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TO MY OLD COACH AND FRIEND

DR, W. H. BESANT, F.R.S.

{Senior Wrangler, 1850)

Tub last of all your pupils I, the last

Of a long line, and some far-known to-day.

For vie no fame : enough, the humbler way.

To follow you who pioneered the past.

And hoiv we loved your hook ! wherein you cast

Your spells on moving ivorlds or meaner clay

:

—
The ^^jet of sand,'^ the *^falling chains,'^ the sway

And poise of planet-spheres, dim, distant, vast.

You tell me now the loheels of Life run sloio,

And the chains loosen. Sinks the lessening sand

While, as you rest, comes the calm evening glow,

^^ Cometh the night"—your motto. So you stand

To loatch the day depart; yet, Master, know

Still hums your torch, passed on from hand to hand.

H. C.

1909.





PEEFACE.

The object of this book is to bring within the range of the

abler Mathematicians at our Public Schools and of First Year

undergraduates at the Universities, a subject which has hitherto

been considered too difficult for any but the more advanced

students in Mathematics, while even they have in many cases

failed to derive more pleasvire from the vstudy of spinning tops

than is contained in submitting the problem to the action of

a complicated piece of Mathematical machinery which auto-

matically, though unintelligently, turns out the correct result.

In this attempt to present an elementary, and at the same

time a scientific view of the subject, I have expanded several

of the suggestive ideas put forward in Dynmnics of Rotation

by Professor Worthington, to whom is due a large debt of

thanks for much liberal criticism and assistance in the earlier

chapters, and for permission to borrow his article on Brennan's

Monorail.

In my other critics I have been similarly fortunate. Dr.

Besant, Fellow of St. John's College, Cambridge, read and

commented on several chapters in their first edition of manu-

script ; and in dedicating this volume to him I have endeavoured

to express the interest in the subject, and the love of it, which

I owe to his inspiring teaching. Professor Hopkinson of the

Engineering Laboratory at Cambridge has also read certain

portions, while much assistance has been rendered by my friend

and late colleague Mr. W. M. Page, Fellow of King's College,

Cambridge, with whom I have spent many pleasant hours

discussing various points. Lastly, the whole work has been

carefully criticised by Mr. G. Bistwistle, Fellow and Principal

Mathematical Lecturer of Pembroke College, Cambridge, to

whom my sincerest thanks are due for much time devoted to

the book and for many valuable suggestions.
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Considerable stress has been laid on Dimensions, particularly

in the earlier pages, where quantities are equated which to the

beginner appear at first sight to bear no relation to one another

;

and a series of " Questions " has been interspersed throughout,

the answers to which, though requiring no calculation, ensure

an intelligent grasp of the principles involved, and may induce

the reader to think for himself of further side issues. It has

been found convenient to distinguish the axis of symmetry of a

top by the term axle, this being in general the only axis which

is not passing through the material of the top, and whose

motion involves a corresponding motion on the part of the top.

Particular care has been taken to preserve the elementary

character of the first four chapters, which should be intelligible

to any reader conversant with the principles of momentum and

energy as applied to Particle Dynamics, while at the same time

they embrace all that is necessary for understanding the motion

of a spinning top, and the practical applications to the steering

of a torpedo, the steadying of ships, and the monorail, which

are given in Chapter V. Equations of motion, both steady and

general, and a graphical representation of the paths described

in space by the head of the top have been obtained directly from

the principles of momentum, energy, and gyroscopic resistance.

The latter has also been employed to establish the general

equations of motion referred to moving axes, which are discussed

subsequently and have been applied to the advanced part of the

subject, including the oscillations of the sleeping top.

For great assistance in reading the proof sheets and for many
valuable suggestions while going to Press, I have to thank my
colleague Mr. W. A. Nayler; and also Mr. W. H. C. Romanis,

now Minor Scholar of Trinity College, Cambridge, with whom
I have conducted many experiments at Charterhouse, and to

whom several of the earlier examples are due.

I also wish to acknowledge the courtesy and kindness of

Messrs. Longmans, Green & Co., during the preparation of this

volume.

Extreme care has been taken both in the arrangement and

expression of ideas, but doubtless deficiencies yet remain, and

any corrections or criticisms will be gratefully acknowledged.

HAROLD CRABTREE.
Charterhouse,

Feb. 1909.
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INTEODUCTOEY CHAPTER.

There are few of us who as boys have not been mterested in

Spinning Tops ; but the day soon arrives when we become too

old or too proud to spin them, and most of us from that time

never give them a thought again. A few years later, perhaps,

we become interested in some of the numerous inventions of

modern days, or even look forward to exploring advanced
regions of Mathematics and Science ; but our tops have long

since been forgotten. And yet, what surprising possibilities of

knowledge and power have been put aside with our neglected

playthings. Who would have thought that in them lay con-

cealed the secret of steering a torpedo, of steadying ships,

or of travelling with security in a single car on a tight-rope

at the rate of 130 miles an hour ? Last, but not least, who
would have thought that on such motion as theirs depends the

foundation of the most astounding theory of Modern Science

:

that the so-called solid matter, with which we come in contact

every day, is not really solid after all, but composed of a vast

infinitude of particles whirling round one another at incon-

ceivable speeds like planets in the Heavens.
Professor Perry, in his most fascinating book entitled

Spinning Tops,^ reminds us that an ordinary flexible metal
chain or india-rubber band, which if left to itself would fall

helplessly on the floor, will, if given a high speed of rotation

on a revolving drum and then slipped off the drum, bounce
along like an ordinary solid hoop ; that a circular disc of paper
if made to revolve very fast about an axis perpendicular to its

plane will behave as if solid, and if struck with a stick make a
loud resounding noise :t while, if rings of smoke are blown in

a certain manner and made to collide, they will bounce off each
other as if made of india-rubber. These instances begin to give

*The Romance of Science Series. S.P.C.K., price 2s. 6d.

t A comparatively small rate of rotation will enable a circular piece of ordinary
writing paper to act as a circular saw, su;fficiently powerful to cut another piece
of paper right through.

It is not difficult to see the reason for this quasi-rigidity in the case of the
flexible chain or the revolving paper disc. If we consider an element AB of the

A
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US some faint idea of how what appears to be solid may in

reality be made up of minute loose particles revolving round
each other at an enormous rate : and it is interestino: to think

that nearly 2,000 years before this theory was formally stated,

the Roman poet Lucretius should have written six books of

majestic verse, one entirely, and the others partly, in support

of a theory extremely similar to this, propounded by the Greek
philosopher Democritus 400 years previously.

Let us consider for a few minutes the behaviour of an ordinary
spinning top. It is full of surprising contradictions. In the

first place, to take the most obvious of all, we cannot balance it

on its peg ; but give it a spin and it will stay balanced for a

long time. We have known this all our lives; but few people

can explain the reason, except to say " because it's spinning "

—

which begs the question. Again, supposing we spin it with
its axis vertical and then give it a knock, it will go round
the table in a slanting position ; but if we spin it slanting to

begin with, it will almost immediately stand upright. And
once again, although it is the friction of the table and the

resistance of the air which eventually bring a spinning top to

rest, yet if we take a very smooth surface, such as a glass plate,

we find that many tops will not spin on it at all.

The childish delight which we felt in watching our tops

spinning remains with many of us a vivid recollection to this

day. Some tops would buzz about busily before settling down
to a regular motion ; others would be steady and stately from
the first. Some would " go to sleep " almost at once, and, if

disturbed, would only show signs of life for a short time before
going to sleep again : these when they " died " would die very
suddenly. Others when disturbed would spin about in a
slanting position for a long time, particularly those with rather
a long "leg"; these took a long time to "die."

It is within everybody's experience that if a top is spun so

that the foot traces out (approximately) a circle on the table,

this circle will be described in the direction of rotation of the

chain we see that it is acted on (in addition to its weight) by two tensions, each
of very great magnitude, since they act at a very small angle to each other and
yet supply the normal force necessary for the circular motion. Hence any force
which deflects AB from its circular position will have to be extremely large to

overcome the resolutes of these tensions which would be immediately called into
play. Similarly in the case of the disc, any small elemental area is under the
action of two very large tensions, resolutes of which are immediately called into
play when a lateral blow is given to the disc.
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top; in fact the whole top rolls round the circle leaning towards

the centre of the circle; but the top in the accompanying hgures

Fig. I.
Fig. II.

will behave in exactly the opposite way. Here the string is

fixed to the head by a swivel, and to spin the top the string

Fig. III. (6).Fig. III. (a).

is pulled tight down to the toe and wound round, starting from

the toe as for spinning an ordinary peg-top (Fig. ii.). The top
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is then thrown down, when of course, instead of falling to the

ground, it remains suspended from its head and spins, but
instead of its toe (and its axis) moving round in the direction

of the top's spin viewed, say, from above, it goes in the con-

trary direction (Fig. iii. a). If the string is lowered so that

the peg can touch the table (or floor) the toe of the top will

immediately reverse its direction of motion (Fig. ill. h) ; nor
will the slightest jerk or eflbrt be visible. The top will probably
begin to rise to a more vertical position. If this motion is

allowed to continue till the top begins to " die " and the axis

becomes rather more horizontal, when it is lifted off the table by
the string the immediate reversal of the direction of motion of

the toe will become very obvious. The effect is a very pretty
one, and it is interesting to note in passing that the Earth is a

top of this description, i.e.

one whose axis revolves

(with a motion called " pre-

cession ") in the opposite

direction to the spin of

rotation.

The particular top repre-

sented in Figs. IV. (a) and
IV. (b) is an ordinary whip-
top through which has been
inserted a metal spindle,

which is capable of sliding

movement through the top;

so that either a very long
or a very short leg can be used and the main body of the top
can be either high up or low down. At the "foot" either a
blunt or a fine peg can be screwed in, and it is found that,

whether a long or short leg is used, the top will always rise

more quickly from the slant position with the blunt peg. Any
top will also rise more quickly on a rough surface than on a
smooth one. If care

is taken at the start

to spin this top in a
directionwhich should
tighten the screw at

the foot, it will be
found when the top is

"dead" that the screw
is quite loose; but if

the reverse spin be
originally given this

screw will end up
tight. This top, if on
its fine peg, maintains a steady motion for a long time when it

is so nearly horizontal that the body nearly scrapes the table.

Fio. IV. ((0—Blunt peg.

Fig. IV, (6).—Fine peg.
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When the blunt peg is used this (practically) horizontal motion
does not continue so long : and, in general, a top with a fine

point or with a long leg will spin at a greater angle to the

vertical than one with either a blunt point or short leg.

A loaded sphere when spun on a rough surface also presents

a curious contradiction.

Fig. V. (rt). Pig. V. (6).

If, for example, a small hole is made in the side of a croquet
ball and filled up with lead, when placed on a table the ball

will settle down to the position where the lead touches the
table (Fig. v. a). But if a really good spin be given to the ball

the loaded part will persistently rise, as indicated in Fig. v. (h),

and if the table is very rough it will get to the position where
it is at the highest point of the sphere.

Many of the tops we have been accustomed to spin are hollow.

Has it ever occurred to the reader to ask what would be the

efTect of filling a tin top with water, and making it water-

tight ? The answer that occurs to most minds at once is

probably that it would spin much better; it is heavier, and

Fig. VT.—Top full. Fig. VII.—Top empty.

there is more of it generally. Let the experiment be made.
Figs. VI., VII. represent two tops which are in every particular

the same, except that the left hand one is full of water hermeti-

cally sealed. The empty one, if spun in the ordinary way, will



INTRODUCTORY CHAPTER

continue to spin in an upright position ; the other one will

lie down on its side at once, and spin violently lying at full

length on the table. Some such tops are a little uncertain

which to do. That in Fig. viii. has been constructed so that

the head can be unscrewed and water poured in. If empty
it spins very well, whether a big or

little spin be originally given to it.

When it is full of water a little spin

will only result in the top falling to

the ground ; a good spin will keep it

upright in spite of the water. Such
tops can be readily constructed out

J) of small tins or similar receptacles

capable of being soldered and made
water-tight.

Figs. IX. and x. represent two hol-

low china eggs, exactly similar, with
the exception that one has been filled

with water and the hole stopped up
with sealing wax. If they are laid

down on the table, and a spin is given to each of them about
a vertical axis, they will behave in entirely different ways. The
empty one jumps up briskly on its end and continues to spin

in that position for a long time ; the other will spin slowly on
its side for a short time and continue this uninterestino; motion
till it stops : or if stopped prematurely by laying a finger on
it, will begin to spin again on removing the finger.

Fig. viii.

-K

Fig. IX.—Egg full. Fig. X.—Egg empty.

^

A real egg, if unboiled, and especially one which has had
its yolk thoroughly shaken up into liquid form, will behavem precisely the same way; but a hard boiled egg will spin
up on its end at once (especially if the table is rough) and
continue spinning for a long time. A similar phenomenon can
also be observed with acorns at a time when they are lying
thick m the roads. If they are kicked, in any way whatever,
they almost invariably skid along for a little way and then
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rise up on their longest axis, in which position they remain
spinning violently, though otherwise stationary on the road.

What seems at the present time to be a favourite form of whip-
top with children in the streets is an instance of the same thing.

It is, roughly, in the shape of a large acorn with a thick cap
to it. In whatever position it is first put down on the road
violent lashing will always make it rise on to its longest axis,

and continued lashing causes it to continue to spin in that

position.

Celts. Figs. XI., XII., XIII. (see Plate i.) represent three

celts, stone implements used in times past by primitive man for

cutting or cleaving, and now discovered from time to time in

ancient barrows (Latin : Celtis, a chisel).

They provide typical instances of the curious phenomena
exhibited by all smooth celts when spun on a smooth horizontal

surface (such as a sheet of glass).

Let us perform the same experiment on each in turn and
note the results.

In each case, the stone being considered at rest, GAB is a
horizontal section (very roughly elliptical) through the centre

of gravity G, and GA, GB, GO are mutually at right angles.

Fig. XI. (See end of book.)

(a) If a vertical downward tap be applied at A the stone

will rock about GB, and if the tap be applied at B the

rocking will be about GA.

(b) If spun about the vertical GG the stone will continue

to spin steadily about GO until brought to rest by friction.

These results are what we should ordinarily expect. But
now let us consider the other two celts.

Fig. XII.

(a) When a vertical downward tap is applied through A
the stone oscillates and then begins, almost immediately, to

rotate from A to B ; but if the tap be applied at B, the

stone, after a moment's oscillation, begins to rotate from B
to A.

(b) If spun in either direction it will begin to oscillate and
gradually reverse its direction of spin.

Fig. XIII.

(a) A vertical downward tap through A or B sets the
stone rotating in the direction from A to B.

(b) If spun in the direction J. to .B it will continue to spin

steadily in that direction ; but if spun in the direction B to A
the stone will oscillate violently and eventually reverse its

direction of spin, i.e. will spin in the direction A to B.
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The "Spider tops," which are frequently sold in the streets

of London, consist of a heavy little disc mounted on a spindle

(Fig. XIV.). When the disc has been set spinning a small curved

piece of metal is placed to touch the toe, and at once begins

to slide round it, first the side (a) in

the figure, and then the side (h), the

motion continuing backwards and for-

wards till the top comes to rest. The
fact is that the toe is magnetic, and
this being the case it is easy to see

that the rolling of the toe on the side

of the metal produces the motion.

But Figs. XV. (a) and (b) illustrate a

top, whose spindle behaves in exactly

the same manner as the toe of the

spider top, and yet is in no way mag-
netic. The action is purely mechanical,

as we shall explain in later pages. It is an attractive top

to watch, especially as it rushes round the corner when it

comes to the end of the coil.^

Fig. XIV,

Fig. XV. {a). Fig. XV. {b).

But the most interesting top of all is undoubtedly the
ordinary gyroscope. That depicted in Figs. xvi. to XXI.,

although merely sold as a toy, is nevertheless capable of
illustrating the gyroscopic phenomena which have been so much
made use of in modern mechanical invention. If the gyroscope
is spun as in Fig. xvii. the surface on which it is standing
should be as smooth as possible. See page 49, question 14.

*This top, which is known as a "Gyroscopic Top," can be purchased of
Newton & Co., Scientific Instrument Makers, 3 Fleet Street, London, E.G.,
price, £1. 68.



Fig. XXI.
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Scientifically constructed Gyroscope. Fig. xxii. represents

a scientifically made instrument.* The wheel AB which has

(for its size) a very heavy rim, is free to spin about its axle

XX\ while the frame in which this axle is mounted can turn

about the axis YY\ Finally, the frame in which YY' is

mounted can turn about the vertical pedestal ZZ\ but at Z there

is a screw which can be tightened to prevent this turning.

X'.,_

T'

.^Y'

^X

Fio. XXII.

Experiment 1. Suppose now that the wheel is free to turn

about all three axes, and that friction is so slight as to be

negligible. Let a good spin be given to the wheel in the

direction marked, and let a weight be suspended at X. It will

be found that, instead of the wheel tilting about Y'Y, it will

turn about ZZ' in the direction indicated. But if the screw

at Z is tightened the revolving wheel will at once turn over

about TY,
If, when the wheel is free to turn about all three axes, we

apply at X a force which is more easily removed than the

weight, such as the pressure of a finger, it will be found tliat,

when the rate of spin is small, the wheel will tilt about Y'Y
appreciably, and on the finger being removed the whole system
will oscillate violently. If, however, the rate of spin is large,

only a very small tilting, if any, will be appreciable, while on
the removal of the finger the violent oscillations observed
previously are now hardly more than a " shiver " of the axle.

^ The gyroscope here depicted is known as Wheatstone's Compound, and can
be procured of Newton & Co. , at the cost of 3 guineas.
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Experiment 2. If the wheel is taken out of its bearings at

Y, Y', and the framework held in the hands at X, X\ a violent

attempt to tilt it about Y'Y will, unless proper care is taken,

result in the wheel wriggling out of the hands altogether

—

for the same reason that when properly mounted just now
it turned about ZZ'.

It is clear that an opposite direction of spin or any attempt to

tilt in the opposite direction, produces an opposite direction of

turning about ZZ'.

Experiment 3. Let us now take the gyroscope when the

wheel is not spinning, and its axle XX' is inclined at an angle

to the vertical as in Fig. xxiii., the screw at Z not being
clamped.

If the pedestal ZZ' is held in the hand and slowly swung
round, it will be found that XX' turns round about the vertical

and points in the same direction as

the hand. But let a spin be given to

the wheel, and it will be seen at once
that, though the hand revolves round
the body, XX' remains always point-
ing in the same direction in which it

pointed originally*
This stability of the axle of the

gyroscope may be employed to prove
the rotation of the earth. For sup-

pose the spin is maintained during a
period of several hours by means of

electric power, and that the gyroscope
is set down in a room with its axle

pointing to some particular object in

the room. After a few hours it will

be found that the axle no longer

points to that object ; showing, not
that the axle has changed its position

in space, but that the room is in a
different position in space owing to

the rotation of the earth.

Thus, if the axis is placed horizon-

tally pointing due east, six hours later it will be pointing south

(and upwards), while after another six hours it will be pointing

due west (and horizontally).

Experiment 4. Now, while the wheel is still spinning, let the

turning movement be given to the hand when the screw at Z
has been made fast. The gyroscope at once sets itself with the

Fig. xxiii.

* The friction may not be quite negligible though very nearly so. The
frictional couple at Z is probably sufficiently large to turn the frame YY' round
when the wheel is not spinning, but totally inadequate when it is spinning. So
much as is appreciable tends to turn it about Y'Y, as will be seen later.
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axis XX' vertical as in Fig. xxiv., and when once this position

has been gained a further swing of the hand in the same

direction finds it in stable equilibrium : but if we check or

reverse the swing we find that the equilibrium is unstable,

and if the checking or reversal be sudden, the gyroscope

will turn a complete somersault

!

Fig. XXV,

Fig. xxY. represents the same gyroscope taken to pieces

and put together in another form. Here the weight of the

instrument itself, when no extra weight is suspended, instead

of tilting the gyroscope over, causes it to turn about ZZ' as

before ; and it will be found that if the rate of turning be

hurried by the application of a horizontal force to the frame
of the gyroscope, then the centre of gravity of the instrument
will at once begin to rise.

The following pages will be devoted to discussing the phe-

nomena described in this chapter, and to explaining why the

gyroscope appears to defy all the recognized laws of gravity.

The same principles account for an elongated bullet, when fired

from a rifle, always " drifting " to the left-hand side, as also in part

for the gyrations of a boomerang, but not in general for the

swerving of a sphere, as for instance a cricket ball or a " sliced
"

golf ball. In order to get a clear idea of the subject it will first

be necessary to master a few elementary principles in Dynamics
which are discussed in the first two chapters of this book.



CHAPTER I.

ROTATION ABOUT A FIXED AXIS.

1. Definition of angular velocity. If a point P is moving
relaitively to a point 0, but not along the line OP, it is said

to have angular velocity about 0. The angular velocit}^ is

measured by the rate at which the line OP is describing an
angle.

For instance (Fig. 1), if is the centre of a circle round
which a point P is moving uniformly with velocity v, having

started from the position A, then the rate at which the angle

POA is being described is the angular velocity, co say, of

the particle P about 0.

Fig. 1,

In this case if r is the radius of the circle, and v units of

length are traversed in a unit of time, say one sec, then

V
O) = - radians per second.

r

It is clear that when we speak of the angular velocity of

a point (P) about a point (0) we really mean the rate at

which a line (OP) is revolving.

As a further illustration (Fig. 2), suppose P is moving in a
straight line with velocity v, in the direction AB, and that

is a fixed point.

Let P be the position at the time t, and P^ at the time t-]-Sf.

In the small time St P describes an angle POP-^ about 0,

and if P^N is perpendicular to OP, the circular measure of

this angle is

P.N PP. sin vSt sin .^ii^d a\

-OP^^V~0-p-^-0^'
(OPi^ = f?)
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V sm u
.'. the rate at which this angle is described is (jo='-jyp~'

.'. the angular velocity of P about is .

2. The angular velocity of a line in a plane is the rate of

increase of the angle it makes with some fixed line in that

plane.

For instance, if a stick is so thrown that its motion is in

a vertical plane, its angular velocity is the rate of increase

of the angle it makes with some vertical line in the plane

of motion (Fig. 3).

Notice that we speak of the angular velocity of a point

ahotU a point, but of the angular velocity " of a line,"

simply—not " about " anything.

^^^

Fig. 3. Fio. 4.

3. Angular velocity of a plane. The angular velocity of a
plane is the rate of increase of the angle it makes with any
plane fixed in space.

For instance, in Fig. 4, if is at any instant the angle

between the fixed and revolving planes, the angular velocity,

. do
a, say, is ^.

4. Rigid Body. By a rigid body or system we mean one in

which the particles composing the body or system never alter

their positions relative to each other.

An ordinary walking stick is an approximate instance of a
rigid body : an umbrella is not.

5. Angular velocity of a rigid body. The angular velocity

of a rigid body is the angular velocity of any plane fixed in

the body.

In the accompanying figure the body is represented by a
cylinder. If is at any instant the angle between the two
planes, then the angular velocity of the cylinder is

do

""^di'
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If the plane YOX were not fixed in space, but revolving

do
about OY, then w, if measured by -j^, would be the angular

velocity of the body relative to the plane YOX and not "the
angular velocity of the body."

Angular acceleration is the rate of increase of angular velocity.

Fig,

6. Torque. A force, or system of forces, capable of turning

a body about any axis is said to be, or to have, a torque

about that axis. It is measured by the moment of the forces

about the axis.

7. Uniform angular acceleration. If a rigid body is rotating

about a fixed axis with tvniforon angular acceleration a, then
after a time t it is clear that, supposing the initial velocity to

have been co, the final velocity

Q = (jo-\-at (1)

It is also clear to those familiar with the elementary formulae
of particle dynamics, that if in time t, the rigid body under
the same conditions turns ' through an angle 0, the average

velocity at which this angle is described is

Q+ (jO

. ^ + co ,

O)+ a^+ a)

^ =(^t-\-\at\ .(2)

Combining equations (1) and (2) as in particle dynamics
we obtain

Q2 = a)2+ 2aa (3)

These formulae are exactly analogous to the similar ones
relating to the rectilinear motion of a particle under uniform
rectilinear acceleration ; for they are obtained from exactly
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similar considerations ; but the student may feel at first that

he is dealing with a different kind of velocity, and a difTerent

{i.e. angular) measurement of space. In order, therefore, to

obtain a clearer realisation of the quantities employed, the

dimensions of the equations should be considered, this being

a most important method of checking algebraical expressions.

Dimensions. (1) i1 = iio-\-at\

1 1.1
r,x[n

[rr=[T]-^+[Tr.

(2) = wj^+Jaf2;

(3) Q-^ = a)2+ 2ae;

[r]-=[r]-H[T]-^

EXAMPLES.

1. A Avheel acquires a v^elocity of 100 racl./sec. in 16 sees, under a uniform
angular acceleration, having started from rest. Find the acceleration.

2. Through what angle has it revolved in the 16 sees. ? What angle will

it turn through in the next 16 sees. ?

3. A wheel is given an initial velocity of 1,000 reA^olutions per sec, after

which it is acted on by a uniform retardation which in 3 sees, reduces

its velocity by 12 revolutions a second. How many revolutions will it have
made fi-om the start when it is making 20 revolutions a second ?

8. Inertia. Newton's First Law of Motion asserts that,

Every body will continue in its state of rest or of uniform
motion in a straight line, except in so far as it is compelled by
impressed forces to change that state ; which is equivalent to

saying that a body has no power of itself to change its state

of rest or of uniform motion in a straight line. This state-

ment is sometimes called the " Law of Inertia," " inertia " being
regarded as a property of mass (Latin : iners).

Newton's Third Law of Motion asserts that. To every action

there is an equcd and opposite reaction ; and thus the existence

of a force implies of necessity some resistance against which the
force is applied. When a force is applied to a body at rest the
resistance offered by the body is due to the inertia of its mass.
If the body had no mass no force could be exerted on it. So
also, if we attempt to alter the existing motion of a body, a
resistance is experienced. This co-existence of action and reaction

is described by the term stress ; and the resistance which a body
offers by reason of its mass is sometimes called the force of
inertia of the body, meaning the resistance due to inertia.
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9. Let us now imagine a rigid body to be rotating about a
fixed axis AB with angular velocity co, as for instance a gate
swinging on its hinges, Fig. 6.

Any given particle, such as P, in the body is moving with
a definite linear velocity f,

perpendicular to AB, which is

represented by rco, r being the
length of the perpendicular
from the particle in question
upon the axis.

Therefore if ni is the mass
of the particle, its linear

momentum is onv or mrco

:

and if we take the " moment

"

of this momentum about AB,
as we take the " moment " of fig. 6.

a force, then the "moment
of momentum " of the particle about AB is

"iiiv . r= nfiTci) . r= mr'^uo
;

and the '' moment of momentum " of the whole body is ^mr^w,
or (jd^mr^ since w is the same for all the particles.

Now 2'?7ir^ is a quantity dependent in each case on the

configuration of the particles forming the body, and on the

position of the axis AB ; and it is clear that for any particular

body and axis an expression Mk^ can be found equal to S^nr^,

where M is the mass of the whole body and k some length

which is constant for the given body and axis. This expression
is termed the "moment of inertia" of the body (see Art. 10)
about the axis in question, and is frequently denoted by /.

It is a most important quantity whenever the motion of a
rotating body is considered ; for the rate of change of '^mr^oa

or Mk^co, i.e. the rate of change of the moment of the momentum,
represents, as we shall see later, the turning effect about the

axis in question of the external acting forces, and therefore

enables us to determine the motion which these forces cause.

The length k is called the radius of gyration of the body
about the axis.

The moment of the momentum of a body about an axis,

i.e. Mk'^w, is frequently called the angular Tnomentu'm of the
body about that axis.

QUESTIONS.

[1.] What are the dimensions of

(a) Moment of inertia ?

(/5) Angular momentum ?

(y) The moment of a force, i.e. a " torque " ?

[2.] A heavy iron door weighs a cwt. Taking its radius of gyration as

2 ft., what is its moment of inertia about its hinges ? State clearly the

units you employ.

B
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10. The phrase " Tno'tnent of inertia " means in the first

instance " the importance of the inertia " ; and its significance

will be easily grasped if we consider the obvious importance
in the motion of some rigid bodies of the configuration or

arrangement of the particles which form them.

A golfer might conceivably possess a " putter " of the same
total mass as his " driver "

; but the difference in their usefulness

for conveying force to the ball is clear at once. This is of

course due to the different configuration of particles in the two
clubs. Similarly, a cricketer "takes the long handle" when
hard hitting is his primary object.

Or again, suppose we have two wheels, of the same total

mass, rotating about fixed axes with the same angular velocity,

the only difference in them being that one has most of its mass
concentrated near the centre, the other at the rim. It will be
found that the one with the heavy rim requires a much greater

force to stop its rotation than the one with a heavy centre and
light rim.

The devices for finding the value of different moments of

inertia, either without or with the aid of the Calculus are

discussed fully in various text books. The following two
elementary examples will illustrate the method when the

Calculus is employed.

11. To find the moTnent of
inertia of a thin rod of mass
M and length I, about an axis

which passes through one end

of the rod and is perpen- a'

dicular to its length.

Let OA be the rod of which
PQ is a small element dx, at

a distance OP ( = x) from the „ '

^

axis, l*ig. 7.

Let y(x = mass per unit length of the rod. Then the moment
of inertia of the whole rod

= lljULdx. x^

PQ

dx.x^
10

"LTJo

k^ = w, I being the length of the rod.
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From the definition of moment of inertia as being the value
of 2mr^, it is clear that the moment of inertia for any body
is the sum of the moments of inertia of its component parts,

and, therefore, if were the middle point of a rod A'A, the

moment of inertia about the central perpendicular axis would

be 2—^ {M' being the mass of a length I which is in this

case half the rod), Mh^
or

M being the whole mass and h half the length of the rod.

To find the Tnoment of inertia of a solid disc of mass M,
radius a, and thickness 6, about its central perpendicular
axis.

Let us consider first a thin circular section ABC of the

disc (Fig. 8), the whole mass of which is dM, and let /x repre-

sent the mass of this section per unit area. Divide the section

further into thin rings, one of which is represented in the

figure of radius r and thickness dr.

Fig. 8.

The mass of this ring is fxlirrdr.

Every particle of the ring is at a distance r from the axis

;

.". the moment of inertia of the ring is

yw27rr dr . r^, or ^jjurr^dr
;

.*. the moment of inertia of the thin section ABC

f
= I 2/uL7rr^dr

=2[^

dM
,

where dM is the mass of the thin circular section.
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Now if we consider the (thick) disc to be made up of an

infinite number of thin sections exactly similar to ABC, each

dM a^
having a moment of inertia —

^
— about the axis in question,

then for the whole solid disc made up of an infinite number
of particles each of mass m, the moment of inertia

^tnr^ is equal to I dM -^ =
Ma"

and 1<?= -^, i.e. the radius of gyration is —t=

[3.] How has the thickness h come in ?

[4.] What is the angular momentum {MBim) of a grindstone about its axis,

in pound-foot-radian-second units, if its mass is 20 lbs., radius 1 ft., and it is

making two revolutions a second ?

A list of moments of inertia for some simple solids will be

found at the end of this chapter.

12. Rate of change of angular momentum. It was stated in

Art. 9 that the rate of change of the angular momentum (Jw)

of a rigid body rotating about a fixed axis represents the turning
efiect about the axis in question of the external acting forces

:

i.e. the moment of the forces about the axis.

Let us consider a body turning about a fixed axis (through
perpendicular to the plane of the paper in Fig. 9), under forces

whose moment about the axis is K, with angular velocity w,

and angular acceleration a. Let P be any particle of mass m,

Fig. 9.

and the forces acting on it be as shown in Fig. 9, X, Y being
components of the external forces and X\ Y' components
of the reactions with neighbouring particles. The resulting

acceleration of P will have components rco^ and ra as marked.
Then, by Newton's second law,

F+ Y'= mva
;

... {Y-\-Y')r= mr''-a.
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Taking then the motion of all the particles,

since a is the same for all the particles,

= Ia.

But since the internal reactions are equal and opposite, their

moment about the axis is zero.

.'. 2FV is zero

;

.'. ^Yr= Ia.

But ^Yr represents the moment of the external forces about
the axis, i.e. K; ' K=Ia
that is, about any fixed axis, the moment of the external forces is

equal to the rate of change of the angular momentum.

Dimensions. ^^^M^ •[L] = [M][LJ .
^

13. The student should notice that as in linear motion we
have the equation

force = inertia X acceleration,

so in rotational motion we have

moment of force = moment of inertia X angular acceleration.

A similar analogy offorin can be seen in all equations relating

to rotational motion.

14. Change of angular momentum. From the above equation

we see that if a and K are constant,

Kt=-Ia.t

where co becomes co^ after time t

Further, this is true when K and a vary, if t is so small that

they may be regarded as constant during the interval.

If now K be made infinite and t indefinitely small in such
a way that Kt is finite and equal to K\ we have an impulsive

couple of moment K' and

that is, about any fixed axis, the moment of the external impulse is

equal to the change of the angular momentum.

[5.] What is the analogous equation in linear motion ?

15. Kinetic Energy. // a body is rotating with angular
velocity w about a fixed axis its kinetic energy is \I(jo^.

For, using the notation of Art. 12, the linear velocity v of

P is ro).
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.'. kinetic energy of particle m =^7nv'^ = \nfir^(f)^.

„ „ whole body = 2JmrW
CO ^ 9

= IM1^^\
or J/o)^.

Dimensions. K.E. = J /co^,

or W[-^]'
FTP '

^.6. same dimensions as force X distance, which is work done.

[6.] What is the analogous equation in linear motion ?

16. Work done by a couple. // a constant couple K turns

a rigid body about a fixed axis through an angle 0, then the

work done by the couple on the body is KO.
For, in the small element of time St, let the body turn

through a small angle SO.

Then P (see Fig. 9) is displaced through a distance rS6
along the direction of the force F+ Y\

.'. The work done on the particle P in time St

= (Y+Y')rSe.

.*. The work done on the body in time St

= 2(Y+Y')rS0
= Se^(Y-hY')r
= Sei:Yr, since SFV=
=se.K,

where K is the moment of the couple.

Hence, the couple K being constant, the work done by it

during the whole time is given by KO.
Since the work done on any body is equal to the change

in kinetic energy, we have

ir^ = iJ«-co2),
if CO changes to coy

This also follows from the equations

K= Ia, Art. 12,

and Wi2^ft)2+ 2a0, Art. 7,

V. ^ ^
20K

whence m-^^— w"^=—

^

or KO= iI(co^^-w^).

Dimensions. i^Ml [X] = [M] [Lf . ^,

.

[7.] What is the analogous equation in linear motion ?
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17. Summary of preceding results.

Linear Motion. Rotational Motion.

Inertia or mass = i/. Moment of inertia =Mk^=L

Momentum =Mv.
Moment ofMomentum'

or ' = Id).

Angular Momentum J

Force = Mf. Moment of force =/a.

Impulse

Kinetic energy

Moment of impulse = /(w^ — w).

Kinetic energy =^Ioi^.

Work done by constant force P moving
its point of application through dis-

tance 5 = Fs= ^M(v^^-v^).

Work done by constant couple K in

turning body through angle $

= /f(9= 4/(a)i2-(o2).

18. Table of moments of inertia for some simple solids
of common occurrence. Most of the following results (the

exceptions are noted by an asterisk) are included in a rule

enunciated originally by the late Dr. Routh, and known as

"Routh's Rule."

"The moment of inertia of a solid body about an axis of

sum of squares of perpendicular semi-axes
symmetry = mass X o^ a k

'

the denominator being 3, 4, or 5 according as the body is

rectangular, elliptical, or ellipsoidal."

It should be remarked that these perpendicular axes are

axes of symmetry, and that a circle and sphere are special

cases of an ellipse and ellipsoid respectively. The results can
be obtained by simple integration similar to that indicated in

the earlier part of the chapter. Except where otherwise stated

the axes core taken through the centre of gravity.

(1) Thin straight rod—about an axis perpendicular to

its length

:

* Through one end, -—, where I is the length.

Through the centre of gravity,

half-length.

Mh^
, where h is the

(2) Thin rectangular lamina, sides 2a, 26—about an axis

:

Perpendicular to plane, M . —^^.

Parallel to side 2a,
3

(3) Rectangular parallelopiped sides 2(X, 26, 2c :

62+ c^
Perpendicular to 26, 2c, M.

3
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(4) Circular wire, radius a

:

* Perpendicular to plane, Ma^.

* Diameter, ^——

.

2

(5) Circular disc, radius a

:

Perpendicular to plane, ——

.

JJiameter, —;—

.

4

(6) Circular cylinder, radius a :

Central axis, .

2

(7) Elliptical disc, axes 2a, 26

:

Axis 2a, ——-.
4

Axis 2b, ^If.
4

Perpendicular to plane, M

.

—^^—

.

(8) Spherical shell, radius a :

* T^. , 2Ma^* Diameter, —-—

.

o

(9) Sphere:

y.. , 2Ma^
Diameter, —-—

.

5

(10) Ellipsoid, axes 2a, 26, 2c:

Axis 2a, M .
—^^— , and similarly for other axes.

(11) * Right cone, height h, radius of base a:

3a-^
Axis, M.

^^

Perpendicular to axis, ^^ 'WK\Gi?-\--r\
20 \ 4/

19. We will now proceed to the discussion of some problems
in connection with the angular momentum and kinetic energy
of a rigid body rotating about a fixed axis, on the assumption
that the general principles of work and energy are understood.

ILLUSTEATIVE EXAMPLES.

1. A spinning top weighing 8 oz. is set rotating with a velocity of

5 revolutions a second. Taking the radius of gyration as 2 ins., calculate

(i) its angular momentum
;

(ii) its kinetic energy.
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(i) Angular momentum= /w.

Here w= 5 . 27r= IOtt radians a second.

Angular momentum = /(o

5= ir7;7r Ib.-ft.^/seC.

(ii) Kinetic energy= -/w2

^I'l-ie^^^'''
[7r2= 10approx.]

250 125 _ „^ ,,= -gg-= -^ = 7 ft.-pdls. approx.

2. Round the spindle of a top ^ in. in diameter, is wound a thin string
3 ft. in length which is pulled off by a uniform force in 2 sees.

(i) Find the angular velocity after that time.

(ii) If the angular velocity is IStt rad./sec, how long did it take to pull
off the string ?

(i) The point where the string is held passes over 3 ft. in 2 sees.

.'. its average velocity = 1 ft. /sec.

.*. since the pulling force is uniform its final velocity= 3 ft./sec. (Art. 7),

and this is the final velocity of any point on the spindle's rim.

Hence, since the spindle is j in. in radius or ^^ ft., the final angular
velocity of the spindle or of the top = 3-^4^3 = 144 rad./sec.

(ii) Let t sees, be the unknown time.

Then as before, the final velocity of a point on the string or on the rim of

the spindle

= 2. 1 ft./sec.

The final angular velocity of top therefore

=— -48^^^^-/^''-

But this also = 15:7 rad./sec.

6 . 48 ,

^

.'. —^= 157r;

6 . 48 96
• t=—— =— sees.

IStt 57r

3. A heavy top weighing 1^ lbs., whose radius of gyration may be taken

as 4 ins., is revolving at the rate of 450 turns a minute.

(i) What energy is expended in stopping it ?

(ii) If a frictional force equal to — lbs. wt. be applied to the rim at a

distance of 6 ins. from the axis, how soon will the top be brought to rest,

supposing the axis to be fixed vertically all the time ?

(iii) How many turns will it have made since the force was applied ?

(i)Here I=l{±J or ^ Ib.-ft,

450. 27r , , ,-
0)= ——-— rad./sec. = IStt.

bO
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The kinetic energy of the top (Avhich must require an equal amount of

energy to stop it)

= ^ . ^ . 1 5'^ TT^ [7r2= 10 approx.]

= 187ift.-pdls.

(ii) We must first find the angular retardation produced.

Denoting this by a rad./sec.^ we have

rate of change of angular momentum= /a

=-a Ib.-ft.-rad.-sec. units.
6

5;r 1
Moment of applied torque= ^^ . 32 . - units.

Hence, S'^^.H"'

.•. required time= -
a

^1573-

= 3 sees.

Or we may proceed directly.

Change of angular momentum in time t

= /a>= ^157r units.

Moment of applied torque

K^
577

"96* -•i units.

Kt == /a)

;

/-
IStt . bTT

16L —
6 ' 96

•

= 3 sees, as before.

(iii) Since the final angular velocity= 0,

and initial „ „ =157r rad./sec.

;

.-. average „ „ =-k~ rad./sec.

—^-f27r revolutions/sec.

.*. in 3 sees, top will have made — or llj revolutions.

15

4
'

45

4

Or we may use the equation KQ= \I{i3i^ - (o^).

For from (i) Kinetic energy = 187^ ft.-pdls.

57r 1
Applied couple /f=^ x 32 x - ft.-pdls.
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.*. if be the angle through which G moves in destroying the kinetic

energy,

— 32 i
96 •

'^^
• 2

Hr.32.i.^=187j.

n 375.3 ,.
u=— radians

OTT

revolutions

=^ (taking 7r2= 10)

= llj as before.

4. If the mass of the top in example (2) be 8 oz,, its radius of gyration

about its axis of symmetry 2 ins., and the pulling force be 10 lbs. weight
throughout, how many revolutions a second will it be making when all the

string is unwound ?

The work done= 10 . 3 . 32 ft.-pdls.

If to= the angular velocity generated, in radians per sec,

kinetic energy = -/w2

22V6

Equating the K.E. to the work done, we get

0)2= 10. 3. 32. 4. 36;

.-. a> = 96N/T5;

.'. number of revolutions per sec.

0)2.

48\/l5

TT

Notice that in this case the size of the spindle does not affect the problem.
If the spindle were larger the string would be unwound in fewer turns, hut

in a shorter time. The force would act at a longer arm, and the power or

rate of work would be greater, but the actual work done, or kinetic energy
generated, would be the same. For the same reason the string need not be
"thin."

5. To a wheel and axle of mass 48 lbs. and radius of gyration 6 ins. is

attached a weight of 13 lbs. by means of a rope wound round the axle.

Taking the radius of the latter as 4 ins., and neglecting the weight of the

rope, find the velocity of the 13 lbs. weight after it has descended 52 ft.

We shall equate the work done by gravity on the whole system to the
kinetic energy of the system. Let v ft. /sec. be the required velocity of

the weight : then the corresponding angular velocity of the wheel is

v-f ^ = 3v rad./sec.
o

The K.E. of the whole system

= |.48.§,(3.)2 + ll3..2

= -.121 ft.-pdls.
2

^

Work done by gravity on the system

= 13. 32. 52 ft.-pdls.
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191
Hence, ^i;^= 13. 32 . 52,

2

„ 2.13.32.52"^=
121

'

26.8

= 19 ft./sec. nearly.

6. The following example involves the use of the Calculus.

Find the energy communicated to a top when it is set in motion by a

string 1^ yds. in length, being pulled with a force which varies as the

length of the string already unwound.

Suppose that .v ft. have been unwound at any moment. Then the pull

at that moment = A^ units of force. The whole work done or energy
communicated when 1^ yds. are unwound

= X
I
xdx

Jo

2

81A
units of energy

Here neither the size of the spindle nor the radius of gyration make any
difference.

EXAMPLES FOR SOLUTION.

1. A spinning top weighing 6 oz. makes 300 revolutions a minute.
Taking the radius of gyration about the axis of revolution (supposed
vertical) as 1^ ins., calculate

(i) its angular momentum
;

(ii) its energy.

2. It is said that a Diabolo spool in full rotation spins 2000 turns a

minute. Taking the mass as 3^ oz. and the radius of gyration as ^ in.,

find its angular momentum and how much energy has been expended on it,

assuming that half has been wasted.

3. The weights of the minute, hour, and seconds hands of a watch are as

15 : 10 : 1. Compare their angular momenta, their lengths being as 3 : 2 : 1,

assuming that the minute and hour hands revolve about one end, but the
seconds hand about its middle point.

(For the value of k, see Art. 18.)

4. A door a ft. wide is shutting with angular velocity w rad./sec. If

it comes to rest in y^j sec, find the shock on the door post, the mass of the
door being i/lbs. and its radius of gyration k ft.

5. A door weighing 40 lbs. is rotating about its hinges, when its edge,

3 ft. 6 ins. away from the hinges, and moving at 30 mi./hr., meets an
immovable object. What is the measure of the shock experienced by that
object during j of a second ? Radius of gyration 2^ ft.

6. Given that the top in Fig. ii. weighs 3^ oz., that the string is li yds.

long, and the average radius of the conical body is 1 in., calculate the
angular momentum and the energy due to rotation when the top falls from
rest so as to unwind in 1^ sees.

Take the radius of gyration as f inch.

7. If the top in the preceding question is making 360 turns a minute just

after falling, how long did it take to fall ?
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8. The following method of spinning a top is frequently employed. A
rod AB fitted with a spiral thread can be pressed vertically downwards
along the axis of symmetry of the top, thus

causing the top to rotate. The rod can be
raised up and Dressed down again, and so on
(Fig. 10).

Find the energy communicated to the top

after pressing down five times with a force of

6 lbs., the rod BC being 6 ins. If the top

weighs 5 oz. and the radius of gyration about
its axis is 3 ins., what is its angular velocity

after the five downward strokes ?

9. In the last question how many times

must the sleeve be pressed down with a force

of 5 poundals to give the top an angular velo-

city of 32 radians a second ?

10. The steering of a torpedo is effected by
means of a gyroscope mounted in gimbals,

which in the accompanying figure are not
shown. The principle employed is the main-
tenance of its direction in space of the axle A C
of the wheel EF, when once the latter has been set spinning, and the

gimbals are unlocked to allow of free motion in every direction.

The figure illustrates the method of spinning the gyroscope. The gimbals

(not shown in the figure) are first locked so that the axle becomes mounted

Fia. 10.

End view ofaxle

atAB

Fio. 11.

in fixed bearings. While it is in this position the teeth at the base of the
segmental cone engage in the grooves of the axle at the end AB. The
cone is attached to a spring S^ which is automatically released as the torpedo
passes through the " impulse tube," The released spring swings the cone
round in the direction indicated, thus communicating rotation to the axle

of the gyroscope. When the teeth at T' arrive at the axle AB, i.e. after

I of a revolution of the cone, the rotation of the latter is checked almost
instantaneously, by mechanism not here shown, and the gimbals are
simultaneously unlocked so that the gyroscope is free to move in any
direction.

The weights of the wheel (with axle) and cone are 1 lb. 12 oz. and
1 lb. 2 oz. respectively, and their radii of gyration Ij ins. and 2 ins. ; the
diameter of the cone at the base is 5 ins., and of the section AB of the
axle f in. If the gyroscope starts spinning at 2400 revolutions a tuinute,

determine ^

(i) the energy communicated by the spring
;

'"[

%:.
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(ii) the average pressure between the teeth of the cone and those of

the axle.

(iii) If the wheel continues spinning for 30 minutes, find the mean
resisting couple due to air and friction."^

11. A small top weighing 3 oz., is so constructed that on its head is a

series of small slanting flanges arranged like the sails of a windmill. The
object of these is that the spinning of the top may be prolonged by blowing
down on the flanges. Supposing that it is given an initial spin of

7 revolutions a sec, in the direction in which blowing assists, find the
value of the couple due to friction at the toe and the resistance of the
air when it is kept spinning uniformly under the following conditions :

There are 7i flanges each of area A sq. ins. inclined to the vertical at

an angle of 0°, the blowing pressure is P lbs. to the square in,, and the
distance of the centre of pressure of each flange from the axis = ^ inches.

Supposing the initial spin is given in the wrong {i.e. opposite) direction,

and the same blowing force applied, how soon will it be brought to rest,

taking into account the resistance of air and friction, assuming their mean
value to be half of that in the previous part of the question, and that the
radius of gyration of the top is k ins. ?

12. Fig. 12 represents a top which is spun in the following manner. The
spindle projecting from the head of the top works freely in a little cap to

be held in one hand, while the other pulls a short string of about 4 ins.

length, one end of which is fixed in the spindle. The string is pulled out,

allowed to slack and wind again on the spindle in the reverse direction.

The process is repeated, and after two or three pulls the top seems to have
its maximum rotation, for it starts humming. Why should the rotation be
greater after, say, three pulls than after one pull ?

Fig. 12. Fig. 13.

13. In another top (Fig. 13) the spindle projects from its mounting, which
can be held without the top's rotation being affected ; one end of the string

is looped once round the spindle and this end is pulled till the whole
string has been pulled over the spindle. Taking the tension in one part of

the string to be e^'^i^ x the tension in the other part, where /x is the coefficient

of friction and 27r the angle through which the string is wrapped, how does

this method of spinning with a string compare with the more ordinary

one?

* Further information on the steering of a torpedo is given in Chapter V.
For the information there contained, and for the above approximate measurements,
the author is indebted to the Admiraltj'- authorities and to the courtesy of the

Assistant Superintendent of H.M. Torpedo Factory, Woolwich Arsenal.
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14. A bucket weighing 2 lbs. hangs by a rope wound round a wheel and
axle, mass 8 lbs., whose radius of gyration may be taken as 15 ins. If the
diameter of the axle is 6 ins., find the angular momentum of the wheel and
axle after the bucket has attained a velocity of 20 ft./sec.

Express also the kinetic energy of the whole system in this case. What
is the angular velocity of the wheel when 25 ft. of rope have been
unwound, and how long has the unwinding taken ?

It is clear that the whole system moves quicker and quicker under the
action of the (constant) weight of the bucket. So when a top is set spinning
by means of a string, unless the hand holding the string moves quicker and
quicker the string will not remain taut. The accelerated motion of the
hand does not necessarily mean an increasing pull.

15. In the above question, supposing the bucket to contain a mass of

40 lbs., find the angular momentum of the wheel and axle when the bucket
has fallen 36 ft. from rest, and the kinetic energy of the whole system.
For how many seconds after this must a frictional force of 6j lbs. weight

be applied to the rim of the axle to bring it to rest, assuming that the rope
has become slack ?

16. A wheel and axle of mass 6 lbs. is mounted on a table with its

axis vertical, and is made to rotate by the descending of a weight of 2 lbs.

attached to a string passing over a pulley at the edge of the table, the

other end being wound round the axle of the wheel. The weight falls

12 ft. in 3 sees. ; find the radius of gyration for the wheel and axle, if the

radius of the axle is 1 in.

17. In experiments recently conducted on the See-har for steadying ships

at sea, a big flywheel was mounted amidships with its axle vertical. The
wheel, which was in the form of a solid disc, was approximately 1 yd. in

diameter, weighed (without the spindle) 1100 lbs., and was made to rotate

at 1600 revolutions a minute. Neglecting the spindle, find what horse
power would generate the velocity in 86f sees.

If steam is shut off and the flywheel comes to rest after 2750 revolutions,

what is the value of the frictional couple due to the resistance of the air

and the bearings ?

18. Find the energy communicated to the top in example (1) by winding
it up with a string a yard long and pulling

(i) with a constant force, F lbs.

;

(ii) with a force which varies as the length of string (a) already used,

(^) not yet used
;

Comment on the similarity of answer to (a) and (^).

(iii) with a force varying as the square of the length already used ;

(iv) varying as the nth. power of the length yet to be used.

How would you find the angular velocity in each case ?



CHAPTER 11.

REPRESENTATION OF ANGULAR VELOCITY.

PRECESSION.

20. If a body have a point fixed, then the angular velocity or

rotation of the body has three essential properties. For

:

(1) It is about a definite axis.

(2) It is in a definite direction about that axis.

(3) It is of definite magnitude.

These three properties can be represented geometrically, for :

(1) Through a fixed point, say (to represent the fixed

point in the body), can be drawn a straight line OA to

represent the axis of rotation.

(2) The direction of rotation about this axis can be repre-

sented by considering as positive the rotation of a

a' J y A
Fio. 14.

left-handed screw as one looks along the axis. For
instance, in the adjoining figure the same rotation is

+ 0) about OA or A'A or — w about OA' or AA'.

(3) Finally, we can mark oflf the length OA to represent

on any scale we like, the magnitude of the rotation.

Hence it follows that angular velocity, like linear velocity, is

a vector quantity.

21. On the physical meaning of composition of velocities.

Relative and total velocity. When we say that a particle P
simultaneously possesses two velocities u and v in two directions,

OA, OB inclined to one another at an angle a, we do not mean
that it is moving in space in two directions at once. That is

impossible, for it moves with a definite velocity in a definite

direction in space. The physical meaning of the "two simul-

taneous velocities" will be best understood by supposing (Fig. 15)
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that we have a thin wire rod, OA, on which a small bead P
is moving with velocity it relative to the end of the rod
from which it started, while the rod moves with velocity v
in space, keeping parallel to itself, in the direction OB. The
total velocity In space is then along a definite straight line OB
passing through the original position of in space.

The same total velocity would have been obtained by taking
the velocity v of the particle relative to a rod OB, while

OB is moved parallel to itself in the direction OA with a

velocity n.

22. It will be noticed that at any instant the toted velocity

of F in the direction O'A' in space is equal to that relative to

O' + thatofO' =«+^cos«,

which, if a = 90° (namely if OA, OB are at right angles to each

other) =u-hO.

Hence in this case the total velocity of P in the direction

O'A' in space, is the same as the velocity relative to the rod ; so

that, when we compound two velocities at right angles, each
component is the total velocity of the particle in the direction

considered. Similarly, if a particle possesses three simultaneous

velocities u, v, w not in one plane, we must further suppose the

whole frame AOB to move in space with velocity w keeping
parallel to itself, in a direction OC not in the plane of the

paper; and if the three directions OA, OB, OC, are mutually
at right angles, each of the components is the total velocity of

the particle in the direction considered.

23. We will now extend the above observations to the case of

angular velocities or rotations.

Simultaneous Rotations. Definition. If a rigid body is

rotating with angular velocity coi about some axis OA, fixed in

the body, relative to a frame in which that axis is fixed,

while the frame rotates about some fixed axis OB with angular
velocity 002, then the total angular velocity of the body is said

to be compounded of the two simultaneous rotations cd;^, w^ about
the axes OA, OB.

c
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It is clear that the frame mentioned might rotate with a

velocity w^ relative to a second framne which had a total angular

velocity Wg , so that the definition can be extended to any number
of simultaneous rotations.

24. Parallelogram of angular velocities. // a rigid body,

of which one point is fixed, has two simultaneous rotations

ft)i, 0)2 about axes OA, OB, and if w^, Wo cere rejjresented in
direction and magnitude by OA, OB, respectively, then the

resulting rotation, w, is represented in direction and magni-
tude by OC, the diagonal of the parallelogram of which OA,
OB, form two sides.

Fig. 16.

Let OA, OB (Fig. 16), represent the two rotations co-^, Wg about
OA, OB, respectively, the direction of rotation in each case being
positive viewed from 0, i.e. that of a left-handed screw.

Let us suppose that the angular velocity w^ is relative to the

frame AOB, whilst co.2 is the angular velocity of the frame itself.

Complete the figure as shown.
Let (7 be a point in the body passing through the plane of the

frame AOB and coinciding for the instant with a point C-^^ in

the plane of the frame.

Then the linear velocity of the point C is (away from the

reader and perpendicular to the paper)

= that relative to (7^+ that of 0^

= h.OA.CM-k.OB.C^N,
where h is a constant depending on the scale chosen,

= /c. (2a ^0(7- 2a 50(7)

zero.

.*. the point C is at rest (as also the point 0), and therefore
the body is rotating about OC, and OG represents the direction

of the axis of rotation.
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Again, the linear velocity of a particle at ^ is

:

CO . AL and also

= ay^AN'

= k.OB,AN'
= k.2A0BC
^=k.OC.AL;

.'. M = k.OO,

i.e. OC represents the magnitude of the resulting rotation oj.

Similarly, any number of simultaneous rotations may be
combined by the parallelogram law. The order in which the

rotations are combined does not affect the final result. So also

any single rotation can be resolved into any number of com-
ponent rotations.

It follows that angular velocities, like linear, are subject to

the parallelogram law.

25. If 0)2 had been in the reverse direction originally (repre-

sented by the dotted line) we should have most easily obtained

our resultant by drawing OB
in the opposite direction. The [B]

resultant o) would in this case /

have been represented by the /

diagonal OG as shown in Fig. /

17. /

26. In practice it is sometimes
more convenient to represent

rotations right-handed instead

of left-handed. The resultant oo

of any two rotations w-^, Wg will

be best found by always drawing
OA, OB so that w^, (jo.2 are in the fio. it.

same direction (whether positive

or negative) viewed along OA, OB ; co will then be in this direc-

tion viewed along OC, where OC lies between OA and OB.

27. The parallelogram of angular accelerations follows at once

as a corollary from tliat of angular velocities.

28. Definition. By angular velocity about a line which is

moving, we mean the total angular velocity about the fixed line

in space with which the moving line happens to be coinciding

at the instant under consideration.

If in Fig. 16 we consider the angular velocity ^i about OA
to be relative to the frame, which rotates with velocity ^2 about

OB, it is clear (since angular velocities, like linear, are vector

quantities) that the angular velocity of the frame about the line

OA of the frame is 0^2 cos a, where the angle BOA = a.
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Hence the total angular velocity of the body about OA, i.e.

about the line fixed in space with which OA happens at the

instant to be coinciding =0)1+ 0)2 cos a

= 0)1 if a = 90°.

Thus, if we compound two angular velocities about axes at

right angles to each other, each component is a total velocity

—

not a velocity relative to some moving plane or frame.

So too with three rotations about axes mutually at right

angles.

Conversely, if we resolve a single rotation into three components

mutually at right angles, each component is a total velocity,

and each is independent of the other two.

The importance of the above will be seen more clearly in

Chapter VI.

29. Representation of angular momentum. If we have a

wheel rotating about its axle H'OH with angular momentum
^ Iw, say, then using the same conventions

as when representing angular velocity, we
can take the line OH to represent this

angular momentum. Therefore, angular

momentum is a vector quantity, and hence

it follows that angular momentum, like

angular velocity, obeys the parallelogram law.

For instance : if OA (Fig. 16) be taken to

represent the component angular momen-
tum JiO)i of a body about OA, OB to repre-

sent the component I^w^ about OB, then

the resultant angular momentum Im of the

body is about OC, the diagonal of the

parallelogram, and is represented by OC,

ft)i and 0)2 being defined in the same way
as in Art. 24.Fig. 18,

30. It should be noted that the resultant axis of total angular
momentum of a body is not necessarily the same as the resultant

axis of total angular velocity : for I^w^ , I^w^ are not pro-

portional to o)i, 0)2 respectively, unless 1^ = 1^.

31. Referring now to Fig. 18, we see that if OE is a line

making an angle a with the axle OH, then, OH being taken to

represent Iw about the axle, OH cos a, i.e. OK, represents the

resolute about OE, where HKO is a right angle.

We might also have taken the area, A say, of the wheel's

disc to represent /o), in which case A . cos a represents the

resolute about the axis OE. In other words the resolute would
be represented by the area of the projection of the disc as seen

from a point E on OE. This method of estimating the resolute

about any axis of the angular momentum of a rotating wheel
is sometimes convenient.
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32. Distinction between axis and axle. The axis of symmetry
of a solid of revolution we shall in general call its axle, as

distinguished from any other axis in the body about which it

may be rotating or have a component rotation.

It should be noticed that the axle in this sense is a geometrical

straight line—not a thick spindle relative to which, or fixed

to which, the body rotates.

33. Definitions. Gyrostat. A solid of revolution which is

capable of rotation about a straight rod coincident with the

axis of the solid is frequently called a gyrostat.

Gyroscope. A gyroscope is an instrument in which a gyrostat
is mounted in a frame. The most common form of a gyroscope
is that in which the frame is so mounted that the gyrostat can
turn in any direction. See Figs. xxii. sqq.

We shall, however, in general refer to the spinning wheel of

the instrument as "
the gyroscope"

Spin of a gyroscope. By the spin of a gyroscope or top about
its axle we mean the total angular velocity about the line fixed in

space with which the axle happens to be coinciding at the instant

in question. It is not the angular velocity relative to the frame.

F<
z

Q An^utoir momen,tu.m. v j^

A'

Fig. 19, Fia. 20.

34. Motion of a gyroscope with its axle horizontal. By
means of the parallelogram of angular momenta we can discuss

the motion of a gyroscope which is moving, under the action

of gravity only, about the fixed vertical through its point of

support with its axle horizontal as in Fig. 19.
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We will consider the frame to be so light that we are only

concerned with the motion of the wheel itself.

Let OX, OY, OZ (Fig. 20) be three mutually perpendicular

lines, OZ being vertical. Suppose the gyroscope rotating with

angular velocity o) about OX, its axle, whilst the latter rotates

about OZ with angular velocity Q. The component angular

momenta of the gyroscope are Iw and I'il where /, /' are the

moments of inertia about OX and OZ. Let OA, OG represent

these components in magnitude and direction.

After time St the angular momenta are lo) and /'Q, about

OA' and OG, where the angle AOA' = mt
Then if A'B be parallel to OA, OB represents the change of

angular momentum in time St, for if compounded with OA and
OG it yields OA' and OG.

But OB=AA'= OAx (QSt) = IwQSt
;

.'. the change of angular momentum in time St is about OB and

= IcoQSt
;

.
•

. the rate of change of angular momentum is about OB and

But this requires for its production a torque IcoQ about OB.
Thus the rotation of the axle about the vertical requires for

its maintenance the application of a torque K, say, perpendicular

to the vertical, and to the axle of the gyroscope, such that

35. In the gyroscope of Fig. 19, the necessary torque is

supplied by the weight Mg of the system, and the equal and
opposite vertical reaction at the point of support, which together

have a moment Mga, where a is the distance of the centre

of gravity from the point of support.

Hence, in this case, Mga= IcoQ.

Dimensions. Mga= ^-^^^^— . [Z].

It should be noticed that the centre of gravity of the system
describes a horizontal circle with uniform angular velocity Q
under the action of the horizontal reaction at the point of

support. (See Art. 43.)

36. Precession. The rotation of the axle OX of the gyro-
scope, by a torque about Y, round the third perpendicular axis

OZ we shall call a precessional motion, and the axle will be said

to precess about OZ, the axis of precession.

The equations of steady motion of a gyroscope or top with
its axle inclined to the vertical are given in Chapter VI.
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37. The preceding results may be stated more generally as

follows, without any reference to vertical or horizontal (see

Art. 85):

If a body which has angular momentum /w about an axis

OX be under the action of a torque K about a perpendicular

axis OY, then the angular moTnentum tvill be rotated about
the third perpendicular axis OZ with angular velocity Q deter-

mined by the equation jr_ j c^

38. Rule for direction of precession. It will be clear from
the above discussion that : If the rotated angular momentum
and the torque axis are drawn in the same sense, then the

angular momentum sets itself towards the torque axis.

39. It should be noticed that although the gyroscope in

Fig. 19 is rotating about the vertical, yet the torque does not

create angular momentum about the vertical. It creates angular
momentum about its oivn horizontal axis, which combining, as

fast as created, with the angular momentum about the axle,

causes the axle to take up successive positions in the plane XY.
We have already said (Art. 34) that our investigations refer

to the maintenance of an existing motion : otherwise our
equation K= I(joQ involves the paradox that if (0 = 0, i.e. if

the body is not spinning, then 1^2, the precessional velocity, is

infinite ! This is, of course, not true, but it is true that a wheel
spinning with a small velocity precesses with a large velocity,

and vice versa.

A full discussion of all that occurs when precession is being
started, is given in Chapter IV., where it is shown that

oscillations are set up which are quickly destroyed by friction,

and in many cases are scarcely visible. In instances given
before Chapter IV., where, strictly speaking, the starting of

precession is in part involved, the preliminary phenomena will

either be assumed or neglected.

[8.] Explain what effect the couple due to the action of gravity on a

Diabolo spool will have, if the string is not quite under the centre of gravity,

(i) when the spool is not spinning
;

(ii) when it is.

40. It is clear that the investigation of Art. 34 is equally true

when K varies and consequently Q as well.

For let be the angle which the axle makes at any instant

with its initial position.

Then Se= AOA' and AA' = IwSe.

Hence the increase of angular momentum in time St is about
OB and is equal to IwSO : namely, the rate of change of angular
momentum is equal to

dt



40 PRECESSION

It follows that, if w is constant,

10) J

or the precessional angle swept out during any time is a measure

of the time-integral of the applied couple.

41. Analogy in linear motion. The application of a torque

to maintain the steady rotation of the axle of a spinning body
about a perpendicular line has its analogy in linear motion,

where a force is needed to main-
tain the steady rotation of the

line of motion of a particle

moving uniformly in a circle.

For let a particle P, of mass
on, move with constant velocity

V round a horizontal circle whose
centre is 0, towards which is a

constant force F.

Let P,Z„ P,Z„ F,Z, (Fig. 21)

be successive positions of the

vertical through successive posi-

tions of P. Then the effect of

applying the force F perpendic-

ular to the line of the momentum
imiv of the particle, is to turn the line of momentum at a
constant rate about an axis perpendicular to F and itself.

In this case, if the rate at which the line of momentum is

being turned be ^2, then Q is equal to the angular velocity of

V
the particle about 0, i.e. = -, and we have

Fig. 21.

F:
onv

= mv . il.

42. Diabolo. The rule given above (Art. 38) for the direction

of precession will at once explain the reason for the instructions

(variously worded) which are given to beginners learning to

spin a Diabolo spool.

Let us suppose that the Diabolo is being spun right-handed

as in the illustration (Fig. 22), when the end farther away from
the performer begins to dip down, and the nearer end to rise.

To get the spool again horizontal it is necessary for the

performer to pull back his right hand and (in imagination)

press down the rising end of the spool with what may be
called the "working" end of the string. It will thus be seen

that a torque is created about an axis perpendicular to the

axle of the spool, and since the axle tends to set itself towards
the torque-axis (both being drawn in the same sense), the
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lower end of the spool rises, as illustrated in Fig. 23. The
same principle holds if the end next the performer is dipping

;

also if the spool is being spun left-handed ; and a general rule

Aa:le Axle.

^

Fig. 22.

could be formulated to the exclusion of all ideas of left- and
right-handed by saying that the working end of the string must
be moved so as (in imagination) to press down the rising end.

Let us now suppose that it is required to make the Diabolo
turn round to the right of the performer when it is being spun
as in Fig. 22. It is clear that a torque

applied by the strings about a vertica,!

axis to the right, as viewed from
above, will result in the near end
dipping. A torque must be applied

about a hm^izontal axis, and taking

the rotation of Fig. 22, this torque _ _ _ _ "fri^^Jl^.^i^
can be applied in the right 'sense" f _——-"^"TV^''^Io.
by the performer dragging the spool '^ Jixl^ ^"^ ^^

slightly towards him, or (without fig. 23.

moving the spool) by changing the

point of support so as to make it slightl}' nearer to himself.

If the spool is dragged from the under side it is advisable to

extend the two strings at a large angle, as otherwise the dragging
action will tend to depress the end nearest to the performer and
thus produce the opposite effect to that aimed at.

[9.] If the Diabolo is being spun left-handed, what is the effect caused
by the performer

(i) drawing in his right hand 1

(ii) drawing in both hands ?

(iii) drawing in his left hand when the end near him begins to dip 1

A discussion is given in Chapter IX., on
will not spin.

Diabolo which

[10.] In a motor-car the fly-wheels are mounted so that their axles are

parallel to the direction and motion of the car. Supposing the fly-wheels
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to revolve right-handed when viewed from the back of the car, what is

their effect on the car as it turns a corner (a) to the right, (6) to the left ?

[11.] (a) When a paddle-boat is steaming ahead, what is the gyroscopic

effect of paddle-wheels when a wave strikes the ship and gives it a list

to starboard ?

(6) What is the effect of steering to starboard ?

EXAMPLES.

1. In the equation /i'=/wi2, if w is 20 radians a second, 12 = 5 radians a

second, /=50 Ib.-ft.^, what is the value of K in ft.-lbs. ?

2. The moment of inertia of a heavy wheel about its axle is 15,000 Ib.-ft.^.

If it is making 3,000 revolutions a minute, what will be the velocity of

precession when a couple of 12,000 ft.-pdls. is applied to the axle of the

wheel '^

3. Find the length of the axle of the wheel in Fig. xxii., supposing its

moment of inertia to be 3,000 gram.-cm.^, and that, when spinning at the

rate of 50 turns a second, a weight of 60 gr. suspended from X causes it

to precess at 3 turns a minute.

4. Find the rate of spin of a gyroscope, taking the length of its axle

as 12 cm., the moment of inertia 3,500 gr.-cm.^, the rate of precession 3 turns

in 70 sees., and the suspended weight as 75 grms.

5. A heavy wheel, mass 50 lbs., in the form of a disc, is rotating about
its axle with velocity 16 radians a second, and precessing at the rate of

4 radians a second under the influence of a couple of 100 ft.-lbs. Find
the radius of the wheel.

43. Independence of translation and rotation. It is proved
in works on rigid dynamics that any motion of a rigid body
can be completely represented by a translational motion of its

centre of mass G combined with a rotational motion about
some axis through G; and further, that these two motions are

independent of each other and produced independently by the

acting forces.

Hence, in considering the motion of any rigid body, whether
some point in it is fixed or not, we may discuss the rotation

of the body as if G were fixed, and the translation of the bod}^

as if it were a single particle, the entire mass being concentrated

at (?.

The truth of this can be illustrated by taking an ordinary
walking stick and marking the position of its centre of mass
with a piece of chalk. If the stick is then suspended loosely

from the fingers of one hand while a blow is given to the

stick, it will be found that, whenever the blow is struck so

as to pass through the centre of mass, the stick flies out of

the hand with a motion of translation only, that is to say,

it has no rotation. If, on the other hand, the blow is struck
through any other point than the centre of mass, then it will

be observed that not only does the centre of mass have a trans-

lational motion, but the stick also rotates about this (moving)
centre of mass.
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A familiar illustration of this independence of translation

and rotation can be given by tilting back a chair and then
letting it fall forward again. The chair not only swings forward
to its original position, but also moves forivard along the carjjet :

for, as it swings forward, its centre of gravity has a forward
translational motion, and, before the chair can come to rest, this

motion has to be stopped (by the friction on the carpet), inde-

pendently of the rotation. The rotation is, of course, stopped

by the moment of the vertical reaction of the floor on the

two front legs about the line joining the points of contact of

the two hind legs with the floor.

44. Further illustrations of precession.

Hoop. If a wheel, or an ordinary hoop, is rolling along the

ground it has an angular momentum about its central per-

pendicular axis or axle. If the hoop begins to move in the

slightest degree out of the vertical plane, the external forces

acting on it (i.e. the reaction of the ground and the weight
of the hoop) tend to tilt over the axle, with the result that it

" precesses " about an axis very nearly vertical, and its path
becomes a curve instead of a straight line.

Engine wheels. The tilting moment may be considerable

without the wheel leaning over at a large angle to the vertical,

as in the case of wheels of a railway engine where the reaction

of the rails on the wheels is very large. Let us suppose the
engine turning to the right, looking in the direction in which
the train is going. To make each wheel precess to the right,

a couple must be applied about a horizontal axis (through its

centre of gravity, say) parallel to the direction of motion of

the train ; and this couple must, as we have seen, be in a
direction tending to lift up the left-hand end of the axle and
to depress the right-hand end. Therefore, owing to the rota-

tion of the wheels (apart from any motion of translation), it is

necessary to raise the left rail slightly in rounding the curve.

If this were not raised the whole turning of the train would
be effected by the lateral pressure on the left-hand flanges,

which (in addition to considerable wear to rails and wheels)
would tend to make the wheels precess to the left, and would
increase the risk of their "jumping the metals."

Gyroscopic action in a bicycle. The wheels of an ordinary
bicycle have rims so light compared with the rest of the

machine that their angular momentum does not play a pre-

ponderating part in the motion of the whole machine. At times,

however, it is quite an appreciable quantity, as can be easily

realised by taking the front wheel out of its bearings, holding
the axle in the hands and attempting to turn the axle after

a considerable spin has been given to the wheel.

There is a certain amount of gyroscopic action brought into

play when the rider, finding himself falling over, say to the
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right, gives the handle bar a sharp turn to the right. In this

case we shall see, if we consider the directions of the rotations

in question, that this twisting of the handle bar causes the

front wheel to precess about a horizontal axis into a more
vertical position, i.e. to right itself. Simultaneously with the

application of the couple to the front wheel by the man there

is a counter couple applied to the man, and therefore to the

back wheel, which causes it to turn at a greater inclination to

the vertical, and so to increase the curvature of the path of

the bicycle.

The preponderating cause, however, of the bicycle righting

itself is to be found in the linear momentum of the whole
machine and of the rider, for by far the greater part of the

motion is not rotational.

When the front wheel is turned at an angle to the back wheel,

the linear momentum of the rear part being checked by the
front part brings a force to bear on the latter, one component of

which drives it along its path, while the other, perpendicular to

the wheel, raises it to a more vertical position, and consequently
the whole cycle proceeds in a more vertical position.

It is clear that if the brake be applied to the front wheel and
not to the back, the bicycle will tend to skid more than if the

linear momentum of the rear part is checked while the front

wheel is free to move along its path.

Motor cycle. In a motor bicycle there is a heavy fly-wheel

rotating rapidly in the plane of the road wheels, so that as the

cycle rounds the curve the fly-wheel is constrained to precess,

and therefore, on account of this fly-wheel alone, a couple IwQ
must be applied to cause this precession, apart from the other

forces required to turn the rest of the machine. In other words,
the rider must lean over more than if the fly-wheel were not
there, or were not rotating. In practice this wheel rotates in

the same direction as the road wheels.

This necessity for leaning over an extra amount accounts in

part for motor bicycles being more liable to skid when going
round a corner than ordinary bicycles.

45. Gyroscopic resistance. We have seen that in order to

turn the axle of a rotating wheel about a perpendicular axis,

it is necessary to apply a couple K, about a third axis, per-

pendicular to the other two, whose measure (employing the

above notation) is /coQ. Thus the resistance which the axle of

a rotating wheel offers to being turned about the axis of the
applied couple K is measured by ImQ, and this expression is

frequently called the gyroscopic couple, or gyroscopic resistance.

Hence, the only difl(erence in discussing the motion of a rotating

body, as compared with that of the same body not rotating, is

that we must include the gyroscopic couple among the resisting

forces.
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As a further illustration of the gyroscopic couple, it will

be noticed that if we try to turn the axle of a wheel which
is not rotating we meet with no resistance beyond that of the

inertia of the body, i.e, co = 0, and the gyroscopic couple /wQ
becomes zero. So in the Introductory Chapter, when the

gyroscope (Fig. xxii.) is prevented by the clamp at Z from
turning about the vertical, i.e. when Q = 0, the gyroscopic couple

is again zero and the body offers no resistance to being turned
about YY' , except that of inertia. Hence we see that a rotating

wheel will offer no gyroscopic resistance unless it is free to

precess.

Again, when we apply the equation Mga = Ia)Q, in Art. 35,

to obtain the equation of steady motion of the gyroscope, we
are expressing the fact that the gyroscopic couple IwQ is

balancing the couple Mga due to gravity.

[12.] What corresponds to the gyroscopic couple in uniform circular

motion ?

If we neglect the inclination to the vertical of a wheel as

it rolls round a curved path, the expression for the gyroscopic

couple simplifies. For if v is the rate at which the wheel is

travelling, r its radius, R the radius of the curve,

r it

and ift)12 = -y5—

»

K .r

k being the radius of gyration.

The investigation when the inclination of the wheel to the

vertical is taken into account, will be found in Chapter VI.

FURTHER EXAMPLES.

1. A metal disc of radius 1 ft. and mass 2 lbs., is made to roll uniformly
round a curve of radius 12 ft. The gyroscopic couple is 5 ft. -lbs.

Neglecting the inclination of the disc to the vertical, find the rate of

rolling.

2. An engine on six wheels, each of radius r, is rounding a curve,

radius R. If V is the speed of the train, M the mass of each wheel,

k the radius of gyration, and 2A the width of the gauge, show that the

gyroscopic couple due to the wheels is

Owing to their rotation, which wheels tend to come off the rails V

3. If the wheel of the gyroscope in Fig. xxv. is a solid disc spinning
with velocity cu, and precessing with velocity 12, find its radius if 2a= the

length of the axle.

4. The propeller shaft of a Torpedo-Boat Destroyer is a cylinder of

radius a ft., and weight M lbs. When the shaft is revolving with an
angular velocity w the speed of the ship is V ft./sec, and the radius of
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the turning circle is R ft. Find the torque exerted by the bearings of

the shaft.

5. In the preceding question, taking a = 4 ins., 3/"= 12 tons, F=:35 knots,

(0 = 750 revohitions per minute, /?= 605 yds., estimate the torque in ft.-lbs.

These values are taken from H.M. T.B.D. "Tartar."

6. A motor cycle has a heavy fly-wheel, in the form of a disc of radius

4 ins. and weight 32 lbs., which is making 1,600 revolutions a minute. The
machine and rider weigh 320 lbs. If the rider rounds a curve of 25 ft.

radius when travelling at 20 mi./hr., find approximately the horizontal

distance that he must move the centre of gravity of himself and his machine
owing to the rotation of the fiy-wheel.

Note. If the fly-wheel were not spinning he would have to lean over a
certain amount in order to turn the corner ; but when the fly-wheel is

spinning, he must increase the arm of the gravity coujdIc by a small amount,
^', in order that the fly-wheel may precess. It may be assumed that the
gyroscopic couple is the same as if the fly-wheel were in a vertical plane.

7. In the previous question, just before the rider rounds the corner he
leans over to the right with an angular velocity of a radian a second,

(a) How is the torque supplied which causes the fly-wheel to have this

angular velocity ? (6) About what axis was it, and in what direction ?

(c) What is the effect on the back wheel of the reaction to this torque ?

id) Find its magnitude.



CHAPTER III.

DISCUSSION OF THE PHENOMENA DESCRIBED IN THE
INTRODUCTORY CHAPTER.

46. If we turn to the Introductory Chapter we shall now
see the reasons for the paradoxical behaviour of the tops there

described. To take the first instance mentioned, if a top is

placed on its toe while spinning, the torque, which would cause

it to fall over if it were not spinning, fails in this case to

turn over the axle but rotates it, and so the top precesses.

Also, if we consider the rule given in Art. 38 for the direction

of precession, we see why an ordinary top precesses in the

direction of its spin, when viewed, say, from above (Fig. i.),

while that in Fig. iii. (a) precesses in the reverse direction

:

for in the latter case the centre of gravity is below the point

of support and the torque acts in the reverse direction.

47. Let us now consider what causes a top that has been spun
at an inclination to the vertical to rise to a more vertical

(though not necessarily quite vertical) position before settling

down to a steady motion. Suppose we take an ordinary top

and spin it on a rough board. When it has settled down to a

motion in which its axle is practically at a constant angle to

the vertical, let us drag the board round in the same direction

as the precession. It will be found that the centre of gravity

of the top rises, and some of us may remember that the method
of resuscitating a dying top is to get it on to one's hand and
drag the hand round in the necessary direction. Similarly, if

\YQ draw the hand round in the opposite direction the top falls

;

so that we can sum up our experiment in the two following

statements

:

(i) hurry the precession, the top rises
;

(ii) retard the precession, the top falls.

Hence, when a top is spun at an inclination to the vertical

and rises, there must be at first something that is hurrying
the precession, and eventually (since the top afterwards falls)

something that retards it.
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Now the only forces acting on the top (besides the resistance

of the air) are

:

(i) its weight;

(ii) the reaction at the point of contact of the toe with
the table.

The weight acting vertically downwards cannot hurry or

retard the precession.

I f^In Fig. 24 let JT and A be respectively the centre and radius

of curvature of P's path. The reaction at the toe can be

resolved into two components, one S, perpendicular to the plane

on which the top is spinning, due to the stiffness of the plane

:

Fig. 24.

and another, R, in the plane due to its roughness. The com-
ponent of R in the direction PK provides the necessary normal
acceleration, while the component along the tangent to the path
is either hurrying or retarding the precession.

If it is hurrying the precession we see by the rule given in

Art. 38, that the axle of the top rises "^ to a more vertical

position, and vice versa. Let us consider the cases in detail.

Let o) be the velocity of spin, and Q the angular velocity

of P about K, and let PN=a. The direction of the friction

at P depends on the direction of motion of P, for it will act

contrary to the direction of the latter. At the start there

must be skidding if the top is dropped on to the plane.

Now the actual velocity of P is that relative to A^+that of

N \ or, the actual velocity of P (measured into the paper)

= a(jd— AQ^.

* The rise or fall of a top is more fully discussed in Chapter IV. from con-

siderations of conservation of angular momentum and conservation of energy.
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But at the start w is very big, though it gradually diminishes
under the action of the friction, and also the resistance of the

air.

Hence, at the start we have

aco'^ AQy (i)

i.e. the top is skidding and P is moving into the paper ; friction

accordingly acts in a direction which hurries the precession,

and the top therefore rises.

In the meantime w is diminishing (and also a as the top gets

more vertical), and after a time we have

ao) = AQ, (ii)

i.e. P has no motion relative to the table, and steady rolling

motion becomes possible.

And, later, we have ao)<CiAQ, (iii)

i.e. friction is retarding"^ the precession and the top begins to

fall.

Were it not for the resistance of the air, the state of steady

motion, when once established, would, theoretically, continue

indefinitely : for as soon as aoo becomes =^Q rolling commences,
which can only be disturbed by air resistance. Immediately
aco becomes <^AQ friction acts so as to increase co, but never
beyond the point necessary to raaintain steady motion, since

it is a self-adjusting force. Hence, the position of steady

motion is a stable one, for friction produces an oscillating

tendency to return to it ; but eventually, the resistance of the

air, tending to destroy this state, overcomes the tendency of

friction to restore it.

[13.] Even in vacuo the top would not really spin for ever. What is the
explanation of this ?

[14.] In Fig. XVII. why must the gyroscope be placed on a smooth
surface ?

[15.] The rougher the table the more quickly the top will rise when first

spun. Why ?

[16.] Given a rough table, why does a top with a blunt peg rise more
quickly than one with a fine peg ?

[17.] Explain the apparent contradiction of the tight and loose screw in

the top of Figs. iv. {a) and iv. (6).

[18.] Supposing our object in spinning a top is to make it " go /or as long

as possible" how would

(i) a blunt peg, (ii) a fine peg,

contribute to length of time ?

[19.] How would the centre of gravity behave if the table were perfectly

smooth ?

*It will be shown in Chapter IV. that, as the top dies, though friction is

resisting precession, yet owing to other causes, fi increases. Amongst these

is the fact that the gravity couple acts on a longer arm.

D
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[20.] Should we get precession? If so, how would the axle move when
the motion is steady ?

[21.] What is the condition that a top should /a^^ to its steady position?

What conduces to this condition ?

[22.] Discuss the rising of that form of top where the "body" to which
the spin is given revolves freely on a spindle carrying the toe ; namely,

where the toe and spinning body are not rigidly connected. Does it arrive

at steady motion more quickly or more slowly than the other kind ?

48. The discussion given in Art. 47 explains the behaviour

of the whip-top and loaded sphere described in the Introductory

Chapter, as also that of the acorns and hard-boiled eggs : for

the effect of friction at the point of contact is to hurry the

precession, and so raise the centre of gravity, as in the case

of the top. The phenomenon exhibited by the top of Fig. vi.,

and by the egg of Fig. ix., is caused by a tendency of the liquid

to spin about its shortest axis, which overcomes the effect

of friction tending to raise the centre of gravity and so bring

the top on to its longest axis. To understand this thoroughly

it will be necessary to consider under what conditions a body
will spin about its shortest axis in preference to any other.

49. Tendency to spin about the least axis. If a rigid body,

with three perpendicular axes of symmetry, is free to turn in

any direction about its centre of gravity G, and rotation be
continuously given to the body about a fixed direction through
G, for example the vertical, but no other forces act on it, the

body will set itself so that its least axis through G becomes
vertical, and it will spin stably in this position.

For every particle composing the body tends (owing to what
is frequently called centrifugal force) to separate itself as far

as possible from the vertical axis, and so increase the moment
of inertia about that axis. Hence the body w^ill only spin

stably when the moment of inertia is as great as possible

;

namely when the least axis of the body through (r is in a
vertical position.

This can be easily illustrated by taking a stone or any other

rigid body attached to a string and, starting with the string

vertical, whirling the body round and round oneself as a vertical

axis. The body will rise higher and higher until the string

is horizontal ; but having arrived at this position it will continue

to maintain it, whatever additional spin may be communicated
about the vertical axis.

Similarly, it will be seen that a liquid or viscous body which
is being made to rotate about a vertical axis will tend to change
its shape, in such a way that its vertical axis becomes smaller

;

and if there are no external forces tending to rotate the body,
but rotation has already been communicated about some axis,

this axis will tend to become smaller and smaller, as is the
case with the Polar axis of the Earth.
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50. We shall now be able to see the reason for the behaviour
of the eggs and the tops which were full of liquid.

We know (Art. 47) that the shell, even though originally spun
about its shortest axis, would, if empty, rise and spin about its

longest axis, owing to the friction at the point of contact with
the table. But between the liquid and the shell there is com-
paratively little friction, so that the liquid, once spun about its

shortest axis, continues to spin about that axis; and being of

much greater mass than the shell it overcomes the latter's

tendency to rise on to its longest axis, with the result that the

whole body, shell and liquid, spin about the shortest axis.

It is clear that the final behaviour of the egg, or top, must
depend, amongst other things, on the relative masses of the

liquid and shell, and this accounts for the top of Fig. VIII.

spinning about its longest axis although full of water.

51. The gyroscopic top (Figs. xv. a, xv. h) is another, and
perhaps more remarkable, instance of the precession of the axle.

The forces acting on the top are (Fig. 25)

:

(i) its weight;

(ii) the normal reaction S at the point of contact of the top
with the spiral coil

;

(iii) the tangential reaction F at that point

;

(iv) the reaction at the point of support 0.

In most models of this top,

the centre of gravity is made
to coincide with the point of

support, though in some it can

be adjusted so as to be either

above or below as required.

For the sake of simplicity

we will consider that it is

coincident with the point of

support—though the follow-

ing explanation would only

require a little modification if

this were not so.

Let us regard the axle of

the top as in the plane of the

paper, and let the spindle be rolling (left-handed as viewed from
0, the point of support) along the inside of the coil, into the

paper, and be approaching the end of the coil. The motion
will be most easily explained by considering first the efiect

of the tangential reaction F at the point of contact P, and
then the additional efiect of the normal reaction S.

(1) Tangential reaction. It is evident that the friction acts

into the plane of the paper and perpendicularly to it. This

Fig. 25.
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friction, together with the equal reaction at 0, forms a couple

about the horizontal OX, which lies in the vertical plane through
the spindle, and consequently the axle of the top tends to set

itself towards OX, i.e. towards the coil, downwards, but is pre-

vented from doing so by the normal reaction S of the coil.*

The spindle, in consequence, pressing hard against the coil,

and thus increasing the friction, rolls or skids along until it

reaches the end, when, no longer meeting with any resistance

from the coil, it rushes rapidly round the corner. After this

it presses up against the coil, since friction now acts out of

the paper towards the reader, and the motion is continued on
the same principle as before.

(2) Normal reaction. The effect of the reaction S is to

accelerate the motion of the spindle along the coil. For, if we
again take the position of Fig. 25, it is evident that S creates

a torque about an axis drawn from into the paper, towards
which axis the spindle sets itself by the laws of precession.

It should be noticed that if the centre of gravity of the top

is at the point of support, the top, when at rest, will balance

with its axle at any inclination to the vertical. In this case,

even though it is touching the coil, there is no reaction at

the point of contact; but the moment the top is spun, any
contact with the coil involves friction, and therefore a pre-

cessional tendency against the coil.

52. The motion of the toy gyroscope in Figs, xvi.-xxi. is

due to the action of the external torque which causes the axle

to precess, but there still remain one or two points worthy of

remark in connection with the scientific gyroscope of Fig. xxii.

It was mentioned that if, while the gyroscope is spinning with
the weight attached at X, the screw at Z be tightened, then
the gyroscope at once turns about Y'Y. It is interesting to

note that the direct cause of this turning is not the onoment of
the weight about Y'Y. The moment of this weight tends to

set up precession about ZZ', but since the screw at Z is tight,

and consequently the frame containing Y'Y is fixed, the pivots

at Y and Y' meet with resistance forming a left-handed couple

about Z'Z, and, as in the case of the gyroscopic top, it is this

resisting couple about Z'Z which turns the gyroscope about Y'Y
in accordance with the law of precession. Similarly, referring

to Fig. XXIII., it is this resisting couple about a vertical axis

which causes the gyroscope to set itself with its axis vertical,

and this couple reversed which brings about the somersault.

53. An explanation of the oscillations mentioned in the
Introductory Chapter on page 10 will be found in Chapter IV.

* This normal reaction is of very considerable magnitude, for it is found that
the coil, unless strongly constructed, becomes bent out of shape.
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54. We will now discuss why the "drifting" in still air of
a rifle bullet is due to gyroscopic action, while the swerving
of a " sliced " golf ball is not. The essential diflerence is that
in the case of the rifle bullet the

axis of spin is initially a tangent
to the path described, while in the

case of the golf ball it is a normal.

Let us take the latter case first. ^^

Suppose that the ball is travel- "^

ling at velocity v, with a spin o)

due to " slicing " in the direction

indicated in the figure, which re-

presents a horizontal section of the

ball. Let its radius be a. Consider the respective velocities

of two points P^, P^ at opposite ends of a diameter which is

at right angles to the path of the centre of the ball.

The actual velocity of P-^ = v — aoci.

„ „ Pg = f -|- aw.

But the pressure of the air on the surface of a moving body
increases with the velocity. Hence the pressure of the air on
Pg is greater than on P^, and consequently the ball will swerve
to the right, looking in the direction of motion."^

In the case of the rifle bullet, however, the swerving is in the
first instance due to gyroscopic action. The direction of the

bullet's spin (due to the rifling of the barrel) is left-handed,

viewed from the gun (Fig. 27). The excess of wind pressure

^
Fig. 27.

on the under side of the nose-end of the bullet tends to tilt

the point upwards, but results instead, owing to gyroscopic

action, in the bullet working over slightly to the left and
becoming slightly " broadside on " to the direction of its path.

This is not shown in Fig. 27. The consequent increased air

*It is for this reason that the face of a "driver" is slightly "laid back";
for, since the ball is "teed up" before being driven, and the club strikes it

horizontally, the inclination of the face to the vertical should give a slight

under-spin to the ball, which we see from the preceding, causes it to rise against

gravity. Otherwise, with the same initial velocity, it would be impossible for

the ball to travel as far as it does.

It is said that the late Professor Tait, having been given initial data, declared it

to be impossible to drive a golf ball beyond a certain distance, which he specified.

When his son, the late F. G. Tait, exceeded this distance by a considerable
number of yards, the Professor examined the problem more thoroughly and
arrived at the above explanation.
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pressure on the right-hand side causes the bullet to "drift" to

the left.

In the case of a boomerang the varying air pressure is due
to both of the above causes and to others of a more complicated

nature.

55. Celts. Referring to the Celts described in the Intro-

ductory Chapter, the explanation of their behaviour is to be
found in the direction of the normal reaction at the point of

contact with the smooth horizontal plane.

In Fig. XI. (Plate i.)^ the surface near the point of contact is

approximately spherical, so that when the stone is tilted in

any direction the normal reaction passes through the line GG
and so has no moment about GG. Hence the stone will have
no tendency to turn about GG.

But in Figs, xii., xiii., this is not so, and phenomena {a) and (h)

are explained in the following way

:

Phenomena (a). Each base is in these two cases roughly
ellipsoidal near the point of contact, but the ellipsoidal surface

is " slewed round " slightly, relatively to the main body of the

stone.

Accordingly, when the stone is slightly displaced from its

position of equilibrium, the vertical reaction, which is normal
to the ellipsoid at the point of contact, does not pass through
GG.
Hence it has a moment about GG tending to turn the stone

about GG.
In Fig. XII. the vertical taps at A and at B result in moments

of opposite sign about GG ; in Fig. xiii. they result in

moments of the same sign, i.e. from A to B.

Phenomena (6). When the stone is spun about the vertical

GG, since the conditions are not absolutely perfect, small

oscillations will be set up, and the normal reactions already

described will be called into play.

These may or may not tend to stop the rotation, and so

they may either increase or diminish the oscillations.

The particular effect of the normal reaction will of course

depend on the special shape of each stone.

In any of the above cases, the motion, whether reversed or

not, will only cease when the original energy of spin has been
destroyed by friction or communicated by oscillation to the

horizontal surface on which the spinning takes place.

A complete analytical investigation of the above phenomena
is given by Mr. G. T. Walker in The Quarterly Journal,
No. .110, 1896.

*For Plates i.-iii. see end of book.



CHAPTER IV.

THE STARTING OF PRECESSION. OSCILLATIONS OF

THE GYROSCOPE.

56. Conservation of angular momentum. We know that

when two particles collide, the total momentum of these two
particles, measured in any direction, is the same after impact as

before ; for the impulsive reaction between the two produces

as much momentum in one particle in one direction as it does

in the other particle in the opposite direction. Hence, the

moment of the momentum (i.e. the angular momentum) about
any fixed line must be the same after impact as before. It

follows therefore that, in any system of particles whatever,

whether rigidly connected together or not, if internal forces

only, and no external forces, act on the system, then, however
the configuration of the particles may change, the total angular
momentum of the system (i.e. Znir^w) about any fixed line in

space remains constant.

ILLUSTRATIONS.

(1) If a mouse is put in a cylindrical cage capable of revolving

freely about a horizontal axle, then, in whatever way the mouse
moves, the total angular momentum, about the axle, of the

mouse and cage together, remains constant. It is clear to an
observer that if the mouse climbs directly up the curved surface

of the cage, the cage begins to revolve in the opposite direction,

though not necessarily with the same angular velocity as the

mouse; for though I-^co-^, the angular momentum produced in

the mouse, is equal to /2CO2, the angular momentum produced
in the cage, I^ is not necessarily;- equal to /g.

(2) If a horizontal disc were constructed which' could turn

perfectly freely about a vertical axle, a juggler spinning on the

disc could diminish or increase his rate of rotation by extending

or dropping his arms, and thereby increasing or diminishing his

moment of inertia. A similar action enables a cat to right

itself while falling in mid air, legs uppermost, and land on
its feet. (See instance 5.)
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(3) If a skater is describing a circle about the orange as

centre, he can increase his angular velocity about it by leaning

over directly towards it, although there is no tangential force

tending to increase this velocity. For his moment of inertia

about the orange becomes smaller, but his angular momentum
about the vertical through the orange remains unchanged."^

If he describes the circle with angular velocity, oo say, he has
also an angular velocity co about the vertical axis through the

point of contact of his skate with the ice ; for he makes a
revolution about this axis in the same time that his centre of

gravity makes a revolution about the orange. The pressure

exerted by the ice has no moment about the vertical axis

through the point of contact. If, while he is describing the

circle, he extends his arms, he increases his moment of inertia

and therefore diminishes his angular velocity w about the axis

in question ; and this diminution of w is shown on the ice by a
" flattening " of the curve described—a necessary result, since co

is also the angular velocity of his centre of gravity round the

orange, which, if diminished, involves a larger radius for

the curve.!

(4) In the case of the earth and the moon we have another
instance of the conservation of angular momentum. The action

of the tides on the earth tends to diminish the kinetic energy
of the latter, and therefore its rate of spin ; but the angular
ononientuvi of the whole system, earth and moon, remains
unchanged. Hence, since the angular momentum of the earth

itself is diminished by the tides, it follows that the moon must
recede from the earth so as to keep the angular momentum of

the whole system constant.

(5) Cat righting itself in mid-air. Suppose the cat to start

falling vertically with no rotation, back downwards and legs

extended at full length perpendicular to the body as depicted
in Plate ii. Then during its fall the animal turns itself through
180° about some axis, roughly a line running lengthways
through the centre of gravity of its body ; but since it starts

with no rotation, it can at no time during its fall have any
angular momentum about this line, which we will call its axis.

(An examination of the photographs given will exclude the

idea, sometimes suggested, that the cat gives itself rotation by
using the hands for a fulcrum just as it is let go. The first few
images show no tendency to turn either to one side or the other.)

* In the same way, when water is rotated and then let out of a hole at the
bottom of a basin, as the distance r of any particle from the hole diminishes,
since the angular momentum remains constant, w increases and the water goes
round with increasing speed.

The same is true of a stone tied to one end of a string and swung round
horizontally while the other end of the string winds up round a fine stick or peg.

t It should be remarked that the above reasoning, although in agreement with
experiment, is nevertheless not strictly accurate, since we are considering angular
momentum about a moving line.
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Let us regard the cat as made up of a fore part and a hind
part, whose moments of inertia /^, /^ ^^^ equal when the legs

are fully extended at right angles to the body. The photo-

graphs"^ given in Plate ii. show that it first contracts its fore

legs (thereby making I^ less than I^ and then turns its fore

part round. This latter action necessitates the hind part being
turned in the opposite direction (since the total angular
momentum about the axis is zero) but to a less extent, since

I2 is ]> I^. The animal then contracts its hind legs, extends
its fore legs, and gives its hind part a turn. This necessitates

the fore part being turned in the reverse direction but, again,

to a less extent, since I^ is now ^ I^. It will thus be seen

that by continued action of this kind the cat can turn itself

through any required angle, though at no time has it any
angular momentum about its " axis."

[23.] If the cat were allowed to fall on to a cushion, resting on a smooth
floor, would the fall of the cat move the cushion ?

• 57. The foregoing remarks may be summed up in the fol-

lowing two principles connected with the motion of a gyroscope
such as we have been considering

:

1. Since there is no torque about a vertical axis, the angular
tnoTnentwrn about the vertical through the point of support must
throughout the motion re7nain constant, i.e. equal to the value,

tvhatever it was, at the beginning of the iinotion.

2. The torque, which is about a horizontcd axis, must produce
angular momentuTYi about that axis, and it cannot produce
angular m^omentum about any other axis.

These are of the utmost importance in considering the motion
of a gyroscope.

An explanation of the phenomenon of precession by the

principle of conservation of angular momentum will be found
in the Appendix.

58, Why precession increases as a top dies. It will be
remembered that if a gyroscope is spun with one end of its axis

in the socket of the vertical stand. Fig. xvi., then towards the

end of the motion it precesses faster and faster, as it descends,

until it finally flies off the stand.

Let us apply the principle of conservation of angular
momentum to the consideration of this phenomenon.
We will suppose the wheel to be spinning initially with

angular momentum Jw, its axis being inclined at an acute

angle ^^ to the vertical. If we neglect all friction,! then the

* These photographs are reproduced from Nature (Nov. 22nd, 1894), by the
kind permission of the proprietors.

t In reality the friction cannot be entirely neglected. The friction at the
socket resists precession, and that at the bearings of the wheel causes a gradual
diminution of its spin, but these retardations are not enough to affect the
statement that the precession increases as the gyroscope descends. A further
discussion, taking some of the friction into account, is given in Art. 66.
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angular momentum about the vertical through the point of

support must remain constant throughout the motion, i.e. equal

to the initial value IcocosOq. Precession will take place in

the saine direction as w viewed, say, from above. As the

gyroscope descends, its inclination to the vertical increases,

and therefore Jcocos 6 diminishes. [Or the projection of the disc

as seen from above diminishes : see Art. 31.] Hence the

contribution of angular momentum about the vertical (in the

same direction), due to the precession of the frame and wheel
(regarded as not spinning), must increase, in order to maintain
the constancy of the whole.

When the axle becomes horizontal it is clear that the whole
angular momentum about the vertical through the point of

support is due to the precession of the wheel and frame, and
if Iz is the moment of inertia about the vertical for the frame
and wheel, and Q the (increasing) azimuthal velocity, we have

Iz^ = I(jo cos Oq,

Iw cos On
or Q

I

After this the contribution of angular momentum about the

vertical from the spinning of the wheel is in the opposite

direction to precession (Ico cos has become negative), and since

the constancy of the whole is maintained, the angular momen-
tum about the vertical due to precession must continue to

increase.

This last position of the gyroscope corresponds to the top

represented in Fig. ill. (a) of the Introductory Chapter.

The same considerations hold good in the case of a top

spinning on a fine fixed point, except that in this case the

top touches the table before reaches 90".

59. Inertia. We have already alluded in Art. 8, to the

resistance due to the inertia of a body, i.e. the resistance which
a solid body oflfers, by reason of its mass, to any force applied

to it. If the body had no mass it would offer no resistance,

provided it were free to move in the direction of the applied

force.

The following conception of a solid body is frequently useful

in illustrating the property of its inertia.

Suppose that we imagine a perfectly rigid massless skeleton

framework, free to move in every direction, and composed of

a great number of small hollow cells with smooth thin walls.

Since it is perfectly massless it is incapable of offering resistance

to force. Next suppose that each cell is filled with a loosely

fitting shot, as in Fig. 28.

The whole body has now considerable inertia, due to the
mass of the shot which are in the cells : and we may con-

sider a rigid body as composed of an infinite number of small
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heavy particles (corresponding to the shot in the cells) kept
in proximity to one another by a massless framework similar

to the one above described.

Y X

Fig. 28. Fig. 29.

We know that a rigid body resists force in every direction

;

or, to follow out our analogy, in whatever direction our frame-

work is pushed, a resistance will be experienced, since the

moment the framework moves, each shot begins to press

against a side of its cell. Let us suppose however that we
could conceive an imaginary body which possessed inertia in

two directions, say OX and OZ, but not in the direction

OY, such a conception might be approximately illustrated by
considering the skeleton framework to be composed of long

tubular cells, running parallel to OY: for in this case an
attempt to push the framework in the direction OY would
meet with no resistance. Again, if the tubes were circular

in shape as in Fig. 29, and endless, their centres lying on the

line OZ, then the body would offer no resistance to being
turned about OZ,

60. Start of precession. In Art. 34 we explained that the

equation K= Iwil applies only to the maintenance of existing

precession and not to the starting of precession. We have yet
to consider what happens when precession is first set up.

Let a weight be attached to the gyroscope as in Figs. 30
and 31. This will clearly introduce an external couple which
acts on the gyroscope, but it should be noticed that there is

one already, due to the weight of the wheel and frame. The
additional weight will, however, give a clearer illustration.

Suppose that the wheel is spun in the direction indicated

in Figs. 30 and 31 while its axle XO is held in a horizontal

position, and let it be then released so that the attached weight
and the weight of the frame and wheel begin to act. It will be
observed that the whole system " wobbles " and oscillates con-

siderably, and then finally settles down to a steady precession

about the vertical OZ.
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Let us consider the reason for these phenomena, assuming
the spin of the wheel as constant throughout the motion.

When the gyroscope is released, the axle tends to precess

about OZ under the action of the external couple ; but, before

it can do so, both the wheel and frame and also the attached

weight have to acquire angular momentum about OZ, about
which there is no external torque. What we may call the

inertia "about OZ'' acts as a resistance to the precession, and
causes the wheel to dip downwards (Art. 47) through a small

angle. Resistance due to inertia is clearly seen in the case

of the attached weight which will "lag behind."

Fig. 30. Fig. 31.

Fios. 30 and 31.—Gyroscope when released, inclined at a small angle to the
horizontal. The angle in the figure is somewhat exaggerated for the sake of

clearness.

Now when OX dips down out of the horizontal, an observer

with his eye vertically above (Art. 31) sees a projection of

the disc of the wheel ; so that it is clear that as soon as the

axle dips, the spin of the wheel contributes angular momentum
about ZO (not about OZ). But since there is no torque about
the vertical ZO, the angular momentum of the whole system
about this vertical must always be zero, since it was zero

originally. Hence, as the gyroscope dips, the frame, weight
and wheel must acquire angular momentum about OZ (not

about ZO) by the motion of the centre of gravity round OZ.
This will cancel that of the wheel about ZO, due to its spin

about its axle, and maintain the constant total value zero.

In other words the wheel, frame, and weight will precess

about OZ.
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61. The above phenomenon of the dipping of the gyroscope
illustrates also the second principle laid down in Art. 57, i.e.

the torque can only produce angular momentum about its

own axis. For it is clear that when the system is precessing

its kinetic energy is greater than before it was released ; since,

as far as the spin of the wheel is concerned, it is the same, and
the wheel, frame, and weight are now precessing. The fact is,

this excess of kinetic energy is provided by the work done by
the torque in turning the system about its own axis, and
causing it to dip. Hence the dip is necessary for conservation

of energy as well as for conservation of angular momentum.

62. Oscillations. This precession will not at first be steady

:

for we have seen that whether precession is taking place steadily

or not, the angular momentum about the vertical of the frame,

weight, and wheel (regarded as not spinning) must be cancelled

by the angular momentum about the vertical due to the spin

of the wheel—which necessitates the dipping of the axle.^

Hence the precessional velocity depends on the dip, and alters

if the dip is altering. There will however be a steady value

of Q, consistent with Ico and K, and also a steady angle at

which the axle dips to the horizontal : and this steady or

mean value of the " dip " and of the precessional velocity Q,
is arrived at in the following manner by a series of impulsive

jerks and oscillations which are eventually destroyed by
friction.

The particles which at first, by their inertia, retard the

precession, as soon as " dip " takes place acquire, by impulsive

action, a velocity of precession greater than the mean velocity Q
of the axle, and now, owing to their momentum, have the effect

of hurrying the precession. The next instant the precessional

velocity of the axle will be greater than that of the particles,

and their inertia will again retard precession ; and so on.t But
every time the precession of the axle is hurried or retarded the

centre of gravity of the system rises or falls (Art. 47). The
result is that, in addition to the backward and forward
'' wobbling " the gyroscope oscillates up and down about the

mean position of " dip," until finally, the oscillations having

^ By hurrying or retarding the precession the angle made with the horizontal

by the axle of the gyroscope can be diminished or increased : but if the system is

left to itself it must precess with a small "dip."
Although the axle is precessing at an inclination to the horizontal we may

still employ the equation K= Iw^ since the angle in question is small. In
Chapter VI. this equation is discussed for all inclinations.

t The successive retarding and hurrying effect of the inertia can here again be
most clearly realised by observing the suspended weight, which swings backwards
and forwards in jerks about a mean position.

An analogy to this starting of precession may be found in the motion of two
railway trucks coupled together at rest, when one receives a sudden impulse.

Each in turn assists and hinders the other's motion, until the same steady motion
is arrived at for both.
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been destroyed by friction, an angular velocity Q is reached

consistent with the values of K and Iw, i.e., when

lot)

Steady motion will then follow ; but any attempt to alter this

existing state of steady precession will be followed by oscillations

similar to those observed at the starting of precession.

It should be noticed that during the motion above described,

the gyroscopic resistance IwQ (Art. 45) is alternately greater

and less than the applied couple.

It is clear, then, that the " dip " and consequent oscillations are

entirely due to what we may call the inertia "about OZ" of

the frame, attached weight, and wheel ; but if they possessed

the imaginary property of having no inertia "about OZ" as

suggested in Art. 59, there would be no dip and no oscillations.

In fact the gyroscope would precess exactly as it does in the

case of steady motion where there is no inertia to be overcome.

The reactions at the bearings of the wheel contribute slightly

to the oscillations, in the same way that the inertia does, but
are not the primary cause. The primary cause of the oscillations

is the inertia of the system.

63. The reason will now be seen for the phenomenon men-
tioned in the Introductory Chapter, that if a downward pressure

is applied at X (Fig. xxii.), when the gyroscope is spinning

slowly, the axle XX' dips appreciably before precession takes

place, but a sudden removal of the pressure will leave the

system oscillating violently : while if the spin is very fast,

the dip is hardly perceptible, and the oscillations are scarcely

more than a " shiver." For, in order that steady motion may

be arrived at, Q (which equals y-j must be large when w is

small, and consequently the impulsive actions and reactions due
to the inertia will be large before the required value of Q is

reached ; whereas, when to is large, Q, is small, and in this case

the dip and oscillations will be small also."'^

A similar explanation to the above accounts for the oscillations

or nutations of a top. These are especially conspicuous just

before its fall, when it goes through a sort of reeling motion.

The spin has by this time been considerably diminished, and

*The reason for this may also be partly seen from the parallelogram of

velocities. For, in the accompanying figure, if w' represents the velocity created

b}' the applied couple about its own axis, it is clear that when w is large the
axis of resultant angular velocity is only slightly displaced ; and vice versa.
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consequently the friction which in the earlier part of the motion
tended to '' damp " the oscillations.

64. The above investigations may now be summed up as

follows

:

Whenever we apply to the axle of a spinning gyrostat a
torque which does Tnore than maintain existing precession,

this torque produces three results

:

(a) Oscillations are set up and continue until destroyed by friction.

They may be so c[uickiy destroyed, or so slight, that they are hardly

appreciable to the eye.

(/3) The torque produces, about its own axis, an effect which is not

always appreciable to the eye, and corresponds to the dipping of the

gyroscope in the preceding articles. Thus we see that work is done

on the gyrostat.

We shall in future pages allude to this effect of a torque

about its own axis as " dip."

(y) It produces about an axis perpendicular to itself and to the

axle, an effect which is much more appreciable to the eye, and
corresponds to precession. Thus we realise the increased kinetic

energy due to the work done on the gyrostat.

This effect of the torque we shall allude to as precession.

Lastly, it must be remembered that there can be no change
of angular momentum about an axis round which no torque

has acted.

65. Explanation by the principle of energy of " Hurry the
precession, the top rises." We shall now see more clearly

(compare Art. 47) why a spinning top rises if we hurry its

precession. For we have seen that the " hurrying " force

produces only a small hurrying effect on the precession (corre-

sponding* to "dip"), but the turning effect (corresponding to

precession) is much more appreciable, and raises the top.

We are, of course, doing work on the top by hurrying the

precession, and since the kinetic energy of precession is not

appreciably increased, the potential energy of the top must
be increased, i.e. the centre of gravity of the top rises. In
the case when friction at the toe alone hurries the precession,

the work which raises the top is done at the expense of the

kinetic energy of spin of the top.

When precession is retarded, work is done by the top, which,

since it does not lose much kinetic energy of precession, loses

potential energy, i.e. the centre of gravity descends.

66. Explanation by the principle of energy of the increase
of precession in a dying top. As in Art. 58, let us consider

that a gyroscope is placed in the socket of its stand with its

axis at an angle Oq to the vertical, when the angular momentum

^ As the spin of the top diminishes the hurrying effect is greater. See Art. 63.
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about its axis is loo. Then Jo) cos ^^ is the angular momentum
about the vertical through the centre of the socket, and this

angular momentum would remain constant throughout the

motion, but for the diminution owing to the frictional couple

at the socket on the frame. We can neglect the effect of

friction on the spin of the wheel, for it will be small.

Now we have seen that the work done by the couple due
to gravity

= K.E. of precession

+ K.E. of descent or ascent {i.e. "dip"),

and since the latter of these two contributions is not large, it

is clear that most of the work done shows itself in K.E. of

precession, and for this reason the gyroscope precesses faster

as it falls.

Again, the work done by the frictional couple at the socket

= K.E. of descent (corresponding to precession)

+ K.E. taken from existing precession (corresponding to " dip ").

Of these two contributions the former is the. greater, and
therefore the gyroscope also descends more quickly as it falls.

The same principles govern the motion of an ordinary

spinning top which is gradually falling from a vertical position,

or one which has never risen to the vertical, but is descending
from its position of steady motion.

The gravity couple, by a large number of excessively small
" dips," gradually causes the top to fall, and, simultaneously

with this, produces the more appreciable increase of precession.

The friction couple at the toe (besides destroying the spin

of the top) resists the increasing precession—the result, about
its own axis, corresponding to " dip "—but contributes, more
appreciably, to the falling of the top—the result corresponding

to precession. A further discussion of this motion is to be
found in Chapters VII. and IX.

If the toe of the top is free to move instead of being con-

strained as in the above instance, the same principles apply

;

for we can consider the centre of gravity of the top as a fixed

point for purposes of rotation, and discuss its translational

motion independently.

67. To prove that when the axle of the gyrostat has been

released from its horizontal position, as much energy is lost

as is communicated to the system.

Let the axle (Fig. 30) on being released descend, by oscilla-

tions, through an angle SO before steady motion is reached.

Let the angular momentum about the axle be /w, supposed
constant throughout : we shall however take into account the
friction at 0, which assists in destroying the oscillations. Let

Iz be the moment of inertia about OZ of the frame and wheel,

and fi the final velocity of precession.



ENERGY LOST IN HEAT. ELECTRICAL ANALOGY 65

Now the angular momentum about the vertical due to the

dipping of the wheel is Im sin 80, or loo . SO, since SO is small.

The angular momentum about the vertical due to precession

is Izi} ; and we have seen that these two are equal in value
but opposite in direction.

Hence, I(i).SO = IzQ (i)

Again, the kinetic energy communicated

= 1/ 02— 2-'- z^^

= ^^IcoQSO, by(i).

But the whole work done

=KSO
= IwQSO;

therefore half the work done, i.e. half of the energy communi-
cated, is lost in frictional heat.

It should be noticed that the couple K is not quite constant

throughout the period under discussion, since it varies between
K and K cos 0, where is the inclination of the axle to the

horizontal at any particular instant : but since never differs

much from SO, the variations in K are negligible.

Analogous theorems are known in Electricity and Mag-
netism. Lord Kelvin first pointed out that if the currents of

a system are kept constant by a battery during a displacement

in which the electro-kinetic energy is increased by W, an equal

quantity W of energy is dissipated from the wires as heat,

the battery being thus drawn upon for a double quantity of

energy 1W. See Maxwell's Electricity and Magnetism, 3rd
Edition, Vol. II., p. 225. See also Vol. I., p. 120, for a similar

theory in Electrostatics.

E



CHAPTER Y.

PEACTICAL APPLICATIONS.

I. THE STEEKING OF A TORPEDO.

68. An allusion has already been made on p. 29 to the

gyroscopic mechanism employed for automatically steering a
torpedo. The patent was originally protected by M. Obry, an
Austrian engineer, and sold to the authorities of the Whitehead
Torpedo Works at Fiume, by whom it was improved and
finally patented in its present form in 1898. The following

is a brief outline of the way in which the steering is effected.

As the torpedo passes through the impulse tube, a trigger

projecting from its upper surface catches against a bolt in the

tube and releases a spring by which the gyroscope is spun
(see p. 29). Thus, before the torpedo enters the water, the

axle of the gyroscope is pointing in the required direction,

from which it never deviates (p. 11). Any deviation sideways
on the part of the torpedo only alters the position of the

gyroscope relatively to the torpedo. The gyroscope is fitted

to the torpedo in such a way that this relative change of

position opens one of two valves (the other being temporarily

closed) connected with the compressed air chamber from which
the screws of the torpedo are driven.

The air rushing through either valve drives (in one case

forwards and in the other backwards) a piston rod connected
with a vertical rudder at the stern of the torpedo, and the

valves are so arranged that when the torpedo swerves to star-

board the rudder steers to port, and vice versa. The middle
position when both valves are closed is scarcely ever maintained
for an appreciable time, with the result that though the torpedo
maintains the direction intended it is by means of a zig-zag

path, roughly 2 ft. broad.

The mechanism is in addition so arranged that if the position

of the object fired at prevents the torpedo being aimed directly

at it, it is possible to set the gyroscope (apart from the torpedo)

in such a direction that the latter will eventually strike the
object, although in the first instance not aimed directly at it.

Full particulars and diagrams of the invention can be pro-

cured at the Patent Office, Southampton Buildings, London.
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II. SCHLICK'S METHOD OF STEADYING VESSELS AT SEA.

69. Herr Otto Schlick has recently carried out a series of

valuable experiments in the " See-bar," formerly a first-class

torpedo-boat of the German Navy, with a view to applying
the principle of the gyroscope to counteract the rolling of a
vessel at sea. We have seen (p. 42, question 11), that when
a paddle steamer heels over to starboard, either by the action

of a wave or from some other cause, her bows, owing to

gyroscopic action, turn towards the starboard side, and vice

versa. Consequently, a paddle steamer rolls less than an
ordinary screw steamer, though the gain in this respect is

somewhat at the expense of the directness of her course. But
it will be noticed that when she heels to starboard, the starboard
wheel, by dipping further into the water, exerts more power
than the port wheel, and so tends to turn the bows to the port

side. Thus the gyroscopic effect of the paddle-wheels tending
to steer the vessel to starboard meets with a counteracting

tendency from the starboard wheel to steer the vessel to port.

Otherwise it would be still more difficult than it now is to

keep a straight course with a paddle steamer in stormy weather.

If a large fly-wheel were mounted in the middle of a screw
steamer on a horizontal axle at right angles to the length of

the ship, and were made to revolve rapidly, it is clear that the

steamer would become much steadier, but only in so far as she

was allowed to make deflections from her course. To obviate

this difficulty Herr Schlick places the fly-wheel with its axis

vertical, and mounted in a frame (see Plate in.) which can
itself turn about a horizontal axle directly athwart ship. The
rolling force of the waves is thus counteracted (in part at any
rate) by the gyroscopic resistance of the rotating wheel, while

the wheel itself turns about the horizontal axle of the frame,

but in no way interferes with the direction of the ship's course.

Two eflects are thus brought about

:

(i) the rolling force of the waves is resisted

;

(ii) the period of the oscillations is consequently lengthened,

so that it no longer synchronizes with the motion of the waves.

The latter will thus tend to damp the vessel's oscillations,

for it should be remembered that violent rolling is the

accumulated eflect of a series of waves each adding to the

existing rolling.

The oscillations of the fly-wheel itself are discussed in the

next article.

When the above appliance was first suggested many seamen
expressed the opinion that waves would more easily break over

a vessel steadied in this manner than if it were free to take up
the motion of the sea, but experience has proved that this is

not the case. A vertical heaving motion takes place, but the
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tendency of waves to break over the vessel is less. During

experiments conducted on July 17, 1906, the "See-bar" when
broadside on to the sea, tvith gyroscope fixed, reached a maximum
inclination of 25° to leeward and 15° to windward. Her rolling

motion passed through '* phases " gradually increasing and then

decreasing. Not long before the gyroscope was set free the

rolling attained 15° on each side of the vertical—an arc of

rolling of 30°; but immediately the gyroscope came into

operation the arc of rolling (out to out) was reduced to 1°.

70. The following detailed account of experiments leading to

the more technical applications of the above results is reprinted

by kind permission of the Institution of Naval Architects, being

an extract from a paper read before the society by Herr Schlick

on March 24, 1904.

" The phenomena which present themselves in connection with

an arrangement of this kind may best be studied by the help of

a model, such as that illustrated in Fig. 32.

This shows a pendulum which is able to

swing to and fro on an axis at n. Above,
the pendulum takes the form of a semi-

circular fork-piece B, A ring is hung on
the point of the screw-pins pp in such a

manner that it can turn about a horizontal

axis through the centre of the fork-piece.

In the ring itself, which is so weighted
that, when inclined by any means, it will

always return to the upright position, a
vertical spindle, carrying the fly-wheel F,

is set in bearings. If the pendulum be

set swinging without the fly-wheel being
made to rotate, it will be found to move
to and fro with a certain definite period.

The frame in which the fly-wheel is borne
may first be allowed to move as easily as

possible, i.e., with a minimum of friction.

If the fly-wheel be then set spinning and
the pendulum receive a push, the latter

will, in the first place, show a consider-

ably increased period of swing.
" The fly-wheel oscillates with its frame during the swings of

the pendulum with a so-called phase difference of 90°, that is to

say, the swings of the axis of the fly-wheel keep lagging behind
those of the pendulum by a quarter of a swing. While the

pendulum is passing its central (vertical) position, the axis of

the fly-wheel will show its greatest inclination, and when the

pendulum is in the outermost position of its swing, the axis of

the fly-wheel stands exactly in its middle position. The ampli-

tude, or extent of the swing, of the pendulum will, as theory

Fig. 32.
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tells us, not be influenced thereby, but will remain exactly as

great as before. That this is the case will also be readily

apparent, since no consumption of energy takes place in the
apparatus, the period only being influenced by the increase

which takes place in the swinging mass,
" Were it possible to fit a fly-wheel of this kind, able to swing

in its frame without experiencing friction, into a vessel, this

would be advantageous in so far that, to begin with, the rolling

motions would become slower, and therefore less unpleasant, and
then, on account of the great difference thus produced between
their period and that of the waves, they would cease to be of

amy consequence. The rolling motions of the vessel would then
become considerably less in extent. If the frame which bears
the fly-wheel be screwed tight on the model, so that it can no
longer turn, the effect hitherto produced by it will cease, and the
pendulum will swing with the same period as it would if the
fly-wheel were not rotating.

" It will readily be seen that the effect produced upon the

swings of the pendulum by the rotating fly-wheel can be of

greater extent only so long as the plane of the frame bearing the

fly-wheel remains approximately vertical.

" If the axis of the fly-wheel be inclined at an angle a to the

vertical, the moment thus produced, acting against the motion of

the pendulum, will be proportional to the value of cos a. Should
the axis of the fly-wheel momentarily become horizontal, a

position which with a pendulum in violent motion it may almost
reach, that is to say, should a = 90° and cosa = 0, the influence

of the fly-wheel will disappear altogether.
" Since, as already stated, there is a phase difference of 90°

between the swings of the pendulum and those of the axis of

the fly-wheel, the gyroscopic influence on the pendulum must be

least in amount when it is passing the middle position, i.e., at

the very position at which it has its greatest angular velocity,

because at the same moment the inclination of the axis of the

fly-wheel is at its greatest, while the velocity with which it is

changing its inclination has become very small or vanished

altogether. When, on the other hand, the pendulum has reached

its outermost position, and is changing the direction of its motion,

thus for an instant reaching a state of rest, the axis of the fly-

wheel then proceeds with its greatest angular velocity through
the middle position, the fly-wheel thereby exerting its greatest

influence. It will thus be evident that the conditions for the

exertion of the greatest possible influence of the gyroscopic

action on the pendulum are not present here. In order that the

motion of the pendulum may be effectively influenced, the

oscillation of the frame with the axis of the fly-wheel will have
to be reduced in a suitable degree. In the model illustrated in

Fig. 32 this may be most simply effected by tightening the

screws pp to a suitable extent, so that they act as a brake on the
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motion of the frame of the fly-wheel. The swings of the fly-

wheel frame are thus reduced in extent, and the phase difference

between the two swinging movements here described now
becomes less than 90".

" If the experiment be made of setting the pendulum swinging
with the brake thus applied to the fly-wheel frame, a very
diflerent phenomenon will be observed. The pendulum will

indeed still swing with a very considerable period, but the

maximum angle attained becomes considerably reduced with
each successive swing, so that a state of rest is reached even
after about two complete swings. In scientific language, the

oscillations of the pendulum experience a damping, in that the

energy stored up in it is converted into heat by the friction

applied to the fly-wheel frame."

The complete paper from which the above is an extract can be
procured at 5 Adelphi Terrace, London, W.C.

71. The flrst gyroscopic apparatus for steadying ships which
was constructed in England, was made at Newcastle, at the

Neptune Works of Swan, Hunter and Wigham Richardson, and
was fitted in October, 1908, to the R.M.S. "Lochiel," owned by
Messrs. David MacBrayne of Glasgow. It can be thrown in and
out of action at will. When it is out of action, the vessel has
been observed to roll, out and out, through an arc of 32 degrees,

which was reduced to a (total) angle of from 2 to 4 degrees by
the action of the gyroscope. The machinery, which occupies

very little space in the steamer, is driven electrically and requires

very little attention.

III. BRENNAN'S MONORAIL.

Model exhibited before the Royal Society, May 8, 1907.

72. The gyroscope has recently been employed by Mr.

Louis Brennan with striking ingenuity and success to ensure

the stability of a heavy car travelling on a single line of rail

with its centre of gravity above the level of the rail, as is

seen in the accompanying illustrations.

The following pages will serve to illustrate the development
and growth of his idea from the first elementary principles;

but it should be remembered that the application of the gyro-

scope to methods of locomotion is still in its infancy, and
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consequently the details of construction in Mr. Brennan's

Monorail in its final form will probably differ largely from
those which are here explained.

The invention,"*^ in its simplest form, consists in affixing to

the car a heavy-rimmed fly-wheel, or gyrostat, AB, revolving

in the same plane as the road wheels and in the same direction

Fig. 33.

(Fig. 33), on an axle OX perpendicular to the plane of the

paper. If it were drawn, X would be towards the reader.

This axle is mounted in a frame or carrier EF, which is

pivoted at E and F so that it can turn about an axis OZ
coinciding with EF and perpendicular to the axle of the fly-

wheel. This turning can be effected either by muscular power
applied to the handle H, or by some automatic arrangement.

Suppose that when the car is travelling in a straight line,

some force, such as wind pressure, causes it to lean out of the

vertical, then, a tilting couple having been applied to the axle

of the wheel, the wheel begins to precess about the vertical OZ.

But, as in the case of the top, if we " hurry the precession,

the top rises," so, if the precession about OZ is hurried, either

by applying a force at the handle H or by the automatic

control, the fly-wheel will immediately rise to a more vertical

position carrying the car with it, and so will restore the

vertical position of the car. The control of the precession

might be effected by the automatic action of an inverted

pendulum.

*The provisional and complete speeilications of the Patent, from which this

description is taken, can be procured from Messrs, Marks & Clerk, 18 South-
ampton Buildings, London, W.C. Price 8d.
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Now let us consider what happens as the vehicle rounds a
corner to the right, say. As the vehicle turns, the gyrostat

maintains its plane of rotation unaltered in direction, and is

thus, relative to the car, displaced out of its central position

in the plane FCD. To obviate this displacement, Mr. Brennan
makes use of a second gyrostat exactly similar to AB, mounted
(preferably) in the same plane on a parallel axle, but rotating

in the o2')posite direction ; and the carriers of the two gyrostats

are connected by means of gearing, so that the rotation of one
carrier in one direction ensures a corresponding rotation of

the other carrier in the opposite direction. The movements
of the carriers are then controlled as before by a lever or

other suitable means. The gyrostat to which the device for

accelerating precession is fixed is called the actuating gyrostat.

Both are made to rotate in vacuo ; otherwise the resistance

of the air at the necessary liigh speed of rotation would be
extremely great.

It will be noticed that the above principles apply whether
the car be moving backwards or forwards : also that the centre

of gravity of the vehicle can be made to move laterally in

relation to the axis of support without bringing gyroscopic

action into play, and thus the car is enabled to move round
a curve while maintaining a vertical position.

73. In order to illustrate the stability of Mr. Brennan's car,

Messrs. Newton of Fleet Street, London, make a gyroscope

Fig. 34.

mounted as in Fig. 34, which will be seen to be virtually the
same as a model of the invention in its simplest form. Fig. 33.

In Fig. 34 an addition has been made to what (at the time
of writing) is actually sold by Messrs. Newton, suggested by
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Professor H. A. Wilson and exhibited by him at a meeting of

the Physical Societ}^ of London in November 1907, as a method
of automatically hurrying the precession. It consists of a spiral

spring 8H, one end of which, 8, is fixed to the rectangular

frame ABCD, while the other end, H, is attached to the small

crank ZH, which turns about OZ as the wheel precesses, and
is rigidly fixed to the carrier EXF. It will be seen that so

long as the wheel, and consequently the crank, are in the plane

of the rectangular frame BB, the tension in the spring has no
moment about OZ', but immediately the wheel precesses and
the crank moves out of the plane of the frame, the tension of

the spring has a moment which tends to hurry the precession,

and consequently causes the wheel and frame to return to their

vertical position. But the momentum of the wheel and frame
will cause them to overshoot the vertical position,* so that

the wheel will again precess out of the plane of the frame, the

precession will again be hurried and the previous process will

be repeated. Thus oscillations are set up of increasing amplitude,

with the result that the frame and gyroscope eventually fall

over. Professor Wilson thus illustrates the necessity for
" damping " the oscillations set up by any automatic hurrying
of the precession. We understand that Mr. Brennan has several

means which he employs in order to damp these oscillations,

one of which is clearly explained in the following article from
the Tmies Engineering Supplement for June 5th, 1907,

which is here reproduced by the kind permission of the author,

Professor Worthington, late Headmaster of Devonport Naval
Engineering College, and that of the Times authorities.

Apart from its immediate bearing on the monorail, the article

serves as an excellent recapitulation of much that has alread}^

preceded it in previous chapters.

"THE BRENNAN MONO-RAIL CAR."

" The interest excited by Mr. Brennan's mono-rail car, both
among the general public and among engineers, is due partly

to the obvious importance of the possible revolution in methods
of transport which his car suggests and partly to surprise at

the results he has obtained from what we believe is an entirely

new application of gyrostats in combination.
" The majority even of mechanical engineers, to say nothing

of the general public, have too little experience of the properties

of the gyrostat to have been able to realize what it is that

Mr. Brennan has done, or to appraise his inventions. We
say inventions, rather than invention, for the stability of his

car depends, as his patent specifications show, on at least three

* It will be found that owing to this tendency on the part of the gyroscope to

overshoot the central position, we can, by a succession of taps on one side of it»

cause it to fall over on that side.
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distinct inventions—(1) the automatic calling into play of a
force tending to accelerate precession, by the rubbing of the
axle of spin as it rolls along a guide, an action which may be
said to be borrowed from a spinning peg-top

; (2) the regulation
of the precession so as to leave the gyrostats, after any
disturbance, always with their planes of spin parallel to the
rail; (3) the combination of two linked gyrostats spinning in
opposite directions, for meeting the exigencies of a curved
track.

"To understand these points it is necessary to recall the
behaviour of Foucault's gyrostat. Let the diagram (Fig. 35)
represent a heavy-rimmed disc with its spindle OA horizontal.

Fig. 35. Fig. 36.

This spindle turns in a ring or frame BAC, pivoted about the

horizontal axis BC, at right angles to OA, on the frame BDGE,
which frame again is free to turn about the vertical axis DE.
If the disc be not spinning, a downward pressure at A will

cause A to descend with acceleration. If the disc be spinning

slowly in the direction BBC, shown by the arrow, then A will

not merely descend, but will move towards B, with rotation

about ED, and a sudden removal of the pressure will leave

the whole system violently oscillating.

" If, however, the disc be spinning very fast, then we find that

a downward pressure at A, maintained constant, produces no
sensible depression of A, but creates what is called a precessional

rotation of the spindle OA, at a constant rate about the axle DE,
A moving towards B along the arc CAB, at a constant rate so

long as the rate of spin is unaltered. When the pressure ceases,

there is only a slight and perhaps imperceptible tremor of the

spindle OA, and we are left with the spindle displaced

horizontally through an angle which is a measure of the time-

integral of the couple that has been applied about the axis BC
as it moved.
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" If, on the other hand, with the disc spinning very fast,

the pressure maintained at A is not vertical but horizontal,

in the direction of the precessional rotation just described, then

there will be no apparent revolution about ED, but there will

be a rotation of the frame BAC about BC, and A will rise,

the angle through which OA rises being in this case a measure
of the time-integral of the moment of the pressure about ED.

" If now, while we maintain a constant downward pressure

at A, we also apply a constant horizontal pressure as if to

accelerate the horizontal precession of the spindle, then the

precession will not indeed be permanently appreciably accelerated,

but A will rise at a rate proportional to the horizontal force, and
work will be done by the horizontal and against the vertical

force.
" These are the chief relevant physical facts which lay at

Mr. Brennan's disposal and of which he has availed himself with
such remarkable skill and success. We will endeavour to

explain his arrangement by pointing out its relation to the

Foucault gyrostat just described. In the first place the frame
EBCD is pivoted on the body of the car at E and D, so that

when the car is erect DE is vertical. Mr. Brennan then makes
the spindle of his disc into the armature of an electro-motor,

whose field-magnets are carried by the pivoted and still balanced
frame BAC. When everything is in equilibrium and the car

is running erect, the spindle OA is horizontal and at right angles

to the rail. We will suppose the car to be running in the

direction BC and will refer to A as the right-hand end of

the spindle.
" Now let a wind-pressure be applied to the left side of the

car. The car. begins to turn over relatively to the gyrostat,

and thus at once brings down a guide plate G^ (see Fig. 36)
fixed to the car, and bent into a circular arc as shown, so as

to press on a small roller R^, turning loosely about the end F
of the spindle OAF, which now projects beyond the frame
BAC. The pressure on this roller causes the spindle to precess

from A towards B with an angular velocity proportional to the

pressure, and the turning-over of the car is arrested, but at

the same moment the friction between the rotating spindle and the

roller makes the latter roll along the under side of the guide-

plate and thus evokes a horizontal frictional force on the spindle

tending to accelerate precession. This causes the end F of the

spindle to rise and push back the car against the wind-pressure.

Thus the car turns over to meet the wind and is carried over
beyond the vertical (perhaps considerably beyond) to a new
inclined neutral position at which the moment due to gravity
just balances the moment of the wind-pressure. This tilted

position is reached, however, with a certain momentum which
carries the car beyond it. Up to the instant of reaching this

position the moment of the wind-pressure has been in excess of
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the opposite moment of the gravitational pull, and the impulse

that has acted is measured by the angular displacement of the

spindle along the guide. From the instant that the car swings
past the new neutral position, the moment of the gravitative

pull-over to the left exceeds that of the wind-pressure, and the

car turning over to the left lifts the guide-plate G-^^ off the roller

R-^, and the gyrostat is left to itself, till a very slight further

tilting over of the car brings a second curved guide-plate G^
(fixed to the car) to bear on the lower side of a second roller R.^

fitting loosely on a non-rotating sleeve which is part of the

frame BAG. This arrests the further turnino^ over of the car

and the gyrostat begins to precess back, but this time there is no
force accelerating precession, so that the car remains tilted a

little beyond the neutral position, till the roller R.2, in passing

beyond the middle position, is carried clear of the end of the
guide-plate G2 ; the gyrostat is now left again to itself, but the

car being released from the pressure of R^ at once falls over a
very little more to the left and thus brings to bear on the bottom
of the rotating roller R^^ the third guide-plate G^. The spindle

now begins to roll over G^ ; its precession is accelerated by
friction, and the roller R^ pushes back the guide-plate and so the

car up to and beyond the new neutral position of equilibrium,

when the turning moment on the car again begins to be reversed,

and the car, being now pushed over by the wind to the right of

this position, brings its fourth guide-plate G^ to bear on the

roller R^, so that further turning is arrested, and the spindle

OF precesses back to the middle position. In this way, the

oscillations about the new neutral tilted position quickly

diminish, and by thus arranging that the car shall overshoot
the mark and then return in oscillations of diminishing ampli-

tude, the time-integral of the upsetting couple is reduced to zero,

which is the condition that the spindle shall be left at rest in the

middle or " ready " position, after any adjustment. Each time
the car has to move towards a new neutral position of equili-

brium, work is done at the expense of the energy of spin of the

disc ; this, and the energy lost in frictional heat, is made up by
the battery which maintains the rotation of the disc.

" It is evident that, instead of an upsetting couple due to wind-
pressure, we may have one arising from a lateral shift of load

on the car. The same process of self-adjustment will be gone
through, the car inclining itself to the left if the shift of load

is to the right
;

just as a man carrying a load on his right

shoulder leans over to the left till the centre of gravity of his

system is brought vertically over the supporting base formed
by his feet.

" We have spoken so far of only a single gyrostat, but it is

evident that if we endeavour to travel round a curve the

spinning disc will maintain its plane of rotation unaltered in

direction, and the car carrying the guides will sweep them
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round past the end of the spindle F, and thus the middle position

will be lost. To remedy this Mr. Brennan employs a second
similar gyrostat with an equal disc, spinning at an equal rate

in the opposite direction, about a spindle which, when all is in

equilibrium, is parallel to or even in a line with the spindle of

the first disc. The pivoted frame BAC of the first is so linked

to the corresponding frame of the second that any lateral tilt of

the first is communicated to the second, but at the same time
each of the discs is free to precess. The precession of the second
disc is equal to that of the first, but in the opposite direction,

and any deviation from this equality and opposition is prevented
by toothed gearing which connects the axle ED of the first with
the corresponding parallel axle of the second. Such a system
oiFers no resistance to turning with the car on account of a curve
in the track, while to any upsetting moment it behaves like a
single gyrostat of double mass, and enables the car to meet the

upsetting moment of the so-called centrifugal forces by leaning

over towards the inner side of the curve, exactly as it leant over
to meet a wind-pressure.

" It should, however, be observed that this adjustment does

not get rid of the force tending to displace the rail laterally,

and that this can only be completely met by sloping the track

on which the rail is laid with exactly the same super-elevation

as is required in an ordinary railroad curve (a slope which
depends on the velocity prescribed). Mr. Brennan gets rid of

the danger of upsetting, but not of the need of providing against

displacement of the rail.

" It remains to examine what will happen when we pass from
a model to a car of larger dimensions. Fortunately, the result

works out very favourably, since we find that if we make the

linear dimensions of everything ?i-times greater, we can afibrd

to spin the gyrostats 7i-times slower and yet secure the same
righting eflfect, with the same angular excursion and return of

the spindle along the guides.
" This result is of great importance, for it means also that the

centrifugal stresses in the real gyrostats need not be greater

than in the model, and that the rate of spin may be reduced
from 7000 per minute in the model to 875 per minute in a car

of eight times the size. A greater rate in a smaller gyrostat

is however a preferable option.
" In this explanatory outline we have been guided by the

patent specifications already published ; but we understand that

Mr. Brennan has already made important improvements which
will not be published till further protection has been obtained."

74. Note on the change of dimensions in a larger car
compared with those of a model one. The efficiency of the

erecting power of the gyrostat on the car, may be conveniently
defined as the ratio of the impulse of the upsetting couple (due,
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say, to a gust of wind or a shift of load) to the resulting angular
precessional displacement, relative to the car, of the axis of

the gyrostat; for the larger the impulse required to produce
a given displacement, the larger the resistance which the car

offers to being upset.

Now the arrangement of the car is such, that after some time
t the car has no angular momentum about the line of rail

;

hence the

impulse of applied couple = impulse of erecting couple

= Icoe,

Q being the precessional velocity and the angle of precession.

Hence, the efficiency = /ci).

If we now increase the linear dimensions 'Ji-times, the

upsetting couple produced by a corresponding lateral displace-

ment of load, say, will be '?^*-times as great : for the displacement

is 7^-times greater and the load is '?^^-times greater.

Hence, for equal efficiency we must have Im ^^^-times greater.

Now / is ?i^-times greater; for I=Mk^ where M is '^i^-times

and k is 7i-times as great. Consequently, if a> is ii-times less,

we shall have equal efficiency.

For further information concerning the Mono-railway, the

reader is referred to Professor Perry's article in Nature,
March 12, 1908.



CHAPTER VI.

STEADY MOTION OF A TOP.

75. The student is reminded at the commencement of this

chapter that, when a solid body is under consideration,

(i) Angular velocity about any line means total angular
velocity—not relative to some moving plane, unless

this is expressly stated.

(ii) Angular velocity about a line which is moving means
(total) angular velocity about the line fixed in space,

with which the moving line happens to be coinciding

at the instant in question.

76. In the preceding chapter the bodies whose rotation we
have discussed have been symmetrical bodies, as, for example,

a fly-wheel ; and all the rotations have been about an axis of

symmetry, i.e. the axle. If the axis were not an axis of

symmetry, an angular velocity about this axis would in general

involve angular inoinentum (about this axis, and also) about
the two axes perpendicular to it, as is shown in the next article.

In this chapter we propose to discuss the equations of motion
of an ordinary spinning top, in which case it is clear that only

the axle of the top is an axis of symmetry, and any other axis

is not. But we shall see in Art. 79 that, since the top is a solid

of revolution, any axis perpendicular to the axle of the top is

the same for our purpose as if it were an axis of symmetry,
and angular velocity about such an axis involves (of course

angular momentum about that axis, but) no angular monientuni
about perpendicular axes.

11. Rotation about one axis involves in general angular
momenta about other axes at right angles to the first. In
general, if a body has at any instant an angular velocity about
a given axis, this velocity involves an angular monientum about
each of two lines perpendicular to the original axis and to

each other.

For let OZ be the original axis of rotation about which the

body has an angular velocity in the positive direction.

Let OX, OY, be two straight lines perpendicular to OZ and
to each other.
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Let X, y, z be the co-ordinates of any particle P of the body,

referred to these axes.

Then the angular momentum of the particle P is

:

About OZ,

About OX,

About OY,

tnccr . r or 7}ir\o.

— mcor cos . z

oc= — onoor .
-

. = — '/nooz . x.
r

— mwr sin . z

y= — inoyr .- ,z= — inooz . y.

Hence it is seen that, owing to the rotation of the body
about OZ, there is a contribution of angular momentum about

OX equal to — H^ncoz . x, and about Y equal to — ^mooz . y,

in addition to Emr^co, or I^co, about OZ.
The expressions Xmzx, Honzy are called products of inertia,

but we shall be able to neglect these in dealing with solids of

revolution, as will be seen in Art. 79.

78. It should be noticed that although the rotation oo of

the body about OZ involves in general angular inonienturn

about both OX and OY, yet it involves no component angular
velocity of the body about OX and 0Y\ for the resolute of w
about OX or OF is cocos90°, which is zero.

This can be further illustrated by considering two points

A, B moving in parallel lines with the same velocity so that

AB i^ perpendicular always to the lines of motion. If the

velocity at any instant is v, though the angular velocity of

B about A is zero, the angular momentum of B about A is

onvc, where c is the distance AB.

79. Particular case of a solid of revolution. If the body
is a solid of revolution whose axle is the axis of rotation OZ,

as, for instance, an ordinary top spinning vertically on its toe,

it is clear (Fig. 38) that for every particle P revolving about
OZ in direction {XY) and possessing a definite linear velocity
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in a definite direction in space, there is a corresponding particle,

on the opposite side of the axle OZ to P and equidistant from
it, which is moving in the opposite direction in space with
the same velocity.

As far as rotation about OZ is concerned, these two moving
particles cause angular momentum about OZ.
But when we consider the angular momentum about OX,

UY, we see that the angular momenta of these particles

cancel each other.

So for all the particles of this solid of revolution.

Hence, if the body rotates about its axle OZ with velocity

o), it has no other angular momentum due to w besides /^co,

and we have already seen that it has no angular velocity due
to this rotation besides w.

Fig. 38. Fig. 39.

Now suppose the body has only a rotation about OX, but
OZ is the axle of the solid of revolution (Fig. 39).

At a given instant any two corresponding particles P, P' are

moving with equal and parallel velocities in planes parallel

to YOZ.
Resolving these equal velocities in directions OY, OZ, we

see that the angular momenta of the particles cancel about
both OY and OZ.

Hence, in this case, the whole angular momentum of the solid

due to the rotation w is represented by Ir^w. An axis such
that rotation about it introduces no angular momentum about
any perpendicular axis is called a principal axis.

It follows that in a top, the axle of the top is a principal

axis, as is also any other axis perpendicular to it.

80. Moving axle. It is clear that if the axle of a rotating

body moves in any manner it carries the body with it. In
fact, the axle is equivalent to an indefinitely fine wire passing

through the body.
F
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81. Moving axis. It is sometimes convenient to resolve the

angular velocity of a rotating body about three axes mutually
at right angles, and these three axes form a frame of reference,

which may itself perhaps be moving.
If we know the motion of the body relative to this frame,

and the motion of the frame, we know the motion of the whole
body.

If the frame of reference is moving, the axes are called

Tnoving axes, and the frame does not necessarily carry the

body with it, for all the axes are not necessarily fixed in the

body, but may be passing through it.

82. The velocities and momenta of a spinning top in steady
motion. By the steady ^motion of a top is meant the motion
in which the angular velocity w about the axle of the top

remains constant, while the axle has a constant inclination a to the

vertical, and is carried round the vertical with constant angular
velocity Q, (Fig. 40). This velocity Q, is called the azimuthal
velocity, the vertical plane AGZ through the axle of the top
being called the azimuthal plane. During steady motion, the

centre of gravity G describes a horizontal circle. The lines GC,
GA, of which GA is always moving through the material of

the top but remaining with GC in the azimuthal plane, are

taken as moving axes of reference.

Fig. 40. Fig. 41.

The velocities. The angular velocity Q of the azimuthal plane
about ZG (or -Q about GZ, Art. 20)", can be resolved (Fig. 41)

(a) Qsina about GA,

(b) Q cos a about GC.
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If coa is the angular velocity of the top about GG relative to

the aziTTiuthal plane, then the total angular velocity of the top
about GG is given by w^Ma+Qcosa, and the total angular
velocity about GA is Q, sin a.

Thus the angular velocity of the top is the resultant of

(i) the spin oo about the axle GG;

(ii) the spin Q sin a about the axis GA.

About an axis perpendicular to GG and GA there is no
angular velocity, since a is constant.*

The TrioTYienta. Let the moments of inertia about GG, GA
be G, A, respectively.

Since GG, GA are principal axes, the angular velocity o) about
GG gives an angular momentum
component Geo about that axis (and 2
none about any other axis) ; so the

angular velocity Qsina about GA
gives a component All sin a about
GA.
Thus the angular momentum of

the top is the resultant of Gm and
A Q sin a about GG and GA respec-

tively. / / /.^ v^A

83. Velocity axis. The axis of

component angular velocity lying

in the azimuthal plane we shall call

the velocity axis. It is clear (Fig.

42) that it makes an angle /3 with

GG given by tan^= . The Fig. 42.

O)

axis of total resultant angular velocity is called the instantaneous
axis of rotation.

84. Momentum axis. The axis of component angular momen-
tum lying in the azimuthal plane we shall call the momentwin

* The motion will perhaps be more easily

realised if we consider a small roller such as

is sometimes used for mounting photographs.
In the accompanying figure, Z'GH, which
corresponds to the azimuthal plane, is turn-

ing about Z'G with velocity Q, which has
about GG a component velocity Q, cos a ; the
roller corresponds to the top and turns about
its axle GG with velocity w^ relative to the

frame, but with total velocity w, where
w = w"^ + J^ cos a. When we watch a top
spinning, we do not think of its spin rela-

tive to the azimuthal plane, but of its total

spin about its axle.
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axis. It is clear (Fig. 43) that it makes an angle y with GO
, , ^Qsina

given by tan y = aca

It will be seen that precession of the momentum axis necessi-

tates a corresponding precession of the axle of the top, since

both lie in the azimuthal plane.

Hence we may discuss the motion of

the top by considering the rotation

of the momentum axis (see Art. 85).

In steady motion the momentum
axis coincides with the axis of re-

sultant angular momentum.

85. Torque required to rotate the
momentum axis. Referring to Fig.

20, p. 37, let OX, OY, OZ be any
three mutually perpendicular lines,

and let OX be the momentum axis

at any instant, and take OA to

represent the magnitude (if) of the

momentum.
Let Q be the angular velocity of

OX round OZ (see Art. 40), so that

after time St, the angular momentum
is represented by 0A\ where the angle AOA'= i'lSt.

Then if A'B' be drawn parallel to AO, OB' represents the

Fig. 43.

z

B ^

L

f/

if/v/

T

I'

Y

/O

Fig. 44.

change of angular momentum in time St, since OA and OB' are

equivalent to 0A\
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And, since OB' = AA' = MilSt, the change of angular momen-
tum in time St is MQSt about Y.

.'. rate of change of angular momentum is MQ, about OY.
This requires for its production a torque MQ, about OY.
Hence (Fig. 44) if OL represents the momentum axis of a

top whose toe is the fixed point 0, the steady motion may be
discussed by considering that OL is rotated about OB, the per-

pendicular axis in the azimuthal plane, by the torque about OY
perpendicular to the azimuthal plane. It will be noticed that

the gyroscopic resistance of the top to being turned about OY
is MQ (see Art. 45).

Co7\ If the axes of resultant angular momentum and angular
velocity be any two lines OP, OQ, the angular momentum and
velocity can each be resolved into components about OX, OY,
OZ and the torques producing the rotations of the component
momenta about the three axes can be separately found as above,

and equated to the corresponding components of the external

acting torques.

This method of determining the motion of a top is the one
most generally employed, since it is capable of easy extension

to the case where the motion is not steady.

86. The steady motion of a top spinning on a fine fixed point.

Consider the steady motion of a top spinning with its axle

inclined at an angle a to the vertical on a fine point which is

F<

.^-^

Fig. 45.

fixed. An instance of such a motion will be that of a top

spinning on a table which is rough enough to prevent slipping,

while the toe is considered too fine for the friction to have a
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moment about the axle, and therefore diminish the spin (see

Art. 128). Let the directions of rotation be those marked in

Fig. 45.

The external forces acting on the top are

:

(i) its weight Mg at Q\

(ii) a vertical reaction i^ at 0;

(iii) a horizontal reaction F at 0.

This last must act in the direction marked, since G describes

a horizontal circle about OZ, and F, the force causing it to do so,

must be parallel to the inward radius.

From Art. 82 we see that the momenta are Cw about GO, and
J.Qsina about AO, where A is the moment of inertia about
the axis through 0.

These give component momenta AQ> sin a cos a — Cw sin a about
OX, and a component about OZ, the latter of which need not be
considered, as it is not rotated and no torque therefore is required

on account of it.

The former is rotated with angular velocity — Q about OZ,
and this requires a torque

{AQ, sin a cos a — Cw sin a)( — Q)

about OY (Art. 37).

But this torque is illf(9'asina, where OG= a.

Hence, CmQ sin a — AQ^ sin a cos a=Mga sin a,

whence either sin a = 0,

or CwQ—AQ^ cos a = Mga.

The former gives a = or tt, both of which are possible angles

for steady motion.

The latter gives a quadratic for Q, i.e.

Acosa.Q^-Cw.Q-{-Mag= 0,

showing that there are, in general, two possible angular velocities

of precession, i.e.

^ _ Cco±s/G^w^- 4<A cos a . Mag
2A cos a

If cos a is negative, i.e. G below 0, Q, is always real.

If cos a is positive, then for real values of Q we must have

(7V > 4>A cos a . Mag,

2\/AMag .cos a
or ft)>

C

If to) has a smaller value than this, the top cannot spin steadily

(compare Art. 102).

The larger or the smaller value of Q will be maintained
according to the particular initial conditions of motion. Thus if
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the top is started at an angle a with angular velocity «, and
either of the above values of Q, it will continue to spin steadily.

From the above quadratic equation we see that during steady

^^^^^^
_ Ci.^-Mag

showing that if G is increased a diminishes,

and \i A „ a increases

;

hence it appears that a top with a longer leg spins at a greater

angle to the vertical.

87. When the majority of rotations in a problem under
consideration are right-handed it will be found convenient* to

work throughout with right-handed axes. Whichever rotation

is employed, the precessional velocity must be considered

negative if it does not turn the angular momentum rotated,

towards the torque axis both being drawn in the same sense.

88. Equation deduced from gyroscopic resistance. The
equation of the preceding article may be obtained by considering

that the torque Mga sin a is tending to turn about its axis the

two (right-handed) components of angular momentum Ceo, and
^Qsina; but these components, instead of being turned about
OY, are precessing about OA and OG with velocities f2sina
and Q. cos a respectively.

Hence, the gyroscopic resistances to being turned are respec-

tively GwQmia and J.f2^sinacosa (Art. 45).

If the torque axis is drawn right-handed we see that GG
sets itself towards the torque, while GA sets itself away from
the torque.

Thus, GwQ^ sin a must be considered a positive resistance,

AQ^ sin a cos a must be considered a negative resistance.

Since there is no change in angular momentum about the
torque axis we have

Mga sin a — GooQ^ sin a-\-AiT sin a cos a= 0,

or Mga = G(£iQ>^AQ!^ 0.0^ a, as before.

The general equations of which the above are a particular case

are given in Art. 125.

89. The equation of Art. 86 might also be obtained by
rotating the momentum axis instead of the horizontal com-
ponent of angular momentum.

In Fig. 46, let AG be at any instant the axis of precession *

*It should be noticed that the term " axis of precession," which is suggested
by astronomy, is not strictly in accordance with astronomical usage, where the
axis of the earth is said to precess about a line perpendicular to the plane of its

orbit, and not to its own axis. In the same way a top spinning at an inclination
to the vertical can be said to precess about the vertical ; but we are taking the
axis of precession to be the axis perpendicular to the rotating torque and
the angular momentum rotated.
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round which the angular momentum Cwsecy is rotated with
velocity 11 sin (a — y).

Fig. 46.

We have, employing right-handed rotations,

Coo sec y . 1} sin (a — y) = Mga sin a,

Cft)Q(sin a — cos a . tan y)= Mga sin a,

n c>,( ' ^Qsina\ li/r

or GwSi ( sm a — cos a—^^^ ) = Mga sm a,

i.e. CwQ —AQ^ cos a = Mga, as before.

It will be noticed that the first of the above equations

expresses the fact that

2.
I

the gyroscopic resistance

is equal to the external

torque.

90. We see (Fig. 46)
that the velocity axis is

in this case the instan-

taneous axis, and makes
a constant angle {a — /3)

with the vertical OZ : it

therefore describes a cone

fixed in space having OZ
as axis and vertical angle

2(a-^).
It is also inclined to

OG^ at a constant angle /3,

and thus describes a cone fixed in the body having 0(t as

axis and vertical angle 2/3.

Fig. 47.
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Since points of the bod}^ on the velocity axis are instan-

taneously at rest, the motion can be represented by the rolling

of the latter cone on the former (Fig. 47).

[24.] Does all this hold as regards the momentum axis ?

[25.] With what angular velocity does the moving cone roll round the

fixed one ?

91. Analogy of the hodograph. If a particle P (Fig. 48) is

moving along a curve P^P^P^ . . . (not necessarily in one plane),

and if from a point fixed in space straight lines OA^, OA^,
OA^ are drawn to represent the velocities at the points

P^PJP^ . .
.

, then the velocity of the point A along the curve

-41^-2^ 3 ... represents the acceleration of the particle P as it

moves along the curve P^PgPg, ..., since it represents the rate

of change of the velocity. The path A^A^A^...\^ called the

hodograph of P.

Similarly, if OA^, OA^, represent the raomentum of the par-

ticle, then the velocity of the point A along its path represents

the force acting on the particle P since it represents rate of

change of momentum. Thus if OA^, OA^,..., be successive

positions of the axis of resultant angular momentum, and
OA^, ... represent the angular momentum of a body at successive

instants, then the velocity of A in its path represents the torque

acting on the body, since it represents the rate of change of

angular momentum.

92. We will now apply this analogy of the hodograph to

obtain the equation of Art. 86.

In Fig. 46 let OL, which coincides with the momentum axis

(Art. 84), represent at any instant the resultant angular momen-
tum of the top. Draw Xilf and LN perpendicular to OZ and OG
respectively. Then OM, ML are the vertical and horizontal

components of the total angular momentum, and ON, NL are

the components along and perpendicular to OH. The linear

velocity of L is LM.Q, and represents (Art. 91) the torque
causing precession, i.e. Mga sin a.
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Now ifZ = sum of horizontal projections of ON and NL
— ON sin a—NL cos a

= C<jd sin a — AQ. sin a cos a (Art. 82).

Hence {Cw sin a — J.11 sin a cos a)Q, = Mga sin a,

or (7a)Q — J.Q2 cos a = Mga,

93. Steady motion of a solid of revolution spinning on a
rough horizontal plane. In Fig. 49 let GO be the axle of

the solid, a the angle it makes with vertical, P the point of

contact at any moment with the plane; let GE=c, PL per-

pendicular to AG= y, and G and A be the principal moments
of inertia through G.

8
C3

An-ffuZar -mOTn^

<yt/0-^-«-.

jS^

X

X'

>

Fig. 49.

Here, since there is steady motion, co is constant, and therefore

there is no component of F perpendicular to the azimuthal
plane, the reaction P being along the normal PE.

Since G describes a horizontal circle uniformly, if r is its

radius, we have F—MQ!^r

Also, since G does not move vertically,

R = Mg.

Considering the angular momentum about GX the horizontal

through G, as being made to rotate with velocity Vl about the

vertical through G, we have (rotations right-handed)

:

angular momentum rotated

= Co) sin a — AQs sin a cos a about GX,
velocity of rotation = Q about GZ,

torque producing rotation

= Re sin a — F{c cos a-\-y cosec a) about YG.
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The other components of angular momentum are not rotated.

Hence, paying due consideration to sign,

(Ceo sin a—AQ sin a cos a)Q = Re sin a — F(c cos a-^y cosec a),

or

CcoQ sin a ^AQ^sin a cos a = Mgc sin a — ifil^r (c cos a-{-y cosec a).

We have, in addition, since P is for the instant at rest, the

geometrical condition, that

the velocity of P relative to Z+ that of L relative to G

+ that of G relative to the centre of G's circle = 0,

or yo)— Q sin a(c-\-y .cot a)— Qr= 0.

94. Steady motion on a surface of revolution. It should
be noticed that steady motion can be maintained on any rough
surface of revolution in exactly the same way as on a rough
horizontal plane. For (Fig. 50) when the steady motion has
once started, friction, as before, will act only in the azimuthal
plane, the forces and couples acting during successive positions

of the top will be the same, and the precessional motion will

remain unaltered.

Fig. 50.

[26.] If the surface of revolution be smooth, under what conditions (if

any) will steady motion be possible : (i) if the surface is convex to the top
;

(ii) concave ? What direction does the precession take in the latter case ?

95. The motion of a system of two or more gyrostats. Four
equal gyrostats have for axes the sides of a light rhoTnhus
OBEF, formed of rods jointed together, which hang from 0, and
all four are set spinning with equal angular velocities co, and
in such a way that all would be spinning in the same direction
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if the angles at and E were zero. The mass of each gyrostat

is M, and a mass M' is suspended from E.

Prove that if the angles at and E are each 2a the whole
can move with a steady precession Q provided that

(^ +ilfa2)Q2 cos a + (7a)Q = (2if+ if)«^.

2(X being the length of a side and G and A the principal
moments of inertia of each gyrostat.

Let us consider the gyrostats spinning in the direction

indicated in Fig. 51. Then (Fig. 51 a) taking the angular
momentum rotated and the rotating torque right-handed about
OX and YO respectively, it follows that (l is about OZ.

Ana'' It

V X

x'

Fig. 51. Fig. 51 (a).

Let X, Z be the horizontal and vertical reactions at D, on
the gyrostat OD.
The angular momentum about OX is

:

Ceo sin a+ (A-^ Ma^)Q sin a cos a.

The torque about YO is:

Mga sin a -f Z2a sin a —X2a cos a

;

.". [(7wsina+ (A + l/a2)l'2sinacosa]12

= Mga sin a+ Z2a sin a — X2a cos a (i)

Now consider the lower gyrostat EB and the torque turning

it about E.

Referring to Fig. 51 {a) for signs and using left-handed

rotations, Q is negative. The angular momentum about EX
= Cw sin a-\-{A-\- Ma^)Q sin a cos a.
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Moment of torque about EY
= Mga sin a — Z2a sin a —X2a cos a ',

.'
. [Co) sin a+ (^ + Ala^)Q sin a cos a]( — Q)

= Mga sin a — Z2a sin a — X2a cos a (ii)

Subtracting (ii) from (i),

2 [Oo) sin a+ (J. + Ma^)Q sin a cos a] Q = 4a^ sin a.

But the two lower gyrostats and M'g are supported by the

two vertical reactions at F and D.

.-. 2Z=2Mg+ M'g.

Hence the condition for steady motion becomes

CwQ + {A -\-Ma^)Q^ cos a = {2M-^M')ag,

since a is not zero.

[27.] What are the reactions on the axes of the gyrostats at right angles

to the azimuthal plane ?

[28.] What would be the effect of the two right-hand ones spinning one
way and the other two the opposite way ?

96. Cone rolling on a rough horizontal plane. A homo-
geneous right circular cone rolls on a perfectly rough horizontal

plane. Prove that if the vertex remain in contact with the plane

T-2 "-^ 1 67r^/t;- cos a

ag (4 — 3 cos'^a)'

where T is the time of a complete revolution of the axis, a the

radius of the base, a the semi-vertical angle of the cone, and k
the radius of gyration about a generating line.

Consider the steady motion when the vertex is just not
touching the plane (Fig. 52).

Fig. 52.

If CO is the spin about 00 and Q the azimuthal velocity, the
angular momenta are Ow and —-4^2 cos a about 00 and OA,
where 0, A, are the principal moments of inertia at 0.
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The component momenta are therefore

Cw cos a-\-AQ cos a sin a and Gw sin a-{- Ail cos^a

about OX, OZ respectively.

The latter is not rotated, but the former is rotated with
angular velocity Q about OZ and this (Art. 37) requires a torque

il [Goo cos a-^AQ cos a sin a] about Y.

But since is just not in contact with the plane, the pressure

of the plane acts through B, and the moment of the acting

torque is
i-

_,

MgDN = Mg\ -^ OG^cosa^ ^ Lsm a J

= Mq -r- -a cot a cos a
'^ Lsm a 4 J

(4-3cos2a);_ %^/A_Q.^c,2
4 sin a

.*. QfCwcosa+ ^Qcos asinal = T^-;^— (4 — Scos^a) (i)
'- - 4 sm a ^ ^ ^ '

Now consider the motion of the point B of the cone. Since
the cone has rotations w about OG and — Qcosa about OA, the
parts of the velocity of D due to each, parallel to OY, are

respectively — aco and +(acot a)(Qcosa).
Hence, since Z) is momentarily at rest,

— aw+ aQ cot a cos a = 0,

1 , Ocos^awhence co=H ^ .

sin a

.'. substituting in (i),

Q^ -7^—
, G cos a+ -4 sin a cos a = -^—^—(4 — 3 cos^a),

Lsm a J 4sma^ ^

and since A sin^a+ G cos^a = moment of inertia about OD

Q2A;2cosa=^(4-3cos2a),

and the periodic time T is 27r/r2,

rn9 A 9 ^'*^ COS O.

^a(4 — 3 cos^a)

167r^A:^COsa

^a(4 — 3cos^a)'

and when the cone is on the plane, Q being smaller, T^ is greater

than this value.

[29.] When the cone touches the plane what torque causes it to precess?
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EXAMPLES.

Note. In the following examples w and fi are taken so that they would be in the

same direction if their axes coincided.

1. Employ the preceding methods to show that the condition for steady
motion of a top with a blunt peg (or any solid of revolution) spinning with
velocity w on a smooth horizontal plane is (7(ol2 - -4 12^ cos a= illfg'c, where G
and A are moments of inertia about the axes in the azimuthal plane through
the centre of gravity 6^, c is the distance between G and the point of

intersection of the axle and the normal reaction, and a is the angle the axle

makes with the vertical. Explain the similarity to the equation in Art. 86.

Note. Since the plane is smooth the top "skids" round during the
whole motion ; there are no frictional forces at the point of contact, and
therefore the centre of gravity G remains at rest—the axle of the top de-
scribing a cone, vertex G.

2. A thin circular disc, radius c, spins with velocity w about an axis

through its centre perpendicular to its plane, while the rim is in contact

with a smooth horizontal plane. If Q, is the azimuthal velocity, show by the
above methods that the condition for steady motion is

cQ? sin a — 2cwl2 = 4^ tan a,

where a is the angle the plane of the disc makes with the vertical.

3. A circular wire ring of radius a rolls on a rough horizontal plane, so

that its plane maintains a constant inclination a to the vertical ; if w be
the angular velocity of the ring, and Q. the azimuthal motion of its centre,

^ 4acol2 cosa — aO^sin acosa = 2^sina.

4. Show that the condition for steady motion of a disc spinning as in

example 2, but on a rough horizontal plane, is

c^w^ cot a (6r+ c sin a) = 4^?'^,

where r is the radius of the circle described by the centre of the disc.

5. Obtain the equation for steady motion, as in Art. 95, for the case

of six gyrostats.

Would it be possible with steady motion to spin (a) the two vertical

gyrostats in opposite directions ? (6) the two upper ones in the opposite
direction to the two lower ones ?

6. One gyrostat, axis 2a, mass J/j, spins on a fine fixed point, while
another, axis 26, mass M^., spins on the head of the former. Supposing a
steady azimuthal motion 12 to be maintained when each makes an angle a
with the vertical, determine equations for Wj, w^, the spins of the two
gyrostats, (7^, A^, etc. being the principal moments of inertia through the
centres of gravity.

Discuss the following points :

(i) If the upper one spun the reverse way to the lower one, would
steady motion be possible ?

(ii) Would steady motion be possible if the upper one made an angle (B

with the vertical ?

(iii) If the two gyrostats were alike and both inclined at an angle a to the
vertical, would a>i= a>2?

7. A gyrostat has a universal joint at a point in its axis and the joint is

attached by a string of length ^ to a fixed point ; an angular velocity w is

given to the body and 12 is the angular velocity of the centre of gravity
about the vertical, the angle which the string, <^ the angle which the axis

of the body, makes with the vertical, a the distance between the centre of
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gravity and the point of suspension, C being the moment of inertia about
the axis of figure. Show that when motion is steady,

12 sin </)((7w — yli2 cos ^) cos B= Mga sin (<j6 — d\

QP'{1 sin 6+ a sin (^) =g tan 6.

If another gyrostat were spun on the head of this one, which way would
the spin have to be in order to maintain steady motion ?

8. A heavy sphere is held in contact with a rough circular wire which
is fixed in a horizontal plane, and a horizontal impulse is then applied to the
sphere, causing it to roll round steadily. If c is the radius of the ring and b

that of the sphere, and if a is the constant inclination to the vertical of the
radius through the point of contact, il the angular velocity of the point
of contact, show that the magnitude of the impulse is such as would impart
to the sphere, if it were free, a velocity

|12(c-&sina),

and that the relation between 12 and a is given by

712^(c — 6sin a)= 5^ tan a.

Note. The point of contact of the sphere with the wire is (instan-

taneously) a fixed point.

9. A homogeneous sphere of radius a is loaded at a point on its surface

by a particle whose mass is -th of its own ; if it move steadily on a smooth
71

horizontal plane, the diameter through the particle making a constant angle
a with the vertical, and the sphere rotating about it with uniform angular
velocity w, prove that w'-^ must be not less than

5g cos a{2n+ 7)/an (?i+ 1)

if the particle is at the upper extremity of the diameter ; and show that the
particle will revolve round the vertical in one or other of two periods whose
sum is 4:7rnaii)l5g.

Note. The moment of inertia for the whole body about an axis through
its centre of gravity G, perpendicular to the diameter through G, is

-^^ . — a\ where M is the mass of the sphere.
n+l 5 '

^

10. A sphere is rotating within a spherical concentric light shell of radius

a, placed on a rough horizontal plane, about an axis through the common
centre. Show that if the centre of the sphere describes a circle of radius r

with uniform velocity v, while spinning with velocity w, then the inclination

of the axis of rotation is given by

k'^ sin a{v cos a — no)= var,

where k is the ladius of gyration of the sphere.

11. A homogeneous right circular cone, radius of base «, height A,

spinning about its axis with velocity w, maintains a constant azimuthal
motion 12 with its axis inclined to the vertical at an angle f3 and its base in

contact with a rough horizontal plane. Show that the necessary condition is

3 3 r A-)
r-r a^wQ, sin /5 -— - ^2+ v ^2 gj^ ^ cos (3

=gi a cos f3
^ jsin ft] — 12^. r( -cos ^+ asin/8 )>

r being the radius of the circle described by the centre of gravity of the

cone.

Additional problems on steady motion will be found among
the Miscellaneous Examples at the end of Chapter IX.



CHAPTER VII.

GENERAL MOTION OF A TOP.

97. General motion of a top spinning on a fine fixed point.

Hitherto we have only discussed the motion of a top when
its axle makes a constant angle a with the vertical. We will

now consider the case where this angle may be a variable

quantity throughout the motion.

It should be particularly remembered throughout this chapter

that all frictions are neglected except where otherwise stated.

Let 6 be the angle which the axle makes with the vertical

through (Fig. 53), w the spin of the top, and i/i~ the azimuthal

Y/
Fig. 53.

velocity, \/r being the angle the azimuthal plane makes with
some plane fixed in space and passing through OZ.

Since there are no forces acting about the axle, with regard

to which the top is symmetrical, co will remain constant.*

* A more rigorous proof of this is given in Art. 128, where it is shown that the
condition of symmetry is essential.

The reader is reminded that, as in Art. 82, co is eqvial to (0^^ + ^ cos 6, where
a>„ is the (now variable) velocity relative to the azimuthal plane.

G
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The component velocities of the top are

:

(JO about OH;

yp-sinO about OA;

6 about OY;

where OF is perpendicular to the azimuthal plane.

The component angular momenta are

:

Co) about OH',

A\p- sin about OA
;

AS about OY.

Since there are only two unknown quantities (0, \^), only two
equations are necessary. Hence the whole motion of the axle of

the top may be determined by the two following considerations :

(a) The angular momentum about OZ remains constant.

(^) The sum of the kinetic and potential energies of the

top is constant.

98. Motion of the top when the centre of gravity G has no
initial velocity. In this case we see from (a) that

Ciio cos + Ayp^ sin^O = Goo cos 0^, (i)

if Oq is the inclination to the vertical at which the top is first

spun, the axle of the top being initially at rest.

From (^) we have

i(7a)2+ J^^A^sin2e+ i^eH%acose = i(7co2+ i%acoseo,

or ^\/r2sin2a4-^^2 = 2i%a(cosOo-cos^) (ii)

Equation (i) determines the azimuthal velocity in terms of 0,

C(jo(cosO(. — co8 0) ,....

^ A sin'^6

and the above equations determine the complete motion of

the top.

99. The top will oscillate between two limiting values of 0.

The elimination of yfr between (i) and (ii) yields

(7V(cos 0^- cos Of+AW sin^ = 2MAga(Gos 0^- cos 0) sin^ 0.

The stationary values of are given by ^ = 0,

i.e. by {(iose-coseQ)[2MAgasm^ O-CW (cos 6^-008 6)] = 0,

i.e. = 0o or sin^ 6 = 2\{cos0o — cos0),

where 2/\ is written for C'W/2MAga.

The latter is cos2 0-2Xcos e+ 2\coseo-l =0,

whence cosO = X+ Vl — 2Xcos ^^^H-A^.
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Now,

X+ v/l-SAcosOo+ X'^ > X+ x/i-2X-\-\^ since cos Oq < 1,

i-e- >A+ 1-X,

i.e. >1.
Hence the former root, though giving a real value of cos 0, gives

an imaginary value of 0.

The latter root gives a real value 0^ for where

cos e^ = X- >s/l-2\cos^o+ A''^.

Hence, ^ = (i.e. the axle momentarily ceases to rise or fall)

when = 0q (upper limit) or = 0-^^ (lower limit) : that is, the

axle of the top oscillates in the azimuthal plane between two
cones (Fig. 54) whose semi-vertical angles are Oq and 0^^, while

the azimuthal plane itself rotates with varying velocity \^.

The lower limit is above, at, or below the horizontal position

according as 2\cos0q^, =, or <; 1, this being the condition

that cos 0-^ is positive, zero, or negative.

100. To determine the value of yjy at the limiting positions.

We have the equations

A\lrsin^O = Coi){cosOQ— cos, 0), (i)

AyjrHiri^e+ Ae-^ = 2Mga{cosO^-Gose) (ii)

Whence, multiplying (i) by \fr, we get, at the two limiting

positions when = 0,

Co)\j/'{cos Oq — cos 0) = 2Mga{cos 0^ — cos 0),

that is, either cos ^ = cos 0^, and hence from (i),

ir= 0, (a)

or Gco\j^ = 2Mga (/3)
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Relation (a) gives the upper limit of oscillation, i.e. the original

position at which the top was spun (see Art. 98).

Relation (/3) gives the value of the azimuthal velocity -^ at

the lower limit of oscillation.

101. To determine the least value of w which will enable a
top to spin, if set down at an inclination 0^ to the vertical.

We have seen that the top will first fall to 'a position 0^ and
then rise to its original position ; but there must be some angle

O2 at which the top fails to spin, either through the peg slipping,

namely the constraint at giving way, or through the side of

the top touching the ground. Hence the limiting value 0-^ must
be reached before this value Og* ^^^^ ^^e necessary condition is

O2 ;> 0^, and therefore (1/^)2 >- (\fr\ ; for writing

• _ (7a)(l -cos e -/>;) _ (7a)/ 1 k \
^~ ^(l-cos^e) ~.4U + cosO l-cos^Oj'

we see that since k is a positive constant \/r increases with 0.

But W,^ ^"('^°;^.o7r'^^^ from (iii) Art. 98,

and (^^)l=^^ ^^^^ (i^) ^^^' 1^^'

. Cw(cos Oq— cos O2) ^^ 2Mga

or 0)2 ]>

'2

2MgaA sin^O^

C\cos Oq— cos ^2)

'

Example. Suppose the radii of gyration of the top are

respectively f in. and 2 ins. about the axle and perpendicular

axis through the point of support. Let the distance a between
the centre of gravity and the toe be 2 ins.; let 0^ = 30° and

^2= 60^

If 60 is the least angular velocity required

ft)2>
2MgaA sin202

(72(cos^Q— cosOg)

252\cos30°-cos60
since (/ = 386 inch/sec'^;

4 (34
.-. w>-^ . V386 X >v/2'049

^ 289 rad./sec. approx.

.*. number of revolutions per sec. must be

>47.
Thus if the top is thrown from a string coiled round it in

circles of average radius 1 in., the hand must be withdrawn
from the top at a relative velocity of about 16 mi./hr.
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102. To determine the least velocity at which a top will
spin in a vertical position. In this case we have from equation
(iii)^^^-^^'

, CHI-cos^)
^ A sin2^

a(JO

^(1+COS0)
If now we suppose Q so small that S^ may be neglected, we

see that . rj

\/r= ^r--r, a constant.

Again, from equation (ii) Art. 98, the value of \/r, when is

stationary, is given by

•,__2i%a(l-cos^)
^^

^sin^e

_ 2%a
~Z(T+cosT)
Mga
A '

neglecting squares of small quantities.

Hence, in order that the top may return to the vertical

position after'a small displacement, it is necessary that

V Mga
4^2 > ^ '

or 0V>4M^a^.
When 0)2 is less than this value, the disturbed motion does not,

as the disturbance is indefinitely diminished, tend to return to

the vertical motion ; on the other hand, it does not necessarily

depart very far from it. Both limits of oscillation in agreement
with 0)2 might be near the vertical.

The above conditions show that it is very difficult to spin a

top for which C is small in comparison with A ; for instance

it is almost impossible to spin a pencil on its point.

ExaTYiple. Taking the top of the previous article we must
^^^^ _ 4^MgaA

> 4 . 386 . 2 . 4 .
642

252

> 284*5 rad./sec.

.'. the number of revolutions a second must be

> 45 approx.,

which is practically the same number as in the preceding case.
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Fig. 65.

103. Change of sign of yjr. Let the axle OH (Fig. 55) be

taken to represent the angular momentum Goo about itself, and

HL the component due at any instant to the resolute of \jr.

Then OL represents the total angular momentum about axes in

the azimuthal plane ; and if LM
is drawn perpendicular to OZ it

follows that OM represents the

constant angular momentum about

the vertical, since has no resolute
^V^sin^ about OZ. Hence L always lies on

the fixed horizontal plane through

M. This is sometimes called the

invariable 'plane. It is clear that

if OH is less than OM, HL can

never vanish. Consequently \/r

does not vanish.

If OH is equal to OM, \j/ vanishes

when H reaches M, i.e. when the

top becomes vertical. If OH is

greater than OM, \jr vanishes

when H reaches the invariable plane, and changes sign as

H rises higher, since HL is then drawn in the opposite

direction.

104. Gyroscopic resistance of the momentum axis. The
existence of the limiting values of (Art. 99) can be seen

from the following considerations.

We have seen (Art. 85), that if M is the angular momentum
at any instant about OL, of a body to which is being applied

a torque about a perpendicular axis, then the resistance the

momentum-axis offers to being turned by the torque is MQ,
where Q is the precessional velocity already existing about
the third axis perpendicular to both.

Now (Fig. 55), as the momentum-axis OL is tilted, M in-

creases and also (Art. 85) the precession Q ; consequently the

resisting torque increases. Suppose the top is spun initially with
its axle at an angle Oq to the vertical : the axle of the top is

initially the momentum-axis. As the gravity torque tilts this,

the resisting torque is increased. At first it is less than the

gravity torque ; then a position is reached at which it is equal

to the gravity torque, and at which steady motion would be

set up if 6 were zero; and finally, as it increases and exceeds

the gravity torque, a position, 0^, is reached where 6 has
been reduced to zero. The axle then starts to retrace its

path in the azimuthal plane. In the same way, as it retraces

its path, a position is reached where the gravity torque is

equal to the resisting torque, which is tending to restore the

more vertical position, and steady motion would ensue but
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for (now a negative quantity); and finally the position — Oq

is reached where is again reduced to zero.

Since the angle for steady motion lies between 0^ and 0^, and
the tendency is always to return towards it, the position of

steady motion must be stable.

If there were a slight frictional couple at the toe to diminish w,

the limiting positions both of rise and fall would gradually
descend until some position 0^ for the lower limit were reached,

at which the top either skidded at the point of support or

touched the table with its side (see Art. 101). In practice

the frictional forces which act on the top generally damp the

oscillations so that they are hardly perceptible, and the top
appears to descend steadily. See Chapters IV. and IX.

105. Value of the resisting torque at any instant. If x be
the angle which OL (Fig. 55) makes at any given instant with
the axle of the top,

. Ayir sin

_ cos Oq— cos

sinO
from equation (i). Art. 98.

The resisting torque

MQ = C(jo sec x^ sin (0 — x)
= Co)\fr (sin — cos tan x)
= Ccoyjr (sin — cot cos 0^— cos 0)

= -^^ (1 — cos Or. COS 6),sm 6^ u
/

or in terms of only

_ (7V(cos Op- COS e)(l - cos Op cos 0)~
A sin^O

from equation (iii), Art. 98.

From the value of tan ^ we obtain

cos(0— x) = cos OqCos x-

Now since and xfr sin increase together (Fig. 55), it follows

that and x increase together; consequently (0— x) increases

with 0. Hence both Ccosecx and ^/r sin (0— x) have their maxi-
mum values at the position 0^, and their minimum values at

Oq, showing that the resisting torque is a maximum at the lower

limit of oscillation and a minimum at the upper limit.

It should be noticed that if C is small compared with A the

resisting torque is very small. Compare Art. 102.

106. Equation of motion in the azimuthal plane. It follows

that the oscillations in the azimuthal plane are determined by
the equation

Ae = Mga sin 6-
^""'^^"^ ^"" "T^f^ "''' ^" '"' ^-

• jA. sm u
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Multiplying both sides by 26 and integrating we get the

first equation of Art. 99,

while ^^ Choose,- cos e)_

^ A sm- 6

Thus the motion of the axle in the azimuthal plane being
known, and that of the azimuthal plane, the complete motion
of the top is known in terms of 0.

If Oq is zero, and small, the above equation reduces to

AO = MqasmO ; . o /,
—-,

Ae =Mgae-^0,

neglecting 0'^ and higher powers,

while

V 4^2 ')

>/.= g=co,say. (Art. 102.)

The above equations show that the axle oscillates about the

vertical with a simple harmonic motion of period — where

^2-'V 4J_2

and the condition for a real oscillation is the condition for

stability obtained in Art. 102.

Since H the head of the top (Fig. 56) describes a simple

harmonic motion in ZR^ the azimuthal plane, while ZR^ rotates

uniformly with angular velocity cd^, the velocity of H at any
moment is known, and its path in space completely determined.

Considering the component velocities of H in the directions HZ,
HP, we see that, when viewed from a point in the axis of Z, H
will appear to describe a series of loops as in Fig. 63 in periodic

.. 27r
time —

.

It will be noticed that the point N oscillates in the fixed plane

27r
ZA in periodic time • (See Art. 141.)

6t)j + 0)2

107. Motion of the top when G has an initial velocity.

The principles established in Art. 104 show that, whatever be

the initial velocity of G, the top still oscillates between two
limiting positions. These limits can be found analytically as in

Art. 99, by eliminating x/r between the two equations for

conservation of angular momentum and conservation of energy.
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The condition that 6 should be zero gives a cubic in cos 0,

having one real root between cosO=— 1 and cos0 = cosOo, and

another real root between cos = cos 0^ and cos (? = 1. The third

root is inadmissible, being greater than unity.

If D is the initial anoular

momentum about the verti-

cal, which remains constant

throughout the motion, we
have in this case

^V^sin2e+ (7iocos^ =A
or, if we write D= (7a)6 cos 0^

where h and 0^ are constants,

Cwih cos Oq— cos 0)
^ A sin-0

Also tan ^
_Ayp-^mO

_ h cos ^0 - cos Q
~ sin

Hence the resisting torque becomes

CV(b cos Oq— cos 0)(1 — 6 cos Oq cos 0)

^sin^O

and the oscillations in the azimuthal plane are given by

^ A sm-^O

the integral of which equation gives the equation of energy.

108. Path in space of H, the head of the top. We can now
discuss the general appearance of the path of H in space when
viewed from the point Z vertically above the origin. The paths

will vary according to the initial conditions of motion ; but in

all cases, where oo is sufficiently large to prevent the top from
falling altogether, the head will oscillate between the two
positions R^, R^, in the azimuthal plane, while the azimuthal

plane itself rotates about the fixed vertical. The actual velocity

of H in space is that resulting from these two motions.

Since \/r is a function of d only, it is the same for all angular

positions of H equidistant from Z.

It is also clear that H passes and returns through any one
position in the azimuthal plane with the same velocity.

We will first consider the case in which G has no initial

velocity.

Here the starting point 8 coincides with R^, the upper limit

of H. In Fig. 58 0^ is an acute angle, in Fig. 59 it is obtuse.

Since G (and therefore H) has no initial velocity, H must
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in each case start in the invariable plane (Art. 103). In Fig. 60

Oq, the upper limit, is zero.

Other cases can be represented in a similar manner. In

Fig. 61, where Oq is acute, an initial velocity v has been given

at S to the head of the top in the aziimithal "plane. At this

f~^ S'.Ri !

FiC4. 58. Fig. 59. Fig. 60.

position \lr is zero, and therefore it will change sign as H
returns with velocity v through the same position in the

azimuthal plane. The path consequently has a loop as shown.

tRz I

Fig. 62. Fig. 63.

In Fig. 62 Oq is acute, and an initial velocity has been given in
the direction of precession, causing the top to rise, though not
necessarily, to a vertical position.

In Fig. 63 Oq is zero, but again an initial velocity v has been
given to H in any direction. H therefore returns through
its starting point with the same velocity, thus describing a series

of loops.

109. Motion of any solid of revolution spinning on a smooth
horizontal plane. Considering the case where G has no initial

motion, we see that since the plane is smooth, the spin w of

the body about its axle remains constant, and G only moves
in a vertical line.

Let B be the inclination to the vertical at any time of the

axle of the body, GN= z, GL = x,PL = y (Fig. 64).

We can consider the whole motion of the body as comprised
independently of the translational motion of G and the rotational

motion about axes through G.
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As before the angular momentum

about GC—Gco,

„ GA=A\ir sin 0.

If the body is put down initially spinning with its axle at

an angle Oq to the vertical, and G has no initial velocity,

from conservation of angular momentum about the vertical

we get

A \j/ sin^ O+ Goo cos = Gco cos Oq ,

G(io(cosOq— cosO)
or v- A sin^O

as before (i)

Fio. 64.

In considering the conservation of energy we must now
include the energy of translation.

Let Zq be the height of the centre of gravity above the

plane originally : we have then

Ae^-\-Ayjr^sm^e+ Mz^ = 2Mg{zQ-z) (ii)

These two equations determine the whole motion, when
combined with the geometrical relation

z = xcos + y sin 0,

X and y being functions of 0, depending on the nature of

the meridian curve.

By reasoning exactly similar to that of Art. 104, it can be
shown that GG will oscillate between two positions Oq, 0-^^,

while G consequently oscillates between two positions Gq, G^.

At the limits of oscillation

i = 0, = 0, and therefore from (ii),

Ayjr'^sin^e = 2Mg{zQ-z),

whence from (i),

G(jo\j^{cos Oq— cos 0) = 2Mg(zQ — z).



108 MOTION OF SOLID OF REVOLUTION

110. By the method of gyroscopic resistance. The gyroscopic

resistance of the momentum-axis will in this case be the same
as in Art. 105. Writing this expression as K, the oscillations

in the azimuthal plane are given by

where PN=p, and R is given by the equation

Mz =R-Mg.
As before we have

• _ Co)(coii Oo— cos 0)^~ A sin2
•



CHAPTER VIII.

MOVING AXES.

111. We will now discuss more fully the motion of a body
referred to moving axes, that is, to a "frame of reference"

(Art. 81) which is moving in any given manner.
The motion of the body relative to the frame when combined

with the motion of the frame itself will entirely determine
the motion of the body.

112. We will first consider the motion of a point in a

plane referred to two moving axes.

If P be a point x, y referred to two fixed rectangular axes

OX, OY, then the entire motion of P is determined if we know
X, y, and consequently

dx dy , d^x d^y

dt' dt dt^' dt^'

or in the fluxional notation,

d;, i) and x, y.

Now suppose that, remaining fixed, the axes turn about
but still remain rectangular (Fig. 65). The motion of the point

P is now entirely determined when we know x, y (and therefore

X, y and x, y) relative to the moving frame of reference, or

moving axes, and the motion of the axes themselves. This
latter motion is of course entirely rotational since remains
fixed ; and although OX, Y are revolving it must be re-

membered that at any instant they coincide with two definite,

fixed, directions in space. We shall proceed to determine
expressions for the total velocities and accelerations of the

point P in these two definite directions fixed in space.

113. Linear velocities in two dimensions. Method I. Let
OX and Y represent the positions of the axes at the time t,

the instant in question, and let OX' OY' represent their positions

at the time t+ St.

Let x(==ON) and y{ = PN) mark the position relative to OX,
OY oi the moving point P at the time t, and x-\-Sx{ = ON'),
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y-{-Sy{ — P'N') the position relative to the axes at the time
t-\-St when they have arrived at the positions OX', 0Y\
Then if u and v are the component velocities at the time t in

the fixed directions in space OX, Y we have

^j^^OL^ON
St

Fig. 65.

But 0Z = projection on OX of the broken line ON'P'
= (a;+ Sx) cos Se-{y-\- Sy) sin SO

= x-\-Sx— ySO,

neglecting infinitesimals of the second order.

Also ON=^x.

Sx-ySe
Hence, ic =

St

dx dO . ,, ,. .,

or x— yB.

^. .. , T^ projection on OY of ON'F-PN
Similarly, v = hi -— —

5^= ot

^Ay^-Sy)(io^Se^-{x+ Sx)^mSe-y=^^
St

~"

_dy do

dt df
or yi-xO.

[30.] Test the dimensions of the above expressions.

114. Method II. These expressions may also be obtained in

the following way

:

'?^ = velocity of P in direction OX
= velocity of P relative to iV in this direction+ that of JSf

— —yO+x.
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And similarly,

V = velocity of P in direction Y
= velocity of P relative to N in this direction+ that of N

It will thus be seen that the total velocities of P in the

directions OX, Y are not merely -r. and -j^, but depend

also on 6.

Cor, If y = 0, X and become the polar coordinates of the

point P. Hence, with the more usual notation, we see that

the radial velocity is r,

and the transversal velocity is rO.

115. Accelerations. We have above found u and v, the rates

of change, in definite directions, of x and y, subject to certain

conditions. To find the total accelerations in the same directions

we must find the rates of change of u and v in these directions,

subject to the same conditions.

Method I. The component of velocity in the direction OX
after time St is (u+ Su) cos SO— (v-\- Sv) sin SO.

Hence the acceleration in direction OX

_ (u-{- Su) cos SO— (v-\- Sv) sin SO — u
8t=o St

=u— vO.

Similarly, acceleration in direction OY= v-^iiO.

116. Method II. These expressions may also be obtained as

follows : The velocities of the moving point P at any instant in

the directions OX, OY, considered fixed in space, can be
represented by u= ON md v = QN,

Fig. 66.

but it must be remembered that Q does not represent the

position of the moving point.
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The required accelerations will be the rates of change of u
and V as the axes revolve, and as in Method II. of the previous
article we found the rates of change of x and y to be

x— yO and y-{-xO,

so now the rates of change of u and v will be

it — vO and v-{-uO.

Cor. It follows as in Art. 114 that, when polar coordinates

are employed,

the radial acceleration is r— rO'^,

1 d
and the transversal acceleration is rO+ 2r0 or - • -y- (r'^0).

r at ^ ^

These results can also be obtained from first principles by
a method similar to that employed in Art. 113.

117. It should be particularly noticed that in the previous

articles the velocities and accelerations found are total velocities

and accelerations—not relative to the moving frame of reference.

Similar expressions can be obtained for a point referred to axes
moving in three dimensional space, and for this purpose Method
11. will be found most convenient.

118. Let X, y, z be the coordinates of the point P referred to

three rectangular axes OX, Y, OZ (Fig. 67) which form a
" frame of reference," while this frame turns with component
angular velocities 0^, ^2' ^3 ^'oout the lines OX, OY, OZ—or

Fig 67.

rather about the lines fixed in space with which OX, OY, OZ
happen at the instant under consideration to be coinciding.

We will consider that the point remains fixed since we
know that if we are discussing the motion of a rigid body and
take our origin at the centre of gravity G of the body, then, as
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far as rotation about G is concerned, G is equivalent to a fixed

point.

We will also adopt the following convention for the algebraic

signs of rotation about OX, OY, OZ:

Rotation about OX is positive in the direction Y to Z,

„ OY „ „ „ Z to X,
OZ „ „ ., X to Y,

namely, the positive direction is that of a left-handed screw as

seen from when looking along the axis ; or, is determined by
taking the cyclic change of the letters X, Y, Z.

119. Linear velocities in three dimensions. If u, v, %v are

the (total) component velocities in the directions of the axes,

we have (Fig. 67)

'?(, = component velocity of P relative to iT+that of K
relative to ^+that of iV relative to 0,

and .•. u=^:c—if^^-\-zQ^,

and, similarly, by considering relative volocities,

nj=zz — x0.2+ y0i.

It should be noticed that the dimensions of the expressions

are correct.

120. Accelerations. Again, if we take OR, RL, LP (Fig. 67)

to represent these velocities u, v, iv, the rates of change of

ti, V, w, i.e. the total accelerations, along OX, OY, OZ are

v— wO-^-huO^,

w— tiO^+ vO^.

121. Angular velocities. Since angular velocity and angular
momentum are vector quantities, the foregoing results are also

applicable to them.
Let (0^, 0^2, 0)3 be the (total) angular velocities of a rigid body

about the axes OX, OY, OZ; that is, about the lines fixed in

space with which OX, OY, OZ happen to be coinciding at the

instant under consideration : it follows that the rates of change
of the angular velocities about the moving axes are

COi— (O.2O3 -f W3O2 ,

0)3— ^1^2 ~^~ ^2^1 •

122. Angular momentum. If is a fixed point in a body
referred to the three moving axes OX, OY, OZ, and h-^, \, h^

are at any instant the components of the angular momentum
H
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of the body about these axes, then the rates of change of the

angular momenta are given by

123. General equations of motion of a body having one
point fixed. Since the rate of change of angular momentum
about an axis is equal to the moment of the external couple

about that axis, it follows that if K^, K^, K^ be the external

couples acting about OX, OY, OZ, we get the following

equations for determining the motion of a body :

^^2 -Ml+Ms = ^^2'

7^3- 74^2+Ml = ^3-

The equations of motion in the form thus obtained were
first given by Mr. R. B. Hayward, F.R.S., of St. John's College,

Cambridge. They are contained in a paper, published in 1856,

in Part I. Vol. X. of the Cambridge Philosophical Transactions.

124. Euler's dynamical equations. In the case of the motion
of a single rigid body about a fixed point, or about its centre

of gravity, if we take for our moving axes three straight lines

fixed in the body, and passing through the fixed point, or

through the centre of gravity, we shall have

Ql = ^\> ^2 = ^2^ ^3= 003-

If, further, we take these three lines to be tl:ke principal

axes at the fixed point,

h^ =^ c-j-j^ , h^= Buo^ , 7^3 = Cojg

,

and the above equations reduce to

Awi — (B— C)(jo^o)^ — K^

,

B(h.2'-{G—A)w^(t)^ — K2,

(7«?3— {A—B) (jo^oo^ = K^
,

which are Euler's equations.

125. General equations of motion of a body deduced from
gyroscopic resistance. We have seen in Art. 37 that if

angular momentum /oj about OX is precessing about OZ with
velocity Q under the action of a torque K about OY, then
the gyroscopic resistance offered by the body to the torque K
is measured by lijoQ,. Further, it will be remembered (Art. 38)
that the direction of precession is determined by the angular
momentum setting itself toivards the torque-axis when both
are drawn in the same sense.
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In Fig. 68 let us suppose the system to be in motion under
the action of external couples K^, K^, K^ about OX, OY, OZ
respectively.

It is clear that the angular momentum

h^ is precessing about OY with velocity 0^,

and OZ
Similarly for the angular mo-

3-

menta h^ and h^.

It follows that when the ex-
ternal couple K^ acts about OY
the resistance offered is

0.

y<^^

^
«*.

Fia. 68.

due to h^, measured by h^O^,

and „ /^3, „ -Ml'
the negative sign being taken,
since h^ sets itself away from the
torque-axis.

Hence, from moments about Y,

we get

^2-Ms+Ml = ^2'

or ^2= ^2 ~Ml+ ^4^3'

and two similar expressions as before.

126. It will be seen that our fundamental equation K= IodQ

(Art. 37) is a special case of the general equations, namely, when

\ = Iw, constant, h.2 = 0, h^= CQ,

For in this case the first and third of the general equations

vanish, and the second becomes

^1^3= -^2

'

or Iwil = K.

127. Applications of moving axes.

Steady motion of a top on a fine fixed point We will

now employ the above expressions to determine the motion of a

top spinning steadily as in Fig. 69, taking moving axes as

marked in the figure, which is entirely in the azimuthal plane,

axis (2) being perpendicular to (1) and (3) and towards the

reader. We have

Also

Oj = — sin a
;

^2 = a = ;

0^— Q cos a
;

hj^ = A(jo^', h^ =A

Wj^ = — Q sin a
;

Wo

00.

= 0).
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Referring to the equations of Art. 123, we see that the first

vanishes, and the second one becomes

i.e. GwQ sin a — ^ 1^2 sin aQ cos a = Mga sin a

or GmQ — A Q^ cos a = Mga,

the equation for steady motion already obtained. The third

equation also vanishes.

We can in the same way obtain all the equations of steady
motion established in Chapter VI.

Fig. 69. Fig. 70.

128. General motion of a top on a fine fixed point. If the

motion is not steady, taking axes as in Fig. 70, we have

6^= —yfr sin 0; w^= —xfr sin ;

^2= 5 002 = 6 ',

0^= \lr COS 6; Wg= (0.

The equations of motion therefore are

Ao)i — Aw^y^r cos H- Gwjd = 0,

J. ft)2+ Cwgx/r sin d-\-A w^yjr cos = Mga sin 6,

Gw^— Aco^O— Aoo^yjr sin = 0.

Substituting the values of cdj and Wg in the third equation we
see (7w3= 0, i.e. Wg is constant, a result which it will be seen

depends on the moments of inertia of the top being the same
about axes (1) and (2), i.e. on the symmetry of the top (see

Art. 97, footnote).
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The other two equations become

-A<l^ sin e'-2A\{rd cos e-{-Co£ = 0, (i)

AO+ Ccoxfr sin — A\j^^ sin cos = Mga sin 0, (ii)

which completely determine the motion.
Multiplying the first of these by sin and integrating we get

Axj/- sin^O+ Co) cos = D, a, constant,

which is the equation for conservation of angular momentum.
Again, multiplying (i) by 2>/r sin 0, and (ii) by 20, subtracting

(i) from (ii) and integrating

A\lrHin^e-\-Ae'^ = E-2Mgacos 0,

which is the equation of energy.

It will be noticed that of the three equations of motion that
about axis (1) gives the condition for constancy of angular
momentum about the vertical, that about axis (2) gives the
oscillations in the azimuthal plane, and that about axis (3) the
constancy of the spin of the top about its axle.

In a similar way the equations may be obtained for the

general motion of a solid of revolution spinning on a smooth
horizontal plane ; but the shortest method is that of writing
down the conditions for conservation of angular momentum
and conservation of energy.

129. The following is typical of the more advanced problems
to be found among the Miscellaneous Examples at the end of

Chapter IX.

A rough horizontal plane is made to rotate about a fixed
vertical axis with constant angular velocity, and the centre of
a sphere lying at rest at the point where the axis meets the plane
is set in rnotion with a given horizontal velocity. Show that

the path of the centre in space is a circle, described with

uniform velocity.

Let P be the point of contact at any instant of the sphere

with the plane, the point where the vertical axis OZ meets the

plane. Taking OPX as axis (1), OZ as axis (3), and OY perpen-

dicular to these as axis (2), we have Oi = 0, ^2 = ^' ^^^ ^3 = ^'

where 6 is the angle OP makes with some horizontal line fixed

in space.

Let F-^, F^ be the frictional forces at the point P in directions

(1) and (2), /i,/2 the accelerations of the centre of gravity G in

these directions, co^, 0)2, Wg the angular velocities of the sphere,

m and a the mass and radius respectively.

Taking moments about axes through G parallel to (1) and (2),

we have
%ma^a)i — fmd^o).20 = F^.a = maf^, (i)

and fma^(i)2+ 1 ma^co^O = —F^a= — maf^ (ii)
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Also if u and v are the velocities of Q in the directions (1)

and (2). by Art. 115

f^ = u— v6; f^=v^u6.

And, since there is no slipping, the point P of the sphere has

the same velocity as the point P of the plane, whence

a(jt)2— u = 0, i.e. ao)2 = u,

and aot)-^^-\-v = xQ, i.e. a(ii^ = xil — v,

where Q is the constant angular velocity of the plane.

Substituting in equations (i) and (ii) we obtain

and ^u— ^v6= —^xQO,

showing that /2= ficr2,

and f-^^= —fxQO.

Taking r, as the polar coordinates of the point P, these

equations may be written

^|(r20) = K2r, (iii)

and r-re^= -fQrO (iv)

Integrating (iii) we obtain

r^O= Y r^+ a constant.

Since = when r = the constant is zero and

Q2
Substituting in (iv) f _|- /^ = Q.

Since -t.=1j^ ^^^ above may be written

whence the path of P in space is given by

r = ccos(0+ a),

where c and a are constants, showing that it is a circle.

Taking the sum of the squares of r and rO derived from this

equation, we see that the velocity is constant and equal to that

of projection.



CHAPTER IX.

STABILITY OF ROTATION. PERIODS OF

OSCILLATION.

130. We shall now consider some cases where a spinning

body receives a slight displacement, discussing the conditions

under which it will revert to the original motion when the

small disturbing force is withdrawn, and the periodic time in

which it will oscillate about its original position.

131. Proposition. // OA, OB, 00, are the three principal
axes (through a fixed point 0) of a body ivhose rnoments of
inertia about these axes are A, B, {either in ascending or

descending order of magnitude), then, for small displacements,

rotation either about OA or 00 is stable, but about OB unstable.

For, considering that the disturbing force is instantly with-

drawn, we have, by Euler's equations, since no forces act on
the body,

^«,^-(5-6>,<«3=0,

^cog— (C—^ ) 0)360^ = 0,

Cwg— (J. — B)w^(jd.^ = 0.

If the body was spinning before displacement with velocity

12 about the axis of 00-^, we have

0)^ = Q+ small quantity,

0)2 = small quantity,

0)3= small quantity.

Hence, to the first order, Adi)^ = 0, and thus oa^ is constant =0,

whence Bwcy^— {O—A)ilM^ — 0,

and Owg— {A — B) Q^w.y = ;

.-. BOw^-V{A-C){A^B)Q?c^^ = (}, (i)

and the motion is simple harmonic.

The time between two successive equal values of ic^ is given by

27r / BC
Vm3il ^{A-0){A-By
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which is a real quantity, and the motion is stable. Similarly

if the spin Q is about the axis of Wg ; but if it is about the axis

of 0)2 , the period becomes

27r / GA
ym^u yi{B-A)(B-cy

which is imaginary.

Hence the motion is stable for rotation about OA or 00
but unstable about OB.

132. Diabolo which will not spin. The reader will remember
that when he is beginning to spin a Diabolo spool by means of

the string, unless the two portions of the string are absolutely

in the savie i^lane and that at right angles to the axle of the

sjpool, then, besides the spin about the axle which he means to

communicate, there is also a residuum " wobble " about a
transverse axis ; but as he continues his spinning this wobble
begins to disappear and the spool settles down to a steady

rotation. The reason for this is that the axle of the spool is in

general an axis of minimum moment of inertia (though if it is

one of maximum moment the same argument applies) and the

instantaneous axis tends to revert to the position of the axle

of the spool. If we construct a spool which is dynamically
equivalent to a sphere we shall find that it is impossible to

spin it ; for, since the moments of inertia about all axes are

equal, the spool has no tendency to revert to its axle as instan-

taneous axis of rotation. The result is that the axle wanders
about indefinitely in space, though with considerable rapidity.

If this Diabolo were already spinning about its axle, it would
possess a certain degree of stability ; for, the spin about the

axle being large compared to that generated by any disturbing-

force about another axis, the instantaneous axis would deviate

only to a very slight degree from the axle of the spool.
"'^

(See Art. 63, footnote.)

A heavy conical sheet projecting equally on either side of the

vertex whose semi-vertical angle is equal to tan~^/s/2 (Fig. 71),,

has the dynamical properties of a sphere ; but such an ideal

construction is impracticable. Since, however, the addition of

matter inside the angles AOR, A'OB would increase the moment
of inertia about the axis of the cone, while the addition of matter

inside the angles AOB, A'OB' would increase the moment of

inertia about a transverse axis, we can on such a skeleton cone

form a material double hollow cone, in the form of a Diabolo

spool which is dynamically equivalent to a sphere ; and this

Diabolo we shall find almost impossible to spin.

* It is for this reason that in the game of Cup and Ball, when it is required to

jerk the ball so that the axial hole catches on the wooden peg, it is necessar}

to first give the ball a spin about the axis containing the hole and the point
where the string is fastened to the ball ; for then a lateral jerk of the string does
not appreciably displace the axis of rotation.
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At a meeting of the Physical Society of London, in November,

1907, Mr. C. V. Boys exhibited some interesting experiments

with a wooden spool of this description. His spool was pierced

with an axial hole, in which condition the moment of inertia

was greater about the axle than about a transverse axis. The
spool was found easy to spin, and displayed considerable stability.

Fig. 71. Fig. 72.

The lecturer then inserted through the hole (Fig. 72), a

small stick of such a length as to make the two moments of

inertia exactly equal, and by attempting to spin the spool

illustrated very clearly its marked instability of rotation about
any axis whatever, and the impossibility of spinning it. On the

same stick being used but pushed slightly from its central

position so as to project rather more at one end than the other,

the spool again was spun without difficulty, and displayed

distinct stability, but at once began to precess owing to the

gravity couple called into play by the displacement of the centre

of mass. A similar stability of rotation was observed when a

longer stick was inserted, causing the moment of inertia to be

greater about a transverse axis than about the axis of the cone.

It is interesting to notice that in equalising the moments of

inertia the adjustment must be very exact before spinning

becomes impossible. If a torsion wire is applied as a test it is

found that when the difference in periods of oscillation is as

much as 1 in 35, spinning is quite easy. The periods should

not differ more than one per cent.

For several of the above details the author is indebted to the

Proceedings of the above-mentioned meeting, published by
the Society.

133. A problem of stability relating to Schlick's method
of steadying vessels.

A fly-ivheel is synfimetrically mounted in a spherical case

to which is fixed an axle jperioendicular to the axis of the fly-
wheel. The ends of this axle are mounted inside a holloiv
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circular cylinder so that the direction of the axle intersects and
is 'perpendicular to the axis of the cylinder. The cylinder lies

on a rough table and the fly-wheel is set spinning with its axis

vertical. Shoiv that if a mass m he attached to the highest point

of the cylinder, the system is stable, whatever be the mass of
the cylinder, provided the square of the angular velocity of the

fly-wheel exceeds mgaAjC'^, ivhere a is the outer radius of the

cylinder, A the w^oment of inertia of the case and fiy-wheel

about the axle, and G that of the fly-ivheel about its axis.

Camb. Math. Tripos, 1908. (2nd Problem Paper.)

Let ZOX (Fig. 73) represent

the vertical plane through the

centre of the fly-wheel and the
particle P, where the angle

ZOP = e. After any time t let

Oc be the projection on this

plane of the axle OC of the fly-

wheel, which is rotating in the

direction marked, and has pre-

cessed through an angle cp to-

wards the reader. If OB is

perpendicular to 00 and OA,
then OB, originally coincident

with the axis of the cylinder,

now makes an angle with it.

Taking OA, OB, OG as moving
axes, and considering the motion of the fly-wheel and case,

we have
co^= —<p, and

W.2 = cos (p.

Fig. 73.

(jOo = CO,

^1=70;
^2= ^ COS

03 = 0.

Let K be the torque about the axis of the cylinder exerted

on it by the fly-wheel and case, owing to the reactions at

A and A\
Taking moments about OA for the fly-wheel and case we

or — ^^-t-Oa)^cos0 = O.

If the displacement is small, neglecting squares of small

quantities, cos 0=1,

and therefore J.0 = (7a)O (i)

Moments about OB give

h^— AgOj+ \0^=K cos cp,

d
-^ (BO cos <p)+ Coo(p=K cos <p.
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or, neglecting squares of small quantities, and combining with (i)

Be+^e-K=0 (ii)

Now, considering the motion of the cylinder, and taking

moments about the generating line in contact with the table

(moment of inertia / for cylinder and particle)

J0= TYiga cos . sin 6— K,

whence from (ii) we have, to the first order,

so that the condition for stability is

mgaA

and the period of a small oscillation is

(B+I)

134. Oscillations of a spinning top.

Case 1. To find the period of a small oscillation of a
spinning top about the position of steady motion where the

axle is inclined at an angle a to the vertical.

With the preceding notation we have, from conservation of

angular momentum,

(7ft)(cos a — cos 0)= Ayp- sin^O—AQ sin^a (i)

Writing down the equations of motion about the torque axis

we have, including gyroscopic resistances,

AG = sin e(Mga-G(joxfr-{-A\ir^ cos 0), (ii)

while Mga-'GMQ+ A^'^cosa = (iii)

If becomes a+ e and consequently yp- becomes Q+x where
€ and X ^^© small, we have

sin = sin(a+ e) = sin a+ cos a . e,

cos = cos(a+ e)= cos a — sin a . e,

neglecting squares of small quantities.

Hence, from (i), Cco(cos a — cos 0)= Co) sin a . e,

and

Ayfr sin^O—^Q sin^a = A (Q+ x)(sin^a+ 2 sin a cos a.e)- AQ sin^a

= 2AQ sinacosa . e+ ^x'^^^^^ >

.'. J.xsina = ((7a)— 2J.r2cosa)e

Mqa— AQ'^ cos a ^ ,...,= —^ ^ . e, irom (iii).
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Making the same substitution in (ii) we have

A'€ = [sin a+ cos a . e][Mga— Cft)(ll-f x)

+A (Q2+ 2Qx)(cos a - sin a . e)]

= —X sin a(Oa)— 2AQ cos a)— AQ^ sin% . €, employing (iii),

HMga-AQ^ cos af , ,.,, • 9 1

r^ ^^2^- 2MgaAQ^ cos a+MY(^^ _r.
^.6. e 4-

.*. the period is —

,

where p = -j^ V^^i^*- ^MgaAiV- cos a+M^a^.

Since the quantity under the radical can be written

(AQ^-Mga cos af-\-(Mga sin a)^,

it is always positive, and we see that the position of steady
motion is stable, a result already estab-

lished in Art. 104.

It should be noticed that the node P
(Fig. 74) travels uniformly round the

circle of steady motion with angular
\

J
velocity Q

;

the periodic time is -77- = -^

.*. the length of PR

2irAQ^

27r

V
2irQ,

P

Fig. 74.

JA^Q^- 2MgaAQ^ cos a+Mya^'
These oscillations have already been mentioned in Chapter IV.,.

where they were accounted for by the inertia of the top

alternately resisting and hurrying the precession. Where the

disturbing force is being continually increased, as for instance

when a top is gradually sinking, these oscillations are not

regular but instantaneous only about the instantaneous position

of steady motion.

135. Case 2. The sleeping top.

Definition. A top is said to be asleep when the whole motion
of its axle is in the neighbourhood of the vertical, but not

necessarily passing through it.

If a small displacement be given to a sleeping top, two
independent vibrations are set up, namely the oscillations of

and \fr about their mean values ; but since i/r is a function of

only, it follows that the periods of these two oscillations are
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the same and the mean values occur simultaneously. The
remaining Articles will be devoted to the discussion of this

period and the values of 0, \Ja and yfr at any time during the

motion.

136. To find the value of 6 at any instant. The equations

of conservation of angular momentum and energy give (Art. 107),

A-yjr sin^ + Coo cos = Cwb cos 0^, (i)

and A-ylr^ sin^ e-\- AO^ -{-2Mga cos 6= E. (ii)

Putting w~A~\' ^^^ 6 = 1 H—^ . Oq^ where ^ is a constant,

the former becomes A\jrO'^= -^ {&^-^pO^) neglecting cubes and
higher powers of 0,

i.e. ^= \^(l+^y (iii)

and the initial value oi \[r = \(l+^).
Hence we see that /3 is the ratio of the initial excess of \jr

over \ to Xj.

It should be noticed that if Oq is zero, \^ = Xi, and is therefore

constant, as was shown in Art. 102.

Combining (ii) with (iii) we obtain

reducing to 0^+ X^^O'^+^^^^= /w, a constant,

where X2^= A^^ j-,

and the condition for X^ being real is the condition for stability

obtained in Art. 106.

If 0^ = x, this becomes

^-{-\2^x^+ l3%%'-'^x = 0, (iv)

whence 2\d-^2S=^
^^

or e^ = x =K'^ h' cos (2X2^^+ 2^),

or (^jj = K+kcos{2\t^2S\
^ ^""^

where K, k, and S are constants. (Williamson, Integral Calculus,
p. 12.)

It follows that the period of oscillation of and yjr about

their mean values is —

.

Xo
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137. To determine the constants K, k, and S in terms of Oq

and 6q.

From equation (v) we have

i' = - 2X2^^0^ sin (2X2^+ 2(5)

:

,. J+ X^2(^_^^^2)2^X22/.W.

Comparing this with equation (iv) with which it must be

identical we get, by equating the constant terms,

{K^-lc')\i = ^''\^\ (vi)

showing that K is always numerically >• k.

B^\ 2

WritinsT ^ } = y^
X2^

we have K^-k^ = y\ (vii)

and from (v) iT+Z? cos 2^=1, (viii)

A
while /c sin 2^ = — ^^ = a say (ix)

C^oA.2

These three equations determine K, k, and 2S.

From (viii) and (ix) k^ = {l-Kf-\-a'^;

.'. using (vii) K^^(l-Kf-a'" = y'2

.. ^
2

Also tan 2^=
l-a2_y2

_^l-^2_y2x2
and A;^ =

(^

^ ""^ ^ j +«^.

From the last two equations we see that k may be either

positive or negative, and also that S can have two values. If k

is taken as positive, we see from equation (ix) that S must have
that value which makes sin 26 of the same sign as a. Hence
there is no ambiguity.
From equation (v) we see that the greatest and least values

of (^j are K+k and K—k, and from (vi) the latter limit

is always positive ; hence never changes sign but varies

between a^ and ctg' where a^, a^ are O^jK— k and O^jK+ k

respectively.

138. Particular case when K' = k\ It should be remarked
that this condition does not necessarily involve K= k, since Oq

might be zero, which proves to be the case.
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If K' = Jc, and only in this case, equation (v) becomes

and the motion is simple harmonic.

In this case, since K''^— k'^= y'^Oq^,

we must have either ^q = or y = 0, which gives /3= 0.

ri

The latter condition gives, from (iii), '^ =\ = ^-7-

Hence if K'= Jc the top is either initially vertical or is so

displaced that the azimuthal velocity communicated to it is \.
The first of these two cases has already been considered in Art.

106 ; the second is clearly of the type discussed in Art. 134, a in

this case being small. The path of the head H is Sb simple wave

of period ^--. In Art. 140 it is shown that the path can in

general be produced by the combined effect of two waves whose

periods are ^;—r^— , but it can be drawn without reference to
A;^± A.2

these considerations b}^ the method employed in the following

Article.

139. The path in space of the head of the top as seen from
above. We have seen (Art. 137) that never becomes zero, but
oscillates between two limits a^ and a^.

If a graph be drawn such that the ordinates represent 0^ and
the abscissae the time, then equation (v) shows that the re-

• TT
suiting curve is a simple wave of period —

.

If now we draw a second graph such that each ordinate is the

square root of the corresponding one in the first curve, the new
graph will give the values of for all time. This second curve

is clearly flatter than the first, but repeats after the same period.

Now the value of xf/-, if described with the mean value of i//-, is

proportional to the time ; hence we may also regard this curve

as representing in terms of the angular distance described

with the mean value yjr, and we are thus enabled to realise

the general appearance of the path in space of the head H of

the top.

The dotted curve sketched in Fig. 75 shows the path described

on the assumption that xlr has its mean value throughout, while
the continuous curve gives the actual path. The following con-

siderations will show how they are connected.
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on 2\

Since '\fr
= \-^^ ^^

^
, we see that when has its mean value,

-v/r also has its mean value ; but as 6 increases i/r diminishes, and
vice versa.

Let us suppose that the head H is at M when both 6 and \fr

have their mean values. This will again occur at M^, M^, etc.,

namely after successive periods of time ^—

•

/ M

f

\ T-
i

•
•

1
4
•1

I :

)

\
• %

• \
\ \

-.. .,-v^

Fig. 75.

Now as Q increases beyond its mean value \j^ diminishes

;

hence as H moves from M to a^ , the outer limit of 0, the angular
distance described is less than that given by the dotted curve

for corresponding values of 0. From a<^ to M-^ yj/ is increasing,

until at M^ the angular distance actually described is the same
as that shown by the dotted curve. From M^ to a^ the value

of i/r is greater than the mean, and H is ahead of the dotted

curve by an amount which is lost again between the positions

TT
a^ and Mc,. The whole motion is repeated after time —

140. Determination of the periods of normal vibrations of
sleeping top. Let ^, y}, f,

be the direction cosines of the axle

referred to fixed axes OX, OYy OZ. Then since the axle is

nearly vertical we have (see C. Smith, Solid Geometry, p. 8)

^=sin^cos\//^ = Ocos>/r; .-. ^= cos \j^— Oxir sin yj/-.

rj = sin sin yp- = sin \/r

;

>; = sin xfy+ Oxfr cos \fr.
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With the usual notation, let the axes (1), (2), (3) be drawn so

that OZ and (3) are nearly coincident, and the angle between

OX and (1) is \jy, that between OY and (1) being f -^ — ^j.

The angular velocities about (1), (2), (3) are

— i^sin 0, Oy o) respectively.

The angular momenta about (1), (2), (3) are

— A\frs\nS, A6, C(o respectively,

or -A\f^e,AO,Gco.

The angular momentum about OX

= (-Axj^O) cos \fr-\-Aecos(^-i-\l^)-\- Ceo. i\2
= -A^-\-Gw^.

Similarly about OY
= A^+Cwri.

The torques about these axes are — Magt], Mag^ respectively.

Hence, since the rate of change ol* momentum is equal to the

torque, and OX, OF are fixed in space,

—A ij 4- Co)^= — Magt],

Ai'-\-Cwr] = Mag^;
whence -^^2X,;j-(\^-\^)i=0,\

and rj-2\^-{\^-X^^)f] = 0.j

The equations can both be satisfied by putting

^=rcos(A^H-e) and >; = rsin(X#-fe),

provided that X^ _ 2\^\+ x^2 _ ;^^2 ^ q,

i.e. (X-\f= \,\

or \ = \±\2>
which shows that the general solution of ^ and rj is

^= r^ cos { X^+ X2 • i^+ ei } + rg {cos Ai— Xg . ^+ 62}

,

>; = riSin{Xi+ X2. ^H-eJ +r2{sinXi — Xg. ^+ €2}-

Hence the motion is the combination of two oscillations of

27r
periods

\±\
141. Geometrical interpretation of the two oscillations.

The coordinates of the projection of H on the plane XY are

proportional to ^ and r].

Referring now to Fig. 56, p. 104, and substituting X^, X2 for

Wj and C02 respectively, we see that P describes a circle uniformly
with velocity Xi + X2, while the image of P in the line ZR^

1



130 THE SLEEPING TOP

describes a circle with uniform velocity X^ — Xg. Moreover ZN
is ^Pcos(Xi + X2)^ and PN is -^P sin (Xj + Xg)?^, according as we
consider the point P or its image.

Hence if we take two circles of radius 2i\, 2r^, described with
uniform velocities (Xj + Xg) and (X^ — X2) respectively, by particles

P^, P^, whose phases differ by e^ — 63, the coordinates of H, the

middle point of P^P2y referred to fixed axes suitably chosen,

are the values found above for ^ and r] respectively. Hence the

locus of H gives the projection on the plane XF of the path of

the head of the top in space.

142. To determine the value of ^/^ at any instant. Combining
equations (iii) and (iv) of Art. 135 and writing {2\t-\-2S)==X'
we have

^ ^ K-\-k COS X

.-. ^H-X = Xi^ + /3xJ
"^^

K+ k cos X

~^^^"^2xJa^+/:c.12 J il -f- HI cos X

-Xt +^- ^
tan- <,r-''coz

(see Williamson, Integral Calcuhis, p. 19);
or employing equation (vi), Art. 137, and substituting for K, k,

and x> r \

^+Z = Xi^+ tan-M^cos(X2^+ (^)[.

The constant L can be easily determined from the initial

conditions.

MISCELLANEOUS EXAMPLES.

1. A fly-wheel is mounted on an axle so that its plane makes an angle a
with the axle : show that there is a couple on the bearings of amount
(C- A)^^sm aco^a where 12 is the angular velocity about the axle.

2. A conical shell of angle a is made to rotate with uniform angular
velocity 12 about a generator, which is vertical. Show that a perfectly

rough sphere, of radius a and radius of gyration about a diameter k, can
remain in contact with the inner surface of the shell, always at the same
point, in a state of steady motion, if its angular velocity about the common
normal be / o\ ,,

ft ,
^ \ o • alt f^ . ^ aa

I 1 + T2 ) " sm a - ^2" • 12 sin a tan a+j^

,

where R is the distance of the point of contact from the vertex.

(Coll. Exam.)

3. A rough inclined plane is made to rotate about a normal axis with
constant angular velocity, and a sphere is given any spin and placed upon
it. Show that, whatever be the inclination of the plane, the angular velocity

of the sphere about the normal to the plane through the point of contact
remains constant.
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4. A heterogeneous sphere has its centre of gravity 6r at a distance
c from the centre of the sphere, and the radius of gyration about any line

through G is R. The sphere is placed on a fixed smooth horizontal plane,

spinning with angular velocity 12 about a radius inclined at an angle a to
the vertical ; and at the instant of release the axis OG is in the vertical plane
containing the axis of rotation and makes an angle /? with that radius.

Show that G describes a horizontal straight line if

B^Q^ sin a sin /?—gc . sin^ a+ /?.

5. A shell in the form of a prolate spheroid whose centre of gravity is at

its centre contains a symmetrical gyrostat, which rotates with angular
velocity w about its axis, and whose centre and axis coincide with those of

the spheroid. Show that in the steady motion of the spheroid on a perfectly

rough horizontal plane when its centre describes a circle of radius c with
angular velocity 12, the inclination a of the axis to the vertical is given by

{Mhc{a cot a + b) — Ah cos a + C{a sin a+ c)] 12^+ C'bioQ — Mgh {a — h cot a)= 0,

where M is the mass of the shell and the gyrostat, A the moment of inertia

of the shell and the gyrostat together about a line through their centre
perpendicular to their axis ; (7, C those of the shell and gyrostat respectively

about the axis, a the distance measured parallel to the axis of the point of

contact of the shell and plane from the centre, and h its distance from the
axis. (Camb. Math. Tripos.)

6. A sphere whose diameter is equal to the difference of the radii of two
spherical shells is placed between them, while each shell is made to rotate

with uniform angular velocity about some fixed axis through their common
centre, though the angular velocity and axis need not be the same in each
case. Show that the centre of the sphere will describe a circle uniformly,

provided there is no slipping.

7. A rough inclined plane is driven round a vertical axis with constant

angular velocity, and a sphere is placed on it. Show that, if the plane is

inclined to the vertical at an angle greater than about 18°, steady motion
is possible with the centre of the sphere describing a circle in space.

8. A rough horizontal disc can turn about an axis perpendicular to its

plane, and a right circular cone, vertical angle a, rests on the disc with
its vertex at the axis. If the disc be made to rotate with angular velocity

12, show that the cone takes up an amount of kinetic energy equal to

1 ^2 //cos^a sin^a

2 / V .4 C

C and A being respectively the moments of inertia of the cone about its

axis and a line perpendicular to the axis through the vertex.

9. A uniform solid right circular cone of vertical angle 2^ is placed on a

rough inclined plane of slope a, so that the generator in contact is horizontal.

Prove that the cone will always be in contact with the plane, and will

oscillate through two right angles, if

l+3sin2/5
tana<

9 sin f^ cos (S

'

10. A homogeneous right circular cone, of which the c.g. is at the

distance h from the vertex and the semi-vertical angle is a, rolls on a

rough inclined plane, starting from rest when it touches the plane along

a horizontal line. Prove that, when the generator in contact makes an

angle yjr with the horizontal lines in the plane,

I^'^— 2mgh sin^ a sec a sin y sin i//-,

I2
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and that the point of action of the resultant normal reaction between the

plane and the cone is at a distance

A{cos a+ 3 sin a tan y sin i//-}

from the vertex ; where / is the moment of inertia about a generator, and

y is the inclination of the plane to the horizontal. (Coll. Exam.)

11. A solid uniform prolate spheroid whose axes are 2a, 26, 26, spins

steadily on a smooth horizontal table. It has angular velocity n about
its axis of figure, that axis has angular velocity w about the vertical, and
h is the constant height of the centre above the table. Show that

and that, if 7i has its least value,

(O
2_^-^P • f

.

(Camb. Math. Tripos.)
a^+ b^ h

12. A uniform solid sphere of radius c rolls under gravity in contact with
a perfectly rough elliptic wire of semi-axes a and 6, whose plane is horizontal

:

the centre of the sphere moving in a vertical plane through the major axis

of the ellipse. Prove that if w be the angular velocity of the sphere when
its centre is at a height z above the major axis,

2_ 2gb^{h-z)
"^

b^(bz' + 2c')+ 5 (^2 + c2 - 62)(a2 - 62)3'

the value of z when a)=0 being h, and c > b.

13. A circular disc has a thin rod pushed through its centre perpendicular

to its plane, the length of the rod being equal to the radius of the disc.

Prove that the system cannot spin with the rod vertical, unless the velocity

of a point on the circumference of the disc is greater than the velocity

acquired by a body after falling from rest vertically through a height
ten times the radius of the disc. (Coll. Exam.)

14. A wheel with 4:?i spokes arranged symmetrically rolls with its axis

horizontal on a perfectly rough horizontal plane. If the wheel and spokes
be made of a very fine heavy wire, prove that the condition for stability is

-,,„ 3 2?^+ 7^

4 4?^+ Sir

where a is the radius of the wheel and V its velocity. (Coll. Exam.)

15. Two light rods OP, FQ, each of length 2a, are smoothly jointed at F,

and are the axes of equal gyrostats whose centres of mass are at the middle
points of the rods. The gyrostats spin with equal angular velocities n in

such directions that both would spin in the same way if OFQ were a straight

line. is fixed and Q slides above on a smooth vertical rod OZ. If M is

the mass of each gyrostat, A and C its principal moments of inertia, and a

mass m is suspended from Q, show that steady motion is possible with a
precession 12, in the same sense as the resolved part of any angular velocity

n along OZ, provided that k-l lies between unity and zero, where

y,___Cn__^ 2{M+m)ga
^~12(^+J/a2)

^^'^
^~122(^+J/«2)-

Show further that the motion is always stable. (Camb. Math. Tripos.)

16. Prove that the least velocity v with which a thin circular disc

(radius a) must be started in order to roll steadily on a rough horizontal

plane in a straight line, or very nearly in a straight line, is given by
^2 > i^a

; and that the period of a small oscillation is

27r
{.

A{A + Ma'^) \2
'oi^C+Ma^)-MgaA)
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17. A solid of revolution has an equatorial plane of symmetry, and is

rolling with angular velocity w round its axis in steady motion on a perfectly

rough horizontal plane, the equatorial plane of the solid being vertical.

This motion being slightly disturbed, prove that the period of vibration is

2^, A{A+Ma^) \^

t.C(i>^{C+Ma?)-Mg{a-p)A\
where p is the radius of curvature of the meridian of the solid at the

equator, and a the radius of its equatorial circle.

18. A sphere of mass m and radius a contains a symmetrical gyrostat,

mass J/, freely pivoted on a diameter of the sphere. The latter is spinning
on a rough horizontal plane with angular velocity 12 about this diameter,
which is vertical ; and 12' is the angular velocity of the gyrostat. Show
that in a small oscillation the point of contact describes an ellipse in time

n n {(M-\- m) a^ +mF+ J } ={M+ ma^+ niB) 12 + (712',

A and C being the moments of inertia of the gyrostat, and k the radius of

gyration for the sphere about a diameter.

19. A top, free to turn about a fixed point on its axis, at which the
principal moments of inertia are A, A, Cand whose distance from the centre

of gravity is A, is started when its axis makes angle - with the vertical drawn

upwards so that the spin about the axis is -^ (
—~^

) and the angular

velocity of its axis in azimuth is 2 1 -^-^
j , the velocity in the meridian

plane being zero. Show that the inclination 6 of its axis to the vertical at

any time is given by the equation

sec^= l + sech|(^)\},

so that the axis continually approaches the vertical without ever reaching it.

(Coll. Exam.)



APPENDIX.

Explanation of the precession of a wheel from conservation

of angular momentum. If we have a particle P constrained to

revolve about a fixed axis OC, then, by the principle of

conservation of angular momentum, the nearer it gets to this

axis the faster it must revolve, and vice versa. (We may
imagine, for instance, the particle P, Fig. A, to be a heavy bead
sliding on a wire OA which is turning about OC.)

Q

-"«'.

Fig. a.

This acceleration or retardation of rotation represents the

action of a single force ^ in the appropriate direction on the

particle P.

Thus, if the particle is getting nearer to the axis, its accelerated

rotation is caused by the action of a certain force in the

direction PQ of its rotation ; while if the particle is moving
away from OC this force acts in the direction PQ' opposing
its rotation.

Now let us apply this.

We may consider the rotating wheel to be composed of sets

of four particles, of which A, B, C, D (Fig. B) are a type,

situated symmetrically as shown in the figure, and rigidly

attached to one another and to the axle OX (perpendicular to

the plane of the paper) about which they are rotating in a

direction shown by the arrow-heads.

* There will really be a number of forces acting on the particle P due to the
action of the various constraints by which it is attached to the frame. The
above force is a single force equivalent to this set of forces.
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On this system we shall suppose a couple whose axis is YOY'
to act in such a direction that it tends to turn A and B out

of the paper towards the observer, and C and D into the paper

away from the observer.

We shall show that any such rotation set up by this couple

results in a set of forces being called into play which tend to

make the system precess about the third perpendicular axis OZ.

Fig. B,

By reason of its rotation about OX the particle A is increasing

its distance from the axis OY'.

Thus, if it has any rotation about this axis due to the couple,

there will be a tendency to diminish the speed of this rotation

in consequence of the increasing distance of the particle from
this axis.

This retarding tendency may be represented by a force acting

on the particle A perpendicular to the plane of the paper and
away from the observer.

Again, the particle B is getting nearer to the axis OF of the

couple and so must be increasing its rate of rotation about this

axis. This acceleration of rotation may be supposed to be
caused by a force through B perpendicular to the plane of the

paper and towards the observer.

Similarly, the effects on the particles C and D may be supposed
caused by forces acting on C, D perpendicular to the plane of

the paper and respectively toivards and from the observer, since

the rotation about YO Y' is causing G and D to move away
from the observer.

We see that we thus have forces at A and D away from the

observer, and at B and C towards the observer.

Clearly these forces will make the system precess about
the third axis OZ.

Thus, when the body is rotating about OX, the application

of a couple about YO makes the body turn about the third

axis OZ.



ANSWERS TO EXAMPLES.

CHAPTER I.

Page 16.

1. 6i rad./sec.^. 2. 800 radians ; 2400 radians. 3. 124950 revolutions.

Page 28.

1. (i) ? . JL . I07r=i^ Ib.-ft.-sec. units.

(ii) A . 1 l0O7^^-=2^^ Ib.-ft.-sec. units.

o /-x 7 1 200 275 n ., .,

2- ^^>32-24^-T-'^= 3456^^-^'-"'^-^"^'"

(") ^- 2T^C-T^)'
= 1^^^*I lb.-ft.-sec. units.

3. 81 : 2 : 9. 4. 12^^ lb.-ft.-sec. units.
a

5. 3591|^ poundals.

6. Angular momentum= yf 4 lb.-ft.-sec. units.

Energy = I ft.-poundals.

7. - seconds.
TT

8. (i) 480 ft.-poundals. (ii) 128x^^3 rad./sec.

9. 4 times.

^"> 32.36.15=^"*
"'-*^-

55
(iii) r^= -00265 ft.-poundals.

11. (i) ?iP^^ sin cos (9 ft. -lbs.

.... 11 F
(]i

) sees
^ ^ 9216 nP^^ sin ^ cos ^



CORRIGENDA.

ANSWERS TO EXAMPLES.

Page 136.

10. (i)
32 4 36

~^^ ft. -lbs. (approx.).

.... 1 7 25 6400. 7r2. 5 ,0 7 „ , / 22\
^"^ 2 • 4 • I6 • 144732 "16 '^^^^^^ ^^•^^-

(^^TJ-

11. (i) ?iPJ^ sin 6* cos inch-lbs. (ii) ^^^
^^

768 wPyl/sin^cos^

Page 137.

15. (i)
75.32^.^21

ft. -lb. -sec. units. (ii) 48384 ft. -poundals.

..... 48^21 ^.
(ill) —

Y^
—= 20 sees, approx.

16. yt2= -y-in.2.

sees.
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12. Because a Unite force cannot be produced instantaneously, and there-

fore some time must elapse before the maximum pull is attained.

At the first pull, a smaller force, which is increasing up to a
maximum, takes its share in producing momentum ; but later this

inferior force is taken up in destroying the existing momentum
in the opposite direction to it, and by the time that it is again
producing momentum, the maximum force has been attained, and
thus the total work done in producing momentum = the maximum
pull X the length of the string. Thus the energy, and therefore the
momentum produced are greater in the second case.

13. The ratio of the energies produced

—

i.e. the work done in the two
cases, by pulling a string of length I with a force T, is

( ji 1_ ]l • Tl

— qIttil - X ;
e^Tty-,

14. (i) 1000 ft.-lb.-sec. (ii) 40400 ft.-poundals.

(iii) 16 rad./sec. (iv) 12^ seconds.

15. (i) 218^ ft.-lb.-sec. units. (ii) 2304 ft.-poundals.

(iii) 1 j\- seconds.

16. ^'= -Vft.2.

,„ 550.400.121 550.605 ,,..
17. --^^—= 11^H.P.

550.400.121 2750.44 ^^. .^ ..

40
^ ^ =31f ft.-lbs.

18. (i) 96i^ ft.-poundals.

9A
(ii) (a) — , A being the constant of proportion.

The same forces are used in each case, but in inverse order, and
hence the result is the same.

(ill) 9A. (iv) —p^ A, (o=^^-j-^'

CHAPTER II.

Page 42.

1. 1561 ft. -lbs. 2. 2 7^50 rad./sec. 3. 10 cm.

4. 468 rad./sec. 5. V2 feet.

Page 45.

1. 43*816 ft./sec. 2. The wheels on the inside of the curve.

3. The radius=V-^- 4. -i/a^.^ ft.-poundals.
' tuiZ Z K

5. ^^^^= 118if ft.-lbs. 6. -41 inches.
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7. (a) By the internal stresses.

(6) About a vertical axis in a direction which would turn the back
wheel towards the centre of the curve, and the head of the
machine outwards.

(c) The reaction causes the back wheel to be turned away from the
centre of the curve, and the head of the machine inwards, thus
increasing the risk of skidding.

(d)
' —93 ft. -lbs. approximately.

CHAPTER VI.

Page 95.

(a) Yes ; since their axes are merely translated and not rotated, it

does not matter whether they are spinning or not.

(6) No ; the figure would become skew.

6. CiWii2 - (.4 1 + ifi^H i/24a2 -f ^ab) il^ cos a = (3/i + 2 i^/,) «^-

CgWgfi - (^ 2 + ^4^^ + 2a6) 12^ cos a = M2bg.

(i) No. (ii) Yes. (iii) No.

7. The same way.



ANSWERS TO QUESTIONS.

CHAPTER I.

[1.] (a) [l/][Zp. {(i) [M][LJ[T]-\ {y) [M][LY[T]-\

[2.] 448 Ib.-ft.'. [3.] It is involved in the mass M. [4.] AOn,

[b.] Pt= M{v^-v). [io.] K.E^hMvK [7.] Ps= J J/(
V - i'^).

CHAPTER II.

[8.] (i) It upsets it.

(ii) It causes it to precess.

[9.] (i) The further end dips.

(ii) The further end turns to the left,

(iii) The near end dips further.

[10.] {a) The front of the car is depressed.

(6) The back of the car is depressed.

[11.] {a) The bows turn to starboard.

{h) She heels to port.

[12.] The "Centrifugal Force."

CHAPTER III.

[13.] There is a small frictional couple at the toe, due to the toe not
being a mathematical point.

[14.] Because if the top begins to lean over, the gravity-couple about the
edge of support causes it to precess ; and if the precession is

hindered by a rough surface, the top falls down.

[15.] There is more friction to "hurry" the precession.

[16.] The radius a is greater and thus w is reduced at a greater rate.

[17.] The final direction of friction is opposite to its initial direction.

[18.] In both cases the result of the air is the same. But if the peg is

blunt the effect of friction mentioned in question 13 is more
marked than in the case of the fine peg. On the other hand,
friction acts at a larger arm in the case of the blunt peg, so that a
smaller frictional force is capable of restoring w to the value
necessary for steady motion.

[19.] It would move in a vertical straight line ; or if the motion were
steady it would be at rest.
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[20.] Yes. The axle would describe a cone with vertex G.

[21.] €HM < J.12. The heavier the top, the better it fulfils this condition
;

for we have a big torque acting, and consequently a large 12.

[22.] The motion becomes steady more quickly. For the large spin of the
body is only partially communicated to the loose spindle ; hence
the «(o (of the spindle) is never ver}^ large, and soon = J 12.

CHAPTER IV.

[23.] No. For since it has no angular momentum about its axis, there will

be no horizontal impulse on the cushion.

CHAPTER VI.

[24.] No. For points of the body on the momentum-axis are not instan-

taneously at rest.

[25.] 0) cos ^+ 12 sin a sin ^.

[26.] (i) If convex, the direction of R will not allow G to move in a
horizontal circle, so that steady motion is impossible.

(ii) If concave, steady motion will be possible. The direction of

precession will depend on which side of the axle the reaction R
lies, i.e. on the angle at which the top spins and the direction

of the common normal at the point of contact.

[27.] Zero, during steady motion.

[28.] Either 12 would be zero ; or the figure would fold up about OE^
according to the nature of the joints at and E.

[29.] The torque of Mg and R. about D ; for the vertical reaction of the

plane on the cone, although equal to Mg., does not act through the

line of action of the latter.
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Models of the Spinning Tops mentioned in this Chapter

can be obtained from Messrs. Newton & Co., Scientific

Instrument Makers, 3 Fleet Street, London, E.G.





Plate I.

Fig. XL

Fig. XII.
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1L^,..i ^y
A

V
Fig. XIII.

[see pp. 7 and 54









Plate III.

riioto : Llnclerwood and Underwood.

Schlick's Apparatus for Steadying Ships.

Photo : Underwood and UnderwooJ.

Model exhibited before the Royal Society' in 1907.

[see p. 67.
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