

LITRARY NI VII VII VIA

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume I: NORTH COASTAL AREA

MAY 1965

WIT GALIF WIT AUG 2 1965 LER

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

State of California THE RESOURCES AGENCY Department of Water Resources

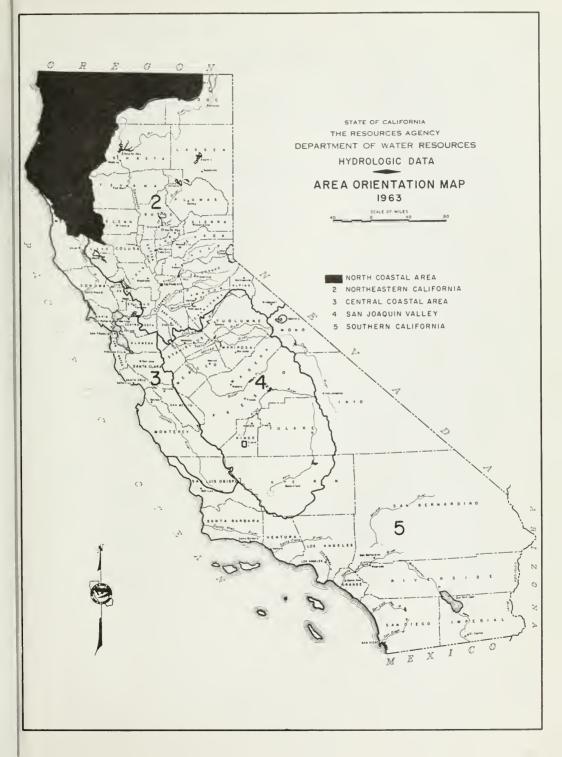
BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume I: NORTH COASTAL AREA

MAY 1965

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor Stote of Colifornio WILLIAM E. WARNE Director Department of Woter Resources


ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume	I	-	NORTH COASTAL AREA
Volume	II	-	NORTHEASTERN CALIFORNIA
Volume	III	-	CENTRAL COASTAL AREA
Volume	IV	-	SAN JOAQUIN VALLEY
Volume	V	_	SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix	A	-	CLIMATE
Appendix	В	-	SURFACE WATER FLOW
Appendix	С	-	GROUND WATER MEASUREMENTS
Appendix	D	-	SURFACE WATER QUALITY
Appendix	E	-	GROUND WATER QUALITY

TABLE OF CONTENTS

<u>+</u>	lage
ORGANIZATION OF BULLETIN NO. 130 SERIES	ii
AREA ORIENTATION MAP	iii
LETTER OF TRANSMITTAL	vii
ORGANIZATION, DEPARTMENT OF WATER RESOURCES	∕iii
CHAPTER I. HYDROLOGIC CONDITIONS: 1962-63	l
Statewide Conditions	l
North Coastal Area Conditions	4
CHAPTER II. HYDROLOGIC DATA PROGRAM ACTIVITIES	8
Climate	8
Surface Water Flow	8
Ground Water Measurements	9
Water Quality	11 11 11

APPENDIXES

Appendix

A	Climate	•	•	٠	•	•	•	٠	•	٠	•	٠	•	٠	٠	٠	•	•	13
В	Surface Water Flow	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	27
С	Ground Water Measurements	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	41
D	Surface Water Quality	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	59
E	Ground Water Quality	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		93

FIGURES

Figure

Page

PAR D. BOX

1	Water Year Precipitation in Percent of Normal October 1, 1962 - September 30, 1963 2	
2	Average Ground Water Level Changes in North Coastal Area Basins Spring 1962 - Spring 1963 10	

PLATES (Bound at back of Bulletin)

Plate

l	Climatological Observation Stations in North Coastal Area
2	Distribution of Mean Seasonal Precipitation in North Coastal Area
3	Surface Water Measurement Stations in North Coastal Area
4	Ground Water Basins in North Coastal Area
5	Surface Water Quality Monitoring Stations in North Coastal Area

PARTMENT OF WATER RESOURCES

March 8, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is suspended.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes and appendixes.

This report is Volume I, "North Coastal Area". It includes a text which summarizes hydrologic conditions in this part of California during the 1963 water year (October 1, 1962 through September 30, 1963) and five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurements", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality".

The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 229, 232, $3^{4}5$, 12609, and 12616 of the Water Code of the State of California.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, and timely hydrologic data to the public.

Collection of much of the data presented has been possible only because of the generous assistance of other agencies. I wish especially to acknowledge the help given by agencies whose measurements directly contributed to Bulletin No. 130-63. They include the United States Bureau of Reclamation, Corps of Engineers, Geological Survey, Forest Service, and Weather Bureau, the California Department of Public Health, and the California Disaster Office.

Without the data supplied by these people, Bulletin No. 130-63 should have been much less the valuable tool it is today.

Sincerely yours,

Jule Eham

Director

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor HUGO D. FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN M. HALEY, Acting Assistant Chief Engineer

_ _ _ _ 0 _ _ _ _

NORTHERN BRANCH

Stuart T. Pyle Acting Branch Chief
Robert E. Whiting Chief, Operations Section
Activities covered by this report were under the supervision
of
Robert F. Middleton, Jr. Chief, Basic Data Unit

Assisted by

Donald A. Ralph		۰	•	•		٠	•	•	•	•	•	•	•	•	•	
Linwood L. Bates .				•	٠	٠		•	٠	•	•	•	•	•	•	. Redding Field Office
Walter D. McIntyre				•	•	•	•		•	•	•		•	•	•	Colusa Field Office
Ernest G. Olsen		•	•		•	•		•	•	•	•	o	•	•	•	Surface Water Flow
Thomas I. Rausch .	•				٠	٠	•	•	•	•	•	•	•	.0	fro	und Water Measurements
Stewart L. Struchen		•							•						•	Water Quality

Reviewed and coordinated by Division of Resources Planning Data Coordination Section

CHAPTER I. HYDROLOGIC CONDITIONS: 1962-63

The climate of California is unique in many respects. Land forms throughout the State differ widely, setting California apart from adjacent areas. California does, in fact, span all of the dissimilarities of climate and topography from the arid plateaus of the Great Basin to the marshy tidelands of the Pacific. California climate is fostered by a balance between the varied land masses and the turbulent seasonal storms of the Pacific Ocean.

The Sierra Nevada and the Cascade Mountains, forming the eastern border of the Great Central Valley, receive much of their rainfall from the lifting of the maritime air masses. Interior lands of southern California are shielded from these masses by the transverse mountain ranges and the southerly extension of the coastal range. The 1963 water year is typical of the extreme variability of weather conditions that normally occur in California.

Statewide Conditions

On a statewide basis the 1963 water year was near normal. However, extreme conditions occurred in certain regions. Figure 1, showing 1963 water year precipitation in percent of normal, indicates that although normal annual precipitation amounts were recorded in the latitude of San Luis Obispo and Bakersfield, annual precipitation south of that latitude ranged to less than 50 percent of normal in the vicinity of San Diego. It ranged to greater than 150 percent of normal near the Oregon border.

In mid-October a series of storm waves drenched northern California, Oregon, and Washington. Rivers in northern California were at near flood stage; and the Feather River at Oroville reached the highest October peak

-1-

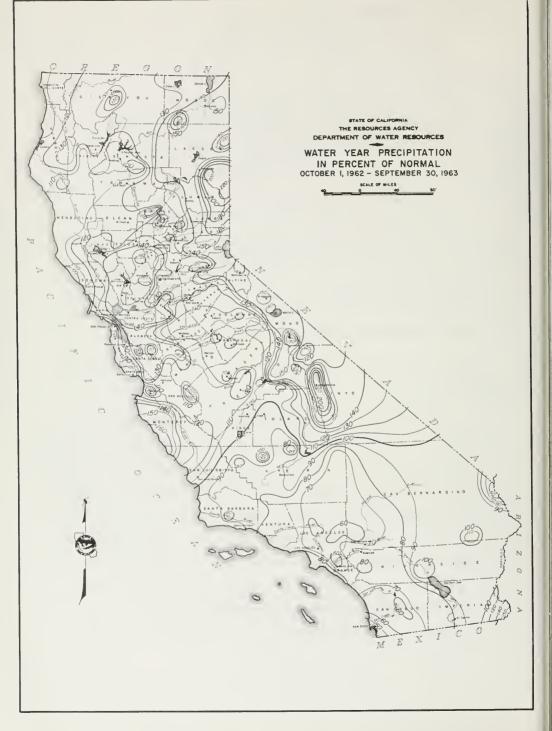


FIGURE I

flood of record, inundating construction work at the Oroville dam site. Southern California remained dry. A mid-winter drought followed, setting new records for lack of precipitation and for continuous days of fog in the Central Valley. Again, southern California was dry.

The drought was broken by a three day downpour at the end of January. Again, flood conditions prevailed in northern California and some areas, particularly in the upper Yuba River basin, suffered from serious flooding. Much of southern California received moderate rainfall.

During April, northern California was covered by a series of storms; rainfall was moderate but continued for nearly two weeks. The April rains, along with record late season snowfall during May built up snowpacks and assured a normal potential water supply during the summer. Southern California received some precipitation, but the below normal trend persisted. This trend has continued since 1941.

Other hydrologic conditions also showed abnormal responses. Streamflows alternated between extreme highs and lows, but the average flows during the summer were about normal. With the recurring threat of floods, the operation of reservoirs was difficult. The amount of water stored in reservoirs at the end of the 1963 water year was generally greater than the previous year. Still, an excessive amount of winter rain wasted to the ocean. In southern California both surface runoff and reservoir storage were below normal.

Ground water conditions followed the pattern of precipitation. In the northern part of the State, ground water storage generally increased. However, due to the distribution of the precipitation, the increase in stored ground water was less than expected in some areas. Throughout southern California precipitation was well below normal and ground water levels continued to drop.

-3-

North Coastal Area Conditions

The North Coastal Area extends southward from the Oregon state line, approximately 300 miles, to the northernmost boundary of the Russian River drainage and is further delineated by the westerly and northerly boundary of the Sacramento River drainage. The area's eastern limits include the Lost River-Clear Lake drainage. The area, as shown on "Area Orientation Map", comprises the major part of Water Pollution Control Board Region No. 1, excluding the Russian River Basin and the coastal area south of the Mattole River drainage.

The topography of the area is largely mountainous including the western slope of the Coast Ranges, the Trinity and Klamath Mountains, a portion of the Cascade Mountains, and the westerly portion of the Modoc Plateau. While the Klamath, Trinity, and Eel Rivers are major drainage systems within the area, there are a number of other large streams that are of local importance.

Local economic development is primarily based on the lumbering and wood products industry and agriculture. However, the tourist and recreational trade has recently assumed a key role in the plans of local communities. The area's beautiful scenery and recreational activities such as fishing, hunting, and camping are becoming prominent factors in the economy. These activities are directly concerned with the quantity and quality of surface waters in the more widely used areas.

The climate of the North Coastal Area is conducive to the extensive forest cover found throughout most of the area and in elevated areas in the Modoc Plateau. Climate ranges from humid, averaging 100 inches of precipitation annually, in the mountains along the coast to semiarid, with an average of 15 inches of precipitation annually in the Modoc Plateau. Summers are

-4-

normally cool and dry, while winters are cold with heavy rain and some snow.

Precipitation in the North Coastal Area was generally above normal for the report period, from July 1, 1962 to June 30, 1963. It varied from 200 percent of normal in Siskiyou County to near normal in Mendocino County.

Streamflow was extremely high during April 1963, making the 1962-63 water year the second highest year, as far as runoff is concerned, during the seven-year period from 1956-57 through 1962-63.

Unimpaired runoff of major streams in the North Coastal Area during the 1962-63 water year averaged about 135 percent of normal. Department gaging stations have recorded streamflows for a relatively short time, and no long-term mean average runoff values have been developed. It is safe to say, however, that the relative magnitude of the runoff from gaged areas closely approximates that of the major streams in the North Coastal Area.

The use of ground water in the North Coastal Area is relatively small and is not a major factor in the evaluation of the potential water supply.

There was no marked change in ground water levels during 1962-63. Though streamflow and precipitation were above normal, the intensity of precipitation was high and the duration low, factors not conducive to greater infiltration of water. Figure 2 summarizes some measured values in basins of the area.

Surface waters throughout the area are normally low in mineral content and are generally satisfactory for all uses. As is common in most streams, concentrations of dissolved minerals increase with a decrease in streamflow.

No definite trends of surface water quality in North Coastal area streams were noted during the 1962-63 water year. Boron concentrations in Outlet Creek (located in the upper Eel River watershed) ranged from 1.0 to

-5-

1.8 ppm between July and September 1963, but were substantially lower than September 1962 (3.1 ppm) or September 1961 (4.2 ppm, maximum of record).

Quality conditions of ground water sources monitored during 1963 were generally excellent and show little change from 1962. The principal exception is the partially degraded ground water in the lower Eel River Valley near the mouth of the Eel River. Three wells of the ten sampled in the Eel River delta area during the past few years have shown a fairly large chloride concentration, suggesting **a** problem of sea water intrusion. PROGRAM ACTIVITIES

HYDROLOGIC DATA

CHAPTER II

CHAPTER II. HYDROLOGIC DATA PROGRAM ACTIVITIES

The Department of Water Resources is concerned with the development and use of water supplies, and with the methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies, hydropower, drainage, flood control, navigation, and other associated engineering projects. The Department's basic data programs have been designed to supplement and augment other agencies' activities to fulfill the specific needs of the Department and the State.

Climate

Climatologic data collected by the Department include information on precipitation, temperature, and evaporation. Both surface flow and recharge to ground water vary in direct response to precipitation. Evaporation is an important part of the consumptive use of water and, with other climatological events, affect conditions and use of a water supply.

Table A-1 contains a listing of all active climate stations in the North Coastal Area during the 1962-63 report period which covers the period from July 1, 1962 through June 30, 1963. Measurements of precipitation, air temperature, evaporation, and corresponding data are shown in Tables A-2, A-3, and A-4 in Appendix A, "Climate".

Surface Water Flow

Hydrographic data activities, augmented by the climate data program, supplement streamflow observations carried on by the U. S. Geological Survey. The Department's program consists of both field and office work. Field activities in the North Coastal Area include construction and maintenance of streamflow gaging stations and measurement of flow in the larger streams.

-8-

Office work includes the preparation of hydrographic data for computation by electronic computers. Instantaneous stream discharge, mean discharge, and stage are normally obtained.

The Department operates eight stream gaging stations in the North Coastal Area. Two were installed during the 1956-57 water year, five in 1957-58, and one in 1960-61.

Plate 3 shows the location of surface water measurement stations in the North Coastal Area for the reporting period which covers the water year from October 1, 1962 through September 30, 1963. Tables B-1 through B-8 present daily mean discharge records at each station during the water year.

Ground Water Measurements

Ground water is the source of supply for the major portion of water beneficially used in California. However, the use of ground water in the North Coastal Area is less extensive than in other areas of the State. Data on the current status of the major ground water basins is collected and processed within the framework of the Department's Ground Water Measurement Program. Field measurements are made by the U. S. Geological Survey. The review, processing, and editing of the data is performed by the Department.

Nine local ground water basins or areas are measured on a monthly basis by the U. S. Geological Survey for the report period from July 1, 1962 through June 30, 1963. Locations of the basins measured are shown on Plate 4 and results of the measurements are presented in Table C-1 of Appendix C. In addition, a summary of the average change in ground water levels is given in Figure 2. Since only a few wells are measured in any of the monitored ground water basins, it is difficult to derive meaningful values for the average changes in water level elevations.

-9-

FIGURE 2 VERAGE GROUND WATER LEVEL CHAN IN NORTH COASTAL AREA BASINS SPRING 1962 - SPRING 1963	FIGURE 2	AVERAGE GROUND WATER LEVEL CHANGES IN NORTH COASTAL AREA EASINS SPRING 1962 - SPRING 1963	
---	----------	---	--

Ground Water Basin	in	: Number : of Wells : Considered : in	Average Ground Water Level Change 1962 to 1963,	Location and Recorded Maximum and Minimum Depth to Water Spring 1963, in feet	corded Maximum pth to Water 1963, et
••	Nunber	: Analysis	: in feet :	Maximum	Minimum
Lain	1-1.00	24	-1.2	17N/01W-02P01 18.4	16N/01W-02J01 14.8
	1-3.00	ĽΛ	-2.1	46N/01E-06N01 20.8	1,7W/Olw-o7B01
	1-4.00	9	+0.2	µµи/о5w-3µно1 28.1	4,3N/06W-22A01 2.9
Scott River Valley	1-5.00	14	+3.3	4:2N/09W-08C03 28.6	hen/09W-ethol 3.1
Mad River Valley	1-8.00	CJ	-1.0	06N/01E-29P01 9.0	06N/01E-06H01 2.6
Eel River Valley	1-10.00	m	-1.0	03N/01W-34J01 32.3	o3w/otw-18dol 3.3
	1-11.00	14	-0.3	23N/13W-36C03 8.2	23N/13W-36Q01 2.4
Laytonville Valley	1-12.00	Q	-0.6	21N/15W-12M02 7.2	21/N_2W-24A01 1.6
Little Lake Valley	1-13.00	m	£.0+	18N/13W-18E01 21.0	18N/13W-08L01 0.4

Water Quality

Water quality is a measure of the characteristics of a water supply that affect the usability of the water. As greater demand is placed on available water supplies more effective use and reuse of the State's water becomes necessary. Since quality may limit the usability of a water, knowledge of quality conditions is necessary for the most efficient use of water supplies.

Surface Water

During the 1962-63 water year, twenty-four stream locations were monitored on a monthly basis for water quality including mineral, bacteriologic, and radioassay analyses. Twice a year samples from eight selected stations were subjected to spectrographic analysis to determine concentrations of trace elements.

Samples were taken from the larger streams in the North Coastal Area and locations of the sampling stations is shown on Plate 5. Table D-1 is an index to sampling station data. Table D-2 presents analyses of mineral and other selected constituents. Table D-3 presents the spectrographic analysis for trace elements, and Table D-4 presents radioassays.

Ground Water

During the 1962-63 water year, samples were collected and analyzed for 76 ground water sources. The nine basins sampled in this program are shown on Plate 4, "Ground Water Basins in North Coastal Area". Normally the sampling period is from June through September.

The samples were analyzed for mineral constituents and some trace elements. Table E-1 presents the observed values from the ground water quality analyses.

-11-

APPENDIX A

CLIMATE

TABLE OF CONTENTS

		Page
Climate	• •	16
TABLES		
Table		
A-1 Index of Climatological Stations for 1962-63	• •	19
A-2 Precipitation Data for 1962-63	•••	21
A-3 Temperature Data for 1962-63	• •	24
A-4 Evaporation Data for 1962-63		26

CLIMATE

The Department of Water Resources cooperates with the U.S. Weather Bureau and local agencies in the collection of climatological data. Climatological data programs are dependent, for the most part, on the cooperation of local observers. Data from selected key stations are published by both the Department and the U.S. Weather Bureau.

The tables in this appendix include total monthly and seasonal precipitation; monthly temperatures showing absolute maximum, average maximum, average, average minimum and absolute minimum temperatures; and evaporation data showing the total evaporation for each month of the 1962-63 fiscal year.

Most of the stations use standard meteorological equipment. Commonly accepted procedures are employed in summing up monthly totals and computing mean values. In the preparation of the mean seasonal isohyetal map (Plate 2) the long term mean values are based on the 50-year mean period 1905-06 to 1954-55, for those stations with sufficient length of record. At other stations all available records are used in determining the mean. Station density in the North Coastal Area is adequate for making reasonable estimates of average conditions over extended areas, with the possible exception of the areas in the higher altitudes.

A description of the tables and plates included in this appendix follows:

<u>Table A-1</u>, "Index of Climatological Stations", contains a listing of all active climatological stations in the North Coastal Area during the 1962-63 fiscal year. The station names are arranged in alphabetical order. Each station is given a code number which is composed of two parts -- a drainage basin designation, and an Alpha Order Number

16

which corresponds to the alphabetical sequence of the station with respect to the other stations in that drainage basin. A sub-number of two digits is occasionally affixed to the four digit Alpha Order Number. This is to provide for greater flexibility as new stations are added to the listing. The cooperator index number is used when the Alpha Order Number is in conflict with the U. S. Weather Bureau number.

Certain other information is also given, including the year in which the record was begun, the year the record ended and the years of missing record. The code for the county in which the station is located is shown below:

County	Code
Del Norte	08
Humboldt	12
Mendocino	23
Modoc	25
Siskiyou	47
Trinity	53

<u>Table A-2</u>, "Precipitation Data", contains a listing of all precipitation measurements collected in the North Coastal Area during the 1962-63 fiscal year. The listing is in alphabetical order by station name. The table includes a summary of total seasonal precipitation and lists each monthly amount for the 1962-63 fiscal year.

Table A-3, "Temperature Data", describes unpublished air temperature data collected by the Department of Water Resources in the North Coastal Area. The stations are listed in alphabetical order. A listing by drainage basin and Alpha Order Number is also given. A column titled "Season" summarizes the extreme values of temperature reported at each station and also lists the mean of the monthly values. The absolute maximum, average maximum, average, average minimum and absolute minimum monthly values are given for each station, and are based on 1962-63 data.

17

<u>Table A-4</u>, "Evaporation Data", describes the data collected from all evaporation stations in the North Coastal Area. This information is used to determine loss of water by evaporation from existing and proposed water storage and conveyance facilities. The stations are listed alphabetically. The table includes a listing of drainage and Alpha Order Numbers corresponding to the station names. Total evaporation is shown for each month during the 1962-63 fiscal year.

<u>Plate 1</u>, "Climatological Observation Stations, North Coastal Area", shows the locations of all actively reporting climatological stations in the North Coastal Area. These include the U. S. Weather Bureau stations reported in the U. S. Department of Commerce monthly publication, "Climatological Data", and many stations operated by cooperative observers. A legend on the map describes the symbols used for the various types of measuring equipment and observations made.

<u>Plate 2</u>, "Distribution of Mean Seasonal Precipitation in North Coastal Area", shows the rainfall pattern over the North Coastal Area. Lines of equal mean seasonal precipitation are drawn to define the normal amounts. The lines represent normals based on a 50-year mean period of 1905-06 through 1954-55.

18

TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS FOR 1962-63

NORTH COASTAL AREA

			T				-	_								p			
Number	Station Name	Elevotion (In feet)	Section		Township	Ronge	40-4cre Troct	Bose & Meridion	0	- Lofitude ≂	a	- Longitude	11	Cooperator Number	Cooperator's Index Number	Record Begon	Record Ended	Yeors Missing	County Code
F6 0018 F6 0088 F5 0253 F3 0715 F4 0738	ADANAC LODGE ALDERPOINT ARCATA A P RESWICK 7 S BIG BAR RANGER STA	1100 435 200 6140 1270	SEC SEC	27 TO 19 TO 33 T4	035 07N 47N	R17W R05E R01E R03W R12W	0	м : н 4 н 4	40 1 40 5 41 5	1 00 8 18 2 00	122	36 05 14	00	900		1950 1940 1957 1952 1943			23 12 12 47 53
F5 0764 F2 0786-01 F3 0899 F5 0901 F5 0903	RIG LAGOON RIG SPRINGS 4 E BLUE CREEK MTN LO BLUE LAKE BLUE LAKE REDWOOD CR	100 2955 4870 105 975	SEC SEC SEC	05 T4 30 T3 30 T0	43N 12N 06N	R01E R04W R04E R02E R03E	R R		41 3 41 2 40 5	5 30 3 42 2 54	122 123 123	19 45	42 54			1958 1960 1960 1951 1956			12 47 08 12 12
F6 1046 F1 1050 F6 1080 F6 1083 F6 1181	BRANSCOMB 2 NW BRAY 10 WSW BRIDGEVILLE 4 NNW BRIDGEVILLE P O BULL CREEK	5759 2050 650	SEC SEC	24 T4 27 T(11 T(43N 02N 01N	R03W R03E R03E	0	м 4 Н 4 Н 4	+1 3	4 00 1 00 8 06	122 123 123	08 49	00 00	900 900 000		1959 1951 1954 1959 1960			23 47 12 12 12
F6 1210 F4 1215 F2 1316 F7 1505 F6 1608	BURLINGTON ST PARK BURNT RANCH 1S CALLAHAN RANGER STA CAPE RANCH CEDAR CREEK HATCHERY	200 2150 3136 710 950	SEC 2	23 TO 21 T4 23 TO	05N 40N 01N	R06E	E F	н 4 м 4 н 4	+0 4 +1 1	7 48 8 00 7 24	122 124	28 48 22	48	000 900 900 000 805		1950 1945 1943 1959 1957			12 53 47 12 23
F3 1799 F4 1886 F3 1990 F6 2081 F6 2084	CLEAR CREEK COFFEE CREEK RS COPCO DAM NO 1 COVELO COVELO EEL RIVER RS	975 2500 2700 1385 1514	SEC 3	06 T(29 T4 12 T2	22 N	R37N	Ρ	M 4 M 4 M 3	41 4 41 0 41 5 39 4 39 5	5 9 00 7 00	122 122 123	42 20 15	00	900 900 900 900 900		1959 1960 1928 1921 1939			47 53 47 23 23
F0 2147 F0 2148 F0 2150 F0 2152 F6 2218	CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY HMS CRESCENT CITY 11 E CUMMINGS	120 50	SEC SEC	08 T 20 T 30 T	16N 16N 16N	RO1E RO1W		н 4 н 4 н 4	+1 4 +1 4	6 00 5 18	124 124 123	05 12 59	00 00	900 900		1931 1913 1941 1947 1927			08 08 08 08 23
F1 2480 F6 2490 F0 2749 F2 2899 F7 2906	OORRIS INSPECT STA DOS RIOS ELK VALLEY ETNA ETTERSBURG 2 SE	927 1711	SEC 2	31 та 34 ті 28 т4	22 N 1 9 N 4 2 N	R13E R04E R09W		M C H 4 M 4	39 4 42 0	3 00 0 00 8 00	123 122	21 43 54	00 00 00	000 900 900 900 900		1959 1917 1938 1940 1953			47 23 08 47 12
F6 2910 F7 3025 F6 3030-01 F5 3041 F3 3122	EUREKA WB CITY FERNOALE 8 SSW FERNDALF 2NW FIFLDBROOK 4 D RCH FODTHILL SCHOOL	1445 10	SEC :	06 T0 34 T0 36 T0	01N 03N 07N	R02W R02W	Р К Р	н 4 н 4 н 4	+0 4 +0 2 +0 3 +0 5 +1 4	9 30 5 54 6 36	124	20 16 01	36	900 000		1878 1959 1963 1956 1962			12 12 12 12
F4 3130 F3 3151 F2 3176 F2 3182 F6 3194	FOREST GLEN FORKS OF SALMON FORT JONES 6 ESE FORT JONES RANGER ST FORTUNA	2340 1270 3324 2720 60	SEC SEC SEC SEC SEC	24 T 12 T 02 T	10N 43N 43N	R07E R08W R09W	с	H 4 M 4 M 4	40 2 41 1 41 3 41 3 40 3	5 12 5 00 6 00	123 122 122	19 43 51	00 00	900 900 900 900 900		1930 1959 1941 1936 1956			53 47 47 47 12
F6 3217 F6 3322-01 F0 3357 F2 3362-03 F2 3363	FOX CAMP GARBERVILLE MAINTSTN GASOUET RANGER STA GAZELLE 4NNW GAZELLE LOOKOUT	540	SEC SEC	24 TO 21 TO 16 T4	045 17N 43N	R01E R03E R02E R06W R07W	G N C	н 4 н 4	+1 5 +1 3	6 00 2 00 4 42	123 123 122	47 58	40	809 900		1960 1935 1940 1949 1956			12 12 08 47 47
F1 3564 F2 3614 F3 3761 F6 3785 F6 3810	GRASS LAKE HWY M S GREENVIEW HAPPY CAMP RANGR STA HARRIS 7 SSE HARRISODK INN	5080 2818 1090 1910 470	SEC 3	29 T4 11 T2 27 T0	43 N 16 N 05 S	R09W R07E R05E	N	нζ	41 3 41 4 39 5	3 00 8 00 9 24	122 123 123	54 23 36	00	900 900 900 000 000		1954 1943 1914 1953 1958			47 47 47 23 12
F4 3859 F4 3949 F6 3956 F3 3987 F6 4037~02	HAYFORK RANGER STA HIDDEN VALLEY RCH HIGH ROCK HILTS HOLMES	2340 1978 900 2900 150	SEC SEC SEC	32 TO 15 TO 23 T4	01N 01S 48N	R07E R02E R07W	M K	H 4	+0 2 +0 2	0 00	123 123 122	24 56 38	30 30 00	900 000 808 900 000		1915 1959 1960 1939 1954			53 53 44 47 12
F7 4074 F7 4074-01 F5 4077 F4 4082 F4 4084	HONEYDEW 2 WSW HONEYDEW HUNTER HONOR CAMP 42 HOOPA HOOPA 2 SF	380 1875 350	SEC a	02 TO 31 TO 25 TO	035 07N 08N		M K	н 4 н 4	0 5		124 123 123	09 52 40	06 42 00			1953 1955 1956 1941 1954			12 12 12 12 12

TABLE A-1 (Continued)

INDEX OF CLIMATOLOGICAL STATIONS FOR 1962-63

NORTH COASTAL AREA

Number	Station Nome	Elevotion (in feet)	Section	Township	Ronge	40-4cre Troct	Base & Meridian	0	- Lofilude	11	0	- Longilude	11	Cooperator Number	Cooperofor's Index Number	Record Begon	Record Ended	Yeors Missing	County Code
F4 4191 F0 4202 F6 4305	HYAMPOM IDLEWILD MAINT STN ISLAND MTN	1260 1250 940	SEC 25 SEC 06 SEC 15	T17N	R06E R04E R06E	0	н	41	54	00	123	46	12	900 900 006		1940 1946 1943			53 08 53
F3 4577 F3 4583 F6 4587 F5 4602 F6 4690	KLAMATH KLAMATH RIVER 1 SW KNEELAND 10 SSE KORBEL LAKE MOUNTAIN	25 1750 2356 150	SEC 12 SEC 13 SEC 28	T13N T46N T03N T06N T05S	R09W R02E R02E		м н н	41 40 40	51 38 52	00 00 00	123	50 54 57	06 00 30	900 000 900 900 900		1941 1958 1952 1937 1939	1963		08 47 12 12 53
F1 4838 F6 4851 F5 4982 F2 4984-02 F5 5086	LAVA BEDS NAT MON LAYTONVILLE LITTLE RIVER LITTLE SHASTA LONG PRAIRIE RCH	1640 150 2725	SEC 31	T21N T08N T45N	R15w R01E R05w	Ρ	M : H H M H	39 41	42 01 43	00 54 00	123 124 122	29 06 23	00 36 00	900 000		1940 1940 1949 1960 1952	1962	06	47 23 12 47 12
F7 5295-41 F1 5505 F6 5676 F6 5713 F2 5783	MANN RANCH MEDICINF LAKF MINA 3 NW MIRANDA SPENGLER RCH MONTAGUE	6660 2875		T43N T05S T03S	R03E R07E	٨	M · H · H	41 40 40	35 00 12	00 06 00	121 123	37 23 46	00 30 00	900 000 900	045783	1960 1946 1927 1939 1888		05	12 47 53 12 47
F2 5785 F1 5941 F4 6032 F6 6050 F3 6328	MONTAGUE 3 NE MOUNT HEBRON R S MUMBD BASIN MYERS FLAT OAK KNOLL RANGER STA	4250 5700 175	SEC 32	T02S	R01W R06W R03E		M M H	41 41 40	47 12 15	00 00 42	122 122 122 123 122	00 32 52	00			1948 1942 1946 1950 1942			47 47 53 12 47
	OLD HARRIS ORICK 3 NNF ORICK ARCATA REDWOOD ORICK PRAIRIF CRFEK ORICK 10 SE	50 75 161		TIIN TIIN TIIN	ROIE ROIE ROIE	ĸĸ	н н н	41 41 41	19 19 20	24 24 00	124 124 124	02 02 02	30 36 00	000		1956 1950 1954 1937 1958	1963		12 12 12 12 12
	ORLEANS PATRICKS PT STATE PK PETROLIA PETROLIA 4 NW PHILLIPSVILLE ISE	250 175 900		T09N T025 T015	R01W R02W R02W	L D	н н н	41 40 40	08 19 22	12 30 24		09 16 18				1885 1947 1958 1953 1963			12 12 12 12
F6 6976 F4 7698 F3 8025 F6 8045 F3 8083-01	PLASKFTT SALYER RANGER STA SAWYERS RAR R S SCOTIA SEIAD VALLEY R S	623 2169	SEC 27 SEC 14 SEC 20 SEC 07 SEC 11	T06N T40N T01N	R05E R11W		н м н	40 41 40	53 18 29	00	123	35 08 06	00	900 900 900		1960 1931 1931 1926 1953			11 53 47 12 47
F6 8163 F0 8311-01 F0 8311-02 F3 8346 F6 8490	SHFRWOOD VALLEY SMITH RIVFR 2 WNW SMITH RIVFR 7 SSE SOMESBAR 1W STANDISH HICKEY PARK	2170 195 60 520 850	SEC 32 SEC 21 SEC 30 SEC 04 SEC 03	T18N T17N T11N	R01W R01E R06E	A F	н н н	41 41	56 50 23	30 24 00	124	10 06 29	42 36 00	901 000 900 900		1958 1951 1952 1954 1950			23 08 08 12 23
F7 8899 F3 8919 F4 9024 F4 9045-01 F1 9053	THORN 2 NW TI BAR R S TRINITY OAM VISTA PT TRUMBLE RANCH TULFLAKF	710 2500 3190	5EC 16	T13N T34N T39N	R06E R08W R07W	L	H M M	41 40 41	31 48 13	48 00 44	123 123 122 122 121	31 46 38	30 00	000 905 900 000 900		1958 1959 1959 1961 1932	1962		12 47 53 53 47
F1 9057 F7 9177 F4 9490 F2 9499 F6 9527	TULELAKE INSP STN UPPER MATTOLE WEAVERVILLE RANGER S WEED 1 S WEOTT 255	255 2050 3630	SEC 31 SEC 33 SEC 12 SEC 11 SEC 12	T02S T33N T41N	ROlw Rlow RO5w		H M M	40 40 41	15 44 25	0.0	122	11 56 23	00	000 900 900 900 000	049057	1953 1886 1371 1957 1961			25 12 53 47 12
F7 9654 F6 9684 F6 9685 F2 9866 F6 9940	WHITETHORN WILLITS 1 NE WILLITS HOWARD RS YRFKA ZENIA 1 SSE	1350 1925 2631	SEC 17	T18N T17N T45N	R07W		9 9 9	39 41	25 21 43	00 00 00	123 123 123 122 122	21 19 38	00	000 900 900 900 900		1962 1950 1935 1871 1950			12 23 23 47 53

TABLE A-2 PRECIPITATION DATA FOR 1962-63 NORTH COASTAL AREA

	Precipitation in Inches												
Station	Season	July	Aug	Sept	Oct	Nov	Oec	Jon	Feb	Mor	Apr	May	June
SWITH RIVER													
CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY HMS CRESCENT CITY 11 E ELK VALLEY	72.23 90.59 107.90 81.48	0.00 0.00 0.00 0.00 0.00	3.97 3.46 4.00 3.07 2.62	2.08 2.21 2.23	12.93 10.70 16.83	10.97 8.66 14.35	10.10 7.61	3.07	9.39	9.70	13.60 16.41 13.28 19.58 12.93	11.95	0.32 0.53 0.39 0.41 0.73
GACQUET PANGEP STA IDLEWILD MAINT STN SHITH RIVER 2 WNW SMITH RIVER 7 SSE	104.17 89.87 133.40 121.60	0.00 0.00 T T		1.62 4.45	14.75 16.60	10.83 17.80		3.26	12.92	11.37	13.35 23.85	9.96 7.77 13.25 21.00	
LOST RIVER													
BRAY 10 WSW DORRIS INSPECT STA GRASS LAKE HWY M S LAVA REOS NAT MON MEDICINE LAKE	31.64 	0.14 0.09 T 0.04 0.00	0.90 - 0.72 0.26 0.90	0.69 - 0.49 0.23 0.85	7,33 6,74 8,30 15,75	-	3.86 - 1.45 1.38 6.45	-	4.34 2.72 1.16 1.14 5.85	0.77 1.69 1.38	1.63	1.30 0.62 1.81 2.26 3.90	0.71 0.53 1.77 1.59 1.85
MOUNT HERRON R S Tulflake Tulflake ingp stn	14.96 13.07 19.84	0.03 0.00 0.44	0.53 0.11 0.51	0.37 0.34 0.02	4.81 5.04 8.29	1.57 0.63 0.84	1.59 1.19 1.57	0.28 0.41 0.73	2.02 1.29 1.47	0.66 0.53 1.87	1.59 1.22 1.79	0.73 1.42 0.94	0.78 0.89 1.37
SHASTA-SCOTT													
915 CORINGS 4 F CALLAHAN RANGER STA ETNA FORT JONES A ESE FORT JONES RANGER ST	15.28 28.42 35.67 27.03 26.69	0.01 0.10 0.05 0.32 0.05	0.21 1.06 0.89 1.01 0.75	0.37 0.74 1.30 0.59 0.48	5.07 7.02 8.59 6.14 5.78	1.32 3.46 4.61 3.81 4.03	1.50 3.54 4.49 3.26 3.65	0.61 0.43 3.21 1.88 1.83	1.78 3.87 4.11 2.99 3.55	0.44 1.74 1.68 1.70 1.68	4.31 3.66 3.46	1.35 1.78 1.43 1.03 1.56	0.97 0.37 1.65 0.84 0.15
GAZELLE ANNW GAZELLE LOOKOUT GREENVIEW LITTLE SHASTA WONTAGUE	17.54 28.20 16.47 15.29	0.16 0.49 0.54 0.00 0.05	0.57 1.05 0.75 0.28 0.53	0.42 0.03 0.06 0.45 0.42	5.29 - 7.15 4.53 3.85	1.70 4.02 1.88 1.65	2.19 	1.32 	2.08 4.44 2.30 1.97	0.46 1.85 0.70 0.85	2.85		0.86 0.89 0.27 1.37 0.37
WONTAGUE 3 NF WFFD 1 5 VRFFA	14.92 29.70 23.77	0.00 T 0.20	0.42 0.89 0.88	0.31 0.57 0.78	4.04 8.30 6.00	3,56	1.94 3.60 3.32	0.95 1.05 1.06	5.15	0.55 3.66 1.42	6.14	0.89 3.01 0.53	0.40 1.24 0.50
KLAMATH RIVER													
RESWICK 7 S RUF CREEK MIN LO CLEAR CREEK CORFO DAM NO 1 FOOTHILL SCHOOL	51.49 126.53 72.38 24.42	1.32	1.93	_ 1.30	12.68 	- 8.87	7.05 - 8.44 2.84 -	3,21	9,94	- 10.44 1.33	10.92 3.53	3.21 1.06	0.60
FORKS OF CALMON HAPDY CAMP RANGR STA HILYC Vlamath Klamath Pivfr 1 cw	52.98 64.36 30.22 83.69 30.05	0.00 0.40 0.40 T 0.65	1.61 1.40 1.00 3.50 0.77	1.00 0.86 1.70	12.33 11.48 7.41 13.07 7.74		7.05	2.45 2.69 1.17 3.79 2.31	7.40 8.55 4.66 10.46 3.04	1,96 8,69	9.36 2.24 15.32	1.73 3.31 1.29 6.90 0.58	0.29 1.02 0.45 0.57 0.34
OAK KNOLL RANGER STA OPICY 10 SE OPLEANS SAVERS RAR R S SEIAD VALLEY R S	34.07 61.70 53.54 54.42	0.61 0.00 0.00 0.00 0.23	1.06 3.37 2.49 1.97 2.10	1.76 1.41 0.79	8.46 15.82 11.55 9.31 11.00	7.91	4.01 6.76	5.25	7.40 7.08	12.27 8.27	3.92 10.67 9.78 9.71 7.38	1.22 0.00 2.67 1.96 2.20	0.29 0.16 2.72 0.56
SOMESRAR IW TI RAR R S	67.62 72.67	0.02 0.00	2.98 2.39	1.72 1.66	12.02 12.48	8.81 9.38	7.66 8.72	2.29 3.34	9,75 9,80	9.05 9.31	10.32 11.78	2.67 3.42	0.33 0.39
TRINITY RIVER													
BIG PAR RANGER STA BIJANT RANCH IS COFFEE CREEK RS FAREST GLEN HAYFORK PANGER STA	55.0P	0.03 0.33 0.00 0.48 0.01	1.95 2.39 2.24	0.50 0.69 0.78	11.63	5.82 7.55	6.51 4.76 8.45 6.80 4.28	1.93 6.72 4.47	7.73	8,91 5,79 13,95	10.47	3.91 1.78	0.27 0.27 0.86 0.33 0.17

TABLE A-2 (Continued) PRECIPITATION DATA FOR 1962-63 NORTH COASTAL AREA

-171

		Precipitation in Inches												
Station	Seasan	July	Aug	Sept	0.01	Nav	Dec	Jan	Feb	Mar	Apr	May	June	
TRINITY RIVER						·					·			
HIDDEN VALLEY RCH HODDA HODDA 2 SE HYAMOOM MUMRO RASIN	68.39 67.24 63.32 50.37 68.91	0.00	1.67 2.55 2.42 1.43	1.94	11.30	5.40 9.15 7.58 5.37	7.18	1.95 2.31	9,79	12.73 8.96 9.21 6.36	12.62 9.91	1.59 1.43 2.30 0.87	0.45 0.37 0.25 0.05	
SALYFR RANGER STA TRINITY DAM VISTA PT TRIMRLE RANCH WEAVERVILLE RANGER S	52.10 41.80 45.06	0.00	1.39	0.79 0.21 	8.75	5.10 5.06 - 4.86	4.35	1.84 2.93 4.20 3.91	6.90 7.84 7.60 6.61	* 7.90	10.21 9.67 12.20 6.27		0.18 0.56 - 0.56	
MAD RIVER														
ARCATA A P Rig lagonn Rijf lakf Rif lakf Fiflopronk 4 d pch	53.84 68.40 57.61 66.25	0.00	2.30 2.45 2.43 1.59 3.20	1.41 0.90 1.54	11.66 10.21	8.28 9.45 8.03 8.73 10.95	4.77 5.31 5.09 7.45 5.20	2.87 1.54		7.16 7.46	10.90 14.74 11.54 13.97 12.35	2.85 4.36 2.54 3.36 2.40	0.42 0.39 0.58 0.46 0.40	
HONDP CAMP 42 VORBEL LITTLE RIVER LONG PRAIRIE RCH ORICY 3 NNE	85.33 58.34 68.38 - 79.44	0.00 0.00 0.00 0.00 0.00	3.59 2.86 3.12 4.12 3.30	1.00 1.55	9.07	13.56 8.39 10.60 	8.38 5.00 5.68	4.50 2.25 2.68 	7.30 6.03 8.33 -	7.78 7.93	17.94 11.51 14.82	-	0.22	
ΟΡΙΓΚ ΑΡΟΑΤΑ ΡΕΟΜΟΟΟ ΟΡΙΓΚ ΡΚΑΙΡΙΕ ΓΡΕΕΚ ΡΑΤΡΙΓΚ ΡΤ STATE ΡΚ	69.64 71.42 80.80	0.03	3.13 3.53	1.38 1.40	12.63	9.99 9.84	5.23	2.44	8.28 8.43	7.65 7.63	13.73	4.72	0.43	
FFL RIVEP														
ADANAC LODGF ALDERPOINT PRANSCOMB 2 NW RRIDGEVILLE A NNW BRIDGEVILLE P O	77.26 60.98 85.72 78.99	0.00 T 0.00 0.00 0.00	3.52	1.13 1.89 1.33		7.62 7.16 8.36 *		4.17 5.20	8.12 8.65	8.23 9.80	14.92 9.35 17.46 14.23	1.21 1.49	0.05 0.18 0.00 0.35	
RIILL CRFFK RURLINGTON ST PAPK CFDAR CRFEK HATCHFRY COVFLO COVFLO FEL RIVFR RS	89.10 77.93 76.37 43.17 39.36	0.00 0.00 0.00 0.00 0.00	2.27 2.03 0.70	1.24 1.45 0.80	13.79 17.66 8.84	7.58	8.49 7.67 8.88 5.12 4.20	4.29 3.80 3.22	10.83 9.11 5.45	15.23 12.44 10.06 7.33 6.70	14.88 14.72 6.97	4.25 2.95 1.05 0.55 0.71	0.18 0.13 0.03 0.10 0.11	
CHIMMINGS DOS RIOS FILPEKA WR CITY FERNALE 2NW FORTINA	80.91 50.21 43.94 	0.00 0.00 T _ 0.00	0.90	0.85	-		9.30 3.07 2.58 - 3.02	8.02 3.92 1.70 	8.14	8.59	10.68 10.98	0.74	0.10 0.14 0.33 0.35 0.31	
FOX CAMP GARREVILLE MAINTSIN HARRIS 7 SSF HARISORK INN HIGH ROCK	103.94 93.08 73.24 70.21	0.00 0.00 0.00 0.00 0.00	4.28 2.65 2.20 1.31 1.87	0.13 0.00 1.20	16.84 15.31 16.89 13.26 11.75	6.07 6.90 8.87	10.23 6.86 6.33 9.40 6.28	8.86 7.97 9.08 7.80 5.31	6.72 6.41 7.95	11.92	12.69	.7.01 16.09 0.95 1.64 3.34	0.07 0.56 0.05	
HOLMFS ISLAND MTN KNFFLAND 10 SSF Lakf Mountain Laytonvillf	66.51 45.86 58.44 60.14 66.93	0.00 0.00 0.00 0.00 0.00	2.71	0.43 1.00 0.93	10.34	4.18 8.23 6.93	5,91	5.18 5.66 3.79 6.90 10.59	2.87 0.85 3.57	8.52 9.80 9.74	12.17 7.60 12.94 9.89 11.23	0.61 3.50 1.44		
MINA 3 NW MIRANOA SPENGLED PCH WYEPS FLAT OLD HARIS PHILLIPSVILLE ISE	64.50 65.03 82.13 72.41	0.00 0.00 0.00 0.00	1.98 2.67 2.60 2.67	1.24 1.56	13.14 12.96 13.27 12.81	7.41 8.38	6.86 6.79 8.29 7.67	3.59 6.15 9.05 7.22 7.36	5.75 7.41 6.63	10.55 12.63 12.11	10.98 9.96 15.03 12.07 10.57	1.50 3.76 1.97	0.00 0.05 0.15 0.25 0.12	
PLASKETT SCOTIA SHERWOOD VALLEY STANDISH HICKEY PARK WFOTT 2SE	57.31 72.27 78.82	- 0.01 0.00 0.00 0.00	1.46 2.14	0.98 1.66 1.96	10.91 9.14 11.28 17.50 13.94	6.57 6.03 8.08	- 4.54 8.86 9.45 -	2.73 4.53 3.69 2.32	7.01 9.09	9.26 12.40 10.64 12.55	16.39	- 2.45 1.97 1.28 3.46	0.25 0.00 0.05 0.15	

TABLE A-2 (Continued) PRECIPITATION DATA FOR 1962-63

NORTH COASTAL AREA

							Precipil	ation in	inches					
	Station	Season	July	Aug	Sept	0 c†	Nov	Oec	Jon	Feb	Mar	Apr	May	June
	EFL RIVFR				L	1								
	WILLITS 1 NF WILLITS HOWARD RS 2FNIA 1 SSF	55.37 82.51	0.00	0.59	1.31	11.78	4.53	7.24	7,20	3,25	-	10.38 10.45 13.32	-	0.06 0.08 0.08
	MATTOLE RIVER CAPF RANCH		~ ~ ~ ~	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	- 70					15.87		-
	FTTERSRURG 2 SE FERNDALE 8 SSW HONFYDFW 2 WSW HONFYDFW HUNTEP	86.70 68.55 125.85 125.82	0.00 0.09 0.00 0.00	2.65 2.78	0.83 2.27	14.52 10.11 18.60 18.50	10.54 14.60	5.87 12.44	3.21 8.20	8.17 16.35	°.91 18.11	12,97	6.14	0.00 1.04 0.30 0.40
1	MANN PANCH PETROLIA PFTPOLIA 4 NW THOPN 2 NW UPPER MATTOLE	122.55 75.17 64.55 	0.00 0.00 0.00 0.00 0.00	2.00 3.00 2.93	0.95 0.85 3.18	10.24 8.55 16.65	9.46 9.30 12.87	5.81 4.00 11.15	5.40 2.50	7.14 7.75	10.90	21.08 19.12 16.50 21.30	3.83	0.32
	WHITETHORN	98.83	0.00	3.00	2.75	18,25	12.00	11.62	8,11	8,92	14.70	17.17	2.19	0.12

TEMPERATURE DATA FOR 1962-63 NORTH COASTAL AREA

	Station						Tempero	iture in	Degrees	Fahren	heit				
Number	Nome		Season	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mor	Apr	Moy	June
F5-0901	BLUE LAKE	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	82 62.2 54.6 46.9 22	76 68 60 52 47	73 68 62 55 44	82 67 60 54 43	73 64 56 47 37	72 60 52 45 33	71 57 48 40 25	66 56 45 34 22	72 63 55 47 34	65 57 48 40 30	65 58 52 45 35	73 62 56 51 45	70 67 60 53 41
F6-1608	CEDAR CREEK HATCHFRY	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	104 66.9 54.6 42.2 16	98 89 68 48 42	96 84 68 51 40	94 81 64 46 41	84 67 55 43 33	78 58 48 39 26	61 51 44 36 21	56 49 38 28 16	70 60 52 43 31	68 55 45 35 26	72 57 50 42 30	92 72 60 48 38	104 80 64 48 39
F1-2480	DORRIS INSPECT STA	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	-								62 52.4 40.4 28.4 15	65 49.0 36.4 23.9 11	67 50.2 37.0 23.8 -3	85 65.6 50.4 35.1 22	88 70.7 54.4 38.0 26
F5-3041	FIELDBROOK 4 0 RCH	ABS.MAX. AVG.MAX. AVERAGE AVG.M1N. ABS.MIN.	85 63.6 53.2 43.1 20	80 71 60 48 45	76 71 61 51 48	85 69 60 50 46	78 68 56 45 39	76 63 52 41 30	64 57 47 37 26	63 56 44 31 20	70 61 54 46 36	63 57 47 37 32	67 58 48 39 33	68 63 53 43 36	72 69 59 49 46
F6-3322-01	GARBERVILLE MAINTSTN	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	104 67.4 55.0 42.5 22	104 90 70 49 44	100 87 68 50 47		76 70 55 40 31	79 62 51 40 30	65 51 44 36 26	61 52 42 32 22	70 64 56 47 37	70 60 48 37 28	70 61 50 40 34	88 71 60 48 38	90 74 62 49 44
F2-3363	GAZELLE LOOKOUT	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.			89 82 68 54 44	89 80 67 54 45	- - -								86 71 58 46 31
F1-3564	GRASS LAKE HWY M S	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	57.0 42.8 28.5		89 74.1 54.8 35.4 29	87 75.6 54.4 33.3 25	79 60.5 45.4 30.2 21	68 49.0 37.6 26.1 7	63 48.1 35.8 23.6 11	64 44.3 29.8 15.2 -1	64 49.7 39.6 29.5 17		55 44.0 33.7 23.4 5	70 58.7 46.0 33.2 23	82 65.8 50.4 35.1 16
F6-4037-02	HOLMES	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	99 65.8 56.0 46.3 20	85 75 62 49 42	82 75 64 54 45	99 75 64 52 44	77 68 59 50 42	71 60 52 45 34	69 57 49 41 25	61 55 45 35 20	73 65 56 48 39	74 60 50 41 33	74 61 52 42 34	88 67 58 48 40	82 72 62 51 44
F5-4077	HONOR CAMP 42	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	90 62.2 51.7 41.0 24	90 76.0 61.2 46.5 49	81 71.6 58.5 45.4 40	90 69.6 57.4 45.2 41	84 67.5 55.6 43.6 36	84 57.9 49.2 40.6 28	72 59.7 50.1 40.5 30	70 55.0 43.3 31.6 24	70 59.9 51.0 42.2 32	64 50.8 42.9 35.0 26	64 52.2 44.0 35.7 30	82 59•2 50•6 42•1 36	88 67.7 56.0 44.3 38
F0-4202	IOLEWILD MAINT STN	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	103 65.0 52.7 40.5 18	103 90 70 49 40	94 83 66 50 44	92 77 62 48 40	80 62 52 42 34	62 54 46 38 26	60 48 40 33 22	56 46 36 27 18	60 58 50 42 30	64 58 46 34 25	68 53 44 36 30	88 70 56 43 34	98 81 62 44 38
F3-4583	KLAMATH RIVER 1 SW	ABS.MAX. AVG.MAX AVERAGE AVG.MIN. ABS.MIN.	100 69.5 56.0 42.3 17	100 91 72 52 43	95 86 70 53 46	97 86 68 49 43	84 70 57 44 35	79 61 50 40 27	71 52 44 35 21	64 54 40 25 17	71 61 51 41 30	72 60 46 33 27	76 60 50 40 30	93 76 62 47 37	95 80 64 49 41
F5-4602	KORAFL	ABS.MAX. AVG.MAX. AVFRAGE AVG.MIN. ABS.MIN.	85 65.9 55.6 45.9 24	81 75.3 62.2 49.2 42	82 74.1 63.5 52.9 44	85 72.1 62.6 53.1 45	75 66.2 56.4 46.7 39	74 60.7 52.0 43.4 31		62 53.3 43.8 34.2 24	75 64.4 55.8 47.1 36	66 59.0 49.2 39.3 31	70 59.7 50.5 41.3 34	80 63.9 56.0 48.1 37	78 72.0 60.2 48.5 41
F1-4838	LAVA REDS NAT MON	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	95 60.5 48.7 36.9 -5	94 82.6 66.8 50.9 39	92 82.2 66.6 51.1 38	90 77.9 63.1 48.3 34	83 61.6 49.8 37.8 23	70 50.9 41.8 32.7 15	61 45.4 36.8 28.2 9	60 43.7 32.8 21.9 -5	62 53.0 43.6 34.3 23	58 46.0 36.6 27.3 18	67 46.8 37.4 28.0 11	84 65.5 53.2 40.8 25	88 69.9 55.8 41.7 29
F2-5783	MONTAGUF	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	100 61. 46.7 33.6 5	-		100 86.7 65.2 43.7 33	84 66•0 51•4 36•8 28	71 55.4 43.8 32.2 18	61 42.4 35.4 28.4 14	53 45.6 31.2 16.9 5	67 57.0 45.8 34.7 24	68 55.5 42.6 29.6 17	73 55.7 44.8 34.0 19	94 74.3 60.4 46.6 31	97 79.2 - -

TABLE A-3 (Continued) TEMPERATURE DATA FOR 1962-63

NORTH COASTAL AREA

	Station		-					ature in							
Number	Nome		Seoson	July	Auq	Sept	0 c t	Nov	Oec	Jan	Feb	Mor	Apr	Moy	June
F3-6499	ORICK JU SE	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	94 64.1 54.6 45.0 23	94 74 66 57 46	92 76 66 56 40	92 77 65 53 44	78 61 54 47 30			68 56 45 34 23	70 60 52 43 32	62 51 42 33 26	80 58 48 37 30		
F3-8083-01	I SEJAD VALLEY R S	ABS•MAX• AVG•MAX• AVERAGE AVG•MIN• ABS•MIN•	69.6 55.3	106 94.8 71.6 48.5 40	100 90.1 70.9 51.7 43	102 91.2 68.6 46.0 40	80 70.1 56.8 43.4 32	78 58.1 48.8 39.5 28	58 47.7 40.8 34.0 19	60 49.4 36.0 22.7 13	68 59.4 50.3 41.2 30	71 58.6 46.0 33.5 24	76 57.9 47.6 37.2 30	98 76.7 61.2 45.6 38	102 81.0 64.0 47.0 38
F6-8490	STANDISH HICKEY PARK	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	92 64.2 54.0 43.9 22	92 83 68 52 48	88 77 62 47 53	90 76 63 50 46	76 65 56 46 38	72 58 50 43 30	64 53 46 39 24	56 51 42 32 22	66 61 53 45 36	64 55 46 38 32	64 52 46 40 34	80 66 56 45 36	92 73 62 50 42
7-8899	THORN 2 NW	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	97	97 87 67 47 41	96 83 66 49 40	96 83 65 47 40	92 74 59 44 35	90 69 54 40 29	80 68 53 38 23						-
1-9057	TULELAKE INSP STN	ABS.MAX. AVG.MAX. AVERAGE AVG.MIN. ABS.MIN.	94 60.2 45.7 31.2 -5	94 84•8 64•4 44•1 36	93 82.5 62.8 43.1 30	93 80.5 60.6 40.6 28	85 63.4 47.5 31.6 24	72 51.2 39.6 27.9 8	58 45•5 34•4 23•2 6	55 44.1 28.2 12.2 -5	66 52.4 40.3 28.2 13	60 48.5 35.6 22.8 12	59 45.2 35.0 24.8 4	63 52•7 44•8 37•0 25	87 72。 55。 39。 28
		A0001111	-				62 ·								

TABLE A-4 EVAPORATION DATA FOR 1962-63 NORTH COASTAL AREA

	Station					Evapo	Evaporation in Inches	ı in Ir	lches					
Number	Name	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr May	May	Jun	Total
- 3030-01	F6-3030-01 Ferndale 2 NW									Inc	3.06	Inc 3.06 3.40 5.22	5.22	
F3-8083-01 Seiad	. Seiad Valley R. S.											Inc 6.62	6.62	
F ^{1,} - 902 ^{1,}	Trinity Dam Vista Point 11.47 8.62 6.72 2.63b 1.13b 4.08b	11.47	8.62	6.72	2.63b	1.13b	ł, . 08b			Inc	2.08	2.08 5.50 9.11	9.11	
F1-9053	Tulelake	Inc	8.29	8.29 6.38 2.38	2.38						3.01b	3.01b 7.02 8.16	8.16	

b - Partially estimated.

Inc- Incomplete.

APPENDIX B

SURFACE WATER FLOW

TABLE OF CONTENTS

																						Page
Surface Water Flow	•	•	٠	•	•	۰		•	•	•	•	٠	•	•	•	•	•	•	•	٩	•	30
Definition of Terms	•	•	•	0	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	30

TABLES

Table

Daily Mean Discharge

B-1	Shasta River at Edgewood	•	•	•	•	•	•	•	•	•	33
B-2	Little Shasta River near Montague	•	•	•	•	•	•	•	•	•	34
B-3	Etna Creek near Etna	•	•	•	•	•	•	•	•	•	35
B-4	Moffett Creek near Fort Jones	•	۰	۰	•	•	•	0	۰	•	36
B-5	Weaver Creek near Douglas City	•	•	•	•	•	•	•	•	•	37
в-6	Browns Creek near Douglas City	•	٥	•	•	•	•	0	۰	•	38
B-7	North Fork Trinity River at Helena	٥	•	•	•	0	•	•	•	•	39
в-8	Big Creek near Hayfork	•		۰	۰	0	•	۰	•	0	40

The Surface Water Measurement Program is a long-term, continuing, basic data activity of the Department, providing accurate measurements of water stages and corresponding streamflow discharges.

The program incorporates both field and office activities. The field activities include the installation and maintenance of gaging stations as well as the actual measurement of streamflow. The office work includes the preparation of data for computation by machine methods. This consists of developing a rating curve for each streamflow station from a series of instantaneous discharge measurements, and a related formula. Manual computation of discharge is required when the direct stage-discharge relationship has been destroyed by ice forming on the control or by backwater from a tributary or control structure downstream.

Definition of Terms

The following terms are used:

Second-foot or cubic foot per second is the unit rate of discharge of water. It is a measure of a cubic foot of water passing a given point in one second.

<u>Acre-foot</u> is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

<u>Water year</u> is the l2-month period from October 1 of one year through September 30 of the subsequent year and is normally designated by the calendar year in which it is terminated.

The data shown in Table Nos. B-1 through B-8 have been determined from observations during the current year by Department personnel. Measurement procedures which have been employed are consistent with those used by the U. S. Geological Survey.

Accuracy of the flow records range between "excellent" (less than 5 percent error) and "good" (less than 10 percent error). The records of monthly and seasonal mean discharge and runoff are generally more accurate than the daily flow records.

When flows at a single station are in excess of 140 percent of the highest measurement on the rating curve, the computed daily mean discharges from the electronic computer are shown as "estimates". Normally, the rating is good where there is a fixed channel and flow regimen at the station. The rating varies, of course, where aquatic growth or shifting sands are present. Where the rating is not permanent more frequent measurements of discharge are necessary.

Locations of individual measurement stations are given in the tables of flow. Location numbers have been assigned in accordance with the Department's "Hydrologic Procedures Manual".

The location number is a six-digit number. The first letter designates the hydrographic area; the first number the river basin; the second number the reach of the stream. The last three numbers are sequence numbers assigned to a specific station. The sequence numbers begin at the downstream end of the reach.

The streamflow tables are arranged in a downstream order. Stations on a tributary entering between two main stem stations are listed between those stations and in downstream order. A stream gaging station normally derives its name from the stream and the nearest post office (e.g., Weaver Creek near Douglas City).

An automatic water stage recorder is in operation at all of the Department's gaging stations in the North Coastal Area.

Following are the significant figures used in reporting streamflow data, consistent with the accuracy of measurements obtained:

l.	Daily flow -	Second-feet
	0.0 - 9.9 10 - 99 100 - above	Tenths 2 Significant figures 3 Significant figures
2.	Mean flows -	Second-feet
	0.0 - 99.9 100 - 999 1000 - above	Tenths 3 Significant figures 4 Significant figures

DAY

E H H

.

The water year totals are reported to a maximum of four significant figures.

Station descriptions and historical data are provided at the bottom of each table of flow. Gage heights are in feet above assumed "local" datum planes.

The eight surface water measurement stations measured by the Department in the North Coastal Area are located on Plate 3.

DAILY MEAN DISCHARGE

SHASTA RIVER AT EDGEWOOD

			IN SECOND	FEET									
DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	15 13 15 16 17	1. 192 . 0	143 502 366 232 189	93 87	+06 + +42 =35 	100 107 110 103 10	115 99 -2 109	5. 8. 91 19 114	102 73 86 82 105	27 23 # 23 E 22 E 21 E	7 • 7 E 7 • 7 E 7 • 2 E t • c E	h d NB N L A NR	1 2 3 4 5
6 7 6 9 10	1 17 17 66 * 338	1 - 1 - 1	173 157 148 141 136	86 85 85 85 83	495 365 351 288 261	101 97 95 93 91	195 176 143 125 * 129	121 179 237 160 114	84 79 70 -8 57	21 E 25 E 19 E 19 E 18 E	し、ノ 帯 NR NR NR NR	NH NH NR NR	6 7 8 9 10
11 12 13 14 15	710 E 1310 E 470 205 164	57 110 88 72 * 67	131 * 120 142 160 508	72 78 79 79 79 79	230 * 227 238 195 176	86 * 83 81 81 82	126 323 303 1030 516	119 103 95 92 94	54 52 53 55 56	17 E 17 E 16 E 16 E 16 E	NR NR NR NR	NR NR NR NR	11 12 13 14 15
16 17 18 19 20	160 130 116 103 93	64 67 64 61 57	365 343 293 210 182	78 78 77 76 75	200 182 161 156 161	81 85 83 84 82	310 208 159 148 120	94 100 110 126 156	56 55 62 * 68 62	15 E 15 E 14 E 13 E 13 E	NR NR NR NR	NR NR 13 # 14	16 17 18 19 2 0
21 22 23 24 25	85 75 74 65	54 60 54 53 54	164 152 138 121 115	74 75 74 75 72	149 139 131 126 123	79 73 88 82 77	113 102 96 93 90	178 * 173 163 158 141	54 54 50 42 37	12 E 12 E 12 E 11 E 10 E	NR NR NR NR	14 14 13 12 12	2 2 2 2 3 2 4 2 5
26 27 28 29 30 31	65 56 53 53 53	573 253 176 148 143	110 * 108 106 100 100 101	69 70 69 137 776	127 117 111	73 207 160 128 122 126	89 8 7 86 90 88	13 116 113 124 117 113	33 31 46 37 35	10 E 9.6 E 7.0 E 5.4 E 8.4 E	NR NR NR NR NR NR	15 12 12 12 12	26 27 28 29 30 31
MEAN MAX. MIN. AC.FT.	192 1310 E 13.0 2330	92.4 573 44.0 5498	191 508 100 11730	104 776 69.0 6411	298 500 111 16570	98.3 207 73.5 6046	182 1030 86.0 10800	126 237 84.0 7732	60.3 105 31.0 3586	15.3 27.0 8.4 E .42	NR NR NR NR	NR NR NR NR	MEAN MAX MIN. AC.FT.

E - Estimated
 NR - Na Record
 * - Discharge measurement or observation of no flaw made on this day.
 # - E and *

			WAT	ER	TEAR SUM	MARY			
MEAN		MAXIMUN				MINIM			TOTAL
OISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO GAY	TIME	ACRE-FEET
INR	2520 E	7.37 1	10 12	1640	NR) NR

WATER YEAR 1963

STATION NO.

		LC	CAT	ON				MAXIN	NUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	Т	LONG			1/4 S	EC. T. 8	8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	OD	ZERO	REF
LATITODE		LONG	511 001	-	М	0.8.8.1	м	C.FS.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
41 28 2	20	122	26	18	SE20	421	5W	2520 E	7.37	10/12/62	MAR 61-DATE	MAR 61-DATE	1961		0.00	LOCAL

Station located on downstream side of Edgewood Road Bridge, 1.2 miles north of Edgewood. Tributary to Dwinnell Reservoir. Stage-discharge relationship at times affected by ice.

B-2 TABLE

DAILY MEAN DISCHARGE

LITTLE SHASTA RIVER NEAR MONTAGUE

DAY	OC T.	NOV	DEC.	JAN.	FEB.	MAR,	APR	MAY	JUNE	JULY	AUG.	SEPT.	OAY
1 2 3 4 5	4 • 8 5 • 8 6 • 4 5 • 5 5 • 6	5 • 1 5 • 1 5 • 1 5 • 5 6 • 2	26 97 F 94 E 45 34	10 11 13 11 9+1	206 E 90 E 189 E 109 E 67 E	29 27 26 24 23	24 20 20 20 38 E	43 43 46 46	21 20 19 19 21	8.9 8.6 8.5 7.5 7.4	5 • 5 5 • 7 5 • 3 5 • 6 5 • 0	4 • 2E 4 • 2E 4 • 2# 4 • 0 4 • 0	1 2 3 4 5
6 7 8 9 10	5+0 5+4 6+3 22 * 77 E	5.6 5.5 5.5 6.4 8.0	27 22 19 17 16	8.9 7.5# 6.5E 6.0E 5.0E	53 43 39 31 E 27 E	24 22 21 20 19	112 E 93 E 59 51 47	46 54 * 51 51 47	19 17 16 14 15	7.3 7.1 7.3 7.1 6.8	4 • 8 5 • 0 5 • 1 5 • 1 5 • 0	4.0 3.7 4.0 4.2 4.2	6 7 8 9 10
11 12 13 14 15	79 E 208 F 92 F 47 35	11 24 14 9.0 7.5*	14 * 15 15 18 45	5.0E 5.0E 5.0E 5.0E 5.0E	26 W 25 25 22 21	18 18 16 17 17	42 36 35 142 E 84 E	53 48 43 39 41	16 15 14 12 11	7.0 7.3 7.1 6.7 5.8	4 • 8 4 • 8 4 • 8 4 • 8 4 • 8	4 • 2 4 • 3 4 • 3 4 • 2 4 • 0	11 12 13 14 15
16 17 18 19 20	21 17 13 11 9.7	7.4 7.5 8.6 9.2 8.8	34 48 35 25 22	5.0E 5.0E 5.0E 5.0E 5.0E	23 23 34 40 74 F	17 16 16 23 28	59 49 45 42 37	37 36 35 34 33	12 13 15 14 11	6 • 1 * 6 • 4 6 • 4 6 • 5 5 • 8	5•1 5•1 5•0 4•8 4•9●	4 • 2 4 • 0 A • 0 4 • 2 4 • 0	16 17 18 19 20
2 I 2 2 2 3 2 4 2 5	8.6 7.9 7.3 6.6 6.6	12 13 10 8.5 8.5	19 19 14 13 16	5.0E 5.0E 5.0E 5.0E 5.0E 5.0E	51 39 34 31 32	26 22 21 19 17 *	34 39 44 42 • 36	33 32 31 30 28	11 12 12 11 10	6.0 5.7 5.6 5.5 5.3	5 • 3 5 • 3 5 • 1 5 • 1 5 • 1	4.2 4.0 3.8 3.8E 3.8E	21 22 23 24 25
26 27 28 29 30 31	6.6 6.8 6.2 6.2 6.0 5.8	86 E 41 23 13 17	12 12 14 13 14 12	4.5E 5.0E 5.5 5.4 70 E	41 31 30	17 20 26 25 27 32	35 34 40 46 47	27 26 25 23 22	9.6 9.4 11 12 10	5.3 5.2 4.8 5.1 5.8 5.7	5 • 1 5 • 1 4 • 8 4 • 8 4 • 5 4 • 5 4 • 2F	3.8E 3.6E 3.6E 3.3E 3.3E	27
MEAN MAX MIN.	24.2 208 F 4.8 1490	13.2 86.0E 5.1 788	26.6 97.0E 12.0 1638	8.3 70.0E 4.5E 513	52.0 206 E 21.0 2888	21.7 32.0 16.0 1335	48.4 142 E 20.0 2880	37.9 54.0 22.0 2329	14.1 21.0 9.4 837	6.5 8.9 4.8 400	5•0 5•7 4•2E 308	4.0 4.3 3.3E	MAX

WATER YEAR

1963

1

一部は日間

-

STATION NO.

F21300

E — Estimated NR — No. Record				WAT	ER Y	EAR SUM	MARY					
★ - Discharge measurement or observation	MEAN		MAXIMU				MINIM				1	TOTAL
of no flaw mode on this day.	DISCHARGE	DISCHARGE	GAGE HT	MD. DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME		ACRE-FEET
# ~ E ond ₩	21.6	525 E	4.23	10 12	1840	0.3	1.44	1	12	0300		15640

	LOCATION	1	MAXIMUM DISCHARGE			E PERIOD OF RECORD DATU			DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. B.R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
CATTODE	LONGITODE	M D. B. B M	C.F.S.	GAGE HT.	DATE	0.000.MILLOC	ONLY	FROM	TO	GAGE DATUN	
41 45 11	122 17 58	W15 45N 4W	741 E	4.76	11/13/57	28-NOV 51 8		1956		d.00	LOCAL
						APR 52-APR 55 SEP 56-DATE	APR 52-APR 55 SEP 56-DATE				

Station located south of Ball Mountain Road, 12 miles northeast of Montague, 16 miles southwest of MacDoel. Stage-discharge relationship at times affected by ice. Drainage area is 46.1 square miles.

8 - Irrigation season only

DAILY MEAN DISCHARGE ETNA CREEK NEAR ETNA

WATER YEAR 1963 STATION NO.

DAY	OCT.	NOV	OEC.	JAN.	FEB.	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT.	D
1	4.5	25	136	39	558 E	57	49	113 E	98 E	19	4.5	4.9	
	5+1	23	1100 E	38	378 E	55	44	115 E	86 E	18	4.4	4.4	
2	6.5	22	450 E	39	928 E	52	43	115 E	76 E	17	4.3	3.9	
	5.5	22	256	36	439 E	50	45	119 E	66 E	17	4.2	4.3	
4		23	191	30	439 E 326 E	48	213 E	195 E	61	16		4.7	
s	5.1	23	191	34	520 E	40	213 5	142 F	01		4+1	4 + 7	
6	5.0	21	155	33	252	47	446 E	173 E	56	16	3.9	5.1	
7	6 • 8	20	131	34 E	201	45	257	183 E	52	16	4.7	5.2	
8	29	19	113	31 E	180	42	180	177 E	50	15	5.9	4.6	
9	227	44	101	31 E	158	40	140	159 E	48	13	6 • 1	4.0	
10	200	35	93	30 E	138	37	118	145 E	45	13	6 • 1	3.9	
11	281 E	117	87	29 E	121 *	36 •	101	135 E	44	12	5.7	4.1	
12	438 E	230	80 ×	28 E	119	35	96	125 E	42	11	5.2	4.6	1
13	287 E	149	82	27 E	111	34	103	116 F	43	11	5+1	6.0	
14	167	107	80	27 E	100	35	145	113 E	43	10	4.6	5.9	
15	122	85	206	26 E	92	34	135	135 E	38	9.8	4+6	5.8	
16	94	71	166	25 E	88	35	109	169 E	39	9.8	4.5	5.7	1
17	80	64	141	25 E	81	33	95	211 E	37	9.5	4.7	5.6	
18	71	57	114	24 E	97	32	87	254 E	32 *	9.3	4.6	4.6	
19	68	51	94	23 E	101	33	78	309 E	30	8.8	4.4	2.8	
20	64	48	84	23 E	98	34	71	346 E	27	8.7	4.7=	2.7	
	60	48	77	22 #	91	34	66	283 #	27	8.5	4.7	2.8	
21	55	53	71	25 E	83	33	63	249 E	30	7.6	4.6	2.0	
22			65	25 C	78	34	63	249 E	28	7.5	4.7	2.07	
23		45											
24	46	40	58	8.2	72	33		213 E	25	7.3	4.9	2.5	
25	42	49	54	9.9	70	32 *	67	195 E	23	7.0	4.7	2 • 4	
26	39	410 E	51 *	12	72	36	63	181 E	22	6.8	4.3	2.4	
27	36	208	50	13	64	53	64	165 E	21	6.8	4.1	2 • 1	
28	33	140	48	13	61	58	72	150 E	23	6.3	3.9	2.2	
29	30	111	44	15		59	94	136 E	23	5.8	3.9	2.2	
30	27	119	45	28		62	115 E	124 E	21	5.5	5.5	2.2	
31	26		42	376 E		57		110 E		5.3	5.9		
MEAN	84.2	81.9	144	36.8	184	42.1	110	176	41.9	10.8	4.8	3.9	M
MAX	438 E	410 E	1100 E	376 E	928 E	62.0	446 E	346 E	98.0E	19.0	6 • 1	6.0	1
MIN.	4.5	19.0	42.0	8.2	61.0	32.0	43.0	110 E	21.0	5.3	3.9	2.1	
ACFT	5180	4871	8856	2265	10230	2588	6518	10790	2491	663	293	232	A

E - Estim

E - Estimoted NR - No Record * - Discharge measurement or observation of no flow mode an this day. # - E ond *

WATER YEAR SUMMARY

'n	MEAN)(MINIMUM						TOTAL			
	OISCHARGE	OISCHARGE	GAGE HT.	MO. 04	Y TIME	٦ſ	OISCHARGE	GAGE HT.	MO.	0AY	TIME		ACRE-FEET
	75.9	2090 E	11.55	22 2	1440	Ш	1.6	6.2	9	30	2000		54980
			} 1			ノヽ						, ·	

	LOCATION			MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
	LONGI7UDE	1/4 SEC. T. & R	SEC. T. B.R. OF RECO			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITODE	M 0.8.8 M	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
41 25 53	122 54 57	NEG 41N 9W				SEP 50-JUN 55 JUN 56-DATE	SEP 50-JUN 55 JUN 56-DATE	1957		0.00	LOCAL

Station located south of Savyers Bar-Etna Highway, 2.1 miles southwest of Etna. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Flow influenced by upstream diversion dam of city of Etna. Drainage area is 20.1 square miles.

DAILY MEAN DISCHARGE

MOFFETT CREEK NEAR FORT JONES

STATION NO.	WATER
F25420	1963

1.00 LOCAL

日日 日日日日日 - 町山村町

DAY	OCT.	NOV	OEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.5	3.5	21	21	78 E	30	12	59 E	25	11	2.1	1.8	1
2	1.6	3.5	201 F	20	83 E	30	13	58 E	24	10 +	1.6	1.8	2
3	1.7	3.6	211 E	22	294 E	30	12	57 E	23	10	1.3	1.7	4 3
4	1.6	3.6	122 E	21	270 E	28	12	60 E	23	9.9	1.2	1.4	4
6	1.5	3.9	89 E	19	210 E	28	13	55 E	22	10	1.1	1.2	5
6	1.5	3.9	66 F	18	164 E	28	21	53 E	22	10	1.24	1.1	6
7	1.6	3.6	50 E	17 *	128 E	28	24	51 #	21	10	1.3	1.2	7
8	2.0	3.6	47 5	18	108 E	27	24	47 E 35 E	20	9.2	1.2	1.1	8
9	2.4*	3.6	38 E	16	93 E	28	23	35 E	19	8.2	1.2	0.9	9
0	2.6	3.6	34 F	15	81 E	26	23	35 E	19	8.0	1.1	1.2	
44	4.7	4.5	30	11	69 #	26 •	23	35 E	18	7.3	1.3	1.0	
12	13	6.1	30 #	10	66 E 56 E	25	2.5	35 E	17	7.0	1.4	0.8	
13	21	6.1	27	8.0		24	Z 1	35 E	17	6,9	1.4	0.7	3
14	15	6.3*	26	9.7	51 E	24	28	35 E	16	6.4	1 . 4	0.7	14
15	11	5.9	34 E	9.1	49 E	24	40 E	25 E	16	6.3	1.5	0.6	15
16	8.2	5.1	38 E	8.3	50 E	24	100 E	25 E 29 E 32 E	16	6.1	1.7	0.5	IG
17	6.1	5.6	45 F	8.5	48 E	15	90 E	29 E	17	5.6	2.1	0.5	17
18	5.4	4.8	42 E	7.4	45 E	13	80 E		17 +	5.5	2.3	0.6	18
19	5.3	4.7	40 E	7.1	46 E	12	80 E	30 E	16	5.4	2.4	0.5	19
20	4.9	4.8	39 E	7.3	45 E	11	80 E	36 E	15	5.3	2.3	0.5	2.0
21	4.5	5.0	38 E	6.6	45 E	11	80 E	42 #	15	4.0	2.0	0.5	21
22	4+3	5.1	36 E	6.6	43 E	10	80 E	40 E	15	2.2	2 • 0	0.6	22
23	4.4	5+1	34 5	6.6	40 E	9.7	80 E	42 E	14	2.6	2.2	0.7	23
24	3.9	4.7	32 E	5.9	37 5	9.1	79 #	37 E	13	2.6	2.1	0.6	24
25	3.7	4.5	29	5.9	36 E	9.1	86 E	34 E	11	3.0	1.5	0 • 6	25
26	3.7	74 E	29	5.9	36 E	9.8	84 E	36 E	13	3.1	1.5	0.7	26
27	4.1	52 #	26	5.3	35 E	12	75 E	36 E	13	4.7	1.3	0.8	27
28	3.9	38 E	25	5.3	33 E	12	71 E	28 E	13	3.6	1.3	n.8	28
29	3.6	27 E	24	5.3		13	68 E	30 E	12	2.8	1.2	0.8	29
30	3.6	23	23	5.4		13	64 E	28 #	11	2.7	4.0E	1.0	30
31	٦.4		23	33 E		13		25		2.9	2.6		31
MEAN	5.0	11.0	50.0	11.8	83.5	19.4	50.3	38.9	17.1	6.2	1.7	0.9	MEAN
MAX.	21.0	74.0E	211 E	33.0E	294 E	30.0	100 E	60.0E	25.0	11.0	4.0E	1.8	MAX
MIN.	1.5	3.5	21.0	5.3	33.0E	9.1	12.0	25.0E	11.0	2.2	1.1	0.5	MIN.
AGFT	309	652	3072	724	4639	1195	2991	2390	1018	381	105	53	ACFT

E - Estimated NR - No Record		WATER YEAR SUMMARY	
₩ - Discharge measurement or observation	MEAN	MAXIMUM MINIMUM	TOTAL
		DISCHARGE GAGENT MO DAY TIME DISCHARGE GAGENT MO DAY TIME	ACRE-FEET
# − E ond ¥	24.2	749 E 3.42 12 2 1440 0.5 2.31 9 16 2400	17530

LOCATION			MAXIMUM DISCHARGE			PERIOD 0	DATUM OF GAGE				
LAT TUDE LONGITUDE		1/4 SEC T.8.R	OF RECORD			0IS CHARGE	GAGE HEIGHT	PER	100	ZERO	REF
		M 0.8 8 M	C. F. S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	0ATUM

Station located 90 feet above Old Fort Jones-Yreka Eighway Bridge, 5.1 miles northeast of Fort Jones. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Drainage area is 69.8 square miles.

DAILY MEAN DISCHARGE WEAVER CREEK NEAR DOUGLAS CITY

STATION NO.	WATER YEAR
F41540	1963

TOTAL

DAY	OCT.	NOV	DEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	5.4	16	59	26	882 E	58	207	127	73	20	6.3	2.9	1
2	5.6	17	713 E	25	550 E	55	187	122	69	17 +	5+6	2.6	2
3	6.8	16	245 E	24	473 E	-52	205	124	66	18 E	5.6	2.6	3
-4	7.5	15	116	23	269	48	187	122	62	17	5.3	2.4	4
5	8.2	15	94	21	213	46	412 E	136	59	17	5+0+	2.2*	5
6	9+1	15	66	22	193	45	523 E	136	57	16	4.9	2.9	6
7	9.9	15	55	21	166	43	348 E	136	54	16	3.9*	2.5	7
8	12	16	47	20	166	40	261 *	135	52	15	4 + 1	2.1	8
9	17	17	41	19 •	189	40	217	127	48	14	5+1	1.9	9
10	48	18	37	20	243	37	203	128	48	14	4.7	1.8	10
	93 •	24	33	18	200	34	182	119	47	14	4+0	2.0	- 11
12	222	36	29	18	404 E	33	201	113	45	13	3+6	2.2	12
13	97	30	33	14 E	365 #	31 +	307	107	43	13	3.5	2.3	13
14	69	24	32 *	14 E	211	33	463 E	107	41	12	3.3	2.3	14
15	42	22	155	14 E	161	31	370	110	39	12	3+1	2.4	15
16	32	21	109	14 E	162	41	268	115	41	12	3.5	2.5	16
17	27	21	97 •	14 E	143	38	212	120	41	11	3.1	3.2	17
18	25	20	80	14 E	137	38	215	126	37	11	2.9	4.7	18
19	23	20	70	14 E	125	37	233	131	34	11	2.9	3.6	20
20	22	19	61	14 E	117	39	189	134	32	10	2.7	3.8	20
21	22	19	54	12 E	107	40	165	132	29	9.6	2.9	3.6	21
22	21	19	47	12 E	96	41	146	128	28	9.2	3.1	3.7	22
23	20	19	44	12 E	90	55	133	124 *	29	8.7	3.3	3.7	23
24 25	18	19 19	40	12 E	81	50	126	119	28	8.7	3+5	3.6	24
25	19	19	31	12 E	76	47	154	110	25	8.3	3+5	2 و ٦	25
26	18	574 E	34	12 E	71	50	136	102	23	7.9	3.2	3.0	26
27	18	115	33	12 E	66	759 E	126	96	23	7.5	3+1	2.4	27
28	17	70	30	12 E	62	545 E	124	92	21	7.1	2.9	2 + 1	2.8
29	16	51	28	12 E		325	124	89	21	7.1	3.0	1.9	29
30	16	45	28	112		267	125	83	21	6.7	2.9	1.9	30
31	16		28	2280 E		240		76		6.7	3+2		31
MEAN	31.7	44.9	82.7	92.5	215	105	225	117	41.2	12.0	3+8	2.7	MEAN
MAX.	222	574 E	713 E	2280 E	882 E	759 E	523 E	136	73.0	20.0	6.3	4.2	MAX
MIN.	5.4	15.0	28.0	12.0E	62.0	31.0	124	76.0	21.0	6.7	2.7	1.8	MIN
AC, FT.	1947	2672	5088	5691	11940	6422	13390	7192	2452	735	233	162	AC.FT

Е	_	Estimated	
NR	-	No Record	
*	-	Discharge measurement or abservation	MEAN
		of no flow made on this day.	DISCHARGE

*	-	0ı	sch	arge	measu	rem	ent	or
		of	0.0	Flow	mode	00	*his	

- E ond *

21

WATER YEAR SUMMARY

ervation	MEAN	(MAXIMU	М			1		MINIM	UМ				TOTAL
	DISCHARGE	OISCHARGE	GAGE HT.	MO	0AY	TIME	I	OISCHARGE	GAGE HT.	MO	DAY	TIME]	ACRE-FEET
	80.0	7380 E	11.40	1	31	1510		NR)	57920

	LOCATION		MAXIN	NUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC T & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	001	ZERO	REF
CATTOOL	LONGTOOL	MDB&M	CFS	GAGE HT.	DATE	- CIGONAROE	ONLY	FROM	TO	ON GAGE	DATUM
40 -0 13	122 56 33	SE36 33N 10W	7380 E	11.40	1/31/63	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 0.2 mile below U. S. Highway 299 Bridge, 1.2 miles north of Douglas City, 1.2 miles south of Weaverville. Tributary to Trinity River. Drainage area is 46.- square miles.

DAILY MEAN DISCHARGE

BROWNS CREEK NEAR DOUGLAS CITY

		8ROWN5	CREEK NEAR	DOUGLAS C	lΤΥ					F		963	
DAY	OC 7.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG,	SEPT.	OAY
1	6 • 2	12	39	35	614	82	275	194	58	20	8 • 5	6.9	1
2	5 • 3	12	175	33	388	80	224	185	57	19	8 • 5	6.4	2
3	4 • 5	12	277	32	323	76	214	172	55	19	7 • 6	5.8	3
4	4 • 0	13	135	31	276	73	194	166	53	19	7 • 6	5.7	4
5	4 • 0	13	93	28	215	70	270	166	50	19	7 • 7	5.9	5
6	4 • 4	13	75	27	169	69	378	156	50	19	8 • 4	6.9	6
7	5 • 2	12	65	27	140	66	375	146 •	49	19	8 • 5	7.0	7
8	5 • 4	13	56	25	134	65	328 *	138	48	18	7 • 7	6.4	8
9	8 • 7	13	49	24	265	65	292	129	45	18	9 • 1	5.7	9
10	45	14	44	23	1120	59	279	135	43	16	8 • 9	5.9	10
11	110	15	41	22	652	56	261	127	43	16	8 • 1	5 • 2*	11
12	289 •	16	38	22 E	554	54	344	120	40	15	7 • 1	5 • 0	12
13	191	15	38	22 E	727	53 *	557	116	39	15	7 • 6	5 • 4	13
14	90	14	35 +	22 E	491	53	983	111	37	15	6 • 6	5 • 6	14
15	69	14	99	22 E	369	51	802	104	36	14	6 • 3	5 • 5	15
16 17 18 19 20	42 31 23 21 19	14 14 14 13	124 114 * 102 89 80	22 E 22 E 22 E 22 E 22 E 22 E	315 266 221 190 166	58 50 48 47 48	588 473 401 372 332	102 99 96 94 92	37 38 34 * 31 29	14 14 13 13 12	6 • 2 6 • 0 6 • 0 5 • 6 5 • 8	5.9 6.8 6.9 6.7 6.2	16 17 18 19 20
2 I	17	13	74	22 E	144	49	302	89	27	12	5.9*	5.7	2 I
22	16	13	65	22 E	129	53	278	87	27	12	5.4	5.9	2 2
23	15	13	61	21 E	116	86	256	90	27	11	6.1	6.1	2 3
24	15	13	56	20 E	109	80	244	85	25	11	6.7	6.2	2 4
25	14	13	50	19 F	103	75	255	81	22	11	7.1	5.8	2 5
26 27 28 29 3 0 31	14 14 13 13 13	155 112 68 49 40	48 46 43 40 38 37	18 E 17 E 16 E 15 23 338	96 91 87	78 584 744 419 353 312	248 235 224 217 206	77 71 68 69 64 62	22 20 20 20 20 20	12 1D 9.8 8.9 8.6 8.7	6 • 7 6 • 2 5 • 7 5 • 5 5 • 8 6 • 6	5.5 5.2 5.3 5.0 5.7	26 27 28 29 30 31
MEAN	36.6	25.3	75.0	33.4	303	131	347	113	36.7	14.3	6 • 9	5.9	MEAN
MAX.	289	155	277	338	1120	744	983	194	58.0	20.0	9 • 1	7.0	MAX.
MIN.	4.0	12.0	35.0	15.0	87.0	47.0	194	62.0	20.0	8.6	5 • 4	5.0	MIN.
AC.FT.	2251	1505	4614	2055	16800	8045	20640	6924	2186	877	4 27	353	AC.FT.

E - Estimated NR - No Record ★ - Oischorge measurement or abserv of no flow made on this day. # - E ond ★

WATER YEAR SUMMARY

WATER

:11

STATION NO.

vation	MEAN		MAXIMU					MINIM					TOTAL
	DISCHARGE	QISCHARGE	GAGE HT.	14 O.	OAY	TIME	DISCHARGE	GAGE HT.	MD.	DAY	TIME]	ACRE-FEET
	[92.1]	1270	12.89	3	27	2020	3.5	7.95	10	4	0250)	66680

		LOCATION	4	MAXI	AUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
			1/4 SEC. T & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	100	ZERD	REF
ļ	LATITUDE	LONGITUDE	M D.B.& M	C.FS.	GAGE HT.	DATE		DNLY	FRDM	то	GAGE	DATUM
	La 38 35	122 58 46	SELC 32N LOW	3950 E	16.60	2 18 58	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located at private bridge, 2.1 miles west of Douglas City. Tributary to Trinity River. Stage-discharge relationship at times affected by ice. Drainage area is 71.4 square miles.

DAILY MEAN DISCHARGE

NORTH FORK TRINITY RIVER AT HELENA

STATION NO.	WATER YEAR
F42100	1963

DAY	OCT.	NOV	OEC.	JAN	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAT
1	37	129	636	224	3950	328	926	992	490	152	70	35	1
2	36	123	4590	212	2300	313	704	897	459	149	67	34	2
3	50	119	3590	209	3000	297	624	978	401	154	66	33	3
4	49	116	1750	196	2280	280	575	1020	360	156	63	31	4
5	41	119	1120	185	1820	267	1760	1560	354	162	62 •	31	5
6	40	114	821	177	1410	257	3430	1640	338	163	58	32	6
7	41	107	667	164	1110	244	2560	1550	326	160	57	31	7
8	144	102	566	156	943	231	1830	1300	330	149	57	31	8
9	670	131	495	153 •	833	225	1470	1010	340	141	62	29	9
10	1300	164	443	149	953	214	1250	867	367	140	62	29	10
11	2180 +	321	400	140	790	202	1030	771	318	141	57	29 *	11
12	4270	797	366	130	877	195	1320	702	326	136	54	31	ŧΖ
13	2330	569	507	138	1190 *	186 *	2210	670	351	147	51	35	13
14	1340	391	495 +	135	1000	189	3210	662	384	145	49	32	14
15	917	314	1650	127	809	181	2640	702	383	132	46	30	15
16	626	274	1360	125	727	198	1860	776	372	120	44	30	16
18	495	245	968 *	121	673	181	1450	941	355	116	43	32	18
19	430	222	778	116	690	179	1210	1130	333	108	42	33	19
	383	202	652	112	697	183	1050	1200	309	104	41	32	20
20	338	188	566	110	629	197	903	1270	271	103	40	30	20
21	301	183	501	107	573	205	823	1200	241	103	39	29	21
22	273	187	458	106	519	207	770	1060	217	99	37	28	22
23	241	176	413	102	474	246	746	969 *	208	94	36	28	23
25	218	162	379	99	440	241	762	853	181	92	36	28	24
2.5	202	162	345	97	411	237	778	749	175	88	36	27	23
26	186	2690	321	96	426	266	762	675	182	83	35	26	26
27	174	1470	301	94	380	1090	732	618	190	79	34	25	27
28	163	812	283	94	35Q	1600	760	611	178	79	33	24	28
29	153	587	266	97		1250	883	612	167	77	33	24	29
30	145	563	253	134		1330	994	639	153	74	33	24	
31	136		238	2370		1280		546		72	38	-	31
AEAN	578	391	845	209	1081	403	1334	941	302	120	47.8	29.8	MEAN
AAX	4270	2690	4590	2370	3950	1600	3430	1640	490	163	70.0	35.0	MAX
MIN.	36.0	102	238	94.0	350	179	575	546	153	72.0	33.0	24.0	MIN
C.FT.	35520	23280	51920	12840	60010	24790	79380	57860	17970	7375	2938	1771	ACF

E - Estimoted NR - No Record				WA	TER Y	EAR SUM	MARY				
★ - Discharge measurement or abservation	MEAN		MAXIMU				MINIM	UM			TOTAL
of no flow mode on this day.	DISCHARGE	DISCHARGE	GAGE HT.	MO. DA	TIME	DISCHARGE	GAGE HT.	MO. D	Y TIME	1	ACRE-FEET
# − E ond #	518	7890	16.41	12 2	1740	23.0	4.64	9 2	8 2400)	375700

	LOCATION		MAXI	UM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECORD		OISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
CATTODE	CONGITODE	M D.B.B.M	CFS.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
40 46 56	123 07 39	SW21 34N 11W	13500	19.66	1/12/59	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 1.0 mile above mouth, 0.6 mile north of Helena. Stage-discharge relationship at times affected by ice. Drainage area is 151 square miles.

DAILY MEAN DISCHARGE

BIG CREEK NEAR HAYFORK

												-	
DAY	OCT.	NOV	DEC.	JAN	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	6.4	32	22	259 E	39	126	92	21	14	0.0	0.0	
2	0.0	5.8	188 E	21	176	38	106	89	20	13	0.0	0.0	2
3	0.0	6.4	166 E	20	136	36	101	88	19	14	0.0	0.0	3
4	0.0	5.8	79	20	109	34	89	86	20	16	0.0	0.0	4
5	0.0	6+4	55 *	19	90	34 *	164 E	88	20	12	0.0	0+0	5
6	0.0	6+4	44	18	83	32	282 E	85	19	11	0+0	0+0	6
7	0.0	6 • 4	36	17	72	32	237	81 *	19	11	0+0	0.0	7
8	0.0	6 • 4	32	16	70	31	203 *	76	18	9.4	0+0	0.1	8
9	4.0	6.4	28	16 *	87	29	182	71	18	9.0	0.0	0.0	9
10	20	8.1	25	17	138	27	163	72	17	8.6	0+0	0.0	10
H.	37	11	24	17	120	26	142	68	16	8.1	0+0	0+1	- 0
12	91 *	20	23	15	158	26	192	65	15	7.0	0.0	0.3	12
13	55	15	31	14 E	200 *	25	319 E	62	15	7+5	0.0	0.2	13
14	45	11	26 *	13 E	147	26	403 E	60	15	7.0	0.0	0.0	14
15	26	7.8*	92	12 E	114	27	353 E	56	14	5.3	0+0	0.3	15
16	18	8.1	73	11 E	106	28	267 E	53	15	4.8	0+0	0+0	16
17	13	8.6	59	10 E	91	27	207	51	16	5.3	0+0	0.7	17
18	11	8.5	49	10 E	81	26	177	49	14 *	3.9	0.0	0.6	18
19	10	9.3	42	10 E	75	25	158	48	13	3.4	0.0	0.9	19
20	9+4	8.7	37	10 E	70	26	136	46	14	3.0	0.0	0+7	20
21	8 • 1	8.6	33	10 E	65	26	119	45	18	2 . 2	0.0	0.5	21
22	8 + 1	10	32	10 E	60	26	108	44	19	1.8	0+0	0.9	22
23	7.0	11	29	10 #	54	29	102	42	17	1.8	0.0	0.9	23
24	7.0	11	27	10 E	51	28	101	39	17	1.8	0+0	0.6	24
25	6.4	12	26	10 E	47	27	104	38	18	1.5	0•0	0.0	25
26	7.0	109	24	10 E	46	33	102	34	17	0.8	0.0	0.3	26
27	7.0	75	23	10 E	42	199 #	96	31	17	0.0	0.0	0.4	27
2.8	7.5	46	23	10 E	41	222 E	93	30	16	0.0	0.0	0.5	28
29	7.0	35	22	11 E		167	95	29	16	0.0	0.0	0.0	29
30	7.5	32	22	25		158	94	26	15	0.0	0.0	1.0	30
31	6.4		22	159 E		153		22		0.0	0+0		31
MEAN	13.5	17.4	45.9	18.8	99.6	53.6	167	57.0	16.9	5.9	0.0	0.3	MEAN
MAX.	91.0	109	188 E	159 E	259 E	222 E	403 E	92.0	21.0	16.0	0.0	1.0	MAX.
MIN.	0.0	5 + 8	22.0	10•0E	41.0	25 • 0	89.0	22.0	13.0	0.0	0+0	0.0	
AC.FT.	830	1036	2824	1156	5530	3297	9959	3503	1008	363		18	AC.FT

WATER YEAR 1963

STATION NO. F44500

E - Estimoted		WATE	RY	YEAR SUMMARY	
NR - No Record * - Discharge measurement or observation	MEAN	MAXIMUM		MINIMUM	TOTAL
of no flow made on this doy.	DISCHARGE	DISCHARGE GAGE HT. MO. DAY			ACRE-FEET
# -E and *	40.8	435 E 8.44 4 14	600	0.0 10 1 0000	29520

ſ		LOCATION	4	MAXIN	NUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
ł			1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
	LATITUDE	LONGITUDE	M D.B B M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
ľ	40 33 11	123 08 35	SE7 31N 11W	1540 E	9.25	2/18/58	FEB 57-DATE	FEB 57-DATE	1957		0.00	LOCAL

Station located 30 feet above Hayfork-Douglas City Higbway Bridge, 2 miles east of Hayfork. Tributary to South Fork Trinity River via Hayfork Creek. Flow influenced by upstream diversion dam of City of Hayfork. Drainage area is 27.3 square miles.

APPENDIX C

4 5 6 1 1 0 U U MX N FL

GROUND WATER MEASUREMENTS

TABLE OF CONTENTS

																						Page
Ground Water Measurements	•		•		•	•	•	•	•	•	•	•		•	•	٠	•	•	٠		•	44
Numbering Systems	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	45

TABLES

Table

C-l	Ground W	Vater	Level	Measurements									•					4	9
-----	----------	-------	-------	--------------	--	--	--	--	--	--	--	--	---	--	--	--	--	---	---

GROUND WATER MEASUREMENTS

All studies of ground water problems, and plans for the solution of these problems, should be founded upon accurate records of ground water elevations obtained over a period of many years. This is true whether the problem is the determination of the safe yield of a ground water basin, an operation of a basin for cyclic storage in conjunction with surface water supplies, or the control of seawater intrusion.

The Department began the collection of ground water data in 1930, in conjunction with special investigations of water resources of specific areas, and has gradually developed a continuing program of basic data collection. Through cooperative activities with the federal and local agencies, coordinated and augmented by the Department, the program of ground water level measurements has gradually been expanded for adequate coverage in most basins.

Within the North Coastal Area the Department cooperates with the U. S. Geological Survey in the systematic observation of ground water levels in nine of the more important ground water basins. The field measurements are made by the U. S. Geological Survey. The review, processing and editing of the data is accomplished by the Department.

Wells are selected for measurement on the basis of geographical density, length of record, frequency of measurements, conformity to water level fluctuations in the basin and availability of a well log, mineral analyses and production records.

The depth to water in most of the wells is usually a direct measurement made with a tape. However, in some of the deeper wells measurements are made with an air line and gage or an electric sounder.

The ground water level measurements collected from the North Coastal Area basins during the 1962-63 fiscal year are included in Table C-1, "Ground Water Level Measurements". A summary of the average seasonal change in water levels in the nine ground water basins reported in this appendix are given in Figure 2 (Chapter II), "Average Ground Water Level Changes in North Coastal Area Basins".

NUMBERING SYSTEMS

Region and Basin Designations

All data presented in this appendix is within Region 1, a geographic area defined in Section 13040 of the Water Code. The nine ground water basins measured in the program during 1962-63 are shown on Plate 4.

A decimal system of the form 0-00.00 is used for basin numbering. The number to the left of the dash refers to the geographic region and the first two digits of the number on the right of the dash refer to the hydrographic unit, generally designated as a basin, valley or area. These are followed by a decimal which shows the sub-basin, area or sub-area within the basin, valley or area. Two zeros following the decimal denotes that there is no sub-basin, area or sub-area. An example is given below:

	1-01.0	0
Region (North Coastal Region)		
Hydrographic Unit (Smith River Plain)		
Sub-Area (No sub-areas exist in the North Coastal Region)		

Well Numbering System

The State Well numbering system used in this report is based on the township, range and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data is published or filed by the Department. In this report, the number of a well assigned in accordance with this system is referred to as the State Well Number.

Within the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	А
Е	F	G	Н
М	L	K	J
N	Р	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/1W-2J1H would be in Township 16 North, Range 1 West, Section 2, Humboldt Base and Meridian, and would be further designated as the first well assigned a State Well Number in tract J. In this report well numbers are referenced to the Humboldt Base and Meridian (H), and the Mount Diablo Base and Meridian (M).

Agency Supplying Data

The code number assigned to the U.S. Geological Survey, the measuring agency for the wells listed in this appendix, is 5000.

Well Use

The use of water is indicated as follows:

Code	Well Use
(Blank)	Unknown
1	Domestic
2	Irrigation
3 4	Municipal
24	Industrial
5	Injection or Recharge
6	Drainage
7	Domestic and Irrigation
8	Test
9	Stock
0	Unused

Well Depth

Well depths shown were reported by the owner, obtained from a driller's log or measured at the time of the well canvass.

Reason for Questionable Measurement

If the water level measurement is of questionable reliability, the reason is indicated by the following code preceding the measurement:

Code	Reason
1 2 3 4	Pump operating Nearby pump operating Casing leaking or wet Pumped recently
5 6	Air or pressure gage measurement Other
7 8	Recharge operation at or nearby well Oil in casing
0	Caved or deepened

Reason for No Measurement

If no measurement was made at a well scheduled to be measured, the reason for not making the measurement is indicated by the following code:

1Pump operating2Pump house locked3Tape hung up4Can't get tape into casi5Unable to locate well6Well has been destroyed7Special8Casing leaking or wet9Temporarily inaccessible0Measurement discontinued	Code	Reason
5 Unable to locate well 6 Well has been destroyed 7 Special 8 Casing leaking or wet 9 Temporarily inaccessible		4 4 0
5 Unable to locate well 6 Well has been destroyed 7 Special 8 Casing leaking or wet 9 Temporarily inaccessible	3 2	4 0 1
7Special8Casing leaking or wet9Temporarily inaccessible		Unable to locate well
9 Temporarily inaccessible	6 7	
	8	
	9	- •

STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
		<u></u>	NORTH COA	STAL REGION	1-00.00			
SMITH RIVER PLAI	N 1-01	00						
16N/01W-02J01 H	1	36	53	127.0	7-25-62 8-22-62 9-20-62 10-24-62 11-27-62 1-22-63 2-19-63 3-20-63 4-24-63 5-21-63 6-19-63	19.1 19.9 20.0 19.3 14.6 14.2 15.9 14.5 14.8 13.8 14.8 13.8 14.8 13.8	107.9 107.1 107.0 107.7 112.4 112.8 111.1 112.5 112.2 113.2 113.2 112.2 109.1	5000 5000 5000 5000 5000 5000 5000 500
16N/01W-17K01 H	l	40	53	48.0	$\begin{array}{c} 7-25-62\\ 8-22-62\\ 9-20-62\\ 10-24-62\\ 11-27-62\\ 12-18-62\\ 1-22-63\\ 2-19-63\\ 3-20-63\\ 3-20-63\\ 4-24-63\\ 5-21-63\\ 6-19-63\\ \end{array}$	18.8 19.8 (1) 27.6 21.2 19.6 18.9 16.1 15.5 15.3 8.2 8.8 15.2	29.2 28.2 20.4 26.8 28.4 29.1 31.9 32.5 32.5 39.8 39.2 39.2 32.8	5000 5000 5000 5000 5000 5000 5000 500
16N/01W-22Q02 H	l	33	58	39.0	7-25-62 8-22-62 9-22-62	17.0 16.4 (6)	22.0 22.6	5000 5000 5000
17N/01W-02P01 H	1	27	52	31.0	$\begin{array}{c} 7-25-62\\ 8-22-62\\ 9-20-62\\ 10-24-62\\ 12-18-62\\ 1-27-62\\ 1-28-63\\ 3-20-63\\ 3-20-63\\ 3-224-63\\ 4-24-63\\ 5-21-63\\ 6-19-63\\ \end{array}$	22.7 21.4 22.4 21.3 13.2 14.2 19.8 15.8 18.4 16.2 17.2 19.5	8.3 9.6 9.7 17.8 16.8 11.2 12.6 14.8 13.8 11.5	5000 5000 5000 5000 5000 5000 5000 500
18N/01W-26P01 H	7	28	52	38.0	7-25-62 8-22-62 9-20-62 10-24-62 11-27-62 12-18-62 1-28-63 3-20-63 4-24-63 5-21-63 6-19-63	22.5 21.5 22.3 21.5 14.4 15.1 19.0 15.5 18.1 15.2 16.4 (1)	15.5 16.5 15.7 16.5 23.6 22.9 19.0 22.5 19.9 22.8 21.6	5000 5000 5000 5000 5000 5000 5000 500

			PERIOD OF RECORD	GROUND		GROUND TO	WATER	AGENCY
STATE WELL NUMBER	WELL USE	WELL DEPTH	BEGIN END	SURFACE ELEVATION IN FEET	DATE	WATER SURFACE IN FEET	SURFACE ELEVATION IN FEET	SUPPLYING DATA
BUTTE VALLEY 1-	.03.00	<u></u>						
46n/ole-o6nol m	2	200	52	4242.4	$\begin{array}{c} 7-26-62\\ 8-23-62\\ 9-21-62\\ 10-23-62\\ 12-28-62\\ 12-17-62\\ 1-23-63\\ 2-20-63\\ 3-21-63\\ 3-21-63\\ 3-25-63\\ 5-22-63\\ 6-20-63\\ \end{array}$	30.9 28.5 24.6 23.6 22.4 (7) 21.2 20.8 20.2 19.7 24.0 21.8	4211.5 4213.9 4217.8 4218.8 4220.0 4221.2 4221.6 4222.2 4222.7 4222.7 4228.4 4220.6	5000 5000 5000 5000 5000 5000 5000 500
46N/02W-25R02 M	2	116	52	4256.2	$\begin{array}{c} 7-26-62\\ 8-23-62\\ 9-21-62\\ 10-23-62\\ 11-28-62\\ 12-17-62\\ 1-23-63\\ 2-20-63\\ 3-21-63\\ 3-21-63\\ 3-25-63\\ 5-22-63\\ 6-20-63\\ \end{array}$	(1) (1) 34.2 28.4 27.1 26.9 24.9 24.9 24.5 23.5 23.7 (1)	4222.0 4227.8 4229.1 4229.3 4229.6 4231.3 4231.7 4232.7 4232.5	5000 5000 5000 5000 5000 5000 5000 500
47N/OlW-14BOl M	8	50	51	4233.7	7-26-62 8-23-62 9-21-62 10-23-62 11-28-62 12-17-62 1-23-63 3-21-63 3-21-63 5-22-63 6-20-63	12.3 12.1 12.1 12.8 10.6 10.7 12.3 11.8 11.9 11.9 11.9 11.9	4221.4 4221.6 4220.9 4223.1 4223.0 4221.4 4221.9 4221.8 4221.8 4221.8 4221.8 4221.8	5000 5000 5000 5000 5000 5000 5000 500
47N/01W-27B01 M	8	άς)	51	4233.4	7-26-62 8-23-62 9-21-62 10-23-62 11-28-62 12-17-62 1-23-63 2-20-63 3-21-63 4-25-63 5-22-63	10.5 11.0 12.8 12.0 10.5 (7) 10.5 9.2 9.7 9.7 9.7 9.7 9.7	4222.9 4222.4 4220.6 4221.4 4222.9 4222.9 4224.2 4223.7 4223.7 4223.6 4223.4	5000 5000 5000 5000 5000 5000 5000 500

5"81

	G	ROUNI		BLE C-1 (CO R LEVEL		REMENT	S	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
BUTTE VALLEY 1-	03.00							
48n/olw-26nol m	0	375	53	4244.2	7-26-62 8-23-62 9-21-62 10-23-62 11-28-62 12-17-62 1-23-63 2-20-63 3-21-63 5-22-63 6-20-63	19.1 20.3 20.8 25.1 24.5 19.8 17.9 12.2 16.5 (1) 17.8	4225.1 4223.9 4223.4 4223.6 4219.1 4219.7 4224.4 4226.3 4232.0 4227.7 4226.4	5000 5000 5000 5000 5000 5000 5000 500
SHASTA VALLEY 1	-04.00							
42N/05W-2QJ01 M	l	40	53	2882.0	7-26-62 8-23-62 9-21-62 10-23-62 12-28-62 12-17-62 1-23-63 2-20-63 3-21-63 5-22-63 6-20-63	5.8 6.2 5.4 5.3 2 5.3 2 5.3 2 5.4 3 5.4 3 4.4	2876.2 2876.0 2875.8 2877.4 2877.4 2876.7 2876.7 2876.8 2876.3 2877.1 2877.1 2877.6	5000 5000 5000 5000 5000 5000 5000 500
42N/06W-10J01 M	l	110	53	2835.0	7-26-62 8-23-62 9-21-62 10-23-62 11-28-62 12-17-62 1-23-63 2-20-63 3-21-63 5-22-63 5-22-63	6.3 10.1 13.3 14.4 6.9 6.7 6.7 4.0 5.2 4.9 3.7 3.0	2828.7 2824.9 2821.7 2820.6 2828.1 2828.3 2828.9 2831.0 2829.8 2830.1 2830.1 2831.3 2832.0	5000 5000 5000 5000 5000 5000 5000 500
43N/06W-22A01 M	l	100	52	2665.0	7-26-62 8-23-62 9-21-62 11-28-62 12-17-62 1-23-63 2-20-63 3-21-63 1-25-63 5-22-63 6-20-63	(1) 5.0 5.8 5.8 5.3 1.9 2.9 2.9 3.0 3.8 4.9	2660.0 2660.1 2659.2 2659.4 2659.7 2660.7 2663.1 2662.1 2662.0 2661.2 2660.1	5000 5000 5000 5000 5000 5000 5000 500

TATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SHASTA VALLEY 1.	-04.00							
44N/05W-34H01 M	2	96	52	2637.0	7-26-62 8-23-62 9-21-62 10-23-62 12-17-62 1-23-63 2-20-63 3-21-63 4-25-63 5-22-63 6-20-63	25.6 (1) 26.5 28.3 27.0 28.3 28.9 26.1 28.6 (1) 26.5	2611.4 2610.5 2608.7 2610.1 2610.0 2608.7 2608.1 2608.9 2608.4 2610.5	5000 5000 5000 5000 5000 5000 5000 500
45N/05W-29B01 M	1	23	53	2635.0	7-26-62 8-23-62 9-21-62 10-23-62 11-28-62 12-17-62 1-23-63 2-20-63 3-21-63 4-25-63 5-22-63 6-20-63	18.6 18.6 20.0 20.6 18.8 18.2 20.3 20.9 21.4 22.6 21.5 20.8	2616.4 2615.0 2614.4 2616.2 2616.8 2614.7 2614.1 2613.6 2612.4 2613.5 2614.2	5000 5000 5000 5000 5000 5000 5000 500
45N/06W-19E01 M	l	425	53	2538.0	$\begin{array}{c} 7-26-62\\ 8-23-62\\ 9-21-62\\ 10-23-62\\ 11-28-62\\ 12-17-62\\ 1-23-63\\ 2-20-63\\ 3-21-63\\ 4-25-63\\ 5-22-63\\ 6-20-63\\ \end{array}$	21.7 21.3 26.5 20.2 18.1 17.8 18.6 16.6 15.4 17.0 17.0	2516.3 2516.7 2511.5 2517.8 2519.9 2520.2 2519.4 2521.4 2522.6 2521.0 2521.0 2521.0 2521.0	5000 5000 5000 5000 5000 5000 5000 500
SCOTT RIVER VALL	EY l-	05.00						
42N/09W-08C03 M	l	66	бо	2836.0	7-26-62 8-22-62 9-21-62 11-27-62 12-18-62 12-18-62 1-23-63 3-21-63 4-25-63 5-22-63 6-20-63	37.7 46.5 47.8 50.8 (7) 49.1 (1) 35.5 26.3 28.6 32.5 (1) 31.5	2798.3 2789.5 2788.2 2785.2 2785.2 2786.9 2800.5 2809.7 2807.4 2803.5 2804.5	5000 5000 5000 5000 5000 5000 5000 500

STATI

G	ROUN	D WATE	R LEVEL	MEASU	REMENT	S	
WELL USE	WELL DEPTH	DECODD	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
EY 1-0	5.00						
0	19	53	2930.0	7-26-62 8-22-62 9-21-62 10-23-62 11-28-62 1-23-63 2-20-63 3-21-63 5-22-63 5-22-63	6.3 8.1 8.6 7.6 3.2 5.3 3.4 3.1 1.8 0.8 2.0	2923.7 2921.9 2921.4 2922.4 2926.8 2927.8 2924.7 2926.6 2926.9 2928.2 2929.2 2929.2 2928.0	5000 5000 5000 5000 5000 5000 5000 500
2	205	53	2735.0	$\begin{array}{c} 7-26-62\\ 8-22-62\\ 9-21-62\\ 10-23-62\\ 11-28-62\\ 12-18-62\\ 1-28-63\\ 2-20-63\\ 3-21-63\\ 3-21-63\\ 5-22-63\\ 5-22-63\\ 6-20-63\\ \end{array}$	(1) (1) 12.3 11.9 10.5 12.0 8.5 8.6 7.4 5.3 4.6	2722.7 2723.1 2724.5 2723.0 2726.5 2726.4 2727.6 2729.7 2730.4	5000 5000 5000 5000 5000 5000 5000 500
0	65	53	2711.0	7-26-62 8-22-62 9-21-62 11-23-62 12-18-62 1-23-63 2-20-63 3-21-63 4-25-63 5-22-63 6-20-63	6.6 10.4 17.3 24.3 20.8 21.0 12.3 8.4 10.0 9.4 (7) (7)	2704.4 2700.6 2693.7 2690.0 2690.0 2698.7 2702.6 2701.0 2701.6	5000 5000 5000 5000 5000 5000 5000 500
1-08.	00						
3	27	51	151.0	7-25-62 8-21-62 9-20-62 10-24-62 12-18-62 1-22-63 2-19-63 3-20-63 4-24-63 5-21-63 6-19-63	11.0 12.4 13.7 11.4 0.7 0.5 4.2 1.0 2.6 1.6 3.0 5.7	140.0 138.6 137.3 139.6 150.3 150.5 146.8 150.0 148.4 149.4 149.4 148.0 145.3	5000 5000 5000 5000 5000 5000 5000 500
	<pre>well USE EY 1-0 0 2 2 0 1-08.</pre>	WELL WELL DEPTH EY 1-05.00 0 19 2 205 0 65 1-08.00	WELL USE WELL DEPTH IN FEET PERIOD OF RECORD EY 1-05.00 0 19 53 Q 19 53 Q 205 53 Q 65 53 Q 65 53	WELL DEPTH PERIOD OF RECORD GROUND SUPFACE EY 1-05.00 0 19 53 2930.0 2 205 53 2735.0 0 65 53 2711.0	WELL DEPTIME PERIOD OF RECORD GROUND ELEVATOR DATE DATE BEGIN END ELEVATOR DATE D 19 53 2930.0 7-26-62 8-22-62 9 9-21-62 10-23-62 11-28-62 12-21-62 12 205 53 2735.0 7-26-62 8-22-62 12 205 53 2735.0 7-26-62 8-22-62 12-28-62 12-28-62 12-28-63 5-22-63 6-20-63 2 205 53 2735.0 7-26-62 8-22-62 12-28-62 12-28-62 12-28-63 12-28-63 12-28-63 0 65 53 2711.0 8-22-62 12-28-63 12-28-63 5-22-63 6-20-63 12-28-63 12-28-63 0 65 53 2711.0 8-22-62 12-28-63 12-28-63 5-22-63 6-20-63 12-28-63 12-28-63 12-28-62 9-21-62 12-28-63 12-28-63	WELL DEPTH PERIOD OF RECORD GROUND SURFACE BEGIN GROUND END DATE GROUND TO SURFACE IN FEET 527 1-05.00 0 19 53 2930.0 7-26-62 6.3 0 19 53 2930.0 7-26-62 6.1 10-23-62 7.6 10-23-62 7.6 11-28-62 3.2 12-16-62 3.4 3 2205 53 2735.0 7-26-62 1.1 9-21-62 3.1 3.2 2.0 3.2 1.2 2 205 53 2735.0 7-26-62 1.1 9-21-62 1.1 3.2 1.0 3-22-63 1.4 9-21-62 1.1 3.1 3-21-63 1.2 1.0 9-21-62 1.1 1.1 2.0 1.1 2.0 1.1 1-28-62 1.2 1.1 2.0 1.1 2.0 1.1 10-23-62 1.1 1.1 1.1 1.1 1.1 1.1 1.1	VELL VELL VELT RECORD VELVATES ELEVATION DATE UNITES VELVATES SUPPACE VELVATES ELEVATION 0 19 53 2930.0 7-26-62 6.3 2923.7 0 19 53 2930.0 7-26-62 8.6 2922.1 10-23-62 7.6 2922.4 10-23-62 7.6 2922.4 11-28-62 2.2 2927.6 12.2 2926.3 12.2 2926.3 11-28-62 2.2 2927.6 1.8 2926.1 12.2 2926.3 11-28-62 2.2 2927.1 1.8 2926.2 12.2 2926.3 11-28-62 1.1 2928.2 1.2 2926.3 12.2 2926.3 2 205 5.3 2735.0 7-26-62 (1) 9-21.42 10-23-62 12.3 2726.7 11.9 272.7 11.20 272.63 1.8 2926.9 2 205 5.3 2711.0 7-26-62 (1) <t< td=""></t<>

I NG

-

ATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
MAD RIVER VALLEY	1-08.	00						
06N/01E-29P0l H	24	46	52	25.0	$\begin{array}{c} 7-25-62\\ 8-21-52\\ 9-20-62\\ 10-24-62\\ 11-27-62\\ 12-18-62\\ 1-22-63\\ 3-20-63\\ 3-20-63\\ 5-21-63\\ 6-19-63\\ \end{array}$	14.3 13.3 13.0 11.3 9.5 9.1 9.2 8.2 9.0 7.9 8.9 10.2	10.7 11.7 12.0 13.7 15.5 15.9 15.8 16.8 16.0 17.1 16.1 14.8	5000 5000 5000 5000 5000 5000 5000 500
EEL RIVER VALLEY	1-10.	00						
03N/01W-18D01 H	l	21+	51	24.0	$\begin{array}{c} 7-24-62\\ 8-21-62\\ 9-19-62\\ 10-24-62\\ 12-27-62\\ 12-18-62\\ 1-22-63\\ 2-19-63\\ 3-20-63\\ 3-20-63\\ 4-24-63\\ 5-21-63\\ 6-19-63\\ \end{array}$	2.8 2.9 3.0 3.2 3.0 3.6 3.2 3.3 1.6 1.5	21.2 21.1 21.1 21.0 20.8 21.0 20.4 20.8 20.7 22.4 22.5 22.5	5000 5000 5000 5000 5000 5000 5000 500
03N/01W-34J01 H	0	496	51	60.0	$\begin{array}{c} 7-24-62\\ 8-21-62\\ 9-19-62\\ 10-24-62\\ 12-18-62\\ 1-27-62\\ 1-28-63\\ 2-19-63\\ 3-20-63\\ 3-20-63\\ 5-21-63\\ 6-19-63\\ \end{array}$	34.7 35.6 35.8 32.8 32.5 33.2 31.4 32.3 30.0 31.1 32.6	25.3 25.1 24.4 24.2 27.5 26.8 28.6 27.7 30.7 30.9 28.9 27.4	5000 5000 5000 5000 5000 5000 5000 500
03N/02W-26R0l H	2	30	51	20.0	$7-2^{1}-62$ 8-21-62 9-19-62 10-2^{1}-62 12-18-62 1-22-63 2-19-63 3-20-63 $^{1}-2^{1}-63$ 5-21-63 6-19-63	9.0 9.5 9.5 6.4 6.5 3.2 5.9 2.8 5.2 7.1	11.0 10.5 10.4 10.5 13.6 13.9 13.5 16.8 14.1 17.2 1 ⁴ .8 12.9	5000 5000 5000 5000 5000 5000 5000 500

	G	ROUNI	D WATE	R LEVEL	MEASU	REMENT	S	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ROUND VALLEY 1-	11.00							
22N/12W-04B01 M	2	200	51	1351.0	$\begin{array}{c} 7-24-62\\ 8-20-62\\ 9-18-62\\ 10-25-62\\ 11-26-62\\ 12-20-62\\ 1-21-63\\ 2-18-63\\ 3-19-63\\ 3-19-63\\ 4-23-63\\ 5-20-63\\ 6-18-63\\ \end{array}$	10.9 13.8 14.5 8.8 6.8 6.8 6.4 6.0 5.4 7.5	1340.1 1338.3 1337.2 1336.5 1342.2 1344.2 1344.2 1344.2 1344.6 1345.7 1344.6 1343.5	5000 5000 5000 5000 5000 5000 5000 500
22N/13W-12R01 M	9	321	61	1400.Ŭ	1-21-63 2-18-63 3-19-63 4-23-63 5-20-63 6-18-63	12.5 6.1 5.5 5.4 7.9	1387.5 1393.9 1393.4 1394.5 1394.6 1392.1	5000 5000 5000 5000 5000 5000
23N/12W-31N01 M	2	200	51	1388.5	7-24-62 8-20-62 9-18-62 10-25-62 11-26-62 12-20-62 1-21-63 2-18-63 3-19-63 4-23-63 5-20-63 6-18-63	FLOW 4.3 5.2 5.6 -2.0 -3.1 -10.9 -10.4 -22.0 -8.5 -7.3	1384.2 1383.3 1382.9 1390.5 1391.6 1391.6 1399.4 1398.9 1410.5 1397.0 1395.8	5000 5000 5000 5000 5000 5000 5000 500
23N/13W-36CO3 M	9	289	61	1409.5	9-18-62 10-25-62 11-26-62 1-21-63 2-18-63 3-19-63 4-23-63 5-20-63 6-18-63	26.0 26.9 16.1 14.7 7.8 8.2 7.0 10.0 10.9	1383.5 1382.6 1393.4 1394.8 1398.8 1401.7 1401.3 1402.5 1399.5 1398.6	5000 5000 5000 5000 5000 5000 5000 500
23N/13W-36Q01 M	9	300	61	1403.0	8-20-62 9-18-62 10-25-62 11-26-62 12-20-62 1-21-63 2-18-63 3-19-63 4-23-63 5-20-63 6-18-63	15.6 16.8 17.7 10.1 8.6 4.5 0.4 2.4 -0.8 1.7 4.0	1387.4 1386.2 1385.3 1394.4 1398.5 1402.6 1400.6 1403.8 1401.3 1399.0	5000 5000 5000 5000 5000 5000 5000 500

1 . 2

=

-

STATE

STATE WELL NUMBER	WELL	WELL DEPTH	PERIOD OF RECORD	GROUND SURFACE		GROUND TO WATER SURFACE	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
	USE	IN FEET	BEGIN END	SURFACE ELEVATION IN FEET	DATE	SURFACE IN FEET		
LAYTONVILLE VALL	EY 1-1	2.00						
21N/14W-30MOL M	7	23	52	1688.0	$\begin{array}{c} 7-23-62\\ 8-21-62\\ 9-19-62\\ 10-24-62\\ 11-26-62\\ 12-19-62\\ 2-18-63\\ 3-19-63\\ 3-19-63\\ 4-23-63\\ 5-20-63\\ 6-18-63\\ \end{array}$	15.0 15.4 16.3 17.1 10.0 7.8 6.7 3.9 5.3 2.7 5.0 9.8	1673.0 1672.6 1671.2 1670.9 1678.0 1680.2 1681.3 1684.1 1682.7 1685.3 1683.0 1678.2	5000 5000 5000 5000 5000 5000 5000 500
21N/15W-12M02 M	1	50	62	1545.0	7-23-62 8-21-62 9-19-62 10-18-62 12-26-62 12-19-63 2-18-63 3-19-63 3-19-63 4-23-63 5-20-63 6-18-63	$ \begin{array}{c} 15.0\\ 17.1\\ 17.4\\ 17.3\\ 5.1\\ 4.8\\ 12.0\\ 7.2\\ 2.8\\ 6.9\\ 12.6\end{array} $	1530.0 1527.9 1527.7 1539.9 1540.2 1533.0 1540.0 1547.8 1542.2 1538.1 1532.4	5000 5000 5000 5000 5000 5000 5000 500
21N/15W-24A01 M		22	52	1653.0	7-23-62 8-21-62 9-19-62 10-24-62 11-26-52 12-19-62 1-21-63 3-19-63 4-23-63 5-20-63 6-18-63	7.0 7.9 9.7 11.3 (7) (7) 3.3 1.5 1.6 1.9 2.6 3.9	1646.0 1645.1 1643.3 1641.7 1651.5 1651.4 1651.4 1651.4 1650.4 1649.1	5000 5000 5000 5000 5000 5000 5000 500
LITTLE LAKE VALI	EY l-	13.00						
18N/13W-08L01 M	1	19	53	⁻ 134⊙.0	7-23-62 8-21-62 9-18-62 10-25-62 12-20-62 1-21-63 2-18-63 3-19-63 3-29-63 5-20-63 6-18-63	6.9 10.1 10.5 3.6 0.8 0.5 1.1 0.3 0.3 0.4 0.3 2.1 3.6	1333.1 1329.9 1329.5 1336.4 1339.2 1339.5 1339.7 1339.7 1339.7 1337.9 1336.4	5000 5000 5000 5000 5000 5000 5000 500

GROUND WATER LEVEL MEASUREMENTS										
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA		
LITTLE LAKE VALL	EY 1-1	.3.00								
18N/13W-17JOl M	l	40	58	1350.0	$\begin{array}{c} 7-23-62\\ 8-21-62\\ 9-18-62\\ 10-25-62\\ 11-26-62\\ 12-20-62\\ 1-21-63\\ 2-18-63\\ 3-19-63\\ 3-19-63\\ 4-23-63\\ 5-20-63\\ 6-18-63\\ \end{array}$	$12.7 \\ 13.9 \\ 15.0 \\ 14.6 \\ 10.1 \\ 10.6 \\ 8.2 \\ 5.8 \\ 6.1 \\ 4.8 \\ 5.8 \\ 8.1$	$\begin{array}{c} 1337\cdot 3\\ 1336\cdot 1\\ 1335\cdot 0\\ 1335\cdot 4\\ 1339\cdot 9\\ 1339\cdot 4\\ 1341\cdot 8\\ 1344\cdot 2\\ 1343\cdot 9\\ 1345\cdot 2\\ 1344\cdot 2\\ 1344\cdot 2\\ 1344\cdot 2\\ 1341\cdot 9\end{array}$	5000 5000 5000 5000 5000 5000 5000 500		
18N/13W-18B01 M	0	493	58	1350.0	7-23-62 8-21-62 9-18-62 10-25-62 11-26-62 1-21-63 2-18-63 3-19-63 4-23-63 5-20-63 6-18-63	23.8 25.6 26.6 24.2 22.3 22.6 21.6 21.0 20.8 20.6 20.6 20.9	1326.2 1324.4 1323.4 1325.8 1327.7 1327.4 1328.4 1328.0 1329.0 1329.0 1329.2 1329.1	5000 5000 5000 5000 5000 5000 5000 500		

-

=

APPENDIX D

SURFACE WATER QUALITY

TABLE OF CONTENTS

Surface	Water Quality	Page 62
	TABLES	
Table		
D-1	Sampling Station Data and Index	64
D-2	Analyses of Surface Water	65
D-3	Spectrographic Analyses of Surface Water	89
D-4	Radioassay of Surface Water	90

The Surface Water Quality Monitoring Program provides basic information on the quality characteristics of the State's surface waters. Data presented in this appendix are measured values of the chemical, physical, and radiological characteristics of surface waters in the North Coastal Area, as shown on the "Area Orientation Map". The surface water quality program is performed in cooperation with other state, local, and federal agencies.

All data presented in this volume are within the North Coastal Water Pollution Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Plate 5 shows the locations of surface water sampling stations for the 1962-63 water year. Surface water quality samples are collected at or near existing stream gaging stations.

The Surface Water Quality Monitoring Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature and dissolved oxygen are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature is in degrees Fahrenheit. Laboratory analyses of surface water

62

samples were performed by the U. S. Geological Survey (USGS) in accordance with "Methods for Collection and Analysis of Water Samples", Water-Supply Paper 1454. Analysis of surface water samples for trace elements was performed by spectrograph by the USGS and is reported in parts per billion.

Analyses for radioactivity were made by the California Disaster Office Laboratory in Sacramento and results are expressed in terms of activity, measured in micro-micro curies per liter (mmc/l) which is equivalent to pico-curies per liter (pc/l). The most probable error is reported with the measured value.

Bacteriologic determinations were made by the Department of Public Health, Berkeley, and are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation can be made.

63

TABLE D-1 SAMPLING STATION DATA AND INDEX

Number	Location ^a	Period ^b of Record	Frequency ^C of Sompling	Sompled ^d by	on page
le	43N/01W-25	MAR 59	м =	DWR	69
ld	45N/01W-19	MAR 59	м	DWR	68
5d	21N/13W-31	APR 58	м	DWR	84
5	025/03E-04*	APR 51	м	DWR	80
. 5c	21N/13W-06	APR 58	М	DWR	83
6	02N/01E-31*	APR 51	м	DWR	85
7	03S/04E-30*	APR 51	М	DWR	87
lc	46N/10W-14	DEC 58	М	DWR	67
lf	47N/05W-17	DEC 61	м	DWR	70
3	13N/01E-24*	APR 51	М	DWR	74
2b	46N/12W-03	DEC 58	М	DWR	73
2	11N/06E-04*	APR 51	М	DWR	71
ба	06N/01E-15*	NOV 58	м	DWR	86
7a	025/02W-11*	JAN 59	М	DWR	88
50	20N/14W-01	MAY 58	М	DWR	82
3ъ	lon/ole-04*	NOV 58	М	DWR	76
28	11N/06E-02*	NOV 58	м	DWR	72
1b	44N/10W-29	DEC 58	М	DWR	66
la	46N/07W-24	DEC 58	м	DWR	65
3a.	16N/01E-10*	APR 51	м	DWR	75
4b	05N/07E-19*	APR 58	м	DWR	79
4	08N/05E-31*	APR 51	м	DWR	77
48	33N/08W-17	APR 51	м	DWR	78
5a	01N/03E-17*	APR 58	М	D₩R	81
	1d 5d 5 6 7 1c 1f 3 2b 2 6a 7a 5b 3b 2a 1b 1a 3a 1b 1a 3a 4b 4 4	1d 45N/01N-19 5d 21N/13N-31 5 02S/03E-01* 5c 21N/13N-06 6 02N/01E-31* 7 03S/04E-30* 1c 46N/10M-14 1f 47N/05W-17 3 13N/01E-21* 2b 46N/12N-03 2 11N/06E-01* 6a 06N/01E-15* 7a 02S/02W-11* 5b 20N/14W-01 3b 10N/01E-04* 2a 11N/06E-02* 1b 14N/16W-29 1a 46N/07W-24 3a 16N/01E-11* 4b 05N/07E-12* 4 08N/05E-31*	1d 45N/01A-19 MAR 59 54 21N/134-31 APR 58 5 028/03E-04* APR 51 5c 21N/134-06 APR 51 5c 21N/134-06 APR 51 7 038/04E-30* APR 51 1c 46N/104-14 DEC 58 1f 47N/054-17 DEC 61 3 13N/01E-24* APR 51 2b 46N/12N-03 DEC 58 2 11N/06E-04* APR 51 6a 06N/01E-15* NOV 58 7a 028/02W-11* JAN 59 5b 20N/14W-01 MAY 58 3b 10N/01E-04* NOV 58 2a 11N/06E-02* NOV 58 2a 11N/06-29 DEC 58 3b 10N/01E-14* NOV 58 2a 11N/06-29 DEC 58 1a 46N/07*-24 DEC 58 3a 16N/01E-11* AFR 51 4b 05N/07E-19* AFR 58 4 <	le 438/014-25 MAR 59 M ld 458/014-19 MAR 59 M 5d 218/134-31 APR 58 M 5 028/032-04* APR 51 M 5c 218/134-05 APR 58 M 5c 218/134-06 APR 51 M 5c 218/134-06 APR 51 M 6 028/032-04* APR 51 M 7 038/042-30* APR 51 M 1c 468/104-14 DEC 58 M 1f 478/054-17 DEC 61 M 3 138/012-24* APR 51 M 2b 468/128-03 DEC 58 M 2 118/062-04* APR 51 M 6a 0668/012-15* NOV 58 M 7a 028/028+11* JAN 59 M 5b 208/14*-01 MAY 58 M 3b 103/012-04* NOV 58 M 1b 144/104-29	le $h_{3N}/01N-25$ MAR 59 M DWR ld $h_{5N}/01N-25$ MAR 59 M DWR 5d $21N/13N-31$ APR 58 M DWR 5d $21N/13N-31$ APR 58 M DWR 5c $21N/13N-31$ APR 58 M DWR 5c $21N/13N-06$ APR 51 M DWR 6 $02N/01E-31*$ APR 51 M DWR 7 $038/04E-30*$ APR 51 M DWR 1e $46N/10*-14$ DEC 58 M DWR 3 $13N/01E-24*$ APR 51 M DWR 2b $46N/12*-03$ DEC 58 M DWR 2c $11N/06E-04*$ APR 51 M DWR 2a $11N/0E-04*$ NOV 58 M DWR 3b $10X/01E-04*$ NOV 58 M DWR 3b $10X/01E-04*$ NOV 58 M DWR 3a <t< td=""></t<>

OF SURFACE WATER

ANALYSES

- Except as indicated belaw location is referenced to Mt. Diable Base and Meridian
 ^{**}Son Bernardina Base and Meridian
 ^{**}Son Bernardina Base and Meridian
 Baginning of record
 CM-Monthy, B-Bimanthy, Q-Quarterly, S-Semiannually
 California Department of Water Resources (DNR)

ANALYSES OF SURFACE WATER TABLE D-2

NURTH COASTAL REGION (NO. 1)

SHASTA RIVER NEAR YREKA (STA. 1a)

		Hardness bid - Coliform Analyzed os CoCO ₃ ity MPN/mi by i Total N.C. nppm ppm ppm	nces													
	4	Coliform" MPN/mi		M- 1 B	Maxeeum 2 1	Maimur.										
	Tur-	bid - tty n ppm		9		Fe		• •	t		2	12	2	`	CU	►
		PPT PPT		-					٦ 	<u> </u>	1	3	U	5	э	0
		PPm PPm		202	199	522		v V	(107	T ₁ ,5	1.99	22	57	234	56	042
	Per-	sod - ium		씠	35 35	8		56	5	26	22	26	3	ці, П	30	5
	Total	solios solios muddui										327 ^E 327 ^E				397 ^r 375 ^e
		Other constituents		Tot. alk. JL	Tot. alk. <u>31'</u>	Tot. alk. <u>226</u>		Tot. alk. Juc	Tot. alk. Ju	Tut. alk. 2.3	T t. alk. 572	Tot. alk. <u>324</u> Po ₄ 0.45	Tot. alk. <u>32.</u>	Tot. alk. <u>362</u>	Tot. alk. <u>384</u>	Tct.alk. <u>322</u> P04, <u>0.51</u> As <u>0.01</u> ABS <u>0.00</u>
		Silice (SiO ₂)										T ₁				2
	lion	Boron (B)		0.5	0.3	0.6		J.4	5	4	0.3	J. U	S	0.5	0.4	- <u>-</u>
million	ar mil	Fluo- ride (F)										0.2				0.0
ports per million	aquivolants par million	Ni- trate (NO ₃)										<u>1.5</u> 0.02				store -
ā	aguivo	Chio- ride (CI)		24 0.66	24	22 0.62		<u>21</u> 0.59	20 0.56	<u>18</u> 0.51	<u>18</u> 0.51	<u>25</u> 0.71	<u>1.7</u> 054	24 0.08	<u>31</u> u.87	<u>30</u> 0-85
	=	Sul - fote (SO ₄)										9.6 U.20				<u>0.17</u>
		Bicor - bonote (HCO ₃)		2 <u>36</u> 4.85	292 L. 79	<u>300</u> 4.92		276 4.52	283 4.72	<u>265</u>	277 4.54	$\frac{310}{5.08}$	<u>277</u>	326	<u>336</u> 5.51	<u>325</u> 5+33
		Corbon- 010 (CO3)		<u>11</u> 0.37	<u>0,40</u>	0.53		<u>16</u> 0.53	0.20	$\frac{14}{0.47}$	<u>11</u> 0.37	7.23	26 0.87	<u>18</u> 0.60	24 0.80	01.60
		Potos- sium (K)										2.8 0.07				0.16 0.10
		Sodium (N o)		44 1.91	$\frac{44}{1+21}$	<u>36</u> 1+57		36	$\frac{31}{1\cdot 35}$	$\frac{3z}{1*39}$	<u>34</u> 1.48	<u>37</u> 1.61	$\frac{34}{1.48}$	$\frac{\mu_{\rm L}}{1.63}$	<u>2.18</u>	2.00
		Mogne- sum (pM)										<u>36</u> 2+93				<u>3,10</u>
		Colcium (Ca)		2 <u>40*1</u>	3.98°	0 <u>5*</u> 1		<u>. 10° 1</u>	1.16	3.90	3.98°	<u>31</u> 1+55	1.36°	.700	5.20	34 1.71
		PH B/c		8 <u>.7</u>	<u>8.1</u> 8.5	8.4 8.5		9- E 2- E	8.4	0.5 8.6	0	7.6	4.0 1.0	0.1	8 07	00 10 10 10
	Specific	conductance (micromhos at 25°C)		525	523	541		164	103	478	T8†	537	517	569	621	291
		yen %Saf		76	91	96		%	4	%	103	101	106	31	116	105
		Dissolved osygen ppm %Sof		9.6	4.6	6.11		11.8	10.8	11.5	11.2	10.0	9.0	γ_{*h}	8° 9	с. 1
		en in		55	сс, t;-	⁴ 3		17.7 7	64	97	00 77	55	69	13	80	65
		Dischorge Tamp in cfs in oF		154	195	300		243	368	285	560	202	148	93	31	100
		P.S.T.	1962	10/4 0845	11/15 0830	12/12 0815	1963	1/2 1625	2/14 1330	3/6 0815	4/9 0800	5/2 0710	6/3 1500	7/9 1950	8/6 1355	9/11 1230

Freid pH.

Laboratory pH.

Sum of calcium and magnesium in epm.

Sum of colorium and mognessum in epm. 0^{0} except as then, and an equation (Cr¹⁶), reported here as 0.0^{-0} except as shown. Iron (Fe), aluminum (AI), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and herevolent chromium (Cr¹⁶), reported here as 0.00^{-0} except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of onolyzed constituents.

Gravimetric determinotion.

Annual median and ronge, respectively. Colculated from analyses ard duplicate monthly samples made by Colifornia Deportment of Public Health, Drivison of Laboratores, or United States Public Health Service.

Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Geological Survey, Quality of Water Branch (USCFC); Methopolitan Water District (SSCFCD); Methopolitan Water District af Southean California (MWD); Los Angeles Department of Morer and Power (LADWP); City of Los Angeles, Department of Water District SSCFCD); Methopolitan Water District af Southean California (MWD); Los Angeles Department of Morer and Power (LADWP); City of Los Angeles, Department of Yould States (Department of More District States); Joint States, Department of More and Power (LADWP); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); os indicated

32505-D-H 6-61 200

8

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO.1.)

SCOFT RIVER NEAR FORT JONES (STA. 1b)

	Anoiyzad by i	10300													
	Hordnass bid - Coliform ^h A as CoCO ₃ ity Total N.C. Ppm ppm		Median 1 .	Maximum 2301	Min Imum .23										
	PPm PC		9 N	25 M	15 M		5	35	10	ŝ	20	ŝ	÷٩	~	u
P	PPPH			0	0		L.,	~	~	0		-	20	~	5-
	Hordr os Co Total PPm		143	51	82		6	92	35	60 1	11	i j	144	14 1	147
	- nu			~	~		~		9	~	~	~	z	~	5
Totel	dis- solved solids in ppm										97 ¹ 98 ^µ				177 ¹ 160 ⁶
	Other constituents		Tot. alk. 11.								Poli U.O	Tot. alk. <u>88</u>			Pot. alk. 171 Pol. 1.02 A: 0.10 ABS 0.00
	Silico (SiO ₂)										1				র
llion	Boron (B)		0.0	0*0	0.0		0.0	0.0	0.1	0.0	0.0	0*0	0-0	0*0	0
millio ber mi	Fluo- rids (F)										0.0				0.00
perts per million equivalents per million	Ni - trote (NO ₃)										1.0				2.4 0.04
equiva	Chio- ride (CI)		4.0 0.11	1.4 0.04	<u>1.5</u> 0.04		0.06	2.8 0.08	1.8 0.05	0.01	1.8	<u>1.3</u> 0.04	<u>3.5</u> 0.10	<u>),1-0</u>	0.19
Ē	Sul - fots (SO4)										3.0 0.06				0.15
tituents	Bicor- benets (HCO ₃)		101 2.04	74 1.21	98 1.61		<u>1.75</u>	<u>ار، ا</u>	11. 1.88	84 1.38	1.52	<u>84</u> 1.38	<u>166</u> 2.72	176 2.88	<u>2.72</u>
Minerol constituents	Corbon - Corbon - (CO3)		.30	000	00.0		00.0	0.00	00.0	0.00	0.00	2 0*0		0.00	0.50 0.50
Mine	Potas- C sium (K)		-1	346	olc.				- 1 -	10	0.01	.urc		510	10.2 10.2
	Sodium F (Na)		5.3	2.T	2.9		<u>3'</u> 0.14	0.11	8-9 6-13	2.2	5.6	2.6 0.11	4.2 0.18	5.4 0.23	14.8 15.0
	Mogne- sium (Mg)										8.9 0.73				1.39 1.39
	Colsium (Ca)		2 <u>.86</u> °	1.14	1.01 .		1.80°	1.5%	1.90	1-30	<u>16</u> 0.80	<u>01*T</u>	2.88 ^c	2.980	33
	H a/b		210	10	<u>7.3</u>		8.0	<u>7.7</u>	<u>5.8</u>	<u>7.5</u> 8.6	<u>(.)</u>	1.1		8.0 8.2	0.0
Considio	(micromhos at 25°C)			122	164		178	153	191	135	152	141	262	289	286
	wad an () %Sot		119	56	39		88	87	8	101	66	102	ToT	133	136
	Dissolved oxygan ppm %Sof		11./	10.7	10.8		11.2	10.8	0.11	1.01	10.3	L*6	8.7	10.1	10.9
			-	18	117		4T T	43 1	1 64	181	164	2	5	1	35
	Dischorge Tamp in cfa in ^o F		11	oLy	1,030		630	1,980	685	1,550	1,350	01/6	165	130	3
	Dots ond time sompled P.S.T.	196	1.1/4 1507	11/15 1345	12/11 1505	1963	$\frac{1}{2}/\frac{2}{2}$	2/13 14.30	3/6, 1450	4/9 330	5/2 1255	6/3 1140	7/9 1830	8/6 1510	9/10

a Field pH

Leboratory pH.

c Sum of calcium and magnesium in epm.

c sum at calctum and magnesum mepr. d Iran (Fe), aluminum (A1), orsenic (As), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexanalent chromium (Cr $^{+3}$), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves .

Determined by addition of analyzed constituents.

Grovimatric determination.

32505-LHI 6-61 200 JPU h Annual median and mage respectively. Calculated from analyses of duplicate manthy samples made by California Department of Public Health, Duvision of Laboratories, or United Stores Public Health. Service. i Marenti analyses made by United States Geological Survey, Duality of Water Boost, Glossich Glossich California Change, Tester, Survey of Recomman of the Internet. Survey of Recommon, (USBR), Durind States Public Health. Service. Carinal Distances (SECFCD). Merripation Mere Davids Department of Manter and Power (LADMP), Cuty of Las Angeles, Department of Public Health (LEDPH). Family Tester Construction (SMR), Las Angeles Department of Manter and Power (LADMP), Cuty of Las Angeles, Department of Public Health (LADPH); Cuty of Las Angeles, Department of Public Health (LEDPH). Family Tester Debarries, Tester (TLD) or Californe Department of Nater Andre States, Department of Nater and Distance Mere Departments. Family Tester Distance Department of Nater Nater Resources (DMR), and Department of Nater and Distance Departments. Family Tester Department of Nater Nater Resources (DMR), as indicated Nater and Distance Department Leader and Power (LADMP), Cuty of Las Angeles, Department of Nater Andre States, Department of Nater and Distance States Construction Configure Department of Nater Resources (DMR), as indicated Nater and States Department and Power (Nater Resources (DMR), as indicated Nater and States Department and Power (Nater Resources (DMR), as indicated Nater and Nater Resources (DMR), and Nater Resources (DMR), as indicated Nater and Nater Resources (DMR), and Nater Resources (DMR), as indicated Nater and Nater Resources (DMR), and Nater Resources (DMR), as indicated Nater and Nater Resources (DMR), and Nater Resources (

ANALYSES OF SURFACE WATER

		Anolysed by 1	USGS													
		Hordness bid- Coliform as CoCO ₃ ity MPN/mi Totoi N.C. n.phm pam pam														
	- 			_7	15	25		15	15	15	15	10	5	Ś	-	m
		ocos N C		0	0	0		0	0	0	0	2	0	0	Ô	0
				52	80	98		170	8	35	84	*1L	98	98	68	42
		sod -		34	36	36		37	30	33	31	59	30	29	31	°n m
	Totel	solvad solids in ppm										128 ^f 135 ^g				135f 1298
		Other constituents		PO1, 0.35	FO ₄ 0.25	PO4 0.25		PO _{l1} 0.20	PO ₄ 0.15	PO4 0.30	51.00 HOT	PO1, <u>0.20</u>	PO4 0.25	PO ₁₄ 0.30	PO4 0.60	P0, <u>0.35</u> As <u>0.01</u> ABS <u>0.00</u>
		Silico (SiOg)										ភា				ា
_	lion	5		0.1	1.0	0.2		0.1	0.2	0.1	1.0	0.0	0.2	0.2	0-0	0-1
TA. lc	r million per million	Fluo- ride (F)					_					0.2				0.01
SITE (S'				2.7 0.04	2.4 0.04	1.4 0.02		2.5	1.2 0.02	<u>1.5</u> 0.02	2.5	<u>1.5</u> 0.02	0.5 0.01	0.8 0.01	2.2 0.04	0.02
KLAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA. 1c)	squivolents	Chio- ride (CI)		7.5	6.9	7.0 0.20		6.8 0.19	7.1 0.20	<u>6.2</u> 0.17	5.0 0.14	4.5 0.13	5.6 0.16	7.0	4.9 0.14	<u>6.6</u> 0.1 <u>9</u>
IBURG RE	ć,	Sul - fote (SO ₄)										<u>17</u> 0.35				<u>9.0</u>
BOVE HAN	stituent	Bicor - bonate (HCO ₃)		<u>120</u> 1.97	<u>124</u> 2.03	<u>122</u> 2.00		<u>122</u> 2+00	<u>133</u> 2.18	$\frac{127}{2.08}$	<u>116</u> 1.90	$\frac{101}{1.66}$	<u>122</u> 2.00	<u>120</u> 1.97	<u>97</u> 1.59	110 1.80
RIVER A	Mineral constituents	Corbon- ote (CO ₃)		00.00	0.00	0.00		0.00	0*00	0*00	0.00	00.00	0.00	0*00	0.00	00.00
GLAMATH	Min	Potos- sium (K)										2.1 0.05				2.6 0.07
		Sodium (No)		18 0.78	<u>21</u> 0.91	<u>22</u> 0%		2 <u>3</u> 1.00	0.83 0.83	<u>21</u> 0.91	$\frac{17}{0.74}$	14 0.01	<u>17</u> 0.74	<u>16</u> 0.70	$\frac{14}{0.61}$	<u>15</u> 0.65
		Mogne- sum (Mg)										6.4 0.53				8.4 0.09
		Calcium (Ca)		<u>1.50</u> c	1.59 ^c	1.72		<u>1.68</u> °	1.98	1.84 c	1.68°	<u>19</u> 0.95	<u>1.72</u> 0	1.72	1.36°	0.75
		I d		<u>7.9</u>	3.0	0-0		7.9	7 - 5 1 + 8 - 1	7.0	2-2	<u>7.8</u> 7.5	8.2	7.4 8.2	8.3	6-2 2-3
	Casailia	conductance (micromhos of 25°C)		226	247	264		254	263	273	265	500	238	226	194	205
		Ved (100	ħό	94		94	6	96	66	100	95	98	76	100
		Disso 03y		6.6	10.6	11.7		12,0	11.7	11.5	0.11	10.9	<i>⊽</i> 8	8.5	8.1	2. 0
		du u		61	50 1	43 1		41 D	43 1	47 1	48 1	49 1	61	68	72	
		Dischorge Temp in cfs in of Not Rated														
		Dote ond time sompled P.S.T.	1.762	10/4 1120	11/15 1110	12/12 1145	1963	1/3 1120	2/14 1100	3/6 1150	4/9 1125	5/2 1025	6/4 0715	7/10 0800	8/7 0810	1000 11/0

o Field pH

b Laborotory pH.

Sum of colcum and magnessium in epim. Iron (Fe), oluminum (AI), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Gravimetric determination.

32505-D-H 6-61 200 3PO

67

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

Queue Ways State Parts State	Works		Mineral c	Mineral constituents in	1	ports per million equivalents per million	er mittion	10		Totol Par	Tur~	6
1 1	1.1 1.1 <th>Mogna- aum (pMg)</th> <th>Patos- sium (K)</th> <th>Bicar - banats (HCO₃)</th> <th></th> <th>Ni- trate (NO₃)</th> <th></th> <th>(SiOg)</th> <th></th> <th>solved sod solids iun ppm</th> <th>es bid - Colif 03 11y MPA</th> <th>orm" Analyze V/mi by i</th>	Mogna- aum (pMg)	Patos- sium (K)	Bicar - banats (HCO ₃)		Ni- trate (NO ₃)		(SiOg)		solved sod solids iun ppm	es bid - Colif 03 11y MPA	orm" Analyze V/mi by i
$ \frac{1}{12} + \frac{1}{12}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										 	nscs
$ \frac{1}{12} $				44 0.72	<u>1.0</u> 0.03		ं	ा		27	 	
$ \frac{1}{10} + \frac{1}{10}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<u>36</u> 0.59	$\frac{0, l_{4}}{0, 01}$		<u>.</u>	ା			 	
$\frac{1}{12} + \frac{1}{12} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			40 0.66	0.02		ं।	<u></u>		54	 	
$\frac{1}{12} \frac{1}{12} \frac$	$ \frac{1}{12} $		_								 	
$ \frac{1}{11} + \frac{1}{11}$	$\frac{3}{12} + \frac{1}{12} $			<u>. 38</u> 0.462	<u>1.5</u> 0.04			<u></u>		52	 	
$ \frac{1}{12} \\ \frac{1}{12}$	$\frac{1}{100} \frac{1}{100} \frac{1}$			34 0.56	<u>1.7</u> 0.05		ं।	ା		50	 	
$ \frac{3.6}{0.01} + 3$	$\frac{3.6}{0.000} = \frac{3.6}{0.000} = \frac{3.6}{0.000$			38 0.62	0.8 0.02		ól	ା		53	 	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{100} + 1$			0.66	0.01		ी	া		54	 	
1 1	$ \frac{1}{10^{11} \text{ f}} = \frac{1}{10^{11} \text{ f}}$	$\frac{1.9}{0.16}$	$\frac{17}{0.04}$			<u>1.6</u> 0.03			Pol, 0.05		 	
3.9 0 13 0 13 1.1 0.00 0.11 0 <	$ \frac{3.2}{0.01} + \frac{3.2}{0.00} + 3$			38 0.62	0.01		01			5	 	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}} = \frac$			4 <u>3</u> 0.70	0.8		া	্য		23	 	
$ \frac{1}{0.16} \frac{1}{0.12} \frac{1}{0.12} \frac{1}{0.00} \frac{1}{0.09} \frac{1}{0.02} \frac{1}{0.03} \frac{0.0}{0.00} \frac{0.0}{0.00} \frac{21}{0.00} \frac{1}{0.00} \frac{1}{0.00}$	1.9 0.0 2.3 0.0 0.0 0.0 2.1 70 ⁶ 21 36 0 0 10 10 21 36 0 0 0 0 10 11 36 0			46 0.75	<u>0.5</u> 0.01		0	ା			 	
		1.9	2.3			0.90			POli 0.05 As 0.00		 	

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

b Labaratary pH.

Sum of colorium and magnessium in epo... Iron (Fe), alumnum (AI), arsenic (As), cooper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Colculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

32505-D-H 6-61 200 3PO Mineal analyses made by United Stores Geological Survey, Quality of Water Branch (USCS): United Starts Department of the Interior, Bureau of Reclamation (USCR), United Stores Challer And Starts (USCHS): Son Bernardine County Flood Control Datier (SBCFCD); Merropolitin Water District of Southean CuMPD). Las Angelos Department of Mater and Powe (LADMP); City of Los Angelos, Department of Mater Stores Challer And M. Service (USCHS): Son Bernardine County Flood Public Health (LBDPH); Terminal Testing Leboratories, Inc. (TTL); or California Department of Mater Resources (DWR); os indicated

TARGE D & (Continued)

	Anolyzed by i	0562														
4	Hordness bid - Coliform ⁿ as CaCO ₃ IIY MPN/mi Totat N.C. nppm pom ppm													_		
Tur-	- bid - tty mpgn		0		cu		e-1	CU.	0	m	0	~	3	~	<u>~</u>	
	DOS DOS DOS		0	0	~		~	0	0	0	0	0	0	0	-	
	Hordr os Cc Totol pom		54	20	22		50	16	19	18	18	1ŕ	514	53	-j	
Par	cent sod - ium		E.	8	53		20	54	8	53	53	4-	51	53	51	
Tọtei	a a a a a a a a a a a a a a a a a a a										1964 598				62 ^f 62 ^g	
	Other constituents										PO1, 0.00				Poli 0.00 As U.UU	
	Silica (SiO ₂)										54				워.	
Lo	5		0.0	0.0	0.0		0.0	0.1	0.1	0.0	0*0	0-1	0.0	0.0	0.0	
nullion r mull	Fluo- ride (F)										0.0				0.0	
ports per million equivalents per million	N F trate (NO3)										0.02				0.1	
e dning	Chio- ride (CI)		<u>1.0</u> 0.03	2.2	0.2		<u>0.5</u>	1.6	0*0	0.00	<u>1.1</u>	<u>1.0</u>	20-0	1.2	0.03	
Ē	Sul - fots (SO4)										0.00				0.02	
Minarol constituents	Bicar - bonate (HCO ₃)		33 U.U2	31.0.51	32 0.52		<u>32</u> U.52	23 0.38	<u>31</u> 0.51	29 0.48	27	21.	32 U+52	34 0.56	36 0.59	
rol con	Corbon- ate (CO ₃)		0.00	00.00			0.00	0.00	00.00	0*00	0.00	0.00	0.00	0.00	000	
Mine	Potos- C sium (K)		1.44								0.0				0.02	_
	Sodium (No)		4.2 0.18	2.6	2.0 0.13		2.4 0.10	2.2	2.5 0.11	2.6 0.11	2.61 0.11	2.4 0.10	3.0 0.13	3.2 0.14	3.0 0.13	
	Magne- mura (Mg)										1.2				1.8 U.15	
	Calcium Magne- (Co) 81um (Mg)		0.14BC	0.39	0.143°		0.1.0	0.31 ^c	0.38	0.37 ^c	5.2 0.26	0.32 ^c	0.48	0.47 ^C	0.32	
	H ~		<u>1.</u> 5	7.2	7.4		<u>7.2</u>	7.2	7.3	7.5	7.6	7.0	<u>7.9</u>	7.8	1.1 1.9	
and in	of 25°C)		Q:1	23	22		25	Ιţ	51	118	45	τ [†] 3	55	09	5	
	lved Ci gen ('r %Sot		81	85	98		98	87	88	102	66	101	100	102	102	
	Diesely 0399		9+3	1.11	11.8		9.11	9.11	11.8	10.9	10.1	10.4	0.6	0*6	9.1	
-			49	40 1	36 1		37 1	38	38 1	4T 1	1	43 1	54	22	55	
	Dischorge Temp in cfs in ^{oF}		2.1	38	35		35	8	33	55	68	8	28	12	6	
	Dote ond time P.S.T.	1962	10/3 1445	11/14 1445	12/11 1140	1963	1/2 1135	2/13 1230	3/5 1415	4/8 1345	5/1 1435	6/4 1100	7/9 1430	8/7 1215	9/10 12 30	

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

> b Laboratory pH. o Field pH.

Sum of colcium and magnesium in epum. It is the set of : Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of onalyzed constituents.

Grovimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratores, or United Stores Public Health Service

Mineal analyses made by United States Geological Survey, Duality of Mater Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Mater Duality of Mater Duality of Mater States Department of Mater and Power (LADMP); City of Las Angeles, Department of Public MedM4; Service (USPH5), San Berach, Department of Public MedM4; City of Lang Beach, Department of Public MedM4; City Public MedM4; City of Lang Beach, Department of Public MedM4; City of Lang Beach, Department of Public MedM4; City Public MedM4; City Public MedM4; City of Lang Beach, Department of Public MedM4; City Public Me

8 32505-U-H 6-61 200

r		20															
		Anolyzed by 1	USGS														
ſ		Hordnass bid - Coliform" as CoCO ₃ Ity MPN/mi Totol N.C. Ppm		Median 18.	Maximum 2,400.	Minimum •23											
ŀ	- 10 - 10	- 11 11 10 10		4	5	50	_	ŝ	15	15	ŝ	5	ŝ	10	~	ŝ	
ŀ		N C OS		0	0	0		0	0	0	ŝ	0	0	0	0	c	
		Hordr es Co Totol ppm		62	69	67		68	\$	11	83	54	60	35	1	56	
ľ	Par-	aod - num		36	017	£.		27	40	38	33	35	39	34	33	33	
ſ	Totel	solved solved in ppm										99 ^f 106E				118 ^f 124 ^f	
		Othar constituents		PO4 0.25	P04 0.21	Pot 0.20		Po _{l1} 0.20	Pol ₁ 0.00	Pol, 0.30	PO4 0.15	POL 0.15 As 0.00 ABS 0.00	P04 0.15	Polt 0.20	Po ₄ 0.35	PO ₁₄ 0.35 As 0.00 ABS 0.00	
		Silico (SiD ₂)										T.e				58	
	million	Boron (B)		0.1	0.0	0,1		0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.1	
	par mil	Fluo- rida (F)										0.01				0.3	
	5 I I	Ni - trote (NO ₃)		2.4 0.04	4.1 0.07	<u>1.4</u>		2.5	1.1 0.02	2.2 0.04	<u>1.9</u> 0.03	0.01	0.0	<u>1.0</u> 0.02	2.4 0.04	2.1	
	aquivolants	Chio- rida (CI)		5.0 0.14	5.4 0.15	6.2 0.17		6.2 0.17	5.2	<u>5.2</u> 0.15	0.17	2.3 0.08	4.8 0.14	<u>3.6</u> 0.10	3.3	2.5 0.07	
	e	Sul - fota (SO ₄)										<u>19</u> 0.40				10 0*51	
	stituants	Bicor- bonots (HCO ₃)		34 1.54	108 1.77	<u>96</u> 1.57		<u>103</u> 1.09	90 1+ ¹⁴ 8	<u>1.72</u>	<u>35</u> 1-56	74 1.21	<u>85</u> 1-39	82 1.34	<u>83</u> 1.36	84 1.38	
	Minarol constituants	Corbon- ota (CO _S)		0.00	00.0	00*0		0.00	0.00	00.00	0.00	0*00	0 0.00	00°00	0.00	00*0	
	Min	Potos- sium (K)										2.2				2.5	
		Sodium (No)		<u>16</u> 0.70	21 0.91	23 1.00		<u>23</u> 1.00	20 0.87	22 0.96	<u>19</u> 0.83	<u>14</u> 0.61	18 0.78	$\frac{1^{l_{1}}}{0.61}$	<u>13</u> 0.57	<u>13</u> 0.57	
		Mogna- aum (Mg)										6.3				5.7	
		Coltium (Co)		1.24c	1.30	1.34		1.36	1.310	<u>1+54</u> °	1.60°	11 0.55	1.20	<u>1.16</u> °	.1.16	130.65	
		H		7.8	1-9	<u>7.9</u>		5.1	<u>15</u>	7.4 8.0	<u>7.5</u>	7.44 7.48	2.9	P. 2	8.4 3.0	<u>5-1</u>	
	Sacutio	of 25°C)		189	227	238		232	223	250	256	168	201	177	171	170	
		5	1	80	83	90	_	96	89	16	- 66	66	119	132	114	83	
		Dissolvad osygan ppm 0/oSo		7.7	9.1	11.2		11.7	11.44	10.9	10.3	10.6	10.2	10.8	9.3	7.1	
		Tamp in oF	1	64	5	4.3		017	ηT	46	48	64	68	72	72	68	
		Dischorge in cfs		1,610	2,960	3,270		3,000	1,600	3,080	3, 300	3, 140	916	ΔħΟ	1,020	1,400	
		Dota ond tima sompled P.S.T.	196.2	10/4 0945	11/15 0945	12/12 1000	1063	1/3 0930	2/14 0920	3/6 0945	4/9 0930	5/2 0830	6/3 1415	7/10 1225	8/6 1245	9/11 0830	

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER BELOW IRON GATE DAM (STA. 11)

b Loborotory pH. o Field pH.

c Sum of colcium and magnesium in epm.

e Sum of colcium and magnesum in epm. d Itan (Fe), aluminum (A1), arsaniz (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁴⁵), reported here as $\frac{0.0}{0.00}$

Darived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Grovimetric determination.

045 002 19-9 H-O-50526 Mineral analyses made by United Stores Geological Survey, Quality of Waree Branch (USGS), United Stores Department of the Interior, Sureou of Reclamation (USBR), United Stores Survey, Quality of Waree Branch (USSR), Son Bernardine County Flood Control District (SECECD); Memodulan Waree District of Southern California (AMD), Los Angeles Department of Mater and Power (LADMP), City of Las Angeles, Department of Waree Resources (DWR); as indicated Public Health (LBDPH); Terminal Testing Laboratoria. In: (TTL); ar California Department of Waree Resources (DWR); as indicated h Annul median and range, respectively. Colculated from analyses of dupitate manhly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

	Anolyzed by 1	USGS													
	bid - Colitorm Ity MPN/mi		Median 6.2	Maximum 230.	Minimum .23										
Tur-	- piq		00	5	180		~	30	9	10	15	Г	01	г	Ś
	N COS		0	0	m		0	0	0	0	0	0	0	0	0
	to an a later of the second se		67	10	77		74	94	78	28	μ2	61	92	52	78
	cent eod - ium		26	8	15		58	16	50	16	16	16	18	53	54
Totel	solived solide n ppm										65 ^f 70 ^g				126 ^f 124 ^g
	Other constituents										POL 0.10 As U.UU ABS 0.00	Tot. alk. 80	Tot. alk. 102		Tot. alk. <u>111</u> Po4 <u>0.10</u> As <u>0.00</u> ABS <u>0.00</u>
	Silica (SiO ₂)										a				
lion	Baron (B)		1-0	0.0	0*0		0.1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0
million per million	Fluo- ride (F)										0*0				0.01
ts be	Ni- 1 trats (NO ₃)										0.01				0.5
parts p equivalents	Chio- ride (CI)		5.2	5.9	<u>1.0</u> 0.03		5.0 0.14	2.9 0.08	4.8 0.14	<u>1.5</u> 0.04	<u>1.0</u> 0.03	<u>3.2</u> 0.09	<u>5.5</u> 0.16	<u>5.6</u>	0.18
tituents in equivalen	Sul - fats (SO ₄)										5.0 0.10				0.19
constituents	Bicar- banate (HCO ₃)		<u>93</u> 1.52	<u>102</u>	0.82		1.64	60 0.98	1.67	$\frac{71}{1.16}$	<u>55</u> 0.90	<u>78</u> 1.28	100 1.64	1.64 1.64	1.03
Mineral cons	Carban- ate (CO3)		0.00	0.00	0.00		0.00	00*0	0.00	0.00	00.00	1 0.03	1 0.03	0.00	0.13
Min	Potas- sium (K)	_									<u>0.02</u>				0.05
	Sodium (Na)		<u>11</u> 0.48	<u>14</u> 0.61	<u>3.7</u> 0.16		<u>13</u> 0.57	0*17	<u>8.9</u> 0.39	5.0 0.22	<u>3.7</u> <u>3.16</u>	<u>5.5</u> 0.24	7.9	10 0.44	0.52
	Magne- sium (Mg)										4.9 0.40				9.4 0.77
	Caicium (Ca)		1.34	1.40°	0.88°		<u>1.48</u> °	.26*0	<u>1.56</u> °	1.10	<u>9.0</u> 0.45	1.22	1.52	1.50°	<u>16</u> 0.80
	PH 8/1		7.8	1.8	7.5		7.5	7.7	7.8	7.4 8.0	<u>7.5</u> 8.0	7.6	8.1	7:9	8.5 8.5
Specific	conductance (micramhos at 25°C)		178	198	66		199	106	194	136	96	140	173	188	202
	Dissolved osygen ppm %Sat		103	73	108		105	110	108	108	109	104	103	105	104
	Disso osyj ppm		10.6	1.1	12.5		13.4	12.9	12.5	12.5	12.1	6.6	9.1	0-6	9.1
	Temp in oF		58	56	00 		1 ⁴	747	8	Lt	20	63	70	73	IL.
	Dischorge Temp in cfs in of		4,140	4,380	59,100		6,430	45,700	6,480	15,600	26,500	6,840	2,550	2,190	2,240
	Date ond time sampled P.S.T	1962	1.0/8 1325	11/5 1345	12/3 1250	1963	1130	2/5	3/12 1200	4/1 1225	5/6 1145	6/10 1150	7/10 1105	8/12 1150	9/3 1250

a Field pH

b Laboratory pH.

c Sum of calcium and magnesium in epm.

c sum of calcum and magnesium in spin. d Iran (Fe), aluminum (AI), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexoralent chromium (Cr⁴⁵), reported here as <u>0.00</u> except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Screice.

32505-D-H 6-61 200 2P0 Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Quality of Water Branch (USPR), San Bernardino County Flood Contral District (SBGFCD); Metropolitan Water District of Southern California (AMD); Las Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

	WATER
Continued)	SURFACE
D-2	QF
TABLE	ANALYSES

NORTH COASTAL REGION (NO. 1)

SALMON RIVER AT SOMESBAR (STA. 2a)

4	n' Anolyzed	USGS		E												
	Hordness bid - Coliform os CoCO ₃ ity Totol N.C. Ppm ppm		Median 2.3	Maximum 230.	Minimum .13											
Tur-	hid -		m	-	To		-	517	CU.	m	10	-	~	-	~	
	Hordness os CoCO ₃ Totol N.C. ppm ppm		0	0	0		0		0	0	2	0	0	0	0	
			146	64	34		15	34	53	49	22	36	20	60	63	
Per	ting cent		10	10	12		00	>	0	2	6 	10	11	10	10	
Totel	solide solide In ppm										50 [£] 50Ë				89 ^f 85 ^g	
	Other constituents										Pu ₁ <u>0.00</u>				PUI, 0.00 AB 0.00 ABS 0.00	
	Silico (SiO ₈)														77	
lion	Boron (B)		0.0	0.0	0.1		0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	
million ber mi	Fluo- ride (F)										0.00				0.0	
equivolents per million	NI- Trafe (NO ₃)										$\frac{1.4}{0.02}$				0.1	
e quivo	Chio- rids (Ci)		2.2	2.2 0.06	1.0 0.03		<u>1.2</u> 0.03	<u>1.8</u> 0.05	<u>1.0</u> 0.03	<u>1.2</u> 0.03	<u>1.1</u> 0.03	<u>1.2</u> 0.03	2.8	<u>3.0</u> 0.08	$\frac{4.0}{0.11}$	
e.	Sul - fote (SO ₄)										0.0				<u>3.0</u> 0.00	
stituents	Bicar- bonote (HCO ₃)		57 0.93	66 1.08	42 0.69		62 1.02	40 0.66	<u>65</u> 1.07	62 1.02	<u>33</u> 0.64	46 0.75	<u>65</u>	1.21	<u>78</u> 1.28	
Mineral constituents	Corban- ate (CO _S)		0.00	00.1	0.00		0.00	0.00	0.00	0000	0.00	0.00	0.00	0.00	0.00	
Mine	Potas- 6ium (K)										1.4 0.04				1.1 1.03	
	Sodium (N a)		2.4 0.10	<u>2.7</u>	2.0 0.09		<u>2.1</u>	<u>1.5</u> 0.07	2.1 0.09	2.0	1.6	<u>1.8</u>	2.7	3.2 0.14	<u>3.2</u> 0.14	
	Magne- erum (Mg)		·								1. 1 0. It				<u>3.8</u> 0.31	
	Colcium (Co)		36.0	.96.0	69.0		<u>1,02</u> °	0.68°	1.00		<u>9.7</u>	0.73	1.01	1.20	19	
	Ŧ		7.8	-1-1-0 -1-1-0 -1-1-0 -1-0-1-0 -1-0-1-0 -1-0-1-0	7.6		7.3	<u>5.1</u>	<u>7.9</u>	<u>1-1</u>	1-1 1-1	$\frac{7.4}{8.0}$	8.1	<u>7.9</u> 8.1	8.1 8.1	
Specific	(micromhos of 25°C)		100	111	76		108	51	112	lu.	69	80	100	130	137	
	ved (r en (r		107	26	108		103	105	104	1.5	105	104	101	109	108	-
	Dissolved osygen ppm %Sof		11.2	10.5	12.4		13.2	12.4	12.6	12.4	11.8	10.2	2.6	9.4	9*6	
-			56 1	54 1	49 I		1º 1	1 24	145	46]	49	60	62	72	т С	-
	Discharge Temp in cfs in 0F		681	544	14,400		26f	8,820	1,230	3,720	, ,910	1,840	565	314	240	
	Dote ond time P.S.T.	1 160	10/8 1430	11_{l} 142.	12/3	1.003	1/ <i>1</i> 1225	2/5 1315	3/12 1305	4/1 1310	5/6 1225	6/10 1240	7/16 1140	8/12 1230	9/3 1210	

Sum of colcium and mognesium in epm.

Sum of calcium and magnessum in epm. Iron (Fo), alumnum (A1), arsenic (A3), copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Amual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Duvision of Laboratories, or United Stores Public Health Service.

Amonal analyses mode by United States Geological Survey, Ouclity of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamotion (USBR), United States Poblice Headth, Service (USPHS); San Benordino Courty Flood Cantoal District (SBGEGD), Memopolitan Water District of Southean California (MaD), Los Angeles Department of Mater and Power (LADWP), City of Las Angeles, Department of States Department of Public Health, (LBDPH), Temmonal Testing Laboratoria Spartment of Water Resources (DWP), or and Power (LADWP), City of Las Angeles, Department of Publice Health, City of Lang Beach, Department of Public Health, (LBDPH), Temmonal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWP), or indicated

32505-D-H 6-61 200 SP0

ANALYSES OF SURFACE WATER

		Anolyzed by 1	SDSU				_										
		Hordness bid - Coliform ^h es CoCO ₃ ¹¹ Y MPN/mi Totol N.C. pom pom															
	Ture -	- Au Au		~	TC	15		2	20	10	10	15	~	5	°4	3	
		o C O S		0	0	0		5	0	0	э	0	0	0	Э	0	
				81	52	58		ő	88	93	81	1/1	74	102	11	42	
		tum ium		31	ž	30		X	22	28	20	22	ñ	ಬೆ	27	30	
	Totel	solived solids in ppm										113^{Γ}				128 ¹ 132 ^{6,}	
		Other constituents		Po _{l4} 0.422	PO4 0.22	PO4 0.20		Pol, U.15	PO _{l4} 0.12	Pol, 0.30	OT*O HON	POlt 0.20 As 0.00 ABS 0.00	Pol, 0.15	PO4 0.20	P04, 0.40	PO1 0.25 As 0.00	
		Silic (SiO ₂)										<u></u>				의	
	ion	5		0.1	0.0	0.2		0.0	0*0	1.0	0.1	0.1	0.1	0.2	0*0	4.0	1
(million ar mill	Fluo- rids (F)										0.2				0.3	 1
KLAMATH RIVER NEAR SEIAD VALLEY (STA. 2b)	parts psr million equivolants psr million	Ni- trots (NO ₃)		$\frac{2.1}{0.03}$	2.1 0.03	$\frac{1,4}{0.02}$		2.5 0.04	0.9 0.01	$\frac{1.7}{0.03}$	<u>1.5</u> 0.02	0.01	0.4 0.01	<u>0.6</u> 0.01	2.3 0.04	<u>6.0</u>	 -
VALLEY	equivo	Chio- rids (CI)		7.0 0.20	6.4 0.18	<u>6.5</u> 0.18		<u>6.5</u> 0.18	5.6 0.16	<u>5.8</u> 0.16	4.0 0.11	<u>3.2</u> 0.09	3.9	$\frac{6.4}{0.18}$	5.2	0.17	
SEIAD	Ē	Sul - fats (SO ₄)										12				<u>9.0</u> 0.19	
ER NEAR	stituents	Bicar- bonats (HCO ₃)		<u>120</u> 1.97	$\frac{114}{1.87}$	115		<u>118</u> 1.93	<u>116</u> 1.90	123 2.02	$\frac{103}{1.69}$	<u>96</u> 1-57	<u>101</u> 1.66	<u>130</u> 2.13	1.77	112	
MATH RIV	Minerol constituents	Corbon- ots (CO3)		0*00	0*00	0.00		0.00	0.00	0.100	0.00	0.00	0 0*0	0*00	0.00	0.00	
KIA	Min	Potos- sium (K)										<u>1.8</u> 0.05				2.3	
		Sodium (No)		$\frac{17}{0.74}$	<u>16</u> 0.70	<u>17</u> 0.74	-	<u>18</u> 0.78	11 0.48	$\frac{17}{0.74}$	<u>9.5</u> 0.41	<u>10</u> 0.444	<u>9.8</u> 0.43	13 0.57	<u>13</u> 0.57	$\frac{14}{0.61}$	
		Mogns- mus (Mg)										<u>8.1</u> 0.67				10.82	
		Colcium (Ca)		1.62	1.50	1.70		1.68°	1.75°	1.8°C	1.68	16 0.80	<u>1.148</u> °	<u>. 10 - 2</u>	1.540	1.14 0.70	
		Ho d/a		8.2 8.0	7.4 8.1	<u>1.7</u>		7.6 8.0	<u>1.7</u>	<u>7.9</u>	9.7 9.7	<u>1-8</u> <u>1-8</u>	8.2	7.6 8.2	8.0 3.0	8.0 7.9	
	Soscific	conductance (micromhos of 25°C)		228	219	237		239	214	253	210	180	189	230	204	208	
		yo Sat		108	93	76		96	98	101	101	100	66	1.04	104	108	
		Dissolved osygen ppm %Sat		10.6	10.7	12.0		12.2	11.8	6.11	11.2	10.9	7.6	5.6	8.7	4.6	
		n oF		62 1	49 1	43 1		1,3	45 1	47 1	48 1	⁴⁹ 1	58	67	72	68	-
		Dischorge 1 in cfs		1,970	4,550	5,640		5,120	5,300	4,870	7,120	6, 300	2,870	1,400	1,350	1,590	-
		Dots ond time somplad P.S.T.	1962	10/4 1230	11/15 1210	12/12 1220	1963	1/3 1200	2/14 1150	3/6 1305	4/9 1210	5/2 1130	6/4 0800	7/10 0900	8/7 0905	9/11 1045	

of Living Parals Compressions of

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

and Weither and Flowers (1 ADWF1) Conv.

o Freid pH.

Laboratory pH.

c Sum of colcium and magnesium in epm.

Sum of concerning and the second metal of the second second second second second second second second second as shown the second se

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Amuel media and range, respectively. Calculated from analyses of duplicate monthly samples made by California O popriment of Public Health, Division of Laboratories, or United States Public Health, Service.

 Himmed analyses made by United States Geological Stares, Qualitative States Department of the Internet. Survey of Residentiation (1958); United States Geological Stares, Qualitative States Conductive States Conductive States States Department of the Internet. Survey of Residentiation (1958); United States Public Health, Service (1959); San Bernardina County Fload Condonisming States States States States States Department of the Internet. Survey of Residentiation (1958); United States Public Health, Service (1959); San Bernardina County Fload Condonisming States Sta

g

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER NEAR KLAMATH (STA. 3)

Image Parameter Parameter Parameter 10 With 1 145 145 145 145 14 1 145 145 145 145 145 18 54 0 5 145 145 145 13 55 0 145 145 145 145 13 55 0 145 145 145 145 12 60 0 14 10 105 105 116 116 116 116 116 116 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 11 116 116 116 116 116 116 116 116 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Detter</th><th>MINSTOI CONSTITUENTS</th><th></th><th></th><th>aguiv</th><th>squivalants par million</th><th>par m</th><th>lion</th><th>-</th><th></th><th>Totol</th><th></th><th></th><th>2</th><th></th><th>4</th></t<>											Detter	MINSTOI CONSTITUENTS			aguiv	squivalants par million	par m	lion	-		Totol			2		4
1 1	Cots and time sampled P.S.T.		gs Tem		rgen (spectric conductance micramhot at 25°C)	H al	Calcium (Ce)	(BM) muns (Mg)	Sadium (Na)	Patas- sium (K)	Carban- ats (CO ₃)			Chia- rids (Ci)	Ni- trote (NO ₃)	Fiuo- rids (F)	Baron Sil (B) (Si)thar constituants	solids in ppm		es CoCC en CoCC		WPW/	
R1,00 13 10.6 10.9 13.4 0.001 13.4 0.001 13.4 0.001 13.4 13.0 13.4 13.0 13.4 <																										USGS
6,700 31 100 126 $\frac{11}{110}$	10/11	27,900		10.		66	7.5			3.3 0.14		0.00	<u>52</u> 0.85		0.06			0.0				14				
9,0,00 90 1.1 100 1.3 1.4 1.00 1.4 1.00 1.4 1.00 1.4 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 </td <td>0,11 8/11</td> <td>6,720</td> <td></td> <td>10.</td> <td>100</td> <td>192</td> <td>7-5</td> <td></td> <td></td> <td>11 0.48</td> <td></td> <td>0.00</td> <td>1.67</td> <td></td> <td>5.1</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>щ.</td>	0,11 8/11	6,720		10.	100	192	7-5			11 0.48		0.00	1.67		5.1			0.0				5				щ.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12/5	50,40		_i	10th	123	7.7			<u>5.4</u> 0.23		0.00	<u>68</u> 1.11		2.8			0.1				18	_			
u_0 v_0 u_1 u_1 v_0 u_1 u_1 v_0 u_1 u_1 v_0 u_1 <t< td=""><td>1963</td><td>10,800</td><td></td><td>12.</td><td>100</td><td>180</td><td>2.5</td><td></td><td></td><td>3.6</td><td></td><td>0</td><td><u>96</u></td><td></td><td>3.5</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td>8</td><td>41</td><td></td><td></td><td></td></t<>	1963	10,800		12.	100	180	2.5			3.6		0	<u>96</u>		3.5			0.0				8	41			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2/7	48,20		ä		122	7.7			3.9 3.17		0.00	67 1.10		3.1			0.0				13	55			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3/14	11,90				180	1.8			6.8		0.00	<u>94</u> 1.54		3.0			0*0				17	th 2			
	4/3	33,60		11		132	<u>7.6</u>			<u>5.8</u> 0.17		0.00	$\frac{73}{1.20}$		1.5 0.04			0.0				12	60			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5/8	146,60				100	7.6		5.1	<u>3.0</u> 0.13	0.01	0.00	<u>56</u> 0.92	3.0	<u>1.5</u>	0.00	10.0	0.1		0.15 AB	65 ^f 70 ^g	12	794			
	6/12	12,20				133	7.5			4.4 0.19		0.00	$\frac{77}{1.26}$		4.0 0.11			0.0				13	61			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/17	l4,36	<u>.</u>	6		166	8.2			5.9 0.26		0.00	<u>91</u> 1.59		<u>5.4</u> 0.15			0.0				15	92			
3,400 70 8.3 22 136 $\overrightarrow{610}$ $\overrightarrow{628}$ $\overrightarrow{610}$ $\overrightarrow{612}$ $\overrightarrow{610}$ $\overrightarrow{610}$ $\overrightarrow{612}$ $\overrightarrow{610}$	8/14	3,48		6		187	8.0			7.7		0.00	1.64		<u>5.6</u> 0.16			0.0				17	80			
	9/5	3,40				196	2*8 1-1		8.8 0.72	<u>9.0</u> 0.39	<u>1.7</u> 0.04	10.23	<u>92</u> 1.51	0.19	6.0	0.01	0.02	0•1		ot. alk. <u>106</u> 04 <u>0.05</u> As <u>0.00</u> 38 <u>0.00</u>	122 ¹ 1228	18	%			

a Freid pH

b Laboratary pH.

c Sun of calcium and magnesium in epm. d Iron (Fe), aluminum (AI), arsenic (AS), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavelent chromium (C⁺⁶), reported here as 0,00 2000

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

32005-0-H 6-61 200 3F0 Mineal analyses made by United Stores Geological Survey, Quality of Water Branch (USCS); United Stores Department of the Internet, Surveu of Reclamation (USBR); United Stores Spoker Meddeh Serves (USPR); San Bennerdine County Fload Amount District (SGCECD); Mennopoliton Water Destinct of Southena California (WAD); Los Angeles Department of Marer and Power (LADWP); City of Long Benerdine County Fload Public Health LitedDPH); Terminal Testing Laboratores, Inc. (TTL); or California Dapartment of Water and Power (LADWP); City of Long Benerd, LaDPH); City of Long Benerd, Department of Public Health, Terminal Testing Laboratores, Inc. (TTL); or California Dapartment of Water Resources (DWR); as indicated

TANUE DIE (Continued) ANALYSES OF SURFACE WATER

[Anelyzed by 1	USGS													
		bid - Coliform		Median .62	Nexteum 230.	Minimum .20										
	Tur-	h pom		35	-	in.			-7	m	0	15		-2	-	-
		N CO3		CU.	0			0	CV	~	00	0	0	~	CJ.	N
				38	54	37		51	37	4,8	38	34	52	61	99	68
	Per-	cent eod - ium		6	æ	10		6	6	7	10	10	0	0	6	7
	Totol	solids in ppm										57 ^f 688				84 f 73 ⁶
		Other constituents										PO1, 0.00				PD, 0.00 As 0.01
		Silico (SiO ₂)										2				쿼
	LO	Boron S (B)		0.0	0.0	1.0		0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0
nillion	per million	Fluo- ride (F)										0.00	~.			0.00
ports per million	1 1	N F trote (NO ₃)	-									0.01				00°0
por	equivolents	Chio- ride (CI)		<u>1.5</u> 0.04	<u>3.1</u> 0.09	2.2		2.8 0.08	3.3	2.5	<u>1.8</u> 0.05	<u>3.1</u> 0.09	3.9	4.5 0.13	4.1 0.12	4.8 0.14
	⊆	Sul - fote (SO ₄)						(dio				0.02		210	210	0.00
	stituents	Bicar- bonote (HCO ₃)		44 0.72	<u>68</u> 1.11	44 0.72		62 1.02	43	<u>57</u> 0.93	36 0.59	1.9°0	<u>64</u> 1.05	<u>73</u> 1.20	78 1.28	80
	Mineral constituents	Corbon- ote (CO3)		0.00	00.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00
	Ň	Potos- sum (K)										<u></u>				0.0
		Sodium (No)		<u>1.1</u> 0.07	2.3	<u>1.9</u> 0.08		2.2	<u>1.7</u>	<u>1.7</u> 0.07	<u>1.8</u> 0.08	<u>1.8</u> 0.08	2.2 0.10	2.4 0.10	2.9	<u>2.6</u> 0.11
		Mogne- sium (Mg)										<u>5.7</u> 0.47				<u>12</u> 0.(#)
		Colcium (Co)		0.75 ^C	1.08°	0.74°	_	<u>1.02</u> °	0.73	<u>.6.0</u>	0.76	4.2	1.04°	1.22°	1.32°	8.0 0.40
		F 2		7.3	<u>***</u>	2-1		7-9	7+5	7.0 8.0	7.8	7.4 8.0	<u>7.5</u>	<u>8.1</u>	<u>1.1</u> 8.1	8 <u>.2</u> 8.2
	Specific	conductance (micromhos of 25°C)		11	114	80		105	78	100	82	11	107	121	134	138
				114	100	109		103	П	106	108	108	TOT	102	101	101
		Dissolved osygen ppm %Sol	-	12.3	11.3	12.3		12.8	12.6	12.6	12.5	12.6	6.6	9.6	4.6	6-6
1				54 1	50 1	50 1	_	1,3	50 1	46 1	1 61	148	62	99	29	69
		Orschorge Temp In Cfs in 0F		25,800	860	8,960		1,400	9,600	1,780	6,630	14,800	1,060	485	370	250
		Posts ond time P.S.T.	1:454	d	11/8 1200	12/5 1445	1:463	1/9 1300	2/7 1230	3/14 1145	4/3 1300	5/8 1135	6/12 1005	7/17 1020	8/14 1050	3/5

Field pH.

Laborotory pH.

Sum of colcium ond magnesium in epm.

Sum of colcium and mognesium in spm. Iron (Fe), alumnum (A1), arsanic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Anuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by Colifornia Department of Public Health, Division of Lobarotories, or United Stores Public Health Sovice

Mineal analyses made by United States Geological Survey, Oucliny of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Macual States Department of Water and Power (LADWP); City of Los States Department of States Department of Public Health, States Department of States Department of Public Health, States Department of States Department of Water States Department of Public Health, LADPH); City of Long Bacch, Department of Public Health, Termund Testing Leborator. (ITL); or California Department of Water Resources (DWR); city of Los Angeles, Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Public Health, Termund Testing Leborator. (ITL); or California Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Public Health (LBDPH); Termind Testing Leboratores, Inc. (ITL); or California Department of Water Resources (DWR); city of Long States Department of Water Resources (DWR); city of Long States Department of Public Health (Leboratores (DWR); city of Long States Department of Public Health (Leboratores (DWR); city of Long States Department of Public Health

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

	TVM
(Continued)	CUDENCE
D-2	L C
TABLE	NALVERC
	N N

ER

NORTH COASTAL REGION (NO. 1) ANALYSES OF SUMPAUL

REDWOOD CREEK AT ORICK (STA. 3b)

Under lists Under lists <					Control					Min	erol cor	Mineral constituents	ц 9	adult	equivolents per million	per m	ul lion			Totei	Per-		۲ ۲		-
		ts in of		pived gen	apresident micromho at 25°C	Ξ	Colcium	Mogne-	Sodium	Potos-	Corbon-	Bicor- bonote	1	Chlo- ride	Ni- trote	<u> </u>	Boron	Silice	Other constituents	solved solved	Cent a od - Ium	Hordne es CoC	20 C	y MPN	/mi Ano
% 11.1 %		-	E dd	%Sof		2	1971	(M)	1041	(X)	(co ₃)	(HCO ₃)		(Ĵ	(°0N)	-						E	j E		+
1 1																									ns
10.1 10.1 <td< td=""><td>~</td><td></td><td>10.</td><td>8</td><td>82</td><td>7.2</td><td></td><td></td><td>3.3 0.14</td><td></td><td>0.00</td><td>33 0.54</td><td></td><td>4.0 0.11</td><td></td><td></td><td>0*0</td><td></td><td></td><td></td><td>17</td><td>∃r</td><td></td><td></td><td></td></td<>	~		10.	8	82	7.2			3.3 0.14		0.00	33 0.54		4.0 0.11			0*0				17	∃r			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		10.	66	116	2.1 7.9			4.5 0.20		0.00	<u>56</u> 0.92		5.4			0.0				17	817	CU		E . 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00				29	0.1			4.6 0.20		0.00	28		3.5			0,0				83	98			1171 II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					_				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m		11.	8ŕ	100	11.1			3.7 0.10		0.00	46 0.75		4.5 0.13			0*0				97	¢.	5	-7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CU OÎ				74	7.1			3.2		0.00	32		<u>0.14</u>			0.1				n. T	59		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		11.		36	7.7			3.5		0.00	110 0.66		$\frac{l_{1,*}()}{0,11}$			0.0				17	36	m	5	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4		11.8		69	2-1- 2-1-			2.8		0.00	30 0.49		2.5			0.0				18	58	~	0	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1				69	7.0		<u>1.5</u> U.12	3.0	0.0	0.00	31	5.0	0.4	10.0 10.0					45 ^{1'} 52 ⁶	19	58		\$	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	CU				104	0.0			3.4 0.15		0.00	51 0.84		<u>5.9</u> 0.17			0*0				15	44	Ç1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			~~~~		128	· · ·			<u>6.19</u>		0.00	<u>63</u> 1.03		7.0			0.0				15	55	m	C1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					138	1-1			5.1 0.22		0.00	66 1.08		5.8 0.16			0.0				16	58	*		
					140	<u>9*2</u>		2.1	4.2 0.13	0.01	0.00	66 1.08	<u>7.n</u> 0.15	6.7 0.19	0.2				<u>0.00</u> As	84.f 85 6	13	65	Ś	m	

b Loboratory pH

c Sum of calcium and magnesium in epm.

Sum of calcium and magnesium in spin. Iron (Fe), aluminum (Ai), arsenic (As), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and heravalent chramium (Cr ⁻⁶), reported here as <u>0.0</u> except as shown.

Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. .

Gravimetric determination.

Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service.

_

32505-0-H 6-61 200 3P0 Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Sureou of Reclamation (USBR), United Stores Poble Maddhh Service (USPHS), San Barnardino County Flood Control District (SGCEOD), Warnopolitan Water District of Southean California (MAD), Los Angeles Department of Power (LADWP), City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL), or California Department of Mater Resources (DWR), os indicated.

	Analyzed by 1	USGS													
-	Hordnass bid - Coliform as CoCO ₃ 119 MPN/mi Total N.C. hpm ppm ppm		Median 6.2	Maximum 2,400.	Minimum .23										
Tur-	- 514 11 ppm		- C	-	160		ču –	10	m.	150	20	CU	~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Hordness as CoCO ₃ Totol N.C. ppm ppm		~	01	~		5	4		0	0	0	0	-7	<u>vo</u>
			82	48	22		84	58	83	69	58	61	8	93	95
Par-	sod - Ium		10	11	ল		6	~~~~~	00	00	~	10	6	6	6
Total	solved in pom										78 ^f 80 ^g				121 ^f 120 ^g
	Othar constituants										PO ₄ 0.10 As 0.00 ABS 0.00			Tot. alk. 108	Tot. alk. <u>109</u> Po ₄ 0.00 As 0.00 ABS 0.00
	Silico (SiO ₈)										97				र्ज
u	Boran S (B) (S		0.0	0.0	1.0		0.0	1.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0
per million	Fluo- B rids (F)		01	01				0		01	0.01				0.01
	NI- F Irote (NO ₃)										0.00				
parts pr equivalents	Chia- ride (CI) (<u>5.0</u>	4.8 0.14	<u>1.8</u> 0.05		3.0 0.08	<u>3.1</u> 0.09	2.8 0.08	0.02	0.02	2.8 0.08	5.4 0.15	<u>6.1</u> 0.17	0.17
Ē	Sul - fote (SO ₄)		040	210					(up)	010	0.0 0.0	(III)	540	010	0.15
stituants	Bicar- bonata (HCO _S)		<u>94</u> 1-54	1.64	62 1.02		<u>96</u> 1.57	<u>To</u>	<u>100</u>	<u>81</u> 1.33	72	<u>14</u> 1.21	98 1.61	<u>1.04</u> 1.70	1.66
Minaral constituents	Carbon- ats (CO ₃)		0.00	00.00	0.00		0.00	0.00	0.00	0.00	00.00	00.00	0.00	2 0.07	4 0.13
Mine	Potos- sium (K)										0.0				0.02
	Sodium (Ng)		4.3 0.19	4.8 0.21	<u>3.2</u> 0.14		<u>3.8</u> 0.17	2.3 0.10	<u>3.2</u> 0.14	<u>2.6</u> 0.11	2.4 0.10	3.0	<u>3.7</u> 0.16	4.4 0.19	4.6 0.20
	-supow uns (BM)										5.0 0.41				0.65
	Calcium (Ca)		<u>1.64</u> °	1.68 ^c	1.04 ^C		1.68	1.17	1.66	1.30	<u>15</u> 0.75	1.22	19*1	1.87 ^c	<u>25</u> 1.25
	Hd d/g		7.9	7.8 8.2	7.5		8.1	7.9	7.7 8.2	$\frac{7.4}{8.0}$	<u>7.9</u>	7.44 8.2	7.9 8.2	<u>8. </u>	8.c 8.5
Specific	conductance (micromhos at 250 C)		175	179	106		172	120	174	135	120	126	171	195	198
			101	102	105		102	104	102	104	lol	66	98	107	104
	Dissolved oxygen ppm %So		10.4	10.6	6.11		12.9	8.11	6.11	12.1	1.11	9.5	8.8	9.1	0. 6
L			58 1	57 1	50 1		42 1	50 1	48	τ 1 T	52 1	63	69	52	23
	Dischorge Tamp in cfs in 9F		850	1,280	32,600		2,150	17,000	2,760	16,800	11,300	5,220	1,230	750	544
	Date and time P.S.T.	1962	10/8 1145	11/5 1205	12/3 1100	1963	1/7 0940			4/1 1 1035	5/6 1	6/10 0940	7/16 0905	8/12 1425	9/3 1500

a Field pH.

b Lobaratory pH.

Sum of calcium and magnesium in spm. υ

Sum of colorium and magnessum in spin. Iron (Fa), aluminum (AI), arsenic (AS), cooper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr^{+E}), reported here as $\frac{0.0}{0.00}$ except as shown. ~0

Derived fram conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination. .

h Annual median and ionge, respectively. Colculated from analyses of duplicate monthly samples made by Colitionia Department of Public Mealth, Division of Laboratories, or United Stores Public Health Service

Amael analyses made by United Stores Geological Survey, Quality of Water Branch (USGS), United Stores Department of the Interior, Surveu of Reclamation (USBR); United Stores Public Meddth Service (USPHS) ; San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern Collifornia (MWD); Los Angeles Department of Marer and Power (LADWP); City of Las Angeles, Department of Public Meddth Service (USPHS) ; San Bernardino County Flood Public Medith (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DMR); city of Las Angeles, Department of Public Meddth Service (USPHS); San Bernardino County Flood

77

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

of Public Mandek (L. ALDPHA), City of 1 and Devroy County Flood

NORTH COASTAL REGION (NO. 1)

ANALYSES OF SURFACE WATER TARLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

TRINITY RIVER AT LEWISTON (STA. 4a)

Tur -	Hordness bid - Coliform ⁿ Anolysed es CoCO ₃ ity MPN/mi by 1 Totol N.C. ppm ppm	nscs	2 Median 6.2	2 Median 6.2 1 Maximum 230.	2 Median 6.2 1 Maximum 230. 70 Minimum	2 Median 6.2 1 Maximum 230. 70 Minimum	2 Median 6.2 1 Maximum 230. 70 Minimum 26	2 Meadawn 6.62dawn 1 Maardanum 230. 70 .06 20	2 Medium 6.2 Medium 1 Maximum 70 Minimum 20 20 20 3	2 Median 6.621an 1 Maximum 70 Minimum 230. 20	2 Medium 6.2 Medium 1 Maximum 70 Minimum 230. 20 20 3 3 3 6 6	2 Median 6.21 Median 1 Maximum 70 Minimum 230. 20 8 8 8 8 8 8 8	2 Medium 6.2 Medium 1 Maximum 70 Minianum 20 20 20 3 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Meditum 6.2 Meditum 1 Maximum 230. 230. 23 20 20 20 20 20 20 20 20 20 20 20 20 20	2 Needlan 6.2 Median 330. 70 Miniana 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2	2 Medium 6.2 Medium 1 Maximum 70 Minianum 8 8 8 8 8 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
	eod - es CoCO ₃ ium Totol N.C. ppm ppm		10 44 0	17 97 17	44 19 21	44 46 51	44 46 51 50	44 46 51 53 50	ьц 46 50 50 50 50	44 46 50 53 50 50 50	44 46 50 53 53 53 50 53	цц 46 50 53 53 39 39	44 16 50 53 53 53 50 50 53 39 44	ьц 46 53 50 53 39 44 44 44 44	44 46 50 50 50 50 50 50 44 44 44 44	44 46 50 50 53 33 44 44 44 44
Totel	solved solids in ppm										61 f 74 g				61 F 61 F 52 8	55 8 25 8 55 8
Tại	0 01her constituents 10 10										8.0		8. 0	8 3	0.00 0.00 0.00	0.00 8 k. <u>0.02</u>
million per million	Boron Silico (B) (SiO ₂)		0.0	0.00	<u>0.0</u>	이 이 다 이 이 이 이	이 이 이 이	् राज्य स्वास्त्र राज्य स्वास्त्र	이 이 다 이 다 이 이 이 다 이 이 이	२ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २		0-0 1-0 1-0 0-0 0-0 0-0 0-0	코. 	0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0	지 역 역 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	지 외 ····································
ports per million aquivolants par mill	Ni- trote (NO ₃)		8	dt. 84.	ste dle ste	810 31- 810	čh, 810 ≍1- 810	হিচ হাল প্লচ হান প্লচ	লি চি চাল প্রান্থান	ਰੀਆ ਲੀਲ ਲੀਰ ਲੀਹ ਕੀ- ਕੀ-	80 80 80 50 30 50 50 50 21 30	କ୍ଷ <mark>ପି</mark> ତାତ	8.0 0.0	ଅ <mark>ଟ</mark> ୦୦	명[1]	ରାତ ଜୁନ୍ଦି ପ୍ର
1	Biror - Sul - Chio- bonote fota rida (HCO ₃) (SO ₄) (CI)		95 0.06								1.0 0.02	0.02	0.02	0.12 0.02	0.00 0.00	0.00 0.00 0.00 0.00
Minsrol constituents in	Corbon- 018 (CO ₃)		0 0.00 0.05 0.95								00 00 00 00 00 00 00 00 00 00 00 00 00					00 00 00 00 00 00 00 00 00 00 00 00 00
	Magne- Sodium Potos- sium (No) (K)		2.4 0.10	2.4 0.10 0.10	2.4 0.10 0.10 0.20	4.5 0.10 0.10 0.20 0.20	2.4 0.10 0.10 0.20 0.20 0.20	2.4 0.10 0.10 0.10 0.10 0.10 0.10 0.10	1.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2.4 0.10 0.10 0.10 0.10 0.10 0.00 2.15 0.00 0.00 0.00	2.4 2.4 2.4 2.10 2.1	2.4 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.0	2.4 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	2.4 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.000 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000 0.00000	2.4 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09	2.4 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09
	PH Colcium a/b (Co)		7.7 0.88°								0.88° 0.92° 1.00° 1.00° 0.94° 0.32	0.88° 0.92° 1.02° <u>0.94</u> ° 0.32 0.78°	0.88% 0.92% 1.00% 1.00% 0.94% 0.38%	<u>0.385</u> 0.925 1.000 0.54 0.54 0.54 0.54 0.54 0.54 0.54	0.188 0.188 0.02 0.02 1.00 1.00 0.01 0.00 0.02 0.00 0.038 0.038 0.038 0.038 0.038 0.038	0.38% 0.92% 1.00% 1.00% 0.38% 0.38% 0.38% 0.38% 0.38%
	Dissolved conductance osygen (micrombos ppm %Sol		100 97	95	100 95 1	92 92	100 95 92	100 95 95	100 95 95 95	100 95 95 95 99	100 95 95 99 104 104	100 95 95 95 99 105 105	100 95 95 99 99 104 104	100 95 95 95 99 105 105 105	100 95 95 11 95 11 95 11 105 98 98 101 100	100 5 55 55 11 95 11 95 11 95 11 105 96 96 101 101 100 100
	Dischorge Temp Disso in cfs in OF 0sy ppm		203 50 11.3	148	1 ⁴ 8	1 ⁴ 8	41 41 42	41 145 146 146 146 147	50 48 41 41 41	50 48 42 47 47 47	50 48 47 47 47 47 47	50 51 11 12 12 12 12 12 12 12 12 12 12 12 12	50 51 41 54 54 54 54 54 54 54	50 48 48 48 47 47 47 47 64 64 51 51	50 48 47 47 47 47 45 54 51 51 51 51	50 148 147 147 147 147 147 147 147 147 147 147
	Dote Disch ond time in c P.S.T.	1962														

b Laboratory pH.

e Sum of colcium and magnesum in epm. d Taon (Fe), oluminum (AT), orsenic (AS), copper (Cu), tead (Pb), manganese (Mn), zinc (Zn), and hexavolent chramium (Cr⁺⁶), reparted here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm.

e Derived from conductivity vs TDS curves-

Determined by addition of onalyzed constituents.

g Grovimetric determination.

h Amual median and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service.

32505-D-H 6-61 200 SPO Mineral analyses made by United Stotes Geological Survey, Quality of Mote Branch (USCS), United Stotes Deportment of the Interior, Bureau of Reclamation (USRR), United Stotes Geological Survey, Quality of Mote Branch (USPR), Los Angeles Deportment of Mote and Power (LADMP), City of Las Angeles, Deportment of Mote Destrict of Souther Souther Madeh Serves, Guality of Reconstruct States Deportment of Mote and Power (LADMP), City of Las Angeles, Deportment of Mote and Power (LADMP), City of Las Angeles, Deportment of Public Medeh, Souther Mote Mote Destrict of Souther Souther Mote Mote and Power (LADMP), City of Las Angeles, Deportment of Public Medeh, LaDPH), City of Las Angeles, Deportment of Public Medeh, LaDPH), City of Lang Beach, Deportment of Public Medeh, LaDPH), City of Lang Beach, Deportment of Public Medeh, Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh, LaDPH), City of Lang Beach, Deportment of Public Medeh, LaDPH), City of Lang Beach, Deportment of Public Medeh, LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of Lang Beach, Deportment of Public Medeh (LaDPH), Teminal Testing, Laboreth, City of City

ANALYSES OF SURFACE WATER

	Anolyzed by 1 by 1	12G3													
	Hordnass bid - Coliform ^h es CoCO ₃ ¹¹ Y MPM/mi foid N.C. ppm ppm														
Tur-	- piq		60	~	0		CU	0	0	9	15	'n		٦	CJ
	Hordnass ee CoCO ₃ Totot N.C. ppm ppm		~	-4	۰ ۱		5	г	C3	CU .		0	0	۰ ۱	
			715	70	62		80	63	80	78	20	1.17	63	76	2.2
			12	TT	10		10	6	00	2		10	#	12	10
Totol	solved solved in ppm								_		66 ^f 68 ^g				100 ^f 888
	Other constituents			Tot. alk. 81						Tot. alk. 23	Pol, 0.00			Tot. alk. 89	P0 ₄ 0.00 As 0.02 ABS 0.00
	Silice (SiO ₂)									C1	15				ন
uo	Boron (B)		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ar mill	Fluo- rids (F)										0.0				0.00
ports per million squivolents per million	NI- Irota (NO3)										0.8				0.00
squivo	Chio- rids (CI)		3.5	0.17	2.2		4.2 0.12	4.6 0.13	3.2	1.8 0.05	2.0	2.1	5.0 0.14	<u>6,9</u> 0,19	8.0 0.23
Ē	Sul - fote (SO ₄)										3.0				0.10
stituenti	Bicor - benots (HCO ₃)		50 0.82	<u>79</u> 1.29	<u>72</u> 1.18		<u>92</u> 1.51	76 1.25	<u>95</u> 1.56	$\frac{87}{1.43}$	60 0.98	<u>58</u> 0.95	78 1.28	<u>87</u> 1.43	89 1.46
Minarol constituents	Carbon 013 (CO ₃)		0*00	1 0.03	0,00		0.00	0*00	0*00	3.0.10	0.00	0.00	0.00	1 0.03	0.00
u W	Potos- sium (K)										0.0 <u>1</u>				0.0
	Sodium (No)		2.6 0.11	4.0 17	3.2 0.14		4.2 0.18	<u>2.9</u> 0.13	$\frac{3.2}{0.14}$	2.8 0.12	2.1	2.4	<u>3.4</u> 0.15	<u>4.5</u> 0.20	4.0 0.17
	Mogns- eum (Mg)						_				<u>6.1</u>				0.58
	Colcium (Co)		0.84°	<u>1.40</u> C	1.24		<u>.09*1</u>	1.25°	1.60°	1.56	0.50	0.94	1.26	1.53	0.95
	Hq a/b		7.44	7.6	7.8		<u>3-1</u>	<u>7.8</u>	7-9 5-2	7.6 8.3	<u>8°.).</u>	7. <u>1</u>	7.7	7.8	8.1
Souchin	conductance (micromhos of 25°C)		ġţ	152	132		167	133	168	161	103	100	136	164	165
	Vad 90 Sot		98	16	16		66	101	101	103	101	101	66	IOI	8
	Dissolvs d osygan ppm %Sol		10.7	10.3	11.3		12.9	11.4	12.1	11.5	1.11	9.1	6.9	8.8	8.6
	Tamp in of		53	55	148		07 7	20	91	67	20	29	67	70	40
	Dischorgs Tamp in cfs in ^o F		5,560	240	2,280		750	2,800	675	2,520	6,300	3,340 (est.)	568	318	582
	Dots and time sompled P.S.T	1962	10/12 1110	11/5	12/6 1200	1963	1/10 1100	2/8 1115	3/15 1100	$\frac{h}{h}/h$ 1100	5/9 0840	6/13 0945	7/16 0805	8/15 1000	9/6 0900

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

Field ph.

b Loborotory pH.

c Sum of colcium and magnesium in epm.

e sum et celetum aoa magnesum in epin. d tran (Fe), oluminum (A1), areatei (As), capar (Cu), tead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves •

Determined by addition of analyzed constituents. g Gravimetric determination.

h Amuul melan and ronge, respectively. Colculored from analyses of duplicate monthly samples made by Colifornio Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

i Mineral analyses made by United States Geological Survey, Ouclity of Water Branch (USGS); United States Department of the Interior, Surreau of Reclamation (USBR); United States Polic Headerh, Scone (USPHS); Son Benardano County Flood Control District (SBEFCD); Manapoliton Water District of Southern Colifornia (MMD); Los Angeles, Department of Water and Power (LAMPP); City of Los Angeles, Department of Public Headerh, Europhy, Cuty of Long Beach, Department of Dublic Health (LBDPH); Temmal Testing Loboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

~	WATI
(Continued)	SURFACE
D-2	Ч
TABLE	ANALYSES

Ě

NORTH COASTAL REGION (NO. 1)

EEL RIVER NEAR MCCANN (STA. 5)

	Anciyzed by 1	USGS													
4	Hordness bid - Coliform ae CoCO ₃ 11Y MPN/ml Totot N.C. nppm ppm ppm		Median 2.3	Maximum 620.	Minimum .23										
Tur-	- piq Att Daga u		~	-	160		m	7+2	Ξ	200	150	CJ	-	-	0
	Hordness oe CoCO ₃ Totot N.C. ppm ppm	_	74	9	ŝ		<u>ل</u> م	0	-7	0	0		~ ~	11	1
	- F 1		120	111	26		94	61	26	19	60	94	120	124	124
Part	sod - ium		15	11	13		11	13	10	12	15	11	11	11	Si .
Toto)	solved solids in ppm										80 ^f 90 ^g				160 ¹ 154 <i>8</i>
	Other constituents			Tot. alk. 128							PO4 0.10	Tot. alk. ILJ	Tot. alk. 100	Tot. alk. 1 <u>38</u>	Tot.alk. <u>137</u> Pol. 0.00 As 0.00 ABS 0.00
	Silice (SiO ₆)										2.3				2
lion	Boron (B)		0.1	0	0.1		0.1	0.L	0.1	0*0	0*0	0.0	0.1	0.0	1.0
miliar ber mi	Fiuo- ride (F)										<u>9.3</u> 0.02				<u>0.00</u>
ports per million aquivolente per million	Ni- trote (NO ₅)										0.8				0.00
e quiv	Chio- ride (CI)		<u>8.5</u> 0.24	<u>5.0</u>	<u>1.8</u> 0.05		3.2	0.08	2.8 0.38	1.2 0.03	<u>1.5</u> 0.04	14.14 0.12	<u>6.0</u> 0.17	6.0 0.17	6.8 0.19
Ē	Sul - fote (SO4)										7.0				21 0.111
Mineral constituents	Bicor- bonote (HCO _S)		129	<u>120</u> 1.97	<u>65</u> 1.07		<u>1.08</u>	$\frac{74}{1.21}$	$\frac{1.14}{1.87}$	76	1.21	108	<u>137</u>	134	2.18
terol col	Corbon- ote (CO _S)		0*00	4 0.13	ر 0.00		00.0	0.00	0,00	0.00	0*00	<u>, 'o' o</u>	<u>2</u>	2 0.07	0.10
Ŵ	Potós- sum (K)										0.8 0.02				1.6. 0.04
	Sodium (No)		<u>7+7</u> 0+33	<u>6.5</u> 0.28	11.0		0.24	$\frac{l_{4,*}l_{4}}{0.19}$	5.1	<u>3.9</u> 0.17	<u>3.8</u> 0.17	0.23	<u>6.6</u>	7.4 0.32	0.35 0.35
	Magne- sium (Mg)							_			4.9 0.40				<u>9.1</u>
	Colcium (Co)		2.40	2.22	1.12		1.88°	1.22	1.940	1.25 c	16 0.80	1.89	5.40c	84.3	1:15
	H C		8.0	8.3	<u>7.5</u>		0.8	<u>7.5</u>	8.2	7.4 5.1	1-8 7-7	1.5	8 <u>.4</u>	1.2	2012 11
Coordin	(micromhas at 250 C)		264	231	119		198	135	210	136	129	203	555	564	271
			66	68	102		66	103	100	105	98	96	16	98	8
	Dissolve d osygen ppm 9/oSol		9.6	9.2	11.4		12.2	11.2	11.1	12.0	10.2	8,8	8.5	8.6	- 1 -2
	Temp P		63	58	15		44	53	52	64	56	69	11	17	77.
	Dischorge Temp in cfs in OF N< t														
	Oots ond time sompled P.S.T.	1962	121	11/10 2441	12/4	1.963	1/8 1115	2/6 1035	3/13 1100	4/2	5/7 0930	6/11 1100	7/18 1030	8/13 1045)/4 1110

a Field pH

b Laboratory pH.

e Sum of calcium and magnasum in epm. d Iran (Fe), alumnium (AI), arsanic (As), cappor (Cu), lead (Pb), mangonese (Mn), zinc (Zn), and hazavalant chromium (Cr¹⁶), reported here as 0.0 0.00 c Sum of colcium and magnasium in 40m.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

32305-0-6 6-61 200 5P0 h Annuel median and range, respectively. Calculated from analyses of duplicate manhly samples made by California Department of Public Health, Division of Laboratores, or United States Public Health Service.
• Minical analyses and by United States Geological Survey, Duality of Water Branch (USGS): United States Department of the Interact, Survey of Reclamation (USBR); United States Public Health Service (USHS); 5 an Bernardiane County Fladd Connol District (SGCCED) Manual Survey, Duality of Water Branch (USS); Connol District (SGCED), United States Department of Water and Paver (LADPP); City of Las Angeles, Department of Water and Paver (LADPP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Basech, Department of Water and Paver (LADPP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Basech, Department of Water and Paver (LADPP); City of Las Angeles, Department of Water and Paver (LADPP); City of Lang Basech, Department of Water and Paver (LADPP); City of Lang Basech, Department of Water and Paver (LADPP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Public Health (LADPH); City of Lang Basech, Department of Mater Researces (DMR); os indicated.

ANALYSUS OF SURFACE WATEN

ſ		2														
		by i	nsas													
		Hardness bid - Coinform ^h as CoCO ₃ ity MPN/mi Total N.C. ppm ppm		Medi a n 17.	Maximum 620.	Minimum .60										
	ļ	- 14 14 14		350	-	0		~	40	5	12)	- -	01	u l		~
t		SOUR Z		5	-	2		cu	CJ	CU .	0	0		~	5	τī.
		Hardr as Co Total ppm		L^{η}	90	7.4		11	¹¹ 5	72	10 1	5	52	93	105	108
	Der	cent aod -		12	1	15		11	16	2	н	1	51	1	15	<u>0</u>
	Totel	solved solved in ppm										62 ¹ 80 ⁶				142 ¹ 135 ⁶
		Other constituents			Tot. alk. 108							PO4 0.10	Tot. alk. 89	Tot. alk. 110	Tot. alk. 1.2	Tot. alk. 128 Pou 0.00 As 0.00 ABS 0.00
		Silica (SiO ₂)										8.9				
	lion	5_		0.0	0.0	1.0		0.0	0.0	0.1	0.0	0.0	0.0	0*0	0.0	0.0
5a.)	ar mil	Flua- ride (F)					-					<u>0.2</u>				0.01
(STA.	parts per millian equivalents per million	NI- trate (NO ₃)										0.8 0.01				0.01
GEVILLE	equive	Chia- ride (CI)		2.0	4.6 0.13	<u>1.5</u> 0.04		2.0	2.0 0.06	<u>2.0</u>	1.2 0.03	<u>1.0</u> 0.03	<u>2.6</u> 0.07	4.2 0.12	4.8 0.14	5.4 0.15
CAR BRI	Ē	Sul - fate (SO _e)										0.10				<u>16</u> 0.33
RIVER N	stituenti	Bicor- bonate (HC 03)		<u>51</u> 0.84	<u>1.64</u>	<u>58</u> 0.95		84 1.38	<u>52</u> 0.85	<u>85</u> 1+39	<u>58</u> 0.95	<u>53</u> 0.87	$\frac{87}{1.43}$	$\frac{100}{1.74}$	$\frac{114}{1.87}$	118 1.93
VAN DUZEN RIVER NEAR BRIDGEVILLE (STA. 5a)	Mineral constituents	Carbon - ofe (CO ₃)		0.00	4 0.13	0*00		0.00	0.00	0.00	0.00	0.00	<u>1</u> 0.03	0.07	4 0.13	<u>5</u> 0.17
IAU	u,M	Potas- sium (K)										$\frac{1.4}{0.04}$				<u>0.03</u>
		Sadium (No)		2.9 0.13	<u>5.2</u> 0.23	4.0		4.0 0.17	3.9	3.5	<u>3.0</u> 0.13	2.8	4.6 0.20	<u>5.2</u> 0.23	<u>6.6</u> 0.29	0.30
		Mogne- aum (Mg)										<u>3.6</u> 0.30				7.4 0,61
		Calcium (Ca)		<u></u>	1.80°	<u>. 16° 0</u>		1.42	<u>.06°0</u>	J.11.	<u>.96*0</u>	<u>12</u> 0.60	<u>1.51</u> c	1.86°	2.090	$\frac{31}{1.55}$
		Hq bH		7.5	7.4 8.4	1-1		$\frac{7.3}{8.1}$	7.9	7.8	7.9	<u>7.8</u>	7.8 8.3	8.2	8.1	80 0.00
	Sectio	at 25°C)		104	197	101		154	66	158	105	98	162	199	525	237
		ygen %Sat		101	100	104		102	103	105	104	102	100	111	113	117
		Dissol		10.7	10.9	11.8		12.5	1.11	11.9	12.2	10.9	0.6	9.3	9.5	9,8
	-		1	55	23	20		1,14	54	20	14	24	69	76	16	76
		Discharge Temp in cfs in oF		5,400	126	2,730		210	2,920	202	2,070	2,200	163	1 ⁴ 2	55	15
		Date ond time sompled P.S.T.	1962	10/10 1030	11/7 0835	12/4 1600	1963	1/8 1525	2/6 1450	3/13 1515	1,72 1515	1345 5/7	6/11 1500	7/18 1430	8/13 1535	9/4 1515

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Sum of calcium and magnesium in epin. Iron (Fe), aluminum (AI), arsentic (As), capter (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Colculated from analyses of duplicate manually samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

32505-0-H 6-61 200 Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Deportment of the Interior, Sureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USPR); Son Benordino County Flood Control District (SBEFED); Matropolitan Mater District of Stathen California (MMD); Las Angeles Department of Mater and Power (LADMP); City of Las Breach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Mater Resources (DMR); as indicated.

	Anolyzed	an ty MPN/mi by i	nses										_				
	Coliformh	MPN/mi		-													
	- piq	n ppm		200	~	5		~	60	m	50	~	CU .	CU	i i		
	Hordness	o C O S	_	7	0	0		0	m	0	°	0	0	0	0	CU	
	Hord	Ppm ppm		5 1 1 3	73	58	3	20 20	718	70	32	61	88	104	112	123	
	Par- cent	- pos		18	21	19		61	17	18	18	17	18	19	20	50	
Totol	-810	solids in ppm										89 ^f 83 ^g				175 ^f 176 ^g	
		Other constituents										PO4 0.05			Tot. alk. 142	POL 0.00 AS 0.00	
		Silico (SiO ₁)										12				<u>T</u>	
		Boron S (B)	_	0.2	0.3	0.4		<u></u>	0-2		0.0	0.2	0.6	1.0	1.3	1.8	
r million		Ftuo- B ride (F)										0.01				0.1	
		Ni- trote (NO _S)										0.8				0.4 0.01	
bod	2	Chio- ride (CI)		6.0 0.17	8.8 0.25	4.8 0.14		0.25	3.0	7.4 0.21	2.2	4.2 0.12	6.8 0.19	<u>12</u> 0.34	<u>15</u> 0.42	0.62	
Ē		Sul - fote (SO ₄)										0.12				7.0 0.15	
htuents	F	Bicor- bonote (HCO ₃)		<u>39</u> 0.64	91 1.49	74 <u>-</u> 1.21		<u>18</u> 1.28	<u>55</u> 0.90	90 1.18	11 0.67	78 1.28	<u>115</u> 1.88	133 2.18	<u>136</u> 2.23	2.43 2.43	
Minerol constituents		Corbon- E ote ((CO ₅) (0000	0.00	0,00		0000	00.00	0.00	00.0	0.00	0.00	0*00	30.10	00.00	
Miner	$\left \right $	Potos- Co eium (K) (010	00	010		010	00	00	010	1.1 0.03	010	010	140	0.05	
	$\left \right $	Sodium P(Na)		4.3 0.19	8.7 0.38	<u>6.4</u> 0.28		<u>7.0</u>	4.7 0.20	<u>7.1</u> 0.31	<u>3.3</u> 0.14	5.8 0.25	<u>8.9</u> 0.39	11 0.48	<u>13</u> 0.57	<u>14</u>	
		Mogne- Si sium (Mg)		-10	010			MO	210	HO	e IO	5 <u>.7</u> 0.47	010	-		0+96	
	$\left \right $	Colcium M (Co)		0.86°	<u>1.45°</u>	1.16°		1.24 ^c		1.40	0.64 ^c	15	<u>1.76</u> °	2.08	5.24°	30	
F	-	a/b		0.1	7.8 8.1	7.2 8.1		7-9 7-9	0-1 1-L	0.8	8.0	1.5		8.2	1 8	8.1	
	ecific .	(micromhos of 25°C)		111	183	142		150	106	170	11	142	202	24 O	267	310	
\vdash				93	16	716		8	98	104	66	100	113	107	94	76	
	- and -	ppm %Sot	-			10.8				10.9 10	10.6	9.6	m		7.2	5.2	
-		1	-	60 9.	52 10.	⁴ 9 10		11.5	54 10.6	56 10	52 10	6 19	76 9.	73 9.	83 7	69	
-	Taranta Tar	in cfs in oF		2,260 6	57	145		86	1,400	94	3,090	178 (31	10	m	cu	
-		ond time sompled P.S.T.	1962		11/14 1600	12/11 1545	1963	1/3 1425		3/12 1550	4/10 1730	5/7 1300	6/10 1500	7/8 1700	8/5 1545	9/11 0945	

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

o Field pH.

b Lobaratory pH.

c Sum of calcivm ond magnesium in epm.

z Sum of calcium and magnesium in epm. 3 Haon (Fa), oluminum (A1), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and herovolent chramium (Cr⁺⁶), reported here as 0.00 0.00

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

a Gravimetric determination.

h. Annual median and range, respectively. Calculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Laboratores, ar United States Public Health Service.

32505-D-H 6-61 200 SPO Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surceu of Reclamation (USBR); United States Geological Survey, Quality of Water States Control District (SBCFCD); Wateropation Water District of Southern California (WWD); Las Angles Department of Mater and Power (LADWP); City of Las Angles, Department of Mater District (SBCFCD); San Benardine County Fload Control District (SBCFCD); Wateropation Water District of Southern California (WAD); Las Angles Department of Mater and Power (LADWP); City of Las Angles, Department of Mater District of Southern California Department of Mater and Power (LADWP); City of Las Angles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of Public Health (LADPH); Toty of Lang Beach, Department of National Department of

		Analyzed by 1	USGS													
		Hordness bid - Coliform ^h os CoCO ₃ ¹¹ Y MPN/mi Tatal N.C. n ppm ppm														
	Tur	- bid Ppd n		700		15		5	190	<u>رم</u>	55	85	5	CU .	1	m
				53	<u>س</u>	0		4	0	9	0	0	7	15	18	53
				122	78	73		85	67	96	62	54	87	118	125	136
	4	Cent ium		16	11	10		7	1	10	7	10	10	10	13	12 12
	Total	astved solids in ppm										71 ^f 70 ^g				180 ^f 1826
		Other constituants										PO4 0.35 As 0.00 ABS 0.00			Tot. alk. <u>131</u>	Tot.alk. <u>130</u> Pol. 0.05 As 0.00 ABS 0.00
		Silica (SiO ₂)										8.6				8.0
	uot	Boron (B)		<u></u>	0*0	0.0		0.0	0.0	0.1	0.0	1.0	0.1	0*0	0.0	0.2
5c)	r million per mittion	Fluo- ride (F)										0.5				0.0
S (STA.		Ni- trate (NO ₃)										0.00				0.00
EEL RIVER, MIDDLE FORK AT DOS RIOS (STA. 50)	ports pe equivalents	Chio- ride (CI)		<u>33</u> 0.93	4.9 0.14	2.6 0.07		5.3	2.0	1.8 0.14	<u>1.8</u> 0.05	0.01	3.2	6.0 0.17	<u>9.5</u> 0.27	<u>17</u> 0.48
FORK AT	ui si	Sul - tate (SO ₄)										<u>6.8</u> 0.14				32 0.67
MIDDLE	nstituen	- Bicor - bonate (HCO ₃)		121	<u>92</u> 1.51	<u>86</u> 1.41		<u>99</u> 1.62	1.29	112 1.84	$\frac{73}{1.20}$	64 1.05	98 1.61	<u>126</u>	$\frac{118}{1\cdot 93}$	118
. RIVER,	Mineral constituents in	Carbon- cte (CO3)		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u>6</u> 0.20	0.20
EE]	Ň	Patas- eum (K)										0.5				0.03
		Sodium (Na)		<u>11</u> 0.43	4.5	4.0 0.17		4.8 0.21	<u>3.8</u> 0.17	5.0	2.3	2.8 0.12	4.4 0.19	<u>6.1</u>	<u>9.0</u>	<u>11</u> 0.48
		(bw) une										4.0 0.33				12 1.02
		Calcium (Ca)		3"##°2	1.56°	1.47°		1.71 ^c	1.34	1.96	1.24 ^c	<u>15</u> 0.75	1.74c	2.36	2.50°	<u>34</u> 1.70
		H a/b		7.6	7.6 8.1	7.2 8.1		1.6	7.9	8.2	8.2	7.5	8.2	8.2	5.5	7.6 8.4
	Specific	conductance (micromhos at 25°C)		286	175	159		185	147	210	130	118	187	244	275	314
		gen ((8	66	66		6	104	100	103	106	66	100	110	108
		Diesolved oxygen ppm %Sat		5.6	1,11	11.5		11.6	9.11	10.9	11.5	10.8	8.5	8.4	6.4	4.6
				61	51 1	⁴⁵ 1		1 77	51]	53]	49 1	56 1	12	†:L	83	40
		Drachorge Temp in cta in oF		;	280	1,050		682	5,620	484	9,500	3,800	384	157	4.8	v
		Date and time P.S.T.	1962	10/10 0930	11/14 1700	12/11 1650	1963	1/3 1515	2/12 1620	3/12 1640	4/10 1830	5/7 1355	1600 1600	7/8 1810	8/5 1710	9/11 1035

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

a Field pH

b Laboratory pH.

Sum of calcium and magnesium in epm.

but of calcutum and magnetum in epit. Iron (Fe), aluminum (AI), arsentic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexarolent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves-

Determined by addition of analyzed constituents.

Gravimetric determination.

Annul median and range, respectively. Calculated from analyses of duplicate monthly somples made by Colifornia Department of Public Health, Division of Loborotories, or United States Public Health Service.

i Mineel analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Organization of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Organization (USBR); United States Public Health Service (USPHS); Son Bernordino County Flood Control District (SBCFCD); Metropolitan Water District of Southern Colifornia (MMD); Las Angeles Organization of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Long Besch, Department of Dublic Health (LBDPH); Terminal Testing Loboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

	WATER
(Continued)	SURFACE
D-2	9
TABLE	ANALYSES

NORTH COASTAL REGION (NO. 1)

EEL RIVER NEAR DOS RIOS (STA. 5d)

	Anolyzed		USGS							-						
	ě e e e) :	Ð				-									
	Hardness bid - Coliform															
	pid-	u bộu		80	-	50		0	0 120	0	0 55	09	0	۳ ۳		
	CoCO.	D N C		96 8		13		8	54 0	90 4	87	19	32	106	66	26
				17 9	15 106	15 1		15	17	13 9	13 4	13	21	14 10	17	18
-	dis- solved sod -	bm			-			-		-		86 ^f				1.32 ^f 1.35 ^g
Tet	10 10	e c														
		Other constituents												126	115	As 0.00
		har con										0.0		Tot. alk.	Tot. alk.	
												¹		Tot	Tol	Polt ABS
		Boron Silico (B) (SiO ₂)		0.4	7-0	0.2		0.2	1.0	0.2	0-0	0.1	0.2	0.3	1-0	
million		(F) (F)		ं	<u>ं</u>	d i		ol	া	ी	া	0.01 0	<u></u>	0	1	0.01
ports per million volents per mill												0.01 0.01				010 010 0.00
ports per million envivolents per million	2	trots (NO ₃)														
104	F	(CI)		7.0	<u>5.1</u>	2.8 0.08		5.4 0.15	<u>2.5</u>	<u>1.6</u> 0.05	1.5	<u>1.5</u>	4.5 U.13	4.6 0.13	5.7	0.18
<u> </u>	1	fots (SO4)										8.0 0.17				0.35 0.35
natituan	Binor	bonote (HCO ₃)		<u>1.75</u>	132 2.16	$\frac{91}{1.49}$		<u>98</u> 1.61	66 1.08	1.72	60 0.98	<u>76</u> 1.25	118 1+93	122	1.79	113
Minsrol constituents	00400	(CO3)		0.00	0000	00.0		0*00	0.00	0.00	0.00	0*00	0.00	2 0.07	3.0.10	0.00
Min		(K)										1.0 0.03				0.03
		Sadium (Na)		9.2	0.37	5.8 0.25		<u>6.2</u> 0.27	4.1 0.18	6.0 0.20	3.3 0.14	4.3 0.19	6.2 0.27	8.0 0.35	<u>9.3</u> 0.40	<u>10</u> 0.144
		(BW)										<u>3.9</u> 0.32				0.65
		Calcium (Ca)		1.92	2.12	<u>1.45</u> c		1.59	1.08°	1.80	<u></u>	18 0.90	2 <u>06*1</u>	2.12	<u>1.89</u> °	26 1.30
	I	a/b		7.7	8.1 8.1	7.4		8.C 8.1	7.5	1.8	<u>7.9</u>	7.6	5.5	8.4	8.4	010
	Specific	1 25°C)		227	239	165		181	123	200	106	136	212	529	222	233
\vdash		6 Sat		68	95	76		92	66	102	66	104	ToT	112	OTT	108
	Dissolvad	osygen ppm %Sat		0°0	10.6	10.9		11.1	10.9	10.7	11.0	10.3	8.8	4.6	8.6	e.9
-		1		61	52	11 B		45 1	52]	26 1	67	265	92	⁺⁷ L	81	17
	Dischorge Tamp	in cfs		:	100	£5++		172	2,200	146	7,110	1,060	85	31	12	μ.
		P.S.T	1962	10/10 0845	11/14 1630	12/11 1630	हुन्त	$\frac{1/3}{15^45}$	2/12 1555	3/12 1610	4/10 1750	5/7 1325	6/10 1520	7/8 1745	8/5 1610	11//

o Field pH.

Laboratory pH.

Sum of colcium and magnesium in opm. Iron (Fe), aluminum (AI), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), znc (Zn), and hexavalent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and mognesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stotes Public Health Service.

32505-D-H 6-61 200 SPO Minerol analyses made by United Stores Geological Survey, Ouality of Mater Branch (USGS); United Stores Department of the Interior, Bureau of Reclamation (USBR); United Stores Public Health Service (USPHS); 5 an Bennordino County Flood Contro District (SBCFCD); Memopolitan Mater District of Stathent: California (MMD); Las Angeles Department of Mater and Power (LADMP); City of Las Angeles, Department of Mater Stores Department of Public Health (LBDPH); Temmool Testing Laboratores, Iac. (TTL); or California Department of Mater Resources (DWR); os indicated.

TABLE Des (Continued)

		Hordness bid - Coliform ^h Anolyzed as CoCO ₃ ¹¹ MPN/mi by 1 Total n.m.	USGS													
		Coli form ^h MPN/mi		Median 15.	Max1mum 7,000.	Minimum .o45-										
		- hdd u		170	-1	320		CJ.	220	m	25C	100	¢J		н	50
		N COS		11	6	m		0	0	0	0	0	5	0	0	-
		Hordr os Co Total		100	108	53		4	58	46	56	62	100	124	115	124
		1 - E - E		18	13	19		16	16	11	19	16	12	12	14	13
	Totol	solved solved in ppm										87 ^f 92 ^g				156 ^f 151 ^g
		Other constituents										PO1 0.20 As 0.00 ABS 0.00	Tot. alk. 122	Tot. alk. 152	Tot. alk. 138	Tot. alk. 150 Pou 0.05 As 0.00 ABS 0.00
		Silico (SiO ₂)										=				- 1
	uoi	5		0.1	0.2	1.0		0.0	0.1	0-0	0.0	0.0	0.0	0.0	0.0	
	ports per million volents per million	Fluo- ride (F)										0.1 0.01				0.02
(9)	ports per equivolents	NI- Trote (NO ₃)										0.00				0.01
EEL RIVER AT SCOTIA (STA. 6)	equive	Chio- ride (CI)		<u>6.5</u> 0.18	4.8 0.14	<u>1.8</u> 0.05		<u>11</u> 0.31	4.0 0.11	<u>3.2</u> 0.09	2.2	2.8 0.08	6.1 0.17	7.2 0.20	<u>8.5</u> 0.24	0.18
AT SCOT.	č.	Sul - fote (SO ₄)										9.0 0.19				0.31
REVER	rstituent	Bicor- bonete (HCO ₃)		<u>109</u> 1.79	121 1.98	<u>61</u>		1.90	72 1.18	115	<u>72</u> 1.18	16	116	150 2,46	<u>130</u> 2.13	<u>138</u> 2.26
EE	Mineral constituents	Corbon- (CO ₃)		0*00	0*00	0.00		0.00	0*00	0.00	0.00	0*00	30.10	<u>1</u> 0.03	14 0.13	6 0.20
	Mir	Potos- sium (K)										0.8 0.02				1.t
		Sodium (No)		10 0.444	7.3	5.7		8.2 0.36	<u>5.1</u> 0.22	5.5	4.4 0.19	5.2	6.2	7.6	<u>8.9</u> 0.39	<u>8.5</u> 0.37
		Mogne. (pM)										5.2				<u>9.5</u> 0.78
		Colcium (Co)		5 *00	2.16°	1.00		1.86	<u>.110</u>	1.88	1.12	<u>16</u> 0.80	<u>1.99</u> °	2112	2.302	34 1.70
		PH B/b	<u> </u>	7.0 8.0	<u>6.7</u>	$\frac{7.3}{7.7}$		7.4 8.2	7.3 8.0	8.1	7.6 8.0	7.6	8.0 8.4	8.0 8.3	8.5 8.5	0.3 0.5
	Casedia	(micromhos at 25°C)		231	232	116		213	136	209	131	141	515	264	253	272
		tved gen %Sat		61	Ľ.	100		108	100	114	100	102	114	102	113	159
		Diesolve d oxygen ppm %Sat		9.3	7.5	10.9		11.5	10.6	12.1	4°TT	10.0	10.0	9.1	5.7	13.0
			<u> </u>	59	55	53	-	55	22	22	20	62	12	F	52	62
		Dischorge Temp in cfe in of		3,160	1,040	36,200		2,440	23,100	2,510	28,000	10,200	1,530	430	210	87T
		Date and time compled P.S.T.	1962	10/10 0915	0460 2/11	12/4 1425	1963	1/8 1410	2/6 1325	3/13 1340	1405 14/2	5/7 1230	07E1	7/18 1315	8/1 3 1320	9/4 1400

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

> Field pH. e

b Loborotory pH.

Sum of colcium and magnesium in epm. U

Sum of calcium and magnesium in epim. Iron (Fe), aluminum (AI), arsentic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexorolent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Amoui median and range, respectively. Calculated from analyses of duplicate manhly samples made by California Department of Public Health, Division of Laboratores, or United States Public Health Service

Mineral analyses made by United States Geological Survey, Quality of Marer Branch (USGS), United States Deportment of the Interior, Surreu of Reclamation (USBR); United States Geological Survey, Quality of March (USPHS); 550 Bennardino County Flood Control District (SBGFCD); Manapolitan Water District of Sautheen California (MMD); Las Angeles, Deportment of Marer March and Power (LADMP); City of Los Angeles, Deportment of Public Health, City of Long Beach, Deportment of Public Health, (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Deportment of Water Resources (DMR); city of Los Angeles, Deportment of Public Health, City of Long Beach, Deportment of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Deportment of Marer Resources (DMR); city of Long

(Continued)	
D-2	
TABLE	

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

MAD RIVER NEAR ARCATA (STA. 6a)

		by 1 by 1	SDSU													
	-	nordness bid - Contorm A os CoCOs ity MPN/mi Total N.C. Ppm ppm		Median 18.	Maximum 500.	Minimum .13										
	ur-	117 M		60 Me	4 Me	100 M		10	70	0	200	011	CJ.	CI	CU	CU
				10	0	-7		m	CJ	0	m	N	0	0	9	10
		I I		¹⁴ 2	63	⁴ ⊃		57	38	63	70	38	74	96	6	81
	Par-	sod -		55	12	17		12	15	1	12	16	11	10	11	6
	Total	solved solved in ppm										55 ¹ 60 ⁶				101 1028
		Other constituents										POL 0.20 ABS 0.00				Tot. alk. <u>93</u> P01, 0.00 As 00
		Silico (SiO ₂)										8.0				0.T
c	illion	Boron (B)		1.0	0*1	0.1		0.1	0.0	0.0	0.0	0.0	0.0	0-0	0.0	1.0
parte per million	per million	Fluo- ride (F)										1.0				0.01
121		Ni- trote (NO ₃)										0.00				0.5
đ	equivolents	Chio- ride (CI)		4.7 0.13	2.2 0.06	2.8 0.08		2.2	3.0 0.08	2.5	<u>1.5</u> 0.04	0.0	4.6 0.13	<u>5.1</u>	4.8 0.14	3.0 0.08
4	=	Sul - fote (SO ₄)										0.08 0.08				0.19
Minerel constituents		Bicor- bonete (HCO ₃)		39	84 1.38	50 0.82		66 1.08	44 0.72	1.26	45 0.74	44 0+72	88 1.44	<u>119</u>	<u>103</u> 1.69	1*t0
		Cerbon- ete (CO ₃)		0*00	0.00	0.00		0.00	0*00	0*00	0.00	0*00	0.00	0.00	0.00	<u>1</u> 0.03
1		Potos- eium (K)										0.01				0.02
		Sodium (No)		5.4 0.23	4.1 0.18	4.2 0.18		<u>3.7</u> 0.16	$\frac{3.3}{0.14}$	<u>3.5</u> 0.15	2.6 0.11	3.3	<u>4.4</u> 0.19	4.8 0.21	5.0 0.22	<u>3.8</u> 0.17
		-engoM Rum (pM)										<u>1.8</u> 0.15				<u>2.1</u> 0.22
		Colcium (Co)		0.83	1.26	.06.0		oti.I	0.77 ^c	1.26	0.79	12 0.60	1.47°	<u>1.95</u> °	1.80	28 1.40
				7:2	7.6	7.1		7.8	7.5	7.9	7.8	7.5	7.6	1.5	0 2 8 8	8.3
	Specific	conductance pH (micromhos pH ot 25°C) a/b		66	142	66		124	68	143	6	87	161	208	194	171
		9/o Sot		86	95	100		103	106	109	106	86	101	102	114	103
		Diesolved osygen ppm %Sof		10.1	10.4	11.3		12.0	9.11	11.5	12.2	0.11	1.6	0.6	9.8	4.6
		Ten in of		58	53	20		80 †7	53	56	64	51	70	72	Τù	8
		Dischorge Temp in cfs in of		5,070	1:00	3, 730		670	4,680	380	7,110	3,400	250	8	105 (est.)	240 (est.)
		Dote ond time P.S.T.	1962	10/10 1350	11/7 1630	12/5 1000	1963	1/7 1605	2/5 1625	3/12 1620	4/1 1610	5/8 0715	6/12 1425	7/17 1445	8/14 1530	9/5 1405

o Field pH.

b Laboratory pH.

c Sum of colcium and mognesium in epm.

Sum of colcium and magnesium in epm. Iron (Fe), oluminum (AI), arsenic (As), cooper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of onolyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

32505-D-E 6-61 200 SPO Mineral analytes made by United Stores Geological Survey, Quality of Water Branch (USGS); United Stores Department of the Interior, Sureu of Reclamation (USBR); United Stores Public Health, Service (USPHS); Son Benardino County Flood Connal District (SBGFCD); Mannoolitain Water District of Southern Colifornia (MWD); Las Angeles, Department of Las Angeles, Department of Public Health, (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Taminal Testing Lebacotaries, Inc. (TTL); ar California Department of Water Resources (DWR); as indicated.

TARLYSES OF SURFACE WATER

		Analyzed by 1	USGS													
		bid - Coliform ^h		Median 23.	Maximum 7,000.	Minimum .62										
	Turr	- 100 - 100 - 100		35	-	180		0	- 62	m	120	52	Ъ	-	CU	-
		SO N		0	0	0		0	0	0	0	0	0	9	0	0
		Hordn os Co Totol PPm		1.02	11	40		99	¹ 5	68	4.44	60	76	32	102	66
		sod -		18	17	8		19	21	16	21	18	16	15	15	15
	Total	asolvad solvad solids in ppm										91. ^f 998				129 ^f 125 ^g
		Other constituents										PO4 0.10			Tot. alk. <u>127</u>	P01, 0.05 As 0.01 ABS 0.00
		Silica (SiO ₂)										<u>1</u>				7.2
	Ion	6		0.0	0.2	0.0		0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.0	1.0
(1	sr mil	Fluo- rida (F)					_					0.01				10.0 10.0
EEL RIVER, SOUTH FORK NEAR MIRANDA (STA. 7)	parts psr million squivalants psr million	Ni - trate (NO ₃)										0.0 <u>10</u>				0.8
R MIRAND	a duive	Chio- rida (Ct)		<u>9.2</u> 0.26	4.5 0.13	<u>3.4</u> 0.10		<u>6.6</u>	4.9 0.14	11.0 0.11	<u>3.2</u> 0.09	<u>3.2</u> 0.09	<u>6.5</u> 0.18	7.0	<u>1.8</u> 0.22	8.0 0.23
ORK NEA.	Ē	Sul - fata (SO ₄)										7.0				8.0 0.17
SOUTH F	constituents	Bicar- banate (HCO ₃)		2.05	98 1.61	53 0.87		82 1.34	60 0.98	<u>86</u> 1.11	<u>61</u>	<u>76</u> 1.25	<u>99</u> 1.62	120 1.97	<u>121</u> 1.98	<u>22.05</u>
RIVER,	Minsral co	Carban- ata (CO ₃)		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0,00	0.00	0.00	<u>3</u> 0.10	00.00
EEL	ž	Potes- sum (K)										<u>1.0</u> 0.03				<u>1.1</u> 0.03
		Sodium (Na)		10 0.44	7.4	5.4 0.23		<u>T.1</u> 0.31	5.6 0.24	<u>5.7</u> 0.25	<u>5.2</u> 0.23	<u>6.1</u> 0.27	<u>6.6</u> 0.29	7.6 0.33	<u>8.6</u> 0.37	0.35
		(6W) UM(8 -Bubow										<u>6.1</u> 0.50				<u>9.5</u> 0.78
		Caicium (Ca)		2.03	<u>1.54</u> °	0.80°		1.32°	0 <u>.90</u>	1.36°	0.83°	14	1.52°	<u>1.85</u> °	2.05	24 1.20
		Hd a/b		7.9	<u>7.7</u>	7.8		7.8	7.8	<u>7.7</u> 8.1	7.9	$\frac{7\cdot7}{8\cdot1}$	8.0 8.2	8.1 8.2	8.1 8.3	0.0 1.0 2.0
	Spacific	conductance (micramhas at 25°C)		228	183	lol		158	311	163	110	139	176	209	525	224
				%	93	102		66	100	106	102	66	110	110	110	H .
		Dissolved asygen ppm %Sa		9.3	9.6	1.11		12.0	10.7	11.7	11.5	10.1	7.6	6.5	4.6	4.6
		Tsmp in oF		63	58	53		45	55	52	20	58	TL.	73	74	75
		Discharge Tsmp in cfs in oF		500 (est.)	340	8,210		635	5,400	556	5,780	1,370	290	150	84	28
		Date and time P.S.T.	1962	10/9 1415	11/6 1320	12/4 1120	1963	1/8 1225	2/6 1145	3/13 1225	4/2 1240	5/7 1050	6/11 1215	7/18 1120	8/13 1200	9/4 1230

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-2 (Continued)

> Field pH. 0

b Labaratory pH.

Jun or calculum and magnesium in epu. Iron (Fe), aluminum (A1), arsenic (As), capter (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexardent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived fram canductivity vs TDS curves. e

Determined by addition of analyzed constituents.

Gravimetric determination. o

h Amuul melan and range, respectively. Calculated fram analyses af duplicate monthly samples made by California Department of Public Methy. Division of Laboratories, or United States Public Health Service.

32505-D-E 6-61 200 SPO i Minned analyses made by United Stores Geological Survey, Quality of Water Borech (USOS); United Stores Department of the Interior, Bureau of Reclamation (USBR); United Stores Public Health Service (USPHS); 5an Bernardino County Flood Cantel District (ESBFCD); Merrophism Water District and Stores Boordment of Water and Power (LAOMF); City of Las Angeles, Department of Poblic Health, Carly of Long Beer, Beer, March Stores March March Stores Stores March Stores Stores March Stores March Stores March March Stores March St

	WATER
Continued)	SURFACE
D-2 (QF
TABLE I	ANALYSES

NORTH COASTAL REGION (NO. 1) 5

MATTOLE RIVER NEAR PETROLIA (STA. 7a)

	Anolyzed by i		USGS											-		
	Hordness bid - Coliform			Median 23.	Maximum 7,000.	Minimum .62										
	- piq			66	7	350		9	300	ŝ	170	500	-	~	ŝ	~
	dness	U E A		13	0	0		9	01	m	0	с 	~ 	0	~	9
		1 1		- 85	8	2†		64	42	67	~	44	74	%	86	104
-	cent - pos			19	17	21		17	28	16	50	50	17	14	16	* -
Totol	dis- solved	in ppr										73 ¹ 958				1,386 1,386
	1	Ciner constituents										Poh 0.20			Tot. alk. 118	PO ₁ 0.05 As 0.02 ABS 0.00
	Silica	(SiOg)										<u></u>				នា
lion		(8)		0.0	0.5	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
r million per million	F luo-	(F)										0.01				0.01
ports per million activatents per mil		(NO ₃)										<u>1.2</u> 0.02				4.0 10.0
ā sile	Chto-	(CI)		4.8 0.14	<u>5.0</u> 0.14	<u>3.6</u> 0.10		4.7 0.13	$\frac{3.5}{0.10}$	4.0 0.11	<u>3.2</u> 0.09	<u>2.5</u> 0.07	4.0 0.11	14.8 0.14	<u>3.8</u> 0.11	0.14 0.14
Ē	Sut -	(SO4)										7.0 0.15				<u>18</u> 0+37
Minerol constituents	Bicpr-	(HCO _S)		88 1.44	<u>88</u> 1.14	0.84		<u>71</u> 1.16	11-0 0.80	78 1.28	54 0.89	5 ¹⁴ 0.89	<u>86</u> 1.41	112 1.84	110 1.80	119 1.95
rol cons	1	(CO _S)		0.00	0.00	0*00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	1 ⁴	0.00
Mine	Potos- C	E(X)										1.1				0.0 0.0
		(0 N)		<u>8.9</u> 0.39	7.3	5.4 0.23		<u>6.2</u>	7.5	5.9	5.0 0.22	0.23	6.8 0.30	7.2 0.31	8.:	0.34
	Mogne-	(BW)										2.8 0.23				5.2
	Colcium	(co)		1.70	<u>1.60</u> °	0.84 ^c		1.28°	0.84°	<u>1.34</u> c	0.80	0.65	1.748	<u>1.84</u> °	1.9	<u></u>
	H	a/b		2.5	<u>7.8</u>	7.8		$\frac{7.5}{7.8}$	7.7	1.5	<u>T-8</u>	<u>7.57</u>	3.1	7.9	7-8 8-3	540 540
	conductance (micromhos	01 25°C		102	191	110		156	105	162	111	112	175	212	228	243
		Vo Sot		97	82	100		66	100	104	100	16	66	100	104	107
	Dissolved oxygen	mad		6.5	6,8	0.11		12 ° T	9*07	11.9	11.5	10.3	4.6	9.4	9.6	7.6
				62	444	52		117	55	[6ŋ	[6 ⁴	22	65	99	67	69
	Dischorge Temp in cfs in oF			1,000	14.82	4,500		470	6,500	478	4,,080	3,500	384	46	60	20
	Dote ond time	P.S.T.	1.662	6/- 1	11/6 0850	12/4 0900	1.11 3	1/8 0920	2/6 084.0	3/13 0915	14/2 0920	5/7 0740	6/11 0850	5180 7/18	8/13 0830	6060

a Field pH.

b Loboratory pH.

Sum of colcium and magnesium in epm.

Due of colours and meganatum in even. Iron (Fe), oluminum (A1), arsenic (A2), cooper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hexardent chromium (Cr⁺⁵), roported here as <u>0.0</u> except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Anual median and range, respectivaly. Colculated fram analyses of duplicate monthy samples made by California Department of Public Health, Duvision of Laboratores, or United States Public Health Service. Mareel analyses made by United States Geological Survey, Ousling Marce Marcel Marcel Ander States Protein Stress Departments of Marcel and Power (LADMP); City of Las Angeles, Department of Anter Ander States Department of Marcel Ander States Departments and Power (LADMP); City of Las Angeles, Department of Public Health Service (USHS); San Benodine County Flood Anter and Power (SEFCD); Merrodotine Neuro Janes, Council (MAD); Las Angeles Department of Neuro and Power (LADMP); City of Las Angeles, Department of Public Health, Service (LADMP); City of Las Angeles Department of Public Health LADMP); City of Las Angeles Department of Public Health, City of Las Angeles Department of Public Health Service (USHPH); City of Las Angeles Department of Public Health Service (LADMP); City of Las Angeles Department of Public Health, City of Las Angeles Department of Public Health City of Las Angeles Department of Public Health City of Las Angeles Department of Public Health City of Las Angeles Department of Neuro and Power (LADMP); City of Las Angeles Department of Public Health City of Las Angeles Department of Public Health City of Las Angeles Department of Public Health City of Las Angeles Department of Neuro City of City and Reserves (DMR); as indicated

88

32505-0-4 6-61 200 SPO

SPECTROGRAPHIC ANALYSES OF SURFACE WATER

TABLE D-3

NORTH COASTAL REGION (NO. 1)

									Col	Istituent	Constituents in parts per		billion						
Station	Sta	Date	Alumi-	Beryl-	Bismuth	Codmium	Cobait	<u> </u>	Copper	iron	Gallium	Germa -	Manga.	Malyb-	Nickel	Lead	Titgnium	Vanadium	Zinc
			(M	(Be)	(Bi)	(Cd)	(Co)	(c.)	(cu)	(Fe)	(Co)	(Ge)	(Mn)	(Mo)	(· N)	(Pb)	(I ·)	(^)	(uZ)
Klamath River helow Iron Gate Dom	چ 	5-00-6	50	*	*	*	1.3*	*	*. * ~	0	41°, 7 *	****1	*	*7.1	***	***	***	17	*2*9
Klemeth River et Somecher	0	5=001=6		***	***	****	*0.[, *, 	*	o[6.7%	*		*	1.3	*	*	**'	* 9
Viente Diver some Cained Vallass	40	5-00-F.	ſ	***	*	*	1 1	* -	*		1. 7%	s *	*	*	***				£ 7*
ARTEN DETEC JEEL VALUE VIEWERV	0	20-C		.с.т	د ت • ۲		-C -T			-								77	-
Klamath River near Klamath	m	5-08-61	170	1.3*	1*	3.3*	1. j*	ا ر. ا	*	15	e.7*	T*	*~	1.54	3.6	* *	1.4	1. : :**	6. [*
Trinity River near Hoopa	54	5-06-63	108	1.3*	1.3*	3.3*	1.3*	1.3 *	3.3*	16	6.7 *	1. ئ∗	3.3*	1.3*	4 .3	3+3*	1.3*	1.3*	6.7*
Eel River, Middle Fork, at Dos Rios	50	5-07-6	55	1.3*	1.3*	3 . 3*	1.3*	1.J*	3.3*	19	6.7*	1.5*	28	1.3*	3.3	*.*	1.3*	1.5*	e.7*
Eel River at Scotia	9	5-07-63	67	$1 \cdot 2^{\#}$	1.3*	3 - 3*	* 1	1. 3#	* ?	35	6.7*	3*	3.3*	1. je	1.3*	3 . 3*	1.4	1. j*	6.7*
Mad River near Arcata	6a	5-08-63	197	1.3*	1.3*	3 . 3*	1.3*	1.3*	3.3*	32	6.7*	1.3*	3 - 3*	1.3*	2.5	ر. ر. *د	11	1.3*	e.7*
Klamsth River below Iron Gate Dam	J.L	9-11-63	23	1.3*	0.67*	3+3*	3+3*	\$°.℃	*ິກ• ຕ	20	13*	*70.0	3.3*	0.67**	.67**	5-38 10	1.5*	21	*
Klamath River at Somesbar	~	9-03-63	8.7	1.3*	*76.0	3.5*	3.3*	3 . 3*	3, 3*	9.3	±0*	0*67*	3 . 3*	0.67**	2.2	3 • 3*	1.3*	16	1.*
Klamath River near Seiad Valley	S.P	9-11-63	13	1.3**	.67*	*S.€	3.3*	3.3*	3 . 3*	17	13*	0.67*	3.3*	0.67**	1.1	3.5*	*ن•⊈	23	1.5*
Klamath River near Klamath	m	9-02-63	123	1.3*	*76.0	3 . 3*	3.3*	3.3*	3 - 3*	8.7	10 *	0.67 *	*0.0	0.67**	3.3	****	1.5*	11	*:1
Trinity River near Hoopa	^{††}	9-03-63	5.5	1.3*	.067*	3.3*	3.3*	3 . 3*	3.3*	9.3	13*	*76.0	3.3*	0.67**	1.1	3 . 3*	1.ن*	6.7	1.*
Eel River, Middle Fork, at Dos Rios	5 c	9-11-63	5.2	1.5*	0.67 *	3.3*	3.3**	3.3*	3.3*	4.4	*5	*79.0	****	0.67 **	**76.0	**** ?	1*	*19.0	*- 1
Eel River at Scotia	9	9-04-63	6.3	1.3*	•-67*	3 • 3*	3.3*	3.3*	3 - 3*	5.2	13*	*70.0	3.3*	0.67 **	**70.0	*C *C	1,3*	*73.0	13*
Mad River near Arcata	6a	9-05-63	11	1.3*	0.67*	3 • 3*	3.3*	*: 	3.3*	6.7	*	0.67 *	3:3*	0.67**	0.67 **	3 - 3*	ي.1	0.67*	1.5*

Note: For all stations the following results were also reported in May 1963: Silver (Ag) 5.0*

* Results are less than the amount indicated. ** Results are equal to but slightly less than the amount indicated. TABLE D-4

RADIOASSAY OF SURFACE WATERS

Sto		M			Micro-micro	Micro-micro curies per liter	
No.	Datream	IDeal	L'ale	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
			1963				
JΕ	ANTELOPE CREEK	T'E'NNA N'T	5/1	0.5 ± 0.3	0.3 ± 0.3	0.0 ± 0.3	0.0 ± 6.2
Ę	BUTTE CREEK	MACDOEL	5/1	0.0 ± 0.4	0.2 ± 0.4	10.2 ± 6.3	3.2 ± 6.2
5D	EEL RIVER	DOS RIOS	5/7	0.1 ± 0.1	0.3 ± 0.2	7.0 ± 4.2	14.9 ± 4.4
5	EEL RIVER	McCANN	5/7	0.2 ± 0.2	0.9 ± 0.4	1.2 ± 6.4	16.7 ± 6.7
5C	EEL RIVER, MID.FK.BELOW DOS	C.BELOW DOS RIOS	5/7	0.0 ± 0.2	0.1 ± 0.2	5.7 ± 4.7	11.4 ± 4.8
9	EEL RIVER	SCOTIA	5/7	0.1 ± 0.3	0.6 ± 0.4	0.0 ± 6.4	9.2 ± 6.6
7	EEL RIVER, SO.FK. MIRANDA	, MIRANDA	5/7	0.1 ± 0.5	0.4 ± 0.4	3.0±6.2	5.4 ± 6.3
TC	KLAMATH RIVER	ABV HAMBURG RES.	5/2	0.0 ± 0.4	0.0 ± 0.4	7.7 ± 6.3	5.4 ± 6.3
1.F	KLAMATH RIVER	IRON GATE DAM	5/2	0.3 ± 0.3	0.1 ± 0.3	0.0 ± 6.4	0.0 ± 6.5
e	KLAMATH RIVER	KLAMATH	5/8	0.1 ± 0.3	0.4 ± 0.4	0.8 ± 6.6	0.0 ± 6.5
2B	KLAMATH RIVER	SEIAD VALLEY	5/2	0.0 ± 0.2	0.2 ± 0.3	0.0 ± 6.2	1.9 ± 6.3
CU	KLAMATH RIVER	SOMESBAR	5/6	0.0 ± 0.5	0.3 ± 0.6	1.4 ± 6.2	5.2 ± 6.3
6A	MAD RIVER	ARCATA	5/8	0.4 ± 0.6	0.4 ± 0.6	2.2 ± 6.4	13.4 ± 6.6
ΤA	MATTOLE RIVER	PETROLLA	5/7	0.3 ± 0.4	1.2 ± 0.6	0.0 ± 6.3	20.4 ± 6.7
5B	OUTLET CREEK	LONGVALE	5/7	0.0 ± 0.1	0.0 + 0.2	6.6 ± 4.7	1.8 ± 4.6
3B	REDWOOD CREEK	ORICK	5/8	0.0 ± 0.4	0.6 ± 0.5	4.0 ± 6.3	9.4 ± 6.4
2A	SAIMON RIVER	SOMESBAR	- / 5	0.0 ± 0.4	0.0 ± 0.4	2.1 ± 6.2	2.9 ± 6.2

RADIOASSAY OF SURFACE WATERS

TABLE D-4 (Continued)

RADIOASSAY OF SURFACE WATERS

Sta.	Stream	Noor	Data		Micro-micro	Micro-micro curies per liter	
No.		5		Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
			1963				
IB	SCOTT RIVER	FORT JONES	5/2	0.0 ± 0.4	0.3 ± 0.5	0.0 ± 6.4	3.1 ± 6.5
JA	SHASTA RIVER	YREKA	5/2	0.6 ± 0.4	0.1 ± 0.3	3.5 + 6.2	5.0 ± 6.2
3A	SMITH RIVER	CRESCENT CITY	.5/8	0.1 ± 0.3	0.1 ± 0.3	0.9 ± 6.4	3.0 ± 6.4
μB	TRINITY RIVER	BURNT RANCH	5/9	0.0 ± 0.4	0.0 ± 0.4	4.6 ± 6.5	12.1 ± 6.6
4	TRINITY RIVER	НООРА	5/6	0.2 ± 0.3	0.5 ± 0.4	0.0 ± 6.4	0.0 ± 6.4
μA	TRINITY RIVER	LEWISTON	5/6	0.0 ± 0.2	0.0 + 0.2	6.3 ± 6.4	0.0 ± 6.3
ξA	VAN DUZEN RIVER	BRIDGEVILLE	5/7	0.1 ± 0.4	0.4 ± 0.5	7.0 ± 6.5	15.6 ± 6.6
LE	ANTELOPE CREEK	TENNANT	9/10	0.1 ± 0.3	0.0 ± 0.3	2.2 ±6.1	0.0 ± 6.0
ID	BUTTE CREEK	MACDOEL	9/10	0.0 ± 0.3	0.0 ± 0.3	4.8 ± 6.1	0.0 ± 6.0
5D	EEL RIVER	DOS RIOS	9/11	0.3 ± 0.4	0.3 ± 0.4	3.7 ± 6.2	7.5 ± 6.2
5	EEL RIVER	McCANN	9/4	0.0 + 0.3	0.0 ± 0.3	6.4 ±6.1	4.8 ± 6.1
5C	EEL RIVER,MID FK	FK.BELOW DOS RIOS	9/11	0.0 ± 0.3	0.0 ± 0.3	4.8 ± 6.2	0.0 ± 6.1
9	EEL RIVER	SCOTIA	9/4	0.0 ± 0.0	0.1 ± 0.4	0.0 ± 6.1	0.1 ± 6.1
2	EEL RIVER, SO FK.	FK. MIRANDA	9/4	0.0 ± 0.4	0.0 + 0.4	2.3 +6.2	0.0 + 6.1
TC	KLAMATH RIVER	ABV HAMBURG RES.	9/11	4.0 + I.O	0.0 + 0.3	5.6 + 6.2	0.0 + 6.1
Π	KLAMATH RIVER	IRON GATE DAM	9/11	0.5 0.4	0.0 0.3	1.8 6.0	1.6 6.1

91

TABLE D-4 (Continued)

RADIOASSAY OF SURFACE WATERS

Sto		M			Micro-micro	Micro-micro curies per liter	
No.	lingalic		COLE	Dissolved Alpha	Solid Alpho	Dissolved Beta	Solid Beta
			1963				
m	KLAMATH RIVER	KLAMATH	6/2	0.0±0.3	0.0±0.3	0.0 ± 6.1	0.0 ± 6.1
2B	KLAMATH RIVER	SEIAD VALLEY	9/11	0.3 ± 0.3	0.0 ± 0.2	4.0 ± 6.2	1.4 ± 6.2
N	KLAMATH RIVER	SOMESBAR	9/3	0.1 ± 0.4	0.0 ± 0.3	2.5 ± 6.1	4.5 ± 6.1
6A	MAD RIVER	ARCATA	6/5	0.0 ± 0.5	0.0 ± 0.5	6.0 ± 5.9	9.8 ± 6.1
ΤA	MATTOLE RIVER	PETROLIA	9/4	0.1 ± 0.2	0.1 ± 0.2	6.8 ± 6.0	3.8 ± 6.0
5в	OUTLET CREEK	LONGVALE	9/11	0.0 ± 0.3	0.0 ± 0.3	9.6 ± 6.3	0.0 ± 6.1
3B	REDWOOD CREEK	ORICK	5/6	0.0 + 0.3	0.0 ± 0.3	0.0 ± 6.1	0.0 ± 6.1
2A	SAIMON RIVER	SOVESBAR	9/3	0.0 + 0.3	0.0 ± 0.3	4.4 ± 6.1	7.6±6.1
1B	SCOTT RIVER	FORT JONES	9/10	0.2 + 0.4	0.0 ± 0.3	0.0 ± 6.1	0.0 ± 6.1
JA	SHASTA RIVER	Y REKA	9/11	0.0 + 0.2	0.1 ± 0.2	5.2 ± 6.2	0.0 ± 6.0
3A	SMITH RIVER	CRESCENT CITY	6/5	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 6.1	0.0 ± 6.0
4B	TRINITY RIVER	BURNT RANCH	9/6	0.1 ± 0.7	0.0 ± 0.6	6.5 ± 6.1	0.0 ± 5.9
4	TRINITY RIVER	HOOPA	9/3	0.1 ± 0.4	0.0 ± 0.3	1.5 ± 6.0	0.0 ± 5.9
μĄ	TRINITY RIVER	NOLSIMET	9/3	0.0 ± 6.4	0.0 ± 6.4	1.6±6.0	0.0 + 6.1
5A	VAN DUZEN RIVER	BRIDGEVILLE	9/4	0.0 ± 0.3	0.0 ± 0.3	3.0 ± 6.1	1.9 ± 6.1

APPENDIX E

GROUND WATER QUALITY

VAN DUZELA FLANK

																					Page
Ground	Water	Qualit	у.		• •	•		• •		• •	> o		• •	•			•	0	0		96
								TAB	LES												
Table																					
E-1	Ana	Lyses o	f Gi	rou	nd	Wat	er	•	•	• •	•	•		٥	•	٥	•	•	۰	•	99

GROUND WATER QUALITY

Data presented in this appendix are measured values of selected quality characteristics of ground waters in the North Coastal Area, as shown on the "Area Orientation Map". The Ground Water Quality Monitoring Program is based on systematic sampling of a predetermined network and is reported annually by water year. The Ground Water Quality Monitoring Program is performed in cooperation with other state, local, and federal agencies.

All data presented in this volume are within the North Coastal Water Pollution Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Wells sampled in the ground water quality program are arranged by basin and tabulated in sequence by township, range, and section. The nine ground water basins sampled annually in the North Coastal Area are shown on Plate 4.

The Ground Water Quality Monitoring Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and temperature is in degrees Fahrenheit. Laboratory analyses of ground waters were performed in the Department's Chemical Laboratory at Bryte, in accordance

with "Standard Methods for the Examination of Water and Waste Water", Eleventh Edition, or by the USGS. The methods yield comparable accuracy of analysis. The determination of trace elements was performed by the "wet" analysis at the Bryte Laboratory. The results are reported in parts per billion.

Analyses for radioactivity were made by the California Disaster Office Laboratory in Sacramento and results are expressed in terms of activity, measured in micro-micro curies per liter (mmc/l) which is equivto pico-curies per liter (pc/l). The most probable error is reported with the measured value. Other values are reported in parts per million or are stated in table headings.

Results of bacterial, radiological, and organic determinations presented in this bulletin should be considered qualitative and undue emphasis should not be given to the quantitative values.

Quality information for most wells in the monitoring program is augmented by well logs and well construction information.

Well Numbering System

The State well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, is referred to as the State Well Number and is described in Appendix C of this bulletin.

ANALYSES OF GROUND WATER TABLE E-1

1963

	Anolyzed by c					DWR	DWR	1	DWR	4	1	TT	3		DWR	DWR	DWR	DWR
				1 	E		8	1 0	м N	11 	E 0	а —			а 	0	0	р
Hordness	N.C.			°		13				54			1		01			÷.
				31	50	45	128	105	38	36	85	: 12	1 198		102	110	5 203	ش
<u>5</u>	solids tum in ppm			154 32	38 37	14 06	142 7	154 25	74 27	108 55	274 70	176 SLI	226 41			204 37	277 16	
řů,				-							CU							
	Silica (SiO ₂) Other constituents ^d															Al <u>0.08</u> Mn <u>0.01</u>	Fe 0.03 (total)	
				53	12			57		6	- 27	5	33				<u></u>	
llion	Boron (B)			1.0	0*0	0.1	1.0	0.1	0.0	0.0	0.1	0.0	0.0			0.0	0.08	-
volents per mill	Fluo- ride (F)			0.2	0.1 0.01			0.01		0.2	0.0	0.2 0.01	0.0 <u>1</u>				0.01	
equivolents per million	NI - trate (NO ₃)			0.0	<u>0.0</u>	<u>16</u> 0.26	<u>1.3</u> 0.02	2.2 0 <u>+</u>	2.6 0.04	<u>14</u> 0.23	0.0	0.00 0.00	8.3 0.13			0.02	<u>3.8</u> 0.05	
equivo	Chio- Chio- (CI)			8.2 0.23	$\frac{11}{0.29}$	<u>16</u> 0.45	<u>8.8</u> 0.25	<u>9.2</u> 0.26	7.8	37 1.04	20	11 0.30	6.1 <i>0.</i> 17		0.4	<u>4.4</u> 0.12	2.9	<u>0*1†</u>
s in	Sul - tote (SO ₄)			<u>1.0</u>	2.4	<u>6.6</u>	1.6 0.03	<u>9.1</u> 0.19	0.6 0.01	<u>1.0</u>	<u>5.8</u> 0.12	0.0	0.10			$\frac{3 \cdot 1}{0 \cdot 06}$	0.25	
Minerol constituents	Bicor- bonote (HCO ₃)	(No. 1)	(1-1)	<u>125</u> 2.05	18 0.30	<u>35</u> 0+57	147 2.41	<u>143</u> 2.35	44 0.72	<u>15</u> 0.25	<u>143</u> 2+35	102 1.67	223	ŝ	221 3.62	3+36	<u>244</u> 4.00	<u>1.85</u>
erol c	Potos-Corbon- sium ote (K) (CO ₃)	REGION	FLAIN	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	3 0.10	(2-1) XETTEN	0.00	0.00	12 0.40	0*0
Mir	Potos- sium (K)	CDASTAL	RIVER	0.3 0.01	0.01 0.01	1.0 0.02	0.5	$\frac{1.4}{0.04}$	0.01 0.01	<u>0.6</u>	0.03	0.2 0.01	0.08 0.02	BUTTE VAI		<u>4.1</u> 0.10	4.2 0.11	
	Sodium (No)	NORTH CC	HIIINS	<u>17</u> 0.75	5.5 0.24	<u>14</u> 0.61	14.14 0.19	<u>16</u> 0.70	6.4 0.28	<u>21</u> 0.90	88 3•83	<u>11</u> .	3. J 0.17	DB	4 <u>3</u> 1.87	<u>31</u> 1+35	<u>18</u> 0+78	28 1+22
	Mogne - sium (Mg)			10 0.82	2.9 0.24	8.0 0.66	28 2.27	9.0 0.74	<u>6.3</u> 0.52	3.3	<u>16</u>	10 0.80	<u>35</u> 2.85			<u>15</u> 1+25	25 2 • 06	
	Calcium (Ca)			16 16	3.2 0.16	3.7 0.18	0.29	<u>27</u> 1.36	4.8 0.24	<u>9.0</u> 0.45	6.4 0.32	$\frac{14}{0.70}$	22			<u>19</u>	40 2+00	
	F			0.0	2.9	7.3	2.5	8.2	7.4	0.7	7.5	°. 0	°.°		0.0	8.2	8.5	2.2
Specific conduct-	once (micro- mhos at 25° C)			227	19	158	263	521	116	155	1460	192	501		385	341	429	503
	Tea F			1	1	1	1	1	1	ł	;	ł	2		56	54	ľ	89
	0ote sompled			7-10-63	7-lū-63	7-10-63	9-13-63	7-10-63	9-12-63	7-10-63	7-10-63	7-10-63	7-10-63		7-13-63	9-12-63	1-30-63	7-13-63
Stote well	number ond other number		HBGM	TDS-MI/N9I	-1501	-20H1	17W/IW-hJ1	-1 ⁴ C1	-2001	18N/1M-5G1	-17R1	-17R2	- 34M2	MDB4M	146N/IM-2F1	-17B1	-1711	4 TN/IB-32A1
	Owner ond use			A. Short domestic	L. L. Early domestic	W. Storey domestic	G. Lebarra irrigation	Redwood School domestic	E. Mellow irrigation	<pre>A. W. Struebing domestic</pre>	M. J. Sierka domestic	M. J. Sierka domestic	N. C. Jepson domestic and stock		R. Cheyne irrigation	G. W. Osborn & Son irrigation	R. Robinson municipal	K. Holbrock irrigation

99

Determined by addition of constituents.
 Generative determined by addition of constituents.
 Generative determined by addition of constituents.
 Generative determined by addition of worker Bonch (US.G.S.), Pocific Chamical Consultomit (PCC), Leth Laboratory (L.L.), familiar is the state Laboratory (T.L.L.) and State Observation Warer Researce (D.W.R.) and and exact and a state of the state of (P.N. Morer Researce (D.W.R.) and and a state of as state of as state of the state of the state (T.M.R.), definition of the state of

ß

TABLE E-1 (Continued)

ANALYSES OF GROUND WATER 1963

	State well			Specific conduct-					Mine	Mineral constituents	stituents	ç	ports per million equivalents per million	parts per million valents per mill	million ar milli	6			Totol	i	Hardness		
Owner and use	number and other number	Date sampled	dma ^T a F	ance (micra- mhas at 25° C)	Hq	Colcium Mi	Magne- Sc sium (Mg)	Sodium Pc (Na)	Potas-Carbon- sium ate (K) (CO 3)	arbon-B ate bt CO ₃) (H	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)	Chio- ride (CI)	NI- F trote (NO ₃)	Fiua-B ride (F)	Boran S (B) ((Silica Other constituents ^d		solved solids in ppm	aod- mun- mun-	os Co(Ppm ppm		Anolyzed by c
	MDRAM							BUTTE VAI	ALLEY ((1-3) (C	(Cont.)					-							
W. W. Cuwin domentic	4_TN/1W-23H2	9-12-63	1	52 7	7.6	<u>7.9 4.</u>	4.7 0.39 2(28 7	7.4 0.19	0.00	112 1 1.84 0	0.02 0	7.8 0.22	5.3 0.08		0.0	Fe 0.47 Al 0.06 Pb 0.02	(total) Zn <u>0.31</u>	154	56	39	0	DWR
Butte Valley Farms irrigation	-3401	7-13-63	22	609	8.9	22 1.10	18 1.50 3	86 3.74 0	13 3 0.33 1	30 1 • 00 5	<u>306</u> 5.02	<u>13</u> 1 0.27 0	<u>11</u> 0.31	<u>15</u>	0.6	7.0	60		LT ¹	26	130	0	nsos
Spring Creek School Jomestic(abandoned	4 TN/2W-20G1	1-28-63	26	314	8.3	24 11	14 1.20 0.	20 0.87 0	8.6 0.22 0	0.00	3.28	0.0	<u>1.9</u> 0.05	2.4 0.04	0.1	0.00	23 Fe 0.02 A1 0.02	(total)	189	52	120	0	DWR
		9-11-63	54	562	8.3	21 11 1.04 1.	14 20	20 0.87 0	10 1 0.26 0	1 0.03	191 1 3.14 0	<u>1.4</u> 0.03	4 <u>.3</u> 0.12	2.4	1.0	1.0	18		180	8	110	0	눱
L. W. Huffman domestic	2132	1-29-63	20	ιμς	7.9	11 0.55 0	5.7 0.47	6.4 2 0.28 0	2.3 0.06 0.06	0.00	72 1.18 0	1.6 0.03	0.05	5.6 0.04	0.01	Loro	45 Fe 0.02 Al 0.13 Cu 0.01	(total) Zn 0.20	116	50	51	D	DWR
		9-12-63	:	124	7.7	8.4 0.42 0.42	<u>6.0</u> 0.49	6.1 0 0.27 0	2.3 0.00	0.00	67 14 1.10 0	0.09	0.0	2.3 0.04	0.1	0*0	The second se		102	53	15 7	0	11
J. Liskey irrigation	148N/JE-30F1	8-13-63	55	335	10 7.9	29 <u>1.46</u> <u>1</u>	13 24 1.03 24	24 <u>7</u> 1.05 0	7.5 0.19 0	3 0.10 3	2:06 3.38 3.38	4.80 0.10 0	3.5	0.8 0.01	0.1 0.01	0.1	112		232	28	127	0	77
City of Dorris municipal	1/102-31/N84	1-30-63	1	318	8.3	16 11 0.30 1	18 1.48	21 0 0.91 0	0.19 0.19	0.0	167 1 2.74 0	<u>16</u> 0+33 0	5.8 0.16	2.4 0.04	0.02	0.0	61. Zn 0.01		205	27	114	0	DWR
		8-20-63	1	340	8.3	18 0.88 1	19 1.58	23 <u>7</u> 1.00 0	0.20	2 0.05	<u>2.78</u> 0	16 8 0.33 0	<u>8.9</u> 0.25	8.8 0.14	0.2	0*1	<u></u>		210	22	123	0	TI
American Forest Products domestic and industrial	+36J1	1-29-63	:	1190	8*5	27 1.35	57 <u>1</u>	<u>172</u> 7.48	27 2 0.69 0	22 0.73	11.5,1 3	32 2	26 0.73	0.12	0.4 0.02	0.26	25 Cu 0.01 Zn 0.01		782	25	304	0	DWR
N. Unim irrigation	48N/IW-28JJ	8-20-63	;	370	9°7	33 1.67	1.22	26 1.13 0	0.18		100	4.8 0.10	5.0	0.03	0.2	1.0	20		270	22	145	0	E
E. Spada domeatic	T.Nuc - MS/NCh	y-12-63	:	339	8.5 10	0.75	22 1.81	5145 23 1.00	3.5 0.0		203 0 3+33 0	0.03	<u>6.3</u> 0.18	0.02		1*0	Fe <u>1.6</u> Al <u>0.14</u> Cu <u>0.39</u> Zn <u>0.12</u>	(total) As 0.01 Pb 0.02	211	52	128	0	DWR
G. G. Maxwell domestic	1.01-W/6W-1.01	9-11-63	:	550	8.4	<u>0.55</u>	70 5.72 0	0.17 0	0.01 0	12 0.40	5+59 5+59	3.1 0.16	<u>3.4</u> 0.10	0.11		0.0	Fe 0.01 A1 0.08 Pb 0.02	(tatal) Cu 0.03 Zn 0.07	294	m	314	16	DWR
 Oetermined by addition of constituents. 	of constituents.				-	-	-	-		1	-	1						-		-	-	1]

6. Generative diarministics. 6. Generative diarministics. 7. Explorts by 15. Genological Survey, Guality of Water Bonch (U.S.G.S.), Pochic Chemical Convultant (PCC), Leiln Laboratory (L.L.), 7. Explorts p. Cobordical Survey, Calina Department of Woler Resources (DWR) as indicated. 7. Internal Testing Laboratory (T.L.L.) Solas Department of Woler Resources (DWR) as indicated. 4. Iron (Fa), Aluminum (AI), Arsanic (Aa), Cooper (Cu), Lead (PD), Mongonese (Mn), Zinc (ZA), reported here as Gastercept as shown d. Iron (Fa), Aluminum (AI), Arsanic (Aa), Cooper (Cu), Lead (PD), Mongonese (Mn), Zinc (ZA), reported here as Gastercept as shown (D. C. (C.M.), Cooper (Cu), Lead (PD), Mongonese (Mn), Zinc (ZA), reported here as Gastercept as shown (D. C. (C.M.), C. (C.M.), Cooper (Cu), Lead (PD), Mongonese (Mn), Zinc (ZA), reported here as Gastercept as shown (D. C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), Reported here as Gastercept as shown (D. C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), Reported here as Gastercept as shown (D. C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), Reported here as Gastercept as shown (D. C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), C. (C.M.), Reported here as Gastercept as shown (D. C. (C.M.), C. (

TABLE 16-1 (CONCINED)

a station of the state of the

ANALYSES OF GROUND WATER TABLE E-1 (Continued)

5	
)	
	3
5	9
	6
	_
5	

	State well		UN U	Specific	-			-	Ainsrai	Mineral canstituents	snts in	nbe	parts per million equivalents per millian	per m	Illian			Total	- La	Hardness		
Owner and use	number and other number	Dote sampled	Temp in °F (DH H	Calcium Magne- (Ca) (Mg)	ane-Sodium um (Na)	um Pota: (K)	Potas - Carbon- sium ate (K) (CO ₃) (n- Bicar- bonate (HCO ₃)	- Sul - fate (SO ₄)	Chia- ride (CI)	Ni- Irate (NO ₃)	Fluo- ride	Baron (B)	Silico (SiO ₂)	Silico Other canstituents ^d (SiO ₂)	solved solved in ppm	t but	as CaCC		Analyzed by c
	MDB&M							STASTA	VALLEY	Y (14)	(ront.)											
Big Springs Irrigation ⁴ District irrigation	4.3N/5W-2C1	9-11-63	53	590	8*0		20 0+87		0.0	147 2+41		11 0.31								1 0		DWR
J. C. Martin h	TW9-Mt/Ntt	9-11-63	57	512 8	0.0		148		0*0	272 4.46		21 0.59								162		DWR
S. D. Nelson domestic and irrigation	tyin/5w-32Fl	9-11-63	1	973 8	8-5 41	41 70 2.04 5.77	77 3.22	3.8	5 0.73	490 8.03	19 0.40	60 1+6 <u>9</u>	4.6 0.07	15	6*0	1	Fe 0.01 (total) Al 0.05 As 0.01 Pb 0.01 Zn 0.15	566	63	Ink	c	DMR
C. Stone L domestic	114N/6W-22KCL	9-11-63	;	388	5.1 25	45 14 2.24 1.14	15 0+05	1.2	0.00	201 3.29	6*9	0.37	10 0.16	12	1.0	1	Fe <u>3.01</u> (total) Al <u>0.01</u> As <u>0.01</u> Pb <u>0.01</u> Zn <u>0.07</u>	225	16	169	7	DWR
Siskiyou County 1	h5W/5W-6El	9-11-63	3	890 8	8.4	7.1 8.1 0.35 0.67	1 1 1 1 1 9 8 1	1.8	0.20	516 8.46	0.01	26 0.73	2.1 0.03	loo	7.1		Fe 0.02 (total) Cu 0.01 Zn 2.05	549	ég	15	÷	DWR
G. Weldon domestic	1-20/6W-19E1	9-11-63	;	505 8	0.0		<u>30</u> <u>1.30</u>		0.0	251 4.11		4.4 0.12								508		DMR
							00	SCOTT RIVER	ER VALLEY	E (1-5)	5											
C. W. Black irrigation	192- <i>W/W</i> -2G1	9-10-63	1	539 7	7.9		7.7 0.33		0.00	321		7.7 0.08								272		DWR
W. H. Landen domestic	-27K1	9-10-63	59	56 7	7.2 0	6.8 1.5 0.34 0.12	2.2 12 0.10	0.3	0*00	34	<u>1.0</u>	0.0	0.01 0.01	1 0.01	1.0			32	18	23	~	11
F. Lockensmeyer	4 3N/ 94-8F1	9-10-63	;	141	1.6	19 3.8 0.95 0.31	31 0.16	0.0	1 <u>0.00</u>	78	0.8	0*0	1.1 0.07	10-	0.0	1	Fe 0.02 (total) Al 0.04 Cu 0.01 Zn 0.13	92	1	63	0	DWR
L. L. Lukes irrigation	-24F2	9-10-63	55	433 8	8*J		4.7 0.20		0.00	274 1.49		1.3 0.04								234		DWR
0. Broger domestic	- 28D2	9-10-63	;	L 15	7+0	5.8 1.8 0.29 0.15	8 3.0 15 0.13	0.7 0.02	0.0 0.00	28	<u>1.6</u> 0.03	0*0	1.1 0.02	lou	0.0	1	Fe 0.03 (total) Pb 0.01 Zn 0.47	4,44	cy	61 50	0	DWR
	TETT-MOT/NET	9-10-63	64	98	7.0 8	8+2 4+5	37 2.2	0.02	0*0	0.79	2.2	0.00	0.9	14	0-0	I	Fe 0.02(total) Al 0.01 Cu 0.01	58		3	0	DWR
0. E. Heinke domestic and stock	hùN/9W-3hRl	9-10-63	58	316 8	0.8		5.9		0*0 0*0	5 2.84		2.2 0.06					C + ~ 110			152.		DWR
				_	-		_	_		_		_	_	_	_				-	-	-	

Determined a dodition of constituente.
 Determined by a dodition of constituente.
 Rouvente determination of constituente.

ANALYSES OF GROUND WATER TABLE E-1 (Continued)

1963

	pez o	T		~	~	~	~	~			~		~	~	~	~	~	~
	Analyzed by c			DWR	DWR	DWR	DWR	DWR		DWR	DWR	11	DWR	DMR	DWR	DWR	DWR	DWR
	as CaCO ₃ Total N.C.			0	-	-	2	ŝ				11						5
:		Edd		ç.	131	85	110	149	_	56	t C.	Q	τι.,	182	173	80	άř.	0,2
-	- Der	-		57	182	136 15	10	2 17				0 31						52 50
	dis - solved solids in ppm			7	18		164	532				140						
	Sticco (SiO ₂) Other constituents ^d			Fe 1.5 (total) Al 00 0.000 Pb () 2n 1.3B	Fe 0.09 (total) Al 0.11 Cu 0.01 Pb 0.0 2n 0.17	Fe 0.41 (total) Cu 0.02 Zn 0.07	Fr $\frac{1}{2n} \frac{0.01}{0.07}$ (total)	$\frac{\text{Fe}}{\text{Zn}} \frac{0.05}{0.10} \text{(total)}$										Fr 0.46 (total) Al 0.07 Mn 0.20
		_				1						53						
u lion	Boron (B)			0*0	0*0	0*0	0*1	0*0				0*0)*0
n millio	Fluo- ride											0 <u>00</u>						
ports per million activolante per million	Ni - trate (NO-)			0°*0	0.1 <u>0.00</u>	<u>3.44</u> 0.05	5 • 3 0 • 08	21 7.34				3+1 0+05						5.4
d vince				<u></u>	$\frac{1,8}{0,05}$	1*0 1*1	0.16	<u>15</u>		20 0+51	<u>16</u> 0.70	<u>15</u> 0.42	21 0+59	$\frac{11}{0.31}$	$\frac{11}{0.31}$	100 7 <u>*82</u>	<u>19</u> 0.54	$\frac{12}{0,3^{l_1}}$
ts in	Sul - fole			0.3 0.01	6.1.0 0.1.0	<u>4 "O</u>	<u>5+3</u>	21h 0.50				<u>19</u> 0.39						<u>1, .3</u> 0, 03
Minerol constituents	Bicor - bonote	10031	1-6)	<u>73</u> 1+20	<u>167</u>	105 <u>1.77</u>	$\frac{1.36}{2*^2 \cdot 5}$	$\frac{140}{2 \cdot 29}$	(1-8)	150	25.4 162	62 1.02	249 1.+08	22h 3.67	210 3.44	<u>46*4</u> 112	21 0.43	18
nerol c	Potas-Carbon- sium ate	16021	Y3LEY	0.0	0°0	0*0 0*0	0*0	0*0 0*00	ALLEY	0*0 0*00	0*00	0.0	0.00	0.0	0*0	0.0	0.00	0.7
Ň	Polas- sium		KETTINA MHOLIXVII	1.40 0.02	0.3 0.0	0*0 0*0	$\frac{0_*3}{0_*01}$	5.6	MAD RIVER			<u>5.7</u> 0.10						0 <u>*0</u>
	Sodium (No)		HVX	4.4 0.19	8.2 <u>0.36</u>	6.8 0.30	<u>9.0</u>	14 0.01	G'W	201 T	16 0.70	$\frac{1^{l_{1}}}{0.61}$	11. 0.48	$\frac{10}{0_* 4 h}$	14*0	1_0 5.66	<u>16</u> 0.70	9.8 6.43
	Mogne - sium			<u>6.0</u>	11 0* <u>02</u>	10 0.85	$\frac{12}{1.00}$	11 0.94				<u>06*r</u>						0.24
	Calcium (Ca)			11 0.55	34 1.77	17 0.85	24 1.20	41. 2.04				<u>15</u> 0.73						<u>35</u>
	Hd			7.6	8.0	7+7	6*7	7.9		€° L	0.2	7.7	0.2	8.2	6°*5	8.5	6.9	6.8
Specific	conduct- once (micro - mhos	0122 0		122	274	197	643	374		301	485	188	430	380	362	758	167	101
	Temp in °F			67	60	64	58	58		IJ	65	26	64	:	59	99	64	64
	Dote sompied			7-10-63	7-10-63	7-10-63	7-10-63	7=10=63		8-29-63	8*29-63	8-26-63	8-1-63	8=29-63	8-29-63	8-29-63	7+22-63	8-1-63
State well	number and ather number		WEIGN	INS-WII/NIE	IDII-W31/NIE	131-	-15K1	32N/11W-35G1	WPATH	5N/IE-6UL	1WL+31/NO	- 8H1	TdJ1-	- 1.KQL	- 3001	- 32FL	THI-WI/NO	T081-31/NL
	Owner and use			<pre>H. A. Reynolds domestic and irrigation</pre>	R. Hood Jomestic	J. Lungberg domestic	Jessee Ranch domestic	J. R. Morris domestic		Laue Portland Lumber Industrial	F. Coleman domentic and irrigation	C. Burber domestic	Iverson irrigation	N. Holgerson domestic and stock	E. North domestic und irrigation	Arcata Plywood Plant industrial	Ace Bulb Farm domestic and irrigation	G. A. Curtie domestic

Determined by addition of constituent.
 Determined by addition of constituent.
 Accommission for the addition for the addition of the additing addition of the addition of the addition of the addition o

ANALYSES OF GHOUND WATCH

SIIO

TABLE E-1 (Continued)

WATER	
GROUND	1963
Ы	6
ANALYSES	

	Anolyzed by c					6	.1	AR	sosu	DWR			2	USGS	DWR	DWF	DWR	
		E			3	DAR	1	DWR		D			TT	а 	ñ	ß	2	
Hordness	CoCO S	0			0	0	0	0	°				17					
		÷	_		÷	52	203	54	104	85		188	500	-28	202	226	54T	
	da sod- tum tum				104 43	13 31	328 25	36 2	5:4 74				286 17	125 32				
Tot	ali ppm		`		ă		35		5				ĊĬ.	~				
	Silica (SiO ₂) Other constituents ^d					Fe 0.22 (total) Al 0.10 Zn 0.01		Fe 0.25 (total) Al 0.13 As 0.01 Mn 0.01 Zn 0.01										
		00			52		37		20				07	8				
lion	Boron (B)	0			0.0	0.0	0.1	0.0	1.4				0.0	0*0				
per mi	Fluo- ride (F)	1	0.01		0.2 0.01		10*0		$\frac{0.1}{0.01}$				0.2 0.01	0 <u>+02</u>				
parts per million valents per mill	Ni - trote (NO ₃)	2	12.0		0*00 0*00	1' 0.02	6.2 0.10	1.4 0.02	8.0 0.13				0.0	<u>1.5</u> 0.02				
ports per million equivalents per million	Chio- ride (CI)	t v	0.16		15 0.37	14 0+39	28 0.78	15 0.42	110 3.10	31 0.87		9.5 0.27	2.4 0.65	5.0 0.14	42 1.18	<u>19</u> 0+54	1.2 0+34	
ë	Sul - fote (SO ₄)	2	<u>112-0</u>		3.4	3+1 0+06	6.2 0.13	3+3 0+07	1.() ().()?				<u>50</u>	7.0 0.15				
Mineral constituents	Bicor- bonote (HCO ₃)	(Cont.)	0*25	(()-	<u>55</u>	<u>65</u> 1+06	275 4 • 51	67 1.10	<u>316</u>	108 1.77	(1-10)	<u>187</u> <u>3. Gr</u>	140 <u>3+11</u>	84 1.38	<u>3.69</u>	274	246 4+08	
neral c	Corbon- ote (CO 3)	(1-8)	00.00	AIN (0.00	0°*0	0.0	0.0	174 0.47	0.0	VALLEY	0.00	0.00	0.00	0.00	0.00	0.00	
W	Polos- Corbon- 6 sium ote b (K) (CO ₃) ((VALLEY	10.0		0.8	1.5 0.04	5.6 0.14	<u>1.5</u> 0.04	<u>4.3°0</u>		VER		1.6 0.04	1.6 0.04				
	Sodium (No)	VER	0.38	EUF	14 0.60	11 0.48	$\frac{33}{1.43}$	12 0.52	15% 6.2%	24 1.04	EEL R	0.4 <u>.0</u>	18 0.80	<u>13</u> 0+57	14.0 1+74	26	<u>9+7</u>	
	- augue Buun Wagne -		2 <u>+*0</u>		5 • 1 6 • 42	0 <u>,15</u>	2.18	<u>8.6</u> 0.71	1.8 1.748				29	8.0 0.66				
	Colcium (Co)	2	0.50		7.0	1.29	$\frac{38}{1.89}$	7.5	12				32 1.61	10 0+50				
	Ŧ	6	7.		7.6	7.6	8.1	9.7	9 . 6	6*L		8.0	0.0	8°*8	8.8	d+3	8•1.	
Specific conduct-	ance (micro- mhos at 25° C)	0,	601		128	168	1485	171	873	277		429	430	174	255	515	1,92	
	Temp in °F	u y	6		58	22	25	59	62	25		59	1	:	1	:	ł	
	0ote sampied	4 J 4 0			8-29-63	8-29-63	8-29=63	8-29-63	8-29-63	8-29-63		1-02-63	8=28=63	8-8-63	9-4-63	8-28-63	1-28-63	
State well	nymber ond Ofher number	WREN	- 3081		INS-MI/NE	148-WI/NW	-1611	+17B1	T081-31/N5	160 -		Id¼ WI/NZ	- TBY -	-1,01	-17G1	TDe∂+MT/NÊ	TNOF -	
	Owner and USO		T. Galaty domestic		S. Christiansen irrigation	Pacific Gas & Electric 4N/1W-8P1 industrial	P. Lorenzen 1rrigation	Pacific Gas & Electric industrial	Arcata Redwood Cu. domestic and industrial	L. L. Spinney domestic and stock		A. Capaul irrigation	E. Calanchini irrigation	A. Johnson domestic and irrigation	C. Anderson irrigation	'. Golle irrigati n	R. Tedsin irrigation	

a Determined by addition of constituents focuments determinations 6. Amolyst by U.S. Geodoptic Survey Doubliv of Woter Branch (U.S.G.S., Pacific Chemical Canaditants (P.C.C), Letin Laborato ry (Lu.L.), 6. Amolyst by U.S. Geodoptic Survey Doubliv of Woter Branch (W.S.G.S., Pacific Chemical Canaditants (P.C.C), Letin Laborato ry (Lu.L.), 6. Amolyst by U.S. Geodoptic Survey Doubliv of Woter Branch (W.S.G.S., Pacific Chemical Canaditants (P.C.C), Letin Laborato ry (Lu.L.), 4. Trantfes, Alamanum G.L., Arsanic (Las), Desper (GL, Mongaras (MM), Z.C.(ZR), reputed nere as <u>obs</u>ercept os shown

STO STO

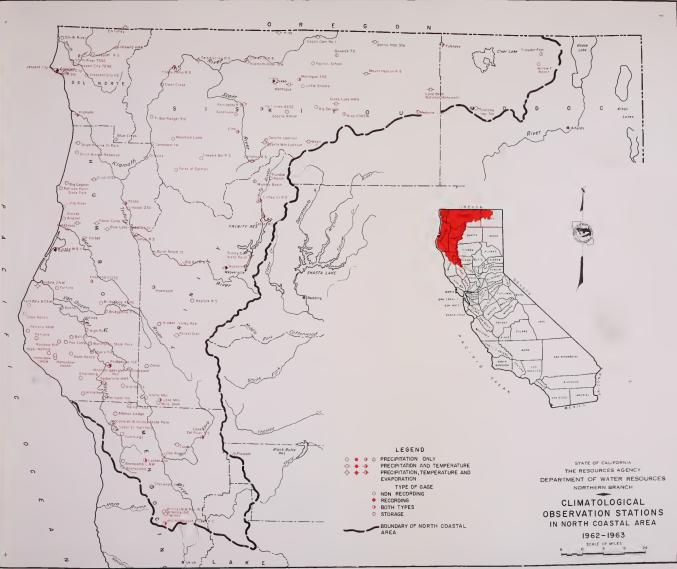
ANALYSES OF GROUND WATER TABLE E-1 (Continued)

1963

0

	Stats well			Specific					Miner	Mineral constituents		, E	parts per millon equivalents per million	parts per millon valents per mill	million			Tatol	į	Hardness		
Ownar and use	nymber and ather number	Date sampled	Temp in °F		Hď	Calcium (Ca)	(BM) muns - enum	Sadium (Na)	Potas-Cat sium c (K) (C	Carbon-Bi ate bo (CO ₃) (H(Bicar-Su bonate (G (HCO ₃) (S	Sul - C fate (SO ₄)	Chlo- ride -	Ni- trate (NO ₃) (F)	de Boran (B)		Silica Other constituents ^d (SiO ₂)	solvad solids in ppm	in and	as coci		Analyzed by c
	HB&M						100	GEL RIVES	-1) XITIVA		10) (Cont.)											
J. V. Toste irrigation	3N/2W-2A2	8-28-63	1	2220	0.0	85 4 -24	94 7.76	198 8.61	<u>2.7</u> 0.	0.0 84	84 29 1.38 0.60	50 18+28		4.3 0.1 0.07 0.01		19		1290	21	600	531	nscs
E. E. Tanferani irrigation	-1301	9-5-63	1	3390	7.7			204 8.87	00	0.00 14	254 4.16	253 26.88							1	0611		DWR
R. M. Christiansen irrigation	-2761	8-5-63	1	7530	8.1	<u>180</u> <u>8.98</u>	292 24 • 02	950 41.32	24 0.61	0.00 3.	216 137 3.54 2.85	7 85 67.42		7.6 0.2 0.12 0.01	0.1	27		4260	55 D	1650 14	1473	uses
P. C. Lorenzen irrigation	TWSE-	8-5-63	1	1390	0°*0			<u>100</u> 14.*35	0	0.00	258 4.23	296 8.35	19							435		DWR
	MDB&M							TUON	ROUTD VALLEY (1-	r (1- 11)	7											
W. B. Mooy domestic and irrigation	22N/12E-612	9-63	1	275	7.8	27	<u>11</u> 0.87	<u>14</u> 0.60	0.01	0.00	2.57 0.06	<u>06 0.07</u>		2.8 0.1	10	50		152		111	0	E
A. D. Fellingham irrigation	-19F1	9-63	ł	1490	0	<u>36</u> 1.78	46 3.81	<u>12</u> 0+50	0.4 0.01	0.0	236 22 5.50 0.45	1-1 1-1		3.5 0.1	1.0	1		322	0	280	Ś	님
R. T. Rurt domestic and irrigation	22N/13E-12K1	9-63	;	340	1.7	<u>33</u> 1.63	16 1.26	<u>22</u> 0+95	0°01 0	0.0	221 4.3 3.62 0.09	<u>09 0.15</u>		0.00 0.01	1.0	1		555	52	145	0	님
F. F. Rohrbough domestic	1%1-	9-63	1	530	8.1	26 1+30	11 0.89	<u>8.9</u> 0.39	0.02	0.00	2.50 0.	2.9 3.2 0.06 0.09		0.8 0.1	1.0 10	1		144	15	011	0	H
G. Cravier irrigation	INTE-MZI/NEZ	9-63	1	255	8.2	32 1.60	<u>7.5</u> 0.62	11 0.48	0.02 0	0.00	<u>137</u> 2.25 0.	11 9.6 0.22 0.27		1.2 0.02 0.	0.1 0.1	7 71		148	18	TI.	0	E
E. Bauer domestic and irrigation	-33L1	9-63	1	600	0°9	<u>67</u> 3.34	<u>30</u> 2.49	<u>32</u> 1.40	0.01		1.06 0.	3.4 0.07 0.10		3.5 0.06	0.03	22		372	19	292	0	E
W. Clark domestic and irrigation	23N/13E-25P1	9-63	;	528	8.1	<u>30</u> 1.50	8.2 0.67	5.0	0.02	0.0	128 2.10 0.	<u>11</u> 0.23 0.10		2.4 0.	0-1 0-01			140	6	108	~)	님
C. A. Gray irrigation	-36P2	9-63	1	240	8.1	26	<u>11</u>	<u>6.6</u>	0.9	0.0	2.13	1.8 1.6		<u>10</u> 0.10	0.01	0.0		146	21	011	4	3
a. Determined by addition of canstituents.	of constituents.																					

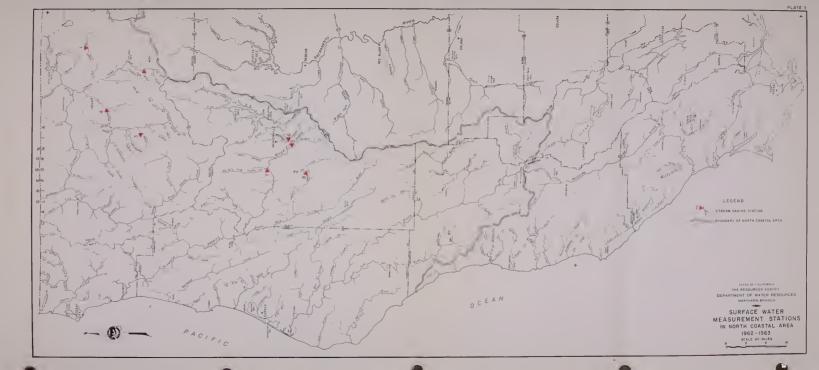
104


Ъ

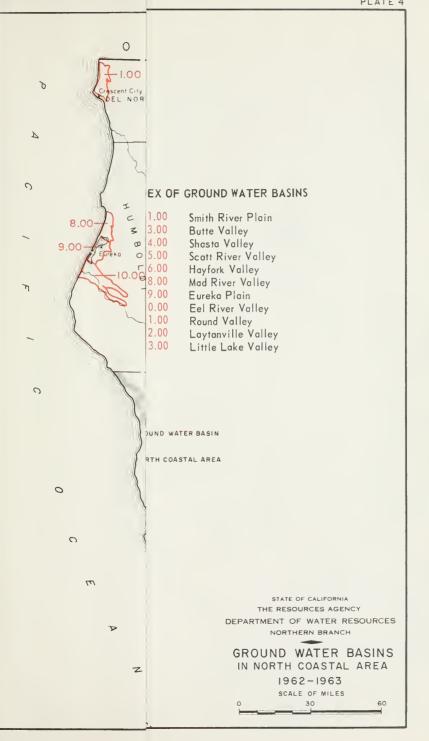
Ł

0

PLATE



INDEX TO STATIONS


- Little Shasta River near Montague
- 2 Shasto River at Edgewood
- 3 Etno Creek near Etno
- 4 Moffett Creek near Fort Janes
- 5 Browns Creek near Douglas City
- 6 Weaver Creek near Douglos City
- 7 North Fork Trinity River at Helena
- 8 Big Creek near Hayfork

The

PLATE 4

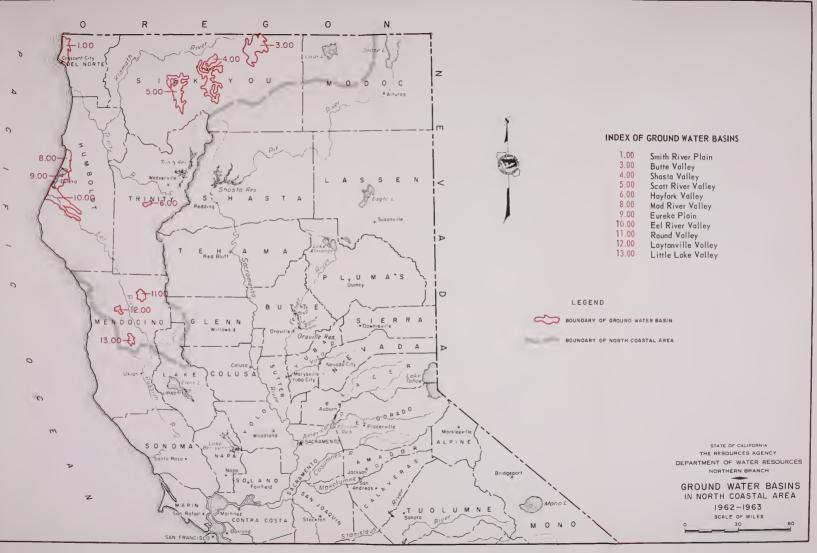
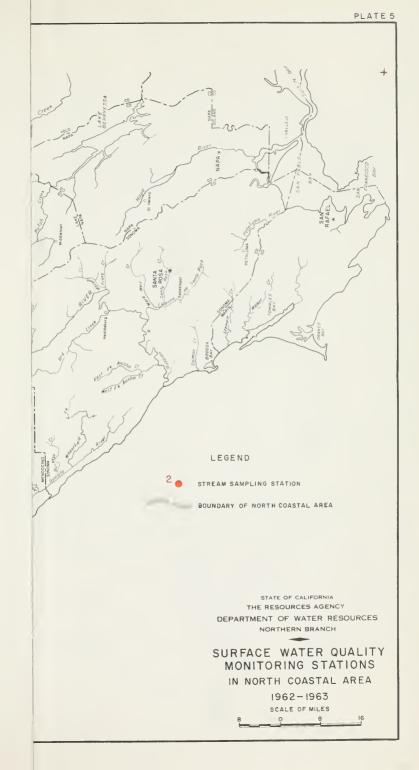
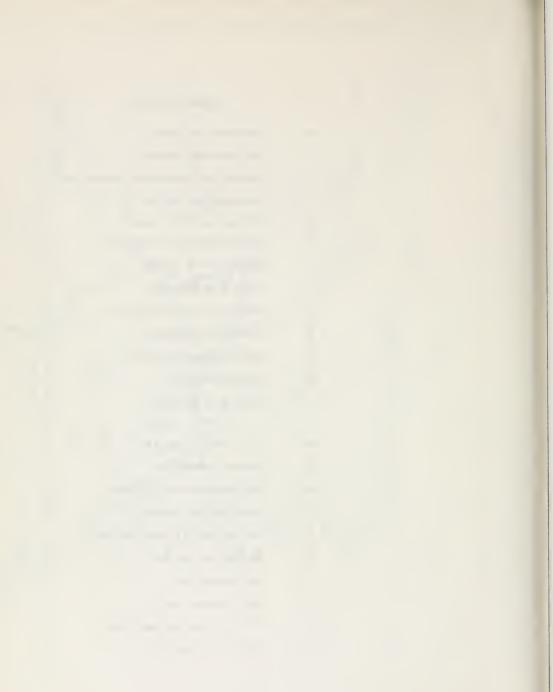
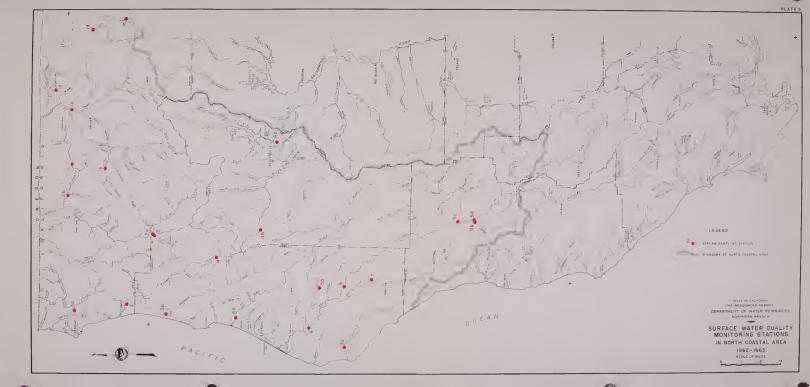
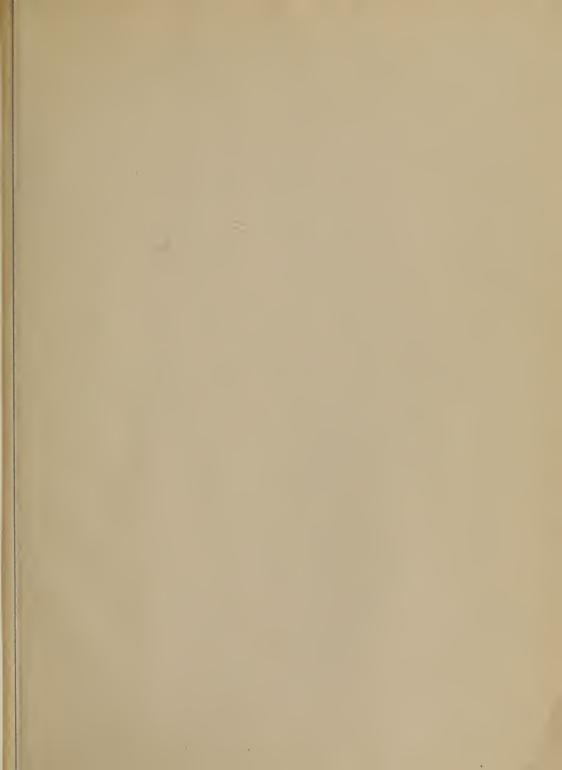




PLATE 4





INDEX TO STATIONS

- la Shasta River near Yreka
- Scott River near Fait Jones 1ь
- Klamath River above Hamburg Reservoir Site 1c
- Butte Creek near MacDael 1d
- le Antelape Creek near Tennant
- Klamath River below Iron Gate Dom 16
- Klomath River at Samesbar 2
- 20 Salmon River at Somesbor
- 2Ь Klomath River near Seid Valley
- Klamath River near Klamath
- Smith River near Crescent City 30
- 36 Redwood Creek at Drick
- Trinity River near Haapo 4
- Trinity River of Lewiston 4a
- Trinity River near Burnt Ranch 4b
- Eel River near McConn
- Van Duzen River near Bridgeville 5a
- Outlet Creek noor Longvale Sb
- Eel River, Middle Fark at Das Rias Sc
- Sd Eel River near Das Rias
- Eel River at Scotia 6 60
- Mod River near Arcata
- Eel River, South Fark near Miranda
- Mottole River near Petrolio 7o

RD

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL LUU LIDRARY DUE JUN 12 1370 JUN 5 REC'D OCT 26 1977 OCT 25 RECD LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-50m-12,'64 (F772s4)458

399684

California. Dept. of Water Resources. Bulletin. no PHYSICAL SCIENCES LIBRARY

> LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

TC821: C2 A? no.130:63 v.1 c.2

Call Number:399684TC824California. Dept. of
Water Resources.
Bulletin.C2A2no.130:63c.2

