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PREFACE.

THE present work owes its existence mainly to the difficulty of

finding a good modern text-book suited to the requirements of the

American student.

In England it is customary to take a thorough course in elementary

mechanics (comprising plane statics and kinetics of a particle) before

entering upon the study of higher mathematics
;
and there is no

lack of works of this character (Loney, Macgfegor, Selby, Thomson

and Tait's Elements, Hicks, Robinson, Browne, Blaikie, Parkinson,

Wormell, Lodge, Laverty, etc.), some of which are very well adapted

to the purpose. A good course in analytic geometry and the differ-

ential and integral calculus will then prepare the student for reading

the more advanced English works on analytical statics (Todhunter,

Minchin, Routh) and rigid dynamics (Williamson and Tarleton, Routh,

Thomson and Tait, Price, Besant, etc.). A similar arrangement is

presupposed by most of the French and German treatises.

In many American colleges and universities, however, the student

takes up the study of mechanics at a later stage, after having acquired

a knowledge of the elements of higher mathematics. A somewhat

different treatment of the subject of mechanics is required in this*

case.

The present volume, which is devoted to kinematics, forms the first

of three parts of nearly equal extent. The second part, after an intro-

duction to dynamics in general, takes up statics ;
it will appear in the

fall of this year. The third part, which will be ready in the fall of

1894, is devoted to kinetics.

While the work is intended, first of all, as an introduction to the

v
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vi PREFACE.

science of theoretical mechanics as such, the author has constantly

kept in mind the particular wants of engineering students, aiming to

make it serve as a preparation for the practical applications of this

science, and to bring out the utility and importance of the purely

mathematical training. General theories are illustrated by special prob-

lems and applications in the text, and sets of exercises are inserted

to be worked out by the student.

To keep the whole work within reasonable bounds, the more ad-

vanced parts of the subject had to be strictly excluded. Bibliographi-

cal references have therefore been given for the use of any who are

desirous to pursue the subject farther. In accordance with the ele-

mentary character of the work, these references are not to original

memoirs, but to such standard treatises as can be expected to be

found in a well-assorted college library.

At a first reading, the Articles 57-87, 181-214, 221-244, 2 7 2-35>

can be omitted, also some of the applications and the more difficult

exercises.

ALEXANDER ZIWET.
ANN ARBOR, MICH.,

July, 1893.
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OF THE

UNIVE

THEORETICAL MECHANICS

INTRODUCTION.

1. The science of theoretical mechanics has for its object

the mathematical study of motion.

2. The idea of motion is intimately related to the funda-

mental ideas of space, time, and mass. It will be convenient

to introduce these consecutively. Thus we shall begin with a

purely geometrical study of motion, without regard to the time

consumed in the motion and to the mass of the thing moved,

the moving object being considered as a mere geometrical

configuration. This introductory branch of mechanics may be

called the geometry of motion.

3. The introduction of the idea of time will then lead us to

study the velocity and acceleration of geometrical configura-

tions. This constitutes the subject-matter of Kinematics proper.

The name Kinematics is, however, used by many authors in a

less restricted sense, so as to include the geometry of motion.

4. Finally, endowing our geometrical points, lines, and other

configurations with mass, we are led to the ideas of momentum,

force, energy, etc. This part of our subject, the most compre-

hensive of all, has been called Dynamics, owing to the importance
of the idea of force in its investigation. For the sake of con-

venience it is usually divided into two branches, Statics and

PART I I I



2 INTRODUCTION. [4.

Kinetics. In statics those cases are considered in which no

change of motion is produced by the acting forces, or, as it is

commonly expressed, in which the forces are in equilibrium.

The investigations of statics are therefore independent of the

element of time. Kinetics treats in the most general way of

the changes of motion produced by forces.



;.] LINEAR MOTION.

CHAPTER I.

GEOMETRY OF MOTION.

I. Linear Motion ; Translation and Rotation.

5. Motion consists in change of position.

6. We begin with the simple case of a point moving in a

straight line. The position of a point P in a line is deter-

mined by its distance OP=x from some fixed point or origin,

O, assumed in the line, the length x being taken with the

proper sign to express the sense (say forward or backward, to

the right or to the left) in which it is to be measured on the

line. This sense is also indicated by the order of the letters, so

that PO=-OP, and OP+PO= o.

The position of a point in a line is thus fully determined by
a single algebraical quantity or co-ordinate

;
viz. by its abscissa

x=OP.

7. Let the point P move in the line from any initial position

P
Q (Fig. i) to any other position Pv and let OP =x

Q, OP^xv

This change of position, or displacement, is fully determined

by the distance P
QPl

=^
1 x^ traversed by the point.

Now let this displacement PQ
P

l
be followed by another dis-

placement in the same line, from P
l
to P2 ,

in the same sense as
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the former, or in the opposite sense. In either case the total,

or resultant, displacement is the algebraic sum of the two dis-

placements PoPv P\P%> which are called its components; i.e.

we have /> />
2
=/y^ +/y>2>

or /y\ +/y>2+/y> == o, what-

ever may be the positions of the points PQ, PI} P% in the line.

This reasoning is easily extended to any number of compo-

nent displacements ;
that is, the resultant of any number of

consecutive displacements of a point in a line is a single displace-

ment equal to the algebraic sum of the components.

Similar considerations apply to the motion of a point in a

curved line provided the displacements be always measured

along the curve.

8. Let us next consider the motion of a rigid body. The

term rigid body, or simply body, is used in kinematics to denote

a figure of invariable size or shape, or an aggregate of points

whose distances from each other remain unchanged. Examples
are : a segment of a straight line, a triangle, a cube, an ellipsoid,

etc.

Imagine such a body M brought in any manner from some

initial position MQ
into any other position Mv This displace-

ment MM
l

is determined by the displacements of the various

points of the body. We shall see that, even in the most general

case, the displacements of three points of the body determine

those of all other points, and consequently the displacement of

the whole body.

There are, however, two special cases of motion, translation

and rotation, in which the displacement of the body is fully

determined by the displacement of a single point : such motions

can be called linear. There is also a class of motions deter-

mined by the displacements of only two points of the body :

this is called plane motion.

9. The displacement of a rigid body is called a translation

when the displacements of all of its points are parallel and equal.

It is evident that in this case the displacement of any one
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point of the body fully represents the displacement of the

whole body. The translation M
Q
M

1
of a rigid body M from a

position MQ to a position M^ is therefore measured by the

rectilinear segment PQ
P

1
that represents the displacement of

any point P of the body M.

Two or more consecutive translations of a rigid body in the

same direction produce a resultant displacement of translation

equal to the algebraic sum of the components.

10. When a rigid body has two of its points fixed, the only
motion it can have is a rotation about the line joining the fixed

points as axis. In a motion of rotation all points of the body

excepting those on the axis describe arcs of circles whose centres

lie on the axis while the points on the axis are at rest.

The different positions of a rotating body may be referred

to any fixed plane passing through the axis of rotation. Any
plane of the body passing likewise through the axis will make
with the fixed plane an angle 6 which varies in the course

of the motion. This angle, taken with the proper sign, fully

determines the positions of the body.

Let the body rotate from a position to a position 6^ ;
the

angle 0-^ 0^ measures the corresponding displacement, or the

rotation, just as (Art. 7) the distance P
Q
P

l
=^

l
x measures

the displacement of a point, and hence (Art. 9) the translation

of a rigid body.

Two or more consecutive rotations of a rigid body about the

same axis give a resultant rotation whose angle is the algebraic

sum of the angles of the component rotations.

11. The particular case when the rigid body is a plane figure

whose motion is confined to its plane deserves special mention.

If one point of such a figure be fixed, the figure can only have

a motion of rotation, every other point of the figure describing

an arc of a circle whose centre is the fixed point. This point

is therefore called the centre of rotation. The positions of the

figure are given by the angle that any line of the figure passing
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through the centre makes with any fixed line through the centre

in the plane.

12. We have seen that a translation as well as a rotation is

measured by a single algebraical quantity, the translation by a

distance, the rotation by an angle. This is the reason why
such motions may be called linear or of one dimension. The

two fundamental forms of motion, translation and rotation, are

thus seen to correspond to the two fundamental magnitudes of

metrical geometry, viz. distance and angle.

It is to be noticed that both for translations in the same

direction and for rotations about the same axis the resultant

displacement is found by algebraic addition of the components,

not only when the components are consecutive motions, but even

when they are simultaneous. Thus we may imagine a point P
displaced by the amount P^P^ along a straight line while this

line itself is moved along in its own direction by an amount

Q^Qv The resultant displacement of P is the algebraic sum

13. Translations being measured by distances or lengths,

and rotations by angles, we need in mechanics a unit of length

and a unit of angle.

The two most important systems of measurement are the

C. G. S. (i.e. centimetre-gramme-second) system, and the F. P. S.

(i.e. foot-pound-second) system. The former is frequently

called the scientific system ;
it is based on the international

or metric system of weights and measures. The F. P. S., or

British system, is still used in England and the United States

almost universally in engineering practice.*

14. The unit of length in the C. G. S. system is the centimetre

(cm.), -i.e. YOU of the metre. The original standard metre is a

* For fuller information on all questions relating to standards and units see

J. D. EVERETT, Illustrations of the C- G-. S. svsten: of units with tables of physical

constants; London, Macmillan, 1891.
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platinum bar preserved in the Palais des Archives in Paris, a

legalized copy of which has been deposited at Washington,

D.C. The metre can be defined as the distance between two

marks on the standard metre when at a temperature of o C.

In the F. P. S. system, the unit of length is the foot, i.e.
-J-

of

the standard yard. The original British standard yard is a

bronze bar preserved in London. For the United States the

yard is defined as the distance between the twenty-seventh and

sixty-third divisions of the brass standard yard kept in the

Bureau of Weights and Measures at Washington, when the bar

is at a temperature of i6| C. or 62 F.

The relation between these two fundamental units of length

is, according to the United States Coast and Geodetic Survey

Bulletin No. 9, 1889,

I cm. = 0.032 808 2 ft.

For practical use we have the following approximate relations :

i m. = 3.2809 ft., i ft. = 30.48 cm.,

i cm. = 0.3937 in., i in. = 2.54 cm.

15. The unit of angle is either the degree, i.e. -^ of one

revolution, or the radian, i.e. the angle measured by an arc

whose length is equal to the radius.

If be any angle expressed in radians, and , a', a" the same

angle expressed respectively in degrees, minutes, seconds, we

have the relations

7T o T i 7T ita= cc = a' = or,
I 80 I08OO 648000

or a= o.Oi/ 45 301 = o.OOO 29 1 <*'= 0.000004 8 5 a".
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II. Plane Motion.

16. The position of a plane figure in its plane is fully deter-

mined by the positions of any two of its points since every

other point of the figure forms with these two points an invari-

able triangle. But the position of the figure can of course be

determined in other ways ;
for instance, by the position of one

point and that of a line of the figure passing through the point ;.

or by the position of two lines of the figure.

17. Let us now consider the motion of a plane figure F in its.

plane from any initial position FQ
to any other position F^

The displacement FQ
F

1
can be brought about in various ways.

Thus, it would be suffi-

cient to bring any two

points A, B (Fig. 2) of

the figure F from their

initial positions A Q ,
B

Q
in

FQ to their final positions
'B i Av Bl

in Fv This can

be done, for instance, by
first giving the whole fig-

ure a translation through

a distance A Q
A

1
and then

a rotation by an angle

^ ;
or by such a rota-

Fig. 2.

andequal to the angle between A
Q

tion followed by the translation.

Instead of A we might have selected any other point of the

figure. But it is important to notice that the angle of rotation

required for a given displacement FQ
F

l
is always the same, while

the translation will differ according to the point selected as

centre.

18. This leads us to inquire whether the centre of rotation

cannot be so selected as to reduce the translation to zero.

Now any rotation that is to bring A from A
Q
to A

1
must have
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its centre on the perpendicular bisector of A^A^\ similarly for

B. Hence the intersection C of the perpendicular bisectors of

A
Q
A

1
and B^B^ is the only point by rotation about which both

A and B can be brought from their initial to their final posi-

tions. That they actually are so brought follows at once from

the equality of the angles A^CBQ
and A

1
C^

1 (and hence of the

angles A^CA l
and B^CB^) which are homologous angles in the

equal triangles A^CBQ
and A^CBV

We thus have the proposition : Any displacement of an inva-

riable plane figure in its plane can be brought about by a single

rotation about a certain point which we may call the centre of

the displacement.

19. The construction of the centre C given in the preceding

article becomes impossible when the bisectors coincide (Fig., 3)

and when they are parallel (Fig. 4).

In the former case, C is readily

found as the intersection of A^B
and A^BV In the latter, i.e. when-

ever A^A^B^B^ the centre lies at

infinity, and the rotation becomes

a translation.

Any translation may therefore be regarded as a rotation about

a centre at infinity.

20. Let the figure F pass through a series of displacements

F
Q
F

lt F-)Fy ... Fn_Fn . Each displacement has its angle and

its centre. If the successive positions FQ ,
Fv ... Fn of the figure
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are taken each very near the preceding one, the angles of rota-

tion will be very small, and the successive centres Cv C
2 ,

...

Cn will follow each other very closely. In the limit, i.e. when for

the series of finite displacements we substitute a continuous

motion of the figure, the centres C will form a continuous curve

(c) and the angles become the infinitely small angles between

the successive normals to the paths described by the points of

the figure. The point C about which the figure rotates in any
one of its positions during the motion is now called the instan-

taneous centre; the locus of the centres, that is the curve (c), is

called the centrode, or path of the centre. It is apparent that

in any position of the moving figure the normals to the paths of

all its points must pass through the instantaneous centre, and the

direction of motion of any such point is therefore at right angles

to the linejoining it to the centre.

21. The centres C are points of the fixed plane in which the

motion of the figure F takes place. But in any position F1
of

this figure some point

C\ of F will coincide

with the point C of the

fixed plane. Thus, in

the case of finite dis-

placements (Fig. 5), let

the figure F begin its

motion with a rotation

of angle O
l
about a point

C-L
of the fixed plane ;

let C\ be the point of

the moving figure that

coincides during this

Fig. 5. rotation with Cv
The next rotation, of angle 2, takes place about a point C2

of the fixed plane. The point of the moving figure that now
coincides with C2 was brought into the position C2 by the pre-
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ceding rotation. Its original position is therefore obtained by

turning 6\(72 back by an angle 6
l

into the position C^C <%.

The rotation of angle 2
about (72 brings a new point (73 of

the moving figure to coincidence with the fixed centre C3 ;
and

the original position C'3
of this point can be determined by

first turning C2CB back about C2 by an angle 2
into the

position C2D, and then turning the broken line C^C^D by a

rotation of angle :
about 6\ back into the position C\C\C\.

Continuing this process we obtain, besides the broken line

C
1
C2CB

... formed by joining the successive centres of rotation

in the fixed plane, a broken line C\CyC\... in the moving

figure formed by joining those points of this figure which in the

course of the motion come to coincide with the fixed centres.

The whole motion may be regarded as a kind of rolling of the

broken line C\C\C\ . . . over the broken line <<%

22. In the case of continuous motion each of the broken lines

becomes a curve, and we have actual rolling of the curve (c
f

), or

body centrode, over the curve (c), or space centroder The con-

tinuous motion of an invariable plane figure in its plane may

therefore always be produced by the rolling (without sliding) of

the body centrode over the space centrode. The point of contact

of the two curves is of course the instantaneous centre.

23. It appears from the preceding articles that the continuous

motion of a plane figure in its plane is fully determined if we

know the centre of rotation for every position of the figure.

This centre can be found as the intersection of the normals of

the paths of any two points of the figure, so that the motion

of the figure will be known if the paths of any two of its points

are given. This, however, is only one out of many ways of

determining plane motion by two conditions.

Thus the motion may be determined by the condition that a

curve of the moving figure should remain in contact with two

fixed curves. In this case the instantaneous centre is found as

the intersection of the common normals at the points of contact.
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The condition that a curve of the moving figure should always

pass through a fixed point may be regarded as a special case of

the condition just mentioned, one of the fixed curves being

reduced to a point.

24. Any curve of the moving figure forms during the motion

an envelope, the points of the envelope being the intersections

of the .successive infinitely near positions of the moving curve.

Let /, /' be two such successive positions of the curve, A their

intersection, C the instantaneous centre
;
then CA is perpen-

dicular to / as well as to /', and hence to the envelope. The

envelope can therefore be constructed by letting fall normals

from the instantaneous centres on the corresponding positions

of the generating curve.

25. The following examples will illustrate the method of

finding the centrodes and the path of any point of the moving

figure in plane motion.

Elliptic motion : Two points of a plane figure move along two

fixed lines that are at right angles to each other.

Let A
y
B (Fig. 6) be the points moving on the lines Ox, Oy ;

the perpendiculars to these lines erected at A and B intersect

at the instantaneous centre C. Denoting by 2 a the invariable

distance of A and B, we have

OCAB=2a for all posi-

tions of the moving figure.

The fixed centrode (c) is

therefore a circle of radius

2 a described about the in-

tersection O of the fixed

lines.

Fig. 6.

To find the body centrode

(c
1

)
we must construct the

triangle ABC for all possible

positions of AB. As BCA is always a right angle, the body
centrode will be a circle described on AB as diameter. Hence
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the whole motion can be produced by the rolling of a circle of

radius a within a circle of radius 2 a.

The student is advised to carefully carry out the construc-

tions indicated in this as well as the following problems. Thus,

in the present case, draw the moving figure, i.e. the line AB,
in a number of its successive positions in each of the four

quadrants, and construct the instantaneous centre C in every

case. This gives a number of points of the space centrode.

Then take any one position of AB and transfer to it as base

all the triangles ABC previously constructed. The vertices

of these triangles all lie on the body centrode.

26. To find the equation of the path of any point P of the

moving figure, let this

point be referred to a co-

ordinate system fixed in,

and moving with, the fig-

ure (Fig. 7) ;
let the mid-

dle point O r of AB be

the origin, and O'A the

.axis O'x', of this system.

Then the co-ordinates x',

Fij/
f of P in this moving

system are connected with

its co-ordinates x, y in the fixed system Ox, Oy by the following

equations,

'

cos<,y(ax !

]

where < is the angle OAB that determines the instantaneous

position of AB. Solving these equations for sin< and cos0,

squaring and adding, we find for the equation of the path of P

_-

Or ^~
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which represents an ellipse, since the determinant

a x f

)
z+yfz

, 2ay
f

-2ay' y

[27.

is necessarily positive.

In general, therefore, the points of the figure describe

ellipses ;
O' describes a circle

;
A and B describe straight lines,

and so does every point on the circle of diameter AB. It is

this fact that by rolling a circle within a circle of double diam-

eter the points of the smaller circle are made to describe seg-

ments of straight lines, which makes this form of motion of

practical importance : it may serve to transform circular into

rectilinear motion.

27. Elliptic Motion (continued) : Two points A, B of a plane

figure move along two fixed lines inclined to each other at an

angle a> (Fig. 8).

Fig. 8.

This case is readily reduced to the preceding one. The

instantaneous centre is found as before
;

its distance OC from

the intersection of the fixed lines OA, OB is again constant
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and =AB/sm a
;
for O, A, C, B all lie on a circle whose centre

O' bisects OC; hence

The motion is therefore produced by the rolling of this circle

of diameter AB/sm o> within a circle of twice this diameter

described about O
;

it is not essentially different from the pre-

ceding case (Art. 26). This will also be seen if we take OA as

axis of x, the perpendicular to it through O as axis of y. This

perpendicular Oy intersects the circle OAB in a point B', which

is the end of the diameter AO'B' and moves along Oy during

the motion. The points A, B 1 of the figure move, therefore,

along the rectangular lines Ox, Oy, just as in the problem of

Art. 26.

28. Connecting Rod Motion : One point A of the figure describes

a circle, while another point B moves on a straight line, passing

through the centre O of the circle (Fig. 9).

Fig. 9.

With OB as polar axis, the equation of the fixed centrode is

r* cos2 d- 2 ar cos2 6+ a2= / 2 .

This, as well as the equation of the body centrode, is of the

sixth degree in rectangular Cartesian co-ordinates. But the

graphical construction presents no difficulties.
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29. Conchoidal Motion : A point A of the figure moves along a

fixed straight line 1, while a line of the figure, 1', containing the

point A always passes

through a fixed point B

(Fig. 10).

The fixed point B may
be regarded as a circle

of infinitely small radius,

which the line /' is to

touch. The instantane-

ous centre is therefore

the intersection C of the

perpendiculars erected at A on / and at B on I'.

The fixed centrode is a parabola whose vertex is B. To

prove this we take the fixed line / as axis of y, the perpendicular

OB to it drawn through the fixed point B as axis of x. Then,

putting ^.OBA=(j> and OB= a, we have for the co-ordinates

ofC

10.

ya tan<
;

hence xa=y2
/a, or, for B as origin and parallel axes, y*=ax.

The equation of the body centrode, for OB, OA as axes of x

and;j/, is a\x
2
+y*)=x*, or r cos2 Q a.

The points of /' can easily be shown to describe conchoids,

whence the name of this form of plane motion.

30. The results obtained in the preceding articles for the

motion of a plane figure in its plane apply directly to the motion

of a rigid body, if any one point of the body describes a plane

curve while a line of the body remains parallel to itself. For in

this case all points of the body move in parallel planes, and the

motion in any one of these planes determines the motion of the

whole figure.

The only modifications required would be that instead of an

instantaneous centre we should have an instantaneous axis, viz. :
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the perpendicular to the plane of motion of any point through
the centre of motion of this point ;

and that the centrodes are

now not curves, but cylindrical surfaces rolling one upon the

other.

31. Exercises.

(1) Show how to find the direction of motion of any point /'rigidly

connected with the connecting rod of a steam engine.

(2) A wheel rolls on a straight track; find the direction of motion

of any point on its rim. What are the centrodes in this case ?

(3) Show how to construct the normal at any point of a conchoid.

(4) Find the equation of the fixed centrode when a line V of a

plane figure always touches a fixed circle O, while a point A of V moves

along a fixed line /.

(5) Show that, in (4), the fixed centrode is a parabola when the

fixed circle touches the fixed line.

(6) Two straight lines / f

,
/" of a plane figure constantly pass each

through a fixed point O', O" ; investigate the motion.

(7) Four straight rods are jointed so as to form a plane quadrilateral

ABDE with invariable sides and variable angles. One side AB being

fixed, investigate the motion of the opposite side ; construct the cen-

trodes graphically.

(8) Let a straight line / in a fixed plane be brought by a finite

displacement from an initial position / into a final position 4 ;
and let

P be any point of/, PQ its initial position (in / ), Pl its final position

(in 4) . Then the following propositions can be proved :

(a) The middle points of the displacements P^ of all points P of

/ lie in a straight line
;

() the lines /o/i envelop a parabola ;

(<:) the projections of the displacements P^Pi on the line joining

their middle points are all equal ;

(d) if / have a continuous motion in the plane, the tangents to the

paths of all its points envelop a parabola of which the instantaneous

centre is the focus and / the tangent at the vertex.

PART I 2
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III. Spherical Motion.

32. The motion of a spherical figure of invariable form on its

sphere presents a close analogy to plane motion
;
in fact, plane

motion is but a special case of spherical motion, since a

plane may be regarded as a sphere of infinite radius.

33. By a generalization similar to that of Art. 30, the study
of the motion of a spherical figure on its sphere leads directly to

the laws of motion of a rigid body having one fixed pgint. For

the motion of such a body is evidently determined by the spheri-

cal motion on any sphere described about the fixed point.

34. Let us consider any two positions FQ
and F

1
of a spheri-

cal figure Fon its sphere, and let O be the centre of the sphere.

Just as in the case of plane motion (Art. 18) the displacement

F
Q
F

1
can always be brought about by a single rotation about a

point C on the sphere, or what amounts to the same, by a single

rotation about the axis OC. The proof is strictly analogous

to that given in Art. 18. We
first remark that the position of

the figure on the sphere is fully

determined by the position of

two of its points, say A and B
(Fig. n), since any third point

forms with these an invariable

spherical triangle. Let A
, B^

be the positions of A, B in FQ ;

Av B^ their positions in F
l ;

and draw the great circles A A
l

and B^BV Their perpendicular

bisectors intersect in two points C, D which are the ends of a

diameter of the sphere. CD is the axis of the displacement

FQFl}
and the angle A^CA^ or B^CB^ gives the angle of the

displacement.
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35. If we consider a series of positions of the moving figure,

F
,
Fv Fy . . ., we obtain a series of axes of rotation, say cv c

z ,
. . .

;

and in the limit when these positions follow one another at

infinitely near intervals, the axes cv cy ... will form a cone fixed

in space, with the vertex at the centre O of the sphere. The

points Cv C2 ,
... where these axes intersect the sphere form a

curve (c) on the fixed sphere, while the points C'v C'%, ... of the

moving figure with which these fixed points come to coincide

form a spherical curve (c') invariably connected with the moving

figure. The whole motion may be produced by the rolling of

the curve (c'} over the curve (c), or also by the rolling of the

corresponding cones one over the other. We have thus the

proposition that any continuous motion of a rigid body having a

fixed point can be produced by the rolling of a cone fixed in the

body on a fixed cone, the vertices of both cones being at the fixed

point.

IV. Screw Motion.

36. The position of a rigid body in space is fully determined

by the position of any three of its points not situated in the

same straight line. For any fourth point of the body will form

an invariable tetrahedron with these three points. As two

points determine a straight line, the position of a rigid body

may also be given by the position of a point and line or by
the positions of two intersecting or parallel lines of the body.

37. The position of a point being determined by its three

co-ordinates requires three conditions to be fixed. A point is

therefore said to have three degrees offreedom when its position

is not subject to any conditions. One conditional equation

between its co-ordinates restricts the point to the surface repre-

sented by that equation ;
the point is then said to have but

two degrees of freedom and one constraint. Two conditions

would restrict the point to a line, the curve of intersection of

the two surfaces represented by the equations of condition ;
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the point has then but one degree of freedom and two con-

straints.

A rigid body that is perfectly free to move has six degrees of

freedom. For we have seen that its position is fully determined

when three of its points not in the same line are fixed. The

nine co-ordinates of these points are, however, not indepen-

dent
; they are connected by the three equations expressing

that the three distances between the three points are invariable.

Thus the number of independent conditions is 9 3 = 6.

A rigid body with one fixedpoint has three degrees of freedom
and therefore three constraints. For it takes two more points,

i.e. six co-ordinates, to fix the position of the body ;
and the

distances of these two points from each other and from the

fixed point being invariable, there are again three conditional

equations to which the six co-ordinates are subject. The three

co-ordinates of the fixed point may be regarded as the three

constraints.

A rigid body with two fixed points, i.e., with a fixed axis, has

one degree of freedom, and five constraints. Indeed, the six

co-ordinates of the two fixed points are equivalent to five con-

straining conditions, since the distance of these two points is

invariable.*

38. Let us now consider any two positions MQ ,
M of a rigid

body M, given by the positions A
Q ,
B

Q ,
CQ and A v Bv \ of

three points A, B, C of the body. The displacement MQ
M

l

can be effected in various ways. Thus we might for instance

begin by giving the whole body a translation equal to A
Q
A

l

which would bring the point A to its final position while all

other points of the body would be displaced by distances par-

allel and equal to A
Q
A r As the body has now one of its

points, A, in its final position, it will (by Art. 34) require only

*
Interesting remarks on the mechanical means of producing constraints of

various degrees will be found in THOMSON and TAIT, Natural philosophy, London,

Macmillan, new edition, 1879, Art. 195 sq. (Part I., p. 149).
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a single rotation about a certain axis passing through this point

to bring the whole body into its final position. It thus appears

that any displacement of a rigid body can be effected by sub-

jecting the body first to a translation and then to a rotation

(or vice versa, as is easily seen) ;
and this can be done in an

infinite number of ways, as the displacement of any point of

the body may be selected for the translation.

39. It is to be noticed that for all these different ways of

effecting the displacement M^Ml
the direction of the axis of

rotation and the angle of rotation are the same. To see this

more clearly, let the displacement be effected first by the trans-

lation A
Q
A

1
and a rotation of angle a about the axis a passing

through A l ;
and then let the same displacement be produced

by the translation B^B^ of some other point B and a rotation qf

angle /3 about an axis b passing through B^. We wish to show

that a^ and b are parallel and that the angles a and ft are equal.

Consider a plane TT of the rigid body which in its original

position TTO is perpendicular to the axis av The translation

A
Q
A

l
transfers it into a parallel position and the rotation a about

a
1
turns it in itself into its final position TTJ ;

hence TTO
and

TTJ

are parallel. The translation B B
1
likewise moves TT into a

position parallel to the original one
;
and as its final position,

irv is parallel to TTO, the axis of rotation b must necessarily be

perpendicular to TTO and 7r
1}

that is b
l
must be parallel to a^.

Again, any straight line / in TT remains parallel to its original

position / after the translations A A
1
and B^BV Its change of

direction is due to the rotations alone
;
the angle of rotation

must therefore be the same for both rotations, viz. equal to the

angle (/Q/J)
formed by the initial and final positions of the line /.

40. Among the different combinations of a translation with

a rotation effecting the displacement MQ
M

l
there is one of

particular importance ;
it is that for which the axis of rotation

is parallel to the translation.

Let us again consider the plane TT perpendicular to the com-
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mon direction of the axes of rotation. To bring any three

points of this plane into their final position it is only necessary

to give the body a translation at right angles to TT such as to

bring TT into its final position and then to add the necessary

rotation for plane motion.

We have therefore the important proposition that it is always

possible to bring a rigid body M from any position M into any
other position M 1 by a translation combined with a rotation about

an axis parallel to the direction of translation, and this can be

done in only one way. The axis so determined is called the

central axis of the displacement.

The order of translation and rotation about the central axis is

indifferent
; indeed, translation and rotation might take place

simultaneously.

41. A motion of a rigid body consisting of a rotation about

an axis combined with a translation parallel to the axis is called

a screw motion, or a twist. We have proved therefore, in Art.

40, that the most general displacement of a rigid body can be

brought about by a single twist.

42. To construct the central axis and find the translation

and angle of the twist when the displacement is given by the

positions A^ B
Q ,

7 and A v B^ 6\ of three points of the body,

we first remark that the projection on the central axis of the

displacement of any point, say A^A^ is equal to the translation

of the twist, and hence the projections of the displacements of

all points of the body (such as A^A^ BQ
B

ly
C
QC^) ar.e all equal.

If therefore from any point O we draw lines OA, OB, OC equal

and parallel to A
Q
A V BQ

BV C
QCV their ends A, B, C will lie in

a plane TT perpendicular to the central axis, and the perpendicu-

lar p dropped from O on this plane TT will represent in length

and direction the translation of the twist.

The direction of the central axis being thus determined, we

find its position in space by projecting the displacements of any

two of the three given points, say A Q
A

l
and B^BV on the plane
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TT, and finding the intersection of the perpendicular bisectors of

these projections. This intersection is evidently a point of the

central axis, and a perpendicular through it to the plane TT will

give the central axis in position.

43. In the case of continuous motion there exists a central

axis for every position of the body; but its position both in

space and in the body in general varies in the course of the

motion. The central axis at any moment is therefore called in

this case the instantaneous axis.

44. The straight lines of space which during the progress of

the motion become instantaneous axes for the infinitely small

twists of the body form a ruled surface. Similarly, the lines of

the moving body which in the course of the motion come to

coincide with these axes generate another ruled surface. In

.any given position of the body these two surfaces are in contact

along a line (the instantaneous axis) which is a generator in

each of the two surfaces. The body has an infinitely small

rotation about this line and at the same time slides along this

line through an infinitely small distance.

Thus the continuous motion of a rigid body in the most general
-case can be regarded as consisting of the combined rolling and

sliding of one ruled surface over another.
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V. Composition and Resolution of Displacements.

i. TRANSLATIONS; VECTORS.

45. All the points of a rigid body subjected to a translation

describe parallel and equal lines (Art. 9). The translation of

the body is therefore fully determined by the displacement A^A^
of any one point A of the

body (Fig. 12), and can be

represented geometrically by
A

Q
A

1
or any line equal and

parallel to it, like 01.

A segment of a straight

line of definite length, direc-

tion, and sense is called a

C,

Fig. 12.
vector. The sense of the

vector (see Art. 6) which

expresses whether the translation is to take place from o to i or

from i to o, is indicated graphically by an arrow-head, and in

naming the vector, by the order of the letters, 01 and 10 being

vectors of opposite sense.

46. Imagine a rigid body subjected to two successive trans-

lations. From any point o (Fig. 13) draw a vector 01

representing the first translation, and from its end I a vector

12 representing the second transla-

tion. The vector 02 will then repre-

sent a translation that would bring

the body directly from its initial to

its final position. This vector 02 is

called the geometric sum, or the resul-

tant, of the vectors 01 and 12, which

are called the components. The oper-

ation of combining the components into a resultant, or of

finding the geometric sum of two vectors, is called geometric

addition, or composition, of vectors.

Fig. 13.
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47. The process of geometric addition explained in Art. 46
for the case of two components is readily extended to the gen-

eral case of n components. It thus appears that the succession of

any number of translations of a rigid body has for its resultant

a single translation whose vector isfound by geometrically adding
the vectors of the component translations. (Compare Art. 7.)

48. The order in which vectors are combined, or added, is

indifferent for the result. This is directly apparent from a

figure in the case of two vectors (Fig. 14).

For the case of n vectors it follows from
JL A

the consideration that any order of the vec-

tors can be obtained by repeated interchanges

of two successive vectors.

Geometric addition agrees, therefore, with

algebraic addition in being commutative. Fig. 14.

49. The vector, as the geometric symbol of a translation, has

length, direction, and sense ; but it is not restricted to any
definite position, the same translation being represented by all

equal and parallel vectors. We express this by saying that two

vectors are equal if they are of the same length, direction, and sense.

Translations are not the only magnitudes in mechanics

that can be represented by vectors. We shall see later that

velocities, accelerations, moments of couples, etc., can all be

represented by vectors and are therefore compounded into

resultants and resolved into components by geometric addition

and subtraction. In this lies the importance of this subject

which in its special application to translations might appear too

simple and self-evident to require extended presentation.

The case when the vectors represent concurrent forces is

probably known to the student from elementary physics as the

"parallelogram
"
or "

polygon
"

of forces.

50. A translation may be resolved into two or more translations

by resolving its vector into components.
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When the resultant translation and one of its components are

given by their vectors, the process of finding the other com-

ponent is called geometric sub-

traction. It is effected, like

algebraic subtraction, by re-

versing the sense of the com-

ponent to be subtracted, and

then geometrically adding it

to the resultant (Fig. 15).

In other words, the geometric

difference of two vectors AB
and CD is found by geometri-

Fig. 15.
cally adding to AB a vector

equal but opposite to CD.

Thus, in Fig. 15, 02 is made equal and parallel to AB
;
21 is

equal and parallel to CD reversed, that is to DC\ 01 is the

required difference.

51. The composition of translations by geometric addition of

their vectors (Art. 47) holds, not for successive translations only,

but, owing to the commutative law (Art. 48), for simultaneous

translations as well. This is easily seen by resolving the com-

ponents into infinitesimal parts.

To obtain a clear idea of two simultaneous translations it is

best to imagine the body as having one of these translations

with respect to some other body, while the latter itself is sub-

jected to the other translation. A man walking across the deck

of a vessel in motion, an object let fall in a moving carriage, a

spider running along a branch swayed by the wind, are familiar

examples.

52. This leads us to the idea of relative motion.

Properly speaking, all motion is relative; that is, we can

conceive of the motion of a body only with regard to some other

body, called the body of reference. If the latter be regarded as

fixed, the motion of the former is called its absolute motion.
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Thus in speaking of the motion of a railway train, we usually

regard the earth as fixed and can thus call the displacement oi

the train from one station to another an absolute displacement.

If, however, the motion of the earth with regard to the sun

be taken into account, the displacement of the train from

station to station is the relative displacement of the train with

respect to the earth
;
and its absolute displacement would be

found by combining this relative displacement with the abso-

lute displacement of the earth (with respect to the sun regarded

as fixed).

53. It follows that when the two displacements are transla-

tions the absolute displacement of the body will be found by

geometrically adding its relative displacement to the absolute

displacement of the body of reference. And conversely, the rela*

tive displacement of a body is found by geometrically subtracting

from its absolute displacement the absolute displacement of the

body of reference.

54. Analytically, the composition and resolution of vectors is

merely a problem of trigonometry. Thus, the resultant of two

sectors is the diagonal of the parallelogram formed by the two

vectors as adjacent sides
;
the resultant of three vectors is the

diagonal of the parallelepiped having the three vectors as con-

current edges.

55. In the case of more than two or three vectors, however,

the solution by ordinary trigonometry would become rather

tedious, and it is best to proceed as follows :

Assume an origin O and three rectangular axes Ox, Oy, Oz,

.and project each vector on the three axes
;
let X> Y, Z be its

. projections. These projections X, Y, Z are three vectors whose

geometrical sum is equal to the vector. If n vectors were

originally given, we should now have them replaced by 3 n com-

ponents of which n lie in each axis. The components lying in

the same axis can be added algebraically ;
let their respective
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sums be ^X, S F, ^Z. The vectors are therefore equivalent to

the three vectors ^Xy ^Yy ^Z, which form the concurrent edges
of a rectangular parallelepiped whose diagonal drawn through
the origin O is the resultant vector OR = R, i.e.

R=

The direction of this vector is given by the equations

, cos J3=2, cos 7=H
where a, /?, .7 are the angles made by OR with the axes 6V, Oy>

Oz, respectively.

If all the vectors lie in the same plane, we have simply :

2
, tan a=

56. Exercises.

(1) A ship sails first 5 miles N. 30 E., then 12 miles N. 60 E., and

finally 25 miles E. 75 S. Find distance and bearing of the point

reached : (a) graphically, (b) analytically.

(2) Is a scale of 8 miles to the inch sufficient to obtain the results of

Ex. ( i) correctly to whole miles and degrees ?

(3) A rigid body undergoes three translations, of i, 2, and 3 feet,,

whose directions are respectively parallel to the three sides of an equi-

lateral triangle taken the same way round. Find the . resulting dis-

placement.

(4) A ship is carried by the current 2 miles due W., and at the same

time by the wind 4 miles due N.E., and by her screw n miles E. 30
S. Find her resultant displacement.

(5) A ferry-boat crosses a river in a direction inclined at an angle of

60 to the direction of the current. If the width of the river be half a

mile, what are the component displacements of the boat along the river

and at right angles to it ?

(6) Two vectors of equal length a are inclined to each other at an

angle a. Find the resultant in magnitude and direction.

(7) For what angle a, in Ex. (6), is the resultant equal in magni-
tude : (a) to each component a ? (b) to J a ?
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(8) Resolve a vector a into two components making with the vector

angles of 30 and 45 on opposite sides.

(9) Steering his boat directly across a river whose current is due

west, a man arrives on the opposite bank at a point from which the

starting-point bears S.E.
;
the width of the river being 1200 feet, how

far has he rowed ? What is the absolute, and what the relative, displace-

ment of the boat ?

(10) Assuming a raindrop to fall 25 feet in a second in a vertical

direction, find in what direction it appears to be falling to a man : (a)

walking at the rate of 5 feet per second, (b) driving at the rate of 10

feet per second, (r) riding on a bicycle at 25 feet per second, (d) in a

railroad car running 60 feet per second.

(n) Find in magnitude and direction the resultant of 8 translations

of i, 2, 3, 4, 5, 6, 7, 8 feet, respectively, each component making an

angle of 45 with the preceding one : (a) graphically, (b) analytically.

(12) If a, b, c are three vectors whose geometric sum is o, prove*

that a/sin (be) =^/sin (ca) =r/sin (a-6>).

(13) Find the resultant of two translations represented in magnitude
and direction by two rectangular chords of a circle drawn from a point

on its circumference.

(14) From a point C in the plane of a circle whose centre is O,

draw two lines at right angles to each other so as to intersect the circle

in A
y
A' and B, B\ respectively. Show that the resultant of the four

vectors CA, CA', CB, CB< is equal to twice CO.

(15) Prove that the geometric sum of two vectors P^P^ PoP2 issuing

from the same point P passes through the middle point G of P\P$ and

has a length = 2 P G.

(16) Prove that the geometric sum of two vectors P$P\ and /o/a is

equal to ( -f i)P G if G be found as follows : on P^ take Q so that

P Q = -PoPlt and on OP* take G so that QG = ^ QP2 .

n n+ i

(17) Show that Ex. (15) is a special case of Ex. (16).

(18) Prove the following rule for constructing the geometric sum of

n vectors P
(}
P1} PoPz, PoPs, PoPn issuing from the same point P :

on P^ take Gl so that P^ \P^PZ \
on G& take G2 so that

G1G2
= $G1P3 ;

on G^ take G3 so that G2G3
= G2P4 ;

and so on.

If G be the last point so determined, the geometric sum of the n vectors

is =nP G.
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2. ROTATIONS
J
ROTORS.

57. When a rigid body has a motion of rotation about a

fixed axis, all its points with the exception of those on the axis

describe circular arcs whose centres are situated on the axis

(Art. 10).

The elements determining a rotary displacement, or a rotation^

are the axis and the angle of rotation. These elements can be

represented by a single geometrical symbol ;
we

have only to lay off on the axis of rotation a length

01 (Fig. 16) representing on some scale the magni-

tude of the angle 6. An arrow-head can be used

to mark the sense of the angle. It is customary,

at least in English works on mechanics, to adopt

the counter-clockwise sense of rotation as positive.

The arrow-head should then be placed at that end

Fi 16
of the line representing the angle 6 from which

the rotation appears counter-clockwise in a plane

through the other end at right angles to the axis. The arrow

then points in the direction in which an ordinary screw moves

when turned in the positive sense.

This geometrical symbol of a rotation, 01, has been called a

rotor. It becomes of importance in the case of infinitesimal

rotations, as we shall see later (Art. 68).

58. Two or more rotations about the same axis can evidently

be combined into a single rotation about the same axis whose

angle is the algebraic sum of the angles of the component
rotations (Art. 12). As regards rotations about different axes,

we have to distinguish three cases : intersecting axes, parallel

axes, and crossing or skew axes.

It will be shown in the following articles that rotations about

intersecting or parallel axes can always be combined into a

single rotation which may happen to reduce to a translation.

Rotations about skew axes cannot in general be reduced to a
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single rotation or translation
;

it will be shown in the next sec-

tion (Arts. 74-79) that they reduce to a twist, or screw motion.

59. Intersecting Axes. The resultant of two successive rota-

tons, 0J about \ and #2 about 1
2 ,
when the axes \ and 1

2
intersect

in a point O, is a single rotation of angle 6 about an axis 1 passing

through O. The trihedral formed by /
x ,

/
2
and / has at /

x
a dihe-

dral angle = \ lt
at /

2
a dihedral angle = \Q^ while its

exterior angle at /is =J#; that is, we have on a sphere of

radius I described about O :

cos = cos sn sn cos (i)

sn

The truth of this proposition will appear by considering Fig..

17. The rotation 6
1
about the axis /

x brings the axis /2 into its-

final position /'
2 . The rotation 0%

about l\ brings /
x

into its final

position l\. The planes bisecting

the dihedral angles O
l
at

/j
and 2

at l\ intersect in a line / which by
the rotation B

1
about

l^
is brought

'

into the position I', and by the

rotation
2

about /'
2

is brought

back into its original position /.

The effect of the two rotations

taken in this order is therefore to

leave the line / in its place ;
that

is, the resultant of the two succes-

sive rotations is a single rotation

about / as axis. Moreover, inspec-

tion of the figure shows that a

rotation about / by an angle equal

to twice the exterior angle of the trihedral //
x
/
2 at / brings

and /
2 into their final positions l\ and l\.

Fig. 17.
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60. It is to be noticed that /
x
and /

2 are here regarded as

lines of the rigid body ;
and while /

x
coincides with the position

of the first axis of rotation in space, the second axis of rotation in

space has the position l\, and not /
2 . It follows that, in general,

the order of the two rotations is not indifferent. But by repeat-

ing the construction, any number of rotations taken in a definite

order can be combined into a single rotation provided every axis

intersects the axis of the resultant of all preceding rotations.

61. Again, in finding / from /
x
and /

2 ,
the positions of the

axes in the rigid body, as we did in Art. 59, the angle J^ is to

be applied to the plane /j/2 at
/j

in its proper sense, i.e. on that

side towards which the rotation about /
x
takes place ;

but ^#2
at

/
2 is to be applied to this plane in the opposite sense. If,

however, we wish to construct / from the absolute positions of

the axes of rotation in space, /
:
and /'

2 ,
we have to use

and +-|02 .

62. In the case of two infinitely small rotations, say dQ^ and

d6y about intersecting axes /
x ,

/
2 ,

the construction gains

remarkable simplicity. The resulting axis / falls into the plane

of the given axes.

Substituting d6 for sin# and

for cos#, the equations of Art. 59

assume the form

(2'}

sin (//2) _ sin (/]/2)

i

Fig. 18.

components d0
1
and

These equations show that dO can be

found by geometrically adding the

rotors (Art. 57) representing the rota-

tions dO-L and dO%. In other words, the

s (or lengths proportional to them) being

laid off on their respective axes (Fig. 18), the resultant rotation
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dQ will be found in magnitude and direction as the diagonal of

the parallelogram whose adjacent sides are dQ^ and dO^ just as

in the case of translations (Art. 46). The importance of this

proposition will appear later (Art. 276).

It is to be noticed that, in the case of infinitesimal rotations,

the order of succession in which they take place is obviously

indifferent; they can therefore be imagined to take place

:simultaneously.

63. Parallel Axes. The composition of two successive rota-

tions about parallel axes is not essentially different from the

composition of rotations about two intersecting axes. The

trihedral //^ of Fig. 17, formed by the given axes./!, /
2 ,
and

the resulting axis /, becomes now a triangular prism, and the

spherical construction is replaced by a construction in a plane at

right angles to the axes. Fig. 19 shows this construction for

the case of two rotations having the same sense (01
and #2

being of the same sign) ; Fig. 20 illustrates the case of two

opposite rotations. The letters have the same meaning as in

Fig. 17.

PART I 3
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The signs of O
l
and #2 being taken into account, the formulae

of Art. 59 are now replaced by the following :

sn sin J O
l

sin | 6

The order of two finite rotations about parallel axes is not

invertible.

Fig. 20.

By repeating the. above construction it is evidently possible

to find the resultant of any number of successive rotations

about parallel axes, the rotations being taken in a definite

order.

64. The particular case of two equal and opposite rotations

about parallel axes deserves special consideration. The point L

lies at infinity; hence, the axis of rotation being at an infinite

distance, the resulting motion is a translation (Art. 19). This

will also appear from Fig. 21
;
the first rotation, about /

x, brings
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the plane /j/2
into the position

/'2, brings it into the position

/'/! which is parallel to the

original position /^ The

whole body has thus been

moved parallel to itself in the

direction L^L'^ and the mag-

nitude of this translation is

\\ the following rotation, about

Fig. 21.

.

sin-,
2

(3)

swhere is the angle of rotation about each axis, and L

the distance of the axes.

The order of the rotations is evidently not invertible.

65. We have seen in the preceding article that two equal and

opposite rotations aboutparallel axes produce a translation at right

angles to the axes of rotation. A translation can therefore always

be replaced by two such rotations. It follows that a translation

followed by a rotation about an axis at right angles to the direc-

tion of translation can be replaced by a single rotation about a

parallel axis. To find this resulting rotation it is only neces-

sary to replace the translation by two parallel equal and oppo-

site rotations having the same effect (Art. 64) ;
the three

rotations so obtained have parallel axes and can therefore

(Art. 63) be combined into a single one.

66. The case of two infinitely small rotations (Fig. 22) is

again of particular importance, as we shall see later on. The

formulae of Arts. 59 and 63

become in this case

k

i

Fig. 22.

J^^- J J -L> J-^t f

(I"')

(2'")

The axis / of the resulting rota-

tion lies therefore in the plane

of the given axes lv /
2
and divides their distance in th<
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ratio of the angles of rotation. The sense of the segments

L^L, LL
2 , L^L^ must be taken into account as well as the

sense of the angles dO
lt

d92 ,
dO. The axis / lies between /

x

and /
2

if dO
ly
d02

have the same sense
;
otherwise it lies outside

the space between /
x ,

/
2
on the side of the axis having the

greater angle.

67. Two equal and opposite infinitely small rotations about

parallel axes produce an infinitely small translation equal to

Z
:
Z

2 dd (see Art. 64, Formula (3) )
directed at right angles

to the plane of the axes l
lt

/
2

. Conversely, an infinitely small

translation can always be replaced by two equal and opposite

infinitesimal rotations.

68. An infinitesimal rotation of angle dO about an axis /

can be represented (Art. 57) by a rectilinear segment laid

off on / equal to d9, or, to avoid infinitesimal lengths, pro-

portional to dO. This geometrical symbol of an infinitesimal

rotation has all the characteristics of a vector (compare Arts. 45,

49) ;
but it has one more which distinguishes it from the vector

representing a translation : it is localized, or attached to a

definite line
;
for two equal and parallel rotations about different

axes do not represent the same thing. Such a localized vector

is called a rotor.

69. The theory of rotors is of just as great importance in

mechanics as that of vectors (Art. 49). Angular velocities,

momenta, forces, all have for their geometrical representatives

rotors, i.e. rectilinear segments of definite direction, length,

sense, and situated on a definite line.

The theory of the composition and resolution of rotors is a

matter of pure geometry ;
it remains the same whatever the

rotor may represent. Thus we have seen in Art. 62, in the case

of infinitesimal rotations, that concurrent rotors are combined by

geometrical addition. The same rule holds for angular velocities,

momenta, and forces. In Art. 66 the rule for combining two
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parallel rotors is explained by the example of infinitesimal rota-

tions. The student acquainted with elementary physics will

recognize in this rule the so-called principle of the lever which

is based on the composition of parallel forces.

70. Two rotors of equal length and opposite sense situated on

parallel lines (Fig. 23) are said to form a couple. The two rotors

P
y
P are called the sides, their perpen-

dicular distance / the arm, and the

product Pp the moment of the couple.

It has been proved in Art. 67 that a

couple of infinitesimal rotations pro-

duces an infinitesimal translation. In

general, a rotor couple is equivalent to a
, n i

vector, as we shall see later.

71. The converse proposition of Art. 67, viz. that an infini-

tesimal translation can always be replaced by a couple of

infinitesimal rotations, requires a little further consideration.

Suppose we wish to replace the translation ds by a couple.

According to Art. 67, the axes /
lf

/
2

of the two rotations must

be at right angles to ds
;
the distance L^L^ of the axes and the

angle of rotation ad are only subject to the condition that their

product should equal ds, i.e.

There is, therefore, an infinite number of couples equivalent to

ds, all having the same moment L^L^ ds and all lying in a plane

perpendicular to ds.

It thus appears that the characteristics of a couple are its

moment and the aspect of its plane ;
in other words, a couple

(P, p) is equivalent to any couple (P
1

', /') provided (a) that they
lie in parallel planes or in the same plane, and (b) that their

moments are equal, i.e. />/= /"./'. This allows us to repre-

sent a rotor couple (P, p) by a vector perpendicular to the plane of

the couple and equal in magnitude to its moment Pp.
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The sense of the vector is determined as follows. In the case

of infinitesimal rotations it appears from Arts. 67 and 64 that a

couple of the type A, Fig. 24,

produces a translation upwards
from the plane of the figure,

i.e. towards the reader
;
while a

couple of the type B produces

a downward translation, away
from the reader. Regarding the couples as rigid figures, their

rotors as forces, and the middle point of their arms as fixed,

the type A tends to produce rotation in the counter-clockwise,

positive, sense
;
the type B in the negative sense. The former

is therefore regarded as positive, and its vector is drawn from

its plane towards the reader.

Fig. 24.

72. Let us now return to our infinitesimal displacements.

An infinitesimal translation ds can be combined with an infini-

tesimal rotation d# about an axis 1 at right angles to ds (Fig. 25).

To find the resultant single rotation we have only to replace

the translation ds by an equivalent couple

whose angle of rotation we select equal to

that of the given rotation
;
that is, we put

ds= L,L-dd, whence

LI - dsL -'
d6

-d8
The plane of the couple, being perpen-

dicular to ds, can be taken so as to contain

the axis / of the given rotation dO
;
and in

this plane the couple can be so placed that pig 25.

one of its sides (see Fig. 25) falls into this

axis /. Selecting the proper side of the couple, we shall have on

/two equal and opposite rotations d6,d0, which destroy each

other, leaving only the rotation d6, about an axis at the distance

from /.
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Thus it is seen that the combination of an infinitely small

rotation dO, with an infinitely small translation ds at right angles

to the axis of rotation, produces a single rotation of the same

angle about a parallel axis at a distance ds/d# from the original

axis in the plane through this axis perpendicular to the direction

of translation.

73. Exercises.

(1) The telescope of a theodolite, originally horizontal and pointing

north, is tipped into an elevation of 60, and then turned into the prime
vertical so as to point west. What single rotation is equivalent to the

two successive rotations?

(2) In the preceding example, what would be the result of inverting

the order of the two rotations ?

(3) The motion of a man in walking may be approximately described

as consisting at every step of two rotations of the body about parallel

axes perpendicular to the direction of motion, one axis passing through
the hip-joint, the other through the foot that remains on the ground
while the other foot is thrown forward. Find the angle of swing

(assuming the two rotations to be equal and opposite) if the length

of the step is 15 inches and the height of the hip-joint 3^ feet.

3. SCREW MOTIONS
;
TWISTS.

74. We have seen in Arts. 40, 41 that a twist, i.e. a rota-

tion combined with a translation parallel to the axis of rotation,

constitutes the most general form of the displacement of a

rigid body. We proceed to discuss the most important cases

of the compositions of rotations and translations resulting in

twists.

75. A rotation of angle 6 about an axis / can be combined

with a translation whose vector is s, by resolving s into two

components ;
s
l perpendicular to /, and s2 parallel to /. The

former component combines (by Art. 65) with the rotation into

a single rotation of the same angle 6 about an axis parallel to /.

The result is therefore a rotation accompanied by a translation

s% parallel to the axis of rotation, i.e. a twist.
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76. If the rotation dO and the translation ds are infinitesimal,

the axis of the resulting twist has (by Art. 68) a distance ds/dQ

from the axis / of the rotation dd and lies in the plane laid

through / at right angles to ds.

77. Skew Axes. The resultant of two successive rotations 6

and 2
about two skew axes \ and 12 is a twist. This follows of

course from the proposition of

Art. 40. The axis of the re-

sulting twist is the central axis
\

of the displacement ;
its direc-

tion and position can be found

as in Art. 42. Fig. 26 illus-

trates the process. L^L^ is the

shortest distance of the axes

/!,
/
2

. The first rotation, Ov
"

about
/j, brings /2 into its final

position /'
2 ,
and L^ into L f

2 ',

the

second rotation, 2 about /'
2 ,

brings /
x
into its final position

/\, and L into L\. The axis

/ of the resulting twist will

evidently be the shortest dis-

tance of the bisectors of the angles Z 2 1
Z'

2
and L^L\L\.

For a rotation about this line / brings /2 into /'2 and /
x
into l\.

78. The angle of the resulting twist is the same as the angle

of the rotation resulting from two rotations V #2 about two

intersecting axes parallel to the given axes /
1?

/
2

. For (by Art.

65) either one of the rotations, say 2 about /
2 , may be replaced

by a rotation of the same angle 2 about an axis parallel to /3

and intersecting l
lt
combined with a translation at right angles

to /
2 . The two rotations about the intersecting axes can then

be combined into a single rotation, and the angle and direction

of the axis of this latter rotation are not changed by combi-

nation with the translation (Art. 74).

Fig. 26.
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79. It follows from the two preceding articles that a twist

can always be resolved into two rotations about skew axes, and

this can be done in an infinite number of ways. It is also easy

to see that two, or any number of, successive twists can be com-

bined into a single twist by resolving each twist into its rotation

and translation, and combining all rotations into a resulting

twist and all translations into a resulting translation
;
the result-

ing twist combined with the resulting translation gives the

twist equivalent to all the given twists.

80. For a more complete account of the geometry of motion the

student is referred to A. SCHOENFLIES, Geometric der Bewegung, Leipzig,

Teubner, 1886; and to W. SCHELL, Theorie der Bewegung und der

Krafte, Leipzig, Teubner, Vol. I., 1879, pp. 144-187. See also R. S.

BALL, Theory of screws, Dublin, Hodges, 1876; and H. GRAVELIUS,

Ball's theoretische Mechanik starrer Systeme, Berlin, Reimer, 1889, .

for the more advanced parts of the subject. Many authors treat the

geometry of motion in connection with Kinematics ; see the references

in Chapter H., in particular the works of Burmester, Resal, Villie\

Applications to mechanism and machinery will be found in F.

REULEAUX, Kinematics of machinery, edited by A. B. W. Kennedy,.

London, Macmillan, 1876; in J. H. COTTERILL, Applied mechanics,

London, Macmillan, 1884, pp. 99-134; and in ALEX. B. W. KENNEDY,
The mechanics of machinery, London, Macmillan, 1886.
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CHAPTER II.

KINEMATICS.

I. Time.

81. Before introducing the idea of time into the study of

motion, a word must be said on the measurement of time.

It is the province of astronomy to devise methods for measur-

ing time
;

the usual method consists in transit observations.

Thus the fundamental unit of time in astronomy, or the sidereal

day, is the interval between two successive upper transits of the'

true vernal equinox over the same meridian.

82. For the purposes of every-day life, it is more convenient

to make the measurement of time depend on the apparent revo-

lution of the sun. But the interval between two successive

upper transits of the sun over the same meridian, which is the

true, or apparent solar day, is not constant throughout the year,

owing to the inclination of the earth's axis to the plane of its

orbit and to the ellipticity of this orbit. The true solar day is

thus not well adapted to serve as a unit of time.

Astronomers imagine, therefore, a so-called first mean sun

moving uniformly in the ecliptic so as to pass the perigee simul-

taneously with the real sun
;
and a second mean sun moving

uniformly in the equator so as to pass the vernal equinox simul-

taneously with the first mean sun. The interval between two

successive passages of the second mean sun over the same

meridian is called the mean solar day. This may be regarded

-as the standard on which all time-determinations in mechanics

are based.

The mean solar day is subdivided into 24 hours = 1440
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minutes = 86 400 seconds. In theoretical mechanics the second

is generally used as the unit of time.

83. To reduce mean time to apparent time, it is only neces-

sary to subtract from mean time the so-called equation of time,

whose value for any particular date is given in the Ephemeris.

84. The relation between mean solar time and sidereal time

is readily found by considering that the tropical year, i.e. the

interval between two successive passages of the sun through
the mean vernal equinox, has 365.2422 mean solar days, and

of course just one more sidereal day. Hence i solar day
= 366.2422/365.2422 = 1.002738 sidereal day; in other words,
the sidereal day contains 86 164.1 seconds of mean time, while

the solar day contains 86 400 such seconds.*

85. It will have been noticed that all these methods of

measuring time are ultimately based on the assumption that

the rotation of the earth on its axis is perfectly uniform. Obser-

vation shows this assumption to be true, or at least to have a

very high degree of approximation.

It might be asked how we can know, without using some unit of time

for comparison, that the earth's rotation on its axis is uniform
;

in other

words, that the mean solar day is constant. Our absolute unit of time

would seem to be obtained by reasoning in a circle. This objection is

not quite without foundation
;
and as similar difficulties arise in the

case of other fundamental data of mechanics, it may be well to consider

the matter a little more in detail.

86. The simplest answer is that we assume the constancy of the

mean solar day and find this assumption fully justified by the fact that

while the whole structure of the astronomical and physical sciences rests

on this assumption, the theoretical predictions of these sciences are

found to be in close agreement with the results of direct observation.

Historically, the assumption was originally adopted on account of its

* For further particulars see W. CHAUVENET, Spherical and practical astronomy,
Vol. I., p. 52 sq. and pp. 651-654; also the American Ephemeris and Nautical

Almanac.
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simplicity, as a practical working hypothesis, and it was found to work

well. From the logical point of view we may strengthen its probability

by the following considerations.

87. The origin of our notion of time as a measurable quantity lie

in the subjective sensation that teaches us instinctively to distinguish

between shorter and longer intervals of time. This feeling of time is

of course (just as in the analogous case of muscular force) far too vague
and indefinite to admit of measurement. But it is sufficient to convince

us that, approximately, the lengths of successive days are equal. With?

far greater approximation can we judge by our time-feeling that the

oscillations of the pendulum of a clock are nearly isochronous. Let us

combine these two entirely independent facts. Careful observation will

show that the number of oscillations made by the pendulum in the

interval between two culminations of the mean sun is almost precisely

the same for every mean day. Moreover, the agreement becomes the

more perfect the more we eliminate any causes that tend to disturb

the isochronism of the pendulum. It will therefore be reasonable to

conclude that the mean solar day must have a very nearly constant

length.

But it is to be kept in mind that this is an empirical fact and hence

not absolutely true, but only within the limits of the errors of observa-

tion. Indeed, certain considerations concerning the friction caused

by the tides make it probable that the angular velocity of the earth is

diminishing very slowly.*

* See O. RAUSENBERGER, Analytische Mechanik, I., Leipzig, Teubner, 1888, p. 14; i

H. STREINTZ, Physikalische Grundlagen der Mechanik, Leipzig, Teubner, 1883, p.

8 1 sq.; E. BUDDE, Allgemeine Mechanik, I., Berlin, Reimer, 1890, p. 33; THOMSON

and TAIT, Natural philosophy, I., London, Macmillan, 1879, p. 460; J. C. MAXWELL,
Matter and motion, New York, Van Nostrand, 1878, p. 27 and p. 60.; K. PEARSON,.

Grammar ofscience, London, Scott, 1892, pp. 217-^230.

:
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II. Linear Kinematics.

I. UNIFORM RECTILINEAR MOTION; VELOCITY.

88. Consider a point moving in a straight line. If through-
out the whole motion equal spaces are always described in equal

times, the motion is said to be uniform.

89. Next consider two points each moving uniformly in a

straight line. The motions may still be different
;
for it is pos-

sible that while one of the points moves in a given time t over a

space sv the other moves during the same time / over a different

space s
2

. The points are then said to have different velocities,

.and their velocities are said to be as s
l

is to s
2

. The velocity v

of uniform motion is therefore measured by the ratio of the

.space s described in any time t to this time
;
that is, v=s/t.

90. This equation written in the form

s= vt (i)

is called the equation of motion of the point. It follows from

Art. 89 that in uniform motion the velocity v is constant.

With t as abscissa and s as ordinate (or vice versa], the equa-

tion of uniform motion (i) represents a straight line
;

the

tangent of the angle made by this line with the axis of / repre-

sents the velocity v.

91. Let the point P start at the time t=o from a point O
(Fig. 27); let it reach the point PQ

at the time t=t
Q
and the

Fig. 27.

point Pl
at the time t=t. Then, putting OPQ

=s
Q)
OP

l
=

s, the

space passed over in the time t t
Q
is s J

;
hence the velocity

v=(s s^)/(t t^. The equation of uniform motion can there-

fore be written in the form
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If the times be counted from the instant when the moving

point is at P
Q, we have / =o, and the equation of motion is

Finally, if both times and spaces are counted from P
Q as

origin, we have J = o, so that (i") reduces to (i).

92. To measure velocities we must adopt a unit of velocity.

In kinematics, the only fundamental, i.e. independent, units

required are those of length and time. All other quantities

can be expressed in terms of length and time, and their units

are therefore called derived units.

Thus, the definition of the velocity of uniform motion as a

length divided by a time (Art. 89) can be expressed by the

symbolic equation

and we say that the dimensions of velocity are I in length and

i in time.

When L= l and T= l, we have V= l. We must therefore

select for our unit of velocity that velocity with which unit

length is described in unit time.

Hence in the C. G. S. system (see Arts. 13, 14) the unit

velocity is a velocity of i cm. per second
;
in the F. P. S. system

it is a velocity of i ft. per second.

93. In practice other units are often used, and the same

concrete velocity can therefore be expressed by different num-

bers. Thus the same velocity of a railroad train can be

described as 30 miles per hour, or 44 ft. per second, or (approx-

imately) 13.41 metres per second.

The symbols s, v, t, etc., in the kinematical equations must be

understood to represent the numerical ratios of the concrete

quantities to their respective units. The symbol v, for instance,

stands for the ratio V/Vi of the concrete velocity Fto its unit
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p and we have of course the proportion : 30 miles an hour is to

I mile an hour as 44 ft. per second is to I ft. per second, etc.

94. The full meaning of the equation of dimensions V= LT~1

is obtained if we substitute V/V^ for V, L/L l
for I, T/T^ for'T,

where V, L, T are the concrete quantities and V
lt
L

lt 7\ their

units. We find

Z -L. !i

V,~ L,' T^

and this equation shows two things which are of frequent appli-

cation in reductions between different systems of units :

(a) The numerical value V/V^Q/l a velocity varies directly as

the unit of time and inversely as the unit of length ;

(b) the unit of velocity V^ varies directly as the unit of

length and inversely as the unit of time.*

95. In speaking of velocities, the time unit (usually the

second) is frequently understood without being mentioned.

This has led to considering velocity as a length (viz. the length

passed over in unit time) ;
it can then be represented graphi-

cally by a segment of a straight line, and if in addition we, com-

bine with the idea of velocity that of the direction and sense of

the motion, its geometrical representative will be a vector (see

Art. 45). We shall see later that this view is of particular

advantage in studying the velocity of curvilinear motion.

Some recent writers on mechanics use the term velocity

exclusively in this meaning, i.e. as denoting a vector, and apply

the term speed to denote the numerical magnitude of this

vector. In linear kinematics the direction is given, and the

"speed" alone is the subject of investigation. The + or

sign of the "speed
"
expresses the sense of the motion.f

96. Exercises.

(i) A train leaves the station A at 9 h. 5 m., passes (without stop-

*See J. D. EVERETT, C. G. S. system of units, 1891, p. 3.

f See Syllabus of elementary dynamics, Part I., prepared by the Association for

the Improvement of Geometrical Teaching; London, Macmillan, 1890, p. 8.
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ping) B at 9 h. 31 m., C at 9 h. 47 m., and arrives at D at 9 h. 59 m.,

the distance AD being 36.9 miles. Considering the motion as uniform :

(a) What is the velocity?

() What is the equation of motion?

(c) What are the distances BD and CD?

(d) If after stopping 5 minutes at D the train goes on with the same|
velocity as before, when will it reach

, loj miles beyond D?

(e) Construct a graphical time-table, taking the times as abscissas and
]

the distances as ordi nates.

(2) Interpret equations (i
f

) and (i") geometrically.

(3) A train leaves Detroit at 9 h. 5 m. A.M. and reaches Chicago .

at 4 h. 30 m. P.M.
;

another train leaves Chicago at 1 2 h. 20 m. and

arrives in Detroit at 7 h. 25 m. P.M. The distance is 285 miles. Re-]

garding the motion as uniform and neglecting the stops, find, both]

analytically and graphically, when and where the trains will meet.

(4) Reduce the following velocities to F. P. S. units : (a) Walking 4 \

miles an hour; (3) trotting a mile in 2 m. 10 s. ; (c) railroad train,]

from 30 to 50 miles per hour; (^/) bicyclist, 2 miles in 4 m. 59^ s.
;

(f) sound in air, 333 metres per second.

(5) What is the numerical value of a velocity of 22 ft. per second

when the hour is taken as unit of time and the mile as the unit of

length?

(6) How is the unit of velocity changed if the minute be adopted as

unit of time, the unit of length remaining unchanged ?

(7) The mean distance of the sun being 92J million miles, what is the

velocity of light if it takes light 16 m. 40 s. to cross the earth's orbit?

(8) Two trains are running on the same track at the rate of 25 and

15 miles per hour, respectively. If at a certain instant they are 10

miles apart, find when they will collide (a) if they are headed the same

way ; (6) if they run in opposite directions.

(9) In what latitude is a bullet shot west with a velocity of 1320 ft.

per second at rest relatively to the earth's axis, the radius being taken

as 4000 miles ?

(10) Two trains, one 250, the other 440 ft. long, pass each other on

parallel tracks in opposite directions with equal velocity. A passenger

in the shorter train observes that it takes the longer train just 4 seconds

to pass him. What is the velocity?
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101. If v be given as function of /, say ^=
(/>(/),

we find from

(2) ds= vdt, and hence by inte-

gration

j-j
=j[W/, (3)

where S
Q

is the space de-

scribed during the time / .

The equation v=
<f>(t}

furnishes

a graphical representation of
Fig 29.

the velocity, and formula (3)

shows that the space s S
Q described during the time tt

Q
is

represented by the area included between the curve v=
<f>(t),

the

axis Ott and the ordinates ^ and v corresponding to / and /,

respectively (Fig. 29).

102. Similarly, if v be given as a function of s, say v= \lr(s),

we have from (2) dt=ds/v, and hence

(4)

The two velocity curves v=
<f>(t}

and v ^r(s) are of course in

general different, and must not be confounded with the path of

the moving point, which is here supposed rectilinear.

103. We have seen (Art. 91, equation (i")) that in the case of

uniform motion the velocity v=(s s^/t, i.e. the rate of change

of space with time, is constant. The simplest case of variable

motion is that in which the velocity varies uniformly. The rate

at which the velocity varies ivith the time is called the accelera-

tion
;
we shall denote it by/.

If the velocity vary uniformly, the acceleration is constant, and

we have j=(v v^/tt
where / is the time during which the

velocity changes from VQ to v.

By reasoning analogous to that employed in Art. 99, we find

for the acceleration of any rectilinear motion at the time t

% = %; (s)
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that is, in rectilinear motion the acceleration at any point or

instant is the value, at that point or instant, of the second deriva-

tive of the space with respect to the time.

Negative acceleration will thus indicate a decreasing veloc-

ity.

104. When the acceleration is constant, the motion is said to

be uniformly accelerated. In the case of variable acceleration

we might again consider its rate of change, which may be called

the acceleration of the second order ; and so on. Compare
Art. 156.

105. Conformably to the definition of acceleration, its unit is

the "cm. per second per second" in the C. G. S. system, and

the "foot per second per second" in the F. P. S. system. As
it can rarely be convenient to use two different time units in the

unit of acceleration (say, for instance, mile per hour per second),

it is customary to mention the time unit but once and to speak

of an acceleration of so many feet per second, or cm. per sec-

ond, it being understood that the other time unit is also the

second.

For the dimensions of acceleration we have (see Art. 92)

Denoting, as in Arts. 93, 94, the concrete value of an

acceleration by Jt its unit by Jlt
and similarly for length and

time, we have the equation

J__L_ Tf

which shows that (a) the numerical value J/J^ of an acceleration

varies directly as the square of the unit of time* and inversely

as the unit of length ;
and (b) the unit of acceleration,^, varies

directly as the unit of length, and inversely as the square of the

unit of time.
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106. Exercises.

1 i
)
A point moving with constant acceleration gains at the rate of

30 miles an hour in every minute. Express its acceleration in F. P. S.

units.

(2) At a place where the acceleration of gravity is g= 9.810 metres

per second, what is the value of g in feet per second ?

(3) A railroad train, 10 minutes after starting, attains a velocity of

45 miles an hour; what was its average acceleration during these 10

minutes ?

(4) If the acceleration of gravity, g= 32 feet per second, be taken

as unit, what is the acceleration of the railroad train in Ex. (3) ?

3. APPLICATIONS.

107. Uniformly Accelerated Motion. As in this case the accel-

eration/is constant (see Art. 103), the equation of motion (5)

can readily be integrated :

v=jt+C.

To determine the constant of integration C, we must know the

value of the velocity at some particular moment of time. Thus,

if V= VQ when /=o, we find vQ=C; hence, substituting this

value for C,

v v
Q =jt. (6)

This equation, which agrees with the definition of / given in

Art. 103, gives the velocity at any time t. Substituting ds/dt

for v and integrating again, we find s= v
Qt+^jfi+C ,

where the

constant of integration, C, must again be determined from

given "initial conditions." Thus, if we know that S=SQ
when

/=o, we find s
Q =C' ;

hence

(7)
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This equation gives the space or distance passed over in

terms of the time.

108. Eliminating/ between (6) and (7), we obtain the relation

which shows that in uniformly accelerated motion the space

can be found as if it were described uniformly with the mean

velocity J (

109. To obtain the velocity in terms of the space, we have

only to eliminate t between (6) and (7) ;
we find

V) = /('-'<)) (8)

This relation can also be derived by eliminating dt between the

differential equations v= ds/dt, dv/dt=j, which gives vdv= jds,

and integrating. The same equation (8) is also obtained

directly from the fundamental equation of motion d2
s/dt

2=jby
a process very frequently used in mechanics, viz. by multiplying

both members of the equation by dsjdt. This makes the left-

hand member the exact derivative of \(ds/dt}^ or |V, and the

integration can therefore be performed.

110. The three equations (6), (7), (8) contain the complete

solution of the problem of uniformly accelerated motion. For

uniformly retarded motion, taking the direction of motion as

positive, we have only to write / for +/.
If the spaces be counted from the position of the moving

point at the time t=o, we have ^ =o, and the,equations become
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111. If in addition the initial velocity V
Q
be zero, the point

.starting from rest at the time ^=o, the equations reduce to the

following :

v=jt, (6")
"

:

,. (7")

;*
."

'

(8")

112. The most important example of. uniformly accelerated

motion is furnished by a body falling in vacuo near the earth's

surface. Assuming that the body does not rotate during its

fall, its motion relative to the earth is a mere translation, and

it is sufficient to consider the motion of any one point of the

body. It is known from observation and experiment that under

these circumstances the acceleration of a falling body is con-

stant at any given place and equal to about 9^0 cm., or 32 ft.,

per second per second.
;
the value of this so-called acceleration

of gravity is usually denoted by g.

In the exercises on falling bodies (Art. 114) we make through-

out the following simplifying assumptions : the falling body
does not rotate

;
the resistance of the air is neglected, or the

body falls in vacuo
;
the space fallen through is so small that

g may be regarded as constant
;
the earth is regarded as fixed,

i.e. we consider only the relative motion of the body with respect

to the earth.

,.

113. The velocity v acquired by a falling body after falling

from rest through a height h is found from (8") as

This is usually called the velocity due to the height (or head) h,

while

is called the height (or head) due to the velocity v.
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114. Exercises.

(1) A body falls from rest at a place where g= 32.2. Find (a) the

velocity at the end of the third second
; (b) the space fallen through in

5 seconds ; (c) the space fallen through in the fifth second.

(2) If a railroad train, at the end of 2 m. 40 s. after leaving the

station, has acquired a velocity of 30 miles per hour, what was its accel-

eration (regarded as constant) ?

(3) Galilei, who first discovered the laws of falling bodies, expressed

them in the following form : (# ) The velocities acquired at the end of

the successive seconds increase as the natural numbers ; (^) the spaces

described during the successive seconds increase as the odd numbers ;

(c) the spaces described from the beginning of the motion to the end

of the successive seconds increase as the squares of the natural num-

bers. Prove these statements.

(4) A stone dropped into the vertical shaft of a mine is heard to

strike the bottom after / seconds
;
find the depth of the shaft, if the

velocity of sound be given = c. Assume /= 4 s., c 332 metres, g= 980.

(5) A railroad train approaches a station with uniformly retarded

motion. During the first two minutes of its retarded motion it makes

3960 ft.; during the next minute 990 ft. (a) When will it come to

rest? (b) What is the retardation? (c) What was the initial velocity?

(d) When will its velocity be 4 miles an hour?

(6) Interpret equations (6) and (7) geometrically.

(7) A body being projected vertically upwards with an initial velocity

VQ, (a) how long and (b) to what height will it rise ? (V) When and

(</) with what velocity does it reach the starting-point ?

(8) A bullet is shot vertically upwards with an initial velocity of

1600 ft. per second, (a) How high will it ascend? (b) What is its

velocity at the height of 32,000 ft.? (c) When will it reach the ground

again? (d
7

) With what velocity? (e) At what time is it 32,000 ft.

above the ground ? (/) Explain the meaning of the
*

double signs

wherever they occur in the answers.

(9) With what velocity must a ball be thrown vertically upwards to-

reach a height of 100 ft. ?

(TO) A body is dropped from a point A at a height AB=h above

the ground ;
at the same time another body is thrown vertically
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upward from the point B, with an initial velocity v . (a) When and

(&) where will they collide ? (c) If they are to meet at the height -J- h,
what must be the initial velocity ?

115. The general problem of rectilinear motion requires the

integration of the differential equation

where j is a function of s, t, and v, in connection with the

equation
ds , x

As these two equations involve four quantities t, s, v,j, a

third relation between them, say

f(t,s,v,j)=o, (9)

is always necessary in order to express three of these four

quantities in terms of the fourth. Next to the case of uni-

formly accelerated motion where the relation (9) is simply

/= const., the most important cases are those when/ is given

as a function of s, or of v, or of both s and v.

116. Whenever in nature we observe a motion not to remain

uniform, we try to account for the change in the character of

the motion by imagining a special cause for such change. In

rectilinear motion, the only change that can occur in the

motion is a change in the velocity, i.e. an acceleration (or retar-

dation). The cause producing acceleration or retardation we

call force (attraction, repulsion, pressure, tension, friction, resist-

ance of a medium, elasticity, cohesion, etc.), and assume it to

be proportional to the acceleration. A fuller discussion of the

nature of force and its relation to mass will be found in Chapter

III., II. The present remark is only intended to make more

intelligible the physical meaning and applications of the prob-

lems to be discussed in the following articles.



S 8
KINEMATICS. [117.

117. Acceleration inversely proportional to the square of the dis-

tance, i.e. j=^i/s
i where

//,
is a constant (viz. the acceleration at

the distance s=i) and s is the distance of the moving point

from a fixed point in the line of motion.

The differential equation (5) becomes in this case

(II

the first integration is readily performed by multiplying botl

members by ds/dt so as to make the left-hand member th<

complete derivative of \(ds/dt)* or ^v
2

. Thus we find

-,+<: +c,

where the constant of integration, C, must be determined froi

the so-called initial conditions of the problem. For instanc<

if V= VQ when s=sQt
we have J^

2=
fJL/sQ +C', hence, eliminat-

ing C between this relation and (i i),

To perform the second integration, we solve this equation f(

v and substitute ds/dt for v :

or putting v + 2 /A/JO
= 2

dt /i S

Here the variables s and / can be separated, and we find
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To integrate, put s=x?. The result will be different accord-

ing to the signs of /n, //, and v, which must be determined from

the nature of the particular problem.

118. It is an empirical fact that the acceleration of bodies

falling in vacuo on the earth's surface is constant only for

distances from the surface that are very small in comparison,

with the radius of the earth. For larger distances the acceler-

ation is found inversely proportional to the square of the dis-

tance from the earth's centre.

By a bold generalization Newton assumed this law to hold

generally between any two particles of matter
;
and this as-

sumption has been verified by all subsequent observations. It

can therefore be regarded as a general law of nature that any

particle of matter produces in every other such particle, each

particle being regarded as concentrated at a point, an accelera-

tion inversely proportional to the square of the distance between

these points. This is known as Newton s law of universal grav-

itation, the acceleration being regarded as

caused by a force of attraction inherent in

each particle of matter.

It is shown in the theory of attraction

that the attraction of a spherical mass,

such as the earth, on any particle outside

the sphere is the same as if the .mass of

the sphere were concentrated at its centre.

The acceleration produced by the earth on

any particle outside it is therefore inversely

proportional to the square of the distance

of the particle from the centre of the earth.
o--

119. Let us now apply the general equa-

tions of Art. 117 to the particular case of FlS- 30 -

a body falling from a great height towards the centre of the

earth, the resistance of the air being neglected.

Let O be the centre of the earth (Fig. 30), /\ a point on its
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surface, PQ the initial position of the moving point at the time

/= o, P its position at the time /; let OP^R, OP = s
Q ,
OP= s;

and let g be the acceleration at Pv j the acceleration at P.

Then, according to Newton's law, j \g=R^ : s2 . This relation

determines the value of
JJL

in (10), which becomes

the minus sign indicating that the acceleration tends to dimin-

ish the distances counted from O as origin.

The integration can now be performed as in Art. 117. Mul-

tiplying by ds/dt and integrating, we find |V =gR*/s + C.

If the initial velocity be zero, we have v= o for S= S
Q \

hence

c= - 2
>
and

Here again the minus sign is selected after extracting the

square root, since the velocity v is directed in the sense opposite

to that of the distance s.

Substituting ds/dt for v, separating the variables v and s, and

integrating, we find

(.7)

120. Exercises.

(1) Find the velocity with which the body arrives at the surface of

the earth if it be dropped from a height equal to the earth's radius, and

determine the time of falling through this height.

(2) Interpret equation (17) geometrically.

(3) Show that formula (16) reduces to v = V^p (Art. 113) when

s = R and ^ s = h is small in comparison with R.
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(4) A particle is projected vertically upwards from the earth's surface

with an initial velocity VQ . How far will it rise ?

(5) If, in (4), the initial velocity be v = \gft, how high and how

long will the particle rise ? How long will it take the particle to rise

land fall back to the earth's surface ?

(6) A body is projected vertically upwards. Find the least initial

^elocity that would prevent it from returning to the earth, taking
r= 32, R = 4000 miles.

121. Acceleration directly proportional to the distance, i.e.j
=

/cs,

where A: is a constant and s is the distance of the moving point

from a fixed point in the line of motion.

The equation of motion

%-" .'

:

(I8)

can be integrated by the method used in Art. 117. The result

of the second integration will again be different according to

the sign of K. We shall here study only a special case, reserv-

ing the general discussion of this law of acceleration for later

(see Arts. 177 sq.).

122. It is shown in the theory of attraction that the attrac-

tion of a spherical mass such as the earth on any point within

the mass produces an acceleration directed to the centre of the

sphere and proportional to the distance

from this centre. Thus, if we imagine

a particle moving along a diameter of

the earth, say in a straight narrow tube

passing through the centre, we should

have a case of the motion represented

by equation (18).

To determine the value of K for our

problem we notice that at the earth's

surface, that is, at the distance OP
1
=R

from the centre O (Fig. 31), the accel- Fig. 31.

eration must be =g. If, therefore,/ denote the numericalvalue
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of the acceleration at any distance OP= s(<R), we have

j\g=s \R t
or j=gs/R. But the acceleration tends to diminish

the distance s, hence -= ^s. Denoting the positive cori-
dt R

stant g/R by ft
2

,
the equation of motion is

;'' g=-A where ^=^L (19)

Integrating as in Arts. 117 and 119, we find

If the particle starts from rest at the surface, we have v=&
when s=R

;
hence o= J p?R

z+ C ;
and subtracting this from

the preceding equation, we find

S*, (20)

where the minus sign of the square root is selected because

s and v have opposite sense.

Writing ds/dt for v and separating the variables, we have

whence /=-cos~1

^s + C r
.

As s=R when /=o, we have o=-cos~1
i + C r

, or
f*

Solving for s, we find

(21)

Differentiating, we obtain v in terms of t\

(22)
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123. The motion represented by equations (21) and (22)

belongs to the important class of simple harmonic motions (see

Arts. 177 sq.). The particle reaches the centre when s= o, i.e.

when /^=?r/2, or at the time /=7r/2/i,. At this time the

velocity has its maximum value. After passing through the

centre the point moves on to the other end, Pv of the diameter,

reaches this point when s= R, i.e. when yu,/=7r, or at the time

t=TT/fj,. As the velocity then vanishes, the moving point

begins the same motion in the opposite sense.

The time of performing one complete oscillation (back and

forth) is called the period of the simple harmonic motion
;

it is.

evidently

. T=4 --=--
2JJ, p

124. Exercises.

(1) Equation (19) is a differential equation whose general integral

is known to be of the form

s = Ci sin//,/ + C2 cos/x/;

determine the constants Cl} C2 and deduce equations (21) and (22).

(2) Find the velocity at the centre and the period, taking ^=32
and R = 4000 miles.

(3) If the acceleration, instead of being directed toward the centre,

is directed away from it, the equation of motion would ^d^s/dt^^s .

Investigate this motion, which can be imagined as produced by a force

of repulsion emanating from the centre.

125. Retardation Due to a Resisting Medium. We know from

observation that the velocity of a body moving in a liquid or gas

is continually diminished. The resistance of such a medium

may be regarded as a force producing a retardation, or negative

acceleration. The same may be said of the effect of friction.

*\
The law according to which such resistances retard the motion

must of course be determined by experiment.
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Careful experiments on the resistance offered by the air to

the motion of projectiles have shown that this resistance in-

creases with the quantity of air displaced ;
that is, with the

density of the air, the cross-section of the projectile, and the

velocity. The retardation due to the resistance of the air can

therefore be expressed in the form

j=>cpf(v),

where p is the density of the air, while K is a coefficient depend-

ing upon the shape, mass, and physical condition of the surface

of the projectile. Its value may be regarded as inversely pro-

portional to the mass and directly proportional to the cross-

section of the body at right angles to the direction of motion.

The velocity function/^) may be taken =cv* for velocities

not exceeding 250 metres per second
;
for greater velocities, up

to about 420 metres per second, it is proportional to a higher

power of v, or must be represented by a more complicated

expression, such as aiP -\-bv-\-c\ for velocities above 420 metres

it seems to be again of the form c'v2.*

126. Assuming the resistance of the air to be proportional to

the square of the velocity, the motion of a body falling through
air of uniform density is determined by the equation

To simplify the resulting formulae, it will be convenient to

U?
put K= , so that the equation of motion is

,

}

dft g

Writing -^ for |, the variables v and t can be separated :

at dp

=dt;

* For further particulars the reader is referred to special works on ballistics.
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integrating, we find

,=2_log^^, (24)
2fJ, g-pV

the constant of integration being o if the initial velocity be o.

Solving for z/, we have
- ~*

. (25)

As the numerator, apart from a constant factor, is the deriva-

tive of the denominator, the second integration can at once be

performed, giving

J=j5
log (** +*-'*) +

For /=o, we have s= o; hence o=^log2 + 7. Hence
t*

*~M
')- (26)

To find s in terms of v, we may eliminate dt between the

fferential equati

resulting equation

-differential equations dsvdt and dv= -(g* i&v*)dt. The
o

is readily integrated ;
as v= o when s= o, we find :

log
/LA

127. Exercises.

2
/LA

2

(1) Show that as / increases, the motion considered in Art. 126

approaches more and more a state of uniform motion without ever

reaching it.

(2) Show that when ^, and hence K, becomes o, the equations of

Art 126 reduce to those for bodies falling in vacuo.

(3) Investigate the motion of a particle thrown vertically upwards in

the air with a given initial velocity, the resistance of the air being pro-

portional to the square of the velocity.

PART i 5
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(4) Find the whole time of ascent in (3) and the height to which

the particle rises.

(5) Show that owing to the resistance of the air a particle thrown

vertically upwards returns to the starting point with a velocity less than

the initial velocity of projection.

(6) A particle begins moving with an initial velocity VQ in a medium

of constant density whose resistance is proportional to the velocity.

Express s and v in terms of /, and v in terms of s.

(7) A body falls from rest in a medium whose resistance is propor-

tional to the velocity. Investigate its motion.

4. ROTATION
;
ANGULAR VELOCITY

;
ANGULAR ACCELERATION.

128. A motion of rotation about a fixed axis can be treated

in precisely the same way in which we have treated rectilinear

motion in the preceding sections. It is only to be remembered

that rotations are measured by angles (see Arts. 11-15), while

translations are measured by lengths.

129. The rotation of a rigid body (see Art. 8) about a fixed

axis is said to be uniform if the circular arcs described by the

same point in equal times are equal throughout the whole

motion; in other words, if the angle of rotation is proportional

to the time in which it is described. In this case of uniform

rotation, the quotient obtained by dividing the angle of rotation,

6, by the corresponding time, /, is called the angular velocity.

Denoting it by w we have w = Q/t ;
and the equation of motion is

Thus, expressing the time in seconds and the angle in radians

(Art. 15), the angular velocity is equal to the number of radians

described per second. (Compare Arts. 88-90.)

130. If the time of a whole revolution be denoted by T, we

have, from (i), 2ir=o)T'
y hence

'
-

"""
(2}
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In engineering practice it is customary to take a whole revo-

lution as angular unit and to express the angular velocity of

uniform motion by the number of revolutions made in the unit

of time. Let n, N be the numbers of revolutions per second

and per minute, respectively ;
then we have evidently

(0

131. When the rotation is not uniform, the quotient obtained

by dividing the angle of rotation by the time in which it is

described, gives the mean, or average, angular velocity for that

time.

The rate of change of the angle of rotation with the time at

any particular moment is called the angular velocity at that

moment. By reasoning in a similar way, as in Art. 99, it will

be seen that its mathematical expression is

132. The rate at which the angular velocity changes with the

time is called the angular acceleration
; denoting it by ,

we have

133. The most important special case of variable angular

velocity is that of uniformly accelerated (or retarded) rotation

when the angular acceleration is constant. The formulae for

this case have precisely the same form as those given in Arts.

107-1 n for uniformly accelerated rectilinear motion. Denoting

the constant linear acceleration by/, we have, when the initial

velocity is o,

FOR TRANSLATION: FOR ROTATION:

v =jt, co= at,

e=*t\ (6)
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and when the initial velocities are VQ and &>
, respectively :

FOR TRANSLATION : FOR ROTATION :

134. Let a point P, whose perpendicular distance from the

axis of rotation is OP=r, rotate about the axis with the angular

velocity w = dB/dt. In the element of time, dt, it will describe

an element of arc ds=rd8=r&dt. Its velocity v= ds/dt (fre-

quently called its linear velocity in contradistinction to the

angular velocity) is therefore related to the angular velocity of

rotation by the equation

v=wr. .

(8)

135. The radius vector OP=r sweeps over a circular sector

which in uniform rotation has an area S=^0r^= ^a)^, while in

variable rotation the infinitesimal sector described during the

element of time dt is dS^r^dQ^^dt.
The quotients

:

'

_ |=l^= la,^ (9)

for uniform rotation, and

for variable rotation, represent, therefore, the sectorial, or areal,

velocity, i.e. the rate of increase of area with the time.

The rate of change of this velocity with the time,

, .

dt*dt '

is called the sectorial, or areal, acceleration.
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136. Exercises.

(1) If a fly-wheel of 12 ft. diameter makes 30 revolutions per

minute, what is its angular velocity, and what is the linear velocity of a

point on its rim?

(2) A pulley 5 ft. in diameter is driven by a belt travelling 500 ft.

a minute. Neglecting the slipping of the belt, find (a) the angular

velocity of the pulley in radians, and (^) its number of revolutions per
minute.

(3) Find the constant acceleration (such as the retardation caused by
a Prony brake) that would bring the fly-wheel in Ex. (i) to rest in 1

minute.

(4) How many revolutions does the fly-wheel in Ex. (3) make

during its retarded motion before it comes to rest?

(5) A wheel is running at a uniform speed of 32 turns a second

when a resistance begins to retard its motion uniformly at the rate of 8

radians per second, (a) How many turns will it make before stopping?

(l>)
In what time is it brought to rest ?

(6) A belt runs over two pulleys turning about parallel axes. Show

that the angular velocities of the pulleys are inversely proportional to

their diameters. Do the pulleys rotate in the same or opposite sense ?
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III. Plane Kinematics.

I. VELOCITY
J
COMPOSITION OF VELOCITIES

;
RELATIVE

VELOCITY.

137. The motion of a point in a curved path would not be

completely characterized by its velocity and acceleration as

defined in the preceding section
;
the varying direction of the

motion, and the rate of change of direction, must be taken into

account. It is convenient to incorporate these ideas in the

definitions of velocity and acceleration. By this generalization

of their original meaning, velocity and acceleration become

vectors, i.e. magnitudes having both length and direction.

138. The generalized idea of velocity as a vector may be

derived as follows :

Consider a point P moving in a curve (Fig. 32). Let P be

its position at the time t, P'

its position at the time /+ A/,

and let P
Q
P= s

) PP' = bs.

The space s described in any
time / may be regarded as

some function of the time /,

say *=/(/).

The mean velocity

Fi 32>
for the time A/ during which

the point passes from P to

P'may be represented by a length PS laid off on the chord

PP' from P. As A/ diminishes, P' approaches P, and in the

limit when Aj/A/ becomes the derived function ds/dt=f'(t),

the chord merges into the tangent at P. This leads us to rep-

resent the velocity at the time t, or at the place P, by a length
PT proportional to ds/dt laid off on the tangent at P from this

point in the sense of the motion. The vector PT will then

completely represent the velocity at the time /.
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139. The vector PTma.y also be regarded as the limit of a vector

PS laid off on the chord PP as before, but proportional to the velocity

with which the point would describe the chord PP in the time A/, i.e.

to the velocity PS= For as A/ approaches the limit o,A/
PS approaches the direction of the tangent, and the ratio of the arc

AJ to the chord PP approaches the limit i. Hence the equation

= - - PS gives in the limit lim = lim PS
t
or PT lim PS.

A/ chord PP A/
It may be noticed here that, in view of the practical applications, the

function /(/) = s is in mechanics always supposed to be itself continuous

and to possess continuous and finite derivatives of the first and second

order.

140. Velocity having thus been denned as a vector, we may
at once apply to it the rules for vector composition and vector

resolution laid down in Arts. 45-55 for vectors representing dis-

placements. Thus if a point be subjected to two or more

simultaneous velocities, the velocity of the resulting motion will

be represented by the vector found by geometrically adding the

component velocities. A velocity may be resolved into any
number of component velocities whose geometrical sum is equal

to the given velocity.

141. We proceed to consider the most important cases of

resolution of a velocity in a

plane.

Let a point P move in a

curve P
Q
P (Fig. 33) whose

equation is referred to rec-

tangular Cartesian co-ordi-

nates x
y y. It is usually con-

venient in this case to

resolve the velocity v par-
'

into vx Fig. 33.allel to the axes

and v
y

.

If a be the angle made by the vector v with the axis of x, we

have vx
= vcQsa, v,

= vsina. And as the element ds of the

curve at P makes the same angle a with the axis of x, we also
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have dx=ds cos a, dy=ds sin a. Divid| I by dt and comparing

with the preceding equations, we find

Conversely, knowing the velocities of the moving point paral-

lel to the axes, we find its resulting velocity from the relation

7i =J(^V#Y
^\dti

+
\dt)-

(2)

142. If the equation of the path be given in polar co-ordinates,

it may be convenient to resolve the velocity v along the radius

vector OP and at right angles to it (Fig. 34).

Fig. 34.

Let r, 6 be the polar co-ordinates, a the angle between v and r',

then vr=v cos a,ve
= v sin a. The element ds of the curve has in

the same directions the components dr=dscosa, rd0=
Hence, dividing by dt, we find

and v =

143. In the case of relative motion we have to distinguish

between the absolute velocity v of a point, its relative velocity v
l9

and the velocity of the body of reference v
2

.
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To fix the ideas, imagine a man walking on deck of a steam-

boat. His velocity of walking is his relative velocity z/j;
the

velocity of the boat (say with respect to the water or shore

regarded as fixed), or more exactly speaking, the velocity of that

point of the boat at which the man happens to be at the time,

is the velocity z/
2
of the body of reference

;
and the velocity with

which the man is moving with respect to the water or shore, is

his absolute velocity.

Representing these three velocities by means of their vectors,

we evidently find the absolute velocity v as the geometric sum of

the relative velocity Vj and the velocity v
2 of the body of reference,

just as in the case of displacements of translation (Art. 53).

And conversely, the relative velocity is found by geometrically

subtracting from the absolute velocity the velocity of the body of

reference.

It is often convenient to state the last proposition in a some-

what different form. Imagine that we give the velocity z/2
.

both to the man and to the boat
;
then the boat is brought to

rest, and the resulting velocity of the man is what was before

his relative velocity. Hence the relative velocity is found as the

resultant of the absolute velocity, and the velocity of the body of

reference reversed.

144. Exercises.

(1) A straight line in a plane turns with constant angular velocity o>

about one of its points O, while a point P, starting from O, moves along

the line with a constant velocity VQ . Determine the absolute path of

P and its absolute velocity v.

(2) Show how to construct the tangent and normal to the spiral of

Archimedes r = aO, where 9 = o>/.

(3) A wheel of radius a rolls on a straight track with constant velocity

(of its centre) z/ . Find the velocity v of a point /'on the rim.

(4) Show that the tangent to the cycloid described by P, Ex. (3),

passes through the highest point of the wheel.

(5) Show that the tangent to the ellipse bisects the angle between

the radii vectores r, r< drawn from any point P on the ellipse to the

foci S, 8.
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(6) Construct the tangent to any conic section when a directrix anc

the corresponding focus are given.

(7) Two trains of equal length pass each other with equal velocity

-on parallel tracks. A man riding on a bicycle along the track at the

rate of 8 miles an hour notices that the train meeting him takes

seconds to pass him, while the other takes 6 seconds. Find the

velocity of the trains.

(8) A swimmer, starting from a point A on one bank of a river

wishes to reach a certain point B on the opposite bank. The velocity

#2 of the current and the angle made by AB with the direction of the

-current being given, determine the least relative velocity i\ of the

swimmer in magnitude and direction.

(9) Two men, A and B, walking at the rate of 3 and 4 miles an hour

respectively, cross each other at a rectangular street corner. Find the

relative velocity of A with respect to B in magnitude and direction.

(10) A man jumps from a car at an angle of 60 with a velocity o

& feet a second (relatively to the car). If the car be running 10 miles

an hour, with what velocity and in what direction does the man strike

the ground?

(n) The point J\ moves with constant velocity v along the line

PiQ. In what direction JP2Q must a point P2 move with constan

velocity v.2 in order to meet PJ What is the locus of Q when the

direction of PlQ varies ? When is the solution impossible ?

(12) A point Amoves uniformly in a circle, while another point

moves with equal velocity along a tangent to the circle. Find the

relative path of either point with respect to the other.

(13) The velocity of light being taken as 300,000 kilometres per sec

ond, and the velocity of the earth in its orbit as 30 kilometres, determine

approximately the constant of the annual aberration of the fixed stars.

2. APPLICATIONS.

145. The motion of the piston of a steam engine furnishes

interesting illustrations of the application of graphical methods

in kinematics.

In Fig. 35, let OQ=a be the crank arm, PQ= l=ma thi

-connecting rod, P
1
P

2
= s the "

stroke," so that l=ma=%m
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As P
1
P

2
=A

1
A 2
= 2a, we may regard A^A^ as representing the

stroke. The position of the piston head P at the time when the

crank pin is at Q will then be found as the intersection N oi a

circle of radius / described about P with the diameter A

Fig. 35.

of the crank circle
;
in other words, N represents the position of

the piston corresponding to the angle A 1QQ= in the forward

stroke and to the angle A 1OQ f = 27r in the 'return stroke.

146. The crank may generally be assumed to turn uniformly,

making n revolutions per second. The linear velocity of the

crank pin Q is therefore u= 2Tra n= Trns.

For the piston head P
t
or for the point N, we must distin-

guish between its mean, or average, velocity V, and its variable

instantaneous velocity v at any particular moment. For each

revolution of the crank the. piston head completes a double stroke

so that its mean speed is V2ns. Hence we have

u _ TT

2ns~ 2

147. The instantaneous velocity v of the piston can be found

graphically by considering the motion of the connecting rod

PQ. The velocity u of the end Q is known, both in magnitude

and direction
;
the velocity v of the other end is known in direc-

tion only. Now considering that the length of the rod PQ is

invariable and hence the components of u and v along PQ must
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be equal, we can find the magnitude of v by drawing (Fig. 36}

from any point M parallels to u and v, laying off u to scale and

drawing through its extremity a perpendicular to the direction of

PQ ;
this perpendicular will cut off the proper length on the

direction of v.

Fig. 36.

In applying this construction to our case it will be convenien

to turn the auxiliary diagram of velocities by an angle of 90
and place it so as to make M coincide with O

;
u will then lie|

along OQ, and v at right angles to OP. Hence, if the scale ol

velocities be selected so as to have u represented in length by

OQ, v will be represented on the same scale by OR, that is, b4

the segment cut off by PQ produced on the perpendicular to-

OP drawn through O.

148. The variation of the piston velocity in the course of

motion can best be exhibited graphically. Thus a polar curved

of piston velocity is obtained by laying off on OQ a length

OR' = OR, for a number of positions of OQ, and joining the

points R' by a continuous curve.

Another convenient method consists in erecting perpendicu-
lars to OP at the various positions of P and laying off,' on these

perpendiculars, OR" = OR v.

149. To derive an analytical expression for the piston velocit]

v, let $ be the angle OPQ which determines the position of thi

connecting rod.

It follows from the construction of the velocity v given \\

Art. 147 (see Fig. 36) that
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v OR sin (d+ 6)' = =-

If, as is usually the case, the connecting rod is much longer
than the crank arm, </>

will be a small angle, and we may substi-

tute sin
(f>

for tan 0. But from the triangle OPQ we have

Hence v= u(sin0+ cos0- sin0) = u(sin + sin 20V
\ m J \ 2m J

150. The motion of the piston head being rectilinear, we find

its acceleration j by differentiating the expression for v found

in the preceding article with respect to t :

. dv f . n I *\du f . i A
;= -T = sm0H sm20)-7

- + | cos0H cos 20* dt \ 2m ) dt \ m J

J0

dt

or, since = &>=

/=( sin 0H sin 2 )
- + (cos 0H cos 2

]
>

\ 2m J dt \ m ) a

where =o if the crank motion can be regarded as uniform.

151. If the connecting rod were of infinite length so as to

make PQ (in Fig. 35) parallel to A^A^ the position of the

piston corresponding to the position Q of the crank pin would

l>e represented by the projection M of Q on A^A^ ;
that is, NM

would be = o. This length NM is therefore called the devia-

tion due to the obliquity of the connecting rod.

With NM=o the expression for the acceleration (Art. 150)

would reduce to dv/dt(t^la) cos0, representing a simple har-

monic motion (see Art. 179).

152. The slide valve of a steam engine is generally worked

by an eccentric whose radius is set on the shaft at such an
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angle as to shut off the steam when the crank makes a certain

angle with the direction of motion of the piston. It fol-

lows that the fraction of stroke completed before cut-off takes

place is affected by the obliquity of the connecting rod. The

rates of cut-off are therefore different in the forward and back-

ward strokes. In the forward stroke, the effect of the obliquity

is to put the piston in advance of the position it would have

if the connecting rod were of infinite length ;
in the return,

stroke, i.e. when 6 is greater than TT, the piston lags behind.

153. An analytical expression for the deviation due to obliquil

is readily obtained from Fig. 35. We have

MN=PN-PM= I
(
i - cos

.

2 msf . <= ms sm^ -= (2 sm >

2 4\

or approximately, since
<f>

is small,

ms .

'

4
S11

Also, as in Art. 149, -=
;

sin u m

hence
s

4m

The greatest value of J/7Vis thus seen to be s/^m ;
for instanct

if the connecting rod be four times the length of the crank, th<

deviation due to obliquity cannot exceed 1/16 of the stroke.

154. Exercises.*

1 i ) Construct a polar diagram exhibiting the position of the piste

for all angles by laying off on the crank arm OQ a length ON ] =
and joining the points N 1

by a continuous curve.

(2) Construct the curves of piston velocity indicated in Art. 148.

* These problems are taken with slight modification from COTTERILL'S Applii

mechanics, 1884, p. 112.
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(3) Show that for a connecting rod of infinite length the two loops

of the curve of Ex. i reduce to two equal circles.

(4) The driving wheels of a locomotive are 6 ft. in diameter; find

the number of revolutions per minute and the angular velocity, when

running at 50 miles per hour. If the stroke be 2 ft., find the speed of

the piston.

(5) The pitch of a screw is 24 ft., and the number of revolutions 70

per minute. Find the speed in knots. If the stroke is 4 ft., find the

speed of piston in feet per minute.

(6) The stroke of a piston is 4 ft., and the connecting rod is 9 ft.

long. Find the position of the crank, when the piston has completed

the first quarter of the forward and backward strokes respectively. Also

find the position of the piston when the crank is upright.

(7) The valve gear is so arranged in the last question as to cut off

the steam when the crank is 45 from the dead-points both in the for-

ward and backward strokes. Find the point at which steam will be cut

off in the two strokes. Also when the obliquity of the connecting rod

is neglected.

3- ACCELERATION IN CURVILINEAR MOTION.

155. Let the velocity of a moving point be represented by

the vector v=PTat the time /,

and by the vector v t =P'T1 at

the time /+ A^ (Fig. 37). Then,

drawing from any point O OV
and OV respectively equal and

parallel to FT and P'Tf

,
the

vector W represents the geo-

metrical difference between v r

and v
;

in other words, VV1
is

the velocity which, geometrically

added to v, produces v'. The

vector VV approaches the limit

o at the same time with A/ and
Fig. 37.

PP'. This limit of VV for an infinitely small time dt may be

called the geometrical differential or vector differential,
of v.
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Dividing this infinitesimal vector by dt, we obtain in general a

finite magnitude , the geometrical derivative of the
dt

velocity with respect to the time, and that is what we call the

acceleration at the time t or at the point P. We represent it

geometrically by a vector j drawn frotn P parallel to the direc-

tion of Km VV.
It will be noticed that the sense of the acceleration will be

towards that side of the tangent of the curve on which the

centre of curvature is situated.

156. Suppose a point P to move along a curve P^P^P^ ...i

with variable velocity v (Fig. 38). From any fixed origin O\

draw a vector OV
l
= v

lJ equal and parallel to the velocity v^ ofj

P
lt
and repeat this construction for every position of the mov-

ing point P. The ends P\, V^ V& ... of all these radii vectores

drawn from O will form a continuous curve V^V^Y^... which is

called the hodograph of the motion of P.

If we imagine a point V describing this curve V^V^V^... at

the same time that P describes the curve P^PJP^ . .., it is evident

that the velocity of V
t i.e. fi

dt
!

, laid off on the tangent of I

the curve ..., represents the acceleration of the point
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both in magnitude and direction
;

i.e. the velocity of the hodo-

graph is the acceleration of the original motion.

It is easy to see how these considerations might be extended.

We might construct the hodograph of the hodograph ; its

velocity might be called^ the acceleration of the second order for

the motion of P
;
and so on.

It is sometimes convenient to draw the radii vectores of the

hodograph not parallel to the velocities of the point P, but so as

to make some constant angle (usually a right angle) with these

velocities.

157. Exercises.

(1) Discuss rectilinear motion as a special case of plane motion.

(2) Show that the hodograph of rectilinear motion is a straight line.

(3) Show that the velocity of a moving point is increasing, constant,

or diminishing, according to the value of the angle if/
between v and j

(Fig. 37)-

158. Acceleration having been defined as a vector, the rules

for vector composition and resolution may be applied to accelera-

tion just as they were before applied to displacements and to

velocities. Thus, a point subjected to two or more simultaneous

accelerations will have a resulting acceleration found by geo-

metrically adding the component accelerations
;
and conversely,

the acceleration of a point may be resolved in various ways.

159.- Let the vector / which represents the acceleration of

the point P at the time /, make an angle -^ with the vector

representing the velocity v at the same time (see Fig. 37).

Resolving the vector j along the tangent and normal at P, we

obtain the tangential acceleration jt =jcos-^ and the normal

acceleration/=/ sin
i/r.

To find expressions for these components, let us regard PP ?

in Fig. 37 as the element ds of the path described by P ;
then

the length of P'T', or of OV\ is v' = v+ dv, and the angle

VOV 1

, being equal to the angle between two consecutive

PART / 6



82 KINEMATICS. [i 60.

tangents of the curve, is the angle of contingence da. at P.

This angle being equal to the angle between the normals at P
and P', we have pda= ds, where p is the radius of curvature

at P.

Resolving the elementary acceleration, i.e. the infinitesimal

vector FF', along <9Fand at right angles to OF, we find the

components FF' cos^= ^, FF' sin ^r
= vda vds/p. Dividing

by dt and observing that ds/dt=v, we finally obtain

dv

dt

da

By composition we have

(2)

(3)

160. When rectangular Cartesian co-ordinates are used, we

may resolve the acceleration j into two components jx=j cos
<j>,

j9 =jsm<l> parallel to the co-ordinate axes Ox, Oy\ <f> being the

angle made by the vector j with the axis of x. We obtain an

expression for jx by projecting the infinitesimal triangle OVV f

(Fig. 37) on the axis Ox and denoting, as before, the projections

of the velocities OV, OV by vx, v'x. This gives

VV cos ^ v !

x vx
= dv#

^,

whence, dividing by dt, jx
= dvjdt. Similarly, we find j\

Hence, by formulae (i), Art 141,

dt dt*
Jy

~df dt*

dvjdt.

(4)

These so-called equations of motion offer the advantage that

the curvilinear motion is replaced by two rectilinear motions,

thus avoiding the use of vectors.
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By composition, we have of course

7= (5)

161. For polar co-ordinates r, 0, we may resolve the accelera-

tion j into a component jv along the radius vector r and

a component je at right

angles to r. Expressions 3y

for these components are

readily found by projecting

the components

on r and at right angles to

r (Fig. 39)
Fig. 39.

Differentiating the relations x=rcos6, y= rsin6, we find

dx dr /!= cos#
dt dt

and differentiating again :

dQ dv dr
,

-^-=
dt dt dt

*
r cos 6-

;

dt

dt* dt dt

Substituting these expressions for ^ and

equations forjn jB
, we find :

in the above

d ,~
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162. The meaning of these expressions will perhaps be better

understood by the following geometrical derivation. As shown

in Art. 142, the velocity v has the components

dr <te

the former along the radius vector, the latter at right angles

to it. During the element of time dt, while the moving point

passes from P to P' (Fig. 40), each of the vectors vr,
V Q

Fig. 40.

receives a geometrical increment Vr V'n VeV lV Let us resolve

each of these infinitesimal vectors along r and at right angles

to r, and the'n combine the two components along r, and also

the two components perpendicular to r\ finally, dividing by dt,

we obtain/. and/fl
.

Thus vr gives along ry and at right angles to r
y

dt* dt dt

hile z/0,
or r-, contributes r I

) along r and
dt \dt )

w

^^^= 4-

dt\ dt) dt dt dt*

at right angles to r. We obtain in this way the same expres-

sions for/,.,/^ as in the formulae (6) above.
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163. Exercises.

(1) Show that the sectorial velocity (Art. 135) is constant whenever

J9 = "

(2) Show that the normal component of the acceleration is the

product of the radius of curvature into the square of the angular

velocity about the centre of curvature.

(3) Show that the velocity is the mean proportional between the

acceleration and half the chord intercepted by the direction of the

acceleration on the osculating circle.

(4) If the acceleration of a point P be always directed to a fixed

point A y
show that the radius vector ^/* describes equal areas in equal

times.

(5) Show that in uniform circular motion the acceleration is directed

to the centre and proportional to the radius.

(6) A wheel rolls on a straight track; find the acceleration of its

lowest point.

4. APPLICATIONS.

164. Inclined Plane. Imagine a body sliding down a smooth

plane inclined at an angle 6 to the horizon. In addition to the

assumptions made in the case of falling bodies (see Art. 112)

we assume that the motion takes place along a " line of greatest

slope," i.e. in a vertical plane at right angles to the intersection

of the inclined plane with a horizontal plane. A " smooth
"

plane means one that offers no fric-

tional resistance. The body is there-

fore subject only to the acceleration

of gravity, g\ and it is sufficient to

consider the motion of a single point

of the body.

Resolving g into two components,

gcosO perpendicular to the plane

and -'sin0 along 'the plane (Fig. 41),
Fig. 41,

it will be seen that the former component, being at right angles

to the velocity, cannot change the magnitude of this velocity.
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We have therefore simply a rectilinear motion with the constant

acceleration gs'mO, so that all the formulae of Art. 107-113

will here apply if for the acceleration j (or g) we substitute

"sin#.

Thus, if the initial velocity be o, the motion is determined

by the equations

(i)

*, (2)

. (3)

165. If there be an initial velocity T/O parallel to the line of

greatest slope of the inclined plane, the equations are

(I')

, (2')

where ^ is to be regarded as positive if its direction is down

the plane and negative when up the plane.

If the initial velocity V
Q

be inclined to the plane at an

angle ft, it can be resolved into the components z> cos/3 and

VQ sin ft, the former alone being effective so that v cos ft must

be substituted for v in the above formulae.

166. Exercises.

(1) A railroad train is running up a grade of i in 250 at the rate of

15 miles an hour when the coupling of the last car breaks. Neglecting

friction, (a) how far will the car be after two minutes from the point

where the break occurred ? (<) When will it begin moving down the

grade? (c) How far behind the train will it be at that moment?

(d) If the grade extend 2000 ft. below the point where the break

occurred, with what velocity will it arrive at the foot of the grade ?

(2) Show that the final velocity is independent of the inclination of

the plane; in other words, in sliding down a smooth inclined plane a
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body acquires the same velocity as in falling vertically through the

"height" of the plane.

(3) Show that it takes a body twice as long to slide down a plane

of 30 inclination as it would take it to fall through the height of the

plane.

(4) At what angle 6 should the rafters of a roof of given span 2 b be

inclined to make the water run off in the shortest time ?

(5) Prove that the times of descending from rest down the chords

issuing from the highest (or lowest) point of a vertical circle are equal.

(6) If any number of points starting at the same time from the same

point slide down different inclined planes, they will at any time / all be

situated on a sphere passing through the starting point and having a

diameter =

(7) Show how to construct 'geometrically the line of quickest descent

from a given point : (a) to a given straight line, (b) to a given circle,

situated in the same vertical-;plaiie.

(8) Analytically, the line &r quickest or slowest descent from a given

point to a curve in the sanje vertical plane is found by taking the

equation of the curve in polar co-ordinates, r=/(0), with the given

point as origin and the axis horizontal. The time of descending the

radius vector r is 't= ~^~2r/(g sin 6). Show that this becomes a maxi-

mum or minimum when tan 0=/(0)//'(0), according as /(0) +/"(#)
is negative or positive.

(9) Show that the line of quickest descent to a parabola from its

focus, the axis of the parabola being horizontal, is inclined at an angle

of 60 to the horizon.

167. Projectiles. With the same assumptions as in Art. 112,

the motion of a projectile reduces to that of a point subject to

the constant acceleration of gravity and starting with an initial

velocity VQ inclined to the horizon at an angle * different from

90. The angle e between the horizon and the initial velocity is

called the elevation of the projectile.
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Taking the horizontal line through the starting point O as

axis of x, the vertical upwards as positive axis of y (Fig. 42), the

x

Fig. 42.

^-component of the acceleration is evidently o, while the jj/-com-

ponent is g\ hence, by (4), Art. 160, the equations of motion

are

S =o> = -^- (4>

The first integration gives

dx _ dy_

As -^=z/z, -ssyt are the components of the velocity v at
at at

the time /, the constants are determined from the values of vm vv
at the time /=o; viz. VQ cos 6=^, VQ

sin e= o -f- Cz . We have

therefore

(5)^z= = V
Q cos e, vy

= - =
VQ sin e gt.

Integrating again, we find

X=VQ cos e t, y ^Q sin e t \gfi, (6)

the constants of integration being o, since for t=o we have

These values of x, y, vx , vy
show that the motion in the hori-

zontal direction is uniform while in the vertical direction it is
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uniformly accelerated. This is otherwise directly evident from

the nature of the problem.

Eliminating t between the expressions for x and y, we find

the equation of the path

cose (7)

which represents a parabola passing through the origin. To
find its vertex and latus rectum, divide by the coefficient of x%

and rearrange :

2Vf

y\

completing the square in x, the equation can be written in the

form

.2
-^ sm 2 e

*g J g
Y= -^cos2* (y

- ^sin?e\ (;'
J pr V 2 J

V*
ie co-ordinates of the vertex are therefore <*=-^-sin2e,

V 2 2 V 2 &
? = sin2e; the latus rectum 4 a = - cos2e

;
the axis is

O <3

:ical, and the directrix is a horizontal line at the distance

v 2

cos2e above the vertex.

168. Exercises.

(1) Show that the velocity at any time is v = V?'o
2

2gy.

(2) Prove that the velocity of the projectile is equal in magnitude

to the velocity that it would acquire by falling from the directrix : (a) at

the starting point, (b) at any point of the path (see Art. 113).

(3) Show that a body projected vertically upwards with the initial

velocity VQ would just reach the common directrix of all the parabolas

described by bodies projected at different elevations with the same

initial velocity VQ .
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(4) The range of a projectile is the distance from the starting poin

to the point where it strikes the ground. Show that on a horizonta

v 2

plane the range is R = 2 a = sin 2 e.

o

(5) The time of flight is the whole time from the beginning of the

motion to the instant when the projectile strikes the ground. It is

best found by considering the horizontal motion of the projectile alonej

which is uniform. Show that on a horizontal plane the time of flight is

7V=sine.
g

(6) Show that the time of flight and the range on a plane through

the starting point inclined at an angle to the horizon are

r_2Vo sin(c 6) A r, _ 2zy* sin(e 0)cose
j. Q
-- - ana Ytg
g cos g cos 2

9

(7) What elevation gives the greatest range on a horizontal plane?

(8) Show that on a plane rising at an angle to the horizon, to obtain

the greatest range, the direction of the initial velocity should bisect the

angle between the plane and the vertical.

(9) A stone is dropped from a balloon which, at a height of 1000 ft.,

is carried along by a horizontal air-current at the rate of 15 miles an

hour, (a) Where, (b) when, and (c) with what velocity will it reach

the ground ?

(10) What must be the initial velocity VQ of a projectile if with art

elevation of 30 it is to strike an object 100 ft. above the horizontal

plane of the starting point at a horizontal distance from the latter of

1200 ft.?

(n) What must be the elevation e to strike an object 100 ft. above

the horizontal plane of the starting point and 5000 ft. distant, if the

initial velocity be 1200 ft. per second?

(12) Show that to strike an object situated in the horizontal plane of

the starting point at a distance x from the latter, the elevation must be

e or 90 e, where = ^sin

(13) The initial velocity VQ being given in magnitude and direction,

show how to construct the path graphically.
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(14) If it be known that the path of a point is a parabola and that

the acceleration is parallel to its axis, show that the acceleration is

constant.

(15) Prove that a projectile whose elevation is 60 rises three times

as high as when its elevation is 30, the magnitude of the initial velocity

being the same in both cases.

(16) Construct the hodograph for parabolic motion, taking the focus

as pole and drawing the radii vectores at right angles to the velocities.

169. A projectile moving in the air or in any other resisting

medium of uniform density is subject, in addition to the con-

stant acceleration g of gravity, to the resistance of the medium

which produces a retardation variable both in magnitude and

direction (Art. 125). Experiment shows that this retardation

jean he expressed in the form cvn
,
where c is constant for a given

projectile and medium, and n must be determined by experiment

for different initial velocities.

170. For n=i the integrations can be readily effected.

Resolving tbe retardation cv into its components cvx =cdxjdt,

y cdyjdt, the equations of motion are

d^x dx d*y dy- = ~ c - c

Integrating, we find

^=^ =
^0 cos *-", vy

=
^-=

l

-[-g+(cv^me+g)e-
ct

], (9)
ctt dt c

since for tQ we have vx
=

v$ cose, z/
y
= z/ sin e.

The second integration gives

(10)
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since #=0, jj/=o for tO. Eliminating t, we find the equation!

of the path of the projectile :

,0)86 CX

Vn COS 6

(II)

The curve has a vertical asymptote x=-
;

for this value

of x, /=oo .

171. Uniform Circular Motion. Let a point P (Fig. 43) describe

a circle of radius a with constant angular velocity co. Its linear

Fig. 43.

velocity v= wa is of constant magnitude, but varies in direction.

By the formulae (i), (2) of Art. 159, the tangential acceleration

jt
= o, while the normal acceleration jn= v2

'/a
= aPa represents

the total acceleration. Hence, in uniform circular motion, the

acceleration is

j=*= tfat (12)

and is always directed toward the centre O of the circle.

This appears also by constructing the hodograph of the

motion, which is evidently a circle of radius v (Fig. 43). As

the acceleration of P is represented by the velocity of the point

P' of the hodograph (see Art. 156), we have only to determine

this velocity. Let T be the so-called period, or periodic time,

i.e. the time in which the point P makes a whole revolution,
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;o that T=2Tra/v\ then, since P' describes the circle of radius

in the same time T, we have for the velocity of P' the expres-

>ion 2TTV/T, or substituting for T its value, v*/a, as above.

172. . Simple harmonic motion is a rectilinear motion in which

he distance x of the moving point Px (Fig. 44) from a fixed

>rigin O in the line of motion is a simple harmonic function of

he time, i.e. a function of the form

vhere a, o>, e are constants.

If the positions P of a point moving uniformly in a circle be

)rojected at every instant on any diameter AA' of the circle, it

s easy to see that the motion

)f the projection Px along the

liameter is simply harmonic. For

lenoting the constant angular

elocity of P by &>, the angle

4OP will be= ft>/ if the time be

:ounted from the point A. Hence

he distance OPx=x of the point

Px from the centre O, or the dis-

)lacement of Px at the time t
y is

;r=tfCOSG)/, Fig. 44.

vhere a is the radius of the circle. This radius a=OA is

:alled the amplitude of the simple harmonic motion.

173. While P moves uniformly in the circle, its projection

evidently performs oscillations from A through O to A' and

3ack through O to A.

The time T of completing one whole oscillation forward and

Backward is called the period of the simple harmonic motion
;

t is obviously equal to the period of the motion of P in the

:ircle
; i.e.

T=
2-^-

(14)



KINEMATICS. [

94

The period is therefore independent of the amplitude a. Il

follows that two simple harmonic motions resulting from tw<

uniform circular motions of the same angular velocity on two I

concentric circles of different radii have the same period ; such]

motions are called isochronous.

174. If the time / be counted, not from A, but from some

other point PQ
on the circle for which %AOPQ

=
e, we have

^AOP=(0t+e, and the equation of the simple harmonic

motion is

05)

The angle o>/+e is called the phase-angle, while e is the epoch-j

angle, of the motion. The names phase and epoch are
sometimesj

applied to these angles, although, strictly speaking, the phase is

the time (usually expressed as a fraction of the period T) oi\

passing from the position A of maximum displacement to any

position P* while the epoch is the phase corresponding to the

time t=o.

175. Differentiating equation (15), we find the velocity

vx
= = -aco sin (orf+e) ; (i6)l

at

and differentiating again, we obtain the acceleration

(I?)

of simple harmonic motion.

The same values can be derived by projecting the velocity

and acceleration of the uniform circular motion of P on the

diameter AA ', as is readily seen- from Fig. 44.

176. Equation (17) shows that in simple harmonic motion the

acceleration is directly proportional to the distance from the

centre.
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Conversely, it can be shown that if the acceleration be pro-

portional to the distance from a fixed point in the direction of

the initial velocity, and if it be directed towards this point, the

motion is simply harmonic. For we then have

ar

dt*

where fi is constant. The general integral of this differential

equation is (compare Art. 122)

x= sn C2 cos

Differentiating, we find for the velocity

v= C^i cos i^t C^fi sin fit.

To determine the constants of integration Cv C^ let s=s^
and V= VQ at the time /=o. Substituting these values, we find

r =6*2 and v^fiC^ hence

x=^ sin fit+ s cos fit.

1*

Putting v
Q/fi=acose, sQ=a sin e, which is always allowable,.

|ve obtain

x=a (sin fit cos e+ cos fit sin e)

a sn

This represents a simple harmonic motion whose amplitude
2
/yLt, and whose epoch-angle is e= tan'1

^/^).
is the angular velocity of the corresponding uniform circular

potion is
//,,

the period is T 2 TT//^.

177. If the uniform circular motion of P be projected on the

[ameter BB', which is at right angles to the diameter AA'

'ig. 44), we have OP
y=y= a sin (o)/+e). Writing this in the

liuivalent form
f Tr\

y a cos f w/H-eH
J,
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it appears that the motion of P
y
is simply harmonic of the same

period and amplitude with the motion of Px,
but differing by

-7T/2 in phase.

178. Simple harmonic motions occur very frequently in

applied mechanics and mathematical physics. A particular

case has been treated in Arts. 121-124. As another example

we may mention the apparent motion of a satellite about its

primary as seen from any point in the plane of the motion, pro-

vided the satellite be regarded as moving uniformly in a circle

relatively to its primary. Thus the moons of Jupiter, as seen

from the earth, have approximately a simple harmonic motion.

179. A mechanism for producing simple harmonic motion

can readily be constructed as follows. The end A (Fig. 45)

of a crank rotating uniformly

about the axis O, carries a pin

running in the slot AB of a T
bar ABD whose axis (produced)

j

passes through the centre O of!

the crank circle. The T bar is

constrained by guides to move

back and forth along the line OD
;

its motion is evidently simply!

harmonic, the uniform circular motion of the crank being trans-l

formed into rectilinear motion. Compare Art. 151.

180. Exercises.

(i) Show that the maximum acceleration of the simple harmonic

motion is numerically equal to the acceleration in the corresponding

uniform circular motion.

. (2) Find the time of one oscillation from equation (15) without

reference to the circular motion.

(3) In the mechanism shown in Fig. 45, if the length of the crank

2 feet and the number of revolutions 15 per minute, find the
velocity^

.and acceleration of the end D of the T bar : (a) when at elongation ;

.() when at quarter stroke
; (<r)

when at the middle of the stroke.
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(4) Show that the period of a simple harmonic oscillation can be

expressed in the form T= 2 TTV x/jx where jx is the acceleration of

the oscillating point at the time when its distance from the centre, or

its displacement, is x.

(5) Px ,
P'x being the positions of the oscillating point at the times

/, /', respectively, and 8 the angle POP, i.e. the difference of phase,
.show that f /=8/w.

(6) Show that vx = o> V#2
x?.

181. Compound Harmonic Motion. We have seen (Art. 176)

that the motion of a point, whose acceleration is directly propor-

tional to its distance from a fixed centre, and directed towards

this centre, is simply harmonic, provided the centre lies in the

line of the initial velocity. Removing this last restriction, we

have the more generalise of compound harmonic motion.

Let O (Fig. 46) be the centre, P the position of the moving

point at the time t, OP s its distance from the centre, v its

velocity, j= /j?s its accelera-

tion, at that time. Referring

the motion to two rectangular

axes Ox, Oy in the plane deter-

mined by v and O, we can

resolve v and j into their com-

ponents along these axes :

vx
= v cos , v

y
= v sin a,

and jx
= fix, jy= ^

2
y, where

a is the angle made by v with the axis Ox, and x, y are the

co-ordinates of P.

The projections Px,
P

y
of P on the axes have therefore each

a simple harmonic motion, and the motion of P may be regarded

as the resultant of these component motions.

182. In general, the motion of P will be curvilinear. We

proceed to examine somewhat more in detail the most important

cases of the composition of two or more simple harmonic motions,

PART I 7
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beginning with those cases in which the resultant motion is

rectilinear.

As, according to Hooke's law, the particles of elastic bodies,

after release from strain within the elastic limits, perform small

oscillations for which the acceleration is proportional to the

displacement from a middle position, the motions under discus-

sion find a wide application in the theories of elasticity, sound,,

light, and electricity, and form the basis of the general theory

of wave motion in an elastic medium.

183. Two simple harmonic motions in the same line, of equal

amplitude a and equalperiod T, but differing in phase by &, com-

pound into a simple harmonic motion in the same line, of the-

same period T, but having the amplitude 2 a cos (8/2).

For we have for the component displacements

x^=a cos co/, x^ ft cos (fr>^+S) ;

and as these are in the same line, they can be added algebrai-

cally giving the resultant displacement

= #[cos o)/-hcos(i

or, by the formula cos a -f cos = 2 cos
" ^ cos

a

x 2 a cos- cos &>/ + -.
2 V 2

184. Two simple harmonic motions in the same line, of equal

period T, but differing both in amplitude and in phase, compound
into a single simple harmonic motion in the same line and of the

same period.

For the component displacements

^
1
= a

l
cos w/H-ej, ^

2
= <z2 cos

can again be added algebraically, and the resultant displacement
is
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a
1
cos (wt+ e^)+ tf

2 cos (at+ e
2)

=
(tfj

cos ej-h <z2 cos e2) cos w/
(tfj

sin ejH-^ sin e2) sin at.

Putting <2
1
cose

1+ ^2 cose2
= ^cose, a sine^d^ sine2= sin e,

we have

x=a cos e cos a>ta sin e sin a*t

a cos (o)/+e),

where a2=
(#j

cos e
1+ ^

2 cos e
2)

2+ (a^ sin 6
a

=
aj

2
H- 2

2+ 2 tf
1(
z
2 cos (ea

-
e^

and tan e=
(a-^

sin
e-^+ a^ sin e^)/(a1

cos ej-f-tfg cos 6
2)-

185. A geometrical illustration of the preceding proposition

is obtained by considering the uniform circular motions corre-

sponding to the simple harmonic motions (Fig. 47).

sin e2)

Fig. 47.

Drawin the radii = tf so as to include an angle

equal to the difference of phase e
2 1

and completing the

parallelogram OP^PP^ it appears from the figure that the

diagonal OP of this parallelogram represents the resulting

amplitude a. For since P^P is equal and parallel to OP^ we

have for the projections on Ox the relation OPx^+OP*t
=OPx,

or x^+x^=x.

Again, if the angle xOPl
be taken equal to the epoch-angle

ep and hence ^OP^= e2 ,
the angle xOP represents the epoch

e of the resulting motion.
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AQ

We thus have a simple geometrical construction for the

elements a, e of the resulting motion from the elements a
lt

e
1

and
2 ,

e
2

of the component motions. As the period is the

same for the two component motions, the points P
l
and P

2

describe their respective circles with equal angular velocity so

that the parallelogram OP^PP^ does not change its form in the

course of the motion.

186. The construction given in the preceding article can be

described briefly by saying that two simple harmonic motions

of equal period in the same line are compounded by geometrically

adding their amplitudes, it being understood that the phase-

angles determine the directions in which the amplitudes are to

be drawn.

It follows at once that not only two, but any number of simple

harmonic motions, of equal period in the same line, can be com-

pounded by geometric addition

of their amplitudes into a sin-

gle simple harmonic motion in

the same line and of the same

period.

Conversely, any given sim-

ple harmonic motion can be
F

resolved into two or more

components in the same line

and of the same period.

187. The kinematical mean-

ing of this composition of sim-

ple harmonic motions of equal

period in the same line will

perhaps be best understood

from the mechanism sketched

in Fig. 48. A cord runs from

the fixed point A over the movable pulleys B, D and the fixed

pulleys C, E, and ends in F. Each of the movable pulleys

Fig. 48.
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receives a vertical simple harmonic motion from the T bars BG
and DH, just as in Fig. 45 (Art. 179). If the free end F of the

cord be just kept tight, its vertical displacement will be twice

the sum of the vertical displacements of B and D, and as these

points have simple harmonic motions, the motion of F will be

twice the resultant simple harmonic motion.

The idea of this mechanism is due to Lord Kelvin.

188. Exercises.

( i ) Find the resultant of three simple harmonic motions in the same

line, and all of period T= 10 seconds, the amplitudes being 5, 3, and

4 cm., and the phase differences 30 and 60, respectively, between the

first and second, and the first and third motions.

(2) Apply the geometrical method of Art. 185 to the problem
of Art. 183.

(3) Find the resultant of two simple harmonic motions in the same

line and of equal period when the amplitudes are equal and the phases

differ : (a) by an even multiple of TT, () by an odd multiple of TT.

(4) Resolve x= 10 cos (TT/+ 45) into two components in the same

line with a phase difference of 30, one of the components having the

epoch o.

(5) Trace the curves representing the component motions as well as

the resultant motion in Ex. (i), taking the time as abscissa and the

displacement as ordinate.

(6) Show that the resultant of n simple harmonic motions of equal

period Z'in the same line, viz. :

^/4-
A .- * = 0nCos

is the isochronous simple harmonic motion

== *! cos *2
=

x = a coSi T

where a* = (2a t
cos Ci)

2 + (%*t sin **_L_ /"?./ cin t.\ 2

and tan c = 20< sin e^/Stf,
cos <.
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189. The composition of two or more simple harmonic motions

in the same line can readily be effected, even when the compo-

nents differ in period. But the resultant motion is not simply

harmonic.

Thus, for two components

#2= 02 cos(ft>2/-he2),

putting w
2^+e2

=
1;+( 2

- &)
i)

/+ e2
= &)

i
/ + i + ^ Sa7 where

S=(< 2 (!)/+ 2 6! is the difference of phase at the time t
y
we

have for the resulting motion

=a
l
cos

and treating this similarly as in Art. 184 we find

x(al -\- a2 cos 8) cos (o>^+ ^) #2 sin 8 sin

or putting a
1 -{-a2 cos 8= a cose, a% sin 8= a sine,

x= a cos (!/+ ej+ e),

where a2=a
1
2+ a%

2+ 2afy cos 8 and tane=^2 sin8/(a1+a2
cos

190. These formulae can be interpreted geometrically by

Fig. 47, similarly as in Art. 185. But as in the present case

the angle 8, and consequently the quantities a and e in the

expression for x, are variable, the parallelogram OP
1
PP

2
while

having constant sides has variable angles and changes its form

in the course of the motion.

A mechanism similar to that of Fig. 48 (Art. 187), can be

used to effect mechanically the composition of simple harmonic

motions in the same line whether the periods be equal or not.

This is the principle of the tide-predicting machine devised by
Lord Kelvin.*

* See THOMSON and TAIT, Natural philosophy, Vol. I., Part I., new edition, 1879,

p. 43 sq. and p. 479 sq. and J. D. EVERETT, Vibratory motion and sound, 1882.
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191. To show the connection of the present subject with the

theory of wave motion, imagine a flexible cord AB of which one

end B is fixed while the other A is given a sudden jerk or

transverse motion from A to C and back through A to D, etc.

(Fig. 49). The displacement given to A will, so to speak, run

along the cord, travelling from A to B and producing a wave.

The figure exhibits the successive stages of the motion up to

the time when a complete wave has been produced.

A'

Fig. 49.

192. The distance A'K (Fig. 49) is called the length of the

wave. Denoting this length by X, and the time in which the

motion spreads from A ' to K by T we have for the velocity of

propagation of the wave

V=j: (18)

It is to be noticed that the motion of any particular point of

the cord is supposed to be rectilinear and at right angles to

AB
;

this is the case with the simple transverse vibrations

in an elastic medium such as the luminiferous ether regarded

as the vehicle of light waves.
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193. If the motion of A be simply harmonic, sayjy= #

the motions of the successive points of the cord will differ from

the motion of A only in phase, and the displacements of all

these points at any time t can be represented by

y= a sin(W e), (19)

where e varies from o to 2 TT as we pass from A to K.

As the time T in which the motion spreads from A to K is

equal to the period of a vibration of A (or of any other point of

the cord), we have co= 27r/T, or, by (18), o)= 27rF/X. And if x
be the distance of the point of the cord under consideration from

A, we must have x : \= e : 2?r
;
that is, e= 27rx/\. Substituting-

these values of co and e in (19), the equation of the wave motion

can be written in the form

y=a*\TL(Vt-x). (20)X

194. This equation can be looked upon from two different

points of view according as we regard / or x as variable.

Let / be constant
;

i.e. let us consider the displacements of

all points of the cord at a given instant. If for x in (20) we
substitute x+n\, where n is any positive or negative integer,

the angle (Vt x} 2ir/\ is changed by 2irn, so that the value

of y remains unchanged. The displacements of all particles

whose distances from A differ by whole wave lengths are there-

fore the same; in other words, the state of motion at any
instant is represented by a series of equal waves.

Now let x be constant, and t variable. Substituting for t in

(20) the value t+nT=t+n\/V, the angle (Vtx) 2?r/X is again

changed by 27r, and y remains the same. This shows the

periodicity in the motion of any given particle.

195. If the point A (Fig. 49) be subjected simultaneously to

more than one simple harmonic motion, the displacements

resulting from each must be added algebraically, thus forming-

a compound wave which can readily be traced by first tracing
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the component waves and then adding their ordinates, or ana-

lytically by forming the equation of the resultant motion as in

Art. 189.

196. Exercise.

(i) Trace the wave produced by the superposition of two simple

harmonic motions in the same line of equal amplitudes, the periods

being as 2:1, (a) when they do not differ in phase, (b) when their

epochs differ by 7/16 of the period.

197. The idea of wave motion implies that the displacement

y should be a periodic function of x and t such as to fulfil

the following conditions : y must assume the same value (a)

when x is changed into n\, (&) when t is changed into /+ T,

(c) when -both changes are made simultaneously; the constants

\ and T being connected by the relation \= VT.

The condition (c) requires y to be of the form yf(Vtx] ;

for Vt x remains unchanged when x is replaced by x-\- VT
and at the same time /by /+ T.

A particular case of such a function is y=a smc(Vtx). As

y should remain unchanged when / is replaced by /+ Tt we

must have c=2Tr/VT=2Tr/\. Thus the function

7=^ sin (Vt-x)X

fulfils the three conditions (a), (b), (c). Putting as before (Art.

193) 2irx/\= e, we can write it

198. The importance of this particular solution of our problem lies

in the fact that, according to Fourier's theorem, any single-valued

periodic function of period T can be expanded, between definite limits

of the variable, into a series of the form

(21)
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As applied to the theory of wave motion this means of course that any
'wave motion, however complex, can be regarded as nude up of a series

of superposed simple harmonic vibrations of periods Tt T/2, 7/3, ,

or since T= K/V, of wave lengths A, A/a, A/3, ....

199. A full discussion of Fourier's theorem cannot be given in this

place. We wish, however, to show its practical application in an

example.

The equation (ai) can be written in the form

/(/) = ! cosej sin. /+ a* cos e8 sin. a /+ <*3 cos e3 sin- 3/+

or putting a irfT'ss #, <*! sin j

2 cos ea = /?a, ,

a + -^ cos x -f At cos *x + ^8 cos 3* +
-f ^sin^e -f^a sin 2x 4-^?3 sin3Jc 4- . (aa)

This is known as Fourier's series. According to the nature of the func-

tion to be expanded, it is often sufficient to use the sine series or the

cosine series alone. As the method of determining the coefficients is

always the same, it will be sufficient to consider the simple sine series :

200. The problem before us can now be stated as follows : Given any

single-valued function of je, either by its analytical expression or by the

trace of the curve representing it, to determine the coefficients B it

(33) so as to make the right-hand member of this equation represenf
the values of the given function between certain finite limits of x.

. We shall assume these limits to be x = o and x = * : and we shall

*The student is referred to THOMSON and TAIT, Natural philosophy* I. I, 1879,

pp. 55-60; also to B. RIBMANN, Partielk Di/trtHtialgieickHHgv*% herausgegeben votf

K. Hattendorff, 3d ed., Braunschweig, Vieweg, 1882, pp. 44-95, and to G. M.

MINCHIN, L-ttiplanar tintma(tcs, Oxford, Clarendon Press, 1882, p. 13 sq.
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first try to make n i points of the given curve taken between these

limits coincide with as many points of the curve

f(x) = Z?! sin x + BI sin 2 ^ H +Bn !
sin

( i)x. (24)

Then passing to the limit for =
oc, the problem will be solved.

201. Dividing the interval from x = o to x = ir into equal parts

and taking the i points on the given curve so that their abscissae

are

TT 2ir 37T (rt I)T
n n n n

he curve (24) will contain these points if the following n i equations

are fulfilled :

fl J " \ n . "
. r . _ 2 7T

_. .

^

= ^lSin(-i)^+^sin(-i)^+...4-^n-isin(-i)^-^.
. . . (25)

These equations are sufficient to determine the i unknown con-

stants 3lt B* ., ^n_i.

202. To solve the equations we multiply them by indeterminate co-

efficients and add. The coefficients can be so selected as to make all

the unknown quantities disappear except one which is thus determined.

Thus, to find Bm multiply each equation by twice the coefficient of

Bm in this equation, viz. the first equation by 2 sin (mir/ri), the second

>y 2 sin (2 mir/n), etc., the last by 2 sin[( i)mir/ri].

|

After adding, the factor of Bk will be

, 7T . 7T . 2 7T . 2 7T
,Bk

= 2\ sm/fc-smw + sm smm h
n n n n

+ sin k (n i) -sin m(n i)
-
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Transforming every term by the formula 2 sin a sin fi= cos (a /?)

cos (a+(3), we find

. . . (26)

Applying the trigonometrical formula

(
2;?- I ) Ct/2\
sin a/2 y

we obtain

sin(2 i) (k m) sin(2 n i) (k + m)
2 =-------

cos( w)7rsin(^ m)

(k 4- ni\ cos( 4- m\it sin(/& + m\
v

V ' 2n * x 71
"

v ;^g

If be different from tn, this reduces to

and this is always = o, since k + m and k m are either both odd

or both even.

If k=m, we find from (26)

[7T
.

27T
, ( iWH

COS 2m-+ COS 2*# --
1

---- + COS2*^-'

n n n J
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We have, therefore, finally

:kth m = i, 2, 3, n i.

203. It remains to p

Voting (27) in the form

27T

f

2/f
f(n I)TT\ . ( I)
f
^

^-Jsin
f^__2 / x

(27)

203. It remains to pass to the limit when n = oo and vanishes.

e obviously have in the limit

2 C*Bm=- I /
TTc/O

2, 3, (28)

Fig. 50.

204. As an application let us determine the series representing the

roken line formed by the two sides of an isosceles right-angled triangle
rhose hypotenuse lies in the axis of x (Fig. 50).
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We assume the length of this hypotenuse =TT; then the given funcj

tion isf(x)=x from x=o to x=ir/2 }
and /(X)=TT x from x=Tr/2

to X=TT.

On account of the discontinuity at the point x=ir/2, the Integra

in (28) must be resolved into two, and we have

2 r c^ c* ~\Bm= -
I x sin mx dx + I (irx) sin mx dx

7T \_J Jn J

2 f I 7T MITT I . KlTT I TT #27T I . W7T~]= cos
1 5 sm 1

cos h 9 sin
7T L m 2 2 #T 2 W 2 2 #T 2J

For even values of m, sin(w7r/2)=o ; for odd values, sin(w7r/2) is

alternately positive or negative. Hence the series (23) becomes

sin

(29)

This expansion certainly holds when x lies between o and ?r. A

every term of the series vanishes for x=o as well as for X=TT, th<

expansion holds even at these limits. Moreover, when x lies between i

and 2 TT, all the terms of the series, with signs reversed, pass through thi

same succession of values as between o and TT. The series represents

therefore between these limits an equal triangle with its vertex belo^

the axis of x (Fig. 50). Beyond the point x=2-n, the same figure

repeats itself owing to the periodicity of the sine.

It thus appears that the series represents an infinite zigzag line fo

all values of x.

205. We proceed to the composition of simple harmonic motion*

not in the same line. We shall, however, assume that all tht

component motions lie in the same plane.

It is evident that the projection of a simple harmonic motion

on any line is again a simple harmonic motion of the same

period and phase and with an amplitude equal to the projection

of the original amplitude.
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Hence, to compound any number of simple harmonic motions

along lines lying in the same plane, we may project all these

motions on any two rectangular axes Ox, Oy taken in this

plane, and compound, by Art. 184 or 189, the components lying

in the same axis. It then only remains to compound the

two motions, one along Ox, the other along Oy, into a single

motion.

206. Just as in Arts. 184, 189, we must distinguish two

cases : (a) when the given motions have all the same period,

and (f) when they have not.

In the former case, by Art. 184, the two components

along Ox and Oy will have equal periods, i.e. they will be of the

form

xa sin &>/, y= b sin (&>/+). (30)

The path of the resulting motion is obtained by eliminating t

between these equations. We have

^= sinft>cos-h cos wt sin 8
o

x I *2=- cosS+\/i sin 8.
/7 SI"

Writing this equation in the form

or 5-^ cosS+-^
= sin2 S, (31)

a* ab IP

we see that it represents an ellipse (since
-- - =

[ )

\ ab J

is positive) whose centre is at the origin. The resultant motion

is therefore called elliptic harmonic motion.
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207. Although in what precedes we have assumed the axes

at right angles to each other, this is not essential. The same

equation (31) is obtained for oblique axes Ox, Oy, and it is easy

to show (say by transforming (31) to rectangular axes) that this

equation still represents an ellipse. We have, therefore, the

general result that any number of simple harmonic motions .of

the same period and in the same plane, whatever may be their

directions, amplitudes, andphases, compound into a single elliptic

harmonic motion.

208. A few particular cases may be noticed. The equation

(31) will represent a (double) straight line, and hence the elliptic

vibration will degenerate into a simple harmonic vibration,

whenever sin2 8= o, i.e. when 8= n7r, where n is a positive or

negative integer. In this case cosS is +i or i, and (31)

reduces to

-
^= 0, if S=

a b

and to

Thus two rectangular vibrations of the same period compound
into a simple harmonic vibration when they differ in phase by
an integral multiple of TT, that is when one lags behind the

other by half a wave length.

209. Again, the ellipse (31) reduces to a circle only when

cosS=o, i.e. $=(2n+i)7r/2, and in addition a= b, the co-ordi-

nates being assumed orthogonal.

Thus two rectangular vibrations of equal period and ampli-

tude compound into a circular vibration if they differ in phase

by 7T/2, i.e. if one is retarded behind the other by a quarter of

a wave length.

This circular harmonic motion is evidently nothing but uni-

form motion in a circle; and we have seen in Art. 172 that,

conversely, uniform circular motion can be resolved into two
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rectangular simple harmonic vibrations of equal period and

amplitude, but differing in phase by 7r/2.

The results of Arts. 205-209 can also be established by

purely geometrical methods of an elementary character.*

210. It remains to consider the case when the given simple

harmonic motions do not all have the same period. It follows

from Art. 189 that in this case, if we again project the given

motions on two rectangular axes Ox, Oy, the resulting motions

along Ox, Oy are in general not simply harmonic.

The elimination of t between the expressions for x and y may
present difficulties. But, of course, the curve can always be

traced by points, graphically.

We shall here consider only the case when the motions along

Ox and Oy are simply harmonic.

211. If two simple harmonic motions along the rectangular

directions Ox, Oy, viz. :

x=a cos -

of different amplitudes, phases, and periods are to be com-

pounded, the resulting motion will be confined within a rec-

tangle whose sides are 2ap 2a2 , since these are the maximum

values of 2x and 2y.

The path of the moving point will be a closed curve only when

the quotient T^T2
is a commensurable number, say = m/n,

where m is prime to n. The x co-ordinate of the curve will

have m maxima, the y co-ordinate n, and the whole curve will

be traversed after m vibrations along Ox and n along Oy.

The formation of the resulting curve will best be understood

from the following example.

*
See, for instance, J. G. MACGREGOR, An elementary treatise on kinematics and

dynamics, London, Macmillan, 1887, pp. 115 sq.

PART I 8
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212. Let. a
l
= az=af

e
1
= o, e2

= &, and let the ratio of the

periods be T
1/T2

= 2/i. The equations of the component sim-

ple harmonic vibrations are

x=acoso)t, y a cos(2a)t+S).

Here it is easy to eliminate t. We have

y= a cos 2 tot cos B a sin 2 a>t sin S

ni'y* i\rn*% oa
\
^ ~o L ^Ub ^ ifr

~
\/

x o
a* I a^ or

Hence the equation of the path is :

ay= (23? a2
) cos S 2x^/cPx*' sin B.

If there be no difference of phase between the components,

i.e. if S=o, this reduces to the equation of a parabola :

For S= ?r/2, the equation also assumes a simple form :

213. It is instructive to trace the resulting curves for a given

ratio of periods and for a series of successive differences of

phase (Lissajouss Curves}.

Thus, in Fig. 51, the curve for 7\/ 7^= 3/4, and for a phase
difference S= o is the fully drawn curve, while the dotted curve

represents the path for the same ratio of the periods when the

phase difference is one-twelfth of the smaller period. The

equations of the components are for the full curve

3 4

and for the dotted curve
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In tracing these curves, imagine the simple harmonic motions

replaced by the corresponding uniform circular motions (Fig.

51). With the amplitudes 6, 5 as radii, describe the semi-

circles ADB, AEC, so that BC is the rectangle within which

the curves are confined
;
the intersection of the diagonals of

this rectangle is the origin O, AB is parallel to the axis of x
t

AC to the axis of y. Next divide the circles over AB, AC into

parts corresponding to equal intervals of time. In the present

case, the periods for AB, AC being as 3 to 4, the circle over

Fig. 51,

AB must be divided into 3/2 equal parts, that over AC into

4 . In the figure, n is taken as 4, the circles being divided

into 12 and 16 equal parts, respectively.

The first point of the full drawn curve corresponds to ^=o,

that is x=6,y= $ ;
this gives the upper right hand corner of

the rectangle. The next point is the intersection of the vertical

line. through D and the horizontal line through E, the arcs

BD=i/i2 of the circle over AB, and CE=i/i6 of that over

AC being described in the same time, so that the co-ordinates

of the corresponding point are
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i/= cos 27T--;[ 27T--4;)
\ i6/

Similarly the next point

is found from the next two points of division on the circles, etc.

To construct the dotted curve, it is only necessary to begin

on the circle over AB with D as first point of division.

214. Exercises.

(1) With the data of Art. 213 construct the curves for phase differ-

ences of 2/12, 3/i2, 11/12 of the smaller period.

(2) Construct the curves (Art. 212)

x = a cos to/, y = a cos(2o>/+ S)

for 8= O, 7T/4, 7T/2, 37T/4, TT, 511/4, 3W/2, 771/4, 27T.

(3) Trace the path of a point subjected to two circular vibrations of

the same amplitude, but differing in period, (a) when the sense is the

same; (b) when it is opposite.

215. The mathematical pendulum is a point compelled to move

in a vertical circle under the

acceleration of gravity.

Let <9 be the centre (Fig. 52),

A the lowest, and B the highest

point of the circle. The radius

OA = loi the circle is called the

length of the pendulum. Any
position P of the moving point

is determined by the angl<

AOP= 6 counted from the ver-

tical radius OA in the positiv<

(counterclockwise) sense of rota-

tion.

If P
Q be the initial position of the moving point at the time
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/=0, and AOPQ
=

Q ,
then the arc P P=s described in the

time/ is j= /(0 -0); hence v=ds/dt= -IdO/dt, and dfr/dT/

= Id2
6/dt*, the negative sign indicating that diminishes as

j and / increase.

Resolving the acceleration of gravity, g> into its normal and

tangential components gcosO, -sin#, and considering that the

former is without effect owing to the condition that the point

is constrained to move in a circle, we obtain the equation of

motion in the form dv/dt =g sin 0, or

(32)

216. The first integration is readily performed by multiplying

the equation by dQjdt which makes the left-hand member an

exact derivative, ,

hence integrating, we obtain

or considering that v=ldQldt,

To determine the constant C, the initial velocity ^ at the

time t=o must be given. We then have J^
2

hence

cos e=g-lcvs + /cos (33)

The right-hand member can readily be interpreted geometri-

cally ; v^/2g is the height by falling through which the point

would acquire the initial velocity V
Q (see Art. 113); /cos#
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-fcos0 =OQ.-OQQ=Q Q, if 2, (? are the projections of P,

P on the vertical AB. If we draw a horizontal line MN at

the height v/2g above PQ
and if this line intersect the vertical

AB in R, we have for the velocity v the expression :

(34)

If the initial velocity be =o, the equation would be

(35)

At the points M, N where the horizontal line MN inter-

sects the circle the velocity becomes o. The point can there-

fore never rise above these points.

Now, according to the value of the initial velocity z/
,
the line

MN may intersect the circle in two real points M, N, or touch

it at B, or not meet it at all. In the first case the point P
performs oscillations, passing from its initial position PQ through

A up to M, then falling back to A and rising to N, etc. In the

third case P makes complete revolutions.

217. The second integration of the equation of motion cannot

be effected in finite terms, without introducing elliptic func-

tions. But for the case of most practical importance, viz. for

very small values of 6, it is easy to obtain an approximate solu-

tion. In this case 6 can- be substituted for sin#, and the

equation becomes :

":
'

+
7
=- '- <36>

This is a well known differential equation (compare Art. 122,

Eq. (19), and Art. 176), whose general integral is

sn6= cos /
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The constants C
lt
C2 can be determined from the initial con-

ditions for which we shall now take = # and v= o when /=o;
this gives \

=
> C2

= o
;
hence

(37)

The last equation gives for 0= the time

tion, or half the period Tt

of one oscilla-

(38)

The time of a small oscillation is thus seen to be indepen-

dent of the arc through which the pendulum swings ;
in other

words, for all small arcs the times of oscillation of the same

pendulum are the same
;
such oscillations are therefore called

isochronous.

218. A pendulum whose length is so adjusted as to make it

perform at a certain place just one oscillation in a second is

called a seconds pendulum.

Putting ^= i in (38) we find for the length /
x
of the seconds

pendulum at a place where the acceleration of gravity is g,

(39)

As the length of the pendulum can be determined with great

accuracy by measurement, the pendulum can be used to find

the value of g.

The length of the seconds pendulum is very nearly a metre
;

it varies for points at sea level from ^=99.103 cm. at the equa-

tor to /
1
= 99.6io at the poles.*

* Further numerical data for ^ and g will be found in J. D. EVERETT, C. G. S.

system of units, 1891, pp. 21-22.
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219. Let n be the number of small oscillations made by a

pendulum of length /in the time 7! Then, by (38),

T I/~ =7r \rn \ sr

(40)
g

If 7 1

and one of the three quantities n, /, g in this equation be

regarded as constant, the small variations of the two others can

be found approximately by differentiation. For instance, if the

daily number of oscillations of a pendulum of constant length

be observed at two different places, we have, since T and / are

constant,

Tj TT^Jdg---dn=---*,
n* 2 gl

or, dividing by (40),

^ = 1* (41)n 2g
220. Exercises.

(1) Find the number of oscillations made in a second and in a day

by a pendulum i metre long, at a place where -=981.0.

(2) Find the length of the seconds pendulum at a place where

#=32.12.

(3) To determine the value of g at a given place, the length of a

pendulum was adjusted until it would make 86 400 oscillations in 24

hours. Its length was then found to be 3.3031 feet. What was the

value of g ?

(4) A chandelier suspended from the ceiling of a theatre is seen to

vibrate 24 times a minute. Find its distance from the ceiling.

(5) A pendulum adjusted so as to beat seconds at the equator

(^=978.1) is carried to another latitude and is there found to make

100 oscillations more per day ;
find the value ofg at this place.

(6) Investigate whether the approximate process of Formula (41) is

sufficiently accurate for the solution of Ex. (5).

(7) If the length of a pendulum be increased by a small amount dl
t

show that the daily number of oscillations, ,
will be decreased so that

2 /
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(8) A clock is gaining 3 minutes a day. How much should the

pendulum bob be screwed up or down ?

(9) A clock regulated at a place where -=32.19 is carried to a

place where ^-=3 2. 1 4. How much will it gain or lose per day if the

length of its pendulum be not changed ?

(10) The acceleration of gravity being inversely proportional to the

square of the distance from the earth's centre, show that the seconds

pendulum will lose about 22 seconds per day if taken to a height one

mile above sea level.

(u) A seconds pendulum loses 12 seconds per day, if taken to the

top of a mountain. What is the height of the mountain ?

(12) Show that for small oscillations the motion of a pendulum
is nearly simply harmonic, and deduce from this fact the equation

221. When the oscillations of a pendulum are not so small

that the arc can be substituted for its sine as was done in Art.

217, an expression for the time t^
of one oscillation can be

obtained as follows.

We have by (33), Art. 216,

cos0. (33)

Let the time be counted from the instant when the moving

point has its highest position (TV in Fig. 52), so that ^ =o.

Substituting v IdQ/dt and applying the formula

cos0=i2 sin2 J 9

we find :

whence

d9
(43)
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Integrating from = o to = and multiplying by 2 we find

for the time ^ of one oscillation :

dO

o
/

.

\/sm\
. 2 <9

2 sm2 -
(43)

As cannot become greater than we may put sin

= sin (0 /2) sin
</>,

thus introducing a new variable
<f>

for which

the limits are o and ir/2. Differentiating the equation of sub-

stitution, we have

6

or, as cos(0/2)= Vi sin2
(0 /2) sin2

</>,

,2 sin cos
<f) d<f>

de=

Substituting these values and putting for shortness

sin = K, (44)

we find for the time ^ of one oscillation :

ti = 2\l- i

'

,

-r
(45) :

Vi-*2 sin2 <

The integral in this expression is called the complete elliptic I

integral of the first species, and is usually denoted by K. Its

value can be found from tables of elliptic integrals or by ex-
|

panding the argument into an infinite series by the binomial I

theorem (since K sin < is less than
i), and then performing the

integration. We have

1 '3 4K sin >

hence

(46)
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If H be the height of the initial point N (0= ) above the

lowest point A of the circle, we have by (44)

A i cos n H- -
,,

2 2 2/

so that (46) can be written in the form

7

222. Exercises.

( i ) Show that 4 = 7r\/-(i +-i + -5- + 225
.f ...

) if the ampli-VV l6 I024 147456 /
tude 20 of the oscillation is 120.

(2) Show that as a second approximation to the time of a small

oscillation we have ti=ir^t/g(i-t-0
z

/i6).

(3) Find the time of 'oscillation of a pendulum whose length is i

metre at a place where -=980.8, to four decimal places.

(4) A pendulum hanging at rest is given an initial velocity v^. Find

to what height h\ it will rise.

(5) Discuss the pendulum problem in the particular case when MN
(Fig. 52) touches the circle at B, that is when the initial velocity is due

to falling from the highest point of the circle.

223. Central Motion. The motion of a point P is called

central if the following two conditions are fulfilled : (i) the

direction of the acceleration must pass constantly through a

fixed point O ; (2) the magnitude of the acceleration must be a

function of the distance OP=r only, say

/=/. (48)

The fixed point O is in this case usually regarded as the seat

of an attractive or repulsive force producing the acceleration,

and is therefore called the centre offorce.

Harmonic motion as discussed in Arts. 172-214 is a special

case of central motion, viz. the case in which the acceleration/ is
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directly proportional to the distance from the fixed centre O, i.e.

f(r)=r.
Another very important particular case is that of planetary

motion in which f(r)=/j,/r
2

;
this will be discussed below,

Arts. 236, 239.

We proceed to establish the fundamental properties of central

motion.

224. The motion is fully determined if in addition to the

f<>rm of the function /(r) we know the "initial conditions," say

the initial distance OPQ
= r

Q (Fig. 53) and the initial velocity v^

of the point at the time /=o. As ^ must be given both in

magnitude and direction, the angle ^ between r and V
Q
must

be known.

225. It is evident, geometrically, that the motion is confined

to the plane determined by O and VQ since the acceleration

Fig. 53.

always lies in this plane. This fact that the motion is plane

depends solely on the former of the two conditions of our

problem (Art. 223) ;
that is, any motion in which the acceleration

passes constantly through a fixed point is plane.

226. With O as origin, let x, y be the rectangular Cartesian

co-ordinates of the moving point Pt and r, 6 its polar co-ordinates,

at any time/. Then cos#=;r/r, sin 0=y/r are the direction

cosines of OP=r, and, therefore, those of the acceleration/,
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provided the sense of j be away from the centre, i.e. provided

the force causing the acceleration be repulsive. In the case of

attraction^ the direction cosines of j are of course x/r, y/r.

Thus the equations of motion are in the case of attraction,

r/ \ /~
f(r}

r
(49)

For repulsion, it would only be necessary to change the sign of

227. To perform a first integration, multiply the equations

(49) by y, x and subtract when the left-hand member will be

found an exact derivative, while the right-hand member van-

ishes. Hence, integrating and denoting the constant of integra-

tion by h, we find

, ,f-,f=,,

^
(50)

or, introducing polar co-ordinates,

These equations show that the sectorial velocity is constant,

and \h for our problem (see Art. 135 and Art. 163, Ex. (4)).

228. Let 5 be the sector P OP described by the radius vector

r in the time t, so that dS=^r*d9. Then (5 1) can be written in

the form

whence integrating

S=\ht; (53)

this expresses the fact that the sector is proportional to the time

in which it is described which is of course only another way of

stating the proposition of Art. 227.
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The proof of the converse, viz. that if in a plane motion

the areas swept out by the radius vector drawn from a fixed

point be proportional to the time, the acceleration must con-

stantly pass through that fixed point, is left to the student.

229. It is well known that Kepler had found by a careful

examination of the observations available to him that the orbits

described by the planets are plane curves, and the sector described

by the radius vector drawn from the sun to any planet is propor-

tional to tJie time in which it is described. This constitutes

Kepler's first law of planetary motion.

He concluded from it that the acceleration must constantly

pass through the sun.

230. To express the value of the constant of integration h in ;

terms of the given initial conditions (Art. 224), i.e. by means

of r
, v, i/rQ,

we notice that, at any time /,

dO rdQ ds / ^
' v ' (54)

hence for the time /=o, we find

^=Vo sin ^o- (55)

Denoting the perpendiculars let fall from O on v and v by ;

/ , /, we have r sin^ =/ , rsin-v/r=/; hence also

k=PM=pv, (56)

i.e. the velocity at any time is inversely proportional to its distance
\

from the centre.

231. The equations of motions (49), if multiplied by dx/dt,

dy/dt and added, give an equation in which both members are

exact derivatives. On the left we find
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on the right

dt dt 2r dr 2r dt dt

The equation

(57).

can therefore be integrated and we obtain

M*-. :, (58)

232. The two methods of integrating the differential equa-

tions of motion used in Art. 227 and in Art. 231 are known,

respectively, as the principle of areas and the principle of

energy (or vis viva). The former name explains itself. The

latter is due to the fact (to be more fully explained in kinetics)

that if equation (58) be multiplied by the mass of the moving

point, the left-hand member will represent the increase of the

kinetic energy of the point during the motion.

Each of these methods of preparing the equations of motion

for integration consists merely in combining the equations so

as to obtain an exact derivative in the left-hand member of the

resulting equation. If by this combination the right-hand

member happens to vanish or to become likewise an exact

derivative, an integration can at once be performed. This is

the case in our problem.

233. The two equations (51) and (58) can be used to find

the equation of the path. We have for any curvilinear motion

(by (4), Art. 142)

eliminating dt by means of (51) this becomes
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where u\/r. Substituting for v its expression in terms of

r or #, from (58), we have the differential equation of the path

which is directly integrable.

Shorter methods will often suggest themselves in particular

cases.

234. To solve the -converse problem, viz. to find the law of

acceleration when the equation of the path is given, we havei

only to substitute in (57) the expression of ^ from (59). We
find, with u\lrt

dr du dr du

235. Kepler in his second law had established the empirical

fact that the orbits of the planets are ellipses, with the sun at

one of thefoci.

From this, Newton concluded that the law of acceleration

must be that of the inverse square of the distance from the sun.

Equation (60) allows us to draw this conclusion. The polar

equation of an ellipse referred to focus and major axis is

where t=d>2/a=a(ie2
); a, b being the semi-axes, /the semi-

latus rectum, and e the eccentricity of the ellipse. Hence

.and (60) becomes

236. The third law of Kepler, found by him likewise as an

empirical fact, asserts that the squares of the periodic times of

-different planets are as the cubes of the major axes of their orbits.
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From this fact Newton drew the conclusion that in the law

of acceleration,

I J=fV)=%
'

.

: (62)

1 the constant
/UL

has the same value for all the planets.

Our formulas show this as follows. Let T be the periodic

time of any planet, i.e. the time of describing an ellipse whose

.semi-axes are a, b. Then, since the sector described in the

time T is the area irab of the whole ellipse, we have by (53)

Substituting in (61) the value of h found from this equation

we have

Hence

is constant by Kepler's third law.

(63)

(64)

237. As mentioned in Art. 230, the velocity v can be ex-

pressed in terms of the perpendicular/ let fall from the centre

on the tangent to the path :

= (65)

The acceleration / is also conveniently expressible in terms

of/. We have by (57)

dr
= _i ffi*.(L\ =

#
2 3 dr

(66)

238. Finally, another expression for the acceleration is some-

times found convenient. In any motion, the component of the

acceleration along the radius vector is (see Art. 161)

J

PART I 9

. <Pr (dOV
j

A*I I

dt* \dt)
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As in our problem the total acceleration is along the radius

vector, in the sense towards the origin, we have

or since, by (51),

The first term is what the acceleration would be if the motion

were rectilinear along the radius vector
;

the second term

represents what is due to the curvature of the path.

239. Planetary Motion, in its simplest form, is (see Art. 223)

that particular case of central motion in which the acceleration

is inversely proportional to the square of the distance from the

centre O, so that

where
//,

is a constant, viz. the acceleration at the distance r= I

from O.

The equations of motion (49) are in this case, with O as

origin,
d^x_ _ x_ d^y_ _ y_ /^gx

Combining these by the principle of energy (Arts. 231, 232),

we find

dt rs \ dt
'
dt) r* dt\ 2

<
_
r*dt dt

'

hence integrating

-IL (69)
T rn
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240. To find the equation of the path, or orbit, we write the

equations (68) in the form

and eliminate r2
by means of (51):

dt* h dt dP h dt

These equations can be integrated separately

where v
ly
^
2
are the components of the initial velocity.

Multiplying by 7, x and subtracting, we find, owing to (50),

(70

241. The geometrical meaning of this equation is that the

radius vector r= V-r2+/2 drawn from the fixed point O to the

moving point P is proportional to the distance of P from

the fixed straight line

(72)

It represents, therefore, a conic section having O for a focus

and the line (72) for the corresponding directrix.

The character of the conic depends on the absolute value of

the ratio of the radius vector to the distance from the directrix ;

according as this ratio

the conic will be an ellipse, a parabola, or a hyperbola. The

criterion can be simplified. Multiplying by p/h and squaring,

we have
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or since v +v=v and //= rz> sinir = rz/ :

242. Introducing polar co-ordinates in (71), the equation of

the orbit assumes the form

or putting (7^2 p)//t
2= C cos a, vjh= C sin ,

. (74)

This equation might have been obtained directly by integrat-

ing (60), which in our case, with /(r)=/i/r
2
, reduces to

the general integral of this differential equation is of the form

(74), C and a being the constants of integration.

Equation (74) represents a conic section referred to the focus

as origin and a line making an angle with the focal axis as

polar axis.

243. Exercises.

(1) If 2 k be the chord intercepted by the osculating circle on the

radius vector drawn from the fixed centre, show that z?= k-f(r).

(2) A point moves in a circle; if the acceleration be constant in

direction, what is its magnitude ?

(3) A point moves in a circle
;

if the acceleration be constantly

directed towards the centre, what is its magnitude ?

(4) A point is subject to a central acceleration proportional to the:

distance from the centre and directed away from the centre
;

find the

equation of the path.

(5) A point P is subject to two accelerations, p?-OP directed

towards the fixed point O^ and p?-O2P directed away from the fixed

point <92 . Show that its path is parabolic.
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(6) A point P describes an ellipse owing to a central acceleration

f(f) =i*>/r
2 directed toward the focus S. Its initial velocity VQ makes an

angle i//
with the initial radius vector r . Determine the semi-axes a, b

of the ellipse in magnitude and position.

244. The student will find numerous examples for further practice

in the kinematics of a particle in the following works : P. G. TAIT and

W. J. STEELE, A treatise on dynamics of a particle, 6th ed., London,

Macmillan, 1889 ;
W. H. BESANT, A treatise on dynamics, London, Bell,

1885 ;
B. WILLIAMSON and F. A. TARLETON, An elementary treatise on

dynamics, 2d ed., London, Longmans, 1889; W. WALTON, Collection oj

problems in illustration of the principles of theoretical mechanics, 3d ed.,

Cambridge, Deighton, 1876.

5. VELOCITIES IN THE RIGID BODY.

245. A rigid body is
1 said to have plane motion when all its

points move in parallel planes. Its motion is then fully deter-

mined by the motion of any plane section of the body in its

plane.

It has been shown in Arts. 18-24 that the continuous motion

of an invariable plane figure in its plane consists in a series of

infinitesimal rotations about the successive instantaneous cen-

tres, i.e. about the points of the space centrode.

If at any instant the centre of rotation and the angular veloc-

ity to about it be known, we can find the velocity of any point of

theplane figure.

To show this let us first take the instantaneous centre as

origin. Then the component velocities vx ,
v
y

of any point P
whose co-ordinates are x, y, or r, 6, are found (Art. 141) by dif-

ferentiating the expressions

with respect to /. Considering that dQ/dt is the angular

velocity o> about the instantaneous centre, we find
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at at

dt dt
= cox.

246. Next, taking an arbitrary origin O (Fig. 54), let x, y be

the co-ordinates of P and x l

', y' those of any other point O r

of

the moving figure with re-

spect to fixed rectangular

axes through O
;
and let

rj be the co-ordinates of P
with reference to rectangu-

lar axes through O' fixed in

the figure but moving with

it. Then, if be the angle

between the axes Ox and

O'g, we have

X'

- 54 -

xx ]
r

+ f cos 77 sin0, y=y' sn cos#.

Differentiating we find for the component velocities of

parallel to the fixed axes Ox, Oy :

dx' dO

Now, d6/dt is the angular velocity o> about the point O' while

dx'/dt, dy'/dt are the velocities of O' parallel to the fixed axes,

say v*, vy -. Considering moreover that f sin 6 + 77 cos 6=yy',
f cos 6 ?; sin 0=x x', we have

(3)

velocity of P consists, therefore, <?/" /ze/^ parts, a velocity of
translation equal to that of O' and a velocity of rotation equal to

t.'i.itof? about O'.
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247. The instantaneous centre being the point whose velocity

is zero at the given instant, we find its co-ordinates X
Q, y^ from

the equations

o = vx,
-

(j/ -/) o>, o= zv+ (*b -*') co,

whence (4)

By eliminating t between these equations, the equation of the

space centrode can be found.

The co-ordinates f , ?7 of the instantaneous centre referred to

the moving axes are found in a similar way from the equations (2) :

cos cos e+ v, sin 0), (5)

from which the body centrode can be found by eliminating t.

248. In Arts. 245 and 246 expressions were found for the

component velocities vx,
v
y parallel to the fixed axes Ox, Oy.

To find the component velocities

v& v^ parallel to the moving axes

<9f, Or], let x, y be the co-ordi-

nates of any point P with respect

to the fixed axes (Fig. 55), , rj

those with respect to the moving

axes, and let 6 be the angle xO%.

The velocity of P parallel to the

axes O%, Or) consists of two parts,

that arising from the motion of P relative to fOrj whose com-

ponents are of course d%/dt, dy/dt, and that due to the rotation

of the moving axes. The components of the latter velocity are,

by (i), Art. 245, cor), cog. Hence

Fig. 55.

dt dt
(6)
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249. Exercises.

(1) Two points A, A 1 of a plane figure move on two fixed circles

described with radii a, a' about O, O'
;
show that the angular velocities

w, <i>' of OA, O'A' about O, O' are inversely proportional to OM, O'M,
M being the point of intersection of OO' with AA 1

.

(2) Given the magnitudes v, v' of the velocities of two points A, A (

of an invariable plane figure and the angle (v, v') formed by their

directions
;
find the instantaneous centre C and the angular velocity

CD about C.

(3) Show that in the "
elliptic motion "

of a plane figure (Arts.

25-27) the velocity of any point (x', y') is

v = [a
2 + x 12+/ 2-

2a(x' cos 2
<j> +/ sin 2

dt

(4) In the same motion find the velocities of B and O' (Fig. 6,

Art. 26) when ^4 moves uniformly along the axis of x.

250. The continuous motion of a rigid body is called a trans-

lation when the velocities of all its points are equal and parallel

at every moment (Art. 9). All points describe therefore equal

and similar curves, and every line of the body remains par-

allel to itself. The velocity v= ds/dt of any point is called the

velocity of translation of the body.

251. A rigid body can be imagined to be subjected to several

velocities of translation simultaneously ;
the resulting motion is

a translation whose velocity is found by geometrically adding
the component velocities.

Conversely, the velocity of translation of a rigid body can be

resolved into components in given directions.

252. The continuous motion of a rigid body is called rotation

when two points of the body are fixed
;
the line joining these

points is the axis of rotation. All points excepting those on the'

axis describe arcs of circles whose centres lie on the axis.

The velocity of any point P of the body at the distance

OPr from the axis is v= a>r=r dO/dt, if w= d0/dt is the
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angular velocity of the rigid body. The velocities of the differ-

ent points of the body at any given moment are therefore

directly proportional to their distances from the axis, and the

velocities of all points at this moment are known if the instan-

taneous angular velocity co is given. It is frequently convenient

to imagine this angular velocity represented by its rotor, i.e. by
a length co laid off in the proper sense on the axis of rotation

(see Arts. 68, 69).

253. The body may have several simultaneous rotations.

Imagine, for instance, a top spinning about its axis placed on a,

table or disc which is made to rotate about an axis. The result-

ing motion can be found by compounding the rotors in the

same way in which the rotors representing infinitesimal rotary

displacements are compounded (Arts. 62, 66, 67); indeed, the

rotor w= d6/dt of an .angular velocity is merely the rotor dd

divided by dt, and therefore identical with the rotor of the

angular displacement dQ.

254. As we are at present concerned with plane motion, we

require only the rule for the composition of angular velocities

about parallel axes.

Dividing the equations (i'") and {2'") of Art. 66 by dt, and

putting dO/dt=o>, dd
l/dt=col,

d6
2/dt=a)2,

we obtain :

L-\L LLn L-iLn /_\
o)= ft)

1+ ft)
2 ,

= -= L-^- (7)
ft)

2
C0

1
ft)

Thus, the resultant of two angular velocities co^ w2 about

parallel axes \, 12 is an angular velocity co equal to their algebraic

sum, ft)= ft)
1+ ft)

2 ,
about a parallel axis\ that divides the distance

between \, 1
2 in the inverse ratio of co

1
and &)

2
.

Conversely, an angular velocity co about an axis / can always

be replaced by two angular velocities co
lf

co2
whose sum is equal

to w and whose axes l
lt

/
2
are parallel to / and so selected that

/ divides the distance between /
lf

/
2 inversely as o^ is to co

2 .
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56>

255. It may be well to prove this important proposition

independently. Any point P (Fig. 56) in a plane at right

angles to the axes receives from

co
1
a linear velocity u>^\ per-

pendicular to L^P, and from

co
2
a linear velocity 2

r
2 per-

~
pendicular to L 2P, if L

l
P= r

l ,

L^P= r^ These linear veloci-

ties fall into the same straight line only for points situated on

the line L^L^. A point L whose linear velocity is zero, must

therefore lie on L
1
L

2
so that L

1L+LL 2
=L

1
L 2 ', moreover, it

must satisfy the condition L
l
L'Co

l
=LL

2 'co2 . This gives the

above equations (7).

256. The resulting axis lies between L
l
and L 2 when the

-components co
l}

a>
2
have the same sense

;
when they are of

opposite sense, it lies without, on the side of the greater one

of these components.

If
G>J

and o>
2 are equal and opposite, say co

1 co, o>2
=

co, the

resulting axis lies at infinity (Art. 67). Two such equal and

opposite angular velocities about parallel axes are said to form

a rotor-couple ;
its effect on the rigid body is that of a velocity

of translation v=L
l
L 2 'd6/dt=p-a) at right angles to the plane

of the axes. The distance of the rotor, L
l
L

(i =p, is called the

arm of the couple, and the product pco= v its moment.

257. A velocity of translation v can therefore always be

replaced by a rotor-couple pco= v, whose axes have the
dis-|

tance p and lie in a plane at right angles to v.

Again, an angular velocity co about an axis / can be replaced

by an equal angular velocity co about a parallel axis /' at the

distance/ from /, in combination with a velocity of translation

v= cop at right angles to the plane determined by / and /'.

It easily follows from these propositions that the resultant of

-any number of velocities of translation, v, v', . . ., parallel to the

same plane, and any number of angular velocities co, co',..., aboui
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axes perpendicular to this plane is always a single angular veloc-

ity about an axis perpendicular to the plane or a single velocity

of translation parallel to the plane.

6. APPLICATIONS.

258. Kinematics of Machinery. A large majority of the cases

of motion that are of importance in mechanical engineering can

be reduced to plane motion.

At first glance the application of theoretical kinematics to

machines might seem to lead to rather complicated problems

owing to the fact that a machine is never formed by a single

rigid body, but always consists of an assemblage of several

bodies some of which may even be not rigid (belting, springs,

water, steam). The problem is, however, very much simplified

by a characteristic of all machines, properly so called, that was

first pointed out and insisted upon by recent writers on applied

kinematics, in particular by Reuleaux.* This characteristic is

the constrainment of the motions of the parts of a machine.

Thus Professor Kennedy defines a machine as "a combination

of resistant bodies whose relative motions are completely con-

strained, and by means of which the natural energies at our

disposal may be transformed into any special form of work."

With the latter clause of this definition we are not at present

concerned
;

it will be considered in kinetics. To explain the

former in detail would lead us too far into the domain of applied

mechanics. A brief indication of the fundamental ideas must

be sufficient.

259. By considering machines of various types it appears

that the bodies, or elements, composing a machine always occur

*F. REULEAUX, Theoretische Kinematik, Berlin, 1875; translated into English

and edited by ALEX. B. W. KENNEDY under the title Kinematics of machinery,

London, Macmillan, 1876. Compare also R. WILLIS, Principles of mechanism,

London, Longmans, 2d ed. 1870 (ist ed. 1841); F. GRASHOF, Theoretische Ma-

schinenlehre, Vol. II., Leipzig, Voss, 1883; L. BURMESTER, Lehrbitch der Kinematik,

Leipzig, Felix, 1888; ALEX. B. W. KENNEDY, Mechanics, of machinery, London,

Macmillan, 1886; J. H. COTTERILL, Applied mechanics, London, Macmillan, 1884.



I4 KINEMATICS. [260.

in pairs. Thus a single rigid bar will form a lever only when

taken in connection with a support, or fulcrum
;
a shaft to be

used in a machine must rest in bearings ;
a screw must turn in

a nut. To take a more complex illustration, consider the

mechanism formed by the crank and connecting rod of a steam-

engine (Fig. 57). It may be regarded as composed of three

pairs, two so-called turning pairs at O and A, and a sliding pair

at B
;
and these three pairs are connected by three rigid bars,

called links, OA, AB, OB, the last of which is fixed.

Fig. 57.

260. A sliding pair is formed by two bodies so connected that

one is constrained to have a motion of translation relatively to

the other. A pin moving in a groove or slot, a sleeve sliding

along a shaft, are familiar examples.

A turning pair constrains one body to rotate about a fixed

axis in another, as in the case of a shaft turning in its bearings.

A twisting pair makes one body have a screw motion about

an axis fixed in the other.

These three pairs are the only so-called lower pairs. They
are characterized as such by the fact that their elements have

surface contact, and that, if either element be fixed, every point

of the other is constrained to move in a definite line. In other

words, the constraint effected by lower pairing is such as to

leave but one degree of freedom (see Art. 37) to either element

if the other be fixed.

261. All other pairs are called higher pairs. The contact in

such pairs is usually line contact, and the two bodies have more

than one degree of freedom relatively to each other, usually two

degrees, so that if one element be fixed, any point of the other

is constrained to a surface.

Higher pairs are of far less frequent occurrence in ordinary



263.] PLANE MOTION. !4I

machines than lower pairs. The only very common example of

higher pairing is found in toothed wheel gearing.

262. For the purposes of kinematics a machine may be

regarded as consisting of a number of bodies (links} connected

by pairs in such a way that when one of the links is fixed all

other links are constrained in their motion. In most cases

this constraint is such as to leave but one degree of freedom

to every link.

A system of links of this kind forming, so to speak, a skeleton

of the machine is called a kinematic chain (Reuleaux). When
one link of such a chain is fixed, the

chain becomes a mechanism. As a

typical example we may take the
"
slider crank

"
in Fig. 57.

If the pairs are all turning pairs

with parallel axes, the chain is called a

linkage (Sylvester). A typical example
is the four bar linkage in Fig. 58. A
linkage with one link fixed has been called a linkwork (Sylves-

ter). The four bar linkwork in Fig. 58 is also called a "lever

crank
"
(Kennedy).

263. The Four Bar Linkage 1234 (Fig. 59). Whatever may be

its motion, each link considered separately moves as an invariable

plane figure and has therefore at any moment an instantaneous

centre C and an angular velocity a> about this centre.

The centre \2 of I 2 and the centre C2S of 2 3 must always lie

on a line passing through 2 since the velocity of 2 is perpen-

dicular to both 6\2 2 and 2̂3 2.

Similarly, 3 must lie on the line joining the centres C23 and

CM ;
and so on.

The quadrilateral 1234 is therefore, and always remains,

inscribed in the quadrangle CIZCZBCMC^. This can ^e shown

to hold even for the complete quadrilateral and quadrangle.

The complete quadrilateral, or four-side, 1234 has six vertices,

viz. the six intersections i, 2, 3, 4, 5, 6 of its four sides ;
the
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complete quadrangle, or four-point, C^f^C^C^ nas s
'

lx sides,

viz. the six lines C41Clzt C\>y& ^23^34' ^34^41' ^12^34' ^23^41

joining its four vertices
;
and these six sides of the quadrangle

pass through the six vertices of the quadrilateral, respectively.

It remains to prove that C1ZC8 passes through 5 and that C^C^
passes through 6.

Now the velocity of 2 can be expressed by Wj C12 2 and also

bya}2 -C^2\ hence Cl2 2/C2B 2 = a)
2/(01 ; similarly C^/C^ =

ft>
3/ft>2 . We have therefore, by the proposition of Menelaus,* for

the intersection of 2 3 with C12CM :

5C\2= ft)g

5 Q4 w
i

The same value is obtained by determining the intersection of

i 4 with C12C34: ;
the two intersections must therefore coincide.

The proof for the point 6 is analogous.

* If the sides of a triangle ABC be cut by any transversal, in the points A', B', C',

p> Al /""/?' A C1

then =~- ~~- =-i. See J. CASEY, Sequel to Euclid, London, Longmans,A C Jj A C JD

1882, p. 69.
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A corresponding proposition holds of course for four bar

linkages with crossed bars I 2 4 3, or I 3 2 4.

264. Lever-crank. The linkage considered in the preceding
article becomes a mechanism, or linkwork, as soon as one of its

four links is fixed. It occurs in machines under a variety of

forms some of which are referred to below.

Let the link 3 4 be fixed
;
then the centre 7

34 (Fig. 59) dis-

appears ; C^ falls into 4, C23 into 3, and C12 becomes the inter-

section 5 of 4 i and 32. If i 2 were fixed instead of 34, 34
would have its centre at 5.

Similarly, if either 41 or 2 3 be fixed, the centre of the other

is 6.

Fig. 60.

Hence whichever of the four links be fixed, the centres of

all the links lie at some of the six vertices of the complete

quadrilateral 1234.
If 34 be the fixed link (Fig. 60), the ratio of the angular

velocities co
1
of 4 i and o>2

of 3 2 can be found. For if o> denote

the angular velocity of i 2 about 5, we have

4 i o)
1=5 i -o), 3 2-6>2=5 2-00;

hence
*>i S 2 51 32/41

or, by the proposition of Menelaus :

^
=
3?
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265. Parallelogram: 4 i =3 2 = a, 43 = i 2 = b (Fig. 61). The

link i 2 has evidently a motion of translation, its instantaneous

centre lying at the intersection of the parallel lines 41, 32.

The space centrode is the line at infinity ;
the body centrode

may be regarded as a circle of infinite radius described about

the midpoint of 3 4 as centre.

Fig. 61.

To find the equation of the path of any point P rigidly con-

nected with i 2, let x, y be the rectangular co-ordinates, with

respect to 4 as origin and 4 3 as axis of x> and x^ y^ its co-ordi-

nates for parallel axes through i
; then, putting ^ 3 4 i = 6, we

have

hence, eliminating 0,

which represents a circle of radius a whose centre has the fixed

co-ordinates x^ yv
For the velocity of P we have dx/dt= aw sin0, dyjdt

= aa)cos0; hence v= aa>, as is otherwise apparent.

266. If in the parallelogram 1234 the point 4 alone be fixed,

we have a linkage called the pantograph.

It can serve to trace a curve similar to a given curve.

Indeed, any line through 4 (Fig. 62) cuts the opposite links
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12, 23 (produced if necessary) in points A, A' whose paths
are homothetic (similar and similarly situated) curves. For
the points 4, A, A' remain always in

line and the ratio 4 A/4.A
f remains

constant. Hence if a pencil be at-

tached to A f and A be made to trace

a given curve, A' will trace a similar

curve.

Instead of fixing 4, the point A r

might be fixed; then 4 and A will

describe similar curves. This property is utilised in Watt's

parallel motion (see Art. 271).

The parallelogram linkage furnishes also a simple instrument

for describing ellipses. Let the sides of the parallelogram be

23=41= #, 12=34=^; and let a point A ' on 2 3 produced,

at the distance b from 2, be fixed (Fig. 63). Then, if i be made
to describe a straight line, passing through A f

, 4 will describe

an ellipse. For, taking A' as origin and A r
i as axis of x, we

Fig. 62.

A'

Fig. 63.

have for the co-ordinates of 4: x=(a-\-2b) cos0, y=asm<j>,
whence

a2

267. In the parallelogram 1234, let the link i 2 be turned

so as to coincide in direction with 4 3, and then give the links

4 i and 3 2 rotations of opposite sense. We thus obtain a link-

PART I IO
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age with equal, but intersecting, opposite sides, which we may
call anti-parallelogram (Fig. 64). If 3 4 be fixed, the instanta-

neous centre of i 2 is the intersection 5 of 4 i and 2 3.

Fig. 64.

To obtain the centrodes in this case, notice that as the tri-

angles 152 and 534 are equal, the triangle 5 4 2 is isosceles ;

hence 51 = 53, and 45 35=41=0. The difference of the

radii vectores of 5 drawn from 4 and 3 being thus constant, it

follows that the space centrode is a hyperbola whose foci are

4, 3, and whose real axis =a. As 43 = 12= ^, the equation of

this hyperbola is

for 4 3 as axis of x and the midpoint of 4 3 as origin.

It is easy to see that the space centrode becomes an ellipse

when b < a.

As the triangles 152 and 354 are equal the body centrode is

an equal hyperbola or ellipse. The two centrodes lie symmet-

rically with respect to their common tangent at 5.

For a given anti-parallelogram the centrodes are hyperbolas
when one of the larger links is fixed

; they are ellipses when

one of the shorter links is fixed.

268. If in the anti-parallelogram only one point, say 4, be

fixed, it can be used as an inversor, i.e. as an instrument for

describing the inverse of a given curve
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Let r OP be the radius vector drawn from an arbitrary fixed

origin, or pole, O to a given curve
;
on OP lay off a length

= r'= K2/r, where tc is a constant; then P 1
is said to

describe the inverse of the given curve.

The theory of inversors is based on the following geometrical

proposition: if three lines CA=a, CA'=a, CO= b (Fig. 65)
turn about C so that O, A, A'

are always in line, the product

OA OA' remains constant, viz.

OA OA ' = b2 a2
. For if the

circle of radius a described about

C intersect the line OC in B and

B 1 we have OA-OA* = OB-OB'

This proposition shows that in the anti-parallelogram 1234
(Fig. 66), with the vertex 4 fixed, the line joining the vertices 4
and 2 intersects the circle described about 3 with radius 3 2 in a

I point 2 r such that 2 and 2' describe inverse curves with respect

to 4 as pole. For we have 4 2^-4 2 = 4 3
2 2 3

2=&2 a2.

Fig. 66.

Moreover, any parallel to 42 will intersect the links 41, 43,

2 i in points O, A, A' dividing the three lines in the same ratio;

hence if O be fixed, A and A' will describe inverse curves for

O as pole. This is the principle on which Hart's inversor is

based.
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269. Peaucellier's cell is another inversor (Fig. 67). It con-

sists of the linked rhombus A B A' B ! whose side we denote by

a, and the two equal links OB, OB' of length b. If O be fixed,

A and A' evidently describe inverse curves for O as pole.

Fig. 67.

The practical application of inversors is based on the property

that they enable us to transform circular motion into rectilinear

motion (see Art. 271).

The inverse of a circle r=2c cos# passing through the pole

is a straight line
;
for we have for the radius vector / of the

inverse curve r1 = K2/r= K?/2 c cos 6
;
hence /cos = K2/2 c which

is the equation of a straight line at right angles to the polar

axis, at the distance /c
2
/2 c from the pole.

If therefore the point A of an inversor be made to describe

an arc of a circle passing through O, the point A' will describe

a segment of a straight line. The vertex A (Fig. 67) can beji

compelled to describe a circle by inserting the additional link;

O'A turning about the fixed point O'. If O' be selected so as

to make O'O= O f

A, say= ,
the circle described by A will pass

through O\ and the motion of A' will be confined to the

straight line A'D perpendicular to OO f

,
at the distanc^

OD= (t>
2-a2

)/2cfrom O.

The linkage has thus become a linkwork, OO' being the fixed

link.
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270. To determine the linear velocity v of A' along DA'
when the angular velocity co of the link OB is given, we notice

that the instantaneous centre C of the link BA' lies at the

intersection of OB with the line drawn through A' parallel to

OO'. Let a)
r be the angular velocity of BA' about C. Then

v= a)' - CA'
;
also since the point B describes a circle about O,

a)l>=a)' CB
\ hence

CA' ,

If BA' intersect OO' in E, we have from similar triangles

CA':CB=OE\OB; hence

v=w OE.

The variable length OE depends on the angles EOB Q and
=

(f>t
which. are connected by the relation (Art. 269)

The figure gives OE=&cos 6+ b sin 6 cot $ ; hence, finally,

v=wb sin #(cot # + cot
</>).

271. In the steam engine and other machines mechanisms

are required for transforming the alternating rectilinear motion

of the piston into the reciprocating circular motion of a crank,

eccentric, or beam
;
a mechanism of this kind is called, rather

inappropriately; a parallel motion. The problem of effecting this

transformation has been solved in various ways. Peaucellier's

inversor (1864) was the first accttrate solution. Generally, an

approximate solution is sufficient for practical purposes. The

most common of such approximations is Watt's parallel motion.

This mechanism is a combination of a linked parallelogram

with a four bar linkwork with crossed links.
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To fix the ideas, let 4 I (Fig. 68) be the horizontal middle

position of the beam of a beam engine; 4 is fixed and i describes

an arc of a circle of radius 4 I =#. We might place a counter-

beam 3 2 of equal length turning about the fixed end 3 so as to

be in its middle position parallel to 4 I and so as to make the

connecting link I 2 nearly vertical. The middle point of i 2

would then describe a looped curve whose central portion does

Fig. 68.

not differ very much from a straight line; connecting this

middle point with the piston rod, the problem would be solved.

But the introduction of the large counter-beam 3 2 in the

position indicated above would be very inconvenient. To reduce

the size of the mechanism the counter-beam 3 2 is placed nearer

to 41, into the position 3^2', and the parallelogram 1567 is

introduced, the piston rod being attached at 7. Owing to the

property of the linked parallelogram (Art. 266), the point 7 has

a motion similar to that of the point of intersection of 4 7 with

5 6
; it describes therefore approximately a straight line. The
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point of intersection of 4 7 with 5 6 can be used to connect with

the pump rods of the engine.

7. ACCELERATIONS IN THE RIGID BODY.

272. To find the accelerations of the various points of a

rigid body we must compare the velocities of these points

during two consecutive elements of time
;
the change of the

velocity divided by dt gives the acceleration.

In the case of translation (Art. 250) the accelerations of all

points of the body are evidently equal so that the acceleration

of any point may be called the acceleration of the body.

273. In the case of rotation about a fixed axis /, any point P
of the body at the distance r from the axis describes during the

element of time dt a space element ds rdQ= wrdt proportional

to this distance r, where a) = d9/dt is the angular velocity of the

body about the axis /. The linear velocity of P is v= cor. The

:space element ds' described during the next element of time is

an infinitesimal arc of the same circle of radius r, i.e.

ds' = rdO' = r(w+ dw) dt.

Drawing from any point O (Fig. 69) the vectors OV=ds/dt,
>OV = ds'/dt, and resolving the ele-

mentary acceleration VV[ parallel to

the tangent and normal of the path
V

into TV = dv= rda> and VT=vdO=
ratdO ra)

2
dt, we find the tangential

and normal components of the accel-
Fig< 69

oration of P by dividing these ele-

ments by dt. Hence denoting the angular acceleration d<o/dt

by a, we have

(0

The total acceleration of P,

(2)
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is therefore proportional to the distance r of this point from

the axis, so that the accelerations of all points can be found

as soon as that of any one point is known.

274. We proceed next to the investigation of the accelera-

tions of the various points of a rigid body having plane motion.

The motion is determined by that of a plane section of the body

parallel to the plane of motion, and this consists in the rolling

of the body centrode over the space centrode (Art. 22).

During any element of time dt, every point P of the plane

section rotates with angular velocity co about the instantaneous

centre of rotation C which is the point of contact of the two

centrodes. During the next element of time dt, the angular

velocity is co+ dco, and the centre of rotation has changed to the

infinitely near point C^ on the space centrode, which has now
become the point of contact of the two centrodes. The accel-

eration of a point P at the distance r from C evidently depends

on this distance r, the angular velocity co, the angular accelera-

tion cx.=da)/dt, and the element CC
l
= dcr of the space centrode.

This element divided by dt may be regarded as a velocity,

u= d(T/dt, viz. the velocity with which the instantaneous centre

changes its position. We may call it the velocity of rolling of

the body centrode. The change in the state of motion during

two consecutive elements of time depends on a and u.

275. The relation of the velocity of rolling u to the angular

velocity co depends on the relative curvature of the centrodes.

c,c'.

To fix the ideas imagine these curves to lie on the same side

of their common tangent ;
let da, da! be their angles of contin-

gence, and let p, p' be their radii of curvature (Fig. 70).

The rotation about C brings the second element of c' to co-

incidence with the second element of c. The angle dO of this

rotation is therefore equal to the difference of the angles of

contingence of the two curves, i.e.
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This angle is therefore called the angle of relative contingence;

the quotient dO/da-= (da' da)/da, where da=CCv is called

the relative curvature, and the reciprocal value, da/d6, is the

radius of relative curvature.

Nowo>= d$/^, u= da/dt; hence

a) _dd __da' da

u da da

or as daIda= l/p, da 1

/da= i/p
f

,

co dO I I

u da-
(3)

i.e. the ratio of the angular velocity to the velocity of rolling is

equal to the relative curvature of the centrodes.

Fig. 70.

When p<p', that is when da>da', the relative curvature is

negative. When the centrodes lie on opposite sides of the

common tangent we should find in absolute value dd= da' + da.

But taking into account the sense of the angles da, da' we still

have d0= da' da. The formula (3) holds, therefore, generally

if the radius of curvature p of c be taken as positive or nega-

tive according as it lies on the same side of the common

tangent with the radius of curvature p
f of c', or on the opposite

side.
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276. To determine the components of the acceleration of any

point P of the body, it will be convenient to imagine the angular

velocities represented by their rotors : the velocity <a about C by
a line of length o> erected at C at right angles to the plane of

motion, on that side of this plane from which the rotation

appears counter-clockwise; similarly the angular velocity w+ da

by a parallel line of length o>+ da erected at Cv
The rotor a)+ dco through 6\ can be replaced by a parallel

rotor of the same magnitude and sense through C, in combination

with a rotor-couple whose moment is (co + da))- CCl
= codo- (see

Arts. 255, 256). This couple being equivalent to a vector wda-

at right angles to the plane of the couple produces an infinitesi-

mal velocity of translation.

Thus the body, during the first element of time dt, rotates

about the axis through C with angular velocity o>
;
and during

the second element of time dt, it can be regarded as having the

angular velocity co + dco about the same axis, and at the same

time a velocity of translation codo- at right angles to the tangent

at C. The change in the state of motion consists, therefore, in

the angular acceleration d(o/dt=a and in the linear acceleration

wdo-/dt=wu, the former being due to the change in the magni-

tude of the acceleration, the latter to the change in the position

of the axis of rotation.

While the acceleration of translation cou is the same for all

points of the figure, the angular acceleration a produces in

every point P (Fig. 71) a linear

acceleration proportional to its dis-

tance r=CP from the centre C,

just as in the case of rotation

about a fixed axis (Art. 273).

Resolving this acceleration into

c i
c

its tangential and normal compo-

nents we have for the acceleration

of P the following three components : ar at right angles to CPt

coV along PC, and atu at right angles to CC^.
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277. Another important method for finding the components
of the acceleration of any point P of the body consists in

resolving (according to Art. 254) the rotor w + dw through \

into two parallel rotors, &> through C, and du> through a point H
(Fig. 72) on the tangent CC

l
whose distance CH=h from C is

given by the relations

CC
1==

C
1
H= CH

dw a) &)+ da)

Putting again CC^dcr, da-/dt=u, du>/dt=cx,) we find for the

distance CH=h :

k= . (4)a

The body can therefore be regarded as having, during the

second element of time dt, the same angular velocity w about

the same axis throu-gh C as during the first element of time,

but in addition an angular velocity dw about a parallel axis

through H. As the magnitude of the angular velocity about

C does not change, the rotation about C produces at any point

P (Fig. 72) only a normal acceleration o>V towards C, but no

H h Ci C

Fig. 72.

tangential acceleration. The infinitesimal angular velocity day

.about H, on the other hand, produces only a tangential acceler-

ation ar1

, perpendicular to HP=r1

.

The acceleration of any point P can therefore be resolved

into two components, one o>V directed towards the centre of

rotation C and proportional to the distance r from this centre,
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the other arr

perpendicular and proportional to the distance rr

of P from a point H on the tangent at C, such that CH= wu/a.

The point H may be called the centre of angular acceleration.

278. The resolution of the acceleration given in the last article

enables us to show the existence, at any time t, of a point

having at this instant no acceleration. This point is called the

instantaneous centre of acceleration; we shall denote it by the

letter 7, and its distances from C and //", respectively, by r

and r
Q

f

.

For a point of acceleration zero the components arf and co
2r

must be equal and opposite. Now it is evident that these

Fig. 73.

components fall into the same straight line only for points

whose radii vectores r, r' are at right angles. The centre /

must therefore lie on the circle described over CH as diameter

(Fig. 73). In addition to this the radii vectores of / must fulfil

the condition

a>\= ar
Q '. (5)

The locus of all points for which at any instant the ratio r/r
1

is

constant and equal to a/co? is a circle whose centre lies on CH
and whose intersections A, A' with CH divide this distance

internally and externally in the ratio /o>
2

.

The two circles intersect in two points ;
but only for one of



279-] PLANE MOTION.
157

these have the components c*
2r and ar* opposite sense. There

exists therefore only one centre of acceleration /, and its radii

vectores satisfy the conditions

279. The appropriateness of the name centre of acceleration

for the point / appears in particular when the acceleration of

any point P is referred to this point 7. For it can be shown

that, if/ be the distance of P from /, the acceleration of P can

be resolved into two components, one o>
2
p along PI, the other ap

at right angles to IP (Fig. 74), similarly as in the case of rota-

tion about a fixed axis (see Art. 273).

74.

To prove this we resolve the component eoV of the acceler-

ation of P along PI and parallel to IC\ it appears from the

figure that these components are aPp and &>V . The other

component arf of the acceleration of P is due to the infini-

tesimal.angular velocity dw about H. Replacing this dw about

H by an equal angular velocity du> about / in combination with

the infinitesimal velocity of translation r Wo> at right angles to
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HI, we obtain, in the place of ar', the components ap at right

angles to IP and ar '

perpendicular to r
Q

f

.

As of the four components o>
2
/, ap, o)V

,
arQ

' the last two are,

by (6), equal and opposite, it follows that the acceleration of

P has only the two components, aPp along PI, and ap perpen-

dicular to IP.

280. The total acceleration of any point P is therefore

proportional to the distance / of this point from the centre of

acceleration /, viz.

j=p V<*2+ &>
4

; (7)

and the angle -ty
it makes with this distance IP, being given by

the relation

tan^= -^
2

, (8)

is the same for all points. By (5), this angle i|r
is equal to the

angle CHI.

All points oft^a circle described about / as centre have

accelerations of equal magnitude but of different directions.

All points on a straight line drawn through 7 have accelerations

that are parallel but differ in magnitude.

281. Returning to the resolution of the acceleration into

three components coV, ar, wu,

as given in Art. 276, let us take

the common tangent of the

centrodes as axis of x, their

normal as axis of y (Fig. 75),

and let x, y be the co-ordinates

of any point P whose distance

from C is CP r.

As the direction cosines of

Fig. 75. wV, ar, <*u are respectively

-x/r, y/r\ y/r,x/r; o, I,

we have for the components of the acceleration / parallel to

the axes :
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Jy
= ay+ ax+ cou.

The co-ordinates x^ yQ of the centre of acceleration / must

fulfil the conditions

o, (10)

whence * =
/^' Jo= ~/^' (ll>1

The equations (10) evidently represent the two lines CI and HI.

282. Let %=x-xQt 77=7-^/0 be the co-ordinates of P with

respect to parallel axes through /; then, combining (10) and

(9), we find

These expressions show that the total acceleration/ of P is

since Vf 2 +7?

2=/=//>
, as in Art. 280.

283. The tangential and normal components of the accelera-

tion j are readily obtained from Fig. 74, as follows :

.?, A-v * ds>

The loci of the points having only normal, and only tangential,

acceleration at any moment are therefore the circles :

uy= Q. (14)

284. Exercises.

(i) A wheel of radius a rolls on a straight track. Find the centre

of angular acceleration H, (a) when the velocity v with which the axis

of the wheel moves along the track is constant
; (&) when v is uniformly

accelerated as when the wheel rolls down an inclined plane ; (c) when v

is uniformly retarded, as in rolling up an inclined plane.



KINEMATICS. [284.

(2) Show that <au is the total acceleration of the instantaneous

centre C.

(3) Show that the points of the semi-circle described over CH as

diameter and containing / have no tangential acceleration, and that for

points without the circle about CH the velocity is increasing while

for points within it is decreasing.

(4) Find the locus of the points of equal tangential acceleration.

(5) Show that the locus of the points having no normal acceleration

at a given instant is a circle touching the common tangent of the

centrodes at C and passing through /. This circle is called the circle

of inflexions ; give the reason for this name.

(6) Find the locus of the points having equal normal acceleration.

(7) Show that the diameter of the circle of inflexions is equal to the

radius of relative curvature of the centrodes.

(8) Determine the locus of the points whose acceleration at any
instant is parallel (a) to the common normal, (b) to the common tangent

of the centrodes.
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IV. Solid Kinematics.

I. MOTION OF A POINT IN A TWISTED CURVE.

285. We have so far considered only those cases of motion

where the path of the point is a plane curve. In the most gen-
eral case when the path is a so-called twisted or tortuous curve

we may refer it to three rectangular axes and resolve the veloc-

ity v as well as the acceleration j each into three rectangular

components parallel to these axes :

dx dvr

-, j,=Jcoa^- =
,

.-,

dz . . dvf d^z
-, ,;=/ =-=,

i)=V^ 2
-h

286. As polar co-ordinates of the point P we take the radius

vector OP r, the colatitude xOP = 0, and the longitude

Q= $, Q being the projection of P on the plane yOz

(Fig. 76).

The velocity z; can be resolved into three rectangular compo-

nents : vr along r, v9 at right angles to r in the plane x OP of

the angle 0, and v^ at right angles to this plane. To find their

values we take the element PP'= ds of the curve described by
the point P as diagonal of an infinitesimal parallelepiped having

its edges in those three rectangular directions. The three

PART I II
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edges concurring in P are evidently dr, rd6, rsin0d<f); hence

the components of the velocity are

dr
'

dt' dt

X

Fig. 76.

287. The components of the acceleration / in polar co-ordi-

nates are readily obtained by considering that the accelerations

of the point P in the direction at right angles to Ox in the

plane xOP and in the direction at right angles to this plane

are the same as the accelerations of the point Q (Fig. 76); they
are therefore, by Art. 161, (6), since RP=OQ=

in the direction RP, and

i

r sin 6 dt dt

at right angles to the plane of the angle 0. The component of

j parallel to the axis Oz is, of course, d\r cos 0)/dt
2

, Resolv-

ing these three components parallel to the three rectangular

directions along r, at right angles to r in the plane xOP, and
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at right angles to this plane, and collecting the terms, we

obtain :

.

fidr d$>

dt*
'

dt dt
1

'"dt dt

288. It is to be noticed that the resolution of the accelera-

tion/ into a tangential component/ and a normal component/,,

_^ _ ^
dt' p'

given in Art.. 159, holds for twisted curves as well as for plane

curves, provided the normal be understood to mean the prin-

cipal normal of the curve, and p the radius of absolute curvature

at P. For it follows from the definition given in Art. 155 that

the acceleration lies in the plane of the tangent and principal

normal at P, so that the component along the binormal is zero.

289. This can also be seen from the expressions for the com*

ponents of/ in Cartesian co-ordinates, jx
= d*x/dt*, jy

= d*y/dt*,

jg =d*z/dt*. For since ^=^ ^
etc., we have

dt ds dt

dx . fds\* d*x=
Js

dt* dt* ds \dt

= ^ ,

Jy
dt* dt* ds \dt ds*'

. = d*z^d*s<te (ds\*d*zJz
dt* dt* ds \dt)ds*

Now, dx/ds, dy/ds^ dz/ds are the direction cosines of the

tangent of the curve, while pd*x/ds*y pd*y/ds*, pd*z/ds* are. the:
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direction cosines of the principal normal. The formulae show

therefore that the acceleration j consists of two components,

^!=^ along the tangent, and L/!^Y.!? along the normal.
dt* dt p\dtJ p

2. VELOCITIES IN THE RIGID BODY.

290. When the motion of a rigid body is a translation, all

points of the body have at any instant equal and parallel veloc-

ities (Art. 250). The velocity v= ds/dt of any one point can

therefore be called the velocity of the body. The body can be

subjected at a given instant to several velocities of translation,

and the resultant velocity is found by the geometrical addition

of the vectors representing the component velocities.

291. When a rigid body rotates at the time t about an instan-

taneous axis /, all its points (excepting those on the axis)

describe infinitesimal arcs of circles of angle dO, and the

angular velocity a>= dd/dt of any point of the body may be

called the angular velocity of the body. This angular velocity

can be represented geometrically by its rotor o> laid off on the

axis /(Arts. 68, 69, 252).

As this rotor is proportional to the infinitesimal angle o

rotation dd, the propositions proved in Arts. 62, 66, 67, 68, fo

the composition and resolution of infinitesimal rotations can b

applied directly to angular velocities. The propositions refer

ring to parallel axes have been discussed in Arts. 254-257.

292. If in Art. 62 we divide equation (i') by dt 2 and divide

the denominators of equation (2') by dt, we obtain

ft,
2= ,

1
2+ ft,

2
2+ 2ft)

1
ft)

2 cos(/^ (i

sin (/!/)_ sin (//2)_ sin (//2) ,

ft)
2 ft)}

ft>

The meaning of these equations can be stated as follows. Le

a rigid body be subjected simultaneously to two angula
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velocities about intersecting axes, ^ about /
x
and <o2

about /
2

.

Represent these angular velocities by their rotors cov &>
2

laid

off on the axes /p /
2
from their point of intersection O and

construct their geometric sum w
;
that is, form the diagonal

of the parallelogram whose adjacent sides are co
ly

co
2

. Then co

is the rotor of the resulting angular velocity.

This proposition is known as the parallelogram of angular

velocities.

It follows that the resultant of any number of simultaneous

angular velocities whose axes all intersect in the same point is

a single angular velocity whose rotor is found by geometrically

adding the rotors of the components.

293. Conversely, an angular velocity co about an axis / can

always be replaced, in an infinite number of ways, by two (or

more) angular velocities whose geometric sum is o>, about two

(or more) axes passing through any point O of / and lying in

the same plane with /.

Thus, for instance, the angular velocity co about the instan-

taneous axis / can be resolved into three components cox ,
co

y ,
wz

about three rectangular axes Ox
y Oy, Oz passing through any

point O of /, and we have

a>
2= < z

2+ aV
J+ aV

J
. (3)

The linear velocity v of any point P of a body rotating with

angular velocity w about the axis / can be expressed by means

of the components &>x,
coy,

wz of co and the co-ordinates x
t y, z of

the point P. The component cox produces at P a velocity whose

components along the axes Ox, Oy, Oz are o, co^, wxy\ simi-

larly, o)y gives the components cOyZ, o, coyx; and coz gives wzyt

a>2x, o. Hence, combining the terms that lie along the same

axis, the components of the velocity v of the point P are

(4)
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294. If a rigid body be subjected at the time t to two simul-

taneous angular velocities cov &>
2
about skew (or crossing, i.e.

not intersecting and not parallel) axes /
x ,

/
2 ,

or if it be subjected

to an angular velocity co about an axis / and a simultaneous

linear velocity v not perpendicular to /, its state of motion

during the time dt cannot be expressed by a single angular or

linear velocity.

The body can be said to have in either case a twist-, or screw-

velocity, i.e. an angular velocity co about an axis / combined with

a linear velocity z/ parallel to this axis.

To prove this in the latter of the two cases it is only necessary

to resolve v into a component z/ parallel to / and a component
v' perpendicular to /. The latter, being equivalent to a rotor

couple (&>, &>)
of moment v' =pco (see Art. 256), combines with

the given angular velocity co about / into an angular velocity co

about a parallel axis /' at the distance p= v'/a> from /. The

combination of the angular velocity co about / with the simul-

taneous oblique linear velocity v is therefore equivalent to the

angular velocity co about V with the simultaneous linear velocity

V
Q parallel to /'.

295. When the rigid body has two simultaneous angular

velocities a>
lt

co2 about skew axes l
lt

/
2 ,
the reduction is best made

by replacing co
2 about /2 by an equal angular velocity o)

2
about a

parallel axis V intersecting t
lt

in combination with a linear

velocity v=pco <1 perpendicular to the plane of /
2 and /' (Art. 257).

The angular velocities
co^ about /

:
and o>

2
about /' combine (by

Art. 292) into a singular angular velocity whose rotor is the

geometric sum of
eoj and o>

2
. The case is therefore reduced to

the preceding one.

296. It follows from the preceding articles that any number
of simultaneous linear and angular velocities can always be

combined into a single twist-velocity about the central axis.
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3. ACCELERATIONS IN THE RIGID BODY.

297, The accelerations of the points of a rigid body are

found by comparing the velocities of these points during two

successive elements of time.

If the motion of the rigid body be a pure translation, all

points of the body describe equal and parallel curves. The
accelerations of all points being equal and parallel (Art. 272),

the acceleration j of any one point of the body can be spoken
of as the acceleration of the body. It can be resolved into a tan-

gential component jt along the tangent to the path of any point

and a normal component / along the normal to the path, and we

have, just as in Art. 159,

(i)

298. If the motion of the rigid body be a pure rotation about

the same axis / for at least two successive elements of time dtt

all points describe arcs of circles whose centres lie on the fixed

axis /. As shown in Art. 273, the accelerationj of any point P
whose distance from / is r can be resolved into a tangential

component jt perpendicular to the plane (/, P) and a normal com-

ponent/ at right angles to the axis /; and we have (Art. 273)

(2)

where is the angular velocity and a= da)/dt the angular

acceleration of the body.

The normal component / being always directed towards the

axis of rotation / is sometimes called the centripetal acceleration.
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299. If the motion of the rigid body consists in a rotation

about an axis / during the first element of time and a rotation

about an infinitely near parallel axis /' during the second

element of time, we have the case of plane motion of a rigid

body which has been treated in Arts. 274-284.

It remains to discuss the case of intersecting axes, which is of

fundamental importance in the kinetics of the rigid body.

When the axes about which the body rotates in the successive

elements of time intersect at a point O, this point remains fixed

during the motion and may be called the centre of rotation. The

motion of a rigid body with a fixed point may be called

spherical motion.

The accelerations of the points of a body in spherical motion

can be studied in a manner strictly analogous to that used in

the case of plane motion (Arts. 274-284).

300. Let the body rotate during the first element of time dt

with angular velocity o> about an axis /, and during the second

element of time dt with angular velocity

ft)+ ^/&) about an axis /' intersecting /

in the point O and making with / the

infinitesimal angle (/, l')=dcr. The

angular velocities can be represented

by their rotors, o> along /, co+ dco along

/' (Fig. 77).

The rotor w + da along I' can be

resolved into a rotor &> along / and an

infinitesimal rotor d$ along an axis h

that passes through O and lies in the

plane (/, /'). The value of d$ and the angle (/, h)
= y are given

by the relations

sin (/, /') _ sin (/', /z) _ sin (/, K)

d<f) a) a)+ dot

Fig. 77.

(3)

whence sin (/, ^)= sin 7=0)- (4)
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Putting d<rldt=u, d^/dt^ we may, similarly, as in Art. 274,

call u the velocity of rolling of the cone of instantaneous axes

and a the angular acceleration. With 'these notations

301. The appropriateness of these names will appear by

considering that the body can now be regarded as having, for two

successive elements of time, the same angular velocity w about

the same axis /, modified during the second element of time by
the additional infinitesimal angular velocity d<j> about the axis k,

which is called the axis of angular acceleration.

Thus the rotation about / produces only centripetal (and no

tangential) acceleration which at unit distance from / is =o>2 and

is directed at right angles to / towards / (see Art. 298), while

the rotation about h gives at unit distance from h the infinitesi-

mal velocity d$ at right angles to the planes through h and thus

produces the angular acceleration a= d$>/dt, which may be

represented by a vector a along h.

The projection of d$ on / is evidently da (see Fig. 77), so

that
da) I dw x,x

cos 7= =--. (6)
a(f>

a dt

Squaring and adding the equations (5) and (6), we find

302. These results are further illustrated by another resolu-

tion analogous to that of Art. 276.

Imagine the body subjected, during the second element of

time, to the equal and opposite angular velocities v+ dw and

(< + </&>)
about / (Fig. 78); then combine co + dco about /'

with
(< + dfe>) about / into the infinitesimal angular velocity

(o> -t-ak>) sinda= coda- about an axis n through O at right angles
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to /in the plane (/, /').
This is equivalent to resolving the rotor

w+ do> along /' into the rotors to + du> along /and a>d<j along ;/.

The body can now be regarded as rotating during both ele-

ments of time about the axis /, viz. during the first element

with angular velocity o>, during the second with angular velocity

w + dw, and in addition to that during the second element about

the axis n with the infinitesimal angular velocity ndcr.

(n),

Fig. 78.

The rotation about /(Art. 298) produces, for points at unit

distance from /, a centripetal acceleration o>
2
perpendicular to /and

a tangential acceleration dw/dt which may be represented by a

rotor dw/dt along /. The rotation about n gives to points at

unit distance from n an infinitesimal velocity wda at right angles

to the planes through n and thus produces an acceleration

todvldt^tou which may be represented by a rotor along n. The

rotors dwjdt along / and mi along n being at right angles to

each other (see Fig. 78), combine to form the angular acceler-

ation

It is apparent that the component da/di of a has the effect
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of changing the magnitude of o> by the amount da, without

affecting the direction of the axis, while the effect of the com-

ponent a)U is to incline the axis / by the angle dcr.

303. To obtain analytical expressions for the components of

the acceleration of any point P of a rigid body in spherical

motion, let us take the centre of rotation O as origin of a

system of fixed rectangular axes. Let x, y, z be the co-ordinates

of P
\ a, @, 7 the direction cosines of the instantaneous axis /;

and X, fji,
v those of the perpendicular PQ = r let fall from P on

this axis /.

The total acceleration of P is composed of the centripetal

acceleration o>V, which is directed along PQ, and the component

arising from the angular acceleration a (Art. 301).

The components of o>V along the axes of x, y, z are \&>V,

/xcoV, vco
2
r. Projecting the closed polygon OQPO on each of the

axes, we find

or, since OQ is the projection of OP on /, i.e. OQ=

\r= a (ax

vr=y (ax+ fty+ yz) z.

Multiplying these equations by o>
2 and putting aco= cox, /3o)

= co
yt

jo)
= a)z,

we find for the components of the centripetal accelera-

tion of the point (x, y, z) :

= cox a)x

G)
2/ (wx^H-ft>yj+G>^') oPy* (8)

= coz(wxx -f- co
yy+ &>^) aPz.

The angular acceleration a= d$/dt (Art. 301) has for its

components along the axes of x, y, z

d>x _ d(0y _ dto,
CC =--f ** -*> ^z -*

dt dt dt
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The component ax produces an infinitesimal angular velocity

axdt about the axis Ox
;
and hence gives to P the infinitesimal

velocities o, axzdt, axydt along the axes Ox, Oy, Oz (see Art.

293); similarly, a
y
dt produces the velocities a

yzdt, o, a
yxdt,

and azdt produces azydt, azxdt, o. Collecting the terms paral-

lel to each axis and dividing by dt, we find the components of

the acceleration of P due to the angular acceleration a :

ayZ-azy, a,xa^t
a. y-ay

x. (9)

Finally, combining the corresponding terms in (8) and (9) and

remembering that a.x =da>Jdt, a
y
=da)

y/dt, az =da)z/dt, we find the

following expressions for the components of the total accelera-

tion j of the point P (x, y, z) :

>

at at

^*-^s, (10)

dcor dw..

fy -*-x.
at at

304. The formulas (10) for the components of the accelera

tion of any point (xy y, z) of a body rotating about a fixed poin

O can also be derived by differentiating the expressions (4) ir

Art. 293, which represent the components of the velocity o

such a point. It is only necessary, after the differentiation, tc

substitute for dxjdt, dy/dt, dz/dt their values from (4), Art

293, and to remember that cc?= cox
2 +a)y

z
-{-(t)2

2
.

305. The complete study of the motion of a rigid body in th<

most general case, in particular the investigation of its accelera

tions, is beyond the scope of the present work.

In addition to the works previously referred to, the following work

on kinematics may here be mentioned.

An elementary introduction to kinematics, without the use "of the in

fmitesimal calculus, will be found in J. G. MACGREGOR, An elementary



305.] THE RIGID BODY. I^
treatise on kinematics and dynamics, London, Macmillan, 1887. This

may be supplemented by W. K. CLIFFORD, Elements of dynamic, part

i, Kinematic, ib., 1878. For more advanced study see G. M. MINCHIN,

Uniplanar kinematics of solids and fluids, Oxford, Clarendon Press,

1882
;
THOMSON and TAIT, Natural philosophy, new edition, part i, ib.,

1879 ; W. SCHELL, Theorie der Bewegung und der Kr'dfte, vol. i, 1879,

Leipzig, Teubner; J. SOMOFF, Theoretische Mechanik, ubersetzt von

A. Ziwet, part i, Kinematik, Leipzig, Teubner, 1878 ;
E. BUDDE, Allge-

meine Mechanik der Punkte und starren Systeme, Berlin, Reimer, 1890 ;

H. RESAL, Traite de cinematique pure, Paris, Mallet-Bachelier, 1862;
E. BOUR, Cours de mecanique et machines, part i, Cinematique, 2d ed.,

Paris, Gauthier-Villars, 1887; E. COLLIGNON, Traite de mecanique,

part i, Cinematique, 3d ed., Paris, Hachette, 1885 ;
E. VILLIE, Traite

de Cinematique, Paris, Gauthier-Villars, 1888.





ANSWERS.

Page 17.

(i) Join the point P to the instantaneous centre (7; the direction
'

of motion is perpendicular to CP.

(3) See Art. 29.

(4) See Art. 29. With O as origin and a parallel to /as axis of yy

_the fixed centrode is (y
2

cxy=a2

(x
2

+y
2

), where a is the radius of the

circle about <9, and c the distance of O from /.

(6) The fixed centrode is a circle passing through O', O"
;
the body

centrode is a circle of twice the radius. The path of any point in the

fixed plane is in general a limacon of Pascal.

(8) Consider the initial and final positions of the point of intersec-

tion of / and /j.

Page 28.

(i) 24 miles; E. 35 S.

(3) V3-

(4) 10.7 miles; E. 14! S.

(6) 2 a cos (<*/2).

(7) (a) 120; () i6o 48'.6.

(10) Inclination to vertical: (a) n.3j (<) 2i.8; (<r) 45;
(d) 6 7 .4 .

(n) iojft.j "=2471.

175
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(16) On PoPlt PP2 construct the parallelogram P P^P2 and

drawP{S parallel to QP2, S being the intersection with the diagonal P^R.

(18) Apply (16).

Page 39.

(i) For the angle 6 of the resulting rotation we have sin (0/2)
= J-V5/2 ;

for the position of its axis /, sin(4/)= 2/Vs, sin(//2)

-Vtfc
(3) 22.

Page 47.

(1) (a) 41 miles per hour
; (c) 19.1,8.2; (d) 10 h. 19 m.

(3) At 2 h. 22 m.
; 203 miles from Detroit.

(4) (a) 5.9; (2) 40.6; (c) 44; (/) 35.25; (e) 1093.

(5) 15-

(7) 185,000 miles per second.

(8) (a) ih.; (b) 15 m.

(9) 3of .

( I0 ) 37i miles per hour.

Page 53.

(0 H-

(2) 32.186.

(3) Nearly yL ft. per second per second.

(4) 0.0034.

Page 56.

(1) (a) 96.6; () 402.5; (c) 144.9.

(2) 0.275.

(4) h =c\ / H -y
-f 2 / 4- -

J
;
an approximate value is

h = %- For a direct numerical computation, the method
*('+**)

of successive approximations may be used. Thus, neglecting the time
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/, required by the sound, find the depth s approximately from s =
with / = 4 ; with this value of s find /2 ; hence the time of fall /b with

which correct s
;

etc. Result : s = 70.4 metres.

(5) (a) 4 min.
; (b) 1 1/60 ; (c) 30 miles per h.

; (d) after 3 m. 28 s.

(8) (a) 40,000 ft.; (b) 715.5 ft. per second; (c) i m. 40 s. ;

{d) 1600 ft. per second; (e) i m. 12.4 s. and 27.6 s.

(9) 80 ft. per second.

(10) (a) t=h/vQ
-

} (b) h-s =

Page 60.

(1) (a) 26,000 ft. per second; (b) 34 m. 48 s.

(2) It represents a cycloid.

(4) v^R/(2gR
2

). If v} 5 2gR, the particle will not fall back.

(5) Height = >?; time of ascending = ^|f i +-j
= time of

o \ /

falling back = 34 m. 48 s.
;
hence whole time = i h. 9 m. 36 s.

(6) 7 miles per second.

Page 63.

(2) v = 26,000 ft. per second ;
/= i h. 25 m. 4.5 s.

(3) 2S = R(#* + e-v*) t
or s =

Page 65.

(i) lira #=///, for lim /= oo.

v* CQS Vg^ ^ ^ sin

(4) Time of ascent T= I

__t3Lir
l

\ -v ;

V** X
<^

height of ascent ^= ^7 log f i 4-
- 2

)
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(5) Compare the height of ascent in Ex. (4) to the distance fallen

through as obtained in (27), Art. 126. If vl be the velocity with which

the particle returns to the starting point, we find

(6) v = v e-kt

,

(7) ^ = (i-

Page 69.

(i) w = TT radians ; v = 18.8 ft. per second.

W (*)3i; (J)3-

(3) -0.157-

(4) 5-

(5) (a) 402.1 ; (b) 25.1 seconds.

Page 73.

(1) r= v$t, 6 = <o/; hence r = v^B/a, a spiral of Archimedes.

(2) About the pole O describe a circle of radius a and find its

intersection Q with the perpendicular to the radius vector OP drawn

through O ; then QP is the normal. Proof by Ex. ( i ) .

(3) For the direction of v see Art. 31, Ex. (2). Resolving

v into v parallel to the track and vl along the tangent to the wheel,

it appears that v bisects the angle between these components ;
hence

v = 2 v cos CAP, where C is the centre of the wheel, and A its lowest

point.

(5) For the ellipse, r + r*= const. ;
hence =

,
/>. the pro-

at at

jections of the velocity on the radii vectores are equal.

(6) The projections of the velocity on the radius vector and on

the focal axis are in the constant ratio e of the focal radius vector

to the distance to the directrix. It follows that the tangent intersects

the directrix in the same point as does the perpendicular to the radius

vector through O.

(7) 40.
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(10) vl
= 20 ft. per second, nearly; angle = 20^.

( 1 1 ) The relative velocity of P2 with respect to J\ must always pass

through Plt The locus of Q is a circle.

(12) A cycloid.

(13) About 20".

Page 79.

(4) 233! ; 24! ; 933^ ft. per minute.

(5) 16.6 knots; 560 ft. per minute.

(6) 55; 66; 2| in.

(7) 0.174, 0.119, 0-146 of the stroke.

Page 85.

(2) By(2),Art. i59,/n

(3) By Art. 159, jn j sin
i//
= v*/p ; hence v2 =/ p sin

if/.

(4) Since j is directed towards A, taking A as origin, we have

JQ = o, i.e. r- = const. ; comp. Art. 135.
/

(5) = eo = const., r= const. ; hence, by (6), Art. 161, j=jr

at

= -r<J.

(6) /=no2
.

Page 86.

(i) (a) 1718 ft. above the point ; () after 2 m. 52 s. ; (c) 1891 ft.
;

(d) 21.2 miles an hour.

(4) 45-

(7) Construct a circle having the given point as its highest point

and touching (a) the straight line, (b) the circle.

Page 90.

(9) (a) 1 74ft.; (b) in about 8 seconds; (c) 254 ft. per second,

inclined at an angle of about 5 to the vertical.

(10) 227 ft. per second.
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PREFACE.

THE subject of statics is here developed only so far as is absolutely

necessary in order to lay the foundation on the one hand for the study

of elementary kinetics, on the other for applied mechanics. From

the former point of view it was desirable to bring out clearly the con-

nection of the subject with the general science of mechanics and to

determine its place as a subdivision of the larger science. The second

section of Chapter III should be considered only as preliminary ;
the

fundamental laws of dynamics can of course be fully understood only

by studying kinetics. Prominence is given throughout to geometrical

methods and graphical constructions because these seem to conform

best to the nature of the subject. The applications given here and

there are to be regarded merely as illustrations of the general prin-

ciples.

The following articles might be omitted at first reading : 18, 19, 20,

34, 43, 44, 48, 52, 113, 117-127, 152-164, 180, 181, 209, 210, 214,

220-225, 257~2 ^5-

ALEXANDER ZIWET.
ANN ARBOR, MICH.,

October, 1893.
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THEORETICAL MECHANICS.

CHAPTER III.

INTRODUCTION TO DYNAMICS.

I. Mass ; Moments of Mass ; Centroids.

I. MASS
J DENSITY.

1. In the first part of this work only the geometrical and

Idnematical properties of motion have been considered, the

moving object being regarded as a mere point or as
^a geo-

metrical configuration. It is, however, known, from observation

and experiment, that the motions of actual physical bodies are

not fully described and determined by those properties alone.

Physical bodies are distinguished from geometrical configura-

tions by being possessed of mass
;
and this property as affecting

their motion must be taken into account in dynamics.

2. In physics the mass of a body is usually defined as the

.quantity of matter contained in the body. Postponing for the

present the full discussion of the idea of mass in its relation to

.acceleration and force, and of the methods for comparing and

measuring masses, it will suffice for our present purpose to

think of the mass of a body as a certain constant quantity, inde-

pendent of the body's position or motion with respect to the

earth or other bodies, as an indestructible something underlying

every physical body.

The student must be warned not to confound mass with

weight. The weight of a body, as we shall see later, is the

force with which the body is attracted by the earth
;

it varies,

PART II I I
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therefore, with the distance of the body from the earth's centre,

and would vanish completely if the earth were suddenly

annihilated
;

while the indestructibility of mass is the first

fundamental principle of chemistry and physics.

3. To compare the masses of different bodies, we may adopt

any given body as a standard.

Thus in the F. P. S. system, the standard mass is a certain

bar of platinum marked "
P. S., 1844, I lb.," and preserved at

the Office of the Exchequer, London, England. This is called

the "
imperial standard pound avoirdupois" ; any mass equal to

it is a unit of mass in this system.

In the C. G. S. system, the standard of mass is the " Kilo-

gramme des archives," a bar of platinum kept in the Palais des

archives, in Paris, France. A mass equal to one-thousandth of

this standard is the unit of mass in this system ;
this unit is.

called \htgram,
The numerical relation between the British and metric units-

of mass is as follows :

i lb. =453.59265 gm.

i gm. =0.002 204 621 2 lb. = 15.432 grains.

4. The three units of space, time, and mass are called the

fundamental units of mechanics, because with the aid of these

three, the units of all other quantities occurring in mechanics

can be expressed. Thus we have seen how the units of velocity

and acceleration are based on those of space and time, and we

shall have many more illustrations in what follows. Any unit

that can be expressed mathematically by means of one or more

of the fundamental units is called a derived unit.

5. From the mathematical point of view, mass appears in our

dynamical equations as a coefficient, generally to be regarded as

an absolute, positive constant. It serves to give different values

(different valency, or "
weight

"
in the meaning of the theory of

least squares) to the moving points, lines, areas, volumes, apart

from their geometrical extension.
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6. Thus, a geometrical point endowed with mass is called a
materialparticle. We may regard such a mass-point, or particle,
as the limit to which a physical body approaches if its volume
be imagined to decrease indefinitely, approaching the limit zero,
while its mass may remain a finite quantity. From the physical
point of view a particle must be regarded as much an abstraction
as a geometrical point, since every finite physical mass occupies
a finite space and cannot be identified with a point. We shall

see, however, that in dynamics this idea of the mass-point,
or particle, is of the greatest importance not only because

physical matter is usually considered as made up of an aggre-
gation of such points or centres possessing mass (molecules,
atoms), but principally because in many cases the motion of a
solid body can be fully represented by the motion of a certain

point in it, called its centre of mass or centroid, the whole mass
being regarded as concentrated at this point.

7. It is also customary in dynamics to speak of material
lines and material surfaces, which may be regarded as the limits
of physical bodies in which two dimensions or one dimension
have been reduced to zero. Thus a material line represents
the limit of a wire, chain, or bar, in which two dimensions are,
neglected ;

a material surface can be imagined as the limit of
a thin shell, or lamina, with one dimension reduced to zero.

8. A continuous mass of one, two, or three dimensions, is

said to be homogeneous if the masses contained in any two equal
lengths, areas, or volumes (as the case may be), are equal. The
mass is then said to be distributed uniformly. In all other
cases the mass is said to be heterogeneous.

9. The whole mass M of a homogeneous body divided by
the space V it fills is called the density of the mass or body ;

denoting density by p we have therefore

M
*FV

for homogeneous bodies.
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In a heterogeneous body, this quotient is called the average,

or mean, density. In this case the density at any point, or the

density of any space-element dV, is defined as the derivative

dM

10. The unit of density is the density of a substance such

that the unit of volume contains the unit of mass. If the units

of volume and mass are selected arbitrarily, there need not of

course necessarily exist any physical substance having unit

density exactly. Thus in the F.P.S. system, unit density is

the density of an ideal substance I pound of which would just

fill a cubic- foot. As a cubic foot of water has a mass of 62\

pounds, or 1000 ounces, the density of water is 62\ times the

unit density.

The specific density, or specific gravity, of a substance, is the

ratio of its density to that of water at 4 C. Let p be the

density, p' the specific density, M the mass, V the volume of

a homogeneous mass, then in British units

In the C.G.S. system, the unit of mass has been so selected

as to make the density of water equal to I very nearly ; in other

words, the unit mass (i gramme) of water, at the temperature of

4 C., fills one cubic centimetre.

In the metric system, then, there is no difference between

density and specific density or specific gravity.

r

2. MOMENTS AND CENTRES OF MASS.

11. The product of a mass m, concentrated at a point P, into

the distance of the point P from any given point, line, or plane,

is called the moment of this mass with respect to the point, line,

or plane.
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Thus, denoting by r
y q, /, the distance of the point P from

the point O, the line /, and the plane TT, respectively, we have

for the moments of m with respect to 0, /, TT, the expressions

mr, mq, mp.

12. Let a system of n points, or particles, Plt P^ ... Pn be

given; let m
lt
m2 ,

...mn be their masses, and plt pv ...pn their

distances from a given plane TT. Then we call moment of the

system with respect to the plane TT the algebraic sum

the distances plt pv ... pn being taken with the same sign or

opposite signs according as they lie on the same side or on

opposite sides of the plane TT.

It is always possible to determine one and only one distance

p such that ^mp= Mp, where M='m m
1 -\-m2 -\ \-m n is the

total mass of the system. If this distance p should happen to

be equal to zero, the moment of the system would evidently

vanish with respect to the plane TT.

13. Let us now refer the points P to a rectangular system

of co-ordinates, and let x, y, z be their co-ordinates. Then we

have for the moments of the system with respect to the co-ordi-

nate planes yz, zx, xy, respectively

The point G whose co-ordinates are

is called the centre of mass, or the centroid, of the system.

The centroid is, therefore, defined as a point such that if the
.

whole mass M of the system be concentrated at this point, its
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moment with respect to any one of the co-ordinate planes is equal

to the moment of the system.

14. It is easy to see that this holds not only for the co-ordi-

nate planes but for any plane whatever. Let

be the equation of any plane in the normal form
;

the distances of the points G, Pv P2 , ..., Pn from this plane.

Then we wish to prove that

Now = <

hence

= Mp.

The centroid can therefore be defined as a point such that its

moment with respect to any plane is equal to that of the whole

system, with respect to the same plane.

It follows that the moment of the system vanishesfor any plane

passing through the centroid.

15. In the case of a continuous mass, whether it be of one,

two, or three dimensions, the same reasoning will apply if we

imagine the mass divided up into elements dM of one, two, or

three infinitesimal dimensions, respectively. The summations

indicated above by 2 will then become integrations, so that the

centroid of a continuous mass has the co-ordinates

(xdM
^ ___ ^/ _ .

t

$dM
'

$dM
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According as the mass is of one, two, or three dimensions, a

single, double, or triple integration over the whole mass will in

general be required for the determination of the moments

(xdM, \ydM% (zdM of the mass with respect to the co-ordi-

nate planes, as well as of the total mass (dM=M.
Thus, for a mass distributed along a line or a curve we have,

if ds be the line-element,

dM=pds;

for a mass distributed over a surface-area we have, with dS as a

surface-element,

finally, for a mass distributed throughout a volume whose

element is dV>

If the mass be distributed along a straight line, the centroid

lies of course on this line, and one co-ordinate is sufficient to

determine the position of the centroid. In the case of a plane

area, the centroid lies in the plane and two co-ordinates deter-

mine its position ;
we then speak of moments with respect to

lines, instead of planes.

16. If the mass be homogeneous (Art. 8), i.e. if the density p

be constant, it will be noticed that p cancels from the numerator

and denominator in the equations (2), and does not enter into

the problem. Instead of speaking of a centre of mass, we may
then speak of a centre of arc, of area, of volume. The term

centroid is, however, to be preferred to centre, the latter term

having a recognised geometrical meaning different from that of

the former.

The geometrical centre of a curve or surface is a point such

that any chord through it is bisected by the point ;
there are

but few curves and surfaces possessing a centre.
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The centroid (Art. 14) is a point such that, for any plane

passing through it, the moment of the system is equal to zero.

Such a point exists for every mass, volume, area, or arc. The

centroid coincides, of course, with the centre, when such a

centre exists and the distribution of mass is uniform.

17. 'As soon as p is given either as a constant or as a function

of the co-ordinates, the problem of determining the centroid of

a continuous mass is merely a problem in integration. To

simplify the integrations, it is of importance to select the

element in a convenient way conformably to the nature of the

particular problem.

Considerations of symmetry and other geometrical properties

will frequently make it possible to determine the centroid with-

out resorting to integration. Thus, in a homogeneous mass,

any plane of symmetry, or any axis of symmetry, must contain

the centroid, since for such a plane or line the sum of the

moments is evidently zero (see Art. 47).

It is to be observed that the whole discussion is entirely

independent of the physical nature of the masses m which

appear here simply as numerical coefficients, or "weights,"

attached to the points (comp. Art. 5). Some of the masses

might even be negative.

It will be shown later that the centre of gravity, as well as

the centre of inertia, of a body coincides with its centroid.

18. The centroid can be defined without any reference to a

co-ordinate system as follows.

As in Art. 12, let there be given a system of n points

/>!, P2,
. .. Pn (Fig. i) whose masses are mv m2 ,

... mn . Taking
an arbitrary origin O and putting OPl

= r
l ,
OP2

= r
2 ,

... OPn
= rn)

we may represent the moments m\r^ m2
r
2 ,

...mnrn of the

given masses with respect to O (Art. 11) by lengths (vectors)

laid off on OPV OP^ . . . OPn . The moment of the system can

then be defined as the geometric sum of these vectors. It is-

therefore found by geometrically adding these vectors
;

i.e. we
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have to lay off from (9, on OPV Op l
=m

l
r

l \
from / t , parallel to

OP
2 , AA W

2
r
2>

etc -
'>

anc^ finely jin O to the end pn of the poly-

gon so formed
;
then Opn is the geometric sum, or resultant, of the

Fig. 1.

vectors m^, m<>rv ...mnrn . Using square brackets to indicate

geometric addition, we have Opn =^\inr\. A point G taken on

the line Opn so that

M-OG=Opn
= ^[mr], (3).

where M=^m, is the centroid of the system.

19. It is easy to see that this definition of the centroid

agrees with the one previously given (Art. 13). For, to form

the geometric sum, or resultant, of the vectors m^, m
2
7'
2 ,

. . . mnrn,
we may resolve each of these vectors along three

rectangular axes drawn through O. The components of m^rv
are

evidently m^x^ m^y^ m^, if x^ y^ z^ are the co-ordinates of P
19

.

since x^/r^, yjr^ z-^/r^ are the direction cosines of the line

We find therefore for the components of Opn the values

2my, ^mz ;
and hence for the co-ordinates of G,

20. The position of the centroid G of a given system of

masses is independent of the point O selected as origin. For

let another point O' at the distance d from O be selected as



10 INTRODUCTION TO DYNAMICS. [21.

origin, and let G' be the point obtained as centroid from this

origin, so that

2[mr], M-O'G' =2|W].

As we have the geometric equation [r']
=

[d] + [>], we find

Hence subtracting the first equation and dividing by M,

[O
f

G']-[OG] = [d], or [O'G'] = [d] + [OG] = [O'G]

.so that G and G f
coincide.

It follows from this consideration that a given system has

only one centroid.

21. Regarding again the mass of the centroid as equal to

that of the whole system, we may now define the centroid of a

system as a point such that its moment with respect to any point
or plane is equal to the sum of the moments of all the points

constituting the system; the sum being understood to be a

geometric sum for moments with respect to a point, and an

algebraic sum for moments with respect to a plane.

Taking the centroid itself as origin, we have the proposition

that the geometric sum of the moments of a system with respect

to the centroid is equal to zero. It has been proved before

(Art. 14) that the algebraic sum of the moments of a system

vanishesfor any plane passing through the centroid.

22. In determining the centroid of a given system it will

often be found convenient to break the system up into a number

of partial systems whose centroids are either known or can

be found more readily. The moment of the whole system is

obviously equal to the sum of the moments of the partial systems.

Thus let the given mass M be divided into k partial masses

M
lt
M9 ...M so that M= M^+M^+^+M ;

let G, Gv G2 ,
...
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Gk be the centroids of M, Mv M%, ...Mk , and/, /p /2, ...pk their

distances from some fixed plane. Then we have

23. The particular case of two partial systems occurs most

frequently. We then have with reference to any plane

Letting the plane coincide successively with the three co-ordi-

nate planes, it will be seen that G must lie on the line joining

G
lt
G2 . Now taking the plane at right angles to G

1 G% through
G

lf
we have

similarly for a plane through

whence ^r = 2 == 1 a
;

J/
2 M

l
M

i.e. the centroid of the whole system divides the distance of the

centroids of the two partial systems in the inverse ratio of their

masses.

3. EXAMPLES OF THE DETERMINATION OF CENTROIDS.

24. Two Particles. The centroid G of two particles of masses

m^ m<i concentrated at two points Pv P2 lies on the line P^P^
and divides the distance P-J?% in the inverse ratio of their

masses, i.e. so that

(See Art. 23.) These formulae hold even when one of the

masses is positive and the other negative, in which case the

sense of the segments must be attended to.
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25. Three Particles. We find first the centroid P 1 of m
z
at

P2 and ms
at P

B (Fig. 2) by Art. 24 ; then, by the same rule,

the centroid G of m%-}-mB at P' and m
1
at Pj. We might have

begun with P3 and Pv finding P" ;
or with P

:
and />

2 , finding

/"". lies at the intersection

of the three lines PJ>\ P^P",
P

z
P' n

,
and can therefore be

constructed graphically.

P' 26. Four Particles. Find the

Fig ' 2>
centroid P' of w

x
at ^ and m2

at Pgj also the centroid P" of w3
at P3 and ^/4 at P\ then

the centroid ^ of m
1 -\-m2 at P r and m

z -\-m at /*".

The four particles can be arranged in groups of two in three

different ways. There are therefore three lines, like P'P", on

each of which G lies. Any two of these are sufficient to con-

struct G geometrically.

27. The centroid of a homogeneous rectilinear segment (thin

rod or wire of constant cross-section) is evidently at its middle

point.

28. If the density of a rectilinear segment be proportional to the

nth power of the distancefrom one end, say p = kxn
,
we have

r- Jo n+i

where / is the length of the segment.

(a) For n= o, this gives x=^l which determines the centroid

of a homogeneous straight segment (see Art. 27).

(b) For n= I, we have x\ /. This determines the distance,

from the vertex, of the centroid of a homogeneous triangular

area. For such an area can be resolved (Fig. 3) by parallels

to the base into elements each of which may be regarded as
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a homogeneous segment PQ. If we imagine the mass of every
such element concentrated at its middle point, the homogeneous

triangle is replaced by its median CO in

which the density is proportional to the dis-

tance from the vertex C.

The centroid of a homogeneous triangular

area lies therefore on the median at two-

thirds of its length from the vertex
;
as this

holds for each median, the intersection of the
Al

three medians is the centroid (see Art. 32).

(c) For n 2, we have x\l. This gives the position of the

centroid of a homogeneous pyramid or cone, by reasoning pre-

cisely similar to that used in (b).

Thus, to find the centroid of any homogeneous pyramid or

cone, join the vertex to the centroid of the area of the base
;

the required centroid lies on this line at

a distance equal to J of its length from

the vertex.

29. Homogeneous Circular Arc (Fig. 4).

Let O be the centre, r the radius of the

circle; ACB= s the arc, C its middle

point. The centroid G must lie on the

bisecting radius OC, since this being a

line of symmetry, the sum of the mo-

ments of the elements of the arc is =o
with respect to this line (Art. 17). To

find the distance x=OG, we take mo-

ments with respect to the diameter per-

With OC as axis of x, we have

Fig. 4.

pendicular to OC.

= r -ds= ds cos COP=

Hence, s x r- c, if c be the length of the chord AB.

If the angle AOB= 2aoi the arc^ were given, we might



I4 INTRODUCTION TO DYNAMICS. [50.

obtain the result by taking the angle COP=6 as independent

variable. We have then

/^

= I

J
rcos -r = 2r sn a,

, sin a
whence x=r-

T-I i_ *.*. 2 r sin a c -, -, .,,
This can be written x=r =?'-, which agrees with

2ra s

the expression found above.

30. The First Proposition of Pappus and Guldinus. If an arc of

a plane curve be made to rotate about an axis situated in its

plane, it generates a surface of revolution whose surface-area is

5=2 IT (yds, where ds is the element of the curve and the axis

of rotation is taken as axis of x. On the other hand we have, if

s be the length of the generating arc and y the ordinate of its

centroid, s-y = \ yds', hence

5=2 TT sy= 2 iry s,

i.e. the surface-area of a solid of revolution is obtained by multi-

plying the generating arc into the path described by its centroid.

It is easy to see that this proposition holds even for incom-

plete revolutions. When the generating arc cuts the axis,

proper regard must be had for signs and sense of rotation.

31. It follows from symmetry that the centroid of a homo-

geneous circular or elliptic area (plate, lamina) is at the geomet-
rical centre of figure. Similarly, the centroid of a homogeneous

parallelogram is at the intersection of its diagonals.

In general, if a homogeneous plane figure have two axes of

symmetry, the centroid must be at the intersection of these

lines since the sum of the moments is zero for each of these

lines.
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32. It has been shown in Art. 28 (b) how the centroid of a

homogeneous triangular area ABC can be found.

Dividing the area into linear elements by drawing lines

parallel to one of the sides, say AB (Fig. 3, p. 13), it appears

that the centroid of each element, such as PQ, lies at its middle

point. The locus of these middle points is

the median CO of the triangle ;
on this line,

then, the centroid G of the triangle must be

situated. Resolving the triangle into linear

elements parallel to the side BC, or to CA,
it follows in the same way that G must lie on

each of the other two medians of the triangle.

The intersection of these medians is there-

fore the centroid G.

The point G trisects each median so that CG/GC' = 2. For

if AA' (Fig. 5) is another median, the triangles AGC and A'GC'

are similar, and A'C' = %AC't
hence CG=\CG.

It follows from Art. 25, that the centroid of the homogeneous

triangular area coincides with that of three particles of equal

mass placed at the vertices.

33. Homogeneous Quadrilateral. The centroid is found graphi-

cally by resolving the quadrilateral into triangles, finding their

centroids, and deducing from them the centroid of the quadri-

lateral. This process applies generally to any polygon and can

be carried out in various ways.

Thus for the quadrilateral ABCD (Fig. 6) drawing the

diagonal AC and determining the centroids of the triangles

ABC and ADC, we obtain by join-

ing these centroids one line on

which the required centroid of the

quadrilateral must lie. Repeating

the same construction for the tri-

angles obtained by drawing the

other diagonal BD, we find a second line on which the centroid
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must lie. The intersection of these lines gives the centroid of

the quadrilateral.

34. For some purposes it is convenient to find a system of

particles whose centroid shall be the same as that of a quadrilat-

eral. The problem is of course indeterminate and may be

solved in various ways.

Let m be the mass of the quadrilateral ABCD ;
m

lt m% the

masses of the triangles ABC, ADC. By Art. 32, each of these

triangles can be replaced by three equal particles -J^, \^n^

placed at the vertices. We thus have at A, as well as at C, a

mass | (*#! 4-m^ = ^m.
The masses ^m 1

at B and ^m2
at D, whose sum is also

= \m, are proportional to the areas of the triangles ABC, ADC,
or to the lengths EB, ED, if E be the intersection of the

diagonals. Now these two different masses at B and D can be

replaced by a system of three masses, \m at B, \m at D, and

\m at E. For (i) the total mass evidently remains the same,

and (2) the centroids of the two systems coincide as is easily

seen by taking moments with respect to E.

Indeed, the centroid G' of ^m l
at B and ^mz at D is deter-

mined by the equation

(m l 4-m2) EG'=m
1
EB m^ ED

;

substituting for m
lt m% their values as found from the relations

m
l +m2

= m, m l/m <2i

= EB/ED, this reduces to

m>EG' = m-(EB-ED).

The centroid Gu of \m at B,\m at D, and \m at E is

given by

Hence G' and G" coincide.

The centroid of the area of a homogeneous quadrilateral is

therefore the same as that of four equal particles placed at its
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vertices together with a fifth particle of equal but negative

mass, placed at the intersection of the diagonals.

35, In the particular case of a homogeneous trapezoid (Fig. 7),

it may be noticed that the figure can be divided into rectilinear

elements by lines drawn parallel to the parallel sides of the

trapezoid. Every such element has its centroid at its middle

point ;
the locus of all these points is the so-called median

;
and

the centroid G of the trapezoid must lie on this median, i.e. on

the line joining the middle points E, F of the parallel sides.

To find the ratio in which G divides the length EF> we use

again the method of taking moments. We divide the trapezoid

into two triangles by the diagonal BC and remember that the

distance of the centroid of a triangle from its base is equal to

one-third of its height ;
then taking moments with respect to the

two parallel sides AB= a, CD=b, denoting the height of the

trapezoid by h, and the distances of G from a and b by y
we obtain

Dividing, we find

This gives the following construction : Make AE f= b on the

prolongation of a, and DF 1 =a on the prolongation of b, in the

opposite sense
;
then E'F' will intersect EF in G.

PART II 2
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36. To find the centroid of the cross-section of a T-iron (Fig. 8)

it is only necessary to find its distance ~x from the lower side

AB ; for it must lie on the axis of symmetry CD. Taking
moments with respect to AB we obtain with the notation

indicated in the figure :

hence

If a, fi are nearly equal and very
small in comparison with a, b> we
have approximatelyTG

_X-
a+ b

Fig. 8. /37. The area of a homogeneous cir-

cular sector (Fig. 4,-p. 13) of radius r

and angle AOB= 2a can be resolved into triangular elements

POP^ ^dQ, the bisecting . radius OC being taken as polar

axis. The centroid of such an element lies, by Art. 32, at

the distance -|r from the centre O. Regarding the mass,

p-^r^dd, of each element as concentrated at its centroid, the

sector is replaced by a homogeneous circular arc of radius ^r
and density ^pr*d9. By Art. 29, the centroid of such an arc,

which is the required centroid of the sector, lies on the bisect-

ing radius OC at the distance |r5S? from the centre O.
a

Hence
-

9 sin a

38. In general, for areas bounded by curves we must resort to

integration, using the general formulae of Art. 15.

If the area 5 be plane, we have in rectangular co-ordinates
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Cx
* Cy* C x

* C v*M-x\ I pxdxdy, M-y= \ \ pydxdy;
y^j *Jy^ */*i \Jv\

and if the mass be homogeneous, i.e. p= const., since then the

first integration can at once be effected :

*

or similar expressions for y as independent variable.

In polar co-ordinates, tKe element of area is rdrdd, and we
have x=r cos 6, y r sin 6

; hence

cos OdrdO, S *y= sm OdrdB;

or, performing the first integration,

Vcos&/0, 5-7=4-3

It will be noticed that these last formulae express also that

the infinitesimal sector | r^dQ is taken as element, the centroid

of this element having the co-ordinates f rcosO,

39. As a somewhat more complicated example let us consider

a circular disc of radius a, in which the density varies directly

as the distance from the centre (Fig. 9). Let a circle described

upon a radius as diameter be cut out of this disc
;

it is required

to find the centroid of the remainder.

Let O be the centre of the disc of radius a, C that of the

disc of radius \a\ G
l
the centroid of the latter, G the required

centroid; and put OG1
=

1̂>
OG=x. Then if M

l
be the mass
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of the smaller disc, M% that of the larger, we must have

J/ x=

Fig. 9.

The equation of the smaller circle is r=# cos#. Taking as

element of the mass of the smaller disc the mass contained

between two arcs of radii r and r+ dr, we have for this element :

or since p=&r, r=acos0,

l
= 2 ka*B cosW (cos 6).

Hence M^kBd (cos
3
(9)

cos3(9 -

= f ka* f
f
cos3/9^= | ka*

-

f=

The centroid of the element dfJ/j lies, according to Art. 29,

at the distance r
sm

from O. We have therefore

sin (9 cosW0 r
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The mass of the larger disc is

21

Substituting these values into the equation of moments we
find'

M^XI 6x= ^ * * = a= o.i6i6..a.M%^Ml 5(3-^-2)

40. Proceeding to the determination of the centroids of

curved surface-areas, we begin with

the special case of the homoge-
neous area of a surface of revolu-

tion. If the axis of x coincide

with the axis of revolution and

R = rsm6 be the distance of any

point P of the surface from this

axis (Fig. 10), the equation of the

surface, or of its meridian section,

is x=f(R} ;
and the element of

area is

Fig. 10.

dS= =RV
We have therefore for the centroid of the portion of the surface

contained between two sections at right angles to the axis and

two meridian planes (i.e. planes through the axis) including an

angle 0:
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Similar formulae result when x is taken as independent vari-

able instead of R. For a complete surface of revolution ( = 27r

so that j/=o, z=o, as is otherwise evident.

41. In the case of spherical surfaces, although the preceding

formulae can of course be used, it is often more convenient to

make use of the geometrical property of the sphere that any

spherical area is equal to the area of its projection on a cylinder

circumscribed about the sphere.

Thus the area on the sphere contained between two parallel

planes is equal to the area cut out by the same two planes from

the circumscribed cylinder whose axis is perpendicular to the

planes. The centroid of such a spherical area is therefore on

the radius at right angles to the bounding planes midway
between these planes.

42. The Second Proposition of Pappus and Guldinus (compare

Art. 30).

A plane area 5 (Fig. n) rotating about any axis situated in

in its plane generates a solid

of revolution whose volume is

V=TT^(y-y?)dx, if the axis

of revolution is taken as axis of

x and j/ are the two ordi-

F
.

j j
nates of the curve bounding the

area. On the other hand, if y
be the distance of the centroid G of the plane area from the

axis, we have

by Art. 38. Combining these two results, we find

i.e. the volume of a solid of revolution is obtained by multiplying

the generating area into the path described by its centroid.

The proposition evidently holds even for a partial revolution.
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43. To find the centroid of a portion of any curved surface

F(xy y, z)
= o, we have only to substitute dM=pdS in the

general formulae of Art. 15, and then express dS by the

ordinary methods of analytic geometry.

Denoting by /, m, n the direction cosines of the normal

to the surface at the point (x, y, z), and putting for shortness

dF/dx=Fx, dF/dy=Fy, dF/dz=Fz,
we have

jc__ dydz_ dzdx_ dxdy
I m n

Fx

~ F~ F
Hence, substituting

F.

in the formulae of Art. 15, we find

F.

where the integration is to be extended over the projection of

the portion of surface under consideration on the plane xy.

The equation of the curve bounding this projection must be

given : it determines the limits of integration. It is obvious

how the formula has to be modified when the projection of the

area on either of the other co-ordinate planes be given.

The expressions for M-x, M'

y, M-z differ from the above

expression for M only in containing the additional factor

jr, y, z, respectively, under the integral sign.

44. If the equation of the surface be given in the form

z=f(x,y\ as is frequently the case, we have

F(x,y,z)=z-f(x,y);
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hence with the usual Gaussian notation

3* df dz df
=/=/, =^-=4,dx dx By dy

F*=-j>> Fy=-g, Fg=I,

which gives M=\ Jx
V^ l +P*+f dxdy,

pxV i +/2+ g
2
dxdy,

M-y= ]
\ *pyV i +/2+ q* dxdy,

JVl J*,.

M- z=
] )pz^/i +p*+ q

2
dxdy.

*/V */!

In the case of a homogeneous spherical surface

=.a2
,
we have /= dz/dx= x/z, qds/dy=y/z\ hence

/2+ ^
2= ^, so that the last of the above formulae gives

5 . z= a
J dxdy

= a Sz ,

where 5 is the area of the surface and Sz the area of its pro-

jection on the plane xy. The formula shows that the distance z

of the centroid of any spherical area 5 from a plane passing

through the centre is equal to the radius a multiplied by the

ratio of the projection 5, of the area on the plane to the area

itself.

45. We proceed to the methods of finding the centroids of

volumes or solids.

Considerations of symmetry make it clear that the centroid

of a homogeneous parallelepiped lies at the intersection of its

diagonals ; similarly, that of a homogeneous prism or cylinder

coincides with the centroid of the area of its middle section (i.e.

a plane section parallel to, and equally distant from, the bases).
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46. For a homogeneous pyramid or cone, we have found in

Art. 28 (c) that the centroid lies on the line joining the vertex

to the centroid of the area of the base, at a distance equal to

of this line from the base. This is, of course, easily shown

directly by resolving the pyramid or cone into plane elements

parallel to the base, in a manner analogous to that used for the

triangular area in Art. 32.

47. It may, perhaps, be well to formally state the principal

laws of symmetry for homogeneous solids, although they present

themselves so naturally that they are used almost instinctively.

For however simple and obvious these propositions may appear,

the beginner may be led into error if he does not use them

cautiously. The proof rests on the fundamental definition of

the centroid as a point such that for any plane through it the

sum of the moments is zero.

(a) If the surface of the soiid have a plane of symmetry, i.e. a

plane such that every line perpendicular to it intersects the sur-

face in two points equidistant from the plane, the centroid lies

in this plane. Hence, the centroid of a homogeneous solid is

at once known if its surface possesses three planes of symme-

try. If the surface has two planes of symmetry, the centroid

lies on their line of intersection.

(b) If the surface have an axis of symmetry, i.e. a line such

that every line perpendicular to '\\. intersects the surface in two

points equidistant from the line, the centroid must lie on this

axis. Two axes of symmetry in the same homogeneous solid

determine its centroid by their intersection.

(c) If the surface have a centre, i.e. a point such that every

line through it intersects the surface in two points equidistant

from it, the centroid coincides with this centre.

(d) If the surface have a diametral plane, i.e. a plane bisect-

ing all chords that are parallel to a certain direction, the centroid

lies in this plane.
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48. Homogeneous spherical solids can be treated by a method

analogous to that used for circular areas (see Art. 37). Thus

a homogeneous spherical sector can be resolved into infinitesimal

elements, each of which is a pyramid whose vertex lies at the

centre of the sphere and whose base is

an infinitesimal element of the spherical

surface area of the sector. Such an

element, regarded as a pyramid (Art.

46), has its centroid at the distance | a

from the centre, if a be the radius of

the sphere. We may regard its mass as

concentrated at its centroid and have

thus the solid sector replaced by a homo-

geneous segment of a spherical area, of

radius \a. It has been shown in Art. 41 that the centroid of

such a segment bisects its height.

Let 2 a be the angle at the vertex of the given sector (Fig. 1 2) ;

then the height of the segment of radius \ a is \a(\ cos a) ;

hence the distance He of the centroid of the solid spherical sector

from the centre is

x=\a cos a+ ftf (i cos )
= f a (i +cos)=f a cos2-.

49. In a homogeneous solid of revolution the centroid lies on

the axis of .revolution, since this line is an axis of symmetry

(Art. 47 ()). Taking this line as the axis of x, the equation

of the surface of the solid is determined by that of the curve

bounding the generating area, say y=f(x).
We select as element the circular or ring-shaped plate of

thickness dx contained between two sections of the solid at

right angles to the axis of revolution (Fig. n, p. 22). The

centroid of each such element lies on the axis, and the volume

of the element is ir(yy?}dx, if ylt jj/2, are the ordinates of

the curve corresponding to the same value of x. ^ (

We have, therefore,
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It is easy to see how the formula has to be modified when

only one value or more than two values of y correspond to a

given value of x.

50. In the most general case of any solid whatever the for-

mulae of Art. 15 assume different forms according to the system
of co-ordinates used. Thus for rectangular Cartesian co-ordi-

nates the element of volume is dv= dxdydz, and we have :

M=
j*J J/o dxdydz,

M- ~x= JJJpx dxdydz,

M-y= J J J py dxdydz, M- z=
j j j pz dxdydz.

51. In polar co-ordinates, i.e. for the radius vector r
y

the

co-latitude 6 and the longitude </> (Fig. 10, p. 21), the element

of volume is an infinitesimal rectangular parallelepiped having

the concurrent edges dr, rdd, r sin Qd$ ;
hence

As ;r=rcos0, jj/
= rsin 0cos

</>, ^=rsin^sin^>, the centroid is

determined by the equations :

sn

>x= |JJpr
3 sin (9 co&

* sin2 (9 cos

3 sin2 ^ sin
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52. As an illustration let us determine the centroid of the

volume OABCD (Fig. 13),

bounded by the three co-ordi-

nate planes and the warped

quadrilateral (hyperbolic

paraboloid) ABCD. The latter

is generated by the line LM
gliding along AB and CD so

as to remain parallel to the

plane yz. The data are OA
CD=a, OB=b, OC=AD= c.

We take as element an

infinitesimal prism PQ off

X

D
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53, Exercises.

(1) Three beads of masses 3, 5, 12, are strung on a straight wire

ivhose mass is neglected, the bead of mass 5 being midway between

he other two. Find the centroid. (Take moments about the middle

Doint.)

(2) Show that the centroid of three equal particles placed at the

Trtices of a triangle is at the intersection of the medians of the triangle.

(3) Show that the centroid of three masses m 1} m2, ms situated at

he vertices of a triangle and proportional to the opposite sides, is at

;he centre of the inscribed circle.

(4) Equal particles are placed at five of the six vertices of a regu-

ar hexagon. Find the distance of the centroid from the centre of

igure.

(5) Find the centroid of a homogeneous triangular frame.

(6) Show that the centroid of a homogeneous semicircular wire lies

2
it the distance - r from the centre, r being the radius.

7T

(7) Find the co-ordinates of the centroid of the arc of a quadrant

of a circle by using the first proposition of Pappus (Art. 30).

(8) Find the centroid of a circular arc AB of angle AOB = a,

whose density varies as the length of the arc measured from A.

Find the centroids of the following homogeneous arcs of curves :

(9) Parabola f=$ax from the vertex to the end of the latus

rectum.

(10) Cycloid x= a (0 sm$),y = a (i cos0), from cusp to cusp.

( 1 1 ) Half the cardioid r = a ( i + cos 0) .

(12) Catenary y=-(e^ + e~~c) between two points equally distant

from the axis of x.

(13) Common helix : x = r cos0, y= r sin 9, z = krQ, from = o to

= 9.

(14) The sides of a right-angled triangle are a and b. Find the dis-

tances of the centroid of the triangular area from the vertices.

(15) From a square ABCD one corner EAF is cut off so that

AE = %a, AF\a, a being the side of the square. Find the centroid

of the remaining area.
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(16) In a trapezoid the parallel sides are a, b, the height is h, and
one of the non-parallel sides is perpendicular to the parallel sides

;

show that the co-ordinates of the centroid with a as axis of x and the

perpendicular side as axis of y are * = <* + *> +

(17) Find the centroid of the cross-section of a bar formed by
placing four angle-irons with their edges together, two of the irons

having the dimensions a, b, a, ft, as in Fig. 8, Art. 36, while the other

two have the dimension a different, say a'.

(18) Find the centroid of the cross-section of a U- iron, the length
of the flanges being a= 12 in., that of the web 2^ = 8 in., and the

thickness 8 = i in. Deduce the general formula for x, and an approxi-
mate formula for a small 8, and compare the numerical results.

(19) In the cross-section of an unsymmetrical double T, the flanges
are 2^= 12 in., 2 V =8 in.; the web is 0= 10 in.; and the thickness
of each of the two channel-irons forming the bar is 8 = i in. throughout ;

find the centroid.

(20) In a T-iron the width of the flange is b, its thickness a
;
the

depth of the web is a, its thickness ft. Find the distance of the centroid
from the outer side of the flange ; give an approximate expression and
investigate it for a = b, a = ft

= a.

(21) If one-fourth be cut away from a triangle by a parallel to the

base, show that in the remaining area the centroid divides the median
in the ratio 4:5.

(22) Prove that the centroid of any plane quadrilateral ABCD
coincides with that of the triangle ACF, if the point F be constructed

by laying vftBF=DE on the diagonal BD, E being the intersection
of the diagonals.

(23) The centroid of a homogeneous semicircular area of radius r

lies at the distance x = r from the centre.
3 71

"

(24) The centroid of the area of a homogeneous circular segment
of radius r subtending at the centre an angle 2 a is at the distance
- sin3a 3

>
if ' is the Ch rd

>
h itS dis "

tance from the centre, and s the arc
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(25) A painter's palette is formed by cutting a small circle of radius

b out of a circular disc of radius a, the distance between the centres

being c. It is required to find the distance of the centroid of the

remainder from the centre of the larger circle. (Routh.)

(26) The arch constructed of brick over a door is in the form of a

quadrant of a circular ring. The door is 5 ft. wide
; i-J- lengths of

brick are used (say 12 in.). Find the centroid of the arch.

Find the co-ordinates of the centroid for the following plane areas :

(27) Area bounded by the parabola y*=. ^axy
the axis of x, and the

ordinate y.

(28) Area bounded by the curve jy
= sin.# from x=o \.QX = TT

and the axis of x.

(29) Quadrant of an ellipse.

(30) Elliptic segment bounded by the chord joining the ends of

the major and minor axes.

(31) Show, by Art. 28, that the centroid of the surface of a right

circular cone lies at a distance from the base equal to one-third of

the height.

(32) Find the centroid of the portion of the surface of a right cir-

cular cone cut out by two planes through the axis inclined at an angle <.

(33) Find the centroid of the area of the earth's surface contained

between the tropic of Cancer (latitude = 23 28') and the arctic circle

(polar distance = 23 28').

(34) Regarding the earth as a homogeneous sphere of density

10
=

5.5, how mucn would its centroid be displaced by superimposing

over the area bounded by the arctic circle an ice-cap of a uniform thick-

ness of 10 miles?

(35) A bowl in the form of a hemisphere is closed by a circular lid

of a material whose density is three times that of the bowl. Find the

centroid.

(36) Determine the centroid of a homogeneous solid hemisphere.

(37) Find the centroid of a frustum of a cone, the radii of the

bases being r^ r2 ; the height of the frustum, h.

(38) Show that the formula for the frustum of the cone applies like-

wise to the frustum of any pyramid of the same height h if r
lt

r2 are

any two homologous linear dimensions of the two bases.
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(39) Find the centroid of a solid segment of a sphere of radius a,

the height of the segment being h.

(40) Show that, both for a triangular area and for a tetrahedra'

volume, the distance of the centroid from any plane is the arithmetic

mean of the distances of the vertices from the same plane.

(41) Find the centroid of the paraboloid of revolution of height

generated by the complete revolution of the parabola y
2 = ^ax about

;its axis.

(42) The area bounded by the parabola y
2
=^ax, the axis of x,

and the ordinate y=yif revolves about the tangent at the vertex. Find

-the centroid of the solid of revolution so generated.

(43) The same area as in problem (42) revolves about the ordinate ylf

Find the centroid.

(44) Find the centroid of an octant of an ellipsoid xP/

(45) The equations of the common cycloid referred to a cusp as

origin and the base as axis of x are x = a (6 sin#), y = a(i cos#)
Find the centroid : (a) of the arc of the semi-cycloid (i.e. from cusp
to vertex) ; (b) of the plane area included between the semi-cycloid and

the base ; (c) of the surface generated by the revolution of the semi-

cycloid about the base
; (d )

of the volume generated in the same case ;

(e) of the surface generated by the revolution of the whole cycloid

(from cusp to cusp) about its axis, i.e. the line through the vertex at

right angles to the base ; (/) of the volume so generated.

(46) Find the centroid of a solid hemisphere whose density varies

. as the nth power of the distance from the centre.

(47) From out of the right cone ABC a cone ABD is cut of the

same base and axis, but of smaller height. Find the centroid of the

remaining solid.

(48) A triangle ABC, whose sides are a, b, c, revolves about an axis

situated in its plane. Find the surface area and volume of the solid so

generated, if/, ^, r are the distances of A, B, C from the axis.

(49)
" Water is poured gently into a cylindrical cup of uniform thick-

ness and density. Prove that the locus of the centre of gravity of the

water, the cup, and its handle is a hyperbola." (Routh.)
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(50) Prove that the volume of a truncated right cylinder (i.e. a right

cylinder cut by a plane inclined at any angle to its base) is equal to the

product of the area of its base into the height of the truncated cylinder

at the centroid of its base.

(51) Prove that the volume of a doubly truncated cylinder is equal
to the product of the area of the section at right angles to the axis into

the distance of the centroids of the bases.

54. For the theory of moments and centres of mass the student is

referred to W. SCHELL, Theorie der Bewegung und der Kr'dfte, Leipzig,

Teubner, Vol. I., 1879, PP- 81 100; E. J. ROUTH, Analytical statics,

Cambridge, University Press, Vol. I., 1891, pp. 270-314; J. SOMOFF,

Theoretische Mechanik, iibersetzt von A. Ziwet, Leipzig, Teubner, Vol. II.,

1879, pp. 1-72. For problems see in particular W. WALTON, Problems

in illustration of the principles of theoretical mechanics, Cambridge,

Deighton, 1876, pp. 1-45 ;
M. JULLIEN, Problemes de mecanique ration-

nelle, Paris, Gauthier-Villars, Vol. I., 1866, pp. 1-46; F. KRAFT, Prob-

ieme der analytischen Mechanik, Stuttgart, Metzler, Vol. I., 1884, pp.

527-617. Compare, also, B. PRICE, Infinitesimal calculus, Oxford,

Clarendon Press, Vol. III., 1868, pp. 163-206; MOIGNO, Lemons de

mecanique analytique, Statique, Paris, Gauthier-Villars, 1868, pp. 106

206 ; G. MINCHIN, Treatise on statics, Oxford, Clarendon Press, Vol.

I., 1884, pp. 261-305 ;
I. TODHUNTER, Analytical static~s, edited by J. D.

Everett, London, Macmillan, 1887, pp. 115-189 ; W.WALTON, Problems

in elementary mechanics, London, Bell, 1880, pp. 56-78; and for geo-

metrical methods, the works on graphical statics.

PART ii 3
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II. Momentum; Farce; Energy.

55. Let us consider a point moving with constant accelera-

tion from rest in a straight line. We know from Kinematics

(Art. in) that its motion is determined by the equations

v=jt, s= yfl, J *=;>, (I)

where s is the distance passed over in the time /, v the velocity,

and j the acceleration at the time t.

If, now, for the single point we substitute an Mr-tuple point,

i.e. if we endow our point with the mass m, and thus make it a

particle (see Art. 6), the equations (i) must be multiplied by m>

and we obtain

(2)

The quantities mv, mjy \rniP occurring in these equations

have received special names because they correspond to certain

physical conceptions of great importance.

56. The product mv of the mass m. of a particle into its

velocity v is called the momentum, or the quantity of motion, of

the particle.

57. In observing the behaviour of a physical body in motion, we
notice that the effect it produces for instance, when impinging on

another body, or more generally, whenever its. velocity is changed

depends not only on its velocity, but also on its mass. Familiar exam-

ples are the following : a loaded railroad car is not so easily stopped as-

an empty one ; the destructive effect of a cannon-ball depends both on

its velocity and on its mass ; the larger a fly-wheel, the more difficult is

it to give it a certain velocity ;
etc.

It is from experiences of this kind that the physical idea of mass is

derived.

The fact that any change of motion in a physical body is affected by
its mass is sometimes ascribed to the so-called "inertia" or "force of

inertia," of matter, which means, however, nothing else but the property

of possessing mass. ^ V
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58. Momentum, being by definition (Art. 56) the product of

mass and velocity, has for its dimensions (see Kinematics, Art. 92)

MV= MLT~ 1
.

The unit of momentum is the momentum of the unit of mass

having the unit of velocity.

Thus in the C.G.S. system the unit of momentum is the

momentum of a particle of I gramme moving with a velocity of

i cm. per second. There is no generally accepted name for this

unit, although the name bole was proposed by the Committee of

the British Association.

In the F.P.S. system, the unit is the momentum of a particle

of one pound mass moving with a velocity of I ft. per

second.

To find the relations between these two units, let there be x

C.G.S. units in the F.P.S. unit
;
then

gm. cm. Ib. ft. .x 5 = i ;

sec. sec.

Ib. ft.

hence .

gm. cm.

or, by Art. 3 and Kinematics, Art. 14,

^=453.59x30.48=13825.3;

i.e. i F.P.S. unit of 'momentum =13825.3 C.G.S. units, and

i C.G.S. unit =0.000072331 F.P.S. units.

59. Exercises.

(1) What is the momentum of a cannon-ball weighing 200 Ibs. when

moving with a velocity of 1500 ft. per second?

(2) With what velocity must a railroad-truck weighing 3 tons move

to have the same momentum as the cannon-ball in Ex. (i) ?

(3) Determine the momentum of a one- ton ram after falling through

20 feet.
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60. The product mj of the mass m of a particle into its

acceleration
j

is called force. Denoting it by F, we may write

our equations (2) in the form

p
mvFt, s=\ fi, ^mv*=Fs. (3)

As long as the velocity of a particle of constant mass remains

constant, its momentum remains unchanged. If the velocity

changes uniformly from the value v at the time t to v' at the

time t', the corresponding change of momentum is

mv' mv mjt
!

mjt =F (/'/); (4)

hence
. , p-*"^.

"

(?)

Here the acceleration, and hence the force, was assumed con-

stant. If F be variable, we have in the limit when t' t

becomes dtt

j? d(mv) dv //cx

...

F= * =m
-*

'

(6)

Instead of defining force as the product of mass and accelera-

tion, we may therefore define it as the rate of change of momen-

tum with the time.

61. Integrating equation (6), we find

Fdt = mv 1 mv. (7)

The product F(t' t) of a constantforce into the time t' t during

which it acts, and in the case of a variable force, the time-

Jt
r

Fdt, is called the impulse of the force during this time.

It appears from the equations (4) and (7) that the impulse

of a force during a given time is equal to the change of momen-

tum during that time.

62. The idea of force is no doubt primarily derived from the sensa-

tion produced in a person by the exertion of his
" muscular, force."
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Like the sensations of light, sound, heat, etc., the sensation of exerting

force is capable, in a rough way, of measurement.^ But the physiological

and psychological phenomena attending the exertion of muscular force

when analysed more carefully are very complicated.

In ordinary language the term " force
"

is applied in a great variety of

meanings. For scientific purposes it is of course necessary to attach a

single definite meaning to it.

63. In physics it is customary to speak of force as producing or

generating velocity, and to define force as the cause of acceleration.

Thus observation shows that the velocity of a falling body increases

during the fall
;
the cause of the observed change in the velocity, i.e.

of the acceleration, is called the force of attraction, and is supposed to

be exerted by the earth. Again, a body falling in the air, or in some

other medium, is observed to increase its velocity less rapidly than

a body falling in vacuo ; a force of resistance is therefore ascribed to

the medium as the cause of this change. In a similar way we speak
of the expansive force of steam, of electric and magnetic forces, etc.,

because all these agencies produce changes of velocity.

Now, any change in the velocity v of a body of given mass m implies

a change in its momentum mv
;
and it is this change of momentum, or

rather the rate at which the momentum changes with the time, which

is of prime importance in all the applications of mechanics. It is there-

fore convenient to have a special name for this rate of change, and that

is what is called force.

It is, however, well to remember that in using this term "force," it is not

intended to assert anything as to the objective reality or actual nature

of force and matter in the ordinary acceptation of these terms. Our

knowledge comes to us through our sense-impressions, and these would

all seem to reduce finally to changes of motion and changes of momen-
tum : these alone we can perceive directly.

64. The definition of force (Art. 60) as the product of mass

and acceleration gives the dimensions of force as

The unit offorce is therefore the force of a particle of unit

mass moving with unit acceleration.

Hence, in the C.G.S. system, it is the force of a particle of
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i -r.mime moving with an acceleration of i cm. per second per

second. This unit force is called a dyne.

The definition is sometimes expressed in a slightly different

form.* We may say the dyne is the force which, acting on a

gramme uniformly for one second, would generate in it a velocity

of i cm. per second
;
or would give it the C.G.S. unit of acceler-

ation
;
or it is the force which, acting on any mass uniformly for

one second, would produce in it the C.G.S. unit of momentum.

That these various statements mean the same thing follows

from the fundamental formulae F=mj, jvt, if F, m, t, v,j be

expressed in C.G.S. units.

65. In the F.P.S. system, the unit of force is the force of a

mass of i Ib. moving with an acceleration of i ft. per second

per second. It is called the poundal.

66. The dyne and the poundal are called the absolute, or

scientific, units of force.

To find the relation between these two units, let x be the

number of dynes in the poundal ;
then we have

hence, just as in Art. 58,

^=13825.3;

i.e. i poundal = 13825.3 dynes, and I dyne =0.000072331

poundals.

67. Another system of measuring force, the so-called gravi-

tation (or engineering) system, is in very common use, and must

here be explained.

Among the forces of nature the most common is the force of

gravity, or the weight, i.e. the force with which any physical

body is attracted by the earth. As we have convenient and

*
J. D. EVERETT, C.G.S. system of units, 1891, p. 23, 24. ^
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accurate appliances for comparing the weights of different

bodies at the same place, the idea suggests itself of selecting

as unit force the weight of a certain standard mass.

In the metric gravitation system the weight of a kilogramme
has been selected as unit force

;
in the British gravitation sys-

tem, the weight of a pound is the unit force.

68. There are two serious objections to the gravitation system of

measuring force, one of a practical nature, the other theoretical. The
former is that the words "

kilogramme
" and "

pound
"
are thus used in two

different meanings, sometimes, and more correctly, as denoting a mass,

sometimes as denoting a force. Wherever an ambiguity might arise

from this double use, the word "mass" or "weight" must be added.

The other objection is more serious. The weight of a body, and

hence the gravitation unit of force, is not a constant quantity ;
it changes

from place to place as it depends on the value of g, the acceleration of

gravity.

For, the weight W of any mass m being the force with which this

mass is attracted by the earth, we have

W= mg,

where g is the acceleration produced by the earth's attraction. Now it

is known from experiment that this acceleration varies from place to

place ; according to the law of gravitation, it is inversely proportional

to the square of the distance from the centre of the earth.

The weight of a body is therefore a meaningless term unless the place

be specified where the body is situated, and the value of g at that place

be given.

It is true, however, that the value of g for different points on the

earth's surface varies but little, so that for most practical purposes
the gravitation system is accurate enough.

In the equations of theoretical dynamics, in particular in kinetics, the

use of absolute units is always understood. In statics, however, where

we are mainly concerned with the ratios of forces and not with their

absolute values, gravitation units will generally be used in the present

work in view of the practical applications.

69. The numerical relation between the absolute and gravita-

tion measures of force is expressed by the equations
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I kilogramme (force)
= 1000^- dynes,

I pound (force) =g poundals,

where g is about 981 in metric units, and about 32.2 in British

units. In most cases the more convenient values 980 and 32

may be used.

70. Exercises.

(1) What is the exact meaning of "a force of 10 tons"? Express
this force in poundals and in dynes.

(2) Reduce 2000000 dynes to British gravitation measure.

(3) Express a pressure of 2 Ibs. per square inch in kilogrammes per

square centimetre.

(4) Prove that a poundal is very nearly half an ounce, and a dyne a

little over a milligramme, in gravitation measure.

(5) The numerical value of a force being TOO in (absolute) F.P.S.

units, find its value for the yard as unit of length, the ton as unit of

mass, and the minute as unit of time (see Art. 66).

71. The quantity Jmv
2
, i.e. half the product of the mass of a

particle into the square of its velocity, is called the kinetic energy

of the particle.

Let us consider again a particle of constant mass m moving
with a constant acceleration, and hence with a constant force

;

let v be the velocity, s the space described at the time /; v', s'

the corresponding values at the time t
1

. Then the last of the

three fundamental equations (see Arts. 55 and 60) gives

F(s
f

-s)', (8)

hence
"

F=\mv*-\m* ^

>

fe)

If F be variable, we have in the limit

n^i= mv <iv.

ds ds
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Force can therefore be defined as the rate at which the kinetic

energy cJianges with the space. (Compare the end of Art. 60.)

72. Integrating the last equation (10), we find

Jv
Fds=^mv'2

^mv2
. (n)

The product F (s
r

s) of a constantforce F into the space s' s

described in the direction of the force, and in the case of a

variable force, the space-integral \ Fds, is called the work of

the force for this space.

The equations (8) and (11) show that the work of a force is

equal to the corresponding change of tJie kinetic energy.

We have here assumed that the force acts in the direction of

motion of the particle. A more general definition of work

including the above as a special case will be given later (Art.

232 sq.).

The ideas of energy and work have attained the highest

importance in mechanics and mathematical physics within com-

paratively recent times. Their full discussion belongs to

Kinetics.

73. According to their definitions, both momentum (Art. 56)

and force (Art. 60) may be regarded mathematically as mere

numerical multiples of velocity and acceleration, respectively.

They are therefore so-called vector-quantities ;
i.e. a momentum

as well as a force can be represented geometrically by a segment
of a straight line of definite length, direction, and sense.

Moreover, as they are referred to a particular point, viz. to the

point whose mass is m, the line representing a momentum or a

force must be drawn through this point ;
the line has therefore

not only direction, but also position ;
i.e. a momentum as well

as a force is represented geometrically by a rotor (compare Kine-

matics, Arts. 57, 68, 291 sq.}.

It follows that concurrent forces, for instance, can be com-
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pounded by geometrical addition, as will be explained more fully

in Chapter IV.

On the other hand, kinetic energy and work are not vector-

quantities.

74. The ideas of momentum, force, energy, work, with the funda-

mental equations connecting them, as given in the preceding articles,

form the groundwork of the whole science of theoretical dynamics. The

application of this science to the interpretation of natural phenomena

gives results in exact agreement with observation and experiment. It is

therefore important to inquire what are the physical assumptions and

experimental data on which this application of dynamics is based.

These assumptions were formulated with remarkable clearness by

:Sir Isaac Newton in his Philosophic naturalis principia mathematica,

first published in 1687, and have since been known as Newtan's laws

of motion. As these three axiomata sive leges mofus, as Newton terms

them, are very often referred to and, at least by English writers on

dynamics, are usually laid down as the foundation of the science,* they

are given here in a literal translation :

I. Every body persists in its state of rest or of uniform motion along

a straight line, except in so far as it is compelled by impressed (i.e.

external) forces to change that state.

II. Change of motion is proportional to the impressed moving force

and takes place along the straight line in which that force acts.

III. To every action there is an equal and contrary reaction; or,

the mutual actions of two bodies on one another are always equal and

directed in contrary senses.

75. Some explanation is necessary to correctly understand the mean-

ing of these laws
; indeed, Newton's laws should not be studied by

themselves. They become intelligible only if taken in connection with

the definitions preceding them in the Principia, and with the explana-
tions and corollaries that Newton himself has appended to them.

The word "
body

" must be taken to mean particle ;
the word " motion "

in the second law means what is now called momentum.
All three laws imply the idea of force as the cause of any change of

.momentum in a particle.

* See the Syllabus of elementary dynamics, Part I., London, Macmillan, 1890.

p. 13 sq., prepared by the Association for the Improvement of Geometrical leaching.
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76. With this definition of force the first law, at least in the ordinary
form of statement, for a single particle, merely states that where there is

no cause there is no eifect. While this law may appear superfluous to us,

it was not so in the time of Newton. Kepler and Galilei, less than a

century before Newton, were the first to insist more or less clearly on

this so-called law of inertia, viz. that there is no intrinsic power or

tendency in moving matter to come to rest or to change its motion in

any way.

77. The second law gives as the measure of a constant force the

amount of momentum generated in a given time (see Art. 60) ;
it can

be called the law of force. If force be defined as the cause of any

change of momentum, the .second law follows naturally by assuming, as

is always done, that the effect is proportional to the cause.

The first two laws may thus be regarded from the mathematical point
of view as nothing but a definition of force

;
but they are certainly

meant to emphasize the physical fact that the assumed definition of

force is not arbitrary, but based on the characteristics of motion as

observed in nature.

In the corollaries to his laws Newton shows how the composition and

resolution of forces by the parallelogram rule follows from his definition.

In deriving this result he tacitly assumes that the action of any force on

a particle takes place independently of the action of any other forces that

may be acting on the particle at the same time, a principle that would

seem to deserve explicit statement. Some writers on mechanics, in

particular French authors, prefer to replace Newton's second law by this

principle of the independence of the action offorces.

78. The third law expresses the physical fact that in nature all forces

occur in pairs of equal and opposite forces. In modern phraseology,

two such equal and opposite forces in the same line are said to consti-

tute a stress. Newton's third law is therefore called the law of stress.

This law, which was first clearly conceived in Newton's time, involves

what may be regarded as the second fundamental property of matter or

mass (the first being its indestructibility); viz. that any two particles of

matter determine in each other oppositely directed accelerations along the

line joining them.

79. For a more complete discussion of the physical laws underlying

the applications of theoretical mechanics, the student is referred to

THOMSON and TAIT, Natural philosophy, London, Macmillan, 1879,
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Part I., Chapter II., p. 219 sq.; E. MACH, Die Mechanik in ihrer

Entwickelung, Leipzig, Brockhaus, 1889, p. 203 ; K. PEARSON, The

grammar of science, London, Scott, 1892, p. 357 sq.; J. D. EVERETT,

C.G.S. system of units, London, Macmillan, 1891, p. 73; P. G. TAIT,

article,
"
Mechanics," in the Encyclopedia Britannica, 9th ed.

; J. CLERK

MAXWELL, Matter and Motion, New York, Van Nostrand, 1878; P. G.

TAIT, Properties of matter, Edinburgh, Black, 1885.
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CHAPTER IV.

STATICS.

I. Introduction.

80. When a particle has two equal and opposite accelerations

y, y, its motion will not be changed. The same result must

follow when a particle is acted on by two equal and opposite

forces F= mj, F' = mj. Their combined effect on the particle

is nil, so that the particle, if originally at rest, will remain

at rest
;

if originally moving with constant velocity in a

straight line, it will continue to do so
;
and if originally moving

under the action of any other forces in any way whatever, the

introduction of the two equal and opposite forces will have no

effect on its motion. .

We say that two equal and opposite forces acting on a particle

balance, or are equivalent to o, or are in equilibrium. If no

other forces act on the particle, the particle itself is said to be

in equilibrium. It must be kept in mind that equilibrium is not

synonymous with rest.

81. Let us next consider any two forces Fv F^ acting simul-

taneously on the same particle P of mass m, and let j\, j^ be

the accelerations produced by these forces so that

The resultant acceleration of the particle is found by geo-

metrically adding the vectors j\ , j^ ;
let j be their geometric

sum. Then the force

F=mj
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producing the resultant acceleration is called the resultant of the

forces Fv F% ; these, or any other two or more forces having
the same resultant Ft

are called the components of F.

82. In many investigations we are not so much concerned

with the actual accelerations produced as with the effects that

miglit be produced by any particular force or system of forces if

the particle or body were perfectly free to move, i.e. not subject

to other forces or restraints.

We proceed to study the composition and resolution of forces

from this point of view, i.e. without reference to the accelera-

tions produced, but with particular attention to the conditions

under which the given system of forces is in equilibrium. This

study forms the subject of Statics.

83. The geometrical characteristics of a force are (a) its line

of action, (b) its magnitude or intensity, (c) its sense. Properly

speaking, two forces should be called equal only when they

agree in these three characteristics. But it is customary to call

two forces equal even when they have only equal magnitude ;

we shall call them geometrically equal, when they agree in all

three characteristics.

84. A force acting on a particle P is said to have its point

of application at P, and the line representing it is usually

drawn from P as origin. But the point of application is not an

Fig. 14.

essential characteristic of the force
;

it may be taken at any

point of its line if this line be regarded as rigid. Thus the

force F acting on the particle P (Fig. 14) can be transferred,

without changing its effect, to any point P' of its line
;
and two

equal and opposite forces in the same line, such as /<\at P and
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F at P', are in equilibrium; provided always that P and P ]

may be regarded as belonging to the same rigid body.

85. It follows from Arts. 81 and 84 that any two forces F
1

F
2 whose lines intersect, say at O' (Fig. 1 5), are equivalent to,

i.e. can be replaced by, a single force F called their resultant.

This resultant can be found by replacing the forces Fv F% by
the equal forces F^, F2

f at O f

,
and forming the parallelogram

having F^, F2
' as adjacent sides. The diagonal F' through O f

is the required resultant
;

it can be replaced by any force F of

equal length and sense in the same line with this diagonal.

The parallelogram construction need not be made at O'
;
we

may select any origin O" (Fig. 15), draw through it two vectors

FJ' t
F

z
"

equal (in direction, length, and sense) to Fv F2, find

the diagonal F 1 '

through O", and transfer it to a parallel line

drawn through O 1
.

Finally, it is not necessary to draw the whole parallelogram ;

we have only to add the vectors F
lt
F

2 geometrically from any

origin Oin
(Fig. 15) and transfer their sum F" f to the parallel

through O'.

86. Conversely, any force may be resolved into two com-

ponents along any two lines intersecting the line of the force
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at the same point and lying in the same plane with it. These

components are together equivalent to the force, i.e. they may
be substituted for the force.

87. It follows from Art. 85 that the resultant R of two

intersecting forces P and Q, including the angle 6, is

For two parallel forces or two forces acting in the same line,

0=o or 1 80, according as they are of equal or opposite sense;

hence R =P+Q in the former case, and R =1?Q in the latter.

It is also apparent that the resultant of any number of parallel

forces or of forces acting in the same line is found as the

algebraic sum of these forces. How the position of the resultant

is found in the case of parallel forces will be shown later (Arts.

104, 1 06).

88. By Art. 86, to resolve a force R (Fig. 16) into two com-

ponents Py Q along two lines making the angles , /3 with the

line of Ry
we have only to draw through the ends of a vector

2$=R lines 2 i, 3 i making angles a, fi with 2 3 ;
then 2 I =P,

i 3 = Q. The triangle 123 gives the relations

P = Q = R
sin/3 sin a sin(a+ /3)

When the components are at right angles, we have P=R cos a,

Q=R since.

89. The projection of a closed polygon on any line being

evidently zero, and the resultant being by definition the geo-
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metric sum of its components, it follows that the projection of

the resultant on any line equals the algebraic sum of the pro-

jections of its components. This proposition is sometimes

expressed in the following form : the resolved part of the

resultant in any direction is equal to the algebraic sum of

the resolved parts of the components. ^
Let / be the line on which we project (Fig. 17), and let (/, R]

(/,'P), (l/Q) denote the angles it makes with the resultant R
and the components P, Q, respectively ;

then

R cos (/,

(

R)=P cos
(/, P) + Q cos

(/,

'

Q).

90. Varignon's Theorem. Multiplying the last equation by any

length OS=s taken through the initial point O of R and at

right angles to /, we obtain

R-scos(t, R) = P-scos(l, P) + Q-scos(t, Q\

or since s cos (/, R} r, scos (/, P) =/,

s cos (/, Q) = q, where r, p, q are the

perpendiculars let fall from 5, on

R, P, Q, respectively,

In this form the proposition is in-

dependent of the direction of the

line / and holds for any point 5 in

the plane of the parallelogram. Fig. 17

91. Moment of a Force. The product of a force into its per-

pendicular distance from a point is called the moment of the

force about the point. It is taken with the positive or negative

sign according as the force as seen from the point is directed

counter-clockwise or clockwise.

The proposition of Art. 90, Pp+ Qq= Rr, can now be stated

in the following form : the algebraic sum of the moments of any

tivo intersectingforces about any point in their plane is equal to

the moment of their resultant about the same point.

PART II 4
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92. The product Rr represents twice the area of the triangle

having R for its base and 6" for its vertex
; Pp, Qq can be

interpreted similarly. This remark leads to another simple

proof of Varignon's theorem, which may serve to make its

meaning better understood. With the

notation of Fig. 18 we have

SOR = SOQ + SQR + QOR,

or since ST+ TU= SU=p,

Rr=Qq+ Pp.

93. If the point 5 be taken on the resultant R, we have r=o,

hence Pp= Qq ;
i.e. the sum of the moments of two forces about

any point on their resultant is zero.

i
.*<'

94. The forces of nature receive various special names

according to the circumstances under which they occur.

Thus the weight of a mass has already been defined (Art. 67)

as the force with which the mass is attracted by the mass of

the earth.

When a string carrying a mass at one end is suspended with

its other end from a fixed point, it will be stretched, i.e. sub-

jected to a certain tension. This means that if the string. were

cut it would require the application of a force along the line of

the string to keep the weight in equilibrium. This force, which

may thus serve to replace the action of the string, is called its

tension.

When the surfaces of two physical bodies A, B are in con-

tact, a pressure may exist between them
;
that is, if one of the

bodies, say B, be removed, it may require the introduction of

a force to keep A in the same state of rest or motion that it

had before the removal of B. This force, which will obviously
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act along the common normal of the surfaces at the point of

contact, is called the resistance of B, and a force equal and

opposite to it is called the pressure exerted by A on B.

95. Exercises.

(1) Find the resultant of two equal forces acting at right angles to

each other.

(2) Show that the resultant R of two equal forces P including an

angle is R= 2/?

cos((9/2).

(3) If the resultant of two equal forces /'be equal to P, what is the

angle between the components ?

(4) Find the magnitude and direction of the resultant of two

forces of 100 and 200 Ibs., including an angle of 60.

(5) Let R be the effective piston pressure of a steam engine and <

the angle between the direction of motion of the piston and the con-

necting rod at any moment ;
show that the thrust in the connecting rod

is R sec
cf>

and the pressure on the guide-bars R tan
<f>.

For what

position of the crank is the pressure on the guides greatest ?

(6) A weight W is suspended from two fixed points A, B by means

of a string A CB, C being the point of the string where the weight W
is attached. If AC, BC be. inclined to the vertical at angles a, (3, find

the tensions in AC, BC : (a) analytically; (b) graphically.

(7) Resolve a force of 20 Ibs. into two components making angles

of 45 and 30 with the given force : (a) analytically ; (b] graphically.

(8) Find the rectangular components of a force P if one of the

components is to make an angle of 30 with P.

(9) The resultant R, one of the components P, and the angle

between the two components, = 60, being given, find the other

component Q.

(10) A particle is acted on by two forces P, Q lying in the same

vertical plane and inclined to the horizon at angles /, q. Find their

resultant in magnitude and direction, if ^=527 Ibs., (2=2 72 Ibs.,

P= 127 52', ^ = 32 13'.

(n) Prove that the moments of the two components of a force

about any point on the line of the force are equal and opposite.
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(12) Two forces acting on a point are represented in magnitude and

direction by the tangent and normal of a parabola passing through the

point. Find their resultant, and show that it passes through the focus

of the parabola.

(13) The magnitudes of two forces acting on a point are as 2 to 3.

If their resultant be equal to their arithmetic mean, what is the angle

between the forces?

(14) What is the angle between a force of i ton and a force of V3
tons if their resultant is 2 tons?

(15) A string with equal weights F attached to its ends is hung over

two smooth pegs A, B fixed in a vertical wall. Find the pressure on

the pegs : (a) when the line AB is horizontal
; (b) when it is inclined

to the horizon at an angle 0. The weight of the string, its extensibility

and stiffness, and the friction on the pegs are neglected in this problem
as well as in those immediately following.

( 1 6) The string being hung over three pegs A, B, C, determine graphi-

cally the pressures on the pegs. Let the vertical line through B lie

between the vertical lines drawn through A and C
;

there will be a

pressure on B only if B lies above the line AC. If B lies below A C,

the pressure may be distributed over the three pegs by passing the string

around the peg B from below.

(17) In Ex. (15), for what position of the line AB are the pressures

equal ?

(18) In Ex. ( 1 6), let A C be horizontal, and let a, /?, y denote the

angles of the triangle AB C. What are the pressures on the pegs?

(19) In Ex. ( 1 8), what must be the position of B to make the

pressures on the three pegs equal : (a) whenB lies above AC
', (b} when

B lies below AC?

(20) If the string with the equal weights W attached to its ends be

strung over any number of pegs, the pressures on the pegs are readily

determined, either graphically or analytically, in magnitude and direc-

tion
;
these pressures depend only on the value of W and on the angles

between the successive sides of the polygon formed by the string, but

not on the distances between the pegs.

(21) Suppose the string be closed, its ends being fastened together.

Let this string be hung over three pegs A, B, C forming an isosceles

triangle in a vertical plane with its base A C horizontal, and let a weight
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W be suspended from the lowest point D of the string. If AC=$ ft,

AB=BC 2.5 ft., and the length of the string 2/= 14 ft, find the

tension of the string and the pressures on the pegs.

(22) If, in Ex. (21), the triangles ABC and ADC be equilateral,

what would be the tension and the pressures on the pegs ?

(23) In Ex. (21), the triangles ABC and ADC being isosceles and

their common base AC horizontal, what must be the relation between

the angles 2 (3 at B and 28 at D to make the pressures on the three

pegs A, B, C equal? The pressures being made equal, what angle

gives the least pressure ?

(24) Show, both analytically and geometrically, that a force whose

components PI, P2 make an angle 6 can be resolved into two rectangular

components (Pl + P2 ) cos (0/2), (Pi P2 )
sin (0/2 ).

(25) In the toggle-joint press two equal rods CA, CB are hinged at

C ;
a force F

t bisecting the angle 2 a between the rods forces the ends

A, B apart. IfA be fixed, find the pressure exerted at B at right angles

to F \iF- 100 Ibs. and a= 15, 35, 65, 85, 90.
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II. Concurrent Forces.

96. Let there be given any number n of forces Fv F2 ,
F

B ,
. . .,

Fn, whose directions all pass through the same point. By Art.

85, we can find the resultant R
1
of F

l
and F2,

next the resultant

R% of R
l
and F& then the resultant R% of R

2
and F^ and so on.

The resultant R of Rn_2 and Fn is evidently equivalent to the

whole system Fv Fv Fs ,
. . ., FM and is called its resultant. We

thus have the proposition that a system consisting of any num-

ber of concurrentforces is equivalent to a single resultant.

97. It may of course happen that this resultant is zero. In

this case, the system is said to be in equilibrium. The condition

of equilibrium of a system of concurrent forces is therefore R = o.

98. In practice, the process of finding the resultant indicated

in Art. 96 is inconvenient when the number of forces is large.

Fig. 19.

If the forces are given graphically, by their vectors, we have

only to add these vectors geometrically (see Kinematics, Art. 46),

and this can best be done in a separate diagram, called the force

polygon, or stress diagram. Thus, in Fig. 19, 12 is drawn equal

and parallel to Fv 2 3 equal and parallel to Fv 3 4 to F
9 , 4 5 to

F, 5 6 to F
&

. The closing line of the force polygon, viz,, i 6 in
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the figure, is equal and parallel to the resultant R, which is

therefore obtained by drawing through the point of intersection

of the forces a line equal and parallel to i 6.

The graphical condition of equilibrium consists in the closing"

of the force polygon, that is, in the coincidence of its terminal

point (6) with its initial point (i).

99. Analytically, -a systematic solution is obtained by resolv-

ing each force F into three components X, V, Z, along three

rectangular axes passing through the point of intersection of

the given forces. All components lying in the direction of the

same axis can then be added algebraically, and the whole system
of forces is found to be equivalent to three rectangular forces

2X, 2F, HZ, which, by the parallelogram law, can be combined

into a single resultant

2F) 2+ (2Z)
2

The angles a, /9, 7 made by this resultant with the axes are

given by the relations

cos tt_cos/3__cos7_ i~~~'
100. If the forces all lie in the same plane, only two axes are

required, and we have

R= V(2.T)
a+ (2 F)

2
,

tan**'

where 6 is the angle between the axis of X and R.

101. The condition of equilibrium (Art. 97) R= o becomes, by

Art. 99, (E^)
2+(^F) 2 +(^Z)

2 -o. As all terms in the left-

hand member are positive, their sum can vanish only when each

term is = o. The analytical conditions of the equilibrium of any

number of concurrentforces are therefore :

=0, 2F=o, 2Z=0.
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102. As the projection on any line of any closed polygon,

even when its sides do not all lie in the same plane, is equal to

o, it follows that the proposition of Art. 89 holds for any num-

ber of concurrent forces.

103. Exercises.

(1) Show that three forces that are in equilibrium must lie in the

same plane and pass through the same point.

(2) Six forces of i, 2, 3, 4, 5, 6 Ibs., respectively, act in the same

plane on the same point, making angles of 60 with each other. Find

their resultant in magnitude and direction : (a) graphically ; (b) analyti-

cally.

(3) Let AB = c (Fig. 20) be the vertical post, AC = b the jib, of a

crane, the ends BC being connected by a chain of length a. If a

weight W be suspended from C, find the tension

T produced by it in the chain and the thrust P"

in AC.

(4) Let AC be hinged at A (Fig. 20) so as to

turn freely in a vertical plane, and let the chain

pass over a pulley at C and carry the weight W.

In what position of A C will there be equilibrium?

Fig. 20.

(5) Find the resultant R of three concurrent

forces A, B, C lying in the same plane and making angles a, (3, y with

each other.

(6) Prove that the moment of the resultant of any number of

concurrent forces lying in the same plane about any point in this

plane is equal to the sum of the moments of the forces about the same

point.

(7) By means of Ex. (6), express the conditions of equilibrium of

any number of concurrent forces in the same plane.

(8) When three forces are in equilibrium, show that they are pro-

portional and parallel to the sides of a triangle.

(9) When any number of concurrent forces are in equilibrium, show

that any one of them reversed is the resultant of all the others. '-
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(10) A weightless rod AC (Fig. 21), hinged at one end A so as to

be free to turn in a vertical plane, is held in a horizontal position by
means of the chain BC. If a weight W be suspended at C, find the

thrust Pin AC and the tension T of the chain. Assume AC 8 ft.,

AB = 6 ft.

(n) In Ex. (10), suppose the rod AC, instead of being hinged at

A, to be set firmly into the wall in a horizontal position ;
and let the

chain fastened at B run at C over a smooth pulley and carry the

weight W. Find the tension of the chain and the

magnitude and direction of the pressure on the

pulley at C.

(12) In "tacking against the wind," let Fbe the

force of the wind
; a, ft the angles made by the axis |

of the boat with the direction in which the wind

blows, and with the sail, respectively. Determine Fi - **

the force that drives the boat forward and find for what position of the

sail it is greatest.

(13) A cylinder of weight W rests on two inclined planes whose

intersection is horizontal and parallel to the axis of the cylinder. Find

the pressures on these planes.

(14) Find the tensions in the string ABCD, fixed at A and D, and

carrying equal weights Wat B and C, if AD=c is horizontal, AB=BC
= CD, and the length of the string is 3 /.

(15) One of the vertices A of a regular hexagon is acted upon by

5 forces represented in magnitude and direction by the lines drawn

from A to the other vertices of the hexagon. Find their resultant.

(16) Find the resultant of three equal forces P acting on a point,

the angle between the first and second as well as that between the

second and third being 45.

(17) A mass m rests on a plane inclined to the horizon at an angle

;
it is kept in equilibrium (a) by a force P^ parallel to the plane ;

(b} by a horizontal force P2 \ (/) by a force P3 inclined to the horizon

at an angle + a. Determine in each case the force P and the pres-

sure R on the plane.

(18) Show that the three forces represented by the vectors OA, OB,
QC are in equilibrium if O is the centroid of the triangular area ABC.
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(19) Show that the three vectors OA, OB, OC have the same
resultant as the three vectors OA', OB 1

, OC, if A', B\ C are the

middle points of the sides of the triangle ABC.

(20) Show that the resultant of the vectors OA, OB, OC is OO', if

O is the centre of the circle circumscribed to the triangle ABC and

O' the intersection of the altitudes of the same triangle.
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III. Parallel Forces.

104. Resultant of Two Parallel Forces. The graphical con-

struction of the resultant (Art. 85) fails in the case of parallel

forces.

As an expedient, we may resolve one of the two given forces

into two components and then combine these successively

with the other force. Thus, resolving P (Fig. 22) into P' and

P" along the lines I and II respectively, we may compound P"
with Q, and their resultant (acting along III) with P'. The

resolution of P into two arbitrary components P', P" is best

done in a separate diagram, the force polygon, by taking i 2 equal

and parallel to P, and drawing from any arbitrary point O,

Fig. 22.

called the pole, Oi, O2, which will represent the components
P f

,
P" in magnitude and direction. Then drawing 2 3 equal

and parallel to Q, we find O$ as the resultant of P" and Q.

The whole operation of finding the resultant R of two paral-

lel forces P, Q is therefore as follows. First construct \hzforce

polygon by making I 2 equal and parallel to P, 23 equal and par-

allel to Q ; 13 gives the magnitude and direction of the

resultant R. Then assume a pole O and draw O I, O 2, O$.

Now construct the so-called funicular polygon (or equilibrium

polygon) by drawing in the original figure a line I parallel to O\

intersecting P say in/; through p a line II parallel to O2 in-
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tersecting Q say in q ; through q a line III parallel to #3. The
intersection r of I and III is a point of the resultant R which is

therefore obtained in position by drawing through r a line equal

and parallel to I 3.

105. In Fig. 22 the two given parallel forces P, Q were

assumed of the same sense. The construction applies, however,

equally well to the case when they are of opposite sense. The

resultant R will then be found to lie not between P and Q, but

outside, on the side of the larger force. The construction fails

only when the two given forces are equal and of opposite sense,

a case that will be considered later (see Art. 112 and

Arts. 128-138).

106. To determine the position of R analytically, we may find

the ratio in which it divides the distance (perpendicular or

oblique) between P and Q. Let s (Fig. 22) be the point where

R meets pq. Then, since the triangles prs and O i 2, as well as

the triangles qsr and O 2 3, are similar, we have
x

gs_O_2
}

sq_O2 .

sr~~ P
'

sr~~ Q

hence, dividing,
<c =M.
sq P

This means that the resultant of two parallel forces divides their

distance in the inverse ratio of the forces. As this proposition

finds application in the theory of the lever, it is commonly
referred to as the principle of the lever.

Dropping perpendiculars /, q from any point of the resultant

R on the components P, Q, the relation can be expressed

in the form

Pp=-Qq,

which shows that Varignon's proposition of moments (Arts,

89-93) applies to parallel forces.
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107. The resultant of two parallel forces can also be found by
the following simple process. Intersect the two parallel forces

P
y Q by any transversal in/ and q (Fig. 23) and apply at these

points along pq two equal and opposite forces F, F; find the

resultant P' of F and P and the resultant P ff of -F and Q ;

these resultants P 1 and P" will intersect (unless P and Q be

equal and opposite) and their resultant R can be found.

Fig. 23.

It will be noticed that this construction reduces to that given

in Art. 104 if for /^we select the force 2 O in the force polygon,

Fig. 22, p. 59.

108. Resultant of Any Number of Parallel Forces. The graphi-

cal method of Art. 104 is readily extended to the general case of

any number of parallel forces lying in the same plane. What-

ever the number of the forces, the force polygon gives magni-

tude, direction, and sense of the resultant, which is simply the

algebraic sum of the given forces
;
while the funicular polygon

(formed by the lines I, II, III, etc.) gives the position of the

resultant by furnishing one of its points, viz. the intersection of

the first and last sides of the funicular polygon.

The process will best be understood from the following

example.

The horizontal beam AB (Fig. 24). resting freely on the fixed sup-

ports A, B carries four weights W^ W^ W3,
W.

To determine the position of the resultant and the reactions A, B of
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the supports, construct the force polygon by laying off in succession on a

vertical line 12 = Wl9 23 = W2 , 34 = W^ 45 = /^; select any point O
as pole and join it to the points i, 2, 3, 4, 5.

Now we may regard i O and 02 as components into which W^ has

been resolved; similarly 2 6? and (9 3 as components of W.2 , 3 O and

(94 as components of lVZt and 4 (9 and 6*5 as components of W.
This resolution of the weights into components is transferred into the

Fig. 24.

main figure by constructing the funicular polygon as follows : through

any point A' on the direction of the reaction A draw a parallel to O i

and let it meet Wl in I
; through I draw I II parallel to 6>2

; through

II draw II III parallel to #3; through III draw III IV parallel to

6>4 ;
and through IV draw IV B 1

parallel to O$ ;
the point J3 1

being on

the direction of the reaction B.

If now each weight be regarded as resolved along the sides adjacent

to it in the funicular polygon, since the two components falling into

I II are equal and opposite, and also those falling into II III and

III IV, the system of weights is reduced to the two componepts along
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A'l and IV B'. The intersection of these lines, i.e. of the first and last

sides of the funicular polygon, gives a point, R, of the resultant of

W, W* W\, W*
Moreover, if the component in A'l be resolved along A 11? and the

vertical through A 1

,
and similarly the component in J3

1 IV along jB'A'

and the vertical through J3
1

,
the two components along A'' will be

equal and opposite, each being equal to the parallel Oo drawn to A'B l

in the force polygon. This parallel furnishes, therefore, the magnitudes
of the reactions ^ = 01,^ = 50.

109. Analytically, the resultant of n parallel forces Fv F2 ,..

... Fn,
whether in the same plane or not, can be found as follows :

The resultant of F
l
and Fz is a force F

l -{-F2 situated in the

plane (Flt
F

2),
so that F

lp l
=F

2^2 (Art. 106), where /x,/2 are the

(perpendicular or oblique) distances of the resultant from F
1

and Fy respectively. This resultant F
l -{-F2 can now be com-

bined with F
B

to form a resultant F^F2 -\-F3 ,
whose distances

from FI+ FI and F
B
in the plane determined by these two forces

are as Fs is to /^-f/^. This process can be continued until all.

forces have been combined
;
the final resultant is

/5+F2 -K,.. +Fn .

Any number ofparallelforces are, therefore, in general equiva-

lent to a single resultant equal to their algebraic sum.

110. To find \hz position of this resultant, analytically, let the

points of application of the forces F
lt
F

2 ,
... Fn be (x^ y^ Z-L),

(xv yv ^2)' (
x y ^n)- Tne Pomt ^ application of the result-

ant F^ + FZ of F^ and F2 may be taken so as to divide the dis-

tance of the points of application of F
l
and F

2
in the ratio

F
2
:F

l ; hence, denoting its co-ordinates by x\ y' ,
z f

, we have

x-x 1 or

(Fl -f-F2)
x 1 =

and similarly for y' and z l

.
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The force F
1 + F2 combines with F

3
to form a resultant

.FI+ FZ+ FP whose point of application x" , y
n

,
z" is given by

and similar expressions for y
n

,
zn .

Proceeding in this way, we find for the point of application

(x, ~y, z) of the resultant of all the given forces

with corresponding equations fory and z. We may write these

equations in the form :

As these expressions for x, y, z are independent of the direc-

tion of the parallel forces, it follows that the same point (x, y, z)

would be found if the forces were all turned in any way about

their points of application, provided they remain parallel. The

point (x, y, z) is for this reason called the centre of the system
of parallel forces. It is nothing but what in geometry is called

the mean point, or mean centre, of the points of application if

the forces are regarded as coefficients or "weights" (in the

meaning of the theory of least squares) of these points.

111. As the origin of co-ordinates in the last article is arbi-

trary, the equations (i) evidently express the proposition that

in any system of parallel forces the sum of their moments about

anypoint is equal to the moment of their resultant about the same

point. In particular, the sum of the moments about any point on

the resultant is zero.

This proposition may be regarded as a generalisation of the

principle of the lever referred to in Art. 106. It furnishes thei

convenient method of "taking moments" for the purpose of

determining the position of the resultant.

112. Couple of Forces. The construction given in Art. 104

for the resultant of two parallel forces fails only when the two
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given forces are equal and of opposite sense. In this case, the

lines I and III of the funicular polygon become parallel, so

that their intersection r lies at infinity. The magnitude of the

resultant is of course =o.

The combination of two equal and opposite parallel forces

(F, F) is called a couple. A couple is, therefore, properly speak-

ing, not equivalent to a single force, although it may be said to

be equivalent to a force of magnitude o at an infinite distance.

The theory of couples will be considered in detail in Arts. 128

138-

113. Conditions of Equilibrium. We have seen (Art. 109) that

a system of n parallel forces is, in general, equivalent to a single

force
; but, as appears from the preceding article, it may happen

to reduce to a couple. It follows that for the equilibrium of a

system ofparallelforces the condition R= o, though always neces-

sary, is not sufficient.

Now, if the resultant R of the n parallel forces Fv F%, ... Fn be

=o, the resultant R 1

of the n I forces Fv F2 ,
... Fn _^ cannot be

o, and its point of application is found (by Art. 1 10) from

x= (Ffa+F^2 -\
-----h ^-i-^n-i)/(F1 +Fz -\

-----h /V-i) and similar ex-

pressions for y and z. The whole system of parallel forces is

therefore equivalent to the two parallel forces R' and Fn . Two
such forces can be in equilibrium only when they lie in the

same straight line
;

i.e. Fn must coincide with R' and must

therefore pass through the point (x, y, z), which is a point of R '.

The additional condition of equilibrium is, therefore,

cosa osc/3

where a, /3, 7 are the angles made by the direction of the forces

with the axes.

114. For practical application it is usually best to replace the

last condition by taking moments about a convenient point.

PART II 5
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Thus, the analytical conditions of equilibrium can be written in

the form

Graphically, to the former corresponds the closing of the force-

polygon, to the latter the closing of the funicular polygon.

115. Weight ;
Centre of Gravity. The most important special

case of parallel forces is that of the force of gravity which acts

at any given place near the earth's surface in approximately

parallel lines on every particle of matter.

If g be the acceleration of gravity, the force of gravity on a

particle of mass m is

w=mg,

and is called the weight of the particle or of the mass m.

For a system of particles of masses mv m2 ,
... mn we have

The resultant W of these parallel forces,

where Mis the mass of the system, is called the weight of the

system.

The centre of the parallel forces of gravity of a system of

particles has, by Art. no, the co-ordinates

2<mg

or since the constant g cancels,

This point is called the centre of gravity of the system, and is

evidently identical with the centre of mass, or centroid (see

Art. 13).
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For continuous masses the same formulae hold, except that

the summations become integrations.

The weight W of. a physical body of mass M is therefore a

vertical force passing through the centroid of its mass.

116. Exercises.

(1) A straight rod (lever} of length 2/= 5 ft. has suspended from its

ends masses of 12 and 27 pounds, respectively. Find the point (ful-

.crum) on which it balances in a horizontal position : (a) if its own

weight be neglected; (^) if it is homogeneous and weighs 2.2 pounds

per running foot.

(2) A straight beam rests in a horizontal position on two supports

A, B. The distance between the supports (the span) is 27=24 ft-

The beam carries a weight of 14 tons at a distance of 8 ft. from A, and

.a weight of 10 tons at 16 ft. from A. Find the pressures on the sup-

ports (or the reactions of the supports): (a) when the proper weight of

the beam is neglected ; (b) when the beam weighs \ ton per running

foot
; (c) when the first third of the beam (from A) weighs -J- ton, the

second i ton, the third % ton per running foot.

(3) A homogeneous circular plate weighing W pounds rests in a

horizontal position on three equidistant supports near its edge, (a) What

is the least weight P that will upset it when placed on the plate ? (b) If

there be four equidistant supports near the edge, what is the least weight

that will upset the plate ?

(4) Construct the resultant of two parallel forces of opposite sense by
the graphical method of Arts. 104, 105.

(5) Solve exercises (i) and (2) by the graphical method.

84

23560

610

33560 23560

13300

Fig. 25.

(6) Find the reactions of the supports of a bridge truss of 50 ft. span,

produced by a freight locomotive whose weight is distributed over the

three pairs of driving wheels and the front truck, as indicated in Fig. 25 :

(a) when it stands in the middle of the span ; (b) when its front truck

stands over one support.
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(7) Explain how the centroid of a plane area can be found graphi-

cally by dividing the area into narrow parallel strips.

(8) A homogeneous rectangular plate is pivoted on a horizontal axis

through its centre so as to turn freely in a vertical plane. If weights

W^ Wo_, Wft W be suspended from its vertices, what is its position of

equilibrium ?

(9) The ends of a straight lever of length / are acted upon by two

forces FI, F2 in the same plane with it, but inclined to the lever at angles

!, 2 . Determine the position of the fulcrum.

117. Funicular Polygons and Catenaries. The funicularpolygon
in its original meaning represents the form of equilibrium

assumed by a string or cord suspended from two fixed points

and acted upon by any forces in the same plane. The "cord"

is supposed to be perfectly flexible, inextensible, inelastic, and

without weight. When the number of forces is made infinite,

the polygon becomes a continuous curve called a catenary.

The present discussion is confined to the case when the

forces are all vertical so that they can be regarded as weights.

118. Let A, B (Fig. 26) be the fixed points, and let there be

five weights, l v W^, W%, W^ W%> suspended from the points

I, II, III, IV, V, of the cord.

If the cord be cut on both sides of the point I and the corre-

sponding tensions Tv T
2 be introduced, the point I must be

in equilibrium under the action of the three forces W^, Tv 7"
2

.

Hence drawing a line I 2 to represent the weight W and draw-

ing through its ends I, 2 parallels to AI and I II, respectively,

we have the force polygon of the point I. Its sides O I and 2 O
represent in magnitude, direction, and sense the tensions 7\,

T
2 ;

in other words, the weight W-^ has thus been resolved into-

its components along the adjacent sides.

The same can be done at every vertex of the polygon
I II III IV V, and all tensions can thus be found. But as the

the tension 7^ in I II occurs again (with sense reversed) in the

force polygon for the point II, and so on, the successive

force polygons can be fitted together, every triangle having one
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side in common with the nexj one. Thus the complete force

polygon of the whole cord is formed, as shown on the right in

Fig. 26. Its vertical line represents the successive weights

W
l =i2, ^= 23, F3= 34, F

4
= 45, ^=56, while the lines

Fig. 26.

radiating from the point O, or pole, represent on the same

scale the tensions in Al
t
I II, II III, III IV, IV V, V B.

119. The polygon AI II III IVVB is called the funicularpoly-

gon. It will be noticed that if we have given the fixed points

A, B, the magnitudes of the weights, their horizontal distances,

say from A, and the directions of the first and last sides AI,

VB (whatever may be the number of the forces), the remaining
sides of the funicular polygon can be found by laying off on a verti-

cal line the weights f
/F

1
= 12, ^= 23, etc., in succession, drawing

through i a parallel to the first side, through the end of the last

weight (6 in Fig. 26) a parallel to the last side, and joining the

intersection O of these parallels to the points 2, 3, etc. The

sides of the funicular polygon must be parallel to the lines

radiating from O
;
at the same time these lines represent the

tensions in these sides.

120. For the analytical investigation, let P
t
be that vertex of a

funicular polygon of any number of sides at which the z'th and
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i+l

(i+ i)th sides intersect
;

let
4 ,

a.
+l be the angles at which these

sides are inclined to the horizon, and W
t
the weight suspended

from the vertex P
t (Fig. 27).

Cutting the cord on both sides of P
if
and introducing the

tensions T
t
and 7(+1 ,

the condi-

tions of equilibrium of the point

P
t

are found by resolving the

three forces Wit
T

it
Ti+1 horizon-

tally and vertically (Art. 100) :

Tt+1 cos ai+1
= T

i
cos ait (i)

Ti+1 sin ai+1= T(
sin a

t+Wt
. (2)

The former of these equations

shows that, whatever the weights

W and the lengths and inclina-

tions of the sides, the horizontal

components of the tensions T are all equal. Denoting this con-
,

-

stant value by //, we have

Fig. 27.

7*!
cos

!
= T2 cos 2

= = T
i
cos a.i='" = (3)

Substituting the values of T
t
and T

i+l as obtained from these

relations, into (2), this equation becomes

W.
tan ai+l

= tan
,+ '

ri
(4)

which shows that as soon as all the weights and the inclination

and tension of any one side are given, the inclinations and ten-

sions of all the other sides can be found.

121. Let us now assume that the weights W are all equal.

Then the values of tan ai+l given by (4) form an arithmetical

progression. If, in addition, we assume that the sides of the

polygon are such as to have equal horizontal projections, i.e.

if we assume the weights to be equally spaced horizontally,
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the vertices of the polygon will lie on a parabola whose axis

is vertical.

To find its equation, let us suppose, for the sake of simplicity,

that one side of the polygon, say the >th, is horizontal so that

ak =o. Taking this side as axis of x, its middle point O as origin,

the co-ordinates of the vertex Pk are ^a, o, if a be the length of

the horizontal side and hence also that of the horizontal projec-

tion of every side.

Putting W/H=r, we have tan<*A
= o, tan A+1

=
r, tan ak+2

= 2T, ;
hence the co-ordinates of Pk+1 are x=^a, y= ar

;
those

of Pk+2 are x= ^a, y= aT Jr2ar= ^ar\ those of Pk+3 are x=*^a,

=6<2T, etc.
;
those of the /zth vertex after/^are

v

Eliminating n, we find the equation

which represents a parabola whose axis is the axis of y, and

whose vertex lies at the distance \ar=\aW/H below the

origin O.

122. Let the number of sides be increased indefinitely, the

length a and the weight W approaching the limit o, but so

that the quotient a/W remains finite, say lim (a/ W)= i/w.

Then lim (a/r} H/w, lim (#T)=O; so that the equation of the

parabola becomes

w

where w is evidently the weight of the cord, or chain, per unit

length.

The parabola is, therefore, the form of equilibrium of a cord

suspended from two points when the weight of the cord is uni-

formly distributed over its horizontal projection. This is, for
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instance, the case approximately in a suspension bridge with

uniformly loaded roadbed, the proper weight of the chains being

neglected.

123. This result can easily be derived independently of

Art. 121, by considering the equilibrium of any portion OP of

the chain beginning at the lowest point O (Fig. 28). The forces

acting on this portion are the horizontal tension H at O. the

tension T along the tangent at P, and the proper weight W si

the chain. As this weight is assumed to be uniformly distribu-

ted over the horizontal projection OP' =x of OP, the weight

is Wwx, and bisects OP 1
.

Resolving the forces in the horizontal and vertical directions,

we find, as conditions of equilibrium,

ds ds

whence, eliminating ds,

dy_ w
dx~H x.

Integrating and considering that x=o when j=o, we find the

equation of the parabola as above,

y=^-x*y 2H

124. The three forces H, T, W are in equilibrium ; they must

intersect in a point Q which bisects OP', and the force polygon

must be similar to the triangle QPP'.
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Hence, if the height of a suspension bridge be h, its span 2 /,

its total weight 2 W, we have for the horizontal tension //, and

the tension T at the point of support

H T W

125. Theform of equilibrium assumed by a homogeneous cord

is an ordinary catenary.

To find its equation, we again consider the equilibrium of a

portion OP=s (Fig. 29) of the cord, beginning at the lowest

point O.

The weight of this portion is now W=ws, and if a be the

angle made by the tangent at P with a horizontal line, we have

the conditions of equilibrium

ds ds

Dividing and putting H/w=c, we have the differential equation

of the curve in the form
dx_c
*dy s

Substituting this value of dx]dy in the relation

we obtain
(
'

ds^ ,
c2 j sds

]=i+ or dy=
^dy) s2
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which gives by integration y+C= V^-K2
, the minus sign being

rejected since y increases with s.

The constant C can be made to disappear by taking the origin

O r on the vertical through O at the distance O'O=c below the

lowest point O. We have, therefore,

By means of this relation, s can be eliminated from the original

differential equation, and the result,

can be integrated :

c log +Vj^2
) =*+ C.

= c when x=o, we find C=c\ogc\ hence

Taking reciprocals and rationalising the denominator, we find

hence, adding and subtracting,

c * * c
-(*<+ *

)
*=-

126. The first equations of Art. 125, Tcosa=ff=ivc, Tsina
= ws

y give for the total tension T at any point P

Thus, while the horizontal component is constant, the vertical

component at any point P is equal to the weight of the portion of

the cordfrom the lowest point O to the point P, and the total ten-

sion is equal to the weight of a portion of the cord equal to the

ordinate of the point P.
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Let Q be the foot of the ordinate of P (Fig. 29), N the

intersection of the normal with the axis O'x, and draw QR
perpendicular to the tangent. Then PR =y sin a= s, since

Tsina= ws and Twy\ also QRycosa= c. Dividing, we

have tana=s/c; hence, differentiating,

ds c_ _
cos2

** ds c da, cos2a

The figure shows that the radius of curvature p is equal to the

length of the normal PN.

The relation pco$
2 a= c shows further that at the vertex

(a
=

o) the radius of curvature is pQ
= c. It follows that for a

cord or chain suspended from two points B, C in the same hori-

zontal line, c (and consequently H) is large when pQ
is large, i.e.

when the curve is flat at the vertex; in other words, when B and

C are far apart.

127. Exercises.

(1) A weightless cord ABCDEF is suspended from the fixed points

A, F, and carries weights at the intermediate points J3, C, Z>, 2T. Taking

A as origin, the axis of x horizontal, the axis ofy vertically upwards, the

co-ordinates of the points B, C, D, ,
F are (2, i), (4, 1.5),

(^ 1.5), (8.5, i), (10, 2). If the weight at B be one pound, what

are the weights at C, D, ? What are the tensions of the sections of

the cord ? What are the reactions of the fixed points A, F?

(2) The total weight of a suspension bridge is 2^=50 tons; the

span is 2/=2OO ft.; the height is /=i8ft. Find the tension of

the chain at the ends and in the middle, both graphically and analytically.

(3) A uniform wire of length 2 s is stretched between two points in

the same horizontal line whose distance 2x is very nearly equal to 2s.

Find an approximate expression for the parameter c of the catenary and

thence for the tension of the wire.
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IV. Theory of Couples.

128. The combination of two equal forces of opposite sensed,

F, acting along parallel lines, is called a couple of forces; or

simply a couple (Art. 112).

The perpendicular distance AB=p (Fig. 30) of the forces of

the couple is called the arm, and the product Fp of the force F
into the arm / is called the moment of the couple.

If we imagine the couple (F, p) to act upon an invariable

plane figure in its plane, and if the middle point of its arm be

a fixed point of, this figure,

the couple will evidently tend

to turn the figure about this

middle point. (It is to be

observed that it is not true,

in general, that a couple act-

ing on a rigid body produces

rotation about an axis at right

angles to its plane.) A couple

of the type \F, p) or (F' t p')

(see Fig. 30) will tend to rotate counter-clockwise, while a couple

of the type (F
u
,p

n
) tends to turn clockwise. Couples in the

same plane, or in parallel planes, are therefore distinguished as

to their sense
;
and this sense is expressed by the algebraic sign

attributed to the moment. Thus, the moment of the couple

(F,p) in Fig. 30, is + Fp, that of the couple (F",p
rf

)
is -F"p".

129. The effect of a couple is not changed by translation.

Let AB=p (Fig. 31) be the arm of the couple (F, p) in its

original position, and A'B 1 the same arm in a new position par-

allel to the original one in the same plane, or in any parallel

plane. By introducing at each end of the new arm A'B f two

opposite forces F, F, each equal and parallel to the original

forces F, the given system is not changed (Art. 80). 'But the

Fig. 30.
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Fig. 31.

two equal and parallel forces F at A and B 1 form a resultant

2F at the middle point O of the

diagonal AB' of the parallelogram

ABB'A'. Similarly, the two forces

FatB and A' are together equiva- |

lent to a resultant 2 Fat the same

point O. These two resultants, be-

ing equal and opposite and acting in

the same line, are together equiva-

lent to o. Hence the whole system
reduces to the force F* at A' and the force F at B\ which

form, therefore, a couple equivalent to the original couple at

AB.

130. The effect of a couple is not changed by rotation in its

plane.

Let AB (Fig. 32) be the arm of the couple in the original

position, C its middle point, and let the couple be turned about

C into the position AB 1

. Applying again at A', B 1

equal and

opposite forces each equal to F, the forces .Fat A' and Fat A
will form a resultant acting along CD, while Fat B 1 and F'at

B give an equal and opposite resultant along CE. These two

resultants destroy each other

and leave nothing but the

couple formed by F at A' and

F at B', which is therefore

equivalent to the original

couple.

Any other displacement of

the couple in its plane, or to a

parallel plane, can be effected

by a translation combined with

a rotation about the middle

point of its arm in its plane.

The effect of a couple is therefore not changed by any displace-

ment in its plane or to a parallel plane.
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131. The effect of a couple is not changed if its force F and its

arm p be cJianged simultaneously in any way, provided their

product Fp remain the same.

Let AB=p be the original arm (Fig. 33), F the original force

of the couple ;
and let A''=J>' be the new arm. The introduc-

tion of two equal and opposite forces F' at A', and also at B\
will not change the given system F, F. Now, selecting for

F' a magnitude such that F'p'= Fp,

the force F at A and the force F 1

F and A' combine (Arts. 104-106) to

A' form a parallel resultant through C,

the middle point of the arm, since

B
--B i-

-F

Fig. 33.

_F
'

for this point F- J

Similarly, -F at B and /?' at .#'

give a resultant of the same magni-

tude, in the same line through C, but of opposite sense.

These two resultants thus destroying each other, there remains

only the couple formed by F 1 at A' and F' at B\ for which

Fp= F'p'.

132. It results from the last three articles that the only essen-

tial characteristics of a couple are (a) the numerical value of the

moment ; (b) the sense, or direction of rotation
;
and (c) what

has been called the "aspect" of its plane, i.e. the direction of

any normal to this plane.

It is to be noticed that the plane of the two forces forming

the couple is not an essential characteristic of the couple ; just

as the point of application of a force is not an essential charac-

teristic of the force (see Art. 84).

Now the three characteristics enumerated above can all be

indicated by a vector which can therefore serve as the geomet-

rical representative of the couple. Thus, the couple formed

by the forces F, F (Fig. 34), whose perpendicular distance

is /, is represented by the vector AB = Fp laid off on any
normal to the plane of the couple. The sense is indicated by
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drawing the vector toward that side of the plane from which

the couple is seen to rotate counter-clockwise.

Fig. 34.

We shall call this geometrical representative AB of the

couple simply the vector of the couple. It is sometimes called

its moment, or its axis, or its axial moment.

133. As was pointed out in Art. 1 1 2, a couple is equivalent

to a single force acting along a line at infinity. Couples are,

therefore, used in statics to avoid the introduction of such

forces whose line of action is at an infinite distance, just as in

kinematics a rotation about an axis at infinity receives the

special name of translation, and an angular velocity about an

axis at infinity is called a velocity of translation.

It has been shown in Kinematics, Arts. 64, 65, that two equal

and opposite rotations about parallel axes produce a translation,

and in Kinematics, Art. 256, that two equal and opposite angular

velocities about parallel axes produce a velocity of translation
;

similarly, two equal and opposite forces along parallel lines form

a new kind of quantity called a couple of forces, or simply a couple.

While rotations, angular velocities, and forces are represented

by rotors, i.e. by vectors confined to definite lines, translations,

velocities of translation, and couples have for their geometrical

representatives vectors not confined to particular lines.

Just as in the case of couples of infinitesimal rotations and of

couples of angular velocities, the vector representing a couple
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of forces has for its magnitude and sense those of the moment
of the couple, and for its direction that perpendicular to the

plane of the couple.

It is due to this analogy between the two fundamental con-

ceptions that a certain dualism exists between the theories of

statics and kinematics, so that a large portion of the theory of

kinematics of a rigid body might be made directly available for

statics by simply substituting for angular velocity and velocity

of translation the corresponding ideas of force and couple.

134. When any number of couples act on a rigid body their

resultant can readily be found. Representing each couple by
its vector, we have only to combine these vectors by geometrical

addition. In the particular case when the couples all lie in

parallel planes, or in the same plane, their vectors may be taken

in the same line, and add, therefore, algebraically.

Hence, the resultant of any number of couples is a single cotiple

whose vector is the geometric sum of the vectors of the given couples.

Conversely, a couple can be resolved into components by

resolving its vector into components.

135. To combine a single force P with a couple (F, p) lying

in the same plane it is only nec-

essary to place the couple in its

plane into such a position (Fig.

35) that one of its forces, say

F, shall lie in the same line

and in opposite sense with the

single force P, and to transform

the couple (F, /) into a couple

(P, p'), by Art. 131, so that Fp
= Pp'. The original single force

P and the force P of the trans-

formed couple destroying each

other at A, there remains only

the other force P, at A', of the transformed couple which is par-

-P

-F

Fig. 35.

!
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allel and equal to the original single force P, and has the distance

itfi i$ pllf-vv i
from it.

Hence, a couple and a single force in the same plane are

together equivalent to a single force equal and parallel to, and of
the same sense with, the given force, but at a distance from it

which is found by dividing the moment of the couple by the

single force.

136. Conversely, a single force P applied at a point A of a

rigid body can always be replaced by an equal and parallel force

P of the same sense, applied at any otherpoint A' of the same body,

in connection with the couple formed by P at A and P at A'.

137. The proposition of Art. 135 applies even when the force

lies in a plane parallel to that of the couple, since the couple can

be transferred to any parallel plane without changing its effect.

If the single force intersects the plane of the couple, it can

be resolved into two' components, one lying in the plane of the

couple, while the other is at right angles to this plane. On
the former component the couple has, according to Art. 135, the

effect of transferring it to a parallel line. We thus obtain

two non-intersecting, or skew, forces at right angles to each other.

Let P be the given force, and let it make the angle with the

plane of the given couple, whose force is F and whose arm

is/. Then/* sin a is the component at right angles to the

plane of the couple, while P cos a combines with the couple

whose moment is Fp to a force Pcosa in the plane of the

couple; this force Pcosa is parallel to the projection of P on

the plane, and has the distance from this projection.Pcosa
Hence, in the most general case, the combination of a single

force and a couple can be replaced by the combination of two

single forces crossing each other at right angles ; it can be

reduced to a single force only when the force is parallel to the

plane of the couple.
PART II 6
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138. Exercises.

(1) Show that the moment of a couple can be represented by the

area of the parallelogram formed by the two forces of the couple, or

by twice the area of the triangle formed by joining any point on the

line of one of the forces to the ends of the other force.

(2) Show that the sum of the moments of two forces forming a couple

is the same for any point in the plane of the couple.

(3) Show, by means of Arts. 129-131, how to combine any number

of couples situated in the same plane, or in parallel planes.

(4) Find the resultant of two couples situated in non-parallel planes,

without using the vectors of the couples.
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V. Plane Statics.

I. THE CONDITIONS OF EQUILIBRIUM.

139. Suppose a rigid body to be acted upon by any number

of forces, all of which are situated in the same plane. To
reduce such a plane system of forces to its simplest form the

proposition of Art. 136 may be used. This proposition allows

us to transfer all the forces to a common origin, by introducing,

in addition to each force, a certain couple in the same plane.

The concurrent forces can then be combined into their result-

ant by geometric addition, or by forming their force polygon

(Art. 98) ;
and the couples lying all in the same plane combine

by algebraic addition of their moments into a resultant couple

(Art. 134).

Thus, let F (Fig. 36) be one of the forces of the given plane

system, P its point of application. Selecting any point O in

the plane as origin, apply at

O two equal and opposite

forces F, F, each equal

and parallel to the given

force F\ and let / be the

perpendicular distance of

the origin O from the line

of action of the given force Fig. 36.

'F. The force F at P is

equivalent to the force F at O in connection with the couple

formed by .Fat P and Fat O
;
the moment of this couple is

Fp, its vector is perpendicular to the plane of the system.

Proceeding in the same way with every force of the given

system, all forces are transferred to the common origin O.

The whole system is therefore equivalent to their resultant R
passing through O, in connection with the resulting couple
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140. The given system of forces will be in equilibrium if the

following two conditions of equilibrium are fulfilled :

Jt = o, H=o.

It will be noticed that the moment Fp of the couple intro-

duced by transferring the force F to the point O is the moment

of the force Fwith respect to this point O.

Hence, a plane system of forces is in equilibrium if (a) its

resultant is zero, and (b) the algebraic sum of the moments of all

itsforces is zero with respect to any point in its plane.

141. It is evident that the magnitude and direction of the

resultant R do not depend on the selection of the origin O.

But the position of this resultant and the magnitude of the

resulting couple // will in general differ for different points

selected as origin. Indeed, the origin can be so taken as to

make the couple H vanish (unless the resultant R be zero) ;

that is, the whole system can be reduced to a single resultant.

To do this (see Art. 135), it is only necessary, after determin-

ing R and H for some point O, to transfer R to a parallel line

at such a distance r from its original position as to make the

moment Rr of the couple introduced by the transfer equal and

opposite to the moment ^Fp ;
i.e. we must take (Art. 135)

The line along which this single resultant acts is called the

central axis of the given system of forces.

142. For a purely analytical reduction of a plane system of

forces the system is referred to rectangular axes Ox, Oy, arbi-

trarily assumed in the plane (Fig. 37). Every force /MS resolved

at its point of application P (x, y) into two components X, Y,

parallel to the axes, so that

F=/7sin,
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. being the angle made by .Fwith the axis Ox. At the origin O
two equal and opposite forces X, X are applied along Ox, and

two equal and opposite
forces F, Y along Oy.

Thus, X at P is equivalent

to X at O in combination

with the couple formed by
X at P and -JTat <9

;
the

moment of this couple is

evidently yX. Similarly,

Fat P is replaced by Fat

O in combination with a

couple whose moment is xY.

The force Fat P is therefore equivalent to the two forces X, Y
.at O in combination with a couple whose moment is xY yX.

Proceeding in the same way with every given force, we obtain

a number of forces X along Ox which can be added algebrai-

cally into 2,Xf
and a number of forces Y along Oy which give

.2 Y. These two rectangular forces form the resultant

whose direction is given by

tan =

where a is the angle between Ox and R.

In addition to this, we obtain a number of couples xYyX
ivhose algebraic sum forms the resulting couple

143. The whole system is thus found equivalent to a

resultant force R in combination with a resultant couple H in

the same plane with R. The conditions of equilibrium R= o,

H=o (Art. 140) can therefore be expressed analytically by the

three equations
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144. If R be not zero, R and H can be combined into a single

resultant R' equal and parallel to R at the distance H/R from

it (see Art 141). The equation of the line of this single result-

ant R'y i.e. the central axis of the system of forces, is found by

considering that it makes the angle a with the axis of x and that

its distance from the origin is

H/R= 2 (xY-

Hence its equation is

f - 2F-17 2AT- 2 (xY-yX) = o.

If R= o, the system is equivalent to the couple

unless H itself be also zero, in which case the system is in

equilibrium.

145. The same results can be obtained by a transformation

of co-ordinates. Let R= V(S^T)
2
-f (2F)

2 and H= 2 (xY-yX )

be the resultant force and couple for a point O as origin. If

some other point O', whose co-ordinates with respect to O are

( , 77, be taken as new origin and x\ y
1 be the co-ordinates of the

point of application P of the force F for parallel axes through

O\ the resultant R remains the same while the resulting couple

becomes

Hence this new couple will vanish whenever the origin O'(%, rj)

is taken on the straight line whose equation referred to the

original axes is

77-77=0.

This equation of the central axis agrees with the equation found

in Art. 144; it represents the line of action of the single

resultant to which the system can be reduced.
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146. The following examples will illustrate the application of

the conditions of equilibrium. To establish these conditions in

any particular problem it will generally be found best to resolve

the forces along two rectangular directions and equate the sums

of the components to zero; and then to "take moments," i.e.

equate to zero the sum of the moments of all the forces with

respect to some point conveniently selected as origin.

147. A homogeneous straight rod AB= 2! (Fig. 38) of weight W
rests with one end A on a smooth horizontal plane AH, and with the

point E(AE = e) on a cylindrical support, the axis of the cylinder being

at right angles to the verticalplane containing the rod. Determine what
horizontal force F must be applied at a given point F of the rod (AF
= f>e) to keep the rod in equilibrium when inclined to the horizon at an.

angle 6.

The rod exerts a certain unknown pressure on each of the supports at

A and E, in the direction of the normals to the surfaces of contact, pro-

vided there be no friction, as is here assumed. The supports may
therefore be imagined removed if forces A, E, equal and opposite to

these pressures, be introduced
;

these forces A, E are called the

reactions of the supports. The rod itself is here regarded as a straight

line
;

its weight W is applied at its middle point C.

Taking A as origin and AH as axis of x, the resolution of the forces

gives

o, (i)

o. (2)

Taking moments about A, we find

E-e-W- /cos & - /Vsin = o. (3)
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Eliminating F from (i) and (3), we have

__
e /sin

2

hence from (2) ,

e/sm2 O

and finally from (i),

148. A cylinder of length 2! and radius r rests with the point A of

the circumference of its lower base on a horizontal plane and with the

point B of the circumference of its upper base against a vertical wall.

The vertical plane through the axis of the cylinder contains the points A,

B, and is perpendicular to the intersection of the vertical wall and the

horizontal plane. If there be no friction at A and B, what horizontal

force F applied at A will keep the cylinder in equilibrium ? When is this

force F = o ?

Let G be the centre of gravity of the cylinder ;
W its weight ; A, B

the reactions at A, B ; and 9 the given

angle between AB and the horizontal plane.
B Then B F o, A W o, and taking

moments about A,

If either the dimensions of the cylinder, or the angle 6, be such as to

make tan B = l/r, no force F will be required to maintain equilibrium ;

G and A will then lie in^the sarne vertical line.

149. The homogeneous rod AB = 2 1 of weight W is jointed at A, so

as to turn about A in a vertical plane. A string BC attached to the

end B of the rod runs at C over a smooth pulley^ and carries a weight P.

The axis of the pulley C is parallel to, and in the same vertical plane
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with, the axis of thejoint A ; AC = h. Find the position of equilibrium
and the pressure on the axis of thejoint A. (Fig. 40.)

To reduce to a purely statical problem, cut the string between B and

C and introduce the tension, which is = P-
} also, replace the pressure

A by its horizontal and vertical components Ax,
A

y
. Then, if^ ACB

=
</>, %.jBAC=0, the conditions of equilibrium give

Ax
= Ps'm<f>, A

y
= W- /'cos <,

From the last equation,

sm> = /^
sin0

~
h P 9

while from the triangle ABC,

sin < 2 /

sin0

hence

sented

= zhP/W, i.e. if we take ^ to represent W, Pwill be repre-
C.

For the total pressure A we have

i.e. A is the third side of a triangle having W and P for the two other

sides, and < for the included angle. The magnitude of A is therefore

represented by the median from A in the triangle ABC on the same

scale on which Wis represented by h. But this median gives also the

direction of A ; for we have

k
BC

CQZ&
A,, W-

150. A weightless rod AB rests without friction on two planes
inclined to the horizon at angles a, j3}

and carries a weight W at the

point D. The intersection (C) of these planes is horizontal and at right

angles to the vertical plane through AB. Find the inclination of^AB

to the horizon, and the pressures at A and B. (Fig. 41.)
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As there are only three forces, viz. the weight Wand the reactions A
and B, their lines must intersect in a point E. Resolving horizontally

and vertically, we have

A sin a = B sin /?,

W

W.

whence A=

sin a

sin(

Taking moments about D, we find

with AD = a, DB = b,

W
Fig. 41.

A - a sin DAE = B

or ^ cos( + 0) = Bb cos(/J
-

0) ;

to eliminate A and B, divide by the first equation above :

sn

solving for 0, we finally obtain

sn

151. Exercises.

(1) A homogeneous rod yl#=2/=8ft., weighing W=2Q Ibs.,

rests with one end A on a horizontal plane AH, and with the point E
on a support whose height above AH is Z^ = h = 3 ft. A horizontal

cord AD = d= 4 ft. holds the rod in equilibrium. Find the tension T
of this cord, and the reactions at A and E.

(2) A weightless rod AB of length / can turn freely about one end A
in a vertical plane. A weight W is suspended from a point C of the

rod ;
A C= c. A string BD attached to the end B of the rod holds it

in equilibrium in a horizontal position, the angle ABD being = 150.
Find the tension T of the string and the resulting pressure A on the

hinge at A.
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(3) A uniform rod AB 2 1 of weight W rests with its upper end A
against a smooth vertical wall, while its lower end B is fastened by a

string of given length, BC= 2 b, to a point C in the wall. The rod and

the string are in the vertical plane at right angles to the wall. Find the

position of equilibrium, i.e. the angle $ = ACB, the tension 7"of the

string, and the pressure A against the wall.

(4) A uniform rod AB = 2 /of weight W rests with one end A on a

smooth horizontal plane AC, with the other end B against a smooth

vertical wall BC, the vertical plane through AB being at right angles to

the intersection C of the wall with the horizontal plane. The rod is kept
in equilibrium by a string EC. Find the tension Tof this string if the

angles CAB = and ECA =
<f>

are given.

(5) A weightless rod AB = / can revolve in a vertical plane about a

hinge at A
;

its other end B leans against a smooth vertical wall whose

distance from A is AD = a. At the distance AC= c from A, a weight
W is suspended. Find the horizontal thrust Ax at A and the normal

pressures Ay
and B at A and B.

(6) The same as (5) except that at B the rod rests on a smooth hori-

zontal cylinder whose axis is at right angles to the vertical plane through

AB. In which of the two problems is the horizontal thrust Ax at A
least?

(7) The lower end A of a smooth uniform rod AB of weight Wrests

on a smooth horizontal plane making an angle with it. At the pointC it

rests on a smooth cylinder whose axis is horizontal and at right angles to

the vertical plane through the rod
;

at D the rod is pressed upon by
another smooth cylinder whose axis is parallel to that of the cylinder

at C. Determine the reactions at A, C, D, if W, 0, AB = 2 /, CD = a

are given.

(8) A smooth weightless rod AB = /rests at C on a smooth horizon-

tal cylinder whose axis is at right angles to the vertical plane through

the rod
;

its lower end A leans against a smooth vertical wall whose dis-

tance from C is CD a
;
from its upper end B a weight W is

suspended. Determine the distance AC= x for equilibrium, and the

reactions at A and C.

(9) A uniform rod of weight W\s hinged at its lower end A, while its

upper end B leans against a smooth vertical wall. The rod is inclined

at an angle to the vertical, and carries three weights, each equal to

w, at three points dividing the rod into four equal parts. Determine

the pressure on the wall and the reaction of the hinge.
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(10) A homogeneous rod AB = 2 / of weight Crests with one end A
on the inside of a fixed hemispherical bowl of diameter 2 a and leans at

C on the horizontal rim of the bowl, so that the other end B is outside.

Determine the inclination to the horizon 9 in the position of equilibrium.

2. STABILITY.

152. The equilibrium of the forces acting on a rigid body may
subsist while the body is in motion. Thus, if the motion con-

sist in a mere translation with constant velocity, the equilibrium

will not be disturbed during the motion if the forces remain

equal and parallel to themselves.

If, however, the body be subjected to a rotation, this will in

general not be the case. The present considerations are re-

stricted to the case of plane motion
;
the forces are supposed

to lie in the plane of the motion and to remain equal and

parallel to themselves and applied at the same points of the

body.

153. Let A^AZ (Figs. 42 and 43) be a rigid rod having two

equal and opposite forces F
lt
F
2 applied at its extremities in the

*-* A?
i K

''

Fig. 43.

direction of the line A^A^. Let this rod be turned by an angle

<f>
about an axis at right angles to A^A^. In the new position

the forces Fv F2,
instead of being in equilibrium, form a couple

whose moment is F
l

' A^A^ sin
<f>.

If in the original position of the rod the forces tend to increase

the distance A^ 2 (Fig. 42), the couple in the new position will
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tend to bring the rod back to its position of equilibrium. In

this case the original position of the rod is said to be a position

of stable equilibrium. The effect of the earth's magnetism on

the needle of a compass offers a familiar example.

If, however, in the original position the forces tend to diminish

the distance A
1
A

2 (Fig. 43), the couple arising after displace-

ment tends to increase the displacement and thus to remove the

rod still farther from equilibrium. The original position in this

case is said to be one of unstable equilibrium. The weight rest-

ing on a vertical post and the reaction of the support on which

the rod stands may be taken as an illustration.

Finally, a third case would arise if the forces F
lt
F

2, being
still equal and opposite, were applied at one and the same point

of the rod. The forces would then remain in equilibrium after

any displacement of the rod
;
such equilibrium is called neutral

or astatic.

154. These different cases of equilibrium can be distinguished

by the algebraic sign of the product A^A^ F
1
=A

2
A

l
F

2 ,
which

is negative for stable equilibrium, since A^A^ and F
1

have

opposite sense (Fig. 42), positive for unstable equilibrium

(Fig. 43), and indeterminate (since A^^o) for neutral equi-

librium.

It is to be noticed that these considerations will hold whether

the rotation of angle </>
take place in the positive or negative

sense. But they hold only within certain limits for the angle of

rotation. Thus, in the example illustrated by Figs. 42 and 43,

when
<f>

reaches the value TT, the nature of the equilibrium is-

changed.

155. Strictly speaking, investigations of stability are not

purely statical, but require a kinetic examination of the subse-

quent motion. However, the principles of statics are sufficient

to determine the nature of the equilibrium for infinitesimal dis-

placements, i.e. when only the initial motion of the body is-

considered.
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The theory of astatic equilibrium forms a special branch of

mechanics called astatics; its object is to determine the condi-

tions under which a system of forces acting on a rigid body
remains in equilibrium when the body is subjected to any

displacement while the forces remain applied at the same points

of the body and retain their magnitude, direction, and sense.

156. The equilibrium of forces acting on one and the same

point is evidently always astatic.

In the case of a plane system of forces acting on a plane

figure in its plane, the only displacement that need be consid-

ered is a rotation about an axis at right angles to the plane.

For every displacement of a plane figure in its plane can be

reduced to a rotation about a certain centre in the plane.

Instead of turning the body or plane figure by an angle c/>,

we may turn all the forces about their points of application by
the same angle in the opposite sense.

157. If the plane system consists of two forces in equilibrium,

they must be equal and opposite, and act in the same line
;

this case has been considered in

Art. 154.

If there be three forces F
lt
Fz ,

F
3

in the same plane in equilibrium,

applied at the points A v A
2 ,
A

3 ,

they must meet in a point Ot
and

fulfil the parallelogram law.

After turning each force about its

point of application by the same

angle, the forces will, in general,

cease to intersect in a point, and

hence to be in equilibrium. If, however, the original meeting

point O of the forces be situated on the circle described through
A v A2 ,

A
B (Fig. 44), the forces will continue to intersect at some

point of this circle when turned through some angle, because

the angles between the forces remain constant. ^
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Hence, three forces F
15
F

2 ,
F

3
in the same plane, applied at

points Aj, A2 ,
A

3 ,
are in astatic equilibrium if they meet in a

point O situated on the circle passing through A lf
A

2,
A

3 .

The condition of equilibrium of the three forces also requires

that

F, F, F.
sin (F2F3)

sin (/
r
3
/7

1 )
sin

by the property of the circle (Fig. 44), we have ^ (F2F3)
=A v

%.(F8Fi) =A 2 , '^.(F1F2)
= 7r A

3 ;
and as the sines of these angles

of the triangle A^A^A^ are proportional to the opposite sides,

we have
F, F

1 = A.

^2^3 ^3^

i.e. three forces in astatic equilibrium are to each other as the sides

of the triangleformed by theirpoints of application.

158. The results of the preceding article can be interpreted

from a somewhat different point of view. Let two of the forces,

F
1
and F2 , be given, and let it be required to determine their

resultant for astatic equilibrium. This resultant F
9
must evi-

dently pass through a definite point A 3
of the circle described

through the points of application A v A 2
of the given forces and

their intersection O. This point A s , through which the resultant

must pass, howsoever the two given forces be turned about

A v A 2,
is called the centre of the forces.

If the two given forces be parallel, the point O lies at infinity,

and the circle through A
I}
A

2 ,
O becomes the straight line

A^A^. The point A
3

is therefore situated on this line and

divides the distance A-^A 2 in the inverse ratio of the forces Fv
F2, by Art. 157. Compare Art. no.

159. These results are readily generalised. Any plane sys-

tem of forces has a centre unless the resultant be zero. To

find the centre we have only to combine the forces in succession,

i.e. to find the centre of two of the forces, then the centre

of their resultant and a third force, etc.
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It has been shown in Arts. 141 and 144 that a plane system
of forces whose resultant does not vanish can always be reduced

to a single resultant R whose line is called the central axis of

the system. It appears now that if the forces be all turned by
the same angle 6 about their points of application, the line of the

resultant, or the central axis, will turn about a certain fixed

point called the centre of the system.
"

For a system of parallel

forces the existence of such a centre has already been proved in

Art. 1 10.

160. Analytically, the centre of a plane system of forces is

found as the intersection of the two positions of the central axis

before and after any displacement of the plane figure, or body,

on which the forces act.

By Arts. 144 and 145 the equation of the central axis is

^Y>Z-^"n-^(xY-yX}=o. (i)

Let the figure with the axes of co-ordinates be turned through

an angle about an axis through the origin perpendicular to its

plane, while the forces keep their original directions. The cen-

tral axis of the forces in the new position will have an equa-

tion of the same form as before, in which, however, x, y, f, 77 are

referred to the new system of co-ordinates. To find the equa-

tion of the central axis in the old co-ordinates, we have to

substitute x cos
</> y sin

</>
for x, ;rsin (ft+y cos forj>, and

similarly for f, 77.
This gives

sn

2\(x cos
<f> y sin <) Y (x sin

<f>+y cos <j))X ]
= o,

or collecting the terms containing cos
<f>
and sin <, respectively,

0=0. (2)

The centre being the intersection of the lines (i) and (2), its
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co-ordinates are found by solving these equation for f and
77,

or

.e the coefficient of cos
<f>

in (2) vanishes by (i), by solving

-.he equations

(3)

'(4)

Putting, for shortness, V(2X) 2+ (Y)2=R, t(xY yX) H,

2,(xX+yY) = K, we find the co-ordinates of the centre,

"=

161. By the rotation of the figure, the magnitude of the

resultant R of the system is of course not changed. But

the resulting couple H for the origin, or what amounts to the

.same, the moment of the system about the origin, is changed and

becomes, by Art. 160,

H 1= 2 [(x cos (/> ~y sin
<f>)
Y (x sin < +y cos

yX) - cos </>-2 (xX+y F) - sin

K sm
</>. (6)

This couple //"' vanishes if the figure be turned through an

angle </>
determined by the equation

tan<=^. (7)

162. If the system of forces be originally in equilibrium, we

have 2X=o, 2F=o, ^(xY-yX}=o (Art. 143). Hence after

turning the figure through an angle <, the forces will be equiva-

lent to the couple

H'=-Ksin<l>. (8)

This couple has its greatest value when = ?r/2; it vanishes

only when < = TT, in which case the system will again be in

equilibrium.
PART II 7
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163. The stability of a plane system in equilibrium depends.

on the algebraic sign of the quantity, ~ecl

K=${?X+yY), (9,

which can therefore be called the stability function. If this func-

tion be positive, the equilibrium is stable
;

if it be negative, the

equilibrium is unstable
; finally, if K=o, the system is astatic,

and the equilibrium is neutral.

The proof follows at once from equation (8). This equation

shows that, for a positive K, the moment of the couple to which

the system becomes equivalent when the figure is turned

through an angle </>
has a sign opposite to that of the angle </> ;

hence this couple will tend to turn the body back into the

position of equilibrium. Similarly, if K be negative, H1

agrees

in sign with </>
and tends therefore to increase this angle.

164. Exercises.

(1) Explain the nature of the equilibrium of a body of weight W
supported at a single point according to the position of that point above

the centroid G, below G, and at G (common balance).

(2) A homogeneous rod AB 2 /of weight W leans with the lower

end A against a vertical wall and rests with the point C (A C =<:>/)
on a cylindrical support. Show that the equilibrium is unstable.

(3) A body of weight W is placed on a horizontal plane. Show that

the equilibrium is stable if W meets the horizontal plane at a point

A within the area of contact and that it is unstable if A lies on the con-

tour of this area. If the actual area of contact have re-entrant angfes,.

or consist of several detached portions, the area bounded by a thread

drawn tightly around the actual area, or areas, of contact must be

substituted.

(4) An oblique cylinder rests with its circular base on a horizontal

plane in unstable equilibrium. If the length of its axis be twice the

diameter of its base, what is the inclination of the axis to the horizon ?

(5) Show how to determine graphically the stability of a retaining

wall against toppling over the front edge of the base, the pressure of the

earth behind the wall being given in magnitude, direction, and position.
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3. JOINTED FRAMES.

165. The equations of equilibrium are derived on the suppo-

sitions that all the forces of the given system act on one and

the same rigid body and that this body is perfectly free to

move. Hence, in applying these equations to determine the

equilibrium of an engineering structure, a machine, etc., each

rigid body must be considered separately, and the reactions

required to make the body free must be introduced. It will be

shown in a subsequent section how the principle of work makes

it possible to dispense with some of these precautions.

When two rigid rods are connected by a pin-joint whose axis

is perpendicular to the plane of the rods, the action of either rod

on the other at the joint is represented by a single force whose

direction is in general unknown. Sometimes considerations of

symmetry will allow to determine this direction.

If a rigid rod, in equilibrium, be hinged at both ends and not

acted upon by any other forces, the reactions of the hinges

must of course be along the rod, and must be equal and

opposite.

166. Two rods AC, BC (Fig. 45) in a vertical plane, hinged together

at C, rest with the ends A,J$0na horizontalplane, and carry a weight
W suspended from the joint C. If the proper

weight of the rods be neglected, determine the

normal pressures Ay ,
By and the horizontal

thrusts Ax ,
Bx at A, B. k/a WT

^\B

Resolving the weight W along C/4, CB into

^A> ^B and considering the rod AC alone it

appears that the total reaction at A is along AC and = WA ; hence

resolving WA in the horizontal and vertical directions, Ax and A
y
are

found
; similarly for BC. If a, ft be the angles at A and -5 in the tri-

angle ABC, we find

JpA= _cosg_jfr WB=
cos a ^.
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A _ ft _ cos a cos ftw A sm a cos P w & _ cos sin /? r^x

~~sin(+)
y
~

sin ( + /?)
*~~

sin (a + 0)

As the horizontal thrusts at ^4 and ^ are equal, it makes no difference

whether the rods be hinged to the support at A and B, or whether the

thrust is taken up by lateral supports, or by a string connecting the ends

A, B of the rods.

167. Two equal homogeneous rods AC, BC (Fig. 46) are hinged at

A, B, C so as toform a triangle whose height h is vertical and whose base

AB = 2 b is horizontal. The weight of each rod

being W,Jind the reactions at thejoints.

Owing to the symmetry of the figure, the reac-

tions at C must be equal and opposite and

horizontal. The rod AC is subject to three

forces only, viz. the horizontal reaction C, the

weight Wj and the reaction A the latter must

46

*

therefore pass through the intersection D of

C and W.

If the direction of W intersect AB at E and the scale of forces be

taken so as to have W represented by DE = h, DEA will be the force

polygon ;
hence EA represents C and AD represents A on the same

scale on which W is represented by h.

Analytically, the reactions are found by resolving the forces horizon-

tally and vertically and taking moments about A :

whence C=mW
y A =

where m ==
zh

168. Two equal homogeneous rods AC, BC, each of weight W, are

hinged at C
;

their ends A, B rest on a smooth horizontal plane ; a third

redDE is hinged to them, connecting their middle points (Fig. 47).

The plane AB being smooth, the reaction at A is vertical
;
the reac-

tion at C is horizontal owing to the symmetry ;
that at D is likewise

horizontal if the weight of the rod DE be neglected, for then this rod is

subject only to the reactions at its ends.

Resolving horizontally and vertically and taking moments about Z>, we

find in this case
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where a =

If, however, the weight w of the

rod DE cannot be neglected, we

have at D a horizontal reaction Dx

and a vertical reaction D
v

. The

equilibrium of DE requires that

zD,, = w. Hence resolving and
. .

y
, , - ,

taking moments as before, we find
p

.

169. Exercise.

(i) Two homogeneous rods AC, BC of equal weight, but unequal

length, are hinged together at C while their other ends are attached to

fixed hinges A, B in the same vertical line. Show that the line of action

of the reaction at C bisects AB.

170. A triangular frame formed of rigid rods is rigid as a

whole, even when the connections are pin-joints. A quadran-

gular frame with pin-joints becomes rigid only by the insertion

of a diagonal.

The iron and steel trusses 'used for roofs and bridges gener-

ally consist of a system of triangles, or quadrangles with diago-

nals, so that the whole truss can be regarded as one rigid body,

at least in first approximation.

Any one rod, or member, of the frame-work is thus acted upon

by two equal and opposite forces, i.e, by a stress, in the direction

of its length, the external forces, including the proper weight,

being regarded as applied at the joints only. If the stress be a

tension, i.e. if the forces tend to stretch or elongate the mem-

ber, the latter is called a tie; a member subject to compression

or crushing is called a strut.

171. For the purpose of dimensioning the members, it is

necessary to know the stress in every member. The following
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example illustrates a simple method for finding these stresses

when the external forces are given.

Let the frame-work represented in Fig. 48 be cut in two along

any line aft ;
the portion on either side of this line must be in

equilibrium under the action of its external forces and the

Fig. 48.

stresses in the members intersected by aft. Thus, in the figure,

the forces A, W^ Fv F2 ,
F

z form a system in equilibrium ;

hence, the sum of the moments of these forces with respect to

any point must vanish.

To determine 'Fv take moments about the intersection of F
2

and FB ;
thus F% and FB are eliminated from the equation of

moments, and F
1

is found. Similarly F2 is obtained by taking

moments about the intersection of F3
and Fr The arms of the

moments are best taken from a correctly drawn diagram of

the frame-work.

If only two members be intersected by aft, the origin for

the moments is taken first on one, then on the other, of the two

members intersected.

By beginning at one of the supports and taking ^sections
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through the successive panels, it will in the more simple cases

be possible to draw the line /3 so as to intersect not more than

three members whose stresses are unknown. Thus the stresses

in all the members can be determined.

172. Exercises.

(i) Find the stresses in the braced beam A (Fig. 49), carrying

a weight of 5 tons at each joint of the upper chord. The horizontal

width of the panels is 10 ft., the middle vertical is 8 ft.

Fig. 49.

(2) In Fig. 50, the dimensions are in feet, the loads in tons. After

the first panel the sections cannot be so taken as to intersect not more

than three unknown stresses. But the girder can be regarded as

obtained by the superposition of two girders (each carrying half the

load) ,
in one of which the diagonals CF, EH are wanting, while in the

other DE, FG are wanting. Each of these can readily be computed.

Fig. 50.

4. GRAPHICAL METHODS.

173. The graphical method explained in Art. 108 for deter-

mining the resultant of a system of parallel forces can be

extended without difficulty to the general case of a plane sys-

tem of forces. The only difference will appear in the form of

the force polygon, which for parallel forces collapses into

a straight line, while in the general case it is an ordinary

(unclosed) polygon whose closing line represents the resultant
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in magnitude and direction. In other words, when the forces

are not parallel, they must be added geometrically, and not

algebraically.

The construction of the funicular polygon and its properties

are the same as for parallel forces.

If the force polygon does not close, the given system is

equivalent to a single resultant represented in magnitude, direc-

tion, and sense by the closing line
;

its position is obtained from

the funicular polygon whose initial and final lines must inter-

sect on the resultant.

If, however, the force polygon closes, the system may be

equivalent to a couple, or it may be in equilibrium. The dis-

tinction between these two cases is indicated by the funicular

polygon. If the initial and final lines of this polygon coincide,

the system is in equilibrium ;
if they are merely parallel, these

lines are the directions of the forces of the couple to which the

whole system reduces. The magnitude and sense of the forces

of the resulting couple are obtained from the force polygon.

174. Thus it follows from the graphical as well as from the

analytical method that a plane system may be equivalent to a

single force, or to a couple, or to zero. In the first case, the force

polygon does not close, and the initial and final sides of the

funicular polygon intersect at a finite distance. In the second

case, the force polygon closes, and the initial and final lines of

the funicular polygon are parallel. In the third case, the force

polygon closes, and the initial and final sides of the funicular

polygon coincide.

The graphical conditions of equilibrium of a plane system are,

therefore, two: (i) the force polygon must close; (2) the funi-

cular polygon must have its initial and final sides coincident.

175. To every vertex of the force polygon corresponds a side

of the funicular polygon, and vice versa. The force polygon is

said to close if the last vertex coincides with the first
; similarly,

the funicular polygon might be said to close when its last side
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coincides with the first. With this convention, we may say that

the conditions of equilibrium of a plane system require the closing

of both the force polygon and thefunicularpolygon.

176. One of the most important applications of the graphical methods

is found in the determination of tJie stresses in theframe-works used for

bridges, roofs, cranes, etc. The following example will illustrate the

method.

Fig. 51 represents the skeleton frame of a roof truss subjected to the

"loads" W and the

reactions of the supports A, B.

The members of the frame in

connection with the lines of ac-

tion of these forces (imagined as

drawn from infinity up to the

points of application) divide the

whole plane into a number of

compartments marked in the

figure by the letters a, b, c, d, .

The external forces as well as

the members of the frame (or

the stresses acting along them)
E

can thus be designated by the

two letters of the two portions

of the plane separated by the

force or stress. For instance,

the reaction A is denoted ab,

and the stresses in the two mem-
bers concurring at A are be

and ca. The figure just de-

scribed may be called the frame

diagram ; and we proceed now

to construct its stress diagram*

Laying off on a vertical line

gj= \V\, eg= IV^ be = IV$, and

bisecting bj at a, we have the

polygon of the external forces which gives the reactions A = ab, B =/#.

Fig. 51.

*The student is advised to draw the stress diagram himself step by step as-

indicated in the text.
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Next, beginning at the vertex A the stresses in the two members

intersecting at A are found by resolving the reaction A along the direc-

tions of these members; and this is done in the stress diagram by

drawing parallels to these directions through the points a and b. The

intersection is denoted by c.

177. It will be noticed that the three lines meeting at A have corre-

sponding to them, in the stress diagram, the three sides ab, be, ca of

a triangle. The force A = ab is represented by ab
\
the stress in the

member be (i.e. in the member separating the compartments b, c in

the frame diagram) is represented in magnitude, direction, and sense by
the side be in the stress diagram ;

and the stress in the member ca is

given by the side ca of the triangle abc. To obtain the sense of each

stress correctly, the triangle abc in the stress diagram must be traversed

in the sense of the known force A = ab this shows that the member be

is compressed, the stress at A acting towards A, while ca is subject to

tension.

It will be found in general that the lines of the stress diagram corre-

sponding to all the lines meeting at any one vertex of the frame diagram

form a closedpolygon. The reason is obvious : the forces at the vertex

must be in equilibrium.

178. To continue the construction of the stress diagram, we pass to

.another vertex of the frame diagram, selecting one at which not more

than two stresses are unknown. Thus at the vertex acd the stress in ac

is known, being represented by ac in the stress diagram. Hence drawing

through a a parallel to da, through c a parallel to cd, we find the point d

of the stress diagram.

The vertex dcbef can now be attacked
; dc, cb, be are already drawn,

and it only remains to draw ef parallel to <f/"and ^7" parallel to df.

The rest explains itself. Considerations of symmetry are frequently

helpful in affording checks.

179. Exercises.

(1) Check the computed stresses of Exercises (i) and (2), Art. 172,

by constructing the stress diagrams.

(2) Find the stresses in the frame (Fig. 52), if the load consists of

: seven equal weights, of 2 tons each, applied at the joints of the upper
chord. Owing to the symmetry of the figure, it is sufficient to construct
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the stress diagram for half the frame. At the vertex F, a difficulty

arises, there being apparently three members whose stresses are not

I

Fig. 52.

known from the previous construction ;
but on account of the symmetry

with respect to EF, the members FG and FH must have equal stresses.

180. Shearing Force and Bending Moment. Consider a hori-

zontal beam fixed at one end A (Fig. 53), and acted upon at the

other end B by a vertical force F. If the beam be cut at any

point C of its length, and the equilibrium of the portion AC be

considered, the action on AC of the

portion removed must be replaced

by its equivalent. Now the force B .C .

F at B is equivalent, by Art. 136,

to an equal and parallel force F at I

C in connection with a couple whose Fig. 53.

moment is F- BC.

The force F at C is called the shearing force of the cross-

section C, and the moment F-BC the bending moment at C.

Both are of great importance in engineering, as their combined

effect represents what must be overcome by the resistance of

the material of the beam, i.e. by the internal forces holding

together its fibres.

These definitions are readily generalised. Let any beam or

girder, supported in any manner, and acted upon by any number

of vertical forces, be divided by a vertical cross-section into two

portions A and B. For the portion A the shearing force at the

cross-section is the sum of all the external forces acting on B
;

and the bending moment is the sum of the moments of all these

forces with respect to some point in the cross-section.
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181. According to its definition the bending moment of a

beam at any cross-section is found by adding the moments, with

respect to the cross-section, of all the external forces on one

side of the section.

Graphically, the bending moment is readily derived from the

funicular polygon. Thus in Fig. 54, for the cross-section a/3,

the resultant of the forces on the left is R' =A IV
1
W

2
= o 3 in

Fig. 54.

the force polygon. Its position is found by bringing to inter-

section the two sides A'B 1 and II III of the funicular polygon
met by the section a/3. For the funicular polygon resolves A

along A*B' and A'l, Wl along IA' and I II, IV2 along II I and

II III. The components falling into the same line being equal

and opposite (as appears from the force polygon), the forces A,

W
lt

JV2 are together equivalent to the components along A'B*

and II III
;
their resultant R' must therefore pass through the

intersection 5 of these lines.
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Now if p be the horizontal distance of the point 5 from aft,

the bending moment at a/3 is R 1

-/ = o 3 -p. If a/3 intersect A'B'

in P, II III in Q, the triangles SPQ and #03 are similar, so

that their altitudes p and H are as the homologous sides PQ
and o 3 ;

hence

and the value of the bending moment is H PQ. As H is

constant, we find that the bending moment is proportional to the

vertical height, or ordinate, of thefunicular polygon.

5* FRICTION.

182. The reaction between two surfaces in contact has so far

been regarded as directed along the common normal of the

surfaces. This is true when the surfaces are perfectly smooth.

The surfaces of physical bodies are rough, i.e. they present

small elevations and depressions ;
when two such surfaces are

"in contact" the projections of one will more or less enter into

depressions of the other
;

the greater the normal pressure

between the surfaces, the more will this be the case. Hence

when a tangential force acting on one of the bodies tends to

slide its surface over that of the other body, a resistance will be

developed whose magnitude must depend on the roughness of

the surfaces and on the normal pressure between them. This

resistance is called the force of friction.

The study of friction belongs properly to applied mechanics,

and will here only be touched upon very briefly.

183. Imagine a body resting with a plane surface on a hori-

zontal plane. Let a small horizontal force P be applied at its

centroid (which is supposed to be situated so low that the body
is not overturned), and let the force P be gradually increased

until motion ensues. The value of P when motion just begins

is equal and opposite to the frictional resistance F between the
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surfaces at this moment, and this resistance is called the limiting

static friction.

Careful experiments have shown this force to be subject to

the following laws :

(i) The magnitude of the limiting friction F bears a constant

ratio to the normal pressure N between the surfaces in contact ;

that is

where
//,

is a constant depending on the condition and nature of

the surfaces in contact. This constant which must be deter-

mined experimentally for different substances and surface

conditions is called the coefficient of static friction. It is in

general a proper fraction
;
for perfectly smooth surfaces

/JL
= O.

(2) For a given normal pressure the limiting static friction,

and hence the coefficient of static friction, is independent of the

area of contact,

184. The frictional resistance between two surfaces in rela-

tive motion is called kinetic friction. It is subject, in addition

to the two laws just mentioned, to the third law :

(3) Kinetic friction is independent of the velocities of the bodies

in contact.

The coefficient of static friction is generally slightly greater

than that of kinetic friction.

It must not be forgotten that these so-called laws of friction

are experimental laws, and therefore true only approximately,

and within the limits of the experiments from which they were

deduced. When the relative velocity of the surfaces in contact

is very high, and when, as is usually the case in machinery,

lubricating material is introduced between the two surfaces, th

frictional resistance is found to depend on a number of other

circumstances, such as the temperature, the form of the sur^

faces, the velocity, the nature of the lubricator, etc.

185. Consider again a body resting on a horizontal plane

(Fig. 55), and acted upon by a horizontal force PJust large-

i
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enough to equal the limiting friction F. The normal reaction

N of the plane is equal and opposite to the weight W. The

body is thus in equilibrium un-

der the action of the two jDairs of

equal and opposite forces
;

but

motion will ensue as soon as P
is increased. If P be decreased,

.Fwill decrease at the same rate,

so that the equilibrium remains |W
undisturbed. Fi - 55 -

The force of friction Fcan be combined with the normal reac-

tion Nto form a resultant,

which represents the total reaction of the horizontal plane.

If $ be the angle between N and R when F has its limiting

value F=pN(Art. 183), we have, since tan< = F/A
r
,

tan
cf)
=

fju.

The angle < thus gives a kind of graphical representation for

the coefficient of friction p ;
it is called the angle of friction.

186. If the plane be not horizontal, but inclined to the hori-

,<* zon at an angle 6, the weight W
>/ of the body (regarded as a particle)

resting on the plane can be re-

solved into a component J^Fsin#

along the plane, and a component
W cos perpendicular to it (Fig.

56). Hence, if no other forces

act on the body it will be in equi-

librium, provided the component
Ws'mO be not greater than the

The limiting condition of equi-

Fig. 56.

limiting friction F=/J, Wcos 6.

librium is, therefore,

fj,
IVcos = Wsin 0, or

//,
= tan

;
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in other words, if the angle 9 be gradually increased, the

body will not slide down the plane until 6 > <. This fur-

nishes an experimental method of determining the angle of

friction $, which on this account is sometimes called the angle

of repose.

187. A particle P (Fig. 57) will be in equilibrium on any

rough surface, if the total reaction of the surface, i.e. the result-

/ ant R of the normal reaction

N and the friction F, is equal

and opposite to the resultant

/ R' of all the other forces act-

ing on the particle.

The limiting value of the

angle between N and R is
</>,

so that the particle can be in

57<
equilibrium only if the result-

ant R' makes with the normal an angle <<. Hence, if about

the normal PN as axis, and with P as vertex, a cone be

described whose vertical angle is 2$, the condition of equi-

librium is that R' must lie within this cone.

The cone is called the cone of friction.

188. Exercises.

(1) A particle of weight W"\s in equilibrium on a rough plane inclined

to the horizon at an angle 6, under the action of a force P parallel to

the plane along its greatest slope. Determine P: (a) when 6 > <, (^)

when =
<f>, (c) when 6 < <, < = tan"1

/* being the angle of friction.

(2) Determine the tractive force required to haul a train of 100 tons

with constant velocity up a grade of 2.5 per cent if the coefficient ol

friction is 1/200.

(3) A weight W is to be hauled along a horizontal plane, the coeffi-

cient of friction being /*
= tan

</>.
Determine the required tractive force

P if it is to act at an inclination a. to the horizon, and show that this

force is least when =</>.
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(4) A particle of weight Wis kept in equilibrium on a plane inclined

at an angle 6 to the horizon by a force P making an angle a with the

line of greatest slope (in the vertical plane at right angles to the intersec-

tion of the inclined plane with the horizon). Find the conditions of

equilibrium when the particle is on the point of moving (a) down the

plane, (^) up the plane.

(5) A homogeneous straight rod AB = 2/ of weight Crests with one

end A on the horizontal floor, with the other end B against a vertical wall

whose plane is at right angles to the vertical plane of the rod. If there

be friction of angle < at both ends, determine the limiting position of

equilibrium.

(6) Two particles whose weights are W, W are in equilibrium on an

inclined plane, being connected by a string directed along the line of

greatest slope. If the coefficients of friction are /*, /x', determine the

inclination of the plane.

189. The idea of the angle of friction suggests a graphical method for

problems on equilibrium with friction.

The case of a rod resting on two inclined planes, Art. 150, Fig. 41,

may serve as an example. If the intersection E of the normal reactions

A and B lies on the vertical through D, the rod will be in equilibrium

whether there be friction at A and B or not. When this condition is

not fulfilled, the rod may still be in equilibrium if there be sufficient fric-

tion between the ends of the rod and the supporting planes.

Let p.
= tan $ be the coefficient of friction on the plane CA, /x'

= tan< f

that on CB
;
then the total reactions at A and B will, by Art. 185,

make angles not greater than < and
<f>', respectively, with the normals to

the planes. Hence the two limiting positions of equilibrium for the

weight W, in a given position of the rod, can be found by bringing the

lines of these total reactions to intersection
;
the limiting position of W

is the vertical through this intersection. Thus, to prevent the rod from

sliding up the plane CA and down the plane CB., the friction angles <,

<' must be applied in the negative sense (clockwise) to the normals at

A and B
;

this gives one limiting position D 1

for the point D. The

other position D" is found by applying the friction angles in the positive

sense. Equilibrium will therefore subsist if the weight be placed any-

where between D 1 and D".

PART II 8
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The construction is somewhat simplified when < = <' since then the

intersections of the total reactions lie on the circle described about

ABC (Fig. 58).

W

Fig. 58.

190. As another example consider the ordinary jack intended to raise

an eccentric load JFacting vertically downwards through A (Fig. 59) by
a force P passing vertically upwards through

the pitch-line B of the rack. Near C and D
the rack is pressed against the casing. The

directions of the total reactions C, D at

these points are found by applying the

friction angle to the normals.

The four forces W, P, C, D can be in

equilibrium only if the resultant of W and

D is equal and opposite to the resultant

ofP and C ; hence, if E be the intersec-

tion of W and D, F that of .P and C, each

of these resultants must act along EF.

If the load W be known, the other

forces can now be found by constructing

the force polygon. Draw i 2 = W in

position (i.e. through A) draw 2 3 paral-
Fig> 59<

lei to C; 41 parallel to D] and through

the intersection 4 of 4 i with EF draw the vertical 3 4 to the intersec-

tion 3 with 2 3.

/
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191. Journal Friction. A journal, or trunnion, is the cylindrical end

of a horizontal shaft, by means of which the shaft is supported in its

bearing. The larger circle in Fig. 60 represents a cross-section of the

journal at right angles to the axis of the shaft.

The shaft and journal may be regarded as rotating uniformly about

their common horizontal axis under the action of a driving force whose

moment with respect to a point O on the axis would have to be exactly

equal and opposite to that of the resistance, or load, if there were no

journal friction. For, in this case, the reaction of the bearing to the

weight WQ{ the shaft would act vertically

upwards through the axis of the shaft,- so

that its moment would be zero.

The existence of friction at the place

of contact A between journal and bearing

requires an increase of the driving force,

which may be regarded as a small tan-

gential force P applied at any point B,
such that its moment P- OB equals the

moment about O of the frictional resist-

ance at A.

192. Let C be the intersection of the

direction of this force /'with the vertical

through O and A, which is the line of
Pig 50.

action of the weight W of the shaft.

The resultant of P and W passes through C, and intersects the circum-

ference of the journal in a point D near A
;
the total reaction of the

bearing is equal and opposite to this resultant. As the total reaction

must make an angle equal to the angle of friction < with the normal at

D which passes through the centre O, we have for the perpendicular

OE dropped from O on CD,

OE = p = r sin
<f>,

where r is the radius of the journal. A circle described about O, with

p as radius, has the total reaction of the bearing as a tangent. This

circle is called the friction circle. As
<J>

is generally very small in the

case of journal friction, //,
= tan< can be substituted for sin<, and we

have for the radius p of the friction circle

As soon as any one point is known through which the total reaction
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must pass (as the point C in Fig. 60), its direction is found by drawing

through this point a tangent to the friction circle.

193. If the shaft revolved in the opposite sense, i.e. clockwise

(instead of counter-clockwise, as assumed in Fig. 60), the tangent to

the friction circle would have to be drawn through C on the other side

of the friction circle.

In the case of axle-friction, i.e. when the journal, or axle, is fixed,

while the bearing, or hub, revolves about it, the same considerations

would apply, except that the point of application of the total reaction

would now be at the top, at D', instead of D.

194. Pin-friction, as it occurs in link-work and jointed frames that

are not absolutely stiff, is not different from journal friction or axle-

friction, and can be treated in the same way. Thus, a link connected

to other parts of a machine by means of a pin at each end would trans-

mit the force along the line joining the centres of the pins if there were

no friction. To take account of pin-friction, we have only to draw the

friction circles about the centre of each pin; the direction in which

the force is transmitted by the link is tangent to both these circles.

Which one of the four common tangents represents this direction must

be decided in each particular case by considering that the reaction

exerted by one link on another connected with it by a pin is in the

direction of the motion of the former relative to the other. Thus if

the link AB (Fig. 61) be subject to tension, and its motion relative to

Fig. 61.

the adjoining links at A and B be as indicated by the arrows in the figure,

the contact between the link and pin will be on the outside both at A and

at B
;
the friction is, therefore, directed downwards at A and upwards at

B, and the line PQ along which the force is transmitted touches the

friction circle at A below, at B above.

If the link were under compression, with the same relative motions,

the line of force would have the direction P' Q'.
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195. The simplest case of pivot friction is that of a vertical shaft of

weight W resting with its circular end on a plane horizontal support.

If a be the radius of the end of the shaft, the pressure per unit of area

is W/TTO?, and the pressure on a polar element of area is - rdrdO.

W 'Ira

The friction at this element, ^ - -

rdrdQ, is directed along the tangent

to the circle of radius r
;

its moment with respect to the centre O of the

circle is therefore ^-^r
z
drdO. Hence the whole moment of friction

about O is
va

ira'

This may be regarded as the moment of a force /xW applied at a

distance \a from the centre.

196. Belt-friction, A belt running over two pulleys and stretched so

tight as to prevent slipping is a common means of transferring the

rotary motion about the axis of one pulley, say A t
to the axis of the

other pulley B ;
A is called the driver, B is the driven pulley. We

assume the axes parallel and the rotation counter-clockwise.

When the pulleys are at rest the tension in CE (Fig. 62) is of course

Fig. 62.

equal to the tension in DF. But if the pulley A be set in motion, say

by a tangential driving force P acting at a lever-arm /, while the pulley
B experiences a resistance Q whose arm is q, the tension in CE will

increase to a certain value Tlt and the tension in DF will decrease to

a value T2 until the difference 7J 7"2 is sufficient to overcome the

resistance Q. This difference is due to the friction along the surface

CGD. If the resistance Q be too great this friction might not be suffi-

cient, and slipping of the belt on the driver would occur.
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197. Let us try to determine the condition which 71 and T2 must

satisfy to prevent slipping. To do this we determine the equilibrium of

the belt at the moment when slipping is just on the point of taking

place.

The tension of the belt decreases gradually along the arc CGD from

the value 71 at C to the value Ts at D. Let it be T at the point P and

T+ dT'at the near point P' (Fig. 63). The portion PP' of the belt is

in equilibrium under the action of the forces T, T -\- dTand the reaction

dR of the pulley ;
hence dR must pass

through the intersection of T and

T-\- dT and must make with the radius

APan angle equal to the friction angle <.

Resolving these forces along T and at

right angles to it, we have, if %.PAP'=dO,

T+ dR sin < = T+ dT,

or dR sin
<f>
= dT,

dR cos < = TdO ;

T+dT
hence, dividing,

i dT
Fig. 63.

Putting /u,
for tan < and integrating over the whole arc of contact, we

find, if be the angle of this arc,

log 71 -log T2
= n$,

or
T

For the common system of logarithms this becomes

log
* = 0.4343 /*0,

where must be expressed in circular measure.

198. Rolling Friction. The resistance offered by a surface to

tbe rolling of another surface over it is of a somewhat different

nature from that of ordinary or sliding friction. In sliding fric-

tion, the same point or surface area of one body comes in
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contact with different points or areas of the other. In the case

of rolling friction, the points that come successively in contact

.are different for both bodies.

Let us examine the simplest case, viz. that of a cylinder roll-

ing over a horizontal plane. If both cylinder and plane were

perfectly rigid, there could be no resistance to rolling. This

Fig. 64.

resistance is due to the compression both of the lower part of

the cylinder and of the plane. Experiments made with a heavy
roller on india-rubber have shown that the supporting surface

when elastic is not only compressed under the roller but bulges

out in front and behind, as indicated in Fig. 64. Thus, the area

of contact is considerably increased, and as the roller advances,

the portion AB of its surface rubs over the surface of the sup-

port, while the elastic material of the support in trying to regain

its horizontal surface causes friction over the area B 1A also.

The experiments indicate for the value Fof. rolling friction an

expression of the form

where W is the weight, r the radius of the cylinder, and ^ a

constant depending on the nature of the materials in contact.

For hard surfaces, this constant of rolling friction p' is very

much smaller than the constant of sliding friction /z.

199. On the subject of plane statics the student may consult in par-

ticular the recent work : E. J. ROUTH, A treatise on analytical statics^
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with numerous examples, Vol. I., Cambridge, University Press, 1891 ;

also G. M. MINCHIN, A treatise on statics with applications to physics,

Vol. I., 3d ed., Oxford, Clarendon Press, 1884 ;
I. TODHUNTER, Analyti-

cal statics, 5th ed. by J. D. Everett, London, Macmillan, 1887 ;
B. PRICE,

Infinitesimal calculus, Vol. III. : Statics and dynamics of material par-

ticles, 2d ed., Oxford, Clarendon Press, 1868. For problems, see also

W. WALTON, Collection of problems in illustration of the principles of

elementary mechanics, 2d ed., Cambridge, Deighton, 1880.

Numerous applications to civil and mechanical engineering will be

found in J. H. COTTERILL, Applied mechanics, London, Macmillan, 1884 ;

W. J. M. RANKINE, A manual of applied mechanics, 9th ed. by E. F.

Bamber, London, Griffin, 1877; A. RITTER, Lehrbuch der technischen

Mechanik, 5th ed., Leipzig, Baumgartner, 1884 ; J. WEISBACH, Mechan-

ics of engineering, Vol. I., translated by E. B. COXE, New York, Van

Nostrand, 1875 ;
and in works on graphical statics.

On friction, see in particular : G. HERRMANN, The graphical statics of

mechanism, translated by A. P. Smith, 2d ed., New York, Van Nostrand,

1892 ;
R. H. THURSTON, Treatise on friction and lost work in machinery

and mill work, New York, Wiley, 1885 ; J. H. JELLETT, The theory of

friction, Dublin, Hodges, 1872.
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VI. Solid Statics.

I. THE CONDITIONS OF EQUILIBRIUM.

200. The equilibrium of a rigid body in the most general

case, that is, when acted upon by any number of forces F in a

space of three dimensions, can be investigated in a manner

similar to that adopted for the plane system in Art. 139.

Selecting as origin any point O rigidly connected with the

body, let two equal and opposite forces F, F be applied at O,

for every one of the given forces F (Fig. 65). The effect of the

given system of forces on

the body is not changed by
the introduction of these

forces at O. But we may
now regard the given force

F acting at its point of

application P as replaced by
the equal and parallel force

Fat O, in combination with

the couple formed by the original force F at P and the force F
at O. All the forces of the given system are thus transferred

to a common point of application O, and can therefore be com-

pounded into a single resultant R, passing through O and

represented in magnitude and direction by the geometric sum of

the forces. In addition to this resultant R, we obtain as many

couples (Ft F) as there were forces given ;
and their resultant

is found by geometrically adding the vectors of the couples

(Art. 134).

Thus the given system of forces is seen to be equivalent to a

resultant R in combination with a couple whose vector we shall

call H\ in other words, it has been proved that any system of

forces acting on a rigid body can be reduced to a single resultant

force in combination isjith a single resultant couple.

Fig. 65.
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201. A further reduction is in general not possible.

general conditions of equilibrium are, therefore,

[201.

The

202. Under special conditions it may of course happen that

R is perpendicular to the vector H. In this case R and H com-

bine to a single force R (Art. 135), and if the origin be taken on

the line of this force, the whole system reduces to a single

resultant.

203. It is to be noticed that in the general reduction of forces

(Art. 200), the magnitude, direction, and sense of the resultant

force R are entirely independent of the position of the origin O,

the resultant being simply the geometric sum of all the given

forces. The resultant couple H, on the other hand, will in

general differ according to the origin selected.

To investigate this dependence, let R
t
H (Fig. 66) be the ele-

ments of reduction for the origin O\ i.e. let R be the resultant,

H the vector of the resulting couple of

a given system of forces when O is

selected as origin. To find the ele-

ments of reduction of the same system
of forces when some other point O' is

taken as origin, it is only necessary to

apply at O' two equal and opposite

forces R, R, each equal and parallel

to the original resultant R. The given

system of forces being equivalent to

R and H at O will also be equivalent

to the resultant R at O 1

,
the couple

whose vector is H (which may be

drawn through O' without changing its effect), and the couple

formed by R at O and -R at O'. If / be the line of R through

O, V the line of R through O', and r the distance of these

parallels, the moment of the latter couple is Rr and its vector is

at right angles to the plane (/, O'). Combining the vectors H

-R

I
1

Fig. 66.
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and Rr into a resultant vector H 1

by geometric addition, we
have found the elements of reduction R, H' for the origin O'.

204. If the new origin O' had been selected on the line / of

the original resultant, no new couple (R, r) would have been

introduced, and H would not have been changed. But when-

ever the line of action / of the resultant is changed, the vector

of the resultant couple H is changed.

By increasing the distance r between / and /' the moment Rr
of the additional couple is increased. The effect of combining
this additional couple Rr with H is, in general, to vary both the

magnitude of the resulting couple H' and the angle <f>
it makes

with the direction of the resultant R. It can be shown that the

line /' of the new resultant can always be selected so as to

reduce the angle <f>
to zero. The line / for which $= o, i.e. for

which the vector H of the resultant couple is parallel to the

resultant force R, is called the central axis of the given system
of forces. We proceed to show how it can be found.

205. Let the vector H be resolved at O into a component
J~f

Q
=H cos $ along /, and a component

angles to /(Fig. 67). In the plane pass-

ing through / at right angles to H
ly

it

is always possible to find a line / par-

allel to / at a distance rQ from /, such

as to make Rr
Q
= Hv

The line / so determined is the cen-

tral axis. For, if this line be taken as

the line of the resultant R, the addi-

tional couple Rr
Q destroys the compo-

nent ffv so that the resulting couple

HQ has its vector parallel to R.

206. As the direction of the vector

H is always changed in passing from

at right

Fig. 67.

line to line, there can be but one central axis for a given system
of forces.



124 STATICS. [207.

It appears from the construction of the central axis given in

Art. 205, that the vector of the resulting couple for this axis /

is HQ=HCOS$ ;
it is, therefore, less than for any other line.

It is instructive to observe how the vector H increases and

changes its direction as we pass from the central axis / to any

parallel line /.

The transformation from / to / requires the introduction of a

couple (R, r
Q) whose vector Rr

Q (Fig. 68) is at right angles to

the plane (/ , /) and combines with //" to form the resulting

couple H for /. As the distance rQ

of / from / is increased, both the

magnitude of H and the angle </>
it

makes with / increase until, for an

infinite r
Q ,

the angle $ becomes a

right angle.

-R

I-

207. It is evident that since i

= ff cos
(f>,

the product RH cos is a

constant quantity for a given system
of forces. It has been called the

invariant of the system.

If the elements of reduction for the

central axis (R, HQ)
be given, those

for any parallel line / at the distance r
Q
from the central axis are

determined by the equations

Fig. 68.

208. To sum up the results of the preceding articles, it has

been shown that any system offorces acting on a rigid body can

be reduced, in an infinite mimber of ways, to a resultant R in

combination with a couple H. For all these reductions the mag-

nitude, direction, and sense of the resultant R are the same, but

the vector H of the couple changes according to the position

assumed for the line of R. There is one, and only one, position

of R, called the central axis of the system, for which the vector
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H is parallel to R, and has at the same time its least value, HQ ;

this value H is equal to the projection of any other vector H
on the direction of the resultant R.

209. While, in general, a system of forces cannot be reduced

to a single resultant, it can always be reduced to two non-inter-

secting forces. This easily fol-

lows by considering the system
reduced to its resultant R and

resulting couple H for any

origin O (Fig. 69). Let F,

F be the forces, / the arm

of the couple //", and place this

couple so that one of the forces,

say F, intersects R at O.

Then, combining R and F
to their resultant F', the given

Fig. 69.

system of forces is evidently equivalent to the two non-inter-

secting forces F, F' (compare Art. 137).

210. The two forces F, F' determine "a tetrahedron OABC\
and it can be shown that the volume of this tetrahedron is con-

stant and equal to one sixth of the invariant of the system

(Art. 207). The proof readily appears from Fig. 69. The

volume of the tetrahedron OABC is evidently one half of the

volume of the quadrangular pyramid whose vertex is C and

whose base is the parallelogram OBAD. The area of this

parallelogram is Fp= H\ and the altitude of the pyramid is

=
Rcos(j), being equal to the perpendicular let fall from the

extremity of R on the plane of the couple ;
hence the volume of

the tetrahedron
=RH cos 0=

211. To effect the reduction of a given system of forces

analytically, it is usually best to refer the forces F and their

points of application P to a rectangular system of co-ordinates
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Ox, Oy, Oz (Fig. 70). Let x, y, z be the co-ordinates of P and

X, Y, Z the components of F parallel to the axes.

To transfer these components to O as common origin, we

proceed similarly as in Art. 142. Thus to transfer, say X, we
introduce at P', the foot of the perpendicular let fall from P on

the plane zx, two equal and opposite forces X, X; and we do

the same thing at O. Then the single force X at P is replaced

by the force X at O in combination with the two couples formed

by X at P, -X at P', and X at P'
,
-X at O. The vector of

the former couple is parallel to Oz, its moment is yX\ the

negative sign being used because for a person looking on the

plane of the couple from the positive side of the axis Oz the

IP

-X P' X

Fig. 70.

couple rotates clockwise. The vector of the latter couple is

parallel to Oy, and its moment is zX.

The transfer of Y to the origin O requires the introduction of

two couples, zY having its vector parallel to Ox, and xY
having its vector parallel to Oz.

Finally, transferring Z to O, we have to introduce the couples

xZ witlfla vector parallel to Oy, andyZ with a vector parallel

to Ox. \

Thus each force F is replaced by three forces X, Y, Z along

the axes of io-ordinates and applied at O, in combination with

three couples whose vectors areyZzY parallel to Ox, zXxZ
parallel to Oy, xYyX parallel to Oz.
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212. Doing the same thing for every force of the given sys-

tem and adding the components having the same direction, the

system will be found equivalent to the three rectangular forces

SF,

applied at O, together with the three couples

whose vectors are at right angles.

The three forces can now be compounded into a single

resultant

whose direction is determined by the angles a, ft, 7. which it

makes with the axes Ox, Oy> Oz,

^ Y
Cosa=- -, cos/3= , cos7=-K K K

In the same way the three couples can be compounded into

a single resulting couple whose moment is

213. Since R*, as well as //2
,

is thus found as the sum of

three squares, each of these quantities can vanish only if the

three squares composing it vanish separately. The conditions of

equilibrium of a rigid body (Art. 201) are therefore expressed

analytically by the following six equations :

As the system of co-ordinates can be selected arbitrarily, the

meaning of the first three equations is that the sum of the com-

ponents of all the forces along any three lines not in the same

plane must vanish. The last three equations express that the
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sum of the moments of all the forces about any three axes not

in the same plane must also vanish. The moment of a force

about an axis must be understood as meaning the moment of its

projection on a plane at right angles to the axis with respect to

the point of intersection of the axis with the plane. This defi-

nition is in accordance with the somewhat vague notion of the

moment of a force as representing its
"
turning effect." For,

regarding the force as acting on a rigid body with a fixed axis,

the force can be resolved into two components, one parallel, the

other perpendicular, to the axis
;

the former component does

evidently not contribute to the turning effect, which is therefore

measured by the moment of the latter alone.

214. The equations of the central axis (Art. 204) can be found

by a transformation of co-ordinates.

Let the system be reduced for any origin O to its resultant R,

whose rectangular components we denote by

and to the vector //"of its resulting couple with the components

If a point <9
f whose co-ordinates are f, 77, f be taken as new

origin and the co-ordinates of any point with respect to parallel

.axes through O' be denoted by x\ y\ z\ we have x^^-x\
z-=%+z'. Substituting these values, we find

L = 2 [ (17 +/)Z- (?+*') Y]=^Z-& K+2(/Z-*' Y)

where L' is the ^-component of the couple H* resulting for O'

as origin. Similar expressions hold for M and N. The com-

ponents of H 1 are therefore

.and its direction cosines are
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p=*

I29

L[
IJ! H l H'

The central axis being defined (Art. 204), as that line for

which the vector of the resulting couple is parallel to the direc-

tion of the resultant, the point <9'(f, ??, )
will lie on the central

axis if the direction cosines of H' are proportional to those of

J?, viz., to

<*= -> = -> =-
j~) j~) I r)
J\ J\. I\.

Hence the equations of the central axis are

B
~

C

or
A B C

215. To show the application of the conditions of equilibrium, let us

consider the simple machine called the wheel and axle. It consists of a

horizontal shaft (Fig. 71) resting with its ends on the supports or bear-

ings A, B, and is intended to raise a weight W, suspended vertically by
means of a rope wound around the shaft. The driving force F is applied

W
Fig. 71.

on the circumference of the "wheel,"/.*, in a vertical plane at right

angles to the axis of the shaft. It is required to find the relation

between F and W for equilibrium, and the pressures on the bearings

PART II 9
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Let r be the radius of the shaft, R that of the wheel, i.e. the lever-

arm of the force F, and let F be inclined to the vertical at an angle 6 ? ,

then, with the co-ordinates and notations of the figure, the conditions

2X=o, 2Y=o, 2Z=o, give

A,+Bt
= o, A,+BV

- W-Fcos B = o, Az+ 2+Fs'm (9 = o,

where Ax,
A

y, A, are the components of the unknown reaction at A ;

Bxy By,
Bs,

those at B.

Taking moments about each of the co-ordinate axes, we find

FR = Wr, (a+6)Fsm + IBZ
= o, a W+ (a+Z>)Fcos 6-lBy

= o,

where /= a -f- b + c is the length of the shaft.

Ax and Bx must evidently be separately zero. Solving the equations,.

we find

216. As another example, consider a rigid body of weight W, sup-

ported at three points Aj, A2, A3 ;
and let it be required to determine the-

distribution of the pressure between the three supports.

Let the vertical through the centroid of the body meet the plane

of the triangle A^A^A^ in a point G, whose distances from the sides

A2A3, A3Al} A^AZ we may denote by /lf /2, A- Then, if Alf A2,
Az be

the unknown reactions, and hly h2, hz the altitudes of the triangle, we
have

and, taking moments about A2A3, A3Alr

Hence, A, = W
y A,= W, A> = w.

M! "2 "3

Substituting these values into the first equation, we find the condition,
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If G falls outside the triangle, one or two of the points Aly A2,
A3

will be subject to pressures vertically upwards. If G be the centroid of

the triangular area A^A^, we have p^/h^ p^/h^ =/3/^3
= 1/3 ; hence

in this case the three reactions are equal.

217. The axis of the hinges of a door is inclined at an angle 6 to the

horizon. The door is turned out of its position of equilibrium by an

angle <f>,
and held in this position

by a force F perpendicular to the

plane of the door. Determine F
and the reaction of the hinges A,

B (Fig. 72).

Let the axis of the hinges be

taken as the axis of x
t
the verti-

cal plane through it as the plane

zx, and the point midway be-

tween the hinges A, B as the

origin O. Regarding the door

as a homogeneous rectangular

plate whose dimensions are AB
= 2 a, OC= 2&, the co-ordinates

of its centroid G are o, b sin <,

b cos
cf>.

If the force F be ap-

plied at a point Pon the middle line OC at the distance OPp from

O, the co-ordinates of its point of application P are o, / sin <, p cos <.

To proceed systematically, we may tabulate the components of the

forces, and the co-ordinates of their points of application, and then

form the component couples, as shown below. The components
of the unknown reactions A, B of the hinges are called Ax,

A
y,
As,

*, B Bs .

Fig. 72.

FORCES.
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From this table the six conditions of equilibrium are at once obtained :

= o, (i)

= o, (2)

= o, (3)

=o, (4)

Wb sin cos < + ( Az + Bz)a = o, (5)

= o. (6)

If the reactions were not required, equation (4) alone would be suffi-

cient, as it furnishes the value of F, viz.,

F=-cos0sm<f>.W
r

.

P

This relation can of course be found directly by taking moments about

the axis of the hinges. It shows that, for a given inclination of the hinges,

F is greatest when < =
?r/2.

The remaining five equations are sufficient to determine Ax + Bx ,

A
y,
Az,

B
y ,
Bz .

To find the reactions for a door with vertical axis, we have to put
6 = 7T/2, which gives, of course, F=o, and

A
y -By

= -- Wsm 4>, AZ -BZ
= --

a a

as
</> may be assumed = o in this case, we find

The signs indicate that the upper hinge A is pulled out while the

lower one B is pressed in.

2. CONSTRAINTS.

218. It has been shown in Art. 213 that the number of the

conditions of equilibrium is six, for a rigid body that is perfectly

free. This number will be diminished whenever the body is

subject to conditions restricting its possible motions. Such
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conditions, or constraints, may be of various kinds
;
the body

may have a fixed point, or a fixed axis, or one of its points may
be constrained to move along a given curve or to remain on a

given surface, etc.

As explained in Kinematics, Art. 37, a free rigid body is said to

have six degrees of freedom. The most general form of motion

that it can have is a screw-motion, or twist, consisting of a rota-

tion about a certain axis, and a translation along this axis
;
each

of these resolves itself analytically into three rectangular com-

ponents, and these six components may be regarded as consti-

tuting the six possible motions of the body, on account of which

it is said to have six degrees of freedom.

Equilibrium will exist only when these six possible motions are

prevented ;
hence there must be six conditions of equilibrium.

219. We proceed to consider some forms of constraint and

the corresponding changes in the equations of equilibrium.

It is generally convenient in dynamics to replace such restrain-

ing conditions by forces, usually called reactions. Whenever'it

is possible to introduce such forces having the same effect as

the given conditions, the body may be regarded as free, and the

general equations of equilibrium can be applied.

Before considering the constraints of a rigid body, those of a

single particle, or point, must be briefly discussed.

220. Particle constrained to a Surface. A free particle has

three degrees of freedom
;
and accordingly its equilibrium is

determined by three conditions (Art. 101) :

o. (i)

If the co-ordinates determining the position of the particle be

subject to one condition, expressed by an equation between these

co-ordinates, the particle is said to have two degrees of freedom

and one constraint. Its motion is restricted to the surface repre-

sented by the equation between its co-ordinates, say

4>(x,y,z)=o. (2)
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The condition that the particle should remain on this surface

can be replaced by introducing the reaction of the sujface, i.e. a

force that is always so directed as not to allow the particle to

leave the surface. Combining this force with the given forces

acting on the particle, this particle can be regarded as free, and

the general conditions of equilibrium must hold.

221. If the surface be smooth, i.e. if the particle move along

it without friction, the reaction of the surface must be directed

along the normal to the surface (2). Let N denote this normal

reaction
;
Nx,
N

v ,
Ng its components ;

then the conditions of

equilibrium are

2X+N,= o, 2F+^= o, 2Z+^.= o. (3)

The condition that N has the direction of the normal is

expressed by the relations

where <,,= -, <
y
=-2, <^= _ are obtained from (2).

ox oj/ dz

Eliminating the reactions by means of (3), we find the two con-

ditions of equilibrium,

<#> </>y </>*

The meaning of these equations is obvious
; they express that

the resultant of the given forces must have the direction of the

normal to the surface.

The problem generally consists in finding the positions of

equilibrium of the particle on the surface. The two equations

(5) represent a curve whose intersections with the surface (2)

give the required positions.
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The magnitude of the reaction N is found from (3) :

222. If the surface be rough, the total reaction of the surface

lies within the cone of friction (Art. 187), and the resultant R of

all other forces acting on the particle must therefore also fall

within this cone.

The boundaries of the regions on the surface within which

equilibrium is possible are .found by considering the total reac-

tion in its limiting position, i.e. when it makes the friction angle

tan"1

//,
with the normal to the surface.

Let N represent the normal component of the total reaction
;

Nx) Ny,
Ng its components ;

the force of friction pN lies in the

tangent plane, and has, therefore, the components pNdx/ds,

l*,Ndy/ds, pNdz/ds, for motion along any curve s on the sur-

face (2). These components of the friction must be given the

double sign T, because the force of friction may act in either

sense along the curve s. Thus, the conditions of equilibrium

are

=o,,
as

o, (6)
as

.

as

To eliminate the reactions, multiply these equations by <f>x,

<f>,
and add

;
this gives

since the differentiation of the equation of the surface (2) gives

$xdx+$ydy+ $zdz=v. Substituting for Nx,
N

v, N, their values

from (4), the equation becomes

(7)
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This equation determines the normal reaction N of the

surface.

To obtain an expression .for pN, multiply the second of the

equations (6) by (f>z,
the third by <f>y

and subtract
; owing to

the relations (4) this gives

Similarly, we find

-2 K- $ =

The left-hand members as well as the parentheses on the right

are determinants of the second order; hence, squaring and

adding, we find

(8)

If TVbe now eliminated between (7) and (8), we find the final

condition of equilibrium that must be fulfilled by the given forces

independently of the reaction of the surface :

Putting this equation into the form

i

R R' R R' R

where ^2=(2^)2
-f(2F)

2
+(2Z)2 and ^'2=

x
2+ y

2+^2
,

it is

seen to express the fact that the resultant R of the given forces

makes the friction angle with the normal, each member of the

equation being an expression for the cosine of this angle.
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The regions of the surface (2) on which the particle is in

equilibrium are cut out of this surface by the surface (9).

223. Particle constrained to a Curve. If the particle be sub-

ject to two conditions,

$ (x, y, *) =o, i/r (x, 7, z)
= 0, (10)

so that it has two constraints and but one degree of freedom, its

motion is restricted to the curve of intersection of the two sur-

faces (10). The particle may be imagined as a small sphere

moving within a tube, or as a small ring or bead sliding along a

thin wire.

224. Let .the curve be smooth, so that its total reaction is

along the normal to the curve. Denoting this normal reaction

again by N, its components by Nt1 Ny ,
JVZ) the conditions of

equilibrium are

: 0) (II)

or (12)

The condition that N has the direction of the normal can be

expressed in the form

Nxdx+Nydy+Ntdz= o,

which, by (12), reduces to
fc

Differentiating the equations of the curve (10), we find

and eliminating the differentials between the last three equa-

tions, the single condition of equilibrium, independent of the

reactions, is found in the form
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(13)

The intersections of the surface (13) with the curve (10) give

the positions of equilibrium of the particle on the curve.

The reaction of the curve, or the pressure on the curve which

is equal and opposite to this reaction, can then be found from

the equations (11).

225. For a rough curve, the total reaction resolves itself into

.a normal component N and a tangential component pN, which

represents the frictional resistance. The equations of equi-

librium are

(14)

ds

Transposing the third terms, multiplying by dx/ds, dy/ds,

) and adding, we find, since Nxdx+Nydy-\-Ngdz v,

as as as
(is)

Multiplying the second of the equations (14) by dzjds, the

third by dy/ds, and subtracting, we have

ds ds ds

-11 ^ ^ dx ^ v dz (\ r dx , r dz\
similarly, zZ - 2,X- = (Nz

---Nx
-

ds ds \ ds ds)

ds ds
,-
ds ds
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Each member being a determinant of the second order, we find

by squaring and adding the three equations,

ds .as ds

The reaction N can now be eliminated between (15) and (16),

and we obtain the single condition of equilibrium independent

of the reaction :

_ _
ds ds ds Vi -fyu,

2

(17)

The differential coefficients dx/ds, dy/ds, dz/ds must satisfy

the differential equations of the curve (10), viz. :

dx . , dy . , dz

d-s
+
*'i

+*'^
=0>

dx .
, dy .

, dz-

If the values of dx/ds, dy/ds, dz/ds be determined from the

last three equations and substituted into the relation

the equation of a surface will result, which cuts out, on the curve

(10), the limits between which equilibrium is possible.

226. Rigid Body with a Fixed Point. A body that is free to

turn about a fixed point A can be regarded as free if the reaction

A of this point be introduced and combined with the other

forces acting on the body.

Let A x,
A

yJ
Ag be the components of A

; then, taking the fixed

point A as origin, the six equations of equilibrium (Art. 213) are
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The first three of these equations serve to determine the

reaction of the fixed point ;
the last three are the actual con-

ditions of equilibrium corresponding to the three degrees of

freedom of a body with a fixed point.

Hence, a rigid body having a fixed point is in equilibrium if

the sum of the moments of all the forces vanishes for any three

axes passing through thefixedpoint and not -situated in the same

plane.

227. Rigid Body with a Fixed Axis, A body with a fixed axis

has but one degree of freedom
; indeed, the only possible motion

consists in rotation about this axis.

An axis is fixed as soon as two of its points, say A, B, are

fixed. Hence, introducing the reactions A t ,
A

y,
A gt B# By ,

Bz

of these points, the body can be regarded as free. If the point B
be taken as origin, the line BA as axis of z (Fig. 73), the equa-

tions of equilibrium become

B

IA,

where a= BA.

The last of the six equations is the only independent condi-

tion of equilibrium of the con-

strained body ;
the first five

determine A x, B& A
y, By,

A x

+Bg . The two ^-components

_ , ;
cannot be found separately,/ "R "7 A

jf
'

jf since they act in the same
^/D 'Ay/ straight line.

Fig. 73.

Hence, a rigid body having-

a fixed axis is in equilibrium if the sum of the moments of all the

forces vanishes for the fixed axis.

228. If, in the preceding article, the axis be not absolutely

fixed, but only fixed in direction so that the body can rotate about

the axis and also slide along it, we have evidently
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hence, by the third equation of equilibrium,

as an additional condition of equilibrium.

The body has in this case two degrees of freedom.

229. Rigid Body with a Fixed Plane. A body constrained to

slide on a fixed plane has three degrees of freedom. At every

point of contact between the body and the plane, the latter

exerts a reaction. As all these reactions are parallel, they can

be combined into a single resultant N. Taking the fixed plane

as the plane xy, TV will be parallel to the axis of z\ hence, if a,

b, o be the co-ordinates of its point of application, the six

equations of equilibrium are

The third, fourth, and fifth equations determine the reaction

N and the co-ordinates a, b of its point of application. The

three other equations are the actual conditions of equilibrium ;

they agree, of course, with the three conditions of equilibrium

of a plane system as found in Art. 143.

If there be not more than three points of contact (or supports)

between the body and the fixed plane, the reactions of these

points can be found separately. Let A v A 2 ,
A

3
be the three

points of contact
;
Nv N^ N3

the required reactions
;
av b^

#2 ,
bv a

s , 3 the co-ordinates of Av A
2 ,
A

3 ;
then N must be

resolved into three parallel forces passing through these points,

and the conditions are

a^ 4-
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These three equations determine N^ N^ A^, unless the three

points AV A
2,
A

3 be situated in a straight line
;
for in this case

the determinant of the coefficients ofN
lt N^ Nz vanishes,

i I

b
l

=o.

The reactions become almost indeterminate whenever there

are more than three points of contact.

230. In addition to the works of ROUTH, MINCHIN, PRICE, TODHUNTER

mentioned in Art. 199, the student is referred, in particular for the

more advanced parts of the subject, to W. SCHELL, Theorie der Bewe

gung und der Krafte, Vol. II., Leipzig, Teubner, 1880; A. F. MOBIUS

Lehrbuch derStatik, Leipzig, Goschen, 183 7, reprinted in MOBIUS'S Gesam
melte Werke, Vol. III., Leipzig, Hirzel, 1886

; MOIGNO, Statique, Paris

Gauthier-Villars, 1868 ; J. SOMOFF, Theoretische Mechanik, iibersetzt von

A. Ziwet, Vol. II., Leipzig, Teubner, 1879 ;
E. COLLIGNON, Statique

Paris, Hachette, 1889 ; THOMSON AND TAIT, NaturalPhilosophy, Part. II.

Cambridge, University Press, 1890.
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VII. The Principle of Virtual Work.

231. Work has been defined in Art. 72 as the product of a

force into the displacement of its point of application in the

direction of the force.

Thus the expansive force F of the steam in the cylinder of a

steam-engine, in pushing the piston through a distance s, is -said

to do work, and this work is measured by the product Fs. Simi-

larly the force of gravity, i.e. the attractive force of the earth's

mass, does work on a falling body.

The resistance to be overcome by the engine, in the former

case, and the resistance of the air in the latter, are also forces

acting on the body during its displacement. But as the sense

of the displacement is opposite to that of these forces, their

work is negative ;
work is done against these forces. Thus the

muscular force of a man who raises a weight does work against

gravity ;
if the weight he holds is so heavy as to pull him down,

gravity does work against his force
;

if he merely tugs at a

weight without being able to lift it, the work is zero, because

the displacement is zero.

232. In general, the point of application of a force /''will be

acted upon by a number of different forces, so that the displace-

ment s of this point will not necessarily take place in the direc-

tion of F. In this general case the work of a force is defined as

the product of the force into the projection of the displacement of
its point of application on the direction of the force.

In Fig. 74, for instance, the particle P while acted upon by
the force F (and any number of other

forces) is displaced from P to P 1

;
hence

if PP' = s, and KP'PQ= $, the work

of the force

(I)

It is obvious that this work might also be defined as the
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product of the displacement into the projection of the force on

the displacement ;
for we have

Fscos<t>=F-PQ= s>PR.

The work of a force is evidently positive or negative accord-

ing as the angle </>
is less or greater than Tr/2, provided we

select for < always that angle between F and s which is not

greater than TT.

233. The above definition of work assumes that the force F
remains constant, both in magnitude and direction, while the dis-

placement s takes place, and that this displacement is recti-

linear. If either, or both, of these conditions be not fulfilled,

the definition can be applied only to infinitesimal displacements

ds. As the work done by a finite force F during such a dis-

placement ds is infinitesimal, we have

and the total work done by any variable force F while its point

of application is displaced along any straight or curvilinear patl

?, is obtained by integrating from P to Q :

234. Since work can always be regarded as the product of

force into a length, its dimensions are found by multiplying

those of force, MLT~2
(Art. 64), by L

; hence, the dimensions oj

work are

The unit of work is the work of a unit force (poundal, dyne)

through a unit distance (foot, centimetre). The unit of work ii

the F.P.S. system is called the foot-poundal ;
in the C.G.S. sy

tern, the erg. Thus, the erg is the amount of work done by
force of one dyne acting through a distance of one centimetre.

These are trie absolute units.
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In the gravitation system where the pound, or the kilo-

gramme, is taken as unit of force, the British unit of work is

the foot-pound, while in the metric system it is customary to

use the kilogramme-metre as unit.

235. The numerical relations between these units are obtained

as follows. Let x be the number of ergs in the foot-poundal,

then (comp. Art. 66),

gm. cm. 2 _ Ib. ft.
2

x--
I - >

sec.2 sec. 2

hence *=^'(^) =453 ' 59>< 3O-4797
2
=4-2i39X io5 ;

i.e. i foot-poundal= 4. 2139 x io5
ergs, and I erg=2.3/2i x IO"6

= 0.000002 372 i foot-poundal.

Again, let x be the number of kilogramme-metres in I foot-

pound, then

. m. = i ft. Ib.,

hence ^=-^-=0.45359x0.3048=0.13825,
kg. m.

i.e. i foot-pound =0.13825 kilogramme-metres.

Finally, i foot-pound =g foot-poundals (Art. 69) ;
hence i foot-

pound= 1.3 56 x io7
ergs, and i erg = 7. 3737 x io~8

foot-pounds,

if ^=32.2.

236. Exercises.

(1) Ajoule being defined as io7
ergs, show that i foot-pound = 1.356

joules, and that i joule is about 3/4 foot-pound.

(2) Show that a kilogramme-metre is nearly io 8

ergs.

(3) What is the work done against gravity in raising 300 Ibs. through

a height of 25 ft. : (a) in foot-pounds, (b) in ergs?

(4) Find the work done against friction in moving a car weighing 3

tons through a distance of fifty yards on a level road, the coefficient of

friction being 0.02.

PART II 10
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(5) A mass of 12 Ibs. slides down a smooth plane inclined at an angle

of 30 to the horizon, through a distance of 25 ft.
; what is the work

done by gravity ?

237. It follows from the definition of work that, if any num-

ber of forces Fv F2 ,
. .

., Fn act on a particle P, the sum of their

works for any displacement PP' = ds is equal to the work of their

resultant R for the same displacement. For, the resultant R
being the closing line of the polygon constructed by adding the

forces Fv F2, ..., Fn geometrically, the projection of R on any

direction, such as PP', is equal to the sum of the projections of

the forces F on the same line (Art. 89) ;
that is, if <*

15 2 ,
. . .,

n be the angles made by Fv F2,
. .

., Fn with PP', and a the

angle between R and PP', we have

F
1
cos

!+F2 cos 2 H
-----\-Fn cos n=R cos a ;

multiplying this equation by ds, we obtain the above proposition

F
1
cos oL^ds+F2 cos v^ds -\

-----
\-Fn cos ands=R cos ads,

which expresses the so-called principle of work for a single

particle.

238. When the particle is in equilibrium, so that the forces

do not actually change the motion, we may derive from this

proposition a convenient expression for the conditions of equi-

librium by considering displacements that might be given to

the particle. Such displacements are called virtual, and the

corresponding work of any of the forces is called virtual work.

It is customary to denote a virtual displacement by Ss, the

letter B being used to distinguish from an actual displacement
ds

;
this distinction becomes of importance in kinetics.

239. The resultant being zero in the case of equilibrium, the

sum of the virtual works of all forces acting on the particle must

be zerofor any virtual displacement, i.e.

^i cos !&$ -fFz cos aJBs -\
-----hFH cos an$s= o. (4) ,

As the resultant must vanish if its three projections vanish

for any three axes not lying in the same plane, the necessary
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and sufficient conditions of equilibrium of a single particle are

that the sum of the virtual zvorks of all forces must be zero for

any three virtual displacements not all in tJie same plane.

This is the principle of virtual work for a single particle.

If the particle be referred to a rectangular system of co-ordi-

nates, its displacement 8s can be resolved into three com-

ponent displacements &r, by, Sz, parallel to the axes. The

forces acting on the particle being replaced by their compo-
nents X, Y, Z, the sum of their virtual works, for the displace-

ment Bs is 2-Y-&M-2K-5y+ 2Z.&sr. Hence the analytical

expression for the principle of virtual work :

$X- &r+2 Y- Sy+ 2Z-Sz= 0. (5)

As the displacements &r, fy, 8z are independent of each other,

and perfectly arbitrary, this single equation is equivalent to the

three equations
o, 2F=o,

which are the ordinary conditions of equilibrium of a single

particle.

240. The principle of virtual work is particularly useful in

eliminating the unknown reactions arising from constraints.

Suppose the particle be constrained to a smooth surface or

curve. After introducing the normal reaction of the surface

or curve the particle can be regarded as free
;
and the equation

of virtual work can be used to express the conditions of equi-

librium. This equation will, in general, contain the unknown

reaction. But as this reaction has the direction of the normal,

it will be eliminated if the virtual displacement be selected

along a tangent. Hence, immhe case of constrainment to a sur-

face, the two conditions of equilibrium independent of the reaction

are found by forming the^^uiation of virtual work for virtual

displacements along any tw^^mLgents
to the surface ; and in the

case of constrainment to a 40^ the one suck condition isfound

from a virtual displacement along the tangent.

If it be required to find the normal pressure on the surface
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or curve, which is of course equal and opposite to the reaction,

it can be found from a virtual displacement along the normal.

241. If the equation (4) which expresses the principle of vir-

tual work be divided by the element of time &*, during which

the displacement 8s would take place, the factor s/$t=v repre-

sents a virtual velocity, and the equation becomes

F
1
cos

!
v -fF2

cos
2

v -\ hFn cos an v= o.

On account of this form, the proposition is often called the

principle of virtual velocities.

The product of a force into the virtual velocity of its point of

application in the direction of the force, Fcosct'V, is some-

times called the virtual moment of the force.

242. The principle of virtual work can readily be extended to

the case of a rigid body acted upon by any number of forces.

The forces acting on a rigid body can always be reduced to a

resultant R and a resulting couple H (Art. 200). This reduc-

tion is based on the supposition (Art. 84) that the point of

application of a force can be displaced arbitrarily along the line

of the force. It can be shown that

such a displacement of the point of ap-

plication P of a force F (Fig. 75), from

P to Q along the line of the force, does

not affect the work done by the force

in any infinitesimal displacement of the

body. Let PF' = Ss be the displace-

ment of j?, QQ' = Ss' that of g; let p
and q be the projections of P and Q on

the line (the force F\ then, since the

body is rigid, P'Q' = PQ\ and conse-

quently Q^Kill ^differ from Pp only by
an infinitesimal of an order hi^HF than the order of the dis-

placement PP' = 8s. Hence, ^p
F-Pp=F. Qq.

Fig. 75.
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It may here be noted that, in general, the principle of virtual

work must be understood to mean that the sum of the works

of the forces differs from the work of their resultant by an

infinitesimal of an order higher than that of the virtual dis-

placement. It does not mean that the difference is absolutely

zero.

243. Owing to the proposition proved in the preceding article,

the sum of the works of all the forces acting on a rigid body is

equal to the sum of the works of the resultant R and the result-

ing couple H for any infinitesimal displacement of the body,

and the work of the forces is not changed by such a displace-

ment.

It follows that the necessary and sufficient conditions of

equilibrium of a rigid body (Art. 201), viz.

^ = 0, H=o,

can be expressed by saying that the sum of the virtual works

of all theforces must be zero for any infinitesimal displacement

of the body.

For when the forces are in equilibrium, this condition is

evidently fulfilled. To prove that there must be equilibrium

whenever this condition is fulfilled, it is only necessary to show

that both R and H must vanish if the sum of their works is

zero for any infinitesimal displacement.
A

To see this, consider first a displacement of translation, Ss,

parallel to R. The work of R will be RSs while the works of

the two forces constituting H are equal and opposite, so that

the work of H is zero. As the sum of the works of R and H
must vanish by hypothesis, it follows that R = o.

Next consider a displacement of rotation S0 about an axis

parallel to the vector H. Taking this axis so as to intersect

R and bisect the arm/ of ttffcouple //", the work of R will be

zero while that of each of forces F of the couple H will

hence the whole work of H is FW=HW. As
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the sum of the works of R and H must vanish by hypothesis,

it follows that H=o.
The two conditions R= o, H=o, are, therefore, both fulfilled.

244. The following examples may serve to illustrate the appli-

cation of the principle of virtual work.

To find the force just necessary to move a cylinder of radius r and

weight W up a plane inclined at an angle a to the horizon by means of a

crow-bar of length \ set at an angle (3 to the horizon (Fig. 76).

Let s be the distance from the fulcrum A of the crow-bar to the

point of contact B of the cylinder

with the plane.

Turning the crow-bar about A by
an angle 8ft, the work of the force F
acting at the end of the bar is F- 1 8ft.

The corresponding displacement of

the centre C of the circle, which is

the point of application of the force

W, is parallel to the inclined plane,

and may be regarded as the differen-

tial 8s of the distance AB = s. The

work of W is, therefore, W8s sin a. This gives the equation of work

hence

"i i-

The relation between s and ft can be found by projecting ABCDA
on the vertical line ; this gives

r cos a -f- s sin a = r cos ft + J sin/3,

whence , = rco0-cos.
sin a sin ft

Differentiating the former equation, we find

sin a8s = - r sin (38ft + s cos ft 8ft + sin ft 8s,

.
8s __ scosft r sin ft _ ^cos

2

/? cos cos ft sin a sin/? + sin
2

/?

8ft since sin/3 (since sin ft)'
2
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>or
I 8s

___
I COS( /?) I

r 8J3

~
(sin a- sin/2)

2
=

i +cos(a

Hence, finally,

245. A weightless rod of length AB = 1 rests at C on a horizontal

.cylinder whose axis is at right angles to the verticalplane through the rod
;

its lower end A leans against a vertical wall, andfrom its upper end B a

weight W is suspended. Determine the reactions at A and C, and the

distance AC = *for equilibrium, if the distance CD = a of the point of

.supportfrom the vertical wall is given (Fig. 75).

(a) Let A glide vertically upwards, C remaining in contact. At A
.as well as at C the forces are perpendicular to the displacements;

Jience, putting EB =y, we have Wfy = o.

,C

whence, (/ .x).*
2

/(JT #2

)
= o

Fig. 77.

or

(b) Give the rod a vertical displacement to a parallel position :

(c) Give the rod a displacement in its own directign :

246. / ^ parallelogram formed by four rods with hinges at the ver-

Jices, elastic strings are stretched along the diagonals. Determine the

ratio of the tensions in these strings*
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Let m, m 1 be the lengths of the diagonals, T, T' the tensions, and

$m, 8m' the changes of length of the diagonals when the parallelogram

is slightly deformed ;
then by the principle of virtual work

o. (i)

From geometry we have, if a, b are the sides of the parallelogram,

hence, differentiating, m 8m + m' 8m' = o. (2)

From (i) and (2) we find

7/7" = */*'. (3)

247. For the purposes of statics a body is regarded as rigid

if the points of application of all the forces acting on the body
have invariable distances from each other; these points may
be imagined connected by a framework of rigid rods. The

tensions in these connecting rods, since they occur in pairs of

equal and opposite forces acting along rigid lines, do not enter

into the equation of virtual work. One of the chief advantages

of the principle of virtual work consists in this elimination of

these internalforces.

Let us now generalize the idea of the rigid body by assuming^

the points of application of the forces to be connected by rods-

or threads which may even be elastic
;
the points may also be

constrained to move on smooth surfaces or curves
; friction,

however, is to be excluded.

Let x, y, z be the co-ordinates of one of the points, P \

x' t _/, z'
t
those of another point, Q ;

let / be the length of the

connecting thread or rod, PQ ; , ft, 7, its direction cosines ;

and let T be the tension or stress in PQ. If the whole system

be subjected to any infinitesimal displacement, for which &r, fry,

Sz are the component displacements of P, 8x', S/, Bz r those of

Q, the sum of the works of the two equal and opposite forces T
for this displacement will be

To.
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or, since a= (x-x')/l, /3
= (/-/)//, -f=(z-z')/l,

Differentiating the relation

we have

hence the sum of the virtual works of the two tensions T
reduces to

rs/;

which is of course zero when the connecting rod is rigid.

It thus appears that the internal reactions of a system of

points connected as above described, are eliminated from the

equation of virtual work by selecting the virtual displacements

so as to leave the lengths of the connecting rods or threads

unchanged. This can always be done when the rods and

threads are not elastic. When they are elastic, the equation of

virtual work will contain terms of the form T1. These terms

must then be determined from the known relation between the

tension and the length of an elastic rod or thread.

248. It is somewhat difficult to prove the principle of virtual

'work for the most general case of any system of bodies although

this is the case in which it finds its most important application.

It is evident, however, that the principle will be true in this

general case provided that all the connections and reactions

between the different bodies constituting the system be ex-

pressed by means of forces and introduced into the equation

of virtual work. The difficulty lies in expressing the connec-

tions existing between the parts of the system by means of

forces.

But most of these internal reactions can be shown to dis-

appear from the equation of virtual work, so that they need

not be taken into account.
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Thus the tension of an inelastic thread or rod being com-

posed of two equal and opposite forces does no work in any
infinitesimal displacement ;

the work of the reaction of a fixed

point or fixed axis is zero, because the point of application

cannot move in the direction of the force
;
the normal reaction

of a surface along which a body is constrained to slide does no

work, because any possible displacement is at right angles to

the force. If, however, the surface be rough, the friction will

in general do work.

249. A full discussion of the principle of virtual work for

the most general case cannot be given in this place. It must

suffice to state it and to illustrate its application in a few

special cases.

The necessary and sufficient condition of equilibrium of a

system of bodies the connections between which can be expressed

by forces is this, that the sum of the virtual works of all the

forces must vanish for all displacements consistent with the

geometrical conditions to which the system may be subject.

The internal reactions between the different parts of the

system, with the exception of friction and elasticity, will in

general not enter into the equation of virtual work. Such

reactions can therefore be neglected while friction and elastic

tensions must be included among the forces acting on the

system.

250. Let P be one of the forces, %p the projection on its

direction of the virtual displacement of its point of application ;

then the principle of virtual work requires that

If X, Y, Z be the rectangular components of P, and x, y, z

the co-ordinates of its point of application, the same condition

can be expressed in the form :
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251. Whether the system be in equilibrium or not, the quan-

tity 2/^=02(-&r+ YSy+ ZSz) represents the element of work

8 W done by the forces in a virtual displacement. For an actual

displacement of the system B should be replaced by d, and we
have

Ydy+Zdz)

for the work done in the infinitesimal displacement.

Most of the forces occurring in nature are such as to make

this quantity an exact differential. In this case the forces are

said to form a conservative system, and the equation can be

integrated from any initial position or configuration of the sys-

tem to any final position or configuration without reference to

|the intermediate positions.

Taking the initial position as the standard of reference, the

Iresult can be written in the form

(where U is a function of the co-ordinates (or other quantities)

letermining the position and configuration of the system, while

\UQ is the initial value of U.

Leaving the standard of reference indeterminate, the equa-

:ion can be written in the form

w=u+c>

\C being merely a symbol for the constant of integration. The

[unction Wis called the workfunction or force function.

If the final position of the system be taken as standard of

iference,' and /i
be the value of U in the final position, the

luation takes the form

'here V is called the potential energy of the forces with refer-

ence to the final position.
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252. If the work function

W=U+C
be given as a known function of the co-ordinates determining
the configuration of the system, the positions of equilibrium of

the system can be found from the condition

which expresses that the work function W is a maximum, or a

minimum (or stationary). It can be shown without difficulty

that the equilibrium is stable when the work function is a maxi-

mum, and unstable when the work function is a minimum.

As the potential energy by the formulae of Art. 248 is equal

to the work function, but of opposite sign, it follows that

the equilibrium is stable or unstable according as the potential

energy is a minimum or a maximum.

253. The special case when the only forces acting are the weights of

the particles constituting the system is worth mentioning.

Let m be the mass of one of the particles, mg its weight, and z its

height above a horizontal plane of reference. Then the virtual work of

the weights is

If z be the height of the centroid of the system above the plane of refer-

ence, we have ^mz = ^m z
;
hence ^m Bz = ^m 8z. The work func-

tion is, therefore,

W=g$m-z+ C,

and this becomes a maximum or minimum according as z is a minimui

or maximum ; i.e. the equilibrium is stable or unstable according as tht

centroid of the system is at its least or greatest height.

254. It is the object of every machine to do work in a certain pre-

scribed way, i.e. to exert force, or overcome a resistance, through a cer-

tain distance. The various forces of nature, such as the muscular foi

of man and other animals, the force of gravity, the pressure of the windj

electricity, the expansive force of steam or gas, etc., are called upon fo^

this purpose. In most cases it would not do to apply these forces*
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directly ; they must be controlled, guided, and transformed in various

ways to become useful, and this is done by interposing the machine

between the given driving force, commonly called the power, and the

force which is to do the final work, usually called the resistance, load, or

weight. We shall in general denote the "
power

"
by P, the "

weight
"

by Q.

The term power is somewhat objectionable in this connection, being
here used to denote a force, while in Kinetics it is used for the rate of

doing work.

255. The ratio Q/P of the weight to the power is called the mechani-

cal advantage of the machine.

Under the action of the power P its point of application as well as

that of the weight Q is displaced. The corresponding work of the force

P may be called the available or total work; that of the force Q is

called the useful work.

The ratio of the useful work to the total work is called the efficiency

of the machine.

In all machines this efficiency is a proper fraction, owing to the fact

that the work done by P must balance not only the useful work, but also

the so-called wasteful work due to friction, stiffness of ropes, slipping of

belts, lack of rigidity, etc.

256. For a more complete discussion of the principle of virtual work

the student is referred to MINCHIN'S Statics, Vol. I., pp. 78-96, 160-180,

and Vol. II., pp. 98-188; ROUTH'S Statics, Vol. I., pp. 146-197;
SCHELL'S Theorie der Bewegung und der Kr'dfte, Vol. II., pp. 166-211 ;

and J. PETERSEN, Statik fester Korper, iibersetzt von R. von Fischer-

Benzon, Kopenhagen, Host, 1882, pp. 114-124.
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VIII. Theory of Attractive Forces.

I. ATTRACTION.

257. Among the various kinds of forces introduced in physics

for describing and interpreting natural phenomena, forces of

attraction and repulsion occupy a most prominent place.

According to Neivtons law (the law of universal or cosmical

gravitation, the law of nature), every particle of matter attracts

every other such particle with a force proportional to the masses

and inversely proportional to the square of the distance of
the|

particles.

If m, m 1 be the masses of the two particles, r their distance,

and K a constant, the mathematical expression for the force oH

mutual attraction exerted by each particle on the other, or for

the stress between them, is, therefore,

*=**.
( i;

258. Each particle is here regarded as a mathematk

point at which its mass is concentrated. The attractive forc<

would, therefore, approach the limit oo as the distance betweei

the points approaches the value o. To prevent the introductioi

of infinite forces, we may in such limiting cases regard the par-

ticles as very small homogeneous spheres formed of an impene-

trable substance. If r, r* be the radii, p, p
1 the densities of th<

spheres, the attraction reaches a finite maximum value

when the spheres are in contact, viz.

tw"

which is very small of the fourth order if r, r1 be very small of

the first order. Thus, for r=rl

,
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259. In many applications of the theory of attraction, in par-

ticular in electricity and magnetism, it is convenient to consider

forces of repulsion. This only requires a change of sign in the

expression for the force, and this sign may be regarded as

attaching to the mass of one of the particles ;
in other words,

if the mass of a centre of attraction be taken as positive, that of

a centre of repulsion is taken to be negative, or vice versa.

260. While according to Newton's law (i) the force is

inversely proportional to the square of the distance, it is often

convenient to use forces depending upon the distance r in a

different way. Thus the theory of Newtonian attraction can be

generalized by assuming for the force between two particles m y

m' the law

F= Kmm'f(r), (2)

where /(r) represents any function of the distance r.

When nothing is said to the contrary, we shall here always

assume that/(r) = i/^
2

,
as in Newton's law (i).

261. The constant K evidently represents the force with which

two particles, each of mass i, attract each other when at the

distance i. It is a physical constant to be determined by

experiment, and its numerical value depends on the units of

measurement adopted. What can be directly observed is of

course not the force itself, but the acceleration it produces.

Dividing the force F, as given by formula (i), by the mass m'

of the particle on which it acts, we find for the acceleration j
produced by the attraction of the mass m in the mass m 1

at the

distance r from m :

m / \7=-2
-

(3)

This quantity may also be regarded as the force of attraction

exerted by the mass m on a mass i at the distance r from m,

and is therefore called briefly the attraction at the point where

the mass i is situated.
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262. It will be shown later (Art. 273) that the attraction of

.a homogeneous sphere on* an external point is the same as if

the mass of the sphere were concentrated at its centre. Thus,

if m be the mass of. the earth (here assumed as a homogeneous

sphere), the attraction it exerts on a mass I situated at a point

P above its surface, at the distance OP= r from the centre O, is

^Km/r*', and this is also the acceleration j that it would cause

in any mass m' at P.

Now for points P near the earth's surface this acceleration j
is known from experiments; it is the acceleration of gravity,

usually denoted by g. As the radius of the earth, ^=6.37 x io8

centimetres, and its mean density /o
=

5f, are also known, the

value of the constant K can be found from the formula
i

m

or *:=

With -=980 we find in C.G.S. units

K=---- = o.ooo ooo 0648.
1.543* I0 '

This, then, is the force in dynes with which two masses of i

gramme each would attract each other if concentrated at two

points i centimetre apart.

263. Exercises.

(1) Show that the value of K in the F.P.S. system is--

9.8 x io8

(2) When the units are so selected as to make the constant K equa
Tto i, they are called astronomical units. Show that the astronomica

unit of mass, i.e. a mass which when concentrated at a point produces

unit acceleration at unit distance, is= I/K.

264. Let a mass or a system of masses be given, and let it be

required to determine the attraction at any point P (Art. 261)

produced by it. The given masses may consist of discrete par-

ticles, or they may be continuous of one, two, or three dimen-

sions. Continuous masses must be resolved into elernents; the

j
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attraction at P produced by each element must be determined,

and then all these forces must be compounded into a single

resultant. This is always possible because the forces all pass

through the point P.

Let dm be the element of mass situated at the point Q, P the

attracted point of mass i, PQ= rihe distance between them,

and a, ft, 7 the direction cosines of r\ then the attraction at P
due to dm is dm/r^\ its components are adm/r1

, ftdm/fl,

and the components of the resultant attraction R at P are

<>.. Y=S> z=$' (4)

where the integrations must be extended over the whole given

mass. The resultant R .itself, and its direction cosines a, b, c,

are finally found from the formulae

V V "7
**

7.
* *"

a
=R'

b
=R'

C
=ll (5)

The following examples will illustrate the process.

265. Homogeneous Circular Arc. To determine the attraction

exerted by a mass distributed uniformly along a circular arc ACB
(Fig. 78) of angle 2 a and radius a on a mass i situated at the centre

Pof the circle, let QQ = ds be an element of the

arc, dm = pds its mass
;
then

is its attraction at P, and this force has the direc-

tion PQ.
Resolving this force parallel to the bisecting

radius PC of the arc and at right angles to it, it

will be seen that the latter component need not be

considered, since it is balanced by an equal and

opposite component arising from the element sit-

uated symmetrically to QQ with respect to PC.

If K CPQ =
<9,

the component along PC is

ds cos Q/a
2
,

or since ds adO, Kp cos Odd/a. Hence the resultant

attraction at P is

J?
KP C

+a
(Mti

sin ft

a J a. Q
PART II II

(6)
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Denoting the chord AB of the given arc by c, the result can be put into

the form

R = *?-<, (6
f

)

which might have been found directly from Fig. 78, without integration,

since ds cos = qq\

Formula (6
f

) shows that, if the chord AB were covered with mass of

the same density p as the arc, and if this mass were concentrated at the

middle point C of the arc, it would produce at P the same attraction as

the axcACB.

266. Homogeneous Straight Rod. To determine the attraction at

any point P produced by a mass distributed uniformly along a segment of

a straight line, AB, let QQ' = ds (Fig. 79) be an

element, OQ = s its distance from the foot of the

perpendicular PO=p dropped from P on AB,
and let r, be the polar co-ordinates of Q with

respect to P as pole and PO as polar axis. Re-

solving the attraction Kpds/r* of the element QQ 1

along PO and at right angles to it, we find the

components

,vaA =.
cos Oils

f

sin Oils

Fig. 79.
The figure gives r=//cos0, j=/tan0; hence

; substituting these values, we have

/ /

and integrating between the limits ft
= OPB and a = OPA :

X= 5
(sin/? + sin a), Y= & (cos/8

-
cosa).

/ P

The resultant attraction

(7)

makes with PO an angle $, for which we have
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hence
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n^; (8)
2

'

(9)

i.e. the attraction at P bisects the angle APB subtended at P by the rod.

267. These results might have been derived from the problem of

Art. 265. For it is easy to see that the attraction exerted at P by the

straight rod AB is the same as that exerted by the circular arc ab (Fig,

79) described about P with radius/ and bounded by PA, PB. This will

follow if it can be shown that the attraction at P of the element QQ 1
'

of the rod is equal to that of the element qq* of the arc contained

between the same radii vectores. Now the attraction of QQ' is

KP'QQ7r
~> while that of W* is KP '$$'//' Projecting QQ' on the

circle of radius r, we have

n' _p
QQ'cosO~~r

or since the triangle POQ gives cosO=fl/r,

which proves the proposition.

268. It has been shown in Art. 266 that the attraction at any point
P exerted by a straight rod AB bisects the angle APB ;

it is therefore

tangent to the hyperbola passing through P and having A, B as its foci.

Hence if in any plane through AB the system of confocal hyperbolas
be constructed with A, B as foci, the direction of the attraction at any

point P in the plane is along the tangent to the hyperbola that passes

through P. These hyperbolas having everywhere the direction of the

resulting attractive force, are called the lines of force.

An ellipse passing through P and having the same foci A, B would

have the bisector of the angle APB as its normal. The confocal

ellipses about A, B as foci form the so-called orthogonal system of the

lines of force. If such an ellipse be regarded as offering a normal

resistance, the point P would be kept in equilibrium under the action

of the attraction of the rod and the reaction of the curve. The con-

focal ellipses are therefore called equilibrium, or level, lines, or also

for a reason that will appear later equipotential lines.
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Rotating the whole figure about AB as axis, the ellipses describe con-

focal ellipsoids of revolution which are level, or equipotential, surfaces.

269. Exercises.

(1) A segment AB is cut out of an infinite straight line along which

mass is distributed uniformly. If the mass on the ray issuing from A be-

repulsive, that on the ray issuing from B (in the opposite sense), attrac-

tive, determine the resultant attraction at any point P by the method of

Art. 267, and show that the lines of force are confocal ellipses, while the

equipotential surfaces are confocal hyperboloids.

(2) Three rods of constant density form a triangle. Find the point

at which the resultant attraction is zero.

(3) Find the attraction of a straight rod AB of constant density on

a point /'situated on the line AB so that AP= a, J3P= b.

(4) Two rods of lengths 2 a, ib, and of equal constant density, are

placed parallel to each other, at a distance c, so that the line joining

their middle points is at right angles to them. Find their mutual attrac-

tion, i.e. the force required to keep them apart.

(5) Show that the attraction of a homogeneous rod of infinite length

on a point at the distance p from it, is 2 *p/p.

270. The formula of the last exercise (5) can be used to determine

the attraction of an infinitely long homogeneous cylinder of finite cross-

section on an external point P, by resolving the cylinder into filaments

N

Fig. 80.

parallel to the axis. Fig. 80 represents the cross-section of the cylinder

passing through P. The polar element of area at Q, rdd dr, can be

regarded as the cross-section of a filament, whose attraction at P is, by
Ex. (5),

rdrdB j ,/\

2 Kp = 2 Kparati.
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Resolving this force along and at right angles to PO, and considering
that owing to symmetry the resultant R must pass through O, we have

If the radius vector PQ meet the surface of the cylinder atM and N,
the integration with respect to r gives

With PO = p, we have MN 2vV /
2
sin

2

0, and the limits of the

integration are sin"
1

(#//). Hence

271. Homogeneous Circular Plate. To determine the attraction of

a homogeneous circular area on a point P situated on the axis through
the centre O at right angles to its plane at the distance PO=p, we

may resolve the plate into ring-shaped elements of radii r and r -f- dr.

The mass of such a ring is 2 irprdr ;
all points of the ring are at the

same distance Vr2 +/2 from P, and their attractions make the same

angle < = \axrl

(r/p) with the axis PO. Hence the attraction of the

ring is

cos
<f>
= 2 TTKp sin <pd<pj

since dr =/^>/cos
2

< = (/
2 +

Let 2 be the vertical angle of the cone that subtends the plate at

P; then
/<x a

^? = 2 7TK/3 I Sin <</< = 4 TTKp SUi*-, (l l)

or, in terms of/,

R=2TTKp(l--^^\ (ll')
V V^ +//

272. Homogeneous Spherical Shell : GeometricalMethod, (a) Attrac-

tion at an internal point P. Let C be the centre, a the radius of the

sphere (Fig. 81). A thin double cone having its vertex at Pcuts the

sphere in two elements, AB = dS, A'' = dS 1

,
which can be shown to

exert equal and opposite attractions at P.
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Let PA = r, PA 1 =
r', and let ^/<o denote the solid angle of the cone

(i.e. the area it cuts out of a sphere of radius i described about P as

centre) ;
then-rv/w is the area cut out of a

sphere of radius r with the same centre

P. Hence the element of mass at A is

p ^Vo>/cos PA C, and its attraction at P is

= Kpdw/cosPAC. Similarly, the attraction

of the mass element at A' is

= KPr'-do>/(r''
2 cos PA'C) = xprfu/cosPA'C.

These attractions are equal, since for the

sphere %PAC=^PA'C.
The whole sphere can thus be divided up

into elements exerting equal and opposite attractions at P
;
the resultant

attraction of the whole shell at any internal point is, therefore, zero.

273. (b) Attraction at an external point P. The investigation can

be made similar to that for an internal point by introducing the point

P 1

(Fig. 82), which is inverse to /*with respect to the sphere, i.e. the

point P' on CP for which CP- CP' = CA\ or putting CP=p, CP'=p',

CA = a, the point for which

pp' = a\ (12)

Any chord HH* through P' determines two pairs of similar triangles :

CUP 1 and CPH, CJf'P' and CPH* ; for each pair has the angle at C

Fig. 82.

in common, and the sides including the equal angles proportional by

(12-), since CH= CH'=a. It follows that C&P' = K CPH, and

^ CH'P' = %. CPU'; hence, as the triangle HCH' is isosceles, the line

CP bisects the angle HPH' .

With the aid of these geometrical properties it can be shown that
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equal attractions are produced at P by the elements dS at H and dS' at

//' cut out by any thin cone whose vertex is the inverse point P'. We
have, as in Art. 272, for the mass elements at H and H 1

cut out by the

COIle l J

and for the corresponding attractions at

but these expressions are equal since /"77C = P'ff'C and the

similar triangles give r/PH= a/p, r'/PH' = a/p.

As, moreover, these attractions make equal angles with CP
t

their

projections on this line are equal, and their resultant is

To form the final resultant, this expression must be integrated over

the whole sphere, and as the summation of the double cone gives

I //a = 2 TT, we find

DR=

where M denotes the whole mass of the shell. Hence, the attraction

of a homogeneous shell on an externalpoint is the same as if the whole

mass of the shell were concentrated at the centre of the shell.

274. (c) Attraction at the surface. If the point P approaches the

surface from within, the attraction remains constantly zero
;

if P
approaches the surface from without, the at-

traction KM/p
2

approaches the limit nM/a*.
For a point on the surface the attraction is

the arithmetic mean of these two values, viz.

R= 27TKp. (l4)

This can be shown as follows (Fig. 83).

The element of mass at H is

pdS=p- rWa>/cos PHC ; Fig. 83.

its attraction at P is Kp dw/cos PHC, and as the angles at P and H are

equal, the projection of the attraction on PC =
Kprfv. For a point

on the surface \dw= 271-. Hence the total attraction at /Ms = 27r/c/o.
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275. Homogeneous Spherical Shell : Analytical method. Let Q
(Fig. 84) be any point on the sphere; PQ = r, CQa, CP=p,

^-PCQ = 0. Through Q lay

a plane at right angles to CP,
and take as element the mass

contained between this and an

infinitely near parallel plane.

P This mass element is

= p 2 ira sin * adO,

and its attraction at P along

CPis
Fig. 84.

a2
sin OdO-> cos CPQ = sin OdO .P

~ a

The relation between r and follows from the triangle CPQ, which

gives

zap cos 0,

hence rdr = ap sin

Substituting for a sin OdO and for a cos their values from the last

two relations, the expression for the attraction of the elementary ring.

becomes

rdr
2VKpa .--

a fi-cf+r> ,= ,_.< ^ -.dr.

(a) For an internal point P, we have p<a, and the limits for r are

from a p to a +p. Hence the resultant attraction is

= o.

(b) For an external point P, we have p>a, and the limits are from

p a to p + a. Hence the attraction becomes

*R =
]*>+<*,-.=

M1 .

'A.

276. Exercises.

(i) Show that the attraction exerted by a right circular cone of ver-

tical angle 2 a and height h, at the vertex, is = 2
TTK/O ( i
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(2) Show that the attraction of a circular cylinder of radius a and of

length /, at a point on its axis at the distance x from the nearest base, is

(3) From the result of Ex. (2) show that the attraction of a cylinder

extending in one sense to infinity is = 2 TTKpa at its base.

(4) Show that for a spherical shell of finite thickness, if the density

be either constant or a function of the distance from the centre only,

the attraction is zero at any point within the hollow of the shell, and

that it is the same as if the whole mass were concentrated at the centre

at any external point.

(5) Show how to find the attraction of a homogeneous spherical shell

of finite thickness, at any point within the mass of the shell.

(6) Show that the attraction of a solid sphere of mass M
t
the density

being any function of the distance from the centre, is = AcJ///
2
at any

external point P, having the distance / from the centre, and that it is

directly proportional to the distance of the point P from the centre

when P lies within the mass.

(7) Show that the attraction of a solid homogeneous hemisphere at a

point in its edge is = f K/o^V^-f 4, and that it makes with the plane

of the base an angle of about 32^.

2. THE POTENTIAL.

277. The configuration and density of any attracting masses

being given, the force of attraction R exerted by these masses

on a mass I situated at any point P can be determined both in

magnitude and direction. The method illustrated on some sim-

ple examples in the preceding articles, while theoretically quite

general, becomes very laborious in more complicated cases.

Moreover, the required resultant R, i.e. the "attraction at the

point P," depends as to its magnitude and direction on the

position of the point P ;
and it is of interest to investigate its

variation from point to point throughout space, in a similar way
as was done for the example of the straight rod in Art. 268.

Investigations of tbis kind are greatly facilitated by the aid

of a certain function called the potential, whose meaning and

use we proceed to discuss very briefly in the following articles.
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Fig. 85.

278. The attraction at the point P exerted by a single particle

Q of mass m (Fig. 85) is =m/rz
if the units be so selected as

to make the constant K= i (Art.

262 and Art. 263, Ex. 2). (This

assumption is generally made

in theoretical investigations, as

there is nothing to be gained by

carrying the constant factor K

through all the formulae. The

factor K can always be re-intro-

duced when numerical results

are required.)

Let the particle P be displaced through an infinitesimal dis-

tance PP'= ds in any direction, and let
<f>

be the angle between

QP= r and PP'. The element of work done by the force m/fl

in this displacement is

jji/ m ij m dr , d(niaW=- cos$ds= ds=
(

1T r*> ds ds\r

The quantity m/r occurring in the last expression is called the

potential of the mass m at the point P] it is usually denoted

by V.

279. If the particle continue to move along some curve from

its initial position P to some final position Pv the total work

done by the attraction of Q is evidently

TTT J T7" TT

where F=7/2/ris the potential at P, and V^ = m/r^ is the poten-

tial at Pv Hence, the difference of the potentials at any two

points is equal to the work done by the attraction, whatever may
have been the path along which the displacement has taken

place.

As the potential V=m/r becomes zero when r=oo, it appears N

that the potential V1
at any point P

x
is the work that would be
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done by the attraction on a particle of mass I if it were brought

up to the point PJ along any pathfrom infinity.

The relations of Art. 278 can be written in the form

dV m= --cos</>;
ds r*

i.e. the derivative of the potential with respect to any displacement

is equal to the component of the attraction in the direction of the

displacement.

280. When there are given several masses m, m\ m n
, ..., con-

centrated at points Q, Q f

, Q", ..., their potential at any point P
is defined as the sum

jr_m m' mn _^mv
I

-f
H 77 ~r"* Z >

r r r" r

when the given masses are continuous, the sign of summation

must be replaced by an integral, and we have

The fundamental properties proved in Art. 279 remain the

same.

281. Let there be given a continuous mass m, referred to

a rectangular system of co-ordinates. The attraction at any

point P (x, y, z) due to this mass has three components X, F, Z,

which can be found as follows. The attraction produced at P
by an element dm at a point Q (x' t y' , z') of the mass is dm/r2,

where r=PQ, and its direction cosines are (x' x)/r, (y* y)/r,

{z' z)/r; hence its components are

Integrating, we find the components of the total attraction

a.tP:

\z'-_z)dm
r"

= C
*J
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Differentiating the relation

r*= (x
1

x)'
i
-\-(y

1

y)*'+ (z'z)
t
*t

partially with respect to x, y, and z, we have

dr _ _ ,
, _ . dr_ _/ /_ \ dr_ ,

.

Substituting these values in the above integrals, we find

v C I dr j C & fl\ j d Cdm
JL = I am= I - }am = I >

J r*dx J dx\rj dx^ r

and similarly

Y= C^m Z= C^m
dyJ r dz*s r

As J is the potential Fof the given mass, we have

X= > Y= > Z
dx By

i.e. the components of the attraction at any point are the deriv-

atives of the potential at thatpoint in the direction of these com-

ponents. This may be regarded as a special case of the last

proposition of Art. 279.

282. It is to be noticed that the proof given in the preceding

article can easily be extended to the case of forces of the form

(2), Art. 260. In other words, even in the case of forces not fol-

lowing the Newtonian law of the inverse square, but expressed

by any function f(r) of the distance, there exists a function

corresponding to the potential of Newtonian attractions
;

it is

called \he force function.

We have, just as in Art. 281,

hence -= _, -
dx r dy r dz
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These are the direction cosines of the force f(r) with which the

mass m at Q(x'
r

, y
l

', 2') attracts the mass I at P(x, y, z). The

components of this force are, therefore,

, ,

dx dy d

These expressions show that there exists a function

of which the components of the force at P are the partial deriv-

atives :

X-

283. The potential

at a point P for a given system of masses is a function of the

co-ordinates of the point P. , If this function be known, the

attraction at any point P produced by the given masses can at

once be found
;
for the components of this attraction are

v dV T/dF 7 dV
^l = -, Jr =

,
/ =

dx dy dz

Hence,
dV=Xdx+ Ydy+ Zdz.

If the function V be equated to any constant F
1?

the result-

ing equation

v=v
l

represents a surface that is the focus of all points at which the

potential of the given masses has one and the same value Fr
Such a surface is called an equipotential surface, or a level, or

equilibrium smface.
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284. Differentiating the equation of the equipotential surface,

and dividing by ds and by the attraction R whose components
are X, Y, Z, we find

dF dV 87
dx d,r dy dy dz dz

~R'ds + ^R"ds Jr
~R'lds

=
'

The first factors in each term are the direction cosines of R,

the second factors are those of a tangent to the surface
;
the

equation expresses, therefore, the fact that the attraction R at

any point of an equipotential surface is normal to the surface.

The attraction at any point P of an equipotential surface

is, therefore, equal to dVj
'

dn, where dn is the element of the

normal at P between this and the next equipotential surface.

Consequently, the attraction is inversely proportional to the

distance between the successive equipotential surfaces.

Let the normal of an equipotential surface at any point P inter-

sect the next equipotential surface at a point P'
;
let the normal

at P 1 intersect the next surface at P"
;
and so on. The elements

PP'
t P'P", etc., will form a curve which is at every point normal

to the equipotential surface passing through that point. Such

a curve is called a line of force, since its tangent at any point

indicates the direction of the resultant attraction at that point.

The lines of force cut the equipotential surfaces orthogonally.

285. Potential of a Homogeneous Spherical Shell. (a) For an

internal point, we may proceed similarly as in Art. 272. The element

of mass cut out at A (Fig. 81) by the small cone whose solid angle is

d<* is again p-rVw/cosK if ^.PAC= "4.PA'C= a
;
the corresponding

potential at P is Kpn/co/cos a : similarly, the potential due to the mass at

A is K/arVco/cos . Their sum is

'

3
ait) = 2 K

cos a
since r -f r* = 2 a cos .

As
J

c/w = 2 TT, we find V\ =

i.e. the potential has the same constant value for all points within the

hollow of the shell. It follows that the attraction is zero, as found in

Art. 272.
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(^) For an external point P, we might also proceed geometrically,

making use of the inverse point /", as in Art. 273. But we shall use the

analytical method.

Just as in Art. 275, Fig. 84, we have for the mass of the ring-shaped
element dm = p 2 ira'

2
sin Odd, or as ap sin BdB = rdr, dm = 2 Trpardr/p^

Hence the element of potential is dV= 2-jrKpadr/p, which integrated

between the limits from p a to / + a, gives

M

Hence the potential is the same as if the whole mass were concentrated

at the centre.
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Pages 29-33.

(4) ^a, where a is the side of the hexagon.

(5) At the centre of the incircle of the triangle formed by the mid-

points of the sides.

(7) x=y = - r.

TT

(8) Taking OA as axis of x,
-

ry y _ 2 ^"

x = ( sin a + cos a i ) , y = -
(sin a a cos a) .

a2 or

(9) ;; = _
V2-f log(l+V2) 4

(10) * = 7T0, J=|.

(11) x=y = a.

_ ^ . _= 0, j^= --hijF, where s =
<:(<?<>

e c
) .

sin - i cos -

(15) With A as origin, ^ =
- _,(a + a
=*

.
-

, a .

first approximation ^ = - = 4.02 in. ;

second approximation x = \ --=4.50 in.

a -f- b

PART II 12 177
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,aa+ 26' (2a b + '

=4-5

o.33 a> 0.25 <r.

(*5) *= -

(26) For a segment of a ring of angle 2 a and radii r1? r2, the dis-

tance of the centroid from the centre is x = f .^-^A^_2

.

a n + >2

Hence ^ = ^ (740 + 73 Vi) = 3.22 ft. ; i.e. the centroid lies about
I477T

8^ in. above the door.

(27) * = $*, J = f>

(28) ^ = , J = -

(32) Take the vertex as origin, the axis of the cone as axis of xr

and one of the bounding planes as plane of xy. Then, if a be the

radius of the base, h the height, and 2 a the angle at the vertex of the

cone, the formulae of Art. 40 give

,
-

7
-

9 sn d> - o i cos
hence * = A, .?= -Z, s = --- -

(33) About 2631 miles from the centre.

(34) Regard the ice-cap as a surface mass of density 8 ; let Xi be the

distance of its centroid from the earth's centre, m l the mass of the ice-

cap, m that of the earth alone, and
<f>'

the polar distance of the arctic

circle
;
then the equation of moments (m + m l)x= m^i gives, if m\ in

the parenthesis be neglected, x = (m l/m)xl=^ sin
2<' = 0.216 mile.

(35) At the distance \r from the centre.

(36) x =
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x-- r * + 2 r^ + 3 ^~
4 r^-r,

(38) Let Pi be the volume of the whole pyramid, F2 that of the top cut

off, V that of the frustum
;
xit x<2 ,

x the distances of their centroids from

the lower base
; h^ h^ hz,

their heights. Then the equation of moments is

( F, yz)x = V&i y^c2 . By geometry, we have V^j Vt
= r^/r} ; hence,

(r1

3
rf)x = r

1

3
xi r2

3x2 j also, x^= \h^ xz
= h + %h 2, hl -h^ = h,

hi/hz
= r1/r2 . By means of these relations, we find

(~* r*\^- k r *~ 4*1*2*+ 3^ - ^ ^ + 2 f^g + 3^
(n ' T "^^

--
'

r X=
4

-

, .
- ,(2a-hY

(39) " = ii '

(40) Let A, B, C, D be the vertices of the tetrahedron, G its

centroid, GI that of the face ABC
\

let a, b, c, d
t x, Xi be the dis-

tances of these points from the plane ;
and let the projections of these

points on the plane be denoted by A', B', C, >', G', GJ. Then,

since GGl/J)Gl
= 1/4, and GGl/DGl

= (x ~x^/(d x^, we have

(x x\)l(d Xi)= 1/4; hence x = ^($x1 + d). Let E be the mid-

dle point of AB, e its distance from the plane ; then, applying a similar

method to the triangle ABC,wt find Xi = ^(2 e -f c)
= ^(a -f b + c) .

Hence, finally, x = \(a + b + c + d).

(41) x = \h. (43) 3'
=

(42) y = ^yi- (44) ^ = f, ^=1^, 2 = f^.

(45) (a) x=j=a. (d) x = ^ 7r
' +I28

a.

9O 7T

16 _ _
2(11: TT 8)

a, y=a4tf. (<?) ^= ^^--^^z.

15(3^-4)

(46) Take as element a hemispherical shell of radius r and thick-

ness dr; x = ** 3 a.

(47) x = \(H+h).

(48) Compare problems (40) and (5), and apply the propositions

of Pappus, Arts. 30 and 42 ;
V J-TT(/ -f- q -f r)A, where A is the area

of the triangle ;
6"= -rr\a(q-\- r} -f (r+ /)-f- <:(/-!- ^)]. ../
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(49) Taking the axis of the cup as axis of x, let (a, b) be the cen-

troid of cup and handle, m their mass
; (xlf o) the centroid of the

water whose mass can be expressed by (m/c)x^ where c is a constant.

Then the co-ordinates x, y of the centroid of cup, handle, and water

together fulfil the equation (a -f- c)y
2

bxy 2 bey + b~c = o, which

represents a hyperbola.

(50) Taking the axis of z parallel to the axis of the cylinder, and the

origin in the line of intersection of the bases, we have F== ( \ zdxdy, or

if
<f>

be the angle of inclination of the bases :

F= tan< f \ydxdy = tan
<f> -y \ \ dxdy.

(51) Apply (50) twice.

Page 35.

(1) 300 ooo F.P.S. units. (3) 71600.

(2) 34^ miles per hour.

Page 40.

(1) 6.4 x io5
poundals= 8.9 x io9 dynes. (3) 0.14.

(2) 4.5 pounds. (5) 60.

Pages 51-53.

(4) 100V7 ; tan-1

1Vs.

(7) ioV^(V

(9) <2 = i(-

(io) R = 569 ; angle with horizon = 99 27'.

(12) Twice the focal distance.

(13) 124 i2 f

.5.

(14) 90.

(15) (a) V~2.W; (S) 2Wcosi(ir/2-0).

(18) 2 Wcos %(ir/2 + a), etc.

(19) (a) a = 30, =120, 7=30; () impossible.

(21) T=fsW, nearly; ^=C=o.86W^ ^=0.675^.
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(22) r=iVs^; A = c=tVsir; B=W.

(23) S + 3/?=T, 30</?<6o; 0=6o.

(24) Resolve the components Plt P% along the bisectors of 0.

(25) J^tana; 13.4, 35.0, 107.2, 572, oo pounds.

Pages 56-58.

(2) R = 6, and acts along 5.

(3 ) T=W-a/c, P=W.t>/c.

(4) A C must bisect the angle BCW.

(5) R* = A2 + B* + C2 + 2 BCcosa + 2 C^ cos/? + 2^ cosy.

(6) Compare Arts. 90, 92.

(7) The sum of their moments must vanish for two points in the

plane not in line with their point of intersection.

(10) P=$W; T=^W.

(i i) T= W; P= 0.89 JFalong the bisector of BCW.

(12) P= Wsm(a+/3) sin/3 becomes a maximum for )8
=

(7r )/2,
i.e. when the sail bisects the angle between boat and wind.

w

, (14) Tension in ^^ and CD=W'l/
where ^= V/2 - i(^- /)

2
.

(15) The resultant acts along the diameter through A, and is in

magnitude equal to the perimeter.

(16) P(i + V2).

(17) (a) WsinO, fFcosfl; () W^tan^, W/cosO ; (c)

(20) Produce BO to the intersection Z> with the circumscribed

circle
; then DA is equal and parallel to the resultant of OA, OB.

DAO'C is a parallelogram ; hence DA = CO 1

.
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Pages 67-68.

(1) Take moments about the fulcrum. The distance of this point
from the end carrying the mass 12 is (a) 3T

6
ft.

; (b) 3^ ft.

(2) (a) A = i 2 | tons, = nj- tons; (V) i8, i8|.

(3) (a) P= W-, (b) P= (i 4- VI) JF.

(6) (<*) 19.4 tons and 21.1 tons; (b) 30.5, 9.9.

(8) Let be the angle subtended at the centre by the side 12, and
the angle at which the diagonal 13 is inclined to the horizon; then

j^7 }y
tan 6 = ^ __ ^ esc a -f cot a.

(9) x = Fz l sin 2/(^i sin ax + / 2̂ sin a2) .

Page 75.

(i) C=i, D =
= 4.2, EF= 8.9 ; reaction at A = 4.5, at F= 8.9.

(2) H= 69.4, T= 73.8.

(3) * =

Pages 90-92.

(1) T 7.68, ^ = 9.76, ^= 1 2.80 pounds.

(2) T= 2mW, A= V4 ni1 2 m -\- i W^ where w = r//.

(3) The three forces W, T, A must pass through a point; cos<

= 2V|(i -^2

), where m = l/&; T=

(4) r=

(5) Ax
= B =

(6) ^
sr
=

the thrust ^z in this case is to that in Ex. (5) as sin
2a is to i.

(7) A = W, C = D = (l/a}cosOW.

(8) x = am, A =V^^T W, C=m W, where m = (//)*.

(9) ^= 1(30/4- W) tan
, ^=(30/4- ^)Vitan2 + i.

(10) cos0 = \(m + Vw2
-f 32), where w = I/a.
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Page 101.

183

(i) The horizontal and vertical components of the reaction at C
are Cx

=-- W, C
y
= ^^^ Wt

where h is the perpendicular dis-
a -\- b a -{- b

tance of C from AB, and a, b are the segments into which this

perpendicular divides AB.

Pages 112-113.

CO 60

jP<2 JFsintf; (0 if Pact up the plane, Jp= sm > +
jp. if /> act

cos <

down the plane, />=
sm(*-0) ^

cos</>

(2) 3 tons.

cos(^-a)

(4 ) W/>= ^(/-<^) W .

cos( + ^>)

(5) ^ =
^-2^.

<>
-

Pages 145-146.

<3) (*) 75; W 3 l6 425ooo. (5) 150 ft.-pounds.

(4) 1 8 ooo ft.-pounds.

Page 164.

(2) The centre of the inscribed circle.

/ \ a b
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PREFACE.

ABOUT one-half of this volume is devoted to the kinetics of a particle,

the remainder being given to the study of the kinetics of a rigid body
and a brief discussion of the fundamental principles of the kinetics of a

system.

The first part of the chapter on the motion of a particle (impact,

rectilinear motion) gradually introduces and illustrates in an elementary

way such fundamental ideas as momentum, impulse, kinetic energy,

force, work, potential energy, power. Then the general equations of

motion of a particle are discussed ; and the principle of kinetic energy

(or vis viva), that of angular momentum (or of areas), and the prin-

ciple of d'Alembert are explained and applied, first to the motion of a

free particle (central forces), then to constrained motion. The example
of such recent writers as Budde and Appell has been followed in treating

the constraints of a particle with more than usual fulness, introducing

generalized co-ordinates, and establishing the equations of motion

of a particle in the Lagrangian form. It is believed that this will

materially aid the student in understanding the use of these methods

in the general case of the motion of a system.

The chapter on the motion of a rigid body, after a discussion of the

fundamental principles and of the theory of moments and ellipsoids

of inertia, takes up separately the action of impulses and the motion

under continuous forces. The last chapter, on the motion of a system,

is necessarily brief, owing to the elementary character of the treatise.

A sketch of the theory of Lagrange's generalized co-ordinates and of

Hamilton's principle is, however, included.

For a shorter course, the Articles 104-159, 180-188, 190-217, 225,

262, 268-272, 274-290, 304-310, 320-323, 327, 329-332, 336-356,

391-397 may be omitted.

ALEXANDER ZIWET.
ANN ARBOR, MICH.,

October, 1894.
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CHAPTER V.

KINETICS OP A PARTICLE.

I. Impulses ; Impact of Homogeneous Spheres.

1. Momentum and Impulse. A particle of mass m> moving
with the velocity v, is said to have the momentum mv (see Part

II., Art. 56). As long as this momentum remains constant,

the particle will move in a straight line with constant velocity

v (Newton's first law of motion, Part II., Art. 74). Any change

occurring in the momentum is ascribed to the action of a force

Fon the particle.

2. If the rate of change of momentum is constant during the

time t
1

/, the force F is constant, and is measured by the

change of momentum in the unit of time
;
that is,

F(t' t)=mv
f mvt (i)

where v is the velocity at the time /, and v' the velocity at the

time t
1

(Newton's second law of motion). As the product

F(t' t) of a constant force into the time during which it acts

is called the impulse of the force during this time (Part II., Art.

61), equation (i) can be expressed in words by saying that

the impulse of theforce is equal to the change of momentum.

This proposition is easily seen to hold even for a variable

force. For such a force, we have

PART III I
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hence, by integration,

Jt-Fdt=mv' mv, (2)

where the time-integral in the left-hand member is the impulse
of the variable force ^during the time t' t.

3. It appears, from equations (i) and (2), that a very large

force may produce a finite change of momentum in a very
short interval of time, but that it would require an infinite

force to produce an instantaneous change of momentum of

finite amount. The impact of one billiard ball on another, the

blow of a hammer, the stroke of the ram of a pile-driver, the

shock imparted by a falling body, by a projectile, by a railway

train in motion, by the explosion of the powder in a gun, are

familiar instances of large forces acting for only a very short

time and yet producing a very appreciable change of velocity.

The time of action, /' t, of such a force is the very brief period

during which the colliding bodies are in contact. The force,

F, is a pressure or an elastic stress exerted by either body on

the other during this time.

Forces of this kind are called impulsive, or instantaneous,

forces.

4. In the case of such impulsive forces, it is generally diffi-

cult or impossible by direct observation or experiment to deter-

mine separately the very brief time of action, t
1

t, as well as

.the magnitude Fvi the impulsive force. Moreover, what is of

most practical importance and interest in such cases of impact

is, generally, not the force itself, but the change of momentum

produced, i.e. the impulse of the impulsive force.

In the present section, which is devoted to the study of the

simplest cases of impact, we shall therefore deal with impulses

and momenta, and not with forces.

5. It should be observed that many authors use the name impulsive,

or instantaneous, force for what has here been called the impulse of the
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impulsive force. They define an impulsive force as the limiting value

Jt
r

Fdt when F increases indefinitely, while at the same

time the difference of the limits, / /, is indefinitely diminished
;

in

other words, as the impulse of an infinite force producing a finite

change of momentum in an infinitesimal time.

According to this definition, an impulsive or instantaneous force is a

magnitude of a character different from that of an ordinary force, and is

measured by a different unit. Its dimensions are MLT" 1

,
and not

MLT~2
. Its unit is the same as the unit of momentum. Indeed, it is

not a force, but an impulse.

We can arrive at this idea of an instantaneous force from a some-

what different point of view. Just as in kinematics (Part I., Arts. 104

and 156) we may distinguish accelerations of different orders, regard-

ing velocity as acceleration of order zero, so in dynamics instantaneous

forces may be regarded as forces of order o, ordinary (continuous)

forces as forces of order i, the product of mass into the acceleration of

the second order as a force of the second order, and so on.

In the present elementary treatise, no use is made of these considera-

tions. The word force is always used as meaning the product of mass

C*
into acceleration of the first order, and the time-integral I Fdt is always

called impulse, and not impulsive force.

6. The momentum mv of a particle P of mass m, moving
with the velocity v, can be represented geometrically by a

vector (more exactly by a localized vector, or rotor), i.e. by a

segment of a straight line drawn through P and representing

by its length the magnitude of the momentum, by its direction

and sense the direction and sense of the velocity. Hence, the

composition and resolution of momenta follows the same rules that

holdforforces.

7. Let us consider two particles Plt P^ of masses m^ m^
having equal and parallel velocities v, and let their momenta.

m-p, m^v be represented by their vectors (Fig. i). The two

particles may be regarded as forming a single moving system ;

as the velocities are equal in magnitude, direction, and sense,

the system has a motion of translation. According to the rule
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for compounding parallel rotors (explained for rotors repre-

senting angular velocities in Part I., Arts. 253-255, and for

rotors representing forces in Part II.,

Arts. 104-107), the resultant momen-

tum is parallel to the given momenta

and equal in magnitude to their alge-

braic sum (m 1 -f- m%) v ; and its line

divides the distance P\P% in the

inverse ratio of the momenta m^ut

m<p, or of the masses m
lt
m2 . The

resultant passes, therefore, through the

centroid P of the masses m^ m
2 .

8. It is easy to see how this proposition can be generalized.

If any number of particles, all having equal and parallel veloci-

ties, be given, the resultant momentum, or the momentum of the

system, is equal to the mass of the system multiplied by the

common velocity, and passes through the centroid of the

system.

Thus, in the case of a rigid body having a velocity of transla-

tion v, but no rotation, the whole mass M of the body may be

regarded as concentrated at the centroid, and the momentum of

the centroid, Mvt
is then equal to that of the body.

9. But we can speak of the momentum of a system of par-

ticles even when their velocities are not of equal magnitude
but only parallel.

Let x be the distance, at the time /, of any particle P of mass

m from some fixed plane, which, for the sake of simplicity, we

may take at right angles to the direction of the velocity. Then

the distance x of the centroid G of the system at the time /

from the same plane is (Part II., Art. 13)

-_. _ / x

C1 Ti/r
' *"

2,m M
Differentiating this equation with respect to the time, and re-
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membering that dx/dt=v is the velocity of the particle P, we

find for the velocity dx/dt=v of the centroid

10. In the special case of two particles /\, P% of masses m
lt

m
z , moving with the velocities v

lt v% in the same straight line,

we have

7> =mi
v

i +m*v
*_ ( }

If the velocities v
lt v^ be constant, this equation shows that the

centroid moves with constant velocity and constant momentum
in the same line.

Similarly, the more general equation (4) of the preceding

article,

Mv= *mv, (6)

shows that the momentum of a system of particles moving with

constant velocities in the same direction remains constant, i.e. the

centroid of such a system moves with constant velocity in a

straight line. It is to be noticed that the velocities need not be

all of the same sense
;
that is, v may be positive for some par-

ticles and negative for others.

This proposition may be regarded as a generalization of

Newton's first law of motion.

11. Direct Impact. We proceed to consider the particular

case of two homogeneous spheres of masses m, m' t
whose centres

C, C' move with velocities

u, it
1
in the same straight

line. The spheres are sup-

posed not to rotate but to

have a motion of pure trans-

lation
;
then their momenta

are mu, m !
u' > and can be '

represented by two vectors drawn from the centres C, C along

the line CO (Fig. 2). To fix the ideas' we assume the velocities
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u, u* to have the same sense and u>u', so that m will finally

impinge upon m'. The case when the velocities are of oppo-

site sense will not require special investigation, as only the

sign of u' would have to be changed.

// is our object to determine the velocities v, v' of m, m', im-

mediately after impact, when the velocities _,
'

immediately
before impact are given.

The results here derived for homogeneous spheres hold,

generally, whatever the shape of the impinging bodies, provided

that they do not rotate, and that the common normal at the

point of contact passes through both centroids.

12. If the spheres were perfectly rigid, the problem would be

indeterminate, for there is no way of deciding how the velocities

would be affected by the collision.

Natural bodies are not perfectly rigid. The effect of the

impact will, in general, consist in a compression of the portions

of the bodies brought into contact. Moreover, all natural bodies

possess a certain degree of elasticity ; the compression will

therefore be followed by an extension, each sphere tending to

regain its shape at least partially.

The compression acts as a retarding force on the impinging

sphere m, and as an accelerating force on m' . It will last

until, the velocities #, u 1 have become equal, say =w. During
the subsequent period of extension, or restitution, the elastic

stress still further diminishes the velocity of m
y
and increases

that of m', until they become, say, v, v'.

13. The stress varies, of course, during the whole time r of

compression and restitution. But, according to Newton's third

law, the pressure F exerted at any instant by m on m' must be

equal and opposite to the pressure F' exerted by m' on m at

the same instant. Since F= mdu/dt, F1= m'du'/dt, and F= -F1

at any instant during the time r, we have

, or m f
r

du= -m' Cdu',
t/o JQ
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whence mv mu=(m'v' m'u'),

or mv+ m'v 1 = mti+m'u* ; (7)

that is, the total momentum after impact is equal to that before

impact.

14. This proposition will evidently hold for any number of

spheres whose centres move in the same line, and can then

be expressed in the form

^mv ^mu. (8)

It can be regarded as a special case of the so-called principle

of the conservation of the motion of the centroid to be proved
hereafter for any system not acted upon by external forces.

On the other hand, the proposition can be looked upon as a

further generalization of Newton's first law of motion. While

the latter asserts that the momentum of a particle remains

unchanged as long as no external forces act upon it, our law of

impact asserts the same thing for the momentum of a system.

15. If the spheres were perfectly non-elastic, there would be

only compression and no subsequent extension. As at the end

of the period of compression, the velocities u, u' have both

become equal, viz. =w (Art. 12), the spheres after impact

would have the common velocity

/ x

(9)m + m'
. /

16. If the spheres were perfectly elastic, i.e. if the elastic stress

following the compression, or the so-called force of restitution,

were just equal to the preceding stress of compression, the

spheres would completely regain their original shape. In this

case, the elastic stress causes the impinging sphere m to lose

during the period of restitution an amount of momentum

m(w u} equal to that lost during the period of compression.

Hence, the final velocity of m after impact would be
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Similarly, we have for the other sphere m*

v' =w+(w u')
= 2 w ti'.

As w is known from (9), the velocities after impact can be

determined by means of these formulae for perfectly elastic

spheres.

17. In general, physical bodies are imperfectly elastic, the force

of restitution being less than that of the original compression ;

that is, we have

(w v) = e(u w),

(v' w)= e(w u r

),

where e is a proper fraction whose limiting values are o for

perfectly inelastic bodies and i for perfectly elastic bodies.

This fraction e, whose value for different materials must be

determined experimentally, is called the coefficient of restitution

(or less properly, the coefficient of elasticity).

18. To eliminate w we have only to add the last two equa-

tions
;
this gives

v 1 v= e(u u')'y (10)

that is, the ratio of the relative velocity after impact to the rela-

tive velocity before impact is constant and equal to the coefficient

of restitution.

This proposition, in connection with the proposition of Art.

13, expressed by formula (7), is sufficient to solve all problems

of so-called direct impact, i.e. when the centres of the spheres

move in the same line.

19. As the coefficient e is frequently difficult to determine,

the limiting cases e=o, e=i are important as giving approxi-

mate solutions for certain classes of substances.

Thus, for nearly inelastic bodies (such as clay, lead, etc.)

we may put e=o, whence, by (10), v 1 = v, i.e. the velocities of

the spheres become equal after impact ; and the value of the

common velocity is found from (7) as

mu-\-m'u f

v=
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which agrees with the result (9) found in Art. 15. For per:

fectly elastic bodies e=i, and formula (10) shows that in this

case the relative velocity after impact is numerically equal to

that before impact, but of opposite sense.

20. Exercises.

(1) Two balls of clay (<?=o) weighing 2 and 3 oz. move in the same

direction. The heavier ball impinges from behind upon the lighter ball

at the moment when the latter moves at the rate of 15 ft. per second.

If the velocity of the lighter ball is doubled by the impact, what was the

original velocity of the heavier ball ?

(2) Two glass balls (<?=i) weighing i Ib. and 12 oz., respectively,

move in the same line with velocities of 5 and 4 ft. per second. What

are their velocities after impact (a) if their original velocities were of

the same sense, (<) if they were of opposite sense ?

(3) A ball weighing 5 Ibs.,' while moving with a speed of 51 ft. per

second, overtakes a ball of 7 Ibs. moving in the same line at the rate of

40 ft. per second. If the coefficient of restitution be ^, what are the

velocities of the two balls after impact ?

(4) With the data of Ex. (3), show that the velocities after impact

would be equal if the balls were perfectly inelastic, and that these veloci-

ties would differ more than in Ex. (3) if the balls were perfectly elastic.

(5) Find the velocity with which an elastic ball rebounds from a

fixed surface after impinging upon it perpendicularly with a velocity u.

(6) To determine the coefficient of restitution, a ball is dropped

from a height H on a fixed horizontal plate of the same material, and

the height of rebound h is measured. Show that e = ^Jh/H.

(7) A ball is dropped from a height H~ 12 ft. on a fixed horizontal

plate. Find the height h to which it will rebound if e = f.

(8) If not disturbed, the ball in Ex. (7) will continue to fall and

rebound alternately, (a) What height does it reach at the tenth re-

bound? (3) In what time does it come to rest? (c) What is the

whole space described?

(9) A number of equal, perfectly elastic balls are placed in contact so

that their centres are in a straight line. An equal ball impinges with a

velocity u along this line on the first ball of the row. Show that the
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last ball of the row will move off with the velocity u, while all the other

balls will remain at rest.

(10) Find the velocity of the last (th) ball in Ex. (9), when the

coefficient of restitution is e.

(n) An inelastic ball of 8 Ibs. is moving with a velocity of 12 ft. per

second, (a) With what velocity must a ball of 24 Ibs. meet it to arrest

its motion? () With what velocity would the ball of 24 Ibs. have to

impinge from behind on the ball of 8 Ibs. to double its velocity ?

(12) A ball m impinges upon a ball m' from behind with a velocity

u. Determine the velocities after impact, both for inelastic and for per-

fectly elastic balls : (a) when -m' is originally at rest; (b) when m' is

at rest and very large in comparison with m
; (<r) when m 1

has the

initial velocity z/', and is very large in comparison with m.

21. Kinetic Energy. A particle of mass m
t moving with the

velocity v, has the kinetic energy ^mv2
(Part II., Art. 71). As

this is not a vector-quantity, the kinetic energy of a system

consisting of any number of free particles is simply the alge-

braic sum, ^^mv^y of the kinetic energies of these particles.

It is an essentially positive quantity, provided the masses are

all positive.

The kinetic energy of a rigid body having a motion of pure

translation is evidently =\mvi
y
if m be the mass of the body

and v the common velocity of all its points.

22. Change of kinetic energy is brought about by the action

of force, and we have (Part II., Art. 72) for a constant force F
t

\mv'*-\mv*=F(s>-s); (u)

and for a variable force F,

'

(12)

where the quantity in the right-hand member is called the work

of the force. Thus a particle, of mass m, falling from rest

through a distance s, acquires its kinetic energy owing to the
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work done upon it by the constant attractive force, Fmg^ of

the earth, and we have

l mv2 Fs= mgs.

The kinetic energy \ miP, possessed by a particle of mass m,

moving with the velocity v, can therefore always be regarded as

equivalent to a certain amount of work. If the motion of this

particle be opposed by a constant force or resistance F, the dis-

tance s through which it will go on moving until it comes to

rest is of course determined from the same equation,

mv*=Fs. (13)

It is then said that the kinetic energy of the particle is spent in

overcoming the resistance F, or in doing work against the force

^(see Part II., Art. 231).

23. In the case of direct impact of spheres, as considered in

Art. 11, the velocity, and hence also the kinetic energy, of each

sphere is in general changed by the impact ;
a transfer of kinetic

energy can be said to take place. Thus, when a sphere at rest

is struck by a moving sphere, kinetic energy is imparted to the

former by the impulsive force, and this energy can then be

spent in doing work against a resistance. Impact is therefore

frequently used for the purpose of performing useful work.

24. For instance, to drive a nail into a wooden plank, the

resistance F of the wood must be overcome through a certain

distance s. This might be done by applying a pressure equal

to F
; as, however, this pressure would have to be very large, it

is more convenient to impart to the nail, by striking it with a

hammer, an amount of kinetic energy, ^mv2
, equivalent to the

work Fs that is to be done. Neglecting elasticity, and denoting

the mass of the hammer by m, that of the nail by m f

,
the veloc-

ity of the hammer at the moment when it strikes the head of

the nail by , we have, by (7),

mv+ m'v' = mu,
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or since, by (10), for inelastic impact v' = v,

m
.

m+m*

This is the common velocity of hammer and nail after the

stroke. We find, therefore, by (13),

mil

-^-
f .^^= Fs. (14)m+m1

25. It will be noticed that while the total kinetic energy
of hammer and nail just before striking was ^mu2 +o, the

kinetic energy utilized for driving the nail is only the fraction

m/(m+m
f

)
of this total kinetic energy. The remaining portion

of the original kinetic energy, viz.

(15)m+m 1

must be regarded as spent in producing the slight deformations

of hammer and nail and such accompanying phenomena as

vibrations of the plank, sound, heat, etc. For it is an experi-

mental result of modern physical research that, wherever kinetic

energy disappears as such, there is done an exactly equivalent

amount of work. The apparently disappearing kinetic energy

may either be transferred to some other body, as in the case of

the vibrations of the plank, or it may reappear in the form of

molecular vibrations, causing sound or heat
;
or it may be trans-

formed into an equivalent amount of so-called potential energy.

This physical fact is known as the principle of the conservation

of energy.

26. In our example the total original kinetic energy, Ji*>
resolves itself into two portions, the portion (14) used for driv-

ing the nail, and the "wasted" or, as it is often called, "lost"

portion (15). It may, however, happen that the portion (15)
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does the useful work, while (14) is wasteful. This would be the

case, for instance, in molding a rivet with a hammer, or in forg-

ing a piece of iron under the blows of a steam-hammer. The

useful work here consists in the deformation of the bolt or piece

of iron.

It appears from the expressions (14) and (15) that, for the

purpose of driving the nail, m should be large in comparison

with m', while for molding a rivet it is of advantage to have m'

large in comparison with m.

27. In applying the formulae (11) to (15), and in general all

formulae of theoretical kinetics, it should be noticed that the

forces are supposed to be expressed in absolute measure, the

unit being the poundal or the dyne. Hence, to find the force F
in pounds the numerical result obtained from one of these

formulae must be divided by the value of g.

28. Let us now consider the change of the total kinetic energy

produced by direct impact in two partially elastic spheres.

With the notations of Art. n, we have for the excess of the

kinetic energy after impact over that before impact :

To eliminate v and v' from this expression, square the equations

</) and (10),

multiply the latter by mm', and write it in the form

mm'(p-v'y+(\-^mm'(p-u')*

finally add the former equation,

whence

(-')a. (16)
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As the right-hand member of this equation is essentially

negative, it appears that while in impact the total momentum

remains unchanged, the total kinetic energy is in general dim-

inished; only in the limiting case of perfectly elastic bodies

(e=i) does the kinetic energy remain the same after as before

impact. The "lost" kinetic energy (16) mainly represents

the amount of energy spent in producing the permanent defor-

mation of the impinging bodies.

29. Exercises,

(1) A hammer weighing 1.5 Ibs. strikes a nail weighing ^ oz. with

a velocity of 20 ft. per second, and drives it J in. Find the mean

resistance of the wood, and determine the useful and wasteful work.

(2) In Art. 20, Ex. (3), find the loss of kinetic energy due to the

impact.

(3) A train of 120 tons runs, with a speed of 15 miles an hour, into a

train of 80 tons at rest. Neglecting elasticity, determine the destructive

work of the collision, and the velocity along the track after impact.

(4) A pile weighing m' Ibs. is driven into the ground by a ram of m
Ibs., falling from a height of h ft. If the pile sinks s in. into the ground

after n falls of the ram, show that the resistance of the ground (assumed

as uniform) is = l?-^[
*

, , )

m'h pounds.
s \i + m'/mj

(5) If, in Ex. (4), the elasticity of ram and pile be neglected, ram

and pile will have equal velocities after impact, and move together.

Hence, the factor m' should be replaced by m + m 1

,
and the resistance is

- U1L J mh pounds.
s i + m'/m

(6) TO blows of a ram of 500 Ibs., falling from a height of 5 ft., sink

a pile of 400 Ibs. 4 in'. If the permanent load of a pile be taken as

one-fifth of the resistance, what permanent load can the pile bear ?

(7) A steam-hammer of 3 tons is used in forging. It has a fall of

5 ft. If the weight of the anvil be 20 tons, what is the useful and what

the wasteful work?

30. Recoil. The explosion of the powder in a gun produces

an impulsive pressure both on the shot and on the body of the
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gun. Assuming the line of motion of the centroid of the shot

to pass through the centroid of the gun, we may apply equation

(7), with u= o, u' = o. Hence, denoting by m the mass of the

gun, by m' that of the shot, we find for the velocity of recoil

(17)

The kinetic energies ^ mv* and
|-
m'v'^ of gun and shot are in

the ratio m 1

/m ; hence, the energy of recoil is the fraction

m'/(m +m f

)
of the total energy J mv*+ ^ m'v'2 of 'the explosion

of the powder, while the energy of the shot is =m/(m-}-m
!

)
of

the total energy. In large guns the recoil is diminished by a

special elastic cushion or "compressor." Moreover, the mass

of the powder gases cannot be entirely neglected in all cases.

31. Oblique Impact. In ihe case of oblique impact, i.e. when the

centres of the colliding spheres do not move in the same straight

line, the velocities after impact can be found without difficulty,

provided that the velocities of the centres before impact lie in

the same plane and that the spheres are perfectly smooth.

With these assumptions, let m, m' be the masses of the two

spheres ; C, C' their centres (Fig. 3) ;
u

t
u' the velocities before

impact ; a, a f the angles
made by ?/, u' with the line

CC'
; v, v' the velocities

after impact ;
and 0, 0'

the angles they make
with CC.
As there is no friction,

the forces of impact act
Fig. 3?

along the line CC that

joins the centres. Hence, resolving each velocity along and

perpendicular to CO, the components at right angles to CO
must remain unchanged by the collision ;

that is, we must have

v sin/3=& sin a, v' sin' = ' sin a', (18)
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The components of the velocities along CO must satisfy the

equations (7) and (10). Hence, substituting u cos a,
'

cos a',

v cos ft z/ cos/3' for z/, V, z/, z/, respectively, we must have

mv cos ft+m'v f cos @' =mu cos a+ m'ti' cos ', (19)

z/ cos /3' v cos ^ e(u cos a u f cos a'). (20)

32. The particular case of the oblique impact of a homoge-
neous sphere against a smooth fixed plane deserves special

mention. In this case,
' and v' are zero

;
and the angles a, /3

made by the velocities u, v with the normal to the plane, are

called the angle of incidence and of reflection, respectively.

The equations (18) and (20) reduce to the following:

v sin j3
= u sin a, v cos /3= eu cos a, (21)

where the minus sign indicates that the projections of u and v

on the normal have opposite sense. Dividing the former of

these equations by the latter, we find

tan a= e tan ft (22)

where the minus sign merely indicates that the angles a, /3 lie

on opposite sides of the normal.

For perfectly elastic bodies, the last equation shows that the

angles of incidence and reflection are equal.

33. Exercises.

(1) A baseball weighing 5^ oz., while moving with a velocity of 100

ft. per second is struck by the bat in a direction at right angles to its

line of motion. Find the momentum imparted by the blow if it deflects

the ball through an angle of 60.

(2) Determine the velocity of recoil of a gun weighing 1500 Ibs. when

a i2-lb. shot is fired from it with an initial velocity of 2000 ft. per

second.

(3) The heavier one of two ivory balls (e = 0.88), whose centroids

are C, O and whose masses are i Ib. and j lb., impinges upon the

lighter. The velocity of the heavier ball is 15 ft. per second and makes

an angle of 30 with the line CO, while the velocity of the lighter ball is

5 ft. per second and makes an angle of 60 with the line CO (pro-

duced). Find the velocities after impact in magnitude and direction.



34-]
IMPACT OF SPHERES. ! 7

34. As a more careful study of the theory of impact requires

some knowledge of the theory of elasticity, it is generally

treated more at length in works on applied mechanics. See,

for instance, J. WEISBACH, Mechanics of engineering, translated

by E. B. Coxe, New York, Van Nostrand, 1875, Vol. I., pp.

667-711 ;
A. RITTER, Technische Mechanik, Leipzig, Baum-

gartner, 1884, pp. 585-618; J. H. COTTERILL, Applied Me-

chanics, London, Macmillan, 1884, pp. 274-280 and 374-386;

THOMSON and TAIT, Natural philosophy, I., Part I, pp. 274-284.

The general theory of impulsive forces will be given in Chapter

VI.

PART III 2
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II. Rectilinear Motion.

35. The motion of a single particle presents a comparatively

simple problem, because the forces, being in this case all applied

at one and the same point, have a single resultant which is

readily found by geometrically adding the forces (Part II., Art.

96). Let this resultant be denoted by F, the mass of the par-

ticle by m, and its acceleration by j ; then, according to the

definition of force (Part II., Art. 60), we must have

mjF.
This equation merely expresses the fact that the force F pro-

duces in the mass m an acceleration /, which agrees with F in

direction and sense, and is inversely proportional to m.

36. The forces, whose resultant is F, are usually called the

impressed forces. Both F and/ are, in general, variable. If at

any time t the particle m were acted upon by a force = mj,

in addition to the impressed forces, it would evidently be in

equilibrium. The product mj of the mass of the particle into

its acceleration at any instant is called the effective force of the

particle at this instant. It can, therefore, be said that the im-

pressedforces are at any instant in equilibrium with the effective

force reversed.

This obvious proposition forms the fundamental idea of a

most important method of treating the dynamical equations of

motion, known as d'Alembert's principle, which will be discussed

more fully later on (see Arts. 97-103, 383-386). It makes it

possible to apply to kinetic problems the statical conditions of

equilibrium. Thus, in the case of a single particle, if the re-

versed effective force, mj, be combined with the impressed

forces, we have a system of forces acting on the particle which,

at the instant considered, is in equilibrium, and must satisfy

the conditions of equilibrium for concurrent forces (Part II.,

Arts. 97, 101), viz. mf+F=o; or, resolving/ into its com-
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ponents dz
x/dfi, d^y/dt

2
,
d2

z/dfi, and .Finto the components X,

' '

37. To familiarize the student with the idea of force and its

use in kinetics, we shall now study in some detail the simple

case of rectilinear motion. The next section will be devoted to

the general problem of the curvilinear motion of a.free particle.

This will be illustrated by the important case of motion due

to central forces. Finally, the motion of a particle subject to

conditions, or constraints, will be treated.

38. When a particle of mass m moves in a straight line, both

its velocity v and the resultant force F must be directed along

this line. The acceleration in rectilinear motion (see Part I.,

Art. 103) is j= dv/dt= d*s/dt* ',
hence the dynamical equation

of rectilinear motiony

-%--%-* ^ >

It differs from the kinematical equation (Part I., Art. 1 1 5) only

by the factor m, and can be treated in the same way.

Thus, if the law of force be given, i.e. if F be known as a

function of t, s, v, or of only one or two of these quantities, the

equation can be integrated ;
and if, moreover, the initial position

and velocity of the particle be given, the constants of integra-

tion can be determined, and all the circumstances of the motion

can be found.

If the mass m of the moving particle were not a constant

quantity, the equation (i) should be written in the form

d(mv) _ p
~dT *'

since the resultant force is the rate at which the momentum of

the particle changes with the time (see Part II., Art. 60).
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39. As long as a single free particle only is considered, there

is generally no advantage in introducing the idea of force
;
the

equation of motion can be divided by m, and this reduces it to

a purely kinematical form.

Thus, for a particle of mass m falling in vacuo, the dynamical

equation of motion is

where W=-mg is the weight of the particle; i.e. the force of

attraction exerted by the earth on the particle (in poundals or

dynes, if m be expressed in pounds or grammes, see Part II.,

Art. 115). Dividing by m, we find the kinematical equation

which has been treated in Part I., Arts. 107-114.

The following articles give examples in which it is more con-

venient to retain the idea of force.

40. Let us consider a mass m that is being raised or lowered

by means of a rope or chain (Fig. 4), such as a building stone

suspended from a derrick. The rope acts as a

constraint) conditioning the motion of the stone.

To make the stone free we may imagine the

rope cut just above the stone and the tension

of the rope, T, introduced as a substitute. The

stone then moves under the action of two forces,

viz. its weight W=mg and the tension T of

the rope. Taking the downward sense as posi-

tive, we have the equation of motion,Fig. 4.

(2)

41. Writing/ for the acceleration d*s/dt
z with which the stone

is being lowered or raised, we find for the tension T of the rope

T=m(g-j). (3)
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This equation shows that the tension is equal to the weight of

the stone, not only when it is hanging at rest, but also when-

ever it is raised or lowered with constant velocity ;
and that the

tension is zero if the stone is lowered with an acceleration equal

to that of gravity, as is otherwise evident.

42. The above formula will give the tension T in poundals

(or dynes), if the mass m be expressed in pounds (or grammes),
and the accelerations in feet (or centimetres) per second per

second.

In engineering practice, gravitation measure is commonly
used for weights as well as for the forces that replace con-

straints (tensions, pressures, friction, etc.). The engineer would,

therefore, divide by g the numerical value of T just found, so as

to reduce it to pounds.

It should be noticed that the general equations of theoretical

mechanics are of course independent of the system of units

adopted, and that in applying them to numerical examples it

is only necessary to use one and the same system of
~

units con-

sistently throughout. As modern physics has settled upon
mass as a fundamental unit (see Part II., Art. 68), regarding the

unit of force as derived from and based upon the unit of mass,

this absolute system will always be adopted in this book, unless

the contrary be specified. In other words, it will always be

assumed that mass is expressed in pounds (or grammes), and

consequently force in potmdals (or dynes).

43. Let us next consider two particles, m lt
mv connected

by a cord hung over a vertical fixed pulley, as in the apparatus

known as Atwood's machine (Fig. 5). If m^ > m%, m-^ will

descend while m^ ascends. The effective force of the system
formed by the two particles is evidently the difference of the

weights of the particles, viz. W
1
W

2
= (m l m^g> while the

whole mass moved (neglecting the mass of the cord and of
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Hence, we have for the accelerationthe pulley) is

j of the system,

This acceleration is constant, and the relations between space,

time, and velocity are found just as for a single particle falling

freely, except that the acceleration of gravity g
is replaced by the fraction (m l

m2)/(m 1 -\-m2)

of g. It follows that if the masses m
lt
m

2 be

selected nearly equal, the acceleration will be

small, and the motion can be observed more

conveniently than that of a freely falling body.

W2

Fig. 5.

44. The tension T of the cord is, of course,

the same at every point of the cord if, as is

here assumed, the weight of the cord and the

axle-friction of the pulley be neglected. To

determine this tension, we have only to consider either particle

separately.

If the cord be cut just above m
lt

and the tension T
be introduced, the particle m

1
will move like a free particle ,

under the action of the resultant force W
l
T=m

lgT./
Hence, as the sense of the acceleration/ of m

l agrees with that

mlg-T
m

1

Similarly, we have for the acceleration of

opposite to that ofgy

m^g-T
(6)

Eliminating / between any two of the equations (4), (5), (6),

we find the tension

(7)
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45. If the two particles of Art. 43 move on inclined planes

intersecting in the horizontal axis of the pulley (Fig. 6), it is

only necessary to resolve the weights m^g and m^g into two

components, one parallel, the other perpendicular, to the inclined

Fig. 6.

plane. If the planes be smooth, the system formed by the

two particles is made free by introducing the normal reactions

of the planes which counterbalance the perpendicular com-

ponents of the weights. The effective force is therefore the

difference of the parallel components, and the acceleration is

m-i sin 01 m sin
7 L 1 A
J (8)

where V 2 are the angles of inclination of the planes to the

horizon.

The tension T of the connecting cord is again determined by

equating this value of j to the one obtained by considering

either of the two particles separately. Thus, m^ taken by itself,

becomes free if we introduce not only the normal reaction of

the plane, but also the tension of the string. This gives

(9)

(10)

With
l
=

z
=

TT/2 the formulae (8) to (11) reduce, of course,

to the formulae (4) to (7).

'Similarly, we have for

i -

Hence,
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46. Exercises.

(1) A stone weighing 200 Ibs. is raised vertically by means of a

chain running over a fixed pulley. Determine the tension of the chain :

(a) when the motion is uniform
; (t>) when the motion is uniformly

accelerated upwards at the rate of 8 ft. per second ; (c) when the accel-

eration is 32 ft. per second downwards. Neglect the weight of the

chain and the axle-friction of the pulley.

(2) A railroad car weighing 4 tons is pushed by four men over a

smooth horizontal track. If each man exerts a constant pressure of

100 pounds, (a) what is the velocity acquired by the car at the end

of 5 sec. ? (^) what is the distance passed over in these 5 sec. ?

(3) (a) Determine the constant force required to give a train of 90
tons a velocity of 30 miles an hour in 5 min. after starting from rest.

() How far does the. train go in this time ? (c) If the same velocity

is to be acquired at the end of the first mile, what must be the tractive

force of the engine ?

(4) If in Atwood's machine (Fig. 5) the two masses are each 2 lbs. r

and an additional mass of i oz. be placed on one of these masses, how

long will it take this mass to descend 6 ft. ? (g= 32.2.)

(5) If in Ex. (4) an additional mass of half an ounce be placed on

each of the 2 Ib. masses, how would the tension in the cord differ from

the tension in Ex. (4) ?

(6) Solve the problem of Art. 45 when the inclined planes are rough,.

the coefficients of friction being filt ^.

"(?) A mass of 5 Ibs. rests on a smooth horizontal table, and has a

cord attached which runs over a smooth pulley on the edge of the table.

If a mass of i Ib. be suspended from the cord, find the acceleration and

the tension of the cord.

(8) A sleigh weighing 500 Ibs. is drawn over a horizontal road, the

coefficient of friction being -fa.
Find the pull exerted by the horses

when the motion is uniform.

(9) When the U.S.S. Raritan was launched she was observed to

pass in ii sec. over an incline of 3 40', 54 ft. long. Find the coeffi-

cient of friction.

(10) A coaster, after coming down a hill, runs up another hill a dis-

tance of 200 ft. (from its foot) in 10 sec., when it stops. If the slope

of the second hill be 6, find the coefficient of friction.
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(n) A train of 120 tons is running 25 miles an hour. Find what

constant force is required to bring it to rest : (a) in 3 min. ; (b) in

half a mile.

(12) If it takes i min. to coast down a hill on a uniformly sloping

road of i mile length, and the coefficient of friction be 0.02, what is the

height of the hill ?

47. Kinetic Energy and Work. The dynamical equation of

motion, (i), Art. 38, can often be integrated after multiplying

both members by vdt=ds\ this makes the left-hand member an

exact differential, viz. the differential of the kinetic energy \ mv*
1

,

while the right-hand member, Fds
t represents the elementary

work done by the force F:

If F be given as a function of s alone, this equation can be inte-

grated, say from the time t
Q

to the time /. Denoting by s^

and VQ the values of s and v at the time / (Fig. 7), we find

I

/*
Fds. (12)

This equation gives the velocity v as a function of the distance

s, counted from the arbitrary origin O. As v= ds/dt, a second

t , V t, V

fcU -s=s-

Fig. 7.

integration will give s as a function of t. Examples of this

method have been given in Part I., Arts. 109, 117, 119, 121,

122
;

it will here only be necessary to call attention to the

dynamical meaning of the quantities involved.

48. The left-hand member of equation (12) represents evi-

dently the increase in the kinetic energy of the moving particle,

while the right-hand member expresses the work done by the

force .F.during the passage of the particle from the point PQ

to the point P (see Part II., Arts. 71, 72). Hence, the meaning
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of the equation is that the increase in the kinetic energy is equal

to the work done by the resultant force. This is the principal of

work or of kinetic energy (or of vis viva) for the case of the rec-

tilinear motion of a particle.

Thus, for a falling body, F is constant and equal to the weight

mg of the body; hence, equation (12) gives, if s be counted,

positive downwards,

1-
\rnvg= mg(s S

Q),

where the right-hand member represents the work done by the

weight of the body, i.e. by the attractive force of the earth

during the fall of the body through the distance s S
Q

.

For a body thrown vertically upwards with an initial velocity

v, we have

J mi? mv<?= mgsy

if s be counted from the starting point and positive upwards.

The kinetic energy here decreases, the initial kinetic energy,

\ mv^, being, so to speak, consumed by the work done against

the force of gravity.

49. Inclined Plane. When a particle of mass m is moved

uniformly up a smooth inclined plane from PQ to P
l (Fig. 8),

the work done against gravity

FV^ is equal to the work that would

8^^^ have to be done in raising the

\h particle m through the vertical

height PP
l

of P
l
above the

Po^p \ _j\ * L_ _
jn it ia] point /V For, putting

PQPl =s, PP^=ht
and denot-

ing the inclination of the plane

Pig. s. to the horizon by 0, we have

for the work,

mg-sin 6 s=-mg s sin Q=mg - h.

If the plane be rough, the coefficient of friction being /*,
the
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effective force for motion upwards is =mg sin + yang cos 6
;

hence, the work done in moving the mass m from P
Q to P

l
is

sin 4- prngs cos V=mg

where !=P
Q
P is the horizontal distance of the final position Pl

from the starting point PQ . The total work is, therefore, the

sum of the work of overcoming gravity through the vertical

distance h and the work of overcoming friction through the

horizontal distance /.

50. Work done on a System of Particles. Let there be given

any number of particles of masses m-^ m^, ... m^ at the distances

.s
lf

sz ,
... sn above a fixed horizontal plane ;

and let these masses

be raised vertically against gravity so that their distances from

the same plane become s^, s
2 ', ... sn

f
. The centroid of the

masses in their original position has a distance s= 2ms/2m
from the fixed plane, while in the final position it has the dis-

tance sf=*2msffm from the same plane. It has, therefore, been

raised through a distance s r
s. It follows that the total work

done in raising the separate masses, viz.

is equal to the work that would be done in raising the total mass

through the distance s' s traversed by the centroid, i.e. to

51. The Work of a Variable Force is well illustrated by the

expansion of gas or steam in a cylinder with a movable piston

(Fig. 9). Let r be the radius of the cylinder, / the pressure (in

pounds) at any instant of the gas per square inch of surface
;

then the total pressure of the gas on the inside of the piston is

P rrrr^p pounds, and if P
Q
be the pressure on the outside (say

the atmospheric pressure), the effective force acting on the

piston is FPP^ friction being neglected.

The force F is variable, since the pressure p varies with the
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volume v occupied by the gas. This volume being in the

present case proportional to the distance s of the piston from

the fixed base of the cylinder, the

force F is a function of s. The
variation of F can therefore be rep-

resented graphically by a curve hav-

ing s for abscissa and F for ordinate

(Fig. 9) ;
and the area of this curve,

i.e. the area contained between the

curve, the axis of s, and two ordi-

nates whose abscissas are s and s,

being given by the integral j Fds,

represents the work done on the piston

when ptished through the distance

s-s .

Fig. 9.

52, In the case of a perfect gas, Boyle's law gives the rela-

tion pv= k, where k is constant if the temperature remains con-

stant. Hence,

where K and P
Q
are constants. This equation represents an

equilateral hyperbola, whose asymptotes are the axis of F and a

line parallel to the axis of s. For steam, the law connecting

pressure and volume is more complicated, but the curve may
be taken as very nearly hyperbolic.

53. The Steam-engine Indicator is an apparatus for measuring the

pressure of the steam in the cylinder and at the same time recording it

automatically on a drum revolving as the piston moves. Thus, if the

indicator be put in connection with the interior of the cylinder, the

curve traced by the indicator has for its abscissas the distances s of the

piston from this end, and for its ordinates the corresponding pressures

F of the steam on the inside of the piston.
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At the beginning of the stroke, steam is admitted and acts with nearly

constant pressure on the piston; the line

AB (Fig. 10) traced by the indicator will

therefore be nearly parallel to the axis of s.

As soon as the steam is shut off by the slide-

valve, the steam, being now confined within

the cylinder, begins to expand nearly accord-

ing to the law pv = const., or Fs = const.
;

the curve traced by the indicator is therefore

approximately an equilateral hyperbola BC, Fig. 10.

having the axes as asymptotes. When the

slide-valve connects the cylinder with the condenser, a partial vacuum is

established behind the piston, and the pressure curve is approximately

a line CD, parallel to the axis of F.

54. The area ABCDO evidently represents approximately the

work of the pressure on the inside of the piston in one complete (for-

ward and backward) stroke. In reality, a large number of circum-

stances produce deviations from the regular shape ABCDO, and the

actual trace, obtained by means of an indicator for one (forward and

backward) stroke, usually called the indicator diagram, forms a loop

somewhat like that indicated by the dotted curve in Fig. 10. The area

of this loop, which represents the work in question, can readily be found

by dividing it up into narrow rectangular strips, or with the aid of a

planimeter.

55. The effective piston pressure is of course the difference between

the pressures on the two sides of the piston. A diagram should there-

fore be obtained for each side of the piston ;
from these two diagrams

the curve of effective piston pressure is then derived by constructing the

curve whose ordinates are the differences of the corresponding pressures

on the two sides. By dividing the area contained between this curve

and the axes by the length of the stroke, the average, or mean, piston

pressure is finally found.

For details the student is referred to special works on the steam

engine, such as G. C. V. HOLMES, The steam engine, New York, Apple-

ton, 1887, pp. 317-345.

56. Attractive and Repulsive Forces. Let us consider the

motion of a particle acted upon by a so-called central force, i.e.
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a force whose direction constantly passes through a fixed centre

(9, while its magnitude is a function of the distance s from the

centre alone. If the initial velocity be zero, or if its direction

pass through the centre O, the motion of the particle will be

rectilinear, the line of motion passing through the centre of

force, O. The most important special cases of this kind have

been treated in kinematics (Part I., Arts. 117-124, 176).

57. Let the force be due to a mass m' concentrated at the

centre O, and attracting according to Newton's law of the

inverse square of the distance (Part II., Art. 257).

Counting the distances s from the centre O as origin

(Fig. u), we have, for the force acting on the par-

ticle my

F N

where K is a constant whose value may be deter-

mined, as indicated in Part I., Art. 119, and Part II.,

Arts. 262, 263.

The principle of kinetic energy, equation (12), Art.
lg ' '

47, gives at once

The quantity m' /s, or in absolute measure tcm'/s, is the

potential at P due to m' (Part II., Art. 278), and /cm'/sQ is the

potential at P due to the same mass m'. The increase in

kinetic energy is, therefore, proportional to the decrease in

potential.

The quantity /cmm'/s is sometimes called the mutualpotential
of the masses m and m'

; hence, the increase of the kinetic

energy can be said to be equal to the difference of the mutual

potentials in the final and initial positions.

The negative of the mutual potential is designated as the
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potential energy of the moving particle m. Denoting this by

V, and the kinetic energy by T, the last equation becomes

or 7> V= ro+ ro =const. ;

i.e. the sum of the kinetic and potential energies remains con-

stant during the motion. This is the principle of the conservation

of energy for this particular problem.

58. It is easy to see that the principle of the conservation

of energy holds generally whenever the resulting force F is a

function of the distance s alone.

Indeed, if F= F(s), the principle of kinetic energy gives

mv*-mv*= \ F(s)ds; (13)/

hence, putting J F(s)ds=f(s), where f(s) is called the force-

function, or potential function, while f(s) is the potential

energy, we have

\mT?-\mV *=f(s)-f(S^ (14)

or, with the notation of Art. 57,

=r
o+F = const. (15)

59. When the resultant force F is an attraction directly proportional

to the distance s from a fixed centre O, say

the potential energy is, by Art. 58,

Hence, the principle of the conservation of energy gives

z/
2

-f- KV = const,
j

or, if the initial velocity is zero when s = s
,

60. Tension of an Elastic String. According to Hooke's law, the

tension of an elastic string is, within the limits of elasticity (i.e. as long
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as no permanent deformation is produced) , directly proportional to the

extension or change of length produced.

Thus, let an elastic string, whose natural length is /, assume the

length s when its tension is T\ then Hooke's law can be expressed in

the form

where k is a constant. To determine this constant for a given string,

we may observe the length /x assumed by the string under a known

tension, say the tension TI = mg, produced by suspending a given mass

m from the string (the weight of the string itself being neglected). We
then have

71 =(/i-/).
Hence, dividing,

T _ s - I

mg 4 - /

or, denoting by e the extension l l due to the weight mg,

T="*f(s-l). (16)

61. By means of this relation we can determine the motion of a

particle of mass m attached to a fixed point O by means of an elastic

string, if the string be stretched and then let go. We shall assume the

particle and string to lie on a smooth horizontal table, so as to eliminate

the effect of the weight of the particle.

The equation of motion is

whence, putting for shortness ^Jg/e = K,

s = 1+ C\ cos K/+ C2 sin */,

If the initial length of the string at the time /= o be s
,
the constant

.are readily determined, and we find

s = /-f (.r /) cos K/,

v= K (s /) sin*/. (18)
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It should be noticed that these equations hold only as long as the

string is actually stretched, i.e. as long as s > /
; the motion that ensues

when s becomes less than / is, however, easily determined from the

velocity for s = I.

62. Exercises.

(1) In a steam engine, let/= 15 Ibs. per square inch be the mean

piston pressure during one stroke, s = 4 ft. the length of the stroke, and

.d= 1.5 ft. the diameter of the cylinder, (a) What is the work per

stroke? (b) To what height could a mass of 500 Ibs. be raised by this

work?

(2) A train of 80 tons starting from rest acquires a velocity of 30
miles an hour on a level road at the end of the first mile. Determine

the average tractive force of the engine : (a) if the frictional resistances

te neglected ; (b) if these resistances be estimated at 8 Ibs. per ton.

(c) What tractive force is required to haul the same train over a level

road at a constant speed?

(3) A train of 60 tons runs one mile with constant speed ;
if the

resistances be 8 Ibs. per ton, find the work done by the engine : (a) on

a level track
; (b) on an average grade of i % . (t) On a i % grade,

what is the ratio of the work done against gravity to that done against

the resistances ?

(4) Determine the work expended in raising from the ground the

materials for a brick wall 30 ft. high, 40 ft. long, and 2 ft. thick, the

weight of a cubic foot of brickwork being 112 Ibs.

(5) Knowing that on the surface of the earth the attraction per unit

of mass is g= 32, find what it would be on the sun if the density of the

sun be \ of that of the earth, and its diameter 108 times that of the

earth.

(6) Show that the velocity acquired by a body in- falling to the sur-

face of the earth from an infinite distance, under the action of the

earth's attraction alone, would be v = ^/2gR, or about 7 miles per

second (with R = 4000 miles).

( 7) A homogeneous straight rod, AB = /, of constant density p,

attracts a particle P of mass i according to the law of the inverse

square of the distance. The initial position P of P is on AB produced

beyond B, at the distance BP^ = SQ ,
and the initial velocity is zero.

PART III 3



34 KINETICS OF A PARTICLE. [62.

(a) Determine the velocity v of P at any distance BP= s, and its

velocity v1 at B. (b} How is the solution to be modified if the linear

mass BA extends from B to infinity ?

(8) A circular wire of radius a and constant density p attracts,

according to Newton's law, a particle P of mass i, situated on the axis

of the circle
;

i.e. on the perpendicular to its plane passing through the

centre O. If the velocity is zero when the particle is at the distance

OP^ = s
,
determine the velocity of the particle at any distance s, and

show that the motion is oscillatory.

(9) Determine the motion of two free particles of masses m
lf m2f .

attracting each other according to Newton's law, and starting at the

distance j with zero velocity.

(10) Show that the motion of the particle in Art. 61 is oscillatory,

and that the period, i.e. the time of one complete oscillation, is

(n) A particle of mass m is suspended from a fixed point by means

of an elastic string whose weight is neglected. The natural length of

the string is /. Its length, when the mass m is suspended at its end, is

/! If the particle be pulled down so as to make the length of the

string = s
,
and then released, the particle will perform oscillations.

Determine their period : (a) if s /x < /x /; () if s ^ > ^ I.

(12) The particle in Ex. (u) is raised through a height h, so as to

loosen the string, and then dropped. Determine the greatest exten-

sion of the string.

(13) An elastic string, whose natural length is = /, is suspended
from a fixed point. A mass m attached to its lower end stretches it to

a length /x ; another mass m2 stretches it to a length /2 . If both these

masses be attached and then the mass m2 be cut off, what will be the

motion of m l ?

(14) A particle performs rectilinear oscillations owing to a centre of

force in the line of motion attracting the particle with a force directly

proportional to the distance. The motion of the particle is impeded

by a resistance directly proportional to the velocity. Investigate the

motion.
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63. Power. It has been shown that the time-effect of a force

is measured by its impulse (Art. 2), while the space-effect is

measured by its work (Arts. 47, 48). In applied mechanics it is

of great importance to take time and space into account simul-

taneously. The time-rate at which work is performed by aforce

has therefore received a special name, power. The source from

which the force for doing useful work is derived is commonly
called the agent ; and it is customary to speak of the power of

an agent, this meaning the rate at which the agent is capable

of supplying useful work.

64. The dimensions of power are evidently ML 2T~ S
. The

unit of power is the power of an agent that does unit work in

unit time. Hence, in absolute measure, it is the power of an

agent doing one erg per second in the C.G.S. system, and one

foot-poundal per second in the F.P.S. system. As, however,

the idea of power is of importance mainly in engineering prac-

tice, power is usually measured in gravitation units. In this

case, the unit of power is the power of an agent doing one foot-

pound per second in the F.P.S. system, and one kilogramme-
metre in the metric system.

A larger unit is frequently found more convenient. For this

reason, the name horse-power (H.P.) is given to the power of

doing 550 foot-pounds of work per second, or 550x60= 33,000

foot-pounds per minute.

65. Efficiency of Machines. While the principle of the con-

servation of energy was proved in Arts. 57 and 58 only for a.

special case, it is known to be of almost universal application to

the forces occurring in nature. Thus, in particular in the case

of machines it is found to be verified with a degree of approxi-

mation corresponding to the precision of the investigation.

The principle can here be expressed in the form

W=Wt+Wl9

if W denote the total work done by the agent driving the
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machine (such as animal force, the expansive force of steam,

the pressure of the wind, etc.) ;
W

Q
the so-called lost or wasteful

work spent in overcoming friction and other passive resistances

of the machine
;
and W^ the useful work done by the machine.

While W and W
l
allow of precise determination, it is in

general difficult to determine WQ accurately ;
but it is found

that the more exactly in any given machine W is determined,

the more nearly will the equation W= WQ+ Wl
be fulfilled.

As explained in Part II., Art. 255, the ratio W^lW of

the useful work to the total work is called the efficiency of the

machine. The term modulus is used sometimes for efficiency.

66. Exercises.

(1) In electrical engineering a watt\s defined as the power of doing
one joule, i.e. io7

ergs, per second. Find the relation between the watt

and the horse-power.

(2) In countries using the metric system of weights and measures

the horse-power is defined as 75 kilogramme-metres per second. Find

its relation to the watt and to the British horse-power.

(3) Find the horse-power of the engine in Art. 62, Ex. (i), if it

make i stroke per second.

(4) The cylinder of a steam engine has a diameter of 15 in.
;
the

stroke is 3 ft. ; the number of strokes per minute is 77 ;
the mean press-

ure of the steam is 40 Ibs. per square inch. What is the horse-power
of the engine ?

(5) Find the horse-power required of the locomotive to haul a train

of 100 tons at the rate of 30 miles an hour, the resistances amounting
to 8 Ibs. per ton : (a) on a level road

; (b) up a i % grade ; (c) up a

2% grade.

(6) How much water can an engine furnishing 50 H.P. raise per
minute from the bottom of a mine 1000 ft. deep?

(7) The diameter of the cylinder of a steam engine is 30 in.; the

stroke 4 ft.
;
the mean pressure 15 Ibs. per square inch

;
the number of

revolutions 24 per minute. If the efficiency of the engine be f,
what

is the amount of water raised per hour from a depth of 250 ft.?
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(8) In what time would an engine yielding 2 H.P. perform the work

of raising the brickwork in Art. 62, Ex. (4) ?

(9) A shaft of 8 ft. diameter is to be sunk to a depth of 420 ft.

through a material whose specific gravity is 2-2. Determine: (a) the

total work of raising the material to the surface
; (<) the time in which

it can be done by an engine yielding 3-5 H.P. ; (c) the time in which

it can be done by 4 men working in a capstan, if each laborer does

2500 ft.-lbs. per minute, working 8 hours per day.
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III. Free Curvilinear Motion.

I. GENERAL PRINCIPLES.

67. Let j be the acceleration of a particle of mass m at the

time /; Fthe resultant of all the forces acting on the particle ;

then its equation of motion is (Art. 35)

mj=F.

In curvilinear motion (Fig. 12) the direction ofj and F differs

from the direction of the velocity v
;
and the angle i/r between/

and v varies in general in the course

of time. As shown in kinematics (Part

L, Art. 159), the acceleration can be

resolved into a tangential component

jt =zdv/dt=*d?s/dP and a normal com-

ponent jn= iP/pt
where p is the radius

of curvature of the path. Hence, if the

resultant force F which has the direc-

tion of j be resolved into a tangential

force F
t
=

Fcos-*lr, and a normal force Fn=Fsm^t the above

equation of motion will be replaced by the following two equa-

tions :

m%=F m v-=Fn. (i)
dt p

In the particular case when the normal component Fn is con-

stantly directed towards a fixed point it is called centripetal

force.

68. The formulae (i) show how the force .F affects the veloc-

ity of the particle and the curvature of the path. The change

of the magnitude of the velocity is due to the tangential force

F
t
alone. If this component be zero, i.e. if the resultant force

F be constantly normal to the path, the velocity v will remain

of constant magnitude. The curvature of the path, i/p, and
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hence the direction of v, depends on the normal component Fn .

If this component be zero, the curvature is zero
;

i.e. the path

is rectilinear.

69. Instead of resolving the resultant force F along the tan-

gent and normal, it is often more convenient to resolve it into

three components, Fcosa= X, Fcos/3= Y, Fcosy= Z, parallel

to three fixed rectangular axes of co-ordinates Ox, Oy, Oz, to

which the whole motion is then referred. If x, y, z be the

co-ordinates of the particle m at the time /, the equations of

motion assume the form

Thus, the curvilinear motion is replaced by three rectilinear

motions.

70. If the components X, Y, Z were given as functions of

the time / alone, each of the three equations (2) could be inte-

grated separately. In general, however, these components will

be functions of the co-ordinates, and perhaps also of the veloc-

ity and time. No general rules can be given for integrating

the equations in this case. By combining the equations (2) in

such a way as to produce exact derivatives in the resulting

equation, it is sometimes possible to effect an integration. Two
methods of this kind have been indicated for the case of two

dimensions in a particular example in Part I., Art. 232. We
now proceed to study these principles of integration from a

more general point of view, and to point out the physical mean-

ing of the expressions involved.

71. The Principle of Kinetic Energy. Let us combine the

equations of motion (2) by multiplying them by dx/dt, dy/dt,

dz/dt respectively, and then adding. The left-hand member of

the resulting equation will be the derivative with respect to / of
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We find, therefore,

dx

dt

or, multiplying by dt and integrating,

dx+ Ydy+ Zds), (3)

where VQ is the initial velocity.

The left-hand member represents the increase in the kinetic

energy of the particle ;
the right-hand member represents the

work done by the resultant force
;
and equation (3) expresses

the equality between the work done and the change in the

kinetic energy, that is, the principle of work or of kinetic

energy for the curvilinear motion of a particle (comp. Art.

47). Sometimes the name principle of vis viva is given to

this proposition, the term vis viva, or living force, meaning the

same, as kinetic energy, or, in older works, twice the kinetic

energy.

72. The principle of work can be deduced still more directly

from the equations (i). Multiplying the former of these equa-

tions by vdt=ds, we find

d(J mi?) = Fds cos 1^ ;

hence, integrating,

= Fds cos ^, (4)

where z/ is the velocity of the particle at the place specified by
s (comp. Part II., Art. 72).

73. The principle of kinetic energy gives a first integral of

the equations of motion whenever the integration indicated in

the right-hand member of (3) or (4) can be performed. We
proceed to investigate under what conditions this integration

becomes possible.

In the most general case the components X, Y, Z, in (3), as

well as the tangential force Fcos
t/r

in (4), are functions of the
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co-ordinates x, y, z, of the velocity, i.e. of the time-derivatives

of x, y, z, and of the time t. If the motion of the particle were

completely known, that is, if we knew its position at every

instant, the co-ordinates would be known functions of the time,

say

By differentiation the velocities vx
= dxjdt, vy= dy/dt, vg=dz/dt

could be found
; and, substituting in (3), the integral would

assume the form I <j>(t}dty
so that the work could be determined

*AO

by evaluating this integral. As, however, the motion of the

particle is generally not known beforehand, this motion being

just the thing to be determined, the integral cannot be evaluated

in the most general case.

74. If the forces acting on the particle depend only on the posi-

tion of the particle, i.e. if X, Y, Z are functions of x, y, z alone,

the integral I (Xdx+ Ydy -f Zdz) can be determined whenever

the path of the particle is given. For the equations of the path,

say

* *) => fJi*> y> *) =>

make it possible to eliminate two of the three variables x, yy z

from under the integral sign, or to express all three in terms of

a fourth variable. In either case the function under the integral

sign becomes a function of a single variable, and the work of

the forces can be found.

75. If the forces are such as to make the expression

Xdx -f Ydy+ Zdz an exact differential, say dU, the integration

can evidently be performed without any knowledge of the path of

the particle between its initial and final positions. In this case

equation (3) becomes
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UQ being the value of 7 at the initial position, where v= v. As

most of the forces occurring in nature are of this character, this

particular case is of great importance, and deserves careful

study.

76. The expression Xdx+ Ydy+Zdz will be an exact differ-

ential whenever there exists a function U of the co-ordinates

x, y, z alone (i.e. not involving the time or the velocities ex-

plicitly), such that

Z. (6)
dx By dz

If these conditions are fulfilled, we have evidently

Xdx+ Ydy+Zdz= dU.

The function 7 is called the force-function, and forces for which

a force-function exists are called conservative forces.

Hence, if the forces acting on a particle are conservative, in

other words, if they have a force-function, the principle of work

gives a first integral of the equations of motion.

77. The conditions (6) for the existence of a force-function U
can be put into a different analytical form which is frequently

useful. Differentiating the second of the equations (6) with

respect to z, the third with respect to y, we find

dydz dz dzdy dy

whence dY/dz= dZ/dy. If we proceed in a similar way with

the other equations (6), it appears that they can be replaced by
the following conditions :

dz dy dx dz dy dx

It is shown in works on the differential calculus and dif-

ferential equations that these equations (7), or the equations (6),

which are equivalent to them, are not only the sufficient, but

also the necessary, conditions that must be fulfilled to make

Xdx+ Ydy+Zdz an exact differential.



:8o.] PRINCIPLE OF KINETIC ENERGY. 43

78. The dynamical meaning of the existence of a force-function

U lies mainly in the fact that, if a force-function exists, the work

done by the forces as the particle passes from its initial to its

final position depends only on these positions, and not on the

intervening path. This is at once apparent from equation (5),

in which U (7 represents this work.

It follows that the work of conservative forces is zero if the

particle returns finally to its original position, that is, if it

describes a closed path, provided that the force-function U is

.single-valued, an assumption which will here always be made.

79. In the case of central forces inversely proportional to

the square of the distance, for which a force-function can always

be shown to exist (see Part II., Arts. 278-281), the force-

function is usually called the potential. The negative of the

force-function, say
v=-u,

is called the potential energy. If this quantity be introduced,

and the kinetic energy be denoted by T (as in Art. 57), the

equation (5) assumes the form

T+ v= r + r
a> (8)

which expresses the principle of the conservation of energy for a

particle : the total energy, i.e. the sum of the kinetic andpotential

energies, remains constant throughout the motion whenever there

exists a force-function. In other words, whatever is gained in

kinetic is lost in potential energy, and vice versa.

80. The name force-function is due to Sir William Rowan Hamilton.

Some authors use it for V U, and not for U. With regard to the

term potential, the usage is still less settled. Some writers use it for U,

others for U, nor is its use always restricted to Newtonian forces.

Green was the first to give the name potential function to the function

U\ Gauss brought the expression potential into common use. Clausius

uses "
potential function

"
for what is called above "

potential," reserv-

ing the latter name for the potential of a system on another system, or

on itself. He also uses the term ergal for what is called above "
poten-

tial energy." Several writers have followed him in this terminology.
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81. As the force-function U is a function of the co-ordinates

x, y, 2 alone, an equation of the form

V=c, (9)

where c is a constant, represents a surface which is the locus

of all points of space at which the force-function has the same

value c. By giving to c different values, a system of surfaces is

obtained, and these surfaces are called level, or equipotential,

surfaces.

82. The values of the derivatives of U at any point P(x, y, 2)

are proportional to the direction-cosines of the normal to the

equipotential surface (9) at P. But, by (6), they are also pro-

portional to the direction-cosines of the resultant force -Fat this

point. It follows that the resultant force F at any point P is

always normal to the equipotential surfacepassing through P.

If the equation of the equipotential surfaces be given, the

resultant force F at any point (xt yy 2) is readily found, both in

magnitude and direction, from its components (6) :

fdU\* ,
/dA2

-H-T +{-] (I0)
\ ox j \ oy J \ 02 J

83. As the particle moves in its path from any point P to an

infinitely near point P 1

(Fig. 13), it passes from one equipoten-

tial surface (7=cto another U=c'.

Its velocity meets these surfaces

at a varying angle, while its ac-

celeration, which has the direc-

tion of the resultant force F, is

always normal to these surfaces.

The work done by F as the par-

ticle moves from P to P' is

Fds cos (F, ds) = Fdnt

i, P" being the intersection of thewhere PP'= ds and />/>"=,

normal at P with the equipotential surface passing through P 1

.

Hence, by Art. 72,

(11)
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The normal distance PP"= dn between two equipotential

surfaces is therefore inversely proportional to the force F.

It also appears that whenever the particle in its path returns

to the same equipotential. surface, the work done by F is zero,

.and hence, by (5), the velocity assumes the initial value VQ .

84. Let a, /3, 7 be the direction cosines of F at any point

P
; X, ft, v those of any straight line s drawn through P ;

and

let $ be the angle between /^and s, so that cos
(f>
= a

Then the projection of Fon s is

or, since by (6) aF=d(7/dx, $F=dU/dy, yF=

'~
dx ds dy ds dz ds~ ds

i.e. the projection of the resultant force on any direction is the

derivative of the force-function with respect to that direction.

This follows also from the equations (6), since the directions

of the axes are arbitrary.

If s be taken tangent to the equipotential surface passing

through P, we have Fs =dU/ds= o
;

if it be taken normal to this

surface, we find F8
=FdU/dn, which agrees with (11).

85. The force-function U determines, as has been shown, a

system of equipotential surfaces U= const. Starting from a

point P on one of these surfaces, say U=c (Fig. 14), let us draw

through P the direction of the re-

sultant force, which is normal to

the surface U=c (Art. 82). Let

this direction intersect in P 1 the

next surface, L7=c'. At P 1 draw

the normal to U=c', and let it

intersect the next surface, U=c",

in P". Proceeding in this way, we

obtain a series of points P, P 1

, P",

JP'", ..., which in the limit will form a continuous curve whose
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direction at any point coincides with the direction of the result-

ant force at that point. Such a line is called a line of force.

The lines of force evidently form the orthogonal system ta

the system of equipotential surfaces. The differential equations

of the lines of force are therefore :

dx _ dy _ dz

WJ~WJ~W (13)

dx dy 82

86. Exercises.

(1) Show that a force-function exists when the resultant force is

constant in magnitude and direction.

(2) Find the force-function in the case of a free particle moving
under the action of the constant force of gravity alone (projectile in

vacua} ;
determine the equipotential surfaces and the potential energy.

(3) Show the existence of a force-function when the direction of the

resultant force is constantly perpendicular to a fixed plane, say the

.xy-plane, and its magnitude is a given function /(z) of the distance z

from the plane.

(4) Find the force-function, the equipotential surfaces, and the

kinetic energy when the force is a function f(f) of the perpendicular

distance r from a fixed line, and is directed towards this line at right

angles to it.

(5) Show that a force-function always exists for a central force, i.e.

a force passing through a fixed point and depending only on the dis-

tance from this point.

(6) Show the existence of a force-function when a particle moves

under the action of any number of central forces.

(7) A homogeneous sphere of mass m( attracts a free particle P of

mass m with a force F= urnm 1

/r*, where K is a constant, and r OP is

the distance of /'from the centre of the sphere. Show that the poten-

tial is V Kmm 1

/r, and that the equipotential surfaces are spheres

whose common centre is at O.

(8) In Ex. (7), assume Kmm'= i, and draw the intersections of the

equipotential surfaces with a plane passing through O, from r= i centi-

metre to r = 2 centimetres, with a difference of potential = T̂ .
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(9) Two spheres, whose masses are as i to 2, attract a particle of

mass i according to Newton's law
;
the distance of the centres of the

spheres is = 4. Construct the equipotential lines in a plane passing

through the centres, by first constructing the equipotential lines for each

sphere separately, and then joining the points of intersection' whose

potential is the same.

(10) A particle of mass m is subject to the force of gravity and

to the actions of two fixed centres C\, C2 ,
one attracting with a force

inversely proportional to the square of the distance, the other repelling

with a force directly proportional to the distance. Find the equipoten-
tial surfaces.

87. The Principle of Angular Momentum or of Areas. Let us

begin with the case of plane motion, the equations of motion

being
d'2

If we combine these equations by multiplying the former by y,

the latter by x, and subtracting the former from the latter, we
find

- mx d^-my
d
^=xY-yX. (14)

The right-hand member is the moment (with respect to the

origin) of the resultant force F whose components are X, F(see
Part II., Art. 91), while the left-hand member is an exact deriva-

tive, viz. the derivative with respect to the time of

mxdy/dt mydx/dt,

as is easily verified by differentiating this quantity. The result

can therefore be written in the form

and gives, if multiplied by dt and integrated,

(16)
dt dt

These equations express the principle of angular momentum, or

of areas, for plane motion.
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88. The name principle of areas is due to the kinematical

meaning of the left-hand member (comp. Part I., Arts. 227-232).

As xdyydx represents twice the infinitesimal sector described

by the radius vector of the point (x, y) during the element of

time, the quantity xdy/dtydx/dt is twice the sectorial velocity

about the origin. Introducing polar co-ordinates by putting

jr=r cos 6, y=rs'm 0, we have xdyydx^r^dQ, and denoting by
6

1

the sector described in the time /,

dt dt
y dt~ dt

The kinematical meaning of equation (15), after dividing it

by m, can therefore be stated as follows : the time-rate of change

of twice the sectorial velocity about any point is equal to the

moment of the acceleration about the same point.

89. The dynamical meaning of equation (15) appears by

considering that mdx]dt, mdy/dt are the components of the

momentum mv of the moving

particle (Fig. 15). The prod-

uct mvp of the momentum and

its perpendicular distance from

the origin is called the moment

of momentum, or the angular

momentum, of the particle about

the origin.

It appears from Fig. 1 5 that

we have

r

v dx

Fig. 15.
\

The angular momentum is evidently nothing but twice the

sectorial velocity multiplied by the mass, just as momentum is

linear velocity times mass.

The dynamical meaning of equation (15) can therefore be

expressed as follows : the time-rate of change of angular momen-
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turn about anyfixed point is equal to the moment of the resultant

force about the same point.

90. The most important case in which the integration in (16)

can be performed is the case when

xY-yX=o, (17)

which evidently means that the direction of the resultant force

F passes through the origin. If this condition be fulfilled,

equation (16) reduces to the form

dy dxmx
dt~myTt=

c'

where c is a constant of integration to be determined from the

initial position and velocity.

Kinematically, this equation means that the sectorial velocity

remains constant. It can be put into the form

dS
dt 2m

whence, by integration, we find

S-S^(t-t^. (19)

Hence, if the acceleration passes constantly through a fixed

point, the sector S S described about this point in any time t 1

is proportional to this time.

This is the principle of the conservation of area for plane

motion.

Dynamically, equation (18) means that if the resultant force

passes constantly through a fixed point, the angular momentum

about this point remains constant. The proposition can also be

called the principle of the conservation of angular momentum.

If VQ be the initial velocity, / the perpendicular to VQ from

the fixed point, equation (18) can be written in the form

PART III 4
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91. In the general case of three dimensions any two of the

equations of motion,

can be combined by the method of Art. 87, and we find thus

--
d^x d^z d ( dx dz\ ,. ^ .

'Tf-^a-^ir**-*)- 1*-** (2I)

^fd^dx\ = ^
dt\ dt dt)

The expression xdyydx now represents the projection on

the ^/-plane of the infinitesimal sector described by the radius

vector of the particle during the time dt\ similarly, ydzzdy
and zdxxdz are the projections of the same sector on the

planes yz and zx, respectively.

92. The right-hand members of the equations (21) are easily

seen to represent the moments of the resultant force about the

axes of x, y, z, if it be remembered that the moment of a force

with respect to an axis is the moment of its projection on a

plane perpendicular to the axis about the point of intersection

of the axis with the plane (Part II., Art. 213). If the moment

of the momentum mv of the particle be defined in the same

way, the quantities mydzjdt mzdy/dt, mzdx/dt mxdz/dt,

mxdy/dtmydx/dt are the moments of momentum, or, as they

are also called, the angular momenta, about the three axes of

co-ordinates Ox, Oy, Oz.

As the axes are arbitrary, the equations (21) express the

statement that the moment of the resultant about any fixed axis

is equal to the time-rate of change of the angular momentum

about the same axis.
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93, The most important case of the application of the equa-

tions (21) arises when one or more of the conditions

yZ-zY=o, zX-xZ=v, xY-yX=o ,(22)

are fulfilled. The first of these conditions means that the pro-

jection of the resultant force on the jAsr-plane passes always

through a fixed point, viz. the origin of co-ordinates
;
or what

amounts to the same thing, that the resultant force always

intersects the axis of x. Similarly, the second condition means

that the resultant intersects the axis of y. Hence, if both these

conditions are fulfilled, the resultant force passes constantly

through a fixed point, the origin of co-ordinates.

It follows that if any two of the conditions (22) are fulfilled,

the third must also be fulfilled. This is also evident ana-

lytically, as any one of the three equations can be derived from

the two others.

94, If the conditions (22) are fulfilled, the integration of the

equations (21) gives

dz dy=

dy dx

drmy
Tt
=c

where cv c^ CQ are constants depending on the initial condi-

tions. These equations express the proposition that if the

resultantforce passes constantly through a fixed point, the angular

momentum about any axis passing through this point remains

constant.

Multiplying the equations (23) respectively by x, y, z and

adding, we find

> (
24)

which is the equation of a plane passing through the origin.

As the co-ordinates x, y, z of the moving particle fulfil this
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equation independently of the time, it follows that the motion is

necessarily plane whenever the conditions (22) are satisfied. The

constants of integration cv c
2 ,

c3 are evidently proportional to

the direction-cosines of the normal to the plane of motion.

95. If the equations (23) be written in the form

\ydz-zdy _ f
\ zdxxdz _ , \xdy-ydx_ ,

2 dt
1 '

2 dt
2 '

2 dt

they show that the projections of the motion on the three

co-ordinate planes have constant sectorial velocities
<:/, c%, c

s
'

;

hence, the sectorial velocity of the motion itself is constant, viz.

dS /

It follows in this case that the sector SSQ , described during

the time tt^ is proportional to this time :

5-5 =^'2+f2
'2+V2

('-'o)- (25)

96. 'Exercises.

(1) A particle of mass m is attracted, according to Newton's law, by
a mass m' concentrated at a fixed point O. If x

, y ,
ZQ be the initial

co-ordinates, and x
, y , ZQ the initial velocities of the particle, find the

equation of the plane in which it moves, and show that this plane passes

through O and the initial velocity.

(2) A particle is attracted by n fixed centres, whose forces are directly

proportional to the masses of the centres and to the distances from

them. Show that there is one position of equilibrium for the particle,

and that the motion takes place as if the total mass of all the centres

were concentrated at this point. Find also the equation of the plane of

the motion.

(3) A particle is acted upon by a central force, i.e. by a force whose

direction passes through a fixed point, and whose magnitude is a func-

tion of the distance from this point, say F=mf(r). Show that the

path is a plane curve, and find the equation of the plane of the motion.

(4) The equation (15) can, by Art. 89, be written d(mvp)/dt=xYyX.
Show that the two terms of d(mvp}/dt mpdv/dt+ mvdp/dt are equal

f
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respectively to the moments of the tangential and normal components
of the resultant force F.

97. The Principle of d'Alembert. Let us consider a particle

of mass m moving under the action of any forces Fv F%, Fn ,

whose resultant is F. The total acceleration j of the particle

has the components d*x/dfi, d^y/dP, d^z/dP parallel to the

rectangular axes Ox, Oy, Oz. If the forces Fv F2 , Fn be

imagined removed, a force equal to mj would be required to give

the particle the same accelerationj that it had under the action

of the forces Fv F2 ,
Fn . This fictitious force, mj, whose com-

ponents are md^x/dt^, md^y/dfi, md^z/dfi, is called the effective

force. For the sake of distinction, the forces Fv F2 ,
> Fn, which

actually produce the motion, are called the impressed forces

(comp. Art. 36).

98. The ordinary equations of motion of a particle,

ir d^z ~ / ^Y' mW*
=Z' (26)

where X, Y, Z are the components of the resultant F of the

impressed forces, express merely the equality between the

effective force mj and the resultant impressed force F. It fol-

lows that, if the reversed effective force mj, or its components,

m&xfdP) md^y/dfi, md^z/dfi, be combined with the

impressedforces Fp F2, Fn,
we have a system in equilibrium.

This is the fundamental idea of d'Alembert's principle.

99. The reversed effective force, mj, is sometimes called the

force of inertia of the particle. To understand the idea underlying

this expression, imagine the impressed forces to be removed, and then

push the particle with the hand so as to give it the same motion that it

had under the action of the impressed forces. The pressure of the

hand on the particle must at every instant be equal to the resultant F,

or to the effective force mj, while the equal and opposite pressure of

the particle on the hand represents the force of inertia. It must, how-

ever, be clearly understood that this force of inertia, or inertia- resist-

ance, is a force exerted on the hand and not on the particle.
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100. Owing to the fact that, by combining with the impressed

forces the reversed effective force, we obtain at any given in-

stant a system in equilibrium, it becomes possible to apply to

kinetical problems the statical conditions of equilibrium.

Since in the case of a single particle the forces are all con-

current, the conditions of equilibrium are obtained by equating

to zero the sums of the components of the forces along each

axis. This gives

and these are the ordinary dynamical equations of motion (see

(26), Art. 98).

101. The conditions of equilibrium of a system of forces can

also be expressed by means of the principle of virtual work

(Part II., Art. 239). Thus, let &r, Sj, 8z be the components of

any virtual displacement Bs of the particle ;
then the principle

of virtual work applied to our system of forces gives the single

condition

' (27)

which is of course equivalent to the three equations (26) on

account of the abitrariness of the displacement Bs.

The equation (27), which may also be written in the form

(28)

expresses d'Alembert's principle for a single particle : for any

virtual displacement the sum of the virtual works of the im-

pressed forces is equal to that of the effective force.

102. The advantage of using the equations of motion in the

form given to them by d'Alembert arises mainly from the appli-

cation of the principle of virtual work which thus becomes
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possible ;
this will be seen more clearly later on, in the treat-

ment of constrained motion. For the present it may suffice

to notice that, if the actual displacement ds of the particle in

its path be selected as the virtual displacement &s, equation (28)

becomes

This is the equation of kinetic energy (Art. 71); for the left-

hand member is the exact differential d(\mv*) of the kinetic

energy, while the right-hand member represents the element

of work of the impressed forces.

In the particular, but very common, case of conservative im-

pressed forces, the right-hand member is likewise an exact

differential dU\ hence, in this case a first integration can at

-once be performed, and we find, as in Art. 75,

U- UQ
. (30)

103. There is an essential distinction between the principle of

-d'Alembert on the one hand, and the principles of kinetic energy and

of areas on the other. D'Alembert's principle merely gives a con-

venient form and interpretation to the dynamical equations of motion,

through the application of the principle of virtual work
; but it does

not show how to integrate these equations.

The principle of kinetic energy and the principle of areas are really

-methods for integrating the equations of motion under certain con-

ditions. If we enquire why these particular methods of combining
the differential equations so frequently furnish the solution of physical

problems, we are led to the conclusion that the quantities whose exact

differentials are introduced by the combination correspond to some-

thing really existing in nature. It is thus made probable on purely

theoretical grounds that kinetic and potential energy are not mere

abstractions, but have an objective reality, and that the conservation

of energy is a law of nature.
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2. CENTRAL FORCES.

104. We proceed to apply the general principles developed

in the preceding articles to the motion of a particle under the

action of central forces.

The term central force is generally understood to imply two-

conditions, viz. (a) that the direction of the force passes constantly

through a fixedpoint, usually called the centre of force ; and (b)

that the magnitude of the force is a function of the distance from
the centre alone (comp. Art. 56).

Let O be the centre of force, P the position of the moving

particle at any time t, m the mass of the particle, and OP=r its

distance from the centre
;
then the general expression for a

central force Fis

where the function F(r) represents the law of force, and the

function f(r) the law of the acceleration produced by this force

in the particle m.

105. The most important special case is that of a force pro-

portional to some power of the distance r, say

where
//,
and n are constants. The constant /*, which represents

the value of the force at unit distance from the centre, is often

called the intensity of the force, or of the centre.

In the case of Newton's law of universal gravitation (Part II.,

Art. 257) we have n= 2, p^icmm', where K is a constant, viz.

the acceleration produced by a unit of mass acting' on a unit of

mass at unit distance, while m is the mass of the attracted par-

ticle, and m 1 that of the attracting centre
;
that is, Newton's

law is expressed by the formula

106. From the physical point of view, attractions following Newton's

law, and indeed, central forces generally, are usually regarded as due to
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the presence of mass, not only in the moving particle, but also at the

centre of force
;
and the action between these two masses is then a

mutual action, being of the nature of a stress, i.e. consisting of two

equal and opposite forces. It follows that what we have called the

centre of force is not a fixed point.

It will, however, be shown later (Arts. 150-157) that a simple modi-

fication allows us to apply to this case the results deduced on the assump-

tion that the centre is fixed.

Again, the attracting or repelling masses will here be regarded as con-

centrated at points. It should be remembered that a homogeneous

sphere, according to Newton's law, attracts a particle outside of its

mass as if the whole mass of the sphere were concentrated at the

centre of the sphere (Part II., Arts. 272-276). The attraction of any
other mass on a particle can, of course, always be reduced to a single

force
;
but as the particle moves, the direction of this force will not

in general pass through a fixed point ;
such a force is, therefore, not

central.

107. If a particle P of mass m be acted upon by a single

central force

F=mf(r),

its acceleration j=F/m=f(r) will pass through the centre of

force and be a function of r alone. The problem reduces,

therefore, at once to the kinematical problem of central motion

(Part I., Art. 223). Although the leading ideas of the solution

of this problem have been indicated in kinematics (Part L, Arts.

225-234, 237-238), the importance of the subject of central

forces demands a restatement in this place of the principal

methods in the language of kinetics, and a more complete expo-

sition of some special cases.

108. A particle of mass m acted upon by a single central

force F=mf(r) will describe a curvilinear path whenever the

initial velocity is different from zero and does not pass through

the centre of force (see Art. 56). As shown in kinematics

(Part L, Art. 225), the path of the particle, here usually called

the orbit, is always a plane curve.
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Taking the plane of motion as ;rj/-plane and the centre O
as origin (Fig. 16), the direction cosines

of the force F are ^x/r, ~3-y/r, the

upper sign corresponding to an attrac-

tive force, the lower to a repulsion.

L_ Hence, the dynamical equations of

Fig. 16.
motion are

If mf(r) be substituted for F, the factor m disappears, and

the equations become purely kinematical.

109. To avoid the use of the double sign, we shall give the

equations in the form corresponding to the more important case

of attraction ;
for a repulsive force it will only be necessary to

change throughout the sign of F or f(r). Thus the funda-

mental equations of motion are (comp. Part I., Art. 226):

If polar co-ordinates r, 6 (Fig. 16), with the centre as pole, be

used, the equations of motion are, since the total acceleration

is along the radius vector :

, I d

110. Two principal problems present themselves : (a) the

problem of finding the orbit for a given law of force, and (b)

the converse problem of determining the law of force, i.e. the

function /(r), when the orbit is given. The solution of the former

problem is effected by obtaining first integrals of the equations

of motion from the principle of areas and from the principle

of kinetic energy, and by combining these integrals so as to

effect a second integration. Formulae for the solution of the

latter problem will be found incidentally.
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111. The second of the polar equations (3) gives immediately,

if c denote the constant of integration :

dt
(4)

and the meaning of this equation is that the sectorial velocity is

constant and equal to \ c. The same result can be obtained from

the equations (2) by applying the principle of areas (see

Arts. 87, 88).

To express the constant c in terms of the initial conditions,

let v denote the velocity, / the perpendicular to it from the

centre of force, and ty the angle between the radius vector r

and the velocity v, all at the time / (Fig. 17) ;
and let the initial

values of these quantities, at the time *=o, be distinguished by

Fig. 17.

zero-subscripts. Then it follows from the equation (4) that we
have (see Art. 89 and Part I., Art. 230)

= z sn (5)

i.e. the velocity is inversely proportional to its perpendicular dis-

tance from the centre, or, as it is sometimes expressed, the

moment of the velocity about the centre of force is constant.

112. Another first integral of the equations of motion is

obtained by combining the equations (i) according to the prin-

ciple of kinetic energy (Art. 71). This gives

mv2
)
= - Fdr, or d(% v

2
)
= -f(r)dry (6)
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whence i^v^ 2j f(r}dr\ (7).

i.e. the velocity at any distance r depends only on this distance

(besides the initial radius vector and velocity), and is indepen-

dent of the path described, being the same as if the particle

had been projected with the initial velocity along the straight

line joining the initial position to the centre.

113. To perform the second integration we have only to

substitute in (7) for v its value in terms of r and / or r and 6.

Now the general expression for the velocity in any curvilinear

motion is (Part I., Art. 142)

dt \dt \dt ddJ

From these expressions one -of the variables and t can be

eliminated by substituting for d6/dt its value c/r* from (4) ;
this

gives

It is often convenient to replace the radius vector r by its-

reciprocal u=i/r] we then have

l~ / J. \ 9 ~l

(9)

114. The formulas (4) and (7), together with the expressions

(8) or (9), contain the complete solution of the two principal

problems mentioned in Art. no. Thus, if the law of force be

given, the form of the function f(r) is known, and v can be

found from (7) in function of r or u
; substituting this value of

z; in either (8) or (9), we have a differential equation of the first

order between r and /, or between r and 0. The integration of

the latter equation gives the integral equation of the orbit.

On the other hand, if the equation of the path be given, the

expressions (8) or (9) furnish the value of v2
, which, substituted

in (6), determines the law of force f(f).
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When the equation of the orbit is known, i.e. when r is known

.as a function of 9 or vice versa, the time t of the motion can be

found by integrating equation (4), viz.

dt=-r*>dQ.
c

115. If the second expression for v2 in (9) be introduced into

the differential equation of kinetic energy (6), we find

or

This will generally be found the most convenient form for find-

ing the law of force when the polar equation of the orbit is

given. Again, when/(r) is given, the integration of this differ-

ential equation of the second order is often more convenient

for finding the equation of the orbit than the method indicated

in Art. 114.

It may be noted that the important relation (10) can be de-

rived directly from the equations of motion (3), by eliminating /

by means of (4) and introducing u for i/r. We have

^_ _ 2 2

dt~
'

d&^

If these values be substituted into the first of the equations (3),

the relation (10) will result.

116. When the equation of the orbit can be expressed con-

veniently in terms of r and/, as is, for instance, the case for the

conic sections, it is of advantage to combine the equation of

kinetic energy, </(J^
2
)
= f(r)dr, directly with the equation

resulting from the principle of areas, pv c. This gives

dr ~2 dr
'

f dr
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117. It is easy to see that the methods here explained would

apply even to the more general problem when theforce F, while

passing ahvays through a fixed centre, is not a function of the

distance r alone, but a function of both co-ordinates r and 6. The

principal difference will appear in the impossibility of perform-

ing directly the integration indicated in (7).

With F=mf(r, 0), the equation of kinetic energy is, for

attraction,

and substituting for v2 the first of the values given in (8), we

find

This equation shows that the motion relative to the radius

vector takes place as if the actual resulting force F=mf(r, 6}

were increased by an additional force m<?/r*.

For the law of force we have, as in Art. 115:

118. We proceed to the consideration of some special cases.

The most important of these are the case of a force directly

proportional to the distance, and that of a force inversely pro-

portional to the square of the distance.

119, Force Proportional to the Distance : f(r) = K
2
r. The equations

of motions (2) are in this case

,

the upper sign holding for attraction, the lower for repulsion. Their

solution is very simple, because each equation can be integrated sepa-

rately. We find, in the case of attraction,

x = #! cos K.t 4- a.2 sin *t, y = b^ cos K/ -f- b% sin K/,

and in the case of repulsion,

x = alf + a#-
Kt

, y =V +V* ;

<*i az> b, fit being the constants of integration.
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120, To find the equation of the orbit, it is only necessary to eliminate

t in each case.

In the case of attraction, this elimination can be performed by solv-

ing for cos Kt, sin K/, squaring and adding. The result is

OiJF
-

^i*)
2+ (a*y

- b&Y = (aA - A)
2
,

and this represents an ellipse, since

(af + a/)W + tt)
~ ("A + aAY = (aA ~ <*AY

is always positive. The centre of the ellipse is at the origin, and the

lines ay= d^x, a2y = bgx are a pair of conjugate diameters.

121, In the case of repulsion, solve for e
Kt and e~ Kt

,
and multiply.

The resulting equation,

(&\y
-

b\x) (fa <*zy) = (aA <*A)
2
,

represents a hyperbola whose asymptotes are the lines aly = b
lx,

122. It is worthy of notice that the more general problem of the

motion of a particle attracted by any number offixed centres, with forces

directly proportional to the distances from these centres, can be reduced

to the problem of Art. 119.

Let x, y, z be the co-ordinates of the particle, r
i its distance from the

centre O
i ;

x
it yit

z
t
the co-ordinates of O

t ; and K
(
V

(
the acceleration

produced by Ot. Then the .^-component of the resultant acceleration is

and similar expressions obtain for the y and z components. Hence, the

equations of motion are

As these expressions are linear in x, y, z, there is one, and only one,

point at which the resultant acceleration is zero. Denoting its co-

ordinates by x, y, z, we have

'
=

The form of these equations shows that this point of zero acceleration,

which is sometimes called the mean centre, is the centroid of the centres
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of force, if these centres be regarded as containing masses equal to K?.

It is evidently a fixed point.

123. By introducing the co-ordinates of the mean centre, we can

now reduce the equations of motion to the simple form

where K
2 = SK/. Finally, taking the mean centre as origin, we have

\--ty,
u * _ _ K2~*" ^= -A.

,^u2

It thus appears that the motion of the particle is the same as if there were

only a single centre offorce, viz. the mean centre (x,y,z), attracting

with a force proportional to the distancefrom this centre.

The plane of the orbit is, of course, determined by the mean centre

and the initial velocity. The equation of this plane can be found by

applying the principle of areas (Art. 94).

124, It is easy to see that most of the considerations of Art. 122

apply even when some or all of the centres repel the particle with force

proportional to the distance. It may, however, happen in this case tha

the mean centre lies at infinity, in which case it can, of course, not be

taken as origin.

Simple .geometrical considerations can also be used to solve the

problem. Thus, in the case of two

attractive centres O1} O2 (Fig. 18)

of equal intensity *
2
,
the forces can

evidently be represented by the dis

tances POi = rlt PO2
= r2 of the par

tide P from the centres. Thei

resultant is therefore = 2 PO, if O
denotes the point midway between O
and <92 ;

and this resultant alway

passes through this fixed point O, and is proportional to the distance

PO from this point.

Fig. 18.

125. Exercises.

(i) Determine the constants of integration in Art. 119, if x ,y are

the co-ordinates of the particle at the time /=o and x
, j the com
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ponents of its velocity v at the same time. The equation of the orbit

will assume the form

for attraction, and

*?(*oy -jo*)
2 -

(xQy -jo*)
2 =

for repulsion.

(2) Show that the semi-diameter conjugate to the initial, radius

vector has the length VQ/K, where v<? = x 2 + j>
2

. As any point of the

orbit can be regarded as initial point, it follows that the velocity at any

point is proportional to the parallel diameter of the orbit.

(3) Find what the initial velocity must be to make the orbit a circle

in the case of attraction, and an equilateral hyperbola in the case of

repulsion.

(4) The initial radius vector r and the initial velocity z> being given

geometrically, show how to construct the axes of the orbit described

under the action of a central force (of given intensity K
2

) proportional

to the distance from the origin.

(5) A particle describes an ellipse under the action of a central

force proportional to the distance
;
show that the eccentric angle is

proportional to the time, and find the corresponding relation for a

hyperbolic orbit.

(6) A particle of mass m describes a conic under the action of a

central force jp=^. m^r. Show that the sectorial velocity is \ c =
r Kab, a and b being the semi-axes of the conic.

(7) In Ex. (6) show that the time of revolution is T= 2?r/K, if the

conic is an ellipse.

(8) A particle describes a conic under the action of a force whose

direction passes through the centre of the conic. Show that the force

s proportional to the distance from the centre.

(9) A particle is acted upon by two central forces of the same

ntensity (*
2

), each proportional to the distance from a fixed centre.

Determine the orbit : (a) when both forces are attractive ; (b) when

Doth are repulsive; (c) when one is an attraction, the other a re-

uulsion.

PART in 5
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(10) A particle of mass m is attracted by two centres O1} O2 of

equal mass m' and repelled by a third centre (93, whose mass is

m" = 2 m'. If the forces are all directly proportional to the respective

distances, determine and construct the orbit.

(n) When a particle moves in an ellipse under a force directed

towards the centre, find the time of moving from the end of the major
axis to a point whose polar angle is 0.

126, Force Inversely Proportional to the Square of the Distance :

f(r)={ji/r* (Newton's law).

It has been shown in kinematics (Part I., Arts. 229-236) how

this law of acceleration can be deduced from Kepler's laws of

planetary motion. From Kepler's first law Newton concluded

that the acceleration of a planet (regarded as a point of mass

m) is constantly directed towards the sun
;
from the second he

found that this acceleration is inversely proportional to the

square of the distance. The motion of a planet can therefore

be explained on the hypothesis of an attractive force,

issuing from the sun.

The value of
/u, which represents the acceleration at unit

distance or the so-called intensity of the force, was found to be

(Part I., Art. 236; or below, Art. 139)

and as, according to Kepler's third law, the quantity aB/T2 has

the same value for all the planets, Newton inferred that the

intensity of the attracting force is the same for all planets ;
in

other words, that it is one and the same central force that

keeps the different planets in their orbits.

127. It was further shown by Newton and Halley that the

motions of the comets are due to the same attractive force.

The orbits of the comets are generally ellipses of great eccen-
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tricity, with the sun at one of the foci. As a comet is within

range of observation only while in that portion of its path

which lies nearest to the sun, a portion of a parabola, with the

same focus and vertex, can be substituted for this portion of

the elliptic orbit, at least as a first approximation.

It is also found from observation that the motions of the

moons or satellites around the planets follow very nearly

Kepler's law. A planet can therefore be regarded as attracting

each of its satellites with a force proportional to the mass of

the satellite and inversely proportional to the distance.

128. All these facts led Newton to suspect that the force of

terrestrial gravitation, as observed in the case of falling bodies

on the earth's surface, might be the same as the force that

keeps the moon in its orbit around the earth. This inference

could easily be tested, since the acceleration g of falling bodies

as well as the moon's distance and time of revolution were

known.

Let m be the mass of the moon, a the major semi-axis of its orbit,

T the time of revolution, r the distance between the centres of earth and

moon; then the earth's attraction on the moon is (Art. 126)

or, since the eccentricity of the moon's orbit is so small that the orbit

can be regarded as nearly circular,

On the other hand, the attraction exerted by the earth on a mass m on

its surface, i.e. at the distance R = 3963 miles from the centre, must be

f" = mg.

Now, if these forces are actually in the inverse ratio of the squares of

the distances, we must have
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or, since the distance of the moon is nearly = 60 R,

F' = 6o2 F.

Substituting the above values ofF and F\ we find

^= 47T
2 X603

X^2
.

With R 3963 miles, T= 27* f 43"*, this gives

=32-0,

a value which agrees sufficiently with the observed value of g, consider-

ing the rough degree of approximation used.

129, In this way Newton was finally led to his law of universal

gravitation, which asserts that every particle of mass m attracts

every otherparticle of mass m' with a force

r2
'

where r is the distance of the particles and K a constant, viz.

the acceleration produced by a unit of mass in a unit of mass at

unit distance (see Part II., Art. 257, 261-262).

The best proof of this hypothesis as an actual law of physical

nature is found in the close agreement of the results of theo-

retical astronomy based on this law with the observed celestial

phenomena.
It may be noticed that, according to this law, -the path of a

projectile in vacuo is only approximately parabolic, the actual

path being a very elongated ellipse or hyperbola, one of whose

foci is at the earth's centre.

130. Taking Newton's law as a basis, let us now turn to the

converse problem of determining the motion of a particle acted

upon by a single central force for which f(r) = p/r* (problem
of planetary motion).

It has been shown in kinematics (Part I., Arts. 239-242) that

if theforce be attractive, the particle will describe a conic section
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with one of the foci at the centre of force, the conic being an

ellipse, parabola, or hyperbola, according as

V|
2

f (13)> r
o

If theforce be repulsive, the same reasoning will apply, except

that
IJL

is then a negative quantity. The orbit is, therefore, in

this case always hyperbolic ;
the branch of the hyperbola that

forms the orbit must evidently turn its convex side towards the

focus at which the centre of force is situated, since the force

always lies on the concave side of the path.

131. To exhibit fully the determination of the constants and the

dependence of the nature of the orbit on the initial conditions, a solution

somewhat different from that given in kinematics will here be given for

the problem of planetary motion in its simplest form.

With/(r)=/x/V
2
,
the equation of kinetic energy, (7), Art. 112, gives

or, if the constant of integration be denoted briefly by h and u=i/rbe
introduced :

'

v* = 2fjiU + h, where h = v -
(14)ro

Substituting this expression of i? into the equation (9), Art. 113, we

find the differential equation of the orbit in the form

'
2

or

To integrate, we introduce a new variable
'

by putting

the resulting equation,
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has the general integral

a = cos u', or u* = cos (6 a),

where a is the constant of integration. The orbit has, therefore, the

equation

c
1 (16)

which agrees in form with the equation (74) given in kinematics (Part

I., Art. 242), excepting the different notation used for the constants.

132, The equation (16) represents a conic section referred to its

focus as origin. The general focal equation of a conic is

lie- =
-7 + -, cos (0 a), (17)r I I

where / is the semi-latus rectum, or parameter, e the eccentricity, and

a. the angle made with the polar axis by the line joining the focus to the

nearest vertex.

In a planetary orbit (Fig. 19), the sun S being at one of the foci,

the nearest vertex A is called the perihelion, the other vertex A' the

aphelion, and the angle a made by any radius vector SP= r with

the perihelion distance SA is called the true anomaly.

Comparing equations (17) and

(16), we find, for the determina-

tion of the constants :

Fig. 19.

hence,

or, solving for c and h,

<r = V/I7, h = p.j (i9)

133. The expression for the eccentricity e in (18) determines the

nature of the conic ; the orbit is an ellipse, parabola, or hyperbola,

according as *=i; hence, by (18), according as the constant h of
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the equation of kinetic energy is negative, zero, or positive. Owing to

the value of h given in (14), this criterion agrees with the form (13),

Art. 130.

It should be observed that it follows from (13) that the nature of the

conic is independent of the direction of the initial velocity.

134. The criterion (13) can be given the following interpretation.

Consider a particle attracted by a fixed centre according to Newton's

law. If it move in a straight line passing through the centre, the

principle of kinetic energy gives for its velocity, at the distance r,

hence, if it start from rest at an infinite distance from the centre, it

would acquire the velocity V2/z/r at the distance r. The criterion (13)
is therefore equivalent to saying that the orbit is an ellipse, a parabola,

or a hyperbola, according as the velocity at any point is less than, equal

to, or greater than the velocity which the particle would have acquired at

thatpoint by falling towards the centrefrom infinity (comp. Art. 57).

135. For a central conic, whose axes are 20, 2b, we have /= $/a,

e = V#2
qp &la (the upper sign relating to the ellipse, the lower to the

hyperbola), so that the equations (19) reduce to the following:

h = ^. (20)
a

The latter relation, with the value of h from (14), gives for the major
or real semi-axis a :

while the former, with the value of c as given in (5), Art. in, deter-

mines the minor or transverse axis b :

(22)

136. The magnitudes of the axes having thus been found, their

directions can be determined by a simple construction which furnishes

the second focus.
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O"

In the ellipse, the focal radii have a constant sum = 2<z, and lie on

the same side of the tangent, making equal angles with it. In the

hyperbola, they have a con-

stant difference = 20, and lie

on opposite sides of the tan-

gent.

Hence, determining the

point <9" (Fig. 20), which is

symmetrical to the centre of

force O with respect to the

initial velocity, and drawing

O'

Fig. 20.
O

the line P O", we have only to lay off on this line from PQ a length

P O' = (2a r ) ;
then O' is the second focus, which for an elliptic

orbit must be taken with O on the same side of the tangent PT, and for

a hyperbolic orbit on the opposite side.

137. For a parabola, since e= i, we find, from (19),

(23)

The axis of the parabola is readily found by remembering that the

perpendicular let fall from the focus on the tangent bisects the tangent

(i.e. the segment of the tangent between the

point of contact and the axis). Hence, if

OT (Fig. 21
) be the perpendicular let fall

from the centre O on the velocity z> ,
it is

only necessary to make TT' = P T, and T'

will be a point of the axis. Moreover, the

perpendicular let fall from T on OT will

meet the axis at the vertex A of the parabola,

so that OA = i /.

138. The relation (21), which must evi-
Fig. 21

dently hold at any point of the orbit, can be written in the form

2a
(24)

the upper sign relating to the ellipse, the lower to the hyperbola, while

for the parabola, the second term in the parenthesis vanishes (since

a = oo).
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This convenient expression for the velocity in terms of the radius

vector might have been derived directly from the fundamental relation

(5), v = c/p, the first of the equations (19), (? =
//,/,

and the geometrical

properties of the conic sections (r r' = 2a, pp' = &2
, p'r = pr', where

r, r1 are the focal radii, and /, /' the perpendiculars let fall from the foci

on the tangent) . The proof is left to the student.

139. Time. In the case of an elliptic orbit, the time T of a complete

revolution, usually called the periodic time, is found by remembering
that the sectorial velocity is constant and = 1 c (Art. in), whence

rp_

or, by (20), T=2 = .
(25)

The constant n

which evidently represents the mean angular velocity in one revolution,.

is called the mean motion of the planet. It should be noticed that it

depends not only on the intensity of the force, but also on the major
axis of the orbit, while in the case of a force directly proportional to the

distance it is independent of the size of the orbit (see Art. 125, Ex. 7).

The periodic time 7"and the major axis a of a planetary orbit deter-

mine the intensity p. of the force

^ = 4-
2

^, (26)-

whence F= mf(r) = m^ = 4*?i*jzp
(27)

where m is the mass of the planet.

140. To find generally the time / in terms of or r, we can, of course,

proceed as indicated in Art. 114; but the resulting expressions are

somewhat complicated, and it is best to introduce the eccentric angle
< of the ellipse as a new variable, and to express /, r, and 6 in terms of

<. In astronomy, the polar angle is known as the true anomaly, and

the eccentric angle < as the eccentric anomaly.
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141. The relation of the eccentric angle <j>
to the polar co-ordinates

r, will appear from Fig. 22, in which P is the position of the planet

Fig. 22.

at the time /, P' the corresponding point on the circumscribed circle,

^.AOP the true anomaly, and % ACP'=(f> the eccentric anomaly.
The focal equation of the ellipse

r= _ _L = (t-Y
i + e cos 6 i + e cos

gives r+ er cos 6 a ae1
; and the figure shows that rcos = a cos

<J>
ae

hence,

r=.a(\ e cos<), or a r=z ae cos <. (28'

Equating this value of r to that given by the polar equation of the

ellipse, we have

i e cos
,
orcosO=

i + e cos
'

i e cos
<f>

A more symmetrical form can be given to this relation by computing

i-cos0=2sin2

-=(i+<?)
I -

i e cos
<j>

i + cos = 2 cos2-=
(i e)

T + cos 9
2 i e cos

<J>

whence, by division, tan- = \/^ t-^

2 V !_^ (29)

142. To find t in terms of r, we have only to substitute in (24) for

iP its value from (8), Art. 113, and to integrate the resulting differential

equation
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As, by (20), Art. 135, ci = ^/a = ^a(i e
2

), this equation becomes

or
la rdr

dt= \/--VVaV-o-
The integration is easily performed by introducing the eccentric

angle <J>
as variable by means of (28) ;

this gives

= \- a(i e cos

If the time be counted from the perihelion passage of the planet, we

have /= o when r= a ae, i.e. when $ = o ; hence, putting V/*/tf
3= n,

.as in Art. 139, we find

nt=
<f>

e sin <. (30)

This relation is known as Kepler's equation ; the quantity nt is called

the mean anomaly.

143. Kepler's equation (30) can be derived directly by considering

that the ellipse APA (Fig. 22) can be regarded as the projection of

the circle AP'A', after turning this circle about AA '

through an angle

= cos" 1

(/#). For it follows that the elliptic sector AOP is to the

circular sector A OP' as b is to a . Now, for the circular sector we have

AOP = ACP - OCP' = J flfy
- 1 ae - a sin < = -

(<
- e sin <) ;

hence, the elliptic sector described in the time / is

AOP=- '

a 2

The sectorial velocity being constant by Kepler's first law, we have

hence, /= (<-
27T

and this agrees with (30) since, by (25), 27r/7
T= .
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144. Kepler's equation (30) gives the time as a function of
<j> ; by

means of (28), it establishes the relation between t and r\ by means
of (29), it connects / with 0. It is, however, a transcendental equation
and cannot be solved for < in a finite form.

For orbits with a small eccentricity e, an approximate solution can

be obtained by writing the equation in the form

< = nt-\- e sin<,

and substituting under the sine for < its approximate value nt :

<f>
= nt+ e sin nt. (3 1 )

This amounts to neglecting terms containing powers of e above the

first power.

Substituting this value of < in (28), we have with the same approxi-
mation

r= a(i ecosnt). (32)

To find in terms of /, we have, from the equation of the ellipse,

r a ( i e
2

) ( i -f- e cos 6)
~ l = a

( i e cos 0) , neglecting again terms in

&
; hence, rz = 2

(i 2e cos 0) . Substituting this value in the equation

of areas, r zdO = cdt V/xtf (i e*)dt, we find

(i
- 2e cos 0)dO = Y^<# = ndt;

whence, by integration, since & o for /= o,

2e sin = nt,

or finally, 6 = nt+ 2e sin nt.
. (33)

Thus we have in (31), (32), (33) approximate expressions for
<f>,

r, and 6 directly in terms of the time. The quantity 2<? sin /, by which

the true anomaly exceeds the mean anomaly nt, is called the equation

of the centre.

145, Exercises.

(1) A particle describes an ellipse under the action of a central

force. Determine the law of force by means of formula (n), Art.

116: (a) when the centre of force is at the centre of the ellipse;

(b) when it is at a focus.

(2) A particle is attracted by a fixed centre according to Newton's

law. What must be the initial velocity if the orbit is to be circular ?
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(3) A number of particles are projected, from the same point in

the field of a force following Newton's law, with the same velocity, but

in different directions. Show that the periodic times are the same for

all the particles.

(4) The mean distance of Mars from the sun being 1.5237 times

that of the earth, what is the time of revolution of Mars about the sun ?

(5) A particle describes a conic under the action of a central force

following Newton's law; if the intensity /x of the force be suddenly

changed to /*', what is the effect on the orbit?

(6) In Ex. (5), if the original orbit was a parabola and the intensity

be doubled, what is the new orbit ?

(7) Regarding the moon's orbit about the earth as circular, what

would it become : (a) if the earth's mass were suddenly doubled ?

() if it were reduced to one-half ?

(8) In Ex. (5), determine the effect on the major semi-axis (or

"mean distance") a and on the periodic time T, of a small change
in the intensity /A of the force.

(9) If the mass of the sun be suddenly increased by a small

amount while the earth is at the end of the minor axis of its orbit,

what would be the effect on the earth's mean distance and on the

period of revolution T ?

(10) Find the equation of the hodograph of planetary motion,

derive from it the expression for the velocity in terms of the radius

vector, and show that the velocity is a maximum in perihelion and

a minimum in aphelion.

(n) Show that the greatest velocity of a planet in its orbit about

the sun is to its least velocity as Vi +e is to Vi e
;
and find this

ratio for the earth, whose orbit has the eccentricity <? = 0.01677120.

(12) Find the time exactly as a function of 0, for a parabolic orbit.

146. Force any Function of the Distance. The general methods

have been given in Arts. 108-1 16. The equation of energy,

<6), Art. 112, gives, with u=i/r,

u}du i / \

r-+*5 (34)
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hence, substituting for v its value from (9), Art. 113, we find,

for the differential equation of the orbit,

As it is often difficult or impossible to perform the integra-

tion in finite form, it is of importance to determine the apses

and apsidal distances of the orbit.

147. An apse is a point of the orbit at which the velocity is

at right angles to the radius vector drawn from the centre of

force
;
the length of the radius vector of an apse is called the

apsidal distance, and its direction an apsidal line.

The importance of the apsidal lines lies in the fact that they

are lines of symmetry of the orbit, while the apsidal distances

are maximum or minimum values of the radius vector. This

will be seen from the following considerations.

By the above formula (34) the velocity is a function of the

radius vector alone
;
and by (5), Art. in, since sini|r=/W, the

angle -fy
between radius vector and velocity is also a function of

the radius vector alone. It follows that, if the velocity be

reversed in direction at any point of the orbit, the same orbit

will be described in the opposite sense
;
and as at an apse the

velocity is perpendicular to the apsidal line, the two portions of

the orbit on opposite sides of an apsidal line must be symmet-
rical with respect to this line.

148. The condition for an apse is therefore

Substituting this value in the above equation (35), the apsidal

distances i/u can be found by solving the equation for u. The

value of du/dO should also change sign as the particle passes

through the apse.
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If the law of force is given as a single-valued function f(u),

there can exist only two different apsidal distances (although

there may be any number of apses). The angle between

these two different apsidal distances is called the apsidal angle.

149. Exercises,

(1) Find the law of force when the equation of the orbit is

rn = a cos nO + b, and investigate the particular cases n i, n = 2,

n = i, n = 2.

(2) A particle moves in a circle under the action of a single force of

constant direction ;
determine the law of force and discuss the motion.

(3) Find the law of the central force directed to the origin under

whose action a particle will describe the following curves : (a) the

spiral of Archimedes raO; (b} the hyperbolic spiral 6r= a -

} (c} the

logarithmic or equiangular spiral r=aeaQ
; (d) the curve r=acosn&.

(4) A particle moves in a circle under the action of a central force

directed towards a point on the circumference ; find the law of force.

(5) A particle is acted upon by a force perpendicular to a given

plane and inversely proportional to the cube of the distance from the

plane. Determine its motion.

(6) A particle moves in a semi-ellipse under the action of a force

perpendicular to the axis joining the ends of the semi-ellipse. Deter-

mine the law of force and the velocity at the ends.

3. THE PROBLEM OF TWO BODIES.

150. In the preceding discussion of the motion of a particle

under the action of, a central force, it has been assumed that

the centre of force is fixed. In the applications of the theory

of central forces this assumption is in general not satisfied.

Thus, in considering the motion of a planet around the sun,

the force of attraction is, according to Newton's law of universal

gravitation (Art. 129), regarded as due to the presence of a

mass M at the centre (sun), and of a mass m at the attracted

point (planet) ;
and the action between these two masses is a
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mutual action, being of the nature of a stress
, i.e. consisting

of two equal and opposite forces, each equal to

Hence, the mass m of the planet attracts the mass M of the

sun with precisely the same force with which the mass M
of the sun attracts the mass m of the planet. The attraction

affects, therefore, the motions of both bodies.

151. The accelerations produced by the two forces are, of

course, not equal. Indeed, the acceleration F/m = rcM/r
2
,

produced in the planet by the sun, is very much greater than

the acceleration F/M=Km/r 2
y produced by the planet in the

sun
;
for the mass of even the largest planet (Jupiter) is less

than one thousandth of that of the sun. The assumption

of a fixed centre can therefore be regarded as a first approxima-

tion in the problem of the motion of a planet about the sun.

In the case of the earth and moon, the difference of the

masses is not so great, the mass of the moon being nearly

one eightieth of that of the earth.

It can, however, be shown that the results deduced on the

assumption of a fixed centre can, by a simple modification

be made available for the solution of the general problem of tJu

"motions of two particles of masses, m, M, subject to no forces

besides their mutual attraction. In astronomy, this is callec

the problem of two bodies. In the solution below we assume the

attraction to follow Newton's law of the inverse square o:

the distance. It will be convenient to speak of the two

particles, or bodies, as planet (m) and sun (M).

152. With regard to any fixed system of rectangular axes

let x, y, z be the co-ordinates of the planet (m), at the time t

x', y', z 1 those of the sun (M), at the same time
;

so that for

their distance r we have
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Then the equations of motion of the planet are

Mm x'-x

Mm v'

t r r

while the equations of motion of the sun are

mM xx*nM=- =K
dt*

_ mM z-
" ~

153. By adding the corresponding equations of the two sets,

we find

If it be remembered that the centroid of the two masses m, M
has the co-ordinates

_ _
'

m+M m +M m +M
it appears that these equations can be written in the form

d*x

in words : the acceleration of the common centroid of planet and

sun is zero ; i.e. this centroid moves with constant velocity in

a straight line.

It may be noticed that this result is merely a special case

of a more general proposition to be proved hereafter, viz.

that the centroid of any system acted upon by no forces

external to the system moves uniformly in a straight line

(Art. 381).

PART III 6
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154. The integration of the equations (i) would give the

absolute path of the planet. But the constants could not be

determined, because the absolute initial position and velocity

of the planet are, of course, not known. The same holds for

the absolute path of the sun. All we can do is to determine

the relative motion, and we proceed to find the motion of the

planet relative to the sun.

Taking the sun's centre as new origin for parallel axes, we

have for the co-ordinates f, 77, f of the planet in this new

system,

Now, dividing the equations (i) by m, the equations (2) by
M, and subtracting the equations of set (2) from the corre-

sponding equations of set (i), we find for the relative accelera-

tions of the planet

</
2f_ M+m
7^>

^
9

* ~>
dfi r* r

^ I'
<3>

M+m ?
f

The form of these equations shows that the relative motion of
the planet with respect to the sun is the same as if the sun were

fixed and contained the mass M + m. Thus the problem is

reduced to that of a fixed centre, the only modification being
that the mass of the centre M should be increased by that of

the attracted particle m.

155. This result can also be obtained by the following simple con-

sideration. 'The relative motion of the planet with respect to the sun

would obviously not be altered if geometrically equal accelerations were

applied to both. Let us, therefore, subject each body to an additional

acceleration equal and opposite to the actual acceleration of the sun

(whose components are obtained by dividing the equations (2) by M).

,
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Then the sun will be reduced to equilibrium, while the resulting accel-

eration of the planet, which is its relative acceleration with respect to

the sun, will evidently be the sum of the acceleration exerted on it by
the sun, and the acceleration exerted on the sun by the planet. This is

just the result expressed by the equations (3).

156. It can here only be mentioned in passing that, while

the problem of two bodies thus leads to equations that can

easily be integrated, the problem of three bodies is one of exceed-

ing difficulty, and has been solved only in a few very special

cases. Much less has it been possible to integrate the 3/2

equations of the problem of n bodies.

157. According to the equations (3), the first and second laws

of Kepler can be said to hold for the relative motion of a planet

about the sun (or of a satellite about its primary). The third

law of Kepler requires some modification, since the intensity of

the centre p should not be =/cM, but =fc(M+m). Thus we

have, by (26), Art. 139,

in other words, the quotient a?/T
2

is not independent of the

mass m of the planet.

Thus, if m
lt
m2 be the masses of two planets, av a2 the major

semi-axes of their orbits, and 7\, T
2 their periodic times, we

have

This quotient is approximately equal to one if M is very large

in comparison with both m^ and m^ ; hence, for the orbits of the

planets about the sun, Kepler's law is very nearly true.

158. Exercises.

( i ) Two particles of masses mlf m2 attract each other with a force

which is any function of the distance r between them, say ^=m1m2/(r).
Show that their common centroid moves uniformly in a straight line,

and find the equations of this line.
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(2) In Ex. (i), write out the equations for the relative motion of

either particle with respect to the common centroid.

159. The theory of central forces is treated with considerable elabo-

ration in most works on theoretical mechanics
;
a few references only

will here be given : P. APPELL, Traite de mecanique rationnelle
, Paris,

Gauthier-Villars, 1893, Vol. I., pp. 354-405 ;
B. WILLIAMSON and F. A.

TARLETON, An elementary treatise on dynamics, London, Longmans

(New York, Appleton), 2d edition, 1889, pp. 147-205 ;
P. G. TAIT and

W. J. STEELE, A treatise on dynamics of a particle, London and New

York, Macmillan, 6th edition, 1889, pp. 113-166; W. H. BESANT, A
treatise on dynamics, Cambridge, Bell (New York, Macmillan), 2d

edition, 1893, pp. 120-166, and 267-275 ;
W. WALTON, A collection of

problems in illustration of the principles of theoretical mechanics, Cam-

bridge, Bell, 3d edition, 1876, pp. 248-297. All these works contain

numerous examples for practice. The theory of planetary motion is, of

course, treated in works on theoretical astronomy. The student will

also consult with advantage : W. SCHELL, Theorie der Bewegung und der

Kr'dfte, Leipzig, Teubner, 2d edition, Vol. I., 1879, pp. 373-387;
E. BUDDE, Allgemeine Mechanik der Punkte und starren Systeme,

Berlin, Reimer, Vol. I., 1890, pp. 170-181; B. PRICE, A treatise on

analytical mechanics, Oxford, Clarendon Press (New York, Macmillan),
Vol. I. (= Vol. III. of A treatise on infinitesimal calculus}, 2d edition,

1868, pp. 508-574; O. RAUSENBERGER, Lehrbuch der analytischen

Mechanik, Leipzig, Teubner, Vol. I., 1888, pp. 32-102, where the

problem of planetary motion is very fully discussed; T. DESPEYROUS,
Cours de mecanique, avec des notes par G. Darboux, Paris, Hermann,

1884, Vol. I., pp. 336-369, 427-440, and Vol. II., pp. 38-57, 461-466 ;

and others.
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IV. Constrained Motion.

I. INTRODUCTION.

160. It has been shown, in the preceding sections, that the

motion of a free particle is fully determined if all the forces

acting upon the particle, as well as the so-called initial con-

ditions, are given. The motion of a particle may, however,

depend not only on given forces, but on other conditions not

directly expressed in terms of forces. The motion is then

said to be constrained.

Some of the more important forms of constraint have been

considered in Part II., Arts. 218-225. To mention some more

concrete examples : a heavy particle sliding down a smooth

inclined plane is subject not only to the force of gravity, but

also to the condition that it cannot pass through the plane ;
a

railway train running on the rails, a piece of machinery slid-

ing in a groove or between guides, can, for many purposes, be

regarded as a particle constrained to a curve; the bob of a

pendulum, a stone attached to a cord and swung around by
the hand, may be regarded as constrained to a surface.

161. Sometimes these constraining conditions can be easily

replaced by forces. Thus, in the first illustration above, the

condition that the particle cannot pass through the inclined

plane can be expressed by introducing the reaction of the

plane, i.e. a force acting on the particle at right angles to

the plane, so as to prevent it from passing through the plane.

Similarly, in the case of the stone attached to the cord, we

may imagine the cord cut and its tension introduced so as to

replace the condition by a force.

Whenever the constraints to which a particle is subjected

can thus be expressed by means of forces, these forces can be

combined with the other impressed forces, and then, of course,

the equations of motion for a free particle can be applied.
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Thus, let X', Yf

,
Zf be the components of the resultant of all

the constraints
; X, Y, Z those of the resultant of all the other

impressed forces. Then the equations of motion are :

162. It must, however, be noticed that the reactions repre-

senting the constraints, such as the tension of the string in

the example referred to, are generally not given beforehand.

Moreover, the constraints are often expressed more conveniently

by conditional equations. Thus, if the motion of a particle be

restricted to a surface, the equation of this surface, say

<!>{?, y t z)=o, (2)

may be given as a constraining condition to be fulfilled by the

co-ordinates of the moving particle.

163. As a particle has but three degrees of freedom, it can

be subjected to only one or two conditions of the form (2).

One such condition confines it to a surface
;
two to the curve

of intersection of the two surfaces represented by the two

conditional equations ;
three conditions would evidently prevent

it entirely from moving.

164. The curve or surface to which a particle is constrained

may vary its position and even its shape in the course of time.

In this case the conditional equations, referred to fixed axes,

will contain not only the co-ordinates, but also the time. That

is, they will be of the more general form

4>(x,y,z,t)=o. (3)

165. To constrain a particle completely to a surface, we may

imagine it confined between two infinitely near impenetrable

surfaces. The complete constraint to a curve might be realized

by confining the particle to an infinitely narrow tube having

the shape of the curve, or by regarding it as a ring sliding along

a wire.
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In many cases, however, the constraint is not complete, but

only partial, or one-sided. Thus, the rails compelling the train

to move in a definite curve do not prevent its being lifted verti-

cally out of this curve, nor does the cord that confines the

motion of the stone to a sphere prevent it from moving towards

the inside of the spherical surface.

While complete constraints are generally expressed by equa-

tions, one-sided constraints should properly be expressed by

inequalities. Thus, in the case of the stone, the condition is

really that its distance r from the hand is not greater than the

length / of the cord, i.e.

but as soon as r becomes less than /, the constraining action

-ceases, and the stone becomes free. It is, therefore, in general

:sufficient to consider conditional equations ; but the nature of

the constraint, whether complete or partial, must be taken into

account to determine when and where the constraint ceases to

exist.

166. We now proceed to consider separately the motion of

a particle constrained to a fixed curve and that of a particle

constrained to a fixed surface. After these special cases, the

general problem of motion on a movable curve or surface will

-be discussed.

/

2. MOTION ON A FIXED CURVE.

167. The condition that a particle should move on a given

fixed curve can always be replaced by introducing a single addi-

tional force F' called the constraining force, or the constraint.

An example will best show how this force can be determined.

Let us consider a particle of mass m, subject to the force of

gravity F=mg alone; in general it will describe a parabola

whose equation can be found if the initial conditions are known.

To compel the particle to describe some other curve, say a verti-
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cal circle, a constraining force F' (Fig. 23) must be intro-

duced such that the resultant

R of F and F' shall produce

the acceleration required for

motion in the circle. Thus, for

instance, for uniform motion

in a circle the resulting ac-

celeration must be directed

towards the centre and must

be =a>2#, if a is the radius and

a) the constant angular veloc-

ity. We have, therefore, in

this case R mo^a along the

radius, F=mg vertically down-

wards
;
and hence, denoting by 9 the angle made by the radius

CP with the vertical (Fig. 23),

F'2=F2+R2+ 2 FR cos 6

a cos 6).

The constraint F', which is thus seen to vary with the angle

6, can be resolved into a tangential component Ft and a normal

component Fn'. As in our problem the velocity is to remain of

constant magnitude, the tangential constraint must just counter-

balance the tangential component Ft
= mgsin of gravity. The

normal constraint FJ not only counterbalances the normal com-

ponent Fn=mgcos of gravity, but also furnishes the centrip-

etal force R= mco2a required for motion in the circle
;

i.e.

0).

168. In the general case of a particle of mass m acted upon

by any given forces and constrained to any fixed curve, it is

convenient to resolve both the resultant Fof. the given forces

and the constraint F1

along the tangent and the normal plane.
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The equations of motion (see Art. 67) can then be written in

the form

m = Pt-Ft \

o

m = resultant of Fn and Fn ',

P

where v is the velocity and p the radius of curvature of the

path at the time t. It should be noticed that the components
Fn and Fn

'

t though both situated in the normal plane, do not

in general have the same direction. But in the important

special case of plane motion, i.e. when the path is a plane curve

and the resultant F of the given forces lies in this plane, Fn and

F^ are both directed along the radius of curvature so that the

right-hand member of the second equation becomes the sum or

difference of Fn and Fn .

169. The normal component Fn
'

of the constraining force

is generally denoted by the letter N and is called the resistance

or reaction of the curve; a force N, equal and opposite to

this reaction, represents the pressure exerted by the particle

on the curve.

The tangential component Ft

' of the constraint will exist only
when the constraining curve is rough, i.e. offers frictional resist-

ance
;
we have then, denoting the coefficient of friction by //,,

We shall therefore write the equations of motion as follows :

Vm = resultant of Fn and N. (2)

170. The normal component, mv^/p, of the effective force

is sometimes called the centripetal force (see Art. 67) ;
it is

directed along the principal normal of the path towards the
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centre of curvature. A force equal and opposite to this cen-

tripetal force, i.e. = miP/r, is called centrifugal force. It

should be noticed that this is a force exerted not on the

moving particle, but by it.

It appears from equation (2) that the normal reaction N is

the resultant of the centripetal force mv^/p and the reversed

normal component of. the given forces, Fn . Changing all the

signs, we can express the same thing by saying that the pressure

on the curve, N, is the resultant of the centrifugalforce, mv2
/^,

and of the normal component Fn of the given forces.

If, in particular, this normal component Fn is zero, the press-

ure on the curve is equal to the centrifugal force. This case

is of frequent occurrence. Thus, if a small stone attached to

a cord be whirled around rapidly, the action of gravity on the

stone can be neglected in comparison with the centripetal force

due to rotation
;
hence the centrifugal force measures approxi-

mately the tension of the string, and may cause it to break.

Again, when a railway train runs in a curve, the centrifugal

force produces the horizontal pressure on the rails, which tends

to displace and deform the rails.

171. It may happen that at a certain time t the pressure N
vanishes. If the constraint be complete (Art. 165), this would

merely indicate that the pressure in passing through zero.

inverts its sense. If, however, the constraint be one-sided, the

consequence will be that the particle at this time leaves the

constraining curve
;
for at the next moment the pressure will

be exerted in a direction in which the particle is free to move.

Now Evanishes when its components Fn and witf/p become

equal and opposite. The conditions under which the particle

would leave the curve are, therefore, that the resultant Fot the

given forces should lie in the osculating plane of the path, and

that F=z

172. To obtain the equations of motion expressed in rec-

tangular Cartesian co-ordinates, let X, Y, Z be the components of
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the resultant F of the given forces, and 7VZ,
N

y, Ng those of the

normal reaction TV of the curve. If there be friction, the fric-

tional resistance pN, being directed along the tangent to the

path opposite to the sense of the motion, has the direction

cosines dx/ds, dy/ds, dz/ds, so that the components of the

force of friction are ^Ndx/ds, ^Ndy/ds^ pNdz/ds. The

general equations of motion are, therefore,

If the acceleration of the particle be zero, the left-hand mem-
bers are all =o, and the equations reduce to the conditions of

equilibrium of a particle on a curve, as given in Statics (Part

ii., P . 138, (i4.
In addition to the equations (3) we have of course the equa-

tions of the curve, say

< (*, y, *) =o, ^r (*, y, *)=o, (4)

and the relations

(5)

the latter expressing that TV is perpendicular to the element ds

of the path.

173. Multiplying the equations (3) by dx, dy, dz, and adding,

we find the equation of kinetic energy

d(%mi?) =Xdx+ Ydy+Zdz-^Nds. (7)

This relation might have been obtained directly from the con-

sideration that for a displacement ds along the fixed curve the

normal reaction N does no work, while the work of friction is
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174. Exercises.

(1) Show that when the given forces are zero and there is no friction,

the particle moves uniformly on the curve, and the pressure on the curve

is proportional to the curvature of the path.

(2) A particle of mass m moves down a straight line inclined to the

horizon at an angle 0, under the action ofgravity alone.

(a) If there- be no friction, we have by Art. 169, since p=oo (see

Fig. 24).

dv . nm = mg sin 0,
dt

o = mg cos Q N.

The first of these equations is the

same as that derived in kinematics

for motion down an inclined plane

(see Part L, Arts. 164-166). The
second equation gives the normal

reaction of the line JV= mg cos 6 ;

hence, the pressure on the line,

N, is constant.

(b) If the line be rough, the second equation remains the same, while

the first must be replaced by the following,

m = mg sin 9 pN= mg(sm /A cos 6).
dt

As the acceleration is constant whether there be friction or not, the

motion is uniformly accelerated, unless sin /A cos 9 = o, i.e. /A
= tan 6.

Find v and s
;
show that, in the exceptional case /x

= tan 0, the motion

is uniform unless the initial velocity be zero
;
show that, for motion up

the plane, the first equation becomes dv/dt=. "(sin + //.cos0), the

motion being uniformly retarded until /= v /g(sm -\- /A cos 0) when the

, particle either begins to move down the line or remains at rest.

(3) A string of length / (ft.) carries at one end a mass of m Ibs.

while the other end is fixed at a point O on a smooth horizontal table.

The mass m is made to describe a circle of radius / about O on the

table, with constant velocity = v ft. per second. Show that the tension

of the string is = mi?/I poundals.
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(4) In Ex. (3), let m = 2 Ibs.
;
/= 3 ft.

;
find the tension in pounds :

(a) when the mass makes one revolution per second
; (t>) when it

makes 10 revolutions per second.
(<:)

If the "string cannot stand a ten-

sion of more than 300 pounds, what is the greatest allowable velocity?

(5) A locomotive weighing 32 tons moves in a curve of 800 ft.

radius with a velocity of 30 miles an hour
;
find the horizontal pressure

on the rails.

(6) To prevent the lateral pressure on the rails in a curve, the track

is inclined inwards. Determine the required elevation e of the outer

above the inner rail for a given velocity v and radius R if the gauge
(i.e. the distance between the rails) is 4 ft. 8 in.

(7) A plummet is suspended from the roof of a railroad car; how
much will it be deflected from the vertical when the train is running

45 miles an hour in a curve of 300 yards' radius?

(8) A body on the surface of the earth partakes of the earth's daily

rotation on its axis. The constraint holding it in its circular path is due

to the attractive force of the earth. Taking the earth's equatorial radius

as 3963 miles, show that the centripetal acceleration of a particle at the

equator is about
-^

ft. per second, or about ^^ of the actually observed

acceleration g= 32-09 of a body falling in vacua.

(9) If the earth were at rest, what would be the acceleration of a

body falling in vacuo at the equator ?

(10) Show that if the velocity of the earth's rotation were over

17 times as large as it actually is, the force of gravity would not be

sufficient to detain a body near the surface at the equator.

(n) Show that in latitude < the acceleration of a falling body, if

the earth were at rest, would be gi ==g -\-j cos
2
<, where g is the observed

acceleration of a falling body on the rotating earth and j the centripetal

acceleration at the equator. Thus, in latitude < '= 45, g= 980-6 cm.
;

hence # = 982. 3.

(12) A chandelier weighing 75 Ibs. is suspended from the ceiling

of a hall by means of a chain 12^- ft. long whose weight is neglected.

By how much is the tension of the chain increased if it be set swinging
so that the velocity at the lowest point is 5 ft. per second ?

(13) A cord of 2 ft. length passes at its middle point through a hole

in a smooth horizontal table. It carries at its lower end a mass of

2 Ibs., at its other end a mass of i Ib. The latter is set to revolve in a
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circle about the hole so as to stretch the cord and just prevent the

mass of 2 Ibs. from descending, (a) How many revolutions must it

make? (b) If only one-fourth of the cord lie on the table while three-

fourths hang down, how many revolutions must be made ?

(14) Show that, when a particle moves with constant velocity in a

vertical circle, the constraining force F* (Art. 167) is always directed

towards a fixed point on the vertical diameter.

175. A particle of mass m subject to gravity alone is con-

strained to move in a vertical circle of radius 1. If there be

no friction on the curve and the constraint be produced by a

weightless rod or string joining the particle to the centre of

the circle, we have the problem of the simple mathematical

pendulum.

Equation (i), Art. 169, is readily seen to reduce in this cas

(see Fig. 25) to the form

:

(8)

A first integration gives, as shown in kinematics (Part I., Arts.

215, 216),

o
-/cos ), (9)

where VQ is the velocity which the particle has at the time /=o

B
when its radius makes the angle

AOP = 6Q with the vertical
MS !R NSV~- Multiplying by m, we have, for the

kinetic energy of the particle,

where h=v/2glco$6Q is

constant. If the horizontal line

MN
t
drawn at the height v^/

above the initial point PQ ,
inter

sect the vertical diameter AB at

R, it appears from the figure that
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176. Taking R as origin and the axis of z vertically down-

wards, we have RQ=z=lcos6+k\ hence the force-function U~

has the simple expression

Umgz\

and the velocity v=^/2gz is seen to become zero when the

particle reaches the horizontal line MN,
For the further treatment of the problem, three cases must

be distinguished according as this line of zero-velocity 'MN
intersects the circle, touches it, or does not meet it at all

;
i.e.

according as

A = /
f
or =2/sin2-. (11)> 2g > 2

177. Equation (2), Art. 169, serves to determine the reaction

jVof the circle, or the pressure TV on the circle. We have

V*m = mg(.

N=m
(^+i
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particle may leave the circle at some point of its upper half.

Again, the one-sided constraint may be such that OP>1, as

when the particle runs in a groove cut on the rim of a disc
;

in this case the particle can of course only move on the upper

half of the circle.

179. Exercises.

(1) For h = l, equation (10) can be integrated in finite terms.

Show that in this limiting case the particle approaches the highest point

B of the circle asymptotically, reaching it only in an infinite time.

(2) Derive the equations of motion for the problem of the simple

pendulum (Art. 175) from the general equations of Arts. 172, 173.

(3) For == 60, /= i ft., 27 = 9 ft. per second, show that the par-

ticle will leave the circle very nearly at the point $1
= 120, if the con-

straint be such that OP<1 (Art. 178).

(4) For z'o= 10 ft. per second, everything else being as in Ex. (3),

show that the particle will leave the circle at the point ^ = 134!,

nearly.

(5) A particle, subject to gravity and constrained to the inside

of a vertical circle (OP^_/), makes complete revolutions. Show that

it cannot leave the circle at any point, if \h > /; and that it will leave

the circle at the point for which cos = - f h/l, if f h < I.

(6) In the experiment of swinging in a vertical circle a glass contain-

ing water, and suspended by means of a string, if the string be 2 ft. long,

what must be the velocity at the lowest point if the experiment is to

succeed?

(7) A particle subject to gravity moves on the outside of a vertical

circle; determine where it will leave the circle: (a) ifMN (Fig. 25)
'

intersects the circle ; (b) if MN touches the circle
; (c) if MN does

not meet the circle.

(8) A particle subject to gravity is compelled to move on any vertir

cal curve z =/(#) without friction. Show that the velocity at any point

is v= ^/2gz (comp. Art. 176) if the horizontal axis of x be taken at

height above the initial point equal to the "
height due to the initi;

velocity," i.c. v/2g.
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(9) Investigate the motion of a particle subject to gravity, and com-

pelled to move on a circle whose plane is inclined to the horizon at an

angle a.

(10) A particle constrained to a straight line is attracted to a fixed

centre outside this line, the attraction being proportional to the distance

from the centre. Determine its motion.

180. Motion on Any Fixed Curve without Friction. The posi-

tion of a point on a curve can always be determined by a single

variable. Thus, for instance, the length s of the curve counted

from some origin on the curve might be taken as this variable ;

if the curve be a circle, the polar angle 6 might be selected
;

on an ellipse, tb^ eccentric angle </> ;
on a cycloid, the angle

through which the generating circle has rolled, etc. We shall

designate this variable by q, and write the equations of the

curve in the form

*=/i(?). y=f*(q\ *=/8(?)- (13)

The expression for the velocity v is in this case

/^yUJ
If there is no friction, the real equation of motion is the

equation (i) of Art. 169, which is equivalent to the equation of

kinetic energy (7), Art. 173 ;
when the variable q is introduced,

this equation becomes

where v2 is given by (14).

Putting, for shortness,

we can write the equation of motion in the simple form

(17)

.PART III 7
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181. In the most general case, the given forces X
y Y, Z will

depend not only on the position of the particle, but also on its

velocity and on the time. In this case, Q would be a function

of q, dq/dt, and t\ and equation (17) represents a differential

equation of the second order between q and /.

If, however, the resultant Fof. the given forces depends only
on the position of the particle so that Q is a function of q

alone, the right-hand member of (17) is an exact differential,

and a first integration can at once be performed. Then, substi-

tuting for ?/
2 its value from (14) in terms of q and dq/dt, we find

a differential equation of the first order whose integration gives

/ in function of q.

182. Exercise.

A particle of mass m is constrained to a common helix x = a cos 0,

y = a sin 0, z = *0, whose axis is vertical. The particle is subject to

gravity and is attracted by a centre situated on the axis, with a force

directly proportional to the distance. Determine the motion.

3. MOTION ON A FIXED SURFACE.

183. Just as for motion on a curve (Art. 172), we find the

general equations of motion

dP ' r
ds*

The normal reaction

N=^/N*+N?+N* (2)

being at right angles to the constraining surface
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the following condition must be satisfied :

f=f=f<
"

<4)
fV 9y 9*

where
</>x, <f>v, <f>e denote, as usual, the partial derivatives of

x, yt z) with regard to x, y, z, respectively.
1

If the acceleration of the particle be zero, the equations (i)

reduce to the conditions of equilibrium of a particle on a sur-

face, as given in Statics (Part II., Art. 222).

184. A particle of mass m, subject to gravity, is constrained to

remain on the surface of a sphere of radius r. If the constraint

is produced by a weightless rod or string joining the particle

to the centre of the sphere, the rod or string describes a cone,

and the apparatus is called a conical or spherical pendulum.

Taking the centre O of the sphere as origin (Fig. 26), and

the axis of z vertically down-

wards, we have for the equation

of the sphere

whence <f>Jx= $y/y <$>z/z. The

direction cosines of ./Vare x/r,

y/r, z/r. Hence, the equa-

tions of motion, as there is no

friction :

Fig. 26.

my mz mg-N*-
r

(6)

1 This abridged notation is readily extended to the second and higher derivatives :

<t>xx
= 2-2, <pxy

= d ft
f etc> it wni aiso sometimes be convenient to use the fluxional

dx dxdy
notation for derivatives with respect to the time

dx . dy . dz
.

d*x . .

~dt~
X

'

~dt~
y ^

~dt~
Z

'

~di*~*' dt*

dr <tt.

dt

In mechanics, this notation is of particular advantage, not only because the time

so often appears as the independent variable, but also because the initial values of

these derivatives (i.e. the components of the initial velocity and acceleration) can

then be indicated by zero subscripts. Thus, the components of the initial velocity

would be ^o> jo> 20-
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As the resistance N does no work, the principle of kinetic

energy gives

or, dividing by \ m,

V*= 2(gZ+ h). (7)

To determine the constant of integration h
y we have v v^ when

zz^ ;
hence

zs). (8)

185. Another first integral is found by applying the principle

of areas which holds for the projection of the motion on the

horizontal ^j/-plane. This appears by considering that N is

always directed along the radius of the sphere so that the

resultant of N and the weight mg of the particle always inter

sects the axis of z (see Art. 93). We have therefore

where \c is the sectorial velocity of the projection OP' of the

radius OP=ron the .rj/-plane.

186. For the further treatment of the problem it is best to introduce

polar co-ordinates (Fig. 26). Let & be the angle between r and the

axis of z, <f>
that between the projection OP of r on the xy-p\a.ne anc

the axis of x ; then

x= rsin6cos<f>, y = r sin sin
<J>,

z

and x=rcosOcos <f>>0 r sin sin <(><)>,

y=r cos sin <f>>0 + r sin cos <<,

Hence ^ = j* +/ + ? = r\fr + sin
2
0.<

2

),

xyyx=r* sin
2

&-<j>.

The first integrals (7) and (9) thus become in polar co-ordinates

(10)

(uj;



i88.] MOTION ON A FIXED SURFACE. IO i

187. The constants of integration h, c can now be determined if the

initial values of 0, 0, <j>
are given.

Eliminating dt between the equations (10) and (n), we find the

differential equation of the path

,, cdB
, (12)

sin BV2 r2
sin

2

0(gr co$0 + h)-<?

whose integration gives the equation of the path in the spherical co-

ordinates 6, (f> (colatitude and longitude).

On the other hand, if
<j>

be eliminated between (10) and (n), we
find the relation

d _r* sin dQ_ , v

"

V2 r2
sin

2

0(rcos + h)-/
which, upon integration, determines the time as a function of 0, or the

position of the point in its path at any given time.

The equations (12) and (13) contain therefore the complete solution

of our problem, with the exception of the determination of the resist-

ance N. Their discussion cannot here be given, as they lead to elliptic

integrals.

188. To find the resistance Nt multiply the equations (6) by x, yt
z

and add ; this gives

m (xx + yy + zz) = mgz Nr.
; ; (14)

Differentiating twice the equation of the sphere (5), we find

x'x +yy + zz + x2 +y + 2 = 0,

or since x2 +/ + z
2 = z/

2
,

xx -\-yy + zz = v2
.

Substituting this value in (14), we find

or, by (8), N=-($gz + v<?- 2gz ). (15)

If the constraint be one-sided as in the case of a string pendu-

lum, the particle will leave the sphere whenever in its upper half z

becomes ^ f z v<?/$g.
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189. That particular case of the problem of the conical pendulum in

which the particle moves in a horizontal circle can be treated directly

in an elementary manner. It finds its application in

the theory of the governor of a steam engine.

Let O (Fig. 27) be the point of suspension, OP
the length of the pendulum rod, 2f. QOP= 6 the con-

stant angle of inclination of the rod to the vertical OQ
The only forces acting on the particle are its weight mg
and the tension of the rod. As both these forces li<

in the normal plane of the path, the tangential accel-

eration is zero, and the particle moves uniformly in the

circle.

The radius of curvature of the path is the radius
m

fl
f QP /sin 9 of the horizontal circle. The resultant R
of mg and N must act along the radius

;
its magnitude

is seen from the figure to befi = mgtanO. Hence th^ equation (2)

of Art. 169 gives v

Q R\

Fig. 27.

7'
2

/sin0
= mgtan. 0,

or,

The figure also shows that the tension of the rod is

(16)

COS0

190. Exercises.

(1) Show that the time of revolution T of the conical pendulum

(Art. 1 86) is the same as the time of one complete oscillation of a

simple pendulum of length /cos 0.

(2) Show that the angular velocity with which the vertical plane

of the rod turns about the vertical axis OQ (Fig. 27) is inversely!

proportional to the cosine of the angle 0.

(3) A conical pendulum makes n = 60 revolutions per minute :

(a) What is the height of the cone ? () If the mass of the bob
bejm\ oz., and the length of the rod /= i ft., what is the tension

of the rod? (^=32-2.)
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(4) From the equations (5) and (6), Art. 184, derive the approxi-

mate path of the bob of a simple pendulum when the oscillations are

very small.

191. Motion on Any Fixed Surface without Friction. The posi-

tion of a point on a surface can always be determined by two

variables, say qlt q^. Thus, on a sphere, the latitude and longi-

tude of a point determine its position ;
and on any surface the

two systems of curves known as the curves of curvature of

the surface might serve as a system of co-ordinates. In other

words, the motion of a point on a surface is really a problem
of motion in two dimensions, just as the motion on a curve

takes place in one dimension (Art. 180).

Let *=fi(ffi, 92)>y=A(4i> ft). *=/8(ft ft) ( l8)

be the equations of the given surface, so that the elimination of

q-^y q<i
from these equations would give the ordinary equation

< (x, y, z)=o of the surface. Then we have for the velocity

v the expression

Kf
If there be no friction, the equation of kinetic energy gives

or say

(20)

If the forces depend only on the position of the particle, Ql

and <22 are functions of q lt q^ alone
; if, moreover, the expres-

sion Qidq^+Q^dq^ is an exact differential of a function of q^ and

#2, say dU(q^ q%), the equation (20) gives at once a first integral

q^)+h. (21)
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4. MOTION ON A MOVING OR VARIABLE CURVE OR SURFACE.

192, If the constraining curve or surface be not fixed and

invariable, the conditional equations will contain the time t

explicitly, besides the co-ordinates xt y, z of the moving particle

(Art. 164). For the sake of simplicity we here assume the

curve or surface to be smooth, so as to offer only a normal

resistance N\ if there be friction, the components of the

frictional resistance may be regarded as included in the com-

ponents Jf, Y, Z of the resultant force acting on the particle.

The treatment of this general problem of constrained motion

of a particle is here presented not so much on account of its

application to the solution of particular problems, as for the

reason that it offers an opportunity of explaining the meaning
of d'Alembert's principle and illustrating its application in a

comparatively simple case.

193. Two Constraints. Let the equations of the curve to

which the particle is constrained be

< (x, yt z, i) =o, ^ (x, y, z, t) =0. (i)

To apply d'Alembert's principle (Arts. 97-102), let the particle

be subjected, at any given time /, to an infinitesimal displace-

ment Bs. If this displacement be selected along the curve (i),

the reaction N of the curve, being at right angles to Bs, will

do no work during the displacement ;
hence the equation of

motion will be the same as that for a free particle (see

Art. 101), viz.

(-mx+X)%x+(-my+ Y)fy+ ( mz+Z)z=o. (2)

In this equation, then, the forces X, Y, Z do not involve the

normal reaction of the curve
;
but the components Bx, By,

of the displacement Bs must be selected so that Bs should lie on

the curve (i) at the time /; this is usually expressed by saying

that the displacement should be compatible with the conditions (\\
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Some authors confine the term virtual displacement to dis

placements compatible with the given conditions.

The displacement &$= ^/8x2+ fy/
2+ Sz2 will be compatible

with the conditions (i) at the given time t if the following

conditions, obtained by differentiating the equations (i), are

satisfied :

$>x -f- fatyr+ <f)g
z= o,

^a&tr+ ^fiy+^fe= 0.
^

It should be noticed that in this differentiation the time t is

regarded as constant, the displacement being taken to occur at

a given time.

The equations (2) and (3), which must be fulfilled simulta-

neously, constitute the equations of motion of our problem.

By means of the equations (3), two of the component dis-

placements &r, Sy, Sz can be eliminated from the equation (2) ;

the coefficient of the third equated to zero gives the actual

equation of motion.

194, To perform this elimination systematically the method of

indeterminate multipliers can be used as follows. Multiplying

the equations (3) respectively by the indeterminate factors X

and p and adding them to the equation (2), we obtain the single

equation

in which the arbitrary quantities X, p can be so selected as to

make the coefficients of two of the three displacements 8x, fry,

vanish
;
the coefficient of the third must then also vanish,

The equation is therefore equivalent to the following three

equations :

(4)

viz=Z
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These equations (4), in connection with the two conditions (i),

are sufficient to determine the five quantities x, y, z, X, /JL
as

functions of the time; the values of x, y, z so found give the

position of the particle at any time, while X, p can be shown

to determine the pressure on the curve.

195. To find the reaction A^ of the curve, let us compare the

equations (4) with the equations of Art. 161. It appears at

once that the forces X\ V, Z' that would replace the condi-

tions (i), i.e. the components of the reaction A7
"

of the constrain-

ing curve, are

whence

. (5)-

These equations determine the magnitude and direction of the

reaction N, as soon as X and
/JL

are found.

196. Let us now combine the equations (4) according to the

principle of kinetic energy ;
that is, multi ply them by dx, dy,

dz, and add. The left-hand member becomes, of course, the

exact differential d(^mv^). The right-hand member,

will in general contain terms depending on the reaction of the

surface; in other words, in the actrial displacement ds= (d^+
.dy^+dz*)^ of the particle the reaction of the moving curve will

in general do work.

197. Only in the particular case when the curve is fixed will 1

the work of the reaction be zero; for in this case the condi-

tional equations (i) do not contain the time explicitly, and their 1

complete differentiation gives the relations

z= o, rxdx+ dy+ ^rzdz= O,
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which show that the coefficients of \ and
/JL

in the equation

of kinetic energy vanish.

Hence, for motion on afixed curve we have

d(\ mv
2
)
=Xdx+ Ydy + Zdz, (6)

which agrees with the equation (7) of Art. 173, considering

that the frictional resistance is supposed to be included among
the forces X, Y, Z.

198. In the general case, the complete differentiation of the

equations (i) gives

and the equation of kinetic energy -for motion on a moving or

variable curve becomes

(7)

The distinction between the virtual displacement Ss along

the curve in its position at the time t and the actual displace-

ment ds of the particle along the moving curve should be

clearly understood. The virtual displacement &s=PP' joins

the position P (x, y, z) of the particle at the time / to a point

P' (x+x, y+ ty, z+ z), which is on the curve, and infinitely

near to P at the time /, while the actual displacement ds=PP"

joins P (x, y, z) to the position P" (x+dx, y+ dy, z-\-dz) of the

particle at the time t+ dt\ P" lies, therefore, on the position

that the curve has, not at the time t, but at the time t+ dt.

The reaction N of the curve at the time t is normal to Ss,

but not to ds.

199. One Constraint. Let

$(x,y, z, *)=o (8)

be the equation of the surface on which the particle is assumed

to remain throughout its motion. The reaction N of this sur-

face will do no work if the displacement Ss be taken along the
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position of the surface at a given time t. In other words, to

obtain a displacement Ss compatible with the condition (8),

its components &r, By, Sz should satisfy the condition

<k&T+<k^+ <k&?= o, (9)

obtained by differentiating the equation (8) with respect to

the co-ordinates.

200. By means of the relation (9), one of the displacements

&r, By, Sz can be eliminated from the general equation of

motion (2); the two remaining displacements will then be

independent, and their coefficients can therefore be equated

to zero separately.

The elimination is again conveniently effected by the method

of indeterminate multipliers. Multiplying equation (9) by an

indeterminate factor X, and adding it to equation (2), we find

the single equation

in which the arbitrary quantity X can be so selected as to make

the coefficient of one of the three displacements vanish. The
other two displacements being arbitrary, their coefficients must

also vanish. The last equation can therefore be replaced by
the following three :

my= Y+\$y,
mz= Z+\<}>t, (10)

which, in connection with the given condition (8), fully deter-

mine the problem ;
for they are sufficient for finding x, y, z, and

X as functions of t.

201. Just as in Art. 195, it follows that the components of

the reaction N of the surface are

whence 7V
r = xV<#>x

2+^2+ <#>z
2

. (n)
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202. If the equations (10) be combined according to the

principle of kinetic energy, we find

where again the coefficient of X vanishes only when the sur

face is fixed, in which case

(12)

while in the general case of a moving or variable surface we
have

(13)

203. Plane Motion. If a particle be constrained to move in a

plane curve under the action of forces lying in the plane of the

curve, d'Alembert's principle gives the equation of motion

and the equation of the curve

<f>(x, y, /)=o (
l $)

gives by differentiation for a virtual displacement Ss on the

curve at a given time /,

Hence, proceeding as in Art. 200, the equations of motion can

be written in the form

mx=X+ \<>x, my-= Y-\-\<f)v, (17)

while the normal reaction of the curve is

(18)

204. The process of solution is now as follows for the case of

plane motion. Differentiate the equation of condition (15),

which holds at any time, with respect to the time, remembering
that x and y are functions of the time

;
this gives :

o. (19)
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Differentiating again, we find

+ 2X<l>tx+ 2>(,y+ (/>
= O. (20)

If in this last equation the values of Jr, y be substituted from

(17), we have a linear equation for X. The value of X thus

obtained can then be introduced into the equations of motion

(17) ;
and it only remains to integrate these equations.

This integration will often be facilitated by introducing new

variables for x, y.

205. A particle moves without friction in a straight tube which

revolves uniformly in a horizontal plane about one of its points. De-

termine its motion.

To illustrate the application of the general methods, we shall solve

this problem completely, first without the use of indeterminate multi-

pliers, and then with their aid, although the problem is so simple that it

might be solved without applying these general methods, as will be

pointed out below.

As the weight of the particle is balanced by the vertical reaction of

the tube, we have a case of plane motion with X = o, Y o. Hence
d'Alembert's equation (14) becomes

x8x + y8y=o. (21)

If we take as origin the point O about which the tube rotates, the con-

straining curve is a straight line through the origin y = x tan 0, where

6 = to/, to being the constant angular velocity of the tube and the axis of

x coinciding with the initial position of the tube at the time /= o. Hence

x = r cos to/, y = r sin to/
;

^

8x = Br cos to/, By = Br sin to/
;

(22)x = r cos to/ tor sin to/, y= r sin to/ + tor cos to/;

x=r cos <o/ 2 tor sin to/ toV cos to/, y= r sin to/+ 2 tor cos to/ to
2r sin to/.

Substituting these values of x, y and 8x, By into the equation of motion

(21), we find after reduction

r wV=o. (23)

As mentioned above, this equation might have been derived directly

by considering that the acceleration along the tube is due to the cen-

trifugal force alone (see Art. 1 70) .
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206. The general integral of equation (23) is

r =

If r= r and r vQ when /= o, we have r = ^ + <r2, # = <(^i <r2 ) ;

hence
2 or = (<or + Vo)e<*+(u>ro z> )*""*. (24)

With #0 = 0, r =i, this equation represents a common catenary..

If VQ
= r o>, the equation reduces to the form r = rQe

Mt
, whence /=

The minimum of r in (24) occurs for

2o) cor -f- VQ

its value is r^ = VV 2

(# /co)
2
. It is easy to see that such a minimum

can occur only when z> is negative and > wr numerically.

207. To apply the method of indeterminate multipliers to our prob-

lem, let the equation of the tube be written in the form

$(x, y, /) = .# cos to/ j^sina)/
t= o. (25)

Then we have
<f>x
= cos o>/, <j>,

= sin <o/, </>,= v(x sin <o/4-jy cos <o/) ;

hence equation (16) assumes the form

Bx cos w/ By sin to/= o
;

and the equations of motion (17) are

mx = A cos CD/, #2)}
= A sin to/. (26)

We have also
<f>xx
= o, ^ =

<$>yx
= o, <^>yy

= o, ^ x
=^ = w sin w/r

^ =
^yt
= w cos w^> <#>

= >
2

(* cos w/ j^ sin co/)
= o. Hence, by'

J-5 3r cos to/ j sin co/ 2 our sin to/ 2
toj;

cos to/= o.
dr

Substituting in this equation the values of x,y from (26), we find the

linear equation for X which gives

= 2 to (x sin to/ -f^ cos co/) sec 2 to/.

m

Introducing this value into the equations (26), we have the differen-

tial equations of our problem in the form

x = 2(a(x sin co/+ y cos to/)
^

, y= 2to(^sinco/-f-j
; cosco/)

COS 2tO/
"

COS 2CO/
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Their integration can best be performed by introducing the radius

vector r by means of the relations (22). Multiplying the equations

respectively by cosw/ and sinco/, and adding, we find that the right-

hand member vanishes, and we have

x cos w/+ y sin w/ == o,

or, substituting for x and y their values from (22),

r w?r= o,

which agrees with (23), Art. 205.

208. For the pressure on the curve, we have, by ( 18), since
<f>s?-t-<j>f= i,

N= \ = _^!L (x sin <o/+ j> cos o>/).
COS 2 CO/

Substituting from (22) and (24), and reducing, we find

N= ///a>[ (oo + z>o)^(i + tan 2 o>/) + (o>r VQ) <?-"*( i tan 2 co/)].

209. Exercises.*

(1) A particle subject to gravity moves without friction in a straight

tube which revolves uniformly in a vertical circle. Find the distance r

of the particle from the centre of rotation at any time /.

(2) A particle moves without friction in a circular tube which rotates

uniformly in a horizontal plane about a point O in its circumference.

If the particle is at the time /=o at rest at the end of the diameter

passing through O, what is its position at any time / ?

(3) A particle moves in a horizontal circular tube whose radius

increases proportionally to the time. At the time /= o the radius is a,

and the particle has a velocity VQ perpendicular to the radius. Find the

position and velocity at any time /.

* These examples are taken from Walton's Collection (referred to in Art. 159),

pp. 401-406.
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V. Lagrange s Form of the Equations of Motion.

210. It has been shown in Arts. 180, 181, how the equations

of motion on a fixed curve can be made to depend on a single

variable q, and in Art. 191 how the motion on a fixed surface

can be expressed by means of two variables qv q^. By apply-

ing this idea, and by introducing the kinetic energy T and its

derivatives, the equations of motion of a particle with or without

conditions can be put into a remarkably compact form, which

was first devised by Lagrange for the general equations of

motion of a system of n particles (comp. Arts. 385-394). We
proceed to establish these equations, first for the case of motion

on a variable curve, then for motion on a variable surface, and

finally for a free particle.

211. Particle Subject to Two Conditions. As shown in Art.

194 (comp. Art. 192), the equations of motion in Cartesian

co-ordinates can be written in the form

mX=X+ \<f)x

my= F+x<k+^,, (i)

mz=Z 4- \<f)z+ A^,

if the equations of condition are

<(*, y, 2, /)=o, -f(>:, y, z, t}=Q. (2)

The single variable q, that determines the position of the

particle on the curve, is called the Lagrangian, or generalized,

co-ordinate of the particle. The Cartesian co-ordinates, x, y, z,

are functions of the Lagrangian co-ordinate q, and of the time

/, say

*=/i('. <?)> y=A(*> ?)> *=/*(*> ?) (3)

To introduce q in the place of x, y, z, we shall need the

derivatives x> j/, z. The first of the equations (3) gives

PART III 8
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so that x can be regarded as a function of t, q, and q= dq/dt.

Hence we have

dq dqdt dq
2 '

dq dq

In the former of these expressions, the right-hand member can

be put into the more compact form =i, as is easily verified
dt dq

by carrying out the indicated differentiation with respect to t.

As similar results hold for y and z, we have

/\

dq~dtdq dq~dtdq
__

'
~~

'

dq dq dq dq dq dq

212. Let us now add the equations of motion (i) after multi-

plying them by dfjdq, df^/dq, dfjdq. The coefficient of X in

the resulting equation, viz.

^_,^,^
dx dq dy dq dz dq'

is equal to zero, since it is evidently proportional to the cosine

of the angle made at a given time by the tangent to the curve

(3) with the normal to the surface </>=o. For a similar reason,

the coefficient of
/j,

vanishes
;
and the resulting equation is

m (x
dA+y

dA+ z
S
A\=Q, (6)

V dq dq dqj

if, as in Arts. 180, 181, we put for shortness

.

dq dq dq

This quantity Q can evidently be expressed as a function of

q, and q.

The equation (6) can also be written in the form

m
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as appears by carrying out the indicated differentiations with

respect to /, and if we now make use of the relations (4) and (5),

our equation assumes the form

d . te . d . ds\ . dx Q . dz

The quantities in the two parentheses, each multiplied by m,

are easily recognized as the partial derivatives with respect to

q and q of the kinetic energy

hence the equation reduces to the form

*L-*L=Q (7)
dt dq dq

V>

known as the (second) Lagrangian form of the equation of

motion of a particle constrained to a curve.

213. Particle Subject to One Condition. By Art. 200, the equa-

tions of motion are

(8)

with the condition

$(pt y,z,t)=o. (9)

Let the two generalized co-ordinates q^ q^ be connected with

the Cartesian co-ordinates by the equations

The first of these equations gives

rdt dq

hence, regarding x as a function of /, q^ q^,

)
we find :
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The right-hand member of the former of these equations is

equivalent to -j
~ As similar relations hold for y and z, we

dtdql

find again the relations (4) and (5), with ql
substituted for q.

It can be shown in the same way that these relations also hold

if
<72 be written for q.

214. Let us now multiply the equations (8) by 5/i/d^,

!,
and add them. This gives

where

Similarly, multiplying (8) by dfi/dg2,

adding, we find

2'
5/3/%2> and

m

where

Each of these equations (n) and (12) can be treated by the

method used in Art. 212, and we find as the final equations of

motion on the surface (9) in the Lagrangian form :

dT
d_

dt (13)

215. Free Particle. In this case three variables qv q^ <?3 are

required to determine the position of the particle. If the

expressions of x, yy
z in terms of these new variables do not

contain the time explicitly, the introduction of the new varia-

bles consists merely in a change of co-ordinates. If they do

contain the time, i.e. if we have

the new system of co-ordinates is a moving system.
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The relations (4), (5) can again be shown to hold for each

of the three Lagrangian co-ordinates gv q^ q%.

If the equations of motion

mx=X, my=Y> m'z Z (15)

be multiplied by 3/i/d^, d/2/d<?i, dfjdq^ and added, we find

where
' Q^X^+Y^Z^dql dgl dql

By the method of Art. 212, equation (16) reduces to the form

^ar_ar_

Similarly we find

Cv (j -L U J. S-*

77/^ ^T == ^2

The three equations (17) and (18) are the Lagrangian equations

of motion of a free particle.

216. If there exists a force-function U for the forces X, F,

Z, i.e. if

Y dU v BU - dUJL=- t y=, <
= -

dx dy dz

we have

_ + ^+ , =
1 dx d^1 dy dql

dz d^l

and similarly
3U

In this case, one of the three equations (17), (18) can be

replaced by the equation of kinetic energy

where h is a constant.
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217. The general theory of the constrained motion of a particle is

treated with special care in the works of Schell, Budde, and Appell,

referred to in Art. 159. In Appell's first volume, pp. 445-517, the

student will find instructive examples of the application of Lagrange's

equations. For more elementary problems, as also for the interesting

theories of brachistochrones and tautochrones, the reader is referred,

besides the works just named, to the text-books of Tait and Steele,

Besant, Price, and Walton's Problems (see Art. 159).
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CHAPTER VI.

KINETICS OF A RIGID BODY.

I. General Principles.

* 218. In kinetics the term rigid body means any system or

aggregate of mass-particles whose mutual distances remain

invariable. A rigid body may therefore consist of a finite

number of rigidly connected particles or of a continuous mass

of one, two, or three dimensions. Its motion depends not only
on the forces acting on the body, but also on the way in which

the mass is distributed throughout the body.
*

In the present section the rigid body is assumed to be free

unless the contrary be stated explicitly.

219. Let us consider any one particle m of the body ;
at any

time /, let j be its acceleration and F the resultant of all the

forces acting on the particle. Then the motion of this particle

(see Arts. 35, 67) is determined by the equation

mjF. (i)

It should be noticed that among the forces acting on the

particle are included not only those external forces acting on

the rigid body that happen to be applied at m, but also the

.so-called internal forces which would replace the rigid con-

nection of the particle m with the rest of the body.

If, at the time t, x, y, 2 are the co-ordinates of the particle

m with respect to a fixed set of rectangular axes, then the

components of its velocity v may be denoted by x, y, z\ those

of its acceleration j by x
t y, z* And if the components of F

* Here again we shall use this so-called fluxional notation, according to which

derivatives with respect to the time are denoted by dots; see the foot-note to Art. 183.
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along the same axes are X, Y, Z, the equation (i) can be

replaced by the following three :

=o, my+ Y=o, mz+Z=o. (2)

Such a set of three equations can be written down for each

particle ; hence, if the body consist of n particles, there would

be in all 3^ equations.

220. For the solution of particular problems these 3/2 equa-

tions are of little use, not only because their number would

in general be very great and may even be infinite, but mainly
because the forces X, Y, Z include the unknown reactions

between the particles. It is, however, possible to deduce cer-

tain general propositions from these equations.

The 3 equations express the equilibrium of the system
formed by all the forces, both internal and external, acting on

the particles, and the reversed effective forces. To apply the

principle of virtual work to this system, let us multiply the

three equations (2) by the components Sx, Sj/, z of some virtual

displacement of the particle m ;
let the same thing be done

for every other particle of the body ;
and let all the resulting

equations be added :

2(-0*jr+-Y)&r+2(-*y+ F)fy+2(-*2+Z)&sr=o. (3)

221. It is important to notice that the internal reactions

between the particles which make the body rigid occur in

pairs of equal and opposite forces, and form, therefore, a

system which is in equilibrium by itself. Hence, while these

internal forces enter into the equations (2), they do not appear
in equation (3), since the equal and opposite forces cancel in

the summation. Thus, equation (3) expresses that the external

Derivatives were called fluxes by Newton; thus the component of the acceleration

of a point in any direction is the time-flux of its velocity in that direction; the com-

ponent of its effective force in any direction is the time-flux of its momentum;
and so on.
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forces acting on the rigid body and the reversed effective forces

form a system in equilibrium ; and this is d'Alembert's Principle

for the rigid body.

It must, however, not be forgotten that the displacements $>x,

Sj>, &z should be so selected as to be compatible with the nature

of the rigid body; i.e. with the conditions that the distances

between trie particles should not be disturbed.

222. The number of conditions expressing the invariability

of the distances between n particles is 3/2 6. For if there

were but 3 particles, the number of independent conditions

would evidently be 3 ;
for every additional particle, 3 additional

conditions are required. Hence, the total number of condi-

tions is 3 + 3(-3) = 3^-6.
It follows that if a rigid body be subject to no other con-

straining conditions, the number of its equations of motion

must be $n ($n 6) =6. Hence, a free rigid body has six

independent equations of motion. (Comp. Part I., Art. 37.)

223. The six equations of motion of the rigid body can be

obtained as follows.

Imagine the equations (2), viz.

mx=X, my= Y, mz= Z,

written down for every particle, and add the corresponding

equations. This gives the first 3 of the 6 equations of motion:

^mx=^X1 ^my=^Yy
2mz= 2Z. (4)

As the internal forces cancel in the summation, the right-hand

members of these equations represent the components Rx,
R

y,
Rg

of the resultant R of all the external forces acting on the body.

The left-hand members can be put into the form d$mx)/dt,

d@.my)/dt, d(*Lmz)/dt ;
these are the time derivatives or fluxes

of the sums of the linear momenta of all the particles parallel

to the axes. The equations (4) can therefore be written in the

form

Rr (5)a ,,

dt dt dt
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The axes of co-ordinates are arbitrary. Hence, if we agree to

call linear momentum of the body in any direction the algebraic

sum of the linear momenta of all the particles in that direc-

tion, the equations (5) express the proposition that the rate' at

which the linear momentum of a rigid body in any direction

changes with the time is equal to the sum of the components of

all the external forces in that direction.

224. Let us now combine the second and third of the equa-

tions (2) by multiplying the former by 2, the latter by y, and

subtracting the former from the latter. If this be done for

-each particle, and the resulting equations be added, we find

^m(y'z zy) = ^(yZ zY). Similarly, we can proceed with the

third and first, and with the first and second of the equations

<2). The result is :

(6)

Here again the internal forces disappear in the summation,

so that the right-hand members are the components Hx,
H

y, H,
of the vector H of the resultant couple, found by reducing

all the external forces for the origin of co-ordinates. The

left-hand members are the components of the resultant couple

of the effective forces for the same origin.

We can also say that the right-hand members are the sums

of the moments of the external forces about the co-ordinate

axes (Part II. , Art. 213), while the left-hand members repre-

sent the moments of the effective forces about the same axes.

The latter quantities are exact derivatives, as shown in Arts.

87 and 91. The equations (6) can therefore be written in

the form

As explained in Arts. 89 and 92, the quantity m(yzzy) is

called the angular momentum (or the moment of momentum]
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of the particle m about the axis of x. We may now agree to

call the quantity ^m(yz-zy) the ang^ilar momentum of the

body about the axis of x> just as ^mx is the linear momentum
of the body along this axis

;
and similarly for the other axes.

The meaning of the equations (7) can then be stated as follows :

The rate at which the angular momentum of a rigid body about

any axis changes with the time is equal to the sum of the

moments of all the external forces about this line.

The equations (4) and (6), or (5) and (7), are the six equa-

tions of motion of the rigid body. The three equations (4) or

(5) may be called the equations of linear momentum, while (6)

or (7) are the equations of angular momentum.

225. The equations (4) and (6) can also be derived from the equa-
tion (3), which expresses d'Alembert's principle, by selecting for #,

By, Bz convenient displacements.

Thus, the rigidity of the body will evidently not be disturbed if we

give to all its points equal and parallel infinitesimal displacements, since

this merely amounts to subjecting the whole body to an infinitesimal

translation. Equation (3) can in this case be written

&#:(- mx + X) + 8y2( my+ Y) + Bz%( mz +Z) = o,

and is therefore equivalent to the three equations (4), since 8.*, By, Bz

are independent and arbitrary.

Again, let the body be subjected to an infinitesimal rotation of angle

BO about any line /.

As shown in Art. 293 of Part I., the linear velocities of any point

(x, y, z) of a rigid body, due to a rotation of angular velocity o> = 80/8/

about any line / are, if
eo,.,

o>
y,
wz denote the components of o> :

x =
o)yZ

<azy, y = (DgX <DXZ, z = <Dxy oyr.

Hence, putting eox8/=80x ,
o>
y
S/=80y, <u,8/=80,, we have for the

displacements of the point (x, y, z) ,
due to a rotation of angle 80,

Bx = zBO
y -yBOz, By = xBez -zB9x,

Bz =y S0Z- xWr
If these values be introduced into d'Alembert's equation (3) and the

terms in S0Z ,
B0

y,
Wz be collected, it assumes the form

S0X2[- m(yz - zy) +yZ-zY] + S0
y2[- m(zx - xz) + zX- xZ~\

+ 80,5 [ m(xy yx) + xYyX']=o ;
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as 80X, SOy, 80Z are independent and arbitrary, their coefficients must

vanish separately, and this gives the equations (6).

226. The equations of linear momentum, (4) or (5), admit of

a further simplification, owing to the fundamental property of

the centroid. By Part II., Art. 13, the co-ordinates x, j>, z of the

centroid satisfy the relations

MX ^mxy My= ^my, Mz= 2mz,

where M= 2m is the whole mass of the body. Differentiating

these equations, we find

MX= 2,mx, My= ^myy Mz= 2

and MX= ^mx, My=

where x, y, z are the components of the velocity v, and x, y,

those of the acceleration/, of the centroid.

The equations (4) or (5) can therefore be reduced to the form

Mx= MxRx, My= My=Ry,
Mz= ~rM~z Rg) (8)

whence Mj= -Mv=R\ (9)
at

i.e. if the whole mass of the body be regarded as concentrated

at the centroid, the effective force of the centroid, or the time-

rate of change of its momentum, is equal to the resultant of all

the external forces. It follows that the centroid of a rigid body

'moves as if it contained the whole mass, and all the externalforces

were applied at this pointparallel to their original directions.

227. If, in particular, the resultant R vanish (while there may
be a couple H acting on the body), we have by (8) and (9)

y=o; hence v= const.
;

i.e. if the resultant force be zero, the

centroid moves uniformly in a straight line.

This proposition, which can also be expressed by saying that,

if R= o, the momentum Mv of the centroid remains constant,

or, using the form (5) of the equations of motion, that the linear

momentum of the body in any direction is constant, is known
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~he principle of the conservation of linear momentum, or the

principle of the conservation of the motion of the centroid.

228. Let us next consider the equations of angular momen-

tum, (6) or (7). To introduce the properties of the centroid,

let us put x x=%, yy= f

n, z z=
,
so that

, 77, f are the

co-ordinates of the point (x, y, z) with respect to parallel axes

through the centroid. The substitution of x=x+%, jj/ =3/4-77,

their derivatives into the expressionyzzy gives

To form ^m(yz-zy) we must multiply by m and sum through-

out the body ;
in this summation, y, ~z, y, ~z are constant and,

by the property of the centroid,

2m=o. Hence we find

The second term in the right-hand member is the angular

momentum of the centroid about the axis of x (the whole mass

M of the body being regarded as concentrated at this point),

while the first term is the angular momentum of the body about

a parallel to the axis of x, drawn through the centroid.

Similar relations hold for the angular momenta about the

axes of y and z
;
and as these axes are arbitrary, we conclude

that the angular momentum of a rigid body about any line is

equal to its angular momentum about a parallel through the

centroid plus the angular momentum of the centroid about the

former line.

229. Differentiating the above expression, we find

The first of the equations (7) can therefore be written

|dt
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Now, if at any time t the centroid were taken as origin, so that

3/
= o, i=o, this equation would reduce to the form

?,m(rt-tt)=jrf

which is entirely independent of the co-ordinates of the cen-

troid. On the other hand, wherever the origin is taken, if

the centroid were a fixed point, the same equation would

be obtained.

Similar considerations apply of course to the other two

equations (7). It follows that the motion of a rigid body relative-

to the centroid is the same as if the centroid were fixed.

'

230. If, in particular, the resultant couple H be zero for any

particular origin O (which will be the case not only when all

external forces are zero, but also when the directions of all

forces pass through the point O), the equations (7) can be

integrated and give

yx} C^ (10)

where Cv Cv Cs are constants of integration (comp. Art. 94)

Hence, if the external forces pass through a fixed point, the

angular momentum of the body about any line through this

point is constant ; if there are no external forces, the angular

momentum is constant for any line whatever. This is the

principle of the conservation of angular momentum.

231. Another interpretation can be given to these equations

As shown in Arts. 88 and 91, the quantities y'z zy, zxxz
xyyx can be regarded as sectorial velocities. Thus, if the

radius vector, drawn from the origin to the particle m, be pro

jected on thejs'-plane, y'z zy is twice the sectorial velocity of this

radius vector in the jj/^-plane, \(ydz zdy) being the elementary
sector described in the element of time dt. Let us denote by
dSx the sum of all these elementary sectors for the various

particles, each multiplied by the mass of the particle ;
and
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similarly by dSy,
dSz the corresponding sums of the projections

on the other co-ordinate planes. Then the equations (10) can

be written in the form

2SX=CV 2S
y
=C2 , 2SZ=C3 . (I I)

Hence the proposition of Art. 230 might be called the principle

of the conservation of sectorial velocities
;

it is more commonly
called the principle of the conservation of areas.

The equations (11) can be integrated again and give, if the

sectors be measured from the positions of the radii vectores at

the time t=o,

232. If the radii vectores be projected on any plane through
the origin whose normal has the direction cosines a, fi, y, the

sum of the elementary sectors described in this plane, each

multiplied by the mass, will be

hence S

On the other hand, by (10), the angular momentum of the

body about the normal of this plane has the expression

a+ <$+ Csy, as it must be equal to the sum of the pro-

jections on this normal of the angular momenta about the

axes of co-ordinates, which can be regarded as vectors laid

off on these axes.

Now it is easy to see that this angular momentum C^+CJS
-\-C3y, and hence the quantity 5 at a given time /, is greatest

for the diagonal of the parallelepiped, whose edges are equal

to C
lt
Cz ,

C3 along the axes, i.e. for the normal to the plane

Cjx+C^y+C^= o. (12)

For, the direction cosines of this normal are

',
where D=V\2

4-C+C ;
and the quan-

tity C^a. 4- C^ft 4- QY can be put into the form
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where the quantity in parenthesis is the cosine of the angle

between the directions (', /3', 7') and (a, (3, 7), and is therefore

greatest when these directions coincide.

The plane (12) about whose normal the angular momentum
is greatest, and by projection on which the area 5 is made

greatest, is called Laplace's invariable plane. As its equation is

independent of /, it remains fixed. The normal of this plane is

sometimes called the invariable line or direction.

233. Let us now return to the general case of the motion of

a rigid body acted upon by any forces whatever.

The propositions of Arts. 226 and 229 together establish the

so-called principle of the independence of the motions of translation

and rotation. In studying the motion of a rigid body it is

possible, according to this principle, to consider separately the

motion of translation of the centroid, and the rotation of the

body about the centroid.

By Art. 226, the motion of the centroid is the same as that

of a particle of mass M acted upon by all the external forces

transferred parallel to themselves to the centroid. As the

motion of a particle has been discussed in Chapter V., nothing

further need be said about this part of the problem.

By Art. 229, the motion of the body about the centroid is the

same as if the centroid were fixed. The problem of the motion

of a rigid body with a fixed point is therefore of great impor-

tance ;
it will be discussed in Section IV. The more simpl<

special case of a rigid body with a fixed axis is treated in Sec-

tion III. The solution of both these problems depends on the

equations (6) or (7).

234. In d'Alembert's equation (3) it is of course allowable to

substitute for the virtual displacements %x, 8y, &z the actual dis-

placements dx, dy, dz of the particles in any motion of a fre<

rigid body, since these actual displacements are certainly com-

patible with the condition of rigidity. The equation can thei

be written

(xdx+ydy+ zdz) = 2(Xdx+Ydy+ Zde). (13)
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The left-hand member of this equation evidently represents

the differential of the kinetic energy

r=%^2=%/^2+>2+^2
) (14)

of the body, while the right-hand member is the elementary
work of the external forces. Hence equation (13) expresses

the principle of kinetic energy for a free rigid body, viz. the

proposition that, for any infinitesimal displacement of the body,

the increase of the kinetic energy is equal to the sum of the works

done by all the externalforces.

235. By introducing the co-ordinates of the centroid, i.e. by

putting x=x+%y y=y^-r), =#+ ,
as in Art. 228, the expres-

sion for the kinetic energy assumes the form (since ^m^=o,

(is)

where v is the velocity of the centroid and u the relative veloc-

ity of any particle m with respect to the centroid.

Thus, it appears that the kinetic energy of a free rigid body

consists of two parts, one of which is the kinetic energy of the cen-

troid (the whole mass being regarded as concentrated at this

point), while the other may be called the relative kinetic energy

with respect to the centroid.

236. By the same substitution the right-hand member of

equation (13), i.e. the elementary work ^(Xdx+ Ydy+ Zdz),

resolves itself into the two parts

(dx$X+ dy 2 F-f dz 2Z) + 2 (Xd% 4- Ydri +Zd).
The first parenthesis contains the work that would be done by
all the external forces if they were applied at the centroid

;
it is

therefore equal to the kinetic energy of the centroid, that is to

mfyMv*). The equation of kinetic energy (13) reduces, there-

fore, to the following :

(16)

PART m-9 ^-



KINETICS OF A RIGID BODY. [237

in other words, the principle of kinetic energy holds for the rela-

tive motion with respect to the centroid.

237. Impulses. The equations determining the effect of a

system of impulses (see Arts. 2-5) on a rigid body are readily

obtained from the general equations of motion (4) and (6).

We shall denote the impulse of a force F by F. It will be

remembered that the impulse F of a force F is its time in-

tegral ;
i.e.

We confine ourselves to the case when t
1

t is very small and F
very large, in which case the action of the impulsive force F is

measured by its impulse F.

If all the forces acting on a rigid body are of this nature, and

the impulses of X, Y, Z during the short interval t' t be

denoted by X, Y, Z, the integration of the equations (4) from

t=t to t=t f

gives

^m(x'-x) = ?.X, 2w(>'- = 2F, 2f(*'-*) = 2Z, (17)

where x, j, z denote the velocities of the particle m at the time

/ just before the impulse, and x\ y\ z' those at the time /' just

after the action of the impulse.

Similarly the equations (6) give

l

-x)-x(z 1

-z)] =^(zX-xZ) t (18)

x(y<
-

y) -y(x' -x)} = 2(* Y-yX).

238. In determining the effect on a rigid body of a system
of such impulses, any ordinary forces acting on the body at the

same time are neglected because the changes of velocity pro-

duced by them during the very short time r are small in com-

parison with the changes of velocity x
1

x, y
1

y, z' z produced

by the impulses. For the mathematical treatment it is generally

most convenient to define the impulse F of an impulsive force

JfFdt when /' / approaches o and
*-
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F approaches oc (Art. 5) ;
in this case it is strictly true that the

effect of ordinary forces can be neglected when impulsive forces

act on the body.

If the rigid body be originally at rest, it will be convenient

to denote by x, y, z the components of the velocity of the par-

ticle m just after the action of the impulses. We may also

denote by R the resultant of all the impulses, by H the result-

ant impulsive couple for the reduction to the origin of co-

ordinates, and mark the components of R and H by subscripts,

as in the case of forces. With these notations the effect of a

system of impulses on a body at rest is given by the equations

(19)

Hg . (20)

In the equations (19) we have, of course, ^mx=Mx,
z=Mz, where x, y, ~z are the components of the velocity of

the centroid, and M is the mass of the body ;
i.e. the momentum

of the centroid is equal to the resultant impulse. The meaning

of the equations (20) can be stated by saying that the angular

momentum of the body about any axis is equal to the moment of

all the impttlses about the same axis.
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II. Moments of Inertia and Principal Axes.
-

I. INTRODUCTION.

239. As will be shown in Sections III. and IV., the rotation

of a rigid body about any axis depends not only on the forces

acting on the body, but also on the way in which the mass

is distributed throughout the body. This distribution of mass

is characterized by the position of the centroid and by that of

certain lines in the body called principal axes.

It has been shown in Part II., Art. 13, that the centroid of a

mass is found by determining the moments, or more precisely,

the moments of the first order, ^mx, ^my, *Zmz, of the mass with

respect to the co-ordinate planes, i.e. the sums of all mass-

particles m each multiplied by its distance from the co-ordinate

plane.

The principal axes of a mass or body can be found by deter-

mining .the moments of the second order, ^mx2, ^my2
, ^mx*,

^myz, ^mzx, ^mxy of the mass with respect to the same

planes. We proceed, therefore, to study the theory of such

moments.

240. If in a rigid body the mass m of each particle be multi-

plied by the square of its distance r from a given point, plane,

or line, the sum

2mr*= m^rf+ m^rf -f
-

,

extended over the whole body, is called the quadratic moment,

or, more commonly, the moment of inertia of the body for that

point, plane, or line.

If the body is not composed of discrete particles, but forms

a continuous mass of one, two, or three dimensions, this mass

can be resolved into elements of mass dm, and the sum

becomes a single, double, or triple integral (r*dm.
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Expressions of the form ^mr^r^ or r^dm, where rv r% are

the distances of m or of dm from two planes (usually at right

angles), are called moments of deviation or products of inertia.

241. The determination of the moment of inertia of a con-

tinuous mass is a mere problem of integration ;
the methods

are similar to those for finding the moments of mass of the first

order required for determining centroids (see Part II., Chapter

III.), the only difference being that each element of mass must

be multiplied by the square, instead of the first power, of the

distance.

A moment of inertia is not a directed quantity ;
it is not

a vector, but a scalar
; indeed, it is a positive quantity, provided

the masses are all positive, as we shall here assume.

The moment of inertia of any number of bodies or masses

for any given point, plane, or line is obviously the sum of the

moments of inertia of the separate bodies or masses for the

same point, plane, or line.

242. The moment of inertia ^mr* of any body whose mass

is M= 2<m can always be expressed in the form

where r is a length called the radius of inertia, arm of inertia,

or radius of gyration. This length r
Q

is evidently a kind of

average value of the distances r, its value being intermediate

between the greatest r1 and least r" of these distances r. For

we have 2,mr'2 >2mr2 >2mr"2
, or, since

243. As an example, let us determine the moment of inertia

of a homogeneous rectilinear segment (straight rod or wire of

constant cross-section and density) for its middle point (or,

what amounts to the same thing, for a line or plane through

this point at right angles to the segment).
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Let 2 1 be the length of the rod (Fig. 28), O its middle point,

p its density (i.e. the mass of unit length), x the distance OP

A O P B

Fig. 28.

of any element dm= pdx from the middle point. Then we

have, for the moment of inertia /,

and for the radius of inertia r
, since the whole mass is M= 2

pi,

r*=*-=\l\

244. Exercises.

Determine the radius of inertia in the following cases. When noth-

ing is said to the contrary, the masses are supposed to be homogeneous.

(1) Segment of straight line of length /, for a perpendicular through
one end.

(2) Rectangular area of length / and width h : (a) for the side h
;

() for the .side /; (c) for a line through the centroid parallel to the

side h
; (*/) for a line through the centroid parallel to the side /.

(3) Triangular area of base b and height h, for a line through the

vertex parallel to the base.

(4) Square of side a, for a diagonal.

(5) Regular hexagon, for a diagonal.

(6) Right cylinder or prism of height 2 h
t

for the plane bisecting

the height at right angles.

(7) Segment of straight line of length /, for one end, when the density

is proportional to the nih power of the distance from this end. Deduce

from this: (a) the result of Ex. (i) ; (b) that of Ex. (3) ; (c) the

radius of inertia of a homogeneous pyramid or cone (right or oblique)

of height h, for a plane through the vertex parallel to the base.

(8) Circular area (plate, disc, lamina) of radius a, for any diameter.

(9) Circular line (wire) of radius a, for a diameter.
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(10) Solid sphere, for a diametral plane.

(n) Solid ellipsoid, for the three principal planes.

(12) Area of ring bounded by concentric circles of radii aly az, for a

diameter.

(13) Area of the cross-section of a JL-iron : (a) for its line of

symmetry; (b) for its base. (Dimensions as in Fig. 8, Part II., p. 18.)

(14) A rectangular door of width b and height h has a thickness 8 to

a distance a from the edges, while the rectangular panel (whose dimen-

sions are b 2 a, h 2 a) has half this thickness. Find the moment

of inertia for a line through the centroid parallel to the side b.

245. The moment of inertia of any mass M for a point can

easily be found if the moments of inertia of the same mass

are known for any line passing through the

point, and for the plane through the point

perpendicular to the line. Let O (Fig. 29)

be the point, / tbe line, TT the plane ; r, q, p
the perpendicular distances of any particle of

mass m from O, /, TT, respectively. Then

we have, evidently, r2 =g>
2

-\-fl
2

. Hence, mul-

tiplying by m, and summing over the whole

mass M,

or, putting

are the radii of inertia for O, /, TT,

Fig. 29.

,
where r

,

(i)

246. The moment of inertia of any mass M for a line is

equal to the sum of the moments of inertia of the same mass

for any two rectangular planes passing through the line. Thus,

in particular, the moment of inertia for the axis of x in a

rectangular system of co-ordinates is equal to the sum of the

moments of inertia for the sar-plane and ;rj/-plane. This fol-

lows at once by considering that the square of the distance

of any point from the line is equal to the sum of the squares
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of the distances of the same point from the two planes. Thus,

if q be the distance of any point (x, y, z) from the axis of xy

we have <= L+& whence

247. It follows, from the last article, that the moment of
inertia lx of a plane area, for any line perpendicular to its

plane, is

/.=/,+/*

if f
y ,

Iz are the moments of inertia of the area for any two

rectangular lines in the plane through the foot of the perpen-

dicular line.

248. The problem of finding the moment of inertia of a given
mass for a line 1', when it is known for a parallel line 1, is of

great importance.

Let Hmq2' be the moment of inertia of the

given mass for the line / (Fig. 30), ^mq l2>

that for a parallel line /' at the distance d
from /. The distances q, q

1 of any particle

m from /, /' form with d a triangle which

gives the relation

S (q, d).Fig. 30. f*

Multiplying by m, and summing over the whole mass M, we

find

(q, d).

Now the figure shows that the product qcos(q,d) in the

last term is the distance / of the particle m from a plane through

/ at right angles to the plane determined by / and /'. We have,

therefore,

(2)

where the last term contains the moment of the first order

=Mp of the given mass M for the plane just me'ntioned.
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If, in particular, this plane contains the centroid G of the

mass M
t
we have 2w/= o, so that the formula reduces to

^mq^= 2mg2+ Md*. (3)

Introducing the radii of inertia ^ ', ^ ,
this can be written

(3')

249. Similar considerations hold for the moments of inertia

^mp with respect to two parallel planes TT, TT' at the

distance d from each other. We have, in this case, /'=/ d\

, (4)

and if the plane TT contain the centroid G,

(5)

250. Of special importance is the case in which one of the

lines (or planes), say /
(TT}, contains the centroid. The formulae

(3)> (3
;

)> and (5) hold in this case
;
and if we agree to designate

any line (plane) passing through the centroid as a centroidal

line (plane), our proposition can be expressed as follows : The

moment of inertia for any line (plane] isfoundfrom the moment

of inertia for the parallel centroidal line (plane] by adding to

the latter the product Md2
of the whole mass into the square of

the distance of the lines (planes].

It will be noticed that of all parallel lines (planes) the

centroidal line (plane) has the least moment of inertia.

251. Exercises.

Determine the radius of inertia of the following homogeneous masses :

(1) Rectangular plate of length /and width h, for a centroidal line

perpendicular to its plane.

(2) Area of equilateral triangle of side a : (a) for a centroidal line

parallel to the base ; (b) for an altitude ; (c) for a centroidal line per-

pendicular to its plane.

(3) Circular disc of radius a: (a) for a tangent; (d) for a line

through the centre perpendicular to the plane of the disc
; (c) for a

perpendicular to its plane through a point in the circumference.
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(4) Solid sphere, for a diameter.

(5) Area of ring bounded by concentric circles of radii alt a2, for

a line through the centre perpendicular to the plane of the ring. For

a ring whose thickness a2 a is infinitesimal, the result can also be

obtained by differentiation from Ex. (3) (b).

(6) Spherical shell of infinitesimal thickness, for a diameter.

(7) Right circular cylinder, of radius a and height 2h : (a) for

its axis ; (b) for a generating line
; (c) for a centroidal line in the mid-

dle cross-section.

(8) Prove that, in a right prism or cylinder of any cross-section,

we have
<?

2 = q* + ^c

2
,
where q is the radius of inertia of the prism or

cylinder for a line bisecting the axis at right angles, qa the radius of

inertia of the axis, qc that of the middle cross-section, for the same line.

(9) Area of ellipse : (a} for the major axis
; (b) for the minor

axis
; (c) for the perpendicular to its plane through the centre.

(10) Solid ellipsoid, for each of the three axes.

(n) Area of the cross-section of a 1-iron, for a centroidal line par-

allel to the flange. (Compare Art. 244, Ex. (13).)

(12) Area of the cross-section of a symmetrical double T-iron,

width of flanges b, thickness of flanges 8, height of web h, thickness

of web 28; for the two axes of symmetry, and for a centroidal line per-

pendicular to its plane.

(13) Wire bent into an equilateral triangle of side a, for a centroidal

line at right angles to the plane of the triangle.

252. Bouth's Rule. In the case of homogeneous masses with

axes of symmetry, the radius of inertia for an axis of symmetry
can readily be derived by the following mnemonical rule : The

square of the radius of inertia is ^, \, or \ of the sum of the

squares of the perpendicular semi-axes, according as the mass is

rectangular, elliptic, or ellipsoidal.

The proof rests on the following typical cases which are

easily proved directly (comp. Art. 251, Ex. (i), (9), (10)) :

(i) Rectangular area whose sides are 2 a, 2b, for a centroidal

line perpendicular to its plane : g
2= ^
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(2) Elliptic area whose axes are 2 a, 2b, for a centroidal line

perpendicular to its plane :
q>

2
=^(a

2
-\-&

2
).

(3) Solid ellipsoid whose axes are 2a, 2b, 2c, for its axes :

A large number of special cases can be brought under this

rule, as will be seen from the following exercises. It should be

remembered that the radius of inertia of a homogeneous right

prism or cylinder for its axis is the same as that of its cross-

section.

253. Exercises. Apply Routh's rule to find the radius of inertia in

the following cases :

( i ) Solid sphere of radius a, for a diameter.

(2) Right circular cylinder, for its axis.

(3) Thin straight rod of length 2 a, for a perpendicular through its

middle point.

(4) Rectangular disc whose sides are 2 a, 2 b, for a line in its plane

bisecting the sides 2 a.

(5) Circular disc, for a diameter.

2. ELLIPSOIDS OF INERTIA.

254. The moments of inertia of a given mass for the different

lines of space are not independent of each other. Several

examples of this have already been given. It has been shown,

in particular (Art. 248), that if the moment of inertia be known

for any line, it can be found for any parallel line. It follows

that if the moments be known for all lines through any given

point, the moments for all lines of space can be found. We
now proceed to study the relations between the moments of

inertia for all the lines passing through any given point O.

255. It will here be convenient to refer the given mass M to

a rectangular system of co-ordinates with the origin at the point

O. Let x, y, z be the co-ordinates of any particle m of the
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mass
;
and let us denote by A, B, C the moments of inertia of

M for the axes of x
y y, z\ by A\ B\ O those for the planes yzr

zx, xy\\>yD)
E

y
F the products of inertia (Art. 240) for the

co-ordinate planes ;
i.e. let us put :

B'= 2mjP, E=^mzx, (6)

C= 2m (x*+y2
), C= ^mz*, F= ^mxy.

256. These nine quantities are not independent of each other.

We have evidently

A=B'+ C', B=

hence, solving for A', B\ C',

The moment of inertia for the origin O is

). (7)

257. The moment of inertia 7 for any line through O can be

expressed by means of the six quantities A, B, C, D, E, F\ and

the moment of inertia /' for any plane through O can be

expressed by means of A', B\ C, D, E, F.

Let TT (Fig. 31) be any plane passing through O ;
/its normal

;

a, j3, 7 the direction cosines of /; and, as before (Art. 245), p,

q, r the distances of any point (x,y, s)

of the given mass from TT, /, and O,

respectively. Then, projecting the

closed polygon formed by r, x, y, z

on the line /, we have

Fig. 31.

hence, squaring, multiplying by

m, and summing over the whole

mass, we find

or, with the notations (6),

r=A 'a
2+ '/3

2+ CV 4- 2 D/3y+ 2 Eja+ 2 Fa/3. (8)
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Thus the moment of inertia for any plane through the origin is

expressed as a homogeneous quadratic function of the direction

cosines of the normal of the plane.

258. The moment of inertia f=2mq2 for the line / can now
be found from equation (i), Art. 245, by substituting for

and 2;/z/
2 their values from (7) and (8) :

or, snce + / +7= i,

hence, finally, applying the relations of Art. 256,

(9)

The moment of inertia for any line through the origin is,

therefore, also a homogeneous quadratic function of the~direction

cosines of the line.

259. These results suggest a geometrical interpretation. Im-

agine an arbitrary length OP=p laid off from the origin O on

the line / whose direction cosines are a, ft, 7 ;
the co-ordinates

of the extremity P of this length will be x= pa, y= p/3, z= py.

Now, if equation (9) be multiplied by p
2

,
it assumes the form

which represents a quadratic surface provided that p be so

selected for the different lines through O as to make p
2! con-

stant, say/3
2/=A;2 Hence, if on every line 1 through the origin

a length OP=
/o
= /<:/VT be laid off, i.e. a length inversely pro-

portional to the square root of the moment of inertia I for this

line 1, the points P will lie on the quadric surface
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The constant /c
2
may be selected arbitrarily ;

to preserve the

homogeneity of the equation it will be convenient to put it into

the form /c
2= J/e4

,
where e is still arbitrary.

260. As moments of inertia are essentially positive quantities,

the radii vectores of the surface

(10)

are all real, and the surface is an ellipsoid. It is called the

ellipsoid of inertia, or the momental ellipsoid, of the point O.

This point O is the centre
;
the axes of the ellipsoid are called

the principal axes at the point O
;
and the moments of inertia

for these axes are called the principal moments of inertia at the

point O. Among these there will evidently be the greatest and

least of all the moments of the point O, the greatest moment

corresponding to the shortest, the least to the longest axis of

the ellipsoid.

It may be observed that, owing to the relations of Art. 256,

which show that the sum of any two of the quantities A, B, C
is always greater than the third, not every ellipsoid can be

regarded as the momental ellipsoid of some mass. An ellipsoid

can be a momental ellipsoid only when a triangle can be con-

structed of its semi-axes.

261. If the axes of the ellipsoid (10) be taken as axes of

co-ordinates, the equation assumes the form

where J
lt
7
2 ,
7
3
are the principal moments at the point O.

By Art. 259 we have ?= K*/f=MJ'I
;
hence I=M*/f?. If,

therefore, equation (11) be divided by/:)
2

, the following simple

expression is obtained for finding the moment of inertia, /, for

a line whose direction cosines referred to the principal axes

are
, /3, 7,

"-

(12)
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262. To make use of this form for /, the principal axes at the point

O, i.e. the axes of the momental ellipsoid (10), must be known. The
determination of the axes of an ellipsoid whose equation referred to the

centre is given is a well-known problem of analytic geometry. It can

be solved by considering that the semi-axes are those radii vectores of

the surface that are normal to it. The direction cosines of the normal

of any surface F(x, y, z) = o are proportional to the partial derivatives

dF/dx, dF/dy, dF/dz. If, therefore, the radius vector p is a semi-

axis, its direction-cosines a, ft, y must be proportional to the partial

derivatives of (10) ;
i.e. we must have

Cz

or dividing the numerators by p,

Aa-F(3Ey =
- Fa + Bft

- Dy __
- Ea - Dft + Cy

a (3 y

Denoting the common value of these fractions by /, we have

al= Aa Fft
-

Ey, ftl= - Fa + Bft
- Dy, y/= - Ea - Dft + Cy ;

multiplying these equations by a, ft, y, and adding, we find

/= Aa2 +B^ + Cy
2 - 2 Dfty 2 Eya 2 Faft^ .

which, compared with (9), shows that / is the moment of inertia for

the axis (a, ft, y) . To obtain it in function of A, B, C, D, E, F, we

write the preceding three equations in the form

(S-A)a + Fft+ Ey=o,

>y
= o, (13)

whence, eliminating a, ft, y, we find / determined by the cubic equation

I-A, F, E
F, I-B, D = o. (14)

E, D, I- C

The roots of this cubic are the three principal moments /i, /2,
/3 of the

point O. The direction-cosines of the principal axes are then found by

substituting successively Il9 72,
73 in (13) and solving for a, ft, y.

263. The geometrical representation of the moments of

inertia for all lines passing through a point by means of the
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radii vectores of the momental ellipsoid at the point, gives at

once a number of propositions about these moments. It is

only necessary to interpret properly the geometrical properties

of the ellipsoid. Thus, it is known that the sum of the squares

of the reciprocals of any three rectangular semi-diameters of an

ellipsoid is constant. It follows that the sum of the three

moments of inertia for any three rectangular lines passing

through the same point has a constant value.

In general, the three principal moments of inertia fv 7
2 ,
7
3

at a point O are different. If, however, two of them are equal,

say /
2
= /

3 ,
the momental ellipsoid becomes an ellipsoid of

revolution about the third, f
lt

as axis
;
and it follows that the

moments of inertia for all lines through O lying in the plane

of the two equal axes are equal.

If 1^
=

1^
= 1^ the ellipsoid becomes a sphere, and the mo-

ments of inertia are the same for all lines passing through O.

264. If the equation of the momental ellipsoid at a point O
be of the form Ax*+ B}P+Cz* 2Dyz= J/e4

;
i.e. if the two con-

ditions

E =^mzx= o, F= ^mxy o

be fulfilled, the axis of x coincides with one of the three axes

of the ellipsoid, the surface being symmetrical with respect to

the ^-plane. Hence, if the conditions E= o, F= o are satisfied,

the axis of K is a principal axis at the origin. The converse is

evidently also true
;

i.e. if a line is a principal axis at one of

its points, then, taking this point as origin and the line as axis

of x
t
the conditions ^m^= o, ^mxy= o must be satisfied.

It is easy to see that if a line be a principal axis at one of its

points, say O, it wjll in general not be a principal axis at any
other one of its points. For, taking the line as axis of x and

as origin, we have ^mzx=ot ^mxy= o. If now for a point
1 on this line at the distance a from O the line is likewise

a principal axis, the conditions
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must be fulfilled. These reduce to

and show that the line must pass through the centroid. And
as for a centroidal line these conditions are satisfied indepen-

dently of the value of a, it appears that a centroidal principal

axis is principal axis at every one of its points. Hence a line

cannot be principal axis at more than one of its points unless it

pass through the centroid ; in the latter case it is principal axis

at every one of its points.

265. All those lines passing through a given point O for

which the moments of inertia have the same value 7 can be

shown to form a cone of the second order whose principal

diameters coincide with the axes of the momental ellipsoid

at O. This cone is called an equimomental cone. Its equation

is obtained by regarding 7 as constant in equation (12) and

introducing rectangular co-ordinates. Multiplying (12) by
;=

i, we find

and multiplying by p
2
, we obtain the equation of the equi-

momental cone in the form

266. A slightly different form of the equations (n), (12), (15)

is often more convenient
;

it is obtained by introducing the

three principal radii of inertia q^ q^ qz defined by the relations

The equation (11) of the momental ellipsoid at the point O then

assumes the form

The expression of the radius of inertia q for any line (a, 0, 7)

through O becomes

PART III 10
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Dividing (n
f

) by the square of the radius vector, /a

2
, and com-

paring with (12'), we find

e
2

e
2

?=->/>=-> (16)

as is otherwise apparent from the fundamental property of the

momental ellipsoid (Art. 259).

The equation of the sphere of radius q described about O as

centre, ^2+j2+^2=^2
, together with (ii

f

), represents the curve

of intersection of the ellipsoid with the sphere. Through this

sphero-conic passes the equimomental cone, all of whose lines

have the moment of inertia I=Mq\ Hence, the equation of

this cone can be written in the form

267. If we assume I
I > 7

2 > 7
3,
and hence q\>q^> q& q must

be < e
2/^ and >e2

/^1
. As long as q is less than the middle

semi-axis e
2
/^2 of the ellipsoid, the axis of the cone coincides

with the axis of x, but when q>^/q^ the axis of z is the axis

of the cone. For = e2/^2 the cone degenerates into the pair

of planes (q\qf)x'
L

(q^qf]z^=Q. These are the planes of

the central circular (or cyclic) sections of the ellipsoid ; they
divide the ellipsoid into four wedges, of which one pair contains

all the equimomental cones whose axes coincide with the great-

est axis of the ellipsoid, while the other pair contains all those

whose axes lie along the least axis of the ellipsoid.

268. There is another ellipsoid closely connected with the

theory of principal axes
;

it is obtained from the momental

ellipsoid by the process of reciprocation.

About any point O (Fig. 32) taken as centre let us describe

a sphere of radius e, and construct for every point P its

polar plane TT with regard to the sphere. If P describe

any surface, the plane TT will envelop another surface-.which is
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called the polar reciprocal of the former surface with regard

to the sphere.

Let Q be the intersection of OP with

TT, and put OP= p, OQ= q\ then it

appears from the figure that

pq= <?. (16)

269, It is easy to see that the polar

reciprocal of the momental ellipsoid

(n') with respect to the sphere of

radius e is the ellipsoid

oH o i o
== * \*7/

Fig. 32.

To prove this it is only necessary to show that the relation (16)

is fulfilled for p as radius vector of (i i'), and q as perpendicular

to the tangent plane of (17). Now this tangent plane has the

equation

hence we have for the direction cosines , ft, y, and for the

length q, of the perpendicular to the tangent plane

These relations give qla=(x/q^)qy

whence

For the radius vector p of (ii
f

)
whose direction cosines

, y8, 7
are the same as those of q we have by (ii

f

)
:

Hence
/
o
2
^
2=e4

;
and this is what we wished to prove.
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270. The surface (17) has variously been called the ellipsoid

of gyration, the ellipsoid of inertia, the reciprocal ellipsoid. We
shall adopt the last name. The semi-axes of this ellipsoid are

equal to the principal radii of inertia at the point O. The

directions of its axes coincide with those of the momental

ellipsoid ;
but the greatest axis of the former coincides with

the least of the latter, and vice versa.

By comparing the equations (12') and (18) it will be seen that

q is the radius of inertia of the line (, /?, 7) on which it lies.

Thus, while the radius vector OP= p of the momental ellipsoid is

inversely proportional to the radius of inertia, i.e.
/o
= e

2
/q, the

reciprocal ellipsoidgives the radius of inertia <\for a line 1 as the

segment cut off on this line by the perpendicular tangent plane.

271. We are now prepared to determine the moment of

inertia for any line in space. Let us construct at the centroid

G of the given mass or body both the momental ellipsoid and

its polar reciprocal. The former is usually called the central

ellipsoid of the body ;
the latter we may call the fundamental

ellipsoid of the body. As soon as this fundamental ellipsoid

^+^+i=i
q? <?<? 3*

is known, the moment of inertia of the body for any line what-

ever can readily be found. For, by Art. 270, the radius of

inertia q for any line / passing through, the centroid is equal

to the segment OQ cut off on the line / by the perpendicu-

lar tangent plane of the fundamental ellipsoid; and for any
line / not passing through the centroid the square of the

radius of inertia can be determined by first finding the square

of the radius of inertia for the parallel centroidal line / and

then, by Art. 250, adding to it the square of the distance d
of the centroid from the line /.

272. In the problem of determining the ellipsoids of inertia

for a given body at any point, considerations of symmetry are
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of great assistance, similarly as in the problem of finding the

centroid (compare Part II., Art. 47).

Suppose a given mass to have a plane of symmetry ;
then

taking this plane as the jj/.s-plane, and a perpendicular to it as

the axis of x, there must be, for every particle of mass m, whose

co-ordinates are x, y, 2, another particle of equal mass m, whose

co-ordinates are x, y, z. It follows that the two products of

inertia ^mzx and ^mxy both vanish, whatever the position

of the other two co-ordinate planes. Hence any perpendicular

to the plane of symmetry is a principal axis at its point of in-

tersection with this plane.

If the mass have two planes of symmetry at right angles to

each other, then taking one as ^-plane, the other as 2-^-plane,

and hence their intersection as axis of x, it is evident that all

three products of inertia vanish,

wherever the origin be taken on the intersection of the two

planes. Hence, for any point on this intersection, the principal

axes are the line of intersection of the two planes of symmetry,
and the two perpendiculars to it, drawn in each plane.

If there be three planes of symmetry, their point of inter-

section is the centroid, and their lines of intersection are the

principal axes at the centroid.

273. Exercises.

Determine the principal axes and radii at the centroid, the central

and fundamental ellipsoids, and show how to find the moment of inertia

for any line, in the following Exercises (i), (2), (3).

( i ) Rectangular parallelepiped, the edges being 2 a, zb, zc. Find

also the moments of inertia for the edges and diagonals, and specialize

for the cube.

(2) Ellipsoid of semi-axes a, b, c. Determine also the radius of

inertia for a parallel / to the shortest axis passing through the extremity

of the longest axis.

(3) Right circular cone of height h and radius of base a. Find

first the principal moments at the vertex ; then transfer to the centroid.
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(4) Determine the momental ellipsoid and the principal axes at a

vertex of a cube whose edge is a.

(5) Determine the radius of inertia of a thin wire bent into a circle,

for a line through the centre inclined at an angle a to the plane of the

circle.

(6) A peg-top is composed of a cone of height H and radius a, and

a hemispherical cap of the same radius. The point, to a distance h

from the vertex of the cone, is made of a material three times as heavy
as the rest. Find the moment of inertia for the axis of rotation

;

specialize for h = a \ H.

(7) Show that the principal axes at any point A, situated on one of

the principal axes of a body, are parallel to the centroidal principal axes,

and find their moments of inertia.

(8) For a given body of mass M find the points at which the mo-

mental ellipsoid reduces to a sphere.

(9) Determine a homogeneous ellipsoid having the same mass as a

given body, and such that its moment of inertia for every line shall be

the same as that of the given body.

3. DISTRIBUTION OF PRINCIPAL AXES IN SPACE.

274. It has been shown in the preceding articles how the principal

axes can be determined at any particular point. The distribution of

the principal axes throughout space and their position at the different

points is brought out very graphically by means of the theory of con-

focal quadrics. It can be shown that the directions of the principal

axes at any point are those of the principal diameters of the tangent

cone drawn from this point as vertex to the fundamental ellipsoid ; or,

what amounts to the same thing, they are the directions of the normals

of the three quadric surfaces passing through the point and confocal

to the fundamental ellipsoid.

In order to explain and prove these propositions it will be necessary

to give a short sketch of the theory of confocal conies and quadrics.

275. Two conic sections are said to be confocal when they have the

same foci. The directions of the axes of all conies having the same

two points S, S' as foci must evidently coincide, and the equation of

such conies can be written in the form
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where X is an arbitrary parameter. For, whatever value may be assigned

in this equation to A, the distance of the centre O from either focus will

always be V 2
4- X (

2
-+- X) = Vfl2 &

;
it is therefore constant.

276. The individual curves of the whole system of confocal conies

represented by (19) are obtained by giving to X any particular value

between oo and -f oo
;

thus we may speak of the conic X of the

system.

For X = o we have the so-called fundamental conic x2

/a
2 + y~/t>*

= i
;

this is an ellipse. To fix the ideas let us assume a~>b. For all values

of X > 2
,

i.e. as long as 32 < X < oo, the conies (19) are ellipses,

beginning with the rectilinear segment SS' (which may be regarded as

a degenerated ellipse X = ft whose minor axis is o), expanding gradu-

.ally, passing through the fundamental ellipse X = o, and finally verging

into a circle of infinite radius for X = oo.

It is thus geometrically evident that through every point in the plane

will pass one, and only one, of these ellipses.

277. Let us next consider what the equation (19) represents when X
is algebraically less than bz

. The values of X that are < a2

give

imaginary curves, and are of no importance for our purpose. But as

long as a2 < X < /5
2
,
the curves are hyperbolas. The curve X = ft

may now be regarded as a degenerated hyperbola collapsed into the

two rays issuing in opposite directions from S and S' along the line SS'.

The degenerated ellipse together with this degenerated hyperbola thus

represents the whole axis of x.

As X decreases, the hyperbola expands, and finally, for X = a2
, verges

into the axis of yt
which may be regarded as another degenerated

hyperbola.

The system of confocal hyperbolas is thus seen to cover likewise the

whole plane so that one, and only one, hyperbola of the system passes

through every point of the plane.

278. The fact that every point of the plane has one ellipse and one

hyperbola of the confocal system (19) passing through it allows us to

regard the two values of the parameter X that determine these two

curves as co-ordinates of the point ; they are called elliptic co-ordinates.

If x, y be the rectangular Cartesian co-ordinates of the point, its

elliptic co-ordinates X1? X2 are found as the roots of the equation (19)

which is quadratic in X. Conversely, to transform from elliptic to
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Cartesian co-ordinates, that is, to express x and y in terms of Xj and X2r

we have only to solve for x and y the two equations

279. The two confocal conies that pass through the same point P
intersect at right angles. For the tangent to the ellipse at P bisects the

exterior angle at P in the triangle SPS', while the tangent to the hyper-

bola bisects the interior angle at the same point ;
in other words, the

tangent to one curve is normal to the other, and vice versa. The elliptic

system of co-ordinates is, therefore, an orthogonal system ; the infinitesi-

mal elements d\l d\2 into which the two series of confocal conies (19)

divide the plane are rectangular, though curvilinear.

280. These considerations are easily extended to space of three

dimensions.

An ellipsoid

-i+^+
Z

^ = i, where a >*><:,
a o c

has six real foci in its principal planes ; two, .Si, .Si', in the dry-plane, on>

the axis of x, at a distance (2Si = V02
ft
2 from the centre O

; two,

S2, S2 ',
in the jyz-plane, on the axis ofy, at the distance OS2

= V^2
t
3 '

from the centre ;
and two, S3,

S3) in the &#-plane, on the axis of x, at

the distance OS3 vV c
2 from the centre. It should be noticed

that, since b > c, we have OS3 > 0.Si ; i.e. Slf SJ lie between S3) S3
' on

the axis of x.

The same holds for hyperboloids.

281. Two quadric surfaces are said to be confocal when their princi-

pal sections are confocal conies. Now this will be the case for two-

quadric surfaces whose semi-axes are alf b^ c^ and az, 2, cz, if the

directions of their axes coincide and if

Writing these conditions in the form

,,2 -2 Z2 Z2 -2 -2 cav \a1 a\
= &2 Pi ^2 C\ )

SaY A
>

we find 2
2 = a} + X, 2

2 = <V + X, r2
2 = c? + X. Hence the equation

x2
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where X is a variable parameter, represents a system of confocal quad-
ric surfaces.

282. As long as X is algebraically greater than <r
2
,
the equation

(20) represents ellipsoids. For A = c
2 the surface collapses into the

interior area of the ellipse in the jry-plane whose vertices are the foci

S2, -5V and SB, Ss- For as A approaches the limit t
2
,
the three semi-

axes of (20) approach the limits V#2
^
2
, V^2

t
2
, o, respectively.

This limiting ellipse is called the focal ellipse. Its foci are the points

Sb.Si
1

,
since a2 - c~ - (b

2
cz)= a2 - P.

When X is algebraically < c
2
,
but > a2

, the equation (20) repre-

sents hyperboloids ;
for values of X < a2

it is not satisfied by any real

points. As long as b2< A< c
2
,
the surfaces are hyperboloids of one

sheet. The limiting surface X = c
2 now represents the exterior area

of the focal ellipse in the ary-plane. The limiting hyperboloid of one

sheet for X = b2
is the area in the sac-plane bounded by the hyperbola

whose vertices are .Si, /, and whose foci are S3 ,
S8 '. This is called the

focal hyperbola.

Finally, when a2 < A < b2
,
the surfaces are hyperboloids of two

sheets, the limiting hyperboloid X = a2

collapsing into the jz-plane.

283. It appears from these geometrical considerations, that there

are passing through every point of space three surfaces confocal to the

fundamental ellipsoid x
2

/a
2

+y*/b
2 + z

2

/c
2 = i and to each other, viz. :

an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two sheets.

This can also be shown analytically, as there is no difficulty in proving
that the equation (20) has three real roots, say \lt A2, A3 ,

for every set

of real values of x, y, z
)
and that these roots are confined between such

limits as to give the three surfaces just mentioned.

The quantities A1; A2,
A3 can therefore be taken as co-ordinates of the

point (x, y, z) ;
and these elliptic co-ordinates of the point are, geomet-

rically, the parameters of the three quadric surfaces passing through
the point and confocal to the fundamental ellipsoid ; while, analytically,

they are the three roots of the cubic (20). To express x, y, z in terms

of the elliptic co-ordinates, it is only necessary to solve for x, y, z the

three equations obtained by substituting in (20) successively Xlf A2, A$

for A.

284. The geometrical meaning of the parameter A will appear by

considering two parallel tangent planes TTO and TTA (on the same side of
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the origin), the former (TTO) tangent to the fundamental ellipsoid

^y02_|_yy2_|_2y2_. I? the latter (TTA) tangent to any confocal surface

A or oi/(a* + A) +//( 2 + X) + z
2

/(^ + A) = i. The perpendiculars

^ , ^x, let fall from the origin O on these tangent planes TTO,
TTA ,

are given

by the relations (the proof being the same as in Art. 269).

qf = <*<* + Pp + cV, (21)

q*= (a
2 + AK + O*

2 + A)/?
2 + (^ + A)y

2
, (22)

where a, /?, y are the direction-cosines of the common normal of the

planes 7r
,

TTA . Subtracting (21) from (22), we find, since a2

-f/8
2

-|-y
2=

i,

?A
2

-?o
2 = A; (23)

i.e. the parameter A of any one of the confocal surfaces (20) is equal to

the difference of the squares of the perpendiculars letfallfrom the common

centre on any tangentplane to the surface A, and on the parallel tangent

plane to thefundamental ellipsoid \ = o.

285. Let us now apply these results to the question of the distri-

bution of the principal axes throughout space.

We take the centroid G of the given body as origin, and select as

fundamental ellipsoid of our confocal system the polar reciprocal of the

central ellipsoid, i.e. the ellipsoid (17) formed for the centroid, for

which the name " fundamental ellipsoid of the body" was introduced in

Art. 271. Its equation is

if q-b q%, <?3 are the principal radii of inertia of the body.
The radius of inertia qQ for any centroidal line 4 can be constructed

(Art. 2 70) by laying a tangent plane to this ellipsoid perpendicular to

the line /
;

if this line meets the tangent plane in Q (Fig. 33), then

^ = GQo- Analytically, if a, ft, y be the direction-cosines of /
, q is

given by formula (21) or (12').

286. To find the radius of inertia q for a line /, parallel to /
,
and

passing through any point P, we lay through P a plane TTA, perpendicular
to /, and a parallel plane TTO, tangent to the fundamental ellipsoid; let

<2A , (?o be the intersections of these planes with the centroidal line / .

Then, putting <2o=?o, GQ^=qx , GP=r, PQ^ = d, we have, by
Art. 250,
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The figure gives the relation dz = r1

q, which, in combination with

(23), reduces the expression for the radius of inertia for the line / to

the simple form :

?
2 =^-A. (24)

287. The value of r2 X, and hence the value of q, remains the same

for the perpendiculars to all planes through P, tangent to the same

quadric surface X : these per-

pendiculars form, therefore,

an equimomental cone at P.

By varying A. we thus obtain

all the equimomental cones

at P. The principal diame-

ters of all these cones coin-

cide in direction, since they

coincide with the directions

of the principal axes of the

momental ellipsoid at P (see

Art. 265); but they also coin-

cide with the principal diam-

eters of the cones enveloped Fig. 33.

t>y the tangent planes TTA . It

thus appears that the principal axes at the point P coincide in direction

with the principal diameters of the tangent cone from P as vertex to

the fundamental ellipsoid x
2

/q? +f/q? + #/$$ = i.

288. Instead of the fundamental ellipsoid, we might have used any

quadric surface A. confocal to it. In particular, we may select the con-

focal surfaces A*, A.2 ,
X3 that pass through P. For each of these the cone

of the tangent planes collapses into a plane, viz. the tangent plane to

the surface at P, while the cone of the perpendiculars reduces to a single

line, viz. the normal to the surface at P. Thus we find that the prin-

cipal axes at any point P coincide in direction with the normals to the

three quadric surfaces, confocal to the fundamental ellipsoid and passing

through P.

For the magnitudes of the principal radii qx , qy, qz at P, we evidently

have

289. Exercise.

(i) The principal radii q, q^ q% of a body being given, find the

equation of the momental ellipsoid at any point P, referred to axes
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through this point P parallel to the principal axes of the body ; deter-

mine the directions of the principal axes at P, and show that these

directions coincide with the normals of the three surfaces passing

through P and confocal to the fundamental ellipsoid of the body.

290. A brief account of the theory of moments of inertia will be found

in B. WILLIAMSON, Integral Calculus, 6th ed., London, Longmans, 1891,

pp. 291-312. The subject is discussed very fully in E. J. ROUTH, j

Dynamics of a system of rigid bodies, Part I., 5th ed., London, Mac-
j

millan, 1891, pp. 1-49; and in B. PRICE, Analytical mechanics, Vol. II.,.

2d ed., Oxford, Clarendon Press, 1889, Chapter IV. The student will 1

also consult with advantage W. SCHELL, Theorie der Bewegung und der 1

Krdfte, Vol. I., 2d ed., Leipzig, Teubner, 1879, PP- 100-143, an<i 1

A. CAYLEY, Report on the progress of the solution of certain special

problems of dynamics, in the Report of the 32d meeting of the British

Association, for 1862, London, Murray, 1863, pp. 223-229.
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III. Rigid Body ^vith a Fixed Axis.

291. A rigid body with a fixed axis has but one degree of

freedom. Its motion is fully determined by the motion of any
one of its points (not situated on the axis), and any such point

must move in a circle about the axis. Any particular position

of the body is, therefore, determined by a single variable, or

co-ordinate, such as the angle of rotation. Just as the equi-

librium of such a body depends on a single condition (see Part

IL, Art. 227), so its motion is given by a single equation.

292. The equation of motion can be derived directly from

the proposition of angular momentum (Art. 224). Let r be

the distance of any particle m of the body from the fixed axis,

to the angular velocity at the time t
;
then mwr is the momentum

of the particle, and mwr1 its moment, or the angular momentum

of the particle, about the axis. At any given instant t, CD has

the same value for all particles. Hence, the angular momentum
of the body is w^mr*= o>7, where I=^mr^ is the moment of

inertia of the body for the fixed axis.

Now, by Art. 224, the rate at which the angular momentum
of the body about the axis changes with the time is equal to

the sum of the moments of all the external forces about the

.same axis. Denoting this resulting moment by H, and con-

sidering that the moment of inertia for the fixed axis is inde-

pendent of the time, we have the equation of motion

dv_H. (}
dt~ T

i.e. the angular acceleration about the fixed axis is equal to the

moment of all the externalforces about this axis, divided by the

moment of inertia of the bodyfor the same axis.

293. The same result can of course be obtained from any
one of the equations (6) or (7), Art. 224. Thus, taking the

fixed line as axis of 2, the third of the equation (7), viz.

^
at
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must be used. Now, for rotation of angular velocity co about

the axis of #, we have ^= (*>y, y= wx. Hence

^m (xy yx) w^m (x* -fj/
2
)
= w'Snir*= &>/.

The equation assumes, therefore, the form (i).

294. The reactions of the fixed axis do not enter into the

composition of the resulting moment H. As they intersect the

axis, their moments about this axis are zero.

The student should notice the close analogy between equa-

tion ^ and the equation for the rectilinear motion of a particle,

dv_F
j. >

at m
where v is the velocity and F the resultant of all the forces act-

ing on the particle.

The expression for the kinetic energy of a body rotating about

a fixed axis is

T=S%mv*=2%mrfr*= %fco*, (2)

and has also a form similar to that for the kinetic energy of a

particle m moving with velocity v in a straight line, viz.

295. Let us denote the angle of rotation by 0, so that

<*>= d6/dt, d<ti/dt=d
2
d/dt\ If the resulting moment be con-

stant or a given function of 6, say //=/(#), the equation of

motion

can be integrated once, and gives

where &> is the angular velocity corresponding to the angle .

This is the equation of kinetic energy. It might have been

derived directly, according to Art. 234, by expressing that the

increase of the kinetic energy equals the work of the forces.
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The kinetic energy is given by (2). The work of a force F in

a plane perpendicular to the axis, at the distance/ from the axis,

is F-pdO for an infinitesimal rotation of angle dO
; hence, the sum

of the elementary works of all the forces=

296. While thus the motion of a rigid body about a fixed axis

is given by a single equation, the other equations of motion of a

rigid body are required to determine the reactions of thefixed axis

(comp. Part II., Art. 227).

The axis will be fixed if any two of its points A, B are

fixed. The reaction of the fixed point A can be resolved into

three components A x,
A

y ,
A g,

that of B
into Bx,

B
y, Bx . By introducing these re-

actions the body becomes free
;
and the

system composed of these reactions, of the

external forces, and of the reversed effec-

tive forces must be in equilibrium. We
take again the axis of rotation as axis of z

(Fig. 34) so that the ^-co-ordinates of the

particles are constant, and hence z=o,
i?= o; and we put OA=a, OB=b. Then

the six equations of motion are (see Art.

223 (4) and Art. 224 (6)) :

Fig. 34.

^m (xy yx) = *Z(x YyX).

297. It remains to introduce into these equations the values

for x, y. As the motion is a pure rotation, we have (see Part I.,

Art. 245) x= <oy, y= a*x\ hence, x= u>y aPx, y=zwxaPy.

Summing over the whole body, we find

^mx= &)%my <tF%mx= Mwy May^x,

'= MwxMw*y,
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-where x,y are the co-ordinates of the centroid ;
and

z= Ew + Deo2
,

x= a&myz aPSmzx= Diet Ea>2
,

y yx) = a&mx2
aP^mxy+ a&my*+ w^mxy= Ceo,

where C=2m(x2+y2
),
D= *Zmyz, E=^mzx are the notations

introduced in Art. 255.

With these values the equations of motion assume the form :

-Myu= ?.X+A X+Bx,

-zY)-aA y
-

-xZ] +aAx

298. The last equation is identical with equation (i).

The components of the reactions along the axis of rotation

occur only in the third equation, and can therefore not be found

separately. The longitudinal pressure on the axis is

= -A.-S.=*Z.

The remaining four equations are sufficient to determine A
t

A
y,
Bx,

B
y

.

The total stress to which the axis is subject, instead ol: being

resolved into two forces, at A and B, can be reduced for the

origin O to a force and a couple (see Fig. 34). The equations

(4) give for the components of the force

-A X-BX
=2X+

(5)

This force consists of the resultant of the external forces,

R=

and two forces in the ^/-plane which form the reversed effective

force of the centroid
;
for Mxw2 and MyuP give as resultant the
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centrifugal force J/a)2V^2
-f-J/

2= J/a)V, directed from the axis

towards the projection of the centroid on the ;rj/-plane, while

MywyMxw form the tangential resultant Ma*r, perpendicular to

the plane through axis and centroid.

The couple has a component in the ^-plane, and one in the

^-plane, viz. :

aA
y+ bBy

=
(6)-aA n

- bBx
= ^(zX-xZ} + Eco*+ Da,

while the component in the ^/-plane is zero. The resultant

couple lies, therefore, in a plane passing through the axis of

rotation.

299. In the particular case when no forces X, Y, Z are acting

on the body, the last of the equations (4), or equation (i), shows

that the angular velocity e remains constant. The stress on the

axis of rotation will, however, exist
;
and the axis will in general

tend to change both its direction, owing to the couple (6), and

its position, owing to the force (5).

If the axis be not fixed as a whole, but only one of its points,

the origin, be fixed, the force (5) is taken up by the fixed point,

while the couple (6) will change the direction of the axis. Now
this couple vanishes if, in addition to the absence of external

forces, the conditions

D=^myz=o, E=^mzx=o (7)

are fulfilled. In this case the body would continue to rotate

about the axis of z even if this axis were not fixed, provided that

the origin is a fixed point. A line having this property is called

a permanent axis of rotation.

As the meaning of the conditions (7) is that the axis of z is a

principal axis of inertia at the origin (see Art. 264), we have the

proposition that if a rigid body with a fixedpoint, not acted upon

any forces, begin to rotate about one of the principal axes at

this point, it will continue to rotate uniformly about the same

axis. In other words, the principal axes at any point are

PART III II
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always, and are the only, permanent axes of rotation. This can

be regarded as the dynamical definition of principal axes.

300. It appears from the equations (5) that the position of

the axis of rotation will remain the same if, in addition to the

absence of external forces, the conditions

^=0, j/
= o (8)

be fulfilled
;
for in this case the components of the force (5) al

vanish. If, moreover,, the axis of rotation be a principal axis

the rotation will continue to take place about the same line even

when the body has no fixed point.

The conditions (8) mean that the centroid lies on the axis ol

z\ and it is known (Art. 264) that a centroidal principal axis is

a principal axis at every one of its points. The axis of z must

therefore be a principal axis of the body, i.e. a principal axis at

the centroid. We have, therefore, the proposition : If a fret

rigid body, not acted upon by any forces, begin to rotate about one

of its centroidalprincipal axes, it will contimte to rotate uniformly

about the same line.

301. A rigid body with a fixed horizontal axis is called a

compound pendulum if the only external force acting is the

weight of the body.

The plane through axis and centroid will make, with the

vertical plane (downwards) through the axis, an angle 0, which

we may take as angle of rotation, so that

a)= d6/dt (Fig. 35). The weights of the par-

ticles, being all parallel and proportional tc

their masses, have a single resultant Mg pass

ing through the centroid G. Hence, if h be

the perpendicular distance OG of the centroic

from the axis, the moment of the externa

forces is H= Mgh sin 6
;
and if the radius oi

inertia of the body for the centroidal axis

parallel to the axis of rotation be q, the moment

of inertia for the latter axis is I=

Ma
Fig. 35.
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With these values the equation of motion (i) assumes the

simple form

h .

(9)

As shown in Art. 175, the equation of the simple pendulum
of length / is

d*0 g Q

|.

^ =
-5 sm *

The two equations differ only in the constant factor of sin 0,

and it appears that the motion of a compound pendulum is the

same as that of a simple pendulum whose length is

302. The problem of the compound pendulum has thus been

reduced to that of the simple pendulum. The length / is called

the length of the equivalent simple pendulum. The foot O

(Fig. 35) of the perpendicular let fall from the centroid on the

axis is called the centre of suspension. If on the line OG a

length OC=-l be laid off, the point C is called the centre of

oscillation. It appears, from (10), that G lies between O and C.

The relation (10) can be written in the form

h(l-K)=q\ or OG- 6Y7=const.

As this relation is not altered by interchanging O and C, it

follows that the centres of oscillation and suspension are inter-

changeable ; i.e. the period of a compound pendulum remains

the same if it be made to swing about a parallel axis through
the centre of oscillation.

303. Exercises,

(1) A pendulum, formed of a cylindrical rod of radius a and length

Z, swings about a diameter of one of the bases. Find the time of a

small oscillation.

(2) A cube, whose edge is a, swings as a pendulum about an edge.

Find the length of the equivalent simple pendulum.
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(3) A circular disc of radius r revolves uniformly about its axis,

making 100 revolutions per minute. What is its kinetic energy?

(4) A fly-wheel of radius r, in which a mass, equal to that of the disc

in Ex. (3), is distributed uniformly along the rim, has the same angular

velocity as the disc. Neglecting the mass of the nave and spokes,

determine its kinetic energy, and compare it with that of the disc.

(5) A fly-wheel of 12 ft. diameter, whose rim weighs 12 tons, makes

50 revolutions per minute. Find its kinetic energy in foot-pounds.

(6) A fly-wheel of radius r and mass m is making ^V revolutions per
minute when the steam is shut off. If the radius of the shaft be r\ and

the coefficient of friction
/u,,

find after how many revolutions the wheel

will come to rest owing to the axle friction.

(7) A fly-wheel of 10 ft. diameter, weighing 5 tons, is making 40
revolutions when thrown out of gear. In what time does it come to

rest if the diameter of the axle is 6 in. and the coefficient of friction

fj.
= 0.05 ?

(8) A uniform straight rod of length /is hinged at one end so as to

turn freely in a vertical plane. If it be dropped from a horizontal

position, with what angular velocity does it pass through the vertical

position? (Equate the kinetic energy to the work of gravity.)

304. Impulses. Suppose a rigid body with a fixed axis is

acted upon, when at rest, by a single impulse F, in a plane

perpendicular to the axis and at the distance / from the axis.

It is required to determine the initial motion of the body just

after impact.

As the impulsive reactions of the fixed axis have no moment

about this axis, the initial angular momentum of the body about

the fixed axis must be equal to the moment of the impulse F
about the same axis

;
i.e. to Fp. If co is the initial angular

velocity, the momentum of a particle m at the distance r from

the axis is mwr\ hence the angular momentum of the body
= 2ma>r*=co2mr2 =ci)f, where / is the moment of inertia of the

body for the fixed axis. Hence we have

<*=- (ii)
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305. Let the impulse F be produced by the inelastic impact

of a particle of mass m moving with a velocity u. It would not

be correct to put F=mu in (11); as the particle after impact

continues to move with the body with a certain velocity v, it

does not actually give up to the body its whole momentum,
but only the amount Fm(u v), provided that u and v have

the same direction. With this assumption, which evidently

means that the particle meets the body atTsome point of the

plane passing through the axis and perpendicular to u, the

velocity after impact is v= a>p. With the value (11) of o> this

gives

whence F=muf/(f+mp2
), and finally, by (n),

(12)

As mp^ is the moment of inertia of the particle for the fixed

axis, this formula shows that we may substitute in (11) the

whole momentum mu for F if we increase the moment of

inertia of the body by that of the particle ;
in other words,

that the particle may be regarded as giving up its whole

momentum if it be taken into account that after impact it

forms part of the body.

306. It is easy to see how the considerations of the last two

articles can be generalized. When any number of impulses

act in various directions on a rigid body with a fixed axis, the

initial angular velocity will be determined by

=f > (13)

where H is the sum of the moments of all the impulses about

the fixed axis.
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307. To determine the impulsive stress produced on the axis

by a single impulse F, let us write out the general equations

of the impulsive motion.

Take the fixed axis as the axis of z and the ^jtr-plane through the

centroid G (Fig. 36), and let ^, o, o be the co-ordinates of G, and

z

B*

*B

z
\
tnose f tne point o;

v

1/7
X

Fig. 36.

application P of the impulse

The components of F may be

denoted by X, Y, Z ;
those o

the reactions of the axis by A x

A
y,
A z,

Bx,
B

y,
Bg, similarly as

in Art. 296.
~

As the initial motion after

impact is a rotation about the

axis of z, we have x= c

y= <ax, 2=0, so that the mo
mentum of a particle of mass

m has the components may, max, o. Reducing these mo
menta to the origin (9, we find a resultant momentum whose

components are w^my=o, <&mx=Mwx, o; and a resulting

couple whose vector has the components co^mzx=L
(t)^myz=D(D, a)^m(x^-\-y

2
')
= C(i) )

where C, D, E have the

same meaning as in Art. 297.

The six equations of motion just after the impulse are there

fore, if the body was originally at rest :

(14)

Ca=x
1 Y-y1

X.

308. The last of these equations is nothing but the equation

(i i). The components A,, B, along the axis cannot be deter-

Y+Ay+Byt

z^ Y aA
y

bB
y,
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mined separately; the other components of the reactions can

be found from the first, second, fourth, and fifth equations.

The impulsive stress to which the axis is subjected by the

impulse, or the so-called percussion of the axis, instead of being

represented by two impulses A, B as above, can also be regarded
as composed of an impulse whose components are

-A X-BX
= X, -A y

-B
y
= Y-

,

and an impulsive couple whose vector has the components

o.

The last component being zero, the resulting couple lies in a

plane passing through the axis of 2.

If there were any number of impulses acting on the body

simultaneously, the effect on the axis could be determined in

the same way, except that the quantities X, Y, Z, y^Zz^Yt

z^Xx^Z, must be replaced by the corresponding sums.

309. It follows from the preceding article that the conditions

under -which a single impulse acting on a rigid body with a

fixed axis will produce no stress on the axis are

Z=o, -z
lMx+E=o, D=o. (15)

If these conditions are fulfilled, the resulting motion will be the

same even when the axis is free.

The first and third equations show that the impulse must be

perpendicular to the plane passing through axis and centroid.

The meaning of the fourth and fifth conditions becomes appar-

ent if the .rj/-plane be taken so as to pass through the point of

application P of the impulse. The new origin O' is the foot of

the perpendicular let fall from P on the fixed axis. To trans-

form the conditions (15) to the new system it is only necessary
to substitute z+zl

for z\ the first three conditions are not

affected, and the last two become

z-^Mx+ 3mzx+z^mx= o, *%myz+z^my= o,
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or, since *$mx=Mx, 2w/= o,

E' = o, Z?'=o,

where E f

,
D' are the products of inertia at <9'.

It thus appears that the axis of z must be a principal axis at

the foot of the perpendicular let fall on this axis from the point

of application of the impulse.

310. It should be noticed that a line taken at random in a

body is not necessarily a principal axis at any one of its points.

But if a line is a principal axis at a point O', then it is always

possible to determine an impulse that will produce no stress on

this line so that the body will begin to rotate about it as axis

even though it be not fixed. As shown in the last article, the

impulse must be =Mxay y
and must be directed at right angles to

the plane through axis and centroid. The point where it meets

this plane is called the centre of percussion. Its distance x from

the axis is found from the equation of motion, viz. the last of

the equations (14) which, owing to the conditions (15), reduces to

If q
1 be the radius of inertia of the body for a parallel centroidal

axis, we have C=M(q'*+x*) ;
hence

x^x+VJ-. (16)

Hence, if a given line / be principal axis for one of its points O
1

',

there exists a centre of percussion ; it lies on the intersection

of the plane (/, G) with the plane through O f

perpendicular to /,

at the distance xv given by (16), from the line /. An impulse

Mxo) through the centre of percussion at right angles to the

plane through axis and centroid, while producing no percussion

on the axis, sets the body rotating with angular velocity a> if it

was originally at rest
;
on the other hand, if the body wz

originally in rotation about the axis, such an impulse can brinj

the body to rest without affecting the axis.



3I4-] BODY WITH FIXED POINT.

IV. Rigid Body with a Fixed Point.

311. A rigid body with a fixed point has three degrees of

freedom. Any one of its points, with the exception of the

fixed point O, is constrained to the surface of a sphere and has

therefore two degrees of freedom
;
and the body itself can turn

about the line joining this point to O. The motion consists, at

any instant, of an infinitesimal rotation about an axis passing

through O (see Part L, Arts. 32-35). Both the angular velocity

and the direction of the instantaneous axis vary in the course

of time.

312. We begin with the study of the instantaneous motion of

the body, which may be regarded as due to the action of a sys-

tem of impulses on the body at rest. This will lead to the solu-

tion of the converse problem, viz. to determine the initial motion

produced by a given system of impulses.

I. INITIAL MOTION DUE TO IMPULSES.

313. The body rotates at the time /with angular velocity o>

about the instantaneous axis / which passes through the fixed

point O. It is required to determine a system of impulses that

would produce this motion if acting on the body at rest.

For O as origin, let R be the resultant and H the result-

ing couple of these impulses. If the impulsive reaction A of

the fixed point O be combined with them, the body can be

regarded as free, and its instantaneous motion is determined by
the equations (19) and (20), Art. 238. It is only necessary, in

the equations (19), to add to the components RXJ Ry ,
Rz of R

those of A, while the right-hand members of (20) are not

affected by A, since its moment is zero for every axis through O.

314. It remains to form the sums in the left-hand members

of (19) and (20) for our case
;

i.e. to reduce the system of

momenta mx, my, mz of the particles to its resultant and result-

ant couple for a fixed rectangular system of axes through O.
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The resultant momentum has evidently the components

where Jr, y, ~z are the components of the velocity of the cen-

troid at the time /, and Mis the mass of the body. Hence the

equations (19) become

(i)

These equations serve to determine the impulsive pressure

A = ^A^+Af+A? on the fixed point O in magnitude and

direction.

315. To form the moment ^m(yzzy) of the momenta of

the particles, i.e. the angular momentum of the body, about the

axis of xy we resolve the angular velocity co into its components

ox,, ft)y,
cot along the axes and observe that the components of the

linear velocity of any point (x, y, z] arising from the rotation

.are (Part I., Art. 293) :

Substituting these values, we find

2m (y'z zy) =w^my2
(o^mxy a^mzx+

or with the notation of Art. 255,

2m (y'z zy)=Awx Fw>
y Ewt .

Forming in the same way the angular momenta about the axes

of y and z> we find the equations (20) in the form

A cox Fco
y E(DZ

=Hn

- Fa>x+ B<*
y
- D< z

=H
y , (2)

cox Dwy -f Ccoz
=Hz .

316. It appears, then, that the rotation of angular velocity

co about the axis 1 can be regarded as due to an impulsive couple

H whose components are given by (2). Conversely, the effect of
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a couple H on a rigid body at rest, with a fixed point, is to

impart to the body a rotation CD whose magnitude and axis can

be found by determining cox) co
y)

coz from (2).

Any system of impulses acting on the body can be reduced, for

the fixed point (9 as origin, to a resultant R and a couple H ;
the

effect of the couple has just been stated
;
that of R consists merely

in producing a pressure on the fixed point. To find this pressure,

determine e>= Vo)x2-f u-\-w? from (2); the velocity of the cen-

troid can then be found and its components substituted in (i),

Art. 314.

317. The axis / of the rotation produced by a given couple

H is not, in general, perpendicular to the plane of the couple.

Imagine the angular velocity co to be represented by its rotor,

i.e. by a length co laid off from O on the axis /, and the couple H
by its vector, i.e. by a length //'laid off from O on the perpen-

dicular to the plane of the couple. The relation between the

rotor co and the vectorH producing it will best appear if we take

the axis of rotation / as axis of z. We then have x coy,

y= cox, z=o, and the momenta mcoy, mcox, o of the particles

reduce to a resultant and couple at O as follows. The resultant

momentum has the components :

county= Myco, co^mx= Mxco, O
;

it is equal to McoV^2
4-y2= Mar, where r is the distance of the

centroid from the axis /, and is perpendicular to the plane

through axis and centroid. The couple has the components

oftmzx= Eco, u&myz= Deo, co^m (x*+y2
)
= Ceo.

The equations (19) and (20) of Art. 238 reduce therefore to

Mxco =R
y+Ay,

o =Rz+A g, (3)

-Eco =HX ,
-Dco=H

y,
Cco=Hx. (4)

These equations can also be derived directly from the equations

(i) and (2) above, since in the present case we have x= coy,
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318. The equations (4) show that, in general, the couple

H has three components (see Fig. 37); Hx and H
y
can be

combined into a partial re-

sultant 7/L,,=

H

in the

and the total resultant

+ D*+ z makes with

the axis / an angle $ such that

As C

H

Fig. 37.

is always positive, this angle is

always acute
;

it vanishes only

if D=o and E=o, i.e. if the

instantaneous axis / is a principal

axis at O.

This result that H and o> coincide only along a principal axis

is very important. It shows that the vector H of the couple that

produces a rotation w has the direction of tJie axis of rotation 1

only, and always, if this axis 1 is a principal axis at the fixed

point O ;
in this case we have H = Io>, where I is the moment of

inertia for \.

Conversely, a couple H acting on a rigid body with a fixed

point O produces rotation about an instantaneous axis /, which

is, in general, inclined to the vector of the couple at an acute

angle <. This angle reduces to zero, i.e. the instantaneous axis

/ coincides in direction with the vector of the couple, only,

and always, when the plane of the couple is perpendicular to a

principal axis at O.

319. Let us now take the principal axes at O as axes of

co-ordinates. Let wj, a>2 ,
&>
3 be the components of o> along

these axes; //i % ^3 those of H'

;
and let 7P 72,

7
3
be the

principal moments,

Then we must have

qz the principal radii of inertia at O.

These relations follow also from (2), since A=fv B IV C=I3 ,

Z>= o, E=o, F=o; they determine the relation between Zfand

o) in the general case.
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320. The relation between the vectors H and o> is very

clearly brought out by making use of the ellipsoids of inertia

at the point O.

The reciprocal ellipsoid at O has the equation (see Arts.

269, 270)

Let P (Fig. 38) be the point where it is met by the vector

H\ x, y, z the co-ordinates, p the radius vector of P\ hence

Fig. 38.

*/P* y/P> 2/P

H^= Hy/p, H

whence

Fig. 39.

direction-cosines of H, so that H^ l

= Hz/p. The equations (5) give, therefore,

-.... =tL.iL m= fL.JL
Mp

'

q\*
^

Mp
'

q' 3 Mp
*

qf

(6)

where q is the perpendicular let fall from O on the tangent

plane at P (see Art. 269). The direction-cosines of CD,

are the same as those of this perpendicular (ib.).

It thus appears that the plane through O at right angles to the

instantaneous axis 1 is conjugate to the direction of the vector H
with respect to the reciprocal ellipsoid at O.
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321. Again, the equation of the momental ellipsoid at O is

(see Art. 266)

the semi-axes being a= e*/gl ,
b

Let the instantaneous axis / meet this ellipsoid at a point P f

(Fig. 39) whose co-ordinates and radius vector are x', y\ s', p',

so that x'/p', y'/p', z'/p' are the direction-cosines of / and

to^wx'/p', Q>
2
=

a>y//3
f

,
(0

3
=

(oz'/p'. Substituting these values

and introducing the semi-axes a, b, c
t we find form (5)

. .

whence
~ir

+ + s
=
-7-

'

?

where ^' is the perpendicular let fall from O on the tangent

plane at P\ The direction-cosines of H,

agree with those of q\

It follows that the plane of the couple H is conjugate to the

direction of the instantaneous axis 1 with respect to the momental

ellipsoid at O.

322. The kinetic energy of a rigid body with a fixed point O
has the expression

where ^mr2 is the moment of inertia for the instantaneous

axis /.

Now, by Art. 270, the radius of inertia for the line / is equal

to the distance of O from the perpendicular tangent plane to

the reciprocal ellipsoid, i.e. to q (Fig. 38). Hence

(8)
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As, according to the fundamental property of the momental

ellipsoid (see (16), Art. 266), we have q e
2
/p\ this becomes

/ .' (9)

On the other hand, by Art. 258, if
, & 7 be the direction-

cosines of /, z>. of the rotor a), we have

hence

T=$(A<*+Bto*+ Ceo*- 2 Da>
y
coz-2 Ecozcox-2 Fcoxcoy). (10)

Differentiating with respect to cox ,
co

y,
coz, and comparing with

the equations (2), we find

-= A m-F,- .=#
da)x

H,, (ii)
y

If these relations be multiplied by a)x,
co

y,
wz and added, they

give

2 Tco^co.+co^H^+tf^+ ff^. (12)

Substituting in the last expression aco= cox, /3co
= co

y, yco
= coz,

or

\H=HX , pH=Hy, vH=Hz,
where X, jj,,

v are the direction-

cosines of the vector H, we find

We have, therefore, for the projection of H on the instan-

taneous axis /,

2 TH cos
(f>
= f?x ct. H- ffyj3+ H.fl= = Mcp'to j

CO

for the projection of o> on the direction of the vector H,

2T 9 o)
2

z
-

H H
and finally, T= J //o> cos

</>. (14)
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323. If the principal axes at O be taken as axes of co-ordi-

nates, we have to write <ov <o2 ,
o>3

for <ax, <o
y ,

taz ;
H

lt
/7

2 ,
7/3 for

.HM Hy,
Hn \

7
lf
7
2,
7
3 for A

t B, C, while Z>= o, =o, F=o.

Thus the relations (5) give //
1
= 7

1
eo
1 , 7/2= 7

2o>2 ,
7/3= 73a>3 , whence

SL + SL-
( l6)

and 7^= ^(T^wj 4- 72 o)
2 + 7

3o>3 ) (17)

(18)

For the angle < between 7f and o>, we have

COS ffl= -*-"* ^
~. = ^ *

rr
7/0) 7/o>

2. CONTINUOUS MOTION UNDER ANY FORCES.

324. We now proceed to consider the motion of a rigid body
with a fixed point when acted upon by any forces.

For the fixed point O as origin, the external forces reduce to

a resultant R and a couple H. While the force R is taken up

by the fixed point, the effect of the couple consists in changing

the angular velocity o> about the instantaneous axis /, which

exists at the time /, to the angular velocity o>4-</o) about

another instantaneous axis /', which determines the motion of

the body at the time t+ dt. The point O being fixed, both

axes, / and /, pass through it
;
and by Part I., Art. 303, the

acceleration of any point (x, y, z) of the body has the following

components parallel to rectangular axes fixed in the body and

moving with it :

x= a>x(mxx 4-

y= &y (coxx+c0yy+ co^)(o
2
y+ Q)gxQ)xz, (l)

'z= c0g ((t)x
x 4- Q)

yy -h o)^) o)
2^ 4- coxy ufx.
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Multiplying these expressions by the mass m of the particle

situated at the point (x, y, z), we have the components of the

effective force of this particle.

325. To form the equations of motion (4), Art. 223, and (6),

Art. 224, for our case, we must reduce the system of the

effective forces to its resultant and resulting couple ; or, what

amounts to the same thing, we must form the sums occurring

in the left-hand members of these equations.

The summation of the components of the effective forces

throughout the body gives, as usual,

^mx MX, ^my My, ^mz=Mz,

where x, y, ~z are the components of the acceleration of the

centroid. The resultant is therefore equal to the effective force

of the centroid, the whole mass M of the body being regarded

as concentrated at this point.

To make the body free, the reaction A of the fixed point

should be introduced. Denoting its components by A x,
A

y,
A gt

those of the resultant R of the external forces by Rx, Ry, Rg, the

equations (4), Art. 223, assume the form

(2)

The left-hand members evidently vanish if the origin be the

centroid. The equations (2) can serve to determine the press-

ure A on the fixed point in magnitude and direction.

326. To form the moment ^m(y'z-zy) of the effective forces

about the axis of x, we have to multiply the second of the

expressions (i) by z, and subtract the product from the third

multiplied by y ;
then multiply the difference by m, and sum

throughout the body.

Performing this operation first on the last two terms which

were shown in Part L, Art. 302, to be due to the angular

acceleration, we find

PART III 12
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with the notation of Art. 255. As the axes are fixed in the

body (Art. 324), the moments and products of inertia are con-

stant
;
and it appears from the equations (2), Art. 315, that this

expression is the derivative with respect to the time of the

component Hx of the impulsive couple H that produces the

rotation &> at the time /.

Next operating in the same way on the remaining terms of

the component accelerations (i), viz. those arising from the

centripetal acceleration, we find

w^myz)

+ co^mz2
) +o^myz

F(Dx+ Cco
y+ Da>,}

- co
y(Ecox+ D<o,+ Ba>.)

E(i)x D(d
y+ Cd)g) Q)g (

F(0X+ B(D
y

by (2), Art. 315.

The moments of the effective forces about the other two axes

can now be obtained by cyclical permutation of the subscripts

x, y, z. Thus we find that the equations (6), Art. 224, assume

the form

(3)

The reaction A of the fixed point does not enter into these

equations ;
as it intersects every one of the axes, its moments

about these axes are zero.

327. Geometrically the equations (3) mean that the vector #of the

resultant couple of the external forces has two components one of which

resolves itself along the axes into dHx/dt, dHJdt, dHJdt, while the
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wrffyother has the components ^
y
Hz (az f

y ,
uzHx u>xHz,

Each of these components can be inter-

preted geometrically, if we imagine the vector

H of the impulsive couple drawn from O as

origin, so that the co-ordinates of its extremity

are Hx ,
H

y ,
Hz (Fig. 40). The time-deriva-

tives of these co-ordinates are the velocities

of the extremity of the vector H with respect

to the axes of co-ordinates which, it will be

remembered, are fixed in the body. Hence

that component of H which is due to the

angular acceleration is the relative velocity of

the extremity ofH with respect to the body.

The other component, which is due to the centripetal acceleration,

evidently represents the linear velocity, arising from the angular velocity

<o, of the point of the body that coincides at the time / with the same

extremity of the vector H.

It follows that the vector H represents in magnitude and direction

the absolute velocity of the extremity of the vector H'

in other words,

H is geometrically equal to the geometrical increment ofH divided by
the element of time. This was to be expected, and might indeed be

taken as starting-point for deriving the equations (3).

Fig. 49.

328. Let us now select as axes of co-ordinates the principal

axes at O. According to our usual notation, we have then to

exchange the subscripts x, y, z for i, 2, 3. Moreover, as shown

in Art. 319, H^I^ ff
2
= I

2co2 ,
/7

3
= 7

3a>3 , where 7
lf
7
2,
73 are

the principal moments of inertia at O. Thus the equations (3)

reduce to the following :

a)
l+ (78

-

(4)

73d>3+ (72
-
7^ o)

1
c 2
=

7/g.

These are Euler's equations of motion. Their solution gives

o)
2 ,

o>3 as functions of the time t.
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It may be noted that the equations (4) are often written with the

following notation :

at

C)rp=M, (4')

where A, B, C are the principal moments of inertia
; /, g, r the com-

ponents of the angular velocity o> along the principal axes
; Z, M, N

the components of the resulting couple H of the external forces along

the same axes.

329. Owing to the importance of the equations (4) it may be well

to indicate another way of deriving them.

The rotation of angular velocity to about the instantaneous axis / dur-

ing the first element of time can be regarded as due to an impulsive

couple H (Art. 316). Even if there were no external forces acting, the

body would not in general continue to turn with the same velocity about

the same axis. For if this were the case, any particle m of the body,

at the distance r from the axis /would be moving uniformly in a circle

of radius r, with a velocity <ar, and such uniform circular motion

requires for its maintenance the action of a centripetal force.

Let us therefore introduce at every particle m two equal and opposite

forces (Fig. 41), the centripetal force ma?r directed towards the axis /,

and the centrifugal force m<*?r\ the intro-

duction of these forces does not change the

state of motion of the body.

330. If the system of centripetal forces

nn*?r alone were introduced and no other

forces were acting, the body would continue

to turn with the same angular velocity <u about

the same axis /. The effect of the system of

centrifugal forces ma?r represents therefore

the change that would take place in the

Fig. 41. motion if no external forces were acting.

Let us reduce these centrifugal forces to

their resultant and resulting couple, the fixed point O being taken as

origin and the axis / as axis of z. In doing this we can make use of
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the reduction of momenta in Art. 317. For, evidently, the vector

representing the centrifugal force muPr can be obtained by multiply-

ing the momentum mwr of the particle m by cu and turning it through

an angle of 90 in a sense opposite to that of the rotation <o. The

reduction to O gives therefore a resultant force M^r, in the ary-plane,

directed toward the projection of the centroid on this plane. The

resulting couple has its 2-component equal to zero since all the centrifu-

gal forces intersect the axis of z; the vector of the resulting couple

lies therefore in the xy- plane, has the magnitude &Hxyy
and is perpen-

dicular to the H
xy

in Fig. 37.

331. The resultant vanishes only if ?= o, i.e. if the centroid lies on

the axis /; the couple vanishes if uH
xy
= <o

2VZ>2
-f-

2 = o, i.e. if the

axis / is a principal axis at O. It follows that the centrifugal forces

reduce to zero only if the axis of rotation is a principal centroidal axis ;

in this case the direction of the axis remains unchanged.

By Art. 318 (see Fig. 37) we have H
xy
= 7/sin <

;
hence the result-

ing couple of the centrifugal forces = w/f sin <, that is, its magnitude is

represented by the area of the parallelogram formed by the vectors H
and a) ; the vector of this couple as shown above is perpendicular to

this area. Projecting this parallelogram on any three rectangular co-ordi-

nate planes, with O as origin, we find, since <ax,
<a
y,

<az are the co-ordi-

nates of the extremity of the rotor <o, HM Hy ,
H

y
those of the extremity

of the vectorH drawn from O :

<aeHy
w
y
HMt wxHg <ozHxt o>

y
Hx <ajfr

This agrees with the results found in Arts. 326, 327.

332. If the principal axes at O be taken as axes of co-ordinates, the

components of the resultant couple of the centrifugal forces become

or, since ^i = /!(!>!, H^I^^ .//3=/3eo3,

(72 73) (020)3, (73 /i) ftfcCDi, (/i

As the planes of these couples are perpendicular to the principal axes at

O, they produce during the element of time infinitesimal rotations about

these axes, whose angles are, by Art. 318 :

/I
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These are the only increments of talt w2, o>3 if there are no forces

acting on the body ; hence, in this case we must have

- = (72 /3 - =
(/! 72) W^.

If, however, there are external forces acting on the body, whose result-

ing couple for O is f, with the components fflt H2, 7/3 along the prin-

cipal axes at O, these couples produce infinitesimal rotations

and the equations of motion are therefore

7xwi = (72

^2 = (73

=
(7i 72) <Diu2 4- 7/3 .

These are Euler's equations (4).

333. Euler's equations determine the angular velocities of

the body about the principal axes which move with the body.

The position of these moving
axes with respect to a system
of fixed rectangular axes

through the fixed point O
can be expressed by means

of three angles.

Let X, Y, Z (Fig. 42) be

the intersections of the fixed

axes, with a sphere of radius

one, described about O as

centre; X\ Y\ Z' those of

the moving principal axes
;

N the intersection with the

same sphere of the so-called line of nodes, i.e. the line in which

the planes JT<9Fand X'OY' intersect. Then the angles

usually called Euler's angles, may serve to determine the relation

between the two systems of axes.
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334. The sense in which these angles are counted is best remembered

by imagining the two trihedral angles XYZ and X' Y'Z' originally coin-

cident. Now turn the system X'Y'Z' about the axis OZ in the posi-

tive sense (counter-clockwise) until the axis OX' coincides with the

assumed positive sense of the nodal line ON, i.e. the final intersection

of the planes XOY and X'OY'
;
the amount of this rotation gives the

angle {j/.
Next turn the trihedral X fY'Z' about this line of nodes in

the positive sense until the plane X'OY' falls into its final position;

this gives the angle 6, as the angle between the planes XOY and

.X'OY' at N, or as the angle ZOZ' between their normals. Finally a

rotation of X'Y'Z 1 about the axis OZ', which has reached its final posi-

tion, in the positive sense until OX 1 comes into its final position,

determines the angle <f>.

335. The angular velocity, represented by its rotor CD, whose

components along OX', OY', OZ' are co^ o>2,
&>3 ,

can be resolved

.along ON, OZ 1

, OZ into three components which are evidently

0, c/>, ^, respectively. The sum of the projections of these three

components on the line OX' should give o>
l ;

hence

cw
1
= cos

(j>
-f <j)

cos JTT 4-^ cos ZX'.

.Similarly o>2
= cos ($+ JTT) -j- </>

cos
|-TT+ ^r cos Z Y',

0)3
= COS

|-
7T H- (j)

COS O+ ^r COS 0.

The spherical triangle ZNX' gives (by the fundamental formula

of spherical trigonometry, cos c= cos a cos b+ sin a sin b cosy)

cos ZX '= sin cos (J TT 0)
= sin

<f>
sin

;
and the triangle ZNY'

gives cos^F^sin^-hl-TrJcosd-Tr 0)
= cos

<p>
sin 0. Hence,

iinally

a)
l
= cos + ir sn sn ,

o>2
= 6 sin < +^ cos < sin 0, ($)

G>3
= +^ COS0.

.Solving these equations for 0, <^, njr,
we find

= ft)
1
cos < w2

sin
<^>,

</>= ojj sin
<^>

cot o)2 cos <^>
cot 0+3 (6)

^= o)
1
sin

(^
esc 0-fft>2 cos

</>
esc 0.
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336. The relation between two rectangular systems of axes

with the same origin can also be expressed by means of the

9 cosines of the angles between the axes.

Let O be the common origin, x> y, z the co-ordinates of any

point with respect to the fixed system, x\ y\ 2' its co-ordinates

in the moving system ;
then we have, evidently,

(7)

where the coefficients of x\ y\ z' are the cosines of the angles

between the axes, which can best be remembered in the form
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of a line, viz. the axis Ox 1

;
the last of the equations (10)

expresses the perpendicularity of the axes 'Ox and Oy ;
and

similarly for the others.

337. The relations between the 9 angles, whose cosines are

given in (8), and Euler's 3 angles 6, <, -\/r
are readily found from

Fig. 42, by applying the formula cos c= cos a cos b+ sin a sin bcosy

successively to the triangles

XNX', XNY', XNZ',

YNX', YNY', YNZ\

ZNX', ZNY 1

,
ZNZ1

.

In this way the following relations are found :

^= cos
i|r

cos
</>

sin ty sin
<f>

cos 6,

&!
= sin

i/r
cos $+ cos ^r sin < cos 0,

c
l
= sin

<f)
sin 6,

a%= cos
'v/r

sin
<^>

sin -^ cos (/>
cos ^, a3

= sin
A/r

sin 6,

. c^
= cos $ sin ^, ^3

= cos 6.

338. It is evident, geometrically, from (8), that we must have

(11)

For just as the first of the equations (7) expresses that the sum

of the projections on Ox of the co-ordinates x',y' t
z 1

is equal to

x, so the first of the equations (11) expresses the equality of x'

to the sum of the projections of x, y, z on the axis Ox'\ and

similarly for the other equations.

Now the solution of the equations (7) for x f

t y', z 1 should

give the values (11). Putting

a
\

ai <*s

*i ^2 ^3 =A,
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solving the equations (7) for x\ and comparing the coefficients

of x, y, z to those in (i i), we find the following relations :

(12)

339. Squaring and adding these equations and applying the

relations (9), we find after reduction

A2 =i.

The two values of A, + 1 and i, correspond to the two

different relations between the two rectangular systems, which

might perhaps be called like and unlike. Two systems are alike

if their positive axes can be brought to coincidence
; tjjey are

unlike if this cannot be done. It is, of course, always possible

to bring the axes Ox' and Oy' to coincidence witli Ox and Oy,

respectively. But after having accomplished this, the axis Oz f

may fall along Oz, in which case the systems are alike, or it

may fall into the opposite direction, when the systems are

unlike.

Now if Ox1

coincides with Ox, Oy
1 with Oy, we have a^

= i ,

^2= i
;
and c%= + i for like systems, cz

= i for unlike systems ,

as the other 6 cosines are zero, we find that A= -f i corresponds

to like systems, and A= i to unlike systems. For it is evi-

dent that the motion of one system with respect to the other

cannot affect A so as to change from one of these values to the

other.

In mechanics the systems should generally be such that they
can be brought to coincidence. We assume therefore A= i.

With this value of A, the equations (12) and the similar rela-

tions obtained by cyclical permutation of the subscripts give

the identities :
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340. If the axes Ox\ Oy\ Oz 1 be the principal axes at O, the

equations (7) exhibit the relations between the system of the

principal axes and a fixed system with the same origin O, by
means of the cosines of the 9 angles between the axes of the

two systems. They can be used to derive Euler's equations by

.a purely analytical process from the equations (7), Art. 224.

To accomplish this we must form the quantities ^m(yzzy},

^m(zxxz}, ^m(xyyx\ We need therefore x, j/, z. Now,

differentiating the expressions (7) with respect to the time and

remembering that x'
t /, z' are independent of the time, we

find:

Czz'. (14)

To introduce the angular velocities to
lt

co2,
o>3 about the prin-

cipal axes at O, we observe that the direction-cosines a
lt
a2> as

of the axis Ox can be regarded as the co-ordinates of the point

situated on Ox at unit distance from O. The components of

the linear velocity of this point, arising from w^ o>
2, 3 are

a
l
= <2

2a>3
#
3
o>2 ,

tf2
= a&>\

~~
^1^3* ^3

= ^1^27 a
<iF>\ J

and similarly we have for points at unit distance from O on Oy
.and Oz\

It should be noticed that the motion of a body with a fixed

point is fully determined by the motion of two of its points, not

in the same line with the fixed point ;
the third point is here

only introduced to preserve the symmetry.

Substituting these values in (14), we find

X=

y= ( 2a>3
-

3o>2X + (^ft?!
-
^wj})/ + (bi&i b#>^z\ (15)
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341. From (7) and (15) we now find, if we remember that

2my'z'= o, 2mz'x'= o, ^m^y= ot since Ox\ Oy\ Oz' are prin-

cipal axes at O :

2m (y'z zy)=- (b2cz
2

or applying the relations (13) and denoting the principal

moments of inertia at O by Iv 7
2,
/
3 :

*%m(yz zy)
= a

l
l
l
co

1 -f- #2
/
2ft>2+ #3/30)3.

The quantities *2m(zxX!5) and ^m(xyyx) are obtained from

this result by cyclical permutation of the letters a, b> c.

Thus the equations (7), Art. 224, assume the form :

-rX^i/i!+ a2
f
2a)2+ tf3/3&>3) =H*

at

^' ( ! 6>

--
(^x/!! 4-^22 +^B^B) =H*

at

The geometrical meaning of these equations is apparent.

/i!, /2w2,
/3w3 are the components along the principal axes of

the vector of the resultant impulsive couple H (Art. 319);

hence <2
1
/
1
ft)

1 -f-^2/2ft)2 4-^3/3a)3 is the component of H along the

fixed axis Ox\ the equations (16) express therefore the fact

that H is geometrically equal to the geometrical derivative

of H with respect to the time (see Art. 327) ; they can be

written in the form

dHz TT

342. If the equations (16) be multiplied first by a
l9

dv c
lt

then by a
2 , 2,

<:2 , finally by ^3 , 3 ,
c3,

and each time added, the

right-hand members of the resulting equations will evidently

represent ffv
'Hv ffs, respectively, i.e. the components of H
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along the principal axes at O, The left-hand members reduce

also to a simple form if the differentiations indicated in (16)

be performed, the values for a
lt

#2, a
3 , b^ be substituted

from Art. 340, and the relations (9) be applied. As final result

we find Euler's equations :

3+ (72
-

/!

3. CONTINUOUS MOTION WITHOUT FORCES.

343. In the particular case when no external forces are act-

ing, the motion of a rigid body about a fixed point admits of an

elegant geometrical interpretation which is due to Poinsot.

As there are no external forces, we have //"=o, and hence

H is constant in magnitude and direction. The plane of this

couple is the invariable plane (see Arts. 230-232) which always

exists in the case of no forces ;
its vector indicates the invari-

able direction.

The body can be replaced by its momental ellipsoid at O, and

the invariable plane can be imagined placed so as to be tan-

gent to this ellipsoid at a point P'

(Fig. 43). The radius vector OP'= p'

of the point of contact P' is the diam-

eter of the ellipsoid conjugate to the

invariable plane ;
hence the line OP'

is the instantaneous axis / of the

rotation (Art. 321).

Now it can be shown that the per-

pendicular distance q
1

of O from the

invariable plane (this plane being

always placed so as to be tangent

to the varying positions of the mo-

mental ellipsoid) is constant
;

it then

follows at once that the motion of the body consists in the rolling

of its momental ellipsoid over the invariable plane.
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344. To prove that q' is constant, it should be remembered

that, by (7), Art. 321, we have

'-"?;&
\

As H is constant in our case, it only remains to show that o>/p
r

is constant. This follows from the expression (9) for the kinetic

energy Tt given in Art. 322, viz.

for, as there are no external forces, no work is done, and the

kinetic energy must remain constant
;
hence co/p' is constant,

and co is directly proportional to p
f

.

Moreover, the expression (14) of Art. 322 shows that

a) cos
<f)

~= const., (i)H
that is, the projection a> cos< of the angular velocity co on the

invariable direction remains the same throughout the motion.

345. It has been pointed out in Part I., Art. 35, that the

motion of a rigid body with a fixed point can always be

regarded as produced by the rolling of the cone of the body
axes over the cone of the space axes, these cones having their

common vertex at the fixed point O. The body axes, i.e. the

lines /' of the body that become instantaneous axes of rotation

in the course of the motion, form a cone, invariably connected

with the momental ellipsoid at <9, and intersecting this ellip-

soid in a curve fixed in the body. This curve has been called

by Poinsot the polhode (or path of the instantaneous pole P\

Fig. 43).

The cone of the space axes /, which is fixed in space, inter-

sects the invariable plane in a curve called herpolhode (or creep-

ing path of the pole). During the motion of the body, the

polhode rolls over the herpolhode.
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346. The equations of the polhode are easily obtained by

considering that this curve is the locus of those points of the

ellipsoid whose tangent plane has the constant distance q* from

the centre O. Hence, denoting the semi-axes of the momental

ellipsoid by a, b, c, the equations of the polhode are

2 2 .2 2 2 2

It can, therefore, be regarded as the intersection of the momen-

tal ellipsoid with a coaxial ellipsoid whose semi-axes are a*/q',

Multiplying the second equation by q, and subtracting the

result from the first equation, we find the equation of the cone

of the body axes

This is a cone of the second order, concentric and coaxial with

the momental ellipsoid.

The polhode evidently consists of two equal separate branches,

of which it is sufficient to consider one. Each branch has four

vertices situated in the principal planes of the ellipsoid.

The herpolhode is confined between two concentric circles

whose centre, is the projection of O on the invariable plane. It

is a transcendental curve and is in general not closed.

347. If the momental ellipsoid is an ellipsoid of revolution, the

polhode consists of two circles, and the herpolhode is also a circle
;

as

>' is in this case constant, it follows that <o remains constant.

If we assume in the general case a > b > c, the polhode reduces to two

points whenever q
1 == a or q

l = c. The rotation then takes place about

a principal axis and is permanent. If q'
= b (which does not necessarily

mean that the axis of rotation coincides with the middle axis b\ the

cone of body axes reduces to two planes
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each of which intersects the ellipsoid in an ellipse. These ellipses

divide the surface of the ellipsoid into two pairs of opposite regions, one

about the greatest axis a, the other about the least c.

As long as a > <?' > b, the polhode lies in the former region, and the

cone of body axes has a as its axis. If b > <?' > c, the polhode lies in

the other region, and c is the axis of the cone.

Two polhodes cannot intersect ; for if they did, the tangent plane a

the point of intersection would have two different distances from the

centre, which is impossible.

348. The motion of a body is called stable if after a slight distur

bance the body tends to resume the original motion. In our case

slight disturbance displaces the instantaneous axis from one polhode to

another near by. Hence if the polhode be situated very near to one

of the bounding ellipses, the motion is not stable, because a slight dis

turbance might change the polhode to one in the other region. The

motion is therefore the more stable the more closely the polhode sur

rounds either the greatest or the least axis of the ellipsoid.

If, however, one of the regions between the ellipses be very narrow

which will be the case if two of the axes of the ellipsoid are nearly

equal, a polhode in this region, though close to the vertex, may stil

approach very near to the ellipses so as to make the motion unstable.

349. Integration of Euler's Equations. As H=o, Euler's

equations (4), Art. 328, are

(4
ai

Multiplying by oj, o>2 , a>3 ,
and adding, we find

whence, by (17), Art 323,

This is nothing but the equation of kinetic energy.
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Again, multiplying the equations (4) by T^, /
2a>2,

7
3a>3 ,

and

adding, we find similarly, by (15), Art. 323,

AV+AV+ /
8V=#*= const. (6)

This is the principle of areas or of the invariable plane.

As, moreover,
&)

1

2+ ft)2
2+ ft)3

2= w2
, (7)

we have three equations (5), (6), (7) for determining a^
2

, a>2
2

, a>3
2

.

Their solution gives, after some reductions,

_ _--(A-AXA-A) (A-AXA-A)

^
350. To find the time, multiply the equations (4) by

<w2/A> o)3//3, and add. This gives

r ^1 2 (
/
2
- /

3)(/3- /l)(A- /2)= - M- -
'

In this equation the values (8) should be substituted for
j,

o)
2>

< 3 . For the sake of brevity, let us put

we then find

- a>
2
) (a>

2-
7
2
)

This is an elliptical integral whose discussion is beyond the

scope of the present treatise.

351. It remains to determine the position of the moving

system formed by the principal axes, with respect to a fixed

.system of axes through O, by means of Euler's angles 0, <, ty

(Art. 333). After finding co as a function of t from (9), we

have, by (8), co
lf

a>
2 ,

&>3 as functions of t. Substituting these

PART III 13
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values into the equations (5) or (6), Art. 335, we have a system

of differential equations of the first order whose integration

gives 0, $, T/T
as functions of t.

352. To illustrate the method by a simple example, let us consider

the case of a body whose momental ellipsoid is an ellipsoid of revolution.

Let /! = /2 ; then, putting (/2 /3)//!= - (78 /i)//2 = A, Euler's.

equations (4) become

o, -f=o. (10)
dt dt dt

The last of these equations shows that the component of the angular

velocity about the axis of revolution of the body is constant. The

other two equations give

whence cuj
2 + a>2

2 = const. = <o
2
, (i i

where w denotes the constant angular velocity about the projection o

the instantaneous axis on the equatorial plane of the body. The result

ing angular velocity is, therefore, constant, viz.

to = V o>
2 + <i)3

2
. ( 1 2

353. The inclination of the instantaneous axis to the principal axe

a, b varies, but its inclination to the axis c is constant, viz. = cos~ l

(o)3/a) )

The cone of the body axes is, therefore, a cone of revolution about th(

axis c
y
and the polhode is a circle. The herpolhode is, therefore, like

wise a circle, and the space axes form a cone of revolution (comp. Art

347). As the two cones are always in contact along the instantaneou

axis, this axis lies in the same plane with the vector H and the axis o

revolution of the body.

354. To find the angular velocities wj, o>2 as functions of the time

differentiate the first of the equations (10), and eliminate d^/dt wit!

the aid of the second. This gives

^2<ui i \2 2

-^ + AVa^ = o,

whence o^ = C\ cos Ao>3/ -f C2 sin Aa>3/. (13"

The other component, o>2, can now be found from the first of the equation

(10):

<i>2
= ---^ = Cj sin Aw3/+ C2 cos A<o3/. (14'

Aoo3 dt
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To determine the constants Ci, C.2) the initial values of o^, <o2, say at

the time /= o, should be known. Let e be the angle made at this time

by a> with the principal axis b. Then the initial values of o^, o>2 are

w sine, eo cos e, and the substitution of /= o in (13) and (14) shows

that Cj = w sin e, C2
= w cos e. Hence we have, finally,

coj
= w sin (Awg/

1+ e) ,
o>2
= o> cos (A.<u3/+ e), o>3

= const. (15)

355. To determine the position of the body at any time / with

respect to fixed axes through <9, let us take as axis of z the fixed

direction of H, which is perpendicular to the invariable plane. The
cosines of the angles made by this axis with the principal axes are

found similarly as in Art. 335 (see Fig. 42) :

cos ZX'= sin < sin 0, cos ZY' = cos < sin 0, cosZZ'=cosO.

Hence the components ff1 =71
a>

lf H2 =I2w2, J 3̂ =I3(a3 ofH along the

principal axes are

/id)! =7/sin < sin 0, 72o>2 =ZTcos <f>
sin 0, ^wg =^ffcos 6.

These equations give

cos0=^,
(16)

and, as 7j =/2, tan
</>
= = tan (A<o3/+e),

o>2

by (15) ;
hence

<#>
= X^t+^ (17)

where ^> is the value of < for /= o. Thus it appears that the angle 6 is

constant, while < increases proportionally to the time.

356. To find ^, we may use the third of the equations (5), Art. 335,

viz. o)3
= < + \j/

cos 0. As cos = 1^/11, <j>
A<o3, A = (7j

we find

whence

dt

TT

It appears then that the equatorial plane X'Y1 of the body remains

at a constant inclination to the invariable plane, while the nodal line

ON (Fig. 42) turns uniformly in this invariable plane and a radius of

the body in the equatorial plane turns also uniformly in the equatorial

plane.
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V. Free Rigid Body.

I. INITIAL MOTION DUE TO IMPULSES.

357. Kinematically, the most general motion of a rigid body
consists, at every instant, of a twist, or screw-motion about a

certain line, called the instantaneous axis 1
;
that is, the body

has, for an element of time, an angular velocity o> about / and

at the same time a velocity of translation v along this axis (see

Part I., Arts. 43, 44, 294). During the next element of time

the body will, in general, rotate about a different axis with a

different angular velocity and will have a different linear velocity

along the new axis.

358. It has also been shown in kinematics (Part I., Art. 257)

that the angular velocity & about / can be replaced by an equal

angular velocity about any parallel axis /', in connection with a

certain velocity of translation. For without

changing the state of motion we can give the

body two equal and opposite rotations about

/'
;

i.e. we can introduce along /' (Fig. 44) two

equal and opposite rotors a>, o>
;
and o>

about P combines with o> about / to a rotor

couple, which is equivalent to a velocity of

translation /o>, perpendicular to the plane

(/, /'), p=OO 1

being the distance of the par-

allel axes. The velocity of translation p&
can now be combined with v to a resultant velocity of transla-

tion v 1= V^2+/2
o>
2 inclined to F at an angle ^>

= tan~1
(pco/v).

It thus appears that the instantaneous motion of a free rigid

body can be regarded as a rotation about any line parallel to the

instantaneous axis, in combination with a certain velocity of

translation inclined to this line.

On account of the dynamical properties of the centroid of a

rigid body, it will generally be found convenient to select the
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axis of rotation so as to pass through the centroid
;
we shall

then call it the centroidal instantaneous axis I.

359. Dynamically, the instantaneous motion of a free rigid

body is determined by the momenta of its particles. These

momenta can be reduced, for any point O as origin, to a re-

sultant momentum and a resultant couple, or angular momen-

tum, and these can be regarded as due to a certain system of

impulses. This reduction will at the same time lead to the

solution of the converse problem, viz. to determine the initial

motion produced by a system of impulses acting on a rigid body
at rest, and the change in the instantaneous motion due to such

a system when the body is not at rest.

360. Translation. The velocities u of all points being equal

and parallel in the case of translation, the momenta mu of all

particles are parallel and have (see Arts. 6-8) a single resultant

passing through the centroid G of the body. If the whole

mass M be regarded as concentrated at the centroid, Mu is the

momentum of the centroid. This momentum can be produced

by applying at the centroid a single impulse R=Mu. Hence

to impart to a free rigid body of

mass M a velocity of translation

u, it is sufficient to apply at the

centroid an impulse R= Mu.

361. Rotation. Let us take

the instantaneous axis / as axis

of , and the axis of x so as to

pass through the centroid G
(Fig. 45). The momentum mar H x

of any particle of mass m, at /
the distance r from /, has the

components may, mwx, o; and as

z
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resultant momentum has the components o, Max, o
;

it is

therefore perpendicular to the plane through axis and centroid.

Hence the resultant impulse R at O must be equal in magnitude
and direction to the momentum Mv= Mex of the centroid, due

to the rotation CD about the instantaneous axis 1.

The resultant angular momentum is found just as in Art. 317 ;

it is = o>V'2+ Z?2 -f- J
%2 and has the components Eco along Ox,

Deo along Oy, and Ceo along the instantaneous axis Oz.

It follows that a pure rotation of angular velocity co about

an axis 1 can be imparted to a free rigid body by the combined

action of an impulse R and an impulsive couple H. The im-

pulse R= M(ox is perpendicular to the plane (/, G), and passes

through the foot O of the perpendicular let fall from the

centroid G on the axis; it vanishes only when x= OG= o; i.e.

when the instantaneous axis passes through the centroid. The

remarks of Art. 318 apply to the couple without change.

362. As mentioned above, it is often more convenient to

take the centroid G as origin for the reduction of the impulses.

To reduce the system of impulses R, H, determined in the
j

preceding article, to G as origin and to parallel axes (Fig. 46),

it is only necessary to apply R \

and R at G\ we then have

the resultant impulse R= Mu>x

at G, and the couple formed by

/ R at O, and -R at G. The-*-1 moment of this couple is Rx
= Mo)xz

;
its vector is parallel

,^-->-^--, to the instantaneous axis /, and
* / ' can therefore be added alge-

*/
. braically to Hn ,

while Hx and Hy \

remain unchanged. Thus the
j

components of the resulting couple for the reduction to the
j

centroid are Hx=-E<* y
H

y =-Da>, Hz=(C-M^ 2
)oo=Coo f

where Cf =CMx2
is the moment of inertia about the cen- \
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troidal axis / whose distance from / is x (see Art. 250), while

D and E are the products of inertia for the new co-ordinate

planes through G.

These results can, of course, also be derived directly by
reducing the momenta for G as origin, the centroidal instanta-

neous axis / as axis of z, and the plane through G and the

instantaneous axis / as the ^^-

363. It thus appears that the form of the results for this new

system of co-ordinates is exactly the same as in Art. 354; but

C, D, E refer now to the new co-ordinate axes and planes.

Hence a pure rotation about any instantaneous axis 1, at the

distance x from the centroid G, can be produced by an impulse

R and a couple H, the impulse R being equal to the momentum

Mcox of the centroid) due to the rotation, and passing through G
at right angles to the plane (1, G), while the vector of the couple

H has in general three components H x
= Eo>, H

y
= D&>,

Hz =Co>.

The geometrical relation between the vector H and the rotor

o) can again be illustrated by means of the ellipsoids of inertia,

as in Arts. 320, 321. The developments of these articles apply

without change if the foot O of the perpendicular let fall from

the centroid on the instantaneous axis / be substituted for the

fixed point ; they apply likewise if the centroid G be. substituted

for the fixed point, in which case the momental ellipsoid be-

comes the central, and the reciprocal, the fundamental ellipsoid.

364. The resulting impulse R= Mo*x vanishes only for x=o\
i.e. when the instantaneous axis / passes through the centroid.

In other words, pure rotation about an axis not passing through

the centroid cannot be produced by an impulsive couple alone.

On the other hand, pure rotation about a centroidal axis can

always be regarded as due to an impulsive couple alone
;
and

conversely, the effect of a single impulsive couple on a free rigid

body is to produce pure rotation about a centroidal axis. But it
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should always be remembered (see Art. 318) that the axis of

rotation / is parallel to the vector H of the couple only, and

always, if D=o and E=o; i.e. if the vector// is parallel to

a principal axis at G. Hence pure rotation about a centroidal

principal axis can be produced by a single couple whose plane

is perpendicular to the axis ; and conversely, a couple whose

plane is perpendicular to a centroidal principal axis produces

pure rotation about this axis. The relation between the mo-

ment H of the couple and the angular velocity o> produced is

in this case H=fcD = Ma>g
2

,
where / is the moment, q the

radius of inertia for the principal axis.

365. To find the condition under which the system of im-

pulses producing pure rotation may reduce to a single impulse

/?, we have only to reduce the system of impulses to its central

axis (comp. Part II., Arts. 204-206). For this line which is

parallel to R has the property that if any point on it be taken

as origin of reduction, the couple has its vector parallel to/?

and has its least value //
,
which is equal to the projection on

this line (i.e. on the direction of R) of the vector H for any
reduction. Now, as in our case the components Hx and Hz are

both perpendicular to R (see Fig. 45), it follows that

// = //=-/?.

This vanishes only with the product of inertia D=^myz.
Hence pure rotation about an instantaneous axis 1 can be pro-

duced by a single impulse R = Mo>x only, and always, if 1 is so

situated that the product of inertia D= 2myz vanishes for the

planes through G and 1 and through G perpendicular to 1. In

particular, this is evidently the case whenever \ is a principal

axis at the foot O of the perpendicular let fall on it from the cen-

troid. (Comp. Arts. 309, 310.)

366. It remains to find the position of the central axis, i.e.

of the line of action of the single impulse R capable of pro-
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ducing pure rotation about the instantaneous axis / provided
it satisfies the condition

just mentioned. This can
j

be done, if R and H are T

known for the centroid, by

transferring R to parallel po-

sitions so as to reduce the

components Hn and Hx to

zero. Thus, to destroy

Hz =Cco we have only to

transfer R from G along

the axis of x to a point O 1

(Fig. 47) at a distance
Fig. 47.

'=.^ from G such that xx
l
=

q^J where ~x=OG, and ^ is the

radius of inertia for the centroidal instantaneous axis 7. For

then the couple resulting from the transfer has a vector along
the axis of z equal to Rx^ Ma)xx

l
= M^ Hg .

Next to destroy Hx Ea> = a&mzx, we transfer the point

of application of R parallel to the instantaneous axis / to a point

O
lt

at a distance O 1O
l
=z

l
from O', such that Rz

l
=Hxt

whence z = ^mzx/Mx.
If the point O

1
be taken as origin of reduction, the system

of impulses reduces to R at Ov and the couple // = //.= )&,

whose vector is parallel to R. Thus the central axis, which has

of course the direction of R, and is therefore perpendicular to

the plane (/, G), meets this plane at a point O x
whose co-ordi-

nates are x^ q^/'x^ z
l
= E/mx. It is easy to see that these

results agree with the developments of Arts. 309, 310, the

centre of percussion, if it exists, being situated on the central

axis.

367. Twist or Screw Motion. In the most general case the

motion of a rigid body consists of an angular velocity o> about

the instantaneous axis /and a simultaneous velocity of transla-

tion a along this axis (Art. 357).
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Now, by Art. 360, the velocity of translation, u, can be

regarded as due to a single impulse R'= Mu, passing through
the centroid G and parallel to u, i.e. to

/ (Fig. 48). Again, by Art. 361, the

angular velocity co about / can be re-

garded as due to an impulse R"=Ma>x
^ through G at right angles to the plane

(/, G), in combination with a couple

whose vector H has the components
Hx
= -Eto, Hy

= -Deo, Hz =C<o. The

two impulses R\ R" combine to form

a single resultant impulse,Fig. 48.

R '2 +R "2=

inclined to /at an angle $= tan 1

(a&/u). It should be noticed

that the factor Vw2 +o>2^2 is the velocity v of the centroid due to

the twist, so that the resultant impulse R =M v is equal to the mo-

mentum ofthe centroid. The resultant couple H=o)^/C2

is the same as in the case of pure rotation.

368. The problem of determining the initial motion produced

in a free rigid body at rest by a given system of impulses finds

its geometrical solution in the preceding articles. It should

also be remembered that the motion about the centroid takes

place as if the centroid were fixed so that all the developments

of Arts. 313-323 can be applied by substituting the centroid G
for the fixed point O.

It will generally be best to reduce the given impulses to a

resultant R, passing through the centroid, and to a couple H.

By Art. 360, the impulse R at G produces a velocity of trans-

lation, ^>

By Arts. 361, 363, 320, 321, the couple //produces an angular

velocity,
/2 \
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about a centroidal axis / whose direction is conjugate to the

plane of the couple H in the central ellipsoid, while a plane

perpendicular to /is conjugate to the direction of the vector H
in the fundamental ellipsoid. The components of co along the

principal centroidal axes are given by (5), Art. 319, viz. :

ucos a

u.

usina

l

ucos a

u

Ô

where Iv 7
2 ,
73 are the principal centroidal moments of inertia

and 7/j, J72 ,
7/

3
the components

of H along the centroidal prin-

cipal axes.

The direction of the instan-

taneous axis having thus been

determined, its position can be

found by resolving u into a usina

component u cos a along / and

a component u sin a perpen-

dicular to 7 (Fig. 49). The FiS- 49 -

latter component combines with co about / to an equal angular

velocity co about an axis /parallel to /at the distance x usma/co

from 7

The initial motion produced by the impulses consists, there-

fore, of the angular velocity co about /, and the linear velocity

These together constitute the resulting twist.u cos a along /

369. Exercises.*

(i) A homogeneous straight rod AB= 2 a (Fig. 50) is acted upon

by an impulse F, at the distance c from the centroid G, at an angle a

with the rod. Determine the initial motion.

The reduction to the centroid G gives the impulse F at G, which

produces a velocity of translation u = F/M in the direction of F, and

the couple H formed by F at C and - F at G. The moment of this

couple is ^sina, and its vector^ is at right angles to the plane deter-

* Most of these problems, as well as the discussions of Arts. 357-368, are adapted

from W. SCHELL, Theorie der Bewegung und der Krafte, Vol. II., pp. 352-386.
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mined by AB and F. As any perpendicular to the rod is a principal

axis, the radius of inertia at G being ^ = Vg-#, the couple Fcsma

Q produces pure rotation about an

3 /** >X- axis /through G at right angles to

\Q/\/ _,

the plane (AB, F} (see Art. 364),

B and we have

H _ 3 Fc sin a

'j/tf2

Fig. 50.

As the axis 7 of this rotation is perpendicular to the direction of the

velocity u of translation, their combined effect is a pure rotation of the

same angular velocity <o about a parallel axis / whose position is found

as follows (Art. 368) : Draw through G, in the plane (AB, F), a per-

pendicular to F, and on this perpendicular lay off

With the values of u and <o given above, we have

3 c sin a

which can easily be constructed geometrically. The parallel to 7

through O is the instantaneous axis about which the rod begins to

rotate with the angular velocity o>.

In what direction and at what distance from G must the rod be

struck if it is to rotate about a perpendicular through the end A ?

(2) A homogeneous plane lamina of mass M receives an impulse F in

its plane, the distance of the centroidfrom the direction of F being Xj.

Determine the initial motion.

The reduction to the centroid G (Fig. 51) gives F at G, and a

couple .//= Fxl whose vector is parallel

to a principal centroidal axis. The couple

produces, therefore, rotation about the per-

pendicular /through G to the plane of the

lamina, and this rotation combines with

the translation due to F to a single rotation

about a parallel axis /. To find the position

of /, lay off on the direction of F, drawn

through G, a length GK equal to the radius

0'

-F
Fig. 51.

of inertia for /; join K to the foot O 1 of the perpendicular let fall from

G on F, and draw KO at right angles to KO*. The instantaneous

axis /passes through O, since GO GO 1 =
q*. The angular velocity is

o) = Fx^Mf.
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F

(3) In Ex. (2), if the lamina be an ellipse of semi-axes a, Ja, at

what point of the major axis must it be struck at right angles to this

axis in order to rotate initially about a focus ?

(4) A rigid body of mass M receives an impulse F parallel to the

principal axis Gy, and meeting the principal axis Gx at the distance

GO' = Xx from the centroid. Determine the initial motion (Fig. 52).
The impulse F at O' is equivalent to an equal and parallel impulse

F through the centroid G, in combination with the couple H'=. Fx^
whose vector is parallel to the principal

axis Gz. This couple produces, there-

fore, rotation about the centroidal prin-

cipal axis Gz, or 7, of angular velocity

<o = Fxi/Mq%, where qz is the radius of

inertia for /. The instantaneous axis /

is parallel to 7, and meets the axis Gx at

a point O such that GO- GO 1 = ?3
2

,
or

putting GO = x, GO' = x1} such that

jcxi = q j
it can be constructed as in

.Ex. (2). v Fig. 52.

(5) Determine the impulse "F imparted to a body of mass M when

struck at the point O' (Fig. 53) of a principal axis Gx by a particle of

mass m moving with a velocity u parallel to another principal axis Gy.
The impact is assumed to be inelastic (compare Art. 305).

It has been shown in Art. 19 that if a particle of mass m moving with

a velocity u impinges upon a particle of mass M at rest, the two parti-

cles will, after inelastic impact, move

on together with the common veloc-

ity v =mu/(m -\- M). Similarly in

our case, as soon as the impact

has taken place, the two masses m
and M may be regarded as forming

a whole, and as moving together.

The impulse mu acting on this mass

M+ m at O' imparts to this point

a certain velocity v which can be

determined. As the particle m as-
Fig. 53.

sumes this velocity v after impact, it loses the momentum mu mv,

owing to the impact ; and this is the impulse

= m(u v)

of the blow transmitted to the body.
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To find v, let G' be the centroid of M + m, so that

GG' = mx
}/(M+m), G'O' = Mx^(M-\- m). The principal axes of

M+m are G'x and the parallels G'y', G'z' to Gy, Gz. The impulse

mu at 0' imparts to the mass M+m (see Ex. (4)) a velocity of

translation mu/(M-\- m) parallel to G'y', and an angular velocity

<o = ;;/# G'O'/(M+ m)q
l about 6V, ^ being the radius of inertia

otM+m for 6V. The velocity v of (9' is, therefore,

mu
i

~~M+m

For q we have the relation

m)f = Mq? + M- GG'2+ m

where q^ is the radius of inertia ofM for Gz. Substituting this value of

q, we find

v=mu
2

*

z>

and hence

)qf+ mx?

It thus appears that F equals mu only in the limiting case when

m o, u = oo, whjle lim mu = const. For given values of m and */, F
is a maximum for xl

= o; i.e. when w strikes the body M at the cen-

troid. In this case f= mMu/(Af+m), as it should be, since for

direct impact, we have

F m(u v)=mu m- mu/(M+ m)= mu M/(M+ m).

(6) A free rigid body turns with angular velocity o> about an instan-

taneous axis 1, which is parallel to a centroidal principal axis and meets

another centroidal principal axis at a distance GO = x from the cen-

troid G ( Fig. 54) . A point P of the body, situated on the principal axis

GO at the distance GP=x //-<?#* the centroid, strikes a fixed obstacle;

what is the reaction P of the obstacle 9

The system of impulses to which the angular velocity o> is due reduces

to an impulse F= Mu = Mux through G, at right angles to the plane

(/, G), and a couple Fx^= Ff/x, where q is the radius of inertia for

the centroidal axis 7 parallel to /. The vector of this couple is parallel

to / (see Ex. (4) ) . Just after impact, we have, in addition, the im-
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pulsive reaction P of the fixed point ; hence the resultant impulse

=F-\-P, the resultant couple = Fx^ + Px.

As the point P of the body is reduced to rest by the impact, we
have only to express the velocity of

P and equate it to zero. This gives

the condition

F+P
M Mf

x = o,

whence

p _
u

since xxi = g
2

. This becomes = F
for x = o and for x = Xi.

Show that there are two points of

maximum impact on GO at equal

distances from / on opposite sides, and that the maximum impulse is

Fi 54

(7) A free rigid body turns with angular velocity o> about a centroidal

principal axis 1 when one of its points P, situated at the distance x from
1 in the centroidal plane perpendicular to 1, strikes a fixed obstacle.

Determine the impulse on this obstacle, and show that it is greatest

when x = q, where q is the radius of inertia for I.
*

(8) In Ex. (6), determine the initial motion of the body after striking

the fixed obstacle.

2. CONTINUOUS MOTION.

370. In the preceding articles (357-367) it has been shown

how to determine a system of impulses capable of producing

any given instantaneous state of motion of a free rigid body.

Any change in the state of motion can be regarded as due to

a system of forces
;
and by reducing the effective forces of the

particles, in a similar way as has been done for the momenta,

this system of forces can be determined. This geometrical

study of the continuous motion produced by forces is here

omitted, as it would require a more complete exposition of the

theory of acceleration than has been given in the first part of

the present work.
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371. Analytically, the continuous motion of a free rigid body
is given by the six equations of motion, (4) or (5), Art. 223, and

(6) or (7), Art 224. As pointed out in Art. 233, the motion of

the centroid and the motion of the body about the centroid can

be considered separately. The former is given by the equations

(8), Art. 226, viz. :

Mx=Rxy MJ=Ry,
Mz=R (i)

where M is the mass of the body ; x, j>, z are the components
of the accelerations of the centroid along any three fixed rec-

tangular axes
;
and Rm Ry ,

Rz are the components along the

same axes of the resultant R of all the external forces acting

on the body.

The motion of the body about the centroid is the same as if

the centroid were fixed (Art. 229). It is therefore best studied

by taking the centroid G as origin ;
all the developments of

Arts. 324-356 will then apply without change, except that the

centroid G must be substituted for the fixed point O. The

general equations (3), Art. 326, or Euler's equations (4), Art.

328, can be used to determine the motion about the centroid.

The integration of Euler's equations gives the angular

velocities a>
lt

<02,
< 3 about the three centroidal principal axes of

the body. The position of the body, i.e. the relation of this

system of principal axes to a system of axes through the cen-

troid, parallel to a fixed system, can be determined by means of

Euler's angles 6, <, ty (see Arts. 333-335), or by means of the

9 cosines av a
2,
aB,

b
lt b^ 3 ,

c
lt c^ CB (Arts. 336, 337).

372. Kinetic Energy. As the instantaneous motion consists

of an angular velocity o> about the instantaneous axis / and a

velocity of translation u along this axis, the velocity v of any

point of the body, at the distance r from /, is ?;=V 2+a>V2
.

Hence the kinetic energy (comp. Art. 235) has the expression

o> )
=
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If q, q denote the radii of inertia of the body for the instan-

taneous axis / and the parallel centroidal axis 7, we have

where x is the distance between / and L Hence denoting by
v the velocity of the centroid, v= V.z/

2+ aPx*, we find

T= \M(u*+ o>
2^2

)+ \Mrfq*=\M&+ \M^co*. (2)

It thus appears that the kinetic energy consists of two parts,

= 7\+ 7*2,
one of which,

may be called the kinetic energy of the centroid (the whole mass

M being regarded as concentrated at the centroid), while the

other,

the so-called kinetic energy of rotation, is the kinetic energy
which the body would possess if it were rotating with the

angular velocity o>, not about the instantaneous axis /, but

about the parallel centroidal axis / The developments of

Arts. 322 and 323 apply without change to Tz .

373. Numerous exercises and applications will be found in the works

of Price, Besant, Williamson and Tarleton, Walton, quoted in Art. 159 ;

but above all in E. J. ROUTH, Dynamics of a system of rigid bodies, Ele-

mentary part, fifth edition, 1891 ;
Advanced part, fourth edition, 1884;

London and New York, Macmillan. Illustrations and examples, as well

as further developments of the theory, will also be found in the works of

Schell and Budde (Art. 159) ;
in the French collections of problems by

M. Jullien and by A. de Saint-Germain ;
in J. PETERSEN, Lehrbuch der

Dynamik fester Korper, deutsch von R. von Fischer-Benzon, Kopeh-

hagen, Host, 1887; E. BOUR, Cours de mecanique et machines, IIP

fascicule, Paris, Gauthier-Villars, 1874; and the original memoirs of

L. POINSOT, in particular his Theorie nouvelle de la rotation des corps,

Paris, Bachelier, 1852 (also in Liouville's Journal de mathematiques,

Vol. XVI.), and his Precession des equinoxes, Paris, Mallet-Bachelier,

1857. Among the numerous French treatises on theoretical mechanics

those of Poisson, Sturm, Resal, Collignon deserve especially to be

mentioned here.

PART III 14
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CHAPTER VII.

MOTION OF A VARIABLE SYSTEM.

374. In the present chapter we shall consider very briefly

the motion of a general system of n particles, connected in

any way whatever, subject to any conditions or constraints, and

acted upon by any forces.

The forces can be distinguished as external and internal.

The latter are exerted by certain particles, or groups of parti-

cles, of the system on other particles of the same system, while

the former proceed from without the system. Thus, in con-

sidering our solar system, the attractions between its various

members are internal forces, while the attractions of the fixed

stars on the sun or planets would represent external forces.

Besides these two kinds of forces there may be forces re-

placing constraints, such as reactions of fixed points, lines, or

surfaces, friction, etc.

I. Free System.

375. If the system be free, i.e. if it be only acted upon by
external and internal forces, while there are no constraints

or conditions prescribed for it, the establishment of the general

equations of motion is simple, although their integration gen-

erally presents insuperable difficulties. The problem of two

bodies (Arts. 150-158) is the simplest special case.

The general principles laid down in Arts. 218-238 for the

motion of a rigid body apply almost without change to a free

system of particles ; indeed, they apply even to a constrained

system, provided that all conditions and constraints are replaced
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by forces and that these constraining forces are included among
the forces X, Y, Z, acting on the particles. Thus in par-

ticular, the general equations of motion of a rigid body, viz.

(4) or (5), Art. 223, and (6) or (7), Art. 224, hold for a variable

system. For they express the necessary, though not in general

sufficient, conditions of equilibrium of the forces acting on the

particles with the reversed effective forces of these particles ;

and this equilibrium is not changed by making the distances

between the particles invariable
;

i.e. by what is sometimes

called solidifying the system. But it should be observed that

the reductions of the systems of momenta and effective forces,

given in the chapter on the rigid body, do not in general hold

for a variable system.

376. Let F be the resultant of all the external and internal

forces acting on one of the n particles ; X, Y, Z its components

along a system of fixed rectangular axes
; x, y, z the co-ordinates

of the particle, and m its mass. Just as in Arts. 219, 220, we

have the equations of motion of the particle

mx=X, my=- Y, mz= Z. (i)

There are 3 such equations for each particle, and hence 3 for

the whole system. These $n equations express the equilibrium

of the system of forces composed of the external, internal, and

reversed effective forces.

377. Applying the principle of virtual work to this system

of forces, we find d'Alemberfs equation

^(-mx+X}x+-$(-my+ Y)ty+ 2(-mz+ Z)Sz= o, (2)

in which Bx, By, 82 are the components of an arbitrary displace-

ment Bs of the particle m. As there are 3/2 such arbitrary

component displacements, the equation (2) is equivalent to the

3 72 equations (i).

If written in the form

, (3)
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it expresses the equality of the sum of the virtual works of the

effective forces to the sum of the virtual works of the external

and internal forces, for any infinitesimal displacement of the

system. The internal forces do not enter into this equation if

they occur in pairs of equal and opposite forces, as will usually

be the case.

378. As there are no conditions, we may select for Ss the

actual displacement ds of every particle, so that the equation

(3) becomes

^m(xdx+ydy+zdz) = ^(Xdx+ Ydy+Zdz}.

The left-hand member is the exact differential ^
= ^^mz>2

. Hence, integrating between the limits o and

and denoting by V
Q the velocity of the particle m at the time o

we find

Ydy+ Zdz). (4

This is the equation of kinetic energy. The right-hand mem
ber represents the work done by the forces during the time /.

379. If there exists a force function or potential U for th<

forces X, Yy Z, i.e. if these forces are the partial derivative

with respect to x, y, z of one and the same function U> the sys
tern is said to be conservative. We have then

and the integration of (4) gives

where 7 is the value of U for t=o.

Denoting as usual the kinetic energy by T, the potential

energy U by V, this equation can be written

7 T 4- V rnn <5t (f\\* flT^ * Vv**8ll , \\J

it expresses the principle of the conservation of energy. (Comp.
Art. 79).
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380. Exercises. Show the existence of a force-function and find its

expression in the following cases (comp. Art. 86) :

(1) When the resulting force F at each particle m is constant in

magnitude and direction (gravity).

(2) When the forces F are all attractions, each being directed to

some fixed centre O and a function of the distance r from this centre.

(3) When the forces F are the mutual attractions of the particles

constituting the system.

381. A variable system of n particles possesses a centroid

whose co-ordinates x, y, ~z satisfy the equations

M'X ^mx, M - y= ^my, M -~z= lanz.

The developments of Arts. 226, 227, in particular the principle

of the conservation of linear momentum, or the principle of the

conservation of the motion of the centroid, hold for a variable

system just as well as for a rigid body. The position of the

centroid in the system is of course variable with the time.

The principle just referred to asserts that, if 2X = o, 2Y = o,

3Z = o, the centroid of the system is at rest, or moves with con-

stant velocity in a straight line. It should be noticed that the

conditions 2^=o, 2F=o, ^Z=o do not mean that there are

no forces at all acting on the system ; they only mean that the

resultant of these forces reduces to zero while there may be a

resulting couple different from zero. The principle would, for

instance, apply to the solar system if the action of the fixed

stars be regarded as vanishing or as reducing to a couple ;
the

mutual attractions of the various members of the system occur

in pairs of equal and opposite forces, and have, therefore, a

resultant zero.

382. Similarly, the developments of Arts. 228-232, in par-

ticular the principle of the conservation of angular momentum,
or of areas, and the properties of the invariable plane, apply

without change to the free variable system.
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II. System Subject to Conditions.

383. The constraints and conditions to which a variable

system is subject may be of very different kinds. In general,

however, they can be imagined as replaced by certain forces,

called constraining- forces or reactions, by the introduction of

which the system becomes free. On the other hand, it may be

noticed that internal forces, such as tensions of connecting rods

or strings, can sometimes be regarded as constraining conditions.

If all conditions and constraints be expressed by means of

forces, and these forces be included among the forces X, Y, Z,

the equations of motion of the particle m have again the form

(i), Art. 376, and the principle of virtual work gives the equa-

tion of d'Alembert (2), Art. 377. But it should be noticed that,

in general, the constraints will do no work if the displacements

&r, By, z are properly selected
;
in other words, if the displace-

ments be taken so as to be compatible with the conditions to

which the system is subject, the constraining forces will not

enter into the equation (2). This is d'Alembert's principle.

384. Before further developing this idea it may be well to

indicate here the considerations by which d'Alembert himself

(and, in more exact language, Poisson) explained his celebrated

principle.

Any particle m of the system is acted upon at any time t

by two kinds of forces, the given external and internal forces,

whose resultant we denote by F, and the internal reactions

and constraining forces whose

resultant we call F' (Fig. 55).

The resultant of .Fand F' must

be geometrically equal to the

effective force mj, where j is

the acceleration of the particle

at the time t.

Now, if we introduce at m
the equal and opposite forces mj, mj, the action of ^and F\
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and hence the motion of the particle, will not be changed. But

we can now combine Fand mj'to a resultant F". Since F, F',

7/z/are in equilibrium, the forces .F'and F" are in equilibrium ;

/>. F" is equal and opposite to F', as appears from the figure.

The figure also shows that F can be resolved into the com-

ponents mj and F"
;
the former component, mj, produces the

actual motion of the particle, while the latter, F", is consumed

in overcoming the internal reactions and constraints repre-

sented by F'. This component F" of F is therefore called by
d'Alembert the lostforce. As F'+F"= o at every particle of the

system, d'Alembert's principle can be expressed by saying that,

at every moment during the motion, the lostforces are in equilib-

rium with the constraints of the system.

If the constraints, instead of being expressed by means of

forces, are given by equations of condition, we may express

the same idea by saying that, owing to the given conditions, the

.lostforcesform a system in equilibrium.

385. We shall now assume that the constraints or conditions

to which the system is subject are expressed by means of

equations (the case of conditions expressed by inequalities is

excluded) between the co-ordinates xt y. z of the particles and

the time t. In the most general case these equations might

also contain the velocities of the particles ;
this case, however,

will not be considered here.

Let there be k conditions

<l>(t, *i, JV*i, *2>
" )=o, -^(t, *i, y\> *i xv '

)> (
r
)

for a system of n points. Then the number of the indepen-

dent equations of motion will be ^n k. For these equations

must express the equilibrium of the given forces, together with

the reversed effective forces, under the given conditions
;
and

for this equilibrium it is sufficient that the virtual work should

-vanish for any displacement compatible with the conditions, the

Avork of the reactions and constraining forces being zero for
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such virtual displacement. In other words, in d'Alembert's

equation

o
t (2)

the constraining forces due to the conditions will not appear if

the displacements &r, fy, 82 be so selected as to be compatible

with the k conditions (i).

Now this will be the case if these displacements be made to

satisfy the equations that result from differentiating the condi-

tions (i), viz.

= o, (3)

It should be noticed that in this differentiation, or rather

variation, the time t is regarded as constant. If, for instance,

one of the conditions (i) constrain a particle to a curve or sur-

face varying with the time, say the surface of the moving earth,

or that of a projectile in motion, the displacement is called

virtual, or compatible with the condition, if it takes place on

the curve or surface regarded momentarily as fixed (comp. Art.

193). Indeed, when the conditions contain the time, the state-

ment that a virtual displacement is one compatible with the

conditions has no definite meaning ;
virtual displacements are

then defined as displacements satisfying the equations (3).

386. The k equations (3) make it possible to eliminate k of

the 372 displacements from d'Alembert's equation (2). There

will remain ^n k independent arbitrary displacements, whose

coefficients equated to zero give the ^nk equations of motion.

Applying the method of indeterminate multipliers (comp.

Art. 194) to perform this elimination in a systematic way, we
have to multiply the k equations (i) by indeterminate factors

X, /z, ,
and to add them to equation (2). The k multipliers X,

//,,
can then be so selected as to make the coefficients of k of

the 3 displacements r, ty, z vanish. As the remaining $11 k
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displacements are arbitrary, their coefficients must also vanish

separately. Thus it follows that the coefficients of all the

displacements in the resulting equation must vanish, and we
have n sets of 3 equations of the type

my= (4)

r *
i

*

It is apparent from these equations that the constraining
force acting on the particle m has the components

387. It has thus been shown that a system of n particles

subject to k conditions has ^n k independent equations of

motion. The equations can be obtained either by eliminating

from d'Alembert's equation (2) k of the 3/2 displacements r,

Sj>, 82 by means of the k equations (3), and then equating to

zero the coefficients of the remaining 3 k arbitrary displace-

ments, or they may be regarded as represented by the 3 n equa-

tions (4), since these equations contain k arbitrary quantities

X, fj,,
-. In this latter form they are sometimes denoted as

Lagrange s firstform of the equations of motion.

388. It follows from the remark at the end of Art. 385, that

the actual displacements dx, dy, dz of the particles can be

selected as virtual displacements only, and always, when the

conditional equations (i) do not contain the time. If this con-

dition be fulfilled, d'Alembert's equation (2) can be written

?w(xdr+ydy+~sidz)=l(Xdx+ Ydy+ Zdz),

or d$kmiP= 'St(Xdx+ Ydy+ Zdz). (6)

This relation can also be deduced from the equations (4)

by multiplying them by xdt, ydtt zdt, and summing the equa-
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tions for all the particles. The left-hand member of the result-

ing equation is again dftymiP. In the right-hand member we

find, besides the term ^(Xdx+ Ydy+ Zdz), such terms as

The coefficients of X, //,,
vanish only when the conditions

(i) are independent of the time, for then the differentiation of

these equations (i) gives

In other words, in this case the constraining forces do no work

during the actual displacement of the system, as they are all

perpendicular to the paths of the particles, and we find equa-

tion (6).

If, however, the conditional equations (i) contain the time,

their differentiation gives

and we find in the place of equation (6) :

Ydy+ Zdz) -\h-pfy -. (7)

389. If the conditional equations do not contain the time, and

if, moreover, there exists a force-function U for all the forces,

equation (6) can be put into the form

which gives, by integration,

^\m&-^mv*= U- 7 , (8)

or, by putting U= V,

r+F=7- +F . (9)

This equation expresses the principle of the conservation of

energy.

It should be noticed that, even when there exists no force-

function, the elementary work ^(Xdx+ Ydy+ Zdz) is a quantity

independent of the co-ordinate system, and the sum of these
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elementary works for a finite time, say from t=o to t=t, repre-

sents a certain finite amount of work W \ 2 (Xdx+ Ydy+ Zdz),

.so that equation (6) gives always

^\mv*-^\mv*= W.

This means that if the conditions are independent of the time,

the increase of kinetic energy during any interval of time is equal

to the work done during this time by all the external and internal

forces.

But when a force-function exists, this work is W= U 7
,

where U is a function of the co-ordinates only. The work done

by the forces depends therefore only on the initial and final

values of these co-ordinates
;

i.e. on the initial and final con-

figuration of the system, but not on the character of the motion

by which the system is brought from the initial to the final

position.

390. It has been shown in Art. 222 that, for an invariable

system of n points, i.e. for a free rigid body, the number of condi-

tions is k= $n 6
;
hence the number of independent equations

of motions of a free rigid body is 372 ($n 6) =6.

A rigid body with a fixed axis (Art. 291) has but one degree

of freedom and 5 constraints
;

i.e. its position is given by a

single variable, say the angle of rotation, 0, about the fixed

axis. The motion of such a body is therefore given by a single

equation.

A rigid body that can turn about and also slide along a

fixed axis has 4 constraints and 2 degrees of freedom
;

it has

therefore 2 equations of motion, and 2 variables are sufficient to

determine any particular position of the body, say the angle 6

and the distance x measured along the axis of rotation.

A rigid body with one fixed point (Art. 311) is an example of

an invariable system with 3 constraints and 3 degrees of free-

dom. Three variables are necessary and sufficient to determine

a particular position, and the number of independent equations

of motion is 3.
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Similarly, it will be seen in every other case that a rigid body
has as many independent equations of motion as it has degrees

of freedom, or as it requires variables to fix its position.

These variables may be called the co-ordinates of the rigid body.

Thus a free rigid body has 6 co-ordinates corresponding to its

6 degrees of freedom and 6 equations of motion
;
we might take

as such co-ordinates the co-ordinates x, j/, ~z of the centroid and

Euler's angles 0, (/>, -v/r.

391. These considerations can be generalized so as to apply

to a general variable system of n points with k conditions.

Such a system is said to have $nk =m co-ordinates because

it has $nk=m independent equations of motion (Art. 385).

In other words, in the place of the 3 Cartesian co-ordinates

x
y y, z of the n points, subject to k conditional equations, we

may introduce $n k=m independent variables, say qlt q^
'"

<7m> which are so selected as to satisfy the k conditions (i)

identically. These variables are called the Lagrangian, or

generalized, co-ordinates of the system.

By the introduction of these new variables the equations of

motion (4) assume a form which is known as the second Lagran-

gianform.

Suppose, for instance, that the system is subject to only one

condition, viz. that one point Pl
of the system should remain on

the surface of the ellipsoid

If we select two new variables q^ q^ connected with x^ yl9

#! by the equations x
l =acosql , yl

= b sin ql
cos q^ z =

*: sin ^ sin 2 , the condition
</>
= o is satisfied identically in the

new co-ordinates gv 2 . Hence, by introducing qlt q% in

the place of x
lt j/1? z

lt
the condition < = o is eliminated from

the problem.

We now proceed to establish the equations of motion in the

second Lagrangian form, for a variable system of n points-, with
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the k conditions (i), i.e. to introduce $n k=m new variables

or generalized co-ordinates, glt q^ qm in the place of the 3

Cartesian co-ordinates x^ yv zv x^ zn, selecting the new co-

ordinates so as to satisfy the conditions (i) identically (comp.

Arts. 210-216).

392. The Cartesian co-ordinates x, y, z of any one of the n

points, as well as their time derivatives x> y, z, are functions of

,<7i> q^ qm and of the time t. We have therefore

dx . dx
,
dx

,
dx

with similar expressions for y and z. Thus x, y, z are repre-

sented as functions of the independent variables t, q^ q^ qm,

<1\> 42?
'"

<?m -

Differentiating x partially with respect to any one, q, of the

quantities q lt q^ qm,
we find

dx= &x &x . &x . &x .

dq dqdt dqdq^ dqdq^

_d_dx_ ,J_dx_ -
, _d_ d^ . d dx .

dt dq^dq^ dq

'

fl '

3ft dq

'

*** ^
dqm dq

'

We have therefore,

dx_d^ dx_ ^_d_^2 ^. (n\
l$q~~~dt ^q ^q~

'

dt dq dq~ dt dq

Again, differentiating (10) partially with respect to q, we have

dx__dx dy^_dy dz_fa / *

TT T~> TT T~"> T~T ~ \*^/
dq dq dq dq dq dq

Let us also form the derivatives of the kinetic energy

), (13)

dT ^ f- d^,'dy,-dz\
viz. -=2mU^-+j// + ^

dq \ dq dq dqj

which by (11) and (12) becomes

dT f.d dx .d dy . -d dz\ /T ^=
^m(x-- +y-r -^+*^ TT

)
(14)

dq \ dt dq dt dq dt dqj



222 MOTION OF A VARIABLE SYSTEM. [393.

, d T ^ ( . dx
,

dv
,

dz\ . .

and =2m\x+y-^+z . (15)
dq \ dq dq dqj

From (15) and (14) we find

at dq \ dq dq dqj dq

393. Thus prepared we can introduce the new co-ordinates

q into the equations of motion (4) by multiplying these equa-

tions by dx/dq, dy/dq, dz/dq, and adding them throughout the

whole system ;
this gives :

_, f-.dx ,
dv

,
dz\ v> / v dx

,

-,rdy , ^dz\ / *

^m (x +y^+z ]

=
S(^r 4- F-^+Z ; (17)

\ dq
'
dq dqj \ dq dq dqj

the coefficients of X, //,,
all disappear in the summation, since,

by hypothesis, the new co-ordinates satisfy the conditional

equations (i) identically.

The right-hand member of (17) we shall denote by Q (comp.

Arts. 1 80, 211) ;
the left-hand member can be put into a more

convenient form by means of (16) and (12). Thus we find

finally the equations of motion in the second Lagrangianform :

at dq dq

As there is one such equation for every one of the Lagrangian

co-ordinates gv q2 , qm, the number of such equations is

m = $n k. They are obtained from the type (18) by attaching

successively the subscripts i, 2, m to each of the symbols

q, q, Q-

394. In the particular case of a conservative system, i.e. when

there exists a force function U such that

, ,
,

,

vx ay az

the quantity Q in (i 8) is evidently =dU/dq)
so that the equa-

tions of motion assume the form

dL
sJl=^

(
T+ U). (19)

dt di d
v
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This equation can be derived more directly from equation (16)

by considering an infinitesimal displacement of the system. If

7 be the change of the co-ordinate q in such a displacement,

the partial changes, or variations, of ;tr, y, z will be

hence the work of the effective forces m'x, my, mz, for the

whole system, is

, "dy ,

-dz\
5- v (..die . .. dy . ..dz

+y-^+ z--}
= q^m(x+y-/r+ z

\ dq
'
dq dqj \ dq dq dq

This is the amount by which the potential energy V= U is

diminished; it is, therefore, equal to (dU/dq}q. Hence the

first term in the right-hand member of (16) can be replaced

by dU/dq\ this at once giyes equation (19).

395. From Lagrange's equations it is easy to derive Hamil-

ton's principle.

Let each of the equations (18) be multiplied by the infinitesi-

mal displacement, or variation, 8$ ;
let the equations be added,

multiplied by dt, and integrated from t to
t^ :

a (20)

The first term can be transformed by partial integration ;
remem-

bering that d(q)/dt= (dq)/dt, we have

d d s=
( Sg) I

dt dq
'

\dq Vii J** $2

If now the variations Sq be so selected as to vanish both at

the time t
l
and at the time /2 ,

the first term vanishes at both

limits. Hence equation (20) assumes the form

As s &g+Sg = ST*nd 2g^= S^7for a conservative sys-
dq dq
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tern, and =&W for a general system (Art. 389), the equation

reduces to the simple form

o, (21)

in the general case, and to

=0, or Sj[V- PV=o> (22)

in the case of a conservative system.

396. Hamilton's principle consists in the proposition that the

equation (21) or (22) holds for any displacements of the system

compatible with the conditions (i), provided these displace-

ments be zero at the times /
x
and

t^. Assuming the existence

of a force-function, i.e. taking (22) as the expression of Hamil-

ton's principle, its meaning can be expressed as follows. If we

consider any two positions of the moving system, say the posi-

tions which it occupies at the times ^ and /2 ,
the motion by

which the system actually passes from the former to the latter

position is characterized, and distinguished from any other

imaginable ways of passing from the former to the latter, by
the property that the variation of the time-integral of the differ-

ence between kinetic and potential energy vanishes. In other

words, for the acttial motion the average value of the difference

between kinetic and potential energy during any time is a

minimum.

The chief advantage of Hamilton's principle lies in the

fact that it is independent of any co-ordinate system, and can

therefore be used as a convenient starting-point for introducing

the variables best adapted to the needs of the particular prob-

lem.

397. A more complete discussion of Lagrange's equations of motion

and of Hamilton's as well as other similar principles, of dynamics, such

as the principle of least action, of least constraint, etc., will be found in

the work of E. J. ROUTH (see Art. 373) and in W. SCHELL'S Theorie der

Bewegung und der Krafte, Vol. II., pp. 544-571. The kinetics of the



397-] CONSTRAINED SYSTEM. 225

variable system forms the basis for the investigations of mathematical

physics, i.e. for the theory of elastic bodies, of fluid and liquid

motion, of heat, light, electricity, and magnetism. The following

works are particularly recommended as introductions to this subject :

THOMSON AND TAIT, Natural Philosophy, Vol. L, parts i and 2, Cam-

bridge, University Press (New York, Macmillan), new edition, 1890;

W. VOIGT, Elementare Mechanik als Einleitung in das Studium der

thforetischen Physik, Leipzig, Veit, 1889 ;
G. KIRCHHOFF, Vorlesungen

uber mathematische Physik ; Mechanik, 3te Auflage, Leipzig, Teubner,

1883.
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ANSWERS.

Pages 9, 10.

(1) 40.

(2) (0)4* and 5}; (b)
-

2$, 6f

(3) If the original velocities are of the same sense, ^

v 1 =
46^- ;

if not, v = 19^, v 1 = lof .

(4) e = o gives (a) 44^, (b)
- 2^ ;

<? = i gives (0) = 38^,

v' = 49i> () = - 55i>
' = 35f

(5) = -*. (7) SJft.

(8) (a) 0-31 ft; W 9isec.; (,) 66^ ft.

(n) () 4 ft. per second; (3) 28 ft. per second.

(12) For^ = o: (a)v =- u\ (f}\\mv Q\ (c)\imv=u
r
.

w -f- m
1H Wl i 2 W--

u, v 1 =
m -f m' m +

Hm v 1 = o ; (V) Hm z; = 2 #' ^, lim v' = #'. Interpret these results.

T-I / \ i / z\ i*
For ^ = i : (a) v --

u, v 1 =-- u
; (b) hm v = u,m -f m' m + m'

Page 14.

(1) About 450 pounds; 9-375 and 0-191 foot-pounds.

(2) 156-85 foot-poundals. (6) 4^- tons.

(3) 363 foot-tons; 9 miles per hour. (7) 13 and 2 foot-tons.

Page 16.

(i) 56-83 F.P.S. units. (2) 16 ft. per second.

( 3 ) v = 10, /3
= 48F, v' = i6i ft'

= isF-

227
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Pages 24, 25.

(1) (b) 250 pounds.

(2) (a) 8 ft. per second; (b) 20 ft.

(3) (
a ) 825 pounds; (b) i\ miles; (c) about 1000 pounds.

(4) 4-9 sec.

(5) It would be greater by -^ oz.

(6) j == (OT! sin 0! m2 sin #2 /x^ cos 0! /x2w2 cos

7"= (sin 0j -f sin 2 /A! cos 0j + /x,2 cos 2 ) niim.2g/(m^ +

(7) /= 5.4 ft. per second ;
T= f pound.

(9) 0-0363. (n) (0) 1528 pounds; (b) 1910 pounds.

(10) 0-025. (
I2 ) 5**9 ft-

Pages 33, 34.

(1) (a) 15 270 foot-pounds; (b) 30^ ft.

(2) (a) 917 pounds; (b) 1557 pounds; (c) 640 pounds.

(3) (a) 1267 foot-tons; (b) 4435 foot-tons; (c) 5 : 2.

(4) 2016 foot-tons.

(5) 864 ft. per second.

(7) () ^ =

(8) * =

(9) At the time /, let s be the distance of mi and m2 ;
slt Ja

their distances from their initial positions, so that sl + s + s2= s .

Then we find s1= ^
(s -s), s2 = ^ (SQ-S), and

^i + ^2

f )

= 2 K (^! -f w2) [- -). To integrate, put j- = j- cos2
i<#> ;

then
\dt) \s sj

we find /=-\/---
(< + sin<f>). The particles meet at the

^ --f

2

(ii) (-) . W
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(12) L-^saA

(14) The equation = p?x 2 K gives : (a) when K
Z > /x

2
,

dr dt

x = e~Kt
( C1X't1-'*" + ^-^-^O, from which it can be shown that

the particle approaches the centre asymptotically, reaching it only in

an infinite time
;

if Cl and C2 have opposite signs, the particle will

do so after first reaching a maximum elongation and then return-

ing. (&) When K
2 =

/x
2
,
x = e~Kt (Cl + Czt). (c) When K

2

</x
2
,
x =

Ci<e~
Kt
sin(V/x

2
K
2/+C2 ), and the particle performs oscillations of

period 27T/V/A
2

*
2 and of decreasing amplitude C^""'.

Pages 36, 37.

(1) i watt = 0-73737 foot-pounds per second = 0-001 341 H.P.,

i H.P. = 745 -9 watts.

(2) i metric H.P. = 735-75 watts = 0-9863 British H.P.

(3) 27! H.P. (6) nearly 200 gallons.

(4) 49i H -p - (7) 35*54 gallons.

(5) (a) 64; (J) 224384. (8) i hour.

(9) () 88 hours; (c) about 21 weeks.

Pages 46, 47.

(2) Taking the axis of z vertically upwards, U= UQ mg(z %) ;

the equipotential surfaces are the horizontal planes z = const. ;
the

potential energy is V= mg(z ZQ) .

(4) Taking the fixed line as axis of z, U\f(r)dr\ the equi-

potential surfaces are circular cylinders about the axis of z.

(5). Let r =V(x-xoy + (y-yoy + (z-zl))
2 be the distance of

the moving point (x, y, z) from the fixed centre (x , y ,
z ) ;

then the

direction cosines of the central force P=f(r) are

= =, ==,
r dx r dy r dz

where the + sign holds for a repulsion, the sign for an attraction ;

hence X= f(r) ,
F= /(r) Z= f(r)

|",
or, putting

X=dF(r)/dx, Y=dF(r)/dy, Z=
and finally U= F(r).
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(6) U=

(9) Compare J. C. MAXWELL, Electricity and magnetism, Vol. I.,

Arts. 118-123, and the plates I.-III.

(10) Taking the axis of z vertically upwards and denoting by r^ r%

the distances from Cl} C2,
we have by the principle of kinetic energy

d(mv
2

)
= mgdz Kmd*\/r? + K'mr.2dr2 ; hence the equipotential sur-

faces are (c + gz ^K 'r2
2

)
2rl

2 =K2
. If *' = o, the equation becomes for

Ci as origin (x*+y
2 + z

2

) (c + gz)
z = *2

;
if K = o, we find for C2 as

origin the concentric spheres x2 +f + f
z

Pages 52, 53.

+ Ooj'o J'o^o)2=0.

(2) Fi
= Kmmfi has the ^-component Xt

= Kmm^ (x x
t)/rt

= -Kmm{(xxj) ;
hence 2X= Km^.mj(xx^, '%= Km^n^yy^,

'%Z= Km^m^z Zf) . Equating these to zero, the position of equili-

brium is found as the centroid

= = _
^m{

'

^mt

' m
t

of the masses m
t
. Taking this point as origin, the equation of the plane

of motion is the same as in Ex. (i) ;
and the resultant force has the

components Km^m{
-

x, Km^m^y, Km^m^z.

Pages 65, 66.

(2) The equation of the orbit given in Ex. (i) is satisfied not only

by (x , y ) ,
but also by (X(]/K, }'O/K) ; i.e. the orbit passes not only

through the initial point PQ ,
but also through the point Q, which is

the extremity of the radius vector OQ VQ/K parallel to VQ ;
OPQ and

OQ are the conjugate semi-diameters whose equations are x y=yox,
xQy = yox.

(4) The problem reduces to that of constructing the axes of a conic

from a pair of conjugate diameters.

(8) The equation of a central conic can be written in the form

--- + -T r>

/~ a* P aW
where / is the perpendicular from the centre to the tangent ;

the upper

sign gives the ellipse, the lower the hyperbola. Apply (n), Art. IT 6.
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(9) (a) Ellipse; (b) hyperbola; (c) parabola.

(10) Parabola : x x^= (y y )
^L^L

{y j )
2
,
where 2 a is the

distance of <93 from the point O that bisects <9iO2 ; the point midway
between O and O3 is taken as origin, and OO3 as axis of x.

(n) /ssItan-f
/

Pages 76, 77.

(4) 687 days.

(5) By (24), Art. 138, v* ^- T -
;

as the velocity is not changed

instantaneously, we must have T - = T , whence the new
r a r a'

major semi-axis a' can be found.

(6) An ellipse with the end of its minor axis at the point where the

change takes place.

(7) (a) Ellipse with a = ^r\ (&) parabola.

(8) Differentiate (24), Art. 138, with respect to
/u,
and a.

(9) The periodic time T would be diminished by T.
m

, ^ i ,.,.-.

(10) r = -
;
hence x =--, y =- ; differ-

i + e cos i + e cos i + e cos

entiating and remembering that rY/0/^= c, we find

dx c .
/i dy c

eliminating 0, we find the equation of the hodograph

_^'
=

, or since , =

(n) 1.016 914.

(12) /=JI?
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Page 79.

For. ,,

= -.I; for n = -2, f(r) = f(V - a2

)
. r

;
for =i and

I/O

=
;

for n = 2 and = o, f(r) =

(2) Taking the diameter perpendicular to the force as axis of x>

find F-
initial velocity.

we find F- -
,

where is the radius, <r the ^-component of the

+ i - n

(4)

(5) Ellipse, parabola, or hyperbola, according as
/u, yfy*, where

j; is the initial distance from the plane, y the initial velocity perpen-

dicular to the plane.

Page 83.

(2) Let p!, p2 be the distances of mlt m2 from the common centroid

at any time /; i
= Xi x, etc.; then the equations of the relative

motion are

i ^ & </% (m^rm, \ ^2
*

^
'

;
= l7 "~ *

'

Pages 93, 94.

(4) (^) 7i pounds; (<5) 735. 6 pounds; (<r)
1 20 ft. per sec.

(5) 4840 pounds. (9) 32-20 ft. per sec.

(6) e = 1 inches. (12) 4-7 pounds.
4

(7) 8-6. (13) (a) 76permin.; (b) 108.

(14) In Fig. 23, CD-.RF = PC\ PR, hence CD = ^-^ = const,
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Pages 96, 97.

(i) The integration gives tan \ (ir + 0) = tan J (TT +0 ) * *

'

,

which gives t= <x> for = IT.

(5) The particle will not leave the circle if N remains positive;

^=oif 0)50! = ----
3 I

(6) Greater than 17-94 ft. per sec.

(8) The tangential force is mg sin 0, if 6 is the inclination of the

tangent to the horizon ;
as sin =

dz/ds, we have

dv dz j d^s

-*=**'
or *^=**'

whence \ i? ^ v$ = g(z z ) . The result also follows from the equa-

tion of kinetic energy, since the force-function is C7= mgz -f C.

(9) The equation of motion is the same as (8), Art. 175, except.

that g is replaced by g sin a.

(10) The particle performs oscillations of period 2
TT//U,

ifF= (Jr.

Page 98.

Taking 6 for q, we find Q = (mg + pnO) K ; hence the inte-

gration of (17) gives tf = h 2 KgO !-02
. On the other hand, (14)m

dt

m

Pages 102, 103.

(3) O) 9'8 in.; (b) 1-23 oz.

(4) As x andjj' are small of the first order, z differs from r, by (5),

only by a small quantity of the second order ; hence z = o, z/r i, so

that the third of the equations (6) gives N=mg] hence x = gx/r,

y = gy/r. Integrating and putting "*fgjr /x, we find x = C^ sin /x/

4- C2 cos //,/, y = Dl sin
//,/+ D% cos /x/. Solving for sin and cos, squar-

ing and adding, we find an ellipse as the required path, just as in

Art. 121.
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Page 112.

(1) The differential equation is r <oV + "

sin to/= o. If f=r
Q>

dr/dt= vQ at the time /= o, we find

( g\* ( \ -<* 8

(2) Let be the angle, at the time /, between the radius CP
t
drawn

from the centre C of the circle to the particle P, and the diameter OCA
through the fixed point O. Then, taking O as origin, and the initial

position OC$AQ of the diameter OCA (when P is at A ) as axis of x,

we find

d zO . _. . fdO^
. + o>

2
sin = o, whence = 2 o>

2 cos + C.
<// \"*/

As the absolute initial velocity is zero, we find = 2 <>. Hence,

<9
2 = 4 o>

2 cos2 1
(9, and finally, sin 1 ^ =^

~ g

_^,
or tan J (TT + ^) = ^>' .

(3) Let xz

+y* =a2

(i + /")

2 be the equation of the circle, whence

-\- y8y = o
;

the equation of motion is xBx -f j'S)
; = o

; eliminating

#, S>>, and integrating, we find xy yx av^. The equation of the

circle gives xx +y' = az

a(i + at) ; hence,

a(i + a/)
2* = ^(i + a/)^

- swV(i +0 2 -^2
-

'To integrate, put i + a/= r, and then put x = r. The result is

x = a(i+at) cos ^-
, y= a(i + at) sin' *

Pages 134, 135.

The square of the radius of inertia is :

(1) K-
(2) OH/2

; (b)\tf; W TV/
2

; W
(3)i/^ (8) \a

(4) iV2
- (9) i

(5) 2\
2
- (10) i^

(6) \h\ (n) ^^

(7) /2- (12)
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(13) (a)

(14) I=

Pages 137, 138.

The square of the radius of inertia is :

(2)

(3)

(4) f *2
.

.

(5) i(^i
2 + ^2

2

) ;
in the limit, /= Ma2

.

(6) Differentiating the moment of inertia in Ex. (4), we find

J= M.\a\

(7) (*H*2

; m*2
; Wi** + K-

(9) (*)K; (6)<*i (c)^(a
2 + b

2

).

(10)

(12) For axis parallel to b, /= J8[t(A
3 + ^) +^(^ + 8)

2

] ; for axis

parallel to h, I f 8(1 /^
3
4- ^S2

) ;
for perpendicular axis,

/= 8[/^
3 + ^ + 3 bh*

Pages 149, 150.

(i) The centroidal principal axes are perpendicular to the faces.

The moments for these axes are
J-M(&2+c

9

-),
1 M(c

2+a2

), | M(a?+P).
The central ellipsoid is (

2 + ^
2)^+ (^ + a2

)/ 4- (
2 + <*V= 3 e

4
.

For an edge 2 a, f=$M(P+<*) ; for a diagonal I=

For the cube the central ellipsoid becomes a sphere of radius

for an edge of the cube, /= ^- a5
.

(2) Central ellipsoid : (P + r>) ** + (^
2 + 2

)/ + (<* + ^2

)
^
2 = 5 e

4
;

for/,^ = i(6a
2 + ^2

).

(3) Take the vertex as origin, the axis of the cone as axis of x\
then /j = -f^Ma

2
; //, i.e. the moment of inertia for the jy-plane,=| Mh2

.

As for a solid of revolution about the axis of x B* = C1 and ^ = (7, we
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have /a
' = /8

' = $/!, and /2 = /3 = /i'+i/i. Hence, 72
= 73 =

\ a2

) . At the centroid the squares of the principal radii are

(4) A = JS=C=lMa\ D = E = F=\Ma?; hence momental

ellipsoid : 4 (JT +f -f s
2

) 3 (jys + 2* + ^) = 6^ ; squares of prin-

cipal radii : \ a2
, { a2

, |i a2
.

(5) ?
2 = itf

(6) /=

(8) The centroid may be such a point ;
or if the central ellipsoid be

an oblate spheroid, the two points on the axis of revolution at the dis-

tance V(/i I<?)IM from the centroid.

(9) The ellipsoid must have the same central ellipsoid as the given

body ; its equation is - + *-.
-j
--- = -5_

t
where M is the mass, and

A Jj G JM

A\ B', C are the moments of inertia for the principal planes of the

body at the centroid.

\

Pages 163, 164.

(2).fV2. (4)

(5) 375 oo foot-pounds.

(6) --
,
where r and r* are expressed in feet.

3600^ r1

(7) 4 m. 22 s. (8)

Pages 203-207.

> = F/Ma.

(8) The body begins to turn about an axis through the fixed point,

parallel to the instantaneous axis before impact, with angular velocity





,

=^=
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