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This dissertation is devoted to exploring the problem of inference about the

baseline hazard function of Cox’s regression model, especially when the baseline

hazard function is assumed to be monotonic.

Assuming monotonicity of the baseline hazard function will improve the effi-

ciency of estimation of the baseline hazard function in Cox’s regression model. The

isotonic regression method is applied to find the isotonic estimator of the baseline

hazard function. The maximum likelihood estimation of parameters with order

restriction is closely related to the problem of isotonic regression.

The test for the monotonicity of the baseline hazard function is discussed for

random censoring model. The strong consistency of the isotonic estimator of the

baseline hazard function is shown. To improve the maximum likelihood estimator

of the baseline hazard function, when there are censored observations, we consider

an alternative using the concept of the window. The asymptotic distribution of the

isotonic window estimator of the baseline hazard function is obtained for fixed time

t.
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CHAPTER 1

INTRODUCTION

1.1 Review

Recent statistical research deals extensively with the methods for the analysis

of survival data derived from laboratory studies of animals or clinical studies of

humans. The proportional hazard model proposed by Cox (1972) is an important

tool for analyzing such data. We intend to explore the problem of inference about

the baseline hazard function in Cox’s model. Survival data are different from the

data that are gathered in conventional studies, because survival data often include

censoring times, which precludes exact determination of the key dependent variable,

survival time.

In medical studies, experimenters frequently face censored data in clinical trials

for chronic diseases. Some patients may withdraw from the study; others may die

for nonrelated reasons. Still others may be alive at last contact. For lost patients,

survival times are at least as large as the elapsed time of entry and the time they

withdraw or die for non-related reasons. For patients still alive, survival times are

at least as large as the time from entry to the time of the end of the study. These

observations, either withdrawal or failure for competing reasons during the study,

are defined to be censored observations. Loosely speaking, a censored observation

contains only partial information about the random variable of interest.

In survival analysis, we usually encounter three types of censoring. Type I censor-

ing occurs when we have a fixed censoring time, so that an observation is uncensored

only if failure occurs before the fixed censoring time.

1



2

Because of financial constraints, we may only observe first r observations out of n

possible observations. In other words, observation ceases after the rth failure. This

type of censoring is defined as type II censoring.

Both type I and II censorings arise frequently in engineering sciences. For instance,

we use a batch of electrical bulbs as experimental units. We turn on all electrical

bulbs simultaneously, when we start an experiment, to investigate how long they last

on the average. Since it may take an extremely long time for some bulbs to burn out,

we usually cannot wait until all light bulbs burn out. We may be forced to stop the

experiment at a prespecified fixed time or the time when a prespecified fraction of

all light bulbs have burned out. The first case is classified as type I censoring, while

the second case is an example of type II censoring.

The most general type of censoring is random censoring. Random censoring

occurs, unlike type I and II censoring, when censoring times of individuals are treated

as random variables from an unknown distribution.

Random censoring arises in medical applications with animal studies or clinical

trials. In clinical trials, each patient may join the study at different times. Our

concern is to measure how long they survive, while we treat them with one or several

therapies. But we may lose patients for reasons unrelated to the factors being studied.

For example, a cancer patient may move and never report back to the clinic center,

or he may refuse to continue receiving designated treatments which he considers

unsatisfactory. Another example occurs when a cancer patient dies in a car accident.

The cause of death is not cancer, but an accident which is not related to our study

objectives . We only know that the individual survived until the car accident. In this

dissertation, we shall concentrate on random censoring.

With random censoring, we make the following basic assumption: The censoring

mechanisms are ’’noninformative.” In other words, the censoring time is independent

of the survival time.
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One of the principal problems in survival analysis is that of developing methods

for exploring the association between failure times and explanatory variables. For

example, a clinical study is designed to compare several treatment programs in terms

of the failure times. The explanatory variables would include indicator components

for treatment as well as other prognostic factors. The Cox regression model is a

conventional technique for investigating the relationship between survival time and

covariates.

The hazard or failure rate function is conceptually simple and is a specialized way

of representing the distribution of the failure times. The hazard function gives the

risk of failure at any time t, given that the individual has not failed prior to time t.

Cox (1972) suggests the following model which presumes that covariates affect the

hazard function multiplicatively. Let Z be a row vector of p covariates. Then the

Cox model satisfies that

\(t; z
)
= A0 {t) exp(z/3), (1.1)

where A0 (i) is an unspecified function of time and /? is a p— dimensional column vector

of parameters. This model, though largely nonparametric, permits the estimation of

/3 and leads to estimates of survival functions of the Kaplan and Meier type (1958),

when covariates are present in the data.

Since the ratio of the hazard functions corresponding to any two different z-values

is constant over t, (1.1) is often called a proportional hazard model. The factor

exp(z{3) describes the instantaneous risk of failure for an individual with covariate

2 relative to that at a standard value z = 0. Since A0 (i) gives the hazard for an

individual under the standard condition z = 0, \o(t) is called the baseline hazard

function.

One of the attractive features of the model (1.1) is that the nuisance function Ao (t)

can be removed completely from inferences about /? (Cox, 1975). Another advantage
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is that the covariate information on different individuals is easily incorporated into

(
1 . 1 ).

Several assumptions on A0 (t) are possible in the analysis of the model (1.1). The

simplest one is to assume Ao(t) is constant. This is equivalent to assuming an under-

lying exponential distribution. The next simplest case is to assume that a family of

hazard functions has two unknown parameters. The Weibull distribution is an exam-

ple of a two parameter family of hazard functions. A weaker assumption is that A0 {t)

is arbitrary but monotonic increasing or decreasing in t. In certain situations, it is

reasonable to expect that the failure rate will increase monotonically or, at least over

a certain interval of time. For certain electronic components, manufacturing defects

tend to cause failure early in life, so that the failure rate may be higher during the

initial period of age. This is the case when a decreasing failure rate can be expected.

In many physical situations, the object does become more likely to fail as it ages.

Examples of these are moving parts, human beings past youth and so on. In such

cases, one would expect an increasing failure rate.

A main problem of considerable interest is the inference about the regression

parameters, allowing the baseline hazard function to be arbitrary. The conditional

likelihood approach suggested by Cox(1972) is a pioneering method leading to infer-

ence about the regression parameter f3.

Cox writes: ” Suppose then A0 (t) is arbitrary. No information can be contributed

about f3 by the time intervals in which no failure occurs because the components

A0 (t) might conceivably be identically zero in such intervals. We therefore argue

conditionally on the set of instants at which failures occur; in discrete time, we

shall condition also on the observed multiplicities. Once we require a method of

analysis holding for all A0 (£), consideration of this conditional distribution seems

inevitable.” He treats his conditional likelihood as an ordinary likelihood, so that
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he finds maximum likelihood estimators and their asymptotic distribution for the

regression parameter f3.

The method of marginal likelihood was developed by Kalbfleish and Prentice

(1973), for the analysis of the regression parameters in model (1.1). The order statis-

tics and the rank statistics of observed failure times are the focus of their discussion.

They consider the group G of differentiable, strictly monotone increasing transforma-

tions of (0, oo) onto (0, oo). They argue that the estimation problem for the regression

parameters based on rank statistics is invariant under the group G of transforma-

tions on the failure time t. The group G acts transitively on the order statistics, while

leaving the rank statistics invariant. Only the rank statistics can carry information

about the regression parameters when A0 (t) is completely unknown. That is, the

rank statistics are marginally sufficient for the estimation of the regression param-

eters. The marginal likelihood of the regression parameters is proportional to the

probability that the rank vector should be observed from the marginal distribution

of the ranks. For censored data, the marginal likelihood becomes more complicated if

the number of ties is large, but the computation can be simplified by using an approx-

imation suggested by Breslow (1974). For uncensored data, the marginal likelihood

is identical to the conditional likelihood.

The partial likelihood approach to inferences about the regression parameters

which gives essentially equivalent results to those given by marginal likelihood is

described by Cox (1975). The partial likelihood is useful especially when it is ap-

preciably simpler than the full likelihood, as for example, when it involves only the

parameters of interest and no nuisance parameters. A reduction of dimensionality,

when we have many nuisance parameters, is possible by using partial likelihood. This

approach is especially can be fruitful when A0 (t) is assumed to be an unknown ar-

bitrary function, to be treated as a nuisance function. Cox (1975) shows that the
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marginal likelihood derived by Kalbfleish and Prentice (1973) is equivalent to a partial

likelihood.

1.2 The Problem

All of the arguments above are considered with the assumption that A0 (f) is

completely unspecified. If we have additional information on A0 (f), for example,

monotonicity or constancy of Ao (i), since information should be useful for inference

of the regression parameters in (1.1). From a practical point of view, we can have

empirical or prior information about the hazard rate without taking into account the

effect of covariates. If experimental units are like light bulbs, machine tools, or car

engines, we are concerned about the way in which the items in question wear out.

It is reasonable to assume that the failure rate of aging items will tend to increase,

when we do not consider the effect of the covariates.

The efficiency of inference about the regression parameters under various assump-

tions about A0 (f) is referred to as a ’’major outstanding problem” by Cox (1972).

Many researchers have attempted to answer the above problem. Meshalkin and

Kagan (1972) showed that knowledge of the baseline hazard function is helpful in

reducing the asymptotic variances of the estimates of in the model (1.1) by 10 to

20 %. They assume that the baseline hazard function has an exponential form of a

linear function of t

.

Efron (1977) argues that if the class of nuisance functions is large,

then the inferences about the regression parameters based on partial or marginal like-

lihood are asymptotically equal to those based on all the data. He also carries out

the calculation of an information matrix which shows that Cox’s partial likelihood

has full asymptotic efficiency under mild conditions. Oakes (1977) also deals with

the same problem from a different point of view. Efron (1977) and Oakes (1977) use

different parametrizations of the baseline hazard function. In Efron’s formulation,

the baseline hazard function may depend on the regression parameters as well as the
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nuisance parameters. The baseline hazard function is assumed to be either known

completely or known up to a multiplicative constant by Oakes. Explicit formulas for

the asymptotic variances of the estimates of f3 are derived informally and compared.

Oakes also concludes that the amount of information lost through a lack of knowledge

of the baseline hazard function in any specified data set is usually small.

Inferences about the baseline hazard function Ao(t) are also an important part of

survival analysis, because A0 (t) reveals the survival pattern. Breslow (1974) suggests

that Ao (t) be approximated by a step function which has discontinuities at observed

failure times. He considers the joint likelihood function of Ao(t) and and derives

the maximum likelihood estimators of A0 (t) and /3. Beyond Breslow’s paper, there

is, however, little discussion on inferences about A0 (f) in the literature.

For the one population problem, i.e., for (3 = 0 in (1.1), many results concerning

inferences about hazard functions under order restrictions are available in literature.

Grenander (1956) was the first to use the concept of the greatest convex minorant to

estimate the failure rate under the assumption that the failure rate is monotonically

increasing. The various problems of inference under order restrictions are discussed

by Barlow et al. (1972) and Robertson et al. (1988), who deal with a wide class

of extremum problems whose solutions are provided by isotonic regression. They

discuss the problems of estimating monotone failure functions and of prove strong

consistency of the isotonic estimates of monotone failure functions. They examine

tests for exponentiality against monotone failure rate alternatives in situations with

type II censoring and random censoring.

We intend to extend the results suggested by Barlow and coworkers (1972) to

estimate the baseline hazard function under the assumption that it is increasing in

time t. and to test whether the baseline hazard function is constant or increasing in

t.
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1.3 Preview

The objective of this dissertation is how to estimate the baseline hazard function,

Ao(t), in the Cox regression model, under the assumption that Xo(t) is increasing or

decreasing monotonically and examine the consistency and normality of its estimator.

We are also concerned about the test for the monotonicity of the baseline hazard

function.

Chapter 2 contains tests for constant failure rate versus increasing failure rate.

We develop a procedure for Type II censoring and then extend it to random censoring

with covariates.

In chapter 3, we focus on estimating the baseline hazard function by a step func-

tion. Isotonic regression is adapted to find the estimators by solving likelihood equa-

tions under order restrictions on parameters.

In chapter 4, we prove the strong consistency of the estimate of A0 (t) using the

strong consistency of estimator for (3 obtained by partial likelihood.

In chapter 5, we deal with the problem of improving the maximum likelihood es-

timator of A0 (t) by considering windows. The asymptotic distribution of the isotonic

estimator of A0 (t) is found. Finally, the optimal size of the window is derived by

minimizing the mean square error of its estimator.

Chapter 6 contains the results of simulation study which show the superiority

of the isotonic estimator over the maximum likelihood estimator of A0 (f) under the

monotonicity assumption.



CHAPTER 2

TEST FOR MONOTONICITY OF THE BASELINE HAZARD FUNCTION

2.1 Introduction

When it is known a priori that the baseline hazard function is an increasing

function, that information can be used to find a better estimates of the baseline

hazard function. Further, when no information about the baseline hazard function is

available, it is of interest to check whether it is monotone increase or not, before we

estimate the baseline hazard function.

In this chapter, we will develop methods by which we can test the hypothesis of

constant versus increasing baseline hazard function. That is,

Ho : A0 (t) is constant

versus

Hi : Ao(f) is increasing.
(
2 . 1

)

The cumulative total time on test statistic is a fundamental tool used to develop the

proposed test procedure.

The problem of testing the hypotheses (2.1) without the covariates (i.e., /? = 0 in

(1.1)) is reviewed in section 2. In section 3, we extend the concept of total time to

test the hypotheses (2.1) under Cox’s regression model with random censoring. In

section 4, we illustrate a graphical method of testing the hypotheses (2.1).

9
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2.2 Test for Isotonicitv without Covariates.

We consider the problem of testing the hypotheses (2.1) where A0 (t) is given by

Y3^y. This problem is equivalent to a test of the hypothesis that F is an exponen-

tial distribution against the increasing failure rate alternative, since under the null

hypotheses (2.1), the failure time T has an exponential distribution with mean j.

Bickel and Doksum (1969) discuss the problem of testing for the given hypothesis

(2.1) when a sample of complete observations is available. Their test is based on

the ranks of the normalized spacings between ordered observations. Their results

are extended by Barlow and Doksum (1972) to the case where we have Type II

censoring. The total time on test statistic is considered as a key to develop the test

for the hypotheses (2.1).

In this section, we summarize the results in Barlow and Doksum.

Suppose a study continues until the kth. failure time occurs and at that time all

surviving individuals are assumed to be censored. We obtain the first k ordered ob-

servations out of a sample of n individuals:

K(i) < Yu
(
2

)
< • • • < Yu(k), (1 < k <n)

Let Dn: i = (n — i + 1)(K,(,-) — Tu(i-i)), i = 1, •••,«, be the normalized sample spacings,

where Yu
(
0

)
= 0. It is well known that when the failure time has an exponential

distribution with parameter A, the normalized spacings Dn: i are independent and

exponentially distributed random variables with mean j-.

We have the following theorem that forms the basis for many tests for exponen-

tiality versus increasing (or decreasing) failure rate.
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Theorem 2.2.1 If F has an increasing failure rate, then the Dn: i
= (n — i + 1)(UU (,)

—

Fu (i_ !)) i = 1
,

• •
•

,
n, is stochastically decreasing in i (= 1

, 2,
• •

,
n) for fixed n.

Proof of Theorem 2.2.1 See Breslow et al.(I972)

Under the alternative hypothesis of increasing failure rate, Theorem 2.2.1 implies

that

Dn:l^T) n:2>
St St

>Dn ,r,

st

while under the null hypothesis of constant failure rate the above theorem implies that

Pr(Dn:i < Dn:j ) = ^
i^j

where > implies stochastic ordering. We have zero slope in the linear regression of

the Dn:n-i on the value i under exponentiality of the distribution F. Since Dn ,i tends

to be larger than Dn:j
for i < j, the slope in the linear regression is positive under

the assumption of increasing failure rate.

When the slope is nonzero, it is, as usual, sensitive to change in scales. Therefore

it is desirable to make the statistic scale invariant by dividing the slope by the average

of Dn:i ,
i.e., IE?* Dn:i .

The slope in the regression of the Z)n;n _, on i is linearly related to the sum of the

areas of triangles formed by (0, 0), (i, 0), and (i, Dn:n_ t )
for i = 0,

• •
•

,
(n - 1). Let us

define

Vn
def
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— — l)-^n:n-»+l

We can rewrite Vn as

Vn
i n i—

1

-EEn , ,
4= 1 J= 1

n— 1 n

= -EE Dn:n—i1+1

3— 1 «=j+l

1 n—

1

n—j

3= 1 4=1

1

n E E«
k=n— 1 t=l

i n— 1 A;
/

i n

= ;EE D.:i/-E°-n
fc= 1 4= 1

n
4= 1

(2.2)

The term Tn (y^(,)) = £)'•_
j
Z)n;j in (2.2) is recognized as the total time on test

statistic up to the zth failure. If n individuals are placed on test, when testing com-

mences, then n individuals survive up to time K(i), (n— 1) individuals survive through

the interval [T^), 5^(2)), etc. In general, (n — i + 1) individuals survive through the

interval [K(i-i),K(«))- Hence

Tn{Yu(i)) = Y. D~,
j=i

— nYu
(
i) + (n — l)(y^( 2

)

— Yu(i)) + • • • + (n — i + 1 )(1^(,) — Yu(,-!))
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is interpreted as the total time on test statistic, which is the sum of times for indi-

viduals who survived up to the ith failure. The following definition will be needed to

develop a test for the hypotheses given in (2.1).

Definition. Given the first k (1 < k < n) ordered observations out of n individuals,

i k— 1 i
/

1 k

H d=r

1= 1 J=l 1=1

Tn{Yu(j))

k Tn(Yu(k) )

K ’

is called the cumulative total time on test statistic, where Dn:t
- = (n — i + l)(VL(i) ~

Fu(,_i)) for i = 1,
••

• ,n.

Under the alternative hypothesis that A (t) is increasing, Theorem 2.2.1 shows that

Vk tends to be large by the fact that Dn:j
is stochastically decreasing in j. We may

not accept the null hypothesis that A (t) is constant when Vk is fairly large. Hence

the statistic Vk (1 < k < n) provides a good tool for determining whether the failure

rate is indeed constant or increasing.

In order to perform the test based on Vk we need to find its null distribution. We

shall use the following well-known theorem to find the statistic which is stochastically

equivalent to Vk and whose distribution is known.

Theorem 2.2.2 If the failure times have an exponential distribution with parameter

then
k-

1

V̂ X U> (2.4)

where Uj (j = 1,
• •

•
,
k — 1) are independent uniform random variables on (0,1).
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To prove this theorem we need to prove the following lemmas.

Lemma 2.2.1 Conditional on ^"=1 Dn:i = m, Dn: i,
• •

•
,
Dn:n_i have a uniform distri-

bution over the area:

n—

1

di > 0, i = 1, • •
•

,
n — 1, ^ dj < m,

i=

1

under the null hypothesis that Ao (t) is constant.

Proof of Lemma 2.2.1 See Appendix A.

Lemma 2.2.2 Let Xi — —
”» z = 1 ,

- -
-

,
n— 1. Then under the null hypothesis

that A0 (t) is constant, and conditional on Dn ,i
— m, X\, •

•
,
Xn-\ have a uniform

distribution over the area:

x,' > 0 i — 1
?

• •
•

?
n — 1 x\ + •

• + xn_i < 1. (2-5)

Proof of Lemma 2.2.2 It is seen that Lemma 2.2.2 is a consequence of Lemmma 2.2.1

by a scale change.

Proof of Theorem 2.2.2 This theorem is stated by Barlow(1972)
,
but no proof of this

theorem is given. Hence, we have provided a proof in Appendix B.

Theorem 2.2.2 demonstrates that 14 can be considered as sum of (

k

— 1) i.i.d.

uniform random variables on (0,1). Hence it is possible to compute Ck
t
(\~a

)
such that

a = Pr[Reject H0 \H0 is true]

= Pr[14 > (7
yt

i (
1 _a)|A(i)is constant].
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Table 2.1. Percentiles Ck,\-a of the Cumulative Total Time on Test Statistic, Vk

under Hq

k-1 1 — a
0.900 0.9500 0.975 0.990 0.995

2 1.533 1.684 1.776 1.859 1.900

3 2.157 2.331 2.469 2.609 2.689

4 2.753 2.953 3.120 3.300 3.411

5 3.339 3.565 3.754 3.963 4.097

6 3.917 4.166 4.367 4.610 4.762

7 4.489 4.759 4.988 5.244 5.413

8 5.056 5.346 5.592 5.869 6.053

9 5.619 5.927 6.189 6.487 6.683

10 6.178 6.504 6.781 7.097 7.307

11 6.735 7.077 7.369 7.702 7.924

12 7.289 7.647 7.953 8.302 8.535

k= number of failures observed in data.

Table 2.2. Percentiles Ck,a of the Cumulative Total Time on Test Statistic, Vk under

k-1 a
0.100 0.0500 0.125 0.010 0.005

2 0.447 0.316 0.224 0.141 0.100

3 0.843 0.669 0.531 0.391 0.311

4 1.247 1.047 0.880 0.700 0.589

5 1.661 1.435 1.246 1.037 0.903

6 2.083 1.834 1.633 1.390 1.238

7 2.511 2.241 2.012 1.756 1.587

8 2.944 2.645 2.408 2.131 1.947

9 3.381 3.073 2.811 2.513 2.317

10 3.822 3.496 3.219 2.903 2.693

11 4.265 3.293 3.631 3.298 3.076

12 4.711 4.353 4.047 3.698 3.465

&=number of failures observed in data.
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From Theorem 2.2.2, it follows that the null distribution of 14 is approximately

converges to a N( 0, 1) random variable under the null hypothesis that A (t) is constant.

To perform the test we use critical numbers Ck
} (
i_a

)
which are tabulated by Barlow

and Proschan (1968) for small k (see Table 2.1). For example, if 1 - a = .90 we look

in row & — 1 = 4 and 64,0.90 = 2.753 in Table 2.1 and 2.2 . If the observed value of

Vk greater than the number 2.753, it is concluded that the true distribution has an

increasing failure rate at the 10% significance level. If the observed value of 14 is less

than 1.247, we can make the opposite conclusion such that the true distribution has

a decreasing failure rate with a 10% significance level.

Example (Barlow, 1972). In Table 2.3, we list the times between air- conditioner

failures on selected aircraft. After roughly 2000 hours of service the planes received

major overhauls: the failure interval containing major overhaul is omitted from the

listing since the length of that failure interval may have been affected by the overhaul.

We wish to determine if the intervals between failures have an exponential dis-

tribution or if there is a wearout trend as the equipment ages. In the event that

there is a wearout trend, maintenance should be scheduled according to equipment

age rather than the present policy.

The Vk associated with the data in Table 2.3 are given in Table 2.4. Since the

sample size for plane 7908 exceeds the range of Table 2.1, we can use the fact that

for large k, and under H0

normal with mean |(

k

— 1) and variance — 1) for large k. By standardizing Vk,

it follows that

Z = {12(*-l)}i[(*-l)->K4 -i]
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Table 2.3. Interval Between Failures of Air Conditioning Equipment on Jet Aircraft

I<

aircraft

7907 7908 7915 7916 8044

1 194 413 359 50 487

2 15 14 9 254 18

3 41 58 12 5 100

4 29 37 270 283 7

5 33 100 603 35 98

6 181 65 3 12 5

7 9 104 85

8 169 2 91

9 447 436 43

10 184 230

11 36 3

12 201 130

13 118

14 34

15 31

16 18

17 18

18 67

19 57

20 62

21 7

22 22

23 34

Major overhaul before the 14th observation
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Table 2.4. Statistics and Conclusion

plane sample size k statistic Vk conclusion

7907 6 U6 = 2.243 Exponential at the 10 % level

7908 23 U23 = 8.829

Z=-1.607

Exponential at the 10 % level

7915 9 U9 = 2.80 Decreasing failure rate at the 10 % level

7916 6 U6 = 1-67 Exponential at the 10 % level

8044 12 V12 = 4.22 Exponential at the 10 % level

is approximately normally distributed with mean 0 and variance 1.

Using the fact that

Vk -U\ + • •
• + Uk-i

st

is symmetric about i.e.,

Pr(U -~ > x) = Pr(U

we can obtain the lower critical numbers for Vk. Those numbers are given in Table

2.2. If Vk is less than the lower critical number, we conclude that the data are from a

distribution with a decreasing failure rate. For plane 7915 we obtain V^=2.80 which

is less than 2.944 in Table 2.2. Hence, we conclude at the 10% significant level that

the failure times of the air-conditioner of plane 7915 have a decreasing failure rate.
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2.3 Test for Isotonicitv with Covariates.

We would like to extend the method introduced in Section 1 to test the mono-

tonicity of the baseline hazard function in Cox’s regression model. Our concern is to

determine whether the baseline hazard rate is constant or increasing, regardless of

the values of the covariates. We assume that the observations are subject to random

censoring. Barlow and Proschan (1969) deal with the same problem for samples sub-

ject to random censoring when no covariates are available. It does not substantially

complicate matters to develop the method to test the hypothesis about the baseline

hazard function when covariates are available.

Suppose n individuals are put on test at time t = 0. Among n individuals, we

assume that k individuals failed and the remaining (n — k
)
individuals are censored.

Let < Yu{2) < • •
• < Yu(k) be the ordered failure times with corresponding covari-

ates Z(i), Z(2 ),
• •

•
, £(*.). Suppose that m,- individuals with covariates Z(n), •

•
,
Z(imi)

are censored in the interval [K(i), K(.+i)), for i = 0,1, •••,&, where K(o) = 0 and

Yu(k+\) — oo.

The set of actual survival times for the n individuals can be characterized by

yu(i) < yu (
2 )
< • • • < yu(k) yu(i) < yc(n) < yc(im x )

where yc(n) •
•

• yc(im ,)
are the failure times associated with individuals censored in the

interval [Fu(l ),

y

u(t+1) ).

Now let h(yu(i)) denote the conditional probability that Yu^) < V^(ii), • •
•

,

given Yu (i) = yu(i)^ = 0, 1,
• •

•
,
k. Then

(
see Kalbfleisch & Prentice, 1980)

^(l/u(«)) P r [Lu
(
t
)
< FC(,1),

' *
'

j Lc(tm,) |Lu(t) — Vu(i)]



Define

n (Vu(i)) = exp(^£)
j€R(yu(i))

k rrij

= Y,ieMzU)P) +£ exP(2(iO^)] * = 0> 1*
• •

•
,
k. (2.7)

j=i 1=1

where R(t) is the risk set prior to t.

Note that if /? = 0, then (?/„(,) — yu(i-i))(^(yu(i-i) — 1) is the total time on test

between the (i — l)st and the ith observed failures,

Theorem 2.3.1 Let

Ui= f ° n(t)\0 (t)dt i = l,---,k,

where n{t) = YfieR(t) exP(zlfi) and ^u(o) = 0. Then Ui,i = 1 ,k are independently

distributed with density exp(— u).

Proof of Theorem 2.3.1 Let

So(t ) = f n(x)\0(x)dx.
Jo

S0 (t) is well defined up to the first observed failure, yu(\), since n(t) depends only upon
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the numbers of the observed censored individuals less than yu(i) which are greater than

t. By definition

Ui = [
()

n(x)\0(x)dx = So(K(i))-
J o

Now to show that U\ has density exp(— ufi), we compute

Pv(U1>Ul )
Pr(S0(rtt(1) )

> «i)

Pr(n
(
i) > So'M)

k / TTlj ri—
1 j

exP[ -
(
exP(z(i)P) + X] exP(zjlP)) I

°

A0 (a:)cfo]

j= i
v

;=i ' Jo

. fSo'(u i)
,

exp[ — / n(x)\0(x)dx]
Jo

exp[-S’0(5o
1

(“i))]

exp(-uj),

using (2.6). Next we will show U2 is independent of U\ and also exponentially dis-

tributed with mean 1. Let

, f
Yu( 2 ) rt

U2 = I n(t)\0 (t)dt and SXl (t) = / n(x)X0(x)dx.
JY*i) Jx 1

Then the conditional probability that the U2 is greater than u2 given the first failure

occurs at xi is

Pr(U2 > u2)|K(i) = x^ = Pr(5ri (Fu(2 )) > u2 |Fu(1
)
= x a )

= Pr(K( 2
)
> = Xi)

= exP[-*5x 1
(5'

Xl
1
(u 2 ))]

= exp[-u2 ].
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Thus U2 is independent of U\ and also exponejitially distributed with mean 1.

Continuing in this manner by conditioning on previous events, we prove that £/, for

i = 1,
• •

•
,
k, are independent and distributed exponentially with mean 1.

Since we wish to test the null hypothesis that the baseline hazard function is

constant, we put A0 {t) = A. Then by a simple transformation, we note that

Ui = i = 1 ,

• •
•

,
k

are independent exponentially distributed with mean

Theorem 2.3.2 Let us define 14 by

yk = Z-Zl fo
•*" n(u)du

fP" n(u)du

Shi Vj

st ^ TT.
i=l L^,i-

1

where Ux ’s are i.i.d. random variables with exponential distributions with parameter 1.

Then under Hq, 14 is distributed as the sum of ( k — 1) independent uniform

random variables over (0, 1) when /3 in n(u
)

is known.

Proof of Theorem 2.3.2 The prooffollows immediately from Theorem 2.2.2.

The next theorem implies that Vk is reasonable test statistic for the given hypoth-

esis.
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Theorem 2.3.3 If \0 (u) is increasing in u > 0 and n(u) > 0 for u > 0, then

k-l y>i

Vk > £st y'k
i=i ^j= l

Uf

Uj

where U\, U2 ,

• •
•

, Uk are independently distributed as exponential random variables

with mean 1.

Proof of Theorem 2.3.3 Since n(u
)
> 0 and Aq (u) is increasing in u, we have

J X0(u)n(u)du < Aq (t)
J

n(u)di

LI- 1 • fn ^0Mn(lt)du .

which implies " Q

j< n{u)du
— ts increasing in t > 0. Hence for i = 1, • •

•
,
k we have

fo
“
fl)

A0 (u)n(u)du <
A0 (u)rc(u)du

fo
u(,)

n(u)du ~
f0
K(k

> n(u)du

which is equivalent to

fo
“
(l)

X0 (u)n(u)du < /0
y“(,) n(u)du

fo
u(k)

X0 (u)n(u)du f^
u(k>

n(u)du

i.e.,

fo
"<t>

^0(u)n(u)du Jo'"'

1” n(u)du

Since by Theorem 2.3.1,

g Ej=i Uj d Z-=ifo
u(i)

Aq(u)n(u)du

t'=i Ej=i Uj f0
K(k)

X0(u)n(u)du

the proof is complete.
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We reject the null hypothesis that A0 (t) is constant if the value of 14 exceeds the

critical number given in Table 2.1. In practice, we must replace 0 by the maximum

likelihood estimator of 0 from marginal likelihood, to obtain an asymptotically valid

the test.

Example. Consider a data set generated by using the following proportional haz-

ard model,

A o{t', z) = 2texp(2z),

where z is given under Ho, covariate values. (See Section 6.2.) Suppose we have two

groups of patients, e.g., male and female. We are interested in testing whether or

not the hazard rate is increasing, regardless of sex. The data set generated is shown

below.
Male : 0.0248 0.0361* 0.0452* 0.0821 0.125* 0.1489*

0.1596 0.2008* 0.2017 0.2144* 0.2352* 0.2469*

0.2749 0.3017

0.4907 0.6531

0.3045* 0.3164* 0.3189 0.3797*

Female: 0.0511 0.0611 0.0625 0.0766 0.0768 0.2216

0.2294 0.2604 0.2984 0.3149 0.3662 0.5187

0.7587 0.7906 0.8859 0.9317 0.9442 1.0004

1.0810 1.5018

* indicates censored observations.

We would like to see if we obtain the same result using 0 = 1.932 as the result

using 0 = 2.0. When 0 = 2.0, 14 = 17.79, while when 0 = 1.932, 14 = 17.70.

We obtain z=2.48 by standardizing 14. Hence, we make the same conclusion that

the baseline hazard rate is increasing at the 5% significance level. Therefore, this

example supports the validity of replacement of /3 with 0 obtained from the marginal

likelihood to perform the test.
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2.4 A graphical Method to Test Isotonicitv with Covariates

We intend to develop a graphical procedure which allows us to visually examine

whether or not the baseline hazard function is constant.

When the baseline hazard is constant, the corresponding failure time distribution

,
Fq ,

is an exponential distribution. Epstein(1960) introduced a graphical procedure

for checking to see if the underlying distribution is really exponential. He plots

y = log(1/(1 — F(t)) against t where the cumulative distribution F(t) is

0 t < 0

1 — exp(— |) t > 0

assuming that 9 > 0.

If the failure rate is increasing, it is not difficult to see that — log(l — F(t)) is

convex on (0, oo). To extend the idea suggested by Epstein to test for the baseline

hazard rate in Cox’s regression model, we estimate the survival function of failure

time T, given Z — z.

Turning to our problem, note that survival function of the failure time T given

Z = z, is given as

S(t] z) = So (t)
exp{z0)

where So(t) is an arbitrary survival function. First we consider the calculation of the

nonparametric maximum likelihood estimate of So(t) (Kalbfleish Sz Prentice, 1980).

The probability that an individual with covariate z fails at yu^) is

So(yu(i
)T
Mz^ l3) - So(jM0 + 0)

exp(2w /J)

where S0 (yu (i) + 0) is a right limit of yu (i)- We assume that the contribution to the
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likelihood of a survival time censored at t is

S0 {t + 0)
exp(2/3)

.

In effect, the observed censoring time, t
,
tells us only that the observed failure time

is greater than t. Thus we obtain the likelihood function

k 771 ,

c = n[{S»(».(„r*»'
,) - S>(»,(,•) + 0)“"<'I')«)}

J| So(yc( , (2 . 8)

«=0 j= 1

It is clear that

So(t) = S0 (yu(i))

f°r yu (i) < t < yu (,+ i), in order not to make C — 0. In other words, the solution is a

discrete distribution.

Let 1 — ai be the hazard rate at ?/„(,), i.e.,

1 - <*• = Pr[T = yu(i)\T > yu(i) )
i = 1,

• •
•

,
k.

Then we have

Pr{T > yu(i)) = S0 (yu(i))

— So(yu(i-i) + 0
)

«-i

= n«; * = i,—
, * (2.9)

j=

0

where a0 = 1. Note that the LHS of (2.9) is equivalent to

fVu(i)

exp [— /
Ao(u)du]

Jo
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by definition of survival function Sq(u). That is, we have

fVu(i) L_i
exp[— / A0 (u)du] = JJ otj

Jo
j=

o

i = 1, • •
•

,
k

Taking logarithm of both sides, we obtain

-—1 rvu(i)

~ Yu log a
J = /

Xo(u)di
,=o Jo

When A0 (u) is constant, we can see that Ej=o logaj is a linear function of ?/„(,), while

it is a convex function of yu (,)
when the A0 is increasing.

Since the a/s are unknown, as an asymptotic approximation we set otj = dj,

the maximum likelihood estimators of the a/s, j = 1,
• • • .* — 1. In order to obtain

the maximum likelihood estimators of the a/s, the likelihood function (2.8) can be

rewritten as

k i-1 e*p(z(i) /3) ,• exP( z(i)fl) m, j
exp(z(il) /3)

= nm«i) -(n«i) indigo i

7=1 j=0 j=0 1=1 j=0

k i-1 eMz(i)0) mi i
exp(z(u)(3)

;=i j=o j=o

k k i
{exp(z

(i)/?)+^\ exp(z(i{)0)} k

7=1 7= 1 J=0 7= 1

k k ^ k

= n (1 - a,
exp(^ , )

/3)

)

exp(*(0^)+Etei Q,.exp(z(l) /3)

*=i i=i t=i

k k ^ m
- JJ(1

_ ai
exp(z(0/3))

JJ
Xi=/exP(*(i)0)+Ei=i exp(z(i | )

/?)}-exp(z
(j) /3)j

*= 1 J= 1
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= nu on *p(*(i)0))a £**«(.•))
**p(*(i)0)-exP(z(O'3 )

(
2 . 10 )

by using (2.9). We now replace f3 with f3 which is estimated from its marginal

likelihood and then maximize (2.10) with respect to ax, •
•

,
a*. Differentiating the

logarithm of (2.10) with respect to a,-, we obtain the normal equation,

- exp (z(l-)/?)6t-

A exp(z(t )/3)
1 — a,

+ H exp(z
(/) /3)

- exp(z(i) /3) = 0.

*(y„(0)

(2.11)

We can obtain the maximum likelihood estimate of a,- as a solution to (2.11), i.e.,

di (
1 -

exp(z
(,)/3)

£/€*(

y

u(0 )
exp(2;/9)

exp(-Z(i)P).

)

Note that an iteration method is required to obtain the maximum likelihood estima-

tors of ot{ when we have multiple individuals falling at yyy

In practice, we simply plot - logaj against yu(t) ,
i = 1,

• •
•

,
k, to apply the

graphical method. If the baseline hazard function is constant, then the plot should

be roughly linear while if the baseline hazard rate is monotone increasing, then the

plot will tend to be a convex curve.



CHAPTER 3
ESTIMATION OF THE BASELINE HAZARD FUNCTION

3.1 Notation.

In the remainder of this dissertation we assume that the baseline hazard function,

mates the baseline hazard function by a step function with discontinuities at each

observed failure time. However the maximum likelihood estimates of the baseline

hazard function are inefficient, since they do not take into account the monotonicity

of AQ (t).

Let n be the number of individuals in the sample. We shall define a random

variable, representing failure time as T where observed failure time is t. Let Z

be a row vector of s measured covariates. Let Tu ---,Tn and Cu ---,Cn be the

independent random variables of failure times and censoring times, respectively. We

observe (Fi, ^i),
• •

•
,
(Yn ,

6n )
where

with corresponding covariates Zu - ,Zn . Define Fu(t) to be the ith order statistic

from uncensored failure times for i = 1 ,...,& (

k

< n ). Let Zu^ represent the

corresponding covariate of Fu (,)

.

As defined in (1.1), the proportional hazard model is given by

A0 (£), in Cox’s regression model increases monotonically. Breslow(1974) approxi-

Yi = Ti A Ci, Si = I(Tt < Ci )

A (t;z) = \0 (t)exp(z(3).

The survival function is defined by

29
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and the density function by

f(t;z) = \(t;z)S(t]z)

given that Z = z.

Breslow(1974) obtains the maximum likelihood estimator of A0 (£) without the as-

sumption of increasing failure rate. In this chapter we derive the maximum likelihood

estimator of Xo(t) under the assumption of increasing failure rate. We approximate

the baseline hazard function by a nondecreasing step function with discontinuities at

each observed failure time; that is,

Ao(0 A,' J/u(i— 1) t ^ Vu(i) (3.1)

where A,- < A,+1 for i = 1 Ao = 0, yu(o) — 0, and yu(k+i) — oo. For estima-

tion purposes, we assume that an individual censored in the interval [?/«(,•_i), yu(i)) is

censored at yu(i-i)- This approach is similar to Breslow(1974).

The likelihood corresponding to the observations described at the beginning of

this section is

k
y ( )

~ II[^o‘(?/u(«')) exp(su(,)^) exp {—
j

A0(u)du exp(2//3)}]

where dt is the number of individuals who failed at and su(t) is the sum of

covariates of individuals failing at yu{i) . H(yu({) )
is the set of labels attached to the

individuals who either fail or are censored observations at yu (i). particular way, for

example,

Using (3.1), Co reduces to

k

= n^' exP( 5u(,)^) exp{-A,(?/u (,)
- yu(,-_i)) exp {zt/3)}]

,=1 ^fi(j/u(l) )
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where R(yu(,)) is the risk set prior to yu(iy

To maximize C\, we consider the logarithm of Ci, denoted by £ 2 ,

k

£2 = log + su(i)P - \{yu (i) - yu(i- 1 )) exP( zifl)}- (3.2)
,=1

In the remainder of this chapter, the term "maximum likelihood estimator” of

A0 (t) will be referred to the solution A,-, i = 1
,

• •
•

,
k, which maximizes £ 2 subject to

Ai < A 2 < • • • < Afc. In next section, we apply the isotonic regression method to

find the maximum likelihood estimator of Ao(f). In the following chapter, we shall

replace (3, by the the marginal likelihood estimator of (3 to find maximum likelihood

estimator of Ao(£).

3.2 Isotonic Regression

We shall introduce isotonic regression through an example. The importance of

isotonic regression can be illustrated by the classical two sample problem, in which

the mean response for two treatments are compared. If treatment 1 is a standard crop

treatment, while treatment 2 is an experimental treatment (standard plus fertilizer),

then it may be possible to assert that y 2 > //j ,
where /q is the population mean

amount of produce per acre with applying treatment i (i = 1,2). Suppose we want

to test the hypothesis Hi = /i 2 . Since significance comes from an observed difference,

say yi — 2/2 ,
we perform a one-sided test. If we ignore the ordering assumption, then

we would use the standard two-sample t test for the equality of two treatments. It is

well known that the one-sided test is significantly more powerful than the two sided

test. Since the two-sided test makes no use of the prior information that < y,2 .

By taking such information into account, the one-sided test gives higher power to
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test the difference between the treatments. Isotonic regression analysis provides a

method of using the ordering assumption about the parameters.

We need the following definitions to introduce the isotonic regression.

Let X be the finite set {xj, 22, • •
•

,
x*,} with the simple order X\ < 22 < • • • < x k

and w be a positive weight function. A function /, on X, is isotonic if /(x 1 )
<

f(x 2 )
< • • < f(x k )

Suppose g is a given function on X. A function g* on X is an isotonic regression

of g with weights u> if and only if g* is isotonic and g* minimizes

(3.3)

xex

in the class of all isotonic functions / on X.

Robertson et al. (1988) in the following theorem argues that for a finite set of X
,

’isotonic’ estimators reduce error in the sense by the following theorem.

Theorem 3.2.1 Suppose we have a quasi-order on a finite set ofX . If 0 is any func-

tion on X and if 6* is the isotonic estimator of 6 with weights u>, then

E *[**(*) - *(*)M*) < E *000 - 0(x)]u(x)
x€X xex

for any convex function 'L on (— 00 ,
00

)
and any isotonic function 6 on X.

Proof of Theorem 3.2.1 See Robertson et al. (1988, p41).

Theorem 3.2.1 states that the isotonic estimator of A0 reduces error in a number

of ways as seen by taking VE'(f) = |t|
p

, p > 1 . For example, with p = 1, we can see

that A* has less total absolute error and with p = 00
,
Aq has less maximum absolute

error.
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' ‘ I " s ‘‘onsider a graphical interpretation of (3.3).

In P Wilt 3. 1
. (g — I ) can he interpreted as the excess of the rise in the graph of

i lie Innct ion 'J'(n) = u 2 from / to g over the rise of its tangent line at /. Clearly, we see

(l = {fJ ~ f
]1 = (J

2 ~ If' + f)2f] = ^>(g) - ${/) - (g
-

/)0 (/)

" lu u
^ ‘ s ‘* l<1 ( 'er ' vative ot ty(tt) at /. This excess is nonnegative for every convex

lunci ion T( ,/). whet her / < g or g < /. It is strictly positive if <P(u) is strictly convex

and / </.

Let us generalize the square error measure (3.3), replacing tf(ti) = u 2 by any

convex function. Let tf(u) he a convex function, which is finite on an open interval I

containing the range of function g and infinite elsewhere. Denote the discrepancy of

W- g) hy

-M<7 (.rL/(;i:)) = j
~ (9 ~ f)i/>(f) f(x),g{x) £ I

l
00 otherwise,

'

"•here r(f) is the derivative of #(«) at /. If *(«) does not have a derivative at /,

I hen !;’(./ ) denotes any number between the left and right derivative at /. From (3.4),

it can he seen that

Aij/(r, t) _ Ait(r,s) + Aq($,t) + (r — s)[V’( 5 )
—

if r.s and t are in the domain of

JJl<onw .1.2.2 Let T be a convex function which is finite in an open interval I, con-

taining the range of the function g and infinite elsewhere. If eg* is the isotonic regres-

sio„ of g. f is isotonic on X, and the range off is contained in I, then
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Figure 3.1. Graphical interpretation of the square error measure of discrepancy
The graph of <f>(u) = u 2

is drawn.
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12 ^i9(x ), f(x)]^(x) > X! + Y1 z^ <pb*(x )>/(-c )]
u;

(
;r )-

Consequently g* minimizes

J2^[9(x)J(x)]u(x)
X

in the class of isotonic f with range in I and maximizes

£{*[/(*)] + b(») - /MM/MIM*). (3.5)

The maximizing (minimizing) function is unique if 'P(x) is strictly convex.

Proof of Theorem 3.2.2 See Barlow et al.(1972).

Corollary 3.2.1 Let ifi, if2 ,
• •

•
, ifv be arbitrary real valued functions and let hi, h 2 ,

• •

,
hm

be isotonic functions on X. Then g
* minimizes

12 A*(g,f)w(x )

X

in the class of isotonic functions f with range in I satisfying any or all of the side

conditions

ICtofa) - /(*)]^;[/(*)M*) = 0 j = l,2,---,p (3.6)

J2f(x)hj(x)uj(x) > J2g(x)hj(xp(x) j = 1,2, ••• ,m



36

Theorem 3.2.2 and Corollary 3.2.1 can be used to show that the isotonic regression

provides a solution for a wide variety of estimation problems with order restriction in

which the objective function is other than least squares. The effort for solving these

problems is focused on finding the appropriate choice of the function 'L(x).

Example. (Barlow et ah, 1972) Suppose that for each of various levels x of a stimulus

(e.g., dose of insecticide) the probability of a response (e.g., death of the insect
)

is

p(x). We would like to estimate /r(x), known to be nondecreasing in x. If X is the

finite set of stimulus levels, it is simply ordered by the dosage levels. Suppose for

x € X, there are m(x
)
independent trials at stimulus level x, a(x) responses occur,

and y(x) = a(x)/m(x) is the average number of responses per trial.

If m(x) is large for x, the ratios y(x) can be expected to be in increasing order

that are natural estimates of the probability y(x). But if some consecutive ratios y(x)

have reversed ordering, another estimator would be required. The isotonic regression

of y with weights m(x) is an obvious candidate.

Let b(x) = m(x) — a(x) denote the number of nonresponses among m(x) trials at

stimulus level x. If /(x) denotes an arbitrary function bounded between 0 and 1 on

X, the likelihood at / of the sample is

and the negative log-likelihood can be written as

(3.7)



37

Thus the solution of the problem of maximum likelihood estimation of fx is the

function that minimizes (3.7) over the class of isotonic functions on X.

Consider the following convex function.

^(u) = u log u + (1 — u) log(l — n), o < u < 1

#(0) = 0, (3.8)

tf(l) = 0.

Then,

A(/,sO = glogg + (1 - flf)log(l - g) - glogf + (1 - g) log(l - /). (3.9)

Noting that the first two terms on the right of (3.9) do not involve /, the problem of

finding maximum likelihood estimator of /x(x) is equivalent to finding / which min-

imizes the discrepancy determined by convex function (3.8). Theorem 3.2.2 states

that y
m
(x), the isotonic regression of y(x) minimizes

£ {
y(x) log y(x) + [1 - y(x)] log[l - y{x)\

xex "

-y(x) log f(x) + [1 - y(x)] log[l - /(x)]|m(x),

or Exex A(y(x), f(x))m(x).

Recall that our problem is to maximize (3.2)

k

^2 = X]0°g + Su(i)P - Ai(j/u(«) - Vu(i- 1 )) ^2 exp(.z//3)}, (3.10)
1=1

»€«(»u(j))

subject to Ai < A2 < • • • < \k, assuming that all failures are distinct, i.e., d, = 1. To

obtain the maximum likelihood estimator of A,-, i = !,•••, k
,
by applying the previous
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theorem and corollary, we define \H(u) = ulogu. Then we obtain

= 9 l°g 9 ~ 9 log f ~ (9 ~ f)-

Since g log g does not depend on /, Theorem 3.2.2 implies that the isotonic regression

g* of g maximizes

^[5,(x)log/(x) +5(3:) - f(x)]uj(x), (3.11)
X

in the class of positive isotonic functions. By Corollary 3.2.1, with ip = 1, g* also

maximizes

XM*) l°g f(x) ~ f(x)]u(x), (3.12)
X

in the class of positive isotonic functions / satisfying

X^(x
)
- f(x)]u(x) = 0. (3.13)

Since su^ is independent of A,-, the problem of (3.10) is equivalent to maximizing

k

J2
«=i M2/u(.) -J/ix(,-i))E/eH(y

u(t)
)exp(z

i/3)

log A,- -
A,J

(y«(<) - Vu(i-i)) X exp (zi/3) (3.14)

ieR(»u(o)

subject to Ai < A 2 < • • • < Afc.

LetX = {l,2,...,t},/(i) = Ai,
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and

g(i) - -

{yu (i) - Vu(i- 1 )) E/gfl(Vu(0 )
exp (zi/3)

w(0 = (yu (i) - yu(i- 1 )) X exp (z/Z?)

^R(yu(i))

i — 1, •
•

,
k. by substitution, we can see that the expression (3.12) is same as (3.14).

It can be seen that the solution A 1} A2 ,

• •
•

, At, that maximizes (3.14) satisfies

1
.

My«(0 - Vu(i-i)) E/efi(s/„(i) )
exp(2;/?)

(yu («)
- yu(.-i)) X! exp(z//?) = 0. (3.15)

If Ai < A2 < • • • < Ajt, and p > 0, then we have pA a < pA2 < • • • < pA*,. It is easily

seen that

£ ((».(.) - JMi-o) exp(*/3)

‘

0gA A
)

(y«(«) — y«c«-i)) x exp (z,/3) (3.16)

achieves its maximum as a function of p at p = 1. Substituting 1 for p in (3.16) yields

(3.14). On setting its derivative at p = 1 to zero, we obtain (3.15), which implies the

the solution A, A 2 ,

• •
•

,
A*,, satisfies the condition (3.13).

We can derive that the isotonic regression g* is the maximum likelihood estimator

of A,, i = 1, •••,&, where A0 (£) = A,- for yu(i-\) < t < yu(,•), since g* maximizes

(3.12), subject to (3.13) and hence it also maximizes (3.14) subject to (3.15) and

Ai < A2 < • • • < A*,.

Now we consider the graphical interpretation of the isotonic regression g*. Assum-

ing the ordering X\ < x2 < • < Xk, plot the points P
j = (Wj, Gj), in the Cartesian
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plane where

and

i

G
i
=

1=1

w
i = Y1 u (

x i)- for j = 1,
• •

•
,
k

t=l

Let P0 = (0,0). These points form the cumulative sum diagram (CSD) of the

given function g with weight ui. The slope of the chord joining P t_x to Pj (i < j )

represents the weighted average

i j

Av{xi,xi+i,--- ,Xj} = ^2g(x T )u(x r )/ ^2uj(xr ).

r=i r=i

It is clear to see that g(xj), j = 1,
• •

•
,
k, is the slope of segment joining P

7 _i to Pj.

It is well known that the greatest convex minorant (GCM) of the CSD is the graph

of the supremum of all convex functions whose graphs lie below the CSD. Let us next

consider the graphical method for GCM. First draw a line for which the entire CSD

lies on or above it. If it intersects in more than one point, then the segment joining

its leftmost and rightmost intersections becomes a part of the graph of GCM. The

GCM is made up of such segments. Graphically the GCM is the path along which

a taut string lies if it joins P0 and P^ and is constrained to lie below the CSD. The

value of the isotonic regression g* at a point xj is just the slope of the GCM at the

points P* with abscissa

]C w(z.)-

t=i

Table 3.1 above and Figure 3.2 below clarify the concepts.
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Table 3.1. Example of CSD and GCM

j u
(
xi) Wi 9(xj) Gj 9*

1 1 1 -2 -2 -2 -2

2 2 3 5/2 3 -8/5 1/5

3 3 6 -4/3 -1 -1 1/5

4 2 8 1 1 1 1

Remark: Wj = ELi u(xj) Gj = ELi 9{xj)u(xj) Gj = ELi 9
m
(xj)u{xj) j = 1, 2, 3, 4.

Figure 3.2. Example of CSD and GCM
Slope at P of CSD: Gj - Gj-t/Wj - Wj. x = g(Xj );

Slope at P* of GCM: G) - G*_JW:
- Wj. 1 = = 1,2, 3,

4
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By Utilizing the fact that the isotonic regression can be represented graphically

as the slope of the GCM (Barlow et ah, 1972), we obtain the formula of the isotonic

regression of g,

g*(xi) — max min /lids, t)
s<i t>i

where

Av(s,t) = Y, 9(xr)u{xr ) / j^w(x r ).

Since we have

9 =
1

(y«(.) - yu(i- 1 )) EieR(yu(i) )

exP(zl0)

and

u = (y«w - Vn(i-i)) exp(^)>
l€R(yu(i))

we obtain the isotonic regression, which is equivalent to the maximum likelihood es-

timate of A,-,

A? = maxmm
s<i

<-3 + 1

4 >*' El(yn(j) - Vu(j-l)) E/€fl(yu(>) )
exp (z,/3)

'

The function g and u> are dependent upon the unknown regression parameters, /3,

which must be replaced by a constant estimator. Typically, we use the value (3 which

is obtained from the marginal likelihood by a Newton-Raphson iteration.



CHAPTER 4
CONSISTENCY OF THE ISOTONIC ESTIMATOR

4.1 Notation and Assumption

In this chapter, we shall prove the strong consistency of the isotonic regression

estimator of the baseline hazard rate, for x0 6 (yu (»), J/u(.+i)], * = 0
,
1

,

• •
•

,
k.

\/\ • t — «s 1
A,(x0 j

= maxmm — —
(4 . 1 )

*- ^
' J2 s {yu(j) - VuU- 1)) E/6 /?(yu(j) )

exp
(
Z10)

where R is the estimator of the regression parameter by marginal likelihood. For

simplicity, we shall assume all failures are distint and that the covariate z is single

valued.

We shall use the notation and formulas as defined by Tsiatis (1981).

Let the covariate Z be a random variable with density y(z) and distribution

Q(z). We assume that Q(z) has compact support, i.e., there exists z0 such that

Pr(0 < Z < Z0 ) = 1 . The Cox regression model links the distribution of the failure

time to the covariates Z. We assume that Tq is the time when the study ends. So

Pr(T < T0 ) = 1. Let fi(t\z) denote the hazard function of the censored distributions,

given Z = z. It follows that the conditional probability of surviving until time t

without being censored, given that Z = z, is given by

H(t\z) = Pr(r>f|z)

= exP[~ / {A0(x)exp(z^) + n(x\z)}dx\.
«/0

(4.2)

43
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The conditional probability of surviving until t without being censored and eventu-

ally dying before being censored, given Z = z, is

F{t\z) Pr(T >t,8 = \\z)

rTo

/
{A0 (x) exp(z(3)H(x\z)}dx,

(
4 . 3 )

Furthermore the probability of surviving until time t without being censored and

eventually dying before being censored is

m Pv{T>t,6 = l)

J F(t\z)q(z)dz

J J Aq(x) exp(zf3)H(x\z)dxq(z)dz.
(
4 . 4

)

We assume that F(t) is continuously differentiable and has an inverse function. The

derivative of F(t) is

dF(t)

dt
- J

A0 (f) exp(z/3)H(t\z)dQ(z)

-A0 (t) J exp(zfi)H(t\z)dQ(z).
(
4 . 5

)

For g(z), a continuous function of 2, define

E(g(z),t) = E[g(Z)I[T>t]]
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= E[g(Z)P(T>t\Z)]

= J g(z)H(t\z)dQ(z
) (4.6)

and

Ei(g(z),t) = E[g(Z)I[T>t ,s=1] ]

= E[g(Z)P(T>t,6=l\Z
)]

= E[g(Z)F(t\Z)]

= J J g(z)\0 (x)exp(z/3)H(x\z)dxdQ(z).

By differentiation of Ei(g(z),t) with respect to t
,
we obtain

d_

dt
Ei[g(z),t} = -A0 (t) J g(z)exp(z/3)H(t\z)dQ(z).

Using (4.5) and (4.6), we further obtain

Ao(0 /E(exp(zl3)J.). (4.7)

We can define the usual empirical estimates of F(x) and E(exp(z/3), x) by

1 ”

Fn (x) = - I[Ti>x,Si=l]
n

i=

i

and
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En (exp(z(3),x) -7 Yl exp(^r
t /?)

ieR(x)

L{z:T>x} exp(z/3)dQn (z) (4.8)

respectively where Qn is the empirical distribution of Z. Further we define that

En(exp(z/3),x )
= ~X]exp(ziP)I[Ti >x]

n i=l

and

K^(x) = I
E(exp(zf3),u)du.

4.2 Consistency of Isotonic Estimator of An(t)

The objective of this subsection is to show, for fixed (r0 , Ai(x0 )
is a consistent

estimator of A0 (x0 )
where

Ai(x0 )

t — s + 1
max min — —

Es(yu(j) - yu(j-i))EieR(yuU) )
exp( z^)

(4.9)

for x0 G (yu(i),yu(i+i)\- We can rewrite (4.1) for x0 G {yu(i),yu(i+i)],

Ai(x0 )
max min
s<i t>i

Fn(yu(s-1)) Fn{yu(t))

Kdyu(t)) ~ Kt.(yu(s- 1 ))

(4.10)

where
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Kdx
)
—

/
En (exp(z/3),u)du

J C

for yu(1) < x < yu(n) and ytt(1) < £ < yu(n) .

Next we shall prove, for any fixed x0 ,
such that 0 < F(x0 )

< 1,

A(xo
_

)
< liminf A,-(x0 )

< lim sup A,-(x0 )
< A(x0

+
), (4.11)n—'>0° n—t-oo

where x0 E (yu(i), 2/u(t+i)] and i depends on the sample.

First we must prove in the following lemma and corollary

sup \K^(x) — AT(x)| —> 0 as n —* oo. (4.12)
0<£<T0

The following lemma implies (4.12).

Lemma 4-2.1 Let ft be the maximum likelihood estimator of (3 obtained from marginal

likelihood. It follows that

sup \En (exp(zj3), tt) - E(exp(z/3), u)| -> 0
0<«<T0

(4.13)

where Pr(T < To) = 1.

Proof of Lemma d.2.1 Note that from the triangle inequality

sup
|

En (exp(z/3),u) - E(exp(z/3),u) I

0<u<T0

= SUP \En (exp(z/3),u) - £n (exp(z/3),u) + En (exp(z /3) ,
u) - E(exp(z/3),u)\

0<u<T0

< sup {\En (exp(z/3),u) - En (exp(z(3),u)\
0<u<To

+ ]EJfxp(zi)), u) - £(exp(z/3),u)|}. (4.14)
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Therefore it suffices to show that

sup \En (exp(zj}),u) - En (exp(z/3),u)\ — 0 a.s. (4.15)
0<u<2o

and

sup \En (exp(z/3),u) - E(exp(z(3),u)\ ^ 0 a.s. (4.16)

In terms of integral forms of En (exp(zf3), u) and En (exp(zf3),u), (4-15) can be

rewritten as

sup
0<u<Tq

<

<

J(z-T>u}
^)dQ,(z) -f T>u}

exp(^)iQn (,)|

SUP„, I i _ (exp^) - exp(zffi)dQn (z)\
0<u<Tq J {z:T>u}

sup
^ Is ^ J exP(^) - exp(z/3)\dQn (z)

0<tx<T0 J{z:T>u}

[ I

exp(2/3) - exp(^/?)|^gn (
2 ), (4.17)

where Z0 and 0 are assumed to the upper bound and the low bound of the random

variable z respectively. Since (3 converges almost surely to (3, |exp( 2r/?) — exp(z/?)|

is bounded and converges to 0 almost surely. Moreover dQn is a bounded measure.

Hence, (4-15) converges almost surely to 0.

Tsiatis (1981, Appendix 1) shows that the Glivenko-Cantelli lemma (Chow & Te-

icher, 1978, p 260) can be applied to prove that (4-16) converges to 0 almost surely,
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since En (exp(zf3), u) and E(exp(zf3), u) are bounded by assumption and nondecreas-

ing in u. This completes the proof of Lemma 4-2.1.

Corollary 4. 2.1 Under the conditions of Lemma 4-2.1,

sup \K^(x) — K
(
(x)\ — 0 as n —> oo.

0<£<T0

Theorem 4-2.1 For A,' defined by (4-10) and for every fixed x0 with 0 < F(x0 ) < 1,

X(x0 )
< liminf \i(x0 )

< limsup A,(x0 )
< A(x0

+
).n~*°° TI—.OC

(4.18)

Proof of Theorem 4.2.1 To prove the first part of (4-18), let £ be an arbitrary point

such that

F *(1) < £ < xQ .

converging to £ as It follows from (4-10) that

A,(x0 )
= inf sup

*o< 2/u(t ) j/u(j) <xo Kz(yu
(
t) )
- AT

s (yu( 4_i))

inf
XQ<X

Fn(Q - Fn (x)

Kdx)-mY
> (4.19)
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Since Fn converges to F
,
Corollary 4-2.1 implies

lim inf A,(x 0 )n—*oo v 7
>

>

inf «>.-?*>
x0 <x F^[x)

F(Q - F(x)

S<x0 <x F({) - F{X)

Ao(0

Ao(0

(4.20)

where the second inequality follows from (a) the monotonicity of A0 and F and (b)

K^x) = f E(exp(zf3),u)du

< ^y(F(«-F(x)) (4.21)

5mce £ is an arbitrary number which is less than xq, we have

lim inf A,(x0 )
> A0 (x0 ) (4.22)

To prove the second part of (f.18), let £ be an arbitrary point such that

x0 < £ < F (0).

We have from (f.10),
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A,-(*o) = inf sup ^

Fn(yu(t))

xo<yu(t) yu(a) <x0 K((yu
(
t))

- Kf(yu (s_!))

< sup 4^
x<x0 /Q(£) — K^(x)

(4.23)

Since Fn converges to F as n -* oo, Lemma 4-2.1 implies

limsupAi(xo) <
n—*oo

sup
x<r0

F{*) -m
~Kdx

)

<
F(x) - F(Q

r<7« F(x) - F(0HO

= HO (4.24)

where the second inequality follows from (a) the monotonicity of A0 and F and (b)

—K^(x) = I — E(exp(zf3), u)du
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Since £ is an arbitrary number which is greater than xq, we have

limsup Ai(x0 )
< A0 (ar0

+
). (4.25)

n—*-oo

By combining (4-22) and (4-25), it follows that the isotonic estimator of the baseline

hazard function is strongly consistent, provided that A0 (a:) is continuous:

lim A
t-(x0 )

= A0 (ar0 )
a. s.

where A,(a:o) is defined in (4- 7).



CHAPTER 5
THE ISOTONIC ESTIMATOR BASED ON THE WINDOW

5.1 Introduction

In Chapter 3, we considered estimators of the baseline hazard rate based on

order statistics. In practical situations, the observed data are frequently grouped

into intervals. In other words, we are able to count only the number of failures and

number of censored observations within specified intervals. Hence it is important to

consider estimators corresponding to grouped data rather than maximum likelihood

estimator of the baseline hazard rate based on order statistics. A general class of

isotonized fixed and random ” window ’ estimators of failure rate are proposed and

discussed by Barlow and van Zwet (1969). They showed that the window estimators

with appropriate window size have higher asymptotic efficiency than the unrestricted

maximum likelihood estimator. Intuitively it seems reasonable that an improved

estimator can be obtained by forcing the estimator to be monotone. In our case,

we might expect that the estimator based on the window has the property that it

is closer to Ao(f) than the maximum likelihood estimator, by the criterion of mean

square error. We are also interested in determining an appropriate size of window to

optimize the maximum likelihood estimator.

Note that the maximum likelihood estimator of Ao (t) based on the ordered sample

{y«(i) < Vu(2
)
< < yu(k)} is

A°(x) = — —j- i =
{Vu(i) ~ Vu(i- 1)) Eiefl(Su(0 )

exp(z,p)

for Vu(i-i) < x < yu{i) .

53
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For each n, let us define a grid on (0, oo) over a finite or an infinite sequence

0 = tn ,o < f n,i
• • • < tn< i < • • • . In each window [fnj, fnj+1 ), a point xnj ,

denoted by

xj for simplicity, is chosen.

If Uu( i) < tn,i < x < tn,i+i < yu(k), A0 (x) is estimated by

\*(x) —
Fn {tn,i) Fn (tnij+ 1 )

(tn,i+ 1
- t„,i)^n(exp(2/3,a:)

where Fn and En(exp(z/3),x) are defined in Section 4.1.

We next obtain

(5.1)

A/(x)

s—

1

min max
s>t+l r<i T-*

~ J=T

for tU 'i
< x < 1 where the with weights w(xj) are given by

Ld(xj)
(tn,j+l tn,j)En (exp(zf3), Xj).

Ai(x )
is called the ’’isotonic estimator of Aq(x) with respect to the discrete measure

UJ.

With Aq(x) for the initial estimator and weights

UJ
{
Xj) — (tn,j+ 1 tn,j)En (eXp(z/3), Xj)

we obtain the isotonic estimator of A0 (x) for tn< i
< x < tn,i+i by

A’l(x) - min max
r<i 1

Fn (tn,r) ~ Fn (tn<a )

*-*’+1 r-‘ E*=;(^nj+1 - tnj)En{exp(z$),Xj)
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5.2 Asymptotic Distribution of the Basic Estimators.

We will assume that the size of the window is related to the sample size, as t nt i+

1

—

tn ,i
— cn Q

for c > 0 and 0 < a < 1, in order to derive asymptotic approximations.

Although in practice, we may be interested in simultaneous estimation of Ao(x) at all

points, we shall concentrate on the asymptotic behavior of Ag(x) where x is considered

fixed. For mathematical convenience, it will be assumed that

^n,i+ 1 "F tn,i
X

;

=
2

that is, Xi is the midpoint of a grid spacing. In this chapter, the main objective is to

find the asymptotic distribution of

AJ(x) = min max g
s>,+l r<t £^J(tnJ+1 -tnj)En(exp(z^),Xj)

(5.2)

where /3 is a maximum likelihood estimator of /3 from marginal likelihood.

Before considering the asymptotic properties of AJ(x), we must first derive the

asymptotic distribution of Aq(x) in (5.1).

For given time x, we define the empirical distribution Qn (z) of Z by

From the definitions of pages 46—48, Chapter 4, and the above definition, we have

the following.

E(exp(z/3),x) = J exp(z/3)H(x\z)dQ(z)

1
n

En (exp(z/3), x) = -J2 eMziP)I[T,>x]
n i=i

= J exp(z/3)dQn (z)
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and similarly

1 AEn (exp(z(3), x) = -J2eM ziP)I[T,>x]
n

t=i

= J exp(zf3)dQn (z)

In order to apply the method developed by von Misses (1964) to derive the asymp-

totic results of Aq(x), the following definition is needed.

H
(
e,v) =

[
j exp[z(e0 + (l - e)/3)]

[vdQn(z) + (l-Ti)H(x\z)dQ(z)]}
-l

(5.3)

Substituting e — 77 — 1 and e = 77 = 0 in (5.3) respectively, we note that

H( 1
,
1
)
= ^
En (exp(z/3),x)

(5.4)

and

m0,0) = (5.5)
E(exp(z/3),x)'

A Taylor expansion of H(e,Tj) at (0,0) is utilized to obtain the form which approxi-

mates Aq(x) (Serfling 1980, chapter 6 ).

Putting e = rj = 1 in a Taylor expansion of H(-, •) yields

H(l, 1) = H{ 0, 0) + H[{0, 0) + H'
v ( 0, 0) + h.o.t (5.6)
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where ”h.o.t” means higher order terms. Next, we consider the terms of #'(0,0) and

^(0
,
0 );

^(0
,
0

)

0 ~ P) / zexp(z/3)H(x\z)dQ(z)

{/ exp(z/3)H(x\z)dQ(z)}
2

0 - (3)E(zexp(z/3),x)

E2 (exp(z(3), x)

H'(0,0)
f exp(z/3){dQn (z) - H(x\z)Q(z)}

{/ exp(z/3)H(x\z)dQ(z)} 2

_ _ En (exp(z/3),x) - E(exp(z/3), x)

E2 (exp(z/3),x)

Hence, from (5.4) to (5.8), we have

(5.7)

(5.8)

1

= 1 (h qs E{zexp(z(d),x)

En (exp(zf3),x )
E(exp(z(3),x) 1 E2(exp(z(3),x)

En (exp(z/3),x) - E(exp(z(3), x)

E2 (exp(z/3), x)
+h -°- t (5.9)

From (5.1), we can rewrite Aq(x) as

Wx ) = ^4*n,,-) ~ En (tnti+1 ) f E(zexp(zf3),x)

(tn,i+

1

— tn,i)E(exp(z[3), x) l E(exp(z/3), x)

En (exp(zp),x) - E(exp(z0),x)

E(exp(z/3),x)
+ h.o.t >. (5.10)
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It is straightforward to show that the high order term is of order Op(n
1

), since

(P ~ P) = Op{n 2
)
(Tsiatis, 1981) and

(
En — E) = Op(n~ )

by the strong law of large

numbers (Chow & Teicher, 1978). We shall show in Lemma 5.2.2 that the second and

third terms of (5.10) are asymptotically negligible, so that we only need to consider

the asymptotic properties of the first term of (5.10). Let us define

Y
En {tn j) ~ -fn(^n,t+l) . .

-tn,i)E(exp(z(3),x). ' '

Let us next consider the mean of Yn . Since E[Fn(x )]
= F(x

)

for fixed x
,

E[Yn ]
= E En(tn,i ) ^n(^n,i+l)

~ tnii)E(exp(z(3), x)

ntn,r) ~ F(tn ,l+1 )

(
<n,«+ 1

- tnti)E(exp(zP),x)'
(5.12)

Utdization of the Taylor expansion of F(tnii+1 )
at x where x = -n '

1+ *rv+ 1

,
yields

= n*) + (*»,,+ - x)F«(l) + - x)
2fW(l)

+Jf(Wl - X)
3F|3,

(X) + (y((n , 1+ ,
- X)

4F«>(X-)

where x * is between x and *n> ,+1 . Similarly we obtain

= F(x) + ((„, - x)F<‘>(x) + - xfF <!)(x)

+ - x)
3e(3)(x) + - x) 4F

<

4
>(x")
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where x **
is between tn<t and x. Hence F(tn^)

- F(tnii+1 )
reduces to

F{tn ,i)
- F(tnii+1 )

= -F(1\x)cn~a + ^-c3n~3aF{3\x) + qn~4a (5.13)

assuming |F (4)
(-)| < oo where q is some constant. Hence, from (5.11) and (5.12) we

obtain the asymptotic mean of Yn for fixed x,

E
Fn (tn,i) Fn (tn'j+ j)

. cn~a E(exp(z/3), x )

.

E(exp(z/3),x) 24 E(exp(z/3), x)
( ’ (5.14)

Note that from (4.7), the first term in the right hand side of (5.13) is \0 (x).

Next, we find the asymptotic variance of Yn ,
using the variance formula for a

binomial random variable.

Var[F„] = Var
Fn (tn,i) Fn (tnj+ 1 )

• (*n,i+i - tn'i)E(exp(zfl),x).

{F(tn .i)
~ F(tn<t+1 )}c2n 2aE2(exp(z/3),x)n

{1 - (F(tn ,{ )
- F(tn,i+1 ))} (5.15)

which is simplified, using (5.12), to the following;

Var[K] =
c2n 2a+1E2 (exp(z/3),x)

{[-^(*n,t) F ( * 7i ,t l )]
— [-^(*77,0 — i^(*n,»+i)]

2

}

c2n 2a+1E2 (exp(zl3), x)
(-cn~aF^(x) + Lc

2n~2aF^(x) + Bn~3a
)
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= ~F {1\x) -i+,

cE2 (exp(z/3), x)
+ 0(0 (5.16)

where B is a positive constant.

The asymptotic distribution of Yn is presented in the next lemma.

Lemma 5.2.1 Let us assume that A0 (:r) is continuous and differentiable and that

F (3\x) exists. //<„,,+i - tn<i = cn~a for c < 0 and 0 < a < 1, then

-FM(x)
]*£(exp(z/3),z)n

(1
2

a)

(Vn - A0 (x) -
c
2n~2aFW(x)

24E(exp(z/3), x)

has an asymptotic standard normal distribution for \ < a <J 7 — 5

If | < a < 1, then

[-^y]^(exp(^),x)n
(1

2

a)

(rn - A°(x))

has an asymptotic standard normal distribution.

Proof of Lemma 5.2.1 Let us define

for j = 1,
• •

•
,
n. It follow that

1

1
J= 1

def y—

Fn(tn ,i)
~ Fn (tnt i+ i)
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Noting that Xj s are i.i.d. Bernoulli random variables with parameter F{tn ^i) —

F(tn,i+ 1 ), It follows that n(Fn (t n<i) ~ Fn {tn
,
«+i)) is distributed as a binomial random

variable with parameters n and F(tnii)
— F(tn< i+ 1 ). To prove the lemma, we shall prove

that

g def cn a E(exp(z0),x) cn~ a E(exp(z0),x)

fWtn A)-F{t„, i + 1 ))(l-Fttn ,i)+F(tn , i+1 ))

y
c2 n l ~2aE2 (exp(z@),x)

has an asymptotic standard normal distribution. To prove the asymptotic normality

of Zn ,
we show that the moment generating function of Zn converges to the moment

generating function of the standard normal distribution.

MZn (t) = E[exp{tZn )\

Xn F(tn,i)~F(tn .U1 )

— £1

[c;:p(t
cn~ a F:(exP(z0) }x) cn-<*E(exp(z0),x)

F(tn ,t) F(tn j+ i )(l-F(tn:l )+F(tn ,i+i ))

0]

E2 (exp(z0),x)

- E[exp(<

I Vn
(

n *->3=1 V cn-a
X , F(tn,i)—F(tn ,±i )

E(exp(z0),x) cn~aE(exp(z0),x
)

F(tn,i)—F(tn ,i+ 1 )(1-F(tn.,)+F(tn i+1 ))

c2 n 1 ~2aE2 (exp(z/3) ,x)

= ^[exp(<jj
Xj -

(
F(tn ,i )

- F(tn ,i+1 ))

i- 1
\J
n {F(tn< i) -F(in,i+l))(l — F{tn<i) + F(tnj+i))

)]

= £[exp(tf
Xx - (F(tn<i )

- F(tn
,i+1 ))

\Jn(F(tn< i) F (tn ^i ) ) (
1 — F(tn i) + F(^ni ,+1 ))

)]"

= i(F(tn<i )
- F(tn ,i+1 ))

exp (t-
1 - (F(^) - F(tn ,i+1 ))

\fFFi~) - f(t„.,+,))(! - + F(!n
,
i+1 ))

-(F(Fi) - F(t„,+,))

)

exp(i

y/n(F(tn ,i)
- F(tn

,
i+1 ))( 1 - F(tnti ) + F(tn

,
i+1 ))

)}"
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— F(tn,i+l))

(1 + t
1 ~ {F{tn ,i) - F(tn ,i+1 ))

FFFJ) - F((„,i+I ))(l - F(i~) + F(f„,i+1 ))

>-WU-F(W«ll
} +o(n

)

\Jn[F(t nyi) i7

’(^n,i+i))(l — F(tU 'i) + F(tn< i+ 1))

+ (1 - ( F(tn t
i )
- F(t Ut i+1 ))

~(F(tn ,i)
- F(tn<i+1 ))

(1 + t

4i

\fn(F(tn ,i)
- F(tn<i+1 ))( 1 - F(t nti ) + F(tn

,
i+ 1 ))

2 y/n(F(tnti )
- F(tn

,
i+1 ))( 1 - F(<n,0 + F(*B

,
i+1 ))

}

2 + o(n- 1

))}
n

= {f(y-f(wi)
*
2 (^n,) ~ n*n,.-+l))(l ~ F(tnj) + F(tnt i+1 ))

2
.

2 n(F(t„,<) - i? (^n
>
,+i))(l - F(tn ,,) + F(in

,
t+1 ))

+ j

+ (1 - (F(*n ,,)
- F(tn ,i+1 ))

,t 2
(1 - n*n,i) + F(*n

,
t+1 ))F(*n ,,)

- F(U) 2

2 n(F(tn>i )
- F(tn ,i+i ))( 1 - F(in

, t ) + F(*n
,i+1 ))

+ °{n

/ F \n +

2

=
(
1 + 2^<"“>)

Hence from Levy continuity theorem (Chow & Teicher, 1978), it follows that the stan-

dardized first term of (5.10)

F'n(t„
:
i)—Fn (tn i+1 ) F(tn ,, )—F(tn ,i+i

)

cn~a E(exp(z0),x) cn~ a E(exp(z0),x)

F(tn,i)-F(tn 'j +1 )(1—F(i rli ,)4-F(tni i+1 ))

c2 n 1 ~2aE2 (exp(z/3),x)

has an asymptotic standard normal distribution.

To simplify the notation, the following four terms are defined

a. = + hif
2

7
(

y\ + °(n
"
3<,)

’24F(exp(z/?),x)
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F(tn,i) - F(tnli+ 1 )

cn~a E(exp(z/3), x) ’

K 2 = (F(tn, t )
- F(tn

,i+l ))( 1 - F(tn ,i) + F(tn ,
i+ 1 ))

c2n 1~2aE2 (exp(z/3), x)

ul =
c.E2 (exp(z/?), x)

From the asymptotic result obtained above, we have

Yn -Bn

Vn
N(0

,
1 ).

Since we aim to find the asymptotic distribution of ,
we rewrite

Yn-An _ Yn — Bn + Bn -

A

n _Yn - Bn Vn Bn - An

Un Un Vn Un
+

Un

Note that

lim
n—*-oo Ul

lim
n— oo

F(tn,i)—F(tn ^+ i)(\— lr(fn.»)-Mr(*n.i+l ))

c2 n1~2aE2 (exp(z0),x)

FW(x)
cE2 (exp(z0),x)

n—1+a
= 1

and when
y < a < 1, following from (4-7) and (5.12),

lim
n—oo

Bn An

~un
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= — lim
71— OO

Ao(^) + 1 c
2 n 2a F^ 3

^(x)

24 E(exp(zf))
}
x) + 0{n

~3a
)
- F{tn,i)~ F(tn,i+1 )

cn~a E(exp(z/3),x)

FWji
cE2 (exp(z0),x)

n-l+a

= 0.

Therefore it follows that

Yr

*u^
n is asymptotically distributed as N{ 0, 1). That is, when

\ < a < 1

[-
7^]^(exp(,/3),x)n

(1
2

a)
(rn - A0 (x)

c
2n~2aF^(x)

2AE(exp(z/3),x)
~ °^U ^

has an asymptotic standard normal distribution. For
| < a < 0{n

~3a
)

is asymp-

totically negligible and for | < a < 1,
F c

^exp^^ is asymptotically negligible

because of the factor n^~ . This completes the proof of the lemma.

Next, we prove that let us show the second and third terms in Ag(x) in (5.10) are

asymptotically negligible. In other words, we shall show that they converge to 0 in

probability.

Lemma 5.2.2 For 0 < a < 1, The summation of the second and third terms of Aq(x)

which are multiplied by nf^\

n
(i=£) Fn{tn,i )

~ Fn (tnti+i)

(tn.i+i - tnii)E2 (exp(zfl),x)

{E(z exp(z(3), x)(/3 - (3) + (
En (exp(zf3 ), x) - E(exp(z(3

), x))},

converges to 0 in probability.
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Proof of Lemma 5.2.2 From (5.13), (5.15) and Chebyshev’s theorem,

Y _ F'n(tn,i) — Fn (t n<j+\)

(tn ,i+

1

- t nii )E(exp(z/3),x)

converges to -g^p

x

^

in probability. Since we assume that

E(z exp(z/?), x) < oo,

it suffices to show that n~0— /3) and n^-(En (exp(z/3),x)— E(exp(z(3),x)) converge

to 0 in probability. It is well known that ffin0 — /3) = Op ( 1) and ffin(En (exp(zf3),x) —

E(exp(z/3),x)) = Op (l), so that

n~^ y/n0 - /3) = n

O

p ( 1) 0,

and

n 2 \/n(En (exp(zf3),x) - E(exp(z(3), x)) - n “ Op ( 1) 0.

This completes the proof of the lemma.

Theorem 5.2.1 The standardized form of Aq(x),

fz^j^^^exp^)> x
)

n(l2a)
(^o(a;

)
“ V*) - c

2n 2aF^\x)

24E(exp(z/3), x)

has an asymptotic standard normal distribution for A < a <

If we have
| < a < 1, it follows that

]

2 ^(exp(2^),x)n
(1

2

a)
(A;(x) - A0 (x))— F( 1

)(a;)
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has an asymptotic standard normal distribution.

Proof of Theorem 5.2.1 Since we proved in Lemma 5.2.1. that the normalized first

term of Aq(x) is asymptotically distributed as a standard normal random variable and

since we proved in Lemma 5.2.2 that the second and third terms of (5.10) with the

factor nf-*-} converge to 0 in probability, Slutsky’s theorem (Chow & Teicher, 1978 )

implies that Aq(x) and
f ~)E(exp(tg j ,r) ^ave same asymptotic distribution. Thus

the conclusions in the theorem follow from Lemma 5.2.1.

5.3 Asymptotic Distribution of Isotonic Estimators Based on the Window

In this section, we shall derive the asymptotic distribution of the isotonic regres-

sion of Ag(x) for the wide window case, (i.e., grid spacing of the form cn~a where

0 < a < §) The wide window case is important, since the isotonic estimator of Ao(x)

has an asymptotic normal distribution in this case.

Barlow and van Zwet (1971) prove that this result for the case without covariates.

The basic estimator for failure rate based on ordered observations and the isotonic es-

timator based on the window are asymptotically equivalent. Similarly we shall prove

that Aq(x) and Aj(x) are asymptotically equivalent under mild regularity conditions.

Theorem 5.3.1 If

(i) A0 (x) = is strictly increasing in x > 0;

(ii) A0 (x) is continuously differentiable and F(3)
(-) exists in a neighborhood

of x;

(Hi) tn ,i+

1

- tUi i = cn~a and 0 < a <
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it follows that

Hm Pr[A*(x) ^ AJ(®)] = 0. (5.17)

Prior to proving this result, three lemmas are needed.

Lemma 5.3.1 For 0 < a < |
and arbitrary numbers e > 0, and 6 > 0,and 0 < B <

To,

Pr[ sup | Ao(ar) — Ao(x)| > e] < 6 for largen
0<x<B

where

A0 (x)
Fn {tnyi) — Fn (tn> j+ 1 )

(<n,.
-

+i - tn<i)En (exp(z$),x)

Proof of Lemma 5.3.1 Using (5.10), we have for arbitrary x,

K(x
)
~ A0 (ar)

Fn (tn ,i) Pn {tn,i+l) F(tn
ti) — _F(fnt+1 )

(tn,i+

1

- t nti)En (exp(zj3), x) (tn,i+ 1 - tnii)E(exp(z/3), x)

I

F{tn ,j) ~ F{tn,i+ 1) , / \

(tn<i+1 - tnii )E(exp(z/3),x) °
X

Fn(tn,i) - Fn (tn<i+ 1 ) f . p, E(zexp(zfl),x)

(tn,i+ 1 — ^n,.')^(exp( 2:/?), x) 1 i?(exp(2/?), x)

£w (exp(2/9),x) - E(exp(zp),x) 1

£(exp(z/?),x) J
F(tn ,i)

— F(tn
}
i+ 1) F(tntj) — F(tUii+i)

(*».*•+ 1 - *„,,)£(exp(2/?), x) (i„ti+ i
- in,,)£(exp(2/?), x)

—

A

0 (x)

(^n,«'+l - tnti)E(eXp(z/3), x)
[^n(Wl) - F(^,,+l)]}
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+
l(( t.,i+i - i„,,-)£(exp(z/3),x)^

F (x )
rn

+i(rJ - (1 - r)
!)cV!“F<2

>(*) + i±T.
~ ’•)

3)cy3°f<3
>(x)

^ 6

fx\l ,

Fn(tn,i) ~ Fn(tn ,i+l) ,Z _ E(z exp(zfi) ,
x)

J (tn,i+i — tnti)E(exp(z/3), x) E(exp(z/3),x)

.

Fn(tn ,i)
- Fn (t nii+ i) En (exp(zf3),x) - E(exp(z/3),x)

(tn,i+

1

- tnti)E(exp(zfi), x) E(exp(z/3), x)

= / + // + ///+ /V + Lo.f (5.18)

where |< nil
- - x| = rcn

-0
' /or 0 < r < 1.

Let us consider the first part (I) of (5.18);

Pr[ sup
o<x<B (tn,»+l

1

- t nii )E(exp(zf3),x)

I

\En{tn,i )
—

^(^n,i)] ~ [-fn(^n,i+l) — -^(^n.x+l )] |
> e]

= Pr[ sup
o<x<b (tn< i+

1

- tn<i )E(exp(z/3),x)

{\En (tnit)-F(tnti )\ + \Fn (tn,i+ 1)
~ -F(£ra,i+l)|

[
> e]

+ Pr[
o<“<B c£(exp(z/?),x)"”

|fn(‘"''+l) ~ F(i"'i+l)l >

< 5 for large n. (5.19)

The last line follows, since

(i) E(exp(z/3),x) is bounded on [0,B],
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(ii) Pr[sup|0<x<B |

na \Fn (tn,i+i) — F(£n,t+ i)| > e] < 8 for large n and, 0 <

It is straightforward to show that the second part of (5.18) goes to 0 as n goes to

oo. Let us consider the third part of (5.18);

Pr[ sup
0<x<B

,
Fn{tn ,i) - Fn (tnti+ i) « E(zexp(zf3),x)

(tn,i+i ~ tn<i)E(exp(z/3),xy E(exp(zf3),x)

< Pr [2c-
l na (l3 - 0) sup

E(zexp(zf3), x

)

o<x<b E2 (exp(z/3),x)
>«]

< <5. (5.20)

The last line follows since E^zexp^z^^^x) and E(exp(zf3), x) are hounded on [0,B]

and na ((3 — (3 )
goes to 0 as n goes to oo when 0 < a <

Finally, consider the fourth part of (5.18);

p r
[
sup

|

Fn(tn,i) - Fn (tn ti+1 )
En (exp(z(3), x) - E(exp(z/3), x)

O<x<B (tn,i+i — tnii)E(exp(zfl), x) E(exp(z/3),x)
> c

< Pr[2c-> SUp
i"‘

,

{g.(exp(z/?),x)-i;(exp(^), I )}

E2(exp(z/3), x) *
O<x<B

< 8.
(5.21)

The last line follows from the fact that n* {En (exp(zf3), x) - E(exp(z/3), x)} converges

to a Gaussian process (Tsiatis, 1981). It was shown in Section (5.2) that the h.o.t is

negligible. Combining (5.19) (5.20) and (5.21), the proof of the lemma is complete.
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Let us define \^
A

'
B
\x) for any A and B(0<A<x<B< T0 ).

\?
A 'B]

(x) min max
s>i+ l r<»

Bn(tn,s) ~ Fn (tn ,r )

Effr (tn,j+l tn,j)Bn (exp(zf3), Xj
)

It is clear that

0) a;(*) = a;
[0 'To,

(z)

(ii) A;(.r) < A;
|0 -b1

(i)

(iii) A;(z) > A^tx).

Next, we prove the following lemma, which allows us to consider only a bounded

range of time for proving Theorem 5.3.1.

Lemma 5.3.2 For a fixed x and any A and B, 0 < A < x < B < T0>

Jim Pr[A;(z) # Af'
B
l(x)] = 0.

Proof of Lemma 5.3.2 The proof of this lemma consists of proving the following two

results.

Jim Pr[A;(x) ± A;
10 ’b,

(i)] = 0 (5.22)

and

lim Pr[A*Bl(x) # A^tx)] = 0. (5.23)
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Since the proofs of (5.22) and (5.23) are similar, we shall prove (5.22). In other

words, we need to prove that for any > 0, there exists N such that whenever n > N

,

Pr[A;M # A;
[0 'b

'(x)] < 6,. (5.24)

If B = T0 ,
then -V)f.c )

= A and the proof is completed. Assume B < To. Let

us divide
[
x

, To] into

[x, To] = [or, C{) U [CU C2 ) U [C2 ,
B) U [B, B1 )

U [Bu T0 ]

h h h h h

where x is a fixed point and B\ is close to Tq. Let C\ and C2 be any two points

satisfying

Ao(C
<

2 )
— Ao(C'i) > 2e (5.25)

Aq(B) — Ao(C2) > 8 + e (5.26)

for some 8 > 0.

From Lemma 5.3.1, for any e and 8 > 0, there exists N such that whenever n > N

p r[ sup |AS(x) - A0 (x)| < e] > 1 -
0<x<Bi O

Denote the subset of all sample points satisfying

sup |A;(x) - A0 (x)| < e
0<a:<Bi

as Then Pr(flj) > 1 - | ifn> Nx .
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for i = 1, • •

•
, 5.

Ifix)
1 i/l£ /,

0 otherwise

Denote the subset of all sample points satisfying

U,(xj)/4 (x)
> W > 0

for some W > 0 as D 2 . Then Pr(Jl 2 ) > 1 - f if n > N2 .

Denote the subset of all sample points satisfying

EguMhjx) e

££M*i) J

as fl3 . Then Pr(H3 ) > 1 - | if n > N3 .

Now we focus our discussion upon fixed sample points in D such that when n >

max{Nu N2 ,
N3 }, Pr(Q) >1-5 where D = n D2 D ft3 .

Since we note

a;w < a; [
0

'
S|

(x),

it suffices to show

a;m > a;
|0 'b)

(x)

for fixed x. If

min
s>i+ l

tn ,3

£?=«• A*(x
jy(xi )

> min
«>*+l

tn,3<C1

£?=.• *o(giMsj)
(5.27)

it follows from the fact that C\ is arbitrary point less than B that

min
^0 (

xj)u (
xj) mm

«>*+ l Es—1
j—T

(xj)u;(xj)

U>(Xj)
(5.28)
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Next
>
usin9 Lemma 5.3.1, the monotonicity of \0 (x), (5.25), and (5.26)

serve that

j
4ef E*=? K (Xj)uj(x

j
)I1 (x)

ZjZi w(xj)h(x)

< EjZi ^o(xJ
)iv(x

J )/1 (x)

Z£v(xj)Mx)
+e

< Aq(C'i) + e,

EjJ *o(xj)w(xj)I2 (x)

EjZt u(xj)I2 (x)
>

>

EjJ Mxj)v(xj)I2 (x)

EjZi u(xj)I2(x)

MCi)~e

> J - 2e,

ZjJ *o(xj)v(zj)L3(z)

EjZi w(xj)I3(x)
> EU Xo(xj)^j)h{x)

EjZl U>(Xj)I3(x)

> Ao(C2)-e

^ Ao(Cj) + e > J,

K(xi)u(xj)h(x)

EjZ} u/(xj)I4 (x)
> EjJ Ao(gj)t4;(gj)/4(a;)

EjZi w(xj)I4(x)

> A0 (i?i) — e

we ob-

(5.29)

(5.30)

(5.31)

^ ^o{C2 ) + 6

^ Ao(C'i) + 2e + 6

> J + e + 6. (5.32)
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We also observe that

Ej=j^(Xj )14 (x)

Eg u(Zj)

*n,. ~ 5 W|
i
x
i)
\I4 (x)/(tn ,3

~ B)
—

tn,i Zj=} uj(xj) /( ^n,s ^n,t)i

ln,s B
ln,s tn,i

> w (5.33)

for large n and constants r > 0 and W > 0, and since Bx is close to T0 ,
there exists

N such that for n > N, we have

£g^)/5 (a)

<

(tn.'-BJZgul{xj)I5(x)/(tniS - Bi)

(tn,s ~ tn,i) ££! w(*i)'/I^n,s ^n,t)1

(fn,s ~ Bi)
p

{tn,s ^n,t)

e

J (5.34)

for some constant r > 0.

To prove (5.27), using (5.29)- (5.34) we observe that for arbitrary e > 0 and

some 6 > 0

EjJ *o(xj)v(xj)

E£M*i)

>

Z£ "(xj

.
Z’Z] u(Xj)

1 V / U\

) E& “

«*) Eg a;i

J / V

(Xj)/l(x)

'xj)o;(xj)/2 (x)

ZjZ] w(:*>•) e*:‘

M*) E*;f a;<

o;(x
i )/2 (a;)

>,-)«^(®j)^3(ar)

Z)Z! «(:

,

E£M*;)
V-'S-l /.

'i) Eg
M*) ES a;(

vMMx
)

Xj)UJ{xj)I4 (x)

Z°z} u(xj)I5 (x) E WxjMxjIMx)
Eg«(*i) «(*,-)/.(*)

ZjJ u(xj)h(x)

Eg«(*i)
J
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> J
(5.35)

for 8 > W- Hence (5-®V> ^ich implies (5.24), holds.

It is awkward to deal with AJ(x) to prove Theorem 5.3.1 since En (exp(zf3),x) is

in the denominator of A/(ar). Hence we shall therefore define an alternative estimator

which has the same asymptotic properties and is easier to handle.

For simplicity, let us define

u0 (xj) = (tnj+i - tnJ )E(exp(z/3),xj )

and

mm max
J>*+ 1 r<i

tn
t
r>A

Fn (tn ,a )
- Fn (tn ,r )

Ej=r(t»J+ 1
- tn,j)F(exp(z/3),Xj)

min max
»>i+l r<t

tn
t
r>A.

Fn(tn,s) ~ Fn (tn ,r )

EjZr ^o(Xj)

min max
5>i+l r<t
tn,a^B tn,r>A

Ej=r FnjXj^ojxj)

E*=rMXj)

From (5.11), we define

Yn = Yn (x) =
Fn (tn,i)

— Fn(fn,t+1

)

- tn,j)E{exp(zf3),xjy
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Our first objective is to show that Theorem 5.2.1 holds with A^’s]
(a:) instead of

A;(x). We have shown that Yn (x )
has the same asymptotic distribution as Ag(x) in

Lemma 5.2.1. If we can show that for 0 < a < |

1 —

c

sup n 2

A<xr<x<x,<B

Fn {tn,s) Fn (tnr )
Fn (tntS )

— Fn (tntT )

(5.36)

in probability as n goes to oo, then it suffices to show

limPrfr^'M ? Y.(x)] = 0

to prove Theorem 5.3.1. The above would follow because

(x) min max
a>i+l r<»

tn,r>A

Fn(tn,s) ~ Fn(t^r )

Ej=r U0 (Xj)

= min max
«>»+l r<»

tn,s<B tn,r>A

'Fn (tn,,) ~ Fn (tntr )

ES«(xi)

f
Fn (tn<s ) - Fn (tn ,r ) Fn(tn,s) Fn (tn ,r ) j

*«*»frH1
II

®J

<->w iJ
(5.37)

Therefore, (5.40) would imply that

n^|A^'Bl(x)-A^(x)|->0 (5.38)

in probability as n goes to oo.
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Lemma 5.3.3 For 0 < a < |

i —

a

sup n 2

A<Xr<X<X s<B

Fn(tn,s) - Fn (tn<r ) fli(<n,») ~ ^n(*n,r)
o (5.39)

in probability as n goes to oo.

Proof of Lemma 5.3.3 Note that

n
1 —a
2
Fn (tn,s )

~ Fn (t nir )

Ej=
lMXj)

1 —a
— n 2

_ Fn {tn<3 )
- Fn (tn

,
r )

EjZr Wo(Xj)

< n 2 Fn (tnr )
— -F(in>a ) + ,F(£nir )|

|E-=Mxi)-EjiNo(^)l

E£«(*i)E£ «*>(*;)

ES«(*i)ESwb(*i)
+n 2 “ |F(<n

,
s )
- F(tntr )

= L + IL

Since y/n(En (exp(zfi), x) — E(exp(zf8), x)) converges to a Gaussian process ( Tsi-

atis, 1981),

1
S_1

—— J2 Vn[En{exp(zf3), x
)
- E(exp(zf3), *)]

]=r

< sup \y/n\En (exp(zf3), x )
- E(exp(z(3), x)|

A<x<B

= 0,( 1 ). (5.40)
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Note that since

5—1 5—1

E^o(xi)
j=r j- r

(5.41)

in probability as n goes to oo as (3.11), where d < E{exp(zfi),x) < D for positive

constants d and D, it follows that

5— 1

cn '"(5 — r)d < ojq

(

xj) < cn
a
(s — r)D

]=T

and

cn a
(s — r)d < )(xf) < cn "(5 — r)D.

]=r

Next, using (5.f0) we observe that

5— 1 5— 1 5-1

lx*;) - X>o(*;)| = cn-a
- 1

i\J2'/n(En {exp{zf3),x) - E{exp{zf3),x))\
j=r ]=T J=r

= cn-“-i(a -r)|— £v^(£n -£)|
s — r :=r

= c(s - r)n a
2 Op { 1) (5.42)

and y/n(Fn (x) - F(x)) = Op ( 1).

Using the above results, the first term (I) becomes

(I) < n^(l)*- r)
"~r

t0
’ (1)

c2 (s — r) 2n~2ad2

a=L Op ( 1)= n 2 —— (

—

c(s — r)d2

. «=iOp (l)“ n 2

cd2 ’ (5.43)
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which converges to 0 in probability as n goes to oo.

F(tn,s) - F(tn
,
r ) = (tn>3 - tn ,

r)\F^(n\

where t* is between tUi3 and t Ut1. and

tn,s tn,r ~ r )cTl
,

Similarly, we show that the last term (II) converges to 0 in probability as follows;

(II) < n^is r)cn-Q |F^(r)|
c(s - r)n a

^ Op ( 1

)

(5 — r) 2d2c2n~2a

= n=?\FU(t')\O
p (l) (5.44)

which converges to 0 in probability as n goes to 00 .

Using the previous lemmas we shall prove for fixed x,

Jim Pr[K„(x) ? A^'M} = 0

Proof of Theorem 5.3.1 Throughout the proof of Theorem 5.3.1, we assume the range

of time is bounded, since we have proven that the isotonic estimators of A0 (x) are

equivalent in situations where the range of time is either finite or infinite. For fixed

x i £ [tn,i,tn,i+ 1 )
we define the isotonic estimator,

A/ ‘(xi) = mm max
a>t+ l r<*

Ej=r *;(*,>o(x,-)

r~l M*i)
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Since

mm max
3>i+l r<«
tn,s<B tn

t
r>A.

Ej= r K(gjVo(Xj)

£j=J wb(*j)
7^ K(X,-

implies either

3 m > 1 3 /[>i<tn
,
r <t„ j3 <s]

ESV*i)
< K(ar.-

or

3 m > 1 3 /[J<,n,,<,,,<a)
£;°‘-” F'l(Xi

)“ofe) > K(x,
Di=.-m ^o(zj)

or 6o£/i, it suffices to show

Jim Pr{3 m > 1 3 I[A<tn
,
r<tn,.<B]

££? YnjxjfaiXj)
< Yn {Xi )} = 0 (5.45)

and

J™ Pr {3 "* > 1 3 ^<,,,,<,,,,<B|
g%" r" (Xi

|“
o(Xj)

> n <*,•)} = 0 (5.46)
Ej=i-m “0(Xj) ’

Due to the similarity of the proofs of (5.44) and (5.45), we shall only derive (5.44).

Since

E-y *;(*>0fo)3 m > 1 9 I[A<tn,r<tn,,<B]
-

J

^m+i. "rJl < En (xi

_
| |

/ t E>=i Ei(^jVo(xj) "i

m=l ^ L^j—{ U0{Xj) J
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we shall show

iis, £ < *(*.•)} = o.

j=! +?=,• uo(Zj)m=

1

Let us define

= u0 {
Xj

)

3

Er=t^o(^)'
By Chebyshev’s theorem, it follows that

m+t
Pr<E < y-fe)} =

m+«

= Pr{E(K(^)-r„(x,))Pi <0}

<
- y,(xQ)]

{I:?+'PiE{Y„(xj) - r„(x,)]}
2

First, let us simplify VarK£j'' Pj(Y„(xj) - Y„(x,))].

It is well-known that

m+t m+t m+t
\ «r[^ pj(Yn (xj) y^,(x,))] < 3(Var[^ pjYn (xj)\ -f Var[^2 PjEi(^i)])

j=t :=i j=t

^/ar[EjLt' is simplified as

vMEfvKfe)] = tME ,

F’,(tnj
'

)
~ f" (t-w)

]

j=< Ej=i wb(x,-) wb(*j)j=«

= Var[
Fn (tn,i) Fn{f-n,m+i

)

(5.47)

(5.48)
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< { 1 12 1

Z?=i'uo(xj) n
y-{F(tnii )

- F(tn ,m+t )}

<
n(m + 1 )

2d2n~2a c2
men “|F^^(x*)|

^ ^ (5-49)

for some constant Ci where d < E(exp(zfi), x) < D for some positive constants d and

D. Similarly Var[Jff+f PjYn { Xl )}
is also simplified from (5.15) as

m+i m+i

Var^pMxi)} = (£ Pj )

2Far[yn (:r t )]

3-1 J=i

n l~a (5.50)

Using (5.13), and noting

p2 _ f l
2

. B
m+J Ie^V'^^)/

for some constant B > 0 and denoting [ ] the greatest integer less than the quantity

within the bracket, it follows that

m+i m+i

{£p;£[K(*;)-rn (s t )]}
2 >

{ £ PjE[Yn (xj) - rn (x t )]}
2

)=.+[?]

= PlH E*{Y„(xIHfi ) - n(x,)]([y])
2
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>
B
nr

i~
2a

c
2n~2a a?])

2
,

m (5.51)

for some constant, C3.

Hence by (5.48), (5.f9) and (5.50),

p rfr Yn(xi)uo(xj) ^

j=i ^j=i U0[Xj)

C4

n 1~3am 2

for some constant c4 . It follows that for 0 < a < |

m=

1

m+
‘ Yn (Xj )u0 (Xj )

U E7=t‘ wo(xj)
lim £ Pr{E =3£T):” < Yn(*i)} = 0 .

Hence it follows that the asymptotic distributions of A|(x) and Aq(;c) are identical.

The following result is an immediate consequence of Theorem 5.3.1.

Theorem 5.3.2 Under the same assumptions as in Theorem 5.3.1,

for\<a<\

[jraiL) ]^(exp(*ft), x )
n 1

2

° (A/(*) - Ao(x))

and for j < a < |

[j^]^E{exp{z^x)n^ (X}(x
)
- \0(x) -

c
2n 2“F(3

)(x) \

24E(exp(z/3),x)J

are asymptotically distributed as N( 0, 1).

Proof of Theorem 5.3.2 This is an immediate consequence of Theorems 5.2.1 and

5.3.1.
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5.4 Determination of Window Size

\\ hen we discuss estimation based on windows, the following question arises,

What is the optimal size of the window?” The answer determines how many windows

we can have in order to obtain the smoothness of the baseline hazard function, taking

into account the mean square error of estimates of the baseline hazard function. The

recommendation on window size is made in terms of the mean square error (Barlow

et ah, 1972).

Parzen(1961) discusses the problem for choosing the size of the window in density

estimation. In his paper, he uses the following estimate of the density, f(x),

f / \ _ Fn{x + h)~ Fn (x - h)
’

2h

where A is a suitably chosen positive number. After reviewing the statistical proper-

ties of fn (x), especially the mean square error of fn (x), he finds the value of h which

minimizes the mean square error for a fixed value of n. From (5.13) and (5.15) we

can see that the mean square error of Aj(x) in estimating Aq(x) is

MSE[AJ(x)j = Var[A*(ar)] + Bias2
[A}(x)]

F^(x)

cE2(exp(z/3), x)
na

—

1

+ 0(n~4a
) (5.52)

1 A

If MSE*[Aj(x)] is asymptotically smaller than the window size 0(n~a
), then it

is intuitively clear that asymptotically A /(f„,«) < AJ(fnt+1 ). This follows because

|Ao(^n,t+i) — A0 (fn ,i)| = 0(n~ a
)
(when A0 (x) has a positive first derivative in a neigh-

borhood of x).
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Clearly, MSE*[Aj(x)] = 0(n~a
)

if a < J.
This follows from

cr[A;(a;)] = Var2 [A;(x)] = 0
(
12^) = 0(n~a

)

provided ^ < —a, or a <

Returning to our problem, we can show the mean square error of A}(ar) is mini-

mized when we choose a = J.
To see this, recall from (5.13) and (5.15) that the mean

square error is approximately

MSE[AJ(x)] %
Ao(z)rca 1

cF^ix)
+

' c2FW(x) l
2

.24E(exp(z/3),x).

—4a

The minimum is achieved by choosing a — where MSE is treated as a function of

a. Unfortunately, the optimal size of the window still depends on the value of c. To

solve this problem, if we choose f n;t
- = yu^ by the principle of maximum likelihood,

the order statistics from a sample size of n
,
we obtain the same estimator as one

derived in Chapter 3. We modify the window size by choosing i„., = y
^

where
[

]
denotes the greatest integer of the quantity within the brackets, this yields

£

y
u([(.+l)n£])

~ y
u([in$])

= = 0p(U 5
)>

so that the recommended requirement that the mean square error as a function of cr

is minimized at a = |
is satisfied.



CHAPTER 6
SIMULATION AND CONCLUSION

Suppose we have a single binary covariate model (two different groups of cancer

patients e.g., male and female), and we are interested in the instantaneous failure

rate at a given time conditional upon survival up to this given time. In terms of

Cox’s regression model, it is enough to consider the regression parameter and the

baseline hazard function. This chapter contrasts the three different estimators of the

baseline hazard function which are found in Chapter 3 and Chapter 5.

6.1 Estimators

There are three estimators of Ao(£) for fixed t. We assume that Ao(t) increases

monotonically, and 0 is the maximum likelihood estimator of 0 obtained from marginal

likelihood.

(i) The first estimator of Ao(£), denoted by E\, is obtained using Breslow’s

approach (1974) which approximates an increasing function by a nonde-

creasing step function. The joint likelihood of 0 and the A/s is used. The

maximum likelihood estimator of Ao(£) is

C _ 1
^ *
— —-—-— . r6

1

^

(Vu(j) - yu(j- 1 )) E/6K(yu(>) )
exp(z,0)

(ii) The second estimator of Ao(t), denoted by E2 ,
is derived using the iso-

tonic regression method with ordered failure observations. The isotonic

estimator of A0 (£) is

A; = maxmin(t - s + l) /£>u(i) - ^u(j_a) ) £ exp(z,0). (6.2)
s

'eRteu(j))

86
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(iii) The final estimator of Ao(t), denoted by E3 ,
is also derived in a similar

fashion to the second estimator, except that a window is used with ordered

failure observations. The isotonic estimator based on the window is

Fn{tn,r

)

~ Fn (tn,s )\}(x) = min max———

—

s-‘+1 ££ l

(tnj+ 1 -tnj)En(exp(z^ Xj
)

where En (exp(z0), x) = ^ E"=i exp(z^)I
[Tt>x] .

(6.3)

6.2 Procedure for the Simulation

The outline of the simulation is as follows:

(1) Generate four sets of 50 random numbers from a uniform distribution on

(0,1), and call them C/l t ,
t/2,, C/3 t and C/4,- for i = 1,— ,50 (see Table

6.1).

(2) Obtain the survival and censor data yi„F2,,r3, and F4; by converting

Uli, C/2,-, C/3,- and C/4,- using Yk{ = F_1
(C/£;,) for k = 1,

• •
•

, 4, where

F(x) = exp(—

x

2
e
2

) for C/1,-

F(x) = exp(-x) for C/2,

F(x) = exp(— a;
2

) for C/3,-

and

F(x) = exp(— 2x) for C/4,- * = 1,— ,50

respectively.

Note that Cox’s regression model is given as A (x-,z) = 2xexp(2z). When

F(x) = exp(—

x

2
e
2
), the corresponding Cox regression model is A(a:; 1) =

2a:exp(2). When F(x) = exp(— a:
2
), the corresponding Cox regression

model is A(x, 0) = 2x. The baseline hazard function is 21 which increases

monotonically in t.
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(3) Form Group 1 with } 1,- in such a way that censored data is created com-

paring } 1, with } 2 If y 1, > Y2
{ ,

then Y 1, is a censored observation,

otherwise y 1,- is an uncensored observation. Similarly form Group 2 with

y^3
t and F4,.

(4) Obtain the maximum likelihood estimator Ex of A0 (t) using (6.1) and the

isotonic estimator E2 based on the ordered observations using (6.2).

(5) Obtain the isotonic estimator E3 with the optimal size of window using

(6.3). The optimal size of window is determined adjusting the order

statistics so that

size of the i th window = y 4 — y £
“([(•')4)1 u([(,-i)4)]

for appropriate c > 0. After completing 100 pilot simulations with the

values of c = 36, 33, 30, 27 and 24, we found that the mean square error

is minimized at c = 36. Since the sample size of each simulation is 100,

the window size is ns/36 = 1.105. This implies that most of observations

must be used to obtain the isotonic estimator which gives the minimum

mean square error.

(6) Repeat the steps (1) to (5) 1000 times with c = 36. Noting that all

estimators are functions of time t, obtain the three estimators at p(i)

where p(i
)

is defined

P(i) = ^/log(0.95 - 0.05(f - 1))

for i = 1,
• •

•
,
19. In other words, p(i) is the 100(0.95 - 0.05(i - 1))

percentile of the baseline survival function

So(t )
= exp(— t

2
).
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(7) Find the mean square error of E\, E2 and E3 . We define the mean square

error by

1 1000

MSE[9] =
Tooo

“ ^ for * =
u

i=i

where the values of t are p(i)'s. Note that Ao(f) = 2 1 is assumed.

(8) Find the relative efficiencies of E2 and E3 versus Ex . We define the relative

efficiency as the ratio of mean square errors of two different estimators for

fixed p(i). E2 and E$ are the isotonic estimators while E\ is the maximum

likelihood estimator. Table 6.1 gives the relative efficiencies of the isotonic

estimators as compared to the maximum likelihood estimator. (Also, see

Figure 6.1.)

(9) To investigate the relative efficiencies of E2 and E% over E\ for extended

cases, let us assume that for r > 1

Ao(z) = rx T 1

so that the baseline survival function is

5o(x) = exp(—xT
).

(10)

Repeat the steps (2) and (3) using

F(x) = exp(-x r
e
2

)
for Uli

F(x) = exp(—x) for C/2,-

F(x) = exp(-xr

)
for C73,

and

F(x) = exp(—2x) for C/4,-
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(11) Find the maximum likelihood estimator and the isotonic estimator with

data generated by the step (10).

(12) As in step (6), obtain the three estimators of \o(t) at fixed p{i
)
which is

defined by

p(i) = {log(0.95 - 0.05(f - 1 ))}^

for i = 1,
• •

•
,
19 and r > 1.

(13) Repeat the steps (7) and (8) 1000 times with r = 1.0, 1.5, 2.5 and 3.0.

(14) The relative efficiencies E% to E\ and E3 to E\ for given values of r are

presented in terms of the probabilities that an individual survives up to

time t. Hence we can see the validity of the relative efficiency measure

as the survival probabilities vary. When i = 1, the relative efficiency is

important because the probability of survival to time p(l) is 95%. When

t = 19, the efficiency is not meaningful, since the probability that an

individual survives up to time p(19) is only 5%. (
See Tables 6.2-6.5 and

Figures 6.2-6. 5.)

6.3 Conclusion

The sum of mean square errors over t values is applied to determine the better

estimators. We discuss the general findings of the simulation in this section.

The main problem is to determine the optimal size of the window which yields

the minimum of mean square errors of E3 for fixed t values. (Refer to Section 5.4.)

We assume that for 0 < a < 1 and some positive constant c > 0,

^n,i+l tn,i — (6.4)
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to derive £3. It turns out that the window size must be proportional to n~$ where n

is the sample size. Because the constant c is unknown, we have to modify the optimal

size of the window which depends on the ordered observations.

Using definition (6.3), we consider the isotonic estimators based on the window

only when the right limit of the last window is less than the largest failure time. We

do not have estimators between the right limit of the last window and the largest

failure time, where the isotonic estimators £3 are not defined. We are interested

in three estimators of A0 (f) when A0 (t) increases monotonically. We anticipate that

£2 and £3 are better estimators than £j, since £2 and £3 are obtained using the

assumption that A0 (f) increases monotonically. We define the relative efficiency of £,

versus £j by

sum of squared errors of £1
Jtj —

sum of squared errors of £,

for 1 = 2, 3. The relative efficiency is presented in terms of the probabilities that an

individual survives up to time t. Hence we can see the validity of the efficiency as

the survival probability varies. For example, when i = 19, the efficiency draws little

attention, since the probability that one survives up to time p(19) is only 5%.

The isotonic regression method for estimating Ao(£) using the window outperforms

the maximum likelihood estimator over whole range, when A0 (t) is assumed to be an

increasing function. But the isotonic regression method based upon the ordered

failure observations is better than the maximum likelihood estimator up to the time

when an individual can survive with probability more than 0.5, while it is just as

good as the maximum likelihood estimator when the probability of survival is at

most 0.5 in terms of the baseline survival function. The isotonic regression method

with a window is more efficient than the isotonic regression method without a window

when the survival chance of an individual is at most 0.5, while the isotonic regression

method with a window does not show any significant improvement over the isotonic
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regression method without a window when the survival chance of an individual is

greater than 0.5.

We conclude that among the three estimators of the baseline hazard function of

Cox’s regression model, the isotonic regression method with a window is the most

efficient estimator for the whole range.



93

FaMr 6.2. Relative Efficiencies of E2 to Ev and E3 to Ex when l-l.O

Time Ih R'2 No. of Estimators
1 7. 69 198 0.62580 1000
2 53.20185 5.86470 1000
3 34.00603 4.76669 1000
4 3.96048 0.59525 1000
5 5.14114 0.73327 1000
G 1.91799 0.29948 1000
7 2.03008 0.36398 1000
8 3.59762 0.92791 1000
9 3.77598 1.15719 1000
10 2.11634 0.71342 999
11 1.82748 0.76406 995
12 0.96547 0.55186 964
13 0.83177 0.69434 896
14 0.84174 0.68594 756
15 0.64364 0.26801 562
16 0.96873 2.97194 332
17 0.89445 0.15094 163
18 0.17965 1.4E-02 50
19 0.14717 2.5E-03 6
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Figure 6.1. Efficiencies of E2 and E$ versus E\ when r = 1.0
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Table 6.2. Relative Efficiencies of £2 to E\ and E3 to E\ when r= 1.5

Time Ri Ri No. of Estimators

1 1.93105 0.51494 1000

2 2.84304 1.00692 1000

3 5.45463 2.62717 1000

4 7.35513 4.36878 1000

5 5.53266 3.75795 1000

6 3.87954 3.31796 1000

7 2.84534 2.80851 1000

8 7.21880 7.90580 1000

9 1.92854 3.22761 1000

10 8.94882 29.75328 998

11 2.99180 8.50156 990

12 1.14700 4.21029 954

13 0.72456 4.32069 905

14 1.08323 7.25389 805

15 0.94693 22.04793 664

16 0.74733 3.67969 491

17 1.02179 18.34358 314

18 0.81902 1.54799 151

19 1.70782 0.24051 44



Efficiencies

of

isotonic

estimators

versus

maximum

likelihood

estimator

when

r=1

.5

o
CM

o -

20 40 60 80

Percentile of the baseline survival function

Figure 6.2. Efficiencies of E2 and E3 versus Ei when r = 1.5
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Table 6.3. Relative Efficiencies of E2 to E\ and E3 to E\ when i—2.0

Time Ri R2 No. of Estimators

1 12.19570 4.14622 1000

2 2.67036 1.05323 1000

3 3.36746 1.58910 1000

4 2.11647 1.30644 1000

5 2.57971 1.83293 1000

6 2.75637 2.44174 1000

7 6.74682 7.19189 1000

8 21.93844 28.44507 999

9 2.64356 4.48147 999

10 0.95675 2.65322 996

11 1.20568 4.18544 984

12 1.04331 3.78065 950

13 0.82456 4.42452 908

14 1.08746 4.60336 823

15 0.72260 6.67253 713

16 0.94320 6.09248 557
17 1.04300 27.19504 414
18 0.92408 1.28166 231

19 2.68491 0.52304 81
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Table 6.4. Relative Efficiencies of E2 to Ex and E3 to Ex when r=2.5

Time Ri R2 No. of Estimators

1 4.24194 1.51224 1000

2 2.46923 1.17791 1000

3 4.12568 2.74376 1000
4 2.02903 1.51935 1000

5 13.99279 12.75204 1000

6 20.28677 20.33314 1000
7 3.81523 4.481471 1000
8 5.13366 7.35062 999
9 2.27329 5.34532 999

10 1.42994 6.60936 995
11 1.52489 6.82602 980
12 1.27592 5.57158 948
13 1.02940 23.24822 911
14 0.84960 4.03035 835
15 0.92992 9.11620 735
16 1.10174 12.22548 604
17 1.02400 33.20784 465
18 0.94614 1.09369 290
19 1.20355 2.40673 104
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Figure 6.4. Efficiencies of E2 and E3 versus Ex when r = 2.5.
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Table 6.5. Relative Efficiencies of E2 to Ex and E3 to Ex when i-3.0

Time Ri R2 No. of Estimators

1 2.46000 1.11768 1000

2 4.58195 2.55058 1000

3 4.03790 3.91666 1000

4 3.81653 4.15003 1000

5 3.00217 3.24918 1000

6 2.07541 2.30397 1000

7 8.53029 10.95093 1000

8 3.38755 6.22937 999

9 2.30834 7.19948 999

10 1.39705 12.99846 993

11 1.14255 6.43423 976

12 1.37777 7.00777 946

13 0.94358 10.39849 912

14 1.62100 12.27069 845

15 0.74918 7.36184 748

16 0.97037 17.39330 635

17 1.02220 37.40968 498

18 0.99905 0.95536 315

19 1.49304 1.39411 127
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APPENDIX A
PROOF OF LEMMA 2.2.1

Lemma 2.2. t

Conditional on E"=i Dn;i = m, Dn;1 ,

• •
•

,
Dn .<n_i have a uniform distribution over

the area:

n—

1

di>0, * = 1, — 1, (A.l)
1=1

under the null hypothesis that A0 (t) is constant.

Proof of Lemma 2.2.1

It is well known that Dn;i ( i = 1, •••,«) are independent and distributed expo-

nentially with mean A, ie.,

fDn„(dt )
= Aexp(— Ad,) » = 1

,
•••,?».

Therefore E Dn .
t has a gamma distribution with parameters n and A, ie.,

fZDnAd)
= lexP(~M)

It is easy to see that the conditional distribution of Z)n;1 ,

• •
•

,
Dn .n_ x given E^-i Dn i =

m, is

•^n;l ,Z?n;n— 1
1E D„;i=m(d1 >

' ’
'

> ^n-1

)

fDn\l (^1 >

* *
*

? 1 )
^ d\ ' *

*
)

/EOn;.(m )
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nr=i Aexp(-Arfi) Aexp(-A(m - di <4-i))

A nm n ~ 1 exp(—Am)
(n-1)!

(” ~ 1
)

!

mn~ 1
.

Lemma 2.2.2

Let = * = !,•••, n-1. Then conditional on £ Dn;i = m,Xu • •
•

,
Xn_x

have a uniform distribution over the area:

*i>° * = 1»’ ”,n-l Xi + -.- + x„_ 1 < 1. (A. 2)

Proof of Lemma 2.2.2

It is seen that Lemma 2.2.2 is a consequence of Lemmma 2.2.1 by a scale change.



APPENDIX B
PROOF OF THEOREM 2.2.2

Theorem 2.2.2

If failure time has an exponential distribution with parameter A,

k-

1

(B.l)

where Vk is defined in (2.3) and Uj are independent uniform random variables on

(0,1) for j = 1, 1.

Proof of Theorem 2.2.2

The proof of Theorem 2.2.2 will be limited to the case k = n. It can be seen,

from the structure of Vk in (2.3) and Theorem 2.2.1 that the proof of Theorem 2.2.2

for k < n is the same as that for k = n. It is easy to see that by definition of Vn in

(2.2)

Denote the distribution function of the random variable in the right hand side of

(B.l) with k = n by G. To finish the proof we shall prove that conditional on £)„
:,,

Vn has the same distribution G.

The moment generating function of the random variables of the right hand side

of (B.l) with k = n is

Ki — {n l)Xi + {n — 2)X2 + • •
• + Xn-\.

£[exp{((P, + + (/„_,)}] = [

exp
(‘> Y-.

(B.2)
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As we have shown in Lemma 2.2.2, conditional on X1 •••A'n_ 1 have a

uniform distribution over the simplex (A. 2). In order to prove that conditional on

Vn has the same distribution G, we may assume that have a

uniform distribution over the simplex (A. 2) and show that Vn = (n — l)Ah -f (n —

2)^2 + • •
• + -Yn_j has the same moment generating function as (B.l). That is, we

must show

g[expiUI =
[

^* )
- 1r 1

(B.3)

When n = 2, (B.3) clearly holds.

By an induction argument, suppose (B.3) holds for n - 1. We will show that it

holds for n. Next we compute

E[exptVn\
= E[expt{(n-l)X1 + (n-2)X2 + ••• + .Y„_ a )}]

= EE[exp t{(n - 1)^ + (n - 2)X2 + • •
• + X^)}^]

= ^[expfftn-l)*! + (n-2)JY2 + -.. + JYn_ 1 )}|A'1 = xj]

(1 — x 1 )

n-2
(n — 1 )dx\

= l
exp[t(n - l^jj^fexptKn - 2)X2 + • •

• + X^)}^]

(1 — Xi)
n-2

(n — 1 )dxi

= j exp[£(n — l)x a ]£J[exp(^(l — x a )){(n — 2) ?
—^—

-

+ • • • + i^y)}pf,](l - *,)~J
(n - 1 )dx,.
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It can be shown that conditional on Ax — Xx, 7 \ have a uniform

distribution over the simplex;

2/» > 0, i = 2, • •
•

,
n - 1, yt

- < 1.

i=

2

By the induction assumption, we have that conditional on Ax = xi, the moment

generating function of (n — 2) 7
*2

,
-\ + [ s f

1 1^—2
(1 —

)

L t J

Hence, we obtain

-E[exptl4] jfe*P [
i (- - 1 )»,][

eXpl(

(

1

1
_^)

)

*
1 V~2

(l - •.)-'(» - l
)dr ,

/ - 1)*.
0 t

_ r
eXP(0 -exp(si<)

,

1

*
J

= r
exP(0 ~ l in-l

1

i
J '

11=1

Xi =0

This completes the proof.
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