INTEGRATED INTENSITY MEASUREMENTS FOR VIBRATION-ROTATION BANDS OF CARBON DIOXIDE

1

II.

TOTAL ABSORPTIVITY MEASUREMENTS ON CARBON DIOXIDE AT ROOM TEMPERATURE

R. J. HOLM

THESIS

Libra**ry** U. S. Naval Postgraduate School Monterey, California e

•

.

I. INTEGRATED INTENSITY MEASUREMENTS FOR VIBRATION-

ROTATION BANDS OF CARBON DIOXIDE

II. TOTAL ABSORPTIVITY MEASUREMENTS ON CARBON DIOXIDE

.

AT ROOM THIPERATURE

Thesis by

Robert J. Holm U

In Partial Fulfillment of the Requirements

For the Degree of

Aeronautical Engineer

.

California Institute of Technology

Pasadena, California

ACKNOWLEDGENENTS

The author wishes to extend his appreciation to Dr. S. S. Penner, under whose direction this work was conducted, and to Mr. D. Weber for help with the experimental work.

18037

ABSTRACT

I. This study contains an outline of the experimental measurements performed in order to determine integrated intensities of various vibration-rotation bands of carbon dioxide by use of standard techniques with a Perkin-Elmer spectrometer.

II. Total absorptivity measurements on carbon dioxide at room temperatures were made in a pressurized gas cell provided with transparent windows.

TABLE OF CONTENTS

Ackn	owled	gements	1
Abst	ract		11
Tabl	e of	Contents	111
Tabl	e of	Figures	iv
Symb	ols		vi
I.	Inte	grated Intensity Neasurements on Carbon Dioxide	1
	A.	Introduction and Summary	2
	в.	Nethods For the Experimental Determination of	
		Integrated Intensities	2
	C.	Axperimental Studies	6
	D.	Comparison With The Results of Other Investigators	7
	B.	Calibration of Ferkin-Elmer Spectrometer with	
		Sodium Chloride Frism	9
11.	Tota	1 Absorptivity Measurements on Carbon Dioxide	
	At B	oon Temperature	10
	A.,	Introduction and Summary	10
	B.	Basic Radiation Levs	13
	0.	Total Absorptivity Determinations On Carbon	
		Dioxide at Room Temperature	15
	D.	Comparison with the Results of Other Investigators	19

TARE	07	TT	ESTE
Address of the second s		-CO 5-30	A C IN ON COM

Figure	Title	Page
2.	Schematic Representation of Infrared Absorption Cell Used to Measure Intensities of Gas Mixtures	22
Q.	β /2.503 as a function of pl for the CO ₂ band with center at 5109 cm ⁻¹ . $\alpha = .426 + .043$ cm ⁻² - atm ⁻¹ at 298°K. (3.57 cm cell length, p _T = 90 psia)	23
3.	β /2.303 as a function of pl for the GO ₂ band with conter at 4963 cm ⁻¹ . $\alpha = 1.01 \pm .10 \text{ cm}^{-2} - \text{ atm}^{-1}$ at 298°K.(3.57 cm coll length, $p_{\rm p} = 500$ psis)	24
4.	β /2.303 as a function of pl for the CO ₂ band with centor at 4860 cm ⁻¹ . $\Delta = .272 + .027$ cm ⁻² - atm ⁻¹ at 298°K. (3.57 cm cell length, $p_{\rm T} = 500$ psia)	25
5.	β /2.303 as a function of p/ for the GO ₂ band with center at 3716 cm ⁻¹ . $\alpha = 42.3 + 4.23$ cm ⁻² - atm ⁻¹ at 298°K. (.5 cm cell length, pg = 500 psia)	26
6.	β /2.303 as a function of pl for the GO ₂ band with center at 3609 cm ⁻¹ . $\Delta = 28.50 \pm 2.85$ cm ⁻² - atm ⁻¹ at 298°K. (.5 cm cell length, p _T = 500 psia)	27
7.	β /2.303 as a function of p. for the O_2 band with center at 2349 cm ⁻¹ . A = 2706 + 270 cm ⁻² - atm ⁻¹ at 298°K. (5.15 cm cell length, $p_{\rm p} = 700$ psie)	28
8.	β /2.303 as a function of p/ for 60 ₂ in the region between 2000 and 2160 cm ⁻¹ , $\propto = .147 \div .047$ cm ⁻² - atm ⁻¹ at 298°E. (3.57 and 6.72 cm cell length, p _T = 500 psia)	29
9.	β /2.303 as a function of pl for CO ₂ in the region between 1800 and 2000 cm ⁻¹ . $\alpha = .083 \pm .008 \text{ cm}^{-2} - \text{ atm}^{-1}$ at 298°K. (6.72 cm cell length, $p_{\rm T} = 400$ psia)	30

TABLE OF FIGURES (Cont'd)

Figures	Title	Page
10.	$\beta/2.303$ as a function of $p f$ for CO, band with center at 668 cm ⁻¹ including weak neighbor- ing bands with centers at 720, 667 and 618 cm ⁻¹ . $\alpha = 171.6 \pm 17.1$ cm ⁻² - atm ⁻¹ at 298°K. (1.985 cm cell length, $p_{m} = 500$ psia)	31
11.	Calibration curve for infrared spectrometer with MaCI prism	32
12.	Calibration curve for infrared spectrometer with MaCI prism	33
13.	Block diagram of apparatus for measurement of total absorption of infrared radiation	34
14.	Absorptivity \checkmark as a function of $p_{\rm p}$ for various fractional pressures of $\rm CO_2$ at room temperature. (The $\rm CO_2$ was pressurized with nitrogen)	35
15.	Absorptivity α as a function of pl for \mathfrak{SO}_2 at room temperature and a total pressure of one atmosphere	36
16.	Absorptivity α as a function of pl for CO_2 at room tomperature and a total pressure of one atmosphere	37
17.	Absorptivity \ll of CO ₂ at room temperature as a function of pl at various total pressures	38
18.	Comparison of experimentally determined absorptivities as a function of optical density for GO ₂ at atmospheric pressure and room temperature with the results of studies carried out by Hottel and Mangelsdorf	39
19.	Comparison of experimentally determined absorptivities as a function of optical density for CO ₂ at atmospheric pressure and room	
	out by Hottel and Mangelsdorf	40

SYNBOLS

Part I		
d	=	integrated intensity
₽ω	=	spectral absorption coefficient
ω	E	wave number
v	000-	quentum number
ĩω		transmitted intensity
I _o ω	E	incident intensity
p	E	partial pressure
l	granta Viraza	optical path length
Tow	dente Marca	apparent intensity without absorber
Ψw	201	apparent intensity with absorber
d'	222	apparent integrated intensity
₽	-	pl/x'
P _T	-	total pressure
T	200	micrometer screw turns
B	2011	defined spectrometer constant
w ₂	=	Restrahlen wave number
pl	122	optical density
Part IJ	L	
R	15	energy emitted by a blackbody at temperature wave length λ
Rw	22	energy emitted by a blackbody at temperature

asae unuper m

T at

T at

SYNBOLS (Cont'd)

ג	325	were longth
ω	82	wave number
c1, c5	525	physical constants
C	-	velocity of light
h	22	Planck's constant
k	æ	Boltzmann's constant
T	22	absolute temperature
σ	815	Stephan Boltzmann constant
٤		emissivity
Rw	dagin dagan	spectral intensity of emission from greybody
78	-	engineering enissivity
X	-	recorder constant
K I	22	defined recorder constant
מ	m	recorder deflection
d	-	absorptivity
T.	22	globar temperature

l

I. INTEGRATED INTENSITY MEASUREMENTS ON CARDON DIOXIDE

A. Introduction and Summery

The importance of gas radiation in effecting heat transfer botween a gas and its surroundings, particularly when the gas temperature is high, has been recognized for some time. However, accurate emissivity data are generally not available for use in engineering calculations of heat transfer. Recently attempts have been made to calculate gas emissivities theoretically from spectroscopic data. It is the purpose of the present study to provide some of the basic data which are needed for the theoretical calculation of emissivities of carbon dioxide.

Quantitative infrared intensity measurements have been carried out for the more intense vibration-rotation bands of carbon dioxide using helium as a pressurizing agent. Measurements were made by use of standard techniques. The results are summarized in Table I.

Band Center Integrated	Band Center Integrated
(cm ⁻¹) Intensity	(cn ⁻¹) Intensity
(cm ² atm ⁻¹ at 298°K)	(cn ² atm ⁻¹ at 298°K)
5109 .43 4983 1.01 4860 .27 3716 42.30 3609 28.50 2349 2706.00 2137) 2094 combined .147 2074	1932) combined .83 1886) 720) 668) combined 171.50 647) 618)

Table I. Observed Integrated Intensities* of Carbon Dioxide

" Observed intensities are accurate within ± 20%.

B. Methods for the Experimental Determination of Integrated Intensities

Integrated intensities of the infrared vibration-rotation bands are required for the theoretical calculation of gas emissivities and radiant heat transfer.

The integrated intensity \checkmark for a given vibration-rotation band is defined by the relation

$$X = \int P_{w} dw \qquad (1)$$

where \mathbb{P}_{ω} represents the spectral absorption coefficient at the wave number ω . Although the limits of integration should extend from $-\infty$ to $+\infty$ it is sufficient to restrict integration to a narrow wave number interval bracketing the band center because \mathbb{P}_{ω} decreases very rapidly with ω in the wings of the vibration-rotation bands. The integrated intensities for various vibration-rotation bends will be identified by appropriate changes in vibrational quantum number. For example, the intense \bigvee_{3}^{2} - fundamental of earbon dioxide arises as a result of the transition*⁽²⁾

 $v_1 = o \rightarrow v_1 = o$, $v_2 = o \rightarrow v_2 = o$, $l = o \rightarrow l = o$, $v_3 = o \rightarrow v_3 = l$ and has a band center at 2349.3 cm⁻¹. The corresponding value of the integrated intensity is then identified by the symbol

^{*} For details concerning spectroscopic notation of polyatomic molecules see, for example, G. Herzberg, <u>Infrared and Raman</u> <u>Spectra</u> D. Van Nostrand Co., New York (1945).

$$\ll (0,0,0\rightarrow 0,0,1)$$

The integrated intensities of other vibration-rotation bands may be identified similarly.

a) The Method of Wilson and Wells (2)

For monochrometic radiation it is well known that

$$I_{w} = I_{ow} \exp(-P_{w} Pl)$$
 (2)

where I_{ω} is the transmitted intensity at the wave number ω when the incident intensity is $I_{0\omega}$, p is the partial pressure of the absorbing gas and \mathcal{L} represents the optical path length. Hence the integrated intensity becomes

$$\alpha = (pl)^{-1} / ln (I_{ow} / I_w) dw \qquad (3)$$

where the integration in Eq. (3) is to be performed over the entire effective width AW of the vibration-rotation bend under study.

The apparent intensities observed without absorber and with absorber, when the instrument is set at ω , are not $I_{0\omega}$ and I_{ω} respectively, but rather

$$\mathbb{P}_{0\omega} = \int \mathbf{I}_{0\omega}' g(\omega, \omega') d\omega' \qquad (4)$$

and

$$T_{w} = \int I_{u'} g(w, w') dw' \qquad (5)$$

where $g(\omega, \omega^{i})$ represents the fraction of light of actual wave number ω^{i} to which the instrument responds when it is set at ω . Some of the difficulties inherent in the calculation of \mathbb{P}_{ω} do not arise in the determination of the integrated intensity. From experimentally determined values of \mathbb{T}_{ω} and $\mathbb{T}_{\omega\omega}$ it is possible to determine an apparent integrated intensity \varkappa^{i} which is defined by the relation

$$\alpha' = (pl)^{-1} / ln (T_{ow}/T_w) dw = \beta/pl$$
(6)

Wilson and Wells have shown that

$$\lim_{pl \to 0} \Delta' = \Delta$$

when a number of specified conditions are not. These conditions include the requirement that $I_{0\omega}$ be independent of ω in the resolved spectral range, a condition which can be approached closely by eliminating atmospheric absorption and using sufficiently narrow spectrometer slits to give high spectral resolution. In addition to requiring constant $T_{0\omega}$, Eq. (6) will hold only if either the variation of P_{ω} with ω can be neglected in the spectral range or the resolution of the instrument does not vary appreciably over the vibration-rotation band under study. Of these two requirements the latter constitutes an intrinsic property of the instrument. The variation of P_{μ_1} in the resolved spectral interval can be minimized

by pressure broadening, i.e., as $p \times is$ decreased, $\ll vill$ approach \ll more rapidly, the higher the constant total pressure at which the observations are made.

As the optical density is decreased, the plot of β vs $p \checkmark$ may show considerable curvature. This fact introduces an appreciable error into the extrapolation required to determine \checkmark . At sufficiently high total pressure p_p , the variation of β with $p \bigstar$ should follow a linear relation in accord with the fact that the true integrated intensity is measured at every value of the optical density and Eq. (6) should apply directly. By proceeding according to Wilson and Welks⁽²⁾ the result $\measuredangle i \rightarrow \bigstar$ as p_p is increased can be demonstrated.⁽³⁾

The true value of the integrated intensity \ll can be obtained either by extrapolating \ll ' to zero values of $p \$ at constant $p_{\rm T}$ or by finding the limiting value of \ll ' at constant optical density as the total pressure is increased.

b) The Self-Broadening Technique of Penner and Weber⁽⁴⁾

Infrared transmission studies on pure gases have the obvious advantage of eliminating the possibility of experimental error resulting from imperfect mixing or from the occurrence of adsorptiondesorption phenomena. On the other hand, they possess the severe disadvantage of always involving the effect of significant selfbroadening associated with increased pressure of the absorber. How-

-5-

ever, by suitable choice of test cell length it is possible to utilize self-broadening to obtain quantitative infrared intensity data. In general, the required cell length is shorter when the vibration-rotation band is more intense.

C. Experimental Studies

a) Apparatus

A Perkin-Elmer Model 125 single beam infrared spectromotor with lithium fluoride, sodium chloride, and potassium bromide prisms was used for transmission measurements. Incorporation of automatic slit drive over the wavelength interval used for study was found to save considerable time in experimental work. Pressure readings were performed by use of a Wallace and Tiernan precision manometer for the pressure range 0-800 mm of mercury (\pm .2 nm) and 0-1000 psig by use of a Marsh gage (\pm 2 psig).

The cell and window assemblies were machined from 18-8 stainless steel stock. Neoprene O-rings and neoprene or teflon gaskets were used to support the cell windows. The principal features of the cell are shown in Fig. 1. The right end plate is provided with a special tap to permit flushing with nitrogen of the cutside of the cell in the light path. This same end plate is fitted with a flange to slide into the absorption cell slot provided on the spectrometer. A flexible collar is inserted between the other end plate and the globar source. The collar also has a fitting for nitrogen flushing.

-6-

The cell is provided with a window assembly as shown and is large enough to permit incorporation of stirring rod with perforated end plate. In each experiment care was taken to assure uniform mixing of gases in the cell by adequate use of the stirrer. It was assumed that a uniform gas mixture had been obtained when additional stirring produced no measurable change in transmission.

Details of wavelength calibration of the prism spectrometer using a sodium chloride prism are given in Section E.

b) Summary of Experimental Data

For the vibration-rotation bands of carbon diexide on which experimental measurements were performed the quantity $\beta/2.303$ has been plotted as a function of p l in Figs. 2 to 10. Corresponding integrated intensities have been given previously in Table 1.

D. Comparison With The Regults of Other Investigators

The observed intensities of vibration-rotation bands of carbon dioxide are compared with the results of other investigators in Table II. Reference to Table II shows that the data are in excellent agreement with the results of other investigators.

Table	II.	Observed	Intensities	of	Carbon	Dioxide
-------	-----	----------	-------------	----	--------	---------

		Integrated Intens (cm ² atm ⁻¹ at 298	ity a ok)
Bend Center (cm ⁻¹)	Wilson et al 2.5,6 (1941)	Eggers and Crawford (7) + 10% (1951)	Present Study ± 20% (1952)
51.09 4983 4860 3716 3614 2349	2867.0	39.0 27.0 2693.0	.426 1.01 .272 42.3 28.5 2706.0
2137 2094 2074 2074 1932 1886		0.14 (P and .05 (Q onl .005	y) combined .147 y) combined .083
720 668 647 618	187.0	161.0	combined 171.5

-8-

E. Calibration of Perkin-Elmer Spectrometer with Sodium Chloride Prism

In the wave number calibration of an infrared spectrometer it may become necessary to make use of the relation between micrometer screw turns and wave number in wave number regions where no calibration points (absorption bands or lines) exist or are available.

In the present calibration it was necessary to extrapolate the micrometer screw turns vs. wave number curve from the carbon dioxide band at 667 cm⁻¹ to regions near the absorption limit of the sodium chloride prism. This was done using the method of McKinney and Friedel, ⁽⁸⁾ whose empirical equation is

$$T = T_0 - B \left(\frac{\omega_2^2 - \omega^2}{\omega_2^2} \right)^{-1}$$
 (7)

where T is micrometer screw turns and T_0 is the ordinate intercept at $B(\omega_2^2 - \omega^2)^{-1} = 0$. Here ω_2 is the Restrahlen wave number depending on the prism material and ω is a known or measured wave number. Seven absorption maxima of ammonia and carbon dioxide were used for calibration and $(\omega_2^2 - \omega^2)^{-1}$ was calculated and plotted against micrometer screw turns. For sodium chloride the value of ω_2 is 125 cm⁻¹.

The constants \mathbb{F}_0 and B are determined from the known absorption maxima. Equation (7) is used to extend the calibration curve of T vs $\boldsymbol{\omega}$. The correction term for short wave length absorption was neglected for the present purpose. Figures 11 and 12 are reproductions

-9-

of original calibration graphs in which the abscissae are, respectively, $\boldsymbol{\omega}$ and $(\boldsymbol{\omega}_2^2 - \boldsymbol{\omega}^2)^{-1}$, whereas each ordinate represents micrometer screw turns.

II. TOTAL ABSORPTIVITY LEASUREMENTS ON CARBON DICKIDS AT ROOM TEMPERATURE

A. Introduction and Summary

The calculation of radiant heat transfer from heated carbon dioxide requires the use of experimentally detormined absorptivity data. The total absorption of radiation by carbon dioxide has been reinvestigated at various optical densities at different total pressures and at room temperature. A complete investigation could not be carried out at other temperatures because of experimental difficulties with the gas cell and amplifying system. The measured values of the total absorptivities are given in Table III.

Absorptivity \checkmark of Carbon Dioxide at Room Temperature and Different Total Pressures (p χ refers to optical density of carbon dioxide). Table III.

× 1	222 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Peo2/Pr= PA (ft atm)	.189 .445 .702 .775 .959 .775 .60 .60 9.17 2.45
5177 A	0050 0079 1102 1112
$p_{co}/p_{T} = p_{c}$ p_{c} (rt atm)	0376 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
2705 A	1700 000 1200 1200 1200 1200 1200 1200 1
Poo/Pr = .: P l (ft atm)	.0510 .1205 .130 .330 .745 1.093
x	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
$p_{eo_2}/p_T = p_R$ p_R (rt atm)	.0294 .0695 .1295 .433 .230
3596 A	12000 00000
$p_{eo_2}/p_T = .$ p_1 (ft atm)	0112 0266 0577 0577 164
°	012 022 022 022 022 022 022 022 022 022
Peo ₂ /Pr = P X (ft atm)	00226 00534 00541 00115 0115 01176 01176
Pro (ata)	55.62114 75.28 55.62114 75.38 55.62114 75.38

-12-

B. Basic Radiation Laws

The spectral distribution of radiation from a blackbody is given by Planck's radiation law

$$R_{\lambda} d\lambda = c_{1} \lambda^{-5} \left[\exp \left(c_{2} / \lambda T \right) - 1 \right]^{-1} d\lambda$$
 (7)

where $R_{\lambda} d\lambda$ is the energy emitted from a blackbody at temperature T per unit time per unit area in the wave length interval from λ to λ plus $d\lambda$ throughout a solid angle 2 π steradians. c_1 and c_2 are physical constants whose values are given below: ⁽¹⁰⁾

$$c_1 = 2 \pi ch^2 = (3.732 \pm .006) \times 10^{-5} erg cm^2 sec;$$

 $c_2 = ch/k = (1.436 \pm .001) cm^6 K;$
 $c = velocity of light = (2.99776 \pm .00020) \times 10^{-10} cm sec^{-1};$
 $h = Planck's constant = 6.62 \times 10^{-27} erg sec;$
 $k = Boltzmann's constant = 1.381 \times 10^{-16} ergs per molecule cm^{-1}$,
 $k = Boltzmann's constant = 1.381 \times 10^{-16} ergs per molecule cm^{-1}$,

$$\mathbb{B}_{\omega} d\omega = c_1 \omega^3 \left[\exp\left(c_2 \omega/\mathbb{T}\right) - \frac{1}{2} \right]^{-1} d\omega \qquad (8)$$

where R_{ω} d ω is the energy emitted from a blackbody at temperature T per unit time per unit area in the wave number interval from ω to ω plus d ω throughout a solid angle 2 Π steradians.

The total intensity of radiation omitted by a blackbody over all wave lengths is given by Stephan's law

$$\int_{\mathbb{R}}^{\infty} d\omega = \sigma r^{4}$$
 (9)

where σ represents the Stephan-Boltzmann constant and has the numerical value ⁽¹⁰⁾ (5.67283 ± .0037) x 10⁻⁵ erg cm⁻² $^{\circ}$ K⁻⁴ sec⁻¹ (= 2 π ⁵K⁴/15c²h²). For a greybody the emissivity ϵ is independent of wave number, i.e.,

$$R_{\omega} = E R_{\omega}$$
(10)

where R_{ω} ' is the spectral intensity of radiation emitted from a greybody. The engineering emissivity or absorptivity for diatomic and polyatomic gases is defined by a relation similar to Eq. (9). Thus, if I_{ω} is the spectrally emitted intensity from a non-black and a non-grey source, then the engineering emissivity E is given by

$$\mathbb{P} = \int \left(\mathbb{I}_{\omega} / \sigma \mathbb{P}^4 \right) \mathrm{d} \omega \tag{11}$$

where I_{ω} is $\mathbb{E}_{\omega} \left[1 - \exp(-\mathbb{P}_{\omega} pl)\right]$, \mathbb{P}_{ω} is the spectral absorption coefficient and pl is the optical path density. Equation (11) can be written more explicitly as a sum over the contributions to the total emissivity from separate vibration- rotation bands. Thus, let $A\omega' = \Delta\omega (v_1, v_2, v_3 \rightarrow v_1, v_2, v_3)$ represent the effective

width of the vibration-rotation band arising from the transition l, l', v_1 , v_2 , $v_3 \rightarrow v_1$, v_2 , v_3 . Then

$$S = (\sigma T^{4})^{-1} \underbrace{\sum_{V_{1}} \sum_{V_{2}} \sum_{I} \sum_{V_{3}} \underbrace{\sum_{V_{1}} \sum_{V_{1}} \sum_{V_{2}} \sum_{V_{2}} \underbrace{\sum_{V_{2}} \sum_{V_{2}} \sum_{$$

where the quantum numbers must conform to the selection rules for all allowed vibrational transitions. Quantitative calculations of ? are exceedingly difficult to carry out.

C. Total Absorptivity Determinations on Carbon Dioxide at Room Temperature

An apparatus has been built for the measurement of absorptivity and emissivity of carbon dioxide. The system consists of a source of infrared radiation, a gas cell in which temperature and pressure may be controlled and a non-selective receiver. The signed from the receiver or detector is amplified using chopped radiation for stabilization. The percentage of transmission is found by comparing voltage output from the detector for an empty cell with voltage output from the detector for the same cell under test conditions. A recording potentiometer (Speedomax) is used to indicate voltage. A block diagram of the apparatus used for study of absorption and emission is shown in Fig. 13.

The source of radiation used is a globar unit which has a continuous emission spectrum in the infrared region.

The globar temperature must be held within close limits to reduce fluctuations in radiation. Power supply to the globar is regulated by a Sola constant voltage transformer.

The globar, gas cell, and detecting thermocouple are placed in a wooden chamber which is flushed with nitrogen to prevent light absorption by atmospheric water and carbon dioxide. The cell is fitted with potassium chloride windows which allow transmission at wave lengths longer than 20 microns.

The detector is a thermocouple which develops a signal of 100 microvolts with full globar input. Sensitivity of the thermocouple is specified as six microvolts per microwatt of incident radiation. This thermocouple is of the same type as that used in the Perkin-Elmer Model 12C Spectrometer and is reported to be linear in output over wide variations in light intensity at all wavelengths in the near infrared region. The thermocouple is sensitive to ambient temperature changes. Drift and instability produced by such changes are avoided by chopping incoming radiation at 13 cycles per second. Thus a low frequency A.C. amplifier may be used to amplify the very low level signal from the thermocouple. The A.C. signal is later rectified and filtered to recover information regarding signal amplitude. Contacts for the synchronous metor used for the rotating shutter.

-16-

Inissivity as well as absorptivity may be measured with this system. For emissivity measurements it is only necessary to place the light chopper disk between the sample and the thermocouple rather than between the globar and the gas sample.

Since percentage of transmission is measured by noting the difference in radiation intensity received when the cell is evacuated and the radiation received when the cell contains gas at known temperature and pressure, it is important that measurements be made within the limits of linearity of the detecting and amplifying system. There is no easy means available for the measurement of absolute radiation intensity received at the thermocouple. The amplifier and Speedomax were found to be linear with respect to input signals from the detector.

Percentage of absorption by carbon dioxide at the temperature and pressure used was found to be of the order of 25% or less. In order to get reliable data it is necessary that noise and drift be low in comparison with variations in signal strength arising from changes in absorption of radiation. Noise and drift in the instrument were reduced to below the 1% level.

Previous investigations⁽¹⁰⁾ were carried out at a total pressure of one atmosphere while varying the partial pressure of the absorbing or radiating gas. We have investigated absorption of radiation at room temperature at total pressures up to 55 atmospheres.

-17-

Let D = recorder deflection for the filled gas cell and $D_1 =$ the deflection for the empty cell, K = recorder constant, $T_s =$ globar temperature, $\mathcal{E}_s =$ emissivity of source, $\mathcal{O} =$ Stephan-Boltzmann constant, $\mathcal{A} =$ absorptivity and $K' = K/\mathcal{O}^-$. Then

$$KD_{l} = \sigma \xi_{s} T_{sl}^{4}$$
(14)

and, if $\xi_{a} = 1$,

$$\mathbf{K}^{*} = \mathbf{f}_{\mathbf{sl}}^{A} / \mathbf{D}_{\mathbf{l}}$$
(15)

When the gas call contains absorbing gas and $\xi_s = 1$, then

$$X'D = (1-\alpha)T^{4}_{sl}$$
 (16)

$$\alpha = (\mathfrak{T}_{sl}^{4} - \mathfrak{K}^{*}\mathfrak{D})/\mathfrak{T}_{sl}^{4}$$
(17)

$$\alpha = 1 - D/D_1 \tag{16}$$

It follows from Kirchoff's law that the total absorptivity and emissivity of the carbon dioxide are equal to each other at equilibrium. At room temperature it has been assumed that the emission of radiation from carbon dioxide is negligibly small compared with the intensity of the transmitted incident radiation. The results of total absorption measurements are presented in Tables III and IV and are plotted in Figs. 14 to 17. Table III and Fig. 14 contain a summary of the experimental data which were actually

obtained. Table IV and Figs. 15 and 16 contain results applicable to a total pressure of 1 atmosphere. In Fig. 17 the absorptivity is plotted as a function of optical density with the total pressure $p_{\rm T}$ treated as a variable parameter. Reference to Fig. 17 shows that \propto is not a sensitive function of the total pressure at pressures in excess of about 3.73 ata.

Table IV. Absorptivity of Carbon Dioxide at a Pressure of 1 atm and at Room Temperature

p l (ft-atm)	Absorptivity X	pl (ft-atm)	Absorptivity X
10	.221	.4	.081
8	.197	.3	.064
6	.172	.1	.054
4	.148	.03	.050
3	.122	.06	.045
1.5	.113	.04	.039
1.0	.103	.02	.030
.8	.098	.01	.023
.6	.092		

D. Comparison with the Results of Other Investigators

The experimentally determined values of \measuredangle at a total pressure of 1 atm are compared with the results of studies carried out by Hottel and Mangelsdorf⁽¹¹⁾ in Table V and in Figs. 18 and 19.

Since the limit of our probable error is $\pm 10\%$ and those of Hottel and Mangelsdorf $\pm 20\%$, the egreement between the independently determined experimental data may be considered to be satisfactory.

pl (ft atn)	Absorptivity Hottel and Mangelsdorf (1935)	≪ Present Study
10 8 6 4 2 1.5 1.0 .8 .6 .4 .2 .1 .08 .06 .04 .02 .01 .02	.17 .15 .14 .128 .120 .111 .100 .083 .068 .068 .064 .057 .050 .038 .0285	.221 .197 .172 .148 .122 .113 .103 .098 .098 .098 .098 .098 .098 .098 .098
.006	.0219 .017	

Table V.	Absorptivity				of Carbon		Dioxide	at	Room	Temperature	at
	2	Total	Pres	ssui	to of	1	Atmosphe	re.			

-20-

PERENCES

- 1. G. Herzberg, "Infrared and Raman Spectra, D. Van Hostrand Co., New York (1945).
- B. Wilson, Jr. and A. J. Wells, J. Chem. Phys., <u>14</u>, 576 (1946).
- 3. S. S. Penner and D. Weber, J. Chem. Phys., 19, 807-816 (1951).
- 4. S. S. Penner and D. Weber, J. Chem. Phys., 19, 817-818 (1951).
- A. M. Thorndike, A. J. Vells, and E. B. Wilson, Jr., J. Chem. Phys. <u>15</u>, 157 (1947).

6. A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).

- D. T. Eggers Jr. and B. L. Crawford, J. Chem. Phys., <u>19</u>, 1555 (1951).
- 8. D. S. McKinney and R. A. Friedel, J. Opt. Soc. Am. <u>38</u>, 222-225 (1948).
- 9. L. Page, Introduction to Theoretical Physics., D. Van Nostrand Co., New York (1935).
- A. N. Lowan et al, "Miscellaneous Physical Tables", MPA Project No. 65-2-97-33. (1941).
- H. Schmidt, Forsch. Geb. Ingen. 3, 57 (1932).
 H. C. Hottel and H. G. Mangelsdorf, Trans. A.I.Chem. Engineering. 31, 517 (1935).
 H. C. Hottel and V. C. Smith, Trans. A.S.M.E., 57, 4 (1935).
 H. C. Hottel and R. B. Egbert, Trans. A.S.M.E., 63, 297 (1941).
 E. B. Egbert, Sc. D., Thesis in Chemical Engineering, M.I.T. (1941).

Fig. 1. Schematic representation of infrared absorption cell used to measure intensities of gas mixtures.

										-25-							
					· -				:			9					
					:	- 1		4 								2	
· · · · ·								· · · · · ·					•				
					4 									, , ,			
		8								3 							
		nter		on a s					1	· · · · · · ·						-	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		so K.	1	-				•		···· · · · ·						15	
		et 3	-	-	-					anth à a brown and P Designed and an anti-airean ann	i i i i i i i i i i i i i i i i i i i					- :	
		2 02 03								· · · ·		· · · · ·		1		-	I
			(B)										0	Q	-	~	
		27 C	1sd 0							······································				··· .		B	
		t .0.	= 20	anga te gaat ofference crasses												0.0	-
		t1 nn 272	h, p _T	·	· · ·							· · · · · · · · · · · · · · · · · · ·				pl	
		func #	lengt														
			cell			·									0		
		6 1 303	8			-	1.01										·····
		4860	(3,5				n gan kabumu (jang			9						5	
		60°															
								·		•							•
		• • • • • • • • •		- 27 10 10 10 10 10 10 10 10 10 10 10 10 10			1 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-					· · · · · ·				
-						· · · · · · · · · · · · · · · · · · ·				 1							
	. :	5		0	L	ß		t			٢			-	. (0.	
	- 1							2.0				· · · · · · · · · · · · · · · · · · ·					9 min an All a 4
	4	· · · · ·						1									

-27-

								ļ	-28-	• · · · ·		-					
						and a start of start manufacture) 		(1)		nanten a alignan.	
-			,				÷	-			-						
			· • • • • • • • • • • • • • • • • • • •								anno antipo de agran el anti-					o.	ana an de la la
																	•
		<u>.</u>					\sum										
					f gerundigen bestelligtet with with		$ -\rangle$							a attentiottenda alterna organizare misa			•
	a t				:	+	/-		; =-	-i-							*
	H					:-	:										
	ent		1					\square									т. 1. мааларынын аралы ала
	Ŭ					<u> </u>		1	···· ÷ = ··	1	e - marine in channe in - mane				•		· ·
	1t)	M								1.		ī	:			0	
· · ·	r þr	801	• -		· · · · · · ·				\sum								
	bar	N							0		- -			· · · · · · · · · ·	:		-
	0					;								-	-		
										X	· · · · · · · · · · · · · · · · · · ·						ł
	44								i	$\langle -$			· · · · ·			E	
	for	N	D D									-		1 a.m.			
	61	8	8													8	annanan in s i pansin
		520		-		a a a nor buloubenengoapo					10	1				N	
	но	+1	ġ.													- rd	<u>i</u>
	t 1	90	th				5				-						
	nnc	N	en			· · · · · · ·											-
	Q	· · · · · · · · · · · · · · · · · · ·													-		-
	00 00	•	8									0		:		1	
	0	1	8												-		
	ត	CD .	15					· · · · · ·	-				1				
	0	534	5.									1.1				2	
1									-						• : ÷		
		1	;			1					1						
	20 								1								;
				1													
		*								1					2		
1 1					-	·				:		-			2		
	1									+			1				· + · ·
-																0	! -
-		÷.		3		1		F I	9 - 1	T :		1				0	
								203	41.2		1						1
· .															:		1
		1				· · · ·										1	:
ba b-					1		-	-	÷.,						· · · ·	1	1

+

-

The s. $[2/2, 200]$ are function of pl for 000 has 7100 threes 2000 and 7100 cm ⁻¹ . $d' = 1/47 \pm 0.047$ cm ⁻² . ah^{-1} at 208 k. (3.57 and 6.77 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.77 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.77 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{m} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{m} = 500$ puta)	-1			-		:			-200	-						-
Nie. 8. 9 / 3.003 are function of pl for 002 ln the redon between 2000 and 7160 ard	· · ·			-								 I			-	-
Fig. 8. $\frac{9}{2}$ / 2.302 as a function of pl for 002 in the region between 2.300 and 7160 as $^{-1}$. \mathcal{A} = Jet \pm 047 as $^{-2}$ at $^{-$:		0			1				8
The form of plane $(2, 303)$ as a function of plane for (02) in the region between 2000 and 2160 cm ⁻¹ . $d_{1} \pm J_{1} \pm J_{2} \pm J$		- may many the state of the sta				unterfilter sampusterer despe						r 	• •			
The. 5. β / 2.303 as a function of pl for 00, h the recton between 2000 and 2160 cm ⁻¹ . ct = λ 4 γ 2.047 cm ⁻² - α km ⁻¹ as 296 K. (3.57 and 6.72 cm cell length, $p_{\pi} = 500$ puta) (3.57 and 6.72 cm cell length, $p_{\pi} = 500$ puta) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									1			1				8
Tig. S. $g/2.302$ as a function of pl for 00_2 in the recton between points and 7.57 and 6.72 as edimeter of p_1 is 28° . 2000 and 7160 as $^{-1}$. $cl = J87 \pm .047$ as $^{-2}$ at $^{-1}$ at 28° . (3.57 and 6.72 as cell 1 langth, $p_1 = 500$ puta) (3.57 and 6.72 as cell 1 langth, $p_1 = 500$ puta) (3.57 and 6.72 as cell 1 langth, $p_1 = 60$ (3.57 and 6.72 as cell 1 langth, $p_1 = 60$ (3.57 and 6.72 as cell 1 langth, $p_1 = 60$ (3.57 and 6.72 as cell 1 langth, $p_1 = 60$ (3.57 and 6.72 as cell 1 langth, $p_1 = 60$ (3.50 $\frac{1}{20}$ (3.51	·	8 9D							l 1	. \ = .			· · · · ·		. = .	
Tig. 8. $g/2$. 303 as a function of pi for 00 ₂ in the redion t provide the redion of pi for 00 ₂ in the redion t provide the redion of pi for 00 ₂ in the redion t (3.57 and 6.72 ca cell length, $P_T = 500$ peta) (3.57 and 6.72 ca cell length, $P_T = 500$ peta) (3.57 and 6.72 ca cell length, $P_T = 500$ peta)		2 98 ⁰				w										0
The solution of pl for CO2 An the red 2000 and 2160 cm ⁻¹ . $d_{\pm} = J4T \pm .047$ cm ⁻² - atm ⁻¹ 2000 and 2160 cm ⁻¹ . $d_{\pm} = J4T \pm .047$ cm ⁻² - atm ⁻¹ 2000 petal $(3,57, and 6,72 cm cell llength, p_{T} = 500 petal($		B.t.			1									· · · · · · · · · · · · · · · · · · ·	*-* - p	8
Fig. 5. $g/2$. 303 as a function of pi for 00 ₂ in the 2000 and 2160 cm ⁻¹ . $c_{i} = 2147 \pm 047$ cm ⁻² . (3.57 and 5.72 cm chil length, $p_{r_{i}} = 500$ pata) (3.57 and 5.72 cm chil length, $p_{r_{i}} = 500$ pata)		redi									0					
Fig. 8. β / 2.302 as a function of pl for 00 ₂ in 2000 and 2160 cm ⁻¹ . $\epsilon_{f} = J47 \pm .047$ cm 2000 and 2160 cm ⁻¹ . $\epsilon_{f} = J47 \pm .047$ cm (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k (3.57 and 6.72 cm cell length, $p_{T} = 500$ k		the the	(ais							1 						8
Fig. 8. <i>R</i> / 2.302 as a function of pl for (0) 2000 and 2160 cm⁻¹. $d_{1} = 247 \pm 0.047$ 20.57 and 6.72 cm cell length, $P_{T} = 5$ (3.57 and 6.72 cm cell length, $P_{T} = 6$ 2.57 and 6.72 cm cell length, $P_{T} = 6$ 2.57 and 5.72 cm cell length, $P_{T} = 6$ 2.57 2.57 2.57 cm cell length, $P_{T} = 5$ 2.57 2.57 2.57 cm cell length, $P_{T} = 5$ 2.57 2.57 2.57 cm cell length, $P_{T} = 5$ 2.57 2.57 2.57 cm cell length, $P_{T} = 5$ 2.57 2.57 		8	1000									0				
Tig. 5. $[2]$ 2.303 as a function of pl for 2000 and 2160 cm⁻¹. $d_{1} = J4Y \pm$ 2000 and 6.72 cm cell length , p_{1} (3.57 and 6.72 cm cell length , p_{1} 0 ZO 30 40 pl JO		04													-	0
Tig. 5. 8 / 2.303 as a function of plant 2000 and 2160 cm ⁻¹ . A = Jay 2057 and 6.72 cm cell longth (3.57 and 6.72 cm cell longth 0 6 0 6 0 6 0 7 0 6 0 7 0 7 0 6 0 7 0 7 1 1 1 1			d .			n n						\				a d
Nie. 8. 8 / 2.303 as a function of 2160 cm ⁻¹ . d. = 2000 and 7160 cm ⁻¹ . d. = (3.57 and 6.72 cm chill let 1) (3.57 and 6.72 cm chill let 2) 6 0 6 70 0 7 6 0 7 7		14. pl	ngth					· · · · · · · · · · · · · · · · · · ·								
Fig. 8. β /2.303 as a functi 2030 and 2160 cm ⁻¹ . (3.57 and 6.72 cm cei (3.57 and 6.72 cm cei 20 30 70 p		S and	E E		1		· · · ·			1 · -						1 20
Fig. 8. 8/ 2.302 as a fr 2000 and 2160 as (3.57 and 6.72 ca (3.57		inct!	8										0			<u>e</u>
Tig. 8. 8/2.302 as 2000 and 216 (3.57 and 6.7		4 8	2				· · · · · · · · · · · · · · · · · · ·									2
Fig. 8. 8/ 2.30: 2000 and 2000 and 20 30		2160	9			1	· · · · · · · · · · · · · · · · · · ·			-		1	9		-	
Fig. 8. B / 3 2000 2000 3.57		.30: and									= = =					0
		0000	3.57				1								* *	
					1											
	· · · · · · · · · · · ·	60						1						0		0 N
		716				:					· · ·			\	0	
			an a ngar Jang-agarés di seperte								1				6	0
	-					:		1		ł	- 10 - 11		-	-		0
0 - 10 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0			+ -	1	-1	2 0		0		0 L		"	0 0			
			· · ·		-	i						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

-29

-30-

	ang og a ster dangere verete nige i pe sommen veregerer ober			1. mil 1	-3	1-			a die - unique autoriseren a				
			· · · · ·						:				
							a						
ri .	-				-					· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	4.	
68	6					=				*	• -		· · · · · · · · · · · · · · · · · · ·
at a second seco	nd 61		-				• • • • • • • • • • • • • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			e ministrative fordiginity source as		
anter	667 8				· · · ·		un ann an a			a	ndeur handt is, anse sesan an an g	-	
e	720.						4 4 4 40 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		· · · · · · · · · · · · · · · · · · ·				
	5 8											fn.	
ba d	nter			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · = ·= ·			· · · · ·				
the	th ce 2980K	6	Q			· · · · · · · · · · · · · · · · · · ·			999-99-94-99-94-99- 		e Mille nambuganin i i i i i i i i i i i i i i i i i i		• • • • • • • • • • • • • • • • • • •
lor log	le wi) pet			· · · · · · ·							ttm)	
ld J	a the	20	· · · · · · · · · ·									1	1
uor	oring -2-	ρ. H							· · · · · · · · · · · · · · · · · · ·		-		-
(unc t	eighb	engtb										A	
	4 Yao +1	e11 1				à	-	·	: 				
303	a Sul	5											
812	clud	- 985							} 				
0	4 8				· · ·					1 1 1 1		•	······································
													- geographical grant for all the second seco
			/			4 4				2	a same source has		
					• • • • •		-	-		į)		0	1
	2		50	2	210	10			5	_ 1		0	
				2.02	018								
						-			-				-

.

:	-1 :	1 .	:				-38-							
-					a ana a	Ange								
-+-	-											:		07
	the h													
	anet: Lth						• •			-			-	J
	6 P					·····		· - ·			·			
	6-86 ratu											· · · · · · ·		
	1tle					6						i		0
	ptiv om t	rf.				-		-					-	
	bsor d ro	1.sdo												<i>c</i> .
	e ar	lange												1
	1 imie Ius se	ind P	1935	Vort										
	det o	tel «	Stat		tel l								-	84
	ally-	Hot	1.ede		Pr 03(1								(EF
- +	ment	t by	Saaw				-+							- Z
	pert t at	d ou		840		-								
	S C	rrie	· · · · · · · · · · · ·	tel						· · · ·				4.
-	on o	CB		E										
	parf.	tudie	· · ·					. -						u)
	Gom	of st	· : = -	· · · · · · · · · · · · · · · · · · ·							1			
	18 081	lts					\sum		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		,	
	Fig.	resu												
-								1-					-	
											· · ·			
5	* •	r c	+	9	60	P c		i i				2		0
-		3		•	>	o fr	i c	Tosdi						
			• • =	· · · · · · · · · · · · · · · · · · ·				-		4 - 1	-		+	
							1 · · · · · · · · · · · · · · · · · · ·							

.

· · ·

·

-

OCT 2

BINDERY

18037

	OCT 2	BINDERY
	dioxide. II	. Total
	rotation band	ls of carbon
	neasurements	of vibration
H69	I. Integrat	ed intensity
Thesis	Holm	

18037

A,