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PREFACE.

The present volume is devoted mainly to an, investiga-

tion of the properties of the remarkable expressions which

were first introduced to the notice of mathematicians by

Legendre, and are now known as Laplace's Coefficients and

Functions. Some account of these expressions is given in

various works, but their importance in modem researches

suggests the advantage of a more complete and systematic

development of them than has hitherto appeared in England.

The work now published will it is hoped be found suffi-

ciently elementary for those who are commencing the

subject, and at the same time adequate in extent to the

wants of the advanced student.

The book is composed of four parts. The first part

consists of twelve Chapters, in which the expressions are con-

sidered as functions of only a single variable ; in this form

they were first introduced by Legendre, and it is convenient

to denote them, thus restricted, by his name. The second

part consists of eight Chapters, in which the expressions are

considered as functions of two variables ; this is the form, in

which they present themselves in the writings of Laplace.

The third part consists of nine Chapters which treat of

Lamp's Functions ; these may be regarded as an extension

of Laplace's Functions. The fourth part consists of seven
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Chapters which treat of Bessel's Functions ;
• these are not

connected with the main subject of the book, but as they

are becoming very prominent in the applications of mathe-

matics to physics it may be convenient to find an exposition

of them here.

The demonstrations which are adopted have been care-

fully chosen so as to bring under the attention of students

some of the most instructive processes of modern analysis.

Thus the work may be regarded both as an account of the

Functions to which it is specially devoted, and also as a

continuation of the two volumes already published on the

Differential and Integral Calculus respectively; the three

together form a connected treatise on the higher department

of pure mathematics.

In conducting the work through the press, I have had

the valuable assistance of the Eev. J. Sephton, M.A., Head
Master of the Liverpool Institute, formerly Fellow of St

John's College, Cambridge.

I. TODHUNTER.

St John's College,

November, 1875.
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CHAPTER I.

INTEODUCTION.

1. The mathematical expressions to which the present

volume is mainly devoted were first introduced by Legendre
in some researches relating to the Figure of the Earth, and
were much cultivated by himself and by Laplace in their in-

vestigations of this important problem of Physical Astronomy.
In the History of the Mathematical Theories of Attraction

and of the Figure of the Earth will be found an account of

the origin and early progress of the branch of analysis which
we are now about to expound.

2. Suppose that the expression (1 — Iolx + a')"^ is ex-

panded in a series of ascending powers of oc ; the coefficient

of a" will be a function of x which we shall denote by P„ {x)y

and shall call Legendre's Coefficient of the n"* order. The
term Laplace's Coefficient is generally used when for x we
substitute the value cos 6 cos 6^ + sin 6 sin 6^ cos ((/> — </>J,

where we regard ^'and (ft as variables, and 6^ and 0^ as con-

stants; so that Laplace's Coefficient is a function of two
independent variables. But the term Laplace's Coefficient

is sometimes employed even for what we propose to call

Legendre's Coefficient.

3. Other names have also been suggested for the cele-

brated expressions which we are about to discuss : thus the
Germans call them Kugelfunctionen, and in France the
corresponding name fonctions spMriques has been used ; Sir

William Thomson and Professor Tait call them sphencal
harmonics. The name Laplace s Functions appears to have
been first introduced by the late Dr Whewell, and has been
generally adopted in England. In analogy with this, other

T. 1



2 INTKODUCTION.

functions which we shall hereafter notice are associated with
the names of eminent mathematicians, as Lame's Functions

y

and BesseVs Functions.

The relation between Laplace's Coefficients and Laplace's

Functions will be explained hereafter.

4. The researches of Legendre and Laplace were ori-

ginally published in the volumes' of the Paris Academy of

Sciences ; those of Legendre are reproduced with extended
generality in his Exercices de Calcul Integral, and those of

Laplace are reproduced in his Mecanique Celeste. In more
recent times other mathematicians have in various memoirs
contributed improvements and extensions ; and moreover
the following separate works on the subject have appeared

:

Becherches sur les Fonctions de Legendre par N. C. Schmit.

. . .Bruxelles, ]1858. This consists of 80 octavo pages, besides

the Title and Preface ; on pages 72...75 is a list of memoirs
on the subject.

Lie Theorie der Kugelfunhtionen. Von D"". Georg Sidler.

Bern, 1861. This consists of 71 quarto pages, and forms a
good elementary treatise^ on the subject ; it contains several

references to the original memoirs.

Handhuch der Kugelfunctionen von D". E. Heine,... Berlin,

1861. This consists of 882 large octavo pages, besides the

Title and Preface ; it is a very elaborate work with abundant
references to the original memoirs, and should be studied by
those who wish to devote special attention to this branch of

analysis. It discusses very fully the results which follow

from the substitution of imaginary values for the variables

in the expressions ; but this development is somewhat
abstruse, and belongs rather to the pure analyst, than to the

cultivator of mathematical physics, for whom the subject in

its simpler form is specially valuable.

5. Although I do not profess to have made that close

investigation into the history of this subject, beyond its

earlier stages, which I have prosecuted with respect to some
other parts of mathematical science, yet I have incidentally

paid some attention to it. One important memoir has been
overlooked by the three writers mentioned in Art. 4 ; it is

that by Rodrigues to which 1 drew attention in the History
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of the Mathematical Theories of Attraction^ Arts. 1176. ..1193.

Three expansions which I shall give in Arts. 19, 21, and 23
are ascribed by Heine in his pages 8 and 15 to Dirichlet;

they had however previously appeared in Murphy's Treatise

on Electricity^ Cambridge, 1833, in the more general forms

from which I have deduced them.

6. As we have said in Art. 2, if (1 — 2aa; + a'')'-^ be ex-

panded in a series of ascending powers of a, the coefficient of

a" is a function of x which is called Legendres Coefficient of
the n'* order : we may call it briefly Legendre's n'* Coefficient.

We shall denote it by P„ [x)y but for the sake of simplicity

we shall often omit the x, and thus use merely P„. French
writers very commonly use X^ for the same thing. "We pro-

ceed to develope P^ explicitly.

7. We have (1 - 2ax + a*)-^ = {1 - a (2a; - a)Y^ ;

expand by the Binomial Theorem ; thus we obtain

l + |a(2x-a)+|^a«(2a;-ar + ^^|^^a»(2^

1.3...(2n-l) „,^

2.4...2ri ^ ^

Suppose the various powers of 2aj — a to be expanded ; and
then pick out of each term the part which involves a", be-
ginning with the last term which is here expressed. Thus
we obtain

p _l^S^5^^^(Pi-ri 1.3.5...(2n-3)

\n
^~

2 \n-2
^

1.3. 5.. .(27^-5)
^ 2.4|7i-4

If n be even, the last term is (— l)'^ ——.
...[n—

) ^^^ .^
^^

2. 4... 71

beodditis(-lp'^-li|^a;.

Thus P„ (x) is a rational integral function of x of the
degree n, and it involves only even powers of x, or only odd
powers of x, according as n is even or odd.

We see that P„(- x) = (- 1)»P„ (x).

1—2



4 INTEODUCTION.

8. We may also put P„ in the form

l,3.5...(2n-l)
f

n{n-l)
\n r 2(271-1)"^

"^ 2A.{2n-l){2n-S) '"]'

9. If we remove, by cancelling, the odd integers which
occur in the denominators of the numerical factors . we
obtain the following results, in which we take first examples
of Legendre's Coefficients of even orders, and next examples
of those of odd orders

:

p_5.7 4 3^^9 2, 1- ^

p_ 7.9.11 e 5.7.9 ^ , .
3.5.7 ^ , 1.3.5

^«~2.4.6'' 2.4.(5^^+2.4.6^'^ 27476'

and generally

P ^. ,.„_, (25 + 1) (25 + 3). ..(25+2n-l) , . ,,

where S denotes a summation with respect to 5 from to n,

both inclusive ; and x (j^y *) stands for — -~^ .

p_7.9 , 5.7^ 3_^3.5
•^«-2:4^""2.4'^^"^274'^'

^ 9.11.13 7.9.11 5.7.9 3.5.7
•^'2.4.6'^ 2.4.6*^^+2.4.6'^'^ 2.4.

6^^'
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and generally

where 2 and ;^ (n, s) have the same meaning as before.

It will be observed that % (n, s) is an integer, being in fact

equal to the number of the combinations of n things taken s

at a time.

10. The numerical factors which occur in the preceding

Article admit in some cases of further reduction ; and they
can be put in such forms that the denominators of the

fractions consist entirely of powers of 2. Thus for example

231
e 315 4 105 , _5^

^«"
10

'^"
16

"^"^
16 ^ 16*

It is easily seen that this must be the case. For in

the first expansion which we have given in Art. 7, we

obtain as the general term ' "' ^ a"* (2x — a)*", that

|2m
^ , .

|2?7i /a\"* / aV ^^
is 5v^r^«l— a"*(2a;-ar, thatis ,^= -. (x-^) . Now

2 |m2 |_m ^
^ \m\m\2/ \ 2/

|2m
.

~~-
is an integer, and hence the coefficient of a" will not

\m\m ^

have any number in the denominator except 2". We may
1
2m |2m-l

go a step further : for ,—— = 2 ,—^

z- , and is therefore* ^ ' \m\m |m |m —

1

necessarily an even integer; and thus the numerical factors

of Pn{x) will not involve in the denominators any power of 2

higher than 2**"'.

11. The expression for Pn(os) may be put in a very

compact form first given by Rodrigues, namely

1 c^"(a;'*-l)"
P.=

2"[n dx'

For let {x^ — iy be expanded by the Binomial Theorem,
and let the result be differentiated 7i times with respect to x,

then it will be found that the term which involves a;"'**
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= the product of (--^Y--" n(n-l) (n-s + 1) .^^^

{2n-2s){2n-2s-l)...{n-2s + l)

^ {-iyx''-"'{2n'-2s)(2n-2s^l) {n-2s + l)

2"jnj-5|£

Again, in the formula obtained for P„ (a?) in Art. 7 we see

that the term which involves a;""2«

^ (- lyx^'^n . 3 . 5 ... (271 - 2g - 1) ^ {-iyx^-^'\2n- 2s
~

2.4i.,.2s \n-2s ""
2""

\

n - s \s \n - 2s

^ (-lYx''-^'(2n-2s)(2n-2s--l)...{n-2s-]-l)~
2^ [n-g |g

This agrees with the former result, and thus the identity

of the two forms of expression for F^ (x) is established.

12. Another mode of investigating the expression of the

preceding Article for P„(a;) may be noticed.

Assume V(l - 2aa; + a") = 1 - a?/

;

therefore -r- = —rrt—

o

;

—

^ •

dx ^{l-2ax + a)

Hence we require the coefficient of a" in the expansion of

-^ in a series proceeding according to ascending powers of a.
CLX

Now 1 - 2ax + o.'^ (1 - ayY=l - 2a2/ + aY;

therefore y=x + a^—^—

.

The general term of the expansion of y in powers of a

may now be obtained by the aid of Lagrange's Theorem:

see Differential CalGultis, page 117. It is -^, 7 n-x \

dit
and therefore the general term in the expansion of ^ is

T\n dx""



CHAPTER 11.

OTHER FORMS OF LEGENDRE'S COEFFICIENTS.

13. In the preceding Chapter we have given the most

important expressions for Legendre's Coefficients ; in the

present Chapter we shall investigate some other forms which
are frequently useful.

In applications of the theory x is very often equal to the

cosine of an angle ; we shall denote it by cos 0, and shall

proceed to develope P„ (cos 0) in cosines of multiples of 6.

14. We have, putting t for J —1,

(1 - 2a cos 6 + a')-^ = {1 - a (e^« + e"'^) + a'^}"^

= (l-ae^O-i(l-ae-^T*.

Expand each factor by the Binomial Theorem; thus we
obtain

Multiply the two series together, and pick out the term
which involves a"; it will be found that the coefficient of this

term is

1.3-(2»-l) 1 1.3...(2n-3) ,.

2.4...2« ^ ^2'2.4...(2n-2)

+ hl l-3 -(2n-5) 1.3-(2»-l)
^2.4-2.4...(2n-4)* +-+ 2.4... 2)i * '
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Now put for eacli exponential its value derived from the

formula e^^ = cos rd + l sin r6 ; then the imaginary part dis-

appears, and we have the following result

:

Pn (cos 6)
= ^ ^ jcos ne + ^^^2n-l)

''''^ (^ " ^) ^

l.S.n(n-l)
, ,,. ]

The series within the brackets is to continue until it

terminates of itself by the occurrence of zero as a factor ; so

that there are n + 1 terms in the series, and the last of them
is cos (n — 2n) 6, which is equal to cos nd.

15. We may state the result with respect to the series

within the brackets of the preceding Article in another form,

Ti +

1

thus : if n he odd continue the series to —^r— terms, and

double every term; if n be even continue the series to

;^ + 1 terms, and double ©very term except the last.

16. The formula of Art. 14 leads to the important result

that P^ (cos 6) has its greatest value when 6 = 0. The value

in this case may be found most simply by recurring to the

definition ; P^ (1) is the coefficient of a" in the expansion of

(1 — 2a + a^)~^, that is in the expansion of (1— a)~^; and so

the value is unity.

17. In Art. 14 we put cos 6 for the general symbol x, so

that we assumed x to be not greater than unity; but a
formula analogous to that obtained in Art. 14 will hold v\^hen

X is greater than unity.

For assume 2x = f + ^S and 2 V(^' - 1) = ?- T',

so that ^ = x + aJ{x^-1), and ^~^ = x- \/{x^ - 1).

Then P (xS -
^'^"

' (
^^~^

) J^- -J.

^-^
fcn-2Ihen f, [X) -

2« |n 1^ +
1 . (2^- 1)

^

1.3.n(7i-l) ^„, \
'^1.2.(27i-l)(2w~3)^ "*•••]•
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The series within the brackets is to continue until it

terminates of itself by the occurrence of zero as a factor ; so

that there are w + 1 terms in the series, and the last of them
isf-".

To demonstrate this formula we observe that the right-

hand member when developed will become a rational integral

function of x, and the left-hand member is always such by
Art. 7. Moreover, we know by Art. 14 that the two members
are identically equivalent when x has any value less than

unity. Hence they are always identically equivalent.

18., By Art. 11 we have

Let (2 + a; — 1)" be expanded in ascending powers of a; — 1
;

thus

_^
n(yi-l)

^„_,^^_^^„,,_^
I

-1 {n->rV)nx-l (?i + 2)(n + l)n(?i-l) (a;-l)'-
1' 2 "^ r.2'* 2'

(yi + 3)(yi + 2)(yi4-l)yi(n-l)(yi-2) {x-Vf
^.2^3' 2^*

19. For a particular case of the preceding Article put

x = cos 6, then a? — 1 = — 2 sin^^ ; thus

P„ (cos d) =1 -
"-—Y^
— sin'^

(n+2)(n + l)7i(n-l) ,^
VT¥ 2

This may also be obtained in the following way

:
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(1 - 2a cos(9 + 0-i= |l - 2a
(^1

-2sin^^) +aj'^

= j(l-a7 + 4asm^|p.

Expand by the Binomial Theorem ; thus we obtain for

the general term

^ ^ \m (l-a^^^ \m\m {l-aY'"^"

Expand (1 — ol)'^""'^ in ascending powers of a, and pick
out the term which involves o!" ; in this way we obtain finally

as before

D / n\ 1 (n-rV)n . ^0
P„ (cos e) = l- ^J &m'^

{n-\-2){n + r)n{n-r) . ,6

P72^
sm--..

20. Again, we have

Let (2—a;—l)"be expanded in ascending powers of (a? + l)";

thus

^(_^\nU (^ + 1)^^ + 1 (yi + 2)(n + l)n(n-l) (a?+l)

^ ^
I r 2 r.2' 2'

(n + 3) (n + 2) (71 + 1) n (n- 1) (rz - 2) (^+1)'
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21. For a particular case of the preceding Article put

X — cos 6y then a; + 1 = 2 cos* ^ ; thus

P„ (cos 0) = (- 1)~
j
1 - ^-^?±^ cos-

(n4-l)ji_,^

(n + 2)(7i + l)n(n-l) ,^ )

P^2^ 2"
"'J*

This may also be obtained by putting (1 — 2a cos^ + a^ "^

in the form
|
(1 + a)'^— 4a cos'^^ V and proceeding as in Art. 1

;

or it may be deduced from the result of that Article by
changing 6 into tt — ^, and a into — a.

22. By the theorem of Leibnitz, given in the Differential

Calculus, Art. 80, we have

£„(.+ir(.-i)"=(x-M)-^^^"

n d{x + iyd''-'(x'-lT
"^1 dx doT-'

n{n-i) d:" {x+iy d""-* (x-iy
*

1.2 dx" dx"-^
*"•••

HenceP„ = ^^(.4-ir(.-ir

=^n[{^+ir+(iy(^+ir(^-i)

23. For a particular case of the preceding Article put

a; = cos ^ ; then a; + 1 = 2 cos' ^ , and a? — 1 = — 2 sin* ^ J
*^^^

P.(cos.)=cos«-|[l-f>an|V("^tan«ff-...]-
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24. We have (1 - 2olx + a^) "^ = {(1 - axf + a^ (1 - x')] "l

Expand by the Binomial Theorem ; thus we obtain for
the general term

1.3...(2m-l) [ol'{1-x')]
"^

^ ^"'\m {l-OLxf'^

thatis
(-irgm a--(l-a.T

Expand (1 — ax)~^'^~^ in ascending powers of axy and pick
out the term which involves a!" ; we find after reduction that

this IS ,,„„'-
,

^ Hence, puttmg r for—^—
,

we obtain finally

25. For a particular case of the preceding Article put
1—x^

X = cos 0, then —-^j— = tan^ : thus
a;

P„ (cos 6) = cos*^ ^1 1 - '' ^''^7
-^^

tan^ ^

+ "^"-^^ir-.^^^^^-'^an-^- 1

26. In all these expansions we may if we please suppose
a to be so small as to ensure the convergence of the series.

We know, by Art. 16, that P„ (cos 6) cannot exceed unity

;

and thus the series of which the general term is P„ (cos 6) a"

is convergent if a is less than unity.



( 13 )

CHAPTER III.

PROPERTIES OF LEGENDRE'S COEFFICIENTS.

27. We have from Art. 7,

l=Po,
a^=P„

3 * 3'
^'=^P.+

^._lp .6 _3^1 6/2 IN ^
"^ "35^*^7 35 35^*^7 V3^^3j 35'

Proceeding in this way we see that any positive integi*al

power of X may be expressed in terms of Legendre's Coeffi-

cients. The expression for a;" will be of the form

a,P, + a^_,P,., + «„_4P„-4 +. .
.

,

where a„, a^_^, a^^_^, ... are certain numerical coefficients.

The expression terminates with %Pq, or with a^P^, according

as n is even or odd. The practical determination of the
values of a„, «„_,, ...is facilitated by some propositions in

the Integral Calculus to which we now proceed.

28. To shew that [ P^P„dx = 0, if m and n

1
^^

equal, and that / P^P^dx =
•'-1

are un-

2w + 1

r dx
Consider the integral I . ._ - , that is

J wa — bxya — b'x

I.

dx

*J[aa — {ah' + ah) x + hb'x*]
*
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We shall find by the Integral Calculus, Art. 14, that

I ,

^̂ ~=== = -—^ log \^hia' -h'x) - V6' (a - hx) \

/

Thus

dx

Vl - 2aa; + aVl - 2y5a; + yS"

= -.L log |V2a(l-2y8^ + ^^) - V2/3(l-2aa;+a0l

.

Then, by taking the integral between the limits — 1

and 1, we have

dx 1 , l+Va^
f log

Vl-2/3a; + /8' Va/3 ^l-VayS
,2/02 ^3/Q3

-{>-f-f-f--)
Now the expression under the integral sign in the left-

hand member of this equation is, by Art. 6, equal to

(l+aP,+a^P,+...+a"P„+...)(l+/3P,+/3'P,+...+^'^P„+...).

Hence, by equating the coefficients of like terms, we see that

/>-
if m and n are unequal ; and that

29. We have shewn in Art. 27 that

«;" = a,P^ + a„.,P„_, + a„_,P„_, + . . .

.

Let a,rt denote any one of the numerical factors; multiply

by P^ and integrate between the limits — 1 and 1 : thus, by
the aid of Art. 28, we have

/:,- 2m + l'



therefore

PROPERTIES OF LEGENDRE'S COEFFICIENTS. 15

2m +1
f P^x^dx.

Thus the numerical factors can be expressed as definite

integrals.

30. It follows from Arts. 28 and 29 that if m and n are

positive integers, and m greater than w, then

f/- a;" dx = 0.

This is one of the most important properties of Legendre's

Coefficients. It will be convenient to change the notation

and express the result thus: ifm and n are positive integers,

and m less than n, then

/>x^'dx = 0.

31. The result of the preceding Article may also be
obtained in another way.

Let y be any function of x. By integration by parts we
have

where ^^ stands for IP^dx.

By Art. U, we have f,
=^^ (« + 1)" (^ _ i)» ; and

this vanishes both when x = — l and when x = l. Thus

In the same way we find that

where
f,,

stands for I ^^dx, that is for — ^-j^^j {x + 1)" (x - 1)".
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Proceeding in this way, we have finally

where |, = ^^^ (a; + 1)» (^ - 1)".

Hence if ^ be a rational integral function of a; of a lower

dimension than the n*^ we have

/;
P,ydx=0.

82. "We shall now shew that no other rational integral

function of x of the n^^ degree except the product of a con-

stant into P,^ {x) has the important property noticed in

Art. 30 ; that is if ^ (x) be a rational integral function of x

of the 71*^ degree, such that / (j> (x) x^dx — 0, when m is any

positive integer less than n, then <f){x) must be of the form
CF„(x), where C is some constant.

Let 4>i{^)i ^2(^)1 ^3(^)j--- denote a series of functions of

X formed in succession according to these laws

;

^8{^)=J
^A^)dx,

[

and so on.

By integration by parts, we have

^(x) x'^dx = ^^(x) a;™ - m^^C^c) a;"*'' -\-'m(m- 1) (l>^{x) x'^'^' -

Now ifm have any positive integral value between and

w — 1, both inclusive, / ^{x) o^dx is by supposition zero when

x — \. Put for m in succession the values 0, l,...7i — 1 in the
preceding equation; thus we see that ^^(a;), ^aW^-'^nW ^
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vanish when x = l: that is, <^„(^) and its successive differential

coefficients down to the (n — iy^ all vanish when x=l.
Moreover by the laws of formation </)„(a?) and its successive

differential coefficients down to the (n — 1)*^ all vanish when
a) = — l. And <^„(^) is of the degree 2n in terms of x. Hence,
by the Theory of Equationsy Art. 75, it follows that <l>Jix) is

of the form A{x + 1)" {x — 1)", where ^ is a constant.

Therefore

Thus, by Art. 11, it follows that <^(^) = CP^^{x), where C is

some constant.

33. If 711 is a positive integer less than n, and ti — m is

an even number, then

/,
x'^PJx = 0.

I

For by Art. 7, we have (- a?)™P„(- x) = (- l)'^^x"'P^{x)

= x'^PJ^x) when w — m is even.

Therefore in. this case

[ x^'-PJx=
I
r x'^PJx = 0.

34. We shall now determine the value of / x^P^jdx, where

Ic is any positive number, whole or fractional.

We know that

where a, /S^y,... are certain numerical factors.

Hence

/,

x'Pdx = . ?L_-4._-^__ + _ ^ + ...

I. Suppose n even. Then the number of the fractions

T. 2
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in the expression just given will be ^ + 1. If we bring the

fractions to a common denominator, we obtain for the result

^
(A; + 71 + 1 )

(^b + 7^ - 1 )
(A; + ??. - 3) . . . (^ + 1

)

'

where K is some rational integral function of h of the degree

^ . Now we know by Art. 33 that K will vanish when h has

any of the following values, ?i — 2, n — 4,. . . 2, : hence /^must
be of the form XA; (^ - 2) (A; — 4) . . . (A; — ti + 2), where \ is inde-

pendent of h, since ^ is of the degree ^ . Moreover by the

way in which K was obtained, since \ is the coefficient of the
highest power of h, we must have

X = a + /3 + 7+---;

that is, X = P^X1) =1. ^y ^rt- 1<5.

Therefore when ti is -even

It will be seen that the investigation and the result will

also hold in this case when k is negative, provided that it be
numerically less than unity.

II. Suppose n odd.

By proceeding as in the former case we find that the sum
of the fractions is

K
(A; + 71 + l)(/c + 71 - l)(^^ + 71 - 3)... (A; + 2)

'

77-1
where K is some rational integral function of h of the degree

. Then K must be of the form

\(^-l)(^-3)(^^-5)...(A;-7l+2),

and as before we find that X = 1.
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Therefore when n is odd

I. (A;+7H-l)(A;-f 7i-l)...(A; + 2)
*

It will be seen that the investigation and the result will

also hold in this case when k is negative, provided that it be
numerically less than 2.

Hence I x^F^dx can be immediately found ; supposing

that if A; be a fraction the denominator is an odd number
when the fraction is in its lowest terms, so that the expression

may be 7^eal throughout the range of integration. For if

a;*P,, changes sign with x the definite integral is zero, and if

x^P^ does not change sign with x the value of the definite

integral is twice the value corresponding to the limits

and 1.

35. For a particular case of the preceding Article let k
be a positive integer not less than n, and let A; — n be even.

First suppose k even, and therefore n even. Take the
result in I ; multiply both numerator and denominator by
1 . 3...(^' — 1), and also hy 2 A.. .{k — n) : thus we obtain

^
2.4...(A;-?i)1.3.5...(^ + n + l)*

Next suppose k odd, and therefore n odd. Take the result

in II; multiply both numerator and denominator by 1 . 3...^,

and also hy 2 A... {k — n) : thus we again obtain

Ij .

2 . 4...(A; - n) 1 . 3 . 5...(A; + 71 + 1)
*

As an example we have

p ^ __
[n _2"[n|n

Jo^"^"'^'^"l.3.5...(2/i + l)" |2;^:n:
-

36. "We can now definitely express x** in terms of Le-
gendre's coefficients, n being a positive integer.

2—5
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By Art. 29 we have

where any numerical factor a^ is determined by the equation

2m+iri
a« =

Therefore, as in this case w —m is even, we have, by
the method of Art. 33,

a, = (2m + l)fW^cZ^;

and therefore, by Art. 35,

(2m + 1) \n

2.4...(?i-m)1.3.5...(7i +m + l)

Hence, finally,

^(,_,^(2^1)(2^)

^ "'1.3.5

2.4

37. As an example we will express the function
*

y — x
by the aid of Legendre's coefficients, under two conditions
which will appear in the course of the process.

The first condition is that y be greater than x ; then we
have

1 1 X x""

y-x y f y^

where the infinite series is convergent.

Now express each power of x in a series of Legendre's
coefficients by Art. 36, and then collect all the terms which
involve the same coefficient. Thus P„ (x^ will arise from
a;" aj"+2

^«+*

:,^> ^^ ^> ••• ^ ^^^ ^^^ ^^^^ multiplier of it,

y y if
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. (ff"
,

(2n+l)|rt 1
from —Ti we get — -^ 1^= . -rri

,

2/
^ 1.3. 5. ..(2/1+1) 2/

a;"+» , (2;^+1)|m4-2 1
from -^ we get ^ "

•rt-a >
y" " 2.1.3...(2ri + 3) y

. a;"-^* , (2n + l)k + 4 1
irom —-r we get —: ii-—

—

. -zzs

,

y 5 2.4.1.3...(2w + 5) 2^^

and so on.

Thus let (271 + 1) Q„ (2/)
=

1.3...(2n-l)f ^ 2(2?i + 3)
^

(n + l)(n + 2)(n+3)(n + 4) _, 1

"^
2.4.(2/1 + 3) (2n + 5) ^ -^-l*

then _L. = S(2n + l) Q„(^) P,{x),
y — X

where S denotes summation with respect to n from to

infinity.

As the second condition we require that y should be
greater than unity, in order that the series denoted by

Q,^(y) may be convergent. See Algebra, Art. 775.

dP
38. To express 7

" in terms of Legendre's coefficients.

dP
The powers of x which -^ involves are the following,

a;""*, a;""^, a;""*, ... ; we may therefore assume that

dP

where «„_,, rt„_g, a„_5, ... are numerical factors to be determined.

Let a^ denote any one of them ; then, by Art. 28,

2m + ir p dPr,. (..
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Now, by Art. 30, we see that for all the values of m with
which we are here concerned

•'-1^-S''^ (2).

Multiply (2) by ^^^^ and add to (1) ; thus

2m + lf' /„ JP„ ^ JP„

/:(--f-^-s)^-2

and as 71 —m is here an odd number we have P^ P„ = 1 when
x — \y and = — 1 when x — — \.

Therefore a =277i4-l.n

Thus -^ = (2« - 1) P..,+ (2» - 5) P^ + (2« - 9) P„^ + . .
.

;

the last term is SP^ if ti is even, and F^ if n is odd.

89. In Art. 14 we have expressed P„ (cos Q) in terms of

cosines of multiples of ^. Now \i f {&) denote any function

of we can expand / (^) in a series of the form

a, sin •\-a^ sin 2^ + ttg sin 3^ + . .
.

,

where a^, a^, a^... are numerical factors : see Integral Calcu-

lus, Chapter xiii. The expansion will hold for values of 6
between and tt, excluding however these limiting values

unlessf (6) vanishes when ^ = and when = 7r. All the

numerical factors are determined by the general formula

a»=l/;/(^) sin md dO.

We shall now apply this process to the case in which

/(^) = P„(cos^).

We shall first shew that a^ is zero if m is less than n + 1.
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We know that sin mO =M x sin 6, where M denotes a
rational integral function of cos 6, of the degree m—1: see
Flane Trigonometry^ Art. 288. Thus

[" P„ (cos 6) sin m9 dd =
\

P„ (cos 6) J/sin 6 dO
Jo J a

= f P,{x)Mdx,
•'-1

where M is now supposed to be expressed as a function of x,

by putting x for cos 6,

Hence by Art. 30 it follows that a^ is zero if m is less

than n+1.

We shall next shew that a^ is zero \i m — n is equal to

any even number.

For M being expressed as a function of a; as before, the
product P„(x)M will involve only odd powers of x, and there-

fore the integral of it between the limits —1 and 1 will

vanish.

Thus we have to find a,„ only for the cases in which m
has the following values, n + 1, n+S, n + 5,...

Now, by Art. 15, we may put P„(cos 6) in the form

26^ cosnd + 2&„_, cos (n -2)6+ 2b^_^ cos (ii - 4) ^ + . . .,

observing that if n is odd the last term will be 2\ cos 6, and
if n is even the last term will be b^.

Hence P„(cos 6) sin m6 = Z»„ (sin (m

+

n)6 + sin {m — n)6}

+ J^2{sin(m+ 7i-2)^-|-sin(m-w+2)^}

+Z>„_Jsin(??i+?i-4)^+sin(w-n + 4)^} + ....

Integrate between the limits and tt for ^ ; thus since

111 — n is odd we obtain

" \m + n "^ m-nj "^ " ""^ \m + n-2 "^ m-w + 2/

" * \m + ?i — 4 m-n + 4/
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the last term being 21, { z: H =- J if n is odd, and —^

if n is even.

Let m = n-\-2k+l', then the expression becomes

^^« \2n + 2k+l ^ W+i) "^ ^^"-^ [2n + 2k-l "*"

2kTs)

^ ^^"-^ U^ + 2k - 3
"*
IFfsj

^••••'

Bring all these fractions to a common denominator ; thus
we obtain

K
{2k + l){2k+S)...{2k + 2n + 1)

'

where K denotes a rational integral function of k of the

degree n. Now K must vanish when k has any of the values
— l,—2,... — n; for in all these cases sinm^ becomes nu-
merically equal to sin /jlO;- where fi has some positive integral

value which is less than n-i-1, and therefore, by what has

been already shewn, I P„(cos 6) sin md dO vanishes. HenceK
J

must be of the form \(k +l){k + 2) ... {k + n), where \ is

independent of k.

Also from the way in which K was obtained we see that,

according as n is odd or even,

or x=2"-(26„+26,,_,+ ...+25, + 6J; ,

so that in both cases X = 2"+'P,Xl) = 2"-*-^

Hence Tp^Ccos 6) sin {n + 2k +1)9(16

•

2'''''(k+ l){k + 2)...{k + n)

{2k + l){2k + 3) ... (2^ + 2n + 1)
'

.

*

2
and a,^+2;fc+i is equal to the product of this into —

.
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Thus finally P„(cos 6)

4 2A...2n f. , . ^.^ l.(n + l) . ,

,
1.3.(n+l)(n + 2)

1.2.(2n+3)(2n+5)
sm(n+5)^

1.3.5 («+l)(n+2)(n+3) • , ,^,.. 1

+ 1.2.3(2»+3)(2»+5)(2«+7)'"'(" +^)^+-r

The value of 1 P„(cos 6) sin (n + 2A;+1)^ cZ^ can be put in
Jo

the form

thus we see that it is less than , and is therefore

indefinitely small when Ic is indefinitely large.

40. In the general formula of the preceding Article for

P,^ (cos 6) put n = ; thus

4 r 1 1 1

1 = - J sin ^ + - sin 3(9 + V sin 5^ + ... L
TT

(
3 O

J

Again, in the same formula put n = 1 ; thus

^ = -||sin2<9 + :^sin4l9 + J!sinG^+...l.
TT [6 lo So ) .

COS

These results are well known: see Integral Calculus,

Arts. 311 and 312.

41. We shall now shew that the roots of the equation
P,(^x) = are all real and unequal, and comprised between
the limits — 1 and + 1.
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I. Suppose n even. By Art. 30 we have / P^dx = 0.

Hence P^ must change sign once at least between x = -l
and ic = 1.

Let a denote a value of x at which a change of sign
takes place. Then since P„(- x) = PJx) it follows that

•^«(^) = {x^ — cb^) i^,i_2» where Y^_^ is a rational integral func-
tion of X of the degree n — 2.

Again, by Art. 30, we have / {x^ - a") PJx = ; there-

fore / {x^ — ay Y^_J,x = 0. Hence Y^_^ must change sign

once at least between a? = — 1 and x = l. Then, as before,

we see thsit Y^^_^= (x^ -b^)Z^^_^, where Z^_^ is a rational

integral function of x of the degree n — 4<.

Proceeding in this way we obtain finally

P, = A{x'-a')(x'- h'){x'-c')...,

where the number of the factors x^ — a^, x^ — P, u^ — &,... is

-X , and A is some numerical coefficient, since P^^ is of the

degree n.

Thus we see that the equation P„(a7) = has n roots lying
between — 1 and +1.

We have still to shew that the factors of P,, are all dif-

ferent. If possible suppose that two of them are alike, so

that P, = {x^- ayZ^_^. By Art. 30 we have f PnZ^_,dx= 0,

r^ P^ . .

"'

so that / 7-2-^^2\2 dx = 0; but this is obviously impossible.
J _^[x —a

)

Hence the factors of P^ must be all different.

II. Suppose n odd. In this case P„ (0) = 0. By Art. 30

we have I xP„dx = ; and since P„ (— x) = —Pn {x) it follows
-1

that xPn{x) must change sign once at least between a! = - 1
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and x=l. Let a denote a value of x at which a change
P (x)

of sign takes place. Then since -"^-^ involves only even
X

powers of x, it follows that Pn{x) =x{x* — a^)Y^_^, where
l^_j is a rational integral function of x of the degree n — S,

Again, by Art. 30, we have I a?(a;*— a')P„cZa; = 0; there-

fore 1 x^(x^-'ayY^_^dx = 0. Hence F,j_3 must change sign

once at least between a; = — 1 and x = l. Then, as before,

we see that F„_g = (x^ — J/) Z^_^, where ^^ is a rational in-

tegral function of ic of the degree w — 5.

Proceeding in this way we obtain finally

F„ = Ax{a^-a'){x*'-h')(x'-c*)...,

where the number of the factors x^ — a^, x^ — Jf, x^ — c^,,,, is

—^— , and A is some numerical coefficient, since P» is of the

degree n.

Thus we see that the equation P^ (x) = has n roots lying

between — 1 and + 1.

In the same manner as in I we may shew that the factors

of P„ are all different.

42. Since the roots of the equation P„ (x) = are all com-
prised between — 1 and + 1, it is obvious that P„ (x) can never
vanish when x is numerically greater than unity. This can
also be readily inferred from some of the expressions pre-

viously given for Pn{x).

Thus in Art. 17 if f be expressed in terms of ic, and re-

ductions effected, we obtain only powers and products of x
and x^ — 1 with positive numerical factors ; so that the whole
is necessarily positive when x is positive and greater than
unity. And as P^ (-a:) = (- 1)"P„ {x) it follows that Pr,{x)

will not vanish when x is negative and numerically greater

than unity.

The same conclusion may also be deduced from Art. 24.
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43. Take the equation 2a"P,, = (1 - 2a^ + a^)"* where
2 denotes a summation Avith respect to n from to oo

;
put

, -^,.^
.^ for a, and suppose 'p numerically less than 'unity,

so as to ensure a convergent seri-es. Thus

_ y
UCJJ. %Ki

1

^^^^^^^ V(iTW)

=

y '
^^^^^ ^^

= 1^^
Y

'

and 1 -//?/' =

Hence 2 ^/"5o^. = {1 - 2^93/+/ (1 - P f)X"^

k

therefore

(l + k'x')'^' (1 +

By integration we have

Take the integral with respect to x between the limits

— 1 and 1 ; the corresponding limits with respect to y are

, and
^{1 + J^)' ^f{l+I^')'

In order to simplify the expression on the right-hand side

of the equation let tan^ = fc, and tan J?= -^/Vtk • There-

fore
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therefore

^(^ + ^=cos^ cos J5 (1 ± tanul tan^) = cos (A + B).
V(l+/v'+/A;0

Thus the value of <^ at the upper limit is - — A + B,

IT
and at the lower limil/ — — A — B, Hence

= —r = —7 tan * -^t/^
jp^ j)k V(l + ^•')

Expand tan"* —jr-—tts in powers of ,,.. ;.,, : thus

2/'\P^

(I 4- A;*
a;*)~ (2?i + 1) (1 + k'y^'

where both summations extend from n =» to ?i = oo .

Hence equating the coefficients of the powers of p we

see that I ^^3 is zero if n be odd, and is. equal to

2 (- 1)"
A;"

(n + 1) (1 + Jc:

-;^:pj- if n be evexi.

•A a
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CHAPTER lY.

THE COEFFICIENTS EXPEESSED BY DEFINITE INTEGRALS.

44. Let a and h denote real quantities of which a is

positive and greater than 6 ; then will

For we may assume - =
:j

g > where c is less than unity;

cos^
thus r_|i_=ir_|i

J
f,
a + b cos <p aj ^

zc

~ a Jo l + c''+2ccos^~ a *l-c''

by Integral Calculus, Art. 296.

TT TT _ TT (1 + C^)

Thus (1) is established.

Now in (1) put a = 1 — aaj, and 6 = a a/C^*^ " !)• '^^ i^^y

suppose ic positive and greater than unity, and a negative, so

that a and b are both real and a is positive ; moreover

a^ — 6^ = 1 — 2s(ic + a^ which is positive.
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Therefore from (1) we get

defy 1

Jol-

I

oix + a V(a;*- 1) cos
<f> (i — 2aa: + a')^

'

Hence expanding both sides in ascending powers of a, and

equating the coefficients of a", we have, by the definition of

Art. G,

Pn{^)=l^{x-^/{x'-l)cos<|>Ydc|> (2).

Thus Pni^o) is expressed as a definite integral. This formula

is due to Laplace, Mecanique Celeste^ Livre xi, Chapitre li.

45. In obtaining equation (2) of the preceding Article

we found it convenient to suppose x positive and greater

than unity ; but it is obvious from the nature of the result

that it is true for all values of x» For if [x — ^/ (x^ — 1) cos <^)"

is expanded, and the terms integrated between the limits

and TT, then all the terms which involve odd powers of

V(^— 1) will vanish. Hence we obtain finally a rational

integral function of x, and as this is identical with P (^) when
X is positive and greater than unity, it must be identical with
P„(a;) for all values of a.

46. The definite integral in Art. 44 can easily be made
to reproduce some of our former expansions.

1 f
For example -

j
{x — *J(x^ — 1) cos 0}" d(j>

'' J Q

= -r L'' - nx""-' ^{x" - 1) cos
<l>

+ "^^^—^ X'-' {x'- 1) cosV -...}#.

As we have said in Art. 45 the odd powers of t/{x' — l)

will disappear from this expression, so that it reduces to

1 j'L" + !!i1'JZl1) ^.-. (^. _ 1) cos' i>

+ »('^-l)("-2)(n-3
) ^,„.. ^^,_^y eos'^ + ... } di>.
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Thus by the Integral Calculus, Art. 35, we obtain

2^i'n = «^" + '^^V^^^'^-^(^-l)

_^
.(n-l)(..^2)(^-3)

^.,.^^._^^.^^^^^

This coincides with Art. 24.

47. It is obvious from the preceding Article that we
may also take

P^ = 1 r {ic + V(^' - 1) cos ^l*^ cZ(^,

for this is really identical with equation (2) of Art. 44 when
the expansion and integration are eifected.

48. "We will now give another example of the use of the

definite integral. We have x +\/(^"— 1) cos^

/x—1
where l is put for J -1. Thus if t = a/ —— we have

re

By expanding and multiplying out we can arrange the

product (1 + re^O" (1+ tb-'^T in the forna
.

a^ + a^^cos </) + a^ cos 2^ + . . .,

and thus when we integrate with respect to ^ from to tt

every term vanishes except the first ; therefore

anda„=l + nV + j^^^^)}V*+

This coincides with Art. 22,
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49. We will now shew that the definite integral obtained

in Art. 44 may be transformed when x is positive and greater

than unity so as to give the formula

For assume a new variable ^/r connected with <^ by the

relation

X C0& -^ir { J ix^ — 1)
cos <f> = ——^7-2—

W~
r

»

^ x-\- a/(x — 1) cosY
which leads to

. , sin ylr

sin 9 =
;

rr-7. vrr ,

^ x + V(^ — 1) cos ylr

X — J(x* — 1) cos 6 = j—r, TT r >^ ^ ' ^ X+ J{X' - 1) COS yjr
'

X + ^/{xr — 1) cos "^

'

Since x is supposed greater than unity x+'\/{x^ — l) cos -^/r

can never vanish, and it is always positive, as x is supposed

positive: thus as -v/r continually increases from to tt we
have (p also continually increasing from to tt. Hence

I
[x — Jlx^ — l) cos 6Yd6= I -f

——
,. a \\ rni+r-

50. Suppose a; = cos ^ ; then by equation (2) of Art. 44
we have

1 f""

P^ (cos ^ = -
I (cos ^ — t sin ^ cos <^)" d(j)

;

this expression for P„ (cos 6) involves the imaginary symbol t.

Dirichlet however has expressed P„ (cos 6) by means of

definite integrals in which the imaginary symbol does not

occur ; and we now proceed to his investigation.

We have ,,, ^
^ ^ s^ = Sa"P„ (cos e\

V(l-2acoa^+ a') "^ ^

where 2 denotes a summation from n = to n = go .

T. 3
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Let a = COS ^ + ^ sin ^ ; then 2a"P^ (cos 6) takes the form
H-\- iKy where

H=t cos ncj^P^ (cos 6), K= X sin n^P„ (cos $) (1).

We must now separate —n;—^r—r
-^ -^ into its real

and imaginary parts. We have 1 — 2e"^ cos 6 + e^"^

= gi.^ (g"^ 4- e-i<^) _ 2e'* cos ^ = 2e'* (cos ^ - cos ^).

We suppose both and <j> to lie between and tt.

If ^ is greater than tp then V(cos <j) — cos ^) is real ; thus

- -^ cos5 — *sin5
1 6 2 2 2

V(l - 2e'* cos ^ + 62^-^) J2 (cos ^ - cos 6) j2{cos <^ -cos ^i)

If 6 is less than <^ then >v/(cos ^ — cos <^) is real ; and if

we multiply the numerator and the denominator of the

fraction already obtained by c, that is by e ^
^ ^e obtain

ifTT-^) sin^+£Cos§
1 e ^ 2 2

V(l - 2e'* cos e + e'^'^) V2 (cos ^ - cos ^) V2(cos6^-cos^)
*

Hence we deduce that

<^
cos^

H = " ' when 6 is sreater than <f>,

V2(cos</)-cos6>)
^ ^

Rm|
and =

,
when 9 is less than 6 :

V2(cos^-cos</))
^

sin
IK ==—

,
when ^ is sjreater than 6,

\/2(cos^</)-cos^)
^

<^

and = — when 6 is less than 6.
V2(cos^-cos^)
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Now from the equation 5"= 2 cos n^P^ (cos 6) we obtain

P^ (cos 6) = - \ Hcoa ncj) defy,
It J Q

for every positive integral value of w, except when n is zero,

and then we have

\-liy^.
Again, from the equation -ff = S sin n^ P^ (cos 6) we obtain in

like manner

2 /*"

P^ (cos 6) = - \ jK'sin n(^ d<f)
"J

for every positive integral value of w, excluding zero.

Hence with the values which have been already obtained
for H and K we have

P„(cos^) =

^ [ cosTK^cos^ Q j cos?i<^sin^
- -7— l=d6+-\ ^ d6...{2);
ttJ 0^2 (cos (p- COS d) 'rrJ 9 ^2 {cos 6- cos

<t))

this holds for every positive integral value of n, except when
n = 0, and then only half the expression on the right-hand

side must be taken

:

and P„ (cos 6) =

ttJ \/2 (cos (h — cos 6^ 'n'J '

^
' sin TKp cos ^

, ^. , ,
(Z<^...(3);W >v/2 (cos <j> — cos ^) ?''•' ^ V 2 (cos ^ — cos <^)

tliis holds for every positive integral value of w, excluding

zero.

The formulae (2) and (3) are Dirichlet's expressions for

P,^ (cos 6) by means of definite integrals.

51. Multiply the first of equations (1) of the pre-

ceding Article by sin|^, and the second by cos|^, and add,

using the values obtained for H and K: thus we get

3—2
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X sin—^— <j> P^ (eos ^) = when ^ is greater than ^,

and = . when 6 is less than 6.
V2 (cos 6 - cos ^)

^

Again, multiply the first of equations fl) by cos ^ , and the

second by — sin ^ , and add, using the values obtained for H
and K\ thus we get

2 cos —-2" ^ Pn (cos 6)

= when is less than ^,

and = , when 6 is greater than <f>.

V2 (cos (^- cos (9j

^ ^

52. From equations (2) and (8) of Art. 50 we have by
addition and subtraction^ respectively

:

P„(cos^) =

re 2/1 + 1 , r„ . 2n + l
,

1 I
^^^ ~Y~ ^ 1 1 ^^^ "~2~ ^

ttJ V2 (cos ^ - cos 0) -^J ^ V2 (cos (9 - cos </))
^'

I
cos—g—

^

sm—^—

^

^ V2 (cos (f)-cosd) ^ J ^ sll (cos d-coscj)) ^

these hold for all positive integral values of w, including

zero in the first formula, but excluding it in the second.

53. The investigation of Art. 50 is not quite satisfactory

owing to the substitution of an imaginary symbol for a ; hence

it is advisable to verify the equations (2) and (3) of that

Article. We begin with equation (2).

Let the first integral which occurs in (2) be denoted by
A^ and the second by P^ ; we shall shew that X a" (A^ -f PJ
is equal to (1 — 2a cos 6 + OL^y\ which amounts to shewing

that ^„ + i?„ = P„ (cos ^).
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In the first place A^ is finite ; for

^ /« cos W^) cos ^ - [9 COS n(p COS
-^

^" °=

^j „ V2(cos./.-cosy)
'^'^ =

-J, ^(,i„.|_sin.|)'^*'

Now as cos ^ retains the same sign within the range of the

integration we know by the Integral Calculus, Art. 40, that

e cos^

'/.'THf-rf)'*
where 7 is some value assumed by cos ncf) within the range of

intefjration. Hence the value of -4_ is less than

if
J

COS^

^/(-1-^4)
that is, less than unity ; so that ^„ is finite.

Since A^ is less than unity the series of which a"-4„ is

the general term is convergent if a is numerically less than

unity. This series, putting for A^ its value, is

•^VV 2-'^^2J +a»cos3(^...l#.

Now th© sum of the infinite series between the brackets

is known by Plane Trigonometryy Art. 333, to be

1 1-a^
2 1 - 2a cos (^ + a*

J

<A

._.^i cos-

Thus S
9 (7<^

^/Hs-'-D'
— 2a cos </) + u*'
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Assume sin ^ = sin ^ sin yjr
; then

cos ^ dcf)

= 2dylr,

V(sm--^-sm=|]

and 1 — 2a cos ^ + a'^ = (1 — a)^ + 4a sin^ ^ sin^ yjr

= (1 - a)' cos' t + 1(1 - a)' + 4a sin' |l sin' ^|r

= (1 - a)' cos' n|r + (1 - 2a cos ^ + a') sin' yjr.

TT

1 - a' r2 d-ylr

j, (l^a)^cos'^
Hence 2aM„ = , ,^, r^—^-,—r^—^^

^ 27-^-2-.
" TT jj, (l--a)-'cos''v/r+(l-2acos^+a')sm'^|r

^ l-g' 1 TT^ l + g

TT ' V(l-a)'(l-2acps(9+a') * 2 ~ 2 V(l - 2a cos <9Ta')

Next consider 2) a"5^. "We have

J.
j '^ COS

71(f)
sin ^

^„ = - deb;
" 7rj^V2(cos^-cos<^) ^

by changing ^ into tt — ^' we obtain

TTT-d ,, 6
^ I cos n<l> cos^

^=(-1)"^ -^ d6\
" ^ ^ TTJo V2(cosf-cos(7r-^) ^

Hence (— 1)" ^^^ is the sarae function of tt— 6 as ^^ is of

6 ; and thus Sa*"^^ can be obtained from SaM^ by chang-
ing 6 into TT — ^ and a into — a. Hence

V^nD 1 — 0^

"^ "~2V(l-2acos(9+a')*

Therefore Xa" (^„ + B„) =—,

—

^
"^

^ ,

which was to be shewn.
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We shall next verify the equation (3) of Art. 50.

Let the first integral which occurs in (3) be denoted by
C^, and the second by E^] then as the equation is asserted

to hold for all positive integral values of n except zero, and
that a^P^ = 1, we must shew that

the summation extending from w = 1 to ti = oo .

We can shew as before that the series of which the

general term is a"(7„ is convergent when a is less than unity.

This series, putting for G^ its value, is

sin
2

[asm<j>+a'sm2<f>+a'sin2<l>+ . . .]d<f>.

V(-1--1)
Now the sum of the infinite series between the brackets,

is known by Plane Trigonometry/, Art. 333, to be

asm<t>

l—2acos(j> + a^'

Thus2a"a„=-?|- ^ sm<^<i<^_

y(sm=|-sm^|) 1
— 2acos<^ + a*

Assume sin ^ = sin ^ sin -^/r ; thus

'* ""
TT j 1 — 2a cos </> + a*

*

But 4a sin* ^ = 1 - 2a cos <^ + a'* — (1 — a)' ; so that
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and thus, by the aid of what has already been given, we have

2 2 V(l - 2a cos 6> + a')

'

We may deduce the value of ^oH'E^ from that of 2a"C„
in the same way as we deduced the value of '^oH'B^ from that

of %cCA^, namely by changing 6 into ir — 6 and a into — a.

Thus

Therefore Sa" [C^ + ^J = ~ 1 +

2 ' 2V(l-2acos6/ + a')

1

V(l-2acos^ + aO

which was to be shewn.
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CHAPTER V.

DIFFERENTIAL EQUATION WHICH IS SATISFIED BY

LEGENDRE'S COEFFICIENTS.

1

54. Let
V(l-2aa;+aO

I

then |^= ^
-, =an

^°
(l-2a.-Haf =

^^-°^^^

hence p= 3aF'^r=3a'F',

Therefore

and Sa^'ll -x') + Sx^x-aY = 3a'(l -2(xx + a*) = |^'

:

thus (i-.=)^^^.,«^^.2a«F3.

Also 2aj^-2a'^=2a*P^.
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Therefore, by subtraction,

this may also be written thus :

d (,, ,,dV]
,
d( ,dV] ^ ,,,

^f-^)-^r4'^}=^ w-

By definition we have F=Xa"P„; substitute the value of

V in (1), and equate to zero the coefficient of a" : thus

{i^-^')^}+''(''+^)Pn-0 (2).
dx

This shews that Legendre's n*^ Coefficient must satisfy the

differential equation (2), which may also be written thus

:

(l-a?)^-2x'^+ n{n + l)P^=0 (3).

55. We have shewn in Art. 41 that the roots of the

equation PJx) = are all real and unequal, and comprised

between the values — 1 and + 1. Part of this proposition

may be deduced immediately from the formula

•^^^^^ 2'^ [21 dx"" '

For the roots of the equation {x^ — 1)" = are all real; namely,

n of them equal to — 1, and n of them equal to + 1 : hence,

by the Theory of Equations, Art. 105, the roots of the equa-

tion P^ {x) = are all real, and comprised between the values

- 1 and 4- 1.

Thus to complete the proposition we have only to shew
that the roots of the equation P„ {x) = are all unequal ; and
this will follow from (3) of Art. 54. For we know by the

Theory of Equations, Art. 79, that if the equation P (x) =
dp (x)

has two roots equal to a, then P„ (a?) and —zf-^ ^^th vanish
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d^P (x)
when a; = a ; hence from (3) it follows that —jIx will also

vanish when x — a. And proceeding in this way, and using

the results obtained by successive differentiation of (3), we
should find that all the differential coefficients of P^ {x)

d^P (xX
down to —y^ vanish when x==a. But this is impossible;

for we know by Art. 8 that ^l^M = i.3. 5...(2n-l)
;

and so it does not vanish.

56. The following relation holds between three succes-

sive Coefficients of Legendre

:

(» + 1) ?«« - (2« + 1) ^-P. + "J'n-. = 0.

For it appears from the process of Art. 54 that

(1 _ 2aa; + a^) ~^+ (a - x) F= 0.

Put for V its value 2a"P„, and then equate to zero the co-

efficient of a" ; thus we obtain

{n + 1) P„,,- 2nxP^ + (n^l) P„_, + P„_, - xP^ = 0,

that is, {n + 1) P„^i - {2n + 1) xP^^ + nP^_, = (4).

57. From equation (4) by changing n into n — 1 we
obtain

«P.-(2»-l)a!P^.+ (n-l)P^.= 0,

and then we may again change n into w — 1, and so on.

From the equations thus obtained we see that P^, P„_i...

constitute a series of terms which possess the same essential

properties as "Sturm's Functions ; see Theory of Equations

y

Chapter XIV. These properties are that no two consecutive

terms of the series can simultaneously vanish, and that when
one term vanishes the preceding and succeeding terms have
contrary signs. Moreover when a; = l all the terms are

positive, and when a? = — 1 the signs are determined by
Pr (— 1) = (— l)**, SO that they are alternatively positive and
negative. Hence by the application of Sturm's method we ob-

tain another demonstration of the whole theorem of Art. 41.
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Also we see that between two consecutive roots of the
equation P^ (x) = there is one, and only one, root of the equa-
tion P^^_j (x) = 0. For let h and k denote two consecutive

roots of the equation P„ {x) = 0, and suppose h the less.

Then if there were no root of the equation P„_j (x) = be-

tween h and k the number of permanences of sign exhibited

by the series when o) is Si little greater than k would be the
same as the number when a? is a little less than h : but this

is impossible, for the former number exceeds the latter by 2.

Hence there must be one root of the equation F^_^ (x) =
between h and k. And there cannot be more than one ; for

otherwise the whole number of roots of the equation

P„_i (x) = would be greater than n — 1; which is impossible.

58. From equation (3) of Art. 44 we have

= ~ ['{a;- V(a;'-1) cos^}""' {x'- x ^{x'- 1) cos <p-l}d<j)
"^J

thus («-l) (a.P„.,-P„J = (x^-l)^='... (5).

Again from Art. 49 we have

rP p _ 1
f"
^ {^ + V(^^-l) COS <j> ]

- 1
"-^ " ~ TTJ

,
{X + ^{X'- 1) COS ^J"-^^

"^^

IT Jo\x + J(X' - 1) -- ^^"'^^ ^^\/(^^ — 1) COS ^}'

ic 1 d p •

71 C?^ "-* '

thus ^(^P^_^«PJ = -(a,^_l)^t (G).
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The formula in Art. 49 by the aid of which (G) has been
obtained was demonstrated only for the case in which x is

positive and greater than unity; but as (6) expresses an
identity between certain rational integral functions of x, it is

manifest that since it holds when x is positive and greater

than unity it holds for all values of x.

By adding (5) and (6) we obtain

- nP, + (2»- 1) a;P... - (« - 1) P„.,= ;

this agrees substantially with (4).

59. Other relations resembling those of the preceding
Article may be obtained. Thus, take the fundamental equa-

tion

differentiate with respect to a;, and then divide by a; we
obtain

1 dP dP,^^,dP

(l-2aa7 + a')* dx dx dx ^
^'

Also from the fundamental equation, by differentiating

with respect to a, we get

^^-|^ = P.^.2P,a + 3P3a. + (8).

From (7) and (8) we get

Hence, by equating the coefficients of a""*, we get

4t-%-'=< (^)-

Again from (7) we have
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Substitute for the left-hand member its value from the
fundamental equation, and then equate the coefficients of a"

;

thus

".-^--s-'-t (">

From (9) and (10) we have

dx dx *'

so that ^i_^i = (2n + l)P^ (11).

60. In equation (11) change n successively into n — %
n--4i, ... and add the results ; thus we have a new demon-
stration of the result obtained in Art. 38.

61. By integrating (11) we obtain

{2„ + l)J_'^P„cfo=P„„-P„_. (12),

for the right-hand member vanishes when ic = — 1, so that no
constant term is required.

Similarly (2» + 1)£P> = P„., - P„,. (13).

62. The differential equation (2) of Art. 54 serves as

the foundation of an instructive demonstration of part of the

theorem of Art. 28.

For by virtue of the differential equation we have

-n(.-M)/p.P„<f.=/p4|(l-.^)§}<&;

integrate the right-hand member by parts, and take — 1 and

-i- 1 as the limits of the integration : thus we obtain

n(» + l)£/„P„'^.=/Nl-.^)'|-g<fx.
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In precisely the same way we may shew that

Therefore m(m + l)[ F„,PJx= n{n + l) j F^PJx.

Hence if m and n are different we must have

If we consider the indefinite integral we obtain by the

method of this Article

{m{m + l) -n{n+l)} j P^{x)P,{x)dx

this may be immediately verified by differentiation.

From this formula we can find the value of jPn{x)Pn [x)dx

between any assigned limits ; for example

{m{m + l)-n{n-YV)][' P^{x)P^{x)dx
Jo

= the value when a; = of \p^ {x)^^^ - P^ (^)^^

By Art. 7 the right-hand member vanishes if m anti

71 are both odd, or both even. Put 2m for m and 2n — l

for n ; thus (2m (2m + 1) - (2n - 1) 2n} f P^{x) P^^_^{x)dx
Jo

= the value when a; = of -
| PU^)^^^^^\

^ ^^ 1.3.5...(2m-l) 1.3.5...(2n-l)
"^ ^ 2. 4. ..2m • 2.4...(2n-:i) *

As an example we may shew from this formula that

f'p.^(a;) P^,^,{x)dx = f P^{x) P^,{x) dx.
Jo Jo
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G3. The differential equation (2) of Art. 54 will be

modified in various ways by the transformation of the inde-

pendent variable : we will notice some of these.

I. Put a? = cos ^ ; then (2) becomes

^(sin^^) +7i(« + l)sin^P. = 0,

or _£^.+ cote-^" + »j(» + l)P„ = 0. .

II. Let x' + p' = l; then (2) becomes

III. Let 2a;= f + 1"'
; then (2) becomes

2f d \f-\dP,\
,

, , ,, „ „

or r(r-l)^+2F^-«(« + l)(f-l)i', = 0.

64. The differential equation may be employed to deduce

various expansions of P„ ; we will take one example and thus

verify the expression for P^ (cos 6) in a series of sines of multi-

ples of 6 which was obtained in Art. 39.

Assume then that

P„ (cos 6) = a^ sin 6^-a^ sin 2^ + ttg sin 3^ -}-. .
.

;

and put this value in the differential equation I of Art. 63,

which may be expressed thus

:

sin(9|^ + 7i(72-i-l)P„Ucos6'^^ = 0.
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The term a„^ sin md gives rise to

a„ sin 6 sin m9 jn (n + 1) — m'S- + m cos cos mO ,

that is to

'[j jcos (m - 1) ^ - cos (m + 1) i?!L (n + 1) - m'l

+^ jcos {m -1)6 + cos (7?i + 1) (9|

.

The sum of all such expressions is zero by virtue of the

differential equation ; hence multiplying by 2, and rearrang-

ing, the following sum is zero :

ttjU (n + 1)

+ « lri(n + l)-2'+2|- cos ^

+ L in (n + 1) - S'^-f SJ
- a, L {n + 1)- 1'- l|l cos 20

+

+

+

As this must vanish for all values of 0, we find in suc-
cession a, = 0, a^= 0, Og = 0, . . . a„ = 0. Then when m = n+ 1,

we see that the coefficient of cos (n+l) vanishes, whatever
finite value a„^, may have. Also a^^^, a„^, a„^, ... = 0. And
^^n+i> ^n+3' ^^^ connected by the law

_ (m — 71 — 2) (m + w — 1)
'"' ~ (m - n - 1) (?/^ + w)

^ ^"*-* *

Thus we obtain P„ (cos ^)

= a„,,{sin(n + l)^ + i:^lysin^

I

fl',Jn(n+l)-?7r+mUa,„_j7?(n+l)-(m-2)''--(;7i-2)| cosm^

1.3.(n + l)(7i + 2)

T.

^ 1.3.(n + l)(7i + 2) . , .,. )
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This agrees with Art. 89 as to the terms between the

brackets, but leaves the value of a^^^^ as yet undetermined.

The differential equation will not enable us to determine

a^,^, ; for that equation will not be changed in form if instead

ot* P„ we substitute the product of P^ into any constant

factor. We may use the formula

(^n.l
= Z,r^ni(iOBe) sin (71 + 1) Ode

and since a^^_^ = 0, we have

9 fT
= "- P„ (cos 6) sin in - 1) edO;

thereifore, by subtraction,

4 /*"

a^^,. = - P„ (cos 6) cos nO sin Ode.

Now
cos^;

2 cos TV^ = 2" cos""^ + terms involving

;
hence, by Art. 30^

^ I /-I <?\n 7 1 * .

lower powers of

= - Tsin'^-'^n/rc/i/r = - Psin'^"-'^ i/r^i|r

_4 2yi(2n-2)...2
~

it' (2/^ + l)(2n-l)...3•

This agrees with Art. 39.
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CHAPTER YI.

THE COEFFICIENTS OF THE SECOND KIND.

60. We have seen in Art. 54 that P„(^) satisfies a certain

(lifFerential equation of the second order: according to the

known theory of differential equations we infer that there

must also be another solution, and this we proceed to in-

vestigate.

GG. Take the differential equation

and find a solution in the form of a series proceeding accord-

ing to ascending powers of x. .

Assume z = x'^-\- a^x"^"^ + a.x"''"* + . .
.

,

substitute in the differential equation, and equate to zero

the coefficient of a;"'^"'. Thus we find that

rt,,,,(m+2r+2)(m + 2r+l)

-a,,|(7w + 2r) (m + 2r- 1) + 2 {m + 2r) - n (« + 1)1 = 0,

. - f2r4-w + w4-l)(2r + m-w)
therefore a,^

. , = —--— -17773—

i

TTT" ^v •

This holds for every positive integral value of r.

But in the differential equation there will still remain

the term m (m — 1) a;'""*, and to make this vanish we must
have either m = or 771 = 1.

4—2
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Take vi = 0; then the series becomes

1 ^K^ + 1) ^. .
(n-2)n(n+l)(n + S) ,

1
1^

^+
g

X-.,..

Take m = 1 ; then the series becomes

X
j3

x+ ^ a:«-....

Now if n be even the first series consists of a finite

number of terms, and the second of an infinite number; if

n be odd the first series consists of an infinite number of

terms, and the second of a finite number.

The series are of the kind called hypergeometrical. The
general form of such series is

a.ff a(a + l)j9(^+l) ,

^^17^'+ 1.2.7(7+.l) '

<x{^+ 1)(« + 2)m +m ±2) ,,

,

^
- 1.2.3. 7(7 + l)(7 + 2)

'+•••'

and this is conveniently denoted by F{a, /8, 7, t).

Thus the first and second series are denoted respectively by

„/« n + X 1 A . ( n-\ « + 2 3 .A

In both series a, /3, 7 are such that a + /3 — 7 = 0.

The series which is infinite is convergent if x is less than
unity, but divergent if ic is greater than unity or equal to

unity : see Algebra^ Art. 775.

67. We infer that of the two series obtained in the pre-

ceding Article that which is finite = CP^{x), where C is

some constant. The other series furnishes, at least when
X is less than unity, a second solution of the differential

equation.

68. As another example we may proceed to find a
solution of the differential equation of Art. QQ, in a series

proceeding according to descending powers of a?.
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Assume ^ = a?"* + a^rc*""^ + a^cc""* +• . .
.

,

substitute in the differential equation and equate to zero th-j

coefficient of a;"'"''^. Thus we find that

(V(m-2r)(m-2r-l)-

a,^^,j(77i-2r-2)(m-2r-3)+2(m-2r-2)-n(n+l)l = 0.

This holds for every positive integral value of r.

But in the differential equation there will still remain

the term

a;*"|w(n + l)-m(m4-l)[

and to make this vanish we must have

n(7i + l) -m(m + l) = 0,

so that either m = n orm = — n — 1.

Take m — n; then the series becomes

_<n-l)_ n{n-l)(n-2)(:n-S) ,__
^ 2.(271-1) "^2.4.(2n-l)(2n-3j

so that it is finite, and of the form CPJx)^ where (7 is a

constant.

Take m = —n — \\ then the series becomes

1
,n+3

(n + l)(n+2)(M-f-3)(n + 4) 1

2.4.(2n + 3)(2n + 5) •o;"-^''*'

1 (n4-l)(n + 2) _1

a;"^^"^ 2.(2w + 3) "a;"'

and in the notation of Art. QQ this will be denoted by

1 ^/n + 1 n + 2 2n4-3 _,\

^1^(^-2"' ~2~
' 2 ' ^ ;•

this is an infinite series, convergent if a; is greater than 1,

but divergent in other cases.

If Q,X^) have the meaning assigned in Art. 37 this in-

finite series = CQ^^{x), where is a constant.
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69. We know from Art. 63 that by assumiDg

f = a; + V(^'-l)

the differential equation of Art. 6Q may be transformed into

Assume ^ = T + ^sr"" + «4?"'"' + • • •

;

then, by the same method as before, we shall find that

_ (n + l + 2r- 77i)(?i + m-2r)
''-'•''

~ {n+2+2r-mXn + m-2r-l) ''^''

and moreover that m (711 + 1) — n (?2 + 1) = 0.

Thus either m = n or m== — n — l -, and we obtain two
series which, expressed in the usual notation, are

rF{l-n,-'^,r),

and r-j^(|, „+l, ^+i,r).

The former series will be found to be the product of a
constant into P„(«), by comparing it with the formula given

in Art. 17. Hence we infer that the product of the latter

series into some constant will be equal to the Q,X^) of

Art. 68 ; or, which is the same thing, that

where X is some constant.

To determine this constant we observe that according to

Art. 37 we have x'^'^^Qfx) =
.. ,^ ^ -7^ r- when x is in-

"^ ^ 1 ,6.5...{2ri-\- 1)

finite. But when x is infinite



THE COEFFICIENTS OF THE SECOND KIND. 55

tlierefore \ =
1.3.5...(2n+l)

70. Hence besides the solution of the differential equa-
tion of Art. 66, which is furnished by P„ (x), we have always
another solution when x is either less than unity or greater

than unity : namely in the former case the solution found in

Art. GG; and in the latter case that found in Art. 68 or

Art. 69. The second solution is presented in the form of an
infinite series.

71. We may however express the second solution in a
finite form. Take the differential equation

We know that P„("^) is a solution, so that

Let f denote the other solution, so that

Multiply the former equation by f, and the latter by P^
,

and siibtract : thus

Hence by integration we obtain

log [P„% - ?5} = «''"i^t^''t - '°S (^' - 1)'

or = constant — log ( 1 — a;*)

,

according as x is greater than unity or less than unity.
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Hence, in both cases, G being a constant, we Lave

therefore

dx dx a;" — 1
'

C
dj= \Pj {PS{a?-\r

dx
therefore ^ = ^'^"

J (PJ- (^'

-

1)
'

Thus we have the second solution expressed in a finite

form; and by properly determining the constant C, and keep-
ing to the former meaning of Q^^ {x), we shall have

«„(-)=t/p./(pj4:.-i

72. The integration denoted in the formula of the pre-

ceding Article may be effected.

Let Of, yS, 7, ... denote the roots of the equation P^(x)=0,
which we know are all real and unequal. Then by the
theory of the decomposition of rational fractions explained

in the Integral Calculus, Chapter ii, we have

{FJ{af'-l) x-1 x + 1 ' (x-ay ' ^ x-a'

where h, h, A, A' are constants; and S denotes a summation
to be made by considering all the roots a, f3,y, ,,., which will

oive rise to other constants like A and A'.o

We proceed to determine these constants.

We have h —
, ,, ..

.

tt^ when x = 1, so that h = -

,

and k = rrrrr? 7T > when ic = — 1, so that k = — -
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and

We shall now shew that A' =0.

Let P„ = {x — a) By so that

Substitute (j: — a) jR for P^ in the equation (3) of Art. 54;

thus

+ w(7i+l) (aj-a)P = 0,

so that when x = (x we have {1 —x') ,
— Ex = ; therefore

A' = 0. Hence we have

Therefore if x is greater than unity we may write

<?. (^) = - CP. (x) ji log^J + 2^+ C.} ....(1),

and if x is less than unity

where (7^ denotes a constant.
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We do not mean to assert that C and C^ must have the
same values when x is less than unity as when x is greater
than unity; but only that C and C^ do not change in (1)
so long as x is greater than unity, and do not change in (2) so

long as X is less than unity.

73. Let us suppose for example that x is greater than
unity; then the right-hand member of (1) is an expression
with two arbitrary constants, which satisfies the differential

equation of Art. QQ-, hence it is the complete solution of that
equation, and by giving suitable values to the constants will

coincide with any special solution which may have been
obtained. Take for example the series at the end of Art. 68.

This vanishes when x is infinite. But the part between the
brackets in (1) reduces to G^ when x is infinite ; hence the
whole expression will not vanish unless (7^ = 0. Take 0^ = 0;
then by properly determining G this expression (1) must
coincide with the series at the end of Art. 68.

74. Suppose for a particular case that n=l. Take
(7^ = ; and put

1

, x + 1 .

^'^ X ./111, \

* iC -

1

^
1 \x ^x^ DX'' J

X

Also in this case a = 0, and J. = — 1.

Thus we obtain from (1)

«»(-) = - ^^3^ + ^+"
and this agrees with the result at the end of Art. 68.

75. In like manner if x is less than unity the formula

( 2) of Art. 72, by giving suitable values to the two arbitrary

constants, will coincide with any special solution. For in-

stance, take w = 1 ; then we get

-«'11'<«^M+''.}
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This will coincide with the first series of Art. G6, if we put
1 + iC .

C\ = and expand log - in ascending powers of or.

76. We have seen that if (1) of Art. 72 is to coincide

with the result of Art. 68 we must have (7^ = : it will be
convenient to determine the connection between G and other
constants which present themselves in our process.

Let h be a constant, and suppose that we put

^» ^V^^^ 2.(2/1 + 3) 'x''''^""y

so that Q^ reduces to hx'""'^ when x is very great.

We know that P„ = kx^ + terms i^ a;""^, oj"
.n-4

, , 1.3...(2n-l)
where k = ^

.

\n

ByArt.7lwehaveP.f-Q45 =^,
so that when x is very great

hk{2n + l) ^ C
x^ ~x'--V

and therefore C= — ikk {2n-\- 1).

For instance, if we put (7= — 1, so as to give to (1) of

Art. 72 its simplest form, we have hk (2n + 1) = 1 ; so that

^i = Ti TT-r ' This value of h makes the Q„ of the present
(2/1 + 1) A;

^n r

Article exactly coincident with the Q^ of Art. 37.

77. Taking then for simplicity C^ = and (7= — 1 in (1)

of Art. 72, we have, when x is greater than unity,
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this agrees with Art. 87, and we shall use this as the value
of Q^ (x) when x is greater than unity.

When X is less than unity we shall take

<3„W = -P»w{|iogJ^ +
x — a)

78. "We have then by the preceding Article, for the case

in which x is greater than unity,

where JR denotes a certain rational integral function of x of

the degree n — 1. We shall now express M in terms of

Leofendre's Coefficients.

Substitute this value of Q„(x) in the differential equation
of Art. 6Q, which we know it satisfies; thus we obtain

^jiog|±;|(i-.o'g.-2.5+.(«+i)p„}

By Art. 54 this reduces to

and therefore, by Art. 88,

= 2
J(2«

- 1) P„.. + (2« - 5) P.,.3 + (2« - 9)P„.. +...}...(3).

Assume now R — aJP^_^ + cl^R,,.^ + o^JP^.^ + . .
.
; where

cTjj ctjj, ttg, ... are constants to be determined.
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When P„_y is put for R in the left-hand side of (3) it

reduces to j/i (n + 1) — (n — r) (n - r + 1) ^ P„^, that is to

r (2/1 + 1 — r) P„_^. Hence by comparison with the right-

hand side of (3) we see that if r be even a^ vanishes, and

that if r be odd «-.= —^^ _ r^ . Thus finally

'

r (2n -f 1 — r)
"^

^^-
l,n ^-»^3(/i-l)-^«-»^5(/i-2)^«-=^--^*^-

The series in (4) ends with the term involving P^ if n be
even, and with the terra involving 1\ if n be odd.

79. In obtaining (4) we began by supposing x greater
tlKin unity ; but it is obvious from the form of the result

tliat it is universally true ; for the rational integral function

— P„ {x) S , being equal to the rational integral function

which forms the right-hand member of (4) when x is greater

than unity, must always be equal to it.

In future we shall cease to distinguish between the forms
(I) and (2); that is, we shall use (1) and leave to the student
the task of examining if necessary how far the investigations

apply also to (2).

80. We may shew in another way that

(3.(^)=ip.(x)log^±J-i?.

wlicre li denotes a rational integral function of the degree
n — 1. For by Art. 37 we have

• -^- =2(2n + l)<?.HP.(^);

therefore by Art. 28,

this may be written
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P {x)-P (y)The expression
"

^^-^^ is obviously a rational
x — y

integral function of x and y of the degree n — 1, and after

integration with respect to y between the limits will be a
rational integral function of x of the degree n — 1. Also

fjij so -4- 1-^— — log . Thus the required result is obtained.
/:

81. It is found convenient to use the symbol D to stand

for -7- , for abbreviation ; thus -7-^ is often denoted by B^v.

In like manner the symbol / may be used for integration

;

so that \vdx may be denoted by Iv; and if \vdx is to be

integrated again we may denote the operation by Pv : and
generally if the operation of integration is to be performed
n times in succession we may denote this by Pv.

These abbreviations will enable us to present some re-

sults in a compact form.

.

In the next five Articles we shall use to denote a con-

stant without assuming that the same constant is always to

be understood : we shall also use C with various suffixes for

constants under the same liberty of interpretation.

82. We know that P„ (x) = C—^^rii
—

? which we may

write thus,

p„(^)=ci)»(^-ir (5).

Now we saw in Art. 68 that a series for Q„ (x) can be
derived from one for P„ {x) by changing n into —n — 1 ; and
thus we are led to conjecture that an equation of the follow-

ing form will hold

:

But according to an interpretation of symbols suggested by
the fact that integration is the reverse of diiferentiation, we
may presume that D'""^ is equivalent to 7""^^; so that we
should have

g.(<r)=C7««p^.,i (6),
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or, which is the same thing,

^-0.(-) =(^ (7).

of Art rjlmely
"'""" '" '^" ^"" '* "" ''^="""'"°

I

and differentiate n + 1 times.

1 . Tk°
^" "^

^fr
'^^,%en«al coefficient of li is zero. Apply

Tho ^l'iu..°r^'''''"'- V''*''J"'P"'='
to the first terra in Q.Ibe (n + 1)". differential coefficient of P. is zero. The first

differential coefficient of log|±^ is - -^^ ; and eveiy
succeeding differential coefficient will introduce anotherpower of ^'-1 into the denominator. Thus the (»+!).'
dittorential coefficient of (?„, when all the terms are brought
to a common denominator, will be of the form

^'

Moreover T must be a constant. For if the highest power
of ic in r were oT, then when x is very large ^^« would

^f ,^^,*^i? f!f^
^^^7 a« ^"""*'"; whereas we'know fromArt. 08 that it must be of the same order as a;"^"-^ HenPn

1 IS constant, and thus (7) is established

ArtSe in^'a^oSr;
"''^^'^ '""^ '^^"'^ '' ^'^ P--ding

Take the differential equation

a2\ d z ^ dz

~''^5J'-2->=rf^ + «C« + 1)^=0 (8).

Differentiate; then after reduction we obtain
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Differentiate again ; then after reduction we obtain

Proceeding in this way we find after m differentiations

(»).

Now the general solution of (8) is

and hence we see that the general value of -,-", in (9) is
da^

Let 77^ = n ; then (9) becomes

dx''^' ^ ' ^' ^ dx

CL Z
This can be obviously solved; put u for -pi^i '• tl

^, . Idu 2{n4-l)x
therefore - t" = i

—
\

—
u dx X —I

therefore log u = - log {x^ - l)""^^ + a constant

;

C

lUS

therefore
(x--^-lj'

d^'u ^ f
dx

thus ;^n = ^j^^._i^«.l.
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Hence it follows that by giving suitable values to C^ and
CL we must have

J"P„ d^Q^ _ r dx

^'^d^^^^'dx-'-^Ji^^^i
dT

But
,

,," is a constant; and thus
dx

this agrees with the result of Art. 83.

85. We may observe that equation (9) may be put in

the form

(n-^)(„+m+i){i-.TSH-|{a-^r-£:.}=o;

this will be satisfied when for z we put Pni^)- This equation
with respect to P^i^) has been called Ivory's Equation; it

was given by Ivory in the Philosophical Transactions for 1812,
page 50.

86. Again, suppose a quantity f to be determined by the
differential equation

(l-aj'')^+2(m-l)«^ + (n~m + l)(n + ?7i)?=0...(10).

If we differentiate this r times in succession, we obtain

i

7ru

4- (n —m + r 4- 1) (n + m — r) -j-\. = 0.

Thus if r = m we have

which is of the same form as (8).

T. 5
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Now if m = 7i equation (10) becomes

one solution of this is f = C(x^ — 1)", as may be immediately

verified. Then, by the process of Art. 71, we can find the

other solution; and thus the general solution will be found

to be

where a second arbitrary constant may be supposed to be in-

volved in the integral. Or if we prefer to denote this con-

stant explicitly, we may take for the general solution

Hence the solution of (11) if m =n is obtained by taking

this value of f and differentiating n times. But we know that

the solution of (11) is of the form C^P^^{x) + G^Q,X^). Hence
by proper adjustments of the constants we must have

As w^e know that Qn{x) does not contain any positive

power of ic, at least when x is greater than unity, we infer

that

«"(-)=^£{^^'-'^"/f^'}
^''^-

This gives another form for Qn{x). By comparing it with

that furnished by equation (6), we infer that for some value

of the constant G we must have



k

THE COEFFICIENTS OF THE SECOND KIND. G7

The constant G may be determined by supposing x inde-

finitely great ; for then the equation becomes

this gives C = [272.

87. Since the general solution of (11) is

it follows that the general solution of (10) is

and we may use for Qn[x) either of the forms (6) and (12).

5—2
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CHAPTER VII.

APPROXIMATE VALUES OF COEFFICIENTS OF
HIGH ORDERS.

88. Suppose x positive and greater than unity. We
have by Art. 17,

p.w=^r{i+r:^)r
1.3. «(«-!)_ g^, 1

where h stands for

"^
1 . 2 . (2/1 - 1) (27J

1.8...(2n-l)

T\n

When n is indefinitely increased the series between the

brackets becomes ultimately

that is (i-r)"^.

Thus p„(^)=^r{(i-n'^+e},
^

where e denotes a quantity which diminishes indefinitely as

n increases indefinitely.

|2n
Now Iz = «afri~ ^ ^^^ ^y applymg the formula given m

the Integral Calculus, Art. 282, we see that when n is very

great we have approximately k = -j== .

Thus finally when x is positive and greater than unity,

and n very large, we have approximately
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1 P*
*

v»^v(i-r)
We suppose x positive and greater than unity in order

that f may be greater than unity, and so the series between
the brackets convergent when n is very large.

The case in which x is negative and numerically greater

than unity may be made to depend on that in which x is

positive by the relation P. (— ic) = (— 1)" P„ {x),

89. Now suppose x numerically less than unity. Put
cos 6 for x. In Art. 39 we have shewn that

+ 14_(!?±JQ|^3in(»+5)^ + ...l,
1 . 2 (2/1 -f 3) (2n + 5) ^ '

J

where A; has the same value as in Art. 88.

If we suppose n to increase indefinitely the series between
the brackets takes ultimately the form

1 13
sin (w + 1) ^ + 2 sin (ri + 3) ^ + ^^ sin (?i + 5) ^ + ...,

that is sin nd \cosd -[-^ cos fid + ^^ cos 5^ + ...
[

+ cos nd jsin ^ + - sin 3^ + ^ sin 5^ + • • .
[

.

We have then to find equivalents for the two infinite series

just indicated.

Let i be a quantity less than unity

;

put <cos^ + ^e'cos3^ + i^i'cos5^ + ... =(7,

1 IS
and tsme-\--f sin 3^ + ^. i' sin 5^ 4- ... = S.

Thus both C and S denote convergent series.
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Then C + cS= te^' + lt^e^^^-{-l^,tH'^'+...
2 2.4

V(l - ^2 g2.d) ^(l-f COS 26- ft sin 20)

'

Assume 1 — f cos 26 = p cos ^, and f sin 2^ = p sin <^ ;

f sin 26
so that p^ = 1 — 2f cos 26 + f*, and tan 6 = ^—-^ ^n •

'^ ^ 1 - r cos 2^

Then C-^cS =

so that (7=^cos^l9 + |V and /S^=-~.sin('(9 + |)

.

These results may be admitted to hold so long as t is less

than unity. Assume them to hold even when t is equal to

unity. We have then -

p'=2(l-cos26'), sothat V^-V2sin^;

, , sin 2^ cos^
, f"^ a\ 4-1 + ^ "^ /5tan^ = r ^ = ~^-p^ = tan --^), so that (/>=^-d/.

^ 1 — cos2^ sm^ \2 J ^

Hence when n is very great we have approximately

sinn^cos [^ + ^j +cos92^sin f^ + ^j
^» ^''' ^) = rfn Vf^^l

~ irkn V2 sin "^^ V2sin^ '

and Sish = -j-^ approximately we have finally as an approxi-
Nnir

mation when n is very great
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90. The result obtained in the preceding Article is due
to Laplace ; it cannot be accepted with great confidence : it

does not lead in any obvious way to the value unity when
= 0, which we know ought to hold for all values of n.

Laplace himself gave two investigations, both in the Me-
canique Celeste, one in Livre xi. § 3, and the other in the

Siij)pUment au 5* Volume; they differ from that of Art. 80,

but do not seem more satisfactory. We will reproduce the

latter of them.

By Art. 63 we know that

^^. + eot4^» + n(™ + l)P. = 0. .

Assume that

P„ = w cos a^ + w' sin a^, (2),

where u and u' are functions of 6 to be determined, and

a = 'Jn (n + 1). Substitute in the differential equation, and

equate to zero the coefficients of sin ad and cos a6. Thus

- du / , /, 1 /d'^u du ^ ^^
(3).

If we neglect the terms divided by a, which is large since

ri is supposed large, these equations become

2^'4-wcotl9=0, 2^1 + ii'cot6>=0;
au do

and hence we obtain

H , ir
U=

/ .— ^ » u =-7-=-,
vsin^ vsin^

where // and H' are arbitrary constants.

These may be regarded as first approximations to the
true values of u and u ; we may then assume

H X , IF X
Vsin^ a' Vsin^ a
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and substitute these values in the differential equations (3)

and proceed to find, at least approximately, X and X'.

But we shall confine ourselves to the first approximation,

so that we have from (2)

P„ =-^^ (ZTcos aO + H' sin aO)
V sin 6

G
=:-_^__ cos(a6' + 7),

Vsin 6

where G and 7 denote certain constants.

And ^s a = Jn {n + 1) we have approximately a = n + ^ ,

C ^ 6 \
so that P„= —^==- cos (71^ + -+ 7)

.

V sin ^ \ ^ /

To determine the constant 7 we observe that if n be odd
TT " IT

P« = when 0=^\ this leads to 7 = — -
, so that

P„=-7-^—-cos 71^4-^- J .

To determine the constant G we observe that if n be even
TT

and denoted by 2m we have by Art. 7, when 0=^,

1
2m

therefore ^=2^^^^^^^

and by approximating as in Art. 88, we have

VmTT VnTT

Thus our result agrees with (1).
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91. Laplace's other investigation of (1) starts with the

expression of P„ {x) by means of a definite integral given in

Art. 44 ; we shall not reproduce this. It is however easy to

shew that when n is very large P^{x) is very small if a? is

numerically less than unity.

For we have P^{x)=- \ [x— l aJ(\ — x^) cos (^j" d(f>.

Assume a; = p cos i|r, and V(l ~^*) cos </> = p sin-i/r

;

1 f""
thus Pn(^) ~ ~ P" {^^^ ^"^^ "^ * ^^^ ^"^1 ^^•

TTJo

The imaginary part vanishes and we get

1 f
P^ [x) = -\ p" cos 71-^ d(f>.

Now when n is very large the value of this expression is

very small on two accounts
;

p"" is very small except when
a; = 1 ; and cos wi|r fluctuates very rapidly in sign.

92. Another investigation of the value of P„ {x) when n
is very large is given by M. Ossian Bonnet in Liouville's

Journal de MaMmatiqueSy Vol. xvil. pages 270... 277.

We have^ + cot (9-^y + n(7i + l)P„= 0.

Assume P^ = u (sin 6)~^\ thus we obtain

de"

r 1 1 d^U - U ,..
puttmg m for 71 + - we have ,^-^ -f ma = — -7---^ >, (4).

Ji oLu Ti Sin (/

Multiply by sin mO and integrate ; thus

^du ^ ^ ir^wsinm^,^ ...
sm mO -T5 — mw cos md = (7, - r / —^-j-^r du (o),

[* where C^ is an arbitrary constant, and a a fixed quantity

which may however be as small as we please.
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In precisely the same manner, by multiplying (4) by
'COS md and integrating, we obtain

^dic
^

. ^ ^ 1 f^ucosmd ^^ , .

cos md -77, + mu sm m6 = C\—-: —
. ., ^ dU (0).

do 4Ja sm

Eliminate -^^ between (5) and (6) ; thus

mic = C^ sin m^ — (7j cos md

1 . ^ f^u cos mO T^ 1 ^ Cousin mO— T sm m6 —
. o -.- da + -r cos m^

4 Ja sm'^ 4 j„ sin'^
(Zl9.

This may be expressed more concisely ; for let u denote

the same function of 6' that u denotes of 6 : then

^ u cos md ,^ ,, r ^ -it sin md
dd^ f ^ic cos md .^ ^ ^ [— sm md —

-o-TT- tt(7 + cos md . ., ^
ja sm'^ ja sm'(9

^ f^ u cos m^' , -,, ^ r ^ w' sin md' 7^,= - sm md —
. ., ^, dd + cos md /

—t^-tt/— "c/

Ja sm'^ J a sm'^

/,

^ 2^' sin m (d' — d) 7/j,

sin=^6>'
dd'

Thus expressing the constants C^ and Cg in terms of two

new constants h and /3, we have

_ h cos (7?i^ + A^) ,
1 r

^ u sin m [d' — d) ,^, .^.

m 4m j a sm £/

Denote this for abbreviation thus :

h cos (md + /3) ,
1 , ,/3v

m 4m

then, by substituting the corresponding value of u^ in (7),

we get

h cos {md + /y) ,
6 r^cos {md' + /3) sin m(l9^- (9) ,.,

""^— 'm "^4^J. sii?^^'
"^

1 f^
>/r (^ysin m(^--^) ^^.

+ 16^^ J. S?^
'^'^-
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The last term on the right-hand side involves w', for u
occurs in "^(O'). The process of substitution may then be

performed again if we please ; and so on.

Finally it will be necessary to determine the values of b

and /3 : we observe that they are constant with respect to 0,

but M. Bonnet assumes that they are constant with respect

to w, and this appeal's to me a serious fault in the rest of

his process ; in fact, quantities are retained which are of the

same order as those which are neglected.

93. We will briefly advert to the value of Q^ (x) when n
is very large, supposing x positive and greater than unity.

We have by Art. 69,

this becomes approximately when n is very great

approximately

and X = —r

—

—z—j , where k is the same as in Art. 88 : thus
(2/1 + 1) A;'

n
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CHAPTER VIII.

ASSOCIATED FUNCTIONS.

94. There are certain functions analogous to P^x)
which present themselves naturally in the course of our

investigations, and we now propose to consider them. They
may be called Associated Functions of the First Kind.

95. We have seen in Art. 47 that

PM = [[x + ^J{x'-l)co^<i>Yd^ (1).
J Q

Now we may expand [x -\- sj {x^
— 1) go^ (fiY in a series

proceeding according to powers of cos c^, and then the powers
of cos

(f>
may be transformed into cosines of multiples of ^

;

thus finally {x \-i\/{x^ — 1) cos ^}" may be arranged in the form

a^ + a^ cos (\)-\-a^co^^^ + ...-Va^ cos w<^,

where a^, a^, a^,,.. a^ are functions of x, but do not contain ^.

Hence it follows from (1) that

*'

therefore a = -P„ (x) = —^~ S » .

We shall now determine the value of a„, where a„,

denotes any one of the series a^, Oj,, ... a,^.
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liG. We have

a; + V(^' - 1) cos (^ = a: + V(a^ - 1)^^^-^'^

^ 2a:e^+V(a;«- l)(eg"^+l) 2x»J{x^- 1) e*» + {a?- 1) (e*'^ + 1)

_ (a; + g)«-.l

2^

where z is put for V(ic'— l)e**.

Thus 2"{a?+V(a^-l)cosj)}" =
|
^^"^^J"H

".

Now we may expand {(a? + 2)'^— 1}" in powers of z, by
Taylor's Theorem ; and thus if u stand for {a? — 1)" we get

__ 1 r ^ . f* <^"
. .

2*" ^M

The series ends with the last term which is here ex-

pressed, because u is of the degree 2/i in x.

Re-arranging the terms we obtain

2" [x + V(^' - 1) cos ^1"

z d^'^'u z^ d^-^u 2" ^'V
\n-^\dx^^^ '|7i+2 rfa;"-^^

'

'

•^r2nc^u;''"

z-^ d'^'u «-* d^'-^u
..-fs'V

Now put 'e^hj[p^— 1) for z ; then the series resolves itself

into two parts, a real and an imaginary part. From Art. 95
we know that the result is entirely real, so that the imaginary
part must disappear. This imaginary part consists of n
terms, of which the Tvi-^ is

{c^-Xy^d'^^u (a^-l)"*J'

m c^x"""" \7\-m dx""
sin

772<f

.
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Hence we see that these terms must separately vanish

;

so that we obtain the formula

TO TO

\n + m ^^"^" \n-m dx""-"'
""^ ^'

this holds for positive integral values of m from 1 to n in-

clusive.

Hence finally we have

2"[jJ + V(^'-l)cos^}"

1 ^" (x' - ly
. ^^ {x'- 1)1 d'^'^'ix' - 1)" . ,^.

Avhere 2 denotes a summation with respect to m from 1 to oi

inclusive. Moreover by (2) we may if we please change m
to - m in (3).

97. Now the functions which we propose to consider are

the coefficients of the cosines in (3).

We see that the coefficient of cos m(j) is

^{x'-i)^ d^'^'^ix'-ir

In +m dx'
n+iu

It will be found that

d^^'^jx'-iy ^ 1 2^ f n-^ {n-m){7i-m-l)
dx""^"" |7i-mf 2.(2?i-l)

"^
2.4. (2/2-1) (2n-3)

^

We shall denote the series between the brackets by
ST (wi, n)\ so that

therefore .(.,„)=^_^X___^^ (4).
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Thus we may express (3) in the form

'r[x + ^{x'-l)cos(t>}''

=
I —m—- + 2S 1 H= (^ — 1) -^ CT (m, n) cos m6.

We may if we please replace the first term

Id'^ix'-iy, [2/1

so that TTT ]^ + "J^^^ ~ 1) ^<^s
^f

=
, ,

^ + 2S—^-
i!x un, ?0 cos 7w6.n—

m

In cases where it is convenient to express the variable

we might use rs (m, ?i, x) instead of the shorter -cr (w, n),

98. It- will be seen that we arrived indirectly at equation

('2) of Art. 96 ; but it may be established in a direct manner.
The result may be put in this slightly generalised form

:

{x-VaY(x^rVr_ <^"^(a?+ar(a?+6)" 1 cZ""^(a;+a)" (a;+6)*
' \n^-m dx""^'

~
\n-m Ja;""'"

To demonstrate this, develop the two members by the

aid of the theorem of Leibnitz; use i) for -7- , for abbreviation.

Then in the development of i)"""" {x + of {x + J)", the first

term which does not vanish is V-r- ITix-^- aYD"" ix + hYy

\n-\-m \n

that is \—— k]-^— (aJ + &)""^; and in like manner the
|?i|m I— |w—m*^ ^ '

7'^*' term of the development, counting this as the first term,
will be found to be

|7i+m

^Y— D"-^^ {x + aYD'^'^' [x + h)\
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that is

\n+m \n ' \n

—r + 1 m+r—l\r—l^ ' n — 'm — r-\-\ 'n

we will denote this by A,

Similarly we find that the r*^ term in the development
of i>"-^(a; + a)"(a; + 5)" is

\n—m
— m — r+ 1 r — 1

that is

\n.— m. \n
ifn+r-l |_ /^ , T\n-r+l

In—

m

\n In

n —m — r+1 r— 1 m+r — 1^ ' w—r + 1 ^ '

we will denote this by B.

Then we see that

{x + aT{x-\-hT ^^_ 1 ^,
n + wi 71 — «1

and this establishes the required result.

m_

99. The functions which we denote by {x^ — 1)^ ^(m, w)

are called Associated Functions of the First Kind: Heine
denotes them by P,/ {x),

1 00. We have seen that the differential equation (9) of

Art. 84 is satisfied when P^^ [x) is put for z. Hence from
equation (4) of Art. 97 it follows that

^ ^ dx ^ ^ dx

+ (ti — m) (n + 771 + 1) -ST (m, n) = (5).

Now the expression which we have denoted by

(x"^ — ly 'CT (m, n) is equivalent to {x^—1) ^ 'GT{—m,n), as

we see by Art. 96. Hence we have

tj (m, n) = {x^ — 1)"" tsr (- m, n),
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and substituting in (5) we find that

+ {n + m) {n —m + l)'ST{—m,n) =0 (G).

It will be seen that (6) differs from (5) only as to the
sign of m.

We have deduced (6) from (5) without assuming anything

relating to w(77i, ??) except that it satisfies (5). If then we
get the general solutions of (5) and (0) we may equate the

latter to the product of {x^— 1)"* into the former.

Now we know from Art. 84 that the general solution of

and we know from Art. 87 that the general solution of (G)

may be expressed thus

:

Hence by proper adjustment of the constants we shall

have

= C,D-'P,{x)+0,D-'Q„{x).

By considering the integral and the fractional functions

of X which occur in this relation, we see that it must break
up into the two

{x'-iyC,D"'P^(x)=C,ir^P^{x) (7),

and (x'-irC,D-Q^{x)=C,D--Q^{x) (8):

these hold for positive integral values of on not exceeding n.

101. Equation (7) coincides with a result already ob-

tained in Arts. 9G and 98.

Equation (8) takes various forms, according to the

expression we use for Qn(x): see equations (6) and (12) of

T. 6
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Chapter VI. Thus we have the following results, in which
C denotes some constant

:

[x' - IT p-""^'
rr^Kv^^i = or

The constant C may be determined by special examination
in each case, as in Art. 86.

"We shall find in the first and fourth cases

\n + m
C =

\n — m

1 |7l + 77i

in the second case C— -^r-
, ;

yZn \n — m

\n + m
and in the third case C=\2n .

'

—

\n — m

Of the first and second cases one will follow from the

other by the aid of the result obtained in Art. 86, if we in-

tegrate that result m times; in like manner of the third and
fourth cases one will follow from the other.

102. We see by Art. 100 that ot (m, n) satisfies the
differential equation (5), namely

+ (ti — m) (n +m + 1) CT (m, n) = 0.
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Put y = (a;* — 1)2 -or (m, n), so that «r (m, w)= y (a;* — 1) ^

;

substitute in (5), and we thus obtain

+ {n(?i + l)-m»-n(n + l)a;*}y = (9).

Conversely we may deduce (5) from (9) by putting
m

y={x^ — ly^ vr {m,n). As the general solution of (5) is

known we know that of (9), namely

y= (a.'- 1)^ {CjrP^{x) + CJ)-Q,{x)].

By Art. 100 this is equivalent to

103. Put -CT for CT (wt, 11) for abbreviation ; thus we have
from (5)

(l-ic»)^-2(m + l)^-^^+(7i-m)(7i + m+l)^ = 0.

We shall transform this by a substitution of which we have
already made use; namely 2a; = ?+ f'S

so that 2V(a;'-l) = f-r-

^ d-cr _ d'ur d^ _ d^ / X \ _^'^
f-, f + f

~^\

^ ^"^ dx ~
"^f J^ "^ V V(^'^/ ~

dS V "^ F^"V

do;'^ tffU? ?' - 1 J (/a;
~

1,?" - 1; d^' {^' -Ty d^
'

therefore (l-.)^=--(^-^j^ = -r^^j. + ^J-^^

, ^, -, cZtsr 2(7^i4-l)(?'+l)fr7t3-

6—2
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Hence by substitution and reduction we finally obtain

-(?^-m)(7^ + m + l)(P-l)tJr = (10).

From this differential equation we shall obtain a series

for -ST proceeding according to descending powers of f.

Assume ^ = a^ p + a^ p"^ + 0^4 P'^ + . . .,

•St

thus

substitute in (10) and equate to zero the coefficient of f
* ^'^

;

«2r+2 (« - 2r - 2) {s - 2r - 3) - a,, [s - 2r) (5 - 2r - 1)

+ 27)1 a,, (5 - 2r) + 2 (m + 1) a,,^, (5 - 2r - 2)

-(?i-7n)(n + m+l)(a,,.^,-aj=0 (11).

Moreover in order that the coefficient of |*^^ may vanish,

we must have s (.9 — 1) + 2 (771 + 1) 5 — {it — m){n-\-m + 1) = 0,

that is, 5 (s -f 2m + X) — (7z — m) (??. + 771 + 1) = ; so that

5 = n — 7?i is a solution.

From (11) we have by reduction

a,^A[s-2r-2){s-2r + 2m-l)-[n-m){n-\-m-\-l)\

= a^^ [[s- 2/') (5 - 2r - 2»i - 1) - (n - m) (71 + 771 + 1)1

.

Substitute n — m for 5, and we obtain finally

_ (2r +^w -h l){n-m- r)

«2.-+2
(r.:jriy(2/z - 2/- - iy~

^^'••

Thus we get

(n - 77^) (n - 771 - 1) (2^72 + 1) (2/71 + 3) ^,.„,,, I"*
1.2. (2^-1) (2^-3) ^

^•••J
'
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the series between the brackets is to be continued until it

terminates of itself.

The value of a^ may be found by comparing the first

term of this expansion with the first term of the expansion
of CT in powers of x, which is given in Art. 97, and supposing
X indefinitely great : thus we get a^ = 2""'^''*.

If we put cos 6 for x we have ^ = e'^; then the imaginary
part must disappear from the expression for -bj, and we
obtain

^ = 2-"-^'" jcos (n-m)e+ (^-^)(^^ + ^^
cos(7i -m-2)e

^(n-w)(n-77i-l)(2m + l)(2w + 3) , ... ]

+
1.2.(2..-l)(2;z-3)

^os(,.-m-4)^ +
...J-

;

the series between the brackets is to be continued until it

terminates of itself.

104. The last formula shews that if x is not greater

than unity then ct is greatest w^hen x is equal to unity. This
value of CT may be found most readily in the following

manner.

By (4) we have

^n-m
. d^^P^ix)

- (m, n) = j-^ -^ ^^^—^ -^^_

;

and, by. Art. 18, when cc = 1 we have

d'*P„{x) _ {n + m)(n + m — l)...{n — m -\- 1) j^

~djr \m \m 2"*

\n-\-m

2"»[m

so that when x = l we have

|7i+m
(in, n) =

2" |m 1.3. 5... (2/1-1)*
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105. If in the process of Art. 103 we change the sign of

m, we shall obtain an expansion for -cj (— m, n) ; and thus we
deduce another formula for tsr {m, n) by aid of the relation

CT (m, n) = {x^ — 1)"^ 'CT (— m, n) given in Art. 100.

106. We know from Art. 97 that ot {m, n, cos 0)

= COS- e - ^'7'\^""^ cos— e

(n-m)...(n-m-S) , .

_

+ 2.4.(2^-l)(2n-3)''''^ ^ -'

It is obvious that by virtue of the relation

sin' 6' + cos' ^ = 1,

this series may be put in the form

\ cos''-"* e-\-\ cos"-"*-' d sin' e + \ cos"-"*-' (9 sin' 6> + . .

.

It will be found that we shall thus obtain ot (m, n, cos 6)

= -cr (m, n, 1) -^cos"^" 6 — -— cos' 6 sm'

(n — m) . . .{n — m — S)
'esm'e^..\ (12).

4'.(77i+l)(m+2)

To establish this, let us suppose that the original series

is denoted by

cos"-™ e + a^ cos"-™-' e + a^ cos""™"' 6+.,.]

divide by cos"-™ 6, and put t for tan' d : then we must have

1 + a,(l + + a^{l + ty + a^(l + ty+ ...

and from this identity we are to find ho,h^, \, h^,...

Equate the terms independent of i; thus we have

that is Z>o = 'cr(m, n, 1).
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Equate the coefficients of f ; thus we have

. IN .(r + 2)(r+l)
6, = a, -f (r + 1) a,,, 4- ^ ^«r+,

,

(r-t-.3)(r + 2)(r4-l)

. Il ^ rr 4. 1^ ^'-t .

(r + 2)(r + l) «,^

= aJ

.
(r+3)(r4-2)(r + l) ^.,, . )

(w - m — 2r) (» —m — 2r — 1)

27(2n:-^2r-l)

(yt-^-2r) ...(7i-m-2r-3) )

"^ 2.4.(2;i-2r-l)(2/i-2r-3) *"]"

= a^-cT (7^ -f r, 71 — r, 1).

Similarly 6^^^ = «r+i^ (?7i + r + 1, ti — r — 1, 1).

Therefore %» =^

.

^(»» + r + 1, n-r-1. 1)

_ (w —m— 2r) (n — m — 2r — 1) -crf^w + r-f 1, n — r — 1, 1)

^

~
2(2n-2r-l) * ^(m + r, 7i-r, 1) '

by Art. 104 we find that this reduces to

^r+i __
(ri — m — 2r

)
(n — m - 2r — 1)

"37 ""
4'(m + r + l)

and by this law we obtain the series given in (12).

107. According to Arts. 97 and 99 the associated func-

tions of the first kind are defined to be the product of a
^ (l"*J> (x)

certain constant into {x^ — 1)'* —-j^— . In like manner the

associated functions of the second kind are defined to be the

-d"'Q (x)
product of a certain constant into (a;* — 1)'—^ "^— .
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Now

dx"^ ~^r 2.(2/2+3) "^ "^•"r

where \ = -^—J-===^-- See Art. 87.
1 . .3 . D . . . (2/1 + 1)

HeDce we may conveniently take for the associated

functions of the second kind the expression

108. The associated functions of the second kind maybe
put in various forms by the use of the various expressions

which have been found for Q^ {x).

For example, we have by Art. 37

--i- = 2(2» + l)P„(^)Q„(y).

Differentiate m times with respect to y; thus

1^ d"^0 (?/)

and therefore by Art. 28

d^^Quiy) (-ir[!^ r PJx)dx

Hence, changing the notation, we have

d£^ 2 j-i(^-0

109. "We shall not find it necessary to discuss the asso-

ciated functions of the second kind beyond one more formula,

wliich we will now give. Put

y for £7, (^' -1)^^P and . for C, {^^ - Vf^-jp

,
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where 0, and C^ are constants ; tlien we know that y and z

both satisfy equation (9) of Art. 102, so that

Multiply the former by z and the latter by y, and sub-

tract; thus

<'^-')i{='l-£j--^'(4'-l)-

Hence by integration

dz djf C ,-«.

ya.-'dx^^^:^i (^•^)'

where (7 is a constant.

Then by integrating again,

y~~ L{^--i.)f
No additional constant is now required, because each side

vanishes when x is infinite.

Now let (7, and C^ have such values that y and z repre-

sent exactly the associated functions of the first and second

kind respectively. Then when x is very great we have ulti-

mately y — x"" and z^^x"""^ : see Arts. 99 and 107.

Hence by (13) we have (7 = — (2/1+ 1), and thus finally

=(^'^+<(5^V-

t



( 90 )

CHAPTER IX.

CONTINUED FRACTIONS.

110. It is shewn in the Algebra, Art. 801, that the quo-

tient obtained by dividing a certain hypergeometrical series

by another, namely, —^ '
, r! s'— > can be developed

into a continued fraction.

For a special case we may suppose = 0; and then

^(o^jAT)^) becomes unity, so that we obtain a continued
fraction equal to i^(a, 1, 7 + 1, a:), that is equal to the

series

-,
^ a(a + l)

2

As an example, suppose a = ^ , and 7 = ^ ; and put

-z, for x: then we have a continued fraction for

1

that is for f log ^ > ^^^^ ^^ ^^^ o ^^o i
•

1 _ z 2/~^

2/

Hence, dividing by i/, we obtain a continued fraction for

£L

log f

—

-
; and the form of it is

I
«i.y

1- ^»^

1-...
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1

that is,
ay-
y

•

^ y-...

2.2 3.3
"3.5' ^«~5.7'

4.4
Moreover a^ = -^, a^

o

All this can be easily verified from the Article in the

Algebra already cited.

111. But we now propose to find a continued fraction

1 a? +

1

for X log =- without the use of the general theory, merely

by the aid of Legendre's Coefficients ; and this process we
give, not for the sake of the result which may be obtained in

the way already noticed, but for the exemplification of the

use of Legendre's Coefficients.

112. Consider the continued fraction

aX— *

X— ^

X— ...

Let TJ denote the numerator and E the denominator of

the ^T^^ convergent to this continued fraction. Then

K = ^^ ^2

And we have in the usual way

^» = ^ ^n-i-«„-i ^„-2. 1
(2),

n n-l n-1 n—

2

Tlius U^ is of the degree n — 1 with respect to a;, and E^ is of

the degree n with respect to x.

From (2) we obtain
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and from repeated applications of this formula we find with
the aid of (1) that

U^,E^_,-E,U^_^ = a^^_,a^_,a^_,,..a^ (3).

From (3) we obtain ^^^^ ^"
^'

. E^. E„E.
n+l

Proceeding thus, adding the results, and denoting by \

the limit of -r^ when r is infinite, on the assumption that

there is such a limit we get

^ ^n f 1 a,.

Thus we see that XE^ — U^^ is such that if it be expanded in

descending powers of re there will be no term with an ex-

ponent, algebraically greater than — (^i + 1).

113. AVe can now arrive at some results respecting the

forms of U^ and E^^. It will be found that

U^ is of the form x''~^ + h^ x""'' + \ cc""' + . .
.

,

and E^^ is of the form x"" + c^ x""'^ + c, ic""* + . .
.

;

that is, U^ contains only x'^~^ and powers of x in which the

exponent is ti — 1 diminished by some even number, while

En contains only a?" and powers of x in which the exponent
is n diminished by some even number. These laws follow

immediately from (1) and (2).

114. We must now distinguish two cases.

I. Suppose n even; then E^ is of the form

i»'^ + C2a;'^' + c,a;"-' + +c„.

XL Suppose n odd ; then E^ is of the form

a;(x"-^ + c,a;"-^+ +c„J.
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111 both cases the product \E^ is to be free from the terms

a;"*, x~*, ...... x~^.

Moreover we propose to take

1 , x-\-l _, x~^ x^
^ = 21°°%-!=^ +T + T-*---

115. In case I. we find that no even power of x will

occur in the product \E^ ; and in order that x~^, a;"', . . . a;"""^^

may disappear, we must have the following equations

satisfied

:

!+¥+ ^^,=''

«-l^« + l^ ^ 'In-l

Thus we have - equations to determine the ^ quantities

Instead of solving these equations directly, we may pro-

coed indirectly.

It is obvious that these ^ equations amount to the follow-

ing :

I
E,,dx = 0, [ J5;„a;Va: = 0, ... [ r„:t"-Va' = 0;

*'-i • "^ -1 J -1

and since E^ involves only even powers of x, we know that

[ E^^xdx = 0, I
E^x'dx = 0,... ( E^x''-'dx = 0.

Hence it follows, by Art. 32, that E^ must be of the form

k ^-„— , where k is some constant.
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116. In case II, by proceeding in the same way as for

case I, we shall again arrive at the result that E^ is of the

117. Since we know that the first term of E^ is x"^, it

\n

follows that k =~ , Thus
\zn

118. We have next to find U^.

Since ^ —^ involves only ic~"~^ ic~"~^, ..., it follows' that

Un is equal to the integral part of the product XEn , that is,

to the integral part of

But by Art. 78 we have

|p„(^)log|±| = i? + (3„(a.),

where R is integral, and Q^ (x) is fractional.

Hence it follows that Z7^=

—

r^-=Bj where B has the value

found in Art. 78.

.1 x + 1
119. Thus if- log -_ can be developed into a con-

tinued fraction of the form given at the beginning of Art. 112,
we have determined the n**" convergent. It remains to shew

X x + 1
that ^ log really can be developed in this form ; and also

to find a^, ^2, (Zg,....

We know that ^ log ~- ^ = -^^-^ + ^^j

.
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Now suppose, as we do throughout this process, that x is

greater than unity ; then Q^ [x) vanishes when n is inde-

finitely great. Hence ^ log = the limit of py^ when
A iB — 1 JT^ [X)

n is indefinitely great.

We know by Art. 56 that

nP,(^)-(2n-l)^P„.,(^)+(ri-l)P^,W=0;

2" \n\n
let Fn stand for —}z^ P„ {x), that is for

L" P.{x);
1.3.5...(i»-l)

thus r„ w -.r,.. (.) +
(,J"3-,'f_ 1)

r:., (.) = o.

so that r„ {x) = a; F... (a;) - a„_. F,_, (*) ; (4),

"''"^" °'-'" (2,.-3)(2n-r)-

1 x-\-l
Multiply both sides of (4) by ^ log

^ ; then each term

gives rise to an integral and a fractional part, and denoting
1 x-\-l

by Z^ {x) the integral part of ^ T^ log -^^
—

- , we get

Z. W =^'^,-. {x)-a„.,Z^_, {x) (5).

From (4) and (5) we see that ~ can be put in a con-

tinued fraction of the required form, extending as far as the

component — "*
. And ^ is equal to p 7^ .

Also a = :j-^Q , a^ — ^-^ , and generally

a« =
(2wi-l)(2wi + l)
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CHAPTER X.

APPROXIMATE QUADRATURE.

120. Suppose that we require the value of a certain

integral between definite limits, say I f{x) dx ; if the in-
-1

definite integral is known, we can at once by taking tlie

values at the limits determine the definite integral. But if

the indefinite integral is not known, we are in general com-

pelled to use processes of approximation, and such processes

may also be advantageous in some cases where the indefinite

integral is known, but is of a very complex form. One of

the most obvious applications of the result is to find the

area of a figure bounded by a given curve, certain fixed

ordinates, and the axis of abscissae ; and thus it is frequently

described as the approximate determination of the areas of

curves, or in old language as the approximate quadrature of

curves.

121. The matter is discussed in the Integral Calculus,

Chapter vii, and various rules concerning it are there given

;

these rules all imply that we draw equidistant ordinates

between the two fixed ordinates. The method of Gauss,

which we are about to explain, implies also that intermediate

ordinates are drawn, but not at equal distances ^ and in fact

proposes to determine the law of succession of these ordinates

in such a manner as to ensure the most advantageous result.

122. Let f{x) denote any function of x^ which is sup-

posed to remain continuous between the limits — 1 and -{-

1

for X. Now a function of x can always be found, Avhich is

rational and integral and of the degree 7i — 1, and which is

equal in value to fix) when x has any one of n specified

values.
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For let ttj, ctj,... a^ denote these specified values
;
put

(aj-a,)i|r'(ajr

then </) (a;) is such a function as is required.

For </) (a?) is obviously rational and integral and of the

degree n — 1. Also the value of ^ ^ when a; = a, is i/r' (a^)
;X ~~ Ctf

and thus the value of <^ (a:) when a; = a^ is f{a^. Moreover
there is only one such function. For if there could he another

denote it by x (^)- Then
<f>

{x) and ^W ^^^ equal when x
has any of the values a,, a^,.,.a^ ;

thus <t>{x) — 'x,
{x) vanishes

for n different values of x, which is impossible, since

(t>(x)—x (^) is of the degree n — 1 at the highest.

123. We may suppose that the n valuer a,, a^,...an all

fall between — 1 and + 1 ; thus, using geometrical language,

the curves y = (f>{x) and y=f{x) have n points in com-
mon, corresponding to abscissae between — 1 and + 1 : and

I
</) (x) dx may be taken as an approximate value of

I f{x) dx, subject of course to some examination of the

amount of the error thus introduced.

124. Let -y^ (
'^^^ dx be denoted by A^ ; then

<f>{x)dx = AJ{a;)+AJ{a,;) + +A/W (1)./
Now here it will be observed that Ar is quite independent
of theiform of the function/ (a;) ; so that when A^, A^, A^
have once been calculated, we can use them in (1) whatever

f{x) may be.

T. 7
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125. The older methods of approximate quadrature used,

as we have said, equidistant ordinates. According to this

method we should have

^ _ - 2(r-l) 2r-w-l
«i=-i, «^n = ij ^'• = "•'^ +^^1 =—y^":ri

—

'

, ,
2(n-r) ^-2r+l

so that a^,.n =-l+ ^_^ =
^_-j^ =-«r>

Thus t/t (a?) = (a? — aj (aj + aj (a? — aj {x + aj ;

so that if n be even a/t (a:;) involves only factors of the form

n^ — a^, but if n be odd one factor is x.

Hence ^Jr {- x) = (- ly yfr {x)
;

and therefore ^
-^jr (— x) = {— ly yjr' (a?),

so that f'(-x) = {- ly' ^' (a;).

1 r 'yjr (x) d,

«-r+i

c?a3

1 p ->|r(-a;)c7^

1 f (-l)"^(aj)^a;

1 r '^{x)dx _ .

Thus the quantities ^j, A^, A^ are such that those

which are equidistant from the first and the last are equal.

126. The error which arises from taking the approximate
quadrature instead of the real quadrature is

ff(x)dx-tAJ{a;);

here and throughout the Chapter 2 denotes a summation
with respect to r from r = 1 to r = n, both inclusive.

Now if f(x) be a rational integral function of a; of a

degree not exceeding n — 1 this will vanish, for then f(x) is

identical with ^ {x), and there is no error at all. This holds
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then for the ordinary process of approximate quadrature, since

it holds whatever may be the law by which a^, a^, a„ are

determined.

Gauss proposed to take a,, a,, a^ in such a manner
that the error should also vanish when f{x) is any rational

integral function of a; of a degree not exceeding 2n—l. To
this we now proceed.

Suppose then that f{x) is of the degree 2n — l. Since

/{x) — 4> (ic) vanishes when x has any of the values a^, a^,...a„

it follows ihdii f{x) — (f>{x) is divisible by yjr^x). Assume

then that '^\~^J^ = c, + c,x + c^x^+ +c ^a?""',

Yix) ° * '
""^

so that f(x) = <^ (a;) + ^/r {x) {c^ + c^x-{-c^x^+ + c„_^x'''^].

By ascribing suitable values to c„, Cj,...c„, we may obtain

every possible form of f{x) of the degree 2n — 1, under the

condition that/(ic) — ^ (x) vanishes for the n specified values

of a;.

In order then that I f(x) dx — I <f){x)dx may vanish

for every possible form of / [x) of the assigned degree, we

must have / x"" -^{x) dx = for all positive integral values

of r between and ti — 1 inclusive. Hence it follows by
Art. 32 that ^ [x) must be of the form (7P„ (a;), where
(7 is a constant; and theriefore the roots of >|r (a?) = must be
those of P„ {x) = 0. This determines the law of succession

of the quantities a^ a^y...a^.

Since the coefficient of a;" in ^^ {x) is supposed to be unity

we must have
\n

i.a.5...(2?i-l)'

127. Since by Art. 7 we have a^ = — a^, and a„_^^, = — a^,

it follows by Art. 125 that A,^_^_^_^ = A^. When n is odd the
middle term of the set a^, aj,...a„ is zero.

128. Thus we see that if /(a;) be rational and integral

and of the degree 2?i - 1 at the highest then 1 / (x) dx is

7—2
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exactly equal to I ^ (x) dx, when a^, a^,... a^ are the roots

of P„ (^) = ; or, to use geometrical language, the area of the

figure bounded by a portion of the curve y =f{oc), two fixed

ordinates, and the axis of abscissae, can be determined exactly

when besides the two fixed ordinates we know n intermediate

ordinates at suitably selected intervals.

We proceed to consider the amount of error which the

method of Gauss involves when f{x) is no longer restricted

to be of the degree 2?i — 1 at the highest.

129. Suppose that/(ic) can be expanded in a convergent

series so that

f[x) = h,-v\x-Vh,x''+...-\-\x'' + (2).

The whole error is I f(x)dx — X ^^/M- ^^^ for f{x)

and for /(aj their expansions from (2); then the error will

consist of a series of terms of which the type is

h^^f'^x-dx-^XA^aJ^y,

we will denote this by h^ E^.

Now we know from Art. 126 that E^ vanishes if m be

not greater than 2n — 1, so that the whole error reduces to

^2n -^^n ' ^2n+l ^2n+l "r" ^2n+2 •^2n+2 ~l~

130. "We have first to observe that all the terms wdth

odd suffixes will disappear from the preceding series ; that is,

2p + 1 being any odd number, we shall have

/
-1

For
I

x^^^ dx is obviously zero; and XA^a^^^ is zero

by reason of the facts mentioned in Art. 127.

131. Consider then E^,, that is [ x^^ dx -XArOr^^,

2 . .

'

that is -^ r — XA^ar^', it is obvious that this is equal to the
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2+1 A
coefficient of a"*^* in the development of log ^ —z% -^—

~

in descending powers of z.

Now A =
:p;^)J_^^3^;

%w<^^4^f^^ C^)'

then ^(aj=J^^^^^^, forP,(aJ=0;

^^"^ ^' =?US ^'^-

But % (z) is a rational integral function of z of the degree

n — 1, and therefore by Art. 122 we have

Thus jfrom (4) and (5) we get

But by Art. 127 we can also write this

and therefore, by addition,

xW=zP.{z)S-^..
z — ttf

Hence z 2 -23^—2 = pA; > ^^^^ therefore ^j, is equal to

the coefficient of z^^^ in the development of log — p v4

in descending powers of z.

But by (3) we have

= P, (z) log ^±^ - 2Q„ [z), by Art. 80.
2 — 1
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Hence finally E^^ is equal to the coefficient of s~^^^ in

the development of J;" in descending powers of z.

^^* ^ = 2^^! jl. 3. 5... (2^^1) 1 '
*^^^ ^^ ^"^^

, (^ + l)(^ + 2) ^_,_3

2gj^) ;^ 2(271 + 3)
^•••

=^
i^n(^)"^ .« ^(^-1) „n-2

If this be developed in descending powers of z we obtain

fju((n + l){n + 2) n{n-
^1

-2n-3
^^ +11 2«+3

^

+^^r^^^ °+

thus we have ^^^= /x,

_/.f (7^4-^)(r.4•2) 71(71-1)
]

2«+2 2 I 271 + 3 *" 27^-1
J

•

132. We may investigate somewhat more closely the

extent of the error to which the new method of approxima-

tion is exposed.

Ey Arts. 72 and 77 we have

F^{z) ° z — 1 z-a

where C, =
jp (l)V'^^^-i)

^^^^ ^ "" ^'•'

so that
^'^={P;(ajr(a;-l)-

Thus

2|^ = logi±U2X

But since a^_r+i ^ — ct^^^ may write this thus

:

P. (^)
'"= « - 1 " "^ (F. (a,))" K" - 1) (.'-<)

•
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Let this be developed in descending powers of z, then we
find that the coefficient of z^^^y that is E^^^ is

2 -22
2^-f-l

By comparing this with the value of E^ at the beginning of

Art. 131, we see that A^=^- «

I

>y , . \ . This furnishes

Let 8^ stand for XA^aJ^, so that E^= ^ ^ .,
— S^.

a new expression for A^, and shews that it is necessarily

positive.

Let /S denote the numerically greatest of the quantities

a., a,, ... a„; then since A^, A^, ••• -^n ^^^ positive it is ob-

vious that /S*2p^j is less than ^^8^. But we know that E^^_^

2
is zero, so that S^^_^ = ^ ^ ; hence it follows that S^^^^,^ is

less than
^^ _ , and therefore ^gn+w-a cannot differ from

2 2y3^*
^r
——

r

by SO much as 7 . We may observe that
2n + 2q-l -^ 2^—1 *^

each of the quantities A^, A^, ... u4^ is less than 2. For since

E,^ is zero when p is zero, we have

Moreover when n is even each of the quantities is less than

unity, since any two equidistant from the first and the last

are equal.

133. Let us now make some comparison between Gauss's

method and the old method of equidistant ordinates. We
suppose that n ordinates are used besides the extreme ordi-

nates. Suppose as before that /(a*) can be put in the form (2).

Then according to the old method the error may be de-

noted by b^E^ + b^^^E^,^^ + ^„+2^,.+2 +• • • » ^^^ ^Y ^^^ principles

of Art. 130 this reduces to bJJ^^-\-h„^^E^^ + b„^E^^-\- ,., if

n be even, and to 6„^,^„^, + b,^^,E^^, + b^^,E^^ +... if n be odd.
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According to Gauss's method the error may be denoted by

KK. + ^n+2^2n+2 + ^2n-M^2n+4 + ' ' ' ' ^^^ ^^ ^^^^ ^^ ICmem-
bered that such a symbol as E^ does not denote the same
thing in the two methods; for this reason, and because

K^K+v"- ^^® ^^^ known until /(a;) is specially assigned,

we cannot make any close arithmetical comparison between
the two methods.

If the expansion of/ (a?) is extremely convergent, so that

the quantities b^, b^^_^_^, h^^^^,... form a rapidly diminishing

series, we may draw two general inferences.

I. In the. application of the old method if n be an odd
number, then n ordinates are as advantageous as 7i + 1.

II. The new method by using n ordinates is about as

advantageous as the old method would be by the use oi 2n
ordinates.

134. There is another mode of investigating the results

of Art. 131 which may be noticed. We propose in fact, using

the notation of Art. 122, to find the value of

lWm-'t>{4^dx.

Now since f{x) — (f)
{x) vanishes when •\/r [x) vanishes, we

will assume that /(a?)— <^ (a;) is divisible by '>^{x)\ this would
certainly be true if the expansion of/ (a?) consisted oi 2b finite

number of terms, and on the supposition that the expansion

of f(x) is highly convergent, we may admit that f{x) may
be treated practically as if there were only a finite number
of terms.

Let then f(x)-<l> (a?) = -^ («) X (aj),

so that X (^) oa^y ^® considered to be equal to the expansion

of

'

^
. , s in ascending powers of a?.

Now (^ {x) is of one dimension lower than i^r (a;), and so

the expansion of ^\ \
will consist only of negative powers

of X ; hence these negative powers will cancel those arising
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fix)
from the expansion of j\-\> and leave % (a:) equal to the

fix)
aggregate of the terms in the expansion of j^/i which in-

volve 'positive powers of x.

Suppose then ^^-j
=§ +A +A +...; (6).

for it is obvious that the other powers of x will not occur in

the expansion, since ^/r {x) involves only x"^ and other terms in

which the exponent differs from n by an even number. Since

rK^)-^ 2.(2n-l)^ + 2.4.(2n-lj(2/i-3) ^

the values of ^<,, yS^, /3^, ... are found in succession from the

e(}uations

^^ 2.(2r6-l)'^«'

n(M-l) n (n-l)(n-2)(7i-3)
^* 2 . (2n - 1)

'^^ "^
2 . 4 . (2n - 1) (2n - 3)

^*''

Now the error = I j /(a:) — (f>
{x)[ dx = \ '^{x)x [x] dx;

fix)
and X (x)=that part of *

' which involvesj;05i^iye powers of x

= *.A

+

KA^+ K»A^+ 0,)

+

J..« A«^ +

M

by (2) and (6) : and thus the error becomes

where B^ stands for
[ O^a;™ + ^^x"^-^ + ^.x"^-* +„.)yjt{x) dx.
•'-1
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Now I x^'^{x)dx vanislies if m is less than w ; and thus the

error reduces to h,^B,^ + \^^^B^^^ + \,^,B^^, + . . .

.

In
Also -vlr (a;) = (7P„ ix), where (7 stands for

.. ^ > -"^^z; r^ ;" ^ 1.3.0 ... (27i — 1)

and thus the error

+ C».»« /'^08„x»« + /3,^") P„ (^) <?x+ . . .

.

The integrations may be effected by Art. 85, and thus

giving to fjb the same value as in Art. 131, we find that the

error

+.6 [. (n+i)...(;+4) (^+i)(^^+j) 1

135. We have supposed throughout that the limits of

the integration are — 1 and + 1 ; but by an easy transforma-

tion we can adapt the process to the case of any other limits.

Suppose, for example, that we put ^ = 2^—1; then f =
when x = — l, and f = 1 when a? = 1, so that

J -I Jo

Let/(2f-l) be called <(> (f); then

/V(l)<^f=|/'^'/>(^2'')^;x (7),
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and thus we shall have approximately by Gauss's method

{«^(?)rf|=|2^,'^(4^) (8).

Let -/ = C^y and ——^ = 7^: then approximately

fV(?)^f = SC',^(x) (9).
J

Gauss has calculated the quantities of which C7. and 7^
are the types, for all values of n from 1 to 7 inclusive; we
will give his results in an abridged form at the end of the

Chapter.

It will be observed that 7i, 73, ... 7,, are the roots of the

equation —^ , „

—

- = 0, when for x we put 2f— 1 ; so that

3 the

roots of

they are the roots of — j^^n
—— — ^\ that is they axe the

The roots of P,^ {x) — can be obtained from the values

which we shall give for 7^, 7^, ...7„, by the relation a^= 27^—1.

Again, to estimate the error produced by using (9), sup-

pose that

*(| + i)
= 4+Ai+A(|)V....

then as this is the expansion of f{pc) the former notation

and the present are connected by the relations

Moreover from (7) and (8) we see that the expression for

the error will be half that formerly obtained; so that it will be
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2 '^^'^^4
I 271+3 ^ 2n-l T^

that is

A* ^ /^
{
{n+l){n-{-2)

. yi(n-l)l ^
yzn+l -"2/1

2n + S 2n-l

136. We will now give the numerical values required
in the formula (9) for the values of n from 1 to 7 inclusive.

n = l 71 = 2

7i = -5
7i
= •2113248654

C, = l 72
= •7886751346

^.= a, = -5

w = 3 71 = 4

% = -1127016654 7i
= •0694318442

72= '5 7.= -3300094782

73 = -8872988346^
78
= •6699905218

Or=C, =~ 74
= •9305681558

' ^ 18 ^.= (7, = -1739274226

'^.-5 ^.= (73
= -3260725774

n = 5 n = 6

7, = -0469100770 7i
= •0337652429

7, = -2307653449 72
= •1693953068

% = '5
73
= -3806904070

74 = -7692346551 74
= -6193095930

7^
= -9530899230 75

= •8306046932

(7,= (7, = -1184634425 76
= -9662347571

(7,= (7, = -2393143352 0.= (7, = -0856622462

(7,= -2844444444 ^2 = Cg = -1803807865

^3 = C, = -2339569673
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71 = 7

7i
= •0254460438286202

72
= •1292344072003028

78
= •2970774243113015

74 =

75 =

7«
=

•5

•7029225756886985

•8707655927996972

77 = •9745539561713798

c.= Or = -0647424830844348

0,= ^3 = -1398526957446384

C3 = a, = ^1909150252525595

a, = -2089795918367347

I
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CHAPTER XI.

EXPANSION OF FUNCTIONS IN TERMS OF LEGENDRE'S
COEFFICIENTS.

137. We have seen in Art. 27 that any positive integral

power of X can be expressed in terms of Legendre's Coeffi-

cients; and hence also any rational integral function of x
can be so expressed. We have next to determine whether
any function whatever of x can be so expressed; this matter

however is somewhat difficult, and we shall treat it very

briefly here, as it will come before us again when we consider

the more general Coefficients which we call Laplace's, and
which include Legendre's as a particular case.

188. Let f{x) di&note any function of x\ if possible

suppose that

fix) = a„ + o,P, ix) + a,P, {x) + (1),

where a^, a^, a^^ ... are constants at present undetermined.

Let n be any positive integer; multiply both sides of (1)

by P„ {x)y and integrate between the limits — 1 and + 1

;

thus by Art. 28

/.(-)/(-) ^- = 2^^.

therefore „„ =?^ j" P^{x)f{x)dx. (2).

Thus \i f{x) can be expressed in the form (1) the constants

a^, a^y ... must have the values assigned by (2).

The formula (2) implies that/(a;) remains finite between

the limits — 1 and 4-1 of ic : this condition then must be

understood in all which follows.

/;
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139. Since the constants in (1) are thus determined it

follows implicitly that there can be only one form for the
expression of a function in terms of Legendre's Coefficients

;

tliis may be shewn more explicitly in the following manner.

If possible suppose that

fix) = a, + a^P^ {x) + aj>, (^) + ...,

and also =h,+ \P, {x) + h^P,^{x) + ....

By subtraction,

0=a„-h„+{a,-b,)P,{x) + {a,-b^P,(x) + ....

Let n be any positive integer; multiply by P„(ic) and
integrate between the limits — 1 and +1: thus by Art. 28

2n+l •

Therefore «„ = &„: and thus the two expressions coincide.

140. We have shewn thatify(ar) can be expressed in

terms of Legendre's Coefficients the expression takes a single

definite form ; but we have still to shew that such a mode
of expression is always possible. This we shall do, at least

partially and indirectly, by finding the value of

*' -I

X
2

where 2 denotes summation with respect to n from zero to

infinity. We shall require an auxiliary proposition that
will now be given.

141. If </) (x) be such that it is always finite and that

I
a;" (j) yXj dx vanishes, where p and q are fixed, and n takes

successively every positive integral value, then <^ (a?) must be
always zero between the limits p and q.

For if </) {x) be not always zero between these limits it

must change sign once or oftener. Suppose </> {x) to change
its sign m times, and let aj^, aj^, ... x^ denote the values of x
at which the changes take place. Let

-^ (a;) = (a; - a:J (a? - a?,) ... (a; - a?J

;
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then by miiltiplying out we have

t (x) =x'^ + A^x^-^ + A^x"^-^ + . . . + ^,„,

where A^, A^, ... A^ are constants.

Now we have by supposition

f x''cl>{x)dx = (3).

In (3) put for n in succession m, m — 1, .,.0; and add the

results multiplied respectively by 1, A^, • •• ^„r Thus we get

I o^r (a?) (x) dx = 0.
J p

But this is manifestly absurd, for 'sjr (x) and <j) {x) change sign

together, so that '\}r (x) ^ (x) does not change sign.

The condition that ^ (x) is to remain finite is intro-

duced because we can have no confidence in the results of

integration when the function to be integrated becomes in-

finite.

142. We now proceed to find the value of

2n + l

2 2

We assume that it is finite, and denote it by F{x); so that

F{x) = ^^!^PJx)f^P„{x)f(x)dx.

Multiply by P^ {x) and integrate between the limits — 1

and + 1 ; thus

fp^ {x)F{x) dx^fp^ {x)f{x) dx',

therefore
J

P^{x) [F {x)-f{x)]dx = (4).

Now we know that x^ can be expressed in a series of

Legendre's Coefficients ; let then
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Multiply (4) by c„, then change n in succession into

n — 1, ?i — 2, . . ., and add ; thus

r x''{F{x)-fix)]dx^Q.

This then holds for every positive integral value of n
;

and hence by Art. 141 we have F {x) —f{x) = 0; therefore

This process is given in Liouville's Journal de MatMma-
tiqueSf Vol. II.

143. Thus we see that if the series denoted by

V. 271+1
FA^)f Pni^)fi^)dx

IS even.

is really finite, it is equivalent to f{x); the difficulty is to

shew generally that the series is finite, and as we have said

we shall return to the subject.

144. As an example suppose it required to express x
in a series of Legendre's Coefficients, where ^ is a positive

fraction, proper or improper, which reduced to its lowest

terms has an even number for numerator.

Then I a:*P^ {x) dx = 0, when n is odd,

and = 2 I a?*P^ (a?) dx, when n
Jo

Thus, by Art. 34,

^ -/;+!+ (A:+l)(A:+3) ^«^^^"^(A;+l)(A;+3)(^'+5)^*^^^'*'•••

{4^m + l)k{k-2),..{k-2m-^2)
*"

(^ + lj(^+3)...(^+2m + l)
^«-^^^ + --

It will be seen that after a certain term the numerical
factors are alternately positive and negative ; and it may be
shewn that they are ultimately indefinitely small : hence the
series is certainly finite if x is numerically less than unity.

T. 8
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To shew that the numerical factor is ultimately indefi-

nitely small we observe that it bears a finite ratio to

4m + l 2.4.6... {2m -2)
k + 2m + l '3.5.7... (2m-l)'

that IS to -J
—^ r -—

.^
'

.. -

,

k + 2m + l \2m-l *

and the ordinary mode of approximation will shew that this

vanishes when m is infinite. Integral Calculus, Art. 282.

145. As another example we will express —-. wr in

a series of Legendre's Coefiicients.

In Art. 14 suppose n even, say =2r; then the term in-

dependent of 6 will be found to be
]

'

9 1' I" f
I
^^^

1 f"
thus - I F^^ (cos 6) dO is equal to this expression.

this is zero if n be odd, and if n be even it has the value

just found. Thus by (1) and (2) we have

If we put i» = we deduce

146. Again, we will express . _ ^ in a series of

Legendre's Coefficients.



IN TERMS OF LEGENDRE's COEFFICIENTS. 115

la Art. 14 suppose n odd, say =2r + l; then the term
which involves cos 6 will be found to be

M 2.4,„2r }-2rqr2^^^^>

and thus

1 Td ^ /^ /i^/j fl.3.5...(2r-l)]»2r+l
-j^P,^,(cos^cos^^^=j -2747:72^} 27T2-

Now f' ^;,^^^-f^ = f>„ (cos 6>) cos 6^ J^

;

this is zero if n be even, and if n be odd it has the value

just found. Thus by (1) and (2) we have

(6).

147. Integrate (5), making use of Art. 61; thus

?8in-x=3(gV.(.) + 7(2i^)p,(,.)

Integrate (6), making use of Art. 61; thus

? V(l -^) = 2 - 5 (i)'.
I
P. {-) - 9 (^i-JI P. (-)

148. Multiply the left-hand member of (5) by

-TTz—

^

jT, and the right-hand member by the equi-

valent series 1 + P^a + P^a* -I- . .
.

; then integrate between
the limits — 1 and + 1 : thus we get

8—2
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dx

de
that is

V(l-2acos6' + a*)

In a similar manner we obtain from (6)

The examples of Arts. 145...148 are taken from Crelle's

Journalfur .. .Mathematik, Vol. 56.
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CHAPTER XII.

MISCELLANEOUS PROPOSITIONS.

149. In Art. 90 we have shewn that

X + VC^'-" 1) cos ^}"= a^+ «! cos <^ + <7j cos 2(^ + . . . + a^ cos ??<^,

2 (ic'-lVcZ^-^'V-ir
where «« = i7^ n—;

—

:^ -n+sr-

^

or as we have expressed it in Art. 97,

2 |2n
« =m 2'* n+w n—

m

(a;*— l)''^CT(m,n)

;

but when m = we take only half of these expressions.

Now let X be positive and greater than unity, and sup-

pose that we expand
{^^ ^(^. ,\) eos </>r

'"^ ^^^ ^'''"'

Z>o + Jj cos <f)-\-\ COS 2(^ + ... + Z^,, cos w</) + ...,

where J^,, J^, &2»--- ^^^ functions of a; which do not involve
(f>\

then it is found that so long as m is not greater than n the

fraction -^ is independent ofx : indeed as a^ is zero when m

is greater than n, we may say simply that -r^ is always inde-

pendent of x.

This has already appeared in the case in which m is zero

;

for we have in fact shewn in Art. 49 that i^ = 1. We shall

now investigate the general proposition.
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150. We know that if m is greater than zero,

a^=-\ {x + \/{x^ — 1) cos </)}" cos m^ dcj) ;

we shall denote the definite integral by J"^, so that

Also we know that if m is greater than zero,

cos m(l)d(l>_2 /''^

V(a;''-l)cos</>r-'''

we shall denote the definite integral by J^^-n ^^ ^^^*

*-=^'^-«-.-

We shall now transform the definite integral J^.

It is shewn in the Differential Calculus ^ Art. 369, that

sinm<^_ dr^O^fT'^= x Bl-lm dt

where f = cos<f) and X=--—.-4—77^ tt •^ 1.3.5... (2m — 1)

Hence cos m^ d(j) = X—^ ^„/— dt.

Substitute in J^ ; thus it becomes

Integrate by parts, and then again by parts, and so on
until the operation has been performed ni times ; then since

d'Ci — fyi
-77;. vanishes at the limits so long as r is less than m,

which is the case in our process, we obtain

X(-l)'"|7i(a;'-l)^/-i
*/- ~''—

n—m •'+1



MISCELLANEOUS PROPOSITIONS. 119

Then restoring cos <^ for t we obtain

= n^+ V(aj'-l)cos<^}'*^sia^'"<^t/<^ (1).
Jo

If we apply a similar transformation to /_„_! we obtain

\n -"»

""Jo{^+ V(^-l)cos(/>r"*^^
^'^^•

"We shall now shew that the definite integrals on the

right-hand sides of (1) and (2) are equal; this gives in fact the

demonstration of the statement of Art. 149.

First change (j) into tt — </> in the definite integral in (1)

;

then it becomes / {x- aJ(x^ - 1) cos <p]"~^ siir^(j>d(t>,

Jo

Now use the same transformation as in Art. 49, namely,

X cos ylr-{- J(a^ — 1)

^ x + V(a; — 1) cos y}r

which leads to sin 6 = —;

—

,, „ ^, r

,

^ X + tj [x — 1) cos yjr

X— >J{a? — 1) cos^
X + aJ{x^ - 1) cos ^/r

'

d4>-::r^J^x + aJ{x — 1) cos-*^

thus jlx - V(a;' - 1) cos 0}"-"' sm'^(t>d(l)

J,[x'\-^{x'-l)cosfY^'^'''
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Hence from (1) and (2) we have

J |w In
so that V^ •?= ^= (- 1)*".

Wo have thus two forms for the associated functions of

the first kind analogous to the two forms for P^ in Arts. 47
and 49 ; namely

2" Iw+m In—m [it

\ (« + \/(^— 1) cos C^j" cos W </)(?</>,

JoTT [2n

and also when x is positive and greater than unity
m

(ic*— l)*«r(w?, n)

- (- 1)"*
I

n

rtr cos m^d^
7rl.3.5...(2n-l)j, {aj + V(i»"-~1) cos^»*

151. The process given in Art. 9G for the expansion of
\x + \/(^'* — 1) cos <^]** may be generalised.

For if '>^{x) denote any function of x we have

and hence the expansion of {a; + 'v|r(a?) cos </>)** may be found

thus: expand -j^
^^^

-\ in powers of z^ at the end put

«^*'\/r(a;) for «, and {i|r(a;)}' — a;' for a*. We shall thus obtain

lor the general term

2"
I

|/?-fr/i
^ '' \n—m

J ,

where i) stands for -,
; and at the same time we obtain the

theorem
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I
n f m

D"^(a^+a7 1:!' //"^{a^+ay

in thoso formula) tho value of a* is to bo substituted after the

differontiatioiiH are performed.

152. Wo may exhibit P^{w) as a determinant. For put

^, + ^^,aJ + ^^^'+... + uiy-r. (3),

where A^, A^,, ... A^ are constants; let these constants be

determined by the conditions that I VoTdx - 0, when m is

any positive integer not greater than n.

1 ri 1 . .

Put a^"ol afdx, so that Oy» - if r is even, and

« if r is odd. Then by putting for m in succcsHion the

values 0, 1, 2, ... n— 1, we obtain tlie following n equations:

Ana, •¥An^,a,Jr...-frA,% -

^ „«„,» + ^„.»a,+ ... + A,a^,»0

w.

Wo may consider that (3) and (4) form n + 1 cqufitinjiM

for exprcHHi'ng yi,„ A, ... i4„ in ternis of V, x, a„, «,,...a^„.j
J

thus we get by the Theory of KqvAitions, Art, 388,

^,xJJf- KxiV,

where Jlf stands for the determinant

1, a?, a^t ... aj*

and ^ stands for the determinant obtained from M by
omitting the extreme right-hand column and the lowest

row.
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Now we know by Art. 32 that P^ {x) is the product of

a certain constant into F, and as the coefficient of ic" in

Pn {x) is ——'-—'-—^
, we have

P ^ ^_ 1. 3. 5. ..(271 -1) F_ 1.3.5... (2/1-1) if

Thus P^ (x) is expressed as the product of the determinant

M into the constant factor ——'—^^^^ .

\n JSf

153. The value found for P^ (a?) verifies immediately the

property that I P^ (x) x^dx = 0, when m is any positive

integer less than n.

-IL
AM

For since V= —L- the value of J | Vx^dx will be found

A a . " .

to be ——' , where fju is obtained from M by changing the last

row ofM into

But thus fi has two rows identical, and therefore vanishes

by the Theory of Equations, Art. 371.

154. Since a^ is zero when r is odd, it will be found

that we can separate the equations (4) into two groups, one

involving u4(j,J.2, ^4,..., and the other involving ^j,^ 3, J.^,...

The number of equations in the latter group will be the

same as the number of the quantities A^, A^, A^, ,..; and
as the right-hand member of each equation is zero we ob-

tain -4j = 0, ^3 = 0, A^ = Oy The former group of equa-

tions in conjunction with (3) will serve to find A^; v^e shall

obtain a result which we may express thus

:

A,xM^==VxN^,

where 3L and i\^, are determinants.
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If w = 2r we have for M^ the form

ttg, a^, a^ ... a„

If 71 = 2r + 1 we have for M^ the form

«2, a<, Og, ... a^^^

a^, «6' ^8, ••• a»r-M

^ar> ^2r+2» ^J2r+2» "^2r+4'

a*, a; a;

... a,.

In each case iV^ is formed from i/^ by omitting the ex-

treme right-hand column and the lowest row.

As before we have

so that P.Ca')

l!!

I.3.5... (2»-l) M,

Articles 152... 154 are taken from the Comptes Rendua
of the French Institute Vol. XLVIL

155. In Art. 102 we saw that if ^ = -57 (m, n) (a:'' — 1)%
then

{l-xy^,--2x{l-x')^+{n{n+l)-m'-7i{n-hl)x']y=0;

we will denote y by
<f)

{m, n), and proceed to some properties
of this function.
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156. Let K^ stand for I <^ (m, n)
(f)

{m, v) dx, then K^

will vanish if n and v are different.

For from the differential equation of Art. 155 we obtain

J _1 1 — '^ -^ -1

By two integrations by parts the left-hand member becomes

/\(.,.,ija-^)ft-Kz)}^,

and this by the differential equation

J -I
1 »^ •/ -1

Therefore

{v{v-{-l)-n{ri-\- 1)]
I

(^ (m, n)
(f)

(m, v) dx = 0;

and therefore if n and z/ are different K^ — 0.

157. We shall next find the value of K^ when v = n.

By Art. 97 we see that

<i> (^. '^) =h^ (^ - 1)
—

^^^—

;

by Art. 96 we are allowed to change m into — m in the

expression here given without altering its value, so that we
have also

Hence we have

~\2n\2n
r c,r s,2 7 h+^ W-^ r d''^"'{x^-iy d'^-^ix^-ir j
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Integrate by parts; thus

dx
^^-^-(.p'-l)- i«-"(:i;«-l)»

du;"""" dx"

Integrate by parts again ; and so on until we arrive at

this = (- 1)- [\n2rj\ (P. {x)Y dx =1^ {\n 2')'.

Thus finally when i/ = n we have

2 (— 1)"* |n + m|n —

m

^"""-^
^2/7Tr {iT3T5...(2n-l)}*

•

158. It will be convenient to state the results of the
last two Articles in another notation by the aid of equation

(4) of Art. 97. We have then

., dx- dx- ^^ ^^ "^^ "'

if n and v are different : and

/:

J -A dx- ^

2 2\n +m
(1 - xT dx = To-r'Tm—

.

^ '
(2/1 + 1) n-m

159. We shall now establish the following relation

:

(2n — 1) <^ (w, n) = nxcj) (m, n—l) + (x^—l)-r <l>{m,n^ 1).

By using the formula quoted at the beginning of Art. 157

and reducing, and putting D ior -j- , the proposed relation

takes the form

^^nxD''^-' {x'-iy+ mxD''^-' {x'-iy-'+ {x'-l) i)"^"' (jc'-l)""';
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and ir^"^ {x'' - 1)" = !>"''"-'
-^- (a;' - 1)" = ^nD'^^-^x [x^-Vf-'

;

so that the relation becomes

{n-m)I)'''-"'-'x{x'-lY-'

= {n + 7n) xD''^'"-' {x'- 1^ + (x'- 1) i)"-^"*(aj^- 1)""^
(5).

We shall establish (5) by induction. Assume that it is

true, and differentiate both sides ; thus

(n - m) D"^^(a;^- 1)*^"' =(n + m) xD'^^^'ix^- 1)""^

+ {x^- l)D''-'"'^\x'- iy-'+ {n + m)D''^"'-\x^-' 1)""'

+ 2xZ)"-^'"(cc^-ir^ (6).

But by the theorem of Leibnitz,

D^-^'^a; {x^ - ly-' = xD''^"'(x' - ly-' +{m-\-n) D''^''-\x'-ly
;

and thus (6) may be written

(n - m)D''^x {x' - 1)""^ = (n + tw) aji)"-^(^^ - 1)""^

+ (a;' - l)D''^'^'-\x^ - ly-' + D''^x{x' - 1)""'

+ xD^^''{x'-iy-':

this is what we should get from (5) by changing m into

m + l ; so that if (5) be true for any value of m it is true

when m is changed into w + 1.

But (5) is true when m = ; for then it becomes

Tiir-^x {x^ - ly-' = nxD'^-'ix' - ly-' + {x' - i)D"{x^ - iy-\

that is n{n- l)D''-\x' - 1)""^ = {x'- 1) i>"(^^ - 1)""^

;

and this is a particular case of equation (2) of Art. 96,

namely, what we obtain by putting 1 for m, and changing n
to n — 1.

160. The results of Arts. 156 and 157 enable us to ex-

tend to the function (p [m, n) some propositions which hold

with respect to P^i^)) this will be seen in the next three

Articles.
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161. Suppose that a function f{x) can be expressed in

the form

f{x) - a^<^{m, m) + a^<i> {m, m + 1) + a^cj) (tai, m + 2) + . .
.

,

where a^, a^, a^,... are numerical factors to be determined.

Then these numerical factors may be determined by the

general formula

ttr
I

{(j) {m, m-\-r)Ydx = I f{x) (j> (in, m+r) dx.

Moreover there is only one such mode of expressing /(x).

See Arts. 138 and 139.

162. Again, suppose we have the series

\<i> (0, n) + \<i> (1, n) + \<i> (2, n) + . . . + K<p{n, n)
;

then, if this series vanish for every value of x, the numerical

factors h^y h^^...h^ must all be zero.

For suppose that aj = 1 ; then </> (1, w), <^ (2, w) . . . all vanish

;

and therefore b^tfiiO, w) = 0; therefore b^ = 0.

Then we have &i</)(l, n) + b^i>(2, n) .., + b,,(\>(n, n) always

zero ; divide by \/(^~" 1)> ^^^ then put x = l) thus we find

that ^1 = ; and so on.

This process assumes that
^

I does not vanish when

a; = 1, that is, that 'GT[m,n) does not vanish when a? = l; and
this we know to be the case from Art. 103.

163. Suppose that a function f(x) can be expressed in

the form

fix) = J,(/.(0, n) + 6,<^ (1, n) + 6,</) (2, 7i) . . . + b,,<f> (n, n) ;

then the numerical factors b^, b^j b^, ,., may be determined
in succession, thus

:

"' <^(0,7i)' " ^(l,«)V(a;'-l)"'-

where in the expressions on tlie right-hand side we must put
1 for X. There will be only one such mode of expressing_/\x).



128 MISCELLANEOUS PKOPOSITIONS.

164. In various investigations of mixed mathematics we
obtain with more or less rigour modes of expressing a given
function analogous to those of Arts. 138, 161, and 163. It

is usually shewn in a satisfactory manner that if such a
mode of expression is possible it can be effected in one
definite manner ; but it is rarely decisively shewn that such

a mode of expression is certainly possible. We will give one
example.

Suppose that a homogeneous sphere is heated in such a

manner that the temperature is the same at all points equally

distant from the centre ; and let the sphere be placed in a
medium of which the temperature is constant ; then it is

shewn in various treatises on the mathematical theory of

heat that in order to determine the temperature at any
time t of the points of the sphere which are at the distance x
from the centre, we must find a quantity u which satisfies

the following conditions : the equation

du _ ^d^u ^.
dt-^'lb? ^^^

must hold, whatever t may be, for all values of x comprised
between and the radius of the sphere, which we will de-

note by l\ and the equation

S + ^" = (8)

must hold when x = l, whatever t may be. Here c and h are

certain constants. Then the temperature at the time t of the

points of the sphere which are at the distance x from the

centre will be -
.

X

Now we will assume that there is some expression for u
in terms of x and t which does satisfy these conditions ; that

is, we assume that the problem has a solution. We will also

assume that as i* is a function of t it may be expanded in

a series proceeding according to ascending powers of e~^;

this assumption may be in some degree justified by
l^urmann's Theorem ; see Differential Calculus, Chapter ix.
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We assume then that u can be expressed in a series of

the form
w = ^,e-«'^^ + ^,e-«a'« + (0),

where A^, A^, ... are functions of x; and a^, a^, ... are con-
stants : these are now to be determined.

Substitute from (9) in (7) ; then we obtain an equation
which must be true for all values of t, and which leads
therefore- to the set of equations

Thus we get J,=i?,sin [-^+C.), ^,=^,sinp^^+C,),...

. where B^, i?,,.*. C^, (7^, ... are constants which remain to be
determined.

In the present problem we must have (7^, C^, ... zero, in

order that the temperature at the centre of the sphere may
be finite. Therefore

J, = ^,sin^, ^, = J5,sin'^,.. (10).
c c

Substitute from (9) in (8) ; then we obtain an equation
which must be true for all values of ^ : by the aid of (10)

this leads to a. set of equations of the form

acos — + /ic sin— = (11),
c c ^ ^

where a stands for any of the quantities a^, cZg, ...

Puta = c/9, then (11) beeomes

f>
cos pi + h sin pi = (12).

Thus we obtain u = XB sin pxe-''c'^ (13),

where 2 denotes a summation which is to be effected by
giving to p the values which satisfy (12), and to B the values

which correspond to those of p. The connexion between B
and p must now be investigated.

T. 9
r



130 MISCELLANEOUS PROPOSITIONS.

The value of u in terms of x, when t — 0, may be sup-
posed to be given arbitrarily ; denote it by

(f>
(x) : then we

must have

^ [x) = ^B^uipx (14).

Let pj and p^ denote two of the values of p ; and B^ and
B^ the corresponding values of B. Multiply both sides of

(14) by sin p^x^ and integrate from x = to x = l. Then, since

[sin p^x sin p^xdx = ^^^fr"-^> -
^Mp. + P^^

__ — p^sinp^a; cos p^cc+p.^sin p^a;cos p^x

we find by the aid of (12) that I sinp^a? sin p^xdx = 0.
''0

. 1 f^ • 2 7 ^ sinpJcospJ
And / sm^'p.ajaa; = ^ ^ ^

.

Jo 2 2pj

. 2pj / <j){x) sin pjxdx

Thus we get B:=—f^—. . ,~ .

pj* — sm p/ cos pjj

Similarly B^^ B^... may be determined.

Substitute in (13); thus we get

2p sin pxe~ ^"^^"^^
I ^ [x) sin pxdx

w=s M^ - .

pi — sin pi cos pi

Thus the value of u is determined. We obtain indirectly

the following theorem : if ^{x) denotes any function of x,

which satisfies (8) when x=ly but is otherwise arbitrary, then

2p sin px I <^ {x) sin pxdx

4> {x) = S -T-^"—j J
•

^ ^ '
pfc ~ sm pi cos pi

This result was first obtained by Fourier: see his Theorie

Analytique de la Chaleur, page 350 ; and Poisson's Theorie

MatMmatique de la Chaleur, pages 171 and 294.
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CHAPTER XIII.

LAPLACE'S COEFFICIENTS.

165. We have defined Legendre's n^ Coefficient as the

Coefficient of a" in the development of (1 — 2oix + a'^"^ in a
series of ascending powers of a; thus this Coefficient is a
function of x, and we denote it by P^ (x).

Let cos 7 be put for x; then the Coefficient becomes a
function of cos 7 which we denote by P„ (cos 7).

Suppose two points on the surface of a sphere, and let

their positions be determined in the usual manner by two
elements which we may call latitude and longitude; let

^ — ^ be the latitude, and ^ the longitude of one point

;

IT
let -^ — ^' be the latitude, and <j)' the longitude of the other

point ; let 7 be the arc which joins the two points: then by
Spherical Trigonometry

cos 7 = cos ^ cos 6' + sin 6 sin 6' cos (^ — (j>).

Suppose this value of cos 7 substituted in Legendre's
n^ Coefficient ; then it becomes what we call Laplace's n^
Coefficient: we denote it by F„, and we proceed to discuss
the form and the properties of this Coefficient.

It will be observed that F„ is thus a function of four
quantities, namely 6, 6', </>, and <^'; we shall in general re-
gard 6 and (j) as variable, and 6' and </>' as constant, but it

will be found that no difficulty will arise if we have in some
cases to regard 6' and ^' also as variables.

9—2
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The geometrical language about the sphere which we
have introduced is not necessary, for we might have stated

the connexion between 7 and the new variables merely as

an arbitrary choice of notation. But with the aid of the
spherical triangle, which is formed by connecting the two
points and each of them with the pole, a distinctness and
reality are given to the subject which will be found very
advantageous.

166. Throughout the following investigations we shall

use /x for cos^, whenever it may be convenient ; this gives

cZ/z, = — sin 6dd. Similarly we shall use fuf for cos 6' ; this

gives dfu! = — sin 6' dd'.

Thus we have

cos 7 = /Lt/x' + Vl - fju"" Vl - fju"^ cos ((j> - (j>')

= fjLfi + Vi — /A^ Vl — fi^ (cos
(f>

cos (j>' + sin
(f>

sin <}>).

We shall sometimes use ^/^ for ^ — (j)\

167. We shall first establish a. certain differential equa-

tion.

1
Let ff'=

then
dU X —X

dni^ 1

3(:E-a;')^

7 2 yT 72 T'T

Similar expressions hold for -j-^ and -^^ ; and thus by

addition we have

d'U d'U d'U ^
^+57"*-^ = ' ^'^'

Now assume

aj = r sin ^ cos <^, y = r sin ^ sin </)^ r = rcos^;
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then by Differential Calculus, Art. 207, equation (1) trans-

forms to

d*U Id'-U 2 dU cote dt7 1 d'^JJ _
'dP^'^r'He''^ r dr^ r' . dO "^ r" s'm' dcf^'

"
'

this may also be written

d'{Ur)^ d f.. ,^dUl 1 d'U

This differential equation was first given by Laplace, and

may be called Laplace's differential equation.

Let us also assume

x' = r sin d' cos (/>', 1/' = r sin 9' sin ^\ z = r cos ^'

;

then U= T

,

where \ stands for cos ^ cos ^ + sin 6 sin 6' cos (<^ — <^').

Suppose r' greater than r ; we may put U in the form

r
[

r r )

and by expanding we obtain for U the convergent series

U=l + Y,},+ Y,f.+ Y,^^^ (.^).

Substitute this value of U in (2), and equate the coeffi-

cient of r" to zero ; thus

If we suppose r greater than r', we have instead of (3)

and by equating to zero the coefficient of r"*"* we again

obtain (4).
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168. Confining our attention for the present to ^ and
<f>

as the variables, we see from the equation

cos 7 = fip! + Jl — fjL^Jl— fjb'^ (cos
(f)

cos (j) + sin ^ sin (p')

that cos 7 is an expression of the first degree with respect to

these three terms, /n, Jl — /jl^ cos (/>, and Jl — /m^ sin <^. Hence
as F^ (cos 7) is of the n^^ degree in cos 7, it follows that Y^

will be of the n*^ degree in the three terms fi, Jl— fju'' cos <^,

and Jl — fi^ sin <^ ; that is, the aggregate of the exponents of

these three terms in any element of Y^ will not exceed n.

Also, since cos 7 = fifi +Jl — fi^ Jl — ^'^ cos ((/> — ^'), we
see that the powers of cos 7 may be developed in powers of

cos [(\)
— (/)') ; and then these powers may be transformed by

Plane Trigonometry into cosines of multiples of <^ ~ (/>'. In
this way we see that Y^ may be arranged in a series of cosines

of multiples of (/> — <^'. As such a term as cosm (0 — <p') can

arise only from the powers ??i, m + 2, m + 4, . . . of cos (<^ — ^'),

it follows that (l—fj^y must be a factor of the element which

involves cosm((^ — ^');-iind the other factor will be of the

form
A.ti''-^ + Ay-^-' + Ay---' + ...

,

where J.^, A^j A^, ... are independent of jju. We will denote

this by -6,„. Thus Y^ is of the form

^o+ AVl--ycOS'»|r+...+^«(l-/^')^COSm>|r+...

+ ^„(l-//,')^cos%^.

d^Y d^Y
Substitute this value in (4), observing that -1-7^ = -lya";

and equate to zero the coefficient of costw^It; thus

when this is developed it becomes
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('-'''•^i--2("+>>(>-/'')'^-

+ w(7i+l)(l-/.v} = 0;

+K {^(^ + 1) - m' - m] (1 - /x^j^=: 0.

This may be -written

^ {(^ - -"')"'^j + {» - ™) (« + »» + 1) (1 - m')°'-B„ = 0.

Substitute for B^ the series which it represents in this

equation, and equate the coefficient of (1 — ^y*fjJ'~^~'^ to zero;

thus, using^ for ?i —m — 2^, we have

-p{p-l)A^-2[m+ V)jc>A^ +(?*-• m) (w + m + 1)^,

Thus by reduction we get

A - (^ - '^- 2^ + 2)(^ - ^^* - 2^+ 1) A«~
25(2;i-25 + l)

'-'••

Hence we find that

^*-«'*_.. 1

7> -A !/.«-«
(n>m)(n-m~l) .,

^.-^o|/^ 2.(2,1-1) ^

(ti — m) (w — 7?i — 1) (w —m — 2) (n — ?n — 3)
^

2.4.(2?i-l)(2?i-3)

The expression within the brackets may be denoted by
cr (m, w, /a) ; thus the term in Y^ which involves cos m^ is

^(,(1 —fjL'Y'UT {m, Tif fjb) cos m>|r, where A^ is independent of /x.

and yfr.
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But this term must be the same function of fjf that it is

of fjb, because /n and //,' occur symmetncally in Y^ ; so that we

see Aq must contain (1 — /j.'^)
''*

-cr (m, n, /jf) as a factor. Hence
finally the term in Y^ which involves cos m^jr is

C {1 — fi^)^ {1 — fjb^)

^

CT (m, n, jj) OT (m, n, jj,') cos TUyjr,

where G is some numerical factor independent of fju, fi, and
yjr. The value of C must now be found.

I. Suppose n—>m even. Then -in ct (m, n, jj) there is a
term independent of 7*, and therefore a term independent of

fi in "cr (m, n, jx!) ; so that if we put /a = and ji = 0, the

above term becomes C {'cr(m, n, 0)Y cos myjr, that is

p( (n-m) (n-m-l) ...1 V^

^|2.4...(7i-77i)(27i-l)(27i-3)...(7i + m + l)J
^^^^"^^

that is

^1 1.3.5... (2^.-1)
—^

—

r' ^^-

But when jn and ^' -vanish the function to be expanded

becomes (1 — 2a cos ^fr + a'^) ^, and we have to pick out the
term which involves cos myjr in the coefficient of a". It will

be found by Art. 14 that this has the factor

l.S.o,..(n-m-l)l.S.5...(n + m-l)
2.-4 ... (7i—m) 2.4 ... (n + m) '

^, , . ^{1.8.5... (^-m-1) 1.3.5...(7i +m-l)f
that IS 2- ^

i

^^ —
;n—m n+ m

but only half of this is to be taken when m = 0.

_. ^^ ^ {1.3.5... (2M-iy
Thus we f^et 6 = 2 j

^—
,n+m\n—m

but only half of this is to be taken when m = 0.

II. Suppose 71 — m odd. Then in ot (m, n, yit) the lowest

power of fi is the first, and the lowest power of jj! in

CT (m, w, fx) is the first. Hence we find that a part of the term
in F„ which involves cos m-^ has the factor
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f,
A (7i-m)f7i-m~l)...2 )'

^^(2.4...(n-7;i-l)(2;i-l)(27i-3)...{7i +m + 2)J'

that is /7^^^(
3.5... (n~m) 1.3.5... (n + m) ]«

that IS 6/./.
I 1.3.5... (2^_i) }•

Also, if we neglect powers of /a and yl above the first, we
have

{1 - 2a (/i/i' +^\^' Vi^V* cos t) + aT^

= (1 - 2a cos a/t + a')~* + a/*/*' (1 - 2a cos >|r+ a'')"^

;

the second term on the right-hand side

= a/i/*'(l -ae^'A)-! (1 - a^-^^yl

=a/./.'jl+|ae^^+|i|aV'*+ ..j{l+|ae-^+|lJaV2^H...|.

We want from this the coefficient of a"fifi' cos 111-^; it will

be found to be

3.5...(n-m)3.5 ...(n + m)

2.4... (71-m- 1)2.4... (7i + m-l)*

that is
2{^-^-^^"^)^-^-^^ + ^)>'

n—m n+m

but only half of tliis is to be taken when m = 0.

TT f 1^ ^ /^ o {1.3.5...(2n--l)l*
Hence we get as before 6 = 2 j r J

w—m \n +m

but only half of this is to be taken when m = 0.

Thus finally we have

where S denotes a summation with respect to m from to ?i

both inclusive ; and X = 2 {1 . 3 . 5 ... (2n — 1))*, except when
m = 0, and then we must take only half this value.
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Or we may write separately the term wliich corresponds

to m = 0, and thus we have

.. (1.3.5... (2/2 -l)f ._ . ._ „

"
^

I^TS ^^' ^' ^^ "^ ^^' ^' ^^

+ A2, ^

—

,

^—^ zs (m, n, Lb) -cr (m, n, ii ) cos wy,

where S now denotes a summation with respect to m from
1 to 71 both inclusive. It will be observed that the symbol -sr

has the same meaning here as in Art. 97.

169. For examples we may give explicitly the values of

the first three of Laplace's Coefficients.

y;=/l./*' + (l-^')^(l-/x')*cos^^.

^^^l(r^-l) (''"-i) + ^ (^-''')^ {l-M")Vy^' cos,/.

+ |(l-^^(l-MTcos2t,

+^ (1 - /^^)^ (1 - f^^')^ (/^' -
^)

(/^'^ -
I)

COS ^Ir

+^ (1 - /.') (1 - /.'«) /./.' COS 2^ir + ^{l- fl')^ (1 - /i'^)^ cos 3i^.

170. From the value of Y^ given at the end of Art. 168

we have immediately

Y^d<i> = 27r J r-^^ ~\ tzr (0, 71, //,) CT (0, n, fi ).

This result was obtained by Legendre in a very laborious

manner in his earliest researches on the subject; see History

of the Theories of Attraction...kxi. 787.

By Art. 97 the result may also be written

P' YJj> = 27rP„ (cos 6) P„ (cos ey
•^
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CHAPTER XIV.

LAPLACE'S COEFFICIENTS. ADDITIONAL INVESTIGATIONS.

171. In the preceding Chapter we have given all that

is absolutely necessary with respect to the form of Laplace's

Coefficients ; in the present Chapter we shall shew how the

results may be obtained by other modes of investigation,

and shall express some of the formulae in a slightly ditferent

manner. The preceding Chapter was almost independent of

the processes already exhibited in this work ; in the present

Chapter, however, we shall make more use of those processes.

172. The determination of the value of C in Art* 168 is

troublesome from the fact that two cases have to be con-

sidered, namely, that in which ti —m is even and that in

which n — m is odd. Perhaps the following investigation,

which depends on an examination of the highest power of //.

instead of the lowest, may be simpler.

Suppose /Lt' =5
f6 ; then

(7(1 — /A*)
''

(1 — /a'*) * zy {rriy n, /jl) 'uj- {m, n, /jf) cos m^f*

becomes • C (l—fju^)"' (or (m, w, fi)Y cos my{r.

The highest power of fju in this expression is fi^, and its

coefficient is G (— 1)*" cos myjr.

Also when
fj^'
=

fj'
the function which is to be expanded

becomes

{1 - 2a 0* + (1 - fx') cos ylr] + a'^K

that is {1 - 2 jc [cos >|r + /a' (1 - cos f)] + a*}~^.
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When this is expanded in powers of a the coeflScient of a"

will involve ——-—ijiA:! ^/^'^"(l — cos^^)"; and we must

pick out from this the coefficient of cosonyjr, when (1— cosi/r)'*

is put in the form of cosines of multiples of ^jr.

But (1 - cos fY = 2" sin'" |^ = 2"
|

^ ~^ \

"

1 (-ir^
= ^ 2 —

—

,1 _ " 2 cos myjr,n^m \n-\-fn,

where X denotes a summation with respect to m from to w

both inclusive ; except that we must take only half of the

value when m = 0.

Thus 0^2 ^-3. 5--(2n-l)
^

2/1

n+m[n 2'

^, {1.3.5... (2^-l)P
\n-^m In+m *

but only half this value"must be taken when m = 0.

This agrees with Art. 168.

173. In Art. 97 we have seen that

\n-m d'^PM
(m, n, fi)

also nW ^n\n

1.3...(27i-l) dfi'

1 d'^ifju'-ir

dfjC"

Thus

{1 . 3 . 5 . . . (2n - l)Y^^L.J^tO_!^ ^

^

) ^ (^^ ^^ ')

•^ ^ '•' \n+m n—m
n—m

2'-^" \n\n

where

n+m (i-yc^r (!-/.'
'^^ d''^'"(i-f^T d^'^ii-fi'y

dfM' dfi'

= (1 - /x') ' (1 - fjuy
' -^ -
n+rndfArdfi""'

M= d'

12"[rilVyuV/
(l-^T(l-/«)".
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Thus from Art. 168 we have

« »»|n—m d'^M

where 2 denotes a summation with respect to m from 1 to n,

both inclusive.

174. It will be observed that in Arts. 168 and 173 there

is nothing to restrict the values of /x and fi! to be unity or

less than unity, though it may be often convenient to suppose

that /JL= cos 6 and fi = cos 6'. If we make these suppositions

we may write the result of Art. 173 explicitly thus:^

^^ , , 2 sin 6 sin ^ cos ^Jr d*M
>« = -^^ + n{n + i) dji:di7

2.sm''0sm^e'cos2ylr d'M
^

(n - 1) 71 (n + 1) (n 4- 2) c^/xV/i,'"

2sin"^sin? ^^cosn>j^ d'^'M
'^

\2n dfiTdfi""'

175. We will now give another mode of obtaining the
expression for Laplace's Coefficients.

We begin by shewing, as in. the beginning of Art. 168,

tliat Y^ must be of the form, Xu,^ cos myjr, where S denotes

summation with respect to m from to n inclusive, and u^ is

some functix)n of /x and fju which is to be determined.

Substitute this expression for Y^ in the differential equa-
d^ Y d^Y

tion (4) of Art. 167, observing that -ji%^--rrt'y then

equating to zero the coefficient of cos m-^/r, we get
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This differential equation coincides with (9) of Art. 102,

and its solution is of the form

m

where D stands for -r-, and C^ and C^ are constants with

respect to fi, though they may involve fi.

But in the present case we must have C^ = 0, because w
^^

is necessarily finite when yu. = 1, whereas i>"'Q„ {/jl) is then
infinite, as we know from the form of Q^ {/jl) ; see Art. 37.

Hence u„= C,(j.'-iyD"PJf.).

But as u^ involves fi and fi' symmetrically, we see in the

same manner that

«»=c.(/a'=-i)Vp„w>

where D now stands for -p-, , and C^ is constant with respect

to fi. Hence it follows that

where h^ is a constant independent both of /jl and /jl'.

And Y^ = 2w^ cos mylr,

where t*„^ has the value just expressed, and 2) denotes a sum-
mation with respect to m from to w, both inclusive.

By the use of the notation of Art. 97 we may also express

the result thus:

Y^ = tK {H'^
— 1) '

(^""^ - 1) * OT {m, n, fi) vr (m, n, fjl) cos rrff,

where h^ is also a constant, and is connected with h^ by the

relation

tl.3.5...(2n-l)j
''-"^•"'
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It remains to determine the value of the constant h^ in

the last expression for F„. This may be done precisely as

the value of G was found in Art. 172, for the h^ of the pre-

sent Article is equal to the G of Art. 172 multiplied into

Thus we find

(I.3.5. (2n-l)|'

\n—m \n+m ^ '

Xn—vth
and hence &^ = 2-=- (- 1)'

n+m

but only half these values must be taken when m = 0.

176. There is still another method of obtaining the ex-
pression for Y^ which deserves notice; this does not use
Laplace's differential equation to which we have had recourse

in the investigations already given.

177. If A, B, and G are real quantities, and A positive,

and also -4*— J?*— G^ positive, then

/
" dt 2'ir

A + Bcost+ (7 sin t
~

aJ(A* -B^-G*)

For assume B = pcos 7, and C— psiny; thus

p*^ dt ^ p' dt n^-y dr

Jo A-\-Bcost+Gsmt J^ A-tp cos it-y)~ J .y 2+pc(COST

Now the last integral is independent of 7, for its differ-

ential coefficient with respect to 7 is zero, by the Integral
Calculus, Chapter ix.: thus the value of the integral is the
same as if 7 were zero.

Therefore the expression

=
], A+pcosr = ^{A^-p^)'^y^^^'

27r

^'{A'-B'^C}'
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178. Now P,^ (z) is the coefficient of a" in the expansion

of (1 — 2cLZ + a^)""-', and we obtain F„ when for z we put

/x/^' - V;;?^=a Vyi?^ cos (^ -- f).

Thus we get 1 - 2a^ + a''

= {fjL- afi'Y - {
V(/^' - 1) cos ^ - a VG^" - 1) cos f j''

- y(jM' - 1) sin ^.- a v(/^" - 1) sin ^T>
say =^^-i5^-0l

Suppose />t positive and greater than /n', so that fi — fl/x'

is positive when a is small eaough ; then, by Art. 177,

27r

^{l-2^z + a:')

•2'^ dtr2ir

COS (^ - V(/^' - 1) - a {/.' + cos (^^'- VO'^- 1)}
*

Expand the expression under the integral sign in a series

of ascending powers of a ; thus we get

1 pMM'-+cos('^'-QV(A"-ir ,. (,s .

-""-zttJ. {^+cos(</>-ov(/^''-i)r'*' ^
^-

Now we know by Art.. 149 that

{/.'+cos(f-ov(/^''-i)r

and that

hence r„ =^ ajb, + ^ afi^ cos (^ - ^') + 9 ^2^2 cos 2 (^ - <^') + . .

.

+ 2^"^"^^^^*^'^""^')*

Moreover, by Arts. 149 and- 150,

"m on
2 l_2n (/.''-!)«
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I
\

n-m
\

n +m 2'|2n (/x''- 1)-^

\n\n ^ ^ 2
\

n — m \n-\-m ^ » '
^/

80 that, except when m = 0,

n—m \n-\-m
(l-^iy{l-^,'^' ^{m,n, ii)^{m, n, /).

and aA='—
"(i

|"-^'«' (0. ». m) '^ (0, «, /*').

Strictly speaking the result is obtained on the suppo-
sition that fx^ — 1 and /i'^ — 1 are positive ; but it is obvious
from the form of the result that it holds universally.

179. It will be seen that the definite integral obtained
for Y^ in (1) includes both the definite integrals given as

expressions for Legendre's n^^ Coefficient in Art. 49.

For if we put /* = 1, we get

1 r2''

=
2^J„

(M'+COSTV{/*"-l)r'?T

= - [' [^ + cos T slipT' - 1)]" dr.

And if we put fju = 1, we get

p ( ^=-L r ^»^^ 2ir], {/i + cos(^-OVO^*-l)P

27rio {/*+cosTV(/^*-l)r*

^ 1 r* dr

7rJo{/i + cosTV(At'-l)r*'

T. 10
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180. The process of Art. 178 involves the equality of

two definite integrals which may also be established in

another way.

We know that

let z = ^^^- V(^'-l) V«- 1) cos (<^ - <^J ; then in Art. 178,

we obtain another form for F^ (z), namely

p , ^ _ i_ p- K+COs(c/>-.y)V(^,--l)r , ,3.

^''^^^~27r], {^ + cos(^-2/)V(^'-l)r'^^ ^
^'

We propose then to establish in a direct manner the

equality of the right-hand members of (2) and (3).

Put y — = % ; thus the right-hand member of (3)

becomes

'Iiri.

^-^ {^,+cos(x+(^-j>,)v(^,^-i)r .

If we vary ^ in the limits of this definite integral it

does not affect the result ; and so the definite integral

=/,

2" \x, +cos{x+<t>-4>,) v(^,'- i]r ,

1:

{^ + cos;^V(^'-l)r'

Put /3 for (^j — <^ ; and thus we get

^- ^+cos(:v:-ff)V(a;,^-ly

{^-[-cosxv(^'-i)r'
^'

Separate this definite integral into two parts, one between
the limits and tt, and the other between the limits ir and
Stt ; and in the second part change p^ into Stt —

;j^ : thus
we get

X, + cos (x-^) V(^,^-l)}"+K+ cos (x+^) V(^,^- 1)1" ,

{^4-cosx\/(«'--l)r'''
'^'

Now transform this by a process like that of Art. 49

;

assume

/,
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X COH ylr — \/ (x^ — 1)
COS Y = ^—

;

~ ~
;^ a;-cosi|r v(ar' — Ij

'

1,this leads to

__
sin>|r

^
"~ a; -cos yjrfj(s^ — l)

'

ic + cos % VC*^* — 1) =

dx =

X — COS -^ \/(^" — 1)
*

X — COS -^ Vl^'^ "" 1)
'

Thus the definite integral becomes

^(A-Bc0S^jr-^C&m^|ryd^|r+^{A--Bc0S^fr+Csm^|tydy}r,
•' ^0

where A = xx^^ — cos ^ *J{x'^ — 1) VK^ - 1)^

B==x^ V(a;' - 1) - a; VK' - 1) cosA
. (7=V«~l)sin/3.

Hence we see that A^ — B^—C^ = l, so that

^-f C'=A'-l = z'-l;

and therefore we may assume

5 = iv/(2* — 1) cos Gf, and (7=V('2^— 1) siii «•

The definite integral thus

= r {z-^{z'-l) cos {'>jr^a)Ydylr+ [' {^j-V(s«-l) cos (^H-a))-J^
^0 •'

= ^(2 - V(^^ - 1) COS (A|r - a)r cZ^/r

= r'{z - v(2' - 1) cos fY ^f•

Jo

Thus the definite integral is reduced to the form in (2)

;

and this is what was to be done,

10—2
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181. In the expressions which have been given for

Laplace's Coefficients we have made much use of the function

introduced in Art. 97 and denoted by the symbol ot. Hence
the various forms which are obtained for this function in

Arts. 103...106 become of practical interest; and two others

to which we now proceed may deserve notice.

182. Suppose n — m even. Then it is obvious from the

formula at the beginning of Art. 106 that ct (m, n, cos 0) might
be expressed in a series of powers of sin 6 ; this series might
be deduced from that formula, but an independent investiga-

tion will be simpler.

m
Let 7/= {x^—l)^'UT (m, n,x)\ then y satisfies the differen-

tial equation (9) of Art 102. Put x = cosO ; then this differ-

ential equation becomes

g+ cot4^+{„(n + l)-^-^}, = (4).

We know then that this equation has a solution of the form

y = c, sin"^ -t c, sin""'^ + c^ sin'^"'^ + ...

Substitute this value of y in (4) and let

n-]-m = 2pj n — m = 2(7:

we shall obtain after reduction

(p-r + l)(a-r+ l)

[ 2r-l\ -'

By direct comparison of the value of y with that of

-ST (m, 71, cos &) at the beginning of Art. 106 we see that

m n-m. n

c.=(-ir(-ir =(-1)';

therefore y = (- 1)^ fsin" 6 t^f——. sin»-»^

,
p(p-l)<7(<7-l)

L2(p+<r-|)(p-f.-|)

sin""* (9-..,
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It will be seen that y is S3rmmetrical in terms of p and g ;

this might have been anticipated because y is unchanged in

value when the sign of m is changed; see Art. 100, Divide

the expression for y by (—1)'' sin"*^; thus we get

^ (m, n, cos 6) = (- 1)" jsin'' 6
^'"^

sin'""' e

+

183. Suppose n —m odd. Then we see that y will take
the form

cos d (c, sin""' d + c^ sin"-' d + c^ sin""' ^ + . . .}.

The differential equation (4) may be expressed thus

:

Substitute the value of y\ then it will be found that the

term which involves c^ is

c, [(71 - 2r - 1)'^ (sin ef-"^- [n - 2r) {n-2r + 1) (sin (9)"-^J cos(9

+ 0, i^n (n + 1)-
y,J^

(sin ^/"^ cos 0.

Hence we see that

c4/i(?i + l)-(w-2r)(?i-2r+l)l + c,_J(7i-2r + l7-m']=a

Put n + ??i = 2/3 + 1, and ?i — in = 2cr + 1 ; then

_ (p-r + l)((7--r+l)
,

r^p + c + l 2-j

Also by direct comparison we get c^, = (— 1) "

.
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Hence finally we shall have

liT (to, n, cos 6) = (- 1)' cos 6 fsin^" 6 P'"
^.

sin^'"' 6

1 l-l'^ + '^+l)
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CHAPTER XV.

LAPLACE S FUNCTIONS.

184. We have already used the differential equation

which Laplace's Coefficients satisfy; see equation (4) of

Art. 167. We proceed to some further consideration of this

equation.

185. We shall first shew how it may be deduced from

the more simple equation of Legendre's Coefficients. We
known by Art. 54 that Pn{z) satisfies the differential equa-

tion

Assume

2 = a cos ^ + 6 sin cos (^ + c sin ^ sin <^,

where a, h, and c are constants.

Then

dz
-7^=^ — a sin 6 -\-h COS 6 cos (j) + c cos 6 sin </>,

dz
-1-7 = (— & sin (^ + c cos <^) sin 6,

d^z—Ta
= — (6 cos <^ + c sin </>) sin 0,

df
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Hence we find that

where

_ fd^y 1 (dz

~\dd) ^'sin^

= (— a sin ^ + 6 cos ^ cos <^ + c cos 6 sin </>)*

+ (— 6 sin ^ + c cos 0)^
and

r^ d^z ^ ^dz 1 d^z

dff^ d6 sm ^ 059^

Thus we see that A + z^ = a^ + h'^ + c^

so that A = a' + ¥ + d'-z';

and JB= — 2z. Hence ii a^ + b^ + c^ = 1, we have

and therefore the last expression is zero.

186. Any function which satisfies the partial differential

equation (4) of Art. 167 may be called a Laplace's Function
of the n^^ order. The variables it will be observed are and

<^, and fjb = cos 6. Thus Laplace's Coefficients are particular

cases of Laplace's Functions; for the Coefficients all satisfy

the equation (4) of Art. 167. We shall continue to use Y^

to denote Laplace's Coefficient of the n^^ order, and shall use

other symbols as X^ and Z^^ to denote a Laplace's Function

of the n)'^ order.

187. Let m and n be different positive integers. Let
X^ be a Laplace's Function of the order m, and Z^ a Laplace's
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Function of the order n ; then under certain conditions which
will appear in the course of the investigation we shall have

For by the dififerential equation of Laplace's Functions

we have

.(. + l)Z. =-|((l-.-)f-}-jl^^";

and therefore .1 / X„ Z^ dfi defy

By integrating by parts twice we find that

therefore

Again, by integrating by parts twice we have

therefore
/^

%^ZJ<l>-j^ -^ ^^^.f,,

assuming that X^ and —y^ have the same values respectively

when </) = and when <j> = Stt, and making a similar assump-

tion with respect to Z^^ and —j^ .
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Hence 1 I X^^Z^d/judcj)
J -1^0

=-=(^/;,/:[ii"-'"'f}^i^-f]--*'*

by the differential equation of Laplace's Functions.

Hence since m and n are supposed different

/:,/

27r

188. In addition to the conditions which are expressly

stated in the preceding Article, we have of course one which
is always implied in applications of the Integral Calculus,

namely that the functions which occur are to remain finite

throughout the range of the integration ; these functions

here are X^ and Z^ and their first and second differential

coefficients with respect to /jl and <p.

189. In future whenever we speak of Laplace's Functions
we shall always suppose them to be limited by the conditions

stated -in Arts. 187 and 188.

190.. The differential equation of Laplace's Functions

has been integrated in a symbolical form by Mr Hargreave

;

and after him by Professor Donkin and Professor Boole ; see

Boole's Differential Equations, Chapter xvii. The result

though very interesting theoretically has not hitherto been
used in practical applications.

191. Take the general expression for Y^ which is given
in Art. 168 ; consider it as a function of and (/>, putting

<t>
—

(l>'
for 'yjr. This expression then may be said to consist of

2n + l terms, namely one corresponding to w = 0, and two
corresponding to every other value of in not greater than 7i :

the two are of the form
m m

Km(l—/jJ^y^ (m, n, fi) cos m^, and JD„,(1— //,'') *'ct(7w, n, fx) sin m<f>,

where K^ and Z,„ are independent of /* and ^.
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Each of the 2n + 1 terms will separately satisfy the dif-

ferential equation of Laplace's Functions; for the whole

expression satisfies that equation, and thus the terms which
involve sin mcf) and cos in<t> must separately vanish.

192. We shall now shew that any Laplace's Function

which is a rational integral function of cos 6, sin 6 cos <^,

and sin 6 sin
(f>,

consisting of a finite number of terms, is of

the form

^^ (0, «, cos ^) + 2 KC^ + i?„SJ,

where (7,,^ stands for sin*" 6 ct [m, n, cos 6) cos 771^, and S^
stands for sin*" 6 ct (m, w, cos 6) sin m(f>, and A^ and B^^ denote
arbitrary constants ; also S denotes a summation with respect

to m from 1 to n, both inclusive. It will be seen that the

conditions which we here impose on our Laplace's Function
include those of Art. 189, but are more restrictive still.

To demonstrate this we observe that any rational integral

function of cos 6, sin 6 cos </>, and sin 6 sin <^, may be put in

the form S iu^ cos m6 + v„. sin mch), where u^ and v„ are

functions of 6 only, and 2 denotes summation with respect

to m. Substitute in the differential equation of Laplace's

Functions ; then it will be found that u^^ and v^ must both

be values of
J"
which satisfy the differential equation

g.cot.g + {„(„ + l)-4^J,= 0.

Put X for cos 6 ; then this differential equation coincides

with equation (9) of Art. 102, and therefore the solution is

where H^ and H^ are arbitrary constants.

But since f is in this case to be rational and integral

and of a finite number of terms, we must have H^ = 0.

Thus t;=[x^-rf HjrP,^{x)\ and this vanishes if m
is greater than n. And as ct [m, n, x) is equal to the product

of a constant into D'^P^ (x) we have finally

^=(x'-iy'K'UT(m,n,x),

where ^is a constant. This establishes the proposition.
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193. The expression given at the beginning of the

preceding Article denotes Laplace's Function of the ?z"' order

under the restrictive conditions there enunciated. We may-

give various forms to this expression by means of the various

developments which have been obtained for ot (m, rij x)

or for (ic'— 1)^ ct (m, n, x).

For example, let 7/^ denote the series which is between
the brackets in the value of 7/ of Art. 182 ; and let z^- denote
the series which can be obtained from y^- by changing p +<t
into p + cr + 1 in denominators; then it will be found that

the Laplace's Function

= 2ya [K cos (p~-a)^ + Ca- sin {p-a)<f)}

+ XZa- COS 6 [13a. COS (p — Or) <^ + 7^ siu (p - O") (j)].

Here b^r, Ca-, /3a, ja- are arbitrary constants, and X de-

notes summation with respect to cr. In the first part of the
expression p is to be determined by the equation p + (T = n;
and the summation is to be from to the greatest integer

71/

in - , both inclusive. In the second part of the expression

p is to be determined by the equation p + (T = n — 1; and the

n — 1
summation is to be from to the greatest integer in —^r—

,

both inclusive.

194. We shall now find the value of I XnZ^dfjudc^,

where X^ and Z^ are two Laplace's Functions of the order n
limited by the respective conditions of Art. 192. We may take

X„ = 2 sin""^ trr (m, n, cos 6) (A^ cos m(f> + B^ sin m<^),

Zn = 2 sm"'6'GT {in, n, cos 0) (
G^ cos m^ ^H^ sin m<\))f

where A , J5„,, G ,, and H denote constants ; and 2 denotes

summation with respect to m from to n, both inclusive.

Multiply, and integrate with respect to <^ from to 27r

;

thus

'^X,ZJ<\> = ttS sin~^ [^ (m, n, cos ^)1' {A,fi,, + B„flJ,

except when m = 0, and then for ir we must put 27r.

/:
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The next step then is to find the value of

[ Biii''^ 6 {i!T(m,n, cos e)YdfL,

that is of [ (1 - xY [vT (m, n, x)Y dx.

By Art. 97 the expression to be evaluated is

and this by equation (2) of Art. ^^

= (-1) |g^L
J

^i)"^(a:'-iri)-'"(^'-l)Vx.

By successive integration by parts we have

Hence we obtain

r • 2»n/ir / a^^^n
2 |n-m|7i+m 2/1. (2n-2)...2

j_^sm-^(^(m,n,cos^)r^^=-L=^-^^2^-\^^^^^^^^

and thus finally I I X^Z^dfjid<f>

2nf2n-2)...2^,
, ^ ^ j /2 . 7? 77 >= -'^ ^(2n + i)...3

S tz!!^ t±!!^ (^.^. + ^«A.)

9_,

but for the case of m= we must double the term.
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Thus we may express the result in the following manner

:

[^ r2'r 27rX„Zdad6 = the product of tt: 7—r;

—

:^^—tt =-^77

into {2 \n \nA,G, + X\n-m [^i +m (A^fi^ + B,^Hj\,

where X now denotes a summation with respect to m from
1 to n, both inclusive.

195. As a particular case of the preceding Article sup-

pose the function X^ to be the Coefficient Y^. By Art. 168

^^ =
2.{1.3.5...(2n-l)f . ^ ., . ^,.—!= r^- '— sm 8 'UT (m, n, cos 6 ) cos m6\n—m \n-\-m

and B^ may be obtained from this by changing cos m</)' into

&mm^': but when w = we must take half these values.

Hence we have I I T^^Z^^df^dcj)
J -i-j

= -—'-— 2 sin'^'^'OT {in, n, cos 6') [G^ cos m^' + H^ sin m<^')
An "T" J-

2/1 + 1

where Z^ is what Z^ becomes when for Q and ^ we put ^'

and ^ respectively.

• This is a very important result.

196. Hence, for example, we have

because F' = l.
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CHAPTER XVI.

EXPANSION OF FUNCTIONS.

197. In the course of Laplace's researches on Attractions

and the Figure of the Earth he obtained incidentally the

remarkable result that any function of the spherical co-

ordinates /4 and (j> might be expressed in a series of Laplace's

Functions. The demonstration however was not very satis-

factory and other investigations have been given since.

198. We shall first shew that a function can be ex-

pressed in only one way in terms of Laplace's Functions.

Let F{/j., </>) denote a given function, and if possible suppose

that

F(j.,<f>) = X\ + X,-\-X,+ ,

and also = Z^ + Z.^ -{- Z^ + ;

where X^ and Z^ denote Laplace's Functions of the order m.
Then by subtraction

Multiply by Y^, and perform the double integration with

respect to //- and <j>. Then, by Art. 187,

0=r rF„(X„-Z„)d,.#;
J -iJ

therefore, by Art. 195,

where X„' denotes the value of X^ -when we put 6' for 6 and

(f)'
for (p ; and a similar meaning belongs to Z^.

Thus since X^ — Z^ whatever & and ^ may be, it is

obvious that X^ is identical with Z^
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199. In the simple case where a given function is a

rational integral function of cos 6, sin 6 cos </>, and sin 6 sin <^,

there is no difficulty in shewing that the function can be
expressed in a series of Laplace's Functions.

Any constant quantity may be considered as a Laplace's

Function of the order zero ; since it will satisfy the differ-

ential equation of Laplace's Functions when we put n — 0.

Next take any rational integral function of cos 6, sin 6 cos </>,

and sin^ sin^ of t]iQ first degree. This must be of the form

^ J cos ^+ ^2 ^^^ ^ ^^^ <^ + ^s s^^ ^ sin ^ + A^y

where A^^ A^, A^, and A^ are constants.

Here A^ is a Laplace's Function of the order zero as we
have just seen ; and ^^cos^, ^gSin^cos^, A^sinO sin^ are

all Laplace's Functions of the first order, as we may infer

from the known form of Y^ , or as we may verify by actual sub-

stitution in the differential equation of Laplace's Functions.

Next take a rational integral function of the second

degfree. This must be of the form

B^ cos'''(9 + B^ sm'd cos^ + B^ sin' 6 sin'^

-}- B^ cos 6 sin ^ cos <^ + B^ cos 6 sin ^ sin^ + B^ sin^ cos cj) sin (j),

omitting terms of the first order, for these as we have already

seen can be exhibited as Laplace's Functions.

We may express these six terms thus

C, [cos'5> -^ + G^ sm'e cos2^ + C,

\--^B^ sin'^ 6 sin2^ + B^ cos 6 sin ^ cos + B^ cos 6 sin 6 sin ^,

whei (7j, Og, C3 are all constant, as well as B^, B^, B^.

Here 0^ will be a Laplace's Function of the order zero,

and the other terms will be Laplace's Functions of the second

order, as may be seen in the manner already indicated.

But without giving any more examples let us proceed to

the general investigation.
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A rational integral function of cos 6, sin 6 cos
<f>,

and
sin ^ sin <^ will be an assemblage of terms of the form
(cos Oy (sin 6 cos <f>y (sin 6 sin

(f>Y
multiplied into constants.

Now cos*<^ sin'*</> can be expressed as a series of cosines

of multiples of <^, or of sines of multiples of </>, according

as r is even or odd. Thus (sin 6 cos <f>Y (sin 6 sin (\>y may be
expressed as the product of (sin ^)^**' into a series of sines of

multiples of </> or cosines of multiples of <^. When this is

done for all the terms in the given rational integral function,

we shall find that a term cosA;<^ or ^uik<f> is multiplied by a
power of sin 6^ of which the index is A;, or k increased by
some even number.

Hence if / denote any rational integral function, we can

express it thus

f=F^ + F^ sin^ cos<^ + i^a sin''^ cos2<^ + i^3 sin'^ cos3<^ + ...

+ G^ sin^ sin</) + G^ sin'^ sin2(^ + G^sm^O sin3(/) + ...,

where F^, F^, F^y.,.G^, G^... denote rational integral functions

of cos 6.

Now any one of these, say F^, may be divided into two
parts, one an even function of cos^, and the other an odd
function of cos^. Let F^-u„-\-v^, where w,„ denotes the

even function, and v„ the odd function.

Suppose then

w,^= a„ cos2^^ + a^ cos2^'2|9 4. ^^ cos^^-^^ + ...,

where a^, a^, ^4, ... are constants.

By Art. 97 we see that

^m ~~ ^0^ i^> ^ + ^^> cos^) = k cos^'^6 + ...,

that is u^ — a^fffimy m + 2\, cos^) is of two dimensions lo'' c

than u^ as to powers of cos 6.

Proceeding in this way we see that we can express u^ thus:

u^^ = JjjCT (m, m, cos 6) + ^j^ct [m, m + 2, cos 6)

+ ^^13- (w, m + 4, cos ^ -f ...,

where h^,!)^, h^y .., are constants.
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Similarly we may shew that

v^ = hj^sT (m, m + 1, cos 0) + h^ (m, m + 3, cos ^) + . . .,

where 6^, 63, ... are constants.

Thus F^ = h^Tz (m, m, cos 0) + h^'sr {rriy m + 1, cos 6)

+ &2CT (m, m + 2, cos ^) + . ..

.

In like manner G^ may be expressed.

Then by Art. 191 we see that / takes the form of a set

of Laplace's Functions ; the highest order being determined

by the greatest value of n which occurs in the expressions of

which the type is tzr (m, 71, cos 6).

200. But we wish to shew that any function of 6 and <^

can be expressed in a series of Laplace's Functions ; that is,

we no longer restrict ourselves to the case of a rational

integral function of cos ^, sin 6 cos (/>, and sin 6 sin (/>. We
shall give a process which is in substance frequently repeated

in the writings of Poisson: see for instance his TMorie
Mathematique de la Chaleur,

We have by definition

-^^j-|^^^ = l+P,(.)« + P,(.)a' + (1).

Differentiate with respect to a ; thus

,,
'!""

,,i
= p. (^) + 2P. {x) a+ 3P. (^) a« + ...(2).

Multiply (2) by 2a, and add to (1) ; thus

—lr^ = l + 3P,(^)a + 5P,(^)a^+...
(1 — zxc -\- oC)

+ (2/i + l)P^(a;)a-+ (3).

Now substitute for a; the value

fifi + Vl-/*' Vr^V* cos (^ - i>')l



EXPANSION OF FUNCTIONS. 1G3

and integrate both sides between the limits — 1 and 1 for

fju and and Itt for </>. For brevity we shall retain the
symbol x on the left-hand side ; but. shall change P^ (x) to
Y^ on the right-hand side. Thus

J -Jo (1- 22x-hd')^

= r r{l + 3y;a + 5r,a« + ... + (2n+l) Yy+...}dfxdcp.
J -iJ

Now by the property of Laplace's Coefficients given in

Art. 187 all the terms on the right-hand side disappear
except the first, and thus we get

/•i ri' 1 — a*

I I i dadd) = 4t7r.

J -Jo (l-2aa; + aT

201. Thus we see that the value of the preceding de-
finite integral is independent of a: this very remarkable
result may be confirmed by another method.

We know, by Art. 165, that x may be considered to

represent the cosine of the arc drawn on the surface of a
sphere from a certain fixed point of which the coordinates

are 0' and eft' to a certain variable point of which the co-

ordinates are 6 and </>. Denote the former point by P', and
the latter by P. Let 7 denote the arc FF', and

;)^ the angle
between F'F and a fixed arc through P'. Then we may in

fact transform the double integral by expressing it in terms
of the new variables 7 and %. The element of spherical

surface dfid(l) will be equivalent to sinydydx, that is to

— d cos7(Z;;^, that is to — dxdx- Thus we get

JJo (l-2aa;+a*)^ ^ "^^i-Jo (l-2cw; + a^^
^

J-i(l-22x-hay

Now
f
— ^^

-. = "^

.,

J(l-2ax-\-ay a(l-2*i; + a7
11—2
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therefore

J-i(1^2oix + a.T a|l-a 1+aJ 1-a'(l-2aa; +

Thus as before

JJo n-^(l~2acc + a')'

cZyLtcZ^ = 47r.

202. Put f for —
3, where

(l-2oia; + a:'y

X = fMfM+ Vl-yLfc' Vl-/^" COS (<^ - ^').

/•I r27r

Then we have shewn that / / ^dfjudcp = 47r. This result is

true however near a may be to unity. But if the difference

between unity and a is infinitesimal, it is obvious that f is

also infinitesimal except when the denominator of it is very

small: this can happen only when x is indefinitely near to

unity, that is when 6 — 0' and <j> — (j>' are both infinitesimal.

If we consider f to represent an ordinate which corre-

sponds to the two variables /n and
(f>,

then / / ^dfidcj) will

represent a certain volume ; and we see that when 1 — a is

infinitesimal, the elements of this volume are insensible ex-

cept close to the point at which 6 = 6' and </> = ^'. At this

point the ordinate becomes very great. The volume however
is always finite, namely 47r,

203. Let F (6, cp) denote any function of 6 and (j> which
is always finite between the limits of fi and <p with which we
are concerned. By Art. 200 we have

=1' pFiO, ^)(l+3 r.a+5 r.a'+...+(2n+l) Y.i'+...] d,id<f,.
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Denote the left-hand member by X, tlien we may express

the result thus, X=^ 17^+ aU^ + o^U^-\' .,., where

J -tJ

This relation being always true when a is any proper

fraction, we may assume that it holds even up to the limit

when a is unity. The limit of the right-hand member is

obtained by putting unity for a. We must investigate the

limit of the left-hand member.

Let f have the same meaning as in Art. 202. Since f
ultimately vanishes, except when /m — fi and <fi

— 4> are

infinitesimal, we may change the limits of the integral

I

I
F{6,

(f>)
^dfjidcf) to any others which include the values

fi = fjb and (^ =
(f>'.

Thus the limits may he fi — ^ and fi +fi
for fjLf where ff is infinitesimal, and </>' — 7 and </>' + 7 lor (p,

where 7 is infinitesimal.

Hence we reduce the integral to

Next we observe, that since f is always positive, we have

Fid,<f>)^dfldct>=f ^d/JLdcP,
J it'-pJ <f>'-y JiL-pJ^'-y

where / is some value which F(0,<f>) takes between the
limits of the integrations: see Integral Calculus, Art. 40.

And since these limits are ultimately indefinitely close to fx!

and
<f>

respectively, we have ultimately /= F [0', cf)'). Also

JJ^dfid<f} between the limits = 47r. Thus finally

r r{l + SY,+ 5Y, + „.+ (2n+ l)Y^ + ...]F{0,(l>)dfMd<f,.

This shews that F(6\(t)') can be expressed in a series of
Laplace's Functions; for Y^ is a Laplace's Function of fi

- and
(f)'

of the order w, and when it is integrated with respect
to /M and ^ it is still such. It is often convenient to express
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the result thus

4^F{e',4>')=u,+ u,+ u,+ ...,^

204. By interchanging the symbols 6 and 6', and also <^

and ^', we get

47rF{e,<f>) =

it is unnecessary to make any change in the general symbol
Y^, for that involves and 6' symmetrically, and also ^ and
(j)' symmetrically.

Thus F{6, </)) is here exhibited in the form of a series of

Laplace's Functions ; the Function of the n^^ order being

205. In Art. 203 suppose that F{d',4>) is itself a
Laplace s Function of the n^ order ; then by Art. 187 all the
terms in the series disappear except one, and we have

4^F{6\ <(,) = (2»+ l)f rY„F{e, </,) diMd<f, ;

this agrees with the last result of Art. 195.

206. Let the definite integral

be denoted by Q for brevity; then we have shewn in Art. 203
that the value of Q when a is unity is F(d'y(f>): Poisson

himself puts some of the reasoning by which this is obtained

in a more formal manner, but not I think more decisively.

The result holds so long as 6' lies between and tt, and ^'

between and 27r; but at these limits exceptions occur

"which we proceed to notice.
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207. Suppose
<f>
= 0. There are now two values of </>

which in conjunction with 6 — 6' make the denominator of

f vanish, namely ^ = and </> = 27r.

We have

=j
'

j'Fid, <!>) KdiMd4,+f fjF{e, 4,) Kd,id4,,

and we will consider separately the two expressions on the

light-hand side.

Take I I F{6,<^)^d^d<f), Since fvanishes throughout the
J-\JO

range of integration, except when
<f>
and 6 — 6' are very small,

we may reduce this to I
j F{6,<f>) l^dfid(f>, where ^ and 7

are infinitesimal. In the next place we may take this to be
r/+^ ry

ultimately equal to F{6', 0) I 1 ^d/jbdcj). Then without

causing any sensible difference we may change this to

\
F{0\ 0) [ r^d/jidcj) ; and this is equal to 27rF(6\ 0) ; for if

J -iJ

we return to the process of Art. 201, and suppose </>' = 0, we

shall obtain half the result there given, now that the limits

of
(f)

are and tt instead of and 27r. Thus finally

['
[V((9, 4>) ^d^dcp = 27rF{6\ 0).

In the same manner it may be shewn that

j' rF{6, </)) ^dfid^ = 27rF(6^, 27r).

Hence, when </>' = 0, we have

(2 = 1(2^(^.0) +i?'(^,2^)}.

208. Suppose </>' = 27r. Then, adopting the same method
as in the preceding Article, we shall arrive at the same
result. Thus the value of Q, when </>' = or <^' = 27r, is the

half-sum of the values of i^(6^, </>') for these values of (j).
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209. Suppose ^'=0. Then the denominator of f vanishes
when ^ = 0, whatever </> may be. Here 1 — 2aa? + c^ reduces
to 1 — 2a cos Q + a^, and f vanishes in the limit except when
6 vanishes. Thus

/•I /•2t \ — (^
F{6, 6) —^diidd) reduces tO

JJo ^ (l-2acos(9 + a^)^ ^

and I
^^ ^—^-—3 = 2, as is shewn in Art. 201.

^-i(l-2acos6> + ay

. Thus finally Q = ^\ F {0, (j)) defy.

Thus, when 6' — 0, we may say that Q is the mean of the
values of F{0, ^).

210. Suppose ^' = TT. Then adopting the same method
as in the preceding Article, we shall find that

SO we may say that Q is the mean of the values of F{it, ^).

211. There is still one more remark to make respecting

the value of Q. The process which we have given does not
require that the function F(6f </>) should have the same /orm
throughout the range of integration ; the result will remain
unaffected, unless the change of form occurs at the value

6 — 0' or at the value <^ = <^' . Suppose, for instance, that

for the values of 6 less than 6' we have F(0,<j)) equal to

f {0, (j)), and that for the values of 6 greater than 6' we have
F {6y<j>) equal to

;^ {6, (f>) ; then it will easily^ be found on
examination that

A similar remark holds if a change of form in F(Oj ^)
occurs when ^ = <^'.
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212. It will be observed that the general term of the
series in Art. 204 has the factor 2;i + 1, and thus there may
be room to suspect that the terms ultimately become very
great. It may however be shewn that the terms do in

general become indefinitely small when n is indefinitely

gi*eat.

For consider [ rY^F {6'
,
^') dfi' dct>'

;

by reason of the differential equation which Laplace*s Coeffi-

cients satisfy, given in Art. 167, this definite integral is

equal to the product of =^ into

By a double integration by parts, as in Art. 187, this may
be transformed so as to become equal to the product of

W (71+ 1)

assuming that F{ffy ^') has the same value when
<f>
= 27r as

when <^' = ; and assuming the same thing with respect

Now the greatest value of Y^ is unity; hence, \iF(d^,(f))

^ and its first and second differential coefficients with respect

to 6' and </>' are always finite, and if moreover , , ^

' vanishes when /a' = — 1 or =1, then the definite integral in

the last expression is finite, whatever n may be. If then we
denote by A; a value which it never surpasses, the term is

Tc

numericallv less than —. z— . Hence the general term in
n (n +1) ^

Art. 204 is numerically less than ^—;—^J ^^^ is there-
•^ 47r7l(7l+l)

fore indefinitely small when n is indefinitely great.
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213. It will be observed that the preceding investigation

does not shew that the series obtained in Art. 204 is c(m-

vergenty but only that the terms are ultimately indefinitely

small.

In Art. 203 we assumed with Poisson as obvious a pro-

position which may be stated thus : the limit of S(27i+l)a"w„
is equal to S (2n + l)u^ when the latter is a convergent series.

For a formal demonstration we may refer to Abel's (Euvres

Completes, Vol. I. pages 69 and 70.

214. The proposition that a given function of 6 and <^

may be expressed in a series of Laplace's Functions is one of

the utmost importance in the higher parts of mathematical
physics. The demonstration of Poisson, though very in-

structive, cannot be considered perfectly conclusive, and we
shall give two other investigations in the subsequent Chapters;

we will here briefly notice a third, which was published by
M. Ossian Bonnet in Liouville's Journal de Maihematiques,

To this Professor Heine, on his page 266, refers without

any remark, and M. Resal, on page 169 of his Traite elemen-

taire de Mecanique Celeste, pronounces it a Vahri de toute ob-

jection.

M. Bonnet alludes to Poisson's demonstration, and says

it assumes that the given function and its differential co-

efficients with respect to and <^ are continuous, whereas
these conditions may not be fulfilled in very simple cases.

M. Bonnet considers that the only entirely rigorous demon-
stration hitherto given is one by Lejeune Dirichlet ; he pro-

poses his own as more direct than this. M. Bonnet's process

is very laborious, and it seems to me unsound, as resting on
the unsatisfactory investigation of the value of Legendre's

Function for a very high order, to which I have alluded in

Art. 92.
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CHAPTER XYII.

OTHER INVESTIGATIONS OF THE EXPANSION OF FUNCTIONS.

215. The following investigation is due to M. Darboux,
and is given in Bertrand's Calcul Integral, pages 544}... 546.

It is required to find the sum of the first n terms of the

series of which the r^ term is

2r + l TT^'
['

f'
r, F{e\ f) sin &dffd<i> ;

47r ,,,^

and in fact to shew that when n increases indefinitely the

limit of the sum is F{6,
(f)).

The variables 6' and
<f>'

may be regarded as polar co-

ordinates determining the position of a point on the surface

of a sphere of radius unity. Change the coordinates, and
take the point {6, (j>) as the new pole ; let 6^ and </)j be the

new coordinates which determine the position of (^, </>') : then

cos ^j = cos ^ cos ^ + sin ^ sin ff cos (<^ — <^').

Also the element of surface sin & d& d^ may be replaced

by sin Q^ dd^ d<\>^. Hence the above r"* term becomes

2r + l f» r^jr

47r Jo Jo

where jF(^,, <^,) denotes what jF'(^, </>') becomes when thei

coordinates are changed, and P^ (cos ^,) is L^endre's n*^

Coefficient, being equivalent to Laplace's n^^ Coefficient F,.
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Integrate with respect to <^j, and put

F(,e„ f^) d,j>,= 27rf {cos 0J;
Jo

SO that /{cos 6^) may be considered as the mean value of

F {6^ , ^J round a small circle distant 6^ from the pole.

Thus [" r P„ (cos e^ F {6^, <l>,)
sin 6^ dO, d^^

= 27r r P„ (cos (9J/(cos e^) sin d^ dO^ .

Put COS 6^ for a; ; then the right-hand member becomes

Stt 1 P„ {x)f{x) dx : thus the proposed series reduces to

\ ffix)
{P, {x) + ZP, {x) + 5P,{x)+...+ {2» + 1) P„ (x)] dx.

By means of equation (11) of Art. 59, this

Now by integration by parts, we have

-i|/'(x){P,(x) + P„„(^))cia,.

At the limit — 1 we have

J'.(^)+^«,(^) = (-i)"+(-ir=o;

at the limit 1 we have P„ (x) + P.„ (a;) = 1 + 1 = 2. Thus
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Wlien n is very large we know that P^ (x) and P^^j {x)

are insensible, except when x is indefinitely close to — 1 or 1

;

thus the integral I /' (a?) (P. (a?) + P„+i (a:)} c^ may be con-

sidered to vanish ultimately : at least this will be the case if

f'{x) is always finite.

1 C-'^

And/(1) is the value of^ / F(6^, (^J d^^ when co%6=l^

that is when ^ =0 ; so that/(l) is the mean value of F{9^, (f)^

round an infinitesimal circle close to the pole, that is in fact

the value of F{6^, <^J at the pole, that is P(^, ^).

Thus the required result is established.

216. In the process of M. Darboux, suppose that we
integrate between and 1, where /3 is very near to unity

;

we get the same value as if we integrate between — 1 and 1.

For -r- {P„ (x) + P„+i ips)] is very large when x is close to

unity, but is insensible in other cases. Thus

where f is between 1 and ^,

=/(!) 1-P» (1) + P«« (1)1 = 2/(1) = 2/(1) ultimately.

217. Although the process of M. Darboux is simple in

appearance, it may be doubted whether it ought to be
accepted as satisfactory. We cannot regard P„ (x) + P^^^ (x)

as finite when- x is unity and as vanishing when x ditFers

insensibly from unity, without treating -j- {P„ (x) +P,+i (a?)}

as infinite when x is unity ; and we cannot depend on the
results of integration when the expression to be integrated

becomes infinite within the range of integration. The pro-
cess of M. Darboux has the advantage of leading very
naturally to the special results of Arts. 207... 211.
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218. We ought not to overlook the fact that Poisson's

treatment may be put in a form which involves the same
kind of difficulty as we have pointed out in that of M. Dar-
boux.

In Art. 203 we have a result which may be written thus

;

where CT stands for (2w + !)["/ Fifi, (j>) T^dcf) dfi,

Jo J -I (l-2aic + a>
Then we find the limiting value when a = 1, and thus

obtain

Now there is nothing that compels us to modify the form

of the right-hand member of the last result, and express it

thus

:

{r„+3r.+ 5r,+...+(2n+i)r,+...}j'(^,^)#cZ/i.
J J -I

If the quantity under the integral sign were always finite,

this modification would present no difficulty ; but the fact is

that the expression

is of a very peculiar kind ; it is always zero except when
6 = 0' and ^ = (f>\

and then it is infinite. Hence the proposed

modification cannot be efi*ected without risk of error, and as

there is no necessity for it in Poisson's method, we shall do

well to avoid it.

219. The main parts of Poisson's process have been called

Poissons Theorem, and presented in the following form.

^ 6^ ^
Let V ^^ used as an abbreviation for -y-:^ + -^-j + -^j 5 ^^^

r=V(ic* + 2/'' + «*), and/ = V(«" + 2/" +0> and a=^ .
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Let a; = r cos ^, y = r sin ^ cos^, z =r 8in0 sin ^,

a;' = r'cos^', y'=r'6in^'cos <^', 2;'= r'sin^sin<^',

p — C03 6 cos ^ + sin ^ sin 0' cos (<^ — <^').

•^-J. i. (l-2:p + a')l

and suppose a less than unity.

Then V satisfies the equation VF=0, and reduces to

47rjP(^, <^) whena = l.

To establish the first part of this statement, put

1 1
<r =

V(a;- xy + (3^
- y'f + (z - 2^7 rV(l - 2a^ + a«)

'

We know by Art. 167 that <r satisfies the equation tj<t= 0.

And ff = i, {l + aP, + a*P, + a'P,+ ...),

where P^ is put for shortness instead of P^ (|)).

Since then a- satisfies v^" = ^> whatever a may be, it fol-

lows that cc"*P^ will satisfy the same condition.

Now aj = i {aP, + 2a^P,+ 3a^P, + ...l;

hence a -?- satisfies the condition : therefore o- + 2a -r- also

satisfies it, that is -i-. Hence —j-

will satisfy the condition ; and therefore Fwill, that is

vr=o.

This establishes the first part of the statement; the

second part is established in Art. 203.

See Cours de Physique MaMmatiqiie by E, Mathieu,

pages 175... 177.
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220. Suppose in the general theorem of Art. 203 that

the given function does not involve 0' ; we may write the

result thus,

where CT =?!g^ j"'J'V„F(^')c?/#'.

But by Art. 170 we have

2jr

r„#' = 27rP„ (cos 6) P„ (cos 6'\

^"^ "^ P„ (cos 6) f P^ (cos 6') F{e')diM\

Thus if we suppose F{6) =f(cos 6), and change the

notation by putting x for cos 6, and ic' for cos 6', we get

f{x) = t^-^+^P„{x)fF^{x')f{x')dx'.

This is the theorem already imperfectly treated in

Chapter xi. ; it is here established, for the case in which x
is less than unity ; that is to say, the truth of it is made to

rest on the same assumptions as the investigation of Art. 203.

221. The method of Dirichlet, as we saw in Art. 214, is

commended by Bonnet ; it is also emphatically praised by
Heine : see page 266 of his work. Sidler too holds the same
opinion : see page 56 of his work. Accordingly, swayed by
the judgment of these eminent mathematicians, we shall re-

produce it. But as similar principles have been employed to

establish the truth of the well-known developments of func-

tions in sines and cosines of multiple angles, we shall treat

this simpler question in Chapter XVIII., and then proceed in

Chapter xix. to the investigation with which we are more
immediately concerned.
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CHAPTER XVIII.

EXPANSION OF A FUNCTION IN SINES AND COSINES OF
MULTIPLE ANGLES.

222. We have already treated this subject in Chapter xiiL

of the Integral Calculus^ where we have reproduced investiga-

tions due to Lagrange and Poisson respectively.

Let f{,v) denote any function of x ; then one of the

theorems thus obtained may be stated in the following form

:

J

2
where ^n = ~ ^^^ ^^1 /(O ^^^ ntdt.

The process we are about to give treats the problem in a
reverse order ; instead of obtaining this development we shall

verify it by seeking the value of the sum of the infinite

series „ ^^o + ^i + ^^2 +— ^^^ process is taken substantially

from Schlomilch's Compendium der Hoheren Analysis.

223. Let <l>(t) be a function of t which is continuous

between the limits a and 6 of ^; we propose to find the limit

when n is indefinitely increased of ^ (t) sin ntdt.
J a

We have

jcl>{t) smntdt =-^p^+~U\t) cosntdt;

rb 1
therefore I ^ {t) sin ntdt = -(</> (a) cos na — cf) {h) cos nh]

J a W

1 r* /+ -
<l>

{t) cosntdt'

T. 12
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Now let us assume that <!> (t) retains the same sign from

t = ato t = h, so that ^(^) continually increases or continually

diminishes from t = a to t = h; then by the Integral Calculus,

Art. 40, we have

I (j)' {t) cos nt dt = cos nr j
<^' (t) dt = cos nr {<^ (6) - ^ (a) }

,

where t is some value of t lying between a and 6. Thus

fJ a

b 1
(j>(t) sin ntdt = -

{<j> (a) cos na — <j) {h) cos 7i5}
76

+ ^{«^(6)-'^(«)}.

Hence when ti increases indefinitely we have

i (p{t)smntdt = 0.
Ja

224. If (j)(t) does not increase or decrease continually

through the whole interval from a to h, we may subdivide

this interval into smaller intervals, throughout each of which
this condition holds. For example, suppose a, c, e, h in

ascending order of magnitude, and suppose that (j) (t) con-

tinually increases as t increases from a to c, then continually

decreases as t increases from c to e, and then again con-

tinually increases as t increases from e to b. By Art. 223 the

integral j(f>(t) sinntdt taken through each of these intervals

vanishes, and therefore as before I cf) (t) sin ntdt = 0. This
J a

assumes, however, that the number of these subordinate inter-

vals is finite; if it be infinite we have as a result an infinite

number of infinitesimals, which is not necessarily zero. For
example, we must not put <j) {t) = sin nt.

225. We have supposed that ^(t) is a continuous function

of t ; this involves two conditions, namely, that ^ (t) is always

finite, and that cj) (t) varies infinitesimally when t varies in-

finitesimally. The latter condition, however, is unnecessary

;

that is, (j) {t) may change its form any finite number of times

within the range. Suppose for instance that c is intermediate
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between a and b, and that ^ (t) passes from one finite value to a
different finite value when t passes through the value c. Then
divide the interval from a to b into two intervals, one from
a to c, and the other from c to b. By Art. 223 the integral

f<l>(t) Hin ntdt vanishes through each of these intervals, and

therefore as before / (f)(t) sin ntdt = 0.
J a

226. Now let 6 {t)
^f^^hllM.

. Suppose that a = 0,

and that b is less than tt. Assume that f(x + 1) is finite for

all values of t from to b. Then by Arts. 223...225 zero

is the value when n is infinite of I
— J ^''^ ^ sin ntdt.

Jo sint

227. It may appear that our process requires that </> {t)

should be finite when t = 0; and by evaluating
<f)

(t), when
^ = 0, we see that this is secured if /' (x) is finite. But it is

not necessary to impose this condition, because although the
denominator of <j){t) vanishes when t = 0, yet sinnt also

vanishes; and thus we escape the presence of an infinite

element in the definite integral.

228. It follows from Art. 226 that when n is infinite

the Umit of C?^/ (x +t)dt = the limit of f{x) P?^^ ^^.
J Q sm t J Q sm t

We proceed to find the limit of I A—- dt.^
Jo sin«

We have (''^'dt = j^^'^dt + (' '^^ dt,

J^ smt J^ smt J^irsm^

Now the second integral on the right-hand side vanishes

by Art. 223, for ——- is always finite within the range of the

integration. Thus we have only to find the value of the first

integral on the right-hand side.

12—2
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Hitherto we have spoken of n becoming infinite, but it is

sufficient for our purpose to consider n as having a special

kind of infinite value, namely, an infinite odd positive

integral value. Suppose that n = 2m+l. Then we have

^?^= 1 + 2 [cos 2t + coB4^f+... + cos 2mt} :

sm ^
^ J

'

therefore {^'^^^Jt ^I'rr.
J Q smt 2

Thus ^TT is the limit required. Hence finally if h is

between and tt the limit when n is an infinite odd positive

integer of j -^^V(^ + dt is ^ 7rf{x).

229. It will be found on examination that if c be any
constant, positive or negative, we may put f(x + ct) instead

of f{x + t)] and thus we see that the limit when n is infinite

j 'sinT-^^'^'^^^^
^^ '' -^-^f^"^)'

230. The result of Art. 228 holds so long as h is less

than TT, but not when h = 'iT ) for then the function denoted
by (/) {t) in Art. 226 becomes infinite when t = h. We will

consider this case.

/,

sin nt
J,, ,

,. ,,

fix + 1) at
sm t

Put in the second integral on the right-hand side t='JT-t'\

then remembering that tj is an odd integer, we have

p sin nt j^. ,
. , /•^''sin wi' .. ,

.. .

,

jj^^ihTi-^^'^
+

*)
*
= j, ^nrf /('^+ '^ - <

)
^«

;

and in the definite integral we may change ^ to ^.
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Thus r ^1^^/(0:4-0^
Jo sine -^ ^ ^

and by Art. 229 the limit of the right-hand member when n

is infinite is ^Trfix) +-^'7rf(x + 7r),

231. We now proceed to find the value of the following

expression

;

rL + cos {t + x)+cos2(t + x)+ cos ^{t + x) + ...[/(O dt

Suppose that the series within the brackets instead of

being infinite extends only to the term cos m{t + x) inclusive:

then the expression, by Plane THgonometry, Art. 804,

=£

. 2m + 1 . , .

sm - — {t + x)

I
/«*

2 sin 2(^ + 0:;

and we have to find the limit to which this tends when m
increases indefinitely. Put -^{t-^x) = t', and 2m + 1 = ?i

;

then the integral becomes —.

—

j-f{2£—x)dt'\ and this
^ ia?

Sin t

=
J, -sine

•^(2*-'^)'^*-].
lm?-/(2*-^)<^«-

If ^ = "the second integral on the right-hand side

IT
vanishes, and the first is equal to ^f{0) by Art. 229.

If X is between and tt the two integrals are equal by
Art. 229 ; and thus the result is zero.

If a; = TT the expression reduces to I . , f(2^—'ir) df;



182 EXPANSION OF A FUNCTION IN SINES

put tJ ^iT — t, and this becomes / —^~rf{'^ — 2^ ^^j which

is equal to ^/(tt).

232. Again consider in like manner the following ex-

pression :

I 1^ + cos (i - a;) + COS 2 (^ - a;) + cos 3 (^ - a;) + . . .

[/ (t) dt.

This reduces in the manner already shewn to

J-iaj sm^' -^ ^ ^ '

where n is to be made infinite ; and this

=
j, ^i^^^^^ +^^^^ +i_..^in7-/(^*

+^)^^'

or changing the form of the second term it

/•^('^^>sin w^ , ,_^
, N ^, , r*'' sin nt ,. ^.. ,

If ^ = the second integral vanishes, and the first is

equal to |/(0) by Art. 229.

TT
If X is between and tt each integral is equal to -^fix)

by Art. 229 ; and thus the result is irf{x).

If a; = 7r the first integral vanishes, and the second is

TT
equal to ^/{ir).

233. From the results obtained in Arts. 231 and 232,

we deduce by addition and subtraction the two following, in

which S denotes a summation with respect to positive

integral values ofi from one to infinity:
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- I f{t)dt'^-X cosix I COS itf{t) dt is equal to f{x) for

all values of x between and tt, both inclusive

;

- S sin ta; sin ii/{0 dt is equal to /(a?) for all values of x
TT Jo
between and tt, both exclusive.

234. The formulae just established coincide with what
we obtain when we put Z = tt in equations (3) and (4) of

Art. 309 of the Integral Calculus. We may establish these

equations (3) and (4) in the same way as we have just

established the more simple cases ; or we may deduce these

equations (3) and (4) by putting -j- for <, and ^ for a,

in the more simple cases.

235. We have in the preceding investigations expressly

stated that the function denoted by/(< + ic) is not to become
infinite within the range of integration ; this condition may
however be to some extent relaxed, as we shall now shew.

. 2m+l

,

sm—2"^^
Put S for =

; then we have shewn in Art. 231

sin^^

that when m is made infinite Sfit) dt = 7r/(0). We add
Jo

now that this formula will hold even '^ f{t) become infinite

within the range of the integration, provided that \f[t)dt

remains infinitesimal when taken between limits which are

indefinitely close but include the value of t which makes
fit) infinite.

Let T be the value of t which makes f{t) infinite, and
let e and t] be infinitesimals. Divide the interval from to tt

into three, the first from to t — 6, the second from t — e

to T + 77, and the third from t+t; to tt. Then the value

of iS/{t) dt for the second interval vanishes by our sup-
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position; we shall shew that the value for the first interval

is 7rf{0), and that the value for the third interval is zero.

Let
'x^

(t) denote a function which coincides with f{t)
when t is between and r — e, and is zero when t is between
T — e and tt.

Then, by Art. 281, we have rSx (0 ^^ = '^X i^)> ^^^^ ^^

^

"8f{t)dt = ^f(Si).
-J

Again, let % {t) now denote a function which is zero when
/ is between and r + rj, and coincides with /(^) when t

is between t + tj and tt.

Then, by Art. 281, we have T >S % (^) (7i = tt^ (0) = 0,

that is
[''

Bfit) dt = 0.

286. The result obtained in Art. 223 on which the

subsequent investigations mainly depend may also be esta-

blished in another manner.

Suppose that /S = a + -—
, so that / sin nt dt = 0.

^ J a

Let c be the least value of (ft (t) between the limits a and
y8, and assume ^ (^) = c + w. Then

I

{t) sin ntdt= I (c + u) sin nt dt= I u sin nt dt
J a J a J a

Jjet p be the greatest value of w between the limits t= a

and t = fi, then I u sin nt dt cannot be so great as I p dt,

that is asp (jS — a),

In this way we can shew by dividing the interval h— a
into smaller portions, that when b — a is a multiple of

— the value of / cj) {t) sin nt dt cannot be so great as
n J a

p(h — a), where p is the extreme difference that can exist

between the greatest and the least values of </> {t) comprised
between one subordinate pair of limits, as a and ^.
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But when n is made indefinitely great, the difference

between a and yS becomes indefinitely small ; and hence

(j) (t) cannot experience an appreciable change in the interval

between a and /3; so that^ ultimately vanishes.

The process though not extremely rigid throws some
light on the theorem ; it shews that what is essential in

<f)
{t)

is that there should be only an infinitesimal change cor-

responding to an infinitesimal change in t Hence if n
should occur in

<f)
(t) the theorem may cease to be applicable;

this happens in the case already noticed in Art. 224, in which

(f)
(t) = sin nt

As in Art. 225 we may extend our conclusion to the case

in which the form of </> (t) changes any finite number of times

within the range of integration.
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CHAPTER XIX.

dieichlet's investigation.

237. Let F(d\<j)') denote any function of 6' and ^'

which remains finite throughout the range of integration

;

and let

then it is required to find the value of the infinite series

238. We begin with a particular case, from which we
shall be able to deduce the general result required. "We

suppose that 6 which occurs in Y^ is zero. Then Y^ becomes
a function of 6' only, and we have with the notation of

Art. 13,

F„ = P„(cos^').

Then we may put

Here ^r— FiO'y 6') d6' will be a function of 6' only, and

for shortness we will denote it by/(^'); so that f{6') may be

described as the mean value of F{6', <^') taken round a small

circle at the distance 6' from the pole.

Thus U,= ^^fmPAoose')df.'.

To avoid accents we shall use t instead of ^, so that

U^= ^^rf{t)PM^t)Bmtdt.
^ Jo
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239. We shall now seek the value of the sum of the first

n terms of the infinite series ; that is, the sum of

and this we shall separate into two parts.

Let T, =y7(0 {Po + P. +A + ... + PJ sin tdt.

and T^ = rf(t) {P, + 2P, + 3P, + . . . + wPJ sin tdt
;

Jo

where P^ is now put for shortness instead of P, (cos t) : then
our proposed series is equal to T^-\- T^,

24?0. Consider first T^, By Art. 50 we have

9 rt
cos ^z cos rzdz 2 sin ^z cos rzdz

P^(cos0 = - j^^^2cos«-2cosO"^'n^i<V(2cos^-2cos^) '

but only half of the expression on the right-hand side is to

be taken when r= 0.

Hence we find that 27r2T

8 cos ^zdz ^_ 8 sin ^zdz

L Uo V(2 cos^- 2 cosO "^i^ 7(2^^^r^^2"^^J-^^^)^'''*'^'

where S stands for 1 + 2 cos ^ + 2 cos 22; + . . . + 2 cos nz.

By Plane Trigonometry, Art. 304, we know that

. 2n + l
sin—z,

— z

8=
Bin^z

and so this value may be substituted for 8,

241. We shall now change the order of the two integra-

tions involved in the expression for 27r7'j.
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Let a be any constant, and u any function of a; and y ;

then from simple geometrical considerations, or from the

theory explained in the Integral Calculus, Chapter xi., we
have

udy dx I \ udx dy.

By applying this formula to the present case we obtain

i. Uv(2

Sco^^zdz

cos 2 — ^ cos t)

f(t)smtdi

~Jo L-^^ aJ(2cosz -2 cost) J

Jo Uz V(2coss-2cos^)JV(2 coss — 2 cos ^) I
2

Jo Ut v(^

Ssin ~ z dz

/^(2cost — 2 cos 2)].
f{t) sin tdt

Ssm^zf{t) sin tdi

f/st ^ o N 1
'Si sin ^zdz,

V (2 cos it — 2 cos 2;) I
2

io L-'o V(2cos^- 2cos0)

-/o L-'o V(2 COS it -2 cos 2)

J

Thus 2.r, = f LsL r /(pBin^^^

2 Jo V(2 cos ^ — 2 cos 2)

J

+ sin Sdz.

242. The expression here enclosed within brackets is a
function of z only, and we will denote it by x ip) ^^^ short-

ness,
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Now we have shewn in Art. 231 that the limit of
1 fir X
- 'x^{z) Sdz when n is indefinitely increased is sXW;
and without using the preceding Chapter the same result

will follow from any method of expanding a function in a
series of cosines of multiple angles ; for such a method gives

% (^) = 9 ^0 + ^1 ^^^ ^ + ^2 cos 2<2; + 5g cos 32 + . .
.

,

2 f'^

where 5 =- y{t)Qosmtdt,

and so when s = we have

X(0) = |&o+^ + «', + &.+ -

Thus ultimately T, =
| ^(0), that is

2'. = |/7(«)cosi«A

243. The result just obtained depends on the assumption
that x{^) is finite throughout the range of the integration.

It is easil}' shewn that this condition is satisfied by examining
separately the two terms in %(2).

For we assume that f(f) is finite through the range of

the integration with respect to t ; therefore by the Integral

Calculus, Art. 40,

f(t) sin tdt .f . f ^YnidJtr- f{t)smtdt p
JW(2Cos2-2cosO"'^^ '^J.V(2 Cos 2 — 2 cos <) -^ ^ j z \/(2 COS 2 — 2 cos ^)

'

where t is some value of t between z and tt.

And I —-^r — = ^(2 cos 2 — 2 cos tt), which
jz \/(2cos2-2cos^J ^^ '*

is finite.

In the same manner we may shew that the other term in

X iz) is finite.
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244. We now consider the series which we denoted by
i; in Art. 239. We have by Art. 50

^ ^
sm - 2; sm nz dz ^ cos - z sm nz dz

2 ^t —2 2 r^

V(2coss— 2cosQ TT j^ V(2cos ^ — 2 COS 2;)

*

Hence we find that irT^ —

rirrrf -S'sm-zdz S' cos -zdz -,

io IK \/(2cosz-2cost)'^Jt ^{2cost-2cosz)y^^^^^''^'^^'

where S' stands for 2 (sin 2; + 2 sin 2^; + 3 sin 3^ + . . . + ti sin nz)
;

we see that 8' =—r- •

as

245. Next we change the order of the two integrations

involved in the expression for irT^. Proceeding as in Arts. 241
and 242 we arrive at the result

where ^{z) stands for

. 1 /•'^ f (t) sin tdt 1 p f(t)8mtdt

2 ], V(2cos5;-2cos0 2 j,V(2cose-2cos^)
*

246. The function f [z) is finite throughout the range of

integration, as we see by the method of Art. 243. It will

be necessary however for our purpose to shew something
more, namely that the function is continuous, so that it

experiences only an infinitesimal change when z does. To
shew this we examine separately the two terms of which

^ (z) consists ; take for example the second term, and it will

be seen that the first term may be treated in a similar way.

We have then in fact to shew that

^ f(t) sin tdt f ^ f(t) sin

V2cosi-2cos(« + 5') •'0 n/2cos^-2cos<s;Jo J2cost—2cos(z-\-t) Jo J2cost-2cosz
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•^+^ f (t) sin tdt
This expression is equal to I .

•^ ^
=

J z a/2 cos t —

4J z

2cos(« + ?)

io ls/2 COS ^ — 2 COS 2? ^2 cos i — 2 cos (z + f)

j

and we will take these two integrals separately.

Let g denote the numerically greatest value of f {t)

between the values z and 2j + ? of the variable ; then the

former integral is numerically less than

•^+f sin tdt

z A/2cost — 2cos (2 + f)

*

But /, ^ -
, , y. =-J^ cos < - 2 cos (« + ?);

J J2 cost— 2 cos (a + ?)
\ o/ >

thus the former integral is less than g V2 cos z — 2 cos {z + ?)>

and therefore vanishes with f.

Next we treat the latter integral. Let g now denote

the numerically greatest value oi f(t) between the values

and z of the variable ; then the integral is numerically less

than

^0 lv2cosi-2cos5 v2cos«-2cos (^ + C)J

that is less than

(7
{V2-2COSS - V2 - 2 cos {z + ?) + V2 cos 2 - 2 cos (^ + ?)},

which vanishes with f.

247. We shall require immediately the values of f (0),

f (tt), and ?'(^)j ^^^7 ^^7 ^^ conveniently determined now.

It is obvious that f (0) and f (tt) are both zero.

We proceed then to investigate the value of ^\0),

For shortness, put f (2^) = — r sin ^z + scos^z,

_ [' /(t) sin tdt , __ r^ f{t) sin tdt
so tbat r-

j^ V(2cos;5-2cosO *"io V(2cosi-2cos^)
*
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and therefore f ' (0) = — 7t + -r

;

^ ' 2 az

where on the right-hand side we are to put for z. This

assumes that -p is not infinite when z = 0, an assumption

which will be justified immediately.

ds
Now the value of -r- when jz is zero is the limit when

az

.^, . 1 p f (t) sin tdt ,,. ,

z IS zero oi the expression - -^———
t: r. We know

2 J V(2 cos ^ — 2 cos z)

that this expression =*^—^ I -— ;

—

, where t is
^ J V(2 cos ^ — 2 cos Z)

some value of t between and z. And

/.

sin^cZ^ o . 1= 2 Sm ;r z.

^ V(2 co^^ — 2cos2) 2 '

2/ (t) sin - ^

so that the expression =—^—— , and the limit of it

when z = is/(0).

In a similar manner we can shew that -7- is finite when
dz

2? s= ; and we shall not require its precise value.

Thus finally f (0) =/(0) -
|
|7(i) cos

1
1 dt.

248. Now return to the value of T^. We have

Integrate by parts; thus T^ = - \ ^' {z)Sdz.

Therefore when n is indefinitely increased, the limit of

Jjj is f ' (0), the value of which was found in Art. 247.



dirichlet's investigation. 193

249. Hence T^^T^=f{(S).

Thus the limit of T, + T, is ^ [
'
i^(0, (/>') d<\>'.

This will coincide with Fifi, (p') when F(0,
<f>')

is inde-

pendent of </)'. In other cases it will be what we may call

the mean value of F (0, <^').

250. Thus we have established the required result in

the particular case contemplated in Art. 238, namely that

in which 6 is zero.

We may state in words what has been shewn.

Suppose a spherical surface, let F{6' ,
(f)')

denote the

density at any point, or rather at any element of surface,

say at S. Then the integral in U^ involves the product

of the element of the surface, into the density, into a certain

function Y^ of the arc which joins the element of surface

to a fixed point in the sphere. In the case in which 6 =
let us call that fixed point A ; then we see that 2 U^^ is

equal to the mean density round the fixed point.

Now if 6 be not =0, let us call the fixed point C.

Then Y^ becomes the same function of the arc CS as it

was in the former case of the arc AS. Hence the value

of S U^ will now be the mean density at C ; that is it will be

F {6, 4>). Thus the problem proposed in Art. 237 is solved.

T. 13
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CHAPTER XX.

MISCELLANEOUS THEOREMS.

251. To shew that —— ' —t „,——7-^—
\n + m dx dx^

= i)-^» (?)+^^i£^ -D"«^» (I)

4. (1 — a; ) \l — x^) ^„,+^ p ,y.

^2..4.(2m + 2)(2m + 4)
^n^?-^^"-

-where f stands- for a:^^^ and D for -7^

.

To prove this we observe that Laplace's n^^ Coefficient

is P^ [z), where z = icar^ + Jl—x^ Jl— x^^ cos \/r. Put if for

Jl — x^ Jl — x^ cos -i/r, then P,, [z) becomes a function of

^ + ^, say i^(f + j ^^^ *l^is ^J Taylor's Theorem is equal to

Pick out the coefficient of cosm-ylr from this, and equate

it to the (- l)- &.„ (1 - =.')'' (1 - x^y^M ^^,^^ of

Art. 175, that is by the same Article to

n-\-m ^ ^ ^ ^' dx'" dx

Now the first term !n the series above given for F[^-\-t)

f-
which involves cos w>|r is .— D^F^^), and this will give
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for the coeflScient of cos my{r the expression

The next term which involves coamytt is ,
- ^ Z)'"**^(f).

and this will give for coefficient the expression

1
TO+a tn+3 »„ I O

(1 - xO ^
-

(1 -O " JJ ^"'^^ (f).m + 2' ^ ' '' 2"

Next we get

^(i-.«)-(i-..')-^ll^;±^i>-i'(f).

And so on. Tlius we obtain the required result.

1252.
In the formula of the preceding Article put x^ = 0;

lien we get an expression for —-j^— arranged m powers

tf 1 — x^. There will be two cases.

I. Suppose n — m even. Then — , ",^ contains a

term which does not vanish when a?, = ; and a similar

remark holds with respect to i/'P„ (^), i)'"-''P„ (f)....

Thus we get

|MH-m dx'" '^l,''A\{m^\y^ ^

"^
|:i.:i\(//t + l)(m + 2)

'^ ^

v{p -_2) (^~4)(^ + l)(y + 3)(y+5) __

[3.2\(77H-1} (m + 2)(m + 3) ^ ^
+ ...

where /? stands for w — m and qior n + m,

II. Suppose n — m odd. After the operations denoted
ill the precediog Article have been performed divide by x^,

and then put x^ = 0. Tlius we get

13—2
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— I

.^~^"—T"« = ^^^ where

"*"

|2.2\(m + l)(?/H-2) ^ ^

(j9-l)(p-3)(i^-5)fa+2)(y + 4)(^ + 6)
"^

|_3.2\(m + l)(m + 2)(7?i + 3) ^ ^

+ ...

253. The theorem for the expansion of a function in

terms of Legendre's Coefficients may be enunciated thus

•^ {x)=t^P^ {x)j P^(x') 4, {x')dx',

where S denotes summation with respect to n from to oo

.

In Art. 220 we have deduced this as a particular case
of the expansion of a function of two variables in terms of
Laplace's Functions. We will now give another investi-

gation.

Let f stand for xx. We know by Art. 251 that

{i-xy{i-xyd^p^{S)

Now we know by Art. 200 that

:E (2n + 1) P^ (f) = the limit when a = 1 of ^ ~ ""'

(l-2af+ a^)«'

hence X {2n+l)^^^^^^—^ ^1^ = the limit when

a - 1 ot
^, —J -——_ = the limit when

g-l of
^^-•^')(1-^'') 3.5a'^(l-a0

^' (l-2af+a'0r



MISCELLANEOUS THEOREMS. 197

In like manner 2 (2n + 1) ^^^^r^'^j^- = the

limit when a=l of -^ ^-^~ '-

; —z-^^x^'2^4' (l-2af+a«)V

In this way we can transform 2 (2n+l) P^{x) P^ (a;'), and
patting a = 1 in the limit we see that the expression will

vanish provided the following series is convergent

:

3.5 3.5.7.9 , 3.5.7.9.11.13 3

1+ ,^,
r+

2'»,4'« "^ + 2". 4*. 6* "^ + •••

. ^ , . (l-a:»)(l-a;'*) ,, , . ^ (1-a;'^) (1-a:'^)
where t stands for -y-— ' ]'-7-^J > that is for . // vxa •

The application of the usual rule shews that the series is

convergent so long as — , ^ ^.^
—- is numerically less than

unity. This will be the case provided x and x' are unequal

and both less than unity.

Hence we see that 2 ^^-^.— P„ (x) P„ (a?') is indefinitely

small for every value within the range of integration, except

when X =x) what the value is then we shall not require to

know.

Therefore 2—
^ j

^« (^) ^«M </>M ^'

where the limits P and 7 may be indefinitely close provided
tlie value x is comprised between them.

Next we transform the last expression into

^(x)2?^|Jp.(a;)P.(«;')<^';

and then again since 2 — <,— P„ (a?) P, [x) vanishes except
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when a?' = x, we may transform this to

that is to ^ [x) 5)——— P^ [x] \ P„ {x) dx.

But I P^ (^') c?a;' = except when n = 0, and then it

= 2. Thus finally we obtain cf) (x).

The preceding investigation seems to throw some light

on the nature of the result. It has the advantage of being

quite independent of the theorem that a function of two
variables can be expressed in a series of Laplace's Functions.

254. Let Z7 =

iput r' = x' + f + 2', r"^x' + y" + z'\ cos6>= ^^^"^^'f

"^

Then Z7= , ^ , ,.
j ; so that if U be ex-

r il cost/+ —V
r

panded in powers of - we have P„ (cos 6) for the coefficient
r

/r'Y
of f

-J , and therefore P,^ (cos 6) may be considered to be a

function of , .

rr

Now we see that this function has the following pro-

perties :

It is sjrmmetrical with respect to the two sets of variables
;

that is if X and x be interchanged it is not altered, and
similarly for 1/ 'and y\ and for z and z. Since cos 6 is raised

to the power n in P^ (cos 6) it follows that the function

when expressed in terms of x, y, z and x, y\ 2' will have
{rr'Y in the denominator. Hence if we make this the common
denominator, the numerator will involve each of the variables
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to the n^^ power, and it will be homogeneous with respect t«>

each set of variables. Thus if one term of the numerator

be Ax'^y^z'yy where A does not involve x or y or /, we
shall have a + ^ + 7 = m.

We might take the origiaal form of U and develop it

in powers of x\ y, z by the usual theorem for developing a

function of three independent variables. Thus we shall j^ec

for the type of the terms in the development

|a|_^'[y djf-dy^dzy'

where V stands for -—-^j z t • AH the terms of the

degree n will be found by taking a, ft 7 of various positive

integral values subject to the condition a + ^ + 7 = «•

Suppose a 4-^ + 7 = n; then the type of the terms just

1x1 .X. c {-soY{-yy{-zyN , ,..
expressed takes the form -^

—^"—Jinii > where A is

a homogeneous function of x, y, z of the degree «.

Thus we infer that

,.«+i „ icos tr; - w
^ ^ ^ dafdyHz-i

'

when for cos Q we put -^ '^.
; the 2 denotes a

rr

summation for all values of a, ft 7 consistent with the con-

dition a -f ;8 + 7 = n.

We may confirm this by supposing that r is very small

compared witli r ; and then our result is in fact obtained by
equating terms of the same order of small quantities. The
result is of such a nature that it is then true for all relative

values of r and r.

255. Suppose we have to'develop in terms of Laplace's

Functions a function of which we do not know the analytical

form, but only various numerical values. For instance, we
might require an expression in terms of Laplace's Functions
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for the mean temperature at any point of the surface of the

globe ; we may imagine this expression to be some function

of the latitude and longitude of the point, and may seek to

determine the developed form of the function from the

numerical values given by observation at various places.

We shall devote the remainder of the Chapter to this

subject.

256. Let F{9, cj)) denote the function, and suppose that

where Z^ denotes a Laplace's Function of the order Jc.

We suppose that the development of F {0, <f>)
converges

with sufficient rapidity to enable us to stop with the term
Z^^. In Zj, there are Ik + 1 constants ; and thus in the

development of F{d,4>) there are altogether (n + iy con-

stants ; we must shew how these can be determined.

By Art. 192 we have

Zj, = % sin*" 6 IT P^ (^;t,m cos m<^ + B^^^ sin m^),

where 2 denotes summation with respect to m from to A;

inclusive, D stands for -,—
, and F^ for P^ [x) ; also x — cos Q,

Moreover A^^^ and B^^ are constants. Then F{6,
(f))

is

to be obtained by summing the values of Zj, from k = to

k = n inclusive.

We may also put F{0, cf)) in the form

F{e, 4>) ==^„XO,,^cosmcl> + S\^smmcl>) (1),

where 2^ denotes summation with respect to m from to n,

both inclusive ; also

where Si denotes summation with respect to k from m to n,

Loth inclusive.
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257. We first determine from (1) the values of the

quantities of which C^^ and S^ are the types.

27J-

Let a = o r- ; suppose that in F(6, </>) we put for
<f>

in succession the values 0, a, 2a, , Iwx) and that the

corresponding values of F{dy (j)) are known. Then we have
for all values of k from to 2n, both inclusive,

F{6, h%) = (7o+(7jCOsA;a+ (7,cos2^^a+ + C^co^nhx

+ S^ sin kj. 4- ^2 sin 2kx + + ^^ sin nkx.

Multiply this equation first by cos ksi, and next by
sinA-sa; and sum for all values of k from to 2/?, both in-

cl'asive. Then apply the following Trigonometrical formulae,

which are easily established, and which we have used in the

Integral Calculus, Chapter xiii

:

^cosks2COsks'a= 2n+ l when s and s' are both zero,

= ^ {2n+l) when s and s' are equal but not zero,

= when s and s are unequal,

S costesin ksa= 0.

2sin^52sinA:.9'a=0 when s and s are both <^ero,

= ^ {2n-\-l) when s and s are equal but not zero,

= when s and s' are unequal.

Hence we obtain

C, = ^^ 1 F {0, kx) cos ksx

S, =
,^^^ ^

S F ((9, kx) sin ksx

(3),

where S denotes summation with respect to k from to 2n,

both inclusive ; but for C^ we must take only half the value
which the formula would give.
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258. Now from (2) we have

Co=^o..^o + ^M-P.+ + A.,..P„-. + A,..P. J

(4).

A similar set of equations holds in which S with suffixes

occurs instead of C with suffixes, and B with suffixes instead

of A with suffixes.

Now it will be seen that the first of equations (4) involves

only one constant to be determined, namely ^„,„; thus it

will "be sufficient to know one value of the quantity denoted
by Cn, that is the value of (7„ for one value of the polar

distance 0. The second of equations (4) involves two con-

stants, namely ^„_i,„_i an'd A„^^_^ ; thus in order to determine

them we must know the value of (7„_j for tivo values of the

polar distance 6. In like manner C^_^ must be known for

three values of the polar distance 6 ; and so on.

259. But suppose that the values of the quantities

denoted by G with suffixes are known for more values of the

polar distance 6 than we have seen to be necessary ; for

example, suppose that C^_^ is known for foiir values of the

polar distance 6 : then we have more equations than are

necessary to determine the constants denoted by A with

suffixes. Two ways have been proposed for treating such

a case.

We may use the method of least squares, or any other

method which the theory of probability supplies, as advan-

tageous for obtaining the best results from a system of

linear equations which exceeds in number the number of

unknown quantities to be found. This method is that

suggested by Gauss in order to express the elements of the

earth's magnetism as functions of the latitude and lon-

gitude.
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Or, when a suitable number of values is given, we may
treat the equations in another way which is simple and
convenient, though it does not possess any recommendation
from the theory of probability. If the equations though more
numerous than is absolutely necessary are all consistent with
each other the results obtained will be exact. If the equa-
tions though not absolutely consistent are very nearly so, we
may assume that our results will be reasonably satisfactory.

To this method we now proceed.

260. Suppose that we have a number of values of x
given, and that to each value corresponds a certain coefficient

f ; and suppose that the values of x and the coefficients are

so adjusted that the following relation holds for all positive

intefjral values of s from to 2n inclusive :

S|x-=/'^ afdx (5),

where the summation indicated on the left-hand side is to

extend over all the given values of x.

It follows from (5) that if f{x) denote any rational

integral function of x, of which the degree is not higher

than 2n, then

•'-1

Now apply this equation to the formulae obtained in

Art. 28 ; then so long as k + k is not greater than 2n,

S ^Pk^K = w^hen h and k are unequal,]

= ^—=- when K — h
2^ + 1 J

In like manner by aid of the formulae obtained in Art. 158,

we have

S f (1 -xyiyPjcDT^ = when k and k are unequal,
j
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The summation indicated on the left-hand side in (6)

and (7) is to extend over the same given values of x as that
in (5).

261. The relation (-5) amounts to a system of 2n + l

linear equations to be satisfied by the coefficients of which

f is the type. We take then 27i + 1 values of x as arbitrarily

given, and the summations in (5), (6), (7) will refer to these

2/1 + 1 given values. It will be remembered that we have
a; = cos5, so that when x is given the polar distance Q is

given.

Suppose now that for all these 2/1+1 polar distances

we have the values of (7« and /S'^ determined by (8). Take
from (4) the expression for (7^, multiply it by ^ sm^ OD^Pj^

and form the sum for the 2n + l polar distances. Thus

Sf 0, sin« 6 D'^P, = 2x {^,,« 2f (1 - xy B^P^D^P,},

where 2 denotes sumrnation with respect to the 2/1 + 1

polar distances, and 'E^ denotes summation with respect to

X from X = s to \ = n, both inclusive.

By means of (7) all the terms on the right-hand side

vanish except when X— k; and thus we obtain

2fC.sin.^i>'P. =^lii^A ..(8).

This determines -4;;,^ 8.

Similarly S? S, sin' 6 D-P, =-^-^ =^ B,,. (9).

This determines Bk,a'

262. We proceed to express in a convenient form the
coefficients of which ^ is the type.

Let Xg, x^y •••^2H denote the given values of x, so that

for positive integral values of x from to In 'inclusive
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Pat yjr{x) = (x-x,)(x-x;) {^-^J-
When we divide -^ (x) by one of its factors, for example

by the first factor, we obtain an expression which is equiva-

lent to a rational function of x of the degree 2n,

Let ylr,{x)=:p'^ = a,-^a,x+a^x' + + a,,a;*-;
X — Xq

then we know that this expression will vanish for all the

given values of x except x^.

Multiply equations (10) in order by a^, a^,...a^^, and
add ; thus

f.toW + f.toW + + f., t, {^J = f' to W <f^>

so that fo^oW=j ^oW^-^-

This we may write thus

J- ylr^x)] indicates that yjr (or) is to be differentiated

and then x^ put for x.

Thus
f(,

is determined ; and similarly we may determine

263. We will now change our suppositions. Instead of

2n + 1 given values of x Ave will suppose there are « +

1

values to be determined as well as the ?i + 1 corresponding
values of f. We may then assume 2n + 2 conditions, and
these shall be that the following relation holds for all positive

integral values of s from to 2n + 1 inclusive,

foV+fx<+ + fA'=r^cir (11).
•'-I

or

where
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Then the equations (6) and (7) will hold so long as

Jc-\- K is not greater than 2n + 1.

We proceed to eliminate from (11) the quantities f^,

f., ?»•

Put r =-^ +~^ + +—^.
When we develop the fractions in ascending powers of x,

we find that the general term of x is

Hence by (11) we have

1 ri Ji

^"^^^J ^^'^^ + ^^"-^3 (12)'

where S denotes summation with respect to s from to

2n+l both inclusive, and B is an infinite series of the form

^ X X

Now % is a fraction of the form

a:"« +^X + +-4„« +A« ^ '^

where the denominator = {x — x^ [x — x^ {x — xj.

Let us denote the denominator by ot (.c), so that the

quantities x^, x^, x^^ are the roots of the equation

-57 (a^) = 0.

From (12) and (18) we have

B,x''+BX~'+ +i?„.,aj + i?„

= the product of (a;'''"' + A^x"" + + A,^J

into {H,x-' + E.x-" + + ^^n+i^"'"'' + i^^''""'),

where 77^ = I a;Wa: = y .. or 0, according as L is even

or odd.
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Equate the coeflScients of the powers of x; thus

H.»+AJh + +^.A = o,

i?.«+^.«»« + + ^„..^^, = o.

^.,«+^.^4 + + ^».A = 0;

-B. = -?/..

The former group consists of ti + 1 equations between
the quantities A^, A^, ... -4^+^, which will suffice to deter-

mine them. If we restore for H^, its value
j

oc^dx, we find

that these 7i + 1 equations are all cases of the following, ob-

tained by giving to s positive integral values from to n,

both inclusive

:

/
X' (^•"^^ + A,x* 4- . . . + A„J dx = 0,

that is I icV (^a?) dx = 0.
•^ -1

Hence it follows, by Art. 32, that ct(^) = CP„+/a*), where
(7 is a constant. Thus the vakies x^, x^^ ... x^ in (11) are

the roots of the equation P^^^ {x) = 0.

Then, as in Art. 262, we find that

where -j- -^n-^^i^) indicates thatP„^^(a;) is to be differentiated,

and then x^ put for x. Similarly we can find fj, f,, ... f„.

Hence the coefficients f^, f^, ... f^ are identical with the

quantities, the type of which is -4^ obtained in Gauss's process

of integration; see Art. 131.
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264. As a particular case, let us suppose that the func-

tion denoted by F does not involve ^, so that it reduces to

F{d), Then, by Art. 257,

C = -~2 cos ksoL, S^ = 7,

—

—ir Z sm kS2,
« 2/i + l * 2/i + l

except that when s = we take only half the value given by

the first formula.

Now when 5 = we have S cos Jcsol =2n+l, and in other

cases X cos Icsol = ; also 2 sin ks2 = 0.

Thus S^ always vanishes ; and C^ always vanishes except

when 5 = 0, and then we have C^^FiO)-. or putting f{x)
instead oi F{6) we have C^=f{x).

Hence by (8) we have Aj^^=~^— %^f{x)P^,

The constants denoted by A with suffixes vanish by (8)

except when the second suffix is zero ; the constants denoted

by B with suffixes always vanish by (9). Thus the value of

Z^ of Art. 256 reduces io~^ P^t^f{x)P^,

Hence we obtain for the development of the function /(a:),

•where p^ =

^ (/Wfoi'.K) +/K)f.^«K)+ • • •+/Wf„P.Wl . . .(14).

But we know by Art. 138 that the exact development

of /(a?) is

/W=^oPo + ?X^X+...+!7n^n+ (15),

where ^* = ""^2— j Z^^)^*^'*^*

If we make use of this formula in (14) we find that

i'*=^'^2.7.{2fP.P; (IC),
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where S denotes summation with respect to all the n +

1

values of x, and 2, denotes summation with respect to 8 from
to X . By virtue of equations (6), which with the present

notation hold so long as ^ + 5 is not greater than 2n + 1, the

right-hand side of (IG) may be reduced. The term which
corresponds to 5 = ^' becomes simply q^ ; all the other terms
vanish so long as s is not greater than 2?i + 1 — /; : thus we
obtain

2yt +

1

where E^=^ — — 2fP^P;t) the summation extending to all

the ?i + 1 values of x.

For instance,

7^0 = 2'0 + 2'2«+a^2«-W + 2'2n+8-^2«+3 + 2'2n+4^2«+4 + ' '
' >

i^l = S'l + S'2«+1^2n+l + ?2«+2^2«+2+ 2'2«+8^2«+8+ ' ' ' >

where it must be observed that the symbols E with suffixes

have different meanings in the two lines ; in the first line

2^„. = ^2fP„. and in the second Une £•„= |2?P„P..

From (15) we have I f{x)dx = 2q^
•^ -1

= 2^0 - 2 {^2„^2^2„+2 + 2'2„+3^2«« + ' '
'} , ^7 (17).

Hence by (14) we obtain

1

- 2 {5'2«+2-^2»+a + 22«+8^2«+8 +•••)•

In this expression for I f{x) dx the first part is identi-

cal with the ^AJ{a^ of Art. 12G, so that the second part
gives us a new expression for the error which arises in taking
the approximate quadrature for the real quadrature.

T. 14

/:
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CHAPTER XXI.

SPECIAL CURVILINEAR COORMNATES.

265. In some investigations of mixed mathematics,
certain coordinates introduced by Lame have been found
very useful : these we shall now explain. Lamp's own in-

vestigations on the subject were first given by him in various

memoirs, and afterwards reproduced in two works entitled

Legons sur les fonctions inverses des transcendantes et les

surfaces isothermes, 1857; and Legons sur les coordonn^es
curvilignes et leurs dinerses applications, 1859. These co-

ordinates are also explained in the Cours de Physique
MatMmatique of M. Mathieu, 1873.

266. Consider the following three equations where x, y, z

denote variable coordinates

:

= 1,

= 1.

Suppose If less than c^ V greater than c^ ft^ between
V^ and c\ and v^ less than h^ : then the first equation repre-

sents an ellipsoid, the second an hyperboloid of one sheet,

and the third an hyperboloid of two sheets.

We shall sometime? denote these surfaces by S^, S^, S.^

respectively.

i* +
z'

7- +
^

/.^-c^

^ +
z'

v'-c'
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267. Suppose the preceding three equations to exist

simultaneously; then x, y, z will be the coordinates of a

point or points at which the surfaces intersect. The values

of a?*, 2/', !^ which satisfy these equations simultaneously

are easily found to be

These values may be immediately obtained from the

general formulae given in the Theory of Equations, Art. 201.

Or we may proceed thus. The three equations of Art. 2G6
may be considered as expressing the fact that

1--- f
p p—b^ p—c^

vanishes when p = V or p,^ or I/^ Hence we have

, ^ ?l
z' ^ (p-X^){p-p.^)(p-v^

^

p p-b' p-e p(p-6'')(p-0 '

for no constant factor is required since each side becomes
unity when p is infinite. Then if we decompose the right

member into partial fractions, in the manner explained in

the Integral Calculus, Chapter li., we obtain

,_XVV ^_ {\'-b')(fjJ'-b')(v'-b^
^ - 6V ' ^

"
b'iU'-c')

Since by extracting the square roots of the last equations

we obtain three double signs, we see that the surfaces of

Art. 266 have eight points of intersection.

268. Through any point in space one such system of
surfaces as that of Art. 266 can be drawiij and only one^

b and c being fixed quantities,

14—2
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For let {cc, y, z) denote the point ; and let it be required

to find t from the equation

This may be considered as a cubic equation in t, and by
observing the changes of sign in the left-hand member as

t varies, we see that there is one root of the equation between

and h^, one root between If and c\ and one greater than cl

We suppose here that none of the three quantities x, y, z

is zero.

260. The three surfaces of Art 266 are mutually at

right angles at the points of intersection.

Denote the first equation by u=0, and the second by
?; = ; then the condition that the surfaces may intersect

at right angles is

dii dv du dv du dv _^
dx dx " dy dy dz dz

'

x^ _f ^^

t.mt IS ^,^, + ^^, _ ^,^ ^^, _ p^
+

^^, _ ^^ ^^, _ ^-^
0.

Now this condition is fulfilled at the points of inter-

section as we see by subtracting the second equation of

Art. 266 from the first.

Similarly the other two surfaces intersect at right angles.

270. By adding the values of x^, y^, and / in Art. 267,

we obtain

x^^f -^7} ^y^ \- y^ -Vv^ -W -c\

271. By extracting the square roots of the expressions

in Art. 267, we obtain

Xliv \r(X'-¥)(tj:'-hW-v") y{^-c'){c'-fi'){c'-v
z=-

Some convention as to signs is necessary in order to

ensure that the last formuloe shall have due generality; and

the following is found sufficient by Lamd. Out of the nine
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quantities \, /-t. v, ^{X'-h'), V(/^'-^'), V(i'-^'), VC^'-c'),
^{c' — /m), ^/(c' — v'), three are taken to be susceptible of

either sign, namely v, ^{jj^ — h'^) and \/(^*— O ; the rest are

considered always positive. Thus the expressions for x, y,

and z have each one factor which may be either positive or

negative.

272. The quantities \, fi, v are called elliptic coordinates.

When they are given we may suppose the surfaces of Art. 266
to be constructed, and their common points determined. Or
we may find x, y, and z from the formulae of Art. 271.

It will be observed that if we merely know \, fi, and v,

the point in space is not completely determined; for there

are eif/ht points corresponding to assigned values of \, /x,

and V. If however we attend to the sig^n of v, accord in fj to

the convention of Art. 271, the number of points is reduced
to four.

273. Suppose in the first equation of Art. 266 that X
varies ; we thus obtain a series of ellipsoids, all confocal, that

is all having the same points for the foci of their principal

sections. We may suppose \ to commence with a value
infinitesimally greater than c, and then one of the axes of

the ellipsoid is infinitesimal, namely that which is in length
equal to 2 VC^'^— O- Then \ may be supposed to increase

indefinitely.

Similarly in the second equation of Art. 266, if /j, varies

we obtain a series of confocal hyperboloids of one sheet.

The limits between which fi may vary are from a value
infinitesimally greater than 6 to a value infinitesimally less

than c. At the former limit the real axis which is in length
equal to 2 ^(/x,^ — U^) vanishes, and at the latter limit the con-
jugate axis which is in length equal to 2 /v/(c'^

— /a^) vanishes.

Finally, in the third equation of Art. 266, if v varies

we obtain a series of confocal hyperboloids of two sheets.

The limits between which v may vary are from an infini-

tesimal value to a value infinitesimally less than b. At the
former limit the real axis which is in length equal to 2u
vanishes, and at the latter limit the conjugate axis which
is in length equal to 2 V (6* — i^^) vanishes.
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274. Take the logarithms of the formulae in Art. 2G7,

and differentiate. Thus

, xdX xdiJb ocdv
dx = -—- + + -—

,

, zKdX zfidfjb zvdv

X'-& ijC'-c' v'-c

Square and add; then by the aid of the equations of

Art. ^^^i we obtain

2 2
^ y

yijj ''''^'''•

But by the formulse of Art. 267 we shall obtain

and then by symmetry

Hence, putting (M for dx^ + dif + d£', we have
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Here ds denotes the distance between the point {x, y, z)

and the point {x + dx, y + dy, z + dz).

275. Suppose we put £?\ = in the result of the pre-

ceding Article ; then the two points both lie on the surface

S^t and the formula becomes

276. Suppose we put dfi=0 and dv = in the result

of Art 274 ; then the two points both lie on the surface S^

and also on the surface S^^ and the formula becomes

d\^\'-f.^{\'-^v')

This is therefore the value of the square of the length

of the infinitesimal straight line drawn normally to S^, to

meet the adjacent surface of the same family as ;S\, in which
the parameter has the value \ + d\.

A similar expression holds for the infinitesimal distance

between S^ and the adjacent surface of the same family, and
also for the infinitesimal distance between ^3 and the ad-

jacent surface of the same family.

We shall now give some examples of the use of the

formulae which have been obtained.

277. Let da- denote an element of the surface of a solid,

p the perpendicular from a fixed origin on the element ; thai

^pda represents the volume of an infinitesimal cone having

its vertex at the origin, and having da for base. Thus the

volume of the whole solid = ^jpda; the integral being taken

between appropriate limits.

We will apply this to the ellipsoid given by the first

equation of Art. 206, taking the origin of coordinates as the

vertex of the cones.
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We have by the usual formulae of Solid Geometry

transforming this by the aid of the expressions in Art. 267
we obtain

Also by Art. 276 we have

^ J(X'-^')(X''-^^)

dfidv (/J? - v') 7(X''-M»)(X'-/)

If we integrate between the limits and h for v, and h

and c for /x, we obtain one-eighth of the volume of the
ellipsoid whose semi-axes are X, /\/{X'^—b^) and V('^^~"0-
Thus

and therefore f7^_=J^^£)±£L==^=5 .

278. Let CO denote any element of area on the plane

(Xf y), and let z be the corresponding ordinate of a solid
;

then the volume of the solid is found by taking the integral

jzdfo between proper limits. If da denote an element of the

surface, and 7 the angle between the normal to da and the

axis of z, we may put cosy da- for dco. Thus the volume
= Jz cosy da.

We will apply this to the ellipsoid given by the first

equation of Art. 266. We have by the usual formulae of

Solid Geometry
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Z \(x
COS 7 = rr—-Q

:) +(,v_6V *"U-^-c7j '

transposing this by the aid of the expressions in Art. 2G7 we
obtain

cos 7= ,— : .

Hence proceeding as in Art. 277 we obtain finally

/7

279. If we take the three expressions furnished by
Art. 276 we find that an element of volume of a solid may
be denoted by HdXdfidv where

zr= (^^)(^^)(^^^^^)

J(\' - b') (V- c^) (jjl'- b') (c" - fl') {b' - I/') (c' - v')

Apply this expression to the ellipsoid given by the first

equation of Art. 26Q; then proceeding as in Art. 277 we
obtain

fix ^'^^'^'"^•' = f U[-^'-b'){X'-c').

280, There is another system deserving of notice in

which the ellipsoid is replaced by a sphere and the two
hyperboloids by cones. Here we have

. x' + if + z' = r\

^ +-^+-^-0
fjir /jtr — fi — c

V V — 6* V —

These equations give

r^-tt"^ .' = '101- '>")("' -i') ,> _ r'C/t'-c'Xo'-c')
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It is easy to shew, as in Art. 269, tliat the surfaces re-

presented by the three equations intersect at right angles.

281- "We may apply the formulae of Art. 280 to obtain

an expression for the surface of a sphere of radius r.

If we proceed as in Art. 277 we shall find that the area

of an infinitesimal element of the surface is

and if this be integrated between the limits and h for r,

and h and c for //,, we obtain one-eighth part of the surface of

the sphere, that is ^ r^. Hence

'<^[b (fjL'-V^)dfjLdv TT

11J bJ

This ao^rees with Art. 277.
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CHAPTER XXIT.

GENERAL CURVILINEAR COORDINATES.

282. In the preceding Chapter we have given an account

of a special system of curvilinear coordinates ; we shall now
treat the subject more generally.

283. Let there be three surfaces represented by the

equations

Here x, y, z are variable coordinates and p^, p^, p^ are

parameters which are constant for any surface ; but by vary-

ing a parameter we obtain a family of corresponding surfaces.

For shortness we may denote the surface of the first family

for which the parameter has the value p^ by the words the

surface p^\ and similarly the surface p^ will denote the sur-

face of the second family, for which the parameter has the

value p^ ; and a like meaning will apply to the words the

surface p^.

284. To given values of x, y, z in (1) will correspond

definite values of p^y p^, p^) that is, for every point of space

the parameters of the tliree surfaces can be determined.

Conversely, if pi, p^, p^ are given the values of x, y, z may
be theoretically found ; that is, the points (x, y, z) may be
considered to be known when the three parameters are given.
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[th dy) '^\dz)-'

K\

K-

Let ttj, 6
J,

Cj denote the cosines of the angles which the

normal at [x, y, z) to the surface p^ makes with the coordi-

nate axes ; let a^, b^, c^ be similar quantities with reference

to the surface p^ ; and let a^, b^, c^ be similar quantities with
respect to p^. Then

1^.
Aj dx

/?2 dx

1 dp

7, -if?£i

^^ = ^^^'^^3 =_1<^3Kdy

=^
7^, dz

A, c/s;

,(2).

286. Let V denote any function of ^, y, z\ by sub-
stituting for X, y, z their values in terms of p^, p^, p^ from (1),

we transform V into a function of p^, p^y pr^' Then by the
aid of (2) we get

dV dV dV ^ dV ,

dx ~ dp^
^^'^ "^

dp^
^'"^^

' dp^
^'"^'

dV dV,, dV.^ dV,^
dy dp^ ' ' dp^ '' dp^ '

'

dV dV , dV , dV ,

ds

(3).

287. Now let us suppose henceforth the three surfaces

given by (1) to be mutually at right angles ; then the nine
cosines a^, 6^, Cj ... satisfy certain well-known relations, and
with the aid of these we deduce from (.3) by squaring and
adding
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(S)"-(f)'-(S)'

-v©Vv{f)Vv(fT .,.

288. One of the relations between the nine cosines to

which we have just alluded is

«i (Vs- Va) + ot, {b,c, - h^c,) + a, [h,c^ - \c^ = 1

;

hence by the aid of (2) we have a result which we may
express in the notation of determinants, thus

:

dp^ dp^ dp^

dx '

dy
* dz

dp^ dp^ dp^

dx ' dy *

dz

dp^ dp^ dp^

dx ' dy '

dz -hAK

289. From equations (2) we deduce

a^dx + h^dy + c^dz ='T-dp^,

a^dx + h^dy + c^dz = j-dp^y

a^dx + h^dy + c^dz = ^ dp^

;

and from these we deduce

,{5).
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From (5), by squaring and adding, we obtain

dx' + df+ dz'= ^jp,'+^,dp,' + ^,dpj' (6).

The left-hand member may be replaced by ds^, so that

ds denotes the distance between the adjacent points (x, y, z)

and {x-\-dxy y-\-dy, z-\-dz),

290. Three particular cases of (6) deserve special notice.

Suppose that the adjacent points both lie on the surface pg,

and also both lie on the surface pg ; then they both lie on
the common intersection of these two surfaces, which by
hypothesis is at right angles to the surface p^ at the point

{Xj y, z). Thus we have dp^ = 0, and dp^ = ; so that (6)

becomes ds^ = j-^dp^; therefore y^Pi ^^ numerically equal

to the distance at the point (x, y, z) between the surface

Pj and the adjacent surface p^-\-dp^.

Similarly we can interpret the special equations

291.

\AJ<3 ~K ^t^2> "IXJ.VA u- - h: "^Hi

From «Dquaticms (5) , we obtain

dx _«i dx .% dx %
dp^ K' dp. 'K' dp3~"K
dy

dp.

dy

dp,'

dy \
dz

dp,'

dz dz

dp.-

These equations may also be obtained in another way.
dx

For if a small change dp, be ascribed to p, we have -r- dp,

for the corresponding change in x. This expression must
therefore be equal to the projection on the axis of x of

the normal distance between the adjacent surfaces p, and

pi + dp, at the point {x, y, z). Now this normal distance
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by Art. 290 is ,- dp^, and the projection on the axis of x

is obtained by multiplying by a,, which is the cosine of

the angle between the normal and the axis of a;; so that

,— dp, — r^dp,, and therefore -,-* = y-*

.

dp^ '^^ K dp, \
Similarly the other cases can be established.

By the aid of Art. 285 these become

^ — ii^ dy __1 dp^ dz __1 dp^

dp^ ~ h^ dx* ^Pi~K dy ' dpj^
~

h^' dz

dx^ _1^ dp^ dy _ 1 dp^ dz _1 dp^

dp'K^dx' df~T^dy' dJ~K'irz

d^_]_ dp3 dy __1 dp^ dz ^ 1 dp^

dps K^ dx ' dp^ ~ h^ dy ' dp^
~~
h* dz

292. From equations (7) we obtain, by the aid of Art. 288,
in the notation of determinants

.(7).

dx d;/

dp,'

dz

dpi

dx

dp,'

dy

dp,'

d^

dp.

1

-hAK
dx dy dz

dp,' dp,' dp.
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CHAPTER XXIII.

TllANSFOEMATION OF LAPLACE's PEINCIPAL EQUATION.

293. In equation (4) of the preceding Chapter a certain

expression involving first differential coefficients is trans-

formed from the variables x, y, and z to the variables p^, p^,

and P3. It is the object of the present Chapter to effect

a similar transformation with respect to the expression

-Y-g- + -7-5- + --p^ ; the ^expression is very important on ac-

count of the well-known equation which Laplace first con-

sidered : see Art. 167. The expression is called by Lame
the parameter of the second order of the function V.

294. The parameter of the second order of any function

Y can he expressed in terms of the parameters of the second

order of the functions p^, p^y and p^,

For ^-?=~^ + ^^^^^ +— -^3

.

dx dp^ dx dp2 dx dp^ dx '

^ F__ dj (dpX . dr^fdpX
. IZfdpX

\W -
dpi \dx)

"*"

dpi \dx) "^
dpi \dx)

o d^'V dp, dp,
^ 2

^^ ^2^ +2—— ^P'^
dp^dp^ dx dx dp^dp^ dx dx "^ dp^dp^ dx dx

dV d^p dV d^p dV d^p,
*

dp, dx'
"^

dp, dx'
"^

dp, dx"
'



TRANSFORMATION OF LAPLACE's PRINCIPAL EQUATION. 225

Similar expressions hold for -y-, and -ty ; hence by

addition, observing that the surfaces of Art. 283 are at right
angles, we obtain

dx' ^ df ^ dz' ^' dp,' ^ ^' dp,' ^ ^' dp,'

dV(^ ^ d^\ dVf^ d^ d'p\
*

dp, \d^'
"^ d/ '^ dzV'^ dp, U«' df

"^
dz'J

.dVf^p^ Ip, ^\
'^dp,\da^ wy* "^ dzy ^^''•

Thus the parameter of V of the second order is expressed

in terms of p,, p^, and p^ and of the parameters of the second

order of p^, pj, and p,: it remains to transform these three

parameters.

"We shall use the symbol V as an abbreviation of the

^. d'd' d'
operation ^,+^,+ ^,.

295. The relations among the pine cosines to which we
have alluded in Art. 287 may be made to give the following

results

:

«1 = ^2^3 - ^2* h = ^2^3 - ^3«2> ^1 = ^A " ^sK
together with two other similar sets.

Hence by the aid of Art. 285 we obtain

^Pi^ K (dp^dp, dp,dp,\

dx hji,\dy dz dy dzj'

dp, ^ h, /dp, dp^ dp, dpX

.dy hji\dz dx dz dxj*

dp, ^ h, /dp, dp, _ dp, dp,\
^

dz h,h,\dx dy dx dy]\

(2)

together with two other similar sets.

Differentiate the first of (2) with respect to y, and tbQ

second with respect to a;, and equate \ thus we get
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K (^\dp,
^

dp, d^p, ^P,dp, dp, d^p,\

\h^\dy^ dz dy dydz dy^ dz dy dydz)

,

d ^\\ /dp, dp, dp, dp\

dy\hjij\dy dz dy dz J

hji^\dxdz dx dz dot? dxdzdx dz dxy

dx \hjij\dz dx dz dxj'

He-arranging, and introducing terms for the sake of

symmetry, we get

hji,\dx dx\dz) dy dy\dzj dz dz\dzj^

hji^ [dx dx\dzj dy dy \dz J dz dz \dz J)

^ dp, {dp, d_(K\ ^dp, ±(K\_^dp, d^ rh^\\

dz [dx dx \hjij dy dy \hjij dz dz \hjij\

_dp,(dp^d^ /^\ ^dp^d_ f\\ j^dp^d^ /J^M
dz [dx dx \hjij dy dy \hjij dz dz \hjij)

= (3).

Now the expression within brackets in the second line,

by equations (7) of Art. 291,

^j^i\dx d fdpy
^

dy d /dpA
^

dz ^(dp^]
^ \dp^ dx\dz) dp, dy \dz J dp, dz\ dzj)

2 d /dp.

"^ dp,\dz=K'^r^ (4).

A similar transformation can be effected of the expres-

sions within brackets in the remaining three lines of (3)

;

and thus (3) becomes
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where -0! stands for y-7-

.

Divide by H^ , then we obtain

dz " dpj^ dz ^ dp^

Similarly we have

dp^ dp.

'^^^dpXdxj ^'dpXdxJ

I

dp,j^, d\ogH^ dp.j^^dlogH^^^

dx ^ dp^ dx * dp^

and |.vp,-|;VP,

dy ' dp, dy ' dp^

(6).

.(7);

(8).

Multiply (6) by ^^ , (7) by^ , and (8) by^ . and add
j

then by virtue of the relations alluded to in Art. 287, we
obtain

15—2
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^ f^^
^ [dz dp^ \dz J dx dp^ \dxj dy dp^ \dyj)

^ \dz dp^ \dz ) dx dp^ \dx) dy dp^\dyj)

+W^' = (9).

This may be simplified ; for we have

dp,d_fdp^ ^ dp^d_ fdp\ ^ dp^_d_ /^\
dz dp^ \dz ) dx dp^ \dx ) dy dp^ \dy)

2 dp,\\dz) ^ \dx) ^ \dy) ] 2 dp,^ ^^dp^

and ^— (^] +^— (^) +^A f"^]
dz dp^ \dz) dx dp^ \dx) dy dp^ \dy

J

dz dp^ \ ' dpJ dx dp^ \ ^ dpJ dy dp^\ ^ dpJ

' [dz dp^ \dpj dx dp^ \dpj dy dp^ \dpj)

= 1 2 \dp^d^fdz\ ^ d^d_ fdx\ dp^ d^ /^^U
« \dz dp^ \dpj dx dp^ \dpj dy dp^ [dpJ]

_j 2 f^2A (L ^\ .^A(L ^2^ ^^2^(i_ ^\\
"' \dz dp, U/ dzj'^ dx dp, U/ dx)

"*
dy dp, U/ dyjj

-'^3
1 Kdp^^^^hr^dpr' h^dp,'

Hence (9) becomes

'therefore ^^^p^ + ^iog^ = o (lo).

In the same way we have
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^v..-H|;iog'^'=o (11);

-•1 ^Vf>, + |;log^' = (12).

By the aid of (10), (11), and (12) we obtain from (1)

dx^
* d/ •

dz"
~

'wrdp, KdpMhJr
,, ,. d'V, d'F, d'V

'''^'^'feGa 5>;) +^ te^) + 5s {li^dij]
•••(^^)-

296. Hence we see that the equation VF=0 trans-

forms into

As a particular case we may suppose that p^y p^i p^ are

respectively the X, /z., z/ of Art. 26G ; for the equations of that

Article theoretically express each of the last three quantities

as functions of x, y, and z.

By comparing Art. 274 with Art. 289 we have

and these may be substituted in (14).

But we may make another supposition which will give a

still simpler form to (14). We may suppose that p^ is any
function we please of \, that p^ is any function we please of

/z, and that p^ is any function we please of v. Let us put

a, ^, 7 respectively for Pj, p,, pg, where
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-I

dv

J{b'-V'){G'-V')

Let
77i, ^2' ''73 d^iiote respectively what A^, \^ h^ become

wlien a, P, 7 respectively are put for p^, p^, p^.

From Art. 274 we now get

Thus

Therefore

V2V3 c '
VsVt ' v,Vi

Hence (14) becomes

da\ c da) d^[ c d^J'^dy\ c dyj~^'

that is

d^V d^V fJ^V

297. We have obtained equation (18) by the direct

processes of the Differential Calculus ; we shall now however
follow Jacobi in deducing the equation in another way, by
the aid of the Calculus of Variations : see History of the

Calculus of Variations, page 361.

298. Let V be any function of x, y, z\ let F be any
^ . . ^^ dV dV dV , . , ^
function of m "3" >

~j~
> "J" >

^''^^ lor shortness put
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dV__ dV__ dV__
dx"^'' dij"^*' dz"'^^'

Consider the triple integral 1 1 \Fdx dydz^ which may be

supposed to be taken between fixed limits. Let the variables

be changed to the Pj, p,, p^ of the preceding Chapter. By
Art. 290 we have

the element of volume dx dy dz = 7-7-7- dp^ dp^ dp^

= Edp^dp^dp^ say.

Hence (jjFdxdydz=JIJEFdp^dp,^dp^ (16).

Let V receive a variation BV, then each side of (16)

receives a variation which we will now express, beginning
with the right-hand side. We have

8JjJEFdp,dp,dp,=^jjJB{EF)dp,dp,dp,.

r, . ^ ,dV dV dV
± or shortness put -^— = ot,, -t- = 'C''* »

-y— = "c^v
^ dpi

'

<^P. 'dps
Then

^ ' dV dixr^ ^ dsT^ ^ d'!JT^
^

dV d'GT^ ^ d-cT^ ^ atiTg

Hence reducing \\\h[EF)dp^dp^dp^ in the usual way

find that it becomes 1 1 \KB Vdp^ dp^ dp^, where

dV dp^\ d'crj dp^\ durj dp^ \ dvrj

together with certain terms in the form of donhle integrals

which depend on the limiting values of the variables.

we
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In the same manner if we develope the variation of the
left-hand member of (16) we find that it becomes

together with certain terms in the form of double integrals

which depend on the limiting values of the variables.

The terms which are in the form of triple integrals must
agree ; and therefore putting Edp^ dp^ dp^ for dx dy dz in the

second we obtain

EI— -A (^^\ _A (^\ _ A (^\ \
\d\^ dx\dpj dy\dpj dz \dpj)

dV dp^\ d-arj dp^ \ d'urj dp^ \ dtsj

dx \dp^ J dy \dp^ J dz \dpj

299. As a particular case of the preceding general result

suppose we put
(
;7-

j + [-r-) '^['1~) for jP on the left-

hand side ; then, transferring to the new variables, we see by

Art. 287 that we must put A;^ (^)V A,^(^)V ^/gj
for F on the right-hand side. Hence on the left-hand

side -^r- = 2 -r- , and so on : and on the right-hand side
dp^ dx ^

-r- = 2/i,^ -7- , and so on. Thus (17) becomes
fl?CTj dp^

V K - ^x^^
1^^^ [h^f,^ dpj + dp^ [kA dpJ "^

dp, \h^K dpjy

which agrees with (13).
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300. Another very instructive method of establishing

equation (13) is given by Sidler in the treatise mentioned in

Art. 4 ; and is apparently ascribed by him to Dirichlet.

Let V be any function of x, y, z, which together with its

fii*st and second differential coefficients with respect to the

variables remains finite throughout the space bounded by a

given closed surface ; then will

jjjvrdxdyd. =-j^dS (18);

where the integral on the left-hand side is extended through-

out the space, and that on the right-hand side over the whole
surface : dS is an element of the surface, and dn an element
of the normal to the surface drawn inwards at dS.

The theorem is well known ; it may be obtained as a
particular case of Greens Theorem : see Statics, Chapter XV.,

putting unity for Uin the general investigation there given.

Now conceive an infinitesimal element of volume bounded
by the three' surfaces of Art. 266, and by the three surfaces

obtained by changing p^, p^, p^ into p^ + dp^, p^ + dp^, p^ + dp^

respectively. To this six-faced element we propose to apply

equation (18).

As we have already seen the element of volume dxdydz

becomes , , , dp^dp^dp^ when expressed in terms of the

new variables; hence the left-hand side of (18) becomes

W -j-j-j- ^Pi^Pi^Paf where W is what VV becomes when ex-

pressed in terms of the new variables.

Now consider the right-hand member of (18). Take first

the face which lies on the surface p^. Here dS= y-r- dp^dp^y

and dn = j dp^ ; so that , dS becomes y-j- -j- dpjlp^. The

corresponding value for the opposite face would be found

nuinerically from this by changing p^ into p^ + dp^ ; but the
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sign must be changed because the formula (18) supposes dn
always measured inwards ; hence this value is

(\dV d f \ dV\ J ) . J

Hence the balance contributed by these two faces to the

right-hand side of (18) is -^ [jThd^J ^Pi^P^^P^'

Similar expressions arise from the other two pairs of

faces of the element considered ; "and the aggregate is to be

put equal to the expression already found for the left-hand

side of (18). Therefore

=k(^ dj)
+

dp-,kkw) ^ ¥3ta^a) J

^^^^"^^^ •

Then by simplifying we get for W the form already

obtained in equation (13).
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CHAPTER XXIV.

TRANSFORMATION OF LAPLACE'S SECONDARY EQUATION.

301. We shall find it useful to transform into Lamp's
variables the equation satisfied by Laplace's n^^ coefficient

;

this equation we may call Laplace's secondary equation, to

distinguish it from that considered in the preceding Chapter.

302. Denoting the n^ coefficient by F, we have by
Art. 1G7 the following equation expressed in terms of the

usual variables,

Now the following is a very common system of relations

connecting polar co-ordinates with rectangular,

x = r cos Q, y= r sin 6 cos </>, z = r sin 6 sin <j) ;

and by comparing these with Art. 280 the following relations

are suggested

:

cos^ =
f^,

sm^cos<A =-^LA_J,

Bin 6sm6 = ^^—
tTs— i:2n

—
> (2).

We propose then to transform (1) by the aid of (2) ; and
we shall also introduce auxiliary variables y3 and 7, which are

connected with /i and v respectively by the equations
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We shall sliew that the transformed equation is

d^'^ drf^
{jL^-v'')Y^O (4).

303. From equations (2) we have cos^ and tan<^ ex-

pressed as functions of fi and v. These give

do _ V dO _ /* .

he sin
'

dfju

d4

dfjb

d^
dv

he sin ' dv

hc j(h'-v') {c'-p') fl

hcJ{fji:'-h'){c'-fjL') V

6V

7(P37j^?i:^) >v-6V'

therefore %--j^^W^W^^):
de

dy
/^

hc^ sin
J{V-v''){c'-v^),

d'Y

(5).

dY 1 6Z^F
Let us now suppose that -77,., + cot ^—- +-^„^ -:rr„-

transforms into ^,— +^^ +B,^ +B^^ + C,^^;
we want to find A^, A^y B^, B^ and G^.

,,, ^ JF <Zr^^
,
dYd6 ,^ .

(^^r j^ (^(^

d^'
""

d6' W) "^ df W) "^ ^
dOdcf, d/S d^

dYd^ dYd^
^ dd dl3'

*
dct> d^'

'
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similarly -y- and —^ „ may be expressed ; and

d'Y d'Y dd de dY d'O d'Y d(t> d(f> dY d'(f>

d^dy dd'' d^ d^ de d^drf dcfi* d^ dy ^ d(t> dfidy

d^Y (de_d4 d£d4\
'^ded(t)Wdy'^dyd^)'

Substitute these values in

, d-Y . dY d?Y j^dY d^Y

and compare the terms with those in the original expression

;

thus we obtain

A(|)V-o©V..|| = .-^ (7);

^^5^ + ^^^ +^o^.+^o5;^+^o^^ = cot^...(9).

^ (i(^ (f(^ (?^<^ d^^ _
^^d^^^^Jy^^'T^'^-^'J/^^'Wdy'^'-'^^^^'

Now equations (5) give

# =J_^ riiv
flf/3 sinedy ^^^^ '

d<\> __ 1 dS

d^ ^^dB ^^^^*

Multiply (7) by sin* ^, and subtract from (6) ; then by
(11) and (12) we have
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Also (8) may be written

2(^0-^0)^5-^-^0ly-y 1=0.

The last two equations give

From (6) we have now ^o|(^) + (^) j

"" ^^ ^° *^^^

•^^«
6V sin-^ d

2\ /Z,2^2 ,.2, .2

or

therefore A^ and B^ each equal
2 3

"

jM —V

We have still to find J.^ and B^ ; the equations for this

purpose are (9) and (10).

Now from (5) we get

therefore c' sin ^ ^^^ + ^.) = (/^' - ^') cos ^.

J2 i J2 »

And from (11) and (12) we have^ +J?
= 0.

Hence equations (9) and (10) become

therefore -4^ = and J5j = 0.

Thus the truth of (4) is established.
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Another investigation of this process of transformation

will be found in Liouville's Journal de Math^matiques for

1846, pages 458.. .401.

S04. Another transformation of the equation (1) deserves

notice. We will express the equation in terms of a and t,

where

cos^ = <r, sin ^ sin0 = T (13).

From (13) we have

^ = - sm ^, ^ = - cos ^, ^ = cos^ smc/), ;^2
= - sm(9sm <^,

da dr . ^ ., drr - a - , d\ ^ .

c7^=^'
^=sm^cosc^, ^, = -sm^sm<^, ^^= cos ^ cos <^.

dY dYda . dYdr dY . ^ . dY
dd

Now —.^ = -^ ~ + ^^ 5^ = —^ sin 6 +^ cos^ sin6,
rfo- a^ dr dd da dr ^

d'Y_ d^fda\' d^Y/drV dY dJ'a dY d\
dd'

" da' [ddj
*" d? [ddj

*
da dd'

"^
dr dd"

d'Y da dr
+ o

dadr dd dd

= -T-Y sm' d + -TT cos d sm q)— -j-cosd
da^ di^ ^ da

— -7- sm ^ sin 9 — 2 , , sm ^ cos ^ sm (^

;

rPF d'Y fdT\*dY d^r d'Y . ,. ,^ (^F . . . ^

Thus (1) becomes

d'Y . ,n ,d"y .A - ,j^ dY . dY . . . ^
-j-j sm' d + -7-^^ cos'^ d &m^ 6 r- cos ^ 7- sm ^ sm <h
da' dr' ^ da dr ^

— 2 , - r sin d cos ^ sin 6 + cot dl 7- sin ^ + -7- cos^ sin<f)

)

dadr ^
\ da dr ^J

d'^Y 5. dY sin 6 , _.,^ „
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that is -^ sin^ 6 +-^ (cos^ ^ + cos^ 6 sin^ ^) — 2 -v— cos ^

dY d^Y— 2 -7— sin ^ sin 6 — 2 -.—r-sin 6 cos 6mi6 + n{n-\-l) Y= 0,

-2<7^-2Tj+«(«+ l)r=0 (14).

805. If now we transform (14) by putting

cos % = o", sin p^ sin -v/r = r,

we shall obtain an equation like the original with p^ instead

of 6, and yjr instead of </>. But as (14) is symmetrical with

respect to a- and t we shall obtain precisely the same result

if we put
cos % = T, sin % sini/r = o".

Hence we arrive at the following conclusion : if we trans-

form (1) by supposing

cos ^ = sin ^ sin -v^, sin ^ sin ^ = cos% (15),

we shall obtain an equation like (1) with % instead of 6, and

'sfr instead of (p.

From (15) it follows that

sin 6 cos <^ = sin ;^ cos i|r,

806. From the two preceding Articles we may now draw
the following inference : we shall obtain the same result from

equation (1) if instead of equations (2) we take any other

mode of associating the old and new variables differing from

(2) merely in order of arrangement. For instance, instead of

(2) we might put
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CHAPTER XXV.

PHYSICAL APPLICATIONS.

307. Although in the present work we are concerned

with pure mathematics, yet it must be remembered that

much of the value of the formulae which are obtained depends
upon their application to physics. As we have stated in the

beginning, the researches of mathematicians in the theories

of the Figure of the Earth and of Attraction first introduced

the functions with which we have been occupied. The
investigations of Lam^ which we are now more especially

considering, were connected mainly with the theory of the

propagation of heat, and accordingly we propose to devote

a few pages to this subject in order to increase the interest

of the subsequent Chapters.

We shall however treat the matter very briefly, as our
object is rather to shew the meaning of the symbols employed
than to furnish very elaborate demonstration. The reader

will see that some of the processes resemble one with which
he is probably familiar in the modern treatment of the

Equation of Continuity in Hydrostatics.

308. Suppose a homogeneous solid bounded by two
parallel planes; let c denote the thickness of the solid.

Suppose one face of the solid maintained at the fixed tem-
perature a, and the other at the fixed lower temperature
b. Suppose a plane section parallel to the faces, and on
this section take an area S. The solid being supposed
in a state of equilibrium of temperature there will be a
constant transmission of heat from the face which has the
higher temperature to that which has the lower.

T. 16
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We take it as a result verified by experiment that the

quantity of heat Avhich passes through the area ;S^ in a time

t is expressed by StK , where /c is a constant depending
c

on the nature of the substance. If c is the unit of length,

S the unit of area, t the unit of time, and a — h the unit of

temperature, the expression reduces to ^ ; and we have thus

a definition of what is meant by the conductivity of the given

substance.

309. To form the equation for determining the variable

state of temperature of a homogeneous body.

Conceive an elementary rectangular parallelepiped having
one corner at the point {x, y, z) and its edges parallel to the

coordinate axes : denote the lengths of these edges by hx, By,

and Bz respectively.

Let v be the temperature at (x, y, z) : then the quantity

of heat which passes through the face By Bz into the

parallelepiped during the infinitesimal time Bt is by the

preceding Article ultimately KByBz ^^k Bt, that is

uV »-— KByBz
-J-

Bt, where k is the constant which measures the

conductivity of the substance. The quantity which passes

out of the parallelepiped during the same time, through the

opposite face, will therefore ultimately be

-«8y8.&g + ^g)s^}

Thus the augmentation of heat is k Bx By Bz Bt -y-^

.

Similarly we may proceed with respect to each of the
other pairs of opposite faces. Thus on the whole the aug-

mentation of heat is k Bx By Bz Bt \-j-^ + ;j^ + jrr •

Now let T be the specific heat, cr the density of the body :

then the mass of the element is a Bx By Bz ; and the quantity

of heat acquired by the element in the time Bt is

dv
CT -r- Bt Bx By Bz^



PHYSICAL APPLICATIONS. 243

Thus finally

dv __ K (d^v d*v d%\ .-.

"^W'^d^^d?} ^^^'
dt

310. If the body is in a state of equilibrium as to

dv
temperature, then -n = 0, and we obtain

d^v d^v d^v - ^ ,^.

^'+^'+^=<> •' (2).

This important equation coincides -with that which we
obtain in treating the theory of the Potential Function^ and
which we have already noticed in Art. 167.

311. Besides the general equation (1) or (2) we may
have to satisfy special conditions relative to the surface of

the body considered.

Thus, for example, the surface of the body may be
maintained at a temperature which at any time is an as-

signed function of the coordinates of that point ; and then
V must be so taken as to have the assigned value at the

surface.

Or the space external to the body may be maintained at

a given temperature, say zero. Then let hS denote an
element of the surface of the body, hn an element of the

normal to h8 measured outwards. Let ?; denote the con-

ductivity of the surface of the body. Then the amount of

heat which passes through the area hS outwards in an
dv

element of time ht is measured by —k-j- BS Bt, and also

by rjvBSBt. Thus

'^^=-'^5;; ^^>

Equation (3) may be developed. We have

dv^_dv^dx dv dij dv dz

da dx da dy da dz da

16—2
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O.QB

Now -T- = the cosine of the angle between the normal

to the surface at {x, y, z) and the axis oi x\ so that if w =
be the equation to the surface, we have

dx_du (/duV /duV (du\X'^

dn~ dx\\dx) \dy) \dz) ]
'

Similar expressions hold for -/ and -y- .

^
^ dn an

812. The equations (1) and (3) of Arts. 309 and 311

take other forms in special cases, as we will shew in the

next two Articles.

313. Suppose we have a right circular cylinder in which

the temperature remains unchanged as long as we keep

to a straight line parallel to the axis. Take the axis of

d^v
the cylinder for the axis of z) then -rit is zero, and the

equation (1) becomes

dv _ K fd^v d\\ ,^v

di'^'^W'^'df)
^''

We may transform the variables x and y to the usual

polar variables r and 6 : and thus (4) becomes, if we assume

that V is independent of ^,

dv ^ K (d^v 1 dv\ ,j,.

Tt~'^W'^rTrJ ^^^'

The equation (3) will become

'?«+«S=*^ (^)-

This is to hold at the curved surface of the cylinder where

r has its greatest value.

314. Again let the body be a sphere, and suppose the

origin of coordinates at its centre. Assume that v is a

function of r the distance from the centre alone; then

(1) becomes

dv __ K fd^v 2 dv\ ,^v

5"^ \^'^r drj ^
^*



PHYSICAL APPLICATIONS. 245

This may be written

dt^'^^-^r-d^'''

The equation (3) will become coincident with (6) : it is

to hold at the surface of the sphere, where r has its greatest

value.

315. Let/ (a;, y, z) denote any value of v which satisfies

(2), and let c be any constant; then the surface determined
by the equation

/(a?, y, z)=c

is called an isothermal surface, being a surface every point of

which has the same temperature under the circumstances of

the problem.

The constant c is called the thermometrical parameter of

the surface. If different values are ascribed in succession to

c we obtain a. family of isothermal surfaces.

316. Suppose that the equation F(x, y, z, \)=0 re-

presents a family of isothermal surfaces, by varying the
parameter \. Suppose that two of the surfaces form the

boundaries of a solid shell, and that these two surfaces are in

contact with constant sources of heat ; then the temperature

V, and the geometrical parameter \ will have constant values

in each individual surface of the family, and will vary from
surface to surface. Thus these two quantities will be mutu-
ally related ; or we may say that v will be a function of X.

Hence we shall be able to find the condition which must
hold in order that an assigned family of surfaces may bo
isothermal.

For we have

dv

dx-

dv dX
^dKdx*

d'v

dx^-

dv d^
'dXdx^'^

d\
dk'

fdXV

and similar equations hold with respect to y and z.
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Thus equation (2) becomes

dX [dai'
"^
df

"^
dz'l

"^
dX' \[dx)

"^
[dyj

"^
[dzj

J
^ '

d\ d^ d^ dy
^ dx^ dif' dz^ d}^ ,^.

tlierefore ———-1^^———^ =-— (8).
ldX\' /dXV /dXV^

[dxj
*

[dyJ
"*

[dzJ

dv

dX

But the right-hand member is a function of X only, and
therefore the left-hand member must he a function of X only.

This is the necessary condition in order that a family

of surfaces in which X is the geometrical parameter may be

isothermal

It is also sufficient; for when it is satisfied we can de-

termine t; as a function of X from (8), and v will satisfy (2).

817. We shall now investigate by the aid of Art. 316

whether the family of ellipsoids obtained by varying X in

the following equation is isothermal

:

x?+^^:r52 + 5j3-^ = i. (9).

We have, by differentiating with respect to a?,

-y^£^=^^ (1^)^

|v + (V - hy "^ (V - cy] \ dx' ^ \dx)
J

^ r ^^x
,
(dxw .^ , fdxy 4>xxdx i .

'^y^{^d^'-^[d'x)\''^^[dx)^-^l^Tx-'^''-^^^^
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Similar formulae follow from (9) by differentiating with

respect to y and z respectively.

Square (10) and the two corresponding equations, and
add; thus

^!0-(|)'+©1^- (-)•

Again ; from (10) we have

^^S^=? (^^)-

From this and the two corresponding equations we obtain
by addition

From (11) and the two corresponding equations we obtain

by addition and the aid of (12) and (14),

^ ^ (d'\ d\ d\] 1 1

^^|^*^+^^^^II^"^v:::^»- ^^")-

From (12) and (15) we have

d\ d'^X d*X

dx^ dy'^ dz^ X, \ ,-^.

/dXV /dkV fdXV
[dj '^{dyj ^\dz)

The right-hand member is a function of \ only, and
thus the condition of Art. 316 is satisfied : hence by varying
X in (9) we obtain a family of isothermal surfaces.

318. If V denote the temperature in the case of the
preceding Article, we have by equations (8) and (16)

d^u

dX^ X X
dv^X'-b^'^xT^''
dX
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Hence, by integration,

dv

dk

d\

1^^ :7^
= constant - ^ log (V - 6') - 9 l<>g (^' - c*)

;

therefore v = k,j-

where k^^ denotes a constant.

319. In the manner of Arts. 317 and 318 we may shew
that a family of hyperboloids of one sheet represented by the

second equation of Art. 266 is isothermal ; and that the

temperature v is determined by

.=Kf-
dfi

where k^ denotes a constant.

Also a family of hyperboloids of two sheets represented

by the third equation of Art. 266 is isothermal; and the

temperature v is determined by

where k^ denotes a constant.

320. We will now obtain by a direct process the equa-

tion in polar coordinates which corresponds to (2) ; the

result will agree with the well-known transformation of (2)

:

see Differential Calculus, Art. 207.

Let r, 6,
<f)

be the usual polar coordinates ; then the known
expression for an element of volume is r^ sin 6 dr dd dcj).

Put ft>j for rdOdr, (o^ for rsm6drd(j), eo^ for r*sin 6d6d<f>.

Then eo^, co^, Wg denote ultimately the areas of the faces

of the element of volume which meet at the point (r, 0, <f>).

Let K denote the conductivity of the body, v the tem-
perature at the point (r, d, (j)).
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The quantity of heat which passes through the face

a>^ into the element during the infinitesimal time Bt is

ultimately — koj. -.—^
—yt ^^» that is . ..- ,7 Et The

•^ ^ Bind rd<f> 8m6 d6
quantity of heat which passes out of the element during the

same time through the opposite face will therefore be

ultimately — ^ /
i;/!

+ /TaS ^^ ' ^^' "^"^ ^^® augmenta-

-, ^ . Kdrddd<i> d^v ^^
tion of neat is ^

—

w-^ mOt.
sm o a<pr

Again the quantity of heat which passes through the face

o>j, into the element during the infinitesimal time ht is

dv . dv
ultimately — ko)^ —j^ ht^ that is — Kdrdcj) ^^ sin 6 Bt The

quantity of heat which passes out of the element during the

same time through the opposite face will therefore be

ultimately - k dr dcf) \-^^ sin 6 + -v^ (--^ sin djdOy Bt. Thus

the augmentation of heat is k dr dO d(f> -jn \jh^^^ ^
)
^^•

Finally the quantity of heat which passes through the

face 0)3 into the element during the infinitesimal time ht is

ultimately — ko)^ -v U, that is — «r* sin 6 dd d<f> j- U. The

quantity of heat which passes out of the element during the

same time through the opposite face will therefore be

ultimately - KsinO dO d<i> [7^^^ +^ (7^^) dr\ Bt Thus

the augmentation of heat is k sin 6 dr dd d<p -,- (
r* -%-

) Bt

Now the sum of the three augmentations must be zero

since the temperature is supposed stationary : thus

1 d*v 1 d (dv . f\,d(^dv\_
sin" Odf'^^^^ddd [dd

^'"^
^J'^drV dr) "

"*
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321. We shall finally obtain the equation corresponding
to (2) when Lamp's elliptical coordinates are employed : see

Art. 272.

We suppose that we have a set of variables a, p, y con-
nected with \, fjL, V respectively by the relations

duT" d

It may be observed that these relations are not assumed
arbitrarily, but are suggested by the process of Arts. 318
and 319. We may consider that these relations give, at

least theoretically, a, ft y in terms of \, fi, v respectively
;

and conversely that they give X, fXy v in terms of a, ft 7
respectively.

322. Let ds^ denote the length of the normal to ^S^^

intercepted between this surface and an adjacent surface

of the same family ; so that by Arts. 266 and 276 we have

then from the value of a in Art. 821 we obtain

cds^ = doL JiX'-fX'jiX'-p").

Similarly let ds^ denote the length of the normal to S^

intercepted between this surface and an adjacent surface of

the same family ; and let ds^ denote the length of the normal
to S^ intercepted between this surface and an adjacent

surface of the same family. We shall have

cds, = d^ V(V-/i-O0^^ -,;*),

cds^ = dy J{X'-p') ifji'-v').

The three normals are all supposed to be drawn from the

point (X, fjL, v).

Put ft)i for ds^ds^, ©^ for ds^ds^y 0)3 for ds^ds.^.
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Take an elementary solid which is ultimately a rect-

angular parallelepiped having Wj, o),, and «, for adjacent

faces.

The quantity of heat which passes through the face «t>j

into the element during the inhnitesimal time Bt is ulti-

mately — Ka)^ -r- Bt, that is — d^ dy (jjl* — v*) — Bu The
aSy c U/QL

quantity of heat which passes out of the element during the

same time through the opposite face will therefore be ulti-

mately — d^dy (ji* — v^ 1^ "^ ;ra ^^f ^^' ^^^s ^^® ^"S"

K d^v
mentation of heat is - dxdff&y {fM*— v*) t-^ ^t.

Proceed in the same way for the other pairs of opposite

faces ; and thus finally we obtain as the condition of station-

ary temperature
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CHAPTER XXVI.

lame's functions.

323. We are now about to introduce the student to

certain functions which we shall call Lame's Functions; their

character will be seen more distinctly as we proceed, but

in the mean time we may say that they are analogous to

Laplace's Functions, only that instead of the variables r, 6, </>

with which these functions are concerned, we now have

Lame's variables X, /t, v involved directly or indirectly.

824. Suppose an ellipsoid of which the semi-axes in

descending order of magnitude are r, /, r". Put b=>s/(y—r^),

and c=V(^ — ^"^)- It is required to determine F so that

for every point within the ellipsoid it shall satisfy the

equation

0^'-0^+(x'-.^f/+(^'-/^')^=o (1),

and moreover shall have at the surface an assigned value

which is fixed for any point but variable from point to point.

The variables a, 13, 7 are connected with \, fi, v respect-

ively by the equations

cy = cf\
^'

(2).



lame's functions. 253

Thus V may be supposed theoretically to be a function

of X, fij V or of a, ^, 7. The condition relative to the surface

which we are to satisfy may be expressed by saying that

Vi& to be equal to i^(a,y3), where i''' denotes a given function,

when \ = r, that is when a = c I
, ,_„ ^ ,

.

325. We have in the preceding Article enunciated the

problem in a purely mathematical form ; but the student

who has read Chapter xxv. will readily give to it the
additional interest of a physical application, for it amounts
to the following : the surface of an ellipsoid is retained at a
temperature which is fixed for each point but variable from
point to point, and it is required to determine the temperature
at any point in the interior of the ellipsoid in the state

of equilibrium of temperature.

326. Let us examine whether we can obtain a solution

of (1) by taking V= LMN^ where L involves a alone, M
involves /3 alone, and N involves 7 alone.

Substitute in (1), and divide by LMN; thus we get

fjL*-v'cPL X'^i/^iTM X^-A^' f^'iNT

L da!''^ M d^'^ N dy'"
^'^^•

Now we have identically

Hence if g and h be any constants

+ (v-/.')(¥-<^) = o.

327. Thus we see that equation (3) will be satisfied

if we put

d^L /AX' \
J.

d^.M ( lni\^,^N (M \ , , ,,,
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Now from (2), we have

develope this, putting }^ -^ (^ — p, and 6V = q, and treat the

other equations (4)) in a similar way ; thus we obtain

k..(5).

These three equations it will be seen are identical in

form.

328. It will be seen from the commencement of Art. 326
that we do not profess to investigate the most general solution

of (1), but only to obtain a solution. Thus guided by the
analogy of Laplace's Functions, we shall ascribe to the
ai'bitrary constant h of "equations (5) the value n(n + 1),

where w is a positive integer, and then we shall endeavour
to find a solution of any one of the three equations (5),

involving 2n + l terms ; and we shall assume the solution

to be of the degree n in the independent variable which
occurs.

329. Take then the first of equations (5), put w (n + 1)

for h, and j)^ for gc^ ; thus we have

(X'-pX^+q)g + (2V-^X)g + {pz-n(,n+l) V} i=0...(6).

We shall now examine whether this equation has a solu-

tion of the form

X = X" + k;sr-' + k^X"-*+ . . . + k^_;)C-^'^'+ A;>"-^' + (7).

Substitute this value of L in (6) ; it will be found that

the first term, which involves X""^^, vanishes of itself; and by
equating to zero the coefficient of \""'"^ we get
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+ j(n-2a + 4)(n-2a + 3)A:.^ (8).

In this equation put for s in succession the values

1, 2, 3, ... ; then observing that k^^l, and that k_^, k_^, ...

do not exist, we obtain

4{2n-S)k^=:plz-{n-2y\k^-hqn(n--l),

Q{2n-5)k^=p{z-(n--4;)']k^-\-q{n-2){n-S)k^,

and so on.

The first of these equations gives k^, and it is of the first

degree in z ; substitute the value of k^ in the second equation,

and we obtain k^, which will be of the second degree in z

;

substitute the values of k^ and k^ in the third equation, and
we obtain k^, which will be of the third degree in z; and so

on. Thus the coefficient k^ will be of the degree s in z.

But we require the series (7) to be finite, and thus the

coefficients of which k^ is the type must vanish from and
after some certain value of s. This will happen if we can
make two consecutive coefficients k^^ and k^^ vanish ; for

then by means of (8) we have k^ = 0, and also all the sub-

sequent coefficients. Thus we have two conditions to satisfy

;

one may be satisfied by properly choosing the value of z,

which is as yet undetermined ; the other may be satisfied by

taking s equal to —^— or —^— , for in this case the last

term of (8) vanishes : the former or the latter value of 5

must be taken according as ?i is even or odd.

Let then a denote the value of s which causes the last

term of (8) to vanish ; then A;^. is expressed as a multiple of

Av-i, and therefore if we take z such that k^-i vanishes, then
kg^ will also vanish.

The equation Av-i = is of the degree cr— 1 in 2, and so

has <r— 1 roots; any one of these roots may be taken: it

will be shewn hereafter that these roots are all real.
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When n is even the expression (7) contains only even

powers of \, and the last term is the constant k^-2; when n
is odd the expression contains only odd powers of \, and the

last term is ^0-2^.

830. We shall next examine whether the equation (6)

has a solution of the form L = KaJ{\^ — b^) where

X = X''' + k;>C"'+...+k^_^X'-^^' + k^_p^''-^-'' + (9).

Substitute K^/(\* — ¥) for L in (6) ; thus we obtain

+ {pz -c'- {n-l)(n + 2)\'}K= 0.

Substitute in this the value of K from (9) ; it will be
found that the first term, which involves X""^\ vanishes of

itself; and by equating to zero the coefficient of X""^*^^

we get

2s (2n + l-'2s)k^ = {pz-p{n-2s + 1)*- c*(2m -4^s + 3)1^i
+ q(n-2s+S){n- 2s-\-2)k^_^.

We then proceed to ensure that the series in (9) shall

be finite, by a method like that of Art. 329. We take

s =—
^
— if n is even, and =—;—- if n is odd. Let a denote

the value of 5 thus taken ; and let z be found from the equa-

tion k^-i = 0. Then all the coefficients in (9) from and after

ktr-i will vanish.

The equation k^r-i = is of the degree <r — 1 in ^, and so

has a — l roots ; any one of these roots may be taken : it will

be shewn hereafter that these roots are all real.

When n is even the expression (9) contains only odd
powers of X, and the last term is kfr-2^1 when n is odd the

expression contains only even powers of \, and the last term
is the constant ka—2'

331. In the manner of the preceding Article we may
also shew that the equation (6) has a solution of the form

L = K/s/{\^ — c^), where K is of the same form as in (9). We
have only to change ¥ into c^ in the investigation of the

preceding Article.
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332. Finally we shall examine whether the equation (6)

has a solution of the form L = KJ{X' — b'')(X' —c^), where

^=:^,"-»+A^^r-* + ... + ^v^""^+VI^"'^+ (lo).

Substitute AV{V^^AN^) for L in (6) ; thus we
obtain

(^^-i^^'-f^)^+(CX'-3M)^f

•^{p{z-l)- {n - 2) (/iH- 3)X^^ = 0.

Substitute in this the value of K from (10) ; it will be
found that the first term, which involves \", vanishes of

itself; and by equating to zero the coefficient of X*"^ we get

25(2n \-1^2s)k^ =p[z'-l-{n- 2s) {n-2s-\- 2)]k^_^

We then proceed to ensure that the series in (10) shall

w + 2
be finite, by the method already used. We take s = —

^

if n is even, and =—^— if n is odd. Let a denote the value

of s thus taken ; and let z be found from the equation

Av-i = 0. Then all the coefficients in (10) from and after

Av-i will vanish.

The equation h^-x — ^ is of the degree cr — 1 in 2?, and so

has cr — 1 roots ; any one of these roots may be taken : it

will be shewn hereafter that these roots are all real.

333. We may now sum up the results obtained in

Arts. 329... 332.

First suppose n even, let it be denoted by 2m. Then L
may have m + 1 values of the form discussed in Art. 32.9, and
m values of each of the forms discussed in Arts. 330, 331,

and 332 : thus on the whole there are im + 1 values, that is

2/i + 1 values.

T. 17
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Next suppose n odd, let it be denoted by 2m + 1. Then
L may have m + 1 values of each of the forms discussed in

Arts. 329, 830, and 331, and m values of the form discussed

in Art. 332 : thus on the whole there are 4m + 3 values, that
is 2/1 + 1 values.

The values ofM and N may be said to be determined by
those of L ; for by Art. 327 the same form of differential

equation applies to all three, and the value of z must be
simultaneous for the three.

334. We have still to attend to the condition relative

to the surface which is mentioned in Art. 324, and also to

shew that the equation k^-\ = which we have used has all

its roots real : these points will be considered in the next
Chapter.
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CHAPTER XXVII.

SEPARATION OF THE TERilS.

335. When a function is expanded in a series of sines or

cosines of multiple angles, the coefficient of each term can be
found separately; or at least can be expressed in the form of

a definite integral: see Integral Calculus, Chapter xiil. In
like manner when a function of one variable is expanded in

a series of Legendre's Coefficients, or a function of two
variables is expanded in a series of Laplace's Coefficients,

the coefficient of each term can be separately expressed : see

Arts. 138 and 204. The object of the present Chapter is to ob-

taiu similar results with respect to Lamp's Functions. Lame
does not attempt to give any evidence to shew that an assign-

ed function can be expanded in a series of his functions; but
assuming that such expansion is possible he shews in fact

how to determine the coefficients. Admitting, however, that

the possibility of expansion in a series of Laplace's Functions
has been established, we may by the aid of the transformations

of Chapter xxiv. grant that a similar proposition holds with
respect to Lamp's Functions.

336. In Art. 324* we have defined a, ft 7; we shall now
introduce two new symbols connected with /3 and 7. Let -cr

denote the value of /3 when ^l=^Cy and o) the value of 7 when
v = h'j so that

d/jk [^ dv
'j ,

-- , <y = c

We shall now demonstrate two important propositions re-

lating to the limiting values of fi and v,

17—2
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837. At the limits and -sr for jS we have either 31= 0,

dM -

°'
~d0 =

^-

The values of ifmay be inferred from those of L ; and by
Arts. 329...332 there are four forms to be considered.

I. See Art. 32.9. When /8 = we have fi = h- and

,^ ^ da ^ J . dM dMdfi , dM _

therefore -^ = : and smce -^ = -^—7-^ we have -77^ = 0.
djS dl3 dfi djS djS

Similarly when yS = -CT we have //. = c; and therefore -jj^—^'i

' and therefore —rj^ = 0.
d(3

11 See Art. 330. When yS=0 we have /a = 6; and
therefore ilf = 0. When /3 = -cr we have fju = c; and therefore

-T-, = ; and therefore -7-?^ =0.
djS ' d^

III. See Art. 331. Here when y8 = we have ^^ = 0,
d/3

and when /3 = ot we have 2/= 0.

IV. See Art. 832. Here we have M=0, both when
yS = and when y8 = ot.

338. At the limits and co for 7 we have either N=
dN „

or -^ = 0.
ay

I. See Art. 329. When 7 = we have z^ = ; and then
dJ^

i\r=:0 if 71 be odd, and -^ = if ?i be even: in the latter
av

case since -,- = we have also -,— = 0. When 7 = 0) we
dp a<y

'

liLve v=^h\ and therefore ^- = ; and therefore -r- = 0.
dy ' dy

II. See Art. 330. When 7 = we have A^=0 if n be
dN

' even, and -p = if ?z be odd. When 7 = o) we have ^= 0.
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III. See Art. 331. When 7 = we have N= if w be

eveu, and— = if n be odd. When 7= o we have , = 0.
' dy ' dy

IV. See Art. 332. When 7 = we have N=0 if n be
dN

odd, and —r- = if n be even. When 7 = « we have N=: 0.
dy

339. Let M and M' denote two different expressions of

the same forrriy out of the four forms considered in Art. 337;

then M -r?^- —M ..^ vanishes both when B = and when
dp dp

P^'UT. This follows from Art. 337.

340. Let N and N' denote two different expressions of

the same form, out of the four forms considered in Art. 338

;

and let n and n be the corresponding exponents; then

N -, N' —r- vanishes both when 7 = and when y — (o,

dy dy
provided n and n are both even or both odd. This follows

from Art. 338.

341. We can now establish the proposition that the roots

of the equations in z obtained in Arts. 829...332 are all real.

For take any one of the equations, and suppose if pos-

sible that it has a root 5"+ f' V— 1; then since the coefficients

of the equation are all real, there must also exist the root

?.— ?' ^— 1. We may suppose that in M we put the former
root, and in M' the latter root. Suppose then that M takes

the form Z+ Z' V^, then M' will take the form Z-Z sl-i.

Substitute these values of M and M' in the expression of

Art. 339; then it reduces to f Z' -7-5 — ^-^^ J
V— 1; hence

Z' T^ — Z ,^j- must vanish both when ^ = and when ^ = tr.

Now the value of M must verify the second of the dif-

ferential equations (4) of Art. 327 when we put w (n + 1) for

hj and ~, that is (l +-5) «, for g. Thus we obtain
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^Z d'Z' ,-~

= {(l +3 (? + rV^) -n[n^l)
^]

(Z+ Z'J~1).

Change the sign of v — 1 and we obtain the equation
which M' must satisfy. Then from the two equations by
addition and subtraction we obtain

Multiply the former by Z* , and the latter by Z, and sub-

tract ; thus

Multiply both members of this equation by J/5, and inte-

grate between the limits and ct. Then the left-hand member

vanishes, because the indefinite integral Z' -tt.—Z -j^c

vanishes at both limits. Therefore

this is impossible unless ?' = 0, because every element of the

definite integral is positive.

842. We shall now advert to the condition relative to

the surface which is mentioned in Art. 324.

The process which we have given leads us to express V
by an aggregate of terms each of the type LMN\ each term
may also be furnished with an arbitrary constant as a multi-

plier. Now at the surface the value of \ is given, so that

the term L becomes constant. Hence in fact we have to

satisfy a condition which may be expressed thus

F{p, i) = CMN+ C'MN' + C"M'N"'\- (1),
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where M, M, AT', ,.. K, N", N", ... are terms of the nature

indicated in Art. 333; and G, C, C'\ ... are arbitrary

constants. On the right-hand side of (1) we have 2n -f 1

different terms for every value of n.

We shall shew how the values of the arbitrary constants

may be determined. The essential part of the process is a

proposition analogous to that of Art. 187, which we shall

now give.

34)3. Let M and N be two expressions of the nature

indicated in Art. 333, and let them correspond to the values n
and z ; similarly let M' and N' be two other expressions of

the same form as M and N respectively, and let them cor-

respond to the values n and 2'; then will

rHfj.' - v") MM'NN'dpdy = ;

•'0 •'0

n and n being supposed both odd or both even.

Wehave ^={^^(7^ + l) J- (l+ Q^jiV,

d'N'

df
= {„'(«'+ l)J-(n-g.ji^'

;

hence N^-N'^^
dY drf

= (1 +^1 + ^)
(2

-

z) NN' -{n{n + l)- n' [n' +
1)} ^]NN'

.

Multiply by dy and integrate between the limits and w

;

the left-hand member vanishes because the indefinite integral

dN' dNN-y iV'
-J-

vanishes at both limits by Art. 340. Thus

the right-hand member vanishes ; and therefore

[n {ji + 1) - n' {n + 1)} i v*NN'dy

= {}}^c'){z-z')f^'N'dy (2).
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In a similar manner we may shew that

{n{n + l)-n'{n'+l)]f fiWM'd^
Jo

= {If + c') [z - z') rMM'dp (3)

.

•^

If neither n (n + 1) — ti' {n + 1) nor z — z is zero, we
obtain by cross multiplication

[ rfi'MM'NN'dpdy = rfv'MM'NN'd^dy
;

and therefore [ Hfju'-v') MAfNN'd^dy = (4).
•^ ''0

If however n(ii + l) —7i (n +1) is zero but z—z is not

zero ; then we have from (2) and (3)

rNN'dy=^0,
I
MM'dp = 0.

Hence

[ NN'dy
f

fi-MM'dp - rMM'd^ ^v'NN'dy = ;

''O •^0 *'o *^0

and thus we again arrive at (4).

Finally, if ^ - ^' is zero but n{n-\-l) — n {n + 1) is not
zero, we have from (2) and (3)

fv'NN'dy = 0, r^i'MM'dP = ;

•'0 ^0

and as before we again arrive at (4).

Thus (4) holds universally except in the case where we
have simultaneously n = n\ and z — z,

844. It appears from Art. 337 that in two out of the
four forms M vanishes when /3 = 0, and in the other two forms

T^ vanishes when ^=0: in the first case M must be an odd

function of ^, and in the second an even function.
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It appears also from Art. 338 that in two out of the four

forms N vanishes when 7 = 0, and in the other two forms

-7— vanishes when 7 = 0: in the first case N must be an odd
ay
function of 7, and in the second an even function. If n be
odd the forms I. and IV. make N odd, and the forms II. and
III. make it even. If n be even this is to be reversed.

This leads us to break up our equation (1) into four parts.

345. Let if 08, 7) =/,(A7) +U0,y) +.m 7) +/.(/3. 7)
where f^[^,y) denotes an expression which is even with
respect both to ^ and 7; fJ0,y) an expression which is even
with respect to ^ and odd with respect to 7; j/^(^, 7) a func-

tion which is odd with respect to /S and even with respect

to 7 ; and f^ (ft 7) a function which is odd with respect both
to $ and 7.

Then the terms on the right-hand side of (1) must admit
of a similar distinction ; so that the equation resolves itself

into four, of which the type will be

/(ft ry) = Cj\m+ C'M'N' + C'M'N" + (5),

where /(/9, 7) may denote any one of the four terms/, (ft 7),

J^(A7)^ /sCAt)' ./4(A7) ; and the terms on the right-hand

are all of the same kind as /(ft 7) ; thus N, N\ N", ... are

all odd or all even functions of 7.

Now to determine C; multiply both sides of (5) by
(jjl^— v^)MNdPd'y, and integrate between the limits and ct

for ft and and co for 7. Then by equation (4) all the terms
on the right-hand side vanish except that involving (7; and
we obtain

CrrM'N'{l.'-v)d^dy=r['f{fi,i)MN{lJ^-v')d^dy.
J J

_
»'0*'0

This theoretically determines C. In like manner C, C'\.. .

may be determined.

We proceed to discuss the value of

»' *'
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846. We have by Art. 324,

c ^''-JW^^uji^^r

By differentiating these we get

c^5 = -V+(^''+^)y^

(6).

df
2v'-{v+e)v

(7).

Now, m being any positive integer, multiply the first of

equations (7) by /A^"-^Vy8, and integrate between and -sr

;

thus

c'
f

/^'"''^ (^/3 = - 2 [V"''''^/^ + (^' + (^) r fj^'"'^'d^..-{S).

By integration by parts we have

When y8 = we have /^ = 6, and when /S — ^ we have

/x = c ; hence we see by (6) that -7^ vanishes at both limits,

so that from (8) and (9) we get

dfjL
d/3 =

2[ fjL'"'^'d^-{c'+h')rfi'"'^dfi (10).

Substitute for I

-7^ J
its value from (6) ; thus we get

(2m + 3) [V"''^/3 = (2^ + 2) (c'^ + ¥) f
V""^^/?

./o ''0

-.(2w + l)cV[ fi'^'d/S (11).
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(12).

Treat the second equation (7) in the same manner as we

have treated the first ; thus we get if ^ = -

(2m + 3) fv^'^dy = (2m + 2) c' (1 + k') [ v^'^'^dy

-(2m + l)cV/'Vrfy...
J Q

Put [ fi'd0 = u,
f

v^dy = v;
J •'o

then if we take m = in (11) and (12), we get

fv'dy =
I

c» (1 + A;') V -
I

c'k'ay.

Then in (11) and (12) put for m in succession the values

1, 2, 3, ... ; thus we shall obtain

J Q

Jo

(13),

where P and Q are integral functions of k\

Now M* is some function of fi^, and N^ of y^
; and there-

fore by the equation (13) we get

rM'dp=Gu^-HvT,
Jo

rii'dy^^Gv + Hco;

(14).

where G and H are integral functions of k^ and c* and of the
coefficients ofM or i\^.
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And in the same manner we get

r v'N'dy = G^v + E^co
Jo J

From (14) and (15) we get

rTlPNyd^dy ={Gv + Ila^)
( G,u + R^T^l

'^ J

j'^TlPN'p'd^dy = {Gu+E'^){G^v + E^co)

;

" -^

then r rJlPN' ifi'
- v') dl3dy={ G,E - GE^) {uco - vr^r)

•J "J

But WO) — -^^=1 I {fjb^-v^)dl3dy;
•^ ft •' n

and by Art. 277 this = c^
TT

Thus finally

J J

TT .

where the multiplier of ^ is an integral function of c^, h^,

and the coeffxcients ofM or N.
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CHAPTER XXVIIT.

SPECIAL CASES.

347. It must be observed that the formulge which we
gave in Chapter xxi. are not applicable to the case in which

6 = c, nor to the case in which b=0.

For since fi^ is supposed to lie between 1/ and c\ when

h = c the values of y and z take the form ^ . And if 6 =

then V also = 0, and the values of x and y take the form - .

Now the advantage of the formulae already used is that

they enable us to solve problems in which the general

enunciation is accompanied by some special condition which
is to hold at the surface of an ellipsoid; but when that

ellipsoid becomes one of revolution, we have either 6 = c,

or 6 = ; and hence the investigations hitherto given become
inadmissible.

Lamd accordingly supplies special investigations, which
are applicable to the case in which the problems are modified

by reference.to an ellipsoid of revolution instead of a general

ellipsoid : these special cases are also treated by Mathieu
in the work cited in Art. 265 ; his method is not identical

with Lamp's. These special investigations however add
nothing of importance to the analytical results already given

;

and wo shall accordingly confine ourselves to a few para-

graphs giving the method of Mathieu.
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348. In order to obtain formulas which shall be uni-

versally applicable, let us introduce two angles (j> and '^,

connected with Lamp's variables by the relations

fi = \/(c^ sin^ <f>-\-h^ cos* <^), v^h cos "^

;

hence ^l{¥ -v^ = h sin ^jr, V(/^' - h') = ^[c' - ¥) sin ^,

^{C' - fx') = V(C' - y") cos ^, V(C' - V') = V/(C* - ¥ COS*f).

Thus Ave have for x, y, z by Art. 271 the expressions

XCOS'xlr ,/ 2 • 2 » 72 2 INX = V(c sm* (j) + Jr cos* (p),
c

y = fji^— y^) sin ifr sin ^,

/ /> 2 2\ . s/ic^ — h^ cos' 1^)
2; = V^(\^

- c*) cos ^ ^-^
,

c

These formulae are universally applicable.

If h = c, they become

x = \ cos i/r, y = ^(\^— c*) siu "^ siu ^, s = ;/(\*— c*) sin1^ cos
(f).

If J = 0, they beconae

a; = X cos -^ sin (^, 3/ = X sin -^ sin <^, z = s/(^ — (^) coh ^,

349. It is easy to transform the differential equations

which are given in Art. 327 for M and N.

The equation for M may be written

We have JT^^J^^'^= Vjc"- («'- ?>') cos* ^}^

;

and thus we shall obtain the equation

{c* - (c* - ¥) cos* ^1^+ (c* - 2'') sin <^ cos ^
- {A (c* - 2.*) cos* ^ - (A - ^) c'} Jf= 0.
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In like manner the equation for N may be transformed

into

(c*— 6' cos' yjr)
., + Z>' sin yjr cosyjr -., — (Iih^cos'yjr-gc^) N= 0.

The simpler forms which these equations assume when
h = Cf and when h—0, can now be readily obtained.

350. We will give finally an investigation which in-

directly establishes the transformation of Art. 303, though
not in a very rigorous manner.

We have by Art. 327

Multiply the first equation by N, and the second by J/,

and add ; then putting F for MN we have

(1).

d'Fd'Fh

Here ^ and 7 are known theoretically as functions of fi

and V respectively; we propose to transform (1) by the

relations

J- = cos 9 sm d

V?3 fi**Jc*

c^c*-b^

= sin (j) sin 6

= cos^

(2).

Instead however of effecting the transformation directly

as in Chapter' xxiv. we will adopt an indirect process.

Let us suppose that instead of the variables which occur

in (1) we substitute a corresponding system in which ac-

cented letters are used to denote quantities analogous to

those in (1). Moreover, let us assume consistently with (2)
that
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t^=(i, .^^djl^>i£^Jjl^J£El
(3).

he he bjc'-b' Vjc'-^-b'i ^
-'

We have also

cd/j. ,„ cdv ,

' ' /;/2 "2 / /«? i-y I

Now suppose V and c proportional to h and c, so that

^' = 1

Denote this ratio by a ; then

0- = - = - = ^^^'^^

Hence we shall get from (3)

~IJ,V =
1 , ,

>

and /t' + v' =-l^i^-
'+"'0;

therefore
• 1 ,

V =
1 ,

dp = dp, di== dy.

Hence (1) becomes

d?F d'F
d^^'^dy'"'^

7'^"--v')F=^0 (4).

Hence, without interfering with the final transformation
by the aid of (2), we may change b and c respectively into
b' and c, where b' and c may be as small as we please, pro-

vided only -f = -' So that we may ultimately suppose b

and c to vanish.
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Thus the transformation of (1) by the aid of (2) will l>e

fully effected if we ascertain what (1) becomes consistently

with (2) when h and c are supposed ultimately to vanish.

Now we have in general

<,_,f d,^
.

/• rf/t . _ !' dn

then ^ = k — 7}, and k is a constant, so that

When b is very small we may assume consistently with (2)

p = bcosfj>, fi = c sin 6;

[i c cos Ode fi dO
therefore ^ = c -r--

—
n a — I

•

J Q c smO cosd J g sin a

drj 1
Hence

Also
dv

2

d'F . . d f
. ^dl

d'F d^F

Thus '44r = sin ^ -^ f sin ^ -^ j

,

and therefore when h is indefinitely small (1) becomes

This equation does not involve c, and therefore remains

the same when we suppose c = 0. Thus we have the required

transformation,

T. 18
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CHAPTER XXIX.

MISCELLANEOUS PROPOSITIONS.

851. In Art. 296 we introduced certain auxiliary varia-

bles a, /3, 7, connected respectively with the original variables

\, fi, V. We may observe that these auxiliary variables can

be made to depend upon elliptic functions.

852. For begin with 7 ; we have

dv

i-

Assume v = h sin yjr; thus

^ C^ dy\r

~JoJl-k'sm'f' .

where k = -.
c

Thus k is the modulus, and i/r the amplitude of 7, which
is an elliptic function of the first kind ; see Integral Calculus,

Chapter X.

Let ft) have the meaning assigned in Art. 836 ; so that co

is the value of 7 when v has the value 6. Then, as v is sup-

posed to vary between — h and h, we have 7 varying between
— ft) and ft).
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353. In the notation of elliptic functions the relation

1/ = i sin >/r may be expressed thus •

i; = 5 sin am
('•D-

that is, ^ is the sine of the angle which is the amplitude

of 7 corresponding to the modulus -

.

c

Then »J(b^—v^ = h cos am (y, -
J

; and

7c*-V =cy l-^ =cyi-^p = cy^l-^sin«^:

the last result is usually expressed thus

Jc* — v' = cA am (7, -
) •

354. Next consider the equation

Assume Jc^ — fi^= <r, Jo* — 6* = h ; and then we shall have

Hence, by integration,

c , + c
,

—
,

= constant.

To determine the constant, we observe that for /i = c

we have a—O; so that the constant becomes the ct of

Art. 33G. Hence from the preceding equation we have

r*' da^

18-2
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and then as in Arts. 352 and 353 we get

G- = A sin am ( -cr — /3, -J

.

Thus a- may be considered known in terms of /3; and

then fly V/x'^ — b^i and Vc^ —
fjj"
may also be considered known.

For we have

Vc'' — fj,^== h sin am (
ct — ^, -

J

,

V//,^ —b^=h cos am I'cr — 13, -j,

fjb= c A am I'UT — fi,
-]

,

355. Finally, consider the equation

Assume X = — : then we shall have
T

T T '

therefore

Hence, by integration,

[^ dX t^ dr
, ^

c ,

—
, + c ,

= constant.

To determine the constant put \ = c, then the first in-

tegral vanishes and the second becomes co; so that the

constant is equal to (o. Hence

r^ dr
a = co—c\

,

From this formula we deduce

T = J sin am
{"-"'-J'
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c

277

\ =
sin am (to — a, k)*

/ri—12 _ c A a«i (ft) — Oyk)

Sin am (w — a, k)

f~-^ J c cos am (o) — a, k)
V A, — C = —: 7 TT~ j

Sin aw (a> — a, A;)

where ^ is put for -

.

356. The results of Art. 354 and 355 may be put in

a more convenient form by the aid of certain elementary

formulae in elliptic integrals. Thus take the notation of

Art. 355, and assume that the modulus is k throughout,

which will save the trouble of repeating it. We have

sin am (o) — a) =
cos am a

A am a

cos am (q) — a) = Vl — k^
sm am a

A am a

A am (ft) — a) =
Vl-A:"

(1).

A am a

Thus the results of Art 355 may be written

c Aama
X =

vV-6"^

^--0" =

cos am a

cos am a
'

N^^-W sin am a

cos am OL

357. To prove the formulae (1) we observe that by the
fundamental property of Elliptic Functions explained in the
Integral CoIcuIilSj Chap, x., if we have

Jo Vl-i'sinV Jo Vl-i'sin"^ Jo Vl-jfc"sinV
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then 6, ^ and fjb are connected in the manner which may be
expressed by any one of the following equations,

cos 6 coscj) — sin 6 sin ^ Jl — F sin'"* //, = cos/i,i

cos ^ cos /* + sin ^ sin /^ Vl — Ar'sin'^ ^ = cos^,> (3).

cos ^ cos /A + sin 6 sin fijl — k^ sin' ^ = cos </>J

The modulus being supposed to be h throughout, let

= am u, and ^ = am v
;

then (2) gives

fx=i am {u + v).

Thus equations (3) may be expressed as follows,

cosam(u+v) = cosam u cosam v— sinamu sinam vAam (u+v) "j

cosamw= cosam t; cosam ('M+v)+ sinamv sinam(w4-v)Aamw>

cosam i;= cosamw cos am(w+i;)+ sinamw sinam (i^+v)Aam?;

J

(4).

Suppose that /a = ^ T then
( , T. f^ becomes the

^ Jo vl — a: sm i/r

ft) of Art. 336 ; also sin am (u + v) =1^ and cos am {u + v) = 0.

Thus the second of equations (4) gives

cos am u = sin am v A am u (5),

This coincides with the first of equations (1), for we may
put a for Uj and then (2) gives t? = « — a.

Again, supposing still that fi = -^ , the first of equations

(4) gives

cos am u cos am v = sin am u sin am v Jl — /c'

;

divide this by (5) ; thus

sin amu\/l— k^ ,^.cosamv= • r (6).A amu ^
'

This coincides with the second of equations (2).
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Finally, square the first of equations (1), and multiply by
1 — k^; then square the second of equations (1) ; add the two
results and extract the square root, and we obtain the third

of equations (1).

358. In like manner the results of Art. 354 may be
modified in form by the use of equations like (1) of Art. 356.

359. In the results of Art. 353 we see that v is expressed

in terms of a sine, and so may be regarded as an odd function

of 7 ; while V6* — u* and Vc^ — v* may be regarded as even

functions of 7. Again, in the results of Art. 354 when we
use equations like (1), we shall see in like manner that

V/A* — b* may be regarded as an odd function of y9 ; while

Vc*— fjL^ and fi may be regarded as even functions of y8. Finally

in the results of Art. 355, as modified in Art. 356, we see

that VX'* — c" may be regarded as an odd function of a, while

X and *^\^ — P may be regarded as even functions of a.

360. As an example of the values of the auxiliary

variables a, ft 7 at special points, consider the ellipsoid

represented by the first equation of Art. 266. At all points

of the surface of the ellipsoid X has the same value, and so

a will have the same numerical value.

At the ends of the major axis we have y3 = + -cr, and
7 = + o) ; the upper signs belonging to one end and the lower

to the other. At the ends of the mean axis we have /3 = + ct,

and 7 = 0: the upper signs belonging to one end, and the

lower to the other. At the ends of the least axis we have

ft = and 7 = 0. See Art. 267.

361. We shall not enter here further into the considera-

tion of Elliptic Functions ; we may observe that the first of

Lamp's works, cited in Art. 266, is much concerned with this

department of analysis, but by no means supersedes the
necessity of studying the systematic treatises an the subject.

362. In Art. 326 we do not profess to obtain the most
general solution of a certain differential equation, but only
a solution. Also when we treated one of the differential

equations of Art. 327 we did not seek the most general
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solution, but only obtained a solution. In this latter case

however it is easy to complete the process, at least theoreti-

cally, and thus to obtain the most general solution.

For let L denote one solution of the differential equation

g = {„(„ + l)^^,}x (7),

and let 8 denote a second solution ; so that

g={n(» + l)^-^}^ (8).

From (7) and (8) we obtain

d'S „d'L

therefore, by integration.

L -, S -r = C,. a. constant.
eta doL ^

Divide by L\ and integrate ; thus

fdoi
S = ^.^/? (9).

Thus the solution of (7) may be given in the form
CdoL

CJj I Y^ + C^L, where G^ is another constant; and as there

are here two arbitrary constants this is the general solution.

863. Lam^ tacitly assumes that for the solution of his

problem we must put (7^ = 0. Mathieu gives on his page 255
a reason for this. We have

li'h
'^^

.......(10).
ZV(V-6'0(V~cO

Now corresponding to a = we have X = c ; and then the
first surface of Art. 266 degenerates from an ellipsoid to thoi

area on the plane of [x, y) bounded by the ellipse

? + o--V=l '^")-
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The value of V ought to dififer very little for two points

which are very near the area bounded by the ellipse (11),

one point being on one side of the plane (x, y), and the other

on the other. But the formula in (10) changes sign with a,

for it changes sign with Va," — c" ; and thus V would differ

to a finite extent for two such points though indefinitely

close.

Hence for the solution of Lamp's problem we must put

364. But for the solution of other problems it might
happen that we must put (7, = 0. Suppose for instance we
want to find the potential of the ellipsoid defined by the

first equation of Art. 266 for all external points. Then for

all such points the equation (1) of Art. 324 must hold with
respect to the potential V. Moreover for points at an in-

definitely great distance from the ellipsoid the potential

must vanish. Now when X is very great we find that the L
of equation (9) or (10) varies approximately as \", and then

X / V2 will vary approximately as — ^j. It is obvious there-

fore that the potential cannot involve the term G^L, though

it may involve the term C^L I ^ ,

.

365. In Art. 341 we have shewn that all the values of z

are real ; this result can also be deduced readily from equa-
tion (4) of Art. 343, as by Mathieu on his page 265.

For if possible let f+f'V— 1 denote a value of z; let

M^ + i/j V— 1 denote the corresponding value of i/, and

N'^ + iV'a ^"" 1 *^^* of N. Then there must also be a value

f-^V-1 of z, and we may take for M' the value M^-M^ V^l,

and for N' the value ^^-iV, V^. Thus (4) of Art. 343
becomes

JO Jo
+ M,')(]Sr^'-{-N,')(fj,'-p')dffdy = 0;

but this is obviously impossible, for /** is greater than p', so

that every element of the integral is positive.
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366. If we compare equation (4) of Art. 343 with the
corresponding equation respecting Laplace's coefficients,

which is given in Art. 187, we shall be led to anticipate

that (yL6^ — v^) d/Sdy is the variable part of the transformation
of smOdddcf). This is easily verified. For we know by the

Integral Calculus, Art. 246, that dOdcf) transforms to

fde d6 dd d6\ j^j
fly djS dp dy

Now by Art. 303 we have -,- ^ - -77, -^^
•^ dy d/S d/S dy

J/.^(6^-.^)(c^-.^)
+ .^(/.^-6=)(c^-/.=)}

c''sin6'(/xV-6V)

c'sinl9(/^V-^.V) c'sine'

so that c^ sm6dddcj) is equivalent to {/m^ — v^) dj3dy.

367. It ought to be remarked that the notation of the

present volume is not coincident with Lame's ';' for English

readers would be displeased with his neglect of symmetry.
The following table will exhibit the principal changes which
have been made ; the first column contains the symbols of

the present volume, and the second column Lames corre-

sponding symbols,

X, fl, V p, fly P

a, A 7 % /^> a

L, M, N B, M, JSr

368. In Chapter xxvi. we have investigated Lamp's re-

sults independently as he does himself; they might however
have been derived from Laplace's results, by the aid of the

transformation of Chapter xxiv. Heine pays some attention

to this mode of derivation ; I may remark that he states on
his page 207 the result obtained in Chapter xxiv. without

reference to a place where it is worked out, or any warning

of the length of the necessary process.
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Lam(^ says on his page 196 with respect to liis indepen-
dent treatment : Facilement applicable k tout autre syst^mo
de coordonndes curvilignes, cette m^thode directe a 1*inap-

preciable avantage d'^viter tout passage par Tantique syst^me
des coordonn^es rectilignes : instrument ddsormais impuissant
et st(^rile, dont I'emploi abusif sera plutot un obstacle

(]u'un secours pour les progr^s futurs des diverses branches
de la physique math(^matique. It may however be doubted
whether Lame's opinion of his own methods as compared with
those of his predecessors is not too favourable.
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CHAPTER XXX.

DEFINITION OF BESSEL's FUNCTIONS.

369. The functions we are now about to consider were
formally introduced to the attention of mathematicians by
the distinguished astronomer Bessel, in a memoir published
in 1824 in the Transactions of the Berlin Academy. They
have since been the subject of investigations in various

memoirs, and have been discussed in two special treatises

which have the following titles: Theorie der BesseVschen

Functionen . . . Yon Carl Neumann, Leipzig 1867; Studien
uber die BesseVschen Functionen, von Dr Eugen Lommel,
Leipzig 1868. These two treatises supply references to

various memoirs on the subject.

In the present and following Chapters we shall give all

the most important theorems relating to these functions.

870. If we seek for a series proceeding according to ascend-

ing powers of x, which satisfies the differential equation

I 1 du /^ n^\ ^ ,^.d^u . 1 du

dx'

we obtain

{1-...^+
\ 2 (2n + 2) ^ 2 . 4 (2/i + 2) {2n + 4)

+ ...
2 . 4 . 6 (2/1 + 2) (2?i + 4) {2n + 6)

where C is an arbitrary constant.
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If we suppose n a positive integer, and ascribe to C the

value -^^^ , the expression is called BesseVa Function, and is

denoted by J^{x), so that

S^jnl 2(2n+ 2) ' 2.4 (2w + 2) (2n + 4)

" 2.4.6(2n + 2)(2?i + 4.)(2/i + U)
"^ — |

•••(2)-

The series within the brackets is always convergent; see

Algebra, Art. 559.

Or, taking a somewhat more general view, let us ascribe

to the constant C the value ^-t,,
—-t\ ; this will agree with

2"r(n + l)' ^

the former when n is a positive integer, and will be real and
finite, whatever n may be, provided w + 1 be positive. Thus
we have

2.4(2n + 2)(27i + 4)

m-)-} (3)-
2.4.6(2w + 2)(271 + 4)(2j

This then is the definition of BesseFs Function, ?i being

any real quantity algebraically greater than — 1, and a? any
real quantity.

The student is supposed to be acquainted with the pro-

perties of the Gamma Function : see Integral Calculus,

Chapter xii.

371. We may also express Bessel's Function in the

following manner by a definite integral for any value of n

which is algebraically greater than — ^ :

J^{x) = —— I cos {x COS </)) sin"* (^ (70... (4).
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a? x*" 0^
For cos {x cos ^) = 1 — T^ cos^ ^ + -rjcos^ ^ ~~

IT
^^^ ^ + •••

>

and thus the general term under the integral sign may be

denoted by

Put cos' ^ = t', thus we get

["cos^"* (j) sin'" ^ J^ = 2 f " cos'"* ^ sin'^" ^ d<f>

Jo Jo

T(n + m + 1)

(2m-l)(2m-8)...irgr(^+|)

""2'"(?i + m)(7i-t-m-l)...(/i + l)r (n + 1)*

Thus the general term on the right-hand side of (4)

becomes

/•I 2tn-l !!. -

^'^ (1-0 ' ^^=='

2^^2.4. ..2m 2"(n + m)(7i + m-l)...(7i + l)r(w + l)
'

and this coincides with the general term in (3),

372. We may also express Bessel's Function in another

manner by a definite integral, for any positive integral value

of n, thus

:

1 T'^

J"^(if) = - cos (w^ — a; sin ^) (?</) (5).

For this expression

= — I {cos n^ cos {x sin ^) + sin nj> sin (a? sin ^)] t?(/)

;

it is necessary to treat separately the cases of n odd and n
even.
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First suppose n even ; then I sin rufi sin {x sin <^) d(f> van-

ishes. For by changing ^ into tt — </>' we have

I
sin w<^ sin (x sin </>) J<^ = I sin n (tt — ^') sin (a; sin

(f>)
dj)

Jo •'

= — cos nir I sin n^' sin (a; sin <^') d(j>'

•'0

= — / sin w^ sin {x sin ^) c?(^

;

thus 2 / sin n^ sin (a? sin <^) d<f> = 0.

•'o

Hence the proposed definite integral reduces to

If
-

I
cos n6 cos (a; sin 6) dS,

J ^r. If'' , fi ir*sin''<f)
,
a;*sin*<^

and this =- cosw0-^l i«—'-H ,,—^— ...

TTJo ^
[ [2 |4

(-ira;'"sin*"j) )

|2m "
j

^'

Now let the powers of sin <^ be expressed in terms of

cosines of multiples of (j> by the formula

2""-' (- !)" sin*^
(f>
= cos 2m(^ - 2m cos (2m - 2) <^

,
2m(2m — 1) .^ .. ,+ .

^
^ cos (2m — 4) </> — ...

;

then if there be a term which involves cos n(j) there will be a

corresponding term in / cos n<p sin**"
(f) d(f>, and no other. In

this way we obtain the required result.

Next suppose n odd ; then I cos n^ cos {x sin <^) d<^ van-

ishes. For by changing j> into tt — <^ we have
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1 COS rKJ) cos {os sin ^)d<j)= cos w (tt - ^') cos {x sin
<f)')

dcj)'
J Jo

= cos TiTT I COS n(f>' COS (a? sin ^') J^'

= — I COS w0 COS (x sin ^) c^<^

;

thus *2
I cos w0 cos (w sin ^) c?^ = 0.
^

Hence the proposed definite integral reduces to

1 /-T
.

- I sin n<l> sin (a; sin (p) d(f>,

, ,, . 1 r . , r . , ic' sin' <f>

and this = -
| sm n© -^ oj sm 6 r-—^ + . .

.

.
ttJo I

^
|3

+
|2^ + 1 ^ +-}#-

Now let the powers^ of sin <^ be expressed in terms of

sines of multiples of ^ by the formula

2'"''(-l)'"sin''"-''</> = sin(2m+l)^ - (2m+l) sin(2m-l)0+...
;

then proceeding as before we obtain the required result.

373. We may observe that for the case in which n is a
positive integer the formula of Art. 371 may be deduced from

that of Art. 372.

First suppose n even ; then by Art. 372

1 f""
J^{x^=- \ cos w</) cos {x sin ^) d^.

Change ^ into « + ^'j ^^^^ ^® S^^

IT

J^ {x) = - COS -^ I ^ cos nj> cos (ic cos ^') c7<^'
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= — COS -^ I COS n<t> cos {x cos <^') d(j>'

= — cos ^.-
I

cos n<l>' cos (a; cos <^') cZ<^'

;

see Integral Calculus, Art. 42.

But by Jacobi's Formula, given in Differential Calculus,

Art. 370, if ^ = cos </>', then

Therefore if /(co3</)') denote any function of cos </>', we
have

I /(cos </>') cos ?2(/)' cZ<^'

J Q

integrate by parts n times in succession, and we finally

obtain

j"7(cos 4,') COS»f#' = 1. 3. 5..^(2« -!;
//"'(') '''''" *''^*'-

Put /(cos </)') = COS {x COS (/)') ; then

f^*\t) = a;" COS [ic COS (/>' +— j
= ic" cos cos (x cos </>').

Thus cT. (x) =—=-—^

—

rr: 7T cos (x COS 6') sin"* 6' deb',^ ' TT. 1.3.0... (271 — l)j,, ^
^'' r r>

which agrees with equation (4).

Next suppose n odd ; then by Art. 372

1 rir
,

J,^(x) = —
I

sin 72 (^ sin (a; sin </>) c?</).

Change (/> into
,, + c^' ; thus we get

T. 19
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J^ (a;) = - sin -^ cos n<j)' sin (x cos <^') ^^'

tr

—r-
)

COS w<^' sin (a; cos ^') d(^'

TITT f^
sin -^ cos n<^' sin (a? cos

(f>')
d(j)\

Then use Jacobi's formula as before, and we arrive at the

same result.

374. In equation (4) put z for cos (p ; thus Ave obtain

Jn {X) =4- 7 TT r COS izx) (l-^f'^dz...(&).

375. In the expression just obtained put 1 — v for z
i

thus

1 of* r^

now co^[x{l-v)]{v{2-v)f~^dv =
''

/•2 /•2

I cos(ici;){^j(2-'y)}^"i6?v+sin^| sin(a;!;){v(2-'y)}^~^c^v.
•/ •'0

cos a;

If we expand cos (xv) and sin {xv) in powers of xv we
obtain expressions to integrate of which the general type is

rv'^lv(2-v)}''-"^dv.
J

Put 22/ for v; thus we get 2'"-''" ['3/"^+"-^ (1 -2/)^-^y,
•'0

tliat is r(m + 2n + l)
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1 a;"

Thus J",^ [x) = -
f=
— =- ((7co8a;+ ^sina;), where

C=
r(2/i+i) |2 r(2 + 2/i + i)

+"

;S'=a;

|4_ r (4 + 2/1 + 1)

r(i + 2/n-i)

^,
2-3r(3^.-^|)r(n+|)

[3 r(3 + 27i+l)

^i
2'-'r(5 + »» + |)r(n +

|)

We may change the expressions for C and S, since

r(^+.+|)r(. +
|)

r (/yi + 2/z + 1)

^;«+n-^](m + 7i--^)-(^+|)r(n + |)r(n +
|)

""

(/yi + 2/0 (?/t + 2/1 - 1) . . . (2« + 1) r (2/i + 1)
'

and r (2/1 + 1) = 4- r fn + ^) T (n + 1), {Inteoral Calculus,

Art. 267).

19—2
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{2n+5){2n + 7)x' (2n + 7) i2n + 9) (2n + ll) x' )

"^(271 + 2) (2^+ 4) [4 (2?^ + 2)(27l+4)(2w^-6) \_6_'^"'\

a;" sing; f 2^1+5 x^ (2n+7) (2yi+9) x^ )

^2«r(7H-l) r 271+2 13"^ (2/1+2) (2n+4} 15
••j-W-

876. Suppose e^^ ^'^ to be expanded in powers of z.

The series within the brackets are always convergent.

876. Suppose e^^ ^'^ to be expanded
XZ X

Since this is the same as e^ e ^% we obtain

|1+
2"'^2^|2"^2'|3"^'"J I 22"^2^|2_^^ 2^|3/"*'"*J

*

Multiply out and arrange in powers of z ; and then ac-

cording to the notation of Art. 370 we obtain

J^'-'^=J,{x)+zJ,{x)+z'J,(x) + z'J^{x) + ...

z
"*

7^ z'
"^ ^^^•

Thus we see that for positive integral values of n we
have J^ {x) equal to the coefficient of z^ in the expansion

of e in powers of ;?.

377. It should be remarked that the definition of the

Functions has been slightly modified by Hansen who is fol-

lowed by Schlomilch ; see Zeitschriftfur Mathematik, Vol. ii.

page 145 : according to these mathematicians we should

have 2x instead of x in the various expressions which we
have given for /„ {x), so that for instance they put

1 [""

'^ J Q

We mention this in order that the student may be pre-

pared for the diversity if it should occur in other works

;

but we shall adhere to the definition we have formerly given.
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378. As a simple example, we observe that by Art. 371
we have

J^ {x)—- I cos {x COS <^) sin' ^ d(f) ;

by changing ^ into -^ — we obtain

X r*
J^ (a?) = - I cos (x sin <j)) cos' ^ d<f).

'^J

By integrating the following expressions by parts, we see

that each of them is also equal to J^ (x)
;

1 /•» If'..— I sin {x cos
<l>)

cos ^ d<l>,
- I sin (x sin <^) sin

<f)
d(j)

:

either of these may be obtained from the other by changing

^ into -^ — <^.

Again, by comparing the equation (3) with the known
expressions for cos z and sin Zy it is easy to see that

1 A2~
when n — ^. we have J^{x) = \/ — sin x,

and when w = ^ i
we have J^ {^) = \/— ( cos xj .
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CHAPTER XXXI.

PROPERTIES OF BESSEL'S FUNCTIONS.

879. Differentiate both sides of equation (8) of

Art. 376 with respect to z : thus

2
{l +i) e'^'"^ = J,{x) + 2zJ,(x) + SzV,{x) + ...

J,{x) 2J;(^) SJ,(x)

Hence if we multiply the series on the right hand of

equation (8) of Art. 876 by -fl+—J the result must be

equal to the series on the right hand of the equation just

given. Thus we obtain for any positive integral value of n,

|{«^..-.W + «^„«WI =«^„W (!)•

880. The equation (8) of Art. 876 can be made in this

manner to furnish various formulse, which may if we please

be verified by the use of some of the other expressions given

for Jn(i^)' Thus for instance we may obtain (1) by the aid of

the expression of Art. 872. For let '>^ = n(f>
— x sin ^, so that

1 f""

Jn{x) = - / cos ^lrd(ji,

1 r*^

«^„-iW = -J
cos if -'<l>)d(t>,

1 f
«>^„+i(^)=-j cos(ylr + (l>)dcj>;

2 f^
therefore J^_^ {x) + J„^^ («?) = -/ cos yfr cos <})d(j>.
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Now c? sin -v/r = COS yjr dyjr = COS y}r(nd<l> — x cos <j)d(f>)

;

integrate between the limits and tt for <f : thus

0=1 cos yjr(n-x cos </>) dcj)

Jo

= n
I

cos ^Irdcj) — X I cos yjr cos cpdcf) ;

therefore = nJ, {x) - 1 {/„_, (a^) + /„^, (a:)}.

This investigation, like that of Art. 379, applies to the

case in which w is a positive integer ; but we may verify the

equation by means of equation (3) of Art. 370, and thus it

will be seen to hold for every positive value of n.

381. Differentiate both sides of equation (8) of Art. 376

with respect to x; thus

dx dx dx dx '"

l dJ^(x)
^

1 dJ^{x) 1 dJ^{x)
^

z dx z^ dx 2* dx

Hence if we multiply the series on the right-hand side of

equation (8) of Art. 376 by
^ [

2r—
j
the result must be equal

to the series on the right-hand side of the equation just

given. Thus we obtain for any positive integral value of w,

^ = |K-.W-^.«W1 (2);

and we have also the special result

• -#=-^.(^) (^)-

The equation (2) may also be obtained by the aid of the

expression of Art. 372. For as in Art. 380 we have

\[-'i)

«=y: cos ylrdcf),
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., „ dJJx) 1 f'^^ COS ilr If'". , ' ,j,
therefore "^ ^ = - —-^

—^ d^ = —
\ smy sm 9rt<^

;

1 [^
also ^„_i(a^)-e7'„^,W=- {cos(>;r-(^)-cos(^ + ^)}d7<^

= — sin 'sir sin ^c?<^

;

TTJo

therefore ^M = 1
{/^_^(^) „ j;^^(^)}.

Similarly (3) may be obtained, observing that we have by

Art. 372

J^ (^) r= - sin (j) sin {x sin 0) d^.

We may also verify equation (2) by means of equation

(3) of Art. 370, and then it will be seen to hold for every

positive value of n,

382. From (1) and (2) we obtain

383. We have by Art. 376

Change the sign of z ; thus

Hence since ^^ '' x e
^ ^* *' = 1 we have unity for the

product of the two series just written ; and this gives rise to

various results by equating to zero the coefficients of various

powers of z. By considering the terms independent of z we
obtain

1 = [J,{x)Y+ 2 K(a:)r+ 2{/,HP+ 2 {JAx)]'+ (5).
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384. Multiply both sides of equation (4) by n ; thus

^i [J. HI" = " [(^,-.(^)i' - {J^.wn-

Ascribe to n in succession all positive integral values

1, 2, 3, ... and add ; then the terms on the right-hand side

reduce to the series which occurs in (5), and thus

385. Differentiate (2) ; thus

dx* dx dx '

substitute for the differential coefficients on the right-hand

side their values from (2) ; thus

Similarly 2'^^==J^{x)-3J^,{x)+3J,,,{x)-J,,,ix) ;

and SO on.

These formulae must be understood with the conditions

which follow from (2) ; thus in the last which is expressed n
may be any positive quantity greater than 3.

Thus the successive differential coefficients of any one of

Bessel's Functions can be expressed in terms of Functions of

higher and lower orders.

386. From (1) and (2) we have

^«.W = ^^„(^)~^^ (6),

and J^_^(^) = ^/^(^) +^ (7).
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Then from (3) and (6) we obtain in succession

*^«^'^^~
^'^ dx '^ x' dx' dx''

'

and so on.

Thus for a positive integral value of n we can express

J^ [x) in terms of J^ (x) and the differential coefficients of

887. From (6) we have "

' dx~ "^
i *^" ^^^ ~ '^"•^^ ^^^

'

therefore ^^ = - 1, J. (^) + ^
^^M _^!^

= -^ '^» (^) + 1 {I
'^" (^) -'^»"^^)} +^ ^"« (^) - •^« (^)'

by (6) aad (7).

Thus

We may now differentiate again, and thus obtain "1^"^

in terms of /„ {x) and J^^^ {x) ; and so on.

'388. Let [x) stand for ^^ii^ . From (1) we have
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therefore _^ + «>) = 2!?

therefore Q, {x) = 2n -q-^ ;

therefore Q^^ (x) = 2 (n + 1)

therefore QnW =
^ (n -H) - g.,, (.)

'

Hence, continuing the process, we have

X*
e„w

a'
2(» + l)-2(.

+ 2)-(2^(.)'
and so on.

Moreover we can shew that Q„^ (x) vanishes when m is

indefinitely great ; for, by Art. 370,

i_ ^ +
M = '^Z-*-" <^^ =

"=' 4(n + m + 2)
.

4i{n + m-\-l)

the first factor vanishes, while the second factor is finite

wlien m is indefinitely great.

Hence our process develops Q^ (x) into an infinite con-

vergent fraction of the second class, in which the first com-
x^ 0^

ponent is -^, r-, , and the r^ component is -^r-i t\ •^ 2(n + l)' ^ 2(n + r + l)

see Algebra f Art. 778.

389. Various interesting theorems have been obtained

with respect to Bessel* s Functions when the variable is not x
but *Jx; with some of these we shall close the present

Chapter.
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390. To shew that

By Art. 371 we have

1 1 f-

2"r
^ ' ^„ W ^) = 7= •

:^ iT
COS (7a; cos

(f>)
sin'" </>J^

;

thus ^{a;-V„(Vi)}

1 1 f" ' /—= — ^r7-=^ . -. I sin (v-c cos
(f)

sin''" <^ cos </> J^ ;

2V7r^ 2"rf7i+^y«

but by integration by parts

/ sin (Jx cos 0) sin'" ^ cos ^ cZ<^

1 —
"^

l~ C —
= ^ .. sin'""^^^ sin (Viccos ^)+ ^

I cos {Jxcos ^) sin'""^'<^c?0.

Thus, taking the integrals between the limits we have

z TT
I

COS {Jx cos </>) sin'""^' <^ d<j)

2''{2n + l)r{n + ^y'
2V TT

1 1 f^ _
= "" TTT^" 7 1\ COS (Vaj cos <f>) sin'""^

6

d6
2V7r2n.ir/^ + l^iyo

1 ---^ /-
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Then dififerentiating again we have

(1\« _!Lt? _

In this way we obtain the proposed theorem.

391. To shew that

We have ^ [x^ /. (Vx)) = §^
[oTx-'^J^ {Jx)]

1 rLd _ — _

But by (1) we have ^n+i (^^) = ^^ ^n (V?) - /„_, (\^)

;

hence by substitution we get

Then differentiating again, we have

In this way we obtain the proposed theorem.

392. By Taylor's Theorem we have



802 PROPERTIES OF BESSEL'S FUNCTIONS.

where f is put for ^+ 6h^ and ^ denotes a proper fraction.

The differential coefficients which occur on the right-hand

side of this formula may be conveniently expressed by the

theorem of Art. 390.

Similarly by Taylor's Theorem we have

[x -h TiY /„ {Jx + h) = x' J^ [Jx)

•T „ 7,2 ^2 n _

and the differential coefficients which occur on the right-hand

side of this formula may be conveniently expressed by the

theorem of Art. 891.

893. In the theorem of Art. 391, change n into n-\-m\

thus

dx'
© x'J„{^x) = -r-^{a=' J^^i-Jx)}

dx'
^'-'^ ~^^^n..K^)l;

by the theorem of Leibnitz, the right-hand member is equal to

«-"•—{<«" '

" J„^ (V^)l + m-r- {x'^) 3-sn {^~ ' J^iJx)]

+
j2 d^\^ 'dx'"-'Y

''"+» W^''| + -'
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and by Art. 390, this

+^^^ (m+ «) (m + « - 1) (- |)""'^^>^.^(Vi)+...

Tlius

J, i^-) = (- 1)"' {/.,. (7^) -^^^^ /_. (^)

. 2*m {m — 1) (m + ??) C??i + r? — 1) ^ , /—

^

1

1
2 (7^7

*"'""'

Then putting x^ for a?, we have

2^m (m-1) (m + n) (m-f y?-l) ^ w -•••}.

In this theorem m may be any positive integer, and n
any quantity which is algebraically greater than — 1. The
demonstration, as it rests on Art. 371, would require n to

be algebraically greater than — ^ ; but from the form of the

result it is easily seen, by the aid of Art. 370, that n may
be any quantity which is algebraically greater than — 1.

Lommel proposes to define /„ {x) for negative values of x
so as to make this theorem always hold. Thus, for example,
suppose n a negative integer, and put it equal to — m \ then
we have by this theorem

^-»w = (-ir^..(^).
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CHAPTEK XXXII.

FOURIER'S EXPRESSION.

894. Suppose w = in the equation (2) of Art. 370; thus

«^oW--L 2' 2^4' 2'. 4'.
6*'

This expression had been studied by Fourier before

Bessel brought forward his general Functions : see Fourier's

Theorie de la Ghaleur, Chapitre VI. We will reproduce

Fourier's results, and then shew that they may be extended
to Bessel's general Functions.

895. Put 6 for ^g-i^^ the preceding series, and denote

the expression then by/(^); thus

We shall first shew that the equation f(d) = has an
infinite number of roots, all real and positive.

In treating this proposition, and that of the next
Article, it is really assumed that f{6) may be considered to

be a finite algebraical expression; the justification of this

assumption must be found in the fact that f{6) is a rapidly

convergent series, and thus whatever may be the value of

6, and whatever may be the closeness of approximation we
desire, the terms in f(d) after some finite number of them
may be neglected.

It is easily seen by two differentiations that
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or this may be obtained from the general differential equa-

tion of Art. 370 by changing the independent variable.

By successive differentiation we now obtain

f'{e) +2/" ((9) +ef"{e) =o,

/- {0) + 4/""
((9) + Of'"" (d) = 0,

and so on.

These equations shew that when any one of the derived

functions, /'(^), f"{6), ... vanishes, the preceding and follow-

ing functions have contrary signs, if 6 be positive.

Now suppose we consider f{d) to be of the m*^ degree

in 6, where m may be as large as we please. Take the series

of functions

/W, /W. f\6),...r(e);

this series may be called Fourier s Functions, and the student

may be assumed to be acquainted with their importance;

see Theory of Equationsy Chapter XV.

No change of sign in the series can be lost by the passage

of 6 through a value which makes any of the derived

functions vanish ; for as we have just seen when any de-

rived function vanishes the preceding and following functions

have contrary signs., Hence a change of sign in the series

can be lost only when 6 passes through a value which makes
f[d) vanish. But m changes of sign in the series are lost

as 6 passes from to + oo . Hence the equation f(6) = has
m real positive roots; that is all its roots are real and
positive.

We may remark that it is obvious that f{6) cannot
vanish when 6 is negative.

396. If \ he any given positive quantity the following

equation hasan infinite number of roots, all real and positive:

.^+ /W
-" ^^'-

Let a and c denote two consecutive roots of f(6) = ; by
the Theory of Equations /' (6) = has a root between a and
c : denote it by 6.

T. 20
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Then as 6 changes from a to 6 the numerical value of

rfff.
diminishes from oo to 0, while the sign remains un-

changed. As 6 changes from 6 to c the numerical value of

x(ff\
increases from to x , while the sign remains un-

changed, but contrary to what it was before. Hence -^L -

takes, once at least, any specified value as 6 changes from
a to c. Therefore (1) has a root between a and c. In this

way we see that there is a root of (1) between every two
consecutive roots of f{&) = 0. And since X is positive there
will be one root of (1) between and the least root of

f{6) = 0. Thus all the roots of (1) are real and positive.

Moreover only a single root can lie within each interval

which we have considered.

897. The equations of Art. 895 which connect the suc-

cessive derived functions may be put in the form

.f'(0) 1

and so on.

Thus

and

f'iff) 1

f(0)
~

f"'(0) _ 1

1

fis)~
1

e

> —

1
e

2-j
3-..,



Fourier's expression. 307

Thus \ is exhibited as an infinite continued fraction of

the second class in which the r^ component is -
; see Algebra,

Art. 778.

398. The results obtained by Fourier admit of easy

extension to Bessel's general Functions, as we shall now shew.

We have by Art. 370,

2"r(7»4-l)
^ ., , a? x'

X* ^^•W--^ 2(2n + 2)"*'2.4(2w + 2)(2w + 4)
**•

a?
Put 6 for ^ in the preceding series, and denote the

expression then by F{d) ; then

6 0^ €P
^^^^"^"^ "^

1.2(7i+l)(ri+2) " 1.2.3(7i+l)(7i+2)(n+3)"^*"

It is easily shewn by two differentiations that

F{e) + (71 + 1) riO) + OF' {6) = ;

or this may be obtained from the general differential equa-
tion of Art. 370 by first putting va?" for u, and then changing
the independent variable from x to 6.

By successive differentiation we now obtain

F{e) + (n + 2) F'{e) + eF"\d) = 0,

F'\d) + (w + 3) F"'{e) + eF"\d) = 0,

and so on.

399. The equation F {d)=^0 has an infinite number of
roots all real and positive.

The demonstration is precisely like that of Art. 395.

400. IfXbe any given positive quantity, the following

equation has an infinite number of roots all real and positive

:

+ F{e)
"•

The demonstration is precisely like that of Art. 396.

20—2
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401. From the preceding equation, by a process precisely

like that of Art. 397, we deduce the following expression

for \ as an infinite continued fraction

:

x = '

n + 1

71 + 2-
^

n + S- ...
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CHAPTER XXXIII.

LARGE ROOTS OF FOURIER's EQUATIOlf.

402. PoissON has shewn how to determine the large

roots of the equation J^ (a;) = : see Journal de VEcole
Polytechnique, Cahier 19, pages 349... 353. We will give his

principal results though not altogether according to his

method.

Let y stand for ttJ^ {x), so that

y=l cos (a; cos 0) (f<^ (1)

;

this may be written

%«+(i..),A--...... .(0).

This suggests that when x is very great, so that j-^ may

be neglected in comparison with unity, we shall have very
approximately

y isJx = AQCosx-\-B^smx ••W,
where A^ and B^ are constants.

403. Po.isson assumes that the integral of (3) can be
put in the form

where A^, A^^ ... B^, B^, ... are constants to be determined.
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Substitute in (3) and equate the coefficients of distinct

terms to zero; thus we obtain the following equations for

expressing the constants A^, A,,... B^, B„ ... in terms of

A„ and B,.

2A+4-B„=0,

2.2A+{l.2 + l}j?.= 0,

2r^,+ {(r-l)r + i}5^.= 0,

-2.25,+{l.2+i}j.= 0,

-2rB^{r-l)r+^A^=0,

But the series we thus obtain are divergent for any
assigned value of x.

404. Let us however assume that (4) is admissible when
X is very large ; thus

__ Aq cos x + Bq sin x dy _B^ cos x — A^ sin x

six " ' ^^ Vi
approximately.

A
Therefore y vanishes when tana;=—p > 's^ ^^^ a?=W7r+a,

where tan a= —^ , and n is any integer. In like manner

-^ vanishes when x^mir-^-Py where ^ is such that tan ^=-r ,

and m is any integer. But m and n must be supposed very
large integers, as we are concerned only with very large

values of x,

405. It is natural to conjecture that Aq= B^', for then

the large roots of -p = are midway between those of y = 0.

This conjecture may be verified. "We have

2/= I cos f 2a?cos^^- — a?) c?^
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j
cosf2xcos^~]d^-\-8mxj smf2a;cos*|jcZ<^...(5).

We shall investigate the value of y when a; = 2r7r, where

r is a large integer. We have then from (5)

y =
I

cos [2a; cos' ^ j d<}>.

Put 2x cos' T) — ^y *^^s

cos t dt__ f^ _costdt____ r COS tdt p
^"io ^/'i^(2x-t)''Jo^t^/{2x-t) L \^i^/(2x'-t)'

In the second of the two integrals put t — 2x — T; then

observino: that cos (2ic— t) = cos t, it becomes I —,——

—

,

so that we have

_ r cos^cZ^ _ 2 r cos^cZ^

^ " Jo VrV(2a: - "" V2^ Jo ^- /ji _ A^
'

This integral when x is very large may be replaced by

-—^
I ^V ; for 1 — ^^ i^ay be taken as unity so long

^2xK V? 2x ^
^

.

as i is not large, and when t is large the corresponding

elements of the integral are of no account because then

cost . n—-^ is very small.

Hence we may say that y= -r-= \ —f= dt and this = -7=
;

see Integral Calcultis, Art. 303.

Comparing this result with the value given by (4) when

X = 2r7r, we see that A = Jir.

Similarly by finding the value of the right-hand member

of (5) when a; = f 2r + ^j ''"» we shall see that j5= Vw-.
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406. The method of the preceding Article admits of

extension to Bessel's general Functions.

Let u stand for J^ {x)\ we know that

d'^u 1 du
f

n\ _
dx^ X dx \ a?)

*

thus ^-,W.--^(„^-l)V^=0;

and when x is very great, provided n be finite we have
approximately

so that u\/x-= A^co^x-\- B^^inx (6).

Now by Art. 371, adopting the same method as in

Art. 405, we have

ic" cos X
U ='

V7r2

—
I

cos (2^ cos^ ^ j
sin'"^ d(f>

^ sm 2^cos'|^ sm'"<^(Z^...(7).

Suppose X = 2r7r, where r is a large integer ; then we
have from (7)

u

V7r2'^r

•" /*"" / (t>\
' — I cos I 2x cos^ - ) sin^" ^ J<^.
/ lyo \ -^y

r+2J

Put 2x cos'^ o = ^ j *^^^ proceeding as in Art. 405, we get

«-^

u

V
-——J-/ COS...- 1-^^ dt (8).

liTX 1 f n + -
j

'^
^



LARGE ROOTS OF FOURIER*S EQUATION. 313

The equation (8) is exact. If we continue as in Art. 405,

/ t Y~^
we should first suppose that f 1 - ^ j

may be replaced by

unity ; and thus theintegral reduces to I cos t.t'^'^dt. Then
J
q

replacing the upper limit by oo , and using Art. 302 of the

Integral Calculus, we obtain r[n + ^j cos(n+^j -^. Thu^

finally

Hence by comparison with (6) we have

Similarly by finding the value of the right-hand member

of (7) when a; = [ 2r + ^ ) tt, we get

Hence by (6),

\/2 fnir TT—
cos —- +

VTTX (¥-1-) («)•

407. The approximations which we employed after ob-

taining the exact equation (8) are not very satisfactory for

every value of n ; but at least they involve little difficulty

so long as n is less than ^ . The formula of Art. 371 from

which we started supposes n to be algebraically greater than

— jT . Hence- we may consider that (9) is fairly established

for any value of n between — and ^ . Then we infer that

it will hold generally by the aid of equation (6) of Art. 386.;

for when x is very great we obtain from that formula

*^«+i W =
/ , J

^^^ ^rom (9) we have approximately
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so that if (9) holds for any value of n it holds when that
value is imreased by unity. Hence since it holds when n lies11 IS
between -- and ^, it holds when n lies between - and ^ ,

then it holds when n lies between ^ and ^ , and so on.

408. Another method of obtaining the result in Art. 405
has been given. We continue to use y for ttJ^ {x).

It

Thus 2/ = I cos {x cos ^)d<f) = 2l cos(a; cos ^) dcf) ;Jo Jo

put 1-z for cos <j) ; then y=2 I
^ ^^v ""g

j ^^
i Jz(2 — 2)

= ^2 cos ^ r_£2|M^ + ^2 sin 0, r_pM±^

/J f cos (az) f_ , 1 z 1.3 /sN' ) ,

= ^"=°'"io^{' + 2-2 + 2r4(2)+-H'

/^ . r sin (xz) (^ 1 z 1.3 /^^N'' ] ^

+^"°U-^f + 2 •2 + 274(2)+-}^-

As soon as the values of I 7^^ dz and / L-^ c?2

Jo v^ ^0 yz
are known we can obtain by differentiation with respect to x
the values of the other integrals which occur in the expres-

sion for y. Thus denote the former by P, and the latter by

Q ; then we have

'* z cos (xz) j^_dQ [^ z sin (xz) _ dP

Jz da,'
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Jz dx" J, Jz dx''

and so on.

Thus we find that(1 3
Pcosaj4- Q sinx- 7-^ (P"cosx+ Q"sina:) +...

+ i
( 0' cos a;- P' sin a?) - ^^^1^ (Q'" cos aj - F" sin a;) +. . .1

(10),

where the accents denote differentiation with respect to x.

Now r'-^ dz = f^^P dz - r '-2iMrf^
^0 V2 ^0 WZ Ji NZ

= —3= —
I —;^ dz, by Integral Calculus, Art. 303.

By integration by parts we have

Tcos (xz) , _ sin (xz) 1 fsin (xz) ,

_ sin (oj^) ^ cos (a?«) _ 1 • 3 f cos (xz) ,

In this way we find that

^ V^ ^ . (1 1.3^1.3.5.7
I

*/2x F 2V 2V j

rj^__1L3^ 1.3.5.7.9 ]

\2x' 2V "^ 2V •••!'— cos a;

we will denote this result thus,

VttP = —7= +
<f>

(a?) sin ar — -^ (a:) cos x.
v2a;

In the same manner we may shew that
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Q = -j=^ — ^ (oo) COS x — yjr (os) sin x.

Hence we find that

Fcosxi- Qsmx = -^ cos [^-tj-'^ W-
Also

dP ^^
1[~ ~ ~ 79~T^

"^ ^ ^^) cosa;+^'(a;) sin^+'«|^(^) sin a?— '<|r'(a;) cos a;,

dx~~^ \l
"*" ^ ^^^ smx-<^'{x) cos ^-1^ (^) cosa?— '«/r'(a?) sina?

;

therefore coso;-^ sina; -r- =—^ sin fa? — -
j
— </)'(^') — ^/^(ic).

Therefore if we stop at this stage of approximation, we
get from (10)

Thus as far as we have gone we see two classes of terms
in y ; one class involves fractional powers of x with trigono-

metrical functions, and the other class involves whole powers
of X without trigonometrical functions. We shall shew how-
ever that the latter class of terms will disappear as the pro-

cess is continued.

I. We shall shew that <^ (x) and '^ {x) and their differ-

ential coefficients will occur, as they do in (11), free from
sin X and cos x as multipliers. For we have

P cos X \- Q SYD. X — — y^ {x)\ ,^^.

Psmx— Q cos X— ^{x

erms which are mi

are not concerned with them here.

omitting the terms which are multiplied by -- , for we
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Then, by differentiating,

P' cos a?+ Q' sin x — Psin x-\- Qco3x = — y{x),

P' sin ar— Q' cos a? + Pcos a; + Q sin a; = </>'(ar).

From these and (12) we obtain

P cos a; + Q' sin a? = — "^X^) + (^)

P' sin x — Q' cos

x = --'y{x) + <p[x)^

x^ f(a:)+tWJ
^^^^'

In like manner from (13) and its derived equations we
obtain

P" cos a? 4- Q" sin x = m^ {x),

P" sin X — Q" cos a; = ^, {x),

where ct, (a;) and
^^^

(a?) involve only ^ [x] and '^ (a:) and
their derivatives.

Then again we obtain

P" cos a? + Q'" sin a? = -cTg (a?),

P" sin a? — Q" cos a; =
;\;3

(a;),

and so on.

Then substituting in (10), we see that in the value of y
we shall have <^ (a?) and ^/r (x) and their derived functions

free from sin x and cos x as multipliers.

II. But on the whole the terms involving
<f>

{x) and
•v/r [x) and their derived functions must adjust themselves
so as to cancel and disappear. For if they did not suppose

— the first term which remained in y ; substitute in the

differential equation -~ + - -/- -hy=Oj then as none of the
(XX X CLX

terms involving fractional powers of x and trigonometrical

functions can combine with this, we see that the differential

equation will not be satisfied unless ^ = 0.

Thus omitting all the terms which depend on <^ (a;) and
•^ {x) we obtain finally
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\/2TT
y = -p- cos

NX
( \ \L 113V 1 ^^ \\ %\h^T / 1 \* ]

V27r . / \ \{V (\\ l^ 3^ 5V 1 A' 1

Va; V 4X

This will be found to agree with the result obtained by

Poisson, when in his result we take Aq = B^-=- ^Iit, The series

within the brackets are divergent ; but we may in our
process instead of infinite series use finite series with symbols
for the remainders. Thus when we apply integration by

/cos I '7*2/

1

j=^ dz, we may, as we have seen, denote the
Nz

remainder by an integral after any number of terms we

please. So in the expansion of (l — ^2) which we have

used we may express the remainder after any number of

terms in the method given by the modern investigations of

Maclaurin's Theorem.
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CHAPTER XXXIV.

EXPANSIONS IN SERIES OF BESSBL*S FUNCTIONS.

409. We shall in the present Chapter give examples
of the expansion of various functions in infinite series of

Bessel's Functions.

410. We know by the Integral Calculus that

cos (x sin <^) = a^ + a^ cos <^ + a, cos 2<\> + a^ cos .3<^ + . . .,

where a z=—
\ cos (re sin <f>) cos n<i>d<t>,

except when n = 0, and then we must take half this value.

Hence, as we have shewn in Art. 372, we have a„ =
when n is odd, and a„ = 2/^ {x) when n is even ; except when
71 = 0, and then a„ = J^ (a?). Therefore

cos {x sin <^) = Jq {x) + 2/, (x) cos 2(j> + 2J^ {x) cos 4(^ +. . .

.

411. In the manner of the preceding Article we can
shew that

sin {x sin <^) = 2/^ [x) sin <^ + 2/^ [x) sin 3</) + 2/^ (a;) sin 5<^ +. .

.

412. As particular cases we have

l=e7,(a;) + 2/,(rc)4-2/,(rr)+...,

a; = 2. l/^(ic) + 2. 3/3(0;) + 2.5/,(a;) +...;

the former is obtained from Art. 410 by putting <^ = 0, and
the latter is obtained from Art. 411 by dividing by

<f>
and

then putting <^ = 0.
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413. In Art. 410 change </> into -^ + ^ ; thus

cos [x COS (^) = Jq {x) — 2/3 {x) COS 20 + 2/^ [x) cos 40 — . . .

.

Similarly from Art. 411 we get

sin {x cos 0) = 2/j (a;) cos — 2/3 (a?) cos30 + 2J, (^) cos 50 +. . .

.

Various particular cases may be deduced. Thus putting

= 0, we have

cosaj= J^{x)-2J^(x) + 'lJ^{x) --...,

sina; = 2/^ (ic) - 2/3 (^) + 2j; (x) - ....

Again differentiate these two formulsB twice with respect

to 0, and then put = 0; thus we get

x^mx = 2 {2V, {x) - 4V, [x) + 6'/^W - • • •},

aj cos a; = 2 {IV, {x) - S'V^ {x) + 5V, (^) - . . .].

414. In Art. 410 we have shewn that

cos (x sin 0) = Jq (xy+ 2/2 (^) cos 20 + 2J^ (x) cos 40 +

Now we know by Plane Trigonometry, Art. 287, that if

n be even,

cosw0 = l— ,
- sm 0-1 —rj ^sm*0— ...;

and cos (x sm 9) = 1 ,^ ^
-i ,-,

—

~ —

Hence equating the coefficients of the powers of sin

we have the following results in which % denotes summation
with respect to even values of n from 2 to infinity

:

1 =J,(x)+2tJ^(x),

x' = 2l.n'JJx),

x'==2^n'(re-2')JJx),

x'=2tn'{n'--2'){n''-4i')J^{x),

and so on.
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415. In Art. 411 we have shewn that

sin {x sin <^) = 2/^ {x) sin <^ + 2/, {x) sin 3(/) + 2/^ {x) sin
5(;f)

+. .

.

Now we know by Plane Trigonometry, Art. 287, that if

n be ocZc?,

sinwd) = M sin^ - -^^

—

'- 8m'<^+ -^^ .^-^^ ^ sin*<^-. .
.

;

[5 I-

, ..... . . jc' sin> ir'sin^
and sin [x sin <p) = a; sin r^—^ 4 p;

....

Hence equating the coefficients of the powers of sin <^

we have the following results in which S denotes summa-
tion with respect to odd values of n from 1 to infinity,

x'=2Xn{n'-V)J^(x),

x' = 2tn {n' - V) (n' - 3^) /, {x),

and so on.

416. Suppose n an even number. If we combine two
of the results obtained in Art. 414 we deduce the following

:

2tnV^ {x) =x' + 4-x\

In like manner we see that 2Xn^J^(x) can be expressed

in terms of a;", x*, and x^. Thus we are naturally led to

conjecture that 2^n'^'"J^X^) can be expressed in terms of

x^'", a;^"*"^, . . . ic*, a;^ To shew the truth of this conjecture

take the expansion given in equation (2) of Art. 370, and
substitute in every term of 2'^n^'"J^{x); then picking out
the coefficient of a;"* we shall find it to be

that is

9. r . 9>./9».—
1)

2'

r 9r (^r

-

|2rV ^ ^ ^ |2

(r — 2)^^"* — . .

,

the series within the brackets is to continue until 1**

occurs, so that there will be r terms. When m is specified

T. 21
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the value of this expression can be calculated for any value

of T ; and it will be found to vanish when r is greater than
Tfi, and to be equal to unity when r is equal to w. To shew
the truth of these statements it is convenient to put the ex-

pression in the form

where the series within the brackets is now to be continued

until it ends with - 2r (r - 2r + 1)'"*
-f- (r - 2r)''", that is with

-2r(-r + l)""+(-r)''"; thus there are now 2r+l terms,

of which the middle one is zero. With the notation of

Finite Differences the expression becomes ^^^^ A^V*",

where we are to put —r for x after the operation denoted
by A^*" has been performed. Then it is known by the theory

of Finite Differences that the expression vanishes when r is

greater than m, and is equal to unity when r is equal to m,

417. Suppose n an odd number. If we combine two of

the results obtained in^rt. 415 we deduce the following

:

1^n^J^[x)^x^^x.

In like manner we see that ^r^J^ {x) can be expressed

in terms of a;*', a;^ and x. From this we are naturally led to

conjecture that 2271"""^V,^ (a?) can be expressed in terms of

o?'"'-^^ ^ oi?'^'^, . . . 0^, X. To shew the truth of this conjecture

take the expression given in equation (2) of Art. 370, and
substitute in every term of Ttr^'^'^'^J^ [x) ; then picking out

the coefficient of ic^*^^ we shall find it to be

__2___
|(2, + i)-« _ (2^ + 1) (2, _ i)~"

the series within the brackets is to continue until l^'""^^

occurs, so that there will be r + 1 terms. When m is

specified the value of this expression can be calculated for
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any value of r; and it will be found to vanish when r is

greater than m, and to be equal to unity when r is equal
to m. To shew the truth of these statements it is con-
venient to put the expression in the form

where the series within the brackets is now to be continued

-r + l-^l ""("^"9)
y

thus there are now 2r+2 terms. With the notation of Finite

Differences the expression becomes o2r^m^ 9 , -i
^^^x^'^\

where we are to put — r — - for a; after the operation denoted

by A**""^^ has been performed. Then it is known by the theory

of Finite Differences that the expression vanishes when r is

greater than m, and is equal to unity when r is equal to m.

418. From Art. 376 we have

e^ = e-|/o + ^^.W+^=^.W + ...-Je/,(a:)+J/,(^)-...}.

Expand the exponential functions ; and then equate the

coefficients of z^ ; thus

p (iy=^.w+i^..w+ gy ^•^«.(^)+ (ly ^j
^.«(^) + ...

Equate the coefficients of -^ ; thus

hi jsp) + (ir |7^ ^.(^) - {iTjTzs'^^i^)- •

21—2
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419. From the latter formula, by putting for r in suc-

cession the values 1, 2, ... we obtain

X X
274 ^0W + 27476 ^^ ^^^ "^ 2X678 ^^ ^^"^ + • • • = 2 "^^ ^^^ " '^^*^^^'

and so on.

420. From the two expressions just given, we obtain

In like manner by proceeding to a third expression in

Art. 419, and combining with the other two, we can deduce
a formula for J^ {x) ; and so on. The general formula is

r(r+l)
Jri:^) = 2^^o(^) + ^ly^^rJ.ix) + ^r^y^ —^ J.{^)

x-^ r(r + l)(^2)

This may be established by induction. For assume that

(1) is true, divide by a?*" and differentiate ; then by equations

(6) and (7) of Art. 386 we obtain

x^ r (r + 1) r r \

2'*" r + 3
,/±±^}±±^J^i.)^...

^
dJM

Now by Art. 381 we have —^- - = — /^(a;) ; substitute

from Art. 419 ; thus
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-^-^^.W'- gyi'^ow + ^•^.(^) + 2:4:0 -^'(^^^ + •••}

..» rjr + 1) (r+j)

so that finally e/.^^ {x) =

Thus (2) is the same formula as we should get by
changing r into r + 1 in (1). But we have seen that (1) is

true when r=l, and when r = 2, hence it is true when
r = 3, and when r = 4, and so on.

421. In equation (8) of Art. 37C change x into kx-^

thus

e^'^'~3 = J,{hx)+zJ^ (lex) +z'J^{Jcx) + ...

-lj^{kx)+l,J,{kx)...{S).
z z

Again, in equation (8) of Art. 376 change z iato kz ;

thus

*(k,-l-\ ^(*-^\ ^fu_}\^
But e'^ '"^ =e'^ '^xe'^ '^% so that the product of

the right-hand side of (4) into e * ^
"'

' must be equal to

the right-hand side of (3). Thus putting fi for Jc - v , we have
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Jo{Jcx)+zJ^{kx)+z'J^{kx) + ... - i J^{kx) -f \j,{kx) - ...
z z

= e"^{J,{x) + hzJ^{x) + Wz^J,{x) + ...

Expand the exponential and equate the coefficients of s*";

thus

/,(fe) = VJ^ ix) - x¥*^
I

J^,,(,x) + ?^*^ g)' j;^, (^) - . .

.

For a particular case "we may suppose k = >v/2, and

then/. = i.

422. Take equation (8) of Art. 376, and suppose both
sides integrated m times with respect to x\ the integration

can be effected on the left-hand side, and may be denoted
by the symbol >S^ on the right-hand side. Thus we have

^"
("" ~ ^^'^'~'^ = S^J,(x)+z8'''J,{x) + z'S'^'J.ix) + ...

and therefore

2».-» (l - p)""{joW + ^J,{x) + zV,{x) + ...-\ J^{x) + ...}

= SV„ {x) + zS^J.ix) + ^^^V, (a;) + . .

.

-is-/»+lsV,(^)-...(5).

From (5) we may deduce various formulae. Thus for

example equating the terms which are independent of Zy

we have
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80 that

= 2'*Ilf»-'

f^e/«.W^..j (6).

Particular cases of (6) may be obtained by putting for

m in succession the values 1, 2, 3, ...

In the same way as (6) is obtained we may by equating

the coefficients of z^ in (5) obtain a formula which differs

from (G) in having the order of every BesseFs Function
advanced by r; so that

m -1 S'JX^) = 2"
||
w-1 J^{x) + If /^^,(^)

1 +

2
Im + l }
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CHAPTER XXXV.

GENERAL THEOREMS WITH RESPECT TO EXPANSIONS.

423. In the preceding Chapter we have given various

examples of the expansion of functions in infinite series of

Bessel's Functions; in the present Chapter we shall give

some general theorems relating to the subject.

424. We know that the function J^{x) satisfies the

differential equation

Let a be a constant, and put u for J^ (olx) ; thus

°^^* + ":j- + :j^2=0 \^J'
X ax ax

Let /3 be another constant, and put v for J^ [Px) ; thus

^2 1 dv d\ „ f^K

^'^-.Ta>^d?='' ^2^-

Let f be any assigned quantity ; then we shall shew that

(/3^-a=)/;.«.<i. =?[.J-4g (3);

where the square brackets denote that for x we are to put f
after the operations indicated have been performed; we shall

employ square brackets throughout the Chapter in this sense.
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For by the aid of (1) we have

/• , 1 f /dU d\l\ y

_ 1 ( du r du dv y ]

a*
I

dx J dx dx )

1 ( du. dv f d / dv\ J \

= -
a' r<S

- ^" 210+r& V dx) '^^l

Thus if we integrate between limits and f, we have

425. We shall next determine the value of / xu^dx.
J

We have shewn tliat

^T du dv

[^ ^ ^YTx'~''dx
I
xuvax= *-

,,., ^ -* .

K ^'-^

Now let us suppose that /3 approaches a as a lipiit, then

the expression on the right-hand side takes the form ; and

hence its limit found in the usual way is

dv du d% 1

2a [j.dff dx d^dx\

where /8 is to be made equal to a ultimately.

Now v^J^ifix) ; thus^ =
I ^ > ^^^

d*v 1 dv x d%
dlS'dx^^di'^^d?'
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rp-, dv du d^v _x du dv u fdv d^v\

dp dx d/S dx pdxdx ^ \dx dxy

xdu dv ^ , ,^,

X fdu\^When /9 is made equal to a this becomes -
(
;7-

) + olxu^
;

so that finally

a \dx.

I.
xu^dx = --^

.(4).

426. We are about to particularise the values of a and
/3. Suppose p and q two roots of the equation (1) of Art. 396;
and let a and /3 be determined by

19 'r r .(5).

then will

For we have

xuvdx = 0.

X +
fiP)

Now/(j9) is the value of u when we put f for a;; so that

f{p) = M- ^^^ 2 •^' ^^^ ^^ *^® value of -^ when we put

f for cc; so that -^f {p) =
|^^|J

.

Therefore

so that

Pf'ip)

Ap)

a'P
fip) ri dui

^

lu dx} '

/iP)

2 [w c^icj
•

In the same way we obtain X = — | - — .

Hence the right-hand side of (3) vanishes, and therefore

/.
xuvdx = 0. (6).
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427. With the value of a assigned in the preceding

Article we shall have

jy^dx^l(^^!-\-^^)[in (7).

For, as we have just shewn, ^ = "" o
I ^ r

^^^ ^^^^^'

fore Lj" = -
fc

[^0- Hence substituting in (4) we ob-

tain (7).

428. Suppose now that any function, as (j) [x), can be

expanded in the following form

,l>{x) = AJ,(ax) + BJ,{^x) + CJ,{yx) + (8),

where a, y8, 7, ... are constants determined by (5) and other

similar equations, and A, B, C, ... are constant coefficients,

then the preceding theorems enable us to find the values of

these constant coefficients.

Suppose for instance we wish to find the value of A
;

multiply both sides of (8) by xJ^ipLx) and integrate between
and f ; then by (6) we have

I
X(^{x)J^{oLx)dx =A I X {J^{cLx)f dx

;

Jo J

and by (7) the value of the right-hand side is

thus A is known, or at least its value depends only on the
single definite integral

/:
X

<f>
(x) Jq (ax) dx.

Similarly B, Cj ... can be found.

429. It will be seen that in the preceding Article we
do not undertake to shew that </> (.t) can be always expanded
in the assigned form, but assuming that it can be so

expanded we find the values of the constant coefficients.
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The fact is that the solutions of various physical problems
lead to such processes as we have given, and the nature
of the problems themselves may perhaps give some evidence
of the possibility of the expansion : writers for the most
part content themselves with finding the values of certain

coefficients, as in Art. 428. Thus for instance Foiirier

discusses in the Cliapter cited in Art. 394 a problem re-

specting the propagation of heat in a cylinder. He arrives

at the general equation

^dt^^'Kd^'^'idx} ^^)'

this is to be satisfied consistently with the following special

equation which is to hold when x has its greatest value f,

^« +l = '> (10) =

V is the temperature, t is the time, x is the distance fVom
the axis of the cylinder. Assume v = e'^'^u ; then if we put

^ for -,- we obtain

1 du (Pu ,^^.

2" + i55 +
rf.-'

= ° (11)-

The constant f/ will have various values to be found by
the aid of (10). The general solution of (9) is taken to be
V = Xe~*^\ where X refers to the different values of m.

The mathematical investigations which Fourier gives are

equivalent to those of Arts. 395. ..397 and 424. ..428.

430. Suppose that or, /3, 7, . . . instead of being determined
as in Art. 428 are such that

'^M) = o> JM) = o, JM) = o,

and that any function, as ^ (x), can be expanded in the form

4> {x)=AJ, (ccx)+BJ, (/3«) + CJ, (7.r) + (12)

;

then we may find the values of the constant coefficients

A, B, (7, ... by a process like that applied in Art. 428.



BE8PECT TO EXPANSIONS* 333

For equation (3) holds as before ; and then since in the

present case [u] = 0, and [v] = 0, we should obtain equa-

tion (6) as before.

Also equation (4) holds as before; and then since in

the present case [u] = 0, it reduces to

/>"•*-£[©'] w
Moreover^ =

^^
= a -fn^ =-aJ^ {ax) by Art. 381.

Hence we may if we please put (13) in the form

£^(/,Mj'^=|rK(^i)r (14).

Hence by (6) and (14) we have

/,
'xi>(x)J,{c^)dx = 4^{J,{oi^)]\

2

Similarly B, C, ... can be found.

431. The process of Art. 430 may be regarded as an
easy modification of Fourier's, and by several German writers

is stated to be given in the Chapter of Fourier which we
have cited : but what Fourier really gives is that which we
have ascribed to him in Art. 429.

432. The investigations of the present Cliapter admit
of obvious extension, as we will now briefly indicate.

433. Let a and /3 be constants. Let «/ (^a?) = (axYu and
J^(j3x) = (fixyv. We shall find from Art. 370 that

J 2n + 1 ^M d'^u . ,.

""'-r-dx+cu'-'^ (1^)'

^ 2n -f 1 c?y
,
d^v ,- ^.
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434^. Let f be any assigned quantity; then we shall liave

The demonstration is precisely like that of Art. 424.

435. Also

The demonstration is like that of Art. 425.

...(18).

436. Let p and q be roots of the equation of Art. 400
;

and let a and /3 be determined by

^ =f , . =f (10);

then will [ x'^'^'uvdx^O (20).

The demonstration is like that of Art. 426.

437. With the value of a assigned in the preceding

Article we shall have

/,
x'^'^Wdx = f^ (a^f - 4nX + 4V) \jf] (21).

2a

The demonstration is like that of Art. 427.

438. Suppose then that any function, as
<f>

{x)^ can be
expressed in the following form

<^{x)=Au-\-Bv-\-Cw+...,

where u, and v are as already stated, lu is similarly related

to J^(yx), where 7 is of the same nature as a and /3, and so

on ; then the constant coefficients A, B, C, .., may be found.

For by (20) we have

[ x'^^'uct> (x) dx = A l^x'^'^Wdx,

and the integral occurring on the right-hand side is known
by (21). Similarly B, (7, ... can be found.
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439. Suppose now that a, y8, 7, ... instead of being

determined as in Art. 43G are such that

|.^.(«f)=o. ^J,m=o, ^JM)=o,....

then if any function, as
(f>

(x), can be expanded in the form

<l)
{x) == Au + Bv + Cw+ ...,

we may find the value of the constant coefficients A, B, C,...

by a process like that applied in Ai't. 438.

For equation (17) holds as before; and then since in the
present case [u] = and [v] = 0, we should obtain equation

(20) as before.

Also equation (18) holds as before ; and then since in the
present case [u] = 0, it reduces to

/>"«*= t:[©'] (-)

Thus as before we can find A, B, (7, . . .

.

440. If in Art. 434 we put for u and v their values in

terms of Bessel's Functions we shall find that equation (17)
becomes

J

=f p-(^^^i'^-^°^)-'^«('^) i'^"('3^)]

;

and by equation (6) of Art. 386 the right-hand member may
be transformed into

In like manner equation (22) becomes

= f U«+i («k1 > by equation (6) of Art. 386.
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441. We shall now give a remarkable theorem due to

Schlomilch by which any function is expressed in an iniSnite

series of Bessel's Functions.

We know that if F(z) denote any function of z, then for

any value of z which lies between and h, we have

^(^)=|A + Acos^%J,cos^P + J3Cos-P+....(23),

where A^—yJ F {u) cos da.

For h put - IT, and for z put ixx ; thus

F{yix) =-A^-\- J.^ cos 2/^ + A^ cos 4/icc + A^ cos ^iix +. . .,

where A^=^-\ F(u) cos 2nudu.

Multiply each side of this equation by ^
^ , and

integrate between the limits and 1; this gives, by Art. 374,

Q n

(24),

the relation holds for values of x between and ^ tt, be

cause /J, is never greater than unity.

Now suppose that

-J. v(r^) =-^^'^) ('"')=.

differentiate with respect to x, thus

2 l' ^F'{ixx)du,
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In this equation write k^ instead of x, multiply both sides

thus

by ^
, and integrate between the limits and 1 for f

:

Hence by a theorem due to Abel, which will be estab-

lished in the next Article, we shall have

When a! = we have jP(0) =/(0) from (25);

hence F{k)=f{0)+kjy^^^^ (26).

Equation (26) involves the solution of (25), when in (25)
we regard/ as a given, and F as an unknown form.

Substitute in (24) for F in terms of/: thus

f{x) = lA,+ A/,{2x) + A,J,{^x)+AMQx)+,.,,

where A^ = ^j'^{f{0) + uf^j^^\cos2jiudu:

for every value of n except zero the last equation reduces to

A = -J^-os2n.{J^.J14L_}^,,

but in the case of n = we must add 2/(0).

Thus f[x) is expanded in an infinite series of Bessel's

Functions.
"

44)2. It remains to establish the theorem due to Abel.

It is immediately obvious that

i. L VCi'^v:^) - 2 (^(^) --^(^^^^

T. 22
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Transform the definite double integral by the use of

polar coordinates ; then it becomes

r^rl"" F\r cose) rdrde

Put cos^ = f, and r = k/jb; then the definite double integral

becomes .feff ^^I K^ ^n'"^ ., . Hence we have

this is the theorem which was to be established.

443. Differentiate with respect to x the result obtained in

Art. 441; and put ^(ic) for/'(ic); then since ° ^ = — J^{x),

we have

<i>
{x) = B/,{2x) + B,J^{4^x) + B/,i6x) + ...,

8 f^"" (
[^

(f) iuP) ]

where 5„ = n\ ucos2nu\\ ~—^—Hr^d^c^^'

444. If we put /t = TT instead of /t = ^ tt in equation (28)

and proceed as in Art. 441, instead of the result of that

Article we shall obtain the following

:

fix) = 2 «o+ «yo (^) +«2^o (2^) + «3^o (3^) + •••
y

where «» =
^J^

^^^^^^
jj^ 7(T3|^}

^^'

for every value of n except zero, and when n is zero we must
add 2/(0). The formula holds for values of x between
and TT.

By differentiating this, as in Art. 443, we obtain

* {x) = \J, ix) + \J, (2aj) + \J^ i^^x) + ...

,

,
'

, 27? f- ^ r ^ (*'?) ^f
where 6„ = u cos nu du —-p.—772, .
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The formulae of the present Article might also be deduced

from those of Arts. 44!l and 443 by putting in them a; = ^ .

445. In the first formula of the preceding Article change

X into Jx ; thus

where S denotes summation with respect to n from 1 to

infinity.

Differentiate both sides m times with respect to x ; then
since by Art. 390 we have

we obtain

-where a„ has the value assigned in Art. 444.

22—2
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CHAPTER XXXVI.

MISCELLANEOUS PROPOSITIONS.

446. In this Chapter we shall collect some miscellaneous

propositions which involve the use of Bessel's Functions.

447. Having given y = z+xsiny it is required to ex-

press y in terms of z.

This problem may be stated in Astronomical language
thus ; to express the eccentric anomaly in terms of the mean
anomaly : see Hymers's Astronomy, Art. 315, or Godfray's

Astronomy, Art. 179.

When y = we have z = 0, and when y = 7r we have
2 = IT. Thus y — z vanishes both when z = and when z=7r;
and we may therefore expand y — z in the following series :

y — z=C^smz+ C^ sin 2^ + Og sin 3^ + . .
.

,

where ^n = -
I (y — 2;) sin nz dz

2 T"" 2= — ysmnzdz + - cos rnr.
TTJ,

^ n

By integration by parts we have

ly sin nzdz = — - cos nz + -
j
cos nz dy

= — - cos nz + -\ cos n{y — x sin y) dy ;

therefore

I y sin ?i2^ t/^ = cos nvr + - I cos n (y — a; sin y) cfy.
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Thus

2

m
Therefore

2 /"• 2
C^ =—

I
cos n (y - a: sin y)dy — - J^ (no;), by Art. 372.

3/-r=2J/,(a:)sin3+|/,(2a;)sin22!+gJ,(3a;)sm3«+...|...(l).

448. In like manner we may find expressions for cos hy

and sin hy^ where h is any integer.

For we may put

cos% = -4, + -4j cos 2 + -4 J cos 2^ + ^, cos 32 + . .

.

1 /*» 1 /*"

Then -4^=- I cosA;^c?2=-l cos^y (1 — arcosy)c?y;

this vanishes if A; is not unity, and is equal to - ^ if A;

is unity.

2 r»
Moreover ul« = - I cos Icy cos nzds

2^ /*"

= — / sin ky sin W2 dy, by integration by parts,

=—- I sinA;ysinn(y—a;sini/)cZy

s= — I cos {ny — hy — nx sin y) (Zy

I cos {ny + Jcy-'nx sin y) eZy

In like manner we may put

sin ky = B^ sin 2 + ^^ sin 2^ + 5, sin 3^ + . .
.

,

and proceeding as before we shall find that
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Suppose for example that k=l ; then by Art. 379

£,=-. — / (nx) = — J (nx)

:

therefore

icsin^=2 \j^{x)siriz-\- ^J,^{2x)8m2z+ -J^(Sx)smSz -{-... i ..,(2).

Thus (2) agrees with (1).

449. Let r denote the radius vector from the focus in

the ellipse corresponding to the eccentric anomaly y, and
suppose the semi-axis major to be unity; then r=l — xG0S7/,

and this can be expressed in terms of z, since the series for

cos y is known by Art. 448.

Also we have —-{l—xcosy) — !] therefore - = :^ : and

finding ^^ from (1), we have
dy

Lllg

- = 1 + 2 {/j (a?) coss + J^ {2x) cos 2z + ^3(3^) cos Sz 4-

,

450. To shew that

e~'''J,{ax)dx
1:

We have
1 f''

J^ (jOLx) — - cos [ax cos ^) d<f> ;

therefore

I e"^"^ J^ (ax) dx = -
j I e~^*cos (ax cos ^) dx dcp.

Integrate with respect to x first ; thus we get

IT J, I)' + a^ cos^</)

'

~
TT j b'+a'cos'ct>

~
V(«'+6')

'

Put 6 = in the preceding result ; thus

1

/.
Jf, (ax) dx =*^ ^ a
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451. To shew that

r rwr(l:i^)rg)
I a;"*"^/„ (ax) dx = .

1 sin rmr,
Jo 2^^a"

where m denotes a positive proper fraction.

We have

1 fJ (ax) = -
I

cos (gw; cos <f)
fZ(/>

;

hence the proposed definite integral

= -
j I

a?"""* cos (aa; cos <^) dx d<f>.

But I cos {ax cos </>) c?<^ = 2 I cos {ax cos <^) J(^ ; thus the

proposed definite integral

=— I I aj"*
* cos (ow; cos <^) (Zo; d<^.

Integrate with respect to x first ; then by Integral Cal-

culus, Art. 302, we get

2r(m)co3-^
rJ' d,^_

Tra'" Jo cos'"<^*

f Vy f -"+Vi ,-j,
^(-2^)^(2)

and rg)r(i-|)=- TT

Sm -;t-
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thus the definite integral

rwr(J^)rg)rg)
cos— sin -2"

r(n.)r(l^)r(|)_
sm mTT.

452. We have, by Art. 371,

1 T""

'^o (^ +^) = -
I

cos (a; cos + ^ cos <^) dff)

1 /""•

= — I COS (a; cos <^) cos (y cos ^) c?<^

1 r^ .

I sin (x cos 0) sin [y cos <^) J(^.

But, by Art. 413,

cos {x COS ^) = /j, (a;) — 2^2 (a;) cos 2(^ + 2/^ (a;) cos 4</> — . .
.

,

cos (y cos ^) = /,(?/) - 2/^ (y) cos 2(^ + 2/, (y) cos 4^ - ...

;

1 T'^

therefore - I cos (x cos (p) cos (y cos (f>)d(j)

= «^oW^o(2/) + 2/, (a.) /.(y) + 2J,(^) J,(y) +...

Also, by Art. 413,

sin (a?cos (/))= 2Jj (a?) cos 0—2/3(0;) cos 3^ +2/5(0;) cos
5(f)

— ...

,

sin(ycos</>) =2/j(y) cos^— 2/3(2/) cos 3<^+ 2/^(^)008 50 - ...

;

therefore - I sin (x cos 0) sin {y cos 0) c?0

= 2/.W J;(y) + 2/3(^)JM + 2J,{x) J, (y) + ...

Hence finally /„ (a; + y) =

^oW ^o(y) - 2/.W JAy) + 2^,W ^»(y) - 2/3W ^,(y) + -
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453. Let P, Q, E, k be constants which satisfy the

relations

Rcosk = Py jR sin ^ = ^

;

so that jB' = P* + Q'.

By Art. 372 we have

1 r*
JAR) = - cos (i? sin 6) d<f).

Now obviously

I
cos {R sin <f))d(f>= I cos [R sin (<^ + k) ] dj> ;

and by differentiating the last expression with respect to h
so far as depends on the limits of the integration we obtain

zero for the result, so that the value is independent of the

value which we ascribe to k in the limits and we may con-

sequently put zero for k in the limit. Thus

eT; {R) = - ['cos [R sin (</> + A;)) cZ<^

1 r»= - I cos i2 {sin ^ cos ^ + cos ^ sin A;} c?<^

1 f= - I COS (Psin<^+ ^cos<^)d[^ (3).

In precisely the same manner we may shew that

J^[R) = ~ r cos (P sin <f>-Q con cf>)dcj> (4).

From (3) and (4) by addition and subtraction

2 ['
Jq {R) = ~

I cos (P sin <^) cos (Q cos (f>)d<}) (5),

1 f0= - / sin (P sin <^) sin (Q cos <^) J(/) (6).
Try,
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Now let R denote the distance of two points determined

by polar coordinates, so that we may put

^» = r* + rj^-2rr^cos^,

or j5* = (r - r, cos Of + r^ sin' 0.

Then by (4) we have

JJ^R) = - I cos {(r - r^ cos 6) sin <^ — r^ sin 6 cos ^} d(f>,
'^ J

that is

Jq{R)=- cos[rBm<p — r^sm{<j> + 6)}d(j) (7).

But by Arts. 410 and 411,

cos (r sin ^) = J^ (r) + 2J^ (r) cos 2^ + 2e7^(r) cos 4^ + ...

,

sin (r sin (j)) = 2/^ (r) sin cf) + 2/3 (r) sin 30 + 2/^ (r) sin 50 + . .
.

;

and two other formulae may be expressed by changing r into

7\, and (j> into <j)+ 6. ^

Thus we obtain

cos {r sin 0) cos {r^ sin (<j>-\-6)} dcj}

^Tr 'Mr) J,(r,)+2J,ir)J,{r,)cos-2e+%r,{r)J,{r,)eosid +...},

and
I

sin (r sin0) sinjr^sin (0 + ^)} c?0
Jo

= 2^1J;(r)j;(r,)cos^+/3(r)J3Wcos3e+J,WJ;(r>os5^+...l.

Add the last two results, and thus we obtain from (7)

J,{R)=J,{r) j;(r.) + 2X J-„(r) J-„(r.)cosn^... (8),

where S denotes summation with respect to n from 1 to

infinity.

If we suppose ^ = tt the result agrees with that obtained
in Art. 452 for J^ [x-\-y).

/:
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454 As a particular case of (8) suppose r^ = r, so that

i? = 2r sin ^ ; then

J, (2r sin D = {/.(r)l'+ 22 {J, (r))'cosn^ (9).

But by Art. 372 we have

c7j,f2rsin ^j = -
I

cos f 2rsin^ sin </>] fZ<^,

and, by Art. 410,

cos l2r sin sin
^ j
= J^ (2r sin

<f>)
+ 2/^ (2r sin (j)) cos 9

+ 2/^ (2r sin <^) cos 2^ + ...

,

therefore J^ (2rsin
^ j
=

- r [J, (2r sin
<f))
+ 2/, (2r sin <^) cos 6

+ 2J, (2r sin <^) cos 2^ +...}#.. . (10).

Hence comparing (9) and (10) we have

455. The equation of Art. 376, as we have seen in the
preceding Chapters, easily leads to various theorems respect-

ing Bessei's Functions when the number expressing the order

of the function is a positive integer. And, as we have seen

in Arts. 380 and 381, it is sometimes easy to extend these

theorems to the case in which the number expressing the

order is not restmcted to be a positive integer. As another
example of such extension we may take the last formula of

Art. 422, which has been established on the supposition

that r is a positive integer, and shew that this restriction

may be removed.
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The first term in eTl (x) is ^,, „ ~, ,-, a;*" ; and when this
r \ / 2*^ r (r + 1)

is integrated m times we obtain ^,^ .
—

^tt^"''*^, and^ 2^r(m + r + l)

thus we easily see that the lowest term on the left-hand side

is identical with the lowest on the right-hand side.

In like manner the other terms will be identical. For
multiply both sides by r(r + l), and then when the appro-
priate reductions are made which the properties of the
Gamma functions allow, we shall obtain for the coefficients of

any assigned power of x, definite algebraical functions of r;

and as we know already that they coincide for every integral

value of r it follows that they are identically equal.

456. Both Neumann and Lommel have introduced func-

tions to which they give the name of Bessel's Functions
of the second order ; the two functions are not the same,
but for them the reader is referred to the original works.

We may observe that equation (1) of Art. 370 remains
unchanged when the sign of n is changed ; this suggests
that a second integral of the equation will be given by the
following series when n is not a positive integer

:

2(2/1-2) ' 2.4(2/1-2) (2/1-4)

+ ...},2. 4. 6 (2/1-2) (2/1-4) (2/1-6)

and this may be easily verified.

In Lommel's work will also be found tables of the

numerical values of Jq{x) and J^{x) and of some others of

the functions.

cambbidge: printed by c. j. clay, m.a. at the university press.
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