NAVAL POSTGRADUATE SCHOOL Monterey, California

Approved for public release; distribution unlimited

1 for:
,f Naval Personnel :on, DC 27370

Naval Personnel Research and Development Center San Diego. CA 92152

NAVAL POSTGRADUATE SCHOOL
 Monterey, California

Rear Admiral Isham Linder
Jack R. Borsting
Superintendent
Provost

This work was supported by the Bureau of Naval Personnel and the Naval Personnel Research and Development Center.

Reproduction of all or part of this report is authorized.
Prepared by:

| REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS
 BEFORE COMPLETINGFORM |
| :--- | :--- | :--- |
| 1. REPORTNUMBER
 NPS55Mh 76121 | 2. GOVT ACCESSION NO. |

16. DISTRIBUTION STATEMENT (of thto Report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abetract ontered in Block 20, if difforent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If necessary and Identliy by block number)

Manpower, Personnel, Enlisted Navy, Advancement
20. ABSTRACT (Continue on reverse alde if neceanary and fdentlfy by block number)

A previous scudy using regression analysis established the relationship between the LOS distribution of advancements and the volume of advancements for three ratings of the Navy Enlisted Force. This relationship was the basis of a model to predict the number of advancements by LOS in future years. The present study used that (regression) model as a starting point to accomplish the same goal with a gamma distribution model appropriately parametrized to make it dependent on volume of advancements. This latter model appears nearly
as accurate in its predictions as the regression model, while reducing the number of parameters from ninety-three to fifteen for each pay grade of each rating. The relationship between mean LOS and volume of advancements remains approximately the same as in the case of the regression model.

TABLE OF CONTENTS

PAGE
I. Introduction 1
A. Problem Statement 1
B. Background 3
C. Data Source 4
II. Problem Development 5
A. Statistical Formulation of the Problem 5
B. The Relationship Between the Distributions of L_{j} and A_{i} 8
C. The Regression Mode1 12
D. The Moments of the Regression Model 14
E. Approximation of the Moments 16
F. Estimation of the LOS Distribution of Advancements 21
G. Evaluation of the Estimation Procedure 24
H. Mean LOS of Advancements as a Function of Volume 28
III. Conclusions 30
IV. References 31
Appendix A. Proofs of Statements 2. and 3. A-1
Appendix B. A Technical Clarification B-1
Appendix C. The Correlation Coefficients: RHOO, RHO1, RHO2 Average RHO Values over the FY's 1972-76 C-1
Appendix D. Comparison of Estimates of Number of Advancements D-1
Appendix E. Comparison of Errors of Estimated Advancements E-1
Appendix F. Mean LOS as a Function of Volume of Advancements for FY 1976 F-1
Appendix G. Mean LOS as a Function of Volume of Advancements for Three FY's G-1

FOREWORD

This research effort was initiated by the Naval Personnel Research and Development Center (NPRDC), San Diego, California and subsequently sponsored by the Bureau of Naval Personnel (BUPERS), Washington, D.C. The author would like to express his appreciation for the valuable assistance provided by the staffs of Mr. Robert K . Lehto of BUPERS and Mr. Joe Silverman of NPRDC.

Many thanks are due to Professor Richard W. Butterworth for assistance provided during all stages of this research effort.

I. INTRODUCTION

A. Problem Statement

Advancements to the top six pay grades of the Navy Enlisted Force are brought about through a centrally managed system (Silverman, 1977). This process basically consists of promotions to fill vacancies created by requirements and limited by available resources. However, it is further constrained by promotion policy rules, D.O.D. restrictions, etc. A computer model, FAST (Boller, 1974; Silverman, 1977), used by the Bureau of Naval Personnel simulates (in a non-statistical way) many of the features of the advancement system. An interactive computer model, called MINIFAST (Butterworth, 1976), was recently developed at the Naval Postgraduate School. These models are used to make future predictions of end strengths of the Navy in great detail. They are also used to answer policy questions posed by personnel managers. Analysis is required for specific ratings and pay grades in terms of length of service (LOS). Both FAST and MINIFAST fall short on making accurate predictions of advancements by LOS. The present method involves estimating rates of advancements from historical records (Leland, 1976); then both models use these rates together with the LOS distribution of the resource population to make estimates of the number of promotions to a pay grade by LOS. One particular shortcoming of this method is its insensitivity to changes in the total number (volume) of advancements to a pay grade. In the actual planning cycle, these numbers (i.e. the pay grade totals of advancements) are computed first and the LOS distribution of advancements becomes quite volatile as the volume varies.

It is the objective of this study to make a contribution toward the accurate prediction of the LOS distribution of advancements. In particular, it is desirable to make such a procedure dependent explicitly on the volume of advancements to the pay grade in question. Such a procedure, if successful,
has the potential of being incorporated in FAST and/or MINIFAST. Aside from these models, other immediate applications also suggest themselves. Various models used in personnel planning by BUPERS are forced to make rather arbitrary, however reasonable, assumptions concerning the behavior of the advancement system. It is expected that the specific analytical forms described in this report may be of use in other existing personnel planning models.
B. Background

In a previous report (Milch, 1976) a regression model was constructed to predict the LOS distribution of advancements. This model had the advantage of being dependent on the volume of advancements to a pay grade and appeared reasonably accurate when predictions were made for years for which actual advancement data was available. The model is a simple regression of advancements on resources and the volume of advancements. The feasibility of its being incorporated in FAST is now being determined.

A drawback of this regression model stems from the fact that the regression is carried out in each of the thirty-one LOS cells separately. This results in ninety-three parameter values for each LOS distribution of advancements to a pay grade. This may not overburden a vast computer model such as FAST, but is certainly not feasible for the simpler and smaller MINIFAST. For this and other reasons, a more compact model was sought that would rely more on analytical tools to predict advancements while retaining the volume dependent feature of the regression model.

C. Data Source

The data available for this study was originally that available for the Regression Model (Milch, 1976). This data was based on the Pay Entry Base Date (PEBD) accounting of the length of service of Naval Personnel and covered the period 1966-74. As the FY 1975 and 1976 data became available during the course of this study, the definition of LOS was switched to the Total Active Federal Military Service (TAFMS). In order to make full use of the data for the entire $1966-76$ period all computation was repeated with both advancement and inventory data in the TAFMS format.

Another change from the previous study (Milch, 1976) was the use of net inventories in place of (beginning) inventories. Net inventories are defined to be the beginning inventory less losses plus non-recruit gains to the Navy during the year. This inventory, defined for every rating, pay grade, and length of service cell, is conceptually an estimate of the total resources available to the advancement system. Of course, not everyone in the net inventory is generally eligible for promotions, however the net inventory can be expected to be more closely correlated to actual advancements than beginning inventory.

In other respects the data had the same characteristics as that used for the previous study. Thus, the ratings used were $300,1500,1800$ and 0 . The latter stands for total Navy, usually labeled as ALLNAVY. Only advancements to the top six pay grades were considered. Since the inventory in the next lower pay grade is the appropriate resource population for advancements to a pay grade, the pay grades of inventory used were E3-E8, except that E3 actually contained the total personnel in the three lowest pay grades.

A. Statistical Formulation of the Problem

In order to develop an analytic solution to the problem of predicting advancements, the problem itself will be specified in precise analytic terms.

The discussion in this section will refer to advancements to a specific pay grade in a specific rating. For this reason the notation of pay grade and rating will be suppressed. Similarly the period or fiscal year involved will be made explicit in the notation only when needed. Let
$V=$ total number of advancees to a pay grade in a rating during the fiscal year.

These V advancements are, of course, effected at various times during the fiscal year. In that sense, some ordering among them could be established. It is, however, not in that sense that subsequent mention will be made of the first, second or, in general, the " j th advancee." Instead, a conceptual ordering is imagined among advancees for the sake of mathematical exposition. (For example, one may think of alphabetical ordering of the surnames of advancees.) In this sense, let, for $j=1,2, \ldots, V$,

$$
L_{j}=\text { the LOS year of the } j^{\text {th }} \text { advancee. }
$$

The most important thing to note about the quantities $L_{j}(1 \leq j \leq V)$ is that their values are not available. Instead, aggregate numbers of advancements, i.e., the quantities:

$$
A_{i}=\text { number of advancements in LOS cell } i \text {, for } i=1,2, \ldots, 31,
$$

were available in existing data files.
Briefly stated, the problem of predicting future advancements is one of estimating the distribution of L_{j} from data on the variables $\mathrm{A}_{\mathrm{i}}, \mathrm{l} \leq \mathrm{i} \leq 31$. To make this idea more precise some further notation is necessary.

The conditional distribution of L_{j} given the volume of advancements is introduced:

$$
\begin{equation*}
f_{i}(V)=P\left(L_{j}=i \mid V\right) \tag{1}
\end{equation*}
$$

independent of j for $i=1,2, \ldots, 31$. Also, the conditional mean and variance of L_{j} are denoted by

$$
\begin{equation*}
\mu_{L}(V)=E\left(L_{j} \mid V\right)=\sum_{i=1}^{31} i f_{i}(V) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{L}^{2}(V)=\operatorname{Var}\left(L_{j} \mid V\right)=E\left(L_{j}^{2} \mid V\right)-\left(E\left(L_{j} \mid V\right)\right)^{2} \tag{3}
\end{equation*}
$$

As the notation implies the random variables $L_{j}, 1 \leq j \leq V$, are identically distributed when V is given. It can also be argued that they are independently distributed, when V is given, because the ordering of advancements is randomized rather than chronological.

In mathematical terms the precise assumption, supported by practical considerations, is that when V is given the random variables $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{V}}$ are independently and identically distributed with the parameters given in equations (1), (2), and (3) above.

It is precisely this conditional distribution of L_{j}, given V, that is needed if future predictions of advancements are to be made based on some values of V that are either arbitrarily selected by personnel managers or are forced on them by the circumstances.

The data available for this study concerned not the variables L_{j}, $1 \leq j \leq V$ but the variables $A_{i}, 1 \leq i \leq 31$. Observations on $A_{i}, 1 \leq i \leq 31$, have been available for the fiscal years 1966-1976. This data will be referred to by the notation:

$$
\begin{equation*}
A_{1}^{(k)}, \ldots, A_{31}^{(k)} \tag{4}
\end{equation*}
$$

for $k=1, \ldots, 11$, where $" k=1$ " means FY 1966 and " $k=11$ " refers to FY 1976.
The problem may now be stated precisely as one of estimating the conditional distribution (1) of L_{j}, given V, or at least its mean (2) and variance (3), from the observations (4) on the random variables $A_{i}, 1 \leq i \leq 31$. By necessity,
this distribution and its estimate must be a function of V.
B. The Relationship Between the Distributions of L_{j} and A_{i}

In order to estimate the conditional distribution of L_{j}, given V, from observations on the variables $A_{i}, 1 \leq i \leq 31$, first the relationship between the distributions of these random variables must be established. Most of these results are intuitively obvious and simple to prove. They are explained here because their exposition is thought to contribute to clarifying the problem under discussion.

The relationship between the random variables $L_{j}, 1 \leq j \leq V$, and $A_{i}, 1 \leq i \leq 31$ may best be established formally through the use of the auxiliary random variables:

$$
U_{i j}=\left\{\begin{array}{l}
1 \text { if } L_{j}=i \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\text { for } i=1, \ldots, 31 \text { and } j=1, \ldots, V
$$

In words, $U_{i j}$ is defined as an indicator variable whose value is one if the $j^{\text {th }}$ advancee happens to be in the $i^{\text {th }}$ LOS cell. The following relationships hold:

$$
\begin{align*}
\sum_{i=1}^{31} U_{i j} & =1, \text { for } 1 \leq j \leq V \tag{5}\\
\sum_{j=1}^{V} U_{i j} & =A_{i}, \text { for } 1 \leq i \leq 31 \tag{6}\\
\sum_{i=1}^{31} g(i) U_{i j} & =g\left(L_{j}\right), \text { for } 1 \leq j \leq V \text { and any function } g(i) . \tag{7}
\end{align*}
$$

Formula (5) expresses the fact that any advancee is in one and only one LOS ce11. Formula (6) explains that for a specific LOS cell one way to count advancees is simply to add up all the indicator variables for that cell. Formula (7) is easy to see first in its simplest form:

$$
\begin{equation*}
\sum_{i=1}^{31} i U_{i j}=L_{j}, \text { for } 1 \leq j \leq V \tag{8}
\end{equation*}
$$

which is true precisely because $i U_{i j}=L_{j}$ when $L_{j}=i$ and $i U_{i j}=0$ otherwise; the more general form of (7) holds for essentially the same reason; another form of (7) that will be used is, for any r,

$$
\begin{equation*}
\sum_{i=1}^{31} i^{r} U_{i j}=L_{j}^{r} \text {, for } 1 \leq j \leq V \tag{9}
\end{equation*}
$$

Another relationship connecting the variables V and $A_{i}, 1 \leq i \leq 31$, is:

$$
\sum_{i=1}^{31} A_{i}=V
$$

From the assumption that the variables $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{V}}$ are independent and identically distributed random variables when V is given, the same statement obviously follows for the variables $U_{i 1}, \ldots, U_{i V}$ for any fixed $i=1, \ldots, 31$.

The conditional distribution of $U_{i j}$, given V, is clearly given by the next statement.

Statement 1.

$U_{i j}$ is a Bernoulli random variable with parameter $f_{i}(V)$ independent of j when V is given. Thus, the conditional mean and variance are

$$
\begin{gather*}
E\left(U_{i j} \mid V\right)=f_{i}(V) \tag{10}\\
\operatorname{Var}\left(U_{i j} \mid V\right)=f_{i}(V)\left[1-f_{i}(V)\right] \tag{11}
\end{gather*}
$$

for $1 \leq i \leq 31$ and $1 \leq j \leq V$.
It is intuitively appealing to use the ratio of A_{i} to V when attempting to estimate the theoretical probabilities $f_{i}(V)$, that an arbitrary advancee is in LOS cell i. To explore this idea, the variable

$$
F_{i}=\frac{A_{i}}{V}, \quad \text { for } i=1, \ldots, 31
$$

is introduced.
Then the next statement follows.

The conditional mean and variance of F_{i}, when V is given, are, for $1 \leq i \leq 31$,

$$
\begin{equation*}
E\left(F_{i} \mid V\right)=f_{i}(V) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(F_{i} \mid V\right)=\frac{1}{V} f_{i}(V)\left[1-f_{i}(V)\right] \tag{13}
\end{equation*}
$$

Proof of these formulas is quite simple and is given in Appendix A.
Statement 2 explains why empirical values of F_{i} are commonly used to estimate (or even confused with) the theoretical concept of the probability, $f_{i}(V)$, that an advancee is in LOS cell i. Indeed, F_{i} is an unbiased estimate of this probability and for high values of V it is an estimate with small variance. This fact was exploited (even if not explictly stated) in the regression analysis reported previously (Milch, 1976).

In the current study, however, the estimation of the (conditional) distribution of L_{j} (given V) will be approached through its (conditional) moments. For this reason, the following empirical moments of F_{i} are introduced:

$$
\begin{equation*}
K_{r}=\sum_{i=1}^{31} i^{r_{r}}{ }_{i} \quad \text { for any } r \tag{14}
\end{equation*}
$$

In particular, the first and second moments will be used to estimate the theoretical conditional moments of L_{j} when V is given. That this may be successfully accomplished is suggested by the following.

Statement 3.

$$
\begin{equation*}
K_{r}=\frac{1}{V} \sum_{j=1}^{31} L_{j}^{r} \quad \text { for } 1 \leq j \leq V \text { and any } r \tag{15}
\end{equation*}
$$

The short proof is in Appendix A.
Formula (15) shows that, for any r, K_{r} is the $r^{\text {th }}$ sample moment of the observations $L_{j}, 1 \leq j \leq V$, when V is given. Also,

$$
\begin{equation*}
K_{2}^{\prime}=\frac{V}{V-1} \sum_{i=1}^{31}\left(i-K_{1}\right)^{2} F_{i}=\frac{V}{V-1}\left(K_{2}-K_{1}^{2}\right) \tag{16}
\end{equation*}
$$

is equal to the sample variance of $L_{j}, 1 \leq j \leq V$, when V is given, i.e.,

$$
\begin{equation*}
K_{2}^{\prime}=\frac{1}{V-1} \sum_{i=1}^{31}\left(L_{j}-K_{1}\right)^{2} \tag{17}
\end{equation*}
$$

From the above it follows

Statement 3.

When V is given K_{1} and K_{2}^{\prime} are unbiased estimates of the conditional mean, $\mu_{L}(V)$, and variance, $\sigma_{L}^{2}(V)$, of L_{j}, with conditional variances

$$
\operatorname{Var}\left(\mathrm{K}_{1} \mid \mathrm{V}\right)=\frac{1}{\mathrm{~V}} \sigma_{\mathrm{L}}^{2}(\mathrm{~V})
$$

and

$$
\operatorname{Var}\left(\mathrm{K}_{2}^{\prime} \mid \mathrm{V}\right)=\frac{1}{\mathrm{~V}}\left[\mu_{\mathrm{L}}^{(4)}(\mathrm{V})-\frac{\mathrm{V}-3}{\mathrm{~V}-1} \sigma_{\mathrm{L}}^{4}(\mathrm{~V})\right]
$$

where

$$
\mu_{L}^{(4)}(V)=E\left(L_{j}^{4} \mid V\right)
$$

is the fourth conditional moment of L_{j}, given V.
These are well known results of statistics (see e.g. Wilks, 1962, pages 199-200).

These results imply that K_{1} and K_{2}^{\prime} are the traditionally used statistical estimates of the mean and variance of L_{j} and could be used to estimate the distribution of L_{j} as well.
C. The Regression Model

In a previous study (Milch, 1976) two regression models were designed. The purpose of these models was to estimate the LOS distribution of advancements as a function of the pay grade total (volume) of advancements and the LOS distribution of some suitably chosen resource population. The model that proved to be the more practicable of the two used (beginning) inventories as the resource population for advancements. This model is mathematically described by the equations:

$$
\begin{equation*}
\hat{A}_{i}=V \frac{\left[\alpha_{i}+\beta_{i} I_{i}+\gamma_{i} V\right]^{+}}{\sum_{i=1}^{31}\left[\alpha_{i}+\beta_{i} I_{i}+\gamma_{i} V\right]^{+}}, \quad \text { for } i=1, \ldots, 31 \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{A}_{i}=\text { estimated number of advancees in LOS cell } i ; \\
& I_{i}=\text { (beginning) inventories in LOS cell } i \text { of the originating pay grade; } \\
& {[x]^{+}=\max (0, x)}
\end{aligned}
$$

and the coefficients $\alpha_{i}, \beta_{i}, \gamma_{i}$ are the results of the regression analysis. As equation (18) shows the results of the regression analysis were altered to eliminate negative numbers and renormalized in order that advancements in all LOS cell sum to the "correct" pay grade total of advancements, V. Then the LOS distribution of advancements, as estimated by the regression model, is

$$
\begin{equation*}
\hat{F}_{i}=\frac{\hat{A}_{i}}{V}=\frac{\left[\alpha_{i}+\beta_{i} I_{i}+\gamma_{i} V\right]^{+}}{\sum_{i=1}^{31}\left[\alpha_{i}+\beta_{i} I_{i}+\gamma_{i} V\right]^{+}}, \quad i=1, \ldots, 31 \tag{19}
\end{equation*}
$$

In the previous report (Milch, 1976) it was shown that this distribution of advancements was reasonbly accurate. This was accomplished by computing these $\hat{F}_{i}, 1 \leq i \leq 31$, values for several of the $F Y ' s$ for which data was available
and then comparing them to the actual $\mathrm{F}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} / \mathrm{V}, 1 \leq i \leq 31$, values. The volume dependent behavior of the LOS distribution of advancements was also exhibited and explained by this model.

However, it may be noted that this regression mode1 necessitates the computation, storage and use of $3 \times 31=93$ parameter values (the α_{i} 's, $\beta_{i}^{\prime} s$ and $\gamma_{i}^{\prime} s$) for the prediction of advancements to any one pay grade and rating. Also, the prediction mode makes use of the LOS distribution (i.e., 31 numbers) of inventories (or some other surrogate for advancement resources) in the originating pay grade.

In order to make the model more adaptable to certain personnel management functions it appeared desirable to reduce significantly the number of parameters on which it depends.

D. The Moments of the Regression Model

As was explained in the previous section the estimates \hat{F}_{i}, as given by Formula (19), were reasonably good approximations of the sample distribution $F_{i}=A_{i} / V$ and therefore may be regarded as estimates of the theoretical distribution, $f_{i}(V)$, of L_{j}. The same procedure is suggested for the moments as well. Since K_{1} and K_{2}, as defined by Formulas (14) and (16) are unbiased estimates of $\mu_{L}(V)$ and $\sigma_{L}^{2}(V)$ resp., it may be expected that the corresponding moments defined in terms of \hat{F}_{i} will serve as "good" estimates as well. The following quantities are defined:

$$
\begin{equation*}
\hat{K}_{r}=\sum_{i=1}^{31} i^{r} \hat{F}_{i}, \quad \text { for any } r . \tag{20}
\end{equation*}
$$

In the previous report (Milch, 1976) the mean, $\hat{\mathrm{K}}_{1}$, and the variance $\hat{K}_{2}-\hat{K}_{1}^{2}$, were compared to the corresponding quantities computed from the data. These figures were displayed together with the "predictions" of advancements for past years. Reasonably good agreement was found. In order to compute these moments, however, it is necessary to obtain the 93 parameter values referred to at the end of Section C.

It is possible, however, to approximate the expressions (20) with quantities whose computation requires fewer parameter values than indicated above. First, the function [] will be disregarded in Formula (19) and $\hat{\mathrm{K}}_{\mathrm{r}}$ computed accordingly from (20). The justification for neglecting [] ${ }^{+}$ is empirical: there were relatively few instances when the regression analysis resulted in negative number of advancements; clearly, these cases occurred mostly in very sparsely populated LOS cells. The resulting approximation for the moments is, for any r,

$$
\begin{equation*}
\hat{K}_{r} \approx \frac{\sum_{i=1}^{31} i^{r} \alpha_{i}+\sum_{i=1}^{31} i^{r} \beta_{i} I_{i}+V \sum_{i=1}^{31} i^{r} \gamma_{i}}{\sum_{i=1}^{31} \alpha_{i}+\sum_{i=1}^{31} \beta_{i} I_{i}+V \sum_{i=1}^{31} \gamma_{i}} \tag{21}
\end{equation*}
$$

It may be noted at this point that this formula of \hat{K}_{r} involves only two functions of the thirty-one α_{i} values: $\sum \alpha_{i}$ and $\sum i^{r} \alpha_{i}$. The same holds true for the γ_{i} values. A similar statement may not be made about the β_{i} 's: all thirty-one β_{i} values are needed to recompute $\sum \beta_{i} I_{i}$ and $\sum i{ }_{i} \beta_{i} I_{i}$ as the inventory distribution takes on different forms. It is the subject of the next section to obtain a reduction in the number of β_{i} parameters needed to approximate \hat{K}_{r}.

E. Approximation of the Moments

To make future explanations easier the following notation is introduced:

$$
\begin{gather*}
S_{r}(\alpha)=\frac{1}{n_{r}} \sum_{i=1}^{31} i^{r} \alpha_{i} \text { for any } r \tag{22}\\
\text { where } n_{r}=\sum_{i=1}^{31} i^{r} . \tag{23}
\end{gather*}
$$

With this notation the $r^{\text {th }}$ moment \hat{K}_{r}, may be written, for any r,

$$
\begin{equation*}
\hat{K}_{r} \approx \frac{n_{r}}{n_{0}} \frac{S_{r}(\alpha)+S_{r}(\beta I)+S_{r}(\gamma) V}{S_{o}(\alpha)+S_{o}(\beta I)+S_{o}(\gamma) V} \tag{24}
\end{equation*}
$$

where $S_{r}(\beta I)$ and $S_{r}(\gamma)$ are defined analogously to $S_{r}(\alpha)$ in (22).
Although (22), (23) and (24) are defined for any r, the values of immediate interest are $r=0,1,2$. Note that
$n_{0}=\sum_{i=1}^{31} 1=31, \quad n_{1}=\sum_{i=1}^{31} i=\frac{(31)(32)}{2}=496, \quad n_{2}=\sum_{i=1}^{31} i^{2}=\frac{(31)(32)(63)}{6}=10,416$.

The formulas for the first and second estimated moments are, in particular,

$$
\begin{equation*}
\hat{K}_{1} \approx 16 \frac{S_{1}(\alpha)+S_{1}(\beta I)+S_{1}(\gamma) V}{S_{0}(\alpha)+S_{0}(\beta I)+S_{0}(\gamma) V} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2} \approx 336 \frac{S_{2}(\alpha)+S_{2}(\beta I)+S_{2}(\gamma) V}{S_{o}(\alpha)+S_{o}(\beta I)+S_{o}(\gamma) V} \tag{26}
\end{equation*}
$$

The immediate goal is to permit the computation (or approximation) of these moments without the full use of the thirty β_{i} values. This will be accomplished by approximating $S_{r}(\beta I)$, for $r=0,1,2$, although the procedure will be explained in terms of arbitrary r.

The fact that $S_{o}(\beta I)$ (and in a more complicated way $S_{r}(\beta I)$, for any r, as well) is the sum of products of thirty-one pairs, (β_{i}, I_{i}), of numbers suggests that this quantity is related to covariances and correlations.

To make this remark more precise pairs of new random variables will be
introduced whose purpose is purely conceptual and exact meaning is of no importance to the original problem.

For any r, the pair (B_{r}, I_{r}) of random variables is defined to have the joint distribution

$$
P\left(B_{r}=\beta_{i}, I_{r}=I_{j}\right)=\left\{\begin{array}{l}
\frac{i^{r}}{n_{r}} \quad \text { if } i=j \tag{27}\\
0 \text { otherwise }
\end{array}\right.
$$

for $\mathrm{i}, \mathrm{j}=1, \ldots, 31$.
For technical reasons, this definition is not precise, unless the values $\beta_{i}, 1 \leq \beta \leq 31$ as well as the values $I_{i}, 1 \leq i \leq 31$ are all distinct. Although often this is not the case, the difficulty is merely a technical one and will be ignored in this section. In Appendix B additional explanation is given that overcomes this problem at the expense of increased notational complexity.

Formula (23) assures that (27) defines a joint probability mass function. The marginal probabilities are

$$
\begin{equation*}
P\left(B_{r}=\beta_{i}\right)=P\left(I_{r}=I_{i}\right)=\frac{i^{r}}{n_{r}} \quad \text { for } i=1, \ldots, 31 \tag{28}
\end{equation*}
$$

The marginal and joint moments are computed as

$$
\begin{gather*}
E\left(B_{r}^{m}\right)=\sum_{i=1}^{31} \beta_{i}^{m} \frac{i^{r}}{n_{r}}=S_{r}\left(\beta^{m}\right) \quad \text { for any } m ; \\
E\left(I_{r}^{n}\right)=\sum_{i=1}^{31} I_{i}^{n} \frac{i^{r}}{n_{r}}=S_{r}\left(I^{n}\right) \quad \text { for any } n \quad ; \\
E\left(B_{r}^{m} I_{r}^{n}\right)=\sum_{i=1}^{31} \beta_{i}^{m} I_{i}^{n} \frac{i^{r}}{n_{r}}=S_{r}\left(\beta^{m} I^{n}\right) \text { for any mand } n \quad . \tag{29}
\end{gather*}
$$

The following means, variances and covariance are of immediate interest:

$$
\begin{align*}
& E\left(B_{r}\right)=S_{r}(\beta) \tag{30}\\
& E\left(I_{r}\right)=S_{r}(I) \tag{31}\\
& \operatorname{Var}\left(B_{r}\right)=S_{r}\left(\beta^{2}\right)-S_{r}^{2}(\beta) \tag{32}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Var}\left(I_{r}\right)=S_{r}\left(I^{2}\right)-S_{r}^{2}(I) \tag{33}\\
& \operatorname{Cov}\left(B_{r}, I_{r}\right)=S_{r}(B I)-S_{r}(B) S_{r}(I) \tag{34}
\end{align*}
$$

Formula (34) suggests a way of approximating $\mathrm{S}_{\mathrm{r}}(\mathrm{BI})$. The correlation coefficient of the joint random variables B_{r} and I_{r} is defined as

$$
\begin{equation*}
\rho_{r}=\rho\left(B, I_{r}\right)=\frac{\operatorname{Cov}\left(B_{r}, I_{r}\right)}{\sqrt{\operatorname{Var}\left(B_{r}\right) \operatorname{Var}\left(I_{r}\right)}} \tag{35}
\end{equation*}
$$

It may be recalled that the correlation coefficient of two random variables lies always betwen -1 and +1 and as such its sample equivalent (i.e., the sample correlation coefficient frequently used to estimate the "population" correlation coefficient) must be much more stable than the corresponding sample covariance or mixed moment. It is, therefore, suggested to put Formulas (30) - (35) together to express $S_{r}(B I)$ in terms of the means, variances and correlation coefficients of the joint random variables (B_{r}, I_{r}):

$$
\begin{equation*}
S_{r}(\beta I)=S_{r}(\beta) S_{r}(I)+\rho_{r} \sqrt{\left[S_{r}\left(\beta^{2}\right)-S_{r}^{2}(\beta)\right]\left[S_{r}\left(I^{2}\right)-S_{r}^{2}(I)\right]} \tag{36}
\end{equation*}
$$

The difficulty with using (36) as written is, of course, the circular nature of the definitions given above. The correlation coefficients, ρ_{r}, were defined in terms of $S_{r}(B I)$ and hence (36) does not, in itself, provide a way to calculate $S_{r}(B I)$. However, there is eleven years of data (for FY's 1966-76) available to compute sample estimates of ρ_{r}. The $\beta_{i}, 1 \leq i \leq 31$, values remain unchanged as computed from the regression analysis. The I_{i}, $1 \leq i \leq 31$, values are available for each of the eleven years. This provides eleven estimates for each ρ_{r} computed in accordance with Formula (35). These values for $\mathrm{r}=0,1,2$ are listed in Appendix C for each of the six pay grades E4 through E9 and ratings $300,1500,1800$ and 0 (ALLNAVY). The numbers display
a reasonably good stability over the ten year period. It is also noteworthy that each pay grade has its own particular range of values.

There are several ways in which the eleven data values available for on, $r=0,1,2$, may be used. Some sort of average should be used for reasons of stability, but it also seemed that early years would bear less relevance for future planning than values obtained from more recent years. Finally, it was decided, somewhat arbitrarily, to use the average of the ρ_{r} values obtained from the last five years' (FY's 1972-76) data. These values are denoted by $\hat{\rho}_{r}\left(\right.$ as estimates of $\left.\rho_{r}\right)$ for $r=0,1,2$, and are given in Appendix C for all pay grades and ratings.

Therefore, the following quantities may be used as approximations of the $S_{r}(\beta I)$ values:

$$
\begin{equation*}
\hat{S}_{r}(\beta I)=S_{r}(\beta) S_{r}(I)+\hat{\rho} \sqrt{\left[S_{r}\left(\beta^{2}\right)-S_{r}^{2}(\beta)\right]\left[S_{r}\left(I^{2}\right)-S_{r}^{2}(I)\right]} \tag{37}
\end{equation*}
$$

An approximating formula for the $r^{\text {th }}$ estimated moment K_{r} is, for any r,

$$
\begin{equation*}
\hat{K}_{r} \approx \frac{n_{r}}{n_{0}} \frac{S_{r}(\alpha)+\hat{S}_{r}(\beta I)+S_{r}(\gamma) V}{S_{0}(\alpha)+\hat{S}_{0}(\beta I)+S_{o}(\gamma) V} \tag{38}
\end{equation*}
$$

where $\hat{S}_{r}(\beta I)$ and $\hat{S}_{o}(\beta I)$ are given by (37).
It may be noted immediately that to compute Formula (38) neither the thirty-one β_{i} values nor the thirty-one inventories I_{i} are needed directly. Instead, the six quantities: $S_{0}(\beta), S_{o}\left(\beta^{2}\right), S_{r}(\beta), S_{r}\left(\beta^{2}\right), \hat{\rho}_{o}$ and $\hat{\rho}_{r}$ replace $\beta_{i} 1 \leq i \leq 31$. Similarly, the four quantities: $S_{o}(I), S_{o}\left(I^{2}\right), S_{r}(I)$ and $S_{r}\left(I^{2}\right)$ replace $I_{i}, 1 \leq i \leq 31$.

For purposes of estimating the conditional LOS distributions $f_{i}(V)$, $1 \leq i \leq V$, of L_{j} when V is given it will be necessary to use the first and second moments $\hat{\mathrm{K}}_{1}$ and $\hat{\mathrm{K}}_{2}$. These may now be computed from Formula (38) with $r=1$ and 2. The parameters needed to compute these moments are: $S_{r}(\alpha)$,
$S_{r}(\gamma), S_{r}(\beta), S_{r}\left(\beta^{2}\right)$ and $\hat{\rho}_{r}$ for $r=0,1,2$. These fifteen parameters replace the $3 \times 31=93$ parameter values of $\alpha_{i}, \beta_{i}, \gamma_{i}$ for $1 \leq i \leq 31$. Although these fifteen quantities must originally be computed from the ninety-three regression coefficients, they may be computed "once and for all" and used repeatedly with various volume levels and inventory distributions. An additional simplification is that the thirty-one inventory, $I_{i}, 1 \leq i \leq 31$, values are also replaced by six quantities: $S_{r}(I)$ and $S_{r}\left(I^{2}\right)$ for $r=0,1,2$.
F. Estimation of the LOS Distribution of Advancements.

With the approximation of the moments, \hat{K}_{r}, by relatively simple expressions that exhibit the dependence on the volume of advancements, the estimation of parameters for the distribution of advancements is also feasible.

This is achieved by the following procedure.

1. The Regression Analysis described previously (Milch, 1976 and in Section II.C. of this report) is recomputed with I_{i} redefined as net inventories, equal to beginning inventories less losses plus non-recruit gains (see Section I.C.). The result of this computation is the set of ninety-three coefficients: α_{i}, β_{i} and γ_{i}, for $I \leq i \leq 31$.
2. Using Formula (38) the first and second sample moments are computed for a given volume V and inventory distribution, $I_{i}, 1 \leq i \leq 31$. In particular:

$$
\begin{equation*}
\hat{\mathrm{K}}_{1}=16 \frac{\mathrm{~S}_{1}(\alpha)+\hat{S}_{1}(\beta I)+\mathrm{S}_{1}(\gamma) \mathrm{V}}{\mathrm{~S}_{0}(\alpha)+\hat{S}_{0}(\beta I)+\mathrm{S}_{0}(\gamma) V} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{K}_{2}=336 \frac{S_{2}(\alpha)+\hat{S}_{2}(\beta I)+S_{2}(\gamma) V}{S_{o}(\alpha)+\hat{S}_{o}(\beta I)+S_{o}(\gamma) V} \tag{40}
\end{equation*}
$$

where $S_{r}(\alpha)$ and $S_{r}(\gamma)$, for $r=0,1,2$, are defined by Formula (22) and $\hat{S}_{r}(\beta I)$, for $r=0,1,2$, is given by Formula (37). Next the sample variance is computed from

$$
\begin{equation*}
\hat{K}_{2}^{\prime}=\frac{V}{V-1}\left(\hat{K}_{2}-K_{1}^{2}\right) \tag{41}
\end{equation*}
$$

3. Using the sample mean and variance the two parameters, g and λ, of the gamma distribution, with density function

$$
\begin{equation*}
f(i ; g, \lambda)=\lambda \frac{(\lambda i)^{g-1}}{\Gamma(g)} e^{-\lambda i}, \quad i \geq 0 \tag{42}
\end{equation*}
$$

are estimated via the method of moments.

That is, the estimates of g and λ are

$$
\begin{equation*}
\hat{\mathrm{g}}=\frac{\hat{\mathrm{K}}_{1}^{2}}{\hat{\mathrm{~K}}_{2}^{\prime}} \quad \text { and } \quad \hat{\lambda}=\frac{\hat{\mathrm{K}}_{1}}{\hat{\mathrm{~K}}_{2}^{\prime}} \tag{43}
\end{equation*}
$$

4. Using these estimates of the parameters, g and λ, the density function (42) is computed for integer values $i=1,2, \ldots, 31$ and renormalized to assure it defines a distribution when used at these values. The ensuing probablity function

$$
\begin{equation*}
\hat{f}(i ; \hat{g}, \hat{\lambda})=\frac{f(i ; \hat{g}, \hat{\lambda})}{\sum_{j=1}^{3} f(j ; \hat{g}, \hat{\lambda})}, i=1, \ldots, 31 \tag{44}
\end{equation*}
$$

is used as the estimated LOS distribution of advancements.
5. The $\hat{f}(i ; \hat{g}, \hat{\lambda})$ values are multiplied by the volume, V, of advancements and rounded to the nearest integer to provide estimates of the number of advancees to a pay grade by LOS.

In order to display the result of this procedure, these estimated advancees, by LOS, to a pay grade are compared to the actual number of advancements, the estimates provided by the Regression Model and the estimates as computed by current FAST methodology. The comparison for FY 1976 is shown graphically in Appendix D for ratings $300,1500,1800$ and 0 (ALLNAVY) for advancements to the six upper pay grades. The FAST methodology to which reference was made above involves the computation of historical rates of advancements described in an NPRDC working paper (Leland, 1976). If these rates are denoted by H_{i} for $1 \leq i \leq 31$, the advancement $L O S$ distribution is given by the formula

$$
\begin{equation*}
F_{i}^{\prime}=\frac{.9 H_{i}+.1 I_{i}}{\sum_{j=1}^{31}\left(.9 H_{j}+.1 I_{j}\right)} \quad \text { for } 1 \leq i \leq 31 \tag{45}
\end{equation*}
$$

where I_{i} denotes the net inventory in LOS cell i and the next lower pay grade.

The gamma distribution was chosen after several other candidates such as the beta, binomial, negative binomial, Weibull, lognormal and other distributions were also considered. Occasionally the estimate of the shape parameter, \hat{g}, of the gamma distribution is too large for easy computation of the probabilities $\hat{f}(i ; \hat{g}, \hat{\lambda})$. In such cases the normal distribution with density function

$$
\mathrm{f}\left(i ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(i-\mu)^{2}}{2 \sigma^{2}}}
$$

is used in step 3. above. The parameters μ and σ^{2} are estimated by

$$
\hat{\mu}=\hat{K}_{1} \quad \text { and } \quad \hat{\sigma}^{2}=\hat{K}_{2}^{\prime}
$$

and then the renormalized probability function $\hat{\mathrm{f}}\left(\mathrm{i} ; \hat{\mu}, \hat{\sigma}^{2}\right)$, defined analogously to Formula (44), is used for $1 \leq i \leq 31$ in steps 4. and 5. above. This procedure was used in rare cases when $\mathrm{g}>100$.
G. Evaluation of the Estimation Procedure.

The graphs in Appendix D reveal that in most cases the estimates provided by the gamma distribution do better than those of the FAST method and almost as well as the regression estimates. It is not easy, however, to compare quantitatively these three estimates from these graphs. For this reason, three measures of error were constructed and the three estimates compared in terms of these measures. The three measures are:

1. The difference between the actual and estimated mean LOS value:

$$
\Delta_{1}=\mathrm{K}_{1}-\tilde{\mathrm{K}}_{1}
$$

where K_{1} is the actual mean LOS of advancements given by Formula (14) and \tilde{K}_{1} denotes the mean LOS of one of the three estimates of advancements. For the estimate given by the gamma distribution $\tilde{\mathrm{K}}_{1}=\hat{\mathrm{K}}_{1}$ as defined by Formula (39). For the regression and $F A S T$ models the means, \tilde{K}_{1}, are computed in the usual way from the distribution.
2. The difference in standard errors: This is the standard deviation of the actual LOS distribution less the standard deviation from the actual mean LOS of the estimated LOS distribution:

$$
\Delta_{2}=\sqrt{K_{2}^{\prime}}-\sqrt{\tilde{K}_{2}}
$$

Here K_{2}^{\prime} is the sample variance of the actual LOS distribution of advancements, given by Formula (16) and $\tilde{\mathrm{K}}_{2}$ is the sum of squares of the differences between the estimated number of advancees and the actual mean LOS of advancements. For example, for the gamma distribution estimate $\tilde{\mathrm{K}}_{2}=\hat{\mathrm{K}}_{2}^{\prime \prime}$ where $\hat{\mathrm{K}}_{2}^{\prime \prime}$ is defined as

$$
\hat{K}_{2}^{\prime \prime}=\frac{V}{V-1} \sum_{i=1}^{V}\left(i-K_{1}\right)^{2} \hat{f}_{i}=\frac{V}{V-1}\left(\hat{K}_{2}-2 K_{1} \hat{K}_{1}+K_{1}^{2}\right)
$$

Note that $\hat{K}_{2}^{\prime \prime}$ differs from \hat{K}_{2}^{\prime}, as defined by (41), and its square root may be appropriately called the standard error of the estimate. \tilde{K}_{2} is computed analogously for the Regression and FAST models.
3. The Kolmogrov-Smirnov (K-S) Statistic: This is the largest absolute difference between the actual and estimated cumulative sample distribution functions:

$$
\Delta_{3}=\max _{1 \leq i \leq 31}\left|\sum_{j=1}^{i} F_{j}-\sum_{j=1}^{i} \tilde{F}_{j}\right|
$$

where F_{j} is the actual relative frequency of advancees in LOS cell j and \tilde{F}_{j} is the corresponding estimate. In particular,

$$
\tilde{F}_{j}= \begin{cases}\hat{f}(j ; \hat{g}, \hat{\lambda}) & \text { for the gamma distribution model } \\ \hat{F}_{j} & \text { for the Regression model } \\ { }_{F_{j}^{\prime}} & \text { for the FAST model }\end{cases}
$$

where the quantities on the righ hand side are given by Formulas (44), (19), and (45), respectively.

The values obtained for these three measures when estimates for FY 1976 were made are displayed in Table 1 below for all pay grades and ratings considered. The figures in this table confirm what was tentatively concluded after observing the graphs of the estimated numbers of advancements in Appendix D. Pay grade E5 of rating 300 appears to be the only significant case where the FAST methodology is superior. In some cases the improvement provided by the gamma distribution over FAST is quite significant; see e.g. pay grade E6 of rating 1500 .

To compare errors for other FY's Appendix E shows graphs of the errors Δ_{1} and Δ_{3} against FY's 1966-76. These graphs, by and large, confirm the findings above. In fairness to the FAST methodology it must be pointed out that the estimates obtained by it here used Formula (44) with the same H_{i}, $1 \leq i \leq 31$, values for every $F Y$, even though in practice new historically estimated rates are computed for every FY.

COMPARISON OF FRRORS OF ESTIMATFD ADVANCFMFNTS

RATING=300
$Y E A R=1.976$

ACTUAL - FSTIMATED MEAN IOS OF ADVANCEMENTS:

MODFL	$F, 4$	$F .5$	$F .6$	$F .7$	$F 8$	$F .9$
REGRFSSION	0.02	0.23	0.17	0.24	-0.63	0.50
GAMMADIST	0.16	0.43	-0.14	0.42	-0.38	0.50
FASTS	0.64	0.23	0.62	1.95	-0.52	0.30

ACTUAL ST. DFV. - ST. FRROR OF FSTIMATE OF IOS DJST.:

MODFL	$F, 4$	$E 5$	$E .6$	$F .7$	$F .8$	$F .9$
REGRFSSION	0.17	-0.58	0.16	0.24	0.25	-0.21
GAMMA DIST	0.41	-0.54	-0.01	-0.20	0.15	-0.81
$F A S T$	0.12	-0.94	0.25	-1.47	0.12	-1.08

K-S STATISTIC:

MODEI	$E 4$	$F 5$	$F 6$	$F 7$	$F 8$	$F .9$
RFGRFSSION	0.03	0.22	0.06	0.07	0.22	0.33
GAMMA DIST	0.05	0.34	0.13	0.09	0.18	0.27
FAST	0.37	0.17	0.15	0.25	0.19	0.27

RATING=1500
$Y E, A R=1976$

ACTUAL - ESTIMATED MEAN IOS OF ADVANCFMFNTS:

MODFL	$F .4$	$F .5$	$F 6$	$F 7$	$F .8$	-0
REGRESSION	0.02	0.17	1.11	-0.19	-0.80	-0.10
GAMMA DIST	0.10	0.70	0.42	-0.67	-0.79	-0.10
FAST	0.56	0.97	2.39	-0.29	-1.22	-0.52

ACTUAL ST. DFV. - ST. FRROR OF FSTIMATF OF LOS DTST.:

MODEL	$F .4$	$F .5$	$F 6$	$F .7$	$F 8$	$F .9$
REGRFSSION	0.16	0.02	-0.73	-0.08	1.10	0.09
GAMMA DIST	0.32	0.17	-0.47	0.50	1.15	-1.04
$F A S T$	0.25	-0.38	-1.07	-0.11	0.28	-1.03

K-S STATISTIC:

MODEIs	$E, 4$	$F 5$	$E 6$	$E 7$	$F .8$	$E .9$
REGRFSSION	0.03	0.07	0.25	0.06	0.13	0.08
GAMMA DIST	0.06	0.26	0.11	0.14	0.13	0.14
FAST	0.28	0.39	0.43	0.08	0.13	0.12

TABLE 1 (cont'd)
COMPARTSON OF ERRORS OF ESTIMATED ADVANCEMENTS
RATING $=1.800$
$Y E A R=1976$

MODEL	F. 4	E. 5	F. 6	E. 7	F.8	F9
REGRESSION	0.26	0.36	-0.49	-0.59	-0.17	1.20
GAMMA DIST	0.30	0.25	-1.03	-0.65	0.15	-0.31
$F A S T$	0.67	0.28	1.58	0.28	1. 07	1. 09

ACTUAL ST. DEV. - ST. ERROR OF ESTIMATE OF LOS DJST.:

MODEI	$E .4$	$E .5$	$E .6$	$E 7$	$E .8$	$E .9$
REGRESSION	-0.05	-0.11	0.08	0.25	-0.01	-0.61
GAMMA DIST	-0.06	-0.17	-0.00	-0.19	-0.68	-0.70
EAS T	-0.10	-0.03	-0.44	-0.34	-0.15	-0.42

K-S STATISTIC:

MODEI,	$E .4$	$E .5$	$E, 6$	$E 7$	$E 8$	$E 9$
REGRFSSION	0.16	0.17	0.11	0.08	0.12	0.27
GAMMA DIST	0.25	0.27	0.21	0.09	0.18	0.15
FAS T	0.45	0.18	0.24	0.07	0.30	0.29

RATING $=0 \quad Y E A R=1976$
ACTUAL - ESTIMATED MFAN IOS OE ADVANCEMENTS:

MODEL	$E .4$	$F 5$	$E 6$	$E .7$	$E 8$	$E .9$
REGGRSSION	0.38	0.62	0.30	0.16	0.12	0.00
GAMMA DIST	0.28	0.80	0.03	0.16	0.21	-0.15
FAS T	0.72	0.81	1.28	1.15	-0.21	-0.67

ACTUAL ST. DEV. - ST. FRROR OF ESTIMATE OF LOS DIST.:

MODEL	$E .4$	$E 5$	$E, 6$	$E .7$	$E .8$	$E .9$
REGGRSSION	0.21	0.31	-0.04	-0.18	-0.06	-0.41
GAMMA DIST	0.29	0.26	-0.15	-0.18	-0.11	-0.41
FAS T	0.19	0.08	-0.09	-0.81	-0.53	-0.77

K-S STATISTIC:

MODEL	$E .4$	$E .5$	$E .6$	$F 7$	$E .8$	$E .9$
RFGRESSION	0.11	0.15	0.04	0.03	0.02	0.03
GAMMA DIST	0.12	0.27	0.06	0.06	0.06	0.09
FAS T	0.28	0.20	0.17	0.14	0.05	0.10

H. Mean LOS of Advancements as a Function of Volume.

From the start of this research effort an answer has been sought to the question: "How does the LOS distribution of advancements depend on the volume of advancements in the Enlisted Force?" As the previous report explained (Milch, 1976) such an answer is not extractable from the data direct1y, because the dependence on volume is confounded by dependence on other variables, such as inventories. The construction of a model, however, makes it possible to hold other variables fixed, while the LOS distribution of advancements is observed as a function of volume alone. This was achieved with the regression model and reported previously (Milch, 1976). Here, the regression model and the newly constructed model using the gamma distribution are compared in their ability to display this dependence.

In Appendix F the mean LOS values are graphed as a function of volume of advancements as provided by the regression model and the gamma distribution model. Both models use the net inventory distribution for FY 1976. The actual mean LOS of advancees in FY 1976 is also plotted as the sing1e data point relevant to the curves shown. In addition, the mean LOS values of advancements as provided by the FAST model is also shown as a horizontal straight line. The range of volume for each of the twenty-four cases (six pay grades for each of three ratings and ALLNAVY) is approximately the range of volume that occurred historically during FY 1966-76. These curves show that the gamma distribution model may be used equally well as the regression model to display the dependence of mean LOS of advancements on volume.

To examine this dependence closer another set of graphs is shown in Appendix G. These twenty-four graphs display a sample of the various types of curves that result when different net inventory distributions are used to show the dependence of mean LOS of advancements on volume through the gamma distribution model. Each graph shows three curves which are based on the net inventory
distributions of FY 1976 and two other FY's. These latter FY's are selected for each of the twenty-four cases in such a way that they produce the two most extreme curves among the eleven curves that are based on the net inventory distributions of FY's 1966-76.

In most large volume pay grades, such as pay grades E4 and E5 of rating 300, pay grades E4, E5, E6 of rating 1500, and pay grade E4 of rating 1800, all curves are of the decreasing type. This type of curves was originally anticipated according to the rationale that large volume of advancements forces the system to promote younger personnel. In the remaining cases of the three ratings, however, this rule does not always apply. For example, in the case of pay grade E7 of rating 300, both decreasing and increasing type of curves appear. As the information provided below each graph testifies, for small volumes the mean LOS of advancements is reasonably close to the mean LOS of net inventory: low (high) mean LOS of net inventory implies low (high) mean LOS of advancements. As the volume increases, however, the mean LOS of advancement will increase or decrease depending on whether the mean LOS was low or high for small volume. For example, for pay grade E7 of rating 300, the FY's 1966 and 1974 both had relatively small volume of advancements: 39 and 150. These years had widely differing mean LOS of net inventory values: 10.56 and 13.07 years. The corresponding mean L OS values of advancements display the same discrepancy: 11.05 and 14.41 years. The two curves have correspondingly differing behavior: the curve using the FY 1966 net inventory LOS distribution is increasing, while that of FY 1974 is decreasing with volume.
III. Conclusions.

The final conclusion of the analysis of Section II. is that the gamma distribution model may be used to predict the number of advancements by LOS in place of the regression model without significant loss of accuracy in most cases. Both models have the advantage over currently used methodology of being sensitive to changes in the volume of advancements. Both models may also be used to explain the two types of functions (decreasing and increasing) that occur when plotting mean LOS values of advancements vs. volume of advancements. The main advantage of the gamma distribution model over the regression model is the use of only fifteen parameters vs. ninety-three for the regression model for each pay grade of each rating. For these reasons, current plans include extending this analysis to all ratings of the Navy Enlisted Force and adapting FAST to use the gamma distribution model to compute advancements by LOS. Whether or not this will be accomplished depends on preliminary tests to establish the supposed superiority of this model over present methodology.

Boller, R. L., "Design of Force Structure Model for the Simulation of Personnel Policy." Presented at 33rd Military Operations Research Symposium, U.S. Military Academy, West Point, New York, June 1974.

Butterworth, R. W., "Minifast - An Interactive Personnel System Model for the Navy's Enlisted Force," NPS Technical Report, NPS55Bd76071.
"FAST," Unpublished Notes, Naval Personnel Research and Development Center (NPRDC) San Diego, California, January 1974.

Leland, K. O., "Rifelsum" Main Program Synopsis, NPRDC Working Report, 1976.
Milch, P. R., "A Model for the Prediction of Advancements in the Navy Enlisted Force," NPS Technical Report, NPS55Mh76061, 1976,

Silverman, J., "Design and Use of a Force Structure Simulation Model," submitted to Management Science, 1977.

Wilks, S. S., "Mathematical Statistics," John Wiley Sons, Inc., New York, 1962.

Appendix A. Proofs of Statements 2 and 3.
Statement 2.

$$
\begin{gather*}
E\left(F_{i} \mid V\right)=f_{i}(V) \tag{12}\\
\operatorname{Var}\left(F_{i} \mid V\right)=\frac{1}{V} f_{i}(V)\left[1-f_{i}(V)\right] \tag{13}
\end{gather*}
$$

Proof:
From the definition of F_{i} and Formula (6)

$$
E\left(F_{i} \mid V\right)=\frac{1}{V} E\left(A_{i} V\right)=\frac{1}{V} \sum_{j=1}^{V} E\left(U_{i j} \mid V\right)
$$

Then using Formula (10) and the fact that $U_{i j}, 1 \leq j \leq V$, are i.i.d. when V is given, result (12) follows. The same facts and formulas and Formula (11) are used to show that

$$
\begin{aligned}
\operatorname{Var}\left(F_{i} \mid V\right) & =\frac{1}{V^{2}} \operatorname{Var}\left(A_{i} \mid V\right)=\frac{1}{V^{2}} \sum_{j=1}^{V} \operatorname{Var}\left(U_{i j} \mid V\right) \\
& =\frac{1}{V^{2}} V f_{i}(V)\left[1-f_{i}(V)\right]
\end{aligned}
$$

This proves Formula (13).
Statement 3.

$$
\begin{gather*}
\text { For } 1 \leq j \leq V \text { and any } r \\
K_{r}=\sum_{i=1}^{31} i^{r} F_{i}=\frac{1}{V} \sum_{V=1}^{V} L_{j}^{r} . \tag{15}
\end{gather*}
$$

Proof:

$$
\begin{gathered}
K_{r}=\sum_{i=1}^{31} i^{r} F_{i}=\frac{1}{V} \sum_{i=1}^{31} i^{r} A_{i}=\frac{1}{V} \sum_{i=1}^{31} i^{r} \sum_{j=1}^{V} U_{i j} \\
=\frac{1}{V} \sum_{j=1}^{V} \sum_{i=1}^{31} i^{r} U_{i j}=\frac{1}{V} \sum_{j=1}^{V} L^{r}{ }_{j}
\end{gathered}
$$

Appendix B. A Technical Clarification
The definition given for the distribution of the joint random variables (B_{r}, I_{r}) in Section II.E. (Formula (27)) is technically imprecise. This is so, because in the definition of the probability mass function the values assigned to the random variable must be distinct. Neither the β_{i} nor the $I_{i}, 1 \leq i \leq 31$, in Formula (27) are necessarily distinct. In fact, many of β_{i} as well as the I_{i} values are usually zeroes. This technical difficulty may be eliminated only at the expense of some additional notation. Let $\beta_{1}^{\prime}, \ldots, \beta_{s}^{\prime}$ and $I_{i}^{\prime}, \ldots, I_{t}^{\prime}$ be all the distinct values among $\beta_{1}, \ldots, \beta_{31}$ and I_{1}, \ldots, I_{31}, respectively. Clearly $1 \leq s, t \leq 31$. For every pair of indices (i, j) the set of indices k for which both $\beta_{k}=\beta_{i}^{\prime}$ and $I_{k}=I_{j}^{\prime}$ is introduced as

$$
C_{i j}=\left\{k: \quad \beta_{k}=\beta_{i}^{\prime} \text { and } I_{k}=I_{j}^{\prime}, 1 \leq k \leq 31\right\}
$$

where $i=1, \ldots, s$ and $j=1, \ldots, t$
Now, definition (27) may be corrected:

$$
P\left(B_{r}=\beta_{i}^{\prime}, I_{r}=I_{j}^{\prime}\right)=\frac{1}{n} \sum_{r \in C_{i j}} k^{r}
$$

for $i=1, \ldots, s$ and $j=1, \ldots, t$ and $r=0,1,2$. In order to compute the marginal distributions further notation is required. For $i=1, \ldots, s$

$$
D_{i}=\left\{k: \quad \beta_{k}=\beta_{i}^{\prime}, 1 \leq k \leq 31\right\}
$$

and for $j=1, \ldots, t$

$$
E_{j}=\left\{k: \quad I_{k}=I_{j}^{\prime}, 1 \leq k \leq 31\right\}
$$

Then, for $i=1, \ldots, s$,

$$
\begin{aligned}
P\left(B_{r}=\beta_{i}^{\prime}\right) & =\sum_{j=1}^{t} P\left(B_{r}=\beta_{i}^{\prime}, I_{r}=I_{j}^{\prime}\right) \\
& =\sum_{j=1}^{t} \frac{1}{n_{r}} \sum_{k \in C_{i j}} k^{r}=\frac{1}{n_{r}} \sum_{k \in D_{i}} k^{r},
\end{aligned}
$$

since the union of all $C_{i j}, 1 \leq j \leq t$ is D_{i} :

$$
D_{i}=\stackrel{t}{\mathrm{U}_{\mathrm{H}}^{1}} \mathrm{C}_{\mathrm{ij}}
$$

For similar reasons, for $j=1, \ldots, t$,

$$
P\left(I_{r}=I_{j}^{\prime}\right)=\frac{1}{n_{r}} \sum_{k \in E_{j}} k^{r} .
$$

Formulas () and () are the precise versions of Formula (28) of Section II.E. The fact that all the formulas involving the moments of $\left(B_{r}, I_{r}\right)$ are correct as given in Section II.E. may be seen without difficulty. For example,

$$
E\left(B_{r}^{m} I_{r}^{n}\right)=\sum_{i=1}^{s} \sum_{j=1}^{t}\left(\beta_{i}^{\prime}\right)^{m}\left(I_{j}^{\prime}\right)^{n} \frac{1}{n_{r}} \sum_{k \varepsilon C_{i j}} k^{r}
$$

But short reflection on the definition of $C_{i j}$ shows that

$$
\frac{1}{n}{ }_{r} \sum_{i=1}^{s} \sum_{j=1}^{t} \sum_{k \in C_{i j}}\left(\beta_{i}^{\prime}\right)^{m}\left(I_{j}^{\prime}\right)^{n} k^{r}=\frac{1}{n} \sum_{r}^{31} \beta_{i=1}^{m} I_{i}^{n} i^{r}=S_{r}\left(\beta^{m} I^{n}\right)
$$

This verifies Formula (29), the most general moment formula in Section II.E.

$Y F A R$	$F, 4$	$E 5$
1966	-0.0673	0.1013
1967	-0.0796	-0.1026
1968	-0.0827	-0.0251
1969	-0.0949	-0.0354
1970	-0.1113	0.0151
1971	-0.0911	0.0619
1972	-0.0942	0.1078
1973	-0.0955	0.1418
1974	-0.0638	0.0865
1975	-0.1009	0.0850
1976	0.1139	0.0521

RATING $=300$
$E 66$
0.0275
0.0990
0.0878
0.0035
0.0385
0.0012
-0.0111
0.0409
0.0478
0.0879
0.0931
$F 7$
-0.0448
-0.0019
-0.0015
-0.0077
0.0058
0.0147
0.0666
0.0683
0.0781
0.0355
0.0216

$E .8$	$E Q$
0.3528	-0.0025
0.4067	0.2207
0.3329	0.4108
0.3366	0.2646
0.3922	0.1759
0.2856	0.3824
0.3261	0.3558
0.2921	0.1807
0.3174	0.1280
0.2987	0.1365
0.3037	-0.1307

RATING=1500

1966	0.1155
1967	0.1031
1968	0.1267
1969	0.0947
1970	0.0650
1971	0.0775
1972	0.1176
1973	0.1206
1974	0.1424
1975	0.0927
1976	0.1091

0.2372
0.2794
0.1294
0.1575
0.1414
0.1901
0.2336
0.2732
0.2154
0.2519
0.1985
0.0594
0.0295
0.0024
-0.0086
-0.0349
-0.0030
-0.0082
-0.0241
-0.0332
0.0165
0.0649
-0.0123
0.0170
-0.0247
-0.0042
0.0264
0.1108
0.1356
0.1708
0.2139
0.2292
0.2298
0.3081
0.3000
0.3547
0.3181
0.3005
0.3506
0.3624
0.3680
0.3754
0.3836
0.3332
0.3988
0.3591
0.4821
0.5809
0.5013
0.5378
0.5860
0.4953
0.5921
0.5327
0.4587

RATING=1800

1966	-0.0241	0.1807
1967	-0.0271	-0.2130
1968	-0.0073	-0.0132
1969	-0.0219	-0.0827
1970	-0.0335	-0.0091
1971	-0.0292	0.0254
1972	-0.0334	0.0184
1973	-0.0347	-0.0331
1974	-0.0282	0.0309
1975	-0.0282	0.0121
1976	-0.0280	0.0460

0.1341
0.1658
0.2111
0.0278
0.1054
0.1204
-0.0243
-0.0744
-0.0042
-0.0005
0.0290

0.1551	0.2247
0.2291	0.0986
0.3169	0.2244
0.2142	0.1843
0.2670	0.0787
0.3106	0.1194
0.3270	0.2157
0.3243	0.2058
0.3082	0.2186
0.3808	0.2148
0.3792	0.1570

$$
\begin{array}{r}
-0.0165 \\
-0.0149 \\
-0.1495 \\
-0.0445 \\
0.1202 \\
0.0842 \\
0.0149 \\
0.0246 \\
0.0383 \\
-0.0517 \\
0.0582
\end{array}
$$

RATING=0

1966	0.2635
1967	0.2974
1968	0.2795
1969	0.2996
1970	0.3066
1971	0.2887
1972	0.2476
1973	0.2641
1974	0.2877
1975	0.2698
1976	0.2850

0.3760
0.3697
0.1485
0.1515
0.1716
0.2080
0.3324
0.3586
0.2458
0.2774
0.2469
0.1919
0.1238
0.1816
0.0213
0.0929
0.0518
0.0938
0.0907
0.0538
0.0863
0.0823
0.3725
0.3947
0.4355
0.3942
0.4076
0.4786
0.5448
0.5510
0.5925
0.5962
0.5620
0.4532
0.4828
0.5347
0.4371
0.4024
0.4187
0.4170
0.4156
0.4173
0.4419
0.4598

[^0]| $Y E A R$ | $E 4$ |
| ---: | ---: |
| 1966 | 0.0266 |
| 1967 | 0.0242 |
| 1968 | 0.0180 |
| 1969 | 0.0106 |
| 1970 | 0.0013 |
| 1971 | 0.0102 |
| 1972 | 0.0124 |
| 1973 | 0.0152 |
| 1974 | 0.0298 |
| 1975 | 0.0138 |
| 1976 | 0.0147 |

RATING $=300$

FS

0.0987	0.0014
0.0898	0.0895
0.0332	0.1337
0.0225	0.0750
0.0302	0.1118
0.0526	0.0751
0.0702	0.0475
0.0751	0.0941
0.0645	0.0759
0.0643	0.1103
0.0686	0.0764

F. 7

-0.0732	0.2897
-0.0533	0.3413
-0.0518	0.2810
-0.0565	0.2580
-0.0510	0.3103
-0.0488	0.2014
-0.0262	0.2505
-0.0270	0.2141
-0.0179	0.2505
-0.0431	0.2244
-0.0487	0.2483

F. 9

$$
\begin{array}{r}
0.0587 \\
0.1333 \\
0.3480 \\
0.2122 \\
0.0703 \\
0.2932 \\
0.3000 \\
0.0870 \\
0.0499 \\
-0.0938 \\
-0.1825
\end{array}
$$

1966	0.0986	0.1669
1967	0.0894	0.1673
1968	0.0980	0.1173
1969	0.0820	0.1204
1970	0.0593	0.1137
1971	0.0652	0.1271
1972	0.0904	0.1393
1973	0.0996	0.1460
1974	0.1070	0.1401
1975	0.0842	0.1542
1976	0.0988	0.1703

RATING $=1800$

1966	0.0524	0.1966
1967	0.0502	0.2206
1968	0.0605	0.1330
1969	0.0395	0.0457
1970	0.0226	0.0919
1971	0.0253	0.0511
1972	0.0211	0.0596
1973	0.0191	0.0728
1974	0.0296	0.0505
1975	0.0281	0.0645
1976	0.0304	0.0676

$\operatorname{RATING}=0$

1966	0.0595	0.3982
1967	0.0741	0.3880
1968	0.0732	0.2644
1969	0.0772	0.1994
1970	0.0776	0.2040
1971	0.0724	0.2144
1972	0.0489	0.2664
1973	0.0558	0.2945
1974	0.0707	0.2624
1975	0.0667	0.2730
1976	0.0706	0.2801

0.2112
0.1762
0.2349
0.1578
0.1647
0.1633
0.1927
0.1774
0.1475
0.1583
0.1417
0.2902
0.3081
0.3669
0.3473
0.3503
0.4112
0.4663
0.4647
0.4875
0.4953
0.4692

0.3790	0.2529
0.3918	0.3602
0.4646	0.3876
0.3564	0.3629
0.3090	0.3592
0.3242	0.3295
0.3166	0.3117
0.3228	0.2785
0.3227	0.2952
0.3484	0.2756
0.3731	0.2705

$Y F A R$	$E L$	$E 5$
1968	0.0318	0.0845
1967	0.0342	0.0710
1968	0.0240	0.0341
1969	0.0219	0.0260
1970	0.0165	0.0265
1971	0.0184	0.0297
1972	0.0204	0.0453
1973	0.0261	0.0408
1974	0.0328	0.0399
1.975	0.0280	0.0408
1976	0.0430	0.0506

1966	0.0634	0.1197
1967	0.0562	0.1199
1968	0.0588	0.0885
1969	0.0517	0.0807
1970	0.0358	0.0752
1971	0.0353	0.0735
1972	0.0485	0.0782
1973	0.0569	0.0777
1974	0.0626	0.0824
1975	0.0541	0.0951
1976	0.0695	0.1283

RATING $=300$

RATING $=1500$

0.0361	0.2379	0.3908	0.2580
0.0281	0.2432	0.3819	0.1974
0.0366	0.2750	0.4575	0.3789
0.0763	0.2479	0.4081	0.4844
0.0365	0.2825	0.3664	0.4015
0.0455	0.3469	0.4158	0.4347
0.0548	0.3653	0.4187	0.4567
0.0416	0.3793	0.4364	0.3890
0.0383	0.4112	0.4411	0.4983
0.0494	0.4068	0.4478	0.4359
0.0553	0.3993	0.4054	0.3289

RATING $=1800$

1966	0.0744	0.1895
1967	0.0661	0.2106
1.968	0.0847	0.1941
1969	0.0473	0.0954
1970	0.0282	0.1417
1971	0.0238	0.0703
1972	0.0259	0.0657
1973	0.0206	0.0764
1974	0.0346	0.0636
1975	0.0330	0.0740
1976	0.0331	0.0648

0.1840
0.2205
0.2906
0.2567
0.2523
0.3353
0.2483
0.2675
0.2346
0.2179
0.1716
0.2201
0.2126
0.2798
0.2400
0.2655
0.2975
0.2985
0.3069
0.2917
0.3349
0.3315
0.509 ?
-0.1402
$0.3390-0.1382$
$0.5008 \quad 0.0531$
$0.4434-0.1927$
$0.2804 \quad 0.0337$
0.3289
0.4471
0.4111
0.4407
0.4738
0.4173

$E 8$	$E Q$
0.2854	-0.0415
0.3335	0.1120
0.2897	0.3302
0.2372	0.2157
0.2850	0.0254
0.1787	0.2402
0.2313	0.2854
0.1961	0.0511
0.2413	0.0355
0.2096	0.1103
0.2471	-0.1544

> 0.2580 0.1974 0.3789 0.4844 0.4015 0.4347 0.4567 0.3890 0.4983 0.4359 0.3289

RATING $=0$

1966	0.0133	0.4182
1967	0.0176	0.3991
1968	0.0202	0.3316
1969	0.0185	0.2087
1970	0.0165	0.1970
1971	0.0163	0.1934
1972	0.0068	0.2205
1973	0.0093	0.2631
1974	0.0172	0.2534
1975	0.0194	0.2545
1976	0.0199	0.2650

0.2212
0.1971
0.2497
0.2210
0.2017
0.2248
0.2492
0.2293
0.2003
0.1955
0.1711

$$
\begin{aligned}
& 0.2706 \\
& 0.2849 \\
& 0.3444 \\
& 0.3386 \\
& 0.3349 \\
& 0.3820 \\
& 0.4234 \\
& 0.4171 \\
& 0.4264 \\
& 0.4340 \\
& 0.4167
\end{aligned}
$$

0.3695	0.2618
0.3742	0.4078
0.4565	0.4418
0.3532	0.3985
0.2967	0.3979
0.3032	0.3321
0.2831	0.3080
0.2946	0.2812
0.2917	0.3013
0.3155	0.2794
0.3449	0.2745

AVFRAGF RHO VALUES OVFR THE FY'S 1972-76

RHOO

RATJNG	$F, ~ F r 5$	$F 6$	$F 7$	$E 8$	$F 9$	
300	-0.0936	0.0947	0.0517	0.0540	0.3075	0.1340
1500	0.1165	0.2345	0.0128	0.1958	0.3645	0.5329
1800	-0.0305	0.0157	0.0149	0.3439	0.2024	0.0169
0	0.2709	0.2922	0.0814	0.5693	0.4303	0.2001

RHO1

| RATING | $E, 4$ | $E 5$ | $E 6$ | $F 7$ | $E 8$ | $E .9$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 300 | 0.0172 | 0.0686 | 0.0808 | -0.0326 | 0.2375 | 0.0696 |
| 1500 | 0.0960 | 0.1500 | 0.0295 | 0.3747 | 0.4676 | 0.4782 |
| 1800 | 0.0257 | 0.0630 | 0.1465 | 0.3115 | 0.4010 | -0.0945 |
| 0 | 0.0626 | 0.2753 | 0.1635 | 0.4766 | 0.3367 | 0.2863 |

RHO2

| $R A T I N G$ | $E 4$ | $E 5$ | $E 6$ | $F 7$ | $F 8$ | $F 9$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 300 | 0.0301 | 0.0435 | 0.1229 | -0.0537 | 0.2251 | 0.0656 |
| 1500 | 0.0583 | 0.0923 | 0.0479 | 0.3924 | 0.4299 | 0.4218 |
| 1800 | 0.0294 | 0.0689 | 0.2280 | 0.3127 | 0.4380 | -0.0983 |
| 0 | 0.0145 | 0.2513 | 0.2091 | 0.4235 | 0.3060 | 0.2889 |


```
APPENDIX D (cont'd)
```

COMPARISON OF ESTIMATES OF NUMBER OF ADVANCEMENTS RATING=300 PAY GRADE=E5 FISCAL YEAR=1976
$0: A C T U A L \quad \triangle: R E G R E S S I O N \quad$ *:GAMMA DIST. 4.051 .25$) \quad F: F A S T$ NUMBER OF ADVANCEMENTS

 O|O_O_O1

```
APPENDIX D (cont'd)
```


MODEL
ACTUAL
REGRESSION GAMMA DIST
$F A S T$

VOLUME
182
180
182
180

MEAN LOS
7.85
7.68
7.99
7.23

ST. ERR.
3.16
3.00
3.17
2.91

COMPARISON OF FSTIMATES OF NUMBER OF ADVANCEMENTS
RATING=300 PAY GRADE=E8 FISCAL YEAR=1976

$0: A C T U A L \quad \triangle: R E G R E S S I O N \quad *: G A M M A$ DIST. 64.37 3.82) F: FAST T

NUMBER OF ADVANCEMENTS

MODEL	VOI,UME	MEANLIOS	ST. FRR.
ACTUAL	19	16.37	2.29
REGRESSION	17	17.00	2.04
GAMMA DIST	20	16.75	2.14
FAS T	18	16.89	2.17

NUMBER OF ADVANCEMENTS
4.8
0
$\boldsymbol{R} \boldsymbol{R} \boldsymbol{P}$

APPENDIX D (cont'd)

COMPARISON OF ESTIMATES OF NUMBER OF ADVANCFMENTS
RATING=1500 PAY GRADE=F4 FISCAL YFAR=1976
$0: A C T U A L \quad \Lambda: R E G R E S S I O N \quad *: G A M M A$ DIST.(3.6311.66) F:FAS
NUMRER OF ADVANCEMENTS
1200
$1200,-\bar{F}$

$\stackrel{\Delta}{F}$

MODEI,	VOLUMF	MEAN LOS	ST. ERR
ACTUAL	2247	2.28	1.45
REGRESSION	2.246	2.26	1.29
GAMMA DIST	2245	2.18	1.13
FAS T	2.245	1.72	1.20

APPENDIX D (cont'd)

```
    COMPARISON OF ESTIMATES OF NUMRER OF ADVANCEMENTS
    RATING=1500 PAY GRADE=E5 FISCAL YEAR=1976
O:ACTUAL \:RFGRFSSION *:GAMMA DIST.(5.77 1.54) F: F A S T
```

NUMRER OE ADVANCFMENTS

 $10 _0 _010_{1} 0_{1}-01$
15
LOS YEARS
 $10-0-0 \left\lvert\,-\frac{1}{33}\right.$

MODEI, ACTUAL REGRESSION GAMMA DIST $F A S T$

VOI, UME
608
609
605
607

MEIAN LOS
4.44
4.28
3.74
3.47
$S T . E R R$.
1.87
1.85
1.69
2.25

APPENDIX D (cont'd)

$$
\begin{array}{cccc}
\text { COMPARISON OF ESTIMATES OF NUMBER OF ADVANCFMENTS } \\
\text { RATING=1500 PAY GRADE }=\mathrm{E} 7 \quad \text { FISCAL YEAR }=1976
\end{array}
$$

O:ACTUAL $\triangle:$ REGRESSION *:GAMMA DIST.(52.89 3.52) F: FAS T NUMBER OF ADVANCEMENTS

MODEL
ACTUAL
REGRESSION
GAMMA DIST
$F A S T$

VOLUME
216 215 215 213

MEAN LIOS
14.36
14.54
15.02
14.65

ST. ERR.
2.65
2.72
2.14
2. 76

NUMBER OF ADVANCEMENTS

MODEL
ACTUAL REGRESSION GAMMA DIST $F A S T$

VOI, UME
60
58
59
60

MEAN LOS 16.75
17.55
17.54
17.97

ST. ERR
3.08
1.98
1.94
2.80
APPENDIX D (cont'd)

NUMBER OF ADVANCEMENTS
T
τ
A.

。 - 782.3
COMPARISON OF ESTIMATES OF NUMBER OF ADVANCEMENTS PAY CAMMA DIS
$\triangle:$ REGRESSIO
7.2 --
7.1^{--}

APPENDIX D (cont'd)

D (cont'd)

```




NUMRER OF ADVANCEMENTS


MODEL
ACTUAL
REGRESSION
GAMMA DIST
\(F A S T\)

VOLUME
181
178
182
179

MEAN LOS 14.10 14.69
14.75
13.82

ST. ERR .
3.16
2. 91
2.96
3.50

NUMBER OF ADVANCEMENTS
4.8

APPENDIX D (cont d)

```

COMPARISON OF ESTIMATES OF NUMBER OF ADVANCEMENTS
RATING=0 PAY GRADE=E4 FISCAL YEAR=1976

```
:ACTUAL \(\quad \triangle:\) REGRESSION *:GAMMA DIST. \((2.28\) 1.06) F:FAS T
UMBER OF ADVANCEMENTS
    30000



MODEL

\section*{CTUAL}

EGRESSION AMMA DIST A \(S T\)

VOLUME
49388
49389
49388
49386

MEAN LOS
2.53
2.16
2.25
1.82

ST. ERR.
1.69
1.48
1.40
1.50
\begin{tabular}{lrrrrr} 
COMPARISON OF ESTIMATES OF NUMBER OF ADVANCEMENTS \\
RATING=0 & PAY GRADE \(=5.5\) & FISCAL YEAR=1976
\end{tabular}
\(0: A C T U A L \quad \triangle: R E G R E S S I O N \quad\) : GAMMA DIST. \((2.67 \quad 0.72) \quad F: F A S T\)
NUMBER OF ADVANCEMENTS
    9600
        :



\(\Delta_{-} F_{-} F \mid F_{12} O_{-} 0\)
                \begin{tabular}{rr|r}
0 \\
15 & 0 & 0 \\
18 \\
0
\end{tabular}
 \(-21\) \(\mathrm{O}_{-} \mathrm{O}_{2}\)
 - \(\mathrm{OlO}_{2}\) LOS YEARS
\begin{tabular}{lrrr}
\multicolumn{1}{c}{ MODEL } & VOLUME & MEAN LOS & ST. ERR \\
ACTUAL & 27166 & 4.52 & 2.65 \\
REGRFSSION & 27166 & 3.90 & 2.34 \\
GAMMA DIST & 27165 & 3.72 & 2.39 \\
FAST & 27165 & 3.70 & 2.57
\end{tabular}

\begin{tabular}{lrrr}
\multicolumn{1}{c}{ MODEL } & VOLUME & MEAN LOS & ST. ERR \\
ACTUAL & 12099 & 8.94 & 3.67 \\
REGRESSION & 12101 & 8.64 & 3.63 \\
GAMMA DIST & 12100 & 8.91 & 3.81 \\
FAST & 12097 & 7.65 & 3.76
\end{tabular}
```

 COMPARISON OF ESTIMATES OF NUMBER OF ADVANCEMENTS
 RATING=0 PAY GRADE=E,7 FISCAL YEAR=1976
 O:ACTUAL \triangle:REGRESSION *:GAMMA DIST.(16.69 1.18) F:FA S T
NUMBER OF ADVANCEMENTS

```


MODEL ACTUAL REGRESSION GAMMA DIST \(F A S T\)

VOLUME
6790 6791 6789 6789

MEAN LOS 14.31
14.14
14.15
13.15

ST. ERR.
3.28
3.45
3.46
4.09
NUMBER OF ADVANCEMENTS


\(S\)

\[
\begin{array}{crrrrr}
\text { COMPARISON } & \text { OF ESIMATFS OF } & \text { NUMBER OF ADVANCFMFNTS } \\
\text { RATING=0 } & \text { PAY GRADE }=E .9 & \text { FISCAI } & Y F A R=1976
\end{array}
\]
\(T\) 0 \(\star\)
: \(F\)

APPENDIX D (cont'd)

COMPARISON OF ERRORS OF FSTIMATED ADVANCFMFNTS
RATING \(=300\)
PAY GRADE \(=4\)
\(\triangle:\) RFGRFSSION *: GAMMA DIST. F: FA S T ACTUAI - FSTIMATFD MFAN IOS OF ADV.



\section*{COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING =300 PAY GRADE =5}
\(\Delta:\) REGRESSION
*: GAMMA DIST.
\(F: F A S T\)

ACTUAL - ESTIMATED MEAN IOS OF ADV.



APPENDIX E (cont'd)

COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS
RATING=300 PAY GRADF=6
A: REGRESSION *: GAMMA DIST. F:FAST
ACTUAI - ESTIMATED MEAN LOS OF ADV.


K-S STATISTIC


APPENDIX E (cont'd)

COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS
\[
\text { RATING }=300 \quad \text { PAY } G R A D E=7
\]
\(\triangle:\) REGRESSION *: GAMMA DIST.
\(F: F A S T\)
ACTUAL - ESTIMATED MEAN LOS OF ADV.



APPENDIX E (cont'd)
COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING=300 PAY GRADE \(=8\)
A: REGRESSION * : GAMMA DIST.
\(F: F A S T\)

ACTUAL - ESTIMATED MEAN IOS OF ADV.
2.25:--
\(F\)
*
\(\Delta\)
\(0.751_{*}\)
\(\hat{1}\)
1
\(\vdots\)
-0.75

 1- -7
\&
\(F\)
A


K-S STATISTIC
0.72


COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING=300 PAY GRADE=9
A: REGRESSION *: GAMMA DIST. ACTUAI - ESTIMATED MEAN LOS OF ADV.



\(K-S\) STATISTIC


COMPARISON OF ERRORS OF ESTJMATED ADVANCFMENTS RATING=1500

PAY GRADE=5
\(\Delta\) : REGRESSION *: GAMMA DIST.
\(F: F A S T\) ACTUAI - ESTIMATED MFAN LOS OF ADV.



APPENDIX E (cont'd)

COMPARISON OF FRRORS OF FSTIMATFD ADVANCEMENTS
RATING=1500 PAY GRADF = 6
\(\triangle:\) RFGRFSSION *: GAMMA DIST. F: FAS T
ACTUAI - FSTIMATFD MFAN LOS OF ADV.



COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING =1500 PAY GRADE =7
\(\Lambda\) : RFGRFSSION *: GAMMA DIST.
\(F: F A S T\) ACTUAL - ESTIMATED MEAN IOS OF ADV.



COMPARISON OF ERRORS OF FSTIMATED ADVANGEMFN'SS RATING \(=1500 \quad\) PAY GRADE \(=8\)
\(\Delta:\) REGRESSION *: GAMMA DIST. F:FAST ACtual - estimated mean los of adv.



COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING =1500 PAY GRADF=9
\(\Delta\) : REGRESSION *: GAMMA DIST.
\(F: F A S T\) ACTUAL - ESTIMATED MEAN LOS OF ADV.



K-S STATISTIC
0.27


COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS
RATING \(=1800 \quad\) PAY \(G R A D E=4\)
\(\triangle:\) REGRESSION \(\quad\) : GAMMA DIST. F:FAS T
actual - estimated mean los of adv.




\section*{COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING \(=1800 \quad\) PAY GRADE \(=5\)} \(\Delta:\) REGRESSION \(\quad *: G A M M A D I S T . \quad F: F A S T\) ACTUAL - ESTIMATED MEAN LOS OF ADV.


K-S STATISTIC
0.54


COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING \(=1800 \quad\) PAY GRADE \(=6\)
\(\triangle\) : REGRESSION *: GAMMA DIST.
\(F: F A S T\) ACTUAL - ESTIMATED MEAN LOS OF ADV.
4.8



COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING \(=1800 \quad\) PAY \(G R A D E=7\)
\(\triangle:\) REGRESSION *: GAMMA DIST. F:FAS T ACTUAL - ESTIMATED MEAN LOS OF ADV.




K-S STATISTIC

\(\Delta\)


APPENDIX E (cont'd)

COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING=1800 PAY GRADE=9
\(\Delta\) : REGRESSION
*: GAMMA DIST. \(F: F A S T\) ACTUAI - ESTIMATED MEAN LOS OF ADV.



COMPARISON OF FRRORS OF ESTIMATED ADVANCFMFNTS
RATING \(=0 \quad\) PAY GRADE \(=4\)
A: REGRESSION
*: GAMMA DIST.
\(F: F A S T\)

ACTUAI - ESTIMATED MEAN IOS OF ADV.

\(K-S\) STATISTIC

```

 COMPARISON OF FRRORS OF ESTIMATFD ADVANCEMFNTS
 RATING=0 PAY GRADF=5
 A: RFGRFSSION *: GAMMA DIST. F:FA ST

```
ACTUAI - FSTIMATFD MEAN IOS OF ADV.



COMPARISON OF FRRORS OF ESTIMATED ADVANCEMENTS
RATING=0 PAY GRADE=6
\(\Lambda: ~ R F G R E S S I O N\)
*: GAMMA DIST.
\(F: F A S T\)

ACTUAI - FSTIMATED MEAN LOS OF ADV.



COMPARISON OF ERRORS OF ESTIMATED ADVANCFMENTS RATING \(=0 \quad\) PAY GRADF \(=7\)
\(\Lambda:\) RFGRFSSION *: GAMMA DIST. F:FAST
ACTUAI - ESTIMATED MEAN LOS OF ADV.


F

\(\begin{array}{llll} & F & F & F\end{array}\)




APPENDIX E (cont'd)
\(\begin{array}{cc}\text { COMPARISON OF ERRORS OF ESTIMATED ADVANCFMENTS } \\ \text { RATING }=0 & \text { PAY GRADF }=8\end{array}\)
\(\Delta:\) REGRFSSION
*: GAMMA DIST.
\(F: F A S T\)

ACTUAI, - FSTIMATED MEAN IOS OF ADV.


K-S STATISTIC


COMPARISON OF ERRORS OF ESTIMATED ADVANCEMENTS RATING=0 PAY GRADE=9
\(\triangle\) : REGRESSION
*: GAMMA DIST.
\(F: F A S T\)

\(K-S\) STATISTIC
0.18


MEAN LOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS
\(\operatorname{RATING}=300\)
PAY GRADE \(=4\)
\(Y E A R=1976\)

○: ACTVAL \(\quad\) :REGRESSION *: GAMMA DIST. F:FAST
MEAN LOS OF ADVANCEMENTS

2.25
\(:_{\vdots}^{--} \quad 0\)

2.071





MEAN LOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS RATING \(=300 \quad\) PAY GRADE \(=5 \quad\) YEAR \(=1976\) ○: ACTUAL \(\quad\) :REGRESSION *: GAMMA DIST. F:FAS T

```

MFAN LOS AS A FUNCTION OF VOLUMF OF ADVANACEMENTS
RATING=300 PAY GRADF=6 YFAR=1976

```
O: ACTUAL \(\quad\) :REGRFSSION \(\quad\) : GAMMA DIST. \(F: F A S T\)
MEAN LOS OF ADVANCFMENTS
    8.4

mean los as a function of volume of advanacempints
RATING=300
PAY GRADE: \(=7\)
\(Y E A R=1976\)
○: ACTUAL
\(\nabla:\) REGRESSION
*: GAMMA DIST.
\(F: F A S T\)

MEAN LOS OF ADVANCEMENTS



MEAN LOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS
\[
\text { RATING=300 PAY GRADE=9 } \quad Y E A R=1976
\]

○: ACTUAL \(\quad\) :REGRESSION \(\quad\) : GAMMA DIST。 F: FAS \(T\) MEAN IIOS OF ADVANCEMENTS

mfan los as a function of volilme of advanacements
RATTNG \(=1500\)
PAY GRADF \(=4\)
\(y F A R=1.976\)

○: AGTUAI \(\quad\) :REGRESSION *: GAMMA DJST. F: FAS T MFAN LOS OF ADVANCEMENTS
2.85

\begin{tabular}{rrrr} 
MFAN LOS AS A FUNCTION OF VOLUMF OF ADVANACFMENTS \\
RATING=1500 & PAY GRADF \(=5\) & \(Y F A R=1.976\)
\end{tabular}

○: ACTUAL \(\quad\) :REGRESSION \(*:\) GAMMA DIST. F:FA S T


MEAN IOS AS A FUNCTION OF VOLUMF OF ADVANACEMENTS RATING=1500 PAY GRADE=6 YFAR=1976
○: ACTUAL
\(\nabla: R F G R E S S I O N\)
*: GAMMA DIST.
\(F: F A S T\)

MEAN LOS OF ADVANCFMFNTS

mean los as a funcition of volume of advanacements
RATING \(=1500\)
PAY GRADF \(=7\)
\(y F A R=1976\)

○: ACTVAI \(\quad\) :RFGRESSION \(\quad\) : GAMMA DJST. F:FAS \(T\)
MEAN LOS OF ADVANCEMENTS
19.8

mean los as a function of volume of advanagements
RATING \(=1500\)
PAY \(G R A D F=8\)
\(y_{E A R}=1976\)
\(\circ\) : ACTUAL \(\quad\) :REGRESSION \(\quad\) : GAMMA DIST. F: FAS T
MEAN LOS OF ADVANCEMENTS


MFAN LOS AS A FUNCTION OF VOLIIME OF ADVANACFMENTS
RATING \(=1500\)
PAY GRADF \(=9\)
\(Y F A R=1.976\)

○: ACTUAI \(\quad\) :REGRESSION \(\quad\) : GAMMA DIST. F: FAS \(T\)


MFAN IOS AS A FUNCTION OF VOIIUME OF ADVANACEMFNTS
RATING \(=1800\)
PAY GRADE \(=4\) \(y F A R=1976\)

O: ACTUAI \(\quad\) :REGRESSION \(\quad\) *: GAMMA DJST. F: FA S T
MEAN IAOS OF ADVANCEMENTS
2. 25
(2.07
\(\begin{array}{ll}\nabla & \nabla \\ \star & \star\end{array}\)
\(\nabla\)
\(\star\)
\(\nabla\)
\(\star\)
\(\nabla\)
\(\star\)
\(1-89 i_{1}^{--}\)
1.711

1


MEAN LOS AS A FUNCTION OF VOLUME OF ADVANAGFMFNTS
RATING =1800
PAY GRADE =5
\(Y F A R=1976\)

○: ACTUAL
\(\nabla:\) REGRESSION
*: GAMMA DIST.
\(F: F A S T\)
MEAN LOS OF ADVANCEMENTS
4.05
\(i_{i}^{--}\)



APPENDIX \(F\) (cont'd)

MFAN IOS AS A FUNCTION OF VOIIME OF ADVANACFMFNTS
RATING=1800
PAY GRADF \(=6\)
\(y F A R=1976\)
o: ACTUAL \(\nabla: R F G R E S S I O N\)
*: GAMMA DIST.
\(F: F A S T\)
MEAN LOS OF ADVANCFMENTS
10.8


MEAN IIOS AS A FUNCTION OF VOLIME OF ADVANAGEMENTS
RATING=1800
PAY GRADF \(=7\)
\(Y F . A R=1976\)
○: ACTUAL
\(\nabla:\) RFGRFSSION
*: GAMMA DIST.
\(F: F A S T\)

MFAN LOS OF ADVANCEMFNTS
15.00


MEAN LOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS
RATING \(=1800\)
PAY GRADF = 8
\(y E A R=1976\)
०: AGTUAL
\(\nabla: R F G R E S S I O N\)
*: GAMMA DIST.
\(F: F A S T\)

MEAN IOS OF ADVANCEMENTS


MFAN IIOS AS A FUNCTION OF VOLUMF OF ADVANACEMFNTS
\(\operatorname{RATING}=1800\)
PAY GRADE \(=9\)
\(Y E A R=1.976\)

O: ACTUAL \(\quad\) :REGRFSSION *: GAMMA DIST. F:FAS T


MFAN IOS AS A FUNCTION OF VOLUMF OF ADVANAGEMENTS
RATING \(=0\)
PAY GRADF \(=4\)
\(y F A R=1976\)

○: AGTUAI \(\quad\) :REGRESSION *: GAMMA DIST. F: FAST
MEAN LOS OF ADVANCEMENTS


MEAN LOS AS A FUNCTION OF VOIUME OF advanacements
RATING \(=0 \quad\) PAY GRADE \(=5 \quad\) YFAR \(=1976\)
○: ACTUAL \(\quad\) :REGRESSION *: GAMMA DIST. F: FAS T
MEAN LOS OF ADVANGEMENTS 4.50 -


MEAN IOS AS A FUNCTION OF VOLUME OF ADVANAGEMENTS
\(\operatorname{RATING}=0\)
PAY GRADF \(=6\)
\(Y F A R=1976\)

O: ACTUAL \(\quad\) :REGRESSION *: GAMMA DIST. F:FA S T
MEAN IOS OF ADVANCEMENTS
9.45


APPENDIX F (cont'd)

MEAN LIOS AS A FUNCTION OF VOLUME OF ADVANAGFMENTS RATING \(=0 \quad\) PAY GRADF \(=7 \quad Y\) FAR \(=1976\)

○: ACTUAL \(\nabla:\) REGRESSION *: GAMMA DIST. F:FAS T


MFAN IOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS RATING \(=0 \quad\) PAY GRADE \(=8 \quad\) YEAR \(=1976\)

○: ACTUAL \(\quad\) :REGRESSION *: GAMMA DIST。 F:FAST MEAN LOS OF ADVANCEMENTS 18.00



\title{
MEAN LOS AS A FUNCTION OF VOLUME OF ADVANACEMENTS
}
RATING \(=0\)
PAY GRADE \(=9\)
\(y E A R=1976\)

○: ACTUAL \(\quad\) :REGRESSION *: GAMMA DIST. F: FAS T
MEAN LOS OF ADVANCEMENTS

mean los as a function of volume of advancempints
RATING \(=300 \quad\) PAY \(G R A D E=4\)
MEAN LOS OF ADVANCEMENTS
2.295
2.2.05:-


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH: Fy VOLume adV mean loos inv mean los
\(\begin{array}{llll}\text { * } 1976 & 1204 & 2.24 & 1.60\end{array}\)
\(\begin{array}{llll}0 & 1974 & 1257 & 1.94\end{array}\)
\(\begin{array}{llll}\nabla 1969 & 3858 & 1.89 & 1.54\end{array}\)

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCFMENTS RATING \(=300\)

PAY \(G R A D E=5\)


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
\begin{tabular}{rrrr}
\(F Y\) & VOLUMF & ADV MFAN LOS & INV MEAN LOS \\
\(* 1976\) & 652 & 3.65 & 3.37 \\
01969 & 1537 & 3.07 & 2.61 \\
\(\nabla 1966\) & 938 & 3.56 & 4.16
\end{tabular}

\section*{mean los as a function of vorilme of advancements}
RATING=300
PAY GRADF \(=6\)

MEAN LOS OF ADVANCEMENTS






*






FY'S WHOSE INVENTORY LOS DISTRIRUTIONS ARE USED IN GRAPH: FY VOLUME ADV MEAN LOS INV MEAN IOSS
\begin{tabular}{llll}
\(\star 1976\) & 182 & 7.85 & 7.26 \\
0 & 1972 & 146 & 8.04 \\
\hline & 1966 & 7.22 & 5.89
\end{tabular}
```

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMFNTS
RATING=300
PAY GRADE=7

```

MEAN LOS OF ADVANCEMENTS


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
FY VOLUME ADV MFAN LOS INV MEAN LOS
\begin{tabular}{rrrr}
\(* 1976\) & 113 & 14.44 & 12.40 \\
0 & 1966 & 39 & 11.05 \\
0 & 1974 & 150 & 14.41
\end{tabular}

\title{
MEAN IIOS AS A EUNCTION OF VOLUME OF ADVANCEMENTS RATING=300 PAY GRADF=8
}


FY'S WHOSE INVFNTORY LOS DISTRIRUTIONS ARE USER IN GRAPH:
FY VOIUME ADV MEAN I,OS INV MEAN IOSS
\begin{tabular}{llll}
\(* 1976\) & 19 & 16.37 & 17.18 \\
0 & 1969 & 56 & 15.75 \\
\(\nabla 1976\) & 19 & 16.37 & 14.96 \\
\hline
\end{tabular}

MEAN IOS AS A FUNCTION OF VOIUMF OF ADVANCFMFNTS RATING=300 PAY GRADE =9

MEAN LIOS OF ADVANCEMENTS
18.3


0

0
0

0

0






 \(1--\frac{1}{36}\) VOLUME OF ADVANCEMENTS

FY'S WHOSE INVENTORY LOS DISTRIRUTIONS ARF USED IN GRAPH:
FY VOIUME ADV MEAN LOS INV MEAN IIOS
\begin{tabular}{llll}
\(* 1976\) & 6 & 18.50 & 18.95 \\
0 & 1970 & 8 & 17.00 \\
\(\nabla 1976\) & 6 & 18.50 & 17.67 \\
\hline
\end{tabular}
```

MEAN LOS AS A function of volume of adVancements
RATING=1500 PAY GRADE=4

```
MEAN LOS OF ADVANCEMENTS
    2.88

    \(2.40 \mid-\infty \quad *\)


                                    VOIUME OF ADVANCEMENTS

FY'S WHOSE INVENTORY LOS DISTRIRUTIONS ARE USED IN GRAPH:
FY VOIUME ADV MEAN LOS INV MEAN LIOS
\begin{tabular}{llll}
\(* 1976\) & 2247 & 2.28 & 1.73 \\
0 & 1970 & 4701 & 1.71 \\
\(\nabla 1974\) & 2157 & 2.18 & 1.33 \\
\hline
\end{tabular}

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS
\(R A T I N G=1500\)
PAY GRADE \(=5\)


\section*{MEAN LOS AS A FUNCTION OF VOLUMF OF ADVANCEMENTS \\ RATING \(=1500\) \\ PAY GRADE \(=6\)}

MEAN LOS OF ADVANCEMENTS

12.15

\(10.35:-\)

7.651 \(-1-\frac{1}{32} 0^{1}---1\)

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS
RATING \(=1500\)
PAY GRADE \(=7\)

MEAN LOS OF ADVANCEMENTS



FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARF USED IN GRAPH:
FY
* 1976
- 1966
\(\nabla 1974\)
VOIUME
216
316
200
14.36
11.91
14.98
14.71
11.19
13.42

\section*{MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS RATING \(=1500\) \\ PAY GRADF \(=8\)}

MFIAN LIOS OF ADVANCFMENTS


0

\(1--\frac{1}{96}---1\) \(\left.\right|_{-\frac{-1}{128}}\left|---\frac{1}{160}\right|---\mid\)
VOIUME OF ADVANCFMFNTS
FY'S WHOSE INVENTORY LOS DISTRIRUTIONS ARF USFD IN GRAPH:
FY VOLUME ADV MFIAN LIOS INV MFIAN IOOS
\begin{tabular}{rrrrr}
\(*\) & 1976 & 60 & 16.75 & 17.83 \\
0 & 1967 & 162 & 14.23 & 15.93 \\
\(\nabla 1974\) & 111 & 16.91 & 16.96
\end{tabular}
mean los as a function of volume of advancements

RATING \(=1500\)
MEAN LOS OF ADVANCEMENTS


\(\nabla\)
\(\nabla\)


00000
\(0 \quad 0\)

9.6


 \(-300\)

 \(1-2-1\)
 VOLUME OF ADVANCEMENTS

FY's WHOSE INVENTORY LOS DISTRIBUTIONS ARF USED IN GRAPH:
FY VOLUME,
* 1976
- 1966

216
316
200
INV MEAN IIOS
- 1974
14.36
11.91
14.98
14.71
11.19
13.42

\title{
MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS RATING \(=1500\) \\ PAY GRADE=8
}

MEAN I,OS OF ADVANCEMENTS


FY'S WHOSE INVENTORY LOS DISTRIRUTIONS ARE USED IN GRAPH:
FY VOLUME ADV MEAN LIOS INV MEAN I,OS
* 1976016.7517 .83
\(\begin{array}{llll}01967 & 162 & 14.23 & 15.93\end{array}\)
\(\begin{array}{llll}\nabla 1974 & 111 & 16.91 & 16.96\end{array}\)
```

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS
RATING=1500 PAY GRADE=9

```
MEAN LOS OF ADVANCEMENTS
    22.5
    22.
    21.61
        -
    20.71
        1-
    19.81
        --
    \(\begin{array}{ll}1- \\ 1 \\ 1 & \end{array}\)


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH: FY VOLUME ADV MEAN LOS INV MEAN LOS
\begin{tabular}{llll}
\(* 1976\) & 21 & 18.90 & 19.52 \\
\(\circ 1970\) & 17 & 17.47 & 17.78 \\
\(\nabla 1968\) & 28 & 19.07 & 17.72
\end{tabular}

MFAN IIOS AS A FUNCTJON OF VOLUMF OF ADVANCEMENTS RATING=1800

PAY GRADF \(=4\)


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USFD IN GRAPH: FY VOIUMF ADV MFAN LOS INV MEAN LOS
\begin{tabular}{rrrr}
\(* 1976\) & 821 & 2.25 & 1.59 \\
0 & 1975 & 1006 & 1.94 \\
0 & 1968 & 2.34 & 1.48 \\
\hline
\end{tabular}
mean los as a functuon of volume of advancements
\[
\text { RATING }=1800
\]

PAY GRADF \(=5\)


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
FY VOIUME ADV MEAN LOS INV MFAN LIOS
\begin{tabular}{llll}
\(* 1976\) & 704 & 3.77 & 3.45 \\
\(\circ\) & 1970 & 693 & 3.43 \\
\(\nabla 1967\) & 547 & 4.88 & 3.41 \\
& &
\end{tabular}

MEAN LOS AS A FUNCTION OF VOIUME OF ADVANCFMENTS
RATING \(=1800\)
PAY GRADF \(=6\)
MEAN IIOS OF ADVANCFMENTS
12.0


FY'S WHOSE INVENTORY LOS DISTRJBUTIONS ARE USED IN GRAPH:
FY VOLUME ADV MEAN IOOS INV MEAN IOS
\begin{tabular}{lrrr}
\(*\) & 1976 & 314 & 8.93 \\
0 & 1974 & 76 & 9.51 \\
\(\nabla\) & 1967 & 225 & 9.89
\end{tabular}
```

MFAN LIOS AS A FUNCTTON OF VOLUMF OF ADVANCEMENTS
RATING=1800 PAY GRADF=7

```

MFAN LOS OF ADVANGFMFNTS




0


FY'S WHOSE INVFNTORY LOS DISTRIBUTIONS ARF USFD IN GRAPH:
FY VOIUME ADV MEAN LOS INV MEAN LOS
\begin{tabular}{rrrr}
\(* 1976\) & 181 & 14.10 & 13.91 \\
0 & 1966 & 78 & 13.82 \\
\(\nabla 1976\) & 181 & 14.10 & 12.65 \\
\hline
\end{tabular}

MEAN LOS AS A FUNCTION OF VOIUME OF ADVANCEMENTS
\(\operatorname{RATING}=1800\)
PAY GRADE=8


FY's WHOSF INVENTORY IOS DISTRIBUTIONS ARF USED IN GRAPH: FY VOLUME ADV MFAN LOS INV MEAN LIOS
\begin{tabular}{llll}
\(\star 1976\) & 31 & 17.29 & 18.22 \\
0 & 1969 & 65 & 18.20 \\
\(\nabla 1975\) & 35 & 17.00 & 15.94
\end{tabular}

MEAN LOS AS A FUNGTION OF VOIIIME OF ADVANCFMENTS

RATING \(=1800\)
MEAN IOOS OF ADVANCFMENTS 23.25
\(\left.20.25\right|_{1} \quad \begin{gathered}0 \\ *\end{gathered}\)




FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARF USED IN GRAPH:
FY VOLUMF ADV MEAN LOS INV MEAN IIOS
* 1976
- 1966
\(\nabla 1971\)
13
2.3
19.08
19.72
- 1971
28
18.78
19.09
\(19.79 \quad 19.35\)
```

MEAN LOS AS A FUNCTION OF VOIUME OF ADVANCEMENTS
RATING $=0 \quad$ PAY GRADF $=4$

```
MEAN LOS OF ADVANCEMENTS
    2.76


*


\(\circ\)

0

○
 VOLIIME OF ADVANCEMENTS

FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USFD IN GRAPH:
Fy VOLUME ADV MEAN LOS INV MFAN LOS
\begin{tabular}{llll}
\(* 1976\) & 49388 & 2.53 & 1.82 \\
0 & 1967 & 94973 & 1.74 \\
\hline 1975 & 45183 & 2.33 & 1.76 \\
\hline
\end{tabular}
mean los as a function of volume of advancements
RATING \(=0\)
PAY GRADE \(=5\)


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
FY VOLUME ADV MEAN LOS INV MEAN LOS
\begin{tabular}{llll}
\(* 1976\) & 27166 & 4.52 & 3.70 \\
01969 & 55337 & 3.34 & 3.13 \\
\(\nabla 1966\) & 36919 & 4.40 & 5.16
\end{tabular}

\section*{MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMFNTS}

\section*{RATING=0}
\(P A Y G R A D E=6\)
MFAN LOS OF ADVANCFMFNTS


FY'S WHOSF INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH: FY VOLUME ADV MEAN LOS INV MEAN IOOS
\begin{tabular}{llll}
\(*\) & 1976 & 12099 & 8.94 \\
0 & 1969 & 19055 & 9.14 \\
\(\nabla 1966\) & 17433 & 9.08 & 6.65 \\
\hline
\end{tabular}
```

MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCEMENTS
$R A T I N G=0$
PAY GRADF=7

```
    MEAN LOS OF ADVANCEMENTS
    15.3:-
                \(\nabla\)




0

0

FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
FY VOLUME ADV MEAN LOS INV MEAN I,OS
\begin{tabular}{llll}
\(*\) & 1976 & 6790 & 14.31 \\
0 & 1969 & 9105 & 13.88 \\
\(\nabla 1975\) & 4941 & 14.22 & 11.169 \\
\hline
\end{tabular}
mean los as a function of volume of advancements
\(\operatorname{RATING}=0\)
PAY GRADE=8


FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARF USED IN GRAPH: FY VOIUME ADV MEAN IIOS INV MEAN IIOS
\begin{tabular}{llll}
\(\star\) & 1976 & 1730 & 16.92 \\
0 & 1970 & 2028 & 16.73 \\
\hline & 1966 & 15.93 \\
\hline
\end{tabular}

\section*{MEAN LOS AS A FUNCTION OF VOLUME OF ADVANCFMENTS}

RATING=0

MFAN LOS OF ADVANCEMENTS

\(18.3:\)

 \(1--1\)
 - - - - 1
 \(-1\) VOLUME OF ADVANCEMFNTS

FY'S WHOSE INVENTORY LOS DISTRIBUTIONS ARE USED IN GRAPH:
FY VOLUME
ADV MEAN LOS
INV MEAN I.OS
* 1976
- 1975
- 1967

562
603
981
18.82
18.52
19.35
19.42
19.20
20.39

\section*{Initial Distribution List}
Copies
Defense Documentation Center ..... 2
Cameron Station
Alexandria, Virginia ..... 22314
Library (Code 0212) ..... 2
Naval Postgraduate School
Monterey, California ..... 93940
Library (Code 55) ..... 2
Naval Postgraduate School
Monterey, California 93940
Dean of Research (Code 012) ..... 1
Naval Postgraduate School
Monterey, California 93940
Provost (Code 01) ..... 1
Naval Postgraduate School
Monterey, California 93940
Professor R. W. Butterworth ..... 3Code 55Naval Postgraduate School
Monterey, California 93940
Professor D. P. Gaver ..... 1Code 55Naval Postgraduate SchoolMonterey, California 93940
Professor P. R. Milch ..... 25
Code 55
Naval Postgraduate School
Monterey, California ..... 93940
Professor M. G. Sovereign, Chairman ..... 1Department of Operations Research
Code ..... 55
Naval Postgraduate School
Monterey, California 93940Naval Personnel Research and Development CenterAttn: Mr. Robert Boller1
Attn: Mr. Joe Silverman ..... 3
San Diego, California 92152Bureau of Naval Personnel
Attn: Dr. Richard Elster, Pers OR ..... 1
Attn: Mr. Robert Lehto, Pers 2X ..... 4Washington, D.C. 20370

\section*{Distribution List (cont'd)}Professor Kneale T. Marshall1
Code 55MtNaval Postgraduate SchoolMonterey, California 93940
Dean David A. Schrady ..... 1
Code 013
Naval Postgraduate School
Monterey, California 93940
Dr. Thomas Varley ..... 1Office of Naval ResearchCode 434
Arlington, Virginia ..... 22217
\[
27 \geqslant 00
\]

98079
\[
\cup 177738
\]

Naval Postgraduate School. NPS-55Mh76121.
16 APR 81
19 MAR 82
27300
ค ก 079

DUDLEY KNOX LIBRARY - RESEARCH REPORTS
```


[^0]: 0.1763
 0.2285
 0.2433
 0.2317
 0.2306
 0.2224
 0.2162
 0.1964
 0.2045
 0.1894

