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PREFACE

TO THE FIFTH EDITION,

In the following Treatise I have adopted the method of

Limiting Eatios as my basis ; at the same time the co-

ordinate method of Infinitesimals or Differentials has been

largely employed. In this latter respect I have followed in

the steps of all the great writers on the Calculus, from

Newton and Leibnitz, its inventors, down to Bertrand, the

author of the latest great treatise on the subject. An ex-

clusive adherence to the method of Differential Coefficients

is by no means necessary for clearness and simplicity ; and,

indeed, I have found by experience that many fundamental

investigations in Mechanics and Geometry are made more

intelligible to beginners by the method of Differentials than

by that of Differential Coefficients. While in the more ad-

vanced applications of the Calculus, which we find in such

works as the M^canique Celeste of Laplace, and the Meca-

nique Analytique of Legrange, the investigations are all

conducted on the method of Infinitesimals. The principles

on which this method is founded are given in a concise form

in Arts. 38 and 39.

In the portion of the book devoted to the discussion of

Curves, I have not confined myself exclusively to the ap-

plication of the Differential Calculus to the subject; but

have availed myself of the methods of Pure and Analytic
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Greometry, whenever it appeared that simplicity would he

gained thereby.

In the discussion of Multiple Points I have adopted the-

simple and Greneral Method given by Dr. Salmon in his

Higher Plane Curves. It is hoped that by this means the

present treatise will be found to be a useful introduction to

the more complete investigations contained in that work.

As this Book is principally intended for the use of begin-

ners, I have purposely omitted all metaphysical discussions,

from a conviction that they are more calculated to perplex

the beginner than to assist him in forming clear conceptions.

The student of the Differential Calculus (or of any other

branch of Mathematics) cannot expect to master at once all

the difficulties which meet him at the outset ; indeed it is only

after considerable acquaintance with the Science of Geometry

that correct notions of angles, areas, and ratios are formed.

Such notions in any science can be acquired only after

practice in the application of its principles, and after patient

study.

The more advanced student may read with advantage the

Reflexions sur la M^taphysique du Calcul Infinitesimal of the

illustrious Carnot ; in which, after giving a complete resume

of the different points of view under which the principles of

the Calculus may be regarded, he concludes as follows :

—

" Le merite essentiel, le subHme, on peut le dire, de la

methode infinitesimale, est de reunir la facilite des procedes

ordinaires d'un simple calcul d'approximation a I'exactitude

des resultats de Tanalyse ordinaire. Cet avantage immense

serait perdu, ou du moins fort diminue, si a cette methode

pure et simple, telle que nous Ta donnee, Leibnitz on voulait,

sous I'apparence d'une plus grande rigueur soutenue dans

tout le cours de calcul, en substituer d'autres moins natureUes,.
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nioins commodes, moins conformes d la marche probable^

des inventeurs. Si oette m^thode est exacte dans les re-

sultats, comma personne n'en doute aujourd'hui, si c'est tou-

jours a elle qu'il faut en revenir dans les questions difficiles,

comme il parait encore que tout le monde en convient,

pourquoi recourir k des moyens detoum^s et compliqu^s pour

la suppleer? Pourquoi se contenter de Tappuyer sur des

inductions et sur la conformity de ses resultats avex ceux que

foumissent les autres methodes, lorsqu'on pent la d^montrer

directement et g^neralement, plus facilement peut-etre

qu'aucune de ces methodes elles-memes ? Les objections que

I'on a faites contre elle portent toutes sur cette fausse suppo-

sition, que les erreurs commises dans le cours du calcul, en y
uegligeant les quantites infiniment petites, sont demeurees

dans le resultat de ce calcul, quelque petites qu'on les sup-

pose ; or o'est ce qui n'est point : 1'elimination les emporte

toutes necessairement, et il est singulier qu'on n'ait pas

aper9u d'abord dans cette condition indispensable de Telimi-

nation le veritable caractere des quantites infinitesimales et

la reponse dirimante a toutes les objections."

Many important portions of the Calculus have been

omitted, as being of too advanced a character ; however,,

within the limits proposed, I have endeavoured to make the

Work as complete as the nature of an elementary treatise

would allow.

I have illustrated each principle throughout by copious

examples, chiefly selected from the Papers set at the various

Examinations in Trinity College.

In the Chapter on Roulettes, in addition to the discussion

of Cycloids and Epicycloids, I have given a tolerably com-

plete treatment of the question of the Curvature of a Roulette,

as also that of the Envelope of any Curve carried by a rolling
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Curve. This discussion is based on the beautiful and general

results known as Savary's Theorems, taken in conjunction

with the properties of the Circle of Inflexions. I have also

introduced the application of these theorems to the general

case of the motion of any plane area supposed to move on

a fixed Plane.

In this Edition I have made little alteration beyond the

introduction of a short account of the principles of the deter-

minant functions known under the name of Jacobians, which

now hold so fundamental a place in analysis.

Trinity College,

June, 1884.

PEEFACE TO THE SIXTH EDITION.

In this Edition the text has been carefully revised, and I

have added a short discussion of the Properties of Solid and

Spherical Harmonics, so far as they admit of simple treat-

ment without requiring a knowledge of Multiple Integrals

and of the Solution of Differential Equations.

Trinity College,

December, 1886.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

FIRST PRINCIPLES—DIFFERENTIATION

.

I. Functions.—The student, from his previous acquaintance

with Algebra and Trigonometry, is supposed to understand

what is meant when one quantity is said to be a function of

another. Thus, in trigonometry, the sine, cosine, tangent, &c.,

of an angle are said to be fimctions of the angle, having each

a single value if the angle is given, and varying when the

angle varies. In like manner any algebraic expression in x
is said to be a function of x. Geometry also famishes us

with simple illustrations. For instance, the area of a square,

or of any regular polygon of a given number of sides, is a

function of its side ; and the vclimie of a sphere, of its radius.

In general, whenever two quantities are so related, that

ani/ change made in the one produces a corresponding variation

in the other, then the latter is said to be a function of the

former.

This relation between two quantities is usually represented

by the letters F, /, 0, &c.

Thus the equations

u = F{x), t7=/(a?), tr = ^(a?),

denote that «, v, w, are regarded as functions of ar, whose
values are determined for any particular value of a?, when the
form of the function is known.

2. Dependent and Independent ITariables, Con-
stants.—In each of the preceding expressions, x is said to be

B
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the independent variable, to whieli any value may be assigned

at pleasure ; and u, v, w, are called dependent variables, as their

values depend on that of Xy and are determined when it is

known.
Thus, in the equations

2/=io*, y = x\ y = 8iD.x,

the value of «/ depends on that of x, and is in each case deter-

mined when the value of x is given.

If we suppose any series of values, positive or negative,

assigned to the independent variable Xy then every function

of X will assume a corresponding series of values. If a quan-
tity retain the same value, whatever change be given to x, it

is said to be a constant with respect to x. vVe usually denote

constants by a^ b, c, &c., the first letters of the alphabet

;

variables by the last, viz., u, v, w, x, y, z.

3. Alge3>raic and Transcendental Functions.—
Functions which consist of a finite number of terms, iuvolving

integral and fractional powers of x, together with constants

solely, are called algebraic functions—thus

are algebraic expressions.

Functions which do not admit of being represented as

ordinary algebraic expressions in a finite number of terms are

called transcendental : thus, sin x, cos x, tan x, e^, log x, &c.,

are transcendental functions ; for they cannot be expressed

in terms of x except by a series containing an infinite number
of terms.

Algebraic functions are ultimately reducible to the follow-

ing elementary forms : (i). Simi, or difference (u + v, u - v).

(2). Product, and its inverse, quotient luv,
-J.

Powers, and

their inverse, roots {u^, u^).

The elementary transcendental functions are also ulti-

mately reducible to : (i). The sLue, and its inverse, (sin w,

sin^^w). (2). The exponential, and its irverse, logarithm
(e-, log u).
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^'
4. Continuous Functions.—A function {x) is said to

1)0 a continuous function of a-, between the limits a and ft,

when, to each value of ar, between these limits, corresponds a
finite value of the function, and when an infinitely small

change in the value of x produces only an infinitely small

change in the function. If these conditions be not fulfilled

the function is discontinuous. It is easily seen that all

algebraic expressions, such as

Ooa^ + «ia^* +....«„,

and all circular expressions, sin x, tan x, &c., are, in general^

continuous functions, as also ^, log a?.. &c. In such cases,

accordingly, it follows that if x receive a very small change,

the corresponding change in the function of x is also very

small.

5. Increments and DifTerentlals.—In the Differen-

tial Calculus we investigate the changes which any function

undergoes when the variable on which it depends is made to

pass through a series of different stages of magnitude.

If the variable x be supposed to receive any change, such

change is called an increment ; this increment of x is usually

represented by the notation Aa?.

When the increment, or difference, is supposed infinitely

small it is called a differential, and represented by dx, i.e. an

infinitely small difference is called a differential.

In like manner, if tc be a function of x, and x becomes
^ + Ax, the corresponding value of u is represented by w + Aw

;

i. e. the increment of ti is denoted by Aw.
6. lilmlting Ratios, Derived Functions.—If w be a

function of x, then for finite increments, it is obvious that the

ratio of the increment of u to the corresponding increment of

X has, in general, a finite value. Also when the increment

of X is regarded as being infinitely small, we assume that the

ratio above mentioned has still a definite limiting value. In
the Differential Calculus we investigate the values of these

limiting ratios for different forms of functions.

The ratio of the increment of u to that of x in the limit,

when both are infinitely small, is denoted by -7-. When

B 2
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u =f[x), tHs limiting ratio is denoted \>yf[x), and is called

iih.Q first derivedfunction* oif[x).

Thus ; let x become x -\- h, where h = Aa?, then u becomeS'

/(a; + h), i. e. t^ + Aw =f{x + ^),

.-. Aw ^f{x + ^) -/(fc),

Aw_ /(^ + A)-/(a;)

Aa; A

Ti^g limiting value of this expression when h is infinitely/ small

is called the first derived function of /(a;), and represented

by/(^).

Again, since the ratio -— has/' (a?) for its limiting value,
i\X

if we assume

^ =/(-) + .,

* Aw
€ must become evanescent along with Aa? ; also —- become*°

Aa?

-7- at the same time ; hence we have
dx

This result may be stated otherwise, thus :—If Ui denote
the value of u when x becomes Xi, then the value of the ratio

—
, when ari - a; is evanescent, is called the first derived

Xi— X

function of w, and denoted by -^.
dx

* The method of derived functions was introduced by Lagrange, and the
different derived functions oif{x) were defined by him to be, the coefficients of
the powers of h in the expansion oif{x + h) : that this definition of the first

derived function agrees with that given in the text will be seen subsequently.

This agreement was also pointed out by Lagrange. See " Theorie des

Fonctions Analytiques," N<"». 3, 9.
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If 3*1 be greater than a;, then Mi is also greater than w, pro-

vided — is positive ; and hence, in the limit, when Xx - x

is evanescent, Ux is greater or less than u according as — is
(tx

positive or negative. Hence, if we suppose x to increase,

then any function of x increases or diminishes at the same
time, according as its derived function, taken with respect

to a-, is positive or negative. This principle is of great

importance in tracing the different stages of a function of a?,

corresponding to a series of values of x.

7. Dlirerential, and DiflTerential Coefficient, of

m-
Let w =/(a;) ; then since

£-/<')

we have dtt, = d {/(x)) = /^{x) dx,

where dx is regarded as being infinitely small. In this

case dx is, as already stated, the differential of x, and du
or f {x) dx, is called the corresponding differential of u.

Also f (x) is called the differential coefficient of /(a?), being
the coeflBcient of dx in the differential of f(x).

8. Algebraic Illustration.—That a fraction whose
nimierator and denominator are both evanescent, or in-

finitely small, may have a finite determinate value, is

evident from algebra. For example, we have t = —7 what-

ever n may be. If w be regarded as an infinitely small

number, the numerator and denominator of the fraction

both become infinitely small magnitudes, while their ratio

remains imaltered and equal to j.

It will be observed that this agrees with our ordinary
idea of a ratio ; for the value of a ratio depends on the

relative^ and not on the absolute magnitude of the terms
which compose it.

. . . „ na •¥ r^cC
Agam, ;f • w = -—-——,

in which n is regarded as infinitely small, and a, ft, a' and }f
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represent finite magnitudes, tlie terms of the fraction are
both infinitely small,

but their ratio is ; r;,

b + nh

the limiting value of which, as n is diminished indefinitely,

is -. Again, if we suppose n indefinitely increased, the

limiting value of the fraction is -,. For

a + a'n a' ah' - ha'
+

h^h'n y h'{b + h'n)'

but the fraction -rj—i——— diminishes indefinitely as n
V {b + bn) '^

increases indefinitely, and may be made less than any
assignable magnitude, however small. Accordingly the

limiting value of the fraction in this case is -,.

b

9. Trigonometrical Illustration.—To find the values

of 7—^, and —n-y when is regarded as infinitely email.

Here 7

—

^x
= cosO, and when = o, ooaO = i.

tan ^
' '

Hence, in the limit, when = o* we have
sinO _ tan 9

, ,,
7—7i

= I, and, .*. ——7: = I, at the same tmie.
tan^ ' ' sm0 '

n

Again, to find the value of -:—7:, when is infinitely small.
sm ^

From geometrical considerations it is evident that if be
the circular measure of an angle, we have

tan > > sinO,

tan 9 9
or -T—^ > -r—^ > I

;

sm d sin9

* If a variable quantity be supposed to diminish gradually, till it be less than'

anything finite which can be assigned, it is said in that state to be indefinitely

small or evanescent; for abbreviation, such a quantity is often denoted by cypher.

A discussion of infinitesimals, or infinitely small quantities of different orders,,

will be found in the next Chapter.
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but in the limit, i.e. when B is infinitely small,

tang _
8in6>

" '*

and therefore, at the same time, we have

e
-r—r = I.
smc^

This shows that in a circle the ultimate ratio of an arc to its

(jhord is unity, when they are both regarded as evanescent.

10. Creometrical Illustration.—Assuming that the
relation y = f{x) may in all cases be represented by a curve,

^vhere . . .

y = /(^)

expresses the equation connecting the co-ordinates (x, y)
of each of its points; then, if the axes be rectangular, and
two points {xy y), (xi, y^) be taken on the curve, it is obvious

that — represents the tangent of the angle which the
X\ ~~ X

< hord joining the points (ar, y), (a?i, y^ makes with the axis

of a?.

If, now, we suppose the points taken infinitely near to

each other, so that Xx- x becomes evanescent, then the chord
becomes the tangent at the point (x, y), but

——- becomes -r or f (x) in this case.
Xi- X dx '^ ^

'

Hence, f [x) represents the trigonometrical tangent of the

angle which the line touching the curve at the point (a-, //) makes
fcith the axis of x. We see, accordihgly, that to draw the

tangent at any point to the curve

y = /(^)

is the same as to find the derived function f^{x) of y with
respect to x. Hence, also, the equation of the tangent to

the curve at a point (x, y) is evidently

y-T =f{x)(x-X), (2)

where X, F are the current co-ordinates of any point on the
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tangent. At the points for wHch the tangent is parallel to

the axis of jt, we have /' (x) = o ; at the points where the

tangent is perpendicular to the axis, J^ {x) = oo . For all

other points /' (x) has a determinate finite real value in

general. This conclusion verifies the statement, that the

ratio of the increment of the dependent variable to that of

the independent variable has, in general, a finite determinate

magnitude, when the increment becomes infinitely small.

This has been so admirably expressed, and its con-

nexion with the fundamental principles of the Differential

Calculus so well explained, by M. Navier, that I cannot for-

bear introducing the following extract from his "Legons
d'Analyse":

—

" Among the properties which the function y = /(^r), or

\ he line which represents it, possesses, the most remarkable

—

in fact that which is the principal object of the Differential

Calculus, and which is constantly introduced in all practical

applications of the Calculus—is the

degree of rapidity with which the

fimction / {x) varies when the in-

dependent variable x is made to

vary from any assigned value.

This degree of rapidity of the

increment of the function, when x
is altered, may differ, not only

from one function to another, but
also in the same function, ac-

cording to the value attributed to

the variable. In order to form a

precise notion on this point, let us attribute to a; a deter-

mined value represented by ON, to which will correspond

an equally determined value of y, represented by PN. Let
us now suppose, starting from this value, that x increases by
any quantity denoted by ^x, and represented by NM, t]ie

function y wiU vary in consequence by a certain quantity,

denoted by Ay, and we shall have

1/+ Ay = f(x + Aa;), or Ay = f(x + Atr) -f(x).

The new value of y is represented in the figure by QJf,

and QJj represents Ay, or the variation of the function.

Fig. I.
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The ratio — of the increment of the function to that of

the independent variable, of which the expression is

is represented by the trigonometrical tangent of the angle

QPL made by the secant PQ with the axis of x.

Ay
" It is plain that this ratio —— is the natural expression

i^X

of the property referred to, that is, of the degree of rapidity

with which the function y increases when we increase the

independent variable x ; for the greater the value of this

ratio, the greater will be the increment Ay when x is in-

creased by a given quantity Air. But it is very important
Av

to remark, that the value of —^ (except in the case when
ijkX

the line PQ becomes a right line) depends not only on the
value attributed to a*, that is to say, on the position of P on
the curve, but also on the absolute value of the increment Ax,
If we were to leave this increment arbitrary, it would be

impossible to assign to the ratio -~ any precise value, and

it is accordingly necessary to adopt a convention which shall

remove all uncertainty in this respect.

" Suppose that after having given to Aa? any value, to

which will correspond a certain value Ay and a certain

direction of the secant PQ, we diminish progressively the
value of Ax, so that the increment ends by becoming
evanescent ; the corresponding increment Ay will vary in

consequence, and will equally tend to become evanescent.

The point Q will tend to coincide with the point P, and the
secant PQ with the tangent PT drawn to the curve at the

point P. The ratio -^ of the increments will equally
i\X

approach to a certain limit, represented by the trigonometrical

tangent of the angle TPL made by the tangent with the
axis of X.

"We accordingly observe that when the increment Ax^
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and consequently Ay, diminish progressively and tend ta
Ay

vanish, the ratio —- of these increments approaches in

general to a limit whose value is finite and determinate.

-T-I- Av
Hence the value of ;— corresponding to this limit must be

A^
considered as giving the true and precise measure of the

rapidity with which the functionf {x) varies when the independent

variable x is made to vary from an assigned value ; for there

does not remain anything arbitrary in the expression of this

value, as it no longer depends on the absolute values of the
increments Aar and Ay, nor on the figure of the curve at any
finite distance at either side of the point P. It depends
solely on the direction of the curve at this point, that is, on
the inclination of the tangent to the axis of x. The ratio

just determined expresses what Newton called the fluxion of

the ordinate. As to the mode of finding its value in each
particular case, it is suflGlcient to consider the general

expression
^y /(.^A.)-/(.)
Aa; AiP

*

and to see what is the limit to which this expression tends,

as Aic takes smaller and smaller values and tends to vanish.

This limit will be a certain function of the independent
variable x, whose form depends on that of the given function

f{x) We shall add one other remark; which is, that

the differentials represented by dx and dy denote always
quantities of the same nature as those denoted by the variables

X and y. Thus in geometry, when x represents a line, an
area, or a volume, the differential dx also represents a line, an
area, or a volume. These differentials are always supposed

to be less than any assigned magnitude, however small ; but
this hypothesis does not alter the nature of these quantities :

dx and dy are always homogeneous with x and y, that is to

say, present always the same number of dimensions of the unit

by means of which the values of these variables are expressed.'*

loa. liimit of a Variable Magnitude.—As the con-
t/' caption of a limit is fundamental in the Calculus, it may

be well to add a few remarks in further elucidation of its

meaning :

—
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Limit of a Variable Magnitude. 1 1

In general, when a variable inaynitude tends continualbj to

equality tdth a certain fixed inagnitude, and approaches nearer to

it than any assignable dififerencCy however small^ this fixed magni'

tude is called the limit of the variable magnitude. For example,

if we inscribe, or circumscribe, a polygon to any closed curve,,

and afterwards conceive each side indefinitely diminished,

and consequently their number indefinitely increased, then

the closed curve is said to be the limit of either polygon.

By this means the total length of the curve is the limit of

the perimeter either of the inscribed or circumscribed polygon.

In like manner, the area of the curve is the limit to the

area of either polygon. For instance, since the area of any
polygon circumscribed to a circle is obviously equal to the

rectangle under the radius of the circle and the semi-perimeter

of the polygon, it follows that the area of a circle is repre-

sented by the product of its radius and its semi-circumfe-

rence. Again, since the length of the side of a regular

polygon inscribed in a circle bears to that of the correspond-

ing arc the same ratio as the perimeter of the polygon to the

circumference of the circle, it follows that the ultimate ratio

of the chord to the arc is one of equality, as shown in Art. 9.

The like result follows immediately for any curve.

The following principles concerning limits are of fre-

quent application:— (i) The limit of the product of tico quan^

titiesy which vary together, is the product of their limits; (2) The
limit of the quotient of the quantities is the quotient of their

limits.

For, let P and Q represent the two quantities, andp and
q their respective limits ; then if

P=p + a, Q = q + P,

a and j3 denote quantities which diminish indefinitely as P
and Q approach their limits, and which become evanescent

in the limit.

Again, we have

FQ =pq+pl^ + qa + ajS.

Accordingly, in the limit, we have

PQ-pq.
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The numerator of the last fraction becomes evanescent in

the limit, while the denominator becomes q^^ and consequently

the limit of — is -.

Q q
1 1 . DijOrerentiation.—The process of finding the derived

function, or the differential coefficient of any expression, is

called differentiating the expression.

We proceed to explain this process by applying it to a
few elementary examples.

Examples.

r. y = x^.

Substitute x + hior x, and denote the new value of y by yi, then

yi = (« + A)2 = a2 + 2xh + W' ;

h l^z

If A be taken an infinitely small quantity, we get in the limit

dy

•or if /(«') = «', we have/' (a;) = zx.

I
y=-.

Here yi =
x-\- h

I I

y\-y x+ h X x{x + h)*

y^-y ^^^y
A ' Ax x{x +h)^

which equation, when h is evanescent, becomes

dx "a;2' ^ dx

a) .
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3

12. DiflTcrentlatloii of the Algebraic Sum of m
Finite IVumber of Functions.—Let

y==u-\-V'-w-\- &o.

;

then, if iPi =s a? + A, we get

yi = u^ + vx-tc,+ . . .

;

y\-y Ui- u t\-v Wi — w
•*•

""A V "^ ~h IT + • •
•'

which becomes in the limit, when h is infinitely small,

dy du dv dw

dx dx dx dx

Hence, if a function consist of several terms, its derived

function is the sum of the derived functions of its severalparts,

taken with their proper signs.

It is evident that the differential of a constant is zero.

13. Differentiation of tlie Product of Two Fane*
tlons.—Let y = wr, where u, v, are both functions of x ; and
suppose Ay, Aw, Ar, to be the increments of y, u, v, corre-

sponding to the increment Aa? in x. Then

Ay = {u + Aw) {v + Av) - uv

- uAv + vAu + Aw AVf

Ay Av , . N Aw
or — = u— + (v + Av) —

.

AiC Aa; ^ Ax

Now suppose Ax to be infinitely small, then

Ay Av Au

Ai' A
become in the limit

Ax*

dy dv , du

^' di'^'^'^di''

also, since At? vanishes at the same time, the last term dia*

appears from the equation, and thus we arrive at the result

dy dv du
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Hence, to differentiate the product of two functions,

multiply each of the factors hy the differential coefficient of the

ether, and add the products thus found.

Otherwise thus : let /(a;), ^ (a;), denote the functions, and
h the increment of x, then

yv=f{x^h) 0(aT + A);

. Vx-y y{^ + h)<t>{x + h) -f{x) {x)

" h h

Now, in the limit,

f(x + h) -f[x) ^r^^h\ ^(^\

tind (a? + A) - ^ (x)

u *'W.

and, accordingly,

dy

which agrees with the preceding result.

When y = au, where a is a constant with respect to x,

we have evidently

dy du

dx dx'

14. Differentiation of the Product of any HTumber
of Functions.

—

First let

y = uvw;

suppose vw = Zf

then y = uz,

and, by Art. 13, we have

dy _ dz du
^

dx dx dx*



Differentiation of a Quotient, 15

but, by the same Article,

hence

dz dv dw
^

dx dx dx*

du du dv dw
-f- = vw-r -^ tcu-r -^ ^^-T'
dx dx dx dx

This process of reasoning can be easily extended to any
number of functions.

The preceding result admits of being written in the form

I dy I du I dv i dw

y dx u dx vdx w dx

and in general, if y = yi - yz - y^ * - - - yny

it can be easily proved in like manner that

l^y ^ i^dyi idyi
_^ _i ^« (4)

ydx yi dx y^ dx ' ' '

y„ dx'

15. DiflTerentiation of a Quotient—Let

therefore, by Art. 13,

or

y ~? then u = yv;

•t. 13,
du

Tx

dv

4-
dx

du
''

dx

dv du

dx'
udv

vdx

V
du dv

dx dx

V

•

dx

du

'dx'
dv

(5)

This may be written in the following form, which is often

useful:

d fu\ _ I du u dv

dx\vj V dx v^ dx'
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Hence, to differentiate a fraction, multiply the denominator

into the derivedfunction of the numerator, and the numerator into

the derived function of the denominator ; take the latter product

from the former, and divide hy the square of the denominator.

In the particular case where w is a constant with respect

to X {a suppose), we obviously have

d fa\ _ a dv

dx \vj V* dx'

Examples.
a — x ^ du

u = . Ans,

(6)

2*+ x dx {a + x)'

» ,, X du ,
2. u = (a + z) (b + x). -— = a + o+2X.

^ ' ^ ' dx

1 6. Differentiation of an Integral Power.—^Let

y = of*, where ^^ is a positive integer.

Suppose yi to be the value of y, when x becomes Xi, then

Xi- X Xi- X

Now, suppose Xi- X to be evanescent. In this case we
may write x for Xi in the right-hand side of the preceding

equation, when it becomes naf^'^; but the left-hand side, in

dy
the limit, is represented by -j- •

Hence -^ = ruxf^K
dx

or ;
^ = naf*^^,

dx

This result follows also from Art. 1 4 ; for, making

2/1 = 2^2 = ^3 = . . . = y» = «^,

we evidently get from (4),

d (w") ^ , du ,.—^ = nu""-'—. (7)
dx dx

This reduces to the preceding on making w = a?.
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17. Dlfl'erentlation of a Fractional l*o\vcr.—Let
m

then r = t.'", and -^2 = _y ;

hence, by (7),
^^dy „ , du

m
c?(w") _ dy _ mv^du _ w ^-1^ . v

'

' dx dx n 2/""* ^^ n dx'

18. DifTerentiation of a IVegative Power.—Let

y = fr~, then y = — , and by (6) we get

d , ^
dx „ ,du / V

^('O -. -«-"-;^- (9)

Combining the results established in (7), (8), and (9), we
find that

d iu"^) „ , du

dx dx

for all values of m, positive, negative, or fractional. When
applied to the differentiation of any power of x we get the

following rule :

—

Ditnhmh the index by unity, and multiply the

power of X thus obtained by the original index ; the result is the

required differential coefficient, with respect to x.

19. Difrereutiation of a Function of a Function.

—

Let y = fix) and w = ^ (y), to find — . Suppose yi, Wi, to be
ax

the values of y and u corresponding to the value Xi for x
;

then if Ay, A?f, Air, denote the corresponding increments,

we have evidently

Ui-u yi-y
Xi

or

ip y\- y xx -x'

Ati Aw Ay

Ax Ay Ax
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As this relation holds for all corresponding increments,
however small, it must hold in the limit,* when Aa; is

evanescent ; in which case it becomes

— = -, (lo)
dx dy dx

Hence the derived function with respect to x of u is the

product of its derived mth respect to y ; and the derived of y
with respect to x.

20. DilTerentiatioii of an Inverse Function.—To
prove that

dx I

dy ~ dy

dx

Suppose that from the equation

y = /(^) («)

the equation

is deduced, and let a?i, yi, be corresponding values of x, y,

which satisfy the equation (a), it is evident that they wiQ
also satisfy the equation {h). But

Xi- x yi-y

As this equation holds for all finite increments, it must
hold when Xi- x and yi-y are infinitely small ; therefore

we have in the limit

^.^ = 1. (II)
dx dy

The same result may also be arrived at from Art. 19,

as follows :

—

When y = fix), and u = 0(2/),

* The Student will observe that this is a case of the principle (Art. loa) that

the limit of the product of two quantities is equal to the product of their limits.
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we have, in all cases,

dti du dy

dx dy dx

This result must still hold in the particular case when u - Xy

in which case it becomes
dxdy

dy dx

Examples.

I. « = (a« - a;2)«.

Let a* - ic' = y, then m = y«,

Hence

%-^^'^'t-2*.

du

« = (a + }a;3)*.

« = (I + a;2)l.
du X

dx^ (i + a^*)*

'

M = (i + a:")". ^ = mnj;»»-i(n-a;»)"«-».

We next proceed to determine the derived functions of

the elementary trigonometrical and circular functions.

2 1 . DifTerentiation of sin x.—Let

y = siniT, yx = sin {x + h),

h

y\- y sin (a? + ^) - sin x " """
2

2 sm - cos ( a? + -

1

. h
sin-

2
But by Art. 9, the limit of —r— = i ; moreover, the limit of

2
( h\,

cos f a? + - 1 IS cos X,

C 2
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T-r d (sin x) , .

Hence —^--—
^ = cosa?. (12)

22. Differentiation of cos x.

y = COS ir, 2^1 = cos {x + ^),

h

Vx-y _ cos {x ¥ h) - aos X __
"^ °^

2

""A ^ A

Hence, in the limit,

c? cos a? . , .-^ = -8m<r. (.3)

This result might be deduced from the preceding, by substi-

tuting 2 for Xj and applying the principle of Art. 19.

It may be noted that (12) and (13) admit also of being
written in the following symmetrical form :

—

t^sin

dx

in a? . / ir\

c^cosa;
cos

dx

23. Differentiation of tan x,

y - tan a?, yi = tan {x + A),

sin {x + h) sin x

yx- y tan {x -b h) - tan x cos {x + A) cos x

sin h

A cos a; cos (a? + hy

which becomes—7- in the limit,
cos* a;
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-T d{iQ.nx) I
, ^ ^Hence —^—- = —r- = see' a?. (14^,

ax coerx ^

Otherwise thus,

, sin a? dBWiX . dcosx
T /x„^ X a . cos X— sin a;—-—
a (tan x) cos a; dx dx

dx dx " cos' a;

cos^ X cos' X

24. Dlflrerentiation of cot a?.—Proceed as in the last,

and we get —^—^ = - -:-r- = - cosec'a;. (15)°
flte sin* a; ^ "'^

This result can also be derived from the preceding, by put-

ting— z for a?, as in Art. 22.

25. Differentiation of sec x,

I

y = sec a; = ;

cos a?

dy sin a?

dx cos'* X
= tan a; sec a?. (16)

«. ., , d coseo a; ,

oimilarly — = - cot a: coseo a?.

26. Differentiation of y = sin'^a;.

XT • ^
Mimj a? = sin y, .'. -T- = cos y.

ay

Hence, by Art. 20, we get

dx coay ~ y^i _ ^^2
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The ambiguity of the sign in this case arises from the ambi-
guity of the expression y = sin"^ a; ; for if ^ satisfy this equa-
tion for a particular value of x, so also does tt - y, as also

27r + y, &c. If, however, we assign always to y its least value,

i. e. the acute angle whose sine is represented by x, then the
sign of the differential coefficient is determinate, and is evi-

dently positive ; since an angle increases with its sine, so long
as it is acute. Accordingly, with the preceding limitation,

d . sin"^ X

dx y\

In like manner we find

d . cos"^ X

dx \/i-x''

(17)

(i8)

with the same limitation.

This latter result can be at once deduced from the preced-

ing by aid of the elementary equation

henoe

sm"^a?+ cos'^a? = -.
2

27. Differentiation of tan^^^v.

y = tan~* x, .*. x = tan y ;

dx I

2-/'dy cos'* y

.*. ; = -f = cos'y= -. (19)
dx dx ^ I +a^ ^ ^^

-,. ., - d.coi~^x I

28. ©eometrical Demonstration.—The results ar-

rived at in the preceding Articles admit also of easy demon-
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stration by geometrical construction. We shall illustrate this

method by applying it to

the case of sin 0.

Suppose XFQYiohe a
quadrant of a circle hav-

ing as its centre, and
construct as in figure.

Let B denote the angle

XOP expressed in circu-

lar measure ; then Fig. 2.

^ arc PX , , ^ ^ arc PQ

Accordingly,

8m((? + ^)-smd =— = ^.^ = cosPQi2.—

;

«i^i^|)jl^ = cosPQP ^^
arcPQ

PQ
arcPQ

But we have seen, in Art. 9, that the limiting value of

= I ; also PQR = B, at the same time ; hence —r^— = cos B,
ciu

as before.

The student will find no difiiculty in applying the pre-

ceding construction to the differentiation of .cos 0, sin"^ B, and
cos"^ B. The differential coefficients of tan B, tan"^ B, &c., can,

in like manner, be easily obtained by geometrical construction.

I. y s sin {nx + a),

a. y = cos mx cos n«.

3. y = sin"*.

Examples.

dy

dx

dy

n cos {nx + a).

—- = -(»» cos nx sm mx + n cos mx sin nx),

dy

dx
= n 8in»'i X cos x.

\
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4. y = sin (i + a;«). d~^^ ^°^ ^^ "* ^^^'

5. Show that sin^ x —- (sin^a; sin ms^ = m sin»»+ia; sin (m + 1) x.
ax ^ '

d
Here — (sin»»a; sin mx) = w sin»»~^a; (cos a: sin wa; + sin a; cos mx)

= m sin»»-i a: sin (m + I) a; ; .-. &c.

6. y = (a sin* x + b cos^ x)\ •~ = n{a-b) sin 2a; (a sin' a: + i cos^a;)'*-!.
daJ

7. y = sin (sin a;).

Or y = sin u, where m = sin a;. — = cos a; cos (sin a?).
ax '

8. y = 8in^ {xv). ^ -
da; (I - x^)i

9. y = sin-^ (i — a^)i.

Here (i - a;2)i = sin y ; .. x = cos y.

i=-smy/; .-. ^ = -
^^<^ ^ -v/i-ar^

,i + acosa; dy / 2 _ ig
10. y = cos-i

J .
— = V ^ ^

a + dcosa; ^ a + icosa:*

rfy
1 1. y = sec* X. 3^ = » 86c» ar tan a:.

12. y = sec"^ (a;«).

dx x\/x^ — I*

29. DlfTerentiation of log^^.

Let y = logaX, yx = loga {x-vh),

yx-y ^ logg (a? + ^) - logga; ^ ^^"^ ^
^y ^

Hence -j- is equal to the limiting value of

|i°^»('^9'

when h is infinitely small.

Again, let h = arw, then

I 1 /^ ^\ I logo (i + w) I , , v^
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.*. -^ = - multiplied by the value of loga (i + u)** when u ig

infinitely small.

To find the value of the latter expression, let - = 2, then

(i + w)" becomes ( i + -] , in which 2 is regarded as infinitely

great. Suppose the limiting value of this expression to he re-

presented by the letter e, according to the usual notation. We
can then find the value of e as follows by the Binomial

Theorem :

—

/ iV 2 1 S (S - I

Zj IS 1.2 S'

= I + - + -i L + -i^ i-i i + &o.
I 1.2 1.2.3

The limiting* value of which, when s = o», is evidentlyIII I p
I + - + + + + &c.

I 1.2 1.2.3 1.2.3.4

By taking a sufficient number of terms of this series, we
can approximate to the value of e as nearly as we please.

The ultimate value can be shown to be an iucommensurable
quantity, and is the base of the natural or Napierian system
of logarithms. When taken to nine decimal places, its value

is 2.718281828.

Again, since (i + u)" = e when w = o, we get

dAoggX ^ log„e

dx X ' ^ '

Also, since the calculation of logarithms to any other

oase starts from the logarithms of some nimibers to the base e
;

• It "Will be shown in Chapter 3, without assuming the Binomial expansion,

that e is the limit of the sum of the series

I + - H + + &c., ad infinitum.
I 1.2 I . 2 . \
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and moreover, since the logarithms of all numbers are expressed
by their logarithms to the base e multiplied by the modulus
of transformation, the system whose base is e is fundamental
in analysis, and we shaU denote it by the symbol log without
a suffix. In this case, since log e = i, we have

Again,

|aog*)=J. (21)

d . logioe M
, ,

where M or logio e is the modulus of Briggs' or the ordinary

tabulated system of logarithms. The value of this modulus,

when calculated to ten decimal places, is

0.4342944819.

On the method of its determination see Galbraith's "Algebra,'*

p. 379-
If a; be a large number, it is evident, from the preceding,

that the tabular difference (as given in Logarithmic Tables),

M
i. e. the difference between logio (^ + i) and logioa?, is —, ap-

proximately. The student can readily verify this result by
reference to the Tables.

30. DifTerentiation of (f.

Let y = a^, then log 1/ = x log a ;

ly^t
<^(logy) ^ d {lo^ y) dy _ i dy

^

dx dy dx y dx^

d .a^ dy ^ ^

,

. .

••
"dbT ^dx^y^''^''^

''^''^ "^^ ^^^)

Also, since log e= i, we have
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Examples.

I. y = log (sin x).

Let sin :r = 2, then y = log t.

dy dy dz
And since

dx dz ' dx*

dy cos X
we get -r- = -— = cot x.

** dx Bin X

dy
y = log\/aa-«» = Jlog(a2-a;2); Jl =

dx cfi - x^

dv
Ana. -r = ng^.

dx

^»W^cos a;

! 2 sin'-
/i — cos a; _ / 2

V I + cos a; / „ a;

^ 2 cos^ -

2 sin'-
2 a?

= t&n -
2

X dy I

.*. y = log tan -. Hence — = -:—

.

2 dx sin a:

31. liOgaritbmic DifTerentiation.—When the func-

tion to be differentiated consists of products and quotients

of functions, it is in general useful to take the logarithm
of the function, and to differentiate it. This process is called

logarithmic differentiation.

Examples.

»• y = yi.y2-ys.. .yn, logy = log yi + logya + .. . + logy„.

Hence 1^ = i ^ + 1^:^%
. . .

+-L ^\
ydxyidx y%dx yn dx

This furnishes another proof of formula (4), p. 15.

sin"* a; „ 1 1 • ^
2. y = . Here, log y = tn log sin « - n log cos*;

I dy cos X sin x dy sin**"^ x , „ ...
.*. - 3- = m + n ; .*. 3- = 7- (mco8*« + n sin'ar).

y dx sin X cos a; dx cos**^ a;
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3-
(^-2)2(:p-3)r

Here log y = - log (a; - i ) - ^ log {x-2)-1 log {x - 3)

;

benoe i^=5_i_ 3 i
7 i _ 7^^ + 30a? ~ 97

y («» 2x- I 4 a: - 2 3^-3 12 . (a? - 1) (« - 2) (« - 3)
'

. dy _ (a;- i)i(7a;g+3oa-97)
* ' cte 12. (a; - 2)J (a; - 3)V,

. dy a* + a^ a-a _ ^
4. y^x{a^^x^)^a^^z^. j-^= —y==-.
5. y = X*. Here log y = a; log x.

^^"^^^
^ J = ^°S a^ + I)

; ••• ^' = a* (I + log X),

6. y = e^. Here log y = a;*,

idy d.x*
- 37" = ~T~ = a;* {* + log a;);

.-. ^ = «* «•(» +loga;).

7. y = «<•» where » and v are both functions of ar.

Here log y = v log w,

I <?y _ dv V du
^" y dx ° dx udx*

dy ^ I. dv V du\ . dv .du

<?a; \ ° efa; udxj ° dx dx

32. The expression to be differentiated frequently admits
of being transformed to a simpler shape. In such cases the

student will find it an advantage to reduce the expression to

its simplest form before proceeding to its differentiation.

Examples.

. , X
I. y = sin-^ -

VI +a;2

X a;*

Here = sin y^ or 5 = sin^y; hence a? = tan y,Vi + x^ i + «^

•, . dy „ I
and we get -^ = cos' ydx ^ I + a;2
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v/i + «* - \/i - «2

V^i 4 a;^ tan y + I ^

^T^T^ ° tan y - I
•

. ^_ ('+tany)'» -(i -tany)' »tany _ ,,^ _.
• • flj^ * "7 ^ SI Sin jy.

(i + tan y)2 + (i - tan y)» i + tan«y

Hence -— C03 3y = «;

dy X X

Hence

dx cos ly Vi -;r*

y=log /
^

. = - log ^ 7=*
\V I + «- y^i -a; * v I 4^;-^^ J - «

= - log = - log ( I + >/ 1 - ar^) - - log ar.

^
2a; Vi - a2

^ ,
^/m2 _ I

y=>tan-i-!- + tan
X I -**

Let « = tan «, and the student can easily prove that

y = -a; hence / = s.
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Examples.

I. y = sec-*a;. Ana. -/-

^^ z^/x" - I*

dy
2. y = a; log X. ^ = 1 + log a?.

ax

3. y = log tan a:.

dx ~
sin 2a;*

4. y = log tan-^ x. -j- =
dx (i + a;2) tan-i«'

/- dy __f_
5. y = «\/a;. -1 = --j^.

<fa; 2v^*

/: • /I \ ^'y COS (log «)
6. y = sm (log ar). -^ = \^ ^

aa; a;

7. y = tan-i
rfy

^/i-a;*' ^'^ v^i-««'

Q . ,V^a; + \/a <fy I
8. y = tan-i —- . — = —7=

\ - 's/ ax ^^ 2Yx{i+x).

Here y = tan"^ y^a; + tan-^ \/a,

_ a;'" <fy 2«a;2»-i

^" ^ ~ (I + a;2)«* dx ~ (TT^2pi*

10. y = log - h tan-* x. -f= -.
° \i -x) dx 1 -X*

. /v/i +a:2 + a; dy i
11. y = iog r £ =

.^ 3 + 2X dy
^

I

^/T3
*

^^ a/i-3^-«''

,
(i+a;2)i

, , ,
dy x

^3-^ = logj—^Htan-i.. _=____,

1 2. y = sin
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1

ts. y = '
. An*. — = —— (I - «')» . tin-* x.^ X dx X tfi ^

'

- I -tan* dy
. . v

16. ys . -— = - (cosaf + smar).
8eo« dx '

. *y \ -x^-Vx^/i dy \/2
17. y = log '— . — = .

v/l-** ^ (a/i -«» + ary2) (!-«»)

18. V = ^ i. — = • ,^
(I + a?-)» dx (i + «»)!

.9. y = log —̂ + J log ,-::^^, + ^3 tan- -^,. ^ = —p.

20. y = log {{a*- i) + 2V^a;2 _x - i}. -
<& (a;»-a;-i)**

31. y = log / —: + tan-» -^. / = -~—..

Si-x^/z + x^
»-^' ^^ » + **

22. y = tf«* tan-> x. T - ^*
( a

"•" ** **^"'^ ('f + log «) )

23. Being given that y = a^li-xA (i
J

;if

dy ex- 4- c'ar* + <f'x

deturmine the values of c, c', «", Ans. c = 3, c' = - 6, «" = |.

24. y = log (log a:).

25. y = COST*

dy

dx X log X

3 + 5 cos « dy 4

5 + 3 cos a;* dx 5 t 3 cos**

. . . I - a:a dy - 2
26. y = sm-^ r. — = -.

rfy

27. y = e<^ sin"* r«, — = ««»*8m«-» ra: (a sin ra? + mr cos rx),
aa?

a8. y = tf«sinraf. ^ = «« y^a^ + r« sin (r^- + 0),

where tan <^ = -,
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^9. y = log [v'^-a^V^- b). Ans. ^ - -^^7===-

Here ^^ = tan^ ^ ;...*= cos y; ... ^+ a; 2

'

" <?x (I - a;2)i

3 1, y = a;*". ^ = a;«"+»-i (« log a; + i).

« , TO- 1

32. y-(i +a;2)2siD (wtan-'ar). -^ = m(i + a;2)~2~cos{{w-i)tan-ia;}.

_ . la coax - b sin a: dy

'V a cos a; + d sin «*
<fo:

— ab

b sin a;* <fo: a!^ cos'^ x — b"^ s,va? x

34. Define the differential coefficient of a function of a variable quantity,
with respect to that quantity, and show that it measures the rate of increase of

the function as compared with the rate of increase of the variable.

35 . If y = -, prove the relation

dy dx

VI +y* \/i + a;i

^ Ti. 1 a?* + a« + \/(a;2 + ff:r)2 - bx .^ ^ du . ^ ,, ^
36. If M =3 log --—

f
prove that -— is of the form

3? + ax- a/(»2 + ax)-i - bx ^^

and determine the values of^ and B. Ans. A = z, B = a.

*y{3? + axf — bx

^^ ^ d [ , \ A sin4 a + jBsin20 + C
37. Prove that - sin cos 'Z I - (j2 sin2 = / , . ,

>

«^V / \/i-c2 8in2

and determine the values of A, B, C. Ans. A = 3c2, ^ = — 2 (i + c^), C = i.

38. If tt = a; + +—- — + —^—7 - + , . . ad xnf. ; find tha aum
23 2.4s 2.4.67"

of the series represented by —

.

Ans. (i — a;2)-J,

39. Eeduce to its simplest form the expression

3^2 d x{x^+ 2a)i
Ans.

(«2+a)|(a;2 + 2a)J dx (a;2 + «)§
'

(a;* + a)i (a;* + 2a)r

sin2 {a + y)
40, If sin y =s X sin {a + y), prove that— =

dx sin a
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41. If«(i + y)» + y(i+jr)»«o,flnd^.
az

In this case «' (i + y) = y- (i + x)

;

.«. «» - y2 „ yx (y - ar),

or » + y + a:y = o ; .. y =
^

. .
^y

I + « ' *
*
<ix (I + a^)**

4a.yolog(* + yx»-a«) + 8eo-»-. - = -^—-.

43. If* and y are given as functions of t by the equations

x=/(0; y = i^(0;

du di/ F' U)
find the value of -r- in terms of <• -^ = 777^: .

44. 1^
=

! + «»

I+X2
I + &c., a<f infinitum.

Hence y — .
-

°*^'^ ^ = m^- *i = (i+iog*)»-
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CHAPTER II.

SUCCESSIVE DIFFERENTIATION.

33. SuccessiTe Derived Functions.—In the preceding
chapter we have considered the process of finding the derived
functions of different forms of functions of a single variable.

If the primitive function be represented hjf{x), then, as

already stated, its first derived function is denoted hy f (x).

If this new function, f'{x), be treated in the same manner,
its derived function is called the second derived of the original

function /(ip), and is denoted hyf^^x).
In like manner the derived function of f^\x) is the third

derived oif{x), and represented by/'"(a^), &c.

In accordance with this notation, the successive derived
functions of /(a?) are represented by

/'W, /», /"», /WW,
each of which is the derived function of the preceding.

34. Successive Differential Coefficients.

If y = /(;.)wehaveg=/(a;).

Hence, differentiating both sides with regard to a?, we get

dx\dxj dx'' ^ ' '^ ^
'

Let -r I
-^-

1 be represented by -t-tj
dx\axj ^ ^ dx^

then g=/».

In like manner
;^ ( ji ) is represented by j^, and so on ;
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hence =/"(x), &o g -/(") (*). (,)

The expressions

dy d^y d^y d^*y

db' d?' d?' ' ' ' d^

are called the firsty second, thirds , . . n^^ differential coef-

ficients of // regarded as a function of x.

These functions are sometimes represented by

/, y", y'", . . . yW,

n notation which will often be found convenient in abbre-

viating the labour of forming the successive differential

coefficients of a given expression. From the mode of

arriving at them, the successive differential coefficients of a
function are evidently the same as its successive derived
functions considered in the preceding Article.

35. Successive Differentials.—The preceding result

admits of being considered also in connexion with differen-

tials ; for, since x is the independent variable, its increment,
dx, may be always taken of the same infinitely small value.

Hence, in the equation dy = f\x) dx (Art. 7), we may
regard dx as constant, and we shall have, on proceeding
to the next differentiation,

d{dy)=dxd[f{x)-]^{dxyr{x),

since d [/ (a?)] =/" (x) dx.

Again, representing d {dy) by c?'y,

we have d'^y = f"{x) {dx)* ;

if we differentiate again, we get

and in general

d»y=fW{x){dx)\

Prom this point of view we see the reason why/(**) {x) is

called the w'* differential coefficimt oif{x),
d2
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In the preceding results it may be observed that if dx
be regarded as an infinitely small quantity, or an infinitesimal

of the first order, {dxy^ being infinitely small in comparison
with dx, may be called an infinitely small quantity or an
infinitesimal of the second order ; as also d'^y, if /" [x) be
finite. In general, d^y, being of the same order as {dxy\ is

called an infinitesimal of the n*^ order.

36. Infinitesiiiials.—We may premise that the expres-

sions great and small, as well as infinitely great and infinitely

small, are to be understood as relative terms. Thus, a magni-
tude which is regarded as being infinitely great in comparison
with Q>finite magnitude is said to be infinitely great. Similarly,

a magnitude which is infinitely small in comparison with a
finite magnitude is said to be infinitely small. If any finite

magnitude be conceived to be divided into an infinitely great

number of equal parts, each part will be infinitely small with
regard to the finite magnitude ; and may be called an infini-

tesimal of the first order. Again, if one of these infinitesimals

be conceived to be divided into an infinite number of equal

parts, each of these parts is infinitely small in comparison
with the former infinitesimal, and may be regarded as an
infinitesimal of the second order, and so on.

Since, in general, the number by which any measurable
quantity is represented depends upon the unit with which
the quantity is compared, it follows that a finite magnitude
may be represented by a very great, or by a very small num-
ber, according to the unit to which it is referred. For ex-

ample, the diameter of the earth is very great in comparison

with the length of one foot, but very small in comparison

with the distance of the earth from the nearest fixed star, and
it would, accordingly, be represented by a very large, or a

very small number, according to which of these distances is

assumed as the unit of comparison. Again, with respect to

the latter distance taken as the unit, the diameter of the

earth may be regarded as a very small magnitude of the first

order, and the length of a foot as one of a higher order of

smallness in comparison. Similar remarks apply to other

magnitudes.

Again, in the comparison of numbers, if the fraction (one

million)*^ or —
-g,

which is very small in comparison with
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unity, be regarded as a small quantity of the first order, the

fraction —-^ beincr the same fractional part of —i that this

is of I, must be regarded as a small quantity of the second

order, and so on.

If now, instead of the series —;, (
—

-. j , (
—

: ) , • • .
'

lo" \io7 \io7

we consider the series -, — , -, . . . in which n is

supposed to be increased without Hmit, then each term in the

series is infinitely small in comparison with the preceding

one, being derived from it by multiplying by the infinitely

small quantity -. Hence, if - be regarded as an infinitesimal

of the first order, — , —,...—, may be regarded as infini-

tesimals of the secondy third, . . . r*^ orders.

37. Geometrical Illnstratioii of Infinitesimals.—
The following geometrical results will help to illustrate the

theory of infinitesimals, and also

will be found of importance in the

application of the Differential Cal-

culus to the theory of curves.

Suppose two points, A, B, taken
on the circumference of a circle

;

join B to Ey the other extremity
of the diameter AJE, and produce
EB to meet the tangent at A
in D. Then since the triangles

ABB and JEAB are equiangular,

we have Fig. 3.

AB BE BB _AB
AD ~ AE'

^'^'^ AD ~ AE'

Now suppose the point B to approach the point A and to

become indefinitely near to it, then BE becomes ultimately

AB

^j>

equal to AE, and, therefore, at the same time, AD
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Again, -jjr becomes infinitely small along with -j^,

i. e. BD becomes infinitely small in comparison with AD or
AB. Hence BD is an infinitesimal of the second order when
AB is taken as one of the first order.

Moreover, since DE - AE < BD, it follows that, when one

side of a right-angled triangle is regarded as an infinitely small
quantity of the first order, the difference between the hypothenuse
and the remaining side is an infinitely small quantity of the

second order.

Next, draw BN perpendicular to AD, and BF a tan-
gent at B; then, since AB > AN, we get AD - AB
<AD-AN<DJSr',

AD-AB DN AD
BD ^ BD^ DE'

AD - AB
Consequently, ^^r— becomes infinitely small along with

AD] .'. AD - AB is an infinitesimal of the third order.

Moreover, as BF= FD, we have AD = AF + BF-, .'. AF
+ BF - AB is an infinitely small quantity of the third order

;

but AF + FB is > arc AB, hence we infer that the difference

between the length of the arc AB and its chord is an infinitely

small quantity of the third order, when the arc is an infinitely

stnall quantity of the first. In like manner it can be seen

that BD - BN is an infinitesimal of the fourth order, and
so on.

Again, if AB represent an elementary portion of any
continuous* curve, to which AF and BF are tangents, since

the length of the arc AB is less than the sum of the tangents

-4i^and BF, we may extend the r^pult just arrived at to all

such curves.

* In this extension of the foregoing proof it is assumed that the ultimate

ratio of the tangents drawn to a continuous curve at two indefinitely near

points is, in general, a ratio of equality. This is easily shown in the case of

an ellipse, since the ratio of the tangents is the same as that of the parallel

diameters. Again, it can he seen without difficulty that an indefinite numher
of ellipses can be drawn touching a curve at two points arbitrarily assumed on
the curve ; if now we suppose the points to approach one another indefi.nitely

along the curve, the property in question follows immediately for any con-

Unuous curve.
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Hence, the difference between the length of an infinitely

small portion of any continuous curve and its chord is an infi-

nitely small quantity of the third order, i.e. the difference between
them is ultimately an infinitely small quantity of the second

order in comparison with the length of the chord.

The same results might have been established from the

expansions for sin a and cos a, when a is considered as infi-

nitely small.

If in the general case of any continuous curve we take

two points Af By on the curve, join them, and draw BE
perpendicular to AB^ meeting in E the normal drawn to

the curve at the point A ; then all the results established

above for the circle still hold. When the point B is taken

infinitely near to A, the line AE becomes the diameter of

the circle of curvature belonging to the point A ; for, it is

evident that the circle which passes through A and By and
has the same tangent at A as the given curve, has a contact

of the second order with it. See "Salmon's Conic Sections,"

Art. 239.

Examples.

1. In a triangle, if the vertical angle be very small in comparison with either

of the base angles, prove that the difference between the sides is very small in

comparison with eiUier of them ; and hence, that these sides may be regarded as

ultimately equal.

2. In a triangle, if the external angle at the vertex be very small, show that

the diflFerence betweeji the sum of the sides and the base is a very small quantity
of the second order.

3. If the base of a triangle be an infinitesimal of the first order, as also its

base angles, show that the difference between the sum of its sides and its base

is an infinitesimal of the third order.

This furnishes an additional proof that the difference between the length of
an arc of a continuous curve and that of its chord is ultimately an infinitely

small quantity of the third order.

4. If a ^ightline be displaced, through an infinitely small angle, prove that

the projections on it of the displacements of its extremities are equal.

5. If the side of a regular polygon inscribed in a ciicle be a very small
magnitude of the first order in comparison with the radius of the circle, show
that the difference between the circumference of the circle and the perimeter of
the polygon is a very small magnitude of the second order.
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38. Fundamental Principle of the Infinitesimal
Calculus.—We shall now proceed to enunciate the funda-
mental principle of the Infinitesimal Calculus as conceived by
Leibnitz :* it may be stated as follows :

—

If the difference between two quantities be infinitely

small in comparison with either of them, then the ratio of

the quantities becomes unity in the limit, and either of them
can be in general replaced by the other in any expression.

For let a, j3, represent the quantities, and suppose

a = /3 + «, or g = I + g.

Now the ratio -3 becomes evanescent whenever i is infinitely

small in comparison with /3. This may take place in three

different ways : (i) when j3 is finite, and i infinitely small

:

(2) when i is finite, and ^ infinitely great
; (3) when j3 is

infinitely small, and i also infinitely small of a higher order :

thus, if i = IiB^f then -r = kfdf which becomes evanescent along
P

with /3.

* This principle is stated for finite magnitudes by Leibnitz, as follows :

—

" Cseterum aequalia esse puto, non tanturn quorum differentia est omnino nulla,

sed et quorum differentia est incomparabiliter parva." ..." Scilicot eas

tantum homogcneas quantitates comparabiles esse, cum Euc. Lib. 5, dt;fin. 5,

oenseo, quarum una numero sed finito multiplicata, alteram superare potest ; et

quee tali quantitate non differunt, aequalia esse statuo, quod etiam Arcbimedes
sumsit, aliique post ipsum omnes." Leibnitii Opera, Tom. 3, p. 328.

The foregoing can be identified with the fundamental principle of Newton,
as laid down in his Prime and UHimate Ratios, Lemma I. :

" Quantitates, ut
et quantitatum rationes, quae ad sequalitatem tempore quovis finito constanter

tendunt, et ante finem teraporis illius proprius ad invicem accedunt quam pro

data qiiavis differentia, fiunt ultimo sequales."

All applications of the infinitesimal method depend ultimately either on the

limiting ratios of infinitely small quantities, or on the limiting value of the

sxmi of an infinitely great number of infinitely small quantities ; and it may
be observed that the difference between the method of infinitesimals and that of
limits (when exclusively adopted) is, that in the latter method it is usual to

retain evanescent quantities of higher orders until the ««<^ of the calculation,

and then to neglect them, on proceeding to the limit; while in the infinitesimal

method such quantities are neglected from the commencement, from the know-
ledge that they cannot affect thejlnal result, as they necessarily disappear in the

limit.
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Accordingly, in any of the preceding cases, the fraction

^ becomes unity in the limit, and we can, in general, substi-

tute a instead of j3 in any function containing them. Thus,

an infinitely small quantity is neglected in comparison with

a finite one, as their ratio is evanescent ; and similarly an
infinitesimal of any order may be neglected in comparison

with one of a lower order.

Again, two infinitesimals a, 3, are said to be of the same

order if the fraction - tends to a finite limit. If -^ tends
a or

to a finite limit, j3 is called an infinitesimal of the w'^ order

in comparison with a.

As an example of this method, let it be proposed to

determine the direction of the tangent at a point (x, y) on a

curve whose equation is given in rectangular co-ordinates.

Let ic + a, y + j3, be the co-ordinates of a near point on
the curve, and, by Art. 10, the direction of the tangent

depends on the limiting value of — . To find this, we substi-

tute a: + a for x, and y + fi ioi y in the equation, and neglect-

ing all powers of a and /3 beyond the first, we solve for —

,

and thus obtain the required solution.

For example, let the equation of the curve be a:* + y* = 3<w;y

:

then, substituting as above, we get

a^ + 3ara + 5/^ + 3y'i3 = 3«^-^ + Z^xfi + Zoy»^
'

hence, on subtracting the given equation, we get the

,. ., - j3 x" - ay
limit of - = ^.

a ax -y^

39. Subsidiary Principle.—If ai + aj + 03 + . . . + a»

represent the sum of a number of infinitely small quantities,

which approaches to a finite limit when n is increased indefi-

nitely, and if j3i, jSa, . . . jSn be another system of infinitely

email quantities, such that

j3i ft ^n— = I + ei, — = I + f:, . . . — = I + 6„,
«i 0.% On



42 Successive Differentiation.

where ti, £2, . . . fn? are infinitely small quantities, then the

limit of the sum of /3i, /32, . . . j3» is ultimately the same as

that of ai, oo, . . . On.

For, from the preceding equations we have

/3i + j32 + . . . + i3;i = ai + 02 + . . . ¥ an + Oiti + a2£2 + . . • + On^n'

Now, if r\ be the greatest of the infinitely small quan-
tities, fi, «2, . . • fn, we have

j3i + i32 + . .. + /3«-(ai + a2-^. , . . f an) <>; (oi + 03 . . . + a„)

;

but the factor ai + 02 + . . . + a« has a finite limit, by hypo-
thesis, and as rj is infinitely small, it follows that the limit of

/3i + i32 + . . . + j3rt is the same as that of ai + 02 + . . . + a„.

This result can also be established otherwise as follows :

—

The ratio
^.^ P.^ • -^^.^
Oi + aa + . . . + a»

by an elementary algebraic principle, lies between the greatest

and the least values of the fractions

> > • • • 5

ai a^ Un

it accordingly has unity for its limit under the supposed con-
ditions : and hence the limiting value of j3i + j32 + . . . + j3» is

the same as that of ai + a2 + . . . + a„.

40. Approximations.—The principles of the Infini-

tesimal Calculus above established lead to rigid and accurate

results in the limit, and may be regarded as the fundamental
principles of the Calculus, the former of the Differential, and
the latter of the Integral. These principles are also of greut

importance in practical calculations, in which approximate
results only are required. For instance, in calculating a

result to seven decimal places, if —^ be regarded as a small

quantity a, then a^, a% &c., may in general be neglected.

Thus, for example, to find sin 30' and cos 30' to seven de-

cimal places. The circular measure of 3 o' is -— , or .008 7266;
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denoting this by a, and employing the formulro.

a"
Bin a = a — —f COS a = I

,

O 2

it is easily seen that to seven decimal places we have

— = .0000381, -7- = .0000001.
2 O

Hence sin 30' = .0087265 ; cos 30' = 9999619.

In this manner the sine and the cosine of any small angle
can be readily calculated.

Again, to find the error in the calculated value of the

sine of an angle arising from a small error in the observed

value of the angle. Denoting the angle by a, and the small

error by a, we have

sin (a + a) = sin a cos a + cos a sin a = sin « + a cos r/,

neglecting higher powers of a. Hence the error is repre-

sented by a cos «, approximately.

In like manner we get to the same degree of approxima-
tion

tan (a + a) - tan a = ——,
^ '

COS'«

Again, to the same degree of approximation we have

a + a _ a ha- a^

where a, j3 are supposed very small in comparison with a and h.

As another example, the method leads to an easy mode of

approximating to the roots of nearly square numbers ; thus
2

v^a* + a = a + — ; \/rt- + a" = « + — = «, whenever o* may
2a 2a

''

be neglected.

Likewise, ^

l/a^ + a = « + —^, &c.W
If 6 = a + a, where a is very small in comparison with a,

we have y/ah - \/a' + aa = a + - =
.

2 2



44 Successive Differentiation.

Again, in a plane triangle, we have the formula

C C
c^ = a^ + b^ - 2ab cos C = (a + by sin- — + {a - by cos'^ —

.

Now if we suppose a and b nearly equal, and neglect {a - by
in comparison with {a + by, we have

I C O C
c = {a + by sin^ — + {a - by cos'* — = {a + b) sin —

.

This furnishes a simple approximation for the length of

the hase of a triangle when its sides are very nearly of equal

length.

ExAIkEPLES.

1. Find the value of (i + o) (i - ao'^) (1 + 30'), neglecting a* and higher

powers of a. -<4ws. I + a - 20^ + a\

2. Find the value of sin (a + o) sin (5 + ^8), neglecting tenns of 2nd order

in a and $. Ans. sin a sin 6 + o cos a sin 6 + jS sin a cos b.

3. If m = « — « sin «, « being very small, find the value of tan |m.

Ans. (i + e) tan —

.

„ u m e . . u , /m \ . e .

Here - = — + - sin m : tan - = tan (
— + a ) , where a = - sin « ; .-. &c.222 2 \2/ 2

4. In a right-angled spherical triangle we have the relation cos c= cos a cos b\

determine the corresponding formula in plane trigonometry.

d
The circular measure of a is — , -ft being the radius of the sphere ; hence,

substituting i - r=- for cos a, &c., and afterwards making ^ = 00, we get

«2 = a2 + 12^

5. If a parallelogram be slightly distorted, find the relation connecting the

changes of its diagonals.

Ans. dAd + d'/^d' = o, where d, d' denote the diagonals, and Ac?, L.d' the

changes in their lengths. In the case of a rectangle the increments are equa%

and of opposite signs.

6. Find the limiting value of

aa" + ia"'! + ca"'- + &c.

when a becomes evanescent.

AaP* A
In this case the true value is that of = — a**"*.

aa.^ a

Hence the required value is zero, — , or infinity, according as m>, =, or < ».
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7. Find the value of

'-6+7706

1 + —
2 24

neglecting powers of x beyond the 4th. An*, i + — +—

.

8. Find the limiting values of - when y = o, a; and y being connected by

the equation y^ = 2xy — x*.

Here, dividing by y' we get

«» X

y^'^r-''

If we solve for - we have

?=i±(l-y)l.

Hence, in the limit, when y = o, we have - = 2, or = o.

9. In fig. 3, Art. 37, if^^ be regarded as a side ofa regular inscribed polygon
of a very great number of sides, show that, neglecting small quantities of the
4th order, the difference between the perimeter of the inscribed polygon and
that of the circumscribed polygon of the same niimber of sides is represented

by - £D.

Let « be the number of sides, then the difference in question is n {AD —AB) \

but n= —; .: n{AJ)-AB)= ^—— '-

SLTcAB ' AB

^t AE-^^^^-4^r-. ^{BE - AE) = - BD, a. p.
Axi 3

This result shows how rapidly the perimeters of the circumscribed and in-

scribed polygons approximate to equality, as the number of sides becomes very
great.

10. Assuminj* the earth to be a sphere of 40,000,000 m&tres circumference,
show that the difference between its circumference and the perimeter of a regular
inscribed polygon of i ,000,000 sides is less than -j^th of a millimetre.

11. If one side i of a spherical triangle be small, find an expression for the
difference between the other sides, as far as terms of the second order in h.

Here cos «= cos a cos i + sin a sin J cos C.

Let I denote the difference in question ; i. e. c = a - z

;

then cos a cos z + sin a sin s = cos a cos d + sin a sin J cos C;

.*. sin « - Bin J cos C = cot a (cos 3 - cosz).
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Since « and b are both small, we get, to terms of the second order,

The first approximation gives z= b cos G. If this be substituted for z ia the

right-hand side, we get, for the second approximation,

^ J'sin^Ccota
z = b cos G .

2

We now proceed to find the successive derived functions

in some elementary examples.

4 1 . Derived Functions of cif*»

Let p = a;"*,

then
-J

= mx"''-\ ~ = m{m- i) a^\
cue ax

and in general, -y-^ = m {in - i) (m - 2) . . . (?n-n+ i) x^"^.
ax

If w be a positive integer, we have

d^
I . 2 . . . fTl.

and all the higher derived functions vanish.

If m be a fractional, or a negative index, then none of the

successive derived functions can vanish.

Examples.

I. If M = aie^ + bx^-^ + ca;""- + &c., prove that

— » w(n - i)aa;«-2 + (n - i)(« - 2)*a;n-3+ &c.

also -7— = 1.2.. ..«.«, and -— , = o,

a

., . dri * na d^y n(n+i)a
prove thKt -f-

= r, -4 = -^ —-,*^
dx x»-^' dx^ a;»+2 »

and —̂ = (- i)«
>»(^+0'»-(^+m-i)a

_
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3. y =: 2fl \/«

;

prove that
dx

a a 3 «

d^\y
= (-l„.3-5.

.7 •• . (2n- i)a

42. If y = a;^ log a?, to And —^.

Here 3Z = 3^ ^^S a; + a:*

;

also -^ = 6aj log a? + 3a? + 2a; = 6a; log x + 5ar,

--=6loga.-f6 + 5, ^.=-.

It might have been observed that in this case all the

terms in the successive differentials which do not contain

log X mil disappear from the final result—thus, by the last

Article, ^ = o, accordingly, that term may be neglected

;

and similar reasoning applies to the other terms. The work
can therefore be simplified by neglecting such terms as we
proceed.

The student will find no difficulty in applying the same
mode of reasoning to the determination of the value of

-7-^, where y = oif'^ log a:.

For, as in the last, we may neglect as we proceed all terms

which do not contain log a; as a factor, and thus we get in

this case,

rf"i/ _ (n - i) . . . 2 . I _ 1^- ^

daf"

~
X X
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43. Derived Functions of sin mx.

Let y = sin mx,

then -7- = m cos mx.
dx

-rf = - ;w'* sin mx,
do?

and, in general, -^-^ = (- i)"m^" sin mx.

-—J- = (- lYn^^ cos ma;,•1
(0

It is easily seen that these may be combined in the single

equation (Art. 22),

d^ (sin mx) , . ( tt—
—jir— = W^ sm I mic + r -[mx^-r-y (2)

In like manner we have

d"^ cos mx
daf

= m^ cos Imx + r-]

44. Derived Functions of ef^.

Let y = e«^,

This result may be written in the form

^Y. e^ = a»^, (4)

where the symbol (— ]
denotes that the process of differentia-

tion is applied n times in succession to the function e^".
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In general, adopting the same notation, we have

=-4oa*»e" + AxoJ'-'ef^ + AzoT''^ + &c.

= [^ofl" + ^ifl"-' + ^2«"^ + &c. ^„] 6«*.

This result, if ^ (a;) denote the expression

A(flf + -4ia^^ + . . . ^„,

may be written in the form

0(i)^ = 0W^; (5)

in which ^ (a) is supposed to contain only positive integral

powers of a.

45. To find the w'* Derived Function of ef" cos hx.—
Let y represent the proposed expression,

then -r = a^ cos hx - hef^ sin hx
dx

^ ef^ {a cos hx -b ^hx) \

if tan ^ = -, we have h = ^/a^ + 6* sin ^, and a = -/a' + 6' cos 0.

Hence we get

^ =. (a« + J«)i e-* cos {hx + 0).
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Again,

-^=(0" + b')i e^^ [a cos {hx + 0) - 5 sin {hx + 0)]

= {a^ + h") ^ cos {))x + 2^).

By repeating this process it is easily seen that we have in

general, when n is any positive integer,

^ = (a' + y'fe^'- cos {Ix + m^), (6)

46. To find the Deriired Functions of tan "M -
),

and tan"^ x.

Let y = tan"^ ( - ), or a; = cot y

:

\Xj

,1 dy - \

= sin' y — (sin' y) = sin' y sin 2y.
ay

. . d^y (5? , . , . . dy d , . ^

^^'^' ^ = ^ (''"^ 2^ ''"^ '^) = ^^ ('^'^ 2/
sin 2y)

« - sin' y— (sin' y sin 2y)

« - I . 2 . sin^ y sin 3^. (^a;. 5, Art. 28.)

Hence, also — = 1.2.3. si^^y sin 4^;

and in general, -7-^ = (- i)** |w - i sin**y sin ny.
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Again, since tan''x^— tan"' -,
2 X

we have -^^—"
= (" ' )

1^"' ™ ^ ^^^ ^V^ w)

where y = cot"^ x, as before.

This result can also be written in the form

j« /i. T \
sinf/itan"'-)—1- ^ = (-i)"-Mn-i ^^ r-^« (8)

47. If y = sin (w sin~*a;), to prove that

(—')g-|-V = o. (9)

Here
dy _m cos (m sin"* a?)

^

.*. (i - ^) { —
j
= w* cos^ {m sin"*a;) = w* (i - y*).

Hence, differentiating a second time, and dividing by 2 -^,

we get the required results

48. Tbeorem of £ieibnitz.—To find the w** different

tial coefficient of the product of two functions of x. Let

y = uv\ then, adopting the notation of Art. 34, we write

. , dy du dv

and similarly, y", w", v\ &c., for the second and higher
derived functions—thus,

F 1
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Now, if we differentiate the equation y = uv, we have

y^ = ux> + vu\ by Art. 13.

The next differentiation gives

'if' = uvf' + wV + vV + m'^ = uv" + I'd'd + t?«/'.

The third differentiation gives

y"' = ur + wV + 2i{v" + 2wV + «;V' + t;z*'"

= ^^z;'" + 3wV' + 3wV + v^",

in which the coefficients are the same as those in the expan-
sion of (a + ly.

Suppose that the same law holds for the »** differential

coefficient, and that

2,(«) = Mt;(«) + ww'z;(»-0 + ^>Jli) ^'^ (n-2) + ^q.,
1.2

then, differentiatiDg again, we get

+ ^i!Lli) (t^"e;(«-i) + w"'t,('»-'»)) + &o. . . . + u^'^'^v

= ««?(*») + (/J + i) w't?(«) + i^-±il^w"t.(«-i) + &o. . . .

,

1.2

in which it can be easily seen that the coefficients follow the
law of the Binomial Expansion.

Accordingly, if this law hold for any integer value of w,

it holds for the next higher integer ; but we have shown th«^t

it holds when w = 3 ; therefore it holds for /^ = 4, &o.

Hence it holds for all positive integer values of n.

In the ordinary notation the preceding result becomes

d^[uv) d'^'V dud/'-^v n(n - i) d^ud^'-'^v
t,—^

—

- = u V n h —^^ + &c.
flte» t^» dxdaf'-^ 1.2 dx'^daf'-^

+ «?-7-. (10)
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49. To prove that

{iji<^u)^^(a.£ju, (n)

where « is a positive integer.

Let V = e^* in the preceding theorem ; then, since

— = ae^'^ — = a'e^, ... — = a"e^.

we have

which may be written in the form

i
dx

where the symbolic expression
( ^ + ;t- )

is supposed to be

developed by the Binomial Theorem, and -7-, j^> • • • j~;

substituted for
(
3" ) ^>

(
3~ ) ^> ( 3~ ) **> ^ ^6 resulting ex-

pansion.

50. In general, if 0(«) represent any expression in-

volving only positive integral powers of a, we shall have

For, let <l>[-7-\ "^lien expanded, be of the form
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then the preceding formula holds for each of the component
terms, and accordingly it holds for the sum of all the terms

;

.*. &c.

The result admits also of being written in the form

(-^)---"'Ki)(^^^)-

This symbolic equation is of importance in the solution

of differential equations with constant coefficients. See
" Boole's Differential Equations," chap. xvi.

51. If y = sin~^ X, to prove tbat

^,^^)^^-[,n.^).^,-n^^^o, (13)

Here ^ = -7:^, or(i-^^)4 = i;

hence, by differentiation,

dy

Again, by Leibnitz's Theorem, we have

\dx) \ dx) (

i^n.=, = .£S.»£.

On subtracting the latter expression from the former, we
obtain the required result by (14).

If a; = o in formula (13), it becomes

\f/^"+Vo \di^'Jo
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where f—
j

represents the value of -—^ when z becomes

cypher.

Also, since f —
j

= i, we get, when « is an odd integer,

Again we have i-r^j = o ; consequently, when n is

integer, we have f
-~

J

= o.

52. If y = (i +ar')'8in (mtan"^a:), to prove that

/ ,x ^y / ^ dy , ^ , ,

Here

dif --1 .
^-1

-J-
= wa; (i + a^y sin (w tan'^a;) + m(i + a;') * cos (wtan"> a;),

or

(i +«*) — =nM?(i + a!^)^sin(wtan~'ic) + w(i+a^)^cos;w(tan"^a?)

= mxy + m (i + ar*)^ cos (m tan~^ x) ;

.'. (i + a:^) ^ cos (m tan~^ar) = r - ^•^ ^ ' m dx

The required result is obtained by differentiating the last

equation, and eliminating cos {m tan"^ x) and sin {in tan~*ar) by
aid of the two former.

Again, applying Leibnitz*s Theorem as in the last Article,

we get, in general

—
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Hence, when a; = o, we have

Moreover, as when a; = o, we have p = o, and 3^ = m ; it
ax

follows from the preceding that

= o ' (:o;i^ )
= (- i)"^^-i) . . . (m - 2w). (16)

For a complete discussion of this, and other analogous
expressions, the student is referred to Bertrand, " Traits de
Ofidoul Diff^rentiel," p. 144, &o.
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Examples.

1, y = x* log *, proye that^ « - iy-

1. y = X log *, »» ^= (- ')• i=^ •

3. y = *-, »f ^= «•(»+ log a:)» + «^i.

, , . , rfV * COS «
4.y = log(8inx), „ 5^ =

-;i^37-

5.y«tan-x _ + tani^-^„ „ _ = -^-^-^,.

<fSy 2«
6. y = x* log (a^, „ ^ = -•

y»log / -^ -+tan-i—^, „

8. y = tf^ sin *,

rf2y _ _ %s/2 .g*

rf«y _ e*"* sin {x + «0)

where tan = -.
r

9. lfy = e**3^, prove that

dx* [_
1.2 J'

10. If y = a cos (log a?) + b sin (log «),

prove that
*'^''"*/ie"'"^~°*

11. If ysse-"^-^*,

prove that ^^ " ^^ 1^ ~ ' dx
"^ *'^*
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12 Prove that the equation

dx^ dx

is satisfied by either of the foUowing values of y :

y — cos (fl sin"^ a;), ox y — e""^-^ "* .

13. Being given that y = {x + \/x' - 1)*",

prove that (a;2 - i) —^ + a;^ - w«y = o.
ax^ dx

14. If y = sin (sin x),

ePy dy
prove that -— + -- tana; + y cos'a; = o,

dx^ dx

15. In Fig. 3, Art. 37, HAB^ be regarded as a side of a regular polygon of an
indefinitely great number of sides, show that the difierence between the circum-

ference of the circle and the perimeter of the polygon is represented by -= BB^

to the second order of infinitesimals.

16. If y = ^ cos war + .B sin war, prove that (— + w^ I y = o.

_

.

I
XI. ^ ^"y , K I

« • sin"'^ A sin (« H- 1) A

where rf> = tan*^ -.^ X

This follows at once from Art. 46, since -j- { tan-^- ) = -^——„. It can also b&
dx \ xf a* + a;*

proved otherwise, as foUowa

:

1 r V I ' 1.
a' + a^ 2a(-i)iU-a(-i)i a; + a(-i)U'

''•

dx»
~ 2a (- l)i \dxj 'x-a{-l)i 2fl (- i)i U«/ *«?+»(-!)*

(-i)ni.2...n r I i__"l
2a {- i)i L(^ - « (- 0*)"^^ {x+a{- i)i)»+*J

_ (_ i)» \n nx + a(- i)^Y^^) -{x-a(- i)^)>'^n

~27C:7)JL (ar^-fo^)-^ J*
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Agfdn, since - = tan ^, we have a = v^a' i- «' sin ^, and x = \/a' + «* oo« f

;

henco (« + a (- i)!)*^* = (a» + «») > (cos ^ + (- i)» sin ^)'^>

N-f 1

B(a» + a:3)~»"{cos(n+ i)<^ + (- l)»8in(»+ l)^|

and we get, finally,

i8. In like manner, if y
d' + x^'

^y \n . 8in'»*^ <p . cos (n + i) 4>

prove that -il = (- i )»
'-

.

19. If M = Xl/f

d^u d^y d^^y
rroyethat _=«_ +„_,

ao. If M = (sin"^ x^,

d^u du
prove that ^^ ~ "^^d^ ~ 'di~*'

21. Prove, from the preceding, that

d^u du
22. If y c ««* sin bx, prove that —^ - 2a -^ + (a» + i2)y = o.

dx^ dx

^. ax + b . , d*y
23. Given y = ^-^-^„ find—.

«2 - c* 2C « - « 20 « + «'

*^ (- 0"|!? f ae+b ae-b \
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CHAPTEE in.

DEVELOPMENT OF FUNCTIONS.

53. liemma.—If w be a function oi x -v y which is finite

and continuous for all values oi x + y, between the limits

a and b, then for all such values we shall have

du du

dx dy

For, let w =/(a; + 2/), then if x become x -\-hy

dx h

when h is infinitely small.

Similarly, if y become y + A, we have

dy h

which is the same expression as before.

du du
Hence -3- = -r-dx dy

Otherwise thus :—Let % = x + y, then u =/(s),

dz - dz

du _dudz _ ,. .
^

Ix^ IzTx' -^ ^^''

du du dz _ rf, \ _ ^^

dy~ dz dy~ ^ ' dx
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I 54. If a continuous function f{x + y) be supposed ex-

panded in a Bcrios of powers of y, the expansion can contain

no negative powers; for, suppose it contains a term of the

form -3///"", where M is independent of y, this term would
become infinite, /or all values o/x, when y = o ; but the given

function in that case reduces to /(a*) ; and since /(x) cannot

be infinite for all values of ar, it follows that the expansion

oi/{x+ y) can contain only positive powers of y.

Again, if f{x) and its successive derived fimctions be

continuous, the expansion of/(iP + y) can contain no /rac^iona/

power of y. For, if it contain a term of the form Py"*9y

where - is a proper fraction, then its (w + i)'* derived func-

tion with respect to y would contain y with a negative index,

and, accordingly, it would become infinite when y = o ; but this

is impossible for the same reason as in the former case ; hence,

with the conditions expressed above, the expansion oif{x-\-y)

can contain only positive integral powers of y,

55. Taylor's Expansion otf{x + y).*—Assuming that

the function /(a: + y) is capable of being expanded in powers of

y, then by the preceding this equation must be of the form

f{x + y)=Po + Pxy + P^y- + &c. + P„y» + &c.,

in which Poy Pi, . . . Pn ar© supposed to be finite and con-

tinuous fimctions of x.

When y = o, this expansion reduces tof{x) = Pq.

Again, let it =f{x + y); then by differentiation we have

du dPo dP, JP; ^dPn .

-d^^-d^^y-d^^y-d^^-'^y-^^^'''^

-^ = Pi + 2P2y + 3Pay* + &c.
ay

• The investigation in this Article is introduced for the purpose of showing
the beginner, in a simple manner, how Taylor's series can be arrived at. It is

based on the assumption that the function /(a; + y) is capable of being expanded
in a series of powers of y, and that it is also a continuous function. It demon-
strates that whenever the function represented by/(3: + y) is capable of being

expanded in a convergent series of positive ascending powers of y, the series

must, necessarily coincide with the form given in (i). An investigation of the

conditions of convergency of the series, and of the applicability of the Theorem
in general, will be introduced in a subsequent part of the Chapter. The parti-

cular case of this Theorem when/(z) is a rational algebraic expression of the n'*

degree in x is already familiar to the student who has read the Theory of Equations.
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Now, in order that these series should be identical for all

values of t/ the coefficients of like powers must be equal.
Accordingly, we must have

^'
dx dx '^''>'

I . 2 dx 1 . 2 dx' ~ I .
2-^ ^ ''

-t 3 -—;— = —— = / [x) ;

S dx 1.2.3 ^^ 1.2.3"^ ^ '
'

and in general,

I . 2 . . .n die'* I . 2 . . .n ^ '

Accordingly, when f(x) and its successive derived func-

tions are finite and continuous we have

/(^ + y) ^/(x) + ^f{x) + -^^/"(x) + . . . + ^/WW+- (0

This expansion is called Taylor's Theorem, having been first

published, in 17 15, by Dr. Brook Taylor in his Methodus
Incrementorum.

It may also be written in the form

or, if w = f{x), and Wi =f{x + y),

y dii ?/ d'^u ?/" d^u o is

To complete the preceding proof it will be necessary to

obtain an expression for the limit of the sum of the series

after n terms, in order to determine whether the series is

convergent or divergent. We postpone this discussion for

the present, and shall proceed to illustrate the Theorem by
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showing that the expansions usually given in elementary

treatises on Algebra and Trigonometry are particular cases

of it.

56. The Binomial Theorem.—Let w = (a? + y)" ;

here /(a:) = «", therefore, by Art. 41,

f{x) = naf'-', . . ./(') (ar) = n (« - i) . . . (/J - r + i)af^.

Hence the expansion becomes

(x + yV = a:« + -af'-V +
''^'' " '^ ^Y ^ • • •

^ ^' I 1.2

njn-jl,_,(n-r^)^^^
(4)

1.2 . . ,

r

If 71 be a positive integer this consists of a finite number of

terms ; we shall subsequently examine the validity of the

expansion when applied to the case where n is negative

or fractional.

57. The liOgarithmic Series.—To expand log (a? + y).

Here /(:.)= log (^), f{x) = '-, /'{x)--^,

r\x) =
J,

. . .
/w(*) = (- 1)-

'•'••^^""'^

Accordingly

log(. + y)=log* + |--^+-^--^ + &o.

If a; = I this series becomes

log (I + y) =f
- ^ + -^ - . . . (- i)»-^" . .&0. (5)

When taken to the base a, we get, by Art. 29,

loga(l+J,) = if(f-^ + ^-J + &0.)- (6)
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58. To expand sin {x + y).

Here f{x) =sina7, f\x) = coax,

f\x) = - sin X, f"{x) = - cos x^ &o.

Hence
/ y^ y^ y^ \

sin (x \- y) = ain x[ I - -^— + &c. ± j— . . .
)

^ ^ \ I . 2 I . 2
.
3

.

4

\2n J

+ cos iT
^^ +

I 1.2.3 1.2.3.4.5 2n

As tlie preceding series is supposed to hold for all values,

it must hold when a; = o, in which case it becomes

^my^l y— + 1 &c. (8)
I 1.2.3 1.2.3.4.5
TT

Similarly, if a; = -, we get

cos y = I —^— + &0. (9)
I . 2 I . 2 . 3 . 4

^''^

"We thus arrive at the well-known expansions* for the sine

and cosine of an angle, in terms of its circular measure.

59. maclaurin's Theorem.—If we make a; = o, in

Taylor's Expansion, it becomes

f_
1.2"^' \n

f (y) =/(o) + ?/(o) + /-/"(o) + . . . ^/W(o) + . . . , (10)

where /(o) . . ./(")(o) represent the values which /(a?) and
its successive derived functions assume when x = o.

Substitute xiox y m the preceding series and it becomes

f{x) =/(o) + "- /'(o) + ^^ /"(o) + . . . +J
/'") (o) + &c.

* These expansions are due to Newton, and were obtained by bim by the
method of reversion of series from the expansion of the arc in terms of its sine.

This latter series he deduced from its derived function by a process analogous
to integration (called by Newton the method of quadratures). See OpusculUf.

torn I., pp. 19, 21. Ed. Cast. Compare Art. 64, p. 68.
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This result may be established otherwise thus ; adopting

the samo limitation as in the case of Taylor's Theorem :

—

Assume /(x) =^ A + Bx + Cx* -i- Bx^ + £x^ -^ &o.

then /' (x) =B + iCx + sDj:' + i\E^ + &c.

/" (ar) = 2C7 + 3 . iBx + 4 . 2,E^ ^ &c.

/"(a-) = 3 . 22) + 4 . 3 . lEx + &o.

Hence, making a? = o in each of these equations, we get

/(o)=^ /'(o)=i?, 4^^ = ^, ^l(2l = i),&c.

whence we obtain the samo series as before.

The preceding expansion is usually called Maclaurin's*

Theorem ; it was, however, previously given by Stirling, and
is, as is shown already, but a particular case of Taylor's series.

We proceed to illustrate it by a few examples.

60. Exponential Series.—Let y = a'.

Here f{x) = a', hence /(o) =1,

f(x) = (flog a, „ /(o) =loga,

r(a:)=a-(log«)% „ r(o)=log«)^

/(«) {x) = «' (log a)", „ /(") (o) = (log «)«

;

and the expansion is

(x loo: a) (x loff aV (x loff a)** « , v

a' = I +^ ^-^ + ^^ ^-^ + ...+^ ^—^ + &c. (11)
I 1.2 I . 2 . . . ;»

If Cf the base of the Napierian system of Logarithms, be

substituted for r/, the preceding expansion becomes

X X^ iC" / V6*=I+-+ +...+ + ... (12)
I 1.2 I.2...W

• Maclaurin laid no claim to the theorem which is known by his name, for,

after proving it, he adds—"This theorem was given by Dr. Taylor, Method.

Increin.^* See Maclaurin's Fluxions, vol. ii., Art. 751.

P
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li X = I this gives for e the same value as that adopted in

Art. 29, viz. :

II II
e = I + - + + + + . . .

I 1.2 1.2.3 1.2.3.4

61. dxpansion of sin x and cos x by Haclaurin's
Theorem. Let /(a?) = sin x, then

/(o)=o, /(o) = i, r(o) = o, /"'(o) = - 1, &c.,

and we get

x x^ x^ asm X = + &c
I 1.2.3 1.2 .3.4.5

In like manner

cos a; = I

1.2.3.4

the same expansions as already arrived at in Art. 58.

Since sin (- a?) = - sin x, we might have inferred at once

that the expansion for sin x in terms of x can only consist of

odd powers of x. Similarly, as cos (- x) = cos x, the expan-

sion of cos X can only contain even powers.

In general, if F{x) = F{- x), the development of F{x)
can only consist of even powers of x. li F{- x) = - F{x)f the

expansion can contain odd powers of x only.

Thus, the expansions of tan x, sin"'iP, tajr% &c., can con-

tain no even powers of x ; those of cos x, sec x, &c., no odd
powers.

62. nuygens' Approximation to length ofCircular
Are.*—If A be the chord of any circular arc, and B that of

half the arc ; then the length of the arc is equal to , q.p.
«j

For, let JR he the radius of the circle, and L the length of

the arc : and we have

A .LB . L
b = '''''Tr^ 5 = ^^^^^'

* This important approximation is due to Huygens. The demonstration

given above is that of jN^ewton, and is introduced by him as an application of

his expansion for the $ine of an angle. Vid. *' Epis. Prior ad Oldemburgium."
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hence, by (8),

A-L--^. ^^-^.-*-
2.3.4.22' 2.3.4.5. 16. i2*

8j5 = 4Z =:—- + -—^ - &o.
2.3.4.22* 2. 3. 4. 5. 64. i2*

consequently, neglecting powers of ^ beyond the fourth, we

get

Hence, for an arc equal in length to the radius the error in

adopting Huygens' approximation in less than ^^ part of

the whole arc ; for an arc of half the length of the radius

the proportionate error is one-sixteenth less ; and so on.

In practice the approximation* is used in the form

L = 2B + -{2B-A),

This simple mode of finding approximately the length of

an arc of a circle is much employed in practice. It may also

be applied to find the approximate length of a portion of

any continuous curve, by dividing it into an even number of

suitable intervals, and regarding the intervals as approxi-

mately circular. See Eankine's Rules and Tables, Part I.,

Section 4.

• To show the accuracy of this approximation, let us apply it to find the

length of an arc of 30° in a circle whose radius is 100,000 feet.

Here B = 2B sin 7° 30', ^ = 2^ sin 15*;

but, from the Tables,

gin 7* 30' = .1305268, sin 15°= .2588190.

Hence 2S + =» 53359-7 »•

The true value, assuming x = 3.1415926, is 5»359.88 ; whence the error iahut
. 1 7 of a foot, or about 2 inches.

F 2
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63. Expansion of tan"*^.—Assume, according to Art.

61, the expansion of tan"^a;to be

Ax + Bx" + Or' + Dx' + &o.,

where A, B, C, &c.j are undetermined coefficients:

then —^-j = A + sBx"^ + sCus^ + yDx^ + &o.

;

- , dAaJT^x I
2 4 « p

but :;
= ; = I - a:^ + a?* - ip' + &o.,

dx I + x^

when X lies between the limits ± i.

Comparing coefficients, we have

^=1, 5 = --, (7 = -, i) = - i&o.
3 5 7

Hence
X a^ x^ x^***^

135 ^ ^ 2n+ 1
» V t/

when X is less than unity.

This expansion can be also deduced directly from Mac-
laurin's Theorem, by aid of the results given in Art. 46.

This is left as an exercise for the student.

64. Expansion of sin'^ic.—Assume, as before,

8in"*a; = Ax + Bx^ + Cx^ + &o. ;

then 7 :7ri =^A + z^x^ + sOa^ ^ &o.

;

(i - X')i

but _i_=(i ^s^)-i=i^ia:'+^-^x'+,.,
(i -aj')i ^

^ 2 2.4

I . 3 . . . 2r - I
X'' -f .

r.ir

2.4... 2r

Hence, comparing coefficients, we get

A^i, B=l.l - '3 '

Finally,

23' 2 .
4*5'

. , X lar* i.3jr* i.3...2r-i a^^ , .

6m~^a; = - +-.- +—^. - + ... +—^^ . +...(15)123 2.4 5 2.4... 2r 2r+i ^ '
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Since we have assumed that siii"*a? vanishes along with x wo
must in this expansion regard 8in"*a? as being the circular

measure of the acute angle whose sine is x.

There is no difficulty in determining the general formula
for other values of sin'^a:, if requisite.

A direct proof of the preceding result can be deduced
from Maclaurin's expansion by aid of Art. 5 1 . We leave

this as an exercise for the student.

From the preceding expansion the value of w can be
exhibited in the following series:

TT I II 1.31^- = - + + + &0.
6 2 2.38 2.4.532

I TT I
For, since sin 30° = -, we have - = sin"^ - ;

.*. &o.
2 02

An approximate* value of tt can be arrived at by the aid

of this formula ; at the same time it may be observed that

many other expansions are better adapted for this purpose.

65. Enler's Expressions for Sine and Cosine.—In

the exponential series (12), ii x ^/ - 1 be substituted for a?,

we get

e^^ = 1 + + &c. . . .

1.2 1.2.3.4

- I

X x"
+ &c. ...]

I 1.2.3

= cos ;r + v~-~i sin ic ; by Art. 59.

Similarly, e~*^~^ = cos ic - -y/ - i sin x.

Hence e*^"^ + e~'^-^ = 2 cos Xy

garv-i _ g-xV-1 ^ 2a/^ sin X,

(16)

A more complete development of these formulse will be
found in treatises on Algebra and Trigonometry.

The expansion for erar^Xy and also this method of approximating to r, were
given by Newton.
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66. John BernoulU's Series.—If, in Taylor's Ex-
pansion (i) we make y = - x, and transfer f{x) to the other
side of the equation, we get

/W=/(o) + ¥'{x) - ^J"{x) +-^ /'"(*) - &c. (17)
1 . ^ 1.2.3

This is equivalent to the series known as Bernoulli's,*

and published by him in Act. Lips., 1694.
As an example of this expansion, let /(a?) = e* ; then

/(o) = i, /»=«-, /»=«-,&c.,
and we get

a?
(F = I + xe^ e^ + &o.,

1.2 '

Or, dividing by e^, and transposing,

^ = 1-X + &o.,

which agrees with Art. 60.

67. Symbolic Form of Taylor's Tlieorem.—The
expansion

may be written in the form

/<"')=!"'i*7^(i)"-*E(l)"-K<-'>
in which the student will perceive that the terms within the

brackets proceed according to the law of the exponential

series (12) ; the equation may accordingly be written in the

shape

f(x + y) = e'rxf(x), (19)

In his Reduc. Quad, ad long, curv., John Bernoulli introduces this theorem
again, adding—" Quam eandum seriem postea Taylorus, interjecto viginti

annorum intervallo, in librum quern edidit, a.d. 1715, demethodo incrementorum,

transferre dignatus est sub alio tantum characterum habitu." The great in-

justice of this statement need not be insisted on ; for while Taylor's Theorem is

one of the most important in the entire range of analysis, that of Bemoulli is

comparatively of little use ; and is, as shown above, but a simple case ofTaylor's

Expansion.
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1

where e "^ is supposed to be expanded as in the exponential

yn ^ f(x) f/" f d\*
theorem, and v-r- written for '7— -r 1 /W, &o.

n duf* |n \dxj '

This fonn of Taylor's Theorem is of extensive application

in the Calculus of Finite Diiferences.

68. Other Forms derived from Taylor's Series.—
In the expansion (3), Art. 55, substitute h for y,

,, hdu h" d'u A" d^'u _

then Ui=u + --r + r-x + , .

.

7— + &c.
I dx I . 2 dx^ I . 2 . , .ndjf*

If now h be diminished indefinitely, it may be represented

by dx, and the series becomes

dii dx d^u dx^ d"u djf^

dx 1 dx^ 1.2 doif \ ,2,..n

or tii-w=-^ti^+*^^c^U^^^^t^ + &c., (20)
I 1.2 1.2.3

in which Wi - w is the complete increment of u, corresponding

to the increment dx in x.

Again, since each term in this expansion is infinitely small

in comparison with the preceding one, if all the terms after

the first be neglected (by Art. 38) as being infinitely smaU in

comparison with it, we get

du =f\x) dxy

the same result as given in Art. 7.

Another form of the preceding expansion is

du d'u d^H d^u _ , .

Ui- u = — + + + . . . + + &c. (2 1 )

I 1.2 1.2.3 I . 2 . . . n '

69. Theorem.—If a function ofx become infinite for any

finite value of x then all its successive derived functions become

infinite at the same time.

If the^ function be algebraic, the only way that it can be-

come infinite for a finite value of x is by its containing a

p
term of the form -^, in which Q vanishes for one or more
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values of x for which P remains finite. Accordingly, let

dPPdQ
P .. du dx Q dx\ this also becomes infinite when

" = Q^^^^V. =—Q
—

Q = o.

Similarly, —2, — , &o., each become infinite when Q = o.

Again, certain transcendental functions, such as e*""*,

cosec \x - d)^ &c., become infinite when x = a\ but it can be
easily shown, by differentiation, that their derived functions

also become infinite at the same time. Similar remarks apply
in all other cases.

The student who desires a more general investigation is

referred to De Morgan's Calculus, page 179.

70. Remarks on Taylor's Expansion.—In the pre-

ceding applications of Taylor's Theorem, the series arrived

at (Art. 56 excepted) each consisted of an infinite numher of

terms ; and it has been assumed in our investigation that tlie

sum of these infinite series has, in each case, a finite limiting

value, represented by the original function, /(.^ + y), or f{x).
In other words, we have assumed that the remainder of the

series after n terms, in each case, becomes infinitely small

when n is taken sufficiently large—or, that the series is con-

vergent. The meaning of this term will be explained in thu

next Article.

71. Convergent and Divergent l§erics.—A series,

?<i, U2y W3, . . . Un, • . . consisting of an indefinite number of

terms, which succeed each other according to some fixed law,

is said to be convergent, when the sum of its first n terms

approaches nearer and nearer to a finite limiting value, accord-

ing as n is taken greater and greater ; and this limiting value

is called the sum of the series, from which it can be made to

differ by an amount less than any assigned quantity, on

taking a sufficient number of terms. It is evident that in the

case of a convergent series the terms become indefinitely

small when n is taken indefinitely great.

If the sum of the first n terms approximates to no finite

limit the series is said to be divergent.
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In general, a series consisting of real and positive terms
is convergent whenever the sum of its first n terms does not
increase indefinitely with w. For, if this sum do not become
indefinitely great as n increases, it cannot be greater than a
certain finite valuer to which it constantly approaches as n
is increased indefinitely.

72. Application to Qeometiical ProgreHslon.

—

The preceding statements will be best understood by apply-

ing them to the case of the ordinary progression

The sum of the first n terms of this series is in all cases.
I - X

(i). Leta?< I ; then the terms become smaller and smaller

as n increases ; and if n be taken sufficiently great the value

of of* can be made as small as we please.

Hence, the sum of the first n terms tends to the limiting

value ; also the remainder after n terms is represented

by , which becomes smaller and smaller as n increases,
^ i-x '

and may be regarded as vanishing ultimately.

(2). Let x> I. The series is in this case an increasing

one, and af* becomes infinitely great along with n. Hence

the sum of n terms, or , as well as the remainder
I -X X - I

after n terms, becomes infinite along with n. Accordingly
the statement that the limit of the sum of the series

i-\-x-\-x^ + ... + af* + ...ad infinitum

is holds only when x is less than unity, i. e. when the
I - X

series is a convergent one.

In like manner the sum of n terms of the series

i-x + a^-x^ + &o.

13 ^^ .

I + a?
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As before, when a? < i, the limit of the sum is ; but

when x> I, of*' becomes infinitely great along with w, and the

limit of the sum of an even number of terms is - oo ; while

that of an odd number is + oo . Hence the series in this case

has no limit.

73. Theorem.—If, in a series of positive terms repre-

sented hyi

Ui-^ Ui + , . , + Un + &C.,

the ratio -^ he less than a certain limit smaller than unity, for
Un

all values of n beyond a certain number, the series is convergent,

and has a finite limit.

Suppose A; to be a fraction less than unity, and greater

than the greatest of the ratios -^ . . . (beyond the number

n), then we have

< A:, /. Un*i < kun.

^n+2 7 7 2< k, .'. Unn < k^Un.
Unn

U
< k, .-. Un^ < ¥Un.

Hence, the limit of the remainder of the series after w„ is

less than the sum of the series

kUn + l^Un + . . . + k^'Un . . ad infinitum ; .

therefore, by Art. 72, less than

kun . ,

r. Since a; < i.
\ — k

Hence, since Un decreases as n increases, and becomes infi-

nitely small ultimately, the remainder after n terms becomes

also infinitely small when n is taken sufficiently great ; and
consequently, the series is convergent, and has a finite limit.

Again, if the ratio -^^ be > i, for all values of n beyond
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a certain number, the series is divergent, and has no finite

limit. This can bo established by a similar process; for,

assuming A* > i, and less than the least of the fractions

-^, . . . then by Art. 72 the series

Un + kUn + k^Un + &0. od infinitum

has an infinite value ; but each term of the series

Un + W„+i + Wn+a + &0.

is greater than the corresponding term in the above geome-
trical progression ; hence, its sum must be also infinite, &c.

These results hold also if the terms of the series be alter-

nately positive and negative ; for in this case k becomes
negative, and the series will be convergent or divergent

according as - A; is < or > i ; as can be readily seen.

In order to apply the preceding principles to Taylor's

Theorem it will be necessary to determine a general expres-

sion for the remainder after n terms in that expansion ; in

order to do so, we commence with the following :

—

74. liemma.

—

If a continuous function <p{x) vanish lohen

a? = a, and also when x = h, then its derived function <^'{x), if

ako continuous f must vanish for some value of x between a
and h.

Suppose h greater than a; then if <p'{x) do not vanish

between a and by it must be either always positive or always
negative for all values of x between these limits; and
consequently, by Art. 6, 0(a:) must constantly increase, or
constantly diminish, as x increases from a to 6, which is

impossible, since ^(a?) vanishes for both limits. Accordingly,
(^'(a-) cannot be either always positive or always negative

;

and hence it must change its sign between the limits, and,

being a continuous function, it must vanish for some inter-

Tuediate value.

This result admits of being illustrated from geometry.
For, let y = 0(ar) represent a continuous curve ; then, since

0(a) = o, and 0(6) = o, we have y = o, when x = a, and also

when x=b\ therefore the curve cuts the axis of x at distances

a and b from the origin ; and accordingly at some inter-
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mediate point it must have its tangent parallel to the axis of

X. Hence, by Art. lo, we must have <^\x) = o for some
value of X between a and h.

75. liagrange's Theorem on tbe liiniits of Tay-
lor's l§eries.—Suppose Rn to represent the remainder after

n terms in Taylor's expansion, then writingX for a; + y in (i),

we shall have

/(X) =f{x) + ^^/' {x) + ^^ffV"W + . .

.

+ l^z^"!' /(..-.)
(a.) + ij„ (22)

in which /(a?), f'{x) /(**) (re) are supposed finite and
continuous for all values of the variable between X and x.

From the form of the terms included in Rn it evidently

may be written in the shape

\n

where P is some function of X and x.

Consequently we have

/(X) - j/M * ^^^ /(,,) .... *S^'/M (.)

Now, let 2 be substituted for x in every term in the pre-

ceding, tvith the exception of P, and let F{z) represent the

resulting expression : we shall have

F{z) =/(X) - [/(.) + ^)/' (.)+... +^^" P
j. (24)

in which P has the same value as before.

Again, the right-hand side in this equation vanishes

whens= Z; .\ F{X) =0.
Also, from (23), the right-hand side vanishes when s =aj

;

.-. F{x) = o.
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Accordingly, since the function F{z) vanishes when «- J,
and also when s = a?, it follows from Art. 74 that its derived
i'unction F'{z) also vanishes for some value of s between the
limits X and x.

Proceeding to obtain F\z) by differentiation from equa-

tion (24), it can be easily seen that the terms destroy each
other in pairs, with the exception of the two last. Thus we
shall have

j-(.) = -(^--)'-'/(-)W.(^--)°"p.'
\n - I ^ ^ n - I

Consequently, for some value of s between x and X we
must have

/(") (s) = P.

Again, if be a positive quantity less than unity it is

easily seen that the expression

x+e{X-x),

by assigning a suitable value to 6, can be made equal to any
number intermediate between x and X.

Hence, finally,

P=/(n) lx+e{X-x)],

where 6 is some quantity > o and < i

.

Consequently, the remainder after n terms of Taylor's
series can be represented by

R» = ^^^/'"' [x + 0{X-x)]. (25)

Making this substitution, the equation (22) becomes

AX) =/{.) + ^^/'W + ^^f^V' {-)^...

+
^^,r-T'

-^""'' ("'^
+ ^^^"-^"^ {X + (X - *) )

.
(26)

The preceding demonstration is taken, with some slight

modifications, from Bertrand's " Traite de Calcul Differentiel"

(273).
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Again, if h be substituted for X - x, tbe series becomes

/(^ + h) =f{x) + hf ix) + &c.

_^/M(^)+^/(n)(^^0^-^.
(27)+

In this expression n may be any positive integer.

li n = I the result becomes

fix + h) =f{x) 4 hf (X + Oh). (28)

When n = 2,

f(x + h) =f(x) + hf (x) + ~-f' (x + eh), (29)

The student should observe that 9 has in general different

values in each of these functions, but that they are all subject

to the same condition, viz., > o and < i.

It will be a useful exercise on the preceding method for

the student to investigate the formulae (28) and (29) inde-

pendently, by aid of the Lemma of Art. 74.

The preceding investigation may be regarded as furnish-

ing a complete and rirjorous proof of Taylor's Theorem, and

formula (27) as representing its most general expression,

76. Creometrical Illustration.—The equation

admits of a simple geometrical verification; for, let y =f{x)
represent a curve referred to rectangular axes, and suppose

(Z, F), (a?, y) to be two points Pi, Pi on it : then

/(Z)-/(.r) Y-y
X - X X - x'

But =

—

- is the tangent of the angle which the chord Pi P2X — X
makes with the axis of x\ also, since the curve cuts the

chord in the points Pi, P2, it is obvious that, when the point on

the curve and the direction of the tangent alter continuously,

the tangent to the curve at some point between Pi and P2 must be

parallel to the chord Pi P2 ; but by Art. 10,f {xi) is the tri-

gonometrical tangent of the angle which the tangent at the
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point (r,, yi) makes with the axis of x. Hence, for some value,

J*,, between X and j*, we must have

Y-y f{X)-f[x)
^^""'^-X-x^ ' X-x '

or, writing a?i in the form a; + (Z - a?),

/(Z) =/(^) + {X-x)f[x^d{X-x)].

77. Second Form of Remainder.—The remainder

after n terms in Taylor's Series may also be written in the form

For it is evident that Rn may be written in the form
(X -x)P,;

.-./(x) =f{x) + (X- ^)/'(^) + . . .

+

^j^^_;
/(-") w

Substitute s for a-, as before, in every term except Pi ; and the

same reasoning is applicable, word for word, as that employed
in Art. 75. The value of F' (2) becomes, however, in this

case

^ ^ \n- 1

and, as F\z) must vanish for some value of z between x and
X, we must have, representing that value by a; + (X - x),

p^^
(x- ^)- (1 - e)'-'

^t„) {^ + e (X - ;,)}, (30)

where B, as before, is > o and < i

.

If h be introduced instead of X - a;, the preceding result

becomes

which is of the required form.
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Hence, Taylor's Theorem admits of being written in the

form

+ r^ (i - 0)"-V^"^ (^ + ^^)- {^^)

The same remarks are applicable to this form* as were made
with respect to (27).

From these formulae we see that the essential conditions

for the application of Taylor's Theorem to the expansion of

any function in a series consisting of an infinite number of

terms are, that none of its derived functions shall become
infinite, and that the quan^ty

^/f-H'^ + e^)

shall become infinitely small, when n is taken sufficiently

large ; as otherwise the series does not admit of a finite limit.

A"
78. liimit of when n is indefinitely great*

I . 2 . ,n

Let Un =
, then -^ =

; .*. -^ becomes smaller
1 .2 . .n Un w + I Un

and smaller as n increases ; hence, when n is taken sufficiently

great, the series w„+i, w„+2, . . . &c., diminishes rapidly, and
the terms become ultimately infinitely small. Consequently,
tchenever the n*^ derivedfunction f^*^'^ (x) continues to be finitefor
all values of w, hoicever great, the remainder after n terms in

Taylor's Ex])ansion becomes infinitely small, and the series has
a finite limit.

* This second form is in some cases more advantageous than that in (27).
An example of this will he found in Art. 83.
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1

79. C^eneral Form of 9Iaelaarln's Series.—The
expansion (27) becomes, on making x = o^ and substituting

X afterwards instead of ^,

/W-/(o)+Y/(o)+:j^y"(o) + ...+ |^/(-)(o)

+ ^/'"(0*). (33\

Hence the remainder after n terms is represented by

where is > o and < i.

This remainder becomes infinitely small for any fonctioii

f{x) whenever .— /^**^^) becomes evanescent for infinitely

great values of n.

We shall now proceed to examine the remainders in the

different elementary expansions which were given in the

commencement of this chapter.

80. Remainder in the Expansion of a*.—Our for-

mula gives for Rn in this case

— (loff fl)**fl**.

c

Now, o** is finite, being less than a* ; and it has been proved
\X lofi' fl! i'*

in Art. 78 that ^^

—

" becomes infinitely small for large

I-

values of n. Hence the remainder in this case becomes
evanescent when n is taken sufficiently large. Accordingly
the series is a convergent one, and the expansion by Taylor's

Theorem is always applicable.

81. Remainder in the Expansion of sin x.—In this

case

„ of* . fmr ^ \
J8„ = r- sm — + ^^ .

\n \2 J
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This value of jK« ultimately vanishes by Art. 78, and the
series is accordingly convergent.

The same remarks apply to the expansion of cos x.

Accordingly, both of these series hold for all values of x.

82. Remainder in the Expansion of log (i + x).—
The series

X X 3/ X ry+ + &c.,1234
when iP is > i, is no longer convergent ; for the ratio of any
term to the preceding one tends to the limit - x ; conse-

quently the terms form an increasing series, and become
ultimately infinitely great. Hence the expansion is inappli-

cable in this case.

Again, since /"(a?) = (- i)"-^
'

,
" '

,
-

—

-, the remainder^ -^ V / ^ V
(i + a;)"

Rn is denoted by - ( —
j

'; hence, \ix he positive and

X
less tJian unityy ^ is a proper fraction, and the value of

Rn evidently tends to become infinitely small for large values

of n ; accordingly the series is convergent, and the expansion

holds in this case.

83. Binomial Theorem for Fractional and ]Vega-
tive Indices.—In the expansion

(i + a^)"» = I +_a; + —^ -x^ ¥..,.
'

I 1.2

mim- i) . . , (m-n-\- i)oif* o
+ —

^

^^ — + &o.
1 ,2 , , , n

if Un denote the w'* term, we have

w„+i m-n-v I— = X,
Un n

the value of which, when n increases indefinitely, tends to

become - x ; the series, accordingly, is convergent if a? < i,

but is not convergent li x > i

.
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Accordingly, the Binomial Expansion does not hold when
X is greater than unity.

Again, as

/(»•) (a?) = m (m - i) . . . (m - n + i) (i + ar)"^,

the remainder, by formula (25), is

—^^ ^
-ixf* (x + Ox)"^,

1 . 2. . . n ^ ' '

or

m (m-i) . . . {m-n + i) of*

I . 2 . . . w (i + dxy

Now, Bwpipose X positive and less than unity; then, when
n is very great, the expression

mjm-'i) . . . (m~n+i)^
I . 2 . . . n

becomes indefinitely small ; also ^ _^ is less than imity

;

hence, the expansion by the Binomial Theorem holds in this

Again, suppose x negative and less than unity. We employ
the form for the remainder given in Art. 77, which becomes
in this case

(- i)**—

^

^7 r
—^— (i - 0)*^^ (i - dx)"^ ;

^ ' 1 . 2 . . . (w- 1)
^ ' ^

'

or

, . m(m-i) . , ,{m-n-\-i)(i -0)'»-^g»
I i -d I

*"*

^ ^^ 1.2 ... (n- I) I i-Oa:l
*

I — d
Also, since x< i, Bx< 0; .*. i -Ox> i - B\ hence

I - Ox

is a proper fraction ; .*. any integral power of it is less than
unity ; hence, by the preceding, the remainder, when n ia

sufficiently great, tends ultimately to vanish.

G 2
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In general {cc + y)^ may be written in either of the forms

.f(i+|)"'orr(«+^)'":

now, if the index m be fractional or negative, and x> y, or

- a proper fraction, the Binomial Expansion holds for the

series

(vN"* m mifn — i^
I + ^

J
=af» +_ afn-iy + __v i ic»»-2ya + &o.,

but does not hold for the series

(ic+ y)*" = 2/"*( I + - 1
= 2/"* + - y"'-^x + —^ ^ ^""V + &o.,

since the former series is convergent and the latter divergent.

We conclude that in all cases one or other of the expan-
sions of the Binomial series holds ; but never both, except

when w is a positive integer, in which case the number of

terms is finite.

84. Remainder in tbe Expansion of tan*~^a;.—The
series

. , X a^ x^ ^
tajT^x = + &c.,135

is evidently convergent or divergent, according as a; < or > i.

To find an expression for the remainder when ii;< i, we have,

ty (8), p. 50—

/ . n Iw - I . sin ( w n i&TT^x
)

Hence we have, in this case,

a;" sin m n tan"^ (Ox) I

which, when x lies between + i and - i, evidently becomes

infinitely small as n increases, and accordingly the series holds

for such values of x.
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85. Expanalon of sin"* a:.—Since the function Bin"* a; is

impossible unless a: be < i , it is easily seen that the series

given in Art. 64 is always convergent ; for its terms are each

less than the corresponding terms in the geometrical pro-

gression

a; + a^ + ar* + &o.

Consequently, the limit of the series is always less than the

limit of the preceding progression.

A similar mode of demonstration is applicable to the

expansion of tan"* a; when x < i, as well as to other analogous

series.

In every case, the value of i?„, the remainder after n

terms, furnishes us with the degree of approximation in the

evaluation of an expansion on taking its first n terms for

its value.

86. Kxpanslon by aid of DifTerentlal Eqaations.—
In many cases we are enabled to find the relation between

the coefficients in the expansion of a function of x by aid of

differential* equations; and thus to find the form of the

series.

For example, let y = e*, then

Now suppose that we have

y = flo + flia? + a^ + . . . On^ + . . .

,

then -r = ^1 + 2flaa? + . . . nanO^"^ + &o.
ax

Accordingly we have

Oi + 20,2? + 3fl3«* + . . . = «o + «ia? + d^ + &o.>

• This method is indicated by Newton, and there can be little doubt that it

was by aid of it he arrived at the expansion of sin (;nsin"i z), as well as other

series.—Vide Ep. posterior ad Oldembtirgium. It is worthy of observation that

Newton's letters to Oldemburg were written for the purpose of transmission to

Leibnitz.
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hence, equating coefficients, we have

2 2' 3 2.3'

Moreover, if we make a; = o, we get 00 = i,

X x^ x^ ^
.*. ^ = I + - + + + &o.,

I 1.2 1.2.3
the same series as before.

Again, let

y = sin (wsin"^a?).

Here, by Art. 47, we have

Now, if we suppose y developed in the form

y = aQ + aix + a^^ + . . . + an^ + &o.,

dy
then -7- = ai + 2^2^; + 3^32^^ + . . . + nan^^ + &o.,

-r-j = 2<?2 + 3 . 2«3ii; + . . . + W (w - l) ttn^'^ + &0.

Substituting and equating the coefficients of a^ we get

Again, when a; = o we have y = o; .*. 0o = o.

Hence we see that the series consists only of odd powers
of a; ; a result which might have been anticipated from Art.

61.

To find Oi. When x = o, cos {m but^x) = i, hence f—
J=

m;

accordingly ai = m;

m^ - I m(m'^ - i)
•*• t?3 = Cli — — — •

2.3 1.2.3'

m^ - g m (n^ - i) {rr^ - 9) ^
0^5 = d^ — !

4.5 1.2.3.4.5
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henoe we get

• • / -IN ^ ^ C'^'- ^
sin (m Bin 'a?) « — a; ^ • sxr

^
1 1.2.3

+ —^^ — ^ - &c. (35)1.2.3.4.5

In the preceding, we have assumed that sin-^a? is an acute

angle, as otherwise both it, and also sin [m 8in~*a?), would admit
of an indefinite number of values.—See Art. 26.

87. Expansion of sin tnz and cosms.—If, in (35), 2 be
substituted for sin"*ar, the formula becomes

(36)

anmz = man z
(I m'-
I 1.2. 3

I . 2

I) K
•3-4

-^Isin^z -
• 5

&c.

In a similar manner it can be proved that

COS ms = I -
w' sin^s m^ (m^

-^)sin*2- &0.
1.2.3.4 (37)

If m be an odd integer the expansion for sin mz consists

of a finite number of terms, while that for cos mz contains an
infinite number. If 7n be an even integer the number of

terms in the series for cos mz is finite, while that in sin mz is

infinite.

The preceding series hold equally when m is a fraction.

A more complete exposition of these important expansions
will be found in Bertrand's " Calcul Differentiel."

In general, in the expansion (36), the ratio of any term
2 2

to that which precedes it is -.
r-; r sin-s, which, when^

(n + i) {n + 2)

n is very great, approaches to sink's. Hence, since sin s is

less than unity, the series is convergent in all cases. Similar

observations apply to expansion (37).

This expansion is erroneously attributed to Euler by M. Bertrand ; it was
originally given by Newton. See preceding note.
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The expansion

gosin-ix = I + — + + _:^ Lx^ + —^^ i- aj* + . . .

I 1.2 1.2.3 1.2.3.4

can be easily arrived at by a similar process.

88. Arbogast's Metliod of Derivations.

If u = a + h- \- c + d + &c.,
I 1.2 1.2.3

to find the coefficients in the expansion of {u) in ascending

powers of x—
Let f{x) = (w),

B C
and suppose f{x) = A + —x + ar* + &o.

=/(o)+f/(o)+-j^/'(o)+&o.,

then we have evidently

A^f{o) = ^{a).

Also, writing u% u'\ v!'\ &o. instead of

du d^u d^u
jy

^' ^' ^' ^'^

by successive differentiation of the equation /(a;) = (w), we
obtain

fix) =<p'{u).u\

f\x) =^'(^.).w"+0"(^O.M^

r'(^) = ^ {u) . w'" + 30" (w) .
«^'

. u" + 0'" (t^) («0%

Now, when a; = o, f^, w', v!\ v!'\ . . . obviously become
a, h,c,d,, . . respectively.
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Accordingly,

B^ f{o) = <l>'(a),b,

(7-/"(o) = 0'(fl).c + 0"(a).6»,

D« /"(o) = i»'{a).d + 3f{a) . be + f'{a) . 6%

i? « /iv (o) = 0' (a) . e + ^" (tz) (4W + 3c») + 6^'" {a) . ^c

+ 0*^ (a) . 6*.

From the mode of formation of these terms, they are seen

to be each deduced from the preceding one by an analogous

law to that by which the derived functions are deduced one

from the other ; and, as /'(a:), /"(a?) . . . are deduced from/(a;)

by successive differentiation, so in like manner, B, C, D, , , .

are deduced from <l>(u) by successive derivation ; where, «iftep

differentiation, a, 6, c, &o., are substituted for

du d^u
t,

«'^' ^'••••^

If this process of derivation be denoted by the letter S, then

B = d.A, C=^,B, i)-S.(7,&o. (38)

From the preceding, we see that in forming the term
^ . <p{a)y we take the derived function ^'(fl), and multiply it

by the next letter b, and similarly in other cases.

Thus S.b =c, S . c - f/, . . .

S .
5*" = mb'^'-^Cf S . c"* = mc'^'^d . .

.

Also S . 0'{fl) b = 0'(rt)c + 0"(fl)6».

This gives the same value for C as that found before ; D
is derived from C in accordance with the same law ; and so

on.

The preceding method is due to Arbogast : for its com-
plete discussion the student is referred to his " Calcul des

Derivations." The Eules there arrived at for forming the

successive coefficients in the simplest manner are given in
" Galbraith's Algebra," page 342.
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As an illustration of this method, we shall apply it to find

a few terms in the expansion of

sin { « + 6 - + c + d- ^)I 1.2 1.2.3

Here -4 = sin a, -S = 8 . sin « = 6 cos «,

C = ^ , h Qos a = c co^ a - li^ sin a,

D = 8 . C = d QO%a - :^hc Bma -h^ cos a,

U = d . D = e oosa - {^bd + ^c^) sin a - 6b^c cos a

+ ¥ sin a.

If the series a-¥bx + c + &o. consist of a finite num-
I . 2

ber of terms the derivative of the last letter is zero—thus, if

d be the last letter, 8 . c? = o, and d is regarded as a constant

with respect to the symbol of derivation S.

If the expansion of (p (u) be required when u is of the

form

a + (5x + yxj + ds^ + &o.,

the result can be attained from the preceding method by
substituting a^ h, c, d, &c. instead of a, /3, i . 2 7, i . 2 . 3 . §,

&c., and proceeding as before.

The student will observe that in the expression for the

terms D, E, &c., the coefficients of the derived fimctions

0'(a), <p' (a), &c., are com.-^\QiQ\j independent of theform oithe
function 0, and are expressed in terms of the letters, b, c, d,

&c. solely ; so that, if calculated oncefor all, they can be applied

to the determination of the coefficients in every particulai^

case, by finding the different derived functions ^'(«), ^"(«),

&G., for that case, and multiplying by the. respective coef-

ficients, determined as stated above.
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Examples.

I. H M *Bf(ax + by)f then -t" iT' This fttmiahes the condition that
•^ ^ ' adx b dy

a given function of x and y shouM be a fimction of aa? + by.

3. Find, by Madaurin's theorem, the first three terms in the expansion of

tan X.

Ans. x + — + —
3 '5

3. Find the first four terms in the expansion of sec x.

x^ car* 61 x^
Am. I + — + ^—. + .

2 24 720

4. Find, by Maclanrin's theorem, as far as a;*, the expansion of log (i + sin x)

in ascending powers of x.

ljet/(«) = log(i + sin«),

XV ^»/ V
cos a? I -sina:

then/ Ix) = :— = = sec a? - tan x,
I + anz cos a;

f"{x) = sec a: tan a; - sec^a; = -f'{x) sec x ;

.-. f"'{z) = -/"(«) sec X -f'{x) sec « tana:,

/tr (a?) = -f"'{x) sec a; - 2f"{x) see a; tan a; -f'{x) (2 sec^ar - sec x) ;

.•./(o) = o, /'(o)=i, /"(o) = -i, /'"(o) = i, /-(o) = -2;

X2 «3 «* ^
.*. log (i + sin a;) = a; + -7 + &c.

" * 2012
5. Find six terms of the development of in ascending powers of a;

cos a?

^a^ x^ xx'^

Am. i+a; + a;2 + — +- +^— ...
3 2 10

6. Apply the method of Art. 86, to find the expansions of sina; and coaaf.

7. Prove that

tan-i (« + A) = tan-i« + A sin«— - {hmizf?^ + (A sinz)^^^^ - &c.,

where z = cot-^a;.

Here/(a:) = tan-^a? =— « ; and by Art. 46, '-r- = {- i)" 1»- » sin^rsin nr; .*. &o.
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8. Hence prove the expansion

» , sin z sin 2f , sin 33 ,-=2+ COSZ + C08*« + — C08?«+&C.21 3 3

L«t A = - cot « = - a;, &c.

9. Prove that

IT e sin z sin 2z sin 3z

3 2 I 2 3

Let A sin z = - I in Example 7 ; then A + x =—: = - tan - ; .•. &a.
smz 3

10. Prove the expansion

ir sii

2 cos z ' 2 co8*a ' 3 cos'*

ir sin z I sin 2z i sin 3z

Assume h-—:
, then

sin z cos t

X + A = - tan z = tan (ir - z) ; .*. w - 2 = tan"* (a? + A), fto.

Substituting in Example 7, we get the result required.

The preceding expansions were first given by Euler.

11. Prove the equations

sin 9a; = 9 sin a; — 120 sin'a; + 432 sin^a; - 576 sin'^a; + 256 era'c,

cos 6a; = 32 cos'a: - 48 co8*a; +18 cos'a; — I.

These follow from the formulae of Article 87

.

12. If »» = 2, Newton's formula, Art. 87, gives

( . sin'jf sinf^a; „ )
sin 2a; = 2 < sin a; &c. > ;

( a 2.4 f

verify this result by aid of the elementary equation sin 2a; = 2 sin x cos x.

13. If <^ (a: + A) + ^ (a: - A) = ^ (a;) ^ (A), for all values of x and A,

<b"(x) *»^(a;) „ ^ ^
prove that ^-i-r = ^

,,,
' = &c. = constant

;

<^{x) <f>"{x)

and also <p'{o) = o, ^'"(o) = o, &c.

14. If, in the last, ^-p^ = a^ ; prove that ^(a;) = ^«* + r^.

If . = - a' ; prove that <p{x) = 2 cos {ax).
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15. Apply Arbogast's method to find the first four terms in the ezpan«ion
of

(a + *x + «»* + fite* + &c.)».

Ans. a" + «a'^> hx + f
**^**~ '^ ^ + nou ] a»-> z»

^ ^
|

(*»-')(»»-g)
^,^^» + („_,) a^-^ie + an-i^l ^^3 + &c.

«* + I

16. Prove that the expansion of . x can contain no odd powers of «.

For if the sign of x be changed, the function remains unaltered.

17. Hence, ahow that the expansion of contains no odd powers of x
c* — I

beyond the first.

Here + - = - , — ; .•. &c
e»- 1 a a tf-l

X
18. If M = ——

, prove that

n /rf»^i«\ n(n- I) /<^-««\ (du\ ,.

and hence calculate the coefficients of the first five terms in the expansion of u,.

Here e*u = x + u, and by Art. 48, we have

(du n(n—i)d^u d^u\ d>H*

« + « T- + ; „ T-i + • • • ^•jzz] = 3i;» ••• &c.
dx 1.2 <fa;2 <?a:«/ <^a^

19. If = I _ - +—L a;! jc* + a;8 - . . .
' ^-i a I. a x.2.3.4 1.2. ..6

prove that

B\ = 7, B%- —, ^3 = — f ^4 = —, &c.
6 30 42 30

These are called Bernoulli's numbers, and are of importance in connexion
with the expansion of a large number of functions.

ao. Prove that

(a* - l) + (a* - 1) 7 (2« - 1) + . .
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21. Hence, prove that

e» + i
*

' 3-4 3-4-5-6

2 24 240

22. Prove that

2^^ia;2 24^23^ i^Bzsfi -

a; cot a; = I t — &0.
1.2 1 .2. 3.4 I .2 ...6

23. Also, tan - = ^la; (2? - i) + -^ (2* - i) + &c.
2 3 • 4

24. Prove that

X ^ X _ a:« ir* Bzxfi
- cot -= I —Bl-. £2-. TT* — • • •
2 2

li ll II

This follows immediately by substituting - for a; in Ex. 22.

25. Given « (« — a;) = r ; find the four first terms in the expansion of u in

terms of a?, by Maclaurin's Theorem.

expand y in powers of x by the method of indeterminate coefficients.

27. Show that the series

X X* x^ x^— + — + — + —+•••jw jm 2m ^m

is convergent when a: < i, and divergent when a; > i, for all values of m,

28. Prove the expansion

(x - a)»» <^ {x) {x - «)« 4)(a) {x - a)^-^ da (</>(«))

^—'- fiV[^l+&c....^ 1 . 2 . (aj - a)«-2 U«/ (<!>(«))

29. Find, by Maclaurin's Theorem, the first four terms in the expansion of

<i + x)* in ascending powers of x.

Let f{z) = {i+x)',



Examples. 95

• rw = -/'(«)
(^

- ^ « +
^** - &o.) +/(*)

(j - 1 * + &<^-)

;

/"(x) = -/"(*)
(^

- ^* + ^^^ - &c.) + »/•(«:)
(5 - 1 ^ + &C-) •

But, by Art. 29, /(o) = «;

.•./'(o) = -^, r(o) = ^. r'(o) = -y^.

Hence (i + x)* = « + -^ «* + &c.
2 24 lo

TMa result can be verified by direct deyelopment, as follows:

let M = (H-a?)«,

then log « = -logCi+a:)=i — + +t..;
X 234
u = e ' ' **" = «.«

30. In Art. 76, if /(a;) and/'(x) be not both continuous between the points

Pi, 1*2, show that there is not necessarily a tangent between those points, parallel

to the chord.

31. Find the development of -: : in ascending powers of ar, the coef-

ficients being expressed in Bemoullian numbers. " Camb. Math. Trip., 1878."

-. X sin 32: ^ ^ , . . . ,
Since -: ; = « cot X + a; cot 2x, the expansion in questicii, by (22),

is

3 2'52X\
^ 2*BtX* , , ^ 2»^6iC« , . , .I-—-(2+,) f— (2' + l) J-(2»-H,)-&C.
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CHAPTER lY.

INDETERMINATE FORMS.

8g. Indeterminate Forms.—Algebraic expressions some-
times become indeterminate for particular values of the
variable on which they depend ; thus, if the same value a
when substituted for x makes both the numerator and the

denominator of the fraction '^-t-x vanish, then -7-^becomes of

the form -, and its value is said to be indeterminate,
o

Similarly, the fraction becomes indeterminate iif{x) and
{x) both become infinite for a particular value of x. We

proceed to show how its true value is to be found in such

cases. By its true value we mean the limiting value which the

fraction assumes when x differs hy an infinitely small amount

from the particular value which renders the expression indeter-

minate.

It will be observed that the determination of the diffe-

rential coefficient of any expression /(a?) may be regarded as a

case of finding an indeterminate form, for it reduces to the

determmation of -^ =—=^-^-^ when A = o.
h

In many cases the true values of indeterminate forms can

be best found by ordinary algebraical and trigonometrical

processes.

We shall illustrate this statement by a few examples.

Examples.

I. The fraction
^^„

" ^ = becomes of the form - when x = e\ but since
hx^ - 2bcx + bc^ o

a (x — cY • *
it can be written in the shape -r-r (?» its true value in all cases is t.

^ b{x - cY
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g o
2. The fraction becomea - when * = o.

\/a + « - \/a -X ®

To find itfl true yalue, multiply its numerator and denominator by the com-

fUm$ntory eurd, \/a + a + -v/a-ar, and the fraction becomes

•('v/a + » +\/a-ar) y/g -f x 4 y/a -g
^—^—— or——^—^^-^— J

a« a

the true yalue of which is \/ a when x = o.

*ya^ + oa: -- a;2 — \/a- — flj? + «'
3'

:::::zzz , when » = o.

»ya ^^ X — */ a-x

^f iiltiply by the two complementary surd forms, and the fraction becomts

2ax {\/a -f J? + *ya - a;}

a (-v/a + a; +^a — x)
or ",

. :::!:>

y/a2 + ox + «» + y^a»_ flaf+ aj»

the true value of which evidently is \/a when x = o. From the preceding
examples we infer that when an expression of a surd form becomes indeter-

minate, its true value can usually be determined by multiplying by the com-
plementary surd form or forms.

4. whenx = a. Am. .

X — \/ 2x* — a* *

a - y/a' _ a;2 I

5' 5 when x = o. Jjm. —

.

x^ 2a

, fl sin e - sin fld , o ,
6. — becomes - when fl = o.

0(co8 Q - cos aQ) o

To find its true value, substitute their expansions for the sines and cosines,
and the fraction becomes

^1.2 I .

a

'

H
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Divide by 6^ (a^ - i), and since all tlie terms after the first in the new numerator

and denominator vanish -when 6 = o, the true value of the fraction is - in this
3

case.

7. The fraction

Aaxv* + Aix^-'^ + Azx^'"^ + . . . Ai
becomes —• when a; = 00

:

fl-o^" + aix«-i + ...+«» *=

its true value can, however, be easily determined, for it is evidently equal to
that of

Ai A2

xm-n.
«1 «2

Moreover, when a; = 00, the fractions — , — ...— ., ., aU vanish ; hence,
X x^ X

the true value of the given fraction is that of

Ao ,
x*n-n— when a? = 00,

«o

The value of this expression depends on the sign of m — «.

(i.) If m > «, a;«-« = 00 when a; = 00 ; or the fraction is infinite in this

case.

(2.) If m = ttf the true value is —

.

(3.) If m < «, then a;"*-* = o when a; = 00 ; and the true value of the frac-

tion is zero.

A(;cordiiigly, the proposed expression, when x = 00, is infinite, finite, or zero,

according as m is greater than, equal to, or less than n. Compare Art. 39.

J. w = ^y^x + a- Yx + i, when x =00,

Here u = = when x =00.

Yx + a + \/x-\- b

9. >v/a;2 + «« - X, when a; = 00. An. '-.

10. u = a'&in \-\ ^'hen a: = 00.

(i.) If o < I, a* = o when a; = 00, and therefore the true value of u is zero

in this case.

(2.) If a > I, then a' becomes infinite along with x ; but as — is infinitely

small at the same time, we have sin — = — . Hence, the true value
a* a*

of M is c in this case.
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1 1. « = \/a^-»^ cot - A
~

IB of the form o x 00 when x - a.^
2 \a + 45

Here u--

-K \a- X
tan- ^;

2 \a + a?

but, when a - » is infinitely small,

T \a-x _it \a — X
^

2 \aTa;~ 2'Va + a;*

v la — X *

2\a+ a; ^

« sm (sin x) - sin'a; .

12, u = ^

—

-^ , when x = o.

Substitute the ordinary expansion for sin a;, neglecting powers beyond the sixth,

and u becomes

\^x) I ^3 -p6\aI . sin'a; sin^x) / a:^
-pSv;

a: {sin a; ;— + -;— >- 1^-,- + —

I

( 3 5 ) \ 3 5/

«3 «* 1/ a;3\3 a;5
/ ^ yA\%

Hence we get, on dividing by «*, the true value of the fraction to be — when

« = o.

(o sinV + j8 cosV)" - /S" , « a • ->

12.
^ — ^ , when o = )8. Ans. sin^A.

Similar processes may be applied to other cases ; there

are, however, many indeterminate forms in which such pro-

cesses would either fail altogether, or else be very laborious.

We now proceed to show how the Differential Calculus

furnishes us with a general method for evaluating indetermi-

nate forms.

90.

—

9Iethod of the Differential Calcnlus.—Sup-

pose •~-T to be a fraction which becomes of the form - when

aj = a;

i. e. f(a) = o, and ^ (a) = o
;

H 2
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substitute a-v htoi x and the fraction becomes

f{a + h) -f(a)
/{a ^ A)_

^^
h

0(a+ hy 0(a + h) - <p{a)

'

h

but when h is infinitely small the numerator and denominator
in this expression become /'(«) and^'(a), respectively; hence,

in this case,

<l){a + h) (p\a)'

Accordingly, -t/A represents the limiting or true value of

the fraction '-T-r.

(i.) If/'(a) = o, and ift\a) be not zero, the true value of

-7-7 IS zero.

(2.) If/ («) be not zero, and ^'(fl) = o, the true value of

(3.) If /'(fl) = o, and 0'(fl) = o, our new fraction*^-7^ is

still of the indeterminate form -. Applying the

preceding process of reasoning to it, it follows that

its true value is that of'
•(«)

If this fraction be also of the form -, we proceed to the

next derived functions.

In general, if the first derived functions which do not

vanish be /(**)(«) and ^("Ka), then the true value of '—7—

IS that of —TTTT-;-.
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Examples.

« sin ap—
I. K = , when z=-.

cos* ' 2

Here /{x) =x sin ar
,

••• /'(^) = « COS X + sin*, /* f -
J
= I,

^'(a;) = -8m*, ^'
^^j

=- i.

Hence « = - i, when a; = -.
2

3. w = -; —t when a: » a.

Here /(x) = ««« - «"w,

<f>{x)^{x-a)r;

••• /(*) = »»«^» /'(») = »»*^-

^*(ar) = r(a; - ay-\ ^'(a) is o or oo, as r > or < i,

Hence the true value of u is oo or o, according as r > or < i.

This result can also be arrived at by writing the fraction in the form

{x - ay A*-

gma^ where h = x — a

hence, expanding «»•*, and making h = o, we evidently get the same result aa
before.

3-
X--sin«

x^
when ic = 0.

re f'{x) = i-cosz. /'(0)=0.

^Xx) - 3*», ^•(0) = o.

/"(*)= sin*, /"(o) = o.

<t>''{x)=6x. 4»"(o) = o.

f"'{x) = cosx, /"'(o) = i.

</>"» = 6, 0'» = 6.
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Hence, the true value is -, as can also be immediately arrived at by substituting

a?
X— -p + &c. instead of sin z.

o

a* — I

4. when X = 0. Ans. log a.
X

e^f{x)-e»f{a) f{a) ^f'{a)
S' 7";: ;~. wnen x = a, ,, —;— rr-r*

e'ipix) - e"<t>{a)
" <{>{a)+ <p\a)

It may be observed that each of these examples can be exhibited in the form
00 - 00 , that is, as the difference of two functions each of which becomes in-

finite for the particular value of a; in question.

91. Form o x 00.—The expression /(a;) x ^(a?) becomes
indeterminate for any value of x which makes one of its fac-

tors zero and the other infinite. The function in this case is

easily reducible to the form -
; for suppose /(«) = o, and {a)

= 00, tlien the expression can be written —^, which is of the

required form.

Examples.

I. Find the value of (1 - «) tan— when a? = i.

T —. »• 2
This expression becomes , the true value of which is - when « = i.

TtX
cot—

2

2. Sec a; (x sin a; - -j, when X "2'

IT
a; Sin a;—

TVlis becomes
2

I form already discussed.ll
cos a;

3. Tan {x - a) . log {x - a), when X == a. Ans. o.

4. Cosec2/3a; . log (cos ax), „ « = o. „ - —^,
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becomes indeterminate for the value a; = a, if

92. Form ^. As stated before, the fraction *

^^y^ also

/{a) = 00, and (J>{a) = 00.

o
It can, however, be reduced to the form - by writing it

in the shape
I

iM.
I

The true value of the latter fraction, by Art. 90, is that of

fM
Now, suppose A represents the limiting value of -j-

when X = a, then we have

that is, the true value of the indeterminate form ^ is found

in the same manner as that of the form -.
o

In the preceding demonstration, in dividing both sides of

our equation by ^, we have assumed that A is neither zero

nor infinity ; so that the proof would fail in either of these

cases.

It can, however, be completed as follows :

—

Suppose the real limit of -\-{ to be zero, then that of
ip{a)

pp— is A-, where k may be any constant ; but as the
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latter fraction has a finite limit, its value by the preceding
method is

therefore *-77-t = o ; i. e. when A is zero, -rA is also zero, and

t??cg versa.

Similarly, if the true value of -^4 he infinity when a? = a,

then ^y-| is really zero ; we have, therefore, 7^7^= o, by what

f (n\

has been just established ; .*. ,, \
= 00.

<p{a)

Accordingly, in all cases the value of ,, {
* determines

that of -T-{ for either of the indeterminate forms - or ^.
0(a) o ^

On referring to Art. 69, the student will observe that "^t-^ is of the form
<f>{x)

fix)
^ whenever —r-{ = ^, so that the process given above would not seem to assist
°"

<p [x)
^

us towards detennining the true value of the fraction in this case ; however, we
generally find a common factor, or else some simple transformation, by which

o
we are enabled to exhibit our expression, after differentiation, in the form -.

o

For example —7^—-. is of the form -^2_ when a; =-: here f\x)— 00 2
log(x-^)

= sec'iT, &>'ix) = -"—, and the fraction "^^V; is still of the form ^, but it can

2

7r

X

be transformed into—r*, which is of the form - : the true value of the latter
cos^x o

fraction can be easily shown to be — 00 when x = -.

In some instances an expression becomes indeterminate from an infinite value

r. The student

equally to this case.

of X. The student can easily see, on substituting - for x, that our rules apply
y
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93. Indeterminate EiLprenslons of the Form
(/(;r)|*('). Let u = (/(a:)j*W, then log u = ^(a:) lo^/(a:).

'^riiis latter product is indeterminate whenever one of its fac-

tors becomes zero and the other infinite for the same value

of a:.

(i.) Let 0(2?) = o, and log {f{x)} = ± 00 ; the latter re-

quires either /(a?) =00, or/(rr) = o.

Hence, |/(a*)J*^'i becomes indeterminate when it is of the

form 0°, or 00°.

(2.) Let 0(2-) = ± 00, and log \f{x) )
= o, ot/{x) = i ; this

gives the indeterminate forms

I " and i~".

Hence, the indeterminate forms of this class are

o^ oo«, and I*".

Examples.

1 . (sin «) *" • is of the form oo, when z = 0.

Here log « = tan a; log (sin x) = -^-^ -,

cot«

The true value of this fraction is that of

cot«
= - cos a; sin x, or o when a? =5 o.— cosec^a?

Hence the value of (sin a:)**" * = «o = i at the same time.

a. (sin »)**»» *, when x = -,

This is of the form i •, but its true value is easily found to be unity.

I

/tan a:\I2 -

3. (
j
*

, when x = o,

l0g« 1-—̂
;Here

X

, ^ tana; x*
but B X + — + &c.

« 3
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, tan » , / a;2 „ \ a;^ „
.*. log = log ( I + — + &c. ) = — + &c.

« ^ V 3 / 3

Hence, tlie true value of log « is - when x=o\ and, accordingly, the value oft*

is ei at the same time.

4« w = [ I + -
) , when x = o«=(-^)

Let ^= i, then log t* = ^-^iill^;
c e

.*. by Art. 92, the true value of log u when 2 = 00 is that of , or is zero.
I + az

Hence, the value of m is i at the same time.

»=('^i)'' when a; = 00.

Let « = -I then log u = —2-i \

the true value of which is a when z is zero.

Hence, the true value of m is ^ ; as also follows immediately from Art. 29.

iT''
when x = o. Am. i.

a.

when x = a. ,. c'^.

94. Compound Indeterminate Forms.—If an in-

determinate form be the product of two or more expressions,

each of which becomes indeterminate for the same value of sc,

its true value can be determined by considering the limiting

value of each of the expressions separately ; also when the

value of any indeterminate form is known, that of any power
of it can be determined. These are evident principles : at

the same time the student will find them of importance in the

evaluation of indeterminate functions of complex form. Wft
will illustrate their use by a few elementary applications.

Examples.
I. Find the value of

a;"»(sina;)tap»( ^7
^

) ,whena;=-.
^ ' \2 &m2xl 2

(7r\ "
-
J

, and that of (sin x) ^^^ is unity : see p. 105.
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Ajrain, —

:

becomes —

:

on substituting — « for x : henco its trne
° ' a sin 2x 3 Bin 2s ° %

alue is - when « = o.
a

Accordingly, the true value of the proposed expression when a; = - is ——

.

a. — when a; = 00.

This fraction can be written in the form / 5* \ • The true value of -t-, by the— 1 . The true value of —, by

.•7 ^-

method of Art 93, is that of —7 ; but the value of the latter fraction is zero

when j; = 00 ; hence the true value of the proposed fraction is also zero at the

same time.

3. « = a?" (log a:)«, when a; = o, and m and n are positive.

Here •»=(«« log «)•»,

-^— is of the form~ when a; = o

:

» CO '

I 5

its true value is that of ^
> or .

X »
m

Hence, the true value of the given expression is zero.

This form is immediately reducible to the preceding, by assuming «'» = ery.

u =— when z = (

Here i^r-
but \{ b > I, and n > m, 5***""* = oo when x = oe. Consequently the value of tfift

of the form o" , or is zero in this case.

Again, if m > w,
^*""' = o when x = oo, and the true value of m is oe.
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5. « =—- when a; = o.

Let a; = -, and this fraction is immediately reducible to the form discussed in
z

the previous Example.

. (i -cosar^llogCi +a;)}'« , .1
6. i * ^-^ , when a? = o. ^w#. —

.

X
- «

^
, when

X

From Art. 29, this is of the form - ; to find its true yalue, proceed by the

method of Art. 90, and it becomes

i (a; - (i + x) log (i + x)

('+'^'r .M.+4
i

Again, substituting for (i + a;)* its limiting value «, we get

fa;-(i-f g)log(i + a;) )

*< x^i^x) Y

the true value of which is readily found to be— when a;= o. Compare Ex. 29,

p. 94.

I I Cfl sin a; - sinaa;)"
-

\
—

:
[ , when x = o,

p I (x(cosa:- cosaar);

The true value of —:

, when a; = o, is log m

;

a sin a; - sin aa? ,

and that of -. :, when x-o.
x{cosx-eoaax)

has been found in Example 6, Art 89, to be-; hence the true value of the given

expression when x =• o, is [ - j
log m.
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Examples.

cos are - cos ng
a; = n. «

.

5. ^.. »

7- -7:

10.
2ri tan «

(^-1)5*

log sin «'

12. ^-(^.

13.
X^ + 2C0S«-•2

X*
*

f X + sin 2ar -- 6 sin•)•

14.

f 4 + cos a; - 5 cosr

Ha-I.

a?+co8x-i 2

• «o.

«sO*

'-©

6.
'•-'"-". .-O.

I - sin « + cos

«

_« = -. I.

8.
t°° ».-""

, « = o. I.

Bin^a; *

JT = O. I.

C = -. a log 0.
2

* = o.

(?)'
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a/ 2 + cos 23;- sin a; , t ^ Vio
15. -. , when « = -. Ans. .

a; sm 2a; + a? cos x 2 3x

, x<* sva.na — n** sm xa
i6. , x = n.

tan na - tan xa

w«~i (m cos na - sin «a) co&^na.

x^ tan «a; — M tan x
17. . -.

: , z = o. —:.
I - cos wa; n sia x - sin «« w^

(2 sin a; — sin 2a;)2 8
18. -, r^-, a; = o. ,

(secx - cos 2a;) 3 125

«=I.

(a; - y) WJx) ^ <
fi^(y)} - 20(a;) + 20(y) <^'"(y)

(a;-y)3 '
*-y- -6~'

a;log(i + a;)

I - cos a;
*

« = o.

1
22. a; . c^, « = o.

e* -€*
23. ,—; r, a; = o. 2.
* log (I + z)*

irx — I tr
«,

**

log (tan 2a;)

. ** + log(i -a;) - r «

26. — - —

«

— -

tana; - x * 2

,
tan-i V ^ ^ cos A <

2Wt
, */t -m2 I + M

27. ; r—^=^ tan-^ V ^ ^ cos 4) cos <pi m = 1.

cos 3^

3

log(i + a; + a;2)+log(i-a; + a:2)

25.
f

W — O. I*

sec a; — cos a;

(ai* + fla* + . • • «n*\ -
-i i-1 -y, x = o» aia2.,.an.
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/lop: x\x

{l + xy-e+-

sin X - log (g* cos x)

32. -5 ,

33. ^2(l + iy.«;»l0g(n-^),

I - T + log*
34- /

i»

when«BM. ^n«. i.

« =s o.

iitf

*4*

35-

36.

37.

1 - « + log **

X* — X

I - a; + log jj*

cos J? - log (1 + a?) + sin a; - I

» + sin a; - I

^**
log (I + a:) »

39
e* — e-* — 2X

tan a: - a; *

<f /ax' + ^a? 4- <;\

a - X — ai

a — Y 20* — «*

42.
tan (g + a;) - tan (g - a?)

tan-n<» + a?) - tan*^ (a - x)*

«* — 3a: + 2

*^*
a* - 6x2 + 8x - 3*

«=I.

« =

a: = 00,

aj = o.

«= I.

a; = a. - i.
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44. (sina:)"^*, when a; = o. Ans, 1,

45. (seca;)'»8ec*^ z = o. r.

tan« «
46. (sin a;)

, x- -,
2

47. Find the value of

{x - y) «>» + (y - a)a;" + {a- x)p*^ ^ n.n- i ^„-2^

(« - y) (y -«)(»- ^) *
" 1-2

when x = j/ = a.

Suhstitute a+ hioT x, and a + k for y, and after some easy transformations we
get the answer, on making h = o, and k = o.

7
X = o. Arts. ^,

26

« = o. —

•

5»

4?.
X + tan a; -tan 2a;

2a; + tan a; - tan 3a;'

a; + sin a: - sin 2a?

49.
2a; + tana;- tan 3a;'

50-
V a; - V a +v a; - a

^/x' - a-

2 . «

a; sma; - lanaf

^i'

*a=a.

0eO.

I
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CHAPTEE Y.

PARTIAL DIFFERENTIAL COEFFICIENTS AND DIFFERENTIATION

OF FUNCTIONS OF TWO OR MORE VARIABLES.

95. Partial DlfTerentlatlon.—In the preceding chap-

ters we have regarded the functions under consideration as

depending on one variable solely ; thus, such expressions as

e^, sin bx, af*, &o.,

have been treated as functions of x only ; the quantities

a, bf niy . , . being regarded as constants. "We may, however,

conceive these quantities as also capable of change, and as

receiving small increments ; then, if we regard x as constant,

we can, by the methods already established, find the differen-

tial coefficients of these expressions with regard to the quan-

tities, «, b, m, &c., considered as variable.

In this point of view, e^ is regarded as a function of a as

well as of X, and its differential coefficient with regard to a

d(e°^)
is represented by ^ \ or x e^V Art. 30 ; in the derivation

of which X is regarded as a constant.

In like manner, sin (ax + by) may be considered as a
function of the four quantities, 4, y, «, b, and we can find its

differential coefficient with respect to any one of them, the

others being regarded as constants. Let these derived functions

be denoted by
du du du du

di' Ty' la' Tb'

respectively, where u stands for the expression under con-

sideration, and we have

-T- = a cos (aa; + by), — = J cos (oc + by),

du , . . du / I \— = a? cos (oiT + by), -zT = ycoa{ax + by).
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These expressions are called tlie partial differential coef-

ficients of u with respect to x, y, a, by respectively.

More generally, if

denotes a function of three variables, a?, ^, z, its differential

coefficient, when (v alone is supposed to change, is called the

partial differential coefficient of the function with respect to x;

and similarly for the other variables y and z. If the function

be represented by w, its partial differential coefficients are

denoted by

du du du

di' ly' di'

and from the preceding it follows that the partial derived

functions of any expression are formed by the same rules as

the derived functions in the case of a single variable.

Examples.

I

.

w = (a«2 -f by* -»- cz2)»».

Here -7- = ^nax (ax* + *y ' + cz*)"*^,
dx

Y = 2nhy {az^ + hy"^ + ez^)'»^\

du— = 2ncz («»« + *y« + w2)»-i.
dz

du I du

di- ^y^-x^ dy y^y^.
—

»

u =
du

xv, — =
' dx

du
-y^^'^

dy-
= xv log a?.

w =-xi<p{xy). •

du

dx"
= 2Xip {xy) + «'y<^' (a;y).

| = «;3^'(^y).
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96. Diflnerentlatlon of a FunctloD of Two ITaii-

ables.—Lot u = <^ (;r, y), and suppose x and y to receive the

increments h, A*, respectively, and let Am denote the corre-

sponding increment of w, then

Am = ^ (2; + A, 2/ + /*) - fp {x, y)

=
(I)

{x + hy ij + k) -
(f>

(x, y + A-) + ^ (a?, y + A:) - (a?, y)

if>
{x + h,y + k) -tp (x, y + k) (a?, y + A-) - (a?, y)

,

=
I

/^ +
I

1^'

If now h and A: be supposed to become infinitely small,

by Art. 6 we have

(a? + A, y + A*) - </) (a*, /y
-^ ^) _ (/ . (ar, y + X;)

^^ (a-, y + A)~0(a-, y) ^ rf . (a?, y)
^

Aj (/y

In the limit, when k is infinitely smaU, ^ (x^ y -^ k)

becomes (ar, y), and

ax ax

hence we get. neglecting infinildy small quantit*^^ of the second

order,

d^ du
du = — h^^- ki

d2 dy

where h and k are infinitely small.

If dx, dy, be substituted for h and A*, the preceding
becomes

J du , du . . .

du = -r dx + -r dy, (i)
dx dy '

In this equation du is called the total differential of u,

where both x and y are supposed to vary.

The student should carefully observe the different mean-
ings given to the infinitely small quantity du in this equation.

Thus, in the expression — dx, du stands for the infinitely
ax

I 2
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small change in u arising from the increment dxmcc,y being

regarded as constant. Similarly, in — dy, du stands for the

infinitely small change arising from the increment dymy^x
being regarded as constant. If these partial increments be
represented by dxU, dyU, the preceding result may be written

in the form
du = dxU + dyU,

That is, the total increment in a function of two variables is

found by adding its partial increments, arising from the

differentials of each of the variables taken separately.

EXAMPLES.

I. Let af = rcosO, in which r and 6 are considered variables, to find the

total differential of x.

TT dx dx .Here — = cos 0, -— = - r sin ft.

dr dd

Hence dx = cos ir - r sin 6 dd.

2.

Here
du 2x du 2V

^ ~ ^' di^'>*

du = —dx + -^dy.

= <P\^- Let ^ = «, then t*= ^(«),

du du

dx dz dx y
'

du _ du dz _ \y/
di/

" dz dy~ y^
*

....„ = ,-(;) ?^^^.
Again, multiplying the former of the two preceding equations by x, and the
latter by y^ and adding, we get

du du

dx " dy
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97. DiflTerentlation of a Fonctlon of Three or
more I'ariables.—Suppose

^'=<P (^y y, «),

and let h, k, I represent infinitely small increments in ar, y, s,

respectively; then

Aw = (ic + A, y + A;, a + /) - ^ {Xy y, a)

^ (a? + A, y + A:, 2 + /) - (ar, y + A;, 2 + /)"
h

"
k

"^
/

^'

which becomes in the limit, ty the same argument as before,

when dx, dy, dz, are substituted for h, k, I,

, du , du , du , , .

du - -T- dx + -rr dp + -r dz. (2)
dx dy dz ^ '

Or, the infinitely small increment in w is the sum of its

infinitely small increments arising from the variation of each

variable considered separately.

A similar process of reasoning can be easily extended to

a function of any number of variables ; hence, in general, if

tt be a fimction of n variables, Xi, a^a, a^», . . . Xn,

du du dv
du = -T-dxi + -j-dx2 + ,,. + -j-' dx^ (3)

dxx dx2 dxn

98. If

where t?, «?, are both functions of x ; then, from Art. 96, it is

easily seen that

du _ df{v, w) dv df{t, w) dw

dx dv dx dw dx'

This result is usually written in the form

du du dv du dw

dx dv dx dw dx'

In general, if

u = <p{!/ijt/2y . . .yn),

(4)
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where yi, ^2, . . . Vny are eacli functions of x, we have

du du difi du dy^ du dt/n i

dx dyx dx dy^ dx '
' ' dyn dx

'

Also, if yi, y2, &o., yn, be at the same time functions of

another variable z, we have

du _ du dyx du dy^ ^ du dyn

dz dyx dz dy^ dz ' dyn dz
'

and so on.

^C^MPLES.

I. Let ii = ^(x, r),

where X = ax \- byy T = a'x + Vy ;

4,V__ du du dX du dY
tnen

dx ~ dXdx^ dY dx
*

du du dX du dY
dy ~ dXdy^ dY dy

'

bat
dX dX . dY , dY
^ = ^' ;^ = ** Tx"^""' "^

Hence
du du ,du

Tx^'^dX-^'^dY'

du du du

Ty'^^dX^^dY-

h\

2. More generally, let

u = <p{X,Y,Z),

where X = ax + by + cz,

Y = a'x + b'y + c'g,

Z = a"x + b"y + c"2.

"When these substitutions are made, u becomes a function of (?, y, 2, and we
have

du du ,du ,,du

du du du du

«;
= *51+*Sr+* 51'

du du , du „ du

Tz " ^dX'^'^df'^^ dZ'
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q8*. Dlflnerentlatlon of a Function of DlfTe-

rences.—If u be a function of the differences of the vari-

ables, a, |3, 7 : to prove that

du du du

da flf/3 dy

Let a-j3 = ir, /3-7 = y, 7-a = 2; then, « is a function

of a-, y, s ; and, accordingly, we may write

Hence -7-

w = ^ (ar, y, z).

du da dx du dy du dz

da dxda dy da dzda

du
" dx~

du
'

dz

du du uu du du du

l^'d^'lJ Ji~1z~ dy'
.

du du du— -^ 1 = 0.
da dj3 dy

Similarly,

This result admits of obvious extension to a function of

the differences of any number of variables.

I. If

2. If

</A dA dA

Examples.

I, I, I, I,

A = 7»

7», 8%

«^ Q\ 7^ 5^

dA dA dA </A
= 0,

I, I, I, I,

A = «, /3, 7.

7', 8S

aS )8S 7S 5^

I, I, I, I,

dA a, i8, 7.

7^

5,

8',

a\ fi\ r*, s\

,
prove that

prove that
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99. Definition of an Implicit Function.—Suppose
that y, instead of being given explicitly as a function of x, is

determined by an equation of the form

/(^, y) = o,

then y is said to be an implicit function of x ; for its value, or

values, are given implicitly when that of x is known.
100. Difi*erentiation of an Implicit Function.—

Let h denote the increment of y corresponding to the incre-

ment hmx, and denote /(^, y) by u.

Then, since the equation f{x, y) = o is supposed to hold

for all values of x and the corresponding values of y^ we
must have

f{x + hyy + k) = o.

Hence du = o; and accordingly, by Art. 96, we have,

when h and k are infinitely small.

du , du .— h +^r- k = :

dx dy
du

k dy dx_

h dx du
hence in the limit h^ Y ^'"dH' ^^^

dy

This result enables us to dete^^ziine the differential

coefficient of y with respect to x whenever the form of the

equation /(a;, 2/) = o is given.

In the case of implicit functions we may regard x as

being a function of y, or 3/ a function of Xy whichever we
please—in the former case y is treated as the independent

variable, and, in the latter, x : when'y is taken as the inde-

pendent variable, we have

dx dy I
m— — — "" = "•
dy du dy

dx dx

This is the extension of the result given in Art. 20, and
might have been established in a similar manner.
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1

Examples.

dy
I. II •» + y>-3axy = <j, tofind ^.

Hero ^ = 3(«"-«y). ^ « 3(y*-«»);

840 Art. 38.

dx ~ ax-y^'

2. If ^+?!r= i,tofind^.

5« ~
a"» * dy~ ~W * " rfj? \y/ \a/

loi. If M = ^ (a?, ^), where x and y are connected by the

equation f{x, y) = o, to find the total differential of u with
respect to a;

; y being regarded as a function of x.

Here, by Art. 98, we get

du d<p d(j) dy

dx dx dy dx'

Also

df dfdy— + = o»
dx dydx

Hence, eliminating -^, we get

d^^ dfd^
du dx dy dx dy /«\

s.

—

'-^— "'



122 Partial Differentiation.

This result can also be written in tlie following deter-

minant form

:

du

dx

dcj)

d^'

d(j)

'dy

dx'

df

dy

df_

dy

More generally, let w == ^ (x, y, s), where x, y, s, are con-

nected by two equations,

fx{x, y^ z) = o, f,{x, y,z)=o;

then, as in the preceding case, we have

and also

du _ dcj) dip dy d(p dz

dx dx dy dx dz dx'

dx dy dx dz dx

dx

^dy^ df^dz_^

dy dx dz dx
= 0.

ince, we get

d(p d<p d(p

'd? ^' ^
df, df, df

dx' dy' dz

du

dfz df^ dfi

dx' dy' dz

d^~^ df df

dy' dz

df df

dy' dz

is result easily admit 3 of general izat]Lon

(8)
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102. Eiiler*8 Theorem of Homogeneoiis Fonc-
tlons.—If

where

j9 4- y = /)' + ^' =y 4- 7" = &o. « w,

to prove that

du du

Here ^ 3" = -^P^ V^ + ^P' ^^'
V^' + <^o- 5

y^ = Aqjfyi + Bis^ \/ + &c.

;

= n-4ajP ^ + w^^^ + &c. = ww.

Hence, if w be any homogeneous expression of the «**

degree in x and y, not involving fractions, we have

du du

dx dy

Again, suppose w to be a homogeneous function of a

fractional form, represented by — ; where ^1, ^2, are homo-

geneous expressions of the n*^ and m^^ degrees, respectively,

in X and y ; then, from the equation

03

we have

and

<f01 C?02

dx {ip^Y "'

du _^ dy _
^ c?y

^ (7a)

~"'



124 Partial Differentiation,

accordingly we get

du du ^ \ dx ^ dy I ^ \ dx ^ dy
""Tx^^dy" ((p,y

but, by the preceding,

d<bi d(bi d<i>2 d(hz

, du du n(f)i 6)2 — md)i 02
hence x— + y—= /^ \2dx dy (^)*

= (w - w) — = {n -m)u;

which proves th© theorem for homogeneous expressions of a

fractional form.

This result admits of being established in a more general

manner, as follows

:

It is easily seen that a homogeneous expression of the n^^

degree in x and y, since the sum of the indices of x and of y
in each term is n, is capable of being represented in the

general form of

^KD
Accordingly, let . = ..^g) = .«

where t? = - .

Then

and

du
,

„dv

du ^ dv
^

dy~ dy'

multiply the former equation by a;, and the latter by y, and
add; then

du du ^ ^fdv dv\

dx ^ dy \ dx "^ dyy
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but (by Ex. 3, Art. 96),

dv dv

dx dy

du du
henoe a;~ + y— = fwj"i; = ww,

which proves the theorem in general.

In the case of three variables, x, y, a,

suppose u = AxP y^ s**,

then we have

x-r- = ApxP y'i z^, *'-j- =Aqx^y^%^y %-r- =Ar3^ y^z^
\

ax " dy az

du du du ., N „ „ . / N
.'. x— + y— + z— = A(p + q + r) aiP y'^ z'^ = (p + q + r) u

;

and the same method of proof can be extended to any homo-
geneous function of three or more variables.

Hence, if w be a homogeneous function of the »'* degree
in Xf y, 2, we have

du du du , .

x-r + y-r + z-r = f^^' (10)
dx dy dz ^ '

It may be observed thai the preceding result holds also

if n be a. fractional or negative number, as can be easily seen.

This result can also be proved in general, by the same
method as in the case of two variables, from the considera-

tion that a homogeneous function of the w'* degree in ar, y, 2

admits of being written in the general form

or in the form

u = af^(fi{vy w), where t? = -, and w = -,
X X

Proceeding, as in the former case, the student can show,
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without difficulty, that we shall have

du du du

ax ay dz

Another proof will be found in a subsequent chapter, along

with the extension of the theorem to differentiations of a
nigher order.

Examples.

Verify Eider's Theorem in the following cases by direct differentiation :

—

sc^ -\- y^ du du Ku

{x + yp dz dy 2

se^ + ax^y + hy^ du du

a'x^ + hxp' dx dy

a;2 _ 4^2 ^M du
1-1 —. .- _ — -I- */ —

dy

du

3. W = sm-i -:; r, „ - 1" + y J-
= O.

«- + J/' t^a; dy

103. Theorem.—If 27=^ Wo + Wi + Wj . . . + w»,

where Wo is a constant, snd Wi, Wj, . . . «««, are homogeneous
functions of a;, j^, z, &c., of the isr, 2nd, . . . w*'* degrees,

respectively, then

dU dU dU , .

dx dy dz

For, by Euler's Theorem, we h-i^ve

^Wr o^Wr e??^r o

^-T-^y—r +2-7- +&c. = rwr,
(/a; ^y c?s

since Wr is homogeneous of the r^^ degree in the variables.

Cor. If CT = o, then

dU dU dU ,
. . ) / \

dx dy dz

This follows on subtracting

nuo + wwi + , . . + nitn = O

from the preceding result.
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104. Remarks on Kuler's Theorem.—In the appli-

cation of Euler*8 Theorem the student should be careful to

see that the functions to which it is applied are realhj

homogeneous expressions. For instance, at first sight the

expression sin~* ( -7

—

—,
j
might appear to be a homog(

function in x and y ; but if the function be expanded, it is

easily seen that the terms thus obtained are of different

degrees, and, consequently, Euler's Theorem cannot be

directly applied to it. However, if the equation be written

in the form -r—^ = sin w, we have, by Euler's formula,
«4 + yi "^

eneous

or

dsm u«—1— +
dx

( du
OOSW X-j-

\ dx

du du ^

dx "^ dy

d Bin u
^ dy

du\

j,nu I

2 2^

sin u

y_

2
'

sin u

2
'

x +

/(ari + y^Y — (X + .V)'

hence

When, however, the degrees in th^ numerator and the

denominator are the same, the function is of the degree zero,

and in all such cases wo bi;?»

du t^ _
dx dy

For example, sin"^ f —.—— \ tan""*—=-, ^, &o., may be

treated as homogeneous expressions, whose degree of homo-
geneity is zero. The same remark applies to all expressions

which are reducible to the form ^ ( - )
; as already shown in

Ex. 3, Art. 96.

105. If a? = r 008 0, y = r sin ^,

to prove that xdy - ydx = r^d^, (13)
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In Ex. I, Art. 96, we found

dx = cos Odr - r sin Odd ;

similarly di/ = sin Odr -i- r cos OdO.

Hence xdy = r cob sin Odr + r^ cos^ OdO,

ydx = r cos sin Odr - r^ s\v^ OdO ;

.*. xdy - ydx = r^ dO,

106. If ic and y have the same values as in the last, to

prove that

{dxY + {dyY = {dry + r"" {dOy. (14)

Square and ^d the expressions for dx, dy, found above,

and the required result foUows immediately.

The two preceding formulae are of importance in the

theory of plane curves, and admit of being easily estabhshed

from geometrical considerations.

107. If u= aa^ ¥ hy"^ + cs* + 2fyz + 2gzx + zhxy,

to find the condition among the constants that the same values of
X, y, z should satisfy the three equations

du du du

d-z'""'

Here — = 2ax + zhy + zgz ^ 0,

— = 2hx \ 2hy ^- 2f% = 0,

du
-J-

= 2gx + 2fy + 2CZ = 0.
az

Hence, eliminating x, y, z between these three equations^

the required condition is

ahc - af - bg^ - ch"- + 2fgh = 0;

or, in the determinant form.

a h g

h h f = 0.

9 f c
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The preceding determinant is called the dhcriminaut of the
quadratic expression, and is an invariant of the function ; it

also expresses the condition that the conic represented by
the equation u = o should break up into two right lines.

(Salmon*s Conic Sections^ Art. 76.)

The foregoing result can be verified easily from the latter

point of view ; for, suppose the quadratic expression, w, to be
the product of two linear factors, X and Y ;

or w = -XT,

where X = & + >wy + ns, Y = I'x + m'y + n'z
;

then ff = j^,r^.rx+/r,
ax ax ax

dy dy dy

du -dY ^dX ,- ^
-T- ^X—r +Y -r = nX + wF.
dz dz dz

Here the expressions at the right-hand side become zero for

the values of x, y, s, which satisfy the equations X = o, 1^= o,

or Ix + my + nz = o, l^x + m'y + n'z = o.

Hence in this case the equations

du du du— = 0, — = 0, — =
dx dy dz

are also satisfied simultaneously by the same values.

We shall next proceed to illustrate the principles of

partial differentiation by applying them to a few elementary

questions in plane and spherical triangles. In such cases we
may regard any three* of the parts, a, 6, c. A, JB, C, as being

* The case of the three angles of a phrne triangle is excepted, as they are

equivalent to only two independent data.
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independent variables, and each of the others as a function of

the three so chosen.

108. Equation connecting the Variations of the
three l§ides and one Angle.—If two sides, a, h, and the

contained angle, 0, in a plane triangle, receive indefinitely

small increments, to find the corresponding increment in the
third side c, we have

c^ = a^ + ¥ - 2ah cos (7;

.*. cdc = {a -h cos C) da + (h - a cos C) dh + ah sin CdC*,

but fl = J cos (7 + c cos B, h = a cos C + c gob A,

Hence, dividing by c, and substituting c sin -B for b sin C,

we get

dc = cos B da + cos A db + a Bin. B dC. (15)

Otherwise thus, geometrically.

By equation (2), Art. 97, we have

, dc , do ,, dc ,^
dc = -r da + -J db + -rpi dC.

da db dC

dc
Now, in the determination of — we must regard b and C as

constants ; accordingly, let us sup-

pose the side CB, or a, to receive a

small increment, BB or A^, as in

the figure. Join AB\ and draw B^D
perpendicular to AB, produced if

necessary; then, by Art. 37, AB^ D ^

= AD when BB^ is infinitely small, _,'

neglecting infinitely small quanti-

ties of the second order.

Hence

Ac = AB' -AB = AD -AB^ BD;

dc ,. ., - Ac BD _ ^
.-. -— = limit of — = TTiv = ^^^ B.

da Aa BE

Fig. 4.
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Similarly, -^ = cos -4 ; which results agree with those arrived
ao

at before by differentiatioii.

Again, to find -^. Suppose the angle C to receive a

small increment AC, represented by
BOB in the accompanying figure;

take CB' = CB, join AB, and draw
-Bi) perpendicular to AB,

Then

^c^AB-AB^ BD (in the limit)

= BB cosABB =BB sin ^^C7(q.p.). Fig. 5.

Also, in the limit, BB' - BC sin BOB ^aAC.

Hence -j^ = limiting value of -—^ = a sm B;
dU " AG

the same result as that arrived at by differentiation.

In the investigation in Fig, 5 it has been assumed that

AB - AD is infinitely small in comparison with BB ; or that

the fraction ^-yr— vanishes in the limit. For the proofBD
of this the student is referred to Art. 37.

When the base of a plane triangle is calculated from the

observed lengths of its sides and the magnitude of its vertical

angle, the result in (15) shows how the error in the computed
value of the base can be approximately found in terms of the

small errors in observation of the sides and of the contained

angle.

100. To find ' . when a and h are considered
aA

Constant.—In the preceding figure, BAB represents the

change in the angle A arising from the change AC in C;
moreover, as the angle A is diminished in this case, we must
denote BAB by - A-4, and we have

p^^ ABAA _ ABAA ^ cAA
sin ABB cos B cosJ5*

K 2
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Also, BB' = aAC;

dA AA ^ ^ a COS B ^ '

This result admits of another easy proof by differentiation.

For « sin J5 = 5 sin ^ ;

hence, when a and b are constants, we have

a ooB B dB - b cos A dA ;

also, since A + B + C - Wy we have

dA + dB + dC= o.

Substitute for dB in the former its value deduced from the

latter equation, and we get

{a cosB + b cos A) dA = - a 00s B dC;

or c dA = - a cos B dCy as before.

no. Equation connecting the Variations of two
ISides and tlie opposite Angles.—In general, if we take

the logarithmic differential of the equation

a sin -B = 5 sin -4,

regarding a, 6, Ay By as variables, we get

da dB _^db dA - .

a tan B b tan A' ^ '

III. lianden's Transformation.—The result in equa-

tion (16) admits of being transformed into

dA _ dC
^

aooaB c
'

but

c = v^fl^ + j2 _ 2ab cos Cy and a cos ^ = \^a^ - b'^ sin ^-4;

hence we get

dA dO

v/fl* - b^ sin ^A V ci^ + b^ - zab cos 0*
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If C be denoted by 180° - 20i, the angle at A by 0, and

- by ky the preceding equation becomea
a

dif^ 2d<fn . 2d(f>i

2 f?01

(18)
(i + k) a/i - ki' sin' 01

'

where fc = ;.
1 +k

Also, the equation a sinB = b smA becomes

sin (201 - 0) B ^ 8in0.

The result just established furnishes a proof of Landen's*
transformation in Elliptic Functions.

We shall next investigate some analogous formulae in

Spherical Trigonometry.

112. Relation connecting the Tariations of Three
Sides and One Angle.—Differentiating the well-known
relation

COB c « cos fl cos 5 + sin a sin J cos C,

regarding a and b as constants, we get

dc sin fl sin h sin C
dC sin c

= sin a sin ^.

dc
Again, the value of — , when h and C are constants, can

da

be easily detennined geometrically as follows :

—

• This transformation is often attributed to Lagrange ; it had, however, been
previouslj arrived at by Landen. (See Philosophical Tramactions. 1771 and
>775-)
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In the spherical triangle ABC, making a construction

similar to that of Fig. 4, Art. 108, we have
c

BF=^a\ .-. —= limit of 7- = -^^
da ^ Aa BB'

(in the limit) = cos B.

Similarly, when a and C are con'

dc
stants, —, = cos A,

ao

Hence, finally, ^^S* ^•

dc = GO^Bda + cosAdh + sma ^mB dC. (19)

This result can also be obtained by a process of diffe-

rentiation. This method is left as an exercise for the

student.

As, in the corresponding case of plane triangles, we
have assumed that AB = AD in the limit; i.e., that

-7^-— is infinitely small in comparison with AD in the
JjD

limit ; this assumption may be stated otherwise, thus :

—

If the angle -4 of a right-angled spherical triangle be
c - b

very small, then the ratio —— becomes very small at the

same time, where c and h have their usual significations.

This result is easily established, for by Napier's rules we
have

tan h sin ft cos c
00s ^ = 7 =

J—.—

;

tan c cos sm c

I - cos -4 sin c cos 5 - cos c sin 5 _ sin {c -h)
^

I + cos -4 sin c cos J + cos c sin h sin (c + J)
'

or

• / r\ i. 2-^ • / i\ sin(c-5) . . i\L ^
sin (c - 5) = tan^ — sm (c + J) ; .*. ^ / = sm {c + h) tan—.

tan —
2

But the right-hand side of this equation becomes very small

along with A, and consequently c - h becomes at the same

time very small in comparison with that angle.
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The formula (19) can also be written in the form

,^ dc da dh , .

dC =» :—ji
- 7 5 - . . . :;. (20)

sin a sm B sin a tan B sin b tanA ^ '

The corresponding formulae for the differentials of A and B
are obtained by an interchange of letters.

Again, from any equation in Spherical Trigonometry
another can be derived by aid of the polar triangle.

Thus, by this transformation, formula (19) becomes

dC = - cos b dA - cos adB + sinA sin b dc, (21)

These, and the analogous formulae, are of importance in

Astronomy in determining the errors in a computed angular

flistance arising from small errors in observation. They also

uable us to determine the most favourable positions for

making certain observations; viz., those in which small errors

in observation produce the least error in the required result.

113. Remarks on Partial DifTerentials.—The be-

ginner must be careful to attach their proper significations to

the expressions 3-, -j^, &c., in each case. Thus when a and
da aU

dc
are constants, we have -rpz= sma smB; but when A and a

aU

are constants, we have -77= = -; -p, ; these are quite different
dC tanC ^

quantities represented by the same expression —^.

The reason is, that in the former case we investigate the

ultimate ratio of the simultaneous increments of a side and
its opposite angle, when the other two sides are considered as

constant ; while in the latter we investigate the similar ratio

when one side and its opposite angle are constant.

Similar remarks apply in all cases of partial differentia-

tion.

When our formulae are applied to the case of small errors

in the sides and angles of a triangle, it is usual to designate
these errors by Aa, Ab, Ac, AA, AB, AC; and when these

expressions are substituted for da, db, &c., in our formulae,

they give approximate results.
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For instance (19) becomes in this case

Ac = Afif cos J5 + AJ cos -4 + AC7 sin flf sin 5 ; (22)

and similarly in other cases.

It is easily seen that the error arising in the application of

these formulae to such cases is a small quantity of the second

order ; that is, it involves the squares and products of the

small quantities A«, A5, Ac, &c. This will also appear more
fully from the results arrived at in a subsequent chapter.

114. Tbeorem.—If the base c, and the vertical angle C,

of a spherical triangle be constant, formula (19) becomes

da db
= 0.

cos A cosB

Now, writing ^ instead of a, \p instead of b, and k for

-:— , this equation becomes
sm c

( , , BinA smB\
smce k =» -.— = —.—r )

\ Bin a sm bj

d(l> d\p

a/i - k^ sin^^
"*"

-/i -k'sin'ip " ^* ^^^^

where and t// are connected by the following* relation :

—

cos c = cos cos ;// + sin sin ;// cos (7,

or cos c = cos cos \p + bitk}) sin \p ^\-W sin^ c,

115. In a Spherical Triangle, to prove that

da dh do

cos A cos B cos Q (24)

ifvhen —— is constant.
sm c

* This mode of establishing the connexion between Elliptic Functions by
aid of Spherical Trigonometry is due to Lagrange.
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Let ein (7 = A: sin c, and we get

,-, A; cose , %mA cose ,dC^ ?7«fc= -. -p,dc\
cos C Bin a cos C

substitute this value for c/C in (19), and it becomes

. „ ^ , cos c sin -4 sin -B ,

oc = cos -4 fl6 + cos -B otf + :pz dc ;
cos C

. „ _ , ,
cos c sm A sin B\ ,

or 008-4(fJ + oo8^c?fl =
( I 7; flfc

cos G^ J(-
cos -4 cos^ ,

7,
— dc ;

cosC

since sinA sin JB cos c = cos C + cos -4 cos B.

_^ da db dc
Hence 7 + =, + 7, = o.

cos A cos ^ cos C

Again, since cos -4 = \/i - sin'^ = \/i - k^ sin' a, &o.,

the preceding result may be written in the form

da db dc

yi-k'an'a "^ ^i-k'Bm'b "^ ^/i- A:' sin' a
"^ ^' ^^^^

where a, J, c, are connected by the equation

cos c = cos a cos J + sin a sin J >v/i -A;' sin'c.

X16. Theorem of liegendre.—We get from (24)

00s B cos Cda + cos A cos Cdb + cos^ cos Adc = o,

or (cos -4 - sin -B sin C cos a) eiflr + (cosB-sinAemC cos 6) db

+ (cos C - sin -4 sin -B cos c) cfc = o

;

.'. cos Ada + cos Bdb + cos CWc

= sin^ sin CV?(sin a) + emA sin Cd (sin 6) + sin^ sin 5c? (sin c)

= A:*{sinJ since? (sine) + sin a since? (sin 5) + sina sin ic? (sin c)

)

= k^d (sin a sin J sin c)

;
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or a/ I - ¥ sin^ ada+ ^/i - k^ sin^ hdh -^^ y^i -¥ sin* c dc

= k^d (sin a sin 5 sin c). (26)

This furnishes a proof of Legendre's formula for the compa-
rison of Elliptic Functions of the second species.

The most important application of these results has place

when one of the angles, C suppose, is obtuse ; in this case

cos C is negative, and formula (25) becomes

da dh

'

dc

v^i - k^ sin^a \/i - k^ sin* 6 ^i- k^m3?c

where the relation connecting a, b, c is

cos c = cos a cos J - sin a sin ft a/i - k^ sin*c.

In like manner, equation (26) becomes, in this case,

^i - ^ sin* ada + y^i - k"^ sin* b db

- -v/i - k^ sin* cdc ¥ k^d (sin a sin ft sin c).

117. If w = <^{x +at,y + pt)y where a?, y, a, /3, are in-
dependent of ty and of eacb other, to prove that

(27>
du du ^ du

di'-'^d-x'-'^ry'

Let af = x + at, y' = y + j5t;

then w = * (^, /),

and
d/ dif daf di/

dx
~^' dv~ '' dt

-'"'
dt

~ (3.

Also, since y' is independent of x, we have

du du dx' _du du _ du

dx dx^ dx dx'* dy dy^

__ du du dx' du dy' du ^ du
Hence 3r = T7-77+3-7-7r = «3- + p-7-.

dt dx dt dy dt dx dy
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In like manner, if x\ /, z\ Le substituted for a? + o^, y + /3^,

« + 7^, in the equation

« « ^ (ar + a^, y + fit, « + 7^),

it becomes " = ^(^',/,20;

also
du du dx du dt/ du dz

'^'d^'dx
'^
dy'dx

'^
dz'dx'

but
daf dj{ d%'

du du . du du du du
' di~ daf' ^"^dy' d^' dz

"
dz''

•

Again
du du dx' du d]f du dz\

dt
~

dx' dt'^ di/ dt ^
dz' dt

'

but
dx' d^ „ dz'

dt^""' dt'^^ dt^'^'

Hence
du du ^du du , ^,

This result can be easily extended to any number of variables.
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Examples.

r. If tt = sin-i ( - ) + sin-* f7 ) , prove that du = , +—,

If M = fl;y<^ f-j, „ *3Z + y3!- = *«•
du du

dz dy

3. Find the conilitions that u, a function of ;r, y, a, should he a fimctiom of
« + y + «.

. du du du

aa; % efe

4. H /(or + «y) = (?, find ^.

5. lif{u) = <p{v)f where w and r are each functions of x and y, prove that

du dv _ dv du

dx dy dx dy'

t>. Find the values of a; ^r- - y --, when
dx ^ dy

,
axi + by*

7. If t* «= sin or + sin Jy + tan"* f -
j , prove that

. , ^dy — yds
du = a COB ax dx + coBoy dy + —=—V-»

£ J ^« J ^" ^ '^^ 'f ^" - log a?

S. If « = logyx, find — and —

.

Ans. — = — , — = — r^.°'^' dx dy dx xlogy dy y(logy)'*

9. If = tan-^ -, prove that

(x^ + y') dd = ydx - xdy.

10. If M = y**, prove that

du - y*»-* {xzdy + y« log ydx + a;y log yi»).
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11. If • + '^a* - y* my$ • , prove that

^= ~y

la. In a spherical triangle, when a, b are constant, prove that

dA __
ion A J f[£ _ Bin C'

d£ ttmB^ 4B tinB cosA

13. In a plane triangle, if the angles and sides receive small variations,,

prove that

ct,B + b cos Ah.0 = o ; «, i heing constant,

cos CaJ + cos B^c = o ; «, .4 being constant,

tan AAb = bAC; a, B being constant.

14. The base <; of a spherical triangle is measured, and the two adjacent

base angles A, B are found by observation. Suppose that small errors dA, dB
are committed in the observations of J and B ; show that the corresponding^

error in the computed value of C is

- cos adB - cos bdA.

15. If the base e and the area of a spherical triangle be given, prove that

a b
sin* -dB + sin' -dA = o.

2 2

16. Given the base and the vertical angle of a spherical triangle, prove that

the variation of the perpendicular p is connected with the variations of the sides

by the relation

sin Cdp — sin i'da + sin «i*,

« and / being the segments into which the perpendicular divides the vertical

angle.

17. In a plane triangle, if the sides a, b be constant, prove that the variations

of its base angles are connected by the equation

dA dB

18. Prove the following relation between the small increments in two sides

and the opposite angles of a spherical triangle,

da dB _ dA db

tana tan^''tan-4 tan**

19. In a right-angled spherical triangle, prove that, if A be invariable

•in 2cdb - sin ibdc \ and if c be invariable, tan ada + tan bdb — o.
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20. If a "b« one of the equal sides of an isosceles spherical triangle, whose
vertical angle is very small, and represented by da, prove that the quantity by

which either base angle falls short of a right angle is - cos a dot.

21. In a spherical triangle, if one angle C be given, as well as the sum of

the oth^ angles, prove that

da db
-.— + -7—: = o.
sin a sin

22. If all the parts of a spherical triangle vary, then will

cos Ada + cos Bdh + cos Cde = A:<7(^ sin a sin 6 sin 0)

;

sin -4 sin 5 _ sin C
~

sin a sin 3
~

sin c
*

., da db dc . ^ ^ /l\
Also ___.+ ___- + _-_=tan^tan^ tan Ci^f

-J.cosA cos B cos C

These theorems can be transformed by aid of the polar triangle?

—

M^Cullagh,
Fellowship Examination, 1837.

These are more general than the theorems contained in Arts. 115 and 116,
and can be deduced by the same method without difficulty.

23. If « = ^(a;* - y2), prove that

dz dz

dx dy

24. If a =-/ f -j ,
prove that

dz dz

25. Find -J- and — when x, y, z are connected by two equations of the
dx ax

form

/(*.y,«)-o» ^(af,y,«)=»o.

df d<p dfd^
dy _ dx dz dz dx

dx" ^d^ _ d£^d^

dz dy dy dz

4f^_ d£d^
dz dy dx dx dp

** "^^ dfd<p d£^'
de dy dy dz
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36. Prore that any root of the following equation in y,

Mtiflfiea the differential equation

37. How can we ascertain whether an expression such as

admits of being reduced to the form

dx dy* dy dx

28. If /X+ mF+ nZ, rZ + m'r+ WZ, l"X -\-m"Y^ n"Z, be substituted

for X, y, «, in the quadratic expression of Art. 107 ; and if a', y, (/, <f, ^,/', be
the respective coefficients in the new expression, prove that

a' r /

f V d'

e d! e

a f e

o, whenever
\ f b d

e d e

29. If the transformation be orthogonal, i e. if «« + y* + z* = i" + F' + ^,
prove that the preceding determinants are equal to one another.

29. If tf be a function of {, ij, (, and { = y+, 7j = 8+-, f=a;+-,
2 ic y

show that

du du du du du ^du / du du du\

dx dy dz ^d^ dfi *dC \ ^^C "f ^tiJ
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CHAPTER YI.

SUCCESSIVE DIFFERENTIATION OF FUNCTIONS OF TWO OR MORE
VARIABLES.

,

n8. Successive Partial DiflTerentiation.—We have in

the preceding chapter considered the manner of determining
the partial differential coefficients of the first order in a func-
tion of any number of variables.

If w be a function of a?, y, z, &c., the expression

du du du o

Jx' dy' di'^""''

being also functions x, y, z, &c., admit of being differen-

tiated in the same manner as the original function ; and the
du

partial differential coefficient of — , when x alone varies, is
ttX

denoted by

d fdtf\ d^u

^ \di/ ^^~d^'

as in the case of a single variable

dx

dijb

Similarly, the partial differential coefficient of — , when y^

alone varies, is represented by

d fdu\ d^u

dy \dx/ dydx^

and, in general, denotes that the function u is first
ay ax

differentiated n times in succession, supposing x alone to

vary, and the resulting function afterwards differentiated m
times in succession, where y alone is supposed to vary ; and
similarly in all other cases.
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We now proceed to show that the values of these partial

derived functions are independent of the order in which the

variables are supposed to change.

119. If ti be a Fonction of a; and y, to prove that

d fdu\ d fdu\ d^u _ d^u . .

5y V^J
" di \d^/ ^^ d^ ~ dxdy'

^^'

where x and y are independent of each other.

fill

Let « = ^(a?, y), then — represents the limiting value of

^ (a; + A, y) - ^ (ar, y)

h

when h is infinitely small.

This expression being regarded as a function of y, let y

become y ^Icy x remaining constant ; then -ri-r) ^ ^^®

limiting value of

^(a? + A,y + A;) -0(a?,y + ^) -0(a; + h, y) +(p{x, y)

hk

when both h and k become infinitely small, or evanescent.

du
In like manner 3- is the limiting value of

dy

4^{x,y + k) -<^{x,y)

k

when k is infinitely small ; hence 7-
( t" )

^^ *^® limiting value

of

0(a;H-^, y + A;) -0(a;+A, y) -0(a?, y + A;)+ i^{x,y)

hk

when both h and k are infinitely small.

Since this function is the same as the preceding for all
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finite values of h and k, it will continue to be so in the limit;

hence we have

d fdu\ _ d fdu\

dx \dyj dy \dxj

d^u dH
In like manner

dx^dy dyda?^

for by the preceding
dxdy dydx

'

d
f
d'uX d

dx \dxdyj dx

d d \ du \ d d \ du

dx' dy \ dx \ dy' dx \ dx

d^u

dydx

similarly in all other cases. Hence, in general,

dP^^u _ dP*^u

dxPdy^ ~ dy^dxP'

Again, in the case of fimctions of three or more variables,

by similar reasoning it can be proved that

d^u _ d^u -

dzdxdy dxdydz^

Hence we infer that the order of differentiation is in all cases

indifferent, provided the variables are independent of each
other.

Examples fob Yeeification.

I. Ifw=0f-j, verify that

2. Ifu=taii-i(f),

3. If M as flin (a«» + J^),

di/dx dxdy

d^u d^u

dy^ dx dxdy*'

d*u dh*

dx*dy^ dy'^da?

120. Condition that T dx + Qdy shall be a total

Differential.—This implies that T dx -^^ Qdy should be the

exact differential of some function of x and y. Denoting this

function by w, then

du == P dx + Qdy,
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and, by (i), Art. 95, we must have

dPd^ dQ ^ d^u

dy dyd£ dx dxdy

Henoe the required condition is

^.^. (2)
dy dx ^^

\2\, If t4 be any Function of x and y, to proTe that

5(^<">S)-l(^<-)S> <3)

where x and y are independent variables.

Here each side, on differentiation, becomes

122. More generally, to proire that

d f dv\ d f dv\

where u and v are both functions of 2, and s is a function of

» and y,

T, d f dv\ dudv d'v
For -T- u— = -^— + w

\dx)

but

dy \ dx) dy dx dyd£

du ^ du dz dv dp dz

dy dz dy* dx dzdx'

d

dy

(dv\ du dv dz dz d*v
u— 1

= + u ;

dxj dz dz dx dy dydx

and T\^t] ^^ evidently the same value.

L 2
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123. Euler's Theorem of Homogeneous Func-
tions.—In Art. 102 it has been shown that

du du

where w is a homogeneous function of the w'* degree in
X andy.

Moreover, as -7- and -7- are homogeneous functions of the
dx dy °

degree n- i, we have, by the same theorem,

d fdu\ d fdu\ ^ du

dx \dxj dy \dx) ~ ^ ^ dx^

d [du\ d fdu\ . . du

multiplying the former of these equations by a?, and the

latter by y, we get, after addition.

^d^u
Q?— +

d;^

d^u ^d^u , .( du du\

= (»-i)/iw. (5)

This result can be readily extended to homogeneous
functions of any number of independent variables.

A more complete investigation of Euler's Theorems will

be found in Chapter VIII.
124. To find the Successive DiflTerential CoeflBl-

cients with respect to t^ of the Function

(^{x +at, y + j3^),

where x, y, a, j3, are independent of t, and of each other.

By Art. 1 1 7 we have in this case, where ^ stands for the

expression <l>{x + at, y + (5t),

^=„^+^^.
dt dx dy
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^ i (^\ + ft ^ (^\
de ^""dtKdx) ^dt\dy)

£ (^\ ft — [^\
"'dx\dtj'^^dy\dtj

This result can also be written in the fonn

in which ( « 3" + P -7- ) is supposed to be developed in the

usual manner, and -7^, &o., substituted for f—
J
0, &o.

Again, to find -r-^-.

dt

df " dt\dj^)~dt\^'^^^dy)'^

By induction from the preceding it can be readily shown
that

d^<p ( d ^dy
Tt^'^\^Tx^^d-y]'^'

This expression, when expanded by the Binomial Theorem,
gives the n^* differential coefficient of the function in terms of

itfi partial differential coefficients of the w'* order in x and y.
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Examples.

1. If « ss sin («'y), verify the equation -;—- = -r—;-.' ^ "^ dxdy dydx

2. If « = Bin (y + a*) + (y - oa?)*, prove that

d^u _ ^d^u

d^~^ d^'

3. In general, if u =/(y + ax) + <p{i/- ax)^ prove that

4. If w =5 y*, prove that

d^u d^u4-— = f^Wi +a;loffy) = ——

.

5. If « = J , find the values of
ax + by + cz

d'u d^u d^u

^' ^2» and ^.

6. If M = («» + y2)», prove that

7. If « = (if* + y*)*, prove that

rfa;* rfa;fify fl?y- 4

8. If r- A^ + sBy^x + iGyx^ + Ba^, prove that

d*vdr^__ d^dvdv fVdr^_
dx^ dy^ ^ dxdy dx dy

"^
dy« dx^ " ^"^

and show that the left-hand side of this equation vanishes when Tis a perfect

cube.

9- If « = / 2 , 2 , ovi »
prove that

rf2« c?»M rf2j^

I
J = 0.

dx^ dy* dz^

^^ -xy y'

Ay i^,

£, c. D
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CHAPTER Vn.

125. liagrange's Theorem.—Suppose that we are given

the equation

z = x + y<p{z), (i)

in which x and 1/ are independent variables, and it is required

to expand any function of s in ascending powers of 1/.

Let the function be denoted by F{z), or by u, and, by
Maclaurin's theorem, we have

1.2... n\dy** Jo

y fdu\ j^ /djA

i\dyJo i.2\dyyo

where *^o,
(
^7- ) , &c., represent the values of w, -7-, &c., when

zero is substituted for y after differentiation.

It is evident that Uq = F{a;),

To find the other terms, we get by differentiating (i) with

respect to x, and also with respect to y,

dz ,, sdz dz , . ,, .dz

or ^(i-y0'(2)) = i. ^{i-y0'(2)) =*W;

, dz , .dz
henoe - = ^(.)-.

Also, since w is a function of z, we have

du _ du dz du du dz

dx dz dx^ dy ~
dz dy*
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henoe we obtain

Again, denoting (p{z) by Z, we have by Art. 121, sinoe

Z is a function of u,

d ( „du\ d ( r^duX d^u ^ . .

Hence also — =— (Z^—

^

dy^ dxdy\ dx/

sinoe x and y are independent variables

;

dy««' -(^l)4(^S)=l(^l).»^w.

c&rc?^\ dx) \dxj \ dxj'
or

axay \ axj

9=(s)'(-i> "'

To prove that the law here indicated is general, suppose

then, since
c^y \ c?iry dx\ dy) dx\ dx/

"""» p-(i)"(-£) (•'
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This shows that if the proposed law hold for any integer

w, it holds for the integer w + i ; but it has been found to hold

for n = 2 and w = 3 ; accordingly it holds for all integral values

of w.

It remains to find the values of -r-, -7-1, &o. when we

make y = o. Since on this hypothesis Z or 0(z) becomes

<^[x\ and -T- becomes ^ or F\x)^ it is evident from (3),

(4), (5), (6), that the values of

du d'u d^u d^*^u

dy' d^' df'" df^'

become at the same time

Consequently formula (2) becomes

This expansion is called Lagrange's Theorem.
If it be merely required to expand 2, we get, on making

F(z) = 3,

z^x+^(f>{x) +-^4- (0WP + &O.
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126. Kiaplace's Tbeorem.—More generally, suppose
that we are given

s=/{^ + y0(2)), (9)

and that it is required to expand any function F{z) in ascend-

ing powers of y.

Let t = X + y(jt{z), then s =f{t), and we have

t-^ + y^m)]' (10)

Also F{%) = Flf{t)} ; and the question reduces to the

expansion of the function Flf{t)} in ascending powers of p
by aid of (10) ; accordingly, formula (7) becomes in this case

F{z) = F (/(<)) = F{/{x)) +
I .plfix)] P (/(«)) + &c.

This formula is called Laplace's Theorem, and is, as we
have seen, an immediate deduction from the Theorem of

Lagrange. These theorems evidently only hold when the

expansions are convergent series.
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Examples.

1. Expand <, being given the equation

fl a a + Jr*.

Here m^a^y^b^ <p{z) = i>,

and we get, from formula (8),

f «= a + *a> + 3ft»a» + lilfia' + &c.

Lagrange has shown that this expansion represents the least root of the pro-

posed cubic, and that a sinular principle holds in like cases.

2. Qiyea « = a + *«*, find the expansion of z.

1.2 •*
^^ ' 1.2.3

3. Oiyen s s « + y^*, find the expansion of z.

Am. t^x + yeS'-\- y»«»« + -^— 3«3« + —^^^— 4«e4« + &c
1.2 1.2.3

4. t a a -f sin z, expand (i) z, (2) sin z.

(l). -4fM. « = a + tfaina+ — (sin'a) + (— ) (sin'a) + &c.
X . 2da^ '1.2 .z\daj

(a), y, 8inss:sina + 0sinaoosa+ -r (sin'a cos a) + &c.
I . 3 oa

<P
•

5. If « = a + - (»' - i), prove that

« = a + - ^
i + -r- (

J
+ . .

.

I 2 \ . X da \ ^ I

I . 2 . . . « \rfa/ \ 2 /

6. Hence prove that

+ .-71777;. U) (^ +*«•
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OHAPTEE Vin.

EXTENSION OF TAYLOr's THEOREM TO FUNCTIONS OP TWO
OR MORE VARIABLES.

127. Expansion of<p{x + h,j/+k). Suppose w to be a func-

tion of two variables a? and y, represented by the equation
u = <ii{x,i/); then substituting x + hioT x, we get, by Taylor's

Theorem,

<l>{x + h,y) = 0(a?,y) + A— [^{x,y)]+—-^^ [^{x, p)] + &o.

Again, let 1/ become y + k, and we get

<l>{x + h,y+k) = <l>{x, y + k) + h— [0(a;, y + k)]

But

d k^ d^
ip{x,y^k) = j,{x,y) +k— l(p{x, y)] + j--^— l^(x, y)} + &c.

, du k^ d^u -,

«= u +k-y- + —-. + &0,
dy 1.2 dy^

Also

. d ., _.. ,du ,, e^w hk^ d^u ^

and

h' d" ^ . ,., h' dhc h'k d'u .
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Substituting these values in (i), we get

+ —- + hk -T-j- + -— + &c. (2)
1 .2 cur dxdy 1.2 dy^ ^ '

128. Tliis expansion can also be arrived at otherwise as

follows :—Substitute x + at and y + ^t for x andy, respectively,

in the expression ^ (ar, y), then the new function

^(x + atf y + /30,

in which x, y, a, /3, are constants with respect to t, may bo
regarded as a function of t, and represented by F{t) ; thus

ip{x + at,y + (3t) = F{t),

The latter function i^(^), when expanded by Maclaurin's

Theorem, becomes, by Art. 79,

Fit) = 2^(0) + i 2^'(o) + J^ ^'(o) + . . .

+ |^^(")(0O, (3)

where JP'(o) is the value of F[t) when ^ = o, i. e. -F(o) = (a;, y)
= u ; also i^(o), i^'(o), &c. are the values of

•
• Tt^ -dh

^'-

when ^ = o ; wher*.^^ stands for <^{x + at, y + (5t),

Moreover, by Art. 1 17, we have

d^ dtp . d<f>

• Since it is indiflFerent whether we first change x into x + /*, and afterwards
change y into y + k, or vice versd ; the expansion given ahove furnishes an in-

dependent proof of the results arrived at in Art. 1 19.
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but, when ^ = o, ^(a; + a^, y + ^t) becomes Uy or i^(o), and -^

becomes a -7- + /3 -7- at the same time.
ax ay

Henoe F{o)^J^^^%
^ ^ dx '^ dy

Also, by tbe same Article,

df dx'^^^^dxdy^^ df'

which, when ^ = o, reduces to

P'(0) = a'^ + aa/3^+/3^-, (4)

&0. &0. &0.

These equations may also be written in the symbolic
form

Again, f a—
J
w = a*"— , &c., since a, )3, are independent

of X and y : and hence the general term in the expansion of

F{£) can be at once written down by aid of the Binomial
Theorem.
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Finally, we have, on substituting h for at, and k for /3^

, ^ ,. .du.duh* (Pu ,. d^u
A(x+h,t/-¥k) '=u + h-j- + k— + -7-- + hkj—r-
^ ^ * ^ ' dx dy 1 ,2 dx" dxdy

+ T1 + --- +
I U:r + ^*x i>{x + ehyy + ek). (5)

129. Expansion of (a; + A, y + k, z + I).—A function

of three variables, x, y, z, admits of being treated in a similar

manner, and accordingly the expression

il»{x+at,y + (5t,z + yt),

when u is substituted for <p{x, y, s), becomes

f f d ^d d\' .

or

^(« + A,y + A,s + = « + (A| + A| + /^)»

T^(
.d . d .d\ .h— + k-r + l-r ]u + &c,
dx dy dzj

.du .du ^du h' d^u k^ d^u P d^u
= w + h— + k—+ I— + 3-L + -r-, + 3-r

02? dy dz 1 . 2 djf I ,2 dif i . 2 as*

_, d*u ji d^u T, d^u p .,.
+ M-7-7- + /A ^-r + A;/^—- + &0. (6)

dxdy dzdx dydz

The general term in this expansion, and also the re-

mainder after n terms, can be easily written down.
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These results admit of obvious generalization for any
number of variables.

Also, by making x, y, z each cypher in (6), we have

I . 2 \dx^jQ

where ( -r- ) » 1 -7-
1 » . • • denote the values which the functions

\dxJo \dyJo
du du ,

.

,
-7-, -7-, . . . assume on making a? = o, y = o, and s = o.
ax dy

This result may be regarded as the extension of

Maclaurin's Theorem.
1 30. Symbolic Expression for preceding Results.—

Since

hi.

~ \ dx dy] 1 . 2 \ dx dy]

+
\ki^^^^^'^>

equation (5) may be written in the shape

A d

C^ '^«^{x,y)=4>{x + h,y + k), (7)

This is analogous to the form given for Taylor's Theorem
in Art. 67, and may be deduced from it as follows :

—

"We have seen that the operation represented by e^^
when applied to any function is equivalent to changing x
into X + h throughout in the function.

d^

Accordingly, e^'^<p {x, y) = <p{x + h,y), since y is indepen-

dent of X.
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£
In like manner, the operation c***", when applied to any

function, changes y into y + k;

LI i.

.-. A . e^'^'tp (ar, y) - c*'"'^(a; + A, y) = ^(i; + A, y + A;),

d a

or 6*-»**-'0 (a:, y) = (a? + A, y + A;),

// //

assuming that the symbols k— and A— are combined ac-

cording to the same laws* as ordinary algebraic expressions.

In an analogous manner we obtain the symbolic formula

d 4 ,d
hir*k-r*l

/.x**7v*'«^0(ar, y, z) = tt>{x + h,y+k,z + I). (8)

131. If in the development (2), da? be substituted for A,

and dy for k, it becomes

it>{x + dx,y + dy)=(p + ^dx "^ -^dy

If the sum of all the terms of the degree n in dx and dy
be denoted by c?"0, the preceding result may be \vritten in

the form

, , , ,
dd) d'd) (P<h

d>(x + dx, y + dy) = <h + -^ + —- -«- — + . . .^ ^ I 1.2 1.2.3

+ -— + &o.

Since dx, dy, are infinitely small quantities of the first

tPu tPu
That this is the case appears immediately from the equations -—— = -—-

,

" ^ dxdy dydx

I,
oco.

dx^dt/ dyd^'
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order, each term in the preceding expansion is infinitely small
in comparison with the preceding one.

Hence, since d'^<p is infinitely small in comparison with

d<pi if infinitely small quantities of the second and higher

orders he neglected in comparison with those of the first, in

accordance with Art. 38, we get

(/^ =. ^(^ + dx,y-^ dy) - <^{xy y)=.-£dx^ ^ dy,

which agrees with the result in Art. 97.

132. £uler's Tbeorems of Homogeneous Func-
tions.—We now proceed to give another proof of Euler's

Theorems in addition to those contained in Arts. 102 and 123.

If we substitute gx iorh and gy for k in the expansion (5),

it becomes

, . f du du\
(l>{x + gx,y + gy)^u + glx-^ + y — )

g" f ,c?'w d?u J''u\ ^

^^T2\fd^^''''d^y^ydfr^'"

where n stands for ^(a;, y).

But ^{x + gx,y-k- gy) = ^((i + g)x, (i + g)y] ;

and, if [x, y) be a homogeneous function of the n^^ degree

in X and y, it is evident that the result of substituting (i + g)x

for X, and (i + ^)y for y in it, is equivalent to multiplying it

by (i + gY. Hence, we have for homogeneous functions,

<^[x + gx,y + gy) = (i + ^)" ^(a;, y) = {i + g^u,

/ N« I du du\
or (i+j,)'.„ = « + <,^^- +

y^J

where w is a homogeneous function of the n^^ degree in x

and y.
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Since the preceding equation holds for all values of g, if

we expand and equate like powers of g, we obtain

du du

&0. &0. &0.

The foregoing method of demonstration admits of being

easily extended to the case of a homogeneous function of three

or more variables.

Thus, substituting gx for h, gy for k, gz for I, in formula

(6) Art. 1 2 9, and proceeding as before, we get

du du du

'di^'Tg-^'d-z-'''*^

^d^u .dHi ,d^u d'u d*u

dx^ ^ dy^ dz^ dxdy dzdx

d'u , .

&o. &a &o.

These formulsB are due to Euler, and are of importance

in the general theory of curves and surfaces, as well as in

other applications of analysis.

The preceding method of proof is taken from Lagrange's

2Iecanique Analytique,

M 2
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CHAPTER IX.

MAXIMA AND MINIMA OF FUNCTIONS OF A SINGLE VARIABLE.

133. Definition of a Haximnm or a minimum.—If any
function increase continuously as the variable on which it de-

pends increases up to a certain value, and diminish for higher
values of the variable, then, in passingfrom its increasing to its

decreasing stage, the function attains what is called a maximum
value.

In like manner, if the function decrease as the variable

increases up to a certain value, and increase for higher values

of the variable, the function passes through a minimum stage.

Many cases of maxima and minima can be best determined
without the aid of the Differential Calculus ; we shall com-
mence with a few geometrical and algebraic examples of this

dass.

134. Geometrical Example.—To find the area of the

greatest triangle which can he inscribed in a given ellipse. Sup-
pose the ellipse projected orthogonally into a circle ; then any
triangle inscribed in the ellipse is projected into a triangle

inscribed in the circle, and the areas of the triangles are to

one another in the ratio of the area of the ellipse to that of

the circle (Salmon's Conies, Art. 368). Hence the triangle in

the ellipse is a maximum when that in the circle is a maxi-
mum ; but in the latter case the maximum triangle is evidently

equilateral, and it is easily seen that its area is to that of the

circle as v^27 to 47r. Hence the area of the greatest triaigle

inscribed in the ellipse is

where a, h are the semiaxes.

Moreover, the centre of the ellipse is evidently the point

of intersection of the bisectors of the sides of the triangle.
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Examples.

I. Prore that the area of the greatest ellipse inscribed in a giyen triangle is

"/= (area of the triangle).

1. Find the area of the least ellipse circumscribed to a given triangle.

3. Place a chord of a given length in an ellipse, so that its distance from the

centre sbuU be a maximum.
The lines joining its extremities to the centre must be conjugate diameters.

4. Show that the preceding construction is impossible when the length of

the given chord is > a \/ 2 or < i ^/t. ; vhere a and b are the semiaxes of the

ellipse. Prove in this case that if the distance of the chord from the centre be

a maximum or a minimum the chord is parallel to an axis of the curve.

5. A chord of an ellipse passes through a given point, find when the triangle

formed by joining its extremities to the centre is a maximum.

6. Prove that the area of the maximum polygon of n sides, inscribed in a

given ellipse, is represented by - a3 sin —

.

2 n

135. Algebraic Examples of JMEaxima andMinima.
—Many cases of maxima and minima can be solved by ordi-

nary algebra. We shall confine our attention to one simple

class of examples.

Let/(ir) represent the function whose maximum or mini-

mum values are required, and suppose u =f(x), and solve

for X ; then the values of u for which x changes from real to

imaginary, are the solutions of the problem. This method is,

in general, inapplicable when the equation in a; is beyond the

second degree. We shall illustrate the process by a few ex-

amples :

—

Examples.

I. To divide a number into two parts such that their product shall be a
maximum.

Let a denote the number, x one of the parts, then x (a — x) iBtoheA maxi-
mum, by hypothesis.

Here m = *(a - z), or x'^ - ax + u = o

;

solving for x we get

a Id'

accordingly, the maximum value of m is — , since greater values would make x

imaginary.
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2. To find the maximum and minimum values of the fraction ,

Here u = — , or «« + i = - ; .«. a: = — + ^^—^ '-

X^ + I U 2U~ 2M

In this case we infer that the mazimimi and minimum values of u are - and
2

; and the proposed fraction accordingly lies hetween the limits - and
2 2 2

for all real values of x.

These results can be also easily established, as follows. We have in all cases

{x + yf = {x- yY + 4xy.

Accordingly, if a? + y.be given, xy is greatest when a; - y = o, or when x = y.

Conversely, if xy be given, the least value of a: + y is when x = y.

Hence, denoting xy by a^, the minimum value of x-\— is 2a^ for positive

values of x.

Again, it is evident that when a function attains a maximum value, its in-

verse becomes a minimum ; and vice versd.

Accordingly, the max. value of -r is — , under the same condition.
x^ + a^ la

3. Find the greatest value of ; —-——r*

(a + a;) (6 + x)

_ {a + x) {b + x) . ^ . . . ab . . /—
Here is to be a mmimum, or f- a; is a mm. ; ,', x — v ab.

and the max. value in question is

(x + a) {x -t- b)

X + c

(z^a — Afz + b'—ci
Let X + e = z, and the fraction becomes .

*
z

In order that this should have a real min. value, {a — e){b — c) must be posi-

tive ; i. e. the value of c must not lie between those of a and b, &c.

5. Find the least value of a tan + b cot 6. Ans. ly/ab.

6. Prove that the expression ; will always lie between two fixed
x^ + bx + c^

finite limits if o^ + c* > a* and b^<4c^', that there will be two limits between

wMch it cannot lie if a'^ + c^> ab and 4^ > 4 c^ : and that it will be capable of all

values if a^ + c^ < ab.

136. To find the Maximum and Minimum values

Of
ax^ + 2hxy + cy"^

aV + 2Uxy + cV
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X
Let u denote the proposed fraction, and substitute » for -;

y
then we get

aa* + 26s + c , .

or {a-(^u)z^-\-2{h-l/u)z + c-c'u = o.

Solving for s, this gives

(a - a'w)2 + i - 6 w = ± v/(6 - 6'w)* -{a- au) {c - cu) . (2)

There are three cases, according as the roots of the equation

(b'^ - a'c) ti^ + (ad -vca'-2 bb') u+b^-ac = o (3)

are real and unequal, real and equal, or imaginary.

(i). Let the roots be real and unequal, and denoted by
a and /3 (of which j3 is the greater) ; then, if b'^ - ac > o, we
shall have

(a - a'ti)z + b-b'u = ± ^{b'^-ac) {u- a) {u- /3).

Here, so long as ti is not greater than a, s is real ; but
when u > a and < (5, z becomes imaginary ; consequently, the

lesser* root (a) is a maximum value of u. In like manner, it

can be easily seen that the greater root (/3) is a minimum.
Accordingly, when the roots of the denominator, «V + 2b^x

+ c' = o, £ire real and unequal, the fraction admits of all pos-

sible, positive, or negative values, with the exception of those

which lie between a and /3.

If either a = o, or c' = o, the radical becomes

6V(» -«)(«- /a),

and, as before, the greater root is a minimum, and the lesser

u maximum, value of u.

• In general, in seeking the maximum or minimum values of y from the
equation, y = ^ {x), if for all values of y between the limits a and 3, the corre-

sponding values of x are imaginary, while x is real when 1/ = a, or y = i8 ; then
it is evident that the lesser of the quantities, o, )8, is a maximum, and the greater

a minimum, value of y. This result also admits of a simple geomutrical proof,

by considering the curve whoso equation is y = <f>{x).
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(2.) When a = j3, the expression under the radical sign is

positive for all values of u, and consequently u does not admit
of either a maximum or a minimum value.

(3.) When the roots a and j3 are imaginary, the expres-

Bion under the radical sign is necessarily positive, and u in
this case also does not admit of either a maximum or a mini-
mum value.

Hence, in the two latter cases, the fraction admits of all

possible values between + 00 and - 00 ,

In the preceding, the roots of the denominator are sup-

posed real ; if they be imaginary, i.e. if 6'* - a'd < o, we have

(a-a'u)z^h-l/u^±^{a'c'-U^) {u-a) (/3-w).

It is easily seen that z is imaginary for all values of u
except those lying between a and /3. Accordingly, the greater

root is a maximum, and the lesser a minimum, value of u.

Hence, in this case, the fraction represented by u lies be-

tween the limits a and /3 for aU real values of x and p,

137. Ciuadratic for determining z.—Again, the value

of z, corresponding to a maximum or a miTn'mrim value of w,

must satisfy the equation

{a - du)z + b - h'u = o.

Substituting for u in (i) its value derived from this latter

equation, we obtain the following quadratic in z ;

{ab' - ba^ z^ +z {ac^ - cd) + be'- cV = o. (4)

This equation determines the values of z which correspond

to the maximum and minimum values of u. It can be ea.".ily

seen that if the roots of equation (3) are real so also are those

of (4) ; and vice versa.

The student will observe in the preceding investigation

that when u attains a maximum or a minimum value, the

corresponding equation in z, obtained from (2), has equal

roots. This is, as will be seen more fully in the next Article,

the essential criterion of a maximum or a minimum value, in

general.
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Find the maximum or minimum values of w in the follow-

ing cases :

—

Examples.

T* + laf + 1

1

. 5 .

I. Ms . Am. u s 2, a max., « = f a nun.
ar* + 4Jf + 10 6

«*-«+! a- a*
« I +x'+»-l X^ -If X- I

t -X , . ,. X* + a; - I

*»+x
is a max. or a min. according as ia a min. or a max., i. e.

I .

as X IS a maximum or a minimum.
I -X

•
. r = o, or X = 2 ; the former gives a maximum, the latter a minimum solution.

"We now proceed to a general investigation of the condi-

tions for a maximum and minimum, by aid of the principles

of the Differential Calculus.

138. Condition for a Maximnm or Minimum.—If

the increment of a variable, a?, be positive, then the corre-

sponding increment of any function, f{x), has the same sign

as that of /'(a;), by Art. 6 ; hence, as x increases, /(a:) increases

or diminishes according as /'(a;) is positive or negative.

Consequently, ichen f[x) changes from an increasing to a

decreasing state, or vice versdy its derived function f\x) must
change its sign. Let a be a value of x corresponding to a
maximum or a minimum value oif{x) ; then, in the case of

a maximum we must have for small values of h,

f(a) >f{a + h), and/(a) >f{a-h) ;

and, for a minimum,

f{a) <f{a + h), and/(a) <f{a-h).

Accordingly, in either case the expressions

/(a + h) -f{a), aiid/(a - h) -f{a),

have both the same sign.
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Again, hj formulae* (29), Art. 75, we have

f{a + h) -f{a) = hf{a) + -^J\a + Oh),

f{a - h) -f{a) = - hf\a) + -^J\a - Q,h),

Now, when h is very small, and f\a) finite, the second

term in the right-hand side in each of these equations is very
small in comparison with the first, and hence /(a + h) -f{a)
and f(a- h) - f{a) cannot have the same sign unless

/(4=o.
Hence, the values of x which renderf(x) a maximum or a

minimum are in general roots of the derived equation f{x) = o.

This result can also be arrived at from geometrical

considerations ; for, let y = f{x) be the equation of a curve,

then, at a point from which the ordinate y attains a maximum
or a minimum value, the tangent to the curve is evidently

parallel to the axis of x ; and, consequently f(x) = o, by
Art. 10.

Moreover, if x be eliminated between the equations

f[x) = u and /'(a;) = o, the roots of the resulting equation in

u are, in general, the maximum and minimum values oif{x).

This is the extension of the principle arrived at in

Art. 134- ,

Again, since /'(«) = o, we have

f(a-h)-/{a) = -^^r{a-ej,) \

(5)

* In the investigation of maxima and minima given above, Lagrange's form
of Taylor's Theorem has been employed. For students who are unacquainted
with this form of the Theorem, it may be observed that the conditions for a
maximum or minimum can be readily established from the form of Taylor's

Series given in Art. 54, viz.,

/{a + h) -f{a) = hf{a) + —J"{a) + ^-— f"{a) + &c.

;

for when h is very small and the coefficients /(a) ,/" (o) , &c. finite, it is evident

that the sign of the series at the right-hand side depends on that of its first

term, and hence all the results arrived at in the above and the subsequent
Articles can be readily established.
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1

J3ut the expressions at the left-hand side in these equations

are both positive for small values of h when /"(a) is positive;

and negative, when f\a) is negative ; therefore f{a) is a
maximum or a rninimum according as f\a) is negative or

ositive.

If, however, /^(a) vanish along with /'(«), we have, by
Art. 75,

/{a + h) -/(«) = _|_ .r (^0 + r7i^/''(« + ^^)r

/(a - h) -/{a) = -l^y-(^) + /'-{a - BJi).^ ^ ' 1.2.3* 1.2.3.4

Hence it follows that in this case, f{a) is neither a

maximum nor a minimum unless f''\(i) also vanish ; but if

f'\a) = o, then/(rt) is a maximum when f^^{a) is negative,

and a minimum when/^^(rt) is positive.

In general, let/(")(a) be the first derived function that

does not vanish ; then, if n be odd, f{a) is neither a maximum
nor a minimum ; if n be even, f{a) is a maximum or a mini-

mum according as/(") [a] is negative or positive.

The student who is acquainted with the elements of the
theory of plane curves will find no difficulty in giving the
geometrical interpretation of the results arrived at in this
and the subsequent Articles. ,

ElLAMPLES.

1. « = a sin a? + i cos x.

Here the maximum and minimnm values are given by the equation

^"
, . ,0— = a cos a: — sin a; = o, or tan x= -,

uX o

Hence, the max. value of u is ^/a- + b\ and the min. is - y/a^ + i>. This is
also evident independently, since u may be written in the form

\/a2 + 6- sin (» + a),

where tan a := —

.

2. u = a:-8inar.

T xu- '^w ^^ dry
In this case — = i - cos «, -— = sm ar, -— «= cos »

ax dx* ' dx^
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Accordingly, if — = o, we have —- = o, and —- = i.

Consequently, the function a; — sin « does not admit of either a maximum or a
minimum value.

This result can also be easily seen from geometrical considerations.

3. M = o cos « + i cos 2a;, a and h being both positiye.

Here -— = - a sin a; - 25 sin 2a?,
dx '

—— = — a cos ar - 4J cos 2a;.

The maximum and minimum values are given by the equation a sina; + 2J

sin 2a: = o

:

.*. we haye, (i), sin ar = o ; or (2), cos x - —r.

The simplest solution of (i) is a; = o, in which case

d?u
« = «+*, ^ = -»- 4*;

consequently this gives a maximum solution.

Again, let a; = ir, and we have m = J - a, —-^ = a — afi\ consequently this

gives a maximum or a minimimi solution, according as a is < or > 4^.

Tl. , , <^w
\.Ti a = 40, we get when a; = ir, —— = o.

aa;2

On proceeding to the next differentiation we have

d^dMi,

T-3 = a (sin a; + 2 sin 2a;), = o when a; = t.

d'^u
Again, -j-^ = a (cos a; + 4 cos 2x) = 3a. Consequently the solution is a

minimum in this case.

Again, the solution (2) is impossible imless a be less than 4J. In this case,

d^u
i. e. when a < 4^, we easily find —^ positive, and accordingly this gives a min.

value of «, viz. - -rr — b.

4. Find the value of x for which sec a? — a is a maximum or a minimum.

. . a/s -

1

Ans. sin a; = .
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139. Application to Rational Algebraic Kxpres-
•lonfi.—Suppose f{x) a rational function containing no
fractional power of ar, and let the real roots of f{x) = o,

arranged in order of magnitude, be a, j3, 7, &c. ; no two of

which are supposed equal.

Then /{x) - (« - o) (a? - j3) (a? - 7) . . .

and r(a)=(a-/3)(a-7) . . .

But by hypothesis, a - /3, a - 7, &c. are all positive ; hence

,f\a) is also positive, and consequently o corresponds to a

minimum value of /(ar).

Again, /'(/3) = (/3-a)0-y)

here j3 - a is negative, and the remaining factors are positive

;

hence /"(/3) is negative, and/(/3) a maximum.
Similarly, /(7) is a minimum, &c.

140. Maxima and Minima ITalues occur alter-

nately.—We have seen that this principle holds in the case

just considered.

A general proof can easily be given as follows :—Suppose
/(a?) a maximum when a = a, and also when x = b, where b is

the greater ; then when x = a + h, the function is decreasing,

and when x = b - h, it is increasing (where A is a small incre-

ment) ; but in passing from a decreasing to an increasing

state it must pass through a minimum value ; hence between
two maxima one minimum at least must exist.

In like manner it can be shown that between two minima
one maximum must exist.

141. Case of Equal Roots.—Again, if the equation

^^{x) = o has two roots each equal to a, it must be of the form

f{x) = {x-ay^^{x),

In this case /"(a) = o,/'"(a) = 2\P{a), and accordingly,

from Art. 138, a corresponds to neither a maximum nor a
minimimi value of the function /(a;).

In general, if /'(a;) have n roots equal to a, then

Here, when n is even, /(a) is neither a maximum nor a
minimum solution : and when n is odd, /(a) is a maximum or

a minimum according as \p{a) is negative or positive.
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142. Case where f\x) = 00. The investigation in

Art. 138 shows that a function in general changes its sign in

passing through zero.

In like manner it can be shown that a function changes
its sign, in general, in passing through an infinite value ; i.e. if

</)(a) = 00, (^(a - A) and ^(a +^) have in geneial opposite signs,

for small values of h.

"FoTj if u and - represent any function and its reciprocal,

they have necessarily the same sign ; because if u be positive,

- is positive, and if negative, negative.

Suppose Wi, U2, Us, three successive values of w, and

—, — , —, the corresponding reciprocals.
Ui U2 U3

Then, if U2 = o, by Art. 138, Wi and u^ have in general

opposite signs.

Hence, if — = 00 ,
— and — have also opposite signs ; and

Ui Ui Us
^^

we infer that the values of x which satisfy the equation /'(a;)

= 00 may furnish maxima and minima values oif{x),

143. We now return to the equation

f{x) = {x-aY^p{x),

m which n is supposed to have any real value, positive, nega-

tive, integral, or fractional.

In this case, when x = a,f'{x) is zero or infinity according

as n is positive or negative.

To determine whether the corresponding value oif{x) is

a real maximum or minimum, we shall investigate whether

f{x) changes its sign or not as x passes through a.

When x = a + h, f(a + h) =h"xp{a + h),

x = a-h, f\a-h) = {-hY4.{a-h):

now, when h is infinitely small, \p{a +h) and \p{a-h) become

each ultimately equal to \lj{a) : and therefore f\a + h) and

f{a - h) have the same or opposite signs according as (
- i)**

is positive or negative.
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(i). If w bo an even t/i ^e<7<?r, positive or negative, /'(j;) does

not change sign in passing through a, and accordingly a cor-

responds to neither a maximum nor a minimum solution.

(2). If w be an odd integer, positive or negative, f\a + h)

and/'(fl - h) have opposite signs, and a corresponds to a real

maximum or minimum.

2r *F
(3). If n be a fraction of the form ± —, then ( - i)

r

= 1^=1, and a corresponds to neither a maximum nor a
minimum.

(4). If n be ofthe form ± ^^^^li), then ( - i)* ^ =[- 1)^;

this is imaginary ii p be even, but has a real value ( - i) when
p is odd. In the former case, /'(a —h) becomes imaginary ; in
the latter, /'(a + A) and/'(a-A) have opposite signs, and/(a)
is a real maximum or minimum.

Thus in all cases of real maximum and minimum values
the index n must be the quotient of two odd numbers.

Examples.

f . /(x) = oc* + 2bx + e,

b
Here f{x) = 2(0* + b) = o; hence x =—

,

a

fix) = 2a.

ae-lfl
And is a maximum or a minimum value of ax* + ibx + c, according

a

as a is negative or positive.

3. f{x) = lafl — 15*' -f- 36a; + 10.

Here f (x) = 6{x^ - ^x + 6) = 6{x - 2) (a> - 3).

(r.) Let X = 2 ; then/"(x) is negative ; hencef{2) or 38 is a maximum.

(2.) Let X = 3 ; then/ "(x) is positive; hence / (3) or 37 is a minimum.
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It is evident that neither of these values is an ahsolute maximum or mini-

mum ; for when a: = 00
, f{x) = 00 , and when a; = - 00

, f[x) = — 00 ; accord-

ingly, the proposed function admits of all possible values, positive or negative.

Again, neither + 00 nor — 00 is a proper maximum or minimum value, because

for large values of ar, f{x) constantly increases in one case, and constantly dimi-

nishes in the other.

It is easily seen that as x increases from — 00 to + 2, f{x) increases from — 00

to 38 ; as a; increases from 2 to 3, /(a;) diminishes from 38 to 37 ; and as x in-

creases from 3 to 00, f{x) increases from 37 to 00. "When considered geome-
trically, the preceding investigation shows that in the curve represented by the

equation

y = 2a;3 - I5a;2 + 36a; + 10,

the tangent is parallel to the axis of x at the points a; = 2, y = 38 ; and x = 3,

y = 37 ; and that the ordinate is a maximum in the former, and a Tm'nimum in

the latter case, &c.

3. /(a:) = a + i (a? - e)^. Ans. x = e. Neither a max. nor a min.

4. f[x) = i + *(a; - a)t + d[x- a)J.

Substitute a + A for a:, and the equation becomes

also /(a - A) = 5 + cAt + dh^
;

but when 7i is very small h^ is very small in comparison with h^, and accordingly b

is a minimum or a maximum value of/(a:) according as c is positive or negative.

5. f{x) = 5a;« + i2a:» - 153?* - 40a;* + 153:2 + 60a: + 17.

Ans. x = ±1 gives neither a max. nor a min. ; a; = — 2 gives a min.

6. ^ . Let X — 10 = 2, and the fraction becomes
X — 10

(g + 9)(z+4) ^^^^,,^36
, or 2 + 13 +—

.

t z

36
The maximum and minimum values are given by the equation i—r = o>

.*. 2 = + 6, and hence x = 16 or 4 ; the former gives a minimum, the latter

a maximum value of the fraction.

7-
^^''^-{x^if

Hence /'(;,) = i_-L (^ + 5).
(a;+ if

lix= iif(x) is neither a maximum nor a mininium; if a; = — S,f{x) is a

maximum.
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Again, the reciprocal function
^^—^^ is evidently a max. when 4: « - 1

;

(X - 1;

for if wo substitute for «, - i + A, and - i - A, successively, the resulting

vtdues are both rugatm ; and consequently tho proposed function is a min imum
in this case.

This furnishes an example of a solution corresponding to /'(z) = 00. Ses

Art 143.

144. We shall now return to the fraction

ax* + 2bxi/ + cy*

oV + zb'xy + cy
themaximum and minimum values of which have been already

considered in Art. 136.

Write as before the equation in the form

a' (a - (/u) + 2z{b - b'u) + (c - cu) = o,

where 2 = -.

Differentiate with respect to 2, and, as -7- = o for a maxi-

mum or a minimum, we have

2{a - du) + (J - b'u) = o.

Multiply this latter equation by s, and subtract from the

former, when we get

s(5 - 6'w) + (c - c'u) = o.

Hence, eliminating s between these equations, we obtain

(a - a'u) (c - c'u) = {b- b'u)\

or u'(a'(f - b'') - u{ac' + ccC - 2bb') + {ac - 6') = o ; (3)

the same equation (3) as before.

The quadratic for 2,

%\ab' - 6flO + ^{a<f -(!(/) + be'- cV = o, (4)

is obtained by eliminating u from the two preceding linear

equations.

N
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This equation can also be written in a determinant form,
as follows :

—

I -s z^

a h c = o.

a' V c'

It may be observed that the coefficients in (3) are in-

variants of the quadratic expressions in the numerator and
denominator of the proposed fraction, as is evident from the
principle that its maximum and minimum values cannot be
altered by linear transformations.

This result can also be proved as follows :

—

Let u =
aX' + 2hXY+cY'
a'X' + 2b'XY + c'Y''

where X, Y denote any functions of x and y ; then in seeking
the maximimi and minimum values of u we may substitute

s for — , when it becomes

flfZ* + 2hz + c

^ "
a'z' + 2h'z + c"

and we obviously get the same maximum and minimum values

for ^^ whether we regard it as determined from the original

fraction or from the equivalent fraction in 2.

Again, let X, Y be linear functions of x and y, i. e.

X^lx-v my^ Y= Vx + m'y,

then u becomes of the form

A;^ + 2Bxy + Cy''

2V~+ 2Bxy + Cy
where -4, j5, 0, A^ B^, C\ denote the coefficients in the trans-

formed expressions ; hence, since the quadratics which deter-

mine the maximum and minimum values of u must have the

same roots in both cases, we have

AC-B' = \{ac - h'), AC + CA' - 2BB = \{ad +ca' - 2hh'),

A'C-m = \(dc' - ft'*). Q,E.J),
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It can be seen without difficulty that

"We shall illustrate the use of the equations (3) and (4) by
applying them to the following question, which occurs in the

determination of the principal radii of curvature at any point

on a curved surface.

145. To find the Maxima and Minima Taloes of

r co8*a + 2« cos a cos j3 + ^ cos'/3,

where cos a and cos /3 are connected by the equation

(i +y) cos'a + 2pq cos a cos /3 + (i + q^) C0s'j3 = i,

and p, q, r, s, t are independent of a and j3.

Denoting the proposed expression by u, and substituting

- cos a ,

z for 7,, we set
cos/3

rZ* + 28Z + t

(i +jo')2' + 2pqz + (l + j')

The maximum and minimum values of this fraction, by
the preceding Article, are given by the quadratic

w'(i +J3* + ^')-w((i +q^)r - 2pqs+ (i +p^)t] +r^-fi' = o; (6)

while the corresponding values of z or 7^ are given by

£'((! +p')8 -pqr] + «((i +p')t - (I + f)r]

+ {pqf-{i+q^)s] =o* (7)

The student will observe that the roots of the denomiuator
in the proposed fraction are imaginary, and, consequently, the

values of the fraction lie between the roots of the quadratic

(6), in accordance with Art. 136.

• Lacroix, Dif. Cal, pp. 575, 576.

N 2
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146. To find the maximum and Tlfiiilmim« Radius
ITector of the £Uipse

ax^ + zhxy + ct/^ = 1.

(i). Suppose the axes rectangular ; then

1^ = a;^ + ^ is to be a maximum or a minimum.

Let - = 2, and we get

s* + I

az^ + 2bz + c

Hence the quadratic which determines the maximum and
minimum distances from the centre is

r* {ac - b"^) - T^ (a + c) + 1 = o.

The other quadratic, viz.

bx^ - {a - c)xy -by* = o,

gives the directions of the axes of the curve.

(2.) If the axes of co-ordinates be inclined at an angle oi,

then

r^ = x^ + y^ + 2xy cos (u

s^ + 2s cos tu + I

a^ + 2Js + c '

and the quadratic becomes in this case

r^{ac - b^) - r^{a + c - 2 J cos a>) + sin^w = o,

the coefficients in which are the invariants of the quadratic

expressions forming the numerator and denominator in the

expression for r^.

The equation which determines the directions of the axes

^f the conic can also be easily written down in this case.
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147. To investigate the Maximnm and SUnimum
Values of

da? + 36Vy + li^xy" + d'y^'

Substituting z ioT -, and denoting the fraction by u, we have

flz' + 362' -^ ^cz + d
~
dz^ + 3i's' + 3<;'2 + d'

Proceeding, as in Art. 144, we find that the values of u and*
are given by aid of the two quadratics

*

az^ + 2^2 + c = (oV + lUz + (f)uy

bz^ + 2CZ + d= {h'z^ + 2CZ ¥ d')u.

Eliminating u between these equations, we get the following
biquadratic in z :

—

z'(ah' -bar) + 2z^{a<f - cd) -^ z^ad' - dd + s{bc' - cb")}

+ 2z{bd' - db') + {cd - cd) = o. (8)

Eliminating z between the same equations, we obtain a
biquadratic in w, whose roots are the maxima and minima
values of the proposed fraction. Again, as in Art. 144, it

can easily be shown that the coefficients in the equation in u
are invariants of the cubics in the numerator and denominator
of the fraction.

148. To cat the Maximnni and Iffinimnni Ellipse
from a Right Cone which stands on a given circular
base.—Let AD represent the axis of ^
the cone, and suppose BP to be the
axis major of the required section;

its centre ; a, b, its semi-axes. Through
and P draw Zifand PR parallel to

BC. Then BP = 2fl, b" = LO . OM
(Euclid, Book III., Pr. 35) ; but LO
^i^,OM = ^;.;b^ = '-,BC.PE.

2 2 4
Hence BP^ . PR is to be a maximum
or a minimum. ^^^' '^'

"r/

\
V

ij .^5A-
B^-^

^^L_r -r ' .-.-^
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Let L BAB = a, PBC = 0, BC = c.

Then BP = BC'^^^^ ^^^^"

sin BFC cos {d - a)

p„ _ ^p sin Pj5i2 _ c cos (0 + a)^

"
sin FBB ~

cos (0 - «)

'

cos (d + a) .

•*• ^ =—TTTi ( 18 a maximum or a mmimum.
COS^ (6 - a)

-rr du sin2d- 2 sin 2a
JtLence 377 = -— — = o ; .*. sm2d = 2 sm 2a.

dS cos* {0 - a)

The solution becomes impossible when 2 sin 2a > i ; i.e. if

the vertical angle of the cone be > 30°.

The problem admits of two solutions when a is less than
15°. For, if 61 be the least value of derived from the

equation sin 2 == 2 sin 2a ; then the value ft evidently

gives a second solution.

Again, by differentiation, we get

d^u 2 cos 20 , , . ^
iTTi = —rTTi ^ (when Bin 2d = 2 sm 2a).
dd^ cos* {0 - a)

^ '

This is positive or negative according as cos 20 is positive or

negative. Hence the greater value of d corresponds to a
maximum section, and the lesser to a minimum.

In the limiting case, when a = 15°, the two solutions

coincide. However, it is easily shown that the corresponding

section gives neither a maximum nor a minimum solution of

the problem. For, we have in this case Q = 45° ; which value

d^u
gives -7^ = o. On proceeding to the next differentiation, we

find, when 6 = 45°,

d^u _ - 4 _ ^4

dO'
~

cos* (45° -a) ~ " "9"'

Hence the solution is neither a maximum nor a minimum.
When a > 15°, both solutions are ijnpossihle.
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149. The principle, that when a function is a maximum
or a minimum its reciprocal is at the same time a minimum
or a maximum, is of frequent use in finding such solutions.

There are other considerations by which the determina-

tion of maxima and minima values is often facilitated.

Thus, whenever m is a maximum or a minimum, so also

is log (m), unless m vanishes along with —

.

Again, any constant may be added or subtracted, i.e. if

/(x) be a maximum, so also is /(a?) ± c.

Also, if any function, w, be a maximum, so will be any
positive power of ;/, in general.

150. Again, if s = /(w), then d% = f{u)dUy and conse-

quently is is a maximum or a minimum ; either (
i
) when

du = o, i.e. ichen u is a maximum or a minimum ; or (2) when

/('O = o.

In many questions the values of u are restricted, by the

conditions of the problem,* to lie between given limits;

accordingly, in such cases, any root of f{u) = o does not
furnish a real maximum or minimum solution unless it lies

between the given limiting values of u.

We shall illustrate this by one or two geometrical

examples.

(i). In an ellipse^ to find when the rectangle under a pair of
conjugate diameters is a maximum or a minimum. Let r be any
semi-diameter of the ellipse, then the square of the conjugate

semi-diameter is represented by a^ + h^ - r*, and we have

f* = r* (a* + i' - r") a maximum or a minimum.

Here -r = 2(a* -\- 11^ - 2r^)r.
dr ^

'

Accordingly the maximum and minimum values are,

(i) those for which r is a maximum or aminimum ; i.e. r = a^

or r = i; and, (2) those given by the equation

r(o^ + 6' - 21^) = o;

• See Cambridge Mathematical Journal, vol. iii. p. 237.
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or r = o, and r p + h"

The solution r = o is inadmissible, since r must lie between
the limits a and h : the other solution corresponds to the
equiconjugate diameters. It is easily seen that the solution

in (2) is the maximum, and that in (i) the TniniTmim value
of the rectangle in question.

151. As another example, we shall consider the following

problem* :

—

CHven in a plane triangle two sides («, h) to find the

maximum and minimum values of

I A
- . cos —

,

where A and c have the usual significations.

Squaring the expression in question, and substituting x
for c, we easily find for the quantity whose maximum and
Tninimum values are required the following expression

:

X S/ Xf

neglecting a constant multiplier.

Accordingly, the solutions of the problem are— (i) the

maximum and minimum values of x^ i.e. a + ^ and a - h,

(2) the solutions of the equation — , i.e. of

I 46 3 («' - »')
„

«» + *» «« °'

or x' + 46* - 3(0' - i') = ;

whence we get X = i/3n^ + 6' - 2h,

neglecting the negative root, which is inadmissible.

Again, iih > ay \/id^ + h"^ - zh is negative, and accord-

ingly in this case the solution given by (2) is inadmissible.

* This problem occurs in Astronomy, in finding wlien a planet appears
brightest, the orbits being supposed circular.
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If fl > ft, it remains to see whether ^/^a^ + 6' - zh lies

between the limits a •¥ b and a - h. It is easily seen that

y/^a^ + 6* -26i8>a-6: the remaining condition requires

a + ft > a/sa' + ft' - 2ft,

or a + 3ft > ^/3a' + ft*,

or o' + 6flft + 9ft' > 3a* + ft%

i.e. 4ft'+3aft>fl*,

.. . 9fl* 25a' , 3a 50!

or 4ft' + 3a* + -^ > -^ ;
.*. 2ft +— > —

;

^ ^ 16 16 44
or, finally, ft > -.

4

We see accordingly that this gives no real solution unless

the lesser of the given sides exceeds one-fourth of the

greater.

When this condition is fulfilled, it is easily seen that the

corresponding solution is a maximum, and that the solutions

corresponding to a; = a + ft, and x = a - h, are hoth minima
solutions.

152. Maxima and Minima Yalnes of an Implicit
Function.— Suppose it be required to find the maxima or

minima values of y from the equation

/(«, y) = o.

Differentiating, we get

du du dp _
dx dy dx

'

where u represents /(a?, y). But the maxima and minima

values of y must satisfy the equation —- = o: accordingly the
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maximum and minimmn values are got by combining* the

equations -— = o, and u = o,^ dx

153. Maximum and minimum in case of a Func-
tion of two dependent Variables.—To determine the
maximum or minimum values of a function of two variables,

X and y, which are connected by a relation of the form

f{x, y) = o.

Let the proposed function, (a?, y) be represented by u ;

then, by Art. loi, we have

d^^ d(j>df

du dx dy dy dx

dy

But the maxima and minima values of u satisfy the
du

equation
-f

= o, hence the values of x and y derived from

the equations /(ar, y) = o, and

d^df df^df

dx dy dy dx
'

furnish the solutions required. To determine whether the

solution so determined is a maximum or a minimum, it

d'^^u

is necessary to investigate the sign of -^-j. We add an

example for illustration.

154. Given thefour sides of a quadrilateral^ to find when its

area is a maximum.
Let a, by c, d be the lengths of the sides, ^ the angle

between a and by \p that between c and d. Then ab sin ^
+ cd Bin xp IB a. maximum ; also

a* + b^ - 2ab cos ^ = c* + (^ - 2cd cos \ff

being each equal to the square of the diagonal.

This result is evident also from geometrical considerations.
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d\L
Honoe ab ooa <p + cd oob \p-y- = o

for a maximum or a minimum ; also,

ab em <p = cd BUI \l-j- ;

,\ tan
<t>
+ tan \p = o, or <t> + \p = 1 80^.

Hence the quadrilateral is inscribable in a circle.

That the solution arrived at is a maximum is evident

from geometrical considerations ; it can also be proved to be
80 by aid of the preceding principles.

For, substitute —r-.—? instead of -r , and we sret
cd sin \p dtp

°

du _ ab sin (^ +
\fj)

d<p sin t//

„ dhi ab cos (6 + \l) f d\L\ , , . ,Hence -r-^ = ~^,—— i + -^ + a term which
dcj)' sin ;// \ d<pj

vanishes when (p + \p = 1 80° ; and the value of —^ b^comea

in this case

ab
f

ab\

em iff \ cdj*

which being negative, the solution is a maximum.
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Examples.

1. Prove that a set ti ^ b cosec is a minimum when tan = !/*.
^ a

2. Find when ^x^ - 15^-2 + 12a; - i is a maximum or a minimum.

Ans. a; = I, a max. ; a; = 2, a min.

^J{JL^r^^- '""'^ ^,^^ •^^''^ = •^^*^' '^°^ ^^^* -^(^) ^^' ^ general, amaximum or a mmimum value for some value of z between a and b.

4. Find the value of z which makes

sin z . cos z

cos2(6o'-a;)

•maximum. ^„, ^^^.^

5' I^ 7?-^—77^ ^® » maximum, show immediately that -^^is aminimum.
f{z) - (i>{z) (p(x)

6. Find the value of cos x when .
— is a maximum.^5 - 4 cos a;

Ans. cos z = 5 - V 13

6

7. Find when is a maximum. „ a? = --»

'/4 + S^^ ^

?. Apply the method of Ex. 5 to the expression — -.

z* — ax + b

9. What are the values of « which make the expression

2«3 _ 21a;- + 36a; — 20

« maximum or a minimum P and (2) what are the maximum and minimum
values of the expression ? Ans. a; = i, a max. ; a: = 6, a mm.

<o. u = z^(a — a:)**. jins. x = , a maximum
^ ' m + n

11. Given the angle C of a triangle
;
prove that sin*^ + sin^^ is a maximum,

and cos'^^ + cos^^ a minimum, when A = £.

12. Find the least value of ««** + ir**. Ans. i^ai

(a + a:)(A + aj) .—.
*3- 7 ik V ,fZ = +\/ab.

(a - z){b - z)
iy —Y
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14. Show that 6 + (« - a)i, when x b a, is a minimum or a maximum
Moording aa is poeitire or negative.

15. « a * coa «. An$. « = cot z.

16. Prove that »* is a maximum when x = e,

17. Tan** . tan»(tf - *) is a maximum when tan (a — ix) = tan a P
' ^ ' n -ir m

18. Prore that ; is a minimum when z = 9,

log*

19. Given the vertical angle of a triangle and its area, find when its hase i»

a minimum.

20. Given one angle A oto, right-angled spherical triangle, find when th»
difference betweeen the sides which contain it is a maximum.

de
Here tan cq<mA = tan b ; and since — & is a maximum, 37 = i.

ad

Hence we find tan b — v cos A»

This question admits of another easy solution ; for, as in Art. i is, we hay&

sin(^-i)^^,^
sin (c + *) 2

consequently sin {0 - b) becomes a maximum along with sin {e + b\ since A is

constant ; and hence e - b ia a, maximum when e + b = 90".

This problem occurs in Astronomy, in finding when the part ofthe equation
of time which arises from the obliquity of the ecliptic is a maximum.

a I. Prove that the problem, to describe a circle with its centre on the
circumference of a given circle, so that the length of the arc intercepted within
the given circle shaU be a maximum, is reducible to the solution of the equation

9 = cot 0.

22. A perpendicxilar is let fall from the centre on a tangent to an ellipse,

find when the intercept between the point of contact and the foot of the perpen-

dicular is a maximum. Prove that p = A/ab, and intercept = a — b.

23. A semicircle is described on the axis-major of an ellipse ; draw a line from
one extremity of the axis so that the portion intercepted between the circle and
the ellipse shall be a maximum.

24. Draw two conjugate diameters of an ellipse, so that the sum of the
perpendiculars from their extremities on the axis-major shall be a maximum.

25. Through a point on the produced diameter AB of a semicircle draw a
secant ORE', so that the quadrilateral ABRK inscribed in the semicircle shaU
be a maximum.

Prove that, in this case, the projection of RBf on AB is equal in length to
the radius of the circle.

26. If sin (p = k sint^, and i|/ + 4/ = a, where a and k are constants, prove
that cos

«f^'
cos ^ is a maximum when tan^^ = tan <|/ tan ^',
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27. Find the area of the ellipse

ax"^ + 2hxy + hy^ = e

in tenns of the coefficients in its equation, by the method of Art. 146.

(i) for rectangular axes. Ans. — .

... , ,. TTC sin»
(2) for oblique. „ — .

V^ab - A2

28. A triangle inscribed in a given circle has its base parallel to a given line,

and its vertex at a given point ; find an expression for the cosine of its vertical

angle when the area is a maximum.

29. Find when the base of a triangle is a minimum, being given the ver-

tical angle and the ratio of one side to the difference between the other and a

fixed Hue.

30. Of all spherical triangles of equal area, that of the least perimeter is

equilateral ?

31. Let u^ + a^ — ^axu = o; determine whether the value x = o gives u a

maximum or minimum. Ana. Neither.

32. Show that the maximum and minimum values of the cubic expression

aa^ + Shx^ + Scx + d

^are the roots of the quadratic

ah"^- 2Gz-£i=o;

where = aH- labc + 2*3, and A = (C-d? + s^cu? + \d1fi - 3 J^^ja - dahed.

33. Through a fixed point within a given angle draw a line so that the

triangle formed shall be a minimum.
The line is bisected in the given point.

34. Prove in general that the chord drawn through a given point so as to

cut off the minimum area from a given curve is bisected at that point.

35. If the portion, AB, of the tangent to a given curve intercepted by two
fixed lines OA^ OBj be a minimum, prove that FA — NB^ where P is the point

of contact of the tangent, and N the foot of the perpendicular let fall Oii the

tangent from 0.

36. The portion of the tangent to an ellipse intercepted between the axes is

a minimum : find its length. Ans. a-\- b.

37. Prove that the maximum and Tm'm'm"Tn values of the expression, Art. 147,

are roots of the biquadratic

(a- uay {d - udlf+ 4 (a- ud) {c - uc'f + 4 (<? - ttcT) {b - ubj
— 3 (J - ub'Y {c — ucY — 6 (a — tid) {b — ub') {c— ud) {d - nd') = o.
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CHAPTEE X.

MAXIMA AND MINIMA OF FUNCTIONS OF TWO OR MORE IN-

DEPENDENT VARIABLES.

155. !Waxlma and Minima for Two Variables.—In
accordance with the principles established in the preceding

chapter, if (j> (a*, y) be a maximum for the particular values

Xo and po, of the independent variables x and y, then for all

small positive or negative values of h and k, <p (aro, 1/0) must
be greater than <p {xo + A, yo + ^) ; and for a minimum it must
be less.

Again, since x and y are independent, w© may suppose
either of them to vary, the other remaining constant;

accordingly, as in Art. 138, it is necessary for a maximum
or Tnininiiim value that

du du_ = o,and^ = o; (,)

omitting the case where either of these functions becomes
infinite.

156. IJagrang^e's Condition.—We now proceed to

consider whether the values found by this process correspond
to real maxima or minima, or not.

Suppose Xoy yo to be values of x and y which satisfy the

equations

du - du_ = o,and-=o,

and let A. B, C be the values which -r— , -r—;-, -r^ assume
djir dxdy dy^

when Xq and y© are substituted for x and y ; then we shall

have
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But when h and k are very small, the remainder of the

expansion becomes in general very small in comparison with
the quantity Ah"^ + iBhk + Ck"^ ; accordingly the sign of

^(a?o + h,yo + k) - ^{xq, y^ depends on that of

AW" + iBhk + CF, I.e. of -^^
'——^^ ' •

Now, in order that this expression should be either always
positive or always negative for all small values of h and k^

it is necessary that AC - B^ should not be negative ; as, if

it be negative, the numerator in the preceding expression

would be positive when ^=0, and negative when Ah + Bk = o,

Hence, the condition for a real maximum or Tm'm'Tmnn is

that AC should not be less than B^, or

d^d^ _(d'u\\
dx'dy^ ^^'^\dxdyy

and, when this condition is satisfied, the solution is a maxi-
mum or a minimum value of the function according as the

sign of A is negative or positive.

li B^he> AC the solution is neither a maximum nor a

minimimi.
The necessity of the preceding condition was first estab-

lished by Lagrange ;* by whom also the corresponding con-

ditions in the case of a function of any number of variables

were first discussed.

Again, if ^ = o, J5 = o, C = o, then for a real maximum
or minimum it is necessary that all the terms of the third

degree in h and k in expansion (2) should vanish at the same
time, while the quantity of the fourth degree in h and k

should preserve the same sign for all values of these quan-

tities. See Art. 138.

The spirit of the method, as well as the processes em-
ployed in its application, will be illustrated by the following

examples.

157. To find the position of the point the sum of the

squares of whose distances from n given points situated in

the same plane shall be a minimum.

» Theorie dea Fonctiona. Deuxi^me Partie. Ch. onzieme.
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Let the co-ordinates of the given points referred to

rectangular axei be

(fli, *i), (fli, ^«), (''s, *»)... («ii, K), respectively;

(x, y) those of the point required ; then we have

tt -= (a? - a^y + (y - hf + {x - a.,y + (y - ^2)' + . . .

^{x- anY + (y - b„y

a minimum

;

du f .

ay

__ o, + a, + . . . + fl„ 61 + fta + . . . + ^n
Hence a; = , y = ;

n n

and the point required is the centre of mean position of the

n given points.

From the nature of the problem it is evident that this

result corresponds to a minimum.
This can also be established by aid of Lagrange's con-

dition, for we have

. d'*u _ d^u _, d'u

In this case ^C - i?^ is positive, and A also positive;

and accordingly the result is a minimum.
158. To find the Maximum or Minimum Talue

of the expression

ax^ + by^ + ihxy + 2gx + ify + c.

Denoting the expression by u, we have

I du

2^ = «^ + % + 5' = o,

1 du ,

-—=^hx+by+J = o.
2dy

o
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Multiplying tlie first equation by x, the second by y, and
subtracting their sum from the given expression, we get

u = gx+fy + c;

whence, eliminating x and y between the three equations,
we obtain

a h g

u{ab-h')= h b f , (3)

9 f <^

This result may also be written in the form

''To = ^'

where A denotes the discriminant of the proposed expression.

. . d'^u d^u ^ d^u
Agam, - = 2«, - = 2b, ~ = 2h.

Hence, if ab - A' be positive, the foregoing value of w is a
maximum or a minimum according as the sign of a is negative

or positive.

If /i^ > ab, the solution is neither a maximimi nor a

minimum.
The geometrical interpretation of the preceding result is

evident ; viz., if the co-ordinates of the centre be substituted

for X and y in the equation of a conic, u = o, the resulting

value of u is either a maximum or a minimum if the curve

be an ellipse, but is neither a maximum nor a minimum for

a hyperbola ; as is also evident from other considerations.

159. To find the Maxima and Minima ITalues
of the Fraction

aa^ + by^ + 2hxy + zgx + 2fy + c

aV+ b'j/^+ 2h'xy+ 2g'x+ 2f^y+(f'

nd denominator be ]

^ the fraction by w, w

01 = ti(p2. (a)

Let the numerator and denominator be represented by

01 and 02; then, denoting the fraction by w, we get
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Differentiate with respect to x and y separately, then

d(bi (III d(hi d<hi du ddiz

dx dx^ dx dy dy^ dy

but for a maximum or a minimum we must have

du du

hence, the required solutions are given by the equations

ax + hy + g = u{a'x + h'y + /),

hx+hy+f^uih'x + h'y+f).

Multiplying the former by ar, the latter by y, and subtracting

the sum from the equation (a), we get

gx -^fy + c = u{gx +fy + c).

These equations may be written

{a - du)x + (A - liu)y + ^ - /w = o,

(A - Ku)x +{b- Vu)y +/ -fu = o,

(g - ^u)x + {f-f'u)y + - cu = o.

Eliminating x and y, we get the determinant

a - du h - Ku g - ^u

h-Ku h-h'u f-fu =0. (4)

g - gu f-fu c -cu

The roots of this cubic equation in u are the maxima and
minima required.

This cubic is the same as that which gives the three

systems of right lines that pass through the points of

intersection of the conies ^1 = 0,^3= o.*

• Salmon's Conic Seetiont, Art. 370.

02
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The cubic is written by Dr. Salmon in the form

AV + eV + ew + A = o, (5)

where A, A' denote the discriminants of the expressions ^1 and
02, and 9, 6' are their two other invariants.

On the proof of the property that the coefficients are in-

variants compare Art. 144.

The cubic reduces to a quadratic if either the numerator
or the denominator be resolvable into linear factors ; for in

this case either A = o, or A' = o.

If both the numerator and denominator be resolvable into

factors, the cubic reduces to the linear equation

e'w + = o,

and has but one solution, as is evident also geometrically.

160. To find tbe Haxima or Minima ITalnes of
a?* + y« + z^, where

ax^ \- hy^ + cs^ + ihxy + 2gxz + 2/25^ = i.

X 11

Let u = 3? ^ 'if -v ^ \ substitute x and y' for - and -, andas
we have

a/* + /=* + I

o. (6)

ax"^ + hp" + c + ihx'if + 2gx + 2^'

Accordingly the cubic of formula (4) becomes in this case

a- u~^ h g

h h-vr' f

g f c-vr

This is the well-known cubic* for determining the axes of

a surface of the second degree in terms of the coefficients in

its equation : when expanded it becomes

«r® - (fl + J + c)u~'^ + {ah + be + ac -p - g^ - h^)u-^

+ (^/^ + bg^ + eW' - abe - ifgh) = o.

• See Salmon's Oeometry of Thre$ Dimensions, 3rd ed., Art. 82.
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161. Application of liagrange^s Condition.—In

applying this condition to tho general case of Art. 159, we
wnte the equation in the form

^i = ti0a;

from which we get, on making -r = ^> ^^^
IT

^ ^^

dxdy dxdy ^* dxdy^

d^(Pi cP02 d'u

da^ ' dx* dxdy
but

Hence

»•• IS ?-(S;)'l
"<"-""'<'-'">- <'-'•'•'•

Accordingly, the sign oiAQ-E^ is the same as that of

the quadratic expression

{ah - A») - {aV ^hd " ihK) u + {c^J/ - h'^y, (7)

where u is a root of the cubic (4) or (5).

If A3 represent the determinant in {4), the preceding

quadratic expression may be written in the form -7-

.

Again, w„ w^, W3 representing the roots of the cubic (4) ;

a, j3, those of the quadratic (7) ; if Ux be a real maximum or

minimum value of m, we must have (wi - a)(wi - j3)(a'6'- A'')

a positive quantity.

Accordingly, if al/ - h'^ be positive, Wi must not lie be-

tween the values a and /3. Similarly for the other roots.
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If all the roots of the cubic lie outside the limits a and j3,

they correspond to real maxima or minima, but any root

which lies between a and j3 gives no maximum or minimum.
In the particular case discussed in Art. 1 60 the roots of

the cubic (6) are all real, and those of the quadratic

; - u~\ h
= o are interposed between the roots of the

h, h - u~^

cubic. (See Salmon's Higher Algebra^ Art. 44). Accord-
ingly, in this case the two extreme roots furnish real maxima
and minima solutions, while the intermediate root gives

neither. This agrees with what might have been anticipated

from the properties of the Ellipsoid ; viz., the axes a and c

are real maximum and minimum distances from the centre to

the surface, while the mean axis b is neither.

It would be unsuited to the elementary nature of this

treatise to enter into further details on the subject here.

162. maxima or IMEiniiiia of Functions of tbree
Tariables.—Next, let u = <p{x^ y, z), and suppose Xq, yo, 2o

to be values of x, y, z, which render u a maximum or a mini-

mum ; then, if x, y^ z be independent of each other, by the

same reasoning as before, it is obvious that x^^ y^ , Zo must
satisfy the three equations

du du du

dx * dy * dz
'

omitting the case of infinite values.

Accordingly we must have

(^{xo+h, yo + k,Zo + l) - (p{xof yoy Zo) = -4 + JB + C—
+ Fkl+ Ghl + Ehh + &o.

where -4, B, C, F, G, S, are the values that

d^u d'^u d^u d^u d^u d^u

dx^^ dy"^^ dz^^ dydz^ dxdz^ dxdy

respectively assume when Xq, yo, So are substituted for x, y, s

in them.
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Now, in this, as in the case of two indepondont variables,

it is necessary for a real maximum or minimum value that

the preceding quadratic function should be either always
positive or always negative for all small real values of h, k,

and /.

Substituting al for h, and fil for k, and suppressing the

positive factor l\ the expression becomes

Aa' + B[5'+C+ 2Fi5 + 2Ga + 2^ai3, (8)

or

Completing the square in the first term, and multiplying by
Ay we get

{Aa +HP + Gy+ {AB-m)l5' + 2{AF- GH)^ + [AC- G%

Moreover, since the first term is a perfect square, in order

that the expression should preserve the same sign, it is neces-

sary that the quadratic

{AB - S')I5' + 2{AF- CR)p + AC - G'

should be positive for all values of j3 : hence we must have

AB-H^> o, (9)

and [AB-JS'){AC-G')> {AF - GH)\

or A{ABC + 2FGH- AF^ - BG" - Cm) > o, (10)

i.e. A and A must have the same sign, A denoting the dis-

criminant of the quadratic expression (8), as before.

Accordingly, the conditions (9) and (10) are necessary

that Toy yo, Zo should correspond to a real maximum or mini-
mum value of the function u.

When these conditions are fulfilled, if the sign of A be
positive, the function in (8) is also positive, and the solution

is a minimum ; if -4 be negative, the solution is a maximum.
163. maxima and Minima for any number of

Variables.—The preceding theory admits of easy extension
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to functions of any number of independent variables. The
values which give maxima and minima in that case are got

by equating to zero the partial derived functions for each
variable separately, and the quadratic function in the ex-

pansion must preserve the same sign for all values ; i.e. it

must be equivalent to a number of squares, multipKed by
constant coefficients, having each the same sign.

The number of independent conditions to be fulfilled in the

case of n independent variables is simply f> - i, and not 2**— i,

as stated by some writers on the Differential Calculus. A
simple and general investigation of these conditions will be
given in a note at the end of the Book.

164. To investigate the Ittaxinmin or Minimum
Talue of the Expression

aa^ + by^ -\- cz^ + 2/1x2/ + zgzx + 2fyz + 2px + 2qy + 2n + <?.

Let u denote the function in question, then for its maxi-

mum or minimum value we have

du

dx

du

dfj

du

= 2{ax + hy 'r (jz -^-p) = o,

= 2{hx-i by +fz^- q) = o,

— = 2{gx+fy -\- rs + r) =0;
az

hence, adopting the method of Art. 158, we get

u =^ px -\- qy ¥ rz \- d.

Eliminating a?, y, z between these four equations, we obtain

h g p

, . . d-u
Asram, smce —

;;

f q

2a,

= u

9

f
c

d^
df

2by &C.,
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the result is neither a maximum nor a Tninimum unless

I
/* h

is positive, and

a h 9

h b f

9 f c

has the same sign as a.

The student who is acquainted with the theory of surfaces

of the second degree will find no difficulty in giving the

geometrical interpretation of the preceding result.

165. To find a point such that the sum of the
squares of Its distances from n given points shall be
a Mlnimuni.—Let (fl, b, c), {a\ b\ c), &c., be the co-ordi-

nates of the given points referred to rectangular axes ; a;, y, 2,

the co-ordinates of the required point ; then

{x - ay + (y - by + (2 - cy

is equal to the square of the distance between the points

(a, b, c), and (xy y, 2).

Hence

u=(x' ay + {y- by + (2-c)* +{x-(^y+(t/- J7 + (2 -c)"

+ &c. = 2(a; - ay + 2(y - by + S(2 - c)%

where the summation is extended to each of the n points.

For the maximimi or TniTn'Trmm value, we have

= 2^{x - a) = 2nx - 2'2a = o,
du

dx

-J-
= 2S(y -b) = 2ny - 2Si = o,

— = 2S 2 - c) = iriz - 2Sc = o

;

az

2a 26 2<J
.. Xq =—

, yo =— » So = — ;

n ti n

i.e. iTo, yo, «o are the co-ordinates of the centre of mean posi-
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tion of tlie given points. This is an extension of the result

established in Art. 157.

. . d^u d'^u d^u d^u „Agam ^, = 2n, ^, = 2», ^ = 2n,— = o, &c.

The expressions (10) and (11) are both positive in this case,

and hence the solution is a minimum.
It may be observed with reference to examples of maxima

and minima, that in most cases the circumstances of the prob-

lem indicate whether the solution is a maximum, a minimum,
or neither, and accordingly enable us to dispense with the

labour of investigating Lagrange's conditions.
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Examples.

Find the maximum and minimum values, if anj such exist, of

ax+ bi/ + e J ^± V^"' + *'+<;'
(. —z s • jins. .

»» + y" + I

3. «< + y* - «' + ary - y'.

(o). z = Oy y = o, a maximum.

(/3). a; = y = ± -, a minimum.

(<y). z = - y = ± —— , a minimum.

4. ox' + bxy + dz^ + /xr + myz.

X = y = z = o, neither a maximum nor a minimum.

a a
5. If t* = as^i/^ - 3^y* - j^y^, prove that x = -, y = - makes u a maximum.

2 3

6. Prove that the value of the minimum found in Art. 165 is the -th part of

the sum of the squares of the mutual distances between the n points, taken two
and two.

7. Find the maximum value of

8. Find the values of x and y for which the expression

{aix + b\y + e\Y + (a2a; + *2y + cj)' + . . . + {onX + *ny + A*)*

becomes a minimum.
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CHAPTEE XI.

METHOD OF UNDETERMINED MULTIPLIERS APPLIED TO THE
INVESTIGATION OF MAXIMA AND MINIMA IN IMPLIJIT
FUNCTIONS.

1 66. Method of Cndetermined Multipliers.—In many
cases of maxima and minima the variables which enter into

the function are not independent of one another, but are con-

nected by certain equations of condition.

The most convenient process to adopt in such cases is

what is styled the method of undetermined* multipliers. We
shall illustrate this process by considering the case of a func-

tion of four variables which are connected by two equations

of condition.

Thus, let u = (j>(xiy Xi, scs, x^,

where x^, X2, x^, Xi are connected by the equations

Fi(x„ Xzy X3, x^) = o, Fiixi, X2y X3f Xi) = o. (i)

The condition for a maximum or a minimum value of u

evidently requires the equation

d<b . ddt , d(b . d(f> -

-y- dxi +-J- dXi +
-J- dXi + -^ dxi = o.

aXi aXi axs aXi

Moreover, the differentials are also connected by the rela-

tions

dF,. dFy . dF,. dF,.
-r- dxi + -=- dXi + -T— dxz + -rr- dxi = o,
dxi dx2 dxz dxi

dF^ ^ dFi ^ dF2 ^ dFi ^-7- dxi + -7- dx2 + -7— dxz + —— dXi = o.
cxi dx2 dxz dXi

Multiplying the first of the two latter equations by the arbitrary

* This method is also due to Lagrange. See Mic. Anal,, tome i., p. 74.
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quantity Ai, the other by X3, and adding their sum to the pre-

ceding equation, we get

fd<f> . dF,. dF,\. /d(t> . dF, . dF,\.

\fla?i dxi dxij \dXi dx^ dxtj

fd<p . dF, . dF,\. (d<t> . dF, , dF,\,

As Ai, A3 are completely at our disposal, we may suppose

them determined so as to make the coefficients of dxi and dx^

vanish. Then we shall have

[d<^ ^ dF, . dFA, fdil> , dF^ . dF,\.

\dx3 dx3 dXiJ \dxi, dxi dxiJ

Again, since we may regard 2-3, Xi as independent varidblegy

and iFi, X2 as dependent on them in consequence of the equa-

tions (
I ), it follows that the coefficients of dx^ and dx^ in the

last equation must be separately zero, for a maximum or a
minimum ; consequently, we must have

d<b . dFi . dF2
;^ + Xi -7- + As ;7- = O,
0X3 aXi 0x3

d^ >. dFi dFj _

dxi dXi dx^

These, along with equations (i) and

d^
^ dl\ dFj _

dxi ^ dxx * dxi
'

d(h . dFx . dFi
-z^ + Ai -7- + Aa :i- = o,
dXi dXi dx2

are theoretically sufficient to determine the six unknown
quantities, ari, o-j, a-j, 3-4, Ai, A2 ; and thus to furnish a solution

of the problem in general.

Tliis method is especially applicable when the functions

Fi, Fif &c., are homogeneous ; for if we multiply the preceding
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differential equations by a?i, x^, Xz, x^, respectively, and add,
we can often find the result with facility by aid of Euler's
Theorem of Art. 103.

There is no difficulty in extending the method of undeter-
mined multipliers to a function of n variables, x^ x^j x^, . , ,

Xn, the variables being connected by m equations of condition.

-P, = o, i^3 = o, i^3 = o, . . . Fm = o,

m being less than n ; for if we differentiate as before, and
multiply the differentials of the equations of condition by the

arbitrary multipliers, Ai, X2, . . . Xm respectively; by the same
method of reasoning as that given above, we shall have the n
following equations,

dil> dFi dF„, _
-J— + Ai 3— + . • . + Am ~3— — O,
dx2 dXi dx%

-7^ + A, -7- + . . . + Am -r— = O.
dXn dXn dXn

These, combined with the m equations of condition, are

theoretically sufficient for the determination of the m + w

unknown quantities

a*i, jr2, . . . Xm Ai, A2, . . . Am.

Examples.

I. To find the triangle of maximum area inscribed in a given circle.

Let R denote the radius of the circle, -4, By C7, the angles of an inscribed

triangle, u its area ; then

11 =— = 2iJ2 sin A sin B sin C.

Also, A + B+ C= lio"; .'. dA + dB +dC=Oi

and, taking logarithmic differentials, we get

cot AdA + cot BdB + cot CdC = o,
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and consequently

tan -4 = tan J? = tan C; henco A= B = C=6o'*\

and therefore the triangle is equilateral.

2. Find a point such that the sum of the squares of the perpendiculars
drawn from it to the sides of a given triangle shall be a minimum.

Lot X, y, t denote the perpendiculars : a, b, e the sides of the triangle ; then

M = a;' + y2 4. i;2 is to he a minimum
;

also ax -\- by + ez = double the area of a triangle = 2A (suppose)

;

. •. xdx + ydy { zdz — o, adx + bdy + cdz = o
y

.'. x = \a, y = \b, z = \c: multiplying these equations by a, b, e, respectively,

and adding, we obiain

ax+by + cz = K{a^ + b^ + c^),OT ^ = ^-^-;
2Aa lAb zAe

y
a» + i2 4- <j'i* "^ a2 + A=^ + c2' d^ + i» + c»*

which determine the position of the point. The minimum sum is obviously

a2 + *« + (j2'

3. Similarly, to find a point such that the sum of the squares of its distances
from four given planes shaE be a minimum. Suppose A, B, C, D\jo represent
the areas of the faces of the tetrahedron formed by the four planes ; a:, y, z, «?,

the perpendiculars on these faces respectively; then, as in the preceding
example, we have

Ax ^- By -^^ Cz + Dw = three times the volume of the tetrahedron = 3 F (suppose),

and u = x'^ + y"^ + z"^ + w\ a. minimxim;

.•. xdx + ydy + zdz + wdw = o,

Adx + Bdy + Cdz + Bdw = o

;

hence z = \A, y = \By z = \C, w = \D;

and proceeding as before, we get u =
A^- + B^ + (P + D-'

4. To prove that of all rectangular parallc lepipeJs of the same volume thecube
has the least surface.

Let a;, y, z represent the lengths of the edges of the parallelepiped ; then, if

A denote the given volume, we have

xyz = A, and xy + xz + yz a. minimum

;

.•. yzdx + xzdy + xydz = o,

(t/ + z) dx + {x + z) dy + (x + y) dt = o;

hence yz = \ {y + z), xz = \{x + z), xy = \{x + y) :

from which it appears immediately that x = y = z.
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167. To find the maximum and Minimum
¥alues of

ax^ + hy^ + cz^ + ihxy + 2gzx + ifyZy

where the variables are connected by the equations

Lx + My + ]Vz = o, and x^ + y^ + z^ = i.

In this case we get the following equations

:

ax + hy + gz + XiZ + XzX = o,

hx + by +/z + XiM + Xzy = o,

gx +fy + cz + XiiV + XzZ = o.

Multiply the first by x, the second by y, the third by s, and
add; then

u + A2 = o, or X2 = - w.

Henoe {a- u) x + hy + gz + \iL = o,

hx + {b - u) y + fz + \xM = o,

gx ^fy + (c - w) s + \xN = o,

Lx + My + Nz « o

:

eliminating x, y, z and Ai, we get the determinant equation

9,

h, b - u, f, M
g. f, c-u, N
L, M, JV,

o. (2)

The roots of this quadratic determine the maximum and
minimum values of u.

The preceding result enables us to determine the principal

radii of curvature at a given point on a surface whose equa-

tion is given in rectangular co-ordinates.
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Again, the term independent of w in this determinant \&

evidently

a, hy g, L

K h, /, M
9, fy c, N
X, M, N, o

and the coefficient of w' is U + M"^ + iV^ Accordingly, the

product of the roots of the quadratic (2) is equal to the frac-

tion whose numerator is the latter determinant, and denomi-

nator U + M"^ + iV^ From this can be immediately deduced

an expression for the measure of curvature* at any point on a
surface.

• Salmon'fl Geometry of Three Dimensions, Art. 295.
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Examples.

I. Find the miniinum value of

where x\y 0:2, .. . Xn are subject to the condition

W-

2. Find the maximum value of

where the variables are subject to the condition

ax + by + cz=p-ir q + r.

Ans. mrc^Y-
3. If tan - tan - = m, find when s^n P - « sin is a maximum.

4. Find the mayimum value of {x + i) (y + i) (z + i) where a* bv c* = A.

{\og{Aabc)Y
Ans.

27 log a . log b . log c

5. Find the volume of the greatest rectangular parallelepiped inscribed in
the ellipsoid whose equation is

a;2 y* z* ^8 abe

«-^n-^+3i = '- ^'"- 3-7-5-

6. Find the maximum or the minimum values of «, being given that

tt = aV + i2y2 ^ fa£i^ jc2 + y2 -H z* = I, and to + my + «z = o.

Proceeding by the method of Art. 1 67, we get

tt^x + \x + fjil = o, b'^xj + \t/ { fim = o, c^z + ?<z -t fin = o.

Again, multiplying by x, y, «, respectively, and adding, we get \ = - u.

.'. (u — a^) x = fJ, (u - i*) y = fan, (u — c^) z = fin.

Hence, the required values of u are the roots of the quadratic

n + r: +- : = O.
u - a' u —
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X* V* c'
7. Given -5 + 7^ + -= » I, and Ix -i- my { m = o, find when «' + y* + «* ia a

o' b^ tr

maximum or minimum. Proceeding, as in the last example, we get the qiiadratio

a'/« b^m* «»n>
= 0,

M -a» « -A» «

This question can be at once reduced to the last by substituting in our equations
MX, by, and cs, instead of x, y, t.

8. Of all triangular pyramids having a given triangle for base, and a given
altitude above that base, find that whose surface is least.

Ans. Value ofminimum surface is V^**^ + p\ where a, 5, e repre-

sent the sides of the triangular base ; r, the radius of its inscribed circle ; and p,
the given altitude.

JI. Divide the quadrant of a circle into three parts, such that the sum of the

ucts of the sines of every two shall be a maximum or a minimum ; and
determine which it is.

10. Of all polygons of a given number of sides circumscribed to a circle, the

regular polygon is of minimum area? For, let <^i, ^2, . . . <l>n be the external

angles of the polygon, then the area can be easily seen to be in general

r«(tan^ + tan^ + ... + tan^"),

where <ffi + <pz . . . + <pn = 2t,

Hence, for a minimum, ^1 = ^2 = </>3 = . . . = <^,..

11. Of all polygons of a given number of sides circumscribed to any closed

oval cture which has no singular points, that which has the minimum area

touches the curve at the middle point of each of the sides.

12. Given the ratio sin ^: sin 4^, and the angle 6, find when the ratio

sin
(<f) + e): sin (i^ + 0) is a maximum or a minimum. Am. ^ + «|^ = d.

13. Required the dimensions of an open cylindrical vessel of given capacity,

so that the smallest possible quantity of material shall be employed in its con-
struction, the thickness of the base and sides being given.

Aru. Its altitude must be equsl to the radius of its base.

14. Show how to determine the maximum and minimum values of «*+y*+«'
subject to the conditions

(«^ + y* + z»)« = a'a;» + 4«y« + «««»,

lx + my + nz = o,

P 2
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CHAPTEE XII.

TANGENTS AND NORMALS TO CURVES.

1 68. Equation of tbe Tangent.—If (a?, y), [xi, yi), be tlie

co-ordinates of any two points, P, Q, taken on a curve, and
if (X, T) be any point on the y
line which joins P and Q ; then

the equation of the line PQ is

Y-y = {X-x)
Xi - x^

in which X and Y represent the ^

current co-ordinates. ^^s* ^•

If now the point Q be taken infinitely near to P, the line

PQ becomes the tangent at the point P, and, as in Art. lo,

we have for its equation

r-2, = (x-<.)l.
dx*

(0

where X, Y are the co-ordinates of any point on the line,

and X, y those of its point of contact.

For example, to find the equation of the tangent to the

curve

aJ^^T = «"^.

Takirg the logarithmic differentials of both sides, we get

n may
X y ax

dy_

dx mx^

and the equation of the tangent becomes

nX mY— + = m + f».

X y
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If we make X« o, and F= o, separately, we get //

and y for the lengths of the intercepts made by the

tangent on the axes of x and y, respectively. This result

furnishes an easy geometrical method of drawing the tangent

at any point on a curve of this class.

If m = I, n « I, the preceding equation represents a

hyperbola ; if m = 2, and n = - i, it represents a parabola.

169. If the equation of the curve be of the form

f(x, y) = o, and if /(«, y) be denoted by tt, we have from
Art. 100,

du

dx du*

dy

and hence the equation of the tangent becomes

(^-^)^(^-^)|-- (^)

The points on the curve at which the tangents are

parallel to the axis of x must satisfy the equation —- = o

;

ax
they are accordingly given by the intersection of the curve,

dill ___
tt = o, with the curve whose equation is — = o. The y co-

ax
ordinates at such points are evidently in general either

maxima or minima.
Similar remarks apply to the points at which the tangents

are parallel to the axis of y.

To find the tangents parallel to the line y = mx-vn. The
points of contact must evidently satisfy

du du _
dx dy

The points of intersection of the curve represented by
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this equation with the given curve are the points of contact

of the system of parallel tangents in question.

The results in this and the preceding Article evidently
apply to oblique as well as to rectangular axes.

Examples.

1. To find the equation of the tangent to the ellipse

du _2x du _ 2y

and the required equation is

xX yj_x^ y2_^
a»

"^
A»

~
a2

"^
42
- '•

2. find the equation of the tangent at any point on the curve

— + |- = I. Am. ——- + -|— = I.

3. If two curves, whose equations are denoted hy m = o, «' = o, intersect in

a point [Xj y), and if w be their angle of intersection, prove that

du dx4 du' du

dx dy dx du
tan a = ^

du die du du

dx dx dy dy

4. Hence, if the curves intersect at right angles, we must have

du du' du du'

dx dx dy dy
~

5. Apply this to find the condition that the curves

^- y
-2 + ^a '' a'2"'"d'2 '

ahould intersect at right angles. Ans. a^ -li^- a'* - V\
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1 70. Equation of IVornial.—Since the normal at any
l)oint on a curve is perpendicular to the tangent, its equation,

when the co-ordinate axes are rectangular, is

{T-y)'^.X

or '>
dx

y)

X = Oy

X). (3)

The points at which normals are parallel to the line

1/ = mx + n are given by aid of the equation of the curve u = o
along with the equation

du

dy
m
du

dx

Examples.

I. Find the equation of tlie normal at any point («, y) on the ellipse

Am.
X y

1. Find the equation of the normal at any point on the curve

ym = ax^. Am. nTt/ + mXx = ny^ ^ ^^^a.

171. H^abtangent and Subnormal.—In the accom-
panying figure, let PT repre- y
sent the tangent at the point P,
PiV' the normal; OM, Pif the

co-ordinates at P ; then the

lines TM and MN are called

the subtangent and subnormal 0'

corresponding to the point P. Fig. 9.

To find the expressions for their lengths, let = Z PTM,

then
PM ^ dy

MN
FM tan = -7-,

^ dx

W
dx

TU-KT ^y
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The lengths oi FT and PN are sometimes called the

lengths of the tangent and the normal at P: it is easily

seen that

'hW)
dx

Examples.

1. To find the length of the subnormal in the ellipse

dy h^
Here yS'-?"'

the negative sign signifies that MN is measured from M in the negative

direction along the axis of ar, i.e. the point N lies between Jif and the centre ;

as is also evident from the shape of the curve.

2. Prove that the subtangent in the logarithmic curve, y = a«, is of constant

length.

3. Prove that the subnormal in the parabola, y^ = 2mXj is equal to m.

4. Find the length of the part of the normal to the catenary

intercepted by the axis of «. Am.—.

5. Find at what point the subtangent to the curve whose equation is

xy'^ = a^ (a — x)

. a
18 a maximum. Ana. « = -, y = a.

172. Perpendicular on Tangent.—^Let p be the length

of the perpendicular from the origin on the tangent at any
point on the curve

F{iv, y) = c,
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7

then the equation of the tangent may be written

X cos u) + JT Bin to = py

where a> is the angle which the perpendicular makes with

the axis of x.

Denoting F (j?, y) by w, and comparing this form of the

equation with that in (2), and representing the common value

of the fraction by X,

du du du du

dx dy dx di/ .

we get = I = '" = A.° cos (o sm a> «

Hence A
t_fduy fduV

du duX— + y
-f-

and p = ^———JL^,
(4)

J(£)"*^SJ
Cor. If F{x, y) be a homogeneous expression of the n^^

degree in x andy, then by Euler's formula, Art. 102, we have

du du
''^^^^ = ""="'''

and the expression for the length of the perpendicular
becomes in this case

fiC

j/duV fduV

173. In the curve

af* y^

to prove that

m m m
p^-^ = {a cos o))"*-^ + (6 sin a»)"»^^ (5)
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By Ex. 2, Art. 169, the equation of the tangent is

comparing this with the form

X cos w + y sin 01 =
J!?,

cos li) x*^^ sin <o V"*"*we get = —-

,

= -rzry

I _1_

sin wX"*"^ y
or

. \ y(fl cos oj\*""^ X (b sin

p J "a' \ p

Hence, substituting in the equation of the curve, we obtain

the result required.

174. liocns of Foot of Perpendicular for the same
Curve.—Let X, Fbe the co-ordinates of the point in ques-

X Y
tion, and we have, evidently, cos w = — , sin w = — : substi-

tuting these values for cos a> and sin o> in (5), it becomes

m

{X" + F'^)*^^ = {aX)"^-' + {h F)'»-S

since p"^ = X^ + F*.

175. Another Form of the Equation to a Tan-
gent.—If the equation of a curve of the n^^ degree be

written in the form

i^{x, y) = Un-V Un.\ + Un-t + . . . + W2 + Wi + Wo = O,

where w„ denotes the homogeneous part of the n^^ degree in

the equation, ?/„_i that of the [n - i)''*, &c.; then, by Cor.

Art. 103, we have

^"T + y-T- = - {^f^l + 2W„«2 + &c . . . + WWo).
dx dy
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Henoe the equation of the tangent in Art. 169 becomes

X-^ + F~ + '/„., ^ zun^i -^ . . . + wwo = o
; (6)

dx dy
y

\ f

an equation of tho (n - i)'* degree in x and y.

176. IVuniber of Tangents from an External
Point.—To find the number of tangents which can be
drawn to a curve of then^'^ degree from a point (a, /3), we sub-

stitute a for X, and j3 for F in (6) , and it becomes

a^ + /3^ + w„-x + 211,^2 + . . . + nuo = 0. (7)

This represents a curve of the {n - lY^ degree in x and i/y

and the points of its intersection with the given curve are the

Eoints of contact of all the tangents which can be drawn
rom the point (a, j3) to the curve. Moreover, as two curve*

of the degrees n and n - i intersect in general in n {n ~ i)

points, real or imaginary (Salmon's Conic Sections, Art. 214),

it foUows that there can in general be n{n - i ) real or

imaginary tangents drawn from an external point to a curve

of the w** degree.

If the curve be of the second degree, equation (7) be-

comes
d(b ^dd)

dx '^ dy

an equation of the first degree, which evidently represents-

the polar of (a, j3) with respect to the conic.

In the curve of the third degree

«3 + Wa + Wx + Wo = o,

equation (7) becomes

d6 -dth

which represents a conic that passes through the points of
contact of the tangents to the curve from the point (a, |3).

This conic is called the polar conic of the point. For tho
origin it becomes

Hi + 2lll + 3tig = o.
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177. Mumber of IVornials \vhicli pass through a
€iiven Point.—If a normal pass through the point (a, )3),

we must have from (3),

.du du
(a-^)^=0-2,)^.

This represents a curve of the n^^ degree, v^^hich intersects the

given curve in general in n^ points, real or imaginary, the

normals at which all pass through the point (a, /3).

For example, the points on the ellipse

at which the normals pass through a given point (a, /3),

are determined by the intersection of the ellipse with the

hyperbola
xy (a^ - h^) = a^ay - b^^x.

For the modification in the results of this and the pre-

ceding article arising from the existence of singular points on
the curve, the student is referred to Salmon's Higher Plane
Curves^ Arts. 66, 67, iii.

178. Differential of the Are of a Plane Curve.
Direction of the Tangent.—If the length of the arc of a

curve, measured from a fixed point A on it, be denoted by s,

then an infinitely small portion of it is represented by ds.

Again, if 0' represent the angle QPL (fig. 8), we have

, PL ^ . , QL

but in the limit, PL = dx, QL == dy, and P^ = ds* and also

0' becomes PTX, or ^ (fig. 9).

* In Art. 37 it has been proved that the difference between the length of an
infinitely small arc and its chord is an infinitely small quantity of the second

order in comparison with the length of the chord; i.e. — is infinitely

small of the second order, and therefore this fraction vanishes in the limit

Hence 7-7- = i, ultimately.
ord FQ
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Henoe

cos = -r, 61U
an da

squaring and adding, we get

Hence, also, we have

ds^ = dx^ + df/y

(8)

(9)

and therefore

d'i

S dx"
(io>

On account of the importance of these results, we shall

give another proof, as follows :

—

Let, as before, PR be the tangent to the curve at the

point P,

OJf=a-, PM=y,
MN=FL=Ax, QL = Ay.

L PTX = 0, arc PQ = 2^5,

Then, if the curvature of

the elementary portion PQ
of the curve be continuous,

we have evidently the line

PQ<arcPQ<Pi2+Qi2; r m n

Fig. 10.

or v^x^ + ^y* < A« < Aa; see + Ay - Aa; tan
;

•'• J' +
(
T^

) <-r- < sec A + -^ - tan 0.
Ax Ax

Again, in the limit -^ = -7- = tan A, and Ji + ( —

)

Ax dx ^ S \^^J
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"becomes J^ +
[-f-]

or sec ^ ; accordingly each of the pre-

ceding expressions converges to the same limiting value, and

we have 3" = J ^ + 1
3^ • 5 which establishes the required

result.

179. Polar Co-ordinates.—The position of any point

in a plane is determined when its distance from a fixed point

called a pole, and the angle which that distance makes with a

fixed line, are known ; these are called the polar co-ordinates

of the point, and are usually denoted by the letters r and 9.

The fixed line is called the prime vector, and r is called the

radius vector of the point.

The equation of a curve referred to polar co-ordinates is

generally written in one or other of the forms,

-=/(0), ori^(r,0)=o,

according as r is given explicitly or implicitly in terms of Q,

Also, if be positive when measured above the prime vector,

it must be regarded as negative when measured helow it.

1 80. Angle between Tangent and Radius ITector.

Let be the pole, P and Q two near
points on the curve, PM a perpendicular

on OQ, OP = r, POX = 6, and \P the

angle between the tangent and radius

vector. Then
PM PM

tan OQP=^, sin OOP =-p^,

cos OQP = -pr-p- : but in the limit whenQP Fig. II.

Q and P coincide, the angle OQP
becomes equal to \p, and*

QM dr PM rdO
, ,,

PQ =
ds^ ^ = -^, at the same time;

,
dr . ^ rdO . , rdO . .

or cosi/. = — , sm^i. = — , tan;/;=—

.

(11)

* These results can be easily established from Art. 37.
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Polar Subtangent and Subnormal.

frdSy (dr\

223

(12)

Hence, also, we can determine an expression for the
differential of an arc in polar co-ordinates ; for, since

QM' ~ ^ "^

QM^'

we get, on proceeding to the limit.

or

ds _ I

d?~ "j
I +

dr"
'

r'def^
(13)

These results are of importance in the general theoiy of

curves.

181. Application to the liOgarithiuic Spiral.—
The curve whose equation is r = a*' is called the logarithmic

spiral. In this curve we have

. , rdS I

tan u/ '—-r- = ^ .

dr log a

Accordingly, the angle between the radius vector and the

tangent is constant. On account of this property the curve

is also called the equiangular spiral.

182. Polar l^ubtangent and Subnormal.—Through
the origin let ST be drawn perpendi- g
cular to OP, meeting the tangent in T,

and the normal in S. The lines OT and
OS are called the polar subtangent and
subnormal, for the point P. To find

their values, we have
r^dfi

OT = OP tan OPT=r tan ;/,
=

OS = OP tan OPS = rcot^p =

dr

dr

dO'

Also, if
du

Fig. 12.

(14)
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Again, if ON be drawn perpendicular to PT, we have

PN^ OP cos xp^r^. (15)

183. Expression for Perpendicular on Tangent.—
As before, let p = ON, then

. , r'*d9
p = r Bm\p = -—-

;

, i__ ds^
__

dr^ + r^dO^ _ dr^ i

or ?--<W- '"

The equations in polar co-ordinates of the tangent and
the normal at any point on a curve can be found without

difficulty : they have, however, been omitted here, as they

are of little or no practical advantage.

Examples.

I. To find the length of the perpendicular from a focus on the tangent to an

ellipse.

The focal equation of the curve ia

a(i - (?2) I - ^008

I -ecosfl' a(i -e»)

du eBind

dd a{i -e')

I _ I + g^ - 2g cos e _ I /2« _ \

''P ~ «' (I - ^^P
~ a*{i-e^)\r /'

3. Prove that the polar subnormal is constant, in the curve r^aO; and the

DOlar Bubtangent, in the curve rfl = a.
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184. Inverse Curves.—If on any radius vector OPy
drawn from a fixed origin 0, a point P' be taken such that

the rectangle OP . OP is constant, the point P' is called the

inverse of the point P ; and if P describe any curve, P'

describes another curve called the inverse of the former.

The polar equation of the inverse is obtained immediately

from that of the original curve by

substituting - instead of r in its

equation ; where k^ is equal to the

constant OP . OF,
Again, let P, Q be two points,

and P', Q the inverse points ; then

since OP , OF ^ OQ . 0Q[, the

four points P, Q, Q', P', lie on a

circle, and hence the triangles

OQP and OP'Q are equiangular
;

^^^' ''^'

, ^ ^OP ^ OP . OQ ^ OP. OQ
•*• FQ' ~ 0Q:~ OQ. OQ' ~

k' '
^^^^

Again, if P, Q be infinitely near points, denoting the

lengths of the corresponding elements of the curve and of its

inverse by ds and ds, the preceding result becomes

*=J*'- (18)

185. Dlreetlon of the Tangent to an Inverse
Carve.—Let the points P, Q belong to one curve, and P', Q'

to its inverse ; then when P and Q coincide, the lines PQ,
P^Q[ become the tangents at the inverse points P and F :

again, since the angle SPF = the angle SQ'Q, it follows that

the tangents at P and P' form an isosceles triangle with the

line PF.
By aid of this property the tangent at any point on a

curve can be drawn, whenever that at the corresponding

point of the inverse curve is known.
It follows immediately from the preceding result, that if

two curves intersect at any angle, their inverse curves intersect at

the same angle,

Q
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1 86. £quatioii to tbe Inverse of a Griven Curve.

—

Suppose the curve referred to rectangular axes drawn through
the pole 0, and that x and y are the co-ordinates of a point P
on the curve, X and Y those of the inverse point P' ; then

X~ OF' OF^ " Z^+ r^'
similarly y' X^ ^^ Y^'

hence the equation of the inverse is got by substituting

and ^
sc^ + y"^ y? >r

y"^

instead of x and y in the equation of the original curve

Again, let the equation of the original curve, as in Art.

174, be

Hn + Un.\ + Wn-2 + . . . + t^2 + Wi + t^o = O.

l^X ¥y
When ~ r and , ; are substituted for x and y, tin

sr + y^ x^ ¥ y*

becomes evidently -t-t—^»
{x'-\-y^Y

Accordingly, the equation of the inverse curve is

A:'"Wn + Ai^'^-'wn.i {x^ + y"") + ^'"-*w„_2 (a;^ + y'^f + . . .

+ Wo(^' + y')'* = o. (19)

For instance, the equation of any right line is of the form

Wi + Wo = o

;

hence that of its inverse with respect to the origin is

khh + Uq {x^ + y^) = o.

This represents a circle passing through the pole, as is

well known, except when Uq = o ; i.e. when the line passes

through the pole 0.

Again, the equation of the inverse of the circle

with respect to the origin, is

{k' + k'u,^u,{^^f)){a^ + y')=o,

which represents another circle, along with the two imaginary

right lines x^ -^ y"^ ^ o.
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Again, the general equation of a conic is of the form

Ma + ttt -
'-/o

= o

;

hence that of its inverse with respect to the origin is

k'u, + ieu,{x' + y>) + «o(«» + fY - o,

which represents a curve of the fourth degree of the class

called " bicircular quartics."

If the origin be on the conic the absolute term Wo vanishes,

and the inverse is the curve of the third degree represented

by
A-Vj + Ui {x^ + ^) = o.

This curve is called a " circular cubic."

If the focus be the origin of inversion, the inverse is a
rurve called the Limacon of Pascal. The form of this curve
will be given in a subsequent Chapter.

187. Pedal Carves.—If from any point as origin a per-

pendicular be drawn to the tangent to a given curve, the locus

of the foot of the perpendicular is called the jf?^G?a/ of the curve
with respect to the assumed origin.

In like manner, if perpendiculars be drawn to the tan-

gents to the pedal, we get a new curve called the secondpedal
of the original, and so on. With respect to its pedal, the
original curve is styled the first negative pedal, &c.

188. Tangent at any Point to the Pedal of a
given Corve.—Let ON, ON'
be the perpendiculars from the

origin on the tangents drawn
at two points F and Q on the

given curve, and T the intersec-

tion of these tangents
;
join NN';

then since the angles ONT and
ON'T are right angles, the qua-
drilateral ONN'T is inscribable

in a circle,

.-. lON'N^lOTN.

In the limit when P and Q coincide, Z OTN = Z OPN,
and NN' becomes the tangent to the locus of N\ hence the

Q 2
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latter tangent makes the same angle with ON that the

tangent at P makes with OP. This property enables us

to draw the tangent at any point N on the pedal locus in

question.

Again, if p' represent the perpendicular on the tangent at

N to the first pedal, from similar triangles we evidently have

r-t
P"

. . ...
Hence, if the equation of a curve be given in the form

r.=f{p), that of its first pedal is of the form^ =f(p)i ^
which p and p' are respectively analogous to r and p in the
original curve. In like manner the equation of the next
pedal can be determined, and so on.

189. Reciprocal Polars.—Ifon the perpendicular ON
a point P' be taken, such that OP'. ON is constant (k'^ sup-

pose), the point P' is evidently the pole of the line PiVwith
respect to the circle of radius k and centre ; and if all the

tangents to the curve be taken, the locus of their poles is a
new curve. We shall denote these curves by the letters A
and P, respectively. Again, by elementary geometry, the

point of intersection of any two lines is the pole of the line

joining the poles of the lines.* Now, if the lines be taken as

two infinitely near tangents to the curve A, the line joining

their poles becomes a tangent to B ; accordingly, the tangent
to the curve B has its pole on the curve A. Hence A is the

locus of the poles of the tangents to B.

In consequence of this reciprocal relation, the curves A and
B are called reciprocal polars of each other with respect to the

circle whose radius is k.

Since to every tangent to a curve corresponds a point on
its reciprocal polar, it follows that to a number of points in

directum on one curve correspond a number of tangents to its

reciprocal polar, which pass through a common point.

Again, it is evident that the reciprocal polar to any curve

is the inverse to its pedal with respect to the origin.

We have seen in Art. 1 76. that the greatest number of tan-

gents from a point to a curve of the n^^ degree is w (» - i)

;

Townsend'a Modern Geometry^ vol. i., p. 219.
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hence the greatest number of points in which its reciprocal

polar can be cut by a line is n(n - i), or the degree of the

reciprocal polar is n{n- i). For the modification in this

resist, arising from singular points in the original curve, as

well as for the complete discussion of reciprocal polars, the

student is referred to Salmon's Higher Plane Curves.

As an example of reciprocal polars we shall take the curve

considered in Art. 173.

If r denote the radius vector of the reciprocal polar cor-

responding to the perpendicular p in the proposed curve, we
have

Substituting this value iov p in equation (5), we get

m m
m-1 . m-l

cos <u) ^ {p Bin to>)
,(£f..

or A;"*-^ = (ar)'*-» + {hy^-^

which is the equation of the reciprocal polar of the curve re-

presented by the equation

if"* y**

In the particular case of the ellipse,

the reciprocal polar has for its equation

The theory of reciprocal polars indicated above admits of

easy generalization. Thus, if we take the poles with respect

to any conic section ( TJ) of all the tangents to a given curve

<4, we shall get a new curve B ; and it can be easily seen, as

before, that the poles of the tangents toB are situated on the

curve A. Hence the curves are said to be reciprocal polars

with respect to the conic 27".

It may be added, that if two curves have a common point,
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their reciprocal polars have a common tangent; and if the

curves touch, their reciprocal polars also touch.

For illustrations of the great importance of this " principle

of duality," and of reciprocal polars as a method of investi-

gation, the student is referred to Salmon's Conies, ch. xv.

We next proceed to illustrate the preceding by discussing

a few elementary properties of the curves which are comprised

under the equation r'" = «'" cos mO.

190. Pedal and Reciprocal Polar of r*" = a^'^co^mQ,

We shall commence by finding the -^

angle between the radius vector and
the perpendicular on the tangent.

In the accompanying figure we

have tan PON = cot OFN = - -^.
rdO

Fig. 15.

But m log r = m log a + log (cos mO)
;

dr
hence —Tn = - tan md,

rdd

and accordingly, Z PON ^ mO. (20)

Again, p = 0N= r cos md = —^,
a

or r*"+^ = a"*^. (21)

The equation of the pedal, with respect to 0, can be im-

mediately found.

For, let lAON = a>, and we have

u - (m + i)0.

Hence, the equation of the pedal is

Also, from (21),
\aj \a

j^mn ^ ^mn cQs I ]. (22)
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1

Consequently, the equation of the pedal is got by substi-

tutincr instead of m in the equation of the curve.
^ m + 1

By a like substitution the equation of the second pedal is

easily seen to be

•am+i _ „im^i mO
a*'""' cos

2m + I

and that of the n'* pedal

9nn + I ^ '

Again, from Art. 1 84, it is plain that the inverse to the

curve r™ = a"* cos mO, with respect to a circle of radius a, is

the curve r^ cos md = fl*".

Again, the reciprocal polar of the proposed, with respect

to the same circle, being the inverse of its pedal, is the curve

r"*'co8 = fl'"*'. (24)m+ I
^

It may be observed that this equation is got by substitut-

ing for m in the original equation.

Accordingly we see that the pedals, inverse curves, and
reciprocal polars of the proposed, are all curves whose equa-
tions are of the same form as that of the proposed.

In a subsequent chapter the student wfll find an additional

discussion of this class of curves, along with illustrations of

their shape for a few particular values of m.

Examples.

I. The equation of a parabola referred to its foctis as pole is

r (i + cosfl) = 2a,

to find the relation between r and p.

a

Here H cos - = a*, and consequently jp^ = ar,

a well-known elementary property of the curve.
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2. The equation r^ cos 20 = a- represents an equilateral hyperbola; prove
that pr = a*.

3. The equation r' = a^ cos 2$ represents a Lemniscate of Bernoulli ; find

the equation connecting p and r in tiiis case. Ans. r^ = a^p.

4. Find the equation connecting the radius vector and the perpendicular on
the tangent in the Cardioid whose equation is

r = a(i + cos e). Ans. r^ = lap^.

It ia evident that the Cardioid is the inverse of a parabola with respect to

its focus ; and the Lemniscate that of an equilateral hyperbola with respect to

its centre. Accordingly, we can easily draw the tangents at any point on either

of these curves by aid of the Theorem of Art. 185.

5. Show, by the method of Art. 188, that the pedal of the parabola, p* = ar,

M'ith respect to its focus, is the right line p = a.

6. Show that the pedal of the equilateral hyperbola jBr = a' is a Lemniscate.

7. Find the pedal of the circle r* = lop. Ana. A Cardioid, r^ = 2ap\

191. Expression for PN.—To find the value of the

intercept between the point of

contact P and the foot iV of

the perpendicular from the

origin on the tangent at P.

Let p = ON,a> = L NOA,
PN= t\ then l NTN'=lNON'
= Aa),also SN'^ TS sin STN;

smNON

limit, when PQ is infinitely small, -:

—

tttttf/ becomes -^,

and TS becomes PN or t :

'-'£ <•=)

Also OP' = ON' + PIP;

192. To prove thai

ds dt /^^x
y-=P+7-. (27)
au) a(jj
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On reference to the last figure we have

— = limit of , -J-
= limit of ;

but Pr+ JQ - QiV" + PN= TN- TN';

hence 3— 3- = limit of = limit of— = ON=p\
aw au) A(u Atu

Js dt

(tvJ Clot

'This result, which is due to Legendre, is of importance in

the Integral Calculus, in connexion with the rectification of

curves.

If — be substituted for t, the preceding formula becomes

ds (Pp . _.—. ^ p ^ -£. (28)

This shape of the result is of use in connexion with curva-

ture, as will be seen in a subsequent chapter.

193. Direction of ]%'orinal in Yectorial Co-ordi-
nates.—In some cases the equation of a curve can be
expressed in terms of the distances from two or more fixed

points or foci. Such distances are called vectorial co-ordi-

nates. For instance, if n, ra denote the distances from two
fixed points, the equation rx-^ r% = count, represents an ellipse,

and ri - rj = const., a hyperbola.

Again, the equation

ri + mrt = const.

represents a curve called a Cartesian* oval.

Also, the equation

ri r2 = const.

represents an oval of Cassini, and so on.

The direction of the normal at any point of a curve, in

such cases, can be readily obtained by a geometrical con-

struction.

• A discussion ot tne principal properties of Cartesian ovals will be found
in Chapter XX.
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For, let ^^^^
F{ri, r^ = const. A^f^^

be the equation of the curve, where
E \

F,P = r,, FJP^n. y^
then we have ^^ Fa

Fig 17.

dri ds dr-i ds

Now, if PTbe the tangent at P, then, by Art. 1 80, we have

dv df
-r-^ = cos \pi, -^ = COS t/»2, where 1//1 = z jTPPi, ^1 = l TPF^,
US CIS

IT dF , dF , , ,Hence — cos ^1+^7 cos 1/.3 = o. (29)

Again, from any point E on the normal draw BL and
EM respectively parallel to P2P and PxP, and we have

PL : LR = sin RPM : sin EPL = cos if^z : - cos xjji

_dF
^
d_F

dri ' dri

Accordingly, if we measure on PPi and PP2 lengths

PL and PIT, which are in the proportion of —— to -z-, then
clr\ dr^

the diagonal of the parallelogram thus formed is the normal
required.

This result admits of the following generalization :

Let the equation of the curve* be represented by

P(n, n, ^3, . . . rn) = const.,

The theorem given above is taken from Poinsot's Elements de StatiquCy

Neuvieme Edition, p. 435. The principle on which it was founded was, how-
ever, given by Leibnitz {Journal des Savans, 1693), and was deduced from
mechanical considerations. The term resultant is borrowed from Mechanics,

and is obtained by the same construction as that for the resultant of a number
of forces acting at the same point . Thus, to find the resultant of a number of

lines Fa, Fb, Fc, Fd^ . . . issuing from a point F, we draw through a a right

line a£, equal and parallel to Fb, and in the same direction; through B, a right

line BC, equal and parallel to Fc, and so on, whatever be the number of lines:

then the line FF, which closes the polygtm, is the resultant in question.
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where ri, r,, . . . r„ denote the distances from n fixed points.

To draw the normal at any point, wo connect the point with

the n fixed points, and on the joining linos measure off

lengths proportional to

dF dF dF dF ,. ,

17: d?: ^,,...,77^, respectively;

then the direction of the normal is the resultant of the lines

thus determined.

For, as before, we have

dFdj\ dFdj^ dFdr^_
dvx ds dr2 ds '

' *
cfr„ ds

dF dF dF
Hence -r- cos ;//i + 3- cos i/^a + . . .3— cos (//„ = o. (30)

drx dr^ dr^

dF dF dF
Now, -;— cos i//i, T cos ;//3, . . .

—- cos ;!„,
drx drt ^ dr^

are evidently proportional to the projections on the tangent

of the segments measured off in our construction. Moreover,

in any polygon, the projection of one side on any right line

is manifestly equal to the sum of the projections of all the

other sides on the same Kne, taken with their proper signs.

Consequently, from (30), the projection of the resultant on
the tangent is zero ; and, accordingly, the resultant is normal
to the curve, which establishes the theorem.

It can be shown without difficulty that the normal at any
point of a surface whose equation is given in terms of the

distances from fixed points can be determined by the same
construction.

Examples.

I. A Cartesian oval is the locus of a point, P, such that its distances, PJl^
PJf', from the circumferences of two given circles are to each other in a constant

ratio
;
prove geometrically that the tangents to the oval at P, and to the circles

at M and M'y meet in the same point.

1. The equation of an ellipse of Cassini is r/ = oi, where r and / are the
distances of any point Pon the curve, from two fixed points, A and B. If

he the middle point oi AB, and Pythe normal at P, prove that L AFO= L BFN.

3. In the curve represented hy the equation r^ + r-^ = «', prove that the
norinal divides the distance between the foci in the ratio of r% to n.
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194. In like manner, if the equation of a curve be given
in terms of the angles 0i, 02, . . . ^n, which the vectors (£awn
to fixed points make respectively with a fixed right line, the
direction of the tangent at any point is obtained by an analo-
gous construction.

For, let the equation be represented by

F(Q,, 0„ . . . 6^„) = const

Then, by differentiation, we have

dJldQ, dFdO^ dFden_
dSxds'^ dOtds

'^"^
dOn ds

~ °*

Hence, as before, from Art. t8o, we get

I dF . , I dF . , \ dF , ,

Accordingly, if we measure on the lines drawn to the fixed

points segments proportional to

i_dF i_dF i_dF

7,dd,' 7,d9z''"7nddr:

and construct the resultant line as before, then this line will

be the tangent required. The proof is identical with that of

last Article.

195. Curves Siymmetrical with respect to a liine,

and Centres of Curves.—It may be observed here, that

if the equation of a curve be unaltered when 1/ is changed
into - ij, then to every value of x correspond equal and oppo-

site values of y; and, when the co-ordinate axes are rect-

angular, the curve is symmetrical with respect to the axis of a*.

In like manner, a curve is symmetrical with respect to

the axis of y, if its equation remains unaltered when the sign

of X is changed.

Again, if, when we change x and y into - x and - y, re-

spectively, the equation of a curve remains unaltered, then

every right line drawn through the origin and terminated by
the curve is divided into equal parts at the origin. This

takes place for a curve of an even degree when the sum of
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1110 indices of x and y in eacli term is even ; and for a curve

of an odd degree when the like sum is odd. Such a point is

called the centre* of the ctirre. For Jistance, in conies, when
the equation is of the iorm

ax^ + ihxy + hi/ = c,

the origin is a centre. Also, if the equation of a cubicf be
reducible to the form

tt8 + «i = o,

the origin is a centre, and every line drawn through it is bi-

sected at that point.

Thus we see that when a cubic has a centre, that point

lies on the curve. This property holds for all curves of an
odd degree.

It should be observed that curves of higher degrees than
the second cannot generally have a centre, for it is evidently

impossible by transformation of co-ordinates to eliminate the
requisite number of terms from the equation of the curve.

For instance, to seek whether a cubic has a centre, we substi-

tute X + a for a-, and J" + j3 for y, in its equation, and equate

to zero the coefficients of X', XYond F% as well as the abso-

lute term, in the new equation : as we have but two arbitrary

constants (a and j3) to satisfy four equations, there will be
two equations of condition among its constants in order that

the cubic should have a centre. The number of conditions is

obviously greater for curves of higher degrees.

• For a general meaning of the word " centre," as applied to curves of

higher degrees, see Chasles's Apercu Historiquey p. 233, note.

t This name has been given to curves of the third degree by Dr. Salmon,
in his Hiijher Plane Curves^ and has been generally adopted by subsequent
V liters on the subject.
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Examples.

I. Find the lengths cfthe suhtangent and subnormal at any point of the
•curve

V" = flw-ijj. Ans. nx, ^-.
nx

2, Find the suhtangent to zhe curve

nx

3. Find the equation of the tangent to the curve

x^ = rt'y». Ans.
X y

4. Show that the points of contact of tangents from a point (o, $) to the

curve

are situated on the hyperbola (m + «)a;v = *i^^ + niay.

5. In the same curve prove that tfce nortion of the tangent intercepted be-

tween the axes is divided at its point 01 contact into segments which are to each

other in a constant ratio.

6. Find the equation of the tangent at any point to the hypocycloid, a;S + yS

= al ; and prove that the portion of the tangent intercepted between the axes is

of constant length.

7. In the curve a:" + y" = a**, find the length of the perpendicular drawn
from the origin to the tangent at any point, and find also the intercept made by
the axes on the tangent.

Ans. p =
; intercept

8. If the co-ordinates of every point on a curve satisfy the equations

a; = c sin 26(1 + cos 20), y = c cos 26(1 — cos 2d),

prove that the tangent at any point makes the angle 6 with the axis of x.

9. The co-ordinates of any point in the cycloid satisfy the equations

x = a{d -sine), y = a(i-co8 0):

prove that the angle which the tangent at the point makes with the axis of y
. 6
18 -.

2
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„ dy de ^9
n,r, _=_=COtj.

10. Prove that the locus of the foot of the perpendicular from the pole on
the tangent to an equiangular spiral is the same curve turned through an angle

1 1

.

Prove that the reciprocal polar, with respect to the origin, of an equi-

angular spiral is another spiral equal to the original one.

IS. An equiangular spiral touches two given lines at two given points
; prove

that the locus of its pole is a circle.

13. Find the equation of the reciprocal polar of the curve

rJ cos - = «J,

Q
with respect to the origin. Ans. The Cardioid r* = ai cos -.

14. Find the equation of the inverse of a conic, the focus heing the pole of

inversion.

15. Apply Art. 184, to prove that the equation of the inverse of an ellipse

with respect to any origin is of the form

^ap = OFi . pi + OFz . pj,

where Fi and F2 are the foci, and p, pi, 02 represent the distances of any point
on the curve from the points 0, /i and /j, respectively ; /i and ft heing the
points inverse to the foci, Fi and F2.

16. The equation of a Cartesian oval is of the form

r + Jcr' = a,

where r and r' are the distances of any point on the curve from two fixed points,

and 0, k are constants. Prove that the equation of its inverse, with respect to

any origin, is of the form

api -^ H'»: * "vjg = o,

where pi, ps, P3 are the distances of any point on the curve from three fixed
points, and o, i8, 7 are constants. .

17. In general prove that the inverse of the curve

opi + 3pi -1- 7P3 = o,

with respect to any origin, is another curve whose equation is of similar form.

18. If the radius vector, OP, drawn from the origin to any point Pon a
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curve be produced to Pi, until PP\ be a constant length ; proye that the normal
at Pi to the locus of Pi, the normal at P to the original curve, and the perpen-
dicular at the origin to the line OP, all pass through the same point.

This follows immediately from the value of the polar subnormal given in

Art. 182.

19. If a constant length measured from the curve be taken on the normals
along a given curve, prove that these lines are also normals to the new curve
which is the locus of their extremities.

a?* y* .

20. In the ellipse -5 "•" t* = I, if a; = a sin ^,

prove that

—
- = a\/i - ^ sin^A.

21. If rf* be the element of the arc of the inverse of an ellipse with respect

to its centre, prove that

, a *y \ — e^ sin^ a , , a* - A*
rf« = A;2 - 1. —^ dib, where n = .. .

32. If w be the angle which the normal at any point on the ellipse

— + 1^ = I makes with the axis-major, prove that

, *> dm

23. Express the differential of an elliptic arc in terms of the semi-axis major,

/li, of the confocal hyperbola which passes through the point.

Am \^-jl_.•\
..2.2 _..//*•

24. In the curve r»» = o"» cos mC, prove that

fW-I

a sec *" mQ.

25. If P(iP, y) = o be the equation to any plane curve, and ^ the angle be-

tween the perpendicular from the origin on the tangent and the radius vector to

tiie point of contact, prove that

tan^

dF dF
^ dx i,i

dF UF'
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CHAPTER XIII.

ASYMPTOTES.

196. Intersection of a Curve and a Right liine.—
Before entering on the subject of this chapter it will be ne-

cessary to consider briefly the general question of the inter-

section of a right line with a curve of the 11^^ degree.

Let the equation of the right line be y = /uar + v, and sub-

stitute fix -^ V instead of y in the equation of the curve ; then
the roots of the resulting equation in x represent the abscissce

of the points of section of the line and curve.

Moreover, as this equation is always of the n*^ degree, it

follows that every right line meets a curve of the n*^ degree in n
points f real or imaginary ^ and cannot meet it in more.

If two roots in the resulting equation be equal, two of the

points of section become coincident, and the line becomes a
tangent to the curve.

Again, suppose the equation of the curve written in the

form of Art. 175, viz.

:

then, since Un is a homogeneous function of the w'* degree in

X and y, it can be written in the form ^"/of ); similarly

u«-i = a^-Vi(A Un., = a^V. (A &c.
\XJ \XJ

And accordingly, the equation of the curve may be written,

*-/og) + ^y.g) + x-y.(g + &c. = o. (I)

Substituting /x + - for - in this, it becomes
X X
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Or, expanding by Taylor's Theorem,

a^/o(;u) + x"-^ [v/.W +/. (m) ) + ^-^
{ ^^ v'f;'(ji) + v/.'(m) +/.(;«)

)

+ &c. = o. (2)

The roots of this equation determine the points of section in

question.

We add a few obvious conclusions from the results arrived

at above :

—

1°. Every right line must intersect a curve of an odd de-

gree in at least one real point ; for every equation of an odd
degree has one real root.

2°. A tangent to a curve of the n^^ degree cannot meet it

in more than n - 2 points besides its points of contact.

3°. Every tangent to a curve of an odd degree must meet
it in one other real point besides its point of contact.

4°. Every tangent to a curve of the third degree meets

the curve in one other real point.

197. Definition of an Asymptote.—An asymptote is

a tangent to a curve in the limiting position when its point

of contact is situated at an infinite distance.

1". No asymptote to a curve of the n^^ degree can meet it

in more than n - 2 points distinct from that at infinity.

2°. Each asymptote to a curve of the third degree inter-

sects the curve in one point besides that at infinity.

198. jfletliod of finding the Asymptotes to a Curve
of tlie n*^ Degree.—If one of the points of section of the

line y = jux + V with the curve be at an infinite distance, one

root of equation (2) must be infinite, and accordingly we
have in that* case

/oW = O. (3)

Again, if two of the roots be infinite, we have in addition

"/.'(i") +/W = o. (4)

This can be easily established by aid of the reciprocal equation ; fqo^ if we

substitute - for x in equation (2), the resulting equation in z will have one root
z

zero "wnen its absolute term vanishes, i.e., when/o()u) = o ; it has two roots

zero when we have in addition vfo'i/j.) +fi(/j) = o ; and so on.
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Accordingly, when the values of fi and v are determined

80 as to satisfy the two preceding equations, the correspond-

ing line

y = /Lca? + V

meets the curve in two points in infinity, and consequently is

an asymptote. (Salmon's Coriic Sections, Art. 154.)

Hence, if /it 1 be a root of the equation /©(^u) = o, the line

is in general an asymptote to the curve.

If /i(ju) = o and/o(ju) = o have a common root (jUi suppose),

the corresponding asymptote in general passes through the

origin, and is represented by the equation

y = fi\X.

In this case w„ and w^^i evidently have a common factor.

The exceptional case when fo{fi) vanishes at the same
time will be considered in a subsequent Article.

To each root of fo{ix) = o corresponds an asymptote, and
accordingly,* every curve of the n^ degree has in general n
asymptotes, real or imaginary.

From the preceding it follows that every line parallel

to an asymptote meets the curve in one point at infinity.

This also is immediately apparent from the geometrical

property that a system of parallel lines may be considered

as meeting in the same point at infinity—a principle intro-

duced by Desargues in the beginning of the seventeenth

century, and which must be regarded as one of the first

important steps in the progress of modem geometry.
CoR. No line parallel to an asymptote can meet a curve

of the n*^ degree in more than [n - i) points besides that

at infinity.

Since every equation of an odd degree has one real

root, it follows that a curve of an odd degree has one real

* Since /oOu) is of the »'* degree in /x, unless its highest coefficient vanishes,
in which case, as we shall see, there is an additional asymptote parallel to the axis
of y.

Tl 2
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asymptote, at least, and has accordingly an infinite branch
or branches. Hence, no curve of an odd degree can he a closed

curve.

For instance, no curve of the third degree can be a finite

or closed curve.

The equation foin) = o, when multiplied by a^, becomes
f«„ = o ; consequently the n right lines, real or imaginary,
represented by this equation, are, in general, parallel to the

asymptotes of the curve under consideration.

In the preceding investigation we have not considered

the case in which a root of /©(ju) = o either vanishes or is

infinite; i.e., where the asymptotes are parallel to either

co-ordinate axis. This case will be treated of separately in a

subsequent Article.

If all the roots of /o(ju) = o be imaginary the curve

has no real asymptote, and consists of one or more closed

branches.

Examples.

To find the asymptotes to the following curves :—

1. y' = ax* + sfi.

Substituting /xj; + v for y, and equating to zero the coefiBcients of x^ and a^,

separately, in the resulting equation, we obtain

^8 — I = o, • and iti^v = a ;

a

hence the curve has but one real asymptote, viz.,

a
y = a? + -,

3

2. ^ - «* + 2ax*y = S'jfl.

Here the equations for determining the asymptotes are

^4 _ I = o, and 4fjL^if + 2a(i = o

;

accordingly, the two real asymptotes are

a . a
y = a; - -, and y + a; + - = o.

3. x^ + ix^y - x\p- - zy^ + x^ - 2xy + 3^2 + 4a; + 5 = o.

X % I 3
Ans. y + -4-- = o, y = a;+-, y-^x = -.

3 4 4 a
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199. Case In which Un = o represents the n Asymp-
totes.—If tho equation of the curve contain no terms of

the (n - i)'* degree, that is, if it be of the form

Un + Ww-a + tln_3 4- &0. . . . + tti + Wo = O,

the equations for determining the asymptotes become

/oOu) = o, and v/o'Ou) = o.

The latter equation gives v = o, unless /o'(iu) vanishes along

\7ith/o(/u), i.e., unless /o(/ii) has equal roots.

Hence, in curves whose equations are of the above form,

the n right lines represented by the equation Un = o are the

n asymptotes, unless two of these lines are coincident.

This exceptional case will be considered in Art. 202.

The simplest example of the preceding is that of the

hyperbola

or* + 2hxy + hy^ = 0,

in which the terms of the second degree represent the asymp-
totes (Salmon's Conic Sections, Art. 195).

Examples.

Find the real asymptotes to the curves

1. xy« - x«y = a*(x + y) + i*. Ans. a: = o, y = o, x — y = o.

2. y^ - 3^ = a-x. „ y - x = 0.

3. X* - y* = a-xy + i2y». ^^ a; + y = o, a? - y = o.

200. Asymptotes parallel to the Co-ordinate
Axes.—Suppose the equation of the curve arranged accord-

ing to powers of x, thus

Oo** + {ttiy + h)(if^~^ + &c. = o
;

then, if Oo = o and a^y + b = o, or y = , two of the roots

of the equation in x become infinite ; and consequently the
line fli^ + 6 = o is an asymptote.
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In other words, whenever the highest power of x is

wanting in the equation of a curve, the coefficient of the

next highest power equated to zero represents an asymptote
parallel to the axis of x.

If Uq = o, and 5 = o, the axis of x is itself an asymptote.
If af^ and af^~^ be both wanting, the coefficient of x^'"^ re-

presents a pair of asymptotes, real or imaginary, parallel to

the axis of x ; and so on.

In like manner, the asymptotes parallel to the axis of y
can be determined.

Examples.

Find the real asymptotes in the following curves :

—

1. y^x - ay2 = a;^ + ax^ + b^. Ans. x = a^ y = x + a, y + a; + a = o.

2. y(a:2 - 2^^ + 2*2) = sfi - ^ax^ + a', x = 6, z - 2by 1/ + -^a = x + ^b.

3. a;2y« = a^ {x^ + y'i), x = ±a, i/ = ±a.

4. x^y* = a^^x"^ - y«). y+a = o, y - a = o,

5. y-a -y^x = x^. z = a.

201. Parabolic Branches.—Suppose the equation

/o(/u) = o has equal roots, then/o'(jL£i) vanishes along with/o(ju),

and the corresponding value of v found from (5) becomes in-

finite, unless /i(/u) vanish at the same time.

Accordingly, the corresponding asymptote is, in general,

situated altogether at infinity.

The ordinary parabola, whose equation is of the form

{ax + fiyY = Ix + my + n,

furnishes the simplest example of this case, having the

line at infinity for an asymptote. (Salmon's Conic Sections,

Art. 254.)

Branches of this latter class belonging to a curve are

called parabolic, while branches having a finite asymptote are

called hyperbolic.

202. From the preceding investigation it appears that

the asymptotes to a curve of the n^^ degree depend, in

general, only on the terms of the n*^ and the {71 - lY^ degrees
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ia its equation. Consequently, all curies which have the

same terms of the two highest degrees have generally the same

asymptotes.

There are, however, exceptions to this rule, one of which

will be considered in the next Article.

203. Parallel AsyniiitoteH.—We shall now consider

the case where /o(/i) = o has a pair of equal roots, each repre-

'^onted by /ii, and where /i(/ii) = o, at the same time.

In this case the coefficients of af* and af^~^ in (2) both

vanish independently of v, when fx = fxx\ we accordingly

infer that all lines parallel to the line y = fiiX meet the curve

in two points at infinity, and consequently are, in a certain

sense, asymptotes. There are, however, two lines which are

more properly called by that name ; for, substituting jui for ju

in (2), the two first terms vanish, as already stated, and the

coefficient of ar""* becomes

:p^/."(/i>) + v/i'(m.) +AM-

Hence, if vi and vt be the roots of the quadratic

^fo'M + /.'(/'.) +AM = o), (6)

the lines y = fiiX + v,, and y = iixX + vz,

are a pair of parallel asymptotes, meeting the curve in three

points at infinity.

If the roots of the quadratic be imaginary, the corre-

sponding asymptotes are also imaginary.
Again, if the term Un-\ be wanting in the equation, and

if /o(At) = o have equal roots, the corresponding asymptotes
are given by the quadratic

I . 2
fo\n\) +A{fJii) = o.

In order that these asymptotes should be real, it is

necessary that/2(;ii) and ./o''(//i) should have opposite signs.

There is no difficulty in extending the preceding investi-

gation to the case where /o(/x) = o has three or more equal
roots.
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Examples.

1. {X + y)» (a;2 + y2 + ^cy) = a^y"^ + «s(a: - y).

Here /o{m) = (i + /t)2(i +/* + /*'), /i(m) = o, fzifji) = - a'fi^

;

.'. Ml = - I, /o" (iui) = 2, /2 (/ii) = - a3

;

accordingly vi = a, »'2 = - «,

and the corresponding asymptotes are

f/ + X - a = o, and y + x + a = o.

The other asymptotes are evidently imaginary.

2. a;» (a; + y)^ + 2a!/'^{z + y) + 8a2a:y + a^y = o.

Here /,(/*)= (i + /t)^ /lO^) = 2^/i'(i + m), Mfi) = Sa^fi;

.'. Ml = - I, /o"(m) = 2, /i'Cmi) = 2a, /2(mi) = - 8a»,

and the corresponding asymptotes are

y + a; - 2a = o, and y + « + 4a = o.

204. If the equation to a curve of the w'* degree be of

the form

Xp + aa; + j3) 01 + 02 = o,

where the highest terms containing x and y in 0i are of the

degree w - i , and those in 0a are of the degree w - 2 at most,

the line

y + ax + j5 = o

is an asymptote to the curve.

For, on suhsMtuting - ax- (3 instead of y in the equation,

it is evident that the coejQBcients of x^ and a;'^^ both vanish

;

hence, by Art. iq8, the line 3/ + aa* + j3 = o is an asymptote.

Conversely, it can be readily seen that ii y + ax + (5 he an
asymptote to a curve of the n^^ degree its equation admits of

being thrown into the preceding form.

In general, if the equation to a curve of the n^^ degree

be of the form

(y + aix + j3,) {y + 022; + jSz) . . . (y + anX + j3„) + 02 = o, (7)
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where 03 contains no term higher than the degree » - 2, the

lines

y + aiir + /3i = o, y + a^r + /Sa = o, . . . y + a„aJ + j3» = o

are the w asymptotes of the curve.

This follows at once as in the case considered at the com-
mencement of this Article.

For example, the asymptotes to the curve

xy (x + y -\- a^{x -\- y -\- Oz) + biX + b^ = o

are evidently the four lines

X = 0, y = o, X + y + ai = o, x + y + 02 = o.

If the curve be of the third degree, ^2 is of the first, and
accordingly the equation of such a curve, having three real

asymptotes, may be written in the form

{y + aia; + j3i)(y+a2ar+/32)(y+ azfc + jBz) + Ix-i-my + n = o. (8)

Hence we infer that the t/rree points in which the asymp-

totes to a cubic meet the curve lie in the same right line, viz.,

Ix -^^ my -^ n = o.

The student will find a short discussion of a cubic with

three real asymptotes in Chapter xviii.

205. To prove that, in general, the distance of a point

in any branch of a curve from the corresponding asymptote

diminishes indefinitely as its distance from the origin increases

indefinitely.

If y + aa? + j3 = o be the equation of an asymptote, then,

as in the preceding Article, the equation of the curve may be

written in the form

{y -\- ax + /3) 01 = 02,

where 02 is at least one degree lower than 0i in a; and y.
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Hence y + aa; + /3 = —

,

and tlie perpendicular distance of any point (a?o, yo) on the
curve from the line 2/ + aa; + j3 = o is

yo ¥ aXo-\- fi
-, or

where the suffix denotes that Xq and ya are substituted for x
and y in the functions ^i and 02-

Now, when Xq and yo are taken infinitely great, the value
of the preceding fraction depends, in general, on the terms
of the highest degree (in x and y) in ^i and 02 ; and since the

degree of <Pi is one lower than that of ^i, it can be easily

seen by the method of Ex. 7, Art. 89, that the fraction —

becomes, in general, infinitely small when x and y become
infinitely great. Hence, the distance of the line y + ax + ^
from the curve becomes infinitely small at the same time.

It is not considered necessary to go more fully into this

discussion here.

The subject of parabolic and other curvilinear asymptotes
is omitted as being unsuited to an elementary treatise.

Moreover, their discussion, unless in some elementary cases,

is both indefinite and unsatisfactory, since it can be easily

seen that if a curve has parabolic branches, the number of its

parabolic asymptotes is generally infinite. The reader who
desires full information on this point, as well as the discussion

of the particular parabolas called osculating, is referred to a

paper by M. Pliicker, in Liouville's Journal, vol. i., p. 229.

206. Asymptotes in Polar Co-ordinates.—If a

curve be referred to polar co-ordinates, the directions of its

points at an infinite distance from the origin can be in gene-

ral determined by making r = 00, or m = o, in its equation,

and solving the resulting equation in 9. The position of the

asymptote corresponding to any such value of 6 is obtained

by finding the length of the corresponding polar subtangent,

i.e., by finding the value of — corresponding to w = o.
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It should be observed that when — is positive, the asymp-

tote lies above the corresponding radius vector, and when
negative, below it ; as is easily seen from Art. 182.

If we suppose the equation of the curve, when arranged

iu powers of /•, to be

r"/o(e) + r-/,(9) + . . . + r/^,(e) +/„(») = o,

the transformed equation in « is

«"/.(e) + «-/^,(e) + . . . + «/.{9) +/,(«) = o : (9)

consequently, the directions of the asymptotes are given by
the equation

/o(e) = o. (10)

Again, if we differentiate (9) with respect to 0, it is easily

seen that the values of -^^ corresponding to w = o are given

by the equation

provided that none of the functions

MO), MO), . . .MB)

become infinite for the values of Q which satisfy equation (10).

Consequently, if a be a root of the equation ./o(0) = o, the

curve has an asymptote making the angle a with the prime
vector, and whose perpendicular distance from the origin is

represented by - 7^^.
/oia)

It is readily seen that the equation of the corresponding
asymptote is

rsm(a-0) +-^ = 0.

This method will be best explained by applying it to one
or two elementary Examples.
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Examples.

I. Let the curve be represented by the equation

Here u -

r - a sec 6 -V b tan 0.

COS0

a + d sin d

„„ IT , , rfi* — I

When = -, -we have m = o, and —-
= -,

2 de a + b

Accordingly, the corresponding polar subtangent is a + S, and hence the line

perpendicular to the prime vector at the distance a + b from the origin is an
asymptote to the curve.

Again, u vanishes also when Q = — , and the corresponding value of the

polar subtangent ha a — b\ thus giving another asymptote.

3* r = a sec W0 + i tan mQ,

cos me
Here « =

a + A sin mB

When =—, we have t* = o, and -r- = :

,

whence we get one asymptote.

Again, when e = -, « = o, and- = -—̂,

which gives a second asymptote.

On making 6 = — , we get a third asymptote, and so on.
2m

It may be remarked, that the first, third, . . . asymptotes all touch one

fixed circle; and the second, fourth, &c., touch another.

3. Find the equations to the two real asymptotes to the curve

r28in(0 — a) + ar sin {6 — ^a) + a'^ = o.

Ans. r sin (0 - a) = + a sin a.

207. Asymptotic Circles.—In some curves referred to

polar co-ordinates, when is infinitely great the value of r

tends to a fixed limiting value, and accordingly the curve
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approaches more and more nearly to the circular form at the

same time : in such a case the curve is said to have a circular

asymptote.

For example, in the curve

aB

80 long as & 18 positive r is less than a, a being supposed

positive; but as 8 increases with each revolution, r con-

tinually increases, and tends, after a large number of revo-

lutions, to the limit a ; hence the circle described with the

origin as centre, and radius «, is asymptotic to the curve,

which always lies inside the circle for positive values of 9.

Again, if we assign negative values to 6, similar remarks are

applicable, and it is easily seen that the same circle is asymp-
totic to the corresponding branch of the curve ; with this

difference, that the asymptotic circle lies icithin the curve in

the latter case, but outside it in the former. The student

will find no difficulty in applying this method to other

curves, such as

aO aO' ri{0 + cos 0)— r = "* ~

e-ishid* G' + a'* d + sin 6/
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Examples.

Find the equations of the real asymptotes to the following curves :

—

1. y(a2 _ x^) = i-(2a; + e). Ans. y = o, a; + a = o, a?-a = o.

2. rr* - arip' + a-z' + i^ = o. x + i/ = 0, x — y=o, x = o.

3. x* — ic-y2 + a;2 + jr* - a2 = o. a;-c=o, ar+i = o, ar-y = o, a; + y = o.

4. (a + a:)- (5^ — z') = <c-ip: x = o.

5. (a + a:)2(52 + x^) = x^y^, x = Oji/ = x + a, r/ + x + a = o.

6. 0^1/ — zx^y^ + ary' = a'^x^ + J'^y^. a: = o, y=o, a; — y = 4: v «' + 6^.

7. x^ — 4a:y> — sa:^ + i2a:y - i2y* + 8a; + 2y + 4 = o.

^«*. X + 3 = o, a; - 2y = o, a: + 2y = 6.

8. a;2y* - ax{x + y)^ - 2a*y^ _ a« = ©. a; + 2a = o, a; - a = o.

9. If the equation to a curve of the third degree be of the form

tts + «i + Mo = o,

the lines represented by «3 = o are its asymptotes.

10. If the a83anptotes of a cubic be denoted by = 0, /3 = o, 7 = 0, the

equation of the curve may be written in the form

0)87 = ^a f i'jS + C«y.

1 1. In the logarithmic curve

ar

V = «*»

prove that the negative side of the axis of a; is an asymptote.

12. Find the asymptotes to the curve

r cos nQ = a.

13. Find the asymptotes to

r cos mQ = a cos nO.

14. Show that the curve represented by

x^ + ahy - axy = o

has a parabolic asymptote, x^ -^ hx -v h^ = ay.
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15. Find the circular asymptote to the curve

~
fl f a

'

16. Find the condition that the three asymptotes of a cuhic should pass

through a common point.

Let the equation of the curve be written in the form

oo + 3*0* + Zhy + 3«ox' + 6tfixy + zeiy^ + rfo** + id^x^y + id^xy'^ + igy* = o,

then the condition is

do, di, rfji

du dij dzj

^0, <?i, ^2,

This result can be easily arrived at by substituting x+ a and y + j8 instead

of X and y in the equation of the cubic, and finding the condition that the part

of the second degree in the resulting equation should vanish. See Art. 204.

17. When the preceding condition is satisfied show that the co-ordinates,

a and 0, of the point of intersection of the three asymptotes, are given by the

equations

__ e\di — cpd^ _ cpdi — cidp

" ~ dod2 - di^ * ^ " dodi-di^'

1 8. If from any point, 0, a right line be drawn meeting a curve of the «**

degree in 5i, i?2, . . • Hn, and its asymptotes in ri, r2, . . . /»., prove that

01ii + 0S2+ . . . 0Bn=0ri + 0ri+ . . . Orn.

N.B.—The terms of the «'* and (n - i)'* degrees aie the same for a curve

and its asymptotes.

19. If a right line be drawn through the point (a, 0) parallel to the asymptote
of the cubic {z - a)^ — z^y = o, prove that the portion of the line intercepted by
the axes is bisected by the curve.

10. If from the origin a right line be drawn parallel to any of the asymptotes

of the cubio

y{ax^ + 2hxy + by* + igx + 2/^ + c) - «5 = o,

show that the portion of this line intercepted between the origin and the line

^45 +/y + <J = o is bisected by the curve.

21. If tangents be drawn to the curve a;* + y' = a' from any point on the

line y = X, prove that their points of contact lie on a circle.

12. Show that the asymptotes to the cubic

as^y + bxy^ + a'x^ + b'y* + a"x + b"y = o

uro always real, and find their equations.

Am. bx + b' = 0, ay + a* = o,

ab{ax + by) - d^hf ~a'b'^ = o.
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CHAPTEE XIY.

MULTIPLE POINTS ON CURVES.

208. In the following elementary discussion of multiple

points of curves tlie method given by Dr. Salmon in his

Higher Plane Curves has been followed, as being the simplest,

and at the same time the most comprehensive method for

their investigation. The discussion here is to be regarded as

merely introductory to the more general investigation in that

treatise, to which the student is referred for fuller information

on this as well as on the entire theory of curves.

We commence with the general equation of a curve of the
«** degree, which we shall write in the form

+ Joa; + hy

+ C(>r* + Cixy + c^y*

+ &c. + &c.

+ Iffic^ + hx^'^y + &o. + hy*^ = o,

where the terms are arranged according to their degrees in

ascending order.

When written in the abbreviated form of Art. 175, tho

preceding equation becomes

We commence with the equation in its expanded shape,

and suppose the axes rectangular. Transforming to polar
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co-ordinates, by substituting r cos and r sin instead of

X and y, we get

Oo + {boCOsB + 61 BmB)r

+ (co cos'0 + c, cos sin + c^ sin'0) r + . . .

+ (/„cos"0 + /,cos"-»d sinO + . . . + /„sin"0)r" = o. (i)

If be considered a constant, the n roots of this equation

in r represent the distances from the origin of the n points

of intersection of the radius vector with the curve.

If Oo = o» o^® ^^ these roots is zero for all values of 0; as

is also evident since the origin lies on the curve in this case.

A second root will vanish, if, besides a^ = o, we have

b^ cos + bi sin = o. The radius vector in this case meets

the curve in two consecutive points* at the origin, and is

consequently the tangent at that point.

The direction of this tangent is determined by the

equation
boCoaO + bismO =0;

accordingly, the equation of the tangent at the origin is

b(flp + bip = o.

Hence we conclude that if the absolute term be wanting

in the equation of a curve, it passes through the origin, and
the linear part (wi) in its equation represents the tangent at

that point.

If 60 = o> t^6 ^^8 of a; is a tangent ; if ^1 = o, the axis

of y is a tangent.

The preceding, as also the subsequent discussion, equally

applies to oblique as to rectangular axes, provided we sub-

stitute mr and wr for x and 1/ ; where

sin (u)-6) , sin
m =—^ -, and n =

;sm (jj sin to

ijj being the angle between the axes of co-ordinates.

From the preceding, we infer at once that the equation of

the tangent at the origin to the curve

x"" (x' + y") = a (a? - y)

• Two points which are infinitely close to each other on the same branch of
a curve are said to be consecutive points on the curve.

S
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is a; - 3/ = o, a line bisecting the internal angle between the
co-ordinate axes. In like manner, the tangent at the origin

can in all cases be immediately determined.

209. dquation of Tangent at any Point.—By aid

of the preceding method the equation of the tangent at any
point on a curve whose equation is algebraic and rational

can be at once found. For, transferring the origin to that

point, the linear part of the resulting equation represents the

tangent in question.

Thus, if /(;r, y) = ohQ the equation of the curve, we sub-

stitute X + iTi for a;, and Y { yx for y, where {xiy y^j is a

point on the curve, and the equation becomes

Hence the equation of the tangent referred to the new axes is

On substituting x - Xi, and y - yi, instead of X and F, we
obtain the equation of the tangent referred to the original

axes, viz.

(^-^Ol?) +(y-yi)
df

This agrees with the result arrived at in Art. 169.

210. Double Points.—If in the general equation of a
curve we have a^ = 0, h^ = o, ^1 = o, the coefficient of r is

zero for all values of 0, and it follows that all lines drawn
through the origin meet the curve in two points, coincident

with the origin.

The origin in this case is called a double point.

Moreover, if ^ be such as to satisfy the equation

Cq cos^0 + Cicos sin + c^ sin^0 = o, (2)

the coefficient of r^ will also disappear, and three roots of

equation (i) will vanish.

As there are two values of tan Q satisfying equation (2), it

follows that through a double point two lines can be drawn,

each meeting the curve in three coincident points.
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The equation (2), when multiplied by r\ becomes

CqX^ + Cxxy + c-ii/^ = o.

Hence we infer that the lines represented by this equa-

tion connect the double point with consecutive points on the

curve, and are, consequently, tangents to the two branches of

the curve passing through the double point.

Accordingly, when the lowest terms in the equation of a
curve are of the second degree (wo), the origin is a double
point, and the equation 1^ = represents the pair of tangents at

that point.

For example, let us consider the Lemniscate, whose equa^
tion is

On transforming to polar co-ordinates its equation becomes

r* = a^r (cos^0 - sin^0), or, r^ = a^ cos 2d.

Now, when = o, r = ± a

;

and, if we confine our atten-

tion to the positive values of

r, we see that as Q increases

from to -,
4

r diminishes

from a to zero. When >

and
37r

r is imaginary, &c.. Fig. 18.

and it is evident that the figure of the curve is as annexed,
having two branches intersecting at the origin, and that the

tangents at that point bisect the angles between the axes.

The equations of these tangents are

X + y = o, and x - y = o,

results which agree with the preceding theory.

211. IVodes, Cusps, and Conjugate Points.*—The
pair of lines represented by «2 = o will be real and distinct,

coincident, or imaginary, according as the roots of equa-
tion (2) are real and unequal, real and equal, or imaginary.

* These have been respectively styled crunodes, spinodes, and acnodcs^ by
Professor Cayley. See Salmon's Higher Plane Curves, Art. 38.

8 2
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Hence we conclude that there may be one of three kinds
of singular point on a curve so far as the vanishing of Uq and Ui

is concerned.

(i). For real and unequal roots, the

tangents at the double point are real

and distinct, and the point is called a

node; arising from the intersection of

two real branches of the curve, as in

the annexed figure.

(2). If the roots be equal, i.e. if u^ pj ,

be a perfect square, the tangents coin-

cide, and the point is called a cusp : the

two branches of the curve touching each

other at the point, as in figure 20.

(3). If the roots of u^ be imaginary,

the tangents are imaginary, and the

double point is called a conjugate or '^* *°'

isolatedpoint ; the co-ordinates of the point satisfy the equation

of the curve, but the curve has no real points consecutive to

this point, which lies altogether outside the curve itself.

It should be observed also that in some cases of singularities

of a higher order, the origin is a conjugate point even when ih

is a perfect square, as will be more fully explained in a sub-

sequent chapter.

We add a few elementary examples of these different

classes for illustration.

Examples.

I. y2 (^2 + a;2) = x^ {a^ X*

Here the origin is a node, the tangents bisecting the angles between the axes of

co-ordinates.

2. «y2 = a;3.

In this case the origin is a cusp. Again, solving for y we get

Hence, if a be positive, p beeomes imaginary for negative values of x ; and,

accordingly, no portion of the curve extends to the negative side of the axisof a:»

Moreover, for positive values of x, the corresponding values of y have opposite

signs. This curve is called the stmi-cubical parabola. The form of the curve

near the origin is exhibited in Fig. 20.
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An$. The origin ia a onsp.

Ans. The origin is a conjugate point.

5. «* - Saj'y + y* = o.

^«M. The two branches at the origin touch the co-ordinate axes.

212. Double Points In Oeneral.—In order to seek

the double points on any algebraic curve, we transform the

origin to a point (a*i, px) on the curve ; then, if we can deter-

mine values of iTi, yi for which the linear part disappears from
the resulting equation, the new origin (ari, 2/1) is a double point

on the curve.

From Art. 209 it is evident that the preceding conditions

give

(D,—HI),
moreover, since the point (2?i, 1/1) is situated on the curve,

we must have

As we have but two variables, x^ yi, in order that they
should satisfy these three equations simultaneously, a con-

dition must evidently exist between the constants in the

equation of the curve, viz., the condition arising from the

elimination of a^i, pi between the three preceding equations.

Again, when the curve has a double point {x^^ y,), if the

origin be transferred to it, the part of the second degree in

the resulting equation is evidently

^(£V^^^
fd'u\ J(Pu\

Accordingly, the lines represented by this quadratic are
the tangents at the double point.

The point consequently is a node, a cusp, or a conjugate
point, according as

/ (Pn V . fcPH\ f(r-u\
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It may be remarked here that no cubic can have more
than one double point ; for if it have two, the line joining

them must be regarded as cutting the curve in four points,

which is impossible.

Again, every line passing through a double point on a cubic

must meet the curve in one, and but one, other point ; ex-

cept the line be a tangent to either branch of the cubic at

the double point, in which case it cannot meet the curve else-

where; the points of section being two consecutive on one 1

branch, and one on the other branch.

In many cases the existence of double points can be seen

immediately from the equation of the curve. The following

are some easy instances:

—

Examples.

To find the position and nature of the double points in the following

curves :

—

1. {bx — cyY = {x — o)^.

ab
The point x = a, y = — , is evidently a cusp,

at which bx - cy = o\i the tangent, as in the

accompanying figiu-e

2. {jy-eY = {x-aY{x-b),

The point a: = a, y = <?, is a cusp if a > J, or

Ma=b; but is a conjugate point if « < ^.

3. y"^ = x{x + a)2.

The point y = o, a; = -ai8a conjugate point.

4. a:! + yi = at.

The points a:= o, y = + « ; and y = o, a; = + a, are easily seen to be cusps.

213. Parabolas of the Third Degree.—The follow-

ing example* will assist the student towards seeing the dis-

tinction, as well as the connexion, between the different kinds

of double points.

Let y^ = (^ - (i) {^ -'^) {^ - ^)

be the equation of a curve, where a<h < c.

Lacroix, Cal. Dif., pp. 395-7. Siilmon's Higher Plane Curves, Art. 39.
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Here y vanishes when a? = fl, or a: = ft, or x=c; accordingly,

if distances OA = a, OB = ft, 00 = c, be taken on the axis of

r, the curve passes through the points A, B^ and C.

Moreover, when x < a, y' is negative, and therefore

y is imaginary.

,,
x> a^ and < ft, 2/' is positive, and therefore

y is real.

„ j; > ft, and < c, y^ is negative, and therefore

y is imaginary.

„ x> c, y"' is positive, and therefore

y is real ; and

increases indefinitely along with x.

Hence, since the curve is sym-

metrical with respect to the axis of

Xy it evidently consists of an oval

lying between A and B, and an

infinite branch passing through

C, as in the annexed figure. It

is easily shown that the oval is

not symmetrical with respect to

the perpendicular to AB at its

middle point. Again, if ft = c, the

equation becomes

y'^{x-a){x-'h)\

In this case the point B co-

incides with C, the oval has

joined the infinite branch, and
B has become a double point,

as in the annexed figure. Fig. 23.

On the other hand, let h = a^ and the equation becomes

y' = {x-ay{x-c)\

in this case the oval has shrunk

into the point A, and the curve

is of the annexed form, having

A for a conjugate point.

Next, let « = ft = c, and the

equation becomes
,1 _ {x-aY

Fij. J4.
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here the points A, B, C, have
come together, and the curve

lias a cusp at the point -4, as in

the annexed figure.

The curves considered in

this Article are called parabolas Fig. 25.

of the third degree.

As an additional example, we shall investigate the fol-

lowing problem :

—

214. Given the three asymptotes of a cubic, to find its equa-

tion j if it have a double point.

Taking two of its asymptotes as axes of co-ordinates, and
supposing the equation of the third to be aa? + Jy + c = o, the

equation of the cubic, by Art. 204, is of the form

xy [ax + by + c) = Ix + my + n.

Again, the co-ordinates of the double point must satisfy

the equations

du du

or (2ax + by + c) y = I, {ax + 2by + c) x = m;

from which / and m can be determined when the co-ordinates

of the double point are given.

To find w, we multiply the former equation by x, and the

latter by //, and subtract the sum from three times the equa-

tion of the curve, and thus we get

cxy = 2lx + 2my + ^n
;

from which n can be found.

In the particular case where the double point is a cusp,*

its co-ordinates must satisfy the additional condition

d'u d'u ( d'^u \-

ds^ dy^ \dxdyj

or {zax + 2by + cf = /\abxy,

and consequently the cusp must lie on the conic represented

by this equation.

• It is essential to notice that the existence of a cusp involves one more
relation among the coefficients of the equation of a curve than in the case of an
ordinary double point or node.
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It can be easily seen that this conic* touches at their

middle points the sides of the triangle formed by the asymp-
'

. 'tes.

The preceding theorem is due to Pliicker,t and is stated

by him as follows :

—

** The locus of the cusps of a system of curves of the third

degree, which have three given lines for asymptotes, is the

maximum ellipse inscribed in the triangle formed by the

given asymptotes."

It can be easily seen that the double point is a node or a

conjugate point, according as it lies outside or inside the

above-mentioTied ellipse.

215. Multiple Points of Higher Curves.—By follow-

ing out the method of Art. 208, the conditions for the existenco

of multiple points of higher orders can be readily determined.

Thus, if the lowest terms in the equation of a curve be of

the third degree, the origin is a triple point, and the tangents

to the three branches of the curve at the origin are given by
the equation W3 = o.

The different kinds of triple points are distinguished,

according as the lines represented by t/3 = o are real and
distinct, coincident, or one real and two imaginary.

In general, if the lowest terms in the equation of a curve

be of the m'^ degree, the origin is a multiple point of the m^^

order, &c.

Again, a point is a triple point on a curve provided that

when the origin is transferred to it the terms below the third

degree disappear from the equation. The co-ordinates of a
triple point consequently must satisfy the equations

dii du dru d^u d^u
"=°' 5;=°' ^=°' «^=°' d^r°' df'°-
Hence in general, for the existence of a triple point on a

curve, its coefficients must satisfy four conditions.

The complete investigation of multiple points is effected

* From the form of the equation we see that the lines z = o, y = o are
tangents to the conic, and that 2ax + 2by + c = o represents the line joining the
points of contact ; but this line is parallel to the third asymptote ax + 4y + c = o,

and evidently passes through the middle points of the intercepts made by this
asymptote on the two others.

t Liouvillea Journal^ vol. ii. p. 14.
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more satisfactorily by introducing the method of trilinear co-

ordinates. The discussion of curves from this point of view is

beyond the limits proposed in this elementary Treatise.

215 {a). Cusps, in Creneral.—Thus far singular points

have been considered with reference to the cases in which
they occur most simply. In proceeding to curves of higher
degrees they may adiait of many complications ; for instance

ordinary cusps, such as represented in Fig. 20, may be called

cusps of the first species, the tangent
lying between both branches : the cases in

which both branches lie on the same side,

as exhibited in the accompanying figure,

may be called cusps of the second species. „. .

Professor Cayley has shown how this is
^^'

to be considered as consisting of several singularities happen-
ing at a point (Salmon's Higher Plane Curves^ Art. 58).

Again, both of these classes may be called single cusps,

as distinguished from double cusps extending on both sides of

the point of contact. Double cusps are styled tacnodes by
Professor Cayley. These points are sometimes called points

of osculation ; however, as the two branches do not in general

osculate each other, this nomenclature is objectionable. It

should be observed that whenever we use the word cusp with-

out limitation, we refer to the ordinary cusp of the first species.

Cusps are calledpoints de rehroussement by French writers,

and R'uckkehrpimkte by Germans, both expressing the turning
backwards of the point which is supposed to trace out the

curve; an idea which has its English equivalent in their

name of stationaryjmnts. A fuller discussion of the different

classes of cusps will be given in a subsequent place. We
shall conclude this chapter with a few remarks on the multiple

points of curves whose equations are given in polar co-ordi-

nates.

Examples.

1. {y-x^Y = xK
Here the origin is a cusp ; also

y = a;2 + x^
;

hence, whenar is less than unity, both values ofy are positive, and consequently
the cusp is of the second species.

2. Show that the origin is a double cusp in the curve

a;* + bx^ - a^y"^ = o.
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216. multiple PolntH of Curves In Polar Co-ordl-

nateM.—If a curve referred to polar co-ordinates pass through

the origin, it is evident that the direction of the tangent at

that point is found by making r = o in its equation ; in this

ease, if the equation of the curve reduce to f{d) = o, the

resulting value of gives the direction of the tangent in

question.

If the equation /(0) = o has two real roots in 0, less than tt,

the origin is a double point, the tangents being determined

by these values of d.

If these values of Q were equal, the origin would be a cusp

;

and so on.

In fact, it will be observed that the multiple points on
algebraic curves have been discussed by reducing them to

polar equations, so that the theory already given must apply

to curves referred to polar, as well as to algebraic co-ordi-

nates.

It may be remarked, however, that the order of a multiple

point cannot, generally, be determined unless with reference

to Cartesian co-ordinates, in like manner as the degree of a-

curve in general is determined only by a similar reference.

For example, in the equation

r = a cosrO - b sin'O,

the tangents at the origin are determined by the equation

tan 6 = ± Jj-j and the origin would seem to be only a double

point ; however, on transforming the equation to rectangular

axes, it becomes
{x' + fy={ax'-bfy;

from which it appears that the origin is a multiple point of the

fourth order, and the curve of the sixth degree. In fact,

what is meant by the degree of a curve, or the multiplicity of

a point, is the number of intersections of the curve with any
right line, or the number of intersections which coincide for

every line through such a point, and neither of these are at

once evident unless the equation be expressed by line co-ordi-

nates, such as Cartesian, or trilinear co-ordinates; whereas
in polar co-ordinates one of the variables is a circular co-

ordinate.



-268 Examples,

Examples.

1. Determine the tangents at the origin to the curve

y2 _ 3.2 ^i _ gzy Ans. x^y = o, x — y = o.

2. Show that the curve

a;* - zaxy + y* = o

touches the axes of co-ordinates at the origin.

3. Find the nature of the origin on the curve

a;* — ax^y + by^ — o.

4. Show that the origin is a conjugate point on the curve

ay* - a;' + bx"^ = o

-when a and h have the same sign ; and a node, when they have opposite signs.

5. Show that the origin is a conjugate point on the curve

y^ (a;* - a^) = x^.

6. Prove that the origin is a cusp on the curve

(y - x'y = ct?.

7. In the curve

(y - x-'f = a^,

show that the origin is a cusp of the first or second species, according as n is

< or > 4.

8. Find the numher and the nature of the singular points on the curve

X* + ^ax^ — 2ay^ + 4a'x^ - ^a^y^ + 4fl* = o.

9. Show that the points of intersection of the curve

&^ &-
-with the axes are cusps.

10. Find the double points on the curve

x^ - /^ax' + ^a^x^ — y-y"^ + 2J3y — a* - i* = O.
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II. Prove that the four tangents from the origin to the ctinre

«i + w» + «3 = o

are represented hy the equation 4M1 us = mJ.

I a. Show that to a double point on any curve corresponds another double

point, of the same kind, on the inverse curve with respect to any origin.

13. Prove that the origin in the curve

x* - aax'y - axy* + a'j/' = o

:i cusp of the second species.

14. Show that the cardioid

r = a(i + CO8 0)

has a cusp at the origin.

15. If the origin be situated on a curve, prove that its first pedal pa8se»

through the origin, and has a cusp at that point.

16. Find the nature of the origin in the following curves :

—

r^ = a^ sin xd, r^ = a** sin nd, r = .

be -v e

17. Show that the origin is a conjugate point on the curve

«* - ax^y + axy' + «V' = ^•

18. If the inverse of a conic be taken, show that the origin is a double point
on the inverse curve; also that the point is a conjugate point for an ellipse, a.

cusp for a parabola, and a node for a hyperbola.

19. Show that the condition that the cubic

xy^ -V 03^ -V bx"^ -V ex -^r d \- ley = o

may have a double point is the same as Ihe condition that the equation

a«* + bx^ \- cx^ { dx - e* = o

may have equal roots.

30. In the inverse of a curve of the n*^ degree, show that the origin is a
multiple point of the «** order, and that the n tangents at that point are parallel
to the asymptotes to the original curve.
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CHAPTER XY.

ENVELOPES.

:2i7. method of Envelopes.—If we suppose a series of

different values given to a in the equation

/(•'?', ?A a) = O, (i)

then for each value we get a distinct curve, and the above
equation may be regarded as representing an indefinite

number of curves, each of which is determined when the

corresponding value of a is known, and varies as a varies.

The quantity a is called a variable parameter^ and the

equation /(ir, y, a) = o is said to represent o. family of curves;

a single determinate curve corresponding to each distinct

value of a ; provided a enters into the equation in a rational

form only.

If now we regard a as varjing continuously, and suppose

the two curves

/(^, y, a) = O, f{x, i/,a + Aa)=0

taken, then the co-ordinates of their points of intersection

satisfy each of these equations, and therefore also satisfy the

equation

f{x , y, g + Ad) -f{x, y, g) ^ ^
Aa

Now, in the limit, when Aa is infinitely small, the latter

equation becomes

dA^,t/,a)^
(2)

da

and accordingly the points of intersection of two infinitely

near curves of the system satisfy each of the equations (i)

and (2).
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The locus of the points of nUimatc intersection for the

entire system of curves represented by /(^, //, a) « o, is ob-

tained by eliminating a between the equations (i) and (2).

This locus is called the envelope of the system, and it can bo
easily seen that it is touched by every curve of the system.

For, if we consider three consecutive curves, and suppose

Pi to be the point of intersection of the first and second, and
P, that of the second and third, the line Pi P2 joins two infi-

nitely near points on the envelope as well as on the inter-

mediate of the three curves ; and hence is a tangent to each

of these curves.

This result appears also from analytical considerations,

thus :—the direction of the tangent at the point ar, y, to the

curve /(a*, y, a) = o, is given by the equation

df dfdy

ax ay ax

in which a is considered a constant.

Again, if the point a-, y be on the envelope, since then a

is given in terms of x and y by equation (2), the direction of

the tangent to the envelope is given by the equation

^ ^dy ^fcla ilady\_

dx dy dx da\dx dy dx)
'

i^ df_dy__

dx dy dx

since — = o for the point on the envelope.

Consequently, the values of y- are the same for the two

curves at their common point, and hence they have a common
tangent at that point.

One or two elementary examples will help to illustrate

this theory.

The equation jr cos a + y sin a = jt?, in which a is a variable

parameter, represents a system of lines situated at the same
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perpendicular distance p from the origin, and consequently
all touching a circle.

This result also follows from the preceding theory; for
we have

/(ar, y, a) = X QO^ a + y sm a - p = o^

df {x, y, a)
; = - a? sin a + 2^ COS a = O,
da

and, on eliminating a between these equations, we get

x" + 2/' =i?%

which agrees with the result stated above.

Again, to find the envelope of the line

m
y = ax-\r—,

a

where a is a variable parameter.

Here /(a-, y, a) = y - ax =0,
a

m fm— = o ;
.-. a = /-.

a' y X

df(x, y, a) _ m
. _ _ P— X -T —~ —

da

Substituting this value for a, we get for the envelope

2/' = ^mx,

which represents a parabola.

2 1 8. Envelope of La^ + 2Ma + N= o. Suppose i, iZ, J^^

to be known functions of x and y, and a a parameter, then

/(^> 2^> a) = La"" + zMa + JV = O,

-7- = iLa + 2i[/= o;
da

accordingly, the envelope of the curve represented by the

preceding expression is the curve

LN=M\
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Honce, when Z, M, N are linear functions in x and y,
' his envelope is a conio touching the lines Z, iV, and having

J/ for the cnord of contact.

Conversely, the equation to any tangent to the conio

LN = M* can he written in the form ,

where a is an arbitrary parameter.

219. ITndetermlned Multipliers applied to Edyc-
lopes.—In many cases of envelopes the equation of the

moving ciirve is given in the form

/(a?, y, a, /3) = <?„ (3)

where the parameters a, /3 are connected by an equation of

the form

(a, /3) = e^. (4)

In this case we may regard )3 in (3) as a function of a by
reason of equation (4) ; hence, differentiating both equations,

the points of intersection of two consecutive curves must
satisfy the two following equations :

df df dfi , d<l> d<^ dp

da dfi
Consequently

d^^'d^'

da dfi

If each of these fractions be equated to the undetermined
quantity X, we get

^=X^
da da

• Salmon's Coniet, Art. 248.

T
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and tlie required envelope is obtained by eliminating a, |3, and
X between these and the two given equations.

The advantage of this method is especially found when
the given equations are homogeneous functions in a and ]3

;

for suppose them to be of the forms

fi^y y, a, /3) = Ci, (a, /3) = C^,

where the former is homogeneous of the n^^ degree, and the

latter of the m^*, in a and j3. Multiply the former equation

in (5) by a, and the latter by /3, and add ; then, by Euler's

theorem of Art. 102, we shall have

fM?i = mcaX, or X = —-\ (6)

by means of which value we can generally eliminate a and /3

from our equations.

Examples.

1. To find the envelope of a line of given length (a) whose extremities move
along tvro fixed rectangular axes.

Taking the given lines for axes of co-ordinates, we have the equations

a p

Hence
i«
^ ^''' h"^ ^^*

from which we get ^ = -?

»

and the required locus is represented by

a^ + y! = «l.

2. To find the envelope of a system of concentric and coaxal ellipses of con-

stant area.

Here - + |^ = r, a^= c;

hence Jt~^* fe"^^"'
•••*^<'='»

and the required envelope is the equilateral hyperbola

2xy = c.
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3. To find the enrelope of all the normals to an ellipse.

Here we hare the equation!

a p a* tr

where a and /8 are the co-ordinates of anj point on the ellipse.

_ a'x a b'y
Hence, '^ = '^^' F""""^'

consequentlj A = a* - 4-,

and we get m*x = (a« - b^) a», b*t/ = - (a^ - b^) $^

;

•*•
« ~ \fl* - **/ * * ~ \«' - *v

*

Substituting in the equation of the ellipse, we get for the required envelope,

(«)l+(*y)l=(a«-4»)l.

This equation represents the evoluU of the- ellipse.

X y
4. Find the envelope of the line - + - = i, where a and 3 are connected by

a p
the equation

m m m
o"» + iS"* = c^. Ans. a:*"*' + y"»*i = c***.

220. The preceding method can be readily extended to the

general case in which the equation of the enveloping curve

contains any number, w, of variable parameters, which are

connected by w - i independent equations. The method of

procedure is the same as that already considered in Chapter
XI. on maxima and minima, and does not require a separate

investigation here.

T 2
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Examples.

I. Prove that the envelope of the system of lines - + — = i, where I and m
* m

I tn
are connected by the equation - + — = i, is the parabola

©'* (!)'

2. One angle of a triaTip:le is fixed in position, find the envelope of the

opposite aide when the area is given. Ans. A hyperbola.

3. Find the envelope of a right line when the sura of the squares of the

perpendiculars on it from two given points is constant.

4. Find the envelope of a right line, when the rectangle under the perpen-

diculars from two given points is constant.

Ans. A conic having the two points as focL

5. From a point P on the hypothenuse of a right-angled triangle, perpen-

diculars PM, FN are drawn to the sides ; find the envelope of the line MN,
6. Find the envelope of the system of circles whose diameters are the chords

drawn parallel to the nxis-minor of a given ellipse.

7. Find the envelope of the circle

«• + y« - 2aex + a' - 52 = o,

where a is an arbitrary parameter; and find when the contact between the

circle and the envelope is real, and when imaginary.

{a). Show from this example that the focus of an ellipse may be regarded as

an infinitely small circle having double contact with the ellipse, the directrix

being the chord joining the points of contact.

S. Show that the envelope of the system of conies

a a — h

where a is a variable parameter, is represented by the equation

(x + ^/liY + y' = o.

Hence show that a system of conies having the same foci may be regarded

as insiril)ed in the same imaginary quadrilateral.

9. Find the envelope of the line

where the parameters a and /3 are connected by the equation

Ans. x^-^ + y»» w = (
—

—



Examples, I'j'j

10. On any radius vector of a curve aa diameter a circle is described : prove
geometrically tbat the envelope of all such circles is the first pedal of the curve

with respect to the origin.

11. If circles be described on the focal radii vectores of a conic as diameters,

prove that their envelope is the circle described on the axis major of the conic as

diameter.

12. Prove that the envelope of the circles described on the central radii of an
ellipse as diameters is a Lemniscate.

13. Find the envelope of semicircles described on the radii of the curve

I* = a* cos n6
as diameters.

14. If perpendiculars be drawn at each point on a curve to tlie radii vectores

drawn from a given point, prove that their envelope is the reciprocal polar of

the inverse of the given curve, with respect to the given point.

15. Find the envelope of a circle whose centre moves along the circum-
ference of a fixed circle, and which touches a given right line.

16. Ellipses are described with coincident centre and axes, and having the
sum of their semiaxes constant ; find their envelope.

17. Find the equation of the envelope of the line Ax + ^y + r = o, where
the parameters are connected by the equation

aA' + */i' + fw* + a/juv + 2gv\ + ^h\fi = O.

An9.

a, k, y, X

*, *. /, y

fff /, «, I

«, y, I, o

o.

18. At any point of a parabola a line is drawn making with the tangent an
angle equal to the angle between the tangent and the ordinate at the point

;

prove that the envelope of the line is the first negative pedal, with regard to the

focus, of the parabola ; and hence that its equation is ri cos - = oi, the focu^

l)eing pole.

N.B.—This curve is the caustic hy rcjlcxion for rays perpendicular to the
axis of the parabola.

19. Join the centre, 0, of an equilateral hyperbola to any point, P, on the
curve, and at F draw a line, PQ, making with the tangent an angle equal to the
angle between OP and the tangent. Show that the envelope of JPQ is the fiirst

negative pedal of the curve
2 A

r* = aa* sin - 6 sin - •,

3 3

the centre being pole, and axis minor prime vector.

N.B.—This gives the caustic by reflexion of the equilateral hyperbola, the
centre being the radiant point.

20. A right line revolves with a imiform angular velocity, while one of its

points moves uniformly along a fixed right line ; find its envelope.

Ans. A cycloid.
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CHAPTEE XVI.

CONVEXITY AND CONCAVITY. POINTS OF INFLEXION.

221. Convexity and Concavity.—If the tangent be
drawn at any point on a curve, the neighbouring portion of

the curve generally lies altogether on one side of the tangent,

and is convex with respect to all points lying at the opposite

side of that line, and concave for points at the same side.

Thus, in the accompanying figure, the portion QPQ! is

convex towards all points

lying below the tangent, and
concave for points above.

If the curve be referred

to the co-ordinate axes OX
and OF", then whenever the

ordinates of points near to

P on the curve are greater

than those of the points on
the tangent corresponding to

the same abscissae, the curve is said to be concave towards

the positive direction of Y.

Now, suppose y = <^{x) to be the equation of the curve,

then that of the tangent at a point x, y, by Art. i68, is

Y-y={X-x) dy

dx

Let P be the point a?, y, and MN= h = MN\ QN = yi,

TN = Fi, and we have

y, = ^{x + A) = ^{x) + h<i;{x) + -— ^"(^) + ——-<^"\x) +&0.

Fi = y + h(^\x) = ^(a:) + h(l>\x) ;

3
y. - F. = -^ <t^'\x) + -4^r(^) + &c. (I)
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When h is very small, the sif^ of the right-hand side of

•his equation is the same in gent-ral as that of its first term,

1 11(1 accordingly the sign of yi - JTi, or of QT, is the same as

•liat of <p'\r).

Hence, for a point above the axis of x, the curve is convex
owjirds that axis when ^'\x) is positive, and concave when
negative.

We accordingly see that the convexity or concavity at any

point depends on the sign of <^"{x) or -7-^, at the point.

222. Points of Inflexion.—If, however, (^"{x) = o at

the point P, we shall have

y, - r» = ^4^ <^"\x) + /'*^ ^t-(2r) + &c. (2)
1.2.3 2.3.4

Fig. 28.

Such points on a curve are called points of

\ow, provided <^"\x) be not zero, y^ - Yi changes its sign
uith/i, i.e. if il/ir = iO^=A,
and if Q lies above T, the

oorresponding point Q' lies

below T\ and the portions of

the curve near to P lie at

opposite sides of the tangent,

as in the figure.

Consequently, the tangent

at such a point cuts the curve,

as well as touches it, at its

point of contact.

inflexion.

Again, if 0'"(ar) as well as f^'\x) vanish at the point P, wt
shall have

y.-r.=
, /\ «'-(;r)+&c.;
1.2.3.4

and, provided <^^^{x) be not zero at the point, px - Tx does not

change sign with A, and accordiDgly the tangent does not

intersect the curve at its point of contact.

Generally, the tangent does or does not cut the curve at

its point of contact, according as the first derived function

which doos not vanish is of an wld, or of an even order ; as

can be easily seen by the preceding method.
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From the foregoing discussion it follows that at a point
of inflexion the curve changes from convex to concave with
respect to the axis of iP, or conversely.

On this account such points are called points of contrary
flexure or of inflexion,

22^ The subject of inflexion admits also of being treated
by the method of Art. 196, as follows :—The points of in-
tersection of the line y = fix + v with the curve y = ^(a;) are
evidently determined by the equation

^W ^fiX+V. (3)

Suppose A,B, C, Z), &c., to represent the points of section in
question, and let 0*1, 3*2, . . . iP„

be the roots of equation (3)

;

then the line becomes a
tangent, if two of these

roots are equal, i.e., if ^i^r- >9-

^'(a?i) = /u, where Xx denotes the value of x belonging to the

point of contact.

Again, three of the roots become equal if we have in

addition 0"(^i) = o ; in this case the tangent meets the curve

in three consecutive points, and evidently cuts the curve at its

point of contact ; for in our figure the portions PA and CD
of the curve lie at opposite sides of the cutting line, but

when the points A, By C become coincident, the portions AB
and BC become evanescent, and the curve is evidently cut as

well as touched by the line.

In like manner, if 0'"(a*i) also vanish, the tangent must
be regarded as cutting the curve in four consecutive points :

such a point is called o. point of undulation.

It may be observed, that if a right line cut a continuous

branch of a curve in three points, A^ B, C, as in our figure,

the curve must change from convex to concave, or conversely,

between tlie extreme points A and C, and consequently it

must have a point of inflexion between these points ; and aa

on for additional points of section.

Again, the tangent to a curve of the w'* degree at a point oF

inflexion cannot intersect the curve in more than w - 3 other

points: for the point of inflexion counts for three among
the points of section. For example, the tangent to a curve
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of the third degree at a point of inflexion cannot meet the

curve in any other point. Consequently, if a point of in-

flexion on a cubic be taken as origin, and the tangent at it

as axis of x, the equation of the curve must be of the form

iT* + y^ = o,

where represents an expression of the second and lower

degrees in x and y. For, when y = o, the three roots of the

resulting equation in x must be each zero, as the axis of x
meets the curve in three points coincident with the origin.

The preceding equation is of the form

Ui + U2 + Ui = o,

or, when written in full,

x^ + y{ax^ + 2hxy + 6y') + y{2gx + zfy + c) - o. (4)

Now, supposing tangents drawn from the origin to the

curve, their points of contact, by Art. 176, lie on the curve

f*a + 2Mi = o,

i.e. on the curve

(9^ -^fy + c)y = 0.

The factor y = o corresponds to the tangent at the point

of inflexion, and the other factor gx + fy + c = o passes

through the points of contact of the three other tangents to

the curve.

Hence, we infer that from a point of inflexion on a cubic

hut three tangents can be drawn to the curve, and their three

points of contact lie in a right line.

It can be shown that this right line cuts harmonically
every radius vector of the curve which passes through the
point of inflexion.

For, transforming equation (4) to polar co-ordinates, and
dividing by r, it becomes of the form

Ar" + Br ^ C = o.

If f', r" be the roots of this quadratic, we have

r'
^ r"

~ C
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Now, if p be the harmonio mean between r' and r", this

21 I _ B _ 2g cos 9 + 2f sin 9

Hence the equation of tbe locus of the extremities of the
harmonio means is

gx+fy-k-c = o, Q.F.I),

This theorem is due to Maclaurin (Be Lin. Geom. Prop.

Gen.y Sec. in. Prop. 9).

From this property the line is called the harmonic polar of

the point of inflexion. This line holds a fundamental place

in the general theory of cubics.*

224. Stationary Tangents.—Since the tangent at a
point of inflexion may be regarded as meeting the curve in

three consecutive points, it follows that at such a point the

tangent does not alter its position as its point of contact

passes to the consecutive point, and hence the tangent in thi»

case is called a atationanj tangent.

The equation— = o follows immediately from the last
ax

consideration ; for when the tangent is stationary we must

have -^=0, where ^, as in Art. 171, denotes the angle
CLX

which the tangent makes with the axis of x ; but tan = —

,

dx

hence -r^ = o, which is the same condition for a point of

inflexion as that before arrived at.

* Chasles, Apergu Eistoriqtie^ note xx. ; Salmon's Higher Plane Curves^

Art 179.
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EXAMPLKB.

I. Show that the origin is a point of inflexion on the curre

a'y = bxy + tfz* + dx*.

s. The origin is a point of inflexion on the cubic ua + vi » o ?

3. In the curve a^'^y = x%

prove that the origin is a point of inflexion if m be greater than 1.

4. In the system of curves

y» = kx^f

find under what circumstances the origin is (a) a point of inflexion, {b) a cusp^

5. Find the co-ordinates of the point of inflexion on the curve

«* - 3^x2 + a-y = O. Arts, x = b, y = —r-^
a*

6. If a curve of an odd degree has a centre, prove that it is a point of

inflexion on the curve.

7. Prove that the origin is a point of undulation on the curve

«1 + W* + "5 + &C., + M^ = O.

8. Show that the points of inflexion on curves referred to polar co-ordinates-

are determined by aid of the equation

d^u I
« +— = o, where « = -.

9. In the curve rd* = a, prove that there is a point of inflexion when

$ z=^m (i - m).

X
10. In the curve y = # sin -, prove that the points in which the curve

a

meets the axis of x are all points of inflexion.

II. Show geometrically that to a node on any curve corresponds a lino

touching its reciprocal polar in two distinct points ; and to a cusp corresponds a.

point of inflexion.
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n. If the origin be a point of inflexion on the curre

Ml + «2 + «3 + . . . + M„ = O,

prove that uz must contain u\ as a factor.

13. Show that the points of inflexion of the cubical parabola

y'^={x^ a)« (r - b)

lie on the line

3a: + o = 4*

:

and hence prove that if the cubic has a node, it has no real point of inflexion
;

but if it has a conjugate point, it has two real points of inflexion, besides that

at infinity.

14. Prove that the points of inflexion on the curve y- = a;'(«2 + ^px 4- q)
are determined by the equation zx^ 4 bpz"^ + 3 (/>' + j) « + 2pq = o.

15. If y' = /(a?) be the equation of a curve, prove that the abscissae of it«

points of inflexion satisfy the equation

16. Show that the maximum and minimum ordinates of the curve

y=2fix)r{x)-{f\x)y

correspond to the points of intersection of the curve y'^=f{x) with the axis

of X.

17. When y'*=f{x) represents a cubic, prove that the biquadratic in x
which determines its points of inflexion has one, and but one, pair of real roota.

Prove also that the lesser of these roots corresponds to no real point of inflexion,

while the greater corresponds, in general, to two.

1 8. Prove that the point of inflexion of the cubic

oy^ + ibxy"^ + lex'^y + dx^ + lex"^ = o

lies in the right line ay + bx = o, and has for its co-ordinates

2a^e 2^be
0; =-—,andy=—

.

where G is the same as in Example 32, p. 190.

19. Find the nature of the double point of the curve

f={x-2y{x-s),

and show that the curve has two real points of inflexion, and that they subtend

a right angle at the double point.

20. The co-ordinates of a point on a curve are given in terms of an angle •

by the equations

X = sec^ e, y = tan 6 sec^
;

prove that there are two finite points of inflexion on the curve, and find the

values of at these points.
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CHAPTER XVII.

RADIUS OF CURVATURE. EVOLUTES. CONTACT. RADII OF
CURVATURE AT A DOUBLE POINT.

225. Curvature. Angle of Contingence.—Every con-

tinuous curve is regarded as having a determinate curvature

at each point, this curvature being greater or less according

as the curve deviates more or less rapidly from the tangent at

the point.

The total curvature of an arc of a plane curve is measured
by the angle through which it is bent between its extremities

—

that is, by the external angle between the tangents at these

points, assuming that the arc in question has no point of in-

flexion on it. This angle is called the angle of contingence of

the arc.

The curvature of a circle is evidently the same at each of

its points.

To compare the curvatures of

different circles, let the arcs AB
and ab of two circles be of equal

length, then the total curvatures

of these arcs are measured by the

angles between their tangents, or

by the angles ACB and acb at p.

their centres : but ^^* ^°*

^^^ , arc^^ QXQah i i

IACB: Lach =—-—- : = -77,:-.AC ac AC ac

Consequently, the curvatures of the two circles are to each

other inversely as their radii ; or the curvature of a circle

varies invei-sely as its radius.

Also if As re])resent any arc of a circle of radius r, and
A0 the angle between the tangents at its extremities, we have

As
r = —

.

A(p
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The curvature of a curve at any point is found by deter-

mining the circle which has the same curvature as that of an
indefinitely small elementary arc of the curve taken at the
point.

226. Radius of Cnrvature.—Let ds denote an infi-

nitely small element ofa curve at a point, d<p the corresponding

ds
angle of contingence expressed in circular measure, then -r-

evidently represents the radius of the circle which has the
same curvature as that of the given curve at the point.

This radius is called the radius of cu7^vature for the point,

and is usually denoted by the letter p.

To find an expression for p, let the curve be referred to

rectangular axes, and suppose x and y to be the co-ordinates

of the point in question ; then if ^ denote the angle which the

tangent makes with the axis of x, we have

dj/ d. tan _ d^y
tan^ = ^; ••• —^- = ^„

d6 d(b dx ddt , d'v

Hence ^ ' = !22!£ =illMi. (.)
'^

d(p d^y d-y

ds do^ dx

At a point of inflexion --| = o : accordingly the radiixS of

curvature at such a point is infinite : this is otherwise evident

since the tangent in this case meets the curve in three conse-

cutive points. (Art. 222.)

Again, as the expression (i + f^j j
has always two

-values, the one positive and the other negative, while the
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<jurve can have in general but one definite circle of curvature

at any point, it is necessary to agree upon which sign is to b«
taken. We shall adopt the positive sign, and regard p as

being positive when — is positive ; i. e. when the curve is

convex at the point with respect to the axis of x.

227. either ExpreNNlons for p.—It is easy to obtain

other forms of expression for the radius of curvature ; thus

by Art. 178 we have

dx . dy
cos = -T-j Bin = -i-,^ ds ^ ds

Hence, if the arc be regarded as the independent variable, we
get

dd> d^x dd) d'y

from which, if we square and add, we obtain

Again, the equations dx = cos (l>ds, dy = sin ^ds,

ds
give by differentiation (substituting — for d<l>),

d*x = cos (pd^s - sin 0-^^-^, d'^y = sin <pd^s + cos -^^

—

-, (3)
P P

Whence, squaring and adding, we obtain
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Again, if the former equation in (3) be multiplied by
sin 0, and the latter by cos 0, we obtain on subtraction,

ds^ ds^
COS <^d}y - sin ^d^x = — , or dxd^y - dpd^x =—

.

P 9

^^^^^
' = dxd^y - dyd^x (5)

The independent variable is undetermined in formulae (4)
and (5), and may be any quantity of which both x and y are

functions.

For example, in the motion of a particle along a curve,

when the time is taken as the independent variable, we get

from (4) an important result in Mechanics.

Examples.

1. To find the radius of curvature at any point on the parabola x^ = 4my.

-Hero am— = jj, am—- = i, i + (
,- | = i H ; = i + —

;

dx dx^ \dz/ 4m2 m

a(m + y)*
-f" mi

3. Find the radius of curvature in the catenary

Here 1^ = ^J _ T^), ^-^ = if; ... p = - C
dx 2\ /' dx^ a-i'

^
a

Hence the radius of curvature is equal to the part of the normal intercepted
by the axis of x, but measured in the opposite direction (Ex. 4, Art. 171).

3. In the cubical parabola la^y = a;^, we have

X * dx^ [ \dx) ) o« 2a^x
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4. To find the radius of curvature in the ellipse —^\t- i.

Let ar = a cos ^, then y = 3 sin ^, and we hare

rf« = - a sin ^<f(^, rf** = - a cos 0rf<^- - a sin ^rf'^,

dy =ih coB<pd<p, iPy = - b Bin ^d<p* + b cos ^(^^.

Hence by formula (5) we obtain

(a»8in'0 + b*co8^<f>)%

' ^ •

5. In the hypocycloid xl + yl = oi, let j; = a cos'^, then y s a lin'^, and re-
garding <p as the independent variable, we have

ds = -^a cos^ip sin <p d<p^ tPx = 3a cos <p d<f>^ (2 sin' <p - cos' tp),

dp = 3a sin'^ cos<pdipf tPj/ = 3a an<pd(p!^ (2 cos'^ - sin'^),

whenre

{dx^ + dt/^)i = 3a sin^ cos <pd<p, and dzd^y - dyd^x = - 9a* sin'^cos'^t^,

60m which we obtain

p = - 3 (fl^y)*-

6. Find the radius of curvature at any point of the curve

(i)-
^«.p = ».ecg)

228. Oeneral Expression Tor Radius of Carva-
Cnre.—The value of p becomes usually difficult of determi-

nation from formula (
i
) whenever y is not given explicitly in

terms of a?, that is, when the equation of the curve is of the

form

« =/(^, y) = o.

"We proceed to show how the equation for p is to be trans-

formed in this case. Suppose

du ^ du ,^ d'^u . d'u ^ dHi _

dx dy dx^ dxdy dy

then, by Art. loo, we have

dx
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Again, differentiating this equation with respect to ar,

regarding j/ as a function of x in consequence of the given
equation, and observing that

d dL dLdy d _ dM dMdy
dx^ ^ dx ^ dx dx^ ' dx dy d£

we obtain

fdM dMdy\dy_ d^y _
\ dx dy dx) dx da^

*

dL dL dy

dx dy dx

wlience, on substituting: - -zrz. Iqt -f-. we obtain
° M dx

dhf AM'-2BLM+Cr-
d.r

~
M'

Consequently

(L* + M')i

^ - AM' - 2BLM + CD' ^^^

Or, on replacing X, M, A, B, C, by their values,

=

+

du^

dxj

d'^ufduV d'u dudu d^u /duV

dx^ \dy) dxdy dx dy dy"^ \dx)

The result in (6) enables us to determine the second diffe-

rential coefficient of an implicit function in general; a process

which is sometimes required in analysis.

22Q. The Centre of Curvature Is the point of
intersection of two Consecutive IVormals.—We shall

next proceed to consider the subject from a geometrical

point of view.

As a circle which passes through two infinitely near

points on a curve is said to have contact of the first order with
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the curve, so the circle which passes through three infinitely

near points on a curve is said to have contact of the second

order with it, and is called the circle of curvature, or the

osculating circle at the point.

Again, the centre of the circle which passes through
three points, P, Q, R, is the intersection of the perpendicu-

lars drawn at the middle points of PQ and QR ; but when
P, Q, R become infinitely near points on a curve, the per-

pendiculars become normals, and the centre of the circle

becomes the limiting position of the intersection of two infinitely

near normals to the curve. (Compare Art. 37, note.)

. ds
From this it is easily seen that we obtain — for the length

of the radius of the circle in the limit, as before.

230. IVewton's Method of investigating Radii of
Curvature.—When the equation of the curve is algebraic

and rational it is easy to obtain an
expression for its radius of curvature*

at any point.

For, take the origin at the

point, and the tangent and normal
for co-ordinate axes; let P be a
point on the curve near to 0, and
describe a circle through P and
touching the axis of ar; draw PiV
perpendicular to OX and produce
it to meet the circle in Q ; then we have

ON' = FN . NQ.

Hence, if x and y be the co-ordinates of P, we get

ON^ ^^
PN~ y'

NQ =

But when P is infinitely near to 0, NQ becomes 02), the

This method of finding the radius of curvature is indicated by Newton
{Prineipia, Lib. I., Sect, i., Lemma xi.), and has been adopted in a more or leas
modified form by many subsequent writers.

U 2
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diameter of the circle of curvature, and if p be its radius, wo
have

2p = limit of — when x is infinitely small.

Again, since the axis of x is the tangent at the origin,

the equation of the curve, by Art. 208, is of the form

hiy = CoX^ + 2Cixy + Cjy* + terms of the third and higher degrees

= C(fi^ + zcixy + c^^ + 1/3 + Ui + &c. (9)

On dividing by y we obtain

61 = Co — + 2CiX + Cay + — + &c.
y y

Again, when x is infinitely small, — becomes 2^, and

each* of the other terms at the right-hand side becomes infi-

nitely small ; hence

= h-
2Co

Thus, for example, the radius of curvature at the origin in

the curve

6y = 2x^ + ^oey - 4y^ + ic*

is -, the axes being rectangular.

1

• We have assumed above that the terms — , -, &c., become evanescent
y y

along with x ; this can be readily established as follows :

—

Let MS = aa;* + ^x^y + -^xy"^ + If,

then - = o- + j8x2 + '^xy + 5y'
;

y y

X*
each of the terms after the first vanishes with a:, while the first becomes a —«,

or -lapx, which also vanishes withar, when p is finite.

Similar reasoning is applicable to the terms, — , &c.
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From the preceding it follows that when the axis of tr is

rt tangent at the origin, the length of the radius of curvature

at that point is independent of all the coefficients except

those of y and x^.

231. Case of Oblique Axes.—If the co-ordinate axes

be oblique, and intersect at an angle cu, then PQ no longer

passes through the centre of the circle in the limit, but be-

comes the chord of the circle of curvature which makes the

angle a> with the tangent ; accordingly, we have in this case

2p sin (u = -^r-r;. = —, in the limit.PN if

Hence, in the case of oblique axes, we have

p sinoi =—

.

(10)

If ^i and Co have opposite signs, p is negative ; this

indicates that the centre of curvature lies below the axis of x^

towards the negative side of the axis of y.

The preceding results show that the radius of curvature

at the origin is the same as that of the parabola, h^y = CqX^, at

the same point ; and also that the system of curves obtained

by varying all the coefficients in (9), except those of y and
ar*, have the same osculating circle, in oblique as well as in

rectangular co-ordinates.

Again, as in Art. 223, the osculating circle, since it meets
the curve in three consecutive points, cuts the curve at the

point, in general, as well as touches it.

If Co = o in the equation of the curve, and bi be not zero,

the radius of curvature becomes infinite, and the origin is a
point of inflexion. This is also evident from the form of the

equation, since the axis of x meets the curve in this case in

three consecutive points.

232. In general, the equation of a curve referred to any
rectangular axes, when the origin is on the curve, may be
written in the form

2boX + 2biy - c^a? + Zdxy + Cjy* + W3 + &o.
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Here boX + bit/ = o is the equation of the tangent at the

origin ; and the length of the perpendicular PN from th&
point {xy y) on this tangent is

boX + bip

VK + ^r

Also, OF^ = ii^ \ y\ and OP' = 2p,PN in the Hmit.

Accordingly, we have, when x and y are infinitely small,.

I 2PN zb^x + ibxy

P OP' (a;t + y^)yb^Tb?

^ c^x^ + 2Cixy + dy* u^

~
{x' + f)yb7Tb? {x' + f)yb^Tb;^''

(since the point x, y is on the curve)

.

Afifain, the terms contained in ,
^

, , &c., become evanes-° x^+y'
cent in the limit, as before {see note, Art. 230).

Hence we have

c^a:^ + 2Ciary + fo//'

But for points infinitely near the origin we have

Kx + biy = Oy or - = - —

.

X Oi

Substituting this value instead of - in the preceding equation^
X

it becomes

I _ c„J,' - 2b„b,c, + c.J>„'
(i«)

The student will find no difficulty in showing the identity

of this result with that given in (7).
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233. Radii of Curvature of Inverse Curves.—It

may be convenient to state here that if two curves be inverse

to each other with respect to any origin, their osculating circlei

at two inverse points are also inverse to each other with respect

to the same origin.

This property is evident geometrically from the con-

sideration that a circle is determined when three points on
it are given.

Again, since the centres of the two inverse circles are

Ml directum with the origin, we can construct the centre of

curvature at any point on a curve, when that for the cor-

responding point on the inverse curve is known.
Also, if the osculating circle at any point on a curve

pass through the origin, the corresponding point is a point of

inflexion on the inverse curve.

We shall next proceed to establish another expression for

the radius of curvature, which is of extensive application in

curves referred to polar co-ordinates.

234. Radius of Curvature In terms of r and p.—
Let FN and PC be the tangent
and normal at any point P on a
curve, P'N' and P'C those at

the infinitely near point P', then

C is the centre of curvature cor-

responding to the point P. Let
be the origin.

Join OC, and let DC = 5,

OP = r, OF = /, ON - p,
ON' ^p\ CP^CF = p; then

'^« ^*^«
Fig. 3*.

OC^ = OF+CF' 2OP.CP. cos OPC,

or

In like manner we have

2pp.

g« = r'» + ^' - 2pp\

Subtracting, we get

/*-r^=2p(p -p),OT^j—^
2p

r + r
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Hence we have
dr p dr , ,^—.

o'p = '-^- («^)

This formula can also he deduced immediately from Art.

193 : thus

i Tk-KT f^P dp ds dp dp dr . dp

dp dr

235. Chord of Cnrvature througb the Ori^n.—
Let 7 denote half the intercept made on the line OP by the

circle of curvature, and we evidently have

y = p8mOPJV=pJ=;>|. • (13)

This and the preceding formula are of importance when-
ever we can express the equation of the curve in terms of the
lines represented by r and/>.

Their use will be illustrated by the following elementary
examples :

—

Examples.

I. To find the radius of curvature at any point on a parabola.

Taking the focus as pole, the equation of the curve in terms of r and p
•Tidently is p^ = j,fnr.

_ dr pr /2r3\i , dr p^
Hence p = r-—- — = |

— ; also, 7 = jj— = — = ar.
'^ dp m \m J dp m

a. To find the radius of curvature in an ellipse.

Taking the centre as origin, the equation of the curve is

P

_ dr _ aW

3. To find the radius of curvature in the Lemniscate.

Here, by Ex. 3, Art. 190, we have t^ = a'^p;

ndr ^ . «'
,

»•

. •. \r^ — = a* ; hence p= — ; also, 7 = -.

dp "^
ir 3
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4. To find the chord of curvature which passes through the origin in the
Ctrdioid

r = a(i + 008 6).

In this case, we hare r* = lap^.

Hence T.=p- = -r.

5. To find the radius of curvature at anjr point on the curve y«» = ««• cobm#.

Here »^*' = a'^p, by Art. 190.

„ a"* r^ . r
Hence p = r : = ; r- ; also, 7 = .

This result furnishes a sirapli' geometrical method of finding the centre of cur-

vature in all curves included under this equation.

dtp
236. To prove that o =p + --.. If p and co have the

au)

same Bignification as in Art. 192, the formula of that Art.

becomes
ds d*p

dti) =^^s:' («4)

Examples.

I. In a central ellipse prove that

p^'s/ tP' cos'w + b^ sin'w,

and hence deduce an expression for the radius of curvature at any point on the

eurve.

2. In a parabola referred to its focus as pole, prove that/» = m secw, and
hence show that p = 2m sec'w.

237. Evolotes and Inirolutes.—If the centre of cur-

vature for each point on a curve be

taken, we get a new curve called the

(volute of the original one. Also, the

original curve, when considered with

respect to its evolute, is called an in-

volute.

To investigate the connexion be-

tween these curves, let Pi, Pj, P3, &c.,

represent a series of infinitely near

points on a curve; Ci, Cj, C3, &c., the

corresponding centres of curvature,

then the lines P,C„ P2C2, P3C3, &c.,

are normals to the curve, and the lines

CiCa, C2C3, C3C4,&c.,may be regarded in Fig- 33.

the limit as consecutive el€7ncnts of th© evolute; also, since
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each of the normals PiCi, P2(72,P3C8,<^o., passes through two
consecutive points on the evolute, they are tangents to that

curve in the limit.

Again, if p,, pz, p^, /04, &c., denote the lengths of the radii

of curvature at the points Pi, P2, P3, P4, &c., we have

PX = P\Cxy Pi = P2C2, Pi = PzCzy Pi = P4C4, &C. ;

•*• pi " pz = PiC/1 — PaC/j = PjCi — P2C/3 = OiC^ 'j

also p2- p3= CiCz, Pi- pi= CiCiy . . . pn-i - pn= Gn^xCn \

hence by addition we have

Pi-Pn= C.Ci + Cid +CiCi + . . .+ Cn-i Cn.

This result still holds when the number n is increased

indefinitely, and we infer that the length of any arc of the

evolute is equals in general, to the difference between the radii of
curvature at its extremities.

It is evident that the curve may be generated from its

evolute by the motion of the extremity of a stretched thread,

supposed to be wound round the evolute and afterwards

unrolled; in this case each point on the string will describe

a different involute of the curve.

The names evolute and involute are given in consequence

of the preceding property.

It follows, also, that while a curve has but one evolute, it

can have an infinite number of involutes ; for we may regard

each point on the stretched string as generating a separate

involute.

The curves described by two different points on the

moving line are said to be parallel; each being got from the

other by cutting off a constant length on its normal measured
from the curve.

2Tf^. £volutes regarded as Envelopes.—From the

preceding it also follows that the determination of the evolute

of a curve is the same as the finding the envelope of all its

normals. We have already, in Ex. 3, Art. 219, investigated

the equation of the evolute of an ellipse from this point of

view.

239. Evolute of a Parabola.—We proceed to deter-

mine the evolute of the parabola in the same manner.
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Let the equation of the curve be y* = 2WMr, then that of
itA normal at a point (x, y) is

m

or y* + 2my {m - X) - zm^Y = o.

The envelope of this line, where y is regarded as an arbi-

trary parameter, is got by eliminating y between this equa-
tion and its derived equation

3/ -^ 2m{m- X
Accordingly, the equation of the

required envelope is obtained by

substituting = instead of y

in the latter equation.

llence, we get for the required

evolute, the semi-cubical parabola

zjmY^ = 8 {X - m)\

The form of this evolute is exhi-

bited in the annexed figure, where
VN=m = 2 VF. If P, F, repre-

sent the points of intersection of the

evolute with the curve, it is easily seen that

Fig. 34.

240. EYolate ofan Ellipse.

an ellipse, when e is greater

than \ \/2, is exhibited in

the accompanying figure

;

the points i/, Ny M\ N\ are

evidently cusps on the curve,

and are the centres of cur-

vature corresponding to the

four vertices of the ellipse.

In general, if a curve be
symmetrical at both sides

of a point on it, the oscu-

lating circle cannot intersect

-The form of the evolute of

Fig. 3j>»
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the curve at the point ; accordingly, the radius of curvature
is a maximum or a minimum at such a point, and the corre-
sponding point on the evolute is a cusp.

It can be easily seen geometrically that through any point
four real normals, or only two, can be drawn to an ellipse,

according as the point is inside or outside the evolute.
It may be here observed that to a point of inflexion on

any curve corresponds plainly an asymptote to its evolute.

241. Evolute of an Equiangular Sipiral.—We shall
next consider the equiangular or logarithmic spiral, r = «*

.

Let P and Q be two points

on the curve, its pole, PC,
Q(7the normals at P and Q; join

0(7. Then by the fundamental
property of the curve (Art. 181),

the angles OPC and OQC are

equal, and consequently the four
points, 0, P, Q, C, lie on a circle

:

hence L QOC = Z QPC; but in

the limit when P and Q are coin- «. ^
cident, the angle QPC becomes
a right angle, and C becomes the centre of curvature belong-

ing to the point P; hence POC also becomes a right angle,

and the point C is immediately determined.

Again, z. OCP = L OQP ; but, in the limit, the angle

OQP is constant ; .*. z OCP is also constant ; and since the

line CP is a tangent to the evolute at (7, it follows that the

tangent makes a constant angle with the radius vector OC.
From this property it follows that the evolute in question is

another logarithmic spiral. Again, as the constant angle is

the same for the curve and for its evolute, it follows that the

latter curve is the same spiral turned round through a known

angle (whose circular measure is logoj3/).

241 {a). Involute of a Circle.—As an example of

involutes, suppose ^PQ to represent a portion of an involute

of the circle BAC, whose centre is 0, Let

OC=a, L COA = ^,

and CA the length of the string unrolled ; then

CP = CA = fl^.
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Draw ON perpendicular to the tangent at P, and let

ON =py then we have

Hence, since

jlBON=lCOA = <^,

the pedal of the curve -4PQ is a
spiral of Archimedes.

Also, since

0P= = OC^ + CP\
we have

which gives the equation to the involute of a circle in terms^

of the co-ordinates r and p.

Again, if AP = s, we have

Fig. 37.

d<^
= CP = a(^\

from which it is easily seen that

242. Radius of Curvature, and Points of In*
lleiLlou, in Polar Co-ordinates.—We shall first find an
expression for p in terms of u (the reciprocal of the radiua

vector) and 0.

By Article i ^Z- we have

hence

I . (du\

I dp d^u

'p^dTu^^'^d^'

Also
dr I du

dp u^ dp^
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consequently p{u + g) = -i^ =
j, +

(^Jj!

I'^Ol
(•5)

"^rfe"'

... I , c??* I </r

Again, since n = -, we have — = --—,

H(£)T
^;?0^-^^

This result can also be established in another manner, as

follows:

—

On reference to the figure of Art. 1 80, it is obvious that

<f,

= + \P; where (/» is the angle the tangent at P makes with

the prime vector OX.

d<\i dii dip ds d\ff

Hence ^ = ^-^^0' ""^
d^ dO

= ' ^
Js''

d6

I _d(j) cW^
^" p ds ds^

dO

Again, denoting j^ and -^^ by r and r, we have
dO dO'

V
tan ^ = -

; and hence
r

dl ^ , r' - rr r^ - rr

d-l r^ - rr + zr"" , ds . .^,.

(/0 r + r au
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Hence, we get p =
^2 _ ^^ ^ ^^.

-

Or, replacing r and r by their values,

'Pr /(irV(Pr
r^ - r—

dd

Again, since p = 00 at a point of inflexion, we infer that

the points of intersection of the curve represented by the

equation

d'r fdr\*

with the original curve, determine in general its points of

inflexion.

In some cases the points of inflexion can be easier found
by aid of (15), which gives, when p = 00,

Examples.

1

.

Find the radius of cunrature at any point in the spiral of Archimedes*

r = ad. Am. a -f-.
2 + d^

2. Find the radius of curvature of the logarithmic spiral r = a*.

Ans. r ( I + (log a)')*.

3. Find the points of inflexion on the curve

o
r = 29 - 1 1 cos 20. Au8. cos 2$ = ^-.

II

4. Prove that the circle r = 10 intersects the curve

r = II - 2 cosid

in its points of inflexion.

5. Prove that the curve

r = « + i cos «C

lias no real points of inflexion unless a is >d and <(l + ffi)}). When a lies be-
tween these limits, prove that all the points of inflexion lie on a circle ; and show
how to determine the radius of the circle.
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242 (fl). Intrinsic Equation of a Curve.—In many-
cases the equation of a curve is most simply expressed in

terms of the length, s, of the curve, measured from a fixed

point on it, and the angle, ^, through which it is bent,
i. e. the angle of deviation of the tangent at any point from
the tangent at the fixed point, taken as origin. These are
styled the intrinsic elements of the curve by Dr. Whewell,*
to whom this method of discussing curves is due.

The relation between the length s and the deviation ^ for

any curve is called its intrinsic equation.

If this relation be represented by the equation

« =/(0).

then if p be the radius of curvature at any point, we have

Also, if Si denote the length of the evolute, from Art. 237
it is easily seen that the equation of the evolute is of the form

Sx =/^((f>) + const.

From this it follows that the series of successive evolutes

are in this case easily determined by successive differentiation.

The simplest case of an intrinsic equation is that of the

circle, in which case we have

s = axj).

Again, from Art. 241(a), the intrinsic equation of the

involute of a circle is reducible to the form

s = --.
2

We shall meet with further examples of intrinsic equa-

tions subsequently.

243. Contact of Different Orders.—As already

stated, the tangent to a curve has a contact of the first order

with the curve at its point of contact, and the osculating

circle a contact of the second order. We now proceed to

distinguish more fully the different orders of contact between

two curves.

• Cambridge Philosophical Transactions, Vols. viii. and ix.
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Suppose the curves to be represented by the equations

y=f{x), andy = 0(a:),

and that x^ is the abscissa of a point common to both curves,

then we have

Again, substituting Xi + h, instead of a; in both equations,

and supposing y^ and y^ the corresponding ordinates of the

two curves, we have

y» =/(^i + h) =f{x,) + A/(^0 + j-^/'(^i) + &c.,

y2 = (t>(xi + h) =
<p {xi) + h<i/{xi) + j—^ ^"(^i) + &c-

Subtracting, we get

y.-y. = h lf(x,) - ^'{x,) ] + ^^ \r{x.) - fix,) ) + &c. (17)

Now, suppose f{xi) = (p\xi), or that the curves have a

common tangent at the point, then

In this case the curves have a contact of the first order

;

and when h is small, the difference between the ordinates is

a small quantity of the second order, and as y, - y^ does not

change sign with A, the curves do not cross each other at the

point.

If, in addition

r(x,) = f(x,),

then y.-y^ =^^ f
'^"(^^) " ^"(^^)

1 + ^^•

In this case the difference between the ordinates is an in-

finitely small magnitude of the third order when h is taken
an infinitely small magnitude of the first; the curves are

then said to have a contact of the second order, and approach
infinitely nearer to each other at the point of contact than in
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the former case. Moreover, since yi - t/t ^anges its sign

with h, the curves cut each other at the point as well as touch.

If we have in addition f"\xi) = <i>"\x^, the curves are

said to have a contact of the third order: and, in general, if

all the derived functions, up to the n*^ inclusive, be the same
for both curves when x = Xi, the curves have a contact of the

n^^ order, and we have

Also, if the contact be of an even order, w + i is odd, and
consequently h^*^ changes its sign with h, and hence the curves

cut eac other at their point of contact ; for whichever is the

lower at one side of the point becomes the upper at the

other side.

If the curves have a contact of an odd order, they do not

cut each other at their point of contact.

From the preceding discussion the following results are

immediately deduced :

—

( i) . If two curves have a contact of the w** order, no curve

having with either of them a contact of a lower order can

fall between the curves near their point of contact.

(2). Two curves which have a contact of the w'* order at

a point are infinitely closer to one another near that point

than two curves having a contact of an order lower than

the n^^.

(3). If any number of curves have a contact of the second

order at a point, they have the same osculating circle at the

point.

244. Application to Circle.—It can be easily verified

that the circle which has a contact of the second order with a

curve at a point is the same as the osculating circle determined

by the former method.

For, let (X-a)» + (F-/3)^ = i2^

be the equation of a circle having contact of the second order

at the point {x, y) with a given curve ; then, by the preceding,

du d'^11

the values of -^ and -tt niust be the same for the circle and
dx daf

for the curve at the point in question.
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Differentiating the equation of the circle twice, and sub-

stituting X and 1/ for X and Y, we get

and

Hence y ~ &^
"' y

da?

a?-a + (y-^)^ = o, (•9)

••(^-«2*(l)'-«- (20)

-(IT 2h(l)l /'?T^121;

i^^-v^-^r + Cy-/^^) (dW
\dx')

This agrees with the expression for the radius of curvature

found in Art. 226.

The co-ordinates a, /3 of the centre of curvature can
be found by aid of equations (21) ; and the equation of the

e olute by the elimination of x and y between these equa-
tions and that of the curve.

In practice, the following equations are often more useful

:

thus, by differentiation with respect to x, we get from (19),

In like manner, from the equation

(y - /3) + (a; - a) ^ = o,

we obtain

d'x
= ^-i(43- <^^>

245. Centre of Carvature, and £Yolute ofEllipse.
As an illustration, we shall apply these equations to de-

X 2
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termine the co-ordinates of the centre of curvature, and th&
equation of the evolute of the ellipse

re
dy b^ dx a^

, d f dy\ h" d / dx\
'''

dxYdxJ~ «»' (fyKdy)""

nee
d?y h" fdy\^ b' b'x'

^dx' a' [dxj a' a'y*

b* i 6Vj 6*

a^i^^a'^y^]" aY'

In like manner, we have

d'x fl*

^ dy*
~

b'x"'

Substituting in (22) and {2^), we obtain for the co-ordinates

of the centre of curvature

Again, substituting the values of x and y given by these

X" u
equations, in the equation — + t^= i, we get for the equation

of the evolute

(aa)t + {I5b)t = K - ^y-

246. It may be noticed that the osculating circle cuts the

curve in general, as well as touches it. This follows from
Article 243, since the circle has a contact of the second order

at the point.

At the points of maximum and minimum curvature th&
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osculating circle has a contact of the third order with the

curve ; for example, at any of the four vertices of an ellipse

the osculating circle has a contact of the third order, and does

not cut the curve at its point of contact (Art. 240).

247. Osculating Curves.—When the equation of a

curve contains a number, w, of arbitrary coefficients, we can

ia general determine their values so that the curve shall have

a contact of the (w - i)'* order with a given curve at a given

point ; for the n arbitrary constants can be determined bo

that the n quantities

dy d^ d^
^' dx' dx"' ' ' 'dx"-''

shall be the same at the point in the proposed as in the

given curve, and thus the curves will have a contact of the

{n - lY^ order.

The curve thus determined, which has with a given curve

a contact of the highest possible order, is called an osculating

curve, as having a closer contact than any other curve of the

same species at the point.

For instance, as the equation of a circle contains but

three arbitrary constants, the osculating circle has a contact

of the second order, and cannot, in general, have contact of a
higher order ; similarly, the osculating parabola has a contact

of the third order ; and, since the general equation of a conic

contains five arbitrary constants, the general osculating conic

has a contact of ihe fourth order. In general, if the greatest

number of constants which determine a curve of a given
species be n, the osculating curve of that species has a contact

of the (n - ly^ order.

248. Creometrical Method.—The subject of contact

admits also of being considered in a geometrical point of view

;

thus two curves have a contact of the first order, when they
intersect in two consecutive points; of the second, if they inter-

sect in three ; of the w^^, if in w + i . For a simple investi-

gation of the subject in this point of view the student is

referred to Salmon's Conic Sections, Art. 239.

249. Curvature at a Double Poiut.—We now pro-
ceed to consider the method of finding the radii of curvature
of the two branches of a curve at a double point.
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In this case the ordinary formula (8) becomes indetermi-

nate, since

du - du
-7- = o, and -7- = o
ax dy

at a double point. The question admits, however, of being
treated in a manner analogous to that already employed in

Art. 230 : we commence with the case of a node.

250. Radii of Curvature at a ]¥ode.—Suppose the

origin transferred to the node, and the tangents to the two
branches of the curve taken as co-ordinate axes, w represent-

ing the angle between them.
By Art. 210, the equation of the curve is in this case of

the form

zhxy = aa:* + ^x'^y + yxy"^ + ^y^ + Ui + &c.

:

dividing by xy we obtain

2h = a - + 3x + yy + S^ + — + &c.
y X xy

Now, let pi and pz be the radii of curvature at the origin

for the branches of the curve which touch the axes of x and y,

respectively; then, by Art. 231, we have

x^ , y^ .

2pi sin ft> = —, and 2/02 sin w = —, in the limit.

Again, it can be readily seen, as in the note to Art. 230,

that the terms in —, &c., become evanescent along with x
xy

and y, and accordingly the limiting values of — and — can
y X

be separately found, as in the Article referred to.

Hence we obtain

h h ^

f
.

Ri = —•—
> pi = ^-^= • (25)

a sm w sm (u

Also, if a = o, we get pi = 00, and the corresponding

branch of the curve has a point of inflexion at the origin.

Similai'ly, if S = o, /02 = 00.
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1

If a = o, and S = o, the origin is a point of inflexion on
both branches. This appears also immediately from the

consideration that in this case W3 contains u^ as a factor.

If the equation of a curve when the origin is at a node
contain no terms of the third degree, the origin is a point of

inflexion on both branches. An example of this is seen in

the Lemniscate, Art. 210.

Examples.

1. Find the radii of curvature at the origin of the two branches of the curve

^
•*' - 2hxy + ey^ = x^ + j/*f

b h
the axes being rectangular. Ans. - and -.

a c

2. Find the radii of curvature at the origin in the curve

a(y«-«2)=x».

Transforming the equation to the internal and external bisectors of the angle
between the axes, it becomes

4«xy v/2 = (a;-y)';

hence the radii of curvature are 2a y^ 2 and - 2a \/ 2, respectively.

251. Radii of Curvature at a Cusp.—The preceding

method fails when applied to a cusp, because the angle w
vanishes in that case. It is easy, however, to supply an in-

dependent investigation : for, if we take the tangent and
normal at the cusp for the axes of x and y, respectively, the

equation of the curve, by the method of Art. 2 1 o, may be

written in the form

y^ = as^ + ^a^y + yxy* + ly^ + w* + &c. (26)

Now in this, as in every case, the curvature at the origin

depends on the form of the portion of the curve indefinitely

near to that point ; consequently, in investigating this form

we may neglect y'^x, y% &c., in comparison with y^
; and x*

st^y, &c., in comparison with x^.
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Accordingly, the curvature at the origin is the same, in

general, as that of the cubic

y^ = a3? + Px% (27)

Dividing by «^, we get

Hence, in immediate proximity to the origin, - be-

comes very small, i. e. y is very small in comparison with x.

Accordingly, the form of the curve near the origin is repre-

sented by the equation

y' = ax^.

From this we infer that the form of any algebraic curve
near a cusp is, in general, a semi-cubical parabola (see Ex. 2,

Art. 211).

Again, since*

a?* X

we have, by Art. 230,

from which we see that p vanishes along with x, and accord-

ingly the radii of curvature are zero for both branches at the

origin.

This result can also be arrived at by differentiation, by
aid of formula (

i
)

.

252. Case where the Coefficient of a;^ is wanting.—
Next, suppose that the term containing x^ disappears, or

a = o, then the equation of the curve is of the form

y'^ = (5x^y + yxy^ + Sy* + ax* + &c.
;

and proceeding as before, the curvature at the origin is the
same as in the curve

f = I5xhj + aV. {2S)
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The two branches of this curve are determined by the

equation

y = -^±-'//3M~i7. (29)

The nature of the origin depends on the sign of j3' + 4a', and
the discussion involves three cases.

(i). If /3^ + 4a' be po-ntivey it is evident that the curve

extends at both sides of the origin, and that point is a double

cusp (Art. 215(0)).

On dividing equation (28) by y% and substituting 2p for

—, we get I = 2J5p + 4aV. (30)
y

The roots of this quadratic determine the radii of curva-

ture of the two branches at the cusp.

These branches evidently lie at the same, or at opposite

sides of the axis of a?, according as the radii of curvature

have the same or opposite signs : i. e. according as a has a
negative or positive sign.

These results also appear immediately from the circum-

stance, that in this case the form of the curve very near the

origin becomes that of the two parabolas represented by
equation (29).

(2). If /3^ + 4a' be negative, y becomes imaginary, and the

origin is a conjugate point.

(3). If /3^ + 4a' = o, the equation (30) becomes a perfect

square : we proceed to prove that in this case the origin is a
cusp of the second species.

To investigate the form of the curve near the origin, it is

necessary in tliis case to take into account the terms of the

fifth degree in x (g being regarded as of the second) : this gives

(y - 7^')' = 7^' + /3'^y + «"^'' = ^{jf + /3Vy + aV). (31)

It will be observed that the right-hand side changes its

sign with x ; accordingly the origin is a cusp. Also, the cusp
is of the second species, for the two roots of the equation in y
plainly have the same sign, viz., that of |3 ; and consequently
both branches of the curve at the origin lie at the same side
of the axis of x.
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Moreover, as equation (30) has equal roots in tins case,.

the radii of curvature of the two branches are equal, and the
branches have a contact of the second order.

We conclude that when the term involving x^ in equation

{2^) disappears, the origin is a double cusp, a cusp of the second
species, or a conjugate point, according as j3^ + 4a' > = or < o.

Moreover, if a = o, one root of the quadratic (30) is in-

finite, and the other is —r. The origin in this case is a double

cusp, and is also a point of inflexion on one branch. Such a
point is called a point of oscul-infiexion by Cramer.

If j3 = o in addition to a = o, the origin is a cusp of the

first species, but having the radii of curvature infinite for both
branches.

It is easy to see from other considerations that the radii

of curvature at a cusp of the first species are always either

zero or infinite.

For, since the two branches of the curve in this case

d'^y
turn their convexities in opposite directions, -t-^ must have

opposite signs at both sides of the cusp, and consequently it

must change its sign at that point ; but this can happen only

in its passage through zero, or through infinity.

It should be observed that the preceding discussion applies

to the case of a curve referred to oblique axes of co-ordinates,

provided that we substitute 7 instead of p ; where 7 is half

the chord intercepted on the axis of y by the osculating circle

at the origin.

253. Recapitulation.—The conclusions arrived at in the

two preceding Articles may be briefly stated as follows :

—

(i). Whenever the equation of a curve can be transformed

into the shape y^^aa? -^r terms of the third and higher degrees,

'Jie origin is a cusp of the first species ; both radii of cuiva-

ture being zero at the point.

(2). When the coefficient of x^ vanishes,* the origin is

In this case, if v\ be the equation of the tangent at the cusp, the equation

of the curve is of the form

Vl' + V\ t'3 + V4 + &c. = o.

This is also evident from geometrical considerations.
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generally either a double cusp, a conjugate point, or a ousp-

of the second species. In the latter case the two branches
of the curve have the same centre of curvature, and conse-

(juently have a contact of the second order with each other.

(3). If the lowest term in x (independent of y) be of the
5'* degree, the origin is a point of oscul-inflexion.

If, however, the coefficient of x^y also vanish, the origin

is not only a cusp of the first species, but also a point of

inflexion on both branches of the curve.

254. Oeneral Investigation of Cusps.—The pre-

ceding results admit of being established in a somewhat more
general manner as follows :

—

By the method already given, the equation which deter-

mines the form of an algebraic curve near to a cusp may be
written in the following general shape :

y' = zAx^y + Bx^ + Caf, (32)

where lAx^ is the lowest term in the coefficient of y, and
Bj^, Cjf* are the lowest terms independent of y.

By hypothesis, a, by c are positive integers, and a > i, b> 2^.

c > 3 ; now, solving for y, we obtain

y = Ax^ ± yA-x''' + Bx^ + CxP,

^^llich represents two parabolasf osculating the two branches
ut the origin.

The discussion of the preceding form for y resolves itself

into three cases, according as 2a is >= or < 6.

(i). Let 2a = h + hy then

y = Ax^ ± x^yB + ^V + Ci(f-^,

h

(a). If b be oddy ^ becomes imaginary for negative values

of Xy and accordingly the origin is a cusp of the

first species in this case.

* This term is retained, as it is necessary in the case of a cusp of the second,

species.

t The word parabola is here employed in its more extensive signification.
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(j3). If h be even, and B positive, y is real for all values

of X near the origin ; accordingly that point is a
double cusp.

(7). If h be even, and B negative, the origin is a conjugate

point.

(2). If 2a = b, we have

y = Aaf*±ixf ^(A^ + B) + Cx'-*.

In this case, the origin is either a double cusp, or a conju-

:gate point, according as A"^ + B is positive or negative.

Again, if -4^^ + ^ = o, we have

c-b

y = x^(A + x ' yC).

(a), li c - b be an odd number, the origin is a cusp of the

second species.

(/3). If c - i be even, the origin is a double cusp or a con-

jugate point according as C is positive or negative.

(3). 2a < b, OT b = 2a + h.

Here y = Ax^±af* ^A^ + Bx^ + Cx'-^'*,

^nd the curve evidently extends at both sides of the origin,

which accordingly is a double cusp.

This method of investigating curvature is capable of being
modified so as to apply to the case of multiple points of a
higher order ; the discussion, however, is neither sufficiently

elementary, nor sufficiently important, to be introduced here.

255. Points on £volute corresponding to Cusps on
Curve.—In connexion with evolutes and involutes, the pre-

ceding results lead to a few interesting conclusions.

(i). If a curve has a cusp of the first species, its evolute

in general passes through the cusp. However, if in addition

the cusp be a point of inflexion, the tangent at it is an asymp-
tote to the evolute.

(2). To a cusp of the second species corresponds in general

a point of inflexion on the evolute : in some cases the point

of inflexion lies altogether at infinity.

(3). To a double cusp corresponds a double tangent to the

-evolute.
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256. Equation of the Osculating Conic.—As an.

additional illustration of the principles involved in the pre-

ceding investigation, it is proposed to discuss the question of

the conic which osculates an algebraic curve at a given point.

Transferring the origin to the point, and taking the tangent

as axis of a?, the equation of the curve may be written in the

form

ay = x^ -ft aixy + a^y^ + hoix^ + bix^y + b^xy^ + Jay*

+ CqX^ + CiX^y + &c. + doX^ + &c. (33)

In considering the form of the curve near the origin, as a
first approximation we may, as in Art. 251, neglect xy, 2/% &c.,

in comparison with y ; and a?^, x*, &c., in comparison with x^

;

thus the equation reduces to the form

ay = ix^. (34)

Hence the form to which every curve of finite curvature

approximates in the limit is that of the common parabola, as

already seen in Art. 231.

To proceed to the next approximation, we retain terms of

the third order (remembering that when ic is a very small

quantity of the first order, y is one of the second), and the

equation becomes

ay = a^ + Oixy + hoS^,

On substituting ay instead of ar in the term h^a^, the pre-
ceding equation becomes

ay = x^+ («i + ha) xy. (35)

This represents a conic having contact of the third order
with the proposed curve at the origin. When a^ + h^a = o, the
parabola ay = x^ has a contact of the third ordier at the origin,

and accordingly so also has the osculating circle.

In proceeding to the next and final approximation, we re-

tain terms of the fourth order, and we get

ay - x^ -^ a^xy -{ a^y"^ + hoO? + hiix^y + CoiC*. (36)
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Moreover, from the preceding approximation we have

Hence, we get for the equation of the conic having a

contact of the closest kind with the given curve

ay = si^^ {ax-¥ha)xy + [a2 + a{h^-aih) +a2(co - V)]/. (37)

This conic, since it has the closest contact possible with

the given curve at the origin, is the osculating conic (Art. 246)

for that point.

In like manner the parabola

ay = x^+ {a, ^ha)xy + (^i^M! ^^ (33)
4

«ince it has the closest contact possible for a parabola, is the

osculating parabola at the point.
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Examples.

1. Prove that the radius of curvature at the vertex of a parabola is equal to

its semi-latus rectum.

2. Find the length of the radius of curvature at the origin in the curve

y* + x^ + a («' + y2) = a'-y. Ana. -.

3. Find the radius of curvature at the origin in the curve

a^y = ba^ \- ez*y. Ans. 00.

4. Prove that the locus of the centre of a conic having contact of the third

order with a given curve at a common point is a right line.

5. Prove that the locus of the centres of equilateral hyperbolas, which liave

contact of the second order with a given curve at a fixed point, is a circle, who&e
radius is half that of the circle of curvature at the point.

6. Prove geometrically that the centre of curvature at any point on an ellipse

is the pole of the tangent at the point, with respect to the confocal hyperbola
which passes through that point.

7. The locus of the centres of ellipses whose axes have a given direction, and
which have a contact of the second order with a given curve at a common point,

is an equilateral hyperbola passing through the point ?

8. Prove that the locus of the focus of a parabola, which has a contact of
the second order with a given curve at a given point, is a circle.

9. Prove that the radius of curvature ofthe curve a"»'^ y = x^ at the origin is

zero, -, or infinity, according a8mi8< = or>2: m being assumed to be greater

than unity.

10. Two plane closed curves have the same evolute : what is the difference

between their perimeters ?

Ans. iTtdy where d is the distance between the curves.

11. Find the radius of curvature at the origin in the curve

find also at what points the radius of curvature is infinite.

12. Apply the principles of investigating maxima and minima to find the
greatest and least distances of a point from a given curve ; and show that the

problem is solved by drawing the normals to the curve from the given point.

(a). Prove that the distance is a minimum, if the given point be nearer to

the curve than the corresponding centre of curvature, and a maximum if it bo

iurther.
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{h). If the given point be on the evolute, show that the solution arrived at

is neither a maximum nor a minimum ; and hence show that the circle of curva-

ture cuts as well as touches the curve at its point of contact.

13. Find an expression for the whole length of the eyolute of an ellipse.

a» - i»
Ans. 4 J—.ao

14. Find the radii of curyature at the origin of the two branches of the curve

r a
x^ ax^y - axi/^ + a*y^ = o. Ans. a and -.

* 4

15. Prove that the evolute of the hypocycloid

«l + j/« = al

is the hypocycloid
(o + )8)l + (a - J8)l = 2ai.

16. Find the radius of curvature at any point on the curve

p + V X ( I — x) = sin-i^x.

17. If the angle between the radius vector and the normal to a curve has a
maximum or a minimum value, prove that 7 = r ; where 7 is the semi-chord of

curvature which passes through the origin.

18. If the co-ordinates of a point on a curve be given by the equations

a; = <j flin 20 (I + cos 26), y = c cos 2fl (i - cos 2^),

find the radius of curvature at the point. Ans. 4c cos 3^

19. Show that the evolute of the curve

has for its equation
r2 - (I - m) a2 = mp\

20. If o and /3 be the co-ordinates of the point on the evolute corresponding

to the point {x, y) on a curve, prove that

dy da

21. If p be the radius of curvature at any point on a curve, prove that the

radius of curvature at the corresponding point in the evolute is -j- ; where w
aw

is the angle the radius of curvature makes with a fixed line.

22. In a curve, prove that

p dx \ds/'
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a3. Find the equation of the erolute of an ellipse by means of the eccentric

angle.

24. Prove that the determination of the equation of the evolute of the

curve y = Arx" reduces to the elimination of x between the equations

a = X «'«'*, and $ = kx'* +n-l n-i ' «-i kn{n- l)«"-*

25. In figure, Art. 239, if the tangent to the evolute at P meet the parabola

in a point H, prove that MN is perpendicular to the axis of the parabola.

26. If on the tangent at each point on a curve a constant length measured

from the point of contact be taken, prove that the normal to the locus of the

points so found passes through the centre of curvature of the proposed curve.

27. In general, if through each point of a curve a line of given length be
drawn making a constant angle with the normal, the normal to the curve locus

of the extremities of this line passes through the centre of curvature of the pro-

posed. (Bertrand, Cal. Lif.^ p. 573.)

This and the preceding theorem can be immediately established from geome-
ti'ical considerations.

a8. If from the points of a curve perpendiculars be drawn to one of its tan-

gents, and through the foot of each a line be drawn in a fixed direction, pro-

portional to the length of the corresponding perpendicular ; the locus of the

extremity of this line is a curve touching the proposed at their common point.

Find the ratio of the radii of curvature of the curves at this point.

19. Find an expression for the radius ofcurvature in the curve p =

p being the perpendicular on the tangent.

30. Being given any curve and its osculating circle at a point, prove that

the portion of a parallel to their common tangent intercepted between the two
curves is a small quantity of the second order, when the distances of the point

of contact from the two points of intersection are of the first order.

Prove that, under the same circumstances, the intercept on a line drawn
parallel to the common normal is a small quantity of the third order.

31. In a curve referred to polar co-ordinates, if the origin be taken on tlie

curve, with the tangent at the origin as prime vector, prove that the radius oi"

curvature at the origin is equal to one-half the value of - in the limit.
6

32. Hence find the length of the radius of curvature at the origin in the

. na
curve r = a sin nQ. Ans. p =—

'^ 2

33. Find the co-ordinates of the centre of curvature of the catenary ; and
>how that the radius of curvature is equal, but opposite, to the normal.

34. If p, p' be the radii of curvature of a curve and of its pedal at corre-
sponding points, show that

p{2r^-pp)=r^.
Ind. Civ. Ser. Exam.^ 1878.

Y
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CHAPTER XYIII.

ON TRACING OF CURVES.

257. Tracing Algebraic Curves.—Before concluding the
discussion of curves, it seems desirable to give a brief state-

ment of the mode of tracing curves from their equations.

The usual method in the case of algebraic curves consists

in assigning a series of different values to one of the co-ordi-

nates, and calculating the corresponding series of values of

the other ; thus determining a definite number of points on
the curve. By drawing a curve or curves of continuous cur-

vature through these points, we are enabled to form a tolerably-

accurate idea of the shape of the curve under discussion.

In curves of degrees beyond the second, the preceding

process generally involves the solution of equations beyond
the second degree : in such cases we can determine the series

of points only approximately.

258. The following are the principal circumstances to be
attended to :

—

(i). Observe whether from its equation the curve is sym-
metrical with respect to either axis ; or whether it can bo

made so by a transformation of axes. (2). Find the points

in which the curve is met by the co-ordinate axes. (3). De-
termine the positions of the asymptotes, if any, and at which
side of an asymptote the corresponding branches lie. (4) . De-
termine the double points, or multiple points of higher orders,

if any belong to the curve, and find the tangents at sach

points by the method of Art. 212. (5). The existence of

ovals can be often found by determining for what values of

either co-ordinate the other becomes imaginary. (6). If the

curve has a multiple point, its tracing is usually simplified by
taking that point as origin, and transforming to polar co-or-

dinates : by assigning a series of values to we can usually

determine the corresponding values of r, &c. (7). The points
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where the y ordinate is a maximum or a minimum are found
dy

from the equation — = o : by this means the limits of the

curve can be often assigned. (8). Determine when possible
the points of inflexion on the curve.

259. To trace the Curve y^ = x^ {x-a)\ a being sup-
posed positive.

In this case the origin is

a conjugate point, and the

curve cuts the axis of a; at a
distance OA = a. Again,
when X is less than a, y is

imaginary, consequently no
portion of the curve lies to

the left-hand side of A.
The points of inflexion, I '

and 1\ are easily determined
d^y Fig- 38*

from the equation ^-f= o ; the

corresponding value of a? is — ; accordingly AN = .

Again, if TI be the tangent at the point of inflexion 7, it

can readily be seen that TA = - = .

This curve has been already considered in Art. 213, and
is a cubical parabola having a conjugate point.

260. Cubic with three Asymptotes.—We shall next

consider tlie curve*

y'x + ey = ax^ + hx^ + cc + d. (»)

where a is supposed positive.

The axis of y is an asymptote to the carve (Art. 200), and
the directions of the two other asymptotes are given by the

equation

, OT y = ±x */a.ax"

This investigation is principally taken from Newton's Enumeratio Li-

nearum Tertii Ordinis.

Y 2
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If the term hx^ be wanting, tliese lines are asymptotes ; if b

be not zero, we get for the equation of the asymptotes

b /- b—-n, y 4 iC >/a + -—

_

y = X ^s/a + —— , y -^ X *ya + —— = o.

On multiplying the equations of the three asymptotes

together, and subtracting the product from the equation of

the curve, we get

ey = [c ) X + a:

this is the equation of the right line which passes through the

three points in which the cubic meets its asymptotes. (Art.

204.)

Again, if we multiply the proposed equation by a?, and
solve for xy^ we get

ayy =— ± lax*- + bx^ + cx^ + dx + - : (2)
2 V 4 ' '

from which a series of points can be determined on the curve

corresponding to any assigned series of values for x.

It also follows that all chords drawn parallel to the axis

of y are bisected by the hyperbola xy \r- = o'. hence we infer

that the middle points of all chords drawn parallel to an
asymptote of the cubic lie on a hyperbola.

The form of the curve depends on the roots of the bi-

quadratic under the radical sign. (i). Suppose these roots

to be all real, and denoted by a, j3, 7, 8, arranged in order of

increasing magnitude, and we have

ay = - - ± ^/a {x - a)(a; - ^){x - '{)(x - I),

Now when a; is < a, y is real ; when x> a and < j3, y is

imaginary ; when x> ^ and < 7, y^ is real ; when ic> 7 and

< S, y is imaginary ; when x>Z^y\^ real.
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We infer that the curve consistsof three branohee, extending
to infinity, together

with an oval lying
; Y

between the values

/3 and y for x.

The accompany-
ing figure* repre-

sents Buch a curve.

Again, if either

the two greatest

roots or the two
least roots become
equal, the corres-

pondiDg point be-

comes a node.

If the interme-

diate roots become ^^?- 39*

equal, the oval shrinks into a conjugate point on the curve.

If three roots be equal, the corresponding point is a cusp.

If two of the roots be impossible and the other two un-
equal, the curve can have neither an oval nor a double point.

If the sign of a be negative, the curve has but one real

asymptote.

261. Asymptotes.—In the preceding figure the student

will^jobserve that to each asymptote correspond two infinite

branches ; this is a general property of algebraic curves, of

which we have a familiar instance in the common hyperbola.

By the student who is acquainted with the elementary
principles of conical projection the preceding will be readily

apprehended ; for if we suppose any line drawn cutting a
closed oval curve in two points at which tangents are drawn,
and if the figure be so projected that the intersecting line is

sent to infinity, then the tangents will be projected into

asymptotes, and the oval becomes a curve in two portions,

each having two infinite branches, a pair for each asymptote,
as in the hyperbola.

• The figure is a tracing of the curye

9«y' + io8y = (a; - 5) (x - ll) {x - la).
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It should also be observed that the points of contact at

infinity on the asymptote in the opposite directions along it

must be regarded as being one and the same point, since they
are the projection of the same point. That the points at

infinity in the two opposite directions on any line must be
regarded as a single point is also evident from the considera-

tion that a right line is the limiting state of a circle of in-

finite radius.

The property admits also of an analytical proof; for if

the asymptote be taken as the axis of x, the equation of the

curve (Art. 204) is of the form

y^\ + 02 = o, or y = - ^,
01

where ^2 is at least one degree lower than 0i in a; and y.

Now, when x is infinitely great, the fraction — becomes in
01

general infinitely small, whether x be positive or negative

;

and consequently the axis is asymptotic to the curve in both
directions.

262. To trace the Carve

a'y^ = hx*" + a;',

where a and h are both positive.

Here ya* = ± ic* (a? + h)K

The curve is symmetrical with respect

to the axis of x, and has two infinite

branches ; the origin is a double cusp.

The shape of the curve is exhibited in the

figure annexed. Fig. 40.

If h were negative, we should have

ycfi = ± re* (a; - h)^.

Here y becomes imaginary for values of x less than h ;

accordingly, the origin is a conjugate point in this case : the

curve has two infinite branches as in the former case

263. To trace the Curve

a^y^ = lahx^y + o^.
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From the form of its equation wo see that the origin is

a point of oscul-in^Qxion. (Art. 251).
Solving for y, we can easily

leterraine any number of points
' )n the curve we please. It has
two infinite branches at opposite

siJes of the axis of jr, and a loop

at the negative side of that axis,

as exhibited in the figure.

264. To trace the Curve

«* + x'y* + y* = a; {ax^ - hy^).

(i). Let a and b have the
same sign, then the origin is

a [triple point, having for its

tangents the lines

X = Oy X v/fl + y\/b = o,

and x^ya-1/ ^yb = o.

Moreover, since the curve

has no real asymptote, it is

a finite or closed curve with
three loops passing through the ^'g- 4*

origi^ ; and it is easily seen that its shap<«

is that represented in the accompanying
figure.

(2). If a and b have opposite signs, the

lines represented by ax^ - by^ = o become
imaginary. The curve in this case consists

of a single oval as in the figure.

This and the preceding figure were
traced for the case where 6 = 3^: if the

value of - be altered, the shape of the cui-ve Fig. 43-

will alter at the same time. If a be greater than by the

curve (2) will lie inside the tangent at the point X.
265. Form of Curve near a DouIi>le Poiat.—When-

ever the curve has a node or a cusp, by transforming the

origin to that point, the shape of the curve for the branchea
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passing through the point admits of being investigated by the

method explained in Arts. 250, 251. It is unnecessary to

enter into detail on this subject here, as it has been already

iliscussed in the articles referred to.

266. In connexion with the tracing and the discussion of

curves there is an elementary general principle which may
be introduced here.

If the equation of a curve be of the form

LL' - MM' = o,

where X, Jf, L\ M' are each functions of the co-ordinates x
and 2/, the curve evidently passes through all the points

of intersection of the curves represented by the equations

L = o and Jf = o ; similarly it passes through the intersec-

tions oi L = o and M' = o; and also those of Jf = o and
L = o\ and of L' =0 and M' = o. Moreover, if L and X'
become identical, the points of intersection coincide in

pairs, and the equation of the curve becomes of the fonu
U - MM' = o ; which represents a curve touching the curves

M= o, M' = o, at their points of intersection with the curve

X = o.

This principle admits of easy extension ; but as the subject

belongs properly to the method of trilinear co-ordinates, it is

not considered necessary to enter more fully into it here.

267. On Tracing Curves given in Polar Co-ordi-
nates.—The mode of procedure in this case does not differ

essentially from that for Cartesian co-ordinates. We have

already, in Arts. 206 and 207, considered the method of

finding the asymptotes and asymptotic circles in such cases.

It need scarcely be observed that the number and variety of

curves whose discussion more properly comes under the

method of polar co-ordinates are indefinite. We propose to

confine our attention to a few varieties of the class of cuT'ves

represented by the equation

r"* = fl"* cos mQ.

268. On the Curves r"* = a"» cos mB.—In this case,

since the equation is unaltered when d is changed into - 0,

the curve is symmetrical with respect to the prime vector

:

again, when = o, we have r = a ; and as B increases from zero
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to — , r diminishes from a to zero. When m is a positive in-
2 in

teger, it is easily seen that the curve consists of m similar loops.

There are many familiar curves included under this

equation. Thus, when m = i , we have r = « cos 0, which
represents a circle : again, ii m = - i , the equation gives

r cos = fl, which represents a right line. Also, if m= 2, we
have r' = a^ cos 2 0, a Lemniscate (Art. 210). If w = - 2, we
get r' cos 2O = a^i an equilateral hyperbola.

If m = - we get ri = a^ cos -, whence r = - (i + cos 0), a

-, it 18 r* cos -cardioid (Ex. 4, p. 22,2) ; with m =—, itisri cos - = aJ, a

parabola (Ex. i, p. 231) ; and so on. As already observed,

if we change m into - m we get a new cui've, inverse of

the original. Also, the reciprocal polar is obtained by sub-

stitutinff - instead of m.
^ m+ I

The tangent and normal can be immediately drawn at

any point on a curve of this class by aid of the results arrived
at in Art. 190. The radius of curvature at any point has
been determined in Ex. 5, Art. 235. The method of finding
the equations of the successive pedals, both positive and
negative, has been also already explained.

A^few examples in the case of fractional indices are here
added'.

Example i.

ri = a* cos -.

3
Here when = o, we have r = a,

and the curve cuts the prime vector

at a distance OA equal to a : again,

^ 3«y3when B
8

also when

^ = 7r, r = ?,orO^ =
|. Fig. 44.

The shape of the curve is given in the accompanying
figure. This curve is the inverse of the caustic considered in

Example 18, p. 277.
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Ex.3.Ex. 2. Ex. 3. Ex. 4.

ri = af cos- 9. r* = a* cos -6. r^ = a^ cos - d.

4 5 3

In Ex. 2, as increases from zero to 120°, r diminishes

from a to zero : when 6 increases

from 120° to 240°, r increases from
zero to a : when increases from
240° to 360°, r diminishes from a

to zero. By assigning negative

values to 0, the remaining part of

the curve is seen to he symmetrical

with that traced as ahove. The
same result plainly follows by con-

tinuing the values for from 360°

up to 720°. The form of the curve

is exhibited in the annexed figure. Fig. 45.

In Ex. 3, according as cos - is positive or negative, w&

get equal and opposite real values, or imaginary values, for r.

Hence it is easily seen that for values of d between ± ^ tt the
o

radius vector traces out two symmetrical portions of the

curve
15 25

again, between — tt and — tt we get two other
o o

Fig. 46.

symmetrical portions.

of the two accompanying figures.

^'^'6- 47-

The shape is that given in the former
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The latter figure represents the curve in Ex. 4 ; it consists

olfive symmetrical portions ranged round the origin.

The results above stated admit of generalization, and it

can be shown, without difficulty, that in general the curve

r^ = a^ cos — consists of p similar portions arranged about

the origin; and that the entire curve is included within a-

circle of radius a when p is positive, but lies altogether

outside it when p is negative.

Many curves can be best traced by aid of some simple

geometrical property. We shall terminate the Chapter with
one or two examples of such curves.

269. The liima^on.—The inverse of a conic section

with respect to a focus is called a Limacon. From the polar

equation of a conic, its focus being origin, it is evident that

the equation of its inverse may be written in the form

r = a cos 9 + b,

where a and b are constants.

It is easily seen that - is the eccentricity of the conic.

The curve can be readily traced by drawing from a fixed

point on a circle any number of chords, and taking off a
constant length on each of these lines, measured from th&

circumference of the circle.

If a be less than by the curve is the inverse of an ellipse^

and lies altogether outside the circle.

If a be greater than i, the p
ourve is the inverse of a hy- /^'"'Tl ^"\
perbola, and its form can be /'^ / ^v
easily seen to be that exhibited / ,.-/"'-A-. \
in the annexed figure, where ( /'/^ ^\ \
OD = a - by and the point is a n\^—^ a I

'; \

node on the curve. /N^D t^——j»

If b = a, the curve becomes ( ''v, X.
I ,/ /

the inverse of the parabola, \ ^'--.3^'' /
and is called a cardioid. The \ /
inner loop disappears in this \v^ ^^^
case, and the origin is a cusp
on the curve. Fig. 48.
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When a = 2h, the Limacon is called the Trisectrix; a
curve by aid of which any given angle can be readily

trisected.

270. The Conchoid of ]¥iconiei!e8.—If through any
fixed point A a secant P^AP be L
drawn meeting a fixed right line LM
in P, and PP and PPi be taken
•«ach of the same constant length;

then the locus of P and Pi is called

the conchoid.

This curve is easily traced from
the foregoing geometrical property,

and it consists of two branches,

having the right line LM for a
•<Jommon asymptote. Moreover, if

the perpendicular distance AB oi

A from the fixed line be less than

RP^ the curve has a loop with a

node at ^, as in the annexed figure.

It is easily seen that when
AB = RP, the point ^ is a cusp

•on the curve ; and when AB is

greater than RP, -4 is a conjugate

point.

The form of the curve in the Fig. 49.

latter case is represented by the dotted lines in the figure.

Ji AB = a, RP = i, the polar equation of the curve iB

(r ± h) COS0 = a.

When transformed to rectangular co-ordinates, thig

equation becomes

The method of drawing the normal, and finding the

centre of curvature, at any point, will be exhibited in tne

next Chapter.
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Examples.

1. Trace the curve y = {x - \) {x - ^){x - 3), and find the position of it«.

point of inflexion.

2. Trace the curve y* - Zaxy + «' = o, drawing its asymptote.

This curve is called the Folium of Descartes.

3. Trace the curve a'« = y (i* + jr"), and find its points of inflexion, and

points of greatest and least distance from the axis of x.

4. If an asymptote to a curve meets it in a real finite point, show that th»-

oorresponding branch of the curve must have a point of inflexion on it.

5. Find the position of the asymptotes and the form of the curve

«* — y* + 2ara:y* = o.

6. Show that the curve r = a cos zQ consists of four loops, while the curve

r = a cos 30 consists of but three. Prove generally that the curve r = a cos n^-

has n or zn loops according as n is an odd or even integer.

7. Trace the curve

y^{»- a){z - d) = c'{x + a)(a; + b).

8. Show that the curve ar'y' \- x^ = a^ {x"^ - y') consists of two loops passing

through the origin, and find the form of the curve.

9. Tra(ie the curve y(a; + o)* = b'^x{x + c)2, showing the positions of its^

asymptotes and infinite branches.

10. Trace the curve whose polar equation is

r s= a cos + J cos 2^,

*nd show that it consists of four loops passing through the origin.

11. Given the base and the rectangle under the sides of a triangle, find the
equation of the locus of the vertex (an oval of Cassini). Exhibit the ditferent

forms of the curve obtained by varying the constants, and find in what case the
curve becomes a Lemniscate.

12. Trace the curve y' = ax^ + 3 Ja;' + 3c« + d^, and find its points ofgreatest
and least distance from the axis of x.

Show that two of these points become imaginary when the roots of the cubic
in X are all real.

13. Given the base and area of a triangle, prove that the equation of the
locus of the centre of a circle touching its three sides is of the form

x^y - a (a;2 + y^) -b'^^y ^a) = o.
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14. Prove that all curves of the third degree are reducihle to one or other of

the forms

(i). xy^ + <y = ax^ + hx* + ca; + <f

.

(2). xy = ax^ + bx"^ \- ex -Y d.

(3). y^ = ax^ -^ hx"' + ex + d.

(4). y = ax? + ix^ + ex + d.

Newton, Enum. Linear. Ter. Ordinit.

15. Prove that all curves of the third degree can be obtained by projection

from the parabolas contained in class (3) in the preceding division. [Newton.]

For every cubic has at least one real point of inflexion : accordingly, if the

curve be projected so that the tangent at the point of inflexion is projected to

infinity, the harmonic polar (Art. 223) will bisect the system of parallel chords

passing through this point at infinity. Hence the projected curve is of the

class (3). [This proof is taken from Chasles, Histoire de la Geometrie, note xx.]

16. Trace the curve r =
aB"^

, and show that it has a point of inflexion

when 0^ = 3 ; find also its asymptotes and asymptotic circle.

X
17. Trace the curve y = asin-, and show how to draw its tangent at any

a
point. (This is called the curve of sines.)

18. The base of a triangle is fixed in position ; find the equation of the locus

of its vertex, when the vertical angle is double one of the base angles.

Trace the locus in question, finding the position of its asymptote.

19. Show geometrically tbat the first pedal of a circle with respect to a

point on its circumference is a cardioid.

20. Show in like manner that the Lima^on is the first pedal of a circle with
respect to any point.

21. Trace the curve

y* + laxy"^ = ax^ + a;*,

and find the equations of its asymptotes, and of the tangents at the origin.

Ind. Civ. Ser. Ex., 1 876.
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CHAPTER XIX.

ROULETTES.

271. Roulettes.—Wlien one curve rolls without sliding

upon another, any point invariably connected with the rolling

curve describes another curve, called a roulette.

The curve which rolls is called the generating curve, the

fixed curve on which it rolls is called the directing curve, or

the base, and the point which describes the roulette, the tracing

point. We shall commence with the simplest example of a

roulette : viz., the cycloid.

272. The Cycloid.—This curve is the path described by
a point on the circumference of a circle, which is supposed to

roll upon a fixed right line.

The cycloid is the most important of transcendental

curves, as well from the elegance of its properties as from its

numerous applications in Mechanics.

We shall proceed to investigate some of the most
elementary properties of the curve.

Let LPO be any position of the rolling circle, P the

generating point, the point of

contact qf the circle with the fixed

line. Take the length AO equal

to the arc PO, then, from the

mode of generation of the curve, -

A is the position of the generating

point when in contact with the ^^n- 5o-

fixed line ; also, if AA' be equal, to the circumference of the

circle, A^ will be the position of the point at the end of one
complete revolution of the circle. Bisect AA' in i), and
draw DB perpendicular to it and equal to the diameter of

the circle, then B is evidently the highest point in the
cycloid. Draw PN perpendicular to A^\ and let PN = y,
AN =x, L PCO = 6, 0C= a, and we get

x = AO- NO ^a{9- sin 6), y = PN = a{i -cosO). (i)
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The position of any point on the cycloid is determined by
these equations when the angle B is known, i. e. the angle
through which the circle has rolled, starting from the position

for which the generating point is upon the directing Hne.

273. Cycloid referred to its "Vertex.—It is often

convenient to refer the cycloid to its vertex as origin, and to

the tangent and normal at that point as axes of co-ordinates.

In the preceding figure let

x = BN\ y = PN\ LPCL = & = iT-d',

then we have

x = BN' = a{& + sme^), p = FN' = a {i - cose"), (2)

274. Tangent and IVormal to Cycloid.—It can be
easily seen that the line PO is normal at P to the cycloid

;

for the motion of each point on the circle at the instant is one
of rotation about the point 0, i. e. each point may be regarded

as describing at the instant an infinitely small circular* ara

whose centre is at : and hence PO is normal to the curve.

This result can also be established from the values of x

and y in (i) : for

^ = fl(i-cos0), J = asin0: (3)

dy sin ,6 , i^rr^
/. -^ = ji = cot - = cot PLO ;

dx I - cos 2

and, accordingly, PL is the tangent, and PO the normal to

the curve at P.

Again, if we square and add the values of ^ and ^, we

obtain

(S)^Y=
a'{{i- cos ey + sin* B] = 4«' sin'* ^B;

• This method of finding the normal to a cycloid is due to Descartes, and

evidently applies equally to all roulettes.
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hence
ds . e— = 2^8111-
dO 2

PO, (4)

Fig. 5>

275. Radius of Curvature and Evolute ofCycloid.

—Let p denote the radius of curvature at the point P, and

lFOA = = -;

or the radius of curvature is double the normal. From this

value of p the evolute of the curve

can be easily determined. For,

produce PO until OF = OP, then

P' is the centre of curvature be-

longing to the point P. Again,

produce LO until OG = OL, and
describe a circle through 0, P' and

(/ ; this circle evidently touches

AA\ and is equal to the generating

circle LPO.
Also, the arc OP = arc OP = ^0

;

.-. arc ap" = aro -fo = ab-ao=od = Ba,
Hence the locus of P' is the cycloid got by the rolling of

this new circle along the line

FQf\ and accordingly the evo-

lute of \ cycloid is another

cycloid. It is evident that the

evolute of the cycloid ABA!
is made up of the two semi-

cycloids, AB and BA, as in

figure 51. Conversely, the

cycloid ABA! is an involute of

the cycloid ABA.
The position of the centre of

curvature for a point P on a-

cycloid can also be readily de-

termined geometrically, as fol-

lows :

—

Suppose Oi a point on the

circle infinitely near to 0, and take OO3 LstP'
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be the centre of curvature required, and draw POi and P'Oz.
Now suppose the circle to roll until Ox and 0^ coincide, then
COi becomes perpendicular to AD, and POi and F'Oz will

lie in directum (since P' is the point of intersection of two
consecutive normals to the cycloid). Hence

L OCO, = L PO,Q = L OPO, + z OFOx,

since each side of the equation represents the angle through
which the circle has turned.

But L OCOx = 2L0P Oi. (Euclid, III. 20.)

Hence lOPOx = lOFO^;

.-. POx = FO,',

and consequently in the limit we have

PO = FO,
as before.

We shall subsequently see that a similar method enables

us to determine the centre of curvature for a point in any
roulette.

276. liength ofArc ofCycloid.—Since -^P'jB' (Fig. 51)
is the evolute of the cycloid -4P-6, it follows, fromArt. 2 3 7, that

the arc AF of the cycloid is equal in length to the line PFy
or to twice FO ; hence, as A is the highest point in the

cycloid AFF, it follows that the arc ^P measured from the

highest point of a cycloid is double the intercept FO, made
on the tangent at the point by the tangent at the highest

point of the curve.

Hence, denoting the length of the arc AF by s, we have

s = 4a sinFOB = 405 sin 0. (6)

This gives the intrinsic equation of the cycloid (see Art.

242 (a)). Hence, also, the whole arc AF is four times the

radius of the generating circle : and accordingly the entire

length ABA' of a cycloid is eight times the radius of its

generating circle.

Again, if the distance of F from AA' be represented by
y, we shall have

FO^ = 00' xy= lay.

Hence s" - ^FO^' = Say, <7)
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This relation is of importance in the applications of the

cycloid in Mechanics.

Again, since -40 = arc OP'y if we represent -40 by v, we
have*

V = 2a(l>. (8)

277. Trochoids.— In general, if a circle roll on a

right line, any point in the.

plane of the circle carried round*

with it describes a curve. Such
curves are usually styled tro-

choids. When the tracing

point is inside the circle, the

locus is called a prolate tro-

choid ; when outside, an oblate,

the accompanying figure.

Their equations are easily determined ; for, let a?, y be
the co-ordinates of a tracing point P, referred to the axes

AD, and AI (A being the position for which the moving
radius CP is perpendicular to the fixed line).

Then, if CO = a, CP = d, z. OCP = 9, we have

NO
Fig. 53.

Their forms are exhibited in

(9)

x = AN=AO- ON=ae-dBme.

y = PN = a -d cos 0.

278. Eplcydoidsf and Hypocydoids.—The investi

* This is called, by Professor Casey, the tangential equation of the cycloid,

and by aid of it he has arrived at some remarkable properties of the curve ("On
a New Form of Tangential Equation," Philosophical Transactions, 1877). "In
general, if a variable line, in any of its positions, make an intercept v on the axis

of ar, and an angle ^ with it; then the equation of the line is

a: + y cot <p — V = ',

and V, <p, the quantities which determine the position of the line may be called

its co-ordinates. From thig it follows that any relation between v and <p, such
aa

will be the tangential equation of a curve, which is the envelope of the line."
For applications, the reader is referred to Professor Casey's Memoir. See also
Dub. Hxarn. Papers, Graves, Lloyd Exhibition, 1847.

t I have in this edition adopted the correct definition of these curves as
given by Mr. Proctor in his Geometry of Cycloids, I have thus avoided the
anomaly existing in the ordinary definition, according to which every epicycloid

Z 2
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gation of the properties of the cycloid naturally gave rise to

the discussion of the more general case of a circle rolling on a
fixed circle. In this case the curve generated by any point

on the circumference of the rolling circle is called an epicycloidy

or a hypocycloidy according as the rolling circle touches the outside^

or the inside of the circumference of the fixed circle. We shall

commence with the former case.

Let P be the position of the generating point at any in-

stant,A its position when
on the fixed circle ; then
the arc OA = arc OP.

Again, let (7 and O'be
the centres of the circles,

a and h their radii,

LACO = d,LOO'P=&',
then, since arc OA = arc

OP, we have aQ = hd.

Now, suppose C taken

as the origin of rectangu-

lar co-ordinates, and CA
as the axis of x ; draw PN
and G'L perpendicular, ^ig- 54.

and PIT parallel, to CA, and we have

x=CN=CL-NL = {a + b)co3e-b cos {9 + ff),

y = PN=CrL- C'M= {a + 5) sin 6> - J sin {9 f 9');

or, substituting - 9 for 0',

x= {a + b) cob9 - b cos -r— 9,
j

a + b
p = (a + b) sm9 - b sin. —j— 9.

(10)

is a hypocycloid, but only some hypocycloids are epicycloids. While according

to the correct definition no epicycloid is a hypocycloid, though each can be gene-

rated in two ways, as will be proved in Art. 280.
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When the radius of the rolling circle is a submultiple of

that of the fixed circle, the tracing point, after the circle

has rolled once round the circumference of the fixed circle,

evidently returns to the same position, and will trace the

same curve in the next revolution. More generally, if the

radii of the circles have a commensurable ratio, the tracing

point, after a certain number of revolutions, will return to its

original position : but if the ratio be incommensurable, the

point will never return to the same position, but will describe

an infinite series of distinct arcs. As, however, the suc-

cessive portions of the curve are in every respect equal to

each other, the path described by the tracing point, from
the position in which it leaves the fixed circle until it returns

to it again, is often taken instead of the complete epicycloid,

and the middle point of this path is called the vertex of the

urve.

In the case of the hypocycloid, the generating circle rolls

on the interior of the fixed circle, and it can be easily seen

that the expressions for x and y are derived from those in (10)
by changing the sign of h ; hence we have

x= (a - b) cosB + h cos —7— 0,

a-b
'• ^"^

y = (a - b) smO - b sin —7— 0,

The properties of these curves are best investigated by
aid of the simultaneous equations contained in formulas (10)
and (11).

It should be observed that the point -4, in Fig. 54, is a
cusp on the epicycloid ; and, generally, every point in which
the tracing point P meets the fijted circle is a cusp on the

roulette. From this it follows that if the radius of the rolling

circle be the n^^ part of that ofthe fixed, the corresponding epi-

or hypo-cycloid has n cusps : such curves are, accordingly,

designated by the number of their cusps : such as the three-

cusped, four-cusped, &c. epi- or hypo-cycloids.

Again, as in the case of the cycloid, it is evident from
Descaxtes* principle that the instantaneous path of the pointP
is an elementary portion of a circle having as centre ; ac-
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cordingly, the tangent to tlie path at P is perpendicular to

the line PO, and that line is the normal to the curve at P.
These results can also be deduced, as in the case of the

cycloid, by differentiation from the expressions for x and y.

We leave this as an exercise for the student.

To find an expression for an element ds of the curve at

the point P ; take (7, 0", two points infinitely near to on
the circles, and such that 0(7 = OC/'', and suppose the gene-

rating circle to roll until these points coincide :* then the

lines C(y and CC/' will lie in directum, and the circle will

have turned through an angle equal to the sum of the angles

OCO' and 0C'0"\ hence, denoting these angles by c/^ and dQ\

respectively, we have

d8=0P(de + dQ^^0Pii + ^jdO; (12)

since dO^ = t- dO.

279. Radius of Curvature of an Epicycloid.—
Suppose 0) to be the angle OSN between the normal at P and
the fixed line CL4, then

w = COS-C'CS = '^-^-e; .-. dto = 'de\i+^\.

Hence, if p be the radius of curvature corresponding to

the point P, we get

^_^^0P'-^. (.3)^ d(o a + 2b

Accordingly, the radius of curvature in an epicycloid is

in a constant ratio to the chord OP, joining the generating

point to the point of contact of the circles.

It may be observed that O'O" is infinitely small in comparison with OC/ ;

hence the space through which the point moves during a small displacement

is infinitely small in comparison with the space through which Pmoves. It is

in consequence of this property that may be regarded as being at rest for the

instant, and every point connected with the rolling circle as having a circular

motion around it
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Fig. 558

280. Double Generation of Epicycloids and llypo-
oycloids.—In an Epicycloid, it can be easily sliown that

the curve can be generated in a second manner. For,
suppose the rolling circle in-

closes the fixed circle, and join

P, any position of the tracing

point, to 0, the correspond-

ing point of contact of the two
circles; draw the diameter Oj&i),

and join O'E and PD ; connect

(7, the centre of the fixed circle,

to (/, and produce CC/ to meet
DP produced in D', and describe

a circle round the triangle GPD'\
this circle plainly touches the

fixed circle ; also the segments
standing on OP, (XP, and 0(7 are obviously similar ; hence,

since OP =00^ OP, we have

arc OP = arc OO + arc OP.

If the arc OOA be taken equal to the arc OP, we have
arc OfA = arc OfP ; accordingly, the pointP describes the same
curve, whether we regard it as on the circumference of the

circle OPD rolling on the circle OO'E, or on the circumference

of UPDf rolling on the same circle
;
provided the circles each

start from the position in which the generating point coincides

with the point A. Moreover, it is evident that the radius of
the latter circle is the difference

between the radii of the other two.

Next, for the Hypocycloid,
suppose the circle OPD to roll

inside the circumference of O'E,

and let C be the centre of the

fixed circle
;
join OP, and pro-

duce it to meet the circum-

ference of the fixed circle in Of
;

draw O'E and PD, join CO',

intersecting PD in Df , and de-

scribe a circle round the triangle

PDfOf. It is evident, as be-

fore, that this circleiouches the Fig. 56.
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larger circle, and that its radius is equal to the difference be-
tween the radii of the two given circles. Also, for the same
reason as in the former case, we have

arc Oa = arc OP + arc O'P,

If the arc OA be taken equal to OP, we get arc OP
= arc OA ; consequently, the point P will describe the same
hypocycloid on whichever circle we suppose it to be situated,

provided the circles each set out from the position for which
P coincides with A,

The particular case, when the radius of the rolling circle is

half that of the fixed circle, may be noticed. In this case the

point D coincides with C, and P becomes the middle point of

0(7, and A that of the arc OO. From this it follows im-
mediately that the hypocycloid described by P becomes the

diameter CA of the fixed circle. This result will be proved
otherwise in Art. 285.

The important results of this Article were given by Euler

(Acta. Petrop., 1781). By aid of them all epicycloids can be

generated by the rolling of a circle outside another circle

;

and all hypocycloids by the rolling of a circle whose radius

is less than half that of the fixed circle.

281. Evolute of an Epicycloid.—The evolute of an
epicycloid can be easily

seen to be a similar epi-

cycloid.

For, let P be the trac-

ing point in any position,

A its positionwhen on the
fixed circle

;
join P to 0,

the point of contact of tho

circles, and produce PO

until Pi" = OP?^*,
a + 2b

then P is the centre of

curvature by (13) ; hence

OF=OP
a+ 26* Fig. 57-

Next, draw FO perpendicular to P'O; circumscribe the
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triangle OF^Cf by a circle ; and describe a circle with C as

centre, and (7(7 as radius : it evidently touches the circle OF'O.

Then Oa : 0E= OP" : OP = a:a ^ zh^CO: CE;

.-. CO-0(y:CE-OE = CO:CE,

or C(y:CO=CO:CE;

that is, the lines CE, CO, and CO^ are in geometrical pro-

portion.

Again, join C to B', the vertex of the epicycloid ; let CB"
meet the inner circle in 2), and we have

arc ai):aTcOB= CO' : CO==CO : CE^aOiEO

= arcra : arc OQ.

But arc OB = arc OQ ; .-. arc O'D = arc ra.

Accordingly, the path described by F" is that generated by a

point on the circumference of the circle OP'O' rolling on the

inner circle, and starting when P' is in contact at D. Hence
the evolute of the original epicycloid is another epicycloid.

The form of the evolute is exhibited in the figure.

Again, ^ince CO : OE = CO" : (/O, the ratio of the radii

of the fixed and generating circles is the same for both epicy-

cloids, and consequently the evolute is a similar epicycloid.

Also, from the theory of evolutes (Art. 237), the line

PP' is equal in length to the arc I*'A of the interior epicy-

cloid ; or the length of P'A, the arc measured from the

vertex A of the curve, is equal to

'^'^'^0F = 20F^^ = 20f''^''
a CO ca

Hence, the length* of any portion of the curve measuredfrom
its vertex is to the corresponding chord of the generating circle a<

ttcice the sum of the radii of the circles to the radius of the fixed

circle.

* The length of the arc of an epicycloid, as also the inrestigation of its

«volute, were given hy Newton {Principia^ Lib. i., Props. 49, 50).
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With reference to the outer epicycloid in Fig. 57, this

gives

^oPF = 2PE.^. (14)

The corresponding results for the hypocycloid can be
found by changing the sign of the radius b of the rolling

circle in the preceding formulae.

The investigation of the properties of these curves is of

importance in connexion with the proper form of toothed

wheels in machinery.
282. Pedal of Epicycloid.^The equation of the pedal^

with respect to the centre of the

fixed circle, admits of a very

simple expression. For let P be
the generating point, and, as be-

fore, take arc OA = arc OP, and
make AB = 90°. Join CA, CB,
CPf and draw CN perpendicular

to DP. Let z PDO = (^, z BCN
^w,/.ACO = e, CN = p.

Then since ^0 = PO, we have

ad = 2h^
;

Again, w
2b

+ —
a

a ^

Fig. 58.

hence

Also

=
f7(tt

a + zb

CN= CP sirup;

\ p = {a + 2b) sin
ttb)

a + 26*

(15)

(16)

which is the equation of the required pedal.

283. Equation of Epicycloid in terms of r and p,—
Again, draw OL parallel to DN, and let CP = r, and we have

r» -/ = PN' = OD = OC - CD
a + 2b

f;
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Also, from (16) it is plain that the equation of DJV, the tan-

gent to the epicycloid (referred to CB and CA as axes of x

and y respectively), is

X COB (jj + 1/ SID. (t) = (a + 20) sm j. (18)

The corresponding formulae for the hypocycloid are

ohtained by changing the sign of 6 in the preceding equa-
tions.

Again, it is plain that the envelope of the right line re-

presented by equation (18) is an epicycloid. And, in general,

the envelope of the right line

a? cos w + y sin «u = k sin w?w,

regarding w as an arbitrary parameter, is an epicycloid^ or a

hypocycloid, according as m is less or greater than unity. For
examples of this method of determining the equations of epi-

and hypo-cycfe)ids the student is referred to Salmon's Higher
Plane Curves, Art. 310.

284. £pitrochoids and Hypotrochoids.—In general^

when one circle rolls on another, every point connected with
the rolling circle describes a distinct curve. These curves are

called epitrochoids or hypotrochoids, according as the rolling'

circle touches the exterior or the interior of the fixed circle.

If d be the constant distance of the generating point from
the centre of the rolling circle, there is no difficulty in

proving, as in Art. 278, that we have in the epitrochoid the
equations

X = {a + b) coaO - d cos—7— 9,

p = {a + b) sinO - d sin —j— 6.
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In tlie case of the hypotrochoid, changing the signs of h
and d, we obtain

x = {a - h) C0& ^- d cos —r- 6,

1/== (a-b) sinB - d sin ^-^ 0.
{

1 (20)

In the particular case in which a = 2b, i.e. when a circia
Tolls inside another of double its diameter, equations (20)
become

3f = {b+d) cosO, j/= {b -d) sinO;

and accordingly the equation of the roulette is

x" y*

(b+dy • {b-dy '

which represents an ellipse whose semi-axes are the sum and
the difference of b and d.

This result can also be established geometrically in tht
following manner :

—

285. Circle rolling inside another of double its
Oiameter.—Join Cj and to any
point L on the circumference of the

rolling circle, and let CiL meet the

fixed circumference in A ; then since

z OCL = zOCiA, and Od = 2OC, we
have arc OA = arc OL ; and, accord-

ingly, as the inner circle rolls on the

outer the point L moves along CiA.
In like manner any other point on
the circumference of the rolling circle

describes, during the motion, a dia-

meter of the fixed circle.

Again, amj point P, invariably connected with the rolling

circle, describes an ellipse. For, if L and M be the points in

T7hich CP cuts the rolling circle, by what has been just

shown, these points move along two fixed right lines C\A
•and CiBf at right angles to each other. Accordingly, by a

Fig- 59-
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well-known property of the ellipse, any other point in the
line LM describes an ellipse.

The case in which the outer circle rolls on the inner is

also worthy of separate consideration.

286. Circle rolling on another Inside It and of
half Its Diameter.—In this case, any diameter of the rolliwj

circle always passes through a fixed point, which lies on the
circumference of the inner circle.

For, let CiL and C2L be any two positions of the moving'
diameter, Ci and d being the corresponding positions of the

centre of the rolling circle : and O3 the corresponding posi-

tions of the point of contact of the circles. Now, if the outer

circle roll from the former to the latter position, the right

lines CxOz and CO2 will coincide in

direction, and accordingly the outer

circle will have turned through the

angle dO^Ci ; consequently, the mov-
ing diameter will have turned
through the same angle ; and hence

L CzLCx = LC^OiCi'y therefore the

point L lies on the fixed circle, and
the diameter always passes through
the same point on this circle.

Again, any right line connected j,. "^^

icith tJie rolling circle will always touch

a fixed circle.

For, let DE be the moving line in any position, and draw
the parallel diameter AB; let fall Ci-F and Xif perpendicular

to BE. Then, by the preceding, AB always passes through

a fixed point L ; also LM= CiF= constant ; hence D^always
touches a circle having its centre at L.

Again, to find the roulette described by any carried point

Pi. The right line PiCi, as has been shown, always passes^

through a fixed point L ; consequently, since CiPi is a con-

stant length, the locus of Pi is a Limagon (Art. 269). In like

manner, any other point invariably connected with the outer

circle describes a Limacon ; unless the point be situated on
the circumference of the rolling circle, in which case the
locus becomes a cardioid.
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1. When the radii of the fixed and the rolling circles hecome equal, prove
geometrically that the epicycloid becomes a cardioid, and the epitrochoid a
Lima9on (Art. 269).

2. Prove that the equation of the reciprocal polar of an epicycloid, with
respect to the fixed circle, is of the form

r sin moi = const.

3. Prove that the radius of curvature of an epicycloid varies as the perpen-

dicular on the tangent from the centre of the fixed circle.

4. If a = 4J, prove that the equation of the hypocycloid becomes

5. Find the equation, in terms of r and j3, of the three-cusped hypocycloid
;

i. e. when a = 3*. Am. r* = a^ — Sp^.

6. Find the equation of the pedal in the same curve.

Ana. p = b sin 3«.

7. In the case of a curve roUing on another which is equal to it in every
respect, corresponding points being in contact, prove that the determination of

the roulette of any point P is immediately reduced to finding the pedal of the

rolling curve with respect to the point P.

8. Hence, if the curves be equal parabolas, show that the path of the focus

is a right line, and that of the vertex a cissoid.

9. In like manner, if the curves be equal ellipses, show that the path of the

focus is a circle, and that of any point is a bicircular quartic.

10. In Art. 285, prove that the locus of the foci of the ellipses described by
the different points on any right line is an equilateral hyperbola.

11. -4 is a fixed point on the circumference of a circle ; the points L and M
are taken such that arc AL = m arc AM, where m is a constant

;
prove that the

envelope of LM is an epicycloid or a hypocycloid, according as the arcs AL and
AM Qxe measured in the same or opposite directions from the point A.

12. Prove that LM, in the case of an epicycloid, is divided internally in the

ratio w : I, at its point of contact with the envelope ; and, in the hypocycloid,

externally in the same ratio.

13. Show also that the given circle is circumscribed to, or inscribed in, the

envelope, according as it is an epicycloid or hypocycloid.

14. Prove, from equation (14), that the intrinsic equation of an epicycloid is

±h (a -\-h) . a<b
s =—i sin —^—r.

where s is measured from the vertex of the curve.

15. Hence the equation s — I sm n<p represents an epicycloid or a hypo-
<;ycloid, according as w is less or greater than unity.
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16. In an epitrochoid, if the distance, d, of the moving point from the centre

of the rolling circle be equal to the distance between the centres of the circlesj

prove that the polar equation of the locus becomes

r = r{a { b) cos
aB

a + lb

17. Hence show that the curve

r = a BmmO

is an epitrochoid when w < r, and a hypotrochoid when m > i.

This class of curves was elaborately treated of by the Abbe Grandi in the
rhilosophical Transactions for 1723. He gave them the name of " Rhodonese,"
from a fancied resemblance to the petals of roses. See also Gregory's Examples
on the Differential and Integral Calculus^ p. 183.

For illustrations of the beauty and variety of form of these curves, as well as
of epitrochoids and hypotrochoids in general, the student is referred to the admi-
rable figures in Mr. Proctor's Geometry of Cycloids.

287. Centre of Curvature of an Epitrochoid or
Hypotrochoid.—The position of the centre of curvature for

any point of an epitrochoid can be easily-

found from geometrical considerations. For,

let Ci and Cz be the centres of the rolling

and the fixed circles, P2 the centre of cur-

vature of the roulette described by Pi ; and,

as before, let d and O2 be two points on the

circles, infinitely near to 0, such that 00^.

= OO2. Now, suppose the circle to roll until

Oi and O2 coincide; then the lines dOi
and C2O2 will lie in directum, as also the
lines PiOi and P2O2 (since P2 is the point Fig. 61.

of intersection of two consecutive normals to

the roulette).

Hence L OC.Oi + z OCzOz = L 0P,0, + z OP2O2,

since each of these sums represents the angle through which
the circle has turned.

Again, let z C.OPx = ^, 00, = OO2 = ds

then
ds ds



352 Roulettes,

consequently we have

Or, if OPx = n, 0P^ = r2,

I I
- + 7- = cos

From this, equation rj, and consequently the radius of curva-
ture of the roulette, can be obtained for any position of the
generating point Pi.

If we suppose Pi to be on the circumference of the rolling
OP

circle, we get cos ^ = —777^ 5 "^l^ence it follows that

OP, = —^ OPi,
a + 2b

which agrees with the result arrived at in Art. 279.
288. Centre of Curvature of any Roulette.—The

preceding formula can be readily extended to any roulette : for

if Ci and C2 be respectively the centres of curvature of the

rolling andfixed curves, corresponding to the point of contact 0,
we may regard OOi and OO2 as elementary arcs of the circles

of curvature, and the preceding demonstration will still

hold.

Hence, denoting the radii of curvature OCi and OC2 by
Pi and p», we shall have

_ + ^ = cosrf>f- + - V (22)
Pi pz ^Vi Tt)

It can be easily seen, without drawing a separate figure,

that we must change the sign of p^ in this formula when the

centres of curvature lie at the same side of 0.

It may be noted that Pi is the centre of curvature of the

roulette described by the point P2, if the lower curve be sup-

posed to roll on the upper regarded as fixed.

289. Oeometrical Construction* for the Centre of

This beautiftil construction, and also the formula (22) on which it is based,

•were given by M. Savary, in his Le(;ons dea Machines a VEcole Folytechnique^

See also Leroy's Geometrie Descriptive, Quatrieme Edition, p. 347.
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Curvature of a Roulette.—The formula {22) leads to

a simple and elegant construction for the centre of curva-
ture Pn.

We commence with the case when the base is a right

line, as represented in the accom-
panying figure.

Join Pi to (7,, the centre of curva-

ture of the rolling curve, and draw
ON perpendicular to 0P^, meeting

P,Gx in N\ through N draw NM
parallel to 0(7i, and the point P2 in

which it meets OPi is the centre of

curvature required.

For, equation {22) becomes in

this case

whence we get

P,P2 I 1

Fig. 62.

op}

OP, . OP2 OC, sin (7i ON NCi sin C,NO

P,P, NP,
" 0P^ NO,'

NP,
NC, . OP, '

and, accordingly, the line NP2 is parallel to OC,, Q. E. D.
The construction in the general case is as follows :

—

Determine the point N as in the former

case, and join it to G, the centre of curva-

ture of the fixed curve, then the point of

intersection of NC2 and Pi is the required

centre of curvature.

This is readily established ; for, from

the equation

C1C2 COS^PiPa
we get

OC,.OC^

ac2 op^
OC2 PiPz

OP, . 0P2

OCiCOscp

OP, '

2 A
Fig. 63.
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But, as before,

OCi cos <p

hence

Eoiilettes,

C.N. OP,

C,C, OP.^

PC, COS NCj,^

OPi "
iVPi*

OG,''P,P,~ NP,'

Consequently, by the well-known property of a transversal
cutting the sides of a triangle, the points Cz, Pi, and N are
in directum.

The modification in the construction when the rolling
curve is a right line can be readily supplied by the student.

290. Circle^ of Inflexions.—The following geometrical
construction is in many cases more
useful than the preceding.

On the line OCi take ODi such
that III
and on ODx as diameter describe a
circle. Let Ei be its point of inter-

section with OPi, then we have

OE,

and formula {22) becomes

I I

OP, OP, on, cos (p oe: (^^)

Hence, if the tracing point Pi lie on the circle* OEiDiy

This theorem is due to La Hire, who showed that the element of the
roulette traced by any point is convex or concave with respect to the point of

contact, Of according as the tracing point is inside or outside this circle. (See
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the corresponding value of OP2 is infinite, and consequently

Pi is a. point 0/ inflexion on the roulette.

In consequence of this property, the circle in question is

called the circle of inflexions^ as each point on it is a point of

inflexion on the roulette which it describes.

Again, it can be shown that the lines P^ P2, Pi and Pi Ei
are in continued proportion ; as also C1C2, CiO, and CiA.
For, from (23) we have

P,F. I

OPi . OF, OJE,

Hence P^P, iP.O^OP,: 0E,\

.'. P,P2:P,0 = P,P2'0P,:P,0-0E,=^P,0'.PiE,. (24)

In the same manner it can be shown that

C,C,:C,0=C,0: C,D,. (25)

In the particular case where the base is a right line, the

circle of inflexions becomes the circle described on the radius

of curvature of the rolling curve as diameter.

Again, if we take OA = ODi, we shall have, by describing

a circle on OD, as diameter,

C2C/1 '. G2C/ = iy^iJ r y^i-Ui'j

and also P2P1 : PtO = P^O : P^E^, (26)

The importance of these results will be shown further on.

291. Gnvelope of a Carried Curve.—We shall next

consider the envelope of a curve invariably connected with the

rolling curve, and carried with it in its motion.

Since the moving curve touches its envelope in each of its

Memoirea de VAeademie des Sciences, 1706.) It is strange that this remarkable
result remained almost unnoticed until recent years, when it was found to

contain a key to the theory of curvature for roulettes, as well as for the

envelopes of any carried curves. How little it is even as yet appreciated in

this country will be apparent to any one who studies the most recent produc-
tions on roulettes, even by distinguished British Mathematicians.

2 A 2
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positions, the path of its point of contact at any instant must
be tangential to the envelope; hence the normal at their
common point must pass through 0, the point of contact of
the fixed and rolling curves.

In the particular case in which the carried curve is a
right line, its point of contact with
its envelope is found by dropping a
perpendicular on it from the point of

contact 0.

For example, suppose a circle to

roll on any curve : to find the envelope*

of any diameter PQ :

—

From draw ON perpendicular

to PQ, then N, by the preceding, is j^- g

a point on the envelope.

On 0(7 describe a semicircle; it will pass through Ny.

and, as in Art. 286, the arc ON = arc OP = OA, if A be
the point in which P was originally in contact with the

fixed curve. Consequently, the envelope in question is the

roulette traced by a point on the circumference of a circle

of half the radius of the rolling circle, having the fixed curve

A for its base.

For instance, if a circle roll on a right line, the envelope of
any diameter is a cycloid, the radius of whose generating circle

is half that of the rolling circle.

Again, if a circle roll on another, the envelope of any^

dia)neier of the rolling circle is an epicycloid, or a hypocycloid.

Moreover, it is obvious that if two carried right lines be

parallel, their envelopes will be parallel curves. For ex-

ample, the envelope of any right line, carried by a circle

which rolls on a right line, is a parallel to a cycloid, i.e. the

involute of a cycloid.

These results admit of being stated in a somewhat different

form, as follows

:

If one point. A, in a plane area move uniformly along a

right line, while the area turns uniformly in its own plane,

then the envelope of any carried right line is an involute to a

cycloid. If the carried line passes through the moving point

* The theorems of this Ajticle are, I believe, due to Chasles : see his Sistoirer

de Lit GcoJHitiie, p. 69.
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A, its envelope is a cycloid. Again, if the point A move
uniformly on the circumference of a fixed circle, while the

area revolves uniformly, the envelope of any carried right

line is an involute to either an epi- or hypo-cycloid. If the

carried right line passes thi'ough A, its envelope is either an
epi- or h^'po-cycloid.

292. Centre of Curvatnre of the Envelope of a
Carried Curve.—Let axh^ represent a

portion of the carried curve, to which Ow/

is normal at the point m ; then, by the

preceding, m is the point of contact of aihi

with its envelope.

Now, suppose Oihi to represent a por-

tion of the envelope, and let Pi be the

centre of curvature of aj)x, for the point m,

and P2 ^^Q corresponding centre of cur-

vature of <72^2.

As before, take d and O2 such that

00, = OO2, and join P,0, and P2O2.

Again, suppose the curve to roll until

Oi and O2 coincide; then the lines PiOi
and P2O2 will come in directum , as also

the lines OiOi and O2O2 ; and, as in Art.

288, we shall have

Fig. 66.

zOi + /i02 = zPi + lP^\

and consequently

ok^^r""'* U-P. "" op} (27)

From this equation the centre of curvature of the enve-

lope, for any position, can be found. Moreover, it is obvious

that the geometrical constructions of Arts. 289, 290, equally

apply in this case. It may be remarked that these construc-

tions hold in all cases, whatever be the directions of curvature
of the curves.

The case where the moving curve a^ hi is a right line is

worthy of especial notice.
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In this case the normal Om is perpendicular to the moving
line ; and, since the point Pi is infinitely

distant, we have

C0S(/)

OC, OC, ^OA^^'*-'^^)'

Fig. 67.

whence, P^ is situated on the lower circle of

inflexions. Hence we infer that the dif-

ferent centres of curvature of the curves en~

veloped by all carried right lines, at any
instant, lie on the circumference of a circle.

As an example, suppose the right line OM to roll on a
fixed circle, whose centre is Oa, to

find the envelope of any carried right

line, LM.
In this case the centre of cur-

vature, P2, of the envelope of L3f,

lies, by the preceding, on the circle

described on OC as diameter; and,

accordingly, CF2 is perpendicular

to the normal Pi P2.

Hence, since L OLPi remains
constant during the motion, the line

CP2 is of constant length; and, if

we describe a circle with C as centre,

and CP2 as radius, the envelope of

the moving line LM will, in all positions, be an involute of a
circle. The same reasoning applies to any other moving
right line.

We shall conclude with the statement of one or two other

important particular cases of the general principle of this

Article.

(i). If the envelope aibi of the moving cv^rve a^hx he a right

line, the centre of curvature Pi lies on the corresponding circle of
inflexions.

(2). If the moving right line always passes through a fixed
point, that point lies on the circle OD2E2.

2()2 (a). Expression for Radius of Curvature of
Envelope of a Right liine.—The following expression

for the radius of curvature of the envelope of a moving right

Fig. 68.
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line is sometimes useful. Let p be the perpendicular distance

of the moving line, in any position, from a fixed point in the
plane, and to the angle that this perpendicular makes with a
fixed line in the plane, and p the radius of curvature of the

envelope at the point of contact; then, by Art. 206, we have

. = P + g. (.8)

Whenever the conditions of the problem givejo in terms of

u) (the angle through which the figure has turned), the value

of p can be found &om this equation. For example, the re-

sult established in last Article {see Fig. 68) can be easily

deduced from (28). This is left as an exercise for the student.

293. On the Motion ofa Plane Figure In its Plane.
—We shall now proceed to the consideration of a general

method, due to Chasles, which is of fundamental importance
in the treatment of roulettes, as also in the general investi-

gation of the motion of a rigid body.
We shall commence with the following theorem :

—

When an invariable plane figure moves in its plane, it can
be brought from any one position to any other by a single rotation

round a fixed point in its plane.

For, let A and B be two points of the figure in its first

position, and Aiy B^ their new
positions after a displacement.

Join AAx and BBi, and sup-

pose the perpendiculars drawn
at the middle points of AA),
and BBi to intersect at

;

then we have AO = AiO, and
BO = BiO. Also, since the

triangles AOB and AiOBi
have their sides respectively *''• 9*

equal, we have /lAOB = lA^OB, ; .-. Z AOA^ = /.BOB,.
Accordingly, AB will be brought to the position AiB, by

a rotation through the angle AOAi round 0. Consequently,

any point C in the plane, which is rigidly connected with A B,

will be brought from its original to its new position, d, by
the same rotation.

This latter result can also be proved otherwise thus :—Join

OC and OCi ; then the triangles OAC and OAid are equal,
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B B,
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because 0^ = OAi, AC = AiCi, and the angle OACy being
the difference between OAB and JBACf is equal to OAidy
the difference between OAiBi and JBiAiCi ; therefore OC'
= 0(7i, and lAOC == /.A^OC^; and hence z^O^i = z COd.
Consequently the point C is brought to Ci by a rotation

round through the same angle A OAi. The same reasoning

applies to any other point invariably connected with A and B.
The preceding construction re- o

quires modification when the lines

AAi and BBi are parallel. In this

case the point, 0, of intersection of the

linesBA and B^Ai is easily seen to be

the point of instantaneous rotation.

For, since AB = AiBiy and AAi, p- ^^

-65i, are parallel, we have 0^ = 0^1,
and OB = OBi. Hence, the figure wdll be brought from its

old to its new position by a rotation around through the

angle AOAi.
Next, let AAiy and BBi be both equal and parallel. In

this case the point is at an infinite distance ; but it is

obvious that each point in the plane moves through the same
distance, equal and parallel to -4^ 1 ; and the motion is one of

simple translation, without any rotation.

In general if we suppose the two positions of the moving
figure to be indefinitely near each other, then the line AAiy
joining two infinitely near positions of the same point of the

figure, becomes an element of the curve described by that point,

and the line OA becomes at the same time a normal to the curve.

Hence, the normals to thepaths described hy all the points of the

moving figure pass through 0, which point is called the instan-

taneous centre of rotation.

The position of is determined whenever the directions oj

motion of any tic points of the moving figure are known; for it

is the intersection of the normals to the curves described by
those points.

This furnishes a geometrical method of drawing tangents

to many curves, as was observed by Chasles.*

This method is given by Chasles as a generalization of the method of Des-
cartes (Art. 273, note). It is itselfa particular case of a more general principle

concerning homologous figures. See Chasles, Hktoirc de la Geom^trie, pp. 54S-9 :

also Bulletin Universel dea Sciences^ 1 830.
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The following case is deserving of special consideration :

—

A right line always passes through a fixed

point, while one of its points moves along a

fixed line : to find the instantaneous centre of

rotation. Let A be the fixed point, and AB
any position of the moving line, and take

B'A^ = BA ; then the centre of rotation, 0, is

found as before, and is such that OA = 0A\
and OB = OB^. Accordingly, in the limit the

centre of instantaneous rotation is the inter-

section oi BO drawn perpendicular to the fixed

line, and A drawn perpendicular to the moving line at the

fixed point.

In general, if ^^be any moving curve, and LMany fixed

curve, the instantaneous centre of rotation is the point of inter-

section of the normals to the fixed and to the moving curves^ for
any position.

Also the normal to the curve described by any point in-

variably connected with AB is obtained by joining the point

to 0, the instantaneous centre.

More generally, if a moving curve always touches a fixed

curve A, while one point on the moving curve moves along a
second fixed curve J5, the instantaneous cisntre is the point of

intersection of the normals to A and B at the corresponding

points; and the line joining this centre to any describing

point is normal to the path which it describes.

"We shall illustrate this method of drawing tangents by
r.pplying it to the conchoid and the limacon.

294. Apiilicati4>n to Curves.—In the Conchoid (Fig. 49,

V^^^ 332), regarding AP as a moving right line, the

instantaneous centre is the point of intersection of ^0
drawn perpendicular to AP, with i?0 drawn perpendicular to

LM'y and consequently, OP and OPi are the normals at P
and Pi, respectively.

For the same reason, the normal to the Limacon (Fig. 48,
page 33 1

) at any point P is got by drawing OQ perpendicular

to OP to meet the circle in Q, and joining PQ.
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Examples.

1. If the radius vector, OP, drawn from the origin to any point P on a curve^
be produced to Pi, until PPi be a constant length ; prove that the normal at Pi
to the locus of Pi, the normal at Pto the original curve, and the perpendicular
at the origin to the line OP, all pass through the same point.

2. If a constant length measured from the curve be taken on the normals
along a given curve, prove that these lines are also normals to the new curve
which is the locus of their extremities.

3. An angle of constant magnitude moves in such a manner that its sides

constantly touch a given plane curve ; prove that the normal to the curve de-

scribed by its vertex, P, is got by joining P to the centre of the circle passing

through P and the points in which the sides of the moveable angle touch the

given curve.

4. If on the tangent at each point on a curve a constant length measured
from the point of contact be taken, prove that the normal to the locus of the

points so found passes through the centre of curvature of the proposed curve.

5. In general, if through each point of a curve a line of given lengtb be
drawn making a constant angle with the normal, the normal to the curve locus

of the extremities of this line passes through the centre of curvature of the pro-

posed.

295. IVIotioii of any Plane Figure reduced ta
Roulettes.—Again, the most general motion of any figure

in its plane may be regarded as consisting of a number of

infinitely small rotations about the different instantaneous

centres taken in succession.

Let 0, 0\ 0'\ (/", &c., represent the successive centres of

rotation, and consider the instant when / -T
the figure turns through the angle 0^00 /' '

^

rouud the point 0. This rotation will q /^''' '^2

bring a certain point Oy of the figure to 0^^^.^,
coincide with the next centre (/. The next *\^ "^1

rotation takes place around (/; andsuppose o \^-^..
^,

the point Oi brought to coincide with the o'\-^
centre of rotation Of' . In like manner, by n'T T'
a third rotation the point O3 is brought to 1 \
coincide with (7", and so on. By this '^^ r,

means the motion of the moveable figure jp-

is equivalent to the rolling of the polygon
OO1O2O3 . . . invariably connected with the figure, on the-

polygon OO'O'O'" . . . fixed in the plane. In the limit, thcf

polygons change into curves, of which one rolls, without
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sliding, on the other ; and hence we conclude that the general
movement of anyplane figure in ita aim plane is equivalent to the

rolling qfonr curve on another fixed curve.

These curves are called by Reuleaux* the " centrodes" of

the moving figures.

For example, suppose two points A and B of the moving
figure to slide along two fixed right

lines CX and CY; then the instan-

taneous centre is the point of inter-

section of AO and BO, drawn perpen-

dicular to the fixed lines. Moreover,

as AB is a constant length, and the

angle ACB is fixed, the length CO is

constant ; consequently the locus of

the instantaneous centre is the circle

described with C as centre, and CO as ^^* ^^'

radius. Again, if we describe a circle round CBOA, this

circle is invariably connected with the line AB, and moves
with it. Hence the motion of any figure invariably connected

Avith AB is equivalent to the rolling of a circle inside another

of double its radius {see Art. 285).

Again, if we consider the angle XCYio move so that its

legs pass through the fixed points A and B, respectively ; then

the instantaneous centre is determined as before. More-
over, the circle BOA becomes o. fixed circle, along which the

instantaneous centre moves. Also, since CO is of constant

length, the outer circle becomes in this case the rolling curve.

Hence the motion of any figure invariably connected with the

moving lines CX and CY is equivalent to the rolling of the

outer circle on the inner (compare Art. 286).

295 {a). £picyclics.—As a further example, suppose one
ipoint in a plane area to move uniformly along the circum-

ference of a fixed circle, while the area revolves with a uniform
angular motion around the point, to find the position of the-

*' centrodes."

The directions of motion are indicated by the arrow
heads. Let C be the centre of the fixed circle, P the position

* See Kennedy's translation of Reuleaux's Kinematics of Machinery^
pp. 65, &c.
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of the moving point at any instant, Q a point in the moving
figure such that CP = PQ.
Now, to find the position of

the instantaneous centre of

rotations it is necessary to

get the direction of motion of

the point Q,

Let Pi represent a con-

secutive position of P, then
the simultaneous position of Q
is got by first supposing it to

move through the infinitely

small length QE, equal and
parallel to PPi, and then to

turn round Pi, through the

angle PPiQ,, which the area

turns through while P moves
to Pi. Moreover, by hypo-
thesis, the angles PCPi and JRPiQi are in a constant ratio:

if this ratio be denoted by w, we have (since PQ = PC)

PQi = mPPi = mQE.

Join Q and Qi, then QQi represents the direction of mo-
tion of Q. Hence the right line QO, drawn perpendicular

to QQif intersects CP in the instantaneous centre of rotation.

Again, since the directions of PO, PQ, and QO are, re-

spectively, perpendicular to QR, RQi, and QQi, the triangles

<iPO and QiRQ are similar

;

.-. PQ = mPO, i.e. CP = mPO.

Fig. 74.

Accordingly, the instantaneous centre of rotation is got

by cutting off

np
P0=—. (29)m

Hence, if we describe two circles, one with centre C and
Tadius CO, the other with centre P and radius PO; these

xjircles are the required centrodes; and the motion is equivalent

to the rolling of the outer circle on the inner.
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Accordingly, any point on the circumference of the outer
circle describes an epicycloid, and any point not on this cir-

cumference describes an epitrochoid. When the angular
motion of PQ is less than that of (7P, i.e. when w< 1,

the point lies in PC produced. Accordingly, in this

case, the fixed circle lies inside the rolling circle ; and the-

curves traced by any point are still either epitrochoids or epi-

cycloids.

In the preceding we have supposed that the angular
rotations take place in the smne direction. If we suppose them
to be in opposite directions, the construction haj3 to be modified,.

as in the accompanying figure.

In this case, the angle
^f^77 9i

RPiQi must be measured in

an opposite direction to that

of PCPx ; and, proceeding as

in the former case, the direc-

tion of motion of Q is repre-

sented by QQi ; accordingly,

the perpendicular QO will in-

tersect CP produced, and, as

before, we have

P0 =
PC
m

Fig. 75.Hence the motion is equi-

valent to the rolling of a circle

ef radius PO on the inside of a fixed circle, whose radius is

CO. Accordingly, in this case, the path described hy any
point in the moving area not on the circumference of the

rolling circle is a hypotrochoid.

Also, from Art. 291, it is plain that the envelope of any
right line which passes through the point P in the moving
area is an epicycloid in the former case, and a hypocycloid
in the latter.

Again, if we suppose the point P, instead of moving in a
circle, to move uniformly in a right line, the path of any
point in the moving area becomes either a trochoid or a
cycloid.

Curves traced as above, that is, by a point which moves
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uniformly round the circumference of a circle^ whose centre moves

uniformly on the circumference of a fixed circle in the same
plane, are called epicycUcs, and were invented by Ptolemy
(about A.D. 140) for the purpose of explaining the planetary
motions. In this system* the fixed circle is called the deferent,

and that in which the tracing point moves is called the
epicycle. The motion in the fixed circle may be supposed in

all cases to take place in the same direction around (7, that

indicated by the arrows in our figures. Such motion is called

direct. The case for which the motion in the epicycle is direct

is exhibited in Fig. 74.

Angular motion in the reverse direction is called retro-

grade. This case is exhibited in Fig. 75. The corresponding

epicyclics are called by Ptolemy direct and retrograde epicy-

clics.

The preceding investigation shows that every direct epi-

cyclic is an epitrochoid, and every retrograde epicyclio a

hypotrochoid.

It is obvious that the greatest distance in an epicyclic

from the centre C is equal to the sum of the radii of the circles,

and the least to their difference. Such points on the epicyclic

are called apocentres and jx^^'icentrcs, respectively.

Again, if a represent the radius of the fixed circle or

deferent, and j3 the radius of the revolving circle or epicycle
;

then, if the curve be referred to rectangular axes, that of x
passing through an apocentre, it is easily seen that we have
for a direct epicyclic

a? = a cos + j3 cos md, \

y = a sm + p sm md. )

* The importance of the epicyclic method of Ptolemy, in representing ap-

proximately the planetary paths relative to the earth at rest, has recently heen

brought prominently forward by Mr. Proctor, to whose work on the Geometry of
Cycloids the student is referred for fuller information on the subject.

"We owe also to Mr. Proctor the remark that the invention of cycloids, epi-

cycloids, and epitrochoids, is properly attributable to Ptolemy and the ancient

astronomers, who, in their treatment of epicyclics, first investigated some of

the properties of such curves. It may, however, be doubted if Ptolemy had
any idea of the shape of an epicyclic, as no trace oi such is to be found in the entire

of his great work, The Almagest.
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The formulae for a retrograde epicyolio are obtained by
changing the sign of m (compare Art. 284).

It is easily seen that every ejncyclic admits of a twofold

leneration.

For, if we make mB = 0, equation (30) may be written

a; = 3 cos + a cos —

,

^ . .0
V = 13 sm + a sm —

,

^ ^ ^ m

which is equivalent to an interchange of the radii of the

deferent circle and of the epicycle, and an alteration of m

into — . This result can also be seen immediately geometri-

cally.

It may be remarked that this contains Euler's theorem
(Art. 280) under it as a particular case.

296. Properties of the Circle of Inflexions.—It

should be especially observed that the results established in

Art. 290, relative to the circle of inflexions, hold in all cases

of the motion of a figure in its plane, and hence we infer

that the distances of any moving pointfrom the centre of curva-

ture of its path, from the instantaneous centre of rotation, and
from the circle of inflexions, are in continued proportion.

Again, from Art. 292, we infer that if a moveable curve
slide on a fixed curve, the distances of the centre of curvature of
the moving, from that of the fixed curve, from the centre of in-

stantaneous rotation, and from the circle of inflexions, are in

•continued proportion.

The particular cases mentioned in these Articles obviously
hold also in this case, and admit of similar enunciations.

These principles are the key to the theory of the curvature

of the paths of points carried by moving curves, as also to the
curvature of the envelopes of carried curves.

"We shall illustrate this statement by a few applications.

297. £xaniple on the Construction of Circle of
Inflexions.—Sujypose two curves aibi and Cidi, invariably con-

nected tcith a moving plane figure, always to touch two fixed
curves a^bz and c^dz, to find the centre of curvature of the roulette

described by any point Rx of the moving figure.
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The instantaneous circle of inflexions is easily constructed!

in the following manner :—Let
Pi and P2 be the centres of cur-

vature for the point of contact

m for the curves a^bi and Gih^,

respectively : and let Qi, Q2, he
the corresponding points for

the curves Cidi and Cidt. Take

P.^.=^^,andQ.P.= ^;
then, by Art. 290, the points

Ex and i^i lie on the circle of

inflexions. Accordingly, the circle which passes through Oy
El and Fu is the circle of inflexions.

Hence, if llxO meet this circle in Gi, and we take

R1R2 = Tp'^ , the point R2 (by the same theorem) is the

tmtre of curvature of the roulette described by Ri.
In the same case, by a like construction, the centre of cur-

vature of the envelope of any carried curve can be found.

The modifications when any of the curves a^bi, a-zbz, &c.^

becomes a right line, or reduces to a single point, can also be
readily seen by aid of the principles already established for

such cases.

298. Theorem of Bobillier.*—If two sides of amoving
triangle always touch two fixed circles, the third side also always

touches a fixed circle.

Let ABC be the moving triangle ; the side AB touching

at c a fixed circle whose centre is 7, and AC touching at J a

circle with centre j3. Then the instantaneous centre is the

point of intersection of hji and cy.

Again, the angle /30-y, being the supplement of the con-

stant angle BA C, is given ; and consequently the instanta-^

neous centre always lies on a fixed circle.

* Cours de gdometrie pour les ecoles des arts et metiers. See also Collignon,

Traite de Mecanique Cinematiqne, p. 306.

This theorem admits of a simple proof by elementary geometry. The in-

vestigation above has however the advantage of connecting it with the general

theory given in the preceding Articles, as well as of leading to the more general

theorem stated at the end of this Article.
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Also if Oa be drawn perpendicular to the third side i?C,

a is the point in which the side

touches its envelope (Art. 291).

Produce aO to meet the circle

in a ; and since the angle a 0/3

is equal to the angle ACBy it

is constant ; and consequently

the point a is a fixed point on the

circle. Again, by (4) Art. 292,

the circle fiO-y passes through

the centre of curvature of the

envelope of any carried right

line; and accordingly a is the

centre of curvature of the enve-

lope oi BC\ but a has already

been proved to be a fixed point

;

consequently BC in all positions touches a fixed circle whose
centre is a. (Compare Art. 286.)

This result can be readily extended to the case where the

sides AB and AC slide on any curves ; for we can, for an in-

finitely small motion, substitute for the curves the osculating

circles at the points b and c, and the construction for the point

a will give the centre of curvature of the envelope of the

third side BC.
298 («). Analytical Demonstration.—The result of the

preceding Article can also be established analytically, as was
shown by Mr. Ferrers, in the following manner :

—

Let «, h, c represent the lengths of the sides of the mo^dng
triangle, and /?!, />2, Pz the perpendiculars from any point

on the sides a, J, c, respectively ; then, by elementary
geometry, we have

apx + hp2 + cp3= 2 (area of triangle) = 2d.

Again, if pi, p2y pz be the radii of curvature of the enve-
lopes of the three sides, and w the angle through which each
of the perpendiculars has turned, we have by {28),

apx + hpi + cp3 = 2A. (3«)

Hence, if two of the radii of curvature be given the third
can be determined.

2 B
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"We next proceed to consider the conchoid of Nicomedes.

299. Centre of Curvature for a Conchoid.—Let -4

be the pole, and LM the directrix of a conchoid. Construct
the instantaneous centre 0, as before : and produce AO until

OA, = AO.
It is easily seen that the circle circumscribing AiOEi is

the instantaneous circle of inflexions : for the instantaneous

centre always lies on this circle ; also Ri lies on the circle

by Art. 290, since it moves along a right line : again, A lies

on the lower circle of inflexions of same Article, and conse-

quently Ai lies on the circle of inflexions.

Hence, to find the centre of curvature of the conchoid
described by the moving point Pi, produce PjO to meet the

circle of inflexions in ^,, and take

P O*
^^^^ = Yf' ^^®°' ^^ ^^^^' ^"^ ^®

the centre of curvature belonging to

the point P, on the conchoid.

In the same case, the centre of

curvature ot the curve described by
any other point ^i, which is inva-

riably connected with the moving
line, can be found. Jb'or, if we Pj

produce QiO to meet the circle of

inflexions in E,,, and take Q1Q2

= j^-^ ; then, by the same theorem,

Q2 is the centre ot curvature re- Fig. 78.

quired.

A similar construction holds in all other cases.

300. Splierieai liouiettes.—The method of reasoning

adopted respecting the motion of a plane figure in its plane

is applicable identically to the motion of a curve on the ear-

face of a sphere, and leads to the following results, amongst
others :

—

(i). A spherical curve can be brought from any one

position on a sphere to any other by means of a single

rotation around a diameter of the sphere.

(2). The elementary motion of a moveable figure on a
sphere may be regarded as an infinitely small rotation
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around a certain diameter of the sphere. This diameter is

called tlio instantaneous axis of rotation, and its points of

intersection with the sphere are called the poles of rotation.

(3). The great circles drawn, for any position, from the

pole to each of the points of the moving curve are normals to

the curves described by these points.

(4). When the instantaneous paths of any two points are

given, the instantaneous poles are the points of intersection

of the great circles drawn normal to the paths.

(5). The continuous movement of a figure on a sphere

may be reduced to the rolling of a curve fixed relatively to

the moving figure on another curve fixed on the sphere.

By aid of these principles the properties of spherical roulettes*

can be discussed.

301. itlotion of a Rigid Body about a Fixed
i*oiiit.—We shall next consider the motion of any rigid

body around a fixed point. Suppose a sphere described

having its centre at the fixed point ; its surface will intersect

the rigid body in a spherical curve A, which will be carried

with the body during its motion. The elementary motion of

this curve, by the preceding Article, is an infinitely small

rotation around a diameter of the sphere ; and hence the

motion of the solid consists in a rotation around an instan-

taneous axis passing through the fixed point.

Again, the continuous motion of A on the sphere by (5)
(preceding Article) is reducible to the rolling of a curve

i, connected with the figure ,4, on a curve X, traced on the

sphere. 13ut the rolling of X on A is equivalent to the

rolling of the cone with vertex standing on X, on the cone
with the same vertex standing on X. Hence the most general

motion of a rigid body having a fixed point is equivalent to

the roiling of a conical surface, having the fixed point for its

summit, and appertaining to the soHd, on a cone fixed in

space, having the same vertex.

These results are of fundamental importance in the gene-
ral theory of rotation.

• On the Curvature of Spherical Epicycloids, see Reaal ; Journal de lEcoU
Folytechnique ^ 1858, pp. 235, &c.
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Examples.

1. If the radius of the generating circle be one-fourth that of the fixed,

prove immediately that the hypocycloid becomes the envelope of a right line of

constant length whose extremities move on two rectangular lines.

2. Prove that the evolute of a cardioid is another cardioid in which the

radius of the generating circle is one-third of that for the original circle.

3. Prove that the entire length of the cardioid is eight times the diameter of

its generating circle.

4. Show that the points of inflexion in the trochoid are given by the

equation cos + - = o ; hence find when they are real and when imaginary.

5. One leg of a right angle passes through a fixed point, whilst its vertex

slides along a given curve ; show that the problem of finding the envelope of

the other leg of the right angle is reducible to the investigation of a locus.

6. Show that the equation of the pedal of an epicycloid with respect to any
origin is of the form

r = (a + 2^) cos - c cos (0 + o).

7. In figure 57, Art. 281, show that the points C, P' and Q are in directum,

8. Prove that the locus of the vertex of an angle of given magnitude, whose
sides touch two given circles, is composed of two lima9on3.

9. The legs of a given angle slide on two given circles : show that the

locus of any carried point is a lima9on, and the envelope of any carried right

line is a circle.

10. Find the equation to the tangent to the hypocycloid when the radius of

the fixed circle is three times that of the rolling.

Ans. X cos « + y sin a> = ^ sin 3«.

This is called the three-cusped hypocycloid. See Ex. 5, Art. 286.

11. Apply the method of envelopes to deduce the equation of the three-

cusped hypocycloid.

Substituting for sin 30 its value, and making t = cot «, the equation 01 th&

tangent becomes

xi^ + (y - 3^) <2 ^. a;; 4- J + y = o,

in which t is an arbitrary parameter. If t be eliminated between this and its

derived equation taken with respect to t, we shall get for the equation of the

hypocycloid,

(x2 + y-f + 18^2 ^3;2 4. y«j + 24ia;2y _ Uxp' = 27**.
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12. If two tangents to a cycloid intersect at a constant angle, prove that the

length of the portion which they intercept on the tangent at the vertex of the

cycloid i3 constant.

13. If two tangents to a hypocycloid intersect at a constant angle, prove

that the arc which they intercept on the circle inscribed in the hypocycloid is of

constant length.

14. The vertex of a right angle moves along a right line, and one of its legs

passes through a fixed point : show geometrically that the other leg envelopes a

parabola, having the fixed point for focus.

15. One angle of a given triangle moves along a fixed curve, while the

opposite side passes through a fixed point ; find, for any position, the centre of

cnrvattiro of the envelope of either of the other sides, and also that of the curve

described by any carried point.

16. If a right line move in any manner in a plane, prove that the locus of

the centres of curvature of the paths of the different points on the line, at any
instant, is a conic.—(Kesal, Journal de VEcole I'olytechnique^ 1858, p. 1 12).

This, as well as the following, can be proved without diflficulty from equa-

tion (22), p. 352.

17. "When a conic rolls on any curve, the locus of the centres of curvature

of the elements described simultaneously by all the points on the conic is a new
conic, touching the other at the instantaneous centre of rotation.—(Mannheim,
tame Jouniaf, p. 179.)

18. An ellipse rolls on a right line : prove that p, the radius of curvature of

the path described by either focus, is given by the equation - =
; where

r is the distance of the focus from the point of contact, and a u the semi-axis

major.—(Mannheim, Ibid.)

19. The extremities of a right line of given length move along two fixed

right lines : give a geometrical construction for the centre of curvature of the

envelope in any position.

20. Prove that the locus of the intersection of tangents to a cycloid which
intersect at a constant angle is a prolate trochoid (La Hire, Mem. de l^Aead. des

Sciences, 1704).

2 1

.

More generally, prove that the corresponding locus for an epicycloid is

an epitrochoid, and for a hypocycloid is a hypotrochoid. (Chasles, Mist, de la

Giom.^ p. 125).

22. If a variable circle touch a given cycloid, and also touch the tangent at

the vertex, the locus of its centre is a cycloid. (Professor Casey, Fhxl. Trans.^

1877.)

23. Being given three fixed tangents to a vaiiable cycloid, the envelope of
the tangent at its vertex is a parabola. (Ibid.)

24. If two tangents to a cycloid cut at a constant angle, the locus of the
centre of the circle described about the triangle, formed by the two tangents and
the chord of contact, is a right line. (Ibid.)

25. If a curve (A) be such that the radius of curvature at each point is n
times the normal intercepted between the point and a fixed straight line (-B),
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then when the curve rolls along another straight line, (5) will envelope a curve

in which the radius of curvature is « + i times the normal.

Thus, when n = - 2, {A) is a parabola, and {B) the directrix ; and when
the parabola rolls along a straight line, its directrix envelopes a catenary (for

which n = -
1 ), to which the straight line is directrix.

"When the catenary rolls along a straight line, its directrix passes through a

fixed point, for which n = o.

When the point moves along a straight line, the straight line which it car-

ries with it envelopes a circle (m = i), and {B) is a diameter.

When the circle rolls along a straight line, its diameter envelopes a cycloid

(n = 2), to which {B) is the base. When the cycloid rolls along a straight line

its base envelopes a curve which is the involute of the four-cusped hypocycloid,

passing through two cusps, and is in figure like an ellipse whose major axis is

twice the minor. (Professor Wolstenholme.)

The fundamental theorem given above follows immediately from equation

(27), p. 357.

26. Prove the following extension of BobilHer's theorem :—If two sides ofa
moving triangle always touch the involutes to two circles, the third side will

always touch the involute to a circle.

27. Investigate the conditions of equilibrium of a heavy body which rests on

a fixed rough surface.

In this case it is plain that, in the position of equilibrium, the centre of

gravity O of the body must be vertically over the point of contact of the body
with the fixed surface.

Again, if we suppose the body to receive a slight displacement by rolling on

the fixed surface, the equilibrium will be stable or unstable, from elementary

mechanical considerations, according as the new position of G is higher or

lower than its former position, . e. according as G is situated inside or outside

ths circle of inflexions (Art. 290).

Hence, if p\ and p% be the radii of curvature for the corresponding fixed and
rolling curv 3, and h tlie diitance of G from the point of contact of the surfaces,

the equilibrium is stable or unstable according as A is < or > -^— . See Walton' &
P1 + P2

Problems, p. 190 ; also, for a complete investigation of the case where h = —f—^
pi + P2'

Minchin's Statics, pp. 320-2, 2nd Edition.

28. Apply the method of Art. 285 to prove the following construction for

the axes of an ellipse, being given a pair of its conjugate semi-diameters OF, OQy
in magnitude and position. From P draw a perpendicular to OQ, and on it take

PL — PQ
;
join Pto the centre of the circle described on OD as diameter by a

right line, and let it cut the circumference in the points £ and F; then the nght
lines OF and OF are the axes of the ellipse, in position, and the segments PF
and PF are the lengths of its semi-axes (Mannheim, Nouv. An. de Math. 1857^
p. 188).

29. An involute to a circle rolls on a right line : prove that its centre describes

a parabola.

30. A cycloid rolls on an equal ( ycloid, corresponding points being in con*

tact : show that the locus of the centre of curvature of the rolling curve at the

point of contact is a trochoid, whose generating circle is equal to that of either

cycloid.
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CHAPTER XX.

ON THE CARTESIAN OVAL.

302. EquatloD of Cartesian Oval.—In this Chapter*

it is proposed to give a short discussion of the principal pro-

perties of the Cartesian Oval, treated geometrically.

We commence by writing the equation of the curve in its

usual form, viz.,

n ± /ur2 = «,

^vhere n and ra represent the distances of any point on the

carve from two fixed points, or foci, F^ and F2, while /z and
a are constants, of which we may assume that fi is less than
unity. We also assume that a is greater than JPuPa, the dis-

tance between the fixed points.

It is easily seen that the curve consists of two ovals, one
lying inside the other ; the former corresponding to the
equation n + /ur2 = a, and
the latter to n - firz = a.

Now, with Fi as centre,

and a as radius, describe a
circle. Through F2 draw
any chord BE, join FiD
and FiE; then, if P be
the point in which FiD
meets the inner oval, we
liave

Pi) = a-ri = /[ir2 = /uPi^2.

From this relation the

point P can be readily Fig. 79-

found.

I

This Chapter is taken, with slight modifications, from a Paper published
by me in Sermathena, No. iv., p. 509.
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Again, let Q be tlie corresponding point for the outer
oval Vi - ni\ = a ; and we have, in like manner, BQ= fiFzQ ;

.-. F,Q:F,P=QD:DP;
consequently, F2D bisects the angle PFzQ.

Produce QF2 and PF2 to intersect F^JEy and let Pi and Qi
be the points of intersection.

Then, since the triangles PF^D and PiF^E are equiangular,

we have P^E = fiPiF^ ; and consequently the point Pi lies on
the inner oval. In like manner it is plain that Qx lies on
the outer.

Again, by an elementary theorem in geometry, we have

P2P . P2Q = PD,DQ + F^D'
;

.-. (i - lii') F^P . F,Q = F^D'.

Also, by similar triangles, we get

FiPiF^Pi^FzDiF^E;
consequently

(i -
m') F2Q . P2P1 = FJ) . FJE = const. (2)

Therefore the rectangle under FtQ and P2P1 is constant ; a
theorem due to M. Quetelet.

303. Construction for Third Focus.—Next, draw
QP3, making lF^QF^ = iF^FiPi ; then, since the points Pi,

Pi, Q, P3 lie on the circumference of a circle, we get

PiPa . P2P3 = P2Q . P2P1 = const. (3)

Hence the point P3 is determined.

We proceed to show that P3 possesses the same properties

relative to the curve as Pi and P2 ; in other words, that P3 is

a thirdfocus*
For this purpose it is convenient to write the equation of

the curve in the form

mri ± Irz = ncs, (4)

in which c^ represents P1P2, and /, m, n are constants.

It may be observed that in this case we have n>m>L

* This fundamental property of tlie curve was discovered by Chasles. See

Histoire de la Geometric, note xxi., p. 352.
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Now, since Z F^F^Q = LF.P.Fi = L F.PF^y the triangles

K,; 2'\PF% and i^ijPsQ are equiangular ; but, by (4), we have

niFyP + IFJP = fiF^F^

;

m Aooordingly we have
*

mFxF, + IF,Q = tiF^Q,

or «i?\Q -lF,Q = mF,F,;

W I. ^. denoting the distance from F3 by r, and JPijPj by Cj,

This shows that the distances of any point on the outer oval

from Fi and -F3 are connected by an equation similar in form
to (4) ; and, consequently, F3 is a thirdfocus of the curve.

304. Equations of Curve, relative to each pair of
^Focl.—In like manner, since the triangles FiQF^ and FyF^P

are equiangular, the equation

mF^Q - IF2Q = nF,F2
gives

mF^F^ - IF3P = nF^F.

Hence, for the inner oval, we have

wr, + /rg = mCi.

This, combined with the preceding result, shows that the con-

jugate ovals of a Cartesian, referred to its two extreme foci,

ure represented by the equation

wr, ± Irs = niCz. (5)

In like manner, it is easily seen that the conjugate ovals re-

ferred to the foci F2 and F3 are comprised imder the equation

nrt - mrs = ± Ici, (6)

where
c, = F2F3.

305. Relation between the Constants.—The equa-
tion connecting the constants /, w?, w in a Cartesian, which
has three points i^„ F2, F3 for its foci, can be readily found.
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For, if we substitute in (3), C3 for F^F^y &c., the equation
is easily reduced to the form

Pcx + n^Cz = m'cj,

or PF^F^ + m^F^F, + n^F.F^ = o, (7)

in which the lengths 2^2-^3, &c., are taken with their proper
signs, viz., F^F^ = - F^Fz, &c.

306. Conjugate Ovals are Inverse Curves.—Next,
since the four points F2, P, Q, Fz, lie in a circle, we have

F,P.F,Q = F,F2.F\F, = const. (8)

Consequently the two conjugate ovals are inverse to each other

with respect to a circle* whose centre is i^i, and whose radius

is a mean proportional between F^F^ and Fi F^.

It follows immediately from this, since F2 lies inside both
ovals, that F3 lies outside both. It hence may be called the

external focus. This is on the supposition that the constantsf

are connected by the relations n > m > I.

Also we have

Z PFsF^ = L PQF^ = L F,Q,P, = L F,F,P, ;

hence the lines F^P and F^Px are equally inclined to the

axis F^Fz. Consequently, if P^ be the second point in which
the line F^P meets the inner oval, it follows, from the sym-
metry of the curve, that the points Pi and Pi are tho

• It is easily seen that when / = o the Cartesian whose foci are 2^i, i^2, -^s,

reduces to this circle. Again, if w = o, the Cartesian becomes another circle,,

whose centre is I\ and which, as shall be presently seen, cuts orthogonally the

system of Cartesians which have i^i, Fi-, Fi for their foci. These circles are

called by Prof. Crofton {Transactions^ London Mathematical Societj/, 1866;, the
Confocal Circles of the Cartesian system.

t From the above discussion it will appear, that if the general equation of

a Cartesian be written \r + ^r' = vc, where c represents the distance between
the foci; then (i) if, of the constants, A, /*, v, the greatest be v^ the curve is

referred to its two internal foci
; (2) if v be intermediate between A and /*, the

curve is referred to the two extreme foci
; (3) if *» be the least of the three, the

curve is referred to the external and middle focus
; (4) if \ = /x, the curve is a

conic
; (5) if v = A, or 1/ = yu, the curve is a lima^on

; (6) it one of the constants

A, /J., V vanish, the curve is a circle.



Construction for Tangent at any Point, 37^

reflexions of each other with respect to the axis FiFj, and the

trianp^les F1P2F2 and FiPiFt are equal in every respect.

Again, since

z F,PF^ = /. F,QF, = z F2F,Px = L FJF,P2,

the four points P, P2, F^ and i^2 lie on the circumference of a
circle.

From this we have

F^P . P3P3 = PsFi . F^F-, = constant.

Hence, the rectangle under the segments, made hy the inner ovaly

on any transversalfrom the externalfociis, is constant.

In like manner it can be shown that the same property

holds for the segments made by the outer oval.

If we suppose P and P^ to coincide, the line PaP becomes.

a tangent to the oval, and the length of this tangent becomes
constant, being a mean proportional between P^^i and PaP>

Accordingly, the tangents drawn from the external focus-

to a system of triconfocal Cartesians are of equal length.

This result may be otherwise stated, as follows :

—

A system

of triconfocal Cartesians is cut orthogonally by the confocal circle

whose centre is the externalfocus of the system (Prof. Crofton).

This theorem is a particular case of another—also due, I
believe, to Prof. Crofton—which shall be proved subsequently^

viz., that if two triconfocal Cartesians intersect, they cut each
other orthogonally.

307. Construction for Tangent at any Point.—
We next proceed to give a geometrical method of drawing
the tangent and the normal at any point on a Cartesian.

Retaining the same notation as before, let R be the point

in which the line FoD meets the circle which passes through
the points P, P2, P3, Q ; then it can be shown that the lines

PR and PQ are the normals at P and Q to the Cartesian

oval which has P^ and Fn for its internal foci, and P3 for its.

external. For, from equation (4), we have for the outer oval

dri , drtm --/-— = o.
ds ds
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Hence, if wi and a>2 be the angles which the normal at Q
makes with QFi and QF^ respectively, we have

m sin wi = / sin ws ; or .^in lui : sin W2 = I: m. (9)

Q

Fig. 80.

Again, we have seen at the commencement that

l:m = I)Q:F2Q;

^0, by similar triangles,

RQ'.RF2 = DQ'.F,Q = l:m; (i6\

but
IIQ : EFi = sin RQP : sin EQF^

;

hence ^ EQF^: sin EQF2 = l:m.

Consequently, by (9), the line EQis the normal at Q to the

outer oval. In like manner it follows immediately that PE
is normal to the inner oval.

This theorem is given by Prof. Crofton in the following

form :

—

The arc of a Cartesian oval makes equal angles with the

right line drawn from the point to anyfocus and the circular arc

drawn from it through the two other foci.

This result furnishes an easy method of drawing the

tangent at any point on a Cartesian whose three foci are

given.
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The construction may be exhibited in the following'

form:

—

Let Fly Fiy jPg be the three foci, andP the point in question

Describe a circle through P and two foci F% and F3, and let

Q be the second point in which F\P meets this circle ; then

the line joining P to -K, the middle point of the arc cut off

by PQ, is the normal.

308. Coiiroeal Cartesians intersect Orthogonally*
—It is plain, for the same reason, that the line drawn from
P to i?i, the middle point of the other segment standing on
PQy is normal to a second Cartesian passing through P, and
having the same three points as foci

—

Fi and Fi for its in-

ternal foci, and Fx for its external.

Hence it follows that through any point two Cartesian ovals

in be drawn having three given points—which are in directum—
for foci.

Also the ttco curves so described cut orthogonally.

Again, ii PC he drawn touching the circle PRQ, it is-

parallel to PQ, and hence

FzC'.F.C = FiR : RD = P^ig' : F^R . RD
;

but F^R . RD = RP^
;

.-. F,C :FrC = FJi' : PR-" = 7n' : P. (i i>

Hence the point C is fixed.

Again

CR : F,D = RF^iDF^ = m" : m' - P;

m^ - P ^ ^

which determines the length of CR.
Next, since RP = RQ, if with R as centre and RP as

radius a circle be described, it will touch each of the ovals,
from what has been shown above.

Also, since C is a fixed point by (i i), and CR a constant
length by (12), it follows that the locus of the centre of a circle

which touches both branches of a Cartesian is a circle (Quetelet,.
Nouv. Mim. de VAcad. Roy. de Brux. 1827).
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in tlie following figure, inThis construction is shown
which the form of two conjugate

ovals, having the points jPi, F^,

Fzf for foci, is exhibited.

Again, since the ratio of

F2R to EP is constant, we get

the following tlieorem, which
is also due to M. Quetelet :

—

A Cartesian oval is the

envelope of a circle, whose
centre moves on the circum-

ference of a given circle, while

its radius is in a constant ratio

to the distance of its centre

from a given point.

310. Cartesian Oval as an £nveloiie.—This con-

struction has been given in a different form by Professor

Casey, Transactions JRoi/a I Irish Academy ^ 1869.

If a circle cut a given circle orthogonally, while its centre

moves along another given* circle, its envelope is a Cartesian

oval.

This follows immediately ; for the rectangle under FiP
and FiQ is constant (8), and therefore the length of the tan-

gent from Fx to the circle is constant.

This result is given by Prof. Casey as a particular case of

a general and elegant property of bicircular quartics, viz. : if

in the preceding construction the centre of the moving circle

describe any conic, instead of a circle, its envelope is a bicir-

cular quartic.

* It is easily seen that the three foci of the Cartesian oval are : the centre

of the orthogonal centre, and the limiting points of this and the other fixed

circle.
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Examples.

1. Find the polar rqtiation of a Cartesian oval referred to a focus as pole.

If the focus F\ be taken as pole, and the lino FyFt as prime vector, we easily

obtain, for the polar equation of the curve,

(m' - ;^)r» - 2cz[mn - /« cos e)r + ra'Cn^ - P) = o.

The equations with respect to the other foci, taken as poles, are obtained by
-a change of letters.

2. Hence any equation of the form

r* - 2 (a + A cos 0) r + c' = o

represents a Cartesian oval.

3. Hence deduce Quetelet's theorem of Art. 302.

4. If any chord meet a Cartesian in four points, the sum of their distances

from any focus is constant ?

For, if we eliminate d between the equation of the curve and the equation of

an arbitrary line, we get a biquadratic in r, of which — 4a is the coefficient of

the second term.

5. Show that the equation of a Cartesian may in general be brought to the

form

^ = k'L,

where S represents a circle, and L a right line, and ^ is a constant.

6. Hence show that the curve is the envelope of the variable circle

\^kL + 2\S + F = o.

Compare Art. 309.

7. From this show that the curve has three foci; i.e. three evanescent

< ircles having double contact with the curve.

8. The base angles of a variable triangle move on two fixed circles, while

the two sides pass through the centres of the circles, and the base passes through

a fixed point on the line joining the centres ; prove that the locus of the vertex

is a Cartesian.

9. Trove that the inverse of a Cartesian with respect to any point is a bi-

circular quartic. {See Salmon, Higher I'iane Cwtes, Arts. 280, 281.)

10. Prove that the Cartesian

r* - 2 (a + i cos fl)r + c* = o

has three real foci, or only one according as

a - J is > or < tf.
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CHAPTER XXI.

ELIMINATION OF CONSTANTS AND FUNCTIONS.

311. Elimination of Constants.—The process of dif-

ferentiation is often applied for the elimination of constauts

and functions from an equation, so as to form differential

equations independent of the particular constants and func-

tions employed.

We commence with the simple example if = ax -^^ h. By
du

differentiation we get 2y— = a,2k result independent of b.

A second differentiation gives

dy\ d^y

^xj^^d^^""'

a differential equation containing neither a nor J, and which
accordingly is satisfied hy each of the individual equations

which resiilt from giving all possible values to a and b in the

proposed.

In general, let the proposed equation be of the form

f(x, y, a) = o. By differentiation with respect to Xy we get

dx dy dx

The elimination of a between this and the equation/(a?,y, a) = o
dy

leads to a differential equation involving x, y and -j-, which
U/X

holds for all the equations got by varying a in the proposed.

Again, if the given equation in x and y contain two
constants, a and b ; by two differentiations with respect to Xy

we obtain two differential equations, between which and the
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original, when the constants a and h are eliminated, we get a

differential equation containing x, y, -j- and -~

.

In general, for an equation containing n constants, the
d'U duXi (mU

resulting differential equation contains x,y,—,— . . . — ;

arising from the elimination of the n constants between the

given equation and the n equations derived from it by suc-

cessive differentiation.

Examples.

I. EUminate a from the equation

2. Eliminate a and /3 from the equation

3. Eliminate the constants a and j3 from the equation

y = o cos «a: + /3 Binwa:. Am. — + ny = O.

4. Eliminate a and b from the equation

This agrees with the formula for the radius of curvature in Art. 226.

5. Eliminate a and fi from the equation

6.

y=cu:cos (- + ^j. ^ns. _ + _=o.

Eliminate the constants oo, ai, . . . On from the equation

7- Eliminate the constants a and /3 from the equation

8.

y = o^o' + fit^'.

Eliminate a and b from the equation

^'^.-ifl^'')i^'h'o.

9.

xy = a^ -^^ be-*.

y = <ra:»* \-cxe''.
<^y

2 c
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312. Elimination ofTranscendental Functions.—
The process of differentiation can also be employed for tlie

elimination of transcendental functions from equations

of given form ; for example, the logarithmic function

can be eliminated by differentiation from the equation

y = \og(^{x), which gives -j- = ^V-^. We have met several

instances of this process already ; thus, in Art. 86, we
found that the elimination of the symbolic functions, sin and
swi"\ from the equation 2/ = sin (m sin"^;?;) leads to the diffe-

rential equation

The principles involved in this process are of great im-
portance in connexion with the converse problem—viz., the

procedure from the differential equation to the primitive from
which it is derived. This part of the subject belongs to the

Integral Calculus in connexion with the solution of differential

equations.

Examples.

dy I
I. y = ia.n-'^x. Ans. — =

dx 1 + x"^

3. Eliminate the exponential and logarithmic functions from the equation

S, = log(^+^). ^«..g +(!)'= I.

4. Eliminate the circular and exponential functions from y = ^ sin*.

du
Here — = e*sina; + e*cosa; = y + ^cosa;:

ax

therefore ^ = f^+fi«C08a;-^8ina?=2^-2y.
dx^ dx dx

s.

6. y=8maog»). .Am. *»^ + »^+y»a
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In the preceding examples we considered only the case

of a single independent variable ; the differential equations

arrived at in such cases are called ordinary differential equa-

tions.

When our equations are of such a nature as to admit of

two or more independent variables, the equations derived from

them by differentiation are called partial differential equa-

tions. We proceed to consider some cases of elimination

which introduce differential equations of this class.

313. Elimination of Arbitrary Functions.—The
equations hitherto considered contained only two variables

;

we now proceed to the more general case of an equation in-

volving three variables, two of which accordingly can be

regarded as independent. We shall denote the independent

variables by the letters x and y, and the dependent variable

by s. It will also be found convenient to adopt the usual

notation, and to represent the partial differential coefficients

dz dz d^z d^z , d^z

dx' dy' d?' d^' df
by the letters jo, q, r, s and t, respectively.

We proceed to show that in this case we are enabled by
differentiation to eliminate functions whose forms are alto-

gether arbitrary. In fact we have already met with examples

of this process : for instance, if 2 = a^ ^ f -
J,
we have seen, in

Art. 102, that in all cases we have

dz dz

whatever be the form of the function : this function accord-

ingly may be regarded as completely arbitrary in its form,
and the preceding differential equation holds whatever form
is assigned to it. This can also be shown immediately by
differentiation. Conversely, it can be established without

difficulty that af<pl-] is the most general form of s which

satisfies the preceding partial differential equation. This
process, as in the case of ordinary differential equations,
comes under the province of the Integral Calculus, and is

2 c 2
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mentioned here merely for tlie purpose of showing the con-
nexion between the integration of differential equations and
the formation of such equations by the method of elimination.

As another simple example, let it be proposed to eliminate

the arbitrary function from the equation z -f{^^ + y-),

dz dz
Here P =^ = 2xf{x^-vy''), q = j= 2yf{x^ + y^) ;

hence we get yp - xq = o\

an equation which holds for all values of z whatever the form
of the function (/) may be.

Examples.

1. a = <p{ax + by). Am. aq -hp.

2. y-bz = <p{z- az). „ ap + bq = I.

3. a;-o = (2-7)<^(^^j- » {x-a)p + {!/-$)g=^e^y.

4. ^ (a:*» + jr) = s^. i» wa;"-! g = my^-^p.

5. 22 = ary + ^ f
^ j

. „ xzp + yzq=^zy.

314. Condition that one Expression is a Function
of another.—Let s = {v)y where t; is a known function of

X and y.

^ dz ,. . dv dz ,, . dv

- dz dv dz dv dv dv
thereiore -p -1 r "7" = o, orj9 -— o- — = o.

fl^ar dy dy dx dy dx

This furnishes the condition that z should be a function of

the quantity represented by v. Also, denoting z by F, and
supposing V and e? to be two given explicit functions of x and

y, the condition that V is a function of v is that the equation

^dv__dVdv
dx dy dy dx"
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shall hold for all values of x and y, i. e. shall be identically

satisfied. For instance, if

v/Tv-yi-y*
X +

, andf? = arv/i -y' + V %/^ - ^*>

. dVdv dVdv ., .. „
we set -—; ;- -7- = o, identically

:

dx dy dy dx

hence F is a function of v in this case.

This can also be independently verified ; for, if « - sin 0,

and y = sin 0, we get

_ cos - cos d> ^ 0+0
r= -:—2; 7-^ = - tan ^ :

sin 6^ - sin 2

r = sin cos + cos d sin = sin (d + 0)

;

which establishes the result required.

We have here assumed that whenever equation (i) is satis-

fied identically, V is expressible as a function of v : this can
be easily shown as follows :

—

Since Fand v are supposed to be given functions of x and
y, if one of these variables, y, be eliminated between them we
can represent F as a function of v and x.

Accordingly, let

then

therefore

iV df dfdv dV dfdv
+

dx dx dv dx* dy dv dy*

dVdv_ _ dVd[v_ _ df_dv_

dx dy dy dx dx dy'

Hence, since the left-hand side is zero by hypothesis, we must

have— = o\ i.e. the function /(ar, t?) or V reduces to a func-

tion of V solely ; which establishes the proposition.
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315. More generally, let it be proposed to eliminate the

arbitrary function ^ from the equation

where Fand ^v are given functions of three variables, «, y,

and z.

Eegarding x and y as independent variables, we get by
differentiation

dV dV ,, ,
(dv dv\

dV dV ., V (dv dv\

^^ir-^^'\Ty^^dz)dy

eliminating 0'(^) ^^ obtain

dV^d^_d^d^ (dVdv_ ^dV\
dx dy dy dx \ d% dy dz dy J

fdVdv dv dV\ , ,^<^^"^^j = ^5 (2)

a result independent of the arbitrary function 0.

This equation can also be established as follows :

—

Differentiating the equation F= ^(t?), considering a?, y, %

as all variables, we get

-T-dx + -r- dy + —r-dz = (b (v)[ —- dx + -y- dy + — dz],
dx dy ^ dz ^ ^ \dx dy -^ dz J

Then, since the form of 0(«?) is perfectly arbitrary, this equa-

tion must hold whatever be the form of the function ^Ve;),

and hence we must have

dV^ dV , dV ,

-r- dx + -r- dy + -^ dz = o,
dx dy ^ dz . .V

dv ^ dv . dv J
-rr dx + -T- dy +

-J- dz =0.
dx dy dz
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Moreover, introducing the condition that 2 depends on x
and y, we have

dz = pdx + qdy
;

consequently, eliminating dx, dy, dz between this and the

equations in (3), we get

dV^ dV_ dV
dx' dy' dz

dv dv dv

dx' dy' dz

'which agrees with the result in (2).

= 0; (4)

Examples.

Elimiaate the arbitrary functiona in the following casts :—

1. z = ^(a sin* + i siny).

3. t^ efl<p{x — y),

II /I i\
4. = </> J.^8 x ^ \y xj

^_ y'<p{i/) +x
I-z^(y)*

6. z = a Vx- + y2 + <p [-J-

7. «=(x + y)-^(«a-y2).

8. 3^ + y^ + z"^ = <f>{ax + by + ez).

An ». A cos y— - a cos a;— = 0.^ dx dy

»>
dz dz z

dx'^d^'Z'

»
dz dz xyX— + y— = —

.

dx ' dy z

99
dx ^ dy

>» (x2 + y')| = y» + «».

<fo dz
f> ^ + y^=aVz2 + y^

i» * dx dy

Ant. {bz -ey)—-\- {ex- az) -^ = (iy- bx.
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316. Next, let it be required to eliminate the arbitrary

function ^ from the equation

F[x,y,z,ip{u)] =0,

where w is a given explicit function of x, y, and %,

Eegarding x and y as the independent variables, we may
differentiate the equation with respect to a?, and also with
respect to y ; then, since s is a function of x and y, we have

d.(b(u)
,

, . fdu du \

, d .<b(u) , , . (du du \

hence we obtain two partial differential equations involving

«, y, z, j9, g, (ii) and ^' (w). Accordingly, if (w) and 0' (w) be
eliminated between these and the original equation, we shall

have a resulting equation containing only a?, y, z, ^ and q,

317. Case of two or more Arbitrary Functions.—
If the given equation contain more than one arbitrary func-

tion, we have to proceed to partial differentiations of a higher

degree in order to eliminate the functions : thus, in the case

of two arbitrary functions, (m) and \p (v), the first differen-

tiations with respect to x and y introduce the functions 0' (u)

and 4>' (v) . It is plainly impossible, in general, to eliminate

the four arbitrary functions between three equations ; we
accordingly must proceed to form the three partial differen-

tials of the second order, introducing two new arbitrary

functions (j>" (u) and yff' {v). Here, again, it is in general

impossible to eliminate the six functions between six equa-

tions, so that it is necessary to proceed to differentials of the

third order : in doing so we obtain four new equations, con-

taining two additional functions, <p"' (w) and \p"' {v) . After

the elimination of the eight arbitrary functions there would
remain, in general, two resulting partial differential equa-

tions of the third order.

318. There is one case, however, in which we can always
obtain a resulting partial differential equation of the second

order—viz., where the arbitrary functions are functions of

the same quantity, u.
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Thus, suppose the given equation of the form

F[x,y,z,i^{u), rp{u)) -o, (5)

where u is a known function of a?, y and a.

By differentiation we get

dF dF dFfdu du\

l^^^li^TuKd-x^^Tz)^'''

dF dF dFfdu du\_

dy dz du \dy dzj

dF
Eliminating — between these equations, we obtain

ClU

dFdu dFdu fdFdu _dFdu\
dx \dz dy dy dz)dx dy dy

(dFdu dFdu\ ,^.

This equation contains only the original functions ^ (w),

xp (w), along with x, y, z, j9, and q. Again, if we apply the

same method to it, we can form a new partial differential

equation, involving the same functions ^ {u) and \p (w), along

-with ar, y, s, ;?, q, r, 5, t.

The elimination of the unknown functions, (u) and ip (u),

between this last equation and equations (5) and (6), leads to

the required partial differential equation of the second order.

The result in (6) admits also of being arrived at by the

method adopted in the second proof of Art. 315. For, re-

garding X, y, s, as all variables, we get from (5), on differen-

tiation,

J dx+'^dy^'^dz + '^ l^^dx+^dy+'^ dz] = o, (7)
da: dy ^ dz du \dx dy ^ dz J

^'^

dF , dF , dF, dFfdji , du , du

du \dx

dF dF , , ^ dF
But 3- =

_j , V 0' (w) + -Trr\ ^'W Jdu d<^ (u) d\P{u)^ ^ ^

'
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and accordingly, since (7) must hold for all values of 6' iu\
and ;//' (m), we have

and

dF . dF ^ dF ^

dy dz

du . du . du ,^dx+ — dy + --dz = o.
dx dy ^ dz

<8)

Eliminating between these equations and

dz - pdx -t- qdy^

we get the following determinant

:

dF dF dF
dx' dy' d^

du du du

Jx' Jy' d^

g> -

o; (9>

which, plainly, is identical with (6).

This admits also of the following statement : substitute c-

instead of u in the proposed equation ; then regarding c as con-

stant, differentiate the resulting equation, as also the equation

u = c (on the same hypothesis) : on combining the resulting^

equations with

dz = pdx + qdy,

we get another equation connecting ^ (c) and xp (c) ; smd
applying the same method to it, we obtain the result, on
eliminating the arbitrary functions ^ {c) and xjj (c) be^we^i
the original equation and the two others thus arrived at.

These methods will be illustrated in the following sk-

anxples.
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Examples.

1. • -<»^f») + y,^(z).

Here P = <K«)+W(») + yW}p,

jo4<f)+{a^'(«) + y4,'{:^}y.

Hence f=f,=^«—

•

A<pplyiDg the prihciple of Art. 314, we have

^m-^m^-o.

ot q^r — 2pqs +p^t — o»

Otherwise flius : lete^e, and we get <& = o, and </> (4 <?J; + X«) rfy = o ;
also pdx + £rfy = o

;

tberefoie
-P = ^,.

Differentiating again, we have

qdp-pdq^O,

or j{r<ir + #d;pr} - ^(«d«; + %) = o,

which, comhined with jm^x + qdy = o,

leads to the same result as above.

2. « = «4>(aa; + 4y) + y^^x + by).

Here /) = ^(oa; + 4y) + a {x<p'{aa: + *y) + y4''(aj; + iy)^

,

J = ^{az + 4y) + i{a;<|>'(aa; + iy) + sn^'(ax + iy)
J*,

therefore bp - aq = b<p{az + by) - a}p{ax + by)
;

hence br — as = a{b<p'{ax + by) — a\^'{ax -\- by)}^

bs — at = b[b<t>'{ax + by) " a}^'{ax + by)];

therefor© b^r - zah* + «»< = o.



396 Elimination of Constants and Functions,

Otherwise thus : let ax + hy = c, then adx + hdy = o ; also,

d% = <p{c) dx + y^{c) dy, and dz = pdx + qdy ;

hence

bp — aq = b(p{e) — «n|^c).

Differentiating again, we get

bdp - adq = o, or b{rdx + sdy) - a{sdx + tdy) = O.

Combining this with the equation adx + bdy — o, we get

iV - labs -{-aH^o^

as before.

319. Case of n Arbitrary Functions of same
Function.—It can be readily seen that the preceding

method is capable of extension to the elimination of any
number n of arbitrary fimctions from an equation, provided
that they are all functions of the same quantity u,

; For the equation (6) plainly holds in this case, and, pro-

ceeding as in the last Article, we obtain a series of equations

(the last being of the w'* order of differentiation), each con-

taining the n arbitrary functions along with the variables and
their derived functions. If the n functions be eliminated

between the w differential equations and the original equation,

we obtain a differential equation of the n^^ order which is

independent of the arbitrary functions in question.
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Examples.

1. Given y = e"{C-¥ Cx), prove that

dx^ dx

2. Eliminate the constants from the equation

d^v dy
y = Ckt'* cos 3x + C2<j2' sin 3x. Ans. ^~4^+l3y = o

3. Eliminate C and C from the equations

(a) y = — + C cos «« + CT sm «a?,

(J) y =s a: sin fw; + (7 cos na; + C" sin wa;.

^«». (o), —^ + n2y = cos m«. (*), ^ + >» ^ = 2» COS war.

4. Eliminate the arbitrary functions from the equation

« = —^ + (y + 0*) + »^ (y - oa;). Am, r-aH^xtf^

5. Eliminate the functions from the equation

y = ^ cos (asin-i - -I- b). Atu, {c^ - z'^)P^ - x^ + a^y = O.
e ax' ax

6. Eliminate A and a from

d^u dy ,

y = Acos (n cos x + o). -4w«. 3— - cota:-^ + «V 8m''a»=0.

7. Ife = co8aa;^f-j 4 sin aa:»^ [
-

j ,
prove that

rx^ + 2sxy + ty* + a^^z = O.

8. If ai, 02, 03 be the roots of the equation
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pro^ that the result of eliminating the exponentials from the equation

d^y cPy dy

9. Find tte result of the elimination of the arbitrary functions from

« t= ^(a; + ay) + ^{x - ay), Ans. c^r-t^O,

10. If »=/(-)+ ^(xy), prove that

flj'r -yH + zp-yq = 0,

1 1. If ae-9 + be-y = m* + der*y prove that

\_dx^ \dxl dzjl\dz) J ^ dz\dxy
'

^fM. a;'r + 2a;y5 + y^^ _ (^ ^. ^ _ I'jfjfx + qy) + mwe = o.

13. Eliminate the arbitrary functions from the equation

z = ip{x-^f(y)]. An8.p8-qr = o.

14. If the suhstitution of A€<^ for y satisfies the differential equation with
constant coefficients

d»y d»-^y dy

prove that a must be a root of the equation

Z" + J3lZ"-^ + . . . + Pn-1 Z + J?n = O.

15. Eliminate the constants from the equation

ase^ + 2bxy + cy^ + 2dx + 2^ +/= o.

Ans. 4or3 - 45jr'« + <^H - O,

du dN d?y „
^here p«g, ? = -, r=—,&o.
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CHAPTER XXIL

CHANGE OF THE INDEPENDENT VARIABLE.

320. Case of a Single Independent ITariable.—We
have already pointed out the distinction between indepen-

dent and dependent variables in the formation of differen-

tial coefficients.

In applications of the Differential Calculus it is sometimes
necessary to make our differential equations depend on new
independent variables instead of those which had been origi-

nally selected.

To show how this transformation is effected we commeno©
with the case of one independent variable, and suppose V to

represent any function of x, y> -7^> T2> ^^' ^® proceed to

show how the expressions for -j-, -^4, &c., are transformed,

when, instead of a?, any function of a? is taken as the inde5>en-

dent variable.

Let this new function be denoted by /, and suppose that
dx d^x—, —^ , &c., are represented by x, x, &c., then in all cases

we have

du _ du dx _. du

dt dx dt cte'

where u is any function of x ;

Hence f^l''!. u)
dx i tit' ^ '
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also ^=-l/'^^=i?.fi^^ = if[fi^^
dx" dx \dx) dx Vi dt) X dt \x dt r

(substituting 7 — instead of w in (i));
xdt

hence
(3)

Again,

,J^y d^y dy
, , .,, .^,

and so on for differentiations of higlier degrees.

If y be taken as the independent variable, we obtain the-

corresponding values by making

Hence
- - - —,

- " TTT,

»

(5)

dy^
dt

'' J.O.-U
c^a?

dy I

dx "
dx'

d^y d'y
.

dx" /dxV*

dy y
Id;W dxd'x

d'y %¥) d'yd,/

d(x^ /dA'
(6)

and so on.

The preceding results can also be arrived at otherwise,

as follows. The essential distinction of an independent

variable is, that its differential is regarded as constant; ac-

dy
cordingly, in differentiating — when x is the independent

ux
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variable we have ^(y )
= -j-' However, when a? is no longer

regarded as the independent variable, we must consider the

numerator and the denominator of the fraction -f- as both
dx

variables, and, by Art. 15, we get

fdt/\ _ dx d^y - dy d^x d fdy\ dx d^y-dy (Px

\dx)
^

d?" '
^^

liKd'x)
^

d?
•

Differentiating again on the same hypothesis, we get

d_fd'y\ _ dj^d^y - dxdyd^y - ^dxd^xd:'y + 3 {d^x^dy

~dx\d?)
~

dx'

These results are perfectly general whatever function of x
be taken as the independent variable. Their identity with
the equations previously arrived at is manifest.

cPy

Examples.

I. Being given that x = a{e - sine), y = a{i - cos 0), find the value of

Ant.
dx^' ' a(i - cos 0)2'

2. Hence deduce the expression for the radius of curvature in a cycloid,

3. li z= {a + b) cose - b cos —-—0, y = {a + b) sin a - i sin ——- 9, find
b

the value of —,.
dx''

cos Q - cos —r—
dy b

Here -;- = ^—^—^^—^ = tan
dx . a + b

cPy a + 2h

Bin —r— y — Sin I

b

dx^

4. Change the independent variable from a; to 9 in the expression -^^ sup«

a0 la \
46(a + b) sin — cos' ( — + i\d

he ind(

posing X - sin 0.

dx cos 9 de* dx^ cos d0 Vcos dd cos-0 d0'' —-—-
00830

2 D
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5. Transform the equation

od^t/ ,
dy ^

dx^ dx

into another in which 6 is the independent variable, being given x = e^.

dx^^^'dx'

Here dy _dy dx

de~ dxdd~ 4-'dx

hence
d /a

de\d'^-^m-
d^y

«2-

therefore
rf«2 de^

dy

dd'

and the transformed equation is

d^y
, ,dy

+ by = 0.

6. Transform the equation

dy a^

dx^ dx

into another where z is the independent variable, being given «=-.
c

It is evident that in this case « J^ = - « —, and
dx dz

4x{'t)=^U'd^'

dx^ ^ dx dz-'
^ dz'

therefore ^2^ + 2:. ^ = .2 ^
and the transformed equation is

d^V ,

7.* Change the independent variable from a? to « in the equation

«^^ + aV = o, where x = -.

J d^y 2 dy „

i
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321. Two Independent ITarlaMes.—We will next
consider the process of transformation for two independent
variables, and commence with the transformations intro-

duced by changing from rectangular to polar coordinates

in analytic geometry. In this case we have

r cos d, y = r sin ;

and therefore r' = a^ + y*, tan 9

(7)

(8)

Accordingly, any function V oi x and y may be regarded
as a function of r and 0, and by Art. 98 we have

But, from (7),

dx ^ dx

hence we obtain

dV^dV^dx dVdy\
dd " dx dO^ dy dd

dVdVdx dVdy
dr dx dr dy dr

. /» dy , ^
= - r sin y = - y, -^ = sin &,

dy

d9
x;

dV_ dV
dd

~^
dy ^^^

dV dV
dr dx

dV
^dx'

dV
dy'

(9)

(10)

(II)

(12)

These transformations are useful in the Planetary Theory.
Again, we have

dV_dVdr^ dVdO^
dx dr dx dd dx

dVdVdr^ dVdd
dy dr dy dd dy

^

2 D 2

in)
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But from (8) we have

— = - = cos 0, -— = sm u, (14)
dx r dy ^ ^

dB ,^v 8m0 dO cos'0 , ,

dx x^ r dy r ^ '

.. f
dV ^dV sm0 dV . ^,therefore -r- = cos -^ ;7r, (16)
dx dr r dd ^ ^

dV . ^dV coaO dV
, ,-—=81110--+ -^. (17)

dy dr r dd

The two latter equations can also be derived by solving

dV dV
for -7- and -3- from the equations (11 J and (12).

ax dy

d^V d^V
\22. Transformation of —-r and —rr- — Since for-

dx- dy^

mula (16) holds, whatever be the form of the function Vy
we have

d , . n d , . sin c? , ,

-(«) = co8e^(.^)-— -gW,

where ^ stands for any function of x and y. On substituting

dV
-y- instead of 0, this equation becomes
ax

L{^\- e-T g^^ sin^^^FI

dx\dx ] dr\_ dr r dd \

SYdd d \ ^dV sind dV^

^^d'^Y cos sin dW cos d sin dV
" ''''' ^ ^r^ ~r 5r^

"^

^^^ ^
sin^r ^dW
r

sin0 rcos0 dV sin0 cPFI
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d^V ^nd^V 2 8in0cos
or —r-r'= 00s* 0—r:r + —

dx" dt" r

i^dV

rid drdd\

sin^ dV sin'grf'F
^ r dr

'^
r' dB^'

In like manner we get

dy' ~^^^^~d?' r \_~rdB~ drdQ]'

cos' 9 dV co8'0 d'V
^

r dr
'^

r" dS''

The latter result can also be readily deduced from the

preceding by substituting in it for 6.

If these equations be added we have

d'V d'V d^ idV id^F , .

da?^ dy''~ dr"
"" r dr^ r" dO'

'

^^ ^

d*V dT d^V
323. Transformation of ——- + —r-r + -yr ^ Polar

dx^ d\f dr
Coordinates.

Let the polar transformation be represented by the equa-

tions

a; = r sin cos ^, y = r sin sin ^, s = r cos 9 ;

also, assume p = r sin 0, and we have

a; = p cos 0, y = p sin
;

henoe,by(i8),— +—=_-.^- +-—

.
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Again, from the equat:Lons

p = r sinO, z = r cos e.

we have in like manner

d'V d'V
dp' '

dz'
"
d'V
dr^""

idV
r dr

I d'V
dS^'

Accordingly

d'V d'V d'V d'V i dV i d'V i dV i d'V
dar" df dz- dr'' p dp p" fi?^^ r dr r^ dS

But by (17) we have

dV . ^dV QO^BdV
-T- = sm -T- + -—

-;dp dr r dO

,, p idV idV cot0 dV
therefore --- = -—-+ —— _—

.

p dp r dr r^ dd

Hence we get finally

d'V d'F d^_d^ I dW
d;x^

"^

df
"^

dz" ~ dr^
'^
r'Bm'O'd^

id'V 2dV oot OdV
"*"

r^ dO'
'^

r dr ^
r' dd

324. Remarks on Partial DiflTerentials.—As already

stated in Art. 113, the student must be careful to attach the

correct meaning to the partial differential coefficients in each

case. ^^
Thus in finding — in (10) we regard a; as a function of r

and 0, and differentiate on the supposition that is constant

;

dr
in like manner the value of — in (14) is found on the suppo-

dx

Sition that y is constant.
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Tho beginner, accordingly, must not fall into the con-

fusion of supposing that in this case we have ;7~ >< t- = ' •

This caution is necessary, as even advanced students, from
not pajring proper attention to the meetings of partial de-

rived functions, sometimes fall into the error referred to.

325. Geometrical Illustration.—The following geo-

metrical method of determining the proper values of— and ~

under the preceding hypotheses may assist the beginner
towards forming correct ideas on this important subject.

Let P be the point whose coordinates are x and y ; then
OM = X, PM = y, OP = r,

POX = e. Now, in finding

dx

dr
regarding Q as constant.

we take on the radius vector

OP produced a portion PQ
= Ar, and draw QN perpen-

dicular to OX; then Aa*, the

corresponding increment in x,

is represented by MN or PL
;

M N
Fig. 82.

therefore
Ax PL n ^^ a— = -=-pr = COS U, or — = cos y.
Ar PQ ' dr

dr
Again, to find — on the supposition that 1/ is constant

:

ax
let JTN be Ax, the increment in x, and draw the parallelo-

gram PLMN, and join OX, meeting in / a circle described

with radius r and centre ; then LI represents the corre-

sponding increment in r, and we have

-7- = limit of — = limit of -^7^ = cos ;

dx Ax PL
dr dx

so that in this case the values of — and — are each equal to
dx dr

cos or -, as before.
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The values of — , &c., can be also readily represented

geometrically in a similar manner.
326. Itinear Transformations.—If we are given

x = aX^-bY-¥cZ,y = «'X+ 6'F+ c'Z, z = a''X+ b''Y+c% (20)

then any function F", of x, y and 2, is transformed into a
function of X, F, Z; and, as in Ex. 2, Art, 98, we have

dV^dV ,d_V „dV
dX dx dy dz^

dV ^dV .,dV ,„dV
dY^^^^^Ty'^Tz^
dV^ dV ,dV^ „d_V

dZ dx dy dz'

Again, proceeding to second differentiation, we get

dX* dx \ dx dy dz J dy\ dx dy dz )

„ d( dV
dz\ dx dy dz J

^d'v .cpv „ffr , „^F
= a' -j-r + 2aa •—— + 2aa -r—r + la a -—

-

dsr dxdy dxdz dz^

dy^ dz

Similarly we have

dxdz dzdy
'
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(PV ,(PV ,,(PV ,,,(PV , <PV

„t/»r , ,,d^V
+ 2CC T—r- + 2C C -7—7- .

dxdz dydz

327. Orthogonal Transformations.—If the transfor-

mation be such that

a:^+ y'+z^^Z' + F' + Z*,

we have

a''-¥a^ + a"^=i, b' + b'^+ b'''=
i, C' + c' + c''' = i. (21)

ab + aT+ a"r= o, flc + aV+ o" c"= o, ic + bY+ b"c" = o. (22)

Again, multiplying the first of equations (20) by cf, the

second by a', and the third by a'\ we get on addition, by aid

of (21) and {22),

X = ax -^ ay -v a"z.

In like manner, if the equations (20) be respectively

multiplied by b, b', h'\ we get

Y=hx-^b'y-¥rz',
similarly

Z = ex + c'y ->r c"z.

If these equations be squared and added, we obtain

«^ + ^.^ + c' = I, a^ + V + c'^ = I, a"" + b'"" + c"' = i. (23)

o«'+ bb'^ cc=^ o, aa'-v bV + cc' = o, aV+ ^>'J"+ cV'= o. (24)

Hence in this case, if the equations of the last Article be
added, we shall have

d^ cPT ^_^ d}V dT
dx'

"^
dy'

"^
dz'

~ dX'
"^ dr "^

dZ''
^^^^
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The transformations in this and the preceding Article

are necessary when the axes of co-ordinates are changed in

Analytic Greometry of three dimensions ; and equation (25)
shows that, in transforming from one rectangular system to

d'^V 6/-F d'^V .

another, the value of the function —— + -p^ + —rr is un-
dx^ dy^ dz^

altered.

328. Creneral Case of Transformation for Two
Independent Variables.—Suppose that we are given the

equations

x = ^(r,Q), y^i{r,Q), (26)

then any function of x and y may be regarded as a function

of r and 0, and we have, from (9)

,

dV_dVdx dVdy
IS'l^dd'^lydB'

dV_dVdx dVdy
dr dx dr dy dr^

where the values of -^, -Tn^-r, -r can be determined from
dO do dr dr

equations (26).

Whenever these equations can be solved for r and 0^

separately, we can determine, by direct differentiation, the

values of —,—,—, —, and hence, by substituting in (13),
dx dy dx dy

we can obtain the values of -;— and -z-,
dx dy

When, however, this process is impracticable, we can ob-

tain the values of -r-, -;-, &c., by solving for -7— and -7—
dx' dy' ' ^ ^ dx dy

from the preceding equations.

Thus, we obtain

dVdy _ dVdi
dV 'deJr'l^dQ
dx

~ dxdy dxdy ' ^^''

dOd? ~
'drdO
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dV^ dO dr dr dj

'dy
~ dxdy dxdy

' (^°/

JrjQ ~ JMr

d^V d^V
The values of -r-r, -ttj &c., can be deduced from these

:

dx^ dy^

but the general formulse are too complicated to be of much
interest or utility.

329. Concomitant Fanctlons.—We add one or two
results in connexion with linear transformations, commencing
with the case of two variables. AVe suppose x and y changed
into aX + iF and a'X + h'Y, respectively, so that any fimc-

tion <p (xy y) is transformed into a function of X and Y: let

the latter be denoted by 0i (X, Y), and we have

<t>(x,i/) = <l>i{X, Y).

Again, let af and / be transformed by the same substitu-

tions, i.e.y

x = aX'+ bY\ y' = a'X' + V Y';

then since x + kx =a{X + kX') -\-b{Y^kY'),

and y-^ki/ = a\X + kX') + 6'(r + kY),

it is evident that

^ (.r + k/, y + ky') = 0i(X + kX\ Y + kY'),

Hence, expanding by the theorem of Art. 127, and
equating like powers of k, we get

&0. &c. (30)
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(^'i^^'l)"'
(*'£+^',-'«'

Accordingly, if u represent any function of x and i/j the

expressions denoted by

d_^'

are unaltered by linear transformation.

Similar results obviously hold for linear transformations

whatever be the number of variables (Salmon's HigherAlgehra,

Art. 125).

Functions, such as the above, whose relations to a quantic

are unaltered by linear transformation, have been called con-

comitants by Professor Sylvester.

330. Transformation of Coordinate Axes.—When
applied to transformation from one system of coordinate

axes to another, the preceding leads to some important

results, by applying Boole's method* (Salmon's Conies,

Art. 159).

For in the case of two dimensions, when the origin is

unaltered we have

af^ + 2x'y' cos a> + y » = X'^ + iX'Y' cos Q + T\ (31)

where w and Q. denote the angle between the original axes

and that between the transformed axes, respectively.

Multiply (31) by X, and add to (30) : then denoting

^ (^> y) ^J w, and ^i(X, Y) hj U, we get

Now, suppose X assumed so as to make the first side of

this equation a perfect square, it is obvious that the other

side will be a perfect square also. The former conaition

gives

* I am indebted to Prof. Bumside for the suggestion that the equations of

this Article are immediately obtained by Boole's method.
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^
dx' df \d^y) ° °'

or
\a7? ay

d^ud^u

Accordingly, we must have at the same time

X^sm'Q.A^^-^,.— -2^^^cosa

"^
rfX» dY^ [dXdYJ ~ °*

Hence, comparing coefficients, we get

(/^^ dy'' \dxdy) _ dT- dY* [dZdYJ
sin^ u) sin* 12

and

d'u d'u d'u d'U d^U d^U
ctr' f// dxdy dX^ dY^ dXdY

sm' w sin^Q

(32)

(33)

Consequently, if u be any function of the coordinates of

a point, the expressions

fl^' dy^ \dxdyj , c?a^ c(y' dxdy

are unaltered when the axes of coordinates are changed in any
manner^ the origin remaining the same.

In the particular case of rectangular axes, it follows that

^ d*u •. cf^^ _ f
d'^u Y^ "^ ^ dx' dij" \d^y)

preserve the same values when the axes are turned round
through any angle.
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331. Application to Orthogonal Transformation.—
It is easy to extend the preceding results to tkree or more
variables when the transformations are orthogonal (Art. 327).

Thus, in the case of three variables, we have

Multiplying this by X, and adding the result to the equation

that corresponds to (30), it follows that the expression

,x„.-itr.A)..y.-|^

, , d^u , , d^u
+ 2ZX -;—r { 2x1/

dzdx dxdy

is unaltered by orthogonal transformation.

Next, suppose that A is such that the quadratic function

in x\ if and % is the product of two linear factors ; then, by
Art. 107, we have

d^u - d^u

d'u

dxdy*

d^u .

dxdy'

d^u

dxdz' dydz' dz^

d'u

dxdz

d^u

dydz

+ X

= o. (34)

But, as the transformed expression must also be the product

of two linear factors, we have

d^u ^ d^u d^u

dx^ ' dxdy* dxdz

d^u d^u ^ d^u

dydx' dy^ ' dydz

d'u

dxdz' dydz' dz

dH d^u ^

» 3:1 + ^

d'U .

dX^''^'

d'U d'U

dXdY' dXdZ

d'U d'U
+ A,

d'TI

dXdT dY' ' dYdZ

d'U dT d'U ^
+ X

dXdZ' dYdZ' dZ'

(35)
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Equating the coeflficients of like powers of X, we see that the

oxpressions

c?'m d^u d^u

d^ '^ df ^ liF'

dx" dy" \dxdy)
"*"

dx" dz"
"^
\dxdz) d^f dz^

"
\dyd%)

'

and
d^u du^ d^u

dx^^ dxdy* dxdz

d^u d^u dhi

dxdy dy"^^ dzdy

d^u d^u dhc

dxdz* dydz* dz^

are unaltered by orthogonal transformation.

The first of these results has been already arrived at by
direct substitution (Art. 327).

On the £quation
d'V (PV d'V
dx"

'^
dy'

'^
dz'

" °*

332. We shall conclude this chapter with a brief discus-

sion of the differential equation

d'V (PV (PV
ds*

'*'

rfy*
"^

c/s'

' o, (36)

an equation which occurs so frequently in physical investi-

gations. While doing so we shall denote the symholie

operator

d^ d' d' .

d^'-dy^^d?^^^'

Adopting this notation, we readily see that

^ ^ ^ \dx dx dy dy dz dzj ^'^^^
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Again, since — [r^] = mxr^~'^,

we have —^ (r'") = mr"^^ + m{m - 2)ajV*""*,

and we readily get
y«(r'") = m{m + I)r"*~^ (38)

Hence, from (37), we have

^^{r^T) =r"»v'F+m(m+ i)r'^-^V

^J dV dV dV\ , ,

Moreover, if F be a homogeneous function of the n^^ de-
gree in X, y, 2, we get, by Euler's theorem of Art (98),

V*(r'"F) = r"* v^F+ m(m + 2?^ + i) r'^-'Y. (40)

333. ISolid Harmonic Functions.—Any homogeneous
function in x^ //, z which satisfies equation (36) is called a
solid spherical harmonic function, and frequently a solid

harmonic.

"We shall denote a solid harmonic of the n*^ degree by
Vn\ in which the degree n may be positive or negative, in-

teger or fractional, real or imaginary. It is evident that

any constant multiple of an harmonic is also an harmonic of

the same order.

From (40) it follows that a solid harmonic of the n^^ de-

gree satisfies the equation

y2 ^^m Y^ == m {m ->r 2n -^ i) r"*'' F«. (41)

Vn
Hence we see that if Vn be a solid harmonic, -^^ is also

a solid harmonic, whose degree is - (n + i).

Again, from (38) we see that - is a solid harmonic cf the
^

I

degree - i . Also it can be readily shown that - is the only

function of r that satisfies equation (36). For by (19) wd
can transform that equation into

d\rV) I d ( . .dV\ I d'V
f

.

dr sm d dQ\ dO J sm' d^^ ^ '
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Hence, if F be a function of r solely, we must have

—^-—? = o. Tliis jrives V in the form - + 6.

dr"
^ r

In like manner if F be a function of the angle solely

d'^V
it must satisfy the equation -7-^ = o : this leads ioV=at^-\-h,

Hence we observe that tan"' ( - ) is a solid harmonic, of the

degree zero.

Again, if F be a function of B solely, we have

d_

dB

Hence we see that log f tan -
J

satisfies the equation

V*F= o, and we infer that lo ( ) is a solid harmonic.

•• _L ji« f -i- 1/

In like manner] log and log are also solid har-

monics.

It is readily seen that log tan ( -Jsatisfies equation (42);

hence we see that

tan"^ - loff
X ° r - z

is a solid harmonic, of zero degree.

If V satisfies equation (36), it is seen immediately that

-— , -7- and T- also satisfy it, as also the general ex-
dx^ dy dz -^ '

pression , in which^, q^ r are any positive integers.

Hence, from any solid harmonic a number of others can

be immediately deduced by differentiation.

dVn
Again, since -7-^ is a harmonic of degree w - i , it follows

2 E
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I dV
from (41) that -r—7 -r—" is also a solid harmonic, whose de-

gree is - w, and so on.

For example, any expression of the form -r--—j

—

A-)
dx^ dy^ dt \rj

is a solid harmonic, whose degree is - {j + k -i- I + i).

Examples.

1. Find the condition that

ax^ + by^ + cz^ + dxy + exz \-fyz

should be a solid harmonic. Ant. a + b ^ e—o.
2. Prove that

—-— , , , V, « tan-i -, and « log 2r,

are solid harmonics.

3. If Fo be a solid harmonic of degree zero, prove that r'"-^ is also

a solid harmonic.

_. ^, ^ sin wd) rf"»(r2»»-i)

4. Hence prove that ^— —

^

.'

is a harmonic function.

For, let Vo = tan-^ ( -
J

; then, since y = a; tan </>, it can be shown, as in.

Art. 46, that

d** / ,y\ , , ,
sinwd)—-

I
tan-i - 1 = (- I « « - I ^—

.

dx^\ xj ^ ' L n

(a;2 + y2)2

Hence is a solid harmonic, as also any function derived

(a;2 + y'^y

from it by differentiation.

334. Complete Solid Harmonics.—A solid harmonic
that is finite and single valued for all finite values of the co-

ordinates is said to be a complete harmonic. It can be proved,

by aid of the Integral Calculus, that every complete solid

harmonic is either a rational integral function of the coordi-
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nates, or is reducible to one by multiplication by some power
of r. Assuming this, it follows that the number of indepen-

dent complete harmonics of degree n, when n is positive, is

zn + I.

For it is readily seen that the number of terms in F"„, a
rational homogeneous function of the n^^ degree in ^, y, 2, is

' '
; and also the number of terms in v' r» is

2

-^
; hence, since y' Fn = o identically, we must have

2

— linear equations connecting the coefficients in Vn ;
2

consequently the number of independent constants is

(n + 2)(n + i) n{n - i)
^ — ^^ -, or 2)1+ I.

2 2

It can now be shown that every complete harmonic can be

deduced by differentiation from -. For the solid harmonic
•^ r

when the differentiations are performed, is readily seen to be

a fraction, of which the numerator is a homogeneous func-

tion of the degree «, and whose denominator is -^^j, where

Y
n = k +J + I. If this function be represented by -^^, the

numerator F„, by (41), is also a solid harmonic.

We can now show that the number of independent har-
monics of degree n that can be thus derived is 2n + i.

For, since

d?\^)^~\d?''df)\r}
we easily see that

d^[~r)~^~'^ \d?'"df) \r;
2 £ 2
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in which
( ji + 3~i ) is expanded by the binomial theorem

as if — and — were algebraic quantities, and the resulting

differentiations of — taken.
r

Hence, if I be even, we have

dJ'^^^ A\ ^ ,
i d^'"" (d^ d^4 fi\

dx^dy^d%\rj ^ ^^ dx^ dy\dx'''^ df) \r}

and, if / be odd.

\r) ~ ^ ^^ '
dxfdt/" [dx"

"^

df) dz \r)'dx^ dy^dz^

Accordingly, in the former case we get a number of terms

each of the form , „ , „
- , where p + q = n; and in the

dx^dy^\rj

latter, terms of the form . p. q It" ( ~ )(
» "^ which^ +gr=n- 1.

Now there are p + q-\-iyOvn+i terms in the former case,

and n in the latter. Hence there are 2n + i independent

forms, as was to be proved.

335. Spherical and Zonal Harmonics.—If a solid

harmonic Vn be divided by r^, the quotient may be regarded

as a function of the two angular coordinates, or spherical

surface coordinates, and <p. Such a functian is called a

spherical surface harmonic of the degree n.

Again, if Vn = r'^T^, then the spherical harmonic Yn
plainly, by ( 1 9), satisfies the differential equation

-r-^ —, Sm -T^ + ^-^ -T-^ + W (W + l) r„ - O. (43)

This equation admits of a useful transformation ; for if we
assume fx = cos B, then, since
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we get

d i. „rfFJ I d^Yn , s^ / V

5^r-^^)-dMrrr7a-^-'('»^0r. = o. (44)

Again, if a spherical harmonic be a function of d solely, it

is called a zonal harmonic. Hence, if Pn be a zonal harmonic
of the n** order, it must satisfy the equation

When n is a positive integer, the value of Pn can be readily

represented by a finite series. For since, by hypothesis, P«
is a function of the n'* degree in /u, we may assume

i=n

Pn'-S, {an^fl"*).
mcO

Hence ^" = S (m a„, fi""-') ;

therefore

^ (i - /u')-^= 2m (w - i) e7„/i'"-» - Sm (m + i) a^/u"».

Substituting in (45), and equating the coefficient of fi**to

zero (since the result must vanish identically), we get

m(m+ i)am*2 = - {n- m){n + m- i)«m.

Hence, observing that the highest power of /i is n, we
have

n{n - i) „

2(2W-l)

and we may write

r 2(2n-i)'^ 2.4(2n-i)(2n-3) "^
I'

where «» is an arbitrary constant.
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This is the general form of a zonal harmonic of integer
positive degree.

It can be shown independently of the above that

—
]

(ju^ - i)" satisfies the equation (45).

In order to prove this we shall assume u =
fj^

- i, and

write the symbol D for — ; then we have to prove that
ajx

B {uD^*' (w")) - w(w + i)2)" (w") = o.

dill

Now, observing that — = 2fji,we get, by Leibnitz's theo-

rem of Art. 48,

i)«+i (w«+i) = i)«+i
(^^ , j^«) = ^j)n+i

(^«) + 2 (n + i) /zD" (w")

+ n{n+ i)i)"-i(w*»).

Again, since

we have also

2>«+i (^«+i) = 2{n+i)I)" {iLiu»)

= 2{n+ i)jui)" (w") + 2w(w + i) D"-^ (w").

Equating these values of 2)"+^ («*"*0> "^^ g®^

uD"*^ (w") = w (n + i) i)"-^ (w")

;

hence D (wi)"*»(w")) - w(w + i) Z)"(w"; = o. (47)

Consequently 2)"(e<") satisfies the equation in question.

Hence we infer that

The student can readily show, by direct diiferentiation,

that this expression differs only by a constant factor from

the value of Pn found in (46).

It is usual to assume that Pn is that value of the pre-

ceding expression which becomes unity when /x = i

.
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To find this value, we have

(|)"(^'-.r=.„(|)"-' (,(,'-.)»-)

by Leibnitz's theorem.

—
j

(/u*-i)""^ = o when/u=i

;

hence, when /u = i , we have

(|^J(M-.)»-«yj' (.-.)"-

= 2'«(n-i)j-) {^i'-l)''-',&o.

Consequently, when ^ = i,

and we have

Again, from Ex. 6, p. 155, we infer that P„ is the coef-

ficient of A" in the expansion of (i - 2juA + A^)"3 in a series of

ascending powers of h, a result which can also be readily

proved independently. The functions Pi, . . . P„ are

usually called Legendre^s Coefficients.

Examples.

1. lih - I, prove that Pn = i for all values of n.

2. If A = - I, prove that P„ = (- i)-.

3. If A < I, show that the series

P, + P2 + . . . + Pn + . . .

is convergent.
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4. Prove the relations

p 35m* - 30)^' + 3 p 63)u« - 70/t» + 15/1
J>,= g , P5 g .

5. Prove the equations

^ (P„*i - Pn-l) = 2n + I) P„,

(n + i)Pnti - (2n + i)/*P„ + «P«.i = o.

336. Complete l§pberical Sarinonics.—From Art.

334 it follows that a complete spherical harmonic Yn of the

n^^ order, when n is an integer, contains 2n+ i arbitrary con-

stants. Its value can be expressed by aid of the corresponding

zonal harmonic Pn, as we proceed to show.

Since Yn is in this case a rational integer function of

Bin cos ^, sin sin and cos 6^, we may suppose it expressed

in a series of sines and cosines of multiples of 0, whose coef-

ficients are functions of 0, or of ju. If we accordingly assume
that Yn consists of a number of terms each of the form

Ms cos 50 ; then, substituting in equation (43), and observing

that TT"^ = - «' cos s0, we obtain, on equating to zero
d<p

the coefficient of cos «0,

d {, ,. dMs\ s^M,

If now, as before, we write t^ for u'^ - i , andD for -r-, this

becomes
uD [uDMs] - s^Ms-n{n+ i)uM,= o. (50)

Now, let Ms= u^v; then

uDMs = u* Dv + Sfiu^v;

therefore

uB[uDM,) = w* B'v + 2(s + i)juw' Dv + su'v + «V'"'«^-
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-1
Substitute in (50), and divide by u^ ; then

uI>^v^2[9-k-i)fiDv-k- («(«+ i)-n(n+ i))r = o. (51)

It is readily seen that this equation is satisfied by assum-
ing V = D* Pm\ iox substituting this value for v in (51), it

becomes

wi)**»P«+ 2(5+ i)^i)-»P„ + a(« + OD-P^

-«(n+i)Z>'P„ = o;

but by Leibnitz's theorem the first three terms are equivalent

to ZH*^ {uBPfn) ; whence the equation becomes

2)^»(«2)PJ-«(n+i)i)'P„ = o.

But this equation also follows inmiediately from (45) by^ differentiating 5 times with respect to /i.

Accordingly the expression

"-'•'(0 Pn

satisfies equation (49), and hence

i- n / N -r Ti c?'(sin Sdt) , .

satisfies (43). In like manner, as —\j ^
= - «* sm <^,

'^**^'-')^(|J
also satisfies the same equation.

Accordingly, equation (43) is satisfied by the expression

{A, cos s0 + B, sin s<p) (/i* - i)'" ^— j {Pn)y (52)

in which A, and B, are arbitrary constants.
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This expression is called a Tesseral Surface Harmonic^ and
is said to be of the degree n and order s.

If we give all integer values to s from i to n, the com-
plete spherical harmonic F„ can be written in terms of

Tesseral harmonics as follows:

—

s=n - d^P
Yn = AoPn + 2 ,{As COS s0 + Bs sin s<f) (ji^ - lY -r-f, (53)

^=1 dfJL

/ d\^
in which f —

J

(/u^ - i)" may be substituted for Pn if neces-

sary.

This equation contains the proper number zn + i of arbi-

trary constants, and consequently may be regarded as a
general expression for a complete spherical harmonic of in-

teger positive degree. There is no difficulty in showing by
(d X**"*"*—

J
(ju- - i)" differs only by a constant

from

^ 2(2n-i) ^

4.
(n- s)in-s-i)(n-8-2){n-s-3) _,

_^ ^^^
2.4. [zn- i)(2w-3)

Hence that part of Yn depending on the angle S(f> may
be written

(i -MyYi^"''- ^''7/ir-o'^
'""""'

^ ^^•)(^^^°^^^ + J5,sins0).

This agrees with the general expression given by Laplaca
{Mdcanique Celeste, tome 3, chap. 2, p. 46).

337. liaplace's Coefficients.—It is immediately *ieen

that the expression —; —

—

7—77 satisfies the

general equation (41), as also the corresponding equation

d'V d'V d'V^
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Transferring to polar coordinates, the preceding expression

may be written (r* ~ aXr/ + /*)"*, where

a;' = / sin & cos 0', ij = / sin sin 0', s' = / cos ^;

and X = cos cos ^ + sin sin ^ cos (^ - 0').

If P and P' be the points whose coordinates are xijz and
'•'/s', respectively, then

Accordingly, if

(1-2XA + A')-i=i +X,/i + Zo/i'-i- . . . + X„A"+ . . .,

we have

I I Lyr L.y' LJ^
pp> = ;- + -7- +

-7r-+ • • • +-7^+ • • • whenr>r,.

and
I I LxY L^r- L„r^ ,

pp> =
;7
+ 7^ + -7r+--- + -^+--- when r<r.

Hence, since V^[^p-p^] - o, we must have v* (^rTi) ^ °>

and also ^^{Lnf^) = o.

From this we readily see that X„ is a spherical harmonic
of the degree n, and that it satisfies the equation

The functions Zi, X2, . . . X„ are called Laplace's Coef--

Hcients, after Laplace, to whom their introduction into analysis

is due.

The value of Z„ may be deduced from that of P„ in (46)

or (48), by substituting /u/x' + \/i - ju^ -v/i - ft'^ cos ((/> - 0'), in

place of /u, where /u = cos and fi = cos 0'. Hence it is a

function of the n^^ degree in ju,^ i-fx' cos ^, and v^ i - /u^ sin ^ t

as also in /, a/ i - /- cos 0' and v^i -/z'' sin ^'.
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Moreover, since X„ is a spherical harmonic of the n^*

degree, and symmetric in fi and fi', as also m <p and 0', it

must, by (53), be of the form

X,= «oP„P„'+S^^«.cos«(0-0')(iu'-O^(i^"-O'-^-^,

in which the coefficients «o, «i, ...«?«.. . are constants, the

values of which remain to be determined.

It is immediately seen that «o = i ; for if /i' = i , we have
P„' = I, and X„ = P„.

2\jl- 8

It can be shown that o, =—== ; however, as this is best
\n-\-s

established by aid of the Integral Calculus, we leave its de-

monstration to the student. Assuming this result, we have

s=n\n-s * * d'P^d'P./

(54)

For a more complete treatment of Spherical Harmonics,
which involves the application of Multiple Integrals as well

as the solution of Differential Equations, the student is re-

ferred to Thomson and Tait's Treatiie on Natural Philosophy ;

to Ferrar's Spherical Harmonics ; or to Todhunter's Treatise

on Laplace'Sy Lamias, and BesseVs Functions.
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Examples.

1. Being given y ^f{u), and m r= ^ (x), find ^.

An,.f{u)^"{x)+r{u){i^'{x)}K

2. If y = F{t), t =f{u), « = <^ (x), find the value of -^.
ax*

An,. F'{t)f{u) ^" {X) + W{x)Y {/"(u) F'{t) + (/' (u))»-P"(0}^

3. Change the independent variable from x to s in the equation

^dhj ^dy ^ ,
I

«* --^ — inar -r- + « y = o, where x = -.
dx* dx z

d^y 2 (» + I) rfy

4. Transform (i - «') ^-7 ~ * 3^ + *^ V - °> ^eing given a: = sin «.

-4n«. —- + a^y = o.

5. If r be a function of r, where r^ = x^ + y^^ prove that

rf^r d2V_d2V idV
dx^

"*"

rfi/2
~

dr^
"^

r dr

6. If F be a function of r, where r« = x' + y^ + i;«, prove that

dW £r £V_d^ 2dV
d*» ^ dy'i^~d^~ dr* ^ r dr'

7. If « = r sin fl cos ^, y = r sin 9 sin ^, t = r cos tf, prove that — = —

>

(/r <fx

dx
where in finding —

-, B and </> are regarded as constants ; while in finding

—
, y and i are regarded as constants.

ax
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8. If z be a function of two independent variables, x and y, wbich are

connected with two other variables, u and v, by the equations

/i {x, y, «, v) = o, /2 {x, y, u, v)=o;

dz dz dz dz
show how to express -r- and-— in terms of — and-r-.

dx dy du dv

9. Transform the equation

d^y 2X dy y

into another in which d is the independent variable, supposing x = tan 0.

d^yAns.— + y = o.

10. If j: be a function of x and y, and u = px + qy — z, prove that when
p and q are taken as independent variables, we have

du du d^u
= y> d;rz

d^u d^u

dp ^ dq "^ dpi rt~s^* dpdq rt - s^' dq^ rt-8^'

where J?, y, r, s, t, denote the partial differential coefficients of 2, as in Art. 304.

11. If the equation

d»y ^ , d'*-^y . dy

dx** dx'*^ dx

he transformed to depend on d, where x = eO, prove that the coefficients in the

transformed differential equation are all constants.

12. In orthogonal transformations, prove that

dV^ dV^ dV2 _dV^ dV^ dV^

'^^'df^'d^ ~dX}^dY'^'^ dZ^'

13. Given « = |||. ^^ = ^' P''°^® *^^^

m
F{t)<pXt)-<p[t)F{t)

F{t), F{t), F"{t)

<f>{t), <p'{t), <p"{t)
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14. If M be a solution of the differential oquation

rf»r tC^r tPY— + — +— = o.

prove that x— -V y— ^^ ^ -r ^^^ also be a solution of it.

dx di/ dz

[5. Show that the equation

dP) I d^Pd I, ^,dP) I tPP ^^

is satisfied if P is any of the quantities

- - /!=, (I -
fj?) cos 25, (i - ft}) sin 20, /tVi -/i^cos 0, /*Vi-a*' sin^,

or any linear function of them.

16. Prove that the expressions

r-k-z 2 r + z 2
«log 2r, -log ^,

and

r + 2 2ra;a
log +

r-z «2 + y**

where r' = a;2 ^ yz ^ 2^, are solid harmonic functions.
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CHAPTEE XXIII.

JACOBIANS.

338. Jacobians.—Tlie results obtained in Articles 33a
and 331 are particular cases of a class of general theorems

in determinants, which were first developed by Jacobi (Crella'a

Journal, 1841).

Thus, \iu^v,w be functions of x, y, z, the determinant

du du du

dx^ dy dz

dv dv dv

dx* dy^ dz

dw dw dw

dx^ dy^ dz'

(I)

was styled by Jacobi a. Afunctional determinant. Such a
determinant is now usually represented by the notation

d(U, Vy w)

d{x, y, 2)'

and is called the Jacobian of the system u, v, w with respect

to the variables x,y,z.

In the particular case where w, v, iv are the partial diffe-

rential coefficients of the same function of the variables x, y, s,

their Jacobian becomes of the form given in Art. 331, and
is called the Hessian of the primitive function. Thus the

determinant in Art. 331 is called the Hessian of w, after

Hesse, who first introduced such functions into analysis, and
pointed out their importance in the general theory of curves^

and surfaces.
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More generally, if y,, yj, ^^3 ...//» be funotiona of ar„ ar„ x,

J?-, the detftrminant

di/x dyx

dxi
'

dyx

" d X

dy%

d^:

dy% dyt

" dXn

dyn

dx:

dyn

d^r
dyn

" dxn

18 called the Jaoobian of the system of functions y^ yz, ... y«
with respect to the variables a*„ arj, . . . Xn] and is denoted by

d{yiyy2, ...yn)

d(Xi,X2, . . . iPn)
(2)

Again, if y,, ^2, > *- yn be differential coefficients of the

same function the Jaoobian is styled, as above, the Hessian
of the function. A Jacobian is frequently represoDted by
the notation

J{yi, y», . . . Vn),

the variables Xx, Xzy . . , Xn being understood.

If the equations for ^1,^2,... yn be of the following form

:

yi =/ifc),

y% =/2(a?„ a?,)*,

y» =fi{X\j a?a, iTs),

yn =fn{^li iP2, . . . Xn],

2 I
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it is obvious that their Jacobian reduces to its leading term,

viz.,

dxi dXi dxn

Tliis is a case of a more general theorem, which wiU be
given subsequently (Art. 342).

Examples.

1. Find the Jacobian of yi, y2, . • . y«, being given

yi = I - ari, y2 = X\{i - x^), yz = x\ 3:2(1 - Xi) . . .

i/h = xiXz.. . a-„.i( I - Xn). Ans. J=> (- i)'»a;i«-^a:2~-* . ..Xn-i'

2. Find the Jacobian of a:i, x^, . . . Xn with respect to di, 62, . . . 6n, being
given

«i = cos di, X2 = andi cos O2, xz = sin Bi sin Qz cos ^3, • • •

Xn = sin Q\ sin C2 sin 03 • • • sin 9n.\ cos 0n.

^'w- jS?'
?'"'!

-! = (- I)" «i^" «i • si^"-' tf2 . . . sin e„.
a (01, 62, . . . e„)

339. Case of the Functions not being Indepen-
dent.—If the system ?/i, ^2 . . . Pn be connected by a re-

lation, it is easUy seen that their Jacobian is always zero.

For, suppose the equation of connexion represented by

F(yiy ^2, . . . 2/n) = o

;

then, differentiating with respect to the variables Xi, Xz, . . . x,

we get the following system of equations :

—

(Wdyx clFdih dF dyn _
dyi dxi dy2 dxx '

'

' dyn dxx
'

n>
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dyx dxi di/2 dXi '
"

rfy„ dxj
'

dFdy^^ dFd^ dFdy^ _
dyx dxn dy^ dxn

'" dy^dxn' '

, ..... dF dF dF
whence, eliminating -r— , -p-, ... — , we get

dyx dy2 dy„

d[yx,y'i,...yn)
^ ^

..

The converse of this result will be established in Art. 343 ;

and we infer that whenever the Jacobian of a system of

functions vanishes identically, the functions are not indepen-

dent. This is an extension of the result arrived at in Art.

314.

340. Case of Functions of Functions.—If we sup-

pose Wi, W2, ih to be functions of y„ ^2, ^3, where yx, y^, y^ are

given functions of Xx, Xy, x^ ; then we have

dux dux dyx dUx dy^ dux dyz

dxx dyxdxx dy^dxx dy^dxx

dUx dux dyx dux dy-i dux dy^

dxi dyx dXi dy^ dx^ dy^ dx%

dUx dux dyx diix dyo dui dy^

dx3 dyx dxz dy^ dx^ dy^ dx^

Ac.

2 F 2
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Hence, by the ordinary rule for the multiplication of de-

terminants, we get

(5)

dui dui dui

dx^ dXi dx^

duz dih duo

dxx dxi dx-i

duz dth dih

dx,' dx^ dx.

=

dui dui dih

dy' dyi dy^

dih dn. dih

dyv dyi dy^

dih dih duz

dyx diji dyi

'

dyx dyx dyx

dxx dXi dxz

dyi dyi dyi

dxx' dx: dx,

dyz dy^ dy^

dxx dXi dx%

or
d (t/i, ihy ih) ^ d{uxy thy u^) d (3/,, ^2, y^)

d {xx, Xi, x-i) d {yx, Piy yz)
' d (ir,, Xo, x-i)'

It follows as a particular case, that

d[yuy2,yz) d{xx, Xi, x^)

d{xxjX2,Xi) d(y,, 2/2, y.

= I. .6)

These results are readily generalized, and it can be shown
by the method given above, that

d {Ux, Uj, . . . tin) _ d[Ux,Uo, . . . Un) d (yx, ^2, . . . yn)

d (a:,, Xiy . . . Xn) d(yx, y^, . . , yn)
' d (a-,, Xi, . . , rr„)*

(7)

This is a generalization of the elementary theorem
(Art. 19),

du du dy

dx dy dx'

Again,

^ {yiy Vi, ' ' • yn) d{Xx, a?2, . . . a?n)
= I. (S)

d {xxy iTj, . . . x„) d{yx, 2^2, .. . yn

This may be regarded as a generalization of the result

dx r

dy
~"
dy

dx
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n. P

34 like manner,

, inst*

oe connected

then M, r, /r may be a-t^- -^
In this case we have, by ani*.

d(xxy Xiy ...a?,)

dFi dFx du dFi dv dFi dw

dx du dx dv dx dw dx

dFi dF\du dJF\dv dF\dw_^

dy du dy dv dy dw dy
'

dFi dFjdu dF^dv dF\ dw _
dx du dx dv dx dw dx

'

Honce we observe, from the ordinary rule for niultipli-

calion of determinants, that

(9)

This result may be written

d(F,, F,, F,) d(u,v,w)
^

d{Fx,F,,F,)

d(u, V, w) ' d {x, y, z) d(x, y, s,)
'

The preceding can be generalized, and it can be readily

shown by a like demonstration that if yi, yj, y,, . . . y.

w^ dFx dF, du dv dw dFx dFx dFx

du' dv' dw dx dx dx dx' dy' dz

dF,

du'

dF,

dv'

dF,

die
•

du dv die

dy' Ty' d^
= -

dF^

dx'

dF, dF,

dz

dF,

du'

dF,

dv'

dF,

dw

du dv dw

Jz' Tz' ~di

dF,

dx'

dFs

dy'

dF,

dz



436 Jacobians.

Hence, by the ordinary rule for the multiplication ^ ^'^^

terminants, we get

dui dui dui

dxi dx% dxj,

dUi duz dih

e shall'
dx,

dui dux dill

dy' dy^ dy^

du-, dUo du-i

dyv dy^

dji dy
o,

dx,' '

di' \

"yn)= o,

we shall have the louowing relation between the Jacobians

:

d{Fx, F,,.., Fn) d{y,,y,,.

Accordingly,

I/n) (-ly
d{Fr,F,,...Fn)

d(XlyX2, ,.,Xu) d{xi,X2y

d(Fi,F,,..,Fn)

d(yx,yi,'^.yn) ,
dix^.x^, .

. .a-n)

d{x,,x,,.,.x,)-^~^^ d{Fx,F,,,..Fn)
'

d{yx,yi, ' ^ ^yn)

(10)

342. Again, if we suppose that the equations connecting

the variables are transformed, by elimination or otherwise,

t« the following shape

—

^i(a;i, Xi, , , . Xny yi) = o,

0«(ir2, ara, . . . ir„, yi, 3/2) = o,

05(^^3, iP4, . . . a?«, yiy 2^2, ys) = o,

<pn{Xn, yiyy-z, • • • ^n) = O,

then the Jacobian determinant

d{<l>\, 02, i>n)

d(yi,y2, '..ynY

as in Art. 338, reduces to its leading term

dtp I d(f>i d<Pi d^n

dyidyi dyt
' ' ' dy^
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In like manner,

<^(0.,fi,...0n)

rf(a?„a-3, ...a?^)

reduces to

d<f>i d<l>i d(f>^

dxi dXi ' ' ' dxn

Accordingly, in this case, the Jacobian

d(^x d(f>2 d(pn

d{yi,y2y..yn) , .J^-r dx^
'

'

d(x,,x^,,,.x^)^^ ^ d<i>,d<p,

dyi dyz
'

'

'dXn

drpn

' dyn

(")

343. Case irvhere tfacobian becomes Zero.—We
can now prove that if the Jacobian vanishes, the functions

t/if y>> • • • yn are not independent of one another.

For, if J {yif ^2, . . . yn) = o, we must have

d(t>\ d<pi dtpn _
dxi dXi ' ' ' dXn

that is, we have -;^ = o for some value of i between i and n.
dxi

Hence 0,- must not contain Xi ; and accordingly the cor-

responding equation is of the form

0j(ari+i, . . . ar„, ^i, 2/3, .. . yi) = o.

Hence, between this and the remaining equations,

0»+l = 0> 0i+3 = O) • • • 0n = o,

the variables iP,+i, ar,>3, . , , Xn can be eliminated so as to give
a final equation between yi, ^3, . . . yn alone. This establishes

our theorem.
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344. In the particular case where

y2=F2{yi,X2, . . .iTn),

we have
yn= Fn{l/i, !/2, . . . ^n-i, ^n),

d(:yx,y2,.'. Vn) _ dy^ dy^ dyn ,

d{Xi, Xiy , . . Xn) dxi ' dxz ' ' ' dXn

It may be observed that the theory of Jacobians is of

fundamental importance in the transformation of Multiple
Integrals (see Int. Calc, Art. 225).

Examples.

I. Find the Jacobian of i/i, p, . . . y» with respect to r, di, 02, . . . ©n-i,
being given the system of equations

—

yi = r cos 01, y2 = r sin Qi cos 02, ya = * sin 0i sin 02 cos 0s, . . .

yn= >• sin 01 sin 02 . . . sin 0„-i.

If we square and add wo get

yr + </22 + . . .y„2=»-2.

Assuming this instead of the last of the given equations, we readily find

/ = r""^ 8in«-2 01 sin'»-3 02 . . . sin 0«.2.

2. Find the Jacobian of yi, y2, . . • yny being given

yi = iri(i -2:2), y2 = a;ia;2(i -3:3) . . .

yn-i = a;ia;2 . . . Xn-\ (i - Xn),

yn= XiX2 . . . Xn'

Here yi + yz + . . . yn = iri, and we get

d{y\, y2, . . . yn) _ ^ „_, „^—
. = X\** ^ X2^ ^

. . . Xn.l.
a (Xi, X2, . . . Xn)
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345. Ca^e where a Relation connectn the Depen-
dent ¥arlalileN.—If t/iy yj, . . . y,,, which are given func-

tions of the n variables Xif Xt, . . . x^ be connected by an

independent relation,

F{yx, ^2, . . . Vn) = o, (13)

we may, in virtue of this relation, regard one of the variables,

Xn suppose, as a function of the remaining variables, and thus

consider y„ 1/2, -. . Vn-x as functions of Xiy Xz, . . . a*,*.!. In

this case it can be shown that

dF
d(i/iyyiy' . »y«i-i) ^ dpn d{yxy y%. . . t/n)

d(Xi, Xi, . . , Xn.i) dFd(Xi, Xt , . . XnY

dXn

For, if we regard Xn as a function of a?!, we have

^ ( \ _dyx clyidxn ^^ t \ ^ ^yt dy% dXn o

dxi^^~'dxi dx„dxi* dxi^^' dxx dxndxi'

Also, from equation (13),

dF dFdxn dF dF dxn «

OTi dXn dxi dXi dXn dxi

dF dF <IF_

. • 1 i. A dXi x dX2 X (l>'n-\
.Again, let A, = j^, X,= —, . , . X„.,=' —r,

dx„ dXn (f-^n

tnen -7— = - Ai, -7— = - A2, . . . -; = - a„_i.
dxi dXi dxn-i

dyx . dijx d ._dyx dfh
Hence

i; (.0 =g - X. g. ^^ (.0 =^ " A^ ,^. ^^e.

&c.

Accordingly, substituting in the Jacobian

d(Xi,X2y . . .Xn-iV
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it becomes

Jacobians.

^-\ ^'^'

dxx

dy-.

dx^

dyi__X —
(/a?! dXn

dyn-l ^ dyn.^

dxi dXn'

dill ^ (tyi dy, ^ dyy

dx^, ""-'dxn

dyi ^ dyi

dx, ^Ux„' • dyi. , dy^

dx^, ''"-'<&„

dyn-x -. dyn-i

dx, ^' dxj-

. . • •

dyn-x X dyr^x
. . An-i - ,

dXn-x dXn

If tliis determinant be bordered by introducing an addi-

tional column, as in the following determinant, the other

terms of the additional row being cyphers, its value is readily

seen to be

dj/x dyx^ dfh

dxx dxz '
' ' dxn

dyi

dxx'

dyn

or

I

dF
dXn

dxx'

K
dyi

dxx'

dyT.

dxx'

dy2

d^i

dyn-\

dx^'

A2,

dXi

dy^

dXi

dxx'

dF
dx:

dxt
'

dOF

dx^

dy^

dxn

dXn

dyi

dXn

djh

dXn

dyr

dXn

dF
dxr.
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Again, we have

dF^ dFdy, dFdy^

dxx dyx dXi dy^ dxi

dF dFdy^ dFdih.

dxt dyx dXi dyt dx^

dyndx,'

^dFdju
dyn dXi*

Substituting these values in the last row of the preceding^

the theorem is established, since we readily find that the de-

terminant is reducible to

dy. dyx dy.

dx: ~dx,*
<&„

dF
dy% dy. dy-i

dyn dx: dx.: d-Cn

dF
dXn

• •

dyn dy. dy.

dXx' dx:
'"

dx„

(14)

It may be well to guard the student from the supposition

that this latter determinant is zero, as in Arts. 339 and 343.
The distinction is, that in the former cases the equation

^{t/iy Piy ' ' • Vn) = o, connecting the y functions, is deduced
by the elimination of the variables Xi, x-^ . . - Xn from the

equations of connexion ; whereas in the case here considered

it is an additional and independent relation.
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I. Being given

find the value of the Jacobian

Examples.

Examples.

y\ = r sin B\ sin 02, yz = >* sin ^i cos ^2,

yz = r cos Qi sin 03, t/4 = »" cos ^i cos fla,

^(yi, yz, ya, y4)

<^(^, 01, 02, 03,)

-riM«. >•' sin 01 cos 01.

2. Find the Jacobian -—-—
-, being given

a; = r cos cos ^, y = r sin Vi - m'-sin^^, 2 = r8in4)Vi - w^sin^O,

r2(w2 cos2</> ^ „2 cos^fl

vhere m^ + w' = i.

Ans.

3. Being given
ar2 iP3 ^1 ^3

yi =—— ,
y2=-—-. y3 = --

a?! a;2 -^^s

Vi - m2 sin^^ Vi - «^sin20

Xi X2

find the value of the Jacobian of yi, y2, y3.

4. In the Jacobian

Ant. 4.

d{!/l, J/2, . . . yn)

d{Xi, X2,... Xn)

if we make

-^'.
«2 «n

y, = -,...y„ = -,

prove that it becomes

«, Bl, M2, . . . «n

dH' rf«l' dXl'
'"

ixi

I

«n+l

du

dx,^
IIIIIIIII

du

dXn'

This determinant is represented by the notation Jr(w, Mi, . . . Mn).

5. If a homogeneous relation exists between «, mi, . . . ««, prove that

ff(w, «i, . . . Wn) = o.

6. In the same case, if yi, y2, • . • Vn possess a common factor, so that

yi - UiU, &c., prove that

•^(yi, y2, . . . yn) = 2U»J{tli, Mz, . . . W„) - M»-^-^(m, «i, W2, . • . Wn).
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MlSCELLAJ^EOUS ExAMPLXS.

I . If a, 3, 7 be the roota of the cubic

«»+/>*» + yx + r = o,

show that

dp dq dr

da da da

dp dq dr

di* Tfi' d$

dp dq dr

dy* dy dy

{y-0){0-a)ia-y).

2. Being given the three simultaneous equations

^i{*i, ara, ars, Xi) = o, ^(x,, X2y xz, x^) = o, pz^xi, x-i, Xz, Xi) = o,

determine the values of —— , -— , -—
dZ2

d^i

dX3

dl,'

djCi

dxx'

d^u

dxdif

tPu

dydx
3. If jr and y be not independent, prove that the equation

does not hold good, in general.

4. Prove that the points of intersection of a curve of the fourth degree with
its asymptotes lie on a conic ; and in general for a curve of the degree n they
lie on a curve of the degree n — 2.

5. Prove that every curve of the third degree is capable of being projected

into a central curve. (Chasles.)

For if the harmonic polar of a pomt of inflexion be projected to infinity j the

point of inflexion will be projected into a centre of the projected curve {see p. 282).

6. Two ellipses having the same foci are described infinitely near one
another ; how does the interval between them vary ?

(a) How will the interval vary if the ellipses be concentric, similar, and
similarly placed ?

7. Eliminate the arbitrary functions from the equation 2 = <p{x) . 4<(y).

8. Show that in order to eliminate n arbitrary functions from an equation

containing two independent variables, it is, in general, requisite to proceed to

diflferentials of the order 2n - i. How many resulting equations would be ob-

tained in this case ?

9. In the Lemniscate 1^ = a' cos 29, show that the angle between the tan-

gent and radius vector is ~ + 29.
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10. If the determinant of the «"» order

•'**» a, <^, a

a, ^, «. <;

«, a, ar, a

a, a, a, X

dAn
he denoted by An, prove that -r- = wAn-i.

11. Prove that the ellipses

a2y2 4. j2a;2 = „2 j2 ( I) ^
^2^2 gec* ^ + %« 00860* <^ = a*«* (2)

,

are so related that the envelope of (2) for different values of <^ is the evolute of

(i) ; and the point of contact of (2) with its envelope is the centre of curvature

at the point of (i) whose excentric angle is <p.

12. Being given the equations

bz = \fi, by= V(A2-A2)(*2-;t2),

prove that
i dK^ du? \

13. If i—y- ay^ = o, develop y in terms of a by Lagrange's Theorem.

14. Being given a: = r cos 0, y = r sin 0, transform

I +

into a function of r and 9, where 6 is taken as the independent variable.

(r2 +
Ans.

dr-r (dry

-''de^-^'Kd-e)

t

15. Apply the method of infinitesimals to find a point such that the sum of

its distances from three given points shall be a minimum.

Let pi, /)2, P3 denote the three distances, and we have dpi + dpi + dp^ = o :

suppose dp\ = o, then d{p-2, + ps) = o, and it is easily seen that pi bisects tlif

angle between pa and ps, and similarly for the others ; therefore, &c.

16. Eliminate the circular and exponential function from the equation

17. One leg of a right angle passes through a fixed point, whilst its vertex
slides along a given curve ; show that the problem of finding the envelope|of
the other leg of the right angle may be reduced to the investigation of a locus.
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18. If two pairs of conj agates, in a system of lines in involution, be gireo
by the oqiintions

u = ax* + 2bxy + ry' = O, «' = a'x^ + 2b'xy + e'y^ = o,

nhow that the double lines are given by the equation

du dii dudu' ,_ , , « . . ,— — -— =5 o. (Salmon's Contest Art. 342.)
dx dy dy dx ^ ''^ '

X\ X% Xm.\

where xi, xj, . . . ar* are connected by the relation

Xl' + X2» + X3» + . . . + x*» = I,

prove that the Jacobian

djuiy ««a, . . . ««-i) ^ I

20. If the variables y\, y2, • • • yi» are related to xi, xj, ... z», by the
equations

yi = fllXi + <l2^3 + . . . + a^Xn,

y2 = *lXi + *2X2 + . . . + iwC„,

and we have also

y»= /ixi + hxi + . . . +i»x«,

a^i' + X2= + . . . + Zn- = I,

prove that the Jacobian

<^(.vi, ya, . • • yn-i) ^y»^
<^(Xi, X2, . . . X„.i) Xn

21. Prove that the equation

ry- — 28xy + tx^ = px -^ qy -- s

d^z
may be reduced to the form 3^ + s = o by putting x = « cos p, y = m sin v.

dv*

22. Investigate the nature of the singular point which occurs at the origin

of coordinates in the curve

X* — 2oX2y - ftxy- + a'-y^ = o.
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23. Investigate the form of the curve represented by the equation y — c'i^

24. How would you ascertain whether a proposed expression, F, involving
a;, y, and s, is a function of two linear functions of these same variables ?

Ans. The given function must be homogeneous ; and the equations

dV^_ dV _ dV_
dx ^ dy ' dz

'

must be capable of being satisfied by the same values of x, y, z: i. e. the result

of the elimination of x, y, and z between these equations must vanish identi-

cally.

25. If y = <f>{x'^)f prove that

^ = (ix") *(«) {x^) + n(n - i)(2z)'»-2 </>('»-!) (a;2)

+ «("-)(»-')(»- 3)
(,,,.., ^„..„ (,,,^ 4,^

26. If ir + iy = (o + tiS)", where i = V- i, prove that

rfa;2 + dy"^ _ ^ da^ + d$^

x^ + y^
-**

a2 + i8-

'

, .

^
^ ., . ^0 /i-c2sin2d)

7. If tan^tan4.= ;^^=, Drove that- +^^-^^ = 0.

28. If a: = •—
,
prove that

fey

dx
transforms into

d I d\
Prove that — {xu) - ( I + «^ J

^»

29. Hence prove that

I d\l d \ -rf2w

( * -r 1 U' -; I H* = a;2 -—

.

\ dx) \ dx ) dx*

f d\ I du\ ( „ d\ du du „ d:^u

therefore {^x^ ') ["^T^l^

x^ —

;

dx^'

du\ ^dht
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30. Prote that

('^)(4-')K-0"='"^-
By the preceding example we have

but
d I ,rf'M\ ^cPu (Pu

therefore

31. Proye, in general, that

(4)(4-')('^-*)--('^-"+')"='"^-

This can be easily arrived at from the preceding by the method of mathematical
induction; that is, assuming that the theorem holds for any positive integer «,
prove that it holds for the next higher integer (n 4- i), &c.

I d? /l\ -la*

32. Find - + 3^2 ( - I
ill terms of r, when r* = a' cos 20. An*. ^

S3' If « = (a-' + y2 + z2)J, prove that

d^u d*u d*u J*u d*u d*u

^ •" ^ "*
rf^

"• ^d^^ "^ ^ di/^^ "^ * dFd^
^^'

34. If 2 = — -, and ^ = tan-* ( - ) ,
prove that

«* + y^ \«/

d>*z _ 1.2.3... n.co8(w + i)^.co3"*'<ft

rfs^r I . 2 . 3 . . . 2« . co8(2« + l)^ .cos-w-'^

(f^n+ig
, I .2.3 . ..(2«+i)8in(2« + 2)*.coe*»*^<^

2 G
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35. If M be a homogeneous function of the n*^ degree in x, y, z, and «i, wa, wa,

denote its differential coefficients with regard to x, y, 2, respectively, while

wn, tti2, &c., in Like manner denote its second differential coefficients, prove that

Mil, W12, «13, Wl

«21, W22, W23> «2

«31, «32, «33> «3

Ml, «2, W3, O

Wil, «12, «13

«81, «22, «23

W3I, W32, tt33

36. If tt be a homogeneous function of the w*^ degree in x^ y, 2, «?, show
that for all values of the variables which satisfy the equation m = o we have

.

(n-i)'

«11, «12, «13, «1

«21, "22, «23, »*2

«31» «32, tt33, «3

«1, W2, «3, O

37. If « + A be substituted for x in the quantic

n (n

Mil, «12, «13, «u

«21, W22, M23> W24

«31, «82, tt33, «34

W4I, «42, «43, «44

aoa:" + wai««-^ +
.2

a2««"2 + &c. + fl„,

and if a'o, o'l, .... aV ... . denote the corresponding coefficients in the new
quantic, prove that

da'r

It is easily seen that in this case we have

r{r-i)
lf=ar + ror-iX +

1.2
ar.2\^+&c. . . . + aoA*"; .-. &c.

38. If <^ be any function of the differences of the roots of the quantic in the

preceding example, prove that

flo 3- + 2fli -— + 3^2 :5— + . . . + nan-i ^ <p = o.

This result follows immediately, since any function of the differences of the

roota remains imaltered when x + \ is substituted for x, and accordingly

dip

d\
= o in this case.

39. Being given

u = xp + \'i - X- - tf + x'^i/~, r = a; Vi - y2 + y Vi - «%
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prove that

du dv dv du

dx dy dx dy

and explain the meaning of the result,

40. Find the minimum value of

OILA sin 5 sinC , ^^^„.+ . ^ .—7 + -;

—

. . „ , where w4 + 5 + (7« i8o'.
sinJSsinC sin C sin ^ sin^sin^

41. Prove that

, (xl) /(«)=« (a ;^)/(«),

M'here <p{x) is a rational function of x.

42. Show that the reciprocal polar to the evolute of the ellipse

a» + ft» ''

with respect to the circle described on the line joining the foci as diameter, has
for its equation

43. If the second term be removed from the quantic

(ao, ax, 02, .,, an) (a;, y)»

by the substitution of « y instead of a;, and if the new quantic be denoted
ao

by {Aoy o, Azy A3, . . . An) {x, y) ; show that the successive coeflScients

A^, A3 ... An are obtained by the substitution of ai for x and - <io for y in

the series of quantics

{no, aiy 02) {Xj y), (ao, fli, «a, 03) («, y), • . . K «i, . . . a,) (*, y).

44. Distinguish the maxima and minima values of

I 4- 2x tan-^ X

i+x»

_. a'x^ + 2b'x + e' . ^

45. If y = —:; ;
, prove that^^ ^ ax^ -\-2bx-\-c '
^

1 dy JM - b^) y^ + jae' + a'e - 2bb') y -f a'c' - b"^

2 rf*

*
(o^') T« - (m') X + {be')

"

202
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= o.

46. lilX + mT+nZ, I'X+m'Y+n'Z, l"X+ m"Y+n"Zy be substituted

for z, y^ z, in the quadratic expression az^ + h\p- + cz^ + idyz + zezx + 2fxy ;

and if a', h\ c\ d'y e\f be the respective coefficients in the new expression ;

prove that

a\ /, e', a, fy e

fy h\ d', = o, whenever /, b, d

e\ d^y c\ Cy d, e

47. If the transformation be orthogonal, i. e. if

a;2 + y2 + z2 = Z2 + T^ + Z\

prove that the preceding determinants are equal to one another.

48. Prove that the maximum and minimum values of the expression

aae* + ^bz^ — 6cz'^ + ^dz + e

are the roots of the cubic

fl3z3 - 3 (fl2/ - 3^2) 22 + 3 (aP - 18^/) Z - A = O,

where H=ac-V^y I=ae-/[bd-\- 3^2,

/ =

a, by c

by Cy d

Cy dy e

, and A = /3 _ 27/2.

By Art. 138 it is evident that the equation in z is obtained by substituting

e - z instead of e in the discriminant of the biquadratic ; accordingly we have
for the resulting equation

[I - azY = 2T {J - zHYy

since the discriminant of the biquadratic is

73 _ 27/2 = o.

In general, the equation in z whose roots are the n — i maximum and mini-
mum values of a given function of n dimensions in z can be got from the dis-

criminant of the function, by substituting in it, instead of the absolute term,

the absolute term minus z.

It is evident that the discriminant of the function in a; is, in all cases, the
absolute term in the equation in z.

49. If A be the product of the squares of the differences of the roots of

• s^ — pz^ + qz - r = Of



Miscellaneous Examples, 453

find an expression in terms of the roots for - ^ by solving from three equatkat

of the form

dA dAdp dAdq dAdr

da dp da dq da dr da*

An*. 2 09 + 7 -2a) (7+ a- 2/8) (0+3-27).

50. If X + rV^ be a function of « + y \CT, prove that2 and YMiMj
the equations

d»X d^X , d^T d*r

rfia+rf^
= °>»^d— +— =0.

51. If the three sides of a triangle are <i, a + a, a + jS, where a and $ are

infinitesimals, find the three angles, expressed in circular measure.

X o + 3 w 2a- $ w 20 -a
Ant. -. - + — , - +

3 a^i 3 ay/l 3 a^/Z

52. If y = X + cur', where a is an infinitesimal, find the order of the error in

taking x = y - ay^.

53. The sides a, b, c, of a right-angled triangle become a+o,* + /B, c+7,
where a, /3, 7 are infinitesimals ; find the change in the right angle.

ey - aa - b0
Am, -i

1
.

54. If a curve be given by the equations

2X - y/F+Tt + v/<^ - 2<,

2y = v^<» + 2t -^t^- 2<,

find the radius of curvature in terms of t.

55. In the curve whose equation is y = r**, determine all the cases where
the tangent is parallel to the axis of x.

If d be the greatest angle which any of its tangents makes with the axis of x,

prove that tanO =J-.

56. In a curve traced on a sphere, prove the following formula for the

radius of curvature at any point

:

sin rdr
tanp = —.

COB pdp

57. Apply this form to show that in a spherical ellipse sin p sin p' = const.,

where p and p' are the perpendiculars from the foci on any great circle touching
the ellipse.
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58. Prove the following relation between (p, p'), the radii of curvature at

corresponding points of two reciprocal polar curves :

'- _^
''''

~cos3,|/»

where ^ is the angle between the radius vector and normal.

59. If AB, £C, CD, ... be the sides of an equilateral polygon inscribed in

any curve, and if AI) be produced to meet BO in F; prove that, when the sides

of the polygon are diminished indefinitely, BF = S—,, where p and p' are the
P

radii of curvature at B and at the corresponding point of the evolute.

and

60. If U' = ^{'(I-^){I + y + y-)-fV(i-y)(i ^x^x^)^

X •-y

2^)
dUdV dVdU
dx dy dx dy'

r= and s r= X +
I

(z2-
dz

= 0.

find the value of

61. If

prove that

62. Determine h and h so that the curve

(a:* + y') (a; cos o + y sin a — a) = F (a; cos /3 + y sin jS - 4)

may have a cusp ; a, )8, and a being given, and the coordinates being rectan-

gular.

Prove that in this case the cuspidal tangent makes equal angles with the

asymptote and with the line drawn from the cusp to the origin.

63. Find the coordinates of the two real finite points of inflexion on the

curve y- = (a; — 2)2 (a; - 5), and show that they subtend a right angle at the

double point.

64. If X, y, z, be given in terms of three new variables, m, v, w, by the fol«

lowing equations : x = Fu, y = {F— b)v, z = {F - c) w, where
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it is required to prove that <ir* + rfy* + rfa» « Z'rfu* + K*d9* + IPJte^, and^to
detormino the actual values of Z, M, N.

65. If X + y = X, y «s X¥f prove that

<fM d^u du rf'M rf'M </m

* di^'^^ditd^'^ dx" dX}' dXTr'^dl'

xdy — yrfy
6t. Being given x = v^ - 31*^', y = jw'i; - r*, find what —^—=~ becom(«

in terras of «, v, dii, dv. ^* + V^V

. udv -vdu
Ann. —- —

.

udu •{vdw

$
irve bo r e a sec* -, find an «

its radius of curvature at any point.

$
67. If the polar equation of a curve be r s a aec* -, find an expreesum for

dx
68. Show that the differential — — is transformed into

idtf

Ans. A = 7* 30'.

-v/(i + y« tanUj (l + y*cot« A)*

by assuming x = * >rr—=-, and find the value of A.

69. If y* + ary = I, prove that

70. The pair of curves represented by the equation

;•'- 2rF{») -\- <P =

may be regarded as the envelope of a series of circles whose centres lie on a

certain curve, and which cut orthogonally the circle whose radius is r, and
whose centre is the origin (Mannheim, Journal de Math., 1862).

71. A chord FQ cuts off a constant area from a given oval curve ; show that

the radius of curvature of its envelope will be ^PQ (cot d + cot 0), 6 and ^ being

the angles at which FQ cuts the curve.

72. In the polar equations of two curves,

F{r,a,)=o, /(r, •)=o,

if i^*** be substituted for r, and «n for w, prove that the curves represented by
the transformed equations intersect at the same angle as the original curves.

(Mr. W. Roberts, LiouviU/$ Journal, Tome 13, p. 209.)
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This result follows immediately from the property that —^ is unaltered by

the transformation in question.

73. A system of concentric and similarly situated equilateral hyperbolas is

cut by another such system having the same centre, under a constant angfe,

which is double that under which the axes of the two systems intersect.

Ibid., p. 210.

74. In a triangle formed by three arcs of equilateral hyperbolas, having the
same centre (or by parabolas having the same focus), the sum of the angles is

equal to two right angles. Ibid., p. 210.

75. Being given two hyperbolic tangents to a conic, the arc of any third

hyperbolic tangent, which is intercepted by the two first, subtends a constant

angle at the focus. Ibid., p. 212.

An equilateral hyperbola which touches a conic, and is concentric with it, is

called a hyperbolic tangent to the conic.

76. A system of confocal cassinoids is cut orthogonally by a system of equi-

lateral hyperbolas passing through the foci and concentric with the cassinoids.

Ibid., p. 214.

The student will find a number of other remarkable theorems, deduced by
the same general method, in Mr. Roberts' Memoir. This method is an exten-

sion of the method of inversion.

77. If at each point at a curve a right line be drawn making a constant

angle with the radius vector drawn to a fixed point, prove that the envelope of

the line so drawn is a curve which is similar to the negative pedal of the given

curve, taken with respect to the fixed point as pole.

78. If 2 tr a aa;2 4 2bxy + cy\ 2V = a'x^ + 2 b'xy + c'y',

and

ax^-f 2bxy + cy\

dU dU
dx' Ty

dV dV
dx' dy

= AU^+2BUV+ CV\ find A, B, C,

79. Prove that the values of the diameters of curvatiire of the curve y"^ =f(x)
where it meets the axis of a; are f(a), f (/3), .... if o, )8, ... be the roots of

fix) = o.

Hence find the radii of curvature of y^ = {x^ - m"^) {x - a) at such points.

80. A constant length FQ is measured along the tangent at any point P on
a curve

;
give, by aid of Art. 290, a geometrical construction for the centre of

curvature of the locus of the point Q.

81. In same case, if FQ' be measured equal to FQ, in the opposite direction

along the tangent, prove that the point F, and the centres of curvature of the

loci of Q and Q', lie in directum.

82. A framework is formed by four rods jointed together at their extremities

;

prove that the distance between the middle points of either pair of opposite sides
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is a maximum or a minimum wlien the other roda are parallel ; being a maximom
when the rods are uncrossed, and a minimum when tney croes.

Zi. At each point of a closed curve are formed the rectangular hjperbola,
and the parabola, of closest contact ; show that the arc of the cunre described by
the centre of the hyperbola will exceed the arc of the oval bj twice the are of
the curve described by the focus of the parabola

;
provided that no parabola baa

live-pointic contact with the curve. {Camh. Math. Trip. 1875.)

84. A curve rolls on a straight line : determine the nature of the motion oi
•one of its involutes. (Prof. Crofton.)

85. Prove the following properties of the three-cusped hypocycloid :

—

(i). The segment intercepted by any two of the three branches on any
liingent to the third is of constant length. (2). The locus of the middle point
of the segment is a circle, {x). The tangents to these branches at its extremities

intersect at right angles on the inscribed circle. (4). The normals corresponding
to the three tangents intersect in a common point, which lies on the circum-
scribed circle.

Definition.—The right line joining the feet of the perpendiculars drawn to

the sides of a triangle, from any point on its circumscribed circle, is called the
pedal line of the triangle relative to the point.

86. Prove that the envelope of the pedal line of a triangle is a three-cusped

hj-pocycloid, having its centre at the centre of the nine-point circle of the

triangle. (Steiner, Ueber eine betondere curve dritter klaeee^ und vierten grades,

€relle, 1857.)

This is called Steiner*a Envelope^ and the theorem can be demonstrated,

geometrically, as follows :

—

Let Pbe any point on the circumscribed circle of a triangle ABC^of which D
is the intersection of the perpendiculars ; then it can be shown without difficulty

that the pedal line corresponding to P passes through the middle point of DF.
Let Q denote this middle point, then Q lies on the nine-point circle of the

tiiangle ABC. If be the centre of the nine-point circle, it is easily seen that,

as Q moves round the circle, the angular motion of the pedal line is half that of

€Qy and takes place in the opposite direction. Let B be the other point in

which the pedal line cuts the nine-point circle, and, by drawing a consecutive

position of the moving line, it can be seen immediately that the corresponding

point T on the envelope is obtained by taking QT= QB. Hence it can be
readily shown that the locus of T is a three-cusped hypocycloid.

This can also be easDy proved otherwise by the method of Art. 295 (a).

87. The envelope of the tangent at the vertex of a parabola which touches

tliree given lines is a three-cusped hypocycloid.

88. The envelope of the parabola is the same hypocycloid.

For fuller information on Steiner's envelope, and the general properties of

the three-cusped hypocycloid, the student is referred, amongst other memoirs, to

< remona, Crelle, 1865. Town send, £due. Timet. Beprint. 1866. Ferrers,

Q'lar. Jour, of Math., 1866. Serret, Nouv. Ann.\ 1870. Painvin, ibid., 1870.

C'uhen, ibid., 1875.
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On the Failuee of Taylor's Theorem.

As no mention has been made in Chapter III. of the cases when Taylor's
Series becomes inapplicable, or what is usually called the failure of Taylor's
Theorem, the following extract from M. Navier's Lemons d' Analyse is intro-

duced for the purpose of elucidating this case :

—

On the Case when^ for certain particular Values of the
Variable, Taylor's Series does not g^ive the DcTeloiiment of
the JKunction.—The existence of Taylor's Series supposes that the function

f{x) and its differential coefficients /' (a:), /"(ar), &c., do not become infinite for

the value of x from which the increment h is counted. If the contrary takes
place, the series will be inapplicable.

Suppose, for example, that/(.r) is of the form —^ m being any positive

number, and F{x) a function of x which does not become either zero or infinite

when X = a.

If, conformably to our rules, 7 — be developed in a series of posi-

tive powers of A, all the terms would become infinite when we make x=-a. At

the same time the function has then a determinate value, viz. : —r . But

as the development of this value according to powers of h must necessarily con-
tain negative powers of A, it cannot be given by Taylor's Series.

Taylor's Series naturally gives indeterminate results when, the proposed

function f{x) containing radicals, the pai-ticular value attributed to x causes

these radicals to disappear in the function and in its differential coefficients.

In order to iinderstand the reason, we remark that a radical of the form

{x — a)9, p and q denoting whole numbers, which forms part of a function /(a.-),

gives to this function q different values, real or imaginary. As this same radical

is reproduced in the differential coefficients of the function, these coefficients also

present a number, q, of values. But, if the particular value a be attributed to a:,

the radical will disappear from all the terms of the series, while it remains

£
always in the function, where it becomes A«. Therefore the series no longer re-

presents the function, because the latter has many values, while the series can

have but one. The analysis solves this contradiction by giving infinite values

to the terms of the series, which consequently does not any longer represent a
determined result.

The development oif{x) ought, in the case with which we are occupied, to

p

contain terms of the form A*. "We should obtain the development by making^

* = a -f A in the proposed function.
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Fractional powers of A would appear in the latter derclopment : for czampli*^
suppose

this gives

f{x) = 2ax - a?* + a^/x* - «»

;

/(»)-a(a-x) +

On making x = a, we have/(x) e= a», and all the differential cociBcients
become infinite. This circumstance indicates that the development of f{x + A)
ought to contain fractional powers of A when x = a : in fact the function be-
comes then

/(a + h) = a'-h-^ + aVaaA + A',

of which the development according to powers of A would contain A*, Al, A*, &c.
It should be remarked that a radical contained in the function /(x) may

disappear in two different ways when a particular value is attributed to thfr

variable x; that is, i'*, when the quantity contained under the radical vanii*

2°, when a factor with which the radical may be affected vanishes.

In the former case the development according to Taylor's Theorem
agree with the function /{x + A) for the particular value of x in question, for

the reason already indicated.

But it is not the same in the latter case, because the factor with which the
radical is affected, and which becomes zero in the function, may cease to affect

the radical in the differential coeflBcients of higher orders ; in fact it may not
disappear at all, and the series may in consequence present the necessary number
of values.

For example, let the proposed function be

m being a positive integer.

Here we have

/(x) = (x-a)-Vi^,

m{x- a)"»

Vx - 6 4(x - A)«

Each differentiation causes one of the factors of (x - a)"* to disappear in the
first term. After m differentiations these factors would entirely disappear ; and
consequently the supposition x = a, in causing the first >n -derived functioni to-

vanish, will leave the radical Vx - i to remain in all the others.



460 Conditions of Maxima and Minima in General.

•On the Conditions foe a Maximttm oe Minimum of a Function
OF ANT Number of Variables (Art. 163).

The conditions for a maximum or a minimiun in the case of two or of tliree

variables have been given in Chapter X.
It can be readily seen that the mode of investigation, and the form of the

conditions there given, admit of extension to the case of any number of inde-

pendent variables.

We shall commence with the case of four independent variables. Proceed-

ing as in Art. 162, it is obvious that the problem reduces to the consideration of

a quadratic expression in four variables which shall preserve the same sign for

all real values of the variable.

Let the quadratic be written in the form

an x^ + 022 Xi^ + «33 x^^ + an xC' + 2^12 Xix^ + 2^13 x\ xz + 2au x\ x^ + 2^23 x% XZf

+ 2021X2 Xi + la^iXsXi, (
I

)

in which an, an, ^22, &c., represent the respective second differential coefficients

of the fimction, as in Art. 162.

"We shall first investigate the conditions that this expression shall be always
a positive quantity ; in this case an evidently is necessarily positive : again,

miiltiplying by «n, the expression may be written in the following form :

—

ianxi + ai2X2 + ai3.r3 -I- aux^).* + (an 022 - ai2^) x-i? + (anosa - o,\-^) xi^

-f [a\\a\i - au*) X4^ + 2 {«na28 — ai2aiz)X2Xz + 2 («na24 - anau) X2Xi,

¥2{ana3i-ai3au)x2Xi. (2)

Also, in order that the part of this expression after the first term shall be
always positive, we must have, by the Article referred to, the following condi-

tions:

—

ana22-ai2^>o,

(ana22 - aiz^) (anoss - aia^) - (an«23 - ana^)^ > o,

aiia22 — au', an and — an ^13, auazi — anau

and ana23 — ai2ai3, anass — 013^, ana34 — oisau > o.

aiifl'24 — ai2ai4, an a34 — aiaOii, anaa — aii^

To express this determinant in a simpler form, we write it as follows :

—

an, ai2, ai3, flu

o, anfl22-ai2S fluoas - aiaflis aiifl24— fli2flu

(3)

(4)

(5)

an anfl23 — ai2ai3, flnfl33 — fli3 anfl34— ai3fli4

anfl24 -fli2fli4j ana34 — fl23fli4, fliifl44— au'

(6)
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Next, to form a new determinant, multiply the first row by an, ai9,«i«, 1

cessively, and add the resulting terms to the 2nd, 3rd, and 4th rows, res]^

tivoly ; then, since each term in the rows after the first contains an as a factor,
the determinant ia evidently equivalent to

a\V

«lh «13» AlSt OU

«n, ont oas, «a4

«i3. «a3, ftss, as4

«U, «M, flS4, «U

(7>

In like manner the relation in (4) is at once reducible to the form

«ii

On, «12, 013

013, 023, 033

>o.

Hence we conclude that whenever the following conditions are fulfilled^

viz.

:

On, fli2

Oii>o,
I

I>o,
O12, <222

On, 012, 013

Oia, 083, «33 >o,

Ol3, O33, O33

On, ffis, Oi3, ai4

O12, O22, fl23, aM

«13, 023, O33, fl3i

014, 021, O34, an

>o. (8)

the quadratic expression (i) is pontive for all real values of x^ xt, x^^ xi.

Accordingly, the conditions are the same as in the case (Art. 162) of three-

variables ari, X2, xz ', with the addition that the determinant (7) shall be also

positive.

In like manner it can be readily seen that if the second and fourth of the
preceding determinants be positive, and the two others negative, the quadratic,

expression (i) is negative for all real values of the variables.

The last determinant in (8) is caUed the discriminant of the quadratic fonc-
tion, and the preceding determinant is derived from it by omitting the extreme
row and column, and the other is derived in like manner.

When the discriminant vanishes, it can be seen without difficulty that the

expression (i) is reducible to the sum of three squares.

It can be easily proved by induction that the preceding principle holds in

general, and that in the case of n variables the conditions can be deduced from
Qie discriminant in the manner indicated above.

According as the number of rows in a determinant is even or odd, the

determinant is said to be one of an even or of an odd order.
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If the notation already adopted be generalized, the coefficient of Xr"^ is de-

noted by ttrr, and that of XrXm by 2arm- In this case the discriminant of the

quadratic function in n variables is

«11, «12, «13,

«12, «22, «23,

«13, «23, ^^33,

flln, <72n> «3n, «nn

(9)

and the conditions that the quadratic expression shall be always positive are,

that the determinant (9) and the series of determinants derived in succession by
erasing the outside row and column shall be all positive.

To establish this result, we multiply the quadratic function by a\\, audit is

evident that it may be written in the form

(an «! + «12 «2+ . . . flln Xnf + {a\\ 022 - «12') X2^-\- ' - • + («U ««n - a^?) X,?

+ 2 (ffn 023 - «12 au)x2 Xz + &c. + (2«n am - »ir au^Xr ar„ + . . .

In order that this should be always positive, it is necessary that the part

after the first term should be always positive. This is a quadratic function of
the n - I variables X2, ara, . . . Xn. Accordingly, assuming that the conditions in

•question hold for it, its discriminant must be positive, as also the series of deter-

minants derived from it. But the discriminant is

«liao2 — C12-, flU«23 — «12fll3,

flll 023-012013, «llfl33-ai3S

011024 — fll20U, «ll034-Oi3flri4,

Oll02n— O12O1,,

Oll03n — Oi3fl!ln

On04n — Ouain

Oll02n— O12O1H, Oiiflsn— aiaain, «llOnn — Oln

(10)

Writing this as in (6), and proceeding as before, it is easily seen that the

-determinant becomes

flu, 012, 013, . . . «in

012, O22, «23, . . . 02n

Ol3, 023, O33, • . . 03»«ir

Oln, 02n, O3,,, . . . ^nn

i. e. the discriminant of the function multiplied by cn"-'.

(11)
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In this ca«e, if Xi, Xj, X3, . . . Xm denote the new Une«r ftmetionf,
havo

V = xi» + *a« + . . . + X,' - Xi* + Xt* + fto. + XJ ;

and also, denoting the coefficients of the squaree in the tnuiffonMd fipvM
by a\, flj, . . . On,

^=«nxi' + anxt* + . . . + a^> x»« + . . . + aaisxijr^ + 3«ir«i«r + .

= ai Zi» + a, JCa« + . . . a, jr„«.

Hence, equating the discriminants of U - \ T for the two sytteme, we

«ii - A, aia, ... flu

«ia, «33 - A, ... a2n

«18, aw, ... azn = (ai - A) (fli - A) . . . (a« - A). (

«lr ''a.

I

Accordingly, the coeflScients oi, aj, . . . a„ are the roots of the determint

at the left-hand side of equation (14).

Moreover, in order that the function U should be always positive or alwj

negative for all real values of the variables xi, X2, . . . x^, the coefficie

ai , 02, ... o„, must be all positive in the former case, and all negative in 1

latter ; and consequently, in either case, the roots of the determinants in
(

must all have the same sign.

The application of this result to the determination of the conditions

maxima and minima is easily seen ; however, as the conditions thus arrived

are complicated in comparison with those given in (12), it is not considej

necessary to enter into their discussion here.
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Hence we infer, that if the principle in question hold for n - i variahles it

holds for n. But it has heen shown to hold in the cases of 3 and 4 variables

;

consequently it holds for any number.
We conclude finally that the quadratic expression in n variables is always

positive, whenever the series of determinants

«ii.

«11, «12

ai2, <722

an, an, an

«12, «22, 023 , • . .

«13, fl23, a33

«!!, ai2,

^^12, «22,

a\n

«2h

au «2n,

(12)

are all positive.

Again, if the determinants of an even order be all positive, and those of an
odd order, commencing with an, be all negative, the quadratic expression is

negative for all real values of the variables.

Hence we infer that the number of independent conditions for a maximum
or a minimum in the case of n variables is n — i, as stated in Art. 163.

It is scarcely necessary to state that similar results hold if we interchange
any two of the suffix numbers ; i.e. if any of the coefficients, fl'22, 033, • . «,»«,

be taken instead of ou as the leading term in the series of determinants.

If the determinants in (12) be denoted by Ai, A2, A3, . . . A,,, it can be proved
without difficulty that, whenever none of these determinants vanishes, the qua-
dratic expression under consideration may be written in the form

Ai A2 A„.i
(13)-

Hence, in general, when the quadratic is transformed into a sum of squares,

the number of positive squares in the sum depends on the number of continua-
tions of signs in the series of determinants in {12).

It is easy to see independently that the series of conditions in (12) are neces-
sary in order that the quadratic function under consideration should be always
positive ; the preceding investigation proves, however, that they are not only
necessary, but that they are sufficient.

Again, since these results hold if any two or more of the suffix numbers be
interchanged, we get the following theorem in the theory of numbers : that if

the series of determinants given in (12) be all positive, then every determinant
obtained from them by an interchange of the suffix numbers is also necessarily

positive.

Also, since, when a quadratic expression is reduced to a sum of squares, the
number of positive and negative squares in the sum is fixed (Salmon's Kigher
Algebra, Art. 162), we infer that the number of variations of sign in any series

of determinants obtained from (12) by altering the suffix numbers is the same
as the number of variations of sign in the series (12).

As already stated, a quadratic expression can be transformed in an infinite

number of ways by linear transformations into the sum of a number of squares
multiplied by constant coefficients ; there is, however, one mode that is unique,
viz., what is styled the orthogonal transformation.
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AciiODE, 259.
Approximations, 42.

further trigonometrical applica-

tions of, 130-8.

Arbof^ast's method of derivations, 88.

Arc of plane curve, differential ex-

pressions for, 220, 223.

Archimedes, spiral of, 301, 303.
Asymptotes, detinitiou of, 242, 249.

method of finding, 242, 245.
number of, 243.
parall»l, 247.
of cubic, 249, 325.
in polar coordinates, 250.

circular, 252.

Bemouilli's numbers, 93.
series, 70.

Bertrand, on limits of Taylor's series,

11'

Bobillier's theorem, 368, 374.
Boole, on transformation of coordi-

nates, 412.

Brigg's logarithmic system, 26.

Bumside, on covariants, 412.

Cardioid, 297, 372.
Cartesian oval, or Cartesian, 233, 375.

third focus, 376.

tangent to, 379.
confocals intersect orthogonally,

381.

Casey, on new form of tangential

equation, 339.
on cycloid, 373.
on Cartesians, 382.

Cassini, oval of, 233, 333.
Catenary, 288, 321.

Cayley, 259, 266.

Centre of curve, 237.

Centrode, 363.
Change of bingle independent yariable,

399.

Change of two ind«pendent variables,

403, 410.
Chasles, on envelope of a carried right

line, 356.
construction for centre of instan -

taneous rotation, 359.
generalization of method of draw-

ing normals to a roulette, 360.
on epicycloids, 373.
on Cartesian oval, 376,
on cubics, 418.

Circle of inflexions in motion ofa plane
area, 354, 358, 367, 374.

Complete Solid Harmonics, 418.
Conchoid of Nicomedcs, 332, 361.

centre of curvature of, 370.
Concomitant fumtions, 411.
Condition that Pdx + Qiy is a total

differential, 146.

Conjugate points, 259.
Contact, different orders of, 304.
Convexity and concavity, 278.
Crofton, on Cartesian oval, 378, 379,

380.
Crunode, 259.
Cubics, 262, 281, 323, 334.
Curvature, radius of, 286, 287, 295,

297, 301.
chord of, 296.

at a double point, 310.
at a cusp, 311, 313.
measure of, on a surface, 209.

Cusps, 259, 266, 315.
curvature at, 3 1 1

.

Cycloid, 335, 356.
equation of, 335, 336.
radius of curvature, and evolate,

337.
length of arc, 338.

Descartes, on normal to a roulette, 336.
ovals of, 375.

Differential coefficients, definition, 5.
successive, 34.

2 H
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Differentiation, of a product, 13, 14.

a quotient, 15.

a power, 16, 17.

a function of a function, 17.
an inverse function, 18.

trigonometrical functions, 19, 20.

circular functions, 21, 22.

logarithm, 25.

exponential functions, 26.

functions of two variables, 115.
three or more variables, 117

an implicit function, 120.

partial, 113, 406.
of a function of two variables,

of three or more variables,

"5-
.

applications in plane trigono-

metr}', 130.

in spherical trigonome-
try, 133-

successive, 144.
of 0(x + at, y + ^t) with respect

to t, 148.

Discriminant of a ternary quadratic
expression, 129, 194, 196.

of any quadric, 462.
Doublu points, 258, 261.

Elimination, of constants, 384.
of transcendental functions, 386.
of arbitrary functions, 387, 396.

Envelope, 270.

of La? + zMa. + iV= O, 272.
of a system of confocal conies,

Ex. 8, p. 276.
of a earned curve, 355.

centre of curvature of, 357.
Epicyclics, 363.

are epi- or hypotrochoids, 366.
Epicycloids and hypocycloids, 339,

356, 457-
radius of curvature of, 342.
cusps in, 341.
double generation of, 343.
evolute of, 344.
length of arc, 345.
pedal, 346, 372.
regarded as envelope, 347.

Epitrochoids and hypotrochoids, 347.
ellipse as a case of, 348, 363.
centre of curvature of, 351.
double generation of, 367.

Equation of tangent to a plane curve,

212, 218.

normal, 215.

Errors in trigonometrical observation,

135.
Euler, formulae for sin x and cosar, 69.

theorem on homogeneous func-

tions, 123, 127, 148, 162.

on double generation of epi- and
hypocycloids, 344.

Evolute, 297.
of parabola, 298.

of elUpse, 299, 308 ; as an enve-

lope, 297.
of equiangular spiral, 300.

Expansion of a function by Taylor's

series, 61.

of 4)(« + A, y + A;), 156.

of <^(a; + A, y + A;, z + 0, 159-

Family of curves, 270.

Ferrers, on Bobillier's theorem, 369.

on Steiner's envelope, 457.
Folium of Descartes, 333.
Functions, elementary forms of, 2.

continuous, 3.

derived, 3.

successive, 34.
examples of, 46.

partial derived, 1 13.

elliptic, illustrations of, 136, 138.

Graves, on a new form of tangential

equation, 339.

Harmonic polar of point of inflexion

on a cubic, 281.

Huygens, approximation to length of

circular arc, 66.

Hyperbolic branches of a curve, 246.

Hypocycloid, see epicycloid.

Hypotrochoid, see epiti'ocboid.

Indeterminate forms, 96.

treated algebraically, 96-9.

treated by the calculus, 99, et seq.

Infinitesimals, orders of, 36.

geometrical illustration, 57.

Inflexion, points of, 279, 281.

in polar coordinates, 303.

Intrinsic equation of a curve, 304.

of a cycloid, 338.
of an epicycloid, 350.
of the involute of a circle, 301.
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InverM enrrei, 225.
tan^nt to, 225.

ndms of ciirvntuiv, 295.
conjugate CartMiana, a«, 378.

Involute, 297.
of circle. 300, 358, 374.
of cycloid, 356.
of epicycloid, 357.

Jacobians, 432-44.

Lagrange, on d»'rived functions, 4, note.

on limits of Taylor's eeric», 76.

on addition of elliptic integrals,

J36. . . .

tbeorem on expansion in scnes, 15 1,

on Euler's theorem, 163.

condition for maxima and minima,
191, 197. 199. 202.

La Hire, circle of inflexions, 354.
on cycloid, 373.

Landcn's tnmsformation in elliptic

functions, 133.
Laplace's theorem on expansion in

series, 154.

coefficients, 426,
Ij<^endre, on elliptic functions, 137.

on rectification of curves, 233.
coefficients of, 423.

Leibnitz, on the fundamental principle

of the calculus, 40.

theorem on the «'* derived func-
tion of a product, 51.

on timgents to curves in vectorial

coordinates, 234.
Lemniscate, 259, 277, 296, 329, 333.
Liraa<jon, is inverse to a conic, 227,

,. .
331.334.349.361,372.

Limiting ratios, algebraic illustration

trigonometrical illustration, 7.

Limits, fundamental principles as to,

II.

Maclaurin, series, 65, 81.

on harmonic polar for a cubic, 282.

Mannhinm, construction for axes of an
ellipse, 374.

Maxima or minima, 164.

geometrical examples, 164, 183.

algebraic examples, 166.

flx' + zhxy + fv' ,^ ,__
^^ af^2b'.y^cY' *^' '77.

condition for, 169, 174.
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Of aproblem on ania of
right eone, 181.

for implicit functiona, ity
J[uadrilateral of sivm tiiMt, 186.

or two TariabMt, 191 ; La-
grange*! conditioD, 191. 107.

for functions of tbna irviablc«,

198.

of n variables, 199, 460.
application to surfaces, 20a
undetMinined multiplint ^>pUed

to, 204.
Multiple points on earres, 256, 265.

367.
Multipliers, method of tmdetMinined,

204.

Kapier, logarithmic system, 25.

Navier, geometrical illustration of

fundamental principles of the
calculus, 8.

on Taylor's theorem, 458.

Newton's definition of fluxion, to.

prime and ultimate ratios, 40.

expansions of sin x, cos x, sin~'x,

Ac, 64, 69.

by differential eqtiations, 85.
method of investigating radius of

curvature, 291.

on evolute of epicycloid, 345.
Nicomedes, conchoid of, 332.
Node, 259.
Normal, equation of, 215.

number passing through a given

point, 220.

in vectorial coordinates, 233.

Orthogonal transformations, 409, 414,

464.
Osc-node, 259.
Osculating curves, 309.

circle, 291, 306.

conic, 317.
Oscul-inflexion, point of, 314, 3 1 7.

Parabola, of the third degree, 262, 288.

osculating, 318.

Parabolic branches of a curve, 246.

Parameter, 270.

Partial differentiation, 1 13, 406.

Pascal, lima(;on of, 227.

Pedal, 227.

tangent to, 227.

examples of, 230.

negative, 227.
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Pliicker, on locus of cusps of cubics

having given asymptotes, 265.

Points, de rebroussement, 266,

of inflexion, 279.
Polar conic of a point, 219.

Proctor, definition of epi- and hypo-
cycloids, 399.

epicyclics, 366.

Ptolemy, epicyclics, 366.

Quetelet, on Cartesian oval, 376, 381.

Radius of curvature, 286.

in Cartesian coordinates, 287, 289.

in r, JO coordinates, 295.
in polar coordinates, 301.

at singular points, 310.

of envelope of a moving right

line, 358.
Reauleaux, on centrodes of moving

areas, 363.
Reciprocal polars, 228, 230.

Remainder in series, Taylor's, 76, 79.

Maclaurin's, 81.

Resultant of concurrent lines, 234.
Roberts, W., extension of method of

inversion, 455.
Rotation, of a plane area, 359.

centre of instantaneous, 360, 364.

of a rigid body, 371.
Roulettes, 335.

normal to, 336.
centre of curvature, 352 ; Sa-

vary's construction, 352.
circle of inflexions of, 354.
motion of a plane figure reduced

to, 362,

spherical, 370.

Savary*B construction for centre of

curvature of roulette, 353.
Series, Taylor's, 61, 70, 76.

binomial, 63, 82.

logarithmic, 63, 82.

for sin x and cos a:, 64, 66, 81.

Maclaurin's, 64, 81.

exponential, 65, 81.

Bernouilli's, 70.

convergent and divergent, 72, 75.
forsin-^x, 68, 85.

for tan-* ar, 68, 84.

for sin mx and cos mx, 87.
Arbogast's, 88.

Lagrange's 151.
Solid Harmonic Functions, 415.
Spherical Harmonics, 420.
Spinode, 259.
Stationary, points, 266.

tangents, 282.
Subtangent and subnormal, 215.

polar, 223.
Symbols, separation of, 53.

representation of Taylor's theo-
rem by, 70, 160.

Tacnode, 266.

Tangent to curve, 212, 218, 258.
niimber through a point, 219.
expression for perpendicular on,.

217, 224.
expression for intercept on, 232.

Taylor's series, 61.

symbolic form of, 70.

Lagrange on limits of, 76.
extension to two variables, 156.

to three variables, 159.
symbolic form of, 160.

on inapplicability of, 458.
Tesseral Surface Harmonics, 426.
Three-cusped hypocycloid, 350, 372,.

Tracing of curves, 322, 328.
Transformations, linear, 408.

orthogonal, 409, 464.
Trisectrix, 332.
Trochoids, 339.

Ultimate intersection, locus of, 271.
for consecutive normals, 290.

Undetermined multipliers, applicatioa

to maxima and minima, 204.
applied to envelope, 273,

Undulation, points of, 280.

Variables, dependent and indepen-
dent, I.

Variations of elements of a triangle^

plane, 130 ; spherical, 133.
Vectorial coordinates, 233.

Whewell, on intrinsic equation, 304.

Zonal Hnrmonics, 420.

THE END.
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