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PREFACE.

Tre present work is chiefly intended for beginners
in Algebra; and it will be found to contain very nu-
merous examples adapted to each, subject introduced
into it.

Yet although this intention of making the young
algebraist skilful in what may be termed the mechani-
cal part of his science has never been lost sight of,
still the algebraic rules have been fully explained, and
in general rigorously proved; so that the learner may
not only become expert in the use of symbols, but also
may be enabled to give & reason for each step of the
investigations he pursues. ‘In a book of so moderate
a size a8 this is, a part only of Algebra could be in-
cluded; but the Table of Contents will shew that a
uniform system has been adopted, and that the subjects
treated on, are not only necessary, but of the highest
importance. ' :

Ki~g’s CorrEce, Loxbon,
March 7, 1840.
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INTRODUCTION.

1. I~ Algebra, numbers and magnitudes are represented
by the letters of the alphabet, and their relation and connexion
expressed by certain signs, which used instead of words, ab-
breviate the expressions. The numbers or magnitudes which
ave known or given, are denoted by the first letters of the
alphabet, as 4, B, C, &c., a, b, ¢, &c.; but those which are
to be discovered by some of the letters z, y, 2, v, 4, . Known
quantities are also denoted by the Greek letters, a, 8, v, 9, &c.
and the unknown by 6, ¢, ¥, &c.

The signs chiefly made use of are the following :

+ - x + =

(1) + which is read plus, serves to mark the addition of two
or more numbers. Thus 25 +6, read 25 plus 6; signifies that
25 is to be increased by 6; and a + b means that the number
expressed by a, is to be increased by the number expressed by 5.

(2) -, read minus, which is placed between two numbers
shews that the latter is to be taken away from the former:
thus 24 — 19, or 24 minus 19, means that 19 is to be taken
from 24, and a—b expresses the excess of a over b.

(8) x, the sign of multiplication, which is placed between
two numbers ; thus 12 x 18 is read, 12 multiplied by 18, or
more briefly 12 into 18: and a x b represents the product
of a and b. Sometimes a point (.) is placed between two
letters as a.b, but never between two numbers, lest it
should be taken for the decimal point. But in general when
the factors of a product are letters, neither x nor (.) is used,
and the product a by b is written ab; when, however, both

1



2 INTRODUCTION.

the factors are numbers, the sign x must be placed between
each: for should we write 56 instead of 5x 6, the product
five times six would be confounded with fifty-six. ‘

(4) + the sign of division, thus 36 + 12 read 36 divided
by 12, means the quotient of 86 by 12, and a + b, is the
quotient of a by &; but this is more commonly expressed
by writing a above b and drawing a line between them ;

thus %.

(5) = the sign of equality, thus 5 + 7 =12, read 5 plus
7 equal 12 ; and if the sum of @ and & was equal to the excess
of ¢ above d, it would be expréssed by a+b=c—d.

These are the principal algebraical signs, and to them
may be added, the sign of inequality >, by which we shew
that one quantity is greater or smaller than another ;

thus a > b is read a greater than b,
and a <b is read a less than b.

The opening being always turned to the larger quantity.

2. We now proceed to explain some algebraical abbre-
viations. Instead of writing a+a +a + a + a, when the sum
of 5 numbers each equal to a is required, we put 54. In
the same manner 13a, expresses the sum of thirteen numbers
each equal to a, the numbers 5 and 13 are called coefficients.
And 7ab which indicates that the product of a by b is to
be taken 7 times, has 7 for its coefficient.

The coefficient therefore is a number written to the left
hand of the quantity expressed by a letter or letters: and
shews how many times the quantity expressed by the letter
or letters ought to be taken.

Sometimes indeed a letter is called the coefficient, thus
a is the coefficient of ax, 8b of 8ba. i

We must also observe that when unity is the coefficient,
it is never expressed in writing, thus we put 4 and not 1a;
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but where we have to add or to subtract 4 we must not forget
that its coefficient is unity.

3. Again, if a number as a be multiplied by itself,
instead of writing @ x a, or aa, we put a’; the 2 which
is written above a and a little to the right hand, is called
the index or exponent of a, and is intended to shew that the

" product is composed of two factors each equal to a. In the
same manner & x @ x @ is written a®>, and a xa xa x a, is
written a*. Also, a® is called a squared, or a to the second
power, a® is called a cubed or a to the third power, and 4,
a to the fifth power. The utility of the exponent and
coefficient in Algebra may be thus shewn. Let it be re-
quired to express a product composed of 4 factors equal to a,
of 3 factors equal to b, and of 2 equal to c: we then write
_a*b®c® instead of aaaabbbcc: and if also we wished to ex-
press that this last result should be taken 7 times we should
prefix 7 ; and write 7a*b*c®, instead of repeating aaaabbbcc
seven times.

4. The sign ,/ is placed over a quantity when its
root is to be extracted, the particular root being indicated
by a small figure placed on the left of this sign; thus v/, is
read the cube root, or third root of a, and /B, is read the
fourth root of b; but the square root of @ is written ,/a and
not ~/a, the number in this root being always omitted.

5. .The vinculum — or brackets ( ), the former of which
being placed above or the latter enclosing two or more algebra-
ical terms, shews that the quantities are to be taken as one sum.
Thus 8a+b or 8(a +b5), means that the sum of a and &
is to be multiplied by 8, and thus if 55 is taken from 5a,
which is expressed by 54 — 55, it may also be written
5(a-b) or 5.a-b.

6. These are the chief signs and abbreviations made

use of in Algebra; and to them may be added ... therefore,
1—2



4 INTRODUCTION:

and - 'since. Also : is to; thus a : b expresses the ratio
of a to b. And : :, : used between the'terms of a pro-
portion, thus a : b :: ¢ : d which is read a is to b as’ ¢
is to d.

7. The use of some of these signs may now be shewn
in the solution of the following question: ¢ If the sum of
two numbers be 13, and their difference 3, what are th
numbers? ” :

First, if the smaller of the two numbers were known,
the larger would be found by adding 3 to it. Let therefore
the smaller be called z, then the larger is 2 + 8, and their
sum will be x+z+8, or 2z +3. But this sum is by the
question equal to 13, and thus we have an equality or as

it is technically termed an equation:
viz. 2z + 8=18.

Now as 2z increased by 38, is equal to 13, 2x must be
equal to 13 diminished by 8, or 2z must equal 10; and
if twice a number equal 10, the number itself must be the
half of 10 or 5, i.e. z=5; and therefore the smaller number
being 5, the larger must equal 8.

In fact 8+5=18; and 8-5=38.

The process written algebraically would stand thus:

Let x be the smaller number ;

. z+ 8 is the larger;
». 2x+ 3 is their sum;
o224+ 8=13;

o 22=10;
10 .
% .‘t—?=5-
And z+3=8.

8. The method used to obtain the answer to the pre-
ceding question is obviously applicable to every other of
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the same kind; instead however of multiplying examples,
with different numbers, it might be shewn that, if the sum
of the numbers = §, and their difference = D,

the greater number = g + g,
s D
the less number = 3-%’
i.e. the greater = 4 the sum + } the difference of the numbers,
the less = § the sum — } the difference ; .
thus in the preceding example, $=13 and D = 3,
18 8 16
then ?+§=—2—=8=thegmter, .
18 8 10
and _2.—§_—2—_5—theless.

Here then we perceive one great advantage of Algebra,
and it consists in this. Algebra not only affords methods for
the solution of particular questions, but investigates rules by
which all questions of the same kind may be solved; i.e.

o § D .. P
it arrives at a general answer, such as 2+3 which will suit

every question, whatever numbers consistent with the question
we put for § and D.

Another, and it may be, a principal advantage of Algebra,
is the clearness with which it represents to the eye, and so
transmits to the mind, the quantity whose value you wish to
determine. Thus in the previous question, among the suppo-
sitions made and amidst the calculations consequent upon
them ; x the quantity whose value is sought, constantly
appears, and claims the attention of the computer, and at
the same time relieves the burden under which the mind
labours while a question of this kind is attempted to be
solved by ordinary language.

The word solution or untying just used, means in Al-
gebra, the mode of arriving at the answer to a question.
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There are two kinds of questions in Algebra—Problems
and Theorems.

In the problem, we have to find a number or quantity,
which combined with certain given nunibers or quantities,
has some given value.

In the theorem, we have to shew what relation constantly
exist between given and known quantities.

' Thus the question, “ To find two numbers whose sum is
13, and difference 3”, is a problem.

And if we could shew that a and b being two numbers
of which a is the greater
a+b . a-b%

2 2 ’

| 4 a=

we should have a theorem.




CHAPTER I

ALGEBRAICAL DEFINITIONS.

9. EvERY quantity written in algebraical language is
called an algebraic quantity or an algebraic expression : these
are divided into simple terms, and compound expressions.
Simple terms are those when one letter or one combination
of letters only is used, such are

5a, 7b, 8ab, 9abc, 12ab’.

Compound expressions are those when two or a greater
number of simple terms are connected by the signs + or —, as

a+b, 74+ 5ab+3bc, 4a°-6bc, &ec.

Also an algebraical expression consisting of one term, is
called a Mononomial ; of two terms, a Binomial ; of three terms,
a Trinomial ; and of many terms a Polynomial.

Also positive terms are those to which the sign + is pre-
fixed, and negative terms are those which have the sign —
before them. The first term of an algebraic expression, if
positive, need not have the sign + before it, but the nega-
tive sign must never be omitted. Algebraical quantities are
also called like or unlike; like when they involve the same
letters; and unlike when the simple terms involve different
letters. Thus 7a, 5a, are like quantities, and so also are
12ab% 8ab*; but 7a, 55, 12ab, 13ac’, &c. are unlike quan-
tities. In general the letters are written in the order of the
alphabet, thus we write abc, and not bca.



SECTION 1.
ADDITION AND SUBTRACTION.

ADDITION OF LIKE AND UNLIKE QUANTITIES.

10. TaEe addition of unlike terms is performed by con-
necting them together with their proper signs. Thus the
sum of ) :

5a, 8b, and 4c is 5a+ 3b+ 4c.

The addition of like terms is performed by taking the
sum of the coefficients when the coefficients have the
same sign, and the difféerence of the coefficients with its
proper sign, when they have different signs, and writing the
sum or difference before the letter. Thus,

7Ta+12a=19a, and 4a’—9a*+ 84*, or 7a’—9a’=—2a%;

" for there is a positive quantity 7a4%, and a negative quantity
9a®, and since 9a® is the same as 7a® and 24° therefore
—9a® is the same as —7a® and —2a° hence the whole
sum is 7a*—7a*—2a", and since 74*—7a® equals zero, the
result is — 24" ’

The usual method of proceeding in addition is, to write
the expressions whether simple or compound under each other,
and add or subtract the coeficients of like terms as in the
addition of numbers, thus,

5a

7Ta a+ b+3c 8a*-9z*+5 —-a+b
8a 2a+2b+c¢c 7a*+42°-3 +2a-8b
a 8a+ b+2c —-11a"+82°+138 —a+2b

16a 6a+4b+6¢ 4a°-22°+ 15 ¢ &

" We may remark that it is not necessary to write the
same letters directly under the corresponding letter above it,
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but in finding the sum, we must take care to connect together
all the coefficients which involve the same letter or the
same literal product. Example:

42~ Bxy+5y" — 7
4xy—T7y° +82" —138
2y + 52 —Txy+28
16—-82zy +4y* —-72"

102° —14zy + 4y" +19

For the coefficient of 2*, is 4+ 8+ 5—7=10, of zy it is
~8+4—-7-8 or —14, of y', 5-T+2+4 or 4 and
~7-18+28+16 equals 19.

The vinculum or bracket is very useful in expressing the
sum of quantities when the coefficients are literal.

Ex. Find the sum of az*+ by*+ ;x, 2bx*+cy' +as, and
2'+y*— z; writing the expressions down under each other.

ar*+by'+cs
2b2*+cy'+asz
2+y' -3

(a+2b+ 1)+ (b+cr 1)y +(c+a—1)s

For we observe that z* is multiplied by a, 25, and 1,
¥ by b,c,and 1, 3 by ¢ and @, and also that z is to be
subtracted, hence ‘its whole coefficient is ¢+ a—1, whence
we obtain the result given above.

SUBTRACTION.

11. 1In subtraction when the quantities are like we take
the difference between the coefficients, and write after this
difference, the literal quantity: but when the quantities are

unlike, the sign —, is placed between them. ]
—5



10 ADDITION OF LIKE AND UNLIKE QUANTITI.

Then if 5a is to be taken from 7a the result is 2a; but
if 4b is to be subtracted from 7a, the result is wriften
7a—4b. The operations may be thus represented.

From 7a- Ta 8a+4b+17c a
Take 5a 40 4a+ b+38c a
2a 7Ta-4b 4a+8b+4c 0

The preceding examples contain no difficulty: had we
however to subtract 5 — ¢ from a, the result a— b +c, requires
explanation.

First, having to subtract 6—c, if we enly subtract b,
the result a—b, is obviously too little, for the quantity 5,
which has been taken from a, ought to be diminished by c,
before the subtraction be effected : we have in fact subtracted
a quantity too great by c, and therefore to obtain a true re-
sult the difference @ — b must be increased by ¢, or the dif-
ference is, as we have before written it, a—b+c: and we
see that we should have obtained the same result, had we
changed the signs of the terms of b —c and then added the
quantity so changed to a. Next, had we to subtract a nega-
tive quantity from another as — b, from a: what is the re-
sult?

It is clear that the difference between the two quantities
will be unaltered, if we add the same quantity to both. Add
therefore b, when a becomes a + b, and — & becomes —b+&
or 0; and O taken from a + b, leaves a+b: or a—(-b)=a+b.

From these considerations we obtain the following general
rule: ¢ Change the signs of all the terms of the quantity to be
subtracted, or of the lower line, and then proceed as in ad-
dition*.” Thus,

* The following proof may also be given :
Since a=a—~b+c+b—c, for —b+5=0 and +c—-c=0, if now
(b —c¢) be taken from each side we shall have
a—(b-c)=a+b-e.




ADDITION OF LIKE AND UNLIKE QUANTITIES, 11

4a-3b 17a*~4ab+5 —16a*+25ab ~a -a
26+2b —24°+2ab-3 -12a*- 5ab -a +a
2a-5b 19a*—-6ab+8 — 4a*+380ab 2a -2a

12. We shall now give a few more examples of addition
and subtraction.

Ex. Find the sum and difference of a*+2ab+5* and
a'—2ab + b .

To a*+2ab+¥ From a’+§ab+b’
Add a*-2ab+8'  Take a'—2ab+d

2a* +26F 4ab

To a®+3a%b+ 8ab®+b° From a°+ 3a°b+ 8ab*+5°
Add a®-3a*b + 3ab*—- b Take a*-3a'b+3ab®-0

24° +6ab® 6a®d +25°
at x* a®
To 3= 8T+g From 3 azr+ +
a* z* a z*
Add -§+2a.t+? Take §+2a:— ry
2
ga’+az—£ 2-_3“-...3_"_

4 6 4
In the last two examples the coefficient of a* in the upper

. .1 . P 1 1 5 1 1 1
lmelsé-andmthelowerltls 3 and §+§—3 and 3-378

Also % and -% are the coefficients of 2, and

l+(_l)_l_1_l_2__l mdl,(_l 1,13
4 2/ 4 2 4 4 47 4 2/ 4 2 4



12 ADDITION OF LIKE AND UNLIKE QUANTITIES.
These two examples require’to be well understood by
the learner. :

13. It may perhaps be useful to him to give numeri-
cal values to the letters: thus, suppose a=38, =2, and c=1.

Then 5a+80-2c=15+6-2=19,
24'+6ab—18bc =18 + 36— 26 = 28.
And as examples he may prove that
a®+2ab+ =25 da-2ab+b'=1,
ab+ac+bc+b'=15
a’+b*+c*+2ab+2ac +2bc =36,
a®+ 8a’b + 8ab®+ b* =125,

a’+8ac*—8a*c—c*=8.

Having proved these results, he may proceed to the fol-
lowing examples in addition and subtraction.

EXAMPLES—ADDITION.

(1) The sum of 8a+2b, 5a+6b, a+8b and b+a is
10a + 125.

(2) Of a+2b+8c, 2a+8b+c, and 8a+b+2c is
6(a+b+c)

(8) Of 7Ta—5c+2b and 2a—8c+5b is 9a—8c+7b.

(4) Of 5a+8b+2c-5, and 3a—-20+2c—-2 is 8a
+b+4c-17.

(5) Of —6a+38b, —~2a—8b, and 8a+5b is 0.

6) Of 2b+8c—a, 4a—8b+2c, and —6c+4b—-3a
is —2b—c or —(2b+0).

(7) Of 7a—6b+8c—5 6a~Tb—5c+8, 5a—8b+6¢
—7 and 8a+5b—T7c+6 is 206a-16b+2c+2.

(8) Of 25a‘—16a*+ 8a*—7a*+ 124" is 224"
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(9) Of 8a2'~17xy+12y', 42+ 3xy-9y', Ty -2y
—82" and 2+xy+y* is 52'—15zy + 11y

(10) Of 5a'b+3a'b'c—7Tab, —6a‘b+2a*b'c+17ab,
and 9a‘b —-8a*b*c—10ad is 8a‘b— Sa*d.

(11) Of 3az"+2by'—8, — az’+2cy’—10, and ba"+ay*
+20 is (2a+b)2"+ (26 +2c+a)y*+2.

(12) Of axr*+ba*+cx+d, —8ax’+ca’+2bx+a, 42
+82r*+2x+1, and 2b2*—-2a2x*-ax-b is (4—2a+20)2*
-(Ra-8b-8)2"+(2+2b+c—a)zx+d+a+1-b.

1 1 1

(13) Of%a—%b-&-lc, za-2b-1c ana 1

a+lb+lc
5 4 5 8 3 L)

2

13a 175 llc
12 60 380"

(14) 0f5_"_7-_;/', [t A CN ) ARFRPY W

2 8 2’ 4 2
-1} 9.

SUBTRACTION.

(1) The difference between 3a—7b+4c, and 2a-—-3b
+2c is a—4b+2c.

(2) Between 42—-2b+3c and 8a+4b—c is a—6b+4c.

(8) Between 18a—2b+9c- 38d and —4a - 65+ 9c—10d
is 17a + 4b + 7d.

(4) Between —2a-8b+2c and 2ae¢+b—-2c is —4a
—4b + 4c.

(5) Between 55— 8a+150c—80d and 175 - 18a +210c¢
—120d is 15a-12b - 60c + 40d.

(6) Between 6a+2b—(8a+b) and 2a+4b—(4a-10)
is 5a—4b.
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a b . a 3b
(7) Between a+b and 53—z 83+

a b ¢ a+b ¢ a+8b ¢
(8) Between 3'3" 3 and 2 "3 is —= "%
©)] Between;—’—%— ‘%‘”—z’) ands.t—%'-(2z+3.r’)

is 4%1&"—2%1‘.

(10) Between 4a2*+ bx +c and 82" -2z + 5is (4a-3)a"
+(2+b)x+c—5.

(11) Between a2’+bz*+cx+d and ex’+fr'-gx—h
is (a-e)P+(G-f)2*+(c+g)x+d+h

(12) Between az™—ba"—ca® and —2aa™+ca"—ba® is
8az™~(b+c)a+ (b—c)a

SECTION II.

MULTIPLICATION AND DIVISION OF ALGEBRAIC QUANTITIES.

14. Previous to the investigation of rules for the multi-
plication and division of algebraic quantities, it will be ne-
cessary that the beginner should have clear views of the
nature of the positive and negative sign; his earnest atten-
tion to the next article, which tréats of these signs, is con-
sequently demanded. :

ON THE SIGNS + AND -.

15. - We have already seen that when 4 is to be added to a,
the result is algebraically expressed by a+ b: and that when
b is to be subtracted from a4 the result is written a—5:
and thus the signs + and — are the marks of the opposite
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operations, addition and subtraction. But the signs + and -
are not limited to the interpretation of these rules only;
their general relative signification being opposition. What-
ever quality or affection is expressed by +a, the contrary
is expressed by —a. Thus if + a represent property, —a
would represent debt, if +a be the length of a line or
curve drawn from a given point to the right hand —a
would represent an equal distance taken from the same
point towards the left hand. If +a represent a distance
measured from a point upwards — a will represent an equal
distance measured from the same point downwards. Thus,
as in some thermometers, the freezing point is zero. Then
+20°, would e¢xpress a state of temperature 20 degrees
above the freezing point; and — 20°a state 20 degrees be-
low it.

16. Bearing in mind this definition of the opposite qua-
lities of + and —, let us examine the result of the multi.
plication of +@ or —a by +b or —5. And here we may
observe that @ and 4, though standing for things and not
merely for numbers; i.e. for distances, areas, money and
other things similar to these, yet may be considered as
numbers, which are multipliers of the units of these quanti-
ties: thus if a be the length of a rod which is a feet long,
one foot is the unit, and the length is & times one foot:
if a represent pounds sterling, then £1. is the unit and a
is the number of times that £1. is to be taken: and if a
be lbs. avoirdupois, a is the number of Ibs. taken.

This being said we may remark, that the product of a
and b independent of the algebraic signs will always be a b.

(1) +ax+b will =+ab or ab: for considering a to be
a number, ¢ must be added 5 times or the number added
must =+ ad.

(2) Hence +ax-b must =—ab: for — b multiplied
into @ must give a result directly opposite to that arising
from multiplying + a by +b.
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(8) —ax+b should give a result directly opposite to
+ax+0b, i. e. the result must be — ab.

(4) —ax—b must give a result directly opposite to that
of—ax+b, or to —ab, and this opposite result is +abd;
co—ax—b=+ab.

Hence we see that + multiplied into + and — into —, give
results affected by the positive sign, and that + into —, and

into +, give results affected by the negative sign; and
hence we obtain the following rule of signs.

When two quantities, having like signs, are multiplied
together, the sign of the product is +; and when the quan-
tities have unlike signs, the sign of the product is —.

MULTIPLICATION.

17. The multiplication of simple unlike terms is per-
formed by multiplying the numerical coeflicients of the two
terms together, and writing the letters in order after the
product of the numbers, taking care to prefix the proper
sign. '

And the rule of signs is this,

+ into + and — into — give +,
+ into — and — into + give —.

Thus 7a multiplied by 55, is 35ab; and 8ab multiplied
by —2cd, is —16abcd ; in working examples the multiplier
* is usually written under the multiplicand ; thus

~12a ~16a 18ab ~9ac
1) - Tc - 8¢ 5bd
86ab, 112ac, - 54abc, —45abcd.

18. Again, if many unlike terms connected by the signs
+ and —, are to be multiplied by a simple term, the product
is found by multiplying each term of the multiplicand by
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the multiplier, and collecting together the simple products
affected with their proper signs.

Thus, if 24+ 35— 5¢, is to be multiplied by 6d, each
term of the trinomial must be multiplied by 6d, and the
sum of the partial products, gives the whole product
required; in practice the multiplier is written under the
left hand term as below, and the result obtained in a

single line, -
Multiply 2a+8b-5¢
By 6d

Product 12ad +18bd - 80cd

Ex. 5a-6b-8¢c ~-11a+5b-12
9d -8¢c
45ad - 54bd-"72¢d 83ac—15bc + 86¢

’

19. If the multiplier consist of more terms than one or
be a compound quantity, we might multiply the multipli-
cand by each term of the multiplier separately, and then
add together the products so obtained, for the complete re-
sult; but this would entail upon us the trouble of writing
the multiplicand as often as there were terms in the mul-
tiplier. In general therefore the multiplier is written under
the multiplicand, and every term of the latter is first multiplied
by the first term of the former, reckoning from the left hand,
and this result is written in one line; a similar product is
formed by multiplying the multiplicand by the second term
of the multiplier, and this result is written under the former,
but its first term is placed under the second term of the
first product ; similarly we proceed with the third and fourth
and remaining terms of the multiplier, and all the separate
products being found, the sum of all the terms thus arising
will give the product required. The following examples
will shew how the multiplication is effected.
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Ex. Multiply 8a+5b+2c by 5d+3.

8a+5b+2c
5d+3
Multiplying by 5d 15ad +25bd + 10cd
Multiplying by 38 +9a+15b+6¢
. Product = 15ad +25bd + 10cd + 9a + 155 +6e¢.

Again in the following examples,

2a — 3d 52 -17
8b + 2¢ Ty+9
6ab—9bd ' 35zy — 49y
+ 4ac—-6cd + 45z - 63

6adb + 4ac —9bd —6cd  85xy + 45x — 49y — 63.

20. In the preceding examples, the same letter has never
occurred in both factors; this case which constantly happens
remains to be mentioned. Thus had we to find the product
of 7a’b by 8a'b* the result would be 56aba®bd?; but if we
consider that a* is the product of two a’s or = a x a, then
a® x a® is the product of four a’s or =a x a xa x a which is
agreed to be written a*, also since b x b* is the same as
b x b x b or b, the whole product becomes 56a*5°.

2]1. So again, if 24° is multiplied by 44’: then since a’
is the product of three a’s and a’ the product of seven a’s;
.. a® x a’ will be the product of ten a’s or = a'

And, .. 2a® x 44" =8a™.
Hence, also since the product of m a’s or

AXBXBXBuusaas to m factors = a™.
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And the product of n a’s is for the same reason a*. There-
fore the product of a™ by a* will be that of (m + ») a’s, or
may be written a™**;

' i.e. a™ x a" = a™*",

Whence we obtain this rule: To find the product of the
powers of the same letter. ¢ Write the letter, with an index,
equal to the sum of the indices of the factors.”

Observe that the index of the simple power is unity, or’
that a = a'.

22. We shall begin with simple terms to illustrate the
preceding rule. )

Multiply 5a° 6abd - 12a°b%¢ -9a%y2
By 7a® - 7ab 8ab*c® —11a"y*=*
- 854 ~424°6" - 96a‘d'c* 99a'y® ="

Next let the multiplicand be compound,

2a® — 3ab + 20° a® - 5a*b + 15a°b°* — 30ab*
8a —-2a

6a® - 9a%b + 6abd’ — 2a® + 10a°b — 30a°d* + 604" b*

Lastly let both multiplier and multiplicand be com-

pound.
a+b a—-2b a®—-ab +b*
a+b a—-2b a+b
g'+ab a® — 2ab a® - a'b + ab®
+ab + b° —2ab + 46* +a’b - ab® + b°

a® +2ab+ b . a®—4ab+ 4b° a * % L bp*

® < When in the addition the positive and negative quantities are equal,
and there is therefore no result to be put down, an asterisk ® is generally put

to mark the circumstance.”
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a+b P +ay+ 2y + 3y + Yt

a-b -y '

a* + ab z* + 2’y + Y + Py + xyt
—ab-5 —m‘y-—w’y'—-r’y'—zy‘—y'

a® * B P * * * * L]

2a® — 8a°b + 4ab® - 55°
2a® + 8ab + 4b°

4a® - 6a*b + 8a*H* — 10a°b*
+ 6a'd - 9a°b* + 12a°0° - 15ab*
+ 8a®b® — 12a%b® + 16abd* — 208°

4a® *  +7a*b*—10a°0® + ad* — 208°

a’_g.*.l
2 4
a’+5+~l-
39
a@ a
.———-—
o T2
42 8, 8
3 6 12
+a’ a+i_
9 18 36

6 36 386 36

a4

For the coefficient of 4® is — = += or —§+§=—%:

O 0]
w R

9 v £z it
_36_—+—36=$' of 1t 18
1 1 38 2 1

13- 18-36" 3636 whence the results obtained above.

e: 1 11
that of a ls; 3+90r
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DIVISION.

23. Division is the inverse of multiplication; for if a
. quantity be first multiplied and then divided by the same
quantity, its value is unaltered: and to divide one simple
term by another is to find how often the latter is contained
in the former: or since the dividend is equal to the pro-
duct of the divisor and the quotient, we may define divi-
sion to be, ‘The having given one factor of a quantity to

find the remaining factor.’
4abc
Thus 4abc+ by 2¢ or %5 =2ab.

Since 2c¢ x 2ab =4abc: and lgzb = 8a, since the pro-

duct of 66 and 3a is 18ab.

24. When powers of the same letter occur both in the
divisor and dividend, the index of the less must be taken
from that of the greater.

Thus 1: =d

a

For a° is the product of five a’s and a* of two a’s, and
therefore striking two from each we leave axa xa or a®
in the numerator and unity in the denominator.

Also for the same reason g;=;l,.

Hence in the division of mononomials, “We must first
strike out the letters common to both divisor and dividend,
then take the difference between the indices of the same
letter, and multiply the result by the numerical quotient if
any.” .
25. The rules for the algebraical signs may be obtained
from those in multiplication. For the dividend being equal
to the product of the divisor and quotient, the sign of the
quotient may be easily determined. For since

+ arises from + into + or — into —
— teetvsceses + into — or — into +



22 MULTIPLICATION AND DIVISION

If the dividend and divisor have the same sign, the quotient is +
.......... tesessesonsiesse... different signs, it is—

or we may give the rule this practical form,

and — give +
R — give -

The following examples will illustrate the preceding rules
and remarks,

7a)85a*bc —-2ab)16ab 8a’b)-128a°h® —38bc)-27abe

5abc -8 - 16a*d* 9a

When the numerical coefficient of the divisor is not con-
tained in that of the dividend it is better to write the quan-
tities in the form of fractions.
85a°6®* 17abd
25a°6 5
82abc _ 39_
48a’c  34*°

" Thus 85a*b®+25a% =

And 382abc-+48ac=

26. When the dividend is a compound quantity and
the divisor a simple term, the quotient is found by dividing
every term of the dividend by the divisor, as in the fol-
lowing examples.
5a)25a°-15ab  45)12a°b-166°  —2ab)8a'b*— 14abc

5a—-8b Sa*— 4b° —4ab+7c

27. When the 'divisor is also a compound quantity
“arrange the terms both of the divisor and dividend ac-
cording to the powers of the same letter, beginning with
the highest power in each. Divide the first term of the
dividend by the first term of the divisor, and set down the
quotient by itself: multiply every term of the divisor by
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this quotient, and subtract the product so arising from the
dividend: then considering the remainder, should there be
any, to be a new dividend, again divide its first term by the
first term of the divisor, and add their quotient to the for-
mer, multiply the divisor a second time by this quotient and
subtract this product, from the former remainder, and so
proceed till the division be completed, or till no term of
the remainder be divisible by the first term of the divisor.”

The following example will illustrate the rule.
Divide 2a°+4ab+2b6® by a+b
a+b)2a"+4ab+ 25" (2a+ 25

2a* + 2ab

2ab+256°
2ab+ 256

L ] *

Here 2a* divided by a gives 2a the first quotient, then
@ + b the divisor, multiplied by 2a =2a"+ 2ab; subtract
this from the dividend and the remainder is 2ab + 25*

Again, 2ab divided by a gives 25, the second quotient,
and 256 multiplied by a + & produces 2ab + b°, which sub-
tracted from the first remainder, leaves no second remainder
and the division is completed. ’

(Ex.2) =z-8)r"—-62"+112-6(2*-32+2
2’ - 82"

—-82*+11x
—-8x*+ 9xr

In this example it may be observed that the whole re-
mainder is not brought down after the first subtraction;
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this is done to save writing, as —6 was not wanted in the
second subtraction ; a little practice will point out the reason
of this omission better than the laying down of an explicit
rule.
(Ex. 3.)
2 +2ax+a’)x'*+4ra +62%a" + 4xa® + a* (2* + 2xa + a*
2*+22%a + 2*a’

2z*a + 52°a® + 4xa®
2x'a + 42'a’ + 2xa®

z*a’ +2zxa® + a*
x*a® + 2za® + a*

* * *

(Ex.4.) a-38b)a*—81b'(a®+38a%b+ 9ab® +275

a*— 8a%b
8a%b
8atb - 9a*d?
9a'h*
9a*b* - 27ab®
27ab® - 815*
27ab® - 815*
T«

(Ex. 5.)
2a°— 5ab"+ 28" )4a° - 250°b* + 20ab° - 45°(24® + 5ab° — 25
- 4a°-10a*d* + 4a2°5*

10a*d® - 4a°b® - 254°6* + 20a b®
10a*d* - 25a°b* ~ +10ab®

- 4a°6® + 10ab® — 40°
- 4a°0® + 10ab® - 48°

* * *
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2 8x® LT 43 , 33 32" z
;-z+3)z——4z +—8—.r'—7a:'—-zx+27(2 5:’+4+9
sz _sat 92
4 2 2 .
52 41 43
T2 ?"'"T"’
4
—5?3+5-t’ - 152°
1 17 88
51‘+—;I,——4-$
1 x* 8z
"3 *7
9?"-9.”27
9z*
T—91+27
®* L J *

28. In the preceding examples, the divisor is contained
exactly in the dividend, and the remainder is consequently
nothing: we shall now give examples in which there is a
remainder.

z—a)r*+a* (2’ +ax+a°
zt~az’

+ax*
az*-a'z

a‘r +a®
a*x - a*

2a® the remainder.

The division cannot now be carried on by the former
process, but still it may be continued, the next term of
2a®
2

the quotient being s in fact, there will i)e a series of
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fractions in the quotient, which series may be continued, to
any length. '

Again, dividg 1 by 1 -z,

1-2)1 ({+z+2"+2°+&c.
1-2

z
x—-a*

z°
Y o

z*
a®—a*

2* remainder

Here the division may be continued for ever.

Divide #+2 by z+1.

1 1 1
z+l)z+2(l+;-;,+?—&c.

z+1

Rlm 8w | 8l

[

— remainder.
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Such expressions as 1 + z + 2* +2* + &c. and 1+%—zl,+&c.

are called infinite quotients, not because their value is of
necessity very great, for indeed they are* sometimes very
small : but because they do not terminate.

. 29. It is useful to know that the difference both of the
odd and even powers of a and b is always divisible by a — 4:
thus

(@-0)+(a-b)=a+b

(@®-8%) = (a—0d)=a® +ab+b*

(a4 =b%) = (a—B) = &® + &b + ab® + b°

(@®-b%) = (a- b) = a*+ a®b + a*b* + ab® + b,

and so on; but the difference of the even powers is only
divisible by a + 6. Thus
(@-b)=(a+d)=a~b
(a*-b*) = (a+b)=a’—a’b+al* - b
(@ -0 = (a+b) =a*—a*b +a’b*— a®b® +ab* - b".
Also since (a+6) x (a—-b) =a*-b"
Therefore the sum of two quantities multiplied by their
difference, equals the difference of their squares.

And the difference between two numbers is equal to the
product of the sum and difference of their square roots;
for a and b are the square roots of a4’ and &°.

Thus (5+38)x(5-8)=25-9=16.
And 81-49=(9+7)x(9—17) =382

The reader may supply other examples; and let him
verify the assertions in the preceding part of this article.
2—2
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O)
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(10)
(11)
(12)
(13)
(14)

+9ax*.
(15)
(16)
an
(18)
(19)
(20)

MULTIPLICATION AND DIVISION

EXAMPLES IN MULTIPLICATION.
The product of 15ab and 30cd=450abcd.

8a*be x 12abc® x 5a° b c* = 180a° b* ¢*.

8a®x 4a*x 5a° x 6a°= 360a".

ga" b* x ga'b X %ab‘: 10a° 5% ‘
(3a%— 5ab + 20%) x 4a =124°~204°b + 8ab’.

(84— 6ab + 124") x 8ab*=24a*b - 184°b* + 36ab*.
(24* - 124° + 44°+ 2) x 2a° = 4a®— 240"+ 8a* + 44",

(8 ’b——- B3 b‘ 27ab 18a%6'— 12a'6’+——ab‘

(a™'b — a™*b* + ab™"') x ab = a"b* — a™'b" + a"b"
(2a—38) (a+2)=24"+a—6.
(8a®—-2ab) (2a — 4b) = 6a‘;- 164’5 + 8ab".
(4a°—6a +9) (2a + 8) = 84" + 27.
(a° + ab®) (a' - a8%) = a"— a'b.
(1 +2z+82°) (1 + 22 + 82°) = 1 + 4z + 102" + 122°

(#* + 162 + 60) (z +2) = 2° + 182" + 92z + 120.
Q+z+2F+2+2)(L-2)=1-2"

(a* + 2b%) (a +2b) = a* + 2a*b + 2ab* + 4B"
(a*+ 8z +2) (z+8)=a*+62"+112+6.

(@ —Tx+5) (z +8)=2"+ 2"~ 51z + 40.

(8a* — 5ab + 2b°) (¢ — Tab) = 8a* — 264°b + 874"}’

—14ab®

(21)

(@+a%b+a'b +ab+ B) x (a—-b)=a*=b" -

)
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(22) (4a*- 3ab + 5ab*— 25°) x (24" — 44*) = 8a® — 6a%b
—16a*d® + 10a%0® + 12a%0® — 4a*d* - 20ad* + 80°.
(28) (2*+22°y +42°y*+ 8xy°+ 16y*) (z — 2y) = 2* - 320%

(24) (a° —2a*6® + 84°6%) (24" — 8ab + 4b*) = 2a° — 347
+6a°6®— 2a*b* — 9a*b® + 124°0°.

2 x 1\ (2x 1\ 2 172 x 1 -
@) (5-3*3)\572)"5 % *57%
(26) (a*+2ab+20") (a'—2ab+205%) = a*+ 45

@7) (24°-8ab-4b*) (8a*—2ab + b*) =64~ 18a*b—4a"d*
+5ab®— 4" .

(28) (a*+ab+d%) (a+b)=a"+2a°b+2ab"+b
29) (@°-ab+d")(a-b)=a"-24"b+2ab*- 0"
(80) (@+b+c)(a+b—c)=a"+2ab+b"—c"

81) (@+b+Ff-ab-ac-bc)(@+b+c)=a*+b"+ ¢
—8abe.
(82) (a*+2a%b+2ab*+b°) (a®—-2a%b +2ab® - b%) =a®- b°.

(83) (1-8z+82"-2*)(1-2z+a")=1—5z+102*—-102"
+5a*—a".

(84) (2a%bc — 8a*b*c + 5abc®) x (3ab’c — 5ab*c* — 7a*bc)
=—14a°0*c* + 21a°0*¢° + a*b*c® (6b° - 10bc — 85¢°) - 8a°b'c”
(85— 5¢) + 5a%b* c* (85 — 5¢).

85) (=*—pr+q)(x—a)=2—-(p+a)a*+(q+ap)x—agq.

(86) (*-pr+q)(*+pa—r)=a‘+(g—r—p")a"+(pr+pq)
x—rq.

BN (@ ++c™) @ +b"+F)=a™"+ "+ +a™ b
+a"c+b™a" + b c* + c™a" + b*c™.

(38) (x+a) (x+8) (x+c) (z+d)=2'+(a+b+c+d)
2+ (ab+ac+ad+bec+bd+cd)x*+(abc+abd +acd+bed)x
+abcd.
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(89) (@® +b*+c*+d% (a°+b° - c*—d% = a* + b* + 24°H°
- 2cd*—c*—d*
(40) (@B +c—P) @+ —F—d)=a'+d =b— ¢t
+2b°c*—2a°d".
5 e =T o (20t am - 2) £ T2
(41) ( +3azx — 3)* 22 — ax ) = 5x* + P

107 e 5a°x 7a

6 6"
155’ 76" 65 8b* 38b* 12056* 1015°
W -+7) T-T)~= 7
695° 186"
+ P - &

EXAMPLES OF DIVISION.
(1) The quotient of 6a—8b+4c by 2=38a—4b+2c.
(2) a*—2a%b+4ab* by a=a"—2ab + 45"
(8) 124°—204°b +8ab® by 4a=38a"-5ab+2b".
(4) 24a'b—18a°b%+ 86ab* by Gab =4a®—3abd® + 60°
(5) 9a*bc—12abc+ 15abc* by 8abc=8a—4b+5c.

(5) 4a*—-6a’c +8abc by 6ab_z-Z——a—c fc.

(1) o +4ab+45* by a+2b=a+2b.

(8) 18a°—8b* by 8a—2b=06a + 4b.

(9) 2+6a2*+112+6 by 2+2=a+4zx+3.

(10) a*+38a’b+38ab*+8® by a+b=a"+2ab+b"
(11) a*+a*b—ab’-b® by a-b=0a"+2ab+b"

(12) 8a* - 264°b + 374°b* — 14ad® by a* — 7ab = 8a*
—~5ab + 2b°

(18) @®+8° by a+b=a'—ab+b.
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(14) @+5 by a+b=a'—a*b+a* b —abt+ 5%

(15) 2a*-18a%b + 81a°b°— 88ab* + 24b* by 2a'~ 8ab
+4b*=a’— 5ab + 65"

(16) a*+4b* by a°—2ab+2b°=a"+2ab+20".
(17) a*+4a*5*+160* by a°+2ab+ 45" =a*—-2ab + 4b".

(18) 4a*-94°6* +6ab®—b* by 2a°— 3ab+b*=2a%+3ab
-5

(19) 27a*-6a"+3 by 3a°+2a+}3=9a"-6a+1.
. (20) —40y° + 68zy* + 252°y* + 212°y* - 182*y — 562° by

5y'— 6y —8a"=- 8y + 4xy* - 82"y + T2

(21) 56a*—59a° - 73a° + 956 — 25 by 7a*—8a*—1la
+5=8a-5.

(22) 10a°+11a%b—154a°c — 19abc + 8ab® + 15bc* — 5b%c
by 5a*+8ab-5bc=2a+b-c.

(28) a®—-84a7b+28a%b* — 564a°8°® + 70a*b*— 560°b* + 28 a*H°
—8ab’ +8* by a* - 38a%b+3ab* -8 =a’-5a*b +10a°*
—10a°b® + 5ab*— b

(24) 2—(a+p)a*+(g+ap)z—agbyr—a=2°-px+gq.

I e Rl i B

(26) 5a‘+%"a-%a'bﬂ+ﬁ’6—”f+%”' by ea'-ab_%'
=5—2‘£+3 6—7—.

@) #-Neri 2% by #-sas+ G =o'+ 202
+ 2

(28) a’'-b'-c*+d*—2ad+2bc by a-b+c-d=a+b
—c~—d.
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(29) a'+b* +2a'0* -2 ~c*~d* by a*+b-cf-d°
=a*+ b+ +d°
Cases in which the division does not terminate.

(80) i :z=a—az+a.z’—a.r"+a.t‘—&c.

(81) __._li =l+2+2+ 2+ 2+ &e.
1

(32) m=l+2$+3l’+ 42° + 52* + &c.

‘l — - 2 __ 4 __
(33) m—l 2x+ 82" — 42+ 5x2* - &c.
a a a a a
LB aTErTEtE e
z+a a+b ab+d  ab+b®

(85) a:—b=l+ —tat = + &c.

1-8x-25°

=1+4+2+25°+2.42°+2. 4°. 2* + &c.
1—-4x

(86)




CHAPTER II

ALGEBRAIC FRACTIONS, GREATEST COMMON MEASURBE,

INVOLUTION, EVOLUTION.

SECTION 1.
ALGEBRAIC FRACTIONS,

30. Ovun notions of Algebraic fractions are best derived

from those of the ordinary numerical ones. Thus as ;

means that the unit, whatever it may be, has been divided
into 7 parts, of which 5 have been taken: so the fraction
% conveys to the mind the same idea; viz. that the unit
has been divided into b parts, and a of these parts have
been taken. :

This being the case, we have only to extend to Algebra
the rules to which we have been accustomed in Arithmetic,
in order to reduce the algebraic fractions, to others having
the same denominator: to add them together, to find their
difference, product and quotient; before however we do so,
we shall premise a few important propositions.,

31. Since % represents the quotient of a divided by b,

and if we multiply the quotient by the divisor, the result
should be the dividend; -

gxb=a:

25
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or if a fraction be multiplied by its denominator, the pro-
. duct is the numerator.

382. Again, since bx§=a, as we have just seen; there-
fore multiplying both by another quantity m,
mb x % =ma;

a ma

= mb’

i.e. if the numerator and denominator of a fraction be mul-
tiplied by the same quantity, its value remains unaltered.

Cor. Hence also since %: §3 if the numerator and de-

nominator of a fraction be divided by the same quantity,
its value remains unaltered.

Examples. Thus 5?;” x8 =5z,

2y 4y 6y’
ng 16z_8z 4z
28y 14y 7y’

33. To reduce fractions having different denominators
to others having a common denominator,  Multiply each
numerator into all the denominators except its own, for
new numerators, and all the denominators together for a
new denominator.” A

The principle of the rule is this: “if we multiply the
numerator and denominator of a fraction by the same quan-
tity, the value of the fraction remains unaltered:” a pro-
position we have just proved, and instead of following the
strict letter of the rule, we will use this principle in the
following examples.
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(Ex. 1) Reduce 9?' and Z—‘: to fractions having a com-
mon denominator.

9z _9r U _99z

5 5 11 55°

7z Tz 5 _ 3_5_._1:

—_— = — X =

11 11 5 55

99z 35z . .
And 35° 55 are the fractions required.
‘ a b . .
(Ex. 2) Reduce —— and — fractions having a
common denominator.

a _a xa-b_a"—ab
a+b a-b a-b a&-5"'

b b xa+b_a’+ab'
a-b a-b a+db a&-b’

2 __ k]
o l;, _ab? and ‘;,i‘;: are the fractions required.
(Ex. 8.) Let i_Z’ }; and %—f be the fractions.

2a_2ax 7x8 _112a
30 86" 7Tx8 168b°

g__ll‘_ax3bx8_96ab
7 7 4bx8 168b°

 5a_5a_3bx7_105ab
8 8 “8bx7 1685 °

-~ iéﬁ: s 22‘;2 and 11%58‘26 are the fractions reqﬁired.
(Ex. 4.) Reduce %—t s 7—; and‘% , to equivalent fractions

having the same denominator.
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As it is always better to have the fractions in the lowest
terms, we will multiply each fraction by such numbers as
will make the denominator the least common denominator.

We see that 10 is a multiple of 5, and 3x 10 or 80
contains all the denominators. If then we multiply the nu-
merator and denominator of the first fraction by 10, of the
second by 6, and of the third by 3, each will have the
same denominator.

5.‘!: 10 50x 7z 6 _ 42x S8z _ 9z 50z
For = x15=30° 5 *6-30’° i0-30° d 35>
42.1:

S0 and 9.1: are the fractions required.

(Ex. 5) Let 6 and a+: be the fractions;

a+b_a_—o;b Xa+b_a’+2ab+b’
a-b a-b " a+b  a*-b

a-b a-b 2 b a*—2ab+b*

a+b a+b a=b  a-& °
2 2 2
a’-l-a’Qf’;:b and “_—ae,_“-bb;"*b are the equivalent
fractions.

34. Every integral quantity as @ may be reduced to
the form of a fraction by placing unity under it.

Thus -‘lf =a.

And it may be made to have any denominator as b by
multiplying both @ and 1 by b.

ab

Thus _=ab Since 3=

N
35. Hence to reduce a mixed quantity to a fraction,
multiply the integral quantity by the denominator of the
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fraction, and add to this product the numerator of the
fraction, placing the denominator under both for a common
denominator.

® a*+b°

(EX. l.) a+;= a .
52-2 2lx+5x—2 206x-2
(Ex. 2.) 8z+ = 7 ==
@+ a'-b'+a°+b_ 24
(Ex. 8) a+b+ a b= 3 =%

36. So conversely to reduce a fraction to a quantity
which is partly integral and partly fractional, we must ob-
serve what terms of the numerator are divisible by the de-
nominator, and these divided will give the integral part;
the remaining terms of the humerator with the denominator
written under them will be the fractional part.

4°—-8x+8 42°—-8x 3 ]
(Ex. 4'.) rys = 3z +E=x_2+4_z'
8 2 2 2 2 2
(Ex. 5) 2a +6212’b+3b _2a;—a6ab+gb’_ +36+36
b’ ac+bc+ b
(Ex. 6.) a+b+ _—c_—
b a*
(Ex. 7)) 8+ —p=-—y-
(Ex. 8. w_z’_I:Twy:ﬁ’ 2z — 3y+7_"
—2ab+4b 4b®
(Ex. 9.) py 2a+a3.
b @
e, 2 _-.° .
(Ex. 10.) a’+a6+b-ga_b pyy

37. To find the sum and difference of two algebraic
fractions. ’

Let F and & be the fractions.



38 ALGEBRAIC FRACTIONS.

Then let §=z and §=y;

. a=bz and c=dy;

. ad =bdz and cb=bdy;
* ad=cb=bdx+bdy=>5bd.(x+y);
ad=cb

bd

Whence this rule “ Reduce the fractions to others having
the same denominator, and take the sum or difference of
the new numerators.

SoxEY=

Ox

(Ex. 1.) Find the sum of, and difference between, 5 and
23
11°
. their equivalent f'ractu.)ns are = and 55
184z . - 6ax
Sosum = e dxﬁ'er'ence =%
(Ex. 2) Find the sum of and difference between ;%'
b
and 3"
Si a _a'-ab and b _ab+¥*
mee 2+ b - a-b o'-b’
S, 72 ] A2
_a'+b, diﬂ'erence:a_c”)ab b

a®-b6

Soosum = s

. . a+b a-b
(Ex. 8.) Find the difference between a—3 ad Py

a+b a-b (a°+2ab+b")— (a°-2ab+¥)_ 4ab
a-b a+b a-b T &=

38. To find the product of two or more fractions,
¢ Multiply the numerators together for a new numerator,
and the denominators together for a new denominator:” to
prove this,
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a c

- If 3 and 2 be two fractions,
a c
let =% and 5=y

Then a=bz and c=dy;
ac=bd.z.y or dividing by bd,

ac a ¢
5a=T*I=F*g

which proves the truth of the rule just enunciated.

. a+b a—-b
Ex. Find the product of 2526 and 2135"

_ (@+h)@-b) _ a-¥
Product = (a+28)(a+3b) a*+5ab+66"

39. To find the quotient of one fraction by another,
«Invert the divisor and proceed as in multiplication.”

For if §=z and %:y_;
and .. a=dz and c¢=dy;

*. ad=bdz and cb=bdy;

which is the rule.

(Ex. 1) Find the quotient of 73‘5 by 32,
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(Ex. 2) Divide §

b

a a a-b a-b
x =

1
b a  ab’

a . a a-
7T P&

(Ex. 8.) Divide 3 by %,

a 1 _a b_ab_
55818~ %
.. 1 1
(Ex. 4.) Divide = by 3>
1,11 .5 8%
a6 a*1"a"

The Examples 3 and 4 are important, and are con- .

stantly illustrated in Arithmetic, and will be useful here-
after.

~

- 2 2 3
Thus, divide 3 by 3° quotient = 3%7=%
- B L 4
T | 1 : .1 8 8
D1v1de§ by.g. result is 3%7 3

40. The following are simple examples in subtraction
and. addition.

Sa 2c, Ans. 15ad + 4b¢*

(EX. l-) Add '2—6—2 5d ’——lobcd .

. )
(Ex. 2) Add 2%€ o 88f, Ans. 2acg+ VS

b 2g° K 2bg
172* Sy’_ 512" + 40y*
(EX- 8-) Add -5' to _3_3. Ans. le—.
s2 4z o % 1982
(Ex. 4) Add —, 7 and 2 3 Ans. 105
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x x 2t -5z
(Ex. 5-) Add zZ-2 to z_3. Ans, m.

X X -2
(EX- 6) From ) take 1_3. Ans. m.

18ab—2c¢ 12ab
(Ex. 7.) From —2ab  T3ab1ac

Anv 15a b°— 4c°
% 156a°0" + 24abc’

2z+1 v dx+5,

(EX. 8.) From 37+2 take -gm.
Ans. — 22*+10x+6 '
&~ 157 + 222+ 8"
x 2 38
(Ex. 9.) Add -z—+—l', m an m.
A'n 2°+102°+ 282 + 12
S P16z +112+6
2 38 -8
(Ex. 10) Add 2zx+1’° 8x+2 and 215"
Ans 8z+5
" 242+ 4625+ 29x+6°

4]. The following are examples in multiplication and
division.

(Bx. 1) 3 xgz=Fa0= 0

2z+1 2x—-1 4a*-1
(Ex. 2) Rl Sy aa

a+b a a'+ab
a ‘a6 a-b'

(Ex. 8.)

4x°-1 < 21+1_4z’+4z+1
8 2x—-1 8 :

(Ex. 4.)
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2¢°  (a+b)  a+b
(Ex- 5) Z-5* e ~2FE=b)

5z 6z 35
(Ex. 6) 005
-9 x+38 2z-6
Ex7) 27172 ~ezil’
a+b a-b a'+2ab+b*
(Ex- 8) Z—g+ovs=F—2ab+ 5"
1
1+
a+1 a
(Ex.9) 231, 2 4

(Ex. 10.) E+—+___=.__

17 —4bc e 17-—4bc
Ex 11) o tasbrsa < ¥ =t —sabs3’
AW a\ _b
(Ex. 12.) a+b+;-')—.-(a+b+-£) —;.

42. We shall now give a few examples of the Reduc-
tion of Fractions, in which the foregoing rules will be fur-
ther illustrated: and afterwards add some examples for.
Ppractice.

2a + 1 _ 1
&0 a+b a-b"

(Ex. 1.) Find the value of

1 1 a-b a+b —-2b
a+b a-b &-U &b -

First

. %2a 1 1 _ 2a 2 _2@-b_ 2
CE-F a+b a-b F-BF a'-b a'=b* a+bd’

For a*-b'=(a-b)(a+b) and the numerator and deno-
minator are both divisible by a—b. '
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(Ex. 2.) Find the value of 13a;56_7a826_¥.

Since 60 is divisible by 4, 5, and 6, if we multiply
the numerator and denominator of the first fraction by 15,
of the second by 10, and of the third by 12, each will
have 60 for its denominator, and we have

195a—-75b 170a—-20b 36a 195a—75b—(70a—206)—36a

60 60 60 60
_ 195a— 106a—75b+205_ 89a — 55b
- 60 - 60
(Ex. 8.) Find the value of L L

1 -z (l ¥ (-zp’

Multiply both terms of the first fraction by (1 —=z)°, and
of the second by 1—az, we shall then have

2(-2)y+f(1-0)-2"_ z-228+2+28 -2~ -2~

a-zp (1-ay -2
(Ex. 4) Multiply a———byg z.
a—_
a
a x
_+_
x a
a!
——x
X
+z——i
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(Ex. 5.) Multiply «*+2 + %, by =+ 1

;u
L, 1
i z’+2+?
1
T+=
&
2 +2x+ =
+ +—+l
I',

- a b a b
(Ex. 6.) Divide a—?>+a+bbya—b—a+b'

a b a+ab ab-0* a*+2ab-0*

Py S prw Sl g S pay © P oy & B

a b _a+ab ab-b" a*+b"
a-b a+b @-8 -6 -8’

a*+2ab—b"_ a'-b' o +2ab-b

T quotlent = e X PR T T @+ B

(Ex. 7.) a*-b 15a°

——5—xa—+—b=3a(a—6).
(Br.g) 230, 22f_,
) 8a—4b 2a-b-c 15a-4c 85a-—-20b
(Ex‘g‘) 7 - 3 + 12 = 24 .
a b a ¢ ace+bc+ath+ctd
(Ex.lO.) Z+E+;+Z= abe .
1 1 1 bc—ac+ab
) (Ex. ll.) ;—z-l-;:a—bc
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a z _a'+a’

(Ex. 12 a+z a-zxz a-z
a* +b* a b 2a
(Ex-18) oom+aigtass=a+rh
(Ex. 14.)
a+b+a’—b’ a'+b' a'*+2ah- 2a’b’+2ab'+b‘
a-b a@+b @b a* -
a-b c-a b-c
(Ex. 15.) ab T ac T =0
(Ex.16) ——— -2 9 __ o

2@+1) z+2 2@+8) P+62+112+6

2*-a® .x—a .z’+a.r:+a
(Ex. 17.) P+a® z+a r-az+a

- (a+b).z+ab z+b

(Ex. 18,) - (a-b)z—abd e A
2x 2x 8a\ 42° 3a*
(Ex’lg) ( +2.r)——a—'-+4+4-_.r—"

(Ex. 20.) (b,+s .+3 +b') (g b) —+2+

SECTION II.

GREATEST COMMON MEASURE.

43. WHEN a number divides each of twt; other num

bers without leaving a remainder, it is said to be a common
measure of the two, and to be the greatest when no num-
ber greater than itself is contained in both of the numbers.

Thus of the numbers 36 and 48, 4 is said to be a com-

mon measure, but 12 is the greatest common measure, since
no number greater than 12 will divide both 86 and 48.

.
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44. And as numbers, so algebraical terms and expres-
sions may have greatest common measures; and the method
by which these are found differs but little from that which
is used in finding the greatest common measure of numbers.

When both of the algebraical quantities are simple terms,
the greatest common measure is easily discovered.

Thus if 6a®bc and 2ac’d be two algebraic terms, we
see that 2ac will divide both, and as no other combina-
tion of letters will, therefore 2ac is the greatest divisor.
And again, to find the greatest common measure of 82 a*bc
and 56 a*b°d: we first observe that 8 and 8 only will di-
vide the numerical coefficients, and then that 4* and b are
found in both terms: hence the greatest common measure
is 8a%b.

45. The chief object we have in finding the greatest
common measure is to reduce fractions to their lowest terms.
In the following simple examples we strike out the numeri-
cal and literal factors which are obviously common to both
numerator and denominator, and the fraction is reduced
without noticing the value of the greatest common divisor.

6a*bc 2a°bc 2a

Thus, o 5= 3abc ~ 3¢’

A 12a2* _ 8 . 9ab' _3b
gain > 16a°2 4ax’ 15abc ~ 5¢°

5a2* ax d32aw’£ 2.1:3(’

300z 68’ *C 1642z ~ as
52ab*z® _4b’ an 85az°y*s" 17ys
18a"0°s*  ax’ 85a°x°ys Tax’
158°c* —254" _ 3ac’—5a" . az+d a+zx
5a°bc+ 55a°6°  bc+11a°b*’ 8br—cx 3b-c’

14a*~"T7ab _Ta an 12a'2" +2a2® _2ax"

10ac—5bc  5¢’ 18ab’z + 8b°2*  8b°°
5a°+ 5ax _ Sa_ and -2 a’+a.t+.1.-'
-7 a+z’ (a2~ a-=




GREATEST COMMON MEASURE. 4'7

46. We shall now investigate the truth of the rule
which is given in all books of arithmetic, for finding the
greatest common measure of two numbers a and .

- And to do so we must prove the two following propo-
sitions:

(1) If any number as z measures a it will measure any
multiple of a: for if a=nx,” therefore ma=mnz, or if z
be contained in @, n times, it is contained in ma, mn times.

(2) If x measure both a and b it will measure a=b.

For if a=mz and b=nzx, axb=ma=nr=(m=n).z,
i.e. x is contained in @%b, m & n times.

These being premised, let b6 be <a; divide @ by & and
let the quotient be p and the remainder ¢; again divide b
by ¢, and let the quotient be ¢ and the remainder d, then
divide ¢ by d, let the quotient be r, and let there be no
remainder. This process may be thus exhibited.

6) a(p
pbd
c)b(g
Lol
d) c(r
dr

(]

Then by the principle of division,

a=pb+ec,
b=gc+d,
c=rd.

Whence we see that d, the last d'ivisor, measures ¢, there-
fore gc, and therefore gc+d, i.e. b, therefore pb and pb +c,
or a, hence d measures both 4 and 6. Also d is the great-
est common measure:-for let D be the greatest.
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Then D measures ¢ and b, and therefore @ and pb, and
therefore a — pb or ¢, therefore gc, and therefore b — qc, or d,
therefore the greatest common measure of a and b measure
d: but d measures a and b, therefore d is that greatest
common measure or D =d: for no number greater than itself
can divide d.

47. Again, to find the greatest common measure of
three numbers, a, b, c.

Let D be the greétest common measure of ¢ and b,

and E  ...cevitiieicerccnnenninncnnes of D and c.

For every common measure of & and & measures D,
therefore E measures a and b, and it is the greatest that
measures D and c, therefore it is the greatest which mea-
sures a, b, c.

48. And finally, to reduce fractions to their lowest terms,
we must divide the numerator and denominator by their
greatest common measure, and the fraction will be in its
lowest terms.

For let a and & be the numerator and denominator of a
fraction and let D be their greatest common measure:

and let a=pD and b=¢qD;

. g_p.D_e
KX b—q—.D_q'

and p and ¢ have no common measure, therefore {;— is the

fraction, g— in'its lowest terms: this article applies both to
numbers and to algebraical quantities.
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EXAMPLES.

49. Find the greatest common measure of 365 and 320.

320) 365 (1
320

45)3820(7
815

5)45(9
45

» ~

—

. 5 is the greatest common measure.

Find the greatest common measure of 114, 102 and 822. )
102) 114 (1
102

T 12)102 (8
06-
T6)12(2
12

—

*

and 6 is the greatest common measure of 102 and 114.

6) 822

—

137

. 6 is the greatest common measure of 102, 114 and 822.
483 1020 %631 8808 .
Exs. Red — — —7 -
X uce oo 1596° 36415 and 20303 to their low.
est terms.
ne 21, 85 18 2
" 25° 153° 35° 7°
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50. Next to find the greatest common measure of two
algebraical expressions.

Let A and B be two algebraical quantities arranged ac-
cording to the powers of some one letter beginning with
the highest, and suppose the highest power in B not to ex-
ceed the highest power in 4.

Make B the divisor, P the quotient, and Cc the re-
mainder, where C is a compound term and ¢ a simple factor,
obviously not contained in B.

Again, make B the dividend and C the divisor, Q the
quotient and Dd the remainder, where D is a compound
quantity, and d a simple factor, not contained in C.

Lastly, let C be the dividend, D the divisor, R the quo-
tient, and suppose that there is no remainder, then D will
be the greatest common measure required. The work may
be written down thus:

B) A (P
PB
Cc

C)B(Q
Qc
Dd

D) C(R
RD

(0

We see that :
. C=RD,

B=QC+ Dd,
" A=PB+ Cc;

Hence D will measure C; .. QC; .. QC + Dd, and .. B;
»~ PB, and .. PB+Cc or 4, i.e. D is a factor of 4 and
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B; also the greatest common measure of 4 and B will mea-
gure 4 and B, and . A-~PB or Cc¢; . B- QC or Dd,
and .~ D; .. D must be the greatest common measure,

51. The following example will illustrate the pfocesé.'
Find the greatest common divisor of a*—3ab+ 4b", and
a® —a*b +3ab* - 80"

(Ex.1.) Here A=a*—a'b+8ab'—38*; B=0a"-5ab+45%;
a*- 5ab+4b’)a’—a’b+3ab’—36’(a+46=P
a® - 5a°h + 4ab®

4a%b—ab® - 86°
4a%h - 20ab® + 166%

19ab* - 195° = Cec.

But 19ab® - 195° = 19%° (a — b) and as neither 19 nor &*
will divide either 4 or B, a—b will be the common mea-
sure if there be one; now divide B by a—b5:

a-b)a'-5ab+4b' (a—4b
a*~ab

—4ab + 45°
—4ab +4b*

L ] *
and .. a—b is the greatest common measure sought.

52. In the application of the rule just given it is fre-
quently found convenient to multiply one of the terms A
or B by a number which is not a factor of the other:
this however will not produce any effect upon the greatest
common divisor: For if D be the greatest common divisor

3—2
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of A and B, so that A=pD and B=gD, and if B be
multiplied by n whence nB=nqD; D is still the greatest
common measure of 4 and n.B, so long as n is not a factor
of 4. )

(Ex. 2.) Find the greatest common measure of 7a' —28ad
+66% and 5a°—184°b + 11ad* — 60"

The former term is obvionsly the (iivisor, and the first
term of the quotient would be 57“; to avoid therefore this
fraction we shall multiply the dividem-l by 7, thus

5a®— 18a°b + 11qb* - 60
7

74 —-28ab + 6b°) 85a° — 1264a%b + T7ab* — 425° (5a
85a° - 1154%b + 30ab*

—11a°b + 47ab* - 425°
Multiply by 7, 7

—~T7a%b + 829ab* - 2045° (-~ 115
—77a%6 + 253ab*— 665°

76ab* — 228%*
or 765° (a - 8b).
and as neither 76 nor b* are divisoi's of the quantities,: we
try a—38d,
a—3b)7a*—28ab +6b*(7a—-2b
7a*—-21abd
—2ab + 6b*
-2ab +68°

* *
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53. When 1 simple term divides either the numerator
or the denominator of a fraction, it may be omitted in the
process: but when it divides both, it -must be reckoned

part of the common measure although it be left out when

the division is performed.
(Ex. 8.) Find the greatest common measure of

15a°+ 104*b + 44°b° + 6a* b*— 3a bt
12ab® + 88a*H® + 16ad* — 105

Here a is a common factor of the upper, and 25° of the
lower line; omitting them, the quantities become, being ar-
ranged as divisor and dividend,

6a*+ 19a’6+8ab’—5b’)l5a‘+ 1045+ 4a*b*+6ab°— 3b*
‘ 2

80a*+20a’b +8a"h*+ 12ab°-6b*(5a
30a*+95a%b+40a*b*~25ab®

~75a°6-32a°5°+37a b*-6b*
2

~150a"5-640""+T4ab*~ 1264255
—1504%b—475a""~200ab*+125 b*

411a°6°4+274ab°-1875*

or, 1875 (3a*+2ab—b%).

8a*+2ab - b’)6a’+ 194°b + 8ab* - 58*(2a + 56
6a*+ 4a*b—-2ab?

15a*b + 10abd® - 5b6°
15a°b + 10ab®— 55

* * *

* 8a"+2ab—b" is the greatest common measure required.
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(Ex. 4.) Find the same for the quantities 24°+8a2*+x
and 2*—2*-22z.

Here z divides both guantities and we therefore find the
common measure of 22°+8x+1, and 2*~x—2 which by
the preceding method is, x+ 1, and therefore the complete
common measure is z*+ .

- THE LEAST COMMON MULTIPLE OF TWQ QUANTITIES.

54. A common multiple of two numbers is that num-
ber which is divided by both; and the least common mul-
tiple that least number which is so divisible.

Thus- 48 is a common multiple of 8 and 12, for both 8
and 12 will measure 48, and 24 is the least common mul-
tiple, since there is no number less than it, which is di-
visible both by 8 and 12: and the quotients arising from
the division of 24 by 8 and 12 are 8 and 2, which have no
common divisor except unity.

55. But to find the least common multiple of any two
quantities @ and b: let D be their greatest common measure,
and let a=pD and d=gD where p and ¢ have no com-
mon diviser.

Then since pgD=pD xq or ¢Dxp,

ie. =axgq or bxp;

therefore pgD is divisible by a and b respectively, and
the quotients g and p which arise from these divisions, have
no common divisor; therefore pqD is the least common
multiple of 4 and b.
_pDxqgD _axb

But qu ——-r = D
or the least comman multiple of two quantities is equal to
the product of the quantities, divided by their greatest com-
mon messure.
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56. Next to find the least common multiple of three
quantities a, b, c. )

Let m be the least common multiple of a and 4, and
M that of m and c; then M will be the least common mul-
tiple required. For since m and therefore a and & measure
M, and M is the least multiple of m and ¢, it is the least
* quantity which can be measured by a, b, and c. In the
same manner may the least common multiple of a greater
number of quantities be found.

(Ex. 1.) Find the least common multiple of 24 and 16.

Here 8 is the greatest common measure =D;

m=24; 16 _ 5, 16 =48.

(-Ex. 2.) Find M, for 12, 18 and 20,
D for 12 and 18 is 6;

m_12x18
T 6

and D for 86 and 20 is 4;
_ 86 x20
- 4

=2 x 18 =36,

M =9x20=180;

. 180 is the least multiple of 12, 18, and 20.

EXAMPLES.

(1) The greatest common measure of z°+2z—3 and
2"+ 5x+6 is z+8.

(@) Of 2*~8x+15 and 2*+2x—15 is 2-8.
' (8) Of a*—2ax+2" and a*—2° is a—u.
(4) Of a*+2® and &*+2ax+2* is a+a.
(5) Of 2*—22* and Fodz+d s z-2.
(6) Of 2*~62*+112+6 and 2*+42"+2-6 is - 1.
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(7) Of 82°-22z+32 and 2 112"+ 322 — 28 is 2~ 2.
(8) Of a*~(a—bd)z—ab and 2°-(a+b)x+abis z—a.

(9) Of a2*-9a°*+292*—39x+18 and 4a°—272%+ 582
-89 is »-8.

(10) Of 2*-a* and 2*+b2°—a*z—a*b is 2°—-a'.
(11) Of 82°—38x+119 and 2°— 192"+ 119z —245 is
z-17. : '
(12) Of 2*+2°y+2y+y* and 2*—y* is 2*+y.
(18) Of 2#*+a°y*+2°y+y" and a*-y* is 2*+y"
(14) Of 92°+ 582" 9x—18 and z*+ 11z + 380 is z+6.
(15) Of 22*+a2°—8z+5 and 72'—122+5 is - 1.
(16) Of 2z'—42*+82*—12x+6 and 8a*—-32°—62
+9z—-8 is (z—1)%
a7 Of 20z*+2*—~1 and 252*+5z°—2~1 is 52"~ 1.
(18) Ot'ac+bd+ad+bcandaf+26.z'+2a.z+bfisa+b.‘
(19) Of a*+b°+c*+2ab+2ac+2bc and o*-b'-¢*
2bc is a+b+ec.

(20) Of 2*—(2a+b)a*+(2ab+a’)z—a's and 382
~(4a+2b)x+2ab+a’ is z—a.

(21) Of 8a*— a®h*— 2b* and 10a* + 154°b — 104°6*- 15a8*
is a*—b"

(22) Ofa‘*—az*+(b—1)a*+ax—band z*~ba*+(a-1)2"
+bz-ais 2*—1.

(28) The least common multiple of 24, 40 and 3ab is
12a%b. :

(24) Of 8a*, 124 and 20a* is 1204"



(25)
(6)

@)
(28)
(29)
(0)
(81)
(32)
s9)

(84)
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Of a +x, a*~2% and (a—z)* is a® - a*z— ax*+ 2"

*+2x—38 i o1
F 5z 6 reduced to its loweft terms = ——..

F-9z+20 x-4
£+62—-55 z+11°

92°+532°—9z—18 Qa'—z—3
2£+11z+30 = z+5

6ac+10bc+9ad+15bd _8a+5b
6c*+9cd—2c—8d =~ 8c-—1

22'+38z+1_2zx+1
F—z-2  x-2

a*—38ab+ac+20°-2bc a-—-2b

a@—-b"+2bc—-¢* “a+b-¢
2+a'y+2ly+yt 2+y
-yt T2y

v3.z:'—8.1:’_y+xy’—y‘_8.r‘+y’

4" —zy+3y*  4z+3y’

ab+2a*—8b°'-4bc—ac~c' a-b-c
9ac+2a°—5ab+4c°+ 8bc—128° a-4b+4c’

SECTION IIIL

INVOLUTION AND EVOLUTION.

INVOLUTION.

57. InvoLuTIoN is the ﬁh_ding of powers of a number
or quantity, or is the method by which the square, cube,
foutth power, &c. of any quantity is to be found.

3—5
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We have already seen that the power of any simple
term is expressed by writing the number of the power

above it, which number is called the index: thus

a’, a®, a', at...... a" respectively express the second, third,
fourth, fifth, and »™ powers of a.

And to find the cube of &* we write (a°)%,
but (a*)*=a* x4’ xa*=a’®=a**;
i.e. we multiply the index 2 by 3.
So to find the m™ power of a* we write (a™)".
But (a™)"=a"x a™ x a™ xa"......ta » terms,
=a™*"*" + &c, to n terms,

= a-I.

Hence we have this rule, to find the »™ power of any
quantity we must multiply the index of that quantity by .

Hence, :
the square of a' = (a%)* = a®,

the fourth power of a*b® = (a*b*)* = a®b",
the cube of 3a°bc® = 27a'b'*c%

68. Hence may we find the simplest form of such an
expression as {(a™)"}*.

For (a™)=a""; . {@)*y = (a""y=a""?;

or in examples of this description the new index is equal

to the product of the separate indices.
(Ex. 1.) {(@*)*}* = a®™*** = a™.

(Ex. 2.) {(% '}’_= @b

cll

59. When the quantity to be involved is negative, the
result will be negative when the index is an odd numbes,
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and positive when it is even. For the product of an odd
number of negative quantities is negative; but of an even
number it is positive.

Thus  (-a)*=-a® but (—a)'=(—a)*x(~a)’=a
And {aYp=(-ay=a",
but  {(-a’)}* =(-a%)=—a".
60. Next to find the powers of a binomial.
(1) (a+d)y=(a+b)x(a+bd)=a*+2ab+¥,
by which we see that the square of any two terms is equal

to the sum of the squares of the two terms together with
twice the product of the two terms.

Thus if a=7 and 4=6 or a+b=183.
Then .
(a+B) or (18 =T +2x 7 x 6+ 6"=49 + 84 + 86 =169.

And by this formula may the squares of numbers often
be found in a very ‘convenient manner: thus if it be
required to find the square of 79, which may be written
70 +9: then

(70+9)* = 70’ +2x 70 x 9+ 9*=4900+ 1260 + 81 = 6241.

Also since (a+ 1)’=a"+2a+1; we may, having given
the square of one number as a, find that of the next suc-
ceeding or a+1, by adding 2e+1- to a°, and so we may
form a table of squares.

Then as  10° = 100;
~ (1041 =100+2. 10 +1 =121,
(ll+1)’=f21+2xll+l=l“,
. (12+1) =144+ 2x12+1 = 169,
(13+1)’-169+2x13+1 196 ;

and we may readily either by multlphcatmn or by the rule
jost enunciated, prove that;
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o (@+2b)=a+4ab+40,

Rz +8y)y =42"+122y +9y",
2 8
<x+§) =z'+pa:+l’-,

(g+§)'=§+£g+%’.

Also (a—b)'=(a—-20)(a—b)=a"-2ab +b* or the square
of the difference of two terms equals the sum of the squares
of the two terms diminished by twice their product;

< (2a—-5b)"=4a"-20ab +250°;

o (6z-Ty) = 862" - 242y + 49",
(x—g) =.1:’—p.t+%’.

61. Hence also may we find the square of a binomial
a+b+c, for considering b+c as one quantity we have by
the rule, placing a vinculum over b+,

(a+b+cyf=a"+2a(b+c)+ (b+c)
=a*+2ab+2ac+b*+2bc+c*

=a*+b*+c*+2ab+2ac+2be.

To take a numerical example of this formula. Let the
square of 432 be required:

the number must be written 400 + 80 + 2,
and here a=400, =380, and c=2;
o (482)" = (400)" + (80)* +2° + 2 x 400 x 80 + 2 x 400 x 2 + 2

x30x2= 160000+900+4-&;24000+ 1600 + 120 = 186624
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. 62. So also as @ +b +c +d may be written a +b+5 +c¢;

e (@+brctdy¥=(a+b)f+2a+b.c+d+c+dl
but (a +b)*=a"+2ab +25%,
2(@+b)(c+d)=2ac+2ad+2bc+2bd,
(c+d)y'=c"+2cd+d%;
s @+b+c+d)f=a"+b"+c* +d'+2ab+2ac+2ad+2bc
+2bd+2cd;
or the square of the sum of four quantities a, b, c, d, is
equal to the sum of the squares of the four quantities + the
product of 2a, into all the letters that follow a, + the pro-
duct of 25 into the letters that follow 5, + 2¢ into d. It
is however better for the beginner to verify the last two re-

sults by the actual multiplication of a+b+c into a+b+c;
and of a+b+c+d into a+b+c+d.

63. The cube of (2+b) or (2+5)" may be found by
multiplying (a + b) into itself ¢mice.
@+8)'=(a+b).(a+B).(a+b)=(a"+2ab+5% (a+5)
=a®+ 8a*b + 3ab®+ %
And (a-b)=a’—8a°b+8ab* b
The student should render himself familiar with these
equivalent expressions for (a +5)°, and (a—b)"
64. Ordinary multiplication will lead to the following
results; namely,
(@ +b)*=a*+4a°b +6a"b" + 4ab" + b*,
(a-b)=a*—4a"b+6a*d* — 4abd®+ b,
(a+b)=a"+5a'6+10a"*+ 10a°6" + 5ab* + 5",
(a-b)*=a*—5a*b+10a*0*~104a*6"+ 5ab* - b*,
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65. As additional examples of involution, prove that

Rz +1)=82"+ 122° + 62+ 1.
(22° — 8y°)* = 82°— 86z*y" + 545" y* —27y°.
(2a +8b)*=164*+964°0 +2164°b" + 216ab® + 815°
(5 42)¢ = 625 — 2000 + 24002 — 12802° + 256 2%
(8ac— 2bd)°=243a°c*~810a*c*bd + 108040°c"b*d*— 720a°c*b°d”
+240ach*d*— 82b°d".

EVOLUTION.

66. Evolution means the extraction of roots; and is con-
sequently the inverse of Involution.

The rules which it gives for finding the square, cube or
n'h roots of any quantity as a, are derived from the methods
by which the second, third, &c. powers of a are obtained.

Thus . axa=a*; .. a is the square root of a°.
And ' axaxa=a*; .. a is the cube root of a®
And . a®*xa®=a*; .. a®is the square root of a*.
- a*x a*xa*=a"; ... a*is the cube root of a™.
And thus we see, that to find the square” root of any
power of & we must divide the index of 4 by 2, to find the
cube root of any power, the index must be divided by 3,

and so on: and to find the nth root we must divide the
index by n: for to shew the truth of this last assertion:

i a®*xa™xa™ x...to & terms =a™";
KX 'a""=a"=a7.

Ex. Thus 4a3°0°C = 2a%bc,
J27a%8® = 3a%b,

N‘/l()'a‘b' _ 2ab*
e &
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67. Had we then to find' the square root of the simple
power of a, since a=a', we should have by the application

of the foregoing rule, the square root of 4 represented by ab
. in the same manner ./a, might be written a* and the fourth
root of a, &f.

So also the cube root of a’, may be put a,

and the fourth reot of a® may be written at-

These remarks are very important, and will if fully un~
derstood be exceedingly useful hereafter.

68. But it may be said that since the defmition of a
square root, as of a, implies that it is a quantity which
multiplied by itself should produce @; how can we say that

atxat=a?
We have already seen that when m and = are integers
a™ x " may be written a™*", or that the index of the pro-

duct of the powers of the same quantity is found by adding
together the indices of the factors.

Let us assume this rule to be true, when m and # are
not integers but fractions, and see whether the result we ar-
rive at through this assumption, be true or false.

To do so let us take the instance before us.
Now if a? truly represent Ja; .. a? x a? should equal a.
But by the rule of indices a? x ad=attiog=g;
.. the rule qf indices is in this case correct;
and at the same time we see that ,/a may be truly written ab.
And similarly since by the same rule of indices, ‘

1 1 1 8
asxaExgi=ai=a;
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.

and that by the definition of a cube root,
JaxJax Ja=a;
. v/a and ai may each represent the cube root of a.
And hence the third root of a* and th;a fifth root of a® may '
be written ai and af respectively.

And hence also, whenever we meet with a quantity as
a having a fractional index, we must remember that the
numerator of the fraction expresses the power to which the
quantity is to be raised, and the denominator the root which
is to be extracted.

Thus a* is to be understood as meaning the n'® root
of the m™ power of a.

69. It will greatly aid our full comprehension of these
things if we compute some numerical expressions.

Thus, (4)}=(48)°=(J/3)’=2"=8,
and (8)=(8%)*=(VB)*=2"=352,
(32)3=(32§)‘=(f/§i‘=2‘_—. 16.
Also, (27)'=19683: and (625)} =3125.
70. These remarks upon indices may make this a it

place to explain the meaning of such a term as a™, i. e.
a quantity with a negative index.

In fact a™ is another method of writing 71_: and this
being so we ought to have a™ xa™=1.
But if the law of indices be universally true
a"xa"=ag"""=a’

and therefore a° ought to be equal to 1.
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Now by the rule of division for powers of the same letter
. - :

—=a""".

. a

a
Let m=n; .. a‘+a'=a1=1;

but a™-"™ becomes a°; ... a’=1.

Hence, a® xa™=1, and .- aﬂ:&l;'

71. We may now computé expressions of the following
kind. '
- (Bx. 1) 44~ x 5a™° x 2a* x a® = 4027 = 404",

For this is the same as writing

4 5 4 6 __ 40a’°__
ajxa—jxfza Xa'=—3 =40d°
(Ex. 2) 2a°x8a*x4a*x5a°= ]goa—4=1%°.
(Ex. 8) —8a°b'c x 5a*bc=—154-b"c* = l«'f:;.

(Ex. 4) 18a4°0° x 4a°b” 8ab* _ 8a
* 7c7d° " 9fd®  Ted  Tbed’

72. And here we may remark that as
+ax+a=a'and ~ax-aalso=a';
o Ja'=aor-a.
But as +ax+ax+¢;=a’and—ax-ax—a=-a';
. N@®=aand N =—d’=-a,
go also Na®=+a* or —a',

But v/a®° = a® and not also — a®;
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_i.e. the square root of a number is either positive or ne-
gative, but the cube root of a positive number is + and of
a negative number is —.

A negative. number has no square root; for no number
multiplied by itself can give a negative result; and such a

term as ,/—9 or ,/—a is called an impossible root.

EXTRACTION OF THE SQUARE ROOT OF COMPOUND
ALGEBRAICAL QUANTITIES.

73. The extraction of the square root of a compound
quantity is the finding of .that factor which multiplied by
itself will produce the original quantity.

Thus as we have already' seen that
a*+2ab+ b =(a+b)=(a+b)(a+b);
o Ja*+2ab +.b° is a +b.

We must therefore have some method by which the factor
a +b may be derived from o®+2ab + 5"

Now the trinomial may be written a® + (2a + 5)5: if there-
fore we can derive a from a°, and subtracting a°. divide
the remainder by 2a + b, the thing is done. ’

But as ,/a* is a, a may be found by extracting the
square root of the first term: put therefore a by itself as
the first term of the root, then take a* from a®+ 2ab + b%,
and the remainder is 2ab +*: now to derive 4, double the
first term of the root, i. e. take 2a: divide 2ab by 2a, the
quotient is b, the quantity required; write this after a with
its proper sign, and a +& is the root required; but to be
certain that & is the proper quantity, add b to 2a, and
writing 2a + b as a divisor, multiply it by b and subtract
the product 2ab +b* from the first remainder, and the re-
sult is nothing; the process is in general performed thus,
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a'+2ab+b*(a+b
a’
2a+b)2ab + b
2ab+b*
* *

The principle of the rule is obviously this; we subtract,
and here at two steps, from a*+ 2ab + b* the square of a+b.

(Ex. 1.) Extract the square root of 4z*+ 4a*a®+ a*
 4a'+4a’2*+at (22" + o
4z*
42'+a*) 4a°2* + a*
4a°2* + a*

* *
- (Ex. 2.) 81+36a+4a’(9+2¢a
81

18 +2a ) 86a + 4a*
86a + 4a*

* »

1 1
(Ex. 3.) 252'-5z+7 (51 -3

252*
: 1 1
lOz—E) —5x+z
1
—5-"-"*';
» »

Here —5z+ 10.t=—5" 1

10z 2
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9a* b (8a b
(Ex. 4.) T_ab+§ 23
L
4
bl
8a——3 —ab+§
bl
—ab+—
ab+g
» *

74. When there is a remainder after the second sub-
traction, it is a proof either that the root consists of more
than two terms, or that there is no factor which will answer
the requisite conditions; in either case we continue the process,
as the following examples will shew.

(Ex. 5) a'+2ab—2ac—2bc+b'+c*(a+b—c

a
2a+b) 2ab—-2ac—2bc +b*+¢*
2ab°  +¥
2a+2b-c) —2ac—2bc+c*
—2ac—2bc+c*
* * »

Observe, that to obtain the third simple root —¢, we
double a +b, for a divisor: but we only divide - 2ac, by 2a.

(Ex. 6.) a*+2a°+8a"+2a+1(a"+a+1

a‘

2a'+a) 2a°+38a*+2a+1
24+ a’

2a*+2a+1) 24°+2a+1
2d"+2a+1

* * *
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(Ex. 7) 492"~ 282~ 174"+ 62 + 3 (w— 203

49x*
142°—2x) —282°— 172"
—282°+ 4a°
8 ) 9
14-:’—4-3—5)—.211%6:4-;
9
-—21.z’+6a:+z
» % 0

In the two following examples,v the root cannot be ex-
actly found.

.

(Ex. 8) Find /77 and J&"—2.
\ x 2 2
1+3<1+§—?+E—&.&
1

2
2+-§)3
.z+"’
4
. x*
z”-%')__;
A
4 8 64
@ P\ QL 2
2+z—z+-13)—8——a
A S
8 16 64 256
52 2 af

6483 256



x x x*
(Ex. 9.) a"-.r (a—é-‘;—w—m;-&c.
al
2a—ﬁ)—x
a
2
T
2a z_= —i
a EE‘) ad’
x* x° x*
14" 8a*  Gda

z* N x* . K +_zt_
164° " 64a® " 256a"

5 8

524 x x
“64a°  64a® 256a™

75. From the square root we proceed to the cube root,
and as in the rule given for finding the former, we derive
the rule from involution, so do we in the cube root.

Now (a+0b)y’=a"+8ab + 3ab’+b%;
* a+b=,/da®+8a +38ab’+b°;
and .. a+b must be obtained from a®+ 3a*b + 3ab® + &%

Now a is found from @*; - .J@®=a; and to find b we
must divide 34}, by 8a°, or by 38 times the square of the
first term of the root, also since

3a’b + 3ab* + b*=(8a* + 8ab + b°)b ;
if we write 3a4®+ 8ab + b for a divisor and multiply it by b,
the product will be equal to the remainder, which arises

from subtracting @® from the original cube; the process may
be thus exhibited :
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(Ex. 1) &°+384a’6+8ab’+b*(a+b

al

3a*+38ab +b°) 3a°b + 3ab® + b*
8ab + 8ab*+ b

* * *

(Ex. 2)) a@*+12a°+48a+64(a+4

a8

8a*+12a +16) 12a*+ 48a + 64
12a’+ 48a + 64

* » *

124*

For here b = 37 =4; .. 8ab=12a, gnd b*=16.

(Ex. 8) a°—6a°+15a*~20a"+154°—6a+1(a’-2a+1
€

a

8a*~6a’+ 44°) — 6a°+ 15a* - 20a®
—6a®+ 12a* - 8a®

3a*-12a*+ 15a°*-6a+1)38a*—-12a°+ 154°- 6a + 1
8a*—12a*+15a'-6a+1

* * * * *

&

In the first division b =— g—:, ——2a and the divisor is
8a*+3a*x —2a + (- 2a)’= 8a*- 6a° + 44"

In the second division b= g——:: =1 and the divisor is

3(a*-2a)’+ 8(a*-2a) x1+1=384"~124’+ 12a°+3a* 64 +1.
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76. In a similar manner may the roots of higher powers
be found, but in general other processes are used, and we
shall not proceed further, except to remark, that as the fourth
power is the square of the square, i.e. (a + b)' = {(a + b)'}* we
may find the fourth root of a quantity, by first extracting
the square root and then the square root-of that root.

77. The rule for extracting the square and cube root
of numbers is founded upon the preceding algebraical in-
vestigations, an example will shew this.

Extract the square root of 582169, or what is the same
thing 580000 + 21000 + 69.

‘The nearest root is 700.  *

a b ¢
582169 (700 + 60 + 3
a® = 490000 .

1200+ 60) 92169
87600

2a 2b c
1400 + 120 + 8) 4569
4569

*

«. 768 is the root.

We ordinarily in books of arithmetic proceed thus:
582169 (763
49 .
146) 921
876

——

1528) 4569
4569
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Extract the cube root of 884736.

a b
884736 (90 + 6
729000

84’ = 24300 ) 155736

145800 = 3a'b
9720 = 3ab*
216 = b*

155736 -

4 EXAMPLES,
(1) The square root of 64a*b°c*=8a'bc, of 61009a°6°c*
=247a*8%", of %a“ b =darporen
(2) The cube root of 125a°b°=5ab: '
of 880017a° b c**="78a®b%c*.

(8) 162"+ 40z +25 =4z +5, and ,/256a*+ 96a°+ 9
=16a"+ 3.

(4) J@+4ab+at)=a+2b.
'(5) J(@a® + 12ab + 9b%) = 2a + 3b.
(6) (- 324°z*+256a%) = z* - 164"
M J@-z+}=2-1%

(8) a’—pz+%’=z—§.

9a* 4bY\ 84 b
(9) (T+ 2a°b*+ ?)= —2—+ 3—-
4
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(10) ,\/(5-+2+b'> 3+_

45’ a_ 2%
(12) \/b' 3¢ 90’ =% s¢°
18) J(@+b+c*+2ab+2ac+2bc)=a+b+e.

(14) /(94" - 12ab + 24ac - 16bc + 45+ 16c¢*= 8a-25
+ 4c.

. 8b* bt
(15) (4a—-120b+ab’+96’———2— 16 2a—-sbv
+-;.
1 8624 = 362+ 172" — 42+ 2) =62~ 8z + 2.
9 8
an (z‘+8::'+24+£+32 .r'+4+%.

(18) (9a*~6ab + 30ac +6ad + b* - 10bc — 2bd +25¢*
+10cd +d*)=8a-b+5c+d.

(19) The cube root of 1+6z+122%+8°=1+2x.
(20) '[‘(Ba' — 844’z + 204aa2" - 8432°)=2a - Tx.
(21) (@’ +24a%b +192ab*+ 5128%) =a + 8b.

(22) W(a®+8a’b + 8a’c + 8ab* + Gabe + 8ac®+b° + 8b%c

+8b+*)=a+b+ec

(a8 JT=w=1-5-F- 5~ o =se

2@ x* 52°
(84) Na'-a'=a- 0= 5T 164 12847

L # P 5P
(@5) Ja+d=a+5- gt 55 ~Tasa T &



CHAPTER IIL

BQUATIONS.

78. A priNcIPAL object of Algebra, is the determinatioen
of quantities which were before unknown, by means of quan-
tities which are known. To effect this, the conditions of the
questions must be expressed in algebraic terms; and the
equality between any two such expressions, is termed an
equation. The two algebraical expressions are called mem-
bers of the equation :

Thus if 22+ 4=z + 10; such an equality is an equation,
and 22+ 4 and 2+ 10 are the members of the equation.

To solve an equation is, to find the value or values of
the unknown quantity or quantities, which cause the equality
between its members; thus, since 6 put for z, will make
22+ 4, and z + 10 equal to each other, the finding of z=06
is called the solution of the equation 2z + 4 = + 10.

- 79. Equations may be divided into three classes—
Identical, Formulaic and Algebraic.

Identical equations are those in which the two members
are evidently the same.

Thus 18=12+6 and 2(r+1)=2x+2 are identical
equations.

Formulaic are those in which the second member is only
the expanded expression of the first, or which may be de-
rived from it by direct algebraic processes.

Thus (a + £)'=a"+2ax + 2,
a'+2

a'—az+ ',
a+x

sre formulaic equations, and may be verified by giving any
nambers whatever to # and .
4—2
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Algebraic equations, are those in which the equality is
only true for fixed values of the required or unknown quan-
tity; thus 2z+4=2+ 10, which is only true for z=6, is
an equation of this kind: and it is in fact to equalities of
this description that the name equation is usually applied.
Our attention will at present be directed solely to equations
of this class. :

80. Algebraic equations are also divided into literal and
numerical equations: in the former the coefficients are let-
ters, in the latter, they are numbers: thus, of the two equa-
tions

az+b=cx+d,
and 2z +7=382+2,

the former is a literal and the latter a numerical equation.

It sometimes happens that the second member of an
equation is wanting, such is the case in the two equations

22—-4=0, and axr—-56=0.

We may here remark that the symbol = which is placed
between the two members of an equation, sometimes only
expresses the result of an algebraical operation, and not an
absolute identity: thus when we say that

2 —a+az+az+&e.
, 11—z ,
the second member which is the quotient, when a is di-
vided by 1—x, is not equal to the first, unless the re-
-mainder found after any division be also taken into ac-
count.

81. Equations are also divided into degrees, dependent
upon the powers of the unknown quantity.

Equations of the first degree, or simple equations, contain
only the first power of the unknown quantity or quantities.
Equations of the second degree, commonly called quad-
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ratic equations, involve the square as well as the simple power.
Equations of the third degree, or cubic equations, contain
the cube as well as the lower powers of the unknown quan-
tity. And similarly are there equations of higher degrees.
But as we intend to confine our attention to those of the
first 'and second degree, or at most to those which may be
reduced to their form, we need not carry our classification
further.

As instances we may take the following equations:
ax+b=c is of the first degree
axr*+bz=c.......... second ...
ar’+ b +cx=d.......... third ...

Equations are also called, of one, two, three or more,
unknown quantities, according to the number of unknown
quantities which are to be determined.-

Equations are also determinate or indeterminate.

Determinate equations are those in which the number of
distinct ‘equations is the same as the number of the un-
known quantities. Indeterminate equations have a less
number of equations than unknown quantities. In this
chapter we shall treat only of the former.

AXIOMS.
82. (1) If the same number or quantity be added to
or subtracted from, each member of an equation, the equality
still subsists.

(2) If each member of an equation be multiplied, or
divided by the same number, the equality still subsists.

RULES FOR THE SOLUTION OF EQUATIONS.

83. RurLe 1. Quantities may be transposed from one
side of an equation to the other by changing their alge-
braic sign.
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Thus, if 2x-5=13; then by Axiom 1. add 5 to bath
sides; ... 2x+5—-5=18+5: arsince 5-5=0, 2x =13 +5.
In which we see that the — 5 of the left-hand side of the
first equation, becomes +5 on the right-hand side of the
second equation.
Also if x+a=35, then subtracting a from both sides,
r+a—-a=b—a; or since a—a=0, z=b-a. -

" But if the whole of the right-hand side of the equation
be transposed to the left, and the whole of the left-hand
side of the equation -to the right; the signs need not be.
changed. .

For if aa.:_-vtb=ca+d;_ scx+d=ax+ b

Also if all the signs of the terms be changed, the equa-
tion is still true.

For if z—a=y—b; therefore by transposition, b~y=a—z -

and therefore by what has been just said a-~x=b0-y, an
equation in which all the signs are different from those of
the original equation.

RuLe 2. When the terms of am equation are fractional,
the equation may be multiplied by the denominators of the
fractions, and reduced to an integral form. Thus if

2z
] ‘? +2=12,
- 22 + 6= 36,
by maultiplying by 8, and the equation is true by Axiom 1.

When there are more fractions than one, we may multi-

ply at ence by the product of all the denominators. Thus if
x z =

§+§+—5-=31;

~. multiplying by 2 x 8 x 5=380 we have,
80x 80x 8SO0x

——— e e = 0 :

g tTg 75 8130

15z + 102 + 62 = 930.
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When the denominators have a common multiple or a
number divisible by each: it is more convenient to multi-
Ply the equation by it: thus if

Then since 12 is the common multiple of 2, 8, 4 and 6,
we have by multiplying the equation by 12,
6r+4x+32+2x=180;
the application of this rule is called, clearing the equation
of fractions.

RuLe 3. When both sides of the equation are divisible
by the same number of qiantity: divide by the common
factor, and the equation is still true: thus if

12z = 96,
dividing by 12, we have
x=8.

RuLE 4. Both members of an equation may be involved
to the same power, and the same root of each may be ex-

tracted.
Thus if #*=81; .. 2=9,
and if \Jz= 8; .. z=0.
If Jor'+1=2x+4;
24 1=427+ 162+ 16.

SOLUTION OF SIMPLE EQUATIONS.

84. Having separately illustrated each of the foregoing
rules, we may now combine them, and with the aid of
the axioms, form a general mle for the solution of simple
equations.

(1) Divide every term by the greatest common mea-
sure, if any.
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(2) Clear the equation of fractions.

(8) Transpose all the unknown quantities to the left-
hand side of the equation, and all the knowrn quantities to-
the right-hand side.

(4) Collect into one sum the various coefficients of the
unknown quantity.

(5) Divide ‘both sides by the coefficient so arising and
the result is the- answer required.

(Ex.1.) Let 7x-38=5z+ 15, required z;

S Tx—-52=8+15, Rule 1.
o 2r=18;
cox= 9.

If we wish to .verify this result, we must write 9 for z in
the original equation, when the first member becomes

7x9—8, or 63—38, or 60, and the second becomes
5x9+15, or 45+ 15 or 60, as it ought.

(Ex. 2.) Let 82—-15=6x+1, find z;
. 8x—6z=1+15; .
. 22 =16;
16
oo I-——2—-—8-

(Ex. 8.) 5(@@+1)+6(@@+2)=9(x+3), find x;
e b5x+5+6x+12=9x+ 27,
11'3—91—_-27—17;
o 22=10; oo 2=5.

(Ex. 4.) Let ar+b=c, ﬁndv x;
wazx=c—b;
c-b
X = .

a

—
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(Ex. 5.) Let Z+2=7+7; find =
Multiply both sides by 12, the least common multiple of
2, 8, 4, then
6r+4x=8z+ 84;

S Te=84; o 2=12.

3¢+l+5.r+1_9:+8

(Ex.6) Let == . T =2, find 2.

Multiply every term by 12;
182 +6+20x+4—-27x—- 9=24;
e 882 —-2MMx=24+9-6-4;
112=23; .~ z=2.
It may here be observed that when a negative sign is placed
before a fraction, we must take care to change the sign of

every term of the numerator when the denominator is got

rid of ; for the fraction
_9x+3 _g.f__g
4 4 4°

. 9 8
is the same as —(T"'Z) or

which two fractions when multiplied by 12, become — 27|z -9;
in the next example other instances of this kind will be
given.

52-8 - 24— 8x _ 122-4 _

(Ex. 7)) 5 3 = 4.

Multiply by 24;
- 202—12—192 +64x—362+12=96;
o 84x—-86x=96+12+192-12; ‘
- 482 =2800—12=288, : i

3=—E=.6c ‘
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(Bx.8)  Let 5 +2%asic finds;

o &2+ Er=abx+abe;
. &°z + bz —abx=abc;
o~ (@ + b -ab)x=abc;

. .__ abc
Y T
16 9 -
(Ex. 9.) Let < Te:3’ find «;

< 208 + 16z =9x;
o 162 -9z =~ 208;
o 7.7 =- 208;

S T = 29%.
8z+7 2x-7 r—4
(Bx.10)  Let — 2=,

writing . instead of 2§, and then multiplying by 8,
182 + 42 = 8z + 28 + 281 = 21z — 84; ‘
o 182 — 82 — 21x = — 281 — 42 — 28 — 84;

o —1lz=—-385; . 112=885; .. z=35.

102417 122+2 _5z—4
18 iiz—8_ 9 '

(Ex. 11.) Let

. Multiply by 18;
216z + 36

o lol+l7—m =10£—8;
2162 + 36 ..
o 25 =m, by mm‘h’n,

" 275z —200 =216z + 36;
v 50x+286; . a=4.
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(Ex. 12)) Let —“/3?_3+ 12=17;

N

' ——— =

3

o WfBz=15;

oo 52=225; oo x=45.

(Ex. 18.) Let J12+x=2+,/;

12.+z=4v+4 x+x;
~ 8=4,/z;

B ﬁ=2; o x=4

R —
(Ex. 14.) M+%=4%;

4
" 5311z—17 8 88"
L

o 103/112—17 + 83=38;

J1z=17=38; .~ 112—-17=27;

collz=44; oox=40

(Ex. i5.) %———}?=ﬁ:;, find .
Wr+a) (Jo+d) =z +0) (Jz+8);
. 1+(a+d)ﬁ+ad=z+(b+c)ﬁ+bc;
K ﬁ(a+d-b-—c)=bc—ad;

) (bc—ady -
o FEla-b+d-c)’

(Ex. 16) Let z—7=4/19+ 1212+ 2*;
v 214z +49=49+ . /1218 + 2 ;

o 2= 14z =121+ 2* =z /121 +2°;

83
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o z-14=,/121 + &;
- 2*—28z+196 = 121 +2°;

‘e 28-‘3‘—"-75; .‘.3:2;,

(Ex. 17.) Let x+Jm=Jf,—-——£:—? find x;
. zm+a’+x’=2a’;
z . Ja'+ r*=a’-2*;
@'+ at=a'-2a'z" + 2t;
. 8a'z*=a'; o 82'=a’;

. z’—:, and 1=J—

(Ex. 18.) LetTT_b+JI ,/a

Since z—a=(Jz +.fa) (Jz—-.Ja);
: J;::‘/;;J;_ﬁ:u__J’;ﬁ;

‘e 3ﬁ—3~/_=36+~/__~/;,
4 /Jz=8b+2,/a;

_ (36 +4’2 ﬁ)’.
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EXAMPLES.

2z +7=8x+92; ~oz=5.
11x~18=5x+6; X =4
T2+20-82=-50+42+60+8z; .. z=3.
2%+ 18zx=112"- 9z; oz =2
3.1:+4-,—-5'z+4'+8; S =12
r x
3A.|.§__;q,-—7, S =15
x x 8x
§+Z+-§_9’" S x=8.
Tx—~83=5)+38z; e x =4

2z 1 .1.'_ . _15
]‘&-—"3——;":5, ST =7
64 !
— =0 % = 4.
= 7=9; z
2+r=5-23z; r=3
30+z—5=§; .‘.«t-=6.
x x
5248 2x-38
Z-1 T3z-8- % @ =34
x+5 x+4 2+18
2 + 5 "8 =3%; e x =8, 4
z 5x+4 8z—2
g~ 5 155 ==6
45(2'—1) _ . . _
-6_-:—.1'—-'.2—]5, --I—E-

5 10 TE g sass



(18)
(19)
(20)
(21)
(22)

(23)

(24)
(25)

(26)
@7)

(28)
(29)

(80)

EQUATIONS.

3.25z—-5.1+x~.752=8.9+ .500z;

Sox =3,

(2+.t)(8+z)—22=§+a:’; sx=3.

. 4
ax-bdx=d-cz; SE =g
B+ =z, g
bz —0+;, S E=e
a* 1 L. b
;=ab+b+;; SeE=

' ]
@+2)E+n)—a(b+o)="5 +a%
. ._ac
oc‘—T.
B ¢ 3
a2+ b=b'2+c; .'.z=a—’+T‘:_b§i.

8z Tx 8z Tx ., | _one
—-5-—16-{-—4——-—8'— 15, .o3—663o

x-5 2:—8=w+2_46.1:+183.

11 Y76 ~— 66 °
Sex=8.

2z+8 52z+7 6xr+1 52+38

17 21 t—39 =87 °’
- =64,
g+§+2+£=56, ST =
X &z xr 2
2 5 6.‘1.'—-6___2:;:'“"____é

6x+138 3z+5 2
5 52-25 5°




(81)

(32

(83)

(84)

(35)

(86)

C1p)
(88)
(39)
(40)

(a1)

Q8

- EQUATIONS.

.
»

8.r+5+ 7z—-8 16x+15 +§
14 6x+2 28 7

z =1}

ax+b az+b 2es+d . o bd—2cd
¢ cx+b 2¢ "¢’ 7 2ac-cd

Tz+5 ( 8-T\_ .. .. _
3 2z - i =§; sL2=T.
z+4
16 - ——
ax-T2 _Jo, [2=_ 2 _82+6
2 2 3 2
6
o"‘zl()o
8
13 T3 3-8z
+= 1lz- ==
T z ., 2 _sar1 T
10 12 5 11 ’
e=4
248
b
2x+1 8:—-2+ 2 8:
3 5 6 U
Sex=11.
ﬂ_=6a:’+.r 3x+62 -1
z=1 z+1 @ -1 =1
2:’+1_ x 1, . 4
92°—~16 2+38z 9’ T=3
ax+b=cx+d; - .'..znd—b.
a-c
8c(a—x) Sa 8a
“3“-'-1 +a—‘;, -.J—Tc
z =z abe
+z+-=1 o ¥ = .
g*c=1 = ab+actbe
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(42)

(48)

(44)

(45)

(46)

un

(48)
(49)
(50)
61)
)

(53)

(54)
(55)
(56)

EQUATIONS.
a,b,c N
z 2 zx ° T T a+b+c”
2*+at+ b+ ct~abd
z+a+b+c="—F——; 2=
a+b-c+ax a+b’

8ab  4ac_2cx 3ac
6 5 3 4

Sabec o' (2a+b)b'x

+2ab—-6cx;

Wzl (706—8c)
T T e\ 820 /7.

b

a+bt@royt  a(arby

JP+16=5;
Jr+16=2+,/z;
z + 13=2+~/x—ll;

Jz’+5.r—2=x+2;

YT+ 11z+5=nz+5;

3:/3:~5=2»f/1u—17;

5J.r 8+ = "/—
f—J—+2Ja,

2+J =

m
2+, Jr'—2azx+b =a+b;

NJr+225 -, [r—424 = 11;

ﬁm+f_2
Jiz+5- [z

x
=8cx +—;
a

ab

o x = 20.
T |
...1—7.

.
RS TT
x = 16a.

a®*+2ab
25

z = 1000.

sx=1




67 2

(58)
(59)
(60)
(61)
(62)
63)
(64
(65)
(66)
(67)
(68)
(69)

(70)

z+./.t'—16=
-J©=16

EQUATIONS.

/.t+4- ~/
r—4 T4 3’

c—x

Ja+ 2" [+ (c—x)

Jr+16 Jr+3s2

Je+4a  Jr+12’
A/3+z+~/5—~/m

S - 28

JFTF = JFT

x—4=

& bz + JaT—bx=2c;

a-Jitay’
N8z _ =16x+3;

SJ— +243+ 324

4+z=J16+xJ144+z’;

-8

z+a=Na*+2, /00 +2°;

1+1_~/1+~/1 A
x a Va P

J'a+.z+~/'a-—x=:/z;

89 -
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SIMPLE EQUATIONS WITH TWO UNKNOWN QUANTITIES.

85. When there are two equations between two un-
known quantities, such as ax+by=m, and cx+dy=n;
in which a, b, ¢, d, m and » may be any numbers whatever,
it is sufficiently evident, that if we obtain from these two
equations, two values of r, and equate them, there will
arise an equation involving y only, from which y may be
found ; and y being known, r may also be determined, by
substituting the known value of y in either of the equa-
tions.

In fact, *+ ax+by=m, and cx+dy=n;

.'.x:’n;b‘l and ;-_—_ﬂ!;
a (4

semc—bey=na—ady;

mc—na

Y= Fe—ad’

.'.1=Lb-y_}( _’lbc—ub _nb—-md
B bc—ad ) bc—ad’

As another example let us take
22+38y=13; and 8z+5y=21;

,_;:w——s_-y mdx=21_5y.

2 3
- 18-8y _21-5y
2 = 8

< 89-9y =42-10y; S y=8.

2=13-3y _18-9 4 .
2 2 2
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86. The method just given is sufficient to solve any
equation of this kind ; but in general another process, that
of elimination, is made use of. .

» Elimination means, the getting rid of a thing, and ap-
plied to these equations, is the getting rid of one of the
unknown quantities, so that the equation may be reduced
to another, containing only one unknown quantity; to ef-
fect this purpose we have the following rule, to elimi-
nate x.

“ Multiply the upper equation by the coefficient of z
in the lower eguation, and then multiply the lower equa-
tion by the coefficient of z in the upper equation: take
the difference between these products, and the result will
contain y only.

(Ex.1)  Let 6z+ 7y=46..co... )
and 52+ 8y =2T............ (2)

()x5; < 80z + 85y =230
(2)x6; < 30z + 18y =162

17y =68; .. y=4;

and 5z +38y=27; .. 5x=27-12; . .x=8.

(Ex. 2.) Let az+ by=m............. (1)
and czx+ dy=n ... 2)

<o acz+bey =me;

. acr+ady=na;

~ (bc~ad)y=mc~na;

. _mc—na
Y= Fe—ad?
and z may be found as before.



92 EQUATIONS.
(Ex. 3.)  Let ’—7‘+7y=99,

and -?7-+7.r=51; . l

z+49y= 99 xT ' ‘ g
y+49z= 51x7 : '

50z + 50y =150 x7 by addition;
< 24+y=21.
" And 48y-48x=48 x7 by subtraction;
. Yy—x=17;
’ and . y+.1:=21;-
< 2y=28; ooy=14
2x=14; .. x= 7;

(Ex. 4. L "R I )
5y-7 4x-8 _
T =185z (@)

From (1) 28+4x-10x+5y=060y—100;
' “ 55y+62=128 ...(8).
From (2) 15y—21+4x—38=108-30x;
15y + 842 =132 ...(4).
Multiply (3) by 8 and (4) by 11: for 55=15x 11
and 15=38x5. :

165y + 18z = 884,
165y + 874z = 1452 ;

38562 =1068; .. z=8$.
But 15y=182-842=132~102=30; oS y=2
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87. To the two methods which have been given, may
be added a third, which may be thus enunciated: ¢ Sub-
stitute the value of z obtained from one equation, for z,
in the other equation”: this method, which is very obvious,
is really contained in the first.

The principle of the three rules is briefly this: that
as the two equations hold contemporaneously, i.e. are true
for the same values of r and y at the same time, if in
either of the equations we put for z or y, their values in
other terms, the equations are still true.

We must be careful to see that the two equations are
independent of each other, for had we the equations

2z+3y=14, and 4z +6y=28,

the latter which is merely the double of the former, will
be of no use in the determination of the partlcu]ar values
of x and y which render the equation 2.r+3;y 14, a just
equation.

EXAMPLES.
(1) 5x+8y= 74} < =10,
3x+2y=49 y= 8
@ 18x- l7y+54- 0} oox=35,
7x+28—-9y=0 y="1
(8) 5z+7y=43 } o x2=8,
\ 11z+9y=69)" y=4
(4) 8z-21y= 33}. o z=12,
6z+35y=171)" y= 8.
) x+10y=123} . o =18,
%+10zx=141)" y=1L
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(©)

0

®

O]

(10)

- an

(12)

(13)

EQUATIONE,
%+%=§+2‘ §-12,
=, v %, [ - so.
4+3”1o+‘[ y
4 5 x= 2
5+y—12+.‘!]; .
22+ 5y =85 y=%-
2x+6:3y+2::9:7}_ x=35,
8z~4=9y T y=4
x+y—8-0 x =2},
_.y P 2 4=0}‘
g 3 3 y=
!_e_z_+y+2.¢ 8— Qy—lo 82+7\y =
8 2 4
y—38z 25 )
6 -6 ° Iy=7

(z+7).(y+5)=(x—2)(y+15)+78)= = 5,
(z+5).(y+7)=(y+3)(z+17)— 80}

(z+a).(y+b)=(z-b).(y+a)+abdlx

ax=by+a’

10+6y—42 4
6z-9y+3 3

126 +82z—17y _ ss|’
100—-122+ Ty 13
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(14) %+93=91] z=18,
éz b
5 +9x =167 y=9
452 '

(15) ‘2—37‘4'!/'—'91 \ =28,
45y _ ’ _
73—+.t—113} y =46
2 8 1 18 5

(16) ;+§+2—7—;] x=12,
2 1 11 1\ 1] ~

88. When there are three unknown quantities as, z,
Y, 3 and three distinct equations between them, we may
either by substitution, or elimination, reduce them to two
equations involving two only of the three unknown quantities ;
and these two may then be found by the methods already
given. Thus, between the first and second equations, we
may eliminate z, and have an equation involving z and g.
Again, between the first and third, or second and third
equations, we may also eliminate z, and have a second
equation involving x and y only; from these two, z and y
may be found; and z may then be determined by sub-
stituting the values of r and y in any one of the three
original equations.

(Ex. 1.) Tz + 10y + 5z =42............(1)
182+ 6y +2z =31............ )
1lx+ 14y +83=068..........., (3).

Multiply (2) by 5 and (1) by 2;
» 652 + 80y + 108 =155
142+ 20y + 108 = 84
s 51z + 10y 71

i
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Multiply (2) by 4 and write (3) under the product;
o 522+ 24y +82=124,
11z + 14y +82= 63;

-. subtracting 41z + 10y = 61.
But 51x+ 10y 71;

I

oo 102=10; sx=1.

But 51z+ 10y ="71; .. 10y="71-51=20; .. y=2.

w

And 25=31-6y—182=81-12-18=6; .. z=

(Ex. 2) Letzy=2(z+y); xz=8(x+2); yz=4(y+3)
find z, y, and 2.

Since zy=2 (z+y); - 1=_2_‘(_‘.'L'/_)=2(%+l);

Ey X,
wis ; SL AN
Simitarly 24122 @)
and ;7 +§ o R ®

Subtract (2) from (1);

-t
[
[
bt
-t

y z 2 8 6

1.1 1

Bllt;;-i-;— —Z,
2_1,1_5. 2
- Tt yTeTaT 1R’ L I=F

‘2 1. 1_1

;=Z—3—T§, 2—24l
qglol_1._12 5 7. 2= 28
e 227y T2a 2 24’ cE=T
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EXAMPLES,

1) z+y=50 z =18,
.1.'+z=28}, y=32
y+z=42 _ z=10.

(2) 8x+5y=176, z =12,
4z+6z=108}, y=8,
5z +7y = 106 £ =10.

8) 2+y+z=26 z=3,
.'c'+y—-z=—6}, y="T,
r—y+2=12 3 = 16.

(4) 8z+5y-42=25 z=7,
5z-—2y+32=46}, =8,
3y+55—x=062 8=0.

: z = 64,

() x+~£=1oo§ y+5=100; z+;-=100}; y="12,

z = 84.

(6) 3x+4y-53=32 z =10,
41—5y+32=18}, y=8,
52-8y—4z=2 £=6.

(1) 52-6y+4s=15 =38,
7a:+4-y—32=19}, y=4,
2r+ y+63=46 z=6.

(8) g+"§/+;=22‘ z=12,
§+"%+—§=31;, y =30,
;+%+§=32) £=42

(=]
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EQUATIONS.
2y _ T3 _ I35 _
® z+y~7o’ FrTi y+z 140.
Ans. z=105; 7=210; z=420.
2 5 1 85
1) Z-g+i~ e £=5
1 1 2 448
mtytsTw y=9
* 5 1 4_438 e
6z y =z 36 =%
(11) =x-9y+38z—10u=21 z = 100,
2x+7y— 2 — u =683 y =60,
E
8z+ y +5z2+ 2u=195 z2=-18,
42-6y-2z— 9u =516 4 =—50.
2) Z4+¥ .25 455 ) =12
8 517 o
5z y =z _ -
276+ 3= |, y =320,
z 8z u ‘ -
2 +—8~ +.-5-—79 £ = 168,
Yy + 2+ u =248 |

w

u = 50.

“QUADRATIC EQUATIONS.

89. Quadratic equations are of two kinds.

(1) Pure quadratics, which are of the form aa*=b, or
which do not involve the simple power of the unknown
quantity. ,

' (2) Adfected quadratics, which are of the form as®+bz=c,

a, b, and c¢ being any numbers whatever, positive or nega-
tive. o
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90. The pure quadratic equatien is thus solved:

ax*=b; .. a:’=— z:-k\/b-

or z has two values + J % and — \/ g- ;3 for either of these

values when put for x in the original equation :c'—%:O,

satisfy the given condition, that ome term should be equal
to the other.

(Ex. 1) 52"=125; .. a'=25; .. x=%5
(Ex.2) 72a°+18=42"+450; .. =12

(Ex. 3. —+12=§;—'+37§, R 5

SOLUTION OF THE ADFECTED QUADRATIC EQUATION.

91. Let az*+bx=c be the equation, or dividing by a.

I'-i-é-.t:g.
a a

Instead of g put p, and for 5 put q;

s 2+ pr=gq.

Now let a quantity » be added to both sides, so that
2* + px +r shall be a complete square; for then if the roots
of both sides be taken, the equation will be reduced to a
simple equation.

But to find 7. We see that in every complete square of a
binomial, as 2*+2ax +a°, which is the square of z+a;
four times the product of the first and third terms equals the
square of the middle term: for 44° x 2*=(2a2)';

© drat=(px)'=p'c*; .~ r=§=(§).;

5—2
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~

or the quantity to be added to make 2* + pz a complete square,
is the square of half the coefficient of z; making this addition
to both sides, we have

:c’+p.z+§=q+

[,

And since by the ordinary rules, the square root of

P N 2T

Hence we have this rule to complete the square. Add to
each member of the equation, the square of half the coeffi-
cient of z; and to extract the square root of the square so
completed, add to z, half the coefficient of x in the original
equation. .

Ex. Complete the squares of the following quantities:

(1) 2*+8a. Ans. z*+ 8z + 16.
(2 a*-8a. Ans. -8z + 16.
(8) x*--3x. Ans. .1”-3.:4-%.
(4) o+ 5z  Ans #5242,

Also the square roots of the squares are respectively

3 5
x+4, x-—4, z-3 and .t+§.
It may be observed that both the positive and negative signs
are prefixed to the root of the second member of the equa-
tion, the reason for which may be thus shewn;

make %+q=m’.
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Then since +m x +m and —m x —m are both equal

to m*; therefore the square root of m* may be either + m or

—m; and therefore that of l;—: +q may be either

P g -/Ps
+ \/ s taor T+
and both satisfy the conditions of the equation.

92. Resuming the equation, since

P_u foi P, fv
.1:+2- q+ +q;

or z has two values, viz.

e,/ r
2 q+ and q+4

Let « and B respectively represent these two values;

.. __P \/ 7
Qe = 2+ q—l—4

g=-2_ q+1§.

Therefore, @ + 3 = — p, or the sum of the values of x is
_equal to the coeflicient of the second term with its sign
changed : this proposition is true of equations of any dimen-
sions whatever.

Again, af3 =§'_ (q+‘§)=— q

Hence, if we write the equation under the form
2+ pr—q=0,

we see that in a quadratic equation, the last term is equal
to the product of the values of x. This proposition may be
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thus generalized for an equation of any degree whatever; the
last term is equal to the product of the values of z with their
signs changed.

93. Again, since

x-a=z+12—’— A /§+-q, and x-ﬁ=1+%+J§+q;

(w-a)-(x—ﬁ)% z+§)’ - (17;:+ 9)=1"+P.t—q.

Hence if a and 3 be separately put for x, they will
separately make 2® + px—~q=0, or satisfy the conditions of
the equation. But no other terms but « and 3 will do this;
for these only can make either z—a=0, or z—f3=0.

These terms, a and 3, are called roots of the equation, and
hence we say that a quadratic can only have two roots. We
may remark that these values are not true at the same time,
unless

q:—%: and then 9+IT;:=0’ and ﬂlen a=ﬁ'

And also that, if « be a root of a quadratic, z—a will

divide the equation, without leaving any remainder, for the
quotient will be z— 8.

94. When ¢ is a positive quantity, both values of x
are real; but if ¢ be negative, and

W g=_Ls /P
s E=—g %_q’

e
they are real only so long as 1—;- is not less than ¢q. When
A
q is >% » 59 is a negative quantity and its square root
cannot be found, and both « and B are impossible quan-
tities.
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Such a circumstance will im general point out to - us,
that the conditions of the question are incapable of being
fulfilled. As, for instance, if it were proposed to find two
numbers whose sum = 6 and produet = 12, we should have
p=-6, and g=-12; for the equation arising would be
2*—6x=-12, and §—9=9—12=—3. In fact there are
no such numbers.

95. And now we shall give a few useful rules for the
solution of quadratic equations; first observing that we shall
seldom find the equation in so simple a form as

+pa=gq;

fractions must be reduced, and terms transposed, before we
can begin its solution. The following steps are in general
necessary.

(1) Clear the equation of fractions.

(2) Transpose the terms involving 2* and z to the left
hand and the numbers to the right hand side of the
equation.

(8) Divide every term by the coeflicient of a°.

(4) If 2* be negative, change all the signs of the equa-
tion,

(5) Complete the square.
(6) Extract the square root of both sides, and a simple
equation remains; whence x may be found.
EXAMPLES.
(Ex. 1.) Let 2*+6x=91; find =
Add 9 or (g)ﬂ to both sides;
. #84+62+9=01%9=100;
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oo 2+ 3=%10;
oo 2=—-8+10=7 or —18.

(Ex. 2) Let #*—5z=24; find a.
Add ( 5) or —-to both sides ;

25 25 121

. - 5z+7-—24 2 -3
5 11
. x—§=*?; . x=8 or -8.

(Ex. 8.) Let z*—z=72.

o (2)-@) = 35

1_1 .. 28
. a’-z+4—4+72 2
1 17 _1 .17 _
;_E_*?, o x=gEJ =90 or —8.

v 40z +27z=185=182"-65z;
182° - 1322 =—135;
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132« 135
el T R T

132 4356 4356 185 2601

S P TETtI69 T 169 18 169
L 66_.51 6651 o 15
13 13> 7 77 18 18°

(Ex. 6.) Let adx—aca*=bcz-bd;
. acx®—adx+bcx=>5bd

ad—be ad—bc\' _ (ad—bc)* bd_(ad+bo)
T =t 2ac)— 4 Tac. a@d

ad—-be ad+be
=== s

2ac 2ac ’
_ad—bc*ad'-i-bc_2ad r—-ﬂbc_
~ Qac 2ac  2ac 2ac ’
. d b
ie. 2=—or ——-.
c a

96. The equations hitherto solved have, by very ob-
vious reductions, assumed the form of z°+ px =g ; but there
are many others which may be solved as quadratics ;
thus every equation of the form z**+ pa"=g, may be so
solved.

Since by putting 2*=y; .. 2*"=y°, we have
¥+py=9
which is of the required form, and this remark is true
whether the indices be integral or fractional, so long as
the index of z in one term, is half the index of z in the

other.
5—5
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Thus, a2*+bz*=c,

ad+bi=c,
a.t}+b.f‘=c,
a.zi+b.c%=c,

and many others.may be solved as quadratics.

97. Also algebraic expressions of the form
@ +br+c)y+p(az®+bz+c)=gq,
and (az®™ + ba™+c)"+ p (az*™+ ba™+ )" =g,

may be solved as quadratics; since if in the former of these
equations we put (az*+ bx+c)*=y, and in the latter
(@az™ + ba™+c) =y,

we have for both

y+ry=¢
Other reductions must be left to the mgenunty which is gained
only by practice.

(Ex. 1.) Let a*—742"=-1225;
o .1:'—74.‘!’4-1369:1369—1225=144;

So a*=8T+12=40 or 25; .. x==%=7 or *5,

(Ex. 2) Let ai+7a8=44;

s 49 49 225
2 7 15 s 15 7
. .‘L"+§—=4=2, x’_*?—E,
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(Ex. 8.) Let Jr+13+5,/z+13=22; find x;
22,
5 z

Jx+13+%:/z+_13=

22 1 4-4-1
J.r+13+ .J:c+13+wo 5+ 760~ 100°

13

4 21 1
” ”’“3—*E"ﬁ~2°'-—5':
: 4
x+13=16or(351); - 2=3, o (1)—13

(Ex. 4) Let 52—72*+8,/72*-52+1=8; find =

“ -y +1+8y=8;
oo y’—8y+16=16—7=9;

= JTP bzt l=4=8=T or'l;
o P -5z+1=49 or L.

Let 72°—5z+1=49;
5z 25 25 48 1369

STt 196T 196 7 - 196
) _5 37 16
...1:—1* 14 30!'—7.

And if 74’—5z+l'=-'-1; T2 -52=0; sox=0 or ;

(Ex.5) Let 2—+2 *E_ob; finduw.

Instead of clearing the equation of fractlons, multxply
each term by the first ; then o

2
(—z—) +1=2b ——; makey=——
a+a at+x a+a’

e P -20y=-1; o ¥F-2Wy+b=b-1;"
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1
© y=bx /' -1=b+,/6-1 or WS h

Make b+Jb'—l=p-
Wz 9B o 8
KA a+—z_'8 or /3 =15 or i—g
There are many artifices used in the solution of equations,
which can only be learnt by practice; the use of some of
these we now add, but we must refer the reader to Bland’s
Algebraical Problems, for a more complete exhibition of
them. :

(Ex. 6.) Let 4z4+§=4z'+33; find z;

. 41‘—4z‘+:’—:’+g=33, adding and subtracting z*;

" (22— 2y} (22*—2) = 35;

. @2 -2y~ } @ —2)+ =38+ 35 =2,

o 22° —z—*§+-1-=6 _12_1,

4 4
1.&/

whence =2 or—§, or—

.1:__:!;—12.
(EX. 7-) Letz— z—18 H

-18x=14,[r—48;
oo P-4z +49=4x+4,Jr+1;
wx=T=2Jz+1; o ox-2,Jz+1=9;
. ,f.;—1='k3,' e x=16 or 4;

'ﬁndx; :

observe that if the equation be verified by putting the values
for z in it, when x =4, ﬁ=—2.
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(Ex. 8.) Letﬁ——=J;—' find z;

16 4
'.z+8+?—2(ﬁ+ﬁ)=l5;
4 \2 4
(J;+~/-;) —2(ﬁ+7§)+1=16;
' 4
"ﬁ+73=’*4=5 or—38, .
whence =16 or 1, orif—sziz-
(Ex.9.) Let2*=6z+9; findx;

< 2*=62" + 9z multiplying by z ;
“ '+ 82" =92 + 9x;

R 9_, 9_ (’ .l_)
oo T +3.r’+4_9.r’+9.r+4_9 x +:+4 H

8 1
. 1”+§=='=3 (z+-2—),

2*=3x, and =0 or x=38,

or *+8zx=-3; .. z=ik§3/—'—3.

(Ex. 10.) Let 2*—2*=4; findzx;
—2*=4z;
S+ 22'+1—(2P+a)=22"+8x+1;

S @D -2 (P 1)+ §=9%’+3z+ 1;
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. T _ 3z .
B §—*<—2-+1),

. =2z, and =0, or r=2,
and 2* +2=-2, whencez:i%—— =T
(Ex. 11.) Let 2*—82°+102" +242+5=0,

the first and second terms are the same as thase of (z-2)',
and (z—2)'=xr'—82"+242°— 32x +16

= aA- 825+ 102° + 247 + 5+ 142° — 562 + 11
=142 - 562 + 11 =14 (2 + 42) + 11.
Letz—2=y; . x=y+2 and 2°—42=3"—4;
oyt =14 (- 4)+ 115
oyt—-1490 4 40=11 +49 - 56=14;
syPf=TE2=9 0r 5;
y==8or=,/5 and x=5 or—1, or 2*,/3.

(Ex. 12) Let3,/112-8z=19+./3z+7; finda.

Let 8+ 7=u; .-.z=u;7; 112—8.1::3;923——8—“-;

.. 8 892;8u=19+ﬂ;

o 1176 —24u =861+ 88 Ju +u; - 25u+38,Ju=815;
whence \fu=5; .. u=25 and z=6.

(Ex. 18.) Given {(x—2)—z}* - (z—2)=90-z; finda.
. Make (z—-2)'—a=u; .~ {(z—2)'—af=0';

oo uWl—u=00; o u=10or-9.
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Letu=10; .. (#x—2)*-2=10; .~ 2=6or-1.

Ifu=-9; .. (z—é)’—z:—g and z=5*L2—- V=3

(Ex. 14) Leta*+42+42+1=22; fnds.

Divide every term by z*;

1 1\ 5
o’ 1”+?+4(1'+;)—T.

3

Let.r+l=u; - z’+l=u‘—2;
x x*
. R SR _ 8L,
oo 2+4u—4, ..u+4u+4—T,
o u==l=g— =§o —H.
Ifa:+-l-=§-, we havea:=2orl.
x 2 2
Ifa:+l=—-£—3;, we havez:ll—si@.
x 2 :
EXAMPLES.
(1) 2+8x =20; sx=2 or-10.
(®) 2*+16xz=80; ~z=4 or—20.
B3 22+7x =78; ) sz2=6 or-—15.
(4) 2*+8r =28; Sx=4 or-17.
(5) 2*—10z=24; . sz=120r-2.
6) 2*-8x =20; ~z=10or - 2.

(7) 2*-5z =6; Sx=6 or-1.
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(8

)
(10)
(11)
(12)

@13

(14)
(15)

(16)
a)

(18)
(19)
(20)

@1
(22)
(23)
(24)
(25)
(26)

' EQUATIONS.

T+ x2=380;
92+ 9x =4;
—2*+838x=272;
2+ 252 =1250;

z* — 1000z = 127500 ;

—-a*+z -5,

257
42°-26x=2x—48;
32"~ 30z =9 (z- 12);
172* - 19x=30;

+

(R 3

2
F—_—=
x

2

YR
A 1L )

%

— 42

822+ 5x=2;
47— 32"=6x-8;

4z 2 105 20,

7 3 3 7’
65z 102 13 2z

2 11 2 11’

z__=+3.
z+8 2x+1°

x+8 x—4 42+7
+—_—=

2+

z—4 4 52

_x __ T .
z+60 38x-5’

z+_21_=31—4-;
z—1

"sx=5 or-6. -

c.x=) or—j3.

s x=17or 16.

-2 =25 or — 50.

. & =250 or — 150.
cz=Yord.

~x=4or38.
sox=9or 4.

) 15
s rx=2o0r ——ﬁ.

S x=20r 4

Sx=2%,/8.
sx=4or—2.

.'.z=§ or — 2.
Sx=—5or g.
< x=} or 853

Srx=12 or - 2.

; ~x=9or-38.

o x=14or — 10.

S.x=50r—-2.
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(28)

(29)

(30)

(81)

(82)

(33)

(84)

(85)

(86)

)
(38)

(39)
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z+38 x 23 .o 7
-——z +7'.r__+§——:l-—" ..1—401“-
z+5 x+38 19, . e 81
Z49 Taey 1w tEsEertig
x—4 3—3_ 1. . _
1—3.,.__1_4_2%, Sx=8or-1.
z+1—4 ; 3 .Tl
z 3 S X= or i

s x=8or 13%.

3 8z
+ =8; sx=120r 2.

x =z 22 -6 ’
-3-+Z—1
2*+2 -2
f—2+9f+2=7%’ Sox==%8,
z+l 1+l

x x 18 7
—:—1+-—T=-;—; .o.z=3or__.
x—-= 1-=

x x

42 6z ox

1 +x+2=z+8+l"> - 2 =.3549 or — 1.5367.

$2-2 2a-1_o 50
r—4 x—2 = 1—-6x+8’°

s, 2=10o0or -9.

b
zia=m" .’.x=6-h,./ab+b’.

Jrra- Jz+b=[2z; .-.a:=-‘#-l= a’;-b’.
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(40)

(41)

(42)

(48)
(44)

(45)
(46)
(47
(48)
(49)
(50)
(61)
(52)

(53)
(54)

EQUATIONS.

F+§.[85 + 8z =46—z; :
.'.z=3, or —4, or-%*____«ﬂgﬂ

'~ 8z +7 J111—2£+2=%’+2l;

o 7 11¥J—_(i_6§
..z-2.or20r m
iz +2, [P ra+4=20; '
' . —1=./129
.'.a:=30r—-4-or——l—2“/@-
ﬁ+%=5; ~sx=16o0r 1.
z
12 ‘
6.z+-:1—=5~/§./1+a:’; cox=,f3
Jr+l L Jz—-1 9 49
+5 =—=3 “cx=9eor —-.
xz—1 z+1 2° 9 9
=252 =—144; Sx==8ar=4.
P -T5=8; S E==%2 2 or =, f-1.

x*— (2bc + 4a”) 2= - b°c*;
o =xnbe+2d'~2a ,[bc+a".

52+ 72*=67382; cox==0.
. " 3
92° — 112° = 488 cz=20r, /_ 61,
8 2
2 - 2*=15500; ~ 2=25 or (124)%
- 4= 37\*
8.z +213/z="14; .'..1:=16or(—8—7).
didd 1056 ; ) o x =064 or (- 33)3.

£ f ] s
d-1af=—112; s x=8or (—14)%




(55)

(56)
(57
(58)
(59)
(60)

(61)
(62)
(63)

(64)
(65)
(66)

©n

(68)

(69)
(70)

()

;:(,/1+.:-1)(J1—.:+1); a=§§ or 0.

TM32—6=8,/8z+1+38; .~ z=5.

~/2.z47+,\/3x-18=~/7z+1; wx=9.

P+x+5  [Frz+s 262 T 9°

{(x+38) " +2+ 8} ~T(x+8)*=T11+Tx;

sox=2o0r -9

:l-"+i +6z +vE=23; . ~x=2orl.
z* z

Yz+788—nlz—208 =8; ~.2=216 ar —792.

: cd
ca®~2cz Jd=dz*-cd; c.x= »/-%ﬂ.
*—2x=14; _ sox=2or—1x,/-1
2r'—2"=1; csax=1orj(—1+,/-1)
r—-3x=2; x=2o0r—1.
i‘:—l+%.%=13; Sox=4dor .
2*—22°—-22°+ 82 =108 ;

sox=4, or -3, ar i@-

(z+2)*+ (z+2) = 20; ~ox=2or —T1.

=z 4 3 v 2=12 or —8.
z+4 fzr4 =

2'~82°~242=32; ..x=40r—2, or—1%,/-3.
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sx=1.

(72) 2x+ﬁ 2.1:—

2x- .c 2z+f

(78) (1’—4)’+2(I—~4)=§—1; sz=2 or2=,/3.

&
!

(1) s-3=2t45, o 5=} (7% /T8).

QUADRATIC EQUATIONS INVOLVING TWO OR MORE
UNKNOWN QUANTITIES.

98. These may be divided, as quadratic equations wnth
one unknown quantity have been, into two classes:

(1) Pure Quadratic,
(2) Adfected Quadratic Equations.

' 99. Pure Quadratic Equations may in general be re-
duced to the solution of one of the pairs of equations. ’

z+y=a z-y=c z+y=a,
® b e b oo
zy=>6 xy=> z—y=c.

Our attention therefore will be directed to the solution
of the two former: since that of the third is sufficiently
obvious.

(Ex. 1.) To solve x+y=a, and zy=54; to do so we
shall endeavour to obtain z—y.
Squaring the first equation; .
v 2 +2xy+y’=a',
and 4zy = 45, multiplying 2nd by 4;

* a*- 2xy+y°=a"—4b, by subtraction,
or (z y)f=a’—-4b; ’
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. z—y:Ja’—ll-b.

But z+y= a;

2.1:=a+,/a’—-4b,
2y=a—~/a’—l b;

whence z and y may be found.

In a similar manner the equation (2) may be solved, the
only difference being, that since z+y is to be found, 4zy
is added to the square of z—y; for

(+y)=(z-y)+4xy.

Ex. 2) To solve 2*+y*=d? and z +y=a;
Yy Yy

e F+2zy+yt=at...... (1).
But #+  g'=d’...... (2
Take (2) from (1) .. 2zy=a*-d*...... (8).

Take (8) from (2) " .. 2*—2zy +y*=2d*—a*;
o .‘l.'—-y:JQd’-a‘,

and z+y=a;

o 2zx=a+,/2d"—a%, and 2y=a-,/2d"—a"

(Ex. 8) Solve the equations #*+y*=73,and z+y =11;

oo B2y +yt=121 ..., (1).
But 2* +4°= 78 ... (2);
o 22y= 48 ...... 3);

o -2y +yi= 25;

s rx—y=+5 and x+y=11; .~ x=8or 3, y=3 or 8.
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(Ex. 4.) Given z°+3y*=85, and 2y=42; find x and y.
(1) Add twice the second to the first;
&'+ 2xy+y'=169; .. r+y==13.
(2) Subtract twice the second from the first;
L B—-22y+ry=1; cox-y==x1;
o Qr=%14; . x==7, and y==x12; .. y=6.

(Ex. 5) Given z+y=380, and 2y =209; find x and y;
<~ 2+ 22y +y° =900,
and 4zy  =886;

s 20y +yt= 64
o x—y==+8, and 2+y=80; .. 2x=38 or 22,
and 2y =22 or 38; .. x=19 or 11; y=11 or 19.

(Ex. 6.) Given ##+%°=91, and 2+y=7; find x and .
Divide the first equation by the second;
S Poxy+yi=18...... (1). )
But &'+ 2xy+y*=49 ...... (2), by squaring 2nd.
* Subtract (1) from (2) .. 8zy=386; .. zy=12...(3).
Subtract (3) from (1) .. 2*~2zy+y*=1;
soxz—y==1,and z+y="7;

~ 2z=8 or 6, 2y=6 or 8, z=4 or 3, y=3 or 4

(Ex. 7.) Given f+ zy+y'=91, and a:-l-'J.?j +y=18.
Divide the former by the latter equation ;

z— Jry+y=7...... (1)
But z+~/_.?y+y=13 vaeee (2).
Take (1) from (2) . 2./zy = 6...... 3);
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o z+y=10,
o'+ 2xy +y" =100,
Square (8) .. 42y = 86;

S -2y +yt= 64; . ox-y==8.

o 2x=180r 2, 2y=20rl18; .~ . z=9orl; y=1lorg.

.

(Ex. 8.) Let '.f%+y§=6, and =%+33=126, find z and y.

Divide the second equation by the first,

.z-il!—-.t}yg+ yg =2l1...... (1
But z;+2.z}y:5+y§=36 ...... @);
o~ 3.1:}3{: 15; .. .t%y§= 5...... (8).

Take (8) from (1) .. PPy y§+.y§=16;

v 2r=100r 2; .. ai=50r1; .. 2=625o0r1,

2y3=2 or 10; . gi=1o0r 5; .. y=1 or 8125. '
(Ex. 9.) Given (z-y) (#*—y°) =160, and (z +y) (z*+y°)
= 580, find x and y; multiply both the equations out;
o P-Py—2y' +3y°=160...... 1)
2+ 2y +ay'+ Y= 580......(2)

Take (1) from (2) .. 2a% +2zy*=420....(3).
Add (8) to (2) »~ 23 82°y + Szy°+ y'=1000.
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Extract the cube root; .. z+y=10.

From 3) zy(z+y)=210; .. xy=21.

Whence from z+y=10, and zy=21, we have 2=7 or 3,
' y=8 or 7.

ADFECTED QUADRATIC EQUATIONS INVOLVING TWO
UNKNOWN QUANTITIES.

100. Equations of this class are frequently very compli-
cated ; we shall confine ourselves to the more simple cases ;
such equations are commonly solved, by substituting in one
of the equations the values of x or y obtained from the other
equation ; the problem is then reduced to one, in which a
single unknown' quantity is to be found,

(Ex. 1) Let 82°+2xy+22r=20, and 52-3y=T.

5:’—7.1:7

From the 2nd, 38y=5x-7; . ay= 3

Substituting for zy in the first, we have,

102°— 14
32+ 1 z+2x=20; o 1922 -82=60;
380 283
Lo x=2 or —-1—9', and ]/-—l or —'—5—7‘-

(Ex. 2.) Let 52—-2y=4, and 42°-38y'=-11; find x

and .

From 1st, y=—5—2lr-—2; ™ f:g%—zj— 10z +4;

4.3"——7571’+30.r—-12=-—ll; o 502 — 1200 =- 4;

2 113

39° and y=3 or ~%59
Sometimes however particular methods are more useful, as

we shall see in the following examples.

o =2 or
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(Ex. 8.) Given #*+y*=17, and 2+y=38; find 2 and .
Raise the second equation to the fourth power ;
oat+ 420y + 627y + 4yt + Yt = 81.
But z* +y'=17;

42%y + 62y + 42y° =64,
or  zy(2s'+8zy+2y°) =32....(0)
Take twice the square of the second, and multiply by xy ; '
o xy(22°+ dxy + 2_1/’) =182y......(2)
Take (1) from (2) .. xy x xy=18xy—32;
o (zy)'- 182y +81=81-382=49; .. zy=2 or 16;
and - z+y=38, ifzy=2; r=20r1, y=1 or 2;
if we take xy =16, the values of z and y are impossible.
(Ex. 4) Given 2°+3*=33,and 2 +y=38; find x and y.
Divide the former equation by the latter ;
Lty 2ty -z yt=11...... (1.
But z*+ 42y +62°y" + 4.¥y' +y'=81...... (2).

Take (1) from (2) .. 52% + 52°y*+ 5zy° = 70;
o xy (2 + 2y + y°) = 14.
But #*+22y+y°'=9; S P rry+y=9-xy;
cozy(9-ay)=14; o (2y)'—Qzy=—14;

xy=g*g='2 or 7, and ** x+y=38;

~ taking zy=2, we have x=2 or 1, y=1 or 2.
6
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(Ex. 5) Given z+y+,/x+y=12, and 2y=20; find =
and y.
Complete the square of the former equation by adding % ;

(a:+y)+,,/x+y+——12+: :‘?,

% A/w+y=*%-—%=3 or —4;

S z+y=9 or 16, and zy =20,
and from 2+y=9and xy=20; x=40r5 y=5or4;
from s+y=16and.ty=20; a:=8d=,./34; y=8*’,,/34.

(Ex. 6.) Given §+%—,+;+€= g}, and a®+y*=20.

Since (‘5+ g) = §+ 2 +'Z—:; add two to each of the mem-

bers of the former equation, and then } to complete the

square ; .
(y 1) (7+1)+—=-—+2+1=9,
5 .

or —
zy zy

<. zy=8, and 2xy=16;
o 2+ 22y +5"=86, and P~ 2zy+y'=4;

o 3+y=*6, and r—y=%2; cox=%4 y=*+2
(Ex.7.) Given 32*'+4y°'=Tzxy gndv,:._%'.__y}’.

< 32-Tey=—4y’; .~ z’—%z_y=—5z;
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BTy 9. W Y
P -3y e =365 3 "’;%’

|
. -1'—-6-*6—- 3 or ’y.

But from the second equation, z,/z—-y/z= gg.f ;

ﬁ(.t-y)=-2—9£; J;x-g:%gz; \/E=831;

z=éz=ﬂ; . y=8, and x=4.
) 9 38
From x=y we have r~y=0; .. °=0; .. y=0, and
z=0.

101. When the equations are homogeneous, i.e. when the
sum of the indices of the unknawn quantities is the -same in
every term, it is frequently convenient to substitute vy for
one of the quantities as z, and then either by dividing one
of the equations by the other or by other obvious methods,
an equation will result involving v only.

(Ex. 1.) Given ax’+bzy=c, and a,2°+b,y*=c,*; find
z and y.
Let z=vy; . .o .
< av’'y +bvy'=c (1), and a, v’y +dy'=c, (2)
Multiply (1) by ¢,, and (2) by ¢, then
c,av’y’+ c,bvy':cc,=ca,v’y'+éb,_y'.;
< (ca—ca)v'+ c,bv=:cb,,

® Letters marked as a,, 3, ¢,, and which are read a one, b one, ¢ one;
are frequently made use of in long and complicated expressions, for the
symmetry which they give to the results; but they have no value different
from that of the letters which are without a mark. .

6—2
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a quadratic equation from which v may formed, and there-
fore y and .
(Ex. 2.) 22°-3zy+4y'=24, 32'—5y"=28,
z=vy; .. (2v'-3v+4)y’ =24; (8v°-5)y"'=28;
< Ty x (20" 8v + 4) = 168 = 6y* (80" 5) ;
o 140°—-21v 4+ 28 = 180‘-—80; Lo 40"+ 210 =58;

whence v=2; .-.'y’=_&=g§=4;

- y=+%2 and x=vy¥*4.

(Ex. 8.) Given 2°y’+xy*=156, and 22°y" — 2*y*= 144.

Here substitute for y instead of z, as the equations for v»
will be more simple; ... make y=ovx;

oo 2 (VP +0%) =156, and 2. (20'-0")=144;

e = =3 o 12084+ 130 =14;

whence v=§, and x=3, and y=2.

EXAMPLES.
(1) F+y'=549 z=+18,
at-y'= 99}’ y==15.
R) z+y= 41; z=21 or 20,
zy =420; y=20 or 21.
3 x—y=5; z=9 or —4,

zy =36; y=4or -9.
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©
V)

®)

©)
(10)
an
(12)

(13)

(14)

EQUATIONS.

2y +y=10
.z’y'+y'=68}’

y~+xJ_;,'=21}

2y +y* =225

+

"

Sl e
&l

5
6
18(3

Rl =
@

::9:7}.

’

x=11or 9,

y=9 or 11.

x=15 or —13,
y=13 or —-15.

r==%8,

y=*7.

x=2 or 8,

y=3 or 2
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(15) 2F+y':xy:= 13:6} z=#6,
s-g=20 ) y==4
(16) 2*+y*=1001 z=10 or 1,
Ly+zxy' =110 }' y=1 or 10.
(17) 2*-3y*=2375 z=15 or ~10,
r—-y=35 }' y=10 or ~15.
(18) a*-y'=105). : xz=11 or —4,
Ty =44 }' o y=4or —11
19) (z+y) (@@ +y") =520 z=6 or 4,
(z-2) . (@-y)=40 }’ y=4 or 6.
(20) 2P+zy+y'=91 "z=9orl,
.r+,,/.;:y'+y=13}" y=1lor .
(21) o+ xy=4500 x=50 or 40,
¢y+y'=3600}’ y =40 or 50.
(22) »F+axy=84 x==7,
z'-y’=24}’ y==5.
(23) 2+ =152 x=5or 8,
P-zy+y =19 }’ y=38 or 5.
(24) o'+y" +xy=208 =12 or 4,
z+y=16 }’ y=4or 12
(25) 2*—y*=T=xy z=4or -2,
r-y=2 }’ y=2 or —4
T ¥ g2 =8 or -
(26) ;—1—83}; - xz=8 or -1,
rT—-y=2 y=1or -8



@n

2x—-8y=2

)

820 —27y' =87z

(28)
(29)

(80)

81

(32)
(33)

(34)
(35)

(86)

z-y=.Jz+

o= 37

EQUATIONS.

B,

x’+y'+~/.t’—+-y_'=30}'

r+y:xyT:12

z*y~%
1 1
PF+yPp=5
A+yf=18

z'—y=208

Nz -Nly=4

.z’_y+.1:y'=30}

}s

|

.

2

a:'+y’+z+_y=922}
Jay=20 )’

2y’ =180 - Sxy}

z+8y=11

234
x

Q| w

.
3

Txy=6

x+y+./z+y=12}'

#iy =41

x=4 or —3§,
8
y=2o -3

z=16 or 9,
y=9 or 16.

x=4 or 8, .

y=38 or 4.
.1:':3 or 2,

y=2or 3

" x=16,

9=9.
x =216,

y=8.

x =25,
Y= 16.

x=5 or 6,

y=2 or

x=2 or =
y=; or 6.

x=5or 4,

y=4ors.
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(87

(88)

(39

(40)

(41)

(42)

(43)

(44)

(45)

EQUATIONS.
5:y+3.r’+7y=639
Z-16%4
,93/ -16.::
5z—-Ty=19

: »’7:’—5y’=4~03};

x’+_y’+a:+_y=330}
-y +z—y=150)"

2+ y* =837
r+y="17 }

2

xz° +y° = 8157
z+y="7 }’

.

2

T4y +.ry=34-}
F+y-r—y=42

zy(z’+_1/’)=300};
>-y'=7

.1:+_,Jl -y'=1

y+,,/l—.r’=~/§ ’

zy (2° + y*) = 1820
z+y=11 },

. 1
x=12 or —15-,

213 -
y=9 or ~T0°

z=38,

y=38.
x=15 or - 16,
y=9 or —10.

x=4 or 8,

y=28 or 4.

x=5 or 2,

y=2 or 5.

x=6 or 4,

y=4or6.

r==*4 or =,/-38,

y==38 or =,/"4.

8
]
|
-

=

]
I

x="1T or 4,

y=4or 7

z=9,

y=3.
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(47) z+y=zxy } z=3 or },
z+y+at+y =153 ’ y=g or 3.
(48) H+gp=7 } r=25,
2+ yf = 641 y=32
(49) x’+y’=84-} z=35,
- zy=10 ’ y=38 .
(50) z’+x_y=66} z=6,
zy-y'=5)’ y=>5.
(51) z’+3.t_y+4y’=l4} r=2,
82"+ dzy+5y=25)" y=1
(52) a:‘—-.z"+y‘—-y'=84-} z==3,
F+ay+y =49)° y==2
y, 3= _*-¢ =3
@9 CtziyT Ty l ey
x _z+y 9y ’ =§
¥y Tz "z J =%
1 .
mg—np
(54) r'y'=a], ’=(1"7:) ’
: 1
x? =b myg—-ap
y J : Y=\ .
820 '
=% =5,
(55) "4'-"'”:3, ) 2=
I’—-y’:g ’ y=*4‘
(56) z’+'.y'=1oo} z=8,
ry—x—y=20 ’ y=4
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(67)

(59)

(59)
(60)

(61)
(62)
(63)

(64)

(65)

EQUATIONS.
2yt =xy+2 }
4x'=xy+ 80 ’
1_22_1_22;61
Yy x
120 120 _ |
y+1 z+1°

5+ .ry=4+./_y+2}
8 +x=,/128+64y

z’+2y‘=zﬁ+2xy,,/?/}
-2y =256-=z,[y

Y+ 14=2x2

2 +yf+2° =50 }

52=8x

r+y+2z=21
z’+y’+z’=273];

z:y::y:z

zy + xz =80
z_y+yz=72};

zz+yz =56

.y’+xy+y2é30

.t"+a:y+zz=20}

z’+zy'+zx=‘50

TYZ _ 44 TYE

z+y ¥ y+iz

e =2, Y

x:*s,

y=*2.
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PROBLEMS PRODUCING EQUATIONS,

102. When a problem is proposed, the first thing to be
" done is to express its conditions in algebraic language, and

then from the given relation between the unknown and
known quantities of the question, to form an equation or
equations; this being effected, the unknown quantity or
quantities must be determined, and then the solution of
the problem is completed.

So that in every problem, there are two distinct opera-
tions to be performed. (1) To make the equation or equa—
tions. (2) To solve it or them when made.
 The latter, which is generally the less difficult task, has
been already abundantly illustrated; of the former we pro-
ceed to give examples.

PROBLEMS PRODUCING SIMPLE EQUATIONS.
(Ex. 1.) Find that number to which if 80 be added,
the sum shall be 5 times the original number.
Let = be the required number;
. x4+ 80 =number + 80;
S x+80=5x; o x =20,
and we see that 20+ 80=100=5 x 20.
(Ex.2) Two men, 4and B, are partners'in trade and
gain £267.; Ad’s gam is twice B’s; what is the gain of

each ?
Let x=B’s gain;

& 2x=A4’s gain; ' N
. 1;1-2.;=the whole gain = 267 ;
<. =80 and 2x =178;
. A’s gain is £178., and B’s gain is £89.
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(Ex. 8.) £1100. were divided among 4 persons 4, B,
C, D; B had twice as much as 4; C as much as 4 and
B; D as much as C and B; what had each?

Let x be what 4 had;
. v 22 = B’s share,
8z = C’s share,
5x = D’s share;
s 2+22+8x+ 5z =11 = '1100; S 2=100;
.. £100., £200., £300., and £500. are the respective shares.
(Ex. 4) Find two numbers whose sum is 80, and dif-
ference = the less.
Let 2x be the less; .. 30 —2x = the greater ;
. 80— 4z = the difference = 4 (22) = ;
oo 52=80; ~x=6; 2¢=12, and 30-2x = ls,v

and the numbers are 12 and 18.

(Ex.5) 4 and B start from two towns which are
216 miles apart, with the intention of meeting; A travels
20 miles and B 16 miles egch day. In how many days
will they meet?

I = the number of days required,
20z = distance travelled by 4,
16z = that by B;
- 202 +162=216; .. x=6.

(Ex. 6.) £3800. is divided among 4, B, C;' B’s share
amounts to grds, and C’s to $ths of what 4 had. Wha
is each share? .
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Let x = A’s share;

?'t andi;f are B’s and C’s respectively ;

.
e

.x+2_3‘t+34_z=3800 o202 = 12 % 8800;

. x =2400 = A’s share, and £1600. and £1800 are B’s
and C’s shares. )
Another solution which avoids fractions.
Let 122 = A’s share;
». 8x and 9z are B’s and C’s;
- 12z +8z+92=2092=38800; .. x=200;
', £2400., £1600. and £1800. are the three shares.

(Ex.7.) A and B together can reap a field of corn in
12 days; A alone could do it in 20 days. In how many
days could B alone reap it?

Let W = the whole work done;

g = the part which 4 and B together can do in one day,
and 20" the part done by 4 in one day;

* Z ——Z—: = part done by B in one day.

Let z =number of days in which B can alone reap
thé field;

alg

= B’s day’s work ;
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(Ex.8.) One hand of a watch makes a revolution in
a hours, the other in b hours; if they both start from the
same point, when will they be again coincident ?

Let C = circumference described by the hands of the
watch 7 .

Tf and -g respectively equal the spaces moved over by

each in an hour;

g --.% = the separation in an hour,

mdg—g£=. ..... Ceeeenne . 2h6urs,
a b
xzC z2C

but when this arc is equal to the circumference they again-
coincide ; .. z may be found from the equation ;
zC z2C
oo -;- —T = C,
WE_E . aze ab
o E - z' =1; S X = m .
Ex. If the hands of a watch are together at 12 when

will they be together again ?

Herea=11and b =12; .-.x—::%alﬁ of an hour.

The same method is applicable when the hands do .not
" start from the same point.

(Ex. 9.) A cistern can be filled by 3 pipes; the first will
fill it in 80 minutes, the second in 3 hours and 20 minutes,
and the third in 5 hours, in what time will it be filled, if
the 8 pipes are opened at once? .

Let W =the capacity of the vessel ;

z =the time in minutes of filling;
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— = the quantity poured in by the 3 pipes in a minute;
/4 w
and 0= quantity by first plpe, by the second pipe, and

w AP
300 by the third pipe;

L(l 1 1\_1 25 1"
o\2" 80715/ =20 60 28°

% & =48 minutes.

1_
&

e

(Ex. 10.) There are two numbers in the proportion of
2 : 8; but if 24 be added to each, their sums will be as
8:0. _ .
Let 22, and 8z be the numbers.
Then 2x+24 : 832+24 :: 8 : 9;
© 1824+216=242+192; .. 6xr=24; .. x=4,

and the numbers are 8 and 12.

(Ex. 11.) A mass of copper and tin weighs 801lbs.; and
for every 71bs. of copper, there are 81bs. of tin; how much
copper must be added to the mass, that for every 11lbs. of
copper there may be 4lbs. of tin?

Let 7x and 3z be the original quantities of copper and
tin ;
< 10x=80; .. x=8,
and 56 and 24 are the lbs. of copper and tin of which the
mass 801lbs. consisted. -
Let y=the copper to be added;
‘ oo 56+y 240 11 ¢ 4;
o 224 +4y=264; . 4y=40; .~ y=10,
i. e. 10Ibs. of.copper must be added.
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(Ex. 12.) 4 bought eggs at 18d. a dozen, but had he
bought 5 more for the same money, they would have cost
him 24d. a dozen less; how many eggs did he buy ?

Let z= number of eggs he bought;

~12: 2 18 :%’:money he paid,

and 12 : 2+5 = 15} : 81 ("’2‘;5)

supposition.

=money paid on second

But the money is the same in both cases ;

. 18z _81(z+5)

12 o1 o 86x=8lx+155; .~ x=38I.

(Ex. 18.) A and B have together £9800.; A invests the
sixth part of his property in business, and B the fifth part,
and then each has the same sum remaining. How much
has each?

Let 62 and 5y represent A’s and B’s property ;
. 6z—2=5z=A’ property after investing the sixth part,
By—y=dy=DB8cccccriiiiiiiinr. ciereeens fifth part;

= 6z +5y=09800,
and 5x=4y;
. =800, and y=1000, and A4 has £4800. and B £5000.
(Ex. 14) A and B can do a certain work in 16 days;
they work together for 4 days, when 4 turns idle and B
finishes it in 36 days more; in what time would each do
it separately? :

Let z and y be the days in which 4 and B would per-
form the work alone, and let. ¥ be the work.
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Then -’;—V+ -;Z = the part they would together perform in

one day
. W
l’
1 1 1.
;+§=E ------ o.oo.(l)
But é_+.4;__+3_6l’=W,
z y Yy
1.1 9 1
.,.;+§+§—3.-. ------ (2)-
9_1r_1_23. =
Take (1) from (2) -~ J=2-1g=15 ~ y=46

1 1 1 2 l
oo =24

(Ex. 15.) There is a number consisting of two digits,
which if divided by the sum of its digits the quotient =4 ;
but if 27 be added to it, the number will be inverted.

Let = be the digit in the ten’s place,

Y cettecitnacncannas unit’s place;
*. 10z +y = the number,
and - 102 +y_ =4; . 2r=y.

Tty
And 10zx+y+27=10y+z;
R 9y—~9x=27; .'._y—.z"=3;
z=8, y=6, and the number is 36.

.
e

(Ex. 16.) There are in three boxes 4, B, C, 162 so-
vereigns, and in order that there may be the same sum in
each box, I take out from 4, and put into B and C, half



138 EQUATIONS.

as much as they already contained. I then take out of B,
and put into 4 and C, half of what each contained, and I
do the same to C; and then my object is effected. How
much did each box contain at first?

Let 2z and 2y be what B and C held at first,
and 33+xl+y vecesesesd had;
S 82+3y+88=162; o x+y+s=54.

Now taking, according to the question, z +y out of 4,
and putting z into B, and y into C, the boxes will respec-
tively contain ,

82, 8x, 3y;

then putting '1; into 4, and % into C, the state will be

Os _38+32'_91
g S¥-—g s g

Now putting 245 into 4, and %.3_38-;33; into B, each

box will contain one-third of the whole sum;

8z s+y 3+y_ S8z 3y o_1g;
‘2 2 4 2 4 6 =18;

*» =26, and y=20;

o 88+z+y="70, what 4 held; 2z =52, what B held,
2y =40, what C held.
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EXAMPLES.

(1) What is that number, the double of which is as much
above 50 ; as-its half is below it? Ans. 40.

(2) A man bequeathed £330. to three persons; 4 had
twice as much as C, and B as much as 4 and C together;
what had each? 4 had £110; B £165; C £55.

(8) Divide 100 into 2 such parts, that if the one be divided
by 15 and the other by 5, the sum of the quotients = 10.

Ans. 75 and 25,

(4) A person has 55 coins, consisting of crowns and
shillings, and their amount is £7.8s. How many has he
of each kind? Ans. 22 crowns and 38 shillings.

‘(5) A farm of 864 acres is divided among the three sons
of a farmer; A4 has 5 acres for B’s 11 acres, and C has as
much as 4 and B together; what number had each?

Ans. 4, 185; B, 297; C, 432.

(6) A garrison consists of 2100 men; there are 10 times.

as many foot soldiers, and three times as many artillery as
there are cavalry. How many were there of each?

Ans, 150 cavalry; 1500 foot; 450 artillery.

(7) A says to B, if you give me £50. I shall have twice
as much as you had ; but if I give you £50. each will have
the same sum. How much had each?

Ans. 4 £250.; B £150.

(8) Find that number, which when multiplied by 5;
and 24 taken from the product, and this difference divided
by 6, and 13 added to the quotient, there will still be the
same number. Ans. 54. ’
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9) 4 had £100. and B £48. ; B gave a certain sum
away and 4 twice as much, and then 4 had three times
as much as B had. What did 4 give away?

Ans. £88.

(10) A sum of money is to be divided among 5 persons,
A4, B, C, D, and E; B received £10. less than 4; C £16.
more than B; D £5. less than C; E £15. more than D;
and the shares of the last two equal the sum of the shares
of the other three. Find the whole sum, and how much each
received ?

Ans. £118.= whole sum. The shares are £21., £11., £27.,
£22. and £37.

(11) A person bought an equal number of sheep, cows
‘and oxen, for £660., each sheep cost £38.; each cow £12.;
each ox £18. Find the number bought of each?

Ans. 20.

(12) How much tea worth 4s. 6d. per Ib. must be mixed
with 501bs. of tea worth 6s. per Ib., that the mixture may
be worth 5s. per1b.? Ans. z=100.

(18) Find a number, such that if it be added to its
half, the sum shall be as much above 80 as its third shall
be below 30. Ans. 60.

(14) A man by his will left his property among his three
sons, in the following manner ; the eldest to have £1000.
less than the half, the second £800. less than the third,
and the youngest £600. less than the fourth of the pre-
perty. Required the whole property and the portion of each
son?

Ans. Whole property £28,800; the three shares were, £13,400.,
£8,800., £6,600. :
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(15) Find that number, to which if 15, 27, and 45 be
+ added, the first sum shall be to the second as the second to
the third? Ans. 9.

(16) An officer wishes to form his troops into a solid
square, but he finds in doing so, that he has 60 over; he
then forms a column with 6 men more in front than be-
fore, but the number of ranks less by 4, he then has only
4 men remaining. How many had he? Ans. 1660.

(17) A person in a foreign town wishes to exchange a
sovereign for 25 pieces of the two kinds of coin used there;
and he finds that 80 of the one, or 15 of the other, is
equivalent to a sovereign. How many must he have of each?

Ans, 20 and 5.

(18) A sum of money is divided among 4 persons,
A, B, C, D;- A has £3000. less than the half; B, £1000.
less than the third; C, £600. more than the fifth; and
D }rd of what the other three had. What was the property
and the share of each?

Ans. Property was £12,000., and each had £3000.

(19) Tea at 5s.8d. per lb., is. mixed with tea at 4s.3d. .
and 100 lbs. of the mixture are sold for £25. 5s. How much
was there of ea_ch? Ans. 80 and 20.

(20) A person wishes to sell a watch by means of a
lottery ; if the tickets be sold at 5s. each, he would lose
£5.; but if the price be 6s., he would gain £4. Find the
price of the watch and the number of tickets?

Ans. Number = 180; price of watch is £50.

(21) 4 puts £5500. out to interest at 4 per cent., and
4} years after £8000. out at 5 per cent. In how many years
will the interest received from the one equal that from the
other sum? Ans. 10..
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(22) The circumference of each of the two fore wheels
of a carriage is 5} feet, and of each of the hind wheels is
7} feet; when the fore wheel has made 2000 more revolutions
than the hind wheel, what is the distance travelled.

Ans. 7 miles 980 yards.

(28) A cistern can be filled by 8 pipes; by the first in
2 hours, by the second in 3 hours, and by the third in
4 hours. In what time will the cistern be filled, if the 8 pxpes
are opened at once? Ans In 553 minutes.

(24) A could reap a field in 20 days, but if B assisted
him for 6 days, he could reap it in 16 days. In how many
days could B finish it alone? Ans. 30 days.

(25) 4, B, C are to build 2 wall; 4 can build 8 cubic
feet in 6 days, B 10 cubic feet in 5 days, C 12 cubic feet
in 4 days. In how many days will they build a wall con-
taining 228 cubic feet? Ans. 36 days.

(26) In a bag containing sovereigns and shillings, there
are three times as many sovereigns as shillings; but if 8
sovereigns and as many shillings be taken away, there will
be five times as many sovereigns as shillings. How many
were there of each? Ans. 48 sovereigns, and 16 shillings.

(27) A has 3 pieces of metal of the same size; 5 cubic
inches of the first weigh 693 oz., of the second 8} cabic inches
weigh 41 oz., of the third 4§ cubic inches weigh 91 os. The
weight of the 8 is 940% oz., what is the size of each?

Ans. 20 cubic inches.

(28) A, B, C engage in business and gain £5020., of
which C receives £2570. for his share, but B contributed at
first half as much again as A, and C £300. more than 4 and B
together. How. much did each contribute?

Ans. 4 £2450.; B £3675.; C £6425.
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(29) I sold a horse for £60., and by so doing lost 20

per cent. on the purchase money, but I expected to have
made 10 per cent. For how much was the horse sold below
its estimated value? Ans. £22.10s.

- (80) When will the hands of a wctch be together be-
tween 2 and 4? Ans. 164 minutes past 8.

(81) When will the hands be togeiher again, when one
makes a revolution in 10 hours apd the other in 12?
Ans. 60 hours.

(32) 4 starts from a certain place and travels 27 miles

a day; 2 days afterwards B sets out and travels so as to

overtake 4 in 6 days. How many miles a day did B travel ?
Ans. 36.

(88) A courier who travels 81} miles every 5 hours has
set out 8 hours; when another, who travels 22} miles every
8 hours is sent after him to overtake him. When will the
second overtake the first. Ans. In 42 hours.

(84) The quantity of water which flows from an orifice
is proportional to the product of the area of the orifice and
the velocity of the water. Now there are 2 orifices in a
reservoir, the areas being as 5: 13, and the velocities are as
8:7, and from one there issued in a certain time 561 cubic
feet more than from the other. How much water did each
orifice discharge in this time? Ans. 440 and 1001 cubsic feet.

(85) A sets out from London to York, B from York
to London, A arrives in York 9 hours, and B in London
16 hours after they met. In what time did each perform
the journey? Ans.’ A4 in 21 hours, B in 28 hours.

(36) A performs a journey at a certain rate; had he tra-
velled } a mile an hour quicker, he would have performed
the;ourney in § of the time; but had he travelled } a mile
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slower, he would have been 2} hours longer on the road.
Find the distance and his rate.

Ans. Distance is 15 miles; rate 2 miles per hour.

(87) 4 and B are in trade together, with different
sums; but if £50. be added to 4’s property, and £20. be
taken from B’s, they will have the same sum; also if A’s
property were 3 times and B’s 5 times as great as each
really is, they would have together £2350. How much has
each? Ans. 4 has £250.; B £320.

(88) A has 2 vessels with wine in them, and finds that
jths of the first contains 96 gallons less than 3ths of the
second, and that jths of the second contains as much as
sths of the first. How much did each vessel hold?

Ans. 720 and 512 gallons.

(89) There is a fraction such that if 1 be added to
the numerator, and the numerator to the denominator, its
value =}; but if the denominator be increased by unity
and the numerator by the denominator, its value =§;
find it. Ans. §$. '

(40) The sum of two numbers is 13, and the differ-
ence of their squares =65; find them. Ans. 9 and 4.

(41) A grocer has two kinds of tes, 81lbs. of the first
and 191bs. of the second are sold for £18. 4s. 2d.; and 201bs.
of the first and 161bs. of the second, for £25. 16s. 8d. How
much does a pound of each “cost?

Ans. 15s5. 10d., and 12s. 6d.

(42) There is a number consisting of two digits, and
which divided by the sum of its digits, gives a quotient 7; but
if the digits be written in an inverse order, and the number
so arising be divided by the sum of the digits increased.
by 4, the quotient =3; find the number. Ans. 84.
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- (43) 4 and B can perform a certain work in 20 days;
after working together 5 days, A4 falls ill, and B completes
the work in 86 ‘days more, in what time would each have
done it alone? Ans. 4 in 34jth days, B in 48 days.

(44) A mass of tin and lead weighing 1201bs. in vacuo,
loses 141bs. when weighed in water; and it is known that
871bs. of tin lose 51lbs. and 23lbs. of lead lose 21lbs. in
water. What are the respective weights of tin and lead?

Ans. 741bs. of tin, and 461bs. of lead.

(45) Three labourers 4, B, C, are to do a certain work ;
4 and B working together can do it in 12 days; 4 and C
in 15 days; B and C in 20 days. In what time would
each do it alone? And what time would it take to finish
it, if they all three work together?
Ans. A in 20 days, B 80 days, C 60 days; all three in 10 days.

(46) A finds that 741bs. of coffee, 231bs. of sugar, and
1211bs. of tea cost £7. 3s. 6d.; that 9lbs. of coffee, 71bs. of
sugar, and 38lbs. of tea, cost £2. 18s., and that 2lbs. of
coffee, 531bs. of sugar, and 41lbs. of tea, cost £2. 3s. 6d.
_What does each cost per 1b.? :

Ans. Coffee costs 3s., sugar 1s., and tea 8s.

(47) 4, B, and C have £96. between them; A who has
most, gives to B and C as much as they already had; in
the same manner B gives to 4 and C, and C to 4 and B;
it was then found that each had the same. How much had
each at first? Ans. 4 £52., B £28., and C £16.

(48) A number consisting of 3 digits when divided by
the sum of the digits +9, gives a quotient 19; also the
middle digit =4 the sum of the first and third; and if 198
be added to the number, we obtain a number with the same
digits but in an inverted order. What is the number?

R Ans. 456.
7

N
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PROBLEMS PRODUCING QUADRATIC EQUATIONS.
(1) Find that number, whose séuare exceeds its simple
power by 306.
Let = be the number;
<. &*—x =306, by the question;

(e e

Both answers satisfy the algebraical conditions of the question ;
but the result (—17) tells us that the algebraic is more
general than the ordinary language, and it is the answer
to this question, * Find that number which added to its
square, the sum will be 306.”

(2)'_ A person buys some pieces of cloth for £60. Had
he bought 3 more for the same sum, each piece would
have cost him £1. less. How many did he buy?

Let x =namber he bought;

6?0 = price of each piece ;
60 .
< g = price had he bought 8 more for £60;
. 6?0—% =1; .. 180=a*+3x; .. x=192,

or he bought 12 pieces at £5. each.

But « also =—15; what is the meaning of the negative
value ?
60 60 .
Here — =—4% and iss- S or the prices he would

have given are —£4. and —~£5.; in other words, since
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buying and selling -are opposite operations, the result —15,
is the answer to this question, ‘“ A person sells cloth for
£60.; had he sold 3 pieces less for .the same sum, he would
have gained £1. more.”

(8) A person sells a horse for £144. and gains as. much
per cent. as the horse cost him. What did the horse cost
him?

Let x = original cost of horse;

z* .
100 @ ot m:the gain;
: x+i-—l4:4- . =80 or —180
- 6o = ;= 3

the negative root — 180 may be easily explained.

(4) There is a number consisting of 3 digits, the last

of which is deuble of the first; if the number be divided by

" the sum of the digits, the quotient is 22, but if divided by

a third of the product of the last two increased by 4 the
quotient is also 22. Find the number.

Let x, y and 2z be the digits ;

<. 100z + 10y + 2z is the number;

~22...(1), and XBEX10Y 00 ()

, 102z + 10y + 10
T 8x+y 2.ty
= 4

Sx+y

From (1) y=38z, from (2) 511+5y=(£g+2)22;

o 22(2*+2)=66z; .. 2'-8x=-2;

. x=20r1, y=6or 3, and 264 and 182 are the numbers,

7—2
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EXAMPLES.

(1) What is that number whose half multiplied by its

ith part——ggé?- Ans. 30.

(2) Find two numbers in the proportion of 2: 3, the
sum of whose squares = 208. Ans. 8 and 12.

(8) There are two numbers whose product = 450, and
quotient = 2. Find them. Ans. 30 and 15.

(4) Find two numbers which shall be as 8 to 4, and
the difference of whose cubes : sum of their squares :: 87 : 5.
Ans. 15 and 20. ‘

(.’)) Find that number the square root of whlch exceeds
its fourth root by 12. Ans. 256.

" w(6) There are two numbers whose difference = 8, and
product 240. Find them. Ans. 12 and 200.

(7) The difference between the sides of a rectangular
field is 100 yards, and the distance between two opposite
corners is 500 yards. Find the length of the sides and the
area of the field. ‘

Ans. Area of field 120,000 square yards; 400 and 800
the length of the sides.

(8) Divide 185 into two such parts that the difference
of their square roots shall be =3. Ans. 64 and 121.

(9) The difference between two numbers multiplied by
the greater = 16, but by the less = 12. Find them.
Ans. 8 and 6.

(10) The sum of two numbers multiplied by the greater
= 40, and difference multiplied by the less = 6. Find them.
Ans. 5 and 8.
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(11) A .pedestrian having to walk 45 miles, finds that
if he increases his speed 4 a mile an hour, he will perform
his task 1} hour sooner than if he walked at his usual rate.
What is that rate? Ans. 4 miles per hour. .

(12) A charitable person is about to distribute £6.
among some poor persons, when two others come in, and
thus each person’s share is diminished by 2s. Find the
number of persons relieved. Ans. 12.

(18) A person bought a number of sheep for £80., if
he had bought 4 more for the same money, he would have
paid £1. less.for each. How many did he buy? Ans. 16. .

(14) A man left by his will £46800. to be divided
equally among his children; two of them die before the
division of the property is made, and consequently each
child receives £1950. more than ‘it was originally entitled to.
Required the number of children. Ans. 8.

(15) A tradesman bought cloth at Leeds, and has to pay
for insurance and carriage 4 per cent.; he sells it for £390.
and gains as much per cent. as the 12th part of the pur-
chase money amounts to. What did he give for the cloth ?

Ans. £300.

(16) There are two numbers whose difference is 10, and
if 600 be divided by each, the difference of the "quotients
also = 10. Find them. Ans. 20 and 30.

(17) The sum of two numbers = 80; and if they be
divided alternately by each other, the sum of the fractions
= 84. Find the numbers. Ans. 20 and 60.

(18) Divide 10 into two such parts that their product
‘may exceed their difference by 22. Ans. 6 and 4.

(19) The sum of the squares of two numbers = 41,

and their product exceeds their sum by 11. Find them.
Ans. - 5 and 4.
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(20) A man sold a horse for £96. and gained as much
per cent. as the horse cost him. What was the price of the
horse? Ans. £60.

(21) 4 bought certain pieces of cloth for £45., but had
he received 8 pieces more for the same money, each piece
would have cost him 15s. less. How many pieces did he
~buy? Ans. 12.

(22) The joint stock of two partners is £1000., one
leaves his money in the partnership for 12 months, the other
for 18 months; but each takes £990. for capital and profit.
What stock did each farnish? Ans. £450. and £550.

(23) 4 and B set out at the same time; 4 from C to
go to D, and B from D to go to C; they meet on the
road, when it appears that 4 has travelled 30 miles more
than B, and that at the rate he is travelling he will reach
D in 4 days, and that B will arrive at C in 9 days. Find the
distance of C from D. Ans. 150 miles.

(24) Find two numbers such that tbeir sum, product
and difference of their squares may be equal.
Ans. 1.680 + and 2.6180 + nearly.

(25) Divide 1384 into 8 such parts that the sum of the
first, twice the second and three times the third =278, and
the sum of the squares = 6036. Ans. 40, 44, 50.

(26) The sum of two numbers = 11, and the sum of
their 5th powers = 17831. Required the numbers.
Ans. 4 and 7.

(27) The product of 4 consecutive numbers is 840.
Find them. Ans. 4, 5, 6, 7.

(28) There are three numbers, and the product of the
squares of the first and second divided by the third num-
ber = 8; the product of the squares of the first and third
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divided by the second = 64; and the product of the squares
of the second and third divided by the first number = 512.
Find the numbers. Ans. -2, 4, 8.

(29) If to a certain number you add 1578, and from
the same number you take 142, the difference between the
cube roots of the numbers so obtained =10. Find the
number. Ans. 150.

(80) There is a number consisting of 38 digits, in which
the sum of the squares of the digits = 104 ; the square of
the middle digit exceeds twice the product of the other two
by 4, and if 594 be taken from the number the digits will
be inverted. Ans. 862.

(81) There are two numbers whose difference is 2, and
their product multiplied by their sum is 12; what are they?

Ans. 3 and 1.

(32) A person has a certain number of crowns, half-
sovereigns and sovereigns, and if the crowns became sove-
reigns, and the sovereigns crowns, the difference between
what he would have and what he had is £4. 10s.; also the
number of crowns : the number of half-sovereigns :: that
number to the number of sovereigns; and the sum of the
squares of the crowns and sovereigns increased by 12,
equals 5 times the square of the number of half-sovereigns.
How many crowns, half-sovereigns and sovereigns had he?

Ans. 2 crowns, 4 half-sovereigns and 8 sovereigns.



CHAPTER 1V.

SURDS AND IMAGINARY QUANTITIES.

103. NuMEeRICAL roots of the form /2, 1/7, \/17, 1/63,
and algebraical ones, such as ,/a*+z, ./a®+a'z, which
cannot be expressed in a finite number of terms, and there-
fore have no known ratio to unity, are called irrational
quantities or surds.

And terms such as ,/—a and ¢ +,/= %, already men-
tioned (Art. 73.) are called imaginary or impossible quan-
tities.

But although these surds cannot be exactly determined,
yet while they retain their form, they can be added to or
subtracted from other surds, and may be multiplied or
divided as other algebraical quantities.

Dger. Similar surds are there which have the same
quantlty under the root.

Thus 2,/2 and 5,/2 are e similar surds, as also are 4af

and 3¢./6.

RuLk 1. When different surds are or can be reduced to
similar surds, their sum or difference may be found, by
taking the sum-or difference of the coefficients of the com-
mon surd.

(Ex.1.) Find the sum and difference of ,/72 and /128,
J12=,/36x2=6,/2 and ,[128=,/64x2=8,/2;
- J128 +./72=14,/2 and /128 - ,/72=2./2.
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(Ex. 2.) | 248 + /27 + /48 =16,/3.
:3) B+ /B /0B = 6.
(Ex. 4.) Jw_§+Jf§6+J— 45 250_—7J2

(Ex. 5.)

2./80* - 7a,/18a + 5,/72a - ./50ab* = (13a - 5b) ,/2a.
(Ex.6) 7%/58+8°/16+%/2 - 53/128 = 8%/2.

(Ex. 7.) Find the sum of 3 f and 7 5;7)

T, fI55 a1 i f5 a5 n
"N 3= 25v2=35M 3 = V65
2 _ _s6_ 1. 31
3N/;—3N/§"3 3 =~6; . Sum=10/6.

Prove that .
]2/\/_+3f J§, J:——le 2 3 g 3.

104. When the quantities do not involve the same surd,
their sum or difference is expressed by placing the proper
sign between them; thus to add Sﬂ to 5./a, we put
5,/a+3 ﬁ

Mo

(E

MULTIPLICATION AND DIVISION OF SURDS.

105. The product of two or more simple surds, is
found by multiplying together the quantities under the
root as in ordinary multiplication, and placing the SIgll of
the root over the product.

Thus ,/a x \/6=,/ab and /3 x \/T=,/2I.
7—5
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This rule, however, only applies to surds of the same
dimension, i.e. having the same root to be extracted ; when
the product of different roots is to be found, fractional
indices must be put for the roots and then the fractions
reduced to a common denominator, which denominator will
express the root of the product.

Thus to find the product of \fz and /g,

1 — 1
Ja=a', and }/a=a'; also - %

respectively ;

o Jax a=al x d=dl =3
m+n

1 1 ] n
And ax3a=a*xa"=a"*xa*"=a ™ =""[a"".

And faxif6= @ x b== ot x b'.’= Vet ’i/lT’: Vet

106. To divide one surd by another of the same de-
nomination, divide as in common division and place the
sign of the root over the quotient.

T il 5 4 o 0
R AV WV

But J_—:-f,/;=9—:=

Sl e

..—.a%= 'J;,

We may here remark that ,/a multiplied by /a is a,
and that ,/“ax,/—a is —a; for in the latter case

J=axJTa=J=ay=(-af=-a
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And here we may observe that it is frequently conve-
nient to put rational quantities under the form of surds.

Then a=,/d*=/a* and 2a./35=,/4d"x /36 =,/12a%.

Whence we see that to-put a rational quantity under the
form of a surd, we must raise the quantity to the power
expressed by the root, and place the sign of the root over

it; also conversely every impossible expression as ./ —a® may
be put under the form ,/a*x -1 =,/a* ,/—1=4a,/—1, and
thus also a =,/- 5" may be written

ax,[Fx [~1=a%b,/-1;
this latter expression may be taken as the general type of

an imaginary quantity.

. 107. Next to find a multiplier which will make a given
binomial surd as a+,/B, or \Ja +./b, rational.
Since a’-y'=(x+y) (z-y).
If z=a and y=./b, then a’—b=(a +./0) (a—,,/b_j,
or if z=,/a and y=/5, then a—b=(/a+./5) (Ja - /b)
If therefore a +,/5, or Ja+./b be the given surd, the
. multiplier is a -,/ or Ja—-./b.

Ex. Let 7+./3 and ,/7+./3 be two surds, then
7-43 and ,/7-,/3 are their multipliers, and the respective
products will be 49— 3, and 7 -8, or 46 and 4.

108. Next to reduce a fraction of the form ‘ﬁz—, to

one with a rational denominator.



156 SURDS AND IMAGINARY QUANTITIES.

Multiply both numerator and denominator by a —,/ and
he fraction becomes :
[ x a— ﬁ = ca—c¢ ﬁ

a+.Jb a-,/b a’-b

2

J2 +./5
2 _26E-VD) 2 (5o )

§-

Ex. Reduce to a fraction with a rational

denominator.

V2 + 5
109. If the surd be of the form 1/a +1/5, ;.hen since
a+b=(ab+ B) (@ — ddbd+ BF),

the multiplier will be af - b 53 4+ B5.

Ex. Find the multiplier which will make J2-41/3 a
rational quantity. - ’

s .
Since 4:/3=\/§; < a=2, and b=%, and the mul-

1 2
cqe oo o8 8\ (8N . 38 18
tiplier is 25— («—f) + <§) , and the product is =2-z=3"

110. To firid the multiplier which will make ,/a+,/5 + /¢
a rational quantity. ,

Since (Ja + 6+ 40) x (Ja+ 6 Jo) = (Ja + /by ¢
' =a‘+b—c—2~/a_b,

and if 2d be put =a+b—c, then 2d—-2,/ab will become
rational if it be multiplied by d+,/ab;

~ the multiplier required is (a + b — ¢ + ,/ad) (/a + /B —..Jc).
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" Ex. Let ./2+./8+,/5 be the surd; find the multi-
plier.

4

Here a=2, =3, c=5; .. a+b-c-,[ab=,/6;
«. the multiplier is Jg(ﬁ+J§—J5)=JE+Jl—l!’—J§(—),’

and if the surd be multiplied by it the result =12.

EXAMPLES.

(1) (7+2.6)x(9-5./6)=8-17./6.

@ (s8/T+50/D) (J+z¢2)__+ls¢3

(8 (J2+./8)'=49+20,/6.
(#) @J8+8/5-7,2) (JT2-5.,/20-2./7)

' =42,/10-174.

(5) /2 x 2/3 x /5 ='~/648000.
CRVCWISN EWES

(") (cJa+d . JB)x(c\Ja-d. [B)=c'a—d%.
©®) WE+sJhH+iJi=10.

©) (f3+8)+W3-r/2)=5+2./6.
(10) (3./5-2/8) + 2./ /1) = 22+ 5410,

. ' 1 J30+3,/2+2,/3
(11) Sh'ew thatﬁ+ﬁ-ﬁ 12 .
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a9 2L e

e (18) Multiply dd—2a'b + 40t b —-8ab + lﬁaibg— 32t by
at + 205, Ans. a*—64b%

(14) And & +atbh 1 alh + B by a—B.  Ans. a—b". -

(15) Divide i— 2~ 428+ 62~22% by 2— 42t +2.
Ans. .z-.r;.

(16) And 256z-3' by 4i—y.
Ans. 6428+ 161;y+2.t‘_'y’+y’.
(17) Shew that («*—z,/2+1) (Z*+2 J2+1)=2"+1.

a+bJ 1 a- bJ/=1 _2(a"-b)

s a-b,/- a+bJ 1 a+b

(19) JE1+, /71 ,[.:’+1 JE-1 P
NN s MNZES TN T '
1, 2 2 _ 8
z-1 2z+1-,/—8 2z+1+,/-3 -1

(20)

BINOMIAL QUADRATIC SURDS.

_ 111. Expressions of the form 4 +,/B or /4 +,/B,

are called binomial surds; such are found in the solution
of some quadratic equations; as for instance, in z*-2pa*=q.
For then 2*=p+,/p*+¢, which will agree with the former
of the expressions if p be rational and p*+gq not a perfect
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square, and with the latter if p be a surd quantity. This

being the case x=n'p+np*+gq,.a complicated expression
which it is sometimes possible to put under the more con-
venient form of a=,/b, where b is a rational quantity and
a rational or irrational.

That this is true may be thus shewn:
@+ /3F=7+4,3; .~ JTraJ8=2+43
WR+J3r=5+2/6; - Jo+ad6=n2+45.

We shall now proceed to shew that v/A ++/B, where
B is rational and 4 either rational, or a quadratic surd, can
always be exhibited under the form above mentioned, when
A*— B is a perfect square; but before we do this we must
premise the following propositions.

(1) No qﬁantity can be partly rational and partly a
quadratic surd.

For if possible let \/z=a+,/b; .. squaring both sides,

z=a"+2aJb+b; .. ﬁ:a'——(:;—*-b),

or a surd quantity equals a rational quantity, which is con-
trary to the supposition of surds.

(@) If z+,/Jy=a+,/b, be an equation between rational
quantities and surds; then x=a; and /y=./5.

For if 2 does not =a, let x =a+m;

v atmfy=a+fb; o mJy=b,

Le. a quantity which is partly rational and partly a quad-
ratic surd is equal to a quadratic surd, which has been
shewn to be impossible in the last article.
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(8) The product of two surds which have not the same
irrational part, is irrational. . . '

For if not let the product of ,/z and ,/y = mz;
oozy=miat; o y=miz; o Jy=mz, »

or \/y involves the same surd as ,/z, which is contrary to
the supposition; hence ,/zy is still a surd. :

112. These propositions being premised, let us assume

that /4 +,/B is equal to Jz+ [y, where one or beth of
the quantities /z, and ,/y, are quadratic and different surds,
and therefore ,/zy is of necessity a surd;

o NATJB=Jz+.Jy;
. A+ JB=z +2,[Jzy+y;
. z+y=A; and 2,/zy=,/B;
whence by squaring both of the equations, we have
2+ 2zy+y = A4*
4zy=B;

. 2'—2xy+y'=A'-B or (x—y)'=A4*-B.
Now let 4*— B be a perfect square = C*;

- x-y=C, but x+y=4; .~ a:=‘4—;c; .~,y=‘ig_c;

ﬁ+~/§=~/m=\/,4;c+\/42—c.

Ex. Find +/81+10,/6.
Here 4 = 381, JF:]OJE; o A* - B = C* =961 ~ 600 =361 ;
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. A+ C=50, A—-C=12; cox=25 y=6;
N+ Sy=n81+10,/6 =5+ ,/6.

The result has been obtained by substitution, but it
would be better for the learner to proceed thus:

LetJm=JE+./§; o 81410 6=x+2,\/;__y_;+y;
. z+y=31, and 2./zy=10,/6;
. o'+ 22y +y° = 961
4zy = 600 ;

. 2 ~2xy+3y° = (r—y) = 361;

o m—y=10, but z+y=81; - 22=50, 2j=12;
. S+ Jy=+81+10,/6=5+ /6.
Cor. Sincez+y=4, and 2,/zy=,/B; .. by subtraction,
z=2zy+y or (Je-Jy)=4-JB;
v Ja-Jg="JA=JB. |

Hence if a binomial surd of the form /4 — /B be pro-
posed, we must equate it to ,/z — ,/y, and then proceed as above.

Also, that ifa/A+J§=ﬁ+ J_;, then JA—JB:J;—J;-

113. Binomial surds of the form v/a,/c +./bc Je+ ch may also
be reduced by the same method; for

aJe+ . Jbe=Jc(a+.Jb); .'.\/a,\/c_'+,\/ﬁ=:/5~/a_-::/f;

and Na + /b may be found as before, when ,/a"—b is a
complete square. '
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Ex. Find JJ18+./4,
M8+ JE =38 2+2.=~/§(s¥~/§).
Also /3 + /2 = (1 + /2), by the precéding method ;
o JTET =43 (1 + B =430 + B = YR+ R
root of the imaginary quantity

114. The square
4+,J-B, may be similarly exhibited when’ 42+ B is a

perfect square.
For let “/ZT‘\/_::‘—_E:‘\/;“'«/.;;
. z+y=A, and 2./@7:,,/_—_13;
. a'+Qzy+y' =A% and 4zy =-B;
. x’—2.ry+y'=A’+ B; .. x—y:J;lT;—l_?,
and if A4*+ B be a perfect square C*;
o x—y=C, and z+y=4;

. x=c;A’ and J__C_2_4 for C is >4 ;

MR = NV

\/C+A —A -

Cor. 1. Similarly we shall find that
. = [C+ 4 x/é—_ 4 —
. Ji-J-B- z Nz~

Hence

Ja+ .z B+JA JB=2,/%:4 =BT
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and therefore the sum of two imaginary quantities related to
each other as these are, will give a real and sometimes a
rational result.

Cor. 2. Also since \/ C;A and C—;ﬁ are both

real quantities, we may put a, and 4, for them, and thus
we see that

JIT T B=a=b 71
(ﬁx. 1.) Find /1 +4,/-8.
Here A=1, ,/~B=4,/-8; . B=48; .. A'+B=49;
“x-y=JLF+B=T, z+y=1; . 2x=8,2y=-0;
v e Jy=N1+4J-8=24+./73
(Ex. 2) Extract the square root of 2a,/- 1.

Here J7+.Jj=vor2agdo1=A+J=B;

~ 4=0, /~B=2a,/-1; .. B=4a" and C=2a;

S x-—y=20, z+y=0; . 2z =2a and 2y =-2a;
c WEe i =Nasyma=Jara WD) = Ja @+ D)

115. We ay also sometimes extract the square root of
an expression such as m+,/p+,/q+4/7, by assuming the

root equal to \/z + .y +./z; for
Wz+Sy+ 2y =a+y+s+2 ay+2./xz+2 %

and if  + y + z =m, then making 2,/zy = \/p, 2./zz=.Jq,
and 2,/yz =,/r, z, y and z may be found.
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Ex. Find the square root of 10+2,/6 +2.,/10+2,/15.

Here Jzy = /6, Jaz=./10, J2y=15;

v xy=6, x2=10, yz=15; .. 2*y*2*=900; ..zyz=30;

ca=YE_g 4.5 FTVE_

2z zz zy

and r+y+2=10; .. ,/2+,/3+,/5 is the required root.

The equation 2 + y + z = m which is called the equation
of condition, must be verified, before we can say that

Jz+ .y +./z is the true root.
EXAMPLES.
(M) JIT<6fa=3+a
@ Jr =4 f5=2+/5
() Jsag =221
@) JBF;TOTTT=5*J1_1.
() Jasas Jimswdfi.
© 9 fi-ius
() 5w B =B AR
(8) JNET +2 /6 = /12 + /3.
©) 35w JED = 40+ 5.
(10) /52 - . J2a = 3/1B - /2.




)
(2)

(18)
(14)

(15)

(16)
an
(18)
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N3lsae /o2 =7+3,/ 2.
N=83-60,/=8=5-6/"3.

—_— 1
.h¢4=ﬁahpu‘
—_— 1
JoJ=1= 7 -0

N TN S N
Js—fj=2+2ﬁ.
WI8+2.J10+ 4 /3 + 2 30 = /3 + /5 + /.
V16+6./2+4./3+2./6+2 10+ 2./15+2./50

=2 +./3+.5+,/6.




CHAPTER V.

RATIO, PROPORTION, AND VARIATION.

RATIO.

116. RaTio is the relation which quantities bear to
each other with regard to magnitude.

Thus if one magnitude be two-thirds of another magni-
tude, they are said to be in the ratio of 2: 8. For if both
be divided into respectively equal parts, the former will
contain two and the latter three of these equal parts.

And thus the ratio of 2 : 38 and the fraction § express the
2
8
3 equal parts, and two having been taken, that portion

same idea; for 7 indicates that unity has been divided into

will be to the whole as § : g, or as 2 : 3.

We may therefore either take e : b or the fraction % to

express a ratio, the fraction equally exhibiting witha : & the
multiple, part, or parts, that a is of b.

The former term of a ratio is called the antecedent, the
latter the consequent.

A ratio is said to be of greater or less inequality, ac-
cording as the antecedent is greater or less than the con-
sequent, and of equality when these are equal.

Both terms of a ratio may be multiplied or divided
by the same number without altering the value of the.
ratio.
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Thus @ : b and ma : mb are equal ratios.
a_ma
For Z='"Tg.
Also a: band 2 5 are equal ratios.
m° m
. a _a b
Since E-:;.—?;.

167

117. If to both terms of the ratio a: b, the quantity
x be added, the resulting ratio will be greater or less than

the former, according as a is less or greater than b.

For 2 s > or < atz
b b+x’

ppadras_ abrds
b(b+x) b(b+2x)
If ab+ax> or <ab+ba. |
If ax > or < ba.
If a> or <b.
Which shews the truth of the proposition.

Thus if unity be added to both terms of the ratio 5: 7,
by which it becomes 6 : 8 or 8 : 4, then

52043 or 2
7 28 4 28’
But if unity be added to both terms of 7 : 5, then

7 or21 is>-8- oré or@
5 15 6 8 15°

118. A ratio is reduced to its lowest terms by dividing

both the antecedent and consequent by their greatest com-
mon measure.
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(Ex. 1.) Reduce 275 : 825 to its lowest terms.
The greatest common measure is 25, and 275=25x 11 ;
325 =25 x 18;
< 11 : 138 is the ratio required.
(Ex. 2.) Reduce to its lowest terms the ratio
a*—Saxr+22: a'+ar—22°

Here a —z is the common measure, and after having di-
vided both terms by it, the ratio becomes a -2z : a+ 2x.

119. The duplicate ratio of two quantities is the ratio
of their squares; the triplicate ratio, that of their cubes; the
quadruplicate ratio, that of their fourth powers, and so on.

Thus a* : 4" is the duplicate ratio of a : b,
@: b ... triplicate ... of a: ¥,
a*: b* ...quadruplicate... of a : b.

And the subduplicate ratio of two quantities is the ratio of
their square roots; the subtriplicate, that of their cube roots.

Thus ab : 5 is the subduplicate, and ab : B is the sub-
triplicate ratio of a : b. '

Also ad : B is called the sesquiplicate ratio of a : b.

(Ex. 1.) The bases of two similar triangles are 4} feet
and 5} feet respectively. Compare their areas.

The areas are by Euclid (6.19) in the duplicate ratio of
their bases, therefore as

(43)" : (53) = (g)’ : (121-). = 81: 121.
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(Ex. 2.) Spheres are in the triplicate ratio of their
radii; let therefore the magnitude of two spheres be com-
pared whose radii are 2 and 3 feet respectively.

They are therefore as 2° : 3* :: 8 : 27.

(Ex. 3.) The diameter of the Earth being 8000 miles,
and that of the Moon 2000 miles; compare the magnitudes
of the Earth and Moon.

The Earth : the Moon :: (8000)°* : (2000)* :: 64 : 1.

(Ex. 4.) Newton proved that the times of the planet’s
revolutions were in the sesquiplicate ratio of their mean
distances. Suppose that Herschel is 84 years in completing
the circuit of his orbit. Find his mean distance from the
Sun.

Call the Earth’s distance d, D that of Herschel;
<. 1 year : 84 years ood Di;
- D=(88)}4,

or more than 19 times d, or since d is about 95,000,000 miles,
the planet’s mean distance exceeds 1800 millions of miles.

By mean, we here understand half the sum of the greatest
and least distances.

120. Composition of ratios. If there be any number
of ratios, and all the antecedents be multiplied together,
and also all the consequents, the ratio which arises is said
to be compounded of the simple ratios.

Thus if a : b and ¢ : d be two ratios. Then ac : bd
is the ratio which is compounded of the ratios of « : 5,
and c : d.

8
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Thus in Euclid, Book vi. Prop. 23, the ratio of K : M
is said to be compounded of the ratios of K: L and L: M;
for the compound ratio is KL : LM or dividing both terms
by L, is K: M.

Also the ratio of ac : bd is called the sum of the ratios
ofa:% and ¢ : d. Hence it is that the ratio of a*: &*
which is the sum of the two equal ratios, each a : b, is
said to be double of the ratio of a : b, and a° : &* triple
of the ratio of a : b.

(Ex. 1.) Compound the ratios of 2: 3, 3: 4, and 6: 5.
It is better to write the ratios as fractions, then

2 8 6 2x6

335 ax5

.

el

(Ex. 2.) Compound the ratios of
a*:a°-2*; a+xr:a—x; and @®—2*:a’,

a* (a+2) a-2
a*—- 2 x(a—z) "

1 xa’+a.z:—.1:"_a'+a.::+z"
Ta-x a T a*—azx °

For a'-2*=(a-2z).(a+2z),
and a®’-a*=(a—2).(a"+ax +a").
(Ex. 3.) Compound the duplicate ratio of 2 : 8; the

triplicate of 8 : 4; and the subduplicate of 64 : 36.
Ans. 1 : 4.
(Ex.4.) If 2 : y in the duplicate ratio of a : 4; and

a:b in the subduplicate ratio of s +x:a~y then 2x : a
will equal x-y: g.
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121. The ratios of the squares of high numbers which
do not differ much from each other, may conveniently be
found by a rule, sufficiently accurate for every practical pur-
pose, the truth of which we shall now investigate.

Let a, and a + 2 represent two large numbers, differing
but little from each other, and where consequently z is
small in comparison with a, then

) ‘]
Lore_ e (e | g
X a

Now z being very small, and a great, E is a very small

quantity,. and ‘:—:‘ still smaller, and may be neglected, since

it will be found in practice to affect the result by an in-
appreciable quantity.

(a+ z) _

+
Hence i l+-2—"=a 2z,

a a ’

i.e. (a+x)’: a® is equal to a+2x : a, or the ratio of
the squares of two high numbers, nearly equal to each
other, may be found, by adding to the smaller twice their
difference, and comparing this sum with the smaller of
the two.

-~

Thus to find the ratio of (1000.1)* to (1000)*

Here z=.1 or Tlﬁ and 22=.2;

. (1000.1)" : (1000)* =1000.2 : 1000 or as 10002 : 10000,
very nearly.

In this example
(1) .01
2

@~ (1000)* 1,000,000’

or is only one hundred-millioneth part of unity.
R 8—2



172 RATIO.

122. In the same manner since

(a+ 2y (1+) L 82 3.f'+5;
a

=1+ 3-;'2 nearly

a+3x
=—

Therefore (a +x)® : a® is represented by a+ 8z : a4, and
(a+a):a*by a+4x: a

And also since \/1+z=1 +g-—;‘;z’+ &c.;

Ja+z 1+-=1+g--g ,+&c

Ja

=1+ 4; nearly

+3z

a
= nearly;

~ Ja+z:,/a equals a+}x:a nearly,

And similarly may the comparison of other roots of
high numbers not much differing from each other be ef-
fected. :

PROPORTION.

123. When two ratios as a: b and c : d are equal, the
terms are said to be in proportion to each other, and a is
said to have to b, the ratio that ¢ has to d; or a is that
multiple, part, or parts, of & that ¢ is of d, and it is then
written @ : b :: ¢ : d. Thus proportion arises from the
equality of ratios.

Here a and d are called the extremes and b and ¢ the
means,
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124. Since a : b is expressed by -Z- and ¢ : d by 5 if
there be a proportion between a, b, ¢, and d; i.e. if
a:b:c:d,
. a ¢
then 5=a
Multiply both sides by bd;

~ ad=cb;

i e. if four quantities be proportionals the product of the
extremes equals the product of the means; and conversely, -
if the product of two quantities be equal to the product of
other two quantities, the four are proportionals. . -

For let ad = be, then divide both sides by bd;

..E—zora buc:d

Hence given a, b, ¢ any three of the quantities, the
fourth d may be found.

For ad = bc; .. d=¥:

which symbollically expresses the Rule of Three in arith-
metic, viz. multiply the second and third terms together,
and divide by the first.

When the two mean terms of a proportion are equal
the quantities are said to be in continued proportion, i. e. if
a:b::b:c a b care in continued proportion; but then
ac = b* or the product of the extremes is equal to the square
of the mean, and b 'is called a mean proportional between
a and c.

Again, ifa:b::c:d, and c: d::e: f,
then a:b:e: f
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c

d

el e.

c e
7‘=]u o' Z=f’
ie. azbe: f

For §= and

Also if a:b::c:d, then a™: 6™ :: c™:d"™
a c a” c*
For z=2, % Fad—.',

and . @™ : 6™ c":d™

125. (1°) If @ : b ::c:d, then @ : ¢ :: b:d; i.e.
if 4 quantities are proportionals they are also so when taken
alternately.

. .
s oo

b
K ==
[

. a
For z'=

alo
o R

ie. a:c:ub:d.

(@) Ifa:b:uc:d, then b:a::d:c, or quantities are
also proportionals when taken inversely.

For %=5; and since if numbers are equal their recipro-

cals are also equal;

co—==; Le.b:a:uc:d.

(8.) Next ga+b:buc+d:d.

For since §=§; .-.Z-+1=5+1, by adding unity to
each side; .
a+d c+d

iy ek ok
this is termed componendo.

.a+b:buc+d:d,
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() And a-b:b:c—d:d.

For §_1=5_1; - a-b c-d.

o a=-b:bzc-d:d,
this is called dividendo.
(5°) And a+b:a-b:uzc+d:c-d.

a+b_c+d nda—b_c—d.
5 T g ¥y Ta

For

. a+b;a—b_c+d_._c—d_
b6 T b T d T d’

. a+b _c+d,

. a+b:a-—b::.c+d:c—d.

(6°.) When there are 3 quantities, @, 4, ¢, in con-
tinued ' proportion, the first shall be to the third in the
duplicate ratio of the first to the second, or if a: b:: b: c;

oo aicnat: b

ooatcuat: b

(7".) Again, if there be 4 magnitudes in continued
proportion, the first shall have to the fourth the triplicate
ratio of the first to the second, or if a:bb:c:c:d,
then a*:8*: a:d.

a® a
For v a:bub:c; o AL
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. . b—c
and b:c:c a; -;—H.
b a ¢
But =25 = 3=as
@ a_8,.c. .2 a
T BEYETed Tt pETal

i.e. a:d:a:b%

(8) If a:b::c:d, and a be the gr;aatest, d will be
a

the least, for %=5; z_=% and gais>c; .. bis>d.

Also a+d is >b+ec.
For a:a-buc:c-d;
wa:cia-b:c—d.

And gis>¢; . a-b>c-d; . a+d>b+e,

or the sum of the greatest and least terms in a proportion
is greater than the sum of the other two.

126. It frequently happens when the ratio of two num-
bers or two magnitudes is required, that therg is no frac-
A
tion 3
b are two numbers having no common divisor. It also hap-
pens when the ratio of the square roots of two numbers
which are not both complete squares is required. Thus
A2 : A/8 cannot be exactly expressed, since neither ,/2 nor
A3 can be found in a terminating decimal, therefore no
two numbers can be found which will be in the precise
ratio required ; whenever this occurs the quantities are said
to be incommensurable.

But although the exact ratio between two such quanti.
ties cannot be found, yet an approximate one may be ob-

which is exactly equal to % ; one case is when a and
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tained, which may be made sufficiently correct for every
practicable purpose.

As an instance of incommensurable quantities, we may
take that of the circumference and the diameter of the
circle. .

If the diameter of the circle be divided into equal
parts, and we try to ascertain by measurement, how many
of such equal parts there are in the circumference, we shall
find that there is not an exact number of such parts in it;
that if the circle be small, the circumference will be a little
larger than three diameters; and if we take a larger circle
and divide the diameter into 10 parts, the circumference
will contain more than 31, but less than 32 such parts;
and if the diameter be divided into a hundred parts, that
the circumference will have more than 814 but less than
315 such parts. In fact, if the diameter of the circle be .
called unity, the circumference js nearly = 3.14159, &c.

circumference 3.14159
diameter . 1 "ealy

Hence, if we stop successively at the end of the first,
second, third, &c. decimals, the required ratio will be repre-
sented by one of the fractions'v

31 314 3.141 314 8141

IR R ,» &e. °r bY 16> 100° 1000’

&ec.,

and the greater the number of. terms in the fraction, the
more nearly will the fraction. represent the true ratloa
the particular circumstances of" the question will guide us
to the selection of the fraction which may be used without
sensible error.

Thus, if the diameter be one ‘foot, the second fraction is

sufficiently exact, for the circumference is f—l(% feet = 8 feet,

1inch .68; and the error does not exceed the 80th part of
85
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an inch. But if the diameter be very great, as that of the
Earth, which is not much less than 8000 miles, the fraction
to be used must have many terms of decimals, that the

error may not be appreciable.
Also the diagonal and the side of a square are incom-

mensurable quantities.
For AC* = AB*+ BC* = 24B*; D 2
-. AC = AB [z ; ‘

L AC 2 1.41421 &c.
cqB=F = T

and remarks similar to what have been ¢
just used apply here.

VARIATION.

127. When one quantity depends in any manner what-
ever upon the change in magnitude of mot.her, the former
is said to vary as the latter.

Then, if ¥Y=aX and a be constant, Y is said to vary
directly as X; or as it is written ¥ < X, the symbol «
being read, varies as; for as X increases or decreases, ¥ in-
creases or decreases; in this case, if we change Y into g,
and if x be the corresponding new value of X,

y=az, and ' Y=aX; s. Y:y:u X: o,
and thus we can change a°variation into a proportion, when
we know other corresponding values of ¥ and X.

Again, if Y= %, then since Y decreases or increases

according as X increases or decreases, Y is said to vary

inversely as X, or ¥ « < X’ ‘a_,nd

hl'-'
h
»

1
Y:igug:
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As instances of the two preceding cases of variation we
may take the following: We know that the quantity of
work done (W) increases as the number of workmen (4) is
increased, or technically W oc 4, but that the time (7T') of
doing a certain work will decrease, gs the mumber of

. 1
workmen increase or T w

128, If y=ax+ ba", then y is said to vary as the
sum of two quantities, one of which <z, and the other
as z*; the constant coeficients a and 5, may be found from
contemporaneous values of y and z.

(Ex. 1.) Let y vary as x, and let 2 and 8 be respective
values of y and z, at the same time. Find y in terms of x;

“wyez; olet y=ar; but if y=2, £=38;

2 2z
o 2=8a; o a=§; .'.y=—3—.

(Ex. 2) Let y=p+q; where pxz and ¢ q:;; and

6 and 1, 9 and 2 are contemporaneous values of y and &.
Find y in terms of x.

Let p=ax; q=%; .‘._y:a.t-%-%.
But if x=lf y=0; and if x=2, y=9;
o 6=a+b; and 9=2a+g;
oo a=4; b=2, andy=4a'+§.
129. If Y « XZ, Y is said to vary jointly as X and Z;

for the increase or decrease of Y will depend upon the in-
crease or decrease of both X and.Z,
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Pror, If Y « X when Z is constant,
and Yo« Z when X is constant;
then Y o« XZ when both X and Z vary.

Let y, and x be corresponding values of ¥ and X,

Then Y:y = X:-a
Ny = Z;z;
W Yiyn XZ:zz.

The preceding proposition is the foundation of the rule
given in the books of arithmetic, for the solution of questions
both in the single and double rule of three. For suppose
that, a certain effect is to be produced, or work to be
done (W) by a number of persons (4), and in a time (7)),
it is clear that the work done, or the effect produced, will
be changed if we alter either the time or the number of
workmen ; that /7 depends not only on A4, but also on T';
and 4 and T are independent quantities; hence W < AT,
and therefore if m be another work done by (a) agents in
time (¢) that

W:mw: A.T: a.t.
_We will however give an independent proof of this pro-
position. .

Suppose that 7 was a work done by & persons in
time 7. . )

Then since W and 7 are done by different agents in
the same time T'; and 7 and m are done by the same num-
ber of persons, in different times,

then W :V : A: a,
and V:m:u T:t; _
o W:mwmn2 A.T :a.t, or We AT,
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Ex. If 252 men can dig a trench 210 yards long, 3
wide and 2 deep, in 5 days of 11 hours long; in how many
days of 9 hours each, will 22 men dig a trench 420 yards
long, 5 wide, and 8 deep?

Here W=210x3x2; mw=420x5x3, ‘
A=252, a=22; T=5x11, t=9xx;
- 210x8x2: 420x 5% 3 = 252 x 5x 11 3 22x9xa;
1 : 5 w 28x5 :2xx;
. x=l&x5x5¥850.

Cor. If T'=¢ or if A=a, then either W : w :: 4 : a,
or W:mw: T : t, which is the common rule of Three; in
which if W represent work done, 4 may be the number of
persons who perform it; or T may be the time in which
it is done: again, W may be goods, and A their cost, and
so on. We must always take care that the first and second
terms be of the same demominalion; the third and fourth
must consequently be of the same denomination also; it is
through inattention to this obvious rule that many errors are
made in the school arithmetics.

Ex. What quantity of cloth, at 6s. 8d. per yard, may
be bought for 20 guineas.
Here the thing required is the number of yards.

Let W =1 yard, w=x; then as 6s.8d. = §£. and 20 guineas
= £21.

z: 21 :1:68;
.~ z=063 yards.



CHAPTER VL

ARITHMETICAL, GEOMETRICAL AND HARMONICAL
PROGRESSION.

130. A sEmies is a collection of numbers, connected
together by the signs + or —, and in which any one term
_may be derived from those which precede it, by a rule,
which is called the law of the series; thus

1+4+7+10+ 18 + &c.
2+4+8+164+ 32 + &e.

are series, in the former of which any term may be derived
from that which precedes it, by adding 3, thus 7=4+3;
in the latter the third term 8, is found by taking the double
of the second term 4; and the same rule applies to the
fourth and succeeding terms.

The subject of series is extensive and difficult. Our
attention will be confined to arithmetic and geometric series
only ; of which those above are respectively instances.

ARITHMETIC SERIES,

181. If the difference between any two consecutive
terms of a series be the same through the whole extent of
the series, the series is called arithmetic, and the terms
are said to be in arithmetic progression.

Thus, 1+8+5+7+9+&ec., and 12+9+6+ 38+ &ec,
are arithmetic series, the former being an increasing, and
the latter a decreasing series. The number by which each
term differs from the succeeding one is called the common -
difference, which in the former series is 2; and in the
latter is — 8.
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132. Hence the first term & and the common difference
& being known, the other terms of the series may succes-
sively be derived; for since the difference between any
two successive terms is &;

[ ]
.. 2nd term = 1st term + b=a + b,

8rd term = 2nd term + b =a + 25,
4th term = Srd term + b = a + 86, and &0 on,

and as we see that the coefficient of 4 in any one term is
less by unity than the place of the term in the series;

;- the nth term=a +(n-1)b;

and therefore the general form of an arithmetic series is

a+(@a+b)+(a+28)+(a+3b)+&c. +{a+(n—-1)8},
the series being supposed to consist of n terms. Hence if
! be the last term, we have

l=a+(n-1)b.

From the formula just obtained any term of the series

may be found; thus .
the 20th term=a +(20-1)b=a + 195;
100th term = a + (100 — 1) b = a + 995.

(Ex. 1.) Find the 50th term of 5+ 8+ 11 + &c.
Here a=5; 5=8; n=50;
.. 50th term =a + 495 = 5 + 147 = 152.

(Ex. 2.) Find the 10th term of 12 +9+6 + 3 + &c.
Here a=12;' b=-8; n=10;
.~ 10thterm=a+9b =12 -27 =—15.
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Cor. Since the last term is /, the last but one will
be I-b&, the last but two I—25, and so on;

or since the last or nth term=a+(n—-l)'b;
s (n=1th ...'=a+(n-2)5,
(n—-2)th ... =a+(n-38)b;
e (=Pth ... =a+{n—(r+1)}b
133. Prorp. Given the first term a, the common differ-

ence b, and the number of terms n, find S, the sum of the
series. Here

S=a+(a+d)+(a+2b)+&c. +(1-26)+(-0)+],
and then writing the series in an inverse order,
S=l+({-0)+(1-2b)+&c. +(a+2b)+(a+b)+a.

Whence by adding together the terms which are vertically
" opposite,

2S=(+a)+(+a)+(l+a)+&c. +(+a)+(l+a)+(l+a);

‘

and since !+a is repeated »n times;
~2S=(+a)n; -~ S=(+a)p

or the sum of an arithmetic series is found, by adding to-
gether the first and last terms, and multiplying their sum
by half the number of terms.

3 . -

Cor. 1. This rule may be put under a more convenient
form.
For l+a=a+(n—-1).b+a=2a+(n~-1).5;

o §=(2ar@-1h Fonas 2LZDL,
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- Cor. 2. The two equations,

(n—1) b,
2

l=a+(n-1)b, and S=na+n

are sufficient for the solution of all questions respecting
arithmetic series,

(Ex. 1.) Find the sum of 1+ 38+5+7+ &c. to 100
terms, and the last term.

a=1, -'-l=a+(n—])b=l+99x2=199,
b=2,
n=100; S=nva+n_'(n_;ll_'_é=]00+100x299x2

= 100 + 9900 = 10,000 = (100)".
If the sum be requi;'ed to n terms,

n(n-1).2 _ R

S=n+ n+n'—n=n*;

or the sum of the first » odd numbers = the square of the
number of terms. ’

(Ex. 2.) Find the sum of 12 + 10 + 8 + &c. to 20 terms.

a=12, .-.S=20x12+2°;‘]9x—
b=—g,
n=20; = 240 — 880 = — 140.

The series being a decreasing one, some of the terms become
negative, and their sum exceeds that of the positive terms.

(Ex. 8.) The last term of a serieg is 29, the number of
terms = 10 and common difference = 3; find the first term.
l=29,
b=8, Butl=a+(n'-1)b; .. 29=a+9%x3; ..a=2
n = 10,
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(Ex. 4) The sum = 155, first term = 2, common differ-
ence = 8; find n.
1)b n'—n

n.(n—
_S=l55=na+——L§———=2n+—7?—x3;

. ] = . . ge,n 1 810 1 3721
< 877 +n=310; ..n+s+36—- 3 +E——36 H

1_61
o ﬂ+3=3-, s n =10,

134. Find an arithmetic mean between two numbers,
a and c.

Let m be the mean; .. a, m and ¢ are in arithmetic
a+c
2
Next find p arithmetic means between a and [ .

This is the same thing as having given, a the first and
{ the last term, and p+2 the number of terms, to find
the common difference. ‘

rogression; .. m—a=c—m; . m=
H 2

Let b be the common difference ;
sl=a+(r-1)b; but n=p+2; ..n-1=p+1;

l—a
oo l—a=(p+l).b, e b=m-

(Ex. 1.) Find an aritbmetic mean ‘bétween 4 and 8.
4+8

Here m=—2—=6, and 4, 6, 8 are in arithmetical pro-
gression, )
(Ex. 2.) Place 5 means between 1 and 8.
8-1 2 1
Here b=577-5"3°

@l on

.
k4

1 T2 ] 4
. l+§, l+§, l+§, l+~3-, 1+

4 5 8
or 2, 3 2 = 3 e the means.
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185. In any arithmetic series the sum of any two
terms equidistant from each end of the series is a constant
quantity.

Thus the third term =a + 25,
the last but two =1-25;
«~ third + last but two =l+a;
or generally, the (1 +r)® term =a +rd,
and the (I—r)® term =l—~1rb;
Lo (14n® +(=r)2=l+a.
136. We may here add the sum of the series,
1 +2°+ 8*+ 4"+ &ec. + ',
Let S=12+2°+3"+4°+ &c. +n',
S, =1"+2"+8" +4*+ &c. +n° +(n+1)*;
o 8 =-8S=(n+1) =n"+2n+1,
or the difference between the sum of s terms and that of
n+1 terms is (n+ 1)*; but if we assume that
S=An*+ Bn*+ Cn,
and . S, =4 (n+1)'+B(m+1)'+C(n+1);
v 8, -8=4.82"+382+1)+B(@2n+1)+C
=84n"+(34+2B)n+ A+ B+C,
and §, - § will bave the same value in both instances, if

84=1, 0i’A=§-, 34+2B=2, or 2B=1, or B=.;_,

. 1 1 1
andfo+B+C—l,otC=l—§—§=3,
. S=1'+2 NN
.S—l+2+3’+&c.+n_3+2 5

_n.@n+3n+1) n.(n+1)(2m+1)
2.8 )
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Ex. Find the sum of the squares of the natural num-
ber to 100 terms.

100 x 101 x 201

S = 5

=150 x 101 x 67 = 838350.

Cor. In the same manner may the sum of the cubes
of the natural numbers be found, and it will be seen that

P+2°+ 38+ & +n°=(1+2+8+ &c. +n)"

EXAMPLES.

(1) Thesumof 1+ 2+ 3+ 4+ &c. to 50 terms = 1275.

@) ......... 2+5+8+&c.  tol7 ... =442,
(8) eeeeenn 7+ 24?+—+& to16 ... =142.
(4) seveeeee. 124844+ & 020 ... =-—520.
1.5 4 )
ceereaas . ee. =87.
(5) 3+6+3+&c. to 12 7
28 20 17 _
6 ..oe..... Tt3ts +&c.to15 ... =10.
+
(M +eieveses 142+8+4+&cton ... ="—("2—1—).
(8 ceinrrnn. 1+3+5+&c.  t0100 ... = 10,000.
2 1 1
(9) ......... §+§+§+&c. to 9 ... =0.

(10)  .evevne.. (8°+9)+(8%+ 11) + (8" +13) + &e.
to 9 terms =9

(A1)  .eeeeee. 23428+ 25+ &c 0100 ... = 1075

(12) ........ —7-4—1+&c to 8 ... =28
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(18) The sum of — 10— 12 — 14 — &c. to 6 terms = — 90.

o 1 8 1 55
(14) sessssevs §+§+Z+&C- to 20 ... -—"“Z‘-

(15) The sum of a series is 105, the common differ-
ence 1, the number of terms 14; find the first term.
Ans. 1.

(16) The first term is 24, the last 35}, .the sum 190;
find the number of terms. Ans. 100.

(17) - Insert 3 arithmetic means between 2 and 14.
Ans. 5, 8, 11.

(18) Place 5 between 1 and —1; °

2« 1

1
Ans. -3—, §, y —§

_2
3
(19) There are n arithmetic means between 3 and 17,
and the last is 3 times as great as the first; find the num-
ber of means. Ans. 6.

(20) The sum of 116 + 108 + 100 + &c. is 800; find the
number of terms. Ans. 10.

(21) The sum of an arithmetic series is 507, the last
term is 75, the common difference 6; find the number of
terms. Ans. 13.

(22) The sum is 146}, last term 153, number of terms
80; find the common difference and first term.
Ans. §, —6.

(28) How many terms of the series 15 +§—4+ ‘-?-4-&@

must be taken to make 2002 Ans. 16 or 75.

(24) The 4th term of a series is 29, the Tth is 50;
find the first term and common difference.

Ans. 8 and 7.
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(25) A body of soldiers is drawn up in the form of a solid
equilateral wedge, and the outer rank contains 180 men;
find the number of soldiers. Ans. 16290. .

(26) Find the number in a hollow wedge, the ranks of
which are 3 deep; the outer rank containing z persons.

Ans. 9n - 86.

GEOMETRIC PROGRESSION.

137. If there be a series represented by
a+b+c+d+e+f+&e,

in which the ratio of any one term to that immediately pre-

ceding it, is the same throughout the whole extent of the
series, i. e. if

b ¢ d

Pk b &c.; then a, 3, ¢, &c.
are said to be in geometrical progression.

As instances, we may take the following series,

1+2+4+8+&c, 1+3+1+3+&e;

in the former of which each term is twice, and in the latter

half, of that immediately preceding it; or the ratio of the

consecutive ternf8 is in the one case 2, and in the other 3.
Such a ratio is called a common ratio.

138. The term b, ¢, d, &c. may be more conveniently
expressed in values of a and the common ratio;

Let r = the common ratio;

c
oo —=r; oo b=ar; 3=Ts - c=br=ar’,

SR

=r; ~d=cr=ar'xr=ar;
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or if a be the first term and r the common ratio, ar, ar*,
ar®, ar', &c. will respectively be the second, third, fourth,
&c. terms, and the series (S) may be written

S=a+ar+ar+ar®+ &

It may be observed, that the index of r in any term is
less by unity than its place in the series; thus,

the third term =as*; the fourth =ar®, and so on;
and thus the # term =ar;
or if n be the number of terms, and ! the last term,

l=ar'.

139. To find the sum of a geometric series,
S=a+ar+arf+ar’*+&c. +ar*+ar;
Sr:ar+ar’+ar’+&c.+a‘r""+ar‘"+ar',.
by multiplying the upper line by r; now subtract;
. 8S~8Sr=a—-ar*; .. Sr—S:ar"-‘-a=a(r"— 1);

-1
T

This expression; with {=ar>", will be sufficient to give the
mathematical solution of all questions respecting geometric
series; but when n is a high number, the computation of
7 by ordinary multiplication is almost impracticable; and
recourse must be had to other methods which we shall here-
after explain. :

Ex. Find the sum of 1+ 2+ 28+ 2° + &c. to 10 terms.

.Here a=1; r=2; n=10;
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10 _
-2 1‘ =2°_1=1024—1=1028;

1=2°=512.

140. When r is a fraction less than unity, and .. 7 <1,
each term of the series will be less than that which im-
mediately precedes it; and as 2 increases, the value of the
corresponding term will decrease ; and when the number of
terms is very greal we may obtain a more convenient ex-
pression for the sum of such a series than the one in the
preceding article. For .- r and r are <1;

_1(1—1’)__ a_ _ ar

- 8 1-r 1—r 1-7r

b

and n being supposed very great, r* becomes a fraction
with a very large denominator, and ~wher‘x reduced to a
decimal, the decimal point is succeeded by many cyphers ;

the value therefore of lff; becomes almost inappreciable ;

but when n is indefinitely increased, ' is indefinitely

decreased and has no sensible value; and thus the value of
the series, a+ar+ar®+ar®+ &c. continued ad infinitum,

. . . a
when r is a proper fraction, is expressed by {55 Or re-

presenting such a series by =; 2=1—‘f; .

Ex. Find the value of 4 +} + 3 + &c., to infinity.

Here a=4, r=4, 1-r=1; .. 2=%=1.

The value X is the limit to which the series constantly
tends, but to which it can never be said to be exactly equal,
but from which it differs only by a quantity insensible to
calculation. We may shew what the error is in the above
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series when we take = to be equal to the sum of 1000
terms ; for

* glooo 1

O -
3]

S==-

i. e. § differs from = by a fraction whose denominator con-
sists of more than 800 figures, or by a decimal the first
significant figure of which is preceded by at least 800
cyphers ; and as when #n is greater, the error is less, enough

has been said to shew that the formula 2=1—f1—. may re-

present the sum of an infinite geometric series with suffi-
cient exactness.

141, To find a geometric mean between two quantities
a and c¢; let m be the mean; therefore a, m, and ¢ are in
geometrical progression ;

m c . —_
e—=—; oo mi=ac; o m=,Jac.
— = ; N/
m c a m
Also ' —=—; R SLaimem:c;
a m c

m
or quantities in geometrical progression are in continued
proportion.

142. An arithmetic mean is greater than a geometric.
. a
For if so, then —%—€> ac; & a*+2ac+c*>4ac;

oo a'—2ac+¢>0; or (a—c)>0;

.

which it is, whatever be the magnitude of a or c.

143. To insert p geometric means between a and I;
this is to find p+2 quantities in geometrical progression ;
a and ! being respectively the first and last terms; we
must therefore find r.

9 .
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Now l=ar*'; and n=p+2; . a-1=p+1l
.- l=ar'“; KX ,-r+l__; K ,.=(l)’+1

Ex. Find 4 means between 2 and 64.
a=2; 1=64; p=4;

8
. r=\/§?_=:/32=2, hence ar, ar', ar®, ar’,
or 4, 8, 16, 32 are the means.

144. Recurring decimals are instances of geometrical
progression ad infinitum, and may be solved by the rules
previously given.

(Ex. 1.) Find the fraction which is equivalent to .833,

&c. to infinity.
3 3

§=.888... =15+ 105 ]000+ &c.,
which compared with a + ar+ ar’ + &c., gives a_i%’ r= 110,
3
and §=7 ’=11(11_=-‘%=%'
10

(Ex. 2)) Let §=.25818131, &c.,
multiplying by 100, to separate the non-recurring from the
recurring decimal, .

100 §=25.3181... &c. =25+ 5;

. sm 31 81 e 8L _1 31

™ #=100 * 70000 '“1001___1_"99’
, 100

100 § = 25 4 31 . 2506 52506

99~ 99 ° . "~ gg00
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(Ex. 8) Let S=.abbb &c. where a contains m places
of decimals, and b, = places;

b b
o 10"S=abbb=a+ — io° 0,,+&c.
““*10"'1_L‘ 10°-1°
10"
b a.10"+b—-a

o 8=

10" oo -1~ 10" (10°-1) ©
Thus if a=25, =81, m=2, n=2,

25 x10°+81~25 _2500+6 2506

§== T10°(10°=1) T 100x99 9900

* 145. To find the sum of — +“+b+a;2b+a.:‘3b

the numerators of all the fractions being in arithmetic, and the
denominators in geometric progression.

+ &c.

_a a+b a+2b a+(n—2)b a+(n-1)b
LetS—;+——r,—+ e +&e. e + T 4
.8 a _a+b | a+(n-2)b a+(n-1)b
- 5= = T+&c.+ o +—n .
S a (b b b\ a+(n-1)

. S—;=;+(;-,+F+&c.+—) _‘S—u“—
Now to find +f,+ b + &ec. +%; this is a geometric

series of which the first- term = g, ; is the common ratio

and n—1 the number of terms; therefore its sum is

1
b (E22D)ob 2oy,
T ) E G
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. -\ _a b (r'-1\ a+(n-1)b
oo So(———-—r )-—;-l-"'—’. 1 - e H

L§o8 b (r'-11 a+(n-1)b
S S_r—1+ e R {(,._1)'} r(r-1)

Com. 1. To find the same when r i a proper fraction
and 7 infinitely great.

§=_2 . b b 1 a+(n—-1)b

r—1 (r=1F ! '(r—l)’— r(r-1) °

and the two latter fractions being omitted since they are
inappreciable ;

a b

o 2=m+(;_—l),-

Con. 2. If a be the first and a:—b the second term,

we must mﬁltiply = by r for the sum of the series, which
therefore is '

_er _br
r—1 (r-1y%*

(Ex. 1) Find the sum of 2+ %+ 5o+ &e to infiity.

Here a=1, b=1, r=2;

(Ex. 2) Sum 1+2r+387°+47° +&e to infinity,
Here taking the second expression and writing :-_ for r;

vwoa=1, b=2;
1 1
+ r 1 + r 1
1, (l__l)' 1-r (1= (1-1)’
r r

o i=
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or better thus:

Z2=1+2r+37r"+47+ &e.

o Zr= T+ 27 + 87 + &e.

2—2r=>l+ r+ r + r"+&c.=l_r

—5—+—,-7-+&c.

. N
(E?x. 8) Sum 1+7+r’ 5

+ — + &c. to infinity.

+ = + &c.

Tl X2

[ =
-

R 2(1——1-)=1+—2-+3,+g+&c.=1+2._
T roror - 1

. _(Q+nr
%o 2—(7_—17,--

EXAMPLES.

(1) The sum of 1+ 2 + 4 + &ec. to 12 terms = 4095.

@) erernnn of 1+ 4 +16+&c.to 8 ... =21,845.
B) ciieennnn of 1+ 8+ 9 +&c.to 7 ... =1093.
(4) ... o of 4412 +836+&c.to10 ... = 118096.
(5) verenn. ,.of O+ 6+ 4 +&c.to 8 ... =255

6) ceerennn. of 5¥20+80+&c.to 8 ... =109,225.
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2.1 1 . pe 4
(7) The sum of 3v37*g + &c. to infinity =3
2 1 1 4
(8) ......... o §—§+g—&c- ......... -'9'.
O eveenn.. of 9+ 6 + 4 +&c .ounnn.n. =21
(10) «oeennnn. of 6+ 2 +§+&c. ......... = 9.
1 1 1 1
(ll) ......... sz—-s-*f-m - &c. .. = 6-
: _9
(1g) ......... of§+1+§+&c =3
(1s) ......... of 100 + 40+ 16+ &c. ...... =1668.
. b a*
(14) .e.ee..nn of a+ b + = + &C cenrennnn =-—3-

(15) Insert 8 geometric means between 4 and 64.
‘ Ans. 8, 16, 32.

(16) Insert 4 between 4 and 81. Anms. 1, 3, 9, 27.

(17) The difference between two numbers = 12; and the
arithmetic : to the geometric mean :: 5 : 4; find the num-
bers. Ans. 4 and 16.

(18) The sum of a series to infinity is 2, and the sum
of the squares of the terms of the same series is 3; find
a and 7. Ans. a=1, r=4

(19) If S=1+ R+ R*+ &c. to infinity, and
s=1+7r+7+7+ &c. to infinity;

find the sum of 1+ Rr+ R*7°+ &ec. to infinity.

Ss

Ans. m .
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(20) If P be the product, § the sum, and §, the sum.
of the reciprocals of n quantities in geometrical progression ;

prove that P* = (gl)»

HARMONIC PROGRESSION.

146. Quantities are said to be in harmonic progression
when any 8 consecutive terms being taken ; the first is to the
third as the difference between the first and second is to the
difference between the second and the third.

Thus, if a, b, ¢ be the consecutive terms in a series, then
if a:c:2xa-~b:b-c a, b, c, are in harmonical pro-
gression.

147. To find an harmonic mean between two quantities
.a and c.
Let H be the mean, then a, H and ¢ are in harmonic
progression ;
wa:c::a+~H : H-c¢;
_ 2ac
a+c

e.aH-ac=ac-aH; . H

Cor. Hence if G equal a geometric mean, and 4 an
arithmetic mean between the same quantities; then

« G=,fac and ‘L;—O=A; Sa+c=24;

. 2
o H=?Z4q{=-§— or A.H=G"%

.'.A:GI::G:H.

CoR. Hence_ since 4 is > G, G is > H.

148. If quantities be in harmonical progression, their
reciprocals are in arithmetical progression,
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Let a, b,¢c, d be in harmonical progression ;
s atcua—-b:b-c;
o a.(b-c)=c.(a-0);
or dividing both .sides by abec,

and in the same manner since b, ¢, d are in harmonical
progression,

and therefore the differences between the consecutive numbers
1 1 1 1
’a': 'I;, ;: a>

being equal, these numbers are in arithmetical progression.

Hence, to insert p harmonic means between a and I, wé
must insert p arithmetic means between -l- and ll There is

no method by which the sum of an harmonic series can be
found.

Pros., There are four numbers, the first three in arith.
metical, and the last three in harmonical progression; prove
that 1st : 2nd = 8rd : 4th.

Let a, b, ¢, d be the numbers,’
Then -~ @, b, ¢ are in arith. prog.; 2b=a+c;

. 2bd
and ‘. b, ¢, d are in harm. prog. ¢= v

_(a+9d,

oc= “w cb+cd=ad+cd;

“b+d *

woad=bc; and . a: b c:d
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EXAMPLES.

(1) Find an harmonic mean between 6 and 12,
Ans. 8.

(2) Insert two between 2 and 5. Ans. }, 5.

(8) An arithmetic mean between two numbers : geo-
metric : 5 : 4, and the difference between the geometric
and harmonic means =¢; find the number. Ans. 3 and 12.

(4) What is the 4th term of the harmonic series 2, 3, 6.
‘ Ans. infinity,

(5) The 5th term of an harmonic series is §, and the
first term is 4; find the intermediate terms,
) Ans. %, %, é, ll‘p

(6) The sum of three termys of an harmonic series is 11,
and the sum of their squares is 49 ; find the numbers.

Ans. 2,8, 6.

PROBLEMS IN ARITHMETIC AND GEOMETRIC
PROGRESSION.

149, (Ex.1.) The sum of five numbers in arithmetic pro-
gression is 80 and the sum of their squares 220; find the
" numbers.

Let x—2y, z—y, @, x+y, £+2y be tile numbers;
.+ 52=2380; .. x=6 the middle number,
and (z-2y)"+(x—y)'+a’ +(z+y)'+ (z + 29)" =220;
o 5 +10Y°=220;5 o 2'+ 2y =44
o 2y°=8, y==%2, and the numberé are .

6+4, 62, 6, 62, 64 or 2, 4, 6, 8, 10.
9—5




.
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(Ex. 2.) There are four numbers in arithmetic progres-
sion, and the sum of the squares of the extremes is 101,
and of the means 65, find them.

Let z— 8y, x—y, x+y, z+ 3y, be the numbers;
s (x—8y) + (z+ 8y)=22"+18y°=101,

(E-y) +(x+y)=22"+2y"=65; »

8 121 11
< 16y° =36; .- y:*-z—; o~ I’=T; s =23

. the numbers are 1, 4, 7, 10.

Observe when there is an odd number of terms in arith-
metic progression, the common difference must be y, and
the middle term =a; but when there is an even number,
the common difference must be 2y, and the two middle
terms, z—y, and x+y.

(Ex. 8.) There are 4 numbers in geometrical progres-
sion, the sum of the extremes is ‘18, the sum of the means
is 12; find the numbers.

Let z, zy, zy*, zy®, be the members;

e z+2y*=18, and zy+ay'=12.
Dividing one equation by the other;

v 2y-5y=—2; . y=2; - x+8x=18; .. =2, °
and the numbers are 2, 4, 8, 16.

(Ex.4.) There are 4 numbers in arithmetical progres-
sion, which being increased by 2, 4, 8, and 15 respectively,
the sums shall be in geometrical progression.
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Let z, zy, xy", y’, be the numbers when increased ;
“x~2 zy-—-4, xy*-8, xy’~ 15 are in arithmetical pro-
gression ;

o I1st+8rd =2x2nd; and 2nd +4th=2 x 8rd ;
R zy'—10=2wy;8; Sox-22y+ay'=2;
woxy+ay—-19=2xy"~16: - zy—2xy° +1y°=38;
o zy(1-29+y)=38, (1); z(l—2y+y’)=2; ®)
m=+® y=g, and x(l—8+g)=2;
o a=8; 2y=12; xy'=18; .zy’=27;

and subtracting 2, 4, 8, and 15 from these numbers, the
remainders, 6, 8, 10, 12, are the numbers required.

EXAMPLES.

(1) The sum of 8 numbers in arithmetical progression is
80, and the sum of their squares is 308; find the numbers.

Ans. 8, 10, 12.

(2) There are 4 numbers in arithmetical progression, their
sum is 24, and their product 945 ; find the numbers.

*Ans. 8, 5,7, 9.

(8) There are 8 numbers in geometrical progression whose
sum is 31; and the sum of the 1st and 2nd : sum of 1st ‘
and 8rd :: 8 : 18; find them. Ans. 1, 5, 25. }

(4) A traveller starts from a town, and travels 1 mile the
first day, 2 the second, 8 the third, and so on; five days
after another traveller leaves the same place, by the same
road, and travels 12 miles a day. On what day will he
overtake the first traveller? ’

Ans. 8th day, and on the 15th they will again be together.
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(5) There are 3 numbers in arithmetical progression whose
sum is 18; but if you multiply the first term by 2, the
second by 8, and the third by 6, the products will be in
geometrical progression ; find them. Ans. 8, 6, 9.

(6) The sum of the 4th powers of 3 successive numbers
is 353; find the numbers. Ans. 2, 3, 4.

(7) There are 4 numbers in arithmetical progression, their
common difference is unity, and their product 360; find the
numbers. Ans. 3, 4, 5, 6.

(8) The sum of 9 numbers in arithmetical progression is
45, and the sum of their squares is 285; find the numbers.
Ahs. the first 9 numbers.

© There are 4 numbers in geometrical progression, the
sum of the first and third is 10, the sum of the second and
fourth is 30; find them. Ans. 1, 3, 9, 27.

(10) Find 8 numbers in geometrical progression whose
sum is 7 and the sum of their cubes is 78. Ans, 1, 2, 4



CHAPTER VIIL

PERMUTATIONS AND COMBINATIONS,

150. THE different arrangements that can be made of
any number of quantities are called their Permutations.

Thus ab, and ba are the Permutations of ¢ and 5, and
abe, acd, bac, bea, cab, cba, are those of abc.

Instead of taking all the letters at once, let a certain
number only be taken, then such a permutation is called a
variation; thus of the letters a, 4, ¢, the variations taken
two and two together are, ab, ba, ac, ca, be, cb.

151. To find the number of variations of = things taken
2 and 2 together,

If a, b, ¢, d, &c., be then thmgs ﬁrst write the 21 things
b, ¢, d, &c., by themselves, and then place a before each,
in the following manner:

ab, ac, ad, ae, af, &c.

and we shall obviously have (n—1) variations where a stands
first ; then write a, ¢, d, e, &c.,, by themselves, and after-
wards place & before each letter, and there will be (n~1)
variations, where b stands first; and so on for each letter,
and as there are n letters, each of which may stand first,
so will there be n sets of variations of (n—1) pairs of let-
ters, or there will be . (r—1) variations; i. e. if 7, represent
the variations of » things taken 2 and 2 together,

=n.(n—1).

Next, to find the variations of n things taken 8 and 8
together ; first leave out a; then the number of variations
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of the remaining (n—1) things, taken 2 and 2 together,
will be (n—1).(n—2); if now a be placed before each of
these, there will be (n — 1). (» — 2) variations of things taken
8 and 3 together, where a stands first; so also will there be
(n—1).(n—2) variations of things taken 3 and 3 together,
where b stands first ; and so on for all the z letters, and there-
fore the whole number of variations or Vy=n(n-1) (n~—2).

Hence it will readily appear that if V,, V;, &c. be the
variations taken 4 and 4, 5 and 5 together, that

Vi=n(n—-1) (n—2)(n- 38),
Vi=n(n—-1)(n-2)(n—8) (n—4);
and .- if the things be taken 7 and r together,
Vi=n(n-1)(n-2).(n—38)...{n- (r—1)};

for we see that the negative number in the last factor is
less by unity than the number of things taken together.

Cor. Hence we may find the permutations of » things ;
for these are but the variations of n things taken, all, i.e.
n and n together ;

making 7 =n, the last factor is n—(n—1)=1,
and V,=n(n—-1) (n—-2)...3.2.1;

or the number of permutations (P) of n things is equal to
the product of the first » digits.

Ex. Find the number of permutations of the 6 letters
a, b, ¢, d, e:f;-
number =6.5.4.8.2.1="1720.
152. In the preceding remarks we have supposed that

each letter or quantity is different; but when some are the
same, the result in the last article requires modification.



PEBMUTATIONS AND COMBINATIONS. 207

Thus, as the permutations of @ and b are ab, ba when
@ and b are different ; but they become aa, i.e. one only when
b=a; so the total number of variations found on the sup-
position of each quantity being different, must be divided
by 2, when two of them, as a, 6, become equal; for as in
every arrangement of the letters there was originally found,
both a and b, when these become equal every term must
be twice repeated.

And again since, abc may be permuted six or 2 x 8
different ways, so long as a, b, ¢ are different, but only in
one way when a@=b=c; we must divide 7, by 2.8, in
order to find the permutations of » things three of which
are equal; or

P=n.(n—l) (1;—.;)-..3.2-1:,"‘.(."_1) (n_g)..'4.

Next, if 7 of the letters be equal, and if P be the num-
ber on this supposition; then since, if the letters had.been
all different, the number of permutations would have been

n(n—-1)(n-2)...(8.2.1);

and because the r letters, if different, would have formed - -

1.2.8...r permutations, and therefore combined with P,
would have formed

1.2.8...r x P permutations; hence
1.2.8...rxP=n(n~1)(n-2)...8.2.1;

. P_n(n-—l)(n—Q)...S.z.l
T 1.2.3...r :

Cor. Had there been g letters equal, and also r let-
ters equal; then we should similarly find that

p- n(n-1)(n—-2)...8.2.1
T1.2...p.1.2...q.1.2...r... "

153. When a letter can be repeated, i.e. when a can
stand before @, the permutations are styled variations with
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repetitions; thus of the letters a, b, ¢, if we have another
a to stand before each of the letters a, b, ¢, we have
aa, ab, ac, or 8 variations, where a stands first; and, if
we have another 6 and ¢, we shall have 8 variations where
b stands first, and 3 where ¢ stands first; and there will
be 8 x 8 or 8° variations of such things taken 2 and 2 to-
gether,

So if there be n things a, b, ¢, &c. taken 2 and 2 to-
gether where repetitions are allowed; there will be n va-
riations where a is first, n, where b is first, and so on for
each of the n letters; and therefore the whole number of
variations = n x n=n’.

And, if the letters be taken 3 and 3 together, and re-
petition be allowed, as there are #° variations when taken 2 and
2, and each letter may be placed before each variation of
2 and 2; the whole number taken 8 and 3 will be
n x nt=n

And, if they be taken 4 and 4 there will be n times
as many variations as when the same letters are taken 3
and 8, i.e. there will be n x n°=n* variations; and if they
be taken n and n together, there will be n* variations,

Hence, if it be required to find the total number of

such variations, when taken 1 and 1, 2 and 2, 8 and 3,
&c. n and 7 together, the sum

=n+ 7'+ n®+ n*+ &e. + n"=n(n“-l).
n—1
Ex. How many throws can be made with two dice; the
number equal the number of variations with repetitions that
can be made with the 6 numbers 1, 2, 8, 4, 5, 6; =6 x 6 =36.
It is supposed that 1, 6, and 6, 1 are different throws.

Der.. The different collections that can be made of any
number of things without regard to their order, are called
their combinations. .
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Then ab, ba which form two variations, make but one
combination ; and abc, which may be permuted 6 different
ways, is but one combination. And if there be n things,
their variations are n (n ~ 1); but as each combination, as ab,
contains two variations, therefore the combinations taken
n(n—~1)

2 and 2 or C;= )

Again, if they be taken 8 and 3 together, as each com.
bination @, b, ¢ contains 2.3 variations; and the variations
are n(n—1) (n—2);
n(n—1)(n—-2)

2.8 :

And C, the number of combinations taken » and # to-

gether, will be, following the same reasoning,
V _n(n-1)(n—-2)...{n—(r-1)}
“1.2 . 8 ... r :

The following examples will illustrate the preceding

theory. '

.+ C,=the number of combinations =

(Ex. 1.) Find the number of permutations that can be
made out of the letters of the word Algebra.

Had the letters been different the number =7.6.5.4.8.2,
but there are 2 a’s, and ... divide by 1x2,
and the number =7.6.5.4.3 = 2520.

(Ex. 2.) Inhow many ways can we write the term a®6*c*?
There are 9 letters; and 3 a’s, 4 b’s and 2 ¢’s;

9.8.7.6.5.4.8.2

2.3x2.3x4x2 i

(Ex. 8.) In how many terms will @® stand first? the
number will be equal to the number of permutations of

6.5.4.8.2
4.8 "V T e 3
btet= 2.8.4x2 15

= 1260,

. number =
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EXAMPLES.

(1) How many changes can be rung with 5 bells out
of 82 Auvs, 6720.

(2) How often can 8 persons change their places at
dinner so as not to preserve the same order? Ans. 40320.

(3) In how many different ways can the letters in the
algebraic expression a®b'c*d be written? Ans. 1801800.

(4) In the permutations of a, b, ¢, d, ¢, f, g, find how
many begin with c¢d. Ans. 120.

(5) How many different throws can be made with 6

dice? Ans. 46656.

(6) In how many ways may the letters of the words
Calculus and I(nstitution be written? Ans. 5040; and 5544.00.

(7) There are 4 companies of soldiers, in each of which
there are 12 men; in how many ways may 12 men be
chosen, one being selected out of each company? Ans. 20736.

(8) Into how many different triangles may a decagon
be divided by drawing lines from the angular points?
' Ans. 120. \

(9) Find the permutations of the letters in the word
Proposition. Ans. 1663200.

(10) There are 4 sets of different things, one containing
4, another 6, the third 8, and the fourth 10; how many
different combinations can be formed of them, taking 4 to-
gether ? Ans. 1920.

(11) The whole number of combinations of n things
taken 1 and 1, 2 and 2, 3 and 3, &c., together =2"~1.

(12) The total number of combinations of 2= things:
total number of » things :: 129 : 1; find n. Ans. 7.




CHAPTER VIIL

-THE BINOMIAL THEOREM,

154, In the article on Involution, the successive powers
of the binomial a+b have been found, by means of ordinary
multiplication. There is, however, a theorem called the
Binomial Theorem, by the aid of which, the mechanical
labour of multiplication may in great measure be got rid
of, and the expansion of (z+ )" be written down at once;
in fact we shall see that

(@+by=ar+na=b+nPT D grage BB D(=2) fuage, g
2 1.2 . 8
But before we proceed to prove the truth of this theorem,

it is necessary to prove the following proposition.

If a+bx+ca®+da®+ &c. = A+ Bx+ Ca* + Da* + &c. for
every possible value of z; then shall a=4, =B, c=C,
&c., or the coeficients of like powers of z shall be equal.

For as any value mﬁy be put for z, let x=0; ‘
~ a=A4; and taking @ and 4 from the original equation,
bx+ca®+da® + &c. = Bx + Ca* + Da® + &e. ;
or b+c.z+d.z;’+&c. =B+ Czx+ Da®+ &ec.;
o if 2=0; b=B; and then ¢=C; d=D, &ec.
155. This theorem is exceedingly useful in many alge-
braical operations; particularly in finding the terms of an
infinite quotient: this is done by assuming a quotient with

unknown coefficients, and hence the method is called that
of Indeterminate Coefficients.
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Ex. Find the first four terms of the quotient of

1-8x+22°
1+x+a®

1-8z+2a*

Let Sravs

=a+bx+cat+da®+&e;

then multiplying both sides by 1+« + 2%, »
1-8z+22"=a+bx+ca®+da*+ &
+ax+ba'+ ca® + &e.

+ax* +ba® + &ec.

Hence equating the coefficients of the like powers of 2,
a=1; b+a=-8; . b=—4; c+b+a=2; .. c=5;
d+b+c=0; s.d=-b-c=-1;

. 1-8x+22°

RS --m=l—4x+5afg—xs+&c-’

(Ex.2)) Ifz=y—y* find y in terms of .

Let y=ax+ba"+ca®+da*+ &c.;
y‘=a’x’+2abw;’+(b’+2ac)w‘+&c.;
ca=y—y'=azr+(b-—a")a*+(c—2ab) 2’

+(d-b*-2ac)z* + &c.;
coa=1,b0-a"=0; . b=a"=1, ¢c-2ab=0; ..c=2,
d-b*—2ac=0; ..d=b+2ac=5;

S y=x+at+a® + 50+ &e.
156. If the simple equation a¢+bx=4+ Bz be true
for every value of x; we may shew that a=4 and 6 =B,

by a method less liable to objection than the one just used
for the general equation.
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For since any value may be put for «,
let z=m; . a+bdbm=4+Bm;
subtract this from the original equation;
S b(@-m)=B.(x—m); .. b=B, and ,. a=4,
In the same manner, if a+ bz +c2*=A4 + Bz + C2*, we

may, by taking two values for z, shew that a=4, b=B,
c=C.

157. The equation a +bx =4 + Bz just considered, dif-
fers greatly from those treated in the chapter on equations;
there 2 is supposed to be a determinate, here an indetermi-
nate quantity ; in the former case it is dependent upon the
constants of the equation and the coefficients; in the latter
it is altogether independent of them; thus if z is to be found,
‘d—a
b- B’

But if z be any thing whatever, i.e. is indeterminate, 4=a,

we have z=

b=B, and x=% ; & singular result, and which we see is

in this case the symbol of an indeterminate quantity.

Sometimes z equal to a fraction g becomes %, when a par-
ticular value is put for the unknown quantity in the nume-
rator and denominator; such a fraction is called a vanishing
fraction; but the true value of x may be found from the
fraction, as we shall see hereafter.

. 0 a
And here we may mention two other values P and -,

which are of frequent occurrence.

0

. b 1 . 1 L
Since z;:bx-‘;; ifb=0; ;:Ox;= % 0, which by

Q-

the principles of multiplication = 0.
 Next g is to be explained; we know that the value of

a fraction as % depends upon the relative and not upon the
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absolute values of ¢ and 6. That if a contain b many times,
the value of the fraction will be great, although 2 be not

a large quantity. Thus if a be a foot and b the o th

a 1000
' 3= ——; and if b be the 1Oo’ooothpartot'afoot,
§=190’000. Hence also we may see that the value of a

fraction increases, as its denominator decreases, and becomes
infinitely great when the denominator is infinitely small ;
hence as 0 may represent the infinitely small state of a

quantity,% will be equal to an infinitely large quantity,
or 2. .
0=
158. We shall now proceed to establish the truth of
the Binomial Theorem, or to prove that
(@+by=a+na- b+ a0 gorge
A=) (-2)

2.8
whatever be the value of 7.

+ &e.,

But first - a+6=d(1 +§);

b n
“(@a+b)y=a" (l +E) =a* (1+a),
where a:-éé; '
a

hence if we can prove the truth of the expansion of (1 + z)*
we shall obtain that of (2 + )", by multiplying (1 +=z)* by

a", and rewriting g for x; this being allowed we shall at-

tempt to shew that

. (n-1) , n(r—-1)(n—-2)
(Q+2)"=1+nz+n > 2+ 9.3 .2+ &e.
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The proof may be divided into two parts.
1°. To shew that (1 +2)*=1+nzx + &c.
2° To find the general law of the coeflicients.

(1°) To shew that the coefficient of the second term
of the expansion of (1 + )" is n; whether z be mtegral or
fractional, positive or negative.

Let the index be positive and integral; then since by
multiplication we know that

(1+2)=1+22+ &ec.
(1+2=1+3z+ &c,
let us assume (1+a)'=1+(n— 1)z + &c.;
c(+ay={1+@m-1)z+ &} (1 +2)=1+nzx+ &c,
by multiplication.
Hence if the rule be true for any one index = -1, it
is true for the next superior index n. Now by multiplica-
tion we find that it is true for the index 3, it is therefore

true for n=4; therefore for n=5, and hence by continued
inductions it is always true for =, integral and positive.

(2) Let n be a fraction =%’.

And let (1 + z)§= 1+ar+ &c. =1+ Adx, where Ax
represents all the terms by which z is multiplied ;

“(Q+zf=1+Adz)y;
“ 1+px+&e=1+qdz+ &e =1+z(ga+&ec).

Hence equating coefficients of , p=ga; .. a =1§’,

And (1 +x)$=‘l +Zq-’a:+ &c....
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Lastly let n be negative; but then

1 1
T(+x) 1+nx+ &e

(1+2)— =1-nz + &c. by division ;

and .. (1 +x)"=1+nz+ &c.,, whatever (n) be.

Hence .. (a+b)'=a"(1+nx+&c)=a"(1+n g + &c.)
=a"+na“1b + &c.,
and the first two terms of the series are determined.
Let (L+a)*=1+nx+ 4;,2° + Ay 2® + 4, &* + &c., where 4,,
4, A, &c. depend upon n. 3
For z put z+2;
S (l+z+e) =1+ n(.r+z)+A, (z+2) + 4y (z +2)
+ 4, (z+2)* + &e.
« But * (a+d)=a"+na" b+ &c.;
s (et 2)=2"+2xs+ &,
(x+2)P=a"+82°2+ &c.;
w(l+x+zl=1+na+ d,2° + A, 2% + 4,2 + &e.
+(n+24,2+84,2° +44.2°+ &c.)é + &e.
=(1+2)+(r+24;2+34,2° + &c.) 2 + &e. (a).

But . (1+a+38)'={(1+2)+2}", considering 1+ as
one term; .

S {A+)+sf=0+2)+n(Q+a) s+ & (B);
.~ equating the coefficients of s in () and (B)

n+ 24,2+ 84,2 + 44,2 + &e.=n (1 +2)*),
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multiply both sides by 1 + x, and we have

n+2d,z+ 84,2 + 44,2 + &e.

}=n a+a)y
+nx +2A4,2° + 84,2 + &e.

=n(l+nx+ A,2°+ 4,2 +&c.)
hence equating coefficients of the same powers of z,

24, +n=n"; .. 24;=n*—-n=n.(n-1); .. A,:n(ig——l),

84,+24,=nd,; . 84,=4,(n-2);

n-2 n(n_—l) (n—2)
s 2 . 3 °

oo dy= 4,

Also 44,=nd,-84,=A4,(n—3);

. _n(n=1)(n—2) (
~A=T3 .ns .‘

._3)
% »

and 54,=nd,~44,=4,(n—4);

n—4
e A5=A4(_- 3 ).

And thus A,=A,_,'{”;(’:’-)} =4, %’) '

r

o (L+a)y=1+n2+ "("2— Dy (n; 1) (";2)w'+ &e.

~

and .. putting g for z, (a+b)

b —1) b ~1) (n-2) &
=“"{””'Z+n(n2 )E‘+”(”2 ).(ns ).a—’+&c’}

) :.:an+”au—l 6+” (";l)an-sbs+”(";l) (”s'g)au-aba_'_&c.,

which is the theorem required.
10
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Cor. 1. If—b be put for b; then since the odd powers
of (~b) are negative, and the even powers positive,

(a-b)y =a*-na*"’ b+'—'—-(3-2-:—-l)a"’b'

n(n—l)(n—Q) n~8 §3
ir.z.8 ©¢

) . (@+b)+(a-0)y

+&ec. ;

=2{a" + "———("2_ D grsge 22 ; l? ("; 2) ("; 8) -ttt &e};

and (@ +b)—(a-b)"
=2 fpa- gy "B (=2) ;‘).(";2) a3+ &e.}

Cor. 2. It may be observed that the sum of the in-
dices of a and b in each term =a.

Cor. 3. If n be positive and integral, the series will
terminate and consist of n+1 terms.

n—2 | ]

For since 4,=4,.

,» we see that

and A,= 4, .

each coefficient is derived from the preceding one, by mul-
tiplying by a factor which is less by unity than the least
of the preceding factors, and by dividing by the -number of
terms; at length therefore there will be a factor n~» or 0,
and the coefficient =0 and the series will terminate; we may
find the term thus;

. v A=A, {%’__1)}; it 4,=0,

n=(r-1)=0,0r r=n+1; . 4,,=0, and 4, is the last
coefficient, and 4, 2" the last term; hence, since A4, is as-
sumed to be the coefficient of the (1 + )™ term; therefore
A, is that of the (1+n)® term; or the number of terms
=1+n.
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159. To find the general term of the series.

Let this be the (1 + r)" term, then its coefficient will
be A4, and (r) will be the index of z; for this index is less
by unity than the place of the term in the series; thus A,a*
is the third term; now we have seen that

4,=2020),
4,=4,(5%);
A;=A.(”;‘);
PR =L W

. by multiplying these terms together,

A_n.(n—l)(n—-z)(n—s) ...... (n—r+1).
1.2 . 8 .4 ... r

o (1 4+ 1) term of (1 + 2)*= 4, 2= A,(g)'

_n(n-1)...... (n—r+l)/b)'
1.2 r \a/’

and .. the general or (1 + r)* term of (¢ +b)*=a" x 4,.x"

a(n-1)(n-2)...... (n—r+1)
“r.g . 38 ... ¢ °

" 160. Hence to find, when n is positive and integral, the
(14 n)® or last term, let r =7 ;
10—2
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oo n—-r=0; . a=1, =0, and a~-r+1=1,

_a(n-1)(n-2)...... |
andA"—l.Q T8 oa b

o (1+n)® term =5, the same as the first term, only b is
written for a. .

Again, the last term but one or the n* term is found
by putting r=n-1; .. n—-r+1=2;

o 4 _n(n-1)(n—-2)...... 8.2
TlTy e L8 ... (n-1)

= coefficient of the second term,

and 4,_,a* " b =nab™'.

=n

In the same manner the coefficient of the last term but

two, or A._,="(u- 1) =A4,, the coefficient of the third term

1.2
n(n-1)(n—-2) -4
1.2 . 8 %
that of the fourth term, and so on, or the coeflicients of terms

equidistant from each extremity of the series are equal.

and of the last term but three or 4, ,=

Also we see that the last term but two =’—‘(L2——Qa' -2,

and that this as well as the last term but one may be
derived from the third and second terms by interchanging
the letters a and b.

161. When 7 is a fraction the series does not terminate ;-
for r being a whole number n—(r—1) can never = 0. Also
if n be negative the series is infinite, for putting —n for n,
n+r—1

we have 4,=—A4,_, which cannot vanish ; for n+r

being the sum of two whole numbers always exceeds unity.

162. Finally in making use of the general or (1 +r)'* term
of a series; it may be observed that the number of terms in
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the numerator, as also the number in the denominator, is equal
to r, the index of b, which is also the number by which the
first index of a has been diminished.

163. When n is even the number of terms is odd, and

th )
the middle term is the (-;! + 1) term, which is

n(n-1) (n—2)(n-3)...~{n—(g-l)} 2

1.2 . 8 v dueiiinnnen. i

1.2 . s L4 2

. [n(e-1) (n-2)...<g+1).g. g-l)...2.l .

=2 : n [n a
2.4 . 6 ..n 5.(5-1)...2.1

;—‘[(n—l)(n—s) . n(n 2) 4-_2&5
i (§"1) (u-—z)n}

_g L85 (D) &

n
1.2.8... 3

If n be odd there will be two terms, the (2;—-1 + l)‘h

.and the (n—+-l—+ l) , which will be found to have equal

coefficients; for from the general form

_n(n=1)(n— 2) (n—r+1)
v 2.5 .
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n—1 n+1l

and then putting 3 and

successively for r,

(-1 (n'-z)...(n—";‘ + 1)

A'-l
= z-1
1.2 . 8 ... 3
n(n—l)(n—2)...”;3
= n-—l"
1.2 . 8 R

—n(n—l)(n—2)...( _4+14:)

2
e n+1
2
1.2 . 38 ... 2
n+1
n(n-1)(n-2)... 5
= n+1
1.2 . 38 S
n(r-1)(n-2)... 222
= n_1=A:___‘.
1.2 . 8 ‘—3 *

164. Next to find the sum of the coefficients; since
(A1 +2)y=1+4d,2+ A;2° + 4,2° + &, + 4,2+ 42"
Let 2=1;
W (L+1)=2"=14+n+ A, + A, + 4, + &c. = sum required.
Again writing —x instead of z,
‘(I —a)=1-d,z+ d,2°~ A2 + A.z‘-— &e.
If x be made again = 1, then since (1 —1)"=0, we have
1-4,+ 43~ Ay + A,— &c. =0;
1+ A+ A, + Ag+ &e.=A4,+ 4, + A, + &c.,
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or the sum of the coefficients in the odd places is equal
to those in the even.

Thus, if we take the coefficients of (1 + z)
the sum = 1 4+7+21+85+85+21+7+1=128=2"
Again, the coefficients of (1 +x)° are
1, 6, 15 20, 15, 6, 1.
And 1+15+15+1=6+20+6.

(Ex. 1.) Find the expansion of (2z+ 3y)"
Here 2% =a, 3y=d, n=5.

* 22+ 8y)=(22)+ 5 (2x)'3y + (23)' (8 )

5.4.8 , . 5.4.8.2
T2 35 N+ T35, EDEY)

.

5.4.8.2.1,, .,
1254309

= 822%+ 2402%y + T202°y" + 10802°y* + 810xy* + 248y

(Ex, 2.)) Find the expansion of (1 +.z)§.

Here a=1, b=z, n=};

(1 +.t)§=l +ixz+ &(;}; 1) x*+ &“;.12).(3_2)""'&“

2~ x4+ &c.

1. .1.8 1.1.8.5
—H‘}x'ﬂ” .4 6% "2.4.6.8
(Ex. 8) Find (1-2)"}; herea=1, b=-a, a=-};

e EREETD

(_{)(—*"l)( & 2)( .‘l‘)a+&c.

1.2.3

1.8 1.8.5
l+§1+nf+2ﬂ-f+&c
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(Ex. 4) (a+b)l=a"+8a"b+28a"b"+ 56a°b’+ 70a‘ b
+ 56a° 8* + 28a°H° + 8ab” + a®

(Ex. 5) (5+4x)" =625 42000 + 2400 2° + 1280 2*+ 256.x*.

(Ex. 6.) (8- 22")°=1729 ~ 2016 2* + 4860 2* — 4320 "
+ 2160 2* ~ 576 2'° + 64 2.

5 o Yo Sy e

(Ex. 7.) (2+2y) =gttty 2yt+ 202y
+ 602* y* + 96xy° + 64 9°

(Ex. 8) (3ac— 2bd)*= 243a*c* - 810a*c*bd
+1080a°c®b°d* — 720 a®c* b* d® + 240 ach*d*— 32b°d’.

(Ex, 9.) Find the 6™ term of (z° + 8zy)°;
fu(”—l)(”—i")"‘("4'1"'5‘;--'5'
1.2 . 38 r )

the (1 +7)* term =

Here n=9, r=5, a=2% b=3ry;

1.2.8.4.5
= 806182"y",

(5= 28T 65 g e w7 x 2. 2 x 2480

x. 10.) 8'"term of (1 + )" = 3807,

(E ) th f ( 11 14

(Ex. 11.) 5% ... of (g +,2y)1 =702"y"

(Ex. 12.) 6® ... of (z—y)* =—142506a%5",
(Ex. 18) 5™ ... of (8’ - 5%)"* = 4954 0"

(Ex. 14.) Find the expansion of (1 +%)l when n is
very great.

1
Here a=1; b=;;
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. 1y LJak-1 1 n(n-1)(n - 2)1
..(l+”) —l+n T2 At a8 5+ &

1 n-1 1 v_t_ 3n+2+&

sl+l+y— - *7.3
1 1 1 1 3 1 2 1 ’
=1+l -T2 n*3.3 2.8 n"e.3 vt e
1 1 1 1 1 1
=2+istaste et —ammantam o

but as « is very large, the fractions 'l—l s 1—:—, are inappreciable ;

1 1 1 . .
..(]+n) =2+ 5% 3+&c.—-271828 ... a particular

number designated by e.

165. To find /N when N is very nearly a square or
a high number.

Let N=a +2; o ,,/ﬁ::JE’:}:aJ].'..‘%,

Now (l + -g;)‘ =1 +% f; very nearly; - r is small and
a great;

1 X
‘,\/N_—- (1+§Z-) a+2—a.

From which we obtain this practical rule, ‘having found
the square root of the integer part of a number, consisting
partly of integers and partly of decimals, the remainder of
the root may be found by dividing N—a*; i.e. « by 2a.’

Ex. Find the square root of 124.25.

Here N=121 +825=a"+3.25; ..a=11,

x 825 .
3223 —" Jd114; o ,,/N 11.1114,
10—5
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Again if N=a"+b and /N be required,

o /Rl

).
=a{l+: :,, z . b,:-i-&c}
=a{l+n.ba" ;._n'°a"‘+(n ;).‘22:: > ab‘: —&e}
Ex. Find the 5" root of 35.
Here N=35=32+8=2“(l+2—3,);
~a=2 b=8 n=35;
W85 =2{1+ 3 4.3 4.9.5 - &c.}.

5x82 2x5x(32)  2x8x5 x (32)

166. In the preceding example, since the series con-
tinues to infinity, we obtain ounly an approximate value for
the required root; and as the denominators increase at a
much more rapid rate than the numerators, a few terms
only need be taken for practical purposes; still it may be
required to know what is the error, or what is the limit in
amount of the error occasioned by neglecting the remaining
terins of the series. To do this, let B be the root required,
and as the terms are alternately positive and negative,

let R=a—b+c—d+e—f+g—h+&e, and let
R=a-b+c—-d+e—f,
R =a-b+c—-d+e—f+g.
Then since the terms continually decrease, a ~b, c —d, e—f,
g—h, &c. are all positive, and therefore R’ which contains
three only of these differences will be < R, and as for

the same reason, all the pairs of terms after g, as
~h+k, —1+m, &c. will be all negative, R, will be > R;
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and therefore the true value of the series lies between R’
and R, or
a-b+c—-d+e—f,
and a~b+c-d+e—f+g,

or the error comimitted by the omission of any number of
the terms of a converging series, is less than the first term
of the omitted part of the series.

Thus in the preceding example if we compute the root
from 5 terms, the error will be less than the 6§h term, which is

(n-1)(2n—-1)(8n—-1)(4n-1) ¢*

2 . 8 . 4 . 5n° ‘p’
or substituting, is less than
4x9x14x19 1 8 <9’><7><19 96957

2x8x 4 x 5 582 5°x 82° ~ 524,288,000,000°
167. To find the greatest coefficient and the greatest
term of an infinite series.

Since 4, =4, , "=T+1

n~r+1

» 4, will be > 4,_,, so long as

is > 1; the first value therefore of r which will

n—r+1

make < 1, will indicate that the preceding coefficient

is the greatest; to find r,

n -7+ 1 is that number next > r,
or s+l ...0vuts T & 1

or r next less than 3%1-,-

<o (1 +7)™ coefficient is next <%—3 .

Thus if n=8, '%’= % and the next less integer is 5,

and we find by trial that the 5th is the greatest coefficient,
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If n be an even integer the greatest coeflicient is the
th
(g + l) ; if n be an odd integer there will be two coefficients,

th th
the n+l and the n+3

3 each greater than any other.

Also in a converging series, if the greatest term be
n-r+1

A,_,x"~?, then since the next term is 4, _, a=A.x;
A2 n—-r+1
R - z must be<1;
Sm+Dr<r+re; sor>(n+l) #
. 49\
(Ex.) Find the greatest term of (l +§)3 .
4
3
Here r>?—-:1’>%?-; S r>2; Sr=8,
1+ 3

and the 4th is the greatest term.

168. To find the sum of the squares of the coefficients
of (1+a);

v (l+a)=1+nz+d,2°+ &e. + A 2"~ +n2 "t + 2"

s (Q+a)=at+nat "t + Ao+ &e + A2t tnx +1;

s+ 2)"m =24 '+ (4)2 + &e. + (4,)'2" + na* + 2"+ &e.

or the sum of the squares of the coefficients = the coefficient
of 2* in the expansion of (1 + )™

But the coefficient of z* in that expansion is the (1 + )"
coefficient; hence putting r=n and n=2n in

_(n-1)(n-2)...(n~7+1)

A'l.2.3...r

;
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2n (2n - l) (2n 2) (n +)

(M +n)r= 5 3
_2n(2n-1)2n-2).. (n+1)n(n-1)...8.2.1
(1.2.8...n)
n(2n 1) (n—1) (2n—38)(n~2) (2n - 5)..
(1.2.3...n)
(2n 1)(2n—38)...5.8.1xn(n-1)...2.1
(1.2.38...0)°
_on1.8.5. (2 -1
=¥12.3.. :

which is the sum of the coeflicients,

169. We shall conclude this chapter by the expansion
of a*, or shall prove the truth of the exponential theorem,
that

428 L2 Az

~a—l+A.z'+l 3 2 3 &c.+——————--l.2-””+&c.

where A=(a—l)-§(a—1)’+§(a_1)a_

For a*=(1+a-1)"=(1+c)” where c=a—-1:

But (l+c)’=l+xc+.;- c’_‘,‘t(‘rl 12)(-; 2)0’4-&0

J S » 82"+ 2
=]+ac+ 3 c+ 2.3 &+ &ec.

=1 +x(c—c—’+-§—&c.) + 2 ——f+&c.)
=1+ dx+ 4,2* + 4,2 + &e.
where A=c~ 5 +5 - &e.=(a=1)-} (=1 + &e.

and 4,, 4, &c. depend also upon powers of c.
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Hence we may assume that
a*=1+Ax+ A;2*+ A,2° + A,2* + &e. ;
S @”=1+2A4x+ 44,2+ 84,2° + 16 4,2 + &ec.
But a**=a* x a* = (@*)*; ,
" 14242+ 44,2" + 84,2" + 164,2* + &e.
=1+2dx+(A*+24,)a" + (24, +244,)2°
+(24,+ A7 +244;) 2 + &e.

Hence equating coefficients of like powers of z,

2
ady=A2124,; o A=,

t ]
84,=24,+244,; .. 64,=4°; .. A"zi'é’
4 4 4
164,=24,+4,'+244y; » 184,=7+5;5 o di=g——0
2 I 4.4
and ..a—1+A.t+Ax’ A‘.+ A= + &e.

1.2 2.3 2.3.4
CoR. Let e be that value of a which makes Ad=1;

2 a2
oo = 1+x+12 23 + &e.

To find e let z=1;

1
S e= 14-1+l 3 2 3+&c =2.71828, &c.

a value which we have had occasion to mention.



APPENDIX.

LOGARITHMS. SIMPLE AND COMPOUND INTEREST.

1. Ir N be a number such that N=a*, then x is said
to be the logarithm of N and a is called the base of the
system of logarithms.

Hence a logarithm may be defined to be the index or
. power to which the base is to be raised that the result may
be equal to a given number.

Instead of writing the word logarithm; log, or some-
_ times 1. only is used.

Cor. Since a=a', and 1=a° it follows that the logar-
ithm of the base is unity and the logarithm of unity is
=0, or loga=1 and log1=0.

In the tables in common use, the base is 10; and since
10=10}, 100 = 10*%, 1000= 10% 10,000=10% &c.; ... 1 =log 10,
2=log 100, 8 =log 1000, 4 =log 10,000, &c.

Hence the logarithm of a number between 1 and 10
will be a fraction < 1, the logarithm of a nunrber b’etween‘
10 and 100 will be > 1, <2; between 100 and 1000 will
lie between 2 and 8 and so on; and thus if .z be the lo-
garithm of 6, or 6=10"; therefore . 60 =10 x 10°=101~;
600 = 10%*, &c.

<~ logb=.x; l(;g 60=1.x; log 600=2 .z, &c.,

the integer number prefixed to the decimal is called the
characteristic, the decimal part the mantissa; and we. see
that the characteristic (when positive) is always one less
than the number of digits in the number whose logarithm
is sought.
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We have mentioned that in the ordinary tables the base
" is 10; also every number is supposed to be represented by
107; hence to find the logarithm of a number, is to obtain
x from the equation 10°=N; this is done by means of
series, involving the powers of N ; the investigation of which
we have not space to attempt.

From these series the logarithms are computed, at the
expence of prodigious labour, and are then registered in-
tables to facilitate the calculations of others.

The invention of logarithms is due to Baron Napier; the
base he used was the number 2.71828, &c., which we have
before represented by ¢; the base 10 was adopted by Briggs,
by whose name the logarithms to that base are sometimes
called.

We have just seen that O=log1; what is then the lo-
garithm of 07 Since 0 represents the value of a fraction
with an infinitely great divisor;

1 . 8 l -
0=—= aforlwrt;s-a ;

. by the definition of a logarithm, log 0 =~ c.

The following propositions will exhibit the utility of lo-
garithms; the use of the tables may in general be learnt
from rules given in the prefaces to such works.

Pror. 1. The logarithm of the product of any numbers
equals the sum of the logarithms of the factors.

Let N,, N,, N,, &c. be any numbers,
x, I, x5, &c. their logarithms;
o N,=an, N;=a%, N,;=a%, &c;
o Nyx Ny x Ny x &e. = a"i x as x a% &e. = a‘ﬁ"':“#*“;
o log(Nyx Ny x' N, &c) =2, + 23+ 2, + &e.=log N, + Iog N,
+ log N, + &ec.
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Pror. 2. The logarithm of the quotient of two num:
bers, is the difference between the logarithms of the dividend

and divisor.

- log (%:) = &, — 2, = log N, - log N,.

Pror. 3. The log(N,") = m log N,
For '+ Ny=a5; . N™=a™;

+ log (V)= ma, = m log N,.

‘Pror. 4. The log (N;)"= 2 log ;.

For N,;= a!%l; log(N,)%=-’-:- log N,.
Cor. Hence if the logarithms of numbers be collected
“into tables, the multiplication or division of numbers may
be effected by means of the addition or subtraction of their
logarithms, and the involution or evolution of numbers
by multiplying or dividing the logarithms of the power or
root. :

2. In the tables most used the decimal part of the
logarithm is alone put down, and the characteristic is left
to be added when wanted; this, as we shall see, prevents
the tables from being of inconvenient size.

For if we have log N=2; then
log (N10") = log N +log 10" = log N + n,
log (%,):logN—log 100=log N-n;

or knowing the logarithm of N, we can ﬁnd the logarithm
of every number, whether an integer or a decimal, which



234 LOGARITHMS.

has the same significant digits; thus as 5.621 is between
1 and 10, its log is between 0 and 1}, and we find from
the tables that

.~ log 5.621 = .7498136 ;
-~ log 56.21 = 1.7498136 ;
log 562.1 = 2.7498136 ;
log 56210 = 4.7498136 ;
for 5.621 x 10 = 56.21, and 5.621 x 10* = 56210.
Also log .5621 = — 1.7408136 ;
log .05621 = — 2.7498136.

5.621
i ’

And .05621 = i;%%‘- ;- log .05621 = log 5.621 — log 100.

For .5621 = . log .5621 = log 5.621 - log 10.

Hence this rule, if the number have = digits before the
decimal point, the characteristic is # —1; and if the num-
ber be a decimal with » —1 cyphers before the first signifi-
cant figure, the characteristic is — n. ’
(Ex. 1.) Find x=log (87.48 x 1.752 x 406.5);
< & =log 37.48 + log 1.752 + log 406.5,
log 87.48 = 1.5787996,
log 1.752 = .2435341,
log 406.5 = 2.6090605 ;

oz = 44268942,

(Ex.2) Find z =1log 173 ;
log 7= .8450980,
log15=1.1760918;

oz =log7-log 15,

« x = - 1.6690067.
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14
(Ex.3) Find z=log (%) ; o a=14(log 7~ log 8),

log 7 = .8450980,
log 3 = .4771213,

.8679767
14

x = 5.1516788.

1
(Ex. 4.) Find r = log (954)7 ;

= %log (954) = 2.1052106.

(Ex. 5.) 2°=1769; find x;

. log 760 - 5 28850268 _

o zlog 2 =log 769; .. x= 010300 = 9.586889.
(Ex. 6.) Given a™* b"* =¢; find x;
s mrloga+nxlogb=logec;
_ log ¢ _ loge
“mloga+nlogd log (a6’

SIMPLE INTEREST AND DISCOUNT.

3. Let P = the principal or sum lent,
r = interest of £(1) for one year,
n = time; .
< nr = interest of £1. for the time (n),
and Pnr = interest of £P for the time (n),

or if I be the interest, J = principal x time x interest of £1.
for one year.
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Let ¢ = rate per cent. i.e. interest of £100. for one year;

Pxnxc
="
arithmetic; viz. multiply the principal by the time and rate,
and divide the product by 100.

a

» which is the rule given in the books of

Ex. Find the interest on £120. for 8 years at 4 per cent.

4
Here r—WO:.O‘t,

o T=120 x 8 x .04 = 14.4 = £14. 8s,,

120 x 8 x 4

. 40
100 =£l4- -1—06' £l4. 8s.

or by the common rule, I =
Cor. The amount (M) is the principal + the interest, or
M =P + Pnr. : ’

4. Discount is the allowance made for the payment
of a sum before it becomes due; and the present worth of
a sum due some time hence is the sum to be paid at once
instead of at the remote period; hence discount is the dif-
ference between the amount due at the end of the time and

* the present worth.

Let M be a sum due at end of time (n),
P the present worth;

then it is clear that if P be put to interest, its amount
ought in fairness to be equal to M;

o PiPnr=M; ». P=__,
1+nr
M Mnr

Also D=M~-P=M-

3

1+nr 1+nr
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M . 100 M
Con. f be put for 7, P = ne 100+nc
100

.« (100+nc) P=100x M ;
. 100+%¢ : 100 :: M : P,
which is the rule given in the ordinary books of arithmetic.

Ex. Find the present worth of £216. due 2 years hence
reckoning 4 per cent.

Here M=216; r=.04; n=2; .. nr=.08;
. 216

oo P= ]08-—200.
Also by the common rule ‘. nc=8,
T 7216 x 100
8 : 100 :: 216 : P—-—W———QOO.

-

Discount =216 —200 = £16,

COMPOUND INTEREST,

5. When the interest due at the end of a fixed period,
as for instance a year, is added to the principal, and interest
is charged upon their amount, the money is said to increase
at compound interest.

To find the amount of £P. increasing at compound in-
terest.

If  be the interest of £1. for one year;

*. P+ Prwill be the amount due at the end of first year.

Let P+ Pr= P,, and let P,, P,, P,, &c. P, be the amounts
due at end of 2nd, 3rd, and nth years ;
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o Po=P +Pr=P(Q+r);
oo Pp=P,+ Pir=P,(1+7),
P,=P,+ Pr=P,(1 +7),
P,o=Py+ Pyr=P,(1+7),

--------- Gcosssevsscscrnncae

P,=P,,+rP,_,=P,_,(1+7)

Hence by multiplying and leaving out the factors common
to each side,
P =P(+7),

orif M=P,; M=P (1 +r),
‘the values of M, or n are best found by logarithmic tables.
Ek. Find the amount of £100., in 46 years reckoning,
4 per cent.
Here P=100, r=.04, n=40;
<~ M =100 (1.04)*; .. log M =log 100 + 40 log (1.04),
log 100 — 2 ; 401log (1.04) = .6813320;
- log M =2.68138820; .. M = £480. 2s. very nearly.
6. To find in how many years a sum of money will
increase m-fold at compound interest.
Here M=mP=P@ +r); . m=(1+7) ;

o log(m)=n.log(1+7); - n= __log’?l(':)r)_

- Ex. In how many years will & sum of money double
itself at 5 per cent.? Here m=2, r=.05;

N log (2) 3010800
** ® = log (1.05) " 0211893

= 142 years.



COMPOUND INTEREST, 239

7. To find the amount when interest is reckoned half-
yearly.

If r = interest of £1. for 1 year, and » the number of

" years, then " 1+ % = amount of £1, at the end of the first

payment, and as 2n is the whole number of payments,

. r.l
M=PO+9.

Let P=100, r =.04, and % =40; ... M =100 (1.02)*;
-. log M =log (100) + 80 log (1.02) ; .. M = £487.10s.11d.

whence by reference to the former example, we find that
there is a gain of £7. 8s. 11d. by receiving dividends half-
yearly.

If the interest be received every second it becomes due;
then if m =seconds in a year; .. mn=number of pay-

ments, and M = P (1 + %)... = p(1 + %)?-", ,

L
But we have seen that (l +;r.)'=e when m is very

great;
. M= Pe.

8. To find the present value of a sum M, due n
years hence, reckoning compound interest,

Let P = present worth; then P put out to interest ought
to amount to M, i.e.

P(1+rr=M; ~ P= M

If n be the fractional part of & year, which is the case
in most transactions ;

M
P= Tanr nearly.
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- It is usual in business to charge interest instead of

discount ; and when n is small the ervor is small also.

M

T M(1 - nr) nearly = M — Mar, nearly

For P =

= M - interest of M, nearly.

9. To find the amount of an annuity for any number
of years.

Let 4 be the annual payment.

Then at end of 1st year A4 is due,

....... eeseess. 2nd year A4 + the amount of A
=A+A(1+7) or 4, is due,
............... 8rd year A+ A4,(1+7)
A+ A(1+7)+ A1+ )= 4, is due,
....... veeeeve. dthyear A+ 4,(1+7)

— A+ A )+ AQ Y+ AL+ is due;
. whole amount due at the end of the n™ year
=A+AQ+r)+ AQ+r)+ &+ A(Q+7)};
W M=4. {1+ +)+Q+7+@Q +7)P+ &c.+ (1 + 7)Y

S (1+r)"—l}
: -A-{—H—;Tr » &e.

10, ‘To find the present value of an annuity.

Let P be the present value; then in n years P ought to
amount to M, i.e. should = P (1 +7)*;

o Parr=d. G221

4 1
" P=7'{l"(1+r)-'}
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Cor. If the annuity be perpetual or arise from a free-

1
h = i .
old estate n= o, and a7y disappears ;
_4_1004
- ’t . c *

Ex. What is the value of an estate producing a rent
4, money making 4 or 5 per cent.?
‘Here c=4 or 5; ... P=254 or 204;
i. e. is either 25 times or 20 times the annual rent, or as

it is said, is worth 25 or 20 years purchase, according as
money is worth 4 or 5 per cent.

EQUATION OF PAYMENTS.

11. A sum £P is due at the end of a months, £Q is due
at the end of & months, at what time should both be paid
at once, that neither the borrower nor the lender should
incur loss?

Let x =time at which both payments can be made, and
which is > a <b.

Therefore Interest of £P for the time z—a ought to
be equal to the interest of £Q for the time 6—u;

or P(.z'-—a)‘r= Qlb-2)r;

. ._Pa+Qb
“E=ETPrQ

This rule which is ordinarily used is not strictly true;
for the discount and not the interest of Q should be com-
puted; since Q is paid b -z months before Q is due; to -
obtain an accurate value for x, we must say that the in-
terest of P for time z —a, should equal the discount of Q for
time (b - 1);

1
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B P(.r—a)b' =

EQUATION OF PAYMENTS.

Qb-2)r
1+(bh-x)r’

S Px-a)+Prz-a)(b-2)=Q(b-2),

a quadratic equation from which r may be found.

There are many things in Algebra, not as yet mentioned,
but these must be left for a succeeding volume.

page

11
16

ERRATA.
/
line Jor read
6 relation relations
23 S
13 +3 -3

8 the sign — is omitted before the word ¢nto.




BOOKS FOR SCHOOLS AND COLLEGES.

THE FIGURES of EUCLID; with Questions, and a Praxis of
Geometrical Exercises. By the Rev. J. EDWARDS, King’s College,
London. 3s,

A COMPANION to EUCLID ; being a help to the Understanding
and Remembering of the First Four Books; with a set of Improved
Figures, and an Original Demonstration of the Proposition called the
Twelfth Axiom. 4s.

THE MECHANICAL EUCLID. By the Rev. WILLIAM
WHEWELL, B.D., Fellow and Tutor of Trin. Coll., Cambridge.
5s. 6d.

THE DOCTRINE OF LIMITS, with its Applications; namely
The First Three Sections of Newton—Conic Sections—The Differen-
tial Calculus., By the Rev. WILLIAM WHEWELL, B.D., &c. 9s.

LECTURES upon TRIGONOMETRY, and the APPLICATION
of ALGEBRA to GEOMETRY. Second Edition, corrected, 7s. 6d.

DYNAMICS, or a TREATISE on MOTION ; to which is added,
a SHORT TREATISE on ATTRACTIONS. By SAMUEL
EARNSHAW, M.A., of St John's College, Cambridge. Octavo,
with many Cuts. 14s,

THEORY OF HEAT. By PHILIP KELLAND, M.A, F.RS,
Professor of Natural Philospohy in the University of Edinburgh ; late
Fellow and Tutor of Queens® College, Cambridge. 9s.

A TREATISE on CHRYSTALLOGRAPHY, by W, H. MILLER,
M.A,, F.R.S,, F.G.8., Fellow and Tutor of St John's College, and
Professor of Mineralogy in the University of Cambridge. 7s.6d.

LECTURES on ASTRONOMY, delivered at KING’S COLLEGE,
London, by the Rev. HENRY MOSELEY, M.A., F.R.S., Professor
of Natural Philosophy and Astronomy in that Institution. With nu-
merous [llustrations. 5s. 6d.

MECHANICS APPLIED TO THE ARTS. B'y PROFESSOR
MOSELEY, of King’s College, London. A New Edition, corrected
and improved. With numerous Engravings. 6s. 6d.

AN INTRODUCTION TO THE STUDY OF CHEMICAL
PHILOSOPHY : being a preparatory View of the Forces which concur
to the Production of Chemical Phenomena. By J. FREDERIC
DANIELL, F.R.S., Professor of Chemistry in King’s College, Lon-
don; and Lecturer on Chemistry and Geology in the Hon. East India
Company’s Military Seminary at Addiscombe ; and Author of Meteoro-
logical Essays. 16s.




BOOKS FOR SBCHOOLS AND COLLEGES.

THE GREEK: TEXT of the ACTS OF THE APOSTLES;
with Notes, Original and Selected; for the Use of Students in the Uni-
versity. By HASTINGS ROBINSON, D.D., F.A.S., Rector of Great
Warley, and formerly Fellow and Assistant Tutor of St John’s, Camb. 8s.

THE CAMBRIDGE GREEK AND ENGLISH TESTAMENT ;
the Greek (from the THirD Ep1T10N of STEPHENS), and the English
from the Authorized Version, being given in Parallel Columns on the
same Puge. 8s.6d,

THE NEW CRATYLUS; or, CONTRIBUTIONS towards a
more ACCURATE KNOWLEDGE of the GREEK LANGUAGE.
By JOHN WILLIAM DONALDSON, M.A., Fellow of Trinity
College, Cambridge. 17s.

STEMMATA ATHENIENSIA; TABLES OF BIOGRAPHY,
CHRONOLOGY, and HISTORY, to facilitate the Study of the Greek
Classics. 8s.

DISSERTATIONS on the EUMENIDES of ZASCHYLUS, with
the Greek Text, and Critical Remarks. From the German of MULLER.
9s, 6d. :

THE FROGS OF ARISTOPHANES, with ENGLISH NOTES.
By the Rev, H. P, COOKESLEY. 7s.

THE AULULARIA OF PLAUTUS, with Notes by JAMES
HILDYARD, M.A., Fellow of Christ’s College, Cambridge. 7s.6d.

SCHLEIERMACHER’S INTRODUCTIONS TO THE DIA-
LOGUES of PLATO; translated from the German, by WILLIAM
DOBSON, M.A., Fellow of Trinity College, Cambridge. 12s. 6d.

EXAMINATION QUESTIONS and ANSWERS from MO-
SHEIM'S ECCLESIASTICAL HISTORY, for the Use of Students
in Divinity, By the Author of Questions and Answers from- Burnet
on the Thirty-Nine Articles. 4s.6d,

EXAMINATION QUESTIONS and ANSWERS from BURNET
on the THIRTY-NINE ARTICLES. By the Author of Questions
and Answers from Mosheim’s Ecclesiastical History. 2s.

EXAMINATION QUESTIONS and ANSWERS on BUTLER’S
ANALOGY. By the Rev. G. W. CRAUFURD, M.A,, late Fellow
of King’s College, Cambridge. 2s. 6d.

PALEY’S EVIDENCES OF CHRISTIANITY EPITOMIZED;
with a View to exhibit his Argument in 8 small C'ompass, without omit-
ting or weakening any of its component Parts. By a MEMBER of the
UNIvERSITY of CAMBRIDGE. §s.

Loxpon: JOHN W. PARKER, PuBLisuer, WEST STRAND.

R















‘
Teds e
VL Lo

Rk I

_r—







