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Abstract

This paper considers issues related to multiple structural changes, occurring at un-

known dates, in the linear regression model estimated by least squares. The main

aspects are the properties of the estimators, including the estimates of the break

dates, and the construction of tests that allow inference to be made about the pres-

ence of structural change and the number of breaks. We consider the general case of

a partial structural change model where not all parameters are subject to shifts. We
show convergence at rate T of the estimates of the break fractions. We also discuss

a procedure that allows one to test the null hypothesis of, say, £ changes, versus the

alternative hypothesis of t + 1 changes. This is particularly useful in that it allows a

specific to general modeling strategy to consistently determine the appropriate num-

ber of changes present. An estimation strategy for which the location of the breaks

need not be simultaneously determined is discussed. Instead, our method successively

estimates each break point. Empirical applications are presented to illustrate the use-

fulness of the various procedures.

Keywords: Asymptotic Distribution, Change point, Rate of convergence, Model se-

lection, Dynamic programming.

JEL Classification: C20, C22, C52.



1 Introduction.

This paper considers issues related to multiple structural changes in the linear regres-

sion model estimated by minimizing the sum of squared residuals. Throughout, we

treat the dates of the breaks as unknown variables to be estimated. The main aspects

considered are the properties of the estimators, including the estimates of the break

dates, and the construction of tests that allow inference to be made about the presence

of structural change and the number of breaks. To that effect we discuss tests of the

null hypothesis of no structural change versus an arbitrary number of changes as well

as tests of the null hypothesis of, say, I versus £+1 changes.

Both the statistics and econometrics literature contains a vast amount of work

on issues related to structural change, most of it specifically designed for the case

of a single change2
. The econometric literature has witnessed recently an upsurge of

interest in extending procedures to various models with an unknown change point,

thereby offering serious alternatives to the CUSUM test of Brown, Durbin and Evans

(1975).

With respect to the problem of testing for structural change, recent contributions

include the comprehensive treatment of Andrews (1993) who considers sup Wald, Like-

lihood Ratio and Lagrange Multiplier tests. Weighted versions of these tests satisfying

some asymptotic optimality criterion are discussed in Andrews and Ploberger (1992).

Recent studies also consider econometric models with trending regressors, unit root,

cointegrated variables and serial correlation3 . Methods allowing the investigator to be

agnostic about the presence or absence of integrated variables are presented in Perron

(1991) and Vogelsang (1993). The issue of structural change has also received a lot

of attention in the recent debate on unit root versus structural change in the trend

function of a univariate time series
4

.Yet, all these recent developments consider only

the case of a single structural change.

Issues about the distributional properties of the parameter estimates, in partic-

ular those of the break dates, have received somewhat less attention despite their

importance. The work of Bai (1994,1995a) contains general results concerning the

2 For a survey, see Knshnaiah and Miao (1988) and Zacks (1983) as well as the comprehensive

treatment of Deshayes and Picard (1986).
3
See, among others, Christiano (1992), Chu and White (1992), Kim and Sigmund (1989) and

Perron (1991) (trending regressors), Kramer, Ploberger and Alt (1988) (serial correlation), Bai,

Lumsdaine and Stock (1994) and Hansen (1990, 1992) (models with integrated variables).
4See Perron (1989, 1993, 1994), Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992),

Perron and Vogelsang (1992) and Gregory and Hansen (1993).



asymptotic distribution of the estimated break date when a single break occurs, in

particular the fact that the estimated break fraction converges to its true value at rate

T.

In comparison, the literature addressing the issue of multiple structural changes

is relatively sparse. Recent developments include Andrews, Lee and Ploberger (1992)

who consider optimal tests in the linear model with known variance. Garcia and

Perron (1994) study the sup Wald test for two changes in a dynamic time series
5

. To

our knowledge, the most comprehensive treatment is that of Liu, Wu and Zidek (1994)

who consider, as we do, multiple shifts in a linear model estimated by least squares

(in the context of a more general multiple thresholds model). They study the rate

of convergence of the estimated break dates, as well as the consistency of a modified

Schwarz model selection criterion to determine the number of breaks. Their analysis

considers only the so-called pure-structural change case where all the parameters are

subject to shifts.

Our assumptions are less restrictive than those of Liu, Wu and Zidek (1994).

Furthermore, we consider the more general case of a partial structural change where

not all parameters are subject to shifts. Concerning the asymptotic behavior of the

estimates of the break dates, we improve on the rate they report, T/ln2 (T), by showing

convergence at rate T. We also consider the asymptotic distribution and confidence

intervals of the estimates of the break dates.

Our study considers, in addition, the important problem of testing for multiple

structural changes. To that effect we present sup Wald type tests for the null hypoth-

esis of no change versus an alternative hypothesis containing an arbitrary number of

changes. We also discuss procedures that allow one to test the null hypothesis of, say,

£ changes, versus the alternative hypothesis of ^+1 changes. This is particularly useful

in that it allows a specific to general modeling strategy to consistently determine the

appropriate number of changes present (thereby avoiding the use of a model selection

criterion which requires the estimation of the model for all possible number of breaks

up to some a priori specified maximum). Finally our paper contains a discussion of an

5Some contributions include Fu and Curnow (1990) who discuss maximum likelihood estimation

of multiple shifts in a somewhat restrictive binomial model. Yao (1988) considers estimating the

number of breaks in the mean of a sequence of normal random variables based on the BIC criterion.

Yao and Au (1988) treat the estimation of multiple mean breaks in a sequence of random variables

and consider estimating the number of breaks using the BIC criterion. Yin (1988) uses the moving-

window nonparametric technique to estimate the breaks in a sequence of random variables. Also,

Feder (1975) considers estimating the joint points of polynomial type segmented regressions (non-

discrete shifts). Other relevant contributions include Kim (1993) and Lumsdaine and Papell (1995).



estimation strategy for which the location of the breaks need not be simultaneously

determined. Rather our method successively estimates each break point.

There are many practical advantages arising from the estimation and inference of

models with structural changes. To mention a few, we first note that it allows the

identification of events that may have fostered the structural changes. For example,

an approach often used to examine the effectiveness of policy changes involves dummy

variable regressions and inference on the corresponding regression coefficient. An

alternative is to compare the estimated break date with the effective date of a policy

change (or policy implementation). Another potentially useful aspect is in the field

of forecasting. Indeed, if many regimes are present in a given sample, using the most

recent regime may lead to better forecasts.

The rest of this paper is structured as follows. Section 2 discusses the model and

the assumptions imposed on the variables and the innovations. Section 3 contains

results pertaining to the consistency, the rate of convergence and the asymptotic

distribution of the estimates of the break dates (as well as the others parameters of the

model). Section 4 proposes test statistics, derives their asymptotic distributions and

presents critical values. Section 5 discusses sequential methods used to estimate the

model without treating all break points simultaneously. Section 6 presents empirical

applications. Appendix A contains some mathematical derivations and Appendix B

a description of a procedure to obtain estimates with multiple changes based on the

principle of dynamic programing .

2 The Model and Assumptions.

Consider the following multiple linear regression with m breaks (m + 1 regimes):

yt = x'
tP + z'

t
61 + ut , i=l,2,...,Ti,

Vt = x'tP + z'th + ««, < = Ti + l,...,T2 ,

yt
= x'

tj3 + z
t
'<5TO+1 + ut , t = Tm + 1, ..., T,

where y t is the observed dependent variable at time t; x t (p x 1) and zt (q x 1) are

vectors of covariates and /? and 6j (j = 1, ...,m+l) are the corresponding vectors

of coefficients; u t is the disturbance at time t. The indices (7\, ...,Tm ), or the break

points, are explicitly treated as unknown. The purpose is to estimate the unknown

regression coefficients together with the break points when T observations on (yt , zt , zt )

are available.



Note that this is a partial structural change model in the sense that the parameter

vector /? is not subject to shifts and is effectively estimated using the entire sample.

When p = 0, we obtain a pure structural change model where all the coefficients are

subject to change. A partial structural change model is therefore more general and

includes the latter as a special case.

To proceed, it is convenient to introduce some terminologies. First, we call an m-

partition (or simply a partition) of the integers (1, ..., T), an m-tuple vector of integers

(7i, ..., Tm ) such that 1 < 7\ < • • • Tm < T. Note also that, throughout, we shall use

the convention that T = and Tm+ i = T. Second, define the block-diagonal matrix

Z =

( Zi \

\ zm+1 J

with Zi = (zTi^+u—fZTi)'- The matrix Z is said to diagonally partition Z =

(zi, ...,zt)' at (7i,...,Tm). Using these definitions, the multiple linear regression sys-

tem (1) may be expressed in matrix form as

Y = X/3 + Z8 + U,

where Y = (yx ,...,yT)',X = (xu ...,xT )', U = (u1 ,...,uT )', <5 = {8[,8'2 , •••,<^l+1 )

/

, and

Z is the matrix which diagonally partitions Z at (Ti, ...,Tm ).

Throughout, we denote the true value of a parameter with a superscript or

subscript. In particular, £° = (8° , ...,(^+1 )' and (T®, ...,J^) are used to denote,

respectively, the true values of the parameters 8 and the true break points. The

matrix Z is the one which diagonally partitions Z at (T°, ...,T^). Hence, the data-

generating process is assumed to be

Y = Xj3° + Z 8° + U.

The goal is to estimate the unknown coefficients (0°,8°, ...,8^+1 ,T°, ...,T^), as-

suming 8f 7^ 8f+1 (1 < % < m). In general, the number of breaks m can be treated as

an unknown variable with true value m°. However, for now, we treat it as known and

discuss methods of estimating it in later sections. We also postpone the problem of

testing for the presence of structural change to Section 4.

The method of estimation considered is that based on the least-squares principle.

For each m-partition (Ti,...,Tm ), the associated least-squares estimates of f3 and 8j



are obtained by minimizing the sum of squared residuals

m+l T,

(Y-XP- Z6)'(Y -XP-Z6)=Y: £ bit ~ xtf ~ z'M
2

-

t=l t=T,_i+l

Let (3({Tj}) and S({Tj}) denote the resulting estimates based on the given m-partition

(7i,...,rm ) denoted {Tj}. Substituting these estimates in the objective function and

denoting the resulting sum of squared residuals as St{Ti, ..., Tm ), the estimated break

points (Ti,...,rm ) are such that

(2) (fi, ..., fm ) = argminTl TmST{Ti, ..., Tm ).

where the minimization is taken over all partitions (2i,...,Tm ) such that T, — T,_i >

q. Thus the break-point estimators are global minimizers of the objective function.

Finally, the regression parameter estimates are obtained using the associated least-

squares estimates at the estimated m-partition {Tj}, i.e.

(3) P = fc{fj}), S = 6{{fj}).

Since, the break points are discrete parameters and can only take a finite number of

values, they can be estimated by grid search. In the case of a pure structural change

model, an efficient procedure to obtain global minimizers can be obtained using a

dynamic programming approach. This allows the estimates to be calculated using a

number of sums of squared residuals (corresponding to the different possible partitions)

that is of order 0(T2
) for any m > 2. The calculations needed can be significantly

reduced further using standard updating formulae for recursive residuals. In effect,

the procedure amounts to computing T sets of recursive residuals and performing

pairwise comparisons of the associated sum of squared residuals. The method can

easily be extended, in an iterative fashion, to cover the case of a partial structural

change model. These issues are discussed in detail in Appendix B6
.

The statistical properties of the resulting estimators are studied in the next section

under the following set of assumptions.

Al. Let w t
= (x'

t
,z'

t
)', W = (lOl,...,u^^)

, and W be the diagonal partition of W
at the true break points (7?, ..., 7^) such that W° = diag(W?'

,

..., W%+1 ). We assume

for each i = 1, ...,m + l, that W°Wf/(Tf — Tf^) converges to a non-random positive

6A GAUSS program that calculates global minimizers using this dynamic programing approach

is available from the authors upon request. This program also has procedures to compute the other

tests and statistics discussed in this paper.



definite matrix (with T° = 1 and T£+1 = T). The limiting matrices need not be the

same for all i.

A2. For large £, the minimum eigenvalues of \ T.^o+x "W ancl °f i £t°-*u^ are

bounded away from zero (i = 1, ...,m + 1).

A3. The matrix Au = Yli ztz
't

1S invertible for £ — k > q, the dimension of zt .

A4. The sequence of errors {u t } satisfies either of the following two sets of condi-

tions:

i) Let {Fi : i = • • • , —2, —1,0, 1,2, • • •} be a sequence of increasing a-fields. Assume

that {u{, Ti] forms a Lr
-mixingale sequence with r = 4 + 6 for some 8 > [McLeish

(1975) and Andrews (1988)]. That is, there exist nonnegative constants {c, : z > 1}

and {i/>m : m > 0} such that ^m J.
as m — co and for alH > and m > 0, we have

(a) \\E{ui\^m )\\ T < *il>m ,

(b) \\m - E(Ui\Fi+m )\\ r
< C.V'm+l,

where ||X|| r = (E\X\ t
)

1/t
. We assume in addition that

(c) max,- C{ < K < oo,

(d) E~=-oo i>m < OO,
t

and

(e) The disturbance u t is independent of the regressors {zs ,x s } for all t and s.

ii) Let Tl = cr-iie\d{...,wt-i,Wt, ...,ut_2 ,
u

t-\}.

a) We assume that {u t } is a martingale difference sequence relative to {F*} satis-

fying £(u4
|^"

t*_i)
= 0, and sup

t
E\u t

\

4+S < oo.

b) We have

_ PV]

plimT'" 1^^ = Q(v),
t=i

uniformly in v € [0, 1], where Q(v) is positive definite for v > and strictly increasing

in u (i.e. Q{v) — Q(u) is positive definite for v > u).

c) If the disturbances u t are not independent of the regressors {zs } for all t and

s, the minimization problem defined by (2) is taken over all possible partitions such

that T{ — T,_i > eT (i = l,...,m-f 1) for some e > (note that this is not required

under part (i)).

A5. T? = [TX% where < A? < • • • < A^ < 1.

Assumption Al is standard for multiple linear regressions. Assumption A2 requires

that there be enough observations near the true break points so that they can be

identified. Now consider A3. Because the break points are estimated by a global



least-squares search, we require the sum Y?k ztz\ to be invertible for £ — k > q. In

particulax, no segment should contain fewer observations than 9, as an exact fit is

otherwise obtained. If we impose the number of observations in each segment to be at

least some fixed number h (h > q, not depending on T), the invertibility requirement

in A3 can be weakened to hold for all combinations (£, k) for which £ — k > h. Note

that A3 is actually for technical convenience and could be dispensed with. This would

require the use of generalized inverses. We assume, for simplicity, the existence of the

inverse of Am, but the proof goes through with generalized inverses at the expense of

a greater technical burden.

The assumptions stated in A4 pertain to two specific cases related to the presence

or absence of a lagged dependent variable in zt . The conditions described in part (i)

pertain to the case where no lagged dependent variables are allowed in zt . In this case,

the conditions on the residuals are quite general and allow substantial correlation. A

mixingale sequence includes many processes as special cases, such as martingale dif-

ferences, strong mixing processes, linear processes, and functions of mixing processes,

see Andrews (1988) for details. The sequence {ut } need not be stationary but the ex-

istence of a uniformly bounded moment of order 4 + 8 is required (this can be seen by

noting that condition (c) is, in most cases, equivalent to sup,- ||u,|| r < 00). Condition

(e) precludes the presence of lagged dependent variables in the regressors.

Part (ii) of Assumption A4 considers the case where lagged dependent variables

are allowed as regressors. In this case, no serial correlation is permitted in the errors

{u t }. The requirement of {ztu t } forming a martingale difference is to permit weak

convergence of the partial sums T-1 / 2 Ht=rrui+i ztu t . This extra generality is obtained

at the expense of some restrictions on the admissible partitions. If a lagged dependent

varaible is present in the zt , each segment considered must contain a positive fraction

of the total sample. This is not constraining from a practical point of view since t can

be arbitrarily small. Note that no such restriction is necessary if a lagged dependent

variable is present in the it's. In both cases, the assumptions are general enough to

allow different distributions for both the regressors and the errors in each segment.

The possibility of lagged dependent variables is potentially quite useful if the pa-

rameters associated with the dynamics of the dependent variables are not subject

to structural change. In this case, the investigator can take these dynamic effects

into account either in a direct parametric fashion (e.g. introducing lagged dependent

variables so as to have uncorrelated residuals) or using an indirect nonparametric ap-

proach (e.g. leaving the dynamics in the disturbances and applying a nonparametric



correction for proper asymptotic inference). This trade-off can be useful to distinguish

gradual from sudden changes the same way a distinction is made between innovational

and additive outliers.

Assumption A5 is a standard requirement to permit the development of an asymp-

totic theory and allows the break points to be asymptotically distinct. It essentially

requires the asymptotic experiments to be carried under the assumption that each seg-

ments increase proportionately as the sample size increases. We refer to the quantities

(A°, ..., A£J as the break fractions and we let A° = and A^+1 = 1.

3 Consistency and Limiting Distributions.

In this section, we are interested in the consistency property of the estimated break

fractions and especially the rate of convergence. The result about the rate of con-

vergence will allow us to derive results about the asymptotic distribution of the es-

timates of the break dates as well as the estimated regression coefficients. We let

A = (A l7 ..., Am ) with corresponding true values A = (A°, ..., A^J. We shall first show

that A is consistent for A and later that the rate of convergence is T. As a matter

of notation, we let "—" denote convergence in probability, "—" convergence in dis-

tribution, and "=*>" weak convergence in the space D[0, 1] under the uniform metric,

see Pollard (1984, Chapter 5).

3.1 Consistency.

The main result of this section is summarized in the following proposition which states

the consistency of A for A .

Proposition 1 Under assumptions A1-A5, the estimated break fractions are consis-

tent. That is, for each n > and each e > 0, we have, when T is large:

P(|A fc
- A2| > i?) < e, (* = l,...,m).

We outline the main steps of the proof using a few lemmas that are proved in the

appendix. Note that T, need not equal Tf so that estimated segments (or regimes)

need not correspond to true regimes and the two partitions {T,} and {T°} are allowed

to overlap. By showing that Xj —» X° we, in effect, bound the degree of overlap.



Denote by lit the estimated residual for the r-th observation and by dt the difference

between the fitted regression "line" and the true regression line. That is,

u t = y t
- x t J3 - zt6k , t e [7jt-i + 1, fk]

and

dt = x'
t

- $°) + z'
t(h - «9), t € [7U + 1, f)t] n pj., + 1, r°]

for A;, j = l,...,m + 1. Note that, in general, d
t is defined over (m + l)

2 different

segments corresponding to each of the possible m-partitions {T,} and {T
t
}. Using

elementary properties of projections,

(4) £x;fi?<ii>?,
-* t=i j t=i

and using u t
= u t

— dt ,

(5) ^E^=^E«*+ii:^-4^ u^-
j t=i ± t=i j «=i j t=\

The proof of Proposition 1 simply uses relations (4) and (5) and the associated limits

of T~ l

J2t=i <% and T~ l

J2t=i utdt . We start with the latter.

Lemma 1 Under assumptions A1-A5, we have

1
T

-J2 utdt = op {l).
1 t=i

In the absence of structural changes (6j = for all j), T~ l

Yl utdt = T~ l
(J3

—

{3)'J2 x tu t, which is readily seen to be Op{T~
l l2

). In this case, Lemma 1 holds trivially.

The proof of this lemma, presented in the appendix, is quite involved when breaks

occurring at unknown dates exist. Lemma 1 allows us to state directly the following

result applicable in the case of homogeneous disturbances.

Corollary 1 If E{u\) = a2
for all t, then under Assumptions A1-A5, we have as

T —> oo:

1
T

-t
i

2 p
- a2

.



Proof: Inequality (4) implies that a2 < a2 + op (l) while (5) implies, by Lemma 1,

a 2 = cr
2 + £<f?/T + op(l)>cr

2 + 0p (l). D

Lemma 1 together with (4) and (5) implies that, under A1-A5

(6) ^xx^o.
1 t=i

The proof of the consistency of A for A follows by showing that (6) implies A -^

A . More specifically, we prove in the appendix that (6) cannot hold if A, -/+p A° for

some i. This is stated in the following lemma.

Lemma 2 Suppose that assumptions A1-A5 are satisfied and that some break date,

say A°, cannot be consistently estimated, then

T
limsuPp(i|:^>CK-6?+1 ||

2

)

for some constant C > and some to > 0.

We are now in the position to prove Proposition 1. Using (5) and Lemmas 1 and

2, and under the supposition that some break date is not consistently estimated, we

have the inequality

rp rp

1
i

i
i

which holds with probability no less than some eo > 0. This is in contradiction with

the inequality (4), which holds with probability 1 for all T. Hence, all break dates are

consistently estimated.

The consistency result for A allows us to state consistency results for the parameter

estimates and 6k (k = l,...,m). The proof of the following proposition, presented

in the appendix, uses arguments similar to those involved in the proof of Lemma 2.

Proposition 2 Under assumptions A1-A5, we have

m he ^°
y }

Sk -S°k -^0 (Jfc=l,...,m).

That is, the least squares estimators of the regression coefficients are consistent.

10



3.2 Rates of convergence.

We now consider the rate of convergence of the estimates. We start by showing that

Xk converge to its true value at rate T. More precisely, we have:

Proposition 3 Under assumptions A1-A5, for every 77 > 0, there exists a C < 00,

such that for all large T,

P(\T(Xk
-\°

k)\>C)<r,, (* = l,...,m).

The proof is presented in the appendix. It is important to remark that the rate T

convergence pertains to the estimated break fractions A, and not to T,, the estimates

of the break dates. For the latter, our result states that with high probability the bias

is bounded by some constant C that is independent of the sample size T, i.e. with

high probability, we have \T{ — If\ < C.

This result about the rate of convergence of the break fractions allows us to derive

the rate of convergence and obtain the asymptotic distribution of the estimated co-

efficients $ and 8. The relevant results are stated in the following proposition whose

proof is similar to Corollary 1 of Bai (1994b) and is therefore omitted.

Proposition 4 Under assumptions A1-A5, the estimates (3 and 6 in (3) are vT
consistent and asymptotically normal such that

where

(9) $ = pKm^(X,Zo)'n(X,Z ),

and

n = e{uu').

Note that when the errors are serially uncorrelated and homoskedastic we have

$ = cr
2V and the asymptotic covariance matrix reduces to a2V~ l

, which can be con-

sistently estimated using a consistent estimate of a2
. When serial correlation and/or

heteroskedasticity is present, a consistent estimate of $ can be constructed along the

lines of Newey and West (1987) and Andrews (1991). Note that the correction for pos-

sible serial correlation can be made assuming identical distributions across segments

or allowing the distributions of both the regressors and the errors to differ.

11



3.3 Limiting Distributions of Break Dates

While the consistency of the estimates of the break fractions depends on the global

behavior of the objective function, their limiting distribution depends on the local

behavior around the true break dates. For this reason, the technical apparatus required

to prove consistency is rather different in the multiple breaks case compared to the

single break case. However, the analysis of the limiting distribution is similar in both

cases. In the single break case, results concerning the limiting distribution of the

break dates are discussed in Bai (1994b). We provide, in this section, the appropriate

extensions to the case of multiple changes. Since the methods are similar, we only

discuss the relevant results and refer the reader to Bai (1994b) for more details.

We discuss two types of limiting distributions for the estimates of the break points.

The first corresponds to shifts of fixed magnitude and the second to shifts of shrinking

magnitudes as the sample size increases.

3.3.1 Limiting Distributions with Fixed Shifts.

To study the limiting distribution in the case of fixed shifts, we need the following

stronger assumptions.

A6. For regime i, {z
t ;T°_ 1

+ 1 < t < T°} is a strictly stationary process (i =

l,...,m + l).

We say that z t
follows process i when the time index t belongs to the ith regime.

Note that for different regimes, {z t
,u

t } may follow different stochastic processes and,

hence, piecewise stationarity is allowed. Also, no stationarity assumption need be im-

posed on the if's. To characterize the limiting distribution, we first define a stochastic

process W^(k) on the set of integers as follows: W^(0) = 0, W^(k) = W^(0 (A:) for

k < 0, and W«(Jb) = WJ'^Jfe) for k > where, for t = 1, ...,m:

(io) w}>\k) = -a;. £ z<'Vi'>A,- + 2a;. £ zM\ * = -1, -2, ...

t=k+l t=k+l

(ii) wjp{k) = -A;£*f+1Vj ,

"

+1,
A.- -2a;.£z!'+1)

u!'
+1)

, * = 1,2,...

t=i t=i

with A, = (£f+1 — Sf) and where {z\ , u\*'} follows the ith stochastic process for all t.

For example, when (z\ ,u\
1

') is independent over time, the process W^ is a two-sided

random walk with (stochastic) drift.
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Proposition 5 Under assumptions A1-A6, and assuming that [A^*] 2 ± A'^tUt has a

continuous distribution (for all t), then

fi-Tf -^argmaxH^W(jfc) (i = l,...,m ).

Furthermore, the estimated break points are asymptotically independent of each other

and of the estimated regression parameters.

The assumption that {[AJz^]
2 ± A|ztut } has a continuous distribution ensures the

uniqueness of the maximum of W^' (with probability 1). Note that the limiting

distributions of the break points estimates in the multiple break model are the same

as in a single break model. This is basically due to the fact that these limiting

distributions are determined by the local behavior of the objective function because

of the fast rate of convergence of the estimated break points. Accordingly, one can

view the limiting distribution of T, — T° as being solely determined by the segment

P?-, + hT?+1 ).

Because the estimates of the break fractions are consistent at rate T, they are es-

sentially determined by a bounded finite number of observations with large probability

no matter how large is the sample. This explains the asymptotic independence of the

estimated break points since each contributing segments are increasingly apart as the

sample size increases. The regression coefficients, on the other hand, are estimated

using the entire data set or at least a positive fraction. One can then think of possibly

deleting the finite number of observations that determine the distribution of the break

points when estimating the regression coefficients without affecting their limiting dis-

tribution. Hence, the information determining the distribution of the break points

and the remaining coefficients can be viewed as non-overlapping observations from

which the asymptotic independence of the break-point estimates and the coefficients

estimates follows.

The above result, though of definite theoretical interest, is perhaps of limited

practical use because of the dependence of the limiting distribution of T, — Tf on the

distribution of {z\f\ uj''} for each segment i (though it is independent of x t and /?) .

Hinkley (1971) provides an analytical expression for the probability density function

in the case where zt
= \ and ut i.i.d. normal. In general, if one knows the distribution

of {z\[*', u\*'}, the stochastic process W^ and the location of its maximum can be

easily simulated.

13



3.3.2 Limiting Distributions with Shrinking Shifts.

An alternative strategy is to consider an asymptotic framework where the magnitudes

of the shifts converge to zero as the sample size increases. Even though the setup is

particularly well suited to provide an adequate approximation to the exact distribution

when the shifts are small, it remains adequate even for moderate shifts. This alter-

native asymptotic framework also allows a substantial relaxation of the assumption

concerning the distribution of {z t ,u t }. Moreover, the resulting limiting distribution is

independent of the specific distribution of this pair.

We provide, in this section, a description of the results when the data are not

trending. The required conditions are stated in the next assumption.

A7. a) Let AT? = T?-T?_v The process {(zt,ut ); Tf^ + 1 < t < T°} is such that

T?_1+[sAT°] Tf_1+[s-AT9]

pWmiAT?)- 1

Yl Ezt z't = sQi&nd V Yim{ATf)-
1 £ Eu2

t
=s*?,

uniformly in s € [0, 1] for i = 1, ...,m + 1.

b) The following limit exists:

T°_! +[sAT°] 2?_j +{sAT°]

plimiAT?)- 1 £ Yl E(zT z'tuTut ) = sty (z = 1, ...,m + 1).

T=Tf_
1
+l t=T

l
°_

1
+l

uniformly in s € [0, 1].

c) A functional central limit theorem holds for {ztu t }. That is, as AT, —* oo:

Tf^+lsAT?]

(AT, )" 1 /2 £ ztu t =>Bi{s) (t = l,...,m+l),

where B(s) is a multivariate Gaussian process on [0, 1] with mean zero and covariance

EBi(s)Bi(u) = min{s,u}ft t .

The next assumption concerns the behavior of the shifts as T increases. Its role

lies in the fact that if the shifts decrease as T increases more observations are needed

around each break point to discern it. Hence, this make possible the application of a

central limit theorem.

A8. Let Ax,i = ^j-t+i
—

&Ti (* = l,--, 77*)- Assume A^,- = u^A, for some A,

independent of T, where vj is a scalar satisfying
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vT -* 0, and T 1/2~avT -» oo, for some a € (0, 1/2).

For i = l, ...,m, let:

6 = a;.qi+1a,/a:q,a„

*?, = AlaAi/A^.A,-,

#2
= A;nt+1At/A;.gl+1 A,-,

and let W^ '(s) and W2 (s) be independent standard Wiener processes denned on

[0, oo), starting at the origin when s = 0. These processes are also independent across

i. Define, for i = 1, ...,m:

(12) Z«(s) = <

rfuwtfk-') - M/2, jf«<o,

V£foW2
w(a)-&M/2, ifa>0.

We are now in a position to state the following result.

Proposition 6 Under assumptions Al-A5, A7-A8,

(13) (A;<9,-A,-)4(T; - 2?) 4 arg max.Z«(a) (i = 1, ..., m)

The limiting distribution is the same as that occurring in a single break model.

The density function of argmaxsZW(.s) is derived in Bai (1994b). When the limits Qi,

£2, and a\ are the same for adjacent t's, £,- = 1, and ^,4 = <£ti2 = ^, in which case the

limiting distribution (13) reduces to:

(AJQAOt^Cfi-I?) -i argmax.{^W(a)_| 5 |/2 }

= ^2 argmaxs{^«(S )
- |s|/2}.

or

(14) W^4{fi " 7f) " arsm
,
ax^ (,)

(
5 )

" '

5 l/2 >-

Finally, when the errors are uncorrelated, we have £2 = a2Q and the limiting result

reduces to

(15)
(A& A,-)

1

^ _ ^ argm^^')^) _
|

5 |/2 }.

In this case, the limiting density function is symmetric about the origin. This case

has been analyzed by Bhattacharya (1987), Picard (1985) and Yao (1987) for a single
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break. The cumulative distribution function of arg max s{W^(s) — |s|/2} is (see Yao

(1987)):

H(x) = 1 + (2 7r)-
1 /2v^e-

1/8 - |(x + 5)*(-v^/2) +
|
C**(-3>/i/2),

for x > and #(x) = 1 — H(—x), where $(x) is the distribution function of a

standard normal variable. For instance, the 95% and 97.5% quantiles are 7.7 and

11.0, respectively.

The results discussed above allows easy construction of confidence intervals for

the break dates. All that is needed is to construct consistent estimates of the various

parameters; T_1
J2t=i ztz[ f°r Qi ^

_1
St=i "t f°r °2 - The parameters ujA,- can be con-

sistently estimated by the differences in the coefficient estimates Si — 6,_i . When serial

correlation is present ft can be estimated using a kernel-based method as discussed

in Andrews (1991). Note that when the segments are not homogeneous, obtaining

consistent estimates of these quantities is still possible using data over the relevant

subsamples only.

The limiting distribution in the case of trending regressors is discussed in Bai

(1994b) for a single structural change model. His results remains valid for multiple

breaks. We omit the details and refer the reader to that paper for more details.

4 Test Statistics for Multiple Breaks.

4.1 A Test of no break versus some fixed number of breaks.

We consider the sup F type test of no structural break (m = 0) versus the alternative

hypothesis that there are m = k breaks. Let (7\, ...,Tfc) be a partition such that T, =

[TXi\ (i = 1, ...,&). Again let Z denote the matrix which diagonally partitions Z at

(Ti,...,T/t). Let R be the conventional matrix such that (RS)' = (S[ —8'2 , ...,S'k
— 8'

k+1 ).

Define

(T - (k + !)<? - p \ 8'R\R{Z'MX Z)-*R')-'R8
(16) FT(XU ..., A,; q ) = ^ j

—
.

Here SSRk is the sum of squared residuals under the alternative hypothesis, which

depends on (Ti,...,Tjt); q is the number of regressors whose coefficients are subject

to change. The statistic Ft is simply the conventional F-statistic for testing 8i =

= 8k+i against 6, ^ 8i+i for some i with given T\, ..., I*. To carry the asymptotic

analysis, we need to impose some restrictions on the possible values of the break dates.
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In particular, we need to restrict each break date to be asymptotically distinct and

bounded from the boundaries of the sample. To this effect, we define the following set

for some arbitrary small positive number e:

A c = {(Ai, ..., A fc);
|A)+1 - A,| > e, Ax > e, A fc

< 1 - e}.

The sup F type test statistic is then defined as

supFT(k]q)= sup FT(\i,...,\k ;q).
(Aj A*)eA<

This test is a generalization of the supF test considered by Andrews (1993) and others

for the case k = 1.

The limiting distribution of the test depends on the nature of the regressors and

the presence or absence of serial correlation and heterogeneity in the residuals. We

consider the case where the following additional assumptions are imposed.

A9. Let wt
— (x'

t , z't
)' and Q be some positive definite matrix, we assume that

.
[Ts]

PumT->oor_1 J2 WtW
't
= 5<5'

t=l

uniformly in s € [0,1]. Note that A9 precludes the presence of trending regressors.

Extensions to the general case where plimj^^T-1
Y/tJi w tw't = Q(s), which allows

trending regressors, are beyond the scope of the present paper. They will be discussed

in a separate paper by the authors.

A10. The disturbances {ut } form an array of martingale differences relative to {Ft}

where Tt
— <r-field {• • • ,wt-i,wu • • ,u t_2 ,?it_i}. Also, E[v%\ = a2

for all t and a

functional central limit theorem holds for {w tu t } such that

[TV]

t=i

where W*(r) is a (p + q) vector of independent Wiener processes.

The case where {ut } satisfies the general conditions stated in Assumption A4

is discussed in Section 4.4 below. We show how the results remain valid provided

appropriate modifications are made to account for the effect of serial correlation on

the asymptotic distributions.

The following proposition, proved in the appendix, relates to the asymptotic dis-

tribution of the sup Fr(k; q) test.
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Proposition 7 Under assumptions A9-A10:

supFT (fc; q) -i supF^ =f sup F(XU ..., A*; g),
(*i A

fc)eA,

where

Fn i.„x 1 ^ [W,(A.-+1 )
- At+1 ^(A,)r[A,^(A,+ i) - A.-+1 W,(A,-)]

f (Aj, ..., A fc) gj - — 2^ r-r tt r-r ,

«9,=i A t A,+1 (A1+1 - A,)

W
q (-)

is a q-vector of independent Wiener processes on [0,1] and A^+i = 1.

Note that the asymptotic distribution of the test statistic depends on the value of

e in A e . As e converges to zero, the test statistic diverges to infinity. Thus a small

positive value instead of zero can improve the power significantly, see Andrews (1993)

for further details. In what follows, we have adopted a value e = 0.05. No critical

values for supF tests for k > 2 are available except those of Garcia and Perron (1994)

who provide a partial tabulation for k = 2 and q = 1.

Asymptotic critical values are obtained via simulations, using an approach similar

to that in Andrews (1993) and Garcia and Perron (1994). The Wiener process W,(A)

is approximated by the partial sums n-1 /2

£»=i^ e,- with e t
- i.i.d. N(0^I

q ) and n =

1,000. The number of replications is 10,000. For each replication, the supremum of

F(Xi, ..., A*; q) with respect to (Ai, ..., A*) over the set A t is obtained via a dynamic

programming algorithm (see the appendix for further details). We present, in Table 1,

critical values covering cases with up to 9 breaks (i.e., up to 10 regimes, k — 1,...,9)

and up to 10 regressors (q = 1, ..., 10) whose coefficients are the object of the test. The

reported values are scaled up by q for comparison purposes. The column corresponding

to one break (k = 1) can also be found in Andrews (1993).

4.2 A double maximum test.

The test discussed in the previous section requires the specification of the number of

breaks, m, under the alternative hypothesis. It is of interest to consider a test of no

structural break against an unknown number of breaks given some upper bound M on

the maximum number of breaks permitted. A new test, called the double maximum

test, can now be defined as

(17) DmaxFT(M,q) = max sup Fr(Ai,..., \m;q).l<m<M
(Ai,...,Am)€A«
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For a fixed m, F(A l5 ..., Am ; q) is the sum of m dependent chi-square random variables

with q degrees of freedom, each one divided by m. This scaling by m can be viewed,

in some sense, as a prior imposed to account for the fact that as m increases a fixed

sample of data becomes less informative about the hypotheses being confronted.

The last column of Table 1 reports the critical values of this test for M = 5 and

e = 0.05. This should be sufficient for most empirical applications. In any event, the

critical values vary little for choices of the upper bound M larger than 5.

4.3 Test of £ versus £+1 breaks.

This section considers a test of the null hypothesis that £ unknown breaks exist against

the alternative that an additional break exists. Ideally, one would base the test on

the difference between the sum of squared residuals obtained allowing £ breaks and

that obtained allowing £ + 1 breaks. The limiting distribution of this test statistic

is, however, difficult to use. Here we pursue a different strategy. For the model with

£ breaks, the estimated break points denoted by Ti,...,Ti, are obtained by a global

minimization of the sum of squared residuals. Our test strategy proceeds conditional

on the £ estimated break points under the null hypothesis by testing each (£ + 1)

segments for the presence of an additional break.

The test amounts to the application of (^+1) tests of the null hypothesis of no struc-

tural change versus the alternative hypothesis of a single change. The test is therefore

applied to each segment containing the observations 7i_i to Tt
- (i — 1,...,£ + 1) using

again the convention that To = 1 and Tf+i = T. We conclude for a rejection in favor of

a model with (^+1) breaks if the overall minimal value of the sum of squared residuals

(over all segments where an additional break is included) is sufficiently smaller than

the sum of squared residuals from the £ break model. The break date thus selected is

the one associated with this overall minimum. More precisely, the test is defined by:

(18) FT(£ + l\£) = {ST(fu ...,fe)- imn inf ST(f1 ,...,ft - 1 ,T,f„...,fe)}/a\

where

(19) A,,, = {rjiU + (f{
- f^T) <r<fi- (fi - fi-M,

and a2
is a consistent estimate of a2 under the null hypothesis. Note that for i =

1, 5t(Ti,...,T',_i,t, Ti, . ..,!/) is understood as St(t, Ti, ...,T*) and for i — £ + 1 as

ST(fi,...,ft,T).
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In the case of a pure structural change, an alternative interpretation of the test

can be given as follows. Let D(i,j) be the minimized sum of squared residuals for

the segment containing observations from (ii + 1) to j, then the test statistic can be

written as

-2
(20) FT(£+1\£) = sup sap{P(Ti.ll Ti)-D{Ti.U T)-D(T i

Ti)}/a
l<i<t+l t6A;,,

This follows from 5T(Ti, ..., ft) = D(0, 2\) + D(fu f2 ) + + D(ft , T) and a similar

expression for St(Ti, ..., T,, k, T,+i, - • , Tt) so that many common terms are canceled

out. Under assumptions A9-A10, standard arguments show that,

(2l)a^ snP {D(T^Tf)-D(T^r)-D(r^)}^ sup ISfell gSSll!!
,

reA^ »?<^<i-t! Ml 1 - Mj

where, as before, W,(-) is a q—vector of independent Wiener processes on [0, 1] and A°
iT?

is as defined in (19) with J
1

,- replaced by T®. Under the null hypothesis, Proposition 3

asserts that T, = T° +Op (l). Using this result, it is not difficult to show that the weak

convergence in (21) also holds with Z£.j and If replaced by r,_i and T,, respectively.

In addition, because over different regimes D(-, •) are computed using non-overlapping

observations, the weak limits in (21) for different i's are independent. Thus the limit

of (20) is the maximum of £ + 1 independent random variables in the form of (21),

and we have the following result:

Proposition 8 Under assumptions A9-A10:

(22) lim P(FT(£+1\£) < x) = G,,„(x)'
+1

,T—>oo

where G
q
^(x) is the distribution function of the random variable

\\W
q fr)

- pW
q
(l)\\>

sup 7- :
•

v<»<i-v M1- /^

The critical values of this test for different values of £ can be obtained from the

distribution function Gq>v (x). A partial tabulation of some percentage points can be

found in DeLong (1981) and Andrews (1993) (see also the first column of our Table

1). However, the grid presented is not fine enough to allow obtaining the relevant

percentage points of Gq^{x)
t+l

. Accordingly, we provide a full set of critical values

in Table 2 calculated with rj = .05. These were obtained using a simulation method

similar to that used for the construction of Table 1

.
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Note that a2
is only required to be consistent under the null hypothesis for the

validity of the stated asymptotic distribution. The test may, however, have better

power if a2
is also consistent under the alternative hypothesis. If the latter is true, a2

constructed under the null hypothesis will overestimate a2
. The test statistic is then

biased downward, thereby decreasing its power. A consistent estimator under both

the null and the alternative hypothesis is given by

° = j;St(Ti,...,Ti+i),

where 2\, ..., Tt+\ are the estimates of the £+1 break points. Note, finally, that the re-

sults discussed in this section, including (22), hold true for partial structural changes.

Also, it is important to note that the results carry through allowing different distribu-

tions across segments for the regressors and the errors. That is, Proposition 7 remains

valid under A7(a and c) instead of A9-A10, provided a2
is replaced by a2

in (20).

4.4 Extensions to serially correlated errors.

The tests discussed above can be applied without the imposition of serially uncor-

rected errors as specified in Assumption A 10. In this case, some modifications are

necessary to take account of the change in the limiting distribution of the statistics

under the null hypothesis. A simple modification is to use the following version of the

F-test instead of that specified in (16):

(23) Fft\u ...,\k;q) = I
(

- " {k + 1)g " P
)
6'K(EV(6)B!)- l

R6,

where V{8) is an estimate of the variance covariance matrix of 8 that is robust to

serial correlation and heteroskedasticity; i.e. a consistent estimate of

-l
(24) V{8) = p\\wT(Z'MxZ)-'lZ'MxnMx Z(Z'MxZ)

A consistent estimate of V(8) can be obtained using methods such as those sug-

gested by, e.g., Andrews (1991). Again, note that this estimate can be constructed

allowing identical or different distributions for the regressors and the errors across

segments. In some instances, the form of the statistic reduces in an interesting way.

Consider the case of a pure structural change model (/? = 0) where the explanatory

variables are such that

(25) phm^Z'nZ = hu(0)plim^Z'Z
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with hu (0) the spectral density function of the errors u t evaluated at the zero frequency.

In that case,

V(6) = MO)plim(^)- 1

,

and the robust version of the F-test can be constructed as:

FZ(\u ...,Xk] q) =
(

r " (fc

^
1)g " P

)
S'B!(R(z'Z)-1

Ii!)-
1R6/hu (0).

with hu (0) a consistent estimate of hu (0). In that case, we have the following asymp-

totically equivalent test

a2

F}(\i, ..., h; q) = j——FT{X 1 , ..., Xk ; q),
hu (0)

with a2 = T-1
J2t=i "t a consistent estimate of the variance of the residuals. Hence,

the robust version of the test is simply a scaled version of the original statistic. The

condition (25) holds, for example, where testing for a change in mean as in Garcia

and Perron (1994).

The computation of the robust version of the F-test (23) can be quite computation-

ally involved when considering all combinations of possible break points, especially if a

data dependent method is used to construct the robust asymptotic covariance matrix

of S. An asymptotically equivalent version is to first take the supremum of the original

F-test to obtain the break points, i.e. imposing Q = a2I . This can be done since the

break fractions are T-consistent even in the presence of correlated errors. One can

then obtain a robust version of the test by evaluating (23) and (24) at these estimated

break dates.

The extensions for the PmaxFj test and the sequential Fr(£ + 1\£) are similar

since they are simply functions of the sup Fr(k,q) tests.

4.5 Consistency of the tests.

A test is consistent if, under the alternative hypothesis, the associated test statistic

diverges to infinity as the sample size increases. Because supFT (l; q) < 2supFT (2; q) <

A;supFT (A;; 9), the consistency of the supFr(/:; q) (k > 2) follows immediately from the

results of Andrews (1993) who proved that the test based on the statistic supFr(l; q)

is consistent for various alternatives including multiple breaks. Consequently, the test

based on the statistic Dmax-F^A:; q) is also consistent.
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We next argue that the test based on Ft(£ + 1\£) is also consistent. If there are

more than £ breaks and a model with only £ breaks is estimated, there must be at least

one break that is not estimated. Hence, at least one segment contains a nontrivial

break point in the sense that both boundaries of each segment is separated from

the true break point by a positive fraction of the total number of observations. For

this segment, the supFT (l;g) test statistic converges to infinity as the sample size

increases since it is consistent. Accordingly, the statistic Ft(£ + l\£) (computed for

£ + 1 segments) also converges to infinity. This shows consistency.

5 Sequential Methods.

In this section we discuss issues related to the sequential estimation of the breaks

points. We start, in section 5.1 with some results about the limit of break point esti-

mates in underspecified models, i.e. when the regression structure allows for a smaller

number of breaks than contained in the data-generating process. An interesting by-

product of this analyses is the possibility of a sequential algorithm to estimate models

with an unknown number of breaks. This is discussed in section 5.2.

5.1 The Limit of Break Point Estimates in Underspecified

Models.

In this section, we show that the estimate of the break fraction in a single structural

change regression applied to data that contain two breaks converge to one of the two

true break fractions. In independent work, Chong (1994) obtains a similar result (see

also Bai (1994c) for an earlier exposition).

To present our arguments, we consider a simple three-regime model:

yt
= (ii + eu if* < [TAi]

(26 )

Vt = (*2 + £t, if [T\i] + 1 < * < [TX2 ]

yt = fi3 + et , if [TX2] + l<t<T.

with e t
~ i.i.d.(0, of). Assume fii ^ (i2 , fi2 ^ f*3, and X\ < A2 , so there are two break

points in the model. Let Ta denote the estimated single shift point. Our aim is to

show that despite the misspecification of the number of regimes, Ta/T is consistent

for either Ai or A2 depending on the relative magnitudes of the shifts and the spell of

23



each regime. To verify this claim, we examine the global behavior of S(t), defined as

the limit of T^StUTt]). We define St(0) and St(T) as the sum of squared residuals

for the full sample without a break (i.e. Y^(yt - j/)
2

, where y is the sample mean).

In this way, St([Tt]) is well defined for all r 6 [0, 1]. It is not difficult to show that

the convergence of T~ l
St{[Tt}) to S(t) is uniform in r € [0, 1]. In particular

(27) ^([TAx]) A 5(A0 = a\ +
(1 ~ A

1

2

L
(A

A

2

1

" Al)
(^ ~ *)'

and
1 c nm\ i\ P CM \ 2_,*l/i \w x 2

(28) ^5t([TA2 ]) A S(A2 ) = <r
2 + ^(A 2

- A 1 )( /z 1
- ^)

Without loss of generality we consider the case where 5(Ai) < £(A2 ), our claim is

stated in the following lemma

Lemma 3 Suppose that the data are generated by (26) and that S{\\) < 5(A 2 ), the

estimated single break point Ta/T is consistent for Ai.

Proof: This can be proved by showing that S(t) for r € [0, 1] has a unique minimum

at Ai. The function S(t) has different expressions over [0,1]. Some algebra reveals

that

S(t) - S(X 1 ) = \~ T
-

[(1 - Ax)^ - to) + (1 - X 2 )(to - to))
2

, r < Al5
(1 -Tj(l -M)

which is nonnegative. Under the assumption that S(\\) < S(X 2 ), the expression in the

bracket above is nonzero, so S(t) — S(Xi) is strictly positive for r < A x . By symmetry

(regarded as reversing the data order), S(t) — S(X 2 ) is nonnegative for r > A 2 . Thus

for r g [A2 , 1], S(t) - SiX,) = S(t) - S(X2 ) + S(X2 )
- S(X X ) > S(X 2 )

- 5(A X ) > 0. It

remains to consider the case where r € (Ai,A2 ). Again, simple algebra shows

S(r)-S(A0 = (r - X^ito - in)
2 - ^~)

{
i

2

- Xl )

{tl3 ~ toW

= {r-X,)-\~{to-to) -
Aa(1 _ T)(1 _ *,)(/* -^)J

> (r-A^^AO-^Ai)]

where the first inequality follows from ^~_'| < 1 and the second inequality follows

from -* < 1. Thus 5(r) — S(Xi) is strictly positive for r € (Ai,A2 ). Thus we have
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shown that S(t) has a unique global minimum at A! when S(Xi) < 5"(A2 ). Now

because St(To) < St([T\\]), it follows that Ta/T is consistent for Ai.O

The assumption that S(Xi) < £^2) imphes that the first break point is more

pronounced or dominating in terms of the relative magnitude of shifts and the regime

spells. The above lemma implies that only when the dominating break is identified

can the sum of squared residuals be reduced the most. Given that Ta/T is consistent

for Ai, one can use the subsample [Ta , T] to estimate another break point such that the

sum of squared residuals is minimized for this subsample. The resulting estimate is

then consistent for A2 . This follows from the same type of argument as in the preceding

paragraph because only A2 can be the dominating break in the sample [Ta , T], even if

Ta < [TX\]. Hence, if one knows that Ta/T is consistent for Ai, a consistent estimator

for A2 can also be obtained.

It is relatively straightforward to extend the argument to the case where a one-

break model is fitted to a relationship that exhibits more than two breaks. The

principle is the same and the estimate of the break fraction converges to one of the

true break fraction, namely the one which allows a greatest reduction in the sum of

squared residuals. It is also conjectured that a similar result holds when, say, an mi

break model is fitted to a relationship that has m2 breaks (with 7712 > mi). Such a

general result is not, however, needed for the arguments that follow.

5.2 Sequential estimation of the break points.

The arguments in section 5.1 showed that Ta/T is consistent for one of the true break

point, the one that allows the greatest reduction in the sum of squared residuals.

Suppose, as above, that this break point is A l5 which, in general, may not be known

(i.e., we do not know if the other break is before or after). In that case, we choose one

break point either in the interval [1, Ta] or in the interval [Ta , T], such that the sum of

squared residuals for all observations [1,T] is minimized. With probability tending to

1 as the sample size increases, the estimated break point will be in the interval [Ta , T].

This follows since, in the absence of a break in the interval [1, Ta], allowing one more

break in that segment will not significantly reduce the sum of squared residuals. On

the other hand, allowing one more break in the interval [Ta ,r] will permit a large

reduction given the presence of a break. Notationally, with probability tending to 1,

min{ inf 5T(r,fa ), inf ST(fa,T) } = inf ST(fa,r) = ST(fa,t)
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where f is equivalently obtained by minimizing the sum of squared residuals for the

subsample [Ta ,T], and thus t/T is consistent for A2. The preceding argument implies

that we can obtain consistent estimates of Ai and A2 in a sequential way.

Similarly, if Ta is actually consistent for A2 (this will be true if S(\i) > 5
,

(A 2 )), the

second estimated shift point will be in [1,jT ]. Generally, let (Ni,N2 ) be the ordered

version of (f„,f) such that Nt < N2 - Then (Ni/T,N2/T) is consistent for (\u A 2 ).

5.2.1 Sequential estimation with a known number of break points.

The above analysis suggests a straightforward algorithm for estimating models with

multiple break points whether the number of break points is known or unknown.

Consider first the case of a known number of break points, say m. The idea is to

estimate the breaks sequentially rather than simultaneously. Once the first break

point is identified, the sample is split into two subsamples separated by this first

estimated break point. For each subsample, a one break model is estimated and the

second break point is chosen as that break point (of the two obtained) which allows

the greatest reduction in the sum of squared residuals. The sample is then partitioned

in three regimes and again a third break point is selected as one of the three estimates

from three estimated one-break model that allow the greatest reduction in the sum of

squared residuals. The process is continued until the m break points are selected.

The procedure is simple to implement using existing least squares routines with

minor modifications. It yields consistent estimates of the break points; though the

estimates are not guaranteed to be identical to those obtained by global minimization.

Interestingly, it allows the estimation of models with any number of structural changes

using a number of least-squares estimation that is only of order 0(T).

5.2.2 Sequential estimation with an unknown number of breaks.

Consider now the case of an unknown number of breaks which is likely to be of

particular relevance in practice. A standard problem with any estimation procedure

is that an improvement in the objective function is always possible by allowing more

breaks. This naturally leads to consider a penalty factor for the increased dimension

of a model. Yao (1988) suggests the use of the Bayesian Information Criterion (BIC)

defined as

BIC(m) = In a2(m) + p' ln{T)/T,
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where p' = (m + l)q + m + p, and <7
2(m) = r.

-1
S|r(Ti, *..,£»). He showed that

the number of breaks can be consistently estimated. Many other criteria such as the

adjusted R2
, the prediction error criterion and Mallows Cp can be used as well. The

AIC criterion is not recommended because, as is widely known, it has a tendency

to overestimate the dimension of a model. An alternative proposed by Liu, Wu and

Zidek (1994) is a modified Schwarz' criterion that takes the form:

MIC(m) = ]n(ST(fu ...,fm)/(T-p*)) + (P7r)co(ln(r))
2+6°.

They suggest using S = 0.1 and Co = 0.299.

We propose an alternative method to determine the number of breaks. The ap-

proach is directly related to the sequential procedure outlined above. Start by esti-

mating a model with a small number of breaks that are thought to be necessary (or

start with no break). Then perform parameter-constancy tests for each subsamples

(those obtained by cutting off at the estimated breaks), adding a break to a subsam-

ple associated with a rejection with the test Ft(£ + l\£). This process is repeated

increasing £ sequentially until the test Ft(£ + l\£) fails to reject the null hypothesis

of no additional structural changes. The final number of breaks is thus equal to the

number of rejections obtained with the parameter constancy tests plus the number of

breaks used in the initial round.

It is important to note that the application of the test Fj{£-\- \\£) in this sequential

context is rather different from that discussed earlier. Indeed, the result of Proposition

8 is based on having the first £ breaks obtained simultaneously, i.e. as global minimizers

of the sum of squared residuals assuming £ breaks. The reason for this is that the

stated limiting distribution of the test requires convergence of the estimates of the

break factions at rate T. Fortunately, this rate T convergence extends to the case

where the break points are obtained sequentially one at a time. This last result is

proved in a very recent study by Bai (1995b). Hence, the limiting distribution of the

Ft(£+1\£) test in the current sequential setup is the same as that stated in Proposition

8.

With probability approaching 1 as the sample size increases, the number of breaks

determined this way will be no less than the true number. The procedure does not

provide a consistent estimate of the true number of breaks, say mQ . This is because the

sequential method is based on a test procedure which implies a non-zero probability of

rejection under the null hypothesis given by the level of the test, say a. However, the

asymptotic probability of selecting a model with a larger number of breaks, say m +j,

27



is given by a3 which decreases rapidly. Hence, there is no need (with large probability)

to estimate models with more than the true number of breaks, as is necessary when

using a model selection approach based on an information criterion.

The sequential procedure could be made consistent by adopting a significance level

for the test Ft(£ + 1 \£) that decreases to zero, at a suitable rate, as the sample size

increases. A result to that effect is presented in the next proposition whose proof is

provided in the appendix.

Proposition 9 Let m be the number of breaks obtained using the sequential method

based on the statistic Ft(£ + l\£) applied with some size aj, and let m be the true

number of breaks. If err converges to slowly enough (for the test based on Ft(£+ l\£)

to remain consistent), then, under assumptions A1-A5,

P(m = m )
— 1,

as T — oo. That is, the estimated number of breaks is consistent for the true number.

6 Empirical Applications.

In this section, we discuss two empirical applications of the procedures presented in

this paper. The first analyzes the U.S. ex-post real interest rate series considered by

Garcia and Perron (1994). The second reevaluates some findings of Alogoskoufis and

Smith (1991) who analyze the issue of changes in the persistence of inflation and the

corresponding shifts in an expectations-augmented Phillips curve resulting from such

changes in persistence.

6.1 The U.S Ex-Post Real Interest Rate.

Garcia and Perron (1994) considered the time series properties of the U.S. Ex-Post

real interest rate (constructed from the three-month treasury bill rate deflated by the

CPI inflation rate taken from the Citibase data base). The data are quarterly and the

sample is 1961:1-1986:3. Figure 1 presents a graph of the series. The issue of interest

is the presence of structural changes in the mean of the series. To that effect we apply

our procedure with only a constant as regressor (i.e. zt
= {1}) and take into account

potential serial correlation via non-parametric adjustments. In the implementation of

the procedure, we allowed up to 5 breaks and each segment was constrained to have

at least 7 observations. The results are presented in Table 3.
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The first issue to be considered is the determination of the number of breaks. Here

the sup Ft (k) tests are all significant for k between 1 and 5. So at least one break is

present. The sup .F:r(2|l) test takes value 34.32 and is therefore highly significant. The

sequential procedure (using a 1% significance level), BIC and the modified Schwarz

criterion of Liu, Wu and Zidek (1994) all select two breaks. Hence, we conclude in

favor of the presence of two breaks. Of direct interest are the estimates obtained

under global minimization. The break dates are estimated at 1972:3 and 1980:3. The

first date has a rather large confidence interval (between 1971:2 and 1973:4 at the

95% level). The second break date is, however, precisely estimated since the 95%

confidence interval covers only one quarter before and after. The differences in the

estimated means over each segment are significant and point to a decrease of 3.16%

in late 1972 and a large increase of 7.44% in late 1980. These results confirm those of

Garcia and Perron (1994).

6.2 Changes in the Persistence of Inflation and the Phillips

Curve.

Alogoskoufis and Smith (1991) consider the following version of an expectations-

augmented Phillips curve:

Awt
= oi + a2E(Apt \It-\) + ct3Au t + a4ut_i + £t ,

where wt is the log of nominal wages, pt is the log of the Consumer Price Index, and

u t is the unemployment rate. They posit that inflation is an AR(l) so that

(29) E(APt \It-i) = 61 +-82Apt-l .

Hence, upon substitution, the Phillips curve is:

(30) Aw t = 7i + j2Apt^ + 73Au f + 74ut-i + 6,

where 72 = 0:262 Here, a parameter of importance is 82 which is interpreted as

measuring the persistence of inflation. Using post-war annual data from the United

Kingdom and the United States, Alogoskoufis and Smith (1991) argue that the process

describing inflation exhibits a one-time structural change from 1967 to 1968, whereby

the autoregressive parameter 82 is significantly higher in the second period. This is

interpreted as evidence that the abandonment of the Bretton Woods system relaxed

the discipline imposed by the gold standard and created higher persistence in inflation.
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They also argue that the parameter 72 in the Phillips curve equation (30) exhibit a

similar increase at the same time, thereby lending support to the empirical significance

of the Lucas critique.

Using the methods presented in this paper, we reevaluate Alogoskoufis and Smith

(1991) claims using post-war annual data for the United Kingdom7
. Consider first the

structural stability of the AR(l) representation of inflation whose series is depicted in

Figure 2. Details of the estimation results are contained in Table 4. When applying

a one break model, we indeed find the same results, namely a structural change in

1967 with 82 increasing from .274 to .739 while 61 remains constant. The estimate of

the break is, however, imprecisely estimated with a 95% confidence interval covering

the period 1961 — 1973. More importantly, the supi*r(l) test is not significant at

any conventional level indicating that the data does not support a one break model.

The sup Ft(2) test is, however, significant at the 5% level and the sup Ft(2\1) test is

significant at the 10% level. The sup Fj(£ + 1\£) test is not significant for any £ > 2.

BIC selects two breaks and MIC selects one suggesting that the latter may impose

too strong a penalty when the sample size is small. Overall, the tests support a two

break model.

The estimates of a two breaks model reveal a rather different interpretation of the

data. The first break date is not linked to the end of the Bretton Woods system but

rather with the first oil price shock in 1973. The second break is located in 1980. The

coefficient estimates point to the importance of shifts in the level of inflation rather

than changes in persistence. Indeed, the coefficient 6\ varies from .021 to .130 in the

period 1973 — 1980, and back to .011 after 1980. If anything, the data suggests a

significant decrease in the persistence of inflation in the period 1973 — 1980, while the

estimates of the autoregressive parameters are not significantly different in the first

and last segments.

Since, there indeed appears to be structural changes in the inflation process, it is of

interest to see if the Phillips curve equation underwent similar changes in accordance

with the Lucas critique. The results are presented in Table 5. Here the evidence point

to a single structural change. The sup Fj (k) tests are significant for all k while the

sup Ft{£+1\£) tests are not significant for any £ > 1. Furthermore, both the sequential

procedure and the criterion of Liu, Wu and Zidek (1994) select a one break model (only

BIC chooses two breaks). Again, the estimate of the break is associated with the first

7The data are the same as in Alogoskoufis and Smith (1991) and were kindly provided by George

Alogoskoufis. We refer the reader to their paper for details on the definition and source of each series.
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oil price shock (1973) and not with the end of the Bretton Woods system (the 95%

confidence interval is small). The estimate of 72 indeed shows a marked decrease

similar to the decrease in the persistence of inflation (the parameter estimate even

becomes negative but not significantly so). Given the changes in the estimates of

the parameter 73 and 74, the data suggest that the Phillips curve itself underwent a

structural change in 1973. The data, however, do not support any adjustment of the

Phillips curve following the change in the inflation process in 1980.

Since BIC selects two breaks, we also present results for this specification. These

lend even less empirical support to the Lucas critique since the breaks dates are 1966

and 1975 and do not correspond to those of the inflation process.

7 Conclusions.

Our analysis has presented a rather comprehensive treatment of issues related to the

estimation of linear models with multiple structural changes, to tests for the presence of

multiple structural changes and to the determination of the number of changes present.

Our results being asymptotic in nature, there is certainly a need to evaluate the quality

of the approximations and the power of the tests in finite samples via simulations. We

intend to present such a simulation study in a subsequent paper. Among the topics

to be investigated, an important one appears to be the relative merits of different

methods to select the number of structural changes. There are, of course, many other

issues on the agenda. For instance, extensions of the test procedures to include tests

that are optimal with respect to some criteria, extensions to nonlinear models and the

derivation of tests that are valid in the presence of trending regressors.
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A Mathematical Appendix.

As a matter of notation, we let op(l) and p (l) denote, respectively, a sequence

of random variables converging to zero in probability and one that is stochastically

bounded. Unless indicated otherwise, all convergence are taken as T, the sample size,

increases to infinity. For a sequence of matrices Bt, we write Bt = op (l) if each of its

elements is op (l) and likewise for p (l). For a matrix A, Ma denotes the orthogonal

projection matrix, / — A(A'A)~ 1
A'. We use

||
•

||
to denote the Euclidean norm, i.e.

||
x

!l

= (Hi 1 ?)
1 '' 2

f°r x £ R? For a matrix A, we use the vector-induced norm, i.e.

\\A\\ = supx?t0 ||Ax||/||x||. We note that the norm of A is equal to the square root of

the maximum eigenvalue of A'A, and thus ||A|| < [fr^'A)] 1 /2
. Also, for a projection

matrix P, ||PA|| < \\A\\. Finally, [a] represents the integer part of a.

Proof of Lemma 1: We start with a series of lemmas that will be used subse-

quently. Assumption A5 is assumed throughout.

Lemma A.l Let S and V be two matrices having the same number of rows. Then the

matrix S'MyS is non decreasing as more observations (rows) are added to the matrix

(S,V).

Proof: Write S = (S[,S'2 )' and V = (V{,Vf)'. We need to show that for an

arbitrary vector a (having the same dimension as the number of rows of S and V)

a'S'MvSa>a'S[MVl S1 a.

Note that a'S'MySa is the sum of squares of the residuals from a projection of Set

on the space spanned by V. Similarly, q'^JMv^iq: is the sum of squared residuals

from a projection of o:5i on V\. The inequality is verified using the fact that the sum

of squared residuals is non-decreasing as the number of observations increases (here

the number of rows of S\ and S). See, e.g., Brown, Durbin and Evans (1975).D

Lemma A. 2 Under assumption Al,

fx'M-zxy
1

„ ..

ri

s

.

uLHH =0p(1) -

where the swpremum with respect to (Ti,...,Tm ) is taken over all possible partitions

such that |T,_i — Ti| > q (i = l,...,m + 1); the matrix Z diagonally partitions Z at

(7\,...,:rm ).
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Proof: We have the identity X'MjX = X[MZlXx + + X'm+1MZm+lXm+1 . An

m-break model has m + 1 regimes. Each partition (7\, ...,Tm ) leaves at least one true

regime uncut. In other words, there exists an i such that (X,-,Z,) contains (Xf,Zf)

as a sub matrix. By Lemma A.l, X'
i
MZtXl

> Xf'M^Xf. Hence {X'MjX/T)- 1 <

(Xf'MzoXf/T)- 1
. This implies \\(X'MzX/T)- l

\\
< max,- \\{X?MzoX?IT)- l

\\
for all

partitions. The lemma now follows from assumption Al. D.

It should be pointed out that (Z MxZ/T)~ l
is not uniformly stochastically bounded

over all possible partitions. In fact, it is easy to see that this matrix is Op(T) for some

partitions.

Lemma A.3 Under assumption Al,

sup X'MzZ = P(T).
Ti,...,Tm

Proof: Because M-% is a projection matrix, we have \\X'M-zZ \\
< \\X\\\\M-^Zo\\ <

||X||||Zo|| uniformly over all partitions. The lemma follows from ||X|| < Jtr(X'X) =

Op{VT) and similarly \\Z
\\
= Op(y/T). D

Lemma A.4 The following identity holds:

(z'Mxzy 1 = (z'zy 1 + (z'z)- 1(z'x)(x'MzX)- 1x'z(z'z)-\

Proof: Follows from direct verification. .

Lemma A. 5 Under assumption A4, there exists a < 1/2 such that

sup \\Z(Z'Z)-
l
Z'U\\ = P(T°),

T\ ,...,Tm

where the supremum with respect to (Ti,...,Tm ) is taken over all possible partitions

such that \Ti-i — T,-| > q (i = l,...,m + l) under assumption A^(i) and over partitions

such that \Ti-i — Ti\ > tT for some e > under assumption A^(ii).

Proof: Consider first the case where part (i) of assumption A4 is assumed to hold.

Because of the independence assumption between zs and u t , we can treat the zt
's as

nonstochastic, otherwise conditional arguments can be used. Let Pj = %(% Z)~ l Z .

We shall prove that \U'PzU\ =
p(T

2a
) uniformly in Tu ...,Tm . However, U'PjU is

the summation of the m + 1 terms

Ti+i Ti+i Ti+i

( 5Z 2<u*)'( J2 ^zt)
-1

( X) «u«)' (»' = °i -i m )

Ti+\ T.+l T.+l
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Thus it suffices to prove that

(31) ^p
ii £6ii =o,(n

l<k<l<T t=k

with £ — k > q and where £t is a q x 1 vector defined by £t
= £t (k,£) = {Akt)~

l ^2ztu t

with Akt = ]£j=jfc -Zj-zj. For notational simplicity, the dependence of £t
on k and ^ will

not be exhibited. Now

(32)

p[ suP ||E6II>^) < £ £ p(\\J:^\>tA
fc=l t=k+q

T T

< r-2as
j2 £ £

t=Jfc

By the mixingale property, we can write u t as

oo

ut = £ u
i<>

with Uj t = £(u t |^_,-)-.E(ut|.7
r
,t_j_ 1 )

J=— oo

and for each j, {tiJt , -^t—j} is a sequence of martingale differences. Using this decom-

position, we have
t oo e

£6 = £ £&.
t=Jfc j=-oo t=i

where £J( = (A^) -ly,2
2(Ujf By Minkowski's inequality,

(33)

*
Is

( ~ e
2s"

£6 < £ E £6.
r=Jfc . j=-oo t-k

-

l/2s v 2s

A key point is that for fixed j, k, and £, {Cjt,^t-j} (t = k,...,£) form a sequence of

martingale differences. Thus by Burkholder's inequality (Hall and Heyde 1981, p.23)

there exists a C > 0, only depending on q and 5, such that

(34)

t=k

2s

< ^(£n^ir) < c (£(£iiu
2s

)

i/s

)

where the second step follows by Minkowski's inequality. Now ||£jt||
2 = z'

t
(Ake)

1
z tu

2

t
.

Thus {E\\£itf) 11' = z'
t
{Akl )-

l zt(E\ujt
\

2syla
. By A4(a), for r = 2s, we can show (see

Hansen 1991)

(E\ujt
\

2s
Y

/2s < 2cti}>j < 2(max c,)Vj < Ki/tj for all j.
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It follows that (£||^||
2s

)

1/s < z'
t
(Akt)-

l ztK2
rl,). Thus from (34),

(35) E £6
t=k

2s

< C (£z'
t
(Akt

)- l
ztK^ = C(K^) 2Y

where we have used the fact that J2t=k 2t(^«) lz
t = trace((Akt)~ l

Y?k ztz't)
= trace(I)

q. Combining (35) and (33), we have

E £6
t=k

2s 2s

< Cq'K2
'

( £ +*) < ~.
U=-oo

Note that the right hand side above does not depend on k and L This implies, in view

of (32), that with I - Jb > q,

p{ sup HE^r*) kct-2***2

\\<k<t<r t=k J

for some C\ > 0. Let s = 2+ 8/2 (the moment of order 4+6 of ut exists by assumption

A4), we can choose a G (0, 1/2) such that r_2ari+2 -> 0. This proves (31) and hence

the lemma.

Consider now the case where part (ii) of assumption A4 is assumed to hold. In

this case
trp 1

T- 1 £ ztz't
-> Q(v) -Q(u),

t=[Tu]+l

and hence (T
_1
Z^=pyi+1 ztz't)~

X —* {Q(v )
— Q(u))~

l uniformly in v and u such that

v — u > t > 0. Also,
[Tv]

T- 1 '2

J2 *tut = Op(l)

t=[Tu)+l

uniformly using a functional central limit theorem for martingales differences. Ac-

cordingly, \U'P^U\ = Ov {\) uniformly in 7\,...,rm and the statement of the lemma

holds with a = 0.

Lemma A.6 Under assumptions A1-A4, we have for some a < 1/2,

(36) sup X'Z(Z'Z)- lZ'U = Op(T
Q+1/2

).

Ti Tm

Proof: This follows from Lemma A.5, \\X\\ = Op{T^
2
) and \\X'Z(Z'Z)- 1 Z'U\\ <

\\X\\\\Z(Z'Z)-^U\\. a

35



Note that the same argument leads to

(37) sup Z' Z(Z'Z)- 1 ZU' = Op(T
a+1/2

).

Tj rm

Proof of Lemma 1: By the definition of dt ,

T

£ utdt = U'X0 - 0°) + U'TS - U'Z S°

i

where T diagonally partitions Z at (fi,...,fm). Because U'X/3° =
P(T

1/2
) and

U'Z = P{T
1 /2

)
(these terms do not depend on (T\, ...,Tm )), to prove the lemma, it

suffices to show T~^U'X$ = op (l) and T-1
£/'Zo = op (l). We shall prove a stronger

result. Let (Ti, ...,Tm ) be an arbitrary partition and Z be the associated diagonal

partition of Z. Also let $({Tj}) and S({Tj}) be, respectively, the estimates of f3 and

S corresponding to this same partition. We shall prove

(38) sup hrxfaTi)) = op(l),
Tx Tm 1

(39) sup hrZt({Ts }) = op(l),

where the supremum with respect to (Ti,...,Tm ) is taken over the same partitions as

those in Lemma 5. First consider (38). The estimator 0({Tj}) can be written as

fr{{Tj}) = (X'MjXy'X'MjY

(40) = (X'MjX^X'MjZoS + [X'MjX^X'MjU.

Using the argument of Lemma A.3, we deduce that X'M-gU = Op (T). This together

with lemmas A.2 and A.3 implies that $({Tj}) = P (1) uniformly over all partitions.

Hence T^U'X^Tj}) = Op(T"
1 /2

) uniformly over all partitions, obtaining (38).

Next, consider (39). From 6({Tj}) = (Z'MxZ)- 1!?

M

XY and MXX = 0, we

obtain

U'ZS({Tj}) = U'ZiTMxZy'Z'MxZoS

(41) +U'Z(Z'MxZ)- 1Z'MxU

= (/) + (//)

B}? Lemma A.4,

(/) = U'Z(Z'Z)- 1Z'MxZoS

(42) +U'Z(Z'Z)- 1 Z'X(X'MzX)- 1X'PIMxZQS .

36



Because P^ and Mx are projection matrices, ||M^Z
||
< ||Z

||
= Ov{T

l l2
) and

\\X'PjMxZQ \\
< \\X\\\\Z

\\
=

P {T). Now, we have (/) =
p(T

a+1/2
) uniformly

over all partitions using Lemmas A.2, A.5, and A.6.

It remains to derive a bound for (//). Note that (I) and (II) differ only in

that ZoS° is replaced by U. Similar argument shows that (77) is of a lower order

of magnitude, more specifically (II) =
p(T

2a
)

(the details are omitted to avoid

repetition). Because 2a < a + 1/2, we have U'ZSdT,}) =
p(T

a+1/2
). Equivalently,

T- l U'Z8{{Tj}) = p{T
a- i '2

) = op (l) uniformly over all partitions. This proves (39)

and, hence, the proof of Lemma 1 is complete.

Proof of Lemma 2: If there exists a break, say, A° , which cannot be consistently

estimated, then with some positive probability to > there exists a positive number

7] > such that no estimated break falls in the interval [T(X° — 7/),T(A° + rj)] for a

subsequence of T (without loss of generality, assume this subsequence is the same as

T). Suppose this interval is classified into the fc-th regime, namely, Tk-i < T(\° — rj)

and T(A° + 77) < fk . Then dt
= x'

t
- p°) + z'

t (6k
- <5°) for t € [T(X° - 77),TA°] and

dt = x\0 - 0°) + z[(8k - 8j+1 ) for t e [TA? + 1, T(AJ + »/)]. We have

[ ]
'

* * <

: " l l EiVt Zizt z't

2^2 X tX t 2J2 xtzt

Y.2 zt2 t E2 ztzt ) \ 8k — <$j+i

where J2i extends over the set T(A° — 77) < t < TA° and £2 extends over the set

TA° + 1 < t < T(\® + 7;). Let 77- be the smallest eigenvalue of the first matrix in (43)

and 7^. be the smallest eigenvalue of the second matrix in (43). Then

j2d2 +j:d2 > 1T [0-po
\\

2 +¥k -^\\
2}+fT\0-n 2

+1&-&1I1
1 2

> min{7r,7T} (114 - <?||
2 + \\6k - 6?+1 ||

2

) > \ min{7r,7f }||«J
- <?+1 ||

2
.

The last inequality follows from (x—a)'A(x— a)+ (x— b)'A(x— b) > (l/2)(a— b)'A(a— b)

for an arbitrary positive definite matrix A and for all x. Now the first matrix in

(43) can be written as (Tti)y-J2t(x<>_ \ wtw't = (Tt])At, say. By assumption A2, the

smallest eigenvalue of At is bounded away from zero. Thus the smallest eigenvalue

of (Ttj)At, 7t, is of the order Tt). The same can be said for jT . Therefore, Yli d2 >
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TriCiWq ~ ^°+ ill

2 = TC\\#j - <5?+1 ||

2
for some C = Vd > with probability no less

than eo > 0.

Proof of Proposition 2: Because A* (k = l,...,m) is consistent by Proposition

1, with large probability, 6k is estimated using at least a positive fraction of the

observations from [T°_j, T°], say using t € [r(A°_! + e), T(\°h — e)]. Over this interval,

dt = x t - 0°) + z'
t (6k ~ $)• Hence £f d? > £. <% with £. extending over the same

interval. If either {3 or 6k is not consistent, then, with some positive probability, either

||/?
—

(3\\ > a or \\6k — 6°\\ > a will be true for some a > 0. Similar argument as in the

proof of proposition 1 leads to E« ^? > ^(A" — A°_j — 2e)a2C for some C > 0, with

some positive probability. This again gives rise to a contradiction with (4) in view of

(5) and Lemma 1.

Proof of Proposition 3: Without loss of generality, we assume there are only

three breaks (m = 3) and provide an explicit proof of T-consistency for A2 only. The

analysis for Ai and A3 is virtually the same (and actually simpler) and is thus omitted.

By the consistency result of proposition 1, for each e > and T large, we have

\Tk — T°\ < eT, with high probability. Therefore we only need to examine the behavior

of the sum of squared residuals, 5x(Ti,T2,T3 ), for those T{ that are close to the true

breaks such that \T{ — Jf\ < tT for all i. Also using an argument of symmetry, we

can, without loss of generality, consider the case T2 < T°. For C > 0, define

Tt (C) = {(Tx.Ta.Ta); \Tt
-T°\<cT,l<i< 3,T2 - T2

° < -C).

Because St(Ti,T2, Z3) < 5r(r1 ,T2

3
,T3) with probability 1, to prove the proposition it

is enough to show that for each 77 > 0, there exist C > and e > such that for large

(44) p(min{5T(r1,ra,r3) - SrCri,r2 ,r3)} < o) < v ,

where the minimum is taken over the set Tt (C). Such a relation would imply that

for a large C, global optimization cannot be achieved on TC (C). Thus with large

probability, T2 — T°| < C. Now denote

SSRx = St(Tu T2,T3),

ssr.2 = St(Ti,t2 , r3 ),

and introduce

SSR3 = St(Ti, T2 , T2 , T3 ).
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By definition, we have

(45) ST(TU T2 ,

T

3 )
- Sr(rl5 7* T3 ) = (SSRr - SSR3 )

- (SSR2 - SSR3 ).

This latter relation is useful because it allows us to carry the analysis in terms of two

problems involving a single structural change. Indeed, note that SSR\ — SSR3 is the

difference in the sums of squared residuals allowing an additional fourth break at time

T° between the breaks T2 and T3 . Similarly, SSR2 — SSR3 is the difference in the

sums of squared residuals allowing an additional fourth break at time T2 between the

breaks 7\ and T°. Hence, in each case SSR\ and SSR2 can be viewed as the sum of

squared residuals from a constrained version of a more general model whose sum of

squared residuals is SSR3 .

It is then easy to derive exact expressions for the two components on the right

hand side of (45) in terms of estimated coefficients. Consider first SSR\ — SSR3 , we

have (e.g., Amemiya 1985, p. 31):

sT(Tu r2 , t3 )
- st(tu t2 , t°, r3 ) = (s; - 6AyzAMwzA (s; - 8A ),

where W = (X,Z), with Z the diagonal partition of Z at (Ti,T2,T3 ), 63 is the vector

of estimated coefficients associated with the regressors (0, ...,0,zro+1 , ...,zy3 ,0, ...,0)',

and 6A is the vector of estimated coefficients associated with the regressors ZA =

(0, ..., 0, zt7+\ , ..., 2r°, 0, ..., 0)' (see Figure 3). Similarly, we have for SSR2 — SSR3 :

st(tu t*,t3 )
- s

,

r(r1 ,ra,3*,r3 ) = (s2 - sA yz'AMwzA (s2 - sA),

where W = (X, Z) with Z the diagonal partition of Z at (Ti, T°, T3 ), and 82 is the vec-

tor of estimated coefficients associated with the regressors (0, ..., 0, -ZTi+i, ••-, 2r2 , 0, ..., 0)'

(again, see Figure 3). Thus

(46) ssRi - ssr2 = (s; - sA yz'AMwzA (s; - sA )
- {s2 - sA yz'AMwzA {62 - sA )

The second term on the right is bounded by (S2— 6A )'ZAZA (62— SA ) because Z'AM^rZA

< Z'AZA , Mjy being a projection matrix. Expanding the first term on the right hand

side of (46), we have

SSRi — SSR2

(47) > (s; - sAyz'AzA (6-
3
- sA ) - (s; - sA)zAW(W'W)-

lW'zA (6'
3
- sA )

-(82 - 8AyZAZA (62 - SA ) = (I) - (II) - (HI).
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Consider the limiting behavior of term (I). Note first that the estimates £3 will

be close to 8% given that, on the set Tt {C), the distance between T, and Tf can be

controlled and made small by choosing a small e. Noting that 8A is estimated using

observations from the second true regime only, 8A is close to 8% for a large enough

C, on Tt {C). Hence, for large C, large T and small e, expression (I) is no less than

(l/2)(6° - 8°)'Z'AZA {8% - 6°) with large probability.

Next consider term (II). By the strong law of large numbers, it is easy to argue

that on TC (C), 8* and 8A are 0„(1) uniformly. Also on Tt{C), (WW/T)- 1 = P {\)

and Z'AW/C = Op (l) (because Z'AW involves no more than C observations). Thus

(II) is no larger than (l/T)C2Op(l).

Consider finally (III). Because both 82 and 8A are close to 8%, \\82 — 8A \\ < p with

large probability for any given small number p > (this is true for large T, large C

and small e). Thus (III) is no larger than pi'Z'A Z&i, with 1 a vector of l's.

In summary, we have that the inequality

(48) SSRi - SSR2 > (l/2){8°3 - 8°
2 )'Z'AZA {8l

- 8°
2 )
- ^C2

P {1)
- pt'Z'AZA L,

holds with large probability. The first term on the right hand side of (48) is of the

same order of magnitude as C since the smallest eigenvalue of Z'AZA /C is bounded

away from zero by A2. The other two terms are dominated by the first term and thus

with large probability, SSRi — SSR2 > 0. This proves (44) and thus the proposition.

Proof of Proposition 7: Note that we can write:

(T-(k + l)q-p \ SSRo-SSRkFT(\u .,.,Xk ; q)=\^
J

—
where SSRq and SSRk are the sum of squared residuals under the null hypothesis

and under the alternative allowing k breaks, respectively. We have (T — (k + l)q —

p)~ 1 SSRk —>
p a

2
. Hence, we concentrate on the limit of F^ = SSRq — SSRk. Now,

let Du
(i,j) (DR (i,j), resp.) be the sum of squared residuals from the unrestricted

(restricted, resp.) model using data from segments i to j (inclusively), i.e. from

observation Tt_i + 1 to Tj (these notations have different meanings from the D(i,j)

defined in Section 4.3, where i and j refer to the numbering of the observations not

the numbering of segments). We can then write:

Jt+i

F} = DR(l,k + l)-
1£Du

(i,i),

«=i
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or

(^)F^=J^[DR(l,i + l)-DR(l,i)-Du (i + l,i + l)]+DR(l,l)-nu (l,l).

Consider first the estimate of the coefficients on the x's. Let f3
u and J3

R be the

estimate of /? in the unrestricted and restricted models, respectively. We have J3
U =

{X'M-zX)- lX'MzY and R = {X'MzX)- lX'MzY where Z = (z[,...,zT)'. We need

to introduce further notations. Let Yij, Uij, Xij and Zij denote the corresponding

vectors or matrices containing elements belonging to the partition from segment 1

to segment j (inclusively). Also, let Yj, Uj, Xj and Zj be the vectors or matrices

containing elements from segment j only. Now, let 8Rj be the estimate of 8 using data

on the z's from segments 1 to j in the restricted model. Also, let 6f be the estimate

of 6j using data on the z's from segment j only in the unrestricted model. We have

% = (zfrr'zM-x^).

Using the fact that, under the null hypothesis, Y = Xfi + Z6 + U = X/3 + ~Z8 + U
and Yj = Xj/3 + ZjS + Uj (with 8 = (£', ... ,8')' a (k + 1) vector with 8 defined by

8i = 82 = ... = 8k+i = 8), straightforward algebra yields

DR(l,j) =
\\
(I - Pz^K^j - XhJAT ) \\\

Du (j,j) = \\(I-PZj)(Uj-X,At)\\\

where

AT = {X'MzX)-
lX'MzU,

AT = (X'MzX)- x
X'M-zU.

Consider the ith element in the summation defining FT in (49), we have

FT
,
t
= DR

(l,i + l)-DR(l,i)-Du (i + l,i + l)

= \\(I- P*Ml )(Ui,i+i - Xu+1At) ||

2 -
|| (/ - PZl„)(Uu - XUAT ) ||

2

-
\\
(I - Pzi+1 )(Ui+1 - Xi+1AT) f

To simplify the exposition, we introduce the notation Sj = Z[jUij, Hj = Z[jZ\
ij,

Kj = ZJj-Xij, Lj = XljXu, and Mj = X'
ltj
Uh: . Noting that

U'u+iuu+i = u'uuu + u:+1ui+l ,

^i,t+i-^i,t+i = U
ltiXij + Ui+iXi+i,
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we deduce that

FTfi = -%+1H£1S*l + S'
iHr

1
Si + (Si+i-Siy[Hi+1 -Hi

]-1
(Si+l -Si )

+2S't+1H-+\Kt+1AT - 2S'
iHr

1KiAT

-2(S,-+i - Si)'[Hi+l - Hi)-\Ki+l - Ki)AT

+2(Mi+1 - Mi)'(AT - AT ) + (AT - AT)'(Li+1 - Li)(AT - AT ).

Using the stated assumptions, we have the following basic convergence results:

1) T-V'iXu^jyUu = a(B1 (Xj),B2(Xj ))' = aB{Xj)' where B(r) is a (q + p)

dimensional vector Brownian motion with covariance matrix

Q =
Qn Q12

Q21 Q22

2) T-\XU ,Z^)'{XX„ZU )
-t'otXjQ.

From these two limits, we deduce easily the following results

a) T-^Sj = aB2 (Xj);

b) T-xHj ->p a2XjQ22 ;

c)r- 1 /^-."<r2A
ig 21 ;

d) T-'Lj ->» o*\jQu ;

e) T- x
!
2Mj => vB^Xj);

T 1,2AT = {T- lX'X-T- xX'Z(T- l Z'Z)- l T- l ZX)- 1

x(T~1/2X'U - T- xX'Z{T- l Z'Z)- x T- ll2Z l

U)

=» <r
_1
(Qn - Qi2Q22 Q2i)-\Bi(\) - Q 12Q^B2 (l)) = A'.

It remains to consider the limit of T x ' 2At- Let A = diag{Xi,X2

(k + 1) by (k + 1) diagonal matrix. We deduce that

i) r-^'z -»* a2(A ® g 22 ) ;

ii) T~ XX'Z ->p a2 (e'A <g> Q12 ) where e' = (1,1, ..., 1), a (Jb + 1) vector;

iii) T- 1 /2^ => a(B2 (Ax), B2(A2 - A x ), ..., B2{1 - A*))' = 5*.

We then obtain

Ai,...,l - X k }, a

T l '2AT = [T-
XX'X - T- lX'Z(T- l

~Z'Z)-
xT- lZX)- x

x[T~1/2X'U - T- 1X'Z(T- 1Z'Z)- 1T-1/2Z'U]

(T^iQii - (e'A ® Q 12)(A <g> g22)
_1

(Ae ® Q^)]" 1
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x[Bj(l) - (e'A <g> Q12)(A ® g22)
_1

5']

= ^
_1

[<3n - (e'A* ® Qi2Q 2

-
2

1

Q 21 )]-
1
[5i(l) - (e' ® QuQvW]

= ff-MQn " QuQ^Qn]-l
[B!(l) - Q l2Q22

lB2 (l)} = A'.

The second equality follows since e'Ae = 1 and (e' ® Q\ 2Q22 )B" = QwQm-^MI)-

Using the results stated above we easily deduce that

(Mt+1 - Mi)\AT - AT ) =» 0,

(AT - Ar)'(X,+i - ^)(AT - Ar ) =» 0,

SJ+j^rji^+xilr - S^H-'KiAr - (Si+1 - Si)'[Hi+i - ff.r^+i - K{ )At

=> <tB2 (\,+1)Q^Q 21A' - aB2(\i)Q^Q 21A'

-a(B2(Xi+1 )
- B2(\i))Q£Q21A* = 0.

Hence, we are left with

Ft, = -S'l+1H-+\Si+1 + S'.H-'Si +,(5,+1 - Si)'[Hi+1 - ff.-j^S+i - £) + op (l),

and we deduce, using the fact that B2 (\j) = crQ 22 W(\j) with W(\j) a vector of q

independent standard Wiener processes,

FT, =*> -B2(Xi+iyQ^B2(Xi+1y\i+1 + B2(Xi)'Q22
1B2(Xi )/X t

+(£2 (A,+1 )
- JB2 (A,))'g2

-
2

1

(52 (A,+1 )
- B2(A,))/(At+1 - A,)

= -a2
||
W(A,+1 ) ||

2
/A,+1 + a2

||
W(A;)

||

2
/A,-

+(7
2 ||W(Al+1)-W(Ai)||

2
/(A,+i-A,)

= <r
2

|| W(Ai+1 )
- A,+1 ^(A,) ||

2
/Al+1 A,(At+1 - A,).

Finally, note that

DR(l,l)-Du(l,l) = \\
(I - P^Ur - X,AT ) \\

2 -
\\
(I - Pz^U, - X.At)

\\

2

= 2U[(I-PZl)X1 (AT -AT)

+ATX[(I - PZl )XxAT - ATX[(I - PZl )X1AT

= 0.

Hence

f: - a2E "
w(A '"+i) - *sagw n

2

,

,=i
A,-+iA;(A,+1 — A,)
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and the result of Proposition 7 follows.

Proof of Proposition 9: Let ct,i = c(ar,£,T) be the critical value of the test

Ft(£ + 1\£) corresponding to a given size aj. By definition,

(50) P(Ft(£ + 1\£) > cT<l \
conditional on £ breaks) < aT ,

for all £. Now suppose the true number of breaks is m . By the consistency of the

sequential test, we have

(51) P(Ft(£ + l\£) > ct,i\ conditional on m breaks] — 1, for £ = 0, 1, ...,m — 1,

since ct,( increases slowly enough given the assumption on the rate of decrease of ax-

Let m be the number of breaks estimated by the sequential procedure. The event

{m < 77io} satisfies

{m < m } C Ug^Ar,*,

where Aj,k = {Fr{k + l\k) < or,k)- That is, in order to obtain m < m , it must be

the case that the hypothesis of k against k + 1 breaks cannot be rejected for some

k < tuq. By (51), P(AT,k\Tno) —* as T —»• oo for each k < m . It follows that

mo—

1

(52) P(rh <mQ ) < j^ P(ATtk \m )
-» 0, as T -* oo.

k=o

Next, consider the event {m > mo}. In order to obtain m > mo, it must be the

case that the hypothesis of mo breaks against m + 1 breaks is rejected. This happens,

in large samples, with probability no more than or, given m breaks. Formally, by

(50) with £ = m
,

(53) P(rh > m ) < P(FT{m + l|m ) > cT ,mo \m j
< aT .

Combining (52) and (53), we see that P(m ^ m )
— as T —* oo. That is, the

estimate of the number of breaks obtained using the sequential test is consistent.
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B Computational Appendix.

In this section, we discuss an algorithm based on the principle of dynamic programming

that allows the computation of estimates of the break points as global minimizers of

the sum of squared residuals. The method is directly applicable to the case of a pure

structural change model. Useful references include Guthery (1974), Bellman and Roth

(1969) and Fisher (1958).

A standard grid search procedure to obtain global minimizers with m breaks would

require least squares operations of order 0(Tm ). The dynamic programming approach

provides an efficient method that requires least squares operations of order 0(T2
) at

most for any number of breaks; hence substantial savings in computations can be

achieved when estimating a model with more than two breaks (the method also allows

some savings in the case of two breaks). The basic reason for this possible reduction in

computation is fairly intuitive once it is realized that, with a sample of size T, the total

number of possible segments is at most'T(T-f l)/2 and is therefore of order 0(T2
). The

dynamic programming algorithm can be seen as an efficient way to compare possible

combinations of these partitions to achieve a minimum sum of squared residuals.

In practice, less than T(T + l)/2 segments are permissible. First, some minimum

distance between each break may be imposed, as is done in the construction of the

tests discussed in Section 4. Let this minimum distance be denoted by h. Note that

h < q is possible in which case the sum of squared residuals is zero; for simplicity we

suppose without loss of generality that h > q. This implies a reduction in the number

of segments to be considered of (h — 1)T — (h — 2)(h — l)/2. Now the largest possible

segment must be such as to allow m other segments before or after. For example,

when the segment starts at a date between 1 and h — 1, the maximal length of this

segment is T — hm when m breaks are allowed (i.e., m + 1 regimes). This allows a

further reduction in the total number of segments considered of h2m(rn + l)/2 — mh .

Hence all the relevant information can be obtained from the examination of the sums

of squared residuals associated with

T(T + l)/2 - (h - l)T + (h- 2){h - l)/2 - h2m(m + l)/2 + mh

segments. We therefore need to evaluate the sum of squared residuals associated with
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segments having the following starting and ending dates:

starting date ending date

i = 1, ..., hm — 1 j = h + i — 1, ..., T — hm
i=£h,...,(£+A)h-l j = h + i-l,...,T-{m-£)h (£ = l,...,m- 1)

i = hm + 2,...,T- hm + 1 j = h + i- 1,...,T

This can be achieved using standard updating formulae to calculate recursive resid-

uals. Indeed, all the relevant information can be calculated from T — hm + 1 sets of

recursive residuals and the fact that the sum of squared residuals using, say, t obser-

vations is the sum of squared residuals using t — 1 observations plus the square of the

recursive residual at time t. Hence, the number of matrix inversions needed is simply

of an order 0(T). To be precise, let v(i,j) be the recursive residual at time j obtained

using a sample that starts at date i, and let SSR(i,j) be the sum of squared residuals

obtained by applying least-squares to a segment that starts at date i and ends at date

j. We note the following recursive relation (e.g., Brown, Durbin and Evans (1975)):

SSR(i,j) = SSR(i,j - 1) + v(i,j)
2

.

All the relevant information is contained in the values SSR(i,j) for the combinations

(i,j) indicated above.

Once the sums of squared residuals of the relevant segments have been computed

and stored, a dynamic programming approach can be used to evaluate which partition

achieves a global minimization of the overall sum of squared residuals. This method

essentially proceeds via a sequential examination of optimal one-break (or two seg-

ments) partitions. Let SSR({TTtn }) denote the sum of squared residuals associated

with the optimal partition containing r breaks using the first n observations. The

optimal partition can be obtained solving the following recursive problem:

(54) SSR({Tm ,T})= min [SSR({Tm.ltj }) + SSR(j + 1,T)].
mh<]<T—

h

It is instructive to write (54) in the following way:

SSR({Tm
,
T }) =

minmA<i1 <T-/l
[5'5

,

i?(ji + l,T)+

min{m-i)h<h<h-h[SSR(J2 + 1, ji)+

m^(m-2)h<j3 <h-h[SSR(J3 + 1, j2)+

min*<im ^-m_ 1
_fc[55i2(l,jm ) + SSR(jm + 1, jm-i )]-]]]
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Looking at the last displayed minimization problem, we see that the procedure

starts by evaluating the optimal one-break partition for all sub-samples that allow a

possible break ranging from observations h to T — mh. Hence, the first step is to store

a set of T — (m + l)h + 1 optimal one break partitions along with their associated

sum of squared residuals. Each of the optimal partitions correspond to subsamples

ending at dates ranging from 2h to T — (m — l)h. Consider now the next step which

proceeds in a search for optimal partitions with two breaks. Such partitions have

ending dates ranging from 3h to T — (m — 2)h. For each of these possible ending

dates, the procedure looks at which one-break partition can be inserted to achieve a

minimal sum of squared residual. The outcome is a set of T — (m + 1)^ + 1 optimal two

breaks (or three segments) partitions. The method continues sequentially until a set

of T — (m + l)h -\- 1 optimal (m — 1) breaks partitions are obtained with ending dates

ranging from (m — l)h to T— 2h. The final step is to see which of these optimal (m — 1)

breaks partitions yields an overall minimal sum of squared residuals when combined

with an additional segment. The method can therefore be viewed as a sequential

updating of T — (m + l)h + 1 segments into optimal one, two and up to m — 1 breaks

partitions (or into two, three and up to m sub-segments); the last step simply creating

a single optimal m breaks (or m + 1 segments) partition.

This dynamic programming method to obtain global minimizers of the sum of

squared residuals cannot be applied directly to the case of a partial structural change

model. This is basically due to the fact that we cannot concentrate out the parameters

without knowing the appropriate partition, i.e. the estimate of associated with a

global minimization depend on the optimal partition which we are trying to obtain.

However, a simple iterative procedure is available. Let 6 = (6, 7\, ..., Tm ), we can write

the sum of squared residuals as a function of the vectors and 6, i.e. SSR(0,8). As

discussed in Sargan (1964), we can minimize SSR(0,6) in an iterative fashion as

follows. First minimize with respect to 6 keeping fixed and then minimize with

respect to keeping 6 fixed, and iterate. Each iteration assures a decrease in the

objective function. The convergence properties of this scheme are discussed in Sargan

(1964).

Note that the first step, minimizing with respect to 6 keeping fixed, amounts to

applying the dynamic programming algorithm discussed above with yt
— x'

tf3 as the

dependent variable. Since is fixed this is, indeed, a step involving a pure structural

change model. Let 0* = (6*, {T*}) be the associated estimate from this first stage (with

{T*} = (r
x
*, ...,7^)). The second step is a simple linear regression with dependent

47



variable y t
— z'

t

8* for t in regime j (j = 1, ..., m + 1) (the regimes being defined by the

partition {T*}) and independent variable x t .

An issue that remains is the choice of the initial value of the vector /? to start the

iteration. We suggest the following procedure. First apply the dynamic programming

algorithm treating all coefficients as subject to change, i.e. treat the model as one of

pure structural change and let 9a = (6°, {Ta
}) be the estimates of S and (7\, ...,Tm )

that then minimizes the sum of squared residuals. The initial value of the vector

/3 is taken as the OLS estimate in a regression of yt
— z'

t
S^ on x t

for t in regime j

(j = 1, ..., m+ 1), the regimes being defined by the partition {Ta
}. The reason for such

a choice of the startup value is that the estimates of the break fractions are consistent

even when some of the coefficient of the parameter vector 5 = (<$i, ..., 8q ) do not change

across regimes provided at least one does change at each break date. Hence, this choice

of the starting value for /5 is asymptotically equivalent to the estimate associated with

the global minimization and should, accordingly, allow obtaining global minimizers

with respect to all the parameters in a few iterations.
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Table 1: Asymptotic Critical Values of the Multiple-Break Test.

The entries are the quantiles x such that P(supF
fc

< x/q) = a.

9 a
Number of Breaks, k123456789 DmaxF

1 .90

.95

.975

.99

8.02 7.87 7.07 6.61 6.14 5.74 5.40 5.09 4.81

9.63 8.78 7.85 7.21 6.69 6.23 5.86 5.51 5.20

11.17 9.81 8.52 7.79 7.22 6.70 6.27 5.92 5.56

13.58 10.95 9.37 8.50 7.85 7.21 6.75 6.33 5.98

8.78

10.17

11.52

13.74

2 .90

.95

.975

.99

11.02 10.48 9.61 8.99 8.50 8.06 7.66 7.32 7.01

12.89 11.60 10.46 9.71 9.12 8.65 8.19 7.79 7.46

14.53 12.64 11.20 10.29 9.69 9.10 8.64 8.18 7.80

16.64 13.78 12.06 11.00 10.28 9.65 9.11 8.66 8.22

11.69

13.27

14.69

16.79

3 .90

.95

.975

.99

13.43 12.73 11.76 11.04 10.49 10.02 9.59 9.21 8.86

15.37 13.84 12.64 11.83 11.15 10.61 10.14 9.71 9.32

17.17 14.91 13.44 12.49 11.75 11.13 10.62 10.14 9.72

19.25 16.27 14.48 13.40 12.56 11.80 11.22 10.67 10.19

14.05

15.80

17.36

19.38

4 .90

.95

.975

.99

15.53 14.65 13.63 12.91 12.33 11.79 11.34 10.93 10.55

17.60 15.84 14.63 13.71 12.99 12.42 11.91 11.49 11.04

19.35 16.85 15.44 14.43 13.64 13.01 12.46 11.94 11.49

21.20 18.21 16.43 15.21 14.45 13.70 13.04 12.48 12.02

16.17

17.88

19.51

21.25

5 .90

.95

.975

.99

17.42 16.45 15.44 14.69 14.05 13.51 13.02 12.59 12.18

19.50 17.60 16.40 15.52 14.79 14.19 13.63 13.16 12.70

21.47 18.75 17.26 16.13 15.40 14.75 14.19 13.66 13.17

23.99 20.18 18.19 17.09 16.14 15.34 14.81 14.26 13.72

17.94

19.74

21.57

24.00

6 .90

.95

.975

.99

19.38 18.15 17.17 16.39 15.74 15.18 14.63 14.18 13.74

21.59 19.61 18.23 17.27 16.50 15.86 15.29 14.77 14.30

23.73 20.80 19.15 18.07 17.21 16.49 15.84 15.29 14.78

25.95 22.18 20.29 18.93 17.97 17.20 16.54 15.94 15.35

19.92

21.90

23.83

26.07

7 .90

.95

.975

.99

21.23 19.93 18.75 17.98 17.28 16.69 16.16 15.69 15.24

23.50 21.30 19.83 18.91 18.10 17.43 16.83 16.28 15.79

25.23 22.54 20.85 19.68 18.79 18.03 17.38 16.79 16.31

28.01 24.07 21.89 20.68 19.68 18.81 18.10 17.49 16.96

21.79

23.77

25.46

28.02

8 .90

.95

.975

.99

22.92 21.56 20.43 19.58 18.84 18.21 17.69 17.19 16.70

25.22 23.03 21.48 20.46 19.66 18.97 18.37 17.80 17.30

27.21 24.20 22.41 21.29 20.39 19.63 18.98 18.34 17.78

29.60 25.66 23.44 22.22 21.22 20.40 19.66 19.03 18.46

23.53

25.51

27.32

29.60

9 .90

.95

.975

.99

24.75 23.15 21.98 21.12 20.37 19.72 19.13 18.58 18.09

27.08 24.55 23.16 22.08 21.22 20.49 19.90 19.29 18.79

29.13 25.92 24.14 22.97 21.98 21.28 20.59 19.98 19.39

31.66 27.42 25.13 24.01 23.06 22.18 21.35 20.63 19.94

25.19

27.28

29.20

31.72

10 .90

.95

.975

.99

26.13 24.70 23.48 22.57 21.83 21.16 20.57 20.03 19.55

28.49 26.17 24.59 23.59 22.71 21.93 21.34 20.74 20.17

30.67 27.52 25.69 24.47 23.45 22.71 21.95 21.34 20.79

33.62 29.14 26.90 25.58 24.44 23.49 22.75 22.09 21.47

26.66

28.75

30.84

33.86



Table 2: Asymptotic Critical Values of the Sequential Test Ft(£+ lK)-

The entries are the quantiles x such that Gq>v (xY
+1 = a.

9 a 1 2 3

I

4 5 6 7 8 9

1 .90 8.02 9.56 10.45 11.07 11.65 12.07 12.47 12.70 13.07 13.34

.95 9.63 11.14 12.16 12.83 13.45 14.05 14.29 14.50 14.69 14.88

.975 11.17 12.88 14.05 14.50 15.03 15.37 15.56 15.73 16.02 16.39

.99 13.58 15.03 15.62 16.39 16.60 16.90 17.04 17.27 17.32 17.61

2 .90 11.02 12.79 13.72 14.45 14.90 15.35 15.81 16.12 16.44 16.58

.95 12.89 14.50 15.42 16.16 16.61 17.02 17.27 17.55 17.76 17.97

.975 14.53 16.19 17.02 17.55 17.98 18.15 18.46 18.74 18.98 19.22

.99 16.64 17.98 18.66 19.22 20.03 20.87 20.97 21.19 21.43 21.74

3 .90 13.43 15.26 16.38 17.07 17.52 17.91 18.35 18.61 18.92 19.19

.95 15.37 17.15 17.97 18.72 19.23 19.59 19.94 20.31 21.05 21.20

.975 17.17 18.75 19.61 20.31 21.33 21.59 21.78 22.07 22.41 22.73

.99 19.25 21.33 22.01 22.73 23.13 23.48 23.70 23.79 23.84 24.59

4 .90 15.53 17.54 18.55 19.30 19.80 20.15 20.48 20.73 20.94 21.10

.95 17.60 19.33 20.22 20.75 21.15 21.55 21.90 22.27 22.63 22.83

.975 19.35 20.76 21.60 22.27 22.84 23.44 23.74 24.14 24.36 24.54

.99 21.20 22.84 24.04 24.54 24.96 25.36 25.51 25.58 25.63 25.88

5 .90 17.42 19.38 20.46 21.37 21.96 22.47 22.77 23.23 23.56 23.81

.95 19.50 21.43 22.57 23.33 23.90 24.34 24.62 25.14 25.34 25.51

.975 21.47 23.34 24.37 25.14 25.58 25.79 25.96 26.39 26.60 26.84

.99 23.99 25.58 26.32 26.84 27.39 27.86 27.90 28.32 28.38 28.39

6 .90 19.38 21.51 22.81 23.64 24.19 24.59 24.86 25.27 25.53 25.87

.95 21.59 23.72 24.66 25.29 25.89 26.36 26.84 27.10 27.26 27.40

.975 23.73 25.41 26.37 27.10 27.42 28.02 28.39 28.75 29.13 29.44

.99 25.95 27.42 28.60 29.44 30.18 30.52 30.64 30.99 31.25 31.33

7 .90 21.23 23.41 24.51 25.07 25.75 26.30 26.74 27.06 27.46 27.70

.95 23.50 25.17 26.34 27.19 27.96 28.25 28.64 28.84 28.97 29.14

.975 25.23 27.24 28.25 28.84 29.14 29.72 30.41 30.76 31.09 31.43

.99 28.01 29.14 30.61 31.43 32.56 32.75 32.90 33.25 33.25 33.85

8 .90 22.92 25.15 26.38 27.09 27.77 28.15 28.61 28.90 29.19 29.49

.95 25.22 27.18 28.21 28.99 29.54 30.05 30.45 30.79 31.29 31.75

.975 27.21 29.01 30.09 30.79 31.80 32.50 32.81 32.86 33.20 33.60

.99 29.60 31.80 32.84 33.60 34.23 34.57 34.75 35.01 35.50 35.65

9 .90 24.75 26.99 28.11 29.03 29.69 30.18 30.61 30.93 31.14 31.46

.95 27.08 29.10 30.24 30.99 31.48 32.46 32.71 32.89 33.15 33.43

.975 29.13 31.04 32.48 32.89 33.47 33.98 34.25 34.74 34.88 35.07

.99 31.66 33.47 34.60 35.07 35.49 37.08 37.12 37.23 37.47 37.68

10 .90 26.13 28.40 29.68 30.62 31.25 31.81 32.37 32.78 33.09 33.53

.95 28.49 30.65 31.90 32.83 33.57 34.27 34.53 35.01 35.33 35.65

.975 30.67 32.87 34.27 35.01 35.86 36.32 36.65 36.90 37.15 37.41

.99 33.62 35.86 36.68 37.41 38.20 38.70 38.91 39.09 39.11 39.12



Table 3: Empirical Results: U.S. Ex- Post Real Interest Rate

Specifications

zt = {1} q= 1 p = h=2 M=5
Tests 1

SupFT (l) SupFr (2) SupFT (3) SupFT {4) SupFT (5)

58.53 44.16 53.76 51.88 44.76

Number of Breaks Selected 2

Sequential Procedure 2

LWZ 2

BIC 2

Parameter Estimates with Two Breaks3

*i = 1.36 (.16)

<52 = -1.80 (.50)

S3 = 5.64 (.59)

T, = 72:3 (71:2-73:4)

T2 = 80:3 (80:2-80:4)

1 The supir7'(fc) tests and the reported standard errors and confidence inter-

vals allow for the possibility of serial correlation in the disturbances. The het-

eroskedasticity and autocorrelation consistent covariance matrix is constructed

following Andrews (1991) and Andrews and Monahan (1992) using a quadratic

kernel with automatic bandwidth selection based on an AR(1) approximation.

The residuals are pre-whitened using a VAR(l).
2 We use a 1% size for the sequential test supFr(^ + 1|^).

3 In parentheses are the standard errors (robust to serial correlation) for £,-

(i = 1,2,3) and the 95% confidence intervals for T^ and T2 -



Table 4: Empirical Results: U.K. CPI Inflation Rate 1948-1987

zt = {l,yt-i}

Specifications

q=2 p = h = 5 M=5

SuPFT (l)

5.34

SupFr (2|l)

10.70

Tests

SupFr(2) SupFT(3)
12.69 12.74

SupFT(3|2) SupFr(4|3)
7.47 4.58

SupFr(4)

10.76

SupFT (5|4)

1.71

SupFT(5)
8.58

SupFT(6|5)

1.66

Sequential Procedure

LWZ
BIC

Number of Breaks Selected

1

3

4,i

<$2,1

Parameter Estimates with one

= .025 (.013) 4,2

= .274 (.316) 4,2

= 1967 (1961-1973)

Break

= .024 (.013)

= .739 (.125)

4,i = -021 (.010)

4,1 = -488 (.220)

f2

Parameter Estimates with Two

4,2 = -130 (.029) 4,3 = -011 (-019)

4,2 = -115 (.206) 4,3 = -633 (.223)

= 1973 (1972-1974)

= 1980 (1979-1981)

Breaks
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Figure 3: A particular configuration of (7\, T2 , T3 ) in the set T£ (C) defined in the proof

of Proposition 3
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