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DEDICATION

This paper is dedicated to the memory of Sidney Suslow,

a founding member of the Association of Institutional Research,

and a man whose constant energy went into the support of its

purposes and goals. It was with Sid's support and encourage-

ment that we pursued our interest in higher educational

planning, and his pioneering work in obtaining longitudinal

data on students led directly to our work in the study of

longitudinal models.





. Introduction

In 1968 Sidney Suslow, together with his colleagues in

the Office of Institutional Research at the Berkeley Campus of

the University of California, completed a study (Suslow et al

.

[4]) of undergraduate student attendance patterns over time.

That report contains some of the earliest data the authors had

seen on a given group, or cohort, of students, and how the group

behaved over its undergraduate career. Most institutions keep

only cross-sectional data obtained from enrollment statistics.

It was the availability of the Suslow data that led the authors

to pursue the formulation and analysis of enrollment models

based on longitudinal student attendance patterns. The authors

presented a constant-work model (Marshall and Oliver [2]) which

explained the data quite successfully. They also, together

with Suslow in [3], tried to find cross-sectional Markovian

models to fit the longitudinal data (this latter work is repro-

duced in a shortened form in Chapter 2 of Grinold and Marshall

[1], which is perhaps more accessible than [3]).

The purpose of this paper is to demonstrate how the

longitudinal data can be used to determine variances, and hence

confidence bounds, on student enrollment forecasts in addition

to finding the forecasts themselves. Thus with each forecast

we have a measure of the error that could be present.



1. Model Formulation

We consider discrete points in time such as the beginning

of a quarter, semester, or academic year. The particular choice

depends on the model use and the availability of data. In our

numerical examples we use the data from Suslow et al. [4], and

hence our time points coincide with semesters. Thus when we write

t = 1,2,3,..., we mean the start of the first, second, third, etc.

semesters in the future; t = will refer to the point "now" from

which forecasts are being made, and t = -1, -2, -3, will refer to

the first, second, third, etc. semesters in the past.

Our first aim is to derive an expression for the expected

number in attendance at some time t > 0. We do not differentiate

groups such as freshmen, sophomores, or lower division, upper

division. This could easily be done by placing subscripts on our

notation, but we choose to simplify the notation to be consistent

with the Suslow data on total student attendance.

Let S(t;u) be the number of students in attendance at

time t who entered (for the first time) at time t - u,

u = 0,1,... . Let S(t) be the total number of students in

attendance at time t. Then

S(t) = S(t;0) + S(t;l) + S(t;2) + ••• + S(t;u) + •••
. (1)

The data in [4] showed that for the periods studied

(1950' s and 1960's) there was very stable behavior in student

attendance; the fraction of students who attended a given semester



after entrance was independent of when the students first entered,

However, only fall-entering cohorts were studied. We assume here

that stable behavior could be expected from spring-entering

cohorts also, but that fall- and spring-entering students could

have different continuation fractions. Let p (u) be the prob-

ability that a student attends at time u after entering in the

fall, independent of the particular entrance time. Let p ?
(u)

be equivalent probability for spring-entering students. We also

assume that the attendance of any given student is independent

of the attendance or non-attendance of any other student; i.e.

all students act independently of each other. Table 1 gives

p. (u) determined by Suslow et ai . in [4].

Let N(t) be the number of new students who enter at

time t. The above two assumptions imply that the value of (the

random variable) S(t;u) , given the value of N(t-u) , has a

binomial probability distribution. That is,

Pr[S(t;u) = klN(t-u) = m] = (™) p.(u)
k

[l-p.(u)]
mk

, (2)

for k = 0,1,..., m, and n _> , where i = 1 for fall students

and i = 2 for spring students. In particular the conditional

expectation and the conditional variance of S(t;u) are given

respectively by

E [S(t;u) |N(t-u) = m] =mp.(u) , (3!

Var [S (t;u) |N(t-u) =m] = mp . (u) [1 - p . (u) ] . (4)



u P 1
(n) Pr (.U) (1 - p 1

(u) ) P1
(u)

1.0 0.0 1.0

1 .972 .0272 .9448

2 .905 .0860 .8190

3 .756 -1845 .5715

4 .684 .2161 .4679

5 .593 .2414 .3516

6 .562 .2462 .3158

7 .524 .2494 .2746

8 .498 .2500 .2480

9 .199 .1594 .0396

10 .130 .1131 .0169

11 .050 .0475 .0025

12 .036 .0347 .0013

13 .017 .0167 .0003

14 .015 .0148 .0002

15 .011 .0109 .0001

16 .007 .0070 .0000

6.959 1.905 5.054

TABLE 1: Sample student attendance data from Suslow et al . [4]



Let t be the start of a fall semester. After taking

expectations in (1) and using (3), the expected total enrollment

at time t is

E[S(t) ] =
I p. . . (u) E[N(t-u) ] . (5)

u=0
±{U>

Here we have let

i(u) =1 if u = 0,2,4,6, ...

=2 if u= 1,3,5,7, ... .

For any two random variables X and Y the expression

Var[X] = E[Var[x|Y]] + Var[E[XlY]]

holds. We use this together with (1), (3) and (4) to obtain for

the variance of the total enrollment at time t,

~
fVar[S(t)] = E[N(t-u)] p .

(u)
(u) (1 - Pj

_ (i)
(u) )

+ ? l(u)
(u)

2
Var(N(t-u)

)

Equations (5) and (6) give the expected enrollment and

its variance at time t. Recall that t is a fall semester.

For the case when t is a spring semester we use

i(u) =2 if u = 0,2,4,6, ...

=1 if u = 1,3,5,7, ... .



These expressions do not take into account the fact

that we have knowledge of enrollments up to time t = (the

current time in our timing convention) . In (5) we know the

values of N(0), N(-l), N(-2), etc. and thus our forecast for

t > becomes

E[S(t) |N (0) ,N(-1) , .. .]

t-1 ,
(7)

=
I p (u) N(t-u) + I Pi(u)

(u) BCN(t-u)] ,

u=t ^ ' u=0 ±K
'

where i(u) is defined above for the particular case that' t

is either fall or spring. The first summation term in equation

(7) gives the expected "legacy" at time t of the given inputs

up to and including the current time zero. The second summation

gives the expected enrollment at time t from the expected input

of new students at times 1, 2, ... , t.

Similarly, by using equation (6) , the variance of the

forecast at t, given inputs up to and including time zero,

becomes

Var[S(t) I N ( ) ,N(-1) , .. .]

oo

=
I p. , . (u) (1 - p. , . (u) ) N(t-u)

u=t

t-1
2 \

+ I Pi(u )
(u) (1 -Pi(u)

(u)) E[N(t-u)] +p
i(u)

(u)* Var(N(t-u))J

(8)

The first summation gives the contribution to the variance from

the inputs up to and including the present. The second summation



gives the contribution which will occur from future inputs. Note

that this depends on the variance of the new inputs for times

l,2,...,t as well as the variance due to returning students.

Table 1 gives data for p, (u) , u 0, obtained originally

in the study for Suslow et al. [4], and reproduced on page 66 of

[1] . The third and fourth columns give p. (u) (1-p, (u) ) and

2
p, (u) respectively. These data are required in equation (8j ,

whereas the data in column 2 are required in equation (7)

.

The usual interpretation given to the second column in

Table 1 is simply the fraction of attending students out of a

given cohort. The third column is the variance of the 5(t;u)

terms divided by N(t-u) . It is interesting to see how the

conditional expectation and the variance of the number of attend-

ing students vary with the number of time periods that have

elapsed since initial registration. As one might expect, the

fraction of students out of a given cohort that return to attend

decreases rapidly and there is a sharp drop of attendance after

eight semesters. By the end of the 12th semester die fraction

of attending students decreases to a number less than 4% of

the original cohort. However, the conditional variance of the

number returning first increases, has its maximum when seven or

eight semesters have elapsed and then decreases to a negligible

amount by the end of the 12th semester. About the 12th semester,

the conditional expectation and variance of the number attending



are about equal; this result is not surprising, if we recall

that the Poisson distribution (whose variance and mean are equal)

is a good approximation to the binomial distribution when the

probability p(u) is small. Thus, students returning after

10 periods can be classified as "rare" events in the sense that

while the probability that an individual student attends is

small the original cohort is large enough so that the probability

distribution of returning students is Poisson. By similar

arguments one can deduce that the number who do not attend in

the first few semesters is also Poisson distributed.

Consider a simple system where there is no variance in

the new student input, which is a fixed amount, say n. , in each

fall semester, and a fixed amount n- in each spring semester.

Thus E[N(t)] = n. and Var[N(t)] = for all t where i = 1

for a fall semester and i = 2 in the spring. Using these in

(7) and (8) , and assuming p, (u) = p„ (u) with the data in Table 1

we obtain

E[S(t)] = 3.873n
1

+ 3.122n
2

, Var[S(t)] = 0.968n + 0.937n
2

for t a fall semester, and

E[S(t)] = 3.873n
2

+ 3.122n , Var[S(t)] = 0.968n
2

+ 0.937n

for t a spring semester. All these expressions are independent

of t because of the constant input each period.

8



Table 2 illustrates the use of these equations for three

combinations of fall and spring input totalling 4000 per year,

and assuming {p, (u) = p~(u)} are given in Table 1.

Semester Input Expected
Enrollment

Variance of
Enrollment

Fall

Spring

Fall

Spring

Fall

Spring

4,000 15,348

12,488

3,372

3,748

3,000

1,000

14,633

13,203

3,341

3, 779

2,000

2,000

13,918

13,918

3,310

3,810

TABLE 2: Illustrative calculations for differing fall/spring

input values.

A fairly typical use for Equations (7) and (3) is that

of forecasting one period into the future. With the convention

that t = represents today (the start of a fall semester)

,

we obtain the next period forecast



E[S(1)|N(0), N(-l),...] »
I p (u)

(u) N(l-u) +E[N(1)]
u=l

with i(u) = 1 for u even, i(u) = 2 for u odd, and

provided p, (0) = 1. The first (summation) terms represents the

expected number of returning students and the second term repre-

sents the expected number of new admissions. The corresponding

expression for the variance of enrollments in the next period is

Var[S(l) |N(0) ,N(-1) ,.. .] =
I p ± (u)

(u) (1 - p± (u)
(u) ) N(l-u)+Var[N

In this case where we assume all entering students in fact

show up, the fluctuations are due either to the uncertainty

in the count of returning students already enrolled or to the

uncertainty in the new students. Thus one can obtain some idea

of where new forecasting efforts should be directed. In certain

institutions the dominant problem may be the uncertainties

associated with returning students rather than with new students.

If, for example, the past cohorts were approximately 3000 in

each fall and 1000 in each spring, but the next group of enter-

ing students were Poisson with expected number and variance

equal to 100 then we would have (from Table 2)

Var[S[l] |N(0) ,N(-1) ,...] = 3779 + 1000 = 4779 .

10



In this case, two standard deviations (a measure of error often

used and based on Normal distribution theory) would be 138 students

which is slightly larger than the value we obtain when all

admissions are constant (2 x /3770 = 122 from Table 2) . In

other words it is possible to make various assumptions about the

uncertainty of future enrollments and/or returning students and

easily include them in our estimates of enrollment fluctuations.

It is unlikely that student input each period would be

constant. In the next section we analyze the model assuming

that new admissions follow a Poisscn distribution.

11



2 . Poisson Admissions

The number of new students who actually enroll in a

given future semester is not known with certainty. A simple

method of modelling this uncertainty is to assume the number

of new enrollments follows a Poisson distribution. Let n(t)

be the expected number of new enrollments at time t. Then

Pr[N(t) = m] = 2JL2 |t , m > . (9.

From equations (2) and (9) we get

k "p i(u)
(u) n

i(u)
(t" u)

p. , . (u) n. , . (t-u) e
Pr[S(t;u)=k] = liiSi iiHJ _

This shows that each random variable in (1) has a Poisson dis-

tribution, which together with our independence assumption,

implies that the total enrollment at time t has a Poisson dis-

tribution at every time t, with

E[S(t) ] = Var [S(t) ] =
I p. , , (u) n. , , (t-u)

u=0
llu; llu;

Using our previous example, but with Poisson input

instead of fixed input, with n, = 3000, n„ = 1000 and

p, (u) = P 2
( u ) as i-n Table 1, we get again an expected enrollment

12



of 14,741 each fall and 13,239 each spring, but with variances

of the same values. Thus two standard deviations would be 2 42

each fall and 230 each spring, which show much more uncertainty

in the forecasts as one would expect.

13



3 . Large Cohort Sizes

We have already shown in equation (2) that the number

of students attending out of a given entering cohort can be viewe<

as the result of summing successes in Bernoulli trials, where

the probability of success is the probability that a student

attends on a given semester. Thus, if add a finite number of

such random variables to obtain the attendance at a later time

period we again obtain a sum of successes in a finite number of

Bernoulli trials. If the parameter p. (u) of the Binomial dis-

tribution in (2) did not change with time, then it would also be

true that the sum in (1) is binomially distributed. This follows

from the derivation of the distribution of the sum of successes

in a finite number of Bernoulli trials, each trial having the

same probability of success. Unfortunately, that is not the

case; as we can easily see from Table 1 the parameter p. (u)

changes rather dramatically with elapsed time since entry and

the resulting distribution is obtained from the convolution of

as many binomial distributions, with changing parameters, as

there are terms in (1) . Although explicit expressions can be

found for the generating function of such distributions, alge-

braic expressions for the distribution itself are not simple.

Fortunately, however, much can be said about the approximate

behavior of the conditional distribution of S(t) if we assume

that entering cohorts contain large numbers of students.

The central limit theorem of probability theory states

that if S(t;u) is the sum of the number of successes in n(t-u)

14



trials each with success probability p. (u) , then the normalized

sum
* S (t;u) - p. (u) n(t - u)

S (t;u) = 1
TTJ (11)

[p (u) (1 - p. (u)) n(t-u) }

L/ *

is approximately normally distributed. If we write

'(a) . -L. / a"* /2
dv

for the normal distribution function, then with large cohort

sizes, i.e., large numbers entering at t-u,

*
Pr[S (t;u) a] ~ $(a) independent of p.(u) and t. (12)

As long as each entering cohort is large and entering cohorts

act independently of one another the sum of a finite number of

terms in (1) is also approximately normal. In this case

Pr[S*(t) £ a] ~ $(a) , (13)

*
where the normalization for S (t) is given by

S(t) -
I p.

ri
v (u) n(t-u)

* u >
1 ^ U)

S (t) =
, l

,
2

(14)

(u>0
^^^ P i(u)

(uM1 "
P i(u)

(u))

15



Table 3 gives E[S(t;u)] for u = 0,1,... ,12 and

E[S(t)] together with 95% confidence intervals. Also tabulated

is the length of the confidence intervals as a percentage of

the expected values. Fall and spring semesters are shown in

separate columns for clarity (again t is assumed to be a fall

semester) . Note how the uncertainty as a percentage of the mean

increases with time enrolled, and how small the error is on

the total enrolled forecast compared to the individual semesters

Equations (13) and (14) can be used to obtain more

information on the uncertainty in S(t); one can estimate the

probability of the enrollment exceeding any given figure, of

not exceeding any given figure, or of being in any given range.

Let a and b be any two numbers with a < b. Then for

n, = 3000, n„ = 1000, t a fall semester, and the data given

in Table 1 with p, (u) = p~(u) , then

Pr[a < S(t) < b] ~ $' b " 14 ' 633
^ -*' a " 14 ' 633

62 \ 62

From tables of the normal distribution we see that

P[S(t) £ 14,700] ~ 0.86 ,

P[S(t) _> 14,500] ~ 0.98 , (15)

P[14,500 < S(t) < 14,700] ~ 0.84 .

16



E[S(t;u) ] and Confidence Interval as
95% Confidence Interval % of E[S(t;u) ]

Time u Fall Spring Fall Spring

3000 +

1 972 + 10 2.1

2 2715 + 32 2.4

3 756 + 27 7.1

4 2052 + 51 • 5.0

5 593 + 31 10.5

6 1686 + 54 6.4

7 524 + 32 12.2

3 1494 + 55 7.4

9 199 + 25 25.1

10 390 + 37 19.0

11 50 + 14 56.0

12 108 + 20 37.0

13 17+3 94.1

14 " 4 5 + 13 57.8

15 11 + 7 127.3

16 21+9 35 .7

Total 14,633 + 124 1.7

TABLE 3: Forecasts and confidence intervals for each semester

enrollment, n, = 3000, n_=1000, and t a fall semester

17



The Normal approximation for S(t) still holds if the

admissions each semester are assumed to be Poisson, since the

total enrollment is the sum of independent Poisson random

variables with distribution given by (10) . In this case we

consider

S(t) ~ I Piful (u) n ^'^
u >

±KU)

S (t) =

(J Q
Pi(u) (u) n(t" u)

)

1/2

For fall Poisson inputs with mean 3000, spring Poisson inputs

with mean 1000, t a fall semester, and assuming p (u) = p_ (u)
1 *

given in Table 1, then

P[a < S(t) < b] ~ b - 14,633
121

- $
a - 14,633

121

In this case

P[S(t) < 14,700] - 0.71 ,

P[S(t) > 14,500] - 0.86 , (16

P[14,500 £ S(t) £ 14,700] ~ 0.57 .

A comparison of (15) and (16) shows the added uncertainty in

the forecast due to randomness in the numbers of admissions.

13
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