.

490. Now the question is, to know what number we are to

substitute instead of x, in order that a;^— 8= ; and it is evi-

dent that this condition is answered by supposing the product

which we have just found equal to : but this happens, not

only when the first factor a?—2=0, which gives a?=2, but

also when the second factor a;2-f-2a:-|-4=:0.

Let us, therefore, make a;2-f-2a;-f-4=0 ; then a:=— 1^
"y/— 3. So that besides the case in which jc=:2, we find two
other values of x, which will satisfy the equation ar^— 8=0.
It is true, as Eulf.r justly observes, that these values are im-
aginary ; but yet they deserve attention.

49L What has been just said applies in general to every
pure cubic, such as x'^-=:n, and the three roots or values of a:,

may be found in a similar manner. To abridge the calcula-

tion, let us suppose ^ n=n', so that n =7/2 ; the proposed
equation will then assume this form, a;^— n'^=rO, which, be-

ing divided by x~n\ will give for the quotient x'^-\-n'x-\-n"^.

Consequently, the equation a:^—n=0, may be represented by
the product (x—n'){x'^-\-n'x-\-n"^)=zQ, which is in fact nrO,

not only when a;— w'=i:0, or a:=n' ; but also when x'^-\-n'x-{-

n'2=i0. Now this expression contains two other values of ar,

for it gives x=—— -jt-|- /— 3 ; both of which answer the

required condition.

492. All adfected cubic equations, after being properly re-

duced by the known rules, may be exhibited under the follow-
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ing general forms ; namely, x^-^ax^+ bx= 0, and x^-^a'x^-^
yx-^c'=zO, where a, b, a\ b\ and c', may be any numbers
whditever, positive or negative, integral or fractional.

493. The solution of a cubic equation, of the form x^-{-ax'^

-^bx=0, is attended with no difficulty ; since it may at once
be put under the form xX [x^-\-ax+ b)= ; and it is evident
that the product xx{x^-\-ax -\-b) may be =0, in two ways,
that is, when a?=:0, or x'^-\-ax-\-b=zO ; so that nothing now
remains, but to find the values of x in the quadratic equation

x^-^ax-^b=0, which are readily found to be x=— ±^\^(a^

—^b). Consequently, the three values of x, which answer
the required condition, are 0,—^a+ ^-v/(a2— 4Z>), and —Ja—

^

^/(a'^^Ab).

494. An adfected cubic equation is said to be complete,

when, after being properly reduced by the known rules, it is

of the form x'^-\-ax"-\-b'x-\-c'=^0. And it has already been
shown, that every cubic equation of the above form, whose
roots are r\ /, r'\ may be transformed into another deficient in

its second term, by substituting y~\a' for x in the given equa-

tion ; in which case the roots of the transformed equation

will be r—\a^ r'— ^a' r"— ^a' ; if, therefore, the roots of the

transformed equation be known, the roots of the given equation

will be known also. Hence the resolution of a cubic equation

complete in all its terms will be effected, if we can arrive at

the resolution of it in the form x^-^ax— b. In which a and 6

may be any positive or negative numbers whatever.

495. For this purpose, let there be taken x=:^y-\- z, and the

above equation, by substitution, will become y^-\-^y'^z-\-'dyz^

-\-z^-\-ay-{^az= b.

Or, because 3y'^z-\-3yz'^— 3yz{y-{-z),aLndLay-{-az= a{y-\-z),

it will be y^-^z'^-\-(3yz+ a)(y-^z)= b.

Now, as another unknown quantity has been introduced into

the equation, another condition may be annexed to its solution.

Let this condition be, that 3yz+a=0, or z=:——, in which

case the transformed equation becomes

y^-^z^=b, or by substitution y^——--^=b ;

.-. y6_5y3__i_g3Y which equation solved, gives

y=3/ [i6-fya&2_|_ 1
a3)i

. .., since z^^b—y"^, we have

z=^ [?6-^(i62+j_«3)] . and a:=y+^=y [J^'-hV(P+
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where by taking « and i in -f or —1, as they may happen

to be, we have always one root of the transformed equation ;

and tills is the formula which is called the Rule of Cardan.

496. And since one value of x is now determined, the equa-

tion may be depressed to a quadratic, from which the other

two roots may be readily found.

Ex. 1. Given x^-\-'Zx—\2, to find the values of x

Comparing this with the general equation, x^-\-ax= h, we

have a=2, and 6=12; therefore, by substituting these values

for a and b in the above formula (I),

0.=^ [6+ V[(36-h^)]+^ [6- V(36+ ^)]
= •/ (6+6.024633)+^ (6-6.024633)

=.^ (12.024633)+^ (-.024633)=2.29-.29=2.

One root of the equation, therefore, is 2 ; divide a:3+2ac—

12 by a:— 2, and the quotient is a;2_2x+ 6 ;
.-. a;2^2x+6=0,

whose roots are l±^—5. Hence, the three roots of the

equation are 2, !+ >/— 5, 1 — -/— 5, the two last of which

are imaginary/.

Ex. 2. Given a;^—48a:=128, to find the values of x.

Here, by comparing this with the equation, (Art. 494), we
have a= —48, and b^l28;
.: x==^ [64+ V(4096-4096)]+ 5/ [64 - v/(4096-4096)]

=y (64+ 0)+^ (64-0)=4+ 4= 8.

One root of the equation, therefore, is 8 ;
divide x^— 48a?

— 128 by y— 8, and the quotient is x2+ 8a;+16 ; .•.a;2+8a7+

16= 0, whose roots are —4^0 ; the three roots of the pro-

posed equation are 8, —4, —4, the two last of which are

equal.

497. Hence we may infer, if a be negative, and vyfl^, taken

with a positive sign, equal to 1^2, or ^b'^-^^ja^^O ;
then two

roots of the proposed equation are always equal.

408. But if a be negative, and ^^a^, taken with a positive

sign, greater than \b^ ; then ^^^+^7^^ is a negative quantity
;

and consequently, \/(ji^+^a^) is imaginary.

Although the value of x cannot be obtained from Cardan's

formula, (Art. 495), by the ordinary method, we are not, how-

ever, to conclude, that the value of ar, in this case, is imagi-

nary ; since it may be proved to be a real quantity after the

following manner.

499. For this purpose, let \b he represented by a', and

Vli^^+Tf"^)' supposed imaginary, by b''\/— \ ;
then x=y/

(a/_f.6Y-I)+ 3/ (a'_6V-l). Now, let }/ [a -\-b'y -l)
and ^ \a' —b' \/— \) be expanded by means of the binomial

theorem ; and since, by adding the resulting series together,

29*
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the terms involving the imaginary quantity ^/— \ destroy one
another, we shall have

X: 2«'^(l + y,^-2i3j.-J+656l^-.<S'c.) . . (2);

which is a real expression. When a' is greater than h' ; the

above series converges rapidly, and a few of the first terms
will give a near value of the root required. But if a' is less

than b\ h'-^— 1 must be put for the first term of the hinomial^

and a' for the second : See Clairaut's Algebra, Vol. 11.

Ex. 3. Given x^— Qx—^.Q, to find the values of x. Cora-
paring this with the equation x^-\-ax=.hf we have
a=z— 6, and 6= 5.6; therefore,

x=^ [2.8-1- V(7.84-8)]+ 3/ [2.8-v'(7.84-8)]
='^ (2.8 -f-.4^-1)+^ (2.8-.4V-1.)
Now, by comparing this value of a?, with ^ (a^-\^b'^/ —\)-\'

y (a^— J'-\/— 1), wehave a'=:2.8, and b'=A; .-.substituting

these values for a' and b' in the above formula (2), x=2\/ 2.8

(1 +7^ - hSoS- *•=) = ^-^2(1+ .00327-.00003.

&c.) =2.826345 nearly.

Here, three terms of the series are sufficient, on account of

its converging so rapidly, to give an approximate value of a?,

which is exact enough for all practical purposes. And, in

fact, the value may be still found more accurate by continuing

the series to five or six terms.

Ex. 4. Given z^ ^"iz^—Iz^—^— () , to find the values of z.

Let ;2^=:a;-hl» and the equation will be transformed into x^

—5a:=12 ;
.*. since a= — 5, and 6=: 12.

«=^ [6+ V(36-W)]+^ [6-V(36- W)]
=.\f (6+ 5.6009)+^ (6-^5.6009)=2.26376+.73624=3.
And, consequently, z'^= x-\-\z=^, or ;^=-[-2.

500. Two roots of the proposed equation, therefore, are 2
and —2 ; divide z^— 'iz'^ —'Zz"^ -^% by js^— 4, and the quotient

is z^-hz^-}-2; .•.;?* + ;22 + 2 = 0, whose roots are z=:dc:
y'(—izb^-y/-^?). Hence four roots of the proposed equation

are imaginary.

It may be observed that, in general, all equations, as z^""-^

az^'"-\-bz"'-\-c=Oy may be reduced to one of the third degree,

by putting z"'=^x—\a.

Ex. 5. Given cc3-f-30a;=117, to find the values of a?.

Ans. x=Z, or —fij-/— 3.

Ex. 6. Given a;3+ 9jc=r270, to find the values oi x.

Ans. x—Q, or —3i6y^— 1.

Ex. 7. Given x^— 36x=:91, to find the values of a:.

Ans. a;=:7, or — J+ iV'"^:.
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Ex. 8. Given ar^— 6x2+ 10a:— 8=0, to find the values of a?.

Ans. a;= 4, or l±-y/— I.

Ex. 9. Givena:^— 3jc—4=0, to find the values o( x.

Ans. a;=2.2; l.l-j-'y/— .63 ;
— I. [—-)/— .63, very nearly.

Ex. 10. Given ic-3-i-24a;=250, to find the value of x.

Ans. x= 5.05.

Ex. 11. Given z^—6z^+l3z— ]2z=0, to find the values

of z. Ans. ;?= 3, or — J-j-^V^— 7.

Ex. 12. Given 2a;3— 12a:24.36a'=44, to find the value of x.

Ans. 2.32748, &c.

^ III. RESOLUTION OF BIQUADRATIC EQUATIONS BY THE
METHOD OF DeS CaRTES.

601. The same observation may be applied to biquadratic

equations as was applied to cubic equations in (Art. 494), that,

since the equation x'^-{-a'x^-\-b'x'^-j-r'x-\-s'= 0, may be trans-

formed into another which shall be deficient in its second term,

and whose roots shall have a given relation to the roots of the

given equation, the complete solution of a biquadratic equation

will be effected, if we can arrive at the solution of it in the form
x^-{-ax^-{-bx-{-c= .... (1);

where a, b, c, may be any numbers whatever, positive or ne-

gative.

502. In the solution of a biquadratic equation, after the

manner oi Des Cartes, the formula x^-f-ax^-j-Jx+c is suppose-

ed to be the product of two quadratic factors, x"-{-px-\-q and
x^-\-rx-\-s, in which ^, q, r, s^ are unknown quantities. Or,

which is the same, the biquadratic equation x^-f-ax^+^x-fc=0
is considered as produced by the multiplication of the two
quadratics,

(2) . . . . x'^+px4-9= 0; x2+rx-f5=0 . . . (3).

503. Hence, by the actual multiplication of the above two
factors, we shalj have

o^-\-(p-\-r)x'^-]r{s+q-{-pr)x'^''ir(ps-{-qr)x-\-qs=

X* -fax^ j^hx+c.
And, consequently, by equating the coefficients of the like

powers of x in this last equation, we shall have the four fol-

lowing equations,

/)4-r=0 ; s-\-q-\-prziia\ ps-\-qr=:b
; qs= c.

Or, if —p, which is the value of r in the first of these, be
substituted for r in the second and third, they will become,

*-f9=a+p2; ^_y—_
;
qs=c.

Whence, subtracting the square of the second of these from
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that of the first, and then changing the sides of the equation,

we shall have

a'^-{'2o.p^'{'P^ -=z4qs, or 4c.

And, therefore, by multiplying by^^^ ^nd placing the terms

according to the order of their powers, the result will give,

From which last -^'lation, if there be put p'^—z, we shall

h3.ve,z^-^2a2^+{a^~4c)z— b^ (5).

Hence, also, since s-\-q=a-{-p^j and s—q=— , there will

p
arise, by addition and subtraction,

s=^a^:^p^+—; q=:^a+ip^-—;

where p being known, s and q are likewise known.
And, consequently, by extracting the roots of the two as-

sumed quadratics, (2) and (3) ; or of their equals, x^-i-px-^-

q=.0, and x^—px-i-s=^0 ; we shall have

»=-i/'±V(V-?) (6);

o'=ip±V{ip's) • (7);

which expressions, when taken in + and —
,
give the four

roots of the proposed biquadratic, as was required.

504. It may be observed, that whichever of the values of

the unknown quantity, in the cubic or reduced equation (5),

be used, the same vaHies of x will be obtained.

505. To this we may further add, that when the roots of

the cubic, or reduced equation (5), are all real, then the roots

of the proposed biquadratic are all real also. But if only one

root of the cubic equation (1) be real, and, therefore, the other

two imaginary ; then the proposed biquadratic will have two

real and two imaginary roots.

Ex. 1. Given the equation x*—3x^-\-6x-\-8=z0, to find its

roots, or the values of x.

Comparing this equation wiih x*-{-ax'^-{- bx-\'C= 0, we have

c=— 3, b=z6, and c— 8; therefore,

z3-\-2az^-\-{a^—4c)z—b^=z3—ez^-+23z-36= 0.

Let z=y-\-2, and substitute y-f 2 for 2 in the latter equa-

tion ; the resulting equation is y^— 35y — 98==0, Now, by

comparing this last equation with x^-\-ax=:by we have a=—
35, and b= 98 ; therefore, (Art. 495),

y=J/ [49H-iv^(65856)]+^ [49-iV(65856)]
=1^ (494-28.514)-+ ^ (49-28.514)=:^ (77.514)+^ 20.

466)
=-4.264+2.736= 7.
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Hence, z=i/-\-2= ^, and p^=:z=9, or ;>=: ^3 ;

.-.(Art. 504), taking p=3, s= - f+ |-hl=3+ l=4, and
^r=— ^-f J— 1=2. Consequently, by substituting these va-

lues for/), q, and s, in the equations (2), (3), we shall have

a;2+ 3a:4-2= 0, and x^— 3a:-f 4==0 ;

.-. x=— ^^^, and xz=^^^y/—7 ;

80 that the four roots of the given equation are —1, —2, |4-

£x. 2. Givena;*—6x2— 17a:4-2 1=0, to find the values of or.

Ans. ir= 3, or 1 ; or — 2=b-v/— 3;

Ex. 3. Given the equation a:*— 4a;3— 8x4-32=0, to find its

roots, or the values of x. Ans. 4, or 2 ; or — 1 iy'— 3.

Ex. 4. Given the equation x*— 6x^-f 5x2+2x— 10= 0, to

find its roots, or the values of x.

Ans. —1, or +5 ; or liV'— !•

Ex. 5. Given x* — 9x-''+ 30x2—46x4-24= 0, to find the

roots, or values of X. Ans. x=l,or4; 24: 'v/—2.

Ex. 6. Given x*4- 16x34-99x2 4-228x4- 144=0, to find the

roots, or values of x.

Ans. x= — 1, —3 ; or —64:-/— 12.

Ex. 7. What two numbers are those, whose product, mul-

tiplied by the greater, is equal to 1 ; and if from the square

of the greater, added lo six times the lesser, the cube of the

lesser be subtracted, the remainder shall be 8.

Ans. -v/24:V(H-V2), 4-V24:V(l-V'2).

^ IV. RESOLUTION OF NUMERAL EQUATIONS BY THE METHOD
OF DIVISORS.

606. Since the last term (v) of the equation (a)=x'"4-

Ax*"— ^ 4- B^*"""^
, . . . Tx 4- v= o, is equal to the product

of all its roots, it is evident, that if any of those roots be whole

numbers, they will be found among the divisors of that term.

To discover, therefore, whether any of the roots of a given

equation be whole numbers, we have only to find all the divi-

sors of its last term, and substitute each of them, first with the

sign 4- and then with the sign — , for x, in the given equa-

tion, such of them as reduce the equation to 0=0, will be

roots of the equation.

507. Or, if the divisors of the last term should be too nu-

merous, the equation may be transformed into another, that

shall have its last term less than that of the former ; which is

done by increasing or diminishing the roots by 1, or some
other quantity.

Ex. 1. Given x3—x2—2x4-8=0, to find the roots of the

equation, or values of x.
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Here the divisors of its i isi term, are 1, 2, 4, 8 ; substitute

1, 2, 4, 8, and —1, —2, — 4, ~8, for x in the given equation,

and —2 will be found to be the only one of these numbers
which gives the result C ;

—2 thereicrc is the only integral

root of the equation. Hence, a; -f 2 will divide x^--x^—2x-{-
8 without a remainder ; let this division be made, and the

quotient being put equal to 0, we shall have a,2~3ar-J-4=:0, a
quadratic equation which contains the other two roots. The
solution of this quadratic gives a^^J^^-y/— 7 ; the three... ... ^ ^^2, f4"^\/—7,roots of the given equation, therefore, are

508. The integral roots of any numeral equation of the

kind above mentioned, may also be found, by Newton's Me-
thod of Divisors y which is founded upon the following prin-

ciples. .
.'

Let one of the roots of the equation (a)=:0, be — a, or,

which is the same, let the proposed equation be represented

under the form (a:-f-a)p=0, where the binomial x-\-a denotes

one of the divisors, or factors, of which the equation is com-
posed, and p the product of the rest. Then, if three or more
terms of the arithmetical series, 2, 1, 0, —1, — 2, be succes-

sively substituted for x, the divisors of the results, thus ob-

tained, will be

a+ 2, a-f 1, a, a— 1, and a— 2.

And as these are also in arithmetical progression, it is plain

that the roots of the given equation, when integral, will be

some of the numbers in such a series.

Whence, if a progression of this kind, whose common dif-

ference is 1, can be found among the divisors of the results

above mentioned, by taking one number out of each of the

lines, that term of it which answers to the substitution of

for X, taken in + or — > according as the series is increasing

or decreasing, will generally be a root of the equation.

Ex. 2. Givena:'^-fa;'*-14a;3— 6x2-f20a;4-48z:z0, tofindthe

roots of the equation, or values of x.

Divisors.

1,2,5,10,25,50, 1 2 5

1, 2, 3, 4, 6, 8, 12, 24, 48, 2 3 4

1,2, 3, 4, 6, 9, 12, 18, 36, 3 4 3

Here the numbers to be tried are 2, 3, -—4, all of which
are found to succeed ; so that the equation has three integral

roots -, namely, 2, 3, — 4. The equation whose roots are 2,

3, —4, is (x-2) . {x-3) . (a:+4)=:a;3-a;2— 14a;+24= 0,let

the given equation be divided by it, and the quotient is aj^-f-

2a!4-2= 0, whose roots are —li \/— l > the five roots of

Num. Results

1 50
49

-1 36

Progress.
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tbe proposed equation are, therefore, 2, 3, —4, — 1+ -/— 1,

509. If the highest power of the unknown quantity has any

coefficient prefixed to it, let the equation be assumed of the form

(nx+a)p= 0, and substitute 2, 1, 0, -1, -2, successively for

«, as in the former instance.

Then, as before, the divisors of the several results, arising

from this substitution, will be the terms of the arithmetical

series,

2n-\-a, n-\-a, a, —n+a, and —2n4-a;

where the common diflerence n must be a divisor of the first

term of the equation, or otherwise the operation would not •

succeed.

Hence, in this instance, the progT^g|M||jiust be so taken

out of the divisors, that their terms ^^^K/m ^^^^ ®^'''^ ^^^®^

by some aliquot part of the coefficienl^roie first term.

Therefore, if the terms of these series, standing opposite

to 0, be divided by the common difference, the quotient thus

arising, taken in + and — , according as the progression is

increasing or decreasing, will generally be the roots of the

equation.

It is necessary to continue the scries 2, 1, 0, —1,-2, far

enough to show whether the corresponding progression may

not break off, after a certain number of terms ;
which it never

can do when it contains a real rational root.

Ex. 3. Given 2a;3— 3j:2-[-16x—24=0, to find the roots of

the equation or values of x.

Substitming 2, 1, 0, —1, —2, successively, for ar, as in the

former case, we shall have
Divisors. Prog.

1,2,3,4,6,12, -1
1,3,9, +1
1,2,3,4,6, 8, &c. H-3
1,3,5,9,15,45, +5
1,2,3,4, 6, 7, &c. +7

"Where the progression is ascending, the number to be tried

is, therefore, |, which is found to be a root of the equation.

Let the given equation be divided by a:—-1, and the quotient

is 2x2— 16= 0, whose roots are ±2^/2 ; the three roots ol the

proposed equation are, therefore, — |-, 4-2^/2, — 2-v/2.

Ex. 4. Given a;*-|-a:3—29x2— 9a:+180= 0, to find the roots

•of the equation. Ans. 3, 4, —3, and —5.

Ex. 5. Given a:*— 4x3— 8x4-32= 0, to find the roots of the

equation, or values of x.

Ans. ic=2, or 4 ; or — 1± -/ ""3.

'um. Results.

2 12

1 - 9
-24

-1 -45
-2 —84
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Ex. 6. Given a;'—Sic^-j-lOx—8=0, to find the integral root

of the equation. Ans. 2.

Ex. 7. Given a:*—ea;34-a;2-|-82a;—60=0,tofindthe integral

roots of the equation. Ans. 5, and —3.
Ex. 8. Given a;^— 9ir3-f 8a;2-.72=0, to find the roots of the

equation, or values of x.

Ans. a?=— 3, or —2, or 3 ; or liV— 3-

§ V. RESOLUTION OF EQUATIONS BY NeWTON*S METHOD OP

APPROXIMATION.

510. The methods laid down in the preceding section, will

be found sufl5ci^|tjbr determining the integral or rational

roots of equatiolB^H^rders ; but when the roots are irro'

tional, recourse ^BIHf had to a different process, as they

can then be obtained only by approximation ; that is to say,

by methods which are continually bringing us nearer to the

true value, till at last the error being very small, it may be

neglected.

511. Different methods of this kind have been proposed,

the simplest and most useful of which, as Lagrange justly re-

marks, is that of Newton, first published in Wallis's Algebra^

and afterwards at the beginning of his Fluxions—or rather

the improved form of it, given by Raphson, in his works, en-

titled Analysis jEqiiationem Universalis.

512. In order to investigate the above-mentioned method,

let there be taken the following general equation,

a,m^^^m-i_^^a:'"-2-f ra;'"-3+ . . sx:^-\-tx-\-u=0 . (1).

Then, supposing a to be a near value of x, found by trial, and

2 to be the remaining part of the root, we shall have x= a-\-z
\

and, consequently, by substituting this value for x in the given

equation, there will arise

(rt4-2r)'"+p(«+^)'"~^+ • • • s[a-\- zf-\-t(a-{-z)-\-u= ;

which last expression, by involving its terms, and taking the

result in an inverse order, may be transformed into the equa-

tion

P+ Q^4-R;^'-4-S034. . . . J^z-=0 . . (2),

where P, Q, R, &c. are polynomials, composed of certain func-

tions, of the known quantities, a, m,p^ q^ r, &.c. which are de-

rived from each other, according to a regular law.

513. Thus, by actually performing the operations above in-

dicated, it will be found that

P=fl'"+pa'^i-|-ya'"-24. . . . sa^-\-ta-\-u ;
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which value is obtained by barely substituting a for x in the

equation first proposed.

And, by collecting the several terras of the coefficients of z^

it will likewise appear, that

Q= ma'n-^-\-m{m— l)pa"'-^-{- ... +2sa-\-t;

which last value is found by multiplying each of the terms of

the former by the index of a in that term, and diminishing the

same index by unity.

514. Hence, since z in equation (2) is, by hypothesis, a

proper fraction, if the terms that involve its several pow^
z^, z^, sr*, <fcc. which are all, successively, less than z, be neg-^
looted in the transformed equation, we shall have ^

And, consequently, if the numers^HBIWf this expression

be calculated to one or two places of aecimals; and put equal

to b, the first approximate part of the root will be z=zbj or

x=a-\-b=a'.
Whence also, if this value of x, which is nearer its true

value than the assumed number a, be substituted in the place

of a in the above formula, it will become

— «'"'H-pa^^~^+ ' • ' • +ta'-\-u

~ ^ma^""-^+ {m— 1 )pa''^-'^+ •+

^

which expression being now calculated to three or four places

of decimals, and put equal to c, we shall have, for a second
approximation towards the unknown part of the root,

z=c, or x=a-\-c=a".
And, by proceeding in this manner, the approximation may-

be carried on to any assigned degree of exactness ; observing

to take the assumed root a in defect or excess, according as it

approaches nearest to the root sought, and adding or subtract-

ing the corrections b, c, &c. as the case may require.

515. A negative root of any equation may also be found in

the same manner, by first changing the signs of all the alter-

nate terms, and then taking the positive root of this equation,

when determined as above, for the negative root of the propos-

ed equation.

516. In the practical application of this rule we must en-

deavour to find two whole numbers, between which some one
root of the given equation lies ; and by substituting each of

them for x in the given equation, and then observing which of

them gives a result most nearly equal to 0, we shall ascertain

the whole number to which x most nearly approaches ; we
30
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must then assume a equal to one of the whole numbers thu»

found, or to some decimal number which lies between them,

according to the circumstances of the case.

517. Since any quantity, which from positive becomes ne-

gative passes through 0, if any two whole numbers n and vf
;

one of which, when substituted for x in the proposed equation,

gives B. positive, and the other a negative result ; one root of the

equation will, therefore, lie between n and n'. This, of course,

goes upon the supposition that the equation contains at least

cm) real root.

I
518. It is necessary to observe, that, when a is a much

nearer approximation to one root of the given equation than

to any mher, thei^hje foregoing method of approximation can

only be applied^J^jB^L degree of accuracy. To this we
also farther add,V|||^R)en some of the roots are nearly

equal, or differ from 3rch other by less than unity, they may
be passed over without being perceived, and by that means
render the process illusory ; which circumstance has been

particularly noticed by Lagrange, who has given a new and

improved method of approximation, in his Traite de la Reso-

lution des Equations Numeriques. See, for farther particulars

relating to this, and other methods, Bonnycastle's Algebra,

or Bridge's Equations.

Ex. I. Given x^+2x'^— 8x=2A, to find the value of x by
approximation.

Here, by substituting 0, 1, 2, 3, 4, successively for x in the

given equation, we find that one root of the equation lies

between 3 and 4, and is evidently very nearly equal to 3.

Therefore let a=3, and x= a-\-z.

( x^= a3+3a^z-{-3az^i'Z^
)

Then ? 2x'^=2a'^+ 4az-\-2z^ > =24.
( —8x=—8a— 8z )

And by rejecting the terms z^-{-3az'^+2z^, (Art. 514), as be-

ing small in comparison with z, we shall have
0^+20"^— 8a-{-3a'^z-\-4az-'8z =24= ;

_24—a3—2a2+8g_ 3 _•''^"
3a^-\-4a-8 ~3l~' '

and consequently a; =04-2= 3.09, nearly

Again, if 3.09 be substituted for a, in the last equation, we
shall have

_24-a3—2a2-f 8a _ 24—29.503629— 1 9.0962+ 24.72
^~

3a2-|-4a_8 ~~ 28.6443+T2.36-8
= .00364; and, consequently, a:=a+ ^=3.09 -f- .00364 =
3.09364, for a second approximation
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And, if the first four figures, 3.093, of this number, be sub-

stituted for a in the same equation, an approximate value of x

will be obtained to six or seven places of decimals. And by

proceeding in the same manner the root may be found still

more correctly.

Ex. 2. Given 3a;5-f4a:3— 5a:=I40, to find the value of xby
approximation. -Ans. j;=: 2.07264.

Ex. 3. Given a;*— 9a:3+ 8a:2—3a:4-4=0, to find the value of

« by approximation. Ans. x—l.\{ 4789.

Ex. 4. Given a:3-|-23 3x2—39a;—93.3=0, to find the va-

lues of X by approximation.

Ans. X =2.782 ; or —1.36 ; or —24.72 ; very nearly,

Ex. 5. Find an approximate value of one root of the equa-

tion x3+a;24-x= 90. Ans. x=4. 10283.
Ex. 6. Given x3+6.75x2-f4.5x—]#.ei^=0, to find the va-

lues of X by approximation.

Ans. x=.90018 ; or —2.023 ; or —5.627 ; very nearly.

CHAPTER XVr.

ON

INDETERMINATE COEFFICIENTS, VANISHING FRAC-
TIONS, AND FIGURATE AND POLYGONAL NUMBERS.

'

§ I. ON INDETERMINATE COEFFICIENTS.

519. This is a species of investigation, which is frequently

used for obtaining the development of certain fractional and
other expressions, without having recourse to the operations

of division, or the extraction of roots ; the method of per-

forming which is as follows :

RULE.

Assume a series, or other expression, with unknown coefli-

cients, for that which is required to be found ; then, having
multiplied it by the denominator of the given fraction, or

raised it to its proper powers, find the value of each of these
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coefficients, by equating the homologous terms of the two ex-

pressions, or putting such of them as have no corresponding

terms, equal to 0, as the case may require.

Example 1. Let it be required to find the development of

, according to the above method.

A+ Ba:+Ca?2+Dx3+Ea;*, &c.Assume
a' -\- yx^~

Then, multiplying the right hand side of the equation by
a'H-&'a;\ and, transposing a, we shall have

= Aa'+ Ba'

— fl+Ai'
x^, &c.

+ B6'

And by putting the first term,

several powers of x^t^^h =0, there will arise the following

equations

a;2+Da'

C6'

and the coefficients of the

Hence,

Aa'- a=0

Ba'4-A6'=0
or

Ca'+Bb'=0

Da'+Ci'==0

&c.

a a IY .

A= -r

B=--rA
a

D=- ^C
4ic.

—, ~Ax -Bx^-—^-Ca;^ &c.
a'-{-b'x^ a a a a

Where it is obvious, that each coeflSicient, in parting from the

second inclusively, is equal to that which precedes it, multi-

plied by r : which law renders it unnecessary to take a

greater number of equations, or to push the calculation far-

ther.

a-\-hx
Ex. 2. Required the development of

, ,, . , 3 , accord-
o —j— X-^ C X

ing to the same method.

Assume -^-^^!dlL..^=,A-{-Bx+Cx^+I)x^ <fec.

« +6 x-\-cx^

Then multiplying the right hand side of the equation by

a'+b'x-\-c^x'^, and transposing a-}-bx, we shall have

0=Aa'+ Ba'

- a-\-Ab'

^ b

x-i-Ca' x^-\-Da'

+ B6^ •\-Cb'

+ Ac^ ^-Bc'

X^i &^Q
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And by putting the coefficients of the several powers of

a=0, there will arise the equations

Aa'—a=

Ca'4-B6'+Ac'zz:0

Da'+C6'4-Bc^=0

&c.

Whence

or

A =

B =

C =

D =

a-{-bx

a

a a

a a

a a

&c.

a'-\-b'x-\-c'!£'^

I \a a / \a a I \a a }

n

a

Where each coefficient, in parting from the third inclusively,

may be readily deduced from the two that precede it. So
that if P, Q, R, be any three consecutive coefficients, we
shall have

Ra'+Q^'+Pc'=0; orR=-^Q-^P.
a a

Ex. 3. Given {x^j-p)^—{qx-\-rY=x^-^ax^+ bx-\-c, to ^nd
the indefinite coefficients p, q, and r.

Here, by squaring the terms on the left hand side of the

equation, and collecting those that are alike, we have

x^-\-{2p— q'^)x'^—2rqx-\'p'^—r^—x*-\-ax'^-\'bx-\-c.

And consequently, by equating the homologous terms,

2p—q'^=za

~2qr=b,
p2—r^— c

or

2p—a=q^
—b=2qr

p2

—

c=r'^

Where it is plain, that the product of the first and third of

these equations is equal to
-J
of the square of the second ; or

2^3— ap^—2cp-^ac= ^b"^.

Hence the value of p may be found by a cubic equation,

and then q and r from the former equations.

Ex. 4. It is required to convert into a series by the

above method.

Ans.
b
30*

b-i

. ux a a. ax
+^+' &«=•)
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Ex. 5. It is required to convert into a series bv
1

—

X—x^ ^

the same method.

Ans. l + 3a:+4a:2+7a:3+lla;4-f 18a;«+ &c.
\ X

Ex. 6. It is required to convert —- into a series1— 2a;— 3ac2

by the same method.

Ans. l+a;+5a;2-j-i3a;3^41^4^]^21a;5+ &c.
Ex. 7. It is required to convert -/(I— a:) into a series by

the same method.

K ^
^ ^'^ 3a;3 3.5a;* 3.5.7a:'5

^"'- ^"^
2~2J"2X6~l4:6:8~2r4":6:8.T0""^^-

} II. ON VANISHING FRACTIONS.

520. Vanishing fractions, and other similar expressions,

are such, as in certain cases, become equal to -; which sym-

bol, though apparently nugatory, or of no value, must not be
rejected as useless, being of frequent occurrence in several

Algebraical and Fluxional investigations, where it will often

from the nature of the subject, denote some fixed, or determi-

nate quantity.

Thus, if a be made to represent the first term of any regular

geometrical series, r the ratio, and n the number of terras, we
shall have

af—a— =a-f a'/*"+ar3+a^+ af-'^-^ai'^^.

Where the left hand member of the equation is a universal

expression for the sum (S) of the series, whatever may be the

values of a, r, and n ; as will appear by dividing the numera-
tor by the denominator.

Let, therefore, the ratio or multiplier r, be taken = 1 ; and
the expression for the same will be

a— a

But when r=l, the original series becomes of the form

S=aH-a+a+a+ &c to w terms ; of which the sum
18, evidently, ^=:na ; and, therefore, in this case, it follows, that

521. And in the same way it might be shown, that this

symbol is the representative of various other quantities, accord-
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ing to the nature of the expression from which it is derived

;

but it will be here sufficient to observe, that the true value of

any fractional expression of this kind may be readily obtained

as follows.

RULE.

1. If both the terms of the given fraction be rational, divide

each of them by their greatest common measure ; then, if the

hypothesis which is found to reduce the original expression

to the form -, be applied to the result, it will give the true va-

lue of the fraction in the state under consideration.

2. Where any part of the fraction is irrational, observe what
the unknown quantity is equal to when the numerator and de-

nominator both vanish, and put it = that quantity + or i ; then,

if this be substituted for the unknown quantity, and the roots

of the surds be extracted, to a sufficient number of places,

the result, when i is put =0, will give the true value of the

fraction.

Example 1. It is required to find the value of the fraction

, when X is equal to a.
x—a ^

TT 'f ^ 11 • «^— ^^ _, ,
Here, it we put x=:a, there will arise — =-. rJut, by

^2 q2,

division, =x-{-a\ and if x be now put =<z, we shall
X— a

have — 2a ; whence -, or the given fraction, in its va-
a— a

nishing state, is z=2a.

Ex. 2. It is required to find the value of the expression

h{x— Jax) . . -

y= , when x is equal to a.
X— (X

Here, if x be taken =a+i, according to the rule, we shall

, h{a-\-i—-\/a'^-\-ai) . , , . ,

have y=— ^ -. And, by extracting the square

root of a^ -Vai, and then dividing by i,

"Whence, putting the indeterminate quantity t=0, there will

arise

y=J6;
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which is the true value of the expression, in the case pro-

posed.

Ex. 3. Let there be taken, as another example of this kind,

the equation

y-'Q{x^aY
'

where P and Q are supposed to be certain functions, or com-
binations of 0?, which do not become for the same value of x.

Then taking x=a, the expression, according to this hypo-
thesis, will become of the form

PxO_0
QxO'O'

But by considering the indices m, n, of the proposed frac-

tion, under each of the relations

m^n, mz=n, m<^n^

we shall have, by division, the three following results ;

_ P(a: -«)>"-» _P P_
^"" Q '

^""Q' y~Q,{x-aY-^'
And consequently, by now taking x-=a^ there will arise

PXO P P

Whence, the value of the symbol -, in this case, will be no-

thing, finite, or infinite, according to the conditions above

mentioned.

Ex. 4. It is required to find the value of the fraction

* when X is equal to 1. Ans. 4.
1—X

Ex. 5. It is required to find the value of the fraction

»p"» fj^
, when j:=a. Ans. ma^—^.

x—a
Ex. 6. It is required to find the value of the fraction

, when X is equal to a. Ans. Scf^

* The value of this fraction was the cause of a violent controversy between
Waring and Powell, in 1760, when these gentlemen were candidiHes for the

mathematical professorship at Cambridge ; Waring maintaining that the value

X—x^
of the fraction vz— is equal to 4 when ai=\, and Powell, (or rather Maseres,

who is commonly thought to have conducted the dispute,) that it was equal
toO.
The idea of vanishing fractions first originated about the year 1702, in a

contest between Varignon and Rolle, two French mathematicians of consider-

able eminence, concerning the principles of the Differential Calculus, of
which Rolle was a strenuous opposer.
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Ex. 7. It is required to find the value of ^ 1-, when

a: is equal to a. Ans. (2a) .

1 ^3

Ex. 8. It is required to find the value of the expression ,

when X is equal to 1

.

Ans. n.

Ex. 9. It is required to find the value of the expression

— =r , when X is equal to a. Ans. 3a.
a— 's/ax

Ex. 10. It is required to find the value of the expression

na^+i-(n-f-l)x"4-l

l~aj2
-, when X is equal to 1.

Ans.
«(n4-l)

Ex. 11. It is required to find the value of the expression

'y/x—^/a^r^/[x^a) , . , ^
- 1

j-r——-^ -^ when X is equal to a.
y(a:2-a2)

Ans.
V2a

\ III. ON FIGURATE AND POLYGONAL NUMBERS.

532. Figxirate 'Numbers y are such as arise from taking

the successive sums of the series of natural numbers 1, 2, 3,

4, 5, &c. ; and then the successive sums of these last, and so

on : and polygonal numbers, are those which are formed of

the successive sums of the terms of any arithmetical pro-

gression beginning with unity ; each of ihem being usually

divided into orders, according to the scale of their generation,

which, as far as regards those of the first class, may be shown
as follows :

Order. Figurate Numbers. Gen. Terms,

1

4

&c.

Figurate Numbers.

1, 2, 3, 4, 5, 6, &c.

1, 3, 6, 10, 15, 21, &c.

1,4, 10,20, 35, 56, &c.

1.2.3 4

&c.

1, 5, 15, 35, 70, 126, &c.

&c.

Where it is to be observed that the general terms, here given,

are so called, because if 1, 2, 3, 4, &c. be respectively sub-

n

n(n+ \)

1 . 2

n(n+])(n-h2)

12 3

n(«-h'l)(n+2)(nH-3)
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stituted in each of them, for n, we shall obtain the several terms

of the series.

And if, instead of the natural numbers 1,2, 3, 4, &c. which
give triangular numbers, an arithmetical series be taken, the

common difference of which is 2, the sum of its successive

terms will be the series of square numbers ; if the common
difference be 3, the series will be pentagonal numbers ; if 4,

hexagonal ; and so on : thus.

Arith, Series.

1, 2, 3, 4, &c.

Ord.

1

Polygonal Numbers.

Tri. 1, 3, 6, 10, &c.

Gen. Terms.

n(n+l)

1, 3, 5, 7, &c. 2 Sqrs. 1, 4, 9, 16, &c. n(2n+0)

2
n(3;i-l)

2
7i(4n-2)

9

1, 4, 7, 10, &c. 3 Pent. 1, 5, 12,22, &c.

1, 5, 9, 13, &c. 4 Hex. 1,6, 15,28, &c.

&c. &c. &c.

Where the number denoting any order, is the common diflfer-

ence of the arithmetical series, from which the polygonal num-
bers, belonging to that order, are generated.

In like manner, if we take the successive sums of the se-

veral polygonals thus obtained, and then the successive sums of

these last, and so on, a great variety of other orders of series

of this kind may be readily obtained.

Hence, also, in general, if n be made to denote the number
of terms of the series, a figurate of any m, may be expressed
by the following formula.

n n-j-l n+ 2 n+ {m- l)

1^ 2 ^ 3 m
•

And supposing n to be the number of terms of the series,

as before, a polygonal number of the order m— 2, or one that

has the number of its sides denoted by m, may be expressed
(m—2)?i^~{m-^4)n

^
2

'

So that figurate numbers, of any order, may be always de-

termined, without computing those of the preceding orders,

by taking as many factors, in the first of these formulae, by
substituting the number denoting that order for m— 2, or the

number of sides of the polygon, for m, and taking n equal to

the term required.

Example 1. Required the 15th term of the second order of

figurate numbers, 1, 3, 6, 10, 15, &c.
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Here m being =2, and n=15, we shall have by the first

formula,

2i2±l)-15(i5±il=ii^ =15X8 =120,
2 ~ 2 2

the term required.
i /.rt. j

Ex. 2. It is required to find the 12lh term of the fifth order

of polygonal numbers, being those called heptagonal, or such

as would be represented by a figure of seven sides.

Here m being equal 7, and n=12, we shall have, by the

second formula,

(m-2)n^-{m-A)n (7- 2) X 144-(7-4 ) X 12^^ ^ ^2-3
2 2

X 6=360— 18= 342, the term required.

Ex. 3. It is required to find the 20th term of the 5th order

of figurate numbers. Ans. 42504.

Ex. 4. It is required to find the 13th term of the 9th order

of figurate numbers. Ans. 293930.

Ex. 5. It is required to find the 36th term of that order of

polygonal numbers, which is denoted by a figure of twenty-

five sides. Ans. 14526.

CHAPTER XVIL

ON

INDETERMINATE AND DIOPHANTINE
ANALYSIS.

^ I. ON INDETERMINATE ANALYSIS.

523. When the enunciation of a question does not furnish

as many equations as there are unknown quantities to be de-

termined, the question is said to be indeterminate, being usually

such as admit of a great variety of solutions ;
although, when

the answers are required only in whole positive numbers, they

are generally confined within certain limits : the determina-

tion of which forms a particular branch of Algebra, called

Indeterminate Analysis.
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To begin with one of the easiest questions ; let there be
required two positive integer numbers, the sum of which is

equal to 10.

Let us represent them by x and y ; then we have, ar-f-y

= 10, and a:=10—y, where y is so far only determined that

it must represent an integer and positive number. We
may therefore substitute for it all integer and positive num-
bers from 1 to infinity ; but since x must likewise be a posi-

tive number, it follows, that y cannot be greater than 10 ; be-
cause X must be positive ; and if we also reject the value a?= 0,

we cannot make y greater than 9 ; so that only the following

solutions can take place :

If y=l, 2, 3, 4, 5, 6, 7, 8, 9,

then a;=39, 8, 7, 6, 5, 4, 3, 2, 1.

But the four last of these nine solutions being the same
as the four first, it is evident, that the question really admits
only of five different solutions.

524. As we have found no difficulty in this question, we
may proceed to others, which require different considera-

tions.

Problem 1. To find the values of the unknown quantities

X and y in the equation

axXby^zc^ or ax-\-hy=^c^

where a and h are given numbers which admit of no common
divisor, except when it is, also, a divisor of c.

RULE.

525. 1. Let wh. denote a whole or integral number, and

reduce the equation to the form x—— =wh.

2. Make — =— , by throwing all whole numbers

out of it, till d and e be each less than a.

3. Find the difference, or sum, of -—
, or some mul-

a

tiple of it, and — , or any other multiple of it that comes near

the former, and the result will be a whole number.

4. Take this, or anymultiple of it, from one of the fore-

going fractions, or from any whole number which is nearly

equal to it, and the result, in this case, will also be a whole
number.
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5. Proceed in the same manner with this last result, and
so on, till the coefficient of y becomes equal to 1, or

y±r=„A =;,.
a

6. Then will y=ap^rf where p may be any whole num-
ber whatever, that makes y positive ; and as the value of

y is now known, that of x may be found from the given equa-

tion.

Example 1, Given 2j?+3y=25, to determine x and y in

whole positive numbers.

25— 3y ,„ ,
1—

y

Here a:=—-~^-=12-yH—-^.
til Z

Hence, since x must be a whole number, it follows that

——^ must also be a whole number.

Let, therefore,
^ z=wh.=zp ;

2
then 1 —y=2/>, or y=l— 2/?.

And since

«=12-y+l^=:12-(l-2|>)-|j>=12+3;)-l,

we shall have a?=114-3p, and y= 1—2/7

;

where p may be any whole number whatever, that will render

the values of x and y in these two equations positive.

But it is evident, from the value of y, that p must be either

or negative, and, consequently, from that of x, that it must be
— 1,-2, or—3.

Whence, /)=0,/>=— l,p=—2,j9=— 3 ;

then
^«^=ll.^-8,a:=5,a:=2;

iy= l,y=3,y=5,j/=7;
which are all the answers in whole positive numbers that the

question admits of.

Ex. 2. Given 21a:+17y=2000, to find all the possible va-

lues of X and y in whole numbers.

Zi. till.

or omitting the 95, ——-^=tuA.

;

consequently, by addition, —-H -—-^= ^"[" =u;A.

-, 4y4-5 ^ 20y-}-25 , ,
4+ 20y

Also. J^x5=-^=l-^-^=wh.;
31



x=z92 75 58 41 24

y- 4 25 46 67 88
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or, by rejecting tlje whole number I, ~r-^—~=zwh.

And, by subtraction, -~f -—-^=z^-—=wk.—p
;

whence y=:21/>-f-4,

2000— 17y 2000-17(21o4-4) ^

Whence, if p be put =0, we shall have the least value of y= 4,

an^ the corresponding, or greatest value, of ar —92.
And the rest of the answers will be found by adding 21

continually to the least value of y, and subtracting 17 from the

greatest value of x ; which being done, we shall obtain the

sii following results

:

7

109
These being all the solutions the question admits of.

Ex. 3. Given 19£c=l4y— 11, to find x and y in whole

numbers.

Here x=—^—— =wh., and —~-=wh.
;

u u • 19y 14y-ll 5y4-ll ,

whence, by subtraction, —-:^
^——= ——wk.

19 19 19

Also, -i^ X 4=-^-=:y+24-^=t^A.

;

and by rejecting y+2, which is a whole number,

^ =zwh.=2j\ .'.y—l9p— 6j and

_ 14y-'ll _ 14(19p-6)- ll 266;?—

9

5_ __
^~"

19 ~" fg ~"" 19 ~~ ^ •

Whence, if p be taken =1, we shall have x=:9 and y=:13,

for their least values ; the number of solutions being obviously

indefinite.

526. When there are three or more unknown quantities,

and only one equation by which they can be determined, it

will be proper first to find the limit of that quantity which has

the greatest coefficient, and then to ascertain the different va-

lues of the rest, by separate substitutions of the several values

of the former, from 1 up to the extent required, as in the fol-

lowing example.

Ex. 4. Given 3a;+5y4-7;s= lG0, to find all the different

values of x, y, and z, in whole numbers.

Here each of the least integer values of x and y are 1, by

the question ; whence it follows, that
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100-5-3 100-8-—-13i
7 7

Consequently z cannot be greater than 13, which is also

the limit of the number of answers ; though they may be con-

siderably less.

By proceeding, therefore, as in the former rule, we shall

have
100—5y-

3"
•Iz

;33_y_22-f
l—ly—z

=zwh.
;

and by rejecting 33—y— 2^,

\—2y—z
:=wh.

3y^ 1 2i/—z^y-{-l—i
=:wh.: P'

3 ' 3 • 3 3

Whence, y=z3p-\-z—1 ; and, putting p= 0, we shall have

the least value of y= 2— 1 ; where z may be any number

from 1 up to 13, that will answer the conditions of the ques-

tion.

When, therefore, z=l, we have y=0,
100-7 ^,

and x=—-—=31.
o

And by taking z=2, 3, 4, 5, &c. the corresponding values

of X and y, together with those of z, will be found to be as

below.

0=1 o 3 4 5 6 7 8

v=o 1 2 3 4 5 6 7

a:=31 27 23 19 15 11 7 3

Which are all the integer values of x, y, and Zj that can b^

obtained from the given equation.

527. If there be three unknown quantities, and only two

equations, exterminate one of these quantities in the usual

way, and find the values of the other two from the resulting

equation, as before ; then, if the values, thus found, be sepa-

rately substituted, in either of the given equations, the cor-

responding values of the remaining quantities will likewise

be determined.

Ex. 5. Given oc—2i/-\-z—5, and 2x-{-y—z=7, to find the

values of x, y, and z.

Here, by multiplying the first of these equations by 2, and

subtracting the second from the product, we shall have

3^— 5y= 3, or z=—^--^= l-{-y+-^=wh.
;

and consequently -^jOX -~ ^=^=wh.z=p
o o o o

whence y=3p. >
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And by taking p=0, 1, 2, 3, 4, (fee. we shall have y=0,
3, 6, 9, 12, 15, &c. and z=zl, 6, 11, 16, 21, &c.

But from the first of the two given equations

a;=5-}-2y

—

z
;

l^irhence, by substituting the above values for y and z, the le-

stilts will give

cc= 4, 5, 6, 7, 8, 9, &c.
And therefore the first six values of x, y, and z, are as

below

:

xz=A 5 6 7 8 9
y^O 3 6 9 12 15

z=l 6 11 16 21 26

Where the law by which they can be continued is suffi-

ciently obvious.

Ex. 6. Given 3x=8y— }6, to find the least values of x,

and in whole numbers. Ans. a:= 8, y= 5.

Ex. 7. Given 14a?=5y-}-7, to find the least values of x and

y in whole numbers. Ans. a:= 3, y=7.
Ex. 8. It is required to divide 100 into two such parts, that

one of them may be divisible by 7, and the other by 11.

Ans. The only parts are 56 and 44.

Ex. 9. Given lla:-f-5y= 254, to find all the possible values

of x and y in whole numbers.

. (0.^19,14,9,4,
^"^•)y=r9, 20, 31,42.

Ex. 10. Given 17x-f 19y+21;2.— 400, to find all the an-

swers in whole numbers which the question admits of.

Ans. 10 different answers.

;
Ex. 11. Given 5a:-}-7y-hll^=:224, to find all the possible

values of a:, y, and z^ in whole positive numbers.

Ans. The number of answers is 59.

Ex. 12. A person bought as many ducks and geese, to-

gether, as cost him 28^. ; for the geese he paid 4^. 4rf. a piece,

and for the ducks 26^. 6d. a piece ; what number had he of

each? Ans. 3 geese and 6 ducks.

Ex. 13. How many gallons of spirits, at 12^., 15^., and
18^. a gallon, must a rectifier of compounds take to make a
mixture of 1000 gallons, that shall be worth 17 shillings a
gallon ? Ans. lllj at 12^., llli at 15^.^ and 777| at ISs.

PROBLEM.

528. To find such a whole number, as, being divided by
Other given numbers, shall leave given remainders
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1. Call the number to be determined x, the numbers by
which it is to be divided a, b, c, &c., and the given remain-

ders/, gy h, (fee.

2. Subtract each of the remainders from x, and divide the

differences by a ; and there will arise —, —, , <fec.
•^ a a a

= whole numbers.

x-f
3. Put the first of these fractions ——=Pi and substitute

the value of x, as found from this equation, in the place of x
in the second fraction.

4. Find the least value ofp in this second fraction, by the

last problem, which put =r, in the place x in the third frac-

tion.

529. Find, in like manner, the least value of r, in this third

fraction, which put =:s, and substitute the value o( x, in terms

of s, in the fourth fraction, as before ; and so on, to the last

;

when the value of x thus found, will give the whole number
required.

Example 1. It is required to find the least whole number,
which, being divided by 17, shall leave a remainder of 7, and
when divided by 26, shall leave a remainder of 13.

Let x=: the number required.

Then ——- and - = whole numbers.

x—7
And, putting =p, we shall have x=l7p+7 ; which

value of Of, being substituted in the second fraction, gives

17p4-7-13 17o-6
26—=-26-="^^-

:.

But it is obvious that -|| - Lfc^==?^=^A.
^_^

^^ ^r-><^= -26-=^+-26-="'^-

And by rejecting p, there remains ^---—xzwh.=r
;

therefore p=26r— 18;
where, if r be taken =1, we shall have p=:8.
And consequently a;=17;74-7=17x8-|-7=143, the num-

ber required. 31*
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Ex. 2. To find a number^ which, being divided by 6, shall

leave the remainder 2, and when divided by 13, shall leave

the remainder 3. Abs. 68.

Ex. 3. It is required to find the least whole number, which,

being divided by 39, shall leave the remainder 16, and when
divided by 56, the remainder shall be 27. Ans. 1147.

Ex. 4. It is required to find the least whole number,
which, being divided by 11, 19, and 29, shall leave the re-

mainders, 3, 5, and 10. ' Ans. 4128.

Ex. 5. It is required to find the least whole number,
which, being divided by each of the nine digits, 1,2, 3, 4, 5,

6, 7, 8^ 9, shall leave no remainder. Ans, 2520.

PROBLEJtt.

On Compound Indeterminate Equations.

530. Equations of this kind, not higher than the second

degree, which admit of answers in whole numbers, are chiefly

such as consist of the products, or squares, of two unknown
quantities, together with the quantities themselves ; being,

usually, one of the four general forms given in the following

Tule.

. RULE.

1. If the equation be of the form xy=ax+hy-\-c, we shall

uh-\-c
iiave, for its solution in whole numbers, y=a+ ; where

x—h must be a divisor of ah-\-c.

2v If the equation be of the form x^-^rxy^ax-^-ly-^c, we
shall have

y=-x-\-a-h-\- -.
' y^ x— b

where x—h must be a divisor of c-\-b{a^h).

3. If the equation be x'^:=zy'^-^ay-Yh, we shall have y-ss

a^—Ah n—a . a . , , .,
J

, and x=-A-v—n ; where a and n must be even
8n ^ 2 ' 2 -^

numbers, and n be so taken that 8n may be a divisor of

fl2-4&.

4. If the equation be x'^=:ay^-\-by-\-c'^, we shall have y=
—

, and x=c4-ny : where n must he some whole num-
n^—a ^

"ti^r between y'a and —

.

2c
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Example 1. Given ary=42—2it— 3y, to find the several va-

lues of X and y in whole numbers.

Here, by the first form,

a=— 2, 6=— 3, and c=42,

« .
6+42 „ ,

48
whencey=-2+-^3-=-2+^-p^.

Where it is plain, that x must be such a number, that, when
added to 3, it shall be a divisor of 48. But the divisors of

48, that will give quotients greater than 2, are 16, 12, 8, 6, 4,

and 2.

And consequently the integral values of the two unknown
quantities are

a;=16-3, or 13
|
=12—3, or 9

|
=8-3, or 5

|

=6—3, or 3
I

=4—3, or 1.

48 „
y=i6-2,orl1 =15-2

12
, or 2 =^-..0.4

48

6
-2, or 6

_48
4

"-2, or 10.

Which are all the answers in whole positive numbers that the

question admits of.

Ex. 2. Given a;2=y2_|_20y, to find the values of x and y in

whole positive numbers.

Here, by the third form, a=20, and h =0,
400 . n—20 50 n ,^ . ,^

.

whence, y=-3—I — = 1--— 10, and a?=10-fy— n.
on 2 n 2

Where it is plain, that n must be some even number which
is a divisor of 50.

But the only number of this kind, that will give positive re-

sults, is 2.

•.y=^4-l-10=16, anda;=10+16-2=24.

Ex. 3. Given jj2=5y2__i2y+64, to find the values of x and

y in whole positive numbers.

Here, by the 4th form, a=5, 6= — 12, and c=8..

-12-16n 16(n-f)
Whence, y= —-—= —^—r^, and ar=84-wy.^ n^—5 5

—

n^ ^

Where it is plain, that n must be less than the -y/S, and great*

er than J ; which numbers are only 1 and 2.

-12-16 ^
^ 1-5

-^2-^^=44.
4-5

anda;=8+lx7=15
| =8+2x44=96
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Ex. 4. Given a;2+a;y=2a;+3y+29, to find the values of r-

and y in whole positive numbers.

Ans 5
^= ^' ^'

Ex. 5. It is required to find two numbers, such, that their

product, added to their sum, shall be 79.

^"^•)39, 19, 15, 19.

Ex. 6. Given a;2+a'y=4a;+3y+27, to find the several va-

lues of X and y in whole numbers.

^ y=21, 11, and 5.

Ex. 7. Given a;2=y2_^ioOy+1000, to find the two last va-

lues of X and y, in whole numbers.

Ans. x— 10, and yrz:30.

Ex. 8. Given a2=:50y2+100y-|-100, to find the values of x
and y in whole numbers.

Ans. a;=190, and y=40.

§ II. ON THE DIOPHANTINE ANALYSIS.

531. The Diophantine Analysis relates chiefly to the find-

ing of square, cube, and other similar numbers, or the rendering

certain compound expressions free from surds ; the principal

methods of efiecting which are comprehended in the following

problems.

PROBLEM I.

632. To render surd quantities of the form y/{a-}-hx-\-cx^)

rational ; or, to find such values of x as will make a-\-bx-\-cx'^

a square.

Case 1. When the expression is of the form -^/ia-^-bx), that

is, when c=0. Put '^(a-\-hx)=n, or a-\-bx=:n^ ; and we shall

have ir=—7— ; where n may be any number, either integral

or fractional, that will render the value of x positive.

Example 1. It is required to find a number, such, that if it

be multiplied by 5, and then added to 19, the result shall be

a square.

jj2 x9
Let 5af-j-19=n2, or x=—-—

;

5

where n may be any number whatever greater than ^19.
Whence, if n be taken =5, 6, 7, respectively, we shall have
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25-19 ,, 36-19 ^, ^.
49-19

the latter of which is the least value of ar, in whole numbers,

that will answer the conditions of the question ; and conse-

quently

5x4-19=5x6+19=30+19=49,
a square number, as was required.

533. Ex. 2. Find a number such, that if it be multiplied

by 5, and the product increased by 2, the result shall be a

square.

n2—

2

Put 5a;+2=n2, then x =—-— ;

5

if we assume n=2, then a;=:f ; and by assuming other values

for «, different values of x may be obtained.

534. Case 2. When the expression is of the form V'(iac+

cx^) ; that is, when a=0.
Put \^(bx-{-cx^)= nxi .'.bx-\-cx^=n^x'^jthen b-{'cx=n^x;

whence x=:— , and whatever value may be given to n in
nr— c

this expression, there will result a value of x that will make
\^(bx4-cx^) rational.

Example 1. It is required to find an integral number, such,

that it shall be both a triangular number and a square.

It is here first to be observed, that all triangular numbers

are of the form —-— ; and therefore the question is reduced

x^-\-x ^x^-\-QiX
to the making—-—, or it equal —— a square. But since

a square number, when multiplied, or divided, by a square

number is still a square ; it is the same thing as if it were
required to make 2x'^'\-2x a square.

««2/jj2

Let therefore 2a?2+2a:=^—r-, then dividing by a?, andmul-
71

tiplying the result by n^, the equation will become 2n2a?+2n*
rs/n^a: ; and consequently

_ 2n2

*~~m2— 2"n2*

Where, if n be taken =2 and 7n=3, we shall have
_ , x'+x 64+8 72 _-

a;=8, and ~^=—2-~=y=36,
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for the least integral triangular number that is at the sanrie

time a square.

535. Ex. 2. Find a number such, that if its half be added
to double its square, the result shall be a square.

Let X denote the number, then we must have 2x^-{-^x=z a

square =n2x^, or 2x'\-l=:n^x ; therefore, a:=-— , n be-
2n^—

4

ing any number whatever ; if 7i=2, then oc=- __-, a

square number.

536. Case 3. When a is a square number, put it equal to

d^y and make \/{d'^-^bx-Jt-cx'^)=:d-\-nx \ tht.n <P-\-bx-\-cx'^=:

d^-\'2dnx-\-n^x^, or b-{-cx=2dn-\-n'^x ; and consequently, x=z

2dn-b ^ ... ^ 2dn
-. Or, if6= 0, a;= -.

Example 1. It is required to divide a given square number
into two such parts, that each of them shall be a square

number.

Let a^rr the square to be divided, x^-^ one of its square

parts, a2_j.2_ ^q other ; which is also to be a square.

Put a'^—x'^-=.{nx~df^=:n^x^—2anx-\-(J?^ and we shall have

2anx = n'^x^-\-x'^, or n'^x-i-x=2an ; and consequently a;=

2an . 2an 2a-n?' an'^-f-a ari^— a

Hence, (—— V and (^-7-7)^ are the parts required;
Xnr -f-l/ xn"-}-!/

where a and n may be any numbers whatever, provided n be

greater than unity.

537. Ex. 2. Find two numbers, whose sum shall be 16,

and such, that the sum of their squares shall be a square.

Let x= one of the numbers, then 16— a; denotes the other,

and we have to make a;2+(.x— 16)^, or 2^2-- 32a;H-256, ia

square.

Put 2j:2-32j:+256= (na;—16)2==n2^2_32;ia;+ 256 ;

hence, 2x'^—32x=zn'^x^— 32nx, and 2a:— 32=7i2a;— 32n
;

32(;i-l)
consequently x=i —-——

.

If we take n= 3, we shall have x=9\; therefore the two

numbers are 9^ and 6^.

538. Case 4. When c is a square number, put it r=:e\and

^{a-\-bx-\-e^x^)=n+ex ; then, a-{-bx-\-e'^x^ =z n^ + 2enx-^

e^x^, or
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a— Ti^

2en—

Or, if 6=s:0, x=^^^.

Example 1. It is required to find the least integral number-

such, that if 4 times its square be added to 29, the result

shall be a square.

This being the same thing as to make 4a;2-f29 a square ;

Iet4a;24-29=(2x+n)2=4j;2 4-4na;-f-n2. Then,4na:+n2=29,
29 ji2

or 4nacs=29— n'^
; /. x= ; where, if n be taken equal

4n

^ „ ^
29— 1 28 ^ . . 1 . 1. 1 .

to 1, we shall nave x=—-—=—=7, which is the only in-

tegral number that answers the conditions of the question.

539. Ex. 2. Find a number such, that if it be increased by
2 and 5 separately, the product of the sums shall be a square.

Let x= the number, then we have to make (a^+S) (a?+5),

or x^-\-7x-\-l0, a square, which denote by (a;— n)^ ; then,

a?2-|-7a?+10= a;2— 2na'+w2, or

7a;+10=—2nx+ n2; .-. a;— ^"j"
.

2
If we take n=4, we shall have oe=-.

o

.540. Case 5. When neither a nor c are square numbers,

yet if the formula can be resolved into two simple factors,

(which it always can when b^— 4c is a square, but not other-

wise), the irrationality of it may be taken away, by putting

y(a+ia;+ca?2)r= ^/{(d+ex) (/-f gx)\=n(d-\-ex) ; in which
case we shall have

{d-{-ex){f-\-gx)= n^(d+exY, or /-{gx= n''(d+ex) ;

and consequently «= g*

f~^" d 2

Or, if d=0, x= - / -, and if/=0, a?— ^
^ .

en^—g ^
g— en^

The two factors above mentioned will be found by putting

a-\-hx-\-cx'^z=.Q ; and solving this equation, we shall have

or putting '}/(h'^—Aac)=8'^, the values of a; are

h d ^ h dx=—-—+—-, and a;=t:—-——- ;

2c 2c 2c 2c
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and, consequently, (cx-\—-—), and (x-\—-— ), are the factors

required.

Example. It is required to find such a value of a?, that

'y/{6-\-l3x-{-6x'^) shall be rational, and consequently 6+ 13a?

4-6x2 a square.

Let 6a>2+13a:-f 6=0;
and solving this equation, we shall have a?=—f, and x=:—J

:

therefore the two factors are 2a; -f- 3, and 3a;-|-2.

Put (2a;-!-3)(3a;+2)=— (3a;+2)2, or 2a:+3=—(3a?+2),

3;j2 2m2
and consequently, by reduction, x-=~——r-—-—r.

3m^— 2n^

Where it appears, that, in order to obtain a rational answer,

— must be less than |, and greater than f

.

Whence, if 771= 6, and n= 5, we shall have

3x25-2x36 75-72 3 , ,

^=3-^^36323^=108350= 58'
'^' "^^"^ '''^'''''^'

Case 6. When neither of the foregoing will apply, if the

formula can be resolved into two parts, one of which is a

square, and the other the product of any two simple factors.

Put ^(a-^bx+cx^) = Vlid+ex)'^ + (f+gx) {h-\-kx)\ =;

{d-{-ex)-\-n{f-{-gx) ; in which case we shall have {d^ex)^-\-

{f+gx){h-^kx) = (d+exf-{.2n{d-{-ex){f+gxHn^f^gxy,
or h+kx=2n(d-\-ex)-{-n'^(f+gx) ;

n{2d+fn)^h
and consequently, x-=z --—~~r—r-

k—n{2e-\-gn)

Or, if d=:0, x=j-^^f~!' ,
.

k—n{2€-\-gn)

Or, if the part in this case, which isi found to be a square,

be a known quantity, put ^{a-{-bx-^cx^)= '^\(d'^~^(e+fx)

(g-{-hx) — d~{-n{e-^fx)\ ; then we shall have

d^+(e-\-fx){g-{-hx)=d^-\-2dn{e-\-fx)+ (e-\-fxf

or g-\- hx=2dn-^{e'\-fx)^

and consequently, by transposing and uniting the different

e-\-2dn—g
terms, x=—j—7—

.

^-/

Example 1. It is required to find such a value of a;, that

V(13a;2-f- 15a:-|-7) shall be rational, or 13a;2+15a;+7 a square.
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Let this formula be separated into the two parts {l—xY and
6+17x-|-12a:2.

Then, since l?^—4(6x 12), which is equal to 1, is a square,

the latter part may be divided in the factors 3a; -f- 2, and 4x-\-

3 ; and consequently the original formula may be represented

by
(l-xY-^{2-\-Sx)x{2+ 4cc).

Hence, putting 'v/(i3a-'H-15.r+7)=
^]{l-x)^-^{2+3x)x(3+4x)\={l-x)+ n(2-{-3x),

we shall have (1 —0^)24. (2+ 3a;) X (3+ 4)=(l —«)2+2n(l —x)
X(2+ 3)+ n2(2+ 3a;)2, or

3+ 4a!= 2n(l-a:)+n2(2+3a:)
;

, 1 ,. :,
. 2n4.2n2-3

and consequently, by reduction, x:=-— —-.
4-(-2w— 3»2

Where, taking n=l, we have a;=—--—«= o J

4 -j- 'C— o o

j,o2,,sj-, 13 ,
15

,
_ 13 45,63 121

and 13«.+15^+7=-+-+7=-+-+-=--,

a square number, as required.

Ex. 2. Find a value of x, such, that 2a;2+ 8a:-f7 shall be
a square.

This expression, after a few trials, is found to be equiva-

lent to (j:-f2)2+ (^+l)>^(^-f-3), which being equated with

\{x-{-2)-n{x+\)\^ = {x^+ 2)^^2n{x+ 2) X {x+l)+ n^{x+
i)^ there results

a;+3= -2n(a:+2)+ n2(a;+l)

;

n2— 4n—

3

whence, x=-— -.

If we take n=3, we shall have a:=:3, and 2a;2-|-8ar+7=

49, a square, as was required.

PROBLEM II.

541. To render surd quantities of the form '\/{a-{-hx-{-4;x^

+ rfa:'^) rational, or to find such values of x as will make a-^bx
-{•cx^-{-dx^ a square.

This problem is much more limited, and difficult to be re-

solved, than the former, there being but a few cases of it that

admit of answers in rational numbers. The rules for obtain-

ing them are of such a confined nature, that when the un-

known quantity has more than one value—which, however,

is not often the case—the rest can onlv be determined one at

32
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a time, by repeating the operation with the value last obtain-'

ed, as often as may be found necessary.

RULE.

542. Case 1. When a=o, and b=Oj put the remaining

part -^{cx^-^-dx^) = nx, or cx'^-\-dx'^= n'^x'^ ; then we shall have

c-{-dx=n'^i .-.3:=—y—

.

a

Where n may be any number whatever greater than the square

root of c.

Ex.^MPLE 1. It is required to find such a value of a; that

-/(Sx^ + llx^) shall be rational, and consequently Sjp^-j-Hjc'

a square.

Let ^/{3x'^+nx^)= nx, or 3x"^-^ 11x3= ri^x^

Then, by dividing, we shall have 3-f- llxzzzii^.

;j2 3
And consequently x= ; where n may be any number,

positive or negative, that is greater than -y/S.

Taking therefore, n=2, 3, 4, 5, Sic. respectively, we shall

1 6 13 22
have x=— , — , — , —, or 2, the last of which is the least in-

tegral answer which the question admits of.

Ex. 2. Find a number such, that if three times its cube be

added to twice its square, the sum shall be a square.

Here we must make 3a:^+ 2x2 a square
;

let n^x^ be the square, then 3x-\-2z=n'^;

n^-3
.'. Xz=. .

2

If we take n=r3, we have x= 3, the number required.

543. Case 2. When a is a square number, put it equal to c^

and make '^(e'^+ bx-\-cx^+dx3)z=e-\-—x, or e^ + bx -f car^-f-
2e

dx^.H^+^>=e'+h^+^2^'-

12

Hence, cx'^+dx3=—=-x, and by division and reduction

J2_4ce2 52

a?=
4rf6«

: or, when c=0, x= —7-^.
4ac''

Note. The assumed root e-\-—x is determined by first tak-
4/6

ing it in the form e+nx, and then equating the second term
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of it, when squared with the second term of the original for-

b
mula; in which case n will be found=:7-.

Example I. It is required to find such a value of jc, that

1+2jc— x^-f-x^ shall be a square.

Here, 1 being a squjire, let i-\-2x—x'^-{-x^={l-\-xY^=l-\'

2x+a:^; then, we shall have x^— x'^= x'^, or x^=2x^ ; and con-

sequently x=r 2, and 1-I-2JC — a:2 + a;3-_i .^4 __4_|_8= 9, a

square as required.

Ex. 2. Find such a value of x as will make the expression

3x^— 5x^-\-6x-^4 a square.

Put3a:3-5x2+ 6x4-4=:(fx4-2)2= |a;24-6r+4,

then, 3x^-5x'^=^x\ or Sx—5= |; .•.x=l^, which being

substituted in the proposed expression, makes it equal to l-^\

PROBLEM III.

544. To render surd quantities of the form y/{a-{-bx-{-cx'^

'^dx'*-\-ex'^)y rational, or to find such values of x as will make
a'\-bx-\-cx^-\-dx^-^ex*^ a square.

RULE.

Case 1. When a is a square number, put it =f^, and make

p^bx+cx^+dx^+ex^=(^f-{-yx+^'^^~^\^y=p-{.bx^

then since the first three terms on each side of the equation

A . IV 1 „ t.
(4r/2-62)2

^ ,
b(Ar,p - ^2)

destroy each other, we shall have
^

-^

—

- x^-{-
-' -

x^=ex*-\-dx^ ; and therefore, by division and reduction,

_ 64(y6->8y2(4c/ 2 ~.Z>2)

^~
i^irf'— b^)^— {J4fp

'

which form fails when any two of the coefficients b, c, d, are

each =0.

Example 1. It is required to find such a value of x, that

1—2a;+3a;2— 4a;3-j-5ar* shall be a square.

Here, the first term being a square number, let 1— 2a:-|-3«*

4a;3+5x*=(l -x—x2)2=: I— 2a:+ 3x2 -2a:3-f x*.

Then, since the first three terms on each side of the equa-

tion destroy each other, we shall have 5x*—4x^=x*—2x^;
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./.ar=|, and consequently I —2x+3x^—Ax^-\- 5x*=:l-^l'\-^

'^h'^lQ—TS J
which is a square number, as was required.

Ex.2. Find such a value of a; that we may have 22jc*—40a;^

8—i0x'^-\-6ix+l6 a square. Ans. -.

545. Case 2. When c is a square number, put it =g'^, and

make^V H-(far3+cx2+iar+a= (gx^^~x-\- ^-^^^^)' =g'x*

-tdx^+cx^-i——~— -x+—^xT-r— ; then, we shall have
og* o4g^

^
64g^ ^ 8^

_ (4c^2_^y2_64fl^6
'• *~

64Z>^6_8rf^r2(4c^2_^2)
'•

which form also fails in the same case as the former.

Example 1. It is required to find such a value of a:, that

—2+ 3a:

—

x^—2x^-\-4x'^ shall be a square number.

Let 4x*— 2a:3— a:2+ 3a;—2= (2x2— i a:—y\ )2= 4x*—2a:3—«2

'^TE^'^^T&i ^^^" ^® shall have 3a:—2= j^a;+^^ ; .\x

Ex. 2. It is required to find such a value of x, that 4ar*-f-

4a?^+4a;2+2a:— 6 shall be a square.

Put 4a:*+4a;3+ 4x2+ 2a;-6=:(2a:24-a: 4-1)2=
4x^+ 4x3+4a;2-f--3a;4-^g, and we have

2oo-6=.ix-\-^%; .•.x=.13i

546. Case 3. When the first and last terms are both squares,

put a=f^ and e=g^, and make f^+bx+ cx^-\-dx^-^g^x*=

then, since the second terms, as well as the first and last, on
each side of the equation, destroy each other, we shall have

^ P{c-2fy)-W
" fiig-fJ)

And because g is found in the original formula only in its

second power, it may be taken either positively or negatively;

and consequently we shall also have

lb''-p{2fg+c)
" fibg+f'i) '

80 that this mode of solution furnishes two different answers.
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Example 1. It is required to find such a value of x, as

shall make \-\-3x-\-7x^—2x^-\-4x^ a square.

Let l-]-3x+7x^—2x^+ 4x'= {l + ^x-{-2x^)^=

i + 3x+^x^i-ex^-{-4x*;
4

25 3
.'. 6x^-\--—x'^=7x'^'^2x^j and x=—.

Ex. 2. It is required to find such a value of x, as shall make
l6—24x-^Ax^— 6x^-\-x* a square.

Lei x*^6x^-\-4x^-24x-\-l6= (x^~3x-4Y=z
x*—6x^+x^+24x+\6,

and there results

4a:2—24ar=a;2-f 24a?, or 4a;—24=a?4-24;
.'.x=z\6.

PROBLEM IV.

547. To render surd quantities of the form ^ {a-{-bx-{-cx'^

-^dx^) rational, or to find such values of x as will make a+
bx-{-cx'^-\-dx^ a cube.

Case 1. When a is a cube number, put it =e^, and take

b b" *3

e^-{-bx-{"Cx^-^dx^==={e+—-xY= e^-{'bx-^-^x^-\-——x^\t]xeTi

b^ &2
we shall have dx^-{-cx^=-^-x^-{-~-x^ ; or, by dividing by

x^i and reducing the terms,

27de^x-{-27ce^=sPx+ 9h'^e^ : vi'hence x=i
9e^(3cc3-52)

b^-^27de^

Example 1. It is required to find such a value of x, as will

make the formula l-\-x-{-x'^ a cube.

Let l+x-^x-^= {l+lx)^=l-\-x-\-ix^+^Kjx\ or

x^= ^x^-\-^jX^ ; .-. a;=18, and consequently,

l + a:+a:2=14-18+ 324=:343=73, a cube number, as was
required.

Ex. 2. It is required to find such a value of x that will

make the formula 2x^-{-3a?2— 4a:4-8 a cube.

Let2x3-\-3x^-4x-^S= {-^x-{-2y='-^jX^-{-^x^~4x+ S,

and we have 2x^-{-3x^=—^jx^-\-}x\
or2a:+3=—^V+f;

Ex. 3. It is required to find such a value of a?, as to make
the formula 3a;3-|-2a;+ 1 a cube. Ans. ^.

548. Case 2. When J is a cube number, put it =/3, and
32
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take a^hx+ cx'+px^ = (^-+fay=-f-^^+f^x + cx^ +

/V ; then we shall have a + bx= ——--{-— -x ; .-. x=:
27/ 3/

27«/g-c3

9p{c^-3bpy
Example 1. It is required to find such a value of at as will

make \33-\-3x^-\-x^ a cube.

Let l33-{-3x'^+x^= {\'^xY=l-\-3x+ 3x^-{-x^l and since

the two last terms of tliis equation destroy each other, there

will remain l+3j:r=133,or 3a;=r 133— 1 = 132. ; whence x=z
i|2_44^and consequently 133 -f3a;2-fa;^= 92025::= (45)3, ^
cube number, as was required.

Ex. 2. It is required to find such a value of x as will make
the formula 8x^— 4x'^-\-2x—\2 a cube.

Let 8x3 - 4a:2+2a: - 12=(2a; - ^yzsz8x^-4x^-i-^x-\-^,

and we have 2ac— 12=Jx+^^Y»
. y,— 325

• • ^— 36 •

Ex. 3. It is required to find such a value of a? as will make
the formula x^— 3x^-{-x a cube. Ans. x=^.

549. Case 3. When a and d are both cube numbers, let

them be put =e^ andf^, and make e^-{-bx-{-cx^-{-f^x^=(e-i'

fxy=ze^-i-3fe'^x-\-3ef'^x'^-{-f^x^\ then, we shall have Jx+cx^
Sfe^— b

=z3fe^x-r3ef^x^ ;
.-. x=: ^

-- ; which formula may be also

resolved by either of the two first cases.

Example 1. It is required to find such a value of x, that

8+ 28x+ 89x2— 125x3 shall be a cube.

Let 8-|-28x+ 89x2-125x3:=(2-5x)3=8-6Qx+ 150x2—
125x3 ; and, since the first and last terms of this equation

destroy each other, there will remain 28x4-89x2=—6Qx+
150x2; .-. I50x— 89x=28-hG0, or, 61x==&8, and x=:ff, the

value required. And as this formula can, also, be resolved

by the first or second case, other values of x may be obtaine(J,

that will equally answer the conditions of the question.

Ex. 2. It is required to find such a value of x, that the for-

mula 84-4x-J-9x2-j-x3 shall be a cube.

Let 8+ 4x4-9x2+x3=(2+x)3= 8+12x+6x2+x3, and yre

shall then have 9x2-f4x=6x2 -f 12.x . .^ x—2^,

PROBLEM V.

On the Resolution of Double and Triple Equalities.

550. When a single formula, containing one or more un-

known quantities, is to be transformed to a perfect power,
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such as a square or a cube, this is called in the Diophanline

Analysis, a simple equality ; and when two formulae, con-

taining the same unknown quantity, or quantities, are each

to be transformed to some perfect power, it is then called a

double equality, and so on ; the methods of resolving which,

in such cases as admit of any rule, are as follows.

Prob. 1. When the unknown quantity does not exceed

the first degree, as in the double equality

a-\-hx^=i a square, and c^dx-= a square.

Let the first of these formula a-^-hx^t"^, and the second

c-\-dx= n'^ ; then, by eliminating x from each of these equa-

tions, we shall have bu'^-\-ad— bcz=zdl^j or bdu^-\-{ad~bc)d:=z

d^t^ ; and since the quantify on the right hand side of ihis

last equation is now a square, it is only necessary to find such

a rational value of u, as will make bdu?"\'{ad— bc)d a square,

which being done according to one of the methods already

u^— c
explained, we shall have x— —-r—

.

Example. It is required to find a number a:, such, that a;4-

128 and x-f 192 shall be both squares.

Here, let x-\-\2S=iV?, and ar4- 192= ^2 .

then, by eliminating x, we shall have u^— 128= ^2—192
; or

«2-|-64=:^2. and^ ^s the quantity on the right-hand side

of the equation is now a square, it only remains to make
t|2-j-64 a square ; for which purpose, put w2^64= (w+ n.)2r=

64 — n^
tt^-f-gnu+ n^, 2nM+ n'^= 64 ; whence, uz= ; or, taking

2n
64— 4

71, which is arbitrary, =2, we shall have u=—-—=15 ; and

consequently, a:=n2— 128=225— 128= 97, the number re-

quired.

551. Prob. 2. When the unknown quantity does not ex-

ceed the second degree, and is found in all the terms of the

two formulae, as in the double equality, ax'^-\-bxz= a square,

and ca;2-f-c?a:= a square.

Let a?=- ; then, by multiplying each of the two resulting

equations by y^^ ^ve shall have
a-\-by~ a square, and c-\-dyz=. a square

;

from which the value of y, and consequently that of x, may
be determined, as in Problem I.

But if it were required to transform the two general expres-
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sions a-^bx-\-cx^ and d-^-ex-^fx"^ into squares; the solution

.could only be obtained in a few particular cases, as the result-

ing equality would rise to the fourth power.

Example. It is required to find a number x, such, that

ar^-f-x and x'^—x shall be both squares.

Here, let x=-; then the two formulae in the question will

become —=-\— and —-—
', or —ril + v) and -t(1— vl, which

y y y y y y
are to be squares. But since a square number, when multi*

plied or divided by a square number, is still a square, it is the

same thing as to transform I •\-y and 1 —y to squares ; for

which purpose, let l-^y^p^, or y=p^~\ ; 1—y=2—p2,

which is also to be a square. But as neither the first nor last

terms of this new formula are squares, we must, in order to

succeed, find some simple number, that will answer the con-

dition required ; which, it is evident, from inspection, will be

the case whenj3= l.

Let, therefore, jt)=l—y, and we shall have 1

—

y^^-'p^^i
l-f2^—y2. or^ putting l-\-2q—q^=:{\—rqf= l—2rq-\-r'^q^\

o-
I

o
whence 2—q——2r-{-r'^qy or q—

^ ;
and consequently,

y q^—2q 4r—4H '

where, in order to make x positive, r may be taken equal ta

any proper fraction whatever.

Let, therefore, for the sake of greater simplicity, rr=-, and

we shall have a; ^—-—r—hr- ; in which case, any wholf^
Atu{u^— t^)

numbers may be now substituted for u and t, provided u be

greater than t.

25
If, for instance, u= 2 and /= 1, we shall have x=—- ; and

if M=3 and tz^2, x=—^- ; and so on, for any other numbers.

552. Prob. 3. In the case of a triple equality, where

three expressions of the former, ax-\-hy, cx-\-dy, and ex-\-fy^

are to be transformed to squares.

Let the first of them ax-^-hy^t"^, the second cx-\-dy=.u'^y

d the third ex-^fy=s^ ; then, if x be eliminated from each
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of these equations, and afterwards y in the two resulting

equations, we shall have (af—b€)u'^^{cf-'de)t'^=i(ad—cb)s'^\

and by putting -=^, or uz^tz, there will arise

af—be _ cf— de s^

ad— cb
'

ad— cb i^
*

and since the quantity on the right-hand side of this equation,

is a square, it only remains to find such a rational value of 2
as will make

af—be - cf—de

which being done by one of the methods before explained,

we shall readily obtain, by means of the first two equations,

d—bz"^ „ , az^— c -

where t may be any number whatever.

Example. It is required to find three numbers in arith-

metical progression, such, that the sum of every two of them
may be a square.

Let X, ar-f y, x-\-2i/= the three numbers ; and put 2x^y=
<2, 2x-\-2y=u'^j and 2x-\-3i/= s^ ; then, by eliminating x and

y from these equations, we shall have u^--t'^= s^—u'^, or 2u'^

— ^2—^2 . an(j if y,Q jjQ^ put u— tz^ then will arise 2l'^z^-— fi

=6'^ or 202—1—_
J
where, — being a square, it only re-

mains to make 2z~l a. square; what it evidently is when
z=zl. But as value would be found not to answer the con-

ditions of the question, let z— l—p ; 22^—\=:2{l—pY—l=:
\—4p-\-2p'^ ; and by putting this last expression =(1— rp)^,

we have 1—4j»+2j92=l — 2r/>+ ry, or —4+ 2/?=— 2r-f
2r-4

, , 2r-4 r2—2r-f2
r^p ; whence p=^-^, and «=l_-^_^=—3—^_ ; or,

m m'^— 2mn-\-2n'^

And since, by the first two equations, yz=zu'^—'t'^=:t'^z'^~t'^

= {02_i)^2^ and a:=l(^2_y2)_^(2-;?2)^2 . jt is evident, that

z must be some number greater than 1 and less than -\/2.

If, therefore, m=9 and n=5, we shall have z=——

—

--—
81 —50

41 241 «2 , 720 , .. „ ^,

~3l' ^~3T2 ^ 2

'

^^312 ^ '
^'' ^^ ^°^ X 31, OPS?

482, andy=2880. Hence,
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a:— 482, a:+y=3362, and a;-|-2y=6242,

the numbers required.

EXAMPLES FOR PRACTICE.

Ex. 1. It is required to find a number such, that ar-f 1 and
X— 1 shall be both squares. Ans. a:=|-.

Ex. 2. It is required to find a number x, such, that a;-f-4

and x+7 shall be both squares. Ans. x=^.
Ex. 3. It is required to find two numbers such, that if their

product be added to the sum of their squares, the result shall

be a square. Ans. 3 and 5.

Ex 4. Find two numbers such, that if the square of each
be added to their product, the sums shall be both squares.

Ans. 9 and 16.

Ex. 5. It is required to find two whole numbers such, that

the sum or difference of their squares when diminished by
unity, shall be a square. Ans. 8 and 9.

Ex. 6. To find two whole numbers such, that if unity be

added to each of them, and also to their halves, the sums in

both cases shall be squares. Ans. 48 and 1680,

Ex. 7. It is required to find three square numbers, that

shall be in arithmetical progression. Ans. 1, 25, and 49.

Ex. 8. It is required to find three square numbers that shall

be in harmonical proportion. Ans. 1225, 49 and 25.

Ex. 9. To find three whole numbers such, that if to the

square of each the product of the other two be added, the

sums shall be squares. Ans. 9, 73 and 328,

Ex. 10. It is required to resolve 4225, which is the square

of 65, into two other integral squares. Ans. 2704 and 1521,

Ex. 11. It is required to resolve 92-[-2^, or 85 into two
other integral squares. Ans. 7^+6^.

Ex. 12. It is required to find three square numbers, such,

.that their sum shall be a square. Ans. 9, 16 and y^*.

Ex. 13. To find two numbers such, that their sum shall be

equal to tbeir^ube^j^ Ans. ^ and ^.
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APPENDIX

Algebraic Method of demonstrating the Propositions in thefifth

book of Euclid's Elements^ according to the text and arrange-

ment in Simson's edition.

Simson's Euclid is undoubtedly a work of great merit, and

is in very general use among mathematicians ; but notwith-

standing all the efforts of that able commentator, the fifth book

still presents great difficulties to learners, and is in general less

understood than any other part of the Elements of Geometry.

The present essay is intended to remove these difficulties, and

consequently to enable learners to understand in a sufficient de-

gree the doctrine of proportion, previously to their entering

on the sixth book of Euclid, in which that doctrine is indis-

pensable.

I have omitted the demonstrations of several propositions,

which are used by Euclid merely as lemmata, but are of no

consequence in the present method of demonstration.

Instead of Euclid's definition of proportion, as given in his

fifth definition of the fifth book, I make use of the common al-

gebraic definition ; but I have shown the perfect equivalence

of these two definitions. This perfect reciprocity between the

two definitions is a matter of great importance in the doctrine

of proportion, and has not (as far as I can learn) been discuss-

ed by any preceding mathematician.

With respect to compound ratio, I have also given another

definition of it instead of that given by Dr. Simson ; as his

definition is found exceedingly obscure by beginners, and is

in my judgment one of the most objectionable things in his

edition of Euclid's Elements.

The literal operations made use of in the present paper are

extremely simple, and require very little previous knowledge
of algebra to render them intelligible.

The algebraic signs commonly used to indicate greater^

equals less, are y , z=z, /^ : thus the three expressions ay

b

c=d, e//, signify that a is greater than b, that c is equal toe?,

and that e is less than
f. The expression c=d is called an

equation or equality; the others a 7^> ^Z/> are called in-

equalities.
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Also when four quantities are proportionals, we shall express
this relation in the usual mode by points ; thus,

A : B : : C : D
is to be read, A is to B as C is to D ; or, A has the same ratio

to B that C has to D.

THE ELEMENTS OP EUCLID, BOOK V.

Definitions.

I.

A less magnitude is said to be apart of a greater, when the

less measures the greater, that is, when the less is contained a

certain number of times exactly in the greater.

II.

A greater magnitude is said to be a multiple of a less, when
the greater is measured by the less, that is, when the greater,

contains the less a certain number of times exactly.

III.

Ratio is a mutual relation of two magnitudes of the same
kind to one another in respect to quantity.

IV.

Magnitudes are said to have a ratio to one another, when
the less can be multiplied so as to exceed the other.

V.

The ratio of the magnitude A to the magnitude B is the

number showing how often A contains B ; or, which is the

same thing, it is the quotient when A is numerically divided by

B, whether this quotient be integral, fractional, or surd.

Explication.

This fifth definition, with its corollaries, is used in the pre-

sent essay instead of Euclid's 5lh and 7th definitions : the

following examples will sufficiently illustrate the definition.

Let A =20, and B=:5, then the ratio of A to B, or of 20 to 5,

A 20
is TT or— , or 4, so that the ratio of 20 to 5 is 4. Again, let

13 5

A 5 1
A=:5, and 6=20, then j^=--=-, and therefore the ratio of

Jo 20 4

1 A
5 to 20 is- Lastly, let A = 12v'2, and B=4, then g-=

PV^_2 ^2, and therefore the ratio of 12 ^2 to 4 is S-y/^-

Corollary I. If four magnitudes. A, B, C, D, be so related

A C
that -jr-=:p-, it is evident the ratio of A to B is the same with

the ratio of C to D.
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Cor. TI. Any four magnitudes whatever, so related that the

ratio of the first to the second is the same with the ratio of the

third to the fourth, may be expressed by
rA, A, rB, B ;

the first of the four being rA, the second A, the third rB, and
the fourth B ; the magnitudes A and B being any whatever,

and the letter r denoting each of the two equal ratios or quo-

tients when the first rA is divided by the second A, and the

third rB divided by the fourth B.

Cor. III. When four magnitudes A, B, C, D, are so relat-

A C
ed that -,r- is greater than — » it is evident that the ratio of A

to B is greater than the ratio of C to D ; or that the ratio of C
to D is less than the ratio of A to B.

The Fifth Definition according to Euclid.

The first of four magnitudes is said to have the same ratio

to the second which the third has to the fourth, when any
equimultiples whatsoever of the first and third being taken,

and any equimultiples whatsoever of the second and fourth,

if the multiple of the first be less than that of the second, the

multiple of the third is also less than that of the fourth ; or,

if the multiple of the first be equal to that of the second, the

multiple of the third is also equal to that of the fourth ; or if

the multiple of the first be greater than that of the second,

the multiple of the third is also greater than that of the

fourth.

Scholium. We shall demonstrate towards the close of this

essay, that this definition of Euclid's and our 5th definition,

acccording to the common algebraic method, are not only con-

sistent with each other, but also perfectly equivalent, each
comprehending, whatsoever is comprehended by the other.

VI.

When four magnitudes are proportionals, it is usually ex-

pressed by saying, the first is to the second as the third to the

fourth.

The Seventh Definition according to Euclid.

When of the equimultiples of four magnitudes, (taken as

in the fifth definition) the multiple of the first is greater than

that of the second, but the multiple of the third is not greater

than that of the fourth ; then the first is said to have to the

second a greater ratio than the third has to the fourth ; and,

on the contrary, the third is said to have to the fourth a less

ratio than the first has to the second.

33
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VIII.

Analogy or proportion is the equality of ratios.

IX.
Omitted.

X.
Whon three magnitudes are proportionals, the first is said to

have to the third lae duplicate ratio of that which it has to the
second.

XI.
When four magnitudes are continued proportional, the first

is said to have to the fourth the triplicate ratio of that which
it has to the second, and so on, quadruplicate, &c. increasing
the denomination still by unity in any number of propor-
tionals.

Definition A, viz. of compound ratio, omitted.

XIL
In proportionals, the antecedent terms are called homologous

to one another, as also the consequents to one another.

XIII.

Permutando, or Alternando, by permutation, or by alter-

nation, or alternately, are terms used, when of four propor-

tionals it is inferred that the first is to the third as the second
to the fourth.

XIV.
Invertendo by inversion, or inversely, wlien of four propor-

tionals, it is inferred that the second is to the first as the fourth

to the third.

XV.
Componendo, by composition, when it is inferred that the

sum of the first and second is to the second as the sum of the

third and fourth is to the fourth.

XVI.
Dividendo, by division, when it is inferred that the excess

of the first above the second is to the second as the excess of

the third above the fourth is to the fourth.

XVII.
Convertendo, by conversion, or conversely, when it is in-

ferred that the first is to its excess above the second, as the

third to its excess above the fourth.

XVIII.
Ex ajquali (sc. distantia), or ex aequo, from equality of dis-

tance, when there is any number of magnitudes more than

two, and as many others, so that they are proportionals when
taken two and two of each rank, and it is inferred that the first

IS to the last of the first rank of magnitudes as the first is to
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the last of the others : of this there are the two following

kinds, which arise from the ditferent order in which the mag-
nitudes are taken two and two.

XIX.
Ex ajquali, from equality; this term is used simply by it-

self, when the first magnitude is to the seccmd of tiie first

rank, as the first to the second of the other rank, and the se-

cond to the third of the first rank as the second to the third

of the other ; and so on in order ; and it is inferred that the

first is to the last of the first rank as the first is to the last of

the other rank.

XX.
Ex aequali, in proportione perturbata, seu inordinata, from

equality in perlurbale proportion : this term is used when
the first is to the second of the first rank as the last but one
to the last of the other rank, and the second is to the third of

the first rank as the last but two to the last but one of the

other rank, and so on in a cross order ; and it is inferred that

the first is to the last of the first rank as the first is to the last

of the other rank.

XXI.
If A, B, C, D, be any number of magnitudes of the same

kind, and P any other magnitude ; and if we make A : B : :

P : Q ; and B : C : : Q : R ; and C : D : : U : S ; the ratio

of P to S is said to be compounded of the ratios of A to B, B
to C, C to D.

AXIOMS.

I. Equimultiples of the same, or of equal magnitudes, are

equal.

II. These magnitudes of which the same, or equal magni-
tudes, are equimultiples, are equal to one another.

III. A multiple of a greater magnitude is greater than the

same multiple of a less.

IV. That magnitude of which a multiple is greater than
the same multiple of another, is greater than that other mag-
nitude.

PROPOSITIONS.

Propositions I. II. III. V. and VI. are omitted, as they do
not treat of proportion, and are not wanted in the method of
demonstration adopted in this essay.

PROP. IV. THEOR.
If the first of four magnitudes has the same ratio to the se-

cond which the third has to the fourth ; then any equimulti-

ples whatever of the first and third shall have the same ratio

to any equimultiples of the second and fourth ; that is, the
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equimultiple of the first shall be to that of the second as the

equimultiple of the third is to that of the fourth.

DEMONSTRATION.
By Cor. 2. Def. 5. let any four proportionals be repre-

sented by
rA, A, rB, B ;

and m and n being any two integers greater than unity, the

equimultiples of rA and rB will be

wirA, mrB
;

and in like manner the equimultiples of A, B, will be nA, nB.
We are to prore that the four following quantities, jwrA,

nA, mrB, nB, are proportionals.

Bv Def. 5. the ratio of wirA to nA is —~=z—

,

nA n
ITITD TtiT

and the ratio of mrB to nB is —r;-=— :

nB n

TUT
now these two ratios being each =—

,

n
are manifestly equal to each other, and therefore by Cor. 1.

Def. 5.

mrA : nA : : mrB : nB. Q. E. D.
Cor. Likewise if the first be to the second as the third to

the fourth, then also any equimultiples of the first and third

shall have the same ratio to the second and fourth ; and, in

like manner, the first and third shall have the same ratio to any
equimultiples of the second and fourth.

DEMONSTRATION.
We have first to prove that the four following,

mrA, A, mrB, B are proportionals.

The ratio of mrA to A is -^^-^^mr^
B

and the ratio of mrB to B is —^^z=.mr
;D

Therefore mrA : A : : mrB : B.

In like manner we prove that rA : nA : : rB : nB.
PROP. A. THEOR.

If the first of four magnitudes has the same ratio to the

second which the third has to the fourth ; then if the first be

greater than the second, the third is also greater than the

fourth ; if equal, equal ; and if less, less.

DEMONSTRATION.
By Cor. 1. Def. 5. any four proportionals maybe expressed

by
rA, A, rB, B.
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IfwehaverA/A. ) ifrA=A,J ifrA/A,)
then by division r/ 1, > then r=l, > then r/ I, >

and by muliip. rB 7 B, ) and rB= B, ) and rB/ B. >
^

Q. E. D.

PROP. B. THEOR.

If four magnitudes are proportionals, they are proportionals

also when taken inversely.

DEMONSTRATION.

Let rA, A, rB, B be any four proportionals, we are to prove

that A, rA, B, rB will also be proportionals.

A 1

The ratio of A to rA is -t-=-'
rA r

and the ratio of B to rB is -^= ~

;

rB r
'

and therefore

A : rA : : B : rB. Q. E. D.

PROP. C. THEOR.
If the first be the same multiple of the second, or the same

part of it that the third is of the fourth ; the first is to the

second as the third is to the fourth.

DEMONSTRATION.
] . Supposing m to be any integer greater than unity, let mA

the first be the same multiple of the second A, that mB the

third is of the fourth B ; we are to prove that mA, A, mB, B
are proportionals.

rni . /. . . . TwA
The ratio of mA to A is —r=m,

A

and the ratio of mB to B is -Tp^=m,

therefore mA : A : : mB : B,

. 2. The letter m still denoting an integer greater than unity,

let A the first be the same part of mA the second, that B the

third is of mB the fourth ; then we are to show that

A, mA, B, mB are proportionals.

A 1
The ratio of A to mA is —;-=—

,

mA m

and the ratio of B to mB is—_;mB
therefore

A : mA : : B :

1

mB. Q.E . D.

PROP. D. THEOR.
If the first be to the second as the third to the fourth, and
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if the first be a multiple, or part of the second ; the third is

the same multiple, or the same part of the fourth.

DEM0X«TRATI0N.
Any four proportionals being expressed by

rA, A, rB, B;
1. Let the first rA be a multiple of A, then it is to be proved

that rB is the same multiple of B.

Because rA is a multiple of A, it is evident that r is an in-

teger greater than unity, and r being such an integer, rA,and
rB are manifestly equimultiples of A and B.

2. If rA be a part of A, we are to show that rB is the same
part of B.

A 1
Because rA is a part of A, therefore —r=- must be an in-^ rA r

p
teger greater than unity ; but — , when reduced, is also equal

to -, that is, to the same integer, and therefore rA, rB, are

the same parts of A and B. Q. E. D.
PROP. VII. THEOR.

Equal magnitudes have the same ratio to the same magni-

tude ; and the same has the same ratio to equal magnitudes.

DEMONSTRATION.
Let A and B be any two equal magnitudes, and C any

other, we are to prove that A and B have each the same ratio

to C, and that C has the same ratio to A and B.

Because by hypothesis A= B,

therefore by division —=z—-\

that is, A : C : : B : C.

Again, since by hypothesis A=:B,
' C C

therefore by division -7-=p-
;

that is, C : A : : C : B. Q. E. D.
PROP. VIII. THEOR.

Of unequal magnitudes the greater has a greater ratio to

the same, than the less has : and the same magnitude has a

greater ratio to the less, than it has to the greater.

DEMONSTRATION.
Let A and B be two unequal magnitudes, of which A is the

greater, and let C be any magnitude whatever of the same
kind wiili A and B : it is to be shov/n that the ratio of A to C
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is greater than the ratio of B to C : and also that the ratio of

C to B is greater than the ratio of C to A.

1. Because by hypothesis A>B,

therefore, by division yr^n't

that is, the ratio of A to C is greater than the ratio of B to C.
2. Because by hypothesis A/'B, therefore B^A,

C C
and therefore by division we have vs~Z"i~»B A

because the less the divisor of C is, the greater is the quo-

tient ; and therefore the ratio of C to B is greater than the

ratio of C to A. Q. E. D.
PROP. IX. THEOR.

Magnitudes which have the same ratio to the same magni-
tude are equal to one another ; and those to which the same
magnitude has the same ratio, are equal to one another.

DEMONSTRATION.

1. Let A and B liave the same ratio to C, it is to be proved
that A is equal to B.

Because A and B have, by hypothesis, the same ratio to C,

A B
therefore we have the equality 7t-=7^) and therefore by mul-

tiplication A=B.
2. Because by hypothesis, C has the same ratio to A as to

C C
B, therefore we have the equality —=—, therefore, by divid-

ing by C, and multiplying by A and B, we have A = B.

Q. E. D.
PROP. X. THEOR.

That magnitude which has a greater ratio than another has
to the same magnitude, is the greater of the two : and that

magnitude to which the same has a greater ratio than it has to

another, is the less of the two.

DEMONSTRATIOxN.
1. Let A have to C a greater ratio than B has to C, it is to

be proved that A is greater than B.

A B
Since the ratios of A and B to C, are p;^ and ^,

therefore by supposition 7;r>7T-j and therefore by mul-

tiplication A>B.
2. Here the ratio of C to B is greater than the ratio of C

to A, and we have to prove that B is less than to A

:
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C C
We have, therefore, by hypothesis -ttZx"-

jj A
Since tlien C contains B oftener than C contains A, it is

manifest that B must be less than A. Q. E. D.
PROP. XI. THEOR.

Ratios that are the same to the same ratio, are the same to

one another.

DEMONSTRATION.
Let A be to B as C to D, and also E to F as C to D ; it is

to be shown that A is to B as E is to F.

A C
Because A is to B as C to D, therefore, p-==y^f

EC
for the same reason :p^=—-; therefore

r D

^~, that is, A : B : : E : F. Q. E. D.

PROP. XII

If any number of magnitudes be proportionals, as one of

the antecedents is to its consequent, so shall ail the antece-

dents taken together be to all the consequents.

DEMONSTRATION.
By Cor. 2. Def. 5. any number of proportionals may be

expressed by rA, A ; rB, B ; rC, C
;

Where rA, rB, rC, are the antecedents, and A, B, C, the

consequents ; and we are to prove that

as rA is to A, so is rA+rB-f-rC to A+ B+ C.

rA
The ratio of rA to A is expressed by — =r, and the ratio of

A.

rA-l-rB4-rC
rA+ rB-hrC to A+ B+ C, by—-^——--=r ; and therefore

'
-^ A-t-B+ C '

rA : A : : rA+rB+rC : A+ B+ C.

Q. E. D.
PROP. XIII. THEOR.

If the first has to the second the same ratio which the third

has to the fourth, but the third to the fourth a greater ratio

than the fifth has to the sixth ; the first shall also have to the

second a greater ratio than the fifth has to the sixth.

DEMONSTRATION.
Let A, B, C, D, E, F be the first, second, third, fourth, fifth,

and six magnitudes respectively.

The ratios of A to B, of C to D, and of E to FACE
^'®B"'D'F'
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and since by hypothesis -n='R-»

and also -Q>p-»

A E
therefore we have ~g>p~. O F D

Cor. And if the first have a greater ratio to the second

than the third has to the fourth, but the third the same ratio

to the fourth which the fifth has to the sixth ; it may be de-

monstrated, in like manner, that the first has a greater ratio to

the second than the fifth has to the sixth.

PROP. XIV. THEOR.

If the first has to the second the same ratio which the third

has to the fourth ; then, if the first be greater than the third,

the second shall be greater than the fourth ; if equal, equal,

and if less, less.

DEMONSTRATION.

Let rA, A, rB, B, be any four proportionals.

1. Suppose rAyrBy
then by division A/ B

;

next, suppose rA=rB,
then by division A= B

;

lastly, suppose rA/rB,
then by division A/ B. Q. E. D,

PROP. XV. THEOR.

Magnitudes have the same ratio to one another which their

equimultiples have.

DEMONSTRATION.

Let A, B, be any two magnitudes of the same kind ; and m
being any integer greater than unity, let mA, mB, be equimul-

tiples of A, B ; it is to be proved that

A, B, mA., rnB, are proportionals.

The ratio of A to B is the numerical quotient -^g-, and the
D

ratio of ?wA to mB is —fc-, which is reducible to -^\ therefore

the two ratios ^r, —zr- are equal, and therefore
r> rriD

A : B : : mA : mB.

PROP. XVI. THEOR.

If four magnitudes of the same kind be proportionals, they

shall also be proportionals when taken alternately.
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DEMONSTRATION.

We may express any four proportionals by
rA, A, rB, B,

and we are to demonstrate that the four

rA, rB, A, B,

will also be proportionals.

The ratio of rA to rB is -^, which, because the factor r is
ro

in both numerator and denominator, is evidently reducible to

A A
P : again the ratio of the third A to the fourth B is also -p-

;

therefore, the two ratios, viz. of rA to rB, and of A to B, be-

ing equal, we have

rA : rB : : A : B.

Q. E. D.

PROP. XVII. THEOR.

If magnitudes taken jointly be proportionals, they shall also

be proportionals when taken separately ; that is, if two mag-
nitudes together have to one of them the same ratio which
two others have to one of these, the remaining one of the first

two shall have to the other the same ratio which the remain-

ing one of the last two has to the other of these.

DEMONSTRATION.

By hypothesis we have A+ B:B::C4-D:D, and we
are to prove that A ; B : : C : D.

Now the ratio of A-j-B to B is—rr—=^5+Ii
B D

C4-D C
and the ratio of C+D to D is—^ —=— -f 1 ;

and since by hypothesis these two ratios are equal, therefore

A
, , C

, , , A C , .

we have — + 1 = ^4-1, consequently, — =-p- ; that is,

A : B : : C : D.

Q. E.D.

PROP. XVIII. THEOR.

If magnitudes taken separately be proportionals, they shall

also be proportionals when taken jointly ; that is, if the first

be to the second as the third is to the fourth, the first and se-

cond together shall be to the second as the third and fourth

together to the fourth.
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DEMONSTRATION.

By hypothesis we have A : B ; : C : D,
and wo are to demonstrate that A-f B : B : : C-j-D : D.

Since the ratio of A to B is the same with that of C to D,

therefore 1^-=^^,

to each side of this equation add unity, and we have

g-+l=j3-+ l, that IS, _^-=:_^-;
and therefore A+B : B : : C+ D : D. Q. E. D.

PROP. XIX. THEOR.

If a whole magnitude be to a whole, as a magnitude taken

from the first is to a magnitude taken from the other, the re-

mainder shall be to the remaiiider as the whole to the whole.

' DEMONSTRATION.

Let A, B, be the two whole magnitudes, and C, D, the mag-
nitudes taken from them.

So that by hypothesis A : B : : C : D,
we are to prove that A : B : : A—C : B— D.

A B
By Prop. XVI. we have pr=yrt

.A , B , ^ . A-C B-D
•consequently j-^— 1 =--;— 1, that is, —pr^=—re—

;

O JJ O JL/

By this last divide the first equation,

A B
and the equal quotients are -—77=15—prA— L/ B—'D

1^ ^ Q
and therefore by mult, and div. ^=Tr

—

j-^jB b —U
that is, A : B : : A-C : B— D. Q. E. D.

ANOTHER DEMONSTRATION.

Since by hypothesis A : B : : C : D,
therefore by alternation, prop. XVI. A : C : : B : D,

and by division, prop. XVII. A—C : C : : B—D : D,
and by alternation. A—C : B—D : : C : D,

and therefore by prop. XI. A—C : B—D : : A : B.

Q. E. D.

ANOTHER DEMONSTRATION.

Let A+C, and B-|-D, be the whole magnitudes, and C, D,
the magnitudes taken away, so that by hypothesis
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A+C : B+D :: C : D.
And we are to show that

A+C : B+D :: A:B.
Since by hypothesis A-f-C : B+D : : C : D,

therefore by prop. XVI. A+C:C::B4-D:D,
consequently by prop. XVII. A : C : : B : D,
and therefore by prop. XVI. A : B : : C : D,

therefore by prop. XL A+C : B+D : : A : B.

Q. E. D.

ANOTHER DEMONSTRATION.

Supposing r greater than unity, let rA, rB, be the two
wholes, and A, C the magnitudes taken away, so that by hy-

pothesis, we have rA : rB : : A : C
;

rA A A A
of course we have -^= 7;,, or- =-, whence C=B, and we

have therefore only to show that

rA : rB :: rA—A : rB-B ;

rA A
Now the ratio of rA to rB is -i^== ;ra D

• /. A . T^ -n ' J'A—A (r— 1).A
and the ratio of rA—A to rB—B, is -=5

—

^=^-. 77^=
ra— 1> [r— ij.JtJ

=j and therefore

rA : rB : : rA-A : rB-B.
Q. E. D.

PROP. E. THEOR.

If four magnitudes be proportionals, they are also propor-

tionals by conversion ; that is, the first is to its excess above

the second as the third is to its excess above the fourth.

DEMONSTRATION.

Let rA, A, rB, B, be the four proportionals,

we have to demonstrate that

rA : rA-A :: rB : rB— B.

The ratio of rA to r A—A is

rB
and the ratio of rB to rB—B is rB-B'r-l*
therefore rA ; rA—A : : rB : rB-B.

Q.E.D
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PROP. XX. THEOR.

If there be three magnitudes, and other three, which taken

two and two have the same ratio ; if the first be greater than

the third, the fourth will be greater than the sixth ; if equal,

equal ; and if less, less.

DEMONSTRATION.

Let the three first magnitudes be A, B, C,

and the other three be D, E, F

;

SO that by hypothesis, A is to B as D to E, and B to C as E
to F ; and it is to be proved that if A be greater than C, D
will be greater than F ; if equal, equal ; and if less, less.

A D
Because A : B ; : D : E, therefore :^=pr,

B E
and because B : C : : E : F, therefore Q"=p-*

therefore by multiplication of fractions,

AB DE ^ . A D
Fc=EF''^"'^'c-=F'

from which it is evident that when the quotient ^ is greater

than unity, the quotient r=r- is also greater than unity ; that is,

if A be greater than C, D is also greater than F ; in a similar

manner it is shown that when A is equal to C, D is equal to

F ; and if less, less. Q. E. D.
PROP. XXI. THEOR.

If there be three magnitudes, and other three, which have

the same ratio taken two and two, but in a cross order ; if the

first be greater than the third, the fourth shall also be greater

than the sixth ; if equal, equal ; and if less, less.

DEMONSTRATION.

Let the three first magnitudes be A, B, C,

and the other three be D, E, F,

SO that A is to B as E to F, and B to C as D to E ; it is to be

shown that if A be greater than C, D will be greater than F

;

if equal, equal ; and if less, less.

A E
Since A : B : : E : F, therefore we have =r-==r>andbe-

£> r

B T)
cause B : C : : D : E, therefore also pq-==- ; and therefore

C/ Jbi

by multiplication, 24
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AB_DE A _D

from which it is manifest, that according as the quotient

j^ is greater than, equal to, or less than unity, the quotient
C

=- must also be greater than, equal to, or less than unity, and

therefore if A be greater than C, D will be greater than F
;

if equal, equal ; and if less, less.

PROP. XXn. THEOR.

If there be any number of magnitudes, and as many others,

which, taken two and two in order, have the same ratio ; the

first shall have to the last of the first rank of magnitudes, the

same ratio which the first of the others has to the last.

N. B. This is usually cited by the words ex (Equally or ex

mquo.

DEMONSTRATION.

Let the first rank of magnitudes be A, B, C, D,
and the second rank be E, F, G, H,

so that by hypothesis A is to B as E to F, B to C as F to G,

and C to D as G to H ; we are to show that A : D : : E : H.
A F

Since A : B : : E : F, therefore we have —-=:-—,
D \

in like manner we have —-—_-,
L- G

^ C G
and -=-,

A P C
now multiply the quotients — , — , — together, and also the

E F G ^ ^ ^ . ABC EFG
quotients ^> tt. tt^ ^"^ ^® ^^^® ^"® equation 57315=pQo»

which by reduction becomes ^=-=75-,

and therefore A : D : : E : H.

In like manner the truth of the proposition may be shown,

^whatever be the number of magnitudes.

Q. E. D.

PROP. XXTII. THEOR.

If there be any number of magnitudes, and as many others,

wliich, taken two and two in a cross order, have the same ra-



A G
B "^H'
B F
C ~G'
C E
D ""F*
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tio ; the first shall have to the last of the first magnitudes the

same ratio which the first of the others has to the last.

N. B. This is usually cited by the words ex equali in pro-

portione perturbata, or ex <Bquo perturbato ; that is, by equality

in perturbate proportion.

DEMONSTRATION.

Let the first rank of magnitudes be A, B, C, D,
and the other rank E, F, G, H,

80 that, by hypothesis, A is to B as G to H ; B to C as F U>

G, and C to D as E to F ; we are to prove, that

A : D : : E : H.

Since A : B : : G : H, therefore

and because B : C : : F : G, therefore,

and because C : D : : E : F, therefore fr=
ABO

now multiply the quotients h-» pr» fr» together, and also the

. G F E , , . , ^ ABC GFE
quotients =5-, f^, vr, and we have the products = .,

11 Ijr Jb BOD HGr

which reduced, becomes 3:^-=—
-,D H

and therefore A : D : : E : H.
In like manner we may proceed for any number of magni-

tudes. Q. E. D.

PROP. XXIV.

If the first has to the second the same ratio which the third

has to the fourth ; and the fifth to the second the same ratio

which the sixth has to the fourth ; the first and fifth together

shall have to the second the same ratio which the third and
sixth together have to the fourth.

DEMONSTRATION.

By hypothesis we have rX : A : : rB : B,

and r'A : A : : r^B : B,
in which rA is the first, A the second, rB the third, B the
fourth, r'A the fifth, and r^B the sixth : r' denoting each of
the two equal ratios when the fifth is divided by the second,
and the sixth by the fourth ; ar»d we have to show, that

rA+r'A : A :: rB+ r'B : B.

The ratio of rAJ-r'A to A is
^^+rA

^^^^^
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rB-fr'B
and the ratio of rB+/B to B is =r

—

=r+r^ ;a
therefore, rA+r^A : A : : rB+r'B : B.

Q.E.D.
CoR. 1. If the same hypothesis be made as in the propo-

sition, the excess of the first and fifth shall be to the second,

as the excess of the third and sixth to the fourth.

Cor. 2. The prop, holds true of two ranks of magnitudes,

whatever be their number, of which each of the first rank

has to the second magnitude the same ratio which the corres-

ponding one of ihe second rank has to a fourth magnitude.

PROP. XXV. THEOR.

If four magnitudes of the same kind be proportionals, the

greatest and least of them together are greater than the other

two together.

DEMONSTRATION.

Ijet the proportionals be rA, A, rB, B ;

and let the first rA be the greatest : then since by hypothesis

rA is the greatest, rA/A, therefore r/l.
Again, since by hypothesis rA is the greatest, therefore

rkyrB, and consequently A 7 B ; since then r is greater than

unity, and A is greater than B, it is manifest that B is the

least ; and we are to show that rA-j-B/rB-j-A
Now because A— B=:A— B,

and r/^lj

therefore, by multiplication rk—rBy

A

—B ;

to each side of this equation add rB+ B,

and we shall have rA-fB/A+^B.
A similar mode of demonstration may be adopted, which-

ever of the four proportionals be the greatest.

Q.E.D.
PROP. XXVI. THEOR.

If there be any number of magnitudes of the same kind,

the ratio compounded of the ratios of the first to the second,

of the second to the third, and so on to the last, is equal to the

ratio of the first to the last.

DEMONSTRATION.

Let the magnitudes of the same kind be A, B, C, D ; we are

to prove that the ratio compounded of the ratios of A to B, of

B to C, and of C to D, according to the definition of com-
pound ratio, is equal to the ratio of A to D.
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Take any magnitude P,

and let A be to B as P to Q, and A, B, C, D,

B to C as Q to R, and C to D as P, Q, R, S ;

R to S ; then by the definition of

compound ratio, the ratio of P to S is the ratio compounded of

the ratios of A to B, B to C, and of C to D ; and it is to be

proved that the ratio of A to D is the same with P to S.

Now because A, B, C, D, are several magnitudes, and P,

Q, R, S, as many others, which, taken two and two in order,

have the same ratio ; that is, A is to B as P to Q ; B to C as

Q to R, and C to D as R to S ; therefore ex equali, prop.

XXII.
A : D:: P: S.

In like manner the proposition is proved for any number of

magnitudes.

Q.E.D.
PROP. XXVII. THEOR.

If four magnitudes be proportionals according to the com-
mon algebraic definition, they will also be proportionals ac-

cording to Euclid's definition.

DEMONSTRATION.

Let the four rA, A, rB, B,

be the proportionals according to our fifth definition ; that is,

according to the common algebraic definition ; it is to be proved

that the same four

rA, A, rB, B,

are proportionals by Euclid's fifth def of the fifth book.

Let m and n be any two integers, each greater than unity,

so that mr\, mrB, are any equimultiples whatever of the first

and third ; and nA, wB, are any whatever of the second and
fourth ; and the four multiples are therefore

mrA, nA, mrB, wB
;

Now the thing to be proved is, that according as the multiple

mrA is greater than, equal to, or less than nA ; the multiple

mrB will also be greater than, equal to, or less than nB.
First let nirA/wA,

then by division njr/n.
and by multiplication mrBynB.

Secondly, if mrA.= nA,
then mrz=n^
and therefore mrB=nB.

Lastly, if mrk^nk.
then mr/^n,
therefore inrB/nB. Q. E. D.
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PROP. XXVIII. THEOR.

If four magnitudes be proportionals by Euclid's fifth defini-

tion, they will also be proportionals by the common algebraic

definition.

DEMONSTRATION.

Let A', A, B', B, be any four magnitudes, such that m, n,

being any integers greater than unity, and the equimultiples,

mA^ mB'j being taken, and likewise the equimultiples nA, nB
;

making the four multiples

mA', nA, mB\ nB
;

the hypothesis is, that if mA' be greater than nA, mB' is also

greater than nB ; if equal, equal ; and if less, less : and it is

to be proved that

A' : A : : B' : B ;

A^ W
or, which is the same thing, that — =-p-.

A' B'
If -r- be not equal to r^j , one of these quotients must be the
A D

A' B'
greater ; first, let —- be the greater, so that if =r-=r, we may

A''
have ---=r-\'r^

;A
then the four quantities A', A, B', B,

are equal to rA+r'\, A, rB, B.

Now, let m be such an integer greater than unity, that mr
and mr' may be each greater than 2 ; and take n the next in-

teger greater than mr, of course n will be less than mr-^-mr'
;

and the four multiples mA.\ nA, mB\ nB,

become mrk-^m/A, nA, mrB, nB,

By construction mr-\-mr"/n,

and therefore TwrA-fmr'A/nA ;

But by construction mr<^ri,

and therefore 7nrB<nB ;

or »nB'<nB
;

thus it appears that 7nA'7nA,
but mB'<inB :

but, because mA'>nA,
therefore, by hypothesis, also wB^'/nB ;

so that mB' is both greater and less than nB, which is impos-

sible

A' B'
It is manifest therefore that -r~ cannot be greater than ^-

;A tS
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B'
and in like manner it is shown that -^ cannot be greater than

-r-; and therefore —=pr-,

that is A' : A : : B' : B. Q. E. D.

Scholium. Thus we have shown, that if four quantities be

proportionals by the common algebraic definition, they will

also be proportionals according to Euclid's definition ; and con-

versely, that if four quantities be proportionals by Euclid's de-

finition, they will also be proportionals by the common algebraic

definition ; and by a similar method of reasoning we may easily

show, that when four quantities are not proportionals by one of

these two definitions, they caimot be proportionals by the other

definition.

'J'hus it appears, that the two definitions are altogether

equivalent ; each comprehending, or excluding, whatever is

comprehended, or excluded, by the other.

THE £ND.
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