
HMHMMH8

I BIB
IHjHovII IwnSsflBHHBInH

mm

BnU

HMiiuiiiiiiHH
I

—Hi
rl1n»¥v HDQflHllIHIUSl HSBMU&BbuuIHHBO^B tSB

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

Digitized by the Internet Archive

in 2013

http://archive.org/details/etssystemusersgu523oxle

5/o. r</-

yiO.6^2) UIUCDCS-R-T2-523

May, 1972

ETS SYSTEM USEE'S GUIDE

by

Donald Wayne Oxley Wf&mtWk^. 'che

HH. J 1972

UIUCDCS-K-72-523

ETS SYSTEM USER'S GUIDE

by

Donald Wayne Oxley

May, 1972

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

*This work was supported in part by the National Science
Foundation under Grant No. US NSF GJ-812.

£~IO.Zf

Warning to the Unwary

This manual is intended for use by students or staff faced

with the problem of writing packages which must be run under the

Educational Timesharing System - ETS. This manual assumes a

reasonable idea of ETS and a good familiarity with the PAL assembly

language. It is designed more as a reference manual than guide to ETS.

Any suggestions for improvement will be sincerely appreciated.

IV

Table of Contents

Page

I. Introduction 1

II. Basic Job Structure 2

A. Dynamic Relocatability 2

B

.

Minimum Stack 2

C. Control and Communication Structure 2

III. Code Description 12

A. Dynamic Relocatability 12

B. Register Relocatability 12

C. COMWRD and RELPTR 15

D. Stack Conventions 15

E. Processor Status Word Manipulation 19

F. System Buffer Allocation 21

G

.

Anchor Mode 21

H. Named Code 23

IV. File Handling 2k

A. File Operation 2k

B. File Request Queue Block (FIRQB) 2k

C

.

Available File Operations 2k

D

.

Error Return 33

V . Input-Output 3^

A. General Principles 3I4.

B. I/O to a Serial Device 36

Page

C. File I/O 1+2

D. Errors 1+5

VI . Special EMT Functions 1+7

A. .AUCHR 1+7

B. .BREAK 1+7

C . . COFE 1+8

D. .BAR and .BAW ^8

E . .EXIT 1+9

F. .HOIST 1+9

G. .LOCK and .UNLCK 1+9

H. .NAME 51

I . . STALL 51

J. .TTAPE and .TTRST 51

K. .WAIT 53

L. .FIND 53

VII. Use of Interrupts and Special Functions 55

A. Interrupts 55

B. CNTL V 55

C. CNTL Q 55

VIII . System Service Routines 56

A. SETBBB 56

B. OCTOUT 56

C . SETFQ, 58

vi

Page

D. SIMESS 58

E . ENDTST 59

F. OCTIN 59

G. NAMEIN 60

H. BUFFER 60

I. CLRBUF 61

VX1

List of Figures

Figure Page

II . 1 Job Data Block 3

11.

2

File Control Block 6

11.

3

Teletype Device Data Block 7

II. If FIP or I/O Error Codes 10

IV. 1 FIRQB Structure 25

IV.

2

The BNF Definition of a Switch List 31

IV.

3

The Buffer Returned on Parsing a Switch List 32

V.l Transfer Control Block Structure 35

V.2 XRB Parameters for Using the Card Reader 38

V.3 Line Printer Character Set kO

VI.

1

Suggested Stall Times for Various Devices 52

Vlll

List of Examples

Example Page

11.

1

A Routine to Count the Number of Active Files/Devices 5

11.

2

Routine to Extract Device Type and Branch to Special Routine.... 8

111.1 Marking Registers Which May Contain Absolute Pointers Ik

111.

2

Establishing and Referencing Absolute Locations using RELPTR.... l6

111.

3

Construction of a Disptach Table Containing Absolute Addresses
at Base of Stack 18

III.ll- Setting Anchor Mode 22

IV. 1 Routine to Pack a File String into a FIRQB and Open the
File on Channel 2 26

V. 1 A Routine to Read a String from the Teletype k3

V.2 A Routine to Output a Message on the Teletype kk

V.3 Finding and Reading a Particular Disk Block k6

VI. 1 Use of Direct Access Read - DAR 50

VI.

2

Setting a Wait Condition 5k

VIII. 1 Accepting a File Name and Channel From the Teletype and
Trying to Open it 57

ETS System User's Guide

I. Introduction

A. Welcome to the ETS System User's group. In this paper we hope you

will find anything you need to know about programming under ETS.

However, before we begin to explain the art of programming for ETS

we would like to bring up a few items of ETS' philosophy.

1. ETS is designed for use by students who are not acquainted with

the use of a computer. Consequently, we must assume that every

student input is possibly in error and check it accordingly.

2. Again because we assume that students know nothing about the

system, we want to keep the required responses very short and

as clear as possible.

3. In the interest of compatibility with DOS we will use names and

input responses as much as possible like those used by DOS.

B. The system code which you write for ETS will be run without the use

of an interpreter. Since the PDP-11 has no protection it is necessary

that all system code be bug free .

C. Unlike operating systems on machines which have hardware memory

protection and hardware relocation, ETS is a "handshake" monitor

which runs in conjunction with the system programs. This means

that system programs must to some extent be conscious of the ETS

monitor and its needs. Similarly, the ETS monitor will provide

services which will make it easier for the system program to run

without the presence of hardware memory relocation.

II. Basic Job Structure

A. Dynamic Relocatability

All jobs in ETS are considered as blocks of dynamically relocatable

code (see section III. A) with an addressing space, A, < A < lf000on*" ~~ o

where n is the number of blocks of core assigned to the job.

B. Minimum Stack

All jobs will have a minimum stack size of ^00q bytes beginning at

user location (see section III.B).

C. Control and Communication Structure

In line with the "handshake" principle of operation, ETS permits jobs

to examine the control variables which it maintains, in order to know

the state of the job at any given time. While the user may examine

the control variables at will, he must not change them. ETS also

provides some communication variables through which the user may

communicate his wishes to ETS and vice versa. The first seven items

in the following list are all "read only" control variables. The

last three are communication variables.

1. JOB is a variable of length 1 byte which contains a user's job

index or job number (note that all job numbers in ETS are even

numbers)

.

2. JOBDA is a one word pointer which points to the beginning of a

l6 word job control block called a job data block (JDB). The

job data block is the basic structure which ETS uses to define

the state of a user job at any given time (see figure II. l).

3- The first word in the JDB points to the input-output control

block (lOB). The IOB is an eight word block which contains

pointers to control blocks for each of the files or devices

currently in use by a given user. Each of the eight possible

pointers is referred to as a channel. Any channel which contains

JDIOB - Pointer to i/o block

JDFLG - Job status flags
2

JDIOST - i/O error status
k

JDSP - Relative user stack
6

JDCPU - CPU time used
10

JDKCT - KILO-COEE-ticks used
12

JDDEV - Device time used
11+

JDSIZ1 -

Next size
JJDSIZO

in K 1 Present size in K
16

JDUFD - Start block of job's UFD
20

JDPPN - Proj-Prog number
22

JDSGNW - Unused
2k

JDSGMX - Unused
26

JDUFLG - User comm. flags
30

JDNAME - User Prog Identifier
32

JDANCR -
Tie User Job to
Specific Core Location

3h

Unus ed
36

Figure II. 1 Job Data Block

k

a non-zero pointer is currently in use; thus, a user may check

for open files or devices by interrogating the channels and checking

for non-zero entries (see example II. l). Note that all channels

are referred to in ETS as channel indexes which are even numbers

and may be used as an index. Thus, channel number one has a

channel index of two.

k. fcb/ddb

Each open file is controlled by a 16 word block called a file

control block (FCB - see figure II. 2). A file control block is

pointed to by an entry in the IOB and contains sufficient information

to allow the system to transfer data to/from a file without excessive

disk accesses. Associated with each device is a device data block

(DDB - see figure II. 3) which allows the system to control the

physical device. DDB's are created at system initialization and

remain uniquely associated with the device from then on. An FCB

is created only when a file is opened and is destroyed again when

the file is closed. There may be more than one file control block

for a given file assuming that more than one user has opened a

particular file. However, there can be only one device data block

for a device at any given time. The first byte of an FCB/DDB

contains a handler index which may be examined to find the device

associated with the block (see example II. 2).

5. The first word of the IOB always points to the DDB for the user's

job teletype. Thus, channel is designed to be the control

teletype for the user job. Note that channel can neither be

opened or closed by the user.

JOBDA = XXX ; System variable containing pointer
;to job data block

BEGIN:

Bl:

B2

MOV @#JOBDA, RO

MOV (RO),RO

CLR Rl
TST (R0) +

BEQ B2

INC Rl
BIT #17, RO
BNE Bl

;Pick up pointer to JDB

—

;use absolute addressing to

; system variables
; Point to IOB—address is multiple of ^Oq

;Is this channel open?
;No, don't count it

;Yes, count it
;Have we checked 8 channels?
;No, keep trying

Example II. 1 A Routine to Count the Number of Active Files/Devices

FCSTS FCTYPE

FCASN FCBC
I

FCSIZ

FCNLB

FCFLI

FCFNB

FCPW

FCETC

FCWND

FCSEG1

FCSEG2

FCSEG3

FCSEG^

FCSEG5

FCSEG6

FCSEG7

Control Information

Current Retrieval Window

FCTYPE
FCSTS

FCBC

FCASN = 3
FCSIZ = k

FCNLB = 6

FCFLI = 10

FCPNB = 12

FCPW = Ik

FCETC = 16

FCWND = 20
FCSEG1 = 22

FCSEGi = 20+2i

i/O handler index - disk =

Status bits for file
Bit 1=1 User is not owner of file
Bit 2=1 User may not read file
Bit 3=1 User may not write file
Block count for current transfer
(He can only get 1 block at a time
unless he does a direct access read/write)
Location of file name block in UFD (word offset)

of segments in file
Logical block number of next block to read/write
First logical block in window
Disk physical segment containing name block
Disk physical segment containing current window
Miscellaneous word. Users doing a direct
read/write put current memory address here
UFD address of next retrieval window
Physical segment corresponding to FCFLI
Physical segment corresponding to FCFLI+i

Figure II. 2 File Control Block

7

CD

2

6

10

12

14

Teletype
DECtape
Line Printer
Paper Tape Reader
Paper Tape Punch
Card Reader

Handler Index

Status and ' Handler
Access Control Index

2
Owner Job

Index

k Time Assigned or Inited

6
Carriage Carriage*
Vertical Horizontal
Position , Position

10
Chain Buffer *
Fill Pointer-Input

12
Chain Buffer
Fill Count -Input

Ik
Chain Buffer *

Empty Pointer-Input

16
Chain Buffer
Empty Count -Input

20 Max Buffer Count

22
Chain Buffer
Fill Pointer-Output

2k
Chain Buffer
Fill Count -Output

26
Chain Buffer
Empty Pointer-Output

30-
Chain Buffer
Empty Count-Output

32'
*

Max Buffer Count

3k;

36 Init CNT for Device

o
o
t-3

I

CD

-P
•H

CJ

o

0)

i

40
O
a

•H
II

CD <h

l_

76543210
Status and Access Control

Byte

Indicates Device Dependent Assignment

Figure II. 3 Teletype Device Data Block

CHNNDX:

JOBDA xxx
.WORD x

; Pointer to JDB
; Channel index set by user

BEGIN: MOV @#JOBDA, RO
MOV (RO),RO
ADD CRTODX, RO
MOVB @(RO)+,RO

ADD RO, PC-

BR DISK
BR TTY
BR DTA
BR LPT
BR PTR
BR FTP
BR CDR

Point to JDB
Point to IOB
Point to channel desired
Pick up handler index-

-

use sign extension
Branch to desired handler
=> disk (was an FCB)

2 => teletype
k => DECtape
6 => line printer
10 => paper tape reader
12 => paper tape punch
Ik => card reader

Example II.

2

Routine to Extract Device Type
and Branch to Special Routine

6. jbstat/jbwait

In order to implement timesharing it is not sufficient to be able

to start, stop and switch jobs. Jobs will often generate conditions

which require them to wait for some later event (e.g., completion of

a line of TTY input). It is very inefficient to keep restarting a

job to allow it to check for the occurrence of a given event. A

better solution is to set some type of flag and let the system

watch for the event, then wake the job when the event has occurred.

In ETS there are a number of specific events on which a job might

wait (in particular, each device has a unique event associated with

it as does the file processor and the timer service). When a job

is created it is assigned 2 status words (JBSTAT/JBWAIT) to indicate

blockages that may occur. When a job is running both JBSTAT=1 and

JBWAIT=1. When a job requests a service for which it must be blocked,

JBWAIT is cleared and the bit associated with that event is set by

the system event routine in JBSTAT. The condition that a job be able

to run is then JBSTAT * JBWAIT ^ 0. The system then can check

JBSTAT ^ JBWAIT and schedule a job to run only when it is not blocked.

Note that a job will then run if any one of a number of blockages

are relieved; it will not wait until they are all relieved.

7« IOSTS is a one word pointer to a job's i/O status which is kept in

the second word in the job data block. This word contains the result

of the last i/O or file operation performed by the job (see figure

II. k for a list of error codes).

8. REGREL identifies six bytes which provide the register relocation

controls (see section III.B).

10

ERROR NAME ERROR NUMBER

BADCMD 1

BADDIR 2

BADNAM k

NOTFND 6

INUSE 10

NOROOM 12

NOSUCH Ik

NOTCLS 16

NOTAVL 20

NOTOFN 22

PRVIOL 2k

EOF 26

ABORT 30

DATERR 32

KNGDEV 3k

NOLOAD 35

CKSMER 36

OUTRNG 37

MEANING

Invalid command

Directory screwed up

Badly formed file name

File not found

File of same name is in use

Directory is full or disk is full

File or UFD does not exist

Can't open already open channel

Device not available to user

Trying to operate on unopened channel

Protection violation

End of file on read/write

Operation aborted

Data error on device

Hung device for job

No load address specified on object file

Checksum error in loader

Address requested out of user area

Figure II. k FIP or i/O Error Codes

11

9« COMWRD identifies four words which are reserved for communi cations

between the system and the user job. These words presently have

no designated meaning in the system and may be used at will by the

user job.

10. USRFLG is a communication word in which the system sets flags to

indicate that the user has typed a control character which should

be meaningful to the user job (see section VII. B)

.

12

III. Code Description

A. Dynamic Relocatability

Since the PDP-11 has no relocation hardware and ETS intends to be

a timesharing monitor, the code in ETS must be relocatable. This

means that ETS must be able to stop the execution of the user job

at any time in order to swap it out to allow another process to

run. When ETS determines a job is to be swapped in again from disk,

it does not necessarily return the job to the same position in

memory. A job does, however, always remain in a single contiguous

block so relative distances within the job itself do not change.

1. Dynamic relocatability requires the use of strictly relative

addressing modes with the user's program variables.

2. When referencing system variables such as REGREL or USRFLG the

user must use strictly absolute addressing (i.e., INCB @#REGREL)

.

3» With the exceptions noted here, the user must not develop

absolute addresses pointing anywhere in the user area.

k. ETS does provide limited ability to develop absolute pointers

into the user area. The user job may inform ETS of its intentions

to place an absolute address in a register or it may place

absolute addresses on the stack or it may place them in reserved

pointers in system area (RELPTR).

B. Register Relocatability

1. When a user wishes to place an absolute pointer in a register he

may tell ETS of his intentions by putting a non-zero quantity in

the register relocation byte (REGREL) corresponding to that

register. Six REGREL bytes are assigned to the registers RO to

13

R5 in order beginning with RO. Any non-zero quantity in a

register relocation byte indicates that a user may have absolute

pointers in the corresponding register (see example III.l).

2. Conditional Relocation

When ETS finds a non-zero REGREL byte, it assumes that the

corresponding register may contain an absolute pointer into the

user area. However, should ETS need to relocate that register,

it will check the contents of the register, to see if it actually

contains a value which would be a valid pointer into user area.

If it does not contain a possible absolute address for the user

(a value which lies between 30000o and 60000n), ETS will not

relocate the register.

3« Conditional relocation allows the user to conveniently construct

absolute pointers in registers without having critical segments

of code (code which must not be interrupted during execution).

The following example is not a critical section because of

conditional relocation:

INCB @^REGREL+1 ;Mark Rl as absolute

MOV #K-.-6, Rl ;Load offset to desired variable

ADD PC, Rl ;Make it an absolute pointer

If the job is interrupted and swapped between the MOV and ADD

instructions, it will try to relocate Rl but will not find a

value in Rl which does not point to user core (X is a local variable)

and will not change it. Without conditional relocation, the

system would modify Rl which, at the time of the interrupt,

contained a relative offset rather than an absolute pointer.

11+

REGREL - xxx ;Address of register relocation
;Byte zero

INCB @t^IEGREL+3 ;Register 3 is to be relocated
INCB @^REGREL+5 ;Register 5 is to be relocated

Example III.l Marking Registers Which May Contain
Absolute Pointers

15

k-. The stack in ETS is a conditionally relocated area (see III.D),

and consequently the user must be careful about saving registers

on the stack. In general, registers which are relocatable may

be placed on the stack and registers which contain arbitrary

data should not be pushed on the stack.

C. COMWRD and RELPTR

1. There are four reserved words, beginning at COMWRD, in the system

area which have been set aside as communication words between the

system and the user. None of these four words are presently in

use; hence, the user may store anything he wishes in this area.

2. There is an additional communication word by the name of USRFLG

whose usage has already been defined (see section II.C.10).

3. There are seven words beginning at RELPTR which are kept as

automatically relocated user offsets. Each of these seven words

is changed by an amount equal to the distance which a user is

moved anytime the user is swapped. Thus, the user may construct

an offset to an absolute pointer which does not point directly

into user core and still have the system relocate it each time

he is moved. When a user job begins execution each of these

seven "relative pointers" will point absolutely to the first

location in the user area. Therefore, the user does not need to

construct a program counter relative offset in these pointers.

He may simply add the offset from the beginning of his

own area to the present contents of the pointer and construct

his absolute pointer (see example III. 2).

D. Stack Conventions

1. The user stack is also treated as a conditionally relocated area.

Each time a user's job is swapped out and brought in at a different

16

RELPTR = XXX
PTRONE RELPTR
PTRTWO RELPTR+2

;Address of relocating pointers

ADD #XRB,@#PTRONE ; PTRONE now contains an absolute
jpointer to XRB - the system initially loads

; PTRONE "with the user job origin

LNCB @#REGREL+1 ;Mark Rl as absolute
MOV @#PTR0NE,R1 ;Pick up pointer in Rl

Example III. 2 Establishing and Referencing Absolute
Locations using RELPTR

IT

location the system examines all words "between the current top of

stack and the stack base, and relocates any of those which point

absolutely into the user area. Note that the JSR instruction and

the processor trap instructions also cause the current value of

the program counter to be pushed onto the stack. The trap

instructions also cause the processor status word to be pushed

onto the stack. Since the stack is a conditionally relocated

area the system will modify the program counter values when

necessary; however, the processor status word is not a possible

pointer into the user area and the system will not change it.

2. When a user gob begins execution it has the minimal stack size

of ^00n bytes. The user may increase this if need be, however,

he may not decrease it. When calculating the amount of stack

necessary for his job, the user should determine the maximum

number of bytes that he might need at any time and then add 200o
o

bytes to that for system use and for a protection buffer. Notice

that there is no form of protection for user stack overflow. Thus,

care must be taken to insure that no user stack overflows occur.

3. Should a user need to increase his stack size, he simply loads his

desired stack size into a system variable called STKBAS. (He cannot

just add an increment.) The user can use this facility should

he need to create a table of pointers into his user area. By

telling the system that he has increased his stack size but not

actually doing so, the user can create a table which will be

conditionally relocated. If he loads the absolute values of the

pointers he wants into this table, he has a table of relocated

values which may be used as a dispatch table (see example III. 3).

18

STKBAS = xxx
JOBORG = xxx
TBLSIZ = 16

;Address of user stack size variable
; System pointer to beginning of user job
;Our jump table will have 16 entries

MOV #TBLSIZ+TBLSIZ-t400,@#STKBAS
MOV #TBLSIZ, RO
ADD #1-01, @t^EGREL+2
MOV @#J0B0RG, R2
MOV R2, R3
ADD #100, R2

Bl: MOV Rj5, (R2) +

DEC RO
BGT Bl
ADD #^00, R3

ADD #3UB1, (B5)+
ADD $SUB2, (R3)+

Set our new "stack" size
Set up TBLSIZ entries
Mark R2 & R3 as absolute address regs,

Pick up start of our job

and replicate
Point just above stack base
Fill table with our own job origin
Count this entry
And get them all
Now use Rj5 to finish construction
of table
Abs. jump address to SUBl
Abs. jump address to SUB2

ADD #SUBl6 (R3)+ ;Abs. jump address to SUB16

Example III.

3

Construction of a Dispatch Table
Containing Absolute Addresses
at Base of Stack

19

km The user should be careful about using instructions of the form

JSR R5, X where R5 may not be a relocatable register since the

system pushes the contents of the register onto the stack. If R5

is an absolute piece of data which looks like a pointer into the

user area the system will change the data in R5 if the user is

swapped. A useful technique for the user who needs a stack which

may contain arbitrary data is to create a separate data stack

below the user's real stack and use another register such as R5

as a stack pointer. Note that R5 must be indicated as a relocatable

register. Also note that R5 does not behave exactly like SP in

doing byte operations in auto increment and auto decrement mode.

E. Processor Status Word Manipulation

1. In general the user should avoid modifying the processor priority.

However, he may examine and modify the condition codes in the

processor status word at will. There may be times when it is

necessary for the user to execute short sections of code without

interruption. This may be done by running at system priority

seven. The user may either set the priority to seven in the

processor status word himself or he may use system routines to

do so. The system provides two routines: IOF and ION to raise

the priority to seven and lower it to its original priority

respectively. These routines are called by JSR PC, @#IOF and

JSR PC, @#ION respectively. These two routines must be executed

as a pair and the user must take caution to avoid executing two

consecutive IOF calls. (This will cause the system to be locked

at priority seven.)

20

2. In general the user does not need to run at priority seven; however,

he may wish to execute sections of code without being swapped out.

He can do this by running at system priority three. This allows

the system to perform normal I/O but will not allow the system to

switch to another job. The user need not worry about informing

the system about absolute pointers which exist only during PR3

execution, as the user cannot be swapped.

a. Like the use of priority seven, the use of priority three

should be restricted to short segments of code. Normally 50

to 100 instructions or less.

b. Should the user need to execute large segments of code at

priority three, he must inform the system when it is alright

for him to be swapped. In general, if more than 1-2$ of a

user's code is to be executed at priority three he should

attempt to inform the system each time he returns to priority
'

that he is available for swapping. This is done by simply

executing an EMT .BREAK. If the system has another job

requesting the use of the CPU it will switch to that job; if

not, it will return immediately to the user job.

c. Even though the user does not intend to execute his code at

priority 3> he may cause the same effect if he does a great

deal of disk i/o. When the user executes a disk i/o transfer,

he is locked into his core. While the processor may switch

tasks if there is another runnable task which is core resident,

the job may not be swapped out. Consequently, programs doing

many disk transfers should execute an EMT .BREAK periodically

(~3-5 transfers) to allow the system to swap him out.

21

F. System Buffer Allocation

1. Some other operations require the use of buffers which remain in

core even though the user may he swapped out. For this purpose

the system maintains a pool of approximately 100 buffers which may

be allocated to the user for short periods of time. All system

buffers are 20n words in length and are allocated by calls to

the system buffer allocation routine (see section IV. H). All

buffers are allocated on 40n address boundaries.

2. When the system allocates a buffer to the user job, it loses all

record of that buffer and depends on the user to return it when

he has completed his work with it. Since it is possible for the

student to cause the user job to be killed by typing a CNTL C

(tC), users must be careful about the allocation and deallocation

of system buffers. Special care should be taken to see that user

jobs do not have system buffers allocated during I/O operations.

G. Anchor Mode

If for some reason it is impossible or impractical to write code

which is dynamically relocatable, a user may specify that his code be

run in 'Anchor Mode' which means that the system will swap him back

to the same place each time he is brought into core.

In order to run in Anchor Mode, the user must first execute an

EMT .ANCHR (see section VI.A) and then cause himself to be swapped out

so the system can position him (see example III.lj-).

When a user no longer requires that he be anchored he should

execute a .HOIST to release himself. Since the use of anchor mode

works quite a hardship on the system, it should be avoided whenever

possible.

22

;This routine will anchor a 2K program at 30000.
; Since the program may have already been loaded
; elsewhere it is necessary to force the program
;to be swapped to the proper location. This can
;be done by increasing the size of the program
;and then decreasing it again.

.ANCHR = lOlj-112

.CORE = 104056
HEGIN: MOV #30000, Rl

.ANCHR
MOV #2,R0
.CORE
MOV #3,R0
.CORE
MOV #2,R0
.CORE

;Anchor at 30000

>

;We should be at size two.

;Make sure we are.

;Now increase to size three
; forcing a swap.

;Now decrease to size
;two again.

Example III. h Anchoring a Program

23

H. Named Code

In order to allow the system to provide special assistance to

selected programs, it accepts a name for a program which it may use

to identify the type of job in progress. When a program begins

execution, it may execute an EMT .NAME (see section VI.). When

the program executes a .EXIT, the name will be removed. This facility

is useful when the system must service a user who may have terminated

execution. By checking the existence of the proper name, the system

can avoid damaging or unnecessarily servicing users.

It is necessary that any new names be unique among the names

known to the system. However, this is not a hardship since names

are useful only when special service routines are included in the

system and the names may be selected when the routines are written.

Currently only the name DTAD0=1 is in use and is reserved for

routines using DECtape service.

2k

IV. File Handling

A. File Operation

All operations which concern the handling of data which is stored on

the disk are file operations. In addition, ETS supports a number of

non-resident functions which are also treated as file operations

though they may actually have little or nothing to do with the filing

system. The ETS filing system consists of a core-resident and a

disk-resident portion. On disk are stored a number of special

functions which may be called into core when needed. All file

operations are carried out by allocating a system buffer, called a

FIRQB, and placing the number of the requested function as well as

any necessary parameters in this buffer. The user then places the

address of the buffer in F&- and executes an EMT CALFIP.

B. File Request Queue Block (FIRQB)

1. When performing file operations, the user must request a system

buffer and load it with the proper parameters (see figure IV. l).

This FIRQB requires the user's job number, FQJOB, and a function

code, FQFUN (the system provides a routine to allocate the buffer

and load these two words - see section IX. C). In addition, the

user must supply any special parameters relative to the process

he is using (see section IV.C). Generally, the system will return

the FIRQB to the user on completion of an operation. The user may

get any results which were returned in the FIRQB and should then

return the FIRQB to the system. See example IV. 1.

C. Available File Operations

1. EXTFQ is a routine to extend the length of a disk file. The user

loads in FQFIL the channel index of the file which he wishes

extended. In FQSIZ he supplies the number of 256-. _ word blocks

to extend the file. If the disk is full, or no disk blocks remain,

25

Purpose

Queue word for chaining requests

Job # issuing request (*2)

Function requested

Channel index

Error or message # requested from file

Size of file to be created or number
of segments to extend file

New protection code

Project -programmer number of UFD desired

FILENAME. EXT in RAD50

Project -programmer number of second UFD

FILENAME.EXT of second file

Number of absolute loader blocks loaded

Number of check sum errors encountered.

Offset from beginning of user area to
"relative 0" of file to be loaded

EAD50 device name

RAJJ50 device number

Length of string to be parsed

Absolute pointer to buffer containing
source string to be parsed—string is
in chained set of system buffers for
SWIFQ

(Note that FQJOB and FQFUN must always be supplied—all other parameters need to

be supplied when actually needed.

)

Figure IV. 1 FIRQB Structure

Name Value Length (bytes)

FQQQ 2

FQJOB 2 1

FQFUN 3 1

FQFIL k 1

FQERNO k 2

FQSIZ 5 1

FQPROT 5 1

FQPPN1 6 2

FQNAM1 10 6

FQPPN2 16 2

FQNAM2 20 6

FQBLCK 22 2

FQCKSM 2h 2

FQSTRT 26 2

FQDEV 30 2

FQDEVN 32 2

FQLEN 3h 2

FQPTR 36 2

BUFFER = k

GETSML = 200
RETSML =

FQJOB = 2

FQFUN = 3
FQFIL a k
FQLEN = 3h
FQPTR = 36
OPNFQ = 10

CSIFQ = 1+6

CALFIP = 101+050

REGREL = XX
JOBORG = XX
IOSTS = XX
JOB = xx

•

STRING:

•

•

.ASCII /fileab.ext/

STREND: .BYTE

CHNNDX: .BYTE k

.EVEN
•

•

INCB @#REGREL+0
BUFFER
GETSML
MOV #STRING,RO
AIJD @#JOBORG,RO
MOVB (R0)+, (Rl+) +

BNE .-2

BIC #37, R^
MOV Bk, -(SP)
BUFFER
GETSML
MOV ' (sp)+,fqptr(rV)
MOV #STREND-STRING, FQLEN (Rl+)

MOVB #csifq,fqeun(ri+)
MOVB @#job,fqjob(ri+)
CALFIP
MOV @#I0STS,R1
MOV FQPTR (Rif),-(SP)

TST (HI),

BNE ERROR
MOVB CHNNDX, FQFIL (Rl+)

MOVB #opnfq,fqfun(ri+)

CALFIP
TST (HI)

BEQ OKAY
ERROR: BUFFER

RETSML
OKAY: MOV

BUFFER
RETSML

(SP)+,Rl+

Example IV. 1 Routine '

26

;Name of file to be opened

; Channel index - even #

RO is relocatable
Request a 16 word buffer
Pointed to by ~Rk

Point to file name relative offset
Make an absolute pointer
Store string in buffer
a byte at a time
Make Rl+ point to beginning of buffer
Save Rl+

Get a FIRQB

Store pointer to file string in FIRQB
Store length of file string
Load function desired
Load our job index
Call the file processor
Get pointer to our I/O status
Save pointer to file string buffer
for later return
Operation successful?
No
Yes - load channel index on which
file is to be opened
Set open function
Call file processor again
Successful
Yes - FIRQB was not returned
Failed - return FLRQB

Get pointer to file string buffer
and return it

into a FIRQB and Open the
File on Channel 2

27

an error code 12 (NOROOM) is returned in IOSTS.

2. DELFQ is a routine to delete an open file. The user supplies the

channel index of the file in FQFIL. The user must be write enabled

on the file in order to delete it.

3. CLSFQ is a routine to close an open file. The user supplies in

FQFIL the channel index of the file he desires closed.

h. OPENFQ is a routine to open a file. The user must supply in FQFIL

a presently unused channel index. In FQNAM1 he must supply a three

word file name which is packed RAD50. If the user wishes to open

a file which belongs to a different project -programmer number he

supplies the project -programmer which owns the file in FQPFN1.

In order to open a file a user must be either read enabled, write

enabled or the owner of the file. If the open operation is

successful the FIRQB will not be returned to the user.

5. CREFQ is a routine to create a file. The user supplies in FQNAM1

a file name of the form FILNAM.EXT packed RAD50. In FQSIZ he

specifies the length of the file which he wants created. A length

of zero or one is created as a file of length one block. If a

file of this name already exists in the user's UFD and the user is

write enabled on that file, the system will delete that file and

recreate it at its new length.

6. RENFQ is a routine to rename an existing file. The user supplies

in FQNAM1 the name of the file which he wishes to rename. He

supplies in FQNAM2 the new name of the file. The user must be

write enabled on a file before he can change its name. If the file

does not belong to the user's project-programmer number he specifies

a project-programmer number of the file in both FQPPN1 and FQPFN2.

28

7« BYEFQ is a routine to log out a user from the system. No parameters

other than the user's job number need be supplied. Before logging

out a user, the system will close all his open files. BYEFQ does

not return!

!

8. DIRFQ is a routine to return directory information on a file entry.

The user supplies in FQPPN1 a project-programmer number of the

directory with which he is concerned. All files in a given directory

(UFD) are numbered sequentially beginning with zero. The user

supplies in FQFIL the number (this is not a channel index) of the

file on which he wishes information. If there exists a file

corresponding to the number specified, the system will return the

name of the file in the three words beginning at FQNAML. The

system will return the protection code associated with the file

in FQPEN2. It will return the date of the last access at FQNAM2,

which will be immediately followed by the size of the file (the

number of 256 ~ word blocks), followed by the creation date of the

file, followed by the time the file was created.

9. FROFQ is a routine to change the protection code associated with the

file. The user supplies in FQFIL the channel index on which the

file is open. He supplies in FQPROT the new protection code to be

assigned to the file. The user may not change the protection of a

file unless he is either write enabled or the owner of the file.

10. EKRFQ is a routine to return an error message from the system error

file. The user supplies in FQEKNO the error number which he would

like to have returned. On return the system will pack the error

message into the FIRQB beginning at FQKRNO.

29

11. LOAFQ, is the system relocating loader. The user supplies in FQFIL

the channel index of the file to be loaded. He supplies in FQSTRT

an offset from the beginning of the user area to the zero of the

load file (a zero here causes the file to be loaded "with the load

"0" corresponding to the beginning of the user area). On return

the system supplies in FQBLCK the number of loader blocks loaded.

This includes the six word start block. The system also returns in

FQCKSM the number of checksum errors occurring during the load.

12. RSTFQ, is a routine to close all i/o channels except channel zero.

The user needs no additional parameters.

13. CSIFQ, is a routine to parse DEV :FILE.EXT[X,X] . The user must

allocate a system buffer and pack the string to be parsed into the

buffer. He then places the address of this buffer at FQPTR and

places the length of the string to be parsed at FQLEN. The system

returns the RAD50 pack of any device name at FQDEV. The RAD50 pack

of any device number is returned at FQftEVN. Independent of the

presence or absence of a device name and device number, the system

packs a string of up to six characters as a file name. They are

packed RAD50 and placed beginning at FQNAM1. If there are less than

six characters, the name is considered to be extended on the right

with blanks to form a six character name. A file name may be

followed by a three character extension to indicate its type. The

extension is packed and stored at FQNAMl+ij-. It too is extended

with blanks. Additionally, the user may specify a project-programmer

number by enclosing it in square brackets ([k, 5])« The two numbers

are considered as octal and must be separated by a comma. They will

be stored in the two bytes of FQRFN1—the first digit goes into the

high order byte.

30

Ik-. SWIFQ, is a routine to parse a list of switches. The user must pack

the list of switches into system buffers which may be chained

together. He supplies a pointer to the first buffer at FQPTR. The

first word of each buffer is then a pointer to the next buffer in

the chain. The last buffer in the chain has a zero in its first

word. The user supplies the length of the string in FQLEN. See

figure IV. 2 for a description of a possible switch list. On return,

the system returns the FIRQB in addition to the first buffer in the

chain. All other buffers are returned to the system buffer pool.

The buffer pointed to by FQPTR will contain the parse information

for the switch list. Each of the possible switches is associated

with two words in the buffer (beginning with the third word of the

buffer, in order, as given in <switch> in figure TV.2). In

the low order byte of the first word of any switch which occurs is

stored an octal constant or the length of an arbitrary string which

was the last parameter to the switch. Bits 8 through Ik indicate

the presence of the parameters numbered 1 through 7 (in order as

given by <parm> in figure IV.2). Bit 15 of the first word is set

to indicate that this particular switch occurred in the list of

switches. The second word of the switch list is a pointer, relative

to the beginning of the string, to the beginning of an ASCII string

which was a parameter to that switch. In case of an error return

all buffers except the FIRQB will be returned to the system.

Figure IV. 3 is a diagram of the buffer returned for a sample switch

string.

31

<switch list>
<switch string>
<switch>
<parm llst>

<parm string>
<parm>
<octal string>

<A.SCII string>

<switch string>|<switch string>;<switch list>
<switch>j<switch>:<parm list>
op|cl|ee|pr|de|s6|s7
<parm string> | <parm string>:<octal string>|
<parm string>:<ASCII string>
<parm>

|
<parm> :<parm string">

cn|ee|p3|p1+|p5|p6|p7
<string of ASCII characters which represent
octal digits>
<string of ASCII characters which cannot be an
octal string>

Figure IV. 2 The BNF Definition of a Switch List

ASCII
String

Switch
Presence
Bits

ASCII
String

Parameter Bits

i

—

i

I
1

i

i
1

1 ;

23

1+6

j i i_

55

IT

123

32

,

—

_

1

i j

i

i i !
|

1 i |ilill!
*

i
l

| | |
1

| !

1

, :—

i

1—

1

,

10

"M String Length

Ik

String Position

20

2h

to

Octal Constant
30

Constant Position

3^

<switch list> = 0P:CW : P6;CL;RE : P3 :FILABC .EXT[1,

1

] ^S6 ; 123; S7 : 12^

buffer position k 10 Ik 30 3^

129 is not a valid octal constant, hence it is returned as

a string length

Figure IV. 3 The Buffer Returned on Parsing a Switch List

33

15- FNDFQ, is a routine to check if a given file or device is open and

if so to return the channel index on which it is open. It is called

by placing the name of the file at FQNAM1 or the device name at

FQDEV with any device number at FQfEW. On return FQFIL will contain

the channel index of the channel on which the given file or device

is open. If the file or device is not open it will return an error

lk- (NOSUCH). If the file or device does not exist it returns an

error 22 (NOTOPN).

D. Error Return

When a specified file request fails to function properly it will return

in the second word of the user's job data block an error code. The system

variable IOSTS contains a pointer to this i/O status word. Figure II.

3

contains a list of possible error codes and an indication of their

meaning

.

V. Input -Output

A. General Principles

1. All device i/O in ETS is controlled by constructing a transfer

control block (XRB) which contains all the necessary parameters

for the desired operations (see figure V.l). There are four basic

items which must be supplied:

a. Buffer Address. The user places in the XRB in two places

(XRPTR and XRLOC) the address of the buffer to be used in the

transfer. The address is in the form of the relative distance

from the buffer to the XRB (#XRB-BUF). The buffer must be in

the user area proper.

b. Transfer Length. On a read operation, the user places a zero

in XRBC and the maximum length of transfer (in bytes) in XRLEN.

On return, the system will put the number of bytes actually

transferred in XRBC. On a write operation, the user places

the actual write count in XRBC.

c. Channel. All read/write operations must take place to a

file/device which the user has successfully opened (channel

zero is automatically open). The user places the channel index

in XRCI. Before allowing the operations to proceed, the system

checks the protection associated with a channel and aborts the

operation if necessary.

d. Parameters. Reading from the card reader requires that the user

supply parameters to allow the service routine to perform the

proper character translation. Parameters are supplies in XRPAR

and XRPAR2 (see V.B.3).

35

R3 (Point)

•z» XRB (Lnk)

(Rel)

(Len)

(Tran)

(Rel)

(Chnnl)

(Parm 1)

(Parm 2)

BUF

Point =

Lnk
Rel
Len
Tran
Chnnl
Parm 1 =

Parm 2 =

Relative distance from start of job to XRB
Monitor link word
Relative distance (XRB-BUF) from XRB to i/O buffer
Maximum length of i/O buffer
Actual transfer count
i/O channel for operation
Parameter word
Parameter word

Figure V.l Transfer Control Block Structure

36

2. Once the user has set up his XRB, he places its relative address in

R3 (distance from user "0" to the XRB) and executes EMT 52 (.READ)

or EMT 5^ (.WRITE).

3- When doing i/O to a device other than disk, it is possible that all

data is not immediately available; hence, the system vd.ll swap the

user out of core to await physical i/O. This is not true for disk

operations.

B. i/O to a Serial Device

1. Line - Block Oriented Read

Normally, on read operations, the system will attempt to supply the

maximum possible number of characters, with two exceptions.

a. Any read operation is terminated when an EOF is encountered on

the source device.

b. Line oriented devices will terminate a read after transferring

a line delimiter (provided the delimiter is encountered before

the maximum transfer is completed.

2. Papertape Reader - Papertape Punch

The papertape reader and papertape punch do strictly block oriented

transfers of binary data. All operations will terminate with either

the maximum transfer length fulfilled or an EOF or EOM (End of Medium),

Since leader and trailer tape look like perfectly valid binary data,

the user must be careful when he wants to avoid processing undesirable

1 nulls '

.

3» Card Reader

There are two types of transfers from the card reader:

37

a. ASCII Source Data. The user may specify parameters to the card

reader driver which causes the first n columns to be ignored,

or he may ignore the last m columns, or he may request that

trailing blanks be suppressed, or any combination of the

three. Figure V.2 details the parameters and their meaning.

b. Binary Data. The card reader looks like the papertape

reader where the top eight rows of the card correspond to

the columns of a papertape (row 5 = bit l). The card reader

will try to fulfill the read request before terminating the

transfer.

k. Line Printer

The line printer accepts block transfers on output. No parameters

are necessary where outputting to the line printer; however, it

does do some special processing on output characters in order to

provide formatting ability.

a. A form-feed (ASCII code = Ik) is echoed as a page eject.

b. A carriage return is ignored.

c. A line feed is echoed as a line feed and a carriage return

(the hardware does this).

d. A tab (ASCII code = 11) prints as spaces up to the next eight

space boundary (column eight is the first such boundary).

e. Rubouts (ASCII code = 177) are ignoredo

f. Vertical tabs (ASCII code =13) are ignored.

g. All other characters print as themselves if they exist on the

print drum. If they do not exist on the drum, the hardware

38

XRPAR

XRPAR2

L5 87

First Last

?
/ 7

Mode Suppress

First - logical first column of card -1

Last - logical last column on card
Mode = =>EBCDIC

1 =>binary data in top eight rows
Suppress - =>suppress trailing blanks if in EBCDIC mode

1 =>do not suppress trailing blanks

Figure V.2 XRB Parameters for Using the Card Reader

39

ignores then causing the counted line position to be one greater

than the real line position. (Figure V.J is a table of characters

on the print drum.

)

h. The maximum line length is 128 characters. Attempts to print

more than this number of characters will result in the 129th

character being deleted and replaced with a line feed.

5. Teletype

The teletype is a line oriented input device, but a block oriented

output device. Because of the use of the teletype as a job control

device, many input characters cause special processing to occur.

With the exceptions in the special characters noted below, all

characters cause their correct 7 bit ASCII code to be transferred

to the user buffer. On output, characters for which there is no

output character will echo as nulls.

a. A carriage return echoes as a carriage return, line feed and

inserts both a carriage return and a line feed into the user's

input buffer. The carriage return is a delimiting character

and will cause the job to be started if it is blocked awaiting

a delimiter. On output, a carriage return does not echo a line

feed.

b. A line feed echoes as a carriage return, line feed but inserts

only the line feed into the user's buffer. The line feed is a

delimiter. On output, the line feed prints as a line feed only.

c. CNTL C echoes as a tC and causes the user job to be aborted.

The teletype buffers are flushed. The user will be returned to

monitor mode.

1+0

, _ . _.
•

1

bT o 1 1

b6 1 1

b5 1 1

lok b3 b2 bl

Space @, p
1 i l A Q10 it 2 B E11 # 3 C S10 $ k D T10 1 i 5 E U110 %-. 6 F V111 t

7 G w10 (8 H X10 1) 9 I Y10 10 LF *
: J z10 11 +
3 K

[110 FF)
< L110 1 - = M]1110 • > N >*v1111

i ..

/
? V

Figure V-3 Line Printer Character Set

in

d. CNTL B echoes as a tB and causes the termination of all echoes

until the next tB is typed. No character is inserted into the

buffer.

e. CNTL echoes as atO and causes all programmed output to be

discarded as well as any input -which is not a delimiter. The

effect of a tO is terminated when the delimiter is read out of

the input buffer by the user program.

f. CNTL Q echoes as tQUIT and places a <CK> in the user buffer.

Sets bit 15 of USRFLG.

g. CNTL U echoes as a tU and causes the user input buffer to be

flushed (throwing away the current line of input).

h. CNTL Z echoes as a t Z and is given to the user as an EOF 'error'.

i. A CNTL V echoes as a tV and puts a <CR> in the user input

buffer; however, it sets bit zero of USRFLG.

j. Altmode echoes as a $ and acts as a delimiter. No characters

are placed in the input buffer,

k. Rubout operates in two modes:

(1) In tape mode (which is set via an EMT .TTAPE) it is

discarded. Tape mode is for use in reading from an ASR

paper tape reader and can be terminated by an EMT .TTRST.

(2) In normal mode, it causes the last character in the input

buffer to be fetched and discarded. Characters discarded

are echoed in reverse order between two back slashes.

1. A tab echoes as spaces up to the next eight character boundary.

A tab (ASCII code = 11) is inserted into the user buffer.

m. A vertical tab echoes as eight line feeds and inserts a vertical

tab (ASCII code = 13) into the buffer,

n. A form feed echoes as eight line feeds and places a form feed

(ASCII code = Ik) into the buffer.

142

Example V.l gives a sample program to input a character string from

a teletype. Example V.2 is a sample message output routine.

File I/O

File operations involve all transfers to and from the disk. All such

transfers involve exactly 256nn words. Files in ETS are logically

sequential, but they may physically reside anywhere on the disk. When

a file is opened, a pointer (FCWLB) is set up to the first block (block

zero) in the file. Each read/write operation causes this pointer to be

advanced by one block. Before reading or writing to/from a file, the

user must open the file (see section IV) on an available channel.

On the disk, an EOF is generated anytime the user attempts to operate on

a disk block which is not a part of that file. If the operation was

read, an EOF indicates the end of the data; however, if the operation

was a write, the system provides a function which the user may call to

extend the file (EXTFQ, - section IV.C.l) so that the write operation

may be repeated.

Although most normal disk usage is of a sequential nature, ETS provides

facilities so that users may perform random block access operations.

This requires that the user know the logical block number which he wishes

to read/write.

To select a specific block, the user must place the block number desired

in the first parameter word of the XRB and the channel on which the file

is open at XRCI. He then places the relative address of the XRB in Rj5

and executes an EMT .FIND. If the request is for a non-existent block,

the system will set bit 15 of the XRPAR on return. In such a case,

+3

Reader is a routine to read a string from the TTY into

an 80 character input buffer
Call

JSR PC, READER
RO relocatable

Return
RO points absolutely to input string
R3 contains byte count

READER: MOV #XRB,R3

.READ
MOV XRB+6, R3

MOV #INBUE,R0

ADD @#J0B0RG, RO

MOV XRB+2, XRB+10

CLR XRB+6

RTS PC

XRB: .WORD 0, INBUE-XRB,

INBUE: .WORD
.=.+120 r

;Read a string

; Store byte count in R3

;Get absolute address of INBUE

;In 2 steps

;Restore XRB pointer

; Clear byte count

; Return

; Input buffer

Example V.l A Routine to Read a String from the Teletype

kh

MESSAG is a routine to output a message on the TTY
Call

JSR R5, MESSAG
+ MSG

Where R5,R0 are relocatable
MSG is the assembly (0 relative) address of the message

to be output. The first word contains the length
of the message (in bytes).

Return
R0,R3 destroyed

MESSAG: MOV
ADD

ADD

ADD

MOV

MOV

XRBW:

MSG1:

.WRITE
MOV

MOV

RTS

.WORD

(R5)+,R0
R0,XRBW+2

R0,XRBW+10

@#JOBORG, RO

(R0),XRBW+6

#XRBW, R3

#2-XRBW,XRBW+2

#2-XRBW,XRBW+10

R5

;Get pointer to the message
;Set XRPTR in write XRB

;Set XRLOC

;Get absolute pointer to message

;Load byte count

;Get relative pointer to XRBW

; Output message
;Reset XRPTR

; Re set XRLOC

; Return

MSG1ND'

.ASCII
MSG1ND: .ASCII

.EVEN

MSG2 : MSG2ND
.ASCII

MSG2ND: .ASCII
.EVEN

0, 2 -XRBW, 0, 0, 2 -XRBW,

-MSG1 - 1

/THIS IS THE FIRST MESSAGE/

A/

- MSG2 - 1
/ISN'T IT A BEAUTIFUL DAY/

hi

Example V.2 A Routine to Output a Message on the Teletype

^

the present pointer to the file is unchanged. Example V.3 is a routine

to read an arbitrary block of a disk file.

D. Errors

1. EOF. An end-of-file (Error #26) is returned when a user tries to

read/write past the end of a file or from a device on which an

end-of-file separator is encountered. All errors are returned in

the second word of the job data block which is pointed to by the

system variable IOSTS.

2. NOTOFN (Error #22) is returned when the user attempts to perform

an I/O transfer to an unopened channel.

3. PRTVOL (Error #2^) is returned when the user attempts to operate

on a file/device which is protected from him. He may either be

trying to access a file belonging to another UED which is protected

or doing something brilliant like reading from the line printer.

A PRIVOL error is also returned when a user attempts to write to a

file which another user currently has open.

h. NOTAVL (Error #20) is returned when the user attempts to get a device

which is currently servicing another user.

5. DATERR (Error #32) is returned if there is a device malfunction or

data error.

6. HNGDEV (Error #3^+) indicates that a device is not available to the

system, e.g., it may be off-line.

MS

XRB: .WORD

XRCI: .WORD

XRPAR: .WORD

BUT: .=.+1000

0, BUR -XRB, 1000, 0, BUF-XRB

;This routine will read the disk block specified in

;the variable BLOCK from the file opened on the

; channel given in CHNNL. Data will be placed in a buffer

;beginning at BUR. In case of error, the return is to ERROR.

READER : MOV CHNNL, XRCI ?

MOV BLOCK, XRPAR .

MOV #XRB, R3 i

.FIND '>

TST XRPAR ?

BME ERROR 5

.READ 5

CLR XRB+6 >

MOV XRB+2, XRB+10

MOV @#IOSTS, Rl 5

TST (Rl) 5

BNE ERROR J

Set channel index for operation

This is the disk block
Set relative offset from start of job to XR]

Point to the block we want

Did we get it?

No—either not a valid file or no such bloc]

Yes—read the block
Reset byte count for later try-

Reset pointers for later use

Get our i/O status

Any errors
Too bad

Example V-3 Finding and Reading a Particular Disk Block

V7

VI. Special EMT Functions

A. .ANCHR (EMT 112)

Anchor mode is used to allow programs to be attached to specific

locations in core and to force the system to swap jobs into the same

position in core each time (see section III.G).

In order to operate properly, after a user has been achored, he must

force himself to be swapped out so that the system will have a chance to

reposition him. This is best accomplished by increasing his core allocation.

The user places the core address (relative to the beginning of the user

area) in Rl and executes a .ANCHR. This will place the user in anchor

mode, but will not reposition him if he is not already in the correct

position (this is handled by the monitor swap routines); therefore, the

user should increase his core size which will cause him to be swapped

out and brought in at the correct place. It Is the user's responsibility

to see that his anchor request is a valid one (i.e., he does not want. to

anchor a 2K job in the top IK of core). Also note that the necessity of

increasing size prevents the user from anchoring a job to the highest core

block. A user who wishes to anchor a IK job may increase his size to 2

to cause the swap and then reduce his size to the desired IK.

Again note that anchor mode should be avoided if at all possible.

B. .BREAK (EMT 66)

When users execute long sections of code which may cause the system to

fail to act on clock interrupts (e.g., many disk accesses), the user

should inform the system that he can be swapped if there is another job

ready to run. In general, users should return to the system after k or

5 "consecutive" disk accesses. The user does this by simply executing

48

a .BREAK. No parameters are necessary. This will cause the system to

save the job and run the scheduler. If no other jobs are pending,

control will return immediately to the user.

C. .CORE (EMT 56)

This is a call to the system core allocation routine. It may be called

any time the user needs additional core or has core to return to the

system. The core allocater is called by executing a .CORE with the

size which the user wishes to be in RO. On return, RO will contain

zero to indicate success. Requests for size zero are ignored. If the

request is for more than the maximum possible size, the request is

ignored. Size is counted in blocks of ^OOOo bytes.

When the user wishes to return core to the system, the core will be

removed from the end (higher addresses) of his job. He will not be

swapped, and will return to execution immediately.

When the user wishes to increase his size, the system will swap him out

and the next time he runs, he will be brought in at his new size; thus,

he must be swappable at the time of the EMT. Should he be locked in

core at the time, results are unpredictable.

D. .DAR (EMT 62) and .DAW (EMT 6k-)

This is a routine to handle direct access disk requests. The user may

read (write) to/from the disk without going through the normal read/write

processor. To do this he must set up a pointer in Rh- to the File Control

Block of the file he wishes to use (the file must be open in order to

operate on it). Before executing the .DAR (.DAW) the user must place

the relative core address for the transfer at FCETC(=l6) in the FCB; the

number of blocks to transfer is placed at the byte FCBC(=2). FCNLB(=6)

in the FCB points to the block number of the file for the operation

h9

(the first block is block zero, each access causes FCNLB to be

incremented by one). Before allowing the disk transfer to proceed,

the system will still check to see that the user is permitted access to

this file. (See example VI. 1.)

E. .EXIT (EMT 76)

This routine causes the termination of the user job. No parameters are

necessary. The system will simulate the typing of a tC by the user. A

.EXIT causes all I/O buffers belonging to the user job to be flushed,

thus, terminating any i/o in progress by the job. When a routine must

wait on the completion of some i/o before exiting, it should execute a

.STALL then a .EXIT.

F. .HOIST (EMT 11*0

A user who has been executing in anchor mode and no longer needs this

facility should execute an EMT .HOIST to terminate anchor mode. No

parameters are necessary and no damage is done if the user is not really

in anchor mode.

0. .LOCK (EMT 60) and .UNLCK (EMT 10*0

.LOCK is used when a routine must not be swapped out of core for some

reason (e.g., he wants to use the system loader). No parameters are

necessary. The user should use .LOCK only when absolutely necessary

and then must unlock himself as soon as possible. .UNLCK will free a

user who is locked in core; it requires no parameters. Since the process

jobs for lack of available core space, users are requested to execute

a .BREAK after executing .UNLCK.

Execution of a .LOCK when a user is already locked in core or a .UNLCK

when a user is not locked in core has no effect.

50

START:

IOSTS = XX

JOBDA = XX

FCETC = 16

FCBC = 2

CHOTL = nn

BLKS
•

= nn

*

•

MOV @#JOBDA, Rk

MOV (Rk),nk

MOV @CHML(BiO,BA

MOV #CORBUF, FCETC (R^)

MOVB #BLKS,FCBC(R^)

.DAE
MOV @#I0STS,R5

TST (R5)

BEE ERROR

; System i/O status pointer

; System pointer to job data "block

;FCB offset to core address

;FCB offset to # blocks to transf

; Channel index on which file is c

;Number of blocks to transfer

;Get pointer to job data block

;Get pointer to i/O block

;Get pointer to FCB

;Load relative core address for

;transfer
;Load # of blocks to be transfer!

;Read them in

;Get pointer to i/O status

;Any errors

;Yes

;No

CORBUF: . = .+ 2000 ; Buffer for transfer

; Length = #BLKS*1000

Example VI. 1 Use of Direct Access Read - DAR

51

H. .NAME (EMT 116)

A user may assign a name to a program by placing the name he wishes

assigned in Rl and executing an EMT .NAME. When the user job terminated

(either normally or via a system abort) the name will be removed. Names

should only be used when informing the system that a user is executing

a program which requires some special service on the part of the system.

I. .STALL (EMT 102)

It is sometimes a good idea for a routine to wait for a period of time

before executing more code (e.g., it wishes to open the line printer

which is currently in use). The routine may place a number of seconds

to wait in Rl and execute a .STALL. This will cause the job to be blocked

for the number of seconds specified.

The use of .STALL is much better than sitting in a null loop since the

user is not using CPU time. .STALL should also be used when the user

wants to close a device which may be in the process of physical output.

Since the close routine will cause a device's output buffers to be

flushed, it is possible that output will be lost; consequently, a job

that wants to close a device to which he has just finished output should

stall for a few seconds before executing the close. (Figure VI.1 gives

suggested times for stalling for each device.)

J. .TTAPE (EMT 7k) and .TTRST (EMT 72)

Sometimes it is necessary to read paper tape through the low speed reader

on the ASR-33 teletype. When the user wishes to do this, he would

usually like to suppress the echo and ignore any rubouts on the tape.

He may also wish to do the same processing for the input from the

teletype keyboard. This type of transfer is called tape mode and may

be reached by executing a .TTAPE. No parameters are necessary. A .TTRST

is used to get out of the mode. .TTRST can also be used to kill any

52

Card Reader
Line Printer
Paper Tape Reader
Paper Tape Punch
Keyboard
Teletype Printer

no stall necessary
3 sees.

no stall necessary
3 sees.

no stall necessary
l/lO sec/character /max number of output
characters --to a maximum of 12 sec.

Figure VI. 1 Suggested Stall Times for Various Devices

53

'no output flags' (e.g., tO typed on the keyboard - see section VIII. D).

A .TTRST is useful when a program wishes to inform the user of some

abnormal condition which may have arisen during a process which normally

requires so much output to the teletype that a user may turn it off.

K> .WAIT (EMI 70)

A routine may sometimes desire to wait on the completion of some event

(e.g., typing of a delimiter at a teletype). The system provides a

.WAIT for this purpose. A .WAIT has the effect of causing the system

to save the user's job and run the scheduler. If there is no other job

ready to run, the effect of a .WAIT by itself is much like a .BREAK.

However, the user may set a wait bit in the system control variable

JBWAIT which identifies an event on which he wants to wait (see section

II.C 6). If he then executes a .WAIT, the system will not restart him

until the specified event has occurred (see example VI .2).

L. .FIND (EMT 100)

•FIND is used to position a disk file at a certain point (see section V.C).

M. .TREAD (EMT 122)

.TREAD is used to read from a teletype and if a response is not given in a

specified time, the user program will be awakened. .TREAD is simply a .READ

(pg k6) combined with a .STALL (pg 51)• The user will be awakened when

either is successfully completed. The user sets up the parameters as

described for both a .READ and a .STALL and executes a .TREAD. When he is

awakened, he may check the XRBC field of his XRB to determine whether he

has received any input from the teletype. Note, that no input is

transferred to the user program until a terminal character is typed on

the teletype.

^

JOB = xx ;Byte containing user job index

JSKEY
JBWAIT

= 20000
= xx

; Teletype delimiter blockage bit
;Wait table for user jobs

MOVB
MOV

@#J0B, RO
#JSKEY, JBWAIT (RO)

BIC #jskey,jbstat(ro)

.WAIT

;Get user job index - sign extend
;Set bit to wait on appearance of
; delimiter or TTY - Clear any other
;unit conditions
;Make sure we don't already have
;the bit set
;Go into wait - we will be
; awakened when the user types a

; delimiter on his teletype

Example VI. 2 Setting a Wait Condition

55

VII. Use of Interrupts and Special Functions

A. Interrupts

ETS provides the user with two interrupt vectors which he may use as his

own. TRAP (vector = 3k) and BPT (vector = Ik) are maintained by ETS as

relocated pointers into the user area. Each time a user routine is

saved, the contents of these two vector locations are saved with the

relevant job information to he restored and relocated when the job is

restarted.

B. CNTL V (tV)

Many times students will request the performance of special functions

from a user job which will cause results they had not expected (e.g.,

lengthy interpretation). Since it is often desirable to stop the given

process without killing the job (especially if the abnormal termination

of the job can damage a file), ETS provides a character tV which can be

used as a communication flag between the user and the running job.

When a tV is typed at the user's teletype, ETS sets bit in the variable

USRFLG which the running job should interrogate periodically. The job

is responsible for clearing the bit to indicate to ETS that it has

noticed it. The action taken on the occurrence of a tV is generally

an abort of some type. The job may either return to the system or ask

for input from the user to determine the reason for the tV.

C. CNTL Q (tQUIT)

With two exceptions, t Q, works exactly like tV. t Q, sets bit 15 of USRFLG,

and by system convention, tQ, is a request by the user for the program to

terminate its processing and return to the monitor via a .EXIT.

56

VIII. System Service Routines

The following are routines which the system uses for some of its own

processing, but which might be useful to users running under the system.

The routines are compatible with a user's requirements of dynamic relocata-

bility. In general, they may clobber one or more registers and will pass

parameters in the other registers. It is the user's responsibility to

save his own registers and to see that appropriate parameters are passed.

Since the position of these routines is dependent on the version of

the system in use, users are cautioned against running programs on

separte versions of the system without checking the new definitions of

the routine names. Example VIII. 1 uses many of these routines.

A. SETDDB

This is a routine to load the TTY Device Data Block address in Rl and

the TTY line index in RO. While users may find little direct use for

this routine, it is good for setting up parameters required by OCTIN

and NAME IN.

Call:

JSR PC, SETDDB
;no parameters are necessary

Return:

;R0 contains the TTY Line Index
;R1 points to the TTY DDB
;no additional registers are clobbered

B. OCTOUT

This routine will output the octal number in R5 onto the teletype. The

number will be followed by a <CR> <LF>. In order to output the characters

Jl

= XX
= XX
= XX
= XX
= XX
= XX
= XX
= XX
= XX
= 20000
= 10

= k
= 1
= 10^050
= 1+

=

Byte containing job index
Blockage table
Unblock table
Register relocation
System
Routines
and
Variables
Entry point for system error message handler
TTY delimiter
Open function
Byte offset in FIRAB to channel index
Invalid command error message
EMT to call file processor
I0T to buffer allocator
Buffer return parameter

@#T0B, R0
#JSKEY,JBWAIT(R0)
#jskey,jbstat(ro)

@#REGREL+5
FC,@#SETDDB
R5,@#SETFQ
0PNFQ
PC,@#NAMEIN

ERR
PC,@#0CTIN
ERR
R2
#-7-1, R2
R2,FQFIL(R^)

@#I0STS,R2
(R2),R2
ERR1

Get Job index - sign extend
Set blockage - we wait for the user to type a line
And make sure we wait
Begin wait
Mark R5 as relocatable
Load pointers to TTY DDB
Get a FIRQB -* R^+ and load
OPEN function
Get a name and pack in FIRQB
Didn't get a good one
Get a channel number
Didn't make it
Convert to channel index
Make it legal (0-7)
Store it in FIRQB
Try the open
Get pointer to i/O status
Get error code
Error - too bad
No error FIRQB was not returned

#BADCMD, R2
PC,@#SIMESlf

; Choose our own error code
; Output error message - R2 contains #
; Return the FIRQB

Example VIII. 1 Accepting a File Name and Channel From
the Teletype and Trying to Open it

58

OCTOUT needs parameters set up and calls SETDDB to do it.

Call:

JSR PC, OCTOUT
;R5 contains the number to be output

Return:

;R0 contains the TTY Line Index
;R1 points to the TTY DDB
;R2, R5 clobbered

C. SETFQ

SETFQ, is a routine to set up a FIRQB for use in file processor calls.

SETFQ, allocates a system buffer and stores in it the user's job number

and the function requested.

Call:

JSR R5, SETFQ
+ FTMFQ
;FUNFQ, is the FIP function desired
;R5 should be marked relocatable

Return:

;R^ will point absolutely to the FIRQB
;R0 clobbered

When the user has finished with the FIRQB, he must return it to the system.

D. SIMESS

SIMESS is a routine to retrieve a message from the system message file

and output It on the teletype. There are two entry points to SIMESS, the

first will request a message from the teletype for outputting. The

second, and more useful, will accept a message code in R2 and output the

corresponding message.

59

Call:

JSR PC, SIMESS or JSR PC, SIMES4
;a message code is supplied in R2 when using
;SIMES^
;a message code will be accepted from the teletype
;when using SIMESS

Return

:

;R0,R1,R2,R4,R5 clobbered

E. ENDTST

ENDTST is a routine to determine if a character is a terminal. Terminal

characters are <space>, <CR>, <LF>, <ALTMODE>, or <JO.

Call:

JSR PC,ENDTST
;R2 contains the character to be tested

Return:

;Z=1 if R2 contains a terminal character.

F. OCTIN

OCTIN is a routine to input an octal character from the teletype. It will

pick up characters from the teletype and skip over any initial "terminals."

When it encounters a non-terminal, it will attempt to interpret it as an

octal character. It will continue accepting characters from the teletype

until it encounters another terminal or a comma. If it encounters a

non-octal character, it will ignore it and continue processing; however,

it will return a flag to indicate that the number was invalid. In case

of overflow, high order bits are truncated. No flag is returned.

Call:

JSR PC, OCTIN
;R1 contains the DDB address (use SETDDB)

Return:

;R2 contains the octal value
;R3,R5 clobbered
;V=1 if error or no characters were found
;C=1 if a bad character was encountered

60

Note that OCTIN does not issue a read from the teletype but accepts

characters from the monitor chain buffers; consequently, the user program

should set the delimiter wait bit and execute a .WAIT before calling OCTIN. If

the buffers are empty, an error (V=l) is returned.

G. NAMEIN

NAMEIN is a similar routine to OCTIN but it is used to pick up a character

string and pack it in a FIRQB. In picking up the name, NAMEIN skips any

leading terminators and then stops on the first occurrence of any later

terminator. Before calling NAMEIN, the user must allocate a FIRQB for

use in a file call.

Call:

JSR PC, NAMEIN
Bh points to a FIRQB (a function need not be loaded)

R0 points to a TTY Line Index (use SETDDB)

Rl points to a TTY DDB (use SETDDB)

Return:

;V=1 if there was no name in the TTY buffer

;R2,R3,R5 clobbered
;File name is packed RAD50 in the FIRQB at the

appropriate places - see CSIFQ (section IV.C13)

H. BUFFER

BUFFER is a routine to allocate or deallocate a l6 word system buffer.

The call to the buffer allocater is an IOT which requires one parameter.

Call:

BUFFER (=I0T)

PARM
;PARM = GETSML = 200 for allocate

;PARM = RETSML = 000 for deallocate

;~Rk points to the buffer on deallocation

61

Return

:

;~Rk points to the buffer on allocation
;V=1 if no buffers remain
;No registers clobbered

I. CLRBUF

CLRBUF is a useful routine for emptying the user's TTY chain buffers.

On call, all remaining characters in the input or output buffer will be

flushed.

Call:

JSR R5, CLRBUF
+ X
;X = TT044 = 26 for output buffers
;X = TTH4 = Ik for input buffers
;R1 points to the TTY DDB
;R5 should be marked relocatable

Return

:

;R3, R5 clobbered

Index

62

.ANCHR, 21, 47

.BREAK, 20, 47

.CORE, 48

.DAR, 48

.DAW, 48

.EXIT, 49

.FIND, 42, 46, 53

.HOIST, 21, 49

.LOCK, 49

.NAME, 23, 51

.READ, 36, 46

.STALL, 49, 51

.TREAD, 46

.TTAPE, 41, 51

.TTRST, 41, 51

.UNLCK, 49

.WAIT, 53

.WRITE, 36

ABORT, 10
Absolute Pointers, 12, 14, 15
Altmode, 41
Anchor Mode, 21, 22, 47, 49
ASCII String, 31
ASCII, 30, 37
BADCMD, 10
BADDIR, 10
BADNAM, 10
Binary Data, 37
BPT, 55
Buffer Allocation

Deallocation, 21, 60
BYEFQ, 28
CALFIP, 24
Card Reader, 36, 38
Carriage Return, 39
Channel, 2, 34
CKSMER, 10
CLRBUF, 6l
CLSFQ, 27
CNTL B, 41
CNTL C, 39, 49
CNTL 0, 41
CNTL Q, 41, 55
CNTL U, 41
CNTL V, 41, 55
CNTL Z, 41
COMWRD, 11, 15
Conditional Relocation, 13, 15
Control Block, 4
Core Allocation, 48
CREFQ, 27
CSIFQ, 29
DATERR, 10, 45

DELFQ, 27
Device Data Block, 4, 7
DIRFQ, 28
Dispatch Table, 18

Dynamic Relocatability, 2, 12, 21
ENDTST, 59
EOF, 10, 36, 42, 45
ERRFQ, 28
Error Codes, 10, 33, 45
EXTFQ, 24, 42
FCASN, 6

FCBC, 6

FCETC, 6

FCFLI, 6

FCNLB, 42
FCPNB, 6

FCPW, 6

FCSIZ, 6

FCSTS, 6

FCTYPE, 6

FCWND, 6

File, 4

File Control Block, 6

File I/O, 42

File Request Queue Block (see FIRQB)

File String, 26, 29
FIRQB, 24, 26, 27, 28, 30
FNDFQ, 33
Form Feed, 37, 4l

FQBLCK, 25, 29
FQCKSM, 25, 29
FQDEVN, 25, 29, 33
FQDEV, 25, 29, 33
FQERNO, 25, 28
FQFIL, 25, 29, 33
FQFUN, 25
FQJOB, 25
FQLEN, 25, 29, 30
FQjmMl, 25, 27, 28, 29, 33
FQNAM2, 25, 27, 28
FQPPN1, 25, 28, 29
FQPPN2, 25
FQPROT, 25
FQPTR, 25, 29, 30
FQSIZ, 24, 25, 27
FQSTRT, 25, 29
HNGDEV, 10, 45
Input-Output Control Block

(IOB), 2

Interrupts, 55
INUSE, 10

63

IOB, k

IOF, 19
ION, 19
IOSTS, 9, 33, ^5
JBSTAT, 9
JBWAIT, 9, 53
JDANCR, 3
JDCPU, 3
JDDEV, 3
JDFLG, 3
JDIOB, 3
JDIOST, it-

JDKCT, 3
JDNAME, 3
JDPPN, 3
JDSGMX, 3
JDSGNW, 3
JDSIZ1, 3
JDSIZO, 3
JDSP, 3
JDUFD, 3
JOB, 2

Job Data Block (JDB), 3
Job Termination, ij-9

JOBDA, 2

Line Feed, 37, 39
Line Printer, 37, kO
LOAFQ, 29
Named Code, 23
NAMEIN, 60

.

NOLOAD, 10
NOROOM, 10, 27
NOSUCH, 10, 33
NOTAVL, 10, k5
NOTCLS, 10
NOTFND, 10
NOTOPN, 10, 33, k 5
Octal String, 31
OCTIN, 59
OCTOUT, 56
OPENFQ, 27
OUTRNG, 10
Papertape Punch, 36
Papertape Reader, 36
Parameters, Card Reader, J>k

Parm, 31
Parm List, 31
Parm String, 31
PRIVOL, k5, 10
Processor Status Word, 19
PROFQ, 28
REGREL, 9, 12
RELPTR, 15
RENFQ, 27
RSTFQ, 29

Rub outs, 37, kl
Serial Device, 36
SETDDB, 56
SETFQ, 58
SIMESS, 58
Stack, 2, 15
Stack, Changing Size, 17
Stack, Data, 19
Stack, Overflow, 17

STKBAS, 17
SWIFQ, 30
Switch, 31
Switch List, 30, 31
Switch String, 30, 31
Tab, 37, hi
Teletype, 39
Transfer Control Block (see XRB)
TRAP, 55
UFD, 28
USRFLG, 11, 12, Ij.1, 55
Vertical Tab, 37, hi
Wait Condition, ^h

XRB, 3^, 36, 38, k2

BLIOGRAPHIC DATA
EET

1. Report No.

UIUCDCS-R-72-523
3. Recipient's Accession No.

5- Report Date

May, 1972

Title and Subtitle

ETS System User's Guide

Author(s)

Donald W. Oxley
8. Performing Organization Rept.

No.

Performing Organization Name and Address

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

10. Project/Task/Work Unit No.

11. Contract /Grant No.

GJ-812

Sponsoring Organization Name and Address

National Science Foundation

Washington, D. C.

13. Type of Report & Period
Covered

Research

14.

Supplementary Notes

Abstracts

This manual is intended to serve as a reference to
persons who wish to write programs for use under the
Educational Timesharing System - ETS. It discusses in
detail the conventions and facilities used or supported by
ETS. It assumes some familiarity with ETS and a thorough
understanding of the PAL-11 assembly language.

Key Words and Document Analysis. 17a. Descriptors

Identifiers/Open-Ended Terms

It COSAT1 Field/Group

UAvailability Statement

Unlimited Release

19.. Security Class (This
Report)

,. - UNCLASSIFIED
20. Security Class (This

Page
UNCLASSIFIED

21- No. of Pages

63
22. Price

't'M NTIS-35 (10-70) USCOMM-DC 40329-P7 1

<*i/c

>are

m

m m m
Boat WWM '•};(:>m

Hi

Hi

