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PREFACE.

—ootes00—

THE present work owes its existence mainly to the difficulty of
finding a good modern text-book suited to the requirements of the
American student.

In England it is customary to take a thorough course in elementary
mechanics (comprising plane statics and kinetics of a particle) before
entering upon the study of higher mathematics; and there is no
lack of works of this character (Loney, Macgfegor, Selby, Thomson
and Tait’s Elements, Hicks, Robinson, Browne, Blaikie, Parkinson,
Wormell, Lodge, Laverty, etc.), some of which are very well adapted
to the purpose. A good course in analytic geometry and the differ-
ential and integral calculus will then prepare the student for reading
the more advanced English works on analytical statics (Todhunter,
Minchin, Routh) and rigid dynamics (Williamson and Tarleton, Routh,
Thomson and Tait, Price, Besant, etc.). A similar arrangement is
presupposed by most of the French and German treatises.

In many American colleges and universities, however, the student
takes up the study of mechanics at a later stage, after having acquired
a knowledge of the elements of higher mathematics. A somewhat
different treatment of the subject of mechanics is required in this*
case.

The present volume, which is devoted to kinematics, forms the first
of three parts of nearly equal extent. The second part, after an intro-
duction to dynamics in general, takes up statics; it will appear in the
fall of this year. The third part, which will be ready in the fall of
1894, is devoted to kinetics.

While the work is intended, first of all, as an introduction to the
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i PREFACE.

science of theoretical mechanics as such, the author has constantly
kept in mind the particular wants of engineering students, aiming to
make it serve as a preparation for the practical applications of this
science, and to bring out the utility and importance of the purely
mathematical training. General theories are illustrated by special prob-
lems and applications in the text, and sets of exercises are inserted
to be worked out by the student.

To keep the whole work within reasonable bounds, the more ad-
vanced parts of the subject had to be strictly excluded. Bibliographi-
cal references have therefore been given for the use of any who are
desirous to pursue the subject farther. In accordance with the ele-
mentary character of the work, these references are not to original
memoirs, but to such standard treatises as can be expected to be
found in a well-assorted college library.

At a first reading, the Articles 57-87, 181-214, 221-244, 272-305,
can be omitted, also some of the applications and the more difficult
exercises.

ALEXANDER ZIWET.
ANN ARBOR, MICH.,

July, 1893.
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THEORETICAL MECHANICS.

INTRODUCTION.

1. The science of theoretical mechanics has for its object
‘the mathematical study of motion. : )

2. The idea of motion is intimately related to the funda-
mental ideas of space, time, and mass. It will be convenient
to introduce these consecutively. Thus we shall begin with a
purely geometrical study of motion, without regard to the time
-consumed in the motion and to the mass of the thing moved,
the moving object being considered as a mere geometrical
«configuration. This introductory branch of mechanics may be
called the geometry of motion.

3. The introduction of the idea of time will then lead us to
study the velocity and acceleration of geometrical configura-
tions. This constitutes the subject-matter of Kinematics proper.
‘The name Kinematics is, however, used by many authors in a
less restricted sense, so as to include the geometry of motion.

4. Finally, endowing our georhetrical points, lines, and other
configurations with mass, we are led to the ideas of momentum,
force, energy, etc. This part of our subject, the most compre-
hensive of all, has been called Dynamies, owing to the importance
of the idea of force in its investigation. For the sake of con-
venience it is usually divided into two branches, Statics and

PART I—1 1
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7.3 LINEAR MOTION, 3

CHAPTER 1.
GEOMETRY OF MOTION.
1. Linear Motion,; ITransiation and Rotation.

5. Motion consists in change of position.

6. We begin with the simple case of a point moving in a
straight line. The position of a point 2 in a line is deter-
mined by its distance OP=x from some fixed point or origin,
O, assumed in the line, the length x being taken with the
proper sign to express the sewse (say forward or backward, to
the right or to the left) in which it is to be measured on the
line. This sense is also indicated by the order of the letters, so
that PO=— 0P, and OP+ PO=o.

The position of a point in a line is thus fully determined by
a single algebraical quantity or co-ordinate; viz. by its abscissa
x=0P.

7. Let the point 2 move in the line from any initial position
P, (Fig. 1) to any other position P, and let OP =x, OP;=ux,.

e -—_ma.-——':-;{

o R R
Fig. 1.

oL

This change of position, or displacement, is fully determined
by the distance P P,=x,—x, traversed by the point.

Now let this displacement P P, be followed by another dis-
placement in the same line, from P, to 2,, in the same sense as
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the former, or in the opposite sense. In either case the total,
or resultant, displacement is the algebraic sum of the two dis-
placements P P;, PP, which are called its components; z..
we have P P,=P P+ PP, or PP + PP+ P,P,=0, what-
ever may be the positions of the points 2y, P;, P, in the line.

This reasoning is easily extended to any number of compo-
nent displacements; that is, #ke rvesultant of any number of
consecutive displacements of a point in a line is a single displace-
ment equal to the algebraic sum of the components.

Similar considerations appiy to the motion of a point in a
curved line provided the displacements be always measured
along the curve.

8. Let us next consider the motion of a rigid body. The
term rigid body, or simply body, is used in kinematics to denote
a figure of invariable size or shape, or an aggregate of points
whose distances from each other remain unchanged. Examples
are: a segment of a straight line, a triangle, a cube, an ellipsoid,
etc.

Imagine such a body A/ brought in any manner from some
initial position 47 into any other position A47;. This displace-
ment M M, is-determined by the displacements of the various
points of the body. We shall see tlrat, even in the most general
case, the displacements of three points of the body determine
those of all other points, and consequently the displacement of
the whole body.

There are, however, two special cases of motion, translation
and rotation, in which the displacement of the body is fully
determined by the displacement of a single point : such motions
can be called linear. There is also a class of motions deter-
- mined by the displacements of only two points of the body :
this is called plane motion.

9. The displacement of a rigid body is called a translation
when the displacements of all of its points are parallel and equal.
It is evident that in this case the displacement of any one
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point of the body fully represents the displacement of the
whole body. The translation ,4/; of a rigid body A7 from a
position M, to a position A/, is therefore measured by the
rectilinear segment 7,/ that represents the displacement of
any point 2 of the body /.

Two or more consecutive translations of a rigid body in the
same direction produce a resultant displacement of translation
equal to the algebraic sum of the components.

10. When a rigid body has two of its points fixed, the only
motion it can have is a rotation about the line joining the fixed
points as axis. [z a motion of rotation all points of the body
excepting those on the axis describe avcs of circles whose centres
lie on the axis while the points on the axis are at rest.

The different positions of a rotating body may be referred
to any fixed plane passing through the axis of rotation. Any
plane of the body passing likewise through the axis will make
with the fixed plane an angle 6 which varies in the course
of the motion. This angle, taken with the proper sign, fully
determines the positions of the body.

Let the body rotate from a position 8, to a position §,; the
angle 6, —6, measures the corresponding displacement, or the
rotation, just as (Art. 7) the distance P P,=x;—x, measures
the displacement of a point, and hence (Art. g) the translation
of a rigid body.

Two or more consecutive rotations of a rigid body about the
same axis give a resultant rotation whose angle is the algebraic
sum of the angles of the component rotations.

11. The particular case when the rigid body is a plane figure
whose motion is confined to its plane deserves special mention.
If one point of such a figure be fixed, the figure can only have
a motion of rotation, every other point of the figure describing
an arc of a circle whose centre is the fixed point. This point
is therefore called the centre of rotation. The positions of the
figure are given by the angle that any line of the figure passing
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through the centre makes with any fixed line through the centre
in the plane.

12. We have seen that a translation as well as a rotation is
measured by a single algebraical quantity, the translation by a
distance, the rotation by an angle. This is the reason why
such motions may be called /inear or of one dimension. The
two fundamental forms of motion, translation and rotation, are
thus seen to correspond to the two fundamental magnitudes of
metrical geometry, viz. distance and angle.

It is to be noticed that both for translations in the same
direction and for rotations about the same axis the resultant
displacement is found by algebraic addition of the components,
not only when the components are consecutive motions, but even
when they are sémultancous. Thus we may imagine a point P
displaced by the amount P, P, along a straight line while this
line itself is moved along in its own direction by an amount
0,0, The resultant displacement of £ is the algebraic sum

Py1Py+ 10y

13. Translations being measured by distances or lengths,
and rotations by angles, we need in mechanics a unit of length
and a unit of angle.

The two most important systems of measurement are the
C. G.S. (¢.e. centimetre-gramme-second) system, and the F. P. S.
(7.e. foot-pound-second) system. The former is frequently
called the scientific system; it is based on the international
or metric system of weights and measures. The F.P. S, or
British system, is still used in England and the Umted States
almost universally in engineering practice.*

14. The unit of length in the C. G. S. system is the centimetre
(cm.), 7.e. 135 of the metre. The original standard metre is a

* For fuller information on all questions relating to standards and units see
J. D. EVERETT, Jlustrations of the C. G.S. systen of unils with tables of physical
constants ; London, Macmillan, 18ga.
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platinum bar preserved in the Palais des Archives in Paris, a
legalized copy of which has been deposited at Washington,
D.C. The metre can be defined as the distance between two
marks on the standard metre when at a temperature of o° C.

In the F. P. S. system, the unit of length is the foot, Z¢. § of
the standard yard. The original British standard yard is a
bronze bar preserved in London. For the United States the
yard is defined as the distance between the twenty-seventh and
sixty-third divisions of the brass standard yard kept in the
Bureau of Weights and Measures at Washington, when the bar
is at a temperature of 162° C. or 62° F.

The relation between these two fundamental units of length
is, according to the Uwited States Coast and Geodetic Survey
Bulletin No. 9, 1889,

I cm. = 0.032 808 2 ft.

For practical use we have the following approximate relations :

1 m. = 3.2809 ft., 1 ft. = 30.48 cm.,,

I cm.=0.3937 in., I in.=2.54 cm.

15. The unit of angle is either the degree, 7.c. 3ty of one
revolution, or the radian, 7z the angle measured by an arc
whose length is equal to the radius.

If « be any angle expressed in radians, and ¢°, ¢, &' the same
angle expressed respectively in degrees, minutes, seconds, we
have the relations

A e Vo et gl Tl
180 10800 648000

or @=0.017 453 &°=0.000 291 &' =0.000 004 85 ",
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I11. Plane Motiorn.

16. The position of a plane figure in its plane is fully deter-
mined by the positions of any two of its points since every
other point of the figure forms with these two points an invari-
able triangle. But the position of the figure can of course be
determined in other ways; for instance, by the position of one
point and that of a line of the figure passing through the point ;
or by the position of two lines of the figure.

17. Let us now consider the motion of a plane figure / in its.
plane from any initial position #, to any other position /.
The displacement /7 can be brought about in various ways.
Thus, it would be suffi-
cient to bring any two
points A4, B (Fig. 2) of
the figure F from their
initial positions 4, 5, in
I, to their final positions.
A,, By in F. This can
be done, for instance, by
first giving the whole fig-
ure a translation through

s a distance 4,4, and then

B a rotation by an angle

equal to the angle between 4,58, and 4,5, ; or by such a rota-
tion followed by the translation.

Instead of 4 we might have selected any other point of the
figure. ‘But it is important to notice that the angle of rotation

required for a given displacement 7y F] is always the same, while
the translation will differ according to the point selected as
centre.

18. This leads us to inquire whether the centre of rotation
cannot be so selected as to reduce the translation to zero.
Now any rotation that is to bring 4 from 4, to 4, must have
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its centre on the perpendicular bisector of Ay A4,; similarly for
B. Hence the intersection C of the perpendicular bisectors of
AyA, and BB, is the only point by rotation about which both

4 and B can be brought from their initial to their final posi-

tions. That they actually are so brought follows at once from

the equality of the angles 4,CB,and 4,;CB, (and hence of the

angles 4,CA, and B,CB,) which are homologous angles in the
equal triangles 4,CB, and 4,CB,.
We thus have the proposition : Any displacement of an inva-

riable plane figure in its plane can be brought about by a single

votation about a certain point which we may call the centre of
the displacement.

19. The construction of the centre C given in the preceding

article becomes impossible when the bisectors coincide (Fig., 3)

and when they are parallel (Fig. 4).
In the former case, C is readily -
found as the intersection of 4,3,
and A, B;. In the latter, Z.c. when-

-ever 4y,A4,= BB, the centre lies at 3_ B,
infinity, and the rotation becomes
a translation.

B"\ a
Ag
T
. C
Fig. 3. Fig. 4.

Any translation may therefore be regarded as a rotation about
a centre at infinity.

20. Let the figure 7 pass through a series of displacements
FF, F\F, ... F,_F, Each displacement has its angle and
its centre. If the successive positions Fy, 7, ... 7, of the figure
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are taken each very near the preceding one, the angles of rota-
tion will be very small, and the successive centres C;, G, ...
C, will follow each other very closely. In the limit, z.¢. when for
the series of finite displacements we substitute a continuous
motion of the figure, the centres € will form a continuous curve
(¢) and the angles become the infinitely small angles between
the successive normals to the paths described by the points of
the figure. The point C about which the figure rotates in any
one of its positions during the motion is now called the instan-
taneous centre; the locus of the centres, that is the curve (¢), is
called the centrode, or path of the centre. It is apparent that
in any position of the moving figure tze normals to the paihs of
all its points must pass through the instantaneous centre, and the
direction of motion of any such point is thervefore at right angles
20 the line joining it to the centre.

21. The centres C are points of the fixed plane in which the
motion of the figure F takes place. But in any position 7 of
this figure some point
(', of F will coincide
with the point (; of the
fixed plane. Thus, in
the case of finite dis-
placements (Fig. 5), let
the figure F begin its
motion with a rotation
Sy of angle 6, about a point

' (; of the fixed plane;
~ let C'; be the point of
the moving figure that
coincides during this

Fig. 5. rotation with .

The next rotation, of angle 6,, takes place about a point C,
of the fixed plane. The point of the moving figure that now
coincides with C, was brought into the position C, by the pre-
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ceding rotation. Its original position is therefore obtained by
turning C;C, back by an angle —@, into the position C,(7,
The rotation of angle 6, about C, brings a new point C'; of
the moving figure to coincidence with the fixed centre (;; and
the original position 'y of this point can be determined by
first turning C,C; back about C, by an angle —@6, into the
position (0, and then turning the broken line C;(,0 by a
rotation of angle —@, about ] back into the position ¢',C",("s.
Continuing this process we obtain, besides the broken line
C,G,C; ... formed by joining the successive centres of rotation
in the fixed plane, a broken line C',(",(';... in the moving
figure formed by joining those points of this figure which in the
course of the motion come to coincide with the fixed centres.
The whole motion may be regarded as a kind of rolling of the
broken line €';C",("y ... over the broken line C;C,C;.... ‘

22. In the case of continuous motion each of the broken lines
becomes a curve, and we have actual rolling of the curve (¢'), or
body centrode, over the curve (c), or space centrode.— 77 con-
tinuwous motion of an invariable plane figure in its plane may
therefore always be produced by the rolling (without sliding) of
the body centrode over the space centrode. The point of contact
of the two curves is of course the instantaneous centre.

23. It appears from the preceding articles that the continuous
motion of a plane figure in its plane is fully determined if we
know the centre of rotation for every position of the figure.
This centre can be found as the intersection of the normals of
the paths of any two points of the figure, so that the motion
of the figure will be known if the paths of any two of its points
are given. This, however, is only one out of many ways of
determining plane motion by two conditions.

Thus the motion may be determined by the condition that a
curve of the moving figure should remain in contact with two
fixed curves. In this case the instantaneous centre is found as
the'intersection of the common normals at the points of contact.
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The condition that a curve of the moving figure should always
pass through a fixed point may be regarded as a special case of
the condition just mentioned, one of the fixed curves being
reduced to a point.

24. Any curve of the moving figure forms during the motion
an envelope, the points of the envelope being the intersections
of the successive infinitely near positions of the moving curve.
Let /, /' be two such successive positions of the curve, 4 their
intersection, C the instantaneous centre; then CA is perpen-
dicular to /as well as to /7, and hence to the envelope. The
envelope can therefore be constructed by letting fall normals
from the instantaneous centres on the corresponding positions
of the generating curve. |

25. The following examples will illustrate the method of |
finding the centrodes and the path of any point of the moving
figure in plane motion.

Elliptic motion: 7o points of a plane figure move alo;zg two
Jixed lines that are at right angles to eack other.

Let A, B (Fig. 6) be the points moving on the lines Oz, Oy;
the perpendiculars to these lines erected at 4 and B intersect
at the instantaneous centre C. Denoting by 2a the invariable
distance of A and B, we have
v OC=AB=2a for all posi-
tions of the moving figure.
The fixed centrode (¢) is
= therefore a circle of radius
— 2a described about the in-

7 9 tersection O of the fixed
// lines. .

To find the body centrode
(") we must construct the
triangle 4B for all possible
positions of AB. As BCA is always a right angle, the body
centrode will be a circle described on 478 as diameter. Hence

Fig. 6.

~
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the whole motion can be produced by the rolling of a circle of
radius @ within a circle of radius 2a.

The student is advised to carefully carry out the construc-
tions indicated in this as well as the following problems. Thus,
in the present case, draw the moving figure, z.c. the line A5,
in a number of its successive positions in each of the four
quadrants, and construct the instantaneous centre C in every
case. This gives a number of points of the space centrode.
Then take any one position of A5 and transfer to it as base
all the triangles ABC previously constructed. The vertices
of these triangles all lie on the body centrode.

26. To find the equation of the path of any point P of the -
moving figure, let this
point be referred to a co-
ordinate system fixed in,
and moving with, the fig-
ure (Fig. 7); let the mid-
dle point O' of AB be
the origin, and O'4 the
axis O'#/, of this system.
Then the co-ordinates x/,
9" of £ in this moving
systemare connected with
its co-ordinates x, ¥ in the fixed system Oz, Oy by the following
-equations,

Fig. 7.

x=(a+x’) cos¢+y' sing,
y=(a—x') sing+y' cos¢,
where ¢ is the angle OA4B that determines the instantaneous

position of 4B. Solving these equations for sin¢g and cos¢,
squaring and adding, we find for the equation of the path of P

(J/'ff— (@ +x')J/>2 + (J"J/ —(a—2' )x>2= 1,

x12+yl2_a2 x’2+y’2—a2

or (=4 o= 4y s+ @+ 24 TP = 24 =,
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which represents an ellipse, since the determinant

(a—z")2+'2, —2ay'
—2ay', (a+x)2+y'?

= (@24 2 a)— 422 2+ ') = (¢ 2+ 52— D)2
is necessarily positive.

In general, therefore, the points of the figure describe
ellipses; O’ describes a circle; 4 and B describe straight lines,
and so does every point on the circle of diameter AB5. It is
this fact that by rolling a circle within a circle of double diam-
eter the points of the smaller circle are made to describe seg-
ments of straight lines, which makes this form of motion of
practical importance: it may serve to transform circular into
rectilinear motion.

27. Elliptic Motion (continued): Zwo points A, B of a plane
Jigure move along two fixed lines inclined to each other at an
angle o (Fig. 8).

Fig. 8.

This case is readily reduced to the preceding one. The
instantaneous centre is found as before ; its distance OC from
the intersection of the fixed lines 04, OB is again constant
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and =AB/sin w; for O, 4, C, B all lie on a circle whose centre
O’ bisects OC; hence

X AO'B=2w, and AB=2A40' sin o=0C sin w.

The motion is therefore produced by the rolling of this circle
of diameter AB/sin w within a circle of twice this diameter
described about O; it is not essentially different from the pre- -
ceding case (Art. 26). This will also be seen if we take 04 as
axis of x, the perpendicular to it through O as axis of y. This
perpendicular Oy intersects the circle OARB in a point B/, which
is the end of the diameter 4O'B' and moves along Oy during
the motion. The points 4, B’ of the figure move, therefore,
along the rectangular lines Oz, Oy, just as in the problem of
Art. 26.

28. Connecting Rod Motion: One point A of the figure describes
a circle, while another point B moves on a straight line, passing
through the centre O of the circle (Fig. 9).

Fig. 9.

With OB as polar axis, the equation of the fixed centrode is
72 cos? @ —2ar cos? 0+ a?=1/2

This, as well as the equation of the body centrode, is of the
sixth degree in rectangular Cartesian co-ordinates. But the
graphical construction presents no difficulties.
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29. Conchoidal Motion: A point A of the figure moves along a
Jixed straight line 1, while a line of the figure, ', containing the
point A always passes
through a fixed point B

i (Fig. 10).
X G The fixed point B may
be regarded as a circle
b’
i

of infinitely small radius,

/ z Which the line /7 is to

[¢) @ B touch. The instantane-

. \ ous centre is therefore

L R the intersection C of the
perpendiculars erected at 4 on /and at B on /.

The fixed centrode is a parabola whose vertex is 5. To
prove this we take the fixed line / as axis of y, the perpendicular
OB to it drawn through the fixed point B as axis of . Then,
putting X OBA=¢ and OB=a, we have for the co-ordinates
of C

x=a+ytan ¢,
y=atan¢;

hence x—a=32/a, or, for B as origin and parallel axes, jy2=ax.
. The equation of the body centrode, for OB, O4 as axes of x
and y, is a?(x%+9%) =24, or »cos? f=a.

The points of /' can easily be shown to describe conchoids,
whence the name of this form of plane motion.

30. The results obtained in the preceding articles for the
motion of a plane figure in its plane apply directly to the motion
of a rigid body, if any one point of the body describes a plane
curve while a line of the body remains parallel to itself. For in
this case all points of the body move in parallel planes, and the
motion in any one of these planes determines the motion of the
whole figure.

The only modifications required would be that instead of an
instantaneous centre we should have an instantaneous axis, viz.:
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the perpendicular to the plane of motion of any point through
the centre of motion of this point; and that the centrodes are
now not curves, but cylindrical surfaces rolling one upon the
other.

31. Exercises.

(1) Show how to find the direction of motion of any point Prlgldly
connected with the connecting rod of a steam engine.

(2) A wheel rolls on a straight track; find the direction of motion
of any point on its rim. What are the centrodes in this case?

(3) Show how to construct the normal at any point of a conchoid.

(4) Find the equation of the fixed centrode when a line /' of a
plane figure always touches a fixed circle O, while a point 4 of /' moves
along a fixed line Z .

(5) Show that, in (4), the fixed centrode is a parabola when the
fixed circle touches the fixed line.

(6) Two straight lines /', /" of a plane figure constantly pass each
through a fixed point O/, 0" ; investigate the motion.

(7) Four straight rods are jointed so as to form a plane quadrilateral
- ABDE with invariable sides and variable angles. One side A8 being
fixed, investigate the motion of the opposite side; construct the cen-
trodes graphically.

(8) Let a straight line /7 in a fixed plane be brought by a finite
displacement from an initial position 4 into a final position 4 ; and let
P be any point of /, £y its initial position (in 4), A its final position
(in 4). Then the following propositions can be proved :

(@) The middle points of the displacements /47 of all points 2 of
/ lie in a straight line ;

(&) the lines 27, envelop a parabola ;

(¢) the projections of the displacements /2 on the line joining
their middle points are all equal ;

(@) if 7 have a continuous motion in the plane, the tangents to the
paths of all its points envelop a parabola of which the instantaneous
centre is the focus and / the tangent at the vertex.

PART I—2
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III. Spherical Motion.

32. The motion of a spherical figure of invariable form on its
sphere presents a close analogy to plane motion; in fact, plane
motion is but a special case of spherical motion, since a
plane may be regarded as a sphere of infinite radius.

33. By a generalization similar to that of Art. 30, the study
of the motion of a spherical figure on its sphere leads directly to
the laws of motion of a rigid body having one fixed pqint. For
the motion of such a body is evidently determined by the spheri-
cal motion on any sphere described about the fixed point.

34. Let us consider any two positions F; and F; of a spheri-
cal figure # on its sphere, and let O be the centre of the sphere.
Just as in the case of plane motion (Art. 18) the displacement
FyF; can always be brought about by a single rotation about a
point € on the sphere, or what amounts to the same, by a single
rotation about the arzs OC. The proof is strictly analogous
to that given in Art. 18. We
first remark that the position of
the figure on the sphere is fully
determined by the position of
two of its points, say 4 and B
(Fig. 11), since any third point
forms with these an invariable
spherical triangle. Let 4, 5,
be the positions of 4, B in F;
‘ Ay, B their positions in Fj;
o and draw the great circles 4,4,

and B,B;. Their perpendlcular
bisectors intersect in two points , D which are the ends of a
diameter of the sphere. CD is the axis of the displacement
F,F,, and the angle A,CA,, or B,CB,, gives the angle of the
displacement.

Fig. 11.
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35. If we consider a series of positions of the moving figure,
Fy, F,, F, ..., we obtain a series of axes of rotation, say ¢, ¢,, ... ;
and in the limit when these positions follow one another at
infinitely near intervals, the axes ¢;, ¢, ... will form a cone fixed
in space, with the vertex at the centre O of the sphere. The
points Cj, C,, ... where these axes intersect the sphere form a
curve (¢) on the fixed sphere, while the points (', (7, ... of the
moving figure with which these fixed points come to coincide
form a spherical curve (¢) invariably connected with the moving
figure. The whole motion may be produced by the rolling of
the curve (¢/) over the curve (¢), or also by the rolling of the
corresponding cones one over the other. We have thus the
proposition that any continuous motion of a rigid body having a
Jixed point can be produced by the rolling of a cone fixed in the
body on a fixed cone, the vertices of both cones being at the fixed
point.

IV. Screw Motion.

36. The position of a rigid body in space is fully determined
by the position of any three of its points not situated in the
same straight line. For any fourth point of the body will form
an invariable tetrahedron with these three points. As two
points determine a straight line, the position of a rigid body
may also be given by the position of a point and line or by
the positions of two intersecting or parallel lines of the body.

37. The position of a point being determined by its three
co-ordinates requires three conditions to be fixed. A point is
therefore said to have three degrees of freedom when its position
is not subject to any conditions. One conditional equation
between its co-ordinates restricts the point to the surface repre-
sented by that equation ; the point is then said to have but
two degrees of freedom and one constraint. Two conditions
would restrict the point to a line, the curve of intersection of
the two surfaces represented by the equations of condition ;
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the point has then but one degree of freedom and two con-
straints.

A rigid body that is perfectly free to move has six degrees of
Jfreedom. TFor we have seen that its position is fully determined
when three of its points not in the same line are fixed. The
nine co-ordinates of these points are, however, not indepen-
_ dent; they are connected by the three equations expressing
that the three distances between the three points are invariable.
Thus the number of independent conditions is g—3=6.

A rigid body with one fixed point has three degrees of freedom
and therefore three constraints. For it takes two more points,
i.e. six co-ordinates, to fix the position of the body; and the
distances of these two points from each other and from the
fixed point being invariable, there are again three conditional
equations to which the six co-ordinates are subject. The three
co-ordinates of the fixed point may be regarded as the three
constraints.

A rigid body with two fixed points, i.e., with a fixed axis, has
one degree of freedom, and five constraints. Indeed, the six
co-ordinates of the two fixed points are equivalent to five con-
straining conditions, since the distance of these two points is
invariable.*

38. Let us now consider any two positions 47, M of a rigid
body A7, given by the positions 4y, B, C, and A4, B), (| of
three points A, B, C of the body. The displacement A/ M/,
can be effected in various ways. Thus we might for instance
begin by giving the whole body a translation equal to 4,4,
which would bring the point 4 to its final position while all
other points of the body would be displaced by distances par-
allel and equal to 4;4,. As the body has now one of its
points, 4, in its final position, it will (by Art. 34) require only

* Interesting remarks on the mechanical means of producing constraints of
various degrees will be found in THOMSON and TAIT, Natural philosophy, London,
Macmillan, new edition, 1879, Art. 195 sq. (Part I., p. 149).
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a single rotation about a certain axis passing through this point
to bring the whole body into its final position. It thus appears
that any displacement of a rigid body can be effected by sub-
jecting the body first to a translation and then to a rotation
(or vice versa, as is easily seen); and this can be done in an
infinite number of ways, as the displacement of any point of
the body may be selected for the translation.

39. It is to be noticed that for all these different ways of
effecting the displacement A/ A/, the direction of the axis of
rotation and the angle of rotation are the same. To see this
more clearly, let the displacement be effected first by the trans-
lation 4,4, and a rotation of angle « about the axis @; passing
through 4, ; and then let the same displacement be produced
by the translation B B, of some other point 5 and a rotation of
angle B about an axis &; passing through Z,. We wish to show
that @; and 4, are parallel and that the angles « and 8 are equal.

Consider a plane 7 of the rigid body which in its original
position =, is perpendicular to the axis @, The franslation
A, A, transfers it into a parallel position and the rotation « about
@, turns it in itself into its final position 7;; hence 7y and =
are parallel. The translation 5 B, likewise moves = into a
position parallel to the original one; and as its final position,
7y, is parallel to ry, the axis of rotation &; must necessarily be
perpendicular to =, and my, that is 4, must be parallel to «,.

Again, any straight line /in 7 remains parallel to its original
position /; after the translations 4,4, and By B,. Its change of
direction is due to the rotations alone; the angle of rotation
must therefore be the same for both rotations, viz. equal to the
angle (/)/;) formed by the initial and final positions of the line /

40. Among the different combinations of a translation with
a rotation effecting the displacement M M, there is one of
particular importance; it is that for which the axis of rotation
is parallel to the translation.

Let us again consider the plane 7 perpendicular to the com-
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mon direction of the axes of rotation. To bring any three
points of this plane into their final position it is only necessary
to give the body a translation at right angles to # such as to
bring r into its final position and then to add the necessary
rotation for plane motion.

We have therefore the important proposition that 7# is always
- possible to bring a vigid body M from any position M, into any
other position NIy by a translation combined with a rotation about
an axis pavallel to the direction of translation, and this can be
done in only one way. The axis so determined is called the
central axis of the displacement.

The order of translation and rotation about the central axis is
indifferent ; indeed, translation and rotation might take place
simultaneously.

41. A motion of a rigid body consisting of a rotation about
an axis combined with a translation parallel to the axis is called
a screw motion, or a twist. We have proved therefore, in Art.
40, that the most general displacement of a rigid body can be
brought about by a single twist.

42. To construct the central axis and find the translation
and angle of the twist when the displacement is given by the
positions A, B, C,and A4,, By, C; of three points of the body,
we first remark that the projection on the central axis of the
displacement of any point, say 4,4, is equal to the translation
of the twist, and hence the projections of the displacements of
all points of the body (such as 4,4,, B,B;, C,(,) are all equal.
If therefore from any point O we draw lines 04, OB, OC equal
and parallel to 4,4, B B, C,C,, their ends 4, B, C will lie in
a plane 7 perpendicular to the central axis, and the perpendicu-
lar p dropped from O on this plane = will represent in length
and direction the translation of the twist.

The direction of the central axis being thus determined, we
find its position in space by projecting the displacements of any
two of the three given points, say 4,4, and B B, on the plane
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7, and finding the intersection of the perpendicular bisectors of
these projections. This intersection is evidently a point of the
central axis, and a perpendicular through it to the plane 7 will
give the central axis in position.

43. In the case of continuous motion there exists a central
axis for every position of the body; but its position both in
space and in the body in general varies in the course of the
motion. The central axis at any moment is therefore called in
this case the instantaneous axis.

44. The straight lines of space which during the progress of
the motion become instantaneous axes for the infinitely small
twists of the body form a ruled surface. Similarly, the lines of
the moving body which in the course of the motion come to
coincide with these axes generate another ruled surface. In
any given position of the body these two surfaces are in contact
along a line (the instantaneous axis) which is a generator in
each of the two surfaces. The body has an infinitely small
rotation about this line and at the same time slides along this
line through an infinitely small distance.

Thus the continuous motion of a rigid body in the most general
case can be regarded as cbmz'stz';zg of the combined volling and
sliding of one ruled surface over another.
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V. Composition and Resolution of Displacements.
I. TRANSLATIONS; VECTORS.

45. All the points of a rigid body subjected to a translation
describe parallel and equal lines (Art. g). The translation of
the body is therefore fully determined by the displacement 4,4,
of any one point 4 of the
body (Fig. 12), and can be
represented geometrically by
AyA, or any line equal and
parallel to it, like or.

A segment of a straight
line of definite length, direc-
tion, and sense is called a
vector. The sense of the
vector (see Art. 6) which
expresses whether the translation is to take place from o to 1 or
from 1 to o, is indicated graphicaily by an arrow-head, and in
naming the vector, by the order of the letters, o1 and 10 being
vectors of opposite sense.

Fig. 12,

46. Imagine a rigid body subjected to two successive trans-
lations. From any point o (Fig. 13) draw a vector oI
representing the first translation, and from its end 1 a vector
12 representing the second transla-
tion. The vector o2 will then repre-
sent a translation that would bring
the body directly from its initial to
its final position. This vector 02 is
called the geometric sum, or the resul-
tant, of the vectors or and 12, which
are called the components. The oper-
ation of combining the components into a resultant, or of
finding the geometric sum of two vectors, is called geometric
addition, or composition, of vectors.

Fig. 13.
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47. The process of geometric addition explained in Art. 46
for the case of 7wo components is readily extended to the gen-
eral case of # components. It thus appears that te succession of
any number of translations of a rigid body has for its resultant
a single translation whose vector is found by geometrically adding
the vectors of the component translations. (Compare Art. 7.)

48. The order in which vectors are combined, or added, is
indifferent for the result. This is directly apparent from a
figure in the case of two vectors (Fig. 14).
For the case of 7 vectors it follows from
the consideration that any order of the vec-
tors can be obtained by repeated interchanges
of two successive vectors.

Geometric addition agrees, therefore, with .
algebraic addition in being commutative. Fig. 14.

2

49. The vector, as the geometric symbol of a translation, has
length, direction, and sense; but it is not restricted to any
definite posztion, the same translation being represented by all
equal and parallel vectors. We express this by saying that fwo
vectors ave equal if they are of the same length, divection, and sense.

Translations are not the only magnitudes in mechanics
that can be represented by vectors. We shall see later that
velocities, accelerations, moments of couples, etc., can all be
represented by vectors and are therefore compounded into
resultants and resolved into components by geometric addition
and subtraction. In this lies the importance of this subject
which in its special application to translations might appear too
simple and self-evident to require extended presentation.

The case when the vectors represent concurrent forces is
probably known to the student from elementary physics as the

parallelogram or “polygon ” of forces.

50. A translation may be 7eso/ved into two or more translations
by resolving its vector into components.
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When'the resultant translation and one of its components are
given by their vectors, the process of finding the other com-
ponent is called geometric sub-
traction. It is effected, like
algebraic subtraction, by re-
versing the sense of the com-
ponent to be subtracted, and
then geometrically adding it
to the resultant (Fig. 15).
c In other words, the geometric

difference of two vectors AB

0 and CD is found by geometri-

. cally adding to AB a vector

equal but opposite to CD.

Thus, in Fig. 15, 02 is made equal and parallel to AB; 21 is

equal and parallel to CD reversed, that is to DC; o1 is the
required difference.

B

* N

>,

Fig. 15.

51. The composition of translations by geometric addition of
their vectors (Art. 47) holds, not for successive translations only,
but, owing to the commutative law (Art. 48), for simultancous
translations as well. This is easily seen by resolving the com-
ponents into infinitesimal parts.

To obtain a clear idea of two simultaneous translations it is
best to imagine the body as having one of these translations
with respect to some other body, while the latter itself is sub-
jected to the other translation. A man walking across the deck
of a vessel in motion, an object let fall in a moving carriage, a
spider running along a branch swayed by the wind, are familiar
examples.

52. This leads us to the idea of relative motion.

Properly speaking, all motion is relative; that is, we can
conceive of the motion of a body only with regard to some other
body, called the body of reference. If the latter be regarded as
fixed, the motion of the former is called its absolute motion.
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Thus in speaking of the motion of a railway train, we usually
regard the earth as fixed and can thus call the displacement of
the train from one station to another an adsolute displacement.
If, however, the motion of the earth with regard to the sun
be taken into account, the displacement of the train from
station to station is the relative displacement of the train with
respect to the earth; and its absolute displacement would be
found by combining this relative displacement with the abso-
lute displacement of the earth (with respect to the sun regarded
as fixed).

53. It follows that when the two displacements are transla-
tions the absolute displacement of the body will be found by
geometrically adding its velative displacement to the absolute
displacement of the body of reference. And conversely, the relg:
tive displacement of a body is found by geometrically subtracting
Srom its absolute displacement the absolute displacement of the
body of reference.

54. Analytically, the composition and resolution of vectors is
merely a problem of trigonometry. Thus, the resultant of two
vectors is the diagonal of the parallelogram formed by the two
vectors as adjacent sides; the resultant of three vectors is the
diagonal of the parallelepiped having the three vectors as con-
current edges.

55. In the case of more than two or three vectors, however,
the solution by ordinary trigonometry would become rather
tedious, and it is best to proceed as follows:

Assume an origin O and three rectangular axes Oz, Oy, Oz,
and project each vector on the three axes; let X, ¥, Z be its
. projections. These projections X, ¥, Z are three vectors whose
geometrical sum is equal to the vector. If » vectors were
originally given, we should now have them replaced by 37 com-
ponents of which # lie in each axis. The components lying in
the same axis can be added algebraically; let their respective
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sums be 2.X, 3V, 3Z. The » vectors are therefore equivalent to
the three vectors 2.X, 2 ¥, 22, which form the concurrent edges
of a rectangular parallelepiped whose diagonal drawn through
the origin O is the resultant vector OR=R, i.c.

R=VQEXP+(QCYP+(E2)2
The direction of this vector is given by the equations

cos = ERX, cos B= %Y, Cos y= —ETQZ—,

where @, 8, 4 are the angles made by OR with the axes Cx, Oy,
Oz, respectively.
If all the vectors lie in the same plane, we have simply :

R=V(EX)2+(2Y) tan a= z—;

56.. Exercises.

(1) A ship sails first 5 miles N. 30° E., then 12 miles N. 60° E., and
finally z5 miles E. 75° S. Find distance and bearing of the point
reached : () graphically, (4) analytically.

(2) Is a scale of 8 miles to the inch sufficient to obtain the results of
Ex. (1) correctly to whole miles and degrees?

(3) A rigid body undergoes three translations, of 1, 2, and 3 feet,
whose directions are respectively parallel to the three sides of an equi-
lateral triangle taken the same way round. Find the. resulting dis-
placement.

(4) A ship is carried by the current 2 miles due W., and at the same
time by the wind 4 miles due N.E., and by her screw 11 miles E. 30°
'S.  Find her resultant displacement.

{5) A ferry-boat crosses a river in a direction inclined at an angle of
60° to the direction of the current. If the width of the river be half a
mile, what are the component displacements of the boat along the river
and at right angles to it?

(6) Two vectors of equal length @ are inclined to each other at an
angle «. Find the resultant in magnitude and direction.

(7) For what angle «, in Ex. (6), is the resultant equal in magni-
tude: (&) to each component ¢? (&) to 4 a?
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(8) Resolve a vector « into two components making with the vector
angles of 30° and 45° on opposite sides.

(9) Steering his boat directly across a river whose current is due
west, a man arrives on the opposite bank at a point from which the
starting-point bears S.E. ; the width of the river being 1200 feet, how
far has he rowed? What is the absolute, and what the relative, displace-
ment of the boat?

(10) Assuming a raindrop to fall 25 feet in a second in a vertical
direction, find in what direction it appears to be falling to a man: ()
walking at the rate of 5 feet per second, (&) driving at the rate of 1o
feet per second, (¢) riding on a bicycle at 25 feet per second, (&) in a
railroad car running 6o feet per second.

(11) Find in magnitude and direction the resultant of 8 translations
of 1,2, 3,4,5, 6, 7, 8 feet, respectively, each component making an
angle of 45° with the preceding one: (@) graphically, (#) analytically.

(12) If a, 4, ¢ are three vectors whose geometric sum is o, prove.
that a/sin (éc) =54/sin (ca) =c¢/sin (ab).

(13) Find the resultant of two translations represented in magnitude
and direction by two rectangular chords of a circle drawn from a point
on its circumference.

(14) From a point C in the plane of a circle whose centre is O,
draw two lines at right angles to each other so as to intersect the circle
in 4, A" and B, B', respectively. Show that the resultant of the four
vectors CA, CA', CB, CB'is equal to twice CO.

(15) Prove that the geometric sum of two vectors A7, AP, issuing
from the same point /7 passes through the middle point G of A7, and
has a length = 2 /G- _

(16) Prove that the geometric sum of two vectors A7 and A7 is
equal to (#+ 1) AG if G be found as follows: on A/ take Q so that

FQ= LPoPl, and on QPZ, take G so that QG = z Q5.
n 741

(17) Show that Ex. (15) is a special case of Ex. (16).

(18) Prove the following rule for constructing the geometric sum of
n vectors B, PPy, PP, - PP, issuing from the same point Fp:
on A /A, take G, so that P,G\=3}A/F,; on G\F; take G, so that
GGy =1 G\P;; on GoP, take G so that GGy =1 Gy ; and so on.
If G be the last point so determined, the geometric sum of the # vectors
is = ﬂf’o G.
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2. ROTATIONS; ROTOQORS.

57. When a rigid body has a motion of rotation about a
fixed axis, all its points with the exception of those on the axis
describe circular arcs whose centres are situated on the axis
(Art. 10).

The elements determining a rotary displacement, or a rotation,
are the axis and the angle of rotation. These elements can be
represented by a single geometrical symbol; we
have only to lay off on the axis of rotation a length
o1 (Fig. 16) representing on some scale the magni-
tude of the angle §. An arrow-head can be used
% to mark the sense of the angle. It is customary,

at least in English works on mechanics, to adopt

the counter-clockwise sense of rotation as positive.

The arrow-head should then be placed at that end

Fig. 16. of the line representing the angle 6 from which

the rotation appears counter-clockwise in a plane

through the other end at right angles to the axis. The arrow

then points in the direction in which an ordinary screw moves
when turned in the positive sense. '

This geometrical symbol of a rotation, o1, has been called a
rotor. It becomes of importance in the case of infinitesimal
rotations, as we shall see later (Art. 68).

58. Two or more rotations about the same axis can evidently
be combined into a single rotation about the same axis whosé¢
angle is the algebraic sum of the angles of the component
rotations (Art. 12). As regards rotations about different axes,
we have to distinguish three cases : intersecting axes, parallel
axes, and crossing or skew axes. :

It will be shown in the following articles that rotations about
intersecting or parallel axes can always be combined into a
single rotation which may happen to reduce to a translation.

Rotations about skew axes cannot in general be reduced to a
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| at 7, intersect in a line / which by
| the rotation 8, about /; is brought Ls
| into the position /, and by the

| back into. its original position /.

| taken in this order is therefore to

| sive rotations is a single rotation
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single rotation or translation ; it will be shown in the next sec-
tion (Arts. 74-79) that they reduce to a twist, or screw motion.

59. Intersecting Axes. T/e resultant of two successive rota-
tions, 0y about 1| and 0, about l,, when the axes \y and 1, intersect
ina point O, is a single votation of angle 0 about an axis | passing
through O. The trihedral formed by /, /, and / has at /; a dihe-
dral angle =16, at /, a dihedral angle = — 16, while its
exterior angle at / is =}@; that is, we have on a sphere of
radius 1 described about O:

W eE ! 1 ALY
cos L @=cos } 0, cos L 0,—sin 10, sin 18, cos(/}4,), (1)

sin (/,/) _ sin (/) _ sin(44)
sin}d, sin}d, sin}d’

()

The truth of this proposition will appear by considering Fig..»
17. The rotation 6; about the axis /; brings the axis 4, into its.
final position /,. The rotation 6,
about /', brings /; into its final
position 7/;. The planes bisecting
the dihedral angles 6, at /; and 6,

rotation 6, about 7/, is brought
The effect of the two rotations

leave the line / in its place; that
is, the resultant of the two succes-

about / as axis. Moreover, inspec-
tion of the figure shows that a
rotation about / by an angle equal
to twice the exterior angle of the trihedral 4/, at / brings /
and /, into their final positions /'y and /.
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60. It is to be noticed that /; and /, are here regarded as
lines of the rigid body; and while /, coincides with the position
of the first axis of rotation in space, the second axis of rotation in
space has the position 7/, and not /4. It follows that, 7z general,
the order of the two rotations is not indifferent. But by repeat-
ing the construction, any number of rotations taken in a definite
order can be combined into a single rotation provided every axis
intersects the axis of the resultant of all preceding rotations.

61. Again, in finding / from /; and /, the positions of the
axes in the rigid body, as we did in Art. 59, the angle 10, is to
be applied to the plane /4, at /; in its proper sense, 7.c. on that
side towards which the rotation about / takes place; but 16, at
/, is to be applied to this plane in the opposite sense. If,
however, we wish to construct / from the adsolute positions of

the axes of rotation in space, /, and /5, we have to use —}6;

and +3 6,.

62. In the case of two iufinitely small rotations, say df; and

df,, about intersecting axes /, /, the construction gains
remarkable simplicity. The resulting axis / falls into the plane
of the given axes.

Substituting 40 for sinf and 1-}d6?
for cosf, the equations of Art. 359
assume the form

AP =dO2+db2+2d0,d0,cos(Lly), (1)

sin(/4/) _ sin () _ sin (44) (2')
de, 1

These equations show that Z8 can be
found by geometrically adding the
rotors (Art. 57) representing the rota-
tions &6, and 46,. In other words, the
components &6, and &0, (or lengths proportional to them) being
laid off on their respective axes (Fig. 18), the resultant rotation

Fig. 18.

R
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40 will be found in magnitude and direction as the diagonal of
the parallelogram whose adjacent sides are 46, and 49, just as
in the case of translations (Art. 46). The importance of this
proposition will appear later (Art. 276).

It is to be noticed that, in the case of infinitesimal rotations,
the order of succession in which they take place is - obviously
indifferent; they can therefore be imagined to take place
simultaneously.

63. Parallel Axes. The composition of two successive rota-
tions about parallel axes is not essentially different from the
composition of rotations about two intersecting axes. The

trihedral %/, of Fig. 17, formed by the given axes ./}, /, and
the resdlting axis /, becomes now a triangular prism, and the
spherical construction is replaced by a construction in a plane at
right angles to the axes. Fig. 19 shows this construction for
the case of two rotations having the same sense (f; and 6,
being of the same sign); Fig. 20 illustrates the case of two
opposite rotations. The letters have the same meaning as in
Fig. 17.

PART I—3
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The signs of 8, and 6, being taken into account, the formulae
of Art. 59 are now replaced by the following :

0=6,+6,, (")

AR E
sin}f, sin}6, sinid

")

The order of two finite rotations about parallel axes is not
invertible.

.

Fig. 20.

By repeating the above construction it is evidently possible
to find the resultant of any number of successive rotations
about parallel axes, the rotations being taken in a definite
order.

64. The particular case of two egual and opposite rotations
about parallel axes deserves special consideration. The point Z
lies at infinity; hence, the axis of rotation being at an infinite
distance, the resulting motion is a translation (Art. 19). This
will also appear from Fig. 21 ; the first rotation, about /, brings
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the plane /,/, into the position //',; the following rotation, about
/', brings it into the position
/',/', which is parallel to the
original position /4/. The
whole body has thus been
moved parallel to itself in the
direction L,L';, and the mag-
pitude of this translation is

Bl o L R sing, (3)

where @ is the angle of rotation about each axis, and L;Z, is
the distance of the axes.
The order of the rotations is evidently not invertible.

65. We have seen in the preceding article that two egual and
opposite rotations about parallel axes produce a translation at right
angles to the axes of rotation. A translation can therefore always
be replaced by two such rotations. It follows that a zranslation
fol/owed,by a rotation about an axis at right angles to the divec-
tion of translation can be replaced by a single rotation about a
parallel axis. To find this resulting rotation it is only neces-
sary to replace the translation by two parallel equal and oppo-
site rotations having the same effect (Art. 64); the three
rotations so obtained have parallel axes and can therefore-
(Art. 63) be combined into a single one.

66. The case of two infinitely small rotations (Fig. 22) is
again of particular importance, as we shall see later on. = The
formulee of Arts. 59 and 63
become in this case

46 =db, +db,, ("
L, L Lg

_L_1£=LL2=L1[’2, (2/”)
R L b 40, 46, df

The axis / of the resulting rota-
Fig. 22. tion lies therefore in the plane
of the given axes /4, /, and divides their distance in the inv -
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ratio of the angles of rotation. The sense of the segments
L,L, LL, L,L, must be taken into account as well as the
sense of the angles 40, d6,, 4. The axis / lies between /;
and /, if 40,, 40, have the same sense; otherwise it lies outside
the space between /, /, on the side of the axis having the
greater angle.

67. Two equal and opposite infinitely small rotations about
parallel axes produce an infinitely small translation equal to
L,L,-df (see Art. 64, Formula (3)) directed at right angles
to the plane of the axes /, 4, Conversely, an infinitely small
translation can always be replaced by two equal and opposite
infinitesimal rotations.

68. An infinitesimal rotation of angle #0 about an axis /
can be represented (Art. 57) by a rectilinear segment laid
off on / equal to 46, or, to avoid infinitesimal lengths, pro-
portional to 4f. This geometrical symbol of an infinitesimal
rotation has all the characteristics of a vector (compare Arts. 45,
49); but it has one more which distinguishes it from the vector
representing a translation: it is Jocalized, or attached to a
definite line ; for two equal and parallel rotations about different
axes do not represent the same thing. Such a localized vector
is called a rotor.

69. The theory of rotors is of just as great importance in
mechanics as that of vectors (Art. 49). Angular velocities,
momenta, forces, all have for their geometrical representatives
rotors, z.e. rectilinear segments of definite direction, length,
sense, and situated on a definite line. :

The theory of the composition and resolution of rotors is a
matter of pure geometry; it remains the same whatever the
rotor may represent. Thus we have seen in Art. 62, in the case
of infinitesimal rotations, that concurrent rotors are combined by
geometrical addition. The same rule holds for angular velocities,
momenta, and forces. In Art. 66 the rule for combining two
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parallel rotors is explained by the example of infinitesimal rota-
tions. The student acquainted with elementary physics will
recognize in this rule the so-called principle of the lever which
is based on the composition of parallel forces.

70. Two rotors of equal length and opposite sense situated on
parallel lines (Fig. 23) are said to form a couple. The two rotors
P, P are called the sides, their perpen-
dicular distance p the arm, and the
product Pp the moment of the couple.

It has been proved in Art. 67 that a
couple of infinitesimal rotations pro-
duces an infinitesimal translation. In
general, a rotor couple is equivalent toa

Fig. 23.

vector, as we shall see later.

71. The converse proposition of Art. 67, viz. that an infini-
tesimal translation can always be replaced by a couple of
infinitesimal rotations, requires a little further consideration.

Suppose we wish to replace the translation &s by a couple.
According to Art. 67, the axes /}, /, of the two rotations must
be at right angles to ds ; the distance Z,Z, of the axes and the
angle of rotation 48 are only subject to the condition that their
product should equal Js, i.e.

L,L,- df=ds.

There is, therefore, an infinite number of couples equjvalent to
ds, all having the same moment Z,Z, - &s and all lying in a plane
perpendicular to ds.

It thus appears that the characteristics of a couple are its
moment and the aspect of its plane; in other words, a ‘couple
(7, p) is equivalent to any couple (P’, ') provided (@) that they
lie in parallel planes or in the same plane, and () that their
moments are equal, i.e. P-p=PF".p/. This allows us to rgpre-
sent a rotor couple (P, p) by a vector perpendicular to the plane of
the couple and equal in magnitude to its moment Pp. :
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The sense of the vector is determined as follows. In the case
of infinitesimal rotations it appears from Arts. 67 and 64 that a
couple of the type A4, Fig. 24,

produces a translation upwards

S from the plane of the figure,
z.e. towards the reader; whilea

T B couple of the type B produces
a downward translation, away
from the reader. Regarding the couples as rigid figures, their
rotors as forces, and the middle point of their arms as fixed,
the type 4 tends to produce rotation in the counter-clockwise,
positive, sense ; the type B in the negative sense: The former
is therefore regarded as positive, and its vector is drawn from

its plane towards the reader.

72. Let us now return to our infinitesimal displacements.

An infinitesimal translation ds can be combined with an infini-
tesimal votation A0 about an axis | at right angles to ds (Fig. 25).
To find the resultant single rotation we have only to replace
the translation &s by an equivalent couple
whose angle of rotation we select equal to
that of the given rotation ; that is, we put

ds=L,L,-df, whence a6 ao
ds Ly L
LiL,=—. ’
13542 40 z.
-dd

The plane of the couple, being perpen-
dicular to Js, can be taken so as to contain
the axis / of the given rotation &6 ; and in
this plane the couple can be so placed that Fig. 25.

one of its sides (see Fig. 25) falls into this

axis . Selecting the proper side of the couple, we shall have on
/two equal and opposite rotations @6, —d0, which destroy each
other, leaving only the rotation &6, about an axis at the distance
L,L,=ds/df from /.
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Thus it is seen that #he combination of an infinitely small
rotation A6, with an infinitely small translation ds at right angles
to the axis of rotation, produces a single votation of the same
 angle about a parvallel axis at a distance ds/d0 from the original
axis in the plane through this axis perpendicular to the direction
of translation.

73. Exercises.

(1) The telescope of a theodolite, originally horizontal and pointing
north, is tipped into an elevation of 60° and then turned into the prime
vertical so as to point west. What single rotation is equivalent to the
two successive rotations ?

(2) In the preceding example, what would be the result of inverting
the order of the two rotations?

(3) The motion of a man in walking may be approximately described
as consisting at every step of two rotations of the body about parallel
axes perpendicular to the direction of motion, one axis passing through
the hip-joint, the other through the foot that remains on the ground
while the other foot is thrown forward. Find the angle of swing
(assuming the two rotations to be equal and opposite) if the length
of the step is 15 inches and the height of the hip-joint 3} feet.

3. SCREW MOTIONS ; TWISTS.

74. We have seen in Arts. 40, 41 that a twist, Ze. a rota-
tion combined with a translation parallel to the axis of rotation,
constitutes the most general form of the displacement of a
rigid body. We proceed to discuss the most important cases
of the compositions of rotations and translations resulting in
twists,

75. A rotation of angle # about an axis / can be combined
with a translation whose vegtor is s, by resolving s into two
components ; s, perpendicular to /, and s, parallel to / The
former component combines (by Art. 65) with the rotation into
a single rotation of the same angle @ about an axis parallel to /
The result is therefore a rotation accompanied by a translation
S, parallel to the axis of rotation, z.e. a twist.
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76. If the rotation #6 and the translation Js are infinitesimal,
the axis of the resulting twist has (by Art. 68) a distance ds/d@
from the axis / of the rotation #@ and lies in the plane laid
through / at right angles to ds.

77. Skew Axes. Tl resultant of two successive votations 0
and 0, about two skew axes 1y and 1, is a twist. This follows of
course from the proposition of
Art. 40. The axis of the re-
sulting twist is the central axis
of the displacement; its direc-
tion and position can be found
as in Art. 42. Fig. 26 illus-
trates the process. L,L, is the
shortest distance of the axes
4y, &.- The first rotation, 6;,°
about /,, brings /, into its final
position /5,and L, into L', ; the
second rotation, 8, about /,,
brings /; into its final position
/'y, and L into L';. The axis

Fig. 26. / of the resulting twist will

evidently be the shortest dis-

tance of the bisectors of the angles Z,Z,L', and Z,L',L',.
For a rotation about this line / brings /, into //, and /; into /';.

78. The angle of the resulting twist is the same as the angle
of the rotation resulting from two rotations 8;, 8, about two
intersecting axes parallel to the given axes /;, 4, For (by Art.
65) either one of the rotations, say 6, about /, may be replaced
by a rotation of the same angle @, about an axis parallel to /
and intersecting /, combined with a translation at right angles
to 4. The two rotations about the intersecting axes can then
be combined into a single rotation, and the angle and direction
of the axis of this latter rotation are not changed by combi-
nation with the translation (Art. 74).
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79. It follows from the two preceding articles that a twist
can always be resolved into two rotations about skew axes, and
this can be done in an infinite number of ways. It is also easy
to see that two, or any number of, successive twists can be com-
bined into a single twist by resolving each twist into its rotation
and translation, and combining all rotations into a resulting
twist and all translations into a resulting translation ; the result-
ing twist combined with the resulting translation gives the
twist equivalent to all the given twists.

80. For a more complete account of the geometry of motion the:
student is referred to A. SCHOENFLIES, Geometrie der Bewegung, Leipzig,
Teubner, 1886 ; and to W. ScHELL, Zheorie der Bewegung und der
Krifte, Leipzig, Teubner, Vol. I., 1879, pp. 144-187. See also R. S.
Barr, Zheory of screws, Dublin, Hodges, 1876 ; and H. GRAVELWUS,
Ball's theoretische Mechanik starrer Systeme, Berlin, Reimer, 1889, —.
for the more advanced parts of the subject. Many authors treat the
geometry of motion in connection with Kinematics ; see the references.
in Chapter I1., in particular the works of Burmester, Resal, Villié.

Applications to mechanism and machinery will be found in F..
REULEAUX, Kinematics of machinery, edited by A. B. W. Kennedy,.
London, Macmillan, 1876; in J. H. COTTERILL, Applied mechanics,.
London, Macmillan, 1884, pp. 99-134; and in ArLex. B. W. KENNEDY,.
The mechanics of machinery, London, Macmillan, 1886.
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CHAPTER 1II.
KINEMATICS.
1. 7ime.

81. Before introducing the idea of time into the study of
motion, a word must be said on the measurement of time.

It is the province of astronomy to devise methods for measur-
ing time; the usual method consists in transit observations.
Thus the fundamental unit of time in astronomy, or the sidereal
day, is the interval between two successive upper transits of the
true vernal equinox over the same meridian.

82. For the purposes of every-day life, it is more convenient
to make the measurement of time depend on the apparent revo-
lution of the sun. But the interval between two successive
upper transits of the sun ever the same meridian, which is the
true, or apparent solar day, is not constant throughout the year,
-owing to the inclination of the earth’s axis to the plane of its
orbit and to the ellipticity of this orbit. The true solar day is
thus not well adapted to serve as a unit of time. '

Astronomers imvagine, therefore, a so-called first mean sun
moving uniformly in the ecliptic so as to pass the perigee simul-
‘taneously with the real sun; and a second mean sun moving
uniformly in the equator so as to pass the vernal equinox simul-
taneously with the first mean sun. The interval between two
successive passages of the second mean sun over the same
meridian is called the mean solar day. This may be regarded
-as the standard on which all time-determinations in mechanics
are based.

The mean solar day is subdivided into 24 hours = 1440
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minutes = 86 400 seconds. In theoretical mechanics the second
is generally used as the unit of time.

83. To reduce mean time to apparent time, it is only neces-
sary to subtract from mean time the so-called eguation of time,
whose value for any particular date is given in the Ephemeris.

84. The relation between mean solar time and sidereal time
is readily found by considering that the tropical year, z.¢. the
interval between two successive passages of the sun through
the mean vernal equinox, has 365.2422 mean solar days, and
of course just one more sidereal day. Hence 1 solar day
=366.2422/365.2422=1.002738 sidereal day; in other words,
the sidereal day contains 86 164.1 seconds of mean time, while
the solar day contains 86 400 such seconds.*

85. It will have been noticed that all these methods of
measuring time are ultimately based on the assumption that
the rotation of the earth on its axis is perfectly uniform. Obser-
vation shows this assumption to be true, or at least to have a
very high degree of approximation.

It might be asked how we can know, without using some unit of time
for comparison, that the earth’s rotation on its axis is uniform ; in other
words, that the mean solar day is constant. Qur absolute unit of time
would seem to be obtained by reasoning in a circle. This objection is
not quite without foundation; and as similar difficulties arise in the
case of other fundamental data of mechanics, it may be well to consider
the matter a little more in detail.

86. The simplest answer is that we asswme the constancy of the
mean solar day and find this assumption fully justified by the fact that
while the whole structure of the astronomical and physical sciences rests
on this assumption, the theoretical predictions of these sciences are
found to be in close agreement with the results of direct observation.

Historically, the assumption was originally adopted on account of its

* For further particulars see W. CHAUVENET, Spherical and practical astronomy,
Vol. I, p. 52sq. and pp. 651-654; also the American Ephemeris and Nautical
Almanac.
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simplicity, as a practical working hypothesis, and it was found to work
well. From the logical point of view we may strengthen its probability
by the following considerations.

87. The origin of our notion of time as a measurable quantity lies
in the subjective sensation that teaches us instinctively to distinguish
between shorter and longer intervals of time. This feeling of time is
of course (just as in the analogous case of muscular force) far too vague
and indefinite to admit of measurement. But it is sufficient to convince
us that, approximately, the lengths of successive days are equal. With
far greater approximation can we judge by our time-feeling that the

oscillations of the pendulum of a clock are nearly isochronous. Let us

combine thesé two entirely independent facts. Careful observation will
show that the number of oscillations made by the pendulum in the
interval between two culminations of the mean sun is almost precisely
the same for every mean day. Moreover, the agreement becomes the
more perfect the more we eliminate any causes that tend to disturb
the isochronism of the pendulum. It will therefore be reasonable to
conclude that the mean solar day must have a very nearly constant
length.

But it is to be kept in mind that this is an empirical fact and hence
not absolutely true, but only within the limits of the errors of observa-
tion. Indeed, certain considerations concerning the friction caused
by the tides make it probable that the angular veloc1ty of the earth is
diminishing very slowly.*

* See O. RAUSENBERGER, Analytische Mechanik, 1., Leipzig, Teubner, 1888, p. 14;
H. STREINTZ, Physikalische Grundiagen der Meckanik, Leipzig, Teubner, 1883, p.

81 sq.; E. BUDDE, Aligemeine Mechanik, 1., Berlin, Reimer, 1890, p. 33; THOMSON
and TAIT, Natural philosopky, 1., London, Macmillan, 1879, p. 460; J. C. MAXWELL,

Matter and motion, New York, Van Nostrand, 1878, p. 27 and p. 60.; K. PEARSON,
Grammayr of science, London, Scott, 1892, pp. 217-230.



91.] VELOCITY. 45

1. Linear Kinematics.
I. UNIFORM RECTILINEAR MOTION; VELOCITY.

88. Consider a point moving in a straight line. If through-
out the whole motion equal spaces are always described in equal
times, the motion is said to be uniformr

89. Next consider two points each moving uniformly in a
‘ straight line. The motions may still be different; for it is pos-
1 sible that while one of the points moves in a given time # over a
- space sy, the other moves during the same time # over a different
-space s,. The points are then said to have different velocities,
~and their velocities are said to be as syis to s,.  The velocity v
~of uniform motion is therefore measured by the ratio of the
space s described in any time ¢ to this time; that is, v=s/2

90. This equation written in the form
s=uvt (1)

is called the equation of motion of the point. It follows from
Art. 89 that in uniform motion the velocity » is constant.

With 7 as abscissa and s as ordinate (or vzce versa), the equa-
tion of uniform motion (1) represents a straight line; the
tangent of the angle made by this line with the axis of # repre-
sents the velocity .

91. Let the point P start at the time #=o0 from a point O
(Fig. 27); let it reach the point 2, at the time #=¢#, and the

?‘=O E:rt'o =t
o) 'pnl R!
Fig. 27.

point P, at the time #=# Then, putting OPy=s, OP,;=s, the
space passed over in the time 7—4, is s—s,; hence the velocity
v=(s—s,)/(t—%,). The equation of uniform ‘motion can there-
fore be written in the form

s—s,=v(t—1). (1)
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If the times be counted from the instant when the moving
point is at 2, we have =0, and the equation of motion is

> s=s,+vt. (')

Finally, if both times and spaces are counted from P, as
origin, we have s,=0, so that (1) reduces to (1).

92. To measure velocities we must adopt a unit of velocity. ‘

In kinematics, the only fundamental, ze. independent, units |
required are those of length and time. All other quantities
can be expressed in terms of length and time, and their units
are therefore called derived units.

Thus, the definition of the velocity of uniform motion as a
length divided by a time (Art. 89) can be expressed by the

symbolic equation

V=%, or V=LT-,

and we say that the dimensions of velocity are 1 in length and
—1I in time.

When L=1 and T=1, we have V=1. We must therefore
select for our unit of velocity that velocity with which unit
length is described in unit time.

Hence in the C.G.S. system (see Arts. 13, 14) the unit
velocity is a velocity of 1 cm. per second; in the F. P. S. system
it is a velocity of 1 ft. per second. !

93. In practice other units are often used, and the same
concrete velocity can therefore be expressed by different num-
bers. Thus the same velocity of a railroad train can be
described as 30 miles per hour, or 44 ft. per second, or (approx- -
imately) 13.41 metres per second.

The symbols s, 7, ¢ etc., in the kinematical equations must be
understood to represent the numerical ratios of the concrete
quantities to their respective units. The symbol v, for instance,
stands for the ratio J// V] of the concrete velocity 7 to its unit



96.] VELOCITY. 47

V}, and we have of course the proportion : 30 miles an hour is to
1 mile an hour as 44 ft. per second is to 1 ft. per second, etc.

94. The full meaning of the equation of dimensions V=LT"1
is obtained if we substitute I/ V] for V, L/L  for L, T/7, for‘T,
where V, L, T are the concrete quantities and V;, L,, 7} their
units. We find

VAT T

Vs iy 7L .
| and this equation shows two things which are of frequent appli-
cation in reductions between different systems of units:

(@) The numerical value V/V; of a velocity varies directly as
the unit of time and inversely as the unit of length;

(6) the wnit of velocity V) varies directly as the unit of
length and inversely as the unit of time.*

95. In speaking of velocities, the time unit (usually the
~second) is frequently understood without being mentioned.
This has led to considering velocity as a length (viz. the length
passed over in unit time); it can then be represented graphi-
cally by a segment of a straight line, and if in addition we com-
bine with the idea of velocity that of the dérection and sense of
the motion, its geometrical representative will be a vector (see
Art. 45). We shall see later that this view is of particular
advantage in studying the velocity of curvilinear motion.

Some recent writers on mechanics use the term welocity
exclusively in this meaning, Z.e. as denoting a vector, and apply
the term speed to denote the numerical magnitude of this
vector. In linear kinematics the direction is given, and the
“speed” alone is the subject of investigation. The 4 or —
sign of the “speed ” expresses the sense of the motion.

96. Exercises.
(1) A train leaves the station 4 at g h. 5 m., passes (without stop-

*See J. D. EVERETT, C. G. S. system of units, 1891, p. 3.
tSee Syllabus of elementary dynamics, Part 1., prepared by the Association for
the Improvement of Geometrical Teaching; London, Macmillan, 1890, p. 8.
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ping) B at 9 h. 31 m,, C at 9 h. 47 m,, and arrives at D at 9 h. 59 m.,
the distance 4D being 36.9 miles. Considering the motion as uniform :*

(@) What is the velocity?

(4) What is the equation of motion?

(¢) What are the distances BD and CD? i

(@) If after stopping 5§ minutes at 2 the train goes on with the same
velocity as before, when will it reach £, 10} miles beyond D?

(¢) Construct a graphical time-table, taking the times as abscissas and
the distances as ordinates.

2) Interpret equations (1') and (1") geometrically. ‘
I i ") and (1" icall

(3) A train leaves Detroit at 9 h. 5 m. AM. and reaches Chicago:
at 4 h. 3o m. p.M.; another train leaves Chicago at 1z h. 20 m. and
arrives in Detroit at 7 h. 25 m. p.M.  The distance is 285 miles. Re-?
garding the motion as uniform and neglecting the stops, find, both
analytically and graphically, when and where the trains will meet. |

(4) Reduce the following velocities to F. P.S. units: (@) Walking 4 |
miles an hour; (&) trotting a mile in 2 m. 10s.; (¢) railroad train,
from 30 to 5o miles per hour; (&) bicyclist, 2 miles in 4 m. 59% s. ;
(¢) sound in air, 333 metres per second.

(5) What is the numerical value of a velocity of 22 ft. per second
when the hour is taken as unit of time and the mile as the unit of
length?

(6) How is the unit of velocity changed if the minute be adopted as
unit of time, the unit of length remaining unchanged ?

(7) The mean distance of the sun being 92} million miles, what is the
velocity of light if it takes light 16 m. 40 s. to cross the earth’s orbit?

(8) Two trains are running on the same track at the rate of 25 and
15 miles per hour, respectively. If at a certain instant they are 10
miles apart, find when they will collide (@) if they are headed -the same
way ; (&) if they run in opposite directions.

(9) In what latitude is a bullet shot west with a velocity of 1320 ft.
per second at rest relatively to the earth’s axis, the radius being taken
as 4000 miles ?

(10) Two trains, one 250, the other 440 ft. long, pass each other on
parallel tracks in opposite directions with equal velocity. A passenger
in the shorter train observes that it takes the longer train just 4 seconds
to pass him. What is the velocity ?
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101. If » be given as function of ¢ say v=¢(?), we find from

(2) ds=wdlt, and hence by inte-
gration v
¢
: §—5 =‘£ 'Z'ﬂ’f; (3) /—\i\
A d !
where s, is the space de- y 10, ®
. X , | ;
scribed during the time £, ‘ {
The equation v=¢() furnishes o & G
a graphical representation of Fig. 29.

the velocity, and formula (3)

shows that the space s—s, described during the time z—¢, is
represented by the area included between the curve v=¢(?), the
axis O¢, and the ordinates 7, and v corresponding to £, and ¢,
respectively (Fig. 29).

102. Similarly, if » be given as a function of s, say v=1(s),
we have from (2) d¢=ds/v, and hence r
*ds
= % @
The two velocity curves v=¢(?) and v=1(s) are of course in
general different, and must not be confounded with the pa#Z of
the moving point, which is here supposed rectilinear.

103. We have seen (Art. 91, equation (1'')) that in the case of
uniform motion the velocity v= (s —sy) /% i.e. the rate of change
of space with time, is constant. The simplest case of variable
motion is that in which the velocity varies uniformly. Z%e rate
at whick the velocity varies with the time is called the accelera-
tion; we shall denote it by /.

If the velocity vary uniformly, the acceleration is constant, and
we have j=(v—1,)/t, where ¢ is the time during which the
velocity changes from v, to v. ;

By reasoning analogous to that employed in Art. g9, we find
for the acceleration of any rectilinear motion at the time z

dv d
. e (5)
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that is, in rectilinear motion the acceleration at any point or
instant is the value, at that point or instant, of the second deriva-
tive of the space with respect to the time.

Negative acceleration will thus indicate a decreasing veloc-

ity.

104. When the acceleration is constant, the motion is said to
be uniformly accelerated. In the case of variable acceleration
we might again consider its rate of change, which may be called
the acceleration of the second order; and so on. Compare
Art. 156.

105. Conformably to the definition of acceleration, its unit is
the “cm. per second per second” in the C. G.S. system, and
the “foot per second per second” in the F.P.S. system. As
it can rarely be convenient to use two different time units in the
unit of acceleration (say, for instance, mile per hour per second),
it is customary to mention the time unit but once and to speak
of an acceleration of so many feet per second, or cm. per sec-
ond, it being understood that the other time unit is also the
second.

For the dimensions of acceleration we have (see Art. 92)

J=VT-'=LT"*

Denoting, as in Arts. 93, 94, the concrete value of an.

acceleration by /, its unit by /;, and similarly for length and
time, we have the equation

S

i
which shows that (@) the numerical value ///; of an acceleration
varies directly as the square of the unit of time, and inversely
as the unit of length; and (4) the unit of acceleration, /), varies

directly as the unit of length, and inversely as the square of the
unit of time.
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106. Exercises.

(1) A point moving with constant acceleration gains at the rate of
30 miles an hour in every minute. Express its acceleration in F.P.S.
units.

(2) At a place where the acceleration of gravity is g= 9.810 metres
per second, what is the value of ¢ in feet per second?

(3) A railroad train, 10 minutes after starting, attains a velocity of
45 miles an hour; what was its average acceleration during these 10
minutes ?

(4) If the acceleration of gravity, &= 32 feet per second, be taken
as unit, what is the acceleration of the railroad train in Ex. (3)?

3. APPLICATIONS.

107. Uniformlj Accelerated Motion. As in this case the accel-
eration 7 is constant (see Art. 103), the equation of motion (5)

R
ZZ_]’ or o =i/

can readily be integrated :
v=st+C.

To determine the constant of integration C, we must know the
value of the velocity at some particular moment of time. Thus,
if v=v, when #=o0, we find v,=C; hence, substituting this

value for C,
v—yy=Jt. ©)

This equation, which agrees with the definition of 7 given in
Art. 103, gives the velocity at any time # Substituting ds/d¢
for v and integrating again, we find s=v,¢+1 24 C’, where the
constant of integration, ', must again be determined from
given “initial conditions.” Thus, if we know that s=s, when
¢=o0, we find s,=C"; hence

s—Sy=0pt+3 /2 ?)
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This equation gives the space or distance passed over in

terms of the time.

108. Eliminating j between (6) and (7), we obtain the relation

s—so=3%(v,+7)¢,

which shows that in uniformly accelerated motion the space

can be found as if it were described uniformly with the mean
velocity 4 (vy+v). .

109. To obtain the velocity in terms of the space, we have
only to eliminate ¢ between (6) and (7) ; we find

3 (P —v) = j(s—50)- ®)

This relation can also be derived by eliminating &# between the
differential equations v=ds/d¥, dv/dt= j, which gives vdv= jds,
and integrating. The same equation (8) is also obtained
directly from the fundamental equation of motion d%s/ds?=; by
a process very frequently used in mechanics, viz. by multiplying

both members of the equation by ds/dz This makes the left- =

hand member the exact derivative of }(ds/d?)? or 172 and the
integration can therefore be performed.

110. The three equations (6), (7), (8) contain the complete

solution of the problem of uniformly accelerated motion. For
uniformly retarded motion, taking the direction of motion as
positive, we have only to write — 7 for + /.

If the spaces be counted from the position of the moving
point at the time /=0, we have s5,=0, and the, equations become

v="0,+/t, | (6"
s=vt+178, (7"
3 (P -y ) =/s (8"
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111. If in addition the initial velocity 7, be zero, the point
' starting from rest at the time #=o0, the equations reduce to the
following :

v=yt, ©")
s =478 €'
Fv2=7s. ) . (8"

112. The most important example of uniformly accelerated
motion is furnished by a body falling in vacuo near the earth’s
surface. Assuming that the body does not rotate during its
fall, its motion relative to the earth is a mere translation, and
it is sufficient to consider the motion of any one point of the
~ body. It is known from observation and experiment that under
these circumstances the acceleration of a falling body is con-
stant at any given place and equal to about 980 cm,, or 32 ft.,
per second per second. ; the value of this so-called acceleration
of gravity is usually denoted by g.

In the exercises on falling bodies (Art. 114) we make through-
out the following simplifying assumptions: the falling body
does not rotate; the resistance of the air is neglected, or the
body falls in vacuo; the space fallen through is so small that
£ may be regarded as constant; the earth is regarded as fixed,
z.e. we consider only the relative motion of the body with respect
to the earth.

113. The velocity v acquired by a falling body after falling
from rest through a height % is found from (8"') as

v=V2gh.

This is usually called the velocity due to the height (or head) h,
while

gel
-z

is called the height (or head) due to the velocity v.
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114. Exercises.

(1) A body falls from rest at a place where g = 32.2. Find (a) the
velocity at the end of the third second ; (&) the space fallen through in
5 seconds; (¢) the space fallen through in the fifth second.

(2) If a railroad train, at the end of z m. 40 s. after leaving the
station, has acquired a velocity of 30 miles per hour, what was its accel-
eration (regarded as constant) ?

(3) Galilei, who first discovered the laws of falling bodies, expressed
them in the following form: (&) The velocities acquired at the end of
the successive seconds increase as the natural numbers; (%) the spaces
described during the successive seconds increase as the odd numbers ;
(¢) the spaces described from the beginning of the motion to the end
of the successive seconds increase as the squares of the natural num-
bers. Prove these statements.

(4) A stonevdropped into the vertical shaft of a mine is heard to
strike the bottom after #seconds; find the depth of the shaft, if the
velocity of sound be given = ¢. Assume /= 4 s., c= 332 metres, g=980.

(5) A railroad train approaches a station with uniformly retarded
motion. During the first two minutes of its retarded motion it makes.
3960 ft.; during the next minute ggo ft. (&) When will it come to
rest? (%) What is the retardation? (¢) What was the initial velocity ?
() When will its velocity be 4 miles an hour?

(6) Interpret equations (6) and (7) geometrically.

(7) A body being projected vertically upwards with an initial velocity
7, (@) how long and (&) to what height will it rise? (¢) When and
() with what velocity does it reach the starting-point?

(8) A bullet is shot vertically upwards with an initial velocity of
1600 ft. per second. (@) How high will it ascend? (&) What is its
velocity at the height of 32,000 ft.? (¢) When will it reach the ground
again? (&) With what velocity? (¢) At what time is it 32,000 ft.
above the ground? () Explain the meaning of the” double signs
wherever they occur in the answers.

(9) With what velocity must a ball be thrown vertically upwards to
reach a height of roo ft.?

(10) A body is dropped- from a point 4 at a height 48=/% above
the ground; at the same time another body is thrown vertically

.
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upward from the point B, with an initial velocity z,. (¢) When and
(5) where will they collide? (¢) If they are to meet at the height 1 7,

}what must be the initial velocity ?

{

115. The general problem of rectilinear motion requires the
integration of the differential equation
d% .
where 7 is a function of s, 4 and 7, in connection with the
equation
ds
— =7, 2
7 (2
As these two equations involve four quantities ¢ s, 7, 7, a
third relation between them, say

1 S 5 v,7)=0, ' ©)

lis always necessary in order to express three of these four
| quantities in terms of the fourth. Next to the case of uni-
formly accelerated motion where the relation (9) is simply
J=const., the most important cases are those when ; is given
as a function of s, or of v, or of both s and .

116. Whenever in nature we observe a motion not to remain
uniform, we try to account for the change in the character of
the motion by imagining a special cause for such change. In
rectilinear motion, the only change that can occur in the
motion is a change in the velocity, 7.e. an acceleration (or retar-
dation). The cause producing acceleration or retardation we
call force (attraction, repulsion, pressure, tension, friction, resist-
lance of a medium, elasticity, cohesion, etc.), and assume it to
Ibe proportional to the acceleration. A fuller discussion of the
nature of force and its relation to mass will be found in Chapter
II1., § II. The present remark is only intended to make more
intelligible the physical meaning and applications of the prob-
lems to be discussed in the following articles.
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117. Acceleration inversely proportional to the square of the dis-
tance, 7z.e. 7= p/s® where p is a constant (viz. the acceleration at
the distance s=1) and s is the distance of the moving point
from a fixed point in the line of motion.

The differential equation (5) becomes in this case

a’s_p .,
aA s | (10}

the first integration is readily performed by multiplying both
members by ds/d¢ so as to make the left-hand member the
complete derivative of 1 (ds/d?)? or 3% Thus we find

%ﬁ=pf§+6=—§_‘+ & (11)

where the constant of integration, C, must be determined from
the so-called initial conditions of the problem. For instance,
if v=v, when s=s, wehave 1v2=—pu/s,+ C; hence, eliminat-
ing C between this relation and (11),

I I
L2 —p )= — ul-—=) 12
b mod=— 3 —1) (12)

To perform the second integration, we solve this equation for
v and substitute ds/d¢ for v:

d. I
B Lo+ 2n/s)s— 24,

or putting v2+2u/so=2p/p',

g ;
%‘_‘ %’/ﬁ,}f_s/‘_ (13)

Here the variables s and # can be separated, and we find

t=\/;L:f\/;—:—F" ds+C'. (14):




{the sphere is the same as if the mass of
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To integrate, put s=2% The result will be different accord-
ing to the signs of u, ¢/, and v, which must be determined from
the nature of the particular problem.

118. It is an empirical fact that the acceleration of bodies
falling in vacuo on the earth’s surface is constant only for
distances from the surface that are very small in comparison,
iwith the radius of the earth. For larger distances the acceler-
lation is found inversely proportional to the square of the dis-
tance from the earth’s centre.

By a bold generalization Newton assumed this law to hold
generally between any two particles of matter; and this as-
sumption has been verified by all subsequent observations. It
can therefore be regarded as a general law of nature that any
iparticle of matter produces in every other such particle, each
particle being regarded as concentrated at a point, an accelera-
tion inversely proportional to the square of the distance between
Ithese points. This is known as Newton's law of universal grav-
| ttation, the acceleration being regarded as ‘
caused by a force of attraction inherent in
each particle of matter.

It is shown in the theory of attraction
that the attraction of a spherical mass,
such as the earth, on any particle ousside

Po..

the sphere were concentrated at its centre. P,
- The acceleration produced by the earth on

any particle outside it is therefore inversely R
proportional to the square of the distance
of the particle from the centre of the earth.

119. Let us now apply the general equa-
tions of Art. 117 to the particular case of Fig. 30.
a body falling from a great height towards the centre of the
earth, the resistance of the air being neglected.

Let O be the centre of the earth (Fig. 30), 2; a point on its
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surface, P, the initial position of the moving point at the time .
t=0, P its position at the time ¢; let 0P, =R, OP =s, OP=s;
and let g be the acceleration at /2, ; the acceleration at 2.
Then, according to Newton’s law, j:g=R?:s%. This relation
determines the value of u in (10), which becomes

d%s R?
= (13)

the minus sign indicating that the acceleration tends to dimin- |

ish the distances counted from O as origin. ‘
The integration can now be performed as in Art. 117. Mul—[

tiplying by ds/d¢ and integrating, we find {®=gR%/s+ C.|

If the initial velocity be zero, we have v=o0 for s=s,; hence
=—gR?%/s, and

—Rx/z_zr\/——— R \/_é’\/o g (16)
0

Here again the minus sign is selected after extracting the ‘

square root, since the velocity v is directed in the sense opposite
to that of the distance s.

Substituting ds/dt for v, separating the variables v and s, and
integrating, we find

o SeleglWh W)

= R N2gv% Vs —s d

=l i % '\/W—_—_)_i_x Cos‘lﬁ}- (17)'
RN2g 0 0 5o

120. Exercises.

(1) Find the velocity with which the body arrives at the surface of
the earth if it be dropped from a height equal to the earth’s radius, and
determine the time of falling through this height.

(2) Interpret equatlon (17) geometrically.

(3) Show that formula (16) reduces to v = \/ gh (Art 113) when
s= PR and s, — s = % is small in comparison with &.
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(4) A particle is projected vertically upwards from the earth’s surface
Iwith an initial velocity z,, How far will it rise?

* (3) If, in (4), the initial velocity be 7,= VgR, how high and how
long will the particle rise? How long will it take the particle to rise
and-fall back to the earth’s surface ?

(6) A body is projected vertically upwards. Find the least initial
velocity that would prevent it from returning to the earth, taking
¢ = 32, & = 4000 miles.

121. Acceleration directly proportional to the distance, z.c. j=«s,
iwhere « is a constant and s is the distance of the moving point
ifrom a fixed point in the line of motion.

The equation of motion

) | (18)

Jcan be integrated by the method used in Art. 117. The result
of the second integration will again be different according to
ithe sign of x. We shall here study only a special case, reserv-
ling the general discussion of this law of acceleration for later
(see Arts. 177 sq.).

122. It is shown in the theory of attraction that the attrac-
tion of a spherical mass such as the earth on any point wiz/zzn
the mass produces an acceleration directed to the centre of the
\Isphere and proportional to the distance
Afrom this centre. - Thus, if we imagine
la particle moving along a diameter of
jthe earth, say in a straight narrow tube
passing through the centre, we should
have a case of the motion represented
by equation (18).

To determine the value of « for our
problem we notice that at the earth’s
surface, that is, at the distance OP,=R 5
from the centre O (Fig. 31), the accel- Fig. 31.

eration must be =g. If, therefore, 7 denote the numerical value

-







i
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123. The motion represented by equations (21) and (22)
belongs to the important class of simeple harmonic motions (see
Arts. 177 sq.). The particle reaches the centre when s=o0, z.e.
when pt=m/2, or at the time ¢z=w/2u. At this time the
velocity has its maximum value. After passing through the
centre the point moves on to the other end, 2, of the diameter,
reaches this point when s= — R, 7z.¢. when uf=m, or at the time
t=m/u. As the velocity then vanishes, the moving point
begins the same motion in the opposite sense.

The time of performing one complete oscillation (back and
forth) is called the period of the simple harmonic motion ; it is.
evidently

124. Exercises.

(1) Equation (19) is a differential equation whose general integral
is known to be of the form

s = C sinp# + C, cosp?;

determine the constants €, C, and deduce equations (21) and (22).

(2) Find the velocity at the centre and the period, taking g= 32

| and R = 4000 miles.

(3) If the acceleration, instead of being directed toward the centre,.
is directed away from it, the equation of motion would be a*s/d#'= pis.
Investigate this motion, which can be imagined as produced by a force
of repulsion emanating from the centre.

125. Retardation Due to a Resisting Medium. We know from
observation that the velocity of a body moving in a liquid or gas
is continually diminished. The resistance of such a medium
may be regarded as a force producing a retardation, or negative
acceleration. The same may be said of the effect of friction.
The law according to which such resistances retard the motion
must of course be determined by experiment.



64 KINEMATICS. [126.

Careful experiments on the resistance offered by the air to
the motion of projectiles have shown that this resistance in-
creases with the quantity of air displaced; that is, with the
density of the air, the cross-section of the projectile, and the
velocity. The retardation due to the resistance of the air can
therefore be expressed in the form -

J = xpf (@),

where p is the density of the air, while « is a coefficient depend-
ing upon the shape, mass, and physical condition of the surface
of the projectile. Its value may be regarded as inversely pro-
portional to the mass and directly proportional to the cross-
section of the body at right angles to the direction of motion.

The velocity function f(v) may be taken =c2? for velocities
not exceeding 250 metres per second ; for greater velocities, up -
to about 420 metres per second, it is proportional to a higher
power of », or must be represented by a more complicated fi
expression, such as a7+ bv+¢; for velocities above 420 metres,j
it seems to be again of the form ¢/72* i

126. Assuming the resistance of the air to be proportional toi
the square of the velocity, the motion of a body falling througha
air of uniform density is determined by the equation ;

To simplify the resulting formule, it will be convenient to

2
put x='§—, so that the equation of motion is

d%s  g2—u2? “
v (23)
e £
Writing 2 for @, the variables v and # can be separated :
dt dr )
84T - .
= -

* For further particulars the reader is referred to special works on ballistics.
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integrating, we find

o log€ LK B

2p T g—pm

the constant of integration being o if the initial velocity be o.
Solving for v, we have

gt e

T

(24)

(25)

As the numerator, apart from a constant factor, is the deriva-
tive of the denominator, the second integration can at once be
performed, giving

s-_—-/‘% log (e* +e )+ C.
For #=0, we have s=0; hence c>=s€£2 log2+C. Hence
W
s=§2 log L(e™ + &), (26)

To find s in terms of v, we may eliminate &¢ between the
differential equations ds=vd¢ and dv:é(gz— woddt. The

resulting equation

v
ds=gmd'v

is readily integrated ; as v=0 when s=0, we find:

2
S= % log _4L2 (27)
2p? T gA-ptt

127. Exercises.

(1) Show that as # increases, the motion considered in Art. 126
:approaches more and more a state of uniform motion without ever
reaching it.

(2) Show that when p, and hence «, becomes o, the equations of
Art. 126 reduce to those for bodies falling in vacuo.

(3) Investigate the motion of a particle thrown vertically upwards in
the air with a given initial velocity, the resistance of the air being pro-

portional to the square of the velocity.
PART I—5
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(4) Find the whole time of ascent in (3) and the height to which
the particle rises.

(5) Show that owing to the resistance of the air a particle thrown
vertically upwards returns to the starting point with a velocity less than
the initial velocity of projection.

(6) A particle begins moving with an initial velocity ¢, in a medium
of constant density whose resistance is proportional to the velocity.
Express s and v in terms of # and # in terms of s.

(7) A body falls from rest in a medium whose resistance is propor-
tional to the velocity. Investigate its motion.

4. ROTATION ; ANGULAR VELOCITY ; ANGULAR ACCELERATION.

128. A motion of rotation about a fixed axis can be treated
in precisely the same way in which we have treated rectilinear
motion in the preceding sections. It is only to be remembered
that rotations are measured by angles (see Arts. 11-15), while
translations are measured by lengths.

129. The rotation of a rigid body (see Art. 8) about a fixed
axis is said to be uniform if the circular arcs described by the
same point in equal times are equal throughout the whole
motion ; in other words, if the angle of rotation is proportional
to the time in which it is described. In this case of uniform
rotation, the quotient obtained by dividing the angle of rotation,
6, by the corresponding time, ¢ is called the angular velocity.
Denoting it by @ we have w=6/¢; and the equation of motion is

0=wt. (1)

Thus, expressing the time in seconds and the angle in radians
(Art. 15), the angular velocity is equal to the number of radians
described per second. (Compare Arts. 88—9o.)

130. If the time of a whole revolution be denoted by 7, we
have, from (1), 27=w7"; hence

o= 'Z?r" R
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In engineering practice it is customary to take a whole revo-
lution as angular unit and to express the angular velocity of
uniform motion by the number of revolutions made in the unit
of time. Let #», /V be the numbers of revolutions per second
and per minute, respectively ; then we have evidently

p=2 Ny=39%

2T m™

(3)

131. When the rotation is #of uniform, the quotient obtained
by dividing the angle of rotation by the time in which it is
described, gives the mean, or average, angular velocity for that
time.

The rate of change of the angle of rotation with the time at
any particular moment is called the angular velocity at that
moment. By reasoning in a similar way, as in Art. gg, it w111
be seen that its mathematical expression is

. _df
= @
132. The rate at which the angular velocity changes with the

time is called the angular acceleration; denoting it by «, we have

_do _ a0

Tdt dr? )

133. The most important special case of variable angular
velocity is that of uniformly accelerated (or retarded) rotation
when the angular acceleration is constant. The formule for
this case have precisely the same form as those given in Arts.
107-111 for uniformly accelerated rectilinear motion. Denoting
the constant linear acceleration by /, we have, when the initial
velocity is o,

FOR TRANSLATION: FOR ROTATION :
v=/t, w=uat,
. s=1n, 6=}, ©)

FP=js; Fol=al;
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and when the initial velocities are 7, and o, respectively :

FOR TRANSLATION : FOR ROTATION :
v=0y+7?, © = wy+ «l,
s=vy ¢+ 78, 0=wy?+%at?, %)
22— Lol=/s; Yot —Lwl=0af.

134. Let a point P, whose perpendicular distance from the
axis of rotation is OP =7, rotate about the axis with the angular
velocity co=a’€/a’t. In the element of time, 47 it will describe
an element of arc ds=rdf0=rwdt. Its velocity v=ds/d¢ (fre-
quently called its linear velocity in contradistinction to the
angular velocity) is therefore related to the angular velocity of
rotation by the equation

V=07 g (8)

135. The radius vector OP =7 sweeps over a circular sector
which in uniform rotation has an area S=1602=1w#? while in
variable rotation the infinitesimal sector described during the
element of time 4t is d.S=1}2d0=2% wr2dL.

The quotients

§ g
t_%rat_%a,,,z’ )
for uniform rotation, and
as 1 49
; 2 rz—t = % wrz, (IO)

for variable rotation, represent, therefore, the secforial, or areal,
velocity, i.e. the rate of increase of area with the time.
The rate of change of this velocity with the time,

ERY d a6\ -
=i~ - (1)

is called the sectorial, or areal, acceleration.

PO e —

Ml aaane o il L e i
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136. Exercises.

(1) If a fly-wheel of 1z ft. diameter makes 30 revolutions per
minute, what is its angular velocity, and what is the linear velocity of a
point on its rim?

(2) A pulley 5 ft. in diapeter is driven by a belt travelling 500 ft.
a minute. Neglecting the slipping of the belt, find (&) the angular
- velocity of the pulley in radians, and (&) its number of revolutions per
minute.

(3) Find the constant acceleration (such as the retardation caused by
a Prony brake) that would bring the fly-wheel in Ex. (1) to rest in §
minute, '

(4) How many revolutions does the fly-wheel in Ex. (3) make
during its retarded motion before it comes to rest?

(5) A wheel is running at a uniform speed of 3z turns a second
when a resistance begins to retard its motion uniformly at the rate of 8
radians per second. () How many turns will it make before stopping?
(%) In what time is it brought to rest?

(6) Abelt runs over two pulleys turning about parallel axes. Show
that the angular velocities of the pulleys are inversely proportional to
" their diameters. Do the pulleys rotate in the same or opposite sense ?
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I11. Plane Kinematics.

I. VELOCITY ; COMPOSITION OF VELOCITIES ; RELATIVE
VELOCITY.

137. The motion of a point in a curved path would not be
completely characterized by its velocity and acceleration as
defined in the preceding section; the varying direction of the
motion, and the rate of change of direction, must be taken into
account. It is convenient to incorporate these ideas in the
definitions of velocity and acceleration. By this generalization
of their original meaning, velocity and acceleration become
vectors, 1.e. magnitudes having both length and direction.

138. The generalized idea of velocity as a vector may be
derived as follows :

Consider a point 2 moving in a curve (Fig. 32). Let 2 be
its position at the time ¢, 2’
its position at the time 7+ A/,
and let P P=s, PP'=Ax
The space s described in any
time # may be regarded as
some function of the time 2,
say s=£{?).

The mean velocity As/Af
Fig. 32. for the time Az during which

the point passes from 2 to
P’ may be represented by a length PS laid off on the chord
PP from P. As At diminishes, P’ approaches P, and in the
Jimit when As/A¢ becomes the derived function ds/dz=£"(z),
the chord merges into the tangent at 2. This leads us to rep-
resent the velocity at the time ¢, or at the place 2, by a length
PT proportional to ds/d¢ laid off on the tangent at 2 from this
point in the sense of the motion. The vector P 7 will then
completely represent the velocity at the time 2
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139. The vector P7 may also be regarded as the limit of a vector
S laid off on the chord 27" as before, but proportional to the velocity
with which the point would describe the ckord PP in the time Az, 7.e.

to the velocity PS=%E-

S approaches the direction of the tangent, and the ratio of the arc
As to the chord PZ approaches the limit 1. Hence the equation

%j = éT{c:;Wv . PS gives in the limit lim %; = lim 25, or P7'= lim PS.

It may be noticed here that, in view of the practical applications, the
function f(#) = s is in mechanics always supposed to be itself continuous
and to possess continuous and finite derivatives of the first and second
order.

For as Af approaches the limit o,

140. Velocity having thus been defined as a vector, we may
at once apply to it the rules for vector composition and vector
resolution laid down in Arts. 45-55 for vectors representing dis-
placements. Thus if a point be subjected to two or more
simultaneous velocities, the velocity of the resulting motion will
be represented by the vector found by geometrically adding the
component velocities. A velocity may be resolved into any
number of component velocities whose geometrical sum is equal
to the given velocity.

141. We proceed to consider the most important cases of
resolution of a velocity in a
Plane. v

Let a point 2 move in a
curve P P (Fig. 33) whose Y
equation is referred to rec-

tangular Cartesian co-ordi-
nates x, y. It is usually con-
venient in this case to
resolve the velocity z par- g 7
allel to the axes into v, Fig. 33.
and v,

If « be the angle made by the vector v with the axis of z, we
have v,=vcose, v,=vsine. And as the element Js of the
curve at P makes the same angle « with the axis of #, we also

o X
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have dr=ds cose, dy=ds sin . Divid‘ by 4¢ and comparing
with the preceding equations, we find
et
AR & ®
Conversely, knowing the velocities of the moving point paral-
lel to the axes, we find its resulting velocity from the relation

e I

142. If the equation of the path be given in polar co-ordinates,
it may be convenient to resolve the velocity v along the radius
vector OP and at right angles to it (Fig. 34). '

Fig. 34.

Let 7, 6 be the polar co-ordinates, « the angle between v and 7;
then v,=vcos ¢, vy=v sin«. The element &s of the curve has in
the same directions the components dr=dls cos &, 7df=ds sin c.
Hence, dividing by &% we find

da; d6 :
i (3)

2 (ﬁ)z- (@)

and v = Voitog= (2’1')2 i
. dt

dt

143. In the case of relative motion we have to distinguish
between the abdsolute velocity v of a point, its relative velocity vy,
and the velocity of the body of reference v,

t
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To fix the ideas, imagine a man walking on deck of a steam-
boat. His velocity of walking is his relative velocity 74; the
velocity of the boat (say with respect to the water or shore
regarded as fixed), or more exactly speaking, the velocity of that
point of the boat at which the man happens to be at the time,
is the velocity v, of the body of reference ; and the velocity with
which the man is moving with respect to the water or shore, is
his absolute velocity.

Representing these three velocities by means of their vectors,
we evidently find the absolute velocity v as the geometric sum of
the relative velocity vy and the velocity v, of the body of veference,
just as in the case of displacements of translation (Art. 53).
And conversely, the relative velocity is found by geometrically
subtracting from the absolute velocity the velocity of the body of
refervence.

It is often convenient to state the last proposition in a some-
what different form. Imagine that we give the velocity —w, -
both to the man and to the boat; then the boat is brought to
rest, and the resulting velocity of the man is what was before
his relative velocity. Hence the relative velocity is found as the
resultant of .the absolute velocity, and the velocity of the body of
veference reversed.

144. Exercises.
(1) A straight line in a plane turns with constant angular velocity
_about one of its points O, while a point A, starting from O, moves along
the line with a constant velocity z,. Determine the absolute path of
£ and its absolute velocity 2.

(2) Show how to construct the tangent and normal to the spiral of
Archimedes 7 = af, where 6 = oZ.

(3) A wheel of radius @ rolls on a straight track with constant velocity
(of its centre) 7,. Find the velocity z of a point 2 on the rim.

(4) Show that the tangent to the cycloid described by 2, Ex. (3),
passes through the highest point of the wheel.

(5) Show that the tangent to the ellipse bisects the angle between
the radii vectores 7, # drawn from any point 2 on the ellipse to the
foci S, S'.. :
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(6) Construct the tangent to any conic section when a directrix and
the corresponding focus are given.

(7) Two trains of equal length pass each other with equal velocity
on parallel tracks. A man riding on a bicycle along the track at the
rate of 8 miles an hour notices that the train meeting him takes 4
seconds to pass him, while the other takes 6 seconds. Find the
velocity of the trains.

(8) A swimmer, starting from a point 4 on one bank of a river,
wishes to reach a certain point B on the opposite bank. The velocity
-7, of the current and the angle § made by 45 with the direction of the
<current being given, determine the least relative velocity #z; of the
swimmer in magnitude and direction.

(9) Two men, 4 and B, walking at the rate of 3 and 4 miles an hour,
respectively, cross each other at a rectangular street corner. Find the
relative velocity of 4 with respect to B in magnitude and direction.

(10) A man jumps from a car at an angle of 60° with a velocity of
8 feet a second (relatively to the car). If the car be running 1o miles
an hour, with what velocity and in what direction does the man strike
the ground?

(11) The point A moves with constant velocity z; along the line
P,Q. In what direction ZQ must a point 7, move with constant
velocity 7, in order to meet A? What is the locus of Q when the
direction of 2, Q varies? When is the solution impossible ?

(12) A point 2 moves uniformly in a circle, while another point Q
moves with equal velocity along a tangent to the circle. Find the
relative path of either point with respect to the other.

'(13) The velocity of light being taken as 300,000 kilometres per sec-
-ond, and the velocity of the earth in its orbit as 30 kilometres, determine
-approximately the constant of the annual aberration of the fixed stars.

2. APPLICATIONS. D

145. The motion of the piston of a steam engine furnishes
interesting illustrations of the application of graphical methods
in kinematics.

In Fig. 35, let OQ=a be the crank arm, PQ=/=ma the
connecting rod, P,P,=s the “stroke,” so that /=ma=2%ms.

"t 5

"
¥

1
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As P P,=A,A,=2a, we may regard 4,4, as representing the
stroke. The position of the piston head 2 at thé time when the
crank pin is at Q will then be found as the intersection V of a
circle of radius / described about 2 with the diameter 4,4,

Fig. 35.

of the crank circle ; in other words, /V represents the position of_
the piston corresponding to the angle 4,QQ=4 in the forward
stroke and to the angle 4,0Q'=2m—8 in the Teturn stroke.

146. The crank may generally be assumed to turn uniformly,
making 7 revolutions per second. The linear velocity of the
crank pin Q'is therefore #=2ma - n=1mns.

For the piston head 2, or for the point &V, we must distin-
guish between its mean, or average, velocity V, and its variable

instantaneous velocity v at any particular moment. For each
 revolution of the crank the piston head completes a double stroke
' so that its mean speed is /’=2#s. Hence we have

u__THS _mT
V 2ns 2

147. The instantaneous velocity v of the piston can be found
graphically by considering the motion of the connecting rod
PQ. The velocity « of the end Q is known, both in magnitude
and direction ; the velocity v of the other end is known in direc-
tion only. Now considering that the length of the rod £Q is
invariable and hence the components of # and v along ~Q must
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be equal, we can find the magnitude of » by drawing (Fig. 36)
from any point A/ parallels to # and , laying off « to scale and
drawing through its extremity a perpendicular to the direction of |
PQ; this perpendicular will cut off the proper length on the

direction of w.

\~\\

)

(u)

Fig. 36.

In applying this construction to our case it will be convenient
to turn the auxiliary diagram of velocities by an angle of go°
and place it so as to make M coincide with O ; « will then lig
along OQ, and v at right angles to OF. Hence, if the scale of
velocities be selected so as to have # represented in length by
0Q, v will be represented on the same scale by OR, that is, by
the segment cut off by 2Q produced on the perpendicular to
OP drawn through O.

148. The variation of the piston velocity in the course of the
motion can best be exhibited graphically. Thus a polar curve
of piston wvelocity is obtained by laying off on OQ a leno'th‘
OR'=OR, for a number of positions of OQ, and joining the'
points R’ by a continuous curve. '§

Another convenient method consists in erecting perpendicu-‘
lars to OP at the various positions of 2 and laying off, on these
perpendiculars, OR!"'=0OR=w.

‘149. To derive an analytical expression for the piston velocity
v, let ¢ be the angle OPQ wh1ch determines the position of the
connecting rod.

It follows from the construction of the velocity v given 1n
Art. 147 (see Fig. 36) that .3

kS

»
13

:
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v_OR_sin(6+¢) .
u_OQ—_——cos¢ =sin 4 cos ftan ¢.

If, as is usually the case, the connecting rod is much longer
than the crank arm, ¢ will be a small angle, and we may substi-
tute sin ¢ for tan¢$. But from the triangle OPQ we have

sin ¢_O_Q
sin 8~ PQ

a_ 1
! m

Hence v=z¢(sin 0+cos€-lsin 0>=u<sin 0+—I— sin 2 0)‘-
m 2m

é 150. The motion of the piston head being rectilinear, we find
}its acceleration 7 by differentiating the expression for v found
in the preceding article with respect to #:

{ ._@

3 Ty du I do
7 dt=<51n0+%sm29);,—t +u<cos€+—ﬂ;cos 26>E,

: a0
, or,.smce E=w=u/a,

72
=9

: . i au I
j=(sm 04 E{Sln 20)E+<cosﬁ+7—”— coszB) =

a . : ; )
where ;,—;:0 if the crank motion can be regarded as uniform.

151. If the connecting rod were of infinite length so as to
make PQ (in Fig. 35) parallel to 4,4, the position of the
| piston corresponding to the position Q of the crank pin would
1 be represented by the projection 47 of Q on 4,4, ; that is, NV
| would be =o0. This length VA7 is therefore called the devia-

tion due to the obliquity of the connecting rod.
| With VM=o the expression for the acceleration (Art. 150)
!‘ would reduce to dv/dt=(22/a) cos@, representing a simple har-

| monic motion (see Art. 179).

152. The slide valve of a steam engine is generally worked

I by an eccentric whose radius is set on the shaft at such an

e -
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angle as to shut off the steam when the crank makes a certain '
angle 6 with the direction of motion of the piston. It fol-

lows that the fraction of stroke completed before cut-off takes
place is affected by the obliquity of the connecting rod. The
rates of cut-off are therefore different in the forward and back-
ward strokes. In the forward stroke, the effect of the obliquity
is to put the piston in advance of the position it would have
if the connecting rod were of infinite length; in the return
stroke, z.e. when @ is greater than 7, the piston lags behind.

153. An analytical expression for the deviation due to obliquity
is readily obtained from Fig. 35. We have 1

MN=PN—PM=I[(1—cosdq)
=mssin? ¢ = ”ig<2 sin é)z;
2 4 2

or approximately, since ¢ is small,

MN=""sin24,
4

Also, as in Art. 149, S%n (z—i : !
hence MN=—_sin24. i
4m |

The greatest value of 47V is thus seen to be 3/4712; for instance,
if the connecting rod be four times the length of the crank, the
deviation due to obliquity cannot exceed 1/16 of the stroke.

154. Exercises.*

(1) Construct a polar diagram exhibi';ing the position of the piston
for all angles 6 by laying off on the crank arm OQ a length ON'= ON
and joining the points /V' by a continuous curve.

(2) Construct the curves of piston velocity indicated in Art. 148.

* These problems are taken with slxght modification from COTTERILL'S Applzed
mechanics, 1884, p. 112.
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|

(3) Show that for a connecting rod of infinite length the two loops
of the curve of Ex. 1 reduce to two equal circles.

(4) The driving wheels of a locomotive are 6 ft. in diameter ; find
the number of revolutions per minute and the angular velocity, when
i running at 50 miles per hour. If the stroke be 2 ft., find the speed of °
| the piston.

| (5) The pitch of a screw is 24 ft., and the number of revolutions 70
per minute. Find the speed in knots. If the stroke is 4 ft., find the
IIspeed of piston in feet per minute.

| (6) The stroke of a piston is 4 ft., and the connecting rod is g ft.
i long Find the position of the crank, when the piston has completed

i the first quarter of the forward and backward strokes respectively. Also
F find the position of the piston when the crank is upright.

il (7) The valve gear is so arranged in the last question as to cut off
lithe steam when the crank is 45° from the dead-points both in the for-
ward and backward strokes. Find the point at which steam will be cut
off in the two strokes. Also when the obliquity’ of the connecting rod
s neglected.

‘ 3. ACCELERATION IN CURVILINEAR MOTION.

| 155. Let the velocity of a moving point be represented by
\'the vector v=/21T7 at the time ¢,
fland by the vector v/=P'7" at
iithe time 7+ Az (Fig. 37). Then,
drawing from any point O OV
land OV respectively equal and
parallel to P7 and P'7’, the
vector 'V’ represents the geo-
metrical difference between o'
and v; in other words, '} is
the velocity which, geometrically
‘lladded to v, produces 7/. The
!avector VV' approaches the limit
o at the same time with Az and
“WPP!. This limit of V" for an infinitely small time 47 may be
| ‘called the geometrical differential or vector differential, of v.

Fig. 37.
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Dividing this infinitesimal vector by &7, we obtain in general a
lim V'V’
dat

, the geometrical derivative of the|

finite magnitude

velocity with respect to the time, and that is what we call the
acceleration at the time ¢ or at the point 2. We represent it
geometrically by a vector ; drawn from 2 parallel to the direc-
tion of lim ).

It will be noticed that the sense of the acceleration will be|
towards that side of the tangent of the curve on which the
centre of curvature is situated.

156. Suppose a point P to move along a curve P P,P; ...
with variable velocity v (Fig. 38). From any fixed origin O|
draw a vector OV, =w,, equal and parallel to the velocity v, of |

) p

- Fig. 38.

P, and repeat this construction for every position of the mov-
ing point . The ends V7, V,, V,, ... of all these radii vectores
drawn from O will form a continuous curve V;V,V;... which i§
called the hodograph of the motion of 2. J
- If we imagine a point V" describing this curve V1,75 ... at
the same time that £ describes the curve PP, P; ..., it is evidentl

f

that the velocity of 7 i.e. l—l-mj‘,—ljl—Vi, laid off on the tangent of

the curve 7V, V..., represents the acceleration of the point 2

WO aoge
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both in magnitude and direction ; i.e. the velocity of the hodo-
graph is the accelevation of the original motion.

It is easy to see how these considerations might be extended.
We might construct the hodograph of the hodograph; its
velocity might be called the acceleration of the second order for
the motion of 2 ; and so on.

It is sometimes convenient to draw the radii vectores of the
hodograph not parallel to the velocities of the point 2, but so as
to make some constant angle (usually a right angle) with these
velocities.

157. Exercises.

(1) Discuss rectilinear motion as a special case of plane motion.

(2) Show that the hodograph of rectilinear motion is a straight line.

(3) Show that the velocity of a moving point is increasing, constant,
or diminishing, according to the value of the angle y between z and ;
(Fig. 37)- ) '

158. Acceleration having been defined as a vector, the rules
for vector composition and resolution may be applied to accelera-
tion just as they were before applied to displacements and to
velocities. Thus, a point subjected to two or more simultaneous
accelerations will have a resulting acceleration found by geo-
metrically adding the component accelerations; and conversely,
the acceleration of a point may be resolved in various ways.

159.- Let the vector ;7 which represents the acceleration of
the point 2 at the time # make an angle 4~ with the vector
representing the velocity v at the same time (see Fig. 37).
Resolving the vector 7 along the tangent and normal at 2, we
obtain the tangential acceleration j,=7cos+r and the normal
acceleration 7, =7 sin .

To find expressions for these components, let us regard P/’
in Fig. 37 as the element Js of the path described by #; then
the length of P'7", or of OV', is v'=v+dv, and the angle
VOV', being equal to the angle between two consecutive

PART 7—6
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tangents of the curve, is the angle of contingence du at 2.
This angle being equal to the angle between the normals at 7
and P!, we have pda=ds, where p is the radius of curvature
at P.

Resolving the elementary acceleration, z.e. the infinitesimal
vector 'V’ along OV and at right angles to OV, we find the
components V'V’ cos y=dv, VV' sin y=vde=vds/p. Dividing
by d¢ and observing that ds/dz=v, we finally obtain

dv

e ; (1)
. do do\2 12
AR —P<dt> % i )
By composition we have
3 - : dv\? ot
= 2 =J —_— —_— b |
J=NjE g ( dt) +* 7 (3)

160. When rectangular Cartesian co-ordinates are used, we
may resolve the acceleration ; into two components 7,=7 cos ¢,

J,=7 sin ¢ parallel to the co-ordinate axes Oz, Oy; ¢ being the .

angle made by the vector 7 with the axis of x. We obtain an
expression for 7, by projecting the infinitesimal triangle OV’
(Fig. 37) on the axis Ox and denoting, as before, the projections
of the velocities OV, OV’ by v,, ¥/,. This gives

VV! cos p=7',—v,=dv,

A,

whence, dividing by &7, j,=dv,/d¢. Similarly, we find 7,=dv,/dt.

Hence; by formule (1), Art 141,

._d‘l),_dz:r v_%=d2)/ (4)

ST @ I T an

These so-called equations of motion offer the advantage that

the curvilinear motion is replaced by two rectilinear motions,
thus avoiding the use of vectors.
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By composition, we have of course

bl O 2\ 2N\ 2
o R \K%) +<‘§t§>- (s)
161. For polar co-ordinates 7, §, we may resolve the accelera-
tion 7 into a component j, along the radius vector » and
a component 7, at right
angles to ». Expressions Jy
for these components are Y R o
readily found by projecting } Y
the components pras

\

on r and at right angles to
r (Fig. 39):
S

: dYy . 2 v d%y
],—ﬁcose+;,ﬁsm0, s sm9+—dﬁ cos 6.

Fig. 39.

v

Differentiating the relations x=#cos 8, y=rsin6, we find

d_dr oo pengdl B_dr .
dt—dtcosf) rsmﬁdt, dt—dtsm9+rcosedi,

and differentiating again :

d_Td B0V cos o[ 22 2.4 2 ing
dr? _l:dt2 r(dt z]cose [zdt dz‘+rdt2:| i

dz)’_l:dg”_,,(d_ey:] sin 0+[2‘ﬁ’ f@+ 751—2—6] cosé.

dtr | der \at dt dt ' de?
; ; :
Substituting these expressions for i_t;f and Z—g in the above

equations for 7,, 74, we find :

(Y, o 0 1 (ad)
S r(Z)’Jo_zdtdt_*_rdtz it e
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162. The meaning of these expressions will perhaps be better
understood by the following geometrical derivation. As shown
in Art. 142, the velocity v has the components

0=, gy=r%

Tt
the former along the radius vector, the latter at right angles
to it. - During the element of time 47 while the moving point

passes from P to P’ (Fig. 40), each of the vectors v, v,

Fig. 40.

receives a geometrical increment V, V', V,V"',. Let us resolve
each of these infinitesimal vectors along » and at right angles
to 7, and then combine the two components along #, and also
the two components perpendicular to »; finally, dividing by 47,
we obtain 7, and 7.

2
Thus v, gives % along », and g g? at righ'; angles to 7

: 40 ! do\2
hile ,, s 4 N i
while o, or 7 contributes r( t) along » and

2,4\ _dr do 4%

AN T e

at right angles to ». We obtain in this way the same expres-
sions for 7, 7, as in the formule (6) above.

ol A i

TR T LTy
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163. Exercises.

(1) Show that the sectorial velocity (Art. 135) is constant whenever
Jo="0-

(2) Show that the normal component of the acceleration is the
product of the radius of curvature into the square of the angular

velocity about the centre of curvature.

(3) Show that the velocity is the mean proportional between the
acceleration and half the chord intercepted by the direction of the
acceleration on the osculating circle.

(4) If the acceleration of a point 2 be always directed to a fixed
point 4, show that the radius vector 42 describes equal areas in equal
times.

(5) Show that in uniform circular motion the acceleration is directed
to the centre and proportional to the radius.

(6) A wheel rolls on a straight track; find the acceleration of its
lowest point.

'

4. APPLICATIONS.

164. Inclined Plane. Imagine a body sliding down a smooth
plane inclined at an angle 6 to the horizon. In addition to the
assumptions made in the case of falling bodies (see Art. 112)
we assume that the motion takes place along a “line of greatest
slope,” 7.e. in a vertical plane at right angles to the intersection
of the inclined plane with a horizontal plane. A ‘smooth”
plane means one that offers no fric-
tional resistance. The body is there-
fore subject only to the acceleration
of gravity, g; and it is sufficient to
consider the motion of a single point

\
of the bo'dy. \\ g
Resolving g into two components, \

gcosf perpendicular to the plane

and g'sin@ along ‘the plane (Fig. 41), Fig. 41.

it will be seen that the former component, being at right angles
to the velocity, cannot change the magnitude of this velocity.
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We have therefore simply a rectilinear motion with the constant
acceleration gsind, so that all the formule of Art. 1o7-113
will here apply if for the acceleration j (or g) we substitute
gsiné.

Thus, if the initial velocity be o, the motion is determined
by the equations

v=gsinf-¢, A (1)
s=3}gsing-r% (2)
2 12=gsing-s. (3)

165. If there be an initial velocity v, parallel to the line of
greatest slope of the inclined plane, the equations are

v=0,+gsind -y, (1)
s=vy¢+}gsind -4 (2"
$ (@ —v%)=gsinf-s, @3

where v, is to be regarded as positive if its direction is down
the plane and negative when up the plane. -

If the initial velocity 7, be inclined to the plane at an
angle B, it can be resolved into the components ,cos 8 and
7, sin B, the former alone being effective so that v,cos 8 must
be substituted for v, in the above formulz.

166. Exercises.

(1) A railroad train is running up a grade of 1 in 250 at the rate of
15 miles an hour when the coupling of the last car breaks. Neglecting
friction, (@) how far will the car be after two minutes from the point
where the break occurred? (&) When will it begin moving down the
grade? (¢) How far behind the train will it be at that moment?
(4) If the grade extend 2000 ft. below the point where the break
occurred, with what velocity will it arrive at the foot of the grade?

(2) Show that the final velocity is independent of the inclination of
the plane; in other words, in sliding down a smooth inclined plane a
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body acquires the same velocity as in falling vertically through the
“height ” of the plane.

(3) Show that it takes a body twice as long to slide down a plane
of 30° inclination as it would take it to fall through the height of the
plane.

(4) At what angle 6 should the rafters of a roof of given span 24 be
incliaed to make the water run off in the shortest time?

(5) Prove that the times of descending from rest down the chords
issuing from the highest (or lowest) point of a vertical circle are equal.

(6) If any number of- points starting at the same time from the same
point slide down different inclined planes, they will at any time # all be
situated on a sphere passing through the starting point and having a
diameter = gt2 .

(7) Show how to construot geometncally the line of quickest descent
from a given point: (@) to a given straight line, (&) to a given circle,
situated in the same vertical® plane

(8) Analytically, the hne_- 'qulckest or slowest descent from a given
point to a curve in the safé vertical plane is found by taking the
equation of the curve in polar co-ordinates, »=f(6), with the given
point as origin and the axis horizontal. The time of descending the
radius vector 7 is ¥=+V'27/(gsinf). Show that this becomes a maxi-
mum or minimum when tan § = £(6) /f'(#), according as f(0)+ f "(6)

is negative or posmve

(9) Show that the line of quickest descent to a parabola from its
focus, the axis of the parabola being horizontal, is inclined at an angle
of 60° to the horizon.

.. 167. Projectiles. With the same assumptions as in Art. 112,
the motion of a projectile reduces to that of a point subject to
the constant acceleration of gravity and starting with an initial
velocity v, inclined to the horizon at an angle e different from
90°. The angle e between the horizon and the initial velocity is
called the elevation of the projectile.
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Taking the horizontal line through the starting point O as |
axis of x, the vertical upwards as positive axis of y (Fig. 42), the

,-_;,._- : _ﬁ\
£ 4 14

Fig. 42.

z-component of the acceleration is evidently o, while the y-com-
ponent is —g; hence, by (4), Art. 160, the equations of motion
are

d%* d%

A= ga=F “

The first integration gives

dr _ dy _ _
s~ T TE G

As %:v,, %: 7, are the components of the velocity v at
the time 7, the constants are determined from the values of 2, 7,
at the time ¢=o0; viz. 7, cose=(;, 7,sin e=0+C,. We have

therefore

v,5%=1/0 COS ¢, v,E%:vo sin e —gz. (5)
Integrating again, we find
X=7,COoS€ - ¢ y=v,sine-t—} g8, 6)

the constants of integration being o, since for z=0 we have
#=0, J=0.

These values of z, y, v,, v, show that the motion in the hori-
zontal direction is uniform while in the vertical direction it is
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uniformly accelerated. This is otherwise directly evident from
the nature of the problem.

Eliminating # between the expressions for » and y, we find
the equation of the path

=tane . x——=_—— . 42
(A I v,2 cos% @)
which represents a parabola passing through the origin. To
find its vertex and latus rectum, divide by the coefficient of 2
and rearrange :

2 2
LY 29,
22—="0 sinecose-xr = — =L cos?e.y;
&

completing the square in #, the equation can be written in the
form

2 2 2 2
(x — %o sin 26) = — 2% cos?% (_y A sin26>. 7"
2g g &

2

: Yoo .
The co-ordinates of the vertex are therefore u=-2-°— sin 2 ¢,
¥ . 4 298 A
8 — v sin%; the latus rectum 4a = 3 cos?e; the axis is

vertical, and the directrix is a horizontal line at the distance
2
Y
a=-2 cosZ above the vertex.
2g

168. Exercises.
(1) Show that the velocity at any time is 7 =V#,’ — 2gy.

(2) Prove that the velocity of the projectile is equal in magnitude
to the velocity that it would acquire by falling from the directrix: () at
the starting point, (&) at any point of the path (see Art. 113).

(3) Show that a body projected vertically upwards with the initial
velocity 2, would just reach the common directrix of all the parabolas
described by bodies projected at different elevations e with the same
| 1nitial velocity z,.
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(4) The range of a projectile is the distance from the starting poin

to the point where it strikes the ground. Show that on a horizonta
2

; 7l
plane the range is R=za = ; sin 2 e.

(5) The #ime of flight is the whole time from the beginning of the
motion to the instant when the projectile strikes the ground. It is
best found by considering the horizontal motion of the projectile alone,
which is uniform. Show that on a horizontal plane the time of flight is
7=2%gine.

&

(6) Show that the time of flight and the range on a plane through

the starting point inclined at an angle 6 to the horizon are

7 —2% sin(e — 6) and R,= 279 sin(e —f)cos e
¢ cosé g cos*0

(7) What elevation gives the greatest range on a horizontal plane?

(8) Show that on a plane rising at an angle 6 to the horizon, to obtain
the greatest range, the direction of the initial velocity should bisect the
angle between the plane and the vertical.

(9) A stone is dropped from a balloon which, at a height of 1000 ft.,
is carried along by a horizontal air-current at the rate of 15 miles an
hour. (&) Where, (4) when, and (¢) with what velocity will it reach
the ground?

(10) What must be the initial velocity 7, of a projectile if with an
elevation of 30° it is to strike an object 100 ft. above the horizontal

plane of the starting point at a horizontal distance from the latter of
1200 ft.?

(r1) What must be the elevation ¢ to strike an object roo ft. above
the horizontal plane of the starting point and sooo ft. distant, if the
initial velocity be 1200 ft. per second ?

(12) Show that to strike an object situated in the horizontal plane of
the startmg point at a distance x from the latter the elevation must be
€ or 9o°— ¢, where e = 1 sin~(gx/2,2).

(13) The initial velocity 2, being given in magnitude and direction,
show how to construct the path graphically.
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(14) If it be known that the path of a point is a parabola and that
Jthe ‘acceleration is parallel to its axis, show that the acceleration is
lconstant.

(15) Prove that a projectile whose elevation is 60° rises three times
“las high as when its elevation is 30°, the magnitude of the initial velocity
‘Ibeing the same in both cases.

.| (16) Construct the hodograph for parabolic motion, taking the focus
Lzs pole and drawing the radii vectores at right angles to the velocities.

169. A projectile moving in the air or in any other resisting
medium of uniform density is subject, in addition to the con-
tant acceleration g of gravity, to the resistance of the medium
which produces a retardation variable both in magnitude and
direction (Art. 125). Experiment shows that this retardation
can be expressed in the form ¢v", where ¢ is constant for a given
projectile and medium, and # must be determined by experiment
for different initial velocities.

170. For n=1 the integrations can be readily effected.
Resolving the retardation ¢v into its components cv,=cdx/dl,
cv,=cdy/dt, the equations of motion are

d% dr d% dy
i, VI S i (. S 8
at ar ar Ca ¢ ®)

Integrating, we find

dx
dt

v,= = =7,c08€- %, v —é——;[—g+(wosme+g)f°‘] ©)

Ydt
since for /=0 we have v,=v,cose, v,=7,sine.
The second integration gives

x=7_}cgcos e(r —e‘ct) I= ~£ +€7/o_51;1§i§’(1 —e%), (10)
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since x=0, y=o0 for #=0. Eliminating ¢ we find the equation
of the path of the projectile:

cv,sine V,COS €—CX
e e Ol SN +gx+‘%10 U015 2 wNEoa (I I)
CU,COS € c U, COS €

V,COS €

The curve has a vertical asymptote xr= ; for this value

ofal 7 =),

171. Uniform Circular Motion. Let a point 2 (Fig. 43) describe
a circle of radius @ with constant angular velocity w. Its linear

R L

Fig. 43.

velocity v=wa is of constant magnitude, but varies in direction.
By the formulee (1), (2) of Art. 159, the tangential acceleration
J,=0, while the normal acceleration j,=12/a=w? represent
the total acceleration. Hence, in uniform circular motion, th

acceleration is

1 :
j=%= 2a, ~ (12)

and is always directed toward the centre O of the circle.

This appears also by constructing the hodograph of the
motion, which is evidently a circle of radius v (Fig. 43). A
the acceleration of 2 is represented by the velocity of the poin
P’ of the hodograph (see Art. 156), we have only to determin
this velocity. Let 7 be the so-called period, or periodic time,
z.e. the time in which the point P makes a whole revolution
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0 that 7=2ma/v; then, since P’ describes the circle of radius
7 in the same time 7, we have for the velocity of 7’ the expres-
sion 27w/ 7, or substituting for 7 its value, 22/a, as above.

172.. Simple harmonic motion is a rectilinear motion in which
he distance x of the moving point 2, (Fig. 44) from a fixed
Prigin O in the line of motion is a simple harmonic function of
'he time, z.e. a function of the form

x=acos (w’+¢), or r=asin (wz+e), (13)
Mvhere a, o, € are constants.

If the positions 2 of a point moving uniformly in a circle be
brojected at every instant on any diameter 44’ of the circle, it

s easy to see that the motion \'\
of the projection 2, along the B
liameter is simply harmonic. For ‘ . |P
lenoting the constant angular J i
velocity of 2P by o, -the angle / i B
AOP will be=w? if the time be = 0/ L &
counted from the point 4. Hence “
‘he distance OFP,=x of the point

IP, from the centre O, or the dis-
olacement of 2, at the time 4 is B

xX=acoswl, Fig. 44.

Wwhere @ is the radius of the circle. This radius a=0A4 is
called the amplitude of the simple harmonic motion.

173. While £ moves uniformly in the circle, its projection
P, evidently performs oscillations from A4 through O to 4’ and
ack through O to 4.

The time 7 of completing one whole oscillation forward and
fbackward is called the period of the simple harmonic motion ;
lit is obviously equal to the period of the motion of 2 in the
ircle ; z.e.

; =27 - (14)




2

and differentiating again, we obtain the acceleration
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The period is therefore independent of the amplitude a. It|
follows that two simple harmonic motions resulting from twoj|
uniform circular motions of the same angular velocity on twoj
concentric circles of different radii have the same period ; such/f
motions are called isochronous. )

174. If the time ¢ be counted, not from A4, but from some
other point P, on the circle for which X AOP,=¢, we have
X AOP = wt+¢ and the equation of the simple harmonic
motion is "

x=a cos (w?+e). (15)

The angle wz+e¢is called the phase-angle, while e is the epoch-
angle, of the motion. The names plase and ¢poc/k are sometimes
applied to these angles, although, strictly speaking, the phase is
the zime (usually expressed as a fraction of the period T) of
passing from the position A of maximum displacement to any
position 2, while the epoch is the phase corresponding to the
time z=o0.

175. Differentiating equation (15), we find the velocity

7},5%: L e sin (0F4) 5 (16)

. d%xx o 9
S == —aw 2 cos (wZ+e€) w?x (17)

of simple harmonic motion.

The same values can be derived by projecting the velocity
and acceleration of the uniform circular motion of P on the
diameter 44/, as is readily seen.from Fig. 44.

176. Equation (17) shows that in simple harmonic motion & Z
acceleration is divectly proportional to the distance jfrom Uie
centre. :
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Conversely, it can be shown that if the acceleration be pro-
portional to the distance from a fixed point in the direction of
the initial velocity, and if it be directed Zowards this point, the
motion is simply harmonic. For we then have

2o
7

‘where u is constant. The general integral of this differential
equation is (compare Art. 122)

x=C] sin ut+ C, cos uz.
Differentiating, we find for the velocity
v=_Cp cos ut— Cyp sin .

To determine the constants of integration (), G, let s=s,
and v=1, at the time #=0. Substituting these values, we find
jo=C, and v,=u(] ; hence

x="20sin i+ s, COS ut.
7

Putting v,/u=a cose, sy=asine, which is always allowable,.

ve obtain
x=a (sin uZ cos e+ cos ut sin e)

=a sin (uf+¢).

This represents a simple harmonic motion whose amplitude
i a=Vul+ p2s?/u, and whose epoch-angle is e= tan™"(us,/7).
\s the angular velocity of the corresponding uniform circular
1otion is u, the period is 7=27/p.

177. If the uniform circular motion of P be projected on the
lameter BB', which is at right angles to the diameter 44"
Uig. 44), we have OP,=y=a sin (oz+¢). Writing this in the
juivalent form

Y= —acos (wt+e+ 7;’-),
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it appears that the motion of 7, is simply harmonic of the same
period and amplitude with the motion of 2, but differing by
/2 in phase. ,

178. Simple harmonic motions occur very frequently in
applied mechanics and mathematical physics. A particular
case has been treated in Arts. 121-124. As another example
we may mention the apparent motion of a satellite about its
primary as seen from any point in the plane of the motion, pro-
vided the satellite be regarded as moving uniformly in a circle
relatively to its primary. Thus the moons of Jupiter, as seen
from the earth, have approximately a simple harmonic motion.

179. A mechanism for producing simple harmonic motion:
can readily be constructed as follows. The end A4 (Fig. 45)
of a crank rotating uniformly
about the axis O, carries a pin

A
/ \ = running in the slot 48 of a T
B

®

bar ABD whose axis (produced)
passes through the centre O of
the crank circle. The T bar is
constrained by guides to move
back and forth along the line OD ; its motion is evidently s1mply
harmonic, the uniform circular motion of the crank being trans-
formed into rectilinear motion. Compare Art. 151.

Fig. 45..

180. Exercises.

(1) Show that the maximum acceleration of the simple harmoni€
motion is numerically equal to the acceleration in the correspondin
uniform circular motion.

(2) Find the time of one oscillation from equation (15) witho 1
reference to the circular motion.

(3) Inthe mechanism shown in Fig. 45, if the length of the crank
2 feet and the number of revolutions 15 per minute, find the velocits
and acceleration of the end D of the T bar: (a) when at elongationj
{(4) when at quarter stroke ; (¢) when at the middle of the stroke.
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(4) Show that the period of a simple harmonic oscillation can be
expressed in the form 7= 27/ — x/7, where 7, is the acceleration of
the oscillating point at the time when its distance from the centre, or
its displacement, is x.

(5) 2., P', being the positions of the oscillating point at the times
4, ¢, respectively, and 8 the angle POP, i.e. the difference of phase,
show that # — /= S/w.

(6) Show that v, =— o Va®— %

181. Compound Harmonic Motion. We have seen (Art. 176)
that the motion of a point, whose acceleration is directly propor-
tional to its distance from a fixed centre, and directed towards
this centre, is simply harmonic, provided the centre lies in the
line of the initial velocity. Removing this last restriction, we
have the more general case of compound harmonic motion.

Let O (Fig. 46) be the centre, P the position of the moving
“point at the time 7, OP=s its distance from the centre, v its
velocity, j= —pu®s its accelera-
tion, at that time. Referring y
the motion to two rectangular v
axes Oz, Oy in the plane deter- o
mined by v and O, we can Py T
resolve v and 7 into their com- J
‘ponents along these axes: 6) P,

7,= v COS &, v,= v sine,

- . Fig. 46.
and j,= —p¥v, j,= —u?y, where

« is the angle made by v with the axis Oz, and x, y are the
co-ordinates of P.

The projections P,, P, of P on the axes have therefore each
a simple harmonic motion, and the motion of 7 may be regarded
as the resultant of these component motions.

182. In gereral, the motion of 7 will be curvilinear. We
proceed to examine somewhat more in detail the most important
cases of the composition of two or more simple harmonic motions,

PART 1—7
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beginning with those cases in which the resultant motion is
rectilinear.

As, according to Hooke’s law, the particles of elastic bodies,
after release from strain within the elastic limits, perform small
oscillations for which the acceleration is proportional to the
displacement from a middle position, the motions under discus-
sion find a wide application in the theories of elasticity, sound,
light, and electricity, and form the basis of the general theory
of wave motion in an elastic medium.

183. Two simple harmonic motions in the same line, of equal
amplitude a and equal period T, but differing in phase by 8, com-
pound into a simple harvmonic motion in the same line, of the
same period T, but having the amplitude 2a cos(8/2).

For we have for the component displacements

Xy=a cos w?, xy=a cos (w+9);

and as these are in the same line, they can be added algebrai-
cally giving the resultant displacement

x=x,+x,=a[cos wl+ cos(w/+ )],

or, by the formula cosa+cos 8=2 cos a——’z_@ cos a_—_;f_})
%

5o (or+3)
X=2acos—-cos|{wt+ =}
2 2
184. Two simple harmonic motions in the same line, of equal
period T, but differing both in amplitude and in phase, compound

tnto a single simple harmonic motion in the same line and of the
same period.

For the component displacements
Z1=a, Cos (wf+¢;), Xy=a,Cos (w’+e,)
can again be added algebraically, and the resultant displacement

is
Q-
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x=2x1+X;=a; CoS (wl+€;) +a, cos (wl+¢,)
= (@; COS €; +a, COS €,) COS wl— (a, sin €;+a, sin ¢,) sin 2.

Putting @; cose;+a,cose;=a cose, a,sine +a,sine,=asin ¢
we have
X=@ COS € COS w/—a Sin e sin w?

=a cos (wZ+e),

where a?=(a, cos e;+a, cos €)%+ (2, sin e; +a, sin ,)?
=a>+a,?+2 a;a, cos (e,—€;)

and tan e= (2, sin ¢; +a, sin €,) /(2, cOs €, + a, cOs €,).

185. A geometrical illustration of the preceding proposition
is obtained by considering the uniform circular motions corre-
sponding to the simple harmonic motions (Fig. 47).

Fig. 47.

Drawing the radii OP;=a;, OP,=a, so as to include an angle
equal to the difference of phase e;—e; and completing the
parallelogram OP,PP,, it appears from the figure that the
diagonal OP of this parallelogram represents the resulting
amplitude . For since P, 7 is equal and parallel to OF,, we
have for the projections on Ox the relation OP.+ OP.=0F,
or x1+,'r2=x.

Again, if the angle +OP, be taken equal to the epoch-angle
e, and hence #OP,=¢,, the angle xOP represents the epoch
e of the resulting motion.
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We thus have a simple geometrical construction for the
elements «, € of the resulting motion from the elements a;, ¢
and a,, e, of the component motions. As the period is the
same for the two component motions, the points /2, and 7,
describe their respective circles with equal angular velocity so
that the parallelogram OZF,PP, does not change its form in the
course of the motion.

186. The construction given in the preceding article can be
described briefly by saying that two simple harmonic motions
of equal period in the same line are compounded by geometrically
adding their amplitudes, it being understood that the phase-
angles determine the directions in which the amplitudes are to
be drawn.

It follows at once that not only two, but any number of simple
harmonic motions, of equal period in the same line, can be com-
pounded by geometric addition
of thetr amplitudes into a sin-
gle simple harmonic motion in
the same line and of the same
period.

Conversely, any given sim-
I ple harmonic motion can be
i YF resolved into two or more
components in the same line
and of the same period.

H

u/:\ 187. The kinematical mean-

. e L@J ing of this composition of sim-
ple harmonic motions of equal

period in the same line will

perhaps be best understood

Fig. 48. from the mechanism sketched

in Fig. 48. A cord runs from

the fixed point 4 over the movable pulleys B, D and the fixed
pulleys C, E, and ends in £. Each of the movable pulleys
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receives a vertical simple harmonic motion from the T bars BG
and DA, just as in Fig. 45 (Art.179). If the free end F of the
cord be just kept tight, its vertical displacement will be twice
the sum of the vertical displacements of A and 2, and as these
points have simple harmonic motions, the motion of # will be
twice the resultant simple harmonic motion.

The idea of this mechanism is due to Lord Kelvin.

188. Exercises.

(1) Find the resultant of three simple harmonic motions in the same
line, and all of period 7'= 10 seconds, the amplitudes being s, 3, and
4 cm.,and the phase differences 30° and 60°, respectively, between the
first and second, and the first and third motions.

(2) Apply the geometrical method of Art. 185 to the problem
of Art. 183.

(3) Find the resultant of two simple harmonic motions in the same
line and of equal period when the amplitudes are equal and the phases
differ : (@) by an even multiple of , (4) by an odd multiple of .

(4) Resolve x = 10 cos (wZ+ 45°) into two components in the same
line with a phase difference of 30° one of the components having the
epoch o.

(5) Trace the curves representing the component motions as well as
the resultant motion in Ex. (1), taking the time as abscissa and the
displacement as ordinate.

(6) Show that the resultant of # simple harmonic motions of equal
period 7'in the same line, viz. :

2T 2w Ny 27
X1 = a@; COS (—ff+ el>, KXo = ay cos(7l+ 52), .o X, = a,,cos( Tt+e,,),
is the isochronous simple harmonic motion

xX=a cos(%rt-l- e),
where = (ﬁa,. cos )2 + (Ela‘ sin )2
1

n n
and tan e = 3g; sin ¢;/Sa; cos €.
1 1
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189. The composition of two or more simple harmonic motions
in the same line can readily be effected, even when the compo-
nents differ in period. But the rvesultant motion is not simply
harmonic.

Thus, for two components

;=0 C08 (w0 +€)), Zy=0a,CO8(wy?+¢€y),

putting w246, =w?+ (0, — ) £+ €, = 0y + ¢, + 6, say, where
8= (w,—w,)?+€;,—¢, is the difference of phase at the time #, we
have for the resulting motion

x=2+x,=a, cos (0,2 +€;) +a, COs (w2 +€;+8) ;
and treating this similarly as in Art. 184 we find
x=(a;+a, cos 8) cos (w2 +€;) —a, sind sin (w;7+¢y),
or putting a,+a, cosd=a cose, a, sind=a sing,
x=d‘COS (w2 +€;+¢€),
where a?=a%+a,2+2a,a, cosd and tane=aq, sin8/(a; +a, cos?).

190. These formule can be interpreted geometrically by
Fig. 47, similarly as in Art. 185. But as in the present case
the angle §, and consequently the quantities # and e in the
expression for x, are variable, the parallelogram OP,PP, while
having constant sides has variable angles and changes its form
in the course of the motion.

A mechanism similar to that of Fig. 48 (Art. 187), can be
used to effect mechanically the composition of simple harmonic
motions in the same line whether the periods be equal or not.
This is the principle of the tide-predicting machine devised by
Lord Kelvin.*

* See THOMSON and TAIT, Natural pkilosopky, Vol. L, Part 1., new edition, 1879,
P- 43 5q. and p. 479 sq. and J. D. EVERETT, Vibratory motion and sound, 1882.
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191. To show the connection of the present subject with the
theory of wave motion, imagine a flexible cord 48 of which one
end B is fixed while the other 4 is given a sudden jerk or
transverse motion from A4 to € and back through 4 to D, etc.
(Fig. 49). The displacement given to 4 will, so to speak, run
along the cord, travelling from 4 to B and producing a wave.
The figure exhibits the successive stages of the motion up to
the time when a complete wave has been produced.

cT
A
D+

Fig. 49.

192. The distance A'K (Fig. 49) is called the length of the
wave. Denoting this length by A, and the time in which the
motion spreads from A’ to K by 7 we have for the velocity of
propagation of the wave

A
14 =7 (18)
It is to be noticed that the motion of any particular point of
the cord is supposed to be rectilinear and at right angles to
ARB; this is the case with the simple transverse vibrations
in an elastic medium such as the luminiferous ether regarded
as the vehicle of light waves.
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193. If the motion of 4 be simply harmonic, say y=a sinw?,
the motions of the successive points of the cord will differ from
the motion of 4 only in phase, and the displacements of all
these points at any time ¢ can be represented by

y=a sin(w?—c¢), (19)

where e varies from o to 27 as we pass from 4 to X.

As the time 7 in which the motion spreads from 4 to X is
equal to the period of a vibration of 4 (or of any other point of
the cord), we have e=2m/7, or, by (18), =27 V/r. Andif »
be the distance of the point of the cord under consideration from |
A, we must have x: A=¢:27; that is, e=27x/A. Substituting
these values of w and ¢ in (19), the equation of the wave motion
can be written in the form ’

y=a sinz—;f( Vi—2). (20)

194. This equation can be looked upon from two different
points of view according as we regard ¢ or x as variable.

Let # be constant; ze. let us consider the displacements of
all points of the cord at a given instant. If for x in (20) we
substitute +#\, where » is any positive or negative integer,
the angle (Vz—x) 2mw/\ is changed by 27, so that the value
of y remains unchanged. The displacements of all particles
whose distances from A differ by whole wave lengths are there-
fore the same; in other words, the state of motion at any
instant is represented by a series of equal waves.

Now let x be constant, and ¢ variable. Substituting for ¢ in
(20) the value ¢+n7=¢4#\/V, the angle (V#—x) 27/) is again
changed by 27#, and y remains the same. This shows the
periodicity in the motion of any given particle.

195. If the point 4 (Fig. 49) be subjected simultaneously to
more than one simple harmonic motion, the displacements
resulting from each must be added algebraically, thus forming
a compound wave which can readily be traced by first tracing
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the component waves and then adding their ordinates, or ana-
lytically by forming the equation of the resultant motion as in
Art. 189.

196. Exercise.

(1) Trace the wave produced by the superposition of two simple
harmonic motions in the same line of equal amplitudes, the periods
being as 2:1, (&) when they do not differ in phase, (¢) when their
epochs differ by 7/16 of the period.

197. The idea of wave motion implies that the displacement
y should be a periodic function of x and # such as to fulfil
the following conditions: y must assume the same value (@)
when » is changed into 72, (4) when ¢ is changed into 7+ 7,
(¢) when-both changes are made simultaneously; the constants
A and 7 being connected by the relation A= V7.

The condition (¢) requires y to be of the form y=f(Vz—x);
for V’#—x remains unchanged when x is replaced by x+ V7"
and at the same time ¢ by ¢+ 7.

A particular case of such a function is y=a sinc (Vz—x). As
7 should remain unchanged when # is replaced by #z+ 7, we
must have c=27/V 7T=27/A. Thus the function

y=a sin%’r(Vt—x)

fulfils the three conditions (a), (4), (). Putting as before (Art.
193) 2mx/A= —e, we can write it
y=a sin (3]7—1'!4- e).

198. The importance of this particular solution of our problem lies
in the fact that, according to Fourier's theorem, any single-valued
periodic function of period 7" can be expanded, between definite limits.
of the variable, into a series of the form

F(H)=a,+ a, sin <3]—’§-t+e1>+ a sin<277r-2t+eg)

+a35in(2—]§~3t+e3>+---. (21)
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: mw
sin(z7 — 1)72—
mm

sin —
n

. m . mT
Sin 2 72w COS—— — COS 2 7w SIn——
I n 7n

2 2 . mm
SIN=——;
”n

| We have, therefore, finally
ARG V. L L. WL
nB,,,—zf<n>smm”+2f(”)smm p +

+ 2f<£”—_ﬂll> sin min_”—l)”, (27)

| 203. It remains to pass to the limit when 7= oo and %vanishes.

riting (27) in the form
2 T TN . T 2T\ . 2w
Bm._;-;l[f(;z)SEnmz+f<7>sm m7+---
(n—1)m\ . (r—1)m
+f< 4 sin m g ;

ve obviously have in the limit

B,= E‘I:f(x)sin mx dx, m= I; 25 3y 0ne (28)
ket

ol FACRRON

Fig. 50.

| 204. As an application let us determine the series representing the
iroken line formed by the two sides of an isosceles right-angled triangle
those hypotenuse lies in the axis of x (Fig. 50).
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We assume the length of this hypotenuse = ; then the given func{
tion is f(x) =x from x=o0 to x=m/2, and f(x)=7r—x from x=7/2
to x=m.

On account of the discontinuity at the point x=w/2, the integral
in (28) must be resolved into two, and we have

WBE= = [j‘x sin mx dx —l—J"Ew—x) sinmx a’x:|
z

™ 0

2 I mm I . mmw 17T mm I . mrw
=—| ———-COS— + 5 siIn—+ — —COS — + —;sin—
m2 2 m 2 m2 2 m 2

For even values of m, sin(mm/2)=o0; for odd values, sin(mm/2) is
alternately positive or negative. Hence the series (23) becomes

f(x)=ﬁ[sinx_singx_‘_sinsx_m} (28

x| 1? 3 5°

This expansion certainly holds when x lies between o and =. Ad
every term of the series vanishes for x=o0 as well as for x=m, the
expansion holds even at these limits. Moreover, when x lies between o
and 2, all the terms of the series, with signs reversed, pass through the
same succession of values as between o and =. The series represents
therefore between these limits an equal triangle with its vertex below
the axis of x (Fig. 50). Beyond the point x=2=, the same figurd
repeats itself owing to the periodicity of the sine. 1

It thus appears that the series represents an infinite zigzag line fmﬂ‘
all values of x. |

05. We proceed to the composition of simple harmonic motions
not in the same line. We shall, however, assume that all the
component motions lie in the same plane.

It is evident that the projection of a simple harmonic motion:
on any line is again a simple harmonic motion of the same
period and phase and with an amplitude equal to the projection
of the original amplitude.
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Hence, to compound any number of simple harmonic motions
along lines lying in the same plane, we may project all these
motions on any two rectangular axes Ox, Oy taken in this
plane, and compound, by Art. 184 or 189, the components lying

~in the same axis. It then only remains to compound the

two motions, one along Oz, the other along Oy, into a single
motion.

206. Just as in Arts. 184, 189, we must distinguish two
cases: (a) when the given motions have all the same period,
and (#) when they have not.

In the former case, by Art. 184, the two components

| along Ox and Oy will have equal periods, 7.c. they will be of the

form

r=asinwt, y=0sin(wt+3). (30)

’

The path of the resulting motion is obtained by eliminating #
between these equations. We have

= sinw? cos 8+ cosw?sind

SYEY

)
x 22,
== cos 8+\/I —— siné.
a a

Writing this equation in the form
2
(J—/—-f cos 8) = (1 _;r_2> sin2§,
b a a2

or z—:—% cos8+%:= sin?8, (31)

o X y E. e G031 ¥sin g\¢

we see that it represents an ellipse (since = . —— —— =<———)
& pech a? B 2P ab

is positive) whose centre is at the origin. The resultant motion

is therefore called elliptic harmonic motion.
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207. Although in what precedes we have assumed the axes
at right angles to each other, this is not essential. The same
equation (31) is obtained for oblique axes Oz, Oy, and it is easy
to show (say by transforming (31) to rectangular axes) that-this
equation still represents an ellipse. We have, therefore, the |
general result that any number of simple harmonic motions .of |
the same period and in the same plane, whatever may be their |
dirvections, amplitudes, and phases, compound into a single elliptic
harmonic motion.

208. A few particular cases may be noticed. The equation
(31) will represent a (double) straight line, and hence the elliptic
vibration will degenerate into a simple harmonic vibration,
whenever sin28=0, z.e. when 8=, where » is a positive or
negative integer. In this case cosd is +1 or —1, and (31)
reduces to

QIR
SHAN

=0, if §=2nm,

and to

QIR

+5=0, if §=(zn+1)m.

Thus two rectangular vibrations of the same period compound
into a simple harmonic vibration when they differ in phase by
an integral multiple of 7, that is when one lags behind the
other by half a wave length.

209. Again, the ellipse (31) reduces to a circle only when|
cosd=0, ze. d=(2n+1)w/2, and in addltlon a=2, the co-ordi-
nates being assumed orthogonal.

tude compound into a circular vibration if they differ in phase
by /2, i.c. if one is retarded behind the other by a quarter of
a wave length. v

This circular harmonic motion is evidently nothing but uni-
form motion in a circle; and we have seen in Art. 172 that,|

Thus two rectangular vibrations of equal period and amp]i4i
conversely, uniform circular motion can be resolved into two{
.
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rectangular simple harmonic vibrations of equal period and
amplitude, but differing in phase by /2.

The results of Arts. 205-209 can also be established by
purely geometrical methods of an elementary character.*

210. It remains to consider the case when the given simple
harmonic motions do not all have the same period. It follows
from Art. 189 that in this case, if we again project the given
motions on two rectangular axes Oz, Oy, the resulting motions
along Oz, Oy are in general not simply harmonic.

The elimination of # between the expressions for x and y may
present difficulties. But, of course, the curve can always be
traced by points, graphically.

We shall here consider only the case when the motions along
Ox and Oy are simply harmonic.

211. If two simple harmonic motions along the rvectangular
divections Ox, Oy, viz.:

xX=a; COS (%,Z—rt-}-q), Jy=a, Cos (271—’;1'1‘+e2>,
of different amplitudes, phases, and periods are to be com-
pounded, the resulting motion will be confined within a rec-
tangle whose sides are 2a,, 24,, since these are the maximum
values of 2 and 2.

The path of the moving point will be a c/osed curve only when
| the quotient 77/7, is a commensurable number, say = #/z,
where 7 is prime to #. The x co-ordinate of the curve will
have # maxima, the y co-ordinate », and the whole curve will
be traversed after » vibrations along Oz and 7 along Oy.

The formation of the resulting curve will best be understood
from the following example.

* See, for instance, J. G. MACGREGOR, A7 clementary treatise on kinematics and
dynamics, London, Macmillan, 1887, pp. 115 sq.
PART I—8






213.] PLANE MOTION. 115

In tracing these curves, imagine the simple harmonic motions
replaced by the corresponding uniform circular motions (Fig.
51). With the amplitudes 6, 5 as radii, describe the semi-
circles ADB, AEC, so that BC is the rectangle within which
the curves are confined; the intersection of the diagonals of
this rectangle is the origin O, AB is parallel to the axis of z,
AC to the axis of y. Next divide the circles over AB, AC into
parts corresponding to equal intervals of time. In the present
case, the periods for 45, AC being as 3 to 4, the circle over

C

A

[

¥ S ;’/'" ‘‘‘‘‘‘ | >4/
e :

Fig. 51.

AB must be divided into 3z equal parts, that over AC into
4n. In the figure, » is taken as 4, the circles being divided
| into 12 and 16 equal parts, respectively.

The first point of the full drawn curve corresponds to Z=o0,
that is x=6, y=5; this gives the upper right hand corner of
the rectangle. The next point is the intersection of the vertical
line_thrqugh D and the horizontal line through Z, the arcs
BD=1/12 of the circle over A8, and CE=1/16 of that over
AC being described in the same time, so that the co-ordinates
of the corresponding point are
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x=6cos(2—w-i>=6 cos(2w.L>
SN2 12

= 208 4% IS BREE S
y—5cos<4 16) 5cos<27r 16)

Similarly the next point
2 2
=6 o —], = 2 o—_
" Cos<27r 12) ¥ 5cos< T 16)

is found from the next two points of division on the circles, etc.
To construct the dotted curve, it is only necéssary to begin |
on the circle over A5 with D as first point of division. |

214. Exercises.
(1) With the data of Art. 213 construct the curves for phase differ-
ences of 2/12, 3/12, -+ 11/12 of the smaller period.
(2) Construct the curves (Art. 212)
x =@ cos wf, y=acos(zwt+ )
for 8=o0, n/4, n/2, 374, 7, 57/4, 37/2, T7/4, 2.
(3) Trace the path of a point subjected to two circular vibrations of

the same amplitude, but differing in period, (2) when the sense is the
same; (&) when it is opposite. N

215. The mathematical pendulum is a point compelled to move
in a vertical circle under the |
acceleration of gravity.

Let O be the centre (Fig. 52),
A the lowest, and B the highest
point of the circle. The radius
0OA=/of the circle is called the
length of the pendulum. Any
position P of the moving point |’
is determined by the angle ‘

|

AOP=80 counted from the ver-
tical radius O4 in the positive
(counterclockwise) sense of rotas
tion.

If P, be the initial position of the moving point at the time ‘

———

Fig. 52.

%
&
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t=o0, and X AOP;=0,, then the arc PP =s described in the
time 2 is s=/(6,—0); hence v=ds/dt=—1d0/dt, and dv/dt
= —/d?%0/dr? the negative sign indicating that § diminishes as
s and ¢ increase.

Resolving the acceleration of gravity, g, into its normal and
tangential components g cos 8, gsin §, and considering that the
former is without effect owing to the condition that the point
is constrained to move in a circle, we obtain the equation of
motion in the form dv/dt =g sin 6, or

2

d* .
lﬁ+gsm0=o. (32)

216. The first integration is readily performed by multiplying
the equation by #0/d4¢ which makes the left-hand member an
exact derivative, :

a(l d_9)2_ )
q’t(z(dt A0 )5

hence integrating, we obtain

%l(gg)z—g cos=C,

or considering that v= —/d6/dt,

32 —glcos §=CL

To determine the constant C, the initial velocity v, at the
| time 7=0 must be given. We then have } 9,2—gécos 8,=C/;
hence

2
%‘v“:%vo?—glcos 0y+ g7 cos 0=g<-7212—7- Z cos 0,4+ cos 0). (33)

The right-hand member can readily be interpreted geometri-
‘cally; v%/2¢ is the height by falling through which the point
would acquire the initial velocity v, (see Art. 113); /cosé
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—2cos ,=00—00Q,=0,0, if O, Q, are the projections of 2,
P, on the vertical AB. If we draw a horizontal line MV at
the height #2/2¢ above P  and if this line intersect the vertical
AR in R, we have for the velocity v the expression:

§vi=g-RO. (34)
If the initial velocity be =o, the equation would be

%y2=g. QoQ (35)

At the points A7, NV where the horizontal line A/V inter-
sects the circle the velocity becomes 0. The point can there-
fore never rise above these points.

Now, according to the value of the initial velocity v,, the line
MN may intersect the circle in two real points A7, &V, or touch
it at B, or not meet it at all. In the first case the point 7
performs oscillations, passing from its initial position 2, through
A up to M, then falling back to 4 and rising to &V, etc. In the
third case /~ makes complete revolutions.

217. The second integration of the equation of motion cannot
be effected in finite terms, without introducing elliptic func-
tions. But for the case of most practical importance, viz. for
very small values of 6, it is easy to obtain an approximate solu-
tion. In this case € can' be substituted for sinf, and the
equation becomes :

27 +80—o. (36)

This is a well known differential equation (compare Art. 122,
Eq. (19), and Art. 176), whose general integral is

0=C, cosz\/§+ G, sin t\/§.
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The constants (], C, can be determined from the initial con-
ditions for which we shall now take #=6, and v=0 when ¢=0;
this gives (=60, (,=0; hence

PR N S
6=8, cos? 7 t=\l—é—;cos 16—0- 37)

The last equation gives for §= —6, the time # of one oscilla-
~ tion, or half the period 7,

/
AT W\E- (38)

The time of a small oscillation is thus seen to be indepen-
dent of the arc through which the pendulum swings; in other
words, for all small arcs the times of oscillation of the same
pendulum are the same; such oscillations are therefore called
isochronous.

218. A pendulum whose length is so adjusted as to make it
perform at a certain place just one oscillation in a second is
called a seconds pendulum.

Putting #,=1 in (38) we find for the length / of the seconds
pendulum at a place where the acceleration of gravity is g,

b= %- (39)

As the length of the pendulum can be determined with great
accuracy by measurement, the pendulum can be used to find
the value of ¢

The length of the seconds pendulum is very nearly a metre ;
-it varies for points at sea level from /,=099.103 cm. at the equa-
tor to /;=00.610 at the poles.*

* Further numerical data for / and g will be found in J. D. EVERETT, C. G. S
system of units, 1891, pp. 21-22.
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219. Let » be the number of small oscillations made by a
pendulum of length / in the time 7. Then, by (38),

%=W\/§' (40)

If 7 and one of the three quantities #, /, g in this equation be
regarded as constant, the small variations of the two others can
be found approximately by differentiation. For instance, if the
daily number of oscillations of a pendulum of constant length
be observed at two different places, we have, since 7 and / are

constant, -
_T dn= — mV1dg ,
n? 2 gt
or, dividing by (40),
dn  1dg
riatra (41)

220. Ezxercises.

(r) Find the number of oscillations made in a second and in a day
by a pendulum 1 metre long, at a place where g=981.0.

(2) Find the length of the seconds pendulum at a place where
g=32.12.

(3) To determine the value of g at a given place, the length of a
pendulum was adjusted until it would make 86 400 oscillations in 24
hours. TIts length was then found to be 3.3031 feet. What was the
value of g ?

(4) A chandelier suspended from the ceiling of a theatre is seen to
vibrate 24 times a minute. Find its distance from the ceiling.

(5) A pendulum adjusted so as to beat seconds at the equator
{§=978.1) is carried to another latitude and is there found to make
100 oscillations more per day ; find the value of g at this place.

(6) Investigate whether the approximate process of Formula (41) is
sufficiently accurate for the solution of Ex. (5). :

(7) If the length of a pendulum be increased by a small amount &7,
show that the daily number of oscillations, 7, will be decreased so that
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(8) A clock is gaining 3 minutes a day. How much should the
pendulum bob be screwed up or down?

(9) A clock regulated at a place where g=32.19 is carried to a
place where g=32.14. How much will it gain or lose per day if the
length of its pendulum be not changed?

(10) The acceleration of gravity being inversely proportional to the
square of the distance from the earth’s centre, show that the seconds
pendulum will lose about 22 seconds per day if taken to a height one
mile above sea level.

(11) A seconds pendulum loses 12 seconds per day, if taken to the
top of a mountain. What is the height of the mountain?

(12) Show that for small oscillations the motion of a pendulum
is nearly simply harmonic, and deduce from this fact the equation

=N

221. When the oscillations of a pendulum are not so small
that the arc can be substituted for its sine as was done in Art.
217, an expression for the time # of one oscillation can be
obtained as follows.

We have by (33), Art. 216,
32— t= g/(cos@—cosb,). "~ (33)
Let the time be counted from the instant when the moving

point has its highest position (/V in Fig. 52), so that z,=o0.
Substituting v= —/df/d¢ and applying the formula

cosf=1—2sin?} 4

d0\2 3l : 0)
s 25 270 22
21( ,’t) _2g<sm 5 s’ b

7 0
e e e W P
2 \/ a (42)

- we find :

whence -






/
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If /7 be the height of the initial point V' (=4,) above the
lowest point 4 of the circle, we have by (44)

o) 1—cosB, H
K2=sin20=" 707"
2 2 25

so that (46) can be written in the form

L]

222. Exercises.

3 225
(1) Show that 4= ( IOZ4+ 147456

+ .- > if the ampli-
tude 246, of the oscillation is 120°.

(2) Show that as a second approximation to the time of a small
oscillation we have 4==V7/g(146:2/16).

(3) Find the time of oscillation of a pendulum whose length is 1
metre at a place where g=980.8, to four decimal places.

(4) A pendulum hanging at rest is given an initial velocity . Find
to what height #4, it will rise.

(5) Discuss the pendulum problem in the particular case when MV
(Fig. 52) touches the circle at B, that is when the initial velocity is due
to falling from the highest point of the circle.

223. Central Motion. The motion of a point 2 is called
central if the following two conditions are fulfilled: (1) the
direction of the acceleration must pass constantly through a
fixed point O; (2) the magnitude of the acceleration must be a
function of the distance OP =7 only, say

51
EvA BrAlt” J=A(). (48)

The fixed point O is in this case usually regarded as the seat
of an attractive or repulsive force producing the acceleration,
and is therefore called the centre of force.

Harmonic motion as discussed in Arts. 172-214 is a special
case of central motion, viz. the case in which the acceleration ; is

T ”
AMANWARN G ol 1 (1Y T R B “JW\*\

I

LA
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directly proportional to the distance from the fixed centre O, i.e.
S(N=wpr.

Another very important particular case is that of planetary
motion in which f(r)=p/7?; this will be discussed below,
Arts. 236, 239.

We proceed to establish the fundamental properties of central
motion.

224. The motion is fully determined if in addition to the
ferm of the function f(») we know the “initial conditions,” say
the initial distance OP,=7, (Fig. 53) and the initial velocity 7,
of the point at the time z=o0. As 7, must be given both in
magnitude and direction, the angle ¥, between »; and 7, must
be known.

225. It is evident, geometrically, that the motion is confined
to the plane determined by O and 7, since the acceleration

Fig. 53.

always lies in this plane. This fact #kat the motion is plane
depends solely on the former of the two conditions of our
problem (Art. 223); that is, any motion in which the acceleration
passes constantly through a fixed point is plane.

226. With O as origin, let 2, y be the rectangular Cartesian
co-ordinates of the moving point 2, and 7, € its polar co-ordinates,
at any time £ Then cos @=x/7, sin §=y/r are the direction
cosines of OP =7, and, therefore, those of the acceleration J
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provided the sense of 7 be away from the centre, 7.¢. provided

the force causing the acceleration be repulsive. 1In the case of

attraction, the direction cosines of ; are of course —x/7, —y/r.
Thus the eguations of motion are in the case of attraction,

Ju= d7=—f() y Jy= Zﬁ‘_f( L (49)

For repulsion, it would only be necessary to change the sign of

S().

227. To perform a first integration, multiply the equations
(49) by », x and subtract when the left-hand member will be
found an exact derivative, while the right-hand member van-
ishes. Hence, integrating and denoting the constant of integra-
tion by /%, we find

Ty
7R dt_lz’ (50)

or, introducing polar co-ordinates,

W ia (51)

These equations show that #e sectorial velocity is constant,
and =1/ for our problem (see Art. 135 and Art. 163, Ex. (4)).

228. Let S be the sector P,0P described by the radius vector
7 in the time # sothat S=37%¢0. Then (51)can be written in

the form

as 1

Ny Y 2

at ‘ (52)
whence integrating

S=1it; (53)

this expfesses the fact that zie sector is proportional to the time
" in whick it is described which is of course only another way of
stating the proposition of Art. 227.
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The proof of the converse, viz. that if in a plane motion
the areas swept out by the radius vector drawn from a fixed
point be proportional to the time, the acceleration must con-
stantly pass through that fixed point, is left to the student.

229. It is well known that Kepler had found by a careful .
examination of the observations available to him that #ke orbits
described by the planets ave plane curves, and the sector described
by the radius vector drawn from the sun to any planet is propor-
tional to the time in which it is described. This constitutes
Kepler's first law of planetary motion.

He concluded from it that the acceleration must constantly
pass through the sun.

230. To express the value of the constant of integration /% in
terms of the given initial conditions (Art. 224), Z.e. by means
of 7, vy, Yr,, We notice that, at any time ¢,

;l=,,zgg=,, %f g_rsin R (54)

hence for the time /=0, we find

h=vyr, sinr, , (5508

Denoting the perpendiculars let fall from O on 7, and v by
2o b We have 7 sinyry=p,, »sinyr=p; hence also

h=pyvy=pv, (56) |

Le. the velocity at any time is inversely proportional to its distance |
Srom the centre. , .

231. The equations of motions (49), if multiplied by dx/ds,
dy/dt and added, give an equation in which both members are ‘
exact derivatives. On the left we find |

alsa) 5 (@) ]-aas
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on the right

The equation

d(§o?)=—f(n)dr (57)
can therefore be integrated and we obtain
%v2_%v02=—ﬁrf(7)dﬁ (58)

232. The two methods of integrating the differential equa-
tions of motion used in Art. 227 and in Art. 231 are known,
respectively, as the principle of areas and the principle of
energy (or vis viva). The former name explains itself. The
latter is due to the fact (to be more fully explained in kinetics)-
that if equation (58) be multiplied by the mass of the moving
point, the left-hand member will represent the increase of the
{ kinetic energy of the point during the motion.

Each of these methods of preparing the equations of motion
for integration consists merely in combining the equations so
as to obtain an exact derivative in the left-hand member of the
resulting equation. If by this combination the right-hand
member happens to vanish or to become likewise an exact
derivative, an integration can at once be performed. This is
the case in our problem. '

233. The two equations (51) and (58) can be used to find
the equation of the path. We have for axy curvilinear motion

(by (4), Art. 142)
R v

eliminating ## by means of (51) this becomes

@G @
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where #=1/r. Substituting for v its expression in terms of
7 or u, from (58), we have the differential equation of the path
which is directly integrable.

Shorter methods will often suggest themselves in particular
cases.

234, To solve the -converse problem, viz. to find the law of
acceleration when the equation of the path is given, we have
only to substitute in (57) the expression of 2 from (59). We
find, with #=1/7, l

Fym —dAA)__dAE) d_ ad o)
dar du  dr du

=/%2 (% + u). (60)
235. Kepler in his second law had established the empirical
fact that e orbits of the plancts are ellipses, with the sun at
.one of the foci.
From this, Newton concluded that the law of acceleration
must be that of the inverse square of the distance from the sun.
Equation (60) allows us to draw this conclusion. The polar
-equation of an ellipse referred to focus and major axis is

/
" T+ecosd
where /=#82/a=a(1—¢%); a, & being the semi-axes, / the semi-
latus rectum, and ¢ the eccentricity of the ellipse. Hence

1 I, ¢ “d?u e
—_——=y=—t= y = s
” 7 l_lcos() p7 7 osd
-and (60) becomes
2,2 2
1 T 2 | (61)

! a(1—22) »2 J

236. The third law of Kepler, found by him likewise as an
-empirical fact, asserts that #he squares of the periodic times of
different planets are as the cubes of the major axes of their orbits.
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From this fact Newton drew the conclusion that in the law
of acceleration,

J=r=5 (62)

the constant w has the same value for all the planets.

Our formule show this as follows. Let 7" be the periodic
time of any planet, ze. the time of describing an ellipse whose
semi-axes are a, 4. Then, since the sector described in the
time 7 is the area waé of the whole ellipse, we have by (53)

mab=1/T.

Substituting in (61) the value of % found from this equation
| we have

47:-242b2 1_gmad 1
sHEE L sl L (63)

Hence

ﬂ=477ri“3 (64)

 is constant by Kepler’s third law.

237. As mentioned in Art. 230, the velocity v can be ex-
{ pressed in terms of the perpendicular p let fall from the centre
10 on the tangent to the path:

ok %2 6
i (65)

| The acceleration ; is also conveniently expressible in terms
1of p. We have by (57) '

B T TOS TR

238. Finally, another expression for the acceleration is some-
times found convenient. In azy motion, the component of the
acceleration along the radius vector is (see Art. 161)

2 ().
dr? dat

PART I—9

v=
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240. To find the equation of the path, or or4:4, we write the
equations (68) in the form

Ao ay_ _p
= a0 = aend,

and eliminate »2 by means of (5 1)'
i = 40 d%_ d6
iy e

These equations can be integrated separately :

dx a
T ——%sm() d_Jt/—% "(cos f—1) (70)

| where v, v, are the components of the initial velocity.

Multiplying by 7, x and subtracting, we find, owing to (50),
("7:—712>x+7}1y-f-/z=%(x cos 6-+ysinf)=E~ai5 (71)

241. The geometrical meaning of this equation is that the
radius vector 7=Vz2+% drawn from the fixed point O to the
moving point 2 is proportional to the distance of 2 from
the fixed straight line

(g—v2>x+vly+/z=o. (72)

It represents, therefore, a conic section having O for a focus
and the line (72) for the corresponding directrix.

The character of the conic depends on the absolute value of
the ratio of the radius vector to the distance from the directrix ;
according as this ratio

AR

the conic will be an ellipse, a parabola, or a hyperbola. The
criterion can be simplified. Multiplying by w/% and squaring,
we have
2 po ; <
e v LSO
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or since v 2 +v,2=v2 and k=7, sinyy=7,7,:

2
v, 2§>7‘#’ (73)
0

242. Introducing polar co-ordinates in (71), the equation of
the orbit assumes the form

SR /’“) 6—Yisin g,
- /z+</z 7 cos /lsm

or putting (kv,—w)//2=Ccos ¢, v /k=Csing,
—F
—-]72+CCOS((9+OC). (74)

This equation might have been obtained directly by integrat-
ing (60), which in our case, with f(»)=pu/r?% reduces to

d*u
@t
the general integral of this differential equation is of the form
(74), € and « being the constants of integration.
Equation (74) represents a conic section referred to the focus
as origin and a line making an angle « with the focal axis as

polar axis.

243. Exercises.

(1) If 2% be the chord intercepted by the osculating circle on the
radius vector drawn from the fixed centre, show that *= 4. £ (7).

(2) A point moves in a circle; if the acceleration be constant in
direction, what is its magnitude?

(3) A point moves in a circle; if the acceleration be constantly f
directed towards the centre, what is its magnitude ? )

(4) A point is subject to a central acceleration proportional to the '
distance from the centre and directed away from the centre ; find the =
equation of the path.

AN 4

(5) A point P is subject to two accelerations, —u? O.P dlrectedl
towards the fixed point O;, and —p?. O0,P directed away from the ﬁxed
point O,. Show that its path is parabolic.
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(6) A point. 2 describes an ellipse owing to a central acceleration
[f(r)=un/7* directed toward the focus .S. Its initial velocity v, makes an
angle ¢, with the initial radius vector »,. Determine the semi-axes «, &
of the ellipse in magnitude and position.

244, The student will find numerous examples for further practice
in the kinematics of a particle in the following works: P. G. Tarr and
W. J. STEELE, A treatise on dynamics of a particle, 6th ed., London,
Macmillan, 1889 ; W. H. BESANT, A #reatise on dynamics, London, Bell,
1885 ; B. WiLLiamsoN and F. A. TARLETON, An elementary treatise on
dynamics, 2d ed., London, Longmans, 1889 ; W. WaLtoN, Colection of
problems in illustration of the principles of theoretical mechanics, 3d ed.,
Cambridge, Deighton, 1876.

§. VELOCITIES IN THE RIGID BODY.

245. A rigid body is' said to have plane motion when all its
points move in parallel planes. Its motion is then fully deter-
mined by the motion of any plane section of the body in its
plane. :

It has been shown in Arts. 18—24 that the continuous motion
iof an invariable plane figure in its plane consists in a series of
infinitesimal rotations about the successive instantaneous cen-
tres, Z.e. about the points of the space centrode.

If at any instant the centre of rotation and the angular veloc-
ity o about it be known, we can find tze velocity of any point of
the plane figure.

To show this let us first take the instantaneous centre as
origin. Then the component velocities v, z, of any point 7
whose co-ordinates are x, ¥, or 7, 8, are found (Art. 141) by dif-
ferentiating the expressions

x=rcosl, y=rsinf

'with respect to # Considering that &8/d¢ is the angular -
velocity @ about the instantaneous centre, we find
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247. The instantaneous centre being the point whose velocity
is zero at the given instant, we find its co-ordinates x,, y, from
the equations

o0 =v,—(g,—y)w, 0=9,+(x—2)w,
= I = g 1. B
whence  xy,=x ! Yo=Y 4 3 (4)

By eliminating ¢ between these equations, the equation of the
space centrode can be found.

The co-ordinates &), n,of the instantaneous centre referred to
the moving axes are found in a similar way from the equations (2):

§0=£(7/, sin §—1, cos 0), ny= ;I)(v, cos +v,sinf),  (5)

from which the body centrode can be found by eliminating 2

248. In Arts. 245 and 246 expressions were found for the
component velocities v, v, parallel to the fixed axes-Oz, Oy.
To find the component velocities
v, v, parallel to the moving axes \y
OE, On, let x, y be the co-ordi-
nates of any point P with respect

to the fixed axes (Fig. 55), & 7 I £
those with respect to the moving %
axes, and let 6 be the angle xOE. S £
The velocity of P parallel to the
axes Of, Oy consists of two parts,
that arising from the motion of 2 relative to £0n whose com-
ponents are of course d£/dt, dn/dt, and that due to the rotation
of the moving axes. The components of the latter velocity are,

by (1), Art. 245, —wn, €. Hence

Fig. 55.

a
vg=2 —wn, o=l 4ok ©)
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249. Exercises. 4

(1) Two points 4, 4' of a plane figure move on two fixed circles
described with radii e, @' about O, O'; show that the angular velocities
o, o' of 04, 0'A4" about O, O' are inversely proportional to OM, O'M, |
M being the point of intersection of OO with 44'. |

(2) Given the magnitudes 7, 2’ of the velocities of two points 4, 4' |
of an invariable plane figure and the angle (7, ') formed by their |
directions ; find the instantaneous centre C and the angular velocity |
o about C.

(3) Show that in the ‘“elliptic motion” of a plane figure (Arts.
25—27) the velocity of any point («, 3') is
bdg,

dt

(4) In the same motion find the velocities of B and O' (Fig. 6,
Art. 26) when 4 moves uniformly along the axis of x.

v=[a"+x"+)y*—2a(x'cos2¢ +3'sinz¢)]

250. The continuous motion of a rigid body is called a trans-
lation when the velocities of all its points are equal and parallel
at every moment (Art. ). All points describe therefore equal
and similar curves, and every line of the body remains par-
allel to itself. The velocity v=ds/d¢ of any point is called the
velocity of translation of the body.

251, A rigid body can be imagined to be subjected to several
velocities of translation simultaneously ; the resulting motion is
a translation whose velocity is found by geometrically adding
the component velocities.

Conversely, the velocity of translation of a rigid body can be
resolved into components in given directions.

o

. L e

252. The continuous motion of a rigid body is called rotation
when two points of the body are fixed ; the line joining these
points is the axis of rotation. All points excepting those on the
axis describe arcs of circles whose centres lie on the axis.

The velocity of any point P of the body at the distance
OP=r from the axis is v=wr=rdl/dt, if o=d0/dt is the

Sy S

§

i
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angular velocity of the rigid body. The velocities of the differ-
ent points of the body at any given moment are therefore
directly proportional to their distances from the axis, and the-
velocities of all points at this moment are known if the instan-
taneous angular velocity  is given. It is frequently convenient
to imagine this angular velocity represented by its rot07, i.c. by
a length o laid off in the proper sense on the axis of rotation.
(see Arts. 68, 69).

253. The body may have several simultaneous rotations.
Imagine, for instance, a top spinning about its axis placed on a.
table or disc which is made to rotate about an axis. The result-
ing motion can be found by compounding the rotors in the
same way in which the rotors representing infinitesimal rotary
displacements are compounded (Arts. 62, 66, 67); indeed, the
rotor w=d0/d¢ of an,angular velocity is merely the rotor 46
divided by 4% and therefore identical with the rotor of the
angular displacement 6.

254. As we are at present concerned with plane motion, we
require only the rule for the composition of angular velocities.
about parallel axes.

Dividing the equations (1'"’) and (2"") of Art. 66 by &% and
putting d0/dt=w, db,/dt=w,, d,/dt=w, we obtain:

LiL_ LI, EiE, )

w=0+o
172 o, wy )

Thus, tkhe resultant of two angular velocities wy, w, about
parallel axes 1y, 1y is an angular velocity o equal to their algebraic
sum, o =w,+ w,, about a paralle! axisl that divides the distance
between 1y, 1y tn the inverse ratio of wy and w,.

Con\;ersely, an angular velocity w about an axis / can always
be replaced by two angular velocities ,, , whose sum is equal
to w and whose axes /, /, are parallel to / and so selected that
/ divides the distance between /;, /, inversely as w; is to w,.

A ;\th LiBs g
OF THE 7
\ UNIVER
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255. It may be well to prove this important proposition
independently. Any point P (Fig. 56) in a plane at right

7305 angles to the axes receives from

w; a linear velocity w,7 per-

pendicular to Z,”, and from

1o w, a linear velocity wy7, per-

7 L. pendicular to L,P, if L,P=wr,

SR s L,P=r, These linear veloci-

ties fall into the same straight line only for points situated on

the line L,Z,. A point L whose linear velocity is zero, must

therefore lie on Z,L, so that L,L+LL,=L,L,; moreover, it

must satisfy the condition L,L.w;=LL,-w, This gives the
above equations (7).

256. The resulting axis lies between Z, and Z, when the
components w;, w, have the same sense; when they are of
opposite sense, it lies without, on the side of the greater one
of these components.

If o, and w, are equal and opposite, say w;=w, w,= —o, the
resulting axis lies at infinity (Art. 67). Two such equal and
-opposite angular velocities about parallel axes are said to form
a rotor-couple ; its effect on the rigid body is that of a velocity
of translation v=7L,L,-d0/dt=p-w at right angles to the plane
of the axes. The distance of the rotor, L,L,=p, is called the

-arm of the couple, and the product pw=wv its moment. i

257. A velocity of translation v can therefore always be
replaced by a rotor-couple pw=w, whose axes have the dis-~
‘tance p and lie in a plane at right angles to .

Again, an angular velocity o about an axis / can be replaced il
by an equal angular velocity o about a parallel axis 7/ at thq-"'

distance p from /, in combination with a velocity of translation
v=wp at right angles to the plane determined by /and /'.

It easily follows from these propositions that tie resultant of
any number of veloctties of translation, v, V',..., parallel to the
same plane, and any number of angular velocities w, @',..., about

0l

o

i
gl
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axes perpendicular to this plane ts always a single angular veloc-
ity about an axis perpendicular to the plane or a single velocity
of translation parallel to the plane.

6. APPLICATIONS.

258. Kinematics of Machinery. A large majority of the cases
of motion that are of importance in mechanical engineering can
be reduced to plane motion.

At first glance the application of theoretical kinematics to
machines might seem to lead to rather complicated problems
owing to the fact that a machine is never formed by a single
rigid body, but always consists of an assemblage of several
bodies some of which may even be not rigid (belting, springs,
water, steam). The problem is, however, very much simplified
by a characteristic of all machines, properly so called, that was
first pointed out and-insisted upon by recent writers on applied
kinematics, in particular by Reuleaux.* This characteristic is
the constrainment of the motions of the parts of a machine.

Thus Professor Kennedy defines a machine as “a combination
of resistant bodies whose relative motions are completely con-
strained, and by means of which the natural energies at our
disposal may be transformed into any special form of work.”

With the latter clause of this definition we are not at present
concerned; it will be considered in kinetics. To explain the
former in detail would lead us too far into the domain of applied
mechanics. A brief indication of the fundamental ideas must
be sufficient.

259. By considering machines of various types it appears
that the bodies, or elements, composing a machine always occur

* F. REULEAUX, 7hkeoretische Kinematik, Berlin, 1875; translated into English
~and edited by ALEX. B. W. KENNEDY under the title KZnematics of machinery,
London, Macmillan, 1876. Compare also R. WILLIS, Principles of mechanism,
London, Longmans, 2d ed. 1870 (1st ed. 1841); F. GRASHOF, Theoretische Ma-
schinenlehre, Vol. 11., Leipzig, Voss, 1883; L. BURMESTER, Lekrbuch der Kinematik,
Leipzig, Felix, 1888; ALEX. B. W. KENNEDY, Mechanics. of mackhinery, London,
Macmillan, 1886; J. H. COTTERILL, Applied mechanics, London, Macmillan, 1884.
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in pairs. Thus a single rigid bar will form a lever only when
taken in connection with a support, or fulcrum ; a shaft to be
used in a machine must rest in bearings; a screw must turn in
a nut. To take a more complex illustration, consider the
mechanism formed by the crank and connecting rod of a steam-
engine (Fig. 57). It may be regarded as composed of three
pairs, two so-called turning pairs at O and 4, and a sliding pair
at B ; and these three pairs are connected by three rigid bars,
called links, OA4, AB, OB, the last of which is fixed.

A N

Fig. 57.

260. A sliding pair is formed by two bodies so connected that
one is constrained to have a motion of translation relatively to
the other. A pin moving in a groove or slot, a sleeve sliding
along a shaft, are familiar examples.

A turning pair constrains one body to rotate about a fixed
axis in another, as in the case of a shaft turning in its bearings.

A twisting pair makes one body have a screw motion about
an axis fixed in the other.

These three pairs are the only so-called lower pairs. They
are characterized as such by the fact that their elements have
surface contact, and fhat, if either element be fixed, every point
of the other is constrained to move in a definite line. In other
words, the constraint effected by lower pairing is such as to
leave but one degree of freedom (see Art. 37) to either element"
if the other be fixed.

261. All other pairs are called higher pairs. The contact in
such pairs is usually line contact, and the two bodies have more
than one degree of freedom relatively to each other, usually two
degrees, so that if one element be fixed, any point of the other
is constrained to a surface. :

Higher pairs-are of far less frequent occurrence in ordinary
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machines than lower pairs. The only very common example of
higher pairing is found in toothed wheel gearing.

262. For the purposes of kinematics a machine may be
regarded as consisting of a number of bodies (/722£s) connected
by pairs in such a way that when one of the links is fixed all
other links are constrained in their motion. In most cases
this constraint is such as to leave but one degree of freedom
to every link. ‘

A system of links of this kind forming, so to speak, a skeleton
of the machine is called a kinematic chain (Reuleaux). When
one link of such a chain is fixed, the
chain becomes a mechanism. As a /@
typical example we may take the ©
“slider crank ” in Fig. 57.

If the pairs are all turning pairs
with parallel axes, the chain is called a
linkage (Sylvester). A typical example
is the four bar linkage in Fig. 58. A
linkage with one link fixed has been called a linkwork (Sylves-
ter). The four bar linkwork in Fig. 58 is also called a “lever
crank ” (Kennedy).

0 (s
Fig. 58.

263. The Four Bar Linkage 1234 (Fig. 59). Whatever may be
its motion, each link considered separately moves as an invariable
plane figure and has therefore at any moment an instantaneous
centre C and an angular velocity » about this centre.

The centre Cj, of 12 and the centre C,; of 2 3 must always lie
on a line passing through 2 since the velocity of 2 is perpen-
dicular to both Cj,2 and Cy,2.

Similarly, 3 must lie on the line joining the centres Cy3 and
C;,; and so on.

The quadrilateral 12 34 is- therefore, and always remains,
inscribed in the quadrangle C},C,3C5,Cyy. This can be shown
to hold even for the complete quadrilateral and quadrangle.
The complete quadrilateral, or four-side, I 2 3 4 has six vertices,
viz, the six intersections 1, 2, 3, 4, 5, 6 of its four sides; the
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A corresponding proposition holds of course for four bar
linkages with crossed bars 1243, or 1 324.

264. Lever-crank. The linkage considered in the preceding
article becomes a mechanism, or linkwork, as soon as one of its
four links is fixed. It occurs in machines under a variety of
forms some of which are referred to below.

Let the link 3 4 be fixed; then the centre C,, (Fig. 59) dis-
appears ; C,, falls into 4, C,, into 3, and C}, becomes the inter-
section 50f 41 and 32. If 12 were fixed instead of 34, 34
would have its centre at 5.

Similarly, if either 4 1 or 2 3 be fixed, the centre of the other
is 6.

Fig. 60.

Hence whichever of the four links be fixed, the centres of
all the links lie at some of the six vertices of the complete
quadrilateral 1 2 3 4.

If 34 be the fixed link (Fig. 60), the ratio of the angular

- velocities w; of 41 and w, of 32 can be found. For if o denote

the angular velocity of 12 about 5, we have
41-0;=51-0, 32:-0,=52'0;

wy 41 52 52 il

hence =2r= s, Ak
w;, 52 51 32/ 41
or, by the proposition of Menelaus :

@46
0, 36
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265. Parallelogram: 41=32=a, 43=12=04(Fig. 61). The
link 1 2 has evidently a motion of translation, its instantaneous
centre lying at the intersection of the parallel lines 4 1, 3 2.

The space centrode is the line at infinity ; the body centrode
may be regarded as a circle of infinite radius described about
the midpoint of 3 4 as centre.

Fig. 61.

To find the equation of the path of any point P rigidly con-
nected with 12, let x, y be the rectangular co-ordinates, with
respect to 4 as origin and 4 3 as axis of x, and z;, y, its co-ordi-
nates for parallel axes through 1; then, putting X 341=6, we

have
x=acosf+zx, y=asinf+y,;

hence, eliminating 6,

F =2 P+(—9P=4%

which represents a circle of radius 2 whose centre has the fixed
co-ordinates x;, y;.

For the velocity of P we have dr/di=—aw sin6, dy/dt
=aw cosf; hence v=aw, as is otherwise apparent.

266. If in the parallelogram 1 2 3 4 the point 4 alone be fixed,
we have a linkage called the pantograph. :
It can serve to trace a curve similar to a given curve.
Indeed, any line through 4 (Fig. 62) cuts the opposite links

. S
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{12, 23 (produced if necessary) in points A4, 4’ whose paths
are homothetic (similar and similarly situated) curves. For
| the points 4, 4, A’ remain always in
{ line and the ratio 44/4A’ remains
constant. Hence if a pencil be at-

A?
1 A
tached to A’ and 4 be made to trace 2
a given curve, A’ will trace a similar
curve,
dlz = R 03

Instead of fixing 4, the point A’ Fig. 62.
might be fixed; then 4 and A4 will
describe similar curves. This property is utilised in Watt’s
parallel motion (see Art. 271).

The parallelogram linkage furnishes also a simple instrument
for describing ellipses. Let the sides of the parallelogram be
23=41=a, 12=34=0; and let a point A’ on 2 3 produced,
at the distance 4 from 2, be fixed (Fig. 63). Then, if 1 be made
to describe a straight line, passing through A’, 4 will describe
an ellipse. For, taking A4’ as origin and A4'1 as axis of x, we

Fig. 63.

have for the co-ordinates of 4: xr=(a+28)cos¢p, y=asing,

whence
22 i
(a+206) je 2"

267. In the parallelogram 1 234, let the link 12 be turned
so as to coincide in direction with 4 3, and then give the links

41 and 3 2 rotations of opposite sense. We thus obtain a link-
PART I—I0

&
*
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age with equal, but intersecting, opposite sides, which we may
call anti-parallelogram (Fig. 64). If 34 be fixed, the instanta-
neous centre of 1 2 is the intersection 5 of 41 and 2 3.

5

Fig. 64.

To obtain the centrodes in this case, nétice that as the tri-
angles 152 and § 34 are equal, the triangle 5 4 2 is isosceles;
hence 51=53, and 45—35=41=a The difference of the
radii vectores of § drawn from 4 and 3 being thus constant, it
follows that the space centrode is a hyperbola whose foci are
4, 3, and whose real axis =a. As 43=12=4, the equation of
this hyperbola is

5 3?2

S
(5> 4

for 4 3 as axis of x and the midpoint of 4 3 as origin.

It is easy to see that the space centrode becomes an ellipse
when 6 < a.

As the triangles 15 2 and 3 5 4 are equal the body centrode is
an equal hyperbola or ellipse. The two centrodes lie symmet-
rically with respect to their common tangent at 5.

For a given anti-parallelogram the centrodes are hyperbolas
when one of the larger links is fixed; they are ellipses when
one of the shorter links is fixed. 3

268. If in the anti-parallelogram only one point, say 4, be
fixed, it can be used as an inversor, 7.c. as an instrument for
describing the inverse of a given curve.
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Let »=OPZ be the radius vector drawn from an arbitrary fixed
origin, or pole, O to a given curve; on OP lay off a length
OP'=#=«*/r, where « is a constant; then P’ is said to
describe the znverse of the given curve.

_ The theory of inversors is based on the following geometrical
proposition : if three lines CA=a, CA'=a, CO=4 (Fig. 65)
turn about C so that O, A4, A’

are always in line, the product

0OA - OA' remains constant, viz.
OA.0A"=8—a% For if the

‘circle of radius ¢ described about b
C intersect the line OC in B and 2
B’ we have 0A4-04'=0B-OB'
=(b—a)(b+a) : Fig. 65.

This proposition shows that in the anti-parallelogram 1234
(Fig. 66), with the vettex 4 fixed, the line joining the vertices 4
‘and 2 intersects the circle described about 3 with radius 32 ina
ipoint 2’ such that 2 and 2’ describe inverse curves with respect
ito 4 as pole. For we have 42"-42=432—2 32=/2—42

Fig. 66.

Moreover, any parallel to 42 will intersect the links 41, 4 3,
2.1 in points O, A, A’ dividing the three lines in the same ratio;
‘hence if O be fixed, 4 and A’ will describe inverse curves for
1O as pole. This is the principle on which Hart’s inversor is
'based.
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269. Peaucellier’s cell is another inversor (Fig. 67). It con-
sists of the linked rhombus 4 B A’ B' whose side we denote by
a, and the two equal links OB, OB’ of length 4. If O be fixed,
A and A' evidently describe inverse curves for O as pole.

Fig. 67.

The practical application of inversors is based on the property‘l
that they enable us to transform circular motion into rectilinear
motion (see Art. 271).

The inverse of a circle »=2 ¢ cosf passing through the pole
is a straight line; for we have for the radius vector #' of the
inverse curve # =«2/r=x%/2¢ cos@ ; hence #'cos =«2/2¢ which
is the equation of a straight line at right angles to the polar
axis, at the distance «%/2¢ from the pole.

If therefore the point 4 of an inversor be made to describe
an arc of a circle passing through O, the point 4’ will describe
a segment of a straight line. The vertex 4 (Fig. 67) can be
compelled to describe a circle by inserting the additional link
O'A turning about the fixed point O'. If O’ be selected so as
to make O'0O=0'4, say=g¢, the circle described by 4 will pass
through O; and the motion of A’ will be confined to the
straight line A’D perpendicular to OO, at the distance
OD=(8—a%)/2c from O.

The linkage has thus become a linkwork, OO’ being the fixed
link.




271.] PLANE MOTION. 149

270. To determine the linear velocity v of A’ along DA’
when the angular velocity o of the link OB is given, we notice
that the instantaneous centre C of the link BA’' lies at the
intersection of OB with the line drawn through A’ parallel to
00'. Let o' be the angular velocity of BA' about C. Then
v=w'-CA'; also since the point B describes a circle about O,
wb=w'- CB; hence

V7= - g—é—, 3
CB

If BA' intersect OO' in E, we have from similar triangles
CA':CB=0E:0B; hence

v=0w- OF.

The variable length OF depends on the angles £0B =6 and
BEO=¢ which are connected by the relation (Art. 269)

H2—a?

2c

acos¢ +bcos=0D=

The figure gives OE =4 cos §+ 4 sin 0 cot ¢ ; hence, finally,

v=wb sin §(cot § + cot ).

271. In the steam engine and other machines mechanisms
are required for transforming the alternating rectilinear motion
of the piston into the reciprocating circular motion of a crank,
eccentric, or beam ; a mechanism of this kind is called, rather
inappropriately; a parallel motion. The problem of effecting this
transformation has been solved in various ways. Peaucellier’s
inversor (1864) was the first accurate solution. Generally, an
approximate solution is sufficient for practical purposes. The
most common of such approximations is Watt’s parallel motion.
This mechanism is a combination of a linked parallelogram
with a four bar linkwork with crossed links.
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point of intersection of 4 7 with 56 can be used to connect with
the pump rods of the engine.

7. ACCELERATIONS IN THE RIGID BODY.

272. To find the accelerations of the various points of a
rigid body we must compare the velocities of these points
during two consecutive elements of time; the change of the
velocity divided by &7 gives the acceleration.

In the case of tramslation (Art. 250) the accelerations of all
points of the body are evidently equal so that the acceleration
of any point may be called the acceleration of the body.

273. In the case of rotation about a fixed axis /, any point P
of the body at the distance » from the axis describes during the
element of time &# a space element ds=7d0=wrdt proportional
to this distance 7, where o =d0/d¢ is the angular velocity of the
body about the axis /. The linear velocity of P is v=w». The
space element &s’ described during the next element of time is
an infinitesimal arc of the same circle of radius 7, z.e.

ds' =rd0' =r(w+dw)dt.

Drawing from any point O (Fig. 69) the vectors O V=ds/dZ,
OV'=ds'/dt, and resolving the ele-
mentary acceleration J'}/ parallel to v
the tangent and normal of the path ¥
into 7V'=dv=rdo and VIT=vdf=
rodf=rw?dt, we find the tangential ”+db
and normal components of the accel- Fig. 65
eration of 2 by dividing these ele-
ments by 42 Hence denoting the angular acceleration dw/d?
by «, we have

Ayt jomalts; (1)

The total acceleration of 72

J=Vii+ji=rVa+ ot ()
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is therefore proportional to the distance » of this point from
the axis, so that the accelerations of all points can be found
as soon as that of any one point is known.

274. We proceed next to the investigation of the accelera-
tions of the various points of a rigid body having plane motion.
The motion is determined by that of a plane section of the body
parallel to the plane of motion, and this consists in the rolling |
of the body centrode over the space centrode (Art. 22).

During any element of time 47, every point P of the plane
section rotates with angular velocity o about the instantaneous
centre of rotation C which is the point of contact of the two
centrodes. During the next element of time 47 the angular
velocity is w+dw, and the centre of rotation has changed to the |
infinitely near point C; on the space centrode, which has now
become the point of contact of the two centrodes. The accel-
eration of a point 2 at the distance 7 from C evidently depends.
on this distance 7, the angular velocity w, the angular accelera- |
tion ¢=dw/dt, and the element CCi=do of the space centrode. ‘
This element divided by 47 may be regarded as a velocity, ‘
u=do [dt, viz. the velocity with which the instantaneous centre
changes its position. We may call it the velocity of volling of
the body centrode. The change in the state of motion during
two consecutive elements of time depends on « and .

275. The relation of the velocity of rolling # to the angular
velocity w depends on the relative curvature of the centrodes
¢ c.

To fix the ideas imagine these curves to lie on the same side
of their common tangent ; let de, do' be their angles of contin-
gence, and let p, p' be their radii of curvature (Fig. 70).

The rotation about C' brings the second element of ¢ to co-
incidence with the second element of ¢. The angle 46 of this
rotation is therefore equal to the difference of the angles of
contingence of the two curves, z.e.

df=do' —du.
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This angle is therefore called the angle of relative contingence,
the quotient d6/do=(do'—da)/do, where do=CC,, is called
the relative curvature, and the reciprocal value, do/df, is the
radius of relative curvature.

Now w=d0/dt, u=dos/dt; hence

® do do
or as da/doe=1/p, de' [do=1/p/,
d _ 1 1
2= 3

i.e. the ratio of the angular velocity to the velocity of rolling is
equal to the relative curvature of the centrodes.

Fig. 70.

When p<p’, that is when du>de’, the relative curvature is
negative,. 'When the centrodes lie on opposite sides of the
common tangent we should find in absolute value df0=da'+ de.
But taking into account the sense of the angles du, do’ we still
have df=de' —da. The formula (3) holds, therefore, generally
if the radius of curvature p of ¢ be taken as positive or nega-
tive according as it lies on the same side of the common
tangent with the radius of curvature p’ of ¢/, or on the opposite
side.
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276. To determine the components of the acceleration of any
point P of the body, it will be convenient to imagine the angular
velocities represented by their rotors: the velocity @ about C by
a line of length w erected at C at right angles to the plane of
motion, on that side of this plane from which the rotation
appears counter-clockwise; similarly the angular velocity o+ dw
by a parallel line of length w+dw erected at (..

The rotor w+dw through () can be replaced by a parallel
rotor of the same magnitude and sense through (, in combination
with a rotor-couple whose moment is (w+dw) - CCi=wds (see
Arts. 255, 256). This couple being equivalent to a vector wdo
at right angles to the plane of the couple produces an infinitesi-
mal velocity of translation.

Thus the body, during the first element of time 4% rotates
about the axis through C with angular velocity w; and during
the second element of time &7, it can be regarded as having the
angular velocity w+dw about the same axis, and at the same
time a velocity of translation wdo at right angles to the tangent
at C. The change in the state of motion consists, therefore, in
the angular acceleration dw/d?=ea and in the linear acceleration
wdo [dt=wu, the former being due to the change in the magni-
tude of the acceleration, the latter to the change in the position
of the axis of rotation.

While the acceleration of translation w# is the same for all
points of the figure, the angular acceleration @ produces in

fou  every point P (Fig. 71) a linear

or acceleration proportional to its dis-

P tance »=CP from the centre (,

just as in the case of rotation

about a fixed axis (Art. 273).

Resolving this acceleration into

¢, C its tangential and normal compo-

g7t nents we have for the acceleration

of P the following three components: ar at right angles to /7,
w’ along PC, and wx at right angles to CC}.
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277. Another important method for finding the components
of the acceleration of any point 2 of the body consists in
resolving (according to Art. 254) the rotor w+dw through C;
into two parallel rotors, » through C, and dw through a point A/
(Fig. 72) on the tangent C(; whose distance CH =/ from C is
given by the relations

cc_GH__cH
dw w w+do

Putting again CC,=do, do/dt=1u, dw/dt=e, we find for the
distance CH=/:

h==2, (4)

o

The body can therefore be regarded as having, during the
second element of time 4 the same angular velocity o about
the same axis through C as during the first element of time,
but in addition an angular velocity dw about a parallel axis
through AZ. As the magnitude of the angular velocity about
C does not change, the rotation about C produces at any point
P (Fig. 72) only a normal acceleration w? towards C, but no

Fig. 72.

tangential acceleration. The infinitesimal angular velocity dw
| about A, on the other hand, produces only a tangential acceler-
ation «#/, perpendicular to AP =7

The acceleration of any point 2 can therefore be resolved
into two components, one w? directed towards the centre of
rotation C and proportional to the distance » from this centre,
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the other e’ perpendicular and proportional to the distance #/
of 7 from a point /7 on the tangent at C, such that CH=wu/a.
The point /7 may be called the centre of angular acceleration.

278. The resolution of the acceleration given in the last article
enables us to show the existence, at any time 7, of a point
having at this instant no acceleration. This point is called the
instantaneous centre of acceleration; we shall denote it by the
letter 7, and its distances from C and /, respectively, by 7,
and 7.

For a point of acceleration zero the components 7' and o
must be equal and opposite. Now it is evident that these

H T A| 6,0 A

Fig. 73.

components fall into the same straight line only for points
whose radii vectores #, ' are at right angles. The centre 7
must therefore lie on the circle described over CAH as diameter
(Fig. 73). In addition to this the radii vectores of 7 must fulfil
the condition |
o¥ry=ar,. (5)

The locus of all points for which at any instant the ratio »/7' is
constant and equal to a«/w? is a circle whose centre lies on CH
and whose intersections A4, 4’ with CAH divide this distance
internally and externally in the ratio «/w?

The two circles intersect in two points; but only for one of
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these have the components o? and @7’ opposite sense. There
exists therefore only one centre of acceleration 7, and its radii
vectores satisfy the conditions

ory=ary, rP+#/t=/2= f;—;lf. (6)
279. The appropriateness of the name centre of acceleration
for the point 7 appears in particular when the acceleration of
any point P is referred to this point /. For it can be shown
that, if p be the distance of P from 7, the acceleration of P can
be resolved into two components, one w’p along Pl, the other ap
at right angles to IP (Fig. 74), similarly as in the case of rota-
tion about a fixed axis (see Art. 273).

Fig. 74.

To prove this we resolve the component w? of the acceler-
ation of 2 along P7 and parallel to /C; it appears from the
figure that these components are w?s and w?;, The other
component a7’ of the acceleration of 2 is due to the infini-
tesimal angular velocity dw about AZ. Replacing this do about
H by an equal angular velocity do about /in combination with
the infinitesimal velocity of translation »/dw at right angles to
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HJ, we obtain, in the place of «s/, the components ep at right
angles to /P and a7, perpendicular to 7.

As of the four components w?, ap, w*, ar,’ the last two are,
by (6), equal and opposite, it follows that the acceleration of
P has only the two components, w? along £/, and «p perpen-
dicular to /7P.

280. The total acceleration of any point 7 is therefore
proportional to the distance p of this point from the centre of
acceleration 7/, viz.

J=pVdtot; (7)
and the angle 4 it makes with this distance /7, being given by
the relation

tanyr= %’ (8)

is the same for all points. By (5), this angle ¥» 1s equal to the
angle CHI.

All points o#~a circle described about 7/ as centre have
accelerations of equal magnitude but of different directions.
All points on a straight line drawn through 7 have accelerations
that are parallel but differ in magnitude.

281. Returning to the resolution of the acceleration into
three components w?, a7, oz,

¥y A as given in Art. 276, let us take

(247
bl the common ta.ngent of t}{e
p centrodes as axis of =z, their

normal as axis of y (Fig. 75),

(ALY
- and let x, y be the co-ordinates
/ of any point £ whose distance
A . from Cis CP=v.
C:|C As the direction cosines of
Fig. 75. 0¥, ar, wu are respectively

—x/r, —y[r; —y/r, %[7r; O, 1,
we have for the components of the acceleration ; parallel to
the axes:
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Jo=—w*r—ay,

. , (or
Jy=—0y+axr+ wu.

The co-ordinates x, y, of the centre of acceleration 7 must
fulfil the conditions

0%+ 4y, =0, axry—ow%,+wu=0, (10)

[ w’n
whence Ky=—— Py= — s Ik
< @+ ot & o+ ot ( )

The equations (10) evidently represent the two lines €7 and /.

282. Let f=x—x;, n=y—y, be the co-ordinates of P with
respect to parallel axes through 7; then, combining (10) and
(9), we find

Ja=—0¥—an, j,=—o"n+af. (12):

 These expressions show that the total acceleration 7 of P is

J=V(E+)+ o (B +)=p Ve + o,
since VE2+92=p=/P, as in Art. 280.

283. The tangential and normal components of the accelera--
tion 7 are readily obtained from Fig. 74, as follows:

j,=ar+wu_-§’, j',.=w2r—wz¢-'§. (13)

The loci of the points having only normal, and only tangential,
acceleration at any moment are therefore the circles:

w(224+32)+wur=0, w(x2+y%)—uy=o0. (14)

284. Exercises.

(1) A wheel of radius e rolls on a straight track. Find the centre-
of angular acceleration /A, (@) when the velocity » with which the axis.
of the wheel moves along the track is constant ; (4) when o is uniformly
accelerated as when the wheel rolls down an inclined plane ; (¢) when 7
is uniformly retarded, as in rolling up an inclined plane.
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IV. Solid Kinematics.
I. MOTION OF A POINT IN A TWISTED CURVE.

285. We have so far considered only those cases of motion
“where the path of the point is a plane curve. In the most gen-
eral case when the path is a so-called twisted or tortuous curve
we may refer it to three rectangular axes and resolve the veloc-

ity » as well as the acceleration ; each into three rectangular
components parallel to*these axes:

dx Sy dv, _d%

. = = — . = A= z=h,
v, =vcosa=— J.=J cos i
] a; dv, d?

v,=vcosB=‘—i%/, o ]COSM—ZY—WZ,
2, g tos =2 Gl

y e dt — d?’

AT Lo b= dr\? dy dz\?
v=Vol2+ 92+ 02 \/dt - +, )

2 22N /d2\2
Vi R=\G) +() + ()
J=VIE A+ dr? dr? i dr?

286. As polar co-ordinates of the point P we take the radius
vector OP =7, the colatitude xOP =46, and the longitude
100=¢, Q being the projection of 72 on the plane yOsz
(Fig. 76).

The velocity v can be resolved into three rectangular compo-
nents : v, along 7, v, at right angles to » in the plane x O P of
the angle 6, and v4 at right angles to this plane. To find their
values we take the element PP'=ds of the curve described by
the point P as diagonal of an infinitesimal parallelepiped having

its edges in those three rectangular directions. The three
PART I—I1
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at right angles to this plane, and collecting the terms, we

obtain :
d%r df\2 : dp\?
Fr=—g= r<z> -7 smze(z) ,
. 4% _drdf : dep\?
Jo= a’tz —42 — T 7 sind cose<%> ,

drdd, . oo db

022 ‘f’ 6%
Je=7sin +2 sin . —

288. It is to be noticed that the resolution of the accelera-
tion 7 into a tangential component 7 and a normal component /,,
. dv . PP
Je —Z; n= "p—;
given in Art.. 159, holds for twisted curves as well as for plane
curves, provided the normal be understood to mean the prin-
cipal normal of the curve, and p the radius of absolute curvature
at 2. For it follows from the definition given in Art. 155 that
the acceleration lies in the plane of the tangent and principal
normal at 2, so that the component along the binormal is zero.

289. This can also be seen from the expressions for the com-’
ponents of  in Cartesian co-ordinates, 7,=d%¢/d?? j,=d%/d?%
dr _dx ds

J.=d%/dt2.  For since e 7 etc., we have

SZ IR T ds

._dYy_d’ dy  (ds dy
J”—dﬂ 7 ds+< )

- s i (i
7 I

d*r _d% dr (a’ )2 d%r

- L]
S2

d

Now, dx/ds, dy/ds, dz/ds are the direction cosines of the
tangent of the curve, while p @2¢/ds?, p d% /ds?, p d%/ds® are the:
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direction cosines of the principal normal. The formula show

therefore that the acceleration 7 consists of two components,
2 2 g2

s 4o along the tangent, and I~<£> =% along the normal.

dr* dt p\dt) p

2. VELOCITIES IN THE RIGID BODY,

290. When the motion of a rigid body is a translation, all
points of the body have at any instant equal .and parallel veloc-
ities (Art. 250). The velocity v=ds/d¢ of any one point can
therefore be called the velocity of the body. The body can be
. subjected at a given instant to several velocities of translation,
and the resultant velocity is found by the geometrical addition
of the vectors representing the component velocities.

291. When a rigid body rozates at the time ¢ about an instan-
taneous axis /, all its points (excepting those on the axis)
describe infinitesimal arcs of circles of angle 46, and the
angular velocity w=d/d¢ of any point of the body may be
called the angular velocity of the body. This angular velocity
can be represented geometrically by its rotor o laid off on the
axis / (Arts. 68, 69, 252).

As this rotor is proportional to the infinitesimal angle of
rotation 46, the propositions proved in Arts. 62, 66, 67, 68, for
the composition and resolution of infinitesimal rotations can be
applied directly to angular velocities. The propositions refer- -
ring to parallel axes have been discussed in Arts. 254-257.

292. If in Art. 62 we divide equation (1') by 4¢2 and divide
the denominators of equation (2') by 4% we obtain

=0+ 0,2+ 20,0, cos (), (1) |
sin(40) _sin(/y) _sin(44) (2) |
Wy (3] 2} !

The meaning of these equations can be stated as follows. Let
a rigid body be subjected simultaneously to two angular

R R —
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velocities about intersecting axes, w; about /; and w, about /,
Represent these angular velocities by their rotors w;, w, laid
off on the axes /, /, from their point of intersection O and
construct their geometric sum ; that is, form the diagonal
of the parallelogram whose adjacent sides are w;, w,, Then o
is the rotor of the resulting angular velocity.

This proposition is known as the parallelogram of angular
velocities.

It follows that the resultant of any number of simultaneous
angular velocities whose axes all intersect in the same point is
a single angular velocity whose rotor is found by geometrically
adding the rotors of the components.

293. Conversely, an angular velocity o about an axis / can
always be replaced, in an infinite number of ways, by two (or
more) angular velocities whose geometric sum is o, about two
(or more) axes passing through any point O of / and lying in
the same plane with /Z

Thus, for instance, the angular velocity  about the instan-
taneous axis / can be resolved into three components w,, w,, o
about three rectangular axes Oz, Oy, Oz passing through any
point O of /, and we have

’=wlto0l+ol (3)

The linear velocity v of any point 2 of a body rotating with
angular velocity w about the axis /can be expressed by means
of the components w,, ,, ®, of @ and the co-ordinates x, 3, # of
the point 2. The component w, produces at 2 a velocity whose
components along the axes Oz, Oy, Oz are 0, —®,%, ®,y ; Simi-
larly, w, gives the components w2, 0, —w,x; and w, gives —w,y,
®,%, 0. Hence, combining the terms that lie along the same
axis, the components of the velocity » of the point P are

o _ 0,2 — 0,7, —%’:w,x—-wxz, f:w,y—wyx. (4)



166 KINEMATICS. [294.

294. If a rigid body be subjected at the time # to two simul-
taneous angular velocities ®;, w, about skew (or crossing, z.e.
not intersecting and not parallel) axes 7, 4, or if it be subjected
to an angular velocity @ about an axis / and a simultaneous
linear velocity v not perpendicular to /, its state of motion
during the time 47 cannot be expressed by a single angular or
linear velocity.

The body can be said to have in either case a zwist-, or screw-
velocity, 1.e. an angular velocity  about an axis / combined with
a linear velocity v, parallel to this axis.

To prove this in the latter of the two cases it is only necessary
to resolve v into a component v, parallel to / and a component
o' perpendicular to /Z The latter, being equivalent to a rotor
couple (0, —w) of moment v/ =pw (see Art. 256), combines with
the given angular velocity o about / into an angular velocity o
about a parallel axis 7/ at the distance p=v'/w from /. The
combination of the angular velocity » about / with the simul-
taneous oblique linear velocity v is therefore equivalent to the
angular velocity o about /' with the simultaneous linear velocity
v, parallel to /.

295. When the rigid body has two simultaneous angular
velocities w;, w, about skew axes 7/, /, the reduction is best made
by replacing w, about /, by an equal angular velocity o, about a
parallel “axis /' intersecting /, in combination with a linear
velocity v=pw, perpendicular to the plane of /, and /' (Art. 257).
The angular velocities w; about /; and w, about /' combine (by
Art. 292) into a singular angular velocity whose rotor is the
geometric sum of w; and w,. The case is therefore reduced to
the preceding one.

296. It follows from the preceding articles that any number
of simultaneous linear and angular velocities can always be
combined into a single twist-velocity about the central axis.
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3. ACCELERATIONS IN THE RIGID BODY.

297. The accelerations of the points of a rigid body are
found by comparing the velocities of these points during two
successive elements of time.

If the motion of the rigid body be a pure translation, all
points of the bady describe equal and parallel curves. The
accelerations of all points being equal and parallel (Art. 272),
the acceleration 7 of any one point of the body can be spoken
of as tke acceleration of the body. It can be resolved into a zan-
gential component j, along the tangent to the path of any point
and a normal component j, along the normal to the path, and we
have, just as in Art. 159,

_dy
Jt 74 In s

; 5 dv\2 | ot
J= VJz2+]n2=\/<ﬁ> +5
P

298, If the motion of the rigid body be a pure rotation about
the same axis / for at least two successive elements of time 47,
all points describe arcs of circles whose centres lie on the fixed
axis /. As shown in Art. 273, the acceleration 7 of any point 2
whose distance from / is » can be resolved into a zangential
component j, perpendicular to the plane (/, £) and a normal com-
ponent j, at right angles to the axis /; and we have (Art. 273)

(1)

Wi=ch .=

@

J=VErji=rV@+ ol

where ® is the angular velocity and e=dw/d? the angular
acceleration of the body.

The normal component j, being always directed towards the
axis of rotation / is sometimes called the centripetal acceleration.
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299. If the motion of the rigid body consists in a rotation
about an axis / during the first element of time and a rotation
about an infinitely near parallel axis /' during the second
element of time, we have the case of plane motion of a rigid
body which has been treated in Arts. 274-284.

It remains to discuss the case of infersecting axes, which is of
fundamental importance in the kinetics of the rigid body.

When the axes about which the body rotates in the successive
elements of time intersect at a point O, this point remains fixed
during the motion and may be called the cenzre of rotation. The
motion of a rigid body with a fixed point may be called
spherical motion.

The accelerations of the points of a body in spherical motion
can be studied in a manner strictly analogous to that used in
the case of plane motion (Arts. 274-284).

300. Let the body rotate during the first element of time a7
with angular velocity  about an axis /, and during the second
element of time & with angular velocity
w+dw about an axis /' intersecting /
in the point O and making with / the
infinitesimal angle (4 /')=do. The
angular velocities can be represented
by their rotors,  along / w+dw along
¢! (Fig. 77).

The rotor w+dw along /' can be
resolved into a rotor  along /and an
infinitesimal rotor d¢ along an axis %
that passes through O and lies in the
plane (/, /'). The value of d¢ and the angle (4 /4)=r are given
by the relations

Fig. 77.

sin(4, /") _sin(?', &) _sin(}, ), (3)
dp ® o +do
whence sin (/, /)= sin ry=(o@ . 4)

¢
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Putting do/dt=u, d$/dt=«, we may, similarly, as in Art. 274,
call « the wvelocity of rolling of the cone of instantaneous axes
and « the angular acceleration. With ‘these notations

sin (Y:wT‘u (5)

301. The appropriateness of these names will appear by
considering that the body can now be regarded as having, for two

successive elements of time, the same angular velocity o about
the same axis /, modified during the second element of time by
the additional infinitesimal angular velocity 2¢ about the axis /%,
which is called the axis of angular acceleration.

Thus the rotation about / produces only centripetal (and no-
tangential) acceleration which at unit distance from /is =? and
is directed at right angles to / towards / (see Art. 298), while
the rotation about / gives at unit distance from / the infinitesi-
mal velocity d¢ at right angles to the planes through / and thus
produces the angular acceleration e=d¢/dt, which may be
represented by a vector « along 4.

The projection of d¢ on / is evidently dow (see Fig. 77), so

that

do 1 a’w
_do_1 6
Y= dr (6)

Squaring and adding the equations (5) and (6), we find

B »

~ 802. These results are further illustrated by another resolu-
tion analogous to that of Art. 276.

Imagine the body subjected, during the second element of
time, to the equal and opposite angular velocities o+dw and
—(w+a’éo) about / (Fig. 78); then combine w+dw about /
with —(@+dw) about / into the infinitesimal angular velocity
(0+dw) sindo=wdo about an axis » through O at right angles.
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. of changing the magnitude of » by the amount dw, without

affecting the direction of the axis, while the effect of the com-
ponent e is to incline the axis / by the angle do.

303. To obtain analytical expressions for the components of
the acceleration of any point 2 of a rigid body in spherical
motion, let us take the centre of rotation O as origin of a
system of fixed rectangular axes. Let x, 5, z be the co-ordinates
of P; a, B, v the direction cosines of the instantaneous axis /;
and A, g, v those of the perpendicular PQ =~ let fall from 2 on
this axis Z

The total acceleration of 2 is composed of the centripetal
acceleration o?#, which is directed along 2, and the component
arising from the angular acceleration « (Art. 301).

The components of w? along the axes of z, y, 2 are Aw?,

. pw¥r, vo¥r. Projecting the closed polygon OQPO on each of the

axes, we find
- 00=xr+x, B-0Q=pr+y, v-00=vr+z;
or, since OQ is the projection of OP on/, i.e. OQ=ex+By+ryz,

Ar=a(ex+By+ryz)—=%,
pr=[B(ex+By+v2)—,
vr=ny(exr+ By+ys)—z.
Multiplying these equations by w? and putting ev=w,, Bo=0,
yo=uw,, we find for the components of the centripetal accelera-
tion of the point (z, y, 2):
rotr=w, (0,2 +0,7+0.2)— o,
por=o,(0,r+0,y+0.z2)— 0%, (®)
volr=w, (0r+0,7+0.2)— 0.
The angular acceleration e=d¢/d¢ (Art. 30r) has for its

components along the axes of z, 3, 2

_do, do dw,

o,=—t, 0=

at’ " dt dt

&,
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The component «, produces an infinitesimal angular velocity
a4t about the axis Or; and hence gives to 2 the infinitesimal
velocities 0, —e,2d?, «,ydt along the axes Ox, Oy, Oz (see Art.
293); similarly, «,4? produces the velocities a,2d4, 0, —a,xd,
and «,d¢ produces —a, ydt, a,xdf, 0. Collecting the terms paral-
lel to each axis and dividing by &2, we find the components of
the acceleration of P due to the angular acceleration «:

02—, Y, 0X—0z, 0,)—alx. 9)

Finally, combining the corresponding terms in (8) and (9) and
remembering that «,=dw,/d?, ¢,=dw,/dt, «,=dw,/d?t, we find the
following expressions for the components of the total accelera-
tion 7 of the point P (z, », 2):

Je=0 (0,74 0,5+ 0,2)— o+ %g*?;%
v y .,, 7 —

do,,_do,

Je=0, (0, 2+ 0,7+ 0.2)— o+ 7 —

304. The formulas (10) for the components of the accelera-
tion of any point (#, y, 2) of a body rotating about a fixed point
O can also be derived by differentiating the expressions (4) in
Art. 293, which represent the components of the velocity of
such a point. It is only necessary, after the differentiation, to
substitute for @dx/dt, dy/dt, dz/dt their values from (4), Art.
293, and to remember that w’*=w2+0%+02

305. The complete study of the motion of a rigid body in the
most general case, in particular the investigation of its accelera-
tions, is beyond the scope of the present work.

In addition to the works previously referred to, the following works
on kinematics may here be mentioned.

An elementary introduction to kinematics, without the use of the in-
finitesimal calculus, will be found in J. G. MACGREGOR, An élementary















7, required by the sound, find the depth s approximately from s=1} ¢/,
with #=4; with this value of s find %; hence the time of fall 4, with

ANSWERS.

which correct s; etc. Result: s= 70.4 metres.

(5) (@) 4min.; (4) 11/60; (¢) 3omilesper h. ; () after 3 m. 28s.
(8) (@) 40,000 ft.; () *715.5 ft. per second; (¢) 1 m. 40s.;

(&) 1600 ft. per second; (¢) rm. 12.4s. and 27.6 s.

(9) 8o ft. per second.
(IO) (a) = }’/7]0; (é) h—s =~%g};2/y02)- (L') U= .\/g%

Page 60.

(1) (@) 26,000 ft. per second ; (&) 34 m. 48 s.

(2) It represents a cycloid.

(4) 0PR/(26R — ).

(5) Height = £; time of ascending = \/?(1 +7—;> =time of

falling back = 34 m. 48 s.; hence whole time =1 h. 9 m. 36 s.

(6) 7 miles per second.

Page 63.

(2) v= 26,000 ft. per second ; /=1 h. 25 m. 4.5 s.

(3)

(1)
(3)

(4)

2 5= R(e¥ 4 e7#), or s = R cosh pz.

Page 65.

limp=g/p for lim #= co.
_ Vigk v cos Vgk t—g sin Vgk ¢

v = — )
Vgk cos V gk t + kvysin Vgk ¢
Si== %log(cos \@Zl-{-\/;wo sin Vg t>= fklog%%
-Time of ascent P 2L it évo !
V gk 4
g V4
height of ascent A= ilog T +§z102>-

PART I—I2

If v < 2 gR, the particle will not fall back.
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(5) Compare the height of ascent in Ex. (4) to the distance fallen
through as obtained in (27), Art. 126. If 7, be the velocity with which
the particle returns to the starting point, we find

niv=Vg: Vg+ kgt .

(6) v=u¢", s =%’(1 — ), v=1v,— ks.
(1 v=E(—e™), s=5 @+ e —1)= é(glogﬁ—kv).

Page 69.
(1) o=rradians; v=18.8 ft. per second.
(2) (a) 3%; (4) 32
(3) —o.157.

4) s
(5) (@) 402.1; (&) 25.1 seconds.

Page 73.
(1) r=1uy¢, § =o?; hence » = 7,8 /w, a spiral of Archimedes.

(2) About the pole O describe a circle of radius ¢ and find its
intersection Q with the perpendicular to the radius vector OF drawn
through O; then QP2 is the normal. Proof by Ex. (1).

(3) For the direction of z see Art. 31, Ex. (2). Resolving
v into 7, parallel to the track and #, along the tangent to the wheel,
it appears that z bisects the angle between these components; hence
v=27,cos CAP, where C is the centre of the wheel, and 4 its lowest
point.
ar ar

(5) For the ellipse, » 4+ ' = const. ; hence P i.e. the pro-

jections of the velocity on the radii vectores are equal.

(6) The projections of the velocity on the radius vector and on
the focal axis are in the constant ratio ¢ of the focal radius vector
to the distance to the directrix. It follows that the tangent intersects
the directrix in the same point as does the perpendicular to the radius
vector through O.

(7) 4o.
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(10) = zo ft. per second, nearly ; angle =20}°.

(11) The relative velocity of 7, with respect to 2 must always pass
through Z. The locus of Q is a circle.

(r2) A cycloid.
(13) About 20",
Page 79.
(4) 233%; 24%; 9333 ft. per minute. -
(5) 16.6 knots; 560 ft. per minute.
(6) 55°; 66°; 23 in.
(7) 0.174, 0.119, 0.146 of the stroke.

Page 85.

; do\?
(2) By(2),Art. 159, 7, _p(ﬁ) 2

(3) By Art. 159, j,=;siny=19?/p; hence 2* =/ psiny.

(4) Since ; is directed towards 4, taking 4 as origin, we have
Jo =0, te. rii—f = const. ; comp. Art. 135.

(5) %:w:cons_t., r=const.; hence, by (6), Art. 161, /=,
= —7aoh

(6) j=rot

- Page 86.

(1) (@) 1718 ft. above the point ; (&) after 2m. 52 s.; (¢) 1891 ft.;
(4) 21.2 miles an hour.

(4) 45°

(7) Construct a circle having the given point as its highest point
and touching (&) the straight line, (&) the circle.

Page 90.

(9) (@) 174 ft.; (&) in about 8 seconds; (¢) 254 ft. per second,
inclined at an angle of about 5° to the vertical.

{10) 227 ft. per secand.
























THEORETICAL MECHANICS.

e

CHAPTER III.

INTRODUCTION TO DYNAMICS.

I. Mass; Moments of Mass,; Centroids.

I. MASS; DENSITY.

1. In the first part of this work only the geometrical and
kinematical properties of motion have been considered, the
moving object being regarded as a mere point or as a geo-
metrical configuration. It is, however, known, from observation
and experiment, that the motions of actual physical bodies are
not fully described and determined by those properties alone.

Physical bodies are distinguished from geometrical configura-
tions by being possessed of mass; and this property as affecting
‘their motion must be taken into account in dynamics.

2. In physics the mass of a body is .usually defined as #ze
quantity of matter contained in the body. Postponing for the
present the full discussion of the idea of mass in its relation to
acceleration and force, and of the methods for comparing and
measuring masses, it will suffice for our present purpose to
think of the mass of a body as a certain constant quantity, inde-
pendent of the body’s position or motion with respect to the
-earth or other bodies, as an indestructible something underlying
-every physical body.

The student must be warned not to confound mass with
‘weight. The weight of a body, as we shall see later, is the

force with which the body is attracted by the earth; it varies,
PART II—I ; 1
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therefore, with the distance of the body from the earth’s centre,
and would vanish completely if the earth were suddenly
annihilated ; while the indestructibility of mass is the first
fundamental principle of chemistry and physics.

3. To compare the masses of different bodies, we may adopt
any given body as a standard.

Thus in the F.P. S. system, the standard mass is a certain
bar of platinum marked “P.S., 1844, 1 lb.,” and preserved at
the Office of the Exchequer, London, England. This is called
the “imperial standard pound avoirdupois”’; any.mass equal to
it is a unit of mass in this system.

In the C. G. S. system, the standard of mass is the “ Kilo-
gramme des archives,” a bar of platinum kept in the Palais des
archives, in Paris, France. A mass equal to one-thousandth of
this standard is the unit of mass in this system; this unit is
called the gram. :

The numerical relation between the British and metric units
of mass is as follows :

11b. =453.502 65 gm.
I gm.=0.002 204 621 2 lb.=15.432 grains.

-

4. The three units of space, time, and mass are called the
Jundamental units of mechanics, because with the aid of these
three, the units of all other quantities occurring in mechanics
can be expressed. Thus we have seen how the units of velocity
and acceleration are based on those of space and time, and we
shall ‘have many more illustrations in what follows. Any unit
that can be expressed mathematically by means of one or more
of the fundamental units is called a derived unit.

‘5. From the mathematical point of view, mass appears in our
dynamical equations as a coefficient, generally to be regarded as
an absolute, positive constant. It serves to give different values
(different valency, or “weight "’ in the meaning of the theory of
least squares) to the moving points, lines, areas, volumes, apart
from their geometrical extension.
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6. Thus, a geometrical point endowed with mass is called a
material particle. We may regard such a mass-point, or particle,
as the limit to which a physical body approaches if its volume
be imagined to decrease indefinitely, approaching the limit zero,
while its mass may remain a finite quantity. From the physical
point of view a particle must be regarded as much an abstraction
as a geometrical point, since every finite physical mass occupies
a finite space and cannot be identified with a point. We shall
see, however, that in dynamics this idea of the mass-point,
or particle, is of the greatest importance not only because
physical matter is usually considered as made up of an aggre-
gation of such points or centres possessing mass (molecules,
atoms), but principally because in many cases the motion of a
solid body can be fully represented by the motion of a certain
point in it, called its centre of mass or centroid, the whole mass
" being regarded as concentrated at this point.

7. It is also customary in dynamics to speak of material
lines and material surfaces, which may be regarded as the limits
of physical bodies in which two dimensions or one dimension
have been reduced to zero. Thus a material line represents
the limit of a wire, chain, or bar, in which two dimensions are,
neglected ; a material surface can be imagined as the limit of
a thin shell, or lamina, with one dimension reduced to zero.

8. A continuous mass of one, two, or three dimensions, is
said to be Zomogeneous if the masses contained in any two equal
lengths, areas, or volumes (as the case may be), are equal. The
mass is then said to be distributed uniformly. 1In all other
cases the mass is said to be leterogencous.

9. The whole mass M of a homogeneous body divided by
the space 17 it fills is called the density of the mass or body ;
denoting density by p we have therefore

M

P=37

for homogeneous bodies.
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In a heterogeneous body, this quotient is called the average,
or mean, density. In this case #ke density at any point, or the
density of any space-element &7V is defined as the derivative

_d)
P=ar

10. The wunit of density is the density of a substance such
that the unit of volume contains the unit of mass. If the units
of volume and mass are selected arbitrarily, there need not of
course necessarily exist any physical substance having unit
density exactly. Thus in the F.P.S. system, unit density is
the density of an ideal substance 1 pound of which would just
fill a cubic-foot. As a cubic foot of water has a mass of 62}
pounds, or 1000 ounces, the density of water is 62} times the
unit density.

The specific density, or specific gravity, of a substance, is the
ratio of its density to that of water at 4° C. Let p be the
density, p’ the specific density, 4/ the mass, V" the volume of
a homogeneous mass, then in British units

M=pV=62.5 p' V.

In the C.G.S. system, the unit of mass has been so selected
as to make the density of water equal to 1 very nearly ; in other
words, the unit mass (1 gramme) of water, at the temperature of -
4° C., fills one cubic centimetre.

In the metric system, then, there is no difference between
density and specific density or specific gravity.

ts

2. MOMENTS AND CENTRES OF MASS.

11. The product of a mass sz, concentrated at a point 2, into
the distance of the point 2 from any given point, line, or plane,
is called the moment of this mass with respect to the point, line,
or plane.
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Thus, denoting by 7, ¢, p, the distance of the point 2 from
the point O, the line /, and the plane m, respectively, we have
for the moments of # with respect to O, /, m, the expressions
mr, mq, mp.

12. Let a system of # points, or particles, P, P,, ... P, be
given; let my, m,, ... m, be their masses, and 2, p,, ... #. their
distances from a given plane 7. Then we call moment of the
system with respect to the plane 7 the algebraic sum

mlﬁ1+m2p2+"'+mnﬁn=2mp;

the distances gy, 2, ... 2. being taken with the same sign or
opposite signs according as they lie on the same side or on
opposite sides of the plane .
It is always possible to determine one and only one distance
2 such that Swmp=Mp, where M=3Zm=m,+my+ - +m, is the
 total mass of the system. If this distance 2 should happen to

be equal to zero, the moment of the system would evidently
vanish with respect to the plane .

13. Let us now refer the points P to a rectangular system
- of co-ordinates, and let #, y, 2 be their co-ordinates. Then we
have for the moments of the system with respect to the co-ordi-
nate planes yz, zr, 1y, respectively

Mpxy +morty + oo +m,x, =Smr=Mz,

ml]’l+m2.72+"‘+an’n=2m]=Mj:

myzy +myzy + -+ mz, =Smz=Maz.

 The point G whose co-ordinates are

Smx - _3Smy -_3Zmsz D)
M ’ J/_ ]”- y &= M (
is called the centre of mass, or the centroid, of the system.

The centroid is, therefore, defined as point such that if the
whole mass M of the system be concentrated at this point, its
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moment with rvespect to any one of the co-ordinate planes is equal
20 the moment of the system.

14. It is easy to see that this holds not only for the co-ordi-
nate planes but for any plane whatever. Let

ax+By+yz—py=0
be the equation of any plane in the normal form;
P Py Dy - P

the distances of the points G, Py, P,, ..., P, from this plane.
Then we wish to prove that Smp=Mp.

Now 2=ex+By+yz—p,
Hr=exy+ By +y5— P -
hence Smp=eaSmx+ BEmy+ySmz—pyEm

=M(ax +By +vz —2,)
=Mp.

The centroid can therefore be defined as a point such that its
moment with respect to any plane is equal to that of the whole
system, with respect to the same plane.

1t follows that the moment of the system vanishes for any plane
fassing through the centroid.

15. In the case of a continuous mass, whether it be of one,
two, or three dimensions, the same reasoning will apply if we
imagine the mass divided up into elements A/ of one, two, or
three infinitesimal dimensions, respectively. The summations
indicated above by X will then become integrations, so that the
centroid of a continuous mass has the co-ordinates

I f,m’M, — fyan 1S fzdmr

a7 faw T fam .
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According as the mass is of one, two, or three dimensions, a
single, double, or triple integration over the whole mass will in
general be required for the determination of the moments
fxa’.M, J‘ yaM, fsz of the mass with respect to the co-ordi-
nate planes, as well as of the total mass § /=1

Thus, for a mass distributed along a line or a curve we have,
if ds be the line-element,

dM=pds ;

for a mass distributed over a surface-area we have, with 4S5 as a
surface-element,
dM=pdS;

finally, for a mass distributed throughout a volume whose
element is 4V,

dM=pdV.

If the mass be distributed along a straight line, the centroid
lies of course on this line, and one co-ordinate is sufficient to
determine the position of the centroid. In the case of a plane
area, the centroid lies in the plane and two co-ordinates deter-
mine its position ; we then speak of moments with respect to
lines, instead of planes.

16. If the mass be homogeneous (Art. 8), Z.. if the density p
be constant, it will be noticed that p cancels from the numerator
and denominator in the equations (2), and does not enter into
the problem. Instead of speaking of a centre of mass, we may
then speak of a centre of arc, of area, of volume. The term
centroid is, however, to be preferred to centre, the latter term
having a recognised geometrical meaning different from that of
the former.

The geometrical centre of a curve or surface is a point such
that any chord through it is bisected by the point; there are
but few curves and surfaces possessing a centre.
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The centroid (Art. 14) is a point such that, for any plane
passing through it, the moment of the system is equal to zero.
Such a point exists for every mass, volume, area, or arc. The
centroid coincides, of course, with the centre, when such a
centre exists and the distribution of mass is uniform.

17.As soon as pis given either as a constant or as a function
of the co-ordinates, the problem of determining the centroid of
a continuous mass is merely a problem in integration. To
simplify the integrations, it is of importance to select the
element in a convenient way conformably to the nature of the
particular problem.

Considerations of symmetry and other geometrical properties
will frequently make it possible to determine the centroid with-
out resorting to integration. Thus, in a homogeneous mass,
any plane of symmétry, or any axis of symmetry, must contain
the centroid, since for such a plane or line the sum of the
moments is evidently zero (see Art. 47).

It is to be observed that the whole discussion is entirely
independent of the physical nature of the masses » which
appear here simply as numerical coefficients, or “weights,”
attached to the points (comp. Art. 5). Some of the masses
might even be negative.

It will be shown later that the centre of gravity, as well as
the centre of inertia, of a body coincides with its centroid.

18. The centroid can be defined without any reference to a
co-ordinate system as follows.

As in Art. 12, let there be given a system of » points
Py, P, ... P, (Fig. 1) whose masses are »,, m,, ... m, Taking
an arbitrary origin O and putting OP =7, OPy=7, ... OP,=r,
we ‘may represent the moments w7, 7,7y, ...m,r, of the
given masses with respect to O (Art. 11) by lengths (vectors)
laid off on OP,, OP,, ... OP, The moment of the system can
then be defined as the geometric sum of these vectors. It is.
therefore found by geometrically adding these vectors; z.e. we
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have to lay off from O, on OP, Op,=mr; from p,, parallel to

OP,, pypy=my7y, etc.; and finally join O to the end p, of the poly-

gon so formed ; then Op, is the geometric sum, or resultant, of the
oP,

i R

!

{

- " pn
-
= — f
PP, -~ P o

i 4

/
e

7/

Fig. 1.

Vectors mery, Mgy, - - M7, Using square brackets to indicate-
geometric addition, we have Op,=3[mr]. A point G taken on
the line Op, so that

M-OG=0p,=3[mr], (3):
where M =3um, is the centroid of the system.

19. It is easy to see that this definition of the centroid
agrees with the one previously given (Art. 13). For, to form
the geometric sum, or resultant, of the vectors mery, 72475,
...m,7, we may resolve each of these vectors along three-
rectangular axes drawn through O. The components of 7,7 are:
evidently meyxy, m, yy, my2y, if 2y, 3, 2, are the co-ordinates of 7,
since x,/7, 31/ 21/, are the direction cosines of the line OF;.
We find therefore for the components of Op, the values Ssmz,.
Smy, Smsz; and hence for the co-ordinates of G,

r=3mx/M, y=3my/M, z=Zmzs/M.
20. The position of the centroid G of a given system of

masses is independent of the point O selected as origin. For-
let another point O’ at the distance & from O be selected as-
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origin, and let G’ be the point obtained as centroid from this
-origin, so that

M-OG=3[mr], M-O’G’=2[ﬂ;r’].

As we have the geometric equation [#']=[d]+[7], we find
M-O'G'=3[md)+3[mr]=Md +2[mr].

Hence subtracting the first equation and dividing by 47,
[0'G"1—-[0G]=[d], or [0’G’]=[d]+[OG]=[0’¢]

-so that G and G’ coincide.

It follows from this consideration that a given system has
-only one centroid.

21. Regarding again the mass of the centroid as equal to
that of the whole system, we may now define the centroid of a
system as a point such that its moment with respect to any point
or plane is equal to the sum of the moments of all the points
constituting the system ; the sum being understood to be a
geometric sum for moments with respect to a point, and an
-algebraic sum for moments with respect to a plane.

Taking the centroid itself as origin, we have the proposition
that zie geometric sum of the moments of a system with respect
to the centroid ts equal to zero. 1t has been proved before
(Art. 14) that ke algebraic sum of the moments of a system
vanishes for any plane passing through the centroid.

22. In determining the centroid of a given system it will
-often be found convenient to break the system up into a number
-of -partial systems whose centroids are either known or can
be found more readily. 7he moment of the whole system is
-obviously equal o the sum of the moments of the partial systems.

Thus let the given mass A/ be divided into % partial masses
My, My, ... M,, so that M=M+ My+---+M ; let G, Gy, Gy, ...
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G, be the centroids of M, M, M, ... M,, and p, p,, 7, ... p, their
distances from some fixed plane. Then we have

Mp=Mpy+ Mypy+ e+ M.

23. The particular case of zwe partial systems occurs most
frequently. We then have with reference to any plane

Mp=Mpy+Mypy, M=M + M,

Letting the plane coincide successively with the three co-ordi-
nate planes, it will be seen that ¢ must lie on the line joining
G, G, Now taking the plane at right angles to G; G, through
G,, we have

M -G G=M, G,G,;
similarly for a plane through G,,
M-GGy=M, - G1G,;

GG_GG,_G\G,,

h
whence AR i

1.e. the centroid of the whole system divides the distance of the
centroids of the two partial systems in the inverse ratio of their
masses.

3. EXAMPLES OF THE DETERMINATION OF CENTROIDS.

24. Two Particles. The centroid G of two particles of masses
my, m, concentrated at two points P, P, lies on the line P P,
and divides the distance 2,7, in the inverse ratio of their
masses, Z.¢. so that

il bl Py
my  my  my g

(See Art. 23) These formule hold even when one of the
masses is positive and the other negative, in which case the
sense of the segments must be attended to.
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25. Three Particles. We find first the centroid 2’ of , at
P, and my at P, (Fig. 2) by Art. 24; then, by the same rule,
the centroid G of m,+my at P' and m, at P,. We might have
begun with P; and 2, finding P'’; or with P, and 7, finding
P, G lies at the intersection
of the three lines PP, P,P']
P,P"", and can therefore be
constructed graphically.

26. Four Particles. Find the
centroid P’ of m; at P and s,
at P,; also the centroid P'' of my at Pyand m, at P,; then
the centroid G of m,+m, at P’ and mzz+m, at P''.

The four particles can be arranged in groups of two in three
different ways. There are therefore three lines, like 2’2", on
each of which G lies. Any two of these are sufficient to con-
struct G geometrically.

27. The centroid of a homogeneous rectilinear segment (thin
rod or wire of constant cross-section) is evidently at its middle
point.

28. If the density of a rectilinear segment be proportional to the
n¢k power of the distance from one end, say p=rkx", we have

e xdy lx"“ dx
;=‘£ £ i jo‘ L +1I
: ﬂlpa’x /eﬁlx"dx n+2’

where /is the length of the segment.

(@) For =0, this gives =}/ which determines the centroid
of a homogencous straight segment (see Art. 27).

(6) For n=1, we have x=%/. This determines the distance,
from the vertex, of the centroid of a lomogeneous triangular
area. For such an area can be resolved (Fig. 3) by parallels
to the base into elemerits each of which may be regarded as
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a homogeneous segment Q. If we imagine the mass of every
such element concentrated at its middle point, the homogeneous
triangle is replaced by its median CC’ in
which the density is proportional to the dis-
tance from the vertex C.

The centroid of a homogeneous triangular
area lies therefore on the median at two-
thirds of its length from the vertex; as this
holds for each median, the intersection of the A
three medians is the centroid (see Art. 32). Fig. 3.

(¢) For n=2, we have xr=4/ This gives the position of the
centroid of a lomogencous pyramid or cone, by reasoning pre-
cisely similar to that used in (4).

Thus, to find the centroid of any homogeneous pyramid or
cone, join the vertex to the centroid of the area of the base;
the required centroid lies on this line at
a distance equal to § of its length from
the vertex.

29. Homogeneous Circular Are (Fig. 4).
Let O be the centre, » the radius of the
circle; ACB=s the arc, C its middle
point. The centroid G must lie on the
bisecting radius OC, since this being a
line of symmetry, the sum of the mo-
ments of the elements of the arc is =0
with respect to this line (Art. 17). To
find the distance ¥=O0G, we take mo-
ments with respect to the diameter per-
pendicular to OC. With OC as axis of x, we have

A

Fig. 4.

$ 7= fxds= rffds=rfdscos £ = r_fd_y.

Hence, s-x=7.¢, if ¢ be the length of the chord 45.

If the angle AOB=2« of the arc AB were given, we might
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obtain the result by taking the angle COP =46 as independent
variable. We have then

o +a {
&x:f rcos 0-rdf=27%sing,
—-—a

whence x=r.

278ina
2 ra

This can be written r=7- =7.%, which agrees with
s

the expression found above.

30. The First Proposition of Pappus and Guldinus. If an arc of
a plane curve be made to rotate about an axis situated in its
plane, it generates a surface of revolution whose surface-area is
S=z27 f yds, where ds is the element of the curve and the axis
of rotation is taken as axis of x. On the other hand we have, if
s be the length of the generating arc and y the ordinate of its
centroid, s. y = fyds; hence

S=27.sy=27y-s,

i.e. the surface-area of a solid of revolution is obtained by multi-
Plying the generating arc into the path described by its centroid.
It is easy to see that this proposition holds even for incom-
plete revolutions. When the generating arc cuts the axis,
proper regard must be had for signs and sense of rotation.

3L It follows from symmetry that the centroid of a homo-
geneous circular or elliptic area (plate, lamina) is at the geomet-
rical centre of figure. Similarly, the centroid of a homogeneous
parallelogram is at the intersection of its diagonals.

In general, if a homogeneous plane figure have two axes of
symmetry, the centroid must be at the intersection of these
lines since the sum of the moments is zero for each of these
lines.
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32. It has been shown in Art. 28 () how the centroid of a
homogeneous triangular area 45 can be found.

Dividing the area into linear elements by drawing lines
parallel to one of the sides, say A8 (Fig. 3, p. 13), it appears
that the centroid of each element, such as PQ, lies at its middle
point. The locus of these middle points is
the median CC’ of the triangle; on this line,
then, the centroid G of the triangle must be
situated. Resolving the triangle into linear
elements parallel to the side BC, or to CA,
it follows in the same way that G must lie on
each of the other two medians of the triangle. A B
The intersection of these medians is there-
fore the centroid G.

The point G trisects each median so that CG/GC'=2. For
if AA' (Fig. 5) is another median, the triangles AGC and 4'G(’
are similar, and 4'C'=1AC; hence C'G=}CG.

It follows from Art. 25, that the centroid of the homogeneous
triangular area coincides with that of three particles of equal
mass placed at the vertices.

c

Fig. 5.

33. Homogeneous Quadrilateral. The centroid is found graphi-
cally by resolving the quadrilateral into triangles, finding their
centroids, and deducing from them the centroid of the quadri-
lateral. This process applies generally to any polygon and can
be carried out in various ways.

Thus for the quadrilateral ABCD (Fig. 6) drawing the
diagonal 4C and determining the centroids of the triangles
ABC and ADC, we obtain by join-
ing these centroids one line on
which the required centroid of the
quadrilateral must lie. Repeating
the same construction for the tri-
angles obtained by drawing the
other diagonal BD, we find a second line on which the centroid

Fig. 6.
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must lie. The intersection of these lines gives the centroid of
the quadrilateral.

34. For some purposes it is convenient to find a system of
particles whose centroid shall be the same as that of a quadrilat-
eral. The problem is of course indeterminate and may be
solved in various ways.

Let m be the mass of the quadrilateral ABCD; m,, m, the
masses of the triangles ABC, ADC. By Art. 32, each of these
triangles can be replaced by three equal particles Yz, 1m,,
placed at the vertices. We thus have at 4, as well as at (, a
mass 3 (12, +mg) =%m.

The masses 3m; at B and 1m, at D, whose sum is also
=1m, are proportionél to the areas of the triangles ABC, ADC,
or to the lengths £B5, £D, if £ be the intersection of the
diagonals. Now these two different masses at 5 and D can be
replaced by a system of three masses, ;1w at B, 1 at D, and
—%m at £, For (1) the total mass evidently remains the same,
and (2) the centroids of the two systems coincide as is easily
seen by taking moments with respect to .

Indeed, the centroid G’ of ?}m’l at B and dm, at D is deter-
mined by the equation

(my+my)- EG'=m,- EB—my+ ED;

substituting for 7z, m, their values as found from the relations
my+my=m, m;[my=EB/ED, this reduces to

m+EG'=m-(EB—ED).

The centroid G'' of {m at B, m at D, and —4m at E is
given by
' m-EG"=m.EB—m-ED—m-o.
Hence G’ and G'' coincide.

The centroid of the area of a homogeneous quadrilateral is
therefore the same as that of four equal particles placed at its
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vertices together with a fifth particle of equal but negative
mass, placed at the intersection of the diagonals. '

85. In the particular case of a homogeneous trapezoid (Fig. 7),
it may be noticed that the figure can be divided into rectilinear
elements by lines drawn parallel to the parallel sides of the
trapezoid. Every such element has its centroid at its middle
point ; the locus of all these points is the so-called median ; and
the centroid G of the trapezoid must lie on this median, 7.¢. on
the line joining the middle points £, 7 of the parallel sides.

To find the ratio in which & divides the length EF, we use
again the method of taking moments. We divide the trapezoid

D F’

/

D

Flg. %o

into two triangles by the diagonal BC and remember that the
distance of the centroid of a triangle from its base is equal to
one-third of its height; then taking moments with respect to the
two parallel sides 4B=a, CD=45, denoting the height of the
trapezoid by /4, and the distances of G from @ and 4 by y and 7
we obtain

Ya+d-y =ah-Sh+50k-%4,

Ya+b)h-y =%ak-3h+}bh-%h

Dividing, we find

B tiCuat0, Hake
7 GF 2a+b a+}b

This gives the following construction: Make A£'=4 on the
prolongation of a, and DF’=a on the prolongation of 4, in the
opposite sense ; then £'F’ will intersect £F in G.

PART T1—2
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36. To find the centroid of the cross-section of a T-iron (Fig. 8)
it is only necessary to find its distance x from the lower side
AB; for it must lie on the axis of symmetry CD. Taking
moments with respect to 458 we obtain with the notation
indicated in the figure :

[za,e+2a(b_,e)]-;=za5-§ +2(5—B)a-g,

1B+ b — aZB.

Lo s hence  x=}
b aB+be—af
If «, B-are nearly equal and very
a small in comparison with «, &, we
+6 have approximately
~ % : — . @+ ba
A b" e a+b
Fig. 8. +37. Thearea of a homogeneous ecir-

cular sector (Fig. 45-p. 13) of radius »
and angle AOB=2¢« can be resolved into triangular elements
POP'=1r%0, the bisecting radius OC being taken as polar
axis. The centroid of such an element lies, by Art. 32, at
the distance » from the centre O. Regarding the mass,
p-%7%df, of each element as concentrated at its centroid, the
sector is replaced by a homogeneous circular arc of radius 47
and density 1p7240. By Art. 29, the centroid of such an arc,
which is the required centroid of the sector, lies on the bisect-

ing radius OC at the distance %r-ill]—E from the centre O.
o

Hence -
o= %— Y—_—
38. In general, for areas bounded by curves we must resort to

integration, using the general formule of Art. r5.
If the area S be plane, we have in rectangular co-ordinates

M = j; j’j:apdxdy,
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M -r= L%j:szdxa’ ly, M-y= Lzzﬁyzm’ dxdy;

and if the mass be homogeneous, ze. p=const., since then the
first integration can at once be effected :

S=L 2()’2 —ydx,

7= Hn—pdn  Sy=tf (ri-yddx

or similar expressions for y as independent variable.

In polar co-ordinates, the element of area is rdrd#, and we
have x=7 cos 8, y=» sin € ; hence

S= { f rarae,

S -E:ffﬂcos 0drdd, S-y =ffrzsin 0drdb;

or, performing the first integration,

92
S=4%), %9,

SiFe} fe "ricos0df, S-7=1 ﬂ " 35in 8,40,

It will be noticed that these last formule express also that
the infinitesimal sector § 7240 is taken as element, the centroid
of this element having the co-ordinates £#cosf, £ 7sin®.

39. As a somewhat more complicated example let us consider
a circular disc of radius @, in which the density varies directly
as the distance from the centre (Fig. 9). Let a circle described
upon a radius as diameter be cut out of this disc; it is required
to find the centroid of the remainder.

Let O be the centre of the disc of radius @, C that of the
disc of radius a; G, the centroid of the latter, G the required
centroid ; and put OG,=x,, OG=x. Then if M be the mass






40.] DETERMINATION OF CENTROIDS. 21

The mass of the larger disc is
My= "t 2mr-dr=2mk [ rrdr=Ymiab,

Substituting these values into the equation of moments we
find *
Lk NG

= a=0.1616..a.
My—My 5 (37m—2)

xr=

40. Proceeding to the determination of the centroids of
curved surface-areas, we begin with '
the special case of the homoge-
neous area of a surface of revolu-
tion. If the axis of x coincide

X

with the axis of revolution and R
R=rsin@ be the distance of any e
point 7 of the surface from this 0 _r \
axis (Fig. 10), the equation of the ) £
surface, or of its meridian section, ¢-—;—-:->ﬂ
is x=f(R); and the element of Y
area is

Fig. 10.

dS=Rd¢~Ndr* + dR?= RN 1+ [ f(R) PdRdp.

We have therefore for the centroid of the portion of the surface
contained between two sections at right angles to the axis and
two meridian planes (z.e. planes through the axis) including an

angle ¢
B (e By
S=[ " RVITdRAY=¢ f,"R VTT] R,

sE=f"{ * RER)VIHFdRAS = [ RFR)VTHITR,
S-3=J." ) R cospVTH/RdRdp=sin | R*V1+F R,

| S.£=‘£IRZ£¢R2 sinqb'\/_——__l +f’2dkd¢=(1—c0§¢)ﬁf’R2VI+f'-2dR'



22 INTRODUCTION TO DYNAMICS. [41.

Similar formulee result when x is taken as independent vari-
able instead of R. For a complete surface of revolution ¢=21
so that y=0, =0, as is otherwise evident.

41. In the case of spherical surfaces, although the preceding
formulae can of course be used, it is often more convenient to
make use of the geometrical property of the sphere that any
spherical area is equal to the area of its projection on a cylinder
circumscribed about the sphere.

Thus the area on the sphere contained between two parallel
planes is equal to the area cut out by the same two planes from
the circumscribed cylinder whose axis is perpendicular to the
planes. The centroid of such a spherical area is therefore on
the radius at right angles to the bounding planes midway
between these planes.

42. The Second Proposition of Pappus and Guldinus (compare
Art. 30).

A plane area S (Fig. 11) rotating about any axis situated in
in its plane generates a solid
of revolution whose volume is
Ver((y2—yPdx, if the axis
of revolution is taken as axis of
i z x and y,, y, are the two ordi-

Fig. 11. nates of the curve bounding thE

area. On the other hand, if »

be the distance of the centroid G of the plane area from the
axis, we have

S-y=3§ (2 -y dz,
by Art. 38. Combining these two results, we find
V=2my-S,

i.e. the volume of a solid of revolution is obtained by multiplying
the generating area into the path described by its centroid.
The proposition evidently holds even for a partial revolution.
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43. To find the centroid of a portion of any curved surface
I(x, y, 3)=0, we have only to substitute dM=pdS in the
general formule of Art. 15, and then express &S by the
ordinary methods of analytic geometry.

Denoting by /, m, n the direction cosines of the normal
to the surface at the point (x, 7, 2), and putting for shortness
OFfdx=F, 0F/dy=F, 0F/dz=F, we have

S e Aydz _ dzdx dxdy
/ m 7

o I

g merzy wh e SN T
F, F ‘/E,2+F,,2+E,2

MN

Hence, substituting

45=dxdy-‘/ﬂz+}fz+ﬁz

5

in the formulae of Art. 15, wé find

n (e VIR F2+ B}
M= dxdy - z z,
jy: .L: s 7

z

where the integration is to be extended over the projection of
the portion of surface under consideration on the plane xy.
The equation of the curve bounding this projection must be
given : it determines the limnits of integration. It is obvious
how the formula has to be modified when the projection of the
area on either of the other co-ordinate planes be given.

The expressions for M-z, M-y, M-z differ from the above
expression for M/ only in containing the additional factor
%, 7, &, respectively, under the integral sign.

44. If the equation of the surface be given in the form
2=f(x, ), as is frequently the case, we have

Fx, p, 5)=2—f(%0);
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46. For a homogeneous pyramid or cone, we have found in
Art. 28 (¢) that the centroid lies on the line joining the vertex
to the centroid of the area of the base, at a distance equal to 1
of this line from the base. This is, of course, easily shown
directly by resolving the pyramid or cone into plane elements
parallel to the base, in a manner analogous to that used for the
triangular area in Art. 32.

47. It may, perhaps, be well to formally state the principal
laws of symmetry for homogeneous solids, although they present
themselves so naturally that they are used almost instinctively.
For however simple and obvious these propositions may appear,
the beginner may be led into error if he does not use them
cautiously. The proof rests on the fundamental definition of
the centroid as a point such that for any plane through it the
sum of the moments is zero.

(@) If the surface of the souid have a plane of symmetry, i.e. a
plane such that every line perpendicular to it intersects the sur-
face in two points equidistant from the plane, #ke centroid lies
in this plane. Hence, the centroid of a homogeneous solid is
at once known if its surface possesses three planes of symme-
try. If the surface has two planes of symmetry, the centroid
lies on their line of intersection.

(b) If the surface have an axis of symmetry, ie. a line such
that every line perpendicular to it intersects the surface in two
points equidistant from the line, ke centroid must lie on this
axis. Two axes of symmetry in the same homogeneous solid
determine its centroid by their intersection.

(¢) If the surface have a centre, i.e. a point such that every
line through it intersects the surface in two points equidistant
from it, ke centroid coincides with this centre.

(d) If the surface have a diametral plane, i.e. a plane bisect-
ing all chords that are parallel to a certain direction, #ze centroid
lies in this plane.
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48. Homogeneous spherical solids can be treated by a method -
analogous to that used for circular areas (see Art. 37). Thus
a homogeaneous spherical sector can be resolved into infinitesimal
elements, each of which is a pyramid whose vertex lies at the

centre of the sphere and whose base is

an infinitesimal element of the spherical
surface area of the sector. Such an
element, regarded as a pyramid (Art.
@ 46), has its centroid at the distance § a
from the centre, if @ be the radius of
the sphere. 'We may regard its mass as
concentrated at its centroid and have
thus the solid sector replaced by a homo-
geneous segment of a spherical area, of
radius 4. It has been shown in Art. 41 that the centroid of
such a segment bisects its height.

Let 2« be the angle at the vertex of the given sector (Fig. 12) ;
then the height of the segment of radius §ais $a (1—cosa);
hence the distance x of the centroid of the solid spherical sector
from the centre is

Fig. 12.

r= 34 (1— = = 2%,
r=34acoset+ga(1—cosa)=%a (1+cosa) fa cos®~

49. In a homogeneous solid of revolution the centroid lies on
the axis of .revolution, since this line is an axis of symmetry -
(Art. 47 (8)). Taking this line as the axis of x, the equation
of the surface of the solid is determined by that of the curve
bounding the generating area, say y=/(¥).

We select as element the circular or ring-shaped plate of
thickness ax contained between two sections of the solid at
right angles to the axis of revolution (Fig. 11, p. 22). The
centroid of each such element lies on the axis, and the volume
of the element is = (3,2—y,? dx, if y,, y, are the ordinates of
the curve corresponding to the same value of x.

We have, therefore,

'I
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s ‘f:p,"f (? =) dx
A=t

jﬁ : (72— dx

=0, &=0.

It is easy to see how the formula has to be modified when
‘only one value or more than two values of y correspond to a
lgiven value of x.

§ 50. In the most general case of any solid whatever the for-
[lmulze of Art. 15 assume different forms according to the system
of co-ordinates used. Thus for rectangular Cartesian co-ordi-
Inates the element of volume is dv=dxdydz, and we have :

M= ffjpdxdydz, M x= jffpxdxdydz,

M-y= j‘jfpjl drdydz, M- -z= fffpz dxdydz.

| 51. In polar co-ordinates, z.e. for the radius vector 7 the
co-latitude @ and the longitude ¢ (Fig. 10, p. 21), the element
of volume is an infinitesimal rectangular parallelepiped having
| the concurrent edges &7, »40, »sin 8d¢ ; hence

dv=r?*sin 0drd0d.

# As r=rcosf, y=rsinfcos ¢, z=rsinfsin ¢, the centroid is
{ determined by the equations :

[

! M= f _ffprz sin 0drd0d¢,

M x= fffpﬂ sin @ cos 0 drd0d¢,
M-y= ff f pr3 sin? @ cos pdrdbd¢,

M. z= fjfpﬁ sin2 @ sin ¢pdrd0de.
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52. As an illustration let us determine the centroid of the!
x volume OABCD (Fig. 13),
A D bounded by the three co-ordi- |
nate. planes and the warped
quadrilateral (hyperbolic
Rz Q M paraboloid) 4BCD. The latter

£l A is generated by the line LM
L~ P 2,

ol. ¢ s gliding along A8 and CD so

0] as to remain parallel to the

2 plane yz. The data are O4 =

. CD=a, OB=b, OC=AD=c}
2 We take as element an

Fig. 13.

infinitesimal prism 2Q of

y/RL:(cF—z)/c, and RL/b=(a—=x)/a; hence

a—x ¢c—2

base drdz and height y. From similar triangles we have‘i
1

y==0
a c

Thus we find, rejecting the constants which cancel in numerator
and denominator,

j(;.o x(a—x)(c—2)dxdz fx(“—x)dx < C:)
fj (a—%)(c—2)drdsz jo' (d—x)dx.<[2_;>

ad

a?

fx(a x)dx 2 3
f (a—x)dx az_f
0 2

a (e (a_x)Z (6—2)2 " a
__%j;jo‘ 52T.dedz 5 J(:(a—x)zdx%c‘g

a=}a;

N[OV~

vt s _57‘f0“<a—f>dx-%cz

S

Finally, z=}¢, by analogy with .
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‘1 53, Exercises.

(1) Three beads of masses 3, 5, 12, are strung on a straight wire
‘lvhose mass is neglected, the bead of mass 5 being midway -between
‘the other two. Find the centroid. (Take moments about the middle
point.)

' L, (2) Show that the centroid of three equal particles placed at the
vertices of a triangle is at the intersection of the medians of the triangle.

(3) Show that the centroid of three masses mz,, 2, m; situated at
he vertices of a triangle and proportional to the opposite sides, is at
he centre of the inscribed circle.

(4) Equal particles are placed at five of the six vertices of a regu-
‘Jar hexagon. Find the distance of the centroid from the centre of
gure.

(5) Find the centroid of a homogeneous triangular frame.

(6) Show that the centroid of a homogeneous semicircular wire lies

' . 2 . .
lat the distance =7 from the centre, » being the radius.
mw

(7) Find the co-ordinates of the centroid of the arc of a quadrant
of a circle by using the first proposition of Pappus (Art. 30).

(8) Find the centroid of a circular arc 4B of angle AOB =,
whose density varies as the length of the arc measured from 4.

Find the centroids of the following homogeneous arcs of curves :

(9) Parabola )= 4ax from the vertex to the end of the latus
drectum.

(10) Cycloid x =@ (6 — sinf), y = a (1 — cosf), from cusp to cusp.
8 (11) Half the cardioid »=a (1 + cos#f).

(12) Catenary y=g(e’5+e-§) between two points equally distant
from the axis of x.

(13) Common helix: x = »cosf, y=7sinb, z=476, from §=o0 to
6=20. :

(14) The sides of a right-angled triangle are @ and 4. Find the dis-
tances of the centroid of the triangular area from the vertices.

(15) From a square 4BCD one corner EAF is cut off so that
AE = %a, AF=}a, a being the side of the square. Find the centroid
of the remaining area.
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(16) In a trapezoid the parallel sides are «, &, the height is %, and
one of the non-parallel sides is perpendicular to the parallel sides;
show that the co-ordinates of the centroid with @ as axis of x and the
a4 ab+ & g (a+28) -4

3(a+0)’ 3(a+0)

(17) Find the centroid of the cross-section of a bar formed by
placing four angle-irons with their edges together, two of the irons
having the dimensions «, 4, «, 8, as in Fig. 8, Art. 36, while the other
two have the dimension a different, say a'.

perpendicular side as axis of y are x =

(18) Find the centroid of the cross-section of a U- iron, the length
of the flanges being =12 in,, that of the web 24=28 in,, and the
thickness 8= r in. Deduce the general formula for x, and an approxi-
mate formula for a small §, and compare the numerical results.

(19) In the cross-section of an unsymmetrical double T, the flanges
are 26=121n, 24'=38 in.; the web is =10 in.; and the thickness
of each of the two channel-irons forming the bar is § = 1 in. throughout ;
find the centroid. .

(20) In a T-iron the width of the flange is 2, its thickness «; the
depth of the web is , its thickness 8. Find the distance of the centroid

from the outer side of the flange ; give an approximate expression and
investigate it for e =4, a = B = ta.

(21) If one-fourth be cut away from a triangle by a parallel to the

base, show that in the remaining area the centroid divides the median
in the ratio 4: 5.

(22) Prove that the centroid of any plane quadrilateral 4BCD
coincides with that of the triangle 4 CZ, if the point # be constructed

by laying off BF#= DE on the diagonal BD, & being the intersection
of the diagonals. -

(23) The centroid of a homogeneous semicircular area of radius »

lies at the distance x = %r from the centre.

(24) The centroid of the area of a homogeneous circular segment
of radius » subtending at the centre an angle 2e is at the distance
sin®e .
«—sinacose’ " *= G
tance from the centre, and s the arc. i

x=4r. if ¢ is the chord, % its dis-
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(25) A painter’s palette is formed by cutting a small circle of raaius
4 out of a circular disc of radius @, the distance between the centres.
being ¢. It is required to find the distance of the centroid of the
remainder from the centre of the larger circle. (Routh.)

(26) The arch constructed of brick over a door is in the form of a
quadrant of a circular ring. The door is 5 ft. wide; 1} lengths of
brick are used (say 12 in.). Find the centroid of the arch.

Find the co-ordinates of the centroid for the following plane areas :

(27) Area bounded by the parabola 3* = 4 ax, the axis of x, and the
ordinate y. .

(28) Area bounded by the curve y=sinx from x=o0 tox=m
and the axis of x.

(29) Quadrant of an ellipse.

(30) Elliptic segment bounded by the chord joining the ends of
the major and minor axes. - ‘

(31) Show, by Art. 28, that the centroid of the surface of a right
circular cone lies at a distance from the base equal to one-third of"
the height.

(32) Find the centroid of the portion of the surface of a right cir-
cular cone cut out by two planes through the axis inclined at an angle ¢.

(33) Find the centroid of the area of the earth’s surface contained
between the tropic of Cancer (latitude = 23° 28') and the arctic circle
(polar distance = 23° 28').

(34) Regarding the earth as a homogeneous sphere of density
p= 5.5, how much would its centroid be displaced by superimposing
over the area bounded by the arctic circle an ice-cap of a uniform thick-
ness of 10 miles?

(35) A bowl in the form of a hemisphere is closed by a circular lid
of a material whose density is three times that of the bowl. Find the
centroid.

(36) Determine the centroid of a homogeneous solid hemisphere.

(37) Find the centroid of a frustum of a cone, the radii of the-
| bases being 7y, 75 ; the height of the frustum, 4.

| (38) Show that the formula for the frustum of the cone applies like-
wise to the frustum of any pyramid of the same height Z if »,, 7, are-
any two homologous linear dimensions of the two bases.
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(39) Find the centroid of a solid segment of a sphere of radius «,
the height of the segment being 4.

(40) Show that, both for a triangular area and for a tetrahedral
volume, the distance of the centroid from any plane is the arithmetic
mean of the distances of the vertices from the same plane.

(41) Find the centroid of the paraboloid of revolution of height £,
generated by the complete revolution of the parabola y*= 4a4x about
Adts axis.

(42) The area bounded by the parabola j?= 4ax, the axis of x,
and the ordinate y = y,, revolves about the tangent at the vertex. Find
-the centroid of the solid of revolution so generated.

(43) The same area as in problem (42) revolves about the ordinate y,.
Find the centroid.

(44) Find the centroid of an octant of an ellipsoid a%/@*+)*/8
+ 22 / =1,

(45) The equations of the common cycloid referred to a cusp as
-origin and the base as axis of x are x = a(6—sinf), y = a(1— cosf).
Find the centroid: (&) of the arc of the semi-cycloid (7.e. from cusp
to vertex); (&) of the plane area included between the semi-cycloid and
the base; (¢) of the surface generated by the revolution of the semi-
-cycloid about the base ; (<) of the volume generated in the same case ;
(e) of the surface generated by the revolution of the whole cycloid
(from cusp to cusp) about its axis, 7. the line through the vertex at
-right angles to the base ; (/) of the yolume so generated.

(46) Find the centroid of a solid hemisphere whose density varies
-as the nth power of the distance from the centre.

(47) From out of the right cone 4BC a cone ABD is cut of the
:same base and axis, but of smaller height. Find the centroid of the
remaining solid.

(48) A triangle 4B C, whose sides are a, 4, ¢, revolves about an axis
‘situated in its plane. Find the surface area and volume of the solid so
.generated, if 2, ¢, 7 are the distances of 4, B, C from the axis.

(49) “Water is poured gently into a cylindrical cup of uniform thick-
ness and density. Prove that the locus of the centre of gravity of the
“water, the cup, and its handle is a hyperbola.” _ (Routh.)




-
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(50) Prove that the volume of a truncated right cylinder (7.c. a right
cylinder cut by a plane inclined at any angle to its base) is equal to the
product of the area of its base into the height of the truncated cylinder
at the centroid of its base. :

(51) Prove that the volume of a doubly truncated cylinder is equal
to the product of the area of the section at right angles to the axis into
the distance of the centroids of the bases.

54. For the theory of moments and centres of mass the student is
referred to W. SCHELL, Z%eorie der Bewegung und der Krifte, Leipzig,
Teubner, Vol. 1., 1879, pp. 81—100; E. J. RourH, Analytical statics,
Cambridge, University Press, Vol. 1., 1891, pp. 270-314; J. SOMOFF,
Theoretische Mechanik, iibersetzt von A. Ziwet, Leipzig, Teubner, Vol. II.,
1879, pp- 1—-72. For problems see in particular W. WarLTON, Problems
in illustration of the principles of theoretical mechanics, Cambridge,
Deighton, 1876, pp. 1—45 ; M. JULLIEN, Problémes de mécanique ration-
nelle, Paris, Gauthier-Villars, Vol. I., 1866, pp. 1—46 ; F. KraFT, Prob-
leme der analytischen Mechanik, Stuttgart, Metzler, Vol. 1., 1884, pp.
527-617. Compare, also, B. PRICE, [nfinitesimal calculus, Oxford,
Clarendon Press, Vol. III., 1868, pp. 163-206; MoigNo, Legons de
mécanique analytigue, Statique, Paris, Gauthier-Villars, 1868, pp. 106—
206 ; G. MINCHIN, Z7eatise on statics, Oxford, Clarendon Press, Vol.
1., 1884, pp. 261~305 ; I. TODHUNTER, Analytical statics, edited by J. D.
Everett, London, Macmillan, 1887, pp. 115-189 ; W. WaLTON, Prodlems
in elementary mechanics, London, Bell, 1880, pp. 56-78; and for geo-
metrical methods, the works on graphical statics.

PART II—3
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I1. Momentum ; Force; Energy.

55. Let us consider a point moving with constant accelera-
tion from rest in a straight line. We know from Kinematics
(Art. 111) that its motion is'determined by the equations

v=st, s=3};% 1ot=Js, (1)

where s is the distance passed over in the time 4 v the velocity,
and s the acceleration at the time 2

If, now, for the single point we substitute an z-tuple point,
i.e. if we endow our point with the mass 7z, and thus make it a
particle (see Art. 6), the equations (1) must be multiplied by e,
and we obtain

mu=mjt, ms=%Lmjt? LmiE=mys. : (2)

The quantities mv, my, 4 m9? occurring in these equations
have received special names because they correspond to certain
physical conceptions of great importance.

56. The product mv of the mass m of a particle into its
velocity v is called the momentum, or the quantity of motion, of
the particle.

57. In observing the behaviour of a physical body in motion, we
notice that the effect it produces — for instance, when impinging on
another body, or more generally, whenever its. velocity is changed —
depends not only on its velocity, but also on its mass. Familiar exam-
ples are the following : a loaded railroad car is not so easily stopped as.
an empty one ; the destructive effect of a cannon-ball depends both on
its velocity and on its mass ; the larger a fly-wheel, the more difficult is
it to give it a certain velocity ; etc.

It is from experiences of this kind that the physical idea of mass is
derived.

The fact that any change of motion in a physical body is affected by
its mass is sometimes ascribed to the so-called “inersia,” or “ force of
inertia,” of matter, which means, however, nothing else but the property p
of possessing mass. o)
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58. Momentum, being by definition (Art. 56) the product of
mass and velocity, has for its dimensions (see Kinematics, Art. 92)

MV=MLT

The unit of momentum is the momentum of the unit of mass
having the unit of velocity. ’

Thus in the C.G.S. system the unit of momentum is the
momentum of a particle of 1 gramme moving with a velocity of
1 cm. per second. There is no generally accepted name for this
unit, although the name bole was proposed by the Committee of
the British Association.

In the F.P.S. system, the unit is the momentum of a particle
of one pound mass moving with a velocity of 1 ft. per
second. ]

To find the relations between these two units, let there be x
C.G.S. units in the F.P.S. unit ; then

gm. cm. IbEfES:
x- =TI. ’
Z=ESEC, sec.

JEADECE

hence $5=3 ’
- gm. cm.

or, by Art. 3 and Kinematics, Art. 14,

x=453.59 X 30.48=13 825.3 ;

te. 1 F.P.S. unit of momentum =13825.3 C.G.S. units, and
1 C.G.S. unit =0.000072 331 F.P.S. units.

59. Exercises.

(1) What is the momentum of a cannon-ball weighing 2qo lbs. when
moving with a velocity of 1500 ft. per second?

(2) With what velocity must a railroad-truck weighing 3 tons move
to have the same momentum as the cannon-ball in Ex. (1) ?

(3) Determine the momentum of a one-ton ram after falling through
20 feet. : ) <okt
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60. 77e product mj of the mass m of a particle into its
acceleration j is called force. Denoting it by / we may write
our equations (2) in the form

d

my="Frt, s=}
m

2, dmi®=Fs. (3)

As long as the velocity of a particle of constant mass remains
constant, its momentum remains unchanged. If the velocity
changes uniformly from the value v at the time # to o' at the
time #/, the corresponding change of momentum is

mv' — mv=myt —mjt =F(t'—1); )
!
hence F=m—7;# . (5)

Here the acceleration, and hence the force, was assumed con-
stant. If F be variable, we have in the limit when #/—¢
becomes 47,

_d(mv) _ dv
F= = 6)

Instead of defining force as the product of mass and accelera-
tion, we may therefore define it as the rate of change of momen-
tum with the time.

61. Integrating equation (6), we find

f “Fdt = mv' — mv. @)

The product F(t' —t) of a constant force into the time t' — t during
which it acts, and in the case of a variable force, #4e time-
integral ‘[' Fdt, is called the impulse of the force during this time.

It appears from the equations (4) and (7) that #he zmpulse
of a force during a given time is equal to the change of momen-.
tum during that time.

62. The idea of force is no doubt primarily derived from the sensa-
tion produced in a person by the exertion of his “muscular. force.”
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Like the sensations of light, sound, heat, etc., the sensation of exerting
force is capable, in a rough way, of measurement., But the physiological
and psychological phenomena attending the exertion of muscular force
when analysed more carefully are very complicated.

In ordinary language the term “ force ” is applied in a great variety of
meanings. For scientific purposes it is of course necessary to attach a
single definite meaning to it.

63. In physics it is customary to speak of force as producing or
generating velocity, and to define force as the cawse of acceleration.
Thus observation shows that the velocity of a falling body increases
during the fall ; the cause of the observed change in the velocity, 7.e.
of the acceleration, is called the force of attraction, and is supposed to
be exerted by the earth. Again, a body falling in the air, or in some
other medium, is observed to increase its velocity less rapidly than
a body falling /n wacuo; a force of resistance is therefore ascribed to
the medium as the cause of this change. In a similar way we speak
of the expansive force of steam, of electric and magnetic forces, etc.,
because all these agencies produce changes of velocity.

Now, any change in the velocity  of a body of given mass 7 implies
a change in its momentum 7o ; and it is this change of momentum, or
rather the rate at which the momentum changes with the time, which
is of prime importance in all the applications of mechanics. It is there-
fore convenient to have a special name for this rate of change, and that
is what is called force.

1t is, however, well to remember that in using this term “force,” it is not
intended to assert anything as to the objective reality or actual nature
of force and matter in the ordinary acceptation of these terms. Our
knowledge comes to us through our sense-impressions, and these would
all seem to reduce finally to changes of motion and changes of momen-
tum : these alone we can perceive directly.

64. The definition of force (Art. 60) as the product of mass
and acceleration gives the dzmensions of force as

F=MJ=MLT-2

The unit of force is therefore the force of a particle of unit
mass moving with unit acceleration.
Hence, in the C.G.S. system, it is the force of a particle of
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1 gramme moving with an acceleration of 1 cm. per second per
second. This unit force is called a dyne.

The definition is sometimes expressed in a slightly different
form.* We may say the dyne is the force which, acting on a
gramme uniformly for one second, would generate in it a velocity
of 1 cm. per second ; or would give it the C.G.S. unit of acceler-
ation ; or it is the force which, acting on any mass uniformly for
one second, would produce in it the C.G.S. unit of momentum.

That these various statements mean the same thing follows
from the fundamental formule F=wmyj, j=vs if F, m, ¢, v, j be
expressed in C.G.S. units. '

65. In the F.P.S. system, the unit of force is the force of a
mass of 1 Ib. moving with an acceleration of 1 ft. per second
per second. It is called the poundal.

66. The dync and the poundal are called the absolute, or
scientific, units of force.

To find the relation between these two units, let » be the
number of dynes in the poundal; then we have

gm. cm, ThRRLES
x. =1 ab
sec.? sec,

hence, just as in Art. 58,
xr=13 825.3;

ze. 1 poundal = 13825.3 dynes, and I dyne = 0.000 072 331
poundals. :

67. Another system of measuring force, the so-called gravi-
tation ‘(or engineering) system, is in very common use, and must
here be explained.

Among the forces of nature the most common is the force of
gravity, or the weight, i.e. the force with which any physical
body is attracted by the earth. As we have convenient and

* J. D. EVERETT, C.G.S. system of units, 1891, p. 23, 24. - »
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accurate appliances for comparing the weights of different
bodies at the same place, the idea suggests itself of selecting
as unit force the weight of a certain standard mass.

In the metric gravitation system the wezight of a kilogramme
has been selected as unit force; in the British gravitation sys-
tem, the weight of a pound is the unit force.

68. There are two serious objections to the gravitation system of
measuring force, one of a practical nature, the other theoretical. The
former is that the words “ kilogramme ” and “ pound ” are thus used in two
different meanings, sometimes, and more correctly, as denoting a mass,
sometimes as denoting a force. Wherever an ambiguity might arise
from this double use, the word “mass” or “weight” must be added.

The other objection is more serious. The weight of a body, and
hence the gravitation unit of force, is not a constant quantity ; it changes
from place to place as it depends on the value of g, the acceleration of
gravity.

For, the weight /¥ of any mass . being the force with which this
mass is attracted by the earth, we have

W= mg,

where g is the acceleration produced by the earth’s attraction. Now it
is known from experiment that this acceleration varies from place to
place ; according to the law of gravitation, it is inversely proportional
to the square of the distance from the centre of the earth.

The weight of a body is therefore a meaningless term unless the place
be specified where the body is situated, and the value of g at that place
be given.

Tt is true, however, that the value of g for different points on the
earth’s surface varies but little, so that for most practical purposes
the gravitation system is accurate enough.

In the equations of theoretical dynamics, in particular in kinetics, the
use of absolute units is. always understood. In statics, however, where
we are mainly concerned with the ra#os of forces and not with their
absolute values, gravitation units will generally be used in the present
work in view of the practical applications.

69." The numerical relation between the absolute and gravita-
tion measures of force is expressed by the equations
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I kilogramme (force)= 1000 g dynes,
I pound (force) =g poundals,

where ¢ is about 981 in metric units, and about 32.2 in British
units. In most cases the more convenient values 980 and 32
may be used.

70. Exercises.

(1) What is the exact meaning of “a force of 1o tons”? Express
this force in poundals and in dynes.

(2) Reduce z 000000 dynes to British gravitation measure.

(3) Express a pressure of 2z lbs. per square inch ‘in kilogrammes per
square centimetre.

(4) Prove that a poundal is very nearly half an ounce, and a dyne a
little over a milligramme, in gravitation measure.

(5) The numerical value of a force being 1oo in (absolute) F.P.S.
units, find its value for the yard as unit of length, the ton as unit of
mass, and the minute as unit of time (see Art. 66).

1. The quantity Ymv?, i.e. half the product of the mass of a
particle into the square of its velocity, is called the kinetic energy
of the particle.

Let us consider again a particle of constant mass » moving
with a constant acceleration, and hence with a constant force;
let v be the velocity, s the space described at the time #; 7/, s'
the corresponding values at the time #. Then the last of the
three fundamental equations (see Arts. 55 and 60) gives

Amv"t—LmP=F(s'—s); (8)
hence F=M. ©)
s'—s

If F be variable, we have in the limit

FaBGm?) _ mv?. (10)
ds ds



Force can therefore be defined as #/e rate at which the kinetic
energy changes with the space. (Compare the end of Art. 60.)

72. Integrating the last equation (10), we find

SR
j Fds=1mov"?—Lm2 (11)
8

The product ¥ (s' —s) of a constant force ¥ into the space s'—s.
described in the divection of the force, and in the case of a
variable force, the space-integral j"” Fds, is called the work of
the force for this space.

The equations (8) and (11) show that #ke work of a jforce is
equal to the corvesponding change of the kinetic energy.

We have here assumed that the force acts in the direction of
motion of the particle. A more general definition of work.
including the above as a special case will be given later (Art.
232 5q.).

The ideas of energy and work have attained the highest
importance in mechanics and mathematical physics within com--
paratively recent times. Their full discussion belongs to-
Kinetics.

738. According to their definitions, both momentum (Art. 56)
and force (Art. 60) may be regarded mathematically as mere:
numerical multiples of velocity and acceleration, respectively.
They are therefore so-called vector-quantities ; ¢ a momentum
as well as a force can be represented geometrically by a segment
of a straight line of definite length, direction, and sense.
Moreover, as they are referred to a particular point, viz. to the
point whose mass is 7, the line representing a momentum or a.
force must be drawn through this point ; the line has therefore
not only direction, but also position ; i.e. @ momentum as well
as a force is represented geometrically by a rotor (compare Kine--
matics, Arts. 57, 68, 201 sq.).

It follows that concurrent forces, for instance, can be com-
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pounded by geometrical addition, as will be explained more fully
in Chapter IV.

On the other hand, kinetic energy and work are not vector-
-quantities.

74. The ideas of momentum, force, energy, work, with the funda-
mental equations connecting them, as given in the preceding articles,
form the groundwork of the whole science of theoretical dynamics. The
application of this science to the interpretation of natural phenomena
_gives results in exact agreement with observation and experiment. It is
therefore important to inquire what are the physical assumptions and
experimental data on which this application of dynamics is based.

These assumptions were formulated with remarkable clearness by
Sir Isaac Newton in his Philosophie naturalis principia mathematica,
first published in 1687, and have since been known as Newton's laws
of motion. As these three axiomata sive leges motus, as Newton terms
themn, are very often referred to and, at least by English writers on
dynamics, are usually laid down as the foundation of the science,* they
are given here in a literal translation :

I. Every body persists in its state of rest or of uniform motion along
a straight line, except in so far as it is compelled by impressed (i.e.
external) forces to change that state.

II. Change of motion is proportional to the impressed moving force
and takes place along the straight line in which that force acts.

III. To every action there is an equal and contrary reaction; or,
the mutual actions of two bodies on one another are always equal and
-directed in contrary senses. ’

75. Some explanation is necessary to correctly understand the mean-
ing of these laws; indeed, Newton’s laws should not be studied by
themselves. They become intelligible only if taken in connection with
‘the definitions preceding them in the Prrncipia, and with the explana-
tions and corollaries that Newton himself has appended to them.

The word “body ” must be taken to mean particle ; the word motlon
in the second law means what is now called momentum.

All three laws imply the idea of force as the cause of any change of
.momentum in a particle.

* See the Syllabus of elementary dynamics, Part 1., London, Macmillan, 1890,
p- 13 s¢., prepared by the Association for the Improvement of Geometrical Teaching.
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76. With this definition of force the first law, at least in the ordinary
form of statement, for a single particle, merely states that where there is
no cause there is no effect. While this law may appear superfluous to us,
it was not so in the time of Newton. Kepler and Galilei, less than a
century before Newton, were the first to insist more or less clearly on
this so-called law of inertia, viz. that there is no intrinsic power or
tendency in moving matter to come to rest or to change its motion in
any way. ‘

77. The second law gives as the measure of a constant force the
amount of momentum generated in a given time (see Art. 60) ; it can
be called the law of force. If force be defined as the cause of any
change of momentum, the .second law follows naturally by assuming, as
is always done, that the effect is proportional to the cause.

The first two laws may thus be regarded from the mathematical point
of view as nothing but a definition of force; but they are certainly
meant to emphasize the physical fact that the assumed definition of
force is not arbitrary, but based on the characteristics of motion as
observed in nature.

In the corollaries to his laws Newton shows how the composition and
resolution of forces by the parallelogram rule follows from his definition.
In deriving this result he tacitly assumes that the action of any force on
a particle takes place independently of the action of any other forces that
may be acting on the particle at the same time, a principle that would
seem to deserve explicit statement. Some writers on mechanics, in
particular French authors, prefer to replace Newton’s second law by this
principle of the independence of the action of forces.

78. The third law expresses the physical fact that in nature all forces
occur in pairs of equal and opposite forces. In modern phraseology,
two such equal and opposite forces in the same line are said to consti-
tute a s#ress. Newton’s third law is therefore called the law of stress.

This law, which was first clearly conceived in Newton’s time, involves
what may be regarded as the second fundamental property of matter or
mass (the first being its indestructibility); viz. that any fwo particles of
matter determine in each other oppositely divected accelerations along the
line joining them.

79. For a more complete discussion of the physical laws underlying
the applications of theoretical mechanics, the student is referred to
TuomsoN and Tarr, Natural philosophy, London, Macmillan, 1879,
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CHAPTER 1V.

STATICS.
I 7ntroduction.

80. When a particle has two equal and opposite accelerations
J» —J, its motion will not be changed. The same result must
follow when a particle is acted on by two equal and opposite
forces F=mj, F'=—mj. Their combined effect on the particle
is n¢/, so that the particle, if originally at rest, will remain
at rest; if originally moving with constant velocity in a
straight line, it will continue to do so; and if originally moving
under the action of any other forces in any way whatever, the
introduction of the two equal and opposite forces will have no
effect on its motion. i

We say that two equal and opposite forces acting on a particle
balance, or are equivalent to O, or are in equilibrium. If no
other forces act on the particle, the particle itself is said to be
in equilibrium. It must be kept in mind that equilibrium is not
synonymous with rest.

81. Let us next consider any two forces £, F, acting simul-
taneously on the same particle 2 of mass w, and let 7}, 7, be
the accelerations produced by these forces so that

Fy=mjy, F=mj,

The resultant acceleration of the particle is found by geo-
metrically adding the vectors 7, j;; let 7 be their geometric

sum. Then the force
F=my
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producing the resultant acceleration is called the resultant of the
forces /|, F,; these, or any other two or more forces having
the same resultant 7, are called the components of 7.

82. In many investigations we are not so much concerned
with the actual accelerations produced as with the effects that
might be produced by any particular force or system of forces if
the particle or body were perfectly free to move, z.¢. not subject
to other forces or restraints.

We proceed to study the composition and resolution of forces
from this point of view, z¢. without reference to the accelera-
tions produced, but with particular attention to the conditions
under which the given system of forces is in equilibrium. This
study forms the subject of Statics.

83. The geometrical characteristics of a force are (a) its /lzne
of action, (4) its magnitude or intensity, (c) its sense. Properly
speaking, two forces should be called equal only when they
agree in these three characteristics. But it is customary to call
two forces equal even when they have only equal magnitude;
we shall call them geometrically equal, when they agree in all
three characteristics.

84. A force acting on a particle P is said to have its poinz
of application at P, and the line representing it is usually
drawn from 2 as origin. But the point of application is not an

F —F F

!
Pl

U+

Fig. 14.

essential characteristic of the force; it may be taken at any
point of its line if this line be regarded as rigid. Thus the
force /7 acting on the particle P (Fig. 14) can be transferred,
without changing its effect, to any point 2’ of its line ; and two
equal and opposite forces in the same line, such as F-at 2 and
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—F at P, are in equilibrium; provided always that 2 and P’
may be regarded as belonging to the same rigid body.

85. It follows from Arts. 81 and 84 that any two forces 7
F, whose lines intersect, say at O’ (Fig. 15), are equivalent to,

/
]
]
[}
F,
B
,l 0
F”’ b
ol Fa
- F: Fl“ om _
o (34
7 -y ¢
e
20 Fig. 15.

z.e. can be replaced by, a single force F called their zesultant.
- This resultant can be found by replacing the forces 7, /, by
the equal forces F/, ;' at O', and forming the parallelogram
having 7/, F,' as adjacent sides. The diagonal /' through O’
is the required resultant ; it-can be replaced by any force F of
equal length and sense in the same line with this diagonal.

The parallelogram construction need not be made at O'; we
may select any origin O'' (Fig. 15), draw through it two vectors
F'", F)'! equal (in direction, length, and sense) to £, %, find
the diagonal 7'’ through O, and transfer it to a parallel line
drawn through O'.

Finally, it is not necessary to draw the whole parallelogram ;
we have only to add the vectors £}, F, geometrically from any
{ origin O'"" (Fig. 15) and transfer their sum #'' to the parallel
through O,

86. Conversely, any force may be resolved into two com-
ponents along any two lines intersecting the line of the force



48 STATICS. [37.

at the same point and lying in the same plane with it. These
components are together equivalent to the force, Z.e. they may
be substituted for the force.

87. It follows from Art. 85 that the resultant R of two
intersecting forces 2 and @, including the angle 6, is

R=VP2+Q2+2PQ cos .

For two parallel forces or two forces acting in the same line,
@=o0 or 180° according as they are of equal or opposite sense;
hence R=/P+ @ in the former case, and R =P —Q in the latter.
It is also apparent that the resultant of any number of parallel
forces or of forces acting in the same line is found as the
algebraic sum of these forces. How the posizion of the resultant
is found in the case of parallel forces will be shown later (Arts.
104, 106).

88. By Art. 86, to resolve a force R (Fig. 16) into two com-
ponents 2, Q along two lines making the angles «, 8 with the
line of R, we have only to draw through the ends of a vector

3

®/ @

(P)

w

23=R lines 21, 31 making angles «, 8 with 2 3; then 21=2,
13=0. The triangle 1 2 3 gives the relations
P e e iR

sin B=sin « sin (a+/8).

When the components are at right angles, we have P=R cosa,
O=R sine.

89. The projection of a closed polygon on any line being
evidently zero, and the resultant being by definition the geo-
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metric sum of its components, it follows that tke projection of
the resultant on any line equals the algebraic sum of the pro-
Jections of its components. This proposition is sometimes
expressed in the following form: the resolved part of the
resultant in any direction is equal to the algebraic sum of
the resolved parts of the components,

Let / be the line on which we project (Fig. 17), and let (/, R)
(l’ P), (,’0) denote the angles it makes with the resultant R
and the components RRO, respectxvely ; then

. Rcos (4 R) P cos (¢, P)+Qcos(l Q)

90. Varignon's Theorem. Multiplying the last-equation by any
length OS=s taken through the initial point O of R and at
right angles to /, we obtain

R-scos(l, Ry=P -scos(/, P)+Q-scos(/, Q),

or since s cos (4, R) =7, scos (B2 =2;

scos(/, Q)=g, where 7, p, g are the

perpendiculars let fall from S, on

R, P, (Q, respectively,
Rr=Pp+(Qg.

In this form the proposition is in-

dependent of the direction of the

line /and holds for any point S in
the plane of the parallelogram. Fig. 17.

91. Moment of a Force. The product of a force into its per-
pendicular distance from a point is called the moment of the
force about the point. It is taken with the positive or negative
sign according as the force as seen from the point is directed
counter-clockwise or clockwise.

The proposition of Art. go, Pp+ Qg=R7, can now be stated
in the following form : tke algebraic sum of the moments of any
two intersecting forces about any point in their plane is equal to

the moment of their vesultant about the same point.
PART II—4
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92. The product K7 represents twice the area of the triangle
having R for its base and S for its vertex; Pp, (g can be
interpreted similarly. This remark leads to another simple
proof of Varignon’s theorem, which may serve to make its
meaning better understood. With the
N notation of Fig. 18 we have

SOR=S50Q+ SQR+QOR,
or R-r=Q-g+P-ST+P-TU;

or since ST+ 7U=SU=p,

o}
Fig.  18. Rr= QQ+Pf

93. If the point S be taken on the resultant X, we have »=o0,
hence Pp= — Qg ; i.e. the sum of the moments of two forces about
any point on thetr resultant is zevo.

94. The forces of nature receive various special names
according  to the circumstances under which they occur.
Thus the weight of a mass has already been defined (Art. 67)
as the force with which the mass is-attracted by the mass of
the earth.

When a string carrying a mass at one end is suspended with
its other end from a fixed point, it will be stretched, i.e. sub-
jected to a certain tension. This means that if the string. were
cut it would require the application of a force along the line of
the string to keep the weight in equilibrium. This force, which
may thus serve to replace the action of the string, is called its
tension. :

When the surfaces of two physical bodies 4, B are in con-
tact, a pressure may exist between them ; that is, if one of the
bodies, say B, be removed, it may require the introduction of
a force to keep ‘4 in the same state of rest or motion that it
had before the removal of B. This force, which will obviously

-
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act along the common normal of the surfaces at the point of
contact, is called the resistance of 5, and a force equal and
opposite to it is called the pressure exerted by 4 on B.

95. Exercises.

(1) Find the resultant of two equal forces acting at right angles to
each other.

(2) Show that the resultant & of two equal forces 2 including an
angle 6 is £ = 2 Pcos(6/2).

(3) If the resultant of two equal forces 2 be equal to /, what is the
angle between the components?

(4) Find the magnifude .and direction of the resultant of two
forces of 100 and 200 Ibs., including an angle of 60°.

(5) Let R be the effective piston pressure of a steam engine and ¢
the angle between the direction of motion of the piston and the con-
necting rod at any moment ; show that the thrust in the connecting rod
is Rsec¢ and the pressure on the guide-bars & tan¢. For what
position of the crank is the pressure on the guides greatest?

(6) A weight ¥ is suspended from two fixed points 4,2 by means
of astring 4CB, C being the point of the string where the weight I
is attached. If AC, BC be inclined to the vertical at angles «, 8, find
the tensions in 4C, BC: (a) analytically ; (%) graphically.

(7) Resolve a force of 2o lbs. into two components making angles
of 45° and 30° with the given force : (@) analytically; (&) graphically.

(8) Find the rectangular components of a force 2 if one of the
components is to make an angle of 30° with 2.

(9) The resultant R, one of the components Z, and the angle
between the two components, 6= 60°, being given, find the other
component Q. 7

(10) A particle is acted on by two forces 7, Q lying in the same
vertical plane and inclined to the horizon at angles g, 4. Find their
resultant in magnitude and direction, if P=g527 lbs., Q=272 lbs,,
12172t ol g patia A

(11) Prove that the moments of the two components of a force
about any point on the line of the force are equal and opposite.
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(12) Two forces acting on a point are represented in magnitude and
direction by the tangent and normal of a parabola passing through the
point. Find their resultant, and show that it passes through the focus
of the parabola.

(13) The magnitudes of two forces acting on a point are as 2 to 3.
If their resultant be equal to their arithmetic mean, what is the angle
between the forces?

(14) What is the angle between a force of 1 ton and a force of V3
tons if their resultant is 2 tons?

(15) A string with equal weights /77 attached to its ends is hung over
two smooth pegs 4, B fixed in a vertical wall. Find the pressure on
the pegs: (&) when the line 45 is horizontal ; (4) when it is inclined
to the horizon at an angle 6. The weight of the string, its extensibility
and stiffness, and the friction on the pegs are neglected in this problem
as well as in those immediately following.

(16) Thestring being hung over three pegs 4, B, C, determine graphi-
cally the pressures on the pegs. Let the vertical line through A lie
between the vertical lines drawn through 4 and C; there will be a
pressure on 5 only if B lies above the line 4C. If B lies below 4C,
the pressure may be distributed over the three pegs by passing the string
around the peg B from below.

(17) In Ex. (135), for what position of the line 423 are the pressures
equal?

(18) In Ex. (16), let AC be horizontal, and let «, B, y denote the
angles of the triangle 48C. What are the pressures on the pegs?

(19) In Ex. (18), what must be the position of B to make the
pressures on the three pegs equal : (@) when B lies above 4C'; (&) when
B lies below AC?

(20) If the string with the equal weights J¥ attached to its ends be
strung over any number of pegs, the pressures on the pegs are readily
determined, either graphically or analytically, in magnitude and direc-
tion ; these pressures depend only on the value of /¥ and on the angles
between the successive sides of the polygon formed by the string, but
not on the distances between the pegs. .

: (21) Suppose the string be closed, its ends being fastened together.
Let this string be hung over three pegs 4, B, C forming an isosceles
triangle in a vertical plane with its base 4 C horizontal, and let 2 weight
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W be suspended from the lowest point D of the string. If 4C=4 ft.,
AB=BC= 2.5 ft, and the length of the string 2/= 14 ft., find the
tension of the string and the pressures on the pegs.

(22) If, in Ex. (21), the triangles 48C and ADC be equilateral,
what would be the tension and the pressures on the pegs?

(23) In Ex. (21), the triangles 4BC and 4D C being isosceles and
their common base AC horizontal, what must be the relation between
the angles 23 at B and 28 at D to make the pressures on the three
pegs A, B, C equal? The pressures being made equal, what angle
gives the least pressure?

(24) Show, both analytically and geometrically, that a force whose
components 7, /7, make an angle 6 can be resolved into two rectangular
components (A, + £3) cos(8/2), (£ — F;)sin(6/2).

(25) In the toggle-joint press two equal rods CA4, CB are hinged at
C; a force F bisecting the angle 2 « between the rods forces the ends
A, B apart. If A be fixed, find the pressure exerted at B at right angles
to &7 if /= 100 Ibs. and «= 15°% 35° 65°, 85° 90°.
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11. Concurrent Forces:

96. Let there be given any number » of forces 7, F,, 7, ...,
F,, whose directions all pass through the same point. By Art.
85, we can find the resultant &, of /; and %,, next the resultant
R, of R, and 7, then the resultant K3 of R, and #,, and so on.
The resultant R of R,_, and F, is evidently equivalent to the
whole system £, F,, /4, ..., F,, and is called its resultant. We
thus have the proposition that a system consisting of any num-
ber of concurrent forces is equivalent to a single resultant.

97. It may of course happen that this resultant is zero. In
this case, the system is said to be iz equilibrium. The condition
of equilibrium of a system of concurrent forces is therefore R =o.

98. In practice, the process of finding the resultant indicated
in Art. 96 is inconvenient when the number of forces is large.

4

Fig. 19.

If the forces are given graphically, by their vectors, we have
only to add these vectors geometrically (see Kznematics, Art. 46),
and this can best be done in a separate diagram, called the force
polygon, or stress diagram. Thus, in Fig. 19, 12 is drawn equal
and parallel to /3, 23 equal and parallel to £, 34 to /5, 45 to
Fy, 56 to Fy.  The closing line of the force polygon, viz, 16 in
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the figure, is equal and parallel to the resultant R, which is
therefore obtained by drawing through the point of intersection
of the forces a line equal and parallel to 16.

The graphical condition of equilibrium consists in the closing
of the force polygon, that is, in the coincidence of its terminal
point (6) with its initial point (1).

99. Analytically,-a systematic solution is obtained by resolv-
ing each force / into three components X, V, Z, along three
rectangular axes passing through the point of intersection of
the given forces. All components lying in the direction of the
same axis can then be added algebraically, and the whole system
of forces is found to be equivalent to three rectangular forces
S X, 2 Y, 27, which, by the parallelogram law, can be combined
into a single resultant

-

R=V(EX32+QYV)*+(22)%

The angles «, B8, v made by this resultant with the axes are
given by the relations

cose_cosfB_cosy_ T
-39, 45008 Sl > S

100. If the forces all lie in the same plane, only two axes are
required, and we have

Y
X

)

R=V(EX?+ (Y2 tanf=
where @ is the angle between the axis of X’ and R.

101. The condition of equilibrium (Art. 97) R =0 becomes, by
Art. 99, X )2+ (Y )2+ (2Z)*=0. As all terms in the left-
hand member are positive, their sum can vanish only when each
term is =0. 7The analytical conditions of the equilibrium of any
number of concurrent forces are therefore

3X=0, X¥Y=0, 3Z=o0.
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102. As the projection on any line of any closed polygon,
even when its sides do not all lie in the same plane, is equal to
o, it follows that the proposition of Art. 89 holds for any num-
ber of concurrent forces. :

103. Exercises.

(1) Show that three forces that are in equilibrium must lie in the
same plane and pass through the same point.

(2) Six forces of 1, 2, 3, 4, 5, 6 1bs., respectively, act in the same
plane on the same point, making angles of 60° with each other. Find
their resultant in magnitude and direction : (&) graphically ; (&) analyti-
cally.

(3) Let AB = ¢ (Fig. 20) be the vertical post, 4C =4 the jib, of a
crane, the ends BC being connected by a chain of length a. If a
weight /77 be suspended from C, find the tension
7 produced by it in the chain and the thrust 7
in 4AC.

(4) Let AC be hinged at 4 (Fig. 20) so as to
turn freely in a vertical plane, and let the chain
pass over a pulley at C and carry the weight 7.
In what position of 4C will there be equilibrium?

7
Fig. 20.

(5) Find the resultant £ of three concurrent
forces 4, B, C lymg in the same plane and making angles «, 3, y with
each other.

(6) Prove that the moment of the resultant of any number of
concurrent forces lying in the same plane about any point in this
plane is equal to the sum of the moments of the forces about the same
point.

(7) By means of Ex. (6), express the conditions of equilibrium of
any number of concurrent forces in the same plane.

(8) When three forces are in equilibrium, show that they are pro-
portional and parallel to the sides of a triangle.

(9) When any number of concurrent forces are in equilibrium, show
that any one of them reversed is the resultant of all the others. -
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(10) A weightless rod 4C (Fig. 21), hinged at one end 4 so as to
be free to turn in a vertical plane, is held in a horizontal position by
means of the chain BC. If a weight /7 be suspended at C, find the
thrust Zin 4C and the tension 7" of the chain. Assume 4C= 8 ft.,
AB =6 ft

(11) In Ex. (10), suppose the rod 4C, instead of being hinged at
A, to be set firmly into the wall in a horizontal position ; and let the
chain fastened at B run at C over a smooth pulley and carry the
weight /7. Find the tension of the chain and the
magnitude and direction of the pressure on the
pulley at C.

(12) In “tacking against the wind,” let /7 be the 7
force of the wind ; «, B the angles made by the axis
of the boat with the direction in which the wind
blows, and with the sail, respectively. Determine
the force that drives the boat forward and find for what position of the
sail it is greatest.

Fig. 21.

(13) A cylinder of weight /7 rests on two inclined planes whose
intersection is horizontal and parallel to the axis of the cylinder. Find
the pressures on these planes.

(14) Find the tensions in the string ABCD, fixed at 4 and D, and
carrying equal weights /77 at B and C, if AD=c is horizontal, 4B=8C
= CD, and the length of the string is 3/

(15) One of the vertices 4 of a regular hexagon is acted upon by
5 forces represented in magnitude and direction by the lines drawn
from A to the other vertices of the hexagon. Find their resultant.

(16) Find the resultant of three equal forces 2 acting on a point,
the angle between the first and second as well as that between the
second and third being 45°.

(17) A mass # rests on a plane inclined to the horizon at an angle
6; it is kept in equilibrium (&) by a force A, parallel to the plane;
(&) by a horizontal force 7,; (¢) by a force 2 inclined to the horizon
at an angle § 4 ¢«. Determine in each case the force 2 and the pres-
sure & on the plane.

(18)' Show that the three forces represented by the vectors 04, OB,
O C are in equilibrium if O is the centroid of the triangular area 4B C.
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1I1. Parallel Forces.

104. Resultant of Two Parallel Forces. The graphical con-
struction of the resultant (Art. 8s) fails in the case of parallel
forces.

As an expedient, we may resolve one of the two given forces
into two components and then combine these successively
with the other force. Thus, resolving 2 (Fig. 22) into 2! and
P’ along the lines I and II respectively, we may compound P!/
with @, and their resultant (acting along III) with 2'. The
resolution of 2 into two arbitrary components 2’, P'’ is best
done in a separate diagram, the force polygon, by taking 1 2 equal
and parallel to #, and drawing from any arbitrary point O,

1L

Fig. 22.

called the pole, 01, O2, which will represent the components
P!, P in magnitude and direction. Then drawing 23 equal
and parallel to Q, we find O3 as the resultant of 2’ and Q.
The whole operation of finding the resultant &R of two paral-
lel forces P, Q is therefore as follows. First construct the force
polygon by making 1 2 equal and parallel to 7, 2 3 equal and par-
allel to Q; 13 gives the magnitude and direction of the
resultant R. Then assume a pole O and draw O1, 02, O3.
Now construct the so-called funicular polygon (or equilibrium
polygon) by drawing in the original figure a line I parallel to O1
intersecting 2 say in g ; through p a line II parallel to O2 in-
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tersecting Q say in ¢ ; through ¢ a line III parallel to 03. The
intersection 7 of I and III is a point of the resultant R which is
therefore obtained in position by drawing through » a line equal
and parallel to 1 3.

105. In Fig. 22 the two given parallel forces 2P, Q were
assumed of the same sense. The construction applies, however,
equally well to the case when they are of opposite sense. The
resultant R will then be found to lie not between 2 and g, but
outside, on the side of the larger force. The construction fails
only when the two given forces are equal and of opposite sense,
a case that will be considered later (see Art. 112 and
Arts. 128-138).

106. To determine the position of R analytically, we may find
the ratio in which it divides the distance (perpendicular or
oblique) between P and (. Let s (Fig. 22) be the point where
R meets pg. Then, since the triangles p»s and O1 2, as well as
the triangles ¢s» and O2 3, are similar, we have

#s_0z2 {Z=@;
e /2 G (0)

hence, dividing, i-’g =%.
This means that the resultant of two parallel forces divides their
distance in the inverse vatio of the forces. As this proposition
finds application in the theory of the lever, it is commonly
referred to as the principle of the lever.

Dropping perpendiculars g, ¢ from any point of the resultant
R on the components P, (, the relation can be expressed
in the form

Pp=—0g,

which shows that Varignon’s proposition of moments (Arts.
89-93) applies to parallel forces.

s
-
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107. The resultant of two parallel forces can also be found by
the following simple process. Intersect the two parallel forces
P, Q by any transversal in p and ¢ (Fig. 23) and apply at these
points along pg two equal and opposite forces #, —F; find the
resultant P’ of / and P and the resultant 2" of —F and Q;
these resultants 2’ and P" will intersect (unless 2 and Q be
equal and opposite) and their resultant R can be found.

Fig. 23.

It will be noticed that this construction reduces to that given
in Art. 104 if for 7 we select the force 2 O in the force polygon,

Fig. 22, p. 50.

108. Resultant of Any Number of Parallel Forces. The graphi-
cal method of Art. 104 is readily extended to the general case of
any number of parallel forces lying in the same plane. What-

~ ever the number of the forces, the force polygon gives magni-

tude, direction, and sense of the resultant, which is simply the
algebraic sum of the given forces; while the funicular polygon
(formed by the lines I, II, III, etc.) gives the position of the
resultant by furnishing one of its points, viz. the intersection of
the first and last sides of the funicular polygon.

The process will best be understood from the following
example.

The horizontal beam 48 (Fig. 24). resting freely on the fixed sup-

ports A, B carries four weights W, W,, W, W,
To determine the position of the resultant and the reactions 4, B of
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the supports, construct the force polygon by laying off in succession on a.
vertical line 1 2 =W}, 2 3 =W, 34 =W, 4 5 = IW,; select any point O
as pole and join it to the points 1, 2, 3, 4, 5.

Now we may regard 1O and Oz as components into which 7] has
been resolved ; similarly 2 O and O3 as components of #, 3 O and
O4 as components of 17, and 40 and O5 as components of I,
This resolution of the weights into components is transferred into the

Fig. 24.

main figiire by constructing the funicular polygon as follows: through
any point A' on the direction of the reaction 4 draw a parallel to Ox
and let it meet /7] in 1; through I draw I II parallel to Oz ; through
II draw II III parallel to" O3 ; through III draw III IV parallel to
O4 ; and through IV draw IV A’ parallel to O5 ; the point B’ being on
the direction of the reaction 5.

If now each weight be regarded as resolved along the sides adjacent
to it in the funicular polygon, since the two components falling into
III are equal and opposite, and also those falling into II III and
IIT IV, the system of weights is reduced to the two components along
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A'T and IV B'. The intersection of these lines, 7.e. of the first and last
sides of the funicular polygon, gives a point, &£, of the resultant of
W, Wy Wy, W,

Moreover, if the component in 4'I be resolved along 4'B’ and the
vertical through 4', and similarly the component in B' IV along B'A4’
and the vertical through A’, the two components along A'B’ will be
equal and opposite, each being equal to the parallel Qo drawn to A4'B’
in the force polygon. This parallel furnishes, therefore, the magnitudes.
of the reactions 4 =01, 5=7j5o0.

109. Analytically, the resultant of 2 parallel forces 7, £,
... F,, whether in the same plane or not, can be found as follows:

The resultant of /] and /£, is a force /|4 F, situated in the:
plane (1, 1%), so that /1] p;= 1%, p, (Art. 106), where p,, #, are the
(perpendicular or oblique) distances of the resultant from /]
~and 7, respectively. This resultant /{+ /5 can now be com-
bined with 7 to form a resultant /4 /7,4 75, whose distances.
from F+ F, and F; in the plane determined by these two forces
are as figis to /{+ /, This process can be continued until all.
forces have been combined ; the final resultant is

S e b IS

Any number of parallel forces are, therefore, in general equiva-
lent to a single vesultant equal to their algebraic sum.

110. To find the position of this resultant analytically, let the
points of application of the forces £, 7, ... F, be (xy, 7, 21)s
(g Vg» Zo)s «+ (Tw ¥ 2. The point of application of the result-
ant /4 + /7 of /| and F, may be taken so as to divide the dis-
tance of the points of application of #; and 7, in the ratio
F,: Fy; hence, denoting its co-ordinates by x/, y/, 2/, we have
Fy (@& —xy) = F (x,—2'), or

(F1+Fz)x’=le1+F2x2,

and similarly for 3/ and 2'.
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The force F, + F, combines with #; to form a resultant
F,+ F,+ F,, whose point of application x", '/, 2" is given by

(Fy+ Pyt I 21 = Py By g Py
and similar expressions for '/, 2/’

Proceeding in this way, we find for the point of application
(¥, 7, z) of the resultant of all the given forces

(B + Bt -+ B)r=Fo+ By + -+ Fox,

with corresponding equations for y and z. We may write these
-equations in the form:

-~ 3Fr —-_3Fy -_3Fz .
=3 7=3F =3F ®
As these expressions for z, 7, z are independent of the direc-
tion of the parallel forces, it follows that thé same point (7, 7, 2)
would be found if the forces were all turned in any way about
‘their points of application, provided they remain parallel. The
point (z, 7, z) is for this reason called the centre of the system
-of parallel forces. It is nothing but what in geometry is called
the mean point, or mean centre, of the points of application if
the forces are regarded as coefficients or “weights” (in the
‘meaning of the theory of least squares) of these points.

111. As the origin of co-ordinates in the last article is arbi-
trary, the equations (1) evidently express the proposition that
in any system of parallel forces the sum of their moments about
any point is equal to the moment of their resultant about the same

_point. 1In particular, tke sum of the moments about any point on
the resultant is zero.

This proposition may be regarded as a generalisation of the
principle of the lever referred to in Art. 106. It furnishes the:
convenient method of ¢taking moments” for the purpose of
determining the position of the resultant. '

112. Couple of Forces. The construction given in Art. 104
“for the resultant of two parallel forces fails only when the two_
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given forces are equal and of opposite sense. In this case, the
lines I and III of the funicular polygon become parallel, so
that their intersection # lies at infinity. The magnitude of the
resultant is of course =o.

The combination of two equal and opposite parallel forces
(F,— F) is called a couple. A couple is, therefore, properly speak-
ing, not equivalent to a single force, although it may be said to
be equivalent to a force of magnitude o at an infinite distance.
The theory of couples will be considered in detail in Arts. 128—
138.

113. Conditions of Equilibrium. We have seen (Art. 10g) that
a system of » parallel forces is, in general, equivalent to a single
force ; but, as appears from the preceding article, it may happen
to reduce to a couple. It follows that for the equilibrium of a
system of parvallel forces the condition R =0, thouglk always neces-
sary, is not sufficient.

Now, if the resultant &R of the # parallel forces 7, 7, ... 7, be
=0, the resultant R’ of the »—1 forces F,, F,, ... F, ; cannot be
o, and its point of application is found (by Art.-$10) from
xr=(Fx+ Fyxg+ -+ F, ) [(Fy+ Fy+ -+ F,_,) and similar ex-
pressions for y and z. The whole system of parallel forces is
therefore equivalent to the two parallel forces R’ and #. Two
such forces can be in equilibrium only when they lie in the
same straight line; Ze. F, must coincide with R’ and must
therefore pass through the point (, 7, 5), which is a point of R'.

The additional condition of equilibrium is, therefore,

x—;t’n=)/—_7,,=z——z’,,,
cosa oscf3 cosy

where @, B, v are the angles made by the direction of the forces
with the axes.

114. For practical application it is usually best to replace the

last condition by taking moments about a convenient point.
PART II—5
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Thus, the analytical conditions of equilibrium can be written in

the form
SF=o0, 3Fp=o0.

Graphically, to the former corresponds the closing of the force-
polygon, to the latter the closing of the funicular polygon.

115. Weight; Centre of Gravity. The most important special
case of parallel forces is that of the force of gravity which acts
at any given place near the earth’s surface in approximately
parallel lines on every particle of matter.

If g be the acceleration of gravity, the force of gravity on a
particle of mass 2 is

w=1mg,

and is called the weight of the particle or of the mass ».
For a system of particles of masses #zy, ,, ... m, we have

Wy =111 8, Wo=7Mog) voe W =M1,
The resultant 17 of these parallel forces,
=w Wyt oo F W=yt my+ - +m,) g=Mg,

where M is the mass of the system, is called the weight of the
system. ‘

The centre of the parallel forces of gravity of a system of
particles has, by Art. 110, the co-ordinates

- Emgx, j/-___Emgy, §=ngz’
Smg Smg Smg
or since the constant g cancels,
- Smxr - _Smy -_Smz
el o Sm T e

This point is called the centre of gravity of the system, and is
evidently identical with the centre of mass, or centroid (see
Art. 13).

-
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For continuous masses the same formula hold, except that
the summations become integrations.

The weight W of a physical body of mass A/ is therefore a
vertical force passing through the centroid of its mass.

116. Exercises.

(1) A straight rod (Zver) of length 2/= 5 ft. has suspended from its
.ends masses of 12 and 27 pounds, respectively. Find the point ( fu/-
«crum) on which it balances in a horizontal position: (&) if its own
‘weight be neglected ; (4) if it is homogeneous and weighs 2.2 pounds
per running foot.

(2) A straight beam rests in a horizontal position on two supports
A, B. The distance between the supports (the span) is 2/= 24 ft.
‘The beam carries a weight of 14 tons at a distance of 8 ft. from 4, and
a weight of 10 tons at 16 ft. from 4. Find the pressures on the sup-
ports (or the reactions of the supports): (@) when the proper weight of
‘the beam is neglected; (4) when the beam weighs 1 ton per running
foot; (¢) when the first third of the beam (from 4) weighs 1 ton, the
second 1 ton, the third } ton per running foot.

(3) A homogeneous circular plate weighing /7 pounds rests in a
horizontal position on three equidistant supports near its edge. (2) What
is the least weight 2 that will upset it when placed on the plate? (&) If
there be four equidistant supports near the edge, what is the least weight
‘that will upset the plate?

(4) Construct the resultant of two parallel forces of opposite sense by
‘the graphical method of Arts. 104, 105.

(5) Solve exercises (1) and (2) by the graphical method.

@ @@ Q
610

UM T}
1 74 11&00

84

29560 22560 22560

Fig. 25.

(6) Find the reactions of the supports of a bridge truss of 50 ft. span,
produced by a freight locomotive whose weight is distributed over the
three pairs of driving wheels and the front truck, as indicated in Fig. 25 :
(@) when it stands in the middle of the span; (&) when its front truck
stands over one support.
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(7) Explain how the centroid of a plane area can be found graphi-
cally by dividing the area into narrow parallel strips.

(8) A homogeneous rectangular plate is pivoted on a horizontal axis
through its centre soas to turn freely in a vertical plane. If weights
w,, W, W, W, be suspended from its vertices, what is its position of
equilibrium ? »

(9) The ends of a straight lever of length / are acted upon by two
forces 7, F, in the same plane with it, but inclined to the lever at angles.
oy, ¢;. Determine the position of the fulcrum. ’

117. Funicular Polygons and Catenaries. The funicular polygon
in its original meaning represents the form of equilibrium
assumed by a string or cord suspended from two fixed points.
and acted upon by any forces in the same plane. The “cord”
is supposed to be perfectly flexible, inextensible, inelastic, and
without weight. When the number of forces is made infinite,
the polygon becomes a continuous curve called a catenary.

The present discussion is confined to the case when the
forces are all vertical so that they can be regarded as weights.

118. Let A, B (Fig. 26) be the fixed points, and let there be
five weights, W, W,, W, W,, W, suspended from the points
I, I1, III, IV, V, of the cord.

If the cord be cut on both sides of the point I and the corre-
sponding tensions 73, 7, be introduced, the point I must be
in equilibrium under the action of the three forces W, 73, 75.
Hence drawing a line I 2 to represent the weight 1#] and draw-
ing through its ends 1, 2 parallels to 4I and I II, respectively,
we have the force polygon of the point I. Its sides O 1 and 20
represent in magnitude, direction, and sense the tensions 77,
T,; in other words, the weight ] has thus been resolved into
its components along the adjacent sides.

The same can be done at every vertex of the polygon
ITIIITIV YV, and all tensions can thus be found. But as the
the tension 75 in I IT occurs again (with sense reversed) in the
force polygon for the point II, and so on, the successive
force polygons can be fitted together, every triangle having one

-
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side in common with the nex: one. Thus the complete force
polygon of the whole cord is formed, as shown on the right in
Fig. 26. Its vertical line represents the successive weights
Wi=12, Wy=23, Wy=34, Wy=45, Wy=56, while the lines

Fig. 26.

radiating from the point O, or pole, represent on the same
scale the tensions in AI, I II, ITIII, IITIV, IVV, V5.

119. The polygon AL IT III IV VB is called the funicular poly-
gon. It will be noticed that if we have given the fixed points
A, B, the magnitudes of the weights, their horizontal distances,
say from A4, and the directions of the first and last sides AI,
VB (whatever may be the number of the forces), the remaining’
sides of the funicular polygon can be found by laying off on a verti-
cal line the weights 7, =12, W,=2 3, etc., in succession, drawing
through 1 a parallel to the first side, through the end of the last
weight (6 in Fig. 26) a parallel to the last side, and joining the
intersection O of these parallels to the points 2, 3, etc. The
sides of the funicular polygon must be parallel to the lines
radiating from O; at the same time these lines represent the
tensions in these sides.

120. For the analytical investigation, let 7, be that vertex of a
funicular polygon of any number of sides at which the 7th and
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_ (+1)th sides intersect ; let &, «., be the angles at which these
sides are inclined to the horizon, and /¥, the weight suspended
from the vertex 2, (Fig. 27).

Cutting the cord on both sides of #, and introducing the
tensions 7, and 7,,, the condi-
tions of equilibrium of the point

P P, are found by resolving the
three forces W, 7,, 7, horizon-
tally and vertically (Art. 100) :

Py Vi1

Ticos e =7,cos e, (1)
Tiasinen=1;sine+W,. (2)

The. former of these equations
shows that, whatever the weights
W and the lengths and inclina-
.tions of the sides, #ke lorizontal
components of the tensions T are all equal. Denoting this con-

Fig. 27.

stant value by /, we have
Ticosay=T,cos ay=++=T,c08 =+ =H. (3)

Substituting the values of 7; and 7}, as obtained from these
relations, into (2), this equation becomes

w,
tan ,,,=tan ¢ +ﬁ‘ ’ (4}

which shows that as soon as all the weights and the inclination
and tension of any one side are given, the inclinations and ten- .
sions of all the other sides can be found.

121. Let us now assume that the weights I are all equal.
Then the values of tan «,,; given by (4) form an arithmetical
progression. If, in addition, we assume that #he sides of the
polygon are suck as to have equal horvizontal projections, i.e.
if we. assume the weights to be equally spaced horizontally,
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the vertices of the polygon will lie on a parabola whose axis
is vertical,

To find its equation, let us suppose, for the sake of simplicity,
that one side of the polygon, say the 4th, is horizontal so that
«,=0. Taking this side as axis of z, its middle point O as origin,
the co-ordinates of the vertex 2, are 1, o, if a be the length of
the horizontal side and hence also that of the horizontal projec-
tion of every side.

Putting W/H=7, we have tanae,=0, tane,,=7, tane,,
=2, ---; hence the co-ordinates of /,,, are xr=3§a, y=ar; those
of P, are x=§a, y=ar+2ar=3ar; those of P,,, are x=1q,
y=ar+2ar+3ar=06ar, etc. ; those of the nth vertex after 7, are

x=2”+1a

n(n+1)m
s —————ar.

R =
Eliminating #, we find the equation

x2=.2_a< E)

T I+ g/’

which represents a parabola whose axis is the axis of y, and
whose vertex lies at the distance }ar=3}aW/H below the
origin O.

122. Let the number of sides be increased indefinitely, the
length 2 and the weight W approaching the limit o, but so
that the quotient «/I¥ remains finite, say lim (¢/ W)=1/w.
Then lim (a/7)=H/w, lim (at)=0; so that the equation of the
parabola becomes

=9,
w

where w is evidently the weight of the cord, or chain, per unit
length.

The parabola is, therefore, the form of equilibrium of a covd
suspended from two points when the weight of the cord is uni-
Jormly distributed over its horizontal projection. This is, for
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instance, the case approximately in a suspension bridge with
uniformly loaded roadbed, the proper weight of the chains being
neglected.

123. This result can easily be derived ind€pendently of
Art. 121, by considering the equilibrium of any portion OF of
the chain beginning at the lowest point O (Fig. 28). The forces
acting on this portion are the horizontal tension A at O, the
tension 7 along the tangent at P, and the proper weight 7 of
the chain. As this weight is assumed to be uniformly distribu-
ted over the horizontal projection OP'=x of OP, the weight
is W=wz, and bisects OFP’,

Fig. 28.

Resolving the forces in the horizontal and vertical directions,
we find, as conditions of equilibrium,

dx ay
— —— — — -
H+T—=0, —wr+T—==0;

whence, eliminating dJf,

dy_ w
a HT
Integrating and considering that »=0 when y=o0, we find the
equation of the parabola as above,
w

o

124. The three forces A, 7, W are in equilibrium ; they must
intersect in a point Q which bisects OP’, and the force polygon
must be similar to the triangle QPP'. %
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Hence, if the height of a suspension bridge be 4, its span 2/
its total weight 2 /¥, we have for the horizontal tension #, and
the tension 7" at the point of support

ANV
l/2 VIR+E]g

1235. The form of equilibrium assumed by a homvgeneous cord
is an ordinary catenary. '

To find its equation, we again consider the equilibrium of a

A "
/ 0’ Q N
Fig. 29. :

portion OP=s (Fig. 29) of the cord, beginning at the lowest
point O.

The weight of this portion is now W=uws, and if ¢ be the
angle made by the tangent at 2 with a horizontal line, we have
the conditions of equilibrium

Tcosa=T§:f=]{, T'sina= Tf,l:zw.
ds ds

Dividing and putting //w=c, we have the differential equation

of the curve in the form
dx e

dy s

Substituting this value of dx/dy in the relation ds?=dr?+dy?
F S

!

we obtain
3 2 sds

ds\?
(=)=14+> or dy=+
(‘iJ’> s? % V24 2

)
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which gives by integration y+ C=Vs2+¢? the minus sign being
rejected since y increases with s.

The constant C can be made to disappear by taking the origin
O' on the vertical through O at the distance O'O=c¢ below the
lowest point 0. We have, therefore,

=52+~

By means of this relation, s can be eliminated from the original
differential equation, and the result,

_ﬁ"ﬁ’_=dx,
V3R—c2

can be integrated :

clog (y+ViF—cA=x+C.

As y=c when x=0, we find C=clogc; hence
y+ \/yfcé;ceg F

Taking reciprocals and rationalising the denominator, we find
'y—- \/}72_:_02=ce'§;

hence, adding and subtracting,
y=§(ez+e-z), s=g(e§—e_:).

126. The first equations of Art. 125, 7 cose=H=wrc, Tsina
=ws, give for the total tension 7" at any point P

e A o

T2=w*2+s%) = (wy)%

Thus, while the horizontal component is constant, the vertical
component at any point P is equal to the weight of the portion of
the covd from the lowest point O to the point P, and the total ten- i
ston is equal to the weight of a portion of the cord equal to the :
ordinate of the point P. .
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Let Q be the foot of the ordinate of P (Fig. 29), V the
intersection of the normal with the axis O'x, and draw QR
perpendicular to the tangent. Then PR=ysine=s, since
Tsine=ws and 7=wy; also JR=ycosae=c. Dividing, we
have tan e=s/c; hence, differentiating,

I dael L RdsE e

cos?u ds ¢’ da  cos?a

The figure shows that the radius of curvature p is equal to the
length of the normal PNV

The relation pcoste=c shows further that at the vertex
(¢=o0) the radius of curvature is py=c. It follows that for a
cord or chain suspended from two points 5B, C in the same hori-
zontal line, ¢ (and consequently /7) is large when p, is large, .e.
when the curve is flat at the vertex; in other words, when & and
C are far apart. '

127. Exercises. .

(1) A weightless cord ABCDEF is suspended from the fixed points.
A, F, and carries weights at the intermediate points B, C, D, Z. Taking
A as origin, the axis of x horizontal, the axis of y vertically upwards, the
co-ordinates of the points B, C, D, E, F are (2, —1), (4, —1.5),
(7, —1.5), (8.5, —1), (10, 2). If the weight at B be one pound, what
are the weights at C, D, £? What are the tensions of the sections of
the cord? What are the reactions of the fixed points 4, #'?

(2) The total weight of a suspension bridge is 2/#= 5o tons; the
span is 2/= 200 ft.; the height is Z=18 ft. Find the tension of’
the chain at the ends and in the middle, both graphically and analytically.

(3) A uniform wire of length 2z s is stretched between two points in
the same horizontal line whose distance 2x is very nearly equal to 2.
Find an approximate expression for the parameter ¢ of the catenary and
thence for the tension of the wire.
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IV. Theory of Couples.

128. The combination of two equal forces of opposite sense F,
—F, acting along parallel lines, is called a couple of forces, or
simply a couple (Art. 112).

The perpendicular distance 4B=p (Fig. 30) of the forces of
the couple is called the arm, and the product #p of the force &
into the arm p is called the moment of the couple.

If we imagine the couple (% p) to act upon an invariable
plane figure in its plane, and if the middle point of its arm be

a fixed point of. this figure,

. Fl F" A the couple will evidently tend
] A 4 —f" toturn the figure about this
B middle point. (It is to be

observed that it is no¢ true,

Y in general, that a couple act-
—F : F' ing Gl rigid body‘prodl'xces
by rotation about an axis at right
A angles to its plane.) A couple

Fig. 30.

of the type (£ 2) or (7, #)
(see Fig. 30) will tend to rotate counter-clockwise, while a couple
-of the type (£, p'") tends to turn clockwise. Couples in the
same plane, or in parallel planes, are therefore distinguished as
to their sense; and this sense is expressed by the algebraic sign

.attributed to the moment. Thus, the moment of the couple

(£ p) in Fig. 30, is + Fp, that of the couple (F'', p'") is — F''p".

129. The effect of a couple is not changed by translation.

Let AB=p (Fig. 31) be the arm of the couple (% p) in its
-original position, and 4’B’ the same arm in a new position par-
-allel to the original one in the same plane, or in any parallel
plane. By introducing at each end of the new arm A'ZB’ two
-opposite forces /, —/, each equal and parallel to the original
forces 7, the given system is not changed (Art. 80). ‘But the

R v ———
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two equal and parallel forces / at 4 and B’'form a resultant
2F at the middle point O of the
diagonal AB' of the parallelogram
ABB'A'. Similarly, the two forces
— Fat B and A’ are together equiva-
lent to a resultant —2/at the same
point O. These two resultants, be-
ing equal and opposite and acting in
the same line, are together equiva-
lent to 0. Hence the whole system -
reduces to the force /7 at A’ and the force —/F at B’, which
form, therefore, a couple equivalent to the original couple at
AB. ¥

130. T7Ve effect of a couple is not changed by rotation in its
plane.

Let AB (Fig. 32) be the arm of the couple in the original
position, C its middle point, and let the couple be turned about
C into the position 4’8" Applying again at A', B' equal and
opposite forces each equal to- 7, the forces —#at A' and Fat 4
will form a resultant acting along €D, while /at B' and — Fat
B give an equal and opposite resultant along CE. These two
resultants destroy each other
and leave nothing but the
couple formed by # at A'and
— F at B', which is therefore
equivalent to the original
couple.

Any other displacement of
the couple in its plane, or to a
parallel plane, can be effected

Fig. 31.

by a translation combined with
a rotation about the middle
point of its arm in its plane.
The effect of a couple is therefore not changed by any displace-
ment in its plane or to a parallel plane.

Fig. 32.
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131. 7he effect of a couple is not changed if its force ¥ and its
arm p be changed simultaneously in any way, provided their
product I'p remain the same.

Let AB=p be the original arm (Fig. 33), # the original force
of the couple; and let 4'8'=p' be the new arm. The introduc-
tion of two equal and opposite forces /' at A', and also at 7',
will not change the given system 7, — /. Now, selecting for

F' a magnitude such that F'p'=/Fp,

F the force F at 4 and the force — 7’
]F' and A' combine (Arts. 104-106) to

lA’ form a parallel resultant through C,

¢’ the middle point of the arm, since
for this point F-1p+(—F")-1p'=o0.
Similarly, —F at B and F' at B’
give a resultant of the same magni-
tude, in the same line through C, but of opposite sense.
These two resultants thus destroying each other, there remains
only the couple formed by F'at A'and —F'at B, for which
Fp=F'4. '

|
-
—
w
O_._

Fig. 33.

132. It results from the last three articles that the only essen-
tial characteristics of a couple are (@) the numerical value of the
moment ; (#) the sense, or direction of rotation; and (¢) what
has been called the “aspect” of its plane, ze. the direction of
any normal to this plane.

It is to be noticed that the plane of the two forces forming
the couple is not an essential characteristic of the couple; just
as the point of application of a force is not an essential charac-
teristic of the force (see Art. 84).

Now the three characteristics enumerated above can all be _
indicated by a wecfor which can therefore serve as the geomet-
rical representative of the couple. Thus, the couple formed
by the forces /, —F (Fig. 34), whose perpendicular distance .
is p, is represented by the vector A8 = Fp laid off on any
normal to the plane of the couple. The sense is indjcated by
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drawing the vector toward that side of the plane from which
the couple is seen to rotate counter-clockwise.

4A

Fig. 34.

We shall call this geometrical representative 4B of the
couple simply the vector of the couple. It is sometimes called
its moment, or its axis, or its axial moment.

133. As was pointed out in Art. 112, a couple is equivalent
to a single force acting along a line at infinity. Couples are,
therefore, used in statics to avoid the introduction of such
forces whose line of action is at an infinite distance, just as in
kinematics a rotation about an axis at infinity receives the
special name of framslation, and an angular velocity about an
axis at infinity is called a welocity of translation.

It has been shown in Kinematics, Arts. 64, 65, that two equal
and opposite rotations about parallel axes produce a translation,
and in Kinematics, Art. 256, that two equal and opposite angular
velocities about parallel axes produce a velocity of translation ;
similarly, two equal and opposite forces along parallel lines form
a new kind of quantity called a couple of forces, or simply a couple.

While rotations, angular velocities, and forces are represented
by rotors, i.e. by vectors confined to definite lines, translations,
velocities of translation, and couples have for their geometrical
representatives vectors not confined to particular lines.

Just as in the case of couples of infinitesimal rotations and of
couples of angular velocities, the vector representing a couple
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of forces has for its magnitude and sense those of the moment
of the couple, and for its direction that perpendicular to the
plane of the couple.

It is due to this analogy between the two fundamental con-
ceptions that a certain dualism exists between the theories of
statics and kinematics, so that a large portion of the theory of
kinematics of a rigid body might be made directly available for
statics by simply substituting for angular velocity and velocity
of translation the corresponding ideas of force and couple.

134. When any number of couples act on a rigid body their
resultant can readily be found. Representing each couple by
its vector, we have only to combine these vectors by geometrical
addition. In the particular case when the couples all lie in
parallel planes, or in the same plane, their vectors may be taken
in the same line, and add, therefore, algebraically.

Hence, the resultant of any number of couples is a single couple
whose vector is the geometric sum of the vectors of the given couples.

Conversely, a couple can be resolved into components by
resolving its vector into components.

135. To combine a single force 7 with a couple (7 p) lying

y in the same plane it is only nec-

p P essary to place the couple in its

, : plane into such a position (Fig.

Ai——-—p W ' 35) that one of its forces, say
S F —F, shall lie in the same line
4 and in opposite sense with the
Y : single force 2, and to transform

(P, p"), by Art. 131, so that /p
=Pp'. The original single force
P and the force— 2P of the trans-
formed couple destroying each
other at A, there remains only
the other force 2, at A’, of the transformed couple which is par-

Fig. 35.

’

the couple (% p) into a couple ,

e . R

RV
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allel and equal to the original single force 7, and has the distance

#=%p
from it.

Hence, a couple and a single force in the same plane are
together equivalent to a single force equal and parallel to, and of
the same sense with, the given force, but at a distance from it
whick is found by dividing the moment of the couple by the
stngle force.

136. Conversely, a single force P applied at a point A of a
rigid body can always be replaced by an equal and parallel force
P of the same sense, applied at any other point A' of the same body,
in connection with the couple formed by P at A and —P ar A'.

137. The proposition of Art. 135 applies even when the force
lies in a plane parallel to that of the couple, since the couple can
be transferred to any parallel plane without changing its effect.

If the single force intersects the plane of the couple, it can
be resolved into two’components, one lying in the plane of the
couple, while the other is at right angles to this plane. On
the former component the couple has, according to Art. 135, the
effect of transferring it to a parallel line. We thus obtain
two non-intersecting, or skew, forces at vight angles to each other.

Let P be the given force, and let it make the angle « with the
plane of the given couple, whose force is # and whose arm
is . Then Psine is the component at right angles to the
plane of the couple, while 2 cos« combines with the couple
whose moment is Fp to a force P cose in the plane of the
couple ; this force P cos « is parallel to the projection of 7 on

the plane, and has the distance P_CF(% from this f)rojection.
o

Hence, in the most general case, 2ke combination of a single
Jorce and a couple can be rveplaced by the combination of two
single forces crossing eack other at vight angles; it can be
reduced to a single force only when the force is parallel to the

plane of the couple. T
PART 1I—6
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V. Plane Statics.
I. THE CONDITIONS OF EQUILIBRIUM.

139. Suppose a rigid body to be acted upon by any number
of forces, all of which are situated in the same plane. To
reduce such a plane system of forces to its simplest form the
proposition of Art. 136 may be used. This proposition allows
us to transfer all the forces to a common origin, by introducing,
in addition to each force, a certain couple in the same plane.
The concurrent forces can then be combined into their result-
ant by geometric addition, or by forming their force polygon
(Art. 98); and the couples lying all in the same plane combine
by algebraic addition of their moments into a resultant couple
(Art. 134).

Thus, let # (Fig. 36) be one of the forces of the given plane
system, P its point of application. Selecting any point O in
the plane as origin, apply at ’
O two equal and opposite
forces F, —F, each equal
and parallel to the given
force /; and let p be the
perpendicular distance of
the origin O from the line
of action of the given force Fig. 36.

F. The force F at P is

equivalent to the force / at O in connection with the couple
formed by Fat P and —Fat O; the moment of this couple is
Fp, its vector is perpendicular to the plane of the system.

Proceeding in the same way with every force of the given
system, all forces are transferred to the common origin O.
The whole system is therefore equivalent to their resultant &
passing * through O, in connection with the resulting couple
H=3Fp.
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140. The given system of forces will be in equilibrium if the
following two conditions of equilibrium are fulfilled :

R= O (=0

It will be noticed that the moment Zp of the couple intro-
duced by transferring the force F to the point O is the moment
of the force F with respect to this point O.

Hence, a plane system of forces is tn equiltbrium if (a) its
resultant is zero, and (b) the algebraic sum of the moments of all
its forces is zero with respect to any point in its plane.

141. It is evident that the magnitude and direction of the
resultant R do not depend on the selection -of. the origin O.
But the position of this resultant and the magnitude of the
resulting couple /A will in general differ for different points
selected as origin. Indeed, the origin can be so taken as to
make the couple /A vanish (unless the resultant R be zero);
that is, the whole system can be reduced to a single resultant.

To do this (see Art. 135), it is only necessary, after determin-
ing R and A for some point O, to transfer R to a parallel line
at such a distance » from its original position as to make the
moment R7 of the couple introduced by the transfer equal and
opposite to the moment 37 ; z.e. we must take (Art. 135)

yr=——-

The line along which this single resultant acts is called the
central axis of the given system of forces.

142. For a purely analytical reduction of a plane system of
forces the system is referred to rectangular axes Oz, Oy, arbi-
trarily assumed in the plane (Fig. 37). Every force Fis resolved
at its point of application 2 (z, ) into two components X, ¥,
parallel to the axes, so that

X=Fcosa, V=Fsing,
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« being the angle made by 7 with the axis Ox. At the origin O
two equal and opposite forces X, —X are applied along Oz, and
two equal and opposite
forces ¥, —Y along Oy. y e
Thus, X at 2 is equivalent v /
to X at O in combination
with the couple formed by AY A
Xat Pand —Xat O; the . % Y
moment of this couple is =% SN
evidently —yX. Similarly, 7
YVat P is replaced by Y at
O in combination with a
.couple whose moment is x Y.
‘The force F at P is therefore equivalent to the two forces X, ¥
at O in combination with a couple whose moment is x¥V— y.X.

Proceeding in the same way with every given force, we obtain
:a number of forces X along Or which can be added algebrai-
«cally into 2.X, and a number of forces ¥ along Oy which give
3.Y. These two rectangular forces form the resultant

R=VEXP+(EY)?

whose direction is given by
44

tane===—,

X

where « is the angle between Ox and R.
In addition to this, we obtain a number of couples x¥V—yX
whose algebraic sum forms the resulting couple

H=3(x¥Y—yX).

143. The whole system is thus found equivalent to a
resultant force R in combination with a resultant couple A in
the same plane with R. The conditions of equilibrium R=o,
H=0 (Art. 140) can therefore be expressed analytically by the
three equations

3X=0, X¥=0, 3¥V-yX)=o.

Fig. 37.

&
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144. If R be not zero, R and A can be combined into a single
resultant R’ equal and parallel to R at the distance — /R from
it (see Art 141). The equation of the line of this single result-
ant R/, i.e. the central axis of the system of forces, is found by
considering that it makes the angle « with the axis of » and that
its distance from the origin is

H/R=5(xY—yX)/VEXP+EY)*
Hence its equation is
£:3Y—n-3X-3(xY—yX)=o0.
If R=o0, the system is equivalent to the couple
H=3 (xY-yX),

unless A itself be also zero, in which case the system is in
equilibrium.

145. The same results can be obtained by a transformation
of co-ordinates. Let R=V(EX )2+ (V)2 and H=3(xV—yX)
be the resultant force and couple for a point O as origin. If
some other point O', whose co-ordinates with respect to O are
& n, be taken as new origin and #', y' be the co-ordinates of the
point of application 7 of the force F for parallel axes through
O', the resultant R remains the same while the resulting couple
becomes :

H'=2@Y—yX)=2[@—-§ Y- (y—n)X]
=H-EYV+n2X.

Hence this new couple will vanish whenever the origin O'(, )
is taken on the straight line whose equation referred to the
original axes is ‘

S3V-E-3X-n—H=o.

This equation of the central axis agrees with the equation found
in Art. 144; it represents the line of action of the single
resultant to which the system can be reduced.
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146. The following examples will illustrate the application of
the conditions of equilibrium. To establish these conditions in
any particular problem it will generally be found best to resolve
the forces along two rectangular directions and equate the sums
" of the components to zero; and then to “take moments,” 7.e.
equate to zero the sum of the moments of all the forces with
respect to some point conveniently selected as origin.

147, A homogeneous straight rod AB= 21 (Fig. 38) of weight W
rests with one end A on a smooth horizontal plane AH, and with the
point E(AE =€) on a cylindrical support, the axis of the cylinder being
at right angles to the vertical plane containing the rod. Determine what
horizontal force ¥ must be applied at a given point F of the rod (AF
= f>e) o keep the rod in equilibrium when inclined to the horizon at an

angle 6.
E
B
A
C ==

Fig. 38.

The rod exerts a certain unknown pressure on each of the supports at
A4 and E, in the direction of the normals to the surfaces of contact, pro-
vided there be no friction, as is here assumed. The supports may
therefore be imagined removed if forces 4, %, equal and opposite to
these pressures, be introduced; these forces 4, £ are called the
reactions of the supports. The rod itself is here regarded as a straight
line ; its weight I is applied at its middle point C.
Taking A as origin and 4/ as axis of x, the resolution of the forces
gives
SX=F—Esinf=o, (1)

SY=A4A— W+ E cosf@=o. : (2)

Taking moments about A4, we find

E.e—W.lcosh—F-fsinf=o. (3)
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Eliminating # from (1) and (3), we have

_ Jcosé W
= W
e—fsin’6
hence from (2),
Jcos? 6
A=(1——————\ W
(I e—fsin“’())
and finally from (1),
_/sinfcosé
e—fsin?@

148. A cylinder of length 21 and radius r rests with the point A of
the circumference of its lower base on a horizontal plane and with the
point B of the circumference of its upper base against a vertical wall.
The vertical plane through the axis of the cylinder contains the points A,
B, and is perpendicular to the intersection of the vertical wall and the
horizontal plane. If there be no friction at A and B, what horizontal
Jorce ¥ applied at A will keep the cylinder in equilibrium ?  When is this
Jforce F=o07?

Let G be the centre of gravity of the cylinder ; J¥ its weight ; 4, B
the reactions at 4, B; and 6 the given
angle between 45 and the horizontal plane.
Then B— F=o0, A— W=o0, and taking
‘moments about 4,

W(lcos§ — rsinf)=PB-27sinb.

Hence 4 =W, )
B=F=W_lcos0—.-rsin9
2/siné
Fig. 39. - ~0\.w.
? 1}(cott? l)
4

If either the dimensions of the cylinder, or the angle 6, be such as to
make tan § = //7, no force £ will be required to maintain equilibrium ;
G and A4 will then lie in,the same vertical line.

149. The homogeneous rod AB= 21 of weight W is jointed at A, so
as to turn about A in a vertical plane. A string BC attached to the
end B of the rod runs at C over a smooth pulley, and carries a weight P.
The axis of the pulley C is parallel to, and in the same vertical plane

e e e D

QT
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with, the axis of the joint A; AC=h. Find the position of equilibrium
and the pressure on the axis of the joint A. (Fig. 40.)

To reduce to a purely statical problem, cut the string between A and
C and introduce the tension, which is = 2; also, replace the pressure
A by its horizontal and vertical components 4,, 4,. Then, ifX ACB
= ¢, L BAC =0, the conditions of equilibrium give

A,=Psing, A=W~ Pcos, g
P.lsing =W./sin6. =
From the last equation,

sing_J W ?
sing % P A

while from the triangle 45C, .

A A,

sing _ 2/, Fig. 40.
sind BC’

hence BC= 24P/ W, i.c. if we take 4 to represent ¥, P will be repre-
sented by 4 BC.

For the total pressure 4 we have
A=A+ A =W+ PP~ 2IWPcos ¢,

z.e. A is the third side of a triangle having 7 and 2 for the two other
sides, and ¢ for the included angle. The magnitude of 4 is therefore
represented by the median from 4 in the triangle 48C on the same
scale on which /¥ is represented by 2. But this median gives also the
direction of 4 ; for we have

IL—B—CCOSqS
A4, W—Pcos¢ _ 220
A, Psin ¢ ‘B——Csin¢
2

.

150. A weightless rod AB rests without friction on two planes
tnclined to the horizon at angles o, B, and carries a weight W at the
point D.  The intersection (C) of these planes is horizontal and at right
angles to the vertical plane through AB. Find the inclination 6 of AB
20 the horizon, and the pressures at A and B. (Fig. 41.)
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As there are only three forces, viz. the weight /77 and the reactions 4
and B, their lines must intersect in a point £. Resolving horizontally
and vertically, we have

Asine = Bsinp,

Acosa+ BcosB=W,

= _sinf p
whence i@+ B)

sin e

= sin(e + B)

Taking moments about 2, we find
with 4D =a, DB =1,

A-asin DAE = B-bsin DBE,

Fig. 41.

or Aa cos(a+ 60) = Bbcos(B —0);

to eliminate 4 and B, divide by the first equation above :

,cos(a+6) _ ,cos(B—6) .
a 5 = 3 3
sin & sin 8

solving for 6, we finally obtain

0_acota—6cotﬁ.

tal
& a+o

151. Exercises.

(1) A homogeneous rod AB = 2/=8 ft., weighing ¥ =20 lbs,,
rests with one end 4 on a horizontal plane 4/, and with the point £
on a support whose height above 44 is DE =4 = 3 ft. A horizontal
cord 4D = d = 4 ft. holds the rod in equilibrium. Find the tension 7"
of this cord, and the reactions at 4 and £.

(2) A weightless rod 45 of length / can turn freely about one end 4
in a vertical plane. A weight /¥ is suspended from a point C of the
rod; A4C=c¢. A string BD attached to the end B of the rod holds it
in equilibrium in a horizontal position, the angle 48D being a = 150°.
Find the tension 7" of the string and the resulting pressure 4 on the
hinge at A4.

-

<
:
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(3) A uniform rod 48 = 2/ of weight I¥ rests with its upper end A’
against a smooth vertical wall, while its lower end B is fastened by a.
string of given length, ZC = 24, to a point C in the wall. The rod and
the string are in the vertical plane at right angles to the wall. Find the
position of equilibrium, 7z.e. the angle ¢ = 4CB, the tension 7 of the
string, and the pressure A4 against the wall.

(4) A uniform rod 48 = 2/ of weight I# rests with one end 4 on a
smooth horizontal plane 4C, with the other end A against a smooth
vertical wall ZC, the vertical plane through 42 being at right angles to
the intersection C of the wall with the horizontal plane. The rod iskept
in equilibrium by a string £C. Find the tension 7 of this string if the
angles CAB =0 and £CA = ¢ are given.

(5) A weightless rod 48 =/ can revolve in a vertical plane about a
hinge at 4 ; its other end 7 leans against a smooth vertical wall whose
distance from 4 is 4D =a. At the distance 4C = ¢ from 4, a weight
W is suspended. Find the horizontal thrust 4, at 4 and the normal
pressures 4, and B at 4 and B.

(6) The same as (5) except that at /B the rod rests on a smooth hori-
zontal cylinder whose axis is at right angles to the vertical plane through
AB. In which of the two problems is the horizontal thrust 4, at 4
least?

(7) The lower end 4 of a smooth uniform rod 48 of weight I rests
on a smooth horizontal plane making an angle 6 with it. At the pointC it
rests on a smooth cylinder whose axis is horizontal and at right angles to
the vertical plane through the rod; at D the rod is pressed upon by
another smooth cylinder whose axis is parallel to that of the cylinder
at C. Determine the reactions at 4, C, D, if W, 6, AB=2/, CD=«a
are given.

(8) A smooth weightless rod 48 = /rests at C on a smooth horizon-
tal cylinder whose axis is at right angles to the vertical plane through
the rod ; its lower end 4 leans against a smooth vertical wall whose dis-
tance from C is CD=a; from its upper end B a weight IV is
suspended. Determine the distance 4C =x for equilibrium, and the
reactions at 4 and C.

(9) A uniform rod of weight 7 is hinged at its lower end 4, while its
upper end B leans.against a smooth vertical wall. The rod is inclined
at an angle 6 to the vertical, and carries three weights, each equal to
w, at three points dividing the rod into four equal parts. Determine
the pressure on the wall and~ the reaction of the hinge.

-
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(10) A homogeneous rod 48 = 2/ of weight /¥ rests with one end 4
-on the inside of a fixed hemispherical bowl of diameter 2« and leans at
C on the horizontal rim of the bowl, so that the other end B is outside.
Determine the inclination to the horizon # in the position of equilibrium.

2. STABILITY.

152. The equilibrium of the forces acting on a rigid body may
subsist while the body is in motion. Thus, if the motion con-
sist in a mere translation with constant velocity, the equilibrium
will not be disturbed during the motion if the forces remain
equal and parallel to themselves.

If, however, the body be subjected to a rotation, this will in
general not be the case. The <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>