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AUTOREGRESSIVE PROCESS

by

Darryl Jon Downing

August, 1974

Chairman: Dr. J. G. Saw
Major Department: Statistics

A stochastic process is represented as having two

components. The first component is called drift and measures

location. The second component, called noise, measures the

variability of the stochastic process. This paper is

concerned with estimating the noise process when the noise

process is assumed to follow what we shall call a generalized

first order nonstationary autoregressive process. The

generalized first order autoregressive process is defined

similar to the first order autoregressive process, except that

the parameter relating two observations is different for each

time, point. In order to estimate these parameters it is

necessary that the stochastic process be replicated a

sufficient number of times.

A method of estimating the parameters is proposed and

the broad attendant distribution theory is delineated, both

in a general setting and for specific situations. The prop-



erties of these estimators are given and some tests of

hypothesis concerning the parameters are investigated. In

order to comment further on the value of the proposed

estimators, we use as a benchmark the maximum likelihood

estimators. Their properties are given and a critical

comparison is made between them and the proposed estimators.

In any practical situation it will be necessary to

decide whether or not the first order generalized autoregres-

sive process is sufficiently accurate to describe the data.

Therefore, a test of the adequacy of the model is given.

Finally, numerical results are obtained using a

computer simulation. The proposed estimators and the maximum

likelihood estimators are compared. Also a practical

application is given.



Chapter I

STATEMENT OF THE PROBLEM

1. 1 Introduction

The statistical model in this dissertation is a

stochastic process {Y(t):t£T>. Usually T will denote a

time interval and we shall suppose that replications of the

process can be monitored during T at times t rt <t, <t„< . . .<t ,12m
a typical replicate yielding the random sample y .=Y ( t

.
) :Osj sm.

It is not necessary that the time increments t, -t
fl

, t
?

- t,

,

..., t - t -. be of equal length.

If we write y(t)=EY(t) and X (t) =Y (t) -\i (t) , then we may

think of y(t) as the "drift" of the sample paths of Y(t) and

X(t) as "noise". Clearly EX(t)=0. Various schemes have,

classically, been used to describe the noise process. In

particular one may assume that, with y .=u (t
.

) +x . :0^jsm,

X
j

= a
l
X
j-l

+a
2
X
j-2

+ --- +a
p
X
j-p

+£
j

: PSJSm
'

(1-1-D

where e , £p+1 » •••/ £m
are independent identically distri-

buted random variables.

In order that the data lend themselves to analysis under

this classical model, several assumptions must be made. The

most restrictive of these is that of stationarity . Expressed

informally, stationarity assumes that the process has been

running a sufficiently long time so that it has settled down.



Putting this into a probabilistic context, stationarity

implies that the probability distribution of x , x , ...,
1

C
2

x is the same as the probability distribution of x
,

,

fc

k 1

x. ,,, ..., x for every finite set of values (t, ,t~,

. . . , t, ) and for everv finite t.
k

The classical analysis of the model of equation (1.1.1),

known as the p-th order autoregressive model is likely to be

inappropriate in many cases due to the requirement of

stationarity. For example, consider observing the effect of

a diet on weight loss. Initially the weight loss will be

greatest and will tend toward zero as time goes on and the

subject tends to some constant weight. Obviously since the

larger values appear first the probability distribution of

the initial observations is not the same as that occurring

later. A second example is the effect of drug infusion. A

patient is given a dose of some drug, either orally or

intravenously, and blood samples are drawn at various times

t^ , t, , ..., t thereafter. The amount of drug in the blood1m
is then measured for each sample at each time. Again the

initial readings will be larger than the later ones since

the drug will be absorbed into the system or discharged as

time goes on.

It may be argued in both examples cited, that successive

differences (or perhaps successive second differences) have,

approximately, a stationary distribution. Rather than con-

cede to ad hoc procedures we prefer to replace the stationary

autoregressive process by a nonstationary process. We gain

this generality in the model for {Y(t) : teT} at the expense



of requiring (for our analysis of, and estimation of the

parameters of the process) several replications of this

process. Fortunately, in many instances of interest,

replicates will be available.

The simplest alternative to the p-th order autoregres-

sive scheme is what we shall call the first order generalized

autoregressive scheme. Formally we shall assume that the

errors x, , x_, ..., x satisfy12 ' m J

X
j

= a
i
X
J-l

+ £
j

: ls3 sm ' (1.1.2)

where again e. , e_, ...,e are independent identically

distributed random variables. It will be assumed that the

joint distribution of the errors is multivariate normal.

The assumption that the process can be replicated is needed

in order to estimate the unknown parameters a,, a~, ..., a .r 12 ' m

In the analysis of this model we shall be concerned with

three major problems: (1) providing estimators for the

unknown parameters, (2) finding the distribution of the

estimators and comparing them to other estimators (typically

likelihood estimators) and, (3) providing methodology for

the testing the goodness of fit of the model.

1.2 Summary of Results

A method of estimating the parameters is proposed in

Chapter 2 and the broad attendant distribution theory is

delineated, both in a general setting and for specific

situations. The properties of these estimators are provided

in Chapter 3. In Chapter 4 a critical comparison is made



between the maximum likelihood estimators and the estimators

which we propose as an alternative. In any practical

situation it will be necessary to decide whether or not the

first order generalized autoregressive scheme is

sufficiently accurate to describe the data. A decision

procedure bearing on this aspect is investigated in Chapter 5.

An application of the theory is given in Chapter 6,

with a comparison between the estimators derived in this

dissertation and the usual maximum likelihood estimators.

1, 3 Notation

In almost all areas of statistics notation is very

important - consistant notation aids in solving and under-

standing the material presented. Also it is very convenient

to abbreviate the distributional properties of random

variables. For these reasons, certain notational conventions

have been adopted. Although many of these are standard,

they will be listed here for reference.

1. An underscored lower case letter invariably

represents a column vector. Its row dimension will

be given the first time a vector appears. Thus

x: (m) denotes a column vector consisting of m elements.

The vector which has all its elements zero will be

denoted by 0.

2. Matrices will be denoted by capital letters and

the first time a matrix appears, its row and column

dimensions will be given. Thus M: (rxc) denotes a



matrix with r rows and c columns. Denote the zero matrix

by (0). The symbol "I" will be reserved for the

identity matrix.

3. The elements of a matrix will be denoted by the

corresponding small letter with subscripts to denote

their row and column position. Thus m. . denotes the
ID

element in the i rov; and j column of the matrix

M. The symbol (M) . . is equivalent to m
.

.. and is

sometimes substituted for convenience.

• 4. It is sometimes, convenient to form row and column

vectors from a given matrix. The symbol (M) . will

represent the row vector formed from the i row of

M. Similarly (M) . will denote the column vector

formed from the j column of M.

5. The matrix formed from the first j rows and

columns of M will be denoted by M ,
.

, . M,., is7
(J) (:)

commonly called the j principal submatrix.

6. The Kronecher product of M: (mxm) and N: (nxn) will

be denoted by M is N and is a matrix P: (mnxmn) with

P
(k-l)s+i, (

£
-l)s+j

= mk^ij '

7. Diagonal matrices will be denoted by D=diag (d, ,d_

,

...,d ), where diag is short for diagonal and d.,d.,

. ..,d are the elements on the diagonal.

8. In keeping with conventional notation we shall

write etr(.) to denote the constant "e" (Euler's

constant) raised to the tr ( . ) power.



9. In distribution theory transformations are often

made use of. To denote the Jacobian of the

transformation the following notation J{X-*-Y} will

represent the Jacobian of the transformation from

the X-space into the Y-space.

10. If y is a random variable having a normal density,

2with mean y, and variance a , we will write

yvN(y,a 2
) .

11. If y is a random variable defined on (o,"=) with

density

f(y) = iT(hv) 2
hiv ~ 2)T

l
Y
V~ 1

exp {-%y 2
} ,

we will denote this by

y^Xv (0) -

This is to be read as "y has the central Chi density

on v degrees of freedom."

12. If y is a random variable defined on (o,°°) with

density

f(y) = {r(%v)(2a 2 )^}
_1

y^" 1
e-y'

2a2
,

we shall abbreviate this by

y ^a
2
X
2
(0) .

13. If y_ is an m-dimensional column vector whose

elements have a joint normal density with mean

vector, jj: (m) and dispersion matrix V: (mxm) , this will

be denoted by

y_^Nm (u,V) .



14. If y_, , Zo ' •••/ Y are- mutually independent

m-variate column vectors with

y.^N (y,V) i=l, . . . ,n .

Then, with Y = (y_ , y_2
, . . . , y ) , we will write

Y %N (M, VhI) ,roxn '

where M = (y ,y, . . . ,y) .

15. With Y an mxn matrix such that

Y^N (M, Veal)
mxn

the mxm matrix

W=YY'

has a noncentral Wishart distribution with dispersion matrix

V, degrees of freedom n, and noncentrality matrix

MM' . We will write

W -vW (V,n,i#T)m

16. If W is an mxm symmetric matrix whose 'mCm+l)/^

mathematically independent elements have the density

f(W) = k
m
(V,v) ! W |^ (^-m-1) etr{ _j2V

-l
w}

over the group of positive definite matrices, where

K
_1

(V,v) = 2
^mv

7T

1<m(m-l)
[v|

%v g r(%(v. j + 1)>>m
j = l

we will write

W^Wm (V,v, (0)) .

17. For referencing within the text [•] will denote

bibliographical references, while (') will denote

references to equations. Thus [4] refers to the

fourth entry in the bibliography, while (1.2,3) refers

to equation 3 in section 2 of Chapter I

.



Chapter II

THE DOOLITTLE DECOMPOSITION AND ASSOCIATED
DISTRIBUTION THEORY

2. 1 Introduction

In the event that the "noise" process, X (t) =Y (t) -y (t)

,

is nonstationary , the general models and methods of

estimation, like those given by Box and Jenkins [5] and

Anderson [2], are no longer valid. We ignore the cases

where the nonstationarity is caused by trend, since this

can be removed and the resulting series is stationary and

usual methods apply. An appropriate model for a "noise"

process with this irregular behavior is

x. -a .x. , + e. : l;q^m .

Our purpose in this chapter is to find a method of

estimating the parameters of this model and to establish

the attendent distribution theory.

Throughout, {y . : sj sm} , will denote the observed values

of Y(t) at times tn <t, <...<t . We shall assume that y. is1m 2
3

normally distributed.

2 • 2 V : A Class of Dispersion Matric e

s

If (X(t) = Y(t) - u(t): teT} is a nonstationary

time series, whose realizations, x., satisfy the relationship

x. = a_.x.._, + e. : lsjsm, (2.2.1)



then {X(t)} is said to follow the first order generalized

autoregressive sequence.

Suppose we arrive at the (m+1) -variate column vector

x = (xn ,x, , . . . ,x )', obtained from random sampling from

the above process. We assume that x is an observation from

the (m+1) -variate normal distribution, that is,

^ Nm+ l ( !i'
V)

'

where \s_ = £x = o, since 8x(t) = o, and

V = Var x = fixx 1

.

In order to determine V we assume that x , e,

,

o' 1'

are uncorrelated random variables with

2„2

(2.2.2)

and

Var(x ) = a
o

Var ( e . ) = a : 1 ^j an .

(2.2.3)

Since the process follows equation (2.2.1) we can write

{x
Q
,x ir . . . ,xm > in terms of {x

Q
, e- , e_, . . . , £ }. Applying

equation (2.2.1) recursively we find the relationship between

X
j

and x ,el"**' em " Letting x: (m+l) = (x ,x
1
,. .. ,xm )

'
,

e: (m) = (e ,e ,...,e )* and A: (m+1 x m+1) having elements

= 1 : o^i^mn
a. . = a .a . ,

.

i: 3 j-1
a.

a
kl

= °

os3<ism

elsewhere ,

then it is easily verified that

x.

x = A

From expression (2.2.5) we see that

V = AUA' ,

2 2 2 2 2where U: (m+1 x m+1) =diag(a B , o , a , ...,a )

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)
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Writing out the elements of V explicitly we have

v = a 3oo

v.. = a
2

+ a
2
v. , . , : 1 sj *n (2.2.8)

v., = v, . = a • , -, a ,~ ... a, v . . : lsj < ksjn .

In the density of x we need A=V , because of the

form of V, A has a particularly simple form. By taking the

inverse of the product in (2.2.6) we find

A = (A
-1

) 'iT-'-A
-1

.

'

(2.2.9)

The inverse of U is trivial and since A is lower triangular

its inverse is easily shown to have elements:

a
11 = 1 : o£J fin

a

(2.2.11)

3+1 '3 = - a : osjsm-1 (2.2.10)
j+1 J

ik
a J = o : elsewhere .

Kence the elements of A are given by

2^ -2 ,_ 2 2, ,
a A = 6 + a, ; a A^ = 1

oo 1 mm

o
2
A.. = 1 + a

2

+1
: lsjsP»-l

° 2x
3 +l,j

" "^j'j+l
= " a

j + l
: °^^- 1

2
a A., = o : elsewhere .

A square matrix M, with m. . =0 : |i-j|>l, is called a

"Jacobi matrix" in the literature. This matrix can be

o
factored into c A = R'R, where R is lower triangular with

r = e"
1

oo

r . . = 1 : 1 sj sen

33 (2.2.12)
r . . „ = -a . : 1 sfj sm
D,D-1 3

r., = : elsewhere

This result can be obtained from (2.2.9) very easily.
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One further property of V is: let V. . > be the

(j+1 x j+1) principal submatrix formed from V, then

|V .
|

- a
2( ^

+ 1)
6
2

: o^jsm . (2.2.13)

This result can be obtained by partitioning the

matrices in (2.2.6) and taking the determinant of the

corresponding product of the partitioned matrices. Since

A is lower triangular with unit diagonal elements any

square partition has determinant equal to unity. The

square partition of U is diagonal with determinant equal to

(2.2.13).

We note that the special form of V and its properties

are due to the model. We shall let V denote the class of

matrices with this special form. Specifically, V is the

class of all positive definite matrices V such that V is

a Jacobi matrix. To see that VeV implies V is a Jacobi

matrix we note that V may always be represented by AUA'

where A is lower triangular given by (2.2.4). Since A

is given by (2.2.10) then the resulting product (A )'U A

is always a Jacobi matrix.

2. 3 The Dooiittle Decomposition and Its Jacobian

Suppose we observe a number of (m+1) -variate column

vectors y_ . : lsjs'n (n>m+l) , obtained by random sampling from

an (m+1) -variate normal population with mean y and dispersion

matrix V. It is well known that the maximum likelihood

estimates of y_ and V are given by

o = £ = ^ z y. (2.3.Dn
j=i j



and

12

V = - W (2.3.2)
n

where W is the (m+1 x m+1) matrix

n

(2.3.3)
.

--
i

-- --
i

--

y
W has the central Wishart distribution with v=n-l degrees

w = z (y_,-y_)

(

Z,-Z )

•

1=1 3 J

of freedom and dispersion matrix V. It is well known that

ew = W, so that v W is an unbiassed estimate of V. In

later sections we shall assume that VeV so that V may be

written as V=AUA' , where A and U are defined in section 2.

We note that the sub-diagonal of A is (a. , a_ , . . . , a ) with

other elements being products of the a's. Since A contains

all the information on the a's and U contains information

2 2
on o and 6 , if we could estimate these matrices we would

have estimates of the unknown parameters. Since W estimates

V, perhaps a transformation on the element of W will give

us estimates of A and U. It is with this intuitive notion

in mind that we proceed. We assume that a matrix W is

available with v degrees of freedom, and for the moment,

that V is an arbitrary positive definite matrix.

For convenience we label the rows and columns of W

zero through m (rather than 1 through m+1) and let W , . , be

the (j+1 x j+1) principal submatrix of W. Define

d
i

" l
w (j)!-l w (j-i)l" ! lsjsm

•

With D: (m+1 x m+1) = diag (d ,d, , . . . ,d ) define G:(m+1 x

m+1) , a lower triangular matrix with unit diagonal elements

(uniquely) by
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W = GDG' . (2.3.5)

Since the (m+1) random diagonal elements of D and the

^mCm+l) random elements {g. .: Oij<ism} of G combine to

give ^(m+2) (m+1) random variables we see that the trans-

formation from W into G and D is nonsingular. The actual

decomposition of W into G and D can be obtained using the

forward Doolittle procedure outlined in Rao [14] and Saw [16] .

We wish to determine the joint density of G and D.

This can be obtained by using the density of W, denoted by

f (ft) , and obtaining the Jacobian of the transformation from

M into G and D defined by (2.3.5). Denoting this Jacobian

by J{W-»-G,D}, and the joint density on G and D by h(G,D) then

h(G,D) = f (GDG' ) J{W-h3,D} . (2.3.6)

Direct evaluation of the Jacobian is cumbersome and the

method used here is due to Hsu as reported by Deemer and

Olkin [7] . Since the derivation of the Jacobian is rather

long the rest of this section is devoted to it.

We seek the Jacobian of the transformation from W to

G and D defined by

W = GDG
'

,

(2.3.7)

with all matrices (m+1 x m+1) and G lower triangular with

unit diagonals. Let [SG] and [6D] , both (m+1 x m+1),

denote small changes in G and D, respectively. Suppose that

the changes [5G] in G and [6D] in D bring about a change

[6W] in W so that (2.3.5) is preserved. That is

W+[6W] = (G+[5G]) (D+[5DJ) (G+[66]J ' . (2.3.8)

Expanding equation (2.3.8) and dropping terms of second
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order in the [6*
] [*e (G, D) ] , we find that

W+[6W] = GDG* + [6G]DG' + G[6D]G' + GD[6G]* . (2.3.9)

Since W = GDG', we see that

[5W] = [5G]DG' + G[6D]G' + GD[6G]' . (2.3.10)

Hsu has shown that

J{W+G,D} = J{ [<5W]-*[6G] , [6D] }, (2.3.11)

where J{ [6W] -* [6G] , [5D] } is the Jacobian of the transforma-

tion defined by (2.3.10), in which G and D are considered

to be fixed (m+1 x m+1) matrices. In essence we have gone

from a non-linear transformation in G and D into a linear

transformation in the differential elements [<5G] and [5D] .

Pre and post multiplying (2.3.10) by G
-1

and (G')"
1

,

respectively gives

G
_1

[5W] (G')" 1
= G

-1
[SG]D + [6D] + DtfiGJ'tG*)"

1
. (2.3.12)

Let A = G
-1

[6W] (G')" 1
,

B = G
_1

[6G] , (2.3.13)

and C = [6D] .

We note that A is symmetric, B is lower triangular with

(B) .. . = 0:0Si^m and C is diagonal. We may rewrite (2.3.12)

as

A = BD + C + DB' . (2.3.14)

From equations (2.3.10), (2.3.12), (2.3.13), and (2.3.14) we

have

J{W^G,D} = J{ [6W]+[5G] , [6D]

}

= J{[6W]^A} • J{A-^B,C} - J{B,C->[6G] , [5D] }. (2.3.15)

We shall evaluate the last three Jacobians separately.

The Jacobian, J{[5W]->-A}, is the Jacobian of the first
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transformation defined by (2.3-13). This can be evaluated

by usual methods and we find

J{[5W]+A} = |G|
(m+2)

= 1 , (2.3.16)

since G is lower triangular with unit diagonals.

The Jacobian, J{B, C-> [6G] , [ 5D] } , is the Jacobian of

the transformation defined by the last two equations in

(2.3.13). Hence it may be factored into the product of

two Jacobians, namely,

J{B f O[6G], [<5D]} = J{B+[5G] }-J{C+[6D] }. (2.3.17)

By the usual methods for determining Jacobians we find

J{B-[6G]} = |G
_1

|

(m+1) = 1 , (2.3.18)

and J{C+[6D]} = ^[(m+1) = ± (2.3.19)

so that equation (2.3.17) is unity.

Finally we need to determine J{A->-B,C}. Writing out

the equations given by (2.3.14) and using the fact that B

is lower triangular with zero diagonal elements we find

a.. =a.. =b..d.
Di ID 1J 3

and

Hence we find that

a . . = c .

33 33

^j < i *m (2.3.20)

3a. .

33 = i
3c. .

x

33

and

3a
13 _

3b.
13

= d

osj an

os3<ism ,

(2.3.21)

so that the Jacobian is

J{A+B,C}=
3(aoo

a
l0

a 20* a
mO

a
ll

a
21

a ., . . .a )ml mm
3 (c b, nb onoo 10 20

,b c, ,b , . . .b n .mo 11 21 ml
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m ™ A
= 7[ d 3

. (2.3.22)

Following equation (2.3.15) we obtain

J{W+G,D} = ™ d
m_j

. (2.3.23)
j=o J

2.4 The Joint Distribution of G and D for Arbitrary V and

in Particular When VsV.

In section 3 we derived the Jacobian of the non-linear

transformation W = GDG' . We now suppose that, for

arbitrary positive definite V,

WOU .. (V,v, (0)) . (2.4.1)
m+1

The joint density on G and D is then obtained from (2.4.1),

(2.3.6) , and (2.3.23) .

h(G,D) = K +1 (V,v)etr{-W
_1

GDG'} 5 d
¥v+m) - j-1

(2.4.2)
m+1 j=0 3

d . >o : ogj^m
3

and -<»<g. .<°° : osj < ism .

The terra K ,, (V,v) is defined by

K
-l

(VfV) =
| v |*sv

(2)
Wm+l)

n
%m(m+l)

J} r(^(v-j)). (2.4.3)
m+1 j_q

With A=V we may write,

tr{-J5V"
1 GDG' } = tr{-^AGDG'}

= tr{-JsDG'AG} (2.4.4)

= -h i d. (G'AG) . . •

j=0 3 33

Kence we see that the density in (2.4.2) partitions into

}; •the subsets {d ,g10 ,g 2Q
, . . - ,gm0 >

;
^d

1
» <3 2 l ,g 31' * * *

'

gml

{d , , a , }; Id } which are mutually independent, but
m-1 ^m, m-1 ' m

variables within a subset are dependent.
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2
In the case that VeV then we may write a A= R'R from

equation (2.2.12) and we find

(G'AG) .. = - (G'R'RG) . .

, (2.4.5)
i (RG) ' (RG) ,

rr J J

where

(RG);
o

= (B"
1
;g10

-a
1
;g 20

-a
2g 10

;...;gmo-amgmfm_ 1 )

and for i sj ^n-1

(RG);. = (0;0;...;l;g
j+1/j

-a
j+1 ;gj+2fj

-a
j+2g j+lfj

;...;-

^j-Vin-l,] 1 ' (2-4-6)

The "1" appears as the j element in (RG) . .

Now we may write

< G
* AG

>oo =V S +
v
Z

n

(gko- Vh,o' }

a k=l

and for l^jsm-1 (2.4.7)

1
m

2
(G'AG) . . - i {1 + Z (g -a,g , .)*}

33 a k=i+l
k ' 3 K K ,3

The density h(G,D) factors into

m-1
h(G,D) = t.^h.Cd.^g^^^g.^^ gmj

)}hm (dm ), (2.4.3)

where

h
o
(d 0' g10' g20 gmo )

=

d
Mv+m)-l _ f ,, ro-2

m
etr{-^d

o [B ^^(gko-Vk-^o) H

r(W^ (v+m) ^m
|v|* |v

(0)
|

35(v - 1) (2 - 4 * 9)

and for lijsn-1
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h . (d
. ,g .

, , . , . . . ,g ) =
3 ] 3+1.] '^nrj

1

m

rd,(v-j})2^
(v+ffi)-^- (m-3 ) |v^|v

(j)
i^v-j-u l-v^J

3
* 1^ '

(2.4.10)

- v-m

and h (d ) = {T {h (v-m))(2a 2 )

2
} d^

(v m) ~ 1
exp[-}sa

2
d ].mm " m i - • m j

-1 i,
'2

m

(2.4.11)

2.5 The Distribution of G, of D, and of G Conditional on

D When V Is Arbitrary and When VcV .

The necessity of knowing the distribution of d ;d.;...;

dm and the subsets {g10 ;g20
; - . - ;gmo >; {g 21 ;g 31

; . . . ;gml }; . . .

;

{g , } arises from the fact that functions of these statis-Jm~

1

e m
2 2

tics will be estimators for the parameters a , (3 » and

{a,,a„,...,a }. A knowledge cf the distribution of the

estimators gives us the information we need to talk about

the "goodness" of the estimators. It is to this end that

we derive the distribution of G, D, and G conditional on D.

The distribution on the elements of D follow directly

from a theorem given in class lecture notes and in Saw [15]

.

Theorem 2.5.1

If W"jb , (V,v, (0)) , v integer with v>m; and W. . is

defined by

w

W
(r)

w w
00 01

w w
10 11

'r0 wrl

Or

Ir Osrsm
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Then -C
|

W
| ; {j W j /

J

W ,

1}
|

}™} are independent chi-

square variates such that

l

W (0)^l V (0)l'<v (o) < 2 ' 5 - 2 >

and for 1 scc^m

l

W (r)l/l W (r-l)l^ V (r)l/l V (r-l)l *v-r < o)
'

< 2 - 5 - 3 >

Since from (2.3.4) we have

' d
o " l

w
(0)!

d
j

= |w
(j)

l/iw (j-i) l^' 1^^ ,

then by direct application of Theorem 2.5.1 we have

d Mv,„.
| x

2
(o)o ' (0) * *v

and for 1 <rj sn

dj" |V
(j)

i/|V (j-l)' X v-j
(o) ' (2 ' 5 ' 4)

Now if we allow VeV, then since |v...| = a
2 ^"1

" 1^ 2
we

find

d
Q
^a

2
3
2
X
2

(o)

and for 1 £j sm (2.5.5)

2 2
d .^a x (o)

To find the density on the subsets {g, n ;q~ n ; . . . ;q „ }

;

^10 ^20 ^m0

^21 ;g31 ;
" * " ;gml^ ; " * ' '

^ gm m-"1 ^ we refer back to equations

(2.4.9) and (2.4.10). Using those equations we may write

for o sj sfii- 1 /

V dJ'Vl,J ; '-- ;gm,j )=C ^^'W^d.tG'AG)^}, (2.5.6)

for some constant C. Performing the integration over d. andmm ^

replacing (G'AG) .. by I E X.»g. .g
fl

. we have,
3 3 k=j £ = j

k* kj Jij
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mm
j

h
j
(g

j + l,j
; --' ;gm: )

- C
m<

V!V'3)^. /A^kjV ''

K_J *_:1
(2.5.7)

where, with V, . . taken as unity

rCs(v+m)-j) | v.. .. |^
(v~^

C (v:V,j) = j^—^ ipj ^ . (2.5.8)m r(v2 ( V-j))n'
2(m

-
1}

|v| 2 |v
r) |

2(v D 1}

Remembering that g..-l, a transformation shows the variables

in (2.5.7) have a multivariate t-distribution. The form and

properties of the multivariate t-distribution were found by

Cornish [6] in 1954 and also in the same year by Dunnett and

Sobel [8].

Now if we allow VeV, we find

h (g10 ;g 20
;...;gm0 )=6 cm (v:i,0) {1+8 Z (<3kQ

-Vk_ lfQ )

2
}

K— x

(2.5.9)
and for l£j<_m-l

m .

K-DTl
(2.5.10)

Evidently 9 10 ' ?21 ' ' ' *

'

gm m-1 are mutual ly independent and

vS(g
10

-
ai ) ^t

v (0) (2.5.11)

and

,v-k+1) ^k,k-ra
kh Vk+i

: 2-k^ (2 - 5 - 12)

To find the distribution of G conditional on D let

|v._,.
|
= 1, then the marginal distribution on D is

h(D)= h(d n ) -h(d,) . . .h(dm )
U 1 m

m d^-^W-^ |V
(j) |

_1
|V |d }

J=o (2|v
(j)

|

|v
(j
_ 1)

|

-1
)

2(v D) r(v2 (v-j))

We have from equations (2.4.2) and (2.4.4) that the joint

density on (G,D) is

(G,D)=k (V,v) n {d^
(V+m) j ^xpC-Jgd. (G'AG) .}}h(G,

m+i ' '
'

y
The conditional distribution of G qiven D is
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Although this does not have a very pleasing form if we let

VeV, we find the conditional density simplifies greatly. If

we write G'G =(RG)'(RG) and use the fact that iv,.,|= a
2 ^ +1 ^6

we find

m-1 _ , -^(m-j) _ m _

h(G|D)= n {(27Ta
i
d.

x
) expt-^a 'd. E (g. .-a.g. . .) ]}.

D=o •
- k.j+l ^ ^"^
fl-JTi.

(2.5.15)

Let g. be the (m- j) -variate column vector given by

' h = (g
J+l,J

;g
J-H2 /j

? ---^mj ) ' : 0*j*«n-l, (2.5.16)

u_. the (m-j) dimensional column vector defined by

Hj = ( ct

j + l'
a
j + l

a
j+ 2

; -" ;a
j + l

a
j +

2'-- am ),:o£^ ra- 1
'

(2-5-17)

and V. the (m-j x m-j) matrix whose elements are given by

2

(v.) * SL
v y 11 d. : Osijsm-1 ,

2
,

^jJfck* dT
+ Vk (Vk-U-l : 2^^-j; o*j*m-l, (2.5.18)

and (V
j

) kl
=(V

j
) lk

=a
j+k

a
j+k+1

...a
j + 1

(V.)
kk

: lsk<l*m-j;

osjsm-1

.

Then equation (2.5.15) may be written as

m-1
h(G|D) = n h.(g.|d.) , (2.5.19)

j=o -
1 J -*

where for osjsm-1

h^(q.\d.) = (2*)"%(m
~
j> IVjf^expt-istaj-yjJ'v"

1 ^j-Hj)].

That is (2.5.20)

2j|d
j
'uN

n_ j
(y.,V.) : osj^m-l . (2.5.21)
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2.6 Verification of the Distribution of G

In finding the density of the subset (g, , , ; . . . ;
g ,)

the constant C (v:V,k) was aiven, but was not verified. In
rn

this section we show how the value of the constant can be

obtained.

We need to evaluate the integral

. „ P P
I I

i=0 j=0
I- « |( I Z a-.u.u.) 3du,du.l

l""2'
.du (2.6.1)

{-°°<u. <+oo
: lsisp}

where u =1 and a .
. =a .

.

o 13 31

We may write

P P
I E a..u.u- = (1 u')/a a

'

i=0 j=0 13 X D - / 00 -

\ a A

(2.6.2)

where _a - (aQV a
Q2

a
Qp

)
• (2.6.3)

and A =

a
ll °12

a
21

a
22

a , a -
pi p2

'IP

'2P

PP

(2.6.4)

Now equation (2.6.2) may be rewritten as

P P
I Z a. -u.u. =a nn +u' Au+2u'

a

i-0 j-0 ^ X
3

00
(2.6.5)

=a +(u-f-A
_1

a) 'Atu+A'^l-a'Ati. (2.6.6)

-1 -1 hWrite u + A a = (ann~a'A a)
2Kw

. (2.6.7)

where KAK'-I, so that [k| = IaI
- '

2
. The Jacobian from u
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into w can be found by standard methods and is

J{u-»w} - (a
00

-a , A~
1
a)

1'£p |K|

= (aQQ-a'A^cO^lAf^.

Hence we have

I = (a nn-a'A
x
a) 2P p

|a| 2/(1+w'w) p dw....dw„ .

g 00 — ' ' — — 1 p

{-CO<W ,
<CO; lsisp }

We compare this with the following version of the multi-

variate t-distribution

, Isjsp

(2.6.8)

(2.6.9)

(2.6.10)

f(t)=C |2rt(l+(t-e)'2:
1
(t-6)]

I
'2(n+P) :—<t

j

<-, n>o

where C = r (h (n+p) ) /{ 2̂P
T (hn) } .

P

Let T=I and 6_=c , then setting B=^(n+p) we see that

n=2B-p, since n>o we must have B>hp and we find

/(l+w'w)- pdw
1
...dw

p
=
U
/{ t)

?U2

(2.6.11)

(2.6.12)

(2.6.13)

{-°°<w. <«>:l<i<p}

Hence

,

I

hP

g (*oo-^ A ">
2P A 2

r <B)

a afP'
00 ~

Vd
a A 1 r(3- 1

-2P)Tr
2P

|
A |%<P+D-Br(B)

Referring back to (2.5.8) we see that p=m-j;

so that

(2.6.14)

(2.6.15)

^(v+m)-j,
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r(3s(v+m)-j)
^(v-j)

Cm(V:V ' J) =

rrt(v-j»)^<»-3)|AJ ^"^ (2.6.16)

where

and

A
l

=

3r] 'J/ j+1

X
j+l,j

A
j+l,j+l

m,j m,j+l

3 ,m

j+l,m

m,m

(2.6.17)

A
2

"

X
j+l,j+l

X
j + l,j-

X
j+2,j+l

X
j+2,j+2

m,j+l m,j+2

j+l,m

' j+2 ,m

m,m

(2.6.18)

T-lNow with A=V , then by an application of the clockwise rule

IVI"
1 = |A|.

hence we find

A
ll

A
12

A
21

A
22

-1
= |a

22
!|a

i:l
-a

12
a
22

a
21

= U22 ll vii

So that

A
22 iHvr

1
iv11

Aii-ivr 1 - iv
(j

_ 1} i

a
2 i

= ivr
1

-
|
V(j)

i
,

and we confirm that

r(^(v-j))^%(m-j) |v|^|v

h(v-j)

(2.6.19)

(2.6.20)

(2.6.21)

(2.6.22)

(J)

(v-j-1)



Chapter III

THE ESTIMATORS o\, B*, and {a*.:lsjsm}

3. I Introduction

In Chapter II the unknown parameters a , B
2

, and

{a
.
:isj%0 were introduced to define the generalized first

order autoregressive process and thence the underlying

distribution of the observations. In this chapter we

propose estimators (alternatives to the maximum likelihood

estimators) for these parameters and discuss their properties.

(To distinguish between the estimators proposed in Chapter II

and the maximum likelihood estimator, we shall reserve the

hat (

A
) notation for the latter and star (*) notation for

the former.)

Finally, tests of hypothesis concerning the parameters

are discussed. Special attention is given to the case of

testing a
k

= a
k+1 = . . . = am = nQ , for k = 2,3, . . . ,m. A

method, due to Fisher, of combining independent tests is

likely to be appropriate.

3 • 2 The Distribution and Properties of g
2

, B
2

, and {a* : l,sj*m . }

Suppose that we observe a number of (m+1) -variate

column vectors v_ . : 1 sj sn (n>m+l) , obtained by random sampling

from an (m+1) -variate normal population with mean y and

25
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dispersion matrix V. We assume that these observations come from

the process Y(t) = p (t) + X(t), during times t <t,<...<t ,

o i m
where X(t) follows the first order generalized autoregressive

process. Since? Y(t) = p (t) we have, letting U(t.) = u. :

osism, that

1
n

or alternatively with the (m+1) dimensional column vector p=

(y , uv ..-, U )\ that

&i
= Y L

* ~
,

l
Jij : o^i^m, (3.2.1)

H = X =
n

Z
ili

- (3.2.2)n
j=l D

Estimates of the noise process X(t) for t„<t,<...<t are
1 m

*j
=

Zj " £ : ls^n • (3.2.3)

From these we may arrive at

n
W = I x.x.

j-1
~«

n

(3.2.4)

1
(Zi~£) (Z-;~£) '

. (3.2.5)
-1 3 3

= Z

r-

where W has the central Wishart distribution on v=n-l

degrees of freedom and dispersion matrix V (where VeV)

.

Hence the theory of Chapter II is applicable and we have

from equation (2.5.5), (2.5.11), and (2.5.12) that

d0^° 2
^
2

^l CO) ' (3.2.6)

dj^o xv _j (0) : lsjsan , (3.2.7)

v'
5
B(g

1()
-a

1
) * t

v (0) , (3.2.8)

and (V-k+1)
1

^ (gk/k_ 1
~«

k
)^t

v _k+1 (0) : 2 sksm . (3.2.9)

Hence the estimators for {ex.: lsjsm} are:

a
*j

= gj/j"l
: lsjsm ' (3.2.10)
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with densities given in equations (3.2.8) and (3.2.9).
2 7The estimators for a and 3 are:

.2 1
m

°* =
ic\ .

Z d
S

' (3.2.11)
1 3=1 J

where ^ = V -Js(n+1) (3.2.12)
7

m -1aRd S *
= d (c

2
E d

i> (3.2.13)
j = l J

where c
2

= vOnc^)" 1
. (3.2.14)

We note that a* has a Gamma density and g
2

has a Beta Type

2 density.

In order to evaluate the "goodness" of these estimators

the following properties are investigated: (1) the first two

moments, (2) the consistency of the estimators, and (3) the

efficiency of the estimators.

The first moment of the estimators are given by

e(ct
*j )

= a
j

: 1^^m > (3.2.15)

£(a
* )

= °
2

> (3.2.16)

and cdjj, „ 6
2

f (3.2.17)

so that the estimators are all unbiassed.

Letting £* denote the (m+2 x m+2) variance-covariance

matrix of the (m+2) dimensional vector of unbiassed estimators

(a
*l'

a *2' **•' a *m ' °*' 6 * J '
we find

(E*> U = 6 (v-2)~ , (3.2.18)

(^*)
j:j

= (v-j +1)" 1
: 2sjim

, (3.2.19)

U * ) m+l,m+l
= 2 ^mc

±
)~ o

4
, (3.2.20)

(Z * ) m+2,m+2
= 2 (v+racr 2

) tv (m^-4) ]"V , (3.2.21)

(E * ) m+l,m+2
= (Z * ) m+2,m+l

= "2 (mc^
_1

a
2
B
2

, (3.2.22)

and
^
E
*^i-j

= ° : elsewhere . (3.2.23)
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In Fisz [10] and Feller [9] it is shown that a statistic

t
,
based on v observations, with mean 6 and variance t , will b<

consistent for 3 if

lira t =
v

\)-yoo
(3.2.24)

In the equations (3.2.18) thru (3.2.21) if we let v+°°,

we find the variance of the estimator goes to zero. Hence

the estimators (a
2 2

' a *m ' a *' 3*) a ^e consistent

The likelihood function, from which the estimators

are derived, is the density of W, given by

L - f(W) = Km+1 (V.,v)|w|
J§(v-m- 2)

etr{-35v""
1
W} . (3.2.25)

Using this we may obtain the "Information Matrix", F,

whose elements are defined by

(F)
j£

= I
9 log L
36. 36 ;

1
*

(3.2.26)

where 6. and 6 are any two of the parameters a.,...,a_,on 1 Et

a
, and 3 . The j diagonal element of F gives the

minimum varinace bound of any estimator of 9 . . Letting

(0
l'

e
2' •••' e

m'
6
m+l' em+2 ) E <V a 2' ' ' " a

m' ^ '^ we find

(F)
33 " C<

t2
W
j-l.J-l }

a
2 3-lrD-l

l^j^m ,

With Vl'J-l=a2(1+aj-l+aj-laJ-2
+ '-- +a

j-l
aj-2-

2 2 2 2 2
+0t

J-l
aj-2- *

- a oa-, S
) ,

(F)
m+l,m+l ~ e [

2"1 ;

-v (m+1)

2a

v(m-H)

2a
4

+ -.trV
_1

W]

(3.2.27)

(3.2.28)

(3.2.29)
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r w i
(V\ - p

"V -P-P
'

m+2 ' m+2 hs 4
a
2^

2S
4 '

(F)
m+l,m+2 (I)

m+2,m+l
2a 8

(3.2.30)

and

o 2 2
'

2a B

(F)

-

£
= 0: elsewhere

To see that (F) ._ = elsewhere we note that

3
2
lo L

"56 96~ =
° for l^i 1̂ '' ls^sm; j f 1 ,

J A

3 log L _ _1_

and

9 6. 86
] m+1

9 log L _ A . .

96. 36 „
" ° : ls3^

] m+2

(3.2.31)

(3.2.32)

(3.2.33)

4 'Yj-lO-r^-^j' : 1SJSIU
'

(3.2.34)

(3-2.35)

now e( -L
[YH ,H-wH(j i) - ? (Vj-i'J-i " v

3-i,j>

= o , (3.2.36)

since v
j_l

f
j~a

j

v
j-l, j-i*

Hence ( F )-;j>,
is zero as was to be

shown.

,-1With Z - F " we find that the minimum variance bounds

are

-1-2
(S)

JJ
= (V V

j-l,j-l ) a : 1SJSm '

(2)

(Z)

(E)

-1_4
m+1 ,m+l

= 2(vm) a
'

-1 4

m+ 2,m+2
= 2(m+l)(vm) *B* ,

m+1 ,m+2 ii)
-1_2„2

ra+ 2, m+1
= " 2(Vm) a 3

'

(3.2.37)

(3.2.38)

(3.2.39)

(3.2.40)
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and (£) ., = : elsewhere . (3.2.41)

Since the efficiency of an estimator is the ratio of the

minimum variance bound to the variance of the estimator,

we have from equations (3.2.18) thru (3.2.23) and equations

(3.2.37) thru (3.2.41) that the efficiency of the starred

estimator, denoted by Eff(6 A ), is

Eff(a#1 ) = (v-2)v
_1

, (3.2.42)

Eff(a^) = (v-j-1) (vv ^_
1
)" 1

a
2

: 2sj sn , (3.2.43)

2 -1
Eff(a^) = c

2
v , (3.2.44)

and Eff(g^) = (m+1) v (1x10.-4) [vm ( v+mc -2) ]

_1
. (3.2.45)

2 2The estimators a^, a * , and B* are asymptotically efficient

while the asymptotic efficiency of a* . : 2sjsm is given by

lira Eff(a*.) = v~ . .a2 : 2 <
j <m . (3.2.46)

Replacing v.
1

._
1

by the right hand side of equation

(3.2,28) gives

lim Eff (a ) = U+a? ,a* +...+a* a? -...a* + a
2

n
2

al-
v-»-co J JJ-D^ ]"1 ] * 3~2 ]-l j- 2 2

2 "? 7 2 9—1
a
j-l

aj-2- '

-

a
2
a
l
6

)_X
: 2s 3^m . (3.2.47)

Hence the asymptotic efficiency of o..k
. depends on the true

9
values of the previous a's and 8 . If the true value of

aj-l is zero then a *- is asymptotically efficient regardless

of the values of any of the previous a's. That is, the

asymptotic efficiency of a. is dependent most upon the true

value of a. , the previous n, next upon a. „, and so forth
j x - 3~^

with the least dependence on a, and g . If we suppose that
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all the parameters are less than unity in absolute value and

write

,

a = max(

|

a
± \ , \

a
2 \

,

.

. . ,
| a .

1 1 , | S | )

,

(3.2.48)

then we may arrive at the inequality

(l+a
2
+a

4
+...+a2(j_2) +a 2j ) ;> (1+a

2
. +a

2
,a

2 .+...+

22 222 222
a
j-l

a j_2- *
- a

2
+ct

j-l
a j-2' ' - a

2
a
l
6 )

'
(3.2.49)

where equality holds only when ja,| = |a
2

j
= ... =

l
a -j-ll

=
i^l

=
l

a l- Tne inequality reverses upon taking

reciprocals and we find the asymptotic efficiency of a*, is

at least as qreat as

min Eff (atj ) = (1-a 2

(

j_1)
+a 2j -a

2 ( j+1)
) (1-a

2
) : (3.2.50)

2sj <gn

Although {a*-: 2sism} is inefficient this loss in efficiency

is more than made up for by the fact that the distribution

of { (a* .-a . ) : 2sism} contains no unknown parameters.

3 . 3 Tests of Hypothesis

Since the distribution of the estimators are known,

tests of hypothesis may be carried out with ease. We

tabulate here a few hypothesis of interest.

It is desired to test the hypothesis

H
o

: a
k

= ak+l
= '•• = am

= n (k=2,3,...,m)

against (3.3,1)

H : at least one of the equalities does not hold.

With

tj = (v-j+1) ^
(g^ ^j.-l-tIq) : 2*jsm

, (3.3.2)
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define

Pj = P{|t
(v_ j+1) |

setj} : 2sjsm. (3.3.3)

An appropriate test statistic for testing (3.3.1) is
m

L = -2 E log (p.)

.

(3.3.4)
j=k

e >

The quantity, L, has the chi-square distribution on 2(m-k+l)

degrees of freedom. The hypothesis is rejected at signifi-

cance level a if

L > I (3.3.5)

where i is chosen so that

P{ X2(m-k+ l)*
l}m a

•
(3 - 3 ' 6)

This procedure is called Fisher's method of combining

independent tests. It has been shown by Littell and Folks

[12] to be asymptotically optimal over other tests as judged

by Bahadur relative efficiency. The Bahadur relative

efficiency compares the rates at which the competing te*st

statistics observed significance levels converge to zero,

in some sense, when the null hypothesis is false. The

interested reader is referred to Bahadur [3] and Littell

and Folks [12] .

The above hypothesis has some interesting interpretations

for choices of n . If n = , we are testing whether the
o o v

process is white noise from some point k on. In the case

where n is a constant, not equal to zero, we are hypothe-

sizing that the time series is stationary.

Hypothesis concerning individual parameters can be

carried out in the usual manner since the distribution of
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the estimator is known.

An hypothesis of importance, concerning a single

parameter would be

2 2

against (3.3.7)

H
a

: B
2

* 6
2

.

An appropriate test statistic is

F
Q

= mc
1
6
2
/(mc

1
-2)e

2
(3.3.8)

which has an F distribution on v and mc. degrees of

freedom, where c, is defined in equation (3.2.12) as

v-%(m+l). The null hypothesis is rejected at the a level

of significance if

F
rt > F

V
(3.3.9)mc.,cx v

'

where F is chosen so that
mc, ,a

p < F^L > F2L > = a . (3.3.10)mc. mc. ,a

2Choosxng 6=1, the hypothesis implies homoscedasticity

between the initial observation and the errors of the "noise"

process.



Chapter IV

THE MAXIMUM LIKELIHOOD ESTIMATORS

4 .

1

Introduction

In order to comment further on the value of the

estimators given in Chapter III some standard of comparison

must be employed. To this end we study the maximum

likelihood estimators. In this chapter we obtain the

maximum likelihood estimators and examine their sampling

properties. A comparison is then made between the maximum

likelihood estimators and the starred estimators of Chapter III

4 .

2

The Maximum Likelihood Estimators and Their Distribution

As in section 2 of Chapter III, we suppose that we

observe a number of (m+1) -variate column vectors y_.: 1 sj ^n

(n>m+l) , obtained by random sampling from an (m+1) -variate

normal population with mean y_ and dispersion matrix V. As

in Chapter III, we estimate y_ by y and form the (m+1 x m+1)

matrix W by
n

w = j£i (Zj-Z) (Z-fZ)
' • (4.2.1)

W has the central Wishart distribution with v=n-l degrees

of freedom and dispersion matrix V. W may also be represented

W = Z z .z . (4.2.2)

D=l - J

34
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where z_, , z~ » •••» £., (v=n-l) are mutally independent and

-j
% N

m+1 ( -' V) : 1^ £v • (4.2.3)

To see this let the (m+1 x n) matrix Y be defined by

Y = (y
1
'y

2 '-'-'Zn ) '
(4.2.4)

and let B be any orthogonal (n x n) matrix with last column

( i' A A )l
- < 4 - 2 - 5 >

Define the (m+1 x n) matrix Z = (zw z„, ..., z ) by—1—2 —n J

Z = YB . (4.2.6)

We note that

z = /n y. • (4.2.7)

Now W may be written as

W = YY'-n;^'
, (4.2.8)

and since B is orthogonal (BB'=I) we may write

YY* = (YB) (YB) '

= ZZ* , (4.2.9)

and upon substituting YY' = ZZ' and z_ = /n y_ into

(4.2.8) we find
i i

W = Z Z - z z—n—

n

n i
'

y Z . Z . - Z Z= j^-D-D -n-n

n-1

= j^ljij • (4-2.10)

Hence we have the representation
n

w.
\j = ^a-yo^ji -yj)
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I Z.,Z., : csism; osjsm . (4.2.11)
=1

Hence forth we shall use W = ZZ keeping in mind the

representation given in (4.2.11).

Assuming that Y(t) = u (t) + X(t), where X(t) follows the

first order generalized autoregressive process then VeV and

has the properties given in section 2 of Chapter II. Since

it is through "W that we obtain estimates, the elements of W

serve as observations and the likelihood of this set of

observations is L = f (W) given in (3.2.25). Taking the

logarithm of (3.2.25) and utilizing the form and properties

of V we obtain

log L = C - '±sv(m+l) log o
2

- ~ logB
2

+%(v-m-2)Iog|w|-%trV W , (4.2.12)

where C is a constant. Recalling that A = V_J" has the

special form given by (2.2.11) we may write

txV'hrt trAW

12-1 m m
7

(4.2.13)

Substituting (4.2.13) into (4.2.12) we find

log L = C - %v (m+1) logo 2 - j log °?' + h (v-ra-2) log |w|

-it( 8
2 )-- 1w00+ji

w.. +

ji

(a2„._
li

._
l
-2a

j
w
j
_ lij)

}

(4.2.14)

Differentiation of (4.2.14) with respect to a- yields

3 log L 1 , , , .

3aj
= " ~2 {a

j
wj-l,3-l " W

j-l,j } : ^^ '
< 4 - 2 ' 15 )
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2
differentiation with respect to a yields

m

,2 -2 '

4
l lts

'

w
00 ._, jj

da 2a 2a 3=1 JJ

+ Z (afw. . . ,-2a.w. . .)} , (4.2.16)

j =1 3 D-l/D-1 3 J
-1 'D

2
and finally differentiation with respect to B gives

9 log L _-_v_
W
00 # 4 2 17)

? ~ 2 2 4
v«*.^.x^

9S
Z

2B 2a 3

Settina {i^-Ji . isjsm} ,

8 lo
1j

L
, and

9 l0
f

L equal to
8a

j 3a
2

8B
2

zero and solving we obtain the maximum likelihood estimators:

a
j

= w
j-l,J

W
J-l,J-l

: 1SjSn ' (4 - 2 ' 18)

a
2

= [vinti)]-^"^ + .^ (Wjj-w
2.^^-.

1
^.^)},

(.4.2.19)

and

B
2

= (v5
2

)

_1
w
00

. (4.2.20)

~2
Eliminating B from equation (4.2.19) yields

o
Z

= (vm)
-1

Z (w..-wf . ,w t . ) . (4.2.21)
-; = ^ 33 3 -J-'J J X 'J x

We now proceed to determine the distribution of the

maximum likelihood estimators. In order to do this we shall

use conditional arguments frequently. We shall write

y|z * f(0 (4.2.22)

in order to imply that "y conditional on z has the density

... ." Using the representation of w. . given in (4.2.11)

one has
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£ z , , Z .,

k=l 3
-1A ^

k-1 3" 1 ' k

: lijsan -
(4.2.23)

Letting

v

o. = I <f>. , k z- k
: l^j^m . (4.2.25)

$ _

Z
jk : osjsan ; ltCksv , (4.2.24)

jk • v 2

E jk
k=l

we may write

Recalling that

zk * Nm+ 1
( -' V> : 1$k -v (4.2.26)

when VeV, we must be able to represent z ... by

z.. = a.z. . , + e.. : ls:jsm; lsksv , (4.2.27)
}k 3 ]-l, k 3k

where e., are independent identically distributed normal
3k 1

random variables with mean zero and variance a .

Kence

:.lz. - . a.N(a.z. . ,,a 2 ): Isjsm; ls&sv . (4.2.28)
3k' 3-1, k 3 3-1, k'

Using (4.2.28) in (4.2.25),

2 J .2
a
j

I

{2j-lA :1Sk^V} "N(c
'j
ki1

<,)

J-l,k
z j-l,k ;a ^/j-lrk 1 '

(4.2.29)

Since v
E z . , ,

v . , D-l,k

i j-i.k'j-i,* " TX-- -!l (4 - 2 - 30)

k=l
k=1 ' '

-
' *,

z
j-i,k

If-

'

v

K_±
I

zj-l,k
k=l
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we find upon their substitution into (4.2.29) that

2
v

7 -1
a. |{z. . : ls;ks:v}^N(a.,a ( E z^ . )

x
) . (4.2.32)

J j x / K J k=l

To complete the derivation we note the following.

Let

u ^ N(y,cr ) (4.2.33)

and v -\* a
2
X
2
(0) , (4.2.34)

then Student's t-distribution is defined as

t = (u -y) (1 v)
_?5

. (4.2.35)

We note that the distribution of t conditional on v is

t|wN(0,va 2v
-1

) . (4.3.36)

Hence, by analogy, the distribution of a. is also t and

we have

vh
( -'"V'V ' (

"i " a
i

)
%V 0): ls^ rn

'
(4.2.37)

cv „
, oo n 2where —=— = $ ,

a

and
Ilil #1*2 ,2 2 ,22 2 ,-^ = (1 + ttj-1 + Oj.^.2 + ... + a._ iaj _ 2

...a
2

+

a
j-l

aj-2"- a
2
a
l
B2) : li^ra . (4.2.38)

~2
To find the distribution of a we define the (vxl)

column vectors 9. = (0.,,9.„, ..., 8. )' by—j jlj2 jv 2

6
jk

= ( Z zf
k )

2
z
jk

: lsksv; osjsm , (4.2.39)

and note that

6 . 9 . =1 : Osrjsm . (4.2.40)
-D-D

In terms of the (m+1 x v) matrix Z we have

•j =((Z) . (Z) j.}
-3s

(Z) !, , (4.2.41)
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For convenience we take

and write

n
j

= W
jj ' w

j-l fj
w
j-l,j-l

:
1Sj *m

'
(4-2.42)

,2 1
m

mv .- =1 'j . (4.2.43)

Using £. we may write

n- = (Z). (I -G. e' ,)(Z)| : lsijsm , (4.2.44)
J J v J j-J x j.

where I is the (vxv) identity matrix. Consider the

distribution of n conditional on { (Z) . :0sjsm-l}. Now

(Z) m J{(Z) j>
: 0^j^m-l}^N

vxl (am (Z)
m_ 1>

.;a
2
I
v
). (4.2.45)

Conditional on {(Z) . : osjsn-1} the matrix (I - 9 , 6' , )
J- v -m-l--m-l y

is symmetric and idempotent with rank (v-1) , and the

quadratic form n
m follows the non-central chi-square

distribution, that is

Hm |{(Z)
j
.: 0^jsm~l}^ a

2
XJ_ 1

(Tm ) (4.2.46)

where

v =^t z » m-i,(vViCi'( zC-i, . <
4 - 2 -^)

Upon replacing 9, by its definition in (4.2.47) we find

Ym = . (4.2.48)

Since none of {(Z) . : Osjsm-1} enter into the distribution

of nm we have the unconditional distribution is the same and

hence n^ is independent of {(Z) . : o<;j sm-1}, that is

.2. 2

(v-1)
^ % ° X

/„_-n (0) . (4.2.49)

The distribution of n , ,» conditional on {(Z).
#

: os;j<jn-2}

can be obtained in exactly the same manner and since it
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depends only on {(Z) .. : Osjsm-2} it is independent of

H . By the same arguments as above n - -, N can be shown tom ' tm-1)

be independent of {(Z) ..: c^jsm-2} and hence

n,m_n ^ o
2
X
2

(0) . (4-2.50)
1 x;

(v-1)

In exactly the same manner we can show ru, is independent

of iv and hence so is n, k+2w ^ tv + 2) ' •••' ^ since they are

independent of n^,^ • Again the distribution of r\ is free

of {(Z) . : Osjsk-1} so that the unconditional distribution of

n, is identical to n . In this way we argue that { n . : lsjsm}
K. Ifl

)

are mutually independent and identically distributed with

1
j
^^ 2

X
2

v _ 1)
(0) : lsjsm . (4.2.51)

,2 1
m

Since d ~ — E n . we havemv
j=1 3

d2 *iv 4<v-l)<°> . 1,4.2.52)

In the above arguement we note that the variables

{n ,r\ . , ., . . . , n,} are independent of {(Z).: o^j^k-1}.

Hence we have { rU' rW -,w •••> n-,} are independent of (Z) Q# ,

and hence of

W
00

= (Z)
0. (Z) 0. • (4.2.53)

Since

then

Z
0k

°° N (°' a2 3
2

) = lsksv , (4.2.54)

w
00

% ° 2?,2A (0) • (4.2.55)

~2 ~2 -1
Since 3 = (va ) W

0Q / then we have
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(V_1) ° 2 * p
v

(Q) _ (4.2.56)
v3

2 ra(v- 1)

4.3 Properties of the Maximum Likelihood Estimators

Since the distribution of the maximum likelihood

estimators is known their properties are easily obtained.

We find using equations (4.2.37), (4.2.52), and (4.2.56)

that £(a.) = a. : lfij^ri , (4.3.1)

e(a
2

) = (v-l)v~
1
a
2

, (4.3.2)

and £(S
2

) - mv[m(v-l)-2]
_1

3
2

. (4.3.3)

A 2 " 2Hence the a. are unbiassed estimators while a and 3 are

biassed. Since unbiassedness is a desirable property we shall

2 2use the unbiassed estimators of a and 3 in calculating the

rest of the properties.

- Letting £ denote the (m+2 x m4-2) variance-covariance

matrix of the (m+2) dimensional vector of unbiassed

_ -i n — 1 2estimators (6L, a~, •--» a , v(v-l) J a , [m(v-l) -2] (mv) 3 ),

we find

(IK, = (v-2)
1
3

2
, (4.3.4)

(£).. = (v-2)
X
v *

. a
2

: 2^jgm , (4.3.5)
J J J

-
-L /J x

where v. , . . is defined in (4.2.38) ,

I -1 / J--I-

and

(*W,m+l
= 2[m(v-l)]- 1

a
4

, (4.3.6)

{ ^ } m+2,m+2
= 2 [m( v-1) +v-2] [rav (v-1) -4v]

_1
3
4

(4.3.7)

(i) m+l,m+ 2
=

<*>m+2,m+ l
= "2 [m(v-l> TW (4.3.8)

(Z) .. = : elsewhere . (4.3.9)
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To see that the set of estimators (a..: lsJsP) are

independent of the set {d
2

, l
2

) we note that the distribution

of d
2 and B

2 are free of the elements of a. and hence the two

sets of estimators are independent. To see that the covari-

ances between the a's are zero we note that

v

3 k=1 3 -i»K 3,k

=
k
yj-l,k (a

j
a, j-l,k

+E
jk )

= o.+ E ^_lk^ k
= l^*m ,

(4.3.10)

where <j> . ,is defined by equations (4.2.24) as
j /k

3/k

3' k v
2

v

k=l
D,K

Hence the covariance between a. and a
£

(j?**) is given by

(Z) .

£
- £(a

j
a
£
)-£(a

j
)e(a

£
)

v v

= e [(a
j+k^ j

_ 1>k
e
jk

)(a
Jl+ky £ _ lfk^k )] - a.a

£

v v

= £(«
j

^+c
tjk_y £ _ 1/k

e,k+
a
2ky j

_ lfk
s
jk

+ * Vj-l,^!^-!,^^^ '

(4 ' 3 - 11)

i=l k=l

Since the {e ilsssm, is t£v} are independent identically

distributed normal random variables with zero mean, we have

taking expectations first with respect to the e
gt

's that the
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last three terras in brackets in (4.3.11) vanish and we are left

with

(Z)
j£

a
j
a £- a

j
a
£

= : l£j^££m . (4.3.12)

Although this shows the estimators are uncorrelated it

is not true that they are independent. To see this we

examine the case for m=2 . Write

W=GDG

'

d g10

d g 20

VlO

WlO
d
l
g 21

+d g 10 g 20

d g 20

d
lg 21

+d g 10 g 20

d
2
+d

lg 21
+d g 20

I

(4.3.13)

Hence,

a. =
1 w

01

00

and

= g10 '

a„ =
2 w

'12

11

(4.3.14)

We shall show that

(d g10g 20
+d

lg 21 )

d g10
+d

l

(4.3.15)

a
2 |(g10

,d ,d
1
)^N(a 2/ 2

) ,

d
i
+d

o g io

by equation (4.3.14) this is equivalent to

(4.3.16)



a
i

(a
1
,d ,d

1
)^N(a

2
,

d
i
+d

o
a
i
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(4.3.17)

Since the conditional distribution of a,, depends on a, we

have that they are dependent. To show (4.3.16) v/e need the

distribution of (g _,g ,g .) conditional on (d .,d.,d»).

Referring back to (2.5.21) we have

9-0
=

( 9l0'9 20 )
'

I 'V^V^O'V (4.3.18)

where u_
n

= (a.^.a.) 1 (4.3.19)

V =

2

>o

l

2 a:

o , 2 a

d 2 d
o

(4.3.20)

and
2

g 2 l I

(d0' d l
)a'N(a

2'd~ ] (4.3.21)

independent of (9io ,g 20^ * Now the d istr ibuti°n of 9™
conditional on (g. /dn ,d, ) is easily shown to be

2

920l<910 < d 0' dl^N(V*10'd^ >
' (4.3.22)

Since a is independent of g-, n , conditioning on g in does

not affect the distribution of g ?1 , that is,

2

g 2ll (g10' d 0' dl^N(a2'd7 }
•

We note, by equation (4.3.15), that a„ conditional on (g in /

d
Q
,d, ) is simply a linear combination of g_ and g„, . Since

they are normally distributed (conditionally) so will &„
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(conditionally) . All we need do is calculate the mean and

variance to find the conditional distribution of a
2

.

(d
fl
g lng 9n+d 1

g 21 )

ea2 |(g10
,a ,d

1
)= e( ° ]° fJ } ii?10-V d

i>
a
og io 1

a
2
(d

0.
g10

+d
lI

d
Og iO

+d
l

= a
2

.
- (4.3.23)

Var(a
2

) |
(g^d^) = Var

{

(VlO^O**!^!*
}

, (g d^)
d g 10

+d
l

recalling that g 2Q
and g„, are independent we have,

d
Qg 10

Var^20 ) 1 (g 10 ^ Q
,d

1
)}fd^Var{(g

21 )
|

(g^d^)}

'0*10 r

2 2
,2 2 a j. j2 a
d
o
gio d^

+ d
i dl

<*o^o+d i
)2

2
_2 (4.3.24)

(dng?n+cUlono i

Hence
2

a
a ?l (g-,n'

d
n'

d
i
),XjN(a 2' 2 )

as was to be shown.

Furthermore it can be shown that a, and &
2

do not have

a bivariate t-distribution. To see this we find

f(a
2
|a

1
=0). We have that
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J

a
2 l

(a
l
/d

o'
d
l

)
^N(a2'TTi }

and hence

Vl+d
l

2

a
2 |

(a
1
=0,d ,d

1
)^N(a

2
,~ ) . (4.3.25)

Since the distribution does not depend on d
n

and since

d„ and d, are independent we have

and from (2.5.5)

2

a
2 |

(a
1
=0,d

1
)^N(a

2 ,|r ) . (4.3.26)

d
l
ua

2
Xv-l (0) ' (4.3.27)

so that
d d

f (a
2
,d

1
|a

1
=0) = -

o\*

1 2 i—2-(a
2
-a

2
)

fl
%(v-l)-l

2a
2

2a 1 e
e

M
x

; (2a^) r(Mv-l))

-a»<a
2
<oo . (4.3.28)

d
1
>0

(v-l)>0

Integrating over d, , we have
d
l « 2—T [l+(a -a,)^]

~ , A i

d
i

e d d,
f(S |a «0) =

J
-i — LI
/2? UaV^H^v-l))

r(3gv) [l+(a -a )

2
]

-32V

r(Js)r(%(v-l)) ~ :—<a
2
<~ (4.3.29)

v>0 .

Hence we find a
2
conditional on c^ = has a t-distribution
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with (v-1) degrees of freedom, but we know S has the

t-distribution with v degrees of freedom, this will show a

contradiction and a, and a_ cannot have a bivariate t-
1 z.

distribution.

Now suppose t and t_ have a bivariate t-distribution

with v degrees of freedom. Their joint density is given by

fl . «. v _ T(h(v + 2)) III
2

77 r {hv) [1+hWj z U -u ; ]

i-i 2 •

2
M
2 2

M
2

x
' '

v>0 ,

(4.3.30)

where u, and y_ are the expected values of t and t~

respectively. Also I is the (2x2) variance-covariance matrix

of (t , t ) . Relating this to a. and a we would replace

(Vi-,y_) ^Y ( a i' a2^ anc-* ^ wou ld be a diagonal matrix since

we have shown the covariance of ex.. and a., to be zero. With-

out any loss of generality we may take \x =\i =0 and Z = I. The

marginal density of t, is

Hence the conditional density of t- given t, is

f(t,,t 9 )

r( 1-§(v+2)) u+t*] 3s(v+1)
1

: -co<t <«
; (4.3.32)

T^n^v+D) [i+tJ+t^]^
(v+2)

V20
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In particular, suppose t,=0, then

f (tJt =0) = -r L^L^+2))
Wv + 2 , : -»<t

2
<«; (4.3.33)

That is, t~ conditional on t, =0 has the Student t-distribution

with (v+1) degrees of freedom. Hence we see that if (cL,a_)

are bivariate t-distributed, then since a~ conditional en

a, = has the Student t-distribution with (v-1) degrees of

freedom it must be that a„ has the Student t-distribution with

(v-2) degrees of freedom, but this is a contradiction since

a„ has the Student t-distribution with v degrees of freedom.

Hence (cL,a
?

) do not have a bivariate t-distribution.

Hence we see that the maximum likelihood estimators are

not independently distributed and their joint distribution

is not multivariate t. This of course is a drav/back in using

the maximum likelihood estimators and accentuates the benefits

of using the starred estimator, which are independent and have

the t-distribution.

It is easily seen that the unbiased estimators are

consistent since the variance tends to zero as the sample

size increases without bound. To find the efficiency of the

maximum likelihood estimators we compare their variance to

the minimum variance bounds given in equations (3.2.37) through

(3.2.41) . We find that

Eff (a.) = (v-2)v
_1

: lsjsm , (4.3.34)

Eff (v(v-l)
_1

6
2

) = (v-l)v
-1

, (4.3.35)

and Eff ( [m(v-l)-2] (mv)
_1

B
2

) = [ (m+1) (m(v-l)-4)] [m (m (v-1) +v-2]
_1

.

(4.3.36)
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It is obvious that the estimators are asymptotically efficient.

Unlike the starred estimators the efficiency of the maximum

likelihood estimators does not depend on the unknown parameters,

but the distribution of the maximum likelihood estimators

{St.: lsj sea] depend on the unknown parameters so that tests of

hypothesis of a. depends on knowing the values of a,.,a_, ...,

a._
1

. This clearly shows the trade-off between the starred

estimators and the maximum likelihood estimators. While the

starred estimators are inefficient, tests of hypotheses are

performed with no difficulty, and vice versa the maximum

likelihood estimators are efficient (asymptotically) , but

test of hypotheses are complicated since their distribution

depends on several unknown parameters . Moreover the

dependence between the a's also causes complications in making

tests of hypotheses concerning two or more of the parameters

since the joint distribution may be very complex.



Chapter V

A TEST OF THE ADEQUACY OF THE MODEL

5 . 1 Introduction

Throughout we have assumed that the process is adequately

described by the first order autoregressive model. In this

chapter we propose a method of testing the validity of this

assumption. Due to the assumption of the first order auto-

regressive process a class of dispersion matrices arose which

we identified by V. Since this class of dispersion matrices

is a consequence of the model, a test to validate the model

is equivalent to a test of H_: VeV against H :V is an

arbitrary positive definite matrix.

In order to arrive at a test statistic for testing this

hypothesis we recall that if VeV then V=AUA' where A and U

were defined in equations (2.2.4) and (2.2.7). In particular

U was given as the (m+l)x(m+l) diagonal matrix

U=diag(a 2
3
2
,a

2
,a

2
,...,a

2
) . (5.1.1)

We also showed that

2 2
dj^a Xv_j(0) = lsj*m

, (5.1.2)

and with v large compared to m each of the d.'s should be

nearly the same. Ignoring the first row and column of U we

have that the remaining diagonal elements of U are a
2

and

{d
. : l<rj<mi} are independent estimators of this quantity. If

51



52

H
Q

is true then all of the d^'s should be equal. Another

way of putting this is that the arithmetic mean of d.,d.,

' dm is ec3ual to the geometric mean, that is,
m
n d.

i=l
x

V~ m
(
- I d . :U
j=l V

m
- 11
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of a function of these statistics under the hypothesis rhat

VeV. In section 4 we discuss combining the two tests given

in sections 2 and 3 and the asymptotic equivalence of the

combined tests as compared to the likelihood ratio.

5 - 2 An Approximation to the Distribution of -p log X

Referring to equation (5.1.3) we see that X may be

. ,u 5 , . . . ,uwritten as the product of u. ,u0# ...,u where

that is,

d.
u
i

= —5
: Isism , (5.2.1)

m . 1

D = ;
J

A
i = n u. . (5.2.2)

i=l 1

Rather than consider the distribution of A we shall

consider the distribution of

n = -p log \ : 0^n< ro
, (5.2.3)

where p is some constant. The moment generating function

of n is

V e)= ee9n '

= e(X
1
)- e P

m
C( n u )" 0p

. (5.2.4)
i=l

In order to find this expectation we need to find the joint

distribution of (u^i^, . . . , Uja ) . To find the joint distribution

we shall transform from (d ,d, , . . . ,d ) into (u, ,u-, . . . ,u ,S)± z m 12 m
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m

where u. is defined by (5.2.1) and S = - Ed.. Hence
3=1 J

we seek the Jacobian of the transformation from (d, ,d~ , . . .

,

d ) to (u,,u
2

, . . . , u , S) defined by

d
±

= u
±
S : Isism , (5.2.5)

with
m
Z u, = m. (5.2.6)

i=l 1

Let [6u.] and [&S] denote small changes in u. and S,

respectively. Suppose that the changes [6u.] in u . and

[6S1 in S bring about a change [6d.] in d. so that (5.2.5)

and (5.2.6) is preserved. That is

d
±
+[6d

i
] = (u

i
+[6u

i ]J (S+[6S]) : lsism , (5.2.7)

and
m
Z (u.+[5u.]) = m . (5.2.8)

i=l
1 1

Expanding the above equations and dropping terms of second

order in the [<S*] [*e (d. ,S) ] , we find that

d
i
+[6d

±
] = v^S + [6u

±
]S + u.[6S] : Isism , (5.2.9)

and
m m
Z u. + Z [fiu.J = m . (5.2.10)

i=l 1 i=l x

m
Since d. = u.S and Z u. = m we see that

1
i=l

1

[6d
± ] = [fiu^S + u

±
[6s] : lsism , (5.2.11)

and

m
Z [6u.] = . (5.2.12)

i=l
1

To write the above in vector notation we define the (mxl)
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column vectors

and

[<5d] = ([6d
1
], [6d

2
] ,..., [5dmD '

,

d = ( d ., d _,..., d) '

— L z m

[5u] = ([6u
x ] , [6u

2
] ,..., [6u

m ]) '
,

H = <V U
2 V

in = d'l 1)' •

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

(5.2.19)

Equations (5.2.11) and (5.2.12) may now be written

[<5d] = [6u]S + u[6S]

and

i; t 6u] = o .

Equations (5.2.11) can be thought of as a singular

transformation from {[fid-J , [6d
2

] , ..., [<5d ]} to {[6u,] , [Su,] ,

..., [5u ] , [5S]} made one-to-one through use of equation

(5.2.12). Saw [17] has shown that

J{d+u,S} = J{ [6d]-[6u] , [5S] }, (5.2.20)

where J{ [6d] + [6u] , [&S] } is the Jacobian of the transformation

defined by (5.2.18), in which u and S are considered fixed.

Choose P to be an orthogonal mxm matrix with the first

row equal to 1' and pre-multiplying equation (5.2.18) by it

gives

v = P[6d] = P[6u]S + P u[5S]

S + [5S] (5.2.21)

where y, = since 1' [Su] = 0.

From equations (5.2.20) and (5.2.21) we have
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J{d+u, S} = J{[od] - [5u], [fivS]}

= J{ [6d] - v} -J{v-y
2

, ..

.

,y , [SS] }. (5.2.22)

The Jacobian, J{ [Sd] -*-v} , is unity since P is an orthogonal

matrix. The Jacobian, J{y_->y , . . . ,y , [SS]}, is the modulus

of the determinant of the (mxm) matrix K with elements

(K)
11 9 [SS] " 1

'

3v.
(K)

lj
=

J[6S]
=

° : 2sj^ '

3v.
(K) . . = ^—2- = S : 2sjsm ,

31 3 Yj

3v.

(K >v-i = TT3, = : elsewhere . (5.2.23)kj 3yk

Hence K is a diagonal matrix and

J{v-y
2
,...,ym , [SS]} = ||k||= S

m_1
(5.2.24)

and finally

J{d->u, S} = S
m-1

. (5.2.25)

Since the d.'s are independent with

dj^a2 xJ_j (0) : lsjsm , (5.2.26)

then ^v. , —^d.
m d

.
e

d >0
f(d ,d

2
,...,d ) = H -J—^- =

j (5.2.27)
3 =1 (2a

2
)

3 ^ ,
; l^D«i

where v. = v-j: 1 sj sm . Hence we find the joint distribution

u = (u,,u
2
,...,u )' and S is
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Jsv.-l
m m" u .

f(U lf U- f ...,U f S) =iT(h I V.) n .'-3 ;— ) }12 ra

j = l 3 j-iVrC^m^V

m

(S) ^ D

e
2 °

m

2 i=l ^
m

(2£2) : x
rc% £ V.)

m j = l
D

: Osu.sm, Z u . =m ; S>0 . (5.2.28)

Hence we find u and S are independently distributed with

a2 2
S m x

t

m
)

(0) ' (5.2.29)
* Z v .

3 = 1
D

and u is distributed as rnZ where Z_ has the Dirichlet distri-

bution with (mxl) dimensional parameter vector (

1^v
1
,^v„,.. .,

55V
m
)' = (^(v-l),^(v-2),. . .,3s(v-m))'.

If (y, ,
y"

, ..., y ) has the Dirichlet distribution with

parameters (a , a , . . .
, a ), then the moments about the

origin are given by -~ --.
3 v J n n

{ n r(o.+r.) }r( z a.)

i»S. vl
2
...y

nS - fei ^ .5.2.30,

r( E (a.+r.)){ n r(o.)}
j=l D D j=l :

Kence we find the moment generating function of n is given

by --

., , : ^ s H :_~

<J>

n
(9) = e e

9n

= e( n u.)
_ep

- = -- - :i=l
1



and letting u
i

= mZ.^ gives

m -80
, (6 )= e( n mz )

n
v

i=i !

= m"
m9p

.e< n z
- ep

)

i=l

and since Z.: lsi^m are Dirichlet we have from (5.2.30)
1

tha t m m
{ n r^v.-ep)} . v(h 1 v.)

„(6) = nf
m9p -1=1 _^i

. (5.2.31)

r( 1 tev.-ep) { n n^v.)

}

j=i D j=i D

Since the moments of n are functions of gamma functions

we can apply Box's [4] method to obtain an approximation to

the distribution of 1. A good discussion of Box's method is

also contained in Anderson [1]

.

Using equation (5.2.31) the cumulant generating function

for 1 is

V (9) = log<f>n
<e)

n m
= k-m9plogm+ I logr (%(v-j) -6p) -logr (%(mv-%m(iu+l)

j = l

-m9p)), (5,2.32)

where k has a value independent of 9. Rewriting this as

Y (8)=k-mp81ogm+ E logr (a .+hp ( 1-28) ) -logr (B+^mp (1-29 ) ) (5 . 2 . 33)
n j= i 3

where

a. = ^(v-p-j) : lijsm,

and (5.2.34)

3 = Jg[mv-mp-%m(m+l) ] .
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We use the expansion formula

log(x+h) = hlog 2tt + (x+h-
1

^) logx

- (-l)
r
B .,(h)

- x - I — (5.2.35)
r=l r(r+l)xr

where B (h) is the s-th Bernoulli polynomial defined by

hx °° s
le - Z Jr B (h) ,

(5.2.36)
(e

T
-l) s=0

for example

B
1
(h) = h~| ; B

2
(h) = h

2-h+| ;

3 3 2 1
B
3
(h) = h - | h + | h .

Using the expansion formula (5.2.35) on (5.2.33) we find

that

¥
n
(9)=k+

(m

^

1)
(log 2^-log |) - (B+^-i) log m

4(m-l)log(l-29)+ £ tt* { -} (5.2.37)
Z r=l

r
(l-28)

r

with

(5.2.38)

t B , (6) m
u
r = (-D

r(-^ 1
1

Br+l
(a

j> }

m j=l _
r(r+l) (VaP )

r

By virtue of the fact that ¥ (6=0) =0 we must have

°°

kl
(IP

:
1) (log 2tt- log £) - (3+5^- 1

-s) log m = E tt*
z z z r=l r

(5.2.39)

so that we may write

<j/ (6)=-%(m-l)log(l-28)+ E tt* {
—- - 1}. (5.2.40)

n r=l (1-26)
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If r has the chi-square distribution on-e degrees of freedom

then its cumulant generating function is

y
r (9) = - | log (1-29) , (5.2.41)

we see that equation (5.2.37) has the same form with

e=(m-l) degrees of freedom and an additional sum which may

be called the remainder. This remainder may be reduced by
*

choosing p=p
Q

so that t^ = and the approximation is improved.
*

For tt = we must have

m
B (6) = m I B,(a.) (5.2.42)

or

Recall that

j=l

m
l

2
-B+~=m Z (a^_ a +1 ). (5.2.43)D

j=l H J b

3=2<n(v-p) -hh (m+1)

and

a.=h{v-p)-kj : l^jsm ,

letting 6 = h(v-p) then

3= mS-^mdn+l) (5.2.44)

and

ctj = 6-Jsj : l^jsan . (5.2.45)

Substituting (5.2.44) and (5.2.4 5) into equation (5.3.43)

gives

[m6-Tm(m+l) ]

2
-m5+^m(m+l) +^ =

4 4 6

m 12 11m I [(6-±;,)*-6+±j+±] . (5.2.46)
j-1 ^ ^

b



61

Expanding the left hand side of equation (5.2.46) one has

m2
6
2-|m2 (m+l)5+-^ 2

(m+l)
2-m5+^m(m+l)+| (5.2.47)

and expanding and summing the right hand side of equation

(5.2.46) one has

.2 r 2 1^.2 ,.„_,_., Wj_ 1 m 2 ,„^ ^ omJ.n.m '/; x.±m^ im+i \ +—
-—in*" (m+1) 5+ — m (m+1) (2m+l)-m 6 +^m (m+l)+g

Collecting like terms we find (5.2.48)

= (m+1) (m
2+12m+8) (5.2.49)

4 8m

hence

(m+l)(m
2+12m+8) (5.2.50)M K 24m

We find then that
_ x.

<j> n (e) = (l-26)~
i2(m" 1) exp{ I Tr

r
[(l-28)"

r -1]}
r=2 (5.2.51)

P=Pn

where

* (m+1) f3m -36m -583m -336m +1 60m -192]

2 6912p>
P= Pq ° (5.2.52)

Thus the cumulative distribution function of n=-P logA
1

is

found from

Pr{-p logXr£X}= Pr{ X
^m_ 1)

*U +

ff

2
(Pr{ X?m+3)^ } - Pr{x (m-D

SX})+ ^^
„ 3

_ 3 _ 4
(5.2.53)

with R' (p ) a remainder involving terms xn p_ , p_ , •-- .

Asymptotically we have that the distribution of

m d.

-p
Q

logX
1

= -p _E log , \ (5.2.54)
1~± V - E d.m

j = l ^

tends to that of a chi-square variate with (m-1) degrees of

freedom.
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5.3 The Distribution of T a Function of {g. . :0:5i<i<m}.

In section 5 of Chapter II we derived the distribution

of {g. .:0sj<i^m} conditional on {d.:0s:J£m} when V was

arbitrary and when V£V. In particular, when VeV and m=4

we find from equation (2.5.15)

f (910 ' g20' g30' g40' g21' g31' g41' g32' g42' g43
,d 0' dl'

d2' d 3^
=

riTD exp { ~ r^ [(gio-
a
i
)2+(g

2o-
a
2 gio

)2

(2tto d. ) 2a

+ (g 30
-a

3g 20
)2 + (g 40

_a
4 g 30

)2]}

r

d
lr/_ .. ,2,,. _ ,2,,_ .. ,2,,5- exp { _[(g -a ) +( g - a g ) +(g _ag ) ]}

_ 3 "^ L

, 2
LVd 21 "2' v ^31 "3^21' v ^41 "4*31'

(2™ d~
X
)2

2C

d n 2 2 ,exp {- —^[(g__-a_) + (g -a.g^„) ]}
lOTtn 2* - 1

^ On 2 32 3 42 4 32
(2tto d-^ ) 2a

^imVrV**** {" 7J (g 43" a 4
)2}

(2^a d
3 )

2a 0sj<is4

-°°<g
ij

<co
' (5.3.1)

If in (5.3.1) we replace (a ,a ,a ,ct.) by their estimators

*g10' g21' g 32' g43 ) We obtain the statistics ^g 2
0"g2lglo'

'

(g30- g 32g20 }
' (g 40~ g 43g 30 }

' (g3l" g 32g21 )
'

(g 4l" g 43 g 3l ) '

(g .p-g . _.g^_ ) } . These statistics indicate a departure from

the model. We shall investigate the distribution of a function

of these statistics . No compact expressions have been found
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for general m so we present here the case for m=4. The

case for general m follows directly from the case m=4. In

what follows we shall use conditional distributions and for

convenience shall let # denote a set of fixed variables.

Consider first the statistics Ug40
-g

43g 30 ) / (g 4i~ g 43g 3 i)

(g .„-g..,g^„) } . We shall determine their joint distribution
42 4332

conditional on U = {d
Q
,d,,d

2
,d

3
,d. ,g 3Q ,g 31 »g 32

^ • We have

from (5.3.1) that g Q ,g , g , and g are normally

distributed conditional on M so we need to find the moments

of Ug 40
-g

43g 30 ), ^l"^^^ ' (g42~ g 43 g 32 }

}

condi tional

on U to determine their joint distribution.

We have that

£(g 40" g43 g 30 )
I
* = £[e(g 40" g 43 g 30 )]

'
* ' (5.3.2)

where the inner expectation is with respect to g. n
and the

outer expectation is with respect to g 4 T- From (5.3.1) we

obtain £ (g. Q |
H) by inspection to be a^g^n/ hence

£(g40~ g 43 g 30 ) I* = e[(a 4~ g43 )g 30 ] '* (5.3.3)

= (5.3.4)

since by inspection of (5.3.1) £ (g43 ) | W= a •

In the same way

6 (g41~ g43 g 31 ) * = £ [S (g4l" g 43g 31 ) ]
'

*

-c t (a
4
-g

4 3)9 31
]!a

- , (5.3.5)

and

£ {g42" g 43 g 32 )
I *

= e [£(g42"g 43 g 32 )]
'
M

= £ [( a4-943 )932 ]
I »

= . (5.3.6)
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The second moments are handled identically and we find

e ^40- g 43 g30 )

2
I
M = e [fi (g 40" 2g 40 g 43 g 30+g 43g 30 ) ] '

*

2
= £fd^ +a

4 g 30-
2a

4
g 43 g 30

fg
43 g 30

]|}i

_ r
a
2

2 2 _ 2 2 ^ 2 ,a
2

2. .-
Cd-

+ a
4
g 30- 2a 4 g 30

+g
30 ( d^

+ a
4
)]

2 2
=
a^

+ g30d7' < 5 - 3 - 7 >

£(g4r g43g 31
)2| « = e[£(g4r 2g

41 g43g 31
+g

43 g 31 )]
>

*

- „ r°
2

i 2 2 o 2,22,1
~ ^dj + a

4
g 3l"

2a
4
g 43 g 31

+g
43 g 31 ] '*

- °
2

l 22 o 2 2 A 2 ,a
2

2,
~ d^

+ a
4g 3r 2a

4
g 31+g 31 ( d^

+ V
a
2

+ 2a 2

= T" + g^^ ' (5.3.8)d
l ^

31d
3

and

£ (g42~ g 43g 32 )

2
I »

= £ [fi (g 42- 2g42 g43g 32+g 43 g 32 } ] '

*

2
= e[d^ +a

4
g 32- 2a 4 g 43g 32

+g
43 g 32 ]| *

_ a
2

^ 2 2 . 2 2 . 2 .a
2

J 2,
~ dT

+ a
4 g32

_2a
4 g 32

+g
32 (d7 + Q

4
)

a
2

+ 2a 2

=
d^ +g

32cLj
• < 5 - 3 ' 9 >

The cross product terms are handled similarly and we have that

e(g40" g 43g30 } (g4r g 43g 31 }
i

W = £ {£ [£ (g 40 g 41
_g

40g 43 g3r g 41g 43g 30

+g
43 g30 g31 )]} '

}i ' (5.3.10)
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where the inner, middle, and outer expectations are with

respect to ^aq'^at' and ^43' respectively. Continuing we

find

£(g40
_g

43 g 30 ){g 41
_g

43g 31 )
!

*
= £{fi [a

4
g 30 g4r a

4
g 30 g 43 g 3l'g 41 g 43g 30

f43g30 g 3i :
+g^g,ng,J>l«

= £ ^4g 30 g3r a
4 g 30g 43g 31

_a
4 g 43g 30g 31

+g
43 g 30 g 31 }

'

H

2

m a
4 g30g 31-

2a
4 g 30 g 31

+(
d^

+a
4
)g 30g 31

2

=
Ij g 30g 31'

(5.3.11)

e(g4(T g 43g 3G ) ( g42"g 43g 32 )
I *= £ {£ [& (g 40 g 42

_g
40g 43g 32- g 42g 43 g 30

+

+g
43g 30 g 32 )]} '

W

= e{e[a
4g3 g42

-a
4 g3 g

4 3g3 2
-g

42 g 4 3g 30

+g 43g 30 g 32 ]} l*

=e{a
4 g 30g 32

_a
4
g 30 g 32"

a
4 g 43g 30g 32

+g43g 30 g 32 }
l

W

= a
4 g 30g 32-

a
4 g 30 g 32

_a
Jg 30 g 32

a
2

2
+ (^ + V g

3 o g 3 2

2
=
17 g 30 g 32 ' (5.3.12)



66

and

e(g 41
-g

43g 31 ) (g
4
2" g 43g 32 )

' *
=

£ {e[e(g41g 42
_g

41g43 g32~g 42 g 43g 31

+g
43 g 31g 32

)]}
l

H

= £{£ ^
4 g 31g 4

2- a
4
g 31g 43 g 32- g 42 g 43g 31

9
+g

43g 31g 32^ *

I

W

= £^
4
g 3 lg 32"

a
4
g 31g 43g 32-

a
4 g32g 43 g 31

+g
43 g 31g 32

}
'

*

= a
4
g 31g 32

_a
4
g 31g 32~

Ct

4
g 31g 32

+

2
2

+(d7'
a
4
)g 31g 32

Hence we find

'40 g43g 30

,
g42" g43 g 32

d^g 31g 32
(5.3.13)

'4l" g43g 31
U * N

3
(y, a V

3
) (5.3.14)

where

(5.3.15)

and
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d d
3

}

g 30 g 31
d
3

1

g 30 g 32
d
3

g 30 g 31
d
3

1

2

d
l

d
3

g 31 g 32
d
3

1

g30 g 32
d
3

"

g 31 g 32
d
3

'

1 y 32
d
2

d
3

(5.3.16)

.r-1.It is well known that if x: (nxl) ^N (0_,I) then x'E xo-x (0) .

Therefore it follows that

r
4

=

g40" g 43g 30

g 41
-g

43g 31

[40" g 43g 30\

V
3

X

(
g4r g 43g 31

)

I*^
2
X^(0),

•
y 42 ^43^32/ \^42 ^43^32/ (5.3.17)

where the subscript on r equals the first subscript on g.

Since the distribution above is functionally independent of

the variables in U we have the unconditional distribution

also, that is,

(5.3.18)V^X^O) .

Putting U = {d
Q
,d

1
,d

2
,d

3
,d

4
,g 2Q ,g 21 } , we now find the

joint distribution of Ug 30
-g

32g 20 ) , (^-^^l* } '

Proceeding as before

e(g^n-g^gonH » = e.l&(9r> n-9??q<, n )}\ a30 ^32^20

= e [ ( a
3
_<
?3 2 )g2o ]

I
w

= o , (5.3.19)

and

e(g31~g 32 g 21 )
I *

= S [£ (g 3l" g 32g 21 ) ]
'

M

= e I

(

a
3
_g

3 2
)g 21 ]

I
*

= (5.3.20)
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The second moments are

£(g30-9 3 2g 20
)2lti = £[£(g 30- 2g 30 g 32g 20 +g 32 g 20 3]| *

2

= £[d^ +a
3
g 20- 2a 3

g 32 g 20
+g

32g 20 ]
l

H

o
2

_,_
2 2 2 2 ^.a

2
^ 2, 2=

d~ +a
3
g20- 2a 3

g 20
+(

d^
+a

3
)g 20

2 2
=
a^

+
a-g 20 ' (5 ' 3 - 213

and

e(g 31
-g

32 g 21 )

2 U = etc (g3i- 2g 3ig 32 g2i+g 32 g 2i } ] '

*

2
= £[o7

+a
3
g2r 2a

3g 32 g 21+g 32 g 21 ] l»

o
2

. 2 2 , 22 ^,a
2

^ 2, 2=
d~ +a

3
g 21- 2a 3

g21
+( d^

+a
3
)g 21

S
5^

+ ^21 '
< 5 ' 3 ' 22 >

The cross product term is

£(g30* g32g 20 )(g3l"g 32g 21 )|}i = fi{& [e (g 30g 31- g 30 g 32g 21
_g

3Ig 31 g20

+g 32g 20 g 21 )] *

= £<£ t a
3g 20 g3r a

3g 20 g 32g2r g 31g 32 g 20

2
f

32 g 20 g 21-+googo n goi]>|ji

=e {a
3
g 20 g 21-

a
3 g 20 g 32g 21

_a
3
g 21g 32g 20

+g 32g20 g 21 ]} l
y

= a
3g 20 g2r a

3 g 20 g 21
+a

3g20g 21

±,°
2

J.
2

s+ (gj +<V g 20 g 21

a
2

=
d-g 20 g 21 *

(5.3.23)
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Hence we find that

I
g 30" g 32g 20

\ g 31~ g 32g 21

w a, N
2
(y,a V

2
) (5.3.24)

where

y = (5.3.25)

and

V2=

Nov; form

/

d d
2

}

g20g 21
d
2

1

g30
_g

32g 20

f31 g 32 g 21

g 20 g 21
d
2

1 ^21
[
d, d '

.-1 f30" g 32 g 20

! 31 y 32 y 21

(5.3.26)

(5.3.27)

where

:

3 I
W 'v. o

2
X
2

2
(0) (5.3.28)

By the same arguments as before we have that the distribution

of r- is functionally independent of the elements of # and

hence

r
3

* o
2
xl(o: (5.3.29)

unconditionally. Moreover r. is independent of r. since the

distribution of r . is functionally independent of the

elements of r...

Finally we consider (g -g g ) and put

H= {d ,d
1
,d

2
,d

3
,d

4 ,g10 } .
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= e [(a 2" g 2I )g 10 ] '*

=
, (5.3.30)

and

e (g 20
_g

21g10 )

2
\*

=
fi fe (g20

_2g
20 g 21g10

+g 21g 10 )

]

'»

2
= £ [I^ +a

2
g10- 2a

2g 21g?0
+g21g10 ]

I *

a
2

2 2 - 2 2 ^,a
2

^ 2. 2=
d^

+a
2
g10- 2a 2

g 10
+(d^ +a

2
)g 10

- ^
2

+ jL?
_ (5.3.31)

d -d no

Hence

where

and

With

then

(g20" g21g10 )
I
*^ N (Vi,a

2V
2

) (5.3.32)

y = (5.3.33)

1 y 10V = — + (5.3.34)V
I d

Q
d
x

*
P J J4 '

< g20- g 2lg l0>
2

(5<3>35)

(- + ^)a
o

d
l

r
2

|
ti^a

2
X
2
(0) . (5.3.36)

Since the distribution of r„ is functionally independent of

the elements of tt we have, unconditionally that , r
2

is chi-

square with one degree of freedom. Also r» is independent of

r_ and r. since their distribution is functionally independent

of the elements of r_. Since the three statistics are

independent we may add them to get
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R = (r
2
+r

3
+r

4
) ^ o

2
X g(0) . (5.3.37)

We note that the distribution of R depends on the nuisance

2parameter a , to eliminate this parameter we consider

T = 15Z|L „ F^_
10

(0) . (5.3.38)

Since R is independent of {d„ ,d, ,d~ ,d-. ,d.} then its

2
independent of o ^ and T is the ratio of two independent chi-

square variates divided by their degrees of freeom, that is,

T has the F distribution.

Before extending this result to general m we note that

the dispersion matrix V_ of equation (5.3.16) may be written

V
3

= D
_1

(3) + l3
Y3 (5.3.39)

where

D(3) = diag (d^d^d^ (5.3.40)

and

13
=
~k; (g 30' g31'532 )

'
* (5.8.41)

Since V_ may be written in this form its inverse can be

obtained from the Binomial Inverse Theorem, found in Press

[13] , which states

_1 - _! D(3)y ,x!d(3)
(D (3) +Y

3
Y
3 ) - DO)-

l+l3D(3)Y 3
'

(5 ' 3 ' 42)

This is very useful in the actual computing of the statistic

T. It follows that V~ is the same form and can be written

V
2

= D
-1

(2) + y
2
Y2 (5.3.43)

where
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D(2)=diag(d ,d
1

) (5.3.44)

1-2= ^| (920'521 ) • (5.3.45)

In general we can form

r
j

=
£jvj^ 12j

:2=3^ , (5.3.46)

where

^r [{g
io-'

gj-i,o^ f j-i^ ^1-^-1,1^,^

(g
J,J-2-gj-l,j-2^j,j-l

)],:2^ £m
' (5.3.47)

and

Vj_
x
=D 1

(j-l)+Y
j
_ 1l!J_ 1

:2a6jaam , (5.3.48)

with

D(j-l)=diag(d
()

,d
1

, , . . ,d.
2

) :2sjSm , (5.3.49)

and

Following the pattern given for m=4 , when VcV

r
j
* °

2
Xj_ 1

(0) :2^j^m (5.3.51)

and they are mutually independent so that

m
2 2R =

,£/j * ° ^m(m-l) (0)
'

(VeV > (5.3.52)

and finally

(RAm(m-l) ) % Jgm(m-l) ~
1

a
2

F
mv-3sm(m+l) v0) '

(VeV) • (5.3.53)

No attempt has been made to find the distribution of T when

V/V, but a computer simulation indicates, as we would expect,

that T is stochastically larger in V^V than in VeV.
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5 . 4 Asymptotic Performance of (~P n
log A ) and T .

In section 3 we derived the asymptotic distribution of

-p
Q
logX and showed it to have a chi-square distribution with

(m-1) degrees of freedom. In that section we also showed

that the distribution of -p logX is independent of
m m1
in m

S=— Z d . or equivalently of Ed.. In section 4 we showedm
j=l : j-1 3

that R has a chi-square distribution with ^m(m-l) degrees of

freedom, independent of {d
rt ,d,,...,d } and hence independent

m m
of -p logX, and I d . . Since R is independent of E d . it

j-1 J
"

j=l ^

is independent of a£ and hence we formed T equal to the ratio

2of R and a A divided by the appropriate constants to form an

F distribution with ^(m-l) degrees of freedom in the numerator

and [mv-^mdn+l) ] degrees of freedom in the denominator. Since

2both R and a ^ are independent of -p logX then so is T. Now

the distribution of ^m(m-l)T tends to that of a chi-square

variate with %ru(m-i) degrees of freedom as v->-°°. Since T and

-p
Q
logX, are independent we have

lim {-P logX
1

+ ^(m-l)T} * X^m_ ±) (m+2)
(0) . (5.4.1)

It has been shown by Wilks [18] that under certain

regularity conditions -21ogX will be asymptotically distributed

as a chi-square with I degrees of freedom under the null hypoth-

esis, where. X, denotes the likelihood ratio. The degrees of

freedom, I, may be computed from (I -£ ) where £, equals the

number of parameters estimated under the alternative hypothesis

(H^) and £_ equals the number of parameters estimated under

the null hypothesis (H
Q

) . For the problem here we find that
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unde r U^ V is arbitrary and we must estimate all %{m+l) (m+2)=£

different parameters. Under H there are only (m+2)=£

unknown parameters to estimate and hence

£ = £ -2
*1

= %(m+2) (m-1) . (5.4.2)

That is, the asymptotic distribution of -21ogX and

(-p logA
1
+ 1'sm(m-l)T) both agree, under the null hypothesis.

Hence both methods are asymptotically equivalent under the

null hyporhesis.

We note that since -p logA and T are independent that

Fisher's method of combining independent tests may be used

in place of (-p
Q
logA +%m(m-l) T) . Fisher's method would be

especially appropriate if the sample size is small.



Chapter VI

COMPUTER SIMULATIONS AND AN APPLICATION

6. 1 Introduction

A computer simulation of the generalized autoregressive

process was performed thirty times. Each simulation had

fifty vector observations with each vector observation having

six measures including the initial measure. Specific values

2 2
were given (a, , a~ ,

a

3
, a .,

a

5
) , o~, and 8' and they were

(0.80, 0.60, 0.50, 0.30, 0.20), 1.00, and 4.00, respectively.

The simulations were made using a computer program

written for the IBM 360 computer. The output from the program

includes

(1) the data used in the analysis

(2) the mean for each time period

(3) the cross product matrix

(4) the G matrix

(5) the diagonal elements of D

2 2
(6) the starred estimates of {a.: l^i^m}, a , and 8 •

(7) the maximum likelihood estimates of {ex.: l^i^m},

2 2
a , and 6 .

(8) the values of -p logA and T used in testing the

adequacy of the model.

The main purpose of the simulations was to see if the

75
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starred estimators would perform well. In keeping with this

we present only the starred and maximum likelihood estimates

2 2
for {a. : isism}, a , and S .

An application of the theory was made using data from

a drug study at the University of Florida. This study was

directed by Dr. Arlan L. Rosenbloom. Each patient was

infused with glucose and observations were taken on the

patient's level of calcium prior to infusion and at 90 minute

intervals thereafter for four additional observations.

6 . 2 Computer Simulation Results

Each of the estimates was tested against its true value

at the .05 level of significance. On the average then we

would expect to reject two out of the thirty estimates by

chance alone. Those that were significantly different from

the actual value are listed with an asterisk. Counting £he

number of tests that were accepted as a measure of the

estimator's goodness we find a*, gave 28 acceptable estimates

out of 30. Since a*, is identical to the maximum likelihood

estimator, a-,, there is no comparison. a * 2
gave acceptable

estimates in all 30 runs while cU gave 28. Estimating

a^ = .50, the starred estimators did slightly better with a*-,

giving 28 acceptable estimates and &-> giving 27. ct* 4
gave

acceptable estimates in all runs while a. gave 29. The last

estimators, a*
5

and 6U , both gave 28 acceptable estimates.

We note that whenever the starred estimate was rejected so

was the maximum likelihood estimate, but not conversely.
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2 2
Tests were also performed on the estimates of a and 3 •

2 -2
In order to test both o ^ and a an approximation to the

distribution of chi-square given by Wilson and Hilferty [19]

2 1/3was used. Their result is that (x /v) is approximately

normally distributed with mean, l-2/(9v), and variance, 2/(9v).

This result and a discussion are also given in Kendall and

Stuart [11] . The results of the tests showed that the starred

estimator gave 25 acceptable estimates while the maximum

likelihood estimator gave 24. Again both estimates were

rejected on the same runs, with one exception, when the

maximum likelihood estimate was too high. All of the rejec-

tions for the starred estimates were caused by under estimat-

ing the true value

.

The starred estimates and maximum likelihood estimates

2performed equally well in estimating 3 . Both gave

acceptable estimates 26 out of the 30 runs. Of the four in-

correct estimates both were high on three and low on one.

They both gave poor estimates on the same runs.

Overall the starred estimators performed as well or

better than the maximum likelihood estimators. As can be

seen by the means and standard deviations at the bottom of

Tables 1 through 3, both estimates are very close to the true

» value. The mean of the maximum likelihood estimates is closer

to the true value for a~, a., and a,, but not for a-., a , or ^
Also we note that the sample standard deviations are smaller

2for the maximum likelihood estimates except for B • None

of the differences seem to be appreciable in any case.



Table 1

ESTIMATES OF a a AND a FOR

COMPUTER SIMULATED PROCESS

Run
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Table 2

ESTIMATES OF a . AND a _ FOR

COMPUTER SIMULATED PROCESSES

Run a
4
= -30 a

4
=.30 a

5
=.20 a

5
=.20

Number a^ . a

.

a . _ ft_

1
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Table 3

ESTIMATES OF <?' AND B
2 FOR

COMPUTER SIMULATED PROCESSES

Run
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6 . 3 Application

As discussed in section 1, patients were infused with

glucose and measurements were taken on their calcium level,

prior to infusion and four times later at 90-minute periods.

The data are given in Table 4. Inspecting the means at each

period given at the bottom of Table 4 we see that, on the

average, initially the calcium reading was highest and

infusion of glucose caused it to drop continually until the

last time period where there is a mild increase in the level

of calcium. In Table 5, both the starred estimates and the

maximum likelihood estimates are given. Both estimators

gave similar results for all of the parameters with a. having

the largest value, probably reflecting the increase in the

level of calcium from time period 3 to time period 4

.

Table 6 shows the standard deviations and 95% confidence

intervals for a A , , a*„ , a*.. , and a*.. The confidence intervals

for a*,,a # 2» anc^ a *r> contain zero implying the parameters do

not differ significantly from zero. This could have been

guessed by noting the relatively small change in the mean.

level of calcium from one period to the next. Since the mean

level rose in the last period the parameter a^. is large and,

as noted by the 95% confidence interval, is significantly

different from zero.

In testing the adequacy of the model we found -p
f
.logA

1
=

4.91 and T = 1.77. Since the distribution of -p_logA
1

is

approximately chi-square with 3 degrees of freedom we compare

the calculated value against the tabulated value at the .05
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2
level of significance. We find X-j nt; =7.81, since the

calculated value is less than this we accept the hypothesis

of sphericity. The distribution of T is F with 6 degrees of

freedom in the numerator and 114 degrees of freedom in the

denominator. The upper 5% point of this distribution is

F, .. . __ = 2.18. Since the tabulated value is greater than
114 , . 05

the calculated value we accept the adequacy of the model.

To see how well the model fits the data we randomly

selected patient number 18 and calculated his measurements

for the four time periods using his pervious readings.

Letting y A ., denote the predicted value at time j of patient

k we have that

where

and

Y* jk = y-j +x
j k

: ls 3^4 ; l£k£32 , (6.3.1)

x
jk = a

*j
x
j_ 1/k

: 1S
3
S4

* l*k*32 , (6.3.2)

x
jk

= Yjk"y j
: lsjs:4 ; lsks32 • (6.3.3)

Hence we may write

Y*jk
= y

j

~ a
*j y j-l

+a
*j Y j-l,k

: lsjs4 ; lsks32
• (6.3.4)

Given that patient 18 had an initial reading of 9.9, the

prediction for his 90-minute reading is

y *l 18
= 9 ' 15 " - 137 ( 9 - 64

)
+ J- 37 (9-9)

= 9..2D .

Similarly for the rest of the readings we find that

v*2,18 = 9.02 ,

y*3,18
= 9 ' 06

'

and y*
4

' 1 8 =9.29 .



Table 4

LEVEL OF CALCIUM IN GRAMS PER LITER IN

PATIENTS INFUSED WITH GLUCOSE

83

Patient



Table 5

ESTIMATES OF THE PARAMETERS

FOR THE GLUCOSE STUDY

84

Type of
Estimate

Parameters

Starred
Estimate 0.137 0.334 0.305 0.506 0.173 0.843

Maximum
Likelihood 0.137 0.383 0.312 0.590 0.174 0.854



35



86

Comparing these to the actual measurements of 8.9, 9.5,

and 9.8 we see that the model gives reasonable predictions.
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